

ASSESSMENT REPORT ON THE RED TUSK PROJECT FOR RED TUSK RESOURCES INC. 620-800 West Pender Street Vancouver, B.C. V6C 2V6

Vancouver Mining Division Latitude 49°40' to 50°00' N Longitude 122°10' to 123°15'W NTS 92G/13,14

GE01.0G

BRANCH

5.535

. 1

のないないの

CIT

A 1963

Wesley Raven, P.Geo.

February 9, 2004

SUMMARY

The Red Tusk Project, located in the Vancouver Mining District is 100% owned by Gambier Mining Corp. The property is comprised of 494 contiguous mineral claim units that encompass an area of approximately 12,350 hectares. The claims are located on NTS map sheet 92G/13E and 14W centred at approximately 49°51'N latitude and 123°36'W longitude. The property is located approximately 65 kilometres northwest of Vancouver, British Columbia in the Tantalus Mountain Range. The closest communities are Sechelt, 45 kilometres to the southwest and Squamish, 14 kilometres to the southeast.

The property is ocean accessible via barge or water taxi to Clowhom Falls, at the head of Salmon Inlet and thence by a network of logging roads that access various portions of the project area. Alternative access can be gained by helicopter from Squamish, Sechelt, or Vancouver.

The project encompasses a portion of the Clowhom Pendant, an elongate pendant of Cretaceous Gambier Group volcanic and sedimentary rock within the Cenozoic-Mesozoic Coast Plutonic Complex. The Gambier Group is comprised of andesite to rhyolite flows and pyroclastics, greenstone, argillite, minor conglomerate, limestone, and schist. The nearby past producing Britannia Mine is located in a similar geologic pendant environment, the Britannia Pendant.

Locally the property is underlain by andesitic flows and pyroclastic units to the northeast, and various phases of diorite to the southwest. Sandwiched between these two main lithologies and encompassing the South, North and North Extension zones are felsic volcanic rocks ranging from dacite to rhyolite and a siliceous exhalite unit. The felsic volcanic rocks include flows and various pyroclastic units. The exhalite unit is very fine-grained to aphanitic, massive, tough and siliceous and is locally pale green coloured where sericite altered to bleached white.

Two main styles of mineralization are being sought: precious metal mineralization associated with felsic volcanics and a felsic exhalative horizon such as that seen at the South, North, and North Extension zones; and semi-massive to massive base metal mineralization with precious metal credits in andesitic to rhyolitic volcanics as seen at the Mavis and Cirque zones. The exhalite / altered siliceous rhyolite horizon has been traced for a distance of approximately two kilometres (Chung, P.L., 1988). Anomalous gold and silver values from the Silver Spider zone, a portion of the North zone, include a grab sample of barite rich siliceous rhyolite that assayed 0.466 oz/ton gold, 166.12 oz/ton silver, 20.06% zinc, 17.89% lead and 0.12% copper. Results from a 17 metres long trench excavated on the Cirque zone included assays up to 1.47% copper, 1.74% lead, 7.63% zinc, 2.25 oz/ton silver and 0.12 oz/ton gold A third style of mineralization was noted by J.W. Laird, 1982 which is described as an 18 metres wide quartz-carbonate sulphide-bearing vein developed at the contact of the Gambier Group pendant and the Coast Plutonic Complex. The vein returned anomalous base and precious metals values and is reported to lie at the contact between chloritized diorite and hornfelsed tuffaceous andesite.

The style of mineralization on the property bears similarities to volcanogenic massive sulphide (VMS) deposits such as the nearby past producing Britannia Mine. The properties are geologically similar as is the nature of the mineralization, as indicated by lead isotope ratios. One sample of galena from barite-rich material from the Red Tusk Project was analysed for lead isotope composition, the ratios plot favourably with data from the past producing Britannia Mine indicating the metals came from a common or similar source. Historical production from the Britannia Mine totalled approximately 48 million tonnes at an average grade of 1.1% copper, 0.7% zinc, and 0.1% lead. Recovered gold and silver indicate grades of 3.81 g/t silver and 0.32 g/t gold.

Recent work on the property focused on the Cirque zone, and on mapping and sampling the volcanic stratigraphy in the Clowhom River valley. In addition some helicopter traverses were undertaken late in the season for the purposes of making quick assessments of gossans through rock sampling. Limited work was completed in the Cirque zone due to extreme early winter storms bringing strong winds and icy conditions making the initial camp and traverse conditions perilous. Limited mapping indicates the mineralization is hosted in rhyolite that is bounded by andesitic tuffs and flows that trend northwest and dip steeply to the southwest. A strong gossan occurs near the eastern (lower?) rhyolite-andesite contact that hosts disseminated and stringer sulphides including pyrite, pyrrhotite, chalcopyrite, sphalerite and galena. Prospecting and sampling confirmed the presence of anomalous base and precious metals with results of up to 19,185 ppm Cu, 2,534 Pb, 24,184 ppm Zn, 59.2 ppm Ag and 980 ppb Au received from grab samples collected in 2003. A float sample with 3-6% chalcopyrite stringers assayed 3.036% Cu, 855 ppm Pb, 0.26% Zn, 67g/t Ag and 0.37g/t Au.

Most of the work was completed in the Clowhom River valley and included geological mapping and silt sampling with some select soil sampling. The work was undertaken along the network of logging roads that provide good access in many of the major drainages to an elevation of approximately 1000 metres. The mapping revealed an assemblage of Gambier Group rocks comprising fine-grained clastic sediments including mainly argillite and a siltstone with a rippled texture, with dacite and rhyodacite flows, crystal tuffs, lapilli, and agglomerate bounding the sedimentary rocks to the east, and possibly to the west based on very limited mapping. The units trend north-northwest and dip steeply to the southwest. A number of currently inaccessible gossans were noted at higher elevations during the course of the mapping that were not accessed. It is likely that continued mapping will link the volcanic stratigraphy to date with the observed gossans, which are believed to represent the mineralized rhyolite-exhalite horizon or the structure that hosts that horizon. Mineralization includes mostly pyrite as fine-grained disseminations in both argillite and dacite. Some semi-banded pyrite was observed in argillite on the Squamish road system; although no anomalous results were received from the samples collected the unit should be prospected along strike for other possible areas of 'bedded-type' sulphide accumulations. No strongly anomalous base or precious metal assays were received from the rock samples. Silt sample SQ-132 assayed 624 ppb gold and two other samples reported weakly anomalous gold values. In addition a number of areas did contain anomalous indicator minerals such as arsenic. cadmium, barium, and tungsten.

The selected sampling of gossanous areas throughout the higher elevations of the property did not return any significant anomalous results, however this was very preliminary work. The previously reported Contact zone, in Red Tusk Creek valley, was not located and remains an unevaluated target. Prospecting at the end of the program found some quartz veining in the area of the contact zone but is not believed to be the actual zone.

The property warrants further exploration work on the known zones and strike extensions, particularly on the more recently discovered Cirque zone. The recent program intended to evaluate the Cirque zone could not be completed due to weather conditions. The property warrants further work and a Phase I program of geological mapping, geochemical sampling, and geophysical surveys is proposed. Contingent upon favorable results preliminary diamond drilling of the best targets should be initiated. For the Cirque zone a grid should be established as a base for subsequent geological mapping, and rock sampling, Prior to the mapping and sampling it is recommended that the UTEM geophysical survey be undertaken in early spring, as weather conditions permit, when there is still thick snow cover in the cirque to facilitate easier access. Global Positioning System (GPS) control points can be used to tie in the data to the subsequent

grid based mapping and sampling data. The survey will aid in determining if the mineralization seen on surface persists at depth. The North, North Extension, South, and Mavis zones should be examined in further detail to evaluate strike and dip extensions of the known mineralization as a prelude to diamond drilling. The geological mapping should be completed throughout the property and in particular an evaluation of the stratigraphy that hosts the mineralized rhyolite+/- exhalite horizon. All gossans throughout the property should be mapped and sampled. The Contact zone should be located, prospected, mapped, and sampled to gain a better understanding of its potential. Helicopter supported silt sampling of the northern third of the property should be completed after the spring melt, in conjunction with prospecting and mapping. In addition it is proposed that both an airborne magnetic and electromagnetic survey and colour aerial photography be completed over the property. The airborne geophysics should aid in locating areas of sulphide mineralization, particularly in areas of overburden or ice cover, and the air photographs be used in conjunction with handheld GPS's to provide control for the mapping and sampling surveys.

Much of the work will have to be staged as weather conditions permit. Obviously the higher areas of the property to be mapped and sampled will be accessed later in the season than the lower areas with the exception of the proposed UTEM survey for the Cirque Zone. The UTEM survey can be accessed daily via helicopter from Squamish. The airborne magnetic and electromagnetic geophysical survey should be flown in the spring. A series of short duration fly camps, 2 people for 2-4 days, can be used to assess many of the gossans as conditions permit. Experienced technical climbers may be required to complete much of this work depending upon steepness of the terrain. Property-wide mapping and sampling can begin at the lower elevations and move higher as the alpine snowpack melts. The colour aerial photography should be completed in August/September, when snowpack levels are low.

The Phase I geophysical program proposed in this report is estimated to cost approximately \$152,000. The Phase II program of mapping, prospecting, geochemical sampling, aerial photography, and diamond drilling is recommended at an estimated cost of \$635,000. This phase can be completed in stages dependent upon results and includes \$378,000 directly allocated for drilling. The Phase I and II programs are estimated to cost approximately \$787,000 and will be completed in stages over several months.

TABLE OF CONTENTS

Page

Summary	ii
Table of Contents	v
Introduction and Terms of Reference	1
Disclaimer	
Property Description and Location	
Accessibility Climate Local Resources Infrastructure and Physiography	
History	
Geological Setting	
2003 Mapping	
Deposit Types	
Mineralization	
Precious Metal Mineralization	
North Zone	
North Zone Extension	14
South Zone	15
Base Metal Mineralization	
Mavis Zone	16
Cirque Zone	16
Mineralization Associated with the Intrusive – Pendant Contact	
Exploration	18
Cirque Zone	18
Clowhom River Valley Area	
Drilling	
North Zone	
South Zone	
Sample Method and Approach	
Sample Preparation Analysis and Security	
Data Verification	27
Adjacent Properties	28
Mineral Processing and Metallurgical Testing	28
Mineral Resource and Mineral Reserve Estimates	
Other Relevant Data and Information	28
Interpretation and Conclusions	28
Recommendations	29
Phase I Budget	32
Phase II Budget	
Statement of Expenditures	
References	
Certificate of Qualifications	
Wesley Raven P.Geo	

LIST OF TABLES

Table 1 – Claim Blocks	2
Table 2 – Cirque Zone Selected Rock Sample Results	
Table 3 – Drill Hole Assay Intervals	

LIST OF FIGURES

Figure 1	Location Map	
Figure 2	Claim Map	
	Regional Geology	
	Geology Map	
	Clowhom River Access Road Areas and General Geology	
	Detailed Geology - Squamish Access Road	
Figure 7	Cirque Zone – Rock Sample Location Map	Page 17
	Property Rock Sample Location Map	
	Property Silt and Soil Sample Location Map	

LIST OF APPENDICES

Appendix A	Summary of Claims
Appendix B	Gambier Mining Corp Ownership Details
Appendix C	Britannia Mine Gold Zone Cross Section
Appendix D	Production Statistics
Appendix E	Geological Model
Appendix F	Significant Gold-rich Volcanic Associated Massive Sulphide Deposits
Appendix G	Analytical Results
Appendix H	Rock Sample Descriptions
Appendix I	Red Tusk Lead Isotope Analysis
Appendix J	Summary of Historical Expenditures vs. Current Estimates

INTRODUCTION AND TERMS OF REFERENCE

This report summarizes the geological and geochemical programs completed on the Red Tusk Project, located in southern British Columbia, for Red Tusk Resources Inc. and recommends continuing the exploration program. This report has been prepared by the author at the request of David MacMillan, director of Red Tusk Resources Inc., for the purposes of compiling the previous geological data, recommending a work program sufficient to advance the project to the next stage and for listing of a new company on the TSX Venture Exchange.

The material found in this technical report is based in part on the mapping and sampling programs completed on the property under the author's supervision and from an amalgamation of previous assessment reports, and various provincial and federal government resources available for review. There were no limitations put on the author in preparation of this report. The author made an initial property wide tour on October 2, 2003 and worked on the property from October 27-30, 2003 and from November 5-17, 2003.

DISCLAIMER

The author has prepared this report based upon information believed to be accurate at the time of completion, but which is not guaranteed. The author has relied on three principal sources of information for the data contained in this report, that being the work completed under the supervision of the author, the various assessment files available outlining past work completed on the property or portions thereof by various mining companies, and publicly available federal and provincial government documents such as geological maps and reports on the area.

The company directors have provided a compilation on legal title and ownership of the claims and details on the ownership of the Gambier Syndicate and Gambier Mining Corp.

Therefore in writing this technical paper the author relies on the truth and accuracy of the sources listed in the Reference section of this report, primarily the various assessment reports listed.

PROPERTY DESCRIPTION AND LOCATION

The Red Tusk Project is held in trust (100%) by Gambier Mining Corp. on behalf of the Gambier Syndicate. Red Tusk Resources Inc. has an option agreement with Gambier Mining Corp. to earn a 100% interest in the property. To earn its 100% interest in the claim blocks Red Tusk Resources Inc must make cash payments of \$15,000 upon signing, \$35,000 on trading, and must make payments of \$50,000 on or before July 1, 2005, 2006, 2007, and 2008, and pay a \$50,000 advance royalty on or before July 1 of each year starting 2010. The company must also issue 300,000 units on trading, then 300,000 shares, 400,000 shares, 500,000 shares, 600,000 shares, and 700,000 shares on or before December 1, 2004, 2005, 2006, 2007 and 2008 respectively. In addition the company must incur exploration expenditures on the property of \$100,000 on or before January 1, 2004 and staged payments totalling \$3,200,000 to the end of the fifth year of the agreement. A share unit is comprised on one common share and one share purchase warrant at the IPO price. In summary to earn its 100% interest Red Tusk must pay \$250,000 in property payments, issue 300,000 units and 2,500,000 shares, and incur exploration expenditures totalling \$3,300,000 over a five-year period. The property is subject to a 2.5% NSR and advance royalties commencing 2010.

The property is comprised of 494 contiguous mineral claim units that encompass an area of approximately 12,350 hectares. The claims are located in the Vancouver Mining District on NTS Map sheets 92G/13E and 92G/14W, centred at approximately 49°51'N latitude and 123°36'W

longitude in the province of British Columbia (Figures 1 and 2). The claims are subdivided into four blocks from south to north along the property as listed in Table 1 - Claims Blocks.

Claim Block	# Units
Commonwealth 1-16	241
Britannia 1-4	47
Dominion 2-16	200
Contact 1	6
TOTAL	494

Table 1 – CLAIM BLOCKS

Figure 1 – Location Map

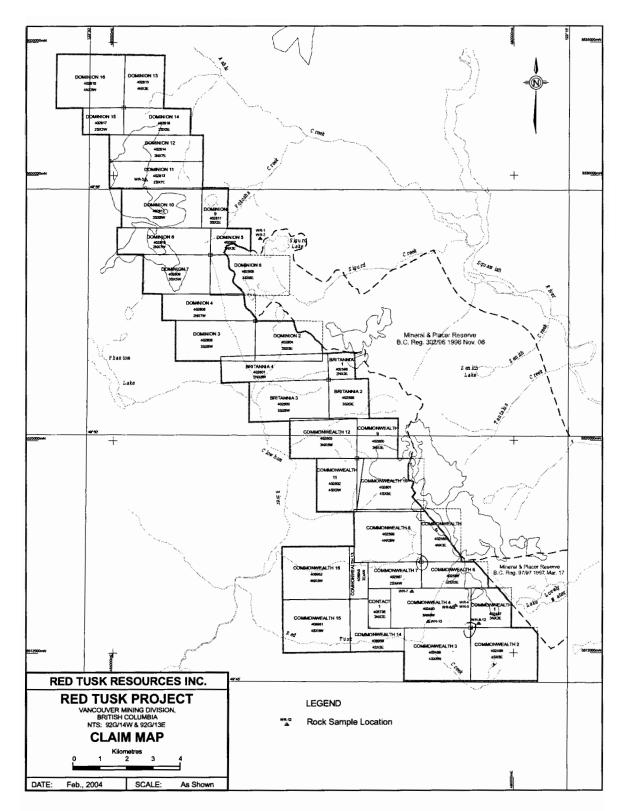


Figure 2 – Claim Map

The common anniversary date for most claims is May 19, 2004; except the Contact 1 claim has an anniversary date of October 13, 2004 and the Commonwealth 13 to 16 claims have an anniversary date of November 18, 2004. In British Columbia for assessment purposes, \$100 worth of work/unit or cash in lieu plus a \$10 filing fee per claim unit is payable for the first two years to maintain the claims in good standing followed by \$200 and \$20 per claim unit from year three thereafter. An additional year assessment credit has been applied for from the work completed and summarized in this report; upon acceptance all claims will have a 2005 expiry date.

Detailed individual claim data is found in Appendix A - Summary of Claims.

Gambier Mining Corp. manages the Red Tusk project on behalf of the Gambier Syndicate, details of the ownership of Gambier Mining Corp. are presented in Appendix B – Gambier Mining Corp. Ownership Details.

The claims have not been legally surveyed nor are there any other agreements, encumbrances, or environmental liabilities that the property is subject to that the author is aware of. The southeastern portion of the property borders on the Lake Lovely Water Recreation area, and a large Mineral and Placer Reserve no staking area, B.C. Regulation 302/96, lies along the eastern edge of the Dominion and Commonwealth claim blocks, thus portions of some of the claims terminate at this boundary. The company has no plans to pursue ground acquisition within these protected areas. In addition there are two other orders in council on claim map sheet 92G/14W governing hydroelectric rights that allow staking of mineral claims subject to conditions. The company has not yet entered into consultation with any First Nations groups regarding the project. If the proposed Phase I exploration program is successful and a larger program is planned then First Nations groups will be consulted.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Red Tusk Project is located approximately 65 kilometres northwest of Vancouver, British Columbia in the Tantalus Mountain Range. The closest communities are Sechelt, 45 kilometres to the southwest and Squamish, 14 kilometres to the southeast. The property is ocean accessible via barge or water taxi to Clowhom Falls, at the head of Salmon Inlet and thence by a network of logging roads that access various portions of the project area. The network of logging roads changes annually as does their accessibility thus it is advisable to check with the active logging companies in the area for the latest road information. Alternative access can be gained by helicopter from Squamish, Sechelt, or Vancouver.

The project lies within a portion of the rugged Tantalus Range Mountains, elevations on the property vary from 600 meters to 2200 meters with steep slopes and rugged peaks, small glaciers occur above 1500 metres. The lower slopes of the property are heavily timbered with large cedar, fir, hemlock, and spruce, underbrush consists of alder, ferns, devils club and salal. The upper portions of the property are above treeline and have minor grasses and shrubs to bare rocky slopes. The climate is mild west coast temperate. Temperatures range from -10° to +30 ° centigrade with about 300 centimetres of precipitation per year. The lower portions of the property could be worked throughout much of the year, the higher portions of the property could be worked from early summer to late fall, depending upon the amount of snowfall.

HISTORY

Mineralization in the Clowhom Pendant was discovered as recently as 1981 by James Laird, who conducted limited prospecting, mapping, and rock sampling on selected portions of the claims in 1981 and 1982. Laird discovered an 18-metres wide quartz-carbonate vein reported to occur at the intrusive-pendant rock contact. Laird optioned the property to Newmont Mines Ltd. in 1982. From 1982 to 1984, Newmont carried out surface mapping, rock chip sampling, and limited stream sediment sampling. This work defined three zones, the North, the South and the Mavis zones. The North and the South zones were the targets of a modest drill program by Newmont in 1985. The drill program was comprised of six holes totalling 239.5 metres in the North zone and six holes totalling 408.2 metres in the South zone for a total of 12 holes totalling 647.7 metres. Drilling suggested the North zone was more limited in size because two areas thought to be outcrops were drilled and found to be large slide blocks. The highest gold assay came from drill hole 85-2, where a 2.0 metres interval from 21.0-23.0 metres assayed 1800 ppb gold. A 2.0 metre interval from 7.0-9.0 metres in drill hole 85-3 also assaved 1800 ppb gold with a corresponding silver assay of 39.0 ppm. The highest silver assay received was 64.0 ppm from a 1.5 metre sample from 8.5-10.0 metres in drill hole 85-1; this interval also assayed 1700 ppb gold. Drilling in the South zone produced somewhat better results, the best result obtained over a significant length was 946 ppb gold and 4.2 ppm silver over 5.5 metres in drill hole 85-12. The highest gold assay received was 4,100 ppb, a 2.0 metre sample from 17.0-19.0 metres in drill hole 85-9. In summary the drilling concluded that there was a trend towards improving precious and base metal grades to the north and at depth within the South zone. Further drilling was recommended to the north and underneath drill holes 85-11 and 85-12.

In 1988 Schellex Gold Corp. carried out prospecting and sampling on the North, South and Mavis zones and identified two additional zones, the Cirque and North zone extension, the latter a possible extension of the North zone. The best result received from the sampling program was from a float sample from the North zone that assayed 0.576 oz/ton gold and 4.9 oz/ton silver. Further work was recommended.

Discovery Consultants carried out a preliminary heavy mineral stream sediment survey and a minor rock-sampling program in 1995. One of the heavy mineral stream sediment samples yielded a gold assay of 738 ppb gold; rock sample results, all from float samples in creek beds yielded a high of 557 ppb gold, 7.4 ppm silver, 115 ppm copper, 1069 ppm lead and 1075 ppm zinc.

Past exploration within and adjacent to the Clowhom Pendant has consisted of very limited geochemical sampling. The areas that have been sampled were those with historical road access or selected target areas (Leriche, P.D., 1985; Laird, J.M. 1982). Road access has been significantly enhanced since the previous geochemical sampling programs. There are no know mineral resources or reserves on the subject property nor is there any history of past production.

GEOLOGICAL SETTING

Regionally the Clowhom Pendant is an elongate pendant of lower Cretaceous Gambier Group volcanic and sedimentary rocks located to the west and northwest of Squamish, British Columbia (Figure 3). The Gambier Group consists of a volcano- sedimentary sequence deposited in an island arc setting. The lithologies found within the Clowhom Pendant consist primarily of andesite to rhyodacite flows and pyroclastics, greenstone, argillite, minor conglomerate, limestone and schist. The sedimentary assemblage of cherts and argillites overlie a diverse assemblage of felsic to intermediate volcanics and volcaniclastics. An economically important exhalite horizon occurs at the transitional boundary between felsic volcanics and volcaniclastics with the overlying sedimentary assemblage (Chung, P.L. 1988). Significant gold and silver values

have been reported from exhalite and underlying felsic volcanic and volcaniclastic lithologies (Chung, P.L., 1988, and Delane, G.D., 1982).

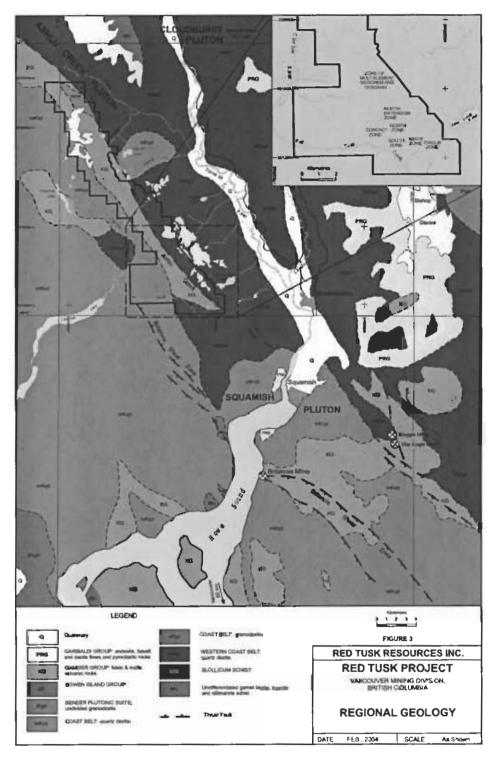


Figure 3 – Regional Geology

The former Britannia Mine, located 32 kilometres south of Squamish, British Columbia, lies within a similar volcano-sedimentary sequence of the lower Cretaceous Britannia Group found within the Britannia Pendant. The Britannia Group and the Gambier Group rocks correlate on a lithologic basis (Roddick, 1965). Ore mineralization and related deposits at the Britannia Mine are found as blanket and funnel shaped deposits (pipes) within exhalites and felsic volcanics and volcaniclastics. The Britannia Mine ranks as being the tenth largest gold producer in British Columbia (Schroeter, T.G. et al, 1989). During the mine's operating life, gold was principally a by-product of base metal production. The relative economic importance of gold occurred several years after the closure of the mine in late 1974. The more gold rich portions of deposits at Britannia were never mined (e.g. Empress – No. 5 Zone; Fairview Zinc) due to the low copper value of these ores. A cross section of the Britannia No.5 Zone and gold grades is shown in Appendix C – Britannia Mine Gold Zone Cross Section. Historical production from Britannia and the Northair and Maggie Mines is presented in Appendix D – Production Statistics.

Gold distribution at Britannia is best developed in a laterally extensive exhalite horizon and in a siliceous gold-copper zone in felsic breccias and tuffs proximal to exhalite mineralization (Britannia Study Group, 1990; Spencer, B.E. 1990).

On the Red Tusk Project the area hosting all the known mineralized zones is dominated by andesitic rocks comprising agglomerate, massive dark green flows, feldspar and hornblende porphyry flows, and fine grained to lapilli tuffs to the northeast, and various phases of diorite to the southwest. Sandwiched between these two main lithologies and encompassing the South, North and North Extension zones are felsic volcanic rocks ranging from dacite to rhyolite (Figure 4). The dacitic to rhyodacitic rocks include massive light grey and tan flows, fine grained gritty to lapilli tuffs with mixed angular sand to pebble sided rock fragments and fine grained, finely laminated light to dark grey and tan coloured 'dust' tuffs. Rhyolitic units comprise massive light grey to white coloured rhyolite with quartz-eye porphyry in an aphanitic groundmass and rhyolite with alternating feldspar and silica rich layers. An exhalite unit is also present and has been described as very fine-grained to aphanitic, massive and tough light grey siliceous exhalite that is locally pale green coloured to bleached white, to light grey quartz-veined and siliceous exhalite with rusty fractures.

2003 Mapping

Mapping completed by Red Tusk in 2003 was confined to a preliminary examination of the Cirque zone and detailed mapping of the stratigraphy in the Clowhom River valley. Prospecting and sampling in other areas has provided some preliminary geological data. Further mapping is required throughout the property to define the limits of Gambier Group rocks and gain a better understanding of the mineralized areas discovered to date and their possible extensions.

Only one day was spent mapping the Cirque zone before weather conditions brought a sudden end to the work program. The brief look at the geology shows a band of white rhyolite that hosts stringer vein- and disseminated-type sulphides that is bounded by andesitic tuffs. The rhyolite trends northwest and dips steeply to the southwest. Rhyolite sub-units range from massive to sheared and foliated with strong sericite alteration, and from white to grey coloured. When unmineralized rhyolites often weathering a chalky white, sulphide-bearing portions can have strong limonite and black oxide staining, particularly along fractures. Andesitic units range from flows to tuffs, some of which are locally coarser grained and more massive. Epidote alteration as veinlets and patches is evident proximal to the rhyolite. The nature of the contacts between the units was not clearly observed though some dextral faulting observed in the main creek may form the western contact. Minor argillite was noted intermixed with the volcanics and was strongly hornfelsed at the contacts.

