GEOCHEMICAL SAMPLING REPORT

on the

WASI CREEK PROPERTY

OSI, OSI 2, OSI 3, TM 2 and TM 3 Mineral Claims

Omineca Mining Division

NTS: 94C/03E

B.C. Geographic System Map Sheet: 094C.005, 015

Latitude: 56° 6.0' N; Longitude 125° 2.5' N

UTM: 6 219 000N; 372 500 E; Zone 10

Owner and Operator: Cross Lake Minerals Ltd.

Author: Calvin Church, P.Ge

October 28, 2004

TABLE OF CONTENTS

	Section	Title	Page
A	Report	Introduction	3
1		Property	3
		Location and Access	4
		Climate, Topography and Vegetation	4
	······	History	4
	······································	Regional Geology	8
		Property Geology	8
	······································	2004 Soil Sampling Program	10
		2004 Rock Sampling Program	11
		Conclusions	11
	······································	Recommendations	12
		List of References	14
		Statement of Qualifications	15
B	Property	Schedule of Mineral Claims	16
С	Expenditures	Statement of Expenditures	17
D	Analytical Reports	Acme Analytical Laboratories Ltd.:	18
		- Certificates of Analysis (4 reports)	
		- Statement of Analytical Procedures (4 data sheets	
Е	Illustrations		
	Plan Number	Title	Scale
	WA-04-1 (after p.4)	General Location Plan	1:250 000
	WA-04-2 (after p.4)	Location Plan with Topography	1:50 000
	WA-04-3 (after p.4)	Mineral Claim Map	1:50 000
	WA-04-4 (in pocket)	Soil & Rock Sample Locations	1:20 000
	WA-04-5 (in pocket)	Soil & Rock Geochemistry: Cd ppm	1:20 000
	WA-04-6 (in pocket)	Soil & Rock Geochemistry: Cu ppm	1:20 000
	WA-04-7 (in pocket)	Soil & Rock Geochemistry: Pb ppm	1:20 000
	WA-04-8 (in pocket)	Soil & Rock Geochemistry: Zn ppm	1:20 000
	WA-04-9 (in pocket)	Soil & Rock Geochemistry: Ag ppm	1:20 000

SECTION A: REPORT

INTRODUCTION:

Cross Lake Minerals Ltd. ("Cross Lake" or "the Company") owns a 100% interest in the Wasi Creek Property. The property was initially acquired in July 2000 following a review of prospective areas in British Columbia for carbonate-hosted zinc-lead-silver deposits. The property was staked to cover the area previously known as the Par Property which Cominco Ltd. extensively explored from 1990 to 1995. The Wasi Creek Property is located 150 kilometres northwest of Mackenzie on the south side of the Osilinka River adjacent to Wasi Lake in the Omineca Mining Division. This report summarizes the program of geochemical sampling that was carried out by Cross Lake in June 2004 along exposed road cuts on the OSI, OSI 2, OSI 3, TM 2 and TM 3 mineral claims and on adjacent open ground. 13,100 linear metres of road were sampled on intervals of 100 m; 6,400 m on the east side of Wasi Creek and 6,700 m on the west side. A total of 137 soil samples and 11 rock samples were taken.

PROPERTY:

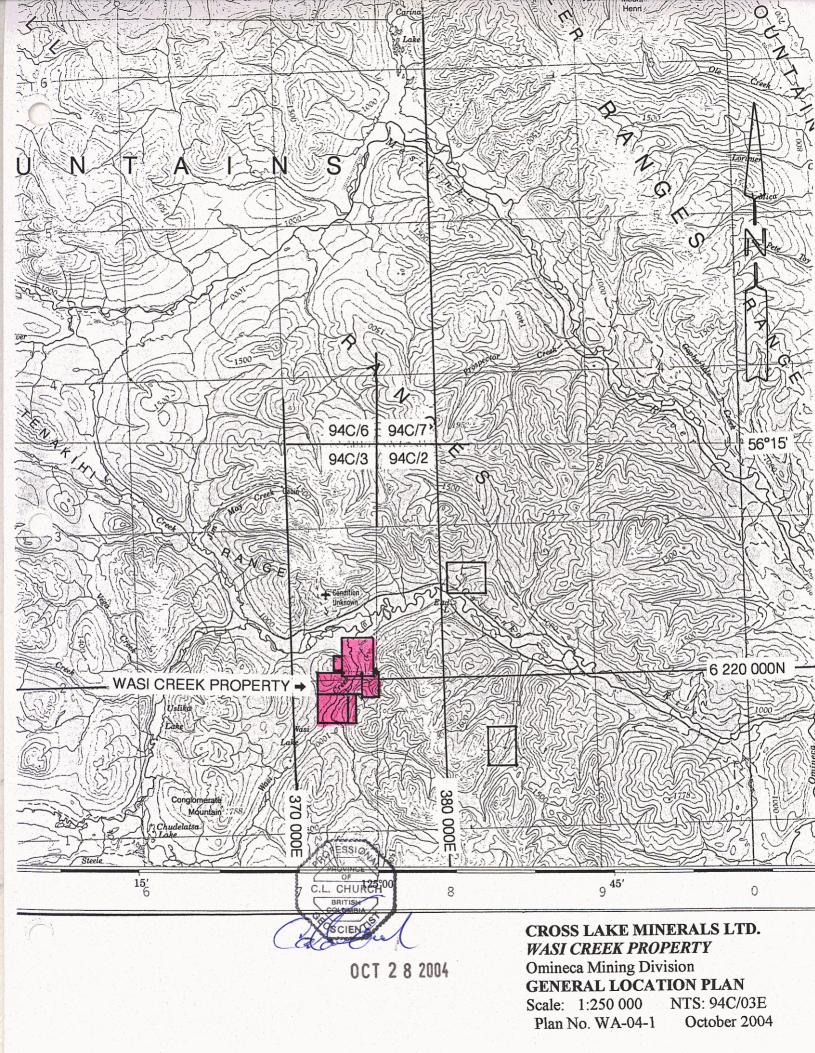
The Wasi Creek Property is comprised of 11 contiguous mineral claims, three 4 post and eight 2 post, totaling 66 claim units and covering an area of 1650 hectares. The claims are all situated in the Omineca Mining Division. The Property is registered in the name of Cross Lake Minerals Ltd. and was acquired by staking on four occasions between July 2000 and October 2001 (see Plan Numbers WA-04-2 and WA-03-3). A list of the mineral claims is appended in Section B. The expiry dates therein are based on the Statement of Work filed on July 29, 2004 (Event #3214539) and assume that the work contained in this report will be accepted for assessment purposes. The legal corner posts of the claims have not been surveyed.

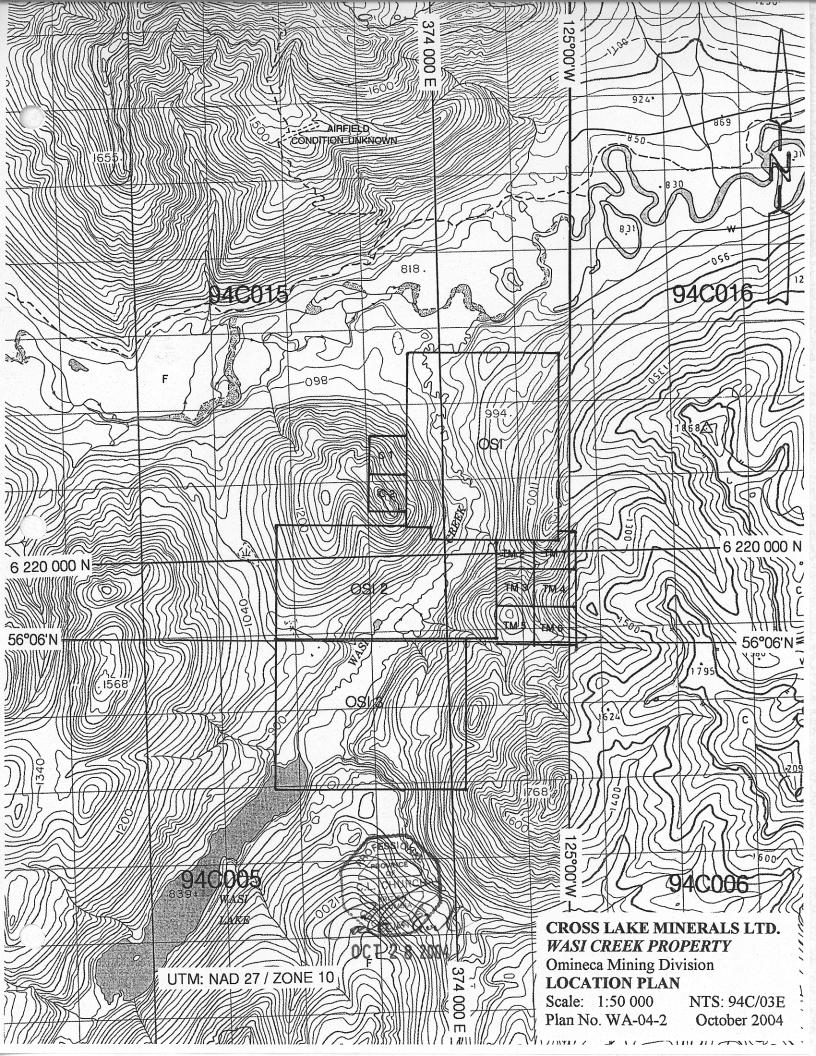
By agreement dated September 1, 2004, Cross Lake granted Bard Ventures Ltd. an option to earn a 50% interest in the Property by incurring aggregate exploration expenditures of \$800,000 on or before December 31, 2006.

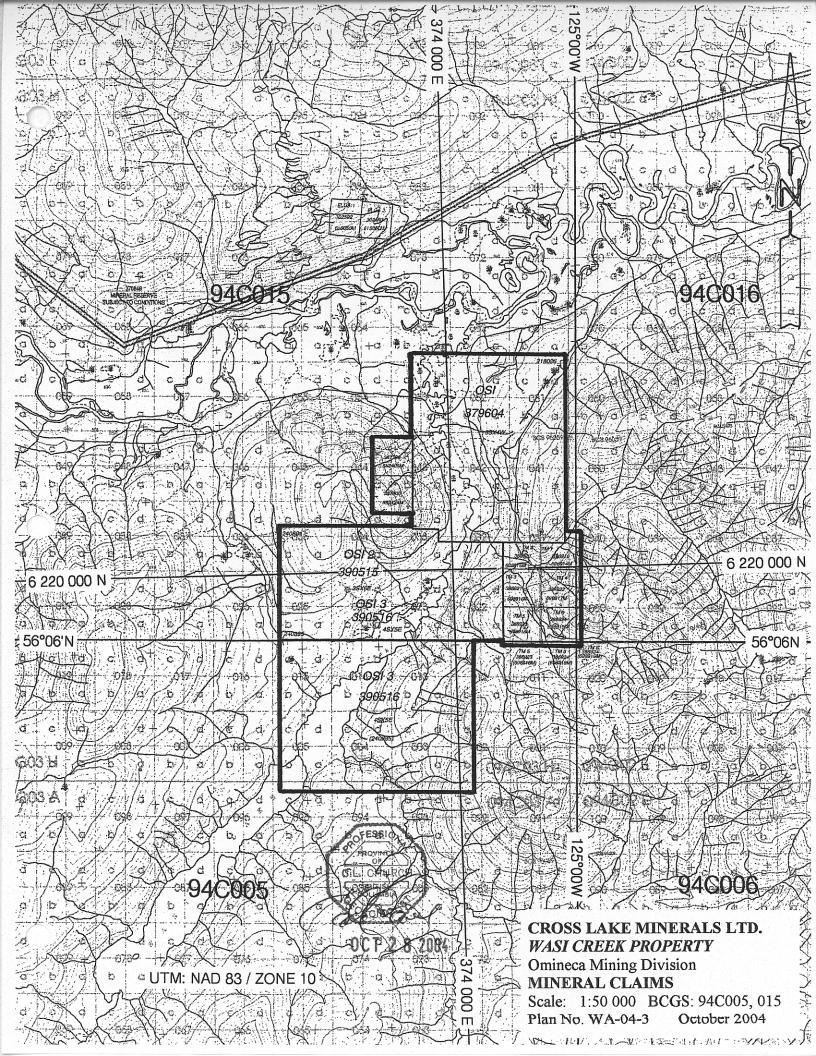
LOCATION AND ACCESS:

The Property is located on the south side of the Osilinka River some 150 kilometres northwest of Mackenzie and 43 kilometres north-northwest of Germansen Landing. The claims are on BCGS map sheets 94C005 and 94C015 and NTS map sheet 94C/3E. Geographic co-ordinates are 56° 7.5' North latitude; 125° 01' West longitude and UTM coordinates of 6 221 500 N and 374 500 E in Zone 10, NAD 83.

