

Geological Survey Branch Assessment Report Indexing System

[ARIS11A]

ARIS Summary Report

Regional Geologist,	Date Approve	ed: 2005.0	3.23		Off Confide	ential:	2005.12.01	
ASSESSMENT REP	PORT: 27558	Mining Divisio	on(s): On	nineca				
Property Name:	Rocher Deboule							
Location:	NAD 27 Latitude: 55 10 00 NAD 83 Latitude: 55 10 00 NTS: 093M04E BCGS: 093M012	Longitude: Longitude:	127 37 54 127 38 00	UTM: UTM:	09 09	6113978 6114190	587167 587058	
Camp: 045	Silver Standard - Rocher Deboule Area		•					
Claim(s):	RD 1-8							
Operator(s): Author(s):	Kikauka, Andris, Ameridex Minerals C Kikauka, Andris	Corp.						
Report Year:	2004							
No. of Pages:	46 Pages							
Commodities Searched For:	Copper, Silver, Gold, Zinc, Lead, Moly	ybdenum/Molybo	denite, Cobalt					
General Work Categories:	GEOP, GEOC							
Work Done:	Geochemical ROCK Rock (7 sample(s);) Elements Analyzed For : Multielement SILT Silt (3 sample(s);) Elements Analyzed For : Multielement SOIL Soil (17 sample(s);) No. of maps : 1 ; Scale(s) : 1:2000 Elements Analyzed For : Multielement Geophysical MAGG Magnetic, ground (3.3 km;) No. of maps : 1 ; Scale(s) : 1:2000							
Keywords:	Cretaceous, Jurassic, Hazelton Group	o, Granodiorites,	, Hornfels					
Statement Nos.:	3221294							
MINFILE Nos.:	093M 071, 093M 070, 093M 072							
Related Reports:	10106, 10368, 11513, 12133, 16575,	16714, 25674, 2	26984					

NTS 93 M/4 E TRIM 093M 012 LAT. 55⁰ 10' N

LONG. 127⁰ 38' W

GEOLOGICAL & GEOCHEMICAL REPORT ON THE RD 1-8 CLAIM GROUP, ROCHER DEBOULE RANGE, HAZELTON, E.C.

Omenica Mining Division

for

Ameridex Minerals Corp., 2A-15782 Marine Drive, White Rock, B.C. V4B 1E6

by

GEOLOGICAL ASSECAL Andris Kikauka, P.Geo. 406-4901 East Sooke Road, Sooke, B.C. V0S 1N0

Nov. 30, 2004

TABLE OF CONTENTS

	page #
1.0 Introduction and Terms of Reference	1
2.0 Location, Access, & Physiography	1
3.0 Property Status	2
4.0 Area History	2
5.0 Property History and Geology	4
6.0 2004 Work Program	13
6.1 Methods and Procedures	13
6.2 Property Geology (Rocher Deboule, Highland Boy & Victoria)	13
6.3 Magnetometer Survey	17
7.0 Discussion of Results	18
8.0 Conclusion and Recommendations	19
References	20
Certificate	

Itemized Cost Statement

LIST OF FIGURES

- Fig.1 General Location
- Fig.2 Claim Map
- Fig.3 General Geology Hazelton Area, 1 inch=1 mile (after Sutherland-Brown, 1960)
- Fig.4 RD 1-8 Claims Topography and Old Crown Grant Claims (NTS 93 M/4 NAD 27)
- Fig.5 Airborne Magnetometer Geophysical (Lockwood Survey Corp, 1967-1969)
- Fig.6 Rock Chip, Soil & Stream Sediment Sample Locations and Magnetometer Geophysical Grid Location
- Fig.7 Magnetometer Survey Highland Boy
- APPENDIX A 30 element ICP and Au Geochemical Analysis Certificates, For rock chip, soil, and stream sediment samples

APPENDIX B Magnetometer Survey Data

APPENDIX C Property photos

1.0 INTRODUCTION AND TERMS OF REFERENCE

This report was prepared at the request of Ameridex Minerals Corp. to describe and evaluate the results of geological mapping, rock chip sampling, magnetometer geophysical surveys, and stream sediment sampling carried out on the Rocher Deboule, Highland Boy and Cap mineral occurrences, located approximately 55 km. northwest of Smithers, B.C., within the Omenica Mining Division

Field work was undertaken for the purpose of evaluating economic mineral potential of Au-Cu-Co-Ag-As-La bearing mineral zone situated at the west, central and east portion of the claim group. Geological fieldwork was carried out on the RD 1, 3 & 8 claims.

