ASSESSMENT REPORT

On the

DIAMOND DRILLING, GEOCHEMICAL AND GEOPHYSICAL PROGRAMS

ELIZABETH PROPERTY

Lillooet Mining Division, British Columbia

For

J-PACIFIC GOLD INC. Suite 1440 – 1166 Alberni Street Vancouver, B.C. V6E 3Z3

Prepared By:

GEOQUEST CONSULTING LTD. 8055 Aspen Road Vernon, B.C. V1B 3M9

> W. Gruenwald, P. Geo. August 15, 2004

TABLE OF CONTENTS

		Page
1.0	SUMMA	.RY1
2.0	INTROD	DUCTION
	2.1	General Statement3
	2.2	Location and Access
	2.3	Physiography and Vegetation3
	2.4	Mineral Claims4
3.0	HISTOR	Y
	3.1	Regional History5
		Property History
4.0	EXPLO	RATION PROGRAM – 20047
5.0	GEOLO	GY
	5.1	Regional Geology7
	5.2	Property Geology7
	5.3	Ultramafic Rocks7
	5.4	Intrusive Rocks9
	5.5	Quartz Veins10
	5.6	Structure14
	5.7	Alteration15
6.0	MINERA	ALIZATION
	6.1	Regional Mineralization16
		Property Mineralization16
7.0	DRILLIN	NG PROGRAM
		Drilling Results
8.0	GEOCH	EMICAL PROGRAM
0.0		Sample Collection and Analytical Methods
		No. 9 Grid Soil Geochemistry20
		Rock Geochemistry
9.0	GEOPH	YSICAL PROGRAM21
10.0	CONCL	USIONS
11.0	RECOM	MENDATIONS

LIST OF TABLES

		Page
Table 1.	Mineral Claim Details	4
Table 2.	Chronology of Work on the Elizabeth Property	6
Table 3.	Veins of the Elizabeth Property	11
Table 4.	Significant 2004 Drill Intersections	18

LIST OF PHOTOGRAPHS

		Page
Photo 1.	View of SW Vein Zone and No. 9 Extension (Spur "E")	13

LIST OF FIGURES

After Page

Figure 1	Location Map2
Figure 2	Claim Map3
Figure 3	Exploration Areas 20046
Figure 4a	Regional Geology7
Figure 4b	Local Geology9
Figure 5a	Drill Hole, Rock Sample Location Plan - SW Vein Zone Appendix G
Figure 5b	Drill Hole, Rock Sample Location Plan - No. 9 Area Appendix G
Figures 6a-d	Soil Geochemical Plans – No.9 Area (Au, As, Cu, Mo)Appendix H
Figure 7	Magnetometer Survey Plan Appendix I
Figure 8a-g	Drill Sections DDHs 04-01 to 04-11 Appendix J

LIST OF APPENDICES

Appendix A	Analytical Data And Analytical Methods
Appendix B	Diamond Drill Logs
Appendix D	Statement of Expenditures
Appendix E	References
Appendix F	Certificate of Author
Appendix G	Drill Hole and Rock Sample Location Plans
Appendix H	Soil Geochemical Plans – No.9 Area (Au, As, Cu, Mo)
Appendix I	Magnetometer Field Data and Magnetometer Survey Plan
Appendix J	Drill Sections DDHs 04-01 to 04-11

1.0 SUMMARY

This report, prepared for J-Pacific Gold Inc,. describes the results of the Phase I exploration program carried out on the Elizabeth gold project in May and June 2004. The author, a Qualified Person (QP), supervised the program.

The Elizabeth property is located in southwestern British Columbia 30 kilometres south of the company's Blackdome mine and 35 km northeast of the historic gold mining town of Bralorne. A contiguous block of mineral claims totalling 345 units and covering an area of 8,625 hectares or 21,217 acres comprise the property. The company holds option agreements to earn a 100% interest in the Elizabeth 1-4 and Blue No. 1-4 claims.

The property is situated in the Chilcotin region along Blue Creek, a tributary of the Yalakom River. It covers an area of moderately steep, glaciated terrain between 1800 and 2800 metres in elevation. Access is via a road that branches off the Yalakom River logging road. Driving time from Lillooet is less than two hours. An excellent network of roads provides access to key areas of the property. The property also has a well-maintained camp.

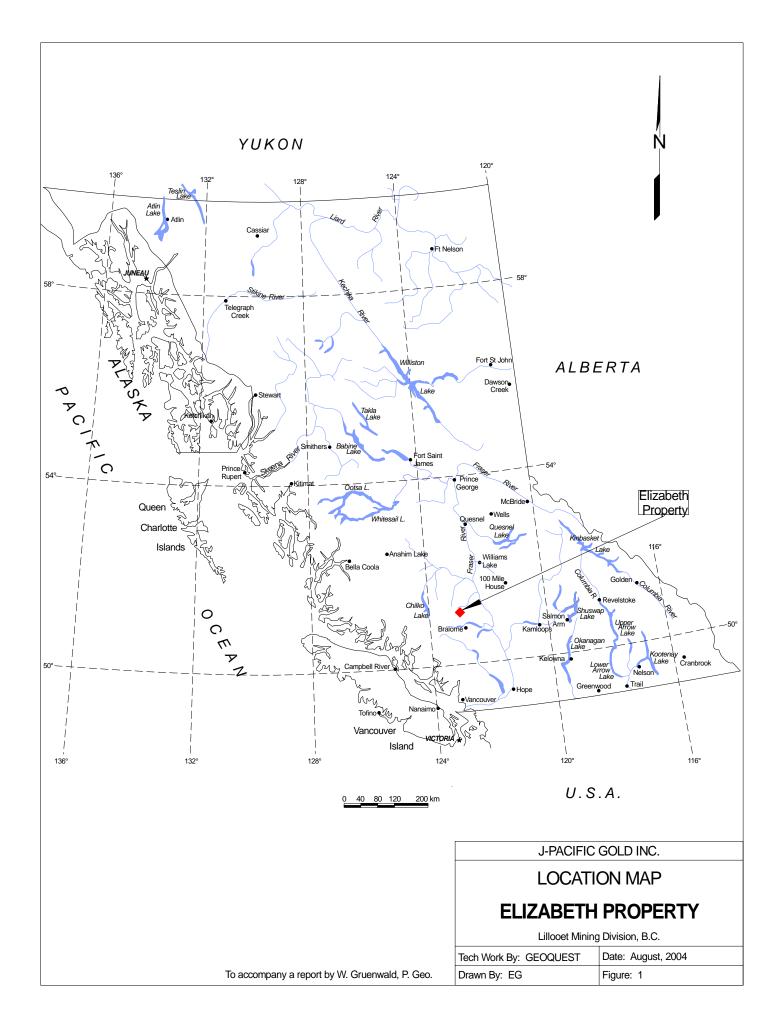
The Elizabeth property is situated within the Shulaps Ultramafic Complex south of the Yalakom River Fault. Intruding these rocks are two Tertiary age feldspar porphyry intrusions that host a series of steeply dipping, gold bearing, quartz veins. The veins are structurally controlled and referred to as "mesothermal" in origin. One vein (West) extends for nearly 300 metres along strike and 250 metres vertically. A northerly trending "listwanite dike" occurs west of a porphyry intrusion that hosts the No. 9 Vein. Listwanite represents a unique mineral assemblage formed from carbonatization of ultramafic rocks along major faults. Spatial relationships between listwanites and lode gold deposits are documented in numerous areas throughout North America. Examples include the Mother Lode deposits of California, the Archean quartz-carbonate lode gold deposits of northern Ontario, and deposits in the Atlin and Erickson gold camps of BC.

Mining activity in the region dates to the late 1800s with the discovery of numerous mineral deposits including the famous Bralorne-Pioneer mines that produced 4.1 million ounces of gold. The Poison Mountain Cu-Mo-Ag-Au porphyry deposit is located 14 kilometres north northwest of the Elizabeth property.

Gold bearing quartz veins were discovered along Blue Creek in 1939. From 1940 to 1952, Bralorne Mines Ltd. completed trenching, drilling and tunnelling primarily on the West and Main Veins. In 1949, the No. 9 Vein was discovered while searching for the source of very high-grade, gold bearing float. A tunnel was driven along a narrow quartz vein that, although gold bearing, was not considered the source of this float. This vein was explored by small programs in 1983, 1987 and 1990. In 1958-59, Bethlehem Copper Mines Ltd. explored the West Vein with a tunnel 180 metres vertically above the Bralorne tunnel. In 1990, Blackdome Mining Corp. conducted trenching and detailed surface and underground sampling. Two high-grade zones were identified in the West Vein on surface and in the Bethlehem adit. The recommended drilling was never carried out.

In 2002, J-Pacific Gold Inc. completed sixteen diamond drill holes totalling 1,642 metres. Drilling intersected several quartz veins with the best intersection grading 7.74 g/tonne gold over a core length of 3.35 metres. Soil sampling revealed a 700 metre long, north trending, Au-As soil anomaly that outlined the known veins as well as southerly strike extensions. A potentially new mineralized zone was identified southwest of the historic veins and highly anomalous gold-arsenic values were identified along the eastern margin of a listwanite on the No. 9 grid.

In 2003, road building and trenching over a strong gold-in-soil anomaly resulted in the discovery of several northnortheast striking gold bearing quartz veins. This area, known as the SW Vein Zone, is located approximately 400 metres southwest of the West and Main Veins. The new veins range from a few centimetres to 2.75 metres wide and were traced over a strike length of 150 metres. Sampling of the veins revealed gold content from background to 194.33 g/t. Coarse gold was found in quartz veining near the northern end of this zone.


The writer feels that there are two possible geologic scenarios for the SW Vein Zone. One relates to a 2m+ wide quartz vein known as the "D" vein that was intersected in the 1940s by a flat drill hole 135 metres west of the lower adit face. This vein is situated 250 metres north-northeast of and 275 metres lower than the surface exposures of the SW Vein Zone. The alignment of the D Vein and SW Vein Zone yields an orientation that is similar to the known veins on the property. The second scenario is where the southern trace of the West Vein has been faulted and displaced westerly thus making the SW Vein Zone a faulted continuation of the West Vein.

Exploration in 2003 also focussed around an orange-brown weathering "listwanite" (primarily a carbonate and silica rock) in the No. 9 area. Soil sampling immediately east of the listwanite, reveals a strong, north-northeast trending Au-As soil geochemical anomaly at least 450 metres long. Several soil and rock samples contain in excess of 1g/t gold. The anomalous samples are associated with a zone of altered porphyry along the east side of the listwanite. Sampling along a road cut yielded a weighted average grade of 1.1 g/t gold across 13.65m. Exploration also identified an intrusion immediately west of the listwanite. Petrographic analysis determined this dioritic rock to be unrelated to the other intrusions on the property. In one area, quartz float emanating from this intrusion was found to contain anomalous gold and silver along with very anomalous lead, copper, mercury, bismuth, antimony, selenium and tellurium. Follow-up work resulted in the discovery of native gold in arsenopyrite bearing quartz veining. Rock sampling returned up to 14.9 g/t gold. Disseminated copper and molybdenum mineralization was also discovered in and around this intrusion. Scattered intrusive float and stream geochemical anomalies suggested that this intrusion could be of considerable size.

In 2004, exploration consisted primarily of diamond drilling in the No.9 area and the SW Vein Zone. Eleven NQ holes totalling 1439 metres were completed. Drilling in the No.9 area revealed gold mineralization associated with highly altered intrusive rocks within and immediately east of the listwanite. DDH 04-01 returned 1.20 g/t gold over a core length of 13.25 metres. DDH 04-02 drilled westerly from 04-01 encountered copper-molybdenum mineralization in an altered dike 90 metres below similar float discovered in 2003. This mineralized dike and a larger intrusion situated several hundred metres northerly suggest that this area may lie near the top of a "porphyry" system.

Drilling in the SW Vein Zone successfully identified steeply dipping quartz vein zones in four holes. Substantial core intercepts of quartz veining and breccias, ranging up to 7.85 metres in length, occur as much as 90 metres below the surface showings. These vein zones are among the widest known on the property. The most significant mineralized vein intersection came from DDH 04-10 where a 2.0 metre core length contains coarse gold and grades an impressive 88.47g/t gold. The SW Vein Zone is considered open along strike and to depth.

The results of the 2004 Phase I program are extremely encouraging and demonstrate the potential for the discovery of new precious and base metal deposits on the Elizabeth property. Further drilling is most definitely warranted and should target the strike and dip projections of the SW Vein Zone as well as following up on the gold and copper-molybdenum mineralization in the No.9 area.

2.0 INTRODUCTION

2.1 General Statement

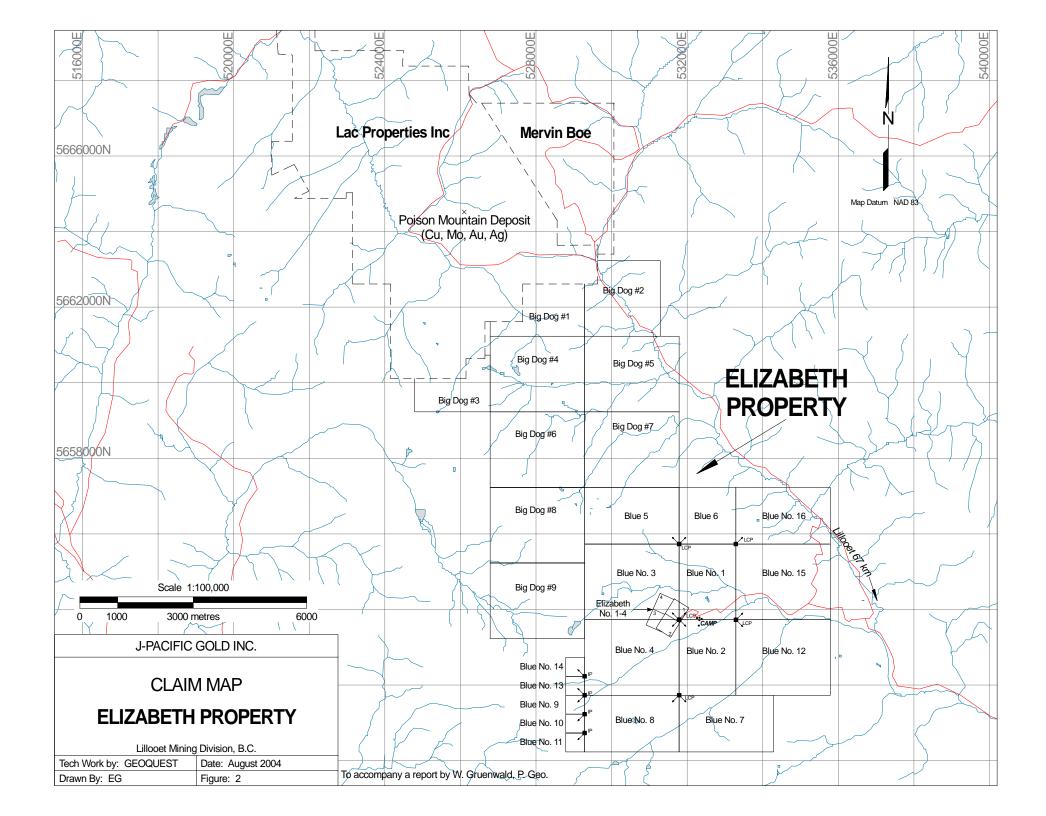
In 2002, J-Pacific Gold Inc. acquired the Elizabeth and Blue claims by option agreements with property vendors Tom Illidge and David White. The property is a strategic acquisition for the company that owns the fully permitted Blackdome mine situated 30 kilometres to the north. During the period of May 22nd to June 24th, 2004, an exploration program consisting of diamond drilling, geochemical sampling and a magnetometer survey was completed on the Elizabeth gold property in southwestern British Columbia. The author, a qualified person (QP), supervised the program.

The 2004 exploration program objectives were to:

- 1) Drill test the newly discovered SW Vein Zone.
- 2) Drill test newly discovered gold and copper-molybdenum mineralization in the No.9 area.
- 3) Expand the No. 9 grid soil geochemical grid.
- 4) Conduct a magnetometer survey in the No.9 and SW Vein areas

2.2 Location and Access

The Elizabeth property is located in south-western British Columbia approximately 35 kilometres northeast of the historic gold mining town of Bralorne (Figure 1). Property co-ordinates are 51°02 ' north Latitude and 122°32 ' west Longitude on N.T.S. Map No. 92O/2E. UTM (NAD 83) co-ordinates are Grid Zone 10U 531788E, 5653732N.


Access to the property is via Highway 40 that heads west from Lillooet to Goldbridge. At 32 kilometres west of Lillooet, a logging road heads northwesterly along the Yalakom River. Near the 67-kilometre marker of the Yalakom road, a branch road climbs nine kilometres westerly along Blue Creek to the Elizabeth property. Driving time from Lillooet is less than two hours.

A network of good roads allows ready access to the tunnels on the property, as well as a number of potential exploration sites. Road construction this year also provided new and in one case alternate access to some of the exploration targets. A well-maintained camp at the 2,000-metre elevation level in the central portion of the property provided accommodation for exploration personnel.

2.3 Physiography and Vegetation

The Elizabeth property is situated in the Shulaps Range along the southern Chilcotin Plateau. Blue Creek, a tributary of the Yalakom River, occupies a broad, glacially incised valley in the southern portion of the property (Figure 2). Slopes are generally steep to the southeast and northeast. Topographic relief is approximately 1,000 metres, ranging from an elevation of 1,800 metres along Blue Creek, to 2,800 metres just east of the summit of Big Dog Mountain. Situated leeward of the Coast Range Mountains, the property receives only moderate annual precipitation. It is generally accessible from late June to mid October.

The property is sparsely forested with small stands of pine and balsam due to the high elevation and poor soil development. Most of the property above 2,200 metres and on northerly slopes is devoid of any vegetation.

Much of the property is covered by talus and glacial debris that can be up to tens of metres thick. On the easterly slope of a prominent ridge on the Elizabeth claims a thick exposure of crudely bedded glacial till is visible. Sandy layers attest to fluvial deposition possibly in a small lake formed behind a retreating glacier.

2.4 Mineral Claims

The Elizabeth property is comprised of a contiguous block of mineral claims comprised of four Crown Granted claims, twenty four-post and five two-post claims totalling 345 units. The claim block covers an area of 8,625 hectares equivalent to 21,217 acres (Figure 2). Only the Elizabeth No.1-4 claims have been legally surveyed. All claims are located on NTS Map No. 920/2E in the Lillooet Mining Division.

In May 2002, J-Pacific Gold Inc. entered into an option agreement with Mr. White and Mr. Illidge (the vendors) to earn a 100% interest in the Elizabeth No. 1– 4 claims. J-Pacific Gold Inc. holds a separate option agreement with Mr. Illidge for the Blue No. 1 to 4 claims. The author does not know of any private land titles or any encumbrances on or immediately surrounding the property. Claim details are outlined in Table 1.

Claim Name	Tenure No.	No. of Units	Expiry Date *	Registered Owner(s)
Elizabeth No. 1	L-7400	1	July 2, 2005	David White and Thomas Illidge
Elizabeth No. 2	L-7401	1	July 2, 2005	David White and Thomas Illidge
Elizabeth No. 3	L-7402	1	July 2, 2005	David White and Thomas Illidge
Elizabeth No. 4	L-7403	1	July 2, 2005	David White and Thomas Illidge
Blue No. 1	393080	12	May 8, 2013	Thomas Illidge
Blue No. 2	393081	12	May 8, 2013	Thomas Illidge
Blue No. 3	393082	20	May 8, 2013	Thomas Illidge
Blue No. 4	393083	20	May 8, 2013	Thomas Illidge
Blue 5	397199	15	Oct 10, 2013	J-Pacific Gold Inc.
Blue 6	397200	9	Oct 10, 2013	J-Pacific Gold Inc.
Blue No. 7	403995	15	July 27, 2013	J-Pacific Gold Inc.
Blue No. 8	403996	15	July 27, 2013	J-Pacific Gold Inc.
Blue No. 9	404000	1	July 16, 2013	J-Pacific Gold Inc.
Blue No. 10	404001	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 11	404002	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 12	403997	20	July 27, 2013	J-Pacific Gold Inc.
Blue No. 13	404003	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 14	404004	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 15	403998	20	July 21, 2013	J-Pacific Gold Inc.
Blue No. 16	403999	15	July 26, 2013	J-Pacific Gold Inc.
Big Dog #1	412562	15	July 17, 2005	J-Pacific Gold Inc.
Big Dog #2	412563	16	July 17, 2005	J-Pacific Gold Inc.
Big Dog #3	412564	12	July 17, 2005	J-Pacific Gold Inc.
Big Dog #4	412565	20	July 17, 2005	J-Pacific Gold Inc.
Big Dog #5	412566	20	July 17, 2005	J-Pacific Gold Inc.
Big Dog #6	412567	20	July 16, 2005	J-Pacific Gold Inc.
Big Dog #7	412568	20	July 16, 2005	J-Pacific Gold Inc.
Big Dog #8	412569	20	July 16, 2005	J-Pacific Gold Inc.
Big Dog #9	412570	<u>20</u>	July 16, 2005	J-Pacific Gold Inc.
	No. of Units	345		

Table 1. Mineral Claim Details

* Elizabeth No. 1-4 claims require an annual tax payment.

3.0 HISTORY

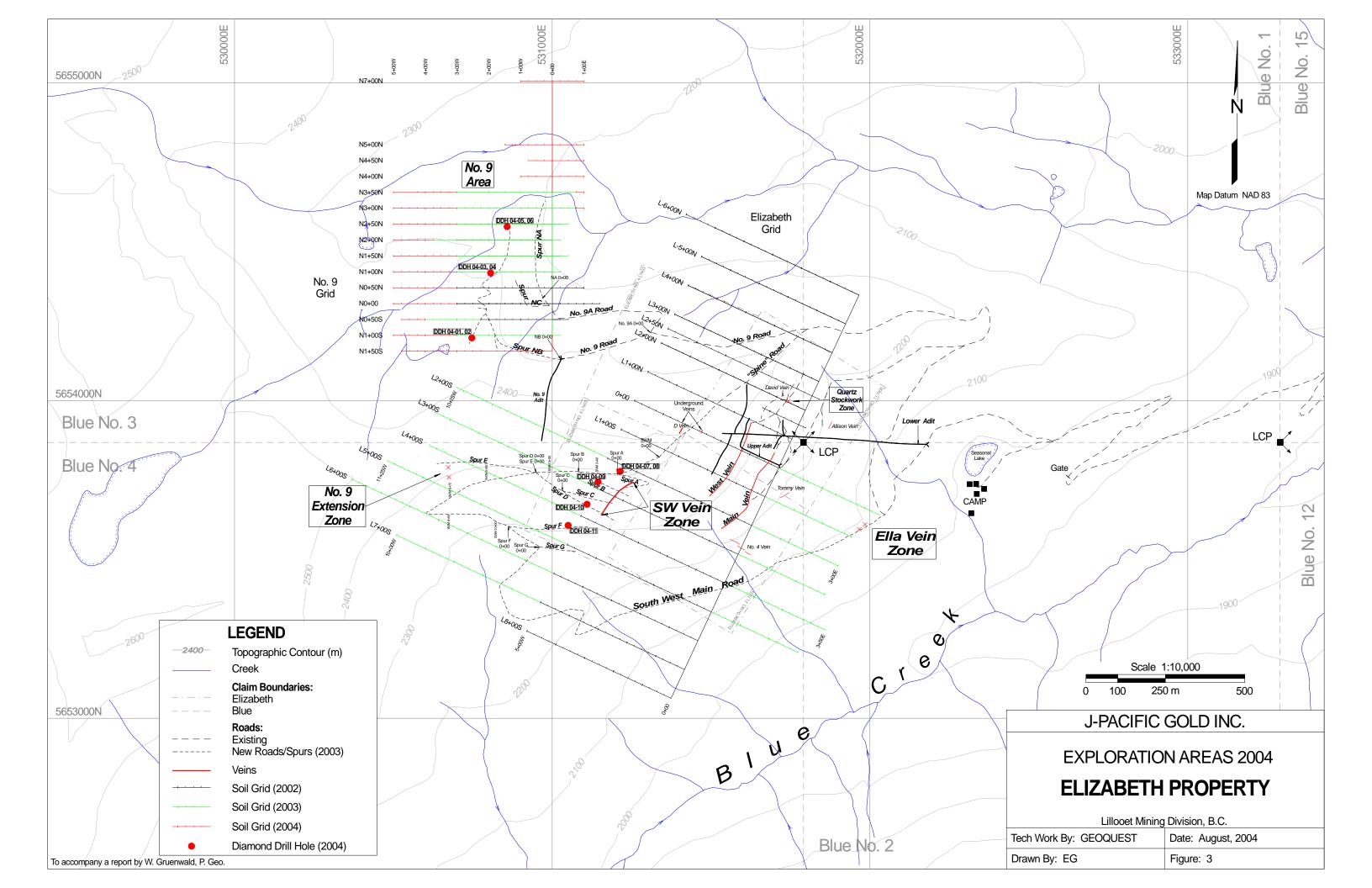
3.1 Regional History

The Bridge River area has a long history of mining activity dating back to the turn of the century. Most mining activity was centred on gold deposits such as Bralorne, Pioneer, Minto, Coronation and Wayside. The Bralorne and Pioneer deposits produced gold for nearly 70 years. Mining ceased at Bralorne in 1971 due to the prevailing gold price (\$US35/oz) and the high costs associated with mining at increasing depths. *During their history, the Bralorne and Pioneer mines produced 4.1 million ounces of gold (0.53 oz/ton), making this the largest gold producing camp in British Columbia's history.*

In the 1990s, Bralorne-Pioneer Gold Mines Ltd. re-installed a mill with a reported capacity of 450 tons per day. Published reserves above the 800 mine level are 476,835 tons grading 0.31oz/ton. Between the 800 and 2600 levels Miller-Tait and others (1996) have quoted additional resources of 605,432 tons grading 0.27 oz/ton Au. Bralorne-Pioneer conducted diamond drilling this fall on the Loco area. A "geologic reserve" estimate of 37,457 tons at 0.244 oz/ton Au, reported by Miller-Tait (1995), is included in the reserve figure above the 800 level.

In 1956 copper mineralization was discovered at Poison Mountain approximately 14 kilometres north-northwest of the Elizabeth property. From the 1960s to the 1980s, this occurrence was explored by a variety of surveys including over 37,000 metres of drilling. The B.C. Mineral Inventory database (Minfile) indicates "reserves" of 280 million tonnes grading 0.261% Cu, 0.142 g/tonne Au, 0.514 g/tonne Ag and 0.007% Mo in the Copper Creek zone.

3.2 Property History


The Elizabeth property came into prominence in 1939/40 when Mr. William White and Mr. Tom Illidge reported the discovery of gold bearing quartz veins along Blue Creek. This prompted the staking of the Elizabeth No. 1-4 claims. The reports of a new gold strike attracted the attention of Bralorne Mines Ltd. who soon optioned the property. Land holdings were increased to around 130 claims with the core claims eventually assigned "crown granted" status. The Elizabeth No. 1-4 claims are the only remaining crown grants today.

A review of the available literature indicates mineral "reserve" estimates for two areas of the property. In 1958, Bethlehem Copper reported a reserve of 1,430 tonnes grading 95.3 g/tonne in the West Vein above the upper adit (Stryhas, McCormack, 1990). A shipment of 8.2 tonnes of vein material, custom processed at the Trail smelter, netted 155 grams each of gold and silver along with 24 kg of lead and 8 kg of zinc. Drift sampling along the No. 9 Vein by Cal-Denver Resources Ltd. delineated three auriferous zones. Combined drift sampling and drilling on the No. 9 Vein indicated reserves of 3,850 tonnes grading 41.1 g/tonne gold (Church, 1995).

The work conducted on the property since 1939 is quite extensive. Much of the property's history was gathered from Minister of Mines Annual reports, newspaper articles and from personal communications with the property owners. Table 2 is a summary of the property work history.

Table 2. Chronology of Work on the Elizabeth Property

Year(s)	Work By	Scope of Work and Results
1939-41	White/Illidge	• Elizabeth 1-4 claims and others staked. Bralorne options property
1941	Bralorne Mines Ltd.	• Camp constructed. Stripping of veins 533m (1750 ft) - 5 diamond drill holes totalling 232m (760 ft).
1942-46		• Work suspended during war years
1947	Bralorne Mines Ltd.	Access road from Yalakom River Valley completed.
		• Commenced tunnel at 2,024 m elevation on Churn No. 1 claim.
		• Drove 381m of crosscut westerly to intersect down dip extension of No. 1 Vein on Elizabeth No. 1 claim.
1948*	Bralorne Mines Ltd.	• Crosscut extended 291m (954 ft) to total length of 672m (2,204 ft). Cut two veins greater than 1.5 metres wide.
		• The first (B Vein) intersected at 491m. Drove drifts along vein to north for 45m and south for 40m.
		• The second (C Vein) intersected at 641m. Drove drifts to north for 166m and south for 140m.
1949*	Bralorne Mines Ltd.	• Drove a raise for 87 m in B Vein south drift approximately 18m from crosscut.
		• Drove a raise 23 m in C Vein north drift approximately 30m from crosscut.
		• Ten flat diamond drill holes totalling 790 metres completed, 8 from surface and 2 from the end of the crosscut.
		• A 178m hole at end of crosscut intersected a 0.6m vein at 66.5m and a 2.1m wide vein (D Vein) at 133 m.
		• High-grade gold bearing float found in talus on the Yalakom No. 2 claim. Trenching exposed quartz vein up to 1m wide (No. 9
		Vein). Absence of spectacular free gold gave company doubt that this vein was the source of the high-grade float.
1950-52	Bralorne Mines Ltd.	• Adit driven for 246m along No. 9 Vein. Underground drill hole at 61m from portal extended to 135m.
1956-58	Bethlehem Copper	• Drove crosscut WNW at 2204 m elevation to intersect down dip projection of West Vein (No. 1).
		• At 140 metres from portal, drifted northerly along West Vein for 95 metres.
		• Shipped 8 tonne (8.8 ton) bulk sample to Trail smelter from which 155 grams gold and 155 grams of silver were recovered.
1983	Cal-Denver Res.	• No. 9 underground sampling. Three gold bearing zones identified. Largest = 48.8m grading 40 g/t across 0.43m
1987	Carson Gold Corp.	• No. 9 adit rehabilitated and sampled. Four diamond holes totalling 600m completed.
1990	Balsam Resources	• One drill hole (123.7m) completed. Numerous narrow veins intersected over 19m core length. Low Au values
1990	Blackdome Mining	• Upgraded road system and rehabilitated upper and lower portals.
	Corp.	• Surface trenching, mapping and sampling of West, Main, Allison and Tommy Veins.
		• Detailed sampling of West Vein in upper adit drift. Surface and underground surveying.
2002	J-Pacific Gold Inc.	• Geochemical soil and rock sampling on two grids covering historic showings and surrounding areas.
		• Diamond drilling program consisting of 16 NQ holes totalling 1,642m in the West and Main Vein areas.
2003	J-Pacific Gold Inc.	• Three phase exploration program consisting of road construction (5 km), trenching, mapping, rock and soil sampling of the SW
		Vein, No.9 and Ella Zones.

4.0 EXPLORATION PROGRAM – 2004

Between May 22nd and June 24th 2004 J-Pacific Gold Inc., carried out exploration programs on the Elizabeth gold property. The exploration work comprised the following:

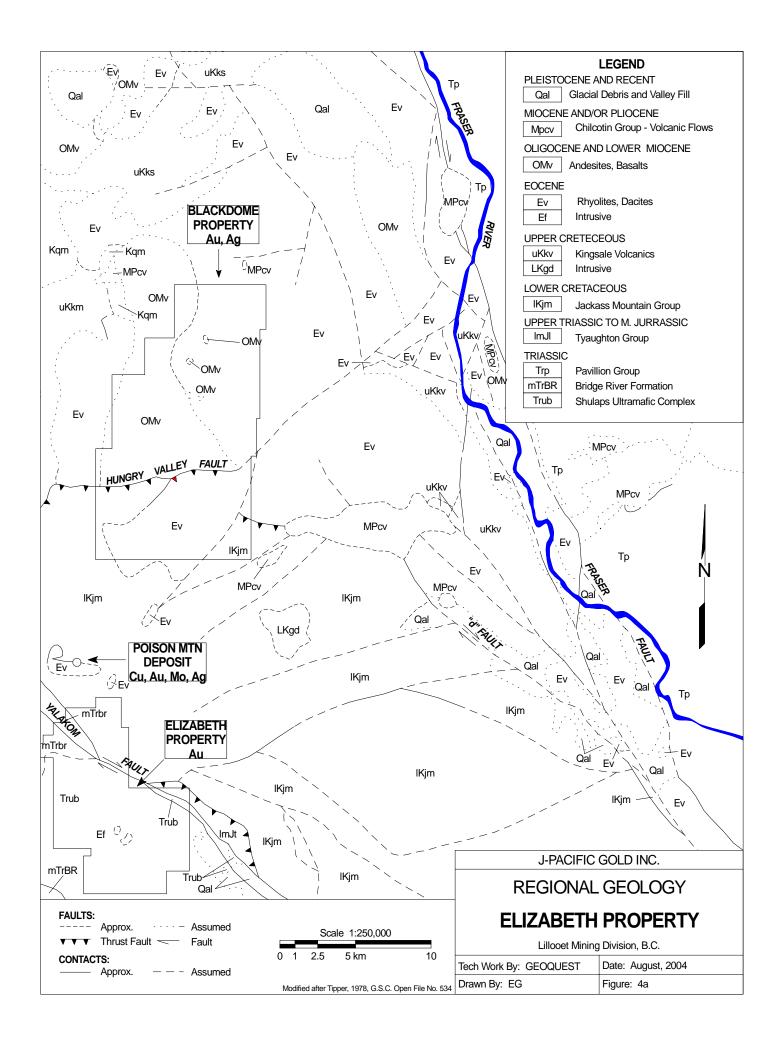
- Diamond drilling of the SW Vein Zone and No.9 area.
- Soil and rock sampling in the No.9 area.
- Magnetometer survey on the Elizabeth and No.9 grids.

Figure 3 displays the 2002, 2003 and 2004 grids, roads and place names used in this report. The Statement of Expenditures for this program, found in Appendix D were provided by J-Pacific Gold management.

5.0 GEOLOGY

5.1 Regional Geology

The Elizabeth property is situated within a geologically diverse area of the Intermontane Belt of southern British Columbia. Highly metamorphosed sedimentary rocks of Palaeozoic age Fergusson Group are the oldest rocks exposed in the region. These "basement rocks" were intruded along major fractures by the dioritic Bralorne Intrusions of Permian age. During the Triassic period a diverse assemblage of volcanic and sedimentary rocks were deposited over the basement rocks. Dikes and large bodies of ultramafic rocks such as peridotite and harzburgite of the Shulaps and President intrusions were emplaced during major Jurassic tectonic events (Figure 4a). The Shulaps Ultamafic Complex forms a northwest trending body approximately 30 km long and 10 km wide. Continued uplift during the Cretaceous period resulted in the deposition of coarse sedimentary sequences such as the Taylor Creek Group. The emplacement of major granitic intrusions of the Coast Plutonic Complex marked the end of the Mesozoic era. The early Tertiary age Rex Peak porphyry marks the most recent intrusive event in the region. The youngest rocks in the region are small areas or "outliers" of bedded Tertiary basaltic flows.


The region has a varied and complex period of tectonic activity. Major faults have been active or reactivated over a broad geologic time frame. Some of these faults have controlled the emplacement of intrusive bodies and have played an important role in the formation of mineral deposits such as the Bralorne/Pioneer. The Yalakom River valley outlines a major north-westerly trending thrust fault zone that branches off the Fraser fault to the east and is inferred to have controlled the emplacement of the Shulaps Ultramafic Complex. Late Tertiary movement along this fault is thought to have produced north-northeast striking faults and extensional features that provided the locus for the gold veins on the Elizabeth claims.

5.2 Property Geology:

Two distinct rock types underlie the Elizabeth property. The mid Mesozoic age Shulaps Ultramafic Complex represents the oldest and most widespread rocks. Several Tertiary age feldspar porphyries of dioritic composition intrude these rocks. Overburden consisting of boulder rich glacial till and talus cover more than 70% of the property. On some slopes the thicker glacial deposits display noticeable bedding that reflects the rapid sedimentation that occurred near the end of the most recent glaciation. The primary rock types present on the property are categorized and described below.

5.3 Ultramafic Rocks:

Harzburgite, a variety of peridotite, is a commonly observed ultramafic rock on the property. It is generally seen as glacial till boulders characterized by an orange-brown weathered and "warty" looking surface. Fresh material is a

dense, black to dark green rock consisting of medium to coarse-grained pyroxene and olivine. It is the resistant pyroxene grains that stand out in relief on the weathered surface. These rocks are often quite magnetic due to the presence of disseminated magnetite. There are few harzburgite bedrock occurrences due to extensive glacial debris. Some ultramafic rocks have been identified as *dunite* a variety of peridotite comprised largely of olivine. Most of the ultramafic rocks are altered to varying degrees.

Serpentinite, a product of the alteration of the ultamafic rocks is common not only on the property but throughout the Shulaps Range. These rocks are typically green to black, soft and often have a soapy feel. Polished and/or striated fracture planes (slickensides) in the serpentinite attest to how easily these rocks are deformed. Intense hydrothermal alteration along shears, faults or contact zones results in a bleached looking, soft talcose rock.

A prominent band of orange-brown weathered *listwanite* referred to as the "Bralorne dikes" (Leech, 1953) occurs in the No. 9 area of the property. This rock consists of iron-magnesium carbonates, silica as veinlets and flooding, talc, and bright green mariposite. The listwanite strikes north to north-northeast, dips steeply to the west and occurs between serpentinite to the west and a porphyry intrusion to the east. Lenses of dark green to black serpentinite are occasionally enveloped by the listwanite. This was also very evident during the 2004 drill program in the No. 9 area. The listwanite ranges 50 metres or more wide and is traced in outcrop and talus over a length of one kilometre. At its northern extent, the listwanite is covered by overburden. Also in this area, a seven metre wide listwanite dikes branches off the main body and trends east-northeast where it was traced for over 100 metres as outcrop and boulders along the north side of No. 9 Creek. To the south, large listwanite outcroppings extend up a steep slope to a ridge top where it is nearly obscured by serpentinite talus. Approximately 100 metres southerly of the ridge top several resistant knobs of listwanite protrude from the serpentinite talus. This is referred to as the *No. 9 Extension*. Float boulders further down the talus slope suggest that the listwanite continues southerly but disappears under overburden. A narrow listwanite zone was also exposed in the SW Vein Zone along Spur D. This listwanite is proximal to serpentinite and the newly discovered gold mineralized quartz veins.

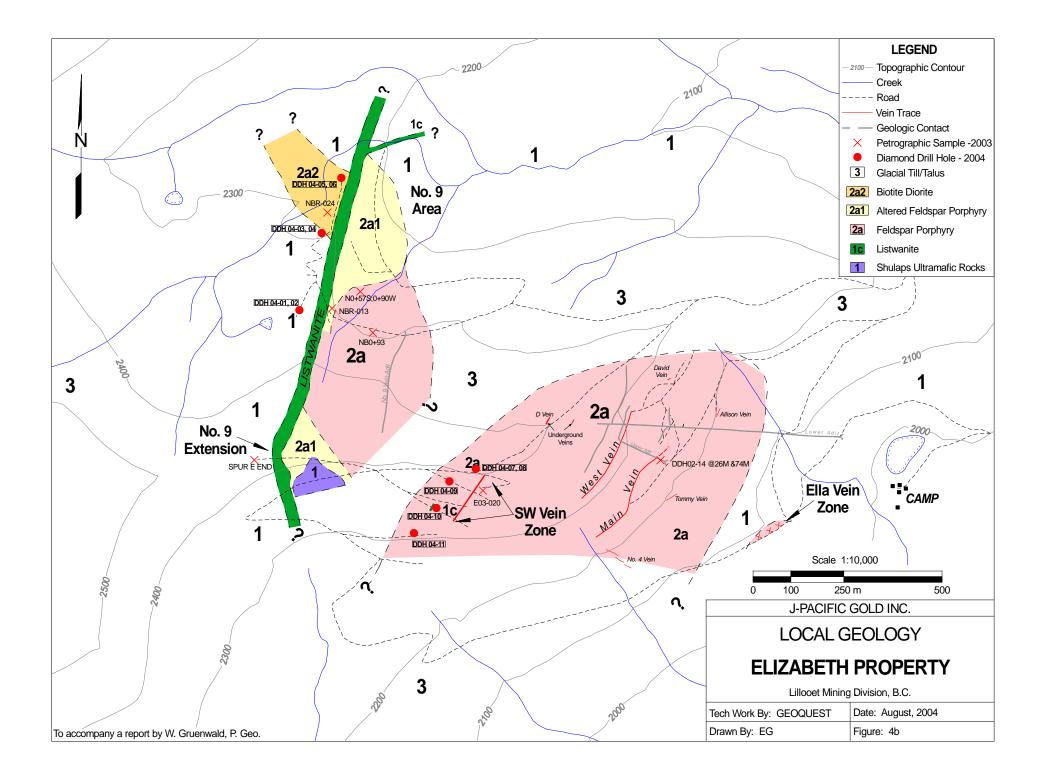
A geological paper by C.H Ash and R.L Arksey entitled "The Listwanite-Lode Gold Association in British Columbia" (Paper 1990-1) provides excellent descriptions of these unique rocks. Following are selected excerpts from this publication.

"Listwanite is a term long used by Soviet geologists working in the Ural Goldfields of Russia that is now used in Europe and North America. It describes a mineralogical assemblage that results from the carbonatization of serpentinized ultramafic rocks and represents a distinctive alteration suite that is commonly associated with quartz-carbonate lode gold deposits. Listwanite forms when fluids rich in carbon dioxide permeate and alter previously altered ultramafic rocks, usually serpentinite. Distinctive iron-magnesium carbonates and chromium mica (mariposite) are formed".

"The importance of the serpentinized ultramafic rock is that it acts as a preferential sink for carbon dioxide from the migrating hydrothermal fluid. Carbonatization is represented by both the pervasive alteration and replacement of the ultramafic rocks and by the dolomite veining. Carbonate minerals, which replace the ultramafic rocks form by hydrolysis of iron, magnesium, calcium and manganese silicates..... Sericitization as a result of potassium metasomatism is commonly reflected by the formation of mariposite in which the chrome is inherited from the ultramafic host rock, as it cannot be taken up by the carbonate".

5.4 Intrusive Rocks

Intrusive rocks on the property are represented by small bodies of dioritic composition. Early literature referred to these as the "Blue Creek Porphyry" (Leech, 1953). For the purposes of this report these rocks are called feldspar porphyry or simply porphyry. Age dating (K-Ar) of these rocks yielded a date of 58.4 Ma (Palaeocene) however this is thought to reflect the age of alteration. An age of 70.5 ± 6.5 Ma derived from Ar-Ar analysis of hornblende from the porphyry indicates an age comparable to intrusions of the Coast Plutonic Complex (Church, 1995).


The largest intrusion covers an area approximately 800 metres long by up to 600 metres wide that is oriented northeast–southwest (Figure 4b). The shape of the porphyry is considerably more complex than shown. Irregular roof pendants of serpentinized ultramafic rocks are present especially in the West-Main Vein area, SW Vein Zone and the No. 9 Extension. On some slopes, "windows" of porphyry protrude through the serpentinite. A second, smaller intrusion is situated less than 500 metres to the northwest and extends to just east of the listwanite. This intrusion informally called the *No.9 Porphyry* measures approximately 350 metres east-west by 600 metres northnortheast. Talus and glacial deposits mask the margins of these intrusions. Church, (1995) suggested that these intrusions are likely connected at depth.

The porphyry is typically a grey to greenish, medium grained rock of dioritic composition. It commonly displays a pronounced and sometimes "crowded" porphyry texture with abundant 2 to 5 mm phenocrysts of plagioclase and hornblende. The groundmass consists of fine-grained quartz, plagioclase, hornblende and rare biotite. The only significant variations seen are the phenocryst size and ratios of mafic minerals. Intrusive contacts with the ultramafic rocks are rarely seen on surface, however drilling reveals sharp and sometimes sheared contacts. The porphyry is occasionally cut by white to buff coloured, fine-grained, equigranular aplite (?) dikes that are virtually devoid of mafic (dark) minerals. These dikes range from a few centimetres to a metre wide and display a wide variety of orientations. They are most common south of Line 1+00N in the Elizabeth grid.

Geological mapping in 2003 revealed the presence of several other porphyry intrusions on the property. Traverses by geologists D. Duba and R. Montgomery revealed several porphyries, intruding serpentinite, in the northeast area of the property. Two porphyry bodies up to 400 metres across and a number of small plugs and dikes occur north of Blue Creek in the northeast portion of Blue No. 15 claim (Figure 4b) North striking listwanite "dikes" and large listwanite float boulders were also mapped in this area.

An irregular area of yellowish to red-brown, highly weathered and often crumbly feldspar porphyry is situated immediately east of the No.9 listwanite dike. It forms a zone ranging from 20 to 150+ metres wide that has been traced for at least 350 metres. This zone is widest between Lines N 0+00 and 1+50 N of the No.9 grid. Quartz veins and quartz stockwork zones are commonly observed within this rock. Due to talus and glacial debris the eastern margin or contact with the No. 9 porphyry is not visible and is therefore inferred. Embayments and discrete dikes (?) of altered porphyry occur within the listwanite. This was very evident in the 2004 drilling. This rock is considered very significant as it coincides with a very strong gold-arsenic soil geochemical anomaly. Several hundred metres to the south the *No. 9 Extension* is another highly altered and locally quartz stockwork veined intrusive immediately east of the listwanite. If related, it would imply that the altered porphyry is at least a kilometre in length.

Another intrusive body occurs as outcrops and float west of the listwanite in the northwest sector of the No.9 grid (Figure 4b). Scattered flakes of biotite characterize this medium grained dioritic rock. In some areas considerable

amounts of disseminated sulphides are present. Gold mineralized quartz veining was also found associated with the northern portion of this intrusion. Outcroppings and float indicate that this intrusion covers an area of at least 150 by 200 metres. Dikes of related (?) intrusive rock occur in the surrounding serpentinite terrain. Two dikes along Line N 2+00N range up to seven metres wide and trend northeasterly. Copper mineralized intrusive float was also found 350 metres south near Line 1+00S. Outcroppings, float and the 2004 drilling suggest that an intrusive of considerably larger size may underlie the area west of the listwanite. It is conceivable that the intrusive in this area may represent the upper portion or apophyse of a "porphyry" system

Other intrusive rocks occur as small bodies and dikes. A notable example is found at the end of Spur E where an eight metre wide andesitic dike intrudes serpentinite west of the listwanite.

Petrographic analysis of several rock types (Figure 4b) were completed the details of which were presented in the writer's 2003 assessment report. Highlights of this analysis pertaining to the intrusive rocks are outlined as follows:

- The two main porphyry intrusions that host the major veins on the property are classified as hornblende quartz diorite. *These intrusions are similar in mineralogy and may be associated genetically.*
- The intrusion west of the listwanite (Sample NBR-024) is classified as a cataclastically deformed biotite diorite. *It is distinctly different from the other plutonic rocks in that the only mafic mineral is biotite.*
- The intrusive rock immediately east of the listwanite (Sample NBR-013) is so altered that little original texture is preserved. This rock consists primarily of quartz and potassium feldspar cut by ankerite veining.

5.5 Quartz Veins

Gold bearing veins on the Elizabeth property are all hosted by dioritic porphyry intrusions. In some cases veins are in contact with sheared and serpentinized rocks. Quartz veins seldom extend any distance into the ultramafic rocks such as serpentinite. As opposed to the porphyry, which fails or breaks along clean fractures or breccia zones, the serpentinite fails along numerous slip planes that do not remain open for any period.

Quartz veins are usually milky white and range from uniform and massive to granular or variably fractured. It is not uncommon to see fragments or elongate slivers of porphyry encompassed by veins. Vein contacts are usually sharp and display slickensides that often indicate dip slip or normal faulting. Thin quartz veinlets (stockwork) accompanied by bleaching and alteration is occasionally observed in the wallrock. Well developed quartz vein breccias are present within and along the margins of some of the larger veins. Veins range from several centimetres to nearly three metres wide. Most veins strike from north to northeasterly and dip steeply (60°-90°) to the west.

There are several veins on the Elizabeth property and many of these have had more than one name. Table 3 correlates the various vein names along with past exploration work.

Table 3. Veins of the Elizabeth Property

Vein Name (Current)	Other Name(s) (Bralorne, etc)	Location	Orientation	Dimensions	Exploration Data/Observations
West Vein	No. 1 Vein (?)	Upper adit - West Vein Drift Lower adit - C Vein drift	Strike - NNE Dip – steep W	Surface/UG≥300m Widths to 1.5 m+	Sampled on surface by Bralorne, Blackdome. Upper adit - drifted N on vein for ~90 m. Lower adit - see C Vein.
Main Vein	No. 2 vein on surface	In upper adit – 60 m E of West Vein Traced to 280m SW of Adit #2	Strike - NNE Dip – steep W	Up to 2 m wide zone	Sampled UG and on surface by Blackdome. Drill intersected and surface sampled by Bralorne. Local high values reported.
No. 1 Vein	West Vein in upper adit and on surface	Uppermost surface vein on ridge	Strike - NNE Dip - 90°±	Up to 1.17 m wide	Traced by Bralorne (1946) for 183 m. Trenching by Blackdome (T. Illidge) reported abundant VISIBLE GOLD.
No. 2 Vein	Main Vein?	60 m lower (Easterly) of No. 1 Vein	Strike - NNE Dip - 68-70° W		In 1946, thought to be fault offset of No. 1 vein.
No. 3 Vein	Tommy Vein or Diagonal Vein	On bench ~80 m below No. 2 Vein	Strike - WSW Dip - 79°S	~1 m wide	In 1946, traced in open cuts for 30 m ±. Sampled by Blackdome - low gold values.
No. 4 Vein	None	275 m W of No. 3 Vein	Strike - NW Dip - 65°NE	0.1 to 0.6 m wide	Abundant cross faulting. Low gold values.
No. 9 Vein	None	On former Yalakom No. 2 claim. 880 m NW of the upper adit portal	Strike – North Dip - Vertical	0.3 to 1m	Visible gold on vein margins.
A Vein	Allison (?) on surface	Lower adit, Allison Vein 198 m NE of No. 2 Adit portal	Strike – NNE Dip - 68°	Unknown	Unknown.
B Vein	Main Vein (?) in upper adit	Lower adit	Strike - NNE	≤100 m 1.2 m at top of raise	Bralorne drifted 45 m N; 40 m S. Raised 83 m in drift south of crosscut.
C Vein	No. 1/West Vein	Lower adit	Strike - NNE	≥200 m	Bralorne drifted 166 m NNE; SSW for 140 m. Raised 23 m in drift north of crosscut. Values ?
D Vein	None	133 m W of lower adit crosscut face	Unknown	Drill intercept - 2.13 m wide	Intersected by flat hole drilled in 1948 by Bralorne. No values reported.
Allison Vein	A Vein (?)	198 m NE of No. 2 adit portal	Strike - NW Dip - 35°SW	0.5 - 1.0 m wide, 10 m long	Sampled along 15 m in trench. Returned only low gold values.
David Vein	Possible West Vein extension	220 m N of Adit #2 portal	Strike - NNE Dip - 66°WNW	Exposed for 4 m ~0.30 m wide	No significant gold grades reported.
Tommy Vein	No. 3 vein (?)	80 m SSE of Adit #2 portal	Strike - ENE Dip - 90°	40 m	Exposed by Blackdome for 50 m. Returned only low gold values.
SW Vein Zone	None	400m SW of West/Main Veins	Strike - NE Dip- 35-70° NW	Traced for 150m along strike and over 40m vertically (2003)	Series of parallel veins up to 2.75m wide. Gold content ranging to 100+ g/t. <i>Coarse gold in float, outcrop and drill core.</i>
Ella Vein Zone	None	350 m ESE (downhill) of Main Vein	Strike – NNE Dip 40°NW	Traced for 75 metres.	Series of en echelon veins from 5 to 35 cm wide along new road cut that exposed "window" of diorite porphyry.

West Vein

Past drilling, surface and underground exploration indicates that the West Vein extends for nearly 300 metres along strike and 250 metres vertically. This vein is considered open along strike primarily to the south and to depth. The vein on surface ranges from 0.20m to one metre wide; however in the lower adit widths in excess of 1.5 metres were seen. It is traced in outcrop and a series of old trenches to 1+80S on the Elizabeth grid. Beyond here an overburden filled gully obscures the vein. Whether the vein terminates or is displaced by a cross fault is unknown.

The West Vein was one of the primary targets of underground exploration during the 1940s. The lower adit, collared at an elevation of 2024 metres, was driven westerly for 660 metres. An examination by Tom Illidge and the writer in 2002 revealed the first 150-200 metres of the adit crosscut to be partially flooded due to several area of caved serpentinite. Around 225 metres from the portal the main porphyry body was intersected. At 457 metres, drifts extend north and south along the "B" Vein. At around 615 metres, drifts extend north and south along the West Vein, formerly known as the "C" Vein. A 1950 Minister of Mines Annual report provides the following description: "The western or "C" Vein occupies a shear zone that strikes north 30 degrees east (except its northern end which strikes north) and dips 50 to 70 degrees westward. The shear zone has been traced for 920 feet, the southern 810 feet entirely in porphyry and the northern 110 feet along a contact of porphyry and peridotite. It is strong in the southernmost end of the workings, in porphyry, but not well defined in the northernmost end, in and on the contact of serpentinized peridotite... The greatest thicknesses of solid quartz are in the section extending 80 feet south and 300 feet north of the crosscut... Quartz is exposed continuously along the southernmost 225 feet of the drift, the veins containing abundant fragments of porphyry." The end (face) of the Bralorne crosscut was reached at approximately 660 metres. At the face, a stack of old (EX size) drill core marks the site of a flat hole that in 1946 intersected the 2.15 metre wide "D" Vein some 135 metres west of the face (Figure 4b). There are no records or evidence that this vein was ever traced to surface.

During May to July, 2004 the lower adit was the subject of extensive rehabilitation work. The work was performed by Tom and Bill Illidge, both qualified and experienced underground miners. Work consisted of the removal of caved material and old timbers. Rock stabilization was achieved by bolting and screening in the first 150 metres of the adit. Ventilation and air lines were installed to allow for rock sampling of the veins.

Main Vein

A 1946 Bralorne surface assay plan indicates the Main Vein was traced intermittently to the south-southwest for nearly 300 metres. Near the upper adit the Main Vein is seen as a series of moderate to steeply west dipping, parallel veins that individually range to 1.25 metres in width. A similar series of parallel veins was also seen in the upper adit and in the 2002 drilling.

Southwest (SW) Vein Zone

During the 2003 follow up exploration of a strong gold-in-soil geochemical anomaly, a new zone of quartz veins, collectively referred to as the *SW Vein Zone*, was exposed by road building along a south-facing slope about 400 metres southwest of the West and Main Veins (Figure 4b). Along Spur road "B", six separate quartz veins were exposed over a 55-metre length. The veins collectively form a zone that strikes northeasterly and that has so far been traced for approximately 150 metres. Veins range from a few centimeters to 2.75 metres wide and usually dip steeply to the west. The surface exposures of the SW Vein Zone span a vertical range of approximately 40 metres.

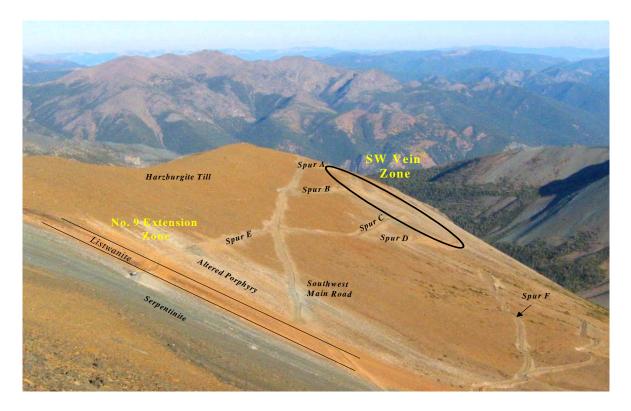


Photo 1 - View of SW Vein Zone and No. 9 Extension (Spur "E")

In 2003, coarse native gold was discovered in quartz float, and subsequently in one of the newly exposed veins along Spur "A". Glacial overburden thickness increases rapidly to the north. A deep excavated pit in glacial till fifteen metres north of the Spur A" vein exposure encountered gold mineralized quartz vein material in bedrock. This indicates that the SW Vein Zone is open along strike to the north-northeast. This year coarse gold was found in scattered quartz vein fragments from the surface of this reclaimed pit.

Along the most southwesterly road cut (Spur "D"), a 2.75-meter wide vein was exposed making this the widest surface vein found to date on the on the property. Located nearby and westerly along this vein is an exposure of listwanite, the first ever seen in this area of the property. A distinct float train of gold mineralized quartz boulders up to 0.60 metres across is found downhill of Spur D. This would suggest that the SW Vein Zone is also open to the south. Spur roads "F" and "G" did not intersect the veins due to increasing overburden thickness. Porphyry bedrock however was exposed along Spur "F" and confirms that the host porphyry extends southerly.

The SW Vein Zone is situated approximately 350 metres southwest and approximately 275 meters higher than the end of the lower adit driven by Bralorne Gold Mines in the 1940s. In plan view (Figures 4b, 5a, b) the alignment of the SW Vein Zone and the Bralorne "D" Vein yields an orientation that parallels the known veins on the property. The writer feels that there are two possible geologic scenarios for the SW Vein Zone. One suggests the SW Vein Zone is related to the "D" Vein west of the lower adit face. The second scenario is where the southern end of the West Vein may have been faulted and displaced westerly thus suggesting the SW Vein Zone is a faulted southwesterly continuation of the West Vein. Ultimately further drilling will determine which scenario is applicable, as well as the geometry and extent of this new discovery.