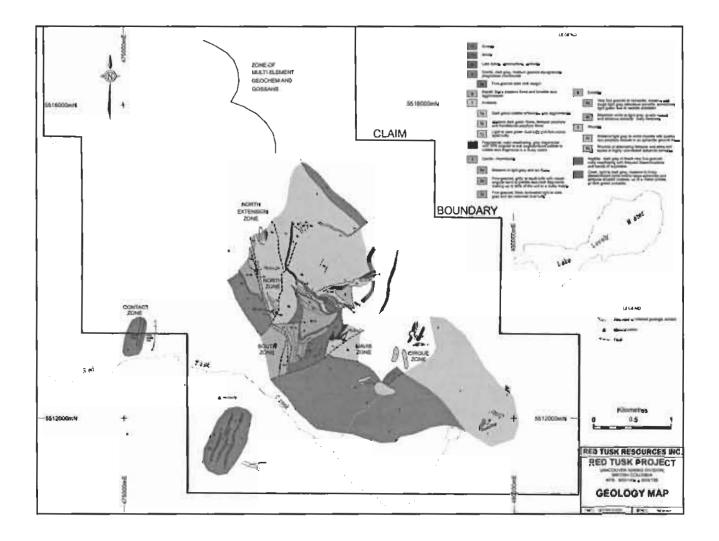


Figure 4 – Geology Map

The zone needs to be mapped and sampled in detail, preferably when snow levels are low, to gain a clearer understanding of the geology and nature of the mineralization. A large gossan was noted above the area examined by the author that was previously mapped by Shellex 1989, as being underlain by rhyolite, andesite and argillite. No sampling has been undertaken in this area and its potential remains unknown.

Sulphides are found as stringer veinlets and disseminations of chiefly pyrite and pyrrhotite with lesser chalcopyrite and locally galena and sphalerite. Concentrations are generally tr-2% but are locally higher, up to 5% and include mostly pyrite. One float sample contained approximately 3-5% chalcopyrite as veinlets and fracture fill.

The bulk of the mapping program completed by Red Tusk was confined to the Clowhom River valley, mainly due to winter weather conditions at higher elevations forcing exploration surveys to the lower elevations. Work was carried out utilizing the network of logging roads extending into the various local drainage basins. The road systems mapped are shown on Figure 5 and from north to south include Squamish, No Name, Big Bluff, Red Tusk and the Clowhom Main logging roads. Only the Squamish and Big Bluff roads were mapped in detail. The No Name is a short road in a very steep valley underlain by granitic rocks; the Red Tusk road is heavily overgrown in areas and needs to be cut out to provide all terrain vehicle access. Only one day was spent mapping in the Red Tusk drainage, more are required to examine the contact with the Gambier Group rocks. The southern portion of the area mapped is underlain by granodiorite of the Coast Plutonic Complex. No areas of sulphide mineralization were noted and the area was not mapped in detail.

Most of the mapping was completed on the Squamish road system, which is underlain by volcanic and sedimentary Gambier Group rocks (Figure 6). The area mapped is underlain by a band of fine-grained clastic sedimentary rocks comprised chiefly of argillite and phyllitic siltstone-mudstone. This is bounded to the west by dacitic tuffs and flows, and to the east by dacite-rhyodacite flows, tuffs, and pyroclastics; the full stratigraphic section was not mapped. The units trend from approximately 320°-340° and dip 60°-80° northwest. Minor faulting was observed; slickensides indicated vertical movement.

Argillite was mapped as thicker beds with a locally ripple-textured siltstone-mudstone unit, to narrowly interbanded (<10 m) within dacitic tuffs and flows. A fine-grained siltstone-mudstone unit was also noted and is interbedded with argillite. Locally, fine-grained sandstone was observed. The argillites are often rusty stained, strongly fractured and form obvious gossans; pyrite was the only sulphide noted.

Volcanic lithologies include mainly dacitic to rhyodacitic flows, tuffs and agglomerates that are grayish-green to grayish-white coloured. Tuffaceous units are most common and include mostly fine-grained to coarser-grained crystal tuffs with some well-banded tuffaceous units also mapped. Flows are fine-grained and aphanitic to coarser-grained with porphyritic feldspar. Locally some coarser grained agglomerate units were observed, a white coloured dacite with chalky white weathering sub-rounded to elongate felsic clasts, and a coarser grained unit with large sub-rounded felsic clasts up to approximately 15x20 centimetres.

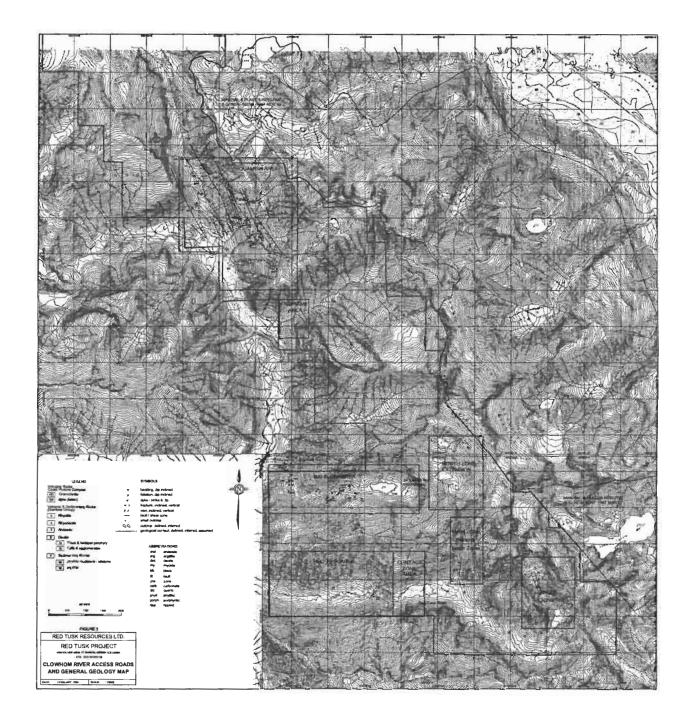
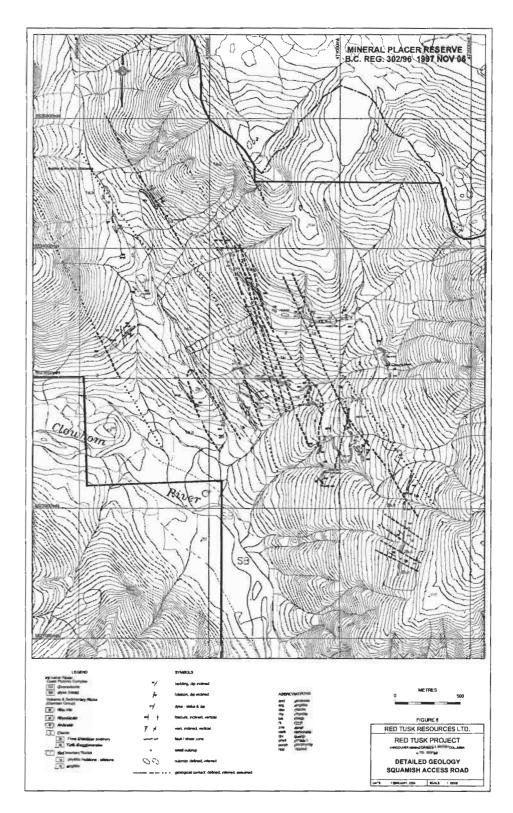



Figure 5 – Clowhom River Access Roads and General Geology

[

Π

[

[

E

[

-

Figure 6 – Detailed Geology—Squamish Access Road

The mapping needs to be expanded upon to gain a better understanding of the stratigraphic succession of Gambier Group rocks within the property. Mapping completed on the Squamish road system was encouraging as more felsic and coarse-grained rocks were noted moving topographically higher, east of the Clowhom River. It is believed that this stratigraphy will continue to the east and include the rhyolite and barium-rich rhyolite/exhalite horizon which host the main mineralized zones. A number of rusty gossan zones were noted at higher elevations during the mapping and it is quite possible they represent the same structure that hosts the rhyolite-exhalite horizon mapped at the main zone.

Portions of the property that are not underlain by the Gambier Group rocks are underlain by rocks of the Coast Plutonic Complex and are comprised chiefly of diorite and quartz diorite.

DEPOSIT TYPES

The style, type and setting of precious and base metal mineralization, as found in the historic Britannia Mining District, is also found within the Clowhom Pendant. These mineralization styles are related to the similar volcanogenic massive sulphide (VMS) processes that occurred within the related volcanic and sedimentary assemblages of the Clowhom and Britannia Pendants. A generalized model of a VMS deposit is presented in Appendix E – Geological Model.

A feature of these VMS deposits is to occur as clusters of closely spaced pipes, localized by synvolcanic structures. The gold-rich portions of these deposits are associated with barite-rich assemblages and within the upper portions of the funnel shaped zones (Franklin, J.M.1995; Huston, D.L. and Large, R.R., 1989). A summary of gold-rich VMS deposits is presented in Appendix F – Significant Gold-rich Volcanic Associated Massive Sulphide Deposits.

The Clowhom Pendant structurally overlies mid to late Jurassic diorite and quartz diorites of the Ashlu Creek Pluton to the north and east and is intruded by mid Cretaceous granodiorite of the Coast Plutonic Complex to the south and west. The Clowhom Pendant forms a large discontinuous, northwest trending belt engulfed within these granitic rocks. Hornfelsic rocks have been developed at the contact of the mid Cretaceous intrusive rocks and the pendant. Within these hornfelsic areas, mineralized quartz bodies with associated sulphide mineralization, have been identified.

Three additional styles of mineralization have been recognized within similar geological settings as that found at the Clowhom Pendant.

(1) Remobilized (?) quartz-sulphide mineralization that may have been derived from volcaniclastic horizons hosting sub economic mineralization.

Mineralization is localized within zones of anastomosing veins that are developed within or subparallel to shear zones. Structural zones are developed within silicified and intensely altered and biotitized volcanics. Mineralized zones consist of irregular lenses and disseminations of pyrite, chalcopyrite, sphalerite, and galena in a silicified, brecciated, intensely altered and biotitized gangue. This type of mineralization has a close spatial relationship to VMS style of mineralization. E.G. WAR EAGLE Minfile Ref. 092GNW042

(2) Vein-type mineralization, related either to a synvolcanic hydrothermal system, or to intrusions of the Coast Plutonic Complex.

Mineralization consists of galena, sphalerite and minor chalcopyrite as disseminations, veins and locally discontinuous, banded segregations in quartz-calcite gangue. Anastomosing veins of pyrite, galena and sphalerite are common. The vein zones are broadly discordant to the host

lithologies. Lead isotope compositions indicate a complex origin for these deposits (Sinclair, A.J. and Godwin, C.I., 1980). E.G. NORTHAIR Minfile Ref. 092JW012

(3) Gold mineralization in quartz-chlorite veins cutting hornfels and clearly related to intrusions of the Coast Plutonic Complex.

Mineralization consists of quartz-chlorite veins that cut intensely hornfelsed zones. Hornfelsic rocks are characterized by pervasive biotitization, local silicification and development of chlorite. These veins can be mineralized with up to 15 per cent sulphides, primarily pyrite, sphalerite, chalcopyrite and traces of galena in brecciated and silicified wallrock gangue. Sulphides may appear to have been re-brecciated and cemented by quartz. Fragments of wallrock within the vein can be totally biotitized or chloritized and have cockscomb quartz envelopes. Veins consist of a higher grade (gold-silver) vein and lower grade altered hanging walls and footwalls. E.G. MAGGIE Minfile Ref. 092GNW036

MINERALIZATION

Since the original discovery of mineralization within the Clowhom Pendant in 1981, past exploration efforts have resulted in the recognition of an altered siliceous rhyolite horizon and associated exhalites, which have been traced for a distance of two kilometres (Chung, P.L., 1988). Two main styles of mineralization are being sought: precious metal mineralization associated with felsic volcanics and a felsic exhalative horizon such as that seen at the South, North, and North Extension Zones; and semi-massive to massive base metal mineralization in andesitic volcanics as seen at the Mavis and Cirque zones, all of which may be related to VMS style mineralization. A third style of mineralization comprised of quartz-carbonate veins at the intrusive-pendant contact has been named "contact-style" mineralization. The following descriptions are summarized mainly from Chung, P.L., 1988, and from Delane, D.L., 1984, 1985, and 1986.

PRECIOUS METAL MINERALIZATION

North Zone

The North zone is a 350 meters long segment of mineralized exhalite and/or rhyolite with a width of approximately 40 meters. The zone strikes at approximately 350° and dips steeply to the west. Mineralization is concentrated in a barite rich horizon of altered siliceous rhyolite, known as the Silver Spider zone, and in highly chloritized andesite. The Silver Spider zone is a steeply dipping barite-rich siliceous rhyolite that is 6 to 8 meters wide and approximately 100 meters in length; extensions to this zone are indicated. Results from Newmont's surface sampling revealed anomalous base and precious metals values and one grab sample of barite subcrop assayed 0.6 oz/ton gold and 162 oz/ton silver. Samples collected during the Schellex Gold Corp.'s 1988 program also returned a number of anomalous results. Schellex tried to locate the source of the anomalous barite sample from the 1984 Newmont program and two float samples from the area returned assays of 0.366 oz/ton gold and 7.02 oz/ton silver and 0.576 oz/ton gold and 4.90 oz/ton silver respectively. An eight metre composite chip sample assayed 0.105 oz/ton gold and 0.39 oz/ton silver. Sampling by Schellex included a grab sample of barite rich siliceous rhyolite from the Silver Spider zone that assayed 0.466 oz/ton gold, 166.12 oz/ton silver, 20.06% zinc, 17.89% lead and 0.12% copper. Other sampling in the area included ten 1.0 x 1.0 metres contiguous panel chip samples over a highly altered, siliceous, pyritized rhyolite breccia, the weighted average for the 10 panel samples was 0.0396 oz/ton gold and 9.5 oz/ton silver.

North Zone Extension

This mineralization is located approximately 500 meters to the north of the North zone and is believed to be an extension of the zone; this zone was located by helicopter reconnaissance. Rock

sampling undertaken to evaluate the 300 meters wide by 600 meters long gossan zone was hampered by snow. The zone was discovered during the 1988 Schellex Gold Corp. campaign and has received limited exploration. Rock sampling returned values of up to 1600 ppb gold, 310 ppm silver, and 1023 ppm lead.

South Zone

The South zone is located in a structurally disrupted portion of the exhalite horizon. Chung, P.L., 1988 states:

"In the South zone several sub-parallel northerly trending faults which have apparently offset and repeated the mineralized exhalative horizon. Altered, bleached white rock with micro quartz veining in glassy-grey siliceous flows have been faulted and shuffled so that a sequence of north-south slivers of altered and unaltered rocks are stacked in a east-west direction. This setting, resulting from the splaying of the shear, increases the width of the mineralization and also accounts for the somewhat erratic nature of the gold mineralization."

The sulphide mineralization occurs as veins and disseminations and includes pyrite, pyrrhotite, sphalerite, galena, and chalcopyrite. In the Newmont drill core pyrite was described as by far the most dominant sulphide mineral and occurred as disseminations, veins, fracture fillings, narrow bands, and clots. Two types of sphalerite have been noted, fine to medium-grained honey coloured sphalerite occurring as disseminations, and dark red-brown sphalerite found as fracture and vein fillings. Galena occurs as streaks and as fine to medium grained crystals as fracture and vein infilling with pyrite and red-brown sphalerite. Chalcopyrite was the least abundant sulphide mineral noted in the drill core, occurring in vein and fracture fillings associated with the dark red-brown sphalerite.

A chip sample by Newmont, 1983 over 2.0 metres assayed 73 ppm copper, 1214 ppm lead, 104 ppm zinc, 7.5 ppm silver, and 2900 ppb gold. Two grab samples 10 metres apart collected by Schellex from a steeply dipping, silicified, altered rhyolite tuff similar to the Silver Spider zone assayed 0.24 oz/ton and 0.418 oz/ton gold respectively.

BASE METAL MINERALIZATION

Two zones have been discovered that are characterized by base metal mineralization hosted in andesitic volcanics versus the precious metal style mineralization associated with the exhalite horizon and rhyolites. These two base metal dominant zones have been named the Mavis and Cirque zones. The latter is a new discovery by Schellex Gold Corp during its 1988 exploration campaign. Limited mapping of the Cirque zone by the author in 2003 would indicate that the mineralization is hosted in both rhyolite and andesite. The massive pods of mineralization previously noted were not located however limited time was spent mapping the area.

Mavis Zone

The Mavis zone is located approximately 500 metres east of the South zone in very steep terrain. It is underlain by andesitic flows, agglomerates or breccias, and argillites. A float train of sphalerite and chalcopyrite-bearing angular boulders led to the discovery of the zone. The source of these boulders was found to be semi-massive to massive pods of sphalerite-chalcopyrite-galena mineralization in a volcanic hosted, disseminated mineralized zone. The zone trends approximately southwest-northeast with widths up to three meters and a length of approximately 75-100 meters. Extensions to this zone are indicated to the southwest.

Analysis of rock samples shows high copper and zinc values (up to 3.87% copper and 2.56% zinc), modest lead (1.12%), and accompanying precious metal values (gold 0.039 oz/ton and silver 2.14 oz/ton).

Cirque Zone

This zone was discovered in 1988 and is underlain chiefly by andesitic and rhyolitic volcanics with lesser argillite. The mineralization is similar to that seen at the Mavis zone and is comprised of massive pods of sphalerite, chalcopyrite and galena in a volcanic host. Sulphide-bearing samples collected by the author contained mostly disseminated and stringer vein sulphides styles of chiefly pyrite and pyrrhotite with lesser chalcopyrite and locally galena and sphalerite. Concentrations are generally tr-2% but are locally higher, up to 5% and include mostly pyrite. One float sample contained approximately 3-5% chalcopyrite as veinlets and fracture fill. The old trench excavated by Shellex personnel was located; much of the rock in exposed in the trench is now strongly oxidixed. A few metal tags noting old sample sites were also located, the trench was not resampled though a few grab samples were collected from the trench and surrounding area.

Selected samples collected by Shellex personnel in 1989 from a 17.0 meters long trench returned up to 1.47% copper, 1.74% lead, 7.63% zinc, 2.25 oz/ton silver and 0.012 oz/ton gold. Float samples, reportedly from higher up in the cirque returned highs of up to 6.25% copper, 1.83% lead, 5.84% zinc, 3.65 oz/ton silver, and 0.042 oz/ton gold. Samples collected in 2003 on behalf of Red Tusk Resources also returned a number of anomalous results including highs from grab samples of up to 19,185 ppm copper, 2,534 lead, 24,184 ppm zinc, 59.2 ppm silver and 980 ppb gold. A float sample with 3-6% chalcopyrite stringers assayed 3.036% Cu, 855 ppm Pb, 0.26% Zn, 67g/t Ag and 0.37g/t Au (Figure 7).

A characteristic trace element of the better-mineralized samples is the presence of cadmium. Virtually all of the zones with anomalous base and/or precious metals have cadmium present in a range of approximately 5-100 ppm. Most samples report values barely above the ICP detection limit of < 0.5 ppm.

Mineralization Associated with the Intrusive - Pendant Contact

A fault contact between chloritized diorite and hornfelsed tuffaceous andesite hosts an 18 meters wide quartz-carbonate vein trending 345°/70°SW (Laird, J.W., 1982). Mineralization consists of galena, sphalerite and pyrite accompanied by quartz, feldspar, chlorite and epidote. A grab sample from galena-sphalerite-pyrite bearing quartz carbonate vein material assayed 4.09% lead, 5.06% zinc, 0.072 oz/ton gold and 7.94 oz/ton silver. It is not known if any follow-up of this mineralization was undertaken in the subsequent exploration campaigns. The zone was not located during the 2003 campaign conducted for Red Tusk Resources and remains an unevaluated target. Some zones of gossanous rock in the general vicinity were noted from the air however poor weather prevented access.

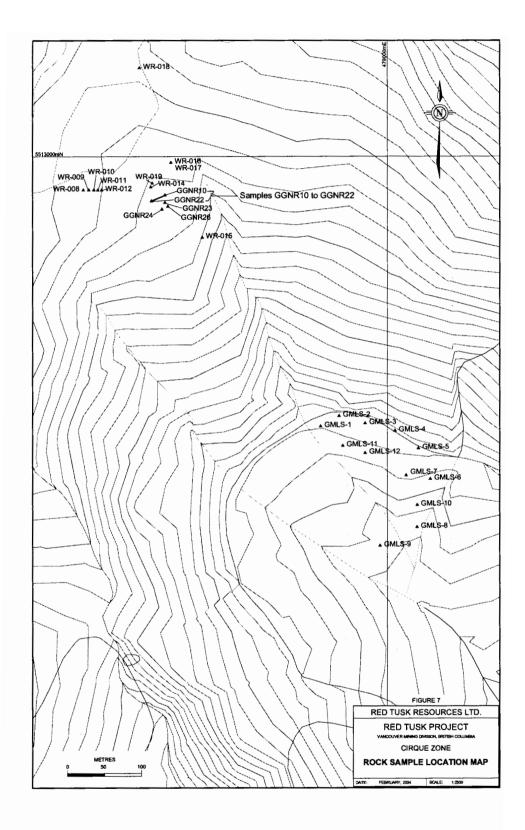


Figure 7—Cirque Zone—Rock Sample Location Map

EXPLORATION

Exploration undertaken on the property by Red Tusk Resources Inc. consists of an initial one-day property examination followed by the October-November mapping and silt sampling program. The work was conducted from two camps, one located at the Cirque zone and the other in the Clowhom River valley. The cirque camp was battered by high winds and the site was abandoned before the work could really be undertaken. Given the lateness of the season no further attempts were made to camp at the higher elevations. The next camp was set up at approximately kilometer 20.5 alongside the 'Clowhom Main' logging road in the Clowhom River valley. The network of logging roads branching from this main road were used to provide access for the mapping and sampling programs that form the bulk of this report. Some helicopter-supported sampling of gossans at higher elevations was undertaken on one-day excursions from Squamish to get some sample coverage prior to the arrival of winter snowstorms; this work was completed by several geologists and prospectors who sampled gossanous rock.

Prior to undertaking the field campaign the company obtained a digital map database for the project in the form of 1:20,000 scale TRIM maps. These maps were used to plot data in the field and can be used in the future with the proposed aerial photography.

The UTEM survey planned for the Cirque zone was never completed, nor were the grid based mapping and sampling surveys due to the onset of extreme winter conditions at the higher elevations. As a result the emphasis of the program switched to an evaluation of the areas of lower elevation. The effectiveness of the silt sampling program may have been hampered by torrential rains several weeks prior to undertaking the surveys. Most of the creeks sampled are located in very high energy environments and the earlier heavy rains seemed to 'flush clean' many of the smaller drainages. As a result it was often difficult to find any silt in the creeks. In addition cold weather froze many of the smaller creeks thus further limiting the number of suitable sample collection sites. A total of 127 rock samples, 119 silt samples and 29 soil samples were collected during the work program.

Cirque Zone

A number of anomalous sample results were received from the rock sampling completed on the Cirque zone. All of the samples collected were grab samples intended to provide a quick geochemical assessment of the sample site, more detailed and systematic sampling is required to better assess the grade and width of the surface mineralization. Most of the anomalous samples were collected from the vicinity of the old trench, where a strongly oxidized band occurs at the presumed rhyolite-andesite contact. A piece of mineralized float with 3-6% chalcopyrite stringer veinlets and 1% pyrite, sample WR14, assayed 3.036% copper, 0.26% zinc, 67.0 g/t silver and 0.37 g/t gold. Samples GGNR11-GGNR15, and GGNR20 to GGNR26 all report anomalous base and precious metal assays including 19,185 ppm copper, 19,104 ppm zinc, 49 ppm silver and 588 ppb gold. These samples also contain trace elements that are consistently elevated and include arsenic, strontium, and cadmium. Occasionally some samples show elevated levels of antimony and bismuth.

Some of the better results received from the program are shown on Table 2 – Cirque Zone Rock Samples. Full results of the samples are contained in Appendix G – Rock Sample Descriptions.

Sample No.	Cu-ppm	Pb-ppm	Zn-ppm	Ag-ppm	Au-ppb	As-ppm	Cd-ppm
GGNR7	2216	60	272	3.0	35	<2	1.6
GGNR8	2906	154	664	5.1	88	<2	5.7
GGNR9	6312	280	4478	12.0	375	4	36.0
GGNR11	18188	928	5503	51.8	980	12	43.5
GGNR12	2067	547	6985	3.6	127	51	43.9
GGNR13	2740	854	5778	4.8	108	51	37.1
GGNR14	19185	2534	19104	49.0	588	8	182.0
GGNR20	4990	549	9787	14.6	192	14	75.9
GGNR21	4223	169	2687	8.6	151	<2	22.2
GGNR22	3022	430	12797	5.4	81	17	95.5
GGNR30	1833	300	24184	59.2	361	29	116.0
GGNR31	1166	745	>9999	73.2	505	47	60.8
WR-11	23912	1398	19508	47.8	412	5	158.0
WR-14	27615	885	2567	64.7	2005*	4	22.4
WR-16	1934	140	282	4.3	70	2	28.8
WR-17	4093	116	3467	7.8	142	<2	31.9

Table 2 – Cirque Zone Selected Rock Samples

*Note: fire assay of this sample reported 0.37 g/t Au, 4 different samples from the same source boulder assayed 113 to 231 ppb Au.

Clowhom River Valley Area

None of the rock samples collected from either dacite-rhyodacite volcanics or siltstone-mudstone sedimentary units returned anomalous base or precious metals values. Some of the samples have weakly elevated copper and silver values but much lower than those received elsewhere on the property. Two of the samples contain anomalous arsenic values including a high of 8541 ppm arsenic from WRSQ-39, a narrow quartz vein with trace-2% sulphides. Sample WRSQ-24, a 20cm composite chip from a pitted, rusty quartz vein exceeded the ICP detection limit for tungsten, assaying >200ppm. The sample contained traces of disseminated pyrite and chalcopyrite (Figure 8).

Virtually all of the rock samples collected from this area are from the 'Squamish' road/drainage system. The 'No-name', 'Big Bluff' and, on that portion that was accessed, 'Red Tusk' road systems were underlain by intrusive rock comprising granitic lithologies. Silt sampling in these drainage systems was still completed to aid in locating any buried mineralized areas. Three rusty stained rock samples of float material were collected from creeks crossing the main logging road. None of these samples returned any significant values.