Access to the property is excellent due to extensive logging operations that have been carried out around and on the claims. The easiest access is by using Highway #97 north of Prince George to a small community named Windy Point, 12 kilometres north of McLeod Lake. From Windy Point one drives on the main haulage logging road located on the west side of Williston Lake, north for 170 kilometres and then west for 22 kilometres to the junction of the Osilinka and Wasi Lake Forest Access roads. The Wasi Creek Property is reached by traveling another 18 kilometres along the south side of the Osilinka River on the Wasi Lake Forest access road. There are several secondary forest access roads crossing the claims all of which are navigable with a four wheel drive vehicle.


CLIMATE, TOPOGRAPHY AND VEGETATION:


The Wasi Lake area has cold, high snowfall winters and warm, damp summers. The topography of the property is moderately steep. The lowest elevation is 830 metres on the northern boundary of the property along Wasi Creek near its confluence with the Osilinka River while the high point is 1460 metres on the ridge located along the eastern boundary of the claims. The slopes are heavily timbered by pine and spruce. In the clear cuts deciduous willows and poplars predominate.


HISTORY:

The earliest recorded work located in the area was in the Annual Report of the Minister of Mines in 1930 documenting the Weber Prospect, located near the northern edge of the present Wasi Creek Property. The report describes the Weber mineralization as disseminated galena, zinc and pyrite in siliceous dolomite of which a 5.18 metre channel sample assayed 3.6% zinc, 1.6% lead, loz/ton silver and 0.020z/ton gold.

4

The Weber Prospect was restaked and worked at intermittent intervals with the next documented description occurring in the 1954 Geological Survey of Canada Memoir 274, by E.F. Roots entitled "Geology and Mineral Deposits of Aiken Lake Map-Area, British Columbia". He describes the showing as pyrite-galena-sphalerite-barite replacement body in limestone that strikes north 30 degrees west and dips 80 degrees northeast. A grab sample assayed gold trace; silver 2.0oz/ton; lead 10.24% and barite 4.06%.

An inventory of the numerous carbonate-hosted stratabound zinc, lead, silver and barite showings in the Wasi Creek area is well described in British Columbia Department of Mines Open File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", (94C/3, 4, 6) by F.Ferri, S. Dudka and C. Rees.

In 1990 Cominco Ltd. completed a reconnaissance silt and soil geochemical survey on the stratigraphic extensions of the Lower Cambrian to Middle Devonian carbonates that host the known mineral occurrences. The area around the Weber Prospect was highly anomalous so Cominco staked their first two claims covering this prospect and the anomalous areas. Cominco then completed contour and grid soil sampling and outlined a large, highly anomalous area 1.0 by 4.5 kilometres in size in lead, zinc, iron and silver and staked five additional claims.

Cominco Ltd. completed an intense exploration program during 1991. The exploration program consisted of geological mapping, soil sampling, airborne electromagnetic and magnetometer surveys, ground geophysical surveys including HLEM, magnetometer, Induced Polarization and VLF surveys. A trenching program was completed on the target area of the large soil geochemical anomaly and the coincident conductors. There were seven trenches excavated with the best mineralization discovered in trench #3 that assayed 8.4% zinc, 3.5% lead and 14.2g/t silver over a width of 17.2 metres.

In 1992 Cominco Ltd. completed 16 diamond drill holes totalling 1,346 metres in the area of the trenching. The strike length explored is approximately 2.0 kilometres along a fault controlled

5

base metal mineralized structure, on the east side of Wasi Creek. The work was not filed for assessment credit so there are no records of the results in the provincial data base.

In 1993 Cominco drilled four holes on the north side of the Osilinka River on a separate area and one hole in the Wasi Creek area in the vicinity of the 1992 drilling. The drill hole was collared near the Duncan Showing and was successful in intersecting two mineralized horizons that assayed 6.9% zinc, 1.6% lead and 18.4g/t silver over a width of 4.5 metres and 3.1% zinc, 3.2% lead and 32.0g/t silver over a width of 3.1 metres.

In 1994 Cominco constructed more drill access roads and sites and completed four holes totalling 1,164 metres, including two vertical holes drilled possibly to complete stratigraphic sections on either side of the fault controlled mineralization.

Cross Lake Minerals Ltd. acquired a 20 unit mineral claim over the property when the ground came open in 2000 and in 2001 added an additional 46 units. The Company carried out a program of geological mapping, stream sediment sampling and trenching in 2001 and in 2002 completed a soil geochemical survey.

One of the main reasons that Cross Lake Minerals Ltd. staked the Wasi Creek Property was to explore for the source of high grade massive sulphide boulders which were discovered during Cominco's trenching program in 1991. The sulphide boulders, 70 cm in size and angular, consist of layered massive sulphides contain galena, sphalerite and pyrite. Cross Lake assayed two of these angular boulders with the following results:

Sample Number	Zn (%)	Pb (%)	Ag (g/t)
W-1	26.30	25.98	96.3
W-2	8.46	42.43	384.8

None of the drilling or trenching to date has intersected mineralization similar to the high grade boulders.

Stream sediments in the Wasi Creek area were sampled by the British Columbia Geological Survey in 1991 and the results are detailed in Open File 1992-11. Four samples were collected in the Wasi Creek Property area (SS-018, SS-130, SS-203, and SS-304) and had the highest in indicator and base metal elements minerals for the entire survey area. The base metal source for the three anomalous samples, SS-018, 130 and 203, are most likely the Duncan and Par mineralized horizons on the east side of Wasi Creek. Stream sediment sample SS-018, the highest in base metal elements of all of the stream sediment samples, was collected from a stream on the west side of Wasi Creek and south of any known mineralization. In July 2002, Cross Lake Minerals Ltd. sampled the same drainage in order to verify the earlier result. The new sample (WS-1) was taken approximately 750 metres upstream, and to the west, of the B.C. government sample site location SS-018 on the OSI 2 mineral claim at approximate NAD 27 UTM coordinates 6 219 053 N, 371 988 E at an elevation of 967 metres. The sample was lower in base metal values than the B.C. government sample.

The 2002 soil sampling program was designed to test both sides of an unnamed stream that was highly anomalous in base metal elements when sampled previously by the B.C. Geological Survey. Therefore, two east-west lines, designated Line #1 and #4, parallel to and approximately 100 metres on either side of the creek were sampled at 25 metre intervals. Two additional lines, designated Line #2 and #3 were sampled in a southerly and northerly direction from where the creek meets the main Wasi Creek drainage valley, again at 25 metre sample intervals. A total of 55 soil samples were collected and the total length of the grid line surveyed was 1350 metres.

The sampling program was successful in delineating two areas of anomalous base metal elements. The first area was located on the Line #2 with samples elevated in zinc, lead, copper, molybdenum, silver and cadmium. This anomaly remains open to the south. The second area, with the highest values in base metal signature, is located on the Line #3 with samples being highly anomalous in zinc, lead, copper, nickel, cadmium, calcium and boron. This anomaly remains open to the north. The details of this 2002 program were set out in the "Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mineral Claims" by Jim Miller-Tait, P.Geo. dated January 10, 2003, B.C Assessment Report #27,032.

REGIONAL GEOLOGY:

The following regional geological description has been compiled from papers in the British Columbia Geological Survey Branch Reports of Geological Fieldwork in 1989 and 1991. The Wasi Creek Property is located in an area that straddles the boundary between the Intermontane and Omineca tectostratigraphic belts of the Canadian Cordillera. The Western Intermontane Superterrane is represented by the Slide Mountain and Quesnel terranes. Together with the eastern autochthonous North American stratigraphy, these rocks form part of a southwest-dipping homoclinal sequence. This sequence has been cut by a series of normal faults, which trend northeasterly. With the exception of the eastern pericratonic strata all of the rocks have been weakly metamorphosed.

The Wasi Creek Property is underlain by the pericratonic North American rocks of primarily carbonates and siliciclastics of miogeoclinal origin. These rocks include the Upper Proterozoic Ingenika Group consisting of impure quartzite, schist, phyllite, limestone, feldspathic wacke and arkosic sandstone. Overlying this Group is the Lower Cambrian to Middle Devonian Atan, Razorback, Echo Lake and Otter Lake Groups. These Groups consist of limestone, dolomite, shale, quartzite, and argillaceous limestone. The Lower Cambrian to Middle Devonian limestone and dolomite host the zinc, lead and silver mineralization on the Wasi Creek Property.

PROPERTY GEOLOGY:

The Wasi Creek Property geology is a compilation from Cross Lake's 2001 exploration work, Cominco's 1990-1995 exploration programs and mapping completed by the British Columbia Geological Survey as described in File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", (94C/3, 4, 6) by F.Ferri, S. Dudka and C. Rees. The geological stratigraphy underlying the property are all Paleozoic in age ranging from Lower Cambrian to Mississippian.

The oldest rock units exposed in the claim area are the Lower Cambrian to Middle Devonian carbonates. The oldest is the Lower Cambrian Mount Kison Formation of the Atan Group. Overlying this unit are the Cambrian and Ordovician Razorback, Middle Ordovician to Lower Devonian Echo Lake Group and Middle Devonian Otter Lakes Group. This entire carbonate

8

i

package consists of limestone, dolomite, lesser shale, quartzite and argillaceous limestone. The Atan, Razorback, and Echo Lake Groups are host to the mineralization on the Wasi Creek Property. Overlying the carbonates is the Upper Devonian to Lower Mississippian aged Big Creek Group. This Group consists of dark grey to blue grey shales, argillites and minor siltstones and siltite. The next oldest unit, the only major volcanic rock unit observed on the claims, is the Lower Mississippian-aged Dacitic Tuff Unit of the Lay Range Assemblage. This thick unit is only exposed on the northwest side of a major geological structure which is postulated to occur in the valley bottom of Wasi Lake and Wasi Creek. The rest of the Lay Range Assemblage is absent in the Wasi Creek Area.

Across Wasi Creek Valley, on the southeast side of the northeast trending Wasi structure, is the youngest, Pennsylvanian-aged, Mount Howell Formation. This Formation consists of argillite, chert, gabbro and minor basalt, wacke and felsic tuff.

There are numerous carbonate-hosted zinc-lead-silver showings on the Wasi Creek Property but only the main showings, with the largest amount of exploration work will be discussed in this report. Three of the showings, the Duncan, Par and the Weber, that comprise the Par mineralization which was the main focus of Cominco Ltd. are located from south to north over a two kilometre strike length. These showings are located along a fault structure, which may be the conduit of the mineralizing solutions and which strikes at approximately 330 degrees and dips east at 70 degrees. The fault and the three showings are all located on the east side of a major northeast trending structural lineament located along the valley bottom of Wasi Creek and Lake. Cominco Ltd. completed the bulk of their exploration work in this area by completing the airborne and ground surveys, seven excavator trenches and 21 diamond drill holes exploring these mineralized structures. The mineralization is stratabound with most primary features obliterated by deformation. The sulphides consist of sphalerite, galena, pyrite and traces of tetrahedrite and grain size varies from fine grained at the Duncan showing to coarse-grained.

The Carrie 2 showing is located on the west side of the Wasi Valley structure near the northwest edge of the property. The showing was hand trenched, mapped and sampled by Cross Lake Minerals Ltd. during 2001. The mineralization consists of hydrozincite stained, oxidized,

disseminated, fine-grained sphalerite, galena and pyrite hosted in brecciated dolomite and limestone with carbonate in-filling of fractures and open space.

2004 SOIL SAMPLING PROGRAM:

The soil sampling program in 2004 was designed to test the undisturbed bank material along 13,100 m of logging road that transects the property on the east side of Wasi Creek and to the west of the property on open ground on the west side of Wasi Creek and Wasi Lake. The "B" horizon was sampled in June 2004 along the roads at 100 m intervals; 6,400 m of road on the east side of Wasi Creek and 6,700 m on the west side. The sample line designations, sample numbers and quantities are set out in Table 1 below and are illustrated on Plan Number WA-04-4 which is appended in Section E.

The soil and rock geochemical results for Cd, Cu, Pb, Zn and Ag are set out on individual drawings Section E (see Plan Nos. WA-04-5 to WA-04-9).

Table 1		Summary of	2004 Sa	mpling Program		
Line Number	Length of Sampling (m)	Soil Sample Numbers	No. of Soils	Rock Sample Numbers	No. of Rock	Total
WE LINE 1	6400	0N to 0+027N 0S to 0+037S	66	M-04-4, 5, 6, 7, 8 and 11	6	72
WW LINE 1	1300	0N to 0+013N	14	-	-	14
WW LINE 2	700	0S to 0+007S	8	M-04-1	1	9
WW LINE 3	2800	0+001N to 0+008N 0S to 0+020S	28	M-04-2	1	29
WW LINE 4	1200	0S to 0+012S	13	M-04-3	1	14
WW LINE 5	700	0N to 0+007N	8	M-04-9, and 10	2	10
	13100		137		11	148

A total of 137 soil samples were collected, each soil sample being collected by shovel from the B-horizon at an average depth of approximately 20 to 30 cm and the sample placed in standard paper Kraft soil sample bags and delivered to Acme Analytical Laboratories in Vancouver, B.C. for analyses by the ICP-MS analytical process. The analytical reports and laboratory methods and specifications are appended in Section D.