Field work consisting of geological mapping and geochemical sampling was carried out in the central and west portions of the RD 1-8 claim group from June 21-24, 2004 by Andris Kikauka (geologist), and Al Burgoyne (geologist). Additional geological, geochemical, and geophysical field work was carried out on the east portion of the RD 1-8 claim group from August 26-31, 2004 by Andris Kikauka (geologist). Field work was supervised by Larry Reaugh, president of Ameridex Minerals Corp.

This report is based on published and unpublished information and maps, reports and field notes.

2.0 LOCATION, ACCESS, PHYSIOGRAPHY

The property is accessible along a dirt road that leads up the Juniper Creek valley from Kitseguelca (on Hwy 16), and terminates at the Rocher Deboule and Red Rose Mines. Another access road was built to the base of the Victoria Vein workings and this road originates from Hwy 16, about 1.5 km southwest of Seeley Lake (Fig. 2). Both of these access roads have several washed out sections (from storm caused debris torrents), but are readily repaired with a small to medium sized crawler dozer and excavator.

The property is best described as one of the complex mountainous topography at a stage of early maturity; rugged mountainous terrain is dissected by deeply incised valleys ranging in elevation from1,640-8,700 feet (500-2,652 m.). The higher peaks and ridges are sharp crested, commonly serrated and have cirque glaciers and permanent snowfields. The high relief causes a wide range of climate depending on elevation. Climate in the Hazelton area is described as semi-arid and annual precipitation is less than 20 inches (50.8 cm.). Since there are snow accumulations in winter (accumulation of deep snow at higher elevation can result in heavy spring runoff), the recommended work season for high elevations is between July and September. Lower elevation zones could be explored from June-October. Year round access to the Rocher Deboule abandon mine site is possible with a program of snow clearing and avalanche control in some slide sensitive zones on the steep slopes adjacent to the road from December to April.

3.0 PROPERTY STATUS

The property consists of 6 staked mineral claims located in the Omineca Mining Division, British Columbia. These claims are registered to Ameridex Minerals Corp. The property covers an area of 1,350 hectares (3,335 acres) excluding 25 hectares (61.8 acres) registered as the RDB claim (374216), held by Jim Hutter, Telkwa, B.C.

Claim Name	No. of units	Record No.	Record Date and Expiry Date
RD 1	20	389451	Sept. 5, 01 and Feb. 4, 2006*
RD 2	8	389452	Sept. 5, 01 and Feb. 4, 2006*
RD 3	18	389453	Sept. 6, 01 and Feb. 4, 2006*
RD 4	6	389454	Sept. 6, 01 and Feb. 4, 2006*
RD 5	1	389455	Sept. 5, 01 and Feb. 4, 2006*
RD 6	1	389456	Sept. 5, 01 and Feb. 4, 2006*
RD 7	1	403613	July 7, 2003 and Feb. 4, 2007*
RD 8	1	403614	July 7, 2003 and Feb. 4, 2006*

Details of the claims are as follows:

* Statement of Work filed with this report has extended expiry dates as shown.

4.0 AREA HISTORY

The Red Rose mine, located 11 km south of Hazelton and 4 km southeast of Rocher Deboule mine. The Red Rose mineral occurrence consists of a quartz vein system which contains variable amounts of tungsten, copper, gold, silver, molybdenum, and uranium. Siltstone and argillite of the Middle Jurassic to Lower Cretaceous Bowser Lake Group are intruded by the Late Cretaceous Rocher Deboule granodiorite stock of the Bulkley intrusive complex. Sediments are hornfelsed and are intruded by a set of northeast trending diorite dykes predate the Rocher Deboule stock. Bedding in the sediments strikes 015 degrees and dips 70 west. The Chicago Creek Fault, striking 010 degrees and dips 70 west, cuts all rocks and is a normal fault with dip-slip of 600-900 m. The Red Rose vein occupies a shear zone that trends 145 degrees and dips 65 west and is hosted in a diorite dyke. The vein is 1.2 to 2.8 m wide, 60-120 m along strike and at least 335 m down dip. The vein consists largely of quartz with lesser feldspar, biotite, hornblende, ankerite, tourmaline, apatite, scheelite, ferberite, chalcopyrite, pyrrhotite, molybdenite, and uraninite. Extensive lenses of chalcopyrite occur in the hangingwall shear. The biggest concentrations of radioactive material are erratically distributed with molybdenite in the wall rocks. Between 1942-54, 103,424 tonnes produced 1,002,839 kg of tungsten. Probable reserves listed in a company report are 13,606 tonnes grading 1.18 % W or 1.5% WO₃. The Red Rose also contains quartz veins with reported assay values >0.5 opt

Au and Ag which occur with chalcopyrite and/or tetrahedrite.

Additional tungsten prospects are situated east of the Rocher Deboule which include the Black Prince and Blue Lake zones near the headwaters of Mudflat Creek. Although tungsten is the most important economic mineral in these quartz vein systems, gold, silver, copper, molybdenum, tin, lead, and uranium values are present in variable amounts.