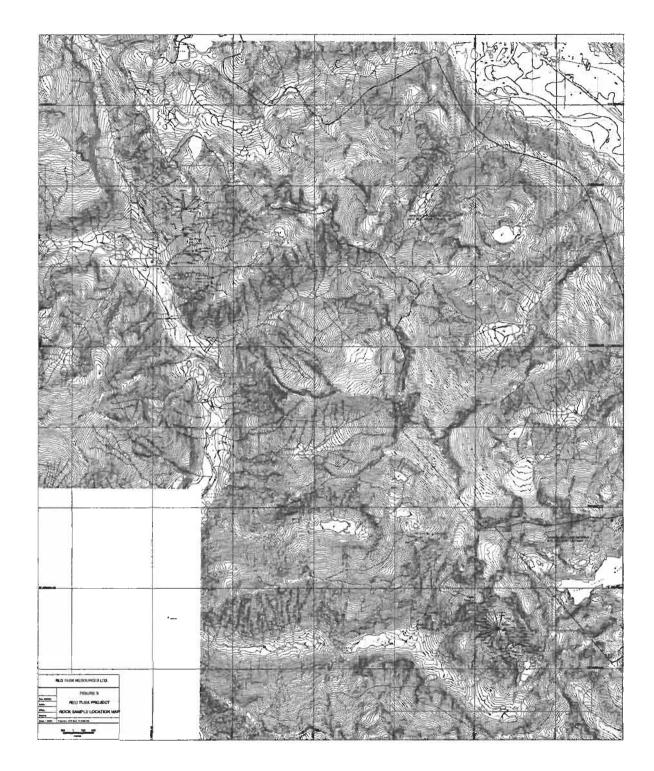


Figure 8—Property Rock Sample Location Map

0

Г

[

ſ

T

[

F

A total of 119 silt samples and 29 soil samples were collected from drainages on the east side of Clowhom valley, mainly from the Big Bluff and Squamish roads (Figure 9). The Big Bluff road samples are all from areas underlain by plutonic rocks and virtually no anomalous base or precious metals values were received. Copper and zinc values are in 10's of ppms, lead values are generally <10 ppm, gold and silver values are low, generally not much above threshold. Samples from No-Name road and the few from Red Tusk Creek were similarly low. The samples collected from the Squamish road system reported similarly low values though some weakly anomalous gold and trace element values were received. The samples show higher threshold levels for many elements than those in the Big Bluff drainage, reflecting the different underlying geology. This includes higher average values for base and precious metals, as well as some trace elements such as arsenic, cadmium, bismuth, and barium. Two samples, BB-108 and SQ-49, reported weakly anomalous gold values of 41.7 and 42.5 ppb respectively. Sample SQ-132 assayed 624 ppb gold, the highest assay from the sampling program and should be followed-up as the result is much higher than those from rock samples collected in the area, suggesting the source may be upslope.

Soil samples SQ-65 soil and SQ-117 soil reported anomalous arsenic values of 304 and 254 ppm respectively. Sample SQ-117 also reported elevated strontium (119 ppm) and vanadium (304 ppm). The few remaining soil sample locations are scattered throughout the property and include 12 soils near the North Extension zone and 3 soils from the area east and topographically lower than the Cirque zone. None of these sample reported significant results.

Overall results of the silt and soil sampling program failed to outline any strongly anomalous drainage basins. In view of the mapping this is not surprising in the areas wholly underlain by plutonic rocks. The sampling in these drainages (mainly Big Bluff) would imply that there are no hidden mineralized zones. Results from the Squamish road system have a higher threshold for base and precious metal values, as well as some indicator elements that may be associated with areas of sulphide mineralization, than those from the Big Bluff but are still low. In other areas sampled the sample density is too low to draw any meaningful conclusions.

The analytical results are listed in Appendix G – Analytical Results, rock, sample descriptions are included in Appendix H – Rock Sample Descriptions.

DRILLING

The only known drilling completed on the property is the 12 drill holes completed by Newmont in 1985. Newmont drilled six holes totaling 408.2 metres on the South zone and six holes totaling 239.5 metres on the North zone.

NORTH ZONE

The drilling in the North zone was conducted from three set-ups with two holes drilled from each set-up, a shallow and a steeper hole. The three set-ups were drilled from highest to lowest in elevation with the apparent intent of providing up and down-dip data over the surface mineralization. The drill logs contain considerably more detail on the various volcanic lithologies and mineralogy than is indicated on the surface maps. The results from holes 85-1 and 85-2 are somewhat lower than the surface sample results from the same area testing by the drilling.

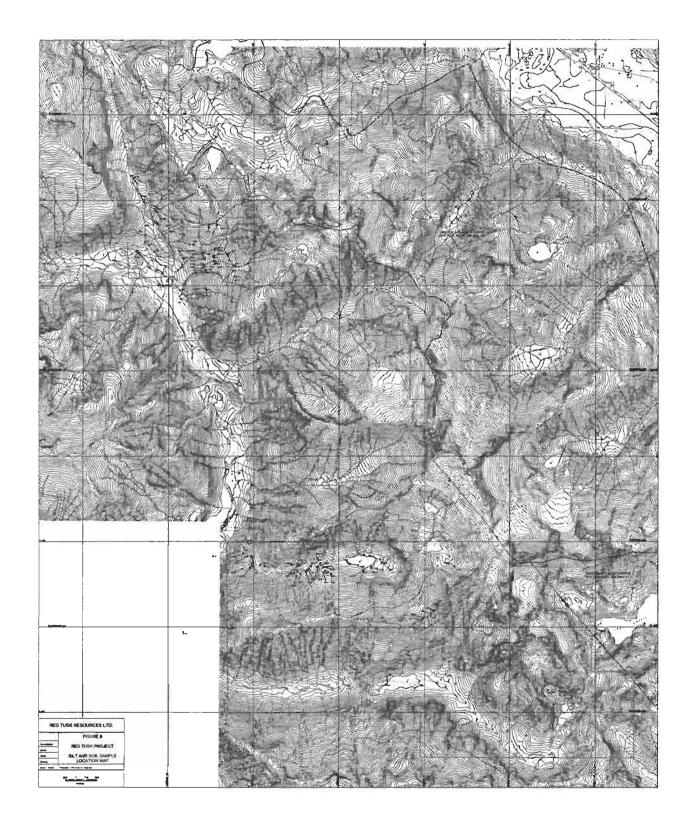


Figure 9—Property Silt and Soil Sample Location Map

[

[

[

[

ſ

1

[

ſ

The drilling concluded that two of the drill set-ups were collared on large slide blocks of mineralized rhyolite and as a result the zone may be smaller than initially believed. The drill holes affected were holes 85-3 and 85-4, drilled from the middle set-up, and holes 85-5 and 85-6, drilled from the southernmost set-up. In both cases the holes collared in rhyolite and then encountered a sand seam described in the drill logs being comprised of broken fragments of intermixed volcanic rocks as well as sand and pebbles and rubble. Nonetheless some anomalous gold and silver values were obtained from the underlying rhyodacite and dacite pyroclastics in drill hole 85-5, where a 10.5 metres long interval from 21.5 –32.0 metres has a weighted average of 19.4 ppm silver and 106 ppb gold. In addition the rhyolite slide blocks also yielded some anomalous values, though not likely from a bedrock source.

Drilling at the northernmost set-up, drill holes 85-1 and 85-2, yielded the best results from the North zone drilling and are believed to be testing a bedrock source of mineralized rhyolite. In drill hole 85-1 rhyolite lapilli tuff and breccia from 2.5-10.0 metres averaged 22.3 ppm silver and 562 ppb gold over the 7.5 metre long interval including 64.0 ppm silver and 1700 ppb gold over 1.5 metres. A 5.0 metre zone in the underlying dacite tuff averaged 7.6 ppm silver and 87 ppb gold from 18.1 to 23.1 metres. Drill hole 85-2 intersected intermixed rhyolite tuff and breccia from 10.7-27.0 metres that contained elevated and anomalous gold and silver values throughout. The interval from 10.7-17.0 metres averaged 18.4 pm silver and 317 ppb gold over the 6.3 metre interval including a high of 27.0 ppm silver and 540 ppb gold over 2.5 metres. Two other samples both 2.0 metres in length assayed 34.0 ppm silver and 1800 ppb gold and 34.0 ppm silver and 1300 ppb gold respectively. Weakly anomalous results were received from hornfelsed lapilli tuff at 49.9-57.2 metres with silver values in the range of 3.2-7.4 ppm, gold values were quite low.

SOUTH ZONE

Drilling in the South zone was per the North zone, two holes each from three drill set-ups progressing from south to north. In summary Newmont concluded there was a trend towards increasing grades to the north and with depth. At both zones the drilling results were less than the surface chip sample results, possible surficial enrichment or an undetermined problem with the surface sampling program were suggested as possible reasons for the differences.

At the first set-up hole 85-7 intersected rhyolite flow/exhalite from 3.6 to 10.7 metres that is underlain by mineralized rhyodacite breccia. A 10.2 metres long interval from 1.8-12.0 metres assayed 4.1 ppm silver and 300 ppb gold with lead values ranging from 668-3536 ppm and zinc values from 850 to greater than the ICP detection limit of >9999 ppm. Drill hole 85-8, drilled underneath hole 85-7, intersected the same lithologies with rhyolite flow/exhalite from 5.0-11.5 metres assaying up to 9.0 ppm silver, 1850 ppb gold, 4432 ppm lead and >9999 ppm zinc over 2.2 metres Anomalous values were obtained from the underlying rhyodacite breccia over 4.2 metres.

Drill holes 85-9 and 85-10 drilled at the second set-up both intersected broad zones of anomalous base and precious metal mineralization in rhyolitic and dacitic tuffs and flows at the tops of the holes. In hole 85-9 the 21.0 metres interval from 0.0-21.0 metres assayed 5.3 ppm silver and 647 ppb gold including 15.6 ppm silver and 4100 ppb gold over 2.0 metres. Anomalous lead and zinc values occur throughout the interval. Two other weaker zones were intersected lower in the hole higher values were received from the lower zone of rhyolite tuffs and flows in a shear or fault zone. Hole 85-10 also intersected a broad zone of weakly mineralized rhyodacite tuff and lapilli tuffs averaging 2.5 ppm silver and 246 ppb gold over 24.0 metres from 0.0-24.0 metres including highs of 1120 and 1700 ppb gold over lengths of 2.0 and 1.1 metres respectively. One other zone was intersected from 29.5-35.5 metres in dacite lapilli tuff averaging 6.5 ppm silver and 370 ppb gold over 6.0 metres. Hole 85-10 did not intersect the mineralized shear/fault zone cut near the

bottom of hole 85-9 and thus may not have tested the mineralization observed in the fault zone in hole 85-9.

Drill holes 85-11 and 85-12 returned the best results of the program; both holes contain elevated silver values over broad intervals throughout much of their lengths though the values are not in the range of potentially economic grades. Four discrete zones are present in hole 85-11 that returned highs of up to 10.8 ppm silver and 1400 ppb gold over core lengths of 2.2 and 2.0 metres respectively. Four mineralized zones are also present in hole 85-12 with one sample assaying 22.6 ppm silver and 2050 ppb gold over 1.7 metres. The surface chip samples that the holes were testing reported better results with gold assays from several surface samples in the range of 4 to 8 g/t gold. These values are plotted on surface just west of a prominent fault zone, and the source they represent was probably picked up at the base of hole 85-12 but any further drilling in the area should go further though the fault zone if conditions permit. Hole 85-11 just penetrated the above mentioned fault/shear zone.

A summary of elevated and anomalous drill hole assay intersections is presented in Table 3 – Drill Hole Assay Intervals.

			DRILL H		INTERVALS		
Hole No.	From	To	Length	Pb	Zn	Ag	Au
	(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	(ppb)
85-1	2.5	10.0	7.5	30-60	53-118	22.3	562
(including)	8.5	10.0	1.5	38	62	64.0	1700
85-1	18.1	23.1	5.0	14-60	118-400	7.6	89
85-2	10.7	17.0	6.3	28-46	90-270	18.4	317
(including)	13.0	15.5	2.5	42	190	27.0	540
85-2	21.0	23.0	2.0	16	30	34.0	1800
85-2	25.0	27.0	2.0	12	20	34.0	1300
85-2	49.0	57.2	8.2	4-20	70-320	3.9	<5-10
····							
85-5	21.5	32.0	10.5	144-272	80-2270	19.4	106
(including)	27.7	32.0	4.3	156	136	26.6	121
85-7	1.8	12.0	10.2	668-3536	850->9999	4.1	300
85-7	49.5	51.8	2.3	1642	3980	18.6	170
85-8	7.0	9.2	2.2	4432	>9999	9.0	1850
85-8	11.5	15.7	4.2	3478-4218	6790->9999	4.1	236
85-9	0	21.0	21.0	144-8086	100->9999	5.3	647
(including)	17.0	19.0	2.0	8086	>9999	15.6	4100
85-9	54.0	62.0	8.0	1417	3610	4.2	501
	1						
85-10	0	24.0	24.0	136-1292	120-2440	2.5	246
(including)	8.0	10.0	2.0	256	760	1.8	1120
(including)	22.9	24.0	1.1	192	2440	1.6	1700
85-10	29.5	35.5	6.0	1959	667	6.5	370
<u> </u>							
85-11	4.2	20	15.8	1737	2966	4.4	338
(including)	6.4	12.0	5.6	3490	4670	8.2	534
85-11	26.0	30.0	4.0	1294	1800	3.6	208
85-11	34.5	39.7	5.2	1125	6340	5.1	222
85-11	48.0	52.0	4.0	2848	>9999	5.4	940
			1				
85-12	3.8	17.0	13.2	1106	2677	2.9	481
(including)	7.3	12.8	5.5	1803	5410	4.2	946
85-12	32.3	35.8	3.5	3177	5049	6.9	169
85-12	41.8	45.0	3.2	5772	8397	13.0	1171
(including)	41.8	43.5	1.7	>9999	>9999	22.6	2050
85-12	51.6	62.5	10.9	2265	6895	4.6	521
(including)	55.5	57.5	2.0	374	4150	5.8	1100
(including)	61.0	62.5	1.5	6584	>9999	6.4	1100

Table 3 - DRILL HOLE ASSAY INTERVALS

In summary none of the drill holes intersected what could be considered potentially economic precious metal grades. The anomalous gold, silver and base metal values returned from surface sampling were not intersected in the drilling. Drilling on the North zone was disappointing as two of the three set-ups were collared on what appears to be large blocks of slide debris thus reducing the size of the zone. The South zone drilling also yielded lower than expected assays however to the north and with depth holes 85-11 and 85-12 both yielded broader zones of mineralized rhyolite, exhalite and dacite with higher overall values than the other four holes completed on the South zone. Any future drilling in the area should test this trend and a few holes should penetrate well through the fault zone to test for mineralization within the fault/shear zone and for layers of buried favourable felsic volcanic stratigraphy.

SAMPLE METHOD AND APPROACH

The sampling program described in this report was intended as a first pass to outline areas of potential interest. No detailed, systematic rock sampling was completed, silt sampling coverage is good for the Big Bluff and Squamish drainage basins and no stream sediment sampling is required. Other areas of the property, mainly the whole northern portion and most of the higher elevations, have not been examined at all. No evaluation of these areas can be made until some preliminary work has been undertaken.

Rock samples are virtually all grab samples with the exception of a few chip samples. Most of the chips are from narrow quartz veins and often a composite chip was collected, entailing sampling across the width of the vein at several locations. Silt samples were collected from natural heavy mineral traps as available in the creeks, only a few soil samples were collected, mainly from the banks of the logging roads where there were sudden changes in soil colour, or from rusty coloured soils.

Rock samples were placed in plastic bags and labeled with a code for the drainage system name and sample number, some of the prospectors also included their initials in the sample label. The sample was then sealed and either stored in camp for later shipment, or in the case of the late season weekend helicopter supported rock sampling stored in Langley at a secure location and driven to the lab when a sufficient number of samples had been collected. Silt and soil samples were labeled with the code for the drainage system and the sample number. Samples were assumed to be a silt sample; soil samples were labeled as per the silts and were separated for shipment for analysis. The samples were stored in camp and shipped out for analysis at the end of the job.

Most of the sample sites were positioned utilizing a hand-held GPS with the exception of a few samples collected on the one-day helicopter supported traverses. The sample site location was recorded in the GPS unit memory and recorded in the sampler's notebooks. The data were subsequently downloaded to computer and later used to create some of the maps in this report. The property is located in Universal Transverse Mercator Grid (UTEM) Zone 10; northing and easting coordinates are from North American Datum (NAD) 1983.

As mentioned elsewhere in this report heavy, heavy rains several weeks prior to the work program may have flushed much of the fine stream sediments into the Clowhom River as it was difficult to find areas with much silt in any of the drainages sampled. This may in part be due to the high-energy nature of the environment; many small creeks flow over bare rock with no silt, sand or gravels developed. As a result some of the samples collected are quite small, a larger sample may have yield better, or more representative results. In the case of the silt and soil samples assay determinations were made from a pulp weighing 15 grams, in some cases pulp size was 7.5 grams and for very small samples only a 1 gram pulp was all that could be obtained. Some of the factors mentioned above may have had some effect on the overall sample quality, though it is the authors opinion that any effects would be minimal and unlikely to affect the overall interpretation of the results.

SAMPLE PREPARATION, ANALYSES AND SECURITY

All previous exploration campaigns on the property were completed prior to the new NI 43-101 regulations and thus the assessment reports do not have a lengthy discussion on these topics. A description of the Newmont sample procedures taken from Delane, G.D, 1983, 1984 and 1985 is as follows:

"The samples were sent to Chemex Laboratories in North Vancouver were dried, sieved to -80 mesh and analysed for Cu, Pb, Zn, Ag, As, & Au. For analysis of Cu, Pb, Zn, and Ag, 1 g of each sample was digested for 2 hours using 3 ml hot 70% perchloric acid and 2 ml concentrated nitric acid, the mixture diluted to 25 ml with demineralized water, allowed to settle, and the metal content determined by atomic absorption. For gold, 5 g of sample was ashed at 800°C for one hour, digested with aqua regia twice to dryness, taken up in 25% hydrochloric acid, then the gold extracted as the bromide complex into MIBK and determined by atomic absorption."

The sampling undertaken by Schellex was analyzed at Acme Analytical Laboratories Ltd. in Vancouver. The samples received a 31-element ICP analysis, 0.5 grams of sample was digested in aqua regia for one hour and subsequently analysed probably by either ICP-MS or ICP-AES; the finish method was not stated in the report. For gold a 10 grams sample was subjected to an acid leach with an AA finish.

The author believes the sample preparation, security, and analytical procedures were done in accordance with industry accepted standards at the time though can in no way verify this statement.

The rock samples collected were labeled and sealed in either cloth or plastic bags, sealed with a security strap, and then packaged for shipment. Silt and soil samples were collected in Kraft bags, partially dried in camp, and then packaged and shipped for analysis. The author maintained control over the samples which were analyzed by Acme Analytical Labs Ltd. in Vancouver, B.C. Acme is an ISO2002 accredited laboratory and the author has no reason to doubt the integrity of the samples or results received.

All samples were sent to Acme Analytical Laboratories Ltd and treated to a 30-element ICP analysis plus gold. A 0.5 grams sample is leached with 3 ml 2:2:2 HCl-HNO₃-H₂O (aqua regia) at 95° C. for one hour, diluted to 10 ml with demineralized water, and analysed by ICP-AS. For the gold analysis a 15 grams sample was acid leached and analysed by ICP-MS.

DATA VERIFICATION

There is no mention of any quality control measures undertaken during the previous exploration campaigns. The author has relied upon the data presented in the previous reports on the property for portions of this report and has not undertaken any measures to verify the data presented. That data pertains to the assessment report files supplied by the various companies that have conducted past exploration programs on the subject property or portions thereof and therefore must rely upon the professional measures used by the employees of those companies. There is no indication of any problems with the past data.

The samples collected in the 2003 exploration campaign were not subject to any systematic data verification measures, though some partial checks were undertaken. Some of the silt samples test the same creek at different elevation levels with those sample reporting similar results. One rock sample was also tested to a degree. The boulder from which sample WR-14 came was cut into several smaller hand specimens, four of which were assayed. The original sample assayed 27,615 ppm copper, 885 ppm lead, 2,567 ppm zinc and 64.7 ppm silver. The four sub-samples, G-CX-1 to G-CX-4 and a repeat assay of G-CX-4, ranged from 18,686-32,833 ppm copper, 505-956 ppm lead, 1,221-3,606 ppm zinc and 40.9-61.6 ppm silver. The results compare favourably when considering that it is not the exact same sample being tested. Future programs should have a quality control program, especially if a large number of samples are collected.

ADJACENT PROPERTIES

There are no active work programs being undertaken on any neighbouring properties.

MINERAL PROCESSING AND METALLURGICAL TESTING

There has been no metallurgical testing undertaken on the property; however there has been very limited mineral processing in the form of lead isotope analysis. One float sample of galena in barite rich rock collected from Red Tusk Creek was analyzed for its lead isotope composition. The isotope ratio plots favourably with data from the past producing Britannia Mine indicating the metals came from a common or similar source. Details of the lead isotope analysis are presented in Appendix I – Red Tusk Lead Isotope Analysis.

MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

There are no known mineral reserves or resources on the property. The level of exploration completed to date is insufficient to define any preliminary resources.

OTHER RELEVANT DATA AND INFORMATION

One item of possible relevance to the report is to assess the historical expenditures on the property adjusted to present day values to evaluate what the amount of previous work would be worth in present day value. On the Red Tusk project the historical expenditures of \$238,485 equate to \$527,120 worth of work in 2003. Details of this comparison are presented as Appendix J—Summary of Historical Expenditures vs. Current Estimates. The Red Tusk Project is considered a property of merit; the current day value expenditures have outlined three distinct styles of mineralization, other regional geochemical anomalies, and a large belt of favourable geology. A work program outlining estimated expenditures and areas of focus for the exploration is presented later in this report.

There is no other relevant data or information to be added to the report.

INTERPRETATION AND CONCLUSIONS

The Red Tusk Project is comprised of a northwest-southeast trending pendant of Lower Cretaceous Gambier Group volcanic and sedimentary assemblages that is bounded by various phases of intrusive rocks related to the Coast Plutonic Complex. The property is host to six known mineralized occurrences. Three of these zones, the North, North Extension, and South zones are hosted within a structurally complex and deformed siliceous, barite-bearing exhalite horizon that is bounded by rhyolite which in turn is bounded by andesitic volcanics. Two zones, the Mavis and Cirque zones, are hosted in andesitic volcanics with mineralization comprised of semi-massive to massive pods of sphalerite-galena-chalcopyrite with elevated gold and silver content. Work completed in 2003 indicates that there is stringer sulphide mineralization in rhyolites at the Cirque zone in addition to mineralization hosted in andesite. The final zone is quartz-carbonate veining that may be a contact style of mineralization between the Gambier Pendant and the enclosing Coast Plutonic Complex.

The North, North Extension, and South zones have a combined strike length of approximately two kilometers and the host barite/barite-rich rhyolite horizon has a width of several to ten's of metres. The mineralization in the zones is erratic but can attain grades in the range of 0.5 oz/ton gold and 100 oz/ton silver. The Mavis zone is more limited in extent. The Mavis zone is located in an area of very steep topography, is likely structurally controlled and is limited in extent.

The Cirque zone has only received cursory exploration the full extent of this zone is unknown. Attempts to delineate the zone in this past program failed due to poor weather conditions forcing the early closure of the camp. A one-day examination of the zone indicates an area of sulphide enrichment occurs near the eastern rhyolite contact manifest as a rusty stained band several metres thick. Prospecting and sampling confirmed the presence of anomalous base and precious metals with results of up to 19,185 ppm Cu, 2,534 Pb, 24,184 ppm Zn, 59.2 ppm Ag and 980 ppb Au received from grab samples collected in 2003. A float sample with 3-6% chalcopyrite stringers assayed 3.036% Cu, 855 ppm Pb, 0.26% Zn, 67g/t Ag and 0.37g/t Au.

Since the higher elevations were snow covered the 2003 work focused mostly in the Clowhom River valley and included geological mapping and silt sampling with some select soil sampling. The mapping revealed an assemblage of Gambier Group rocks comprising fine-grained clastic sediments with andesite, dacite and rhyodacite flows and tuffs that trend north-northwest and dip steeply to the southwest. A number of inaccessible gossans were noted at higher elevations during the course of the mapping. It is likely that continued mapping will link the volcanic stratigraphy to date with the observed gossans, which are believed to represent the mineralized rhyolite-exhalite horizon or the structure that hosts that horizon. Mineralization includes mostly pyrite as fine-grained disseminations in both argillite and dacite. Some semi-banded pyrite was observed in argillite on the Squamish road system; although no anomalous results were received from the samples collected the unit should be prospected along strike for other possible areas of 'bedded-type' sulphide accumulations. One anomalous gold assay was received from silt sample SQ-132, assaying 624 ppb gold and two other silt samples reported weakly anomalous gold values. A number of areas contain anomalous indicator minerals such as arsenic, cadmium, barium, and tungsten.

The selected sampling of gossanous areas throughout the higher elevations of the property did not return any anomalous results, however this was very preliminary work. The previously reported Contact zone, in Red Tusk Creek valley, was not located and remains an unevaluated target. Two prospectors spent one day in the area and found narrow quartz veins, up to 1 metre wide, but not the reported 18 metre wide vein. This work was among the last done on in the 2003 campaign and snow cover hampered the prospecting work.

RECOMMENDATIONS

The work completed in 2003 confirmed the mineralization present in the Cirque zone and revealed areas of favourable geological stratigraphy. The mineralization discovered to date warrants further exploration work to determine the potential size and grade of the zones; it is recommended that further work be undertaken to complete this evaluation. Various surveys and the timing thereof are detailed below; the work program is listed in rough chronological order.

The UTEM geophysical survey planned for the Cirque zone was never started in 2003. This survey should be completed in the spring, when there is still thick snow cover but before there is

any danger of avalanches in the cirque. The fall 2003 mapping indicates the terrain is walkable without the aid of ropes but difficult to do so in a straight line as is required for grid-based surveys. Thick snow cover should make grid-type work somewhat easier. The survey should aid in determining depth extent of the mineralization prior to drill testing of the zone. Global Positioning System (GPS) control points can be used to tie in the data to the subsequent grid based mapping and sampling data.

An airborne magnetic and electromagnetic survey is also recommended and should be flown in the spring so that the data may be evaluated prior to resuming mapping, prospecting and sampling. The sulphide mineralization should give a recognizable geophysical response that can then be used to trace the mineralization through areas of snow or ice cover. The survey should also aid the mapping at a regional scale by distinguishing between Gambier Group rocks and intrusive rocks of the Coast Plutonic Complex. A 200 metre line spacing would be sufficient to provide broad geological data, a 100 metre line spacing may be necessary to pick up smaller or subtle features.

Mapping and prospecting can begin in the spring at the lower elevations of the property and move to higher areas as the snow melts and allows access. The mapping should focus on completing the stratigraphic succession started on the Squamish road system. It is felt that once the stratigraphy is more clearly understood areas with the most potential to host sulphide mineralization can be more readily determined and work can focus there, particularly for areas where there may be no obvious surface expression. There are a number of gossans that were not accessed during the 2003 work program that should be mapped and sampled. On a broad scale these may all be linked to one or more broad stratigraphic or structural horizons. Emphasis should be on mapping the felsic volcanic assemblages, particularly rhyolite and any exhalite or barite-rich rhyolite units. This work can be supported from a series of 2-4 day fly camps with 2-4 persons mapping and sampling. The mapping should be directed towards the higher elevations along the west side of the Tantalus Range, right from the Main and Cirque zones, northwesterly through the upper reaches of the Squamish road drainage basin and through to the unexplored northern third of the property. Experienced technical climbers may be required to complete much of this work depending upon steepness of the terrain.

The North, North Extension, South, and Mavis zones should be examined in further detail to evaluate strike and dip extensions of the known mineralization. This evaluation should also consider how much more practical surface work can be completed. Given the steepness of the terrain and the slow and costly nature of detailed chip sampling it may be worth drill testing the zones following up the recommendations from the Newmont work. The system occurs over a large vertical extent and one or two deeper drill holes would test the geological model and provide detailed data on the stratigraphy.

Detailed mapping and sampling of the Cirque zone should be completed as conditions permit, probably in late July and August. This data can be used with the UTEM survey information to define the limits of the mineralization. Extensions of this zone should be prospected for; pyrite-bearing rhyolite was noted east of and topographically lower than the cirque zone, near a small lake.

The Contact zone area should be prospected, mapped, and sampled in hopes that the discovery outcrop can be located to gain a better understanding of its potential. In addition Red Tusk Creek should be mapped in detail, a number of white, weakly rusty weathering zones have been seen from the air and should be evaluated for possible extensions of the rhyolite/exhalite

mineralization at the main zone. While these mapping surveys are ongoing silt sampling and prospecting of the unexplored northern portion of the property can be completed.