The sampling program was successful in identifying two areas of anomalous base metal elements in the eastern half of the OSI claim east of Wasi Creek. The first, and southernmost of the two, is likely the subsurface trace of the mineralized horizon of the Duncan showing. A sequence of four consecutive samples (WE LINE 1 0+001N to 0+004N) spaced 100m apart indicate significantly elevated values of Pb, Zn, and Ag. Further north along the same sample line a sequence of seven consecutive samples (WE LINE 1 0+013N to 0+019N) define an anomalous area nearly 700m in length along the east bank of the road. This area is approximately one kilometre to the east of the Par showing and may be a continuation of that mineralized horizon. Isolated geochemical soil anomalies occur in the same general area east of Wasi creek and may be due to transported till. These sample locations are at WE LINE 1 0+013S and WE LINE 1 0+026N.

2004 ROCK SAMPLING PROGRAM:

A total of 11 rock samples were collected from exposed rock outcrops along the logging roads. Two rock samples (M-04-4 and M-04-5) returned significant values of Pb, Zn, and Ag and are in close proximity to anomalous soils collected during this program. The samples were from boulders in road cuts and suspected to be from a local source uphill in the direction of the Duncan showing. These samples were delivered to Acme Analytical Laboratories in Vancouver, B.C. for analyses by the ICP-MS analytical process. Three of the samples (M-04-7, 8 and 11) located along WW Line 1 also had Whole Rock Analysis conducted. The analytical reports and laboratory methods and specifications are also appended in Section D.

CONCLUSIONS:

- The Wasi Creek Property, owned 100% by Cross Lake Minerals Ltd., covers an extensive belt of Lower Cambrian to Middle Devonian limestone and dolomite which is the host to several base metal showings.
- Access to the property is excellent due to the extensive logging that has occurred on and around the claims.
- There are three mineralized showings on the east side of Wasi Creek. The valley bottom of the creek hosts a major geological structure.

- The three showings from south to north, named Duncan, Par and Weber, are all on the same mineralized fault controlled structure which strikes at approximately 330 degrees and dips east at 70 degrees.
- This area was the focus of Cominco Ltd.'s extensive exploration programs from 1990 to 1995. The trenching and drilling intersected the favorable base metal horizon with promising results.
- The Cominco trenching discovered angular float boulders of exceptional grade in zinc, lead and silver of which the source has not been found.
- The British Columbia Geological Survey completed a stream sediment sampling program in the area and the four highest sediment values in base metal elements were collected from drainages in the Wasi Creek Property area.
- The source of three of the stream sediment samples is concluded to have been the known mineralized horizon on the east side of the Wasi Creek structure.
- One of the highest stream sediment samples was collected from a tributary on the west side of Wasi Creek, the opposite side of the Wasi Creek structure near a volcanic tuff unit contact, a favorable geological environment for base metal deposition.
- The source of the stream sediment anomaly has not been discovered and it is upstream and up-ice of the extremely high grade angular massive sulphide boulders discovered in Cominco's trenching program of which the source has yet to be found.
- The soil sampling completed in 2004 has confined the anomalous area of the stream sediments to the Wasi Creek valley itself. Geochemical soil anomalies indicate the mineralization is coming from the northeast trending structure following the trace of the valley and from subsurface outcrops east of the valley.

RECOMMENDATIONS:

The Wasi Creek Property covers a favorable geological environment for the possibility of a discovery of a significant carbonate-hosted zinc-lead-silver deposit. The property covers a large area with targets at different stages of exploration.

The Carrie 2 showing should have a road constructed to it and the showing extensively trenched up and down the slope. Once the geometry of the mineralization is verified the base metal target should be diamond drilled.

The main two kilometre long Duncan, Par and Weber horizon should be explored on its west side, closer to the structure along the bottom of Wasi Creek valley. A grid should be constructed across the valley and geophysical survey completed to determine hidden mineralization that may occur beneath the valley fill. There should be drilling completed in a westerly direction under Wasi Creek to test if this Wasi Creek structure is mineralized as is the fault controlling the Duncan, Par and Weber mineralization.

Soil geochemical sampling in the 2004 exploration program was successful in delineating two areas prospective for base metals. These two areas of sampling should be tested further to determine the extent of the anomalous area with either contour soil lines or a grid. Therefore, a program of additional soil sampling, prospecting and geological mapping is recommended upslope and along the east side of the Wasi Creek valley in a easterly direction from the two anomalous areas. This would delineate the dimensions of the anomalies and then the area should be trenched using a CAT 320 excavator or size equivalent.

Respectfully submitted,

Calvin Church, P.Geo.

LIST OF REFERENCES:

Ferri F., Dudka S., Rees C., (1992): Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C. (94C/3, 4, 6). British Columbia Geological Survey Geological Fieldwork 1991, Paper 1992-1.

Ferri F., Dudka S., Rees C., Meldrum D., Willson M., (1992): Geology, Geochemistry and Mineral Occurrences of the Usilika Lake Area, B.C. (94C/3, 4 and 6). British Columbia Geological Survey Open File 1992-11.

Gabrielse, H.: Unpublished GSC Map of the Mesilinka Map Area, 94C.

Mansy, J.L. and Gabrielse, H., (1978): Stratigraphic Terminology and Correlation of Upper Proterozoic Rocks in Omineca and Cassiar Mountains, North-Central B.C., GSC Paper 77-19.

Melville D.M. (1990): Carbonate-Hosted Lead-Zinc Occurrences in the Germansen Landing and End Lake Areas (94C/2, 93N/15). British Columbia Geological Fieldwork Exploration in British Columbia 1989, Pages 193 to 196.

Miller-Tait, J. (January 2002): Geological Report on the Wasi Creek Property, OSI Mineral Claim, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Assessment Report #26,827

Miller-Tait, J. (January 2003): Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Assessment Report #27,032

Roots, E.F., (1954): Geology and Mineral Deposits of the Aiken Lake Map Area, B.C., GSC Memoir 274.

STATEMENT OF QUALIFICATIONS:

For: Calvin Church, 1733 Napier Street, Vancouver, B.C. V5L 2N1.

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining intermittently since 1987;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia;

The observations, conclusions and recommendations contained in the report are based on field examinations, personal sampling, and the evaluation of results of the exploration programs completed by past operators.

2.h.l

Calvin Church, P.Geo.

SECTION B: PROPERTY

WASI CREEK		SCHEDULE	OF MINE	ERAL	CLAIN	IS
PROVINCE: British Columbia		CLAIMS: 11	UNITS: 6	6	AREA: 1	650 ha
MINING DIVISION: Omineca		NTS: 94C/03E		BCG	S: 094C.	005, 015
LOCATION: on the south side of	the Osilinka	LATITUDE: 56°	' 7.5'	LON	GITUDE	L: 125° 01'
River near Wasi Lake some 150 k	m northwest of	UTM NAD 83	ZONE 10	6 22	21 500N	374 500E
Mackenzie, 200 km northeast of S	mithers and	PROPERTY IN	FEREST:			<u> </u>
43 km north-northwest of German	isen Landing	Cross Lake Mine	erals Ltd. – 1	00%		
MAP 1:250 000 94C Mesilini	ka River	Bard Ventures L	/td. – 0%			
1:50 000 94C/03 Uslik	a Lake					
1:20 000 94C005 Con	glomerate Mtn.					
1:20 000 94C015 Tena	akihi Range					
AGREEMENT SUMMARY: Lett	· ·	-				

Ltd. and Bard Ventures Ltd. whereby Bard may earn a 50% interest in the Property by incurring aggregate exploration expenditures of \$800,000 by December 31, 2006.

CLAIM NAME	TENURE NUMBER	UNITS	RECORD DATE	DUE DATE (yyyy-mm-dd)	ANNUAL WORK	RECORDED HOLDER
NAME	NUMBER		(yyyy-mm-dd)	(yyyy-um-dd)	REQUIRED	HULDER
OSI	379604	20	2000-07-25	2005-08-01	\$4000.00	Cross Lake Minerals Ltd.
TM 1	386919	01	2001-05-28	2006-08-01	200.00	Cross Lake Minerals Ltd.
TM 2	386920	01	2001-05-28	2006-08-01	200.00	Cross Lake Minerals Ltd.
TM 3	386921	01	2001-05-28	2006-08-01	200.00	Cross Lake Minerals Ltd.
TM 4	386922	01	2001-05-28	2006-08-01	200.00	Cross Lake Minerals Ltd.
TM 5	386923	01	2001-05-28	2006-08-01	200.00	Cross Lake Minerals Ltd.
TM 6	386924	01	2001-05-28	2006-08-01	200.00	Cross Lake Minerals Ltd.
C 1	387799	01	2001-07-01	2006-08-01	200.00	Cross Lake Minerals Ltd.
C 2	387800	01	2001-07-01	2006-08-01	200.00	Cross Lake Minerals Ltd.
OSI 2	390515	18	2001-10-19	2005-08-01	3600.00	Cross Lake Minerals Ltd.
OSI 3	390516	20	2001-10-19	2005-08-01	4000.00	Cross Lake Minerals Ltd.
		66			\$13200.00	

ASSESSMENT WORK SUMMARY

Date of Filing (yyyy-mm-dd)	Work Filed \$	New Work Applied \$	PAC Credits Applied	PAC Credits Saved	Total PAC Credits	Date of Approval (yyyy-mm-dd)	Event Number
2001-01-24	2000.00	2000.00	0	0	-	2001-01-24	3159811
2002-03-26	Notice to C	Froup: 11 clain	15			2002-03-26	3177258
2002-03-26	9539.53	9500.00	0	39.53	-	2002-07-31	3177259
2002-09-23	6500.00	5086.76	1413.24	-	-	2003-08-12	3184393
2003-09-09	Notice to C	Froup: 11 clain	ns for Commo	n Anniversar	y Date	2003-09-09	3199038
2003-09-09	0	0	1506.41	0	-	2003-09-09	3199038
2004-07-29	5400.00	5000.00	400.00	0	-		3214539

Item	Work Performed	Quantities / Rates	Amount
Project Geologist:	Sampling and mapping.		
B. Mawer, P.Geo.,	Period: June 8-24, 2004	10 days @ \$400.00	\$4000.00
A.B. Mawer			
Geological Consulting	1		
Field Assistant:	Sampling		
Matthew Keevil	Period: June 14-24, 2004	10 days @\$150.00	\$1500.00
Transportation:	4x4 pickup truck:		
Vancouver to	Period: June 14-24, 2004	8 days @ \$75.00	600.00
property, onsite and		Fuel	<u>416.36</u>
return			1016.36
Accommodation and	Abitibi Consolidated		
Meals	Omineca Camp: June 16-22	2 persons / 7 days	1508.00
	Other travel expenses		<u>599.08</u>
			2107.07
Analytical Services:			
Acme Analytical	ICP-MS 35 element analyses	148 samples	2207.28
Laboratories Ltd.			
Map Preparation:	Base Map Preparation, Data	18 hours @ \$50.00	900.00
L. Erdman	Plotting and Geological Map		
	Preparation		
Project Geologist:	Data Analysis and Report	3 days @ 400.00	1200.00
Calvin Church, P.Geo.	Preparation:		
Caledonia Geological			
Inc.			
Printing:	Map reproduction		50.00
Total	······································		\$12980.71

SECTION C: EXPENDITURES – Wasi Creek Property-2004 Geochem – Phase 1

Expenditure Apportionment:

Claim	Samples	% of Total	Expenditure
OSI	26	17.57	2280.71
OSI 2	19	12.84	1666.73
OSI 3	18	12.16	1578.45
TM 2	9	6.08	789.23
TM 3	1	0.67	86.97
Subtotal	73	49.32	6402.09
Outside Claim Area	75	50.68	6578.62
Total	148	100.0	\$12980.71

i

SECTION D: ANALYTICAL RESULTS

- 1. Analyses carried out by Acme Analytical Laboratories Ltd. of Vancouver, B.C.
 - Certificate of Analysis #A402989 dated July 9, 2004
 - Certificate of Analysis #A402987 dated July 9, 2004
 - Certificate of Analysis #A402987R dated July 15, 2004
 - Certificate of Analysis #A402988 dated July 15, 2004
 - Statement of Analytical Procedures: 4 data sheets

