ASSESSMENT REPORT

# MIDWAY PROPERTY Soil Sampling Program

NTS 82E/2 Lat 49° 02' 00" N Long 118° 50' 30" W

Greenwood Mining Division

Prepared for: Gold City Industries Ltd. 550 - 580 Hornby St. Vancouver, B.C. V6C 3B6

Prepared By: Paul S. Cowley, P.Geo. 207-270 West 1<sup>st</sup> Street North Vancouver, B.C. V7M 1B4

July 29, 2004

| 1.0               | SUMMARY                                                                                 | 1  |
|-------------------|-----------------------------------------------------------------------------------------|----|
| 2.0               | INTRODUCTION                                                                            | 2  |
| 2.1<br>2.2        | LOCATION, ACCESS, INFRASTRUCTURE AND PHYSIOGRAPHY<br>PROPERTY AND OWNERSHIP             | 2  |
| 2.3<br>2.4        | HISTORY OF EXPLORATION<br>SUMMARY OF 2004 WORK PROGRAM                                  | 5  |
| 3.0               | GEOLOGY AND MINERALIZATION                                                              | 8  |
| 3.1<br>3.2        | REGIONAL GEOLOGICAL SETTING AND MINERAL DEPOSITS<br>PROPERTY GEOLOGY AND MINERALIZATION |    |
| 4.0               | SOIL SAMPLING PROGRAM                                                                   | 15 |
| 4.1<br>4.2<br>4.3 | Northwest Grid<br>Lone Boulder West Grid<br>Picture Rock North Grid                     |    |
| 5.0               | RECOMMENDATIONS                                                                         |    |
| 6.0               | REFERENCES                                                                              |    |

## LIST OF FIGURES

|             |                                                    | Page |
|-------------|----------------------------------------------------|------|
| Figure 1 -  | Location Map                                       | 3    |
| Figure 2 -  | Claim Map                                          | 4    |
| Figure 3 -  | Property Geology Map                               | 11   |
| Figure 4 -  | Grid Index Map                                     | 17   |
| Figure 5 -  | Northwest Grid - Soil Survey – Au Results          | 18   |
| Figure 6 -  | Northwest Grid - Soil Survey – Ag Results          | 19   |
| Figure 7 -  | Northwest Grid - Soil Survey – Cu Results          | 20   |
| Figure 8 -  | Northwest Grid - Soil Survey – Zn Results          | 21   |
| Figure 9 -  | Northwest Grid - Soil Survey – As Results          | 22   |
| Figure 10 - | Northwest Grid - Soil Survey – Hg Results          | 23   |
| Figure 11 - | Lone Boulder West Grid - Soil Survey – Au Results  | 24   |
| Figure 12 - | Lone Boulder West Grid - Soil Survey – Pb Results  | 25   |
| Figure 13 - | Lone Boulder West Grid - Soil Survey – Zn Results  | 26   |
| Figure 14 - | Lone Boulder West Grid - Soil Survey – As Results  | 27   |
| Figure 15 - | Picture Rock North Grid - Soil Survey – Au Results | 28   |
| Figure 16 - | Picture Rock North Grid - Soil Survey – As Results | 29   |

## LIST OF TABLES

|           |                                   |  | Page |
|-----------|-----------------------------------|--|------|
| Table 1 - | Claim Information                 |  | 5    |
| Table 2 - | Statistical Data for Soil Samples |  | 15   |

## LIST OF APPENDICES

APPENDIX I -Analytical ResultsAPPENDIX II -Cost StatementAPPENDIX III -Statement of Qualifications

### 1.0 SUMMARY

This report summarizes the results of a spring 2004 exploration program by Gold City Industries Ltd. on the Midway property, located some 6 kilometres west of Midway, in southern British Columbia.

Prior to 2001, the Midway property was comprised of two separate claim blocks, the original Midway claims in the south and west, and the Rainbow claims in the north and east, which were explored separately. Both blocks of ground are now 100% owned by Gold City Industries Ltd. and form the current Midway property. The property is comprised of 12 claims, totalling 73 units. There is good road access to the property.

The Midway property is situated within the Toroda "graben". The property covers the so-called "Midway window", an inlier of pre-Tertiary rocks, surrounded by Eocene volcanics and sediments, within the graben. Four main areas of mineralization are known to occur on the property, the Midway Mine-Picture Rock Quarry-Lone Boulder Hill, the Texas-Potter Palmer, the Bruce and the Granada zones, all hosted within the pre-Tertiary rocks. Soil sampling during April 2004 focused in the area of epithermal veins with elevated gold values in the Picture Rock Quarry and Lone Boulder Hill areas as well as north of the Granada Zone.

A large serpentinite-listwanite belt trends east-west across the northern portion of the Midway property and marks the position of a major, regional north dipping thrust fault. There is considerable alteration, and local mineralization, along the thrust fault and much of the serpentinite has been altered to listwanite. Rocks in the hangingwall of the thrust (to the north) are dominantly Eocene volcanics and sediments of the Marron and Kettle River Formations. Tertiary epithermal chalcedonic breccia zones (the Picture Rock Quarry and Lone Boulder Hill targets) occurs in and proximal to serpentinite unit, and are good exploration targets for epithermal style gold mineralization.

Sediments, volcaniclastics and volcanic rocks of the Triassic Brooklyn Formation occur in the footwall of the thrust and are locally intruded by Cretaceous-Jurassic and Eocene intrusives. The Brooklyn Formation is an important host to mineralization in the Boundary District. All of the major skarn deposits in the Greenwood area are hosted within the Brooklyn Formation. In addition, Echo Bay's Lamefoot, Overlook and Key Deposits in Washington State occur within this unit, in a relatively newly recognized deposit type described by Rasmussen (2000) as gold-bearing, magnetite-pyrrhotite-pyrite syngenetic volcanogenic mineralization. Copper-gold mineralization on the Midway property (Texas, Bruce and Granada zones) occurs within the Brooklyn rocks, and suggests potential for either copper-gold skarn type or gold bearing magnetite-sulfide volcanogenic mineralization. Anomalous Hg, As, Sb, Se and Te in this area also suggest potential for epithermal style mineralization.

During April 2004, Gold City completed soil sampling on three grids. One grid covered the Lone Boulder Hill area and showed Au-As-Pb-Zn anomalies associated with a discontinuous northeast trend of chalcedonic quartz. This trend should be prospected and the grid extending to the southwest. A second grid covered the northern extension of the 1990 Picture Rock soil grid by Minnova. This grid displayed Au-As anomalies that require prospecting and filling in the grid gap. The third grid installed north of the Granada Showing, covered a Au soil anomaly by Minnova but with tighter spacing for better definition. Two linear multi-element anomalies sub parallel Ingram Creek occur on this grid. The stronger linear anomaly is open to the northeast and southwest and requires expansion of the grid to define the anomaly completely. Prospecting of these anomalies is warranted to discover their source. Further work is recommended to explore for epithermal style mineralization on the property.

## 2.0 INTRODUCTION

## 2.1 Location, Access, Infrastructure and Physiography

The Midway property is located 6 kilometres west of Midway, B.C. on NTS map sheet 82E/2 as shown in Figure 1. Highway 3, the abandoned Kettle Valley rail line and the Southern Crossing natural gas pipeline cut the southwestern portion of the property. A low voltage secondary power line is also present, along Highway 3. A major high voltage power line crosses the northern portion of the claims.

The main road access to the property is west from Midway on Highway 3 for 8 kilometres to the Ingram Creek road, then north along the Ingram Creek road for 5 kilometres to the West Ingram-Copper Mountain Road. The West Ingram-Copper Mountain Road is followed northeast for a further 2 kilometres before turning east onto a branch road which crosses West Ingram Creek and leads to the Midway property. A network of hydro, logging, mining exploration and ranching roads provide access to most parts of the property. Alternately, the property can be reached from the road system up Murray Gulch, 1 kilometre west of Midway, however this road crosses private property and permission is needed from the land owner.

The topography of the northern and eastern portions of the property is subdued, with low to moderate relief. Ingram Creek cuts through the western part of the property with steeply incised canyon walls. The topography of the southwestern portion of the claims is also moderately steep. Elevation ranges from about 610 metres in the southwestern portion of the property, to about 1190 metres in the northeast. The climate is moderately dry, with generally hot summers and little rainfall. Snowfall is typically less than 1 metre, and the property is generally snow free by early spring. Water for drilling is available from Ingram Creek or from a series of small ponds in the north-central portion of the property.

Rock exposure is limited in the northern and eastern portions of the property; however there is good rock exposure in the Ingram Creek canyon and in the steeper, southwestern part of the claims. Much of the property is covered by open grassy meadows with scant tree cover. In the northeastern portion of the claims, vegetation cover consists of open mature Ponderosa pine and Douglas fir forest, with minimal undergrowth.

#### 2.2 **Property and Ownership**

The Midway property consists of 12 claims (a total of 73 units) covering 1730 hectares, as shown in Figure 2. The claims are situated within the Greenwood Mining Division, on map sheet 082E.006. Claim information is listed in the following table.

Gold City Industries Ltd. has a 100% interest in all the claims within the Midway property, subject to two non-overlapping NSR agreements. Both the original Midway claims and the Rainbow claims are subject to a 3% NSR. Under each agreement, Gold City has the right to purchase 1.5% of the NSR, at any time, for \$250,000 per 0.5% increment.





| CLAIM NAME   | <b>TENURE #</b> | UNITS | EXPIRY DATE * |
|--------------|-----------------|-------|---------------|
| J-1          | 214178          | 9     | 2006-05-01    |
| J-2          | 214179          | 4     | 2006-05-01    |
| J-3          | 214180          | 10    | 2006-05-01    |
| Texas        | 214285          | 1     | 2006-05-01    |
| Granada      | 214286          | 1     | 2006-05-01    |
| Jay Fraction | 215910          | 1     | 2006-05-01    |
| J 4          | 337837          | 4     | 2006-05-01    |
| J 5          | 337838          | 6     | 2006-05-01    |
| Rainbow      | 364774          | 9     | 2006-05-01    |
| Rainbow #1   | 364775          | 1     | 2006-05-01    |
| Rainbow #5   | 385298          | 9     | 2006-05-01    |
| Rainbow #6   | 385299          | 18    | 2006-05-01    |

| Table 1: | Claim Information |
|----------|-------------------|
|          |                   |

\* Expiry dates listed are after filing this report.

## 2.3 History of Exploration

Prior to 2001, the Midway property was comprised of two separate claim blocks, the original Midway claims in the south and west, and the Rainbow claims in the north and east, which were explored separately. In the following summary of exploration, the term "Midway" refers to just that portion of the current Midway property covering the Bruce, Texas, Granada, Potter Palmer, etc. showings and covered by the original Midway claims. The term Rainbow is used to describe the area of the Midway Mine and Picture Rock Quarry in the northeastern part of the Midway property.

The history of exploration on the property is described in part by Caron (1990) and Hoffman and Caron (1991), and is summarized below.

- 1898 The first mention of claims in the vicinity of the Midway property is in 1898, when a 76 metre long tunnel is reported at the Bruce showings (on the former Bruce CG - L918). Tunnelling was also completed by this date on the Potter Palmer, about 1 km to the west. Nineteen crown grants and mineral claims are shown on the old claim maps in the southeastern part of the property. Today, only two reverted crown grants (the Texas and Granada) remain.
- 1909 Considerable surface work is reported to have been done on the Bruce claim, and 190 tonnes of ore at an unknown grade was mined. Numerous other old pits and workings, including those at the Texas, Granada, and Midway Mine are believed to have been completed by this time.
- 1956 Noranda completed geological mapping and sampling on the "Midway" property. An area of garnet skarn was identified in the western portion of the property, in the vicinity of the Texas and Granada reverted crown grants.
- 1960 Granby Mining Co. completed geological mapping and sampling on the "Midway" property and noted that limestone and skarn were thicker here than at Phoenix.

- 1966 Utah Construction and Mining Company carried out geological mapping, sampling and an IP survey on the western part of the "Midway" property. Six diamond drill holes were drilled and numerous intervals of skarn with sulfides were noted. There are no assays available for this drilling.
- 1966-68 Granby Mining Co. completed magnetometer and IP surveys over the eastern part of the "Midway" property and drilled six diamond drill holes to test IP anomalies.
- 1968 D. Moore completed underground development at the Midway Mine (on the Rainbow property) and mined 19 tonnes of ore grading 14 g/t Au, 1506 g/t Ag, 15% Pb and 16% Zn.
- 1969 Texas Gulf Sulfur Co. staked claims covering the western part of the "Midway" property and identified structurally and stratigraphically controlled copper mineralization within rocks of the Brooklyn Formation. An IP survey was completed and two anomalous zones identified. These targets apparently remain untested.
- 1972 Bonus Resources Ltd. completed a copper soil survey and a fluxgate magnetometer survey over the northern part of the "Midway" property.
- 1975 San Sarita Mining Co. Ltd. drilled two short X-ray holes on the "Midway" property. One hole was drilled north of the Granada claim and the second east of the Texas claim. Drill core was apparently not analyzed.
- 1978-83 Maymac Explorations Ltd. staked the "Midway" property, and completed soil sampling and VLF/EM surveys. This work was followed by drilling 15 diamond drill holes in the southeastern part of the property. Drill hole 81-5 is reported to have returned 1.8 g/t Au over 4 m.
- 1983 Dentonia Resources and Kettle River Resources optioned claims from D. Moore covering the Midway Mine and Picture Rock Quarry and staked additional claims in the Rainbow portion of the property. Geological mapping, geochemistry and geophysics were completed.
- 1984 Kerr Addison Mines optioned the Rainbow property from Kettle River/Dentonia and completed geological mapping and geochemistry over a small portion of the claims.
- 1987-88 BP Resources Canada Ltd. optioned the Rainbow property and completed geological mapping,

geochemistry, and geophysics over a portion of the property. BP also drilled 4 diamond drill holes in an attempt to test the Picture Rock Quarry epithermal system at depth (Hoffman and Wong, 1988; Hoffman et al, 1989).

- 1989-90 Minnova Inc. optioned the Rainbow property and completed heavy mineral sampling, geological mapping, rock and soil sampling (Lee, 1990a, 1990b). A large multi-element (Au, Ag, Pb, Zn, As) soil anomaly was identified immediately north and east of the Midway Mine. Rock sampling returned values of 2.8 g/t Au and 218 g/t Ag over a 4.5 metre interval at the Midway Mine. Trenching was completed near Dry Lake and in the area of anomalous soils near the Midway Mine. Diamond drilling (7 holes) was also completed in the vicinity of the Midway Mine (Caron, 1990).
- 1990-91 Following the discovery of the Crown Jewel gold skarn in northern Washington, Battle Mountain (Canada) Inc. optioned the "Midway" property, to assess the gold skarn potential of the claims.

Battle Mountain completed a large exploration program consisting of soil and rock sampling, a ground magnetometer survey, geological mapping, and re-logging and sampling Maymac drill core (Hoffman and Caron, 1991). Several large areas of anomalous Au and Cu in soils (+As, Zn) were identified in the Texas, Potter Palmer, Granada and Bruce areas. A number of areas of anomalous Ni-Co-Cr in soils were also defined. Five diamond drill holes were completed in the Texas and Potter Palmer areas.

Gold City Industries Ltd. acquired both the "Midway" and Rainbow properties and amalgamated these properties to form the current Midway property. During 2001, Gold City completed a small exploration program consisting of rock geochemistry and limited vegetation, heavy mineral and silt sampling, as described by Caron (2002b). The potential for PGE mineralization related to the ultramafic intrusives on the property was identified and sampling included analysis for Pt and Pd, without significant results. Rock sampling did return values to 84,944 ppm Cu and 1133 ppb Au from the Bruce area, to 7.7 g/t Au and 787 g/t Ag from the Midway Mine, and to 4.72 g/t Au and 77,124 ppm Cu from the Texas area. A gold-mercury association was noted in the Texas and Bruce areas, and similarities to the geological setting of the Lamefoot deposit were observed.

One heavy mineral sample was collected from Murray Gulch, draining the eastern portion of the property. This sample was anomalous in both gold (2417 ppb Au) and in Pt (19 ppb Pt) and supports a source for mineralization in the Picture Rock Quarry – Midway Mine area. Two silt samples were collected from the same sample site. One sample was anomalous in copper (13 ppm Cu) and antimony (0.7 ppm Sb) while the second was anomalous in lead (13 ppm Pb), silver (158 ppm Ag), arsenic (9 ppm) and antimony (0.9 ppm Sb). This same metal association has been confirmed by rock sampling in mineralised samples from the Midway Mine and further supports a possible source to the sediment anomalies related to the Midway Mine and Picture Rock Quarry targets.

2003 Gold City Industries Ltd. completed 10 trenches near the Lone Boulder Hill and the Picture Rock Quarry and recommended further trenching around a highly altered area on Lone Boulder Hill.

## 2.4 Summary of 2004 Work Program

The work program described in this report was carried out between April 5-15, 2004. A total of 15.25 km of gridlines were installed in three grids. The Northwest grid covered an area of 300 metres (east-west) x 750 metres (north-south) with 16 lines spaced 50 metres apart oriented east-west for a total of 4.8 km on grid and 0.75km base line. Sample spacing was every 25 metres along lines. The Lone Boulder West Grid and the Picture Rock North Grid form western and northern extensions to a 1990 Minnova soil grid over Picture Rock Quarry. Lines ran north-south spaced 25 metres apart totalling 8.8 km of line and 0.9km linking baseline with samples every 20m along lines.

A total of 703 soil samples were taken from the three grids. The 2004 exploration program was managed in the field by Alan Raven. Sampling was performed by Alan Raven. Merle Moorman, Mike Hibberson, Brodie Herbert and Scott McPhee. A total of 45 mandays were required to complete the work including mobilization from Vancouver for two people. Soil samples were shipped to Acme Analytical Labs in Vancouver for preparation and analysis. Samples were analysed for 37 elements (including gold) by the **Group 1F30 method** (ICP Mass Spec analysis of 30 gram samples after aqua regia digestion).

### 3.0 GEOLOGY AND MINERALIZATION

### 3.1 Regional Geological Setting and Mineral Deposits

The following discussion is taken in part from an earlier report by Caron (2003). The Midway property is situated within the highly mineralized Boundary District of southern B.C. and northern Washington. Portions of the Boundary District have been mapped on a regional basis by numerous people, including Fyles (1990), Little (1957, 1983), Church (1986), Parker and Calkins (1964), Muessig (1967) and Cheney and Rasmussen (1996). While different formational names have been used within different parts of the district, the geological setting is similar. The following discussion of the regional geology and mineral deposits is taken from an earlier report by the Caron (2002b).

The Boundary District is situated within Quesnellia, a terrane which accreted to North America during the mid-Jurassic. Proterozoic to Paleozoic North American basement rocks are exposed in the Kettle and Okanogan metamorphic core complexes. These core complexes were uplifted during the Eocene, and are separated from the younger overlying rocks by low-angle normal (detachment) faults. The distribution of these younger rocks is largely controlled by a series of faults, including both Jurassic thrust faults (related to the accretionary event), and Tertiary extensional and detachment faults.

The oldest of the accreted rocks in the district are late Paleozoic volcanics and sediments. In the southern and eastern parts of the district, these rocks are separated into the Knob Hill and overlying Attwood Groups. Rocks of the Knob Hill Group are of dominantly volcanic affinity, and consist mainly of chert, greenstone and related intrusives, and serpentinite. The serpentinite bodies of the Knob Hill Group represent part of a disrupted ophiolite suite which have since been structurally emplaced along Jurassic thrust faults. Commonly, these serpentinite bodies have undergone Fe-carbonate alteration to listwanite, as a result of the thrusting event. Serpentinite is also commonly remobilized along later structures. Unconformably overlying the Knob Hill rocks are sediments and volcanics (largely argillite, siltstone, limestone and andesite) of the late Paleozoic Attwood Group.

The Paleozoic rocks are unconformably overlain by the Triassic Brooklyn Formation, represented largely by limestone, clastic sediments and pyroclastics. Both the skarn deposits and the gold-bearing volcanogenic magnetite-sulfide deposits in the district are hosted within the Triassic rocks. Volcanic rocks overly the limestone and clastic sediments of the Brooklyn Formation and may be part of the Brooklyn Formation, or may belong to the younger Jurassic Rossland Group.

At least four separate intrusive events are known regionally to cut the above sequence, including the Jurassic aged alkalic intrusives (ie. Lexington porphyry, Rossland monzonite, Sappho alkalic complex), Triassic microdiorite related to the Brooklyn greenstones, Cretaceous-Jurassic Nelson intrusives, and Eocene Coryell dykes and stocks.

Tertiary sediments and volcanics unconformably overlie the older rocks with the distribution of these Tertiary rocks largely controlled by a series of faults. Regionally, three Tertiary fault sets are recognized, an early gently east dipping set, a second set of low angle west dipping, listric normal (detachment-type) faults, and a late, steep dipping, north to northeast trending set of right lateral or west side down normal faults (Fyles, 1990). Traditionally, the Tertiary rocks were believed to be deposited in a series of local, faultbounded grabens (ie. Republic graben, Toroda graben). Although these terms are still used to describe the geographic distribution of the Tertiary rocks, recent work (Cheney and Rasmussen, 1996; Fyles, 1990), shows that rather than being deposited in down-dropped blocks, these younger rocks are in fact preserved in the upper plates of low-angle listric normal (detachment-type) faults related to the uplifted metamorphic core complexes. The oldest of the Tertiary rocks are arkosic and tuffaceous sediments of the Eocene Kettle River Formation (O'Brien Creek Formation in the US). These sediments are overlain by andesitic to trachytic Eocene Marron volcanics (termed Sanpoil volcanics in the US part of the Boundary District), which are in turn unconformably overlain by lahars and volcanics of the Oligocene Klondike Mountain Formation.

The Boundary District is a highly mineralized district which has a long history of exploration and mining activity. Excellent historical accounts of the general area are provided by Peatfield (1978), Church (1986) and others, and the reader is referred to these for details of the regional exploration history.

Within the Boundary District, the majority of gold production is from the Republic and Rossland areas. At Republic, an excess of 2.5 million ounces of gold, at an average grade of better than 17 g/t Au, has been produced from epithermal veins. In the Rossland Camp, almost 3 million ounces of gold averaging 16 g/t Au was mined from massive pyrrhotite-pyrite-chalcopyrite veins associated with a Jurassic intrusive. Recent exploration in the Boundary District has resulted in the discovery of nine new deposits, with a total contained gold content in excess of 4 million ounces. These deposits include:

| Crown Jewel  | 7.2 million tonnes | @ 6 g/t     | Au |
|--------------|--------------------|-------------|----|
| Lamefoot     | 2 million tonnes   | @ 7 g/t     | Au |
| Golden Eagle | 10 million tonnes  | (a) 3.4 g/t | Au |

The important mineral deposits within the district can be broadly classified into seven deposit types, as detailed by Caron (2002a). These seven deposit types include Au and Cu-Au skarn deposits, mesothermal gold veins, epithermal gold deposits, Jurassic alkalic intrusives with Cu, Au, Ag &/or PGE mineralization, gold mineralization associated with serpentinite, gold bearing magnetite-sulfide volcanogenic mineralization, and ultramafic associated Ni-Cr mineralization.

The geological setting of the Midway property suggests potential for a number of styles of mineralization, including Tertiary epithermal gold mineralization, volcanogenic magnetite-sulfide (ie. Lamefoot-type) mineralization, gold associated with serpentinite, copper-gold skarn mineralization, and Cu-Au-Ag +/- PGE mineralization associated with Jurassic alkalic intrusives. Examples of several of these styles of mineralization are known, as described in Section 3.2 of this report.

The Picture Rock Quarry and Lone Boulder Hill areas on the Midway property represent portions of a low sulfidation epithermal system related to Eocene tectonic and volcanic activity, such as occurs in the Republic and Curlew areas of Washington State. Trenching during the 2003 program was directed at the Picture Rock Quarry and Lone Boulder Hill targets. On the Midway property, epithermal mineralization, associated intense argillic alteration, occurs along a regional thrust fault.

Funnel shaped zones of silicic, argillic and propylitic alteration typically occur around low sulfidation epithermal veins, with alteration more intense in the hangingwall of veins. Fifarek et al. (1996) describe the alteration associated with veining in the Republic District, as follows:

"Silicic alteration as a pervasive replacement of the host rocks is extensively developed in the breccias and epiclastic rocks near the paleosurface, but at depth it constitutes a small part of the discontinuous vein selvage this is most pronounced in the hanging wall but which rarely extends beyond 10 m from the vein. Replacement was selective and preferentially affected epiclastic rocks and the fine-grained matrix of tuffs and tuff breccias (rather than their argillized clasts). Silica veinlets of the silicic selvage increase in width and frequency with proximity to the veins.

Argillic alteration is generally peripheral to silicic alteration. It is particularly widespread and

pervasive near the paleosurface where it locally constitutes >90 percent of the rocks and forms a "clay cap" to the deposit. Argillic alteration is also prominent as a vein selvage that extends up to 30 m from the veins, especially in the hangingwall ... and to the deepest levels of the deposit. This type of alteration is represented by a kaolinite-illite+/-pyrite assemblage that replaces both pyroclastics and epiclastic rocks and fills minor fractures. Intensely argillized rocks near the veins generally lack primary textures, whereas argillized rocks at more distal locations contain partially replaced feldspar phenocryts and clasts of tuff...

The zone of argillic alteration grades outward and downward to a widespread propylitic assemblage of chlorite-calcite-illite/smectite-pyrite+/-epidote+/-hematite+/-zeolites. Overall, propylitic alteration decreases with distance from the deposits, however it varies from weak and spotty in the hanging wall of the ... veins to pervasive at all depths in the immediate footwall ..."

Fifarek et al (1996) also demonstrate how Au, Ag, Se, Hg, As and Sb are strongly and systematically zoned about veins in the Republic District. This zonation is most pronounced within 300-400 metres of the veins and the paleosurface. At the Golden Promise deposit, alteration envelopes for As (100 ppm), Au (100 ppb) and Ag (3 ppm) extend for up to several hundred metres into the hangingwall and footwall of the vein. Antimony (> 2 ppm) is enriched in the hangingwall and footwall of the vein, within about 30 metres of the vein. Mercury is elevated along the paleosurface, but values drop off rapidly with depth and as such mercury is a poor indicator of vein proximity at depth.

Elsewhere on the Midway property, mineralization in the Texas and Bruce areas has characteristics of both copper-gold skarn mineralization and of volcanogenic magnetite-sulfide (ie. Lamefoot-type) mineralization with later gold overprinting. The latter style of mineralization is untested on the property. A geochemical association between Au-Hg-As-Sb-Se-Te in this area further suggests potential for epithermal style mineralization. Large areas of anomalous copper and gold in soils in these areas, as well as several IP chargeability anomalies, remain untested. Detailed geological mapping is required to define targets for follow-up trenching and drilling in these areas.

## 3.2 Property Geology and Mineralization

The following discussion is taken from an earlier report by Caron (2003). The Midway property is situated within the Toroda "graben", a north trending belt of Tertiary and pre-Tertiary rocks preserved in the upper plate of low-angle detachment type faults, which is parallel to and situated northeast of the Republic graben in Washington. Echo Bay's K2 mine, the former Kettle mine, and the newly discovered Emanuel Creek vein are situated about 17 kilometres to the southeast of the Midway property, near the western margin of the Republic graben. Tertiary epithermal gold mineralization at the K2, Kettle and Emanuel Creek mines, and in the Republic area to the south, is associated with the Eocene extensional tectonics and related volcanism. Paleozoic and Triassic rocks preserved within the 'grabens' host pre-Tertiary mineralization (ie. Lamefoot, Key, Overlook). The Midway property covers the so-called "Midway window", an inlier of these older rocks, surrounded by Eocene volcanics and sediments, within the Toroda graben.

The general geology of the property is described by Caron (1990b) and by Hoffman and Caron (1991) and is shown in Figure 3. A large serpentinite-listwanite belt trends east-west across the northern portion of the Midway property and marks the position of a major, regional north dipping thrust fault. The serpentinite represents a portion of a Paleozoic ophiolite suite, tectonically emplaced along the thrust fault. There is considerable alteration, and local mineralization, related to the thrust fault. Much of the serpentinite is strongly talc-carbonate altered to listwanite. Locally the listwanite is intensely siliceous



and may contain a minor amount of mariposite and disseminated pyrite.

A series of low angle, north dipping sills related to the Jurassic Lexington porphyry intrusive suite have been emplaced along the thrust fault. Mineralization at the Midway Mine is hosted within one of these sills. The Lexington intrusive suite includes a number of phases, with compositions ranging from monzonite and quartz monzonite to diorite and quartz diorite. These phases often show gradational contacts, and include a distinctive coarse feldspar +/- quartz porphyry which may have prominent quartz eyes to 5 mm in size, a finer grained crowded porphyry phase, a fine grained equigranular microdiorite, and a distinctive aligned feldspar porphyritic phase with up to 30% aligned needle-like feldspar phenocrysts.

An Eocene aged epithermal chalcedonic breccia system occurs along the fault zone, and is an excellent exploration target for epithermal style gold mineralization. Trenching during the 2003 exploration program was directed at this target. Strong argillic and sericitic alteration occurs locally in the Midway Mine - Picture Rock Quarry and Lone Boulder Hill areas and may be related to Eocene structural activity with associated epithermal style veining.

Rocks in the hangingwall of the thrust fault (to the north) are dominantly Eocene volcanics and sediments of the Marron and Kettle River Formations. Rocks of the Triassic Brooklyn Formation occur in the footwall of the thrust and are locally intruded by Cretaceous-Jurassic and Eocene intrusives. These are well exposed in the southwest part of the property where they consist of a sequence of sediments, volcaniclastics, limestone and volcanics. Stratigraphy is generally northwest striking and northeast dipping. Hoffman and Caron (1991) suggest that the Brooklyn sequence may be folded along a northwest axis, and perhaps overturned on the Midway property. A thick unit of sharpstone conglomerate (the basal unit within the Brooklyn sequence) has been intersected in the footwall of the thrust fault in drill core from the Midway Mine - Picture Rock Quarry area. Calcareous greenstone (and possible related fine grained calcareous microdiorite) seen in trenches and outcrop in this area was formerly included in the Permian Knob Hill Group, but is now reinterpreted as part of the Triassic Brooklyn Formation, because of the occurrence of sharpstone conglomerate in drill core.

The Brooklyn Formation is an important host to mineralization both in the Greenwood Camp, and in northern Washington State. All of the major skarn deposits in the Greenwood area are hosted within the Brooklyn Formation. In addition, Echo Bay's Lamefoot, Overlook and Key Deposits in Washington State occur within this unit, in a relatively newly recognized deposit type described by Rasmussen (2000) as gold-bearing, magnetite-pyrrhotite-pyrite syngenetic volcanogenic mineralization. In this style of deposit, mineralization is hosted within the Triassic Brooklyn Formation, and at least part of the gold mineralization is attributed to a late stage epigenetic (Jurassic or Tertiary) event. The gold bearing massive magnetite and sulfides at the Overlook, Lamefoot (about 2 million tonnes @ 7 g/t Au) and Key West deposits all occur at the same stratigraphic horizon, with a stratigraphic footwall of felsic volcaniclastics and a massive limestone hangingwall, and with auriferous quartz-sulfide and sulfide veinlets in the footwall of the deposits. The mineralized horizon is marked by a more widely spread jasper-magnetite exhalite which is an important exploration tool. Gold bearing massive magnetite-sulfide mineralization is known to occur on the Midway property and should be explored with this new model for mineralization in mind.

Numerous north and northeast trending Tertiary faults offset stratigraphy and earlier structures. Low angle Tertiary structures are also present. Four main areas of mineralization are known on the property, as summarized below and shown on Figure 3.

#### Midway Mine - Picture Rock Quarry - Lone Boulder Hill (Minfile #082ESE128, 082ESE242)

The Midway Mine, Picture Rock Quarry and Lone Boulder Hill zones are located along the surface trace of the thrust fault in the northeastern part of the property. Mineralization occurs within listwanite and altered quartz-feldspar porphyry along a 700 metre section of the fault zone. The thrust fault is an east-west trending, low angle north dipping fault zone and appears to be the main control for mineralization and alteration in this area. Both steeply dipping, north and northwest trending, and low angle generally east dipping veins are known.

Two parallel northwest trending, steeply dipping shear zones occur in altered intrusive at the Midway Mine. The first shear averages 0.75 - 1 meters in width, while the second is about 0.5 metres wide. Both shear zones contain massive to semi-massive pyrite, sphalerite, galena and arsenopyrite in a highly siliceous groundmass. The shear zones are anomalous in Au, Ag, Pb, Zn, As, Hg, Sb + lesser Cu. Values to 14.5 g/t Au and 970 g/t Ag are reported by previous workers on grab samples from the shear zone. A 0.5 metre chip across one shear zone is reported to have returned 12 g/t Au, 822 g/t Ag, 3.3% Zn and 2.1% Pb, and a 2 metre chip in altered intrusive adjacent to the shear zone ran 4.1 g/t Au and 411 g/t Ag.

An epithermal quartz breccia system occurs about 100 metres to the east, along the surface trace of the thrust fault, at the Picture Rock Quarry. A small amount of chalcedony and chalcedonic breccia has been quarried from this area for ornamental, decorative stone. Previous workers have reported elevated gold values (to 580 ppb Au) from surface samples at the Picture Rock Quarry. During 2003, trenching was done to further explore the epithermal quartz breccia system in the vicinity of the Picture Rock Quarry. A generally east-west trending, gently north dipping breccia vein was discovered east of the Picture Rock Quarry, in Trench 03-8. The vein returned an average of 432 ppb Au across the 1.8 metre true width, with values to 1195 ppb Au and 983 ppb Ag. Again, elevated As and Sb are associated with the mineralization. A drill hole by BP Resources in 1987 (ddh 87-1) tested this area at depth. An increase in alteration was noted at the base of the drill hole and workers at the time suggested deepening this hole, however this was not completed.

Anomalous gold, to 2640 ppb Au, occurs in similar looking, chalcedonic breccia vein a few hundred meters to the west on Lone Boulder Hill. Trenching during 2003 exposed a steeply dipping, northerly trending, siliceous breccia zone within listwanite in Trench 03-1, which returned values to 1138 ppb Au over the 2 metre true width. Anomalous As, Sb and Ag are associated with the siliceous zone. A significant area of intense argillic and sericitic alteration occurs to the north and west of this zone. Trenching in 2003 was unsuccessful at defining the limits of the alteration, due to depth of overburden in this area. Further trenching around this trench should be done in the immediate future.

A chalcedony vein is reported in outcrop about 400 meters to the south of the Picture Rock Quarry, which returned 3.2 g/t Au and 3.1 g/t Ag over 0.6 meters (Hoffman and Wong, 1988). This zone was drilled by BP as hole 87-2. The vein was intersected at a vertical depth of about 26 meters, and was accompanied by a wide zone of argillic alteration. Values from the vein in drill core were 64 ppb Au and 1.4 ppm Ag.

Further work is recommended to explore this area of the Midway property for epithermal style gold mineralization.

#### **Texas and Potter-Palmer** (Minfile #082ESE119)

Although only two crown grants remain on the current claim map (the Texas and the Granada), a copy of the 1932 claim map for this area shows a total of 19 former claims and crown grants in this portion of the property. On the Texas reverted crown grant, a number of small pits and adits explore an area of chalcocite mineralization in pale epidote-hematite-diopside skarn and skarny limestone. Locally up to

10% disseminated or bands of chalcocite, with lesser chalcopyrite, occurs. Massive magnetite also occurs along a volcaniclastic/limestone contact in the Brooklyn Formation at the Texas adit, which bears similarities to mineralization at the Lamefoot mine in Washington State. In other places in the Boundary District there is a strong argument for an exhalative event (iron-copper) at this stratigraphic horizon, with at least part of the gold as an epigenetic event related to fluids moving along Jurassic or Tertiary structures.

A large northwest trending copper-gold (+ As, Zn) soil anomaly occurs at the Texas zone, and rock samples show a strong correlation between Cu, Ag, Hg and Au. Values to 4.72 g/t Au, 172.6 g/t Ag, 77,124 ppm Cu and 15,478 ppb Hg were returned from grab samples from this area. Locally, these elements are associated with anomalous Sb, Se, Te and with weakly anomalous Pt and Pd. The presence of typical skarn minerals and the traditional skarn driven exploration in the Greenwood area have resulted in this zone being categorized as a Cu-Au skarn system. The very high Hg and the Au-Hg association are not typical of skarn systems. Anomalous Hg, As, Sb, Se and Te are suggestive of epithermal mineralization.

To the northeast of the Texas, several workings are located on the former Potter-Palmer crown grant, including an old adit and a large surface scrape on a skarn zone with local pods of massive pyrite, chalcopyrite and locally chalcocite. Nearby, a gold soil anomaly defined by Battle Mountain occurs and is associated with a bleached fine grained volcaniclastic cut by up to 10% silica-pyrite stringers.

#### **Bruce** (Minfile #082ESE128)

The Bruce area is an impressive looking zone situated on an open southeast facing hillside, about 1.3 kilometres northeast of the Texas showings. A northeast trending band of skarn occurs at the contact of limestone and underlying sharpstone conglomerate, and is exposed in numerous old workings and in outcrop over an area of about 100 by 100 metres. There is local copper-pyrite-pyrrhotite mineralization and abundant malachite staining on outcrops and in old workings. Historical records indicate that some 190 tonnes of ore was mined from this zone. The grade is not documented.

A large copper-gold soil anomaly occurs in this area and rock samples have returned good copper (several percent) and silver (multi-gram) values, with anomalous gold (to 1134 ppb Au). Gold values are generally lower than at the Texas showings. As with the Texas area, there is a moderate to strong Au:Hg correlation which is not typically of Cu or Au skarn systems.

Some drilling was done in this area in the early 1980's. The area is structurally very complex and a lack of continuity to mineralization from previous work may not necessarily indicate that the area has no potential. Very detailed geological mapping with an emphasis on structure would be useful to further explore this zone.

#### Granada

The Granada reverted crown grant is situated northwest of the Texas showings. Little is documented about the mineralization in this area. A thick sequence of Brooklyn Formation sharpstone conglomerate is mapped in this area, and a large copper soil anomaly extends northwest from the Texas showings to cover this zone.

#### 4.0 SOIL SAMPLING PROGRAM

Three grids were established on the Midway Property in 2004 (see Figure 4 Grid Index Map). One grid covers the Lone Boulder Hill west of Picture Rock Quarry grid performed by Minnova Inc. in 1990. The second grid extends the 1990 Minnova Picture Rock Quarry Grid northward in search for epithermal gold mineralization. A total of 9.7 line kilometres are in these two grids. The third soil grid, the Northwest Grid attempted to reproduce, at a more detailed scale, a gold soil anomaly generated by Minnova Inc. in 1990. A total of 5.55 line kilometres are in the third grid. The soil sampling program was done under the supervision of Alan Raven. Field assistants Merle Moorman, Mike Hibberson, Scott McPhee and Brodie Herbert completed the work.

Soil samples were taken 15-25 centimetres below the surface where B-horizon soil was developed. Samples were placed in clean gusseted Kraft soil sample bags and labelled with the grid coordinate for the sample site. Sample lines on the Northwest Grid were 50 metres apart with samples taken every 25 metres along lines. On the Lone Boulder West Grid and Picture Rock North Grid line spacing was 25m apart and samples every 20m along lines.

704 soil samples were collected and shipped to Acme Analytical Labs in Vancouver for preparation and analysis. Samples were analysed for 37 elements by the Group 1F30 method (ICP Mass Spec analysis of 30 gram samples after aqua regia digestion). Complete analytical results for the soil samples are contained in Appendix II. Statistical data of the soil samples is seen below in Table 2.

|           | Au   | Ag    | As   | Hg   | Cu   | Pb   | Zn   |
|-----------|------|-------|------|------|------|------|------|
|           | ppb  | ppb   | ppm  | ppb  | ppm  | ppm  | ppm  |
| average   | 7    | 130   | 12   | 27   | 27   | 12   | 55   |
| standard  | 23.4 | 211.3 | 23.3 | 32.6 | 17.6 | 10.1 | 46.1 |
| deviation |      |       |      |      |      |      |      |
| maximum   | 426  | 2707  | 492  | 718  | 153  | 184  | 1135 |

 Table 2 - Statistical Data for Soil Samples

## 4.1 Northwest Grid

There are three anomalies present on the Northwest Grid established immediately north of the Granada Showing. The strongest anomaly occurs as a 200m long x 50m wide northeast trending linear centered on 4700E x 3450N. This anomaly lies to the west of Ingram Creek in an area of Triassic Brooklyn Formation and may represent a sub parallel structure to that which lies in Ingram Creek. Interestingly, the anomaly lines up with the projection of a northeast trending serpentinite body probably reflecting a significant fault. The anomaly shows elevations in Au-Ag-Cu-Pb-Zn-As-Hg (see Figures 5 through 10). The anomaly is open to the northeast and southwest, requiring grid extensions in those areas to complete the definition of the anomaly. Elevated gold values in this anomaly range from 16-203 ppb Au. Elevated silver values range from 0.47-0.66 ppm Ag. Elevated copper values range from 111-117 ppm Cu. Elevated lead values range from 32-60 ppm Pb. Elevated zinc values range from 120-240 ppm Zn. Elevated arsenic values range from 50-203 ppm As. Elevated mercury values range from 68-217 ppb Hg. A single value of 13 ppm antimony lies within the anomaly.

A small, less significant northeast trending linear anomaly is centered on 4700E x 3100N on this grid. The anomaly is 120m long also underlain by Triassic Brooklyn Formation and the projection of a second

northeast trending serpentinite body. The anomaly shows elevations in Au-Ag-Pb-Zn-As-Hg. Elevated gold values in this anomaly range from 42-114 ppb Au. Elevated silver values in this anomaly range from 0.46-2.5 ppm Ag. Elevated lead values range from 80-88 ppm Pb. Elevated zinc values range 124-194 ppm Zn. Elevated arsenic values range from 30-75 ppm As and a single mercury elevation of 211 ppb Hg coincides with the anomaly.

The third anomaly is a dispersed anomaly probably reflecting the northern part of the Granada Showing and lies in the southwest corner of the grid. The anomaly covering an area of 120m x 100m is elevated in Cu from 100-153 ppm Cu.

## 4.2 Lone Boulder West Grid

The Lone Boulder West Grid covers part of the 200 m wide northwest trending band of serpentinite intruded by porphyry. To the south of this unit are Jurassic microdiorite. To the north of this ban are Eocene-aged Kettle River Formation sediments and Marron Formation volcanics. A 300m long discontinuous trend of chalcedonic quartz in float (locally uncovered by trenching in 2003) cuts the serpentinite, porphyry and microdiorite. The Midway mine lies 250m east of this grid at about 3350N.

Two anomalies lie along the trend of the chalcedonic quartz trend; one focused anomaly centered at 6825E x 3125N and the other more dispersed centered at 7000E x 3300N (see Figures 11-14). The stronger anomaly is 30m x 100m in dimension with elevated gold values of 18-87 ppb Au, mild arsenic values 22-61 ppm As and mild lead elevations to 30 ppm Pb. The more dispersed anomaly 100m x 100m in dimensions is composed of elevated gold values 20-61 ppb Au, arsenic values from 38-491 ppm As, zinc values from 113-160 ppm Zn and lead values from 40-108 ppm Pb. These two anomalies should be prospected. The grid should be extended southwestward to completely cover the anomaly.

A small anomaly in zinc and lead occurs as a possible northeast extension of the above northeast trend, some 200m northeast of the second anomaly described above. This anomaly centered on 7100E x 3500N is 30m x 30m in size. The anomaly is composed of elevated zinc values from 161-226 ppm Zn and elevated lead values from 35-184 ppm Pb.

#### 4.3 Picture Rock North Grid

The Picture Rock North Grid covers a complex area of geology. Wedges of Late Paleozoic serpentinite and Jurassic-aged porphyry are juxtaposed by east-west and north trending faults. These units are further overlain unconformably by Eocene-aged Kettle River Formation sediments and Marron Formation volcanics. Quartz vein float was identified by Minnova in this area and covered by this grid. The grid is split by a lack of data caused by a valley and cabin.

Elevated gold occurs on the two halves of this grid (Figure 15-16). On the west half, a northwest trending anomaly 60m x 30m in size has elevated gold values from 18-426 ppb. This anomaly has accompanying arsenic elevations from 22-92 ppm As.

On the eastern half of this grid elevated gold occurs in a dispersed pattern over an area of 150m x 80m and is open-ended in the gap between the two halves of this grid. Elevated values range from 15-124 ppb Au. Only limited arsenic elevations occur in this cluster with values of 23-66 ppm As.

An attempt to fill in the gap caused by the valley and cabin should be made to see if the anomalies on either side of the grid are connected. Prospecting over the anomalies and in the gap are recommended.



**GOLD CITY INDUSTRIES LTD.** 







```
GOLD CITY INDUSTRIES LTD.
```



```
GOLD CITY INDUSTRIES LTD.
```



```
GOLD CITY INDUSTRIES LTD.
```



|              | 36680    | 0                                                          |                                                            |                                                               |                                                                |                                                               |                                                              | :                                                              | 36700<br>I                                               | 0                                                        |                                                               |                                                 |                                      | 367200                                                                                                                                                    |         |
|--------------|----------|------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 5433600<br>1 | 3600 N + | 730<br>0/60<br>0.20                                        | 0.50<br>0.20<br>0.40                                       | 0.30<br>•<br>90<br>•<br>0.30                                  | ∃ 0069<br>4.30<br>1.00                                         | 1.90<br>●<br>0.20<br>●                                        | 0.30<br>•<br>0.40<br>•                                       | 0.50<br>•<br>0.40<br>•<br>0.30                                 | U 0002<br>-0.20<br>●<br>0.80<br>●                        | 0.40<br>•<br>0.60<br>•<br>0.60                           | -0.20<br>0.40<br>-0.20<br>•                                   | 0.70<br>-0.20<br>-0.20                          | U 0012<br>-0.20<br>1.00<br>0.30<br>● | +                                                                                                                                                         | 5433600 |
|              | 3500 N   | -0.20<br>3.10<br>-0.20<br>0.30<br>0.30<br>0.30             | 0.20<br>1.90<br>0.90<br>0.20<br>0.70                       | 0.60<br>0.40<br>0.50<br>0.50<br>0.60<br>0.60                  | 1.50<br>●<br>2.00<br>●<br>1.20<br>●<br>42.70<br>●<br>2.50<br>● | 0.80<br>0.20<br>0.40<br>0.50<br>0.60<br>•                     | 0.70<br>0.30<br>0.30<br>0.30<br>0.30<br>0.30<br>0.30<br>0.30 | 1.50<br>0.30<br>0.50<br>0.40<br>0.40<br>0.40                   | 1.10<br>0.50<br>0.40<br>0.40                             | 1.10<br>1.50<br>1.10<br>-0.20<br>0.20                    | 0.30<br>0.50<br>-0.20<br>0.90<br>0.30                         | 0.90<br>1.80<br>-0.20<br>0.60<br>0.60<br>0.4.90 | 1.10<br>0.70<br>0.70<br>0.20<br>1.10 | W K F                                                                                                                                                     |         |
| 5433400<br>I | 3400 N + | 0.20<br>•<br>-0.20<br>•<br>0.20<br>•<br>0.80<br>•<br>0.50  | 0.70<br>0.90<br>0.50<br>0.60<br>0.80<br>•                  | 1.40<br>●<br>0.80<br>●<br>0.90<br>●<br>0.90<br>●              | 0.40<br>0.50<br>0.50<br>0.20<br>0.50<br>0.50                   | 0.20<br>0.40<br>0.60<br>0.70<br>0.70<br>0.70                  | 1.00<br>●<br>0.90<br>●<br>1.20<br>●<br>6.90<br>●             | 3.00<br>•<br>1.20<br>•<br>8.90<br>•<br>1.20<br>•<br>29.70<br>• | 5.50<br>●<br>0.60<br>●<br>3.00<br>●<br>1.40<br>●<br>5.00 | -0.20<br>•<br>-0.20<br>•<br>18.00<br>•<br>2.70<br>•      | 0.90<br>•<br>0.50<br>•<br>0.50<br>•<br>0.80<br>•<br>0.60<br>• | 1.90<br>0.30<br>0.70<br>3.40<br>20.60           | 1.60<br>1.10<br>6.00<br>5.90<br>5.30 | LEGEND<br>Topography<br>Roads<br>Streams<br>Soil Geochemistry                                                                                             | 5433400 |
|              | 3300 N   | 0.90<br>2.60<br>1.00<br>2.20<br>0.60                       | 4.20<br>2.20<br>3.10<br>1.30<br>1.10                       | 2.80<br>●<br>4.40<br>●<br>1.30<br>●<br>0.20<br>●<br>0.80<br>● | 1.70<br>●<br>0.60<br>●<br>1.50<br>●<br>0.60<br>●<br>0.40       | 3.90<br>●<br>0.70<br>●<br>1.60<br>●<br>4.50<br>●<br>0.50<br>● | 1.00<br>●<br>3.00<br>●<br>6.20<br>●<br>5.30<br>●<br>2.70     | 1.80<br>●<br>1.40<br>●<br>7.20<br>●<br>11.30<br>●<br>6.40<br>● | 2.30<br>5.60<br>61.10<br>4.50<br>6.00<br>•               | 3.10<br>2.10<br>9.10<br>16.00<br>8.80<br>•               | 1.70<br>4.60<br>3.60<br>2.50<br>8.20                          | 16,90<br>1.80<br>1.30<br>2.00<br>1.20<br>0      | 2.30<br>1.50<br>1.90<br>4.60<br>3.50 | Au (ppb)<br><ul> <li>&lt; 10.00</li> <li>10.01 - 25.00</li> <li>25.01 - 50.00</li> <li>50.01 - 80.00</li> </ul>                                           |         |
| 5433200<br>I | 3200 N + | 0.80<br>•<br>30.00<br>•<br>35.80<br>•<br>7.60<br>•<br>2.90 | 1.20<br>•<br>1.80<br>•<br>6.40<br>•<br>32.00<br>•<br>28.70 | 0.70<br>•<br>1.00<br>•<br>2.90<br>•<br>6.40<br>•<br>4.80      | 2.40<br>•<br>5.20<br>•<br>2.30<br>•<br>4.00<br>•<br>21.40      | 0.70<br>•<br>5.00<br>•<br>2.50<br>•<br>2.00<br>•<br>3.68      | 5.20<br>•<br>14.70<br>•<br>5.60<br>•<br>9.90<br>•<br>2.70    | 7.10<br>•<br>12.40<br>•<br>2.20<br>•<br>0.80<br>•<br>1.10      | 5.90<br>0.70<br>0.90<br>0.80<br>0.80                     | 1.70<br>•<br>2.40<br>•<br>0.50<br>•<br>0.40<br>•<br>1.30 | 2.20<br>•<br>0.90<br>1.00<br>•<br>1.40<br>•<br>8.80           | 2.70<br>2.40<br>1.70<br>3.30<br>3.90            | 0.40<br>0.50<br>2.80<br>1.50<br>0.60 | > 80.00<br>Note: Negative numbers denote<br>below detection limit.<br>+                                                                                   | 5433200 |
|              |          | 2.30<br>2.70<br>11.20                                      | 18.10<br>58.80<br>78.40                                    | 87.20<br>                                                     | 14.70<br>12.20<br>2.90<br>•                                    | 2.70<br>3.30<br>3.20                                          | 6.80<br>3.30<br>•<br>5.90                                    | 1.70<br>•<br>0.50<br>•<br>0.30                                 | 2.00<br>0.70<br>100                                      | 3.70<br>0.60<br>0.20                                     | 0.60<br>0.60<br>1.00                                          | 2.20<br>1.50<br>-0.20                           | 0.90                                 |                                                                                                                                                           |         |
| 5433000<br>1 |          |                                                            |                                                            |                                                               |                                                                |                                                               |                                                              |                                                                | +                                                        |                                                          |                                                               | (                                               | GOI<br>Greenwo<br>Lone               | Figure 11<br>LD CITY INDUSTRIES LTD.<br>MIDWAY PROJECT<br>rood Mining District, British Columbia, Canada<br>Boulder West Grid - Soil Survey<br>Au Results | 5433000 |
|              | 36680    | 0                                                          |                                                            |                                                               |                                                                |                                                               |                                                              | :                                                              | 36700                                                    | 0                                                        |                                                               |                                                 |                                      | 367200                                                                                                                                                    |         |





|            | 36680        | 0                 |                   |                    |                   |              |                   | :                    | 36700<br>I        | 0                 |                   |              | 367200         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|------------|--------------|-------------------|-------------------|--------------------|-------------------|--------------|-------------------|----------------------|-------------------|-------------------|-------------------|--------------|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|--|--|--|--|--|--|--|
|            |              |                   |                   |                    | 6900 E            |              |                   |                      | 7000 E            |                   |                   |              | 7100 E         |             | Ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w Ke                                           |       |  |  |  |  |  |  |  |
| 33600<br>1 | 3600 N +     | 5.50              | 6.00              | 3.90<br>•          | 4.50<br>●         | 5.10<br>•    | 6.00<br>•         | 5.80<br>•            | 5.10<br>•         | 4.70<br>•         | 3.50<br>●         | 3.10<br>●    | 2.90<br>•      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 's<br>+                                        | 33600 |  |  |  |  |  |  |  |
| 543        |              | 640<br>•          | 5.60<br>•         | *90                | 5.20<br>●         | 3.60<br>•    | 5.60<br>•         | 5.60<br>•            | 5.40<br>•         | 5.30              | 5.70              | 7.00<br>O    | 5.20           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | 543   |  |  |  |  |  |  |  |
|            |              | 4.30              | 10.90<br>●        | 3.60<br>•          | 4.40              | 4.20<br>•    | -+-Z0<br>•        | 4.40                 | 4.00<br>•         | 3.80              | 5.60<br>●         | 5.30<br>●    | 6.00<br>●      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | _     |  |  |  |  |  |  |  |
|            |              | 5.40<br>•         | 6.00<br>•         | 5.10<br>●          | 4.70<br>●         | 4.40<br>●    | 5.00              | 5.30<br>•            | 4.30<br>•         | 4.20<br>●         | 4.90              | 4.00         | 8.60<br>●      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              | 5.90<br>•         | 6.20<br>•         | 3.40<br>•          | 5.30<br>●         | 5.00<br>•    | 4.00<br>•         | 4 60                 | 5.10              | 5.30              | <i>5</i> .50<br>● | 8.80         | 5.00<br>•      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            | 3500 N       | 4.00<br>•         | 5.60<br>•         | 3.50<br>•          | 4.70<br>•         | 4.90<br>•    | 4.80<br>•         | 9.70<br>•            | 7.70              | 11.70             | 7.40<br>●         | <b>e</b> .60 | 18.80          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              | 4.70<br>•         | 5.00<br>•         | 5.20<br>•          | 4.30<br>●         | 4.50<br>•    | 5.30<br>•         | 5.50<br>•            | 4.20<br>•         | 7.10<br>•         | 6.40<br>●         | 6.20<br>•    | 5.00<br>•      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              | 6.00<br>•         | 6.30<br>•         | 4.50<br>•          | 5.50<br>•         | 5.70<br>•    | 17.40<br>•        | 17.10<br>•<br>105.30 | 6.70<br>•         | 7.40<br>•         | 5.20<br>•         | 9.30<br>•    | 5.20<br>•      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              | 4.80<br>•         | 5.10<br>•         | 4.20<br>•          | 5.50<br>•         | 5.60<br>•    | 22.00             |                      | 20.70             | 8.30<br>•         | 8.10<br>•         | 7.30         | 7.60           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
| 00         |              | 4.30              | 6.00<br>•         | 4.80               | 5.30<br>•         | 9.00<br>•    | 0                 | 19.10                | 7.80<br>•         | 8.20<br>•         | 7.20<br>•         | 5.60         | 4.90           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ograpny<br>— Roads                             | 8     |  |  |  |  |  |  |  |
| 4334<br>I  | 3400 N +     | 4.40              | 4.40              | 4.30<br>•          | 4.20              | 5.70<br>•    | 9.30<br>•         | 8.70                 | 7.30<br>•         | 9.40              | 6.80              | 5.20<br>•    | 12:40          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>+</sup> Footpath                          | 4334  |  |  |  |  |  |  |  |
| 5          |              | 8.80<br>•         | 6.00<br>•         | 5.40<br>•          | 5.90<br>•         | 5.90<br>•    | 48.80             | 491.60               | 8.30<br>•         | •                 | 7.70<br>•         | 7.30<br>•    | 18.50          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Streams                                      | 2     |  |  |  |  |  |  |  |
|            |              | 57.80             | 55.10             | 9.90<br>•<br>70.90 | 8.20<br>•         | 0.10         | 0                 | 30.30                | 15.50             | 9.90<br>•         | 5.70<br>•         | 20/40        | 7.10           |             | Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Geochemistry                                   |       |  |  |  |  |  |  |  |
|            |              | <b>0</b><br>59.10 | 20.80             | 0                  | 8.20<br>•         | 9.10<br>•    | 0.20<br>•         | 14.70                | 11.10             | •                 | 22 30             |              | 0<br>0         |             | AS (p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20.00                                          |       |  |  |  |  |  |  |  |
|            | 0000 N       | 9.70              | 21.70             | €.70<br>●<br>21.60 | 0.90<br>•         | 9.90<br>•    | <b>0</b><br>46.60 | 29.50                | 46.70             | 9.00<br>•         | <b>0</b>          | 14.60        | 0.80<br>•      |             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.01 - 40.00                                  |       |  |  |  |  |  |  |  |
|            | 3300 N       | 0.70<br>0         | <b>5</b> 20       | 6 20               | 7 10              | •<br>•       | 10.60             | 15.60                | <b>0</b><br>45.40 | 27.80             | 10.50             | 9.50         | 9.90           |             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.01 - 60.00                                  |       |  |  |  |  |  |  |  |
|            |              | 6 10              | •<br>•            | •<br>•             | 7.10<br>•<br>7.10 | •<br>•       | •<br>7 40         | ●<br>8.50            | 12.90             | 18 20             | 14.90             | 7.30         | •<br>•<br>7 20 |             | Ŏ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60.01 - 150.00                                 |       |  |  |  |  |  |  |  |
|            |              | 9 70              | •<br>•            | •<br>•             | •<br>5.60         | 7 70         | •<br>8.30         | •<br>7 50            | 8.00              | 9 10              | 9.30              | 12.30        | 15 20          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~ 150.00                                       |       |  |  |  |  |  |  |  |
|            |              | <b>0</b><br>21.10 | •<br>10.00        | •<br>10.40         | •<br>15.60        | 12.90        | <b>2</b> 1.00     | 11.90                | <b>4</b> .90      | 9.00              | 8.50              | 10.30        | 8.30           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | > 150.00                                       |       |  |  |  |  |  |  |  |
| 200        |              | <b>0</b><br>17.80 | •                 | • 10.50            | •                 | • 10.20      | <b>0</b><br>8.60  | •<br>4.40            | 6.00              | <b>6</b> .30      | 8.50              | <b>8</b> .60 | <b>6</b> .70   |             | Note: | egative numbers denote<br>low detection limit. | 500   |  |  |  |  |  |  |  |
| 5433;<br>I | 3200 N +     | 13.70             | <b>0</b><br>27.70 | •<br>18.60         | 8.80              | <b>9</b> .80 | <b>•</b><br>8.10  | •<br>3.80            | <b>9</b><br>5.90  | 5.10              | 8.20              | 8.20         | <b>6</b> .10   |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                                              | 5433; |  |  |  |  |  |  |  |
|            |              | 10.60             | <b>0</b><br>30.40 | •                  | •                 | 7.00.        | •<br>7.20         | <b>•</b><br>5.00     | 6.70              | <b>1</b><br>15.90 | 6.60              | 5.80         | 6.50           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              | 7.00              | <b>•</b><br>7.30  | •<br>29.40         | •<br>24.10        | 7.60         | 7.00              | •<br>7.10            | •<br>8.60         | 6.00              | 5.70              | 6.90         | 6.50           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              | •<br>6.90         | <b>0</b><br>28.60 | <b>0</b><br>24.90  | <b>0</b><br>16.80 | •<br>8.10    | 8.30              | 6.90                 | • /<br>7.1¢       | 9.60              | •<br>10.40        | •<br>5.70    | •<br>7.20      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              | •<br>12.60        | 61.00             | <b>0</b><br>22.50  | •<br>8.10         | •<br>7.00    | •<br>6.30         | 3.20                 | 460               | •<br>6.20         | 6.30              | 6.90         | 6.69           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            | $\mathbb{N}$ | 0                 | $\bigcirc$        | •                  | •                 | •            | •                 | •                    | <b>)</b> •        | •                 | <u> </u>          | 0            | • `            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |       |  |  |  |  |  |  |  |
|            |              |                   | <u> </u>          |                    |                   | ~            |                   | Ĵ                    | //                |                   |                   |              |                | F           | iaure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                             |       |  |  |  |  |  |  |  |
|            |              |                   |                   |                    |                   | 7            |                   | 7                    |                   |                   |                   |              | GOI            |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | ור    |  |  |  |  |  |  |  |
|            |              |                   |                   |                    |                   |              | $\backslash$      |                      |                   |                   |                   |              |                | MIDW        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ROJECT                                         |       |  |  |  |  |  |  |  |
| 000        |              |                   |                   |                    |                   |              |                   | {                    |                   |                   |                   | Gr           | eenwoo         | d Mining D  | District, Bri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tish Columbia, Canada                          | 000   |  |  |  |  |  |  |  |
| 5433<br>1  | 1            |                   |                   |                    |                   |              | ``                |                      | +                 |                   |                   |              | one B          | ouiaer<br>A | west G<br>s Resu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ria - Soli Survey<br>Its                       | 5433  |  |  |  |  |  |  |  |
|            |              |                   |                   |                    |                   |              |                   | $\backslash$         | <b>\</b>          |                   |                   |              | 0              | 40          | 80<br>Meters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 160                                        |       |  |  |  |  |  |  |  |
|            | 36680        | 0                 |                   |                    |                   |              |                   | ;                    | 36700             | 0                 |                   |              |                |             | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l<br>67200                                     |       |  |  |  |  |  |  |  |





### 5.0 RECOMMENDATIONS

The Midway property hosts several styles of mineralization. Epithermal mineralization with elevated gold and silver values in the Picture Rock Quarry and Lone Boulder Hill area requires further testing. The anomalies generated by the 2004 soil sampling program over this area should be prospected to discover the source. The two grids in this area should be expanded to cover open-ended anomalies. Strong argillic alteration seen in trenches in this area may be related to the epithermal event and further trenching is recommended to define the limits and controls to alteration prior to drill testing. An epithermal vein located 400 meters south of the Picture Rock Quarry and returning 3.2 g/t Au from outcrop should be located and reassessed. Trenching should be done to test this vein on strike.

The Northwest Grid north of the Granada Showing generated two anomalies deserving of prospecting to identify their source. The grid should be expanded to cover the open-ended anomaly.

Mineralization in the Texas and Bruce areas has characteristics of copper-gold skarn mineralization, volcanogenic magnetite-sulfide (ie. Lamefoot-type) mineralization and epithermal-style gold mineralization. Large areas of anomalous copper and gold in soils in these areas, as well as several IP chargeability anomalies, remain untested. Detailed geological mapping and accompanying rock chip sampling would be useful to define targets for follow-up trenching and drilling in these areas.

Consideration should be given to drilling the buried Brooklyn contact between the Granada and Bruce Showings for skarn mineralization. The Granada, Bruce and Texas Showings may represent the edges of a large buried system at their confluence.

#### 6.0 REFERENCES

BC Ministry of Energy and Mines Mineral Inventory File (Minfile)

082ESE119 (Texas); 082ESE198 (Lois); 082ESE210 (Midway Limestone - West Lens); 082ESE235 (Midway Limestone - East Lens); 082ESE128 (Midway Mine); 082ESE242 (Picture Rock Quarry)

#### Caron, L., 1990.

Trenching and Diamond Drilling Report on the Murray 90, Ingram 90 and Murray 91 Groups, for Minnova Inc., December 1990. Assessment Report 21,126.

#### Caron, L., 2002a.

Geological Report - Boundary Project, for Gold City Industries Ltd., May 13, 2002.

#### Caron, L., 2002b.

Assessment Report - Midway Property, Geology and Geochemistry, for Gold City Industries Ltd., July 10, 2002. Assessment Report 26,901.

#### Caron, L., 2003.

Assessment Report - Midway Property, April 2003 Trenching Program, for Gold City Industries Ltd., May 2003.

#### Cheney, E.S. and M.G. Rasmussen, 1996.

Regional Geology of the Republic Area, in Washington Geology, vol.24, no. 2, June 1996.

#### Church, B.N., 1986.

Geological Setting and Mineralization in the Mount Attwood-Phoenix area of the Greenwood Mining Camp. BCMEM Paper 1986-2.

#### Fifarek, R., B. Devlin and R. Tschauder, 1996.

Au-Ag mineralization at the Golden Promise Deposit, Republic District, Washington: Relation to graben development and hot spring processes, *in* Geology and Ore Deposits of the American Cordillera - Symposium Proceedings, ed. Coyner and Fahey p. 1063-1088.

#### Fyles, J.T., 1990.

Geology of the Greenwood-Grand Forks Area, British Columbia, NTS 82E/1,2. B.C. Geological Survey Branch Open File 1990-25.

#### Gelber, C.A., 2000.

An Overview of the K-2 Mine, Ferry County, Washington. Abstract for Republic Symposium 2000, Northwest Mining Association, Dec 4-5, 2000.

#### Hickey, R.J., 1992.

The Buckhorn Mountain (Crown Jewel) Gold Skarn Deposit, Okanogan County, Washington, *in* Economic Geology, vol. 87, pp.125-141, 1992.

#### Hoffman, S. and M. Caron, 1991.

Geological, Geophysical and Geochemical Assessment Report of the Midway Property, for Battle Mountain (Canada) Inc., May 1991. Assessment Report 21,315.

#### Hoffman, S. and R. Wong, 1988.

Geological, Geochemical and Diamond Drilling Report on the Rainbow Group, for BP Resources Canada, 1988. Assessment Report 17,162.

### Hoffman, S., R. Wong and W. Harris, 1989.

Geological, Geophysical, Geochemical and Diamond Drilling Report on the Midway Group, for BP Resources Canada, 1989. Assessment Report 18,381.

Kinross website, <u>www.kinross.com</u>. April 3, 2003 slide show of Emanuel Creek vein.

#### Lee, L., 1990a.

Assessment Report on the Rainbow 89 Group, for Minnova Inc., January 1990. Assessment Report 19,718.

#### Lee, L., 1990b.

Assessment Report on the Murray 90 and Ingram 90 Group, for Minnova Inc., October 1990. Assessment Report 20,536.

#### Little, H.W., 1957.

Geology - Kettle River (East Half), GSC Map 6-1957.

#### Little, H.W., 1983.

Geology of the Greenwood Map Area, GSC Paper 79-29.

#### Makepeace, D.K, 2001.

Geological Report - Boundary Project, for Gold City Industries Ltd., April 2001.

#### Muessig, S., 1967.

Geology of the Republic Quadrangle and a Part of the Aeneas Quadrangle, Ferry County, Washington, USGS Bulletin 1216.

#### Parker, R.L. and J.A. Calkins, 1964.

Geology of the Curlew Quadrangle, Ferry County, Washington. USGS Bulletin 1169.

#### Peatfield, G.R., 1978.

Geological History and Metallogeny of the 'Boundary District', Southern British Columbia and Northern Washington, PhD Thesis, Queen's University, June 1978.

#### Rasmussen, M., 1993.

The Geology and Origin of the Overlook Gold Deposit, Ferry County, Washington. Ph.D. Thesis, University of Washington, 1993.

#### Rasmussen, M., 2000.

The Lamefoot Gold Deposit, Ferry County, Washington. Abstract for Republic Symposium 2000, Northwest Mining Association, Dec 4-5, 2000.

#### Tschauder, R., 1986.

The Golden Promise: A Recent Discovery in the Republic Mining District, Ferry County, Washington, a paper presented at the Northwest Mining Association Convention, December 1986.