A property-wide colour aerial photo survey should be flown in September, when alpine snow levels are low and rock outcrop exposure is at a maximum. Although the survey will be too late in the season to provide much help for the recommended surveys, it will be useful in subsequent programs. The TRIM digital contoured topography data can be added to the photos to provide base maps for the mapping and sampling programs.

Dependent upon results, diamond drilling would be the next stage in evaluating the better prospects. If the planned surveys on the Cirque zone are favorable then a preliminary drilling program of 1,500 metres is recommended. The drilling should comprise shallow holes initially to evaluate the target along strike; deeper down-dip testing would be completed underneath holes reporting the best results. If warranted the Main zone area should also be drill tested, starting in the South Zone following up the trends outlined by the Newmont drilling. A few deeper holes could be considered to test both the stratigraphy and the mineralization at depth. This program would also comprise approximately 1,500 metres of drilling. Any new targets discovered by the mapping and sampling may warrant one or two holes, possibly the north extension zone or one of the many gossans seen along trend.

In summary ground and airborne geophysical surveys should commence in April-May, mapping, sampling, and prospecting can start in June at the lower elevations and finish up the high elevation work in late August-September. Diamond drilling can also start in August-September, if warranted. The aerial photography should commence in August to September when alpine snow cover is at its lowest level.

The Phase I geophysical program proposed in this report is estimated to cost approximately \$152,000. The Phase II program of mapping, prospecting, geochemical sampling, aerial photography, and diamond drilling is recommended at an estimated cost of \$635,000. This phase can be completed in stages dependent upon results and includes \$378,000 directly allocated for drilling. The Phase I and Phase II programs are estimated to total approximately \$787,000 and will be completed in stages over several months.

PHASE I BUDGET

UTEM Survey: Cirque Zone

UTEM CREW and EQUIPMENT - 6 days @ \$3000/day (incl. travel, room & board)	18,000
HELICOPTER - (A-Star) 15 hours @ \$1600/hour all in	24,000
REPORT and INTERPRETATION	5,000
SUBTOTAL	\$47,000
Helicopter Airborne Mag/EM Geophysical Survey	
AIRBORNE SURVEY – 400 km @ \$150/line-km all in	60,000
REPORT and INTERPRETATION	10,000
SUBTOTAL	\$70,000
SUBTOTAL	\$117,000
GST @ 7% CONTINGENCY @ 10% MANAGEMENT FEE	\$8,190 \$11,700 \$15,000
TOTAL	\$151,890
TOTAL PHASE I (say)	\$152,000

PHASE II BUDGET

ENVIRONMENTAL STUDIES	\$10,000
MOB/DEMOB (Barge for drill and fuel)	10,000
PERSONNEL Project Manager – 15 days @ \$550/day Senior Geologist – 45 days @ \$400/day Junior Geologist – 45 days @ \$300/day Geological Technician – 2 x 45 days @ \$250/day	8,250 18,000 13,500 22,500
EQUIPMENT RENTAL 4x4 truck – 1.5 months @ \$1800/month Four Trax ATV – 1.0 months @ \$1500/month Camp Gear – 1.5 months @ \$1000/month Communications (Radio, Satellite Phone) – 1.5 month @ \$2000/month	2,700 1,500 1,500 3,000
FOOD FUEL SUPPLIES and SUPPORT	10,000
DIAMOND DRILLING – 3000 metres @ \$70/metre	210,000
DRILL PAD CONSTRUCTION - blasting and timbering, estimate 10 pads	40,000
HELICOPTER A-Star (set-up and move fly camps, crew set-outs) – 30 hours @ \$1600/hour Bell-214 (set-up and move drill) – 20 hours @ \$4000/hour	48,000 80,000
ASSAYS – 800 samples @ \$15/sample	12,000
AERIAL PHOTOGRAPHY	15,000
REPORT	20,000
SUBTOTAL GST @ 7% CONTINGENCY @ 10% MANAGEMENT FEE	\$525,950 \$36,816 \$52,595 \$20,000
TOTAL	\$635,361
TOTAL PHASE II (say)	\$635,000
TOTAL PHASE 1&II TOTAL PHASE I & II (say)	\$787,251 \$787,000

STATEMENT OF EXPENDITURES

PERSONNEL

Office and Field work, Data Compilation, Research	
M. McClaren, P.Geo. – 11 days @\$450/day	4,950.00
G. Nicholson, P.Geo. – 12 days @\$350/day	4,200.00
R. Krause, B.Sc. – 4 days @ \$300/day	1,200.00
D. Baxter - 34 days @ \$250/day	8,500.00
W. Raven, P.Geo 32.5 days @\$400/day	13,000.00
D. Deering, P.Eng 24 days @\$250/day	6,000.00
G.Barton – 23 days @\$250/day	5,750.00
G. Nicholson, P.Geo 12 days @ \$350/day	4,200.00
R. Forshaw – 3 days @ \$400/day	1,200.00
L Stephenson, P. Eng. – 3 days @ \$400/day	1,200.00
R. Krause, B.Sc. – 3 days @\$350/day	1,050.00
C. Greig, P.Geo., M.Sc. – Thin Section Analysis	5,000.00
EQUIPMENT RENTAL	
Bronco – 6 days @ \$75/day	450.00
4x4 Trucks – 35 days @75/day	2,625.00
Fourtrax – 2x23 days @ \$60/day	2,760.00
Camp room and board – 3x23 days @ \$30/day	2,070.00
Satellite phone, radios, GPS units	1,500.00
DATA ACQUISITION, TRIM Maps, DRAFTING, PRINTING	
M. McClaren	2,812.50
G. Nicholson	9,092.83
Office, computer	2,000.00
Gambier Mining Corp. costs	5,000.00
FIELD EQUIPMENT, CAMP SUPPLIES, GROCERIES GAS, PROPANE	
W. Raven	677.01
D. Deering	57.25
G. Nicholson	10,972.06
ASSAYS Acme Analytical Labs, rock, soil and silt samples	4,604.32
HELICOPTER Black Tusk Helicopters (206, A-Star)	32,339.60
REPORT	7,650.00
DRAFTING	5,000.00
GST@7%	4,291.35
WCB@3%	1,377.00
TOTAL	151,528.92

REFERENCES

BOYLE, H.C.,

1986: B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT 14,478, DIAMOND DRILLING PROGRAM ON THE RED TUSK CLAIM GROUP, NEWMONT EXPLORATION OF CANADA LIMITED.

BRITANNIA STUDY GROUP,

1990: BRITANNIA GOLD PROJECT, PRELIMINARY TECHNICAL ECONOMIC STUDY, UNPUBLISHED REPORT FOR COPPER BEACH ESTATES.

CARPENTER, T.H.,

1996: B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT 24,421, A HEAVY MINERAL STREAM SEDIMENT AND ROCK SAMPLING PROGRAM ON THE RED TUSK PROPERTY.

CHUNG, P.L,

1988: B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT 18,615, GEOCHEMICAL AND GEOLOGICAL REPORT ON THE RED TUSK PROPERTY, SCHELLAX GOLD CORP. DELANE, G.D.:

1983: B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT 11,180, GEOLOGICAL AND GEOCHEMICAL REPORT ON THE RED TUSK CLAIM GROUP, NEWMONT EXPLORATION OF CANADA LIMITED.

_____,

1984: B.C. GEOLOGICAL BRANCH ASSESSMENT REPORT 12,660, A TECHNICAL REPORT ON THE RED TUSK CLAIM GROUP, NEWMONT EXPLORATION OF CANADA LIMITED.

FRANKLIN, J.M.,

1995: GEOLOGY OF CANADA, NO. 8, GEOLOGY OF CANADIAN MINERAL DEPOSIT TYPES, DNAG, 158-183; VOLCANIC-ASSOCIATED MASSIVE SULPHIDE BASE METALS.

HUSTON, D.L., LARGE, R.R.,

1989: ORE GEOLOGY REVIEWS, 4 (1989) 171-200; A CHEMICAL MODEL FOR THE CONCENTRATION OF GOLD IN VOLCANOGENIC MASSIVE SULPHIDE DEPOSITS. OHMOTO, H.,

1996: ORE GEOLOGY REVIEWS 10 (1996) 135-177; FORMATION OF VOLCANOGENIC MASSIVE SULFIDE DEPOSITS: THE KUROKO PERSPECTIVE.

LAIRD, J.,

1982: BC GEOLOGICAL BRANCH ASSESSMENT REPORT 10,279. PROSPECTING REPORT ON THE SILVER TUSK CLAIMS.

LERICHE, P.,

1985: BC GEOLOGICAL BRANCH ASSESSMENT REPORT 14,079 GEOCHEMICAL ASSESSMENT REPORT ON THE TANTRA I, II, III, IV, V, VI, CLAIMS.

PAYNE, J.G., BRATT, J.A., STONE, B.C.,

1980: ECONOMIC GEOLOGY, VOL. 75, NO. 5 700-721; DEFORMED MESOZOIC VOLCANOGENIC CU-ZN SULFIDE DEPOSITS IN THE BRITANNIA DISTRICT, BRITISH

COLUMBIA.

RODDICK, J.A.,

1965: GSC MEMOIR 335; THE GEOLOGY OF THE VANCOUVER NORTH, COQUITLAM AND PITT LAKE MAP-AREAS.

RODDICK, J.A., WOODWORTH, G.J.,

1979: GSC OPEN FILE 611; GEOLOGY OF VANCOUVER WEST HALF AND MAINLAND PART OF ALBERNI, B.C.

SCHROETER, T.G., ET. AL.,

1989: OPEN FILE 2000-2. GEOLOGICAL SURVEY BRANCH, BRITISH COLUMBIA: GOLD PRODUCTION, RESOURCES AND TOTAL INVENTORIES IN BRITISH COLUMBIA (1858-1998).

SINCLAIR, A.J.,

1980: EMPR FIELDWORK 1980, PAPER 1981-1,165-178; INTERPRETATION OF LEAD ISOTOPE DATA, SOUTHERN COAST MOUNTAINS.

SPENCER, B.E., P.ENG.,

1990: REPORT ON THE 1990 DRILL PROGRAMME; NO.5 MINE, EMPRESS MINE AREA OF BRITANNIA MINES, UNPUBLISHED REPORT FOR COPPER BEACH ESTATES.

CERTIFICATE OF QUALIFICATIONS

- I, Wesley Raven, of 108-1720 West 12th Avenue, Vancouver, British Columbia hereby certify:
- 1. I am a graduate of the University of British Columbia (1983) and hold a BSc. degree in geology.
- 2. I have been employed in my profession with various companies since 1983.
- 3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, and have been registered since1992. I am also a Fellow of the Geological Association of Canada and have been a member since 1989.
- 4. I have read the definitions of "Qualified Person" set out in NI 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 5. I am responsible for preparation of all sections of this report utilizing data summarized in the References section of this report. I have visited the subject property on October 2, 2003 and supervised the exploration program from October 27-30, 2003 and November 5-17, 2003.
- 6. I have had no direct involvement with the Red Tusk Project.
- 7. I am not aware of any material fact or material change with respect to the subject matter of the technical report that is not reflected in the technical report, the omission to disclose which makes the technical report misleading.
- I am independent of Red Tusk Resources Inc. applying all the tests in Section 1.5 of NI 43-101.
- 9. I have read NI 43-101 and NI 43-101F1 and the technical report has been prepared in compliance with that instrument and form.
- 10. I consent to the use of this report by Red Tusk Resources Inc. as the geological component (property of merit) of their application to attain new listing on the TSX Venture Exchange.

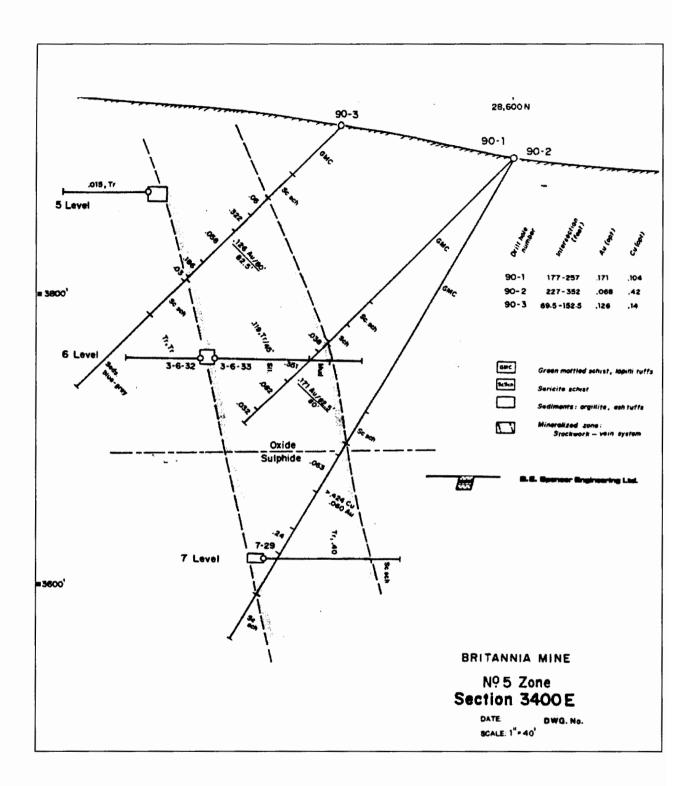
Mesley Kau W. D. T. RAVEN SCIEN

Wesley Raven, P. Geo. DATED at Vancouver, British Columbia, this 9th day of February, 2004

APPENDIX A SUMMARY OF CLAIMS

CLAIM NAME	# UNITS	RECORD #	EXPIRY DATE
COMMONWEALTH 1	9	402487	May 19, 2004
COMMONWEALTH 2	20	402488	May 19, 2004
COMMONWEALTH 3	20	402489	May 19, 2004
COMMONWEALTH 4	18	402490	May 19, 2004
COMMONWEALTH 5	12	402565	May 19, 2004
COMMONWEALTH 6	10	402566	May 19, 2004
COMMONWEALTH 7	8	402567	May 19, 2004
COMMONWEALTH 8	20	402568	May 19, 2004
COMMONWEALTH 9	9	402800	May 19, 2004
COMMONWEALTH 10	20	402801	May 19, 2004
COMMONWEALTH 11	12	402802	May 19, 2004
COMMONWEALTH 12	15	402803	May 19, 2004
COMMONWEALTH 13	12	406949	Nov. 18, 2004
COMMONWEALTH 14	16	406950	Nov. 18, 2004
COMMONWEALTH 15	20	406951	Nov. 18, 2004
COMMONWEALTH 16	20	406952	Nov. 18, 2004
BRITANNIA 1	4	402598	May 19, 2004
BRITANNIA 2	9	402599	May 19, 2004
BRITANNIA 3	18	402600	May 19, 2004
BRITANNIA 4	16	402601	May 19, 2004
DOMINION 2	15	402804	May 19, 2004
DOMINION 3	18	402805	May 19, 2004
DOMINION 4	14	402806	May 19, 2004
DOMINION 5	6	402807	May 19, 2004
DOMINION 6	18	402808	May 19, 2004
DOMINION 7	15	402809	May 19, 2004
DOMINION 8	14	402810	May 19, 2004
DOMINION 9	6	402811	May 19, 2004
DOMINION 10	18	402812	May 19, 2004
DOMINION 11	14	402813	May 19, 2004
DOMINION 12	14	402814	May 19, 2004
DOMINION 13	12	402815	May 19, 2004
DOMINION 14	10	402816	May 19, 2004
DOMINION 15	6	402817	May 19, 2004
DOMINION 16	20	402818	May 19, 2004
CONTACT 1	6	405735	October 13, 2004

APPENDIX B


•

GAMBIER MINING CORP. – OWNERSHIP DETAILS

GAMBIER MINING CORP.

MURRARY MCCLAREN 26 2/3% interest 283 Woodale Road North Vancouver, BC V7N 1S6 **ROBERT KRAUSE** 10% interest c/o 310-675 West Hastings Street Vancouver, BC V6B 1N2 **PAULINE NICHOLSON** 30% interest P.O. Box 567 Squamish, BC **V0N 3G0 RON FISHER** 33 1/3% interest

c/o 620-800 West Pender Street Vancouver, BC V6C 2V6 APPENDIX C BRITANNIA MINE GOLD ZONE CROSS SECTION

SILICEOUS (STRINGER) CHALCOPYRITE - GOLD ZONE BRITANNIA MINE

APPENDIX D PRODUCTION STATISTICS

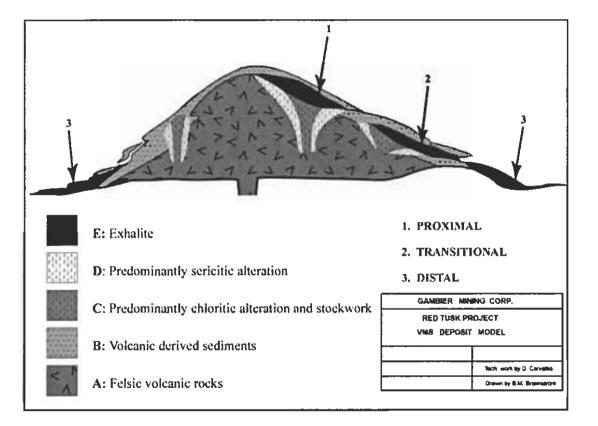
BRITANNIA MINE

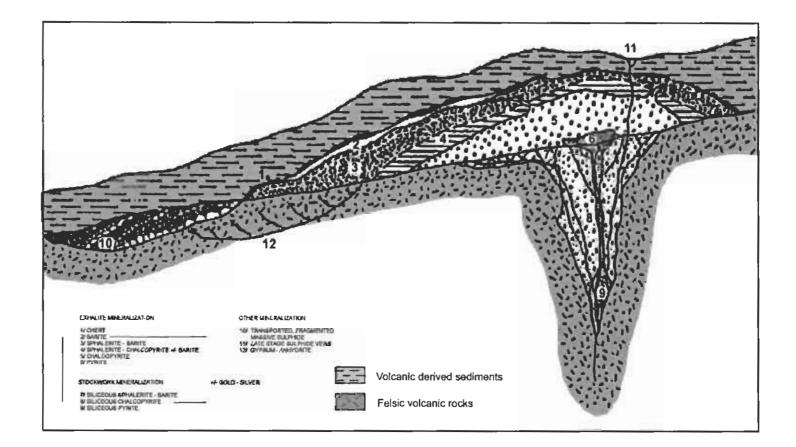
		Metric	140	Imperial	
Mined:		47,884,557	tonnes	52,768,782	tons
Milled:		47,402,533	tonnes	52,237,591	tons
Recovery:	Silver:	180,845,883	Grams	5,814,330	ounces
	Gold:	15,350,561	Grams	493,532	ounces
	Cadmium:	444,802	kilograms	980,610	pounds
	Copper:	516,960,095	kilograms	1,139,690,225	pounds
	Lead:	15,563,005	kilograms	34,310,201	pounds
	Zinc:	125,290,668	kilograms	276,215,807	pounds

NORTHAIR

		Met	ric	Imperi	al
Mined:		477,489	tonnes	526,193	tons
Milled:		475,042	tonnes	523,496	tons
Recovery:	Silver:	26,308,611	Grams	845,841	ounces
	Gold:	5,181,231	Grams	166,580	ounces
112	Cadmium:	3,136	kilograms	6,914	pounds
	Copper:	403,675	kilograms	889,942	pounds
	Lead:	5,340,630	kilograms	11,773,953	pounds
	Zinc:	7,327,543	kilograms	16,154,301	pounds

MAGGIE


			Metric	Im	perial
Mined:		52	Tonnes	57	tons
Milled:		52	Tonnes	57	tons
Recovery:	Silver:	4,275	Grams	137	ounces
	Gold:	1,778	Grams	57	ounces
	Lead:	157	Kilograms	346	pounds
	Zinc:	2,835	Kilograms	6,250	pounds

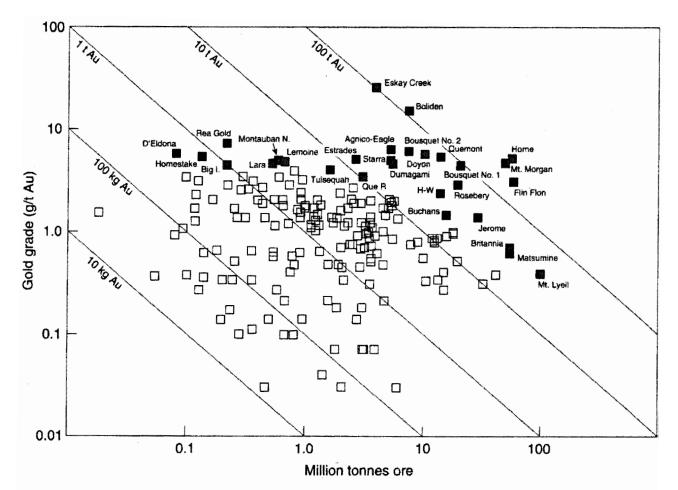

APPENDIX E GEOLOGIC MODEL

Massive sulphide deposits associated with submarine volcanic rocks are commonly referred to as VMS deposits. In terms of economic importance, they rank second only to porphyry copper deposits. A typical VMS consists of a pipe that has two styles of mineralization:

- 1/ Stratiform (or stratabound) exhalite
- 2/ Stockwork (stringer, or siliceous) zone consisting of veinlets and disseminated mineralization in footwall rocks.

A VMS deposit generally is mound shaped with typical dimensions of ~20 meters in height and ~300 metres in radius (i.e. a very small height/length ratio). The stockwork mineralization commonly is a downward-narrowing, funnel-shaped body with an average radiums of ~100 m at the top and a downward length of ~ 100 m.

IDEALIZED REPRESENTATION OF VOLCANIC MASSIVE SULPHIDE PIPE


APPENDIX F SIGNIFICANT GOLD-RICH VOLCANIC ASSOCIATED MASSIVE SULPHIDE DEPOSITS

Deposit	Location	Туре	Age	Tonnes Ore	Au ppm	Ag ppm	Cu %	Zn %	Pb %	Tonnes Au ¹
Bousquet No. 1	Bousquet district, Quebec	Pyritic gold	Archean	20 737 000	4.5	-		-		93
Bousquet No. 2	Bousquet district, Quebec	Copper-gold	Archean	7 400 000	6.1	16	0.6	-	-	45
Dumagami	Bousquet district, Quebec	VMS (Cu-Zn-Au)	Archean	5 500 000	4.6	9	-	-	-	25
Doyon	Bousquet district, Quebec	Intrusion-hosted Au	Archean	10 243 000	5.7	-	۰ ا		-	58
Agnico-Eagle	Joutel, Quebec	Pyritic-gold (I.F.)	Archean	5 279 000	6.4	<10	-	•	-	34
Estrades	Joutel, Quebec	VMS (Cu-Zn-Au)	Archean	2 670 000	5.1	110	0.8	9.6	0.9	14
Home	Noranda, Quebec	Copper-gold	Archean	54 300 000	6.1	13	2.2			330
Quemont	Noranda, Quebec	Copper-gold	Archean	13 925 000	5.4	20	1.3	2.4	0.02	75
D'Eldona	Noranda, Quebec	VMS (Cu-Zn-Au)	Archean	90 000	4,1	30	0.3	5.0		<1
Louvicourt	Val d'Or, Quebec	VMS (Cu-Zn)	Archean	15 700 000	0.9	30	3.4	2.2	-	14
Montauban North	Grenville, Quebec	Pyritic gold	Proterozoic	600 000	5.0	-	•	•		3
Flin Flon	Flin Flon, Manitoba	VMS (Cu-Zn-Au)	Proterozoic	58 416 000	3.1	50	2.3	4.3		181
Big Island	Flin Flon, Manitoba	VMS (Cu-Zn-Au)	Proterozoic	220 000	4.5	80	1.0	14.0		<1
Eskay Creek ²	Northeastern B.C.	Auriterous polymetallic	Jurassic	3 968 000	26.0	1000	<1.0	5.0	2.0	103
Tulsequah	Northeastern B.C.	VMS (Zn-Cu-Pb-Au)	Permian	1 620 000	4.0	140	1.3	6.9	1.3	8
Lara	Vancouver Island	VMS (Zn-Cu-Pb-Au)	Devonian	529 000	4.7	100	1.0	5.9	1.2	2
H-W mine	Vancouver Island	VMS (Zn-Cu-Pb)	Devonian	13 818 000	2.4	35	2.2	5.3	0.3	33
Britannia	South central B.C.	VMS (Zn-Cu-Pb)	Cretaceous	55 000 000	0.7	<10	1.1	0.7	0.1	39
Rea Gold	South central B.C.	Auriferous polymetallic	Devonian	134 000	5.4	60	0,7	2.4	2.4	<1
Homestake	South central B.C.	Auriterous polymetallic	Devonian	220 000	7.4	70	0.5	7.3	6.2	1
Buchans	Central Newfoundland	VMS (Zn-Cu-Pb)	Ordovician	15 809 000	1.5	130	1.3	14.6	7.6	24
Rambler Cons.	Central Newfoundland	VMS (Zn-Cu)	Ordovician	399.000	5.1	30	1.3	2.2	-	2
Lemoine-Patino	Chibougamau, Quebec	VMS (Cu-Zn-Au)	Archean	750 000	4.4	90	4.8	10.6	-	3
Boliden	Skellefte district, Sweden	Copper-gold	Proterazoic	8 340 000	15.2	50	1.4	-	•	126
Mt. Morgan	East-central Queensland	Copper-gold	Devonian	50 000 000	4.8	<10	0,7	0.1	0.05	240
Mt. Chaimers	East-central Queensland	Copper-gold	Permian	3 600 000	2.0	15	1.8	1.0	0.2	7
Starra	Mt. Isa Inlier, Queensland	Pyritic-gold (I.F.)	Cambrian	5 300 000	5.0	-	2.0	-	-	26
Mt. Lyell	Mt. Read, Tasmania	Copper-gold	Cambrian	98 574 000	0.4	<10	1.2	<0.1	<0.1	39
Mt. Lyell (Blow)	Mt. Read, Tasmania	Copper-gold	Cambrian	5 600 000	2.0	60	1.3	~ •	-	11
Rosabery	Mt. Read, Tasmania	VMS (Zn-Cu-Pb-Au)	Cambrian	19 400 000	2.9	160	0.7	16.2	5.0	56
Que River	ML Read, Tasmania	VMS (Zn-Cu-Pb-Au)	Cambrian	3 100 000	3.4	200	0.6	13.5	7.5	10

Tonnage and grade statistics for selected "gold-rich" volcanic-associated massive sulphide deposits

Notes: ¹ deposits with greater than 30 tonnes Au are considered to be major gold deposits (i.e., more than 1 million ounces of contained gold) ² base metal values quoted for Eskay Creek are approximate grades for the 21B zone - signifies no data available

I.F. = Iron formation VMS = volcanic-associated massive sulphide

Plot of tonnage versus gold grade for volcanic-associated massive sulphide deposits, including 184 deposits in Canada and selected gold-rich deposits world-wide. Diagonal lines indicate quantities of contained gold. Open symbols: conventional "gold-poor" base metal-rich massive sulphides. Solid symbol: auriferous volcanic-associated massive sulphide deposits and selected "gold-rich" base metal massive sulphides