AΑ									(GE(ЭCН	EMI	CAI	ĿΑ	NA	Lı:	SIS	5 C	ER'	FIF	IC	ATE							lUL	2	17	an			Δ.	Δ
TT .							<u>C1</u>	<u>:058</u>	<u>3 L</u>	<u>ak</u>		<u>ine</u> 55 W.										F	,ag	ie 1								vo			Ľ	Ľ
PLE#	Mo ppm	Cu ppm			Ag ppm		Co ppm					Au ppb p										Cr ppm	Mg %	Ba ppm									TI S opm %			Samp1 c
LINE 1 0+013N	8.5	32.3	22.6	5 229	.5	33.0	7.0	261	2.99	11.7	1.9	1.7 4	1.1	20 2	2.4 2	2.0	.1 7	76.	27.	198	14	25.2	. 32	213	.029	2 1	.43	.005	.07	.2	.11 3	3.0	.2<.05	4]	4	15.
LINE 1 0+012N																																	.1 .07			5.
LINE 1 0+011N																																	.1<.05			7.
LINE 1 0+010N LINE 1 0+009N																																	.1<.05			15. 15.
																																			•	
LINE 1 0+008N																																	.2.07			15.
_INE 1 0+007N _INE 1 0+006N							11.3																										.1<.05			15 15
LINE 1 0+005N							11.5																	551									.1<.05			15.
INE 1 0+004N	1.8	31.3	8.8	3 58	.2	25.8	8.3	334	2.91	9.8	8 1.3	4.0 4	1.5	40	.2	.9	.1 6	61 .	75.	111	20	27.0	. 50	300	.054	2	.94	.010	. 08	.1	.08 4	.0	.1<.05	3	.6	15
LINE 1 0+003N	2 0	32 0	8 -	61	ર	30 B	9 1	378	2 80	7 7	20	3.0.3	35	37	3	8	1 6	62	58	084	17	26.9	55	333	055	21	20	009	09	1	08.3	q	.1<.05	4	7	15
LINE 1 0+003N							11.4																										.1<.05			15
LINE 1 0+001N																																	.2<.05			15.
LINE 1 0+000N							9.6																										.1<.05			15
LINE 2 OS	8.0	109.8	28.	3 263	1.8	60.2	12.6	394	4.52	22.3	8 2.7	11.3 0	0.0	62 .	1.94	1.3	.3 3	39.	59.	186	22	19.8	.23	693	.016	1	. 78	.004	.08	.1	.36 4	.0	.2 .07	2 3	.4	15.
LINE 2 0+001S	3.0	92.0	19.3	3 226	.7	61.0	14.7	451	3.64	9.3	3 1.9	3.5 7	7.4	35 1	1.1 1	L.5	.3 3	34.	82.	136	25	19.1	. 29	441	.019	2	.83	.005	.10 <	<.1	.24 5	.4	.1<.05	22	. 0	15.
LINE 2 0+002S							11.5																	556									.1<.05			15
WW LINE 2 0+003S							11.1																	483			36	.007	.15	.1	.36 4	.5	.1<.05	41		15.
LINE 2 0+003S LINE 2 0+004S							11.5																										.1<.05			15. 15.
																																				10.
LINE 2 0+005S							6.7																										.1<.05			15.
LINE 2 0+006S LINE 2 0+007S							12.8																										.1<.05		. –	15. 15.
LINE 3 0+0075	2.2	67.2	13.7	/ 158	.4	51.5	11.3	382	3.07	8.8	$\frac{1.2}{1.7}$	$\frac{2.3}{24.1}$	3.6	29 3	1.2 1	1.2	.2 2	<u>49</u>	59 .	093	21	$\frac{20.3}{21.8}$.30	432	.033								.1<.05		<u> </u>	$\frac{15}{15}$
LINE 3 0+007N																																	.1<.05		.8	15.
LINE 3 0+006N	2 0	60 /	14	7 80	7	35 /	11.7	485	3 23	14 :	331	37 5 4	15	57	5 2	> 0	1 3	72 1	05	283	21	27 R	<u>4</u> 0	407	046	2	qq	008	10	1	11 1	7	.1<.05	२ 1	1	15
LINE 3 0+005N							9.7																	284									.1<.05	_	. –	15.
'INE 3 0+004N	6.2	64.0	16.9	223	.2	49.2	11.8	438	3.38	16.2	2.1	3.76	5.3	46	.9 2	2.2	.2 5	58.	53 .	122	22 3	26.1	.46	588	.042	21	.02	.006	. 08	.1	.10 3	.7	.1<.05	31	.7	15.
INE 3 0+003N							13.8																	887									.1<.05			15.
LINE 3 0+002N	3.4	92.2	15.2	2 152	.5	62.1	14.1	507	3.62	14.4	5.9	4.5 5	o.9	39	./1	/	.2 5	50.	60.	134	19 3	37.8	.64	359	.033	21	.17	.006	. 11	.1	.22 6	.0	.1<.05	41	σ.	15.
LINE 3 0+001N	1.4	45.8	13.8	8 76	.1	30.0	10.9	561	2.90	9.4	1.4	2.3 8	5.4											1194									.1<.05		.7	15.
LINE 3 OS	4.4	94.1	46.6	5 149	.3	69.6	18.6	3628	6.51	17.3	3 2.4	2.9 9	9.2	39	.91	4	.3 4	42.	37.	086	28 2	28.9	.75	1012	.026	31	.40	.006	.13 <	<.1	.43 7	.1	.2<.05	4 1		15.
LINE 3 0+001S							12.9																										.1<.05			15.
LINE 3 0+002S							10.4																										.1<.05 .0<.05			15.
NDARD DS5	13.2	130.4	25.5	122	.3	24.0	11./	190	3.02	19.6	0.2	46.1 6		40 5	J./ 3	0.00	.ა ხ		74 .	000	10 11	/9.4	.08	145	.094	13 1	.91	. 034	. 14 4	1.0	.10 3	.31	.05.05	/ 5	. U	15.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Repuis.

Data MCFA

/nly 9/04 DATE RECEIVED: JUN 24 2004 DATE REPORT MAILED:

ACME ANALYTICAL														<u> </u>																				NALYTICA
SAMPLE#	Mo ppm		Pb ppm				oC maa												Р %р		Cr ppm		Ba ppm		B A DDM						T I DDM			Samp1 q
																			· · · ·	· · · · · · · · · · · · · · · · · · ·					PP			~ PP-		··· PP···	PP	~ pp.		9
-1																			.082						1.8									15.
V LINE 3 0+003S	1.1	22.6	8.1	94	.3	16.9	6.3	362	1.60	6.1	. 8	2.4	1.6						.087				426								.1 .		.7	
V LINE 3 0+004S							9.4												.058						2 1.0								.9	15.
√ LINE 3 0+005S							8.9												.070						1 1.1									15.
W LINE 3 0+006S	7.9	68.5	13.4	177	2.5	45.9	9.1	746	3.40	21.0	2.5	8.2	2.6	62	.62.	3.2	2 19	. 59	.062	14	13.2	. 22	2596	.009	5 1.0	0.0	04.	09 <.1	.3	0 2.8	.1 .	10 2	3.4	7.
/ LINE 3 0+007S	1.3	58.4	16.4	121	.6	48.9	15.2	576	3.21	8.4	.9	7.8	4.9	69	.3.	7.2	2 38	.84	.078	22	26.3	.72	791	.025	2 1.3	4.0	07.	09 <.1	.1	64.8	.1<.	05 3	1.2	15.
LINE 3 0+008S	2.1	48.7	20.4	157	.2	35.3	12.1	492	3.28	12.6	1.7	2.3	8.7	38	.82.	1.4	4 49	.45	.097	26	25.5	. 62	421	. 027	51.4	4.0	08.	25 .1	.2	5 5.0	. 2<.	05 4	1.0	15.
V LINE 3 0+009S	1.0	54.4	13.7	82	.1	46.4	16.2	730	3.83	9.7	.9	3.2	4.7	41	.21.	0.2	2 88	.73	.085	17	51.7	. 88	357	.109	4 1.7	3.0	14.	15 .1	.1	4 8.5	.1<.	05 6	<.5	15.
W LINE 3 0+010S	1.1	33.5	12.1	54	.1	22.5	7.9	307	2.55	9.0	.9	5.9	4.8	22	.1 .	9 .:	1 51	. 31	.066	18	23.8	. 53	117	. 055	31.0	7.0	06.	12 .1	.0	4 3.2	.1<.	05 3	.7	15.
W LINE 3 0+011S	.9	24.5	12.4	43	<.1	18.6	8.1	345	2.38	8.1	.8	4.6	5.8	26	.1 .	8 .:	1 44	. 38	.072	22	20.5	. 45	264	.044	1.8	4.0	09.	10 .1	.0	6 3.3	.1<.	05 3	<.5	15.
.E 3 0+012S	19	63 6	33.2	83	.1	33.9	19.5	674	4.12	17.1	1.6	16.0	5.8	28	.31.	3.3	3 62	.41	.136	18	30.3	.64	264	.033	2 1.3	0.0	05 .	12 .1	1	0 4.1	.1<	05 4	.7	15.
W LINE 3 0+013S							8.6												.082						2.9								<.5	15.
W LINE 3 0+014S							15.7												. 167						1 1.1								1.8	15.
W LINE 3 0+015S							10.2												.101						3.8								<.5	15.
E WW LINE 3 0+015S	1.0	30.9	12.6	53	.1	21.4	9.5	439	2.49	9.2	1.0	3.0	5.0	30	.3.	8.1	1 53	.47	.097	21	22.7	. 49	252	.057	1.8	4.0	07.	09.1	.1	2 3.9	.1<.	05 3	<.5	15
√ LINE 3 0+016S	1 2	24 4	15 5	66	1	20.0	11.5	122	2 26	14 4	1 0	1 5		27	21	0 1	1 76	<i>A</i> 1	. 089	10	38.2	54	225	060	2 1.1	<u>م</u> م	06	11 1	0	Б Л 1	1~	05 /	.5	7.
W LINE 3 0+0105							9.7												.056						2 .9									15
W LINE 3 0+0173							10.3												.073						1 1.0								.5	15
W LINE 3 0+020S																			.064						1 1.3									7.
W LINE 4 OS																			.123						2 1.7								.6	15
	0.1		11 1	06	1	41 0	13.6	611	2 06	12 5	0	6 6	4.0	24	2 1	G 1	1 04	52	.080	10	10 0	07	200	000	1 1.8	0 0	00	11 / 1	2	1 0 0	1~	05 6	.7	15.
W LINE 4 0+001S	2.1	04.0	11.1	00	.1	41.0	10.0	044	3.00	12.5	.0 7	0.0	4.0												2 1.8								.7	15.
W LINE 4 0+002S W LINE 4 0+003S																			. 150						<1 1.0								2.8	15.
W LINE 4 0+0035																									2 1.7								2.5	15.
																									4 3.2								5.9	15.
W LINE 4 0+0005	10.0	107.4	10.1	540	2.0	141.2	10.0	417	5.50	21.0	0.2	,.,	7.1	100 .	5.27.	0	- 101	. 50	. 440	10		. 51- 1		. 040	4 0.2	0.0			. 1.0	1 /.1	.,	00 0	0.5	10.
W LINE 4 0+006S																									21.0								2.5	15.
W LINE 4 0+007S																			.113						<1 1.1								.7	15.
W LINE 4 0+008S							15.6							26	.11.	2.1	1 12	. 34	.069	42	9.9	. 15			2.6								.7	15.
₩' NE 4 0+009S	3.2	57.8	14.6	85	.1	31.1	15.5	743	3.14	10.1	1.3	5.0	4.7	32	.31.	2.2	2 69	.51	. 090	19	32.0	. 55			3 1.3								.9	15.
₩ .IE 4 0+010S	1.3	24.0	10.7	60	.2	18.9	7.9	345	3.32	6.3	.5	74.0	2.3	22	.3.	5.1	1 83	. 29	.116	11	28.8	. 44	105	.043	1 1.6	7.0	06.	06 .1	0	6 3.4	.1<.	05 E	5۔ >	15.
W LINE 4 0+011S	3.0	46.1	9.2	80	.4	32.0	11.7	553	3.45	8.7	1.6	1.9	2.3	34	.5.	8.1	1 85	.50	.085	13	36.2	. 63	207	.047	<1 1.6	6.0	08.	08.1	1	4 4.9	.1<.	05 5	.8	15.
W LINE 4 0+012S	1.6	45.8	6.0	61	.3	28.6	10.5	422	3.01	7.5	.8	3.7	2.2	31	.3 .	8 .1	81	.56	.092	13	37.5	. 68	164	.085	4 1.4	0.0	09.	05 .1	0	95.7	.1<.	05 4	.7	15.
W LINE 5 0+007N																									2 1.2								6.4	15.
W LINE 5 0+006N																									1 1.0								1.5	15.
W LINE 5 0+005N																									2 1.1								.6	. 15.
					•		10.1	700	2 04	10 1	6.2	12 0	2.0	16	503	963	2 61	77	000	12 1	02.2	71	147	101	18 2.0	2 01	35	15 / 0	1	834	1 20	05 7	1 8	15
STANDARD DS5	13 1	145 4	25 7	140		2h (1																												