No. 9 Vein

The No. 9 Vein is hosted by another porphyry intrusion approximately 500 metres northwest of the West/Main Veins. This vein strikes northerly and dips steeply to the west. It was traced along an adit for 246 metres and ranges from 0.2 to 0.6 metres wide. Old trenches 200 metres north of the No.9 portal exposed a similar looking 0.25 metre vein that may represent an extension or parallel vein. A note of interest is that the amount of vein float in talus and a glacial moraine easterly of the No. 9 Vein cannot be explained by this vein alone.

Listwanite Area

Quartz veining and stockwork zones unrelated to the No.9 Vein are also found in highly altered porphyry immediately east of the listwanite. Veining ranges from hairline to one metre in width. The larger veins display north-northeasterly trending slickensided contacts that reflect the major structural trend in the area. The listwanite contact and altered porphyry coincide well with a strong gold-arsenic geochemical anomaly. West of the listwanite, prospecting led to the discovery of auriferous quartz float measuring up to 0.45 metres across. In this area quartz float and bedrock vein occurrences are associated with an altered and tectonically deformed biotite diorite unrelated to the porphyries that host the historic veins on the property. In 2004 native gold was found in a narrow quartz vein hosted by this intrusive rock. There are no old records of gold occurrences west of the listwanite.

Ella Veins

During road construction in 2003 a series of porphyry hosted quartz veins were discovered approximately 300 metres south-southwest of the lower adit portal. At least six veins ranging from 5 cm to 35 cm wide were exposed along a 75-metre portion of the Southwest Main road. The veins strike NNE and dip 35° to 45° to the west. It is likely that this porphyry is an offshoot of the main body hosting the West and Main Veins 400 metres uphill and to the northwest.

5.6 Structure

Rocks on the Elizabeth property display a number of large and small-scale structural elements that are manifested by faults, shears, jointing, lithologic contacts and veins. Mapping in 2003 (D. Duba) suggests a NNE trending fault along Blue Creek. This may reflect a fault structure conjugate to the major northwest trending Yalakom River Fault.

Within the largest (eastern) feldspar porphyry, structural features such as joints, fractures, faults and veins display a distinct trend. Church (1995) indicated that the fracture patterns display a strong unimodal concentration striking 034° , and dipping 67° northwest. This orientation approximates the West and Main Veins. Structural measurements taken by the writer indicate strikes ranging from 000° to 072° and dips ranging from 050° to 090° westerly.

Faulting is often observed along the contacts of the major veins. A banded or ribboned appearance is a result of repeated movement or shearing that occurred during vein formation. Slickensided surfaces most often display normal fault (dip slip) displacement ranging up to two metres. Strike slip displacement along vein contacts and faults is less common with only minor movement indicated. Distinct changes in vein (fault) strike direction, evident along the West Vein, are thought to play an important role in the controls for high-grade gold shoots.

Geologic literature indicates that listwanite zones form along major faults cutting ultramafic terrain. These fault structures serve to channel hydrothermal fluids that produce the distinctive mineral assemblage that characterize these rocks. The No. 9 area listwanite displays such a structural association. The contacts are usually very sharp ranging in strike from north to 020° and dips from 60° to 70° W. Contacts are often slickensided with dip slip

displacement being dominant. Oblique faults observed within the listwanite reflect internal tensional forces. Some of these tensional faults have formed open fractures lined with fine quartz, carbonate and gypsum crystals.

The intrusive body west of the listwanite is locally quite sheared which is manifested by abundant north-northeast trending slickensides. Petrographic analysis (2003) describes this rock as a *cataclastically deformed diorite*. Quartz veins in this intrusion and float also display evidence of shearing. Slickensides in outcrop and float to the west and south of here indicate more widespread shearing and faulting. Whether this faulting is related to the formation of the listwanite or the emplacement of the intrusive rocks is not yet clear.

Well-developed slickensides, common in serpentinite, attest to its soft and incompetent nature. Measurements of shearing and foliation within these rocks often reveal northwest strikes and steep to vertical dips (Duba, 2003). Joints in the ultramafic rocks usually strike northwest, north-northeast and easterly with steep to vertical dips.

5.7 Alteration

The porphyry intrusions have all undergone varying degrees of alteration. This is generally seen as plagioclase being altered to sericite and occasionally epidote or actinolite. Hornblende and biotite are variably altered to chlorite. Alteration of the porphyry adjacent to quartz veins is often characterized by a bleached appearance likely a result of sericitization. Such alteration can extend a metre or more from the veins.

The red-brown crumbly weathering porphyry just east of the No. 9 listwanite is so altered that little of the original texture is preserved. Petrographic analysis indicates early alteration of plagioclase feldspar to sericite-muscovite was followed by pervasive quartz-K feldspar and lesser ankerite (carbonate). Evidence from the 2004 drilling suggests that this is alteration represents a reaction zone or halo within the No. 9 porphyry resulting from hydrothermal activity associated with the listwanite formation. Faulting conjugate to the listwanite and related alteration may have formed the irregular outline of the altered porphyry seen in the No. 9 and No. 9 Extension areas. The orange brown coloration of the listwanite is visually distinctive and is primarily a function of weathered iron carbonate minerals.

The 2003 petrographic work indicated that the intrusion west of the listwanite is not related to the porphyry elsewhere on the property. Analysis of sample NBR-024 indicates K-feldspar, ankerite and chlorite alteration associated with cataclastic deformation. This intrusion is unique in that biotite is the only mafic mineral present.

Ultramafic rocks on the property have all undergone some degree of alteration. Petrographic analysis of the black, dense, ultramafic rocks commonly intersected by drilling determined they are dunite in which olivine grains are strongly fractured and altered to tremolite and chlorite. Later alteration consists of magnetite-hematite veins with envelopes of serpentine. The hematite present is derived from the destruction of magnetite. Proximal to the porphyry, shearing and hydrothermal activity locally reduces the serpentinite to a green, muddy, gouge-like material often containing talc. Thin white carbonate (calcite, magnesite) veinlets are present in the more altered ultramafic rocks.

6.0 MINERALIZATION

6.1 Regional Mineralization

As with the geology, the mineralization in the region is diverse. Gold is the dominant commodity, with the Bralorne-Pioneer deposits being the most significant. These deposits are classed as *mesothermal* veins and are hosted by diorite, sodic granite and a narrow band of serpentinite. Collectively, these rocks form a lens that is five kilometres long and two kilometres wide interlaced by a complex and deep-seated north trending fault system.

The major veins strike east west, dip steeply and are persistent to depth having been mined to 1500 metres deep. The veins average 1.5 metres and range up to 6 metres in width. The best gold values came from "*ribboned veins*" where partings contain carbonaceous material and/or chlorite. Highly gold enriched zones were noted at vein serpentinite contacts, the suggestion being that the serpentinite acted as a dam to mineralized solutions. The principal sulphides are pyrite, arsenopyrite and sphalerite that along with native gold, galena, chalcopyrite, pyrrhotite and tetrahedrite occupy less than one percent of the veins.

In 1956, "porphyry" copper mineralization was discovered at Poison Mountain approximately 14 kilometres north northwest of the Elizabeth property. Mineralization consists of disseminations and fracture fillings of pyrite, chalcopyrite, bornite and molybdenite in two granodiorite intrusions and adjacent sedimentary rocks. Reported "reserves" are 280 million tonnes grading 0.26% Copper, .007% Molybdenum, 0.14 g/t Gold and 0.51 g/t Silver.

6.2 Property Mineralization

Gold bearing quartz veins hosted by feldspar porphyry intrusions have been the focus of past exploration programs on the Elizabeth property. The West, Main and No. 9 Veins were the primary exploration targets. Metallic minerals, by volume, constitute at most a few percent of the veins. These consist of pyrite, pyrrhotite and arsenopyrite, with lesser amounts of galena, sphalerite, chalcopyrite and molybdenite. Native gold occurs as visible blebs with or without sulphide minerals and often along partings near the vein margins. Grey metallic minerals noted in some samples and the geochemistry indicate the presence of bismuth and antimony sulphides. Trace amounts of tungsten (scheelite) were reported in vein material from the upper adit dump (Twaites, 2002). In the No. 9 Vein, quartz is ribboned with laminations of chlorite and carbonaceous material, features that have been said to be typical of the *mesothermal* vein systems found in the region (Church, 1995).

A quartz stockwork zone found in 2002 north of the West Vein was found to contain native gold up to 0.7 mm in a panned sample of crushed material. This zone is thought to represent a late stage epithermal event. Drilling (2002) encountered only moderately anomalous gold.

The *SW Vein Zone* consists of several milky white quartz veins containing very minor amounts of pyrite (<1%), arsenopyrite and galena. Limonite staining is common along fractures and has been observed in drill core to considerable depth. Traces of copper (chalcopyrite and malachite) are noted in some quartz. Other metallic minerals include traces of galena and bismuth sulphides. The geochemistry of the veins is exemplified by the ICP analytical data (Appendix A). Native gold is found in float, road cuts and more recently in drill core.

The Ella veins are a new discovery found in porphyry exposed along the Southwest Main road 400 metres southeast (downhill) of the West and Main Veins. These veins contain small amounts of sulphides (<1%) represented by pyrite, arsenopyrite, galena and malachite.

The main porphyry bodies are typically mineralized with small amounts (<1%) of disseminated pyrite. On occasion fracture veinlets contain very minor amounts of chalcopyrite, arsenopyrite and molybdenite. The altered porphyry along the east contact of the listwanite contains disseminations of pyrite ranging from trace to 2% or more. Veins and veinlets within this rock are occasionally mineralized with several percent combined pyrite, arsenopyrite, and chalcopyrite. The listwanite itself contains small amounts of disseminated pyrite along with trace chalcopyrite.

The presence of gold mineralization proximal to the listwanite is considered to be more than coincidence. The previously quoted paper by C.H Ash and R.L Arksey (1990-1) states: "Although the genetic significance of the ultramafic rocks remains a subject of debate, the spatial relationship between carbonatized ultramafic rocks and gold deposits appears to be consistent... Several workers noted that mineralized quartz veins in the California Mother Lode deposits show a spatial association with serpentine bodies and that the largest concentrations of free gold occur at or near the intersection of veins with the carbonatized ultramafic rocks." The paper goes on to say that similar associations were indicated for the Archean quartz-carbonate lode gold deposits of northern Ontario as well as the Atlin and Erickson gold camps of northern British Columbia.

The intrusive rocks west of the listwanite are mineralogically unique in that they often contain significant amounts of sulphides. These are represented as disseminations up to several millimetres across and consist of pyrrhotite, chalcopyrite and molybdenite. It is not unusual to see 5% sulphide minerals in these rocks. Quartz veins in the northern part of this intrusion were seen in bedrock and as float up to 45 cm across. These veins occasionally contain modest amounts of arsenopyrite and galena. Coarse native gold has been found in two instances in this area. *This area is a new discovery and represents the first known occurrence of high-grade gold mineralization found west of the No. 9 Vein.*

The ultramafic rocks often contain abundant magnetite with concentrations of 10 to 12% being reported. Chrome and nickel minerals are also indicated based on rock geochemistry. These can constitute up to 0.5% of the rock. Sulphides comprise small amounts of pyrite, pyrrhotite and rarely molybdenite.

7.0 DRILLING PROGRAM

Previous work by Bralorne and Blackdome had identified high-grade gold zones that were never drill tested. Prior to J-Pacific's 2002 work program, the only drilling on the Elizabeth property was by Bralorne Mines in the late 1940s.

During the late spring of 2004 J-Pacific Gold Inc. completed 11 diamond drill holes totalling 1439 metres on the Elizabeth claims (Figures 5a, b -Appendix G). FB Drilling of Cranbrook, BC utilized a skid mounted drill, producing "NQ 2" (50.8 mm) diameter core. Water for drilling was delivered by a single stage pumping system from local creeks fed by snow melt. Drilling was conducted along access and spur roads constructed by Illidge Contracting of Goldbridge, B.C. Drilling consisted of six holes (848m) in the No.9 area and five holes (591m) in the SW Vein area. Core recovery was generally over 95% with core losses attributed to faulted zones especially in the serpentinized rocks. Quartz veins were commonly fractured owing to their association with fault structures, however recoveries were acceptable. The 2004 drill cores are stored in a covered core facility on the property.

The first three drill set-ups (6 holes) spanned an area of 350 metres just west of the listwanite in the No.9 area. Drill holes 04-01, 03 and 05 targeted the strong Au-As soil anomaly associated with highly altered and locally quartz

stockwork veined porphyry along the eastern margin of the listwanite. Holes 04-02, 04 and 06 were drilled to test for intrusion hosted Cu-Mo mineralization and possibly associated gold bearing quartz veins

Drill holes 04-07 to 04-11 targeted the SW Vein Zone. The holes were drilled to the east-southeast at angles of 45° to 65° . All but the first two holes were drilled from separate drill pads. Drill hole 04-11 did not achieve target depth due to very tight and broken ground. Several attempts to drill through this zone proved futile and the hole had to be abandoned or face the risk of losing a substantial part of the drill string.

All drill cores were transported from the drill and logged at the Elizabeth camp by Geoquest personnel. With few exceptions the maximum core sample length was 1.50 metres. Cores were split using a Longyear core splitter with one half being retained in the core box. The other half was collected in a 12"x18" poly sample bag identified by a waterproof assay tag and corresponding label on the outside of the bag. Samples bags were secured using a tamper proof "single use" strap tie. To avoid cross contamination the core splitter and collection pans were thoroughly cleaned after each sample. Core samples were packaged in large labelled and numbered poly rice bags also secured with single use strap ties. Samples were kept on site and handled and transported by Geoquest staff. A total of 352 core samples were collected during the program and shipped to Acme Analytical Labs in Vancouver for analysis. The core samples were analysed for gold by fire assay and 34 element Induction Coupled Plasma (ICP).

7.1 Drilling Results

Drilling resulted in the intersection of several gold bearing quartz veins and considerable widths of altered and mineralized porphyry. Complete drill logs and sections are found in Appendices B and K respectively. Table 4 summarizes the noteworthy drill intersections and geologic observations. Intersections are the actual core length and do not represent a true width.

Drill Hole	From (m)	To (m)	Core length (m)	Grade (g/t Au)	Other (ppm)	Vein or Zone	Description
04-01	79.50	92.75	13.25	1.20		No.9 Area	Altered Porphyry
	104.05	105.55	1.50	2.10		No.9 Area	Quartz-arsenopyrite veining
04-02	87.10	97.00	9.90		0.187% Cu 0.043 % Mo	No.9 Area	Altered porphyry dike with disseminated cpy, Mo
04-05	25.90	36.50	10.60	0.21		No.9 Area	Altered Porphyry
	55.40	56.25	0.85	1.40		No.9 Area	Altered Porphyry + asp
04-07	41.80	41.95	0.15	13.74		SW Vein Zone	Quartz Vein
	42.45	42.55	0.10	3.48		SW Vein Zone	Quartz Vein
	58.15	59.80	1.65	2.76		SW Vein Zone	Quartz stockwork veining
04-08	89.50	96.95	7.85	5.33		SW Vein Zone	Quartz vein with coarse gold
04-09	51.10	51.60	0.50	1.95		SW Vein Zone	Altered porphyry wallrock
04-10	89.10	91.10	2.00	88.47		SW Vein Zone	Quartz vein and stockwork
Includes	89.80	90.45	0.65	257.89			zone with abundant coarse
	91.75	93.20	1.45	1.95			gold

Table 4. Significant 2004 Drill Intersections

Drilling in the No.9 area revealed gold mineralization associated with highly altered intrusive rocks within and immediately east of the listwanite. DDH 04-01 returned 1.20 g/t gold over a core length of 13.25 metres. DDHs 04-03 and 04-05 located 210 and 360 metres northerly respectively intersected lower but still anomalous gold. In each

of these three holes the listwanite was intersected and this was often seen to be intruded by highly altered porphyry. Each hole transected the listwanite, the adjacent altered porphyry and bottomed in barren porphyry. This suggests that the altered porphyry is not a separate intrusive but rather a result of *"carbonatization"* of the No. 9 porphyry during listwanite formation.

Of the three holes drilled westerly only DDH 04-02 yielded significant results. This hole encountered a steeply dipping zone (dike) of carbonate altered intrusive rock containing disseminated chalcopyrite and molybdenite. This intersection occurs approximately 60 metres below similar looking intrusive float discovered in 2003. The source of this dike is not known however it may be related to a larger intrusive body located 300 metres northerly. Here disseminated chalcopyrite and molybdenite are present on surface and in DDH 04-06. The grade is low but geochemically anomalous. Drill hole 04-04 drilled westerly and between 04-02 and 04-06 did not encounter any intrusive rock but rather a thick sequence of ultramafic rock. It is conceivable that the intrusive rocks in this area are the upper parts of a mineralized "porphyry" system. Other porphyry dikes and dioritic float in the largely ultramafic terrain seem to support this hypothesis.

Drilling in the SW Vein Zone successfully identified steeply dipping quartz veins, quartz stockwork and vein breccias zones in four holes. Substantial core intercepts of quartz veining and breccias, ranging up to 7.85 metres in length occur as much as 90 metres below the surface showings. These vein zones are in fact among the widest known on the property. Coarse gold was observed in two holes, namely DDHs 04-08 and 04-10. *The most significant mineralized vein intersection came from DDH 04-10 where a 2.0 metre core length contains coarse gold and grades an impressive 88.47g/t gold.* It is interesting to note that this high grade intercept is associated with quartz veining and a narrow band of listwanite. This is similar to the observation in 2003 where listwanite was observed near a 2.75 metre wide vein exposed on Spur D. The surface sampling of the Spur D vein yielded only 330 ppb gold which is in stark contrast to the very high grade intercept located some 60 metres below. This points out that veins should not be ruled out simply because of a single low grade sample. It is clearly evident that very high grade "shots" can occur anywhere along these structures.

The SW Vein Zone is considered open to depth and along strike to the north. DDH 04-11, the most southerly drill hole, failed to reach the target depth because of the aforementioned technical difficulties. This hole did however intersect porphyry, indicating that the favourable host rocks for the veins extend southerly under talus and glacial till.

8.0 GEOCHEMICAL PROGRAM

Geochemistry has proved to be an invaluable exploration tool on the Elizabeth property. Soil grids were established with emphasis directed toward the area east of the Main, West and SW Vein Zones and the No.9 area. Road cuts with rock exposures or shallow overburden were soil and rock sampled. The results of this work are detailed in previous assessment reports (Gruenwald, 2002 and 2003). Soil sampling conducted in 2004 consisted of expansion to the No. 9 grid. The No.9 grid is controlled by a 900 metre long north-south baseline. East-west oriented cross lines were run at 50 metre intervals from 1+50S to 5+00 N with soils collected at 25 metre intervals.

8.1 Sample Collection and Analytical Methods:

Given the rocky nature of the terrain and lack of soil development, samples usually consist of hand sorted finegrained material from the "C" horizon at depths of 15 to 30 cm. An average of 300 to 400 grams of soil was collected in kraft paper bags identified by grid co-ordinates.

Rock samples were collected during the course of grid sampling. These usually consisted of float and bedrock chips of quartz, vein stockwork, limonitic or sulphide mineralization. Samples were collected in plastic bags secured with single use ties.

In all, 128 soil, and 12 rock samples were collected. During the exploration programs all samples were stored in camp and were handled and packaged by Geoquest staff. Samples were shipped in securely packaged synthetic fibre bags. Reputable freight companies made all sample shipments and deliveries to Acme Analytical Labs in Vancouver, B.C. Analysis of the soil and rock samples was for gold by fire assay and Induction Coupled Plasma (ICP) technique. The analytical data and methodology are found in Appendices A and B respectively.

8.2 No. 9 Grid Soil Geochemistry

This grid was expanded to further delineate the 2003 geochemical anomalies. As in previous work (Gruenwald, 2002/03) gold and arsenic display a distinct correlation. A strong north trending coincident gold-arsenic soil anomaly measuring at least 550 metres long is indicated along and east of the listwanite. Soils collected in 2004 range up to 769 ppb gold while arsenic geochemical values range up to 2388ppm. To date seven gold values in excess of 1,000 ppb (1g/t) occur within this large geochemical anomaly.

Copper and molybdenum correlate well with maximum values to date of 1,439 and 74 ppm respectively and that are well in excess of those seen on the Elizabeth grid. The highest copper and molybdenum from the 2004 sampling occurs on L-1+50S and indicates the presence of mineralization within the intrusive rocks (No.9 porphyry) and listwanite. Copper and molybdenum in the No.9 grid have a moderate coincidence with gold and arsenic. Sporadic but anomalous copper and molybdenum in soils are evident west of the listwanite and reflect mineralization associated with the intrusion in this area. Surprisingly the geochemical expression is not as strong as that seen east of the listwanite however this may be due to the abundant ultramafic "cover".

8.3 Rock Geochemistry

Rock sampling in 2004, as in the previous two years, has yielded highly variable results with values ranging from background (<5ppb) to 4069 ppb gold. Sample RM-04-06, collected from narrow quartz veins hosted by the biotite diorite is of particular interest. In addition to containing fine visible gold it contains highly anomalous levels of lead, silver, arsenic, antimony, bismuth, mercury and selenium. This unusual rock geochemistry was first noted in 2003 from samples collected nearby (Gruenwald, 2003). Drilling beneath this area in 2004 (DDH-04-06) failed to intersect any veins thus this mineralization is so far unexplained.

Quartz float was also sampled on a till covered slope just north of the No. 9 area. The float consists of milky white, subangular fragments up to 35 cm across containing occasional clots of silvery metallic minerals thought to be galena and stibnite. ICP data revealed highly anomalous amounts of lead, silver, bismuth, mercury and selenium. One sample (WG-04-01) contains 134 ppb gold. A short soil line in the area did not reveal any anomalous elements; however this may be attributed to the thick glacial till on this slope. The presence of these quartz fragments along

the listwanite structural trend is considered significant and for this reason is deemed worthy of follow-up prospecting and sampling.

Rock sample locations and the corresponding gold values are displayed on Figure 5b in Appendix G.

On the Elizabeth property the strongest correlation with gold is arsenic. Observations regarding the rock geochemistry from work to date also reveal that:

- Silver content in mineralized zones although up to 290 g/t does not have a strong correlation with gold.
- Sporadic bismuth and antimony content in the SW Vein Zone, No. 9 and No. 9 Extension.
- Anomalous selenium often correlates with tellurium. Greatest concentrations in SW and No. 9 areas.
- Anomalous mercury values associated with West Vein, vein float west of listwanite and No. 9 Extension.

Significant amounts of disseminated copper and molybdenum occur in the biotite diorite west of the listwanite. Copper-molybdenum bearing float such as near L-1+00S; 3+00W suggest that mineralized intrusive rocks underlie more of the area than first thought. This was borne out by drill hole DDH 04-02 that intersected similar mineralization at over 60 metres deep. The outcroppings, dikes and float found in the area suggest that the intrusion is of some size and may represent the upper portion or an apophyse of a porphyry system. The juxtaposition of a mineralized intrusion and listwanite (structure) combined with the nearby brittle host rocks (porphyry) are geological factors that could well have played a role in the gold mineralization on the Elizabeth property.

9.0 GEOPHYSICAL PROGRAM

A magnetometer survey was conducted over the No.9 area and the southern portion of the Elizabeth grid (Figure 7). The objective was to determine whether a sufficient magnetic contrast was present to "map" the intrusive rocks. The rationale being that the intrusive would be less magnetic relative to the surrounding ultramafic rocks. The survey was entirely conducted by Lance Jenn using a Geometrics G816 proton magnetometer. Readings of the total magnetic field were collected at 12.5 metre intervals. Base station readings were taken at times throughout the day to monitor diurnal magnetic fluctuations. The amount of "drift" was very small (<10 nT) and therefore corrections were not necessary. The field data and magnetic plans are presented in Appendix I.

Magnetic relief over the surveyed grids was considerable (6000 nT) ranging from 53713 to 59700 nT. Nonstatistical categories were used to display the data as coloured grid points. The data shows some crude patterns. The westernmost and eastern extremities of the Elizabeth grid are magnetic highs and the area in between consists of moderate magnetic relief thought to reflect the feldspar porphyry intrusions Small areas of magnetic highs within the intrusive area are thought to reflect roof pendants of ultramafic rocks. The magnetic data in the No. 9 grid is considerably more varied however the central portion of the grid displays magnetic relief also suggestive of intrusive rocks. The highest magnetic readings, often found west of the listwanite, coincide with ultramafic rocks, especially serpentinite.

To fully assess the magnetic data it may be necessary to consider terrain corrections. This is beyond the scope of the writer and should be conducted by a professional geophysical contractor.

10.0 CONCLUSIONS

The 2004 exploration work on the Elizabeth property focussed on the drill testing of new zones of gold and base metal mineralization. One of these, the SW Vein Zone, represents a series of northeast trending; gold-bearing veins located several hundred metres from any of the historic gold zones. The SW Vein Zone is open along strike and depth and may represent the surface expression of a 2m + quartz vein intersected by underground drilling in 1946.

The SW Vein Zone has extremely good exploration potential. Several immediate drilling targets are evident and simply require the drilling of steeper angled holes from existing set ups. In some cases stepping back or moving west northwesterly may be needed to test the deeper extensions of the veins. Short spur roads will be necessary to test the northern projection of the SW Vein Zone. There is a good chance that the extent of this new discovery can be expanded considerably. The presence of favourable host rocks also suggests that the vein zone may extend southerly.

In the No.9 area, evidence of gold mineralization in soil and rock has now been traced for 550 metres and is associated with highly altered porphyry along the east margin of a large listwanite band. An intrusion distinctly different than those that host the known gold bearing veins occurs west of the listwanite. Copper and molybdenum mineralization and several narrow gold bearing veins are associated with this intrusion. It is possible that this mineralized intrusion may be the top or distal portions of a porphyry system.

11.0 RECOMMENDATIONS

The 2004 exploration program on the Elizabeth property has revealed the presence of very significant precious and base metal targets. These targets definitely warrant further work in 2004. Recommendations in approximate order of priority include the following:

- 1) Drill deeper angle holes along section for DDH 04-07/08, 04-09 and 04-10.
- 2) Drill test northern strike projection of the SW Vein Zone (i.e. drill sites north of DDH 04-07/08).
- 3) Drill one or more deep holes (300m+) to test SW Vein Zone to near the level of the lower adit.
- 4) Re-attempt drilling along Spur "F" to test southern strike projection.
- 5) If drilling at Spur "F" is successful continue tracing SW Vein Zone to Spur G and further south.
- 6) Drill test No.9 area to follow-up Cu-Mo "porphyry" mineralization (DDH 04-02) and gold mineralization east of listwanite (DDH 04-01).
- 7) Drill hole(s) along Spur E to test No.9 Extension Zone.
- 8) Trenching or diamond drilling of the Ella Vein Zone.

Respectfully Submitted By:

W. Gruenwald, P.Geo. August 15, 2004

APPENDIX A

ANALYTICAL DATA AND ANALYTICAL METHODS

ACME ANA. (ISO							TD.		852 E. GEC					VANCOU						1	PHON	e (60	4)2	53~3	158	FA	<u>x (604</u>	1) 253	-171	6
A A					<u>J</u> .	-Pac			old I 166 Albe													R								
SAMPLE#	Mo ppm	Cu ppm		Zn A ppm pp		Ni (pm pj		4n Fe om %t		-	Au Th ppb ppm	-		Sb Bi ppm ppm		Ca %		La ppm	Cr ppm	Mg %≭p		iB %≀ppm	A1 %	Na %			lg Sc m ppm p		Ga S ppm pp	
SI D 143001 D 143002 D 143003 D 143004	14.3 5.4 4.1	79.9 24.1	30.3 12.7 11.6	65 . 26 . 31 .	2 1324 2 1645 1 1094	.0 59 .4 69 .3 73	.0 76 .9 63 .6 82	<1 .04 56 3.97 39 3.92 28 3.63 34 4.35	85.1 <. 32.6 <.		<.5 <.1 6.5 <.1 6.2 <.1 6.9 <.1 1.9 <.1	157 67 34	<.1 .1	9.3 .8 8.2 3.0	20 11 14	1.19 .49 .34	.001 .001 .001	<1 46 <1 29 <1 53	8.5 1 9.0 1 82.8 1	3.21 3.86 1.69	32 .00 8 .00 9 .00	1 7 1 4 1 4	.21 .11 .22	.003 .003 .003	.06 .03 .02	.2 .2 .1 .2 .2 .1	1 <.1 < 6 7.2 1 4.6 < 6 7.2 < 9 8.4 <	.1 .13 .1 .61 .1 .11	1 <. <1 <. 1 <.	5 21 5 21 5 21 5 12
D 143005 D 143006 D 143007 D 143008 D 143009	1.0 12.5	21.3 535.2 15.9	6.6 13.7 4.7	22 . 55 . 24 <.	1 1366 5 368 1 1679	.8 75 .9 32 .0 81	.5 80 .8 48 .0 80	72 4.68 57 4.31 33 4.48 02 4.35 53 4.24	29.9 <. 352.1 98.9 <.	1 1 1 21 1	9.6 <.1 5.9 .5	109 444 81	.1 .5 .1	1.7 .1 8.3 .1 36.0 .2 34.9 <.1 1.5 <.1	14 19 17	.95 3.46 .70<	.001 .032 .001	<1 41 2 4 <1 47	8.01 9.1 5.01	4.89 5.00 5.64	16 .00 31 .00 15 .00	1 10 1 9 1 8	.13 .36 .14	.004 .015 .002	.03 .22 .03 1	.2 .2 .6 .2 .1 .3	9 7.0 < 5 6.0 < 1 7.7 <	.1 .39 .1 1.90 .1 .32	<1 <. 11. <1 <.	5 19 7 302 5 12
D 143010 D 143011 D 143012 RE D 143012 RRE D 143012	.1 .1 .2	7.2 12.8 12.4	9.1 3.5 3.9	31 19 < 18 <	1 1360 1 1446 1 1441	0.4 76 0.2 80 0.6 73	.2 80 .0 80 .7 80	10 4.04 38 4.28 05 4.28 03 4.26 22 4.40	6.8 < 29.9 < 28.6 <	$\begin{array}{c}1\\1&1\\1&1\end{array}$	2.8 <.1 5.6 <.1 5.7 <.1 2.3 <.1 2.3 <.1	. 24 . 49 . 50	.1 <.1	.5 <.1 1.1 <.1 3.1 <.1 3.1 <.1 3.3 <.1	16 16 17	.44< .74 .75	.001 .001 .001	<1 49 <1 37 <1 40	4.4 19 5.4 19 4.6 19	5.35 5.48 5.39	24 .00 1B .00 17 .00	1 5 1 12 1 10	.18 .11 .11	.002 .003 .003	.02 1 .03 1 .03 1	.3 .2 .6 .3 .4 .3	7 7.3 < 4 7.0 < 2 7.1 <	1 .08 1 .25 1 .26	<1 <. <1 <. <1 <.	5 4 5 14 5 15
D 143013 D 143014 D 143015 D 143016 D 143017	5.6 2.2 12.0	295.7 42.0 29.5	9.9 3.8 5.7	34 27 20	2 1313 1 1337 1 1434	1.1 79 2.2 69 1.8 82	.9 7 .2 8 .3 8	32 4.18 18 4.16	65.1 < 246.6 < 40.6 134.2 < 32.4	1 4 1 1 1 1	9.3 .1 2.5 .2 .7.0 <.1	205 2 190 574	.1 <.1 .1	5.1 .1 54.7 .5 9.3 .1 7.0 .2 1.7 .1	15 18 32	1.44 1.30 3.75	.001 .002 .001	<1 29 1 24 <1 81	01.7 1 8.8 1 8.1 1	2.58 3.27 2.95 1	14<.00 29<.00 57 .00	1 5 1 12 1 11	.11 .17 .23	.002 .006 .006	.06 1 .10 .05	.2 .3 .4 .2 .8 .6	5 5.5 < 6 6.9 < 4 7.6 <	1 1.17 1 .26 1 .46	<11. 1<. 1<.	2 52 5 11 5 21
D 143018 D 143019 D 143020 D 143021 D 143022	3.6 1.3 4.0	90.1 340.4	5.6 5.6 6.3	22	.9 30 .9 11 .9 15).2 5 1.7 7 5.2 15	.4 5 .3 5 .6 6	79 1.36 11 2.07 51 3.88	655.7 551.0 1214.2 1777.5 2601.4	.1 21 .3 44 .8 152	.6.0 .2 2.9 .4 27.5 .7	2 318 260 269	.1 .1 .2	21.6 .3 58.0 .2 166.1 .8	9 14 15	2.57 2.67 2.97	.025 .059 .100	1 2 3	7.9 8.7 8.1	1.15 1.20 1.39	22<.00 9<.00 12 .00 53 .00 22 .00	1 3 1 5 1 8	.13 .23 .32	.003 .003 .004	.14 .21 1 .28	.4 .2 .7 .3 .5 .8	5 4.9 < 3 2.1 < 3 2.4 < 6 3.5 3 3.0 <	.1 .33 .1 .57 .1 2.38	<1 <. 1 <. 1 1.	5 215 5 505 5 1575
D 143023 D 143024 D 143025 STANDARD DS5/AU-R	1.2 1.5	65.6 211.2	14.2 4.1	74 60 1 55 3 135	2 10 .0 10).1 11).1 10	.0 5 .6 4	93 2.98 23 2.51	551.0 1983.7 6212.0 19.8 6	.3 92 .3 187	25.5 .5 73.0 .4	5 150 122	.2 .1	31.7 7.6 159.6 .4	23 11	2.50 1.96	.086 .069	3 1 2	2.9 5.8	1.18 .81	45 .00 11 .00	19 17	.52 .31	.011 .005	. 26 . 24	.9.3 .3.8	7 5.7 5 4.3 < 5 2.6 < 7 3.4 1	.1 1.25 .1 1.31	2 . 11.	1 513 8 1059 1 2094 0 487

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE PULP AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data We FA

DATE RECEIVED: JUN 26 2004 DATE REPORT MAILED: JUN 26 2004

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

. L				<u>, -</u> ,			14	40 -	116	6 AL	bern	i St	••	Vanc	C T	er B	C Vé	SE 37	eth 3	Submi	tted	by: R	ob Mo	intgo	mery		Fay	e 1							
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %		La ppm	Cr ppm	-	-	Ti %			Na %			T1 ppm		Au* ppt	samp1	le (g
SI D 143026 D 143027 D 143028 D 143029	5 5	4 336 150 374 1505	12 6 3	78 46 59	1.7 3.4 .6	21 22 14	17 13 14	740 555 628	4.30 2.76 3.09	3710 5890 327	\$ \$ \$	<2 <2 <2	<2 <2 <2	181 179 190	<.5 <.5 <.5	33 58 23	<u> </u>	59 14 56	.06 3.29 2.59 2.87 3.00	.139 .094 .093	6 3 6	29 12 26	<.01 1.67 1.14 1.45 1.47	7 51 4 12 5 109	.01 <.01 <.01	4 12 8	.84 .36 .88	.01 .02	.30 .32 .27	<2 <2 <2	<5 <5 <5	<1 2 1	<.8 1929.4 1801.0 91.0 1677.7	4.7) .8) 4.3	33 37
D 143030 D 143031 D 143032 D 143033 D 143033 D 143034	3 95 8	115 270 410	8 4 9	39 46 46	<.3 .4 .9	12 11 13	10 11 10	533 481 497	2.55 2.62 2.67	1591 1057 272	% % %	<2 <2 <2	<2 <2 <2	196 144 174	<.5 <.5 <.5	17 28 45	\$ \$ \$ \$ \$	29 44 64	3.14 2.92 2.69 2.88 2.25	.079 .081 .075	6 6	15 21 28	1.37 1.26 1.22 1.30 1.21	5 198 2 104 9 193	<.01 .03 .07	9 13 7	.59 76 1.01	.02 .02 .03	.27 .28	<2 <2 <2	<5 <5 <5	1 <1 5	293.7		18 51 37
D 143035 D 143036 D 143037 D 143038 D 143039	15 13 32	180 50	8 7 9	41 46 17	<.3 <.3 <.3	12 12 1952	10 9 100	355 361 665	2.47 2.51 4.55	239 17 12	& & &	<2 <2 <2	2 2 2 2	86 75 16	<.5 <.5 <.5	5 <3 <3	ຽ ຊ ຊ	61 71 33	1.87 .44	.084 .081 .003	4 4 <1	28 31	.97. 1.03 16.88	7 114 3 148 3 2	.10 .13 <.01	6 4 158	1.17 1.23 .35	.04 .04 <.01	.18 .12 .03	<2 <2 <2	<5 <5 <5	<1 1 1	162.0	5.7 5 3.0	99 70 06
D 143040 RE D 143040 RRE D 143040 D 143041 D 143042	115 125 727	847 819 2095	8 12 24	64 65 108	.7 .8 1.7	571 571 47	36 37 16	282 281 375	2.17 2.15 2.61	27 25 28	\$ \$ \$ \$	∾ ∾ ∾	<2 <2 <2	62 62 170	<.5 <.5 .9	<2 <2 <2	\$ \$ \$	86 85 186	1.47 1.44 3.97	.050 .048 .098	2 3 5		3.17 3.16 1.98	7 52 5 52 8 60	.11 .11 .16	7 9 <3	97. 95. 1.00	.02	.35 .34 .37	<2 2 <2	<5 <5 <5	<1 <1 <1	₹.> ₹.>	;	-
D 143043 D 143044 D 143045 D 143046 D 143047	343 335 637		51 37 34	73 141 113	1.5 3.0 1.5	59 78 133	15 26 24	415 643 582	2.60 4.69 4.26	1513 2937 1478	62 8 12	<2 <2 <2	<2 <2 <2	130 149 159	<.5 1.0 .5	18 21 9	22 11 7	179 322 300	4.97	.013 .078 .125	4 7 6		3.80	3 21 1 53) 48	.08 .14 .16	ଏ ୧ ୯	1.07 1.91 1.84	<.01 .02	.15 .36 .36	<2 2 3	<5 <5 <5	<1 <1 <1	1.0 3.4 .7	2.4 2.6 2.6 2.5 3.9	51 53 54
D 143048 D 143049 D 143050 D 143051 D 143052	3 3 3	54 49 43 46 21	6 11 3	20 45 18	<.3 <.3 <.3	2390 45 2080	115 16 101	904 654 728	4.87 3.61 4.70	21 5 12	% % %	<2 <2 <2	<2 <2 <2	35 84 26	<.5 <.5 <.5	የ	<3 <3 4	15 93 31	1.19 3.98 .74	.005 .088 .004	<1 4 <1	712 344 55 902 674	17.65 4.21 16.44	5 1 8 2	<.01 .11 .01	262 5 185	.25 2.87 .43	<.01 <.01 .03 <.01 <.01	<.01 .06 .02	2 <2 <2	<5 <5 <5	<1 <1 <1	<.5 <.5 <.5	5 3.9 5 3.5 5 2.1 5 3.5 9 3.2	52 13 55
D 143053 D 143054 D 143055 D 143056 D 143057	19 22 19	240	7 6 7	35 37 33	.4 .4 .3	28 23 21	16 17 12	272 307 333	3.62 3.60 3.14	185 903 2206	\$ \$ \$ \$	\$ \$ \$	<2 <2 <2	272 229 227	<.5 <.5 <.5	34 16 20	5 0 0	19 23 22	2.13	.084 .082 .081	3 4 4	13 10 12	1.22) 23 5 23 2 20	<.01 <.01 <.01	10 9 9	.40 .37 .35	.03 .03	.22 .19 .19	<2 <2 <2	<5 <5 <5	<1 <1 <1	135.3 120.8 131.7	4.0 4.8 4.5 4.5 4.3	39 58 50
STANDARD DS5/AU-R GROUP 1D - 0.50 GM (>) CONCENTRATION ASSAY RECOMMENDED - SAMPLE TYPE: COF Samples beginning	A SAM Exce For Re R1	PLE EDS ROCK 50 6	LEAC UPPE AND OC	HED R L COI	WIT IMIT RE S AU*	H 3 S. AMPL IGNI	ML 2 Some ES 1 TED,	P-2-2 MII F CL	2 HCL IERAL J PB	- HNO S MA Zn A Ache	3-H2 Y BE S > D, A	O AT PAR 1%, NALY	95 TIA AG ZED	DEG LLY > 30 BY	G. C ATT PPI ICP	FOR ACKE M & -MS.	ONE D. AU > (15	E HOL REFF ► 100 5 gm	JR, DI RACTOR DO PPE) to) gr/	10 ML	, ANA C SAM	LYSE	D BY	I CP-	·ES.				<5		473.5 81 1	5/2	2

	A
ACHE	ANALYTICAL

J-Pacific Gold Inc. PROJECT Elizabeth FILE # A402576

ACHE ANALYTICAL																																	ACHE A	NALYTICAL
SAMPLE#	Mo C	u i	РЬ	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	SЬ	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	κ	W	τι	Hg	Au*	Sample
	bbu bb	m p	ow b	mqc	ppm	ppm	ppm	ppm	%	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppb	kg								
D 143058	26 34	6	16	44	.3	20	17	306	3.66	87	<8	<2	<2	266	<.5	27	4	22	2.02	.079	4	10	1.37	20	<.01	7	.36	.03	. 19	<2	<5	<1	216.6	4.59
D 143059	14 34	6	12	38	.5	25	16	285	3.29	57	<8	<2	<2	258	<.5	19	6	19	2.22	.053	3	7	1.42	19	<.01	5	.32	.03	.19	<2	<5	<1	99.1	3.93
D 143060	10 23	6	5	30	<.3	29	14	423	3.26	57	<8	<2	<2	286	<.5	15	5	24	2.43	.063	4	10	1.64	22	<.01	7	.39	.02	.22	<2	<5	<1	118.1	3.73
STANDARD DS5/AU-R	14 14	4 1	25 1	134	<.3	26	12	751	3.01	18	<8	<2	3	46	5.7	5	6	62	.75	.094	12	191	.69	138	.10	16	2.00	.04	.15	5	<5	<1	479.8	•

44

Data_/FA

Page 2

Sample type: CORE R150 60C.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1 43062 66 0.6 0.6 1.4 29 1.1 1.1 29 75 44 1.1 7 1.1 7.7 2.9 75 44 1.1 7 1.1 7.6 8.7 75 1.1 7 4 1.5 7.7 1.5 7.6 7.6 7.7 <t< th=""><th>ĂČ</th><th>:ME /</th><th>ANAJ ISO</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>5.</th><th></th><th>85</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>. v</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>PH</th><th>one</th><th>(604</th><th>4)2</th><th>53-</th><th>315</th><th>8 1</th><th>TAX</th><th>(604</th><th>1)25</th><th>3-1</th><th>716</th><th></th></t<>	ĂČ	:ME /	ANAJ ISO										5.		85								. v										PH	one	(604	4)2	53-	315	8 1	TAX	(604	1)25	3-1	716	
pp pp pp pp pp pp pp k k pp k	£	A							J	<u>- P</u>	<u>ac:</u>	<u>if:</u>	<u>Lc</u>	<u>Go</u>	1 <u>d</u>		nc	•	PR	oJ	EC	T.	Eli	za	ıbe	th		Fi.	le	#		026	15		Paç	ge	1						Å		•
<pre>14366 422.8 756.4 8.8 47 1.4 35.7 8.5 273 4.01 83.4 4 152.3 .9 556 .3 89.7 1.1 17 2.91.001 2 7.6 2.03 33.001 13 .60 100 .31 .8 .163.2 1.2.76 15.3 198 41360 23 41.448.2 50 010 4.482 50 010 .31 .40 402 2 .2.18 51.1 .37 2.9 75 4 14366 3.4 21.8 1.1 17 .1000.3 6.5 700 .294 645.2 <1 1.9 45 1.5 14 1.4 1.9 0.21 44.82 50 010 1.3 .30 70.0 3 .3 05.5 5.1 .63 11 .10 14.49 02 14396 43.2 11.1 17 .1000.3 6.5 700 .294 645.2 <1 1.9 45 1.5 14 1.4 1.9 0.2 4.8 2.9 010 1.0 1.4 707 .3 0.8 015 1.0 1.71 0.7 5 1.5 21 4.4 1.5 2.6 5 1.4 7. 7 1.5 1.5 114 1.4 1.9 01.0 1.4 707 .3 0.8 015 1.0 1.71 0.7 5 0.1 25 143064 29.1 18.5 0.2 8 642 1.1 31.5 11.2 151.2 56 235.2 .2 6 1.1 14 1.4 1.4 1.2 6 0 96 .077 4 16.8 01 4 .80 9 0.6 20 151.30 .070 13 .8 1.0 71.8 <1.8 02 143065 11.3 320.7 2.2 8 0.2 1 98 10 966 .2 7 .71.2 40 .1 5 4. 3 70 12.0 06 10.4 .81 30 .602 16 1.9 .070 13 8.4 .071.8 <1.802 8 1.2 4 143069 23.3 165.1 3.2 9 51 .2 1.4.7 10.7 220 .60 198.6 .2 7 .71.2 40 .1 5 4. 3 70 12.0 06 6 104.8 13 0.602 16 1.9 .070 13 8.4 .071.8 <1.802 8 1.1.4 143099 23.3 165.1 3.7 48 1.1 551 8.2 45 3.1 2 <5 .5 9 155 <1 2 <1.4 6 16 54 .3 70 12.1 40 52 1.408 50 16 1.9 .003 1.4 1.0 22 0.2 4.3 24 14 10 55 12 1.2 1.2 1.4 75 1.8 54 1.3 3 28 17.7 15.0 2 4 .5 .6 9 1.2 4.4 1.0 94 4.1 0 2.1 4.0 12 .0 24 7.7 12 4.5 .9 105 <1.2 1.4 10 4.5 10 21.0 10.0 31.4 1.0 22 0.4 1.4 10 4.5 1.3 1.2 4.4 10 4.5 1.3 7 1.0 2 14 3070 13.3 4.5 1.2 24 8.1 1.5 11 3.5 81 8.4 3 5.1 1 2 <5 .5 11 12 .2 0 4 76 12.1 20 4 76 12.1 09 24 1.0 21.4 10 10 10 1.0 21.4 1.4 10 4.5 1.3 11 1.2 0 1.4 1.4 10 1.5 11 1.2 0 1.4 1.4 10 1.5 1.3 1.0 11 1.0 2 0.4 2.4 1.2 1.4 10 4.4 10 2.5 1.3 0.4 11.1 1.0 2 0.4 2.4 1.1 20 4 77 12.4 10 10 1.1 1.2 0 4 77 1.1 0.0 1.0 1.0 1.2 1.4 1.4 10 4.5 1.0 9 1.1 07 1.1 1.2 0 4.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4</pre>	AMPLE#							-																																					ample kg
14366 33.2 087, 2.6 50, 2. 19.8 10.9 166 2.68 1145, 7.3 1.2.1.2 31 < 1.5.8, 6.75, 46.077	143062 143063		22.8 66.6 3.4	755. 206. 21.	4 0 8	3.8 2.6 1.1	47 51 17	1.4 .4 .1	35 229 1060	.7 .8 .3	26.5 21.7 56.3	273 361 700	4.01 4.18 2.94	8 30 85	3.4 0.3 4.2 ·	.4 .3 <.1	152 57 8	3 4 1 8 <	.9 9 .1 1 .1 7	536 179 756	.3 <.1 <.1	89.7 58.0 45.7	1.1 .4 .4	17 34 15	72.9 41.0 54.2)1 .()4 .(23<.(001 032 001	2 3 <1 4	7.6 41.8 39.6	2.03 4.82 8.76	3 33 2 29 5 8	<.00 .00 .00	l 13 L 14 L 3	. 50 . 49 . 33	.010 .021 .007).31 .24 .03	8. 2.	8 .16 2 .13 8 .05	3.2 5.1 5.5	.1 .1 <.1	2.76 .37 .63	15 2 1	.3 1 .9 .5	198 75 13	4.57 4.67 4.57 3.03
143071 5.8 102.1 3.7 48.1 15.4 10.9 366 2.7 15.0 .2 <5.6) 143066) 143067) 143068		32.3 11.3 28.6	208. 198. 307.	7 1 4	2.6 2.9 4.1	50 51 48	.2 .2 .2	19 14 14	.8 .7 .6	10.9 10.7 12.9	166 220 243	2.68 2.60 2.72	114 119 14	5.7 8.6 6.2	.3 .2 .3	1 2	21 71 11	.2 .2 .0 :	31 46 121	<.1 .1 .1	5.8 5.4 2.0	.6 .3 .4	75	5.4 01.2 52.1	16 .0 20 .0 13 .0	077 069 075	4 6 5	16.8 10.4 12.1	.9: .8: .9(l 46 l 30) 24	.08 .06	9 15 2 16 0 32	1.13 1.09 1.03	.073 .070	8 .13) .13 5 .11	$1.3 \\ 8.4 \\ 1.1$	3 .15 07 02	1.7 1.8 2.0	<.1 <.1 <.1	.82 .80 .92	81 81 81	.2 .4 .5	3 5 4	3.32 3.31 3.81 4.06 4.32
143076 59.1 141.5 3.9 50.1 7.2 10.3 212.2 54 164.6 .3 .5 9 48 1.2 .5 73 1.59 .079 4 9.9 .73 62 .130 13.3 1.32 0.77 .12 7.04 1.6 .1.1 -2.2 4.2 .1.1 1.2 .22 1.5 .33 .3 .5 1.1 .5 .6 .5 .5 .5 .6 .5 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .5 .6 .7 .6 .7 .2 .4 .0 .7 .6 .1 .7 .6 .1 .7 .6 .1 .7 .6 .1 .7 .7 .6 .7 .2 .1 .1 .2 .1 .1 .7 .6 .1 .7 .7 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1<) 143071) 143072) 143073		5.8 34.2 36.2	102. 99. 217.	1 5 0	3.7 2.7 3.3	48 54 47	.1 .1 .2	15 65 15	.4 .8 .1	10.9 12.8 9.6	386 648 289	2.77 2.77 2.36	1 9 5 48	5.0 5.0 6.8	.2 .2 .2	< < 12	5 5 4 1	.6 .6 .0	72 93 94	<.1 <.1 <.1	1.3 2.6 9.0	.6 .4 .4	76 80 55	6 1.2 0 2.8 5 2.0	29 . 33 .)8 .	076 074 090	4 5 6	37.1 69.1 9.1	1.1 2.1 .9	7 40 7 29 9 32	.17	59 7347	1.29 1.58 .89	.075 .055 .054	5.11 5.10 1.15	44.(1.3 1.2	<pre>><.01 > .02 2 .04</pre>	2.6	<.1 <.1 <.1	.36 .43 .75	8 < 9 1 5 1	.5 .0 .0	2 2 21	3.51 4.69 5.87 4.41 4.75
40.6 20.2 9 51 1 10.5 10.0 191 2.6 28 28.2 12.4 29.1 27.2 72 131.078 4 9.9 .81 69 .147 312 1.34 .089.1 7.4 .03 1.7 1.6 88 1.0 3.4 51.2 55 .1 3.3 .3 .7 1.87 .077 5 26.2 1.29 42 .16 35 1.7 .06 1.3 .1 .7 .9 .9 .6 .03 .1 .7 .6 1.3 .7 .6 1.3 .7 .6 1.1 .7 .6 1.1 .7 .6 .1 .7 .6 .7 .9 .2 .1 <) 143076) 143077) 143078	1	59.1 255.9 102.4	141. 301. 234.	.5 .0 .0	3.9 3.9 2.7	50 55 43	.1 .2 .1	7 11 8	.2 .0 .5	10.3 11.3 10.2	212 269 166	2.54 3.36 2.43	16 5 25 3 3	4.6 1.6 5.6	.3 .5 .3	v v v	.5 .5 1 .5 1	.9 .1 .0	48 53 39	<.1 <.1 <.1	2.7 3.5 1.7	.5 .3 .4	73 86 67	3 1.5 6 2.0 7 1.1	59.)1.	079 104 077	4 5 3	9.9 13.7 10.2	.7: 1.0 .7	8 62 L 41 L 48	.13 .13	0 133 3 19 9 190	1.32 1.29 1.16	.077 .074 .063	7.12 .12 .11	7. 9. 1.2	04 .04 .06 .06 .02	1.6 2.5 1.3	<.1 <.1 <.1	.57 1.11 .76	8 1 9 2 6 1	.1 .5 .7	<2 2 <2 <2 <2 <	4.58
143083 27.4 204.5 5.8 52 .4 10.2 12.3 319 2.91 521.4 .2 131.3 1.0 98 .1 5.1 1.0 53 2.40 083 5 9.4 .83 15 .040 10 1.10 .031 .21 .8 .04 1.9 <.1 1.12 61.3 163 4	0 143079 0 143080 143080A P	VLP	40.6 29.0 35.5	202 269 107	.9 .1 .5 1	2.8 3.0 6.0	51 52 123	.1 .2 .5	10 29 30	.5 .2 .3 1	10.0 12.4 .06.1	191 291 616	2.63 2.72 3.34	3 23 2 22 1 326	8.9 9.0 1.4	.3 4. 2.2	< < 347	.51 .51 .61	.2 .2 .3	44 55 83	<.1 <.1 .6	2.7 3.3 6.8	.2 .3 18.7	2 72 3 77 3 34	2 1.3 7 1.8 4 5.2	31. 37. 22.	078 077 110	4 5 10	9.9 26.2 12.1	.8 1.2 .1	l 69 9 42 7 15	.14 2.11 5.03	7 312 5 35 8 33	1.34 1.47 .79	.089 .063 .061).17 3.15 1.03	2.9 2.9	03 04 08 08	1.7 2.2 1.3	<.1 <.1 <.1	.66 .85 1.17	81 91 39	.0 .8 .9 5	3 2 500	4.72 6.50 - 4.30
143088 33.0 257.3 5.4 55 2 13.9 13.4 214 2.91 160.9 .1 18.3 1.0 59 < .1	0 143083 0 143084 0 143085	:	27.4 36.1 85.1	204 249 216	.5 .5 1 .1 1	5.8 3.9 3.8	52 62 75	.4 .8 1.1	10 12 10	.2 .4 .4	12.3 14.1 14.9	319 367 525	2.91 3.17 3.66	l 52 7 24 5 129	1.4 0.0 0.4	.2 .3 .3	131 147 277	.31 .5 .8	.0 .9 .8	98 205 250	.1 .2 .2	5.1 5.4 12.6	1.0 2.7 1.4) 53 50 20	32.4 02.5 62.9	40. 56. 94.	083 080 099	5 5 4	9.4 8.0 4.9	.8 .8 .9	3 19 0 28 7 19	5.04 5.02 5.00	0 10 0 8 2 8	1.10 1.08 .81	.031 .028 .010	.21 3.27 .26	8. 9.	3.04 5.02 2.04	1.9	<.1 <.1 <.1	1.12 1.40 1.88	61 51 31	.3 1 .5 2 .6 3	163 208 394	4.48 4.80 4.61 3.99 4.95
Standard is STANDARD DS5/AU-R. GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.	0 143088 0 143089 0 143090		33.0 13.4 11.5	257 174 35	.3 .7 .8 5	5.4 4.4 9.2	55 57 4	.2 .3 1.5	13 8 1	.9 .3 .9	13.4 11.8 .8	214 270 62	2.91	l 16 l 43 3 20	0.9 0.4 6.9	.1 .1 <.1	18 45 38	.31 .11 .5	0 0 .1	59 57 22	<.1 .1 .1	3.4 9.1 29.0	.5 .6 44.3	5 69 5 73	91.6 31.8 1.8	57. 35. 35.	068 075 002	4 4 <1	12.0 11.0 4.9	.8 .9 .0	0 33 1 19 4 5	8.09 .07 5.00	3 13 5 13 1 2	1.23	.070 .055 .006).13 5.13 5.05	2. 1.(2.1	02 .04 .10	2.3	<.1 <.1 <.1	.92 .71 .23	71 8 <1	.4 .7 .7	23 64 49	4.56 4.28 2.40 .71 4.26
GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.	STANDARD	DS5	12.5	144	.72	4.1	133	.3	24	.1	11.8	3 773	2.96	51	.9.2	5.8	42	.0 2	2.7	49	5.6	3.9	6.3	8 6	1.7	74.	093	12 1	.82.9	. 6	3 137	. 09	9 18	2.08	. 036	5.15	4.8	3.20	3.4	1.1	. 06	64	.8 4	496	
Data FA DATE RECEIVED: JUN 9 2004 DATE REPORT MAILED: //U.N.L.1.7/0.4.	G (GROUP (>) CC - SAMF	1DX DNCEN PLE T	- 0. ITRAT YPE:	50 10N	GM S EX RE	SAMP CEED R150)s uf) 60(PPER C	LIN	1ITS J**	. s GROL	iome ip 3 B	MINE - 3	RAL	S M/ O GI	AY B 1 SA	E P MPL	ART E A	I AL NAL	LY A YSIS	ATTAC 5 BY	FA/I	CP.	EFRA	СТО	RY A	ND (GRAPI	HITI	C SA	MPLE	SED S CA	BY IC N LIN	CP-MS 11T A	U so	LUBI	LITY	(8)	119	5 0	512 1	7	CER	
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.							-							:	JUN	9	2004	1	DA:	TE	RE	POR	тм		LED	Ŭ	<i>.</i> <u>.</u>	in l	2.[]	?/.0	?. 	•••	**	anal	vaic	a=1	.,		HS		Clare		Leon		

J-Pacific Gold Inc. PROJECT Elizabeth FILE # A402615

ACHE ANALYTICAL																																						ACI	FE ANAL	LYTICAL
SAMPLE#		Mo pm	Cu ppm			Zn A om pp		Ni pm	Со ррт	Mn ppm	Fe %	As ppm								V ppm	Ca %	р %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	A1 %	Na %	K %		Hg ppm	Sc ppm	T1 ppm		Ga S ppm pp			ample kg
D 143092 D 143093 D 143094 D 143095	44 11 27	.1 .0 .8	137.4 83.8 132.2	5.0 2.4 2.8	D 2 4 2 B 4	27 . 25 . 43 .	1 9 1 6 1 11	.5 .8 .3	6.6 6.2 9.0	198 160 199	3.08 1.82 1.87 2.28	90.2 85.2 117.2	.1 .1 .1	4.8 1.1 1.9	.8 7. 1.0	36 30 35	<.1 <.1 <.1	3.3 1.1 1.4	3 2.4 2 4	33 32 61	1.41 1.43 1.37	.094 .185 .085	5 7 4	15.2 9.8 12.5 15.6	.50 .40 .74	62 14 21	.040 .063 .108	13 41 47	.53 .71 .96	.035 .043 .057	.10 .06 .08	1.7 2.5 2.6	.03 .02 .04	1.6 1.0 1.6	<.1 <.1 <.1	.67 .53 .59	72 31 4 71	.2 .0 .9 .1	2 3 3	4.48 4.57 3.77 4.45
D 143096 143096A PULP STANDARD DS5/AU-F	2	2.0	92.9	2.0) 4	44.	1 13	.0 :	13.4	480	3.38	1.3	.3	1.0	.8	101	<.1	2	? <.1	109	1.82	.065	3	12.5 28.8 192.2	1.09	118	. 156	<1	3.12	.247	.62	.1<	.01	3.7	.1	.85 .09 <.05		.1 .5 2 .9 4	95	4.29 - -

Sample type: CORE R150 60C.