## Tschauder, R., 1989.

Gold Deposits in Northern Ferry County, Washington, *in* Geologic guidebook for Washington and adjacent areas, Washington Division of Geology and Earth Resources Information Circular 86.

## **APPENDIX I**

## ANALYTICAL RESULTS

|                 | Gold City Industries Ltd. PROJECT MIDWAY File # A401619 Page 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | 550 - 580 Hornby St., Vancouver BC V6C 3B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SAMPLE#         | Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Sc Tl S Hg Se Te GaSample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | obu bou bou bou bou bou bou bou bou bou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6-1             | 1 47 2 88 2.22 39.3 13 4.0 3.8 520 1.98 .3 2.0 .3 4.6 79.9 .01 .03 .11 40 .58 .092 8.6 15.4 .48 233.0 .120 3 .90 .091 .44 2.1 2.1 .28 <.01 <5 <.1 <.02 4.4 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3550N 4600E     | 4.28 43.75 30.25 85.2 193 17.7 11.3 838 2.35 33.0 1.7 3.9 7.4 123.9 .34 1.10 .25 41 .57 .141 74.0 17.3 .38 210.6 .030 2 1.53 .015 .29 <.1 2.7 .39 .01 32 .4 .06 6.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3550N 4620E     | 1.02 24.25 13.19 58.0 93 13.6 7.6 604 2.08 8.4 1.0 1.5 5.7 96.0 .20 .33 .17 47 .45 .121 43.3 23.5 .36 164.8 .078 2 1.47 .026 .28 .1 3.2 .14 <.01 11 .2 .02 5.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3550N 4640E     | 1.71 27.41 15.82 55.5 118 17.3 8.1 605 2.08 12.2 1.1 2.9 6.6 97.4 .19 .47 .18 47 .48 .116 46.1 25.5 .38 138.6 .070 2 1.27 .019 .23 .1 3.2 .18 .01 18 .3 .03 4.8 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3550N 4660E     | .82 64.53 15.15 63.5 242 105.0 15.4 721 2.42 8.3 .9 8.3 5.4 102.2 .28 .50 .22 51 1.53 .086 40.8 107.1 .88 129.3 .044 3 1.53 .013 .29 <.1 7.9 .14 .01 12 .3 .03 5.6 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3550N 4680E     | .40 99.68 (4.59 53.6 114 203.0 54.1 911 3.69 51 1.4 2) 1.6 61 6 09 18 12 35 60 651 30 9 114.6 .75 73.4 .032 31.15 .024 .22 <.1 5.9 .07 <.01 12 .1 .02 3.6 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3550N 4700E     | .40 32.30 10.14 36.0 26 67.2 10.3 4711.67 5.1 .4 2.1 5.0 010 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 101 105 100 105 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3550N 4720E     | .5/ 33.76 13.55 48.3 /1 114.9 14.4 694 2.65 6.4 6 2.2 60 10.07 111 .07 112 45 142 173 59 6 90 1 1.31 117.7 .044 9 1.82 .022 .32 <1 5.2 .05 <.01 24 .3 .02 5.8 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3550N 4/40E     | . 29 32.08 13-22 53.8 75 99.6 14.3 630 2.72 7.8 7.9 2.20 1 2.12 61 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10  |
| 3550N 4/60E     | 2.00 40.13 43.93 124.9 2499 10.2 13.3 02.1 2.00 00.0 12 200.2 10 02.1 10 01.2 12 21 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2550N 4780F     | 89 25 15 5 79 28 6 357 17 2 5.5 223 1.07 19.1 < 1 8.0 .3 39.5 .08 .99 .04 19 .84 .025 3.7 11.8 .13 33.8 .027 4 .32 .027 .06 < 1 1.9 .05 < 01 28 .3 .02 1.1 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2550M 4700E     | 68 23 91 6 10 57 9 165 35,2 7,2 531 1.35 31,4 .1 4.0 .4 48.5 .17 1.59 .07 21 .67 .079 4.9 20.1 .22 44.8 .028 3 .38 .023 .06 <.1 2.3 .04 .02 31 .3 .03 1.3 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3550N 4800E     | 47 23 18 7 93 158.3 74 205.3 21.8 680 2.81 10.0 .6 1.2 7.1 108.6 .20 1.06 .07 37 .73 .130 46.5 149.7 1.68 141.4 .037 10 1.25 .015 .24 <.1 4.5 .07 .01 23 .2 .02 4.3 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3550N 4860F     | 19 14 96 6.14 29.8 38 30.9 5.0 441 1.36 7.1 .1 .7 .9 48.7 .07 .27 .10 24 .51 .052 7.3 24.0 .26 185.5 .046 3 .84 .025 .12 <.1 2.7 .04 <.01 17 .2 <.02 2.8 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3550N 4880E     | 30 24.33 7.36 47.2 159 42.5 7.6 313 2.29 9.5 .2 .5 2.0 39.0 .12 .58 .16 44 .65 .051 13.5 47.2 .48 240.5 .067 6 1.28 .028 .13 <.1 5.5 .07 .02 27 .2 .02 4.4 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3550N 4900E     | .41 31.63 16.79 55.7 198 15.4 6.6 996 1.69 13.2 .1 .9 .7 56.2 .30 .75 .23 25 .97 .097 6.5 12.1 .18 391.0 .037 7 .71 .018 .15 < 1 3.0 .07 .05 65 .3 .02 .22 15 .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3500N 4600E     | .64 23.96 12.34 45.1 81 18.3 8.2 583 2.04 6.5 .9 15.4 6.7 88.2 .12 .29 .15 47 .50 .097 45.3 23.1 .38 181.0 .089 2 1.01 .023 .22 .1 5.5 .11 -01 13 .2 .02 5.7 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RE 3500N 4600   | 0E .65 24.24 11.48 48.0 89 17.8 7.9 574 2.01 6.5 .9 1.8 7.1 87.4 .13 .29 .14 46 .48 .092 45.2 24.3 .3/ 17/.4 .094 51.02 .124 .23 .1 50 .11 .01 12 .12 .02 .07 .14 .15 .15 .15 .15 .15 .15 .15 .15 .15 .15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3500N 4620E     | .51 43.54 20.85 57.2 50 21.4 13.6 827 3.03 4.1 1.2 2.3 15.8 214.6 .11 .28 .10 68 1.13 .27 1361 .34.2 1.22 114.1 .092 2.2.17 .041 .20 .1 4.0 .06 .12 12 .12 .00 .01 .20 .10 .10 .10 .10 .10 .10 .10 .10 .10 .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3500N 4640E     | .50 37.61 15.07 63.6 50 57.9 15.3 806 3.19 5.3 1.3 4.3 18.0 94.6 .10 .52 .12 00 1.06 1.06 107.1 90.1 1.02 123.1 .005 5 2.05 .012 1.5 .12 0.0 1.06 1.06 1.02 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3500N 4660E     | 50 39.44 10.88 62.2 104 227.6 22.6 817 3.17 36.5 1.1 6.3 12.9 149.3 .12 2.69 .08 64 2.35 .169 92.9 105.9 1.74 134.3 .044 6 2.18 .010 .34 <.1 6.2 .08 .04 23 .2 .02 7.2 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3500N 4680F     | 91 36.15 12.38 58.5 41 240.7 23.4 931 3.31 34.0 .8 3.0 12.8 82.3 .08 3.62 .09 52 .65 .122 86.1 93.9 1.75 127.6 .036 7 2.26 .011 .49 <.1 6.0 .11 .02 13 .2 <.02 7.3 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3500N 4700E     | 6.34 79.26 60.26 101.9 901 31.6 14.1 2066 3.53 49.1 .5 80.9 2.1 38.3 .51 4.51 .33 36 .49 .061 17.6 18.8 .53 129.1 .024 2 1.66 .014 .19 .1 6.2 .10 .06 97 .3 .05 4.4 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3500N 4720E     | 11.28 111.24 35.64 146.0 1963 49.5 19.8 4486 4.03 203.6 .5 181.5 .8 53.8 .55 13.23 .32 46 .84 .097 14.7 26.0 .45 176.5 .024 5 1.38 .020 .13 .1 5.9 .13 .07 208 .8 .04 3.7 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3500N 4740E     | 1.48 50.56 17.46 66.2 280 96.2 14.7 1296 2.96 17.7 .7 16.3 8.9 49.1 .18 1.77 .14 45 .66 .069 59.8 81.1 1.09 118.4 .045 3 1.85 .020 .26 <.1 5.1 .08 .03 27 .2 <.02 6.0 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3500N 4760E     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3500N 4800E     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3500N 4840E     | .34 20.02 5.45 67.3 61 6.5 47 930 1.00 6.6 .2 1.1 .0 32.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3500N 4860E     | 52 11.61 0.57 0.40 4.6 5.4 7.5 7.20 1.51 0.5 1.5 0.5 1.5 0.7 22 4.3 .060 7.3 9.2 1.2 264.5 .036 5 1.06 .022 .13 <1 2.6 .04 .02 21 .2 <.02 2.8 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3500N 4880E     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3500N 4900E     | .48 23.01 21.94 69.0 42 18.4 11.4 936 3.27 16.9 .6 1.4 3.8 56.5 .10 .34 1.53 66 .67 .056 30.2 61.5 .66 417.4 .101 4 2.19 .015 .35 .1 7.0 .13 .01 29 .2 .02 7.3 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3450N 4600E     | 1.22 40.72 10.23 58.7 79 174.7 17.6 984 3.19 35.1 .5 8.6 6.1 70.2 .13 4.22 .09 66 .58 .076 40.6 41.0 1.17 116.0 .027 3 2.18 .013 .31 <.1 5.6 .09 .02 21 .2 <.02 7.2 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3450N 4620E     | 2.02 31.18 10.48 64.8 84 266.3 21.0 982 3.33 46.0 .4 13.4 6.1 66.7 .12 5.64 .12 51 .70 .064 31.2 67.8 1.31 163.3 .031 4 2.13 .014 .33 <.1 5.4 .21 <.01 15 .1 <.02 6.3 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3450N 4640E     | .95 38.37 10.26 90.4 166 78.7 14.3 1275 3.24 19.1 .3 39.7 3.2 67.2 .21 1.64 .09 48 1.34 .085 28.1 32.2 1.01 151.2 .016 5 1.93 .009 .38 <.1 5.1 .14 .03 36 .2 <.02 5.7 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3450N 4660E     | 1.28 39.83 10.95 83.1 470 110.7 16.3 1073 3.80 37.5 .4 15.8 4.7 133.6 .19 3.10 .12 48 2.63 .098 37.4 41.8 1.05 137.3 .022 5 2.20 .010 .26 <.1 5.6 .11 .05 57 .3 .02 5.9 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STANDARD DS5    | 3 13.02 145.79 25.46 134.1 280 24.3 11.7 796 2.96 18.6 6.1 42.0 2.7 46.9 5.96 3.67 6.38 62 .76 .094 12.1 187.5 .64 140.6 .093 16 1.98 .032 .13 4.8 3.3 1.04 .01 172 4.8 .02 0.3 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | TRANSPORT OF A STATE O |
| 1F15 - 15.00 GM | SAMPLE LEACHED WITH 90 ML 2-2-2 HUL-HNUS-H20 AT 95 DEG. C FOR ONE HOUR, DILOTED TO SOO ME, AWALTSED BY HELPES WHO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IF TYPE: SOLL S | (S80 60C Samples beginning 'RE' are <u>Reruns and 'RRE' are <u>Reject Reruns</u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1               | $\mathcal{N}$ $\mathcal{N}$ $\mathcal{A}$ $\mathcal{A}$ $\mathcal{A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





Data AFA

| ANALYTICAL |                    |             |        |       |         |      |         |                |                    |      |     |       |          |       |        |          |      |         |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       |        |  |
|------------|--------------------|-------------|--------|-------|---------|------|---------|----------------|--------------------|------|-----|-------|----------|-------|--------|----------|------|---------|----------|--------|--------|------------|--------|------|--------|--------|-------|------|---------|----------------------------------------------------------------------------------------------------------------|--------|-----|------|-------|--------|--|
|            | SAMPLEF#           | Mo          | Cu     | Pb    | Zn      | Ag   | Ni      | Co I           | Mn Fe              | As   | U   | Au    | Th       | Sr    | Cd     | Sb E     | i    | V Ca    | a P      | La     | Cr     | Mg Ba      | a Ti   | В    | A1     | Na     | К     | W S  | Sc T    | 1                                                                                                              | S Hg   | Se  | Te   | Ga S  | Sample |  |
|            | 5/41/202           | DDA         | ກວຫ    | DDM   | מממ     | daa  | DDM     | DDM DI         | om ž               | ppm  | ppm | ppb   | ppm      | ppm   | ppm p  | opa pp   | m pp | an 2e   | \$ 8     | ррт    | ppm    | % ррп      | n %    | ppm  | x      | Х      | % pp  | m pp | om pp   | na in the second se | % ppb  | ppm | ppm  | ppm   | gm     |  |
|            |                    |             | PPm    | - ppm | PP      |      |         |                |                    |      |     |       |          |       |        |          | -    |         |          |        |        |            |        |      |        |        |       | _    |         |                                                                                                                |        |     |      |       |        |  |
|            | C 1                | 1 /2        | 2 66   | 2 36  | 41 7    | 14   | 49      | 3 8 5          | 28 1 92            | .2   | 1.8 | 1.3   | 3.9      | 82.8  | .01    | 02 .1    | 0 4  | 0.54    | .078     | 8.6 1  | 14.7   | .51 212.2  | 2.116  | 1    | .90 .  | 099 .  | 45 2. | 1 2  | .2 .2   | 8 <.0                                                                                                          | 1 <5   | <.1 | .02  | 4.5   | 15.0   |  |
|            | 0-1<br>3450N 45905 | 2 20 1      | 17 00  | 32 33 | 230.8.2 | 2416 | 66 9 2  | 0.0 23/        | 66 5 02            | 42 1 | .4  | 81.6  | 1.3      | 77.2  | .36 4  | 60 .5    | 0 3  | 7 1.96  | 5.067 1  | 6.0 2  | 26.6   | .51 251.5  | 5.009  | 5    | 1.48   | 012 .  | 23 <. | 1 7  | .1 .2   | 7.0                                                                                                            | 4 217  | .8  | .03  | 3.5   | 15.0   |  |
|            | 3450N 4000E        | 3.30 1      | 22 02  | 7 00  | 47 1    | 103  | 12 0    | 65 9           | 52 1 77            | 12.0 | 1   | 7 2   | .7       | 23.6  | .10 1  | 01 .1    | 0 2  | 5.35    | 5.048    | 8.0 1  | 10.3   | .21 109.6  | 5.032  | 1    | .83    | 028 .  | 12 <. | 1 2  | .8 .1   | 2.0                                                                                                            | 2 31   | .1  | <.02 | 2.4   | 15.0   |  |
|            | 3450N 4700E        | .00         | 23.92  | 20.00 | 4/.1    | 195  | 25.2.1  | 0.0 m          | 75 2 00            | 24 1 |     | 27.8  | Δ        | 40 1  | 67.3   | 29 3     | 8 3  | 4 96    | 5 110 1  | 1.8 2  | 22.9   | .33 335.6  | 5.022  | 7    | 1.11 . | .019 . | 13.   | 25   | .1 .2   | 2.0                                                                                                            | 8 78   | .5  | .06  | 3.0   | 15.0   |  |
|            | 3450N 4/20E        | 2.65        | 03.83  | 32.05 | 00.3    | 162  | 10.0    | 0 4 15         | 61 2 22            | 16.2 | .4  | 5.7   | <br>8    | 36.8  | 28 1   | 42 3     | 22   | 8 69    | 046      | 8.4    | 16.3   | .26 250.8  | 3.037  | 4    | 1.00   | .024 . | 10 .  | 1 3  | .6 .1   | 3.0                                                                                                            | 3 60   | .3  | .05  | 2.8   | 15.0   |  |
|            | 345UN 4/40E        | 1.46        | 35.30  | 24.69 | 54.3    | 103  | 19.9    | 9.4 10         | 04 2.23            | 10.2 | . 2 | 5.7   | .0       | 00.0  | .20 1  |          |      | .0 .05  |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       |        |  |
|            | 3450N 4760F        | 1.01        | 27.58  | 7.35  | 35.9    | 341  | 7.0     | 4.7 7          | 76 1.41            | 13.0 | .1  | 12.1  | .4       | 36.6  | .09 1  | .11 .0   | 9 2  | .99     | .036     | 5.7    | 6.4    | .20 90.8   | 8.026  | 4    | .57    | . 028  | 08 <. | 1 2  | .3 .0   | 5.0                                                                                                            | 3 31   | .3  | <.02 | 1.8   | 15.0   |  |
|            | 3450N 4780F        | 3 12        | 70.48  | 18.76 | 123.1   | 564  | 11.7 1  | 3.8 22         | 76 5.47            | 42.7 | .3  | 38.6  | 1.9      | 87.5  | .16 3  | . 80.    | 8 5  | 0 1.25  | 5 .137 2 | 28.5 1 | 11.3 1 | .19 350.2  | 2 .011 | 8    | 2.56   | .010   | 26.   | 1 8  | .2 .1   | 5.0                                                                                                            | )3 85  | .4  | .02  | 7.2   | 15.0   |  |
|            | 3450N 4820E        | 31          | 10.26  | 5 55  | 89.2    | 30   | 16.6    | 5.2 4          | 02 1.89            | 4.1  | .2  | 3.1   | 1.4      | 52.6  | . 08   | . 22 .0  | 9 2  | .41     | 1.104    | 7.6 2  | 21.6   | .27 289.7  | 7 .042 | 3    | 1.10   | . 022  | 14 <. | 1 2  | .2 .0   | 6.0                                                                                                            | 1 18   | .1  | <.02 | 3.6   | 15.0   |  |
|            | 3450N 4840E        | 24          | 9 90   | 3,81  | 85.8    | 27   | 15.4    | 3.3 5          | 53 .97             | 4.1  | .1  | 1.4   | .7       | 42.5  | .07    | .11 .0   | 9 2  | .37     | 7.112    | 4.0    | 14.4   | .14 291.6  | 6.044  | 2    | . 69   | .031   | 08 <. | 1 1  | .3 .0   | 4 <.(                                                                                                          | )1 19  | .1  | <.02 | 2.3   | 15.0   |  |
|            | 3450N 4960E        | 29          | 9.90   | 5 30  | 78 3    | 32   | 14.9    | 503            | 98 1 71            | 2.7  | .2  | .5    | 1.9      | 51.6  | .05    | .14 .0   | 9 2  | .40     | .062     | 10.9 3 | 18.3   | .24 307.6  | 6.054  | 4    | 1.31   | 028    | 15 <. | 1 2  | .8.0    | 6 <.0                                                                                                          | )1 16  | .1  | <.02 | 3.8   | 15.0   |  |
|            | 3430N 4000L        | . 25        | 5.50   | 5.00  | 10.0    | 01   | 1       | 0.0 0          |                    |      |     |       |          |       |        |          |      |         |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       |        |  |
|            | 34F 0N 4990F       | 70          | 10 45  | 6 60  | 71.8    | 200  | 6.6     | 805            | 55 3 34            | 6.6  | 2   | 6.5   | 1.8      | 54.5  | .06    | .48 .1   | .0 2 | 3 1.10  | 0.043    | 10.1   | 10.2   | .31 326.9  | 9 .016 | 6    | 1.59   | .018   | 28 <. | 1 6  | .7 .0   | 7.0                                                                                                            | 01 50  | .3  | .02  | 4.0   | 15.0   |  |
|            | 3450N 4880E        | 1.02        | 10.45  | 0.00  | 60.2    | 01   | 0.0     | 0.0 5<br>0.0 5 | 82 3 10            | 6.1  | 3   | 2.6   | 2.4      | 34 1  | 05     | 85       | 0 3  | 81 .61  | 1.051    | 9.8    | 21.7   | .31 349.5  | 5 .017 | 3    | 1.60   | .017   | 31 <. | 1 5  | .8 .1   | 0.0                                                                                                            | )2 36  | . 1 | <.02 | 4.5   | 15.0   |  |
|            | 3450N 4900E        | 1.03        | 10.51  | 0.72  | 20.0    | 20   | 22.0    | 0.0 J<br>66 J  | 62 3.40<br>69 1 96 | 5.8  | .0  | 1 4   | 3.4      | 114.3 | 05     | 72 (     | 4 2  | 29 .36  | 5 .060   | 9.3    | 21.4   | .40 107.6  | 6.043  | 3    | 1.23   | .040   | 30 <. | 1 3  | .3 .0   | 6 <.(                                                                                                          | )1 14  | .1  | <.02 | 4.2   | 15.0   |  |
|            | 3400N 4600E        | .4/         | 19.30  | 4.04  | 39.0    | 201  | 20.01   | 0.0 J<br>1 E E | 26 0 00            | 26.0 | .5  | 15 4  | 1 1      | 34 4  | 18 2   | 23       | 8 2  | 21 44   | 4 034    | 7 2    | 11 1   | 28 424 (   | 0 .015 | 3    | .95    | .031   | 17 <. | 1 4  | .3 1.1  | 3.0                                                                                                            | )2 64  | .4  | .06  | 2.7   | 15.0   |  |
|            | 3400N 4620E        | 1.70        | 38.07  | /.43  | 09.0    | 201  | 20.0 1  | 1.0 J          | CC A E1            | £1.0 | .1  | 70 4  | τ.1<br>2 | 50.6  | 28 /   | 72 3     | 1 1  |         | 3 073    | 10.2   | 20.9   | 44 301 3   | 2 013  | 7    | 1.47   | .014   | 34 .  | 28   | .3.7    | 6.0                                                                                                            | )5 99  | .6  | .07  | 3.3   | 15.0   |  |
|            | 3400N 4640E        | 1./1.       | 111.41 | 12.08 | 11/.3   | 994  | 01.3 4  | 0.9 13         | 00 4.51            | 51.0 | .0  | /0.4  | .0       | 00.0  | .20 4  |          |      |         |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       |        |  |
|            | 3400N 4660E        | 3 49        | 99 29  | 14 16 | 111.5   | 820  | 58.2 1  | 6.2 12         | 40 4.75            | 69.3 | .3  | 120.6 | 1.2      | 45.1  | .29 3  | .70 .3   | 87 3 | 31 1.05 | 5 .042   | 10.6   | 14.4   | .32 268.4  | 4 .023 | 5    | 1.21   | .021   | 21 .  | 1 7  | .8 .2   | 1.0                                                                                                            | 06 101 | .6  | . 04 | 3.1   | 15.0   |  |
|            | 3400N 4680E        | 94          | 30 49  | 7 71  | 64.5    | 154  | 43.3    | 8.7 6          | 56 2.57            | 21.8 | .2  | 23.3  | 1.2      | 39.0  | .13 1  | .63 .3   | .1 2 | . 64    | 4 .031   | 10.1   | 20.1   | .33 156.   | 5 .020 | 5    | 1.14   | . 030  | 19 <  | .1 4 | .3 .1   | 6.(                                                                                                            | 33 36  | .2  | .02  | 3.0   | 15.0   |  |
|            | 3400N 4700E        | 62          | 29.33  | 11 58 | 57.4    | 107  | 154.4.1 | 6.1 8          | 38 2.61            | 25.9 | .5  | 5.9   | 5.1      | 94.3  | .15 2  | . 22     | .1 4 | 13 .85  | 5 .074 : | 37.9   | 99.8 1 | L.03 135.4 | 4 .045 | 3    | 1.56   | . 024  | 26 <. | .1 5 | .5 .0   | 9.(                                                                                                            | 02 22  | .2  | <.02 | 4.9   | 15.0   |  |
|            | DE 3400N 4700E     | 61          | 29.76  | 11 71 | 57.0    | 87   | 155 9 1 | 608            | 43 2.61            | 26.2 | .4  | 4.9   | 5.2      | 94.5  | .14 2  | .24      | 2 4  | 42 .86  | 6 .074   | 38.4   | 98.1 1 | 1.03 137.9 | 9.040  | 4    | 1.49   | .022   | 23 <. | .1 5 | .3 .0   | 8.8                                                                                                            | )2 25  | .2  | .02  | 4.8   | 15.0   |  |
|            | 3400N 4720E        | 97          | 35.80  | 12 99 | 75.0    | 130  | 102.2 1 | 4.2 8          | 02 2.75            | 21.7 | .6  | 5.9   | 6.5      | 73.7  | .15 1  | . 83     | 4 4  | 41 .74  | 4 .093   | 43.4   | 83.1   | .98 130.   | 5 .042 | 2 4  | 1.51   | .021   | 28 <. | 1 5  | .4 .0   | 8.0                                                                                                            | 02 33  | .2  | <.02 | 4.8   | 15.0   |  |
|            | 34001 47202        | . 27        | 00.00  | 10.55 | /010    | 100  |         |                |                    |      |     |       |          |       |        |          |      |         |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       |        |  |
|            | 3400N 4760E        | .26         | 20.56  | 2.90  | 85.2    | 64   | 7.0     | 3.4 4          | 50 .90             | 4.4  | .1  | 1.5   | .2       | 67.7  | .13    | . 27 . 1 | 7 2  | 21 .73  | 1 .109   | 3.3    | 7.4    | .11 216.   | 1 .037 | ' 7  | .44    | .032   | .08 < | .1 1 | .3 .0   | 5.(                                                                                                            | 03 26  | .2  | <.02 | 1.4   | 15.0   |  |
|            | 3400N 4780E        | .22         | 18.91  | 6.78  | 45.7    | 126  | 93.5 1  | 2.5 7          | 76 1.28            | 16.3 | .1  | 3.1   | .4       | 49.5  | .15    | . 60 . 1 | 9 2  | 24 .58  | 8 .060   | 3.6    | 64.8   | .41 208.   | 9.042  | 2 3  | .47    | . 032  | .07 < | .1 2 | .0.0    | 5.(                                                                                                            | 02 30  | . 2 | <.02 | 1.5   | 15.0   |  |
|            | 3400N 4820E        | .97         | 12.95  | 8.80  | 52.9    | 74   | 26.5 1  | 1.2 8          | 04 3.46            | 14.3 | .3  | 5.6   | 2.1      | 43.8  | . 10   | . 64     | 2 3  | 31 .76  | 6.044    | 12.6   | 19.2   | .34 385.   | 5 .022 | 2 5  | 1.94   | .021   | . 20  | .1 5 | .5 .2   | . 8                                                                                                            | 01 34  | .2  | <.02 | 4.7   | 15.0   |  |
|            | 3400N 4840E        | .30         | 10.68  | 11.47 | 26.6    | 103  | 98.6 1  | 0.7 6          | 89 1.42            | 8.8  | .1  | 3.8   | .4       | 31.2  | . 18   | .40 .    | 9 2  | 23 .50  | 0.029    | 3.0 1  | 07.4   | .58 163.   | 2 .040 | ) 3  | . 64   | .029   | .09 < | .1 2 | .4 .0   | 6.(                                                                                                            | 02 43  | .2  | .02  | 2.0   | 15.0   |  |
|            | 3400N 4860F        | . 19        | 6.66   | 1.42  | 19.1    | 15   | 3.2     | 2.7 3          | 33 .73             | 3.9  | <.1 | .3    | .3       | 17.0  | .04    | .07 .0   | 3 2  | 23 .32  | 2 .019   | 2.0    | 4.5    | .08 112.   | 1 .043 | 3 1  | .32    | .038   | .05 < | .1   | .7 .0   | 3.0                                                                                                            | 02 15  | .1  | <.02 | 1.3   | 7.5    |  |
|            | 0.000              |             |        |       |         |      |         |                |                    |      |     |       |          |       |        |          |      |         |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       |        |  |
|            | 3400N 4880F        | 70          | 9.09   | 6.03  | 34.1    | 52   | 5.4     | 4.7 7          | 85 1.64            | 5.5  | .2  | .4    | 1.0      | 24.3  | .07    | .24 .    | 12 2 | 26 .3   | 7 .029   | 6.5    | 6.6    | .17 323.   | 3 .046 | 5 3  | 1.11   | .034   | .11 < | .1 2 | .2 .1   | .2 .0                                                                                                          | 01 33  | .1  | <.02 | 3.3   | 15.0   |  |
|            | 3400N 4900E        | 15          | 6 94   | 1 29  | 18 1    | 22   | 2.1     | 2.3 2          | 26 .71             | 2.2  | .1  | .5    | .2       | 18.7  | .05    | . 05 . 1 | )2 2 | 23 .33  | 3 .025   | 1.9    | 3.6    | .08 69.    | 0.044  | 2    | . 30   | .047   | .06 < | .1   | .8.0    | 2.0                                                                                                            | )1 9   | . 1 | <.02 | 1.2   | 15.0   |  |
|            | 22EON 4640E        | 71          | 33 14  | 19.86 | 80.2    | 108  | 28 7 1  | 248            | 03 2 72            | 11.8 | 1.2 | 6.7   | 10.8     | 146.9 | . 20   | .74 .    | 17 5 | 52 .9   | 5.165    | 80.4   | 23.9   | .76 131.   | 7 .075 | 5 5  | 1.66   | .021   | .35 < | .1 3 | .8 .1   | 0.0                                                                                                            | 02 42  | .3  | .04  | 6.0   | 15.0   |  |
|            | 2350N 4640E        | 95          | 23 53  | 10 54 | 71.8    | 74   | 51 7 1  | 069            | 07 2.53            | 22.4 | .4  | 6.8   | 3.9      | 91.7  | .13 1  | .77 .    | 11 3 | 34 .8   | 0.073    | 26.8   | 20.3   | .53 138.   | 4 .028 | 3 7  | 1.34   | .018   | .31 < | .1 3 | .5 .1   | .3 .(                                                                                                          | 02 42  | .2  | <.02 | 4.0   | 15.0   |  |
|            | 3350N 4000E        | . 5J<br>E A | 12 77  | 0 21  | 16.2    | 64   | 12 0    | 563            | 00 1 66            | 4 0  | 1 9 | 2.3   | 5.2      | 144.5 | .07    | .18 .0   | )7 4 | 49 .5   | 8.120    | 39.9   | 24.1   | .38 77.    | 8.079  | ) 1  | .80    | .045   | .11   | .1 1 | .80     | 6.1                                                                                                            | 03 10  | .3  | <.02 | 3.6   | 15.0   |  |
|            | 3350N 4000E        |             | 10.77  | 0.51  | 40.2    | 04   | 12.0    | 0.0 0          |                    |      |     |       |          |       |        |          |      |         |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       |        |  |
|            | 3350N 4700E        | . 24        | 13.64  | 11.76 | 61.3    | 51   | 13.7    | 4.3 4          | 71 .59             | 4.6  | .1  | 1.5   | <.1      | 63.8  | . 25   | .30.     | 16   | 18 .6   | 1 .052   | 2.3    | 9.9    | .13 116.   | 3 .027 | 2    | .26    | .038   | .04 < | .1   | .4 .0   | 3.1                                                                                                            | 06 55  | .3  | <.02 | 1.3   | 15.0   |  |
|            | 3350N 4720E        | .21         | 4.37   | 2.61  | 23.9    | 13   | 21.8    | 3.7 1          | .85 .59            | 4.5  | <.1 | .6    | .2       | 16.3  | .07    | .07 .    | )7 : | 19.19   | 9 .046   | 1.5    | 15.0   | .14 61.    | 3 .040 | ) 2  | . 28   | .039   | .05 < | .1   | .6 .0   | 4.1                                                                                                            | 02 16  | .1  | 02   | 1.2   | 15.0   |  |
|            | 3350N 4740E        | .21         | 6.92   | 6.37  | 18.1    | 29   | 40.0    | 6.8 3          | 38 .81             | 7.7  | .1  | .6    | .3       | 40.5  | . 12   | .31 .    | )7 3 | 20.4    | 2 .031   | 2.0    | 34.6   | .37 98.    | 4 .040 | ) 1  | . 29   | .031   | .05 < | .1 1 | .1 .0   | 16 .1                                                                                                          | 02 38  | .2  | <.02 | 2 1.2 | 15.0   |  |
|            | 3350N 4760F        | .55         | 21.03  | 12.29 | 39.0    | 32   | 45.0 1  | 2.2 5          | 91 1.74            | 24.5 | .1  | 2.9   | .9       | 39.3  | .14    | .96 .    | 7    | 24 .4   | 6 .031   | 5.9    | 22.4   | .21 171.   | 2 .047 | 7 5  | .93    | .028   | .09 < | .1 2 | .9.1    | .5 .1                                                                                                          | 01 40  | .2  | .03  | 2.6   | 15.0   |  |
|            | 3350N 4780E        | .73         | 19.34  | 8.30  | 51.9    | 113  | 32.0 1  | 10.7 6         | 530 1.63           | 22.6 | .2  | 2.9   | .7       | 31.4  | .17 1  | .09.     | 10 3 | 27.4    | 5.039    | 4.9    | 18.8   | .14 134.   | 5 .051 | 4    | .83    | .034   | . 08  | .1 2 | 2.4 .1  | .2 .1                                                                                                          | 01 23  | .1  | 02   | 2.4   | 15.0   |  |
|            |                    |             |        |       |         |      |         |                |                    |      |     |       |          |       |        |          |      |         |          |        |        |            |        |      |        |        |       |      |         |                                                                                                                |        |     |      |       | 15.0   |  |
|            | STANDARD DS5       | 13.24       | 150.13 | 25.83 | 139.1   | 284  | 25.0 1  | 2.2 7          | 90 3.00            | 18.9 | 5.9 | 43.0  | 2.8      | 46.5  | 5.65 3 | .88 5.   | 96 ( | 62 .7.  | 4 .091   | 12.3 1 | 189.7  | .68 134.   | 7.096  | 5 16 | 2.02   | .032   | .14 5 | .0 3 | 1.5 I.U | 14 .1                                                                                                          | UZ 1/1 | 4.8 | 1.8/ | b.b   | 15.0   |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





Data 🖌 FA

| ACHE ANALITICAL |                |            |         |                    |             |          |            |             |           |                                              |       |             |          |              |              |       |            |           |      |            | _      |        |       |         |        |         |     |        |       |      |                                          |        |         |     |       |           |          |      |  |
|-----------------|----------------|------------|---------|--------------------|-------------|----------|------------|-------------|-----------|----------------------------------------------|-------|-------------|----------|--------------|--------------|-------|------------|-----------|------|------------|--------|--------|-------|---------|--------|---------|-----|--------|-------|------|------------------------------------------|--------|---------|-----|-------|-----------|----------|------|--|
|                 | SAMDI E#       | Mo         | 0       | : Ph               | - 7n        | Δα       | Ni         | Co          | Mn        | Fe                                           | As    | 11          | Au       | Th           | Sr           | Cd    | Sb         | Bi        | v    | Ca         | Ρ      | La     | Cr    | Mg      | Ba     | Ti      | В   | A1     | Na    | Κ    | W S                                      | Sc T   | n s     | Hg  | Se    | Te (      | Ga Sa    | mple |  |
|                 | SAMPLE#        | 007        |         |                    | 000         | nph      | 000        | 00          | 000       | 2                                            | ກາຫ   | ກກຫ         | nnb      | ກດຫ          | ກກາ          | กกต   | DOR        | nom       | DDM  | ž          | ž      | DDM    | DDM   | x       | DDM    | ž       | DDM | ×      | ž     | ž    | ppm pp                                   | ym pp  | Jm ≵    | ppb | ppm   | ppm p     | pm       | gm   |  |
|                 |                | ppiii      | ppi     | і рріі             | ppiii       | php      | рря        | ppm         |           | ~                                            | ppm   | PPm         | ppp      |              |              | - PPm |            |           | ppm  |            |        | P.P    |       |         | F.F    |         |     |        |       |      |                                          |        |         |     |       |           |          |      |  |
|                 |                | 1.04       | 2.00    | 0.45               | 44.0        | 15       | 10         | 4 1         | E 4 4 - 2 | 0.05                                         | 4     | 10          | 4        | 43           | 82.4         | < 01  | 04         | 10        | 41   | 57         | 076    | 9.3    | 15 7  | 54 2    | 219.0  | .125    | <1  | . 88 . | 096   | .48  | 2.2 2.                                   | 2.2    | 29 <.01 | <5  | <.1 < | .02 4     | .8       | 15.0 |  |
|                 | G-1            | 1.54       | 3.05    | 2.45               | 44.2        | 15       | 4.9        | 4.1         | 044 Z     | £.05                                         | .4    | 1.5         | 1 5      | 7.0          | 20.2         | 07    | 07         | 0.4       | 23   | 29         | 023    | 15     | 4.7   | 08      | 51 7   | 043     | <1  | 23     | 032   | 04   | <.1 .                                    | 4.0    | )3 <.01 | 23  | .1 <  | .02 1     | .2       | 15.0 |  |
|                 | 3350N 4800E    | . 1/       | 8.46    | 0 1.12             | 19.8        | 20       | 3.8        | 2.4         | 290       | .04                                          | 4.0   | 1           | 1.5      | ے.<br>ج      | 20.2         | .07   | .07        | .07       | 21   | 56         | 025    | 3.6    | 69.3  | 72 1    | 115 1  | 030     | 3   | 52     | 033   | 04   | <.1 2.                                   | 2.0    | .01     | 26  | .1 <  | .02 1     | .7       | 15.0 |  |
|                 | 3350N 4820E    | .40        | 14.2    | 6.80               | 21.2        | 68       | 97.2       | 10.4        | 550 1     | 1.41                                         | 0.3   | .1          | 1.9      | .5           | 32.4<br>AF A | .07   | . UJ       | 10        | 21   | . 50 .     | 023    | 5.0 2  | 62.0  | 1 87 3  | 320 0  | 014     | 5   | 1 28   | n19   | . ng | 1 6                                      | 5 3    | 38 01   | 52  | 2     | .02 3     | .2       | 15.0 |  |
|                 | 3350N 4840E    | .99        | 42.8    | 9.40               | 33.1        | 285      | 450.0      | 42.9        | 1258 3    | 3.70 4                                       | 1/.8  | .1          | 21.1     | .9           | 45.4         | .09   | 0.4/<br>cn | . 10      | 20   | .07        | .032   | 0.92   | 02.5  | 22 22   | 245 0  | 026     | 1   | 1 16   | 012   | 18   | < 1 3                                    | 8 2    | 20 < 01 | 34  | 1 <   | 02 3      | 2        | 15.0 |  |
|                 | 3350N 4860E    | .91        | 12.09   | 9 6.//             | 42.7        | 89       | 12.0       | 8.0         | 1012 2    | 2.74                                         | 7.4   | .2          | 4.0      | 1.7          | 29.0         | .00   | .00        | .00       | 50   | .0/        | .002   | 0.0    | 5.5   | .20 2   | 240.0  | .020    | -   | 1.10   |       |      |                                          |        |         |     |       |           |          |      |  |
|                 |                |            |         |                    |             |          |            |             |           |                                              |       |             |          | ~ ~          |              |       | 00         | 11        | 27   | <b>F</b> 1 | 016 1  | 14 6   | 10.0  | <u></u> | 20.2 E | ne o    | 2   | 1 75   | 022   | 12   | ~ 1 3                                    | 6 1    | 11 < 01 | 24  | 1 <   | 02 4      | 9        | 15.0 |  |
|                 | 3350N 4880E    | .57        | 9.89    | 6.68               | 36.5        | 62       | 8.4        | 5.9         | 4/9 2     | 2.42                                         | 2.0   | .4          | <.2      | 3.2          | 39.4         | .04   | . 22       | .11       | 21   | .51        | .010 1 | 14.0   | 12.2  | . 22 2  | 293.5  | .050    | О   | 1.75   | 020 . | 10   | 1 J.                                     | 0.1    | .101    | 24  |       | 02 4      |          | 16.0 |  |
|                 | 3350N 4900E    | . 64       | 9.75    | 5 7.73             | 32.9        | 67       | 9.1        | 6.2         | 373 2     | 2.41                                         | 2.0   | 1.0         | .4       | 4.5          | 39.2         | .05   | . 25       | . 12      | 31   | .43        | .014 2 | 21.4   | 13.9  | .27 3   | 344.5  | .080    | 2   | 2.09   | 025   | . 15 | <ul> <li>.1 0.</li> <li>.1 14</li> </ul> | .0.1   | 10 - 01 | Z-4 |       | 04 6      | . د<br>د | 15.0 |  |
|                 | 3300N 4680E    | . 49       | 96.22   | 2 13.86            | 52.3        | 111      | 19.0       | 16.4        | 1271 4    | 1.16 1                                       | 10.9  | .2          | 9.8      | 1.5          | 60.5         | . 19  | 1.65       | . 16      | 80 1 | 1.05       | .058 1 | 17.8   | 25.8  | .59 5   | 5/1./  | .020    | /:  | 2.14   | .020  | .30  | .2 14.                                   | . 0.   | .2 <.01 | 54  | .2    | .04 0     | .0       | 15.0 |  |
|                 | 3300N 4700E    | .43        | 38.45   | 6.33               | 27.7        | 61       | 9.4        | 8.9         | 812 2     | 2.08                                         | 8.9   | .1          | 3.0      | .5           | 24.7         | .09   | .85        | .07       | 48   | .50        | .037   | 7.4    | 11.8  | .25 2   | 287.0  | .021    | 2   | 1.04   | .029  | . 14 | .1 5.                                    | .9.0   | .01     | 21  | .1 <  | .02 3     | .4       | 15.0 |  |
|                 | 3300N 4720E    | .45        | 29.50   | 54.31              | 51.9        | 197      | 15.9       | 8.3         | 1036 1    | 1.74 2                                       | 23.9  | .2          | 18.1     | 1.3          | 35.8         | . 44  | 1.04       | .37       | 29   | .59        | .022   | 8.7    | 15.2  | .25 /   | 405.3  | .046    | 4   | 1.09   | .026  | . 11 | .1 3.                                    | .1 .1  | ,2 .01  | 64  | .2    | .0/ 3     | .4       | 15.0 |  |
|                 |                |            |         |                    |             |          |            |             |           |                                              |       |             |          |              |              |       |            |           |      |            |        |        |       |         |        |         |     |        |       |      |                                          |        |         |     |       |           | _        |      |  |
|                 | 3300N 4740E    | .53        | 18.00   | ) 10.57            | 26.2        | 41       | 11.5       | 5.4         | 588 1     | 1.47 1                                       | 14.1  | .2          | 2.8      | .5           | 16.6         | . 17  | .51        | .17       | 26   | . 28       | .023   | 4.8    | 9.6   | .13 2   | 246.0  | .043    | 1   | .73    | .037  | .06  | <.1 1.                                   | .9 .1  | .0 <.01 | 25  | .1    | .04 2     | .5       | 15.0 |  |
|                 | 3300N 4760E    | . 49       | 20.50   | 7.39               | 32.7        | 64       | 43.0       | 9.5         | 680 1     | 1.92 4                                       | \$1.6 | .1          | 1.1      | .5           | 32.6         | . 14  | 1.33       | .07       | 35   | .53        | .038   | 6.1    | 27.4  | .27 2   | 207.7  | .032    | 3   | .81    | 030   | .12  | .1 3.                                    | .2 .4  | 46 .01  | 72  | .2    | .04 2     | .8       | 15.0 |  |
|                 | 3300N 4780E    | 1.35       | 41.82   | 2 13.66            | 37.8        | 68       | 134.0      | 25.1        | 978 2     | 2.48 7                                       | 77.9  | .1          | 3.9      | .6           | 27.4         | . 18  | 4.55       | . 19      | 34   | .35        | .035   | 6.9    | 55.3  | .44 ]   | 190.7  | .032    | 2   | .70    | 033   | .07  | .1 4.                                    | .9 1.1 | .8 .02  | 36  | .2    | .02 2     | .3       | 15.0 |  |
|                 | 3300N 4800E    | .36        | 9.13    | 3 5.19             | 22.0        | 27       | 317.5      | 35.2        | 757 2     | 2.77                                         | 7.2   | .1          | 1.3      | 1.2          | 22.2         | .08   | .75        | .08       | 26   | .33        | .029   | 7.3 3  | 72.0  | 2.98    | 98.1   | .030    | 2   | .83    | .022  | .09  | .1 5.                                    | .5 .1  | .0 .01  | 24  | .1 <  | .02 2     | .6       | 15.0 |  |
|                 | 3300N 4820E    | 1.30       | 34.96   | 5 11.29            | 48.8        | 120      | 16.6       | 9.2         | 1106 2    | 2.96                                         | 8.0   | .7          | 5.7      | 6.2          | 41.8         | .10   | . 64       | .23       | 48   | .58        | .047 3 | 36.6   | 23.1  | . 47 2  | 205.5  | .059    | 3   | 1.57   | .024  | . 16 | <.1 4.                                   | .3 .1  | .1 <.01 | 29  | .2    | .02 5     | .5       | 15.0 |  |
|                 |                |            |         |                    |             |          |            |             |           |                                              |       |             |          |              |              |       |            |           |      |            |        |        |       |         |        |         |     |        |       |      |                                          |        |         |     |       |           |          |      |  |
|                 | 3300N 4840E    | .95        | 23.90   | ) 11.06            | 43.1        | 55       | 33.2       | 9.0         | 744 2     | 2.20                                         | 5.0   | .9          | 1.9      | 7.2          | 50.2         | .10   | .93        | . 13      | 47   | . 42       | .084 4 | 40.1   | 30.1  | .54     | 145.3  | .073    | 1   | 1.24   | .021  | . 15 | .1 3.                                    | .2 .0  | )7 <.01 | 9   | <.1 < | .02 4     | .8       | 15.0 |  |
|                 | RE 3300N 4840E | .94        | 23.60   | 10.76              | 43.4        | 51       | 32.5       | 9.3         | 735 2     | 2.17                                         | 4.7   | .8          | 1.8      | 7.0          | 48.2         | .09   | .91        | .14       | 46   | . 40       | .086 4 | 40.2   | 30.2  | .53 1   | 144.9  | .069    | 1   | 1.22   | .018  | . 15 | .1 3.                                    | .1 .0  | )7 <.01 | 12  | .1 <  | .02 4     | .7       | 15.0 |  |
|                 | 3300N 4860E    | . 26       | 36.30   | 20.00              | 40.6        | 235      | 554.5      | 60.1        | 1183 3    | 3.14                                         | 3.6   | .3          | .3       | 3.2          | 32.6         | .09   | 1.20       | .14       | 35   | .35        | .034   | 16.0 2 | 261.6 | 3.92 1  | 118.8  | .046    | 10  | 1.38   | .014  | . 17 | .1 8.                                    | .3.0   | )6 <.01 | 23  | .1 <  | .02 4     | .2       | 15.0 |  |
|                 | 3300N 4880E    | . 48       | 13.8    | 5 9.52             | 44.2        | 23       | 64.3       | 9.8         | 660 2     | 2.24                                         | 2.9   | .7          | .2       | 5.8          | 37.0         | .09   | .40        | .12       | 41   | . 28       | .037 2 | 28.8   | 44.6  | .51 1   | 145.6  | .082    | 4   | 1.41   | .018  | . 23 | .1 3.                                    | .7 .0  | )8 <.01 | 12  | .1 <  | .02 4     | .8       | 15.0 |  |
|                 | 3300N 4900E    | . 38       | 14.6    | 5 7.50             | 43.5        | 22       | 20.1       | 6.7         | 347 3     | 1.88                                         | 2.5   | .8          | .9       | 6.5          | 52.1         | .07   | .16        | .10       | 41   | . 32       | .059 2 | 29.5   | 27.4  | .41     | 98.4   | .080    | 2   | .96    | .022  | . 18 | .1 2.                                    | .5 .0  | )8 <.01 | 7   | <.1 < | .02 4     | . 1      | 15.0 |  |
|                 |                |            |         |                    |             |          |            |             |           |                                              |       |             |          |              |              |       |            |           |      |            |        |        |       |         |        |         |     |        |       |      |                                          |        |         |     |       |           |          |      |  |
|                 | 3250N 4600E    | . 58       | 34.44   | 4 10.95            | 58.3        | 103      | 24.8       | 8.2         | 584 2     | 2.23                                         | 10.6  | .5          | 13.1     | 4.5          | 55.7         | . 17  | .60        | . 12      | 45   | .60        | .061 2 | 26.6   | 24.1  | .36     | 133.8  | .056    | 5   | 1.12   | .022  | . 22 | .1 3.                                    | .7.0   | )9 <.01 | 26  | .2 <  | .02 4     | .0       | 15.0 |  |
|                 | 3250N 4640E    | . 38       | 24.99   | 9 7.60             | 35.7        | 102      | 4.6        | 3.2         | 548       | .80                                          | 5.9   | .2          | 2.0      | . 1          | 53.4         | . 23  | . 25       | .09       | 21 1 | 1.13       | .078   | 3.2    | 5.1   | .11     | 91.4   | .023    | 4   | . 35   | .031  | .04  | <.1                                      | .8.0   | )2 .04  | 43  | .3 <  | .02 1     | .5       | 7.5  |  |
|                 | 3250N 4660E    | . 28       | 19.70   | 0 6.08             | 119.1       | 47       | 161.2      | 19.1        | 550       | 1.62                                         | 5.6   | .1          | 3.3      | .7           | 162.1        | .23   | .42        | .09       | 21   | .72        | .110   | 4.4 1  | .23.8 | .87 2   | 284.4  | .037    | 7   | .76    | .025  | . 12 | <.1 2.                                   | .7.0   | J7 .02  | 31  | .1 <  | .02 2     | .4       | 15.0 |  |
|                 | 3250N 4680E    | . 15       | 15.43   | 3 9.09             | 68.1        | 40       | 14.4       | 2.7         | 454       | .62                                          | 3.8   | .1          | .4       | .3           | 151.0        | . 17  | . 17       | .10       | 16 1 | 1.61       | . 133  | 2.3    | 10.1  | .13 2   | 272.7  | .037    | 14  | .41    | .029  | . 09 | <.1                                      | .8.0   | )2 .01  | 20  | .1    | .02 1     | .6       | 15.0 |  |
|                 | 3250N 4700E    | . 11       | 7.3     | 3 4.08             | 23.2        | 17       | 15.0       | 3.0         | 236       | . 69                                         | 1.6   | <.1         | .7       | .4           | 33.1         | .07   | . 10       | .08       | 16   | . 25       | . 096  | 2.3    | 12.8  | .12 2   | 215.8  | .036    | 2   | .42    | 026   | . 08 | <.1 1                                    | .0.0   | J3 .01  | 10  | .1 <  | .02 1     | .6       | 15.0 |  |
|                 |                |            |         |                    |             |          |            |             |           |                                              |       |             |          |              |              |       |            |           |      |            |        |        |       |         |        |         |     |        |       |      |                                          |        |         |     |       |           |          |      |  |
|                 | 3250N 4720F    | .35        | 18.9    | 3 7.78             | 45.7        | 52       | 140.2      | 17.4        | 610       | 1.76 1                                       | 15.9  | .1          | 1.0      | .7           | 54.0         | . 19  | . 45       | . 12      | 23   | . 59       | .086   | 4.4    | 92.1  | .54 2   | 245.2  | .035    | 6   | .62    | .025  | .09  | <.1 2                                    | .6.(   | J9 .02  | 46  | .2    | .03 2     | .1       | 15.0 |  |
|                 | 3250N 4780F    | 10         | 18 4    | 3 5 40             | 19.4        | 36       | 18.5       | 4.7         | 573       | .77                                          | 3.1   | .1          | .7       | .2           | 62.8         | . 15  | . 17       | .10       | 18   | . 63       | .084   | 2.8    | 12.4  | . 17 2  | 214.2  | .031    | 3   | .34    | .024  | .08  | <.1 1.                                   | .0.0   | J7 .02  | 34  | .2 <  | .02 1     | .3       | 15.0 |  |
|                 | 3250N 4800F    | . 15       | 15.1    | 1 8.72             | 33.5        | 32       | 22.0       | 5.3         | 735       | 1.07                                         | 5.4   | .1          | 1.6      | .8           | 67.0         | .20   | .28        | . 14      | 21   | .74        | .059   | 5.2    | 19.5  | .22 2   | 206.6  | .038    | 6   | .58    | .025  | . 14 | <.1 1                                    | .7.6   | J7 .02  | 51  | .2 <  | .02 2     | .0       | 15.0 |  |
|                 | 3250N 4820F    | 30         | 10.6    | 1 18 09            | 38.3        | 29       | 61.8       | 8.5         | 337       | .86                                          | 5.3   | .1          | .8       | .4           | 69.3         | . 25  | .49        | .17       | 17   | . 64       | .054   | 3.0    | 30.8  | . 29    | 155.2  | .032    | 4   | .34    | .032  | .07  | <.1 1.                                   | .2.0   | JA .04  | 82  | .3 <  | .02 1     | .4       | 15.0 |  |
|                 | 2250N 4840E    | 37         | 10.0    | 3 11 67            | 47.9        | 54       | 54 0       | 10 5        | 805       | 2 65                                         | 6.1   | 5           | 1.8      | 4.2          | 57.5         | . 15  | .47        | .16       | 40   | .55        | .040 3 | 21.5   | 47.1  | .44     | 279.8  | .088    | 10  | 2.29   | .023  | . 34 | .1 5.                                    | .0.1   | 11 <.01 | 32  | .2 <  | .02 6     | .8       | 15.0 |  |
|                 | 3230N 4040L    | .0/        | 17.0    | , 11.0/            | 47.5        | 04       | 04.0       | 10.0        | 000       | 2.00                                         | 0.1   |             |          |              |              |       |            |           |      |            |        |        |       |         |        |         |     |        |       |      |                                          |        |         |     |       |           |          |      |  |
|                 | 3250N 4860E    | 10         | 15 /    | 1 10 17            | <u>45</u> 5 | 70       | 29 1       | 8.0         | 529       | 1.96                                         | 3.1   | 1.0         | .2       | 5.5          | 50.9         | .06   | .17        | . 15      | 36   | . 26       | .037   | 28.1   | 27.6  | .31     | 213.4  | . 108   | 3   | 2.15   | .030  | . 13 | .1 3                                     | .3 .1  | 11 <.0] | 27  | .1 <  | .02 6     | .8       | 15.0 |  |
|                 | 3250N 4000E    | .42<br>A D | 11 4    | , 10.1/            | -5.5        | 53       | 17 5       | 17          | 477       | 1 31                                         | 9.5   | 2.0<br>4    | 107 6    | 2.9          | 44 1         | 20    | 18         | 13        | 26   | .34        | .100   | 11.9   | 15.4  | .20     | 182.4  | .071    | 3   | 1.32   | .025  | . 14 | <.1 1.                                   | . 8 .( | )7 <.0] | 37  | .2 <  | .02 4     | .4       | 15.0 |  |
|                 | 3250N 4000E    | .43        | 20.1    | ט.00 ט.00<br>קוד ק | 10.2        | 50<br>50 | 52 0       | 4.7         | 721       | 1 45                                         | 29    | <del></del> | 7        | 2.5          | 104 7        | 13    | . 10       | .12       | 30   | .62        | .072   | 16.5   | 19.5  | .57     | 193.9  | .059    | 6   | 1.29   | .027  | . 13 | <.1 2                                    | .3 .0  | 06 <.01 | 27  | .2 <  | .02 4     | .2       | 15.0 |  |
|                 | 3250N 4500E    | . 34       | 02 5    | , /.1/<br>11 01    | 47.0        | 200      | 36.5       | +.9<br>17 1 | 1110      | 1.70<br>2.27 ·                               | 18.3  | .0          | 15 A     | 1.6          | 45 A         | 28    | 1 70       | 16        | 35 1 | 1 25       | 048    | 11.3   | 23.3  | .40 4   | 447.4  | .038    | 5   | 1.37   | .023  | . 18 | .1 6                                     | .5 .1  | 18 <.01 | 43  | .3    | .04 3     | .6       | 15.0 |  |
|                 | 3200N 4600E    | 1.44       | · 92.5  | 5 11.91<br>5 1.53  | . //.1      | 200      | 30.0<br>34 | 27          | 207       | 61 S. J. | 10.0  | . 2         | 1.0      | 1.0          | 45 Q         | .20   | 18         | 07        | 16   | 72         | 053    | 1.9    | 3.9   | .11     | 81.0   | .030    | 6   | .24    | .027  | .08  | <.1                                      | .7 .0  | 02 .03  | 33  | .2 <  | .02 1     | .0       | 15.0 |  |
|                 | 3200N 4620E    | . 23       | 18.1    | 5 4.53             | i 3/.8      | 53       | ა.0        | ۷.۱         | 507       | .01                                          | 4.0   | . 1         | 1.0      | . 2          | -J.9         | . 17  | . 10       |           | 10   |            |        | 1.7    | 0.9   |         |        |         | v   |        |       |      |                                          |        |         |     | -     | -         |          |      |  |
|                 | CTANDADD DCC   | 10.04      | 147 0   | a ar (1            | 125 0       | 270      | 24.2       | 12 0        | 756       | 2 11 2 .                                     | 19 7  | 5 0         | 11 1     | 2.8          | 16 9         | 5 56  | 3 80       | 6 03      | 62   | 74         | 084    | 1291   | 85 5  | 68      | 133.8  | 101     | 17  | 2 02   | 034   | .14  | 4.8 3                                    | .6 0   | 99 .01  | 169 | 4.5   | .86 6     | .7       | 15.0 |  |
|                 | N LONGARD UNS  | 1 5 11/2   | . 14/ 5 | <u>, / , n/</u>    | 1.00 9      | /14      | 74.5       | 17.11       | 1.00 -    |                                              | 10.7  | J.7         | - mm . M | <u>د</u> . ن | 70.2         | 0.00  | J. J.      | ~ · · · · | ~L   |            |        |        |       |         |        | · * V * | ±,  |        |       |      |                                          |        |         |     |       | · · · · · |          | -    |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