APPENDIX G ANALYTICAL RESULTS

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Nicholson & Assoc. PROJECT GAMBIER File # A304795 1210 - 675 W. Hastings St. Vancouver BC V68 1N2 Submitted by: George Hickolson SAMPLE# Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Св P La Cr Mg Ba Ti B Αl Na - u Au* No Cu Pb ppb DOM ppm ppm pon pon pon pon pon X ppm ppm ppm ppm ppm pom pom pom pom x % ppm ppm % ppm X ppm x x X DOM <.3 <1 <1 4 .04 <2 <8 <2 <2 2 <.5 <3 <3 <1 .09 <.001 <1 1 <.01 3 <.01 <3 .01 .37 <.01 <2 <.2 SI <1 3 <1 <.5 <3 <3 25 .01 .009 7 6 .01 96 .01 <3 .27 .03</p>
<.5 5 22 2 <.01 .028 10 5 .01 120 <.01 3 .55 .01</p> 14 1.5 <1 <1 73 3.21 3 <8 <2 4 3 .15 2 5.6 WR-001 4 22 44 1 <1 13 11.91 3 13 <2 9 2 WR-002 40 111 69 26 5.9 .16 2 93.6 WR-003 42 <3 115 .4 58 16 267 3.42 2 <8 <2 3 22 .5 <3 <3 123 .31 .056 4 99 1.05 152 .12 <3 2.20 .06 .82 <2 1.2 1 77 <.3 4 7 858 3.15 <2 <8 <2 2 13 <.5 <3 <3 23 .16 .035 1 6 2.29 81 .07 <3 2.66 .04 .81 <2 <.2 WR-004 1 26 3 **VR-005** 7 52 <.3 1 3 217 .85 <2 <8 <2 3 21 .5 <3 <3 10 .38 .019 4 10 .23 46 .05 <3 .95 .06 .65 <2 11 24 3075 478 1168 7.5 5 12 59 3.66 23 <8 <2 <2 5 9.6 <3 <3 8 .05 .027 <1 6 .05 42 .04 <3 .25 .01 .16 <2 141.3 **WR-006** WR-007 141 32 80 .4 6 18 432 3.51 32 <8 <2 2 9 · <.5 <3 <3 26 .24 .076 2 5 .55 51 .11 <3 .96 .02 .70 <2 23.6 14 158 26 276 <.3 6 21 460 4.42 11 <8 <2 <2 4 **WR-008** 5 1.9 <3 <3 22 .22 .065 2 3 .58 29 .09 <3 .89 .01 .67 <2 9.8 1.0 <3 <3 88 1.27 .052 2 4 .30 40 .17 <3 1.75 .25 .07 <2 WR-009 4 83 5 105 .5 6 13 487 2.94 5 <8 <2 <2 86 1.2 .41 .11 8 <.3 6 19 27 3.20 458 <8 <2 <2 47 <.5 17 3 33 .22 .058 2 5 .06 126 .16 <3 .13 <2 WR-010 3.4 6 14 26 .21 .057 1 6 .06 117 .15 <3 .39 .11 .14 <2 2.9 RE WR-010 13 26 8 .3 6 18 27 3.13 450 <8 <2 2 46 <.5 16 <3 32 25 23912 1398 19508 47.8 3 7 348 3.89 5 <8 <2 3 6 158.0 <3 <3 10 .11 .024 <1 1 .09 48 .04 <3 .31 .01 .14 <2 412.0 UR-011 4 100 .7 7 9 672 5.29 <2 <8 <2 2 8 <.5 3 <3 77 .29 .128 5 15 1.40 197 .18 <3 2.31 .05 1.61 <2 WR-012 2 69 .7 WR-013 1 482 4 1099 .8 2 14 518 3.48 17 <8 <2 3 13 7.8 <3 <3 12 .13 .029 2 5 .45 94 .08 <3 .94 .04 .68 <2 2.4 12 134 23 126 <.3 23 11 721 2.83 17 <8 <2 3 46 5.3 4 5 56 .69 .089 11 179 .63 133 .08 14 1.98 .03 .12 4 467.6 STANDARD DS5/AU-R GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE RECEIVED: OCT 6 2003 DATE REPORT MAILED: OCT 6/2003SIGNED BY MUT. . D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS Data TA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Kn ppm	fe X	As ppm	U PPM	Au	Th ppm	Sr ppm	Cd ppm	Sto ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr	Mg X	8a ppm	Ti X	B	AL X	Na X	K X	W Pom
SQ-23 SQ-24 SQ-25 SQ-26	<1 6 3 1	1 208 377 12 109	30700	2 34 52 17 63	.3 1.4 .3 <.3 .4	<1 7 5 3 6	<1 9 26 5 7	<2 313 238 106 806	.03 2.51 2.55 .81 5.02	<pre></pre>	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 12 32 43 46	<.5 <.5 <.5 <.5 <.5	00000	V V 12 V V	1 35 24 6 62		<.001 .027 .049 .010 .111	<1 <1 1 1 2	1 25 8 3 6	<.01 .61 .33 .19 1.91	2 32 7	<.01 .05 .09 <.01 .14		<.01 1.01 .99 3.97 2.90	.39 .02 .03 .01 .04	<.01 .05 .03 .18 .12	<2 7
Sq-27 5q-28 5q-29 Sq-30 Sq-31	10 28 1 <1 1	91 335 46 33 199	11 35 3 12 23	43 15 140 54 48	.5 2.0 .3 .4	7 62 52 21 14	9 125 17 8 11		5.10 11.09 5.29 1.40 1.13	6 189 5 <2 2	8 8 8 8 8 8 8 8	~~~~~	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	115 78 9 58 32	<.5 1.3 .6 .7 <.5	05000	00000	58 50 171 32 25	.84 .23 .18 1.15 .59	.093 .011 .056 .099 .049	1 1 3 1	21 13 107 18 20	1.66 .39 1.51 .66 .28	109 27 197 8 22	.10 .04 .25 .18 .12	00000	2.73 .92 2.37 1.54 .85	. 14 . 06 . 05 . 04 . 06	.24 .06 1.58 .03 .06	2 3 2
SQ-32 SQ-33 SQ-34 SQ-35 SQ-36	<1 6 27 6 1	142 91 144 86 15	331243	94 41 67 29 38	<.3 .4 .9 .5 <.3	13 11 8 33 18	25 14 9 32 9	905 425 797 214 359	5.73 4.32 4.74 3.39 3.85	2 2 5 3	<8 <8 <8 <8 <8 <8	~~~~~	~~~~~	133 10 107 179 22	.9 <.5 <.5 <.5	00000 00000	34733	208 159 125 41 44	1.65 .33 1.06 3.25 .15	.105 .088 .090 .086 .073	1 1 2 6	25 22 24 17 33	2.05 1.46 1.41 .46 .71	399 123 152 59 59	.22 .15 .14 .12 .01		5.06 1.89 3.38 4.69 1.35	.40 .06 .23 .54 .05	1.46 .90 .63 .14 .16	~~~~~
SQ-37 SQ-38 SQ-39 SQ-40 WRSQ-40	<1 5 2 3 3	7 21 590 95 95	3 3 3 6 4	59 47 54 54	<.3 <.3 1.0 .3 .3	1 2 1 2 1	3 3 63 6	584 250 23 548 548	2.23 2.54 1.35 3.08 3.05	<2 26 8541 25 23	\$ \$ \$ \$ \$ \$	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5 ~ 5 ~ v	18 36 5 40 40	<.5 <.5 <.5 <.5 <.5	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 39 5 39 40	.33 .24 .04 .53 .52	.050 .036 .004 .093 .091	2 6 1 3 3	6 11 10 8 10	.44 1.28 .04 .87 .86	32 66 55 161 173	.12 .07 .01 .14 .14	60000	1.45 1.87 .12 1.64 1.64	.07 .05 .02 .18 .18	.66 .31 .06 .77 .76	223 223 22
59-41 59-42 59-43 59-44 59-45	3 2 V1 12 5	44 81 48 359 63	<3 16 <3 16 10	78 77 111 17 31	<.3 .3 <.3 1.4 <.3	8 6 11 2 1	19 14 16 2 5	658 584 611 169 412	4.28 3.24 2.49 1.39 2.14	12 2 4 2 2 2	\$ \$ \$ \$ \$	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	17 23 160 39 92	<.5 .5 1.1 <.5 <.5	00000	43333	88 49 62 13 23	.49 .24 1.40 .39 .91	. 101 .081 .078 .019 .020	3 1 2 1 3	9 8 18 16 9	1.50 1.15 1.20 .34 .54	278 218 24 24 31	.18 .13 .10 .06 .06	00000	2.03 1.69 3.13 .98 2.22	.06 .05 .36 .12 .30	.36 .66 .03 .06 .03	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
RT - 46 - 51 - 55 - 59 - 63	* * 1 *1 5 5	4 90 106 122 72	40000	22 16 72 85 57	<.3 <.3 <.3	<1 5 12 16 20	1 11 29 23 22	336 158 392 670 942	.85 1.85 5.22 5.28 3.62	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$ \$ \$ \$ \$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~ ~~~~~	13 89 154 33 181	<.5 <.5 <.5 <.5	00000	00400	3 28 91 52 67	.20 1.25 1.12 .35 2.48	.016 .072 .091 .041 .061	3 2 2 <1 1	12 10 11 14 22	.33 .37 2.09 1.71 1.27	55 19 291 71 74	.09 .12 .10	00000 00000	.81 1.56 3.58 2.99 3.97	.07 .16 .16 .06 .32	.41 .03 .47 .34 .19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-65 -69 -85 -89 -91	21 2 2 1 1	73 95 231 48 15	37365 5	63 60 38 109 50	<.3 .3 <.3 <.3 <.3	6 31 15 63 18	12 13 21 18 10	598 258 240 451 600	2.77 2.63 3.52 3.84 4.15	8 <2 2 6 2	\$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	34423	33 14 6 91 66	<.5 <.5 .6 <.5	00000	00000	58 30 96 81 99	.41 .18 .18 1.33 .80	.034 .030 .056 .054 .073	6 10 3 3 3	17 30 67 69 31	.91 .68 1.47 1.16 1.60		.10 .21 .10		1.77 1.12 1.54 3.49 2.65	.11 .03 .07 .46 .25	.55 .27 1.33 .74 1.21	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ANDARD DS5	<u> </u>	UPPER	1D LIM	ITS - DMMENI	AG, A	SAMPLE AU, HO	LEAC , W	HED N 100		40, CC Les II	CU P	SB, BZN	BI, T AS >	0 AT	& B = AG > 3	= 2,00 10 PPN	0 PPM & AL	NE HO	UR, DI PB, 7		TO 10		ANALY	SED B		ES.	2,16 1.	.03	_ 14	7

SAMPLE#	Mo	Cu ppm			Ag	N1 ppm	o)	Mn		As ppm	U	Au	Th	Sr	Cd	ı Sb) B1 n.ppm	۷	Ca	P	La		Mg	Ba	Ti		A1 ¥		K				T1 \$ pm \$			Sample con
G-1 BB 1 BB 2 BB 3 BB 4	1.3 1.0 .6 .4	2.1 6.8 5.7 5.3	2.3 7.6 7.0 4.5	39 27 21 30	<.1 .2 .1	4.3 2.9 3.2 2.4	3.8 2.6 2.8 2.9	521 144 133 161	1.83 3.26 1.81 1.94 2.05	<.5 3.0 1.6 1.3	1.8 1.3 1.3 .5	<.5 2.4 <.5 <.5	3.7 2.3 .4 1.8	73	 <.1 .2 .1 .1 <.1 	1.> 1 22 11	L .1 L .1 L .1 L .1	36 41 31 42	.53 .07 .10 .10	.077 .017 .047 .028	9 6 5 5	13.3 10.8 9.4 8.5	.53 .22 .23 .26	215 48 49 54	.127 .157 .072 .142	1 <1 : 1 : <1 :	.94 3.44 2.71 2.53	. 101 . 012 . 019 . 011	.44 .06 .06 .07	1.9< .1 .1 .1	.01 2 .22 3 .13 1 .08 2	.2 .2 .3 .8 <	.3<.0	5 5 5 16 5 11 5 9	5 <.5 6 .6 1 <.5 9 <.5	15.0 15.0 15.0 15.0 7.5
88 5 88 6 SOIL 88 7 88 8 SOIL 88 9	1.0 .8 .4	5.1 6.9 4.3	5.8 6.0 3.6	23 30 26	.1 .1 .1	3.2 2.6 1.8	2.1 2.7 1.7	129 156 100	2.39 1.20	2.5 2.0 .9	1.0 1.6 10.5	<.5 <.5 1.9	.8 1.7 .3	13 12 14	 !	1. 8 1.1 1<.1	1.2 1.1 1.1	41 49 24	.07 .11 .09	.023 .046 .047	5 6 5	8.4 8.9 7.5	.18 .20 .16	30 46 46	.130 .138 .057	1 1 <1	1.70 3.49 2.50	.011 .010 .012	.05 .05 .05	.1 .1 <.1	.11 1 .13 2 .08 1	.4 < .3 < .5 <	.1<.0	5 12 5 13 5 7	3 <.5 2 <.5 3 <.5 7 <.5 9 <.5	15.0 15.0 15.0 15.0 15.0
BB 10 BB 11 8B 12 B8 13 BB 14	.5 .2 .8	15.9 2.2 5.8	3.6 4.3 7.0	36 25 20	i.i i<.1.	3.0 1.4 2.1	4.0 3.6 2.2	200 579 131	1.08 2.30	1.7 .9 1.8	1.6 2.9 7.7	.7 8.> 7.	1.1 .6	$16 \\ 5 \\ 24 \\ 0 \\ 14$	<. <.	1 .1 1 <.1 1 .1	1 <.1 1 <.1 1 .1	43 20 46	.12 .26 .11	.046 .015 .031	6 3 5	8.4 2.7 8.1	.41 .18 .18	69 55 55	.103 .047 .125	<1 <1 <1	3.37 .80 3.74	.011 .021 .010	.11 .07 .07	.1 <.1 .1	.17 2 .02 1 .17 2	2.9 2 < 2.6	. 1<.0 1<.0 . 1<.0 . 1<.0	15 8 15 3 15 13	3 <.5 8 <.5 3 <.5 3 <.5 5 <.5	15.0 15.0 15.0 15.0 15.0
BB 15 BB 16 BB 17 BB 18 8B 19	.1 .1 .4	4.3 7.4 13.9	1.3 2.6 3.3	22 26 39	2 <.1 5 <.1 9 .1	1.2 2.1 3.2	2.2 2.7 4.9	123 161 246	1.79 1.41 1.34 1.48 1.69	.5 1.3 1.0	.3 2.3 3.5	<.5 <.5	51.4 51.5 51.2	4 18 5 17 2 22	3 <. 7 <. 2	1 <.: 1 <.: 1 <.:	1 <.1 1 <.1 1 .1	27 29 35	.12 .13 .16	.046 .043 .055	4 4 5	4.0 6.5 6.8	.15 .22 .40	52 59 98	.044 .063 .091	<1 1 1	.74 1.49 2.13	.006 .009 .014	.05 .09 .14	<.1 .1 .1	.02 1 .04 1 .03 2	L.1 < L.9 < 2.5	1<.0. 1<.0 . 1<.0 .)5 :)5 :)5 :	6 <.5 3 <.5 4 <.5 5 <.5 5 <.5	15.0 15.0 15.0 15.0 15.0
BB 20 RE BB 25 BB 21 BB 22 BB 23	.3 .3 .2	20.0 4.3 8.0	3.0 4.1 2.7) 35 27 37	5.1 7.1 7<1	2.6 2.2 2.3	4.7 4.9 4.4	216 328 227	1.78	1.5 1.1 1.6	.5 9.4 16.2	1.(<.5 <.5	1.6	5 2 5 2 5 2	5 .) <. 2 <.	1 . 1 <. 1 .	1 .1 1 .1 1 <.1	56 30 37	.13 .13 .17	.075 .027 .035	4 4 5	7.7 7.2 5.7	.40 .20 .30	80 64 72	.110 .088 .074	1 1 <1	2.63 1.61 1.40	.011 .015 .011	.08 .06 .10	.1 <.1 .1	.05 1 .05 1 .03 1	2.6 1.5 1.5 ∙	1<.0. 1<.0. 1<.0<)5)5)5	7 <.5 7 <.5 7 <.5 5 <.5 6 <.5	15.0 15.0 15.0 15.0 1.0
BB 24 BB 25 BB 26 BB 27 BB 28	.4 .2 .2	20.6 8.0 7.1	5 3.0 3.6 2.4) 31 5 40 1 31	7.1 5.1 5.1	2.7 2.7 1.7	5.1 5.2 3.2	217 474 193	2.44	1.4 1.4 1.1	.5 7.7 1.1	1.(<.! <.!	$ \begin{array}{c} 1.6 \\ 5 1.2 \\ 5 1.4 \end{array} $	624 13 52	4 <. 0 . 3 <.	1. 1. 1.	1 .1 1 <.1 1 .1	56 41 28	.13 .23 .14	.080 .03B .053	4 5 4	7.6 4.6 4.0	.40 .43 .25	82 101 74	.109 .082 .075	<1 1 2	2.72 1.74 1.48	.011 .011 .010	.07 .13 .09	.1 .1 .1	.06 .03 .03	2.5 · 1.9 1.9 ·	1<.1<.0<.	05 06 05	2 <.5 8 <.5 6 <.5 5 <.5 3 <.5	15.0 15.0 7.5 15.0 15.0
B8 29 BB 30 BB 31 BB 32 BB 33	.3 .5 .1	8.6 14.8 3.7	5 5.0 5 4.2 1.9) 4 2 4 3 3	2 .1 7 .1 2 <.1	1.8 3.7 .8	3 2.9 4.7 3 1.9	287 200 187	1.84 1.04 2.36 .66 1.26	1.0 1.2 .6	4.0 .5 .5	<. <.	5 1.9 9 1.9 5 1.	54 91 13	5. 6. 0.	1 . 1 <. 1 .	1 .1 1 .1 1 <.1	20 56	.19 .08 .18	.031	5 4 3	3.7 9.0 2.0	.26 .39 .20	129 64 56	.043	2 2 1	3.37 .63	.015 .011 .011	.09 .06 .08	.1 .3 .1	.01 .10 <.01	1.5 3.2 1.2	.1<.0 <.1<.0 <.1<.0	05 05 05	5 <.5 5 <.5 9 .5 3 <.5 4 <.5	15.0 7.5 15.0 15.0 15.0
STANDARD DS5	12.9	145.3	8 25.0) 13	8.3	25.1	12.5	797	3.00	19.1	6.1	44.(2.1	75	05.	84.	1 6.3	8 62	.74	.103	13	188.7	.70	139	.105	18	2.20	. 034	.14	4.6	. 16	3.6	1.1 .0)5	75.0	15.0
	U		LIMI	rs -	AG,	AU,	HG,	V B	HED W	PM; 1	MO, (x, c	D,	S8,	вι,	, TH,	, U I	БВ	= 2,	000 P	PN;		P8,	ZN,	NI,											

•

SAMPLE#	No	Cu		Zn				Co		Fe X	As ppm								Bi	V	Ca ¥		La ppm	C	Cr Sm		Ba ppm		B							Sc opm p			Ga So con ppo	e Sau	nna tr ple gn
G-1 BB 34 BB 35 BB 36 BB 36 BB 37	1.3 .3 .5 .4	2.9 9.6 10.3 24.4 4.2	2.6 9.9 4.6 3.6	44 39 37 43	<.1 .1 .1	4. 3. 2. 4.	3 4 1 2 9 4 2 6	.1	525 380 399 314	.95 .88 1.78 2.58	.6 3.1 3.9 1.7	2. 112. 68. 3.	0 9 • 5 6	.6 4 <.5 .9 1	1.4 .4 1.2 2.2	82 124 27 26	<.1 .1 <.1 <.1	<.1 .2 .1	.2 .1 .1 .3	40 15 40 61	.58	.074 .072 .027 .027	11 6 7 6	14. 3. 7. 11.	.0 .2 .6	.52 .24 .36 .43	243 235 88 111	.139 .029 .081 .090	2 3 1 <1	1.01 1.58 1.90 2.40	L .11 3 .01 3 .01 5 .01	15 .4 19 .0 12 .1	48 2 09 11 18	.1<. .1 . .4 . .3 .	01 2 07 1 04 2 06 2	2.5 1.2 2.1 2.2	.3<. .1 . .1<. .1<. .1<.	12 05 05	5 <. 5 <. 7 <. 6 <. 6 <.	5 5 5	15.0 5.0 15.0 7.5 15.0
BB 38 BB 39 BB 41 BB 99 BB 101	.5 .7 1.5	55.1 21.8 24.1 50.8 11.8	4.3 3.9 5.3	67 46 69	<.1 .1 .1	5. 5. 8.	9 5 5 7 1 12	5.8 7.2 2.5	315 310 508	2.20 2.47 2.45	2.9 1.7 1.3	9. 3. 3.	7 8 5 1	1.4 .92 .91 1.3	2.3 1.7 1.6	44 26 46	.1 .1 .2	.1 .1 .1	.1 .1 .1	45 57	.22 .18 .19 .59 .31	.150 .061 .053	6 6 4	9. 13. 10.	.9 .2 .0 1	.54 .54 .26	153 115 227	.123	1 1 1	4.24	4.0 5.0 5.0	15 . 23 . 57 .	14 18 59 1	.2.	10 : 04 : 01 :	3.6 2.7 3.6	.2 .1<. .1<. .2<. .1	05 05 05	B <. 9 <. 7 <. 7 <.	5 5 5	15.0 15.0 15.0 5.0 1.0
88 103 88 105 88 106 88 107 88 108	1.6 .3	23.1 20.5 4.2 46.7 3.4	5.8 6.2	52 30 61	<.1 <.1	5. 2. 7.	0 6 5 4 9 1)	5.5 4.0	331 285 433	2.43 1.09 3.27	3.0 .9 2.6	7. 1. 1.	0 · 8 · 5 2	<.5 <.5 2.0	1.2 .6 2.5	41 23 38	.1. <.1 .1	.1 .1 .1	<.1 .1	51 25 86	.13 .50	.058 .017 .084	5 3 5	10. 4. 17.	.1 .8 .2 1	. 58 . 29 . 02	127 57 171	.110 .075 .147	<1 1 <1	1.7 .7 1.8	4.0 8.0 1.0	26 . 17 . 40 .	23 10 45	.3 .1 .3	03 02 01	2.8 1.4 3.7	.1. .1<. <.1<. .1<. .1<.	05 05 05	6 <. 6 <. 5 <. 5 <.	5 5 5	1.0 15.0 5.0 15.0 7.5
BB 109 88 110 88 111 BB 112 68 114	.8 1.7 1.2	49.0 4.3 40.1 8.5 48.9	6.9 4.5 3.3	30 58 54	<.1 <.1 <.1	2. 6. 3.	5 5 5 7 8 3 5	5.4 8.8 5.3	243 395 390	1.09 2.97 1.59	1.2 1.0 4.0	13 45	5 9 6	.5 .6	.3 2.0 1.1	24 45 21	.2 .1 .1	.1 .1 <.1	.1 <.1 <.1	23 80 38	. 47	.037 .064 .050	5 6 5	9	.4 .8 .3	.29 .91 .39	73 183 67	.066 .168 .096	2 1 <1	.9 1.5 1.4	7.0 6.0 2.0	14 . 29 . 15 .	08 < 35 13	.1 .2< .4	.08 .01 .03	1.5 3.6 2.5	.1<. .1 .1<. .1<.	07 07 05	6 <. 6 <. 6 <. 5 <. 6 <.	5 5 5 5	15.0 7.5 5.0 15.0 15.0
88 116 88 118 88 120 RE 88 120 SQ 40	.8 .3 .3	45.1 19.3 11.1 12.2 60.0	1.8 2.6 2.6	32 38 41	<.1 <.1 <.1	1. 2. 2.	9 3 7	2.7 3.6 3.5	155 206 212	. B6 . 93 . 96	.8 .6 .9	1	2 9 9	.8	1.2 9.	69 43 43	<.1 <.1 <.1	.1 .1 <.1	<.1 <.1	23 23 23	.25 .23	.068 .024 .028 .028 .028	5	3 3 3	.9 .7 .6	.28 .41 .42	116 97 96	.070	 <	.9 .8 .9	0.0 8.0 1.0	22 . 16 . 15 .	10 14 14	.1 .1 .1	.01 .01 .01	1.7 2.2 2.0	.l<. <.l<. <.l<. <.l<. .l<.	05 05 05	6 <. 3 <. 4 <. 8 <.	5 5 5	15.0 15.0 15.0 15.0 15.0
SQ 42 SQ 44 SQ 45 SQ 46 SQ 47	3.0 1.6 3.4	43.6 52.9 35.4 85.8 74.8	7.3 5.6 9.0	77 69 174	.2 .1 .2	10. B. 17.	7 1 2 1 2 2	3.9 1.2 2.9	435 348 620	2.09 1.94 3.39	13.8 4.5 20.7	1	.9 .6 .2	1.6 3.4 1.8 1.8 4.6	1.6 1.5 2.1	33 30 34	.3 .3 .4	.2 .1 .3	.8 .6 5.0	46 78	.33 .36	.046	57 5 7	10 20	.8 .7 .2 1	.61 .71 .42	111 108 182	.094	<] <]	2.6 1.9 3.7	2.0 5.0 4.0	19 . 21 . 19 .	18 3 22 2 45 3	3.3 2,5 3.1	.04 .02 .04	2.4 2.2 2.8	.1< .1< .2<	.05 .05 .05	6 < 6 < 5 < 8 <	5 5 6	15.0 15.0 15.0 15.0 15.0
SQ 48 SQ 49 SQ 50 SQ 52 SQ 53	1.3 2.9 2.2	49.1 29.5 32.3 28.3 33.6	4.7 6.1 5.2	68 63 56	.1 .1	7	91 91 9	0.2 8.9 7.5	311 308 273	1.75 2.13 1.86	5.6 6.9 5.7		.4 4 .6 .5	2.5 .7 1.1	1.1 1.7 1.4	27 25 25	.2	.1 .1 .1	.5 .8 .6	46	.31 .28	.042 .044 .042	2 4 4 6 2 6	8 10 9	.8 .5 .5	. 65 . 69 . 59	79 102 90	. 099 . 099 . 090	; <] ; <] ; <]	L 1.8 L 2.3 L 1.9	18.00 19.00 16.00	17 . 21 . 20 .	16 1 18 2 14 2	1.8 2.5 2.3	. 03 . 03 . 02	2.0 2.4 2.2	.2< .1< .1< .1<	. 05 . 05 . 05	6 < 5 < 6 < 5 < 5 <	.5 .5	7.5 15.0 15.0 15.0 15.0
STANDARD DS5	12.6	145.7	24.3	139	.3	24	6 1	2.5	793	3.03	19.1	6	14	4.0	2.7	47	5.6	4.0	6.3	60	.72	.091	l 12	188	.2	. 67	136	. 09	3 16	5 2.1	0.0	32 .	13 9	5.0	. 19	3.5	1.0<	.05	75	0	15.0
Sample type:	<u>SILT </u>	<u>580 6</u>	<u>0C.</u>	Samp	les	beg	Inni	ng '	RE'	are	<u>Rerur</u>	is <u>an</u>	<u>9, 'R</u>	RE'	are	Rej	<u>ect</u>	Reru	ins.																						