44

Page 2

ACME	ANAI ISO										GI	EOC:	HEN	41C2	ΥL.	AN	ALY	SI		ER'	TIFIC	ATE			HONI	e (6	04)2	53	-31	58	Fax	(604) 25:	-1 [.]	716	
								<u></u>	Pac	ifi	<u>c (</u>										ile # V6E 323		02	788											.	•
SAMPLE#	Mo ppm	Cu ppm		Zn ppm p	•	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm		Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	-	La Cr ppm ppm) Ba Sippin		B ppm	A1 %	Na %	K %		•	Sc T prn ppr	-	Ga Sipprnij	Se A opm		Total kg
SI 143063A 143063B 143063C 143063D	13.1 28.2	.3 47.2 24.7 42.2 354.6		37 36 51	.2 1	<.1 117.7 250.5 922.3 45.7		829 820	3.23 3.81 3.26	<.5 599.8 580.5 880.9 172.6	.1 .1 .1	15.0 23.0 76.9	<.1 .3	784	<.1 / <.1 /	24.3 43.0 47.6	.2 .7	18 18	.06<. 3.15 . 2.57<. 6.39 . 3.35 .	001 001 001	<1 301.2 <1 292.2 1 152.2	12.64	l 18 I 19 B 15	2<.001 3<.001 3<.001 5<.001 5<.001	8 5 7	.13 .10 .13	.314< .010 .005 .003 .026	.07 .05 .11	.2 .4 1.1	.09 4 .09 5 .08 4	.1 <. .9 <. .8 <. .5 <. .1 <.	.28 .47 .36		<.5 <.5 .6	52 69	4.32 4.74 4.85 2.26
143063E D143097 D143098 RE D143098 RRE D143098	17.7 4.2 4.1	18.8 84.0 115.6 122.1 118.9	.4 .3 .3	40 < 42 < 43 <	:.1 2 :.1 2 :.1 2		90.6 98.8 102.2	704 788 785	4.44 5.21 5.24	479.1 5.1 1.5 1.4 .7	<.1 .1 .1	1.2 <.5	<.1 <.1 <.1	4 · 4 · 4 ·	<.1 <.1 <.1	70.9 .1 .1 .1 <.1	.2	14 7 23 23 22	.43 . .74 . .73 .	001 002 002	<1 264.7 <1 181.7 <1 745.7 <1 766.3 <1 694.8	22.60 20.13 20.27	$\begin{array}{c} 1 \\ 3 \\ 7 \\ 1 \end{array}$	<pre>>.001 <.001 .002 .002 .002 .002</pre>	146 101 111	.04 .20 .20	.002 .002< .002< .002< .002<	.01 .01 .01	.3 .5 .5	.04 3 .03 7 .03 7	.4 <. .5 <. .2 <. .3 <. .9 <.	90 1.26 1.24		.5 .7 <.5	<2	4.17 3.85 4.00 -
D143099 D143100 D143101 D143102 D143103	2.2 15.7 6.3	54.5 56.0 73.9 15.1 103.7	.1 3.2 2.6	39 < 48 51	.1 2 .3 1 .1 1	2131.3 2338.7 .065.4 .281.2 319.8	110.1 55.0 64.3	970 1189 751	5.36 3.71 3.89	1.9 1.9 498.6 379.6 177.7	.1 .1 .1		<.1 .2 .1	-	<.1 <.1 : <.1 :	22.5	.1 .3 .4	15	.06<. 5.08 . 1.44 .	001 002 001	<1 159.4 <1 232.5	21.83 10.72 14.32	3 <1 2 18 2 20	.003 .001 .001	198 6 7	.18 .12 .13	.001< .001< .004 .005 .003	.01 .08 .07	.3 .6 .7	.03 8 .32 3 .11 6	.7 <. .9 <. .1 <.	.44		.5 .8 <.5	10 253 140	2.54 2.39 4.53 5.01 1.38
D143104 Standard DS	- · ·	17.2 138.2			.11 .3	.353.8 24.8				494.7 18.5		-									<1 251.4 12 187.2			8<.001 5 .095									<1 <	<.5 1.9		6.81

Standard is STANDARD DS5/AU-R.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 15 2004 DATE REPORT MAILED: June 25/04 FA _____ Data

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

J-Pacific Gold Inc. File # A402859 Page 1 1440 - 1166 Alberni St., Vancouver BC V6E 323

47 .2 478.5 15.3 384 2.83 3 34 .3 173.9 12.7 351 2.51 1 31 .3 109.7 14.7 378 2.50 1 37 .2 18.5 11.1 325 2.45 31 .2 40.3 9.8 294 2.14 34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1293.2 73.6 796 3.92 2 74 .1 148.9 16.6 572 3.20 1 .5 .2 24.9 12.4 338 2.80 1 .4 .3 19.6 12.0 285 2.88 1 .2 24.9 12.4 338 2.80 1 1303.5 69.3 717 3.77 2 .5 .1 1303.5 69.3 717 3.75 4 4 1 28.6 <t< th=""><th>ppm ppm ppm ppm ppm ppm .6 <.1 <.5 <.1 1 72.5 .1 141.6 .8 197 44.7 .1 130.9 .7 529 95.9 .2 129.0 .7 438 86.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 <1 26.8 .1 174 83.8 .2 13.1 1.2 177 95.1 .2 232.3 1.0 258 66.1<!--</th--><th>Cd So B1 V Ca P La Cr Mg Ba T1 B A1 Na K M Hg Sc T1 S Ga Se Au** Sample ppm ppm ppm ppm ppm ppm ppm S s S ppm ppm<</th></th></t<>	ppm ppm ppm ppm ppm ppm .6 <.1 <.5 <.1 1 72.5 .1 141.6 .8 197 44.7 .1 130.9 .7 529 95.9 .2 129.0 .7 438 86.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 <1 26.8 .1 174 83.8 .2 13.1 1.2 177 95.1 .2 232.3 1.0 258 66.1 </th <th>Cd So B1 V Ca P La Cr Mg Ba T1 B A1 Na K M Hg Sc T1 S Ga Se Au** Sample ppm ppm ppm ppm ppm ppm ppm S s S ppm ppm<</th>	Cd So B1 V Ca P La Cr Mg Ba T1 B A1 Na K M Hg Sc T1 S Ga Se Au** Sample ppm ppm ppm ppm ppm ppm ppm S s S ppm ppm<					
<1 <.1 .1 .1 <.1 <1 .02 47 .2 478.5 15.3 384 2.83 2 34 .3 173.9 12.7 351 2.51 1 31 .3 109.7 14.7 378 2.50 1 37 .2 18.5 11.1 325 2.45 31 .2 40.3 9.8 294 2.14 34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1293.2 73.6 796 3.92 9 74 .1 148.9 16.6 572 3.20 1 51 .2 24.9 12.4 338 2.80 46 .3 19.6 12.0 285 2.88 1 51 .1 230.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.35 1 21 <1 1117.2 64.2 701 3.67 4 22 <.1 1148.7 64.7 717 3.75 4	.6 <.1 <.5 <.1 1 72.5 .1 141.6 .8 197 744.7 .1 130.9 .7 529 95.9 .2 129.0 .7 438 86.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 <1 26.8 .1 174 83.8 .2 13.1 1.2 177 95.1 .2 232.3 1.0 258 66.1 <1 24.3 1.0 258	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
47 .2 478.5 15.3 384 2.83 3 34 .3 173.9 12.7 351 2.51 1 31 .3 109.7 14.7 378 2.50 1 37 .2 18.5 11.1 325 2.45 31 .2 40.3 9.8 294 2.14 34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1293.2 73.6 796 3.92 2 74 .1 148.9 16.6 572 3.20 1 .5 .2 24.9 12.4 338 2.80 1 .4 .3 19.6 12.0 285 2.88 1 .2 24.9 12.4 338 2.80 1 1303.5 69.3 717 3.77 2 .5 .1 1303.5 69.3 717 3.75 4 4 1 28.6 <t< td=""><td>72.5 .1 141.6 .8 197 44.7 .1 130.9 .7 529 95.9 .2 129.0 .7 529 95.9 .2 129.0 .7 438 96.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 <1</td> 26.8 .1 174 83.8 .2 13.1 1.2 177 05.1 .2 232.3 1.0 258 66.1 <1</t<>	72.5 .1 141.6 .8 197 44.7 .1 130.9 .7 529 95.9 .2 129.0 .7 529 95.9 .2 129.0 .7 438 96.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 <1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
34 .3 173.9 12.7 351 2.51 1 31 .3 109.7 14.7 378 2.50 1 37 .2 18.5 11.1 325 2.45 31 .2 40.3 9.8 294 2.14 34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 33 .3 36.0 13.0 322 2.51 34 .1 1293.2 73.6 796 3.92 2 74 .1 148.9 16.6 572 3.20 1 .5 1 .2 24.9 12.4 338 2.80 46 .3 19.6 12.0 285 2.88 1 .5 .1 1303.5 69.3 717 3.77 2 .50 .1 131.6 9.7 490 2.46 1 .6 .1 28.6 9.1 326 2.3 1	44.7 .1 130.9 .7 529 95.9 .2 129.0 .7 438 96.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 92.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 .1 26.8 .1 174 83.8 .2 13.1 1.2 177 05.1 .2 232.3 1.0 258 66.1 <.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
31 .3 109.7 14.7 378 2.50 1 37 .2 18.5 11.1 325 2.45 31 .2 18.5 11.1 325 2.45 31 .2 40.3 9.8 294 2.14 34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1293.2 73.6 76 572 3.20 1 74 .1 148.9 16.6 572 3.20 1 - 51 .2 24.9 12.4 338 2.80 - 46 .3 19.6 12.0 285 2.88 1 50 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.36 1 21 .1 177.2 64.2 701	b5.9 .2 129.0 .7 438 36.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 36 16.9 .3 86.7 .9 370 36.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 56.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 .1 26.8 .1 174 33.8 .2 13.1 1.2 177 05.1 .2 232.3 1.0 258 66.1 <.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
37 .2 18.5 11.1 325 2.45 31 .2 40.3 9.8 294 2.14 34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1293.2 73.6 796 3.92 9 74 .1 148.9 16.6 572 3.20 1 51 .2 24.9 12.4 338 2.80 1 46 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.36 1 12 <1	86.5 .3 231.1 1.0 286 49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 96.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 <1	<.1					
31 .2 40.3 9.8 294 2.14 34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1293.2 73.6 796 3.92 5 74 .1 148.9 16.6 572 3.20 1 51 .2 24.9 12.4 338 2.80 1 46 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.36 1 46 .1 28.6 9.1 326 2.36 1 46 .1 28.6 9.1 326 2.36 1 21 <11117.2	49.5 .2 98.0 1.0 354 31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 296 07.2 .2 175.9 1.0 296 07.2 .2 175.9 1.0 296 07.2 .2 175.9 1.0 296 07.2 .2 175.9 1.0 296 05.1 .2 232.3 1.0 258 66.1 <.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1233.2 73.6 796 3.92 4 74 .1 148.9 16.6 572 3.20 1 .1 .2 24.9 12.4 338 2.80 1 .6 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 4 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 .1 326 2.35 1 21<	31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 27.5 1.0 296 07.2 .2 175.9 1.0 296 07.2 .2 175.9 1.0 296 02.6 <.1	 <1 8.1 .5 16 1.92 .050 3 2.6 1.21 22 .01 8 .41 .02 .21 .2 .05 1.8 <1 1.03 1 .6 145 4.57 <1.72 .9 14 2.27 .049 3 2.9 1.54 30< .01 10 .42 .009 .24 .4 .66 2.0 .1 1.03 1 .7 141 3.63 <1 .154 .2 19 1.25 .003 <1 .264.8 13.94 12 .001 .01 .024 .09 .24 .4 .66 2.0 .1 .10.3 .7 .141 .63 .155 .03 .1 .2 .2 .2 .04 .06 .04 .07 .5 .08 .6 .1 .10 .1 .2 .2 .2 .5 .0 .1 .2 .4 .4 .4 .4 .4 .4 .4 .4					
34 .3 22.9 11.2 276 2.43 33 .3 36.0 13.0 322 2.51 39 .1 1233.2 73.6 796 3.92 4 74 .1 148.9 16.6 572 3.20 1 .1 .2 24.9 12.4 338 2.80 1 .6 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 4 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 .1 326 2.35 1 21<	31.2 .3 106.9 .9 336 16.9 .3 86.7 .9 370 86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 27.5 1.0 296 07.2 .2 175.9 1.0 296 07.2 .2 175.9 1.0 296 02.6 <.1	 <1 8.1 .5 16 1.92 .050 3 2.6 1.21 22 .01 8 .41 .02 .21 .2 .05 1.8 <1 1.03 1 .6 145 4.57 <1.72 .9 14 2.27 .049 3 2.9 1.54 30< .01 10 .42 .009 .24 .4 .66 2.0 .1 1.03 1 .7 141 3.63 <1 .154 .2 19 1.25 .003 <1 .264.8 13.94 12 .001 .01 .024 .09 .24 .4 .66 2.0 .1 .10.3 .7 .141 .63 .155 .03 .1 .2 .2 .2 .04 .06 .04 .07 .5 .08 .6 .1 .10 .1 .2 .2 .2 .5 .0 .1 .2 .4 .4 .4 .4 .4 .4 .4 .4					
39 .1 1293.2 73.6 796 3.92 9 74 .1 148.9 16.6 572 3.20 1 51 .2 24.9 12.4 338 2.80 1 46 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.35 1 21 <1	86.0 .1 27.6 .1 175 22.5 .2 22.3 1.0 315 .66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 22.6 <1	<1 154.8 .2 19 1.25 .003 <1 264.8 13.94 12 .001 9 .10 .004 .07 .5 .08 6.6 <1 .53 1 <5 53 5.53 .1 25.4 .2 29 2.13 .080 6 17.7 2.12 37 .001 11 .50 .022 .23 .4 .08 5.0 <1 .64 2 .5 30 3.59 .1 35.1 .2 15 2.02 .075 4 5.0 1.31 51 .001 10 .43 .026 .22 .4 .07 2.5 <1 1.32 1 1.0 160 3.61 <1 28.9 .2 20 1.36 .071 5 5.0 1.15 28 .001 9 .43 .032 .21 .5 .05 2.8 <1 1.71 1 7 .72 33 3.55 <1 145.1 .1 17 1.43 .002 <1 276.8 13.12 12<.001 9 .14 .003 .06 .5 .06 6.0 <1 .73 1 <5 .32 3.48 .1 26.0 .1 41 1.85 .065 7 8.9 2.67 15 .001 5 .70 .031 .17 .2 .03 3.0 <1 .20 3 <5 19 2.89 .1 16.4 .2 12 1.83 .053 4 4.1 1.23 15 .001 7 .37 .028 .18 .2 .08 1.9 <11.09 1 .5 270 3.48					
74 .1 148.9 16.6 572 3.20 1 51 .2 24.9 12.4 338 2.80 1 46 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.35 1 21 <1	22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 02.6 <.1	.1 25.4 .2 29 2.13 .080 6 17.7 2.12 37 .001 11 .50 .022 .23 .4 .08 5.0 <.1	< <td>.1 1.77 203 3.55 <1</td> 147 1.43 .002 1276.8 13.12 12<<.001	.1 1.77 203 3.55 <1	< <td>.1 .25 30 3.55 <1</td> 14 1.85 .065 7 8.9 2.67 15 .001 5 .70 .031 .17 .2 .03 3.0 < <td>.1</td>	.1 .25 30 3.55 <1	.1
74 .1 148.9 16.6 572 3.20 1 51 .2 24.9 12.4 338 2.80 1 46 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.35 1 21 <1	22.5 .2 22.3 1.0 315 66.8 .2 119.3 1.0 296 07.2 .2 175.9 1.0 200 02.6 <.1	.1 25.4 .2 29 2.13 .080 6 17.7 2.12 37 .001 11 .50 .022 .23 .4 .08 5.0 <.1	< <td>.1 1.77 203 3.55 <1</td> 147 1.43 .002 1276.8 13.12 12<<.001	.1 1.77 203 3.55 <1	< <td>.1 .25 30 3.55 <1</td> 14 1.85 .065 7 8.9 2.67 15 .001 5 .70 .031 .17 .2 .03 3.0 < <td>.1</td>	.1 .25 30 3.55 <1	.1
46 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.36 1 21 <.1	07.2 .2 175.9 1.0 200 02.6 <.1	<.1 28.9 .2 20 1.36 .071 5 5.0 1.15 28 .001 9 .43 .032 .21 .5 .05 2.8 <.1 1.71 1 .7 203 3.55 <.1 145.1 .1 17 1.43 .002 <1 276.8 13.12 12<.001 9 .14 .003 .06 .5 .06 6.0 <.1 .73 1 <.5 32 3.48 .1 26.0 .1 41 1.85 .065 7 8.9 2.67 15 .001 5 .70 .031 .17 .2 .03 3.0 <.1 .20 3 <.5 19 2.89 .1 16.4 .2 12 1.83 .053 4 4.1 1.23 15 .001 7 .37 .028 .18 .2 .08 1.9 <.1 1.09 1 .5 270 3.48					
46 .3 19.6 12.0 285 2.88 1 25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.36 1 21 <.1	07.2 .2 175.9 1.0 200 02.6 <.1	<.1 28.9 .2 20 1.36 .071 5 5.0 1.15 28 .001 9 .43 .032 .21 .5 .05 2.8 <.1 1.71 1 .7 203 3.55 <.1 145.1 .1 17 1.43 .002 <1 276.8 13.12 12<.001 9 .14 .003 .06 .5 .06 6.0 <.1 .73 1 <.5 32 3.48 .1 26.0 .1 41 1.85 .065 7 8.9 2.67 15 .001 5 .70 .031 .17 .2 .03 3.0 <.1 .20 3 <.5 19 2.89 .1 16.4 .2 12 1.83 .053 4 4.1 1.23 15 .001 7 .37 .028 .18 .2 .08 1.9 <.1 1.09 1 .5 270 3.48					
25 .1 1303.5 69.3 717 3.77 9 50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.36 1 21 <.1	22.6 <.1	<.1 145.1 .1 17 1.43 .002 <1 276.8 13.12 12<.001 .9 .14 .003 .06 .5 .06 6.0 <.1 .73 1 <.5 32 3.48 .1 26.0 .1 41 1.85 .065 7 8.9 2.67 15 .001 5 .70 .031 .17 .2 .03 3.0 <.1 .20 3 <.5 19 2.89 .1 16.4 .2 12 1.83 .053 4 4.1 1.23 15 .001 7 .37 .028 .18 .2 .08 1.9 <.1 1.09 1 .5 270 3.48					
50 .1 131.6 9.7 490 2.46 1 46 .1 28.6 9.1 326 2.36 1 21 <.1	83.8 .2 13.1 1.2 177 05.1 .2 232.3 1.0 258 66.1 <.1	.1 26.0 .1 41 1.85 .065 7 8.9 2.67 15 .001 5 .70 .031 .17 .2 .03 3.0 <.1 .20 3 <.5 19 2.89 .1 16.4 .2 12 1.83 .053 4 4.1 1.23 15 .001 7 .37 .028 .18 .2 .08 1.9 <.1 1.09 1 .5 270 3.48					
46 .1 28.6 9.1 326 2.36 1 21 <.1	05.1 .2 232.3 1.0 258 66.1 <.1 34.9 <.1 140	.1 16.4 .2 12 1.83 .053 4 4.1 1.23 15 .001 7 .37 .028 .18 .2 .08 1.9 <.1 1.09 1 .5 270 3.48					
21 <.1 1117.2 64.2 701 3.67 22 <.1 1148.7 64.7 717 3.75	56.1 <.1 34.9 <.1 140						
22 <.1 1148.7 64.7 717 3.75		<.1.109.0 .1 16.1.09.001 <1.239.3 13.91 8<.001 6 08.003 04 8 05 6.1 < 1 35 <1 < 5 37 5.20					
	77 7 4 1 00 7 4 1 147						
22 < 1 1152 6 64 0 700 2 70	//./ <.1 30./ <.1 143	<.1 110.0 .1 18 1.11 .001 <1 245.7 14.31 7<.001 6 .08 .003 .05 1.1 .06 6.5 <.1 .41 <1 <.5 32 -					
23 <.1 1155.0 04.0 709 5.70 4	61.7 <.1 29.2 <.1 140	<.1 114.4 .1 17 1.09<.001 <1 246.7 14.41 8<.001 7 .09 .003 .05 .6 .06 6.0 <.1 .38 <1 .5 32 -					
26 <.1 1094.2 70.0 740 3.89	88.5 <.1 25.8 .1 117	<.1 21.5 <.1 23 .89 .006 1 465.3 12.53 15 .001 12 .20 .004 .06 .1 .05 7.5 <.1 .48 1 <.5 30 2.98					
59 .4 40.7 178.5 600 2.77 64	65.9 1.7 2568.1 .9 83	.7 7.6 14.1 24 3.74 .094 7 29.9 .18 17 .031 7 1.06 .073 .05 .9 <.01 1.8 <.1 .35 3 7.2 3197 -					
		<.1 9.0 .3 21 3.18 .067 4 16.5 2.05 16 .001 8 .39 .023 .19 .3 .03 4.7 <.1 .52 1 .5 170 4.00					
57 4.8 67.3 10.6 619 2.87 7	60.8 .2 874.1 .8 352	.2 103.2 94.6 23 4.08 .063 3 15.5 2.05 16 .001 10 .46 .011 .18 .6 .11 3.1 <.1 .59 2 2.5 1424 1.74					
77 .1 143.3 15.1 524 2.91	07.9 .3 38.9 1.2 113	<.1 36.2 3.3 70 1.61 .085 7 45.1 1.52 27 .003 14 1.09 .037 .13 .2 .19 5.8 <.1 .31 7 .7 95 3.68					
61 .1 56.3 12.6 518 2.77	53.3 .2 205.8 .8 239	<.1 15.5 .7 48 2.94 .081 5 23.1 1.61 22 .002 12 .72 .029 .17 .4 .07 5.5 <.1 .61 4 .7 242 5.20					
38 .1 1106.9 60.9 534 3.98	90.5 .1 28.6 .2 311	<.1 59.9 .2 29 1.99 .012 1 471.4 10.48 9<.001 10 .92 .004 .10 .1 .11 6.5 <.1 .49 3 .5 31 3.71					
27 .1 1308.1 75.3 957 2.60 1	08.7 <.1 13.2 .1 263	<.1 4.0 .3 28 2.24 .005 <1 831.6 5.93 5 .001 3 .79 .003 .01 <.1 .02 7.4 <.1 .61 3 .5 18 3.06					
48 .2 129.5 13.8 302 2.76 2	10.7 .2 36.6 1.1 78	.1 28.2 .5 61 .56 .085 4 19.8 2.76 16 .003 5 1.41 .038 .11 .2 .05 2.3 <.1 .50 8 .8 41 4.40					
45 .2 36.2 10.2 293 2.51 2	94.1 .2 60.3 .9 89	<.1 9.5 .6 69 .62 .078 3 22.2 2.13 10 .004 6 1.29 .045 .06 .3 .03 2.1 <.1 .62 9 .7 74 4.60					
56 .2 866.3 47.6 1232 3.60	40.3 .1 32.8 .3 1112	<.1 53.9 .7 30 6.20 .014 1 415.2 7.72 17 .001 7 .89 .007 .11 .2 .04 5.1 <.1 .34 5 .7 40 5.86					
62 .2 16.0 10.5 211 2.76 6	32.6 .2 65.8 1.0 28	.1 59.6 .6 61 .34 .083 4 11.0 1.73 16 .006 5 1.17 .043 .08 .4 .05 1.8 <.1 .69 8 1.1 63 4.41					
56 .3 9.0 9.2 224 2.55 3	93.7 .2 68.4 .9 50	.2 18.7 .3 53 .54 .085 3 16.0 1.08 12 .003 4 .88 .049 .11 .1 .04 1.7 <.1 .81 6 .8 71 4.32					
59 .2 24.6 13.2 413 2.84 2	98.4 .2 49.2 .6 146	.1 15.3 .5 48 1.68 .083 3 22.8 1.42 13 .002 6 .97 .036 .12 .3 .05 3.1 <.1 .70 6 1.0 57 5.78					
66 .3 19.5 12.6 459 2.71 1	56.1 .2 75.1 .8 208	.2 17.5 .3 33 2.21 .085 3 9.3 1.60 16 .001 7 .78 .032 .17 .2 .05 3.0 <.1 .69 3 .7 81 4.27					
		.1 15.1 .4 57 3.43 .086 3 60.0 2.32 12 .001 6 1.02 .027 .16 .3 .05 6.2 <.1 .57 5 1.0 117 3.49					
		.2 7.0 .3 113 2.95 .092 4 119.6 3.16 26 .002 9 1.91 .026 .13 .1 .04 8.3 <.1 .24 9 .6 19 3.46					
5 140 .3 24.8 12.5 783 3.01	18.8 6.1 42.0 2.7 51	5.7 3.5 6.1 64 .77 .092 12 198.1 .69 137 .105 16 2.13 .035 .15 4.7 .16 3.7 1.1 <.05 6 5.2 497					
	57 4.8 67.3 10.6 619 2.87 71 77 .1 143.3 15.1 524 2.91 5 61 .1 56.3 12.6 518 2.77 7 38 .1 1106.9 60.9 534 3.98 3 27 .1 1308.1 75.3 957 2.60 15 48 .2 129.5 13.8 302 2.76 23 45 .2 36.2 10.2 293 2.51 20 56 .2 866.3 47.6 1232 3.60 9 52 .2 16.0 10.5 211 2.76 60 56 .3 9.0 9.2 224 2.55 34 59 .2 24.6 13.2 413 2.84 20 66 .3 19.5 12.6 459 2.71 16 80 .2	57 4.8 67.3 10.6 619 2.87 7160.8 .2 874.1 .8 352 77 .1 143.3 15.1 524 2.91 507.9 .3 38.9 1.2 113 61 .1 56.3 12.6 518 2.77 753.3 .2 205.8 .8 239 38 .1 1106.9 60.9 534 3.98 390.5 .1 28.6 .2 311 27 .1 1308.1 75.3 957 2.60 1508.7 <.1					

Page 2

ACHE ANALYTICAL																																								A	ACHE AN	ALYTIC	CAL
	SAMPLE#	Mo	Cu	Pb	Zn	Ag	H	li Co	Min	Fe	As	U	Au	Th	Sr	Cd	Sb	Bí	٧	Ca	P	La C	ir t	10	Ba Ti	8	3 A1	Na	ĸ	W	Ha	Sc	TI	S	Ga	Se	Au**	Samo	ole				
		ppe	ppe	ppm	ppm	ppe	PC	m ppm	ppe	8	ppe	ppm	ppb	ppe	ppm	ppe	ppm	ppm	ppe	8	8 p	pe pp	m	* p	ppm X	ppn		8	8	DDM	DDM	DOM	DDM	8	DOM	DDM			kg				
							<u> </u>																		·																		
	D143136	4.0	136.9	3.1	90	.2	46.	7 24.0	647 3	.95 1	141.1	.1	16.6	.4	283	.1	2.8	.4	84 2.	41.1	02	3 126.	.5 3.0)2	10 .001	6	5 1.50	.033	. 13	.2	.03	7.7	<.1	.17	9	.6	20	4.2	.25				
	D143137	4.8	197.0	1.7	76	.1	38.	0 17.1	458 3	.53 1	177.3	.1	9.4	.7	174	.2	7.1	.2	801.	28.0	85	4 74.	.2 3.3	39	13 .003	6	5 1.58	.031	. 13	.1	.03	5.8	<.1	<.05	8	<.5	14	3.1	. 18				
	D143138	24.7	372.0	3.6	78	.3	1203.	9 69.9	808 3	.48 14	178.4	.1	7.0	.3	812	.8	45.8	.7	31 5.	69.0	20	1 477.	5 6.5	59	22 .001	. 8	3.78	.008	. 10	.1	.04	7.6	<.1	.53	4	1.6	7	4.0	.05				
	D143139	56.2	157.7	5.7	72	.2	1220.	0 72.1	593 3	.77 15	530.3	.1	3.3	.3	637	.1	5.3	1.0	635.	24 .0	23	1 902.	.6 6.3	32	12 .002	10	1.85	.008	.03	<.1	. 09	8.7	<.1	1.16	8	1.2	6	3.6	.63				
	D143140	14.7	86.2	3.9	72	.1	52.	2 11.9	372 2	.71 5	599.2	.3	5.2	1.2	132	.1	5.8	.3	671.	39.0	78	4 50.	.3 2.5	56	19 .008	10	0 1.52	.041	.07	.3	.05	2.6	<.1	.12	10	<.5	8	4.2	.28				
	143140A PULP	31.0	105.1	15.5	124	.4	26 .	2 99.5	561 3	. 18 33	311.9	2.0	305.8	1.5	85	.6	7.5]	18.7	284.	89.1	19	9 10.	.2.2	20	14 .031	30	.74	. 068	.03	.7	.07	1.1	<.1	.95	2	9.6	562		-				
	D143141	17.1	267.2	3.9	57	.2	7.	5 12.8	259 2	.59 18	382.3	.3	18.7	1.2	76	.3	13.6	.3	62 1.	40.0	75	4 10.	.7 1.2	22	25 .006	6	5 1.02	.052	. 10	.1	.04	1.8	<.1	.27	7	.7	25	3.6	.64				
	D143142	17.7	474.1	4.2	70	.3	8.	6 10.2	286 2	.51 15	561.0	.4	15.1	1.3	123	.5	10.9	.3	681.	99.0	77	5 11.	.7.9	90	21 .007	7	7.96	.047	. 10	.7	.04	2.0	<.1	.30	7	1.0	20	4.2	.24				
	D143143	5.5	31.0	3.0	57	.1	4.	8 9.2	251 2	.57 1	102.6	.4	4.9	1.4	46	<.1	8.8	.1	671.	54.0	85	58.	.3.8	35	32 .047	12	2 1.11	.051	. 12	.2	.04	2.0	<.1	. 20	7	<.5	10	4.8	. 89				
	D143144	150.3	93.3	3.8	63	.1	1446.	0 80.7	749 3	. 78	8.8	.1	.7	<.1	218	<.1	.2	.5	394.	79.0	06 ·	<1 593.	.8 10.4	12	48 .022	159	9.79	.004	. 32	.6	.03	6.0	.3	.85	3	1.0	3	4.2	.22				
	D143145	251.8	150.3	3.1	783	.1	38.	8 9.5	196 2	. 70															97.158		9 1.98	.050	.45	1.3	. 09	2.5	.1	.55	9	.6	2	4.4	.42				
1	D143146								90 2		.9														65 .129		5.90						<.1			.9	3	5.4	.43				
	D143147								101 2																18 .102					.8			<.1			i 1.4	-		.05				
	RE D143147								96 2																18 .106											i 1.2			•				
	RRE D143147	681.7	210.3	4.4	34	.1	9.	7 9.3	97 2	. 16	.6	.2	<.5	1.3	25	.1	2.4	.5	38 1.	94 .0	83	5 5.	.4 .9	50	18 .096	10	0 1.12	.057	.07	1.2	.01	.8	<.1	. 79	6	1.2	2		-				
											-				~			-																			-						
	D143148								106 2																26 .117											1.2							
	D143149								110 2								.3								21 .127											5 1.0	-						
	D143150								134 2																33 .134		4 1.17									.8	-	5.6					
	D143151								149 2		<.5														34 .140												-	6.0					
	D143152	1.6	53.8	3.5	/9	۲.>	6.	6 9.2	252 2	. /5	3.4	.4	1.2	1.6	39	.4	.2	.4	59 1.	.// .u	12	6 12.	.5 .8	55	19 .093		5 1.12	.049	. 10	.5	.01	2.2	<.1	.79	1	.0	2	5./	.73				
	D143153	2 1	75.4	26	"	- 1	٤	· • •	218 2	66	~ 5			1.4	27	,	,	2	66 1	02 0	76	6 1A	•	74	14 .122		5 1.07	063	07		01	1.4	- 1	77	,		2		97				
	D143154	-							225 2																26 .152								<.1					6.0					
	D143155		47.2						255 2																38 .132		4 1.08																
	D143156								227 2																58 .142											.0							
	D143150 D143157				-				223 2																13 .121																		
	0143137	.,	57.2	3.5		1	7.	1 9.9	200 2	. 02	3.1		1.1	1.5		•••	.0		50 1.	50.0	,,,	, 10.			10 .101		4 1.0/	. 043	.05	1.0	.01	1.0	~.1	./4	,	.0	~	4.4	. 20				
	D143158	.5	42.1	3.0	43	<:1	7	5 9.6	205 2	.77	1.6	.3	<.5	1.3	32	<.1	.2	.1	60 1.	56.0	70	6 13.	.6 .;	77	14 .128	7	7 1.23	.053	.07	.4	.01	1.5	<.1	.76	7		6	3.4	.45				
	D143159				-							-	-												16 .098							-	-			5.8	-	3.6	.64				
	D143160																								10 .101																		
	D143160A PULP																								22 .044													•	-				
	D143161																								17 .115													3.7	.73				
																	. –				-																						
	D143162	1.2	102.1	2.3	87	<.1	. 5	.6 9.7	162 2	. 88	<.5	.3	1.2	1.2	26	.6	.1	.3	63 1.	.20 .0	71	5 7.	.8 .:	70	59.157	5	5 1.08	.067	. 16	.5	. 02	.9	<.1	.79	6	i.6	<2	3.5	.59				
	D143163	100.5	171.6	2.3	44	.1	21	.8 11.2	120 2	.91	<.5	.3	1.4	1.0	28	<.1	.2	.2	75 1	.03 .1	00	5 12	.7 .9	91	89.172	: 6	6 1.20	.073	. 30	1.2	.01	1.4	.1	.88	7	1.4	3	3.7	.71				
	D143164								105 2																51 .151											1.3		3.0					
	D143165								121 2																10 .112																		
	STANDARD DS5/AU-R					-				-	-																												-				
···																								_					-								_						

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

ACHE ANALYTICAL

	D143169 D143170 1	82.1 64.2 114.0 62.8	227.3 203.6	2.9 2.5	25 28	.1	8.4	ppm 13.5			pm pp	pie	ppb p	in ad	m pp	n bbu	ppn	ppe	8	\$ pp	e pp	•	\$ pp	pm X	ppe -	8	8	\$ F	pe pi	pe p	pm pp	M .	t ppe	ppe	ppb	kg	
	D143167 D143168 D143169 D143170 D	64.2 114.0 62.8	227.3 203.6	2.5	28			13.5	105 2 3																												
	D143168 D143169 D143170	114.0 62.8	203.6			.1			100 2	76 13	.3.	.3	5.3 1	.2 3	sı <.	1.5	.4	52 3.	.13 .07	8 !	5 10.	2.7	72 1	17.149	13	1.43	.066	.09 1	.7.0	01 1	.3 <.	1 1.0	19	.8	11	3.51	
C C	D143169 D143170 1	62.8		3.2			12.4	12.9	80 1.9	99 11	.7.	.3	3.2 1	.2 2	. 7	1 1.1	.3	47 1.	.32 .08	31 9	5 10.	3.6	52 a	28.152	5	1.05	.070	.11	.7 .0	01 1	.1 <.	1.5	86	.6	6	3.57	
c	0143170		239.2		29	.1	18.5	9.3	96 2.1	17 9	.5.	.3	2.3 1	.2 3	3 <.	1 3.6	.4	47 2.	.21 .08	37 9	5 14.	6.6	59 3	30.162	. 8	1.12	.073	.12 1	.2 .0	91	.9 <.	1.7	36	1.0	5	4.37	
				2.1					154 2.9																												
c	0143171		109.1						227 2.3																												
ι	D143171																																				
		252:0	221.9	.7	57 ·	<.1 1	779.2	83.9	683 4.(09 5	.3.	.1	2.3	.2 2	!1 <.	1.1	.2	48 .	.97 .01	14 :	1 813.	7 15.5	57 1	16 .040	105	1.03	.006	. 10	.2 .0)3 6	.2.	2.7	15	.5	3	6.35	
ſ	D143172	26.0	76.3	.8	54 ·	<.1 19	996.5	86.7	780 4.5	56 5	.2.	.1	1.3	.1 1	.7 <	1.2	.2	32 .	.46 .00)6 <	1 900.	5 17.9	99	3 .019	126	.59	.005	.02	.6.0	02 6	.6.	1.8	B 2	<.5	2	5.04	
ſ	D143173	20.9	198.2	2.7	40	.1	14.9	10.6	148 2.8	30 2	.1.	.2	1.6 1	1.2 3	KO <.	1.1	.1	61 2.	. 19 . 09	93 !	5 13.	3 1.1	10 2	23.190	10	1.72	. 056	.10 24	.0.1	11 1	.2 <.	1 1.1	19	1.1	4	4.23	
r	D143174	5.7	190.3	2.6	63	.1	29.0	15.9	136 2.5	56 1	.7.	.2	.8 1	1.2 2	8.	1.5	.1	56 1.	.79 .09	92 !	5 15.	4.9	95 2	29.182	12	1.55	. 064	.13 2	.4 <.(01 1	.2 <.	1.8	49	.5	2	3.50	
r	D143175	1.8	180.7	2.8	47	.1	16.6	17.1	148 3.(07 2	.4 .	.2	<.5 1	1.3 2	28 <.	1.2	.2	47 1.	.86 .08	35 9	5 16.	8.9	91 2	24 .152	. 7	1.43	.068	.11 6	.2 .0	01 I	.2 <.	1 1.1	49	.6	14	3.72	
ſ	0143176	2.7	217.7	2.8	39	.1	8.0	12.9	121 2.9	90 2	.1 .	.2	.8 1	l. 1 a	25 <.	1.2	.2	46 1.	.63 .08	30 - 1	5 11.	3.6	59 3	30.144	10	1.30	.061	.12 97	.1 .0)6	.8 <.	1 1.1	98	1.1	4	3.23	
	0143177								116 2.8										.60 .07																-		
ſ	D143178	2.0	166.6	2.6	30	.1	7.0	10.5	108 2.9	90 3	.1 .	.2	1.4 1	l.3 2	23 <.	1.2	.2	49 1.	.72 .08	34 :	5 10.	2.5	58 3	30.144	5	1.32	.077	.11 2	.80	DI 1	.0 <.	1 1.1	18	.6	5	4.37	
(0143179	2.1	128.8	2.2	55	.1	8.8	9.9	115 2.6	81 2	.4 .	.2	<.5 1	1.3 2	24.	2.2	.2	48 1.	.26 .08	33 3	5 10.	8.9	59 3	39.156	5 8	1.06	.074	.13 3	1.3 .0	91 .	.8 <.	1 1.0	97	<.5	10	4.38	
ſ	D143180	1.5	156.1	2.1	32	.1	7.1	9.9	114 2.8	86 2	.8	.2	.8 1	1.3 2	25 <.	1.1	.1	50 1	.31 .08	36 9	58.	6.5	55 3	38.157	3	1.11	.086	.13 1	.80)1	.9 <.	1 1.1	07	.5	5	3.66	
	143180A PULP	5.9	68.7	12.0	57	.4	45.5	202.2	593 2.3	71 6699	.8 1	.8 257	70.0 1	L.O 8	a .	6 8.6	16.0	21 3	.78 .09	94	7 32.	2.1	18 1	18 .031	7	1.02	.079	.05	.9 <.0	01 1	.9 <.	1.1	93	7.2	3008		
	0143181								110 2.0																											4.21	
	D143182								124 2.9																												
	D143183								124 3.																				-						-	4.05	
	RE 0143183								126 3.																												
1	RRE D143183	1.8	182.1	2.8	52	.1	8.0	10.1	129 3.	15 2	.3 .	.3	1.2	1.2 2	26.	2.3	.3	50 1.	.70 .08	34 :	5 11.	1.6	65 a	28 .143	6	1.39	.068	.11 1	.1.0	02	.9 <.	1 1.2	38	.9	5	-	
1	0143184	2.2	169.3	2.9	28	.1	9.6	10.0	108 2.8	81 1	.8 .	.2	.71	l.3 2	22.	1 1.6	.2	56 1.	.27 .08	37 !	5 10.	1.5	56 2	27 .146	5 5	1.10	.069	.10 1	.8	D1	.8 <.	1 1.2	07	.6	2	4.28	
r	D143185	1.5	167.7	2.7	32	.1	5.2	9.4	111 2.0	641	.6	.3	<.5 1	1.3 2	24 <.	1.2	.2	49 1.	.43 .07	79	57.	2.5	59 2	20 .146	57	1.22	.078	.08 2	2.0 <.0	D1	.8 <.	1 1.1	27	.6	2	4.55	
r	D143186	1.3	166.6	3.6	53	.1	4.8	10.2	130 2.	791	.5	.3	.5 1	L.2 2	23.	1.2	.3	49 1	.73 .08	32	59.	5.(67 1	13 .142	? 6	1.52	. 062	.06	.90	D1	.8 <.	1 1.2	58	.7	2	3.76	
ſ	D143187	8.7	144.9	2.8	56	.1	7.0	10.6	134 2.	591	.5	.2	<.5 1	1.1 3	26.	3.2	.2	47 2	.10 .08	3 3 -	5 10.	6.0	60 1	17 .146	5 10	1.35	.064	.08 1	.8 <.0	D1	.9 <.	1 1.0	88	.7	15	4.44	
												-				· ·															_						
	D143188	• • •							161 2.4										.13 .08																		
	D143189								768 4.										.72 .00																		
	D143190	-							241 3.0										.24 .08																		
	D143191								142 3.0										.74 .08																-		
I	D143192	5.3	234.4	3.8	30	.1	11.9	12.5	142 3.4	45 1	.6	.3	<.5 1	1.2 3	36 <.	1.1	.4	60 2	.44 .08	34	5 15.	5.8	B1 1	13 .126	i 6	1.36	. 062	.07 1	.1 <.(D1 1	.2 <.	1 1.4	69	1.3	4	3.91	
	D143193	3.5	166.3	2.6	34	.1	6.2	9.2	113 2.1	78 1	.1	.3	.9 1	1.3	24 <.	1.1	.2	51 1	.81 .08	94	59.	7.	56 1	19.142	2 4	1.21	.070	.07 2	2.0 <.0	01	.8 <.	1 1.2	з я	.8	29	4.26	
	0143194								98 2.										.71 .07															-			
	D143195								103 3.																												
	0143196								104 2.4										.26 .08																		
	STANDARD OS5/AU-R								788 3.																											07	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

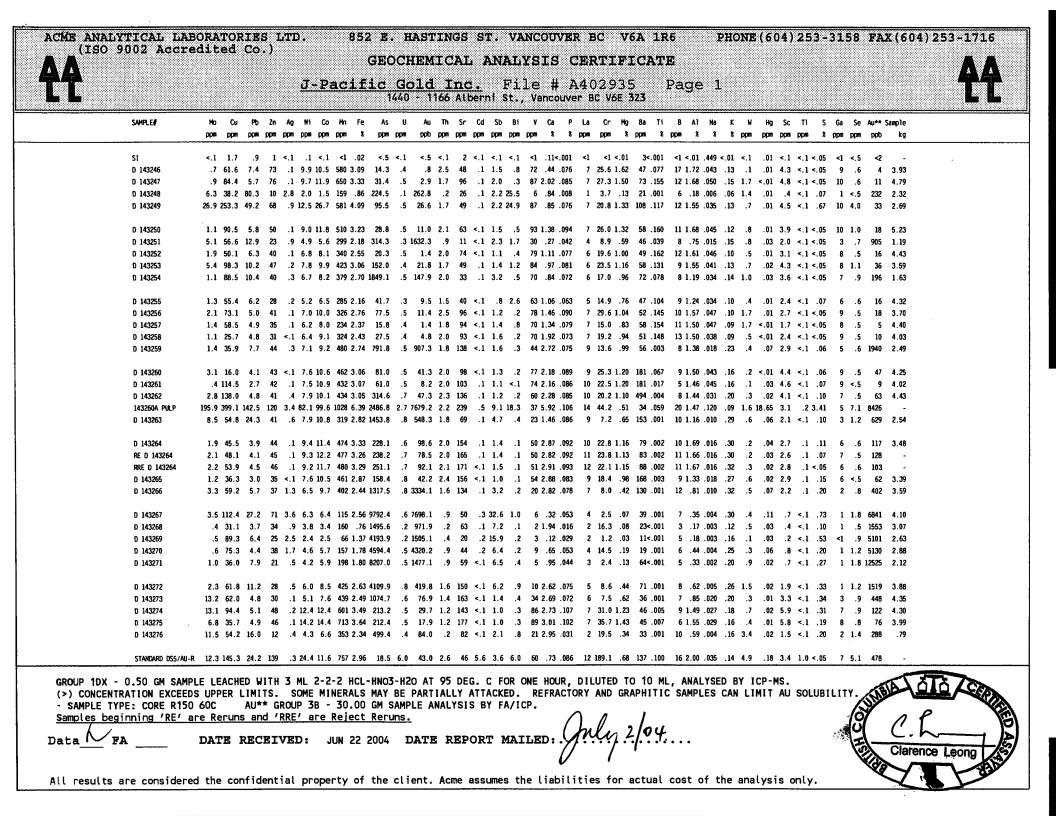
Data____FA

Page 4

NALYTICAL																						_																		ACH	e analy	
	SAMPLE#	Но	Cu	Pb	Zn	Ag	NI	Co	Mn Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P La	. C	ir H	lg .	Ba T	ri -	в	Al	Na	ĸ	W	Hg	Sc	T]	s	Ga	Se	Au**	Samp	le			
		ppm	pp	ppm	ppm	ppm	ppm	ppm	ppm \$	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	\$	\$ ppe	pp		\$ p	ip m	% p	p m	8	8	\$ p	(pa	ppm	ppm	ppm	8	ppm	ppm	ppb		kg		_	
	D143197	8.1	231.9	3.6	27	.1	7.5	9.9	100 3.06	2.2	.3	2.5	1.1	22	<.1	.3	.4	52 1.	59.08	4 5	i 9.	6.6	2	19.14	48	6 1.	40.0	68	10 1	.4	.01	1.0	< 1	1.52	A	1.0	2	4.	65			
	D143198	17.7	195.1	3.3	34	.1	7.7	9.5	105 2.74																										-	.8	-					
	D143199								90 2.76																											.9						
	D143200								100 2.80																											1.2						
	143200A PULP								592 3.15																										3	10.9	480		-			
	D143201	19.8	235.1	2.9	40	.1	7.9	10.3	130 2.84	4.2	.3	1.6	1.2	40	.1	.2	.2	591.	67.08	2 5	11.	6.7	5	31.13	38	5	99 .0	61	14 1	.6	.01	1.6	< 1	1 28	6	9	14	4	21			
	D143202								112 2.60									54 1.																		.8						
	D143203	16.4	223.4	3.6	42	.1	14.5	10.8	197 2.61																											1.3						
	D143204								691 4.36															5.00												<.5						- 1
	0143205	3.8	38.1	.3	52	<.1	2054.7	98.9	902 4.98	38.0	<.1	10.9	<.1	6	<.1	.3	.1	28.	32 .00	3 <1	1067.	0 19.2																				
	D143206	6.3	221.9	1.7	49	.1	1415.9	69.7	525 4.06	1.6	.2	.7	.4	103	.1	.2	.2	382.	47.04	4 2	835.	1 11.0	4 1	16 .05	53 3	343.	53.0	58 .)5	.1	.06	4.1	.1	. 18	8	<.5	8	1.	48			
	0143207	38.7	354.8	2.3	26	.1	18.7	12.8	78 3.12																											1.2						
	D143208	9.1	204.3	2.4	21	.1	6.4	10.4	57 2.88																											.7						
	D143209								62 3.15																											1.2						
	D143210	66.4	516.9	4.0	31	.3	8.7	13.5	91 3.20	8.6	.5	4.6	1.0	519	<.1	.1	.5	51 4.	25.09	65	8.	6 1.0	1	57.14	13 10	07 2.	78.3	23.	321	.3	. 08	1.0	<.1	1.12	8	2.4	8	2.	55			
	D143211	.7	35.0	.7	85	*.1	2192.6	108.2	861-4.59	8.1	:1	2.0	<:1	46	<.1	.2	.2	12 1.	73.00	2 <1	-443.	7 17.8	4 -	5.00	06 20	82	25 .0	03 .	3 2	.2	. 04	4.8	.1	1.63	2	.7	13	5.	12			
	D143212	116.9	387.8	5.7	36	.3	146.2	18.3	163 3.01	7.2	.4	3.0	1.0	129	<.1	6.1	.8	64 2.	99 .08	0 6	i 38.	0 1.7	4	13 .08	88 •	<1.	88 .0	63 .	12 1	.4	.06	2.2	<.1	1.37	6	2.1	10	3.1	70			
	RE 0143212	104.0	367.1	5.7	37	.3	132.0	16.7	163 2.88	7.1	.3	.8	1.0	113	<.1	5.2	.7	602.	85 .07	4 6	33.	8 1.6	3	13 .08	33	4.	84 .0	63 .:	12 1	.4	.06	1.8	<.1	1.27	6	2.0	53		-			
	RRE 0143212	111.7	381.1	5.6	38	.3	149.8	18.4	158 2.96	7.8	.3	1.4	1.0	126	<.1	4.9	.7	62 2.	99 .07	4 6	37.	7 1.6	7	13 .08	39 -	<1.	86 .0	56 .	12 1	.1	.05	2.1	<.1	1.30	6	2.0	18					
	D143213	4.4	323.5	8.8	28	4	6.7	10.1	160 2.91	1.5	.2	5.2	1.0	98	.1	.1	1.3	54 2.	55 .08	4 6	8.	6 1.1	2	16 .08	34	1.	78.0	62.	12 4	.1	.04	1.B	<.1	. 67	5	2.5	198	4.	09			
	D143214	11.0	54.3	1.9	58	.1	2087.2	9 9.2	720 4.34	12.7	.1	2.0	<.1	40	<.1	.2	.3	16 1.	81 .00	3 <1	405.	0 16.5	6	2.00	06 10	64.	38.0	04.0)2	.8	.04	5.6	.1	.82	4	.6	4	5.4	42			
	D143215	57.0	344.4	4.5	31	.2	11.9	12.9	113 2.72	<.5	.8	<.5	1.2	25	<.1	.1	.4	63 1.	86 .08	6 5	10.	3 1.1	5	56.15	55 38	B9 1 .	25.1	09 .:	22 1	.8	.05	1.3	<.1	1.14	7	1.5	3	3.	19			
	D143216	49.6	568.8	3.2	23	.2	8.7	14.4	94 2.97	<.5	.3	1.1	.9	26	.1	<.1	.3	42 2.	25.09	0 5	6.	5.7	9	59.14	3 1	12 1.	02.2	31 .:	22 1	.0	.03	.9	<.1 1	1.32	5	2.1	32	3.	72			
	D143217	29.7	1813.3	3.2	41	.5	7.3	14.6	91 4.21	<.5	.6	2.6	1.2	31	.1	<.1	.2	61 1.	87 .09	3 5	11.	6.8	5	60 .16	52	61.	30.1	04 .4	12 4	.8	.07	1.9	.1 2	2.15	7	5.9	15	2.3	22			
	D143218	34.7	159.8	1.0	39	.1	1906.4	88.1	451 4.32	1.1	<.1	<.5	<.1	5	<.1	<.1	.2	19.	41 .00	5 <1	520.	5 13.9	9	3.00	08 13	34.	44 .0	05.0)3	.1	. 05	5.8	.3	1.58	3	.7	~2	3.	53			
	D143219	313.9	750.3	5.7	30	.5	16.6	13.8	62 2.21	.9	.4	1.6	.7	25	.1	.2	.7	34 2.	55 .06	i4 4	6.	4.6	7	21.13	30	191.	62 .0	77 .0	91	.8	.04	.4	<.1	1.17	7	1.9	14	2.3	21			
	D143220	20.7	525.8	3.2	36	.2	11.3	11.2	73 2.97	<.5	.3	1.0	.8	32	.1	.1	.3	42 3.	13 .08	9 5	8.	5.6	5	41 . 15	51 1	14 1.	24.1	B6 .:	16 2	.0	.02	.5	<.1	L.49	7	1.2	5	2.0	66			
	143220A PULP	32.4	99.8	14.0	123	.5	25.2	99.2	587 3.12	3230.9	1.9	415.9	1.3	70	.6	7.71	7.4	31 5.	04 .09	5 9	12.	5.1	9	13 .03	36 2	25.	77 .0	53.0)3	.7	.08	1.0	<.1	1.00	2	9.8	522					
	D143221	1.0	60.8	.7	75	<.1	1753.0	76.6	857 4.21	1.9	.1	1.5	.1	4	<.1	.1	.2	20.	38.00	9 <1	516.	4 14.0	0	11 .01	4 1	30.	54 .0	07.0	06	.5	.02	5.3	.1 1	L.04	2	<.5	2	3.4	47			

D143222 10.5 78.6 76 71 1899.4 85.1 823 4.25 2.4 .1 < .5 < .1 3 < .1 .1 899.4 85.1 823 4.25 2.4 .1 < .5 < .1 3 < .1 .1 19 .2 3 .02 < 1 554.7 14.18 1 .005 118 .36 .03 .02 .5 .03 4.9 .1 .24 4 < .5 < 2 2.62 D143223 125.6 276.7 1.9 40 .1 393.6 26.7 239 2.76 1.0 .2 .6 .5 27 < .1 4 .1 49 2.66 .065 3 102.5 4.26 89 .122>2000 1.34 .063 .41 1.2 .07 1.6 .1 .88 6 .8 3 3.78 D143224 141.1 1097.4 3.1 60 .4 258.6 20.6 181 2.75 1.4 4 .60 .6 45 .3 .2 .4 65 3.47 .08 3 66.7 2.69 51 .138 132 1.85 .184 .37 1.5 .04 2.1 .1 2.1 0 1.7 3 4.00 D143225 14.8 545.4 1.9 23 .2 16.9 11.9 60 2.84 2.9 .2 1.6 9 .7 .4 .1 4 .1 49 2.66 .085 3 102.5 4.26 89 .122>2000 1.34 .063 .41 1.2 .07 1.6 .1 .88 6 .8 3 3.78 D143225 14.8 545.4 1.9 23 .2 16.9 11.9 60 2.84 2.9 .2 1.6 9 .7 .4 .1 4 .1 4 2.1 56 77 .19 2 1.06 .198 .25 2.1 .01 .7 .1 1.21 10 1.7 3 4.00 D143225 92.2 566.5 3.1 44 .3 2.8 28 3.71 3.9 .2 5.3 .8 22 < .1 .8 .5 102 2.01 .088 3 146.4 3.98 39 .141 .102 16 2.12 .033 .15 4.4 .20 3.3 1.0 < .05 7 5.2 492 .201