The following mineral deposits are situated within 120 km of the Rocher Deboule property:

DEPOSIT NAME	TONNES	% Cu	% MoS ₂	g/t Ag	g/t Au
Bell-Granisle	130,000,000	0.40		0.75	0.15
Morrison	190,000,000	0.40			0.20
Hearne Hill	143,000	1.73			0.80
Berg	250,000,000	0.40	0.052		
Huckleberry (Main Zone)	53,700,000	0.45	0.013		0.06
Huckleberry (East Zone)	108,400,000	0.48	0.014		0.06
Big Onion	94,380,000	0.42	0.020		
Louise Lake	50,000,000	0.30	0.020		0.03
Endako	132,625,000		0.136		
Kitsault	95,000,000		0.192		
Duthie	78,720	10% Pb-Zn		1,200.00	
Poplar	236,000,000	0.37 Cu equivalent			
Yorke-Hardy (Glacier Gulch)	20,600,000		0.401 with 0.041% WO ₃		

5.0 PROPERTY HISTORY AND GEOLOGY

The RD claim group covers the Rocher Deboule, Victoria, Highland Boy, Great Ohio and Armagosa mineral occurrences. A history for each mineral occurrence is listed in chronological order as follows:

VICTORIA-

1918-26 New Hazelton Gold-Cobalt Mines Ltd made a shipment of sulphide mineralization.

1928- Aurimont made another small shipment of high sulphide material

1940-41 R.C.McCorkell made a couple of small shipments of quartz-sulphide vein material.

The workings consist of five adits, one raise and sub-level, and a number of open cuts. All of the underground workings are on the No. 1 vein, the most northerly of three 080 trending and dipping 60 north, parallel veins.

Year	tons	Au opt	Ag opt	As %	Мо %	Co %
1918	26.6	1.24	-	8.98	0.96	1.18
1926	22.0	4.65	-	42.3	_	4.6
1928	23.0	6.25	-	37.9	3.4	3.76
1940	7.7	2.18	0.2	6.6	-	-
1941	7.3	2.02	0.2	6.1	-	0.6
1941	3.4	3.92	0.3	33.3	-	4.4
TOTALS	90.0	326 ozs.	-	44,560 lbs.	2,100 lbs.	4,918 lbs.

Production from the Victoria No. 1 vein is as follows:

1978- Arber Resources Inc. (Jim Hutter) constructed an access road to 1,265 m (4,150 ft) a.s.l., and re-opened and re-timbered two adits at 1,605 m (5,265 ft) and 1768 m (5,800 ft) elevation.

The Victoria vein produced 51 tonnes @ 4.214 opt Au (with a 1:15 Ag:Au ratio). Reserves are listed at 1,000 tonnes @ 42.55 g/t Au, 2.84 g/t Ag, 2% Co. From a total of 173 lode gold-silver deposits listed in northwest B.C., only one other deposit/prospect, the Polaris-Taku, has a similar Ag:Au ratio (which is 1:20 Ag:Au).

HIGHLAND BOY-

The Highland Boy is located 2 km east of the Rocher Deboule veins. The property was first prospected by Butte-Rocher Deboule Copper Company Ltd in 1912. Two east-west trending quartz-sulphide fissure veins occur on the Highland Boy area from 5,800-6,500 ft (1,768-1,980 m) elevation. The southernmost fissure vein zone is traced west along surface to the No. 4 Rocher Deboule Vein (Fig. 5).