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data WL FA

Data NR FA

ACME ANALYTICAL																					_																	ACME A	ANALYTICAL
	SAMPLE#	٨	0	Cu	Рb	Zn	Ag	N N	i Co	Mn	Fe	As	U	Ац	Th	Sr	Cd	Sb	Bi	٧	Ca	Ρ	La	Cr	Ma	Ba	Ti	в	Al Na	ĸ	w	На	Sc 1	n :	5 G	ia Se S	Sample		
			n p				-																									-				na pom			
					<u> </u>											<u> </u>				-			·			-												<u></u>	
	G-1	1.	53	.0	2.3	41	<.1	4.	3 3.7	518	1.90	.6	1.9	1.3	4.0	74	<.1	<.1	.1	38	.51 .	082	8 1	6.3	.51	213 .	118	3.	.113	.41	2.4 <	.01 2	2.2	.3 <.05	5	4 <.5	15		
	WW LINE 5 0+004N	2.	7 78	.5	16.8	113	.3	41.	5 13.9	804	3.01	13.3	1.2	4.5	5.5	41	.4	1.5	.2	46	.30 .	073	19 2	2.0	.50	1323 .	037	11.	10 .006	.07	.1	.14 4	.2	1 <.05	5	3 1.8	15		
	WW LINE 5 0+003N	4.	4 136	.6	14.7	243	1.3	104.	2 16.9	1638	3.21	8.8	1.8	7.0	5.2	26	2.1	2.2	.2	18	.29 .	071	27 2	21.5	.51	368 .	009	11.	02 .003	.04	<.1	.31 4	.3 .	.1 <.05	5	2 3.4	15		
	WW LINE 5 0+002N	1.	2 64	. 6	15.1	93	.3	34.	3 12.1	779	2.79	11.2	1.6	6.8	5.6	39	.4	.9	.2	46	.45 .	077	21 2	25.8	.56	974 .	047	11.	26 .010	. 12	.1	.16 5	.3.	.1 <.05	5	3 1.1	15		
	WW LINE 5 0+001N	1.	3 46	. 6	12.3	96	1	23.	59.3	547	2.27	8.8	1.5	3.0	4.6	42	.2	.8	.1	39	.34 .	081	17 1	9.5	. 42	870 .	044	2.	32 .010	.07	.1	.12 3	J.5 .	.1 <.05	5	2.7	15		
	WW LINE 5 ON	1.	9_67	.9	17.6	101	. 2	52.	4 15.9	838	3.56	11.6	1.3	4.1	5.1	38	.3	1.2	.2	58	.41 .	078	18 3	14.9	.67	1112 .	062	31.	23 .007	. 09	.1	.15 5	.4 .	1 <.05	5	4 1.0	15		
	WE LINE 1 0+027N																																			2 2.6	15		-
	WE LINE 1 0+026N																																			2 15.4	15		
	WE LINE 1 0+025N																																			2 1.5	15		
	WE LINE 1 0+024N	6.	3 35	.0 1	.31.0	431	.3	68.	2 9.6	521	2.27	17.3	2.0	1.4	1.4	125	2.7	2.5	.1	77 9	9.52 .)85	8 1	9.8	4.63	1908 .	035	3.	57 .009	. 04	.2	.43 2	5 .	.2 .12	2	2.7	15		
													•																										
	WE LINE 1 0+023N																																			4.6			
	WE LINE 1 0+022N																																			1 2.2			
	WE LINE 1 0+021N																																			1.9 12.2	15		
	WE LINE 1 0+020N WE LINE 1 0+019N																																			1 2.2	15		
	WE LINE 1 0+015M	0.	/ 10	.1 14	.00.0	3903	1.0	40.	J J.I	550	2.01	56.1	1.4		.0	120 2	2.7	4.0	- <i>.</i> I	20 1.		,45	'	J.4	0.05	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	014	1 .		. 02				5.22		1 .5	15		
	WE LINE 1 0+018N	29	5 52	. 4	62.4	285	9	71.	8 7.1	264	2.15	25.6	3.9	2.9	3.4	55	1.3	5.4	.2	72	.52 .1	93	15 2	0.3	.40	673.	013	3 .:	3.005	.07	.5	.69 2	2.5 1.	.0.10	0	2 3.0	15		
	WE LINE 1 0+017N																																			3 1.8	15		
	WE LINE 1 0+016N	5.	8 51	.6 7	/26.9	2849	1.6	61.	8 14.1	1044	3.71	26.5	2.0	4.9	2.4	52 1	1.8	3.9	.1	77 :	3.14	108	12 3	3.7	1.93	730.	048	2 1.	.013	.07	.23	.02 4		.7 <.05	5	4 1.2	15		
	WE LINE 1 0+015N	3.	8 24	.4 3	314.6	1320	.6	68.	3 8.0	481	2.34	15.6	1.4	1.8	1.4	60	4.6	2.5	.1	53 9	9.27 .	066	11 2	5.7	4.77	1218 .	043	2.1	.012	.05	.21	.22 2	.8.	.6 .08	8	3.8	15		
	RE WE LINE 1 0+014N	1.	9 30	.5 26	j36.0	998	5.3	34.	6 8.7	521	2.81	21.0	.8	3.6	1.3	50	3.5	4.0	.1	60 (5.80 .0	081	93	0.1	3.70	279.	048	2.	.012	.05	.2 6	.37 2	.9	.3 .07	7 '	3.9	15		
	WE LINE 1 0+014N	2.	0 31	.4 26	573.7	1005	5.3	33.	5 8.8	536	2.98	21.9	.9	3.4	1.3	51	3.7	3.9	.1	60 (5.72 .0	88	10 3	1.1	3.80	296.	048	3.	.012	.05	.26	.48 3	.0.	.3 .07	7 :	3.8	15		
	WE LINE 1 0+013N	2.	7 39	.24	84.2	1953	. 8	32.	9.2	478	2.73	23.4	.7	.8	2.1	77	9.4	2.7	.1	51 1	1.41 .)70	82	6.0	2.97	473.	055	2.1	81 .010	.06	.12	.38 3	. 1 .	.7 <.05	5 3	3.6	15		
	WE LINE 1 0+012N																																			3 <.5	15		
	WE LINE 1 0+011N																																			3.5	15		
	WE LINE 1 0+010N	2.	7 29	.02	.64.1	2120	.6	41.	4 7.0	399	2.11	20.5	.9	5.0	1.5	66	9.0	3.1	<.1	49 10).49 .1)68	7 1	9.4	5.27 1	1823 .	041	4 .	5 .011	. 04	.21	.09 2	2 .	.5 <.05	5 ;	2.6	15		
	1 T 1 1 1 0 000	,	0 96			420		20		445	1 20		7	٦. ٢	17	60	• •	1 7	1	ED 1/		171		0.0	4 00	060	n.4.C		1 010	05	1	70 0		3 0/	<i>c</i>	2 <.5	10		
	WE LINE 1 0+009N WE LINE 1 0+008N																																			25			
	WE LINE 1 0+000N WE LINE 1 0+007N																																			3.7 1.7			
	WE LINE 1 0+007N WE LINE 1 0+006N																																			2.5	15		
	WE LINE 1 0+000N																																			2 <.5			
	AC LINE I 0.005M	•	, 10		01.0	747			. 0.0	-06	1.35		.,	1.0	•	0,	0.0						• •	0.0				• •					•••••				15	-	
	WE LINE 1 0+004N	1.	9 22	.1 2	207.8	1038	9	21.	7 5.9	399	2.03	15.4	.7	1.0	1.7	104	6.7	2.0	.1	32 14	1.64 .0)60	61	3.5	4.15	966.	032	2.4	4 .012	.03	.1 2	. 28 1	. 8 .	.6 .12	2	1.7	15		
	WE LINE 1 0+003N																																			2.7			
	WE LINE 1 0+002N	2.	0 34	.8 2	264.1	1499	.5	31.	5 9.1	511	2.45	12.9	.8	2.0	2.3	101	5.2	1.5	.1	52 10). 93 .()65	8 2	2.8	2.93 1	1326 .	051	2.8	6 .009	. 05	.1	.75 3	.3.	.3 <.05	5 :	3 <.5	15		
	WE LINE 1 0+001N																																			2 1.4			
	WE LINE 1 ON	20.	0 52	.4 2	49.5	781	.6	79.	3 8.8	349	2.19	35.1	3.0	2.6	2.4	118	3.7	8.0	.1	51 (5.30 .0	86	91	2.0	3.32 1	1755 .	011	1.4	2 .005	.06	.4	.91 2	.0 1.	.1 .15	i 1	1 2.7	15		
	STANDARD DS5	12.	8 148	.0	25.5	141	.3	25.	3 12.4	805	3.00	18.9	6.1 4	42.6	2.7	45	5.7	3.8	5.0	62	.77 .(94	12 19	2.2	. 69	148 .	100	17 1.9	6 .034	. 14	4.9	.17 3	.4 1.	2 <.05	j 7	7 5.0	15		
						-												_																					

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

Data A FA

ACME ANALYTICAL				~~~~																																	ACME ANALYTICA
	SAMPLE#	Мо	Ci	1	Pb	Zn	Ag	Ni C	o Mn	Fe	As	U	Au	Th	Sr (cd s	b Bi	٧	Ca	Р	La	Cr	Mg	8a	Ti	B A	l Na	ĸ	W	Hg	Sc	n	S	Ga	Se Sa	ample	
			рря		DDAM D	opm p	-										m ppa						-						ppm	-						•	
																								•••••		• •											
	WE LINE 1 OS	19.5	52.8	350	6.0 9	35 1	.2 65	.78.	0 438	2.44	35.0	3.0	4.0 1	.6 1	07 3	.1 5.	5.1	59	7.60	.090	9	16.4 3	3.38 1	1288 .0	14	2.48	3 .006	.06	.5	2.00	2.0	1.4	. 08	1	2.6	15	
	WE LINE 1 0+001S	2.2	15.2	2360	0.2 26	697 4	.7 25	.0 7.	4 853	3.71	21.7	. 8	3.1 1	.1 1	25 19	6 3.	9.1	39	11.80	. 069	11	20.3 4	.77	502.0	19	1.8	1.006	.04	.3	16.33	2.2	.2	. 10	2	.9	15	
	WE LINE 1 0+002S	2.1	17.4	49	9.3 1	82	.1 41	.8 6.	4 437	1.69	10.5	.8	3.6 1	.1	83	.6 1.	5 <.1	37	14.26	. 052	5	18.2 6	5.50	590.0	33	1.4	800. 1	.03	.2	. 20	1.5	.1 <	. 05	2	.5	15	
	WE LINE 1 0+003S	2.9	27.6	6	1.1 1	02	.3 44	.4 9.	9 536	2.54	11.7	1.0	1.9 1	.4	48	.4 1.	8.1	65	6.58	. 090	10	37.3 3	3.58	293.0	39	1.8	4 .009	.04	.3	. 21	2.9	.2 <	.05	3	.8	15	
	WE LINE 1 0+004S																3 <.1																	1 -	<.5	15	
	WE LINE 1 0+005S	2.5	22.7	8	9.4	95	.4 27	.0 7.	3 593	2.03	9.9	.9	2.0	.6	58	.5 2.	0.1	49	11.14	.082	11	25.3 5	.06	307.0	28	3.8	2 .010	.04	.3	.21	2.1	.1 <	.05	2	.7	15	
	WE LINE 1 0+006S																5 <.1																	2		15	
	WE LINE 1 0+0075																5 <.1																		<.5		
	WE LINE 1 0+008S																4 <.1																	2		15	
	WE LINE 1 0+0095					. –											6 <.1																	2		15	
	MC FINE I 040032	J.1	50.0	12.	1.0	55	.5 27	. 4 13.	U JJ4	5.03	1.0.3	.0	1.6 0		10	2.	• •.1	51	12.74	. 105	.,	1.J.I 4		JJ4 .0		.		1	.0	.20	2.0		. 33			13	
	WE LINE 1 0+010S	3 5	31 -	17	8.3	65	5 29	5 10	9 571	2 54	18.8	10	23 1	Q 1	00	5 4	9.1	45	13 54	079	12	17.3 5	73 1	1699 n	34	1 64	000	05	Δ	20	25	2 e	05	2	.7	15	
	WE LINE 1 0+0105																3 <.1																	1		15	
	RE WE LINE 1 0+0115																																	1.		15	
																	1 <.1																	2		15	
	WE LINE 1 0+012S																6.1																				
	WE LINE 1 0+013S	11.0	28.7	4120	0.0 1	109 3	.5 32	.0 10.	/ 02/	2.10	14.4	1.3	2.4 3	1	00	./ 13.	0.1	45	13.70	. 1 14	9	10.7 7	.03 1	1/0/ .0	30	2.04	2 .011	.07	1.0	.23	2.0	. 5	. 11	2	1.0	12	
	WE LINE 1 0+014S	3.6	52 (16	1 2 1	16	3 15	8 12	7 741	2 78	10.9	8	29 2	9 9	73	62	5.1	65	8 12	065	10	31 4 3	1 22 1	1327 0	69	1 1 0	2 012	10	3	30	43	2 <	05	4	7	15	
	WE LINE 1 0+0145																6.1																	3		15	
	WE LINE 1 0+0155																5.1																	4		15	
	WE LINE 1 0+0103																4 .1																	3		15	
	WE LINE 1 0+0173																4 .2																			15	
	WE LINE I V*0103	14.1	00.5	1	5.7	.05	.0 00	./ 12.	5 544	5.50	22.5	2.2	1.7		55	.0 4.	L	50	. 52	.055	15	00.0	. 57	710 .0	07	2 1.0			. 2		4.5		.05	-	1.7	15	
	WE LINE 1 0+019S	21.2	56 3	3	26 1	91	5 109	8 12	6 449	2.78	22.9	3.2	1.0 3	3.5	27 1	4 5.	0.1	65	. 89	.084	19	26.6	.51	735 .0	44	1.8	3.005	.09	.4	.46	4.6	.6 <	.05	2	1.8	15	
	WE LINE 1 0+020S																1 .1																	3		15	
	WE LINE 1 0+021S																1 .1																	3		15	
	WE LINE 1 0+022S	-															7.1																	2		15	
	WE LINE 1 0+0225																4.1																		.5		
	NC CINC 1 0.0255	4.0	12		0.0	34		.,	1 105	1.50	1.5				.,		· · ·	3,	.00			20.0				1 .0.					1.0	••				10	
	WE LINE 1 0+024S	43	54 4	1	07	79	6 43	99	8 491	2 76	12.3	1.6	39 3	4	34	2 1	5.1	57	36	071	15	28.9	42	699 0	51	1 1 03	7 007	07	2	14	29	2 <	05	3	1 4	15	
	WE LINE 1 0+0243																6.2																	3		15	
	WE LINE 1 0+0255	-															4.1																	-		15	
	WE LINE 1 0+0203																2.2																			15	
	WE LINE 1 0+0275																6.2																		2.6		
	WE LINE 1 0+0203	17.0	40.1	, 1	J.J		., 4/		,,		17.0	•••	0.0 0				U.2	-0	. 10			10.L	. 20	.0					••	. 55					2.0	1.5	-
	WE LINE 1 0+029S	0.0	43 6	1/	1 2	76 e	1 26	۵ ۵	6 153	2 38	13.6	1.5	413	1	59	12	2.2	42	16	055	9	19.8	21	424 N	28	1 60	010	.09	.1	.43	2.0	.9	15	2 :	3.6	15	
	WE LINE 1 0+030S																4.2																	3 4		15	
	WE LINE 1 0+031S																2.2																			15	
	WE LINE 1 0+0315 WE LINE 1 0+0325																7.3																	3 32		15	
	STANDARD DS5																9 6.3																			15	
·····	STANDARD DOD	13.7	142.4	23		.40	23		0 140	0.01	-0.0						. 0.0				14 1		. / 0	117 .1		- +. /					5.5			· · ·		1.5	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 5