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


Page 5

ACHE ANALYTICAL																																						 ACHE	ANAL YT	ICAL
	SAMPLE#	Мо	Cu	Pb	Zn	n Aç)	NI	Co	Min Fe	As	U	AL	i Th	Sr	Cd	Sb	Bi	۷	Ca	P	La Cr	- H	g Ba	Tİ	B	A1 1	la	ĸ	i Hg	Sc	τı	S	Ga	Se	Au**	Sample			
		ppn	ppm	ppm	ppn	n ppr	• •	ppna p	ipn p	ypan 1.	ppn	ppm	ppt	ppm	ppm	ppn	ppn	ppm	ppm	2	8	ppm ppm	n 1	\$ ppm	8	ppm	8	2	\$ pp	n ppn	ppm	ppm	ĩ	ppm	ppm	ppb	kg			
	D142027			•			100			30 F 00					-				-																					
	D143227																					<1 611.2																		
	D143228		52.3							10 5.69												<1 799.4																		
	D143229																					6 57.4																		
	D143230																					3 10.9							-		-			-						
	0143231	.9	61.5	23.3	63	3.5	5 1	1.9 12	2.1 6	509 3.22	14.5	.2	2.5	2.3	12	.1	.4	8.5	44	. 22 .	089	11 21.7	1.6	9 53	.006	15 1.	.76 .03	39.2	6.	9 .01	3.0	<.1	<.05	7	.5	4	2.79			
	143231A	2.0	56.2	79.4	45	5 4.3	3 7	7.8 5	i.5 2	41 1.88	58.1	.2	12903.8	8. 1	6	.1	1.1	33.9	26	.11 .	035	3 13.6	5.7	3 25	.015	4	.67 .02	25.1	3.	3.13	1.3	<.1	<.05	3	<.5	13734	.49			
	D143232	2.3	214.0	7.0	57	7.3	3 10	0.4 10	.4 5	600 3.11	38.6	.4	23.7	1.5	34	<.1	1.2	1.9	105	.45 .	079	6 23.1	1.4	3 47	. 140	61.	.48 .05	51.1	21.	3.03	4.9	<.1	<.05	9	.5	33	1.38			
	143232A																					3 18.6																		
	143232B	1.3	172.0	6.6	52	2.2	2 10	0.0 8	.4 4	41 3.15	48.4	.4	9.5	1.7	63	<.1	1.3	.8	91	.90.	084	6 24.2	2 1.3	3 45	. 141	13 1.	.77 .06	53.1	2.	5 .02	3.8	<.1	<.05	10	<.5	18	2.90			
	D143233																					5 20.6																		
				••••				••••••									••••					0 201									0.0					•				
	D143234	5.8	184.4	8.8	59	9.3	3 1	1.9 13	8.6 5	511 3.71	94.6	.5	20.5	2.0	56	.1	1.6	1.8	95	.91 .	085	6 30.9	5 1.4	0 49	.140	91.	.79 .05	53.1	12.	0.03	4.4	<.1	<.05	10	1.0	27	3.18			
	RE 0143234	6.3	184.0	9.0	60	0.3	3 1	1.0 13	3.3 5	606 3.69	94.2	.5	24.0	2.0	56	.1	1.7	1.7	98	.90 .	090	6 30.1	1.4	0 53	.138	11 1.	.79 .05	53.1	2 2.	0.04	4.6	<.1	<.05	10	1.3	28				
	RRE 0143234	5.4	181.3	8.2	51	1.2	2 1	1.5 13	3.3 5	508 3.74	91.7	.4	16.0	1.9	53	<.1	1.5	1.5	95	.87 .	085	6 29.2	2 1.4	D 50	. 133	10 1.	.78 .05	50.1	1.	8.02	4.2	<.1	<.05	9	1.3	22				
	D143235	4.4	84.1	19.4	20	D.(5	7.8 5	5.6 2	241 2.15	166.4	.2	149.2	.5	11	.1	1.6	6.0	33	.14 .	026	2 16.0	.6	1 46	.046	2.	.65 .02	24.1	1 3.	5 .01	1.9	<.1	<.05	3	1.1	1268	.45			
	D143236																					7 25.6												-						
1 MAR 44 11 LUI	D143237	7.9	32.1	12.7	22	2.2	2 2	5.8 4	1.2 3	31 1.65	81.6	.2	26.1	1.3	7	1	1.4	2.5	17	.08 .	018	3 18.1		61	.018	6	.68 .02	22 .1	4 .	2 .02	1.6	<.1	<.05	2	.7	36	.35	 _		
	D143238	2.4	65.8	19.0	60	0.4	4 1	2.5 10).4 5	527 3.08	75.4	.4	18.8	1.9	46	.1	1.5	6.4	74	.67 .	088	6 23.4	1.3	1 53	. 142	11 1.	.66 .05	50.1	6.	9.01	4.2	<.1	<.05	8	.8	25	4.04			
	D143239	4.1	51.0	10.4	30	0.1	7 (6.6 4	1.7 1	156 1.80	416.1	.3	528.1	1.0	10	.1	3.6	.9	17	.16.	034	5 13.3	.4	3 65	.046	9.	.61 .00	.20	51.	B.04	1.4	<.1	<.05	2	.5	636	.40			
	D143240	.8	5.2	3.7	50	0 <.1	1 4	8.5 9	9.4 5	581 3.11	32.8	.5	6.4	1.9	43	<.1	.7	.1	81	.62 .	086	7 20.7	1.5	1 39	.113	91.	.75 .04	17.1	6.	2.01	4.5	<.1	<.05	8	<.5	11	3.54			
	143240A	1.2	10.7	3.8	29	9 <.1	1 21	5.1 17	.4 2	282 1.88	21.9	.1	<.5	.4	35	.1	.2	.1	38	.31 .	038	4 100.5	2.0	7 36	.070	2.	.67 .12	26 .0	6.	8.01	1.8	<.1	<.05	2	.5	9	. 21			
	D143241	5.9	125.3	35.5	53	3 5.6	B 73	3.4 11	.4 5	542 2.39	110.4	.5	10098.4	2.8	9	.1	2.0	1.2	36	.16.	062	8 60.9	1.8	3 50	.001	81.	.56 .02	27.2	0.	9.18	2.9	<.1	<.05	5	.5	5813	1.96			
	D143242	3.7	303.5	14.3	54	4.	6 5	2.3 11	1.5 5	548 2.60	77.7	.5	356.0	2.7	13	.1	1.6	4.3	47	.29 .	066	9 58.6	5 1.4	6 50	.001	71.	48 .03	32 .2	1 1.	1 .02	2.8	<.1	<.05	5	.7	512	2.14			
	D143243																					10 17.1																		
	D143244																					11 13.9														_				·
	D143245																					7 10.3																		
		2.15					•			1.00																					2.0			Ŭ	•,					
	143072A	37.4	63.7	2.0	63	3 <.)	1 111	8.6 51	1.8 4	484 3.05	1916.5	.1	7.0	j.2	11	<.1	4.5	.4	35	.44 .	004	<1 733.2	2.8	58	.010	1.	.57 .00	J3 .O	6.	1 .06	4.0	<.1	1.03	4	.9	12	4.71			
	standard ds5/au-r	12.3	142.0	23.8	131	1.:	32	3.7 11	1.8 7	794 3.01	17.7	5.9	41.9	2.5	45	5.3	3.4	6.0	58	.71 .	089	11 179.2	6	9 138	.097	15 1.	.97 .03	34.1	54.	.16	3.5	1.0	<.05	6	5.1	494				

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

Page	2
------	---

AΑ

	u.																																ACHE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm			n Ag npprn			Co Mr prn ppr		As pprnp	-				Cd Sb pm ppm		V ppm	Ca ያ	P %tp	La opm	Cr ppm	Mg %tr		Ti %r		A] Na % %				Sc ppm		S Ga S %rppmrpp		Sample kg
) 143277) 143278) 143279 143280A PULP) 143280	14.2 4.9 7.0		20.9 21.1 12.5	17 50 64	7.6 1.0 5.4	3.6 9.0 46.9	3 9 218	.9 178 .2 536 .1 646	3 1.09 5 2.94 5 3.01	137.0 540.8 2055.3 1 6438.1 2 2285.7	.2 1.1 2.2 2	807.3 1	.4 1.8 1 1.0	17 00 80	.1 .8 .2 3.6 .7 8.4	1.1 7.8 17.2	14 53 22	1.86 .43 2.36 3.95 2.30	.019 .079 .094	2 6 7	39.3 15.9 19.2 32.3 21.7	.26 1.04 .22	24 . 64 . 20 .	001 004 032	2 .: 6 1.: 7 1.:	54 .038 32 .009 28 .018 09 .073 07 .020	0.07 0.21 0.05	>100 36.8 1.5	<.01 .01 .01	1.1 · 3.9 · 1.9 ·	<.1<.0 <.1 .3 <.1 .2	5 2 <. 9 5 1. 6 3 8.	6 21 5 94 0 1353 0 3617 2 190	-
) 143281) 143282) 143283) 143283) 143284) 143285			3.9 3.7	27 41 43	/ <.1 1 .1 3 .3	10.2 8.5 6.3 5.9 8.8	8 8 9	.1 392 .5 233 .9 383 .2 412 .1 620	3 2.24 3 2.55 2 2.67	19.7 20.9	.5 .4	2.7 2 2.1 1	2.0 1.7 2.3	87 < 41 < 51	.3 2.7 .1 1.4 .1 1.7 .1 1.4 .1 1.4	.1 .3 9.3	68 75 59	.94 1.84 .90 .94 1.41	.089 .081 .085	5 5 6	24.2 19.5 20.5	.76 1 .97 .90	.39 . 39 . 75 .	121 6 156 1 134	534 1.4 194 1.3 14 1.3	13 .018 41 .051 38 .046 38 .041 56 .036	09 08 09	3.4 .8 1.4	.01 .01 .01	1.6 2.3 2.4	<.1 .1 <.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	57<. 57. 571.	5 4 4 8	.99 4.53 4.28 4.35 3.64
D 143286 D 143287 D 143288 RE D 143288 RRE D 143288 RRE D 143288	2.4 .6 .6	480.3 70.9 40.6 44.8 41.0	16.9 5.8 5.7	78 54 54	3.4 4.1 4.1	8.2 8.1 7.4	12 11 11) 3.15) 3.26 L 3.25	42.0 42.9		385.0 1 155.2 2 14.4 2 12.2 2 10.5 2	2.2 2.4 1 2.5 1	52 09 14	.2 1.2 .1 .5 .1 .6	3.4 .3 .3	67 81 83		.088 .094 .092	9 10 10		1.16 1.35 1.35	45 . 48 . 47 .	004 050 051	7 1.3 15 1.9 15 1.9	51 .010 31 .033 52 .048 54 .046 53 .041	3 .20 3 .13 5 .14	.3 .4 .3	.05 .01 .01	3.3 · 4.4 · 4.3 ·		5 71.	5 18	1.64 4.20 4.05 -
0 143289 0 143290 №-04-07 ROCK 0 143291 0 143292		19.2 6.6 76.9	4.1 2.7 9.0	40) <.1 3 <.1 5 .1	19.8 5.1 34.9 6.0 5.4	7 5 7	.6 548 .7 279 .7 130 .1 299 .2 255	9 2.28 5 1.16 9 2.54	6.4 102.6	.5 .1 .7	1.7 2 1.2 2.0 1	2.2 .3 L.9	54 < 34 < 45 <	.4 3.2 .1 1.1 .1 .1 .1 1.3 .1 1.5	.3 1.3	61 39 68	1.28 1.32 .24 1.04 1.18	.086 .045 .098	6 3 6		. 69 . 25 . 80	72 . 30 . 32 .	164 084 166	26 1.4 <1 .9 14 1.4	30 .030 40 .048 55 .162 40 .047 38 .055	.10 .06 .10	.5 .6 .6	01.> 01. 01.	1.4 · .9 · 2.0 ·	<.1<.0 <.1 .0 <.1 .0 <.1 .3 <.1 .0	97<. 2<. 881.	5 5 5 4 3 4	3.52 4.14 2.83 3.87 4.19
0 143293 0 143294 0 143295 STANDARD DS5/	7.7 74.4	34.5	3.8 43.6	3 29 5 8	9 <.1 3 1.0	5.4 1.8	9 1	.6 26 .0 18	4 2.50 3 .84	92.8	.4 .2	78.8 2 2.4 1 72.2 43.5 2	1.5 1 .1	20 < 34 <	.1 .8 .1 1.4	.1 15.3	47 1	4.55 2.28 .70 .71	.065 .006	7 1	15.5 17.8 2.4 L88.4	.88 1 .03	.47 . 17<.	047 001	11 1.2	18 .024 27 .034 12 .003 99 .034	.19 .06	.2 .3•	.01 <.01	2.7 · .2 ·		87.	3 104 6 5 7 84 0 470	3.29 4.30 1.64

Standard is STANDARD DS5/AU-R. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

							<u>v</u> .	• F.6	10.	L.E.3									.e Vani		A4 /er l					Pa	ge	1											
	SAMPLE#		Cu ppm	Pb ppm		-	Ni			-		U ppm									P 1 % p																		
	\$1	<.1	.5	.4	1	<.1	.2	<.	1 4	.03	<.5	<.1	<.!	5 <.1	1	1 <.:	1.2	2 <.1	1	.05<.	001	<1	<] <.(01	1<.00	1 <1	1 .01	. 285	<.01	.1	<.01	.1	<.1	<.05	<1	<.5			
	143296A																				077																		
	1432968																				073																	4.2	.9
	1432960																				076																	4.5	
	1432960	16.9	58.5	3.0	35	.1	5.3	9.	0 3/0	2.68	6.5	./	1.	2.5	5 14	5 <.1	1 1.2	2.2	57 2	2.31 .	079	14 13	3.7 .9	99 3	76 .03	7 25	5 1.16	.036	. 16	.3	.01	5.1	<.1	. 21	6	.7	3	3.0	2
	D 143296	30.9	32.4	6.6	43	.1	5.2	8.	9 53	2.81	11.4	.6	7.8	3 3.3	3 22	0 <.1	ı.3	3.6	23 3	.44 .	083	9 9	.7.9	90	44 .00	1 14	.79	.023	.23	.5	.01	3.2	<.1	.24	3	.7		4.3	15
	D 143297																				880																		
	D 143298																				102																		
	D 143299																				014																		
	D 143300	12.4	56.4	16.6	15	.5	4.7	2.	8 54	1.07	647.0	.2	403.4	.>	1 2	5 <.	1 1.4	.7	3	.06 .	003	<1 16	5.0 .(06 1	18<.00	1 5	5.16	.004	.08	2.9	.02	.2	<.1	<.05	<1	<.5	691	2.2	9
	D 143301	5.6	9.3	21.7	12	2.2	1.5	i .	7 2	. 39	126.3	<.1	9921.3	3 <.1	1	4 <.	1.7	.5	2	.09.	002 ·	<1 15	5.1 .0	02	6.00	1 2	2 .08	.003	.05	1.0	. 13	.2	<.1	<.05	<1	<.5	23067	1.7	79
	D 143302																				002																		
	143300A PULP																				111																		-
	D 143303																				099																		
	D 143304	103.6	59.3	9.2	40	.1	10.9	10.	2 61	3.04	102.9	.5	12.9	9 1.4	4 33	0 <.:	1.3	3 1.0	58 4	.28.	094	6 28	3.9 1.:	12 !	55 .01	27	1.23	.027	. 19	.8	.01	4.6	<.1	. 39	5	1.2	17	4.5	1
	D 143305	27.5	68.1	3.4	32	<.1	8.0	7.	4 20	2.01	4.6	.7	2.5	2.0	68	7 <.	1.3	3.2	64 1	.23 .	097	6 25	i.3 .(64 (65.14	36	5 1.19	.056	.08	.2	<.01	1.1	<.1	.29	6	.8	f	4.9	8
	D 143306																				132																	2.9	17
	D 143307																				119																	2.4	17
	D 143308																				065																	3.2	4
	D 143309	7.2	15.7	9.7	16	.3	120.9	6.	9 26	. 89	29.4	1.3	2.	J 7.9	9 10	7 <.:	1.8	3.3	8 1	.60.	007	10 39	0.7 1.4	49 3	37 .003	3 23	3.29	.061	.05	.7	.04	.9	<.1	<.05	2	<.5	4	1.5	2
	0 143310	35.3	247.7	3.9	75	.1	105.3	18.	3 38	3.36	53.7	1.3	3.	1 2.0	0 7	8 <.	1 3.9	9.4	78 2	2.24 .	078	5 110	.8 1.3	71 :	34 .07	1 9	9 1.54	.034	. 19	.2	.02	3.3	<.1	.83	8	1.4	5	4.0	14
	RE D 143310																				077																		
	RRE D 143310																				078																		•
	D 143311 D 143312																				009 009																		
	0 143312	11.9	34.3	0.7	0		5.1	1.	0 3	.00	119.7	1.1	11.	5 0.3	5 3	5 .	1 1.0	5 2.0	4	./1 .	009	12 10			25 .00	1 4	.23	.051	. 13	.1	.01	.5	۲.۱	. 10	1	<.5	10	4.5	U
	D 143313	7.5	34.4	9.3	9	.1	5.0	1.	6 7	. 68	73.6	1.0	18.	5 7.3	73	1 <.	1.5	5.1	2	.67.	013	14 10	.4 .1	15 2	24<.00	1 7	.27	.031	. 20	.7	.01	.4	<.1	.11	1	<.5	27	5.1	.3
	D 143314																				081																		.9
	143320A PULP	176.9																																					•
	D 143321 D 143322																				091 050																		
	J INULL	4.1	50.2	7.0	51	.2	0.5	, U.	//	, 1.02	517.0		55.		0 10			2	27 1		000			-5 /	.4.00		, .00	.030	.22	.1	.02	1.2	~ .1	.45	3	.9	56	2.5	3
	D 143323	17.0	160.1	4.3	39	.3	28.9	8.	4 24	2.15	312.9	.3	48.	9 1.9	5 11	7 <.	1 1.8	3.4	19 1	. 79 .	065	5 9	.2 .	58	45 .00	1 7	.79	.016	. 30	.6	.02	1.3	.1	. 58	3	1.3	53	2.0	/5
	D 143324																				080																		
	D 143325																				072																		
	D 143326																				083																		
	D 143327	2.5	6.0	8.0	14	.1	1.2	<u> </u>	5 4	5 .30	37.6	<.1	2.	<	1 3	4.	2 .5	5.7	1	.55 .	001 ·	<1 15	.5 .6	03	9<.00	1 <1	ı.05	.003	.04	2.5	.01	.2	<.1	<.05	<1	<.5	9	6.6	1
	Standard 055/AU-r	12.5	142.1	24.9	139	.3	24.1	12.	0 74	5 3.03	18.0	5.8	41.	2.3	74	7 5.	5 3.5	5 6.0	61	.77 .	096	13 180).2 .(68 13	36.10	4 19	2.03	.035	. 15	4.3	.17	3.4	1.1	<.05	6	4.8	488		
NCENTR PLE TYP	0.50 GM SAMPL ATION EXCEEDS E: CORE R150	E LE UPP 60C	ACHE ER L	ED W IMI AU*	ITH TS. * G	3 ROU RRF	ML i IOME	2-2- MII B -	2 H IERA 30.	CL-H LS M 00 (INO3 IAY E IAY S/	H20 BE P) at Parti .e ai	95 ALL IAL1	DEC Ly A (SIS	G. C Atta S By	FO CKE FA	IR OI D. /ICI	NE HU Refi	OUR, RACI		LUTE And	D T GR	0 10 APH	0 ML Itic	, AI Sai	NAL	YSEC	BY	IC	P-MS					ST.	B	7 C	010/ .1
1		DAT										_		_						1	h	In	1	21	04	4									1	ふ つ	7	lare	ence Leo

Page 2

ACHE ANALYTICAL																																′	acme anal	TILAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm			'Ni ppm) Mn)ppm	Fe %		U ppm	Au ppb	Th ppm		Cd ppm p	Sb pm	Bi ppm p	V opm	Ca		La pm	Cr ppm	Mg %(Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W Hg Sc T1 ppm ppm ppm ppm	S %	Ga Se ppm ppm	e Au** n ppb	Sampl k
D 143328	54.5	85.4	B.6	52	2	5.9	9.7	321	2.51	70.3	.6	4.0	1.4	83 -	< 1 1	0	1.2	67 1	. 69	077	5 2	3.2	.85	85	. 125	51.	17	.037	.17	.4 .01 3.2 < .1	.54	711	7	4.6
D 143329		82.7	3.9	60	.2	14 8	11 8		2.69		.6	1.5			< 1	3	1	79 1		078		9.2	1 21 1		.203				.30	.6<.01 2.6 .1	37	9 6	. √2	4.4
D 143330	65.0	58.9	9.9	80	< 1	1334 0	71 0		3.93		. 2	8	5		< 1	1	2	35		015			10.70	58	030			.005	. 41	.1<.01 5.7 .1	.14	4 <.5	-	4.8
0 143331		85.6	3.7	43	1	12.4	8.5	5 240		••••	5	.8	1.5	89	< 1	6	2	60 1		070		3.8	.93		.174				.17	.7<.01 1.3 <.1	.23	7 .5		3.8
D 143332		56.5			.1	13.2		5 254		22.4	1.1	1.5			<.1	.6				.095	_	3.5	.83		.135	31.			.11	.2 .01 2.6 <.1	.23	7.6		3.9
143333A	4.3	120.1	2.6	24	.1	172.3	18.3	3 152	1.91	47.3	.2	2.3	1.4	39	<.1 1	.3	.2	37 1	. 21	.065	55	6.2	1.93	16	.075	14 .	63	.048	. 09	.7 .01 1.6 <.1	<.05	4 <.5	56	3.:
D 143333	9.7	89.5	4.5	62	.2	75.4	16.1	435	3.13	53.3	.1	10.4	.9	162 ·	<.11	.1	.3	60 2	. 21	. 079	7 1	2.6	1.54	58	. 008	7.	95	.034	. 25	.2 .03 4.2 <.1	. 08	6 <.5	5 13	3.
0 143334	8.4	60.2	5.7	32	.2	369.0	26.7	623	3.02	65.5	.2	9.2	.5	591 ·	<.1 3	.6	.6	23 5	.14	.034	3 22	0.1	3.72	32	.001	6.	49	.016	. 20	.3 .02 3.8 <.1	. 27	2.7	/ 18	3.
143335	9.9	20.7	4.0	34	.1	1016.4	70.9	938	3.72	92.1	.1	4.8	<.1	516	<.1	.8	.6	23 3	.44	.001	<1 50	5.3 1	10.26	82	.001	6.	30	. 004	. 03	.2 .02 6.0 <.1	. 20	2 <.5	59	4.
143336	9.4	120.1	3.6	61	.1	17.9	16.2	2 345	3.26	43.8	.2	11.6	.6	125	<.1	.8	.2	66 2	.16	.102	4 1	8.1	1.40	28	.072	61.	24	.041	. 20	.4 .02 2.6 <.1	1.10	7 <.5	5 19	5.
RE D 143336	9.2	121.7	3.6	61	.1	18.7	17.2	2 356	3.38	42.1	.2	9.0	.6	127	<.1	.7	.2	69 2	. 24	. 095	4 1	7.6	1.44	28	.075	61.	29	.040	. 21	.4 .02 2.7 <.1	.99	7 <.5	5 23	
RRE D 143336	9.0	125.8	3.7	61	.1	19.9	16.8	3 362	3.39	45.7	.2	8.8	.7	133	<.1	.6	.2	67 2	2.28	. 103	4 1	7.3	1.44	30	.077	51.	29	.039	. 23	.2 .02 2.9 <.1	1.04	7 <.5	5 16	
RM-04-08 ROCK	.8	5.3	.2	2	<.1	5.7	.7	23	. 36	1.6	<.1	.5	.1	1	<.1	.1	<.1	1	. 03	.001	<1 2	7.4	.04	2	.002	<1.	04	.003	. 01	3.3.01.1<.1	<.05	<1 <.5	52	
RM-04-09 ROCK	.4	2.6	17.7	1	.9	5.9	1.1	l 22	. 32	.5	<.1	<.5	<.1	3	<.1	.11	5.8	1	.03	. 002	<1 1	2.6	.05	2	.002	2.	03	. 008	. 01	.1 .06 .2 <.1	<.05	<1 <.5	55	1.
STANDARD DS5/AU-R	12.3	141.4	24.6	139	.3	23.2	11.9	745	3.04	18.5	6.0	42.4	2.7	46	5.5 3	.4	6.0	60	.75	. 087	12 19	0.4	.68	135	.104	18 2.	00	.035	.15	4.7 .18 3.4 1.0	<.05	7 5.1	L 498	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

ACME AN	IALYT IO 90							D.				hast: 'HEM]								6A 1R ICATI		PH	IONE (604) 25:	3-3:	158 I	'AX ((504)	253-1 [.]	16 A
TT									!	J-Pa		<u>ic (</u> 0 - 11								0311: 323	2									1	Ť
Sample#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm		Mn ppm	Fe %	As ppm	U ppm		Th ppm	Sr Co ppm pp		Bi ppm	V ppm	Ca %	PL %pp	La Cr om ppm	Mg %	Ba ppm	Ti B %ippm	A1 %	Na %	۲ ۲	W Hg ppm ppm			S Ga Se & ppm ppm	Sample kg
SI D 143315 D 143316 D 143317 D 143318	17.9	46.8	.5 43.8 148.2 103.6 97.6	102 78	<.1 1.4 31.7 2.6 1.3	.2 9.6 278.8 98.1 13.2	11.5 5.6	255 116		<.5 118.9 >10000 2429.5 93.4	.2 9	.7 986.0 99079.6 8239.4 209.8	.1		8 28.2 7 33.9 1 9.2	1.3	1 81 5	.12<.0 .06 .0 .57<.0 .36 .0 .01 .0)01 <)01)05	<1 8.6 <1 325.9 1 213.7 1 486.4 2 252.7	<.01 .04 1.00 .24 .02	2<.0 18<.0 13<.0	01 2 01 6 01 7	.04 .34 .27	.005 .005 .003	.03 .18	<.1<.01 .1 .29 .1 .78 .3 .10 .2 .08	.1 < .9 < .4 <	.1 .06 .1 .79	3 1 1.2	2.02 2.14 1.76
D 143319 D 143320 STANDARD DS5	9.4 8.8 12.3		12.8 8.1 24.1	34	.2	22.0 18.0 25.5	7.3	115 291 797		602.6 665.5 18.9	.4		1.0	21 . 107 <. 47 5.		.4	91)51	17 247.7 5 103.6 14 189.6		30<.0 30 .0 140 .1	01 13	.42 .70 2.07	.012	.32 .44 .16 4	.1 .01 .2 .01 4.3 .17	1.5	.1 .73	2 1 <.5 3 2 .8 5 7 4.5	4.44 2.16

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE M150 60C

Data 🖌 FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)	852 E. HASTINGS ASSA		NCOUVER		1R6	PHONE (604) 253-3158 FAX (604) 253-1716
TT	<u>J-Pacific Gold</u> 1440 - 1166 Albe	Inc. erni St.,	File Vancouver	# A4031 BC V6E 3Z3	.12	TT
	SAMPLE#	S.Wt gm	NAu mg	-Au gm/mt	TotAu gm/mt	
	SI D 143315 D 143316 D 143317 D 143318	<1 533 472 505 476	<.01 .68 63.64 .23 <.01	.01 2.62 123.06 9.67 .22	<.01 3.90 257.89 10.13 .22	
	D 143319 D 143320 STANDARD AU-1	487 483 <1	<.01 <.01 .10	$1.95 \\ .09 \\ 3.42$	1.95 .09 3.42	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE M150 60C

DATE RECEIVED: JUN 28 2004 DATE REPORT MAILED: July 16/04 ... Data____FA

ACME A	NALYT SO 90						ſD.					STIN MIC												PHOI	TE (504) 25	3-31	58	FAI	<u>c (6</u>	04):	253-	171 R	.6 A
T T								Ū	-Pa			Go 1166								403 E 323		3												Ľ	
SAMPLE#		Mo	Cu	Pb	Zn A	~			Fe	As	U		-	Sr Co				Ca	P	La	Cr	Mg			B	A1 ¥	Na	K		•	c T	-		Se A	· .
		ррт	ppm	ppiii	ppm pp	т ррт	ppm	ррп	~	ppm	phil	ppp p	ni ht	ni hhi	i ppii	phin	phin	~	~	ppm	ppm	~	ppm	~	ppm	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* µ	pin p	ppm pp	<u>ii ppi</u>		ppm p	pin l	hhn
N 7+50N 1+0	DOW	.2	16.2	1.1	35 <.	1 1935.7	99.2	892	5.06	3.2	.1	.9	.4	3 <.1	.1	.1	29	. 08	.014	1 53	35.2 1	17.87	17	.020	6	.61	.004	.01 <	.1	.02 5.	9 <.	1<.05	5 1 <	.5	<2
N 7+50N 0+	75W	.3	19.8	1.8	35 <.	1 1623.4	85.1	872	4.94	5.3	.2	<.5	.6	7.1	.1	.1	36	.14	.020	2 5	38.9 1	16.52	28	.031	5	.66	.006	.02 <	.1.	.02 6.	1 <.	1.07	2 <	.5	<2
N 7+50N 0+	50W	.3	20.6	2.4	41 <.	1 2047.6	91.1	931	5.51	5.5	.2	<.5	.4	5.1	.2	.1	32	. 10	.037	2 5	18.2 1	18.12	31	.022	7	. 69	.004	.02	.1 .	.03 6.	4 <.	1.08	2	.5	5
N 7+50N 0+2	25W	.2	21.0	1.9	41 <.	1 1831.2	89.1	909	5.49	5.3	.2	.7	.4	5.1	1	.1	33	.11	.033	2 52	27.5 1	19.02	31	.026	9	.76	.004	. 02	.1	.03 6.	5 <.	1.07	2 <	.5	<2
N 7+50N 0+0	00	• .3	24.3	2.9	42 <.	1 1935.7	90.5	965	6.12	11.0	.2	.8	.4	8.1	.2	.2	41	. 14	.046	26	15.0 1	19.08	36	.027	6	. 89	.006	.02	.1 ,	.05 7.	2 <.	1 .08	2 <	.5	3
N 7+50N 0+2	25E	.4	24.5	2.6	50 <.	1 1766.5	102.5	1220	5.89	15.3	.2	1.6	.4 1	.0 <.1	3	.1	42	. 18	.057	2 6	65.2 1	16.65	48	.029	8	. 99	.007	.03	.1	.04 6.	8 <.	1.11	2 <	.5	3
N 7+50N 0+	50E	.4	22.5	2.3	38 <.	1 1529.3	81.5	903	5.19	11.1	.2	.5	.5	7.1	3	.2	35	.12	.030	2 5	59.2 1	15.84	30	.031	9	.75	.006	.02	.2	.03 6.	5 <	1.06	2 <	5	15
N 7+50N 0+	75F	.4	23.4	2.6	48 <	1 1685.1	89.6	1132	5.16	10.5	.2	<.5	4	9.1	.3	.1	39	.16	.064	3.54	48.0 1	5.36	59	.031	7	-	.008			.02 5.				.5	<2
N 7+50N 1+		.4	21.2	2.3	48 <.	1 1861.0	106.4	1179	5.83	8.1	.2	<.5	.4	7.1	.2	.1	38	.12	.052		66.5		43		9	.98	.006	.03		.03 6.			-		4
STANDARD D		12.5	139.0	24.1	133 .	3 24.4	11.6	807	2.99	18.7	6.2 4	41.0 2	.74	5 5.7	3.4	6.1	64	.77	.096	11 19	90.7	.75	136	.106	16	2.09	.035	.15 4	1.5	.15 3.	4 1./	0<.05	_	••	49

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Data / FA ____ DATE RECEIVED: JUN 28 2004 DATE REPORT MAILED: (), My. 13 04.

AA						ם_ד.	ani	fi,	• G	GEO old														т	Page	、 7									X
						<u>0-r</u>	<u>acı</u>	<u></u> ,				1166										21	69	T	raye	с т									
MPLE#	Mo ppm		Pb ppm			Ni ppm					U ppm					Sb ppm p					La ppm	Cr ppm		Ba ppm	Ti %		A1 %				•			5 Ga 5 ppm p	
+00N 1+50W +00N 1+25W +00N 1+00W +00N 0+75W +00N 0+50W	1.1 2.4 3.4	58.5 55.3 90.9	3.2 3.3 3.9	47 53 60	<.1 <.1 .1	1784.6 1997.4 1857.8 1943.1 1655.5	93.7 71.5 86.8	942 797 948	5.97 6.48 6.43	6.7 9.7 10.6	.2 .2	1.0 2.1 2.5 2.0 1.8	.4 .6 .4	5 7	.1 .1 .1	.3 .2 .3 .4 .7	.3 .3 .4	41 . 55 . 50 .	. 19 . 20 . 28	.031 .041 .045	2 64 3 67 3 79	40.8 70.2 50.7	13.80 14.46 13.15 13.56 11.18	26 28 29	.027 .038 .030	7 8 14	.66 .80 .87	.006 .007 .007	.02 .02 .02	.2 . .3 . .7 .	03 7 01 8 03 9	.8 < .3 < .1 <	.1<.05 .1<.05 .1<.05	5 2 < 5 3 <	.5 .5 .5
+00N 0+25W +00N B/L +00N 0+25E +00N 0+50E +00N 0+75E	1.7 1.9 1.5	48.4 53.5 51.3	3.4 3.0 3.5	59 54 44	<.1 <.1 <.1	2104.6 1769.1 1496.3 1906.9 843.1	67.6 44.0 80.9	779 531 835	5.58 4.92 5.92	14.8 22.6 15.3	.2 .2 .2	4.4 2.5 1.5 2.3 1.5	.7 .4 .4	10 7 5	.1 .1 .1	.7 .9 .7	.3 .3 .2	47 . 47 . 38 .	. 23 . 19 . 22	.034 .045 .027	3 72 3 52 2 63	28.3 25.5 31.9	9.65	38 34 23	.039 .042 .022	10 1 7 15	.03 .98 .67	.010 .008 .006	.02 .02 .02	.4 . .7 . .4 .	01 8 02 6 03 6	.8 < .4 < .4 <	.1<.05 .1<.05 .1<.05	5 3 < 5 3 < 5 2 <	.5 .5 .5
+00N 1+00E +50N 0+75W N4+50N 0+75W +50N 0+50W +50N 0+25W	1.0 .9 1.4	64.0 61.3 99.2	3.0 3.0 4.5	62 62 43	<.1 <.1 .1	1345.4 2350.6 2334.7 2142.3 2141.3	122.5 115.8 96.6	1201 1191 863	7.12 6.99 5.77	7.6 6.9 5.8	.2 .2 .2	2.0 2.9 2.4 30.2 1.7	.6 .6 .4	11 11 7	.1 .1 .1	.4	.3 .3 1.1	40 . 36 . 36 .	. 23 . 22 . 18	.030 .027 .021	3 50 2 51 2 57	61.5 17.5 78.2	13.04	49 44 19	.037 .032 .023	12 10 10	.91 .88 .61	.009 .009 .006	.02 .02 .02	.5. .5. .3.	03 7 05 7 15 6	.8 < .3 < .6	.1<.05 .1<.05 .1<.05	5 3 < 5 2 <	.5 .5 .5
+50N 0+50E +50N 0+75E +50N 1+00E +00N 1+00W +00N 0+75W	4.8 2.7 1.7	52.4 49.1 51.7	2.8 3.7 1.4	52 59 56	<.1 <.1 <.1	2217.7 1675.5 1612.5 2260.4 2307.0	64.0 56.5 114.7	659 556 1116	5.15 5.04 6.22	57.9 3.3	.2 .2 .1		.4 .4 .2	12 < 9 4 <	<.1 .1 <.1	.2	.3 .3 .2	50 . 45 . 33 .	.31 . .26 . .33 .	.041 .048 .011	3 59 3 62 1 76	99.0 22.5 67.1	10.28	15 27 9	.043 .032 .013	43 19 19	.79 .82 .46	.008 .008 .007	.02 1 .03 1 .01	.6. .0.	03 7 04 6 03 8	.6 .5 < .8 <	.1<.05 .1<.05 .1<.05	53<	.5 .5 .5
00N 0+50W 00N 0+25W 00N 0+25E 00N 0+50E 00N 0+75E	4.5 4.2 4.1	59.3 60.0 65.2	10.9 4.2 5.0	58 53 58	.2 .1 <.1	2138.2 2152.0 2085.7	84.1 90.9 83.4	905 948 1051	5.89 6.07 6.54	2388.0 644.0 446.0 705.0 914.6	.2 .3 .3	186.8 18.1 12.3	.6 .6 .4	21 14 14	.1 .1 .1	8.5 5.5 8.9	.8 .4 .4	38 . 39 . 42 .	. 29 . 22 . 26	. 029 . 027 . 054	2 64 3 63 3 63	49.2 38.7 35.0	12.29 13.63	29 28 34	.021 .024 .025	21 27 19	.77 .83 .83	.008 .007 .007	.04 .02 .03	.5. .5. .6.	49 7 05 7 05 8	.7 .9 < .3	.1 .07 .1<.05 .1<.05	3 2 3 < 2 3 <	.6 .5 .7
00N 1+00E 50N 5+00W 50N 4+25W 50N 4+00W 50N 3+75W	.2 .3 .3	20.3 22.8 20.0	2.0 2.5 2.3	36 42 38	<.1 <.1 <.1	2005.7 2047.6 2162.0 1795.2 1994.0	84.3 108.7 72.7	875 1172 845	5.67 5.52 4.94	5.6 4.5	.1 .2 .2	28.4 1.3 2.3 1.3 2.1	.2 .3 .4	5 6 7	.1 .1 .1	.2 < .2 .2	<.1 .1 .1	28 . 40 . 41 .	.16 . .18 . .17 .	.040 .034 .036	2 60 2 89 4 70	50.1 54.4 01.3	16.54 16.07	27 33 37	.015 .021 .033	7 10 9	.55 .72 .74	.006 .012 .011	.02 < .02 .02	•.1 . .1 . .1 .	03 7 02 8 02 7	.3 < .7 < .6 <	.1<.05 .1<.05 .1<.05	2 <	.5 .5 .5
-50N 3+50W -50N 3+25W -50N 1+00E -00N 5+00W ANDARD DS5/AU-S	.3 4.6 .2	22.6 117.9 24.3	1.8 6.8 1.9	39 95 40	<.1 .1 <.1	1256.2	94.9 93.2 72.3	1082 1173 875	2 5.16 5.39 4.84	10.7 699.1 2.8	.1 .2 .2	3.4 50.8 12.7	.3 1.3 .3	7 53 12	.1 .1 1 .1	.3 17.9 .2 <	.1 .5 <.1	39. 73. 50.	. 20 . 48 . 35	.025 .090 .034	2 83 6 52 3 74	35.7 22.3 47.1	16.85 5.51 13.17	27 69 44	.018 .040 .031	21 19 1 10	.73 .56 .95	.008 .005 .013	.01 .07 .02 <	.2. .4.	03 9 04 6 02 9	.8 < .7 .0 <	.1<.05 .1<.05 .1<.05	7 <	.5 .5 .5

Clarence Leo

Data FA ____ DATE RECEIVED: JUN 15 2004 DATE REPORT MAILED:

		Ā	
ACHE	ANAL	ΥT	ICA

13

J-Pacific Gold Inc. PROJECT 96 FILE # A402789

Page 2

44

ACHE ANALYTICAL																												ACHE ANAL	ITICAL
SAMPLE#	Мо	Cu	Pb	Zn A	g Ni	•-						d Sb				La	Cr		Ba		В		Na	ĸ	W Hg	Sc	T1 S	Ga Se	Au**
	ppm	ppm	ppm	ppm pp	n ppr	i ppm	ppm %	ppm p	pm ppl	o ppm	ppm pp	m ppm p	om pom	*	8	ppm	ppm	8	ppm	8	ppm	X	z	% pp	m ppm	ppm p	pm %	ppm ppm	ppb
N3+00N 4+75W	.3	19.4	1.8	43 <.	1 1881.0	85.5	931 5.59	2.5	.2 1.	7.3	8.	1 .1 <	.1 41	.19	.038	2	922.6	15.65	27	. 026	12	.76	.013	.02	1 .02	7.7 <	.1<.05	2 <.5	9
N3+00N 4+50W	.2	15.9	1.2	32 <.	1 1893.3	91.1	1074 5.14					1 .1 <				1	956.9	17.62	17	.017	13	.70	.012	02	1.03	8.5 <	.1 .09	2 <.5	4
N3+00N 4+25W	.3	19.1	3.0	45 <.	1 1940.2	88.2	1011 5.84	3.5	.2 1.3	L.4	7.	1 .1 <	.1 42	.15	.048	2	845.9	15.53	32	.028	10	.77	.009	.02 .	1.03	7.7 <	.1<.05		11
N3+00N 4+00W	.3	17.6	1.7	40 <.	1 1868.6	82.6	954 5.71	2.9	.2 2.3	l.4	7.	1 .1 <	.1 38	.18	.039	2	746.0	15.54	25	.027	7	.67	.009	.02 .	1.02	7.5 <	.1 .06	2 <.5	5
N3+00N 3+75W	.3	22.9	2.0	46 <.	1 2487.8	117.7	1338 6.32	3.7	.2 2.0	3.4	6.	1.1	.1 45	. 18	.046	3 1	1060.3	16.21	39	.026	11	.78	.009	.02 .	2 .03	10.1 <	.1 .07	2 <.5	7
N3+00N 3+50W	.4	25.1	2.5	46 <.	1 2056.3	84.7	1061 6.05	4.6	.3 1.3	2.5	10.	1.2	.1 44	.16	.063	3 1	1012.5	14.57	55	.032	81	.00	.010	.02	1.03	10.2 <	.1 .08	2.6	73
N3+00N 3+25W	.3	23.8	2.6	49 <.	1 2007.1	78.7	961 6.10											14.12										2.5	4
N3+00N 1+00E							1053 5.64																					3 <.5	
N2+50N 5+00W	.3	20.9	1.7	39 <.	1 1946.0	105.7	1262 5.45	3.5	.2 2.9	.4	7.	1 .1 <	.1 39	.17	.028			15.86											7
N2+50N 4+75W	.2	20.2	1.7	39 <.	1 2088.7	112.8	1235 5.69	2.9	.2 2.1	.4	7.	1 .1 <	.1 38	.17	.033	2	953.1	16.80	36	.024	10	.72	.008	.02 <.	1 .03	8.3 <	.1<.05	2 <.5	5
N2+50N 4+50W							1092 5.57					1.1				2	972.2	16.52	22	.022	10	.71	.008	. 02 .	1.02	8.1 <	.1<.05	2 <.5	4
N2+50N 4+25W							1052 5.34		.2 1.3			1.1<						14.40				.69	.010	.02 .	1.03	7.1 <	.1<.05	2 <.5	<2
N2+50N 4+00W							1030 5.77		.1 1.8			1 .1 <				11	1096.5	17.49	18	.017	8	.67	. 006	.01 .	1.02	8.6 <	.1<.05	2 <.5	7
N2+50N 3+75W							1180 6.75					1.2				2	761.3	16.29	30	.021	22	.55	.006	.01 .	3.04	7.0 <	.1<.05	2 <.5	<2
N2+00N 5+00W	.2	17.5	1.7	42 <.	1 1991.2	98.9	1119 5.63	2.6	.2 1.	L.3	7.	1 .1 <	.1 34	. 15	.035	2	629.7	16.03	32	.024	7	. 59	.011	.02 .	1 .01	7.3 <	.1<.05	2 <.5	2
N2+00N 4+75W							1372 5.12					1 .1 <						19.57											<2
N2+00N 4+50W							979 4.72					1 .1 <						13.57									.1<.05		<2
N2+00N 4+25W							1265 5.40					1 .1 <						15.11									.1<.05		6
N2+00N 4+00W							1176 5.28					1 .1 <						13.04											3
N1+50N 5+00W	.2	15.0	.9	36 <.	1 2214.9	114.4	1300 5.86	1.0	.1 3.1	2.2	5 <.	1 <.1 <	.1 29	.12	.013	1	709.8	18.31	14	.012	9	.42	.005	.01 <.	1.06	8.1 <	.1<.05	1 <.5	5
RE N1+50N 5+00W	.2	15.4	.9	38 <.	1 2249.0	117.9	1346 6.03	1.2	.1 3.	7.2	5 <.	1 .1 <	.1 31	.13	.013	1	693.8	18.80	14	.012	7	.43	.005	.01 <.	1.02	8.4 <	.1<.05	1 <.5	8
N1+50N 4+75W	.2	15.2	1.2	39 <.	1 1963.0	95.1	1115 5.46	1.6	.2 1.).3	5.	1 .1 <	.1 38	.18	.029	2	778.3	16.51	31	.021							.1<.05		11
N1+50N 4+50W		17.8					1292 5.55					1 .1 <				1	919.3	19.11	18	.015	8	.61	.008	01 .	2.02	9.1 <	.1<.05	2 <.5	5
N1+50N 4+25W							1404 5.31					1.2						15.09			5	.94	.018	.03 .	2.04	8.2 <	.1<.05	3.5	<2
N1+50N 4+00W	.2	16.1	1.0	37 <.	1 1924.0	107.3	1322 5.02	2.1	.1 2.	5.3	6 <.	1 .1 <	.1 35	.21	.016	2	779.6	17.34	27	.021	6	.62	.007	.01 .	6.02	8.3 <	.1<.05	2 <.5	6
N1+50N 3+75W		14.0					1260 4.77											19.89			9	.58	.005	01 1.	0.02	8.4 <	.1<.05	1 <.5	5
N1+50N 3+50W							1152 5.57					1.1						16.00									.1<.05		<2
N1+50N 3+25W							1182 5.42					1.2				2	707.7	15.23	31	.032	10	.76	.010	. 02	4.02	7.3 <	.1<.05	2 <.5	11
N1+50S 4+75W							979 6.20					1 .1 <				2	625.6	17.35	20	.019	1	.52	.006	.02 <.	1 .02	6.6 <	.1<.05	2.5	7
N1+50S 4+50W	.4	24.3	9.8	44.	1 1900.7	96.1	1023 5.34	5.4	.2 3.	3.8	10.	1.21	.4 35	.17	.021	3	564.8	14.01	47	.036	4	.76	.010	.02 .	1 .04	6.6 <	.1<.05	2 <.5	<2
N1+50S 4+25W							1451 5.56					1.2															.1<.05	2 <.5	9
N1+50S 4+00W							1059 6.16					1.1						15.82										2 <.5	<2
N1+50S 3+75W							1488 4.61									1	774.3	17.24	24	.015	31	.63	.006	. 02	80.8	8.3 <	.1<.05	2 <.5	6
N1+50S 3+50W							1275 4.48					1 1.8	.5 42	.14	.025	2	764.8	16.04	27	.016	32	. 60	.007	. 02	7.10	7.5 <	.1<.05	2 <.5	<2
STANDARD DS5/AU-S	12.5	141.4	25.0	135 .	3 24.6	11.7	784 3.00	19.2 6	.1 43.	2.8	50 6.	0 3.9 6	.0 59	.75	.102	12	190.4	. 69	143	.100	17 2	.11	.036	14 4.	7.17	3.6 1	.1<.05	64.9	49

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

A	
-	
ACME	ANALYTICAL

J-Pacific Gold Inc. PROJECT 96 FILE # A402789

Page 3

Data FA

ACHE ANALYTICAL																																		ACHE ANAL	YTICAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe		-	-		-			Bi	-	Ca	Р		Cr	Mg	Ba	Ti	В	Al							Ga Se	
	ppm	ppm	ppm	ppm p	pm	ppm	ppm	ppm	*	ppm p	pm	ppb	ppm p	opm p	pm	ppm	ppm	ppm	8	% p	pm	ppm	8	ppm	*	ppm	x	*	% p	pm pp	om ppr	n ppm	% p	pm ppm	ppb
N1+50S 3+25W N1+50S 3+00W N1+50S 2+75W N1+50S 2+50W N1+50S 2+25W	14.8 6.5 2.6	114.1 108.4 49.2	8.8 11.2 4.7	39 42 41	.2 2 .2 2 .1 1	2335.8 2065.1 2752.2	121.6 114.0 89.3	1734 1338 1215	5.51 4.90 5.34	14.6 73.2 179.8 46.8 71.3	.2 .2 .1	11.9 13.2 9.0	.3 .8 .2	17 22 10	.1 .1 .1	2.2 4.3 4.6	2.2 3.8 1.2	39 47 32	.17 .23 .20	.032 .031 .083	2 1 2	854.2 984.2 495.8	11.05 11.47 9.23	45 32 54	.015 .013 .018	56 41 14	.73 .83 .61	.007 .008 .008	.02 .02 .03	.2 .5 .2 .2 .5 .1	59 8.0 25 8.1 16 6.4	5.1< 1.1 4<.1	.05 .09 .17	2 <.5	4 9 - 13 29
N1+50S 1+75W N1+50S 1+50W N1+50S 1+25W N1+50S 1+00W N1+50S 0+75W	2.0 4.2 6.6	241.7 698.1 915.6	6.6 18.6 21.3	50 87 86 1	.31 .8 .2	418.1 711.2 492.8	74.7 48.4 43.8	989 1102 1024	5.19 6.07 6.87	202.4 60.4 74.1 1 126.9 2 114.9 1	.4 1.6 2.0	24.1 38.3 3 94.5 2	.9 3.5 2.7	15 36 37	.1 .3 .4	3.7 4.8 4.2	.7 1.4 5.4	51 92 104	.33 .83 .82	.084 .152 .184	5 12 11	459.1 266.1 204.4	11.01 6.76 5.34	118 192 191	.037 .080 .083	27 122 1 37 1	.84 .64 .71	.009 .009 .008	.04 1 .05 2 .05 4	.0.1 .4.1 .2.0	12 6.0 10 5.8 07 5.3) <.1 3 <.1< 3 <.1<	.07 .05 .05	3 .5 4 .5 9 1.1 9 1.8 6 1.0	160
N1+50S 0+50W N1+50S 0+25W N1+50S B/L N1+00N 5+00W N1+00N 4+75W	8.6 17.4 .2	364.5 275.4 6.7	30.8 66.8 .6	78 72 1 38 <	.8 .8 1 .1 2	777.1 L023.3 2826.0	53.8 61.2 147.1	1203 1183 1591	5.41 5.98 7.11	222.3 1 254.5 671.8 1 2.6 < 2.5	.7 1 1.0 8 <.1	137.5 : 365.7 : .7	1.9 2.0 .2	40 24 4 <	.3 .4 .1	3.3 4.5 <.1	9.0 24.7 <.1	73 65 9	.70 .55 .06	.123 .104 .006	9 9 1	246.9 288.3 284.9	6.65 8.09 19.09	221 254 21	.048 .032 .008	13 1 13 1 16	.51 .29 .18	.009 .007 .003	.08 3 .08 3 .01 <	.6 .0 .4 .0	07 5.9 08 6.2 02 4.8) <.1< 2 <.1<	<.05 <.05 <.05	7 1.0 7 1.1 6 1.3 1 <.5 3 <.5	297 769 6
N1+00N 4+50W N1+00N 4+25W RE N1+00N 4+25W N1+00N 4+00W N1+00N 3+75W	.4 .2 .2	19.6 19.0 19.6	1.7 1.6 1.5	37 < 36 < 39 <	<.1 1 <.1 1 <.1 1	1904.9 1854.7	91.6 91.6 100.4	1107 1079 1208	5.61 5.42 5.45	3.0 2.5 2.5 2.5 1.9	.3 .3 .2	2.3 1.2 2.0	.5 .5 .4	8 8	.1 .1 .1	.1 .1 .1	<.1 .1 <.1	43 42 37	.20 .20 .22	.031 .028 .031	3 3 2	720.0 691.0 790.2	14.73 14.20 15.88	41 41 36	.043 .040 .023	9 7 8	.89 .87 .69	.013 .011 .009	.02 .02 .02	.2.0 .2.0	02 8.3 02 7.8 02 7.9	3 <.1< 3 <.1 9 <.1	.05 .06 .10	3 <.5 2 <.5 2 <.5 2 <.5 2 <.5 2 <.5	<2 8
N1+00N 3+50W N1+00S 5+00W N1+00S 4+75W N1+00S 4+50W N1+00S 4+25W	.1 .3 .1	18.7 21.6 14.8	1.0 4.9 .8	38 < 44 32 <	<.1 2 .1 2 <.1 2	2051.8 2322.2 2078.6 2084.7 1973.8	106.4 84.7 114.2	1001 863 1183	6.20 5.79 5.37	1.2	.1 .1 <.1	3.7 1.4	.4 .3 .1	5 6 3 <	.1 .1 .1	<.1 .1 <.1	.4 <.1	31 35 32	.11 .18 .18	.019 .041 .013	2 2 1	739.3 721.0 636.3 987.3 1060.1	17.79 15.96 18.92	22 20 13	.017 .023 .008	3 •4 7	.53 .63 .50	.005 .007 .006	.01 < .02 .01	.1 .0 .1 .0 .1 .0	01 7.1 02 6.2 02 7.7	l <.1< l <.1< 2 <.1 7 <.1< 3 <.1<	.05 .10 .05	2 <.5 1 <.5 2 .5 1 <.5 2 <.5	4 3 9 15 6
N1+00S 4+00W N1+00S 3+75W N1+00S 3+50W N1+00S 3+25W N0+50N 5+00W	.1 .2 .4	24.6 18.0 27.0	1.4 .7 2.6	31 < 35 < 41 <	<.1 1 <.1 2 <.1 2	1932.3 2310.3 2219.7	103.5 125.6 116.1	948 1237 1196	5.32 6.14 6.37		<.1 .1 .3	1.4 · 1.3 .8	<.1 .1 .4	2 < 3 6	.1 .1 .1	<.1 <.1 .2	.4 <.1 .3	36 33 37	.23 .19 .16	.003 .018 .030	<11 1 2	1088.3 1203.0 931.8 823.3 419.9	18.71 18.49 16.90	3 17 38	.021	9 7 5	.52 .49 .62	.002< .003 .005	.01 < .01 < .02	.1 .0 .1 .0 .1 .0	02 8.9 02 8.2 03 8.4	<.1<	.05 .05 .05	1 <.5 1 <.5 1 <.5 2 <.5 2 <.5	<2 2 4 3 2
N0+50N 4+75W N0+50N 4+50W N0+50N 4+25W N0+50N 4+00W STANDARD DS5/AU-S	.2 .2 .2	16.6 19.0 21.2	1.8 2.1 2.4	41 < 44 < 50 <	<.1 2 <.1 1 <.1 1	2095.5 1962.2 1924.8	117.9 91.7 83.0	1345 1030 834	5.82 5.70 5.45	2.0 1.8 2.6 1.7 19.4 6	.2 .3 .3	1.6 1.3 2.8	.3 .4 .9	6 8 11	.1 .1 .1	.1 .1 .1	<.1 .1 .1	31 40 37	.11 .15 .16	.032 .036 .030	2 3 4	534.1 656.5 422.7	17.06 14.97 13.00	31 42 55	.021 .036 .050	9 6 3	.54 .72 .85	.008 .010 .011	.02 .02 .03 <	.2 .0 .1 .0	03 9.6 02 7.3 01 6.4	5 <.1 3 <.1	.08 .06 .05	3 <.5 2 <.5 2 <.5 3 <.5 6 4.8	5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

4	
ACHE ANAL	YTICAL.

.