Sample#	Мо ррт	Cu ppn) Zn ippm					Mn pm	Fe X	As ppr	U ppm		Th ppm		Cd ppm p			V Aparta	Ca ¥		La ppm	Cr ppm		8a ppm	Ti X	B ppm	A1 X	Na X	K X			SC ppm p		S Xip		Se Sai pm	mple grn
G-1 50 54 50 56 50 57 50 58	1.7 2.3	78.5 48.6 69.6	5.4 12.9 8.9	93 9 104 9 100	.1 .1 .1	18.9 9.7 15.2	921 713 221		21 3 50 3 68 3	3.73 2.82 3.73	5.9 4.4 12.9	.8 .4 .5	1.8 .6 <.5	3.0 1.4	36 37 53	.1 .2 .2	.2 .1 .1	.3 .4 .1	51 . 68 . 81 .	41 . 61 . 84 .	097 037 137	6 4 4	23.6	1.03 1.04 1.69	108 153 167	.053 .171 .163	<1 <1 <1	2.48 3.47 2.82		.12 .22 .49	.7 1.8 1.1	.01 .03 .01	3.1	.1 < .1 < .2 <	.05 .05 .05	-	.5 .5 .5	5.0 5.0 15.0 15.0 15.0
50 60 50 61 50 62 50 63 SOIL 50 63 SILT	6.7 3.6 3.0	50.0 38.9	23. 12.9 12.1) 144 9 95 7 87	.3 .1 .3	13.9 8.9 6.7	520 911 77	.2 5 .3 3 .4 3	95 88 16	2.06 3.19 2.91 2.65 2.36	15.1 9.2 2.9	1.0 .8 .7	.9 1.8 <.5	1.9 1.7	32 25 14	.3 .2 .3	.3 .2 .1	.8 .8 .4	66 . 69 . 56 .	.31 . .23 . .12 .	091 067 033	6 6 5	11.4 13.4 9.0	1.01 .84 .50	192 118 80	.111 .149 .109	1 <1 <1	4.72 4.08 3.17	.025 .027 .016 .011 .018	.24 .20 .06	4.4 3.1 2.3	.06 .09 .09	2.9 2.7 2.2	.1 < .1 < .1 <	.05 .05 .05	9 •	.5 .5 .5	15.0
50, 64 50, 65, SOIL 50, 66 50, 67 50, 68	13.8 5.0 4.6	220.5 77.2 44.7	83. 8. 20.	5375 87 882	.5 .1 .1	44. 13. 6.	618 620 86	.1 4 .4 5 .1 3	69 96 37	3.69 2.93	304.3 17.0 10.0	1.0 .4	2.8 1.3 15.8	3.7 1.3 2.7	24 59 19	.5 .2 .2	.5 2 .2 .2	2.3 .2 .6	79. 68. 53.	.21 . .70 . .13 .	077 096 060	8 4 6		.99 1.35 .64	192 140 98	.131 .136 .116	1 <1 <1	7.21 2.76 2.57	.020	.20 .35 .19	11.7 1.2 1.9	.07 .01 .05	7.2 4.2 3.1 2.8 8.7	.1 < .2 < .1 <	.05 .05 .05	10 8 6 6	.5	
SQ 70 RE SQ 70 SQ 71 SDIL SQ 72 SQ 73 SOIL	2.3 2.7 2.6	21.2 31.3 42.1	7. 16. 13.	8 44 3 84 1 138	.1 .2	14. 14. 47.	67 38 517	.5 2 .9 5 .3 3	07 10 98		21.2 11.9 30.9	4.1 .7 5 1.2	.8 7. 1.9	2.2	18 21 11	<.1 .1 .3	.1 .3 .2	.2 .6 .4	57 54 58	.23 .17 .11	. 047 . 056 . 097	8 6 12	32.7 18.0 34.1	.43 .70 .54	107 83 118	.104 .158 .117	1 1 1	1.98 4.27 4.15	.028 .024 .013 .011 .011	. 16 . 17 . 18	1.1 .5 .3	.05 .10 .14	3.0 2.8 3.3 4.4 2.3	.1 < .1 < .2 <	.05 .05 .05	6 5 8 8 11	.6 .8 .1	7.5 5.0 15.0 15.0 15.0
SQ 74 SQ 75 SQ 77 SOIL SQ 79 SQ 80	7.7 3.9 3.7	75.4 22.4 101.8	21. 10. 11.	6237 6160 184	 	21. 29. 18.	9 33 7 13 5 31	.6 12 .6 26	210 28 10	2.68 4.07 5.59 5.41 2.69	19.4 16.2 28.3	1.1 2.5 3.7	2.4 <.9 1.4	1.0 51.2	52 27 77	.9 .2 .3	.2 .2 .6	.7 .2 .4	86 54 68	. 49 . 22 . 46	.082 .044 .086	6 5 4	19.0 24.3 16.4	1.35 .88 1.09	194 87 167	.156 .268 .167	1 <1 <1	3.61 5.04 4.93	.022 .023 .022 .022 .022 .034	.30 .12 .19	6.0 1.8 1.7	.08 .07 .06		.2 < .1 < .1 <	:.05 :.05 :.05		.0	5.0 15.0 15.0 15.0 7.5
SQ 81 SQ 82 SQ 83 SQ 84 SQ 86	1.2 2.6 1.1	39.3 42.9 36.3	3 15. 5 6. 7 17.	068 836 670	1. 1 1. i	21. 15. 16.	4 19 1 8 2 12	0.2 4 0.2 2 2.3 4	135 277 137	1.54 2.06 2.76 1.98 3.19	32. 2. 33.) 1.2 L 2.9) .9	 1.1	93.8 55.0 73.3	10 47 11	.2 .1 .2	.3 .1 .2	.5 .1 .5	30 65 29	.09 .39 .11	.041 .054 .049	10 9 9	38.5 16.3	.37 .76 .37	77 5 124 7 89	.074 .141 .078	1 1 <1	2.03 2.06 1.92	.011 .010 .023 .008 .014	.15 .41 .14	.2 .3 .2	.04 .04 .04	1.9 2.7 5.7 2.3 3.3	.1 <	:.05 :.05 :.05	3 4 7 4 7	.8 .6 .7	15.0 15.0 7.5 15.0 15.0
SQ 88 SQ 90 SQ 92 SQ 115 SOIL SQ 117 SOIL	3.7 1.5	19. 21. 28.	39. 14. 19.	4 172 5 146 3 44		30. 22. 26.	020 413 86	0.9 10 8.4 1 5.9 1	567 596 270	3.72 3.47 3.46 3.66 9.07	18. 10. 12.	4.7 9.5 0.7		5.8 72.2 91.1	50 64 48	.8 .3 .1	.2 .4 .1	.2 .2 .3	44 51 72	.77 .57 .12	.058 .066 .053	7 9 7	11.7	.54 1.03 .88	100 78 96	.077 .088 .151	3 1 2	3.07 2.29 4.32	.042 .031 .018 .010 .506	. 11 . 14 . 16	1.0 .5 .3	.08 .04 .13	2.7 3.6	.1 • .1 • .1 •	<.05 <.05	10	1.8 1.4 .8	15.0 1.0 15.0 15.0 15.0
standard DS5	12.3	143.	24.	7 133	3.	3 24.	5 12	2.3	793	3.00	18.	7 5.9	42.	0 2.7	49	5.6	4.0	6.2	59	.73	.103	13	181.2	. 69	9 139	.100	17	2.12	. 034	. 13	4.8	. 16	3.3	1.0	<.05	6	4.8	15.0
Sample type	:: S1L	558	0 600	. Sa	mpl	es be	gin	ning	'RE'	are F	kerun	s and	<u> </u>	E'ar	e Re	ject	Reru	ins.																				

SQ127 4.3 99.4 20.0 166 3 13.8 22.0 77.3 80 1.6 1.4 22.6 1.6 1.4 22.6 1.6 1.4 22.6 1.6 3.7 0.7 8 7.5 1.5 1.2 1.0 2.5 1.5 2.6 1.5 1.6 1.5 1.5 1.6 1.5 1.5 1.6 1.4 1.9 1.5 1.5 1.6 1.4 1.9 1.5 1.1 1.4 1.6 1.1 1.7 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.5 1.0 1.6 1.1 1.7 1.6 1.2 1.0 1.5 1.0 1.0 1.1 1.7 1.5 1.0 1.0 1.0 1.0 1.0	SAMPLE#	Mo ppm	Cu ppm		Zn ppra		Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm					Sb Spann po		v C pra	a X	P L ¥pp		Cr ppm	Mg X	Ba ppm	Ti X	8 mqc	A1 ¥	Na X		W ł prnpi		Sc. ppmipp			a Se nippm	Sampl 97
Spi 127 A3 94 420.0 166 13.8.0 22.0 747 3.80 10.0 1.8 5.2 3.3 43.1 1 2.2 70.46 0.66 5 15.1 1.4 2.6 1.2 1.1 1.2 2.4 1.1 2.2 1.2	SQ 119 SOIL SQ 121 SOIL SQ 123	2.4 1.2 .7	94.7 115.7 47.4	10.4 12.2 13.5	62 93 105	.3 .3 .1	12.3 13.5 15.8	12.0 14.5 17.1	339 525 710	4.19 2.69 2.73	7.9 4.4 3.5	1.0 1.1 .7	3.7 5.7 1.1	2.0 2.6 2.8	22 24 38	.2 .3 .2	.3 .2 .1	.5 .5 .2	70 .1 56 .2 56 .4	5.0 7.0	65 70 69	7 1 6 1 4 2	19.0 16.5 1 22.7 1	.66 .18 .51	106 170 213	.097 .170 .178	<1 4 <1 3 1 2	4.63 3.62 2.30	.007 .010 .012	.07 2 .54 2 .65	.4 . .4 . .9 .	11 : 03 : 01 :	3.5 2.5 1.9	.1<.0 .2<.0 .2<.0	51 5 5	0.5 6.5 5<.5	15. 15. 1.
SQ1 24 SQ1L 1.7 25:6 1.6 1.4 1.9 1.5 1.1 1.2 22 1.0 1.4 1.9 15 1.1 1.2 22 1.0 1.4 1.9 1.5 1.1 1.2 22 1.0 1.4 1.9 1.5 1.1 1.1 1.2 22 1.0 1.2 1.0 1.2 1.0 1.4 1.3 1.1 1.4 1.5 1.1 1.1 1.1 1.2 1.2 1.1 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <	SQ 127 SQ 128 SQ 130	4.3 1.2 6.7	99.4 79.8 50.1	20.0 7.3 16.1	186 130 136	.3 .2 .1	13.8 24.6 11.0	22.0 26.1 15.7	747 1050 728	3.80 3.76 2.61	10.0 2.7 7.0	1.8 1.3 1.1	5.2 6.4 1.2	3.3 1.9 1.4	43 40 42	1.1 .4 .3	.22 .2 .1	.4 .3 .3	70 .4 74 .3 57 .3	6.0 2.0)85)46)66	5 1 7 3 4 3	16.1 1 35.3 2 12.8 1	1.43 2.08 1.24	265 298 172	.163 .304 .139	<1 2 <1 3 <1 2	2.51 3.54 2.46	.023 .008 .018	.75 4 .87 1 .48 4	.3<. .5 . .8 .	01 02 02	2.3 2.0 1.9	.3 .0 .3<.0 .2<.0	9 51 5	7 .8 0 <.5 6 .5	7. 15. 15.
CL 91 5.5 5.7.6 13.0 116 1 11.1 14.4 596 3.1 13.9 1.0 2.0 1.9 37 3.3 2.6 65 13.0 1.0 144 1.27 2.4 5.0 3.3 3.0 2.7 1.0 66 6.7 16.0 CL 93 2.1 30.7 2.8 39 1.1 1.0 80 33.074 5 56.3 97 16.3 1.155 0.021 1.6 1.0 6.6 1.0 CL 94 94 104.5 8.0 31.2 2.6 6.7 26.7 21 1.0 1.355 0.1 1.7 1.9 2.7 33.1 1.1 0.0 0.44 0.077 4 2.4 93 151 1.25 1.34 0.00 4.4 .01 2.0 1.0 7.4 2.5 1.1 1.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td>SQ 134 SOIL SQ 136 RE SQ 136</td> <td>1.7 2.7 2.8</td> <td>25.6 80.3 78.8</td> <td>12.8 16.0 15.8</td> <td>35 63 60</td> <td>.1 .2 .2</td> <td>5.2 12.5 12.0</td> <td>5.0 16.7 16.9</td> <td>196 729 725</td> <td>1,84 4.98 5.02</td> <td>3.3 14.1 14.1</td> <td>1.0 .3 .3</td> <td>1.4 1.7 1.9</td> <td>1.9 .7 .7</td> <td>15 113 113</td> <td>.1 .2 .1</td> <td>.1 .6 .7</td> <td>.2 .4 .4</td> <td>23 .1 54 .9 52 .9</td> <td>0.0 03.1 02.1</td> <td>041 104 106</td> <td>8 4 3</td> <td>7.0 11.3 11.4</td> <td>. 29 . 92 . 89</td> <td>45 165 167</td> <td>. 053 . 139 . 123</td> <td><1 / <1 / <1 /</td> <td>2.96 4.29 4.12</td> <td>.009 .031 .030</td> <td>.05 1 .29 1 .31 1</td> <td>.3.</td> <td>08 08 08</td> <td>2.1 < 2.0 1.9</td> <td>1<.00. 1.0. 1.0.</td> <td>15 16 18</td> <td>6.5 71.2 71.4</td> <td>15. 7. 7.</td>	SQ 134 SOIL SQ 136 RE SQ 136	1.7 2.7 2.8	25.6 80.3 78.8	12.8 16.0 15.8	35 63 60	.1 .2 .2	5.2 12.5 12.0	5.0 16.7 16.9	196 729 725	1,84 4.98 5.02	3.3 14.1 14.1	1.0 .3 .3	1.4 1.7 1.9	1.9 .7 .7	15 113 113	.1 .2 .1	.1 .6 .7	.2 .4 .4	23 .1 54 .9 52 .9	0.0 03.1 02.1	041 104 106	8 4 3	7.0 11.3 11.4	. 29 . 92 . 89	45 165 167	. 053 . 139 . 123	<1 / <1 / <1 /	2.96 4.29 4.12	.009 .031 .030	.05 1 .29 1 .31 1	.3.	08 08 08	2.1 < 2.0 1.9	1<.00. 1.0. 1.0.	15 16 18	6.5 71.2 71.4	15. 7. 7.
CL 97 SOIL 1.6 66.3 8.6 85 .2 8.8 12.7 794 3.19 6.1 12.1 1.0 4.8 32 .3 .1 .2 72 .41 .055 8 20.9 .86 156 .201 1 2.46 .027 .46 1.0 .04 4.4 .3c.05 7 .6 15.0 CL 98 1.6 57.4 10.5 90 .1 14.7 18.1 609 3.28 5.6 .7 10.1.9 33 .2 .2 1.5 62 .37 .064 5 18.5 1.18 152 .137 1 2.70 .020 .30 1.0 .02 2.9 .1c.05 6 .7 5.0 CL 100 1.8 62.3 9.7 89 .1 15.1 18.0 608 3.54 5.5 .7 10.1.8 36 .1 .2 .5 7.41 .075 5 17.7 1.10 122 .115 1 2.48 0.20 .24 9.02 3.2 1.65 6 .7 15.0 CL 102 2.5 31.5 3.4 44 .1 26.2 10.2 351 2.65 5.9 1.2 <5 3.6 27 .1 .1 .1 .8 7.33 .064 5 60.6 1.15 196 .159 <1 1.82 .024 .71 .5 .01 7.4 .2<.05 6 .6 15.0 CL 104 2.7 34.7 3.7 47 .1 27.7 10.9 368 2.78 6.4 1.2 .7 3.4 27 .1 .1 .2 91 .32 .065 5 62.4 1.15 200 .159 <1 1.86 .023 .67 .6 .01 7.0 .2<.05 6 <5 15.0 CL 145 .5 25.4 5.2 58 .1 8.5 8.5 395 2.57 6.3 66.2 <5 2.5 42 <1 .1 .2 61 .44 .060 7 17.8 .76 192 .142 1 1.99 .019 .25 .3 .01 3.3 .1<05 6 <5 15.0 CL 147 2.2 26.6 2.9 37 <1.17.3 8.7 286 2.26 4.9 1.6 <5 3.3 28 .1 .1 .1 .1 68 .36 .064 5 39.9 .84 145 .123 1 1.50 .025 .43 .6<.01 4.5 .2<.05 5 <5 .5 15.0 CL 147 2.2 26.6 2.9 37 <1.17.3 8.7 286 2.26 4.9 1.6 <5 3.3 28 .1 .1 .1 .1 68 .36 .064 5 39.9 .84 145 .123 1 1.50 .025 .43 .6<.01 4.5 .2<.05 5 <5 15.0 NN 76 3.0 52.3 22.0 106 .2 28.7 13.9 440 3.67 24.5 .7 1.3 3.0 29 .3 .3 .3 61 .27 .069 8 47.2 1.03 145 .127 1 1.97 .020 .60 .2 .01 4.5 .3<.05 6 1.0 15.0 NN 78 2.1 57.2 12.8 93 .116.1 17.9 620 3.37 7.8 .9 .6 1.9 42 .2 .2 1.0 78 .52 .087 5 30.3 1.39 246 .177 <1 .222 .028 .61 .4 .01 3.4 .2<.05 6 .7 15.0 RT 140 4.1 40.1 7.5 64 .1 7.3 14.4 648 2.87 3.8 1.3 <51.2 22 .2 .2 1.0 78 .52 .087 7 12.2 .81 156 .106 <1 1.65 .035 .33 .8<.01 2.7 .1<.05 4 .5 1.5 0 RT 144 1.3 41.5 4.7 60 .1 18.1 14.4 648 2.87 3.8 1.3 <51.2 22 .2 .1 .2 64 .29 .073 7 20.4 68 95.139 1 2.36 .014 .26 .7 .08 2.9 .2 .06 7 <5 15.0 RT 144 1.3 41.5 4.7 60 .1 18.1 14.4 648 2.87 3.8 1.3 <51.2 22 .2 .2 .1 .2 64 .29 .073 7 20.4 68 95.139 1 2.236 .014 .26 .7 .08 2.9 .2 .06 7 <5 15.0 RT 144 1.3 41.5 4.7 60 .1 18.1 14.4 648 2.87 3.8 1.3 <51.2 22 .2 .1 .2 64 .29 .073 7 20.4 68 95.1	CL 91 CL 93 CL 94	5.5 2.1 9.4	57.6 30.7 104.5	13.0 2.8 8.0	116 39 31	.1 <.1 .3	11.1 23.0 20.9	14.4 10.1 378.2	596 305 2968	3.13 2.59 3.12	13.9 5.0 7.2	1.0 1.2 31.5	2.0 .9 2.0) 1.9) 3.7 5 6.7	37 23 26	.3 <.1 .3	.2 .1 .2	.6 .1 .1	59 .4 80 .3 68 .3	40 .(33 .(21 .(069 074 066 1	5 5 19	13.0 1 56.3 52.1	1.02 .97 .72	144 161 119	.127 .135 .087	<1 2 <1 2 <1 2	2.45 1.55 3.51	.023 .021 .017	.35 3 .61 .39	.3. .6. .2.	02 01 06 1	2.7 6.1 5.7	.1 .0 .2 .0 .5<.0)6)6)5	6 .7 6 .6 6 1.0	15. 15. 1.
CL 145 . .5 25.4 5.2 5.8 5.8 5 395 2.5 6.2 <.5	CL 97 SOIL CL 98 CL 100	1.6 1.6 1.8	66.3 57.4 62.3	8.6 10.5 9.7	85 90 89	.2 .1 .1	8.8 14.7 15.1	12.7 18.1 18.0	794 609 608	3.19 3.28 3.54	6.1 5.6 5.5	12.1 .7 .7	1.0 1.0 1.0) 4.8) 1.9) 1.8	32 33 36	.3 .2 .1	.1 .2 1 .2	.2 .5 .5	72 .4 62 .1 57 .4	41 .0 37 .0 41 .0	066 0 64 075	8 5 5	20.9 18.5 17.7	.86 1.18 1.10	156 152 122	.201 .137 .115	1 1 1	2.46 2.70 2.48	.027 .020 .020	.46 1 .30 1 .24	.0. .0. .9.	04 02 02	4.4 2.9 3.2	.3<.0 .1<.0 .1<.0)5)5)5	7.6 6.7 6.7	15. 5. 15.
RT 140 4.1 40.1 7.5 64 .1 7.3 14.4 648 2.87 3.8 1.3 <.5	CL 145 · CL 147 NN 76	.5 2.2 3.0	25.4 26.6 52.3	5.2 2.9 22.0	58 37 106	1. 1.> 2.	8.5 17.3 28.7	8.5 8.7 13.9	395 286 440	2.57 2.26 3.67	6.3 4.9 24.5	66.2 1.6 .7	<.! <.! 1.:	52.5 53.3 33.0	42 28 29	<.1 .1 .3	.1 .1 .3	.2 .1 .3	61 . 68 . 61 .	44 . 36 . 27 .	060 064 069	7 5 8	17.8 39.9 47.2	.76 .84 1.03	192 145 145	.142 .123 .127	1 1 1	1.99 1.50 1.97	.019 .025 .020	.25 .43 .60	.3 .6<. .2	01 01 01	3.3 4.5 4.5	.1<.(.2<.(.3<.()5)5)5	6 <.5 5 <.5 6 1.0	15. 15. 15.
STANDARD DS5 13.0 144.4 24.9 137 .3 25.7 12.5 782 3.03 19.0 6.1 41.8 2.7 49 5.6 4.0 6.2 59 .73 .092 12 187.8 .68 137 .103 16 2.11 .032 .14 5.0 .16 3.4 1.1<.05 7 5.0 15.0	RT 140 RT 144 RT 146	4.1 1.3 .1	40.1 41.5 2.3	7.5 4.7	64 60 15	.1 .1 <.1	7.3 18.1 .8	14.4 14.4 1.1	648 580 99	2.87 2.88 .41	3.8 2.2 <.5	1.3 3.8 .2	<. 7. <.	51.2 42.9 5.6	22 40	.2 .1 <.1	.1 .1 <.1 •	.2 .1 <.1	64. 81. 9.	29. 75. 13.	073 056 028	7 7 2	20.4 35.9 1.6	.68 1.25 .11	95 101 28	.139 .197 .025	1 1 <1	2.36 2.12 .28	.014 .035 .008	.26 .35 .05	.7. .5. <.1<.	.08 .02 .01	2.9 3.0 .6 •	.2 .0 .2<.0 .1<.1	06 05 05	7 <.5 7 <.5 1 <.5	15 15 15
	STANDARÐ DS5	13.0	144.4	24.9	137	.3	25.7	12.5	782	3.03	19.0	6.1	41.	3 2.7	49	5.6	4.0 (5.2	59.	73.	092	12 1	87.8	. 68	137	.103	16	2.11	.032	.14	5.0	.16	3.4	1.1<.6	05	7 5.0	15

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA ___

AA DE ANLYTICAL						N	ic	ho	15	on	æ	A	88(DC.	. P	RO	JE	СТ	RE	Ð	TU	SK	F	ILE	#	A3	058	31					Р	age	e 5			ADVE AN	
SAMPLE#	Mo ppm	Cu ppm			Žn xm p		Ni ppm		o Ma n ppn			As ppm					Cd ppm		B1 ppm		Ca X		La ppm	Cr ppm		Ва ррт	Ti X	B	Al X	Na X		W Abur b		Sc ppm g			a Se nippon	Sample gna	
G-1 RT 153 RKR 1 RKR 2 RKR 3	1.4 3.8 3.0 2.1 5.9	44.6 83.9 89.4	8. 16. 24.	3 6 4 14 1 11	57 44 11	.1 1 .1 .2	6.9 8.4	15. 22. 4.	7 74 7 91 2 36	93. 34. 63.	10 90 64 2	2.1 6.3 7.1	3.2 .5 .6	<.5 .7 1.5	2.4	28 133 13	.1 .2 .1	.1 .2 .2	.1 .1 .4	95 139 93	.53 .38 .12	.039 .119 .066	6 4 5	24.9	1.20 1.31 .72	217 376 141	.241 .238 .185	1 : 1 : 1 :	2.61 4.45 3.01	.017 .024 .012	.45 .79 .25	.3. .1. .1.	06 04 04	2.4 3.1 5.7	.3<.0 .2 .0 .3 .0 .1 .0 .5 .2	6 8 7 1 9 1		15.0 15.0 15.0 15.0 7.5	
RKR 4 RKR 5 RKR 6 RKR 7 RKR 8	1.6 1.0 1.3	31.9 16.1 6.4	19. 19. 17.	8 8 6 23 4 14	32 36 40	.2 1 .1 .2	14.4 5.4 4.5	7. 4. 4.	738 493 758	84. 32. 62.	42 4 80 68	4.3 3.5 2.2	.3 .2 .2	.7 <.5 <.5	.9 5 1.2 5 .4	20 26 7	.1 .4 .2	.4 .2 .2	.3 .2 .3	138 37 55	.14 .14 .05	.053 .066 .031	3 5 3	69.9 8.0 8.7	1.15 .84 .66	183 171 193	.242 .181 .224	<1 <1 1	4.40 2.44 1.84	.047 .015 .010	.45 .59 .40	.1 . .1 . .1 .	04 1 04 03	4.7 7.1 7.7	.1 .2 .2 .0 .3<.0 .3<.0 .2<.0	6 1 5 1 5 1	1.6 0.6 1.5	15.0 15.0 15.0 15.0 15.0	
GHSLS 1 GHSLS 2 GHSLS 3 RTFSS 1 RTFSS 2	8.5 3.5 3.4 2.3 12.5	59.2 20.7 58.8	38. 8. 10.	8	85 60 61	.2 .1 .1	11.1 7.3 8.2	15. 15. 12.	777 450 242	03. 12. 02.	35 70 52	6.0 3.5 1.3	1.1 1.3 .B	1.5 <,5	5 1.4 5 1.4 5 1.8	47 98 35	.2 .2 .1	.3 .2 .1	.4 .7 .1	75 68 76	. 28 . 84 . 39	.092 .054 .067	4 4 4	12.6 11.1	1.45 1.06 1.15	179 129 203	.129 .135 .157	1 1 <1	2.81 2.80 1.91	.017 .040 .027	.39 .24 .47	.6. .1.8. .3.	.08 .03 .02	2.3 3.1 2.4	.1 .1 .1 .1 .1<.0 .1 .0	.2)5)6		15.0 5.0 1.0 15.0 7.5	
RE RTFSS 2 DCBS 1 DCBS 2 STANDARD DS5	2.0 5.4	44.8 94.4	25.	91 81	38 60	.2	19.2 20.7	7. 11.	567 379	14. 53.	05 2 96 2	23.0 26.4	.3 .4	3.7 3.8	7 1.4	18 17	.2 .2	.3 .3	.5 .6	88 94	. 18 . 21	.065 .097	6 7	43.1 55.1	.99 .99	223 210	.207 .202	<1 <1	2.83 2.57	.019 .020	.57 .62	.2 .	.05 .06	9.2 9.6)5 1)5			
<u>Sample type: S</u>	<u>ILT S</u>	<u>580 (</u>	50 <u>C</u> .	Sa	mple	<u>is b</u>	egin	ning	RE	<u>ar</u>	e Re	erun	s an	<u>1 'R</u> I	RE' a	are F	<u>Rejec</u>	t Re	runs	-																			
																													e an									KFA	