Å	
ACME ANAL	YTICA

INC. I I ICAL										~~~~~																					
 SAMPLE#	Mo ppm	Cu ppm	Pb ppm		Ag ppm	Ni ppm	Co Mr ppm ppm							Sb B ppn pp			Р % р		Cr t ppm	Mig B %tpp		B ppm	A1 %	Na %	K N %ppr	N Hg n ppm	Sc ppm p	TI S pm %	S Ga S ppm	Se ppm	
G-1 WE LINE 1 0+033S WE LINE 1 0+034S WE LINE 1 0+035S WE LINE 1 0+036S	3.5 4.2 2.9	132.0 152.0 69.1	17.2 33.5 17.0	174 135 90	.6 6 1.3 5 .3 4	50.7 53.7 15.9	4.0 564 12.6 348 10.5 312 12.7 784 9.5 316	3.19 4.51 3.06	11.9 36.0 11.3	1.3 1.7 1.5	.84 3.96 4.84	4.1 4 5.4 5 4.0 3	1 .3 2 .1 8 .3	1.5 . 2.6 . 1.1 .	2 47 3 35 2 66	.21 .15 .42	.099 .177 .077	9 2 7 2 14 3	27.8.4 22.7.1 36.7.6	42 101 16 67 64 137	9 .039 5 .004 7 .064	2 1 4 1	.93 .68 1.12	.006 .005 .007	.08 . .08 . .06 .	.38 .52 .12	4.3 3.9 3.6	.3<.05 .8 .09 .1<.05	5 2 9 1 5 3	13.0 8.5 1.0	
 WE LINE 1 0+037S STANDARD DS5							6.6 316 11.9 765																							5.8 4.9	

Sample type: SOIL SS80 60C.

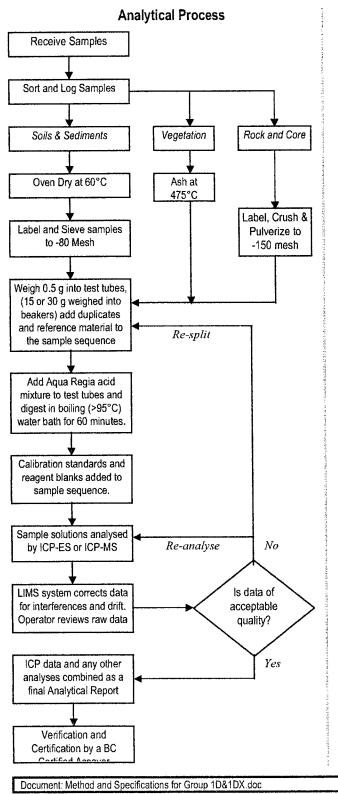
Data

	A	ANA ISO		CAL LZ 2 ACCI		100 C C C C C C C		22 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C	•	Ģ	EO	Lake	CAL <u>Min</u>	AN era	V 'CO' ALYSI <u>ls</u> F ., Vanco	ile	ERT #	IFI A40	298	0e	PH	ONE	(604)		-3158 JUL 2		600 104	` ?5:	3-171 Å	.6 A
SAMPLE#		Мо	Cu	Pb	Zn	Ag	Ni	Co Mr	n Fe	As	U	Au Th	Sr	Cd	Sb Bi	٧	Ca	Р	La	Cr Mg	g Ba	Ti	Β /	AT N	a K I	N Hg	Sc	Τl	S	Ga Se
		ppm	ppm	ppm	ppm	ppm	ppm	ppm ppr	n X	ppm	ppm	ppb ppm	ppm	ppm	ppm ppm	ppm	x	% p	pm	ppm %	s ppm	*	ppm	*	К %рр	n ppm	ppm	ppm	%р	pm ppm
SI C152667 C152668 C152669 C152670		1.0 8.4 .8	8.5 420.5 44.0 27.4 10.2	.9 2.0 1.2 19.0 6607.7		.2	12.3 3.1	<.1 5.0 34 .7 13 3.3 43 .5 156	3 .45 2 1.05	<.5 1.8 4.0	<.1 .9 .9 1.6 .9	1.7 <.1 6.0 1.5 1.7 .6 1.2 9.2 1.0 .8	2 43 5 10 39	<.1 .7 .1 .1 178.2	<.1 <.1 .1 .1 .4 .1 1.4 .2 7.5 <.1	13 11 3	.07 < .72 .01 .07 .24	.023 .005 .063	2 2 19	<pre><1 <.0] 9.3 .23 20.4 <.0] 4.7 .02 2.2 1.29</pre>	3 32 4135 2 166	.003	<1 .4	20 .00 48 .00 21 .02	3 .01 1.	.04	3.1 .8 .7	<.1 <.1		<1 <.5 1 11.1 1 1.2 1 .5 2 1.0
C152671 C152672 C152675 C152676 STA	69	1.8 8.2 5.0	38.7	>10000 72.3 43.1 8.7 24.8	123 287 73	.2		1.3 29 .8 80 9.4 13 56.3 19 11.9 770	.15 2.85 7.22	<.5	13.4 2.7 .4	8.8 <.1 <.5 3.1 3.8 1.6 <.5 1.9 40.9 2.7	52 1222 23 57 46	165.5 1.5 1.2 .1 5.7	180.6 .3 1.6 <.1 .8 .2 .3 .1 3.5 6.3	29 5 13 88		.003 .151 .012 .303 .090		<pre><1 5.65 5.2 1.50 11.2 .11 41.7 .61 38.5 .67</pre>) 640 48 20			08 .00 10 .00 51 .02	7 .03 . 5 .09 . 5 .02 <.	1.11	.5 3.8 4.7	<.1	.08 1.65 2.42	2 2.0 <1 <.5 2 5.8 9 3.8 7 4.7

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C

Data W/ FA ____ DATE RECEIVED: JUN 24 2004 DATE REPORT MAILED: July 9/04.

	<u>C108</u>	s Lake Minerals 1255 W. Pender St., Van SAMPLE#	ncouver BC V6E 2V1	JUL 2 1 2004
	·	SAMEDE#	Pb Zn	
	M-04-4 M-04-5	C152670 C152671 STANDARD R-2a	.88 6.47 3.63 1.87 1.49 4.17	
- SAMPLE TY	PE: ROCK PULP		STION TO 100 ML, ANALYSED BY I	ICP-ES.
Data / FA DATE R	ECEIVED: JUL 13 20	04 DATE REPORT MAILI	ED. July 15/04	NON OTO COM
			V	
				Clarence Leorig
				-


	SAMPLE#	\$i02 Al203			CaON %	a20 %	K20 %	Ti02 %	P205 %	MnO %	Cr2O3 %	Ni ppm	Sc ppm	LOI %			SUM %		
M-04-7 M-04-8 M-64-11	C152673 C152674 C152677 STANDARD SO-17/CSB	39.84 10.83 42.01 11.10 35.60 13.58 61.39 13.96	6.47 6.44 11.11	4.87 4.21 6.38	13.11 10.80	.05	4.62 : 4.81 :	2.27 2.27 3.53	.77 .79 .98	.11 .09 .13	.009	53 81 129	21 22 30	14.6 11.6	3.09	.42 1.02 2.48 5.33	99.31 99.14		
	GROUP 4A - 0.200 TOTAL C & S BY L - SAMPLE TYPE: R	ECO. (NOT IN OCK R150 60C	CLUDED	IN TH	E SUM)									•					
ata 📐 FA	DATE RECEIVE	D: JUN 24	2004	DATE	REPO	ORT	MAI	LED:		rly	<u></u>	loy.	• •		JHAN .	at A	olo/c	RIA	
									/	/	-			ł		C.	L	EDA	
																Clare	nce Leong	HINE	
		,																	
				i.															

يىلار يىلار												12	55 W	. Per	nder S	<u>z</u> t., Vi	ancou	e # 1 ver BC	V6E 2\	200 '1		(a)	<u></u>								
MPLE#	Be opm				a H n pp	וז אח	Nb ppm		Sn ppm		Ta ppm			J V n ppm	W ppm		n ppr	/ La n ppm						Gd ppm						Yb ppm p	
52673 (n-04-7) 52674 (n-04-8) 52677 (n-04-1) ANDARD SO-17	34	0.9	1.1 5.5	17.	18. 38.	4 14 0 11	40 .9 72 . 5	64.4 145.3	2	229.1	7.0 8.7	15.1 17.3	4.5 3.4	5 237 4 311	4.0 8.3	334.8 327.0	35.' 36.8	1 115.8 3 119.0	244.5	23.44 24.92	90.2 94.2	12.8 13.9	3.61 3.97	10.25 10.47	1.48	6.62 7.01	1.15 1.23	3.08 2.88	.41	3.03 . 2.75 .	37 453 36 478
								- SAM	IPLE	TYPE:	ROC	C R150	0 600	2		•		IS FINI		,											
`atad	'A _			D	ATE	RE	CEI.	VED:	JL	IN 24	2004	DA	TE	REP	ORT	MAIL	ED:	Jrl	iy 15	loγ	•••				NBIA	1 <u>0</u> 7	ō/	SER			
																	U							OH			e Leo	ng	PAS		
																								Y			7	EE			
								,																							
																															-

ACME AN			TD.	852 E.	HASTJ	INGS ST.	<u>. v vcc</u>	JUVER F	C V62	1R6	PH()NE (604) 253-3	158 FA	X (60/	753-1716
	SC J02 Accredited	I Co.)				ICAL AI										
TT			<u>Crc</u>		1255 W.	ineral: 1. Pender S	St., Vanco	ouver BC	V6E 2V1		(b)					
	SAMPLE#	Mo ppm	Cu ppm		Zn ppm		ppm		Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
1-04-7 1-04-8 7-04-11	C152673 C152674 C152677 STANDARD DS5	2.8 3.6 2.8 12.7	27.6 46.5 70.8 146.4	5.8 8.4 13.2 26.1	$12 \\ 12 \\ 64 \\ 142$	33.3 53.4 102.8 24.5	8.4 14.1 36.8 19.2	.2 .2 .2 5.7	.7 1.7 1.4 3.4	<.1 .1 <.1 6.4	.1 .1 .1 .3	.8 .8 .8 40.0	.04 .08 .09 .20	.1 .1 .7 1.1	.7 .7 .5 5.0	
GROUP 10	DX - 0.50 GM SAMPLE LEACH	HED WITH 3	5 ML 2-2-2	HCL-HNO3	-H2O AT (95 DEG. C	FOR ONE H	HOUR, DIL	UTED TO	10 ML, AN	IALYSED E	Y ICP-MS.	•			
- SAMPLE	CENTRATION EXCEEDS UPPER E TYPE: ROCK R150 60C							~		,		LIMITAU	J SOLUBIL	.111.		
ata N	FA DATE	RECEIVE	ED: JUN	24 2004	DATE	REPORT	MAILED	,Yrl	y 15	04		~	1	TAZC	X	
								•	/			(SIM)		₩J~~ /		
												101	Clarent	ce Leong		
												× A		T'	EEE	
																-
All resul	lts are considered the co	onfidentia	al property	/ of the (client./	Acme assum	nes the li	abilitie	s for act	ual cost:	of the	analysis	only.			