J-Pacific Gold Inc. PROJECT 96 FILE # A402789

Page 4

AURE ANALTIICAL												_			<u>.</u>					_															ACME AN	
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	ρ	La	Cr	Mg	Ba	Ti	B	A]	Na	ĸ	W	Hg	Sc	TI	S	Ga Se	Au**
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	8	ppm (ppm	ppb	ppm	ppm	ppm p	opm p	pm p	pm	8	% p	pm	ppm	8	ppm	*	ppm	*	*	% p	ppm p	ppm p	opm p	pm	Хp	pm ppm	ppb
NO. 50N. 0. 75V	•	15.0	0.0		. 1	1770 5	74.0	764 5	10	1.0			~	<i>c</i>	•	,	•	22	10	004			0.00		0.07											
N0+50N 3+75W						1778.5					·2	1.4		6	.1	-			12 .			371.8 1			.037	<1	-	.008							2 <.5	-
NO+50N 3+50W		22.5				2032.6					.1	.8	.2		.1	.2			21 .		_	719.5 1			.016								<.1 <		2 <.5	<2
N0+50N 3+25W	.5	34.3	7.3	42	.1	1970.0	106.3				.2	1.4	.4	7	.1	.2	.6	36.	18.	044		656.5 1			.030	8	. 63	.007	.02	.5	.03 E	s.1 <	<.1 <	. 05	2 <.5	3
N0+50S 4+75W	.4	16.6	2.7	37	<.1	2154.7	93.4	954 5	.93	4.1	.2	1.3	.3	6	.1	.1	.2	33.	15 .	036	2	659.01	15.99	18	.017	4	. 56	. 008	.02	.1 .	.02€	5.1 <	<.1 <	.05	1 <.5	4
N0+50S 4+50W	.3	18.0	1.8	40	<.1	2011.7	106.1	1225 5	5.77	2.8	.2	1.7	.4	7	.1	.1	.1	31.	16.	034	3	652.3 1	16.38	40	.022	3	. 60	.008	. 02	.1 .	.02 7	/.3 <	:.1 <	.05	2 <.5	7
N0+50S 4+25W	.2	13.5	1.3	36	<.1	2032.7	102.3	1214 5	. 55	1.6	.1	1.7	.2	4	<.1	.1 <	.1	31.	19.	025	1	828.4 1	17.35	21	.014	8	.46	.006	.01	.3	.02 7	/.9 <	<.1 <	. 05	1 <.5	4
NO+50S 4+00W	.2	16.4	2.0	45	<.1	2054.7	82.4	840 6	.04	2.4	.2	<.5	.5	5	.1	.1 <	.1	33.	11 .	035	2	438.6 1	15.55	22	.026	1	.47	.006	.02 <	:.1 .	.01 E	> 5.ز	<.1 <	.05	2 <.5	6
RE N0+50S 4+00W	.1	16.6	2.1	47	<.1	2069.8	83.8	856 6	5.20	2.4	.2	.9	.4	5	.1	.1 <	.1	34.	11 .	032	2	452.9 1	15.85	23	.027	1	.47	.006	.02 <	<.1 .	.01 5	> 4.ذ	<.1 <	.05	2 <.5	-
N0+00 5+00W	1	17.0	2.4	48	< 1	1824.0	76.6	720 5	13	1.7	.3	.9	.8	9	.1	.1 <	1	32	13 .	029	4	336.7 1	2.64	43	.044	<1		.009							2 <.5	<2
N0+00 4+75W		15.7			. –	1760.6					2	1.9	.4	6	.1			62		049	3	507.9 1			.059	3		.008				-			2 <.5	-
	• •				•-	210010							• •	•	• =					• • •	•					·				•-	01 0		••		2	
N0+00 4+50W	.3	19.5	3.1	45	<.1	1890.3	76.6	826 5	5.67	4.0	.2	1.6	.4	8	.1	.1	.1	43.	19.	045	3	561.2 1	14.44	26	.036	3	. 65	.013	.02	.1	.02 f	5.2 <	<.1 <	.05	2 <.5	2
N0+00 4+25W	.2	16.2	1.6	38	<.1	2079.7	103.0	1078 5	5.96	2.3	.2	1.0	.3	6	.1	.1	.1	33.	16.	027	2	709.4 1	16.34	25	.018	4		.010					<.1 <		1 <.5	2
N0+00 4+00W		19.2				1983.8					2	.6	.5	7	.1	2		32		034		647.6 1			.022	3		.006					<1 <		2.5	20
N0+00 3+75W	••		- • •			2205.9					1	.6	2	4	<.1	1	.1	35	23	017	-	1016.1 1			.010	7		.004					<.1 <		1 <.5	ž
N0+00 3+50W						2121.6			-		.1	.8	1		.1 •		.6					1082.6 1			.006	10							<.1 <		1 <.5	<2
NOTO 3730W	.5	22.0	2.0	30	×.1	2121.0	104.5	331 0		1.9	.1	.0	.1	2	.1		.0	55.			-1	1002.0 1	19.12	'	.000	10	. 47	. 004	. 01	• •	.02 /	.0 \	、	.05	1 ~.0	~2
N0+00 3+25W	1	12.6	3	30	< 1	2307.8	117 0	995 5	43	5.	< 1	1.0	< 1	2	< 1 •	< 1 <	1	30	20	003	<1	1036.4 1	19.53	4	.005	9	.40	002<	01 <	< 1	01 7	/ 5 <	< 1 <	05	1 <.5	<2
STANDARD DS5/AU-S	12.5				. –	24.1		794 2			_				5.7 3						13	186.5			.101				.16 4				. –		6 5.2	-
31 MILMIN D337 MU-3	12.3	140.2	23.2	101		24.1	11.5	1,74,6		12.3	0.1	····	2.0	51	5.7 0			. 10		110	10	100.5	.00	140	. 101	10	2.00	.000	.10 4	1.0	.10 0				0 J.2	50

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data______FA

		ANALY ISO 9							יס.								T. V ANAI									PHO	NE (604)	253	-315	8 F	AX (604)	253	-171 A	.6 A
	<u> </u>							J	-Pa	acif	<u>:ic</u>				<u>1C.</u> 66 A		ROJI ni St						# A z3	.40:	278	7										
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	A1	Na	K	W Hg	g Sc	TI	S (Ga	Se Au*	* Sample
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm	opm p	pm p	pm	ppm	ppm	x	*	ppm	ppm	*	ppm	*	ppm	*	*	% pp	m ppn	n ppm	ppm	Хp	om p	pm pp	b kg
SI	.1	.4	.7	1	<.1	.2	<.1	1	.03	.6	<.1	<.5	<.1	2 <	.1 <	.1	<.1	1	.07<.	.001	<1	<1	<.01	3<	.001	<1 <	.01	.363<.	01.	1 <.01	.1	<.1 <	<.05 ·	<1 <	.5	2 -
RM-04-01		1436.4	2.7	67	.7	34.1		229	4.23	9.8	.6	1.6	.9	111	.2	.1	.2	81 4	.30	.128	-		3.18			24 5	.45	.034 .	15.	5.24	4.8	.1	. 31	9	.8	4 1.39
RM-04-02	2.9		3.8	35	.2	74.0		224	4.09	22.3	.5	3.9	• -	15	.1	.2	.4	90 1		.111	2	50.2	. 88		.155		. 58		05 1.	• •••	2 4.5		51	6 3	.8	6 2.97
RM-04-03	.1	11.3	.9	3	<.1		1.5		.28	4.8	.2	<.5		145 <	· Ξ	.1	<.1	2		.019	3	8.3		101			.45 1		04 <.			<.1 <		3 <	.5 <	
RM-04-04	96.8	489.1	2.0	76	.3 1	.707.0	81.6	632 3	3.83	104.5	.1	10.8	<.1	11	.5	.5	.8	22 2	.21	.001	<17	748.0	13.38	5	.003	52	. 29	.002<.	01.	4 .07	7 5.6	<.1	. 31	1	.6 1	6 2.81
WG-04-01	61.6	14.3	322.6	6	6.3	22.6	1.3	22	.45	59.3	<.1	43.0	<.1	1 <	.1 25	.6	14.8	2	.02	.003	<1	13.1	.11	5	.001	1	.08	.004 .	02.	7.01	.1	<.1 <	<.05 ·	<1 <	.5 13	4.85
WG-04-02	4.4	16.2	5747.2	16	6.3	16.9	1.0	21	. 31	<.5	<.1	3.1	<.1	1	.5	.5 >	>2000	1	.02 .	.001	<1	22.6	. 12	5	.001	<1	.01	.006 .	01 2.	5 5.73	.1	<.1 <	<.05	<1 78	.3	4 1.81
WG-04-03	10.5	71.2	798.6	23	32.2	7.1	1.1	6	.70	10.0	.6	3.0	<.1	1	.1	.4 14	493.8	1	.01	.001	<1	9.6	. 03	5<	.001	1	.01	.006 .	01.	1.96	i <.1	<.1 <	<.05 ·	<1 13	.4	4 1.34
STANDARD	12.0	141.5	23.4	140	.3	25.0	12.3	785	3.01	19.7	6.1	43.7	2.6	44 5	.6 3	1.4	6.0	61	.77 .	. 105	11 1	195.5	. 68	137	. 098	17 2	. 11	.037 .	15 4.	5.17	3.4	1.0 <	<.05	65	.4 49	9-

Standard is STANDARD DS5/AU-R.

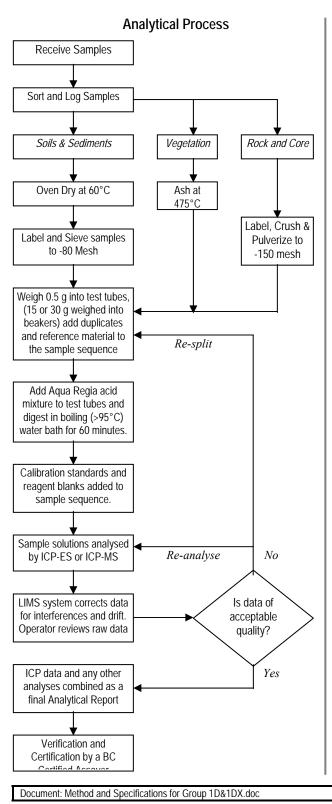
GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. - SAMPLE TYPE: ROCK P200 60C

Data 🚺 FA

DATE RECEIVED: JUN 15 2004 DATE REPORT MAILED: July 1/04

ACME ANAL (ISO							TD.		8:	52 E. GEO									A 1 CAT			PHON	TE (6	04)	253	315	8 F	'AX (604) 25:	3-17 A	′16 A	
<u> </u>									<u>J-</u>	Paci 14		Gol 166 A					# . BC \			50													
SAMPLE#	Mo ppm	Cu ppm		Zn ppm	Ág ppm	Ni ppm	Co ppm		Fe %	As ppm pp	-	Au Th pb ppm	Sr Ippm p			Bi pm pp	V Ca m %		La ppm	Cr ppm	Mg %≭p		i B %⊺ppmn		Na %	K % pj			Sc T pm pp	-	Ga ppm	Se / ppm	
SI RM-04-05 RM-04-06			147.8	20	1.2	15.8	2.3	86	.84 1	<pre><.5 <. 1367.6 <. 168.3</pre>	1 232		2	.1 12	.2 9	.9	2 .10	.004	1	<1< 6.6	.08	3<.00 7.00 9.00	1 1	. 10	.003	.01 < .03 .10	.3.	06	.3 <.	1.14	1	<.5 1.0 28.7	374

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.


Data Wo FA ____ DATE RECEIVED: JUN 17 2004 DATE REPORT MAILED:

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μm). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μm) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

A 2:2:2 solution of concentrated ACS grade HCl, HNO_3 and demineralised H_2O (modified Aqua Regia) is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan6000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga, Hg,* K, La, Mg, Mn, Mo, Na, Ni, P, Pb, *S*, Sb, *Sc, Se, Tl*, Sr, Th, Ti, U, V, W, Zn.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS4 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Prepared By: J. Gravel

852 East Hastings Street • Vancouver • British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Facsimile: (604) 253-1716 • Toll Free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

Date: June 2, 2003

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3B - PRECIOUS METALS BY FIRE GEOCHEM

Analytical Process Receive Samples Sort and Log Samples Oven Dry at 60°C Soils and Sediments Rocks and Core Label and Sieve samples Label, crush and pulverize to -80 Mesh to -150 Mesh \checkmark Weigh out 30 to 50 gm of sample pulp into fire-assay crucibles. Add standard Re-split reference materials, blanks and duplicates to sample Carbon and sequence sulphur-rich ↓ samples are Add Fire Assay flux and ignited fuse in Fire Assay Ovens Recover dore bead from lead button Part dore bead in HNO₃, digest Au \pm Pt \pm Pd \pm Rh by adding HCI Analyse by ICP-ES Re-Analyze No Data correction and Is data of verification based on all acceptable QC samples quality? Data Entry, Checking and Yes Analytical Report Generation Final Verification and Certification

Comments

Sample Preparation

Soils and sediments are dried (60° C) and sieved to -80 mesh ASTM (-177 m). Rocks and drill core are crushed and pulverized to 95% -150 mesh ASTM (-100 µm). Splits of 30 gm (client may select 50 gm option) are weighed into fire assay crucibles. Quality control samples comprising blanks, duplicates and reference materials Au-S, Au-R, Au-1 or FA-100S (in-house standard reference materials) added to each batch of 34 samples monitor background, precision and accuracy, respectively.

Sample Digestion

A fire assay charge comprising fluxes, litharge and a Ag inquart is custom mixed for each sample. Fusing at 1050°C for 1 hour liberates Au, Ag, Pt and Pd. For Rh > 10 ppb, a Au inquart is used. After cooling, lead buttons are recovered and cupeled at 950°C to render Ag \pm Au \pm Pt \pm Pd or Au \pm Pt \pm Pd \pm Rh dore beads. Beads are weighed then leached in hot, conc. HNO₃ to dissolve Ag leaving Au (\pm PGE) sponges. Concentrated HCl is added to dissolve the sponges. Au inquart beads (Rh analysis) are dissolved in Aqua Regia.

Sample Analysis

Au, Pt, Pd and Rh are analysed in sample solutions by ICP-AES (Jarrel Ash AtomComp model 800 or 975). Rh can be determined quantifiably up to 10 ppb from a Ag inquart fusion digestion, however a Au inquart must be used to accurately determine higher concentrations.

Data Evaluation

Data is inspected by the Fire Assay Supervisor then undergoes final verification by a British Columbia Certified Assayer who signs the Analytical Report before release to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

APPENDIX B

DIAMOND DRILL LOGS

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-01

PAGE: 1 **OF** 6

DIP AN	D AZIMUTH	TESTS
DEPTH	ANGLE	AZMTH
106.1	-49.7	101.2°
		(true)

CORE SIZE: NQ II	TOTAL DEPTH: 109.15 m	DATE STARTED: 29 May 2004
HOLE ANGLE: -50°	HOLE AZIMUTH: 100°	DATE FINISHED: 30 May 2004
SECTION: 1+00S	COLLAR ELEVATION: 2342 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 530747E;5654197N	CLAIM: Elizabeth	CORE STORED AT: Property

Dept From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	6.10	OVERBURDEN								
6.10	20.50	 ALTERED ULTRAMAFIC (DUNITE) Dark green-brown to black, well fractured core. Recovery 90%+. Fracture generally at high angles to core axis, often slickensided. Rock shows very fine web-like texture reflecting magnetic bearing stringers (<0.5mm wide). Core moderately magnetic. Alteration: Abundant thin (<1 mm) magnesite veinlets at random orientations. Abundant, pale green talc, often slickensided. Mineralization: Very fine-grained magnetite stringers, sulphides very low. 								
20.50	23.00	 FAULT ZONE Top 70 cm of upper contact irregular and sharp at 50° to C.A. Green/brown to grey, highly sheared, brecciated rock (ultramafic). Intense crenulation, slickenside fractures. Strong talc alteration. Fine grained pyrite (<0.5%). Strong clay gouge zone with intact blocks of greenish/brown deformed listwanite. Noting mariposite near middle of interval. Footwall contact at ~50° to C.A. Core loss 0.25 m due to gouge. 								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-01

PAGE: 2 **OF** 6

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
23.00	27.45	 LISTWANITE Brown to light grey, mottled appearance. Rock consists of fine-grained carbonate (predominantly magnesite) and silica often with a sheared appearance. Minor mariposite. 	Trace pyrite. Strong fracturing. Limonite alone fractures. Malachite at 25.10 m	143001	23.00	25.50	18	197	54	17
		 Brown/orange colour due to ankerite carbonate. Upper contact at 45° to core axis. Lower contact grad. (40° to C.A.) General shear induced fabric at high angle to core axis. Locally cut by late stage low angle silica veinlets and microveinlets. i.e. 25.65-26.45m. 	Variably silicified. Trace pyrite	143002	25.50	26.50	21	91	81	5
		 Recovery 100% Mineralization: Sporadic, thin wisps and disseminations of fine-grained pyrite<<1%. 	Much softer, talc, serpentine alteration	143003	26.50	27.45	10	29	21	3
27.45	31.05	 ALTERED ULTRAMAFIC (DUNITE) Dark green/black. Differs from ultramafic at top of hole in that webbed texture is largely absent. Moderately to strongly magnetic. Abundant, irregular, cross-cutting fractures filled with magnesite/serpentinite (antigorite), silica. 	Strongly magnetic. Trace py>po	143004	27.45	29.30	5	30	27	< 1
		 Mineralization: Fine-grained, wispy pyrite along fractures as well as blebs, 0.5-1%. Tracy chalcopyrite. Alteration: Magnesite, serpentinite (antigorite). 	Strongly magnetic. Trace py>po	143005	29.30	31.05	1	29	44	< 1
31.05	37.35	LISTWANITEPale grey to blue grey, mottled with variable amounts of bright green mariposite.	Listwanite. Reddish/pink patches hematite after magnetite.	143006	31.05	32.90	18	26	17	< 1
		 Occasional limonitic fractures at low angle to core axis. Magnesite veining up to 1 cm with minor ankerite. Noted offsets in magnesite. 	5-7% diss/clots of py to cpy.	143007	32.90	34.40	244	378	550	15

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-01

PAGE: 3 **OF** 6

Deptl From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		 Mineralization: Variable disseminations of fine-grained py, po, mag. Trace cpy. Sulphides from 0.5 to >5%. Alteration: 	Mariposite rich, strongly siliceous with microveinlets.	143008	34.40	35.85	14	91	12	< 1
		 32.90 – 34.40 m: core bleached with increasing sulphides. Moderate to intense silicification to 36.55. 36.55 – 37.35 m: non-silicified, but listwanite altered (with local mariposite) ultramafics. (alteration halo?). 	Siliceous to non-siliceous. Local py/po blebs to 1 cm. Tr cpy	143009	35.85	37.35	8	43	8	< 1
37.35	38.30	 ALTERED ULTRAMAFIC Medium to dark grey, mottled appearance cut by numerous white to pale green talc/magnesite veinlets to 1.5 cm. 	Trace py	143010	37.35	38.80	3	6	4	2
38.80	47.35	 LISTWANITE Pale grey to mauve, mottled listwanite with generally abundant mariposite. 	Clots of fine-grained mag/py sulphides <0.5 to 1%	143011	38.80	40.80	8	9	6	< 1
		 Occasional limonitic fractures. Mineralization: Local disseminations, blebs (≤3 mm) of pyrite. 	Intermittent patches of reddish/salmon coloured mineral (rhodonite/hematite?)	143012	40.80	42.80	12	29	10	< 1
		 Occasional limonitic fractures. Alteration: Moderate to strong silicification from 39.00–46.15 m. 	Trace pyrite. Few mag blebs up to 3mm.	143013	42.80	44.60	8	65	20	2
		• Strongly brecciated with talc serpentine alteration from 46.55–47.35m.	2 cm wide po>py blebs at top of interval. Trace chalcopyrite	143014	44.60	45.10	50	231	291	6
				143015	45.10	47.35	10	41	35	1
47.35	59.45	 DUNITE Dark brown to black. Web-like texture similar to ultramafic at top of hole (6.10-20.50 m). Moderate to strongly magnetic, rock quite hard (clinky). Slickensides with serpentine on fractures. 97%+recovery. Mineralization: ~1/2 % combined pyrite/pyrrhotite. 								
59.45	74.20	LISTWANITEPale grey/green to locally mauve, mottled listwanite.	1/2% diss pyrite. Magnetite blebs to 2-3 mm. Strong silicification	143016	72.70	74.20	19	125	26	10

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-01

PAGE: 4 **OF** 6

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		 Mariposite variable, locally strong. Occasional limonitic fracture, usually at high angles to the core axis. Hanging wall contact very gradational at 45° to C.A. Foot wall contact at 45° to C.A. (sharper). Mineralization: Trace pyrite>pyrrhotite. Locally 1-2 mm (average) mag blebs. Reddish patches likely represent hematite after magnetite. 100% recovery. Alteration: Moderate to locally strong silicification over much of interval. 								
74.20	76.60	 APLITE (?) DYKE Light grey "speckled appearance", hard, competent core. Limonitic haloes adjacent to fractures. Hanging wall contact at 45° to core axis. Footwall contact sharp/irregular at ~15° to C.A. 	¹ / ₂ - 1% disseminated pyrite	143017	74.20	76.60	10	32	49	2
76.60	78.75	 LISTWANITE Medium grey to mauve, mottled listwanite. Strong deformation/brecciation 77.30 - 77.35m: Limonitic shear zone with minor greenish/orange clay gouge. 	¹ / ₂ - 1% finely disseminated pyrite	143018	76.60	78.75	47	676	33	10
78.75	109.15	 FELDSPAR PORPHYRY Medium to light grey/green feldspar porphyry. Porphyritic texture well developed with plagioclase phenocrysts 	Strongly silicified, quartz veined altered feldspar porphyry. ½ - 1% py, trace – ½ % asp, tr cpy, tr mo	143019	78.75	79.50	216	530	33	3
		 Forpyrhic texture wen developed with plagioclase phenocrysts averaging 2-4 mm, occasionally to 1 cm. Locally plagioclase. Phenocrysts altered to a pale green colour. Biotite averages 1-2%, locally to 5-7%. Mineralization: Pyrite as blebs, disseminations and stringers along the margins of 	 1-2% py, tr-1/2% asp, tr cpy, tr Mo (noted Mo within small lens of serp.) 3-4 mm wide asp>py veinlet at 50° to C.A. at 80.10 m. 	143020	79.50	80.50	513	1,184	94	1
		 quartz veins. Pyrite averages ~2% over interval. Trace - ½% cpy as disseminations and enclosed by pyrite grains. 	1-2% py. Tr asp>cpy. Biotite/sericite alteration	143021	80.50	82.00	1,500	1,705	353	3
		 Arsenopyrite as fine disseminations and stringers up to ½%. Mo occurs as small blebs/disseminations and as smears along 	60% quartz/quartz breccia over interval.	143022	82.00	82.85	1,271	2,479	299	14
		fractures – locally ½%.	1% py, tr cpy, tr asp intergrown with py	143023	82.85	83.85	455	540	332	1

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-01

PAGE: 5 **OF** 6

Depth (m) From To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
	Alteration:Trace to moderate sericite alteration over interval.	10% qtz veining, 1-2% py. Tr scattered asp.	143024	83.85	85.00	1,040	1,992	68	1
	 Local strong biotite alteration ± chlorite after hornblende. 96.75-109.15 m: feldspar porphyry generally fresher, pale grey to medium grey. Hornblende/plagioclase phenocrysts less altered, more 	25% qtz, 1-2% asp, tr cpy	143025	85.00	86.00	2,106	5,969	225	1
	euhedral.Less altered sections consist of 55-60% 4-6 mm average plagioclase	0.7mm wide py/asp stringer at 86.25 m.	143026	86.00	87.70	1,929	3,710	336	5
	 phenocrysts, 10-15% hornblende (2mm average) phenocrysts altering to biotite/chlorite ~5% quartz 	25% qtz, silicified, brecciated grey asp/clay gouge at 87.85m, brecciated, 2-3% py, 2-3% asp, tr cpy.	143027	87.70	88.10	1,801	5,890	150	5
		Bi/chl/ser alteration. Tr to ½% Mo. 1-2% py, tr cpy, few 3-8mm qtz veins at 45°/15° to C.A.	143028	88.10	89.60	91	327	374	34
		2-3% py, locally 5% py, Tr-1/2% cpy. Bottom 20 cm 1% asp. Biotite/sericite alteration over interval.	143029	89.60	91.25	1,678	1,380	1,505	413
		1-2% py, 1% asp as diss/blebs and stringers to 3mm wide. Tr cpy brecciated stockwork veining (0.5-1 cm average)	143030	91.25	92.75	910	2,531	136	24
		1% py, ~1/2% asp, tr cpy, intrusive pale green Biotite/sericite alteration. Quartz breccia/asp-py at 93.75-93.90m	143031	92.75	94.25	294	1,591	115	3
		1% py, tr cpy. Asp decreasing, less qtz veining.	143032	94.25	95.75	133	1,057	270	95
			143033	95.75	97.25	46	272	410	8
		¹ / ₂ % py, tr cpy, 1.5 cm qtz vein at 30° to C.A.	143034	97.25	98.70	10	199	102	1

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-01

PAGE: 6 **OF** 6

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
			104.10-104.18m semi-massive asp>py. 3 cm wide qtz/asp/py vein at 104.45 m.	143035	104.05	105.55	2,096	8,996	126	24
			5 mm wide qtz py with tr cpy vein at 106.95 m.	143036	105.55	107.15	162	239	175	15
			3 1-2 cm wide qtz veins cutting relatively fresh feldspar porphyry veins at 20-30° to C.A. with py/tr cpy	143037	107.15	109.15	13	17	180	13
		END OF HOLE AT 109.15 METRES								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-02

PAGE: 1 **OF** 2

DIP AND AZIMUTH TESTS							
DEPTH	ANGLE	AZMTH					

CORE SIZE: NQ II	TOTAL DEPTH: 120.75 m	DATE STARTED: 30 May 04
HOLE ANGLE: -45°	HOLE AZIMUTH: 280°	DATE FINISHED: 3 Jun 04
SECTION:	COLLAR ELEVATION: 2342 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 530747E;5654197N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	ı (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mp ppm
0.00	9.15	CASINGAdded another 22 feet of casing due to caving.								
9.15	87.10	 ALTERED ULTRAMAFIC (DUNITE?) Dark grey/brown to black dunite. Locally exhibits a web-like texture. Strong to very strongly magnetic (especially black massive sections). Entire interval broken, rubbly – intermittent shearing with clay gouge. 29.55 – 29.85 m, 39.85 – 40.00 m. Fine stringers of magnesite ± calcite (0.5 – 2.0 mm average). Mineralization: Interval very low in sulphides. Locally trace very finely disseminated pyrite. Alteration: Serpentine/magnesite/calcite common on fractures. More calcite in system than seen in DDH 04-01. 	Dk green/grey serpentine. Bleached, sheared section. Trace pyrite	143038	85.60	87.10	< .5	12	50	32
87.10	97.00	FELDSPAR PORPHYRITIC INTRUSIVE • Bleached pale green-grey to mauve intrusive.	Strong shearing/clay gouge. Minor serpentine	143039	87.10	88.60	3	767	2,104	305
		 Locally up to 40% subhedral to euhedral, 3-4 mm average plagioclase phenocrysts. 5-10% quartz. Secondary biotite in matrix. Minor chlorite. Interval is bleached, quite 	1/2% py, po. Tr cpy. Tr Mo	143040	88.60	90.10	< .5	27	914	121
		soft. Mineralization: • Blebs (≤0.7 cm) and disseminations of cpy often intergrown with or	¹ /2% py, ¹ /2% po, Tr-1/2% cpy, Tr Mo	143041	90.10	91.60	1	28	2,095	727
		 Disseminated Mo, may be associated with chalcopyrite. Chalcopyrite, Molybdenum, Pyrrhotite: trace-1%, Pyrite: trace 	Increasing qtz veining. ½% cpy, po. Tr diss Mo. Strong carbonate alteration	143042	91.60	93.10	< .5	965	1,945	623

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-02

PAGE: 2 **OF** 2

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mp ppm
		Alteration:Moderate to strong pervasive carbonate alteration. Minor secondary biotite.	Locally ½% Mo, Tr-1/2% cpy. ½% py/po. Strong carbonate alteration	143043	93.10	94.10	1	1,232	1,980	356
		• Abundant calcite (±quartz?) as irregular veinlets, usually at lower angles to the core axis and in the matrix.	Similar to above	143044	94.10	95.10	1	1,513	1,067	343
			Strong carb/bi(?) alteration ½% cpy (blebs to 4-5 mm). tr-1/2% po	143045	95.10	96.10	3	2,937	3,646	335
			FW contact between intrusive and ultramafic ~45° to C.A.	143046	96.10	97.00	1	1,478	1,354	637
97.00	101.50	DUNITEDark grey to black, fine-grained, moderately strong magnetic		143047	97.00	98.50	<.5	28	36	2
		ultramafic. • Minor serpentine/calcite on fractures.	Trace pyrite	143048	98.50	100.00	<.5	21	54	9
		• Trace pyrite, smeared pyrite with calcite on slickensides at 99.75 m.		143049	100.00	101.50	< .5	21	49	3
101.50	102.35	 FELSIC INTRUSIVE Light grey feldspar porphyritic felsic intrusive. Hanging wall contact with ultramafic at ~50° to C.A. Footwall contact sheared with white to pale grey clay gouge at 40° to C.A. Quartz/calcite veinlets 0.2 to 1.3 cm at low angle to core axis. 	1-2% po blebs/clots, tr py, tr Mo?	143050	101.50	102.35	< .5	5	43	3
102.35	120.75	 DUNITE Dark grey to black ultramafic. Local stringers and filaments of calcite. Strongly magnetic. 112-35-112.90 m: Shear Zone – pale grey to white clay gouge/serpentine/talc. 	1-2% v. finely disseminated po>py. Tr cpy(?)	143051	102.35	103.85	< .5	12	46	3
		END OF HOLE AT 120.75 METRES								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-03

PAGE: 1 **OF** 6

DIP AND AZIMUTH TESTS							
DEPTH	ANGLE	AZMTH					
15.0 m	-44.7°	N/A					
80.0 m	-45.3°	N/A					

CORE SIZE: NQ II	TOTAL DEPTH: 182.3 m	DATE STARTED: 3 Jun 04
HOLE ANGLE: -45°	HOLE AZIMUTH: 100°	DATE FINISHED: 4 Jun 04
SECTION:	COLLAR ELEVATION: 2304 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 530806E; 5654401N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	h (m) To	Interval Description	Sample Description	Sample No.			Interval (m) From To		Au ppb	As ppm	Cu ppm	Mo ppm
0.00	6.10	OVERBURDEN • Casing to 20'										
6.10	6.60	ALTERED DUNITE • Medium grey, very weakly magnetic										
6.60	8.25	SHEAR ZONELight grey/bleached listwanite, minor mariposite, grey clay gouge.										
8.25	19.90	 LISTWANITE Light to medium mottled grey. Well fractured, strong limonite along fractures. Trace pyrite, pyrrhotite. 	Brecciated quartz rich listwanite. Trace pyrite	143052	15.90	17.20	26	79	21	32		
19.90	22.75	 DUNITE Dark grey-black, moderate-strongly magnetic dunite Exhibits web-like texture. Magnesite common with magnesite coatings. 										
22.75	27.30	LISTWANITEPale to medium grey, sparse mariposite, especially on fractures.										
27.30	27.95	 SHEAR ZONE Pale grey-green, clay gouge Footwall, hanging wall contacts at ~60° to core axis. 100% recovery 										
27.95	34.65	LISTWANITEPale grey-green-orange mottled texture.Limonite fractures										

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-03

PAGE: 2 **OF** 6

Depth From	n (m) To	Interval Description	Sample Description S	Sample No.	Interval (m) From To		Au ppb	As ppm	Cu ppm	Mo ppm
		 Ankerite, increase mariposite from previous interval of listwanite. 100% recovery. 								
34.65	49.60		2-3% diss py, tr cpy, tr Mo	143053	34.65	36.15	240	145	644	41
		Light grey, 30-40% feldspar phenocrysts (3-6 mm average).Strongly limonitic. Bleached	2-3% diss py, tr Mo (?)	143054	36.15	37.65	135	185	401	19
		 Fine-grained pale grey-white groundmass. Mineralization: 1-2% disseminated/stringers of pyrite. Locally trace to ½%. 	2-3% diss py (py very pale yellow/white)	143055	37.65	39.15	121	903	345	22
		• Mo, trace chalcopyrite.	2% diss py, locally tr-1/2% asp, tr cpy.	143056	39.15	40.65	132	2,206	240	19
			1-2% py/po, tr asp (?), may be pale pyrite.	143057	40.65	42.15	165	238	307	34
			2-4% diss py, up to ½% diss Mo, tr cpy (?)	143058	42.15	43.65	217	87	346	26
		1-2% py, tr Mo, Few 1-4 mm wide qtz-carb veinlets, Intrusive felsic with 25-30% large feldspar phenocrysts.	143059	43.65	45.15	99	57	346	14	
			Similar to above	143060	45.15	46.65	118	57	236	10
			1-2% diss/bleb py, tr cpy (?). Tr- 1/2% very finely diss. Mo.	143061	46.65	48.15	198	83	755	423
			Strongly limonitic. Fewer sulphides.	143062	48.15	49.65	75	300	206	67
49.65	53.05	 LISTWANITE Pale mottled grey 3-5% mariposite, minor ankerite. Fracturing/carbonate veinlets predominantly at 40-50° to core axis. 	Trace very fine diss py, Sericite alteration	143063	49.65	51.25	13	854	22	3
53.05	57.20	 DUNITE Medium grey-black Strongly magnetic, numerous carbonate veinlets/filaments at random orientations to the core axis. Upper contact at 45° to C.A. (sharp) 								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-03

PAGE: 3 **OF** 6

Depth (m) From To		Interval Description Sample Description	Sample Interv No. From		Interval (m) From To		As ppm	Cu ppm	Mo ppm	
57.20	58.70	 LISTWANITE Pale grey-green, very mottled appearance Abundant mariposite Sharp Footwall contact with dunite at 55° to core axis. 								
58.70	65.31	 DUNITE Similar to 53.05 - 57.20 m 5-10% carbonate veining. Serpentine ± green talc on fractures. Lower contact at 4° to core axis. 								
65.31	93.50	 50 LISTWANITE Pale grey green 3-5% mariposite, cut by numerous white carb veinlets. Generally very competent core Few limonitic/ankeritic sections. 85.65-86.85 – White to pale grey bleached feldspar porphyry dyke (70° to C.A.). 	Qtz-carb veining/stockwork, minor py	143063A	80.80	82.30	15	600	47	24
			Similar to above. Some limonite fracture last 0.90 m with stringers of fine-grained py.	143063B	82.30	84.00	52	581	25	13
			5 cm qtz vein at 45° to C.A. at top. Brecciated and qtz-carb veined 84.75-84.85m.	143063C	84.00	85.85	69	881	42	28
			3-5% diss. Py>>cpy, suspect fine- grained asp.	143063D	85.85	86.85	259	173	355	8
			Listwanite with moderate to strong carbonate quartz veining. ½% fine-grained pyrite.	143063E	86.85	88.35	11	479	19	4
93.50	115.60	DUNITE Dark green to black, often fractured with talc slickensides.								
115.60	128.50	 Medium grey-green, 30%, 3-4 mm average feldspar phenocrysts. Quartz veins at ~40-45° to C.A., ≤2 cm wide. Mineralization: 1-2% disseminated pyrite 	Vuggy quartz with py at 115.95, 1-2% py, tr cpy	143064	115.60	117.10	3	523	186	29
			1-2% py, trace chalcopyrite	143065	117.10	118.60	< 2	235	193	14
			Similar to above.	143066	118.60	120.10	3	1,146	209	32
		• Trace to ½% chalcopyrite. Alteration:		143067	120.10	121.10	5	1,199	198	11
	• Minor limonite/calcite on fractures.	Minor limonite/calcite on fractures.	2% diss/py cubes. Minor Limonite/calcite	143068	121.10	122.60	4	146	307	29

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-03

PAGE: 4 **OF** 6

Deptl From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
				143069	122.60	124.10	< 2	89	185	23
			Calcite on fractures	143070	124.10	125.60	3	36	131	17
				143071	125.60	127.10	2	15	102	6
				143072	127.10	128.50	2	95	100	34
128.50	138.70	 ALTERED ULTRAMAFIC (DUNITE?) Mottled dark green, moderately magnetic. Mineralization: Trace to ½% disseminated pyrite. Trace Mo (?) on slickensided fractures. Alteration: Strong serp/talc alteration. Minor calcite on fractures. 	Trace Mo in 5 cm wide qtz vein (25° to C.A.) Tr biotite in qtz vein.	143072A	128.50	130.00	12	1,917	64	37
138.70	139.00	 LISTWANITE Pale grey-green, fabric at 40° to C.A. Hanging wall contact at 25°, Footwall at 50° to core axis. 								
139.00	139.40	 ALTERED ULTRAMAFIC Dark grey, moderate to weakly magnetic. Trace pyrite, trace Mo as small blebs/disseminations. 								
139.40	152.00	FELDSPAR PORPHYRY • Pale to medium bleached grey/green	Diss py, 1-2%,> in some qtz veins	143073	139.40	140.90	21	487	217	36
		 50% subhedral to euhedral 3-5 mm plagioclase phenocrysts. Cut by occasional quartz ± calcite veins to 1 cm. 	Diss py, 1-2%,> in some qtz veins	143074	140.90	142.40	2 48	482	204	35
		 Contact with ultramafic <30° to C.A., irregular. Mineralization: Disseminated pyrite 15 to locally 3%+, trace chalcopyrite, 	Diss py, 1-2%,> in some qtz veins	143075	142.40	143.90	< 2	297	176	29
		 Alteration: Weak to locally moderate chlorite (fractures) Moderate sericitic alteration in bleached zones. Weak, locally moderate carbonate alteration. 	Diss py, 1-2%,> in some qtz veins	143076	143.90	145.40	< 2	165	142	59
			Several low angle chlorite-carb fractures with cpy, Mo.	143077	145.40	146.90	2	252	301	256
		• Very rare epidote on fractures.	Diss py, 1-2%,> in some qtz veins	143078	146.90	148.40	< 2	36	234	102

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-03

PAGE: 5 **OF** 6

Depth (m) From To		Interval Description	Sample Description	SampleInterval (m)No.From		Au ppb	As ppm	Cu ppm	Mo ppm	
			Diss py, 1-2%,> in some qtz veins	143079	148.40	149.90	3	239	203	41
			Carb increasing especially on fractures. 1-2% diss py.	143080	149.90	152.00	2	229	269	29
152.00	159.70	 ALTERED ULTRAMAFIC (DUNITE) Dark green to black, massive rock. Mottled appearance Occasional low angle chloritic fracture. Moderately magnetic. Mineralization: Trace py, po 								
159.70	182.30	 FELDSPAR PORPHYRY (HORNBLENDE DIORITE) Upper contact at 45° to C.A. (sharp) Generally light to medium green. Porphyry texture with 30-40% white feldspar phenocrysts to 4-5mm. Cut by grey to blue grey quartz veinlets, occasional to several cm. Local zones of brecciation often with veining/silicification. Mineralization: Disseminated pyrite (to 1mm) throughout 1-3% Minor Mo and cpy noted mostly in veinlets. Suspect arsenopyrite. Alteration: Chlorite alteration of mafics common, also along fractures. Garbonate alteration weak in some bleached sections. 178.75 m to EOH the porphyry is cut by irregular blue-green quartz veinlets to 1 cm. Pervasive chlorite-sericite alteration. 	Few low angle chlorite frac-Mo, cpy in some veinlets.	143081	159.70	161.20	< 2	406	227	183
			Similar to above, strong Mo in last 0.25 m	143082	161.20	162.70	6	441	190	208
			1-2% diss py, occasional Mo in qtz veinlet.	143083	162.70	164.20	163	521	205	27
			Pale green, increasing sericite alteration, po, cpy, Mo in veins.	143084	164.20	165.70	208	240	250	36
			Similar to above, but locally>Mo content (diss)	143085	165.70	167.20	394	1,290	216	85
			Brecciated, veined zone with py, Mo.	143086	167.20	168.70	151	1,416	191	79
			Weakly qtz veined. Py, Mo, diss and in qtz veins.	143087	168.70	170.20	22	305	209	259
			Diss py in chlorite-ser altered porphyry	143088	170.20	171.70	23	161	257	33
			Similar to above, few qtz veinlets.	143089	171.70	172.85	64	430	175	13
			Milky qtz vein, cut by microveinlets, Mo.	143090	172.85	173.13	49	207	36	12

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-03

PAGE: 6 **OF** 6

Deptl From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
			Weak – mod sericite alteration, 1- 2% py, Mo in qtz vein (1 cm).	143091	173.13	174.65	130	700	210	96
			Several 1 cm qtz veins at 60° to C.A. 1-2% py	143092	174.65	176.10	6	52	219	37
			Strong vein, silica zones, py, Mo in veins and disseminations.	143093	176.10	177.60	2	90	137	44
			Similar to above – Blue grey veins throughout, tr Mo.	143094	177.60	179.10	3	85	84	11
			Numerous blue-grey, irregular qtz vein with py, cpy, Mo.	143095	179.10	180.60	3	117	132	28
		END OF HOLE AT 182.30 METRES	Similar to above, sulphides 1-2%, disseminated in veins.	143096	180.60	182.30	2	294	215	89

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-04

DIP AND AZIMUTH TESTS										
DEPTH	ANGLE	AZMTH								
124.8 m	-48.6°	282.4°								

CORE SIZE: NQ II	TOTAL DEPTH: 134.8 m	DATE STARTED: 4 Jun 04
HOLE ANGLE: -45°	HOLE AZIMUTH: 280°	DATE FINISHED: 7 Jun 04
SECTION:	COLLAR ELEVATION: 2304 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 530806E;5654401N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	6.10	OVERBURDEN • Casing								
6.10	16.85	 DUNITE Black, massive, moderately magnetic. Occasional medium grey, altered, olivine megacrysts Mineralization: Trace very finely disseminated pyrite predominantly on fractures. Trace pyrrhotite (?) on slickensides. Alteration: Antigorite, trace asbestos on fractures. 								
16.85	16.95	SHEAR ZONEGrey clay gouge.Trace asbestos on footwall ultramafic.								
16.95	27.10	 DUNITE (ALTERED INTRUSIVE) Dark grey-brown to black Moderately magnetic Minor antigorite, magnesite veining ± calcite on fractures. 	¹ / ₂ - 1% diss pyrrhotite/pyrite smears on slickensides	143097	16.95	18.45	< 2	5	84	18
		 Mineralization: Abundant pyrrhotite on slickensided fractures. Trace finely disseminated pyrite. 	Abundant pyrrhotite on slickensides.	143098	18.45	19.95	4	2	116	4
27.10	31.30	 SHEAR ZONE Crushed, sheared altered dunite. Clay gouge throughout interval. Serpentine/antigorite/minor magnesite, calcite. 								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-04

Depth From	ı (m) To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
31.30	38.35	 DUNITE (ALTERED ULTRAMAFIC) Dark patchy grey to black (remnant olivine megacrysts). Asbestos at 36.20m – very fibrous. Strongly magnetic, less sulphides (pyrrhotite) than previous interval. Difficult drilling – one length of core has been re-drilled. 								
38.35	39.05	 SHEAR ZONE Crush zone, minor grey/green cloy gouge. Similar to above (27.10-31.30 m). 								
39.05	65.50	 DUNITE Dark grey-black, moderately to strongly magnetic. Serpentine common on fractures. Locally fibrous asbestos on fractures. 								
65.50	67.90	 SHEAR ZONE Dark grey/black clay gouge, locally pyrrhotite smears on fractures. Blue/grey-green serpentine on fractures. 								
67.90	134.70	 DUNITE (ALTERED ULRAMAFIC) Black, moderately-strongly magnetic. Antigorite ± asbestos on fractures. Pyrrhotite ± pyrite smears occasionally noted on slickensided surfaces. 	Well sheared, po, tr py on slickensides	143099	131.70	133.20	3	2	55	3
		Serpentine often has a steel blue hue.Locally olive green talc.		143100	133.20	134.70	10	2	56	2
		END OF HOLE AT 134.70 METRES								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-05

DIP AND AZIMUTH TESTS									
DEPTH	ANGLE	AZMTH							
100 m	-45.8°	89.4°							
		(true)							

CORE SIZE: NQ II	TOTAL DEPTH: 109.1 m	DATE STARTED: 7 Jun 04
HOLE ANGLE: -45°	HOLE AZIMUTH: 90°	DATE FINISHED: 9 Jun 04
SECTION:	COLLAR ELEVATION: 2278 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 530858E;5654547N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	(0m) To	Interval Description	Sample Description	Sample No.	Interval (m) From To		Au ppb	As ppm	Cu ppm	Mo ppm
0.00	3.05	OVERBUDEN • Casing								
3.05	13.30	 DUNITE Dark grey-black, strongly magnetic, ultramafic. 11.60 – 13.30 m: shear zone, crenulation cleavage, strong deformation 12.30 – 12.75 m: medium grey clay gouge. 12.75 – 13.30 m: brown/green foliated and sheared ultramafic. 								
13.30	23.00	 LISTWANITE Medium grey/green listwanite. 7-10% mariposite throughout interval. 	Pyrite blebs/stringers ≤1.0 cm. Sheared, qtz veining	143101	19.85	21.35	253	499	74	16
		 Fractures limonitic, commonly at 45-50° to C.A. and at 20° to C.A. Mineralization: Locally blebs and stringers of pyrite 3-5mm wide 	Trace to 1/2% disseminated py	143102	21.35	23.00	140	380	15	6
23.00	23.60	 ALTERED FELDSPAR PORPHYRY Light brown to orange feldspar porphyry. Strongly limonitic. Weakly brecciated, last half of interval strongly sheared. 	1% disseminated pyrite.	143103	23.00	23.60	133	178	104	8
23.60	25.90	 LISTWANITE Mottled grey-green, 7-10% mariposite. Footwall contact with altered intrusive at 45° to core axis. 		143104	23.60	25.90	15	495	17	1
25.90	29.20	 ALTERED FELDSPAR PORPHYRY Orange/brown, strongly limonitic, brecciated feldspar porphyry. 		143105	25.90	27.65	209	373	85	11
		• Quartz/carb veins $\leq 5 - 7$ mm.		143106	27.65	29.20	166	145	137	4

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-05

Depth From	(0m) To	Interval Description	Sample Description	Sample No.	Interv From	Interval (m) From To		As ppm	Cu ppm	Mo ppm
29.20	29.40	 LISTWANITE Very sharp, irregular contacts (footwall and hanging wall) with surrounding altered intrusive. Listwanite moderately silicified. 	1-2% disseminated pyrite.	143107	29.20	30.65	167	106	103	2
29.40	36.50	 ALTERED FELDSPAR POPRHYRY Pale grey-green, bleached, moderately silicified feldspar porphyry. Mineralization: 	Mo suture/fracture (1 mm wide) at 31.70 m	143108	30.65	32.15	518	87	107	58
		 1 – 2% pyrite as blebs/disseminations and stringers. Locally molybdenum as disseminations and fracture fillings. Alteration: 	2-3% pyrite, Trace Mo 4 cm wide quartz vein at bottom	143109	32.15	33.65	140	50	100	6
		 Interval weakly to moderately silicified. Quartz ± (carbonate) veinlets up to 3 cm wide, usually at ~45-50° to C.A. 	Well silicified	143110	33.65	35.15	145	31	108	26
		C.A.		143111	35.15	36.50	141	17	145	51
36.50	38.40	 LISTWANITE Mottled grey/green, increasing mariposite towards bottom of interval. Limonitic fracture at 37.60 m. Mineralization: Trace disseminated pyrite 		143112	36.50	38.40	53	586	26	4
38.40	42.20	 FELDSPAR PORPHYRY Pale grey-green, moderately silicified feldspar porphyry. Few limonitic fractures at 60° to C.A. Others at very low angle to 	Strongest veining, limonite.	143113	38.40	39.90	30	123	81	4
		 C.A. Mineralization: Fine-grained disseminated pyrite, arsenopyrite (?), trace Mo. – Total 3%. Alteration: 	Decreasing limonite at top of sample. Magnesite, tr diss Mo.	143114	39.90	41.20	160	67	148	7
		 Moderate to strongly silicified, bleached pervasive sericitic alteration. Some sulphides along fractures. No carbonate in groundmass. 		143115	41.20	42.20	203	107	157	3
42.20	44.20	 LISTWANITE Upper contact at 50° to core axis. Predominantly light grey, mottled. Locally cut by numerous quartz-carbonate veins at 35-45° to C.A. 		143116	42.20	44.20	32	523	28	4

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-05

PAGE: 3 **OF** 5

Depth From	(0m) To	Interval Description	Sample Description	Sample No.	Interval (m) From To		Au ppb	As ppm	Cu ppm	Mo ppm
		 Last 0.5 m strongly fractured, limonitic with abundant mariposite. Generally low sulphide content, moderately siliceous.								
44.20	46.35	 FELDSPAR PORPHYRY Light grey (bleached) feldspar porphyry cut by numerous fine sulphide filled fractures. Irregular, randomly oriented quartz ± carbonate veinlets ≤1 cm. 	5% Limonite stained	143117	44.20	45.20	19	184	113	2
		 Strongly limonitic stained in first 0.6 m. Mineralization: Fine-grained disseminated and fracture pyrite 3-5%. Suspect very fine arsenopyrite (?). Alteration: Moderate to strongly silicified, bleached pervasive sericitic alteration. Some sulphides along fractures. No carbonate in groundmass. 	Irregular fractures at 0-50° to C.A. filled with fine-grained pyrite. Trace arsenopyrite.	143118	45.20	46.35	270	105	75	3
46.35	51.20	 LISTWANITE Varicoloured grey-green, mottled listwanite. Cut by numerous quartz/carbonate veins, irregular clots. 	Strongest veining/silicification in last 0.5 m. Low sulphides.	143119	46.35	48.20	37	466	10	3
51.20	53.10	 DUNITE (?) Dunite cut by numerous thin magnesite veinlets at 25-20° to C.A. Last 30 cm serpentinized, green-brown colour. Strongly magnetic. Mineralization: Some sections 3-5% very fine-grained pyrite. 								
53.10	54.00	 LISTWANITE Varicoloured, grey-tan, cut by numerous quartz-carbonate veinlets. Suspect this is a transition zone in which a lens of Dunite has not been completely listwanitized. 	Occasional clots and disseminations of pyrite overall <1%.	143120	53.00	54.00	30	289	10	2
54.00	59.35	 FELDSPAR PORPHYRY Light grey-green cut by numerous quartz-carbonate veins, irregular patches at 25-35° (average) to core axis. 	2-3% disseminated pyrite, moderately silicified.	143121	54.00	55.40	170	133	30	1
		 Strong limonite gouge zone at 55.80 – 55.90 m and 56.85 - 57.25 m. Mineralization Disseminated pyrite (2-3%) 	Strongly fractured zone , Asp from 55.90-56.15 m.	143122	55.40	56.25	1424	7161	223	31

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-05

PAGE: 4 **OF** 5

Depth From	(0m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		Alteration: • Pervasive sericite • Weak to moderate silicification.	Strongly fractured with abundant limonite. 1-2% disseminated pyrite.	143123	56.25	57.75	95	508	25	2
		 Carbonate present in most fractures. Strong, late stage silicification, quartz veining at 58.00 to 59.35 m. 3-5% pyrite. 	Last 60 cm moderate-strongly silicified.	143124	57.75	59.35	242	753	63	7
59.35	66.55	 LISTWANITE Predominant pale green to pale grey mottled appearance throughout due to black-green clots of Dunite. 59.35 - 61.15 m: strongly contorted, locally limonite fractured 		143125	59.35	60.65	31	391	115	27
		 listwanite with abundant bright green mariposite. Local clots and seams of fine-grained pyrite. 61.16 - to 66.55 m: little mariposite. 	Low sulphides, Strongly sheared last 0.25 m.	143126	65.55	66.55	18	1509	46	7
66.55	69.60	 FELDSPAR PORPHYRY Pale grey, strongly porphyritic. Some limonitic fractures at 40-50° to core axis. 	Limonite fractured. Brecciated at 67.60 – 68.10 m	143127	66.55	68.15	41	2311	134	17
		 Upper contact with listwanite slickensided and at 60° to C.A. Lower contact at 35° to core axis. 	Zone with very fine-grained asp infilling, ~1-2% diss pyrite	143128	68.15	69.60	74	2094	112	7
69.60	71.95	 LISTWANITE Pale green Sheared limonitic upper and lower contacts at 30-40° to C.A. 71.65 m: strong breccia, mariposite throughout. Minor pyrite along carbonate veinlets. 		143129	69.60	71.95	40	940	91	14
71.95	84.35	 FELDSPAR PORPHYRY Pale grey-green. Locally brecciated and silicified – i.e. at 79.90 – 80.15 m. 	72.95-73.45m abundant, f.g. asp on fractures. Frac to 5mm wide. 2-3% diss py.	143130	71.95	73.45	63	6033	196	31
			Similar to above but less asp. Trace cpy along fractures.	143131	73.45	74.95	71	3494	169	10
			Slight increase in brecciation. Minor f.g. asp.	143132	74.95	77.00	57	2098	156	7
			Sericite alteration, 2-3% diss-	143133	77.00	78.65	81	1656	366	18

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-05

PAGE: 5 **OF** 5

Depth From	(0m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
			blebs pyrite. Trace f.g. asp, cpy.							
				143134	78.65	80.15	117	2118	180	14
				143135	80.15	81.70	19	556	216	9
				143136	81.70	83.20	20	141	137	4
			1-2% py, ½% cpy, large (2 cm) bleb of cpy/py at bottom of sample	143137	83.20	84.35	14	177	197	5
84.35	87.05	 LISTWANITE Medium, mottled, numerous irregular quartz-carbonate veinlets and lenses (predominantly magnesite). Some open space voids lines with magnesite. Lower contact sheared with green gouge. 	1-2% pyrite Trace-1/2% chalcopyrite. Trace very f.g. molybdenum.	143138	84.35	85.70	7	1478	372	25
87.05	106.10	Pale grey-green, well developed porphyritic texture.	1-2% py, tr-1/2% cpy Tr very f.g. Mo.	143139	85.70	87.05	6	1530	158	56
		 50%, 3-5mm (average) plagioclase (Albite?) phenocrysts. Upper contact sheared with green clay gouge. Mineralization:		143140	87.05	88.55	8	599	86	15
		 ~1% disseminated pyrite over interval. Trace chalcopyrite, arsenopyrite. Alteration: 	7 cm wide qtz vein at 45° to C.A. with tr cpy at 89.5m.	143141	88.55	90.05	25	1882	267	17
		• Sericite, minor biotite.	2-3 mm cpy blebs on margin of 10 cm qtz vein.	143142	90.05	91.55	20	1561	474	18
		END OF HOLE AT 106.10 METRES	1% diss py, tr cpy, tr asp (?)	143143	104.60	106.10	10	1103	31	6

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-06

DIP AND AZIMUTH TESTS									
DEPTH	ANGLE	AZMTH							
15 m	-46.2°	280.0°							
85 m	-46.1	277.2°							
190 m	-45.8°	277.0°							

CORE SIZE: NQ II	TOTAL DEPTH: 194.5 m	DATE STARTED: 9 Jun 04
HOLE ANGLE: -45°	HOLE AZIMUTH: 280°	DATE FINISHED: 11 Jun 04
SECTION:	COLLAR ELEVATION: 2278 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 530853E;5654547N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	ı (m) To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	12.20	OVERBURDEN • Casing to 40'								
12.20	22.20	 DUNITE Black to dark brown Web-like texture Fractures commonly 35-40° to core axis, coated with calcite/magnesite, minor serpentine. Dunite strongly magnetic. Mineralization: Trace disseminated pyrrhotite. Trace pyrite cubes on fractures 	Trace pyrrhotite on slickensides	143144	20.70	22.20	3	9	93	150
22.20	65.55	BIOTITE FELDSPAR PORPHYRY • Light grey, weakly bleached.	Abundant secondary biotite. Smeared Mo on slickensides.	143145	22.20	23.70	< 2	1	150	252
		• 2-3% biotite phenocrysts scattered throughout (2-3mm average). Mineralization:	1-2% pyrrhotite, Tr chalcopyrite	143146	23.70	25.55	3	1	192	285
		 1-2% disseminated pyrrhotite. Trace to ¹/₂% chalcopyrite, usually associated with pyrrhotite. 	5-7% Diss Mo over top 30 cm. 2-3% pyrite, ½% chalcopyrite	143147	25.55	26.30	< 2	1	212	687
		• Trace Mo, locally up to 7% disseminated. Alteration:	1% pyrrhotite, tr cpy, tr Mo	143148	26.30	28.30	3	1	219	9
		• Sparsely distributed quartz ± calcite veinlets; typically at random orientations to core axis.	1% pyrrhotite, tr cpy, tr Mo	143149	28.30	30.30	< 2	1	184	2
		 Trace carbonate alteration in matrix. Carbonate alteration, veining tends to increase towards bottom if interval. 	1% diss po, Fractures parallel to C.A. with carb at 32.0 m.	143150	30.30	32.30	2	1	86	1
		• Fractures typically at 45-50° to C.A. Core is quite competent. 99-	1% diss po, secondary Bi, Sericite	143151	32.30	34.30	9	<.5	61	1
		 100% recovery. 65.40-65.45 m: shear zone with grey clay gouge at ~45° to C.A. 3 cm 	1% diss po, secondary Bi, Sericite	143152	34.30	36.30	< 2	3	54	2

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-06

Depth (m) From To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
	wide calcite vein on hanging wall of shear.	Trace Mo.							
		1-3 cm irregular qtz \pm calcite veinlets	143153	36.30	38.30	3	< .5	75	2
		Few irreg qtz \pm calcite veinlets	143154	38.30	40.30	2	1	114	18
			143155	40.30	42.30	7	< .5	47	1
			143156	42.30	44.30	4	< .5	92	3
			143157	44.30	45.80	< 2	9	57	1
			143158	45.80	47.30	6	2	42	1
		1% po, tr cpy, Large xenolith of diorite.	143159	47.30	48.80	10	184	98	2
		1% po. 1 cm wide carb veinlet offset by shears.	143160	48.80	50.30	8	21	118	1
		1% po. Tr very finely diss Mo.	143161	50.30	51.80	4	10	135	2
			143162	51.80	53.30	< 2	< .5	102	1
			143163	53.30	54.80	3	<.5	172	101
			143164	54.80	56.30	6	< .5	175	37
		1-2% po, tr cpy with po, tr mo	143165	56.30	57.80	16	48	249	217
			143166	57.80	59.30	11	13	368	82
			143167	59.30	60.80	6	12	227	64
		Open space cavities locally infilled with carb and black chlorite clays.	143168	60.80	62.30	5	10	204	114
		Minor shear zone at 63.55 m. Clay gouge.	143169	62.30	63.80	4	7	239	63
			143170	63.80	65.50	31	19	109	1187

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-06

PAGE: 3 **OF** 6

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
65.55	70.15	 SERPENTINITE Dark grey-green, sheared, broken core, abundant slickensides (often 	Talc, serpentine. Strong po on fractures, 2-3% po.	143171	65.50	67.85	3	5	222	252
		 with pyrrhotite). Hanging wall contact (?) Footwall contact at 40° to C.A. More competent sections, weak-moderate magnetite. 	1-2% po. Diss on slickensided fractures.	143172	67.85	70.15	2	5	76	26
70.15	94.65	BIOTITE FELDSPAR PORPHYRY		143173	70.15	71.65	4	2	198	21
		Light grey-green, locally weakly bleached.Locally weak-moderate brecciation, open spaces.		143174	71.65	73.15	2	2	190	6
		Mineralization: • Overall ~2-3% sulphides.	Open cavities with clay infillings. 1% po, tr cpy	143175	73.15	74.65	14	2	181	2
		 Pyrrhotite > at top of interval. Pyrite increasing towards bottom of interval. 	1% po, tr cpy	143176	74.65	76.15	4	2	218	3
		• Trace – ½% (locally) disseminated chalcopyrite.		143177	76.15	77.65	3	2	197	1
	 Trace very widely disseminated molybdenum. Alteration: Sericite, biotite, chlorite, locally feldspar phenocrysts a 	Alteration:	2% po, tr cpy	143178	77.65	79.15	5	3	167	2
		• Sericite, biotite, chlorite, locally feldspar phenocrysts altering to clays.		143179	79.15	80.65	10	2	129	2
				143180	80.65	82.15	5	3	156	2
				143181	82.15	83.75	181	5	156	2
				143182	83.75	85.25	6	3	164	3
				143183	85.25	86.75	< 2	2	188	2
				143184	86.75	88.15	2	2	169	2
			Core brecciated, open spaces	143185	88.15	89.65	2	2	168	2
			pervasive. Predominant sulphide py. Tr cpy. Tr po.	143186	89.65	91.30	< 2	2	167	1
				143187	91.30	92.80	15	2	145	9
				143188	92.80	94.65	4	1	188	9
94.65	96.35	 DUNITE Black, fine-grained, massive, moderately magnetic. Fractures at 45° to core axis. Fine fractures rehealed with pyrrhotite, calcite/magnesite. 	1% po filaments (rehealed fractures).	143189	94.65	96.35	< 2	2	28	27