Page 4

ACME ANALYTICA

| ACME ANALYTICAL |                |            |               |        |         |       |       |              |              |          |            |         |            |                |               |      |      |           |                |                  |               | _          |          |       |                |        |        |         |        |        |      | C- 7    | ·      | `amelo |  |
|-----------------|----------------|------------|---------------|--------|---------|-------|-------|--------------|--------------|----------|------------|---------|------------|----------------|---------------|------|------|-----------|----------------|------------------|---------------|------------|----------|-------|----------------|--------|--------|---------|--------|--------|------|---------|--------|--------|--|
|                 | SAMPLE#        | Mo         | Cu            | Pb     | Zn      | Ag    | Ni    | Со           | Mn           | Fe /     | As         | U A     | u Tř       | n Sr           | - Cd          | Sb   | Bi   | V (       | Ca             | P La             | Cr            | Mg         | Ba       | Ti    | B A1           | Na     | K      | W SC    | : 11   | 2      | нg   | se      | e ud s | Sampre |  |
|                 | 0/11/220       | ກດຫ        | ກດຫ           | DDM    | DDM     | daa   | DDM   | ppm          | ppm          | χ pr     | om pp      | m pp    | b ppr      | n ppr          | n ppm         | ppm  | ppm  | ppm       | x              | % ppm            | ppm           | 8          | ppm      | X t   | ppm %          | ž      | ãр     | pm ppm  | і ррт  | ×      | ppp  | obu bt  | ла рра | gill   |  |
|                 |                | - ppm      | pp            |        | pp      |       |       |              |              |          |            |         |            |                |               |      |      |           |                |                  |               |            |          |       |                |        |        |         |        |        |      |         |        |        |  |
|                 | 0.1            | 1 5 1      | 2 77          | 2 12   | 15.9    | 14    | 4.8   | 43           | 579 2        | 09       | .2 1.      | 7 <     | 2 3.8      | 85.3           | 3 <.01        | .02  | .10  | 43 .5     | 55 .07         | 4 8.0            | 16.3          | .56 2      | 230.5 .1 | 121   | 2 1.02         | .093   | .48 2  | .2 2.3  | 3 .32  | <.01   | <5 · | <.1 <.( | 2 4.9  | 15     |  |
|                 | G-1            | 1.51       | 2.77          | 10 52  | 10.0    | 310   | 19.0  | 7.9          | 442.2        | 07 14    | 3          | 4 29.   | 5 3,4      | 197.8          | 3.15          | .77  | .11  | 38 2.2    | 28 .08         | 5 24.0           | 19.0          | .44 1      | 129.0.(  | 041   | 5 1.08         | .024   | .21    | .1 3.9  | .08    | .01    | 30   | .3 .(   | 3 3.5  | 15     |  |
|                 | 3200N 4640E    | . 69       | 37.54         | 10.52  | 40.0    | 100   | 19.0  | 20.0         | 720 /        | 19 55    | .o .<br>0  | 6 4     | 8 2 3      | 2 38 5         | 534           | 1.59 | .22  | 43 .5     | 55 .03         | 6 12.3           | 27.0          | .33 1      | 190.6.0  | 048   | 1 2.25         | .021   | .06    | .2 6.8  | .11    | .01    | 43   | .4 .(   | 12 5.6 | 15     |  |
|                 | 3200N 4680E    | 1.52       | 42.72         | 15.6/  | 80.2    | 109   | 30.0  | 20.0<br>17 E | 510 2        | 07 26    |            | 3 1     | 9 2 4      | 3 44 8         | 3 11          | 2.52 | 19   | 42 .      | 51 .02         | 8 13.4           | 64.3          | .57 2      | 243.1 .( | 051   | 4 2.24         | .021   | . 15   | .3 8.6  | 5.11   | <.01   | 25   | .3.0    | 3 5.7  | 15     |  |
|                 | 3200N 4700E    | .9/        | 35.73         | 13.86  | 54.8    | 44    | 105.7 | 17.5         | 510 5.       | C1 21    | ./ .       | 1 /     | 7 1        | 5 62 6         | 5 12          | 1 56 | 08   | 23        | 64 02          | 3 4 9            | 160.8         | 1.16 1     | 192.0 .0 | 026   | 3.94           | .021   | .07 <  | .1 5.6  | 5 .06  | .02    | 35   | .3 .0   | 2 2.4  | 15     |  |
|                 | 3200N 4720E    | . 69       | 32.85         | 8.94   | 29.9    | 152   | 198.2 | 29.8         | 665 Z.       | 51 21    | .4 .       | 1 4     | /          | 5 02.0         | .12           | 1.50 | .00  | 20        | 01.02          |                  |               |            |          |       |                |        |        |         |        |        |      |         |        |        |  |
|                 |                |            |               |        |         |       |       |              |              |          |            |         |            |                | - 10          | 50   | 10   | <u>.</u>  | 26 03          | 0 26             | 146 2         | 1 20 1     | 196 5 (  | 034   | 5 95           | 028    | 14 <   | 1 4.2   | 2.09   | .01    | 34   | .2 <.0  | 2 2.6  | 15     |  |
|                 | 3200N 4740E    | . 29       | 14.59         | 6.87   | 22.7    | 29    | 262.7 | 34.7         | 727 2.       | 02 9     | .7 .       | 1       | .2 .3      | 5 37.6         | 5 .10         | .59  | . 12 | 23        | 50.03          | 0 3.0            | 140.2         | 2.04 3     | 140.0 /  | 0.04  | 6 1 59         | 024    | 16 <   | 1 60    | 3 13   | 01     | 35   | 3 < (   | 2 3.8  | 15     |  |
|                 | 3200N 4760E    | . 19       | 19.14         | 5.86   | 26.7    | 61    | 538.6 | 59.5         | 730 2.       | 90 5     | .4 .       | 1 2     | .1 .1      | 8 46.6         | 5.12          | . 64 | .09  | 2/ .      | 58 .02         | 3 4.6            | 283.3         | 3.04 2     | 149.9 .0 | 0.00  | 0 1.J0<br>E 71 | .024   | 12     | 1 3 6   | 2 07   | 01     | 41   | 2 1     | 12 2 1 | 15     |  |
|                 | 3200N 4780E    | . 30       | 32.39         | 5.84   | 26.0    | 57    | 118.6 | 20.0         | 1180 1.      | 97 8     | .8.        | 1 1     | .4 .1      | 8 66.0         | ) .14         | . 39 | . 10 | 24 .1     | 85 .03         | 2 6.8            | 81.2          | .82 .      | 312.2 .1 | 028   | 5 ./1          | .023   | .13 ~  | 1 7 1   | , .o,  | < 01   | 37   | . 2 < 1 | 12 7 8 | 15     |  |
|                 | 3200N 4800E    | .43        | 30.07         | 9.46   | 34.3    | 92    | 89.4  | 16.4         | 463 3.       | 28 4     | .0.        | 7 <     | .2 3.      | 1 47.8         | 3.09          | .70  | . 16 | 45 .·     | 46 .02         | 1 14.5           | 53.3          | .61 2      | 295.6 .1 | 092   | 3 2.88         | .028   | .13    | .1 /.1  | 2 .11  | ~ 01   | 20   | 1 < 1   | 12 5 0 | 15     |  |
|                 | 3200N 4820E    | . 30       | 14.49         | 8.89   | 44.8    | 37    | 104.7 | 22.4         | 588 2.       | 29 3     | .1 .       | 4       | 4 5.       | 0 41.3         | 3.10          | . 22 | . 12 | 36 .      | 27 .03         | 88 26.5          | 69.9          | .77 :      | 138.8 .4 | 0/2   | 3 1.52         | .023   | . 22 《 | 1 4.2   | 2 .09  | <.UI   | 20   | .1 ~    | JZ J.0 | 15     |  |
|                 |                |            |               |        |         |       |       |              |              |          |            |         |            |                |               |      |      |           |                |                  |               |            |          |       |                |        |        |         |        |        | ~1   |         |        | 10     |  |
|                 | 3200N 4840F    | 27         | 11.17         | 7.78   | 36.6    | 49    | 111.3 | 14.8         | 395 1.       | .99 1    | .8.        | 6       | .3 4.      | 7 44.          | 5.08          | . 19 | . 12 | 31 .      | 23 .03         | 30 23.4          | 60.3          | .67        | 143.7 .  | 089   | 3 1.74         | .025   | .14    | .1 3.3  | 3 .08  | <.01   | 21   | .1 <.1  | JZ 5.3 | 15     |  |
|                 | 2200N 4860E    | 42         | 10 76         | 8 63   | 42.0    | 30    | 51.7  | 13.0         | 489 1.       | .86 1    | .9 .       | 7 <     | .2 5.      | 0 56.4         | 6 .06         | . 16 | . 13 | 33.       | 24 .03         | 88 28.0          | 39.8          | .41        | 181.4 .  | 090   | 4 1.82         | .027   | .14 <  | 4.1 3.4 | 4.08   | <.01   | 15   | .2 <.1  | 12 5.9 | 15     |  |
|                 | 3200N 4000E    | .46        | 17 34         | 10 01  | 52 7    | 85    | 14.2  | 7.0          | 563 1.       | .86 2    | .7 .       | 9       | .4 5.      | 6 114.3        | 2.17          | . 15 | .13  | 38 .      | 45 .06         | 53 38.3          | 21.7          | .31        | 200.8 .  | 082   | 3 1.72         | .027   | .20 <  | <.1 3.4 | 4.10   | <.01   | 15   | .2 <.   | 02 5.6 | 15     |  |
|                 | 3200N 4000E    | .40        | 0.90          | 7 07   | 13.3    | 56    | 26.1  | 7.0          | 619 1        | 57 2     | 9          | 6       | .2 4.      | 1 60.3         | 2.05          | . 13 | .12  | 30.       | 29 .03         | 37 23.8          | 27.5          | .28        | 144.9 .  | 074   | 2 1.41         | .018   | . 15   | .1 2.3  | 7.08   | <.01   | 16   | .2 <.   | 02 4.7 | 15     |  |
|                 | 3200N 4900E    | .00        | 9.00<br>00 00 | 6.00   | E0 0    | 106   | 15.0  | 7.8          | 560 1        | 70 13    | 6          | 2 3     | 7 1.       | 3 51.0         | 8.19          | .66  | .09  | 26 .      | 79.03          | 38 10.8          | 12.6          | . 19       | 115.9.   | 036   | 4.64           | .024   | .10 •  | <.1 2.8 | 8.06   | .01    | 30   | .2 <.   | 02 2.2 | 15     |  |
|                 | 3150N 4600E    | .80        | 20.00         | 0.23   | 30.0    | 100   | 10.0  | 7.0          | 500 1        | . / 0 10 |            |         |            |                |               |      |      |           |                |                  |               |            |          |       |                |        |        |         |        |        |      |         |        |        |  |
|                 |                |            |               | 0.71   | 45.0    | 111   | 10.0  | 6.2          | 402 1        | E0 7     | 1 2        | 1 1     | 83         | 0 301 .        | 4 17          | 42   | 09   | 41 1.     | 28 .07         | 79 36.6          | 26.3          | .41        | 100.5 .  | 058   | 5.89           | .037   | .11 •  | <.1 2.3 | 2.07   | .06    | 42   | .8.     | 04 3.5 | 15     |  |
|                 | 3150N 4620E    | . 64       | 22.31         | 8./1   | 45.0    | 111   | 10.2  | 10.0         | 403 1        | , DC /   | .1 0       | 1 1     | 1          | 3 76           | a 22          | 37   | 13   | 16        | 79 . Of        | 57 4.0           | 65.7          | 1.08       | 110.7 .  | 030   | 9.36           | 5.027  | .07 •  | <.1 1.  | 5.02   | .05    | 45   | .3 <.   | 02 1.2 | 15     |  |
|                 | 3150N 4640E    | .25        | 17.32         | 10.45  | 55.8    | 65    | 1//.8 | 10.3         | 551          |          | . /        | 1 1     | · · ·      | 0 E2           | 2 10          | 78   | 10   | 20        | 51 01          | 31 5 5           | 170 9         | 3 47       | 139.4    | 033   | 15 .58         | .020   | .09    | .1 3.3  | 3 .04  | .03    | 59   | .3 .    | 02 1.8 | 15     |  |
|                 | 3150N 4660E    | . 19       | 11.94         | 12.61  | 29.9    | 32    | 3/2.4 | 37.2         | 554 1        | ./1 5    |            | 1 1     | . Z .      | 0 00.<br>E 07  | 2 .19<br>0 23 | 95   | 15   | 21 1      | 43 N           | 59 6 5           | 17 7          | 24         | 130.6    | 029   | 11 .67         | .021   | .12 ·  | <.1 3.4 | 4 .07  | .04    | 65   | .4 .    | 02 1.9 | 15     |  |
|                 | 3150N 4680E    | .51        | 38.98         | 10.42  | 33.3    | 113   | 22.0  | 11.5         | 884 1        | .48 2/   | .5         | .1 1    | . 0.       | 5 0/.<br>5 00  | 0.23          | .00  | 10   | 21 1.     | E0 04          | 50 6.5<br>52 6 7 | 10.0          | 23         | 136.6    | 030   | 11 7           | 022    | 12     | < 1 3.  | 6.07   | .05    | 63   | .4 .    | 04 2.0 | 15     |  |
|                 | RE 3150N 4680E | .51        | 40.87         | 10.75  | 35.4    | 117   | 23.7  | 11.9         | 916 1        | .53 28   | 5.4        | .1 2    | .9.        | 5 90.          | 3.24          | .90  | . 15 | 22 1.     | . JU . U       | 55 0.7           | 10.0          | .20        | 100.0 .  |       |                |        |        |         |        |        |      |         |        |        |  |
|                 |                |            |               |        |         |       |       |              |              |          |            |         |            |                |               |      | 16   | 00.1      | 05 0           |                  | 07.0          | 20         | 122.0    | 0.26  | 9 Q/           | 1 024  | 09     | 2 6     | 5 13   | 04     | 37   | .4 .    | 05 2.6 | 15     |  |
|                 | 3150N 4700E    | 1.39       | 79.21         | 14.74  | 56.7    | 265   | 46.9  | 23.7         | 1322 3       | .00 55   | 5.8        | .1 5    | .4 .       | 8 48.          | 2 .3/         | 3.83 | . 16 | 39 I.     | .05 .0         | 52 IU.5          | 2/.0          | . 29       | 123.7 .  | 020   | 0.25           | 7 017  | 20     | 2 9     | 5 10   | 02     | 40   | 3 <     | 02 6.2 | 15     |  |
|                 | 3150N 4720E    | 1.46       | 64.04         | 88.06  | 194.6   | 1771  | 824.7 | 58.7         | 1212 4       | .81 75   | 5.7        | .2 114  | .5 1.      | 3 80.          | 1 .55         | 4.91 | .1/  | 4/ 1.     | .03 .0         | 29 12.0          | 010 6         | 2.44       | 107.0    | 0.004 | 17 0           | 020    | 11     | -16     | 5 05   | 03     | 22   | 2 <     | 02 2 4 | 15     |  |
|                 | 3150N 4740E    | . 35       | 14.08         | 6.48   | 27.8    | 113   | 775.0 | 72.3         | 913 2        | .98 9    | 9.9        | .2 1    | .1 1.      | 1 27.          | 6 .09         | 1.05 | .07  | 22 .      | .26 .0         | 20 6.0           | 313.6         | 5.14       | 13/.8 .  | .035  | 1/ .9.         | 1 .020 | .11    | ~.1 0.  | 2 .00  | .00    | 19   | 2 4     | 02 3 2 | 15     |  |
|                 | 3150N 4760E    | . 22       | 17.51         | 4.83   | 27.6    | 68    | 682.5 | 83.9         | 750 2        | .97 5    | 5.1        | .2 1    | .9 1.      | 8 24.          | 6 .07         | 1.00 | .06  | 31 .      | .25 .0         | 24 10.0          | 299.5         | 4.05       | 181.1 .  | .040  | 11 1.1.        | 1.025  | .10    | .1 /.   | 0 .09  | .02    | 10   | . 2 ~.  | 02 3.2 | 15     |  |
|                 | 3150N 4780E    | . 24       | 10.99         | 7.34   | 32.4    | 34    | 273.2 | 40.7         | 611 2        | .48 2    | 2.4        | .3 2    | .6 2.      | 8 26.          | 2 .07         | .36  | .09  | 32 .      | . 19 . 0       | 32 15.1          | 154.7         | 1.72       | 114.7 .  | . 059 | 5 1.1          | 2 .024 | .1/    | <.1 4.  | 9 .07  | .02    | 10   | .1 ~.   | 02 3.5 | 15     |  |
|                 |                |            |               |        |         |       |       |              |              |          |            |         |            |                |               |      |      |           |                |                  |               |            |          |       |                |        |        |         |        |        | 15   |         |        | 15     |  |
|                 | 3150N 4800E    | .30        | 14.41         | 9.52   | 43.8    | 52    | 169.7 | 27.3         | 650 2        | .65 2    | 2.2        | .5      | .3 4.      | 7 39.          | 5.09          | . 23 | .11  | 37.       | .24 .0         | 35 23.5          | 5 127.1       | 1.03       | 138.3 .  | .078  | 5 1.5          | 5 .024 | . 23   | <.1 4.  | 9.10   | .01    | 15   | .1 <.   | 02 4.9 | 15     |  |
|                 | 3150N 4820F    | .22        | 28.29         | 5.94   | 45.0    | 92    | 182.3 | 40.8         | 1046 2       | .84 3    | 3.6        | .2      | .5 2.      | 5 55.          | 0.09          | . 28 | .09  | 31 .      | .52 .0         | 42 13.4          | 165.3         | 1.44       | 368.4 .  | .056  | 7 1.3          | 1 .019 | . 26   | <.1 6.  | 2 .09  | .01    | 1/   | .2 <.   | 02 3.8 | 15     |  |
|                 | 3150N 4840E    | 59         | 17 72         | 9.61   | 47.6    | 51    | 15.0  | 6.6          | 544 1        | .77 4    | 1.4        | .8 1    | .6 6.      | 4 70.          | 4.17          | .21  | .11  | 41 .      | .40 .0         | 69 40.1          | 1 22.0        | . 32       | 143.7 .  | .076  | 4 1.2          | 0.023  | .23    | .1 2.   | 8 .08  | .01    | 17   | .1 <.   | 02 4.4 | 15     |  |
|                 | 2150N 4960E    | .05        | 13.58         | 9.08   | 42.6    | 53    | 13.1  | 6.1          | 420 1        | .78 5    | 5.0        | .8 1    | .0 5.      | 7 90.          | 5.11          | . 19 | .11  | 45 .      | .39 .0         | 64 32.9          | 21.4          | . 28       | 140.8 .  | . 084 | 3 1.3          | 8 .024 | . 11   | <.1 2.  | 6 .07  | <.01   | 11   | .2 <.   | 02 4.5 | 15     |  |
|                 | 3150N 4000L    |            | 15.50         | 7 7    | 3 50 5  | 51    | 10.9  | 5.2          | 526 1        | 39 3     | 3.6        | .7 <    | .2 3.      | 1 66.          | 8 .13         | .11  | . 11 | 29 .      | .29 .1         | 09 21.5          | 5 13.7        | .21        | 150.3 .  | .066  | 3 1.4          | 2 .023 | .09    | .1 2.   | 3 .06  | 5 <.01 | 13   | .1 <.   | 02 4.3 | 15     |  |
|                 | 3150N 4000E    | . 92       | 10.0          | , ,.,, | ,       |       |       | 0.12         |              |          |            |         |            |                |               |      |      |           |                |                  |               |            |          |       |                |        |        |         |        |        |      |         |        |        |  |
|                 | 01501 40005    | <i>c</i> 1 | 17 0          | 1 7 2  | 2 57 1  | Q 1   | 10 2  | 5.0          | <u>179</u> 1 | 38       | 5.0        | .7      | .6 3       | 1 59.          | 5 .25         | .12  | . 11 | 31        | .30 .1         | 08 20.8          | 3 13.8        | .21        | 140.8 .  | .069  | 3 1.3          | 0.020  | .12    | <.1 2.  | 1 .06  | .01    | 13   | .2 .    | 02 4.1 | 15     |  |
|                 | 3150N 4900E    | .62        | 1/.20         | 1 /.3  | 5 5/.1  | . 01  | 10.3  | 0.0<br>E 0   | 270 1        | 60 4     | 17 0       | <br>2 1 | 2 1        | 3 319          | 4 .20         | .23  | .09  | 43 1      | .36 .0         | 87 35.5          | 5 22.5        | .39        | 91.0 .   | .068  | 8.8            | 4 .053 | . 14   | .1 2.   | 0.06   | 5.04   | 28   | .6.     | 02 3.6 | 15     |  |
|                 | 3100N 4600E    | . 60       | 19.4          | 8.90   | J 40.2  | . 104 | 12.0  | 5.8          | 3/0 1        | · 00 ·   | 4.7 Z      | 1 /     | . L -+.    | 2 61           | 6 21          | 28   | 07   | 19.1      | 39 0           | 57 3 6           | 6 <u>9</u> .7 | .13        | 78.6     | .026  | 6.3            | 8.027  | .05    | <.1 1.  | 7 .03  | .05    | 61   | .4 <.   | 02 1.2 | 15     |  |
|                 | 3100N 4620E    | . 30       | 36.0          | 5.8    | / 28.8  | 5 134 | 8.1   | 4.6          | 404 1        |          | 0.U<br>7 7 | .1 4    | но .<br>Эл | . L UI.        | .u .z.        | 20   | .0,  | 21 1      | 35 .0          | 69 4 9           | a 12 n        | 16         | 186.3    | .030  | 8.5            | 2 .023 | .12    | <.1 2.  | 5.06   | 5.04   | 27   | .4 .    | 02 1.5 | 15     |  |
|                 | 3100N 4640E    | .57        | 44.1          | 5.14   | 4 34.9  | 74    | 11.6  | /.3          | /85 1        | 36 1     | L.I        | .1 4    |            | .ບ /ຽ.<br>ສຸດຄ | .u .24        | 44   | .00  | 25        | .00.00<br>AQ A | 26 11 9          | 2 22 N        | 33         | 163 1    | 055   | 419            | 1 .021 | .17    | .1 5.   | 7 .14  | 1.03   | 37   | .2      | 05 4.9 | 15     |  |
|                 | 3100N 4660E    | 3.47       | 41.2          | 3 20.0 | 54.8    | 3 122 | 33.4  | 15.2         | 1389 2       | 2.79 10  | b.6        | .3      | .2 1       | ./ 30.         | .s .st        | 1.41 | . 25 | 35        | .40 .0         | 20 11.0          | J 20.0        | .00        | 100.1    |       | 1 1.7          |        |        |         |        |        | -    |         |        |        |  |
|                 |                |            |               |        |         |       |       |              |              |          |            |         |            |                |               |      | 6 AF | <i>co</i> | ~ 4 ~ ~        | o. 10 -          | 7 100 6       | <b>C</b> 0 | 100 0    | 007   | 17 2 0         | 7 022  | 13     | 512     | 6 1 0  | R 01   | 184  | 47      | 88 6 8 | 15     |  |
|                 | STANDARD DS5   | 13.26      | 143.4         | 25.1   | 5 138.2 | 2 290 | 24.7  | 12.3         | 783 3        | 8.01 1   | 7.7 6      | .2 44   | 1.4 2      | .9 48.         | .9 5.69       | 3.99 | 6.37 | 62        | ./4 .0         | 84 12            | / 188.6       | . 68       | 133.0    | .09/  | 1/ 2.0         | 1.005  | . 13   | J.I J.  | 0 1.00 |        | 104  |         |        |        |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA



Page 5



|                            |              |        |                  | 7.      |          | NE        |         | He E               |                |       | A., -      | Th            | Sr Co           | i Sh           | Ri   | v    | Са                  | PI              | a Cr    | ~ Ma              | Ba      | Ti    | В          | A1 Na    | K      | W    | Sc         | T1           | S H             | ig Sé       | e Te            | Ga Sar | nple |  |
|----------------------------|--------------|--------|------------------|---------|----------|-----------|---------|--------------------|----------------|-------|------------|---------------|-----------------|----------------|------|------|---------------------|-----------------|---------|-------------------|---------|-------|------------|----------|--------|------|------------|--------------|-----------------|-------------|-----------------|--------|------|--|
| SAMPLE#                    | MO           | Cu     | PD               | Zn      | Ag       | NI<br>DOT | 00      | 1111 Ft            | : AS<br>1 DOM  | ກກຫຼະ | nh ni      | ייי<br>מ וווי |                 | เกกส           | וסמ  | ກາສາ | ž                   | <br>≵ pp        | m DDM   | n X               | DDM     | ž     | ppm        | 8 8      | x      | ppm  | ppm t      | opm          | % pp            | b ppr       | n ppm           | ppm    | gm   |  |
| <br>                       | рри          | - ppil | рря              | ppii    | phn      | - ppin    | P       |                    |                |       | po pi      |               |                 |                |      |      | -                   |                 |         |                   |         |       |            |          |        |      |            |              |                 |             |                 |        |      |  |
| C 1                        | 1 55         | 3.04   | 2 25             | 48.3    | 12       | 64        | 4 4 5   | 76 2.09            | 9.4            | 1.8 < | .2 4       | 0 84          | .1 .0           | .03            | . 10 | 44 . | .54 .0              | 74 8.           | 0 17.8  | 3.57              | 241.3   | . 139 | <1 .       | 92 .093  | .47    | 2.1  | 2.2        | 32 .0        | 03 <            | 5 <.2       | 1 <.02          | 5.0    | 15   |  |
| 3100N 4690E                | 1.30         | 58.26  | 80.57            | 124 8 3 | 2707     | 5222      | 9.8.12  | 78 3 58            | 3 62.6         | .6 42 | .9 2       | 2 38          | .5 .52          | 2 3.37         | . 20 | 38   | .64 .0              | 31 14.          | 9 31.1  | .40               | 188.7   | .061  | 12.        | 13 .023  | .10    | .2   | 6.9        | 20 .0        | 06 10           | 0.4         | 4 .02           | 5.3    | 15   |  |
| 3100N 4700E                | 4.52         | 28 41  | 6 76             | 32.4    | 66       | 33.3 1    | 1.3 5   | 24 1.13            | 3 17.6         | .1    | .8         | 2 45          | .6 .15          | 5.77           | . 10 | 20   | .74 .0              | 31 2.           | 4 13.5  | 5.15              | 77.8    | .030  | 2.         | 30 .026  | .04    | <.1  | 1.9        | . 09         | 07 2            | 15 .3       | 3 <.02          | 1.1    | 15   |  |
| 3100N 4720E                | 45           | 21.34  | 11 29            | 50.8    | 70       | 62.2 1    | 0.0 9   | 42 2.45            | 5 19.5         | .1 2  | .5 1       | 0 48          | .0 .14          | 1.57           | . 10 | 25   | .49 .0              | 56 8.           | 9 22.4  | 1.38              | 156.2   | .025  | 61.        | 29 .018  | . 25   | .1   | 3.2        | 16 .0        | 04 2            | 4.3         | 2 <.02          | 3.2    | 15   |  |
| 3100N 4720E                | 21           | 19 42  | 5.96             | 27 4    | 78.5     | 54.4 8    | 4.2 8   | 96 3.5             | 2 8.3          | .2 3  | .6 1       | 3 31          |                 | 8 1.00         | .09  | 27   | .35 .0              | 23 7.           | 5 348.4 | 4.99              | 145.7   | .040  | 22 .       | 92 .020  | .14    | .1   | 6.9        | . 06         | 06 2            | 3.3         | 3 <.02          | 2.6    | 15   |  |
| SIBM WICE                  |              |        |                  |         |          |           |         |                    |                |       |            |               |                 |                |      |      |                     |                 |         |                   |         |       |            |          |        |      |            |              |                 |             |                 |        |      |  |
| 3100N 4760E                | .15          | 20.77  | 2.24             | 19.1    | 51 8     | 29.5 15   | 0.3 14  | 07 4.3             | 1 12.0         | .2    | .4         | 9 14          | .9 .08          | 3 1.47         | .04  | 20   | .14 .0              | 18 5.           | 0 525.5 | 5 12.81           | 101.9   | .020  | 68.        | 57 .012  | .06    | .2   | 6.7        | .04 .0       | 04 1            | .5 .3       | 2 <.02          | 1.7    | 15   |  |
| 3100N 4780E                | . 19         | 29.49  | 4.59             | 23.6    | 45 5     | 68.4 5    | 6.4 5   | 11 2.80            | 3.5            | .2    | .4 2       | 4 33          | 3.3 .08         | .66            | .08  | 27   | .29.0               | 20 12.          | 1 253.2 | 2 4.40            | 91.6    | .047  | 17 1.      | 14 .015  | .14    | .1   | 7.8        | . 06         | 02 1            | .3 .3       | 3 <.02          | 3.0    | 15   |  |
| 3100N 4800E                | . 20         | 18.88  | 5.14             | 28.2    | 574      | 49.9 5    | 0.3 5   | 21 2.4             | 9 2.5          | .3 1  | 1 2        | .9 33         | 8.7 .04         | 5.46           | .08  | 26   | .26 .0              | 25 14.          | 6 199.4 | 4 3.12            | 123.2   | .055  | 11 1.      | 26 .023  | . 15   | <.1  | 5.9        | .06 .1       | 01 1            | .7 .1       | 2 <.02          | 3.5    | 15   |  |
| 3100N 4820E                | .52          | 15.77  | 10.36            | 40.7    | 41       | 27.0      | 8.3 5   | 04 1.9             | 4 3.0          | .8    | .8 5       | .9 42         | 2.3 .0          | 7.26           | .13  | 41   | .26 .0              | 34 33.          | 5 27.0  | .37               | 164.7   | .087  | 31.        | 55 .021  | . 14   | .1   | 3.5        | . 09 . 1     | 01 2            | 23 .:       | 2 <.02          | 5.1    | 15   |  |
| 3100N 4840E                | .51          | 28.54  | 8.91             | 46.4    | 52       | 21.2      | 7.7 6   | 27 1.9             | 9 3.6          | .7 2  | 2.9 5      | .8 59         | 9.4 .1          | 7.30           | . 13 | 41   | .38 .0              | 52 34.          | 6 19.8  | 3.35              | 186.2   | .075  | 31.        | 50 .020  | . 22   | .1   | 3.9        | .09 <.1      | 01 1            | . 8         | 1 <.02          | 4.6    | 15   |  |
|                            |              |        |                  |         |          |           |         |                    |                |       |            |               |                 |                |      |      |                     |                 |         |                   |         |       |            |          |        |      |            |              |                 |             |                 |        |      |  |
| 3100N 4860E                | .52          | 30.46  | 9.59             | 71.8    | 94       | 15.0      | 7.4 9   | 76 1.8             | 5.4            | .9 1  | .2 4       | .0 47         | 7.8.3           | 7.27           | .14  | 42   | .48 .0              | 71 31.          | 6 16.0  | .25               | 217.3   | .081  | 21.        | 68 .025  | .11    | .1   | 3.5        | . 08 .       | 02 2            | 26          | 2.04            | 5.0    | 15   |  |
| 3100N 4880E                | .54          | 21.51  | 10.00            | 58.6    | 92       | 13.3      | 6.6 6   | 640 1.74           | 4 4.9          | 1.0   | .7 2       | .2 77         | .0.6            | 3.23           | . 15 | 39   | .62 .0              | 94 32.          | 3 16.5  | 5.26              | 249.7   | .077  | 31.        | 93 .024  | . 15   | .1   | 2.7        | .07 .        | 04 2            |             | 2.02            | 5./    | 15   |  |
| 3100N 4900E                | . 55         | 19.28  | 7.83             | 41.8    | 62       | 10.1      | 4.9 5   | 646 1.3            | 4 4.2          | .7    | .7 1       | .7 62         | 2.6 .2          | 3.16           | .13  | 29   | .48 .0              | 195 23.         | 0 13.0  | 0.22              | 186.4   | .063  | <1 1.      | 35 .022  | .13    | <.1  | 2.1        | .07 .        | 02 1            |             | 3.02            | 4.0    | 15   |  |
| 3050N 4600E                | . 12         | 6.97   | 2.52             | 12.3    | 30       | 29.8      | 4.6 1   | .52 .6             | 4 2.4          | .1 <  | <.2        | .4 66         | 5.8 .0          | 3.10           | .08  | 11   | .30.0               | )44 2.          | 6 15.0  | 0.18              | 80.1    | .033  | 2.         | 66 .030  | .07    | <.1  | .9         | .02 .        | 01 1            | . 18        | 1 .02           | 1.9    | 15   |  |
| 3050N 4620E                | .13          | 6.95   | 2.69             | 13.8    | 22       | 2.5       | 1.6 1   | . 120              | 4 2.1          | <.1   | .5         | .2 28         | 3.2 .1          | 1.10           | .05  | 15   | .40 .0              | )26 1.          | 4 3.4   | 4.08              | 34.4    | .031  | 3.         | 20 .030  | .05    | <.1  | .5 <       | .02 .        | 02 3            | 36.         | 1 <.02          | 1.0    | 15   |  |
|                            |              |        |                  |         |          |           |         |                    |                |       |            |               |                 |                |      |      |                     |                 |         |                   |         |       |            |          |        |      |            |              | 10 01           |             | 0 10            | 1.0    | 15   |  |
| 3050N 4660E                | 1.03         | 112.15 | 11.13            | 177.7   | 457 1    | 60.9 2    | 26.0 25 | 513 1.3            | 1 32.5         | .2 3  | 3.9        | .2 460        | ).1 .9          | 4 1.73         | . 23 | 14 7 | .62 .2              | 215 4.          | 9 50.2  | 2.49              | 619.3   | .012  | 41 .       | 52 .013  | .13    | .1   | 2.5        | .08 .        | 12 21           | LL .:       | 9.10<br>C 04    | 1.3    | 15   |  |
| 3050N 4680E                | . 65         | 20.17  | 10.02            | 37.3    | 103      | 22.9      | 5.6 5   | 598 .7             | 8 7.8          | .1 1  | .8         | .2 113        | 3.2 .4          | 2.44           | . 19 | 16 1 | .66 .0              | )52 3.          | 1 13.5  | 5.20              | ) 154./ | .02/  | 14 .       | 33 .023  | 5.09   | <.1  | 1.2        | .05 .        | 00 0            | 54 .:<br>50 | 5 .04<br>2 ~ 02 | 1.1    | 15   |  |
| RE 3050N 4720E             | . 34         | 14.16  | 6.22             | 20.3    | 36 1     | 93.5 2    | 23.2 4  | 194 1.4            | 9 10.9         | .1 1  | l.8        | .5 37         | 7.6 .1          | 0.97           | .07  | 21   | .52 .0              | )23 4.          | .7 79.6 | 6 1.25            | 81.4    | .025  | 5.         | 44 .023  | 5 .10  | <.1  | 2.5<br>E 0 | 10 .         | 02 2<br>04 E    |             | 2 .02           | 3.6    | 15   |  |
| 3050N 4700E                | .77          | 45.07  | 13.01            | 55.8    | 94 ]     | .96.4 2   | 22.7 11 | 183 2.8            | 8 19.4         | .1 1  | 1.5 1      | .0 88         | 3.3.2           | 4 1.58         | .17  | 26 1 | .05.0               | )41 10.         | .0 /6.0 | 0.81              | 23/.4   | .02/  | о I.<br>7  | 44 .010  | .24    | <.1  | 5.0<br>2.7 | . 10 .<br>nc | 04 3            |             | 2 ~ 02          | 1.4    | 15   |  |
| 3050N 4720E                | . 34         | 14.46  | 6.04             | 21.3    | 36 1     | .95.5 2   | 23.8 5  | 515 1.5            | 5 10.8         | .1 :  | 1.9        | .5 39         | 9.4 .1          | 2.95           | .08  | 22   | .54 .(              | )23 4.          | .5 /9.2 | 2 1.29            | 80.0    | .025  | 1.         | 43 .023  | 5 . 10 | <.1  | 2.1        | .00 .        | 05 2            |             | 202             | 1.4    | 15   |  |
|                            |              |        |                  |         |          |           |         |                    |                |       |            |               |                 |                | 0.0  | 47   | <i>с</i> <b>л</b> ( | 122 0           | 0.000   | 2 2 07            | , 00 2  | 0.11  | 15 1       | 00 01/   | 1 19   | < 1  | 6.6        | 15           | 02 3            | 88          | 1 02            | 27     | 15   |  |
| 3050N 4740E                | .70          | 29.26  | 7.18             | 49.0    | 172 6    | 72.3 (    | 8.1 12  | 200 3.9            | 0 42.8         | .1 1. | .5 1       | .0 31         | 1./ .1          | 3 3.44         | .08  | 4/   | .04 .0              | 100 9.<br>100 7 | 0 212   | 2 3.07<br>1 0.0F  | . 01 A  | .011  | 10 1.      | 50 014   | . 15   | < 1  | 5.6        | 04 <         | 01 1            | , 50<br>18  | 2 < 02          | 1 7    | 15   |  |
| 3050N 4760E                | . 17         | 19.50  | 3.90             | 22.1    | 38 6     | 06.7 10   | )5.4 10 | )40 3.2            | 3 7.3          | .2 *  | <.2 1      | .4 23         | 3.9.1<br>70.1   | 1 1.09         | .05  | 23   | .20 .0              | 123 1.          | 0 226 1 | 1 0.7J<br>E 10 71 | 101.4   | 023   | 40 .<br>62 | 70 010   | 14     | 1    | 87         | 06 <         | 01 4            | 17          | 2 02            | 2.4    | 15   |  |
| 3050N 4780E                | .22          | 38.86  | 8.41             | 27.5    | 83 /     | 38.9 10   | 02.8 14 | ¥II 3.7            | / 9.8          | .2    | .9 2       | .1 3/         | /.0.1<br>15.1   | 0 1.00<br>0 17 | . 12 | 17   | .00.1               | ))2 II.         | 6 41    | 7 20              | 277 6   | 057   | 51         | 11 024   | 1 13   | < 1  | 2.2        | .05 <.       | 01 2            | 27 <.       | 1 <.02          | 3.5    | 15   |  |
| 3050N 4800E                | .21          | 9.35   | 7.6/             | 29.9    | 19       | 80.2      | 8./ 4   | 454 I.3            | 4 2.4          | .1    | .2 1       | .4 41<br>0 40 | 1.5.1<br>1.7 1  | 2 .1/          | 12   | 22   | 31 (                | 130 Q.          | 7 76 '  | , .LJ<br>3 57     | 7 193 4 | 068   | 11 1       | 61 020   | ) 29   | <.1  | 4.3        | .07 <.       | 01 2            | 21 <.       | 1 <.02          | 5.0    | 15   |  |
| 3050N 4820E                | .21          | 10.82  | 6.//             | 33.4    | 16 .     | .39.6     | 13.8 5  | 583 Z.1            | 5 4.0          | .2 .  | 2 2        | .5 42         | 2.4 .1          | 1 .25          | . 15 | 22   | .01 .0              | 50 5.           | ., ,,   | 0 .07             | 170.1   |       |            |          |        |      |            |              |                 |             |                 |        |      |  |
|                            |              | 13.50  | 0.70             | 40.0    | 20       | 01.0      | < 1 <   | 0715               | 0 5 7          | Λ.    | - 2 2      | 2 46          | 5 7 1           | 0 30           | 17   | 30   | 41 (                | 134 16          | 4 14    | 7 26              | 232 4   | 070   | 51         | 47 .023  | 3 . 19 | .1   | 3.3        | .07 <.       | 01 3            | 34 <.       | 1 .02           | 4.5    | 15   |  |
| 3050N 4840E                | .51          | 1/.58  | 9.79             | 43.0    | 38       | 21.0      | 0.1 0   | 09/ 1.5<br>071 0 0 | 9 5.7<br>6 6 0 | 1 1   | 2 J<br>0 E | A AS          | 5.7 .1<br>5.7 2 | 1 50           | 17   | 46   | 37 (                | )63 34          | 4 19    | 6 31              | 322.8   | .098  | 2 2        | 14 .026  | 5.19   | .2   | 5.1        | .11 <.       | 01 2            | 23.         | 1 .02           | 6.3    | 15   |  |
| 3050N 4860E                | .53          | 32.4/  | 10.52            | 54.5    | 03<br>41 | 16 1      | 7.2 0   | DAE 1 0            | 6 6 5          | 1.1   | . 2 2      | 5 1/          | 1 1 2           | 6 39           | 17   | 40   | 44 (                | 169 26          | 1 16    | 2 .24             | 1 256.6 | .079  | 21         | 93 .021  | . 15   | .1   | 3.4        | .09 <.       | 01 2            | 28.         | 1 .02           | 5.8    | 15   |  |
| 3050N 4880E                | .04          | 20.19  | 0 45             | JZ.Z    | 00       | 13.3      | 60 9    | 202 1 8            | 6 6 0          | 1.0   | 6 2        | 0 53          | 3 0 2           | 6.38           | .15  | 39   | .60 .0              | 091 31.         | 7 15.   | -<br>9.27         | 7 236.9 | .071  | 3 1        | 90 .020  | . 15   | .1   | 3.1        | .08 <.       | 01 3            | 31.         | 2 .02           | 5.4    | 15   |  |
| 3050N 4900E                | .00          | 11 75  | . 9.40<br>9 9.05 | 12.0    | 22       | 7.2       | 23.     | 180 6              | 3 3 1          | < 1   | < 2        | 4 56          | 59 D            | 7 05           | 07   | 11   | .45 .0              | 080 3.          | .2 4.9  | 9.09              | 9 118.8 | .038  | 4          | 73 .028  | 3.07   | <.1  | .9         | .03 <.       | 01 1            | 14 <.       | 1 <.02          | 2.1    | 15   |  |
| 3000M 4000E                | . 13         | 11.72  | . 2.05           | 12.5    | 20       | /.5       | 2.0 .   | 105 .0             | 0 0.1          |       |            |               |                 |                |      |      |                     |                 |         |                   |         |       |            |          |        |      |            |              |                 |             |                 |        |      |  |
| 20008 46205                | 2 71         | 88 04  | 12 10            | 77.8    | 327      | 288.6     | 41 6 10 | 040 5 1            | 9 28.3         | .4    | 3.3 2      | .8 57         | 7.0.2           | 0 2.78         | . 26 | 62 1 | . 28 . (            | 040 21.         | .3 188. | 5 1.57            | 7 176.3 | .030  | 4 1        | 95 .013  | .12    | .1 3 | 10.9       | .41 <.       | 01 7            | 70.         | 5.11            | 5.0    | 15   |  |
| 3000N 40202<br>3000N 4680F | 63           | 29.63  | 3 93             | 20.7    | 100      | 9.5       | 5.8 6   | 531 .8             | 6 8.0          | .1    | 2.2        | .1 73         | 3.6 .1          | 7.41           | .07  | 14 1 | . 82 .1             | 039 2.          | .9 8.   | 1.13              | 3 89.3  | .022  | 11         | .30 .02  | L .09  | <.1  | 1.3        | .06 .        | 05 6            | 52 .        | 4 .02           | 1.0    | 15   |  |
| 3000N 4000E                | 2.36         | 43.53  | , 0.50<br>} 4.96 | 27.8    | 198      | 19.4      | 10.1    | 736 1.8            | 9 8.0          | .1 1  | D.1        | .3 23         | 3.8 .1          | 6 1.12         | .09  | 23   | .71 .0              | 033 4.          | .6 15.  | 9.19              | 9 68.8  | .021  | 2          | 50 .024  | 4 .05  | <.1  | 2.9        | .12 .        | 04 3            | 35.         | 3 .03           | 1.5    | 15   |  |
| 3000N 4700E                | 2.00<br>2 QN | 78 04  | 5 10 65          | 47.2    | 355      | 47.2      | 19.2 12 | 234 3.2            | 8 16.9         | .3 1  | 0.0 1      | .2 32         | 2.5 .3          | 2 2.39         | .17  | 36 1 | 1.29.1              | 043 13.         | .3 35.  | 9.35              | 5 217.2 | .019  | 4 1        | 10 .019  | 5.11   | .3   | 5.9        | .12 .        | 03 <del>(</del> | 66 .        | 5.05            | 2.9    | 15   |  |
| 3000N 4740E                | 2.50         | 29.30  | 8 72             | 43.4    | 72 :     | 357.6     | 30.6    | 711 2 6            | 3 15.1         | .3    | 4.0 2      | .9 55         | 5.7.1           | 8 1.49         | . 15 | 39   | .66 .1              | 040 18.         | .6 155. | 9 1.75            | 5 158.1 | .048  | 71         | .54 .016 | 5.19   | .1   | 6.5        | .11 .        | 02 4            | 48 .        | 2.03            | 4.4    | 15   |  |
| 50000 47402                | 10           | 25.05  | QL               |         |          |           |         |                    |                |       |            |               |                 |                |      |      |                     |                 |         |                   |         |       |            |          |        |      |            |              |                 |             |                 |        |      |  |
| STANDARD DS5               | 13.40        | 142.88 | 3 25.68          | 137.4   | 296      | 24.7      | 12.5    | 763 3.0            | 3 17.1         | 6.3 4 | 4.0 2      | .9 46         | 6.3 5.7         | 4 3.91         | 6.35 | 61   | .72 .               | 084 12.         | .6 190. | 1.67              | 7 136.6 | .097  | 18 2       | .00 .03  | 2.13   | 5.1  | 3.4 1      | .07 <.       | 01 17           | 75 4.       | 6.85            | 6.5    | 15   |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data\_\_\_\_\_\_FA



Page 6

| AUME ANALTTICAL |                |       |                  |          |              |       |          |                |         |        |              |         |        |          |          |     |             |                    |         |          |          |             |          |       |         |               | _          |     |          | <b>.</b>       |       |  |
|-----------------|----------------|-------|------------------|----------|--------------|-------|----------|----------------|---------|--------|--------------|---------|--------|----------|----------|-----|-------------|--------------------|---------|----------|----------|-------------|----------|-------|---------|---------------|------------|-----|----------|----------------|-------|--|
|                 | CANDLE#        | Mo    | C.               | Dh.      | 7n           | Δa    | Ni       | Co Mn          | Fe      | As     | U A          | Au Th   | Sr     | Cđ       | Sb Bi    | ٧   | Ca          | P La               | Cr      | Mg f     | Ba Ti    | в /         | Al Na    | Κ     | W Sc    | T1            | S          | Нg  | Se le    | 6a 5           | ampie |  |
|                 | SAMPLE#        | PIU   | cu               |          | 211          | ng    |          |                | · · -   | 000    | 000 00       | nh nnm  | กอต    | ກາງ      | ກດດ ກດດ  | DDM | x           | % DDM              | n ppm   | ≵ pt     | Sm 🕅     | ppm         | z z      | χţ    | opm ppm | n ppm         | X          | ppb | ppm ppm  | ppm            | gm    |  |
|                 |                | ppm   | ррп              | i ppin   | ppiii        |       | ppa p    | iha hha        |         | ppin   |              | b ppm   |        |          | - PP     |     |             |                    |         |          |          |             |          |       |         |               |            |     |          |                |       |  |
|                 |                |       |                  |          |              |       |          |                |         |        |              |         |        |          |          |     | 50 0        |                    | 10.4    | 50 250   | 2 120    | 1 1 1       | 10 001   | 53 3  | 20 23   | 30            | 01         | <5  | <.1 <.02 | 5.2            | 15    |  |
|                 | G-1            | 1.47  | 3.16             | 2.31     | 48.3         | 15    | 5.2 4    | .3 584         | 2.11    | .3     | 1.9 .        | .4 4.4  | 87.9   | .01 .    | .03 .11  | 43  | .58 .0      | 184 8.7            | 10.4    | . 59 200 | .2 .130  | 1 1.1       |          |       |         | 1 12          | 02         | 03  | 1 < 02   | 5.6            | 15    |  |
|                 | 3000N 4760E    | . 39  | 28.86            | 5 8.99   | 47.9         | 139 6 | 51.3 51  | .4 719         | 3.14    | 30.8   | .5 18.       | .6 6.2  | 77.7   | .13 2.   | .27 .11  | 48  | .59.0       | 47 34.9            | 246.7   | 2.29 1/1 | .2 .065  | 8 1.0       | 010.010  | . 20  | .2 0.0  | . 15          | .05        | 50  | .402     | 6.0            | 10    |  |
|                 | 2000N 4790E    | 40    | 14 19            | 10.03    | 35.8         | 98    | 22 7 6   | .0 226         | 5 1.90  | 3.2    | .9.          | .6 6.9  | 60.4   | .07 .    | .19 .14  | 37  | .23 .0      | 31 34.1            | 26.2    | .35 179  | .5 .101  | 21.         | 32 .030  | .16   | .1 3.4  | .10           | <.01       | 22  | .2 <.02  | 0.1            | 15    |  |
|                 | 3000N 4700E    | .40   | 10 70            | L0.00    | 20 5         | 24    | 10 1 6   | 1 583          | 1 48    | 28     | 2 <          | 2 2.3   | 36.6   | . 09     | .17 .15  | 21  | .35 .0      | 43 11.6            | 41.7    | .34 160  | .5 .058  | 4 1.        | 19 .019  | .17 • | <.1 2.7 | .06           | .01        | 20  | .1 <.02  | 3.8            | 15    |  |
|                 | 3000N 4800E    |       | 13.70            | 0.14     | 27.J         | 40    |          | A 770          | 21.10   | 2.0    | 2            | 1 1 2   | 28.2   | 06       | 23 19    | 22  | .34 .0      | 28 8.1             | 52.9    | .26 157  | .9 .053  | 31.         | 11 .028  | .11   | <.1 2.8 | .05           | .01        | 26  | .1 <.02  | 3.4            | 15    |  |
|                 | 3000N 4820E    | .49   | 15.29            | 4.94     | 25.9         | 43    | 0/./ 0   | 1.4 //0        | 5 1.45  | 5.0    |              | .4 1.2  | 20.2   |          |          |     |             |                    |         |          |          |             |          |       |         |               |            |     |          |                |       |  |
|                 |                |       |                  |          |              |       |          |                |         |        |              |         |        |          |          |     | <i>co r</i> |                    |         | 43 310   | 1 060    | 2.1         | 65 026   | 16    | 1 5 1   | 08            | 01         | 32  | .2 .03   | 4.6            | 15    |  |
|                 | 3000N 4840E    | .77   | 37.33            | 10.39    | 46.4         | 52 1  | .04.2 11 | 6 1536         | 5 2.14  | 10.4   | .4 3.        | .4 1.9  | 43.7   | . 29     | .80 .29  | 30  | .60.0       | 54 10.9            | 54.0    | .43 310  | .1 .000  |             | 0.020    | . 10  | 1 4 5   |               | - 01       | 20  | 2 - 02   | 5.8            | 15    |  |
|                 | 3000N 4860E    | .75   | 26.36            | 5 9.03   | 42.1         | 58    | 25.4 8   | 8.1 826        | 52.13   | 5.3    | .7 <.        | .2 3.9  | 35.0   | . 14     | .41 .20  | 34  | .41 .0      | 046 22.1           | . 21.3  | .31 246  | .6 .088  | 4 2.        | JU .U25  | .21   | .1 4.5  |               | <.01<br>01 | 20  | .202     | 5.0<br>F 4     | 10    |  |
|                 | 3000N 4880F    | 63    | 23.27            | 7 9 71   | 46.4         | 53    | 19.0 7   | .2 1181        | 1.92    | 4.8    | .7           | .7 3.6  | 30.2   | .21      | .39 .15  | 34  | .40 .(      | )52 21.9           | 21.1    | .28 270  | .9 .081  | 21.         | 82 .029  | . 15  | .1 4.0  | .09           | .01        | 27  | .2 <.02  | 5.4            | 15    |  |
|                 | 3000N 4000E    | .00   | 24.27            | 7 0 7/   | 44 1         | 68    | 14.8 6   | 5.0 830        | 1 64    | 47     | .8 1.        | .0 3.0  | 37.4   | .16      | .26 .16  | 31  | .40 .0      | 69 22.6            | 5 16.8  | .24 259  | .9 .088  | 31.         | 91 .029  | .15 · | <.1 3.3 | 3.09          | .01        | 24  | .2 .02   | 5.9            | 15    |  |
|                 | 3000N 4900E    | .04   | 24.01            | 0.74     | 44.1         | 21    | 15 0 4   | 1 5 202        | 2 1 17  | 5 5    | 1            | 9 1 2   | 31.8   | 05       | 16 11    | 15  | .31 .0      | )59 6.3            | 3 11.0  | .14 167  | .7 .055  | 71.         | 24 .026  | .15 · | <.1 2.7 | 7.05          | <.01       | 18  | .1 <.02  | 3.9            | 15    |  |
|                 | 2950N 4600E    | . 18  | 15.84            | 1 3.30   | 22.5         | 31    | 15.0 4   | 1.5 202        | 2 1.1/  | 5.5    |              |         | 01.0   | .00      |          |     |             |                    |         |          |          |             |          |       |         |               |            |     |          |                |       |  |
|                 |                |       |                  |          |              |       |          |                |         |        |              |         |        |          | 17 . 00  | ~   | 10.07       |                    | , ,,    | 24 50    | 7 000    | 4           | 18 030   | 08    | < 1 4   | 1 08          | .06        | 27  | .4 .03   | .5             | 15    |  |
|                 | 2950N 4620E    | . 12  | 35.30            | .47      | 5.3          | 262   | 10.0 1   | 1.9 60         | .27     | 2.3    | .1 3         | .5 .1   | 1/3./  | . 12     | .1/ <.02 | 5   | 13.9/       |                    | 2.7     | .24 50   | .7 .009  | 4.          | FF 000   | 10    | ~ 1 2 3 | 2 06          | 04         | 5.9 | 3 < 02   | 17             | 15    |  |
|                 | 2950N 4660E    | . 20  | 26.44            | 4 6.48   | 28.7         | 121   | 27.3 5   | 5.7 474        | 4 1.16  | 8.1    | .1 1         | .5 .6   | 70.6   | . 18     | .30 .15  | 20  | 1.55 .0     | 090 6.7            | 21.4    | .22 263  | .9 .031  | 8.          | 55 .023  | . 10  | ·.1 Z.c |               | .04        | 27  | .0 - 02  | 1.7            | 10    |  |
|                 | 2950N 4680F    | . 18  | 18.93            | 7 4.60   | 24.5         | 38    | 9.0 3    | 3.1 477        | 7.66    | 4.6    | .1 1         | .2 .2   | 58.0   | . 17     | .16 .11  | 17  | .81 .(      | 060 3.4            | 1 7.5   | .10 196  | .9 .031  | 5.          | 32 .025  | .08   | <.1 1.1 | 1 .03         | .04        | 21  | .2 <.02  | 1.1            | 15    |  |
|                 | 20E0N 4700E    | 17    | 22 3             | 1 3 26   | 19.8         | 70    | 17.7 4   | 1.5 458        | 8.85    | 5.7    | .1           | .4 .5   | 44.8   | .10      | .22 .07  | 18  | .79 .0      | )54 4.6            | 5 12.6  | .17 157  | .1 .031  | 5.          | 43 .023  | .12   | <.1 1.6 | 5 .04         | .04        | 40  | .2 <.02  | 1.4            | 15    |  |
|                 | 2950N 4700E    | /     | 20.20            | 2 2 20   | 22.4         | 76    | 20.2 5   | 5 2 39         | 1 95    | 59     | < 1 1        | .1 .3   | 46.2   | . 12     | .29 .07  | 19  | 1.02 .0     | 057 4.8            | 3 15.7  | . 19 171 | .0 .029  | 5.          | 38 .025  | .09   | <.1 1.8 | 3.03          | .03        | 32  | .2 <.02  | 1.3            | 15    |  |
|                 | 2950N 4/20E    | . 21  | 20.0             | 9 0.00   | 20.4         | 70    | 23.2 0   | ,. <u> </u> ,. |         |        |              |         |        |          |          |     |             |                    |         |          |          |             |          |       |         |               |            |     |          |                |       |  |
|                 |                |       |                  |          |              |       |          |                | o       | F O    | - 1 1        | 0 1     | E2 /   | 00       | 25 05    | 17  | 82          | 144 2 8            | 3 6.3   | .11 73   | .5 .028  | 4.          | 26 .026  | .06   | <.1 1.3 | 1.05          | .04        | 25  | .3 <.02  | 1.0            | 15    |  |
|                 | 2950N 4740E    | .21   | 24.7             | 7 1.95   | 35.8         | 88    | /.8 3    | 5.8 34         | 9.00    | ,5.0   | ·. 1 1       | .0 .1   | 70 6   | 16       | 22 .03   | 10  | 1 26        | 170 8 <sup>4</sup> | 3 17 4  | 21 245   | 0 026    | 4           | 50.020   | . 10  | <.1 2.3 | 7.06          | .03        | 40  | .3 <.02  | 1.6            | 15    |  |
|                 | 2950N 4760E    | .30   | 45.3             | 3 4.77   | 24.1         | 48    | 19.7 6   | 5.3 673        | 7 1.18  | 6.0    | .1 1         | .3 .0   | /8.6   | . 10     | .32 .09  | 19  | 1.20 .      | 075 0.0            | 4 144 2 | 1 17 160 | E 027    | 71          | 47 014   | 28    | 1 7 (   | n 70          | 02         | 44  | .3 .03   | 4.2            | 15    |  |
|                 | 2950N 4780E    | 1.11  | 48.7             | 3 7.03   | 54.6         | 169 2 | 262.1 29 | 9.3 732        | 2 3.64  | 19.3   | .2 6         | .9 3.1  | 54.0   | .12 1    | .94 .1/  | 38  | .82 .       | 031 19.4           | 4 144.5 | 1.1/ 109 | .5 .05/  | / 1.<br>/ 1 | 47 .014  | .20   | 1 6 9   | ه، ده<br>مي ه | 02         | 36  | 3 03     | 4.2            | 15    |  |
|                 | RE 2950N 4780E | 1.09  | 45.8             | 7 6.85   | 53.0         | 164 2 | 250.0 28 | 8.4 72         | 3 3.59  | 18.5   | .26          | .5 3.0  | 53.9   | .12 1    | .87 .16  | 38  | .82 .       | 030 18.8           | 8 136.7 | 1.16 16/ | .1 .03/  | 61.         | 40 .015  | . 27  | .1 0.0  | 00.00         | .02        | 50  | 0 - 00   |                | 10    |  |
|                 | 2950N 4800E    | .26   | 37.5             | 9 5.64   | 30.1         | 59 !  | 527.2 49 | 9.8 49         | 5 2.93  | 3.7    | .2 2         | .4 2.5  | 66.6   | .09      | .56 .09  | 33  | 1.53 .      | 033 16.            | 5 259.5 | 2.68 156 | 5.0 .048 | 11 1.       | 29 .017  | . 18  | .1 /.1  | 80.0          | .01        | 54  | .3 <.02  | 4.0            | 15    |  |
|                 |                |       |                  |          |              |       |          |                |         |        |              |         |        |          |          |     |             |                    |         |          |          |             |          |       |         |               |            |     |          |                |       |  |
|                 | 0050N 4000E    | 40    | E 2 1            | E 6 91   | 28.2         | 70    | 27 7 8   | 8 2 98         | 0 1 55  | 5.0    | .2 1         | .5 1.2  | 97.0   | .20      | .48 .13  | 28  | 3.75 .      | 047 15.4           | 4 22.4  | .47 270  | .9 .048  | 51.         | 23 .024  | .12   | <.1 4.  | 8.06          | .03        | 27  | .3 .03   | 3.4            | 15    |  |
|                 | 2950N 4020E    | .42   | 70.0             | 0 10 05  | 50.L         | 100   | 40.0.1   | 1 2 127        | 1 2 74  | 0 1    | 6.2          | 0 24    | 41 9   | 24       | 64 17    | 43  | .65 .       | 073 25.            | 5 30.5  | .40 290  | .3 .076  | 42.         | 12 .032  | .18   | .1 6.   | 0.09          | .03        | 36  | .4 .03   | 3 5.9          | 15    |  |
|                 | 2950N 4840E    | ./6   | /2.9             | 2 10.25  | 53.0         | 158   | 43.3 1.  | 1.3 12/        | 1 2.74  | 4.0    | .0 1         | 6 4 3   | 25 1   | 15       | 34 15    | 36  | 40          | 041 27             | 4 20 0  | 30 232   | 8.092    | 42.         | 03 .032  | .20   | <.1 4.  | 6.10          | <.01       | 19  | .2 <.02  | 2 5.9          | 15    |  |
|                 | 2950N 4860E    | .62   | 30.0             | / 9./5   | 41.4         | 68    | 20.9     | /./ 80         | 3 2.05  | 4.0    | .0 1         | 0 4.3   |        | . 15     | .04 .10  | 40  | . 10 .      | 064 42             | 1 24 4  | 22 202   | 0 / 116  | : 32        | 53 031   | 21    | 1 4     | 9 .13         | <.01       | 26  | .3 .03   | 3 7.6          | 15    |  |
|                 | 2950N 4880E    | . 69  | 32.7             | 8 12.84  | 54.0         | 106   | 20.3 8   | 8.9 78         | 5 2.40  | 6.0    | 1.4 1        | 4 6.0   | 4/.4   | . 15     | .39 .18  | 40  | .44 .       | 004 42.            | 1 24.4  | .33 232  |          | , <u>,</u>  | 70 001   | 15    | 1 2     | o na          | < 01       | 21  | 2 < 02   | 2 4 9          | 15    |  |
|                 | 2950N 4900E    | . 78  | 31.6             | 8 9.02   | 47.1         | 66    | 18.1 8   | 8.4 80         | 6 1.96  | 4.3    | .7           | .7 3.7  | 39.7   | . 15     | .31 .14  | 34  | .44 .       | 060 26.            | 1 10.0  | .20 220  | 5.9 .0/9 | 41.         | /2 .031  | . 15  | .1 0.   | 5.05          | 01         |     |          |                |       |  |
|                 |                |       |                  |          |              |       |          |                |         |        |              |         |        |          |          |     |             |                    |         |          |          |             |          |       |         |               |            |     | 1 5 00   |                | 15    |  |
|                 | 2900N 4600E    | 2 11  | 152.8            | 1 6.54   | 33.5         | 119   | 76.9 4   | 2.1 269        | 0 6.20  | 21.3   | .3 3         | 8.8 1.2 | 109.2  | . 21     | .95 .36  | 80  | 2.27 .      | 177 19.            | 6 36.3  | .62 412  | 2.5 .027 | 81.         | 25 .017  | . 12  | .8 13.  | 9.19          | .11        | 52  | 1.5 .32  | 2 4./          | 15    |  |
|                 | 2000N 4640E    | 2 73  | 30.0             | 2 1 76   | 24.2         | 26    | 8 3 1    | 5 5 64         | 3 3.34  | 23.3   | .2 1         | .5 1.4  | 42.0   | .07      | .94 .21  | 48  | .65 .       | 026 16.            | 5 8.4   | .45 91   | 1.8 .032 | 2 61        | 68 .028  | .22   | .2 8.   | 4 .10         | .03        | 25  | .3 .07   | 5.4            | 15    |  |
|                 | 2900N 4640E    | 2.70  | 17 7             | 0 0 01   | 15 0         | 42    | 2.0      | 2 6 20         | 0 55    | 1 9    | < 1 2        | 2 4 1   | 46.9   | . 11     | .10 .04  | 16  | .78 .       | 048 2.             | 7 5.0   | .08 103  | 3.2 .029 | 94.         | 25 .031  | .08   | <.1 1.  | 1 .02         | .04        | 24  | .2 <.02  | 2.9            | 15    |  |
|                 | 2900N 4080E    | . 21  | . 1/./           | 0 2.21   | 13.5         | 40    | 45.0.0   | 0 0 101        | C 2 200 | 20.0   | 1 25         | 7 1 1   | 30.4   | 26 1     | 85 20    | 63  | 1.03        | 045 23             | 4 29 4  | .59 285  | 5.2.008  | 3 3 1.      | 63 .022  | .16   | .2 11.  | 7.27          | .03        | 51  | .5 .09   | 9 4.9          | 15    |  |
|                 | 2900N 4700E    | 1.35  | 126./            | 2 6.86   | 62.8         | 269   | 45.0 2   | 0.0 101        | .0 3.23 | 20.0   | .1 33        | )./ 1.1 |        |          |          | 20  | 1 10        | 120 21             | E 11 0  | 54 134   | 5 7 003  |             | 27 008   | 23    | 37.     | 0.35          | .05        | 718 | .6 .22   | 2 4.1          | 15    |  |
|                 | 2900N 4720E    | 2.80  | 149.1            | .3 17.51 | 1135.0       | 364   | 35.5 2   | 4.5 81         | .4 4.05 | 99.3   | .2 61        | 1.9 1.3 | 39.4   | 0.44 3   | 3.32 .41 | 39  | 1.10 .      | 139 21.            | 5 11.0  | .04 100  |          | , ,,        | 27 .000  |       |         |               |            |     |          |                |       |  |
|                 |                |       |                  |          |              |       |          |                |         |        |              |         |        |          | ·        |     |             |                    |         |          |          |             | (5 010   | 10    | 1 2     | c 20          | 07         | 47  | 5 04     | : 10           | 15    |  |
|                 | 2900N 4740E    | 1.06  | 5 57.8           | 5 3.86   | 46.4         | 152   | 28.8 1   | 0.6 89         | 4 2.01  | 12.6   | .1 8         | 3.2.4   | 54.4   | . 16     | .88 .10  | 24  | 1.62 .      | 061 10.            | 2 16.6  | . 18 130 | J.5 .022 | <u>د</u> ک  | .05 .019 | . 15  | .1 3.   | 0.30          | , .0/      | 4/  |          | , 1.)<br>, a.c | 15    |  |
|                 | 2900N 4760E    | 1.00  | 87.0             | 3 7.04   | 47.1         | 194   | 35.8 1   | 3.0 114        | 8 2.53  | 21.2   | .4 15        | 5.9 1.0 | 41.2   | .17 1    | 1.32 .12 | 33  | .98 .       | 081 17.            | 7 19.1  | 36 172   | 2.0 .034 | 471         | .24 .023 | .20   | .1 3.   | ь.28          | s .0/      | 53  | .6 .06   | 5 3.0          | 15    |  |
|                 | 2000N 4780E    | Δ5    | 55.0             | 0 4.83   | 24 8         | 160   | 25.3     | 8.2 84         | 9 1.59  | 7.9    | .3 7         | 7.6.4   | 194.6  | .27      | .73 .09  | 20  | 12.72 .     | 096 11.            | 0 14.9  | .44 165  | 5.0 .022 | 2 16        | .89 .017 | . 15  | <.1 2.  | 2.14          | .10        | 37  | 1.0 .05  | 5 2.6          | 15    |  |
|                 | 20000 40000    | 2 10  | , 55.0<br>5 67 3 | 22 16 12 | 5/ 5         | 161   | 91 0 1   | 7 4 108        | 17 3 81 | 38.0   | .4 0         | 9.2 3.4 | 49.0   | . 29 3   | 3.48 .23 | 44  | .94 .       | 030 25.            | 6 35.5  | .55 228  | 3.6.068  | 372         | 26 .019  | .21   | .1 9.   | 0.14          | 1.02       | 77  | .4 .05   | 5 6.3          | 15    |  |
|                 | 2900N 4800E    | 2.19  | 7 0/.3           | 0 14 55  | 04.0<br>75 ^ | 701   | 00 1 0   | 1 2 101        | , 0.01  | 51 0   | с 10<br>с 10 | 29.20   | 51 0   | 34 /     | 1 10 22  | 44  | .93         | 046 26             | 4 38.4  | .52 149  | 9.5 .052 | 2 7 2       | .16 .019 | . 19  | .29.    | 2.15          | .04        | 179 | .6 .05   | 5 5.6          | 15    |  |
|                 | 2900N 4820E    | 3.36  | 93.0             | 13 14.55 | /0.8         | 29/   | 99.1 Z   | 1.2 121        | 1 3.00  | 0 01.9 |              |         |        |          |          |     |             |                    |         |          |          |             |          |       |         |               |            |     |          |                |       |  |
|                 |                |       |                  |          |              |       |          |                |         |        |              |         |        | . F (7 ) |          |     | 70          | 004 12             | 1 100 0 | 60 10    | sa na/   | 1 18 1      | 99 032   | 14    | 513     | 4 1.04        | 1.02       | 173 | 5.0 .8   | 3 6.6          | 15    |  |
|                 | STANDARD DS5   | 13.05 | 5 145.4          | 14 24.78 | 134.9        | 287   | 24.8 1   | .2.5 77        | 4 3.02  | 2 19.1 | 6.1 45       | 5.4 2.8 | 5 4/.0 | 1 5.6/ 4 | 4.00 6.2 | 01  | .13 .       | 030 17.            | 4 109.2 | . 00 13  |          | - 10 1      |          | . 14  | 0.1 0.  | . 1.04        |            |     |          |                |       |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA



Page 7

|                |                        |                                                              |                                                     |                                           |                                                     | ACME ANALYTICAL |
|----------------|------------------------|--------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|-----------------|
| SAMPLE#        | Mo Cu Pb               | Zn Ag Ni Co Mn Fe A                                          | As U Au Th Sr Cd Sb                                 | Bi V Ca P La Cr Mo Ba Ti                  | B Al Na K W Sc TI S House Te Gasamo                 | ]e              |
|                | ppm ppm ppm j          | ppm ppb ppm ppm ≱ pp                                         | n mada mada mada gada mada ma                       | ppm % % ppm % % ppm %                     | mag mag mag mag mag mag mag % % mag mag             | an              |
|                |                        |                                                              |                                                     |                                           |                                                     |                 |
| G-1            | 1.62 3.04 2.39 49      | 9.3 13 6.8 4.7 601 2.14 .                                    | .3 2.0 .8 4.6 87.6 .01 .03 .                        | .12 45 .59 .087 9.3 17.7 .60 260.1 .143   | 1 1.01 .097 .52 2.1 2.4 .34 .03 <5 <.1 .02 5.3      | 15              |
| 2900N 4880E    | .94 66.80 11.45 59     | 9.1 147 21.6 11.2 1337 2.19 10.                              | 1 .4 7.1 2.6 35.3 .32 .63                           | .12 36 .84 .126 25.5 24.3 .30 198.0 .051  | 7 1.29 .020 .18 .1 4.7 .09 .03 41 .5 <.02 4.2       | 15              |
| 2900N 4860E    | 1.02 43.52 11.02 54    | 4.9 95 21.9 10.7 1067 2.25 6.                                | .3 .6 1.5 3.9 41.4 .23 .56 .                        | .15 37 .62 .073 31.7 20.5 .33 220.3 .080  | 3 1.86 .028 .22 <.1 4.3 .10 .04 29 .3 .02 5.3       | 15              |
| 2900N 4880E    | .98 71.78 11.69 65     | 5.8 155 22.9 11.6 1399 2.29 10.                              | 2 .4 6.7 2.6 39.6 .32 .64 .                         | .13 34 .85 .124 26.4 25.1 .30 202.3 .053  | 3 1.40 .021 .18 .1 5.0 .09 .05 42 .5 .02 4.4        | 15              |
| 2900N 4900E    | .71 22.11 12.91 53     | 3.1 65 12.2 6.6 603 1.89 5.                                  | 1 1.2 .5 5.2 79.5 .17 .21 .                         | .16 39 .45 .086 47.6 17.3 .31 207.3 .083  | 2 1.84 .022 .26 <.1 2.9 .10 .02 16 .2 .02 6.1       | 15              |
|                |                        |                                                              |                                                     |                                           |                                                     |                 |
| 2850N 4600E    | 1.82 145.43 9.57 32    | 2.1 140 64.3 32.5 915 4.72 16.                               | 5 .2 8.9 1.9 70.3 .15 1.52 .                        | .27 75 1.51 .049 16.5 32.2 .72 172.2 .039 | 9 1.85 .020 .26 1.5 11.7 .35 .06 36 .8 .21 7.0      | 15              |
| 2850N 4620E    | .82 67.15 5.81 24      | 4.6 48 37.2 12.7 954 2.39 8.                                 | 4 .2 6.0 1.8 46.5 .08 .54 .                         | .13 53 1.04 .031 11.5 18.3 .44 149.2 .053 | 8 1.33 .028 .21 .9 6.3 .45 .03 25 .3 .05 4.8        | 15              |
| 2850N 4640E    | 1.66 96.02 8.74 29     | 9.9 68 62.9 28.3 1193 5.08 17.                               | 0 .2 6.8 1.7 61.2 .12 1.62 .                        | .25 71 1.32 .059 19.3 34.2 .49 407.1 .019 | 12 1.71 .017 .34 .8 12.2 1.01 .06 50 .7 .18 6.2     | 5               |
| 2850N 4660E    | .88 64.87 9.27 33      | 3.2 44 40.1 19.8 924 4.18 14.                                | 1 .2 4.3 1.6 49.4 .12 .81 .                         | .25 56 .95 .060 15.4 26.9 .47 285.9 .027  | 9 2.02 .018 .38 .6 10.9 .26 .04 33 .5 .09 6.8       | 5               |
| 2850N 4680E    | .19 18.89 4.60 21      | 1.2 17 10.4 4.9 254 1.31 6.                                  | 0 <.1 1.4 .6 27.5 .05 .35 .                         | .11 27 .42 .040 7.2 11.4 .17 120.9 .029   | 5 .73 .022 .14 .1 3.4 .08 .02 17 .1 .02 2.7         | 5               |
|                |                        |                                                              |                                                     |                                           |                                                     |                 |
| 2850N 4700E    | .44 44.46 7.44 31      | 1.0 78 16.7 9.4 810 2.06 11.                                 | 4 .1 6.5 .9 19.1 .14 1.63 .                         | .17 50 .47 .025 19.6 19.1 .33 165.0 .021  | 3 1.04 .027 .12 .5 6.0 .08 .01 27 .2 .03 3.4        | 5               |
| 2850N 4720E    | .22 15.05 9.86 31      | 1.1 24 8.3 4.5 475 1.15 7.                                   | 7 .1 1.3 .5 49.1 .16 .31 .                          | .17 25 .60 .055 5.7 7.8 .14 123.9 .029    | 5 .47 .021 .11 .1 2.4 .04 .04 31 .1 .04 1.8         | 5               |
| 2850N 4740E    | 1.11 83.45 8.71 49     | 9.5 105 38.9 16.9 970 3.80 16.                               | 3 .2 36.8 2.9 38.4 .11 1.51 .                       | .21 50 .79 .034 31.1 24.9 .59 296.4 .037  | 4 1.91 .015 .35 .2 10.9 .21 .02 39 .4 .07 5.7       | 5               |
| 2850N 4760E    | .58 53.28 9.80 48      | 8.4 160 30.2 11.9 889 2.47 9.                                | 6 .3 6.5 2.0 30.8 .19 .83 .                         | .19 39 .49 .059 21.7 20.1 .41 219.4 .041  | 3 1.52 .026 .23 .1 6.2 .22 .03 29 .2 .06 4.8        | 5               |
| 2850N 4780E    | .62 31.83 10.34 44     | 4.5 122 25.6 7.9 835 2.15 6.4                                | 4 .3 3.0 3.6 37.6 .20 .55 .                         | .16 34 .49 .041 21.4 20.4 .37 161.9 .066  | 7 1.45 .018 .24 <.1 4.2 .10 .02 27 .2 .03 4.5       | 5               |
| 2050N 4000F    | 71 41 96 0.00 46       | 6 6 64 96 0 10 1 970 9 FF C                                  |                                                     | 16 20 44 040 06 1 05 5 20 160 0 000       |                                                     |                 |
| 2050N 4000E    | 72 20 06 7 64 20       | 0.0 $04 20.9 10.1 0.0 2.00 0.0$                              | 0 .5 1.0 4.6 36.2 .16 .60 .                         | 10 30 .44 .040 20.1 25.5 .39 162.9 .083   | 3 1.91 .019 .26 .1 6.1 .10 .02 24 .2 <.02 5.8       | 5               |
| 2850N 4840E    | 75 35 50 11 06 40      | 0.9 73 21.3 0.0 037 2.37 4.<br>0 7 70 20 0 9 0 1207 2 22 6 1 | 1 .4 1.2 3.1 30.1 .12 .43 .<br>6 6 7 2 0 42 2 20 44 | 17 22 50 042 10 6 17 5 26 202 4 004       | 3 1.76 .028 .19 .1 5.5 .08 .01 26 .2 <.02 5.0       | 5               |
| 2850N 4860E    | 03 /6 82 0 81 /0       | 0.9 81 10 4 10 2 1237 2 06 6                                 | 0 .0 .7 2.7 42.2 .20 .44 .                          | 14 20 64 060 22 2 17 5 20 202 4 000       | 4 2.13 .029 .18 <.1 4.7 .09 .03 31 .2 <.02 5.7      | 5               |
| 2850N 4880E    | 1 29 44 99 15 93 80    | 0.0 01 19.4 10.2 1237 2.00 0.0                               | 0 / 0 3 // 7 E1 79                                  | 22 25 82 151 11 7 15 7 10 102 2 022       |                                                     | 5               |
| 200011 10002   | 1.27                   |                                                              | , ., ., ., ., ., ., ., ., ., ., ., ., .,            |                                           | 4 1.10 .019 .13 <.1 2.0 .00 .00 43 .3 .03 3.3 ]     | c               |
| RE 2850N 4880E | 1.27 43.07 15.67 77    | 7.9 121 14.7 8.8 1525 1.58 11.4                              | 4 .4 .7 .3 43.5 .48 .73 .                           | .22 25 .79 .144 11.3 15.6 .18 191.1 .033  | 4 1.13 .019 .12 <.1 2.0 .06 .07 39 .3 .02 3.3 1     | 5               |
| 2850N 4900E    | 1.23 37.38 12.05 54    | 4.3 70 19.3 9.3 1004 2.26 5.9                                | 9 .6 1.0 3.6 43.6 .26 .44 .                         | .17 37 .58 .068 30.5 19.4 .31 186.0 .073  | 2 1.73 .022 .20 <.1 4.3 .09 .03 28 .3 .02 4.9 1     | 5               |
| 2800N 4600E    | .53 49.72 4.31 22      | 2.2 20 19.3 8.6 649 1.67 6.3                                 | 3 .2 1.1 1.3 37.0 .10 1.47 .                        | .11 29 .49 .038 8.1 12.4 .21 109.9 .051   | 3 1.01 .026 .16 .3 3.5 .16 .03 23 .2 .03 3.4 1      | 5               |
| 2800N 4620E    | .39 31.38 4.72 28      | 3.4 29 17.4 8.7 1216 1.51 9.7                                | 7 .1 10.2 1.1 60.8 .15 7.87 .                       | 12 30 .86 .062 7.2 11.6 .22 183.3 .043    | 8 .77 .020 .14 .6 3.0 .16 .04 31 .2 .04 2.7 1       | 5               |
| 2800N 4640E    | .91 103.21 10.07 41    | 1.9 140 43.6 24.0 1457 3.34 14.9                             | 9 .3 3.3 2.6 51.8 .20 1.09 .                        | 19 57 .98 .047 25.6 29.3 .62 223.6 .059   | 4 1.92 .018 .28 .6 8.1 .30 .04 35 .5 .06 6.4 1      | 5               |
|                |                        |                                                              |                                                     |                                           |                                                     |                 |
| 2800N 4660E    | .83 38.91 6.43 30      | 0.3 47 40.9 12.9 609 3.42 8.5                                | 5 .3 4.9 3.1 47.3 .06 .87 .                         | 15 54 .86 .020 18.3 29.7 .53 191.8 .073   | 7 2.40 .021 .21 .6 8.2 .23 .02 34 .3 .03 7.6 1      | 5               |
| 2800N 4680E    | .64 29.92 7.38 29      | 9.9 63 18.9 8.2 505 1.91 5.1                                 | 1 .7 6.0 3.2 36.0 .07 .28 .                         | 14 33 .32 .025 21.9 17.1 .27 168.4 .083   | 1 2.09 .029 .14 .1 4.0 .11 .02 21 .2 <.02 5.9 1     | 5               |
| 2800N 4700E    | .65 36.07 6.27 32      | 2.2 59 17.9 8.0 1095 1.95 4.5                                | 5 .4 <.2 2.5 29.3 .08 .20 .                         | 18 32 .39 .029 11.5 16.1 .23 164.0 .075   | 4 1.81 .021 .11 .1 4.0 .19 .02 22 .2 <.02 5.6 1     | 5               |
| 2800N 4720E    | .24 16.32 1.86 13      | 3.2 19 6.0 4.5 352 .84 4.1                                   | 1 .1 1.1 .3 24.7 .06 .14 .                          | 12 22 .34 .033 3.6 4.8 .10 34.1 .033      | 2 .31 .030 .06 .2 1.4 .03 .02 27 .2 .05 1.4 1       | 5               |
| 2800N 4740E    | .78 62.21 7.31 41      | 1.8 190 32.5 12.8 767 3.28 15.0                              | 0 .4 11.0 3.2 43.8 .11 .78 .                        | 16 56 1.04 .025 33.1 37.1 .57 154.6 .038  | 4 2.19 .017 .22 .1 12.2 .12 .03 39 .4 .02 6.7 1     | 5               |
| 0005           |                        |                                                              |                                                     |                                           |                                                     |                 |
| 2800N 4760E    | .58 43.19 7.06 39      | 9.8 85 24.1 10.5 599 2.54 9.0                                | 0 .4 2.9 4.2 37.8 .09 .54 .                         | 16 37 .42 .035 27.1 24.3 .38 159.1 .062   | 3 1.83 .022 .28 .1 5.8 .13 .03 23 .3 .02 5.5 1      | 5               |
| 2800N 4780E    | .63 40.60 6.50 38      | 3.0 53 29.2 14.2 662 2.91 9.6                                | 5 .2 3.8 3.0 55.6 .08 .47 .4                        | 40 39 .55 .064 19.4 23.5 .41 170.5 .059   | 9 1.82 .022 .27 <.1 6.8 .11 .01 23 .2 .12 5.4 1     | 5               |
| 2800N 4800E    | ./4 45.62 7.26 43      | 3.0 29 30.6 18.1 1661 3.71 10.1                              | 1 .2 4.3 2.1 70.4 .20 .55 .4                        | 40 52 .92 .090 21.6 23.7 .49 258.8 .045   | 13 2.11 .019 .31 .1 9.0 .09 .02 28 .3 .15 6.4 1     | 5               |
| 2800N 4820E    | .24 29.95 4.54 42      | 2.0 3/ 8.1 4.7 833 .98 3.7                                   | / .1 .7 .4 45.6 .17 .24 .0                          | 08 19 .90 .062 4.5 8.3 .13 116.4 .031     | 5 .46 .026 .09 <.1 1.8 .03 .04 16 .2 <.02 1.4 1     | 5               |
| 2800N 4840E    | 1.18 55.89 9.78 61     | 1.6 14/ 31.3 13.3 1395 2.74 12.6                             | 5 .2 2.5 1.5 46.1 .30 .88 .3                        | 19 31 .74 .060 14.1 22.7 .36 224.7 .048   | 4 1.52 .022 .20 .1 5.3 .08 .04 35 .4 .05 3.9 1      | 5               |
| STANDADD DCE   | 12 12 140 40 24 02 122 | 0 01 0 0 0 777 7 11 0 10 770 70                              |                                                     | 21 62 72 666 12 4 107 6 60 100 6 604      |                                                     | _               |
| STANUARU USO   | 10.12 140.49 24.02 100 |                                                              | 0 0.2 40.9 2.8 40.4 5.49 3.89 6.                    | 31 02 .73 .096 12.4 187.0 .68 138.9 .094  | 1/ 1.9/ .034 .14 4.9 3.4 1.05 .03 174 4.9 .88 6.6 1 |                 |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data\_\_\_\_\_FA