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

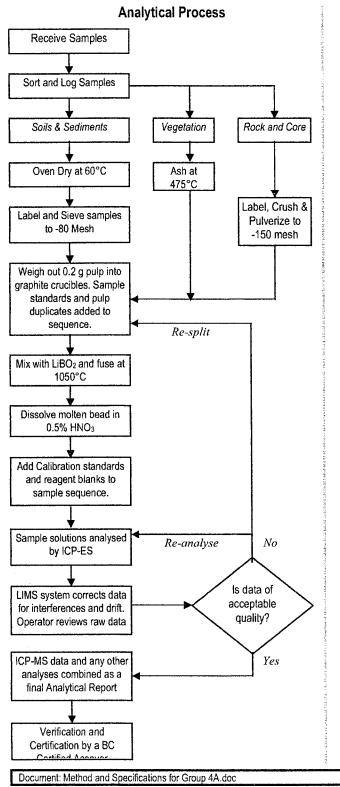
A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO₃ and de-mineralised H₂O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan6000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga*, *Hg*, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, *Sc*, *Se*, *Tl*, Sr, Th, Ti, U, V, W, Zn.

Quality Control and Data Verification


An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS5 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau, Ken Kwok, Dean Toye and Jacky Wang.

	فتقرفنا بسيرة فبالأناف استراب المترجين والمتراب فيسترج ويتثل والمتكاف والمتراوي	
Document: Method and Specifications for Group 1D&1DX.doc	Date: Jan 15, 2004	Prepared By: J. Gravel
	·····	

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 4A - WHOLE ROCK ANALYSIS BY ICP-ES

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 µm). Moss-mats are disaggregated then sieved to yield -80 mesh material. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 µm) in a mild-steel ring-and-puck mill.

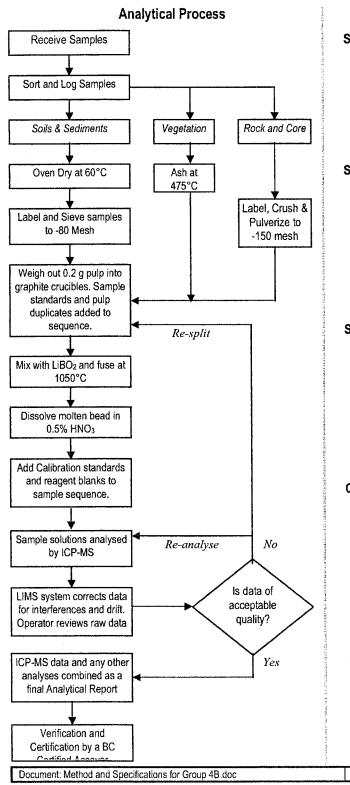
Sample Digestion

A 0.2 g sample aliquot is weighed into a graphite crucible and mixed with 1.5 g of LiBO₂ flux. The flux/sample charge is heated in a muffle furnace for 15 minutes at 1050°C. The molten mixture is removed and immediately poured into 100 mL of 5% HNO3 (ACS grade nitric acid in de-mineralised water). The solution is shaken for 2 hours then an aliquot is poured into a polypropylene test tube. Calibration standards, verification standards and reagent blanks are added to the sample sequence.

Sample Analysis

Sample solutions are aspirated into an ICP emission spectrometer (Jarrel Ash Atomcomp Model 975) for the determination of the basic package consisting of the following 18 major oxides and elements: SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, Na₂O, K₂O, MnO, TiO₂, P2O5, Cr2O3, Ba, Ni, Sr, Sc, Y and Zr. The extended package will also include: Ce, Co, Cu, Ta and Zn. A 1 g sample split is ignited for 90 minutes at 950°C, cooled in a desiccator then weighed with the difference expressed as percent Loss on Ignition (% LOI). A 0.1 g sample split is analysed for total Carbon and Sulphur by the LECO method.

Quality Control and Data Verification


An Analytical Batch (1 page) comprises 31 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD SO-17 to monitor accuracy. STD SO-17 was certified in-house against 38 Certified Reference Materials including CANMET SY-4 and USGS AGV-1, G-2, GSP-2 and W-2,

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye, Jacky Wang and Ken Kwock.

Depumpet: Mathed and Specifications for Crown 4A day	Date: Mar 22, 2004	Droparad Buy I Croual
Document: Method and Specifications for Group 4A.doc	Date: Mar 22, 2004	Prepared By: J. Gravel
	والمتعادينين والمتحابة الأربال بالمتكاف الكالك الكالكم فتحر المبطعة مرازك فالتهما وفوجه	والمستحد والمراجع والمردوقين المحمول والمحمية فمتعاف فيتحاول والمحمد والمحمول والمحمول والمحمول والمحمول والمحمول

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 4B - WHOLE ROCK TRACE ELEMENTS BY ICP-MS

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 µm). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μm) in a mild-steel ring-and-puck mill.

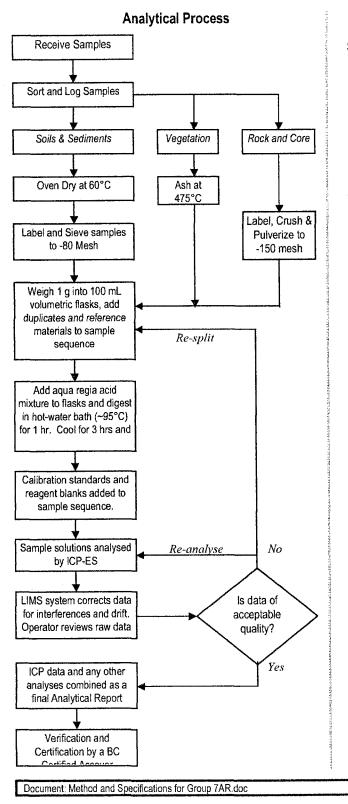
Sample Digestion

A 0.2 g sample aliquot is weighed into a graphite crucible and mixed with 1.5 g of LiBO₂ flux. The flux/sample charge is heated in a muffle furnace for 15 minutes at 1050°C. The molten mixture is removed and immediately poured into 100 mL of 5% HNO3 (ACS grade nitric acid in de-mineralised water). The solution is shaken for 2 hours then an aliquot is poured into a polypropylene test tube. Calibration standards, verification standards and reagent blanks are added to the sample sequence.

Sample Analysis

Sample solutions are aspirated into an ICP mass spectrometer (Perkin-Elmer Elan 6000) for the determination of the basic package consisting of the following 34 elements: Ba. Co. Cs. Ga. Hf, Nb, Rb, Sn, Sr, Ta, Th, Tl, U, V, W, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. A second sample split of 0.5 g is digested in Aqua Regia and analysed by ICP-MS (see Group 1DX) to determine: Au, Ag, As, Bi, Cd, Cu, Hg, Mo, Ni, Pb, Sb, Se, Tl and Zn.

Quality Control and Data Verification


An Analytical Batch (1 page) comprises 31 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD SO-17 to monitor accuracy. STD SO-17 was certified in-house against 38 Certified Reference Materials including CANMET SY-4 and USGS AGV-1, G-2, GSP-2 and W-2.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye, Jacky Wang and Ken Kwock.

Desumant: Mathed and Specifications for Croup 4P day	Date: Oct 2, 2003	Despend Duy Crough
Document: Method and Specifications for Group 48.doc	Date: Oct 2, 2003	Prepared By: J. Gravel

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 7AR – MULTI-ELEMENT ASSAY BY ICP-ES • AQUA REGIA DIGESTION

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 1 g are weighed into 100 mL volumetric flasks.

Sample Digestion

A 30 mL aliquot of modified aqua regia solution (equal parts ACSgrade HCl and HNO₃ acids and de-mineralized H₂O) is added and heated in a hot water bath (~95°C) for 1 hour. After cooling for 3 hours the solutions are transferred to 100 mL volumetric flasks and made to volume with 5% HCl. Very high grade samples may require a 1 g per 250 mL or 0.25 g per 250 mL sample to solution ratio for through digestion and accurate determination.

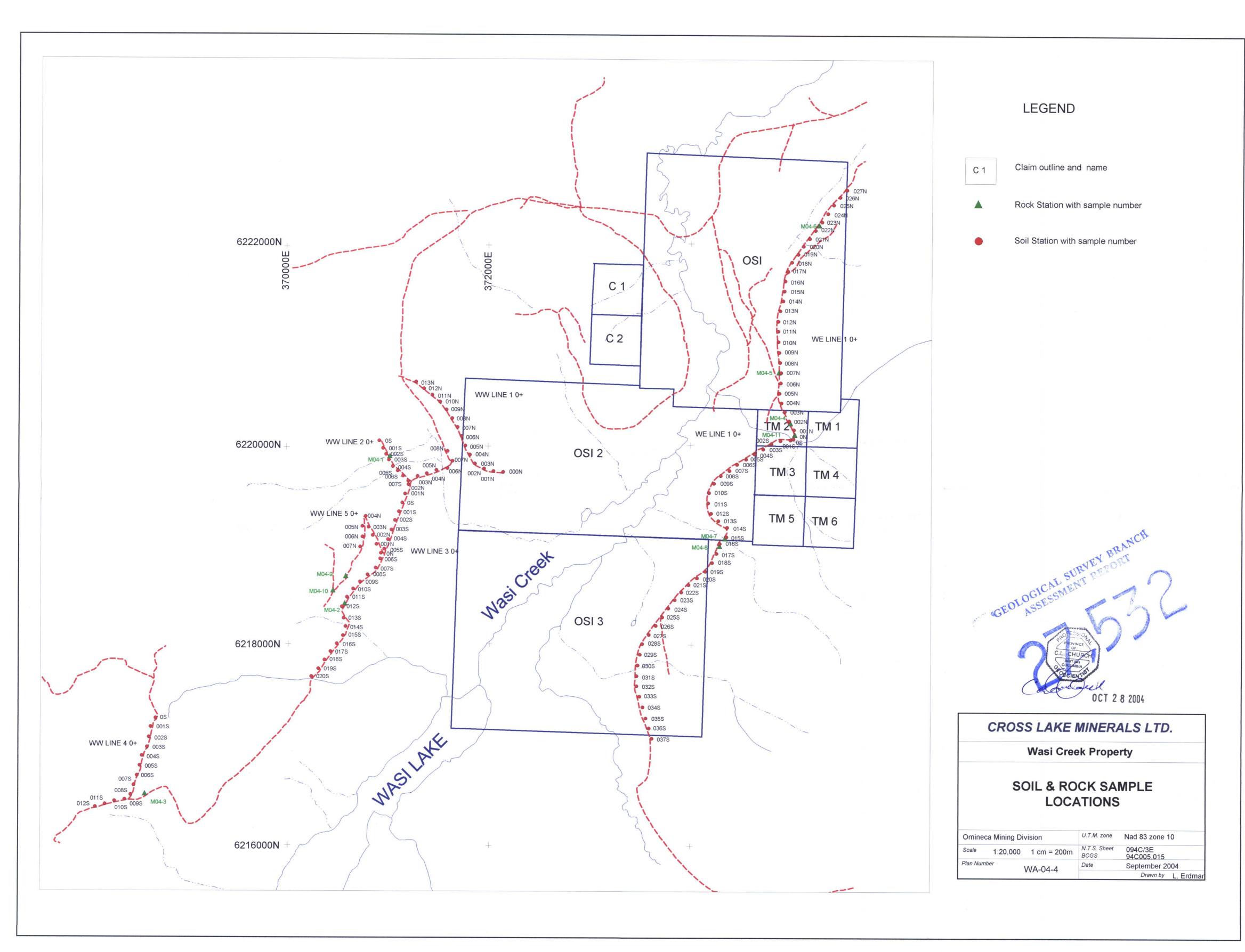
Sample Analysis

Solutions aspirated into a Jarrel Ash Atomcomp model 800 or 975 ICP atomic-emission spectrometer are analysed for a 23 element package comprising: Ag, Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, W and Zn.