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-06

PAGE: 4 **OF** 6

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
96.35	116.85	BIOTITE FELDSPAR PORPHYRY		143190	96.35	97.85	2	1	177	69
		Pale-medium grey.Upper contact at 40° to C.A. Core competent.		143191	97.85	99.35	< 2	1	191	10
		 Fractures average 45° to C.A. Narrow (1 mm average) open cavities average 45° to core axis. 	1-2% py ≥po, Trace-1/2% cpy.	143192	99.35	100.85	4	2	234	5
		Mineralization: • Disseminated pyrite typically ≥pyrrhotite.	1-2% py, tr cpy, 1/2 % po	143193	100.85	102.35	29	1	166	4
		• Trace to locally 1/2% disseminated chalcopyrite, usually associated	Weakly brecciated, 1% py, 1%	143194	102.35	103.85	9	1	251	2
		with pyrrhotite.Pyrite content increasing from higher sections in the hole.	po, tr cpy.	143195	103.85	105.35	7	1	209	7
		Alteration:Narrow calcite veinlets/irregular filaments throughout interval.	1% py, po	143196	105.35	106.85	14	1	180	7
		• Sericite/biotite/chlorite/clay alteration of groundmass.	1% py, po, tr cpy	143197	106.85	108.60	2	2	232	8
			Less py, increasing po, tr cpy	143198	108.60	110.10	< 2	3	195	18
				143199	110.10	111.60	< 2	2	202	11
				143200	111.60	113.10	5	16	253	19
				143201	113.10	114.60	14	4	235	20
			Po, cpy in 1 cm qtz vein at 114.75 m.	143202	114.60	116.00	5	8	205	18
			1% po, 1⁄2% py, Blue, f.g. patches may be Mo.	143203	116.00	116.85	24	15	223	16
116.85	148.05	DUNITE	1⁄2% diss po.	143204	116.85	118.35	24	27	52	3
		 Black, massive, moderate-strongly magnetic. White/tan antigorite on fractures. Trace asbestos. ½% finely disseminated pyrrhotite over interval. 		143205	146.55	148.05	21	38	38	4
148.05	148.85	SHEAR ZONEPale grey-green clay gougeGreen talc at bottom of shear.	Trace diss. py	143206	148.05	148.85	8	2	222	6
148.85	154.75	BIOTITE FELDSPAR PORPHYRY	1-2% po, tr cpy	143207	148.85	150.35	9	10	355	39

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-06

PAGE: 5 **OF** 6

Deptl From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		 Medium grey-brown. Hanging wall and footwall contents at 45° to C.A. 	1-2mm wide vuggy qtz veinlet at 45° to C.A. at 150.9 m.	143208	150.35	151.85	6	10	204	9
		 Mineralization: 1-2% pyrrhotite ≥ pyrite. Trace chalcopyrite. 	Pitted, rotten fsp at top of sample	143209	151.85	153.55	< 2	15	372	3
		Alteration:Biotite, chlorite, sericite.	2-3% po, some large blebs rimmed with cpy	143210	153.55	154.75	8	9	517	66
154.75	156.75	 DUNITE Black, strongly magnetic. ½% disseminated pyrrhotite. Pyrrhotite smears on slickensides. 	½% chalcopyrite	143211	154.75	156.75	13	8	35	1
156.75	159.90	BIOTITE FELDSPAR PORPHYRYMedium grey, brecciated, bleached/pitted, carbonate altered (calcite	Irregular Mo blebs/ (≤5-8mm) Diss Mo: ½%,1-2% po, tr cpy	143212	156.75	158.25	10	7	388	117
		as veinlets and in matrix).	3-4% po, tr Mo, cpy	143213	158.25	159.90	198	2	324	4
159.90	161.35	DUNITEHanging wall contact at 45° to core axis. 3 cm talc seam.	Trace pyrrhotite	143214	159.90	161.35	4	13	54	11
161.35	165.20	BIOTITE FELDSPAR PORPHYRY	2-3% po, Tr-1/2% cpy (locally),	143215	161.35	162.85	3	< .5	344	57
		Grey-green bleachedSerpentine/talc on fractures over top 60 cm of interval.	Trace Mo	143216	162.85	164.35	32	< .5	569	50
		 Pervasive secondary biotite alteration over interval. Minor carbonate alteration. Footwall contact at 45° to core axis. Green talc on fractures from 165.20 – 165.25 m. 	2-4% po, 1⁄2% cpy, trace Mo.	143217	164.35	165.20	15	< .5	1813	30
165.20	167.20	SERPENTINITE • Broken, strongly sheared interval.	Tr po on slickensides	143218	165.20	167.20	< 2	1	160	35
167.20	169.30	BIOTITE FELDSPAR PORPHYRY	3-4% pyrrhotite	143219	167.20	168.20	14	1	750	314
		• Strong bleaching/biotite alteration over most of interval.	Trace-1/2% chalcopyrite	143220	168.20	169.30	5	< .5	526	21
169.30	172.30	SERPENTINITE	Py on slickensides	143221	169.30	170.80	2	2	61	1
		• Broken, strongly sheared interval.		143222	170.80	172.30	< 2	2	79	11
172.30	177.75	BIOTITE FELDSPAR PORPHYRY		143223	172.30	174.00	3	1	277	126

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-06

PAGE: 6 **OF** 6

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		• Strong biotite alteration.	3-4% po, 1⁄2% diss cpy, tr Mo.	143224	174.00	175.35	3	1	1097	141
		Brecciation (weak) with serpentine/talc veinlets from 172.30 – 174.0 m. 173.50 – 174.00 m: Dunite.	1-2% pyrrhotite	143225	175.35	176.85	4	3	545	15
		• 173.50 – 174.00 m: Dunite.	Trace chalcopyrite	143226	176.85	177.75	9	4	567	92
177.75	194.50	DUNITE (ALTERED ULTRAMAFIC		143227	177.75	179.25	2	3	82	6
		 Top 10 m of interval more serpentine/antigorite. Numerous veinlets/filaments of magnesite (trace calcite). Lower 6 m of interval more massive dunite. Less veining. Trace - ½% pyrrhotite over interval. 	Trace disseminated pyrrhotite Trace pyrrhotite on slickensides	143228	193.00	194.50	3	1	52	0
		END OF HOLE AT 194.50 METRES								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-07

DIP AND AZIMUTH TESTS										
DEPTH ANGLE AZMTH										
75 m	-45.2°	134.4°								

CORE SIZE: NQ II	TOTAL DEPTH: 75.60 m	DATE STARTED: 12 Jun 04
HOLE ANGLE: -45°	HOLE AZIMUTH: 135°	DATE FINISHED: 13 Jun 04
SECTION: -65°	COLLAR ELEVATION: 2418 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 531214E;5653777N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	17.05	CASING								
17.05	24.40	HARZBURGITE								
24.40	29.40	 BASAL TILL 24.40 0 27.80 m: predominantly harzburgite fragments with (98%+) few fragments of feldspar porphyry. Well indurated till. 27.80 - 29.40 m: Basal till with increase in fsp vugs (~10%). 								
29.40	31.80	 FELDAPAR PORPHYRY Fracture injected till, 29.40 to bedrock (?) Pale green, well fractured, contains numerous fractures filled with brown glacial silt and very angular fragments porphyry. Locally substantial amounts of angular, milky quartz. Last 0.5 m – pale grey aplitic dyke at ~30° to core axis. 0.5 – 1 cm quartz vein cutting aplite. 	Strongly indurated mud filled fractures contain very angular qtz pebbles up to 10% quartz fragments in mud cement.	143229	29.25	31.30	6	15	108	1
31.80	40.50	 FELDSPAR PORPHYRY-HORNBLENDE DIORITE Pale grey-green chlorite altered feldspar porphyry. Weakly magnetic, sparsely distributed magnetite grains. Limonitic fractures, core well fractured. Manganese/manganese dendrites on fractures. 								
40.50	40.75	QUARTZ VEIN • Pale brown, well fractured with abundant open space fractures.	No sulphides. Mn n fractures	143230	40.50	40.75	72	43	27	4
40.75	41.80	FELDSPAR PORPHYRYDistinctly greenish, well fractured with manganese on fractures.	Very low sulphide content	143231	40.75	41.80	4	15	62	1

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-07

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		One small (~1 cm) quartz vein at 40° to core axis.								
41.80	41.95	 QUARTZ VEIN Milky white, fractured, lightly limonite stained vein so broken that attitude is not discernable, one piece noted suggest ~5° to core axis. 	Trace very oxidized py (<<1%)	143231A	41.80	41.95	13734	58	56	2
41.95	45.70	FELDSPAR PORPHYRY • Pale green, moderately fractured, some limonitic.	Minor qtz veinlets/occ limonite- Manganese fractures	143232	41.95	42.45	33	39	214	2
		Mineralization:Scattered clots, stringers of coarse oxidized pyrite.Alteration:	Milky/lim fractured vein. Tr py (oxidized)	143232A	42.45	42.55	3484	35	89	3
		 Pervasive chlorite alteration of mafics. No carbonate. Localized bleaching, weak irregular quartz veining, i.e. 42.35 m (2-3) 	Few irregular qtz veinlets. Narrow aplite with qtz at 43.40m	143232B	42.44	43.60	18	48	172	1
		cm)and 43.60 – 44.60 m.	Increased qtz veining. Large highly oxidized aggregates of pyrite cubes	143233	43.60	44.40	87	143	160	1
			Similar to above	143234	44.40	45.70	27	95	184	6
45.70	45.80	 QUARTZ VEIN Milky white quartz vein. Local chlorite clots. Vein very fractured Manganese coatings/dendrites. 	Very minor oxide coated pyrite. Lower contact at 45° to core axis.	143235	45.70	45.80	1268	166	84	4
45.80	48.00	FELDSPAR PORPHYRY Similar to above with irregular patches of blue-grey quartz.	Patches of highly oxidized pyrite	143236	45.80	46.60	14	80	184	2
48.00	48.12	QUARTZ VEIN • Milky white, core quite broken, limonite fractures.	Trace oxidized pyrite. Trace manganese	143237	48.00	48.12	36	82	32	8
48.12	49.70	 FELDSPAR PORPHYRY Similar to above 1.5 cm wide quartz vein at 30° to core axis. 		143238	48.12	49.70	25	75	66	2
49.70	49.80	 QUARTZ VEIN Milky white, abundant limonitic fractures, several vugs. Upper contact sheared, brecciated (70°(?) to C.A.) 	2% oxidized pyrite	143239	49.70	49.80	636	416	51	4

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-07

PAGE: 3 **OF** 3

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		• Lower contact at 60° to core axis.								
49.80	58.15	 FELDSPAR PORPHYRY Medium green, moderately well fractured, often lined with limonite, manganese. 2 quartz veins (≤1 cm) at ~60° to core axis. Vuggy, (Mn coated) Trace oxidized pyrite 57.85 – 58.15 m: Section with several irregular, low angle quartz veins (≤1 cm), local disruption along thin fractures, strong pitting. 		143240	57.85	58.15	11	33	5	1
58.15	62.50	FRACTURE/VEIN ZONEGreen-brown, highly fracture zone of feldspar porphyry cut by	Highly fractured zone. 15-20% quartz. Rest fspMn coatings	143241	58.15	58.85	5813	110	125	6
		 several irregular quartz veins. One vein 3 cm wide at 30-40° to core axis cuts 1 cm carbonate veinlet. 	20-25% quartz in highly fractured feldspar porphyry , less manganese	143242	58.85	59.80	512	78	304	4
			Fractured/brecciated, veined zone. Minor calcite cutting qtz	143243	59.80	60.75	41	46	187	3
			Few aplite dykes at 30° to core axis. Green brown stained feldspar porphyry. Jarosite on fractures over lower 1/3.	143244	60.75	62.50	7	22	41	7
62.50	75.60	 FELDSPAR PORPHYRY Pale medium green feldspar porphyry. Core becoming more competent. Manganese>limonite on fractures. Calcite on fine to occasionally 1 cm fractures. Fractures typically 45-60°, occasional 25° to core axis. Mineralization: Occasional clot of rusty pyrite usually along fractures. Locally disseminated cubes. Alteration: Weak chlorite/carbonate on fractures. Locally minor pitting/voids in Feldspar Porphyry. END OF HOLE AT 75.60 METRES 	40% quartz over interval. Veins up to 6 cm wide at 40-45° to core axis. Manganese on fractures. Large rusty clots of pyrite.	143245	66.75	67.35	56	89	76	28

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-08

DIP AN	D AZIMUTH	TESTS								
DEPTH ANGLE AZMI										
119.8m	-64.7 °	137.3 °								

CORE SIZE: NQ II	TOTAL DEPTH: 119.80 m	DATE STARTED: 13 Jun 04
HOLE ANGLE: -65°	HOLE AZIMUTH: 135°	DATE FINISHED: 16 Jun 04
SECTION:	COLLAR ELEVATION: 2418 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 53124E;5653777N	CLAIM: Elizabeth	CORE STORED AT: Property

Deptl From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	3.65	OVERBURDEN • Casing to 12'								
3.65	26.70	 OVERBURDEN Predominantly harzburgite boulders. Indurated, heterolithic till. Few feldspar porphyry fragments. 								
26.70	27.45	 APLITE DYKE White to pale grey, medium-grained, aplite dyke. 5 – 7% mafics (predominantly chlorite, biotite) 								
27.45	34.00	 FELDSPAR PORPHYRY Pale to medium grey-green Fractures strongly limonitic and typically at 40-45° to core axis. Few narrow quartz veins usually at 25-30° to C.A. (≤1 cm). Hornblende phenocrysts up to 2-3 mm Mineralization Locally 1-2 mm oxidized pyrite cubes. Alteration: Chlorite alteration of ground mass. 								
34.00	34.20	 APLITE DYKE Pale, grey-white (coarser grained than 26.70-27.45 m). Hanging and footwall contacts sharp at ~50° to core axis. 								
34.20	58.80	 FELDSPAR PORPHYRY Pale green, fractures often coated with limonite, manganese, occasional pits, open spaces 38.0 m: Fine-grained mafic xenolith. 	15% milky white quartz over interval	143246	47.25	48.85	4	14	62	1

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-08

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		 50.90-58.50 m: abundant calcite veining/carbonate alteration, mafics alter into chlorite. Carbonate veining and local carbonate alteration in matrix. Hanging wall to quart vein zone. 								
58.50	59.20	 QUARTZ VEIN Milky white, limonitic, well-fractured. Some manganese dendrites. 	Trace pyrite	143247	56.50	58.50	11	31	84	1
		Locally vuggy.Suspect minor core loss.	Trace pyrite	143248	58.50	59.20	232	225	38	6
59.20	84.30		Footwall to quartz vein	143249	59.20	60.35	33	96	253	27
		Core quite competent (980100% recovery)Medium green.	Similar to above, trace pyrite	143250	60.35	62.00	18	29	91	1
		 Pervasive chlorite alteration at matrix. Fractures weakly limonitic – average 45-60° to core axis. Weakly magnetic (due to sparse magnetite). Mineralization Generally low in sulphides. Trace disseminated pyrite. Alteration Pervasive chlorite alteration 	Milky white, a few vugs, qtz vein, limonitic fractures, micro vein.	143251	62.00	62.50	905	314	57	5
			Oxidized quartz vein. 62.90-63.20-grite cubes	143252	62.50	64.15	16	20	50	2
			Limonite/manganese on fractures Slickensides at 65.20 m	143253	64.15	65.25	36	152	98	5
		 Weak sericite alteration Numerous calcite veinlets ≤2 cm, usually at 45-50° to core axis. 	2 cm rusty qtz vein, tr py at top	143254	65.25	65.80	196	1849	89	1
		• Calcite veins all late stage, cross-cut occasional quartz veins.	66.25-66.30 milky white qtz vein Tr py, 1.5 cm qtz vin @ 15° to CA	143255	65.80	67.50	16	42	55	1
			3 cm qtz diorite? Zeno at bottom of interval	143256	67.50	68.60	18	78	73	2
			Tr oxidized pyrite	143257	68.60	70.25	5	16	59	1
			2 cm qtz vein at 20° to C.A. at top of interval	143258	70.25	71.65	10	28	26	1
			Strong limonite/jarosite on fractures. Fractures parallel to CA,90% rec	143259	79.90	80.00	1940	792	36	1

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-08

PAGE: 3 **OF** 4

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
			Less alt'd than previous, sericite	143260	80.00	81.50	47	81	16	3
			Oxidized py with calcite on fractures.	143261	81.50	83.00	9	61	115	0
			Strong sericite/chlorite	143262	83.00	84.30	63	315	138	3
84.30	88.00	 ALTERED FELDSPAR PORPHYRY Medium green to brown. Strongly altered. 	84.60-84.70 m: brecciated, milky white limonitic quartz vein. Fractured and microveined.	143263	84.60	84.70	629	1454	55	9
		 Numerous, fine calcite veinlets. Porphyritic texture becoming skewed by alteration. Strongly limonitic fractures at top of interval. 	Abundant sericite alteration, tr asp?	143264	84.70	85.80	117	228	46	2
			87.70-88.00 m: several 5-10 mm qtz veins at 45° to C.A. – 1 offset by calcite.	143265	85.80	88.00	62	158	36	1
88.00	91.40	 VEINED/STOCKWORK VEINED FELDSPAR PORPHYRY Orange/brown, veined/stockwork veined feldspar porphyry. Strong hydrothermal alteration, pervasive quartz veining and 	Minor core loss over broken/rubbly sections. 10% qtz veining	143266	88.00	89.50	402	1318	59	3
		brecciation (increasing over lower half of interval.Local quartz microveining.	Minor core loss over broken/rubbly sections. ~50% qtz/qtz stockwork veining. Strong brecciation. Local microveining, qtz is a creamy white colour. Locally ½-1% asp (f.g.) ½-1% oxidized py.	143267	89.50	91.40	6841	9792	112	4
91.470	94.20	 QUARTZ VEIN ZONE Creamy white, strongly brecciated quartz vein. Irregular, limonitic fractures create a weak web-like pattern. 	Locally 12-1% asp, tr ox py, local irregular patchy carbonate. Few vugs.	143268	91.40	92.50	1553	1496	31	0
		Pervasive quartz microveining cutting main quartz vein material.Quartz locally pitted, occasional vug.	Similar to above. One 0.3mm Au grain at 93.55 m	143269	92.50	93.60	5101	4194	89	1
			2 Au grains in orange/brn, strongly brecciated and stockwork veined, qtz/altered feldspar porphyry. One grain ~.5mm wide	143270	93.60	94.20	5130	4594	75	1

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-08

PAGE: 4 **OF** 4

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	ral (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
94.20	104.60	 ALTERED FELDSPAR PORPHYRY Pale grey/green to orange/brown feldspar porphyry. Locally strong hydrothermal alteration ± brecciation. 	3 Au grains at 92.50 m (one .5mm) in qtz/qtz stockwork. ½% asp, 1% py, tr mo.	143271	94.20	95.30	12525	8207	36	1
		Some sections quite fresh.Strong limonite/ankerite. Local calcite alteration/veining.		143272	95.30	96.95	1519	4110	62	2
		• Fracture set at 45° to Core axis.	1@% py, tr mo?	143273	96.95	98.45	448	1075	62	13
			Tr f.g. diss py. Minor milky white qtz/carb veining.	143274	98.45	100.00	122	213	94	13
			5 cm qtz vein -45° to CA at 100 m	143275	100.00	101.35	76	212	36	7
			20 cm limonitic, milky white qtz vein at 45° to C.A. Strongly brecciated rehealed with ankerite/carb/qtz. Tr asp. 1% oxidized pyrite.	143276	101.35	101.55	288	499	54	12
				143277	101.55	102.20	21	137	24	2
			30 cm qtz vein at 40° to C.A. Not as mineralized as 143276	143278	102.20	102.50	94	541	33	14
			Minor qtz veining, brecciation over interval.	143279	102.50	103.75	1353	2055	113	5
			2-7 cm wide brecciated qtz veins at 40° to C.A. at 106	143280	103.95	104.60	190	2286	127	20
104.60	119.80	 FELDSPAR PORPHYRY Medium green/grey. 50% 4-6mm average feldspar phenocrysts. Patchy white alteration over interval, otherwise porphyry quite fresh. Pervasive sericite/chlorite alteration. 	Limonitis, broken, crushed milky white quartz vein (some core loss) ~30% quartz	143281	113.00	113.75	139	3636	88	10
		 Trace magnetite. Occasional quartz ± calcite veinlet at 35-45° to core axis. 	Few qtz/carb veins (≤2 cm) at 40- 45° to core axis	143282	118.30	119.80	4	25	21	0
		END OF HOLE AT 119.80 METRES								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-09

DIP AND AZIMUTH TESTS										
DEPTH ANGLE AZMTH										
162 °	-55 °	125.5 °								

CORE SIZE: NQ II	TOTAL DEPTH: 167.05m	DATE STARTED: 16 Jun 04
HOLE ANGLE: -55°	HOLE AZIMUTH: 125°	DATE FINISHED: 18 Jun 04
SECTION:	COLLAR ELEVATION: 2403m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83: 531144E;5653744N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	ı (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	13.40									
		Casing to 44'								
13.40	39.60	FELDSPAR PORPHYRY		143283	34.50	36.05	4	20	65	1
		• Medium green/grey	15% quartz over interval, parallel							
		• 60% euhedral feldspar phenocrysts (either plagioclase or albite.)	veins at 30-35° to core axis.							
		• 5% hornblende phenocrysts (< 3-4mm)	Minor oxidized pyrite							
		• Limonite, trace epidote on fractures. Fractures average 45-50° to								
		Core axis. Second fracture set at 20-25° to core axis								
		• Core quite competent								
		• 3-4 cm xenolith (fine-grained mafic intrusive) at 26.30 m.								
		Mineralization								
		• Locally oxidized py cubes and blebs.								
		• Some quartz-pyrite stringers at 25-30° to core axis								
		• 30.10-31.00m: 1-2 cm wide quartz veinlet parallel to core axis								
		• Pitted, oxidized pyrite								
		• 32.70m: 1 cm wide quartz vein encapsulated by clay								
39.62	39.75	APLITE DYKE								
		• Creamy white to light grey								
		 Sharp hanging wall contact at 45° to core axis 								
39.75	40.40	FELDSPAR PORPHYRY								
		• STA (13.40-39.60 m)								
		Manganese on fractures								
40.40	40.55	APLITE DYKE								
		• STA (39.60-39.75 m)								
		• Hanging wall and footwall contacts at 52° and 45° respectively								
40.55	56.10	FELDSPAR PORPHYRY	Calcite crystals in vugs parallel to	143284	42.25	46.75	8	21	24	12
		• STA over top two-thirds at interval	core axis							
		• Lower one-third: weakly bleached, locally quartz-veined; pitted and								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-09

Depth From	ı (m) To	Interval Description	Sample Description	Sample No.	Interva From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		fractured; local clay along shears	Increase in calcite veining over lower one-third interval	143285	46.75	48.15	6	19	43	3
			15 cm quartz vein Orange/brown, well-brecciated micro-veined Trace pyrite, trace Asp? Quartz crushed; possible core loss Contacts?	143286	51.10	51.60	1951	1444	480	5
			Pitted, limonitic feldspar Manganese on fractures, trace oxidized pyrite	143287	51.60	53.10	194	206	71	2
			Weakly bleached, carbonate veined feldspar	143288	53.10	54.60	16	42	41	1
			Brecciated, quartz-veined, locally sheared feldspar	143289	54.60	56.10	105	176	70	11
56.10	57.00	 APLITE DYKE Creamy white to pale grey Speckled, fine to medium grained aplite 								
57.00	97.95	FELDSPAR PORPHYRY • Xenoliths at 59.00m and 81.00m	Oxidized pyrite cubes on qtz veinlets	143290	73.95	75.45	5	20	19	5
		 Action and \$1.00m Medium grey/green Limonitic fractures Calcite veining throughout interval 	75.90-76.00: large bleb at pyrite/molybdenum, in limonitic feldspar	143291	75.45	76.95	4	103	77	373
		• Fracture sets at 45-60° to core axis; second set at low angle to core	Trace pyrite	143292	76.95	78.20	3	79	61	11
		 axis 87.20-87.25m: Aplite dyke with sharp contacts at 40° to the core axis 89.50m: 2 cm wide aplite dyke at 40° to the core axis 	Brown to orange, highly altered feldspar porphyry; locally brecciated , abundant quartz/carbonate veining	143293	78.20	79.40	104	1426	93	12

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-09

PAGE: 3 **OF** 4

Dept From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
		 Mineralization Trace oxidized pyrite cubes and blebs Trace molybdenum Alteration Pervasive chlorite and carbonate veinlets at random angles to core axis 	Hanging wall to quartz vein, Manganese on slickensides at bottom at interval Strong secondary sericite	143294	96.65	97.95	5	8	35	8
97.95	98.50	 QUARTZ VEIN Milky to creamy white, strongly bleached, microveined quartz vein Limonitic and ankeritic fractures FW contact at 45° to the core axis 	Trace disseminated, oxidized pyrite; Trace very fine-grained Asp?	143295	97.95	98.50	84	93	20	74
98.50	140.30	 FELDSPAR PORPHYRY (100% recovery) Medium grey, pale green feldspar Weakly magnetic (trace disseminated magnetite grains) Mineralization Locally 1-2% disseminated pyrite 	Brecciated, stockwork veined, strongly altered footwall feldspar porphyry. Calcite/ankerite veinlets cutting irregular quartz veins.	143296	98.50	100.10	9	11	32	31
		 Alteration Intermittent calcite veins at 40-45° to C.A. Chlorite throughout interval, minor sericite. 	Oxidized pyrite on fractures, minor sericite. Weak stockwork veining at top of interval	143296A	100.10	101.60	13	3	18	6
			Minor sericite5-1% diss. py	143296B	101.60	103.10	3	10	26	3
			Minor sericite alteration, Increasing carbonate.	143296C	103.10	104.60	4	7	53	31
			STA but less altered 105.30-105.50m: fine-grained mafic dyke? 5 cm limonitic quartz vein at bottom of interval	143296D	104.60	105.70	3	7	59	17
			Several xenoliths <10 cm. 0.5% disseminated pyrite	143297	137.30	138.80	3	9	13	4
			Brown to greenish strongly altered, brecciated feldspar porphyry. Bottom 60 cm. strongly brecciated quartz. Carbonate rehealing brecciated quartz.	143298	138.80	140.30	524	275	37	31

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-09

PAGE: 4 **OF** 4

Deptl From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
140.30	143.30	 QUARTZ VEIN Very similar to quartz vein in DDH-04-08 Creamy white, strongly brecciated limonitic, microveined quartz vein 	Off white to brown brecciated quartz vein. 0.5-1% disseminated pyrite. Asp as large irregular blebs up to 2 cm. Hanging wall contact 45° to core axis.	143299	140.30	141.20	4274	954	16	19
			Milky to creamy white, strongly brecciated locally microveined, strongly limonitic quartz. 141.80-141.95m: broken, sheared quartz. Trace-1/2 % disseminated pyrite. Occasional rusty pyrite stringer.	143300	141.20	142.00	691	647	56	12
			STA but less brecciated. Quartz broken/rubbly	143301	142.00	142.60	23067	126	9	6
			Milky white quartz, competent with only weak brecciation. Trace filaments of pyrite.	143302	142.60	143.30	1968	74	24	3
14330	167.05	 FELDSPAR PORPHYRY Medium grey to green Relatively fresh, local quartz veins up to 5 cm wide Mineralization 0.5-1% disseminated pyrite Alteration Sericite with lesser chlorite 	Footwall to qtz vein 1% diss py, minor sericite. 1 cm. qtz vein at 144.30 m (35° to the core axis). Calcite vein crosscuts qtz. Much less footwall alteration than noted in DDH-04-08 at lower qtz vein (9 foot vein)	143303	143.30	145.20	54	1370	34	7
		• Local calcite veining; usually at low angles to the core axis	145.35-145.50m: limonitic, jarasitic, crushed qtz vein. 1-2% diss py, sericite	143304	145.20	146.80	17	103	59	104
		END OF HOLE AT 167.05 METRES	Relatively fresh unaltered porphyry. 1 cm. qtz vein at 10° to the core axis	143305	165.55	167.05	6	5	68	28

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-10

DIP AND AZIMUTH TESTS									
DEPTH	ANGLE	AZMTH							
0m	-50.0 °								
80m	-52.6 °	119.9 °							
162.8m	-53.3 °	122.7 °							

CORE SIZE: NQ II	TOTAL DEPTH: 162.8 m	DATE STARTED: 18 Jun 04
HOLE ANGLE: -50°	HOLE AZIMUTH: 125°	DATE FINISHED: 20 Jun 04
SECTION:	COLLAR ELEVATION: 2373 m	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83): 531107E, 5653667	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	h (m) To	Interval Description	Sample Description	Sample No.	Interval (m From T	·	As ppm	Cu ppm	Mo ppm
0.00	6.50	OVERBURDEN • Casing to 20 feet							
6.50	16.25	 FELDSPAR PORPHYRY Strongly limonitic, , strong fracturing, broken crumbly core. Trace disseminated pyrite 13.50-13.80m – crushed quartz vein Clear to milky white, crushed limonitic quartz/feldspar porphyry 							
16.25	19.60	 LISTWANITE Mottled orange to dark green listwanite. Hanging wall and footwall at 45° to core axis. Abundant magnesite ± calcite. Trace mariposite. Very weakly magnetic 							
19.60	28.20	 ALTERED ULTRAMAFIC (DUNITE?) Entire section strongly sheared and crushed. Local serpentine/talc. Moderate to strongly magnetic Limonitic Footwall sharp and irregular at ~50° to core axis. 							
28.20	29.60	ALTERED FELDSPAR PORPHYRY • Limonitic, bleached, broken, crushed core.							
29.60	30.25	APLITEWhite to pale grey, fine-grained aplite dyke.							

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-10

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	val (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
30.25	32.85	 ALTERED FELDSPAR PORPHYRY Limonitic, bleached feldspar porphyry. Locally sheared, broken crumbly core. Trace disseminated pyrite. 32.80 – 32.83 m: sheared, brecciated, feldspar porphyry with clay gouge. Contact at 50° core axis. 								
32.85	43.45	 DUNITE Black to dark brown. Locally exhibits web-like texture. Strongly magnetic. Calcite > magnesite veining. Last 1/3 of interval., solid, competent core. Top 2/3 is highly sheared. 								
43.45	44.75	 LISTWANITE Orange to dark green mottled. Appears to be ultramafic, which has not fully been listwanitized. Soft sheared core. 								
44.75	48.20	 Locally very fine grained. Strongly fractured, broken core. Strong limonite/jarosite on fractures. 	Strong Jarisite on fractures, tr py	143306	44.75	46.25	27	920	142	11
			Oxidized py on fractures	143307	46.25	47.75	7	109	77	16
		• Trace oxidized pyrite.	Trace pyrite	143308	47.75	48.250	8	178	132	26
48.20	48.70	 QUARTZ/APLITE Milky white over top 15 cm of interval. Bottom of interval – white to pale grey aplite. Weak limonite, trace pyrite. 		143309	48.20	48.70	4	29	16	7
48.70	57.10	 FELDSPAR PORPHYRY Light grey/grean feldspar porphyry. Top ½ of interval, competent oxidized pyrite cubes on fractures. Bottom ½ of interval broken with Jarisite/limonite on fractures. Weakly bleached. 								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-10

PAGE: 3 **OF** 5

Depth From	i (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
57.10	58.70	SERPENTENITEPale to dark green.Crenulated cleavage at 58.00m.								
58.70	72.65	ALTERED FELDSPAR PORPHYRYPale grey to maroon, fine grained, bleached, weakly silicified feldspar porphyry.	10 cm quartz/calcite vein at 45° to core axis	143310	67.30	68.80	5	54	248	35
72.65	83.85	 FELDSPAR PORPHYRY (MINOR INTERCALATED APLITE) Medium, grey/brown feldspar porphyry 0.5 to 10.% disseminated pyrite associated with quartz veins 70.40-70.65 m- coarse grained aplite. Aplite dykes at 25-30° to core axis, locally cross cut by narrow quartz veinlets. 								
83.85	88.75	 APLITE(?) White to light grey/green, consists of predominantly feldspar and quartz, with higher than normal mafic. Hanging wall and footwall contacts are altered and sharp at 25-30° to core axis. Patchy sericite alteration. Trace disseminated pyrite. Limonitic ± Jarisitic(?) fractures. 		143311	83.85	85.35	13	82	49	7
			Qtz vein 2-3 cm parallel to CA	143312	85.35	86.85	10	120	34	12
				143313	86.85	88.75	27	74	34	8
88.75	89.10	 ALTERED FELDSPAR PORPHYRY Orange to green altered feldspar porphyry. Shows signs of Serpentinization. 		143314	88.75	89.10	404	2678	223	10
89.10	91.75	QUARTZ VEIN	Milky white quartz, weakly to moderately brecciated, some microveining, trace limonite Trace disseminated pyrite.	143315	89.10	89.80	3,900	119	66	4
			Qtz veining cutting through siliceous altered and brecciated listwanite. Abundant mariposite locally within qtz veins. 90.05 – 90.15 m – milky white brecciated qtz vein. 3-4% asp (1-3mm). Numerous grains of coarse gold	143316	89.80	90.45	257,890	>10000	33	18

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-10

PAGE: 4 **OF** 5

Deptl From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
			often spatially associate or within asp crystals. Au also occurs as fine disseminations within qtz.							
			95% + milky qtz, brecciated and microveined. 1-2% asp, some with tr coarse Au.	143317	90.45	91.10	10,130	2430	47	18
			Qtz vein with tr cpy, mo and asp	143318	91.10	91.75	220	93	16	14
91.75	93.20	ALTERED APLITE (?)	Strongly altered m.g. aplite? Limonite, sericite, chlorite alteration. Coarse vein breccia at top of interval.	143319	91.75	93.20	1,950	603	64	9
93.20	96.95	ALTERED FELDSPAR PORPHYRY	10% milky white quartz	143320	93.20	93.95	90	666	81	9
		 Brown to green, brecciated, stockwork veined feldspar porphyry. Brecciation consists of coarse quartz fragments, re-healed with calcite stringers – calcite increasing at sample #143321. 	Less altered and less qtz than previous sample	143321	93.95	94.70	71	239	191	4
			Similar to above. Minor aplite(?	143322	94.70	95.45	58	518	98	4
			35% qtz and qtz breccia	143323	95.45	96.20	53	313	160	17
			Strongly altered brown f.p. Weakly silicified.	143324	96.20	96.95	152	574	145	25
96.95	118.30		Fractures weakly limonitic.	143325	96.95	98.45	16	454	100	8
		 Medium grey, much of interval is relatively fresh. Narrow calcite stringers common. Mineralization: 	Similar to above with .15 m bleached section at 99.7 m	143326	98.4	100.50	11	288	76	4
		• Locally 0.5 to 1.0% disseminated pyrite.	Milky white qtz vein. HW/FW contact at 45° to CA	143327	100.50	100.80	9	38	6	3
			Relatively fresh FP	143328	100.80	102.30	7	70	85	55
			White, pale grey, weakly bleached FP	143329	116.80	118.30	< 2	9	83	7
118.30	119.80	 DUNITE Black, magnetic, massive dunite. 118.30-118.45 m – ribboned quartz vein at 45° to core axis. 		143330	118.30	119.80	3	5	59	65

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-10

PAGE: 5 **OF** 5

Deptl From	h (m) To	Interval Description	Sample Description	Sample No.	Interval (m) From To		Au ppb	As ppm	Cu ppm	Mo ppm
		• 119.70-119.80 m – Similar to above.								
119.80	121.15	FELDSPAR PORPHYRY • Similar to above (96.95-118.30 m)		143331	119.80	121.15	9	23	86	30
121.15	125.05	DUNITE • Similar to above (118.50-119.80 m) • 121.70-122.40 m – feldspar porphyry.								
125.05	126.75	FELDSPAR PORPHYRY • Groundmass is bleached; medium grey.								
126.75	127.55	APLITE • Creamy white aplite.								
127.55	162.75	 FELDSPAR PORPHYRY Light to medium grey/green. Similar to above (96.95-118.30 m) Occasional cross cutting aplite dykes 25-35° to core axis. 150.70 - 162.75 m - Narrow quartz veins sub-parallel to core axis. 158.20 - 160.30 m - Fine-grained aplite dyke, at low angle to CA. 	0.5 – 1% disseminated py.	143332	161.25	162.75	5	22	57	17
		END OF HOLE AT 162.75 METRES								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11

DIP AND AZIMUTH TESTS									
DEPTH	ANGLE	AZMTH							
* unable to	test due to	down hole							
condition									

CORE SIZE: NG II	TOTAL DEPTH: 69.50m	DATE STARTED: 20 June 04
HOLE ANGLE: -50°	HOLE AZIMUTH: 125°	DATE FINISHED: 23 June 04
SECTION:	COLLAR ELEVATION:	ANALYSIS BY: Acme Analytical
GRID LOCATION:	RECOVERY:	LOGGED BY: R. Montgomery
UTM (NAD 83):	CLAIM: Elizabeth	CORE STORED AT: Property

Depth From	n (m) To	Interval Description	Sample Description	Sample No.	Interv From	Interval (m) From To		As ppm	Cu ppm	Mo ppm
0.00	7.00	OVERBURDEN • Casing to 50'								
7.00	8.50	 FELDSPAR PORPHYRY Medium grey/green to rusty orange. Mafics altering to chlorite. Core strongly fractured/rubbly. Likely some core loss. 	Trace to ½% disseminated oxidized pyrite.	14333A	7.00	8.50	6	47	120	4
8.5	43.90	 ALTERED ULTRAMAFIC (DUNITE?) Dark grey/black, strongly magnetic, web-like texture. Core crushed and strongly sheared over most of the interval. Locally green antigorite on shears, minor calcite on fractures. 								
43.90	45.10	ALTERED FELDSPAR PORPHYRYBleached, orange/brown, weak to moderate brecciation.	Trace to ½% disseminated pyrite and cubes, usually oxidized	143333	43.90	45.10	13	53	90	10
		• Trace jarasite on fractures.	Intercalated feldspar and serpentine	143334	45.10	46.60	18	66	60	8
45.10	53.65	 LISTWANITE/SERPENTINITE Mottled grey/green to orange. Noting only trace mariposite. 	Trace very fine=grained pyrite	143335	46.60	48.40	9	92	21	10
53.65	67.50	 DUNITE Black, massive, strongly magnetic dunite. Core quite competent with a web-like texture. Fractures average 50° to the core axis. 								

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11

Deptl From	h (m) To	Interval Description	Sample Description	Sample No.	Interv From	al (m) To	Au ppb	As ppm	Cu ppm	Mo ppm
67.50		 FELDSPARPORPHYRY Pale to medium grey, bleached, weakly silicified feldspar porphyry. Limonitic fractures. 	¹ / ₂ to 1% disseminated stringer pyrite. ¹ / ₂ to 1% disseminated and small blebs of pyrrhotite.	143336	67.50	69.50	19	44	120	9
		END OF HOLE AT 69.50 METRES (Hole abandoned due to caving/squeezing at 46.3 metres)								

APPENDIX D

STATEMENT OF EXPENDITURES

STATEMENT OF EXPENDITURE

Prepared by J-Pacific Gold Inc. Management

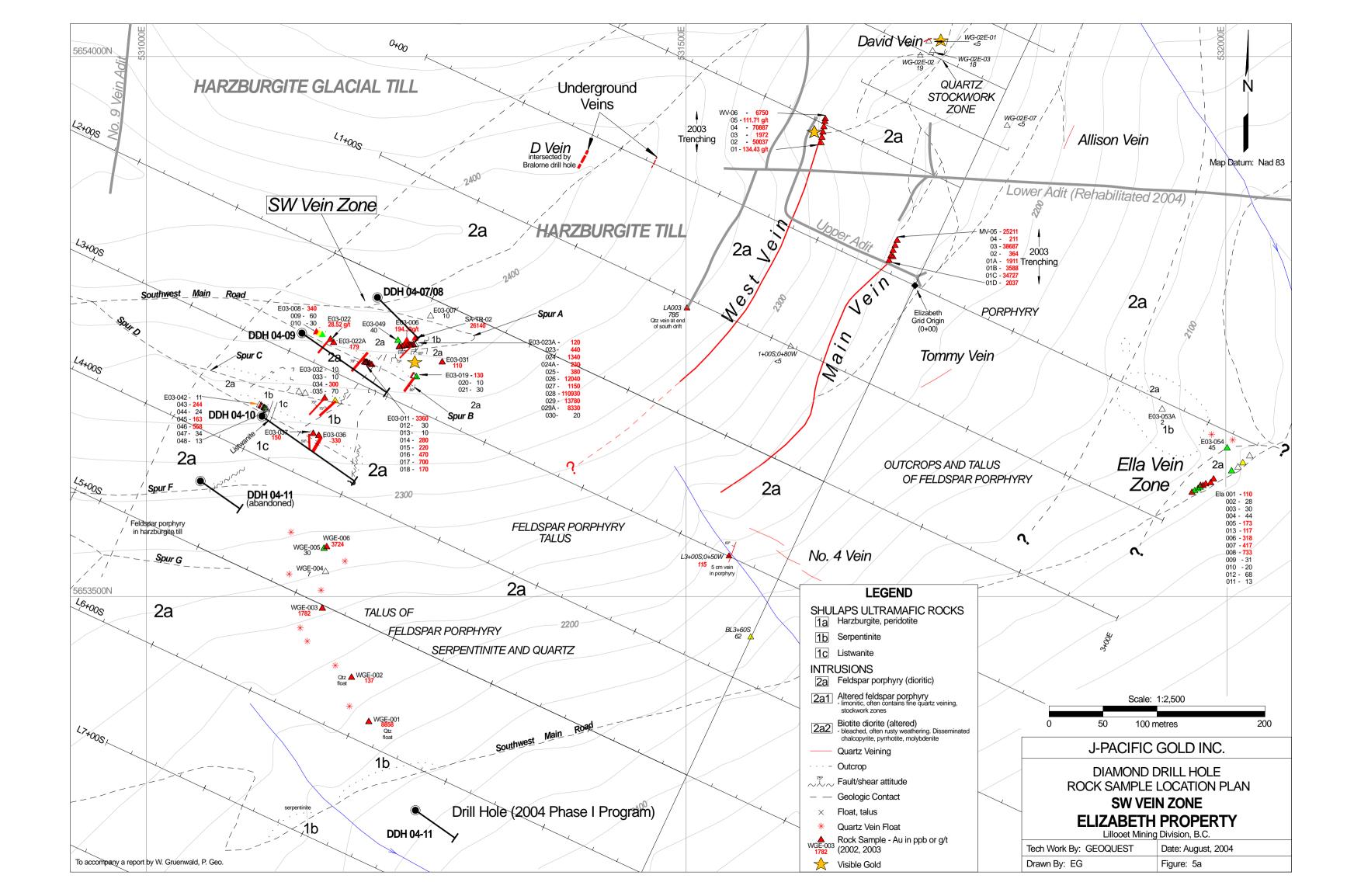
	\$	\$
Consulting Fees / Labour Geoquest Consulting Warner Gruenwald, P Geo		
29.25 days @ \$450 / day (May 22-Jun 16, Aug 5-8, 14, 15, 26, 27)	13,162.50	
Rob Montgomery 33 days @ \$400 / day (May 22-Jun 24)	13,200.00	
Elaine Gruenwald 28.5 days @ \$300 / day (May 22-Jun 16, Jul 19, Aug 7-9, 26, 27)	8,550.00	
Sean Bohle 27 days @ \$300 / day (May 22-Jun 20)	8,100.00	
Lance Jenn 34 days @ \$225 / day (May 22-Jun 24)	7,650.00	
Doris Wyton 22 days @ \$275 / day (May 30 - Jun 20)	6,050.00	
Marty McInnes 8.5 days @ \$225 / day (Jun 14-Jun 21)	1,912.50	58,625.00
J. Sievers		
9 days @ \$275 / day (May 22-31)		2,475.00
SRK Consulting (May 22 - June 30) Chris Lee (24 hours)		3,174.05
		64,274.05
Drilling FB Drilling (4,718 feet; mob and demob)	96,981.33	
Cat time moving and clearing for drilling	9,454.00	106,435.33
Analytical Costs ACME Analytics 252 Group 1DX 35 Group 1D - 32 Elements 35 Group 3A - AU Ignition 154 Group 3B - AU 183 R150 - CORE 98 R150 - ROCK 98 Group 6 - AU		15,127.33
Transportation Costs Tranportation (vehicles)	4,685.42	
Travel	2,100.67	6,786.09
Roads Road opening (mob and demob) Snow plowing	6,213.42 11,430.00	17,643.42
Board Room and board		8,421.16
Supplies Cors shack Core building upgrade Camp upgrade Fuel Sampling supplies Lumber and miscellaneous supplies	2,816.05 1,998.40 3,973.53 2,072.98 340.75 528.80	11,730.51
Other Equipment and tool rentals	2,406.81	
Equipment and tool rentals Field gear	2,554.50	
Storage and freight Communications, office, other	873.25 1,246.33	7,080.89
		237,498.78

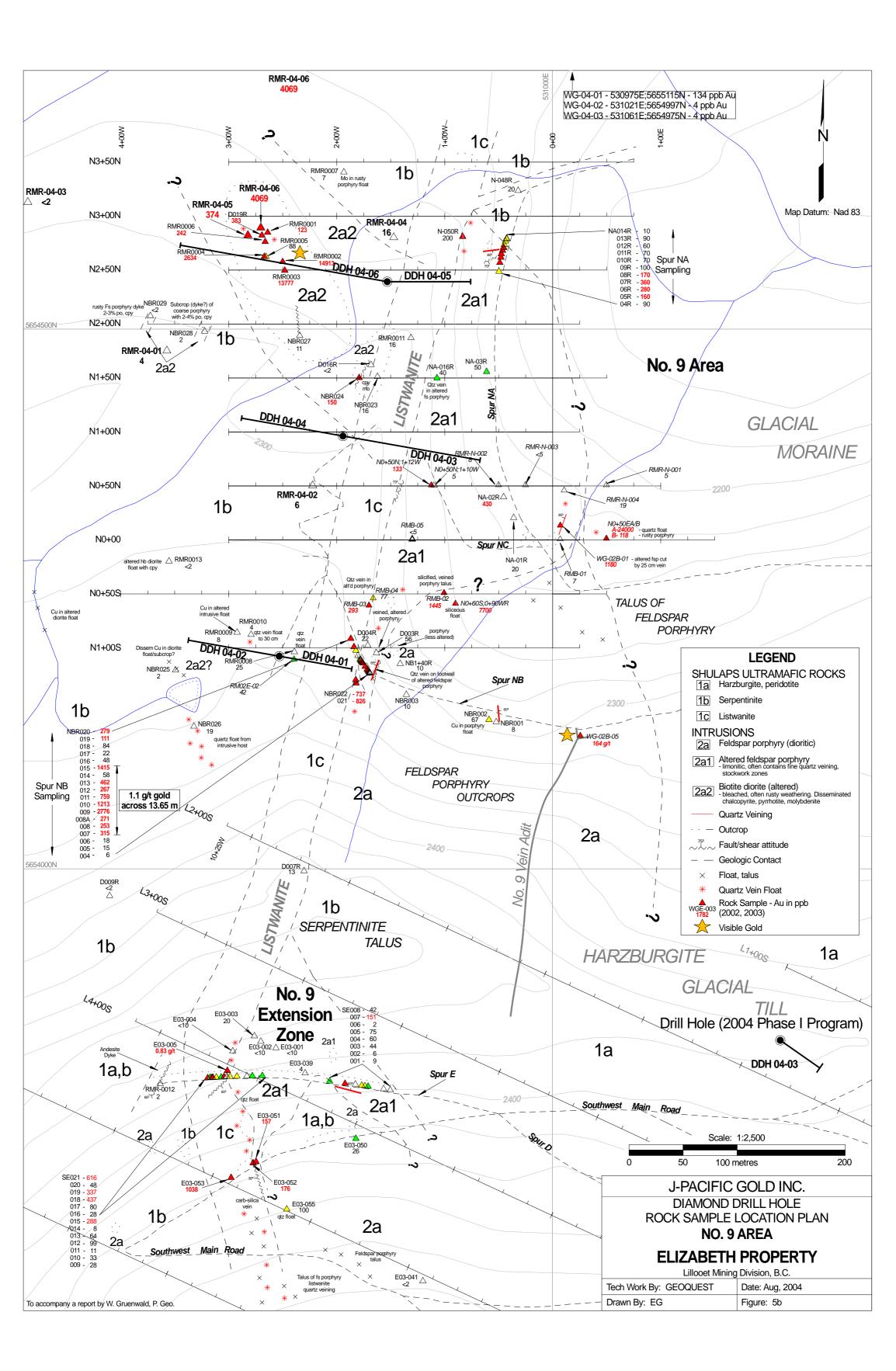
APPENDIX E

REFERENCES

Ash, Chris (1991)	Ophiolite Related Gold Quartz Veins in the North America Cordillera.
	British Columbia Geological Survey Bulletin 108
Ash, Chris	The Listwanite-Lode Gold Association in B.C Geological Filed Work 1989
Arksey, R.L. (1990)	Paper 1990-1
Ball, Matt (2002)	Geological Modelling and Exploration Targeting for the Loco Area, Bralorne-
	Pioneer Mine Property
Boyle, R.W. (1979)	The Geochemistry of Gold - GSC Bulletin 280
B.C. Minfile Reports	Bralorne-Pioneer, Elizabeth and Yalakom, Poison Mountain Mineral deposits
Bralorne Mines Ltd. (1946)	Surface Assay Plan – Elizabeth Group
Church, B.N. (1987/88)	Geological Reconnaissance in the Bridge River Mining Camp. Paper 1987-1 and
	1988-1
Church, B.N. (1995)	Bridge River Mining Camp, Geology and Mineral Deposits (Paper 1995-3)
Gruenwald, W (1997)	Compilation Report and Exploration Proposal for the Elizabeth Property.
Gruenwald, W (2002)	Assessment Report on the Geochemical and Diamond Drilling Programs on the
	Elizabeth Property, Dec 30, 2002
Gruenwald, W (2003)	Assessment Report on the Geochemical and Diamond Drilling Programs on the
	Elizabeth Property, Dec 30, 2003
Hedley, M.S (August 29,	Department of Mines article entitled "New Gold Strike, Shulaps Mountains,
1941)	Yalakom River Area"
Illidge, Tom (2002)	Personal Communication
Lalonde, C.M. (1992)	Report on the Elizabeth Property for Dromedary Exploration Company Limited.
Leighton, D (1990)	Drilling Report on the Yalakom Property
	Assessment Report #20,404
Minister of Mines Annual	1941, 1946 to 1953, 1956, 1957
Reports	
Stryhas, B and McCormack	Blackdome Mining Corporation - Exploration Proposal, Blackdome and Elizabeth
C.J. (1990)	Properties
Twaites, Lloyd (2002)	Personal Communication
Vancouver Daily Province	Newspaper Articles on the Elizabeth Claims Discovery
(August 6, 7, 9, 22 1941)	
White, David (2002)	Personal Communications

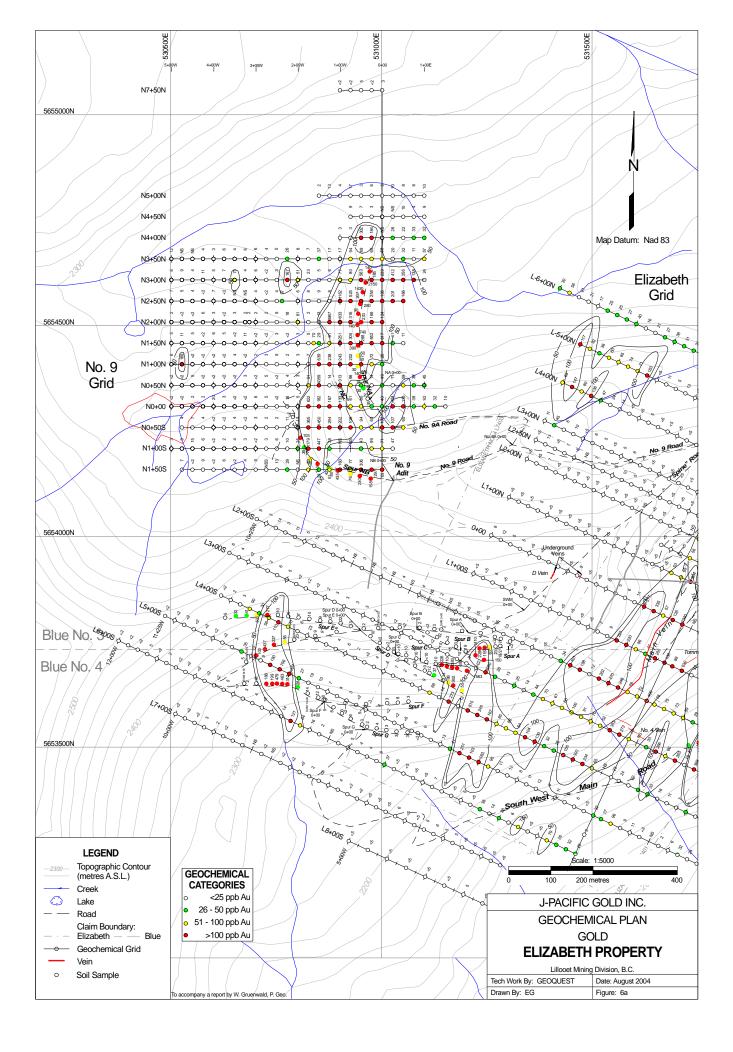
APPENDIX F

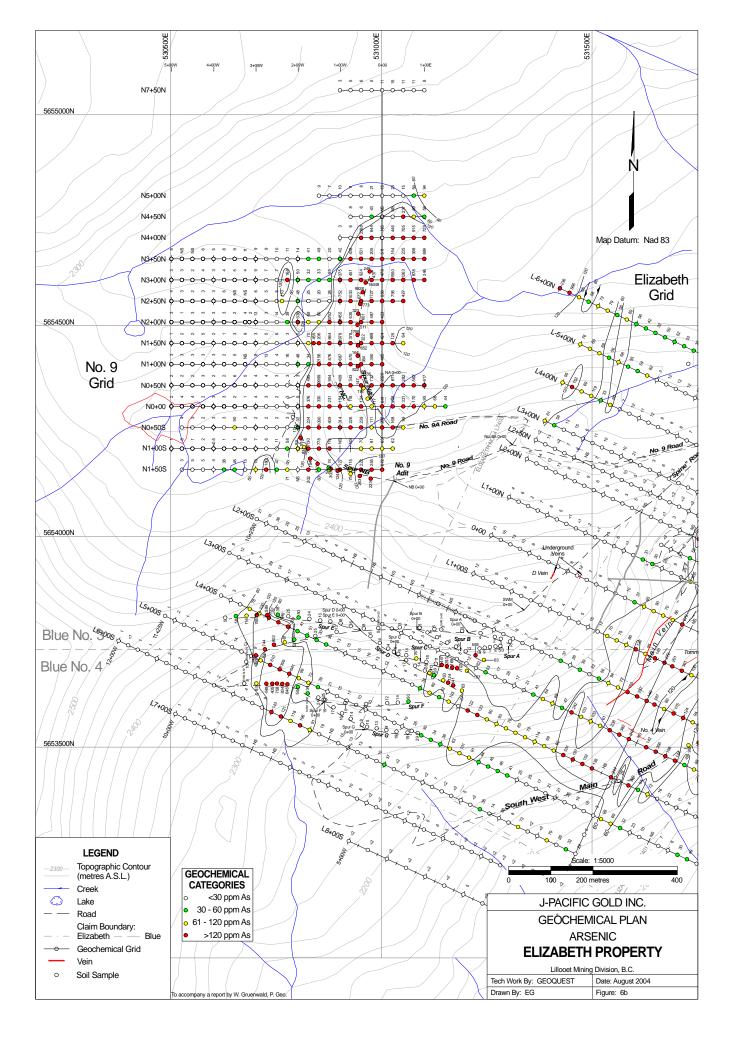

CERTIFICATE OF AUTHOR

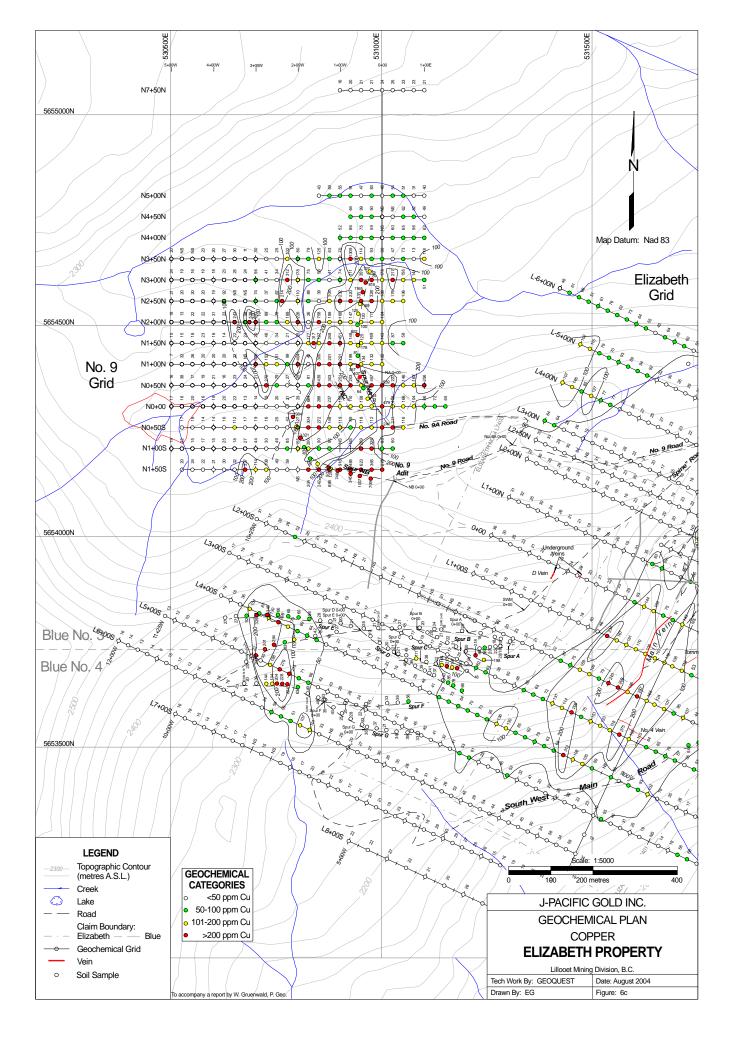

I, WARNER GRUENWALD OF THE CITY OF VERNON, BRITISH COLUMBIA HEREBY CERTIFY THAT:

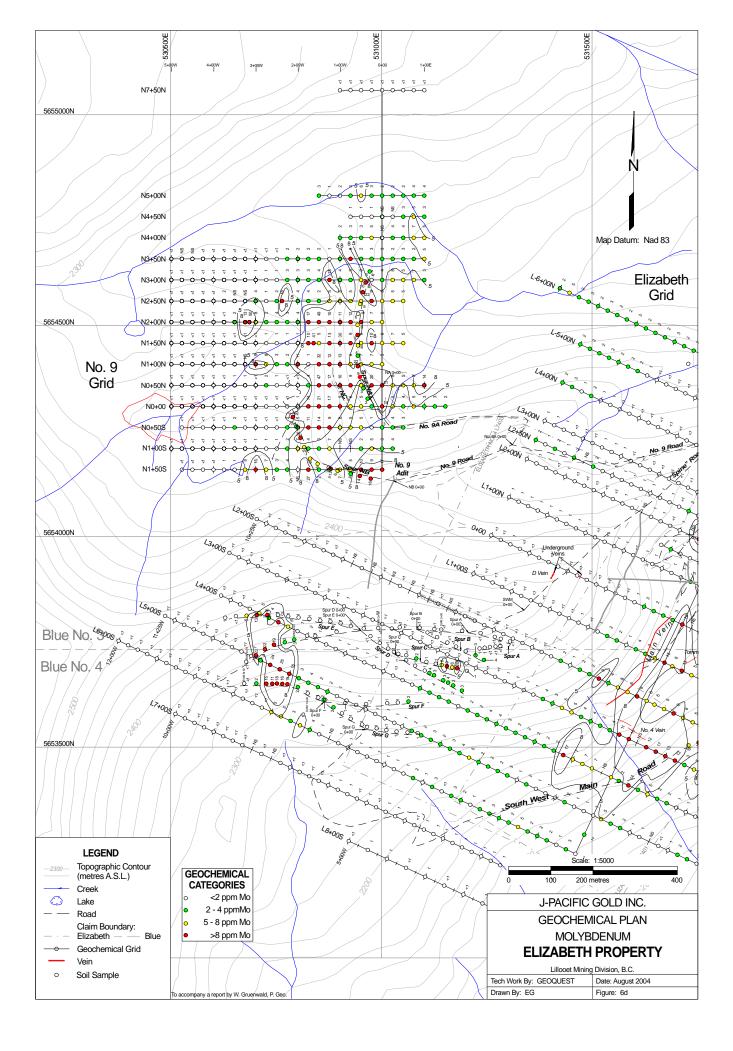
- 1. I am a graduate of the University of British Columbia with a B. Sc. degree in Geology (1972).
- I am a registered member of the Professional Engineers and Geoscientists of British Columbia. (APEGBC #23202).
- 3. I am a fellow of the Geological Association of Canada (F2958)
- 4. I am employed as consulting geologist and am president of Geoquest Consulting Ltd., Vernon, B.C.
- 5. I have practiced continuously as a Geologist for the past 32 years in Canada and the US.
- 6. I directly supervised the exploration program on the Elizabeth Property.