Page 8

| <br>           |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               |        |           |       |            |                 |                       |       | ACM | 1E ANALYTICAL |
|----------------|----------|---------|---------|------|-------|---------|---------|----------|--------|--------|--------|----------|-------|---------|------|--------|-------------------|----------|-------|----------|---------|------|-----------|-------|---------------|--------|-----------|-------|------------|-----------------|-----------------------|-------|-----|---------------|
| SAMPLE#        | Мо       | Cu      | Pb      | Zn   | Ag    | Ni      | Со      | Mn F     | e As   | U      | Au     | Th S     | Sr C  | d Sb    | Bi   | v      | Ca                | P Li     | a Cr  | Mg       | Ba      | Ti   | B A1      | Na    | K             | ₩ Sc   | : 11      | s     | На         | Se .            | Fe GaS                | ample | W   |               |
|                | ppm      | ppm     | ppm     | ppm  | ppb   | ppm     | ppm     | ppm      | % ppm  | ppm    | ppb    | ppm pt   | m pp  | т ррт   | ppm  | ppm    | ž                 | % ppr    | n ppm | ž        | ppm     | Хp   | pm ≵      | x     | ξp            | pm ppm | ı ppm     | X     | ppb        | ppm pj          | om ppm                | gm    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               |        |           |       | •          |                 |                       |       |     |               |
| G-1            | 1.34     | 2.60    | 2.46    | 43.3 | 12    | 4.7     | 4.1     | 575 2.0  | 3.4    | 2.0    | .6     | 4.4 85.  | 6 <.0 | 1.03    | .11  | 41     | .56 .0            | 080 8.8  | 15.3  | .54 24   | 9.0.1   | 127  | 5 1.04    | . 098 | .53 1         | .8 2.4 | .32       | .02   | <5         | <.1 <.(         | 2 5.0                 | 15    |     |               |
| 2800N 4860E    | 1.37     | 58.61   | 9.33    | 51.3 | 179   | 33.2 1  | 13.4    | 976 3.0  | 9 9.3  | .4     | 5.1    | 2.6 30.  | 7.1   | 6.89    | . 16 | 34 .   | .56 .0            | 045 18.3 | 24.7  | .34 18   | 9.7.0   | )53  | 3 1.66    | 020   | . 23          | .1 6.3 | . 09      | .04   | 52         | .3 .0           | 3 4.6                 | 15    |     |               |
| 2800N 4880E    | 1.16     | 36.13   | 8.58    | 47.0 | 167   | 23.6    | 9.8 8   | 851 2.2  | 7 8.8  | .5     | 1.9    | 2.3 34.  | 7.1   | 9.58    | . 14 | 34 .   | .47 .(            | 062 21.8 | 19.2  | .25 16   | 1.3 .05 | )55  | 3 1.44    | .026  | .16 <         | .1 4.4 | .09       | .05   | 27         | .2 .0           | 3 4.2                 | 15    |     |               |
| 2800N 4900E    | .76      | 26.58   | 9.77    | 43.6 | 105   | 18.1    | 7.6 8   | 384 1.9  | 2 9.7  | .8     | 1.7 3  | 2.5 41.  | 1.2   | 1.48    | . 16 | 31 .   | .51 .0            | 052 21.3 | 18.5  | .24 21   | 6.3.07  | 071  | 5 1.79 .  | .021  | . 24 <        | .1 3.8 | .09       | .04   | 26         | .3 .0           | 4 4.8                 | 15    |     |               |
| 6825E 3100N    | . 60     | 37.10   | 14.39   | 60.2 | 313   | 20.7 1  | 11.4 14 | 413 2.7  | 6 12.6 | .6 :   | 11.2   | 2.7 49.  | 2.2   | 1.86    | .16  | 44 .   | .57 .(            | 086 28.6 | 20.0  | .40 21   | 9.0.04  | 148  | 3 1.53 .  | 014   | .21           | .3 4.7 | .07       | .05   | 34         | .3 .0           | 2 4.4                 | 15    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               |        |           |       |            |                 |                       |       |     |               |
| 6825E 3120N    | .82      | 31.02   | 11.47   | 47.0 | 200   | 19.2    | 8.0 12  | 218 2.1  | 4 6.9  | .8     | 2.7    | 1.7 52.  | 0.18  | 8.85    | .16  | 39 .   | 60.0              | 096 25.9 | 21.2  | .29 25   | 4.8.05  | 53   | 4 1.62 .  | 019   | 14            | .2 3.9 | .07       | .08   | 41         | .3 <.0          | 2 4.5                 | 15    |     |               |
| 6825E 3140N    | . 59     | 31.65   | 12.16   | 44.3 | 101   | 14.5    | 8.1 17  | 790 1.9  | 0 7.0  | .5     | 2.3    | l.7 41.  | 9.19  | 34 . 34 | . 19 | 31 .   | 45 .0             | 079 19.1 | 12.7  | .32 21   | 2.5 .04 | 49   | 2 1.42 .  | 021   | .12           | .1 3.8 | .06       | .04   | 31         | .2.0            | 2 3.9                 | 15    |     |               |
| 6825E 3160N    | .67      | 27.07   | 10.88   | 44.0 | 111   | 14.4    | 8.2 12  | 298 1.8  | 4 10.6 | .4     | 2.9    | L.O 41.  | 9.24  | .48     | .17  | 27 .   | 56.0              | 078 14.8 | 9.8   | .25 18   | 0.4 .04 | 43   | 2 1.20 .  | 019   | 14            | .2 2.9 | .05       | .06   | 33         | .4 <.0          | 2 3.1                 | 15    |     |               |
| 6825E 3180N    | .96      | 33.61   | 16.39   | 50.2 | 224   | 20.0    | 8.7 15  | 514 2.1  | 8 13.7 | .3     | 7.6    | .6 38.   | 6.37  | 7.89    | . 21 | 27 .   | 75 .0             | 095 14.5 | 8.9   | .32 214  | 4.6.02  | 23   | 7 1.13 .  | 013   | 20            | .2 3.0 | .06       | .12   | 52         | .4 .0           | 2 3.3                 | 15    |     |               |
| 6825E 3200N    | . 95     | 27.96   | 12.97   | 57.4 | 279   | 30.1 1  | 2.4 13  | 333 3.0  | 0 17.8 | .33    | 85.8 1 | 1.4 25.  | 3.18  | 3 1.03  | . 19 | 34 .   | 51 .0             | 084 15.8 | 13.2  | .57 210  | 6.3.02  | 21   | 5 1.65 .  | 014   | 17            | .2 4.6 | .07       | .09   | 37         | .3 .0           | 2 4.4                 | 15    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               |        |           |       |            |                 |                       |       |     |               |
| 6825E 3220N    | 1.01     | 24.41   | 14.21   | 49.9 | 251   | 23.4    | 9.9 15  | 580 2.53 | 3 21.1 | .63    | 80.0 1 | .7 31.   | 9.21  | 1.14    | . 15 | 38.    | 50.0              | 083 22.4 | 16.2  | .30 284  | 4.6.04  | 49   | 4 1.47 .  | 021   | 15            | .3 4.3 | . 08      | .06   | 42         | .3 <.0          | 2 4.2                 | 15    |     |               |
| 6825E 3240N    | . 68     | 22.72   | 14.17   | 58.9 | 99 :  | 37.0 1  | 0.0 9   | 46 2.3   | 9 9.7  | 1.1    | .8 3   | 8.0 46.  | 6.23  | .83     | . 18 | 48.    | 44.1              | 104 33.3 | 34.4  | .38 289  | 9.3 .08 | 88   | 3 2.28 .  | 019   | 17            | 2 4.9  | .08       | .06   | 17         | .2 <.0          | 2 6.7                 | 15    |     |               |
| 6825E 3260N    | . 58     | 19.40   | 11.00   | 51.1 | 71 ;  | 34.6    | 8.3 7   | 74 1.94  | 4 6.1  | 1.0    | .6 2   | 2.3 47.  | 8.29  | . 27    | . 17 | 40 .   | 42 .0             | 083 29.6 | 28.3  | .31 234  | 4.9.08  | 80   | 2 2.06 .  | 022   | 11            | .1 3.2 | .07       | .04   | 12         | .2 <.0          | 2 6.0                 | 15    |     |               |
| 6825E 3280N    | .92      | 24.05   | 14.00   | 53.6 | 114   | 16.8    | 7.9 11  | .38 1.64 | 4 11.0 | .5     | 2.2    | .8 71.   | 7.47  | .34     | . 27 | 25 .   | 85 .0             | 083 14.2 | 11.5  | .23 267  | 7.3.04  | 44   | 3 1.30 .  | 020   | 11 <          | 1 2.4  | .05       | .08   | 42         | .3 .0           | 3 3.5                 | 15    |     |               |
| 6825E 3300N    | .87      | 24.57   | 6.85    | 43.1 | 148   | 20.7    | 8.6 12  | 233 1.36 | 6 9.7  | .4     | 1.0    | .4 93.   | 2.32  | . 32    | .10  | 21 1.  | 07.1              | 14 13.2  | 9.0   | .22 236  | 6.1.03  | 32   | 5 1.11 .  | 021   | 12 <          | 1 1.6  | .06       | .10   | 36         | .3 .0           | 3 2.9                 | 15    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               |        |           |       |            |                 |                       |       |     |               |
| 6825E 3320N    | . 62     | 14.91   | 6.04    | 34.1 | 59 19 | 92.3 14 | 4.6 6   | 65 1.62  | 2 59.1 | .4     | 2.6 1  | .8 62.   | .11   | 3.91    | . 09 | 26.    | 54 .0             | 62 16.0  | 38.1  | .32 133  | 3.0.04  | 48   | 4 1.08 .  | 020   | 13 <          | 1 2.5  | .06       | .05   | 20         | .2 <.0          | 2 3.0                 | 15    |     |               |
| 6825E 3340N    | 1.04     | 20.08   | 10.35   | 46.0 | 71 17 | 76.7 14 | 4.5 7   | 28 1.79  | 9 57.8 | .8     | .9 3   | .6 74.   | 2.16  | 2.97    | .11  | 26 .   | 53.0              | 91 34.4  | 36.3  | .31 229  | 9.6.05  | 53   | 3 1.52 .  | 019 . | 18            | 1 2.5  | .07       | .03   | 25         | .2 <.0          | 2 4.2                 | 15    |     |               |
| 6825E 3360N    | 1.00     | 21.06   | 11.14   | 50.1 | 59 4  | 49.7    | 9.3 6   | 78 1.87  | 7 8.5  | 1.0    | .5 3   | .9 89.   | 5.18  | .31     | .12  | 34 .   | 47.1              | .02 40.5 | 32.0  | .34 247  | 7.9.06  | 65   | 2 1.73 .  | 019 . | 16 <          | 1 3.4  | .07       | .04   | 20         | .2 <.0          | 2 5.1                 | 15    |     |               |
| 6825E 3380N    | .74      | 18.30   | 7.15    | 42.3 | 47 2  | 21.1    | 6.9 6   | 98 1.31  | 8.8    | .5     | .8     | .9 109.  | 2.28  | . 22    | . 12 | 28 .   | 65.1              | .67 19.5 | 17.9  | .22 176  | 5.7.04  | 43   | 3 1.16 .  | 023 . | 13 <.         | 1 2.5  | .06       | .05   | 30         | .3 .0           | 3 3.5                 | 15    |     |               |
| 6825E 3400N    | .77      | 16.77   | 9.56    | 51.7 | 51 2  | 26.2 8  | 8.3 6   | 89 1.97  | 7 4.4  | 1.1    | .2 3   | .4 96.3  | 2.13  | . 17    | . 14 | 39 .   | 43 .0             | 95 33.0  | 27.9  | .34 265  | 5.4 .09 | 93   | 2 2.41 .  | 026 . | 15 <.         | 1 3.9  | .09       | .02   | 19         | .2 <.0          | 2 6.7                 | 15    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               |        |           |       |            |                 |                       |       |     |               |
| 6825E 3420N    | . 62     | 19.18   | 7.28    | 39.8 | 52 4  | 41.4 8  | 8.3 5   | 24 1.47  | 4.3    | . 8    | <.2 1  | .1 137.3 | .18   | . 15    | .10  | 32 .   | 68.1              | 08 26.6  | 28.2  | .30 192  | 2.8 .05 | 57   | 3 1.43 .  | 022 . | 17 <.         | 1 2.1  | .05       | .06   | 16         | .3 .0           | 3 4 3                 | 15    |     |               |
| 6825E 3440N    | .61      | 21.54   | 9.08    | 52.6 | 59 2  | 29.3    | 7.3 5   | 66 1.59  | 4.8    | .9     | .2 1   | .5 143.8 | 3.25  | . 15    | .12  | 34 .   | 62.1              | 25 28.2  | 23.4  | .28 195  | 5.8 .05 | 57 . | 4 1.52 .  | 019 . | 18 <.         | 1 2.1  | .05       | .06   | 19         | .2 0            | 346                   | 15    |     |               |
| RE 6825E 3440N | .63      | 22.30   | 9.73    | 55.0 | 63 3  | 31.2    | 7.9 5   | 67 1.62  | 2 5.0  | .9     | .3 1   | .6 145.3 | 2.27  | . 16    | . 13 | 35 .   | 64.1              | 37 29.9  | 25.1  | .28 203  | 3.7 .06 | 51 . | 4 1.55 .0 | 021 . | 19 <.         | 1 2.3  | .07       | .06   | 22         | .3 .0           | 2 4.7                 | 15    |     |               |
| 6825E 3460N    | .67      | 20.95   | 9.29    | 48.1 | 56 1  | 17.3 6  | 6.5 5   | 24 1.48  | 6.0    | .8     | .3 2   | .0 240.6 | 5.22  | .16     | . 13 | 33 .   | 57.1              | 00 27.8  | 18.1  | . 27 185 | 5.5.06  | 53 3 | 3 1.43 .0 | 021 . | 18 <.         | 1 2.3  | .06       | .05   | 19         | .3 .0           | 3 4.4                 | 15    |     |               |
| 6825E 3480N    | 1.00     | 17.84 1 | 4.54    | 71.6 | 37    | 7.8 4   | 4.8 4   | 35 1.52  | 4.7    | 1.1    | .3 6   | .5 257.4 | . 19  | . 20    | . 15 | 23 .4  | 64 .0             | 93 62.5  | 9.3   | .19 163  | 8.6 .03 | 34 ; | 2 1.28 .0 | 021 . | 15 <.         | 1 2.3  | .08       | .03   | 18         | 2 04            | 1 4 6                 | 15    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               |        |           |       | 10         |                 |                       | 10    |     |               |
| 6825E 3500N    | . 66     | 20.13 1 | 0.44    | 60.6 | 43 1  | 7.3 7   | 7.6 5   | 80 1.50  | 4.0    | .8     | <.2 3  | .3 257.4 | .21   | . 14    | .13  | 30 .6  | 66 .0             | 79 33.8  | 26.2  | .28 168  | .6 .05  | 55   | 1 1.51 .0 | 024 . | 14 <.         | 1 3.4  | .09       | .03   | 22         | 2 00            | 4 7                   | 15    |     |               |
| 6825E 3520N    | .91      | 19.34 1 | 1.91    | 65.0 | 52 2  | 3.6 7   | 7.1 5   | 61 1.54  | 5.9    | 1.0 3  | 3.1 2  | .0 217.1 | 23    | . 15    | .17  | 32 .5  | 53 .1             | 11 35.7  | 19.0  | .26 205  | .6 .064 | 54 3 | 3 1.62 .0 | 021   | 14 <.         | 1 2 1  | 07        | 04    | 17         | 2 04            | 5.0                   | 15    |     |               |
| 6825E 3540N    | . 70     | 20.53   | 9.80    | 62.2 | 47 2  | 20.1 é  | 5.7 48  | 86 1.41  | 5.4    | .8 •   | <.2 3  | .0 248.0 | . 25  | . 12    | . 14 | 27 .5  | 53 .03            | 73 30.5  | 16.2  | .22 157  | .8 .064 | 54 4 | 4 1.46 .0 | )20   | 20 <          | 1 2 2  | 08        | 03    | 16         | 2 03            | , 5.6<br>, <u>1</u> 1 | 15    |     |               |
| 6825E 3560N    | .74      | 19.94   | 9.96    | 76.8 | 51 2  | 2.1 7   | 7.6 43  | 17 1.63  | 4.3    | .9 •   | <.2 4  | .5 202.6 | . 19  | . 12    | . 15 | 31 .4  | 41 .08            | 85 34.7  | 20.7  | .25 161  | .6 .073 | 7 4  | 4 1 75 (  | 125   | -• ·<br>20 <  | 1 3 0  | 09        | .00   | 12         | 2 03            | ,<br>, 5.4            | 15    |     |               |
| 6825E 3580N    | .86      | 23.35 1 | 3.72 1  | 14.6 | 54    | 8.4 5   | 5.5 58  | 82 1.45  | 6.4    | .6     | .6 2   | .8 206.7 | .48   | . 17    | .23  | 27 .5  | 54 .13            | 38 36.8  | 10.8  | .19 130  | .7 .04  | 11 : | 2 1 13 0  | 119   | -0 -0<br>20 < | 1 1 8  | 06        | 03    | 23         | 2 0/            | 13                    | 15    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          | 10.0  | 115 100  |         |      |           |       |               | 1 1.0  | .00       | .00   | 20         | .2 .0-          | 4.5                   | 15    |     |               |
| 6825E 3600N    | .45      | 22.64 1 | 0.44    | 57.6 | 93 1  | 9.0 7   | 7.1 44  | 43 1.76  | 5.5    | 1.1 3  | 7.3 3  | .2 279.5 | .21   | .12     | . 14 | 38 .5  | 57 .09            | 95 43.2  | 21.3  | 27 176   | 2 074   | 'a 2 | 1 1 70 0  | 124   | 20 <          | 1 2 6  | 08        | 02    | 16         | 4 05            | F 2                   | 15    |     |               |
| 6850E 3100N    | . 66     | 37.26 2 | 0.47    | 74.0 | 480 2 | 1.8 14  | 1.9 158 | 52 3.53  | 61.0   | .6 78  | 3.1 1  | .7 37.6  | .17   | 2.13    | .16  | 43 .5  | 55 .08            | 88 21.8  | 15.0  | .39 136  | 9 038   | 18 2 | 1148 0    | 113   | -0<br>22      | 3 5 7  | 12        | .02   | 10         | 4 .00           | 1.5                   | 15    |     |               |
| 6850E 3120N    | .66      | 33.23 1 | 3.55    | 66.8 | 355 2 | 1.0 12  | 2.3 139 | 95 2.99  | 28.6   | .5 58  | 3.8 1  | .4 33.8  | . 14  | 1.02    | . 16 | 39 .5  | 53 .10            | 00 18.9  | 15.5  | .39 139  | .8 .039 | 9 4  | 1.40 C    | 17    |               | 246    |           | .05   | -1-2<br>66 | + .02<br>       | 9.4<br>2 Q            | 15    |     |               |
| 6850E 3140N    | .71      | 45.64 1 | 1.60    | 53.9 | 130 1 | 8.5 9   | .4 169  | 96 2.28  | 7.3    | .3 18  | 3.1 1  | .2 43.9  | .19   | .46     | . 15 | 34 7   | 73 .09            | 98 19.2  | 14 5  | 37 207   | 1 044   | 4 5  | 1 32 n    | 119   | 18 .          | 1 3 6  | .05       | .00   | 28         | .+ .02<br>3 .00 | 3.5                   | 10    |     |               |
| 6850E 3160N    | .99      | 73.55 3 | 0.45    | 97.3 | 303 1 | 1.0 11  | .4 293  | 32 2.45  | 30.4   | .5 28  | 3.7    | .3 75.9  | 1,26  | 1.14    | .57  | 31 1 6 | 5 . 0.<br>16 - 23 | 37 16 1  | 8.8   | 42 350   | 1 019   | 8 10 | 133 0     | 114   |               | 1 2 7  | .00<br>00 | 14    | 20<br>02   | .uuz            | 3.0<br>3.5            | 10    |     |               |
|                |          |         |         |      |       |         |         |          |        |        |        |          | 0     |         |      |        |                   |          | 0.0   | 000      | .1 .010 | - 1( | , 1.JJ .U | . דב  |               | + 2.1  | . vo      | . 1.4 | 34         | .9 .09          | ა.თ                   | 10    |     |               |
| STANDARD DS5   | 12.93 14 | 42.77 2 | 5.44 13 | 37.2 | 270 2 | 4.8 11  | .9 75   | 5 2.99   | 18.8   | 6.1 43 | 3.3 2. | 7 47.1   | 5.64  | 3.68 6  | . 23 | 62 .7  | 2.09              | 94 12.4  | 185.0 | .65 135  | .0 095  | 5 17 | 2 09 0    | 33    | 4 4           | 5 3 4  | 1 02      | 02 1  | 72 4       | 7 97            | 6.6                   | 16    |     |               |
| <br>           |          |         |         |      |       |         |         |          |        |        |        |          |       |         |      |        |                   |          |       |          |         |      |           |       |               | - 0.7  |           |       |            |                 | 0.0                   | 4U    |     |               |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA



Paqe 9

|                  |           |           |         |              |           |                 | -        |         |             |        |                   |        |          |                |              |        |          |         |           |               |            |           |        |         |       |            |      |                | ~~~     |        | ACME ANALYTICAL |
|------------------|-----------|-----------|---------|--------------|-----------|-----------------|----------|---------|-------------|--------|-------------------|--------|----------|----------------|--------------|--------|----------|---------|-----------|---------------|------------|-----------|--------|---------|-------|------------|------|----------------|---------|--------|-----------------|
| SAMPLE#          | Mo        | Cu        | Pb      | Zn           | Ag        | Ni              | Co M     | n Fe    | As          | U      | Au TI             | i Sr   | Cd       | Sb             | Bi N         | / Ca   | р        | La Ci   | r Ma      | Ba T          | 'i B       | A1 1      | Na K   | u <     | с т   | 1 5        | Ha   | So             | To Co   | Cample |                 |
|                  | ppm       | ppm       | ppm     | ррт          | ppb       | ppm p           | ing mga  | m ž     | ppm         | DDA 1  | ומס לסו           | 1 001  | DDM      | מ וזוממ        | າຫຼຸດທ       | n ¥    | ¥г       | ດສຸກກ   |           |               | 7 nnm      | e i       | ~ ~    |         |       | , J<br>. ~ | ng   | 3 <del>0</del> | 10 00   | Sample |                 |
| <br>             |           |           |         |              | -         |                 |          | ·       |             |        |                   |        |          | P              |              |        | ~ p      |         |           | ppili ,       | * ppil     | ~         | ~ ~    | ppm pt  | m pp  | n 2        | uqq  | ppm            | opm ppm | gn     |                 |
| G-1              | 1.35      | 2.81      | 2.28    | 43 5         | 12        | <u>49</u>       | 1 1 5 19 | 9 1 98  | 3           | 18     | - 2 1 -           | 95.0   | 01       | 0.2            | 10 40        |        | 000 0    |         |           |               |            |           |        |         |       |            |      |                |         |        |                 |
| 6850F 3180N      |           | 24 16 1   | 11 74   | 54 1         | 210       | 22 0 11         | 0 1551   | 1 2 72  |             | 4 21   |                   | . 03.0 | .01      | .02 .          | 10 40        | .53    | .083 8   | .4 14.4 | 4 .50 240 | 0.0 .13,      | / <1       | .87.08    | .52    | 1.8 2.  | 2.3   | 1 .02      | <5   | <.1            | 02 4.7  | 15     |                 |
| 6050E 3200N      | .01       | 24.10 1   | 14.47   | 54.1         | 100       | 20.0 11         | . 5 1300 | 0 2.73  | 21.1        | .4 3/  |                   | 41.1   | . 21 1   | .20 .          | 16 29        | .66    | .096 20  | .9 10.4 | .30 196   | 6.8 .035      | 54         | 1.12 .03  | .20    | .3 3.   | 3.0   | 7.10       | 42   | .3 <.          | 02 3.2  | 15     |                 |
| 0050E 3200N      | . 05      | 24.44     | 14.4/   | 50.2         | 162 .     | 38.3 10         | 1.5 1198 | 5 2.38  | 14.5        | .8 t   | .4 2.7            | 35.3   | . 22     | .91 .:         | 20 41        | 49     | .086 26  | .8 25.1 | .36 214   | 4.1 .067      | 73         | 1.63 .02  | 20.18  | .4 4.   | 4.09  | 9 .05      | 27   | .2 .           | 02 4.9  | 15     |                 |
| 6050E 3220N      | . /5      | 22.52     | 12.43   | 5/.1         | 100 .     | 32.0 10         | 1.5 10/3 | 3 2.3/  | 10.0        | 1.0 1  | 8 3.1             | 36.4   | .21      | . 78           | 9 42         | . 35   | .086 31  | .1 24.3 | .31 263   | 3.4 .087      | 72         | 1.91 .01  | . 18   | .25.    | 3.09  | 9 .03      | 24   | .2 .           | 03 5.7  | 15     |                 |
| 6850E 3240N      | . 62      | 22.46 1   | 10.29   | 51.8         | 82 3      | 37.1 9          | .0 654   | 4 1.90  | 8.3         | .9 1   | .2 1.6            | 77.1   | . 19     | .44            | .5 39        | .61    | .128 32  | .0 29.3 | . 34 248  | 3.8 .062      | 22         | 1.55 .02  | .22    | .2 3.   | 0.07  | .07        | 16   | .2 .           | 02 4.7  | 15     |                 |
|                  |           |           |         |              |           |                 |          |         |             |        |                   |        |          |                |              |        |          |         |           |               |            |           |        |         |       |            |      |                |         |        |                 |
| 6850E 3260N      | . 78      | 21.67 1   | 13.45   | 59.4         | 112 3     | 34.0 9          | .7 896   | 5 2.31  | 8.7         | 1.3 1  | .1 3.4            | 46.7   | . 32     | .56 .2         | 5 44         | .42    | .090 33  | 3 26.7  | .33 349   | 9.7 .115      | 5 2        | 2.62 .02  | 3.14   | .2 5    | 2 10  | 05         | 19   | 3              | 02 7 3  | 15     |                 |
| 6850E 3280N      | .63       | 19.64 1   | 1.10    | 49.8         | 100 2     | 26.2 8          | .0 836   | 5 1.89  | 5.2         | 1.1 1  | .3 1.8            | 60.4   | . 19     | .27 .1         | .6 37        | .52    | .090 28  | 8 21.4  | .28.278   | 3 7 089       | 3          | 2 19 02   | 5 14   | < 1 3   | 2 09  | 2 05       | 21   | .o             | 02 5.0  | 15     |                 |
| 6850E 3300N      | .79       | 39.97     | 8.49 (  | 69.7         | 209 4     | 4.0 14          | .1 1684  | 2.28    | 21.7        | .5 3   | .1 1.2            | 46.7   | 32       | 74 1           | 6 32         | 65     | 100 13   | 0 13 2  | 10 167    | 7 2 040       | , v<br>, v | 1 10 02   | 0 10   | 1 0.    | c .00 | .05        | 21   | . 2 .          | 02 0.0  | 12     |                 |
| 6850E 3320N      | .79       | 24.07     | 9 24 4  | 41.7         | 120 7     | 79 6 11         | 8 910    | 1 2 12  | 20.8        | 7 2    | 2 2 3             | 66 E   | 17 1     | 11 1           | 6 02<br>6 01 | .00    | . 100 10 | 0 10.2  | . 19 10/  | .2 .040       |            | 1.10 .02  | .2 .10 | .1 3.   | 5 .07 | .05        | 34   | .3.            | 03 3.1  | 15     |                 |
| 6850F 3340N      | 45        | 16.85     | 3 93 1  | 30 5         | 74 27     | 70 1 15         | 7 460    | 1 1 1 2 | CC 1        | 1 4    | 2 0               | CA 7   | 10 4     |                | 0 31         | .55    | .009 25  | 0 31.2  | .30 211   | 1.6 .064      | + 2        | 1.48 .02  | 0.15   | .1 3.   | 3 .07 | .04        | 23   | .3 <.          | 02 4.2  | 15     |                 |
| 00002 001011     | . 10      | 10.00     | 0.50    |              | 14 21     | 0.1 15          | ./ 400   | 1.12    | 33.1        | .1 4   | .2 .9             | 04./   | .13 4.   | 51 .(          | 9 19         | .58    | .11/ 6   | 9 36.7  | .26 105   | 5.5 .039      | ) 1        | .48 .01   | 9.07   | <.1 1.  | 5.05  | .04        | 25   | .2 <.          | 02 1.7  | 15     |                 |
| 60505 33CON      | 1.10      | 17 10 1   | 1 05 7  |              |           |                 |          |         |             |        |                   |        |          |                |              |        |          |         |           |               |            |           |        |         |       |            |      |                |         |        |                 |
| 0050E 3300N      | 1.10      | 1/.13 1   | 1.25 5  | 56.2         | 59 5      | 9./ Ş           | .8 516   | 1.60    | 16.8        | 1.0    | .8 7.6            | 77.6   | .16 .    | 71 .1          | 7 21         | . 48   | .074 59. | 6 16.9  | .26 272   | 2.4 .052      | 2 2        | 1.35 .01  | 7.21   | <.1 2.0 | .07   | .04        | 28   | .2 <.          | 02 3.8  | 15     |                 |
| 6850E 3380N      | 1.57      | 18.32 1   | 0.83 5  | 53.7         | 52 1      | .9.2 6          | .0 551   | 1.31    | 6.0         | .9     | .6 4.2            | 107.8  | .19 .    | 21 .1          | 0 21         | .58    | 100 44   | 5 10.7  | .20 274   | .5 .054       | 2          | 1.22 .01  | 8.19   | <.1 1.9 | .07   | .05        | 34   | .3 .           | 02 3 6  | 15     |                 |
| 6850E 3400N      | . 64      | 16.79     | 7.67 3  | 39.0         | 56 2      | 26.0 6          | .6 503   | 1.49    | 4.4         | .8     | .5 1.3            | 122.8  | .19 .    | 14 .1          | 1 30         | .53    | .097 27. | 5 20.8  | .27 184   | .6 .063       | 2          | 1.45 .02  | 2.15   | <.1 2.0 | .06   | .04        | 14   | 2 <            | 12 4 3  | 15     |                 |
| 6850E 3420N      | . 70      | 22.23 1   | 0.80 6  | 51.4         | 65 3      | 9.0 8.          | .9 550   | 1.88    | 6.0         | .9     | .9 3.6            | 118.0  | .21 .    | 21 .1          | 4 39         | . 58   | 122 40.  | 7 31.9  | .35 189   | .2 .077       | 3          | 1.45 .01  | 8 25   | < 1.3   | > 08  | 0.4        | 10   | 2 <            | 12 / 0  | 10     |                 |
| 6850E 3440N      | . 62      | 20.71     | 8.79 5  | 50.3         | 68 4      | 1.7 8.          | .6 506   | 1.68    | 5.1         | L.O    | .7 1.9            | 152.5  | .17 .    | 18 .1          | 2 37         | . 68   | 133-34   | 8 31 8  | 33 195    | 3 067         | 3          | 1 50 02   | n 10   | <1 21   | 00    | .04        | 10   |                | J2 4.9  | 15     |                 |
|                  |           |           |         |              |           |                 |          |         |             |        |                   |        |          |                |              |        |          | 0 01.0  | .00 100   | .0 .007       |            | 1.50 .02  | .17    | >.1 ∠.; | .00   | .00        | 15   | . 3 .          | JZ 4.8  | 15     |                 |
| 6850E 3460N      | .79       | 21.46 1   | 1.08 6  | 50.7         | 74 1      | 4.9 6.          | .2 526   | 1.40    | 6.3         | 9      | 7 1 0             | 269 3  | 30       | 20 1           | 5 20         | 02     | 106 07   | 2 15 6  | 26.224    | F 0/0         |            | 1 46 00   |        |         |       |            |      |                |         |        |                 |
| RE 6850E 3460N   | .86       | 22.55 1   | 1 19 E  | 33           | 72 1      | 626             | 4 546    | 1.46    | 6.4         |        | 0 1 1             | 200.1  | .00 .    | 10 1           | 5 00         | .02 .  | 120 27.  | 2 15.0  | .20 234   | .5 .060       | 4          | 1.46 .02  | J .21  | <.1 1.8 | .08   | .09        | 22   | .3 .1          | )4 4.5  | 15     |                 |
| 6850F 3480N      |           | 16 50 14  | 6.83 7  | 2 1          | 57 1      | 0.E 0.          | 0 E01    | 1 77    | E 0         |        | -> 1.1<br>-> r -> | 100.1  | .04 .    | 19 .1          | 5 32         | . 65 . | 133 29.  | 0 17.4  | .2/ 240   | .8 .061       | 3 1        | 1.53 .02  | 1.21   | <.1 1.9 | .07   | .09        | 25   | .3 .1          | )3 4.7  | 15     |                 |
| 6850E 3500N      | 00        | 10 02 1   | 2 A1 E  | 0.7          | 00 1      | 0.0 0.<br>F 0 F | 0 450    | 1.77    | 5.0         |        | .2 5.3            | 101.0  | . 15 .   | 19 .1          | / 24         | .49 .  | 109 82.  | 3 10.3  | .21 169   | .0 .037       | 11         | 1.51 .01  | 7.19   | <.1 2.5 | .08   | .03        | 15   | .2 <.(         | )2 5.6  | 15     |                 |
| 6050E 3500M      | .05 .     | 10.00 1   | 2.41 D  | 9.7<br>5.0 1 | 90 1      | 5.2 5.<br>4 F 0 | .9 459   | 1.58    | 5.6         |        | 9 3.2             | 118./  | . 18 .   | 15 .1          | 5 25         | .36.   | 148 39.  | 7 11.9  | .18 225   | .8 .085       | . 12       | 2.16 .028 | 3.11   | <.1 2.6 | . 08  | .02        | 12   | .2 <.0         | 2 6.4   | 15     |                 |
| 0050E 3520N      | .00 4     | 21.90 1/  | 2.39 5  | 5.9 1        | 103 3     | 4.5 8.          | / 504    | 1./6    | 6.2         | 6 1.   | 9 3.3             | 288.1  | .21 .    | 16 .1          | 7 35         | .59.   | 104 42.  | 9 23.0  | .33 202   | .4 .090       | 22         | 2.00 .029 | .16    | <.1 3.2 | .09   | .04        | 17   | .3 .(          | 3 5.8   | 15     |                 |
|                  |           |           |         |              |           |                 |          |         |             |        |                   |        |          |                |              |        |          |         |           |               |            |           |        |         |       |            |      |                |         |        |                 |
| 6850E 3540N      | .57 2     | 22.33 12  | 2.62 5  | 8.9          | 82 2      | 6.28.           | 5 561    | 1.83    | 6.0 1       | .3 .   | 2 3.8             | 193.3  | .18 .    | 14 .1          | 5 36         | .53.   | 112 43.  | 5 24.5  | .34 212.  | .5 .094       | 32         | 2.05 .024 | .18    | <.1 3.3 | .10   | .04        | 20   | .3 (           | 3 5 9   | 15     |                 |
| 6850E 3560N      | .72 2     | 24.06 10  | 0.77 10 | 7.6          | 65 19     | 9.9 6.          | 7 639    | 1.37 1  | 0.9         | .7.    | 4 2.0             | 359.7  | .40 .3   | 21 .10         | 3 28         | .81 .  | 206 27.  | 3 18.0  | .25 184.  | .6 .060       | 71         | 1.34 .018 | 23     | < 1 2 2 | 08    | 07         | 22   | 1 1            | 4 4 1   | 10     |                 |
| 6850E 3580N      | .65 1     | 17.52 9   | 9.54 7  | 0.8          | 41 1      | 5.0 6.          | 6 423    | 1.41    | 5.6         | .9.    | 2 3.4             | 255.6  | .20 .    | 14 .14         | 26           | .53 .  | 068 28   | 7 16 2  | 23 140    | 6 072         | 4 1        | 1 53 025  | 26     | <1 2 5  | 12    | ,          | 10   |                |         | 15     |                 |
| 6850E 3600N      | .77 2     | 20.59 9   | 9.85 6  | 1.1          | 48 19     | 5.2 5.          | 8 405    | 1.43    | 6.0         | .6.    | 5 2.7             | 299.7  | .20      | 18 .13         | 30           | -58    | 104 31   | 5 18 6  | 24 138    | 2 066         | 3 1        | 1 20 020  | 20     | ~1 2.5  | . 12  | .04        | 10   | .2 .0          | 4.4     | 15     |                 |
| 6875E 3100N      | .72 3     | 84.82 12  | 2.35 6  | 8.4 3        | 846 29    | 5.7 12.         | 7 1400   | 3.03 2  | 2.5         | .5 25. | 8 1.8             | 45.2   | 16.1.0   | 16 14          | 37           | 56     | 088 21   | 2 16 7  | 40 147    | 0 046         | 5 1        |           | .20    | ~.1 2.1 | .00   | .05        | 20   | .4 .0          | 4 3.8   | 15     |                 |
|                  |           |           |         |              |           |                 |          |         |             |        |                   |        |          |                | 0,           | .50 .  | 000 21.  | , 10.7  | .40 147.  | .9.040        | 5 1        | 1.30 .010 | .23    | .2 4.8  | .08   | .05        | 26   | .4 <.0         | 2 4.0   | 15     |                 |
| 6875E 3120N      | .61 2     | 8.24 11   | .22 6   | 653          | 77 24     | 1 4 11          | 5 1246   | 2 98 2  | 1 9         | 5 54   | 0 1 0             | 10 1   | 14 0     |                | 20           |        | 000 10 / | 15.0    |           |               |            |           |        |         |       |            |      |                |         |        |                 |
| 6875E 3140N      | 66 2      | 5 91 10   | 0.00 64 | 6 A 2        | 006 D6    | 7 12            | 6 140C   | 2.00 2  | ч. у<br>о и | 4 07   | 0 1.0             | 40.4   | .14 .3   | 71 .14         | . 30         | .55 .  | 089 19.5 | 15.9    | .44 115.  | 0 .041        | 4 1        | 39 .017   | . 19   | .2 4.1  | .09   | .06        | 34   | .3 <.0         | 2 4.0   | 15     |                 |
| 6975E 2160N      |           | .J. 51 10 |         | 0.4 2        | .00 20    |                 | 0 1400   | 3.08 2  | 9.4         | .4 8/. | 2 1.3             | 54.7   | .14 1.0  | .11            | 41           | 1.27 . | 111 23.2 | 2 17.7  | .55 122.  | 6 .036        | 51         | 48 .017   | . 18   | .1 4.0  | .08   | .08        | 29   | .4 <.0         | 2 4.3   | 15     |                 |
| 0075E 3100N      | .76 2     | 0.00 9    | 0.81 5  | 5.3 1        | .61 31    | 1.3 9.9         | 9 1246   | 2.27 1  | 4.2         | .7 4.  | 8 2.3             | 62.3   | .17 .5   | 57 .12         | 33           | .50 .  | 100 27.0 | 19.4    | .29 204.  | 7.069         | 41         | .46 .024  | . 22   | .1 3.7  | .07   | .06        | 25   | .3 .0          | 2 4.3   | 15     |                 |
| 08/5E 3180N      | .89 2     | 9.54 12   | 2.89 62 | 2.5 2        | 1/ 37     | .0 13.1         | 7 1396   | 2.61 1  | 8.6         | .66.   | 4 1.9             | 49.1   | .25 1.0  | 8.16           | 39           | .58 .  | 090 27.2 | 18.8    | .31 284.  | 7 .057        | 31         | .42 .017  | . 19   | .3 5.6  | .08   | .06        | 41   | .4 .0          | 2 4.2   | 15     |                 |
| 6875E 3200N      | .70 2     | 9.03 11   | . 17 51 | 1.2 1        | 61 42     | 2.5 9.5         | 5 965    | 2.44 10 | 0.5         | .8 2.  | 9 2.6             | 42.1   | .18 .8   | 7 .13          | 43           | .52 .  | 100 28.0 | 28.4    | .37 225.  | 0.072         | 41         | .64 .019  | . 16   | .3 4.5  | .08   | .07        | 31   | 3 0            | 2 4 8   | 15     |                 |
|                  |           |           |         |              |           |                 |          |         |             |        |                   |        |          |                |              |        |          |         |           |               |            |           |        |         |       |            | ••   |                |         | 10     |                 |
| 6875E 3220N      | .71 2     | 6.33 11   | .66 53  | 3.9 1        | 19 54     | .6 9.9          | 9 827    | 2.18 10 | 0.4         | 9 1.   | 2.9               | 52.6   | .19 .9   | 6 .15          | 44           | 50     | ING 35 A | 36.3    | 12 223    | 1 060         | 2 1        | 10 020    | 20     | 6 4 0   | 07    | 05         | 05   |                |         |        |                 |
| 6875E 3240N      | .60 1     | 7.15 8    | .97 42  | 2.3          | 74 27     | .7 7.3          | 3 679    | 1.69 !  | 5.2         | 9      | 7 1 7             | 70 7   | 16 3     | 8 12           | 32           | 54 0   | 188 26 5 | 20.0    | 20 270    | 009<br>2 .007 | 21         | .40 .020  | . 20   | .0 4.8  | .07   | .05        | 25   | .3 <.0         | 2 4./   | 15     |                 |
| 6875E 3260N      | .79 1     | 7.27 12   | .17 51  | 1.8 s        | <br>89 22 | 6 7 3           | 2 750    | 1 72 4  | 5.2         | a .    | 2 1 5             | 16.0   | 22 0     | ы .10<br>с .10 | 34           |        | NO 20.5  | 20.0    | .20 2/9.  | ა.U85         | 31         | .8/ .027  | . 19   | .2 3.6  | .07   | .05        | 18   | .2 .0          | 2 5.3   | 15     |                 |
| 6875F 3280N      | 76 1      | 9 05 11   | 50 53   | 2 8 10       | 03 33     | 5 7 9           | 2 715    | 1 05 4  | <br>        | · · ·  | , 1.0<br>. 1.7    | 70.7   |          | U .10          | 34           | .42 .{ | 102 23.8 | 18.5    | .23 248.  | 5.090         | 32.        | .02 .027  | .11    | <.1 3.1 | .07   | .05        | 19   | .2 .0          | 2 6.0   | 15     |                 |
| 6875E 3300N      | .70 1.    | 2 22 A    | 17 40   | 0 I(         | 00 00     | .J /.C          | 7 020    | 1.00 0  | ). Z 1      |        | · 1./             | 54.3   | .24 .2   | 5.16           | 33           | .49 .1 | .05 26.7 | 27.2    | .29 255.  | 5 .092        | 32.        | .16 .021  | . 15   | <.1 3.0 | . 08  | .05        | 21   | .2 .0          | 6.2     | 15     |                 |
| OUVUE JOUUN      | .00 2     | 2.22 9    | .1/ 48  | 5.8 I(       | NR 108    | .5 12.7         | 939 .    | 2.08 21 | 1.6         | 8 1.3  | 3 2.2             | 58.7   | . 22 . 8 | 4.15           | 31           | .54 .( | 72 24.4  | 35.9    | .32 227.0 | 0.080         | 41.        | .81 .023  | . 19   | .1 4.0  | .08   | .04        | 16   | .3 <.02        | 2 5.0   | 15     |                 |
|                  |           |           |         |              |           |                 |          |         |             |        |                   |        |          |                |              |        |          |         |           |               |            |           |        |         |       |            |      |                |         |        |                 |
| <br>STANDARD DS5 | 12.77 143 | 3.56 25   | .67 136 | 5.0 28       | 82 24     | .7 11.9         | 747      | 3.03 18 | 8.9 6       | 1 41.4 | 2.8               | 46.8 5 | .56 3.9  | 0 6.41         | 61           | .75 .0 | 98 12.2  | 180.5   | .64 136.3 | 3 .097        | 17 2.      | .00 .033  | .14    | 1.9 3.5 | 1.03  | .03        | 72 A | .8 .8'         | 8 6 4   | 15     |                 |
|                  |           |           |         |              |           |                 |          |         |             |        |                   |        |          |                |              |        |          |         |           |               |            |           |        |         |       |            |      | .0 .00         | / 0.4   | 10     |                 |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🔨 F.



Page 10



|                |         |       |                  |       |       |                 |        |          |         |          |            |                |              |        |           |             |            | _                  |        |        |           |                  |                |                  |       |        | -      |               |            |       |                                                                                                                 |                |               |       | <br> |
|----------------|---------|-------|------------------|-------|-------|-----------------|--------|----------|---------|----------|------------|----------------|--------------|--------|-----------|-------------|------------|--------------------|--------|--------|-----------|------------------|----------------|------------------|-------|--------|--------|---------------|------------|-------|-----------------------------------------------------------------------------------------------------------------|----------------|---------------|-------|------|
| SAMPLE#        | Mo      | C     | u Pt             | ) Zr  | Ag    | Ni              | Со     | Mn       | Fe      | As       | U A        | u Th           | Sr           | Cd     | Sb        | Bi          | V          | Ca F               | ' La   | Cr     | Ma        | Ba               | Ti             | B A1             | Na    | к      | ພ      | SC T          | 1 9        | На    | 50                                                                                                              | To (           | Ga Sam        | nlo   |      |
|                | ppm     | pp    | m ppm            | n ppr | i ppb | ppm             | ppm    | ppm      | хр      | DIR DI   | ממ וווכ    | b DDM          | DDM          | DDM    | ກມາຍ      | n maa       | שמנ        | * *                | DOM    | กกส    | žr        | ດດຫ              | τ.<br>Σ η      | nm 2             | 2     | 9      | nnm r  | 00 00         | , .<br>n ? | ng    | 000 1                                                                                                           |                | uu Juii<br>om | ip re |      |
| <br>           |         |       |                  |       |       |                 |        |          |         |          |            |                |              |        |           |             |            |                    |        |        | ~ F       |                  | ~ P            | pin 2            | ~     | ~      | bhu t  | ihii hh       |            | ppu   |                                                                                                                 | phu ph         | 200           |       | <br> |
| 6-1            | 1.32    | 26    | 2 2 19           | 38.6  | 10    | 4 0             | 3 8    | 475 1    | 82      | 1 1      | 7 6        | 2 / 1          | <u>81</u> /  | 01     | 02        | 00          | 26         | 10 000             | 7 6    | 12.0   | 45 001    |                  | 110            | .1 74            | 000   |        | 1.0.0  | 1 0           |            | -     |                                                                                                                 |                |               |       |      |
| 6875E 3320N    | 70      | 18.0  | 5 10 64          | 20.0  | 150   | 24.0            | 10 4   | 1006 1   | 00 0    | -1 1     | ./ \<br>   | 6 4.1<br>1 1 0 | 01.4<br>FA 0 | 10.    | . UZ .    | 09          | 30 .       | 49 .082<br>70 .060 | 10.7   | 12.8   | .45 201   | 1.4 .1           | 119 •          | <1./4            | .089  | .44    | 1.8 2  | .1 .2         | 3 <.01     | <5    | .1 <.                                                                                                           | 02 4.          | . 2           | 15    |      |
| 6976E 2240N    | . / 3   | 10.0  | 5 10.04          | 45.0  | 150   | 100.0           | 10.4   | 746 1    | .90 8   | ./ .     | .5 4.4     | 4 1.2          | 54.9         | . 19   | .43 .     | 33          | 23 .       | /0 .060            | 12.7   | 8.8    | .19 212   | 2.9.0            | 047            | 2 1.16           | .023  | .10    | .1 4   | .4 .0         | 3.06       | 31    | .4 <.                                                                                                           | 02 3.          | .2            | 15    |      |
| 6075E 3340N    | .03     | 18.4  | 5 9.80<br>5 9.80 | 45.9  | 65    | 136.8           | 11.3   | /46 1.   | .35 /0  | .9 .     | 4 2.1      | 5 I./          | /5.0         | .31 2  | .36 .     | 25          | 22 .       | 54 .132            | 15.7   | 24.3   | .25 209   | 9.9.0            | 051            | 4 1.00           | .017  | . 13   | <.1 2  | .3 .01        | 3.04       | 34    | .4 .                                                                                                            | 03 3.          | .2            | 15    |      |
| 68/5E 3360N    | .95     | 18.5  | 9 12.41          | 55.5  | 58    | 26.8            | 7.5    | 634 1.   | .56 9   | .9 1.    | 2 .9       | 9 5.0          | 77.2         | .17    | .41 .     | 11          | 24 .:      | 38 .097            | 52.0   | 12.3   | .22 333   | 3.1 .0           | 059            | 1 1.60           | .019  | .14    | <.1 2  | .4 .08        | 3 .02      | 17    | .2 <.                                                                                                           | 02 4.          | .9            | 15    |      |
| 6875E 3380N    | .56     | 20.6  | 1 9.32           | 54.9  | 89    | 30.0            | 7.6    | 573 1.   | .46 5   | .4 .     | 8 .9       | 9 1.9          | 108.7        | .21    | .15 .     | 13          | 27 .!      | 58 .132            | 27.8   | 23.0   | .28 191   | L.O .O           | 063            | 3 1.40           | .019  | .17 ·  | <.1 2  | .4 .03        | .03        | 15    | .3.                                                                                                             | 03 4.          | .5            | 15    |      |
|                |         |       |                  |       |       |                 |        |          |         |          |            |                |              |        |           |             |            |                    |        |        |           |                  |                |                  |       |        |        |               |            |       |                                                                                                                 |                |               |       |      |
| 6875E 3400N    | .61     | 19.4  | 5 8.96           | 46.3  | 75    | 24.3            | 7.0    | 506 1    | 50 4    | .3.      | 8.8        | 3 1.8          | 120.4        | .17    | .14 .     | 11          | 31 .!      | 57 .116            | 33.1   | 22.2   | .28 194   | 1.3 .0           | 057            | 3 1.36           | .016  | .17 •  | <.1 2  | .2 .06        | 5.04       | 11    | .2 <.                                                                                                           | 02 4.          | 5             | 15    |      |
| 6875E 3420N    | . 65    | 20.4  | 9.73             | 49.8  | 88    | 20.2            | 6.6    | 511 1.   | .48 4.  | .8.      | 9.8        | 3.9            | 151.2        | .24    | . 14 .    | 13          | 31 .6      | 57.145             | 31.3   | 19.5   | .29 206   | 5.2.0            | 055            | 3 1.54           | .018  | .19    | <.1 1  | .7 .07        | .06        | 20    | 3                                                                                                               | 02 5           | 0             | 15    |      |
| 6875E 3440N    | . 59    | 19.8  | 5 9.41           | 47.0  | 89    | 18.0            | 6.5    | 534 1.   | 51 4.   | .2 1.    | 0 1.4      | 1.8            | 182.0        | . 24   | . 15 .    | 12          | 32 .3      | 3.131              | 31.3   | 18.8   | .30 213   | 3.1.0            | 052            | 3 1.57           | .020  | .17    | < 1 1  | 6 06          | 5 07       | 15    | 3 <                                                                                                             | 02 5           | 2             | 15    |      |
| 6875E 3460N    | .53     | 20.04 | 8.41             | 57.5  | 74    | 17.6            | 5.7    | 474 1.   | 33 4.   | .5 1.    | 1.6        | 5.8            | 220.2        | . 20   | .13 .     | 12          | 26 .7      | 2.119              | 27.0   | 15.6   | .25 207   | 6 0              | )55            | 3 1 55           | 022   | 14     | < 1 1  | 7 07          | 06         | 16    | 2                                                                                                               | 02 0.          | 0             | 15    |      |
| 6875E 3480N    | .53     | 19.60 | ) 10.24          | 82.1  | 88    | 18.6            | 6.2    | 553 1.   | 39 5.   | .2 1.    | 2 2.9      | 9              | 235.8        | 34     | 15        | 14          | 25 A       | 6 141              | 27 2   | 14 7   | 28 215    | .0.0             | 163            | 2 1 70           | 022   | 15     | ~ 1 1  | 0 00          | .00        | 10    |                                                                                                                 | 03 4.<br>03 F  | 2             | 15    |      |
|                |         |       |                  |       |       |                 |        |          |         |          |            |                |              |        |           |             |            |                    | 27.2   | 14.7   | .20 213   |                  | .05            | 2 1.70           | .022  | .15 •  | ·. 1 1 | .9 .00        | .05        | 15    | .3.                                                                                                             | 03 5.          | 3             | 15    |      |
| 6875E 3500N    | .62     | 25.9  | 12 00            | 49 N  | 57    | 35.4            | 11 1   | 728 1    | 96 3    | 5 1      | 2 5        |                | 161 4        | 14     | 12        | 12          | 10 0       | 0 157              | 62 E   | 27 6   | 54 105    | 0.0              | 175            | 0 1 60           |       | 10     |        |               |            |       |                                                                                                                 |                |               |       |      |
| 6875E 3520N    | 13      | 12 5  | 22 20            | 65.9  | 69    | 27.0            | 15 0   | 010 2    | 24 2    | A 1      | с.,        | , 0.0          | 101.4        | 10     | .10 .     | 10 .        | 40 .C      | 6 .157             | 110.0  | 37.0   | .54 135   | .2.0             | 1/5            | 2 1.69           | .024  | .13 <  | <.1 4  | .0 .0/        | .04        | 16    | .3 .                                                                                                            | 02 5.          | 6             | 15    |      |
| 6875E 3540N    | .40     | 72.J. | 1 16 10          | 20 1  | 100   | 37.5            | 10.1   | 515 2.   | 00 E    | .4 1.    | 5.4<br>0.4 |                | 105.5        | . 18   | .11 .     | 10 0        | 62 I.I     | 5.348              | 113.0  | 48.9   | .97 104   | .5 .0            | 192            | 1 1.22           | .031  | .11 <  | <.1 3  | .4 .06        | .04        | 15    | .2 .                                                                                                            | 02 5.          | 9             | 15    |      |
| 6075E 3540N    | ./1     | 17 0  | 10.10            | 00.1  | 100   | 37.0            | 10.1   | 694 I.   | 82 5.   | .1 1.    | 2 .t       | 2.0            | 124.4        | . 28   | . 18 .    | 16 .        | 3/.8       | 3.142              | 50.5   | 25.2   | .32 214   | .3 .0            | )84            | 2 2.05           | .024  | .13 <  | <.1 2  | .9 .09        | .04        | 22    | .2 .                                                                                                            | 02 6.          | 6             | 15    |      |
| 6073E 3500N    | ./5     | 17.02 | 11.11            | 58.4  | 55    | 34.0            | 8.3    | 503 1.   | 74 3.   | .6 1.    | 0.3        | 4.0            | 8/.6         | . 15   | .16 .     | 14 :        | 35 .3      | 9.112              | 38.7   | 25.0   | .29 155   | .3 .01           | 87             | 2 1.59           | .020  | .14 <  | <.1 2  | 8 .08         | .03        | 17    | .1 <.                                                                                                           | 02 5.3         | 3             | 15    |      |
| 66/5E 358UN    | ./5     | 21.98 | 10.51            | 65.8  | 90    | 1/./            | 6.9    | 532-1.   | 55 4.   | 9 1.     | 1.9        | 1.0            | 155.4        | . 26   | .13 .     | 13 3        | 32 .5      | 9.211              | 40.4   | 18.9   | .25 193   | .4 .05           | 159            | 2 1.55           | .019  | .15 <  | <.1 1  | .7.09         | .04        | 14    | .3 .                                                                                                            | 03 5.          | 1             | 15    |      |
|                |         |       |                  |       |       |                 |        |          |         |          |            |                |              |        |           |             |            |                    |        |        |           |                  |                |                  |       |        |        |               |            |       |                                                                                                                 |                |               |       |      |
| 6875E 3600N    | . 58    | 19.72 | 10.17            | 53.8  | 55    | 23.4            | 7.1    | 460 1.   | 65 3.   | 9 1.     | 1.3        | 2.8            | 166.0        | . 18   | . 13      | 13 3        | 36.5       | 8 .146             | 41.3   | 22.8   | .27 171   | .4 .02           | 71             | 2 1.44           | .018  | .16 <  | 1 2    | 5.07          | .04        | 12    | .3 <.1                                                                                                          | 02 4.3         | 7             | 15    |      |
| 6900E 3100N    | . 53    | 34.07 | 12.73            | 50.9  | 204   | 14.3            | 9.3    | 1243 2.  | 14 8.   | 1 .      | 3 2.9      | .6             | 53.7         | . 18   | .79 .     | 13 3        | 31.8       | 0.098              | 17.6   | 8.1    | .35 261   | .8 .02           | 26             | 6 1.17           | .015  | . 21   | .2 3   | 9.05          | .08        | 30    | .4 <.(                                                                                                          | 02 3.3         | 3             | 15    |      |
| 6900E 3120N    | .61     | 26.28 | 8.80             | 63.6  | 191   | 26.0            | 11.1   | 1203 2.  | 90 16.  | 8.       | 4 12.2     | 1.5            | 41.1         | . 14   | .95 .:    | 14 3        | 38 .5      | 8 .075             | 17.7   | 14.6   | .43 134   | .9 .03           | 36             | 5 1.28           | .013  | . 18   | .1 4   | 4 .07         | .05        | 21    | .2 < (                                                                                                          | 12 3 6         | 6             | 15    |      |
| 6900E 3140N    | . 59    | 26.29 | 7.53             | 60.8  | 194   | 21.7            | 11.6   | 1557 2.  | 66 24.  | 1 .:     | 3 14.7     | .6             | 28.1         | .13 1  | .35 .3    | 13 3        | 33.6       | 0.087              | 12.9   | 7.4    | .30 109   | .0.02            | 22             | 4.87             | .015  | .14    | .1 3   | 8 06          | 06         | 44    | 3 < 1                                                                                                           | 12 2 0         | ů.            | 15    |      |
| RE 6900E 3140N | .62     | 26.00 | 7.21             | 61.3  | 193   | 22.4            | 11.9   | 1532 2.  | 62 23.  | 9 .:     | 3 15.4     | .5             | 27.4         | .14 1  | .34 .3    | 12 3        | 32 .5      | 9.086              | 12.5   | 8.1    | .30 107.  | .3 .02           | 22             | 4 .87            | .016  | .14    | .1 3   | 7 06          | 06         | 48    | <u></u> | 12 2 7         | 7             | 15    |      |
|                |         |       |                  |       |       |                 |        |          |         |          |            |                |              |        |           |             |            |                    |        |        |           |                  |                |                  |       |        |        |               |            | .0    |                                                                                                                 |                | <i>,</i>      | 10    |      |
| 6900E 3160N    | .53     | 15.92 | 11.18            | 53.5  | 157   | 18.7            | 11.0   | 1414 2.1 | 51 15.  | 1 .:     | 3 21.4     | .6             | 50.3         | .22    | 94        | 4 2         | 625        | 5 100              | 12 1   | 52     | 43 171    | 5 01             | 15             | A 99             | 011   | 11     | ~ ~ ~  | 0 06          | 00         |       | 2 - 1                                                                                                           |                | -             | 15    |      |
| 6900E 3180N    | .50     | 32.25 | 9.35             | 55.4  | 250   | 16.8            | 12.8 1 | 1332 2.  | 44 8.3  | 8 .4     | 4 4.0      | 6              | 39.5         | 15     | 84 1      | 3 3         | 85 7       | R 101              | 10 6   | 7.9    | 27 207    | E 01             | 10 1           | 4 .00            | 010   | 10     | . 2 J. | 1 00          | .09        | 44    | .3 <.(                                                                                                          | 12 2.1         | /             | 15    |      |
| 6900E 3200N    | .94     | 23.93 | 10.71            | 59.5  | 119   | 53.5            | 11.5   | 960 2    | 06 12   | 2 3      | 7 2 3      | 27             | 51.8         | 23     | 64 1      | 5 3         | ю.,<br>к а | 5 113              | 20.2   | 21.1   | 25 220    | 0 00             | 19 :           | 0 1.02<br>A 1 AD | .010  | . 13   | .3 5.  | 1 .05         | . 12       | 35    | .3 <.(                                                                                                          | 12 2.9         | 9             | 15    |      |
| 6900F 3220N    | 1 18    | 34 86 | 13 61            | 76.0  | 287   | 10 0            | 13 0 1 | 847 3    | 10 15   | с.<br>с. | 5 5 2      | 1 0            | 40 E         | 22 1   | 05 1      |             | ю<br>г. с  | . 10r              | 29.5   | 01.1   | .35 229.  | .0 .00           | 09 4           | 4 1.42           | .019  | . 18   | .4 4.  | 2 .0/         | .04        | 23    | .3 .(                                                                                                           | 12 4.4         | 4             | 15    |      |
| 6900E 3240N    | 77      | 21 32 | Q 95             | 57 A  | 106   | 24.7            | 0.0    | 002 1 /  | 19 1J.  | ο<br>ε · | ,          | 1.0            | 40.5         | 10     | 20 .2     | .4 4<br>F 0 | 0.0        | . 125              | 24.4   | 9.5    | .34 239.  | .4 .02           | 28 4           | 4 1.38           | .01/  | . 14   | .4 7.  | 3 .07         | . 11       | 70    | .5 <.0                                                                                                          | 2 4.2          | 2             | 15    |      |
| 05002 02400    | .,,     | 21.02 | 5.05             | 57.4  | 100   | 34.7            | 9.0    | 703 I.S  | 90 0.1  | 0.,      | 2.4        | 1.5            | 50.Z         | . 19   | 32 .1     | .5 ქ        | 3.5        | 4 .111             | 26.3   | 24.0   | .33 225.  | .6 .07           | 70 :           | 3 1.65           | .024  | . 16   | .1 3.  | 5 .07         | .07        | 28    | .3 .0                                                                                                           | 2 4.8          | 3             | 15    |      |
| 6000E 2260N    | 00      | 16 65 | 10 12            | 50 4  | 70    | 17 0            | 7 1    | 075 1    |         |          |            |                |              |        |           |             |            |                    |        |        |           |                  |                |                  |       |        |        |               |            |       |                                                                                                                 |                |               |       |      |
| 6000E 3200N    | .09     | 10.00 | 10.12            | 50.4  | 12    | 1/.2            | /.1    | 8/5 1.6  | 52 7    | 1.7      | .4         | 1.1            | 53.6         | . 22 . | 36 .1     | .6 2        | .4         | 7 .083             | 15.9   | 10.4   | .17 233.  | .1 .07           | 74 3           | 3 1.76           | .026  | . 11   | .3 2.  | 8 .07         | .07        | 28    | .2 .0                                                                                                           | 2 5.1          | L             | 15    |      |
| 6900E 3260N    | . 62    | 18.88 | 9.53             | 45.3  | 117   | 39.6            | 8.2    | 644 1.8  | 59 /    | 1.9      | .6         | 1.5            | 75.7         | . 20 . | 32 .1     | 4 2         | 8.5        | 3.090              | 24.8   | 27.4   | .29 253.  | .4 .06           | 69 3           | 3 1.71           | . 020 | . 19 < | .1 2.  | 9.07          | .06        | 22    | .3 .0                                                                                                           | 3 5.0          | ) .           | 15    |      |
| 6900E 3300N    | .8/     | 20.01 | 20.96            | 70.7  | 122   | 48.3            | 8.0    | 652 1.5  | 59 13.3 | 3.7      | 1.5        | .9             | 49.2         | .75 .  | 71 .1     | 9 2         | 6.4        | .141               | 22.9   | 27.6   | .29 187.  | .9 .05           | 56 6           | 5 1.36           | 018   | . 18   | .1 2.  | 3.08          | .09        | 37    | .3 .0                                                                                                           | 2 4.2          | 2             | 15    |      |
| 6900E 3320N    | .61     | 16.94 | 8.83             | 49.8  | 68    | 37.0            | 8.1    | 756 1.6  | 56 8.9  | 9.8      | .6         | 1.1            | 69.4         | .20 .  | 40.1      | 4 2         | 8.60       | .107               | 21.4   | 23.4   | .28 246.  | 5.06             | 69 4           | 1.56             | 020   | .14 <  | .1 2.  | 8.06          | .05        | 29    | .2 .0                                                                                                           | 2 4.6          | 5             | 15    |      |
| 6900E 3340N    | .65     | 24.16 | 10.54            | 55.3  | 199   | 17.4            | 6.7    | 728 1.8  | 85 8.2  | 2.9      | 1.7        | 1.1            | 50.8         | .23 .  | 33 .1     | 92          | 8.55       | .141               | 15.3   | 11.6   | .25 252.  | 2.08             | 32 4           | 2.32             | . 026 | 10 <   | .1 3.  | 4.08          | .06        | 44    | .3 .0                                                                                                           | 2 6.5          | ,             | 15    |      |
|                |         |       |                  |       |       |                 |        |          |         |          |            |                |              |        |           |             |            |                    |        |        |           |                  |                |                  |       |        |        |               |            |       |                                                                                                                 |                |               |       |      |
| 6900E 3360N    | .73     | 21.02 | 10.54            | 51.9  | 98    | 23.9            | 7.1    | 728 1.5  | 59 8.2  | 2.7      | .5         | 1.0            | 71.1         | .24 .  | 30.2      | 4 2         | 6.52       | . 135              | 21.9   | 18.5   | .23 199.  | 1.05             | 55 2           | 2 1.49           | .020  | 10 <   | 1 2    | 3 06          | 05         | 24    | 3 0                                                                                                             | 2 4 3          |               | 15    |      |
| 6900E 3380N    | .67     | 21.29 | 10.39            | 57.6  | 119   | 36.4            | 8.5    | 524 1.8  | 80 5.9  | 9 1.0    | .2         | 1.2            | 94.6         | .24 .  | 19.1      | 4 3         | 3.54       | . 158              | 34.8   | 29.7   | .32 217.  | 6 .06            | 59 5           | 1.83             | 023   | 16 <   | 1 2    | 3 08          | 06         | 22    | 3 < 0                                                                                                           | 2 6 0          | , .           | 15    |      |
| 6900E 3400N    | .57     | 19.55 | 9.57             | 43.8  | 68    | 26.1            | 6.5    | 527 1.4  | 7 4.2   | 2.8      | .5         | .7             | 30.9         | . 21 . | 16 .1     | 2 2         | 9.71       | . 123              | 27.3   | 22.3   | 29 212    | 5 05             |                | 1 42             | 023   | 13 -   | 1 1    | 5 .00<br>5 04 | .00        | 20    |                                                                                                                 | ∠ 0.0<br>o ∦ = |               | 10    |      |
| 6900E 3420N    | .66     | 22.12 | 9.99             | 56.0  | 106   | 27.1            | 7.1    | 578 1.5  | 8 5.3   | 3 .8     | .5         | .8             | 33.9         | .26    | 17 1      | 3 3         | 0 71       | 170                | 30.6   | 22 9   | 31 211    | 3 05             | . J            | 1 55             | 010   | 14 -   | 1 1 1  | , 00<br>7 00  | .00        | 24    | .3 .0                                                                                                           | 0 4.5<br>0 F 0 |               | 10    |      |
| 6900E 3440N    | . 98    | 21.21 | 11.57            | 52.4  | 70    | 22.0            | 6.4    | 496 1 5  | 0 5 5   | ; o      | 4          | 1.0 1          | 46.5         | 24     | <br>22 1: | ເ ບ<br>ເ    | 0 74       | 150                | 28 0   | 21 /   | 20 224    | ບ . ປວ.<br>ເລັດກ | ы 2<br>:л 4    | 1.00.            | 019 . | 14 <.  |        |               | .08        | 24    | .3 .0                                                                                                           | 3 5.0          |               | 15    |      |
|                |         | _     |                  |       |       |                 |        |          |         | ,        | . •        |                |              |        | 1         | 5 01        |            | .100               | 20.0   | CI.4 . | .17 224.1 | 0.054            | <del>, 4</del> | 1.30 .           | U10 . | 21 <.  | .1 1.8 | 0.06          | .08        | 33    | .3 .0                                                                                                           | 2 4.3          | ]             | 15    |      |
| STANDARD DS5   | 12 89 1 | 39 21 | 25.22            | 136.0 | 277   | 24 0 1          | 10     | 736.2 6  | 0 10 0  |          | AA E       | 27             | 16 5 7       | 12.2   | 04 6 1    |             |            | 000                | 10.0.5 | 70.1   |           |                  |                |                  |       |        |        |               |            |       |                                                                                                                 |                |               |       |      |
| <br>           |         |       |                  |       |       | ⊾ <b>⊤.</b> ∪ 1 |        | .JU 2.0  | U 10.0  | 0.0      | 44.0       | ۷.۱            | +0.5 5       | .42 3. | 04 0.1    | + 5         | 5 .73      | .099               | 12.3 1 | /8.1 . | .04 136.9 | у.098            | 17 B           | 1.97 .           | 034 . | 13 4.  | 9 3.5  | 5 1.01        | .03        | 170 4 | .8 .8                                                                                                           | 3 6.4          | 1             | 15    |      |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA





ΔΝΔΕΥΤΤΟΔΙ

| ACME ANALYTICAL |                    |           |        |         |                  |       |                             |              |                    |                |             |      |       |              |        |          |              |                |                |      |       |          |                  |          |         |        |      |        |       |        |       |          |         |             |     |      |  |
|-----------------|--------------------|-----------|--------|---------|------------------|-------|-----------------------------|--------------|--------------------|----------------|-------------|------|-------|--------------|--------|----------|--------------|----------------|----------------|------|-------|----------|------------------|----------|---------|--------|------|--------|-------|--------|-------|----------|---------|-------------|-----|------|--|
|                 | CAMDI E#           | Mo        | <br>Cu | Ph      |                  | Aa    | Ni C                        | 20           | Mn Fe              | As             | U           | Au   | Th    | Sr           | Cd     | Sb B     | i V          | Ca             | Ρ              | La   | Cr    | Mg       | Ba T             | ï        | B A1    | Na     | K    | W S    | с Т   | 1 S    | Hg    | Se       | Te      | Ga Sam      | ple |      |  |
|                 | SANFLLT            | 000       | nnm    | 000     | 000              | nnh   | ກດສັກກ                      | n n          | າກຫ 2              | DDI            | DDM         | daa  | DDM   | ppm          | ppm p  | om ppi   | n ppm        | ž              | ×              | ppm  | ppm   | ξp       | pm               | % рр     | an 2    | х      | X    | ррт рр | n pp  | nn ¥   | ppb   | ppm      | ppm p   | pm          | gm  |      |  |
|                 |                    | phii      |        | - phil  | ppii             |       | PP                          |              |                    | ppin           | PP          |      | F.F   |              |        |          |              |                |                |      |       | . —      |                  |          |         |        |      |        |       |        |       |          |         |             |     |      |  |
|                 | <u>.</u>           | 1 40      | 2 07   | 2 51    | 46.7             | 14    | 5 N A                       | 3 5          | 74 2 13            | 4              | 2.0         | 2    | 4.6 8 | 82.3 <       | <.01 . | 02.1     | 1 43         | .55            | .083           | 8.6  | 15.3  | .55 260  | ).7.12           | 8        | 4.94    | .097   | .50  | 2.1 2. | 3.3   | 4 <.01 | <5    | <.1 <    | <.02 5  | i.0         | 15  |      |  |
|                 | 6-1<br>CODDE 24CON | 1.49      | 22.07  | 0.20    | 40.7             | 73.2  | 9.0 <del>4</del> .<br>9.4 6 | 7 4          | 184 1 49           | 55             | 9           | 2.5  | 1.3.2 | 16.2         | .20    | 16 .1    | 2 30         | .75            | .118 3         | 37.3 | 20.9  | .31 183  | 3.8 .04          | 4        | 4 1.26  | .019   | . 15 | <.1 1. | 5.0   | 8 .05  | 21    | .5       | .02 3   | 5.9         | 15  |      |  |
|                 | 6900E 3460N        | .05       | 20.00  | 10 60   | 51 A             | 70 1  | 0.40.                       | 1 /          | 104 1 50           | 1 3            |             | 42 7 | 152   | 27 4         | 21     | 16 .1    | 3 34         | .71            | .130 3         | 38.5 | 18.4  | .25 187  | 7.5.05           | 3        | 4 1.32  | .018   | .17  | <.1 1. | 8.0   | 7.04   | 20    | .3       | .02 4   | .2          | 15  |      |  |
|                 | 6900E 3480N        | .00       | 20.40  | 10.00   | 51.4             | 67 0  | .9.9 0.<br>19 0 6           | 2 /          | 106 1 ME           | 4.5            |             | 12.7 | 1 2 2 | 10.4         | 21     | 15 .1.   | 3 32         | .74            | .143 3         | 37.3 | 19.0  | . 27 185 | 5.0.04           | 8        | 4 1.21  | .020   | . 18 | <.1 1. | 5.0   | 7.04   | 16    | .2       | .02 3   | 8.9         | 15  |      |  |
|                 | 6900E 3500N        | .08       | 21.29  | 9.35    | 57.0             | 6/ Z  | .3.00.<br>13.0 £            | . 2 4<br>0 1 | 102 1 67           | /<br>          | .0          | 2.0  | 242   | 12.6         | 23     | 18 1     | 4 38         | .79            | .149           | 46.9 | 22.7  | .31 187  | 7.3.05           | 7        | 5 1.27  | .027   | . 28 | <.1 2. | 0.0   | 8 .06  | 18    | .3       | .03 4   | .3          | 15  |      |  |
|                 | 6900E 3520N        | .69       | 24.22  | 11.61   | 01.0             | 54 Z  | 3.9 0.                      | .0 4         | 105 1.0/           | 5.5            | .7          | 2.0  | 2.4 6 | 12.0         | . 20   | 10 .1    |              | 11.5           |                |      |       |          |                  |          |         |        |      |        |       |        |       |          |         |             |     |      |  |
|                 |                    |           |        |         | FO 0             |       |                             | r r          | -00 1 57           |                | 1.0         | 1 5  | 7 2   | 03.7         | 25     | 13 1     | ۲ ۲ <u>۵</u> | 65             | 134            | 37.5 | 19.6  | .30 183  | 3.9.04           | 7        | 4 1.49  | .021   | .22  | <.1 1. | 4.0   | 8.05   | 22    | .4 <     | <.02 4  | .6          | 15  |      |  |
|                 | 6900E 3540N        | . /4      | 22.78  | 10.6/   | 53.0             | 92 2  | 2.4 0.<br>5 0 5             | .5 C         | 1.0/               | 4./            | 1.0         | 1.0  | 101   | 60.7<br>60.0 | .23    | 15 1     | 2 34         | 62             | 140            | 37.0 | 17.9  | .26 179  | 9.1.04           | 5        | 3 1.21  | .019   | .22  | <.1 1. | 3.0   | 7.05   | 14    | .3       | .02 4   | 1.0         | 15  |      |  |
|                 | 6900E 3560N        | . /4      | 19.80  | 9.29    | 54.5             | /3 1  | .5.0 5.                     | ./ 4         | 40 1.4/            | 4.4            | 1.0         | 1.0  | E 2 1 | 05.5         | 12     | 20 1     | 3 16         | 52             | 145            | 52 1 | 26.6  | 29 140   | 0.7.07           | 3        | 2 1.36  | .017   | .18  | <.1 2. | 5.0   | 8.02   | 12    | .2       | .02 4   | 1.7         | 15  |      |  |
|                 | 6900E 3580N        | .73       | 18.23  | 11.65   | 54./             | 58 1  | .8.4 6.                     | ./ 4         | 142 1.94           | 5.2            | 1.1         | 4.3  | 5.5 1 | 00.7         | 16     | 10 1     | 2 15<br>2 15 | 50             | 150            | 55 0 | 25.2  | 27 16    | 5 3 07           | -<br>16  | 3 1.45  | .019   | .17  | <.1 2. | 5.0   | 8.03   | 10    | .2       | .03 4   | 1.8         | 15  |      |  |
|                 | 6900E 3600N        | .60       | 20.12  | 11.42   | 54.1             | /2 1  | .6.0 6.                     | .3 4         | 139 1.88           | 5 4.5<br>· – – | 1.2         | .4   | 4.1 1 | 23.7         | .10    | 15 .1    | 2 43         | 2 50           | 113            | 25.5 | 14 1  | 49 394   | 4 1 03           | 87       | 8 1 56  | .017   | .21  | .2 4.  | 3.0   | 7.07   | 25    | .5 <     | <.02 4  | 1.2         | 15  |      |  |
|                 | 6925E 3100N        | .51       | 33.85  | 11.33   | 52.9             | 195 2 | 21.7 8.                     | .8 14        | 138 2.35           | s /.u          | .5          | 3.2  | .9    | 94.4         | .28 1  | 10 .2    | 2 43         | 2.50           | . 115 .        | 20.0 | 14.1  |          | 1.1 .00          |          | 0 1.00  |        |      |        |       |        |       |          |         |             |     |      |  |
|                 |                    |           |        |         |                  |       |                             |              |                    |                |             |      |       | 07.5         | 00     | 00 1     | 7 20         |                | 075            | 20.2 | 0.2   | 47 363   | 3 0 02           | 29       | 2 1 60  | 020    | 12   | 24     | 6 0   | 6 .05  | 26    | .3       | .02 4   | 1.6         | 15  |      |  |
|                 | 6925E 3120N        | .42       | 25.03  | 12.66   | 45.5             | 192 1 | 15.5 7.                     | .7 14        | 434 2.28           | 8 8.1          | .4          | 3.3  | .8    | 3/.5         | . 20   | .82 .1   | / 30         |                | .075           | 20.2 | 3.6   | .4/ 000  | 0.1 04           | <br>10   | A 1 26  | .020   | 21   | 1 2    | 6 0   | 7 03   | 17    | 3 <      | < 02 3  | 3.6         | 15  |      |  |
|                 | 6925E 3140N        | .54       | 31.06  | 10.73   | 47.7             | 160 3 | 38.3 9.                     | .0 13        | 342 2.12           | 2 7.6          | .3          | 2.7  | 1.6   | 55.1         | .21    | 52 .1    | 4 33         | 5 .61          | .080           | 22.0 | 21.2  | .55 21:  | 9.1.04<br>F 0.03 | +0<br>51 | 4 1.30  | 015    | 21   | .1 3.  | 7 0   | 5 NS   | 24    | <br>२ ८  | < 0.2   | R 4         | 15  |      |  |
|                 | 6925E 3160N        | . 59      | 32.97  | 9.15    | 45.9             | 225 2 | 21.5 9.                     | .3 1         | 157 2.25           | 5 7.0          | .3          | 3.6  | 1.0   | 45.2         | . 19   | .97 .1   | 2 36         | 0./6           | .084           | 19.5 | 12.2  | . 39 19: | 5.0 .03          | 51       | 4 1.19  | .015   | . 21 | .5 5.  | / .u  | 0 .00  | 17    | .0       | 02 1    | 5.0         | 15  |      |  |
|                 | 6925E 3180N        | . 60      | 26.61  | 11.65   | 52.5             | 152 4 | 15.9 10.                    | .0 9         | 969 2.40           | 9.8            | .7          | 2.0  | 3.2   | 41.8         | . 20   | .87 .1   | 8 44         | .47            | .081           | 28.0 | 30.6  | .46 240  | 0.0.08           | 59       | 4 1./5  | .019   | .20  | .3 4.  | 0.0   | 0 .02  | 10    | .0       | .02 :   | 5.0<br>E A  | 15  |      |  |
|                 | 6925E 3200N        | . 62      | 25.07  | 11.54   | 54.9             | 149 5 | 52.7 10                     | .9 10        | 017 2.4            | 5 10.2         | .9          | 2.5  | 3.8   | 41.9         | . 16   | .67 .1   | 9 44         | .38            | .075           | 30.6 | 33.9  | .44 21   | 1.3 .0/          | 18       | 3 1.91  | .022   | .1/  | .2 4.  | ./ .( | 18 .02 | 19    | . 2      | .02 :   | 1.4         | 15  |      |  |
|                 |                    |           |        |         |                  |       |                             |              |                    |                |             |      |       |              |        |          |              |                |                |      |       |          |                  |          |         |        |      |        |       |        | 10    | <u>.</u> | - 00 1  |             | 15  |      |  |
|                 | RE 6925E 3200N     | . 64      | 24.81  | 11.51   | 54.0             | 155 5 | 51.1 10                     | .2 10        | 001 2.40           | 0 10.1         | 9           | 2.7  | 3.7   | 40.9         | .21    | .69 .1   | 9 4/         | 1.37           | .076           | 31.4 | 32.1  | .43 213  | 2.6 .07          | 75       | 4 1.86  | .021   | .1/  | .2 4.  | ./ .( | 18 .02 | 19    | .3 *     | <.UZ :  | 0. <i>2</i> | 15  |      |  |
|                 | 6925E 3220N        | 1.30      | 42.14  | 17.99   | 63.7             | 294 1 | 19.8 11                     | .5 2         | 074 2.70           | 12.9           | .5          | 5.0  | 1.5   | 28.4         | .41    | .75 .3   | 2 35         | 5 .50          | .084           | 20.2 | 10.4  | .38 193  | 3.3 .03          | 32       | 3 1.44  | .017   | . 14 | .1 4.  | .9.0  | 16 .05 | 50    | .3       | .02 4   | 4.4<br>4 0  | 15  |      |  |
|                 | 6925E 3240N        | .67       | 24.85  | 10.73   | 53.6             | 125 4 | 18.2 9                      | .2           | 883 2.03           | 2 7.7          | .8          | .7   | 2.7   | 53.4         | . 19   | .37 .1   | 6 37         | .51            | .090           | 29.5 | 31.4  | .41 204  | 4.4 .07          | 71       | 3 1.73  | .023   | . 17 | .1 3.  | .3 .0 | 1/ .03 | 20    | .2 <     | <.02 4  | 1.8         | 15  |      |  |
|                 | 6925E 3260N        | .61       | 19.49  | 10.00   | 58.1             | 88 2  | 22.3 7                      | .8 1         | 166 1.60           | 7.0            | .5          | .5   | .б    | 48.6         | . 30   | .36 .1   | 5 28         | 3.70           | .103           | 15.6 | 13.8  | .22 19   | 5.7.04           | 40       | 3 1.15  | .026   | . 10 | .1 2.  | .0.0  | )7 .07 | 36    | .3 <     | <.02 :  | 3.2         | 15  |      |  |
|                 | 6925E 3280N        | . 65      | 19.22  | 13.76   | 46.6             | 153   | 13.2 8                      | .6 1         | 161 1.7            | 8 8.3          | 3           | 4.5  | .5    | 54.5         | .31    | . 38 . 2 | 1 25         | 5 .55          | .106           | 11.1 | 6.9   | .30 11   | 5.6.02           | 23       | 3 1.10  | .019   | . 15 | .1 3.  | .1 .0 | 05 .07 | 48    | .3       | .02 :   | 3.2         | 15  |      |  |
|                 |                    |           |        |         |                  |       |                             |              |                    |                |             |      |       |              |        |          |              |                |                |      |       |          |                  |          |         |        |      |        |       |        |       |          |         |             | 16  |      |  |
|                 | 6925E 3300N        | .58       | 16.71  | 9.35    | 47.0             | 76 3  | 33.4 7                      | .5           | 748 1.7            | 2 8.3          | 8           | 1.6  | 1.2   | 69.0         | . 19   | .37 .1   | 4 31         | .55            | .092           | 20.9 | 19.5  | .27 24   | 5.3.06           | 57       | 4 1.85  | .026   | . 14 | <.1 2. | .9 .( | )6 .04 | 1/    | .3 <     | <.02 \$ | 5. <b>1</b> | 15  |      |  |
|                 | 6925E 3320N        | .57       | 15.78  | 9.33    | 43.7             | 82 4  | 43.1 7                      | .7           | 607 1.6            | 3 9.9          | 8. (        | .7   | 1.9   | 70.5         | .17    | .46 .1   | 5 3          | L.47           | .078           | 22.6 | 23.7  | .27 20   | 8.5 .07          | 76       | 2 1.76  | .023   | .10  | <.1 2  | .7 .0 | )7 .03 | 19    | .2 <     | <.02    | 5.1         | 15  |      |  |
|                 | 6925E 3340N        | .62       | 19.57  | 9.15    | 48.1             | 103 3 | 35.1 8                      | .4           | 674 1.9            | 1 9.3          | 1.0         | 3.9  | 1.2   | 75.9         | . 20   | . 28 . 1 | .4 30        | 3.52           | .102           | 26.7 | 25.6  | .30 24   | 4.8.06           | 69       | 3 1.90  | .023   | . 11 | <.1 2  | .80   | )7 .04 | 23    | .3       | .03 !   | 5.5         | 15  |      |  |
|                 | 6925E 3360N        | .67       | 20.28  | 11.06   | 5 52.7           | 95 4  | 46.8 9                      | .4           | 628 2.0            | 1 6.6          | 5 1.0       | .7   | 1.6   | 74.5         | . 18   | . 18 . 1 | 4 39         | .42            | . 156          | 30.7 | 36.9  | .38 19   | 9.3.07           | 76       | 3 1.98  | .022   | .11  | <.1 2  | .6.0  | 07 .03 | 21    | .3 <     | <.02    | 5.8         | 15  |      |  |
|                 | 6925E 3380N        | .51       | 22.16  | 9.35    | 55.6             | 98 4  | 45.1 8                      | .6           | 594 1.8            | 0 5.9          | 9.9         | .7   | 1.3   | 85.5         | .22    | . 20 . 1 | .2 36        | 5.49           | . 146          | 31.1 | 32.0  | .37 19   | 1.7 .06          | 67       | 4 1.75  | .023   | . 14 | <.1 2  | .3 .0 | .03    | 14    | .3       | .02     | 5.2         | 15  |      |  |
|                 | 0,202 00000        |           |        |         |                  |       |                             |              |                    |                |             |      |       |              |        |          |              |                |                |      |       |          |                  |          |         |        |      |        |       |        |       |          |         |             |     |      |  |
|                 | 6925F 3400N        | 61        | 20 24  | 8.45    | 49.9             | 110 ; | 37.67                       | .9           | 584 1.6            | 0 5.3          | 7.8         | 3.6  | .71   | .04.9        | . 22   | .20 .1   | 2 3          | 2 .54          | .138           | 26.4 | 25.4  | .31 21   | 3.3 .05          | 58       | 3 1.68  | .021   | . 15 | <.1 1  | .7.0  | )6 .04 | 16    | .4       | .03     | 5.1         | 15  |      |  |
|                 | 6925E 3420N        | 78        | 20.24  | 7.90    | 57.2             | 93 :  | 32.2 7                      | .5           | 526 1.4            | 4 9.0          | ) .8        | .4   | .7    | 90.0         | .23    | . 26 . 1 | .0 28        | 3.45           | .150           | 26.3 | 19.7  | .24 18   | 4.1 .04          | 49       | 3 1.40  | .017   | .13  | <.1 1  | .6.(  | )7 .03 | 14    | .3       | .02     | 4.2         | 15  |      |  |
|                 | 0923E 3420N        | .70<br>64 | 20.24  | 11 05   | 560              | 78    | 22.2.<br>22.1 S             | 6            | 599 1 9            | 3 5 1          | 5 1 1       | 2    | 2.91  | 16.9         | .17    | . 18 . 1 | 3 4          | ) .57          | . 122          | 42.7 | 26.1  | .29 19   | 6.1.08           | 80       | 3 1.84  | .018   | . 19 | <.1 2  | .9(   | )7 .04 | 10    | .3       | .02     | 5.8         | 15  |      |  |
|                 | 6923E 3440N        | .04<br>20 | 21.02  | 10 75   | , 50.0<br>, 52.7 | 83 .  | 30.3.7                      | 6            | 532 1 7            | 5 5            | 7 1 0       | 6    | 181   | 30.0         | .23    | .18 .1   | .3 31        | 3.57           | .134           | 41.5 | 24.2  | .26 17   | 3.1 .06          | 66       | 2 1.55  | .020   | .16  | <.1 2  | .3.0  | 07 .03 | 19    | .4       | .03     | 4.9         | 15  |      |  |
|                 | 6925E 3460N        | .00       | 21.54  | 0.7/    | · 52.7           | 75    | 2177                        | .0           | 552 I.7<br>E21 I G | 2 11           | : 1.0       | .0   | 8 1   | 98.3         | 18     | 14 1     | 2 3          | 3 72           | 132            | 35.9 | 22.5  | .32 20   | 6.1 .05          | 53       | 2 1.67  | .021   | .17  | <.1 1  | .6.0  | 06 .07 | 14    | .4       | .02     | 5.0         | 15  |      |  |
|                 | 6925E 3480N        | . 60      | 20.92  | 9.76    | 5 44.0           | /5 .  | 51.7 7                      | .1           | 551 1.0            | 2 4            | 5 1.0       | . 5  | .0.1  |              | . 10   |          |              |                |                |      |       | -        |                  |          |         |        |      |        |       |        |       |          |         |             |     |      |  |
|                 |                    |           | 06 50  |         |                  | 0.5   | 00 F 7                      |              | EDG 1 G            | 0 4 4          |             | 4    | 123   | 220 8        | 10     | 16 1     | 1 3          | 1 89           | 141            | 41 2 | 23.3  | .33 18   | 6.5 .05          | 50       | 4 1.46  | 5.022  | .17  | <.1 1  | .7.0  | 07 .08 | 17    | .5       | .02 -   | 4.5         | 15  |      |  |
|                 | 6925E 3500N        | . 59      | 26.58  | 9.98    | 5 51.6           | 85    | ა <b>შ.</b> 5 /             | .5           | 500 1.0            | 0 4.1<br>7 F   | , .9        | .4   | 1.4.4 | 106 6        | . 17   | 16       | 2 2          | 3 92<br>2 92   | 136            | 40.0 | 23.2  | 35 18    | 4 6 0            | 50       | 4 1 44  |        | . 19 | <.1 1  | .7 .0 | 07 .06 | i 19  | .4       | .02     | 4.5         | 15  |      |  |
|                 | 6925E 3520N        | .52       | 27.90  | 10.43   | 5 53.5           | 88    | 33.3 /                      | .4           | 500 1.5            | / D.!<br>7 /   | , .9<br>, 0 | . 2  | 1.0 1 | 120.0        | . 22   | 10       | 2 2          | 2 .00<br>2 .60 | 130            | 36.1 | 19.4  | 28 18    | 4 7 0            | 54       | 3 1.3   | 5.020  | . 18 | <.1 1  | .5 .0 | 06 .05 | 14    | .3       | .02     | 4.3         | 15  |      |  |
|                 | 6925E 3540N        | . 60      | 22.07  | 10.38   | 3 48.8           | 68    | 21.6 6                      | 5.3          | 469 1.4            | / 4.           | + .8        | .8   | 1.2   | 102.0        | . 21   | 10       | 1 3          | 09<br>o .co    | , .100         | 13 6 | 21 1  | 28 16    | 3 7 0            | 55       | 2123    | 8 019  | 12   | < 1 1  | 5 (   | 06 .04 | 12    | .3       | .02     | 4.4         | 15  |      |  |
|                 | 6925E 3560N        | .61       | 18.75  | 9.93    | 3 46.3           | 63    | 18.2 6                      | o.4          | 441 1.6            | 1 4.           | 2.9<br>     | <.2  | 1.2   | 109.0        | . 10   | 14 .     | LI 3         | u .03<br>n .co | ) 151<br>) 151 | 46.7 | 21.1  | 24 14    | 27 0             | 62       | 2 1 10  | 019    | 18   | < 1 1  | 8 1   | 16 N3  | 11    | 3        | .02     | 4.0         | 15  |      |  |
|                 | 6925E 3580N        | .70       | 19.56  | 5 10.63 | 3 63.3           | 60    | 12.8 6                      | 5.3          | 464 1.6            | 6 3.           | 5 1.0       | .2   | 2.6 ] | 1/0.8        | . 19   | . 14     | 12 3         | 9 .58          | . 151          | 40./ | 21.3  | .24 14   | r∠./.U1          | υL       | ε 1.15  | , .010 | . 10 | 1      |       |        |       |          |         |             | **  |      |  |
|                 |                    |           |        |         |                  |       |                             |              |                    |                |             |      |       |              | E 40 0 | 00.0     |              | 0 70           | 2 000          | 12.2 | 197.0 | ££ 10    | 16 6 11          | 00       | 16 2 03 | s 0.33 | 13   | 483    | 51    | 15 03  | 173   | 4.7      | .88     | 6.4         | 15  |      |  |
|                 | STANDARD DS5       | 13.08     | 144.80 | 25.72   | 2 135.7          | 278   | 24.3 11                     | L.9          | 781 2.9            | 8 18.          | 9 6.1       | 43.2 | 2.7   | 46.4         | 5.48 3 | .93 6.   | 54 6         | 2 .73          | 5.098          | 14.3 | 101.9 | .05 13   | 0.0.1            | υυ .     | 10 2.00 |        | . 10 | 4.0 0  | 1.    |        | . 1/0 |          |         |             |     | <br> |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA





Data FA

| CME ANALYTICAL |                |             |        |        |       | _    |          |            |                     |                |              |      |            |              |         |        |       |               |        |                   |       |        |                |      |           |                    |                |         |            |      |      | -   | •     |         |              |                                       |  |
|----------------|----------------|-------------|--------|--------|-------|------|----------|------------|---------------------|----------------|--------------|------|------------|--------------|---------|--------|-------|---------------|--------|-------------------|-------|--------|----------------|------|-----------|--------------------|----------------|---------|------------|------|------|-----|-------|---------|--------------|---------------------------------------|--|
|                | SAMDI F#       | Mo          | Cu.    | Ph     | 7n    | Ag   | Ni       | Со         | Mn Fe               | e As           | U            | Au   | Th         | Sr           | Cd      | Sb B   | Bi    | v c           | a      | P La              | Cr    | Mg     | Ba             | Ti   | B A       | Na Na              | Κ              | W       | Sc         | T1   | S    | Hg  | Se    | Te Ga   | a Sample     |                                       |  |
|                | JAINULT        | 000         | 000    | 000    | 000   | nnh  | ກດໜ      | nom        | מממ                 | × nom          | maa          | daa  | DOM        | DOM          | ppm p   | ion pr | om pp | m             | 8      | % ppm             | ррт   | х      | рря            | x    | ppm       | 8 8                | X              | ppm     | ppm        | ppm  | X    | ppb | ppm   | ppm ppm | n gm         |                                       |  |
|                |                | ppm         | ppin   | ppin   | - PPm | pp   | ppm      |            |                     |                |              |      |            |              |         |        |       |               |        |                   |       |        |                |      |           |                    |                |         |            |      |      |     | -     |         |              |                                       |  |
|                | 0.1            | 1 45        | 2 02   | 2 27   | 45 0  | 12   | 16       | 1 1        | 536 1 9             | 65             | 21           | 6    | 4.8        | 81.0         | .01 .   | .03    | 11 4  | 40.5          | 6 .08  | 3 9.3             | 15.9  | .53 2  | 55.4.          | .134 | 1.9       | 2.102              | .51            | 2.0     | 2.1        | . 34 | .01  | <5  | <.1 < | .02 5.0 | ) 15         |                                       |  |
|                | u-1            | 1.45        | 2.04   | 2.3/   | 45.0  | 76   | 11 1     | 6.2        | 420 1.5             | 5 5 1          | 1 3          | 1 9  | 3.6        | 151 5        | 30      | 20     | 14 4  | 10 .5         | 9.14   | 5 57.1            | 21.4  | .24 10 | 66.0 .         | 066  | 2 1.2     | .017               | . 19           | <.1     | 2.0        | .08  | .04  | 13  | .2    | .02 4.3 | 3 15         |                                       |  |
|                | 6925E 3600N    | .08         | 20.51  | 12.75  | 01.7  | /0   | 11.1     | 0.3        | 400 1.0.<br>000 1 0 | 5 5.1<br>5 6 9 | 1.0          | 5.0  | 7          | 91 7         | 28      | 40     | 13 2  | 25 9          | 1 12   | 3 21.4            | 17.2  | .29 28 | 84.9.          | .036 | 4 1.0     | 2 .020             | .17            | <.1     | 1.6        | .06  | .10  | 27  | .3 <  | .02 3.1 | 1 15         |                                       |  |
|                | 6950E 3100N    | .62         | 27.45  | 9.44   | 44.7  | 114  | 23.0     | 0.4        | 528 1.23<br>100 1 7 | 5 0.J<br>2 0 2 | .4<br>c      | 2.5  | 2.0        | 56.9         | . 20 .  | 50     | 16 3  | -0<br>-1      | 3 10   | 1 25 4            | 20.9  | 40 29  | 94.7           | 055  | 3 1.3     | 32 .019            | . 19           | .1      | 3.0        | .07  | .05  | 23  | .2 <  | .02 3.9 | 9 15         |                                       |  |
|                | 6950E 3120N    | .61         | 27.77  | 12.54  | 51.6  | 159  | 35.5     | 8./ 1      | 132 1.7             | 3 0.3<br>0 7 0 | .5           | 0.0  | 1.2        | 50.0         |         | 47     | 16 3  | a a           | .a na  | 5 21 1            | 15.9  | 39.2   | 25.9           | 040  | 41.2      | 25 .017            | . 18           | .1      | 2.8        | .05  | .07  | 33  | .3 <  | .02 3.3 | 3 15         |                                       |  |
|                | 6950E 3140N    | .56         | 31.52  | 26.3/  | 62.3  | 287  | 26.6     | 8.8 1      | 190 1.8             | 9 7.0          | .4           | 0.0  | 1.2        | 55.0         | .41 .   | .4/    | 10 2  |               |        | 5 21.1            | 10.9  | .05 2  | 20.5           |      |           |                    |                |         |            |      |      |     |       |         |              |                                       |  |
|                |                |             |        |        |       |      | ~ ~      |            | orr 1 7             |                | r            | 27   | 1.4        | EE 2         | 27      | 64     | 15 1  | 30 6          | 52 AG  | 1 24 6            | 18 1  | 40.3   | 06.5           | 046  | 4 1.4     | 1 .016             | .20            | .2      | 3.3        | .06  | .06  | 29  | .4    | .02 3.7 | 7 15         |                                       |  |
|                | 6950E 3160N    | . 55        | 30.55  | 10.26  | 40.6  | 158  | 32.8     | 8.91       | 055 1.7             | 9 7.2          | . :          | 2.7  | 1.4        | 42.2         | 0E      | £0 ·   | 15 0  | 20 .0<br>20 6 | 6 09   | 23 24 1           | 17.9  | 14 2   | 66.8           | 042  | 413       | 84 015             | 20             | .2      | 3.7        | .06  | .04  | 27  | .3 <  | .02 3.7 | 7 15         |                                       |  |
|                | 6950E 3180N    | .53         | 29.44  | 10.39  | 51.8  | 242  | 26.5 .   | 10.2       | 976 2.1             | 38.1           | .4           | 9.9  | 1./        | 42.3         | . 25 .  | 00 .   | 10 /  | 12 .0         | 3 .02  | 13 29 E           | 10.0  | 57 2   | 36.9           | 036  | 315       | 0 014              | 17             | .2      | 5.2        | .07  | .04  | 20  | .2    | .02 5.2 | 2 15         |                                       |  |
|                | 6950E 3200N    | . 68        | 32.73  | 12.00  | 64.0  | 307  | 30.8 .   | 11.5 1     | 082 2.7             | 5 8.5          | .0           | 5.0  | 2.5        | 31.9         | .1/ .   | .92    | 19 *  | +2.J<br>ar c  |        | 10 20.J           | 20 1  | 10 1   | 76 5           | 026  | 414       | 15 011             | 25             | 1       | 4 1        | 06   | 09   | 22  | .3 <  | .02 4.3 | 1 15         |                                       |  |
|                | 6950E 3220N    | . 84        | 31.93  | 11.29  | 66.0  | 348  | 35.7 :   | 12.8 1     | 285 3.1             | 2 21.0         | .4           | 14.7 | 1.8        | 31.7         | . 14    | 40 .   | 14 3  | 0. CC         |        | 72 20.0           | 20.1  | .45 1  | /0.5 .<br>01 / | 020  | 214       | 3 019              | 14             | < 1     | 3.8        | 07   | 05   | 18  | 3 <   | 02 4.3  | 3 15         |                                       |  |
|                | 6950E 3240N    | . 62        | 28.00  | 10.61  | 59.4  | 165  | 70.9 :   | 13.7       | 997 2.7             | 4 8.3          | .6           | 5.2  | 2.8        | 53.0         | . 15    | .49 .  | 14 4  | +Z .5         | 57 .05 | 1/ 00.0           | 39.3  | .01 1  | 71.4 .         | .031 | 2 1       | .010               | . 14           |         | 0.0        |      |      | 10  |       |         |              |                                       |  |
|                |                |             |        |        |       |      |          |            |                     |                |              |      |            |              |         |        |       |               |        |                   | 07.7  | 27 0   | oc c           | 071  | 2 1 -     | 70 010             | 17             | 1       | 37         | 06   | 03   | 19  | 2 <   | 02 4 8  | 8 15         |                                       |  |
|                | 6950E 3260N    | . 62        | 23.43  | 10.65  | 60.9  | 121  | 35.7     | 10.5       | 916 2.1             | 1 7.4          | .9           | 2.7  | 2.9        | 53.7         | .24     | .35 .  | 16 .  | 38.4          | 19 .05 | 96 32.4           | 2/./  | .3/ 2  | 20.0 .<br>50.0 | .0/1 | 21.7      | 14 022             | .1/            | .1      | 3.0        | .00  | .00  | 32  | .2 .  | 02 4 (  | 0 15         |                                       |  |
|                | 6950E 3280N    | .70         | 24.93  | 8.68   | 43.8  | 388  | 19.4     | 7.71       | 210 1.7             | 8 10.6         | .5           | 5.3  | 1.2        | 38.7         | . 20    | .36 .  | 35 i  | 2/ .5         | 50.08  | 50 14.7           | 11.8  | .32 1  | 52.3 .         | .040 | 2 1.4     | 14 .022<br>10 .020 | 14             | 1       | 3.0<br>2 E | .00  | 07   | 29  | .0    | 03 /    | 3 15         |                                       |  |
|                | 6950E 3300N    | . 69        | 27.12  | 51.50  | 76.5  | 493  | 258.4    | 19.3 1     | 068 2.2             | 8 46.6         | .6           | 6.2  | 1.4        | 66.9         | .56 2   | .72 .  | 18 3  | 30.6          | 5/ .11 | 10 20.4           | 59.2  | .45 1  | 99.0 .         | .055 | 4 1.3     | 09 .020            | . 14           | د.<br>۱ | 0.0        | .07  | .07  | 20  | .5    | 03 / 1  | 0 15<br>N 15 |                                       |  |
|                | 6950E 3320N    | . 49        | 21.56  | 10.63  | 54.2  | 81 3 | 341.8    | 24.2       | 883 2.0             | 1 38.1         | .4           | 3.0  | 1.0        | 58.6         | .27 2   | .75 .  | 16 3  | 25 .6         | 54 .10 | )1 13.9           | 65.6  | .39 1  | ./4.9 .        | .053 | 4 1.4     | 4/ .UZ8            | .11            | . 1     | 2.7        | .09  | .07  | 10  | .5    | 00 4.1  | 0 15<br>0 16 |                                       |  |
|                | 6950E 3340N    | .57         | 15.58  | 9.50   | 50.9  | 67   | 41.1     | 8.5        | 588 1.7             | 8 6.2          | 1.0          | 1.0  | 2.0        | 61.2         | . 15    | . 29 . | 15 3  | 33 .4         | 41 .09 | 92 29.0           | 29.6  | .33 2  | 67.1 .         | .083 | 2 2.3     | 27 .020            | .13            | <.1     | 2.8        | .07  | .04  | 15  | . 2   | .02 0.4 | 2 10         |                                       |  |
|                |                |             |        |        |       |      |          |            |                     |                |              |      |            |              |         |        |       |               |        |                   |       |        |                |      |           |                    |                |         |            |      |      | 00  | 2     | 00 F    | 0 15         |                                       |  |
|                | 6950E 3360N    | .63         | 23.39  | 12.65  | 55.1  | 119  | 249.9    | 20.0       | 728 2.3             | 1 48.8         | .8           | 6.9  | 3.1        | 77.0         | .27 1   | .66 .  | 20    | 42 .5         | 55 .11 | 11 39.6           | 74.5  | .62 1  | .96.2 .        | .070 | 3 1.0     | 64 .022            | . 13           | .2      | 3.7        | .08  | .04  | 22  | .3    | .02 5.1 | 0 15         |                                       |  |
|                | 6950E 3380N    | .54         | 19.43  | 9.54   | 53.7  | 89   | 73.1     | 10.6       | 597 1.7             | 7 14.3         | 8.8          | 1.2  | 1.6        | 99.3         | . 20    | .40 .  | 12 :  | 36 .6         | 53 .12 | 26 34.1           | 38.7  | .48 1  | .88.8          | .059 | 3 1.5     | 59 .020            | .12            | <.1     | 2.2        | .06  | .05  | 18  | .2    | .02 4.4 | 8 15         |                                       |  |
|                | 6950E 3400N    | .56         | 19.56  | 10.05  | 49.3  | 76   | 41.7     | 9.0        | 616 1.7             | 5 9.3          | 8.8          | .9   | 2.5        | 78.0         | .23     | .33 .  | 15    | 35 .5         | 57.09  | 97 32.5           | 27.1  | .35 2  | 16.3           | .072 | 2 1.      | 68 .021            | . 17           | <.1     | 2.9        | .07  | .05  | 1/  | .2 <  | .02 5.1 | 0 15         |                                       |  |
|                | 6950E 3420N    | .78         | 19.77  | 11.56  | 46.1  | 112  | 70.8     | 11.9       | 691 1.6             | 4 35.2         | 2 1.1        | .9   | 3.7        | 90.5         | .22 1   | .06 .  | 11    | 24 .6         | 62.08  | 34 46.8           | 20.1  | .27 2  | 90.7           | .056 | 2 1.      | 78 .021            | . 15           | <.1     | 2.7        | .07  | .03  | 23  | .3 <  | .02 4.  | / 15         |                                       |  |
|                | 6950E 3440N    | . 82        | 19.34  | 9.83   | 49.3  | 84   | 51.0     | 8.8        | 631 1.4             | 3 22.(         | .8           | 1.0  | 1.5        | 107.1        | . 27    | .66 .  | 14    | 24 .6         | 68 .09 | 97 31.2           | 17.9  | .25 2  | 20.5           | .051 | 2 1.4     | 43 .021            | 14             | <.1     | 2.0        | .07  | .04  | 19  | .3    | .03 3.  | 7 15         |                                       |  |
|                |                |             |        |        |       |      |          |            |                     |                |              |      |            |              |         |        |       |               |        |                   |       |        |                |      |           |                    |                |         |            |      |      |     |       |         |              |                                       |  |
|                | 6950E 3460N    | .73         | 20.20  | 9.63   | 51.8  | 82   | 44.0     | 8.5        | 581 1.5             | 2 17.4         | 9. 1         | 1.7  | 1.2        | 116.7        | . 25    | .43 .  | 12    | 30 .6         | 69 .17 | 70 34.5           | 21.6  | .26 2  | 206.1          | .053 | 21.       | 55 .020            | .14            | <.1     | 1.8        | .07  | .03  | 14  | .3 <  | .02 4.3 | 3 15         |                                       |  |
|                | RE 6950E 3460N | .73         | 20.40  | 9.23   | 54.2  | 80   | 44.7     | 8.4        | 578 1.5             | 2 17.3         | .9           | .5   | 1.4        | 116.8        | .26     | .39 .  | 12    | 29.6          | 69.10  | 69 34.0           | 21.9  | .25 2  | 204.8          | .051 | 21.       | 54 .020            | .13            | <.1     | 1.9        | .07  | .03  | 15  | .3    | .02 4.: | 5 15         |                                       |  |
|                | 6950F 3480N    | .55         | 19.15  | 9.04   | 50.3  | 92   | 31.7     | 7.6        | 519 1.5             | 6 5.3          | 9.9          | 3.1  | 1.2        | 121.4        | .22     | .16 .  | 13    | 32 .5         | 58.1   | 24 32.2           | 22.9  | .29 1  | 89.7           | .058 | 31.       | 66 .020            | . 14           | <.1     | 1.9        | .07  | . 04 | 14  | .3 <  | .02 5.  | 0 15         |                                       |  |
|                | 6950E 3500N    | .49         | 21.88  | 9.07   | 42.6  | 85   | 26.6     | 6.6        | 486 1.5             | 0 4.8          | 3 1.0        | .3   | 1.1        | 225.3        | .23     | .14 .  | 13    | 30 .8         | 87.10  | 06 35.3           | 19.9  | .37 2  | 212.7          | .053 | 41.       | 64 .022            | .17            | <.1     | 1.6        | .06  | .06  | 14  | .4    | .02 4.  | 4 15         |                                       |  |
|                | 6950E 3520N    | 50          | 22.68  | 8.80   | 44.4  | 74   | 20.1     | 6.2        | 504 1.3             | 86 4.0         | .8           | .3   | .8         | 189.7        | . 19    | . 13 . | 12    | 30 .8         | 86 .13 | 30 32.7           | 17.3  | .30 2  | 205.2          | .049 | 41.       | 54 .025            | . 18           | <.1     | 1.3        | .06  | .08  | 17  | .3 <  | .02 4.  | 4 15         | i i i i i i i i i i i i i i i i i i i |  |
|                | 05302 05200    | .00         | 22.00  | 0.00   |       |      |          |            |                     |                |              |      |            |              |         |        |       |               |        |                   |       |        |                |      |           |                    |                |         |            |      |      |     |       |         |              |                                       |  |
|                | FORDE 3540N    | 51          | 20 16  | 9 18   | 53 7  | 82   | 16.7     | 5.9        | 518 1.4             | 9 5.0          | 5.8          | .7   | .9         | 162.1        | . 25    | .16 .  | 14    | 33 .7         | 77.1   | 40 33.2           | 17.8  | .27 1  | 67.3           | .049 | 2 1.      | 56 .018            | . 15           | <.1     | 1.3        | .06  | .07  | 18  | .3    | .03 4.  | 6 15         | i                                     |  |
|                | COEDE 2660N    | 50          | 10 27  | 8 55   | 56.6  | 65   | 12.2     | 5.8        | 469 1 4             | 0 4.3          | 7.8          | 1.4  | 1.7        | 136.1        | . 29    | .13 .  | 10    | 34 .6         | 61.19  | 97 36.0           | 17.0  | .24 1  | 138.2          | .053 | 21.       | 12 .019            | .13            | <.1     | 1.5        | .05  | .02  | 13  | .2    | .02 3.  | 5 15         |                                       |  |
|                | 6050E 3300N    | .55         | 23 30  | 11 /2  | 50.0  | 66   | 10.5     | 59         | 519 1 4             | 0 5            | 5 1.2        | .4   | 2.0        | 207.1        | .24     | .16 .  | 13    | 32 .8         | 81 .1  | 21 45.0           | 15.3  | .26 1  | 57.5           | .059 | 21.       | 37 .025            | .16            | <.1     | 1.7        | .08  | .06  | 15  | .3    | .02 3.  | 9 15         | i                                     |  |
|                | 6950E 3500N    | . 50<br>E A | 25.50  | 13 26  | 61.2  | 76   | 11 0     | 63         | 502 1 5             | 1 6 1          | 1 1 2        | 3    | 3.9        | 108.0        | .23     | . 19 . | 17    | 32 .5         | 55.1   | 07 52.3           | 14.4  | .27 1  | 156.5          | .076 | 21.       | 81 .026            | 5 .20          | <.1     | 2.4        | .11  | .03  | 14  | .2    | .03 5.  | 3 15         | i                                     |  |
|                | 6950E 3600N    | . 54        | 20.45  | 7      | L01.2 | 60   | 11.0     | 6.5        | 056 1 6             | (2 2 ·         | , 1.2<br>, 5 | 3    | 5.5        | 63.3         | 22      | 24     | 11    | 37 F          | 50 1   | 47 17.5           | 24.5  | .35 2  | 223.2          | .057 | 11.       | 62 .026            | 5.12           | <.1     | 3.0        | .05  | .07  | 19  | .2 <  | .02 5.  | 2 15         | i                                     |  |
|                | 69/5E 3100N    | .61         | 20.45  | / - 05 | 52.3  | 62   | 11.2     | 0.0        | 050 1.0             |                | 5            | . 0  |            | 00.0         | - to to |        |       |               |        |                   |       |        |                |      |           |                    |                |         |            |      |      |     |       |         |              |                                       |  |
|                |                |             |        | 10.10  | F0 0  | 00   | 26.2     | 0.0        | cco 1 7             | 10 6 1         | . 7          | £    | 2 1        | 70 3         | 25      | 21     | 13    | 3/ 4          | 54 1   | NR 29 3           | 28.1  | 36.2   | 211 4          | 065  | 21.       | 42 .022            | 2.16           | .1      | 2.6        | .05  | .04  | 16  | .2    | .02 4.  | 1 15         |                                       |  |
|                | 6975E 3120N    | .58         | 24.1/  | 10.18  | 58.2  | 93   | 30.2     | 0.U<br>7.C | 700 1./             | 0 0.1<br>0 7   | 7./<br>1. C  | .5   | 2.1<br>3 E | 70.3<br>77 N | 29      | 31     | 11    | 32 4          | 61 1   | 11 26 5           | 24.6  | 34 2   | 20.3           | .059 | 31        | 29 .024            | 1.17           | <.1     | 2.2        | .05  | .06  | 20  | .2    | .02 3.  | 7 15         | à                                     |  |
|                | 6975E 3140N    | .59         | 26.54  | 10.66  | 52.2  | 101  | 30.1     | 7.0<br>C.C | 700 1.5             | ис /           | 1.0<br>1.5   | 1.7  | 1.5        | 64.0         | 34      | 28     | 12    | 25 4          | 68 1   | n2 20 3           | 16.5  | 30.2   | 269.2          | 049  | 11        | 23 .020            | ) .14          | 1       | 2.2        | .04  | .05  | 18  | .2 <  | .02 3.  | 2 15         | 5                                     |  |
|                | 6975E 3160N    | .49         | 24.11  | 8.28   | 48.1  | 102  | 26.2     | 0.0        | 024 1.3             | 50 D.I         | J.5          | 1.1  | .9         | 70 E         | 20      | .20 .  | 11    | 20 1 0        | 06 1   | 27 20 4           | 7 2   | 30.2   | 886 1          | 032  | 5 1       | 29 .018            | 3 .13          |         | 2.9        | .04  | .11  | 32  | .4 <  | <.02 3. | 0 15         | i                                     |  |
|                | 6975E 3180N    | .46         | 32.18  | 8.52   | 35.6  | 181  | 15.1     | 6./ 3      | 1209 1.5            | 5 J.           | 5.4          | 8.   | .4         | 78.5         | .30     | . 9/ . | 11    |               | 72 0   | 2/20.4<br>00.22 / | 12 4  | 35 3   | 200.1          | 041  | ۵ı.<br>۸۱ | 29 010             | , .10<br>a 1/1 | 0       | 2.8        | 04   | 07   | 28  | .3    | .02 3   | 3 15         |                                       |  |
|                | 6975E 3200N    | .43         | 37.82  | 14.75  | 48.0  | 264  | 20.4     | ь.9        | 983 1.6             | o/ 4.·         | + .4         | 2.2  | .9         | 50.9         | .42     | .47 .  | 11    | 27 .1         | 10.0   | JU 22.4           | 12.0  | .00 2  |                | .041 | - 1.      | 01                 | 14             | 1       | 2.0        |      |      |     |       |         |              |                                       |  |
|                |                |             |        |        |       | _    | <b>.</b> |            |                     |                |              | 10.0 |            | 10.0         | F (0 0  | 00 1   | 21    | <i>c</i> o .  | 76 0   | 07 10 4           | 107 0 | £0 1   | 197 0          | 000  | 16.2      | 10 0.04            | 1 14           | 1 1 9   | 3.0        | 1 05 | 03   | 172 | 4 8   | 87 6    | 8 14         | 5                                     |  |
|                | STANDARD DS5   | 12.99       | 143.59 | 24.70  | 140.8 | 275  | 24.1     | 12.8       | //0 2.9             | 18 19.         | ∠ 6.2        | 43.9 | 2.8        | 46.6         | 5.63 3  | .98 6. | . 31  | 04            | /0.0   | 3/ 12.4           | 101.9 | .00 1  | 137.9          | .070 | 10 4.     | TO .001            | + .14          | 0       | 5.4        | 1.00 | .00  | 216 | 1.0   |         | - 10         |                                       |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





|                |       |        |        |       |              |                    |                  |          |             |         |                |                  |         |             |      |    | <u></u> | D 1.     | <u></u> | Ma C     | Pa Ta          |      | 41 Na    | K         | ы     | Sc          | τı   | s       | На          | Se .    | Te    | Ga Samo        | le  |  |
|----------------|-------|--------|--------|-------|--------------|--------------------|------------------|----------|-------------|---------|----------------|------------------|---------|-------------|------|----|---------|----------|---------|----------|----------------|------|----------|-----------|-------|-------------|------|---------|-------------|---------|-------|----------------|-----|--|
| SAMPLE#        | Мо    | Cu     | Pb     | Zn    | Ag           | Ni                 | Со               | Mn Fe    | As          | U       | Au             | Th               | Sr Co   | I SD        | BI   | V  | رa<br>ت | P Ld     | Un      | my t     | Dd II<br>omr ∛ | D    | 2 2      | . r.<br>2 | ກາດທ  | ວເ<br>ກດຫຼຸ | nac  | у<br>Хг | ng<br>ngh r | DOM DI  | on D  | aa samp<br>nom | am  |  |
|                | ррл   | ppm    | ppm    | ppm   | ppb          | ppm                | ppm p            | pna X    | ppm         | ppm     | ppb            | opm p            | ipm ppm | i ppii      | ррш  |    | ~       | s ppa    | ppn     | ~~~ PF   |                |      | ~ ~      | ~         | ppm   |             |      | ~ P     |             |         | P FI  |                |     |  |
|                |       |        |        |       |              |                    |                  |          | -           | 1.0     | ,              | 4 4 00           | 2 01    | 0.2         | 10   | 20 | 56 0    | 170 8 /  | 15.3    | 56 249   | 7 132          | <1   | 90 088   | .52       | 2.0   | 2.1         | .31  | .01     | <5 <        | <.1 <.0 | 02 4  | .8             | 15  |  |
| G-1            | 1.45  | 2.60   | 2.30   | 48./  | 12           | 5.1                | 4.2 5            | 53 1.99  | .5          | 1.8     | .4 4           | +.4 Ου<br>1 3 Ε4 | 0 20    | 02          | 18   | 32 | 77 1    | 01 26 2  | 17.8    | 40 267   | 1 .039         | 41.  | 36 .017  | . 19      | .1    | 3.2         | .06  | .07     | 26          | .4 .(   | 02 3  | 8.5            | 15  |  |
| 6975E 3220N    | .65   | 52.58  | 13.51  | 62.0  | 524          | 35.21              | 1.2.12           | 11 2 47  | 11.9        | .51     | 2.4 ·<br>7 1 · | 1.0 10           | 1.0 .00 | .33         | 24   | 37 | 70 0    | 97 26 7  | 23.7    | 44 229   | 1 .049         | 4 1  | 52 .016  | .21       | .1    | 3.3         | .07  | .05     | 23          | .3 .0   | 02 4  | .1             | 15  |  |
| 6975E 3240N    | .64   | 32.40  | 13.78  | /6.8  | 338          | 41.2 1             | 1.3 12           | 11 2.4/  | /.5<br>0.5  | .5<br>2 |                | 1.0 45<br>0 E 20 | 2 2/    | .42         | 21   | 35 | 49 0    | 191 22 7 | 20.7    | 42 213   | 6 .063         | 31   | 81 .019  | .18       | .1    | 3.9         | .07  | .03     | 22          | .2 .0   | 02 4  | .8             | 15  |  |
| 6975E 3260N    | .5/   | 21.61  | 14.09  | 62.6  | 144          | 29.0               | 9.4 11           | 30 2.10  | 0.0<br>10.0 | .0      | 1.2            | 2.0 05           | 2 30    | , .40<br>10 | 37   | 33 | 53 0    | 77 21 6  | 23.8    | 48 228   | .5 .055        | 4 1  | 84 .017  | .19       | <.1   | 3.9         | .06  | .04     | 20          | .3 .0   | 03 4  | 1.6            | 15  |  |
| 6975E 3280N    | . /4  | 28.22  | 15.44  | 62.5  | 522          | 53.5 1             | 0.8 12           | 00 2.42  | 15.0        | ./ 1    | 1.5            | 2.1 3*           | .200    | .45         | . 07 | 00 |         | /// L1.0 | 2010    |          |                |      |          |           |       |             |      |         |             |         |       |                |     |  |
|                | ~     | 00.00  | 01 10  | co c  | 100          | 000 0 1            | 0 6 11           | 27 2 42  | 20 E        | 2       | 7.2            | 1 6 70           | 7 33    | 1 47        | 17   | 31 | 82 1    | 03 22 6  | 66.9    | .61 189. | .5 .047        | 61   | 47 .017  | .21       | .1    | 3.4         | .07  | .06     | 24          | .3 <.(  | 02 3  | 3.9            | 15  |  |
| 6975E 3300N    | .65   | 23.06  | 21.19  | 63.0  | 462          | 200.3 1<br>104 0 1 | 9.0 11<br>1 2 6  | 2/ 2.43  | 14 7        | .5      | 1.1            | 2 A 76           | 3 2     | 74          | 12   | 32 | .54 .0  | 199 29.6 | 40.6    | .48 210  | .4 .064        | 4 1  | 68 .024  | . 18      | <.1   | 2.7         | .07  | .04     | 16          | .2 .0   | 02 4  | 1.6            | 15  |  |
| 6975E 3320N    | .55   | 10.9/  | 20.12  | D1.2  | 162          | 202.2.1            | 0 4 9            | 19 1.01  | 20.3        | .0      | 1.9            | 1364             | 13 21   | 99          | 13   | 29 | .66 .1  | 05 21.8  | 51.4    | .57 255. | .3 .055        | 51   | 91 .020  | .12       | .1    | 3.0         | .07  | .06     | 20          | .2 .0   | 04 4  | 1.9            | 15  |  |
| 6975E 3340N    | .55   | 30.10  | 9.50   | 53.4  | 103<br>20E 1 | 292.2 I<br>140 0 7 | .9.4 0<br>2.2.12 | 72 / 52  | 101.6       | .7      | 9.7            | 1 2 109          | 8 44    | 11.83       | . 10 | 39 | .97 .1  | 37 13.9  | 244.5   | .92 171  | .3 .049        | 61   | .62 .020 | .09       | .7    | 6.3         | . 11 | .07     | 51          | .6.1    | 07 4  | 1.2            | 15  |  |
| 6975E 3360N    | . /4  | 28.40  | 14.41  | 04.U  | 305 I<br>70  | 140.0 /            | 1 0 11           | 7/ 1 00  | 15.3        | .5 2    | 1.2            | 1 0 54           | 5 28    | 47          | 16   | 35 | .50 .1  | 42 22.0  | 41.7    | .36 268  | .6 .057        | 21   | 67 .019  | .10       | <.1   | 2.8         | .07  | .04     | 29          | .2 .1   | 03 4  | 1.7            | 15  |  |
| 69/5E 338UN    | .91   | 20.49  | 12.24  | 70.0  | 70           | 55.5 I             | 1.5 11           | /4 1.75  | 10.0        |         | 1.2            | 1.0 0.           |         |             |      |    |         |          |         |          |                |      |          |           |       |             |      |         |             |         |       |                |     |  |
| COTE           | 70    | 20 66  | 11 62  | 50.2  | 119          | 50 / 1             | 129              | 46 2 10  | 87          | q       | 8.9            | 2784             | 4 .2    | 3           | . 12 | 38 | .66 .1  | 116 38.2 | 32.9    | .45 263  | .0 .062        | 4 1  | .62 .018 | .17       | <.1   | 3.3         | .07  | .04     | 14          | .2 .1   | 03 4  | 1.7            | 15  |  |
| 6975E 3400N    | .70   | 17 10  | 10.02  | 61 1  | 65           | 55.41              | 0.2.8            | 21 1 00  | 19 1        | .5      | 1.2            | 286              | 0 20    | 67          | 14   | 32 | .60.0   | )72 23.9 | 23:6    | .32 198  | .1 .055        | 31   | .52 .017 | . 16      | .1    | 3.8         | .07  | .04     | 28          | .3 <.4  | 02 4  | 1.2            | 15  |  |
| 69/5E 3420N    | .50   | 25 61  | 10.0/  | 57.7  | 167          | 208 3 2            | 228              | Q1 2 47  | 105.3       |         | 3.0            | 4 2 71           | .6 .10  | 5 3.79      | .14  | 36 | .59 .(  | 088 37.2 | 50.3    | .35 226  | .2 .058        | 31   | .83 .019 | .20       | .1    | 4.4         | . 10 | .04     | 29          | .3 <.   | 02 4  | 1.9            | 15  |  |
| 6975E 3440N    | 1.10  | 19 24  | 0.21   | 62 3  | 107          | 43.5               | 835              | 61 1 28  | 17 1        | .0      | .4             | 1.0 9            | .7 .20  | 5.45        | .11  | 21 | .61 .3  | 115 27.9 | 13.6    | .20 211  | .2 .045        | 11   | 45 .023  | .11       | <.1   | 1.6         | .07  | .03     | 18          | .3 .    | 02 4  | 1.0            | 15  |  |
| 6975E 3400N    | .00   | 17 33  | 10.15  | 63.0  | 68           | 22 1               | 61 5             | 32 1 38  | 5.5         | .8      | .4             | .8 11            | .6 .3   | .18         | . 14 | 27 | .62 .1  | 128 27.6 | 6 16.7  | .24 188  | .0 .053        | 21   | .46 .019 | .14       | <.1   | 1.5         | .07  | .04     | 16          | .2 .    | 04 4  | 1.3            | 15  |  |
| 09/3E 3400W    |       | 17.00  | 10.10  | 00.0  | 00           |                    | 0.1 0            | 02 1100  |             |         |                |                  |         |             |      |    |         |          |         |          |                |      |          |           |       |             |      |         |             |         |       |                |     |  |
| 6975E 3500N    | 67    | 21 47  | 10.32  | 55.2  | 112          | 26.0               | 7.0 5            | 09 1.55  | 9.7         | 1.0     | .5             | .9 160           | ).4 .3  | 2.19        | . 13 | 32 | .80 .1  | 173 36.7 | 20.6    | .32 220  | .3 .046        | 3 1  | .52 .016 | 5.19      | <.1   | 1.5         | .07  | .05     | 24          | .4 .    | 02 4  | 1.4            | 15  |  |
| 6975E 3520N    | 49    | 23 15  | 9.14   | 44.8  | 86           | 20.0               | 5.9 5            | 13 1.37  | 4.6         | .8      | .3             | .9 18            | 2.2 .2  | .13         | .11  | 28 | . 88    | 126 32.5 | 6 16.3  | .32 193  | .5 .040        | 3 1  | .48 .020 | . 15      | <.1   | 1.3         | .05  | .06     | 19          | .3 <.   | 02 4  | 4.3            | 15  |  |
| RE 6975E 3520N | 48    | 22 08  | 9.23   | 43.8  | 85           | 19.1               | 5.8 5            | 15 1.40  | 4.5         | .8      | <.2            | .8 18            | 2.3 .2  | 2.13        | .12  | 29 | . 88    | 128 32.9 | 16.6    | .32 201  | .7 .045        | 31   | .51 .021 | . 15      | <.1   | 1.3         | .06  | .07     | 17          | .3 .    | 03 4  | 4.4            | 15  |  |
| 6975F 3540N    | .53   | 21.19  | 10.91  | 52.4  | 113          | 18.6               | 6.4 5            | 34 1.61  | 5.3         | 1.0     | 1.5            | 1.1 164          | 1.1 .2  | 5.17        | . 13 | 36 | .76 .:  | 139 40.7 | 18.8    | .30 181  | .4 .052        | 2 1  | .70 .021 | . 15      | <.1   | 1.5         | .05  | .05     | 17          | .3 .    | 04 4  | 4.9            | 15  |  |
| 6975E 3560N    | .59   | 22.44  | 8.96   | 71.2  | 71           | 12.2               | 5.8 6            | 17 1.37  | 4.4         | .8      | .3             | .8 15            | 2.3 .3  | .12         | .11  | 30 | .70 .2  | 202 30.9 | 14.8    | .24 180  | .8 .048        | 21   | .44 .021 | . 11      | <.1   | 1.3         | .06  | .04     | 18          | .3 .    | 04 4  | 4.3            | 15  |  |
| 00002 00000    |       |        |        |       |              |                    |                  |          |             |         |                |                  |         |             |      |    |         |          |         |          |                |      |          |           |       |             |      |         |             |         |       |                |     |  |
| 6975E 3580N    | . 68  | 22.16  | 11.85  | 55.2  | 68           | 10.4               | 6.0 5            | 38 1.34  | 5.6         | 1.0     | .4             | 1.4 18           | 9.1.2   | 9.16        | . 15 | 27 | .76 .   | 111 37.5 | 5 13.8  | .24 179  | .1 .057        | 21   | .42 .022 | 2 .14     | <.1   | 1.6         | .07  | .04     | 20          | .3 .    | .05 4 | 4.2            | 15  |  |
| 6975E 3600N    | .62   | 27.33  | 14.81  | 61.5  | 85           | 11.9               | 7.0 5            | 90 1.56  | 5.8         | 1.3     | .5             | 2.6 13           | 7.5.3   | . 18        | .16  | 31 | .68 .   | 117 54.5 | 5 15.5  | .29 192  | .5 .064        | 21   | .71 .021 | . 22      | <.1   | 2.3         | .10  | .04     | 19          | .3 .    | 02 4  | 4.9            | 15  |  |
| 7000E 3100N    | .32   | 20.52  | 7.52   | 52.9  | 116          | 22.2               | 5.3 3            | 40 1.42  | 4.6         | .5      | 1.0            | 1.4 18           | 3.2 .1  | 5.18        | . 10 | 28 | .66 .0  | 088 26.0 | ) 21.5  | .55 153  | .9 .052        | 51   | .32 .027 | .16       | <.1   | 1.7         | .04  | .05     | 16          | .3 <.   | .02 3 | 3.7            | 15  |  |
| 7000E 3120N    | .66   | 28.47  | 11.59  | 73.1  | 106          | 34.9               | 8.0 5            | 55 1.74  | 7.1         | .8      | .7             | 1.7 16           | 5.8 .2  | 5.27        | .12  | 36 | .62 .   | 109 31.9 | 9 29.5  | .48 186  | .0 .061        | 31   | .40 .021 | .17       | <.1   | 2.3         | .05  | .05     | 15          | .3 · .  | .03 4 | 4.0            | 15  |  |
| 7000E 3140N    | . 65  | 42.84  | 11.86  | 72.0  | 123          | 52.6               | 9.4 5            | 72 1.94  | 8.6         | .6      | 2.0            | 2.7 10           | 5.1.2   | 1.40        | . 12 | 43 | .69 .   | 116 40.6 | 5 40.6  | .55 167  | .4 .065        | 4 1  | .19 .013 | .18       | .1    | 2.5         | .07  | .03     | 19          | .3.     | .03 3 | 3.9            | 15  |  |
|                |       |        |        |       |              |                    |                  |          |             |         |                |                  |         |             |      |    |         |          |         |          |                |      |          |           |       |             |      |         |             |         |       |                |     |  |
| 7000E 3160N    | .53   | 20.81  | 9.64   | 48.6  | 77           | 49.9               | 8.5 5            | 64 1.77  | 6.7         | .6      | .8             | 2.1 8            | 9.4 .1  | 9.26        | .11  | 37 | .59 .0  | 099 33.5 | 5 35.6  | .47 180  | .0 .061        | 4 1  | .26 .020 | .17       | <.1   | 2.3         | .06  | .03     | 13          | .2.     | .03 3 | 3.7            | 15  |  |
| 7000E 3180N    | .57   | 24.62  | 11.17  | 49.6  | 111          | 48.8               | 8.2 6            | 41 1.62  | 5.9         | .5      | .8             | 1.8 8            | 5.5 .1  | 9.28        | . 12 | 32 | .60 .   | 090 30.1 | 29.7    | .43 173  | .7 .051        | 31   | .19 .019 | 9 .17     | .3    | 2.2         | .05  | .05     | 20          | .2 <.   | .02 3 | 3.4            | 15  |  |
| 7000E 3200N    | . 60  | 37.25  | 10.38  | 48.3  | 207          | 31.9               | 8.3 10           | 62 1.49  | 6.0         | .6      | .9             | .8 9             | 5.0.4   | 1.26        | . 12 | 26 | .89 .   | 116 24.4 | 16.3    | .31 290  | .1 .044        | 31   | .37 .019 | 9.15      | <.1   | 2.1         | .05  | .07     | 23          | .4 <.   | .02 3 | 3.4            | 15  |  |
| 7000E 3220N    | .57   | 34.62  | 9.13   | 63.9  | 193          | 30.9               | 7.8 12           | 36 1.52  | 4.9         | .5      | .7             | .8 8             | 0.5 .4  | 9.24        | .16  | 25 | .86 .   | 115 20.0 | ) 17.6  | .32 273  | .8 .048        | 31   | .46 .018 | 3.15      | <.1   | 2.4         | .05  | .06     | 33          | .3.     | .02 3 | 3.7            | 15  |  |
| 7000E 3240N    | .54   | 37.63  | 11.23  | 51.9  | 276          | 58.8 1             | 10.7 10          | 68 2.02  | 8.0         | .5      | 5.9            | 1.3 5            | 5.3.2   | 3 .35       | . 20 | 31 | .55 .   | 077 19.6 | 5 30.4  | .50 214  | .5 .051        | 31   | .60 .018 | 3.20      | <.1   | 2.9         | .05  | .03     | 25          | .3.     | .02 4 | 4.3            | 15  |  |
|                |       |        |        |       |              |                    |                  |          |             |         |                |                  |         |             |      |    |         |          |         |          |                |      |          |           |       |             |      |         |             |         |       |                | 1.5 |  |
| 7000E 3260N    | .52   | 26.51  | 11.70  | 57.0  | 236          | 73.1 1             | 11.7 8           | 386 2.34 | 12.9        | .5      | 6.0            | 1.8 5            | 5.1.2   | 1.58        | . 16 | 37 | .50 .   | 089 22.0 | 34.0    | .65 215  | .1 .046        | 31   | .69 .01  | 5.22      | 2 <.1 | 3.9         | .06  | .03     | 17          | .2.     | .02 4 | 4.6            | 15  |  |
| 7000E 3280N    | .59   | 23.58  | 18.38  | 82.8  | 209          | 329.3 2            | 23.8 9           | 34 2.63  | 45.4        | .5      | 4.5            | 2.6 6            | 2.4 .3  | 8 2.19      | . 15 | 38 | .48 .   | 096 26.3 | 3 78.1  | .68 191  | 9 .054         | 5 1  | .52 .01  | 1 .18     | .1    | 3.9         | .07  | .04     | 16          | .3.     | .03 4 | 4.1<br>5.2     | 15  |  |
| 7000E 3300N    | .62   | 27.21  | 108.42 | 160.9 | 540          | 151.8 1            | 16.6 13          | 332 2.87 | 46.7        | .9 6    | 51.1           | 3.1 5            | 3.9 1.0 | 1 1.20      | . 16 | 40 | .45 .   | 082 30.8 | 3 46.0  | .51 241  | 4 .074         | 32   | .02 .018 | 3.20      | .1    | 4.2         | .08  | .03     | 53          | .2 .    | .02 5 | 5.6            | 15  |  |
| 7000E 3320N    | .53   | 19.50  | 11.83  | 58.2  | 181          | 103.3 1            | 14.5 12          | 259 2.73 | 11.1        | .5      | 5.6            | 1.3 4            | 2.7.2   | 3.53        | . 13 | 36 | .56 .   | 101 18.0 | 5 32.2  | .68 215  | .6 .031        | 4 1  | .77 .014 | 4.20      | <.1   | 4.2         | .07  | .06     | 31          | .2 .    | .02 4 | 4.7            | 15  |  |
| 7000E 3340N    | .57   | 27.79  | 18.55  | 78.2  | 176          | 188.6 1            | 17.9 7           | 26 2.33  | 15.5        | .6      | 2.3            | 3.8 7            | 5.6.3   | 6 .61       | . 12 | 45 | .57 .   | 116 46.3 | 7 59.6  | .83 180  | .7 .064        | 4 1  | .56 .01  | 3.24      | <.1   | 3.5         | .08  | .03     | 18          | .3 <.   | .02 5 | 5.0            | 15  |  |
|                |       |        |        |       |              |                    |                  |          |             |         |                |                  |         |             |      |    |         |          |         |          |                |      |          |           |       |             |      |         |             |         |       |                | 15  |  |
| STANDARD DS5   | 13.37 | 146.30 | 26.76  | 146.9 | 285          | 25.5 1             | 12.6 7           | 69 2.99  | 19.2        | 6.4     | 43.5           | 2.9 4            | 6.6 5.6 | 9 3.98      | 6.40 | 62 | .77 .   | 098 12.0 | 5 187.9 | .68 143  | 3.2 .098       | 18 2 | .03 .03  | 5.14      | 4.8   | 3.5 1       | 06   | .02     | 174         | 5.0.    | .89 6 | 6.7            | 15  |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA





Data\_\_\_\_\_FA

| ACAL ANALITICAL |                                         |       |      |               |        |       |     |       |        |                |      |                |      |         |          |       |         |       |      |       |        |        |        |                   |                   |          |             |        |       |        |        |        |                   |       |     |      |      |        |  |
|-----------------|-----------------------------------------|-------|------|---------------|--------|-------|-----|-------|--------|----------------|------|----------------|------|---------|----------|-------|---------|-------|------|-------|--------|--------|--------|-------------------|-------------------|----------|-------------|--------|-------|--------|--------|--------|-------------------|-------|-----|------|------|--------|--|
|                 | CAMDLE#                                 | Mo    |      | <u>.</u>      | Dh     | 7n    | ٨a  | Ni    | Co     | Mn             | Fe   | As             | Ш    | Au      | Th       | Sr    | Cd      | Sb    | Bi   | v     | Ca     | Р      | La     | Cr                | Mg                | Ba T     | 'i E        | A I    | Na    | Κ      | W S    | ic TI  | S                 | 5 Hg  | Se  | Te   | Ga S | jample |  |
|                 | SAMPLE#                                 | Ρių   |      | Ju            | 10     | 20    | ng  |       |        |                |      | 000            | 000  | nnh     | 000      | ກວຫ   | 007     | 000   | nom  | 000   | ¥      | ¥r     | י מתו  | กกส               | γ n               | nm       | ž no∎       | 8      | ž     | ξp     | iom de | m DDA  | 1 2               | gob 3 | DDM | ppm  | ppm  | gm     |  |
| 5               |                                         | ppm   | p    | pm p          | mqc    | ppm   | ppp | ppi   | і рря  | ppili          | Ł    | ppiii          | ppin | hhn     | ppia     | ppii  | - ppill | μhiii | ppia | ppiii | ~      | ~ P    |        | ppm .             | ~ P               |          | ~ pp        |        |       |        |        |        |                   |       |     |      |      |        |  |
|                 |                                         |       |      |               |        |       |     |       |        |                |      |                |      |         |          |       |         |       |      |       |        |        |        |                   | F.C. 000          | 0 10     |             | 1 04   | 102   | 40 2   |        | 2 2/   | 01                | -5    | ~ 1 | 02   | 5 1  | 15     |  |
|                 | G-1                                     | 1.54  | 2.7  | 74 2.         | .69 4  | 44.4  | 13  | 4.6   | 4.4    | 544            | 2.05 | . 4            | 2.1  | <.2     | 4.4      | 86.7  | .01     | .03   | .11  | 40    | .60 .0 | J85 10 | 1.0 1  | 5.0 .             | .56 239           | .0 .12   | .5 4        | 1.04   | . 103 | .49 2  |        | ÷د. د  | .01               |       | ~.1 | .02  | 5.1  | 15     |  |
|                 | 7000E 3360N                             | .60   | 23.2 | 21 16.        | .21 8  | 89.1  | 125 | 108.8 | 12.7   | 670            | 2.01 | 27.4           | .9   | 5.0     | 2.8      | 81.4  | .47     | . 68  | .13  | 36    | .59 .1 | 121 34 | .1 4   | 1.7 .             | .53 215           | .4 .05   | 6 3         | 1.76   | .020  | . 19   | .1 3.  | 1 .08  | .07               | 15    | .2  | <.02 | 5.2  | 15     |  |
|                 | 7000E 3380N                             | .76   | 31.0 | )7 12         | .29 5  | 58.8  | 164 | 36.0  | 9.9    | 990            | 2.27 | 8.3            | .6   | 1.4     | 2.0      | 44.5  | . 29    | .44   | . 18 | 37    | .59.0  | 092 19 | 0.7 18 | 8.9 .             | .36 252           | .8 .05   | 1 3         | 1.63   | .022  | .18 <  | :.1 3. | 8 .09  | .05               | 5 25  | .2  | <.02 | 4.6  | 15     |  |
|                 | 7000F 3400N                             | 57    | 64 ( | 15 15         | 48 é   | 60.0  | 230 | 93.6  | 20.0   | 1815           | 3.03 | 7.3            | .5   | 3.0     | 1.0      | 51.6  | .26     | .59   | . 11 | 87    | .70 .3 | 140 18 | .7 4   | 6.2               | .46 253           | .5 .03   | 36 <i>4</i> | 1.52   | .028  | .11    | .1 7.  | 7.07   | . 10              | 53    | .3  | .02  | 4.7  | 15     |  |
|                 | 7000E 2420N                             | .07   | 18 4 | 53 14         | 20 5   | 55 A  | 87  | 40.2  | 8.6    | 630            | 1 93 | 78             | 1.1  | .6      | 3.1      | 53.3  | .16     | .31   | . 15 | 37    | .44 .0 | 093-30 | .5 2   | 5.9 .             | .33 253           | .5 .07   | 8 1         | 2.20   | .027  | .13 <  | .1 3.  | 4.09   | .04               | 1 15  | .1  | .03  | 6.5  | 15     |  |
|                 | 7000E 3420N                             | .09   | 10.0 | JJ 14.        | .20 .  | 55.4  | 07  | -10.2 | . 0.0  | 000            | 1.50 |                |      |         |          |       |         |       |      |       |        |        |        |                   |                   |          |             |        |       |        |        |        |                   |       |     |      |      |        |  |
|                 |                                         |       |      |               |        |       |     |       |        | 7.45           | 1 00 | 00 T           | 1 0  |         | <u> </u> | 00 0  | 10      | 07    | 12   | 22    | 66     | 114 25 | E 2    | 21                | 32 305            | 4 06     | 3 1         | 2 08   | 029   | 17 <   | :13    | 0 09   | 0.5               | 5 28  | .3  | .02  | 5.6  | 15     |  |
|                 | 7000E 3440N                             | . 65  | 18.3 | 32 9          | .61 5  | 51.2  | 114 | 68.5  | 10.5   | /45            | 1.89 | 20.7           | 1.0  | 5.5     | 2.2      | 00.0  | . 10    | .0/   | . 15 | 52    | .00    | 114 20 |        | 2. <del>4</del> . | .02 000           | 00       |             | 1 70   | 0.025 | 12 /   | 1 2    | 2 09   | 03                | 2 16  | 2   | 02   | 5.0  | 15     |  |
|                 | 7000E 3460N                             | . 65  | 18.8 | 39 10         | .07 5  | 50.2  | 102 | 37.2  | 2 8.0  | 529            | 1.59 | 6.7            | .9   | .4      | 2.5      | 98.6  | .21     | .25   | . 12 | 30    | .51    | 104 33 | 5.5 I  | 9.0               | .31 220           | .3 .05   |             | 1.70   | .020  | .15 ~  |        | 2 .00  |                   | . 10  | . 2 | .02  | 3.0  | 15     |  |
|                 | 7000E 3480N                             | . 62  | 18.3 | 77 8          | . 60 4 | 46.5  | 86  | 17.7  | 5.5    | 478            | 1.32 | 4.2            | . 8  | .4      | .9       | 106.3 | .26     | . 15  | . 11 | 26    | .55 .3 | 118 23 | 8.6 1  | 4.8               | .25 190           | .7 .04   | 3 2         | 2 1.54 | .026  | .11 <  | .1 1   | 5 .0/  | .05               | 5 15  | :3  | .02  | 4.4  | 15     |  |
|                 | 7000E 3500N                             | .53   | 21.3 | 36 9          | .87 4  | 43.6  | 88  | 32.2  | 6.9    | 504            | 1.57 | 7.7            | .9   | .7      | 1.4      | 130.2 | .23     | . 20  | . 13 | 34    | .74 .: | 118 31 | .6 2   | 3.1               | .38 191           | .8 .04   | 12 3        | 3 1.62 | .023  | .18 <  | -1 1   | 8 .07  | . 08              | 3 20  | .2  | .03  | 4.9  | 15     |  |
|                 | 7000F 3520N                             | .60   | 21.5 | 57 8          | .80 4  | 42.0  | 73  | 25.1  | 6.1    | 482            | 1.38 | 5.1            | .7   | .5      | 1.1      | 148.7 | . 23    | . 16  | .12  | 28    | .77 .  | 126 26 | 5.0 1  | 9.2               | .33 191           | .4 .04   | 10 3        | 3 1.42 | .021  | .23 <  | <.1 1  | 6.06   | 5 .09             | 20    | .2  | .03  | 4.2  | 15     |  |
|                 |                                         |       |      |               |        |       |     |       |        |                |      |                |      |         |          |       |         |       |      |       |        |        |        |                   |                   |          |             |        |       |        |        |        |                   |       |     |      |      |        |  |
|                 | 7000F 2540N                             | 70    | 20 0 | 0 20          | 06 9   | 52 Q  | 63  | 22 6  | 5.5    | 473            | 1 30 | 43             | 7    | 11      | 14       | 124.6 | .25     | . 15  | .11  | 29    | . 68   | 147 26 | 5.3 1  | 8.1               | .31 155           | .2 .04   | 10 4        | 1.28   | .019  | .17 <  | .1 1   | 6.06   | 5 .06             | 5 19  | .2  | .03  | 3.6  | 15     |  |
|                 | 7000E 3540M                             | .70   | 20.3 | 90 0<br>97 10 | . 50 . | 10 F  | 600 | 02.1  | 6.0    | 102            | 1 40 |                | 1.0  | - · · · |          | 132.0 | 24      | 13    | 11   | 29    | 58     | 115 27 | 5 1    | 8.3               | 28 159            | 1.04     | 17 3        | 1.47   | .028  | .12 <  | <.1 1  | 7 .07  | .05               | 5 17  | .3  | .02  | 4.1  | 15     |  |
|                 | 7000E 3560N                             | .70   | 21   | 2/ 10         | .05 4  | 43.5  | 00  | 23.1  |        | 403            | 1.40 | 4.0            | 1.0  | .0      | 1.4      | 124.2 | .27     | 14    | 12   | 29    | 63     | 146 27 | 15 1   | 57                | 25 187            | 7 05     |             | 2 1 57 | 027   | 16 <   | (1)    | 8 .08  | 306               | 5 16  | .3  | .03  | 4.5  | 15     |  |
|                 | 7000E 3580N                             | .66   | 19.3 | 36 9          | .30 8  | 56./  | 98  | 16.2  | 2 0.2  | 490            | 1.40 | 5.4            | 1.0  | .0      | 1.4      | 107.1 | .51     | .14   | . 15 | 20    | .00    | 140 Z) | .0 1   | 0.4               | 20 170            | 0 NE     |             | > 1 27 | 0.28  | 11 4   | -1 1   | 8 0    | 1 02              | 1 21  | 2   | 02   | 3.8  | 15     |  |
|                 | 7000E 3600N                             | . 68  | 19.  | 67 12         | .14 \$ | 57.2  | 43  | 8.4   | 1 5.3  | 523            | 1.11 | 5.1            | .9   | <.2     | 2.0      | 12/.1 | . 30    | . 19  | . 10 | 23    | .04 .1 | 005 20 | 5.9 1  | 0.4               | .20 1/9           | .0 .00   |             | 1.07   | .020  | 16     | . 1 0  | 7 .01  | : 0/              | 1 12  |     | .02  | 1 1  | 15     |  |
|                 | 7025E 3100N                             | . 64  | 29.  | 70 10         | .07 (  | 61.5  | 94  | 28.9  | 7.9    | 572            | 1.98 | 6.2            | .9   | .2      | 2.9      | 119.1 | . 20    | . 26  | . 11 | 44    | .6/ .  | 139 40 | ).8 3  | 2.1               | .41 184           | .6 .0/   | () I        | 1.3/   | .020  | .10 <  | .1 2   | / .0:  | 0 .04             | + 12  |     | .05  | 4.4  | 15     |  |
|                 |                                         |       |      |               |        |       |     |       |        |                |      |                |      |         |          |       |         |       |      |       |        |        |        |                   |                   |          |             |        |       |        |        |        |                   |       |     |      |      |        |  |
|                 | 7025E 3120N                             | .75   | 43.  | 86 16         | .85 (  | 68.0  | 128 | 39.4  | 11.2   | 974            | 2.44 | 9.6            | .8   | . 6     | 3.1      | 60.4  | . 25    | .43   | . 17 | 47    | .49 .  | 131 36 | 5.4 3  | 5.5               | .42 223           | .9 .07   | 72 3        | 3 1.57 | .016  | . 15   | .1 3   | 5 .02  | .04               | 4 29  | .2  | .03  | 4.9  | 15     |  |
|                 | 7025E 3140N                             | .59   | 26.  | D1 11         | .46    | 58.9  | 81  | 31.7  | 7.2    | 2 506          | 1.66 | 6.0            | .7   | 3.7     | 1.9      | 124.8 | . 25    | .23   | .13  | 35    | .64 .  | 091 29 | 9.1 2  | 7.3               | .46 179           | .5 .06   | 51 (        | 3 1.49 | .025  | .17 <  | <.1 2  | 3.00   | 5 .06             | 5 15  | .2  | .02  | 4.4  | 15     |  |
|                 | 7025E 3160N                             | 19    | 22   | 23 9          | 58     | 50.9  | 220 | 28.1  | 1 5.5  | 422            | 1.26 | 5.9            | .6   | 1.3     | 1.1      | 178.8 | . 19    | . 27  | .11  | 24    | .72 .  | 089 18 | 3.0 1  | 7.8 1             | .03 193           | .8 .04   | 17          | 5 1.63 | .053  | .10 <  | <.1 2  | 0.0    | 5.07              | 7 16  | .5  | .02  | 4.2  | 15     |  |
|                 | DE 2005E 0160N                          | . 12  | 22   | 07 10         | .00 1  | 50.0  | 222 | 28 (  | 1 5 6  | 419            | 1 28 | 6.0            | 6    | 14      | 11       | 178.2 | .21     | .29   | .11  | 22    | .73 .  | 088 18 | 8.8 1  | 8.71              | .03 188           | .2 .04   | 19          | 1.66   | .056  | .10 <  | <.1 2  | 0.0    | 5 .07             | 7 14  | .5  | .02  | 4.2  | 15     |  |
|                 | RE /UZSE SIDUN                          | . 21  | 05   | 44 0          | .00 .  | 40.5  | 105 | 20.0  | ,<br>  | 1 224          | 1 20 | 5.0            | .0   | 1       | 7        | 120 6 | 10      | 19    | 10   | 22    | 85     | 092 17 | 7 4 1  | 8.0               | 58 130            | 0 .03    | 38          | 5 1.15 | .039  | .12 <  | <.1 1  | 4 .0   | 5 .07             | 7 17  | .5  | .03  | 2.9  | 15     |  |
|                 | /025E 3180N                             | . 20  | 25.  | 44 D          | . 80 4 | 42.1  | 105 | 20.0  | 5 5.4  | 1 334          | 1.20 | 0.1            | . 0  | .4      | . /      | 125.0 | .15     | .15   | . 10 | ~~    | .00    | 0,2 1, |        | 0.0               |                   |          |             |        |       |        |        |        |                   |       |     |      |      |        |  |
|                 |                                         |       |      |               |        |       |     |       |        |                |      |                | _    |         |          |       | -       |       | 10   | 00    | 50     | 00F 10 |        |                   | 20 212            | 1 0/     | 10          | 2 1 20 | 0.22  | 15     | - 1 2  | 2 01   | : 04              | 6 17  | 2   | 02   | 3.6  | 15     |  |
|                 | 7025E 3200N                             | .67   | 28.  | 31 9          | .54    | 52.7  | 122 | 46.1  | 1 8.7  | 811            | 1.55 | 6.3            | .5   | .5      | 1.0      | /4./  | . 29    | .26   | . 13 | 28    | .55 .  | 095 15 | 9.0 Z  | 8.7               | . 39 213          | .1 .04   | +0 ·        | 5 1.30 | .022  | .15    | .1 0   | 0 0    | - 0               | s 01  | . 2 | . 02 | 2.7  | 15     |  |
|                 | 7025E 3220N                             | . 55  | 31.  | 82 11         | .66    | 49.5  | 167 | 71.3  | 3 11.7 | 938            | 1.87 | 9.0            | .4   | 2.4     | 1.6      | 71.2  | . 32    | . 38  | . 15 | 32    | .64 .  | 104 20 | )./ 4  | 8.8               | .58 184           | .2 .04   | 15 4        | 1.34   | .019  | .18 <  | <.I 3  | .0 .0: | 5 .U <sup>4</sup> | 4 21  | . 2 | <.UZ | 3.7  | 15     |  |
|                 | 7025E 3240N                             | . 67  | 35.  | 01 11         | . 25   | 55.3  | 182 | 89.3  | 3 11.7 | / 1031         | 2.14 | 9.1            | .5   | 1.7     | 1.9      | 59.5  | . 29    | .44   | . 15 | 35    | .56 .  | 104 21 | 1.2 4  | 2.9               | .62 226           | .2 .05   | 52 !        | 5 1.62 | .019  | .20    | .1 3   | .5 .0  | 5 .04             | 4 22  | .2  | <.02 | 4.4  | 15     |  |
|                 | 7025E 3260N                             | . 68  | 34.  | 78 14         | .46    | 60.5  | 315 | 89.0  | 13.1   | 1195           | 2.66 | 5 18.2         | .7   | 8.8     | 2.3      | 34.9  | . 27    | .80   | . 18 | 38    | .45 .  | 082 23 | 3.1 3  | 6.3               | .47 235           | .4 .05   | 57 3        | 3 1.98 | .018  | . 17 < | <.1 4  | .4 .0  | 7 .04             | 4 28  | .2  | .03  | 5.4  | 15     |  |
|                 | 7025E 3280N                             | .59   | 28.  | 67 40         | .43 1  | 13.4  | 367 | 196.5 | 5 17.1 | 1071           | 2.61 | . 27.8         | .6   | 16.0    | 2.7      | 48.2  | . 65    | 1.26  | .20  | 36    | .43 .  | 080 23 | 3.4 5  | 3.3               | .61 211           | .6 .05   | 54          | 2 1.61 | .019  | . 17   | .1 3   | .8 .01 | 3.04              | 4 20  | .1  | .05  | 4.5  | 15     |  |
|                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |       |      |               |        |       |     |       |        |                |      |                |      |         |          |       |         |       |      |       |        |        |        |                   |                   |          |             |        |       |        |        |        |                   |       |     |      |      |        |  |
|                 | 702EE 2200N                             | 57    | 26   | 08 23         | 16     | an n  | 242 | 152 1 | 7 15 6 | 1107           | 2 47 | 14.6           | 6    | 91      | 2.1      | 53.1  | .47     | .48   | .15  | 35    | .52 .  | 087 22 | 2.0 4  | 3.5               | .58 262           | 2.5 .05  | 53 ;        | 3 1.70 | .018  | . 19   | .1 3   | 7.0    | 3.04              | 4 27  | .2  | <.02 | 4.8  | 15     |  |
|                 | 7025E 3300N                             |       | 20.  | AF 10         | 20     | 60.0  | 106 | 114 1 | = 14 0 | 005            | 2.56 | : 0.0          | 5    | 2 1     | 1 0      | 46.0  | 23      | 47    | 13   | 37    | 52     | 077 19 | 333    | 6 2               | 74 216            | 4 .03    | 38          | 3 1.98 | .019  | .20 <  | <.1 4  | 4 .0   | 7 .05             | 5 27  | .2  | .02  | 5.4  | 15     |  |
|                 | /U25E 3320N                             | .43   | 20.  | 45 12         | .30    | 02.4  | 100 | 114.5 | - 10 / | ) 550          | 2.30 | 10 0           |      | 2.1     | 2.0      | 75.0  | . 10    |       | 14   | 20    | 61     | 112 24 | 51 4   | 1 1               | 53 173            | 6 04     | 56          | 1 1 61 | 023   | 20 <   | < 1 3  | 1 0    | 7 04              | 4 15  | 2   | .02  | 4.7  | 15     |  |
|                 | 7025E 3340N                             | .62   | 26.  | 01 19         | .30    | 63.2  | 121 | 110.5 | 5 12.3 | 5 696          | 2.10 | 19.2           | • !  | 3.1     | 3.0      | /5.2  | .43     | .04   | 14   | 00    | .01 .  | 100 0  | - F 0  | 0.6               | .35 1/5<br>AE 200 | . c . n- | 70          | 1 1 70 | 010   | 10     | 1 2    | 6 0    | 7 0'              | 2 18  | 2   | < 02 | 19   | 15     |  |
|                 | 7025E 3360N                             | . 65  | 25.  | 86 13         | .56    | 57.8  | 145 | 55.7  | 7 9.8  | 3 713          | 2.20 | 9.9            | .8   | 2.7     | 3.5      | 61.8  | . 24    | .40   | . 14 | 39    | .45 .  | 109 3: | ).5 J  | 2.0               | .45 209           | 1.0.0    |             | + 1.70 | .010  | . 1.7  | .1.0   | 1 0    |                   | 2 22  | . 2 | 02   | E 2  | 15     |  |
|                 | 7025E 3380N                             | .74   | 29.  | 77 20         | . 47   | 67.1  | 212 | 51.3  | 1 11.4 | 1 865          | 2.51 | 12.2           | .7   | 18.0    | 3.5      | 57.3  | . 27    | .53   | .13  | 39    | .60 .  | 096 30 | ).7 2  | 9.9               | .49 240           | 1.1 .06  | 51 3        | 3 1.82 | .019  | .25 <  | <.1 4  | .1 .0  | 5 .0.             | 3 23  | . 1 | .02  | 5.3  | 15     |  |
|                 |                                         |       |      |               |        |       |     |       |        |                |      |                |      |         |          |       |         |       |      |       |        |        |        |                   |                   |          |             |        |       |        |        |        |                   |       |     |      |      | -      |  |
|                 | 7025E 3400N                             | .79   | 30.  | 79 12         | .74    | 60.9  | 117 | 42.3  | 3 9.7  | 7 903          | 2.31 | 9.4            | .7   | <.2     | 2.6      | 45.5  | . 24    | .43   | . 18 | 41    | .65 .  | 094 26 | 5.6 2  | 25.1              | .36 248           | 1.9 .06  | 51 -        | 4 1.86 | .020  | .23    | .1 4   | .1 .0  | 3 .0              | 5 32  | .3  | <.02 | 5.3  | 15     |  |
|                 | 7025E 3420N                             | .95   | 21.  | 32 12         | .52    | 61.3  | 86  | 23.5  | 5 7.9  | 949            | 1.91 | 8.2            | .7   | <.2     | 1.6      | 44.2  | . 29    | .42   | . 19 | 30    | .50 .  | 090 19 | 9.3 1  | 4.9               | .29 241           | .7 .06   | 62 ·        | 4 1.82 | .027  | .14 <  | <.1 3  | 1 .0   | 7 .0              | 5 26  | .1  | .03  | 5.2  | 15     |  |
|                 | 7025E 3440N                             | 1 03  | 20   | 91 11         | 42     | 62.8  | 73  | 29.0  | ) 8.f  | 5 1152         | 2.27 | 8.3            | .7   | <.2     | 1.2      | 43.2  | .26     | .51   | . 15 | 33    | .45 .  | 097 13 | 3.5 1  | 1.8               | .29 288           | 1.2 .06  | 63 :        | 2 2.05 | .022  | .13 <  | <.1 3  | .0.0   | 5.0               | 3 38  | .1  | .02  | 5.9  | 15     |  |
|                 | 7023E 3440M                             | 1.00  | 10   | 50 10         | 20     | 56.2  | 50  | 24 9  | R 7 '  | 3 653          | 1 54 | 5 7 4          | 7    |         | 24       | 68 5  | 26      | 29    | .13  | 27    | .54    | 110 2  | 3.6 1  | 4.2               | .25 255           | i.6 .05  | 56          | 3 1.62 | .029  | .13 •  | <.1 3  | .1 .0  | 7 .0:             | 3 26  | .2  | <.02 | 4.7  | 15     |  |
|                 | /UZ5E 3400N                             | .03   | 19.  | 00 11         | 10     | 10.3  | 107 | 24.0  | - 0'   | , 000<br>5 E70 | 1.30 | , ,.4<br>, ,.1 | 1 1  |         | 1 0      | 112 4 | 25      | 24    | 14   | 31    | 63     | 101 2  | 4.6.2  | 20.2              | 30 239            | 9 01     | 53          | 2 1 76 | 025   | 16     | < 1 2  | 9.0    | 7 .04             | 4 24  | .2  | .03  | 5.1  | 15     |  |
|                 | /025E 3480N                             | .68   | 20.  | 90 11         | .13    | 40.3  | 10/ | 28.5  | ο δ.,  | 2 5/5          | 1.0/ | 1.1            | 1.1  | ~.2     | 1.0      | 115.0 | .25     | . 24  | . 14 | 51    | .00 .  | 101 04 | 7.0 Z  | .0.2              | .00 200           |          |             | - 1.70 | .020  | . 10   |        |        | 0                 |       |     |      |      |        |  |
|                 |                                         |       |      |               |        |       |     |       |        |                |      |                |      |         |          |       |         |       |      |       |        |        |        |                   |                   |          |             |        | 000   | 14     |        | C 1 0  |                   | 0 170 | 4.0 | 0.0  | 67   | 17     |  |
|                 | STANDARD DS5                            | 13.22 | 145. | 67 25         | .38 1  | .38.3 | 286 | 24.4  | 4 12.3 | 1 748          | 3.02 | 2 18.6         | 6.1  | 42.0    | 3.0      | 48.2  | 5.56    | 4.03  | 6.06 | 64    | .76 .  | 095 13 | 3.3 18 | 38.3              | .70 138           | 5.8 .10  | JI 1        | / 2.04 | .036  | .14 4  | 4.7-3  | .o 1.0 | + .0              | 3 1/2 | 4.9 | .86  | 0./  | 15     |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





Data FA

| PE ANALTTICAL                         |                |       |        |       |       |     |       |       |         |        |       |            |                |              |      |        |        |      |          |          |         |      |         |      |        |               |      |         |        |          |        |     |      |            |        |  |
|---------------------------------------|----------------|-------|--------|-------|-------|-----|-------|-------|---------|--------|-------|------------|----------------|--------------|------|--------|--------|------|----------|----------|---------|------|---------|------|--------|---------------|------|---------|--------|----------|--------|-----|------|------------|--------|--|
| · · · · · · · · · · · · · · · · · · · |                | Мо    | Cu     | Dh    | 7n    | ٨٥  | Ni    | Co    | Mn      | Fe i   | 10    | 11 A       | , Th           | Sr           | Cd   | Sb     | Bi     | v    | Ca       | P La     | Cr      | Mg   | Ba      | Ti   | ΒA     | 1 Na          | К    | W C     | Sc T   | 1        | S Hg   | Se  | Te   | Ga S       | Sample |  |
|                                       | SAMPLE#        | PIQ   |        | T D   | 20    | ng  |       | 000   | 000     | * n    |       | a nni      | 0,000          | 0.00         | 000  | 007    | 0000 1 | ດດາສ | ¥        | ະ ກວກ    | nna     | 2    | DDID    | χ r  | mac    | * *           | ž    | DOM D   | pm pp  | m        | % ppb  | ppm | ррт  | ppm        | gm     |  |
|                                       |                | ppm   | рря    | ppm   | ppn   | ppp | рра   | ppiii | ppa     | v h    | nu pp | an phi     | рра            | ppii         |      | ppin   | Phin 1 |      | ~ ~      | ~ ppin   |         | ~    | pp      |      |        |               |      |         |        | _        |        |     |      |            |        |  |
|                                       |                |       |        |       |       |     |       |       |         |        |       |            |                |              |      |        |        |      | c        |          | 15 0    |      | 050 1   | 100  | -1 0   | 2 0.05        | 50   | ~ ~ ~ ~ | 2 2    | 2 - 0    | 3 5    | < 1 | < 02 | 5 1        | 15     |  |
|                                       | G-1            | 1.48  | 2.95   | 2.72  | 46.0  | 11  | 5.0   | 4.5   | 549 2.  | 05     | .4 2. | 1 <.:      | 2 4.7          | 82.4         | .01  | .03    | .11    | 42 . | .5/ .0   | 86 9.0   | 15.9    | .55  | 250.1 . | 130  | <1.9   | 3 .095        | .50  | 2.5 2   | 0      | 2 ~.0    | 11 J   | 1   | 02   | 1.2        | 15     |  |
|                                       | 7025E 3500N    | .59   | 20.35  | 9.25  | 43.4  | 75  | 40.1  | 7.1   | 486 1.  | 41 11  | .7.   | 9 1.       | 1.3            | 117.4        | . 21 | . 25   | .12    | 29 . | .71 .1   | 07 32.6  | 20.7    | .34  | 203.7 . | 044  | 3 1.4  | 1.020         | . 15 | <.1 1   | ./ .0  | / .u     | 14 10  | . 2 | .02  | 4.5        | 15     |  |
|                                       | 7025E 3520N    | . 64  | 22.21  | 9.47  | 51.6  | 69  | 27.3  | 6.6   | 480 1.  | 41 5   | .3.   | 8 1.       | 5 1.3          | 143.5        | . 18 | . 15   | . 14   | 31 . | .72 .1   | 25 33.1  | 21.2    | .34  | 179.8 . | 044  | 4 1.2  | 8 .021        | .17  | <.1 1   | .6 .0  | / .u     | 15 1/  | .3  | .02  | 3.9        | 15     |  |
|                                       | 7025E 3540N    | .58   | 21.38  | 9.73  | 44.6  | 72  | 33.5  | 7.4   | 500 1.  | 57 4   | .2 .  | 9 1.       | 1 1.6          | 124.7        | . 20 | . 15   | .11    | 35 . | .62 .1   | 31 37.4  | 23.7    | . 33 | 179.3 . | 053  | 1 1.4  | 3 .023        | . 14 | <.1 1   | .9 .0  | 7.0      | )5 15  | . 2 | .02  | 4.4        | 15     |  |
|                                       | 7025E 3560N    | 61    | 20 83  | 9.22  | 53.2  | 73  | 29.5  | 7.1   | 537 1.  | 48 3   | . 8   | 8 .        | 5 1.6          | 119.0        | . 24 | .13    | .11    | 32 . | .58.1    | 44 32.2  | 20.6    | . 28 | 162.4 . | 053  | 21.4   | 5 .022        | . 13 | <.1 2   | .0.0   | 7.0      | )3 15  | .3  | .02  | 4.4        | 15     |  |
|                                       | 10232 00000    |       |        |       |       |     |       |       |         |        |       |            |                |              |      |        |        |      |          |          |         |      |         |      |        |               |      |         |        |          |        |     |      |            |        |  |
|                                       | TODER DEPON    | 09    | 20 84  | 10 53 | 66 3  | 59  | 15.9  | 59    | 473 1   | 22 5   | 3 1   | 0          | 5 1.5          | 113.5        | .37  | .17    | .13    | 23   | .59.1    | .27 25.2 | 13.3    | . 22 | 192.8 . | 047  | 2 1.1  | 1.021         | . 16 | <.1 1   | .7 .0  | 7.0      | 2 16   | .2  | .02  | 3.5        | 15     |  |
|                                       | 7025E 3300N    | . 20  | 20.04  | 10.55 | EQ 0  | 01  | 14.2  | 5.0   | 178 1   | 28 /   | 7 1   | 0          | 1 1 0          | 108 6        | 40   | 14     | 15     | 23   | .57 .1   | 20 26.8  | 11.9    | .21  | 211.0 . | 052  | 1 1.4  | 8 .022        | . 14 | <.1 1   | .7 .0  | 8.0      | 03 20  | .2  | <.02 | 4.2        | 15     |  |
|                                       | /UZ5E 3000N    | .74   | 20.01  | 10.74 | 59.0  | 71  | 14.2  | 0.0   | 470 1.  | 10 4   | ·/ 1· | 0 1        | - <u>-</u>     | 02 1         | 20   | 30     | 12     | 18   | 61 1     | A7 A1 A  | 36.0    | 41   | 195 1   | 080  | 214    | 1 .019        | .17  | .1 2    | .8.0   | 6.0      | )2 14  | .2  | .02  | 4.7        | 15     |  |
|                                       | 7050E 3100N    | . 68  | 29.59  | 11.51 | 69.6  | 85  | 39.3  | 9.2   | 760 1   | 10 0   |       | 9 1.1      | J J.4          | 72.1<br>FC 1 | .20  | . 30   | 17     | 40 . | .01 .1   | 27 27 6  | 28.4    | 35   | 197.2   | 065  | 314    | 2 018         | 14   | 1 2     | 6 0    | 6.0      | 14 21  | .2  | .04  | 4.4        | 15     |  |
|                                       | 7050E 3120N    | .71   | 24.34  | 12.86 | 62.2  | 61  | 30.5  | 7.9   | /62 1.  | 83 10  | .4.   | 0.0        | 0 1.0          | 100.7        | . 22 | . 31   | . 17   | 40 . | .40 .1   | 21 21.0  | 20.4    | .00  | 174 6   | 055  | 313    | 2 010         | 13   | < 1 1   | a n    | 5 r      | 14 17  | 3   | 02   | 4.3        | 15     |  |
|                                       | 7050E 3140N    | .56   | 27.95  | 9.35  | 55.3  | 79  | 36.1  | 7.9   | 533 1.  | /6 5   | ./ .  | 8.         | 5 1.4          | 109.7        | . 19 | . 20   | .11    | 40 . | .02 .1   | .21 34.2 | 30.9    | .41  | 1/4.0 . | 050  | 0 1.0  | 2.01)         | . 10 | · 1     |        | 5        | ,4 1/  | .0  |      |            | 10     |  |
|                                       |                |       |        |       |       |     |       |       |         |        |       |            |                |              |      |        |        |      |          |          |         |      | 165.0   | 0.40 | 0.1.1  | 1 0.00        | 10   | < 1 1   | 0 0    | r (      | NF 20  | 2   | - 02 | 2.4        | 16     |  |
|                                       | 7050E 3160N    | .46   | 25.38  | 8.81  | 44.5  | 98  | 43.4  | 7.3   | 463 1.  | 55 6   | .6.   | 5 8.       | 8 1.5          | 167.5        | . 20 | . 22   | .11    | 34 . | . 69 . 1 | .00 34.0 | 29.7    | .46  | 165.0 . | 048  | 3 1.1  | 1.020         | . 12 | <.1 I   | .9.0   | 5.U      | 15 20  |     | 0.02 | 0.4<br>0 r | 15     |  |
|                                       | 7050E 3180N    | . 60  | 27.83  | 9.99  | 50.4  | 141 | 53.5  | 7.9   | 506 1.  | 58 8   | .2.   | 8 1.       | 4 1.6          | 192.4        | . 24 | . 29   | . 11   | 33 . | .69.1    | .07 32.1 | 32.7    | .52  | 166.6 . | 050  | 3 1.2  | 2 .029        | . 13 | <.1 2   | .3 .6  | 0.l      | 10 23  | . 3 | .02  | 3.5        | 15     |  |
|                                       | 7050E 3200N    | .67   | 20.34  | 10.16 | 51.8  | 117 | 41.9  | 6.9   | 556 1.  | 28 8   | .5.   | 7 1.       | 0.8            | 149.1        | . 25 | . 25   | .11    | 25   | .61 .1   | .02 21.1 | 21.5    | . 39 | 190.8 . | 047  | 4 1.2  | 9.027         | . 15 | <.1 1   | .8 .0  | 5.(      | )5 1/  | .2  | <.02 | 3.6        | 15     |  |
|                                       | 7050E 3220N    | . 59  | 22.95  | 11.14 | 50.7  | 118 | 100.7 | 13.0  | 763 1.  | 73 8   | .5.   | 6.         | 9 1.7          | 88.9         | . 27 | .32    | . 14   | 32   | .53 .0   | 88 24.1  | 51.2    | .54  | 205.6 . | 053  | 3 1.3  | 3 .021        | .14  | <.1 2   | .7 .0  | 6.0      | )3 19  | .2  | .03  | 3.8        | 15     |  |
|                                       | 7050E 3240N    | .54   | 23.34  | 12.70 | 58.3  | 134 | 124.4 | 14.5  | 793 1.  | 97 9   | .3.   | 62.        | 2 1.9          | 82.4         | . 34 | .40    | . 15   | 33   | .56 .0   | 91 24.1  | 83.4    | .74  | 237.0 . | 062  | 5 1.6  | 0.022         | . 18 | .1 3    | .2 .0  | 7.0      | 04 21  | .2  | .02  | 4.4        | 15     |  |
|                                       |                |       |        |       |       |     |       |       |         |        |       |            |                |              |      |        |        |      |          |          |         |      |         |      |        |               |      |         |        |          |        |     |      |            |        |  |
|                                       | 7050F 3260N    | .56   | 29.74  | 21.65 | 80.6  | 217 | 92.0  | 11.3  | 883 1.  | 87 14  | .9 .  | 4 8.       | 2 1.5          | 130.8        | .54  | .55    | . 15   | 32   | .95 .1   | 06 23.5  | 36.4    | .54  | 212.1 . | 053  | 5 1.4  | 1 .022        | .21  | <.1 2   | .8 .0  | 7.0      | )5 25  | .3  | <.02 | 3.9        | 15     |  |
|                                       | 7050F 3280N    | 55    | 25.35  | 13.51 | 58.2  | 158 | 73.5  | 10.8  | 890 1.  | 97 10  | .5.   | 7 2.       | 5 2.4          | 66.5         | .27  | . 34   | . 15   | 34   | .52 .0   | 82 25.3  | 32.8    | .46  | 230.8 . | 067  | 4 1.6  | 8 .022        | . 20 | <.1 3   | .5 .0  | 7.0      | 03 21  | .1  | .03  | 4.6        | 15     |  |
|                                       | 7050E 3300N    | 46    | 25 31  | 10 01 | 56.0  | 165 | 61.6  | 9.8   | 887 1.  | 94 7   | .7    | 5 3.       | 6 1.7          | 69.9         | . 24 | .31    | . 15   | 32   | .63 .0   | 90 21.1  | 26.6    | .42  | 216.5 . | 057  | 4 1.5  | 9.024         | .19  | <.1 3   | .1 .0  | 6.0      | 3 21   | .1  | .02  | 4.3        | 15     |  |
|                                       | 7050E 2220N    | 10    | 23 31  | 11 24 | 51.4  | 157 | 114 2 | 11 2  | 797 1   | 73 22  | 3     | 3 4.       | 6 1.2          | 98.1         | .26  | .72    | .13    | 27   | .83 .0   | 86 21.8  | 30.2    | .54  | 197.3 . | 042  | 6 1.2  | .021          | . 20 | <.1 2   | .3 .0  | 6.0      | )6 24  | .3  | .02  | 3.4        | 15     |  |
|                                       | 7050E 3320N    | .40   | 24 13  | 8 08  | 50.9  | 133 | 43.5  | 7 9   | 716 1   | 68 8   | 6     | 5 1.       | 7 1.5          | 74.4         | .24  | . 33   | .11    | 29   | .60.0    | 95 22.5  | 20.0    | .36  | 219.7 . | 051  | 4 1.3  | 6 .020        | . 20 | <.1 2   | .7 .0  | 6.(      | 3 22   | . 2 | <.02 | 3.9        | 15     |  |
|                                       | /050L 0540M    | .47   | 2.4.10 | 0.00  | 00.5  | 100 | 1010  | ,.,   |         |        |       |            |                |              |      |        |        |      |          |          |         |      |         |      |        |               |      |         |        |          |        |     |      |            |        |  |
|                                       | DE 20505 2240N | 40    | 22 70  | 7 02  | 40 E  | 120 | 12.0  | 7 9   | 728 1   | 71 8   | 6     | 5 1        | 1 1 5          | 75 5         | 21   | 33     | 12     | 30   | 61 .(    | 96 22.4  | 20.1    | .36  | 218.5 . | 050  | 3 1.3  | 6 .019        | .20  | <.1 2   | .7 .0  | 6.0      | 03 19  | .2  | .02  | 3.9        | 15     |  |
|                                       | RE /USUE 334UN | .49   | 23.70  | 0.00  | 49.0  | 100 | 25.0  | 0.5   | 700 2   | 22 E   |       | ۰۰ ۲۰<br>۵ | 6 2 0          | 26.9         | 16   | 41     | 13     | 37   | 38 (     | 191 25 6 | 24.2    | 38   | 179 4   | 063  | 21.6   | 6 .018        | .20  | .1 3    | .9.0   | 7 <.{    | 01 13  | .1  | <.02 | 5.1        | 15     |  |
|                                       | /050E 3360N    | .05   | 24.39  | 9.99  | 49.9  | 100 | 00.0  | 10.3  | 100 2.  | 70 7   |       | . v .      | 0 0.7          | 26.0         | 21   | 52     | 10     | 32   | 10 0     | 172 18 0 | 13.2    | 44   | 205 3   | 025  | 117    | 1 017         | 22   | < 1 4   | 6 (    | 17 .(    | 01 31  | .2  | .02  | 5.1        | 15     |  |
|                                       | /050E 3380N    | .72   | 20.15  | 12.94 | 51./  | 122 | 23.0  | 10.1  | 1002 2. | 70 7   | ./ .  |            | 0 2.1<br>r 0.5 | 20.5         | . 21 |        | 15     | 45   |          | 06 22 E  | 20.2    | 41   | 214 7   | 073  | 220    | 1 0.22        | 10   | 1 4     | 1 (    | ia (     | 13 10  | 2   | 03   | 5.8        | 15     |  |
|                                       | 7050E 3400N    | . 68  | 33.87  | 11.05 | 55.2  | 116 | 51.5  | 9.8   | 910 2.  | 23 6   | .8    | .9.        | 5 3.5          | 4/.0         | . 21 | .40    | .15    | 40   | .00 .0   | 150 32.3 | 07.0    | .41  | 224.7   | 0.00 | 1 1 0  | 1 .022        | 20   | ~ 1 3   | 0 0    | ia i     | na 21  | 1   |      | 5.5        | 15     |  |
|                                       | 7050E 3420N    | .70   | 22.84  | 10.81 | 60.2  | 92  | 43.1  | 8.2   | 576 1.  | 93 /   | .2 .  | .9.        | 5 3.3          | /4.4         | .21  | . 32   | . 14   | 39   | .01 .1   | 10 35.0  | 27.2    | .40  | 231.0 . | 000  | 4 1.0  | 1.021         | .20  | r J     |        |          | J-4 21 | . 1 | 04   | 5.5        | 10     |  |
|                                       |                |       |        |       |       |     |       |       |         |        |       |            |                |              |      | ~ ~    |        |      |          | F7 10 F  |         | 05   | 250.0   | 0.00 | 4.1.5  | 0 0 0 0 0 0 0 | 11   | - 1 0   |        | <u>،</u> | 10 47  |     | ~ 02 | 2.4        | 15     |  |
|                                       | 7050E 3440N    | .88   | 19.97  | 9.26  | 69.1  | 108 | 23.4  | 10.3  | 1262 2. | 20 8   | .1    | .4 .       | 9.3            | 56.9         | .30  | .50    | . 14   | 29   | .82      | 15/ 10.5 | 8.0     | . 25 | 259.8 . | 020  | 4 1.2  | .025          | . 11 | <.1 Z   |        |          | 10 47  | .4  | 02   |            | 15     |  |
|                                       | 7050E 3460N    | . 60  | 18.20  | 8.23  | 47.3  | 100 | 24.9  | 6.8   | 624 1.  | 53 5   | .2    | .8.        | 3.6            | 86.3         | . 20 | . 20   | .13    | 27   | .64 .(   | 96 23.6  | 15.9    | . 26 | 230.8 . | .049 | 2 1.6  | .024          | . 11 | <.1 1   | / .(   | 10 .1    | J6 Z1  | . 3 |      | 4.8        | 15     |  |
|                                       | 7050E 3480N    | . 65  | 22.50  | 10.09 | 64.3  | 103 | 31.8  | 7.9   | 587 1.  | 71 6   | .4    | .9.        | 9 1.2          | 105.2        | .26  | . 19   | . 13   | 33   | .69 .1   | 156 34.9 | 22.9    | . 33 | 222.0 . | 051  | 3 1.6  | 9.019         | .1/  | <.1 2   | .0.1   |          | J4 18  | . 3 | .03  | 5.1        | 15     |  |
|                                       | 7050E 3500N    | .57   | 20.80  | 9.91  | 45.1  | 101 | 38.5  | 7.2   | 552 1.  | 53 7   | .4    | .9 <.      | 2.8            | 147.1        | .26  | .23    | .11    | 31   | .86 .1   | 116 30.1 | . 19.4  | . 33 | 209.0 . | .050 | 3 1.7  | 3 .023        | .13  | <.1 1   | 6 .(   | 18 .(    | J/ 18  | .3  | <.02 | 5.0        | 15     |  |
|                                       | 7050E 3520N    | . 65  | 22.69  | 11.21 | 53.7  | 94  | 34.8  | 7.5   | 528 1.  | 67 5   | .5    | .9.        | 5 1.7          | 138.2        | . 28 | . 20   | . 13   | 36   | .80 .1   | 123 39.7 | 26.4    | .36  | 177.0 . | 055  | 3 1.5  | .021          | . 17 | <.1 2   | .0.0   | )7 .(    | 05 19  | .3  | .02  | 4.8        | 15     |  |
|                                       |                |       |        |       |       |     |       |       |         |        |       |            |                |              |      |        |        |      |          |          |         |      |         |      |        |               |      |         |        |          |        |     |      |            |        |  |
|                                       | 7050E 3540N    | .58   | 22.76  | 12.11 | 54.6  | 121 | 30.3  | 7.6   | 549 1.  | 83 4   | .9 1  | 1.         | 3 1.3          | 155.8        | .26  | . 15   | . 14   | 39   | .74 .    | 137 39.3 | 3 24.4  | .37  | 213.5 . | 056  | 3 2.0  | 2 .025        | .17  | <.1 2   | 2.1 .0 | . 8      | 05 18  | .3  | .04  | 5.9        | 15     |  |
|                                       | 7050F 3560N    | .59   | 21.10  | 11.46 | 58.5  | 109 | 27.6  | 7.6   | 533 1.  | 79 5   | .6 1  | .0 <.      | 2 2.1          | 122.4        | . 22 | . 15   | .14    | 39   | .61 .3   | 148 40.3 | 24.3    | .34  | 182.4 . | 071  | 3 1.8  | .021          | .16  | <.1 2   | .4 .(  | . 8      | 02 22  | .3  | .03  | 5.8        | 15     |  |
|                                       | 7050E 3580N    | 1 07  | 20.26  | 12 31 | 67.8  | 79  | 23.3  | 7.6   | 555 1   | 51 5   | .7 1  | .1 .       | 4 3.3          | 109.7        | .36  | . 18   | .16    | 32   | .59 .3   | 124 31.7 | 19.1    | . 26 | 190.5 . | 067  | 4 1.5  | .020          | .14  | <.1 2   | .6.(   | )9 .(    | 01 14  | .3  | .02  | 4.7        | 15     |  |
|                                       | 7050E 3600N    | 77    | 18 51  | 12 04 | 63.4  | 60  | 14.0  | 6.4   | 521 1   | 38 3   | 5     | 8 <        | 2 1.6          | 78.3         | .38  | .13    | .14    | 27   | .48 .0   | 090 26.3 | 12.5    | . 22 | 174.5 . | 059  | 3 1.5  | 8 .020        | .12  | <.1 2   | .0.0   | )7 .(    | 02 13  | .2  | .04  | 4.6        | 15     |  |
|                                       | 7030E 3000N    | . / / | 10.01  | 11 00 | 72 /  | 80  | 33 6  | 8 /   | 661 2   | 01 6   | Q 1   | 1 <        | 2 2 7          | 75 7         | 24   | 30     | 15     | 41   | .53      | 119 34 0 | 30.2    | .36  | 217.8   | .082 | 3 1.9  | 0 .019        | .14  | .1 2    | .9.(   | )6 .(    | 04 17  | .2  | .04  | 5.5        | 15     |  |
|                                       | /U/5E 3100N    | . 60  | 29.81  | 11.00 | 12.4  | 00  | JJ.0  | 0.4   | UUI 2.  | .JT 0  | . , 1 |            | L 2.1          | , J . /      | . 27 |        | . 10   | •    |          |          |         |      |         |      |        |               | -    |         |        |          |        |     |      |            |        |  |
|                                       |                |       | 47.05  | 05.40 | 100 1 | 001 | 24.0  | 11.0  | 746 0   | 00.10  | 7 (   | 2 42       | 0 20           | 16 3         | E 12 | 2 00 4 | 5 35   | 62   | 75 /     | 192 12 4 | 1 182 0 | 68   | 136.2   | 095  | 16.2.0 | 0 033         | 13   | 503     | 410    | 12 1     | 02 173 | 4.8 | . 89 | 6.5        | 15     |  |
|                                       | STANDARD DS5   | 12.91 | 147.85 | 25.49 | 139.1 | 281 | 24.8  | 11.9  | /40 3.  | .00 18 | ./ b  | .2 43.     | u 2.9          | 40.3         | 5.43 | J.00 t | J.JO   | VΖ   | .75.1    |          | 102.9   | .00  | 100.2 . |      | 10 2.0 |               | . 10 | 0.0 0   |        | · · ·    | - 1/0  | 1.0 | 00   | 0.0        |        |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





ACME ANAL VTICAL

Data<u></u>FA

| Actic Parternione |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|-------------------|----------------|------|-------|---------|--------|-------|-------|-------|------|-------|--------|------|-------|------|---------|--------|----------|--------|-------|-------|-------|------|-------|----------|---------|------|---------|------|-------|-------|---------|--------|--------|-----|------|------|-------|------|--|
|                   | SAMPLE#        | M    | )     | Cu      | Рb     | Zn    | Ag    | Ni    | Со   | Mn    | Fe     | As   | U     | Au   | Th      | Sr     | Cd S     | b B    | i V   | Ca    | Ρ     | La   | Cr    | Mg       | Ba      | Ti   | B Al    | Na   | Κ     | W     | Sc T    | 1 :    | S Hg   | Se  | Te   | Ga S | ample |      |  |
|                   |                | ppi  | n j   | nqc     | ppm    | ppm   | ppb   | ррт   | ppm  | ррп   | ¥      | ppm  | ppm   | ppb  | ppm p   | opm p  | pm pp    | m ppr  | n ppm | ž     | ž     | ppm  | ppm   | % p      | nqc     | % pp | 37 m    | x    | χp    | pm p  | pm pp   | m 3    | % ppb  | ррл | ppm  | ppm  | gm    | <br> |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | G-1            | 1.5  | 2 2   | .96 2   | .50    | 44.7  | 12    | 5.2   | 4.3  | 518 1 | . 93   | .4   | 2.1   | .3 - | 4.5 85  | 5.8 .  | 01 .0    | 4.12   | 2 40  | .56   | .079  | 9.6  | 16.7  | .52 234  | 4.1.1   | .23  | 1.88    | .097 | .48 2 | 2.4 2 | .2.3    | 2 <.0  | 1 <5   | <.1 | <.02 | 5.0  | 15    |      |  |
|                   | 7075E 3120N    | .6   | 3 20  | .89 9   | .98    | 53.1  | 78    | 43.7  | 8.0  | 488 1 | 72     | 5.7  | .7    | 1.5  | 2.6 85  | 5.4.   | 18 .2    | 3.13   | 3 38  | .51   | .120  | 35.5 | 36.4  | .43 174  | 4.6.0   | 59   | 4 1.10  | .017 | .17   | .1 2  | .2 .0   | 6 .0:  | 1 18   | .2  | .03  | 4.1  | 15    |      |  |
|                   | 7075E 3140N    | . 5  | 9 21  | .82 11  | .26    | 50.3  | 89    | 63.9  | 9.8  | 556 2 | 2.05   | 6.9  | .8    | 2.2  | 3.6 76  | 5.0.   | 15 .3    | 3.13   | 3 46  | .54   | .117  | 42.5 | 44.8  | .52 175  | 5.5.0   | 64   | 3 1.28  | .017 | .15 < | :.1 2 | .8 .0   | 7 .03  | 2 17   | .1  | .02  | 4.6  | 15    |      |  |
|                   | 7075E 3160N    | . 6  | 3 19  | .37 9   | .17    | 48.8  | 68    | 58.1  | 9.2  | 571 1 | 74     | 5.8  | .7    | 3.9  | 1.9 101 | 1.8 .  | 17 .2    | 4 .1   | L 37  | .61   | . 139 | 37.7 | 41.6  | .44 150  | 0.3.0   | 40   | 2.86    | .015 | .12 < | <.1 2 | .0 .0   | 4 .03  | 3 16   | .2  | .03  | 3.3  | 15    |      |  |
|                   | 7075E 3180N    | .7   | 9 24  | .88 11  | .55    | 49.6  | 115   | 79.4  | 11.3 | 681 1 | .95    | 8.2  | .7    | 3.3  | 2.2 114 | 4.4 .  | 23.3     | 3.1    | L 41  | . 62  | .125  | 41.6 | 45.0  | .49 163  | 3.4 .04 | 47   | 3.93    | .016 | . 12  | .1 2  | .5 .0   | 5 .03  | 3 21   | .2  | .02  | 3.4  | 15    |      |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | 7075E 3200N    | .7   | 3 24  | .81 11  | .64    | 56.6  | 121   | 68.1  | 10.4 | 767 1 | .67    | 8.6  | .7    | 1.7  | 1.4 105 | 5.8 .  | 33 .2    | 9.14   | 4 32  | .66   | .114  | 30.7 | 35.9  | .35 229  | 9.5.0   | 42   | 3 1.20  | .018 | .15 < | <.1 2 | .5 .0   | 5.0    | 4 23   | .3  | .02  | 3.9  | 15    |      |  |
|                   | 7075E 3220N    | .5   | 3 21  | .44 12  | .01    | 52.6  | 162   | 86.3  | 10.9 | 634 1 | 1.82 1 | 0.3  | .3    | 2.4  | 1.8 226 | 6.5 .  | 25.4     | 5.1    | 1 34  | .78   | .093  | 30.0 | 44.1  | .57 164  | 4.8.0   | 47   | 5 1.20  | .020 | .19 < | <.1 2 | .5 .0   | 6.0    | 3 19   | .2  | .02  | 3.8  | 15    |      |  |
|                   | 7075E 3240N    | .5   | 7 25  | .59 14  | .22    | 54.3  | 175 1 | 05.5  | 11.9 | 672 2 | 2.00 1 | 2.3  | .6    | 2.7  | 2.3 19  | 5.5.   | 27.4     | 5.1    | 2 38  | .71   | . 098 | 36.4 | 48.7  | .62 183  | 2.3 .0  | 55   | 5 1.36  | .022 | .21 < | <.1 2 | .9 .0   | 7.0    | 3 21   | .2  | .02  | 4.5  | 15    |      |  |
|                   | 7075E 3260N    | .2   | 4 15  | .28 6   | .45    | 40.2  | 82    | 31.7  | 4.5  | 283 1 | L.07   | 7.3  | .2    | 1.2  | .6 582  | 2.7 .  | 17 .2    | 8.1    | ) 18  | 3.37  | .106  | 16.8 | 17.4  | 1.47 180 | 0.0.0   | 135  | 8 1.07  | .037 | .13 < | <.1 1 | 2 .0    | 5.0    | 6 16   | .4  | .04  | 2.9  | 15    |      |  |
|                   | 7075F 3280N    | .3   | 0 17  | .70 9   | .29    | 45.8  | 108   | 33.3  | 5.7  | 383 1 | 1.15   | 9.5  | .3    | 2.0  | .6 248  | 8.1 .  | 25 .3    | 8.1    | 2 21  | 1.16  | .097  | 17.9 | 18.7  | .82 15   | 7.7.0   | 34   | 8 1.01  | .037 | .14 < | <.1 1 | 4 .0    | 5.0    | 5 18   | .3  | <.02 | 3.0  | 15    |      |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | 7075E 3300N    | .3   | 1 20  | .62 7   | . 69   | 42.5  | 100   | 31.0  | 5.1  | 342 1 | 1.19 : | 4.6  | .4    | 1.3  | .7 219  | 9.2 .  | 21 .3    | 2.1    | 1 23  | .71   | .095  | 16.6 | 16.2  | .61 14   | 3.1 .0  | )40  | 6 1.15  | .047 | .09 < | <.1 1 | 6 .0    | 5.0    | 6 18   | .5  | .02  | 3.2  | 15    |      |  |
|                   | 7075E 3320N    | .5   | 5 18  | .72 9   | . 29   | 46.5  | 134   | 42.6  | 6.7  | 597 1 | 1.37 : | 12.0 | .6    | 1.8  | .9 13   | 5.8.   | 25 . 2   | 9.1    | 2 24  | .59   | .095  | 19.5 | 19.0  | .31 21   | 3.1 .0  | )54  | 3 1.37  | .032 | .18 < | <.1 2 | 2.1 .0  | 5.0    | 3 17   | .2  | .04  | 3.9  | 15    |      |  |
|                   | 7075E 3340N    | .6   | 5 28  | .47 23  | 3.23   | 73.8  | 489   | 40.6  | 10.1 | 866 2 | 2.18 2 | 20.4 | .6 1  | 6.9  | 2.9 5   | 7.7.   | 44 .5    | 2.1    | 4 35  | .47   | .103  | 26.1 | 24.8  | .37 19   | 8.2.0   | )51  | 3 1.45  | .017 | .24 < | <.1 3 | 3.7 .0  | 7.0    | 1 24   | .2  | .02  | 4.8  | 15    |      |  |
|                   | 7075E 3360N    | .6   | 1 30  | .51 33  | 3.74   | 68.2  | 538   | 40.4  | 9.9  | 803 2 | 2.19   | 13.2 | .5 2  | 0.6  | 2.2 5   | 6.6 .  | 29.4     | 9.1    | 1 34  | .56   | .088  | 26.9 | 22.8  | .39 19   | 3.6.0   | )43  | 3 1.45  | .017 | .20 < | <.1 3 | 3.7 .0  | 7.0    | 2 25   | .3  | .02  | 4.5  | 15    |      |  |
|                   | 7075E 3380N    | .5   | 5 23  | .89 16  | 5.09   | 64.2  | 366   | 42.0  | 8.7  | 625 1 | 1.74   | 7.3  | .7    | 3.4  | 2.6 8   | 2.3 .  | 35.4     | 3.1    | 4 34  | .59   | .102  | 30.2 | 24.4  | .35 24   | 8.4 .0  | )63  | 3 1.49  | .021 | .21   | .1 3  | 3.0 .0  | 8.0    | 2 17   | .2  | .04  | 4.7  | 15    |      |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | 7075E 3400N    | .5   | 9 19  | .91 9   | 9.62   | 57.7  | 84    | 36.0  | 7.9  | 533 1 | 1.72   | 5.2  | .9    | .7   | 2.7 7   | 5.9.   | 24 .2    | .1     | 3 33  | .54   | .117  | 31.3 | 22.7  | .30 23   | 6.3.0   | )68  | 2 1.62  | .022 | . 19  | .1 2  | 2.8 .0  | 7.0    | 2 17   | .2  | .02  | 5.0  | 15    |      |  |
|                   | 7075E 3420N    | .7   | 5 21  | .11 8   | 8.98   | 65.4  | 68    | 31.0  | 7.8  | 602   | 1.69   | 5.6  | .8    | .3   | 1.2 8   | 8.3 .  | 24 .2    | .1     | 3 32  | .59   | . 135 | 30.0 | 21.7  | .26 23   | 7.4.0   | )59  | 1 1.60  | .018 | . 14  | <.1 2 | 2.4 .0  | 6.0    | 4 22   | .2  | .03  | 5.1  | 15    |      |  |
|                   | 7075F 3440N    | .5   | 1 16  | .77 8   | 8.86   | 48.5  | 96    | 17.0  | 8.4  | 928 2 | 2.20   | 7.3  | .3    | 1.9  | 1.8 3   | 5.2 .  | 18 .4    | 0.1    | 2 28  | .50   | .070  | 15.9 | 11.7  | .39 15   | 5.2.0   | )23  | 1 1.45  | .015 | .17 • | <.1 3 | 3.6 .0  | 6.0    | 2 22   | .2  | <.02 | 4.3  | 15    |      |  |
|                   | RE 7075E 3440N | .5   | 2 17  | .26 8   | 8.79   | 49.0  | 97    | 17.9  | 8.5  | 954 2 | 2.24   | 7.6  | .3    | 1.4  | 1.9 3   | 6.0 .  | 18 .4    | 11.1   | 2 30  | .52   | .071  | 15.8 | 12.0  | .40 15   | 0.5 .0  | )25  | 3 1.53  | .017 | .18   | <.1 3 | 3.8.0   | 6.0    | 3 25   | .2  | <.02 | 4.5  | 15    |      |  |
|                   | 7075E 3460N    | .7   | 1 19  | .36 11  | 1.77   | 56.3  | 120   | 27.7  | 8.5  | 760 2 | 2.08   | 9.3  | .7    | 4.9  | 3.6 4   | 5.8 .  | 21 .3    | .1     | 5 36  | 5.51  | .093  | 30.0 | 21.4  | .31 15   | 8.5 .0  | )60  | 3 1.58  | .021 | . 19  | .1 3  | 3.7.0   | 9.0    | 2 24   | .2  | .02  | 5.1  | 15    |      |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | 7075E 3480N    | .7   | 9 18  | .24 1   | 1.17   | 57.7  | 104   | 29.2  | 7.6  | 703   | 2.01   | 6.2  | .8    | .6   | 3.4 5   | 7.8 .  | 18 .3    | 30.1   | 4 38  | .50   | .106  | 32.9 | 23.0  | .32 17   | 7.3.0   | )72  | 2 1.82  | .022 | .16 · | <.1 3 | 3.1 .0  | 9.0    | 3 22   | .2  | .02  | 5.7  | 15    |      |  |
|                   | 7075E 3500N    | .8   | 1 15  | .21 16  | 5.62   | 66.6  | 73    | 27.9  | 7.9  | 730   | 1.95   | 6.6  | .8    | <.2  | 1.5 5   | 0.1 .  | 30 .3    | 35.1   | 8 35  | .47   | .098  | 23.5 | 18.8  | .27 20   | 6.1 .0  | )66  | 2 1.95  | .020 | .12 · | <.1 2 | 2.5 .0  | 8.0    | 4 29   | .2  | .02  | 5.9  | 15    |      |  |
|                   | 7075E 3520N    | .6   | 0 18  | .79 3   | 5.02 1 | 61.6  | 160   | 25.8  | 7.6  | 592   | 1.57   | 8.8  | .8    | 1.8  | 1.2 9   | 9.0 1. | 38 .2    | .1     | 3 31  | l.76  | .109  | 26.5 | 19.2  | .28 20   | 7.0.0   | )47  | 2 1.45  | .021 | .13 · | <.1 : | 1.9 .0  | 6.0    | 4 26   | .2  | .02  | 4.6  | 15    |      |  |
|                   | 7075E 3540N    | .5   | 3 19  | .36 11  | 1.57   | 55.5  | 79    | 19.8  | 6.1  | 479   | 1.38   | 4.0  | .8    | .9   | .9 19   | 7.0 .  | .33 .1   | .1 .1  | 1 27  | 7.80  | . 111 | 27.7 | 16.6  | .29 22   | 0.0.0   | )42  | 3 1.39  | .022 | .14   | <.1   | 1.6 .0  | 5.0    | 4 21   | .3  | .04  | 4.2  | 15    |      |  |
|                   | 7075E 3560N    | .6   | 5 19  | .78     | 9.46   | 64.0  | 58    | 11.4  | 5.8  | 571   | 1.43   | 5.3  | .8    | <.2  | 1.4 12  | 8.1    | 23 .1    | .1     | 2 31  | L .60 | . 189 | 33.0 | 15.2  | .21 18   | 9.8.0   | )56  | 1 1.43  | .023 | .12 · | <.1   | 1.7 .0  | 6.0    | 3 13   | .2  | .02  | 4.7  | 15    |      |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | 7075E 3580N    | .9   | 2 18  | .38     | 9.16   | 50.9  | 76    | 11.7  | 5.0  | 582   | 1.34   | 7.0  | .7    | <.2  | 1.0 8   | 3.8    | . 28     | 14 .1  | 2 27  | 7.39  | . 154 | 25.8 | 12.5  | .19 13   | 5.6.0   | 050  | 1 1.34  | .019 | .09   | <.1   | 1.4 .(  | 17 .0  | 2 16   | .3  | .03  | 4.1  | 15    |      |  |
|                   | 7075E 3600N    | .6   | 4 13  | .19     | 9.41   | 47.7  | 80    | 13.5  | 5.6  | 409   | 1.39   | 3.1  | .8    | .7   | 2.5 7   | 3.2    | .17 .3   | 11 .1  | 1 29  | .35   | .081  | 25.6 | 14.7  | .18 14   | 5.3.0   | 062  | 1 1.26  | .021 | .11   | <.1   | 2.0.0   | 17 <.0 | 1 10   | .2  | <.02 | 3.8  | 15    |      |  |
|                   | 7100E 3100N    | .6   | 5 21  | . 64 10 | ).15   | 57.1  | 78    | 53.7  | 9.0  | 596   | 1.80   | 6.6  | .8    | .5   | 1.2 8   | 9.9    | .21 .2   | 27.1   | 3 36  | 6 .65 | . 123 | 30.1 | 35.2  | .41 21   | 8.4.0   | 055  | 3 1.44  | .020 | .17   | .1 2  | 2.2 .0  | 16 .0  | 15 23  | .3  | .04  | 4.5  | 15    |      |  |
|                   | 7100E 3120N    | .6   | 4 23  | .48 1   | 1.42   | 52.9  | 87    | 62.6  | 9.7  | 623   | 2.00   | 7.2  | .7    | 1.2  | 2.7 8   | 5.1    | . 20 .3  | 31.1   | 3 43  | 1.60  | .110  | 36.1 | 39.6  | .49 19   | 0.4.0   | 064  | 3 1.27  | .019 | .16   | <.1   | 2.8 .0  | 6.0    | 4 18   | .2  | .02  | 4.2  | 15    |      |  |
|                   | 7100E 3140N    | .6   | 2 28  | .21 1   | 3.28   | 65.7  | 135   | 70.6  | 11.4 | 793   | 2.24   | 6.5  | .9    | .9   | 2.9 8   | 7.6    | .23 .3   | 35.1   | 5 42  | 2.66  | . 125 | 35.8 | 38.8  | .49 25   | 6.9.0   | 071  | 3 1.77  | .021 | . 20  | .1 :  | 3.6 .0  | )7 .0  | 14 18  | .1  | .03  | 5.3  | 15    |      |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | 7100E 3160N    | .6   | 3 27  | .09 1   | 5.93   | 65.5  | 123   | 59.4  | 11.4 | 772   | 2.35   | 6.5  | 1.0   | .6   | 3.7 5   | 1.8    | . 22     | 37.1   | 9 43  | 3.40  | .088  | 31.3 | 40.4  | .43 27   | 3.6.0   | 091  | 1 2.17  | .023 | . 17  | <.1   | 4.8.0   | .09    | 12 15  | .1  | .03  | 6.4  | 15    |      |  |
|                   | 7100E 3180N    | .5   | 8 23  | 8.73 1  | 1.09   | 56.5  | 85    | 58.7  | 10.1 | 790   | 1.79   | 6.1  | .7    | 1.5  | 1.2 8   | 7.2    | . 28     | 25 .1  | 4 30  | .69   | .105  | 23.2 | 42.4  | .41 25   | 9.9.0   | 050  | 3 1.68  | .019 | . 15  | <.1   | 2.7 .(  | )5 .0  | )5 25  | .2  | .03  | 5.0  | 15    |      |  |
|                   | 7100E 3200N    | .5   | 9 26  | 5.45 1  | 0.68   | 53.9  | 125   | 79.3  | 11.6 | 860   | 2.17   | 6.7  | .7    | 2.8  | 2.2 8   | 0.9    | . 22 . 3 | 32.1   | 3 3   | 7.68  | .099  | 30.6 | 48.3  | .55 23   | 6.3.0   | 063  | 4 1.84  | .020 | .19   | .1 :  | 3.4 .(  | )7 .0  | )4 24  | .2  | .02  | 5.4  | 15    |      |  |
|                   | 7100E 3220N    | .6   | 3 27  | .46 1   | 7.31   | 57.6  | 133   | 79.7  | 12.1 | 940   | 2.28   | 8.3  | .7    | .5   | 3.2 6   | 3.4    | . 20 . 4 | 49.1   | 4 4   | 2.46  | .095  | 32.6 | 52.2  | .51 27   | 0.4.0   | 070  | 3 1.98  | .020 | .24   | .1    | 4.8 .(  | )9 .0  | 3 24   | .1  | <.02 | 6.2  | 15    |      |  |
|                   | 7100E 3240N    | .6   | 3 21  | .34 1   | 3.47   | 57.3  | 107   | 104.1 | 11.6 | 755   | 1.98   | 15.2 | .8    | .4   | 1.1 9   | 4.8    | .32 .    | 56.1   | .3 3  | 2.64  | . 122 | 27.0 | 43.2  | .42 26   | 57.1.0  | 054  | 3 1.87  | .020 | .17   | <.1   | 2.8 .0  | )6 .0  | 6 19   | .2  | .05  | 5.4  | 15    |      |  |
|                   |                |      |       |         |        |       |       |       |      |       |        |      |       |      |         |        |          |        |       |       |       |      |       |          |         |      |         |      |       |       |         |        |        |     |      |      |       |      |  |
|                   | STANDARD DS5   | 13 3 | 2 14/ | 1 22 2  | 5 37 - | 137 6 | 284   | 25.0  | 12.4 | 747   | 2.99   | 18.9 | 6.1 4 | 13.0 | 2.9 4   | 9.6 5  | .55 3.4  | 89 6.3 | 1 6   | 2.77  | .093  | 12.9 | 187.6 | .68 13   | 7.1.1   | 101  | 16 2.03 | .035 | . 14  | 4.9   | 3.6 1.0 | 03.0   | )1 173 | 4.9 | .87  | 6.8  | 15    |      |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