Quality Control and Data Verification

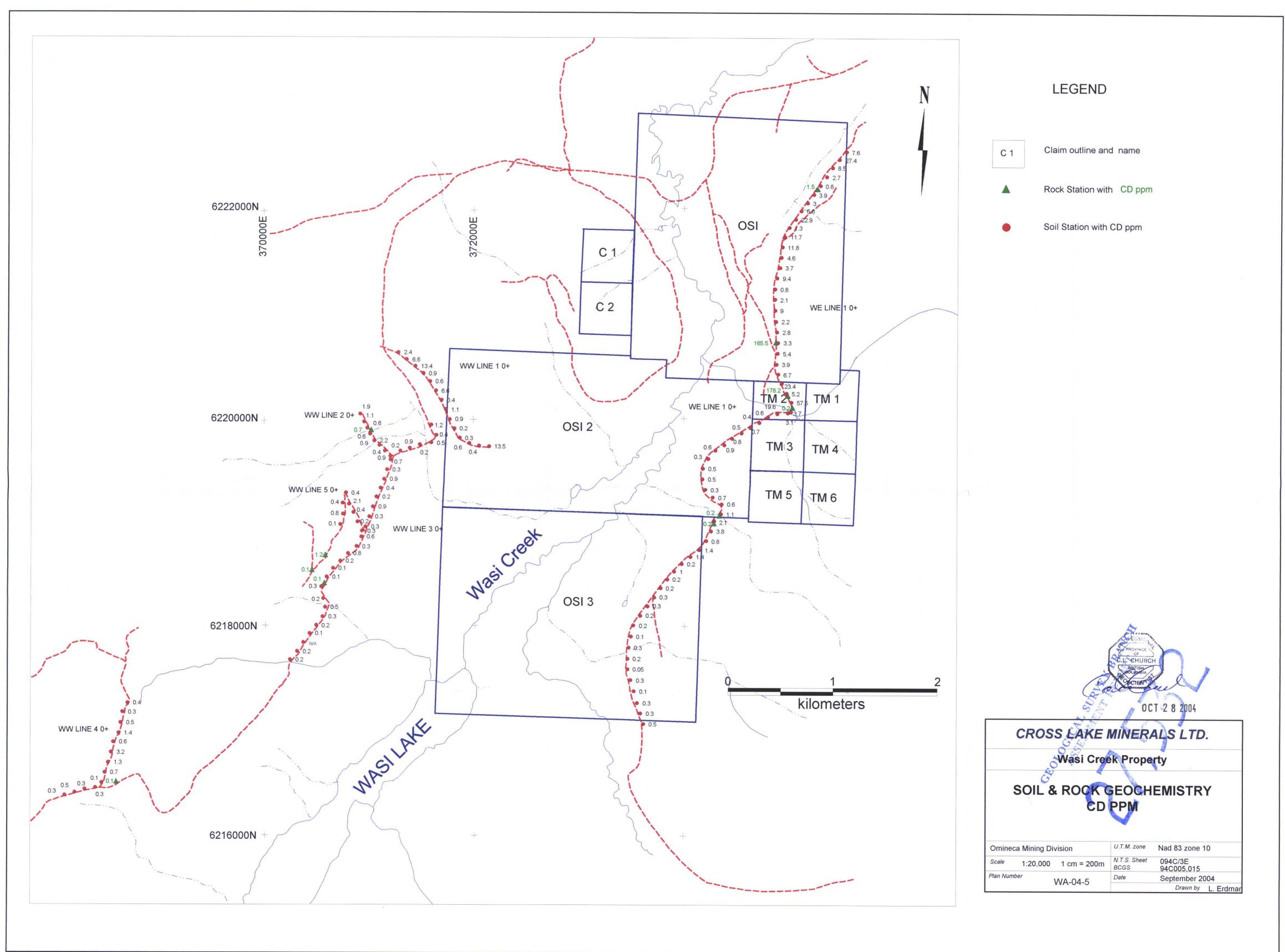
An Analytical Batch (1 page) comprises 33 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a prep duplicate from the -10 mesh rejects to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD R-2 to monitor accuracy.

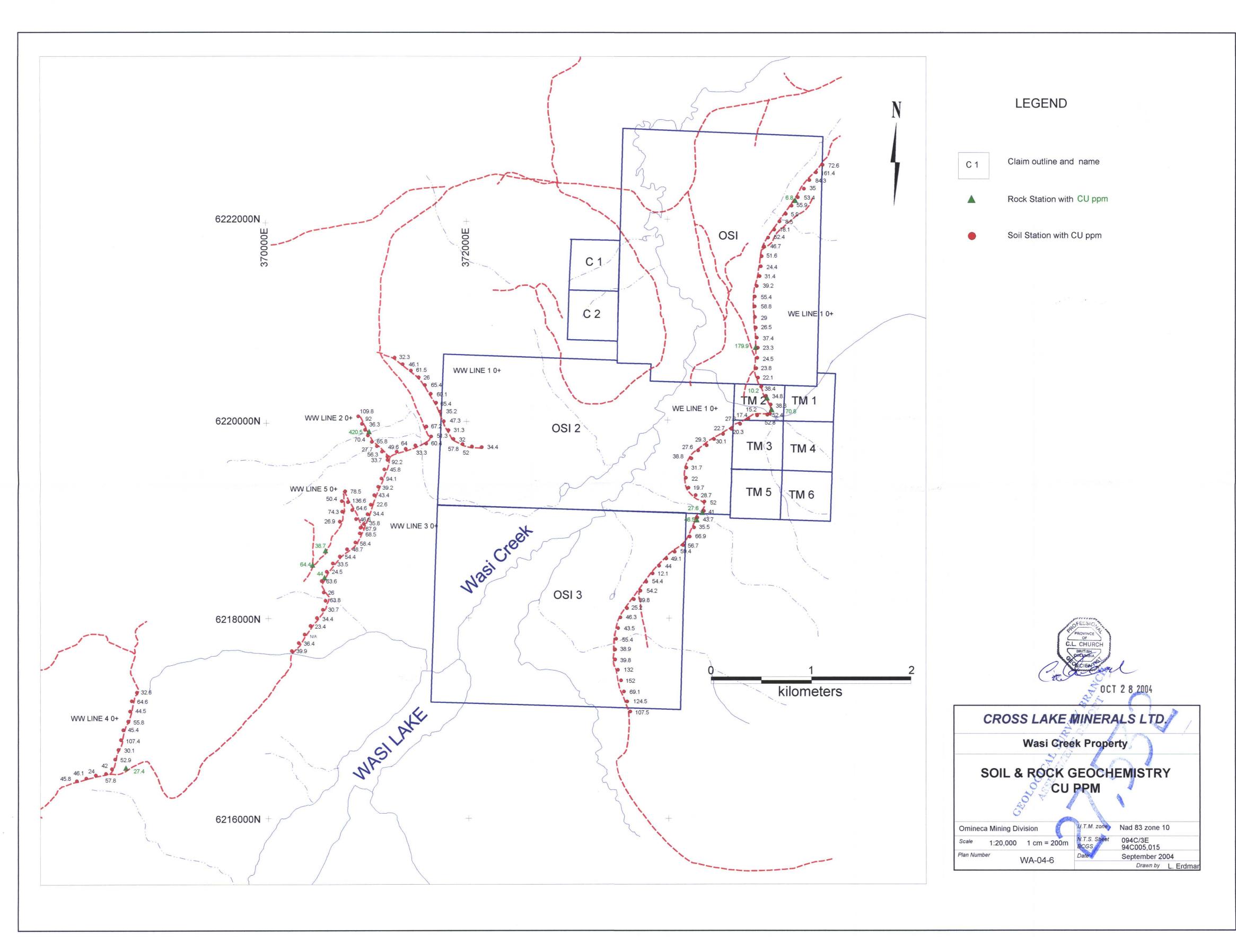
Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

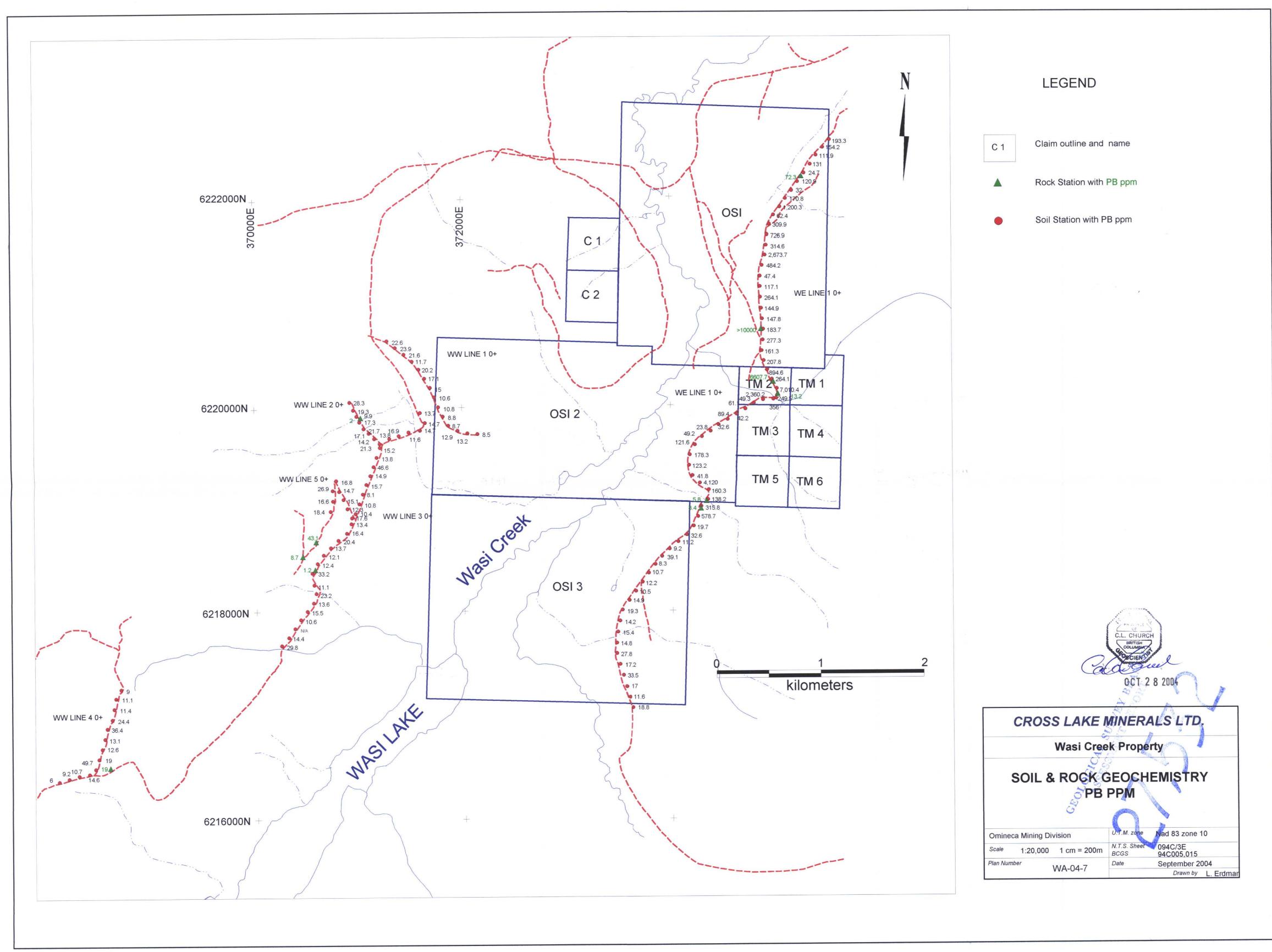

Prepared By: J. Gravel

852 East Hastings Street • Vancouver	British Columbia • CANADA • V6A 1R6
Telephone: (604) 253-3158 • Facsimile: (604) 253-1716 •	Toll Free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

Date: Mar 22, 2004


SECTION E: ILLUSTRATIONS


Plan Number	Title	Scale
WA-04-1 (after p.4)	General Location Plan	1:250 000
WA-04-2 (after p.4)	Location Plan with Topography	1:50 000
WA-04-3 (after p.4)	Mineral Claim Map	1:50 000
WA-04-4 (in pocket)	Soil & Rock Sample Locations	1:20 000
WA-04-5 (in pocket)	Soil & Rock Geochemistry: Cd ppm	1:20 000
WA-04-6 (in pocket)	Soil & Rock Geochemistry: Cu ppm	1:20 000
WA-04-7 (in pocket)	Soil & Rock Geochemistry: Pb ppm	1:20 000
WA-04-8 (in pocket)	Soil & Rock Geochemistry: Zn ppm	1:20 000
WA-04-9 (in pocket)	Soil & Rock Geochemistry: Ag ppm	1:20 000


ž

.