W. Gruenwald, P. Geo. August 15, 2004 APPENDIX G


DRILL HOLE AND ROCK SAMPLE LOCATION PLANS






APPENDIX H

SOIL GEOCHEMICAL PLANS No. 9 Area (Au, As, Cu, Mo)

APPENDIX I

MAGNETOMETER FIELD DATA AND MAGNETOMETER SURVEY PLAN

	Elizabe	eth	Grid
Line	Statio	n	Mag
1+00S	425	W	56128
1+00S	400	W	56097
1+00S	375	W	56163
1+00S	350	W	56249
1+00S	325	W	56086
1+00S	300		56134
1+00S		W	56198
1+00S	250		56084
1+00S		W	55822
1+00S	200		55921
1+00S	175		56009
1+00S	175		55958
1+00S	125		55928
1+00S	100		55902
1+00S	75		55914
1+00S	50		55885
1+00S	25	W	55850
1+00S	0		55855
1+00S	25	ш	55730
1+00S		Ε	55632
1+00S	75	Е	55764
1+00S	88.5	Ε	55984
1+00S	100		56411
1+00S	112.5	Е	56427
1+00S	125		56435
1+00S	132.5		56009
1+00S	150		56194
1+00S	175		56338
1+00S	187.5		56532
1+00S	200		56373
1+00S		E	56166
1+00S	237.5	E	56292
1+00S	257.5	E	
			56590
1+00S	262.5		57168
1+00S	275		57094
1+00S	287.5		56370
1+00S	300		55497
2+00S	750		56055
2+00S	737.5		56160
2+00S	725		54377
2+00S	712.5		56097
2+00S	700		55997
2+00S	675	W	56143
2+00S	650	W	56308
2+00S	637.5	W	56192
2+00S		W	56114
2+00S	600		56173
2+00S		W	56285
2+00S	562.5		56142
2+005 2+00S	550		56987
2+003 2+00S			56369
	53705		
2+00S	525		55500
2+00S	512.5	W	56442

-	Elizabe	eth	
Line	Statio	n	Mag
2+00S	500	W	56225
2+00S	475		56090
2+00S	450	W	56186
2+00S	425	W	56296
2+00S	412.5	W	55998
2+00S	400		55996
2+00S	375	W	56002
2+00S	350	W	55850
2+00S		W	55960
2+00S	300		56008
2+00S	287.5		55857
2+00S	207.0		55825
2+00S	270		55823
2+003 2+00S	230		55846
2+00S	200		55866
2+00S	175		55820
2+00S	162.5		55825
2+00S	150		55804
2+00S		W	55810
2+00S	100		557700
2+00S		W	55700
2+00S	50	W	55670
2+00S	25	W	55625
2+00S	0		55651
2+00S	12.5	Е	56024
2+00S	25	Ε	56256
2+00S	37.5	Е	55634
2+00S	50		55615
2+00S	62.5		55470
2+00S		Ē	55596
2+00S	-	Ē	55745
2+00S	100	Ē	56076
2+00S	112.5	E	56240
2+00S	125		55669
	123		
2+00S			55698 56173
2+00S	175		
2+00S	200		56370
2+00S	225		56560
2+00S	250		56496
2+00S	275		56100
2+00S	300		55750
3+00S	925		56502
3+00S		W	56226
3+00S	900	W	56073
3+00S	875	W	56192
3+00S	850	W	56188
3+00S	837.5	W	56382
3+00S	825	W	55731
3+00S		W	56322
3+00S	800		56148
3+00S	775		56092
3+00S	750		55908
3+00S	737.5	Ŵ	55790
57003	151.5	v۷	55790

	Elizabe	eth	Grid
Line	Statio	n	Mag
3+00S	725	W	55450
3+00S	712.5		56285
3+00S	700		56903
3+00S	687.5		56209
3+00S	675	W	56146
3+00S	650	W	56129
3+00S	625	W	56160
3+00S	600	W	56277
3+00S	587.5	W	55801
3+00S	575		56204
3+00S	562.5	W	56176
3+00S		W	55953
3+00S		W	55849
3+00S	500		55774
3+00S	475		56005
3+00S	462.5		55750
3+00S	450		56233
3+003 3+00S	437.5		55597
3+00S	425		55865
3+00S	412.5		55670
3+00S	400		55630
3+00S	375		55680
3+00S	350		55705
3+00S		W	55813
3+00S	300	W	55751
3+00S		W	55774
3+00S		W	55595
3+00S	225	W	55845
3+00S	200	W	55840
3+00S	175	W	55729
3+00S	150	W	55707
3+00S	125	W	55749
3+00S	100	W	55651
3+00S	75	W	55678
3+00S		W	55717
3+00S	25	W	55716
3+00S	0		55648
3+00S		Е	56092
3+00S	25	E	56284
3+00S	37.5	E	55502
3+00S	50	E	55737
3+00S	75	E	55624
3+003 3+00S	100	E E	55102
3+00S	112.5	E	56350
3+00S		E	55651
3+00S	150	E	55661
3+00S	175	E	55632
3+00S	200	ΕI	55462
3+00S	225	E	55434
3+00S	250	E	55785
3+00S	275	Е	55784
3+00S	300	Е	55869
4+00S	1025	W	59700

	Elizabe	eth	Grid
Line	Statio	n	Mag
4+00S	1012.5	W	57999
4+00S	1000	W	57310
4+00S	987.5	W	56390
4+00S	975	W	56621
4+00S	962.5	W	55473
4+00S	950	W	55448
4+00S	925	W	55769
4+00S	912.5	W	55363
4+00S	900	W	55355
4+00S	875	W	55638
4+00S	850	W	5681
4+00S	837.5	W	55433
4+00S	825		5832
4+00S	812.5	W	55627
4+00S	800		55571
4+00S	787.5		55966
4+00S	775		55648
4+00S	762.5		56320
4+00S	750		55500
4+00S		W	56255
4+00S	725	W	56270
4+00S	700		56073
4+00S	675		56008
4+00S	662.5		56403
4+00S	650		56085
4+00S	637.5		55760
4+00S	625		55839
4+00S	612.5		55995
4+00S	600		55875
4+00S	587.5		55620
4+00S	575		55740
4+00S	562.5		55485
4+00S	550	W	55729
4+00S	525		55510
4+00S	512.5		55728
4+00S	500		55638
4+00S	475		55747
4+00S	462.5		55804
4+00S	450		56095
4+00S	437.5		56667
4+00S	437.5		56475
4+00S	412.5		55689
4+00S	412.3		55401
4+003 4+00S	387.5		55460
4+003 4+00S	307.5	W	55750
4+003 4+00S	350	W	55589
4+003 4+00S		W	55449
4+003 4+00S		W	55480
4+003 4+00S	275		55477
4+003 4+00S		W	55480
		W	
4+00S			55932 56100
4+00S	237.5	W	56190
4+00S	225	W	55990

	Elizabe	eth	Grid
Line	Statio	n	Mag
4+00S	212.5	W	56250
4+00S	200	W	55457
4+00S	187.5	W	56330
4+00S	175		55650
4+00S	150		55575
4+00S	125		55494
4+00S	100		55333
4+00S	75		55320
4+00S	50		55258
4+00S	33		55900
4+003 4+00S	25		
			55551
4+00S	12.5	٧V	55500
4+00S	0	_	55199
4+00S	12.5		55918
4+00S	25		54210
4+00S	37.5		55616
4+00S	50		55497
4+00S	75		55389
4+00S		Ε	55211
4+00S	100	Е	55025
	112.5	Е	55524
4+00S	125		55825
4+00S	150		56002
4+00S	175		55623
4+00S	200		55185
4+00S	225		54830
4+00S	250		55134
4+00S	275		54971
4+00S	300		54908
4+00S	325		55084
4+003 4+00S	325		54943
4+003 5+00S	1125		58399
5+003 5+00S			
	1100		57920
5+00S	1075		57624
5+00S	1050		57527
5+00S	1025		57122
5+00S	1000		56901
5+00S		W	57129
5+00S	975		56675
5+00S	962.5		56331
5+00S	950		55872
5+00S	937.5	W	56778
5+00S	925	W	56323
5+00S	912.5	W	56007
5+00S	900	W	55320
5+00S	887.5	W	54930
5+00S		W	54753
5+00S		W	55005
5+00S		W	55049
5+00S	800		55413
5+00S	775		55388
5+00S	750		55360
5+003 5+00S	730	W	55234
0+000	120	٧V	55234

	Elizabe	eth	Grid
Line	Statio	n	Mag
5+00S	700	W	55317
5+00S	675	W	55436
5+00S	650	W	55671
5+00S	625	W	55926
5+00S	600		55596
5+00S	587.5		55945
5+00S	575		56090
5+00S	562.5		56505
5+00S	550		56461
5+00S			56098
5+00S	525		56075
5+00S	500		56008
5+00S	487.5		56839
5+00S	475		56875
5+00S	462.5		56440
5+00S	402.5		56680
5+00S	437.5		
	437.5		55543
5+00S			55597
5+00S	400		55423
5+00S	375		55795
5+00S	350		55399
5+00S	325		55401
5+00S	300		55302
5+00S	287.5		55502
5+00S	275		55486
5+00S	250		55365
5+00S	225		55236
5+00S	200		55231
5+00S	175		55202
5+00S	150		55171
5+00S	125	W	55600
5+00S	112.5	W	55826
5+00S	100	W	56093
5+00S	75	W	56348
5+00S	50		55989
5+00S	25	W	55498
5+00S	0		55282
5+00S	25	Е	55635
5+00S	50	Е	55811
5+00S	75	Е	55596
5+00S	100	Е	55927
5+00S	125		55598
5+00S	150	Е	55326
5+00S	175	Е	55035
5+00S	200	E	54629
5+00S	225	E	54629
5+00S	237.5	E	54881
5+00S	250	E	54963
5+00S	275	E	54979
5+00S	300	E	55021
6+00S	1200	W	57333
6+00S	1175	W	57764
6+00S	1150	W	58007
0.000	1150	٧V	50007

	Elizabe	eth	Grid
Line	Statio	n	Mag
6+00S	1137.5	W	57962
6+00S	1125	W	54664
6+00S	1100	W	56627
6+00S	1075	W	56539
6+00S	1050	W	57067
6+00S	1025	W	57012
6+00S	1012.5	W	56657
6+00S	1000		56483
6+00S	975		56325
6+00S	962.5		56726
6+00S	950		56089
6+00S	925		55784
6+00S	900		55554
6+00S	875		55611
6+00S	850		55608
6+00S	825		55509
6+00S	800		55548
6+00S	775		55659
6+00S	750		55437
6+00S	730		55151
6+00S	700	_	55289
6+00S	675		55219
6+00S	650		55198
6+00S	625		55392
6+00S	600		55348
6+00S	575		55625
6+00S	550		56026
6+00S	525		55931
6+00S	500		55693
6+00S	475		55662
6+00S	450		55291
6+00S	425		54967
6+00S	400		55584
6+00S	375		55680
6+00S	350	W	55707
6+00S	325	W	55798
6+00S	312.5	W	55393
6+00S	300	W	55263
6+00S	275	W	55238
6+00S	250	W	55555
6+00S	225	W	53713
6+00S	200		55541
6+00S	175		55065
6+00S	150		55263
6+00S	125		55125
6+00S	100	W	55395
6+00S	75	W	55378
6+00S	50	W	55536
6+00S	25	W	55580
6+00S	0		55593
7+00S	1000	W	56416
7+00S	975		56539
7+00S	973	W	56456
17003	900	٧V	00400

Elizabeth Grid			
Line	Statio		Mag
7+00S	925		56368
7+00S	900		56431
7+00S	875	W	56521
7+00S	850	W	56565
7+00S	825	W	56412
7+00S	800	W	56265
7+00S	775	W	55538
7+00S	750	W	55871
7+00S	725	W	55740
7+00S	700	W	55938
7+00S	675	W	55844
7+00S	650	W	55720
7+00S	625	W	55314
7+00S	600	W	55336
7+00S	587.5	W	55361
7+00S	575	W	55721
7+00S	550	W	56086
7+00S	525	W	55913
7+00S	500	W	56055
7+00S	475	W	55877
7+00S	450	W	56009
7+00S	425	W	55809
7+00S	400	W	55508
7+00S	375	W	55465
7+00S	350	W	55531
7+00S	325	W	56040
7+00S	312.5	W	55865
7+00S	300	W	55220
7+00S	287.5	W	55364
7+00S	275	W	55654
7+00S	250	W	55810
7+00S	225	W	55682
7+00S	200	W	55755
7+00S	187.5	W	55367
7+00S	175	W	55434
7+00S	150	W	55424
7+00S	125	W	55433
7+00S	100	W	55555
7+00S	75	W	56008
7+00S	62.5	W	56036
7+00S	50	W	55288
7+00S	25	W	55624
7+00S	0	W	55838

Geoquest Consulting Ltd. 8/31/2004

No. 9	9 Grid

	No. 9 Gr	
Line	Station	Mag
5+00N	150 W	55981
5+00N	137.5 W	55754
5+00N	125 W	55946
	112.5 W	55973
5+00N		
5+00N	100 W	55994
5+00N	87.5 W	56127
5+00N	75 W	56448
5+00N	62.5 W	56493
5+00N	50 W	56625
5+00N	37.5 W	56776
5+00N	25 W	57200
5+00N	12.5 W	57540
5+00N	0	57393
5+00N	12.5 E	56475
5+00N	25 E	56432
5+00N	37.5 E	57332
5+00N	50 E	57322
5+00N	62.5 E	57638
5+00N	75 E	57245
5+00N	87.5 E	56937
5+00N	100 E	56933
4+50N	75 W	57188
4+50N	62.5 W	57247
4+50N	50 W	56805
4+50N	37.5 W	56273
4+50N	25 W	56453
4+50N	12.5 W	
		56854
4+50N	0	56934
4+50N	12.5 E	57544
4+50N	25 E	56646
4+50N	37.5 E	56422
4+50N	50 E	57377
4+50N	62.5 E	57184
4+50N	75 E	56660
4+50N	87.5 E	56392
4+50N		
		56163
4+00N	100 W	57456
4+00N	87.5 W	57633
4+00N	75 W	57404
4+00N	62.5 W	55856
4+00N	50 W	56373
4+00N	37.5 W	57047
4+00N	25 W	57477
4+00N	12.5 W	56918
4+00N	0	56671
4+00N	12.5 E	56610
4+00N	25 E	56592
4+00N	37.5 E	56836
4+00N	50 E	56829
4+00N	62.5 E	56535
3+50N		
		55886
3+50N	487.5 W	55769
3+50N	475 W	55738
3+50N	462.5 W	55230
3+50N	450 W	55046
3+50N	437.5 W	54943
	•	

No.	9	Grid
	•	On la

<u> </u>	No. 9 Gri	
Line	Station	Mag
3+50N	425 W	54863
3+50N	412.5 W	54644
3+50N	400 W	54846
3+50N	387.5 W	54974
3+50N	375 W	55275
3+50N		
		55449
3+50N	350 W	55973
3+50N	337.5 W	56176
3+50N	325 W	56228
3+50N	312.5 W	56347
3+50N	300 W	56424
3+50N	287.5 W	56442
3+50N	275 W	56468
3+50N	262.5 W	56646
3+50N	250 W	56638
3+50N	237.5 W	56562
3+50N	225 W	56460
3+50N	212.5 W	
3+50N		56269
		56311
3+50N	187.5 W	56423
3+50N	175 W	56409
3+50N	162.5 W	56212
3+50N	150 W	56764
3+50N	137.5 W	56867
3+50N	125 W	57390
3+50N	112.5 W	57773
3+50N	100 W	57731
3+50N	87.5 W	57043
3+50N	75 W	56230
3+50N	62.5 W	56361
3+50N	50 W	56697
3+50N	37.5 W	56900
3+50N	25 W	56657
3+50N	12.5 W	57063
3+50N	0	56961
3+50N	12.5 E	57459
3+50N	25 E	57164
3+50N	37.5 E	56984
3+50N	50 E	56448
3+50N	62.5 E	55857
3+50N	75 E	56183
3+50N	87.5 E	56600
3+50N	100 E	
		55817
3+00N	500 W	56174
3+00N	487.5 W	56303
3+00N	475 W	56496
3+00N	462.5 W	56699
3+00N	450 W	56715
3+00N	437.5 W	56624
3+00N	425 W	56699
3+00N	412.5 W	56094
3+00N	400 W	55290
3+00N	387.5 W	55367
3+00N	375 W	55621
3+00N		
		55889
3+00N	350 W	56016

No	o	Grid
NO.	Э	Gria

	No. 9 Gri	
Line	Station	Mag
3+00N	337.5 W	56159
3+00N	325 W	56240
3+00N	312.5 W	
		56275
3+00N	300 W	55697
3+00N	287.5 W	56297
3+00N	275 W	55802
3+00N	262.5 W	55894
3+00N	250 W	56296
3+00N	237.5 W	56367
3+00N	225 W	56366
3+00N		56565
3+00N	200 W	56906
3+00N	187.5 W	55777
3+00N	175 W	55490
3+00N	162.5 W	57405
3+00N	150 W	56904
3+00N	137.5 W	56781
3+00N	125 W	57319
3+00N		
	112.5 W	57450
3+00N	100 W	56543
3+00N	87.5 W	56284
3+00N	75 W	56415
3+00N	62.5 W	56445
3+00N	50 W	57085
3+00N	37.5 W	56785
3+00N	25 W	56448
	12.5 W	
3+00N		56409
3+00N	0	56267
3+00N	12.5 E	56470
3+00N	25 E	56131
3+00N	37.5 E	55937
3+00N	50 E	55830
3+00N	62.5 E	55785
3+00N	75 E	55843
2+50N	500 W	56571
2+50N	487.5 W	56791
2+50N	475 W	56577
2+50N	462.5 W	56760
2+50N	450 W	57004
2+50N	437.5 W	57020
2+50N	425 W	56793
2+50N	412.5 W	56766
2+50N	400 W	56501
	387.5 W	
2+50N		55462
2+50N	375 W	55600
2+50N	362.5 W	55308
2+50N	350 W	55923
2+50N	337.5 W	55514
2+50N	325 W	55938
2+50N	312.5 W	56342
2+50N	300 W	56486
2+50N	287.5 W	55658
2+50N	275 W	55930
2+50N	262.5 W	55984
2+50N	250 W	56238
2+50N	237.5 W	56265

No. 9	9 Grid

	No. 9 Gri	
Line	Station	Mag
2+50N	225 W	55627
2+50N	212.5 W	55753
2+50N	200 W	55935
2+50N	187.5 W	56080
2+50N	175 W	56148
2+50N	162.5 W	56018
2+50N	150 W	56166
2+50N	137.5 W	56874
2+50N	125 W	58164
2+50N	112.5 W	56100
2+50N	100 W	56021
2+50N	87.5 W	56029
2+50N	75 W	55930
2+50N	62.5 W	55918
2+50N	50 W	56027
2+50N	37.5 W	56086
2+50N	25 W	56089
2+50N	12.5 W	56203
2+50N	0 W	56340
2+50N	12.5 E	56211
2+50N	25 E	56015
2+50N	37.5 E	55917
2+50N	50 E	55786
2+00N	500 W	56613
2+00N	487.5 W	55933
2+00N	475 W	56466
2+00N	462.5 W	56576
2+00N	450 W	56239
2+00N 2+00N		56353
	437.5 W	
2+00N	425 W	56905
2+00N	412.5 W	56817
2+00N	400 W	56615
2+00N	387.5 W	56497
2+00N	375 W	56650
2+00N	362.5 W	55317
2+00N	350 W	55624
2+00N	337.5 W	55726
2+00N	325 W	55784
2+00N	312.5 W	56450
2+00N	300 W	55870
2+00N	287.5 W	56166
2+00N	275 W	
		56820
2+00N	262.5 W	57955
2+00N	250 W	56474
2+00N	237.5 W	55753
2+00N	225 W	55800
2+00N	212.5 W	55870
2+00N	200 W	56079
2+00N	187.5 W	56793
2+00N	175 W	57160
2+00N	162.5 W	56986
2+00N	150 W	57170
2+00N	137.5 W	56344
2+00N	125 W	56249
2+00N	112.5 W	56369
2+00N	100 W	56380

No.	9	Grid
	•	On la

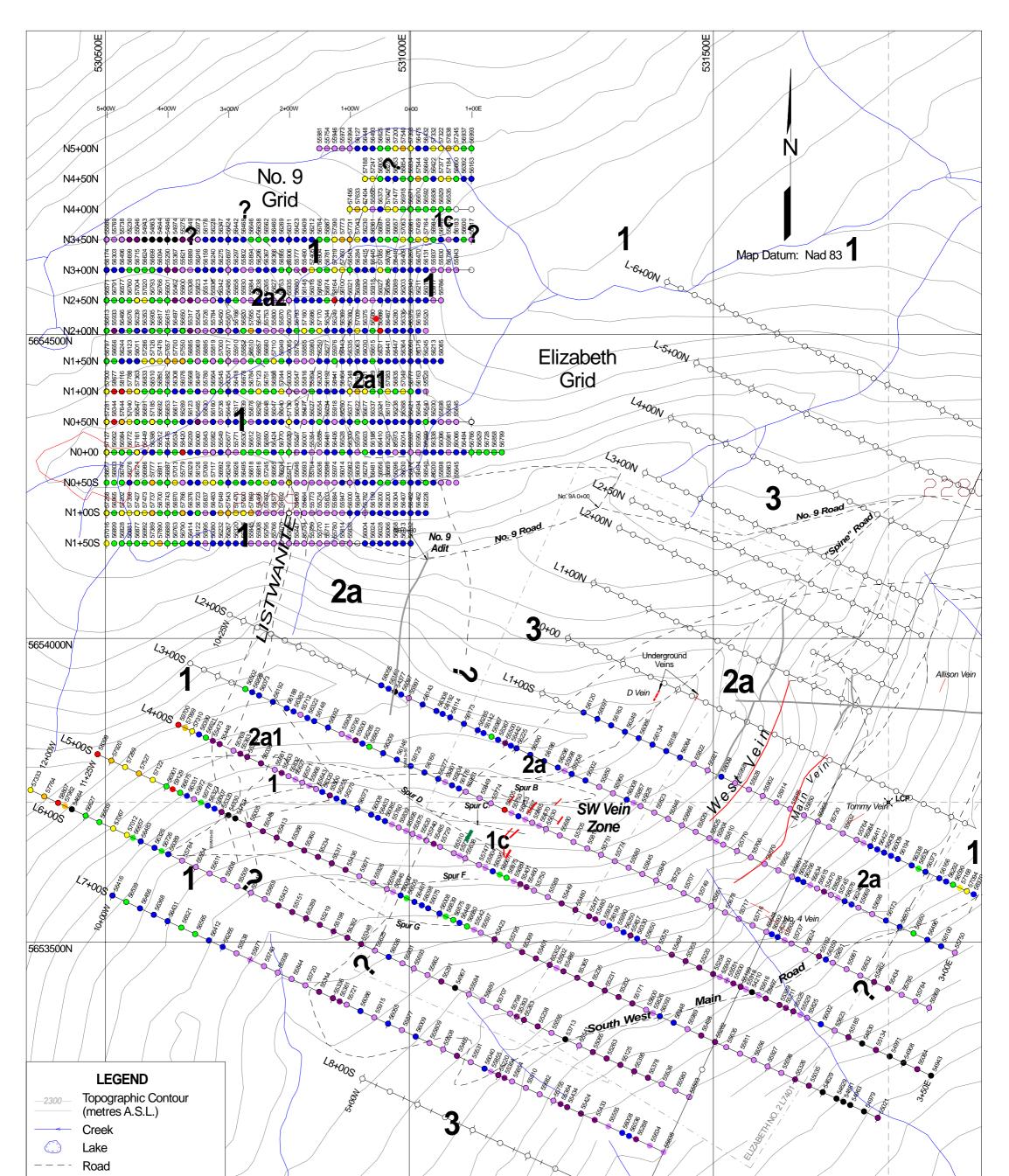
LineStationMag2+00N87.5 W570092+00N75 W563752+00N62.5 W566802+00N50 W566892+00N25 W564672+00N25 W563362+00N12.5 W563362+00N12.5 E561632+00N25 E555201+50N500 W567971+50N487.5 W566651+50N487.5 W5662441+50N475 W562441+50N487.5 W561231+50N487.5 W5672861+50N425 W571261+50N425 W571261+50N375 W575501+50N375 W575501+50N375 W575501+50N325 W568851+50N325 W558191+50N325 W558191+50N325 W558191+50N325 W558191+50N325 W558191+50N225 W571101+50N225 W571101+50N225 W57821+50N125 W566851+50N125 W566431+50N125 W566431+50N125 W5664431+50N125 W5664431+50N25 W563711+50N12.5 W5664431+50N12.5 W5664431+50N12.5 W5664431+50N25 W		No. 9 Gri	
2+00N 75 W 56375 2+00N 62.5 W 56680 2+00N 50 W 56689 2+00N 25 W 56280 2+00N 12.5 W 56336 2+00N 12.5 W 56336 2+00N 12.5 E 56163 2+00N 25 E 55520 1+50N 487.5 W 56656 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 475 W 56123 1+50N 437.5 W 57286 1+50N 437.5 W 57476 1+50N 425 W 577126 1+50N 375 W 57550 1+50N 375 W 57699 1+50N 375 W 57891 1+50N 325 W 57819 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 325 W 56857 1+50N 225 W 57110	Line	Station	Mag
2+00N 62.5 W 56680 2+00N 50 W 56689 2+00N 25 W 56280 2+00N 12.5 W 56336 2+00N 12.5 W 56336 2+00N 12.5 E 56163 2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 462.5 W 56123 1+50N 437.5 W 57286 1+50N 437.5 W 57476 1+50N 437.5 W 57476 1+50N 387.5 W 57700 1+50N 362.5 W 56885 1+50N 362.5 W 56895 1+50N 37.5 W 57500 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 225 W 56100	2+00N	87.5 W	57009
2+00N 62.5 W 56680 2+00N 50 W 56689 2+00N 25 W 56280 2+00N 12.5 W 56336 2+00N 12.5 W 56336 2+00N 12.5 E 56163 2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 462.5 W 56123 1+50N 437.5 W 57286 1+50N 437.5 W 57476 1+50N 437.5 W 57476 1+50N 387.5 W 57700 1+50N 362.5 W 56885 1+50N 362.5 W 56895 1+50N 37.5 W 57500 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 225 W 56100	2+00N	75 W	56375
2+00N 50 56689 2+00N 37.5 W 56467 2+00N 12.5 W 56336 2+00N 12.5 W 56336 2+00N 12.5 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 462.5 W 56123 1+50N 437.5 W 57286 1+50N 437.5 W 57476 1+50N 437.5 W 57657 1+50N 387.5 W 57700 1+50N 362.5 W 56885 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 325 S58510 1+50N 225 S5610 1+50N 225 S56852			
2+00N 37.5 W 56467 2+00N 25 W 56336 2+00N 0 56375 2+00N 12.5 E 56163 2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 475 W 56244 1+50N 425 W 57126 1+50N 425 W 57476 1+50N 425 W 57476 1+50N 425 W 57476 1+50N 375 W 57550 1+50N 375 W 57550 1+50N 325 W 56885 1+50N 325 W 55819 1+50N 325 W 55810 1+50N 325 W 55851 1+50N 262.5 W 56610 1+50N 275 W 55852 1+50N 225 W 57110 1+50N 225 W 57110 <td< td=""><td></td><td></td><td></td></td<>			
2+00N 25 W 56280 2+00N 12.5 W 56336 2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 475 W 56244 1+50N 475 W 56123 1+50N 425 W 57126 1+50N 425 W 57476 1+50N 425 W 57476 1+50N 400 W 57657 1+50N 375 W 57700 1+50N 375 W 5780 1+50N 325 W 56895 1+50N 325 W 55819 1+50N 325 W 55810 1+50N 275 W 55852 1+50N 287.5 W 56800 1+50N 275 W 55852 1+50N 275 W 56855 1+50N 275 W 56880 1+50N 225 W 57110 <			
2+00N 12.5 % 56336 2+00N 0 56375 2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 475 W 56123 1+50N 450 W 56011 1+50N 450 W 56011 1+50N 425 W 57286 1+50N 425 W 57476 1+50N 387.5 W 57657 1+50N 387.5 W 57500 1+50N 362.5 W 56895 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 275 W 55852 1+50N 275 W 56857 1+50N 225 W 56101 1+50N 225 <			
2+00N 0 56375 2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 462.5 W 56123 1+50N 450 W 56011 1+50N 450 W 56011 1+50N 425 W 57286 1+50N 425 W 57476 1+50N 425 W 57476 1+50N 375 W 57500 1+50N 387.5 W 57700 1+50N 362.5 W 56885 1+50N 325 W 55819 1+50N 312.5 W 55910 1+50N 325 W 55819 1+50N 275 W 55852 1+50N 275 W 55852 1+50N 275 W 56880 1+50N 275 W 56880 1+50N 275 W 56852 1+50N 225 W 57110	-		
2+00N 12.5 E 56163 2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 462.5 W 56123 1+50N 450 W 56011 1+50N 425 W 57126 1+50N 425 W 57476 1+50N 425 W 57700 1+50N 400 W 57657 1+50N 387.5 W 57700 1+50N 362.5 W 56885 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 300 W 55717 1+50N 225 W 56100 1+50N 250 W 56857 1+50N 225 W 57110 1+50N 225 W 57110 1+50N 200 W 56085	-		
2+00N 25 E 55520 1+50N 500 W 56797 1+50N 487.5 W 56656 1+50N 475 W 56244 1+50N 462.5 W 56123 1+50N 450 W 56011 1+50N 425 W 57286 1+50N 425 W 57476 1+50N 425 W 57476 1+50N 400 W 57657 1+50N 387.5 W 57700 1+50N 362.5 W 56885 1+50N 325 W 55819 1+50N 325 W 55819 1+50N 325 W 55810 1+50N 325 W 55810 1+50N 275 W 55852 1+50N 275 W 56880 1+50N 275 W 56880 1+50N 225 W 57110 1+50N 225 W 57110 1+50N 200 W 56855 1+50N 125 W 55782			
1+50N 500 56797 $1+50N$ 487.5 56656 $1+50N$ 475 56244 $1+50N$ 462.5 56123 $1+50N$ 450 56011 $1+50N$ 437.5 57286 $1+50N$ 425 57476 $1+50N$ 412.5 57476 $1+50N$ 412.5 57476 $1+50N$ 400 57657 $1+50N$ 387.5 57700 $1+50N$ 375 57550 $1+50N$ 362.5 56885 $1+50N$ 325 56895 $1+50N$ 325 55819 $1+50N$ 325 55819 $1+50N$ 325 55819 $1+50N$ 275 55852 $1+50N$ 275 56857 $1+50N$ 275 56857 $1+50N$ 225 56510 $1+50N$ 225 56857 $1+50N$ 225 56880 $1+50N$ 225 56949 $1+50N$ 125 55980 $1+50N$ 125 56943 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 25 56443 $1+50N$ 25 56447 $1+50N$ 25 56245 <			
1+50N 487.5 56656 $1+50N$ 475 56244 $1+50N$ 450 56123 $1+50N$ 450 56011 $1+50N$ 437.5 57286 $1+50N$ 425 57126 $1+50N$ 425 57476 $1+50N$ 400 57657 $1+50N$ 387.5 57700 $1+50N$ 387.5 57700 $1+50N$ 362.5 56885 $1+50N$ 350 55969 $1+50N$ 325 56895 $1+50N$ 325 571700 $1+50N$ 312.5 57000 $1+50N$ 325 55910 $1+50N$ 287.5 55910 $1+50N$ 275 56852 $1+50N$ 225 56510 $1+50N$ 225 56710 $1+50N$ 225 56782 $1+50N$ 225 56949 $1+50N$ 125 56855 $1+50N$ 125 55980 $1+50N$ 125 56250 $1+50N$ 125 56443 $1+50N$ 125 56030 $1+50N$ 75 56364 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 25 56213 $1+50N$ 25 56245 </td <td>2+00N</td> <td>25 E</td> <td>55520</td>	2+00N	25 E	55520
1+50N 475 W 56244 $1+50N$ 450 W 56011 $1+50N$ 437.5 W 57286 $1+50N$ 425 W 57126 $1+50N$ 442.5 W 57476 $1+50N$ 400 W 57657 $1+50N$ 387.5 W 57700 $1+50N$ 387.5 W 57550 $1+50N$ 362.5 W 56885 $1+50N$ 362.5 W 56895 $1+50N$ 325 W 55819 $1+50N$ 325 W 55819 $1+50N$ 325 W 55910 $1+50N$ 325 W 55910 $1+50N$ 275 W 55852 $1+50N$ 287.5 W 55910 $1+50N$ 225 W 57110 $1+50N$ 225 W 56857 $1+50N$ 225 W 57110 $1+50N$ 212.5 W 56949 $1+50N$ 200 W 56085 $1+50N$ 125 W 55782 $1+50N$ 125 W 55980 $1+50N$ 125 W 55976 $1+50N$ 125 W 56443 $1+50N$ 125 W 56030 $1+50N$ 75 W 56030 $1+50N$ 25 W 56447 $1+50N$ 25 W 56447 $1+50N$ 25 W 56447 $1+50N$ 25 W 56447 $1+50N$ 25 E 56213 $1+50N$ 25 E 56245 $1+50N$ 25 E 56245 $1+50N$ 25 E 56245 $1+50N$ 25 E	1+50N	500 W	56797
1+50N 475 W 56244 $1+50N$ 450 W 56011 $1+50N$ 437.5 W 57286 $1+50N$ 425 W 57126 $1+50N$ 442.5 W 57476 $1+50N$ 400 W 57657 $1+50N$ 387.5 W 57700 $1+50N$ 387.5 W 57550 $1+50N$ 362.5 W 56885 $1+50N$ 362.5 W 56895 $1+50N$ 325 W 55819 $1+50N$ 325 W 55819 $1+50N$ 325 W 55910 $1+50N$ 325 W 55910 $1+50N$ 275 W 55852 $1+50N$ 287.5 W 55910 $1+50N$ 225 W 57110 $1+50N$ 225 W 56857 $1+50N$ 225 W 57110 $1+50N$ 212.5 W 56949 $1+50N$ 200 W 56085 $1+50N$ 125 W 55782 $1+50N$ 125 W 55980 $1+50N$ 125 W 55976 $1+50N$ 125 W 56443 $1+50N$ 125 W 56030 $1+50N$ 75 W 56030 $1+50N$ 25 W 56447 $1+50N$ 25 W 56447 $1+50N$ 25 W 56447 $1+50N$ 25 W 56447 $1+50N$ 25 E 56213 $1+50N$ 25 E 56245 $1+50N$ 25 E 56245 $1+50N$ 25 E 56245 $1+50N$ 25 E	1+50N	487.5 W	56656
1+50N 462.5 56123 $1+50N$ 450 56011 $1+50N$ 437.5 57286 $1+50N$ 425 57126 $1+50N$ 412.5 57476 $1+50N$ 400 57657 $1+50N$ 387.5 57700 $1+50N$ 387.5 57550 $1+50N$ 362.5 56885 $1+50N$ 362.5 56895 $1+50N$ 325 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 287.5 55910 $1+50N$ 275 56852 $1+50N$ 262.5 56510 $1+50N$ 225 56510 $1+50N$ 225 56949 $1+50N$ 212.5 56949 $1+50N$ 125 56949 $1+50N$ 175 55855 $1+50N$ 125 56250 $1+50N$ 125 56949 $1+50N$ 125 56943 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 25 56245 <			
1+50N 450 56011 $1+50N$ 437.5 57286 $1+50N$ 4425 57126 $1+50N$ 412.5 57476 $1+50N$ 387.5 57700 $1+50N$ 387.5 57550 $1+50N$ 362.5 56885 $1+50N$ 362.5 56885 $1+50N$ 362.5 56895 $1+50N$ 325 55819 $1+50N$ 325 55819 $1+50N$ 325 55819 $1+50N$ 325 55910 $1+50N$ 287.5 55910 $1+50N$ 275 56510 $1+50N$ 225 56510 $1+50N$ 225 56680 $1+50N$ 225 567110 $1+50N$ 225 56710 $1+50N$ 225 56782 $1+50N$ 12.5 56949 $1+50N$ 175 55855 $1+50N$ 175 56250 $1+50N$ 125 56976 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 75 56030 $1+50N$ 75 56030 $1+50N$ 75 560441 $1+50N$ 25 56447 $1+50N$ 25 56245 <td></td> <td></td> <td></td>			
1+50N 437.5 57286 $1+50N$ 425 57126 $1+50N$ 412.5 57476 $1+50N$ 387.5 57700 $1+50N$ 387.5 57700 $1+50N$ 375 57550 $1+50N$ 362.5 56885 $1+50N$ 350 55969 $1+50N$ 325 56895 $1+50N$ 325 56895 $1+50N$ 325 57000 $1+50N$ 325 57000 $1+50N$ 325 55910 $1+50N$ 287.5 55910 $1+50N$ 287.5 56510 $1+50N$ 225 56510 $1+50N$ 225 56680 $1+50N$ 212.5 56949 $1+50N$ 212.5 56949 $1+50N$ 175 55782 $1+50N$ 175 55855 $1+50N$ 125 56277 $1+50N$ 125 56277 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 75 56030 $1+50N$ 75 56030 $1+50N$ 75 56371 $1+50N$ 25 56277 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 25 56245 <			
1+50N 425 57126 $1+50N$ 412.5 57476 $1+50N$ 387.5 57700 $1+50N$ 387.5 57700 $1+50N$ 375 57550 $1+50N$ 362.5 56885 $1+50N$ 350 55969 $1+50N$ 337.5 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 325 55910 $1+50N$ 287.5 55910 $1+50N$ 262.5 56510 $1+50N$ 225 56510 $1+50N$ 225 56680 $1+50N$ 225 57110 $1+50N$ 225 56710 $1+50N$ 225 56710 $1+50N$ 212.5 56949 $1+50N$ 175 55782 $1+50N$ 175 55980 $1+50N$ 125 56277 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 75 56030 $1+50N$ 75 56030 $1+50N$ 25 56441 $1+50N$ 25 56245 $1+50N$ 12.5 56245 $1+50N$ 25 56245 <td></td> <td></td> <td></td>			
1+50N 412.5 57476 $1+50N$ 387.5 57657 $1+50N$ 387.5 57700 $1+50N$ 362.5 56885 $1+50N$ 362.5 56895 $1+50N$ 350 55969 $1+50N$ 325 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 312.5 57000 $1+50N$ 287.5 55910 $1+50N$ 287.5 56510 $1+50N$ 262.5 56510 $1+50N$ 225 56510 $1+50N$ 225 56680 $1+50N$ 225 56949 $1+50N$ 212.5 56949 $1+50N$ 175 55852 $1+50N$ 175 55855 $1+50N$ 175 56250 $1+50N$ 175 56250 $1+50N$ 125 56277 $1+50N$ 125 56030 $1+50N$ 125 56030 $1+50N$ 75 56030 $1+50N$ 75 56030 $1+50N$ 75 56043 $1+50N$ 25 56441 $1+50N$ 25 56245 <td></td> <td></td> <td></td>			
1+50N 400 57657 $1+50N$ 387.5 57700 $1+50N$ 375 57550 $1+50N$ 362.5 56885 $1+50N$ 350 55969 $1+50N$ 325 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 312.5 57000 $1+50N$ 287.5 55910 $1+50N$ 287.5 55852 $1+50N$ 262.5 56510 $1+50N$ 225 56857 $1+50N$ 225 56949 $1+50N$ 225 56949 $1+50N$ 225 55782 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 175 56250 $1+50N$ 125 56949 $1+50N$ 125 56250 $1+50N$ 125 56250 $1+50N$ 125 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 25 56447 $1+50N$ 25 56245			
1+50N 387.5 57700 $1+50N$ 362.5 56885 $1+50N$ 362.5 56885 $1+50N$ 350 55969 $1+50N$ 337.5 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 312.5 57000 $1+50N$ 287.5 55910 $1+50N$ 287.5 55910 $1+50N$ 287.5 56510 $1+50N$ 225 56510 $1+50N$ 237.5 56680 $1+50N$ 225 57110 $1+50N$ 225 57110 $1+50N$ 225 56742 $1+50N$ 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 125 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 25 56245			
1+50N 375 W 57550 $1+50N$ 362.5 W 56885 $1+50N$ 350 W 55969 $1+50N$ 337.5 W 56895 $1+50N$ 325 W 55819 $1+50N$ 312.5 W 57000 $1+50N$ 300 W 55717 $1+50N$ 287.5 W 55910 $1+50N$ 287.5 W 55910 $1+50N$ 262.5 W 56510 $1+50N$ 225 W 56510 $1+50N$ 225 W 57110 $1+50N$ 225 W 57110 $1+50N$ 212.5 W 56949 $1+50N$ 200 W 56085 $1+50N$ 175 W 55855 $1+50N$ 175 W 55855 $1+50N$ 162.5 W 55980 $1+50N$ 125 W 55976 $1+50N$ 125 W 56443 $1+50N$ 125 W 56063 $1+50N$ 75 W 56030 $1+50N$ 75 W 56030 $1+50N$ 25 W 56441 $1+50N$ 25 W 56441 $1+50N$ 25 W 56441 $1+50N$ 12.5 W 56364 $1+50N$ 12.5 W 56447 $1+50N$ 12.5 E 56213 $1+50N$ 25 E 56245 $1+50N$ 25 E <td></td> <td></td> <td></td>			
1+50N 362.5 W 56885 $1+50N$ 350 W 55969 $1+50N$ 337.5 W 56895 $1+50N$ 325 W 55819 $1+50N$ 312.5 W 57000 $1+50N$ 312.5 W 57000 $1+50N$ 287.5 W 55910 $1+50N$ 287.5 W 55852 $1+50N$ 262.5 W 56510 $1+50N$ 225 W 56510 $1+50N$ 225 W 56680 $1+50N$ 225 W 57110 $1+50N$ 225 W 57110 $1+50N$ 225 W 56855 $1+50N$ 200 W 56085 $1+50N$ 175 W 55855 $1+50N$ 175 W 55980 $1+50N$ 125 W 56277 $1+50N$ 125 W 56943 $1+50N$ 125 W 56443 $1+50N$ 125 W 56063 $1+50N$ 75 W 56030 $1+50N$ 75 W 56030 $1+50N$ 25 W 56441 $1+50N$ 25 W 56441 $1+50N$ 25 W 56447 $1+50N$ 12.5 W 56364 $1+50N$ 12.5 W 56250 $1+50N$ 12.5 E 56245 $1+50N$ 25 E 56245 $1+50N$ 25 E 56245 $1+50N$ 25 E 56245 $1+50N$ 37.5 E 56245 $1+50N$ 37.5 E 56245 $1+50N$ 37.5 E 56245 $1+50N$ 37.5		387.5 W	
1+50N 350 55969 $1+50N$ 337.5 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 300 55717 $1+50N$ 287.5 55910 $1+50N$ 275 55852 $1+50N$ 262.5 56510 $1+50N$ 250 56857 $1+50N$ 225 56857 $1+50N$ 225 57110 $1+50N$ 225 57110 $1+50N$ 212.5 56949 $1+50N$ 200 56855 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 162.5 55980 $1+50N$ 125 56250 $1+50N$ 125 56443 $1+50N$ 125 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 75 560447 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 25 56250 $1+50N$ 25 56250 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 50 56213 $1+50N$ 50 56213 $1+50N$ 50 56213 <t< td=""><td>1+50N</td><td>375 W</td><td>57550</td></t<>	1+50N	375 W	57550
1+50N 337.5 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 300 55717 $1+50N$ 287.5 55910 $1+50N$ 275 55852 $1+50N$ 262.5 56510 $1+50N$ 225 56857 $1+50N$ 237.5 56880 $1+50N$ 225 57110 $1+50N$ 225 56949 $1+50N$ 212.5 56949 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 175 56250 $1+50N$ 125 56250 $1+50N$ 125 56943 $1+50N$ 125 56250 $1+50N$ 125 56443 $1+50N$ 125 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 12.5 56250 $1+50N$ 12.5 56250 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56245	1+50N	362.5 W	56885
1+50N 337.5 56895 $1+50N$ 325 55819 $1+50N$ 312.5 57000 $1+50N$ 300 55717 $1+50N$ 287.5 55910 $1+50N$ 275 55852 $1+50N$ 262.5 56510 $1+50N$ 225 56857 $1+50N$ 237.5 56880 $1+50N$ 225 57110 $1+50N$ 225 56949 $1+50N$ 212.5 56949 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 175 56250 $1+50N$ 125 56250 $1+50N$ 125 56943 $1+50N$ 125 56250 $1+50N$ 125 56443 $1+50N$ 125 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 12.5 56250 $1+50N$ 12.5 56250 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56245	1+50N	350 W	55969
1+50N 325 W 55819 $1+50N$ 312.5 W 57000 $1+50N$ 287.5 W 55910 $1+50N$ 287.5 W 55852 $1+50N$ 262.5 W 56857 $1+50N$ 250 W 56857 $1+50N$ 237.5 W 56680 $1+50N$ 225 W 57110 $1+50N$ 225 W 57110 $1+50N$ 225 W 57110 $1+50N$ 225 W 57110 $1+50N$ 200 W 56085 $1+50N$ 187.5 W 55782 $1+50N$ 175 W 55855 $1+50N$ 162.5 W 55980 $1+50N$ 125 W 55976 $1+50N$ 125 W 55976 $1+50N$ 125 W 56443 $1+50N$ 125 W 56030 $1+50N$ 75 W 56030 $1+50N$ 75 W 56030 $1+50N$ 25 W 56447 $1+50N$ 25 W 56447 $1+50N$ 12.5 W 56364 $1+50N$ 12.5 W 56364 $1+50N$ 25 E 56213 $1+50N$ 25 E 56245 $1+50N$ 25 E 56245 $1+50N$ 37.5 E 56213 $1+50N$ 37.5 E 56213 $1+50N$ 37.5 E 56245			
1+50N 312.5 W 57000 $1+50N$ 300 W 55717 $1+50N$ 287.5 W 55910 $1+50N$ 275 W 55852 $1+50N$ 262.5 W 56510 $1+50N$ 250 W 56857 $1+50N$ 237.5 W 56680 $1+50N$ 225 W 57110 $1+50N$ 212.5 W 56949 $1+50N$ 212.5 W 56949 $1+50N$ 200 W 56085 $1+50N$ 187.5 W 55782 $1+50N$ 175 W 55855 $1+50N$ 162.5 W 55980 $1+50N$ 125 W 56277 $1+50N$ 125 W 56277 $1+50N$ 125 W 56443 $1+50N$ 125 W 56063 $1+50N$ 75 W 56030 $1+50N$ 75 W 56030 $1+50N$ 25 W 56441 $1+50N$ 25 W 56441 $1+50N$ 12.5 W 56364 $1+50N$ 12.5 W 56364 $1+50N$ 12.5 E 56213 $1+50N$ 37.5 E 56245 $1+50N$ 37.5 E 56245 $1+50N$ 37.5 E 56245 $1+50N$ 37.5 E 56245 $1+50N$ 37.5 E 56213 $1+50N$ 50 E 56085			
1+50N 300 55717 $1+50N$ 287.5 55910 $1+50N$ 275 55852 $1+50N$ 262.5 56510 $1+50N$ 250 56857 $1+50N$ 237.5 56680 $1+50N$ 225 57110 $1+50N$ 212.5 56949 $1+50N$ 200 56085 $1+50N$ 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55980 $1+50N$ 150 56250 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 125 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 75 560441 $1+50N$ 25 56441 $1+50N$ 25 56441 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56213 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 37.5 56245 $1+50N$ 37.5 56213 $1+50N$ 37.5 56213 $1+50N$ 37.5 56245			
1+50N 287.5 55910 $1+50N$ 275 55852 $1+50N$ 262.5 56510 $1+50N$ 250 56857 $1+50N$ 237.5 56680 $1+50N$ 225 57110 $1+50N$ 212.5 56949 $1+50N$ 212.5 56949 $1+50N$ 200 56085 $1+50N$ 125 55782 $1+50N$ 175 55782 $1+50N$ 175 55250 $1+50N$ 150 56250 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 125 56063 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 62.5 56615 $1+50N$ 25 56441 $1+50N$ 25 56447 $1+50N$ 25 56371 $1+50N$ 12.5 56175 $1+50N$ 12.5 56213 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 37.5 56213 $1+50N$ 37.5 56213 $1+50N$ 37.5 56213 $1+50N$ 50 56213 $1+50N$ 50 56213			
1+50N 275 W 55852 $1+50N$ 262.5 W 56510 $1+50N$ 237.5 W 56680 $1+50N$ 225 W 57110 $1+50N$ 225 W 57110 $1+50N$ 212.5 W 56949 $1+50N$ 200 W 56085 $1+50N$ 187.5 W 55782 $1+50N$ 187.5 W 55782 $1+50N$ 175 W 55855 $1+50N$ 162.5 W 55980 $1+50N$ 150 W 56250 $1+50N$ 125 W 55976 $1+50N$ 125 W 55976 $1+50N$ 125 W 56443 $1+50N$ 75 W 56030 $1+50N$ 75 W 56030 $1+50N$ 50 W 56371 $1+50N$ 25 W 56447 $1+50N$ 12.5 W 56364 $1+50N$ 12.5 W 56364 $1+50N$ 12.5 E 56175 $1+50N$ 25 E 56245 $1+50N$ 37.5 E 56213 $1+50N$ 37.5 E 56213 $1+50N$ 50 E 56085			
1+50N 262.5 56510 $1+50N$ 250 56857 $1+50N$ 237.5 56680 $1+50N$ 225 57110 $1+50N$ 212.5 56949 $1+50N$ 212.5 56949 $1+50N$ 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 162.5 55980 $1+50N$ 150 56250 $1+50N$ 125 56277 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 100 56335 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56213 $1+50N$ 25 56245 $1+50N$ 25 56213 $1+50N$ 37.5 56213 $1+50N$ 50 56213 $1+50N$ 50 56213 $1+50N$ 50 56213			
1+50N 250 56857 $1+50N$ 237.5 56680 $1+50N$ 225 57110 $1+50N$ 212.5 56949 $1+50N$ 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 162.5 55980 $1+50N$ 162.5 55980 $1+50N$ 150 56277 $1+50N$ 125 55976 $1+50N$ 112.5 56443 $1+50N$ 100 56335 $1+50N$ 75 56063 $1+50N$ 75 56030 $1+50N$ 50 56371 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56364 $1+50N$ 12.5 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 37.5 56213 $1+50N$ 37.5 56213 $1+50N$ 50 56213			
1+50N 237.5 56680 $1+50N$ 225 57110 $1+50N$ 212.5 56949 $1+50N$ 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55782 $1+50N$ 175 55980 $1+50N$ 162.5 55980 $1+50N$ 150 56250 $1+50N$ 150 56277 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 100 56335 $1+50N$ 75 56063 $1+50N$ 75 56030 $1+50N$ 50 56441 $1+50N$ 25 56441 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56364 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 50 56213 $1+50N$ 50 56213 $1+50N$ 50 56085			
1+50N 225 57110 $1+50N$ 212.5 56949 $1+50N$ 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55782 $1+50N$ 175 55980 $1+50N$ 162.5 55980 $1+50N$ 150 56250 $1+50N$ 137.5 56277 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 100 56335 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 62.5 56615 $1+50N$ 50 56371 $1+50N$ 25 56441 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56175 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 50 56213 $1+50N$ 50 56213 $1+50N$ 50 56085			
1+50N 212.5 56949 $1+50N$ 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 162.5 55980 $1+50N$ 150 56250 $1+50N$ 150 56277 $1+50N$ 125 55976 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 100 56335 $1+50N$ 75 56063 $1+50N$ 62.5 56615 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56375 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56243 $1+50N$ 37.5 56213 $1+50N$ 50 56213 $1+50N$ 50 56085			
1+50N 200 56085 $1+50N$ 187.5 55782 $1+50N$ 175 55855 $1+50N$ 162.5 55980 $1+50N$ 150 56250 $1+50N$ 150 56277 $1+50N$ 125 55976 $1+50N$ 125 55976 $1+50N$ 112.5 56443 $1+50N$ 100 56335 $1+50N$ 75 56063 $1+50N$ 75 56063 $1+50N$ 62.5 56615 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56250 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 50 50213 $1+50N$ 50 5085			57110
1+50N 187.5 55782 $1+50N$ 175 55855 $1+50N$ 162.5 55980 $1+50N$ 150 56250 $1+50N$ 150 56277 $1+50N$ 125 55976 $1+50N$ 125 55976 $1+50N$ 125 56443 $1+50N$ 100 56335 $1+50N$ 100 56335 $1+50N$ 75 56063 $1+50N$ 62.5 56615 $1+50N$ 50 56371 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56175 $1+50N$ 25 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 37.5 56213 $1+50N$ 50 56213 $1+50N$ 50 56085	1+50N	212.5 W	56949
1+50N 175 W 55855 1+50N 162.5 W 55980 1+50N 150 W 56250 1+50N 137.5 W 56277 1+50N 125 W 55976 1+50N 125 W 56443 1+50N 100 W 56335 1+50N 87.5 W 56063 1+50N 75 W 56030 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 25 W 564441 1+50N 25 W 564447 1+50N 12.5 W 56364 1+50N 12.5 W 56364 1+50N 12.5 E 56175 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 37.5 E 56213 1+50N 50 E 56085	1+50N	200 W	56085
1+50N 175 W 55855 1+50N 162.5 W 55980 1+50N 150 W 56250 1+50N 137.5 W 56277 1+50N 125 W 55976 1+50N 125 W 56443 1+50N 100 W 56335 1+50N 87.5 W 56063 1+50N 75 W 56030 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 50 W 56371 1+50N 25 W 564441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 12.5 W 56364 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 37.5 E 56213 1+50N 50 E 56085	1+50N	187.5 W	55782
1+50N 162.5 W 55980 1+50N 150 W 56250 1+50N 137.5 W 56277 1+50N 125 W 55976 1+50N 125 W 55976 1+50N 125 W 56443 1+50N 100 W 56335 1+50N 75 W 56063 1+50N 62.5 W 56615 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 50 W 56371 1+50N 25 W 56441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 12.5 W 56364 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 37.5 E 56213 1+50N 50 E 56085			
1+50N 150 56250 $1+50N$ 137.5 56277 $1+50N$ 125 55976 $1+50N$ 112.5 56443 $1+50N$ 100 56335 $1+50N$ 87.5 56063 $1+50N$ 75 56030 $1+50N$ 62.5 56615 $1+50N$ 50 56371 $1+50N$ 50 56371 $1+50N$ 25 56447 $1+50N$ 12.5 56364 $1+50N$ 12.5 56250 $1+50N$ 12.5 56245 $1+50N$ 25 56245 $1+50N$ 37.5 56213 $1+50N$ 50 5085			
$\begin{array}{c ccccc} 1+50N & 137.5 & W & 56277 \\ \hline 1+50N & 125 & W & 55976 \\ \hline 1+50N & 112.5 & W & 56443 \\ \hline 1+50N & 100 & W & 56335 \\ \hline 1+50N & 87.5 & W & 56063 \\ \hline 1+50N & 62.5 & W & 56615 \\ \hline 1+50N & 62.5 & W & 56615 \\ \hline 1+50N & 50 & W & 56371 \\ \hline 1+50N & 50 & W & 56371 \\ \hline 1+50N & 25 & W & 56447 \\ \hline 1+50N & 12.5 & W & 56364 \\ \hline 1+50N & 12.5 & W & 56364 \\ \hline 1+50N & 12.5 & E & 56175 \\ \hline 1+50N & 12.5 & E & 56245 \\ \hline 1+50N & 37.5 & E & 56213 \\ \hline 1+50N & 37.5 & E & 56213 \\ \hline 1+50N & 50 & E & 56085 \\ \hline \end{array}$			
1+50N 125 W 55976 1+50N 112.5 W 56443 1+50N 100 W 56335 1+50N 87.5 W 56063 1+50N 75 W 56030 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 37.5 W 56441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 12.5 W 56364 1+50N 12.5 E 56175 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 37.5 E 56213 1+50N 50 E 56085			
1+50N 112.5 W 56443 1+50N 100 W 56335 1+50N 87.5 W 56063 1+50N 75 W 56030 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 50 W 56441 1+50N 25 W 56441 1+50N 12.5 W 56364 1+50N 12.5 W 56364 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56245 1+50N 37.5 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085			
1+50N 100 W 56335 1+50N 87.5 W 56063 1+50N 75 W 56030 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 50 W 56371 1+50N 37.5 W 56441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 37.5 E 56213 1+50N 50 E 56085	_		
1+50N 87.5 W 56063 1+50N 75 W 56030 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 37.5 W 56441 1+50N 25 W 56364 1+50N 12.5 W 56364 1+50N 12.5 W 56364 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085	_		
1+50N 75 W 56030 1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 37.5 W 56441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 12.5 W 56364 1+50N 12.5 E 56175 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085			
1+50N 62.5 W 56615 1+50N 50 W 56371 1+50N 37.5 W 56441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 37.5 E 56213 1+50N 50 E 56085			
1+50N 50 W 56371 1+50N 37.5 W 56441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 25 E 56245 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085	-		
1+50N 37.5 W 56441 1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 25 E 56243 1+50N 37.5 E 56213 1+50N 50 E 56085	1+50N		
1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085	1+50N	50 W	56371
1+50N 25 W 56447 1+50N 12.5 W 56364 1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085	1+50N	37.5 W	56441
1+50N 12.5 W 56364 1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085		25 W	56447
1+50N 0 56050 1+50N 12.5 E 56175 1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085			
1+50N12.5 E561751+50N25 E562451+50N37.5 E562131+50N50 E56085			
1+50N 25 E 56245 1+50N 37.5 E 56213 1+50N 50 E 56085			
1+50N37.5 E562131+50N50 E56085			
1+50N 50 E 56085	-		
	-		
1+00N 500 W 57500			
	1+00N	500 W	57500