Data **K**FA

| ACTE ANALTTICAL |                |           |        |        |         |       |                 |                |         |                |          |      |          |                                 |               |      |      |         |                 |                  |          |         |      |         |        |       |       |         | -    |     |        |          |       |      |
|-----------------|----------------|-----------|--------|--------|---------|-------|-----------------|----------------|---------|----------------|----------|------|----------|---------------------------------|---------------|------|------|---------|-----------------|------------------|----------|---------|------|---------|--------|-------|-------|---------|------|-----|--------|----------|-------|------|
|                 | SAMPI F#       | Mo        | Сц     | Pb     | Zn      | Aq    | Ni              | Co M           | n Fe    | As             | U        | Au   | Th       | Sr Co                           | i Sb          | Bi   | ٧    | Ca      | P Li            | a Cr             | Mg       | Ba      | Ti   | B A1    | Na     | К     | W 3   | Sc Tl   | S    | Hg  | Se     | Te GaS   | ample |      |
|                 | 0,0,0,000      | nom       | ກກາ    | DDM    | DDI     | daa   | ם התכם          | DOM DO         | 2011 %  | DDM            | ppm      | ppb  | ррт р    | орт ррл                         | n ppm         | ppm  | ррят | x       | % ppr           | п ррл            | X        | ppm     | Хp   | opm %   | X      | λ p   | om p  | om ppm  | z    | ppb | ppm p  | pm ppm   | gm    |      |
|                 |                |           |        |        | PPm     | pps   | PP P            |                |         |                |          |      |          |                                 |               |      |      |         |                 |                  |          |         |      |         |        |       |       |         |      |     |        |          |       |      |
|                 | 0.1            | 1 54      | 2 05   | 2 21   | 45.0    | 13    | 1 5 A           | 2 5/           | 14 1 96 | 2              | 19       | < 2  | 4.2 82   | 2.0 <.01                        | .03           | .10  | 39   | .57 .07 | 6 8.8           | 8 14.8           | .53 2    | 33.0 .: | 124  | 1.93    | .091   | .48 2 | .1 2  | .2 .31  | <.01 | <5  | <.1 <. | 02 4.8   | 15    |      |
|                 | G-1            | 1.54      | 10.00  | 11 27  | 43.0    | 202 . | 7.5 7<br>26 0 7 | 1 2 54         | 54 1 61 | 7.2            | 9        | 3.5  | 1 3 129  | 7 .22                           | .27           | . 11 | 30   | .64 .09 | 5 27.2          | 2 23.3           | .42 2    | 31.4 .0 | 052  | 3 1.82  | .020   | .21 < | .1 2  | .1 .07  | .05  | 12  | .2 .   | 02 5.0   | 15    |      |
|                 | /100E 3260N    | .52       | 10.99  | 11.3/  | 47.0    | 410   | 00.57<br>DECC   | .0 50<br>:7 E/ | 40 1 27 | 0.0            | 6        | 4.6  | 1 2 159  | 13 26                           | 31            | 10   | 26   | .67 .10 | 1 27.3          | 7 19.7           | .33 1    | 83.0.0  | 040  | 4 1.26  | .021   | .20 < | .1 1  | .8 .06  | .05  | 14  | .2 .   | 03 3.5   | 15    |      |
|                 | 7100E 3280N    | . 59      | 20.34  | 12.93  | 55.5    | 413   | 35.5 0          | )./ 54         | +0 1.3/ | 9.9            | .0       | 1.0  | 1 0 171  | E 26                            | : 22          | 11   | 24   | 57 00   | 2 24            | 5 16 5           | 29 1     | 89.2 1  | 046  | 2 1 33  | .021   | .18 < | .1 2  | .0 .05  | .04  | 16  | .2 .   | 02 3.6   | 15    |      |
|                 | 7100E 3300N    | . 65      | 18.88  | 10.19  | 51.4    | 202 7 | 25./ 5          | 5.9 54         | 23 1.30 | 8.0            | ./       | 1.9  | 1.2 1/1  |                                 |               |      | 24   | 57 .0.  | 12 20 1         | 0 10.0<br>0 00 7 | 20 1     | 03.1    | 057  | 2 1 36  | 019    | 19 <  | 1 2   | 6 06    | 03   | 15  | .1 .   | 03 4.0   | 15    |      |
|                 | 7100E 3320N    | . 66      | 19.53  | 10.58  | 58.7    | 133 3 | 33.9 7          | 1 55           | 57 1.57 | 6.8            | ./       | 1.5  | 2.4 133  | 5.5 .24                         | + .24         | .11  | 33   | .52 .05 | 0 00.1          | 2 22.1           | .30 1    | 00.1 .  | 0.07 | 2 1.00  | .015   | . 15  |       |         |      |     |        |          |       |      |
|                 |                |           |        |        |         |       |                 |                |         |                |          |      |          |                                 |               |      |      |         |                 |                  | 00.1     | 75.4    | 000  | 0 1 00  | 017    | 21 -  | 1 2   | 6 06    | 04   | 16  | 2      | 03 3 8   | 15    |      |
|                 | 7100E 3340N    | .73       | 20.29  | 11.80  | 56.1    | 140 3 | 38.7 7          | 7.7 53         | 76 1.66 | 7.1            | .6       | 2.3  | 2.8 130  | ).4 .26                         | .26           | . 12 | 36   | .56 .10 | 18 33.          | 1 25./           | .32 1    | /5.4 .  | 053  | 3 1.29  | .01/   | .21   | .1 2  | 0 .00   | .04  | 10  |        | 02 1 2   | 15    |      |
|                 | 7100E 3360N    | .55       | 23.87  | 16.96  | 68.0    | 320   | 44.4 9          | 9.2 6          | 51 1.97 | 7.7            | .4       | 5.3  | 2.7 135  | 5.5 .32                         | 2.38          | .12  | 41   | .69 .13 | 31 37.9         | 9 31.1           | .43 2    | 37.4 .  | 054  | 3 1.43  | .018   | .24 < | .1 3  | .3 .0/  | .03  | 10  | . 2 .  | 02 4.3   | 15    |      |
|                 | 7100E 3380N    | . 85      | 24.80  | 24.44  | 79.5    | 272   | 50.8 13         | 3.9 11         | 75 3.02 | 18.5           | .6       | 5.9  | 2.5 56   | 5.7.36                          | 5.66          | .26  | 56   | .62 .15 | 51 34.          | 9 60.8           | .51 2    | 54.2 .  | 034  | 1 1.96  | .014   | .24 < | .1 /  | ./ .08  | .04  | 34  | . 1 .  | 02 0.3   | 15    |      |
|                 | 7100E 3400N    | .55       | 17.84  | 11.06  | 56.6    | 238   | 34.4 9          | 9.7 76         | 63 2.19 | 12.4           | .4       | 6.4  | 2.0 61   | 1.9 .2                          | L .51         | .10  | 33   | .72 .09 | 30 24.4         | 4 22.7           | .42 2    | 11.8 .  | 023  | 4 1.39  | .014   | .23 < | .1 4  | .1 .06  | .05  | 18  | .2.    | 02 4.0   | 15    |      |
|                 | 7100E 3420N    | .52       | 16.65  | 9.10   | 53.8    | 73    | 17.6 5          | 5.2 49         | 90 1.25 | 4.9            | .6       | 1.1  | 1.0 95   | 5.4 .23                         | 3.21          | .12  | 23   | .64 .09 | 9 22.           | 5 13.3           | .26 1    | 91.9 .  | 047  | 1 1.45  | .023   | .17 < | .1 1  | ./ .05  | .06  | 17  | .2 .   | UZ 3.8   | 15    |      |
|                 |                |           |        |        |         |       |                 |                |         |                |          |      |          |                                 |               |      |      |         |                 |                  |          |         |      |         |        |       |       |         |      |     |        |          |       |      |
|                 | 7100F 3440N    | .56       | 18.33  | 8.93   | 57.0    | 96    | 18.4 6          | 5.9 6          | 72 1.82 | 2 7.6          | .9       | 1.6  | 2.4 63   | 3.7 .19                         | 9.29          | .13  | 29   | .57 .08 | 85 27.          | 1 15.5           | .25 2    | 24.9 .  | 068  | 2 1.86  | .021   | .18 < | .1 3  | .1 .08  | .03  | 15  | .2 .   | 03 5.0   | 15    |      |
|                 | 7100E 3460N    | 64        | 18.58  | 10.12  | 55.2    | 84    | 23.8 6          | 5.1 5          | 64 1.56 | 5.2            | .8       | 1.1  | 1.7 89   | 9.7.2                           | 5.22          | .13  | 31   | .62 .1  | 4 30.           | 5 18.3           | .28 1    | 90.7 .  | 058  | 2 1.65  | .020   | .19 < | .1 2  | .3 .07  | .04  | 17  | .2.    | 03 4.6   | 15    |      |
|                 | 7100E 3480N    | 62        | 17 94  | 17.06  | 69.6    | 79    | 25.7 6          | 5.7 5          | 75 1.70 | 5.0            | 1.0      | .2   | .7 80    | .2 .3                           | 2.21          | .14  | 32   | .51 .13 | 33 33.          | 6 19.5           | .27 2    | 33.3 .  | 056  | 2 2.18  | .020   | .19 < | .1 1  | .7 .08  | .06  | 15  | .2 <.  | 02 6.1   | 15    |      |
|                 | 7100E 2500N    | 61        | 22 91  | 184 32 | 226.0   | 663   | 73 1 10         | 0.6            | 82 1.76 | 5 18.8         | .9       | 7.6  | 1.4 93   | 3.1 1.79                        | 9.42          | .12  | 31   | .65 .1  | 10 28.          | 1 35.3           | . 39 2   | 21.6 .  | 052  | 1 1.93  | .020   | .15 < | .1 2  | .4 .07  | .05  | 18  | .1 .   | 03 5.1   | 15    |      |
|                 | 71005 25208    | .01       | 16 57  | 18 89  | 99.5    | 107   | 22 7 7          | 756            | 57 1.80 | 5.0            | .9       | .7   | 2.0 89   | 9.1 .8                          | 1.23          | . 14 | 36   | .61 .1  | 3 27.           | 9 23.8           | .35 2    | 57.8 .  | .068 | 2 1.94  | .020   | .16 < | .1 3  | .4 .07  | . 05 | 18  | .2.    | 02 5.7   | 15    |      |
|                 | /100E 3320N    | .02       | 10.57  | 10.07  | <i></i> | 107   |                 |                |         | •••            |          |      |          |                                 |               |      |      |         |                 |                  |          |         |      |         |        |       |       |         |      |     |        |          |       |      |
|                 | 71005 05400    | 1.04      | 00.01  | 12.04  | 70.1    | 101   | 20 6 9          | 226            | 02 1 70 | 1 8 6          | 9        | 1 1  | 2 2 110  | 2 3                             | B 30          | .13  | 35   | .77 .1  | 14 34.          | 3 21.0           | .32 4    | 28.4 .  | .055 | 3 1.56  | .022   | .19 < | .1 3  | .3 .07  | .04  | 18  | .2.    | 02 4.6   | 15    |      |
|                 | /10UE 3540N    | 1.24      | 20.01  | 10.04  | 60.2    | 110   | 20.00           | 0.2 0<br>0.1 E | 02 1.70 | ) 0.0<br>) 0.0 | . J      | 1 1  | 2 3 118  | 334                             | 1 27          | 13   | 33   | .76 .1  | 14 34.          | 8 20.8           | .32 4    | 27.0.   | .053 | 3 1.57  | .022   | .20 < | .1 3  | .3 .08  | .05  | 17  | .3 .   | 02 4.5   | 15    |      |
|                 | RE /100E 3540N | 1.28      | 22.50  | 12.00  | 50.5    | 115   | 00.4 0          | 0.1 J          | 10 1 5  | 7 4 0          | . ,      | 2.1  | 2 3 109  | 202                             | 6 18          | 16   | 36   | 54 1    | 12 35           | 6 22 6           | 27 1     | 79.4    | 069  | 1 1.62  | .021   | .16 < | .1 2  | .2 .08  | .04  | 20  | .2 <.  | 02 4.9   | 15    |      |
|                 | 7100E 3560N    | .62       | 18.12  | 11.85  | 59.5    | 84    | 33.3 0          | 0.0 5          | 12 1.5/ | 0.0            | . 0<br>6 | 1.0  | 2.0 100  | 2.0 .2.<br>2.1 2                | 0 .10<br>0 13 | 12   | 24   | 47 1    | 23 21           | 9 11 7           | 18 1     | 56.3    | 054  | 2 1.24  | .017   | .10 < | .1 1  | .7 .05  | .02  | 16  | .2 <.  | 02 3.6   | 15    |      |
|                 | 7100E 3580N    | - 55      | 15.92  | 8.31   | 53./    | 49    | 10.5 4          | 4.0 5          | 3/ 1.20 | ) 5.2          | .0       | 1.0  | 2.2 00   | ງ. <del>ຖ</del> ຸ.20<br>ງ.ຊ. 20 | 0 .10<br>0 10 | 12   | 26   | 33 0    | SR 20           | 5 11 5           | 20 1     | 61 4    | 068  | 2 1 47  | 024    | 10 <  | 1 1   | .9 .06  | .02  | 8   | .1 <.  | 02 4.2   | 15    |      |
|                 | 7100E 3600N    | .74       | 12.97  | 8.92   | 55.3    | /1    | 11.1 4          | 4.9 4          | 34 1.30 | 2.9            | ./       | <.Z  | 2.0 /1   | J.4 .2                          | 0 .10         | . 12 | 20   | .00 .0  | 50 20.          | J 11.0           |          | .01.1.1 |      |         |        |       |       |         |      |     |        |          |       |      |
|                 |                |           |        |        |         |       |                 |                | 07 1 5  |                | -        |      | C 1 7    | 100                             | 0 12          | 12   | 20   | 25 0    | 26 20           | 6 22 8           | 25.1     | 35 0    | 075  | 2 1 45  | 020    | 19 <  | 1 2   | 2 .08   | .01  | 18  | .1 <.  | 02 4.6   | 15    |      |
|                 | 7300E 3600N    | .66       | 13.26  | 8.90   | 65.8    | 32    | 21.3 €          | 6.0 4          | 8/ 1.58 | 5.8            | ./       | .5   | 5.1 /.   | 1.9 .0                          | 0.10          | . 12 | 27   | .20 .0  | 30 25.<br>70 DE | 2 27 /           | , 20 1   | 20 E    | 072  | 2 99    | 010    | 18    | 1 1   | 7 06    | 01   | 16  | 1 <    | 02 3 4   | 15    |      |
|                 | 7300E 3620N    | .52       | 10.05  | 8.24   | 67.8    | 32    | 45.6 7          | 7.1 3          | 58 1.5  | 4.8            | .5       | .8   | 4.3 /2   | 2.0.1                           | 2 .19         | . 12 | 29   | .32 .0  | /U 25.          | 0 70             | + .52 1  | 30.5.   | 042  | 1 1 22  | 016    | 20    | 1 1   |         | 01   | 21  | 2      | 03 4 3   | 15    |      |
|                 | 7300E 3640N    | .96       | 17.93  | 18.45  | 57.3    | 36    | 9.5 5           | 5.7 6          | 07 1.60 | ) 7.9          | 1.1      | .6   | 12.9 100 | 5.9.5                           | 3.31          | .23  | 22   | .41 .0  | 51 89.          | 8 /.5<br>E 04 (  | .302     | .49.0 . | .043 | 4 1 20  | 010    | .25   | 1 2   | .0 .07  | .01  | 34  | 1      | 02 4 8   | 15    |      |
|                 | 7300E 3660N    | .51       | 23.48  | 15.18  | 61.1    | 41    | 38.3 9          | 9.4 8          | 06 1.93 | 3 3.1          | .8       | 1.1  | 10.8 83  | 3.4 .1                          | 4.34          | . 11 | 34   | .4/ .0  | 34 68.          | 5 24.8           | 3.642    | 200.3.  | .038 | 4 1.38  | .018   | .3/   | .1 2  | .4 .0/  | .00  | 20  | 1 .    | 02 4.0   | 15    |      |
|                 | 7300E 3680N    | . 68      | 28.03  | 30.59  | 59.8    | 87    | 8.0 8           | 8.6 7          | 09 1.86 | 5 4.1          | 1.3      | 2.3  | 19.5 16  | 0.9 .1                          | 4 .57         | .12  | 26   | ./5 .1  | 42 131.         | 8 /.3            | 3 .51 3  | 307.7.  | .025 | 4 1.5/  | .013   | .45 < | .1 1  | .0 .09  | .05  |     | .1.    | 05 5.5   | 15    |      |
|                 |                |           |        |        |         |       |                 |                |         |                |          |      |          |                                 |               |      |      |         |                 |                  |          |         |      |         |        | 07    |       | 1 07    |      | 11  | 1.     | 00 1 6   | 15    |      |
|                 | 7300E 3700N    | .16       | 9.12   | 3.14   | 19.7    | 28    | 3.2 3           | 3.5 3          | 30 .83  | 3 2.5          | . 1      | .5   | .7 12    | 0.4 .0                          | 8 .11         | .06  | 23   | .55 .0  | 46 8.           | 4 8.8            | 3.21     | 88.0 .  | .034 | 2.45    | .033   | .0/ < | .1 2  | .1 .02  | .03  | 11  | .1 <.  | 02 1.0   | 15    |      |
|                 | 7300E 3720N    | .90       | 21.04  | 16.08  | 64.3    | 72    | 14.0 16         | 6.2 17         | 58 3.4  | 1 6.1          | 1.0      | .9   | 4.9 93   | 3.6 .2                          | 4.32          | . 18 | 87   | .60 .1  | 35 45.          | 2 40.5           | 5 1.02 2 | 275.7 . | .077 | 1 2.77  | .022   | .21 < | .1 9  | ./ .09  | .02  | 34  | .1 .   | 03 9.3   | 15    |      |
|                 | 7300E 3740N    | .37       | 9.64   | 4.69   | 22.9    | 42    | 3.3 4           | 4.5 6          | 29 .9   | 9 3.7          | .3       | 1.0  | .4 5     | 6.5 .1                          | 3.12          | .08  | 27   | .40 .0  | 53 10.          | 3 7.9            | .20      | 58.8.   | .040 | 1 .72   | 2 .035 | .04 < | .1 2  | .4 .03  | .04  | 26  | .2.    | .03 2.6  | 15    |      |
|                 | 7325E 3600N    | .61       | 9.88   | 5.21   | 65.8    | 29    | 9.1 3           | 3.5 5          | 35 1.0  | ) 4.4          | .4       | .5   | 2.3 7    | 9.2.0                           | 8 .08         | .09  | 19   | .27 .1  | 43 14.          | 2 10.3           | 3 .16 1  | L78.0 . | .053 | 3.87    | .021   | .15 < | .1 1  | .3 .04  | .02  | 14  | <.1 <. | .02 3.1  | 15    |      |
|                 | 7325E 3620N    | .55       | 11.06  | 8.96   | 47.6    | 37    | 7.0 3           | 3.8 3          | 68 1.2  | 3.2            | .7       | <.2  | 7.8 6    | 4.0.0                           | 6.12          | .08  | 17   | .26 .0  | 48 45.          | 4 6.8            | .21 1    | 186.9 . | .050 | 2 1.20  | .023   | .20 < | .1 1  | .5 .05  | <.01 | 12  | .1 <   | .02 3.7  | 15    |      |
|                 |                |           |        |        |         |       |                 |                |         |                |          |      |          |                                 |               |      |      |         |                 |                  |          |         |      |         |        |       |       |         |      |     |        |          |       |      |
|                 | 7325F 3640N    | .47       | 13.45  | 11.58  | 44.8    | 43    | 12.0            | 5.3 5          | 38 1.4  | 9 2.5          | .8       | .4   | 10.3 10  | 3.8 .0                          | 6.14          | .09  | 19   | .33 .0  | 53 57.          | 6 8.2            | 2.29.2   | 252.3 . | .053 | 3 1.55  | .023   | .22   | .1 2  | .0 .06  | .02  | 20  | .1 <   | 02 4.4   | 15    |      |
|                 | 7325E 3660N    | 81        | 36.73  | 6.71   | 62.8    | 81 F  | 547.5 48        | 8.6 11         | .68 2.5 | 4 19.6         | .2       | 3.3  | 1.0 21   | 0.4 .2                          | 2.76          | .12  | 32   | 1.12.1  | 13 9.           | 5 192.2          | 2 1.78 3 | 373.6 . | .021 | 8 1.33  | .015   | .24   | .5 4  | .5 .05  | .05  | 43  | .3     | .04 3.7  | 15    |      |
|                 | 7325E 3680N    | .01       | 14 00  | 5 12   | 52.3    | 29    | 12.7 1          | 3.0 7          | 04 2.8  | 7 1.9          | .3       | .4   | 3.6 9    | 5.3.1                           | 0.18          | .05  | 64   | .60.0   | 99 34.          | 0 42.3           | 3 1.04 3 | 321.7 . | .023 | 3 2.02  | 2 .019 | .32 < | .1 8  | .5 .05  | .03  | 21  | .1 <   | 02 7.2   | 15    |      |
|                 | 7025E 0000N    | .+1<br>AA | 13 61  | 7 19   | 40.7    | 33    | 10 5 1          | 3.1.11         | 30 2.6  | 9 1.8          | .2       | 1.0  | 2.8 11   | 3.0 .1                          | 2.21          | .09  | 62   | .66 .0  | 51 37.          | 0 37.            | 5.994    | 415.1 . | .015 | 1 2.02  | .021   | .16 < | .1 11 | .5 .06  | .03  | 25  | <.1    | 02 6.6   | 15    |      |
|                 | 7020E 0700N    | .44       | 22 00  | 10 52  | 72 /    | 76    | 15 4 1          | 7 2 17         | 107 3 6 | 3 5 7          | 1.2      | 5    | 4.0 10   | 7.8.1                           | 9.28          | .16  | 93   | .60.1   | 84 49.          | 7 43.1           | 3 1.02 3 | 318.8 . | .058 | 2 3.08  | .018   | .15 < | .1 9  | .6 .08  | .04  | 35  | .1 <   | .02 10.1 | 15    |      |
|                 | 1323E 3120N    | . 94      | 22.09  | 10.32  | 12.4    | 10    | 10.4 1          |                |         |                |          |      | 10       |                                 |               |      |      |         |                 |                  |          |         |      |         |        |       |       |         |      |     |        |          |       |      |
|                 | CTANDADD DCC   | 12 00     | 147 67 | 25 66  | 141 0   | 201   | 24 8 1          | 267            | 7530    | n 19 1         | 61       | 41.2 | 294      | 7.056                           | 9 4.05        | 6.27 | 62   | .76 .0  | 93 12.          | 5 188.0          | 8.681    | 135.4 . | .097 | 16 2.08 | 3.034  | .14 5 | .2 3  | .5 1.04 | .02  | 177 | 4.8    | .89 6.7  | 15    |      |
|                 | STANUAKU USS   | 13.09     | 14/.U/ | O      | 1-1-0   | ل ل ب |                 | v /            |         |                | v. +     |      |          |                                 |               |      |      |         |                 |                  |          |         |      |         |        |       |       |         |      |     |        |          |       | <br> |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





Data AFA

| CME ANALYTICAL |                |       |        |       |        |       |         |              |          |                 |            |              |              |               |                |      |      |           |                   |                | _            |        |           |       |      |         |      |               |        | -            |        |      |      |       |      |  |
|----------------|----------------|-------|--------|-------|--------|-------|---------|--------------|----------|-----------------|------------|--------------|--------------|---------------|----------------|------|------|-----------|-------------------|----------------|--------------|--------|-----------|-------|------|---------|------|---------------|--------|--------------|--------|------|------|-------|------|--|
|                | SAMDI E#       | Mo    | Cu.    | Ph    | <br>7n | An    | Ni      | Co           | Mn       | e A             | s I        | J            | Au T         | h S           | r Cđ           | Sb   | Bi   | ٧         | Ca                | P L            | a C          | Cr M   | Mg Ba     | Ti    | В    | A1 Na   | К    | W             | Sc 1   | r1           | S Hg   | Se   | Te   | Ga Sa | mple |  |
|                | SAMPLE#        | 110   |        | 207   | 000    | ng    | 000     | 00           | 000      | 2 nn            | ສຸດຄະ      | 1 1          | nh nn        | m nn          | m nom          | ກກຫ  | nnm  | กกส       | ž                 | % DD           | מס וווו      | m      | * DDM     | ž     | DDUI | X X     | ž    | ppm p         | opm pp | m            | % ppb  | ppm  | ррт  | ррт   | gm   |  |
| <u>}</u>       |                |       | ppili  | рри   | ppiii  | - ppu |         | ppin         | Ppin     | ~ pp            | PP*        |              |              |               |                | pp   | pp   |           |                   |                |              |        |           |       |      |         |      |               |        |              |        |      |      |       |      |  |
|                |                | 1 50  | 0.00   | 2 50  | 16 0   | 16    | E 0     | 4 6          | 560 2 1  | 12              | 1 2 1      | n            | 3 4          | а R4          | 5 < 01         | 03   | 11   | 39        | 58 08             | 36 9.          | 7 16.        | .0.5   | 55 238.1  | .132  | 51.  | 00 .095 | .53  | 2.4           | 2.3 .3 | 31.0         | 1 <5   | <.1  | <.02 | 5.1   | 15   |  |
|                | G-1            | 1.59  | 2.90   | 2.50  | 40.0   | 10    | 12.0.1  | 4.J<br>2.6.1 | 002 21   |                 | 1 4        | ,<br>. 1     | 12           | 3 81          | 1 16           | 20   | 14   | 59        | 35 10             | 12 34          | 6 37         | 9 7    | 70 222 4  | .064  | 22.  | 32 .021 | .14  | <.1 (         | 5.9.6  | 0. 80        | 2 21   | .1   | .03  | 7.9   | 15   |  |
|                | /325E 3/4UN    | ./4   | 15./1  | 9.0/  | 54.0   | 55    | 12.7 1  | 101          | 401 1    | , די קר<br>1 סי | а.<br>о.   | 7 1          |              | 6 94          | n na           | . 20 | 11   | 25        | 20 12             | 25 22          | 1 14         | 5 2    | 21 163 5  | 072   | 31.  | 43 .030 | .12  | .1 2          | 2.0 .0 | )7 .0        | 1 16   | .1 . | <.02 | 4.5   | 15   |  |
|                | /350E 3600N    | .41   | 11.44  | 0.00  | 5/.9   | 20    | 12.9    | 4.0          | 401 1.4  | 12 2.<br>12 2.  | o .        | , 1<br>, 1   | .0 J.        | 6 50<br>6 50  | 0.05<br>3.05   | 11   | 07   | 19        | 29 06             | 5 16           | 1 10         | 1 2    | 20 205 6  | 038   | 31.  | 01 .020 | .17  | <.1           | 1.9 .( | )4 .0        | 1 11   | .1 - | <.02 | 3.2   | 15   |  |
|                | 7350E 3620N    | .48   | 11.0/  | 4.48  | 46.8   | 39    | 14.9    | 4.0          | 4/0 1.1  | 12 2.           | 9<br>0 ·   | , ,<br>, ,   | .J Z.<br>2 1 | 0 39.<br>E EG | 2 .03<br>2 .03 | 17   | 10   | 22        | 39 04             | 5 10.          | 1 27         | 3 3    | 24 181 1  | 041   | 4 1  | 14 021  | 21   | < 1 2         | 2.8 .( | )4 .0        | 2 19   | .1   | .02  | 3.4   | 15   |  |
|                | 7350E 3640N    | . 39  | 17.93  | 4.45  | 36.0   | 32    | 51.1    | 6.9          | 524 1.,  | 30 3.           | 9          | 2 2          | .3 1.        | 5 59.         | 0.00           | . 17 | . 10 | 22        | .30 .00           | 55 11.         | 1 2/.        |        | J4 101.1  | .041  | - ±. | 14 .011 |      |               |        |              | ,      |      |      |       |      |  |
|                |                |       |        |       |        |       | 40.0    |              | 714 0    |                 | <u> </u>   | <i>.</i> ,   | 7 0          | r 60          | 1 00           | 42   | 11   | 40        | £2 0 <sup>-</sup> | 77 61          | 1 21         | 7 9    | 87 164 6  | 028   | 21   | 66 016  | 37   | 2 :           | 3.8 (  | 0.80         | 2 23   | .1   | .02  | 5.9   | 15   |  |
|                | 7350E 3660N    | .61   | 37.22  | 9.02  | 54.6   | 82    | 42.8    | 9.5          | /14 2.   | 30 4.<br>DO 1   | U.U        | 54<br>n      | ./ 9.        | 5 60.<br>0 66 | 2 .09          | .43  | . 11 | 40<br>E 1 | .00 .00           | 01.<br>02 27   | 1 24         | 6 7    | 70 202 2  | 020   | 21   | 63 021  | 28   | < 1 /         | 54 (   | 15 C         | 2 22   | 1    | < 02 | 5.6   | 15   |  |
|                | 7350E 3680N    | . 39  | 13.85  | 4.45  | 40.8   | 24    | 9.4     | 9.9          | 59/ 2.1  | 23 1.           | 9          | 3            | .9 2.        | 8 00.         | 3.07           | .1/  | .04  | 70        | .49 .03           | 72 27.         | 7 07         | .0 .1  | FO 202.2  | .030  | 2 1. | 00 .021 | .20  | < 1 1         | 20     | 10 . 0       | 2 /1   | 1    | < 02 | 9.2   | 15   |  |
|                | 7350E 3700N    | 6.46  | 19.38  | 12.05 | 62.2   | 134   | 12.0 1  | 16.4         | 892 3.4  | 40 11.          | 2.         | / 18         | .0 5.        | 2 102.        | 5.13           | . 69 | .06  | 13        | .94 .13           | 9 48.          | ./ 25.       | .0 1.0 | 53 213.1  | .010  | 1 0  | 04 .015 | .40  | ~ 1 0         |        |              | 1 42   | .1   | ~ 02 | 0.1   | 15   |  |
|                | 7350E 3720N    | 1.92  | 18.10  | 12.43 | 61.2   | 149   | 13.1 1  | 18.0 1       | .077 3.4 | 40 7.           | 9.         | 97           | .8 5.        | 2 89.         | 2.15           | .4/  | .0/  | 68        | ./1 .14           | 2/ 50.         | .6 28.       | .6 1.3 | 39 224.5  | .013  | 1 2. | 010. 05 | .33  | <.1 (<br>.1 · |        | .0.0<br>N7 r | 1 42   | .1   | ~ 02 | 5.1   | 15   |  |
|                | 7350E 3740N    | .64   | 15.52  | 6.46  | 50.7   | 30    | 12.7 1  | 1.0          | 820 2.3  | 302.            | 8 .!       | 5            | .3 2.        | 8 96.         | 4 .11          | . 14 | .11  | 43        | .53 .0            | /1 33.         | .2 33.       | .5 .5  | 50 213.6  | .042  | 22.  | 0/ .029 | . 18 | <.1           | /.0 .0 | 1/ .0        | 1 23   | .2   | <.02 | 0.2   | 15   |  |
|                |                |       |        |       |        |       |         |              |          |                 |            |              |              |               |                |      |      |           |                   |                |              |        |           |       |      |         |      |               | _      |              |        |      |      |       |      |  |
|                | 7375E 3600N    | .47   | 13.60  | 9.89  | 54.8   | 49    | 17.3    | 6.0          | 295 1.   | 74 4.           | 51.        | 1 3          | .2 6.        | 6 87.         | 3 .08          | . 14 | .12  | 39        | .32 .10           | )5 38.         | .3 21.       | .9 .3  | 30 170.8  | . 100 | 22.  | 08 .028 | .16  | .1 3          | 2.5 .0 | .0 .0        | 11 13  | .1   | <.02 | 6.4   | 15   |  |
|                | 7375E 3620N    | .35   | 10.51  | 13.59 | 74.0   | 35    | 24.0    | 6.1          | 450 1.   | 68 6.           | 5.         | 4 1          | .5 2.        | 8 67.         | 4.11           | . 22 | .21  | 27        | .42 .14           | 48 17.         | .4 21.       | .6 .2  | 29 424.9  | .060  | 71.  | 57 .026 | .23  | <.1           | 2.9 .0 | J9 <.0       | 1 27   | .2   | <.02 | 5.2   | 15   |  |
|                | 7375E 3640N    | .43   | 10.36  | 4.91  | 37.0   | 35    | 21.2    | 5.4          | 379 1.   | 26 4.           | 3.         | 3            | .8 2.        | 4 48.         | 4.07           | . 20 | . 08 | 25        | .32 .0            | 53 17.         | .4 14.       | .4 .3  | 31 132.2  | .032  | 21.  | 09 .027 | . 18 | <.1           | 2.5 .0 | )5 .0        | 1 18   | .1   | <.02 | 3.3   | 15   |  |
|                | 7375F 3660N    | .26   | 8.50   | 10.78 | 22.5   | 52    | 165.2 1 | 16.8         | 396 1.   | 11 22.          | 5.         | 16           | .4 .         | 2 79.         | 9.23           | .67  | .24  | 16        | .50 .05           | 51 2.          | .2 63.       | .6 .3  | 75 84.2   | .029  | 4.   | 31 .023 | .07  | .2            | 1.5 .0 | )5 .0        | 15 56  | .4   | .03  | 1.2   | 15   |  |
|                | 7375F 3680N    | .64   | 9.84   | 5.27  | 23.6   | 353 - | 449.2 4 | 40.3         | 452 1.   | 65 50.          | 6.         | 1 426        | .5 .         | 8 164.        | 6.09           | 1.73 | .08  | 22        | .80.04            | 42 6.          | .5 145.      | .2 1.6 | 69 76.4   | .030  | 3.   | 56 .031 | .07  | 1.3           | 2.3 .: | 11 .0        | 4 37   | .3   | .03  | 2.0   | 15   |  |
|                | 10/02 00000    |       |        |       |        |       |         |              |          |                 |            |              |              |               |                |      |      |           |                   |                |              |        |           |       |      |         |      |               |        |              |        |      |      |       |      |  |
|                | 7375E 3700N    | 93    | 15 71  | 9.99  | 55.4   | 34    | 62.7 1  | 12.6         | 765 2.   | 644.            | 0.         | 71           | .2 4.        | 0 61.         | 8.14           | .23  | .14  | 50        | .41 .0            | 59 38.         | .7 54.       | .3 .6  | 64 230.9  | .045  | 22.  | 16 .019 | . 25 | <.1           | 5.9.1  | )9 .0        | 1 33   | .1   | <.02 | 6.6   | 15   |  |
|                | DE 7375E 3720N | .50   | 10.85  | 7 94  | 28.9   | 15    | 6.3     | 3.5          | 342      | <u>39</u> 2.    | 5.         | 5            | .6 3.        | 0 64.         | 3 .09          | . 10 | .10  | 19        | .29.0             | 50 22.         | .78.         | .1 .:  | 18 95.8   | .048  | 1.   | 86 .030 | . 14 | <.1           | 1.3 .( | )4 .0        | 1 11   | .1   | <.02 | 3.0   | 15   |  |
|                | 7375E 3720N    | .07   | 10.74  | 7 59  | 27.9   | 15    | 6.1     | 3.6          | 351      | 90 2.           | 5          | 5            | .4 2.        | 9 66.         | 3.10           | .10  | . 10 | 18        | .30 .05           | 58 22.         | .4 8.        | .2 .:  | 18 95.8   | .046  | 1.   | 82 .027 | . 14 | <.1           | 1.3 .  | )4 .C        | 1 12   | .1   | <.02 | 2.9   | 15   |  |
|                | 7375E 3720N    | 68    | 14 24  | 10 51 | 46.7   | 44    | 8 1     | 4.6          | 423 1    | 20 3            | 4          | 9            | .9 4.        | 7 78.         | 6.12           | .12  | .13  | 21        | .34 .0            | 58 38.         | .2 10.       | .1 .:  | 20 156.2  | .054  | 11.  | 53 .026 | . 17 | <.1           | 1.9 .0 | J6 .C        | 2 12   | .2   | <.02 | 4.4   | 15   |  |
|                | 74005 36000    | .00   | 15 69  | 13.03 | 84.6   | 62    | 21.5    | 7 1          | 660 2    | 10 5.<br>10 5   | 3 1        | 0            | 5 4          | 8 90          | 4 .12          | .16  | .18  | 37        | .42 .1            | 21 33.         | .2 25.       | .6 .3  | 33 365.6  | .103  | 22.  | 55 .025 | .17  | <.1           | 3.2 .  | 10.0         | 2 27   | .2   | <.02 | 7.7   | 15   |  |
|                | 7400E 3000M    |       | 10.00  | 10.00 | 01.0   | 02    | 21.0    | ,            |          |                 |            | -            |              |               |                |      |      |           |                   |                |              |        |           |       |      |         |      |               |        |              |        |      |      |       |      |  |
|                | 7400E 3620N    | 21    | 10 71  | 11 81 | 37.9   | 33    | 17.6    | 4 5          | 506      | 94 7.           | 3.         | 2 1          | .0 1.        | 4 80.         | 2 .08          | .12  | .13  | 18        | .44 .1            | 73 10.         | .8 14.       | .6 .   | 18 391.3  | .048  | 21.  | 07 .028 | .11  | <.1           | 1.7 .  | J5 .C        | )1 23  | .2   | .02  | 3.1   | 15   |  |
|                | 7400E 3660N    | .21   | 10.71  | 1 21  | 26.4   | 96    | 511 5 3 | 36.6         | 565 2    | 33 24           | 6          | <br>2 68     | 3 1          | 1 49          | 0.07           | 1.23 | .07  | 21        | .31 .0            | 547.           | .6 241.      | .3 2.3 | 21 137.7  | .046  | 51.  | 21 .030 | . 20 | .3            | 4.2 .  | 10 .0        | 3 24   | . 2  | <.02 | 3.2   | 15   |  |
|                | 7400E 3000N    | .05   | 11 50  | 7 07  | 42.0   | E0 1  | EEE 0 3 | 26 5         | 732 3    | 26 Q2           | 6          | 2 23<br>2 23 | 7 2          | 5 46          | 9 11           | 1 95 | 14   | 31        | 37 0              | 63 13          | 6 206        | .1 .4  | 64 225.4  | .066  | 31.  | 95 .023 | .27  | .3            | 5.3 .  | 10 <.(       | )1 19  | .1   | .02  | 5.5   | 15   |  |
|                | 7400E 3080N    | .01   | 11.50  | 0.44  | 42.0   | 47    | 200.02  | 0.5          | 100 2    | 20 72.          | 0.<br>2    | 7 00         | E 2          | 1 55          | 2 07           | 30   | 10   | 36        | 36 0              | 40 37          | 4 33         | 7      | 38 284 6  | 050   | 11   | 88 021  | 27   | <.1           | 4.7 .1 | ). 8G        | )1 18  | .1   | <.02 | 6.1   | 15   |  |
|                | /400E 3/00N    | .92   | 15.15  | 9.44  | 40.0   | 4/    | 20.2    | 0.2          | 400 2.   | 10 4.<br>10 0   | 2.         | ,<br>        | 1 1          | 2 70          | £ 10           | .00  | 11   | 50        | 56 0              | 69 <u>/</u> 18 | 3 26         | 0      | 37 416 2  | 018   | 1.2  | 03 015  | 34   | < 1           | 6.4    | 09 .C        | )2 24  | .2   | <.02 | 5.9   | 15   |  |
|                | /400E 3/20N    | .98   | 15.94  | 11.2/ | 51.8   | 62    | 14.0 1  | 11.9         | 003 3.   | 15 5.           | ۷. ۲       | 1 0          | .1 4.        | 5 70.         | 0 .10          | . 21 | . 11 | 50        | .50 .0            |                | .0 10.       |        | 0, 110.2  |       |      |         |      |               |        |              |        |      |      |       |      |  |
|                |                |       |        |       | ~ ~    |       | • •     |              | 001 1    | . 1             | •          |              | · · ·        | 6 57          | 0 04           | 10   | 07   | 10        | 20 D              | 41 20          | 0 11         | 2      | 10 100 0  | 043   | 1 1  | 3/ 028  | 16   | < 1           | 21     | 05 (         | 11 13  | 1    | < 02 | 3.6   | 15   |  |
|                | 7400E 3740N    | .56   | 12.22  | 5.56  | 38.9   | 42    | 8.8     | 4.0          | 331 1.   | 15 1.           | o .<br>- 1 | 4            | . 2 2.       | 0 5/.         | 0.00           | . 10 | .07  | 72        | .20 .04           | TI 20.         | ., TT<br>0 L |        | 40 104 7  | 045   | 1 1  | A1 010  | 34   | < 1           | 10     |              | 11 0   | < 1  | 02   | 5 1   | 15   |  |
|                | 7400E 3760N    | .86   | 19.62  | 16.98 | 66.5   | 54    | 5.6     | 6.7          | 54/ 1.   | 96 1.           | 5 1.       | 8            | .5 20.       | 8 167.        | / .06          | .10  | .06  | 33        | .55 .1            | 05 143.        | .8 5.        | ./ .   | .40 104.7 | .055  | 1 1  | 41 .019 |      | ~.1           | 1.0 .  | ))U          | 10 17  | 1    | .02  | 1.0   | 15   |  |
|                | 7400E 3780N    | .90   | 22.11  | 20.99 | 63.8   | 74    | 6.6     | 6.4          | 521 1.   | 88 3.           | 2 1.       | 01           | .4 12.       | 1 204.        | 1 .20          | . 15 | .13  | 23        | ./0 .1            | 19 101.        | . 2 / .      | .3     | .20 233.2 | .020  | 1 1. | 39 .012 | . 30 | ~.1           | 1.0 .  |              | 12 17  | .1   | . 02 | 4.5   | 15   |  |
|                | 7400E 3800N    | . 69  | 19.24  | 16.19 | 90.0   | 80    | 6.9     | 5.8          | 453 1.   | 467.            | 2.         | 9            | .7 5.        | 4 146.        | 3.39           | . 24 | .26  | 21        | .65 .0            | 96 39.         | .5 10.       | .5 .   | .21 151.3 | .030  | 21.  | 38 .014 | .20  | <.1           | 2.0 .  | J9 .u        | 12 19  | . 2  | .05  | 4.4   | 10   |  |
|                | 7400E 3820N    | .51   | 14.24  | 11.48 | 46.7   | 102   | 9.1     | 5.6          | 395 1.   | 82 2.           | 8 1.       | 1            | .2 6.        | 4 90.         | 5 .09          | .14  | . 14 | 35        | .41 .0            | 75 48.         | .3 19.       | .7 .:  | .32 162.0 | .077  | 1 1. | 94 .020 | .24  | <.1           | 2.7 .  | JY <.U       | JI 9   | .1   | .02  | 5.9   | 15   |  |
|                |                |       |        |       |        |       |         |              |          |                 |            |              |              |               |                |      |      |           |                   |                |              |        |           |       |      |         |      |               |        |              |        |      |      |       |      |  |
|                | 7400E 3840N    | .66   | 19.96  | 12.11 | 53.1   | 90    | 11.7    | 7.6          | 571 2.   | 14 4.           | 91.        | 1            | .7 7.        | 1 112.        | 6.13           | . 18 | .12  | 50        | .62 .1            | 52 58.         | .9 25.       | .7 .4  | .42 145.0 | .093  | 1 1. | 74 .022 | . 24 | .1            | 3.1 .  | J/ .0        | 13 15  | .1   | .02  | 6.0   | 15   |  |
|                | 7400E 3860N    | .74   | 18.52  | 11.51 | 52.6   | 64    | 10.6    | 6.6          | 495 2.   | 02 4.           | 0 1.       | 3            | .3 6.        | 9 124.        | 7.12           | .16  | .11  | 48        | .53 .1            | 70 61.         | .0 21.       | .6 .   | .31 153.0 | .102  | 11.  | 97 .024 | . 18 | .1            | 2.7 .  | J7 .C        | )2 8   | <.1  | <.02 | 6.0   | 15   |  |
|                | 7400E 3880N    | .68   | 19.18  | 9.99  | 52.6   | 65    | 8.1     | 5.2          | 460 1.   | 52 3.           | 6 1.       | 0            | .2 3.        | 5 154         | 8.23           | . 15 | .11  | 33        | .66 .1            | 47 41          | .2 15.       | .5 .   | .25 177.6 | .071  | 31   | 61 .023 | . 20 | .1            | 1.9 .  | J5 .C        | )4 9   | .1   | .02  | 4.8   | 15   |  |
|                | 7400E 3900N    | . 68  | 20.43  | 10.50 | 55.7   | 70    | 9.6     | 6.0          | 481 1.   | 793.            | 5 1.       | 2            | .5 4         | 8 142         | 5.17           | . 15 | .11  | 41        | .64 .1            | 62 50          | .6 19        | .0.    | .30 178.4 | .083  | 21   | 80 .023 | . 22 | .1            | 2.4 .  | J6 .C        | )3 14  | .1   | .02  | 5.5   | 15   |  |
|                | 7425E 3600N    | .24   | 9.46   | 4.51  | 37.4   | 34    | 11.6    | 3.2          | 453 .    | 82 2.           | 2.         | 3            | .2 1         | 5 64.         | 8.07           | .07  | .07  | 18        | .28 .0            | 73 10          | .69.         | .7.    | 15 208.9  | .048  | 2    | 84 .026 | . 10 | <.1           | 1.3 .  | )4 <.(       | )1 13  | .1   | <.02 | 2.8   | 15   |  |
|                |                |       |        |       |        |       |         |              |          |                 |            |              |              |               |                |      |      |           |                   |                |              |        |           |       |      |         |      |               |        |              |        |      |      |       |      |  |
|                | STANDARD DS5   | 13.06 | 140.30 | 24.42 | 136.2  | 283   | 24.8    | 12.6         | 782 3.   | 02 18.          | 8 6.       | 1 43         | 3.4 3        | 0 48          | 9 5.67         | 3.96 | 6.30 | 64        | .76 .0            | 98 13          | .2 186       | .5 .   | .69 137.4 | .102  | 18 2 | 11 .034 | . 15 | 4.8           | 3.5 1. | JS .(        | 02 167 | 4.8  | . 87 | 6.9   | 15   |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.





Page 19

| SHE AMAETTICAE |                |       |        |       |              |           |        |       |        |                 |         |        |      |       |        |        |      |      |          |         | 1            |           | Ma      |                  |              | > ^1            | Na     | v      | u         | Sc         | τì     | c       | Ча         | 50 To    | Ga Sa          | nle      |  |
|----------------|----------------|-------|--------|-------|--------------|-----------|--------|-------|--------|-----------------|---------|--------|------|-------|--------|--------|------|------|----------|---------|--------------|-----------|---------|------------------|--------------|-----------------|--------|--------|-----------|------------|--------|---------|------------|----------|----------------|----------|--|
|                | SAMPLE#        | Mo    | Cu     | Pb    | Zn           | Ag        | Ni     | Со    | Mn     | Fe A            | s l     | I Au   | Th   | Sr    | Cđ     | SD     | BI   | V    | Ca<br>°  | ۲<br>۲  | La           | UP<br>DOM | my<br>v | Dd               | ii t<br>Yoor | וא כ<br>ויי ר   | 140    | r<br>2 | พ         | ກກຫ        | 000    | 3<br>Xr | ng<br>nb r | ona nna  | ່ວດຫ           | am       |  |
| ÷              |                | ppm   | ppm    | ppm   | ppm          | ppb       | ppm    | ppm   | ррл    | x ppi           | n ppn   | a ppo  | ppm  | ppia  | ppia   | рра    | ppin | рры  | <i>.</i> | * P     | <b>дл</b> и  |           | ~       | phu              | ~ pp         |                 | ~      | ~      |           | ppm        | - PP   | ~ •     |            |          |                |          |  |
|                |                |       | 0.10   | 0.50  | AF F         | 10        | E 4    | 1 2   | EE0 9  | 07              | 1 2 (   | 2      | 4.5  | 85.3  | 01     | 03     | 11   | 41   | 59       | 084 9   | 3.3          | 16.7      | .56 23  | 36.5.12          | 27 3         | .97             | .095   | .51    | 2.5       | 2.2        | .32    | .02     | 5 -        | <.1 <.02 | 4.9            | 15       |  |
|                | G-1            | 1.68  | 3.10   | 2.53  | 45.5         | 12        | 216 5  | 4.Z   | 000 Z. | 60 11 1         | + 2.0   | 10.0   | 1.5  | 94.6  | 26     | 54     | 12   | 24   | .68      | 071 13  | 3.5.1        | 35.6 1    | .02 30  | 09.6.00          | -<br>34 4    | . 84            | .022   | . 18   | .2        | 3.0        | .07    | .05     | 33         | .2 <.02  | 2.8            | 15       |  |
|                | 7425E 3660N    | .54   | 10.00  | 10.15 | 40.0         | 4/        | 210.5  | 77    | 326 2  | 23 3 1          | ,<br>,  | 10.0   | 3.4  | 50.7  | 07     | .31    | .09  | 41   | .33 .    | 032 39  | 9.6          | 46.8      | .39 33  | 34.5.06          | 55 3         | 1.26            | .025   | . 29   | <.1       | 3.8        | .09    | .01     | 12         | .2 <.02  | 4.9            | 15       |  |
|                | 7425E 368UN    | .02   | 16.19  | 10.00 | 55.2<br>70.4 | 04<br>4.4 | 23.0   | 10.2  | 710 2  | 20 0.4<br>83 7. | <br>1 F | 1.6    | 3.6  | 71.2  | 18     | 49     | .14  | 43   | .53      | 063 45  | 5.5          | 45.1      | .46 39  | 92.2.0!          | 50 (         | 3 1.70          | .023   | . 33   | <.1       | 5.3        | . 10   | .01     | 27         | .2 .02   | 6.3            | 15       |  |
|                | 7425E 3700N    | .04   | 10.12  | 10 16 | 70.4<br>E2.6 | 21        | 16.0   | 6.0   | 277 1  | 00 /<br>08 2 /  | 5 6     | 2      | 3.5  | 56 1  | 07     | 14     | .13  | 35   | .33      | 054 28  | 3.7          | 30.7      | .34 31  | 13.5 .03         | 76 2         | 2 2.03          | .026   | .16    | <.1       | 4.1        | .09    | .02     | 20         | .2 <.02  | 6.3            | 15       |  |
|                | /425E 3/2UN    | .53   | 10.70  | 12.10 | 52.0         | 51        | 10.9   | 0.0   | 2// 1. | JU 2.1          |         |        | 0.0  | 00.1  |        |        |      |      |          |         |              |           |         |                  |              |                 |        |        |           |            |        |         |            |          |                |          |  |
|                | 7425E 3740N    | 49    | 22 73  | 21 84 | 84 7         | 90        | 19 4   | 7.8   | 785 2. | 15 11.3         | 3.5     | 2.0    | 3.4  | 102.7 | . 20   | . 22   | . 28 | 35   | .59.     | 128 39  | 9.8          | 42.6      | .47 42  | 26.5 .03         | 77 5         | 5 1.97          | .028   | . 25   | <.1       | 5.5        | .08    | .01     | 27         | .2 .04   | 7.2            | 15       |  |
|                | 7425E 3760N    | 57    | 13 27  | 8 52  | 52.5         | 31        | 6.6    | 4.4   | 567 1. | 16 4.           | 5.5     | . 8    | 4.5  | 74.3  | . 12   | .08    | . 12 | 19   | .32 .    | 066 29  | 9.2          | 9.2       | . 18 17 | 79.9.0           | 51 2         | 2 1.38          | .025   | .19    | <.1       | 2.2        | .05 <  | .01     | 14         | .1 <.02  | 4.3            | 15       |  |
|                | 7425E 3780N    | .07   | 15 13  | 13.00 | 65.6         | 25        | 6.7    | 5.2   | 348 1. | 32 2.           | 2.8     | .2     | 7.6  | 116.5 | .13    | . 11   | .17  | 18   | .47 .    | 049 56  | 5.2          | 6.7       | .16 16  | 51.0 .03         | 22 2         | 2 1.08          | .017   | .32    | <.1       | 1.8        | .09    | .01     | 12         | .2 <.02  | 3.9            | 15       |  |
|                | 7425E 3800N    | 54    | 18 45  | 16.28 | 65.1         | 31        | 8.1    | 6.1   | 422 1. | 73 3.           | 1 1.3   | . 1.3  | 10.0 | 141.0 | . 18   | . 15   | . 19 | 29   | .47 .    | 076 67  | 7.4          | 13.3      | . 25 14 | 42.0.0           | 44           | 1.39            | .017   | . 25   | <.1       | 2.2        | .08 <  | .01     | 15         | .2 <.02  | 2 5.2          | 15       |  |
|                | 7425E 3820N    | .01   | 13.89  | 16.84 | 51.9         | 74        | 6.3    | 4.5   | 273 1. | 40 3.           | 3.7     | .3     | 7.7  | 103.6 | . 15   | .16    | .16  | 22   | .54 .    | 097 82  | 2.4          | 9.1       | .23 9   | 97.0.0           | 10           | 1.16            | .013   | .32    | <.1       | 1.4        | .08    | .02     | 9          | .2 .03   | 5.1            | 15       |  |
|                | 74252 00200    | .02   | 10107  |       |              |           |        |       |        |                 |         |        |      |       |        |        |      |      |          |         |              |           |         |                  |              |                 |        |        |           |            |        |         |            |          |                |          |  |
|                | 7425F 3840N    | 65    | 16 20  | 16.74 | 50.0         | 84        | 8.8    | 5.6   | 362 1. | 81 4.           | 9 1.0   | 1.8    | 7.9  | 169.4 | . 10   | . 20   | . 12 | 43 1 | .44 .    | 164 80  | ).4          | 17.4      | .35 12  | 24.8.0           | 55 3         | 2 1.25          | .046   | . 18   | <.1       | 2.1        | .06    | .04     | 11         | .2 <.02  | 2 5.0          | 15       |  |
|                | 7425E 3860N    | 97    | 25 10  | 15.61 | 62.9         | 92        | 15.8   | 8.6   | 519 2. | 31 5.           | 3 1.5   | 5 1.3  | 10.3 | 174.8 | .13    | . 24   | . 13 | 61   | .82 .    | 214 90  | ).4          | 26.2      | .48 12  | 21.9.1           | 08           | 1.53            | .048   | . 19   | .2        | 2.8        | .08    | .02     | 16         | .2 .02   | 6.4            | 15       |  |
|                | 7425E 3880N    | 87    | 25 57  | 13 16 | 54.8         | 81        | 13.5   | 8.1   | 469 2. | 21 4.           | 8 1.4   | 2.4    | 9.4  | 163.3 | .10    | .22    | .11  | 55   | .70 .    | 194 84  | 4.4          | 24.1      | .44 12  | 29.9.0           | 92           | 1.55            | .034   | . 18   | .1        | 2.9        | .08    | .02     | 18         | .2 .02   | 2 5.9          | 15       |  |
|                | 7425E 3900N    | 70    | 24 50  | 12.69 | 59.1         | 73        | 13.0   | 7.8   | 478 2. | 27 4.           | 5 1.3   | 8. 8   | 8.0  | 144.1 | . 13   | . 22   | .13  | 53   | .60.     | 157 67  | 7.6          | 26.9      | .44 15  | 53.1 .0          | 99 :         | 3 1.77          | .027   | . 25   | .1        | 3.5        | .09    | .02     | 13         | .2 .03   | 6.5            | 15       |  |
|                | 7575E 3600N    | .45   | 15.50  | 8.86  | 59.7         | 59        | 53.3   | 8.7   | 777 2. | 04 8.           | 2.6     | 5 2.9  | 1.7  | 58.4  | .16    | . 18   | . 16 | 35   | .44 .    | 086 15  | 5.9          | 28.4      | .59 29  | 96.2.0           | 79           | 1 2.30          | .026   | .11    | <.1       | 3.1        | .08    | .02     | 27         | .3 <.02  | 6.8            | 15       |  |
|                | 10102 00000    |       |        |       |              |           |        |       |        |                 |         |        |      |       |        |        |      |      |          |         |              |           |         |                  |              |                 |        |        |           |            |        |         |            |          |                |          |  |
|                | RE 7575E 3600N | .45   | 15.36  | 9.13  | 59.9         | 63        | 52.4   | 8.4   | 764 2. | 00 8.           | 2.6     | 5 5.5  | 1.7  | 58.3  | .17    | . 20   | . 17 | 35   | .44 .    | 087 16  | 6.2          | 28.0      | .58 29  | 99.4 .0          | 78           | 3 2.26          | .026   | .11    | <.1       | 3.2        | .08    | .02     | 26         | .3 .02   | 2 6.7          | 15       |  |
|                | 7575E 3620N    | . 45  | 15.06  | 9.22  | 33.7         | 33        | 66.0   | 9.4   | 433 1. | 47 2.           | 2.8     | 4.5    | 5.7  | 90.5  | .05    | .11    | .10  | 23   | .27 .    | 054 31  | 1.3          | 39.6      | .41 17  | 75.4 .0          | 79           | 2 1.76          | 5.036  | .14    | .1        | 2.6        | .07 <  | 4.01    | 12         | .1 .02   | 2 5.2          | 15       |  |
|                | 7575E 3640N    | .49   | 14.14  | 8.56  | 37.1         | 35        | 83.7   | 10.7  | 463 1. | 71 4.           | 4 .:    | 12.2   | 6.5  | 90.0  | .07    | . 18   | .10  | 25   | .31 .    | 055 36  | 5.4          | 42.9      | .40 10  | 61.9 .0          | 78           | 4 1.72          | 2 .025 | . 22   | . 1       | 2.9        | .08 <  | :.01    | 13         | .2 <.02  | 2 5.1          | 15       |  |
|                | 7575E 3660N    | .46   | 13.62  | 7.74  | 45.6         | 23        | 99.0   | 12.4  | 490 1. | 71 3.           | 5.8     | 3.7    | 6.3  | 72.3  | .07    | .21    | .09  | 27   | .33 .    | 050 35  | 5.2          | 52.3      | .41 12  | 26.9.0           | 68           | 3 1.38          | 3 .026 | .22    | <.1       | 2.6        | .06    | .01     | 13         | .1 <.02  | 2 4.4          | 15       |  |
|                | 7575E 3680N    | .57   | 19.20  | 7.21  | 64.1         | 25        | 121.1  | 12.7  | 632 1  | 27 5.           | 4.      | 5 11.9 | 2.7  | 93.1  | . 17   | .21    | .11  | 24   | .47 .    | 094 24  | 4.0          | 51.2      | .41 1   | 18.2.0           | 47           | 3.8             | .029   | . 15   | <.1       | 1.9        | .05    | .02     | 33         | .1 .02   | 2 2.8          | 15       |  |
|                |                |       |        |       |              |           |        |       |        |                 |         |        |      |       |        |        |      |      |          |         |              |           |         |                  |              |                 |        |        |           |            |        |         |            |          |                |          |  |
|                | 7575E 3700N    | . 14  | 7.74   | 3.47  | 22.4         | 12        | 63.8   | 7.9   | 266    | 80 2.           | 8.      | L 4.0  | .3   | 33.3  | . 11   | .09    | . 10 | 19   | .22 .    | 047 2   | 2.1          | 41.0      | .30     | 51.2 .0          | 38 <         | 1.3             | .029   | .07    | <.1       | .9         | .02    | .01     | 19         | .1 <.02  | 2 1.2          | 15       |  |
|                | 7575E 3720N    | .26   | 15.02  | 3.66  | 34.7         | 39        | 359.5  | 31.4  | 600 2  | 43 8.           | 7.3     | 2 12.5 | 2.2  | 138.8 | .10    | . 26   | .07  | 25   | .44 .    | 084 13  | 3.5 2        | 275.8 2   | .38 1   | 13.5 .0          | 55 1         | 4 1.3           | 5.032  | . 28   | <.1       | 5.3        | .06    | .02     | 20         | .2 .04   | 4 3.4          | 15       |  |
|                | 7575E 3740N    | . 68  | 20.36  | 8.85  | 54.9         | 53        | 791.3  | 62.6  | 557 3  | 34 14.          | 8.3     | 7 15.4 | 5.9  | 78.5  | .08    | .80    | . 14 | 48   | .41 .    | 050 32  | 2.8 2        | 228.4     | .93 14  | 42.3 .0          | 93           | 3 2.2           | 5.027  | .22    | .1        | 6.6        | .11 <  | <.01    | 29         | .3 <.04  | 2 0.0          | 15       |  |
|                | 7575E 3760N    | .96   | 24.70  | 8.38  | 57.9         | 74 1      | 1110.9 | 130.9 | 960 3. | 35 12.          | 5.0     | 5 46.8 | 4.6  | 112.7 | .10 1  | . 10   | .12  | 49   | .62 .    | 055 28  | 8.0 3        | 393.1     | .72 1   | 19.6.0           | 77 :         | 5 2.04          | 1.029  | . 28   | .1        | /.8        | .11 <  | <.01    | 27         | .3 <.02  | 2 6.0          | 15       |  |
|                | 7575E 3780N    | 1.19  | 24.35  | 13.00 | 58.1         | 77        | 245.4  | 29.5  | 719 2. | 74 18.          | 6 1.0   | 26.9   | 7.5  | 196.8 | . 13   | .99    | . 14 | 57   | .63 .    | 099 57  | 7.3          | 83.8      | .56 1   | 51.2 .1          | 08 :         | 5 1.8           | 3 .032 | . 25   | .1        | 4.1        | . 11   | .01     | 20         | .3 <.04  | 2 0.1          | 15       |  |
|                |                |       |        |       |              |           |        |       |        |                 |         |        |      |       |        |        |      |      |          |         |              | ~~ ~      | 47 1    |                  | 0.0          |                 |        | 00     | 2         | 2.4        | 10     | 01      | 12         | 2 ~ 01   | 1              | 15       |  |
|                | 7575E 3800N    | .79   | 25.21  | 14.29 | 58.6         | 102       | 17.3   | 9.1   | 473 2  | 49 5.           | 3 1.    | 5 18.5 | 9.6  | 174.9 | .09    | .26    | . 12 | 65   | .61 .    | 1/4 81  | 1.2          | 30.9      | .4/ 1.  | 31.0.1           | 17           | 2 1.0           | .028   | . 20   | . 2       | 3.4        | .10    | -01     | 15         | .2 \.04  | 2 0.1          | 15<br>15 |  |
|                | 7575E 3820N    | .80   | 29.80  | 15.13 | 61.4         | 134       | 17.0   | 10.0  | 562 2  | 70 5.           | 0 1.    | 7 16.2 | 10.8 | 150.5 | .09    | . 25   | . 12 | 6/   | .62 .    | 158 82  | 2.8          | 31.6      | .53 1   | /4.9.1           | 1/           | 1 1.9           | 9.029  | . 19   | .1        | 3.9        | . 10 < | .01     | 17         | ·.1 .02  | 2 /.Z          | 15       |  |
|                | 7575E 3840N    | .84   | 27.32  | 13.39 | 57.2         | 33        | 15.9   | 9.8   | 613 2  | 33 6.           | 8 1.3   | 3 21.9 | 8.3  | 106.0 | . 10   | .25    | .12  | 58   | .49 .    | 151 66  | 6.3          | 25.2      | .41 1   | /5.3.1           | 03<br>00     | 1 1.8           | 1.024  | . 18   | .1        | 3.2        | .00    | .01     | 12         | .1 .04   | 2 0.3          | 15       |  |
|                | 7575E 3860N    | .75   | 24.57  | 14.46 | 58.4         | 86        | 13.8   | 7.9   | 495 2  | 24 5.           | 9 1.:   | 3 7.2  | 9.3  | 251.0 | . 15   | .25    | .13  | 60   | .60 .    | 151 /0  | 0.3          | 25.9      | .4/ 14  | 4/.8.1           | 00           | 2 1.4           | 9 .044 | .20    | .1        | 2.7        | .00    | .01     | 12         | 2 .02    | - J./          | 15       |  |
|                | 7575E 3880N    | .70   | 24.88  | 14.24 | 56.6         | 81        | 14.1   | 8.1   | 519 2  | 23 5.           | 0 1.:   | 2 2.6  | 8.4  | 164.4 | . 15   | .23    | .13  | 55   | .66 .    | 160 66  | 6.3          | 25.8      | .48 1   | 50.2.1           | 03           | 1 1.5           | 9.035  | . 25   | .2        | 2.9        | .09    | .02     | 12         | .2 .04   | 2 5.7          | 15       |  |
|                |                |       |        |       |              |           |        |       |        |                 |         |        |      |       |        |        |      |      |          |         |              | 05 0      | 45 1    |                  | 10           |                 |        | 20     |           | 2.7        | 10     | 0.0     | 20         | 2 01     |                | 15       |  |
|                | 7575E 3900N    | .65   | 27.39  | 15.46 | 64.4         | 123       | 14.8   | 8.7   | 618 2  | 28 5.           | 6 1.)   | 5 10.6 | 6.7  | 206.1 | .22    | .20    | . 15 | 52   | .// .    | .152 66 | b.b          | 25.Z      | .45 1   | 98.8.1<br>20.6 ° | 50<br>10     | 2 2.11<br>2 1 2 | J .UZ4 | .32    | . 2       | 3.1<br>2 C | . 10   | .02     | 20<br>14   | 2 .00    | ) /.U          | 10       |  |
|                | 7600E 3600N    | . 60  | 20.21  | 8.51  | 38.8         | 42        | 81.0   | 11.1  | 467 1  | 65 3.           | 4.1     | 3 2.0  | 6.6  | 165.4 | .07    | . 25   | .08  | 2/   | .44 .    | .U/3 46 | b.U          | 45.3      | .50 1   | JU.6 .0          | 0U<br>61     | < 1.3<br>E 1 0  | 5 .UZY | .20    | 1.<br>۱ ر | 2.0        | .00    | .01     | 14<br>10   | .0 .04   | - 4.3<br>2 / 0 | 15       |  |
|                | 7600E 3620N    | .54   | 16.80  | 7.51  | 34.4         | 36        | 263.7  | 22.9  | 481 1  | 90 3.           | 2.      | 5.0    | 4.0  | 90.3  | .09    | .23    | .09  | 28   | .33 .    | .059 29 | 9.91         | 143.6 l   | .02 1   | 41.9.0           | C2           | 5 1.2<br>5 1 1  | 0.UZ/  | . 18   | <.1<br>,  | ა.ა<br>ვნ  | .0/    | .02     | 10         | .1 <.0/  | - 4.U<br>2 3 0 | 15       |  |
|                | 7600E 3640N    | .66   | 17.73  | 9.13  | 40.6         | 39        | 238.5  | 22.2  | 500 2  | 08 3.           | 6.      | / 3.5  | 4.6  | 71.7  | .07    | .28    | .09  | 35   | .34 .    | .0/0 34 | 4.U 1<br>0 1 | 121.9 1   | .78 1   | 20.2.0           | 03           | 5 1.1<br>5 1 5  | 0.024  | . 21   | .1        | 3.5<br>2.5 | .07    | .01     | 12         | 1 .04    | - 3.7<br>7 3 6 | 15       |  |
|                | 7600E 3660N    | .63   | 16.77  | 8.12  | 40.6         | 26        | 89.3   | 12.1  | 437 1  | 64 2.           | 9.      | 5 13.2 | 4.0  | 75.7  | .07    | .24    | .08  | 31   | .39      | .058-30 | 0.1          | 69.2      | .09 1   | 25.1.0           | 02           | 2 1.0           | ∠ .U∠8 | . 15   | .1        | 2.5        | .00    | .01     | 12         | .1 .04   | 2.0            | 10       |  |
|                |                |       |        |       |              |           |        |       |        |                 |         |        |      |       |        |        |      | ~    | 74       | 005 10  | 0 6 1        | 100 1     | c0 1    | 20.2.0           | 1 00         | 0 1 0           | 7 024  | 14     | E 1       | 2 1        | 1 05   | 02      | 171        | 10 00    | 8 6 6          | 15       |  |
|                | STANDARD DS5   | 13.17 | 142.57 | 25.32 | 138.5        | 285       | 25.6   | 12.5  | 739 2  | 99 19.          | 0 6.    | 344.0  | 2.9  | 46.8  | 5.66 4 | ∔.U1 € | 5.36 | 62   | ./4 .    | .095 12 | 2.0 1        | 190.1     | .09 L   | 37.3.0           | 70 I         | o 1.9           | .034   | . 14   | 5.I       | J.4        | 1.05   | .UZ     | 1/1        | 4.7 .00  | 0.0            | 10       |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data\_\_\_\_\_FA \_\_