			j	Nic.	hol				<u>80C.</u> I. Hast											1305 Geor				je	1						
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm		Mn ppm	Fe X	As ppm		Au ppm (Cd ppm	Sb ppm			Ca X		La ppm			Ba ppn	ті Х	B ppm	AL X	Na X		W ppm	Au* ppt
1 17 142 17 149 HLS 1 HLS 2	<1 <1 9 1	3 4 224 75 8	3 3 5 6 3	1 47 34 43	<,3 <,3 <,3 <,3 <,3	2 4 18 7	<1 1 5 20 16	215	.02 .29 1.95 4.97 3.77	88588 888 888 888 888 888 888 888 888 8	< 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		2 2 7 61 61	<.5 <.5 <.5 <.5 <.5	00000	00000	<1 2 33 56 26	.03	<.001 .003 .021 .084 .043	<1 <1 6 2 1		<.01 .03 .38 .44 1.27	6 57 68	<.01 .01 .10 .09 .07	000	.01 .06 .62 1.32 1.92	.45 .01 .03 .23 .01	.02	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<.2 .2 <.2 1.2 _4
MLS 3 MLS 4 MLS 5 MLS 6 MLS 7	<1 3 <1 <1 1	48 17 61 19 70	7 5 4 3 8	15 28 72 86 50	<.3 <.3 <.3 <.3 <.3	9 8 10 20	17	374		4 7 2 2 2	<8 <8 <8 <8 <8	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 32 13		333	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	9 53 62 66 83	.37 .17 .38 .30 .61	.067 .064 .079		14	.13 .88 2.45 1.63 1.09	111	.01 .04 .17 .11 .08	<3	.76 .98 2.21 1.65 1.55	.12 .07 .03 .05 .20	.16 .19 .21 .63 .22	<2 <2 <2 <2 <2 <2 <2	2.9 1.0 2.7 1.1
MLS 8 MLS 9 MLS 10 MLS 11 MLS 12	3 1 1 2 3	26 2 93 27 15	4 3 5 3 7	36 19 92 45 3	<.3 <.3 <.3 <.3 <.3	10 1 20 19 7	13 4 20 18 15	662 775	5.41 1.91 4.62 4.22 4.10	15 <2 <2 3 3	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	~~~~~	3	16 21 44 21 3	<.5 <.5 <.5 <.5	2000	<3	42 116	.20 .37 .42 .31 .05	.088 .060 .087 .077 .046	1	6 36 30	.76 .45 1.86 2.07 .03	70 49 126	.03 .11 .07 .13 .01		.91 .77 1.89 1.93 .27	.05 .07 .11 .08 .01	.43	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2. 2. 2. 2.
RE GMLS 12 RTF 1 RTF 2 RTF 3 RTF 4	3 1 570 4 1	16 66 197 106 98	<3 10 4	1 32 39 59 52	<.3 <.3 <.3 <.3 <.3		15 7 4 17 17	319 202 953	4.04 2.33 10.88 3.61 4.62	3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<8 <8 <8 <8 <8	~~~~~	2 2 2	3 14 22 202 138	<.5 <.5 <.7 <.5	00000 00000	<3 <3 20 <3 <3 <3		.05 .23 .21 3.28 1.73		5 2 1	43	. 70		.11 .09 .13	5 5 5 5	.27 1.13 1.20 4.73 3.80	<.01 .06 .04 .40 .41	.48 .21	<2 <2 27 <2 <2	1. 1.
RTF 5 RTF 6 IK 1 IK 2 IK 3	2 2 <1 <1 1	71 252 56 41 24	14 <3 <3	52 250 68 63 65	<.3 <.3 <.3 <.3 <.3	17	9 18 9	283 1480	3.44 2.44 4.70 3.71 3.62	<2 7 <2 18 3	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	158 45 122 99 36	<.5 1.6 .5 <.5 <.5	<3 <3	3	128 71	1.92 .77 1.44 .65 .44	.077 .094 .054	3 1 1	3 29 52	1.53 .16 2.50 1.60 2.36	16 14 26	.18 .10 .10	<3 <3 <3	4.40 1.05 4.00 3.23 3.22	.48 .15 .33 .19 .10	.36 .11 .01 .04 .04	<2 <2 <2	-
IR 14 IR 15 IR 16 IR 17 IR 18	1 17	1934 4093	18 140 116	485 282	<.3 4.3 7.8	4 4 2	14 11 8	1340 167 56	4.87 4.26 3.54 2.14 3.68	4 4 19 2 <2	<8 <8 <8 <8 <8	~~~~~	<2 2 2 2 3		22.4 1.8 2.3 28.8 31.9	3 3 3	00000 00000	5	.05 .18 .10 .08 .12	.080	2	2 2 <1	2.57	71 208 79 125 210	.10 .03	3 3 3 3	.18 2.31 .40 .28 1.45	.01	.07 .47 .25 .15 1.01	<2 <2 5	2005. 7. 69. 141. 21.
IR 19 IR 20 IR 21 IR 22 ICB 1	2 9 4 2 2	71 26 4 97 398	130 <3 6	110 54 8 47 30	.3 1.9 .6	2 26	<1 1 14	28 <2 288	3.72 .44 .57 5.87 2.19	2 4 33 1700	<8 <8 <8 <8 <8	<2	3	33 1 36 14 100	<.5 <.5 <.5 <.5	303	00000 00000	11	.64 .02 .01 .16 1.15	.011 <.001 .040	3 1 2	4	.65		.01 .01 .01	3 3 3		<.01 .01 .02	.14 .14 .05 .18 .34	<2 <2 <2	2. 28. 7. 1. 2.
	GROUI UPPEI ASSA - SAI	P 1D - R LIMI F RECO HPLE T	0.50 TS - MMENE YPE:	AG, AG, AD	SAMPL NU, H DR RO R150	E LEA G, W CK AI 60C	ACHEI = 10 ND CO	O WITH DO PPH DRE S/ AU*	3.19 3 ML 4; MO, MPLES IGNITED 'RRE'	2-2-2 CO, C IF C	2 HCL CD, 9 J PB ID LL	L-HNC SB, E ZN A Eache	03-H2 91, 1 AS > ED, /	20 AT	95 D & B AG >	EG. 0 = 2,0 30 PF	FO 000 1	R ONE PPN; AU >	HOUR CU, P 1000	Ś, ΖΝ,	TED	TO 10) ML,	ANAL	YSED	BY 10		•	_ 14	4	481.

MALYTICAL			N	ich	10]	sor	1&	As	500	. I	RO	JEC	T	REI	т	USK	FI	LE	# 2	A30	58	32				Pa	age	2		ACHE /	
AMPLE#	Мо Си ррягра													Cd ppna		Bi ppnapp	V C m	8 K		La. opmip		Mg X	Ba ppna	Ti X	B ppm	Al X			W ppm	Au# ppb	
DCB 2 DCB 3 DCB 4 DCB 5 DCB 5 DCB 6	1 32 1 22 1 37 2 25 1 7	444	53 94 24	<.3 <.3 <.3		16	63 17	5 3.74) 2.53 3 2.98 3 2.16 5 1.05	14	<8 <8	<2 <2	<2 <2	9 7	<.5 <.5 <.5	5 5 5 5	<3 2	3.2 5.0	0 . 8 . 4 .	079 080 092 022 009	3 9 4 2 11	5 2 6 9 6	.39 .47 .62 .19 .27	91 167 136	.10 .08 .23 .06 .06	3	1.14 .97 1.16 .40 .55	.06 .07 .04	.30 .64 .19	<2 <2	.7 23.3 2.8 1.2 .4	
DCB 11 DCB 12 Standard DS5/AU-R	3 279 3 90 12 144	5	44 43 135	5 <.3	; ·	77 6512	84	1 3.69 4 3.55 1 2.98	- 4	<8	<2	<2	170	<.5	<3	3 1	1 2.1 7 2.6 1 .7	2.	054 117 097	2 2 12 1	31	1.23 1.49 .68	194	.15	<3		.33	.40		.9 <.2 465.2	
			Samp	ole t	ype	: ROC	<u>K r1</u>	50 60 <u>0</u>	<u>.</u>																						
																	-														

SAMPLE#	Mo	Cu ppm		Zn	_	Ni ppm				As ppm					Cd ppm	Sb			Ca %		La ppm				Ti X		Al X		K X	W mqq	Au* ppb
							<u> </u>															· · · ·		·····						<2	<.2
SJ GGNR 1	1	2 32	<3 4	4			<1 12	4 253	.05 3.07	5	<8 <8	<2 <2	<2 3	2 13	<.5 <.5		_		.08<		1		<.01				1.98		<.01 .57	_	.7
GGNR 2	1	81	4	45	<.3	19	18	206	3.37	<2	13	<2	3	501	<.5	5			5.43		6	23	.51	91	.08	3	8.15	.34	.16	_	.6
GGNR 3	2	58	<3	113			16		3.36		<8		3						.17								2.06		. 18	<2	1.3
GGNR 4	1	55	<3	71	<.3	13	15	314	3.54	<2	<8	<2	<2	393	<.5	3	<3	129 4	4.14	.057	5	45	1.00	131	.08	3	7.24	.33	.31	<2	.8
GGNR 5	1	72	<3		<.3		14		3.73			<2			<,5				5.98				.77				8.90		.49	<2	1.7
GGNR 6	4	151	32		<.3		18		4.31		<8		<2		1.8	<3			.36								1.66		.85		2.5 35.4
GGNR 7 GGNR 8	10	2216 2906			3.0 5.1	95	25 15		5.61 3.51	~2	<8 <8	~2	<2 <2		1.6 5.7	3	3		.27		3 2		1.40				1.64		.49 .39	_	88.0
GGNR 9	55				12.0		10		2.94			~2			36.0				.13								.54				375.3
GGNR 10	11	435	12	104	<.3	5	17	670	4.02	<2	٢A	<2	~2	17	1.0	<3	~	35	.34	.084	4	5	1.14	275	.08	<3	1.79	.08	.41	0	7.0
GGNR 11	1	18188		5503			7		4.57			4				3			.12								.39				979.6
GGNR 12	29	2067	547	6985	3.6	8	18	677	4.28	51	<8	<2	<2	19	44.7	<3	<3	78	.35	.063	3	13	.63	93	.16	<3	.90	.09	.34		126.7
RE GGNR 12	29								4.18						43.9		<3		.34			11					.87				112.4
GGNR 13	53	2740	854	5778	4.8	12	23	861	5.26	51	<8	<2	<2	29	37.1	4	<3	88	.45	.063	4	11	.79	140	.25	<5	1.43	.20	.70	2	108.4
GGNR 14		19185							3.44			<2			182.4				.13	.035 .087	2 3	12 3					.44 .91				588.0 81.1
GGNR 15 GGNR 16	16	6816 474		3660	12.2		10		3.83		<8 <8		<2 <2		6.2 24.3	3	<3		.31		3						1.28				11.5
GGNR 17	6		8		<.3				4.66								<3		.25		ž								.17		2.5
GGNR 18	7				<.3				4.78			<2			2.8		<3			.045	2								.25		1.5
GGNR 19	2	48	7	116	<.3	5	16	719	4.27	<2	<8	<2	<2	16	<.5	<3	<3	61	.37	.068	1	4	1.59	144	.12	ও	1.90	.08	.35	<2	1.6
GGNR 20		4990							2.97		<8	<2			75.9	<3	4		.09								.52				192.3
GGNR 21 GGNR 22		4223							2.95						22.2 95.5					.084	32										151.0
GGNR 23	15	3022 829		7963											33.0		3 <3			.007	4								.23		289.1
GGNR 24	5	390	55	2357	.7	9	19	875	3.54	17	<8	~2	0	R	18.3	3	<3	44	26	.077	2	7	1.00	101	. 15	<3	1.53	- 05	1.17	~	26.3
GGNR 25	10			3215					3.28						19.9	3	3	38		.058											71.6
GGNR 26	13			3426					3.17			<2				<3				.052									.28		74.5
GGNR 27	57			50 44				146	.39				3 10	8	<.5		<3 15			.009									.27		.3 57.8
GGNR 28	1 "	163	87	44	.9	1	<1	0	16.62	4	<0	~2	10	2	<.5	2	10	2	.01	.030		3	<.UI	171	.01	•3	.47	.01	. 15	12	57.0
GGNR 29	21	40							6.67						<.5																
GGNR 30 STANDARD DS5/AU-R		1833 140													5.5																
UPPE Assa - Sa	R LII Y REI MPLE	- 0.5 MITS - COMMEN TYPE: beginn	AG, ADED FO ROCK	W, HG R ROC R150	,₩ = KAND 60C	100 Core Al	PPN; San J* 10	MO, IPLES SNITED	CO, C IF CU , ACI	D, SI PB 2 D LE	B, B ZN AS ACHEC	I, TH S ■ 1 D, AP	I, U IX, A IALYZ	& B \G > \ED E	= 2,00	0 PF 8 & A •MS.	₩; (₩ > (15	CU, P 1000 gm)	8, 2) PPB	N, NI	, MN	, AS,	, v,	LA,	CR =	10,8	000 P	PM.			

ACME ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Nicholson & Assoc. PROJECT RED TUSK File # A306116 310 - 675 W. Hastings St., Vancouver BC V68 1WZ Submitted by: George Wicholson SAMPLE# Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Mo Са P La Cr Ma Ba TÎ B AL Na K W Au* x X ppm ppm X ppm X ppm x x X ppm ppb DOM 3 < .3 <1 <1 <2 .06 <2 <8 <2 <2 2 < .5 <3 <3 <1 <1 1 3 .08 <.001 <1 1 <.01 3 <.01 <3 .01 .40 <.01 <2 SI 1.2 BASED 1 2 481 254 915 1.0 19 123 435 4.78 13 <8 <2 <2 41 3.4 <3 <3 81 .94 .094 2 10 1.27 78 .10 <3 1.86 .13 .30 <2 15.6 BASED 2 6 1066 14 31 1.3 36 324 89 9.62 5 <8 <2 <2 41 .5 <3 <3 33 .67 .044 1 8 .12 7 .12 <3 .55 .03 .02 <2 19.6 2 433 8 29 .7 19 247 185 4.99 7 <8 <2 <2 109 <.5 <3 <3 32 1.61 .083 2 6 .40 10 .10 <3 1.95 .16 .02 <2 10.7 BASED 3 G-CX-1 66 32833 726 2964 61.6 2 14 135 4.85 3 <8 <2 <2 3 26.9 <3 <3 3 .06 .012 <1 <1 .03 74 .03 <3 .17 <.01 .07 <2 231.4 G-CX-2 87 23105 956 3606 52.0 3 15 108 4.21 5 <8 <2 <2 3 32.0 <3 <3 3 .07 .024 <1 .02 74 .02 <3 .14 .01 .07 <2 177.0 1 G-CX-3 86 21420 613 1808 45.5 5 21 78 4.42 2 <8 <2 <2 2 17.0 <3 3 3 .07 .020 <1 4 .02 75 .04 <3 .15 <.01 .09 <2 220.7 67 18929 508 1249 42.4 3 16 50 4.25 5 <8 <2 <2 2 12.1 <3 <3 3 .09 .023 1 4 .02 85 .04 <3 .15 <.01 .09 <2 128.7 G-CX-4 RE G-CX-4 66 18676 505 1221 40.9 3 15 50 4.19 5 <8 <2 <2 11.9 <3 <3 4 .08 .023 <1 4 .01 82 .04 <3 .15 <.01 .09 <2 112.9 3 293 16 63 1.0 16 16 540 3.33 4 <8 <2 <2 30 <.5 <3 <3 76 .42 .042 1 36 1.64 56 .11 <3 2.00 .08 .09 <2 11.0 SEDG-1 SEDG-2 3 244 14 63 .8 25 30 574 4.18 <2 <8 <2 <2 27 <.5 <3 <3 80 .40 .038 1 37 1.73 53 .10 <3 2.03 .07 .09 <2 7.7 STANDARD DS5/AU-R 12 144 24 130 .4 24 12 747 2.87 18 <8 <2 3 46 5.3 4 6 58 .70 .091 12 188 .65 136 .09 16 1.98 .03 .13 4 468.0 GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LINITS - AG, AU, HG, W = 100 PPM; NO, CO, CO, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. er 23/03 DATE RECEIVED: DEC 15 2003 DATE REPORT MAILED: Data FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Nicholson & Assoc. PROJECT RED TUSK File # A306170 310 - 675 W. Hastings St., Vencouver BC V68 192 Submitted by: George Micholson SAMPLE# No Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B AL Na κw Au* Хррларра Хррл Хррл X x % ppm ppio 1 <3 2 <.3 <1 <1 7 .04 <2 <8 <2 <2 5 <.5 <3 <3 <1 .23 <.001 <1 <1 .01 5 <.01 <3 .01 .89 .01 <2 SL 1 .9 19 1166 745 >9999 73.2 1 1 205 1.09 47 <8 <2 <2 47 60.8 47 <3 <1 .41 .004 4 5 .28 221 .01 <3 1.07 .03 .19 43 505.3 GGNR 31 9 129 713 2679 3.4 1 <1 81 1.00 17 <8 <2 <2 25 10.8 3 <3 1 .28 .006 3 2 .12 161 .01 <3 .76 .06 .13 <2 108.1 12 151 24 134 .3 24 12 752 2.96 18 <8 <2 3 47 5.8 4 6 60 .70 .095 13 190 .68 142 .10 17 1.93 .04 .14 5 460.0 GGNR 32 STANDARD DS5/AU-R GROUP 1D - 0.50 GN SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%. AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) n' Data FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

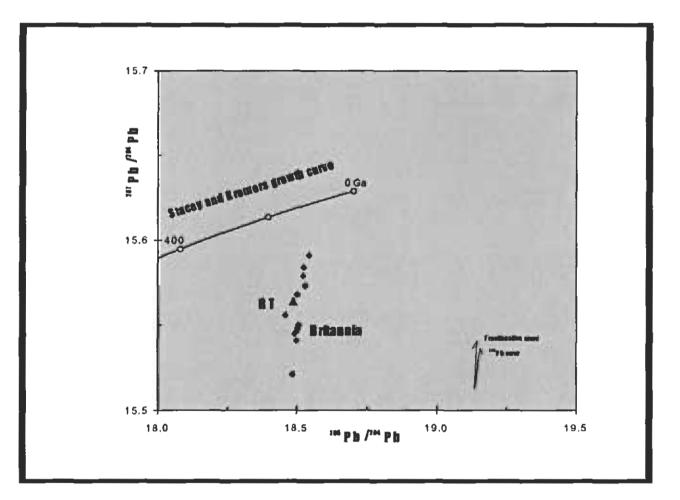
APPENDIX H ROCK SAMPLE DESCRIPTIONS

Red Tusk Resources Inc. - Red Tusk Project Rock Sample Locations and Descriptions

Sample No.	Sam. Type	Easting	Northing	Zone/Area	Rock Type	Mineralization
WR-001	Grab	470518	5527634	NE claims		tr-3% diss py, lim
WR-002	Grab	470518	5527614	NE claims		tr py, lim
WR-003	Grab	466212	5529845	NW claims	hornfelsed mudstone	1-3% py on fractures
WR-004	Grab	477844	5513793	Mavis/North Zone	hornfelsed mudstone	tr py, strong lim
WR-005	Grab	477844	5513793	Mavis/North Zone	ryholite	tr py, lim
WR-006	Float	477749	5513724	Mavis/North Zone	rhyolite, frothy texture	tr-2% diss py, lim
WR-007	Grab	476189	5514323	North ext. area	dacite	lim, mang
WR-008	Grab	478590	5512955	Cirque Zone	rhyolite, white to chalky	2-5% diss py cubes
WR-009	Grab	478590	5512955	Cirque Zone	rhyodacite with quartz veins	2-5% diss py cubes
WR-010	Grab	478590	5512955	Cirque Zone	rhyolite, white with white clay alt.	1-2% py, tr-0.5% cpy
WR-011	Grab	478590	5512955	Cirque Zone	rhyolite, grey-white, massive	lim-py, tr-1% cpy blebs
WR-012	Grab	478590	5512955	Cirque Zone	hornfelsed siltstone, bio, ser alt.	tr diss py
WR-013	Grab	476598	5512905	North Zone	rhyolite, white	2-5% py, tr gal
WR-014	Float	478681	5512959	Cirque Zone	rhyolite, grey-white, massive	3-5% cpy, tr-1% py, tr sph
WR-015	Grab	478750	5512891	Cirque Zone	sericitic rhyolite	3-5% py cubes
WR-016	Grab	478708	5512992	Cirque Zone	sericitic rhyolite	3-5% py, tr cpy, tr sph
WR-017	Grab	478708	5512992	Cirque Zone		5-6% py, tr-1% cpy
WR-018	Grab	478666	5513119	Cirque Zone	rhyolite tuff	tr suphides
WR-019	Grab	478683	5512964	Cirque Zone	hornfelsed argillite	lim and mang staining
WR-020	Grab	476568	5513010	South Zone area	rhyolite	py +/- sph +/- gal veinlets
WR-021	Float	476547	5513070	South Zone area	rhyolite with barite?	tr sulphides
WR-022	Grab	476580	5513124	South Zone area	argillite	minor po veinlets
WRSQ-23	Chip - 20cm	471173	5522364	Squamish Road	quartz vein, 20cm wide	tr diss py, cpy
WRSQ-24	Grab	471151	5522433	Squamish Road	rusty quartz vein approx. 0.5m wide	
WRSQ-25	Grab	471047	5522695		feldspar porphyry dyke in fault zone	
WRSQ-26	Grab	471087	5522413	Squamish Road	dacite tuff	tr diss py, lim
WRSQ-27	Chip - 30cm	470792	5522780	Squamish Road		tr-2% py
WRSQ-28	Grab	470887	5522311			tr py
WRSQ-29	Grab	469452	5523625			tr-1% diss py

Sample No.	Sam. Type	Easting	Northing	Zone/Area	Rock Type	Mineralization
WRSQ-30	Grab	470869	5522103	Squamish Road	dacite tuff, clay altered	nil-tr sulphides
WRSQ-31	Chip - 10cm	470869	5522103	Squamish Road	quartz vein, 10cm wide	tr-2% py, tr cpy
WRSQ-32	Grab	470893	5522292	Squamish Road	sheared dacite tuff	tr-2% diss py+po
WRSQ-33	Grab	470293	5522698	Squamish Road	rusty argillite	1-3% diss py
WRSQ-34	Grab	470741	5522915	Squamish Road	rusty argillite	tr-2% diss py
WRSQ-35	Grab	470729	5522930	Squamish Road	dacite tuff	tr-1% diss py, tr po?
WRSQ-36	Grab	470217	5522856	Squamish Road	dacite tuff + hornfelsed argillite	tr-2% py
WRSQ-37	Grab	471453	5521509	Squamish Road	dacite lapilli tuff / agglomerate	tr py
WRSQ-38	Chip - 2.5m	471470	5521616	Squamish Road	Argillite	tr-1% py
WRSQ-39	Chip - 10cm	471490	5521724	Squamish Road	quartz vein - 10cm wide	10% weathered sulp., aspy
WRSQ-40	Float	471380	5523200	Squamish Road	rhyodacite tuff	1-3% diss py+po
WRSQ-41	Grab	471020	5523426	Squamish Road	rhyodacite tuff	5-10% diss py+po
WRSQ-42	Grab	470832	5523422	Squamish Road	rhyodacite tuff	5-10% diss py+po
WRSQ-43	Grab	470800	5523422	Squamish Road	hornfelsed argillite	1-5% diss py +/-po
WRSQ-44	Float	470800	5523422	Squamish Road	grey-black weathered sulp. in vein	possible weathered suphides
WRSQ-45	Float	470800	5523422	Squamish Road	hornfelsed argillite	1-5% diss py
WRRT-46	Float	470395	5513286	Red Tusk Creek	Banded cherty rhyolite	nil sulphides
SQ-51		470981	5522379	Squamish Road		
SQ-55		470921	5522534	Squamish Road		
SQ-59		470852	5522622	Squamish Road		
SQ-63		470803	5522762	Squamish Road		
SQ-65		470807	5522768	Squamish Road		
SQ-69		470563	5522956	Squamish Road		
CL-85		469143	5522743	Clowhom Road		
CL-89		469858	5522298	Clowhom Road		
CL-91		470092	5522112	Clowhorn Road		
SQ-122		471459	5521586	Squamish Road		
SQ-125		471373	5522734	Squamish Road		
SQ-129		471171	5523336	Squamish Road		
SQ-131		470942	5523373	Squamish Road		
SQ-135		470743	5523443	Squamish Road		
SQ-137		470735	5523438	Squamish Road		

Sample No.	Sam. Type	Easting	Northing	Zone/Area	Rock Type	Mineralization
SQ-139		470606	5523486	Squamish Road	· · · · · · · · · · · · · · · · · · ·	
SQ-141		470394	5523567	Squamish Road		
SQ-143		470220	5523744	Squamish Road		
RT-142		475136	5512868	Red Tusk Road		
RT-149		471658	5517604	Red Tusk Road		
GMLS-1	Float	478910	5512636	Cirque area	rhyolite flow grey-white	3-5% diss py, tr po
GMLS-2	Grab	478935	5512650	Cirque area	andesite flow? with clotty epidote	1-3% diss py and py cubes
GMLS-3	Grab	478970	5512640	Cirque area	rhyolite flow grey-white	1-3% diss py and py cubes
GMLS-4	Float	479010	5512630	Cirque area	rhyolite flow grey-white	1-3% diss py and py cubes
GMLS-5	Grab	479035	600245	Cirque area	andesite crystal tuff	lim, clay, no sulphides
GMLS-6	Grab	479058	5512565	Cirque area	rhyolite flow grey-white	tr-1% diss py
GMLS-7	Grab	479025	5512570	Cirque area	rhyolite flow grey-white	1-3% diss py
GMLS-8	Grab	479040	5512500	Cirque area	rhyolite flow grey-white	2-4% diss py
GMLS-9	Grab	478990	5512475	Cirque area	quartz monzonite	nil sulphides
GMLS-10	Grab	479040	5512530	Cirque area	rhyolite flow, grey	8-10% diss py
GMLS-11	Float	478940	5512610	Cirque area	rhyolite flow, grey	tr-2% diss py
GMLS-12	Grab	478970	5512600	Cirque area	rhyolite flow, grey	1-3% diss py
RTF-1	Grab	475925	5516505	N. Zone Ext. area	altered quartz monzonite?	tr-1% diss py
RTF-2	Grab	475950	5516720	N. Zone Ext. area	limonite breccia	tr-2% py
RTF-3	Grab	471385	5521535	Squamish Road	argillite + dacite tuff + quartz vein	tr-1% py
RTF-4	Grab	471385	5521535	Squamish Road	hornfelsed argillite + andesite tuff?	tr-1% py+/-po
RTF-5	Grab	471385	5521535	Squamish Road	argillite + dacite tuff	tr-1% py
RTF-6	Grab	471385	5521535	Squamish Road	dacite tuff	tr-2% py
DCB-1	Grab	476650	5515260	N. Zone Ext. area	quartz vein + dacite tuff	tr-2% py
DCB-2	Grab	476700	5515180	N. Zone Ext. area	rhyodacite, grey-white	tr-1% py
DCB-3	Grab	476540	5515205	N. Zone Ext. area	rhyodacite, grey-white	tr py
DCB-4	Grab	476850	5515250	N. Zone Ext. area	dacite tuff, grey-black	tr-1% diss py
DCB-5	1mx1m panel	476825	5515355	N. Zone Ext. area	quartz vein	tr diss py
DCB-6	Grab	476950	5515335	N. Zone Ext. area	rhyolite tuff	tr diss py
DCB-11	Grab	471490	5521724	Squamish Road	argillite + dacite tuff + quartz vein	tr-2% py
DCB-12	Grab	471486	5521723	Squamish Road	hornfelsed argillite + dacite tuff?	nil-tr sulphides
GGNR1	Grab	466212	5529845	NW claims	hornfelsed mudstone	tr diss py


Sample No.	Sam. Type	Easting	Northing	Zone/Area	Rock Type	Mineralization
		- <u></u>				
GGNR3	Grab	466212	5529845	NW claims	hornfelsed mudstone	tr diss py
GGNR4	Grab	466212	5529845	NW claims	hornfelsed mudstone	tr diss py
GGNR5	Grab	466212	5529845	NW claims	hornfelsed mudstone	tr diss py
GGNR6	Grab	478660	5513295	Cirque Zone	weakly silicified felsic tuffy < 1-2 mm	5-10%, diss py \pm cpy, py cubes
GGNR7	Grab	478665	5513285	Cirque Zone	weakly silicified felsic tuffy < 1-2 mm	5-10%, diss py ± cpy, py cubes
GGNR8	Grab	478668	551 <u>32</u> 75	Cirque Zone	weakly silicified felsic tuffy < 1-2 mm	5-10%, diss py ± cpy, py cubes
GGNR9	Grab	478670	5513260	Cirque Zone	weakly silicified felsic tuffy < 1-2 mm	5-10%, diss py ± cpy, py cubes
GGNR10	Grab	478700	5512948	Cirque Zone	weakly silicified felsic tuffy < 1-2 mm	5-10%, diss py \pm cpy, py cubes
GGNR11	Grab	From GGNR	10 to GGNR22	Cirque Zone	Dacite, gossanous	2-5% diss + blebby py, cpy
GGNR12	Grab	is a jagged I	ine of samples	Cirque Zone	siliceous dacite	10-15% diss sulphides
GGNR13	Grab			Cirgue Zone	maroon rhyolite, very hard	3-5% py, cpy + gn
GGNR14	Grab			Cirque Zone	Quartz veinlets + sulphide blebs	rusty + yellow stained
GGNR15	Grab			Cirque Zone	Quartz veinlets + sulphide blebs	rusty + yellow stained
GGNR16	Grab			Cirque Zone	pale maroon rhyolite	3-5% diss py
GGNR17	Grab			Cirque Zone	dark blue-grey, siliceous, rhyolite	2-3% diss sulp., mang stained
GGNR18	Grab			Cirque Zone	dark blue-grey, siliceous, rhyolite	2-3% diss sulp., mang stained
GGNR19	Grab			Cirque Zone	dark blue-grey, siliceous, rhyolite	2-3% diss sulp., mang stained
GGNR20	Grab			Cirque Zone	gossanous dacite	blebby sulphides + boxwork
GGNR21	Grab			Cirque Zone	gossanous dacite	blebby sulphides + boxwork
GGNR22	Grab	478682	5512940	Cirque Zone	gossanous dacite	blebby sulphides + boxwork
GGNR23	Grab	478700	5512938	Cirque Zone	rhyolite with possible barite	tr galena
GGNR24	Grab	478696	5512929	Cirque Zone	Trench: dacite, hard, qtz veining	tr diss py, cpy
GGNR25	Grab	478692	5513917	Cirque Zone	Trench area: very hard, dacite	tr diss py, cpy
GGNR26	Grab	478704	5512933	Cirque Zone	Trench: very hard, dacite	tr sph + gal
GGNR27	Float	476760	5513350	South Zone		
GGNR28	Grab	470530	5527635	altd. Intrusive	trusive Punky, frothy, intrusive? pumice like rusty gouge	
GGNR29	Grab	470530	5527635	altd. Intrusive	ntrusive Punky, frothy, intrusive? pumice like rusty gouge	
GGNR30	Grab	476760	5513350	South Zone	uth Zone min ba/rhyo?, traces of gal, sph, py	
GGNR31	Grab	476760	5513350	South Zone	silicified rhyolite	3-5% py+gal in veinlets
GGNR32	Grab	476760	5513350	South Zone	silicified rhyolite,	3-5% py+gal in veinlets

APPENDIX I RED TUSK LEAD ISOTOPE ANALYSIS

Red Tusk Lead Isotope Analysis

A sample of galena was obtained from barite rich material located at the southern end of the Red Tusk Project Area. This sample was analysed for its lead isotope composition. Isotopic ratios have been plotted and compared with other analyses. Y-axis of plot has been expanded and error bars are not plotted.