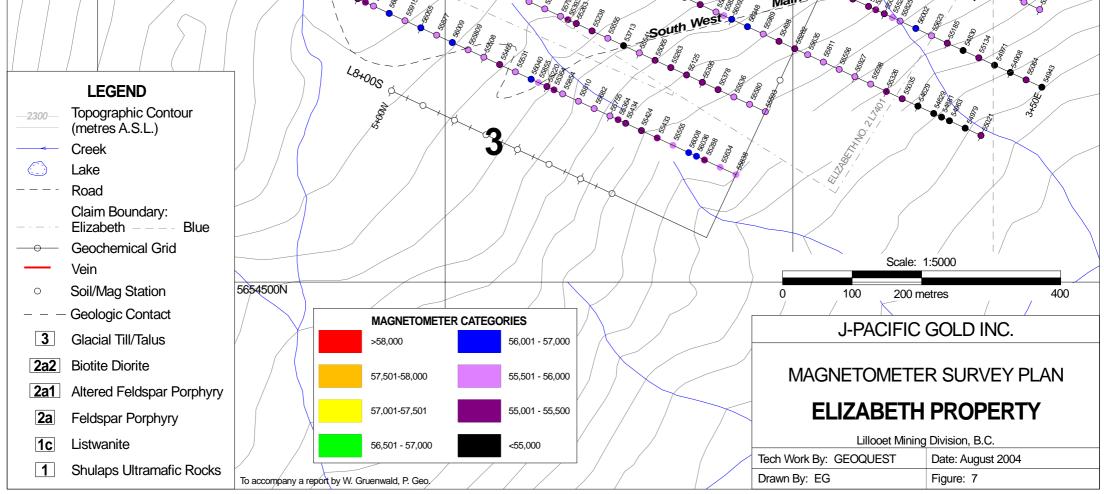
No	o	Grid
NO.	Э	Gria

·	No. 9 Gri	
Line	Station	Mag
1+00N	487.5 W	58677
1+00N	475 W	58116
1+00N	462.5 W	57788
1+00N	450 W	57363
1+00N		
	437.5 W	56833
1+00N	425 W	56510
1+00N	412.5 W	56851
1+00N	400 W	56882
1+00N	387.5 W	56308
1+00N	375 W	56076
1+00N	362.5 W	56568
1+00N	350 W	56497
1+00N	337.5 W	55780
1+00N	325 W	56564
1+00N	312.5 W	56545
1+00N	300 W	56354
1+00N	287.5 W	
		56418
1+00N	275 W	56678
1+00N	262.5 W	56784
1+00N	250 W	57123
1+00N	237.5 W	56751
1+00N	225 W	56858
1+00N	212.5 W	57044
1+00N	200 W	56000
1+00N	187.5 W	55547
1+00N	175 W	55816
1+00N	162.5 W	55894
1+00N	150 W	56200
1+00N	137.5 W	56192
1+00N		
	125 W	56441
1+00N	112.5 W	56464
1+00N	100 W	57348
1+00N	87.5 W	57513
1+00N	75 W	57311
1+00N	62.5 W	56929
1+00N	50 W	56843
1+00N	37.5 W	57083
1+00N	25 W	56835
1+00N	12.5 W	57049
1+00N	0	56777
1+00N	12.5 E	56163
1+00N	25 E	55520
0+50N	500 W	57281
0+50N	487.5 W	58344
0+50N	475 W	57644
0+50N	462.5 W	57040
0+50N	450 W	56547
0+50N	437.5 W	56891
0+50N	425 W	57185
0+50N	412.5 W	56692
0+50N	400 W	56853
0+50N	387.5 W	56617
0+50N	375 W	56269
0+50N	362.5 W	56123
0+50N 0+50N		
	350 W	55465
0+50N	337.5 W	55630

No. 9	9 Grid

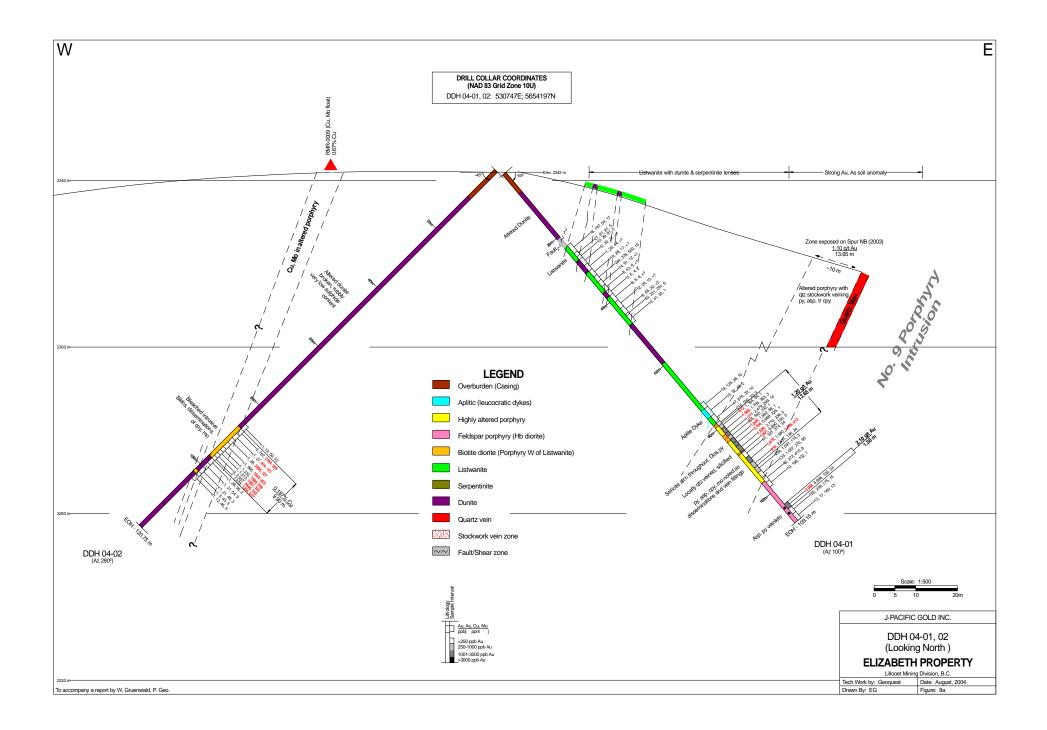
LineStationMag0+50N325 W561600+50N312.5 W557380+50N287.5 W563170+50N275 W565390+50N262.5 W558780+50N250 W562620+50N225 W560470+50N225 W560470+50N212.5 W560400+50N200 W571300+50N187.5 W560400+50N175 W565370+50N175 W565400+50N175 W565410+50N137.5 W560270+50N137.5 W5603410+50N125 W5659180+50N125 W566220+50N100 W563710+50N125 W5663370+50N75 W566770+50N75 W566770+50N75 W563370+50N25 W563880+50N12.5 W563680+50N25 E564000+50N25 E564240+50N25 E564490+50N75 E564490+50N75 E556450+00425 W563980+50N75 E556450+00425 W563980+00325 W565490+00325 W565490+00325 W565490+00325 W565490+00325 W565490+00325 W56530 <th></th> <th>No. 9 Gri</th> <th></th>		No. 9 Gri	
0+50N 312.5 W 55738 0+50N 287.5 W 56317 0+50N 262.5 W 56539 0+50N 262.5 W 56622 0+50N 237.5 W 56048 0+50N 225 W 56047 0+50N 225 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 187.5 W 56040 0+50N 187.5 W 56027 0+50N 162.5 W 56340 0+50N 125 W 56341 0+50N 125 W 56620 0+50N 125 W 56371 0+50N 75 W 56622 0+50N 75 W 56371 0+50N 75 W 56328 0+50N 75 W 563642 0+50N	Line	Station	Mag
0+50N 300 W 56445 0+50N 287.5 W 56317 0+50N 275 W 56539 0+50N 250 W 56262 0+50N 237.5 W 56048 0+50N 225 W 56047 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 187.5 W 56027 0+50N 187.5 W 56034 0+50N 162.5 W 56034 0+50N 137.5 W 56634 0+50N 125 W 55918 0+50N 112.5 W 56620 0+50N 100 W 56371 0+50N 75 W 56677 0+50N 75 W 566107 0+50N 75 W 56337 0+50N 75 W 56321 0+50N 25 E 56441 0+50N 25 E 56421 0+50N 25 E 56421 <t< td=""><td>0+50N</td><td>325 W</td><td>56160</td></t<>	0+50N	325 W	56160
0+50N 300 W 56445 0+50N 287.5 W 56317 0+50N 275 W 56539 0+50N 250 W 56262 0+50N 237.5 W 56048 0+50N 225 W 56047 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 187.5 W 56027 0+50N 187.5 W 56034 0+50N 162.5 W 56034 0+50N 137.5 W 56634 0+50N 125 W 55918 0+50N 112.5 W 56620 0+50N 100 W 56371 0+50N 75 W 56677 0+50N 75 W 566107 0+50N 75 W 56337 0+50N 75 W 56321 0+50N 25 E 56441 0+50N 25 E 56421 0+50N 25 E 56421 <t< td=""><td>0+50N</td><td>312.5 W</td><td>55738</td></t<>	0+50N	312.5 W	55738
0+50N 287.5 56317 0+50N 275 W 56539 0+50N 262.5 W 55878 0+50N 237.5 W 56048 0+50N 225 W 56047 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 187.5 W 56027 0+50N 162.5 W 56037 0+50N 125 W 56622 0+50N 112.5 W 56622 0+50N 100 W 56337 0+50N 75 W 56622 0+50N 75 W 566321 0+50N 75 W 566321 0+50N 75 W 56337 0+50N 25 S 56438 0+50N 25			
0+50N 275 W 56539 0+50N 262.5 W 55878 0+50N 250 W 56048 0+50N 225 W 56047 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 175 W 55877 0+50N 175 W 56027 0+50N 162.5 W 56034 0+50N 125 W 55918 0+50N 125 W 56260 0+50N 100 W 56371 0+50N 125 W 566337 0+50N 75 W 56677 0+50N 75 W 56107 0+50N 25 W 56338 0+50N 25 W 56328 0+50N 25 E 56494 0+50N 25 E 56494 0+50N 25 E 56420 0+50N 75 E 55843			
0+50N 262.5 W 55878 0+50N 250 W 56048 0+50N 225 W 56047 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 187.5 W 56040 0+50N 187.5 W 56027 0+50N 162.5 W 56027 0+50N 150 W 5654 0+50N 125 W 55918 0+50N 125 W 56260 0+50N 100 W 56371 0+50N 100 W 56371 0+50N 75 W 56622 0+50N 75 W 56337 0+50N 25 W 56337 0+50N 25 W 56321 0+50N 25 W 56238 0+50N 25 E 56494 0+50N 25 E 56440 0+50N 25 E 55645 0+50N 75 E 556455	-		
0+50N 250 W 56262 0+50N 237.5 W 56048 0+50N 212.5 W 56040 0+50N 212.5 W 56040 0+50N 200 W 57130 0+50N 187.5 W 56040 0+50N 187.5 W 56027 0+50N 162.5 W 56027 0+50N 150 W 56554 0+50N 137.5 W 56034 0+50N 125 W 55918 0+50N 125 W 56260 0+50N 100 W 56371 0+50N 100 W 56371 0+50N 75 W 56622 0+50N 75 W 56677 0+50N 25 W 56337 0+50N 25 W 56328 0+50N 25 W 56328 0+50N 25 E 56494 0+50N 25 E 56494 0+50N 37.5 E 56200 0+50N 50 E 55898			
0+50N 237.5 W 56048 0+50N 212.5 W 56047 0+50N 212.5 W 56040 0+50N 200 W 57130 0+50N 187.5 W 56040 0+50N 175 W 55877 0+50N 162.5 W 56027 0+50N 150 W 56554 0+50N 125 W 55918 0+50N 125 W 56260 0+50N 125 W 56260 0+50N 100 W 56371 0+50N 100 W 56371 0+50N 75 W 56677 0+50N 75 W 56337 0+50N 25 W 56337 0+50N 25 W 56328 0+50N 25 W 56421 0+50N 25 E 56494 0+50N 25 E 56440 0+50N 25 E 55645 0+00 500 W 57127 0+00 500 W 57127 <td< td=""><td>-</td><td></td><td></td></td<>	-		
0+50N 225 % 56047 0+50N 212.5 % 56040 0+50N 187.5 % 56040 0+50N 187.5 % 56040 0+50N 175 % 55877 0+50N 162.5 % 56027 0+50N 150 % 56554 0+50N 125 % 56034 0+50N 125 % 56260 0+50N 125 % 56371 0+50N 100 % 56371 0+50N 75 % 56677 0+50N 75 % 56337 0+50N 25 % 56337 0+50N 25 % 56328 0+50N 12.5 % 56368 0+50N 25 \$ 56428 0+50N 25 \$ 564540 0+50N 75 \$ 566200 0+50N 7			
0+50N 212.5 % 56040 0+50N 187.5 % 56040 0+50N 175 % 55877 0+50N 162.5 % 56027 0+50N 150 % 56554 0+50N 137.5 % 56034 0+50N 125 % 55918 0+50N 125 % 56260 0+50N 112.5 % 56260 0+50N 100 % 56371 0+50N 100 % 56371 0+50N 75 % 56677 0+50N 62.5 % 56337 0+50N 25 % 56328 0+50N 12.5 % 56421 0+50N 12.5 % 56421 0+50N 25 \$ 56438 0+50N 50 \$ 55898 0+50N 75 \$ 56449 0+50N <			
0+50N 200 W 57130 0+50N 187.5 W 56040 0+50N 175 W 55877 0+50N 162.5 W 56027 0+50N 150 W 56554 0+50N 137.5 W 56034 0+50N 125 W 55918 0+50N 125 W 56260 0+50N 100 W 56371 0+50N 100 W 56371 0+50N 75 W 56622 0+50N 75 W 56337 0+50N 62.5 W 56337 0+50N 25 W 56238 0+50N 25 W 56238 0+50N 25 E 56400 0+50N 25 E 56494 0+50N 25 E 56420 0+50N 75 E 55863 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56449 0+			
0+50N187.5 W56040 $0+50N$ 162.5 W56027 $0+50N$ 150 W56554 $0+50N$ 137.5 W56034 $0+50N$ 125 W55918 $0+50N$ 125 W55918 $0+50N$ 125 W56260 $0+50N$ 100 W56371 $0+50N$ 75 W56622 $0+50N$ 75 W56677 $0+50N$ 62.5 W56337 $0+50N$ 50 W56321 $0+50N$ 50 W56321 $0+50N$ 25 W56368 $0+50N$ 25 W56368 $0+50N$ 25 W56368 $0+50N$ 25 E56494 $0+50N$ 25 E56494 $0+50N$ 25 E56494 $0+50N$ 25 E56494 $0+50N$ 50 E55898 $0+50N$ 75 E55645 $0+00$ 500 W57127 $0+00$ 475 W56902 $0+00$ 475 W56984 $0+00$ 475 W56984 $0+00$ 475 W56398 $0+00$ 375 W56534 $0+00$ 375 W56534 $0+00$ 375 W56843 $0+00$ 325 W55982 $0+00$ 325 W55982 $0+00$ 325 W556459 $0+00$ 325 W55630 $0+00$ 325 W55630 $0+00$ 325 W56530 $0+00$ 262.5 W56612 $0+00$ 262.5 W566377 $0+00$ 2650 W5	0+50N		56040
0+50N 175 55877 $0+50N$ 162.5 56027 $0+50N$ 137.5 56034 $0+50N$ 125 55918 $0+50N$ 125 55918 $0+50N$ 112.5 56260 $0+50N$ 100 56371 $0+50N$ 100 56371 $0+50N$ 75 56622 $0+50N$ 75 56677 $0+50N$ 62.5 56337 $0+50N$ 50 56321 $0+50N$ 25 56368 $0+50N$ 25 56494 $0+50N$ 25 56494 $0+50N$ 25 56540 $0+50N$ 25 56540 $0+50N$ 25 55898 $0+50N$ 50 57127 $0+00$ 500 57127 $0+00$ 475 56902 $0+00$ 475 56992 $0+00$ 475 56344 $0+00$ 425 56398 $0+00$ 425 56398 $0+00$ 425 56398 $0+00$ 37.5 56534 $0+00$ 37.5 56534 $0+00$ 325 56534 $0+00$ 325 56543 $0+00$ 325 56543 $0+00$ 325 56543 $0+00$ 325 56530 $0+00$ 325 56530 $0+00$ 275 56530 $0+00$ 275 56530 $0+00$ 275 56530 $0+00$ <t< td=""><td>0+50N</td><td>200 W</td><td>57130</td></t<>	0+50N	200 W	57130
0+50N 175 55877 $0+50N$ 162.5 56027 $0+50N$ 137.5 56034 $0+50N$ 125 55918 $0+50N$ 125 55918 $0+50N$ 112.5 56260 $0+50N$ 100 56371 $0+50N$ 100 56371 $0+50N$ 75 56622 $0+50N$ 75 56677 $0+50N$ 62.5 56337 $0+50N$ 50 56321 $0+50N$ 25 56368 $0+50N$ 25 56494 $0+50N$ 25 56494 $0+50N$ 25 56540 $0+50N$ 25 56540 $0+50N$ 25 55898 $0+50N$ 50 57127 $0+00$ 500 57127 $0+00$ 475 56902 $0+00$ 475 56992 $0+00$ 475 56344 $0+00$ 425 56398 $0+00$ 425 56398 $0+00$ 425 56398 $0+00$ 37.5 56534 $0+00$ 37.5 56534 $0+00$ 325 56534 $0+00$ 325 56543 $0+00$ 325 56543 $0+00$ 325 56543 $0+00$ 325 56530 $0+00$ 325 56530 $0+00$ 275 56530 $0+00$ 275 56530 $0+00$ 275 56530 $0+00$ <t< td=""><td>0+50N</td><td>187.5 W</td><td>56040</td></t<>	0+50N	187.5 W	56040
0+50N162.5 W56027 $0+50N$ 137.5 W56034 $0+50N$ 125 W55918 $0+50N$ 112.5 W56260 $0+50N$ 100 W56371 $0+50N$ 100 W56371 $0+50N$ 75 W56622 $0+50N$ 75 W56677 $0+50N$ 62.5 W56337 $0+50N$ 50 W56321 $0+50N$ 50 W56321 $0+50N$ 25 W56388 $0+50N$ 25 W56368 $0+50N$ 25 W56368 $0+50N$ 25 E56494 $0+50N$ 25 E56494 $0+50N$ 25 E56540 $0+50N$ 25 E56540 $0+50N$ 50 E55863 $0+50N$ 50 E55863 $0+50N$ 75 E55645 $0+00$ 500 W57127 $0+00$ 475 W56902 $0+00$ 475 W56902 $0+00$ 475 W56344 $0+00$ 475 W56344 $0+00$ 475 W56512 $0+00$ 475 W56534 $0+00$ 375 W56534 $0+00$ 375 W56534 $0+00$ 325 W55982 $0+00$ 325 W55843 $0+00$ 325 W556771 $0+00$ 262.5 W56612 $0+00$ 262.5 W56530 $0+00$ 262.5 W56530 $0+00$ 262.5 W56637 $0+00$ 262.5 W56530 $0+00$ 262.5 W<			
0+50N150 W56554 $0+50N$ 137.5 W56034 $0+50N$ 125 W55918 $0+50N$ 112.5 W56260 $0+50N$ 100 W56371 $0+50N$ 87.5 W56622 $0+50N$ 75 W56677 $0+50N$ 62.5 W56337 $0+50N$ 50 W56321 $0+50N$ 50 W56321 $0+50N$ 25 W56238 $0+50N$ 25 W56368 $0+50N$ 25 W56368 $0+50N$ 25 E56494 $0+50N$ 25 E56494 $0+50N$ 25 E56494 $0+50N$ 25 E56540 $0+50N$ 50 E55898 $0+50N$ 50 E55898 $0+50N$ 75 E55645 $0+00$ 500 W57127 $0+00$ 487.5 W56902 $0+00$ 475 W56984 $0+00$ 425 W56398 $0+00$ 425 W56398 $0+00$ 425 W56398 $0+00$ 375 W56449 $0+00$ 375 W56449 $0+00$ 375 W56534 $0+00$ 325 W56534 $0+00$ 325 W56549 $0+00$ 325 W56549 $0+00$ 325 W56530 $0+00$ 262.5 W56612 $0+00$ 262.5 W56637 $0+00$ 262.5 W56637 $0+00$ 250 W56937 $0+00$ 250 W56937 $0+00$ 237.5 W5			
0+50N 137.5 W 56034 0+50N 125 W 55918 0+50N 112.5 W 56260 0+50N 100 W 56371 0+50N 87.5 W 56622 0+50N 75 W 56677 0+50N 62.5 W 56337 0+50N 50 W 56321 0+50N 37.5 W 56107 0+50N 25 W 56388 0+50N 25 W 56368 0+50N 12.5 W 56368 0+50N 25 E 56494 0+50N 25 E 56494 0+50N 25 E 56400 0+50N 37.5 E 56200 0+50N 50 E 55898 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 462.5 W 56334 <t< td=""><td></td><td></td><td></td></t<>			
0+50N 125 W 55918 0+50N 112.5 W 56260 0+50N 100 W 56371 0+50N 87.5 W 56622 0+50N 75 W 56677 0+50N 62.5 W 56337 0+50N 62.5 W 56321 0+50N 37.5 W 56107 0+50N 25 W 56388 0+50N 25 W 56368 0+50N 12.5 W 56368 0+50N 25 E 56494 0+50N 25 E 56494 0+50N 37.5 E 56200 0+50N 50 E 55898 0+50N 50 E 55898 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 475 W 56449 0+00 425 W 56398 0			
0+50N 112.5 % 56260 0+50N 100 W 56371 0+50N 87.5 W 56622 0+50N 75 W 56677 0+50N 62.5 W 56337 0+50N 50 W 56321 0+50N 25 W 56238 0+50N 25 W 56368 0+50N 12.5 W 56368 0+50N 12.5 E 56494 0+50N 25 E 56540 0+50N 37.5 E 56200 0+50N 37.5 E 56540 0+50N 50 E 55898 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56944 0+00 475 W 56398 0+00 425 <td></td> <td></td> <td></td>			
0+50N100 W56371 $0+50N$ 87.5 W56622 $0+50N$ 75 W56677 $0+50N$ 62.5 W56337 $0+50N$ 50 W56321 $0+50N$ 25 W56238 $0+50N$ 25 W56368 $0+50N$ 12.5 W56368 $0+50N$ 25 E56494 $0+50N$ 25 E56494 $0+50N$ 25 E56540 $0+50N$ 37.5 E56200 $0+50N$ 50 E55898 $0+50N$ 50 E55863 $0+50N$ 75 E55645 $0+00$ 500 W57127 $0+00$ 487.5 W56902 $0+00$ 475 W56984 $0+00$ 425 W56398 $0+00$ 425 W56398 $0+00$ 425 W56398 $0+00$ 425 W56398 $0+00$ 375 W56449 $0+00$ 375 W56534 $0+00$ 362.5 W56209 $0+00$ 325 W56534 $0+00$ 325 W55843 $0+00$ 325 W56549 $0+00$ 325 W56549 $0+00$ 262.5 W56530 $0+00$ 262.5 W56530 $0+00$ 262.5 W56530 $0+00$ 262.5 W56612 $0+00$ 250 W56937 $0+00$ 237.5 W56850			
0+50N 87.5 56622 $0+50N$ 75 56677 $0+50N$ 62.5 56337 $0+50N$ 50 56321 $0+50N$ 37.5 56107 $0+50N$ 25 56238 $0+50N$ 12.5 56368 $0+50N$ 12.5 56494 $0+50N$ 25 56540 $0+50N$ 25 56540 $0+50N$ 25 56540 $0+50N$ 50 55898 $0+50N$ 50 55898 $0+50N$ 50 55863 $0+50N$ 75 55645 $0+50N$ 75 55645 $0+00$ 500 57127 $0+00$ 475 56902 $0+00$ 475 56984 $0+00$ 475 56449 $0+00$ 425 56398 $0+00$ 425 56398 $0+00$ 425 56534 $0+00$ 375 56534 $0+00$ 375 56843 $0+00$ 325 56549 $0+00$ 325 56549 $0+00$ 325 56549 $0+00$ 325 56549 $0+00$ 325 56530 $0+00$ 262.5 56612 $0+00$ 250 56937 $0+00$ 250 56937 $0+00$ 237.5 56850			
0+50N75 W56677 $0+50N$ 62.5 W56337 $0+50N$ 50 W56321 $0+50N$ 37.5 W56107 $0+50N$ 25 W56238 $0+50N$ 12.5 W56368 $0+50N$ 056421 $0+50N$ 12.5 E56494 $0+50N$ 25 E56540 $0+50N$ 25 E56540 $0+50N$ 37.5 E56200 $0+50N$ 50 E55898 $0+50N$ 62.5 E55863 $0+50N$ 75 E55645 $0+00$ 500 W57127 $0+00$ 487.5 W56902 $0+00$ 475 W56984 $0+00$ 425 W56398 $0+00$ 425 W56398 $0+00$ 425 W56398 $0+00$ 375 W56534 $0+00$ 375 W56534 $0+00$ 325 W56209 $0+00$ 325 W55982 $0+00$ 312.5 W56549 $0+00$ 287.5 W55771 $0+00$ 262.5 W56530 $0+00$ 262.5 W56530 $0+00$ 262.5 W56530 $0+00$ 262.5 W56612 $0+00$ 262.5 W56637 $0+00$ 262.5 W56637 $0+00$ 262.5 W56637 $0+00$ 262.5 W56850			
0+50N 62.5 56337 $0+50N$ 50 56321 $0+50N$ 37.5 56107 $0+50N$ 25 56238 $0+50N$ 12.5 56368 $0+50N$ 12.5 56494 $0+50N$ 25 56540 $0+50N$ 25 56540 $0+50N$ 37.5 56200 $0+50N$ 50 55898 $0+50N$ 50 55863 $0+50N$ 52 55863 $0+50N$ 62.5 55863 $0+50N$ 75 55645 $0+00$ 500 57127 $0+00$ 487.5 56902 $0+00$ 475 56944 $0+00$ 450 577161 $0+00$ 425 56398 $0+00$ 425 56534 $0+00$ 375 56534 $0+00$ 375 56534 $0+00$ 375 56534 $0+00$ 325 55982 $0+00$ 325 55982 $0+00$ 325 56549 $0+00$ 325 56530 $0+00$ 275 56530 $0+00$ 275 56530 $0+00$ 250 56937 $0+00$ 250 56937 $0+00$ 237.5 56850			56622
0+50N 50 56321 $0+50N$ 37.5 56107 $0+50N$ 25 56238 $0+50N$ 12.5 56368 $0+50N$ 12.5 56494 $0+50N$ 25 56540 $0+50N$ 25 56540 $0+50N$ 37.5 56200 $0+50N$ 50 55898 $0+50N$ 50 55898 $0+50N$ 50 558633 $0+50N$ 75 55645 $0+00$ 500 57127 $0+00$ 487.5 56902 $0+00$ 475 569449 $0+00$ 475 56449 $0+00$ 450 577161 $0+00$ 425 56398 $0+00$ 425 56534 $0+00$ 375 56534 $0+00$ 375 56534 $0+00$ 325 56209 $0+00$ 325 56549 $0+00$ 325 56549 $0+00$ 325 56549 $0+00$ 325 56549 $0+00$ 325 56530 $0+00$ 262.5 56530 $0+00$ 262.5 56612 $0+00$ 250 56937 $0+00$ 250 56937 $0+00$ 237.5 56850	0+50N	75 W	56677
0+50N 37.5 W 56107 0+50N 25 W 56238 0+50N 12.5 W 56368 0+50N 0 56421 0+50N 12.5 E 56494 0+50N 25 E 56540 0+50N 37.5 E 56200 0+50N 37.5 E 56200 0+50N 50 E 55898 0+50N 50 E 55863 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 475 W 56984 0+00 425 W 56398 0+00 425 W 56398 0+00 425 W 56398 0+00 375 W 56449 0+00 375 W 56534 0+00 375 W 56843 0+00 362.5 W 56209 0+00	0+50N	62.5 W	56337
0+50N 37.5 W 56107 0+50N 25 W 56238 0+50N 12.5 W 56368 0+50N 0 56421 0+50N 12.5 E 56494 0+50N 25 E 56540 0+50N 37.5 E 56200 0+50N 37.5 E 56200 0+50N 50 E 55898 0+50N 50 E 55863 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 475 W 56984 0+00 425 W 56398 0+00 425 W 56398 0+00 425 W 56398 0+00 375 W 56449 0+00 375 W 56534 0+00 375 W 56843 0+00 362.5 W 56209 0+00	0+50N	50 W	56321
0+50N 25 W 56238 $0+50N$ 12.5 W 56368 $0+50N$ 0 56421 $0+50N$ 12.5 E 56494 $0+50N$ 25 E 56540 $0+50N$ 37.5 E 56200 $0+50N$ 50 E 55898 $0+50N$ 62.5 E 55863 $0+50N$ 75 E 55645 $0+50N$ 75 E 55645 $0+00$ 500 W 57127 $0+00$ 487.5 W 56902 $0+00$ 475 W 56984 $0+00$ 450 W 57161 $0+00$ 450 W 57161 $0+00$ 450 W 56122 $0+00$ 425 W 56398 $0+00$ 412.5 W 56534 $0+00$ 375 W 58420 $0+00$ 375 W 56660 $0+00$ 325 W 55982 $0+00$ 312.5 W 56549 $0+00$ 325 W 56530 $0+00$ 275 W 56530 $0+00$ 262.5 W 56612 $0+00$ 250 W 56937 $0+00$ 250 W 56937 $0+00$ 237.5 W 56850			
0+50N 12.5 W 56368 0+50N 0 56421 0+50N 12.5 E 56494 0+50N 25 E 56540 0+50N 37.5 E 56200 0+50N 50 E 55898 0+50N 62.5 E 55863 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 450 W 57161 0+00 450 W 56121 0+00 425 W 56398 0+00 375 W 56542 0+00 375 W 56534 0+00 325 W 55982 0+00 325 W 55843 0+00			
0+50N 0 56421 $0+50N$ 12.5 E 56494 $0+50N$ 25 E 56540 $0+50N$ 37.5 E 56200 $0+50N$ 50 E 55898 $0+50N$ 62.5 E 55863 $0+50N$ 62.5 E 55863 $0+50N$ 75 E 55645 $0+00$ 500 W 57127 $0+00$ 487.5 W 56902 $0+00$ 475 W 56984 $0+00$ 462.5 W 56772 $0+00$ 450 W 57161 $0+00$ 425 W 56398 $0+00$ 425 W 56512 $0+00$ 400 W 56476 $0+00$ 375 W 56534 $0+00$ 375 W 56534 $0+00$ 325 W 56660 $0+00$ 325 W 55982 $0+00$ 312.5 W 56549 $0+00$ 300 W 556771 $0+00$ 287.5 W 56530 $0+00$ 250 W 56937 $0+00$ 250 W 56937 $0+00$ 237.5 W 56850			
$\begin{array}{c cccccc} 0+50N & 12.5 & E & 56494 \\ 0+50N & 25 & E & 56540 \\ 0+50N & 37.5 & E & 56200 \\ 0+50N & 50 & E & 55898 \\ 0+50N & 62.5 & E & 55863 \\ 0+50N & 75 & E & 55645 \\ 0+00 & 500 & W & 57127 \\ 0+00 & 487.5 & W & 56902 \\ 0+00 & 475 & W & 56902 \\ 0+00 & 475 & W & 56984 \\ 0+00 & 462.5 & W & 56772 \\ 0+00 & 450 & W & 57161 \\ 0+00 & 437.5 & W & 56449 \\ 0+00 & 425 & W & 56398 \\ 0+00 & 412.5 & W & 56398 \\ 0+00 & 412.5 & W & 56512 \\ 0+00 & 400 & W & 56476 \\ 0+00 & 387.5 & W & 56534 \\ 0+00 & 375 & W & 58420 \\ 0+00 & 362.5 & W & 56534 \\ 0+00 & 325 & W & 56660 \\ 0+00 & 325 & W & 55982 \\ 0+00 & 312.5 & W & 56549 \\ 0+00 & 300 & W & 556771 \\ 0+00 & 287.5 & W & 56530 \\ 0+00 & 262.5 & W & 56530 \\ 0+00 & 250 & W & 56937 \\ 0+00 & 237.5 & W & 568450 \\ \end{array}$			
0+50N $25 E$ 56540 $0+50N$ $37.5 E$ 56200 $0+50N$ $50 E$ 55898 $0+50N$ $62.5 E$ 55863 $0+50N$ $75 E$ 55645 $0+00$ $500 W$ 57127 $0+00$ $487.5 W$ 56902 $0+00$ $475 W$ 56984 $0+00$ $425 W$ 56772 $0+00$ $450 W$ 57161 $0+00$ $450 W$ 57161 $0+00$ $425 W$ 56398 $0+00$ $425 W$ 56398 $0+00$ $412.5 W$ 56512 $0+00$ $375 W$ 56534 $0+00$ $375 W$ 58420 $0+00$ $350 W$ 56660 $0+00$ $325 W$ 55843 $0+00$ $325 W$ 55843 $0+00$ $325 W$ 55771 $0+00$ $287.5 W$ 56530 $0+00$ $262.5 W$ 56612 $0+00$ $250 W$ 56937 $0+00$ $250 W$ 56937 $0+00$ $237.5 W$ 56850		-	
0+50N $37.5 E$ 56200 $0+50N$ $50 E$ 55898 $0+50N$ $62.5 E$ 55863 $0+50N$ $75 E$ 55645 $0+00$ $500 W$ 57127 $0+00$ $487.5 W$ 56902 $0+00$ $475 W$ 56984 $0+00$ $462.5 W$ 56772 $0+00$ $450 W$ 57161 $0+00$ $450 W$ 57161 $0+00$ $425 W$ 56398 $0+00$ $425 W$ 56398 $0+00$ $412.5 W$ 56512 $0+00$ $400 W$ 56476 $0+00$ $375 W$ 56534 $0+00$ $375 W$ 56209 $0+00$ $325 W$ 56209 $0+00$ $325 W$ 55982 $0+00$ $312.5 W$ 56549 $0+00$ $300 W$ 556771 $0+00$ $287.5 W$ 557711 $0+00$ $262.5 W$ 56612 $0+00$ $250 W$ 56937 $0+00$ $237.5 W$ 56850			
0+50N 50 E 55898 0+50N 62.5 E 55863 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 450 W 57161 0+00 450 W 57161 0+00 425 W 56398 0+00 425 W 56398 0+00 425 W 56512 0+00 400 W 56449 0+00 375 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 350 W 56060 0+00 325 W 55982 0+00 312.5 W 56549 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 <td></td> <td></td> <td></td>			
0+50N 62.5 E 55863 0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 450 W 57161 0+00 437.5 W 56449 0+00 425 W 56398 0+00 425 W 56512 0+00 425 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 362.5 W 56209 0+00 362.5 W 56209 0+00 350 W 56060 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 556771 0+00 287.5 W 557711 0+00 275 W 56530 0+00 262.5 W 56612			
0+50N 75 E 55645 0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 450 W 57161 0+00 437.5 W 56398 0+00 425 W 56398 0+00 425 W 56398 0+00 425 W 56534 0+00 400 W 56476 0+00 375 W 56534 0+00 362.5 W 56209 0+00 350 W 56660 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 556771 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56937 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 500 W 57127 0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 450 W 57161 0+00 450 W 57161 0+00 437.5 W 56449 0+00 425 W 56398 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56660 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 487.5 W 56902 0+00 475 W 56984 0+00 462.5 W 56772 0+00 450 W 57161 0+00 437.5 W 56449 0+00 425 W 56398 0+00 425 W 56398 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+50N		
0+00 475 W 56984 0+00 462.5 W 56772 0+00 450 W 57161 0+00 437.5 W 56449 0+00 425 W 56398 0+00 425 W 56512 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00	500 W	57127
0+00 462.5 W 56772 0+00 450 W 57161 0+00 437.5 W 56449 0+00 425 W 56398 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 362.5 W 56660 0+00 350 W 56060 0+00 325 W 55843 0+00 312.5 W 56549 0+00 300 W 556771 0+00 287.5 W 557711 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00	487.5 W	56902
0+00 462.5 W 56772 0+00 450 W 57161 0+00 437.5 W 56449 0+00 425 W 56398 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 362.5 W 56660 0+00 350 W 56060 0+00 325 W 55843 0+00 312.5 W 56549 0+00 300 W 556771 0+00 287.5 W 557711 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00	475 W	56984
0+00 450 W 57161 0+00 437.5 W 56449 0+00 425 W 56398 0+00 412.5 W 56512 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 362.5 W 56660 0+00 350 W 56060 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00		
0+00 437.5 W 56449 0+00 425 W 56398 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 425 W 56398 0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 262.5 W 56530 0+00 275 W 56530 0+00 262.5 W 56937 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 412.5 W 56512 0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	-		
0+00 400 W 56476 0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 325 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 387.5 W 56534 0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 337.5 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 375 W 58420 0+00 362.5 W 56209 0+00 350 W 56060 0+00 337.5 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 362.5 W 56209 0+00 350 W 56060 0+00 337.5 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 350 W 56060 0+00 337.5 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00		
0+00 337.5 W 55843 0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00		56209
0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00	350 W	56060
0+00 325 W 55982 0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00	337.5 W	55843
0+00 312.5 W 56549 0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850	0+00		
0+00 300 W 55677 0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 287.5 W 55771 0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 275 W 56530 0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 262.5 W 56612 0+00 250 W 56937 0+00 237.5 W 56850			
0+00 250 W 56937 0+00 237.5 W 56850			
0+00 237.5 W 56850			
0+00 225 W 56424			
	0+00	225 W	56424

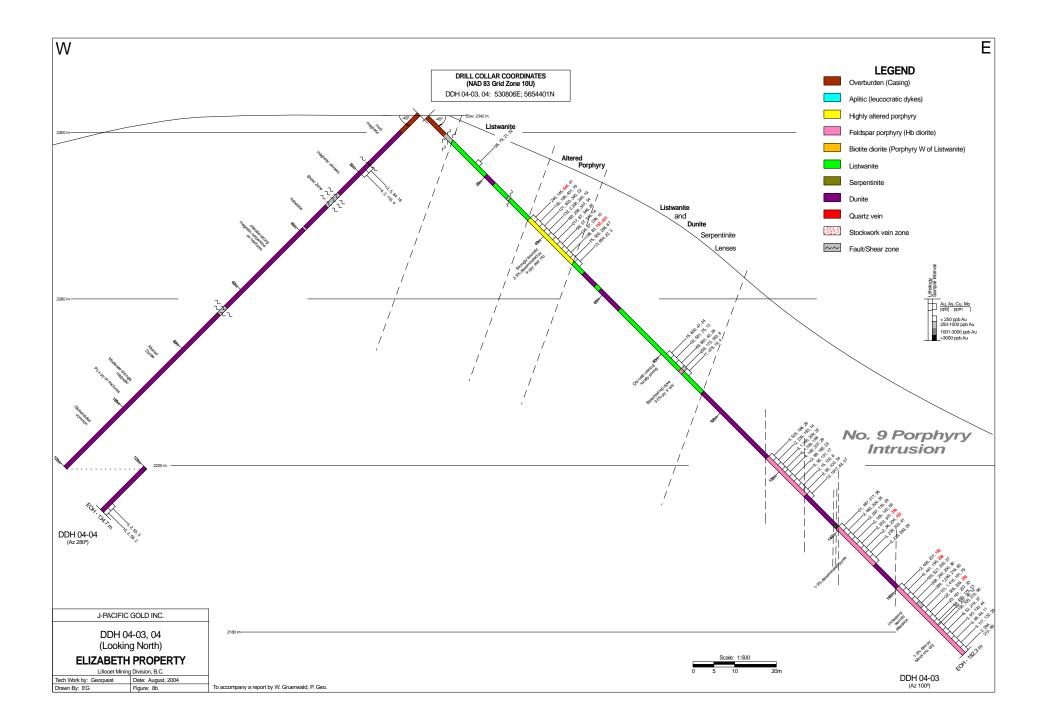

No.	9	Grid

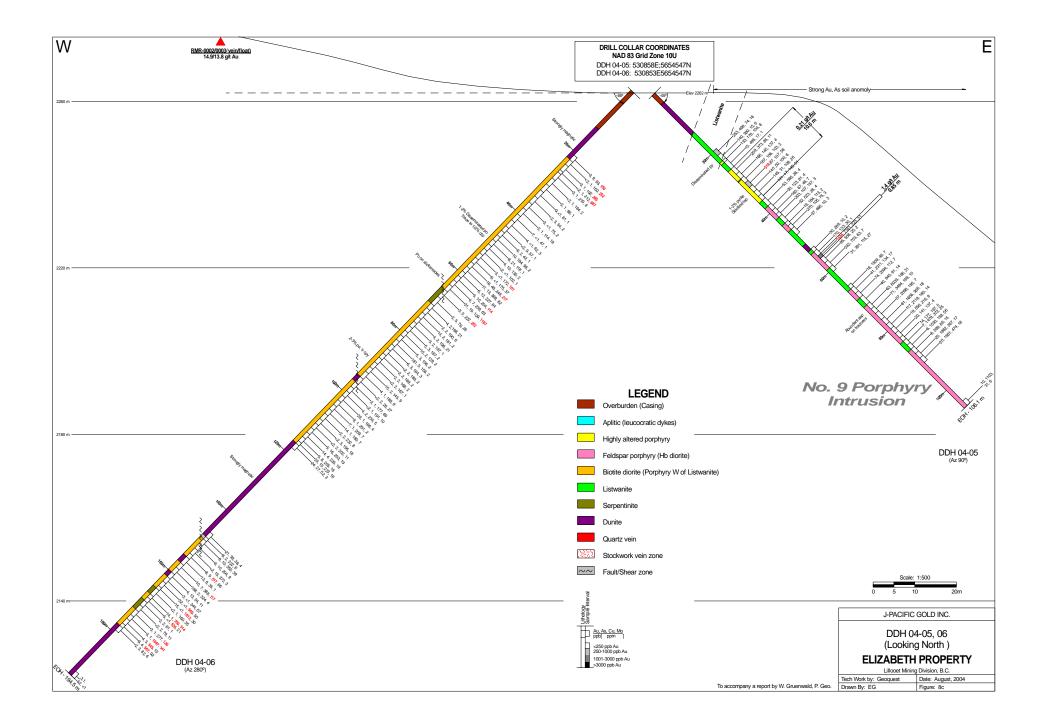

No. 9 Grid		
Line	Station	Mag
0+00	212.5 W	56770
0+00	200 W	56829
0+00	187.5 W	55547
0+00	175 W	56001
0+00	162.5 W	55354
0+00	150 W	55858
0+00	137.5 W	56461
0+00	125 W	56406
0+00	112.5 W	56528
0+00	100 W	56300
0+00	87.5 W	55979
0+00	75 W	56603
0+00	62.5 W	56188
0+00	50 W	56410
0+00	37.5 W	56203
0+00	25 W	55973
0+00	12.5 W	56014
0+00	0 W	55937
0+00	12.5 E	55950
0+00	25 E	56299
0+00	37.5 E	56338
0+00	50 E	56096
0+00	62.5 E	55981
0+00	75 E	56066
0+00	87.5 E	56494
0+00	100 E	56766
0+00	112.5 E	56829
0+00	125 E	56728
0+00	137.5 E	56858
0+00	150 E	56799
0+50S	500 W	56677
	487.5 W	56803
0+50S		
0+50S	475 W	56747
0+50S	462.5 W	56276
0+50S	450 W	56724
0+50S	437.5 W	56986
0+50S	425 W	57777
0+50S	412.5 W	56911
0+50S	400 W	56887
0+50S	387.5 W	57103
0+50S	375 W	55779
0+50S	362.5 W	56329
0+50S	350 W	56126
0+50S	337.5 W	57090
0+50S	325 W	57117
0+50S	312.5 W	56992
0+50S	300 W	56240
0+50S		EC000
	287.5 W	56926
0+50S	287.5 W 275 W	56495
0+50S 0+50S		
0+50S	275 W 262.5 W	56495 56618
0+50S 0+50S	275 W 262.5 W 250 W	56495 56618 56816
0+50S 0+50S 0+50S	275 W 262.5 W 250 W 237.5 W	56495 56618 56816 57245
0+50S 0+50S 0+50S 0+50S	275 W 262.5 W 250 W 237.5 W 225 W	56495 56618 56816 57245 56955
0+50S 0+50S 0+50S 0+50S 0+50S	275 W 262.5 W 250 W 237.5 W 225 W 212.5 W	56495 56618 56816 57245 56955 55634
0+50S 0+50S 0+50S 0+50S	275 W 262.5 W 250 W 237.5 W 225 W	56495 56618 56816 57245 56955

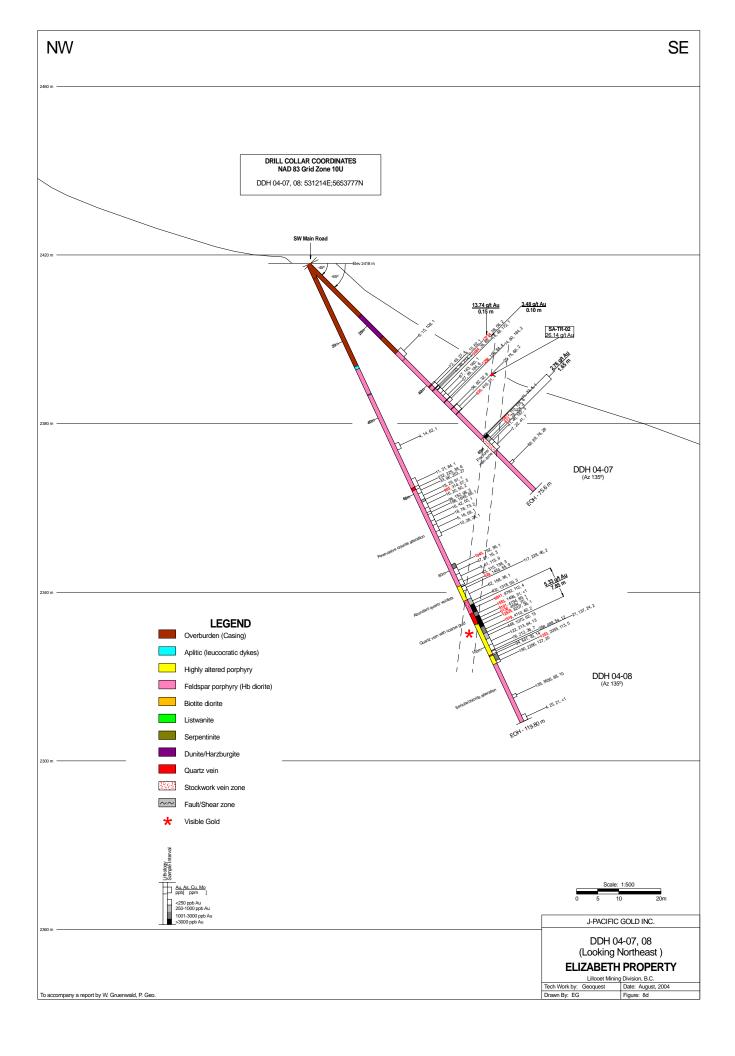
No.	9	Grid
	•	

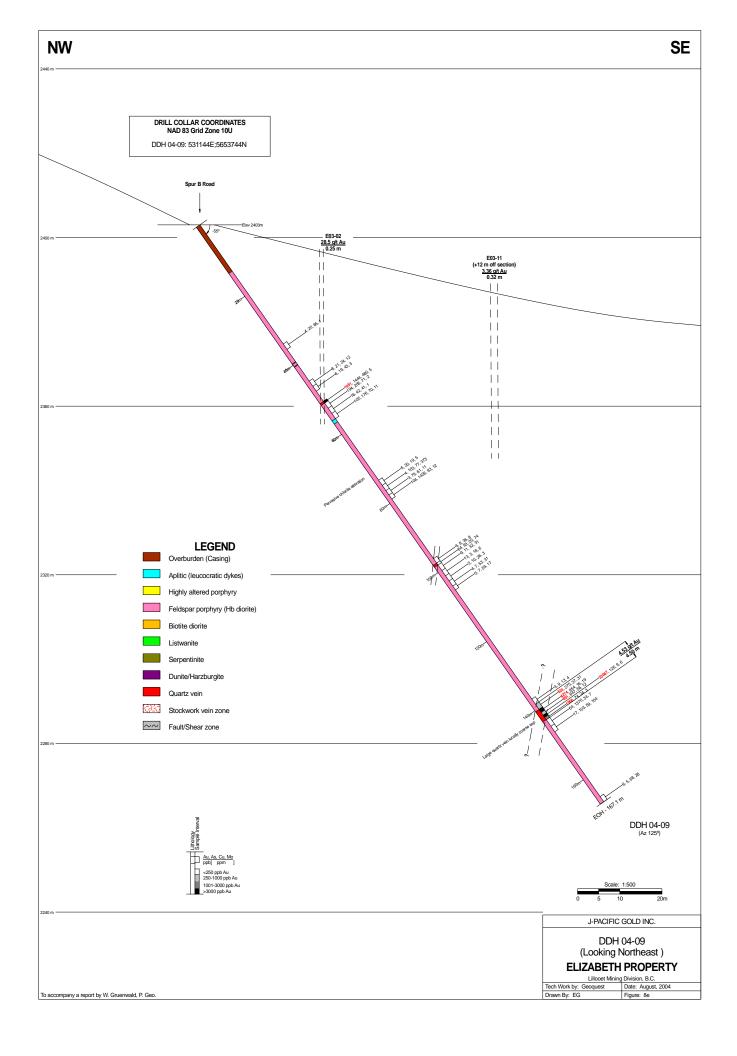
	No. 9 Gri	
Line	Station	Mag
0+50S	175 W	55693
0+50S	162.5 W	55764
0+50S	150 W	55836
0+50S	137.5 W	55896
0+50S	125 W	55974
	112.5 W	
0+50S		56014
0+50S	100 W	55982
0+50S	87.5 W	56059
0+50S	75 W	56276
0+50S	62.5 W	56481
0+50S	50 W	56956
0+50S	37.5 W	56569
0+50S	25 W	56396
0+50S	12.5 W	56630
0+50S	0	56477
0+50S	12.5 E	56494
0+50S	25 E	56540
0+50S	37.5 E	56200
	50 E	
0+50S		55898
0+50S	62.5 E	55863
0+50S	75 E	55645
1+00S	500 W	57268
1+00S	487.5 W	56965
1+00S	475 W	57202
1+00S	462.5 W	57398
1+00S	450 W	57427
1+00S	437.5 W	57473
1+00S	425 W	57737
1+00S		
	412.5 W	56700
1+00S	400 W	56743
1+00S	387.5 W	56970
1+00S	375 W	57766
1+00S	362.5 W	56376
1+00S	350 W	56723
1+00S	337.5 W	55837
1+00S	325 W	56483
1+00S	312.5 W	57649
1+00S	300 W	57543
1+00S	287.5 W	57470
1+00S	275 W	575000
1+00S	262.5 W	57869
1+00S	250 W	55466
1+00S	237.5 W	55497
1+00S	225 W	55577
1+00S	212.5 W	55692
1+00S	200 W	
1+00S	187.5 W	55809
1+00S	175 W	55684
1+00S	162.5 W	55773
1+00S	150 W	55734
1+00S	137.5 W	55833
1+00S	125 W	55884
1+00S	112.5 W	55947
1+00S	100 W	56000
1+00S	87.5 W	56047
1+00S	75 W	55782


	No. 9 Gri	
Line	Station	Mag
1+00S	62.5 W	56199
1+00S	50 W	56200
1+00S	37.5 W	56200
1+00S	25 W	56304
1+00S	12.5 W	56407
1+00S	0	56462
1+00S	12.5 E	56462
1+00S	25 E	56226
1+50S	500 W	57016
1+50S	487.5 W	56899
1+50S	475 W	56828
1+50S	462.5 W	56881
1+50S	450 W	56877
1+50S	437.5 W	56992
1+50S	425 W	57389
1+50S	412.5 W	57890
1+50S	400 W	56689
1+50S	387.5 W	56763
1+50S	375 W	56790
1+50S	362.5 W	56414
1+50S	350 W	56122
1+50S	337.5 W	55995
1+50S	325 W	56080
1+50S	312.5 W	56232
1+50S	300 W	56267
1+50S	287.5 W	56320
1+50S	275 W	
1+50S	262.5 W	56225
1+50S	262.5 W	55845
1+50S	237.5 W	55908
		55795
1+50S 1+50S	225 W	55766
1+50S	212.5 W	55670
	200 W 187.5 W	55666 55747
1+50S		
1+50S	175 W	55734
1+50S	162.5 W	55750
1+50S	150 W	55770
1+50S	137.5 W	55711
1+50S	125 W	55780
1+50S	112.5 W	55814
1+50S	100 W	55838
1+50S	87.5 W	5000 (
1+50S	75 W	56004
1+50S	62.5 W	56024
1+50S	50 W	56028
1+50S	37.5 W	56066
1+50S	25 W	56068
1+50S	12.5 W	56113
1+50S	0 W	56132






APPENDIX J


DRILL SECTIONS DDH 04-01 TO DDH-04-11