| ACME ANALYTICAL |                |       |         |         |       |      |                    |      |         |               |        |              |     |       |        |          |       | -          |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |
|-----------------|----------------|-------|---------|---------|-------|------|--------------------|------|---------|---------------|--------|--------------|-----|-------|--------|----------|-------|------------|--------|---------|---------|------------------|---------|-------|---------|----------------|------|----------|----------|--------|-------|-------|---------|----------------|--------|--|
|                 | CANDI E#       |       | <u></u> | Dh      | 70    | 10   | Mi                 | 00   | Min     | Fe A          | c H    | Au           | Th  | Sr    | Cd     | Sb E     | ł     | v o        | Ca     | P La    | Cr      | Mg               | Ba      | Ti    | B A     | l Na           | Κ    | W        | Sc       | T1     | S I   | Hg S  | Se Te   | e Ga           | Sample |  |
|                 | SAMPLE#        | mu    | cu      | FU      | 20    | ny   | 000                | 00   | 000     | 10 m          | ຫຼຸກກາ | nob          | 000 | ກາຫ   | י מתת  |          | ממ הא | m          | ž      | % DD¶   | מסס ו   | 1 X              | DDM     | 8     | ppm 5   | 8 8            | x    | ррт      | ppm      | ррп    | ≵ pp  | pb pj | om ppr  | n ppm          | gm     |  |
| 4               |                | ррп   | ряп     | рри     | ppiii |      |                    | рри  | ppa     | × pp          | a ppa  |              | ppm | Pp    | PP 1   |          |       |            |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |
|                 |                |       |         |         |       |      |                    |      |         |               |        |              |     |       | 0.1    | 00 0     |       | 0 7        | rr 07  |         | 14.2    | 5 52             | 225 4   | 112   | 7 8'    | 2 095          | 48   | 2.0      | 2.0      | 30 <   | 01 •  | < <   | 1 < 02  | 2 4.5          | 15     |  |
|                 | G-1            | 1.37  | 2.26    | 2.13    | 40.3  | 11   | 4.8                | 3.9  | 522 1.  | 93.           | 2 2.0  | <.2          | 4.2 | 82.4  | .01 .  | .03 .0   | 19 4  |            | 55 .07 | 9 0.0   | 14.5    |                  | 110 5   | 0.07  | 2 1 0   | 7 017          | 26   | 1        | 2.6      | .00 -  | 01 3  | 25    | 3 < 0   | 2 2 2          | 15     |  |
|                 | 7600E 3680N    | 1.12  | 17.25   | 7.19    | 34.5  | 41   | 134.5 1            | 13.2 | 419 1.3 | 82 11.        | 6.4    | 6.5          | 3.6 | 72.6  | .15 1  | .04 .1   | .1 3  | 12 .5      | 55 .06 | 8 24.9  | 59.0    | .52              | 118.5 . | .037  | 3 1.0   | .017           | .20  | .1       | 2.0      | .00 ~. | 01 7  | 25    | 1 ~ 0'  | 2 2 0          | 15     |  |
|                 | 7600E 3700N    | 1.03  | 22.56   | 7.58    | 30.4  | 36   | 209.4 1            | 18.3 | 579 1.  | 76 23.        | 2.4    | 11.3         | 2.6 | 55.3  | .16 1  | .94 .1   | .2 3  | 30 .5      | 54 .05 | 9 18.2  | 74.4    | .4/              | 134.5 . | .036  | 3.8.    | 3 .020         | . 17 | .1       | 2.8      | .09 <. | 01 4  | 20    | .1 ~.04 | 2 2.7          | 15     |  |
|                 | 7600E 3720N    | 1.41  | 31.73   | 7.37    | 49.1  | 196  | 1080.4 8           | 81.4 | 1030 3. | 84 65.        | 9.4    | 19.9         | 2.6 | 178.1 | .13 5  | .07 .0   | 19 5  | 3 3.5      | 56 .08 | 4 23.9  | 430.0   | 2.60             | 205.2 . | .027  | 10 1.73 | 3 .014         | .24  | .1       | 6./      | .12 <. | 01 .  | 38    | .4 .04  | 2 5.2          | 15     |  |
|                 | 7600E 3740N    | 1.19  | 31.56   | 7.65    | 43.8  | 331  | 712.1 <del>(</del> | 61.8 | 766 3.  | 06 42.        | 4.6    | 100.1        | 2.4 | 309.2 | .13 1  | . 88 .0  | 19 4  | 9 5.5      | 53 .13 | 8 33.2  | 180.4   | 1.35             | 116.4 . | .028  | 12 1.5  | 1 .012         | . 24 | .1       | 4.3      | . 10 . | 02 :  | 59    | .5 .04  | 2 4.0          | 15     |  |
|                 |                |       |         |         |       |      |                    |      |         |               |        |              |     |       |        |          |       |            |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |
|                 | 7600F 3760N    | . 62  | 25.17   | 10.20   | 45.2  | 77   | 103.6              | 12.9 | 522 2.  | 09 6.         | 7 1.0  | 9.0          | 4.7 | 133.9 | .10    | .31 .1   | 2 4   | 5.         | 50 .09 | 5 44.3  | 46.3    | .48              | 161.0   | .076  | 3 1.7   | 7.030          | . 22 | <.1      | 3.4      | .09 <. | 01    | 18    | .2 <.02 | 2 5.4          | 15     |  |
|                 | 7600E 3780N    | 68    | 20 94   | 10.34   | 44 8  | 76   | 44.0               | 7.3  | 543 1.  | 693.          | 8 1.0  | 9.8          | 3.3 | 190.1 | . 17   | . 18 . 1 | 1 3   | . 88       | 62.12  | 20 41.6 | 30.2    | 2                | 174.5   | .068  | 3 1.58  | 3 .026         | . 20 | .1       | 2.6      | .07 <. | 01    | 12    | .3 .03  | 3 4.8          | 15     |  |
|                 | 7600E 3800N    | 58    | 24 36   | 10.23   | 45.2  | 97   | 11.3               | 5.3  | 333 1.  | 784.          | 9 1.2  | 4.7          | 3.4 | 475.1 | .17    | .23 .1   | 10 4  | 6 1.0      | 05.14  | 7 59.8  | 19.9    | .44              | 125.9   | .063  | 4 1.3   | 1.053          | . 17 | <.1      | 1.9      | .06 .  | 03    | 15    | .5 .0   | 2 4.4          | 15     |  |
|                 | 70002 30000    | . 50  | 25.93   | 0 74    | 40.1  | 88   | 9.9                | 4.6  | 248 1   | 59 4          | 5 1.6  | 7.9          | 2.8 | 509.1 | .16    | . 19 . 0 | 9 4   | 12 .       | 99.14  | 5 52.4  | 17.6    | 5.33             | 115.5   | . 058 | 4 1.3   | 2.042          | . 16 | <.1      | 1.8      | .05 .  | 03 3  | 21    | .6 .0   | 3 4.0          | 15     |  |
|                 | 7600E 3620N    | .00   | 20.00   | 11 60   | 40.1  | 00   | 11.2               | 6.1  | /80 1   | 81 A          | 4 1 4  | 5.3          | 4.6 | 222 7 | 14     | .15 .1   | 1 4   | 17 .       | 63 .13 | 85 58.1 | . 20.3  | 3.29             | 169.1   | .075  | 2 1.59  | 9.028          | . 18 | .1       | 2.6      | .06 <. | 01    | 13    | .3 .0   | 2 4.8          | 15     |  |
|                 | /600E 3840N    | .02   | 23.07   | 11.00   | 44.0  | 00   | 11.5               | 0.1  | 407 1.  | UI 7.         | 4 1.4  | 0.0          | 1.0 |       |        |          | -     |            |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |
|                 |                |       |         |         |       |      |                    |      | 507.1   |               |        |              | 4.0 | 206 1 | 16     | 14       |       | 16 1       | EQ 11  | 1 53 5  | 20 1    | 27               | 148.0   | 070   | 215     | 2 022          | 18   | 1        | 2.4      | .05 <. | 01    | 15    | .3 <.0  | 2 4.5          | 15     |  |
|                 | 7600E 3860N    | .67   | 22.38   | 11.04   | 43.4  | - 11 | 10.6               | 6.2  | 50/ 1.  | 80 4.         | 5 1.2  | 98.9         | 4.3 | 200.1 | . 10   | . 10     | 10 4  | 10         | 70 1/  | 11 62 D | 0 20.1  | 2 . 2,<br>2 . 20 | 165 7   | 073   | 4 1 5   | 5 022          | 18   | < 1      | 2.4      | 06     | 02    | 19    | 3 .0    | 2 4.9          | 15     |  |
|                 | 7600E 3880N    | .70   | 24.39   | 13.49   | 44.5  | 89   | 11.8               | 6.9  | 552 1.  | 85 5.         | / 1.5  | /.9          | 4.0 | 320.2 | . 1/   | .20      | 13 4  | +0         | /0 .14 | 1 02.0  | 21.0    | .25              | 101.4   | .075  | 9 1.0   | 2 026          | 16   | 1        | 2.4      | .06    | 01    | 16    | 2 0     | 3 4 2          | 15     |  |
|                 | 7600E 3900N    | .65   | 19.76   | 11.64   | 47.0  | 71   | 10.8               | 6.2  | 501 1.  | 93 4.         | 6 1.1  | 5.6          | 6.2 | 149.7 | . 15   | . 18     | 10 5  | . 10       | 08 .14 | 11 54.8 | 5 21.9  | 1.34             | 121.4   | .000  | 2 1.2   | 5.020<br>0.020 | . 10 |          | 2.4      | .00 .  | 01    | 14    | 2 0     | 2 1 3          | 15     |  |
|                 | 7625E 3600N    | . 65  | 17.68   | 10.52   | 41.0  | 48   | 155.8              | 14.5 | 508 2.  | 02 3.         | 5.8    | 9.7          | 7.0 | 96.4  | . 10   | .26 .0   | )9 4  | 10 .4      | 45 .10 | )1 48.0 | ) /6.1  | L 1.20           | 104.7   | .062  | 3 1.2   | 5 .020         | .23  | .1       | 2.9      | .00 ~. | 01    | 20    | 2 - 0   | 2 7.0<br>2 2 4 | 15     |  |
|                 | 7625E 3620N    | . 54  | 16.66   | 6.22    | 39.0  | 59   | 1008.5             | 65.0 | 793 3.  | 55 7.         | 7.4    | 3.6          | 2.7 | 54.0  | . 12   | .47 .(   | )8 3  | 39 .:      | 39 .07 | 4 22.9  | 442.5   | 5.66             | 210.4   | .042  | 18 1.3  | 3 .018         | .1/  | . 1      | 5.5      | .00 <. | 01    | 20    | . 2 ~.0 | 2 3.0          | 10     |  |
|                 |                |       |         |         |       |      |                    |      |         |               |        |              |     |       |        |          |       |            |        |         |         |                  |         |       |         |                |      |          |          |        | 0.1   | 10    |         |                | 15     |  |
|                 | 7625E 3640N    | . 68  | 17.10   | 8.88    | 44.5  | 57   | 552.9              | 36.9 | 716 2.  | 64 5.         | 9.6    | 14.9         | 4.1 | 62.5  | .13    | .43 .1   | 10 4  | 41         | 40 .08 | 35 31.6 | 5 231.3 | 3 2.22           | 2 166.2 | .055  | 8 1.4   | 2 .018         | .24  | . 1      | 4.1      | .0/ <. | 01    | 19    | .2 .0   | 2 4.0          | 15     |  |
|                 | 7625E 3660N    | 1.06  | 19.33   | 8.25    | 47.5  | 76   | 953.0              | 53.3 | 660 3.  | 81 9.         | 4.5    | 5.0          | 4.0 | 55.6  | .10    | .65 .(   | )9 4  | 18 .       | 36 .08 | 36 31.0 | 485.2   | 2 5.78           | 3 130.3 | .044  | 16 1.3  | 8 .015         | . 24 | .1       | 5.6      | .10 <. | 01    | 20    | .2 <.0  | 2 4.4          | 15     |  |
|                 | 7625E 3680N    | 2.30  | 20.68   | 7.76    | 48.4  | 54   | 562.8              | 53.4 | 701 2.  | 98 5.         | 5.5    | 4.8          | 4.0 | 57.4  | . 11   | .78 .0   | 08 4  | 12 .       | 37 .10 | 3 28.7  | 403.3   | 3 2.18           | 8 139.9 | .052  | 7 1.2   | 8 .017         | . 27 | .1       | 5.0      | .15 <. | 01    | 12    | .2 <.0  | 2 4.1          | 15     |  |
|                 | RE 7625E 3680N | 2.15  | 20.23   | 7.97    | 48.4  | 52   | 556.5              | 51.5 | 683 2.  | 92 5.         | 1.5    | 6.9          | 3.7 | 55.7  | .11    | .75 .0   | 08 4  | 41 .       | 35 .10 | )3 29.5 | 5 424.2 | 2 2.12           | 2 133.9 | .047  | 6 1.2   | 3 .016         | . 26 | .2       | 4.6      | .15 <. | 01    | 13    | .1 .0   | 2 3.8          | 15     |  |
|                 | 7625E 3700N    | 1.85  | 21.56   | 11.37   | 58.1  | 72   | 133.5              | 15.2 | 543 2.  | 21 6.         | 7 .7   | 3.7          | 5.0 | 96.6  | . 22   | .54 .    | 15 4  | 46.        | 50 .12 | 24 41.4 | 1 78.2  | 2.84             | 135.2   | .067  | 5 1.3   | 6 .016         | .31  | .1       | 3.2      | .10 <. | 01    | 27    | .2 <.0  | 2 4.7          | 15     |  |
|                 |                |       |         |         |       |      |                    |      |         |               |        |              |     |       |        |          |       |            |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |
|                 | 7625E 3720N    | 1 03  | 23.51   | 11.56   | 49.1  | 83   | 281.3              | 30.0 | 609 2.  | 36 12.        | 6 1.0  | 15.8         | 6.0 | 100.0 | . 15   | .79 .    | 12 4  | 45.        | 53 .08 | 38 42.5 | 5 80.4  | 4.48             | 8 119.6 | .071  | 3 1.7   | 0 .021         | . 28 | .1       | 3.8      | .12 <. | 01    | 25    | .2 <.0  | 2 5.5          | 15     |  |
|                 | 7625E 3740N    | 68    | 22 82   | 14 85   | 54 4  | 78   | 22.4               | 7.9  | 448 2.  | 26 4.         | 0 1.2  | 2 5.0        | 8.0 | 124.2 | . 14   | .23 .    | 14 4  | 47.        | 54 .10 | 02 60.0 | 28.4    | 4.47             | 171.6   | .065  | 3 1.9   | 1 .020         | .31  | <.1      | 3.2      | .09 <  | 01    | 14    | .2.0    | 2 6.5          | 15     |  |
|                 | 7625E 2760N    | .00   | 23 01   | 13 57   | 58 1  | 116  | 15.9               | 7 2  | 515.2   | 18 4          | 2 1.4  | <b>i</b> 3.7 | 6.4 | 142.6 | . 18   | .17 .    | 13 4  | 49.        | 56.14  | 47 59.2 | 2 25.2  | 2.35             | 5 173.9 | .084  | 3 1.7   | 7 .019         | . 29 | .1       | 3.0      | .07 <  | 01    | 11    | .2 <.0  | 2 5.8          | 15     |  |
|                 | 7625E 2700N    | .70   | 25 28   | 12 23   | 54.6  | 108  | 13.5               | 6.9  | 484 1   | 95 4          | 7 1.3  | 3.4          | 6.0 | 154.9 | .16    | .18      | 11 4  | 47.        | 62.14  | 45 57.0 | ) 21.0  | .34              | 137.9   | .077  | 4 1.5   | 0 .021         | . 22 | .1       | 2.6      | .07 <  | 01    | 16    | .2 .0   | 2 5.1          | 15     |  |
|                 | 70255 37000    | .70   | 20.05   | 11 02   | 54.0  | 100  | 11 5               | 6.1  | 506 1   | 92 5          | 0 1 2  | 21           | 4.8 | 129.8 | 22     | 17 .     | 12 4  | 47.        | 55 .1  | 54 54.1 | 1 20.6  | 5.29             | 9 138.1 | .081  | 2 1.5   | 8 .021         | . 19 | .1       | 2.7      | .05    | .01   | 15    | .1 .0   | 3 4.9          | 15     |  |
|                 | /625E 3800N    | .8/   | 20.95   | 11.02   | 50.0  | 00   | 11.5               | 0.1  | JUU 1.  | 52 5.         | 0 1.0  |              | 4.0 | 125.0 |        |          |       |            |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |
|                 |                |       |         |         |       |      | 10.0               |      | 402.1   | 05 0          | 0 1    | . 10         | 2 0 | 100.7 | 17     | 14       | 10 /  | 47         | 67 14  | 54 52 1 | 1 19 6  | 6 20             | 166.2   | 074   | 314     | 6 022          | .20  | .1       | 2.2      | .05    | .02   | 9     | .2 <.0  | 2 4.7          | 15     |  |
|                 | 7625E 3820N    | .81   | 20.07   | 10.13   | 48.9  | 65   | 10.8               | 5.0  | 493 1.  | ор р.<br>Ор г | 0 1.4  |              | 17  | 252.7 | 10     | 17       | 12 /  | 47 .<br>AG | 74 14  | 50 53 6 | 5 20 1  | 1 22             | 2 158 9 | 075   | 214     | 3 026          | 23   | .1       | 2.3      | .07    | 02    | 14    | .3 <.0  | 2 4.7          | 15     |  |
|                 | 7625E 3840N    | .83   | 26.51   | 12.26   | 50.4  | 88   | 11.2               | 6.9  | 542 1.  | 83 5.         | 0 1.0  | 2.0          | 4.7 | 200.0 | . 10   | .1/ .    | 10 -  | 4J.        | 04 1   | AA A7 A | 17 17 1 | 1 .0C            | 1 152 1 | 0.00  | 412     | 6 025          | 22   | 1        | 1 9      | 06     | 03    | 20    | 4 0     | 4 4 4          | 15     |  |
|                 | 7625E 3860N    | .71   | 26.90   | 10.38   | 43.9  | 90   | 10.2               | 6.0  | 484 1.  | 65 4.         | / 1.4  | 1 3.0        | 2.6 | 399.3 | . 1/   | . 19 .   | 10 4  | 41 .       | 84 .14 | 44 47.4 | + 17.0  | 5 .SI            | 105.1   | .035  | 4 1.5   | 1 041          | 12   | .1       | 1.0      | .00 .  | 04    | 16    | 7 0     | 3 1 1          | 15     |  |
|                 | 7625E 3880N    | . 66  | 22.31   | 9.88    | 41.4  | 66   | 9.1                | 5.2  | 367 1.  | 59 5          | .6 1.4 | 5 10.5       | 2.4 | 541.9 | . 18   | .33 .    | 11 3  | 39 1.      | 04 .1  | 16 45.1 | 1 1/.(  | J.34             | 105.9   | .001  | 4 1.4   | 1.041          | .13  | <.1<br>, | 1.9      | .00    | .04   | 10    | ./ .0   | 0 4.4<br>0 F 1 | 15     |  |
|                 | 7625E 3900N    | . 67  | 20.69   | 11.21   | 46.9  | 63   | 10.8               | 6.6  | 469 2.  | 03 4          | 4 1.3  | 26           | 7.4 | 183.6 | .08    | .16 .    | 10 4  | 48.        | 57 .13 | 25 61.4 | 4 21.1  | 1.33             | 3 145.7 | .08/  | 2 1.4   | 6 .025         | .21  | .1       | 2.5      | .06    | .01   | 13    | .1 .0   | 3 5.1          | 15     |  |
|                 |                |       |         |         |       |      |                    |      |         |               |        |              |     |       |        |          |       |            |        |         |         |                  |         |       |         |                |      |          | <u>.</u> |        |       |       |         |                |        |  |
|                 | 7650E 3600N    | .61   | 17.48   | 10.01   | 41.7  | 62   | 326.9              | 24.0 | 594 2.  | 47 4          | 4 .    | 7 3.8        | 5.0 | 85.9  | .10    | .27 .    | 10 4  | 46.        | 46 .0  | 91 41.3 | 3 145.2 | 2 2.73           | 3 218.3 | .063  | 9 1.3   | 5 .017         | . 23 | . 1      | 3.5      | .07    | .02   | 16    | .1 <.0  | 2 4.6          | 15     |  |
|                 | 7650E 3620N    | .73   | 20.39   | 9.96    | 53.2  | 57   | 287.5              | 22.1 | 600 2.  | 45 5          | 9.1    | 5.3          | 6.2 | 90.7  | .12    | .57 .    | 10 4  | 45.        | 45.1   | 11 49.5 | 5 130.3 | 1 1.73           | 3 166.5 | .069  | 8 1.3   | 2 .018         | . 26 | .1       | 3.5      | . 08   | .01   | 10    | .1 .0   | 2 4.8          | 15     |  |
|                 | 7650E 3640N    | .75   | 16.22   | 8.09    | 35.5  | 70   | 835.5              | 51.0 | 529 2.  | 87 9          | 3 .    | 5 10.3       | 2.4 | 65.6  | . 14   | .66 .    | 09 4  | 41.        | 50.0   | 98 25.1 | 1 303.0 | 0 4.30           | 125.1   | .036  | 16 1.2  | 2 .019         | . 19 | .2       | 4.7      | .08    | .04   | 26    | .2 <.0  | 2 3.7          | 15     |  |
|                 | 7650E 3660N    | .82   | 18.73   | 8 10.18 | 36.8  | 143  | 1192.0             | 54.6 | 509 4.  | 23 9          | .6 .   | 5 12.1       | 2.5 | 325.0 | .14 1  | .70 .    | 09 4  | 433.       | 24 .0  | 83 32.2 | 2 461.6 | 6 7.67           | 7 118.3 | .026  | 11 1.3  | 7 .010         | . 24 | .5       | 5.1      | .12    | .02   | 34    | .2 .0   | 3 4.6          | 15     |  |
|                 | 7650F 3680N    | 1.11  | 26.99   | 21.10   | 63.6  | 235  | 27.0               | 10.6 | 496 2.  | 38 4          | .7 1.  | 4.1          | 7.6 | 132.0 | . 20   | .41 .    | 17 5  | 52.        | 90.1   | 78 58.7 | 7 34.9  | 9.67             | 7 141.6 | .048  | 4 1.5   | 3 .015         | . 26 | .1       | 3.3      | .09    | .01   | 22    | .1 .0   | 4 5.3          | 15     |  |
|                 | ,              |       | ,       |         |       |      |                    | ĺ    |         |               |        |              |     |       |        |          |       |            |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |
|                 | STANDARD DSE   | 13 19 | 141 76  | 5 24 61 | 137 0 | 285  | 24.9               | 12.3 | 764 3   | 04 18         | 8 6.   | 2 43.5       | 2.9 | 47.5  | 6.18 3 | .90 6.   | 04 (  | 62.        | 76 .0  | 96 12.9 | 9 193.3 | 7.68             | 3 145.2 | .096  | 17 2.0  | 1 .034         | .14  | 4.7      | 3.4      | 1.01 < | .01 1 | 74 4  | .8.8    | 3 6.7          | 15     |  |
|                 | JIMMUNINU UJJ  | 10.10 | ****/0  |         | -0    | 200  |                    |      |         |               |        |              |     |       |        |          |       |            |        |         |         |                  |         |       |         |                |      |          |          |        |       |       |         |                |        |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA





Data 🔥 FA

| ACME ANALYTICAL |                |       |           |          |              |          |                |         |               |                |            |       |       |        |        |                |                   |               |       |       |         |          |                  |        |       |         |                |              |                |         |         |        |            |     | _    |
|-----------------|----------------|-------|-----------|----------|--------------|----------|----------------|---------|---------------|----------------|------------|-------|-------|--------|--------|----------------|-------------------|---------------|-------|-------|---------|----------|------------------|--------|-------|---------|----------------|--------------|----------------|---------|---------|--------|------------|-----|------|
|                 | CAMDLE#        | Mo    | <u>Cu</u> | Ph       | <br>7n       | An Ni    | 60             | Mn      | Fe A          |                | Au         | Th    | Sr    | Cd     | Sh     | Bi V           | Ca                | а Р           | La    | Cr    | Ma      | Ba 1     | Ti               | B A1   | Na    | ĸ       | W S            | c T          | 1 S            | Hg      | Se      | Te     | Ga San     | ple |      |
|                 | SAMPLE#        | 00    | 00        | 000      | 20           | ng ni    |                | ກວສ     | ¥ nr          | ສັດດຫ          | nnh        | ກດຫ   | 000   | nnm    | ກາຫຼຸ  | 0m 00m         | 1 9               | * *           | 000   | ກວຫ   | 8       | DDM      | % DD             | m X    | ž     | ž       | opm pp         | n ppr        | n X            | ppb     | ppm     | ppm ;  | ррт        | gm  |      |
|                 |                | phi   | - ppia    | рры      | ppii         |          | i hhii         | hhii    | ~ PF          | na bhu         |            | ppm   | ppin  | Ppin   | ppm p  |                |                   |               |       |       |         | PP       |                  |        |       |         |                |              |                |         |         |        |            |     | <br> |
|                 | G-1            | 1 37  | 2 65      | 2 48 4   | 12 1         | 11 4 6   | 39             | 531-1.9 | 99 .          | 1 2.1          | .4         | 4.4   | 86.3  | .02    | .03 .  | 11 40          | .56               | 5.077         | 9.7   | 14.7  | .49 21  | 4.7.1    | 16               | 4.86   | .086  | .45     | 2.0 2.         | 2.3          | .01            | 5       | <.1     | .03 4  | 4.7        | 15  |      |
|                 | 7650E 3700N    | 87    | 28.69     | 15 28 6  | 50.5         | 170 18.5 | 9.7            | 585 2.3 | 77 7.         | 5 1.6          | 11.6       | 11.2  | 164.5 | . 13   | .33 .  | 12 74          | . 69              | .187          | 72.6  | 31.7  | .69 19  | 5.7.10   | )6               | 1 1.96 | .026  | .23     | .2 4.          | 4 .1         | 1.02           | 17      | .1      | .02    | 7.8        | 15  |      |
|                 | 7650E 3720N    | .07   | 24 63     | 13 56 5  | 56.4         | 94 15 5  | 77             | 491 2.2 | 23 4          | 1 1.5          | 9.8        | 7.4   | 131.4 | .16    | .21 .  | 14 50          | .51               | . 113         | 51.8  | 25.4  | .39 17  | 8.7.10   | )9               | 4 1.91 | .024  | . 32    | .2 3.          | 7.1          | .02            | 16      | .1      | .04 6  | 6.7        | 15  |      |
|                 | 7650E 3740N    | 72    | 20 74     | 11 50 4  | 17 8         | 93 12 4  | 6.4            | 471 1 0 | 98 4          | 1 1.5          | 5.9        | 5.2   | 141.1 | .13    | .15 .  | 12 43          | .47               | 7.109         | 47.2  | 20.8  | .30 18  | 86.2 .09 | 92               | 3 1.99 | .025  | . 23    | .1 3.          | 80.0         | 3.03           | 13      | .2      | .02 6  | 6.0        | 15  |      |
|                 | 7050L 3740N    | 76    | 24 00     | 12 11 5  | 52.8         | 103 12 8 | 6.6            | 500 2   | 13 4          | 3 1 2          | 3.9        | 6.7   | 155 5 | 16     | 18     | 12 50          | .56               | 5.133         | 53.0  | 23.4  | .33 15  | i9.1.08  | 36               | 2 1.68 | .019  | . 27    | .1 2.          | 6 .08        | 3.02           | 13      | .1      | .03 5  | 5.4        | 15  |      |
|                 | 7050E 3700W    | .70   | 24.00     | 12.11 5  | 02.0         | 100 12.0 | 0.0            | 000 2.  | 10 4.         | 0 1.2          | 0.5        | 0.7   | 100.0 | . 10   |        |                |                   |               |       |       |         |          |                  |        |       |         |                |              |                |         |         |        |            |     |      |
|                 | 7650F 3780N    | .79   | 26.63     | 12.94 4  | 49.1         | 126 12.4 | 6.7            | 516 2.0 | 01 5.         | 5 1.1          | 124.9      | 5.8   | 222.1 | .16    | .19 .  | 12 52          | . 66              | 5.138         | 62.1  | 21.7  | .32 14  | 19.4 .07 | 74               | 3 1.53 | . 028 | . 21    | .1 2.          | 4.06         | 5.04           | 13      | .2      | .04 4  | 4.9        | 15  |      |
|                 | 7650E 3800N    | 77    | 23.46     | 2.07 4   | 14.8         | 86 10.3  | 6.1            | 560 1.3 | 72 4.         | 7 1.0          | 11.6       | 3.5   | 268.4 | . 22   | .17 .  | 12 42          | .74               | 4.128         | 46.6  | 18.2  | .29 16  | 3.6 .07  | 71               | 2 1.52 | .027  | . 22    | .1 2.          | 2.06         | 5.05           | 16      | .2      | .03 4  | 4.5        | 15  |      |
|                 | 7650E 3820N    | 67    | 27 44     | 12 23 4  | 19.9         | 102 11.4 | 6.9            | 619 1.0 | 92 4.         | 9.9            | 3.1        | 4.5   | 253.9 | .23    | .16 .  | 11 46          | . 68              | 3.136         | 47.9  | 20.5  | .34 16  | 57.1.07  | 77               | 3 1.67 | . 025 | . 25    | .1 2.          | 6 .03        | 7.04           | 14      | .2      | .05 🔮  | 5.1        | 15  |      |
|                 | 7650E 2040N    | .07   | 24 08     | 13 22 5  | 3 1          | 87 12 1  | 7 1            | 576.2   | 11 5          | 1 1 3          | 97         | 6.5   | 188.4 | 22     | .19    | 12 52          | . 62              | 2.145         | 54.6  | 22.8  | .34 15  | 8.2 .08  | 88               | 2 1.70 | . 025 | . 24    | .1 2.          | 8 .0         | 7.03           | 15      | .1      | .04 5  | 5.4        | 15  |      |
|                 | 7050E 3040N    | .04   | 29.00     | 11 24 5  | 56.5         | 93 11 0  | 60             | 600 2 0 | na a          | 9 1 3          | 5.6        | 4.0   | 175 4 | 22     | 16     | 13 46          | 65                | 122           | 41.6  | 24.4  | .33 18  | 3.9.08   | 33               | 2 1.98 | .021  | .23     | <.1 3.         | 3 .08        | 3.04           | 13      | .2      | .04 6  | 6.2        | 15  |      |
|                 | 7050E 3000W    | .90   | 20.15     | 11.24 3  | 50.5         | 00 11.0  | 0.5            | 000 2.0 | 00 0.         | 5 1.0          | 5.0        | 4.0   | 1/0.4 |        | . 10 . | 10 10          |                   |               |       | -     |         |          |                  |        |       |         |                |              |                |         |         |        |            |     |      |
|                 | 74505 0000N    | 75    | 20.02     | 10 20 4  | 17.2         | 60 10 4  | 61             | 502.1.9 | D1 1          | 0 1 1          | 1 2        | 12    | 220 0 | 15     | 14     | 11 44          | 62                | 2 124         | 45 2  | 20_1  | 28 16   | 57 1 .08 | 85               | 2 1.64 | .025  | .24     | .1 2.          | 6 .03        | 7.03           | 13      | .2      | .04 5  | 5.2        | 15  |      |
|                 | 705UE 300UN    | .75   | 10.05     | 10.30 4  | +/.J         | CO 10 5  | . 6.2          | 407 1 4 | 00 2          | c 1 A          | <br>E 0    | A E . | 221 0 | 11     | 12     | 11 /2          | 50                | 2 000         | 18 2  | 20.3  | 29 16   | 0 9 00   | <br>-1           | 1 1 76 | 025   | 22      | < 1 2          | 7 .08        | 3 .03          | 11      | .3      | .03 5  | 5.5        | 15  |      |
|                 | 7650E 3900N    | . 65  | 19.85     | 10.74 4  | 40.3         | 03 10.5  | 0.3            | 40/ 1.0 | 00 J.<br>07 D | 5 1.4          | 0.0        | 4.0   | 100 4 | .11    | 20     | 11 44<br>10 E1 | 52                | 7 117         | 52.2  | 20.0  | 10 15   | 6 2 08   | P.A              | 3 1 69 | 018   | 37      | 1 3            | 2 10         | 02             | 8       | 1       | 04 6   | 6.2        | 15  |      |
|                 | 7675E 3600N    | .61   | 24.06     | 12.97 5  | 56.8         | // 21.6  | 8.8            | 521 2.  | 3/3.<br>      | 5 1.1          | 3.0        | 10.1  | 133.4 | . 13   | .20 .  | 10 20          | 5/                | .11/          | 01.4  | 20 1  | .45 10  | 0.2.00   | 10               | 1 2 10 | 010   | 26      | 2 1            | 0 1          | 2 02           | 13      | 1       | 05 9   | 8 5        | 15  |      |
|                 | 7675E 3620N    | .90   | 34.87     | 18.14 /  | /0.4         | 151 28.2 | 11.5           | 653 2.9 | 92 /.         | 2 1.8          | 8.1        | 13.1  | 229.1 | . 19   | .34 .  | 15 72          | .12               | 2 .109        | 91.4  | 40.0  | .03 21  | 0.2 1/   | 12               | 1 2 21 | 045   | .20     | 1 4            | 7 1          | 2 02           | 15      | 1       | 05 0   | 0.5<br>0 5 | 15  |      |
|                 | 7675E 3640N    | .84   | 39.49     | 18.77 7  | 72.5         | 144 24.4 | 13.0           | 645 3.1 | 09 9.         | 4 1.6          | 8.9        | 13.3  | 222.8 | .20    | .3/ .  | 1/ /6          | . 05              | 9.104         | 81.9  | 40.0  | .88 20  | 10.5 .10 | 10               | 1 2.31 | .030  | . 31    | .1 4.          | / .1         | 5 .02          | 15      | .1      | .05 :  | 2.5        | 15  |      |
|                 | DE 767EE 0600N | 71    | 07 40     | 12.22 6  | 50 E         | 72 10 0  | 0.6            | E72 2 1 | EQ 2          | 5 1 2          | 2.2        | 0 1   | 123 7 | 15     | 10     | 14 55          | 52                | 2 111         | 51.8  | 38.0  | 51 18   | 4 0 10   | 19               | 2 2 03 | 023   | .41     | .1 4.          | 3 .13        | 3.02           | 16      | .2      | .03    | 7.2        | 15  |      |
|                 | RE /6/5E 368UN | ./1   | 27.40     | 13.23 0  | 70.0         | 101 01 1 | 11.5           | 572 2.5 | 05 J.<br>NG E | 5 1.5<br>E 1.0 | Z.Z        | 12 4  | 10/ 0 | 14     | .1.) . | 15 68          | 61                | 1 151         | 81.8  | 36.4  | 73 22   | 24 9 11  | 18 <             | 1 2 21 | 027   | 28      | 2 4            | 6 13         | 3 02           | 13      | 1       | 04     | 9.0        | 15  |      |
|                 | 7675E 3660N    | .8/   | 31.45     | 17.91 /  | 10.9         | 101 21.1 | 0.0.0          | E20 2   | 50 J.         | 0 1.5          | 4.1        | 7 6   | 117 6 | 15     | 10     | 10 00          |                   | 2 110         | 50.2  | 36.9  | A7 17   | 10 2 nd  | -0<br>20 <       | 1 1 86 | 019   | 38      | 1 4            | 1 1          | 1 02           | 14      | 2       | 03     | 7.1        | 15  |      |
|                 | 7675E 3680N    | ./1   | 20.78     | 12.85 0  | 02.2         | 09 17.3  | 9.2            | 539 2.4 | 44 J.         | Z 1.Z          | 1.5        | 7.0   | 117.0 | .10    | . 10 . | 15 51          | 40                | 7 121         | 50.2  | 37.6  | 57 15   | 0 6 10   | 12<br>12         | 2 1 83 | 020   | 41      | 1 4            | 2 1          | 3 03           | 15      | 2       | 02     | 7 2        | 15  |      |
|                 | 7675E 3700N    | . 63  | 28.36     | 15.06 t  | 53.9         | 109 18.4 | 10.2           | 5/4 2.1 | 03 4.<br>00 F | 5 1.4          | 5.3        | 0.1   | 101.0 | . 10   | .23 .  | 15 00          | .57               | 110           | 41.2  | 22.1  | 22 10   |          | 20               | 2 1.00 | 0.26  | 20      | 1 2            | 0 0          | 2 .00          | 15      | 2       | 03 4   | 5.6        | 15  |      |
|                 | 7675E 3720N    | . 68  | 20.49     | 10.95 4  | 49.2         | 68 11.4  | 6.6            | 493 1.8 | 80 5.         | 0 1.2          | 5.5        | 5.2   | 138.2 | . 15   | .1/ .  | 14 39          | .50               | 5.112         | 41.5  | 22.1  | .32 19  | 0.0.0:   | 50               | 2 1.74 | .025  | . 20    | .1 5.          | 0.00         | .05            | 15      |         | .00 .  | 5.0        | 10  |      |
|                 | 7676E 2740N    | 80    | 23 57     | 11 79 5  | 52 3         | 80 12 3  | 6 6 5          | 489 2 1 | 01 4          | 1 1 4          | 48         | 6.0   | 157 5 | 14     | .17    | 11 46          | .49               | 9.132         | 51.1  | 22.9  | .33 16  | 56.3.09  | 94               | 1 1.83 | .026  | .23     | .1 3.          | 1.08         | 3.04           | 13      | .2      | .04 (  | 6.0        | 15  |      |
|                 | 7075E 3740N    | .00   | 22.37     | 11 02 5  | 52.0         | 95 11 7  | 67             | 536 1 0 | aa 1          | 5 1 1          | 4.0        | 5.8   | 174 1 | 22     | 18     | 12 47          | 57                | 7 136         | 50.9  | 23.1  | 32 16   | 50.5.08  | 86               | 2 1.55 | .023  | .25     | .1 2.          | 8.06         | 5.03           | 18      | .2      | .04    | 4.9        | 15  |      |
|                 | 7075E 3700N    | .05   | 23.31     | 11.70 0  | 40.2         | 03 11.7  | ·              | 510 1 1 | ос с          | 2 7            | 7.0        | 1.1   | 211 4 | 10     | 22     | 12 /6          | . or              | 5 140         | 10 0  | 21.0  | 34 15   | 3 6 0    | 77               | 4 1 35 | 036   | 23      | 1 2            | 2 0/         | 5 05           | 18      | 2       | 05 4   | 4.4        | 15  |      |
|                 | /6/5E 3/8UN    | .63   | 24.99     | 11.75 4  | 49.Z         | 92 10.5  | 0.4            | 519 I.4 | ор р.<br>ос г | 0 1 1          | /.0        | 5.2   | 210 2 | . 15   | .2.0 . | 12 40          |                   | 1/1           | = J.J | 21.0  | 36 17   | 13 2 08  | ,,<br>R/I        | 2 1 68 | 028   | 25      | 1 2            | 8 0          | 7 04           | 17      | 2       | 02 4   | 5 5        | 15  |      |
|                 | /6/5E 3800N    | . 84  | 28.58     | 13.58 5  | 55.0         | 112 11.7 | 7.2            | 645 1.3 | 90 5.<br>00 4 | 0 1.1          | 4.0        | 5.3   | 154 0 | .20    | 10     | 10 40<br>10 E1 | · .0 <del>.</del> | 1 140         | 10 7  | 21.2  | A1 10   | 0.2.00   | 20               | 2 1 77 | 020   | 25      | 1 2            | 1 0          | 7 03           | 15      | 2       | 05 4   | 5.9        | 15  |      |
|                 | 7675E 3820N    | .61   | 24.03     | 11.4/ 5  | 53.7         | 10/ 11.8 | s 7.2          | 600 2.0 | 09 4.         | 2 1.0          | 3.0        | 4.8   | 154.9 | . 19   | . 18 . | 12 51          | 01                | 1 .142        | 40.7  | 20.7  | .41 10  | 94.5 .05 | 50               | 2 1.77 | .027  | .25     | .1 J.          | 1 .0.        | .00            | 15      | . 2     | .05 .  | 5.5        | 15  |      |
|                 | 7675E 3840N    | 72    | 22 95     | 14 07 6  | 50.4         | 101 13 2 | 84             | 689.2   | 27 5          | 0 1.3          | 3.5        | 6.3   | 101.6 | .22    | .22    | 15 55          | .48               | 3.127         | 49.1  | 30.8  | .41 15  | 59.3.10  | 00               | 1 1.93 | .026  | . 21    | .1 3.          | 8.08         | 3.02           | 15      | .2      | .03 (  | 6.6        | 15  |      |
|                 | 7675E 2060N    | 1 00  | 10 07     | 11 50 5  | 55.9         | 83 11 5  | 5 6 9          | 593.2   | 17 3          | 9 1 4          | 6.5        | 5.9   | 90 1  | 11     | 16     | 14 48          | 43                | 3 104         | 47.0  | 25.2  | .37 18  | 3.8 .10  | 01 <             | 1 2.07 | .024  | .20     | .1 3.          | 7.09         | 9 .01          | 16      | .1      | <.02 ( | 6.9        | 15  |      |
|                 | 70/3E 3000N    | 1.00  | 12.7/     | 11 E1 4  | 53.0         | 62 11 4  | , 0.9<br>  7 7 | 801.0   | 12 2.         | 7 1 2          | 6.0        | 3.0   | 03.0  | 23     | 18     | 16 /6          |                   | 1 105         | 33.8  | 28.8  | 45 19   | 1 0 09   | 90               | 3 2 23 | 021   | .17     | <.1 4          | 3 .09        | 9.05           | 14      | .1      | .02    | 7.2        | 15  |      |
|                 | /0/5E 388UN    | 1.59  | 10./5     | 10.01 5  | 57.9<br>TC 0 | 70 10 5  | . 7.0          | 106 2   | 10 0.<br>No n | 6 1 9          | 0.0<br>1 F | 5.0   | 127 6 | 11     | . 10 . | 11 /0          | J~<br>1 Er        | 100<br>2 1/12 | 55.0  | 26.6  | 36 14   | 14 1 10  | 95<br>95         | 1162   | 024   | 22      | 1 3            | 1 09         | 3 03           | 15      | 2       | .02    | 5.7        | 15  |      |
|                 | 7675E 3900N    | .6/   | 21.91     | 12.01 5  | 50.9         | /2 12.5  | ) /.0          | 496 2.1 | 08 3.         | 0 1.3          | 4.5        | 5.0   | 13/.0 | . 14   | .10 .  | 11 49          | .55               | 7 .142        | 55.5  | 20.0  | . 50 14 | 14.1.02  |                  | 2 1 01 | 024   | 22      | 1 2            | гс<br>с 10   | 1 .00          | 13      | . 2     | .02    | 6.2        | 15  |      |
|                 | /700E 3600N    | .78   | 24.47     | 12.53 5  | 54.3         | 8/23.9   | 9.0            | 539 2.1 | 2/ 3.         | σ 1.4          | 1.1        | 0.5   | 200.1 | . 12   | .1/ .  | 15 4/          | . 02              | 2.094         | 50.9  | 35.0  | .54 1/- | +.3 .05  | 50               | £ 1.01 | . UZ4 | . 32    | .1 3.          | 0.1          |                | 10      | . 2     | .00 0  | 0.2        | 10  |      |
|                 | 77005 0600     | 07    | 22.10     | 10.00 5  |              | 02 14 2  |                | E40 2   | 10 2          | 2 1 4          | ٥          | 7 /   | 119.0 | 14     | 15     | 12 12          | , EU              | 1 105         | 54 E  | 27 A  | 38 18   | 157 00   | 92               | 1 1 84 | 024   | 26      | 13             | 4 08         | 3 . 01         | 12      | .1      | .02 #  | 6.3        | 15  |      |
| •               | 7700E 3620N    | .8/   | 22.10     | 10.20 5  | 5/.4         | 02 14.2  | . 7.5          | 102 2   | 10 J.<br>20 O | 0 1 0          | .0         | 101   | 110.9 | . 14   | .10 .  | 14 44<br>11 40 | JL<br>/C          | 110<br>110    | 03.0  | 24 5  | /0 10   | 26.5 0   | 77 -             | 1 1 70 | 018   | 28      | < 1 2          | 0            | 3 02           | 15      | 1       | < 02 / | 6.3        | 15  |      |
|                 | 7700E 3640N    | .77   | 24.12     | 16.24 5  | 58./         | 91 13.0  | 1 /.5          | 493 2.1 | 28 2.         | 9 I.6          | 1.3        | 12.1  | 112.2 | . 12   | .1/ .  | 11 43          | .49               | 7 .117        | 03.9  | 24.3  | .49 18  | 0.5.01   | 11 <b>-</b>      | 1 1 02 | 021   | 20      | ~.1 ).<br>~1 ) | 0.00<br>0.00 | , .uz          | 10      | .1      | 02 0   | 6.5        | 15  |      |
|                 | 7700E 3660N    | .76   | 23.65     | 15.69 6  | 64.5         | /9 12.2  | 2 7.5          | 528 2.3 | 392.          | / 1.5          | 4.7        | 12.2  | 109.2 | .08    | .1/ .  | 11 48          | . 49              | 9 .135        | 0/.b  | 24.7  | .44 19  | 0.7.05   | 93 <<br>(1 -     | 1 1.00 | .021  | .20     | 1 2            | 50. v        | 20. ע<br>ייי כ | 9<br>17 | .1      | .03 0  | 0.0<br>7 1 | 10  |      |
|                 | 7700E 3680N    | .81   | 30.87     | 19.74 5  | 59.2         | 126 14.4 | 9.9            | /13 2.  | 65 5.         | 4 1.7          | 4.0        | 16.1  | 149.5 | .10    | .33 .  | 11 52          | : .71             | 1.16/         | 126.9 | 21.1  | .58 18  | 50.6.UU  | 01 <             | 1 1.99 | .010  | . 29    | .1 3.          | 2 .08        | 10. 0          | 1/      | .2      | .03 .  | /.1<br>/ 7 | 10  |      |
|                 | 7700E 3700N    | .90   | 27.14     | 16.35 6  | 64.9         | 111 15.7 | 8.3            | 574 2.  | 58 4.         | 0 1.5          | 5.6        | 11.5  | 155.9 | . 11   | .22 .  | 12 58          | . 66              | 5 .193        | 90.2  | 29.4  | .49 16  | 8.5.09   | 96 <             | 1 1.81 | .024  | .27     | .1 3.          | 1.09         | 9.02           | 9       | .1      | .03 6  | b./        | 12  |      |
|                 | CTANDADD DCC   | 10.54 | 140.04    | or 14 17 | 07.0         | 204 24 2 | 12.2           | 740 0   | 01 10         | 0 6 2          | 44 1       | 2.0   | 10 0  | E E1 4 | 00 E   | 22 E2          | . 71              | 3 003         | 13.9  | 186.8 | 65 14   | 12 5 10  | NA 1             | 8 2 01 | 034   | 14      | 493            | 6104         | 1 03           | 173     | 4 9     | 89 6   | 6.8        | 15  |      |
|                 | STANUARD DS5   | 12.54 | 140.04    | 25.14 IS | 37.9         | 294 24.3 | 5 1Z.J         | /40 3.  | 01 1Ö.        | 9 D.Z          | 44.1       | J.U   | 40.0  | J.31 4 | .00 0. | دى 20          | /.                | J .UYJ        | 10.0  | 100.0 | .00 14  |          | υ <del>π</del> 1 |        |       | · * 4 . |                | ·            | 00             | 110     | · · · J | .05 0  | ~.~        |     |      |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.



Page 22



Data\_\_\_\_\_FA

| - | SAMPLE#        | Мо    | Cu     | Pt     | ) Zn                                  | 1        | Ag Ni   | Co   | Mn   | Fe   | As         | U     | Au         | Th             | Sr    | Cd     | Sb E   | i I  | V C        | a P       | La              | Cr           | Mg      | Ba T    | 1     | B A1   | Na    | ĸ    | W :   | Sc    | Tl    | S     | Hg  | Se    | Te    | Ga S | ample |  |
|---|----------------|-------|--------|--------|---------------------------------------|----------|---------|------|------|------|------------|-------|------------|----------------|-------|--------|--------|------|------------|-----------|-----------------|--------------|---------|---------|-------|--------|-------|------|-------|-------|-------|-------|-----|-------|-------|------|-------|--|
|   |                | ppm   | ppm    | ppr    | i ppr                                 | n p      | ob ppm  | ppm  | ppm  | ž    | ppm        | ppm   | ppb        | ррт            | ppm   | ppm p  | pm pp  | m pp | m :        | x x [     | i mqc           | ррт          | x t     | mqc     | ₹ ppi | m ×    | ž     | X    | opm p | om p  | pn    | ×р    | pp  | ppm   | ррія  | ppm  | gia   |  |
|   |                |       |        |        |                                       |          |         |      |      |      |            |       |            |                |       |        |        |      |            |           |                 |              |         |         |       | 0 1 01 | 100   | 40   |       | 2     | 21 -  | 01    | ~   | . 1 . | 0.2   | 1 0  | 15    |  |
|   | G-1            | 1.36  | 2.55   | 2.60   | 42.4                                  | 1        | 4.4     | 4.2  | 561  | 2.02 | . 2        | 2.1   | <.2        | 4.7 9          | 5.4   | .01 .  | 03 .1  | 2 3  | 9.6        | 1 .085 10 | ).6 14          | 4.4.         | .54 23. | 3.1 .13 | 50 .  | 3 1.01 | . 102 | .40  | 2.1 2 |       | 51 ~. | .01   | ~   | ~.1 ~ | .02   | 4.0  | 10    |  |
|   | 7650E 3720N    | . 69  | 23.80  | 12.36  | 55.3                                  | 3 1      | 02 11.9 | 6.7  | 509  | 2.02 | 3.6        | 1.3   | 1.5        | 5.8 14         | 9.4   | .19 .  | 16 .1  | 2 43 | 3.5        | 7 .165 56 | 5.6 2           | 1.5 .        | .33 159 | 9.3 .07 | 7     | 3 1.77 | .022  | .23  | .1 2  | .8.   | 07.   | .02   | 10  | . 2   | .03   | 5.0  | 15    |  |
|   | 7650E 3740N    | . 65  | 21.05  | 14.21  | 58.8                                  | 3        | 94 11.2 | 6.7  | 417  | 2.22 | 4.1        | 1.0   | 2.4        | 8.4 10         | 0.0   | .17 .  | 19.1   | 3 4  | 8.4        | 8 .150 72 | 7.6 2           | 2.4 .        | 36 119  | 5.8.05  | 2 <   | 1 1.38 | .017  | . 25 | .1 2  | .4 .  | 07.   | .01   | 12  | .1 <  | .02   | 5.5  | 15    |  |
|   | 7650E 3760N    | .62   | 23.24  | 14.97  | 59.5                                  | 5 1      | 24 12.3 | 8.3  | 498  | 2.26 | 5.6        | 1.1   | 1.3        | 8.2 10         | 6.8   | .16 .  | 22 .1  | 3 53 | 3.4        | 9.140.78  | 3.4 2           | 3.9 .        | .34 108 | 8.7.06  | i9 :  | 2 1.54 | .021  | . 22 | .1 2  | .7.   | 07.   | .01   | 19  | .1    | .02   | 5.8  | 15    |  |
|   | 7650E 3780N    | .60   | 22.37  | 18.88  | 60.2                                  | 2        | 91 12.1 | 8.3  | 615  | 2.23 | 5.6        | 1.3   | 1.3        | 8.4 12         | 9.3   | .18 .  | 22 .1  | 5 5  | 2.6        | 3 .161 7  | 1.5 2           | 9.6 .        | 47 178  | 8.5 .07 | 9     | 2 1.83 | .022  | . 32 | .1 3  | .3.   | . 80  | .02   | 16  | .2    | .02   | 6.6  | 15    |  |
|   |                |       |        |        |                                       |          |         |      |      |      |            |       |            |                |       |        |        |      |            |           |                 |              |         |         |       |        |       |      |       |       |       |       |     |       |       |      |       |  |
|   | 7650E 2900N    | 81    | 25 15  | 18 17  | 66 0                                  | 1        | 18 14 2 | 8.2  | 517  | 2.56 | 5.9        | 1.3   | 1.6        | 9.4 13         | 3.6   | . 15 . | 25.1   | 4 6  | 2.6        | 0 .172 76 | 5.6 3           | 2.7 .        | 41 143  | 7.4.08  | 37    | 3 1.76 | .021  | . 28 | .1 3  | .3.   | 08    | .01   | 14  | .2 <  | .02   | 6.5  | 15    |  |
|   | 76502 30000    | .01   | 20.10  | 12 14  | E E E E E E E E E E E E E E E E E E E | , 1<br>1 | 10 1/ 2 | 8.6  | 65.9 | 2 29 | 1 3        | 1 1   | 1 7        | 199            | 74    | 17     | 19 1   | 3 5  | 5 5        | 2 126 4   | 5.0 34          | 4.2 .        | 52 214  | 4.6.10  | 16    | 4 2.25 | .029  | . 25 | <.1 4 | .2 .  | 08    | .01   | 11  | .1    | .02   | 7.2  | 15    |  |
|   | 7650E 3820N    | .63   | 22.73  | 12.10  | 70.1                                  | <br>,    | 10 14.2 | 10.0 | 1025 | 2.20 | 7.5<br>2 C | 7     | 1 <i>i</i> | 220            | 1 0   | 22     | 19 1   | 1 7  | 6 6        | 6 163 30  | 376             | 55           | 99 24   | 16 11   | 5.    | 4 2 22 | 025   | 30   | < 1 6 | .9    | 08    | .02   | 19  | .2    | .02   | 9.1  | 15    |  |
|   | /650E 3840N    | . 66  | 25.22  | 12.69  | /8./                                  |          | /9 18.8 | 12.8 | 1035 | 3.03 | 2.0        | ./    |            | 5.5 U<br>F 0 0 | 1.0   | .20 .  |        |      | 0.0<br>0.6 | 0 .100 0. | ).) 0.<br>) = 6 | 2.2 .<br>2.2 | 01 100  | a / 10  | 24    | 1 3 01 | 023   | 24   | 1 7   | 5     | 10 <  | 01    | 18  | 2 <   | 02 1  | 10 4 | 15    |  |
|   | 7650E 3860N    | .87   | 23.63  | 14.74  | 77.1                                  | 1 1      | 29 18.0 | 13.1 | 1143 | 3.22 | 3.6        | 1.2   | 2.3        | 5.8 9          | 1.8   | . 18 . | 21 .1  | .5 / | 9.0        |           | 2.5 0.          | 2.2 .<br>    | .91 19: | 9.4 .12 | .4    | 4 0.01 | .023  | . 24 | . 1 7 |       | 10 .  | 01    | 20  |       | 02 1  | 11 0 | 15    |  |
|   | RE 7650E 3860N | .83   | 25.35  | 15.28  | 83.1                                  | L 1      | 41 19.5 | 13.0 | 1165 | 3.26 | 4.0        | 1.3   | 2.0        | 6.2 9          | 3.2   | . 22 . | 21 .1  | 5 8  | 0.6        | 4 .173 54 | 4.7 6           | 4.1 .        | .92 200 | 0.8 .12 | 3     | 2 3.08 | .024  | . 25 | .1 /  | .8.   | 11 <  | .01   | 20  | .3 <  | .02 1 | 11.0 | 15    |  |
|   |                |       |        |        |                                       |          |         |      |      |      |            |       |            |                |       |        |        |      |            |           |                 |              |         |         |       |        |       |      |       |       |       |       |     |       |       |      |       |  |
|   | 7650E 3880N    | 1.25  | 20.42  | 11.92  | 60.4                                  | 1        | 36 10.4 | 7.0  | 706  | 1.81 | 3.6        | 1.2   | 2.3        | 2.5 12         | 6.5   | . 24 . | 16 .1  | 4 3  | 9.6        | 5 .144 3  | 9.5 2           | 1.7 .        | .36 21  | 2.4 .07 | 7     | 2 2.03 | .025  | . 17 | <.1 3 | .2.   | 07    | .01   | 19  | .2    | .03   | 6.1  | 15    |  |
|   | 7650E 3900N    | .77   | 21.97  | 13.96  | 60.1                                  | 1        | 32 11.8 | 8.1  | 562  | 2.15 | 3.9        | 1.6   | 4.0        | 6.5 12         | 4.7   | .19 .  | 15 .1  | 3 5  | 0.5        | 6 .137 5  | 6.5 2           | 3.6 .        | 34 18   | 2.2.10  | )3    | 4 2.19 | .024  | .22  | .1 3  | .7.   | 09    | .01   | 16  | .3    | .03   | 6.8  | 15    |  |
|   | CTANDADD DSE   | 13.06 | 142 60 | 25 /12 | 137 0                                 | 12       | 87 24 0 | 12 F | 778  | 3 00 | 19 0       | 6.1.4 | 3.0        | 2.9 4          | 9.3 5 | .54 3. | 94 6.1 | .2 6 | 3.7        | 6 .098 1  | 3.3 18          | 5.2 .        | .69 14  | 5.8.10  | 3 1   | 9 2.10 | .035  | .14  | 5.0 3 | .5 1. | 04    | .01 1 | .78 | 4.9   | .86   | 6.6  | 15    |  |

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

## **APPENDIX II**

COST STATEMENT

## **STATEMENT OF COSTS**

## MIDWAY PROPERTY 2004 EXPLORATION PROGRAM

| FIELD PERSONNEL                                          |                                           |              |
|----------------------------------------------------------|-------------------------------------------|--------------|
| A. Raven - Field Manager (High Range Exploration Ltd.)   | 11.5 days @ \$250/day<br>April 4-15, 2004 | \$ 2,825.00  |
| Merle Moorman – Prospector/sampler                       | 11 days @ \$250/day                       | \$ 2,750.00  |
| Sunshine and Rainbows Contacting –Mike Hibberson         | 10 days @ \$318.82/day                    | \$ 3,188.40  |
| Sunshine and Rainbows Contacting –Brodie Herbert         | 4 days @ \$318.84/day                     | \$ 1,275.36  |
| Sunshine and Rainbows Contacting –Scott McPhee           | 6 days @ \$318.84/day                     | \$ 1,913.04  |
| CONSULTANTS - GEOLOGICAL                                 |                                           |              |
| P. Cowley, P.Geo.                                        | 6 day @ \$350/day                         | \$2,100.00   |
| planning, review, interpretations and report preparation |                                           |              |
| MAPS AND REPRODUCTIONS – Eagle Mapping                   |                                           | \$4,145.00   |
| FOOD AND ACCOMMODATION                                   |                                           | \$ 994.81    |
| VEHICLE RENTAL                                           |                                           | \$ 690.00    |
| EQUIPMENT AND SUPPLIES                                   |                                           |              |
| Field Supplies                                           |                                           | \$ 924.59    |
| Fuel & Lubes                                             |                                           | \$ 181.86    |
| EQUIPMENT RENTAL                                         |                                           | \$ 822.50    |
| LABORATORY ANALYSIS – Acme Analytical                    |                                           | \$ 13,381.28 |
| REPORT PREPARATION                                       |                                           |              |
| Drafting, copying                                        |                                           | \$320.00     |
|                                                          | TOTAL                                     | \$35,511.84  |

## **APPENDIX III**

Statement of Qualifications

#### STATEMENT OF QUALIFICATIONS

Paul S. Cowley, P.Geo. 207-270 West 1st Street North Vancouver, B.C. V7M 1B4

I, Paul S. Cowley, P.Geo. do hereby certify that:

I am currently employed as a Consultant by:

Gold City Industries Ltd. Suite 550- 580 Hornby Street Vancouver, B.C. V6C 3B6 Telephone: 604-682-7677 Email: www.gold-city.net

I graduated with Honours with a Bachelor of Science degree in Geology, from University of British Columbia, Canada, in 1979.

I am a registered Professional Geologist with the Northwest Territories Association of Professional Engineers, Geologists and Geophysicists, Registration Number L445, since October 5, 1989.

I am a registered Professional Geoscientist with the association of Professional Engineers and Geoscientists of the Province of British Columbia, Canada, Registration Number 24350, since June 1999.

I have worked as a geologist for a total of 24 years since my graduation from university.

I am not independent of the issuer. I am an Insider of Gold City Industries Ltd., being the Vice President of Exploration. I also hold common shares and options with Gold City Industries Ltd.

Dated at Vancouver, B.C. this 29th day of July, 2004.

Signature of Øualified Person

Paul S. Cowley\_\_\_\_\_ Print name of Qualified Person