The Red Tusk lead isotope ratios (red triangle) plot within the Britannia cluster of analyses (twelve blue diamonds). The uniformity of the isotopic ratios is consistent with a volcanogenic origin involving derivation of metals from a common or similar source. The derivation of metals from underlying volcanic suites is consistent with the isotopic data.

Sample Number	206Pb/ 204 Pb	Pb64 abs err	Pb64 % err	207Pb/ 204Pb	Pb74 abs err	Pb74 %err	208Pb/ 204Pb	Pb84 abs err	P584 % err	207Pb/ 206 Pb	Pb76 sbs err	Pb76 %err	208Pb/ 206Pb	Pb86	Pb86
RT	18.4877	0.0091	0.05	15.5638	0.0106	0.07	38.0970	0.0342	0.09	0.8419	0.0002	0.024	2.0607	0.0009	0.043

Notes: Analysis by Janet E. Gabites, Research Scientist, Geochronology Laboratory, Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, B.C.

All ratios corrected for isotopic fractionation (0.15% for Faraday collector), based on repeated analyses of NBS981 lead standard. Mineral analysed is galena.

APPENDIX J SUMMARY OF HISTORICAL EXPENDITURES VS. CURRENT ESTIMATES

Preamble

The historical statements of expenditures recorded on the Red Tusk project area were compiled directly from recorded statements made with the BC Ministry of Mines as part of assessment requirements. They are reproduced as they appear and there were no other available statements or documents.

The purpose of the compilation is to assess the amounts previously expended, place them into context as to what a similar quantity and quality of work would be worth in present day value, and then determine, based on results of work undertaken, whether it is a project of merit and, if so, if the project requires further expenditures and where should the efforts be directed.

This is a significant property of merit. Past expenditures (\$238,435) equated into current value (\$527,120) have produced 3 distinct zones of well mineralized rocks in place, open in all directions; other regional geochemical anomalies; and a large belt of favourable geology. Converting historical expenditures into current value is not precise nor is it meant to be anything more than a guide. The prices used reflect the author's knowledge of past and present costs, having been involved in the mineral exploration industry throughout this period.

Some costs were easy to recalculate (i.e. helicopter, assays, communications, drilling) while others – especially expense items (food, fuel, lodging, supplies), which did not represent large budgetary percentages, were doubled to reflect costs of living increases over the past 10-20 years. Wages were established along the median of current industry standards. Report costs, research, drafting, which all have increased substantially over the past several years, are more a reflection of increased time, effort, quality, professionalism, and costs that now go into projects of this caliber.

No adjustment was made for substantial increases in taxes (income, PST, GST), or WCB, or holiday pay. As earlier stated, the revised numbers presented are only to be used as a guide for discussion purposes.

COMPANY	Year	Type of Expenditure	Time	Amount Type and/or Particulars	Charge Out Rate	Amount	Present Value	Total
JAMES LAIRI (red tusk)	1982	PROSPECTING TRANSPORTATION	11 DAYS	BOAT RENTAL	100.00/DAY	1100 150	250/DAY	2750 600
(, , , , , , , , , , , , , , , , , , ,			11 DAYS	MOTORCYCLE RENTAL	15.00/DAY	165	50/DAY	550
		SUPPLIES						
			11 DAYS	FOOD AND MISCELLANEOUS	20.00/DAY	220	40/DAY	440
		ASSAYS				50		100
		REPORT PREPARATION				275		1000
					TOTAL (T1)	\$1,960		\$5,440

,

HISTORICAL EXPLORATION EXPENDITURES ON GAMBIER MINING CORP. PROPERTY

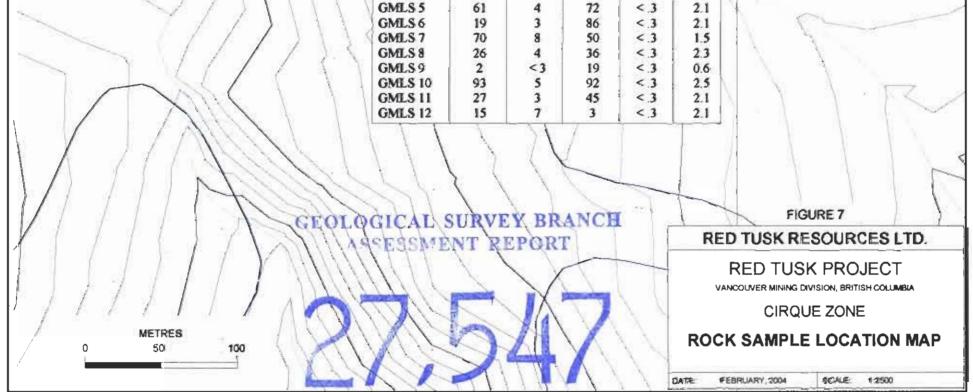
COMPANY	Year	Type of Expenditure	Time	Amount Type and/or Particulars	Charge-out Rate	Amount	Present Value	Total
NEWMONT	1982	PROJECT GEOLOGIST	8 DAYS		\$250.00/DAY	2000	500/DAY	4000
(red tusk)		SENIOR ASISTANT	14 DAYS	5	\$100.00/DAY	1400	350/DAY	4900
· · ·		JUNIOR ASSISTANT	6 DAYS		\$80.00/DAY	480	250/DAY	1500
		JUNIOR ASSISTANT	6 DAYS		\$80.00/DAY	480	250/DAY	1500
		SENIOR ASISTANT	8 DAYS		\$80.00/DAY	640	350/DAY	2800
		JUNIOR ASSISTANT	8 DAYS		\$80.00/DAY	640	250/DAY	2000
		CONTRACTED SERVICE	S					
		HELICOPTER CHARTER						
		FUEL INCLUDED	10 HRS.		\$420/HOUR	4801	1000/HR	10000
		TRUCK RENTAL				151		500
		RADIO TELEPHONE REN	ITAL			300		600
		CAMP SUPPLIES		FOOD; FUEL; CAMP SUPPLES	S 14 DAYS	2000		4000
		REPORT PREPARATION	DATA CO	MPILATION		2000		5000
		DRAFTING, SECRETARIA	L					
		SERVICES, REPRODUCT				1000		5500
		,			TOTAL (T2)	\$15,892		\$42,300

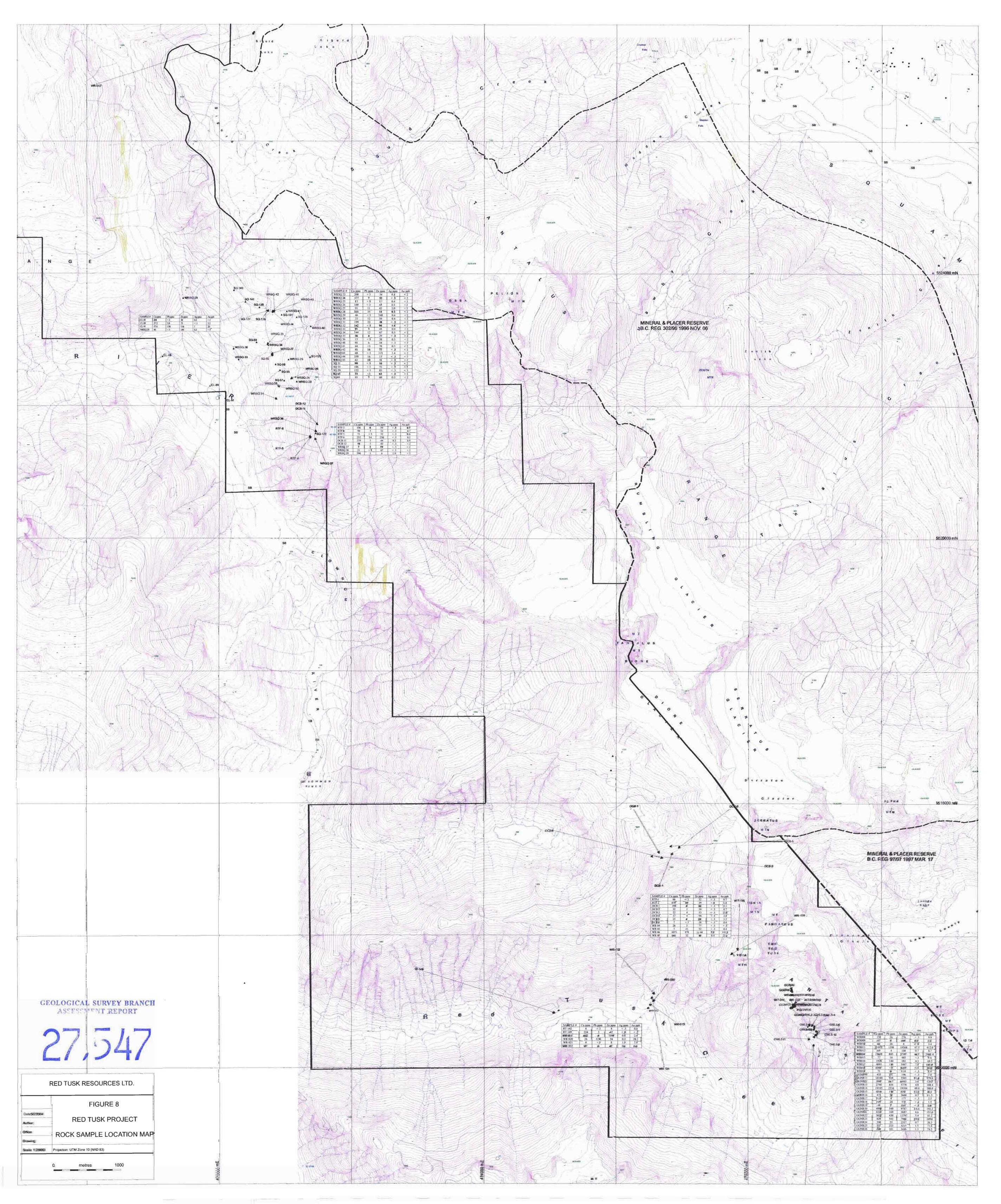
COMPANY		Type of Expenditure			Type and/or Particulars		Charge-out Rate	Amount	Present Value	Total
NEWMONT	1983	GEOLOGIST				40 DAYS	\$103/DAY	4120	400/DAY	16000
(red tusk)		SENIOR ASSISTANT				21 DAYS	\$80/DAY	1680	350/DAY	7350
(,		JUNIOR ASSISTANT				16 DAYS	\$70/DAY	1120	250/DAY	4000
		TECHNICIAN				15 DAYS	\$90/DAY	1350	250/DAY	3750
		JUNIOR ASSISTANT				15 DAYS	\$70/DAY	1050	250/DAY	3750
		SAMPLER				15 DAYS	\$75/DAY	1125	250/DAY	3750
		SENIOR GEOLOGIST				9 DAYS	\$190/DAY	1710	500/DAY	4500
		OUTSIDE CONTRACT PERS	ONNE	L						
		MOUNTAINEER GEOLOGIST	Г			11 DAYS	\$400/DAY	4400	1000/DAY	11000
		MOUNTAINEER GEOLOGIST	Г			4 DAYS	\$200/DAY	800	500/DAY	2000
		MOUNTAINEER GEOLOGIS	Г			7 DAYS	\$400/DAY	2800	1000/DAY	7000
		MOUNTAINEER GEOLOGIS	Г			2 DAYS	\$200/DAY	400	500/DAY	1000
		CONTRACTED SERVICES								
		HELICOPTER CHARTER								
		FUEL + OIL INCLUDED 34	4.8 HRS	S.	BELL 206B		\$400/HOUR	16851	1000/HR	34800
		TRUCK RENTAL				4 DAYS		167	100/DAY	400
		RADIO TELEPHONE RENTA	L					750	1000	1000
		ASSAYS AND GEOCHEMICA	AL CHA	RGES						
				229	Cu,Pb,Zn,Ag,Au,As	:	\$13/SAMPLE	2995	20/SAMP.	4580
		CAMP SUPPLIES			FOOD, FUEL,LUMBER C	AMP SUPPL	les			
					EXPEDITING CHARGES			7929		15000
		EQUIPMENT PURCHASE								
		MOUNTAIN CLIMBING EQUI	PMEN	Г				1396		2500
		REPORT PREPARATION								
		(SENIOR GEOLOGIST: INCL	UDES	DRAFTIN	G,REPRODUCTION, TYPI	NG)		2000		7500
							TOTAL (T3)	\$52,643		\$129,880

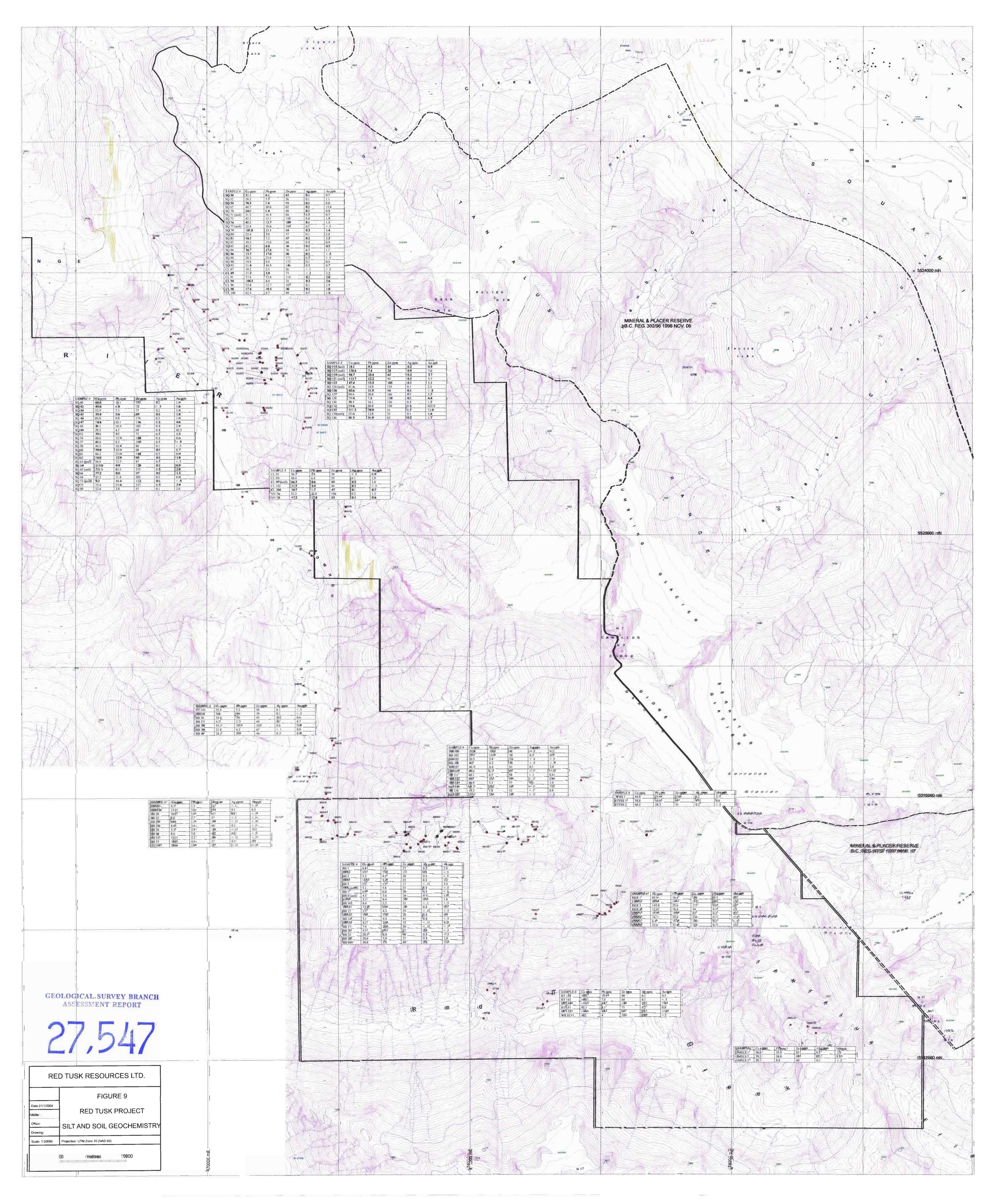
COMPANY	Year	Type of Expenditure	Time	Amount	Type and/or Particulars	Charge-out Rate	Amount	Present Value	Total
NEWMONT	1985	PROJECT GEOLOGIST	39 DAYS	;		142/DAY	5538	500/DAY	19500
(red tusk)	1985	PROJECT GEOLOGIST	14 DAYS	i		142/DAY	1988	500/DAY	7000
	1985	GEOLOGICAL ASSITANT	39 DAYS	i		80/DAY	3120	350/DAY	13650
	1985	COOK	39 DAYS	;		130/DAY	5070	300/DAY	11700
	1985	DRAFTSMAN	10 DAYS	i		121/DAY	1210	60/HOUR	4800
	1985	CAMP SUPPLIES							
					GROCERIES		2979		4000
					LUMBER, FUEL, EQUIPMENT, ETC.		1861		3500
	1985	CONTRACTED SERVICES	3						
				647.7 m	DIAMOND DRILLI BQ		49325	100/M.	64770
	1985				EXPEDITING		2234		3500
	1985				SITE PREPARATION		850		10000
	1985	VEHICLE RENTAL					351		700
	1985	BARGING SERVICE					1405		15000
	1985	HELICOPTER CHARTER							
		FUEL INCLUDED	37.7 HRS	6		538.00/HOUR	20283	1000/HR	37700
	1985	RADIO TELEPHONE	7 WEEKS	5		90.00/WEEK	630		1200
	1985	LONG DISTANCE CHARG	ES				608		1000
	1985	ASSAYING		328	30 ICP		4871	20/SAMP	6560
	1985	REASSAYING		13		9.18/SAMPLE	<u> </u>	20/SAMP	_260
						TOTAL (T4)	\$102,442		\$204,840

~

COMPANY	Year	Type of Expenditure Time An	nount Type and/or Particulars	Charge-out Rate	Amount	Present Value	Total
CAPILANO RESOURCES	1985	GEO. TECHS 12 MAN DAYS (INCLUDES MOBILIZATION AND DEMO	3 DBILIZATION)	\$180/DAY	2800	250/DAY	5000
(tantra		SUPERVISOR 2 DAYS		\$300/DAY	600	500/DAY	1000
I,II,III,IV,V,VI)		FOOD AND ACCOM. 12 MAN DAYS		\$85/DAY	1020	120/DAY	1440
		VEHICLE RENTAL 4 DAYS		\$75/DAY	300	100/DAY	400
		HELICOPTER CHARTER 5.5 HRS INCLUDES FUEL		\$495/HR	2723	1000/HR	5500
		GEOCHEMICAL ANALYSES (Cu,Pb	,Zn,Ag,Au)				
		SOIL	76	\$12.65/SAMPLE	961	15/SAMP	1140
		SILT	17	\$12.65/SAMPLE	215	15/SAMP	255
		ROCK	7	\$15.00/SAMPLE	105	20/SAMP	140
		MATERIALS			300		500
		REPORT AND DRAFTING			950		2000
				TOTAL (T5)	\$9,974		\$17,375


COMPANY	Year	Type of Expenditure Time Amount Type and/or Particulars	Charge-out Rate	Amount	Present Value	Total
SCHELLEX G	OLD	GEOLOGIST 7 DAYS	\$250/DAY	1750	500/DAY	3500
(red tusk)	1988		\$300/DAY	1500	1000/DAY	5000
(/		CLIMBING GEOLOGIST 7.5 DAYS	\$250/DAY	1875	1000/DAY	7500
		CLIMBING GEOLOGIST 14 DAYS	\$250/DAY	3500	1000/DAY	14000
		CLIMBING GEOLOGIST 28 DAYS	\$200/DAY	5600	1000/DAY	28000
		PROSPECTOR 14 DAYS	\$200/DAY	2800	250/DAY	3500
		REPORT EDITOR EQUPMENT RENTAL		125	250/DAY	250
		CLIMBING GEAR 23 MAN DAYS	\$20/ MAN DAY	460		1000
		RADIO COMMUNICATION(31 DAYS	\$5/DAY	155		310
		GENERATOR 4.4 WKS	\$60/WK	264		500
		BLASTING MACHINE 10 DAYS	\$7/DAY	70		500
		HILTI ROCK DRILL 2.43 WKS	\$250/WK	608		1000
		PONJAAR ROCK DRILL	+=====	636		1500
		HAND HELD RADIOS 1.5 MONTHS	\$259/MONTH	375		500
		RENTAL (?) 105.5 MAN DAYS VEHICLE RENTAL	\$23.25/MAN DAY	2453		300
		TRUCK 7.5 DAYS	\$35/DAY	263	85/DAY	638
		MILEAGE 997 Km	\$.35/Km	349		349
		BUDGET VAN 1 DAY		110		150
		CLIMBING EQUIPMENT CONSUMED				
		4 9mm X 50mm CLIMBING ROPE	\$150/ROPE	600		1200
		14m OF 1" TUBE WEBBING	\$2.80/m	39		80
		25 m OF 1" TUBE WEBBING	\$3.08/m	77		150
		18 HILTI BOLTS & SMC HANGERS	\$3.20 EACH	58		120
		7 HILTI BOLTS & SMC HANGERS	\$3.52 EACH	25		50
		5 RAPPEL RINGS	\$2.50/RING	13		25
		1 RAPPEL RING	\$2.75/RING	3		5
		2 HILTI 3/8 X 6" HEMA BITS	\$29.05/BIT	58		120
		1 HILTI 1/4" HEMA BIT	\$31.96/BIT	32		65
		6% SALES TAX		61		N/A
		FIELD SUPPLIES		494		1000
		EXPLOSIVES		1111		2500
		FOOD		1385		2500
		MISCELLANEOUS (LLD, FERRY, FUEL)		304		600
		ASSAYS		3716		5000
		CONTRACTED SERVICES				
		HELICOPTER CHARTER		12584		20000
		MANAGEMENT OVERHEAD	10%	4976		10000
		REPORT		4000	<u> </u>	10000
			TOTAL (T6)	\$52,427		\$121,911


COMPANY	Year	Type of Expenditure	Time	Amount Type and/or Particulars	Charge-out Rate	Amount	Present Value	Total
DISCOVERY	1995	P.GEO.	2.5 DAYS	3	\$332.21/DAY	831	500/DAY	1250
CONSULTANT	S	(SUPERVISION & REPOR	T WRITING	G)				
(red tusk)		GEOLOGIST	.75 DAYS	S	\$308.16/DAY	231	400/DAY	300
		ASSISTANT	.5 DAYS		\$192/DAY	96	250/DAY	125
		VEHICLE				54		85
		HELICOPTER				338		1000
		GEOCHEMICAL ANALYS	IS					
		HEAVY MINERAL SAMPL	ES					
		(A) SAMPLE PREP.	3		\$118.35/SAMPLE	355		450
		(B) SAMPLE ANALYSIS	3		\$25.25/SAMPLE	76		76
		ROCK SAMPLES	6	30 gram ICP	\$17.80/SAMPLE	538		538
		DRAFTING				223		500
		DATA COMPILATION, SE	CRETARI/	AL		276		1000
		FIELD SUPPLES AND EQ	UIPMENT	RENTAL		30		50
		PRINTING, DATA PROCE	SSING,TEI	LEPHONE, SHIPPING	-	100		200
					TOTAL (T7)	\$3,148		\$5,373


TOTALS (T1 - T7) \$238,485 \$527,120

۰.

5513000mN WR-009 WR-010 WR-008 A A A WR		Samples GGNR	10 to GGNR22	
SAMPLE # Cu ppm WR008 158 WR009 83 WR010 14 WR011 23912 WR012 69 WR014 27615 WR015 77 WR016 1934 WR017 4093 WR018 1807 WR019 71 GGNR10 435 GGNR11 18188 GGNR12 2067 GGNR13 2740 GGNR14 19185 GGNR15 6816 GGNR16 474 GGNR17 119 GGNR18 109 GGNR19 48 GGNR20 4990 GGNR21 4223 GGNR23 829 GGNR24 390 GGNR25 551 GGNR26 710	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n Au ppb 9.8 1.2 3.4 412.0 0.7 2005.0 7.6 69.5 141.8 21.0 2.0 7.0 979.6 126.7 108.4 588.0 81.1 11.5 1.5 1.5 1.6 192.3 151.0 81.2 289.1 26.3 71.6 74.5 SAMPLE # Cu ppm Pb ppm GMLS 1 75 6 GMLS 2 8 < 3	A GMLS-2 A GMLS-1 A GMLS A GMLS-11 A GMLS-11 A GMLS A GMLS-11 A GMLS A GMLS A GMLS-1 A GMLS A	GMLS-4