The Delta Copper Company of Edmonton secured the property in 1917 and shipped 75 tons to the Ladysmith smelter, which returned 10,494 pounds of copper, 4 ounces gold and 35 ounces silver. At elevation 5,700 ft (1,738 m), the lower adit has been driven in a northwest direction along a fissure zone that dips 80 degrees north. At elevation 5,875 ft (1,791 m), located approximately 310 ft (95 m) uphill from the lower adit, the middle adit follows the same quartz-sulphide fissure zone. The upper adit is located at 6,050 ft (1,844 m), located approximately 350 ft (107 m) uphill from the middle adit. The upper adit was driven 300 ft (91 m) following a quartz-sulphide fissure which trends at a bearing of 306 degrees and dip of 70 degrees north. At the upper adit portal, a zone of 30% chalcopyritepyrite-magnetite occurs across a width of 1.6 ft (0.5 m). Thirty feet within the upper adit, the vein pinches and no heavy sulphides are seen until a 0.4 ft (0.1 m) seam of almost solid pyrite with some chalcopyrite, comes in on the south wall 70 ft (21.3 m) from the portal. For the next 15 ft (4.6 m) the vein strengthens, and between 87-105 ft (26.5-32 m) the roof is stoped out and a winze has been sunk 10-30 ft (3-9 m). Strong sulphide mineralization (chalcopyrite-pyrite-magnetite) occurs in widths ranging from 1-2.5 feet (0.3-0.8 m). Above the adits, the fissure zone is followed by several open cuts to an elevation of 6,400 feet (1,950 m). In one open cut at 6,340 feet (1,932 m) elevation and 500 feet (152.5 m) west-northwest of the upper portal, the zone is 2 feet (0.6 m) wide with massive and banded chalcopyrite, coarsely crystalline magnetite and pyritohedral pyrite crystals 1 inch (2.5 cm) in diameter. Twenty feet (6.1 m) west of this cut, a branch splay of the fissure joins the main vein. For the next 15 ft (4.6 m) the vein strengthens, and between 87-105 ft (26.5-32 m) the roof is stoped out and a winze has been sunk 10-30 ft (3-9 m). Strong sulphide mineralization (chalcopyrite-pyrite-magnetite) occurs in widths ranging from 1-2.5 ft (0.3-0.8 m). Above the adits, the fissure zone is followed by several open cuts to an elevation of 6,400 ft (1,950 m). In one open cut at 6,340 ft (1,932 m) elevation, and 500 feet west of the upper portal, the zone is 2 ft (0.6 m) wide with massive and banded chalcopyrite, coarsely crystalline magnetite and pyritohedral pyrite crystals 1 inch (2.5 cm) in diameter. Twenty west of this cut, a branch splay of the fissure joins the main vein. The branch splay carries 2 ft (0.6 m) of solid sulphide, chiefly chalcopyrite, for a distance of 30 ft (9 m) from the main vein. A representative sample of solid sulphide ore stacked at the portal of the upper adit assayed 0.13 opt Au, 0.73 opt Ag, and 15.03% Cu (Ann. Rpts., Minister of Mines, B.C.:

1912, 1913, 1916, 1917, 1918, 1920, 1921).

GREAT OHIO-

The Great Ohio was staked by Sargent and Munroe in 1910. Quartz fissure veins with variable chalcopyrite-pyrite-galena-sphalerite are hosted in porphyritic granodiorite. The quartz-sulphide vein system occurs near the west edge of the Bulkley Intrusive Complex in close proximity to Hazelton Group hornfels sediments and volcanics. Minor hornblende lamprophyre dykes occur in the porphyritic granodiorite. An adit, at elevation 4,500 ft (1,372 m) explores 3 parallel shear zones in the porphyritic granodiorite trending 055 degrees and dipping 65-70 degrees northwest. This prospect is at the west contact of the granodiorite in contact with sandstone & argillaceous sediments. A strong shear zone is traced 800 ft with a few open cuts.

ARMAGOSA-

A steep gully on the south side of a ridge trends 030 degrees and dips 60 degrees west. This gully follows a quartz-sulphide fissure vein system with chalcopyrite-magnetite-scheelite hosted in hornfelsic greywacke and siltstone/argillite of the Hazelton Group Red Rose Formation. Old workings are at 4,350-4,800 ft (1,325-1,463 m). There are two adits and one small shaft. The lower adit is at 4,340 ft (1,322 m) and the upper adit is at 4,618 ft (1,408 m) 150 ft (45.7 m) long cross-cut trending 000 degrees that cuts a 030 degree trending shear zone.

ROCHER DEBOULE-

1910- Sargent and Monroe located property

1911- Rocher Deboule Copper Company, Salt Lake City, Utah and development work was carried out by Montana Continental Development Company. Ore was mined from the upper part of the No. 4 vein from April, 1915, until Feb, 1916, when the property reverted to its owners.

1917- A 3,100 foot long crosscut was driven from the Juniper Creek valley and cut the 1,2,3 & 4 veins. Production in 1917-18 was largely from the No. 2 vein and was much less than in the previous 2 years, although the copper-gold grade was good. The mine closed in October, 1918, because of a lack of developed ore and a drop in copper prices (Sutherland-Brown, 1960).

1929- The property was leased to Aurimont Mines Ltd, who mined and shipped some ore.

1930- Hazelton Copper Mines Ltd leased the property, but no production occurred. **1950-** Western Uranium Cobalt Mines Ltd performed rehabilitation work on the upper levels of the underground workings. A 100 ton/day mill was put in operation in May, 1952, and shut down in November of the same year because the grade was lower than expected.

Year	Tons	Gold (ounces)	Silver (ounces)	Copper (pounds)
1915	17,000	1,419	21,893	2,788,000
1916	16,760	1,184	16,738	1,753,235
1917	2,889	781	7,987	714,871
1918	3,184	832	16,247	635,870
1929	72	10	2,972	6,120
1952	12,814	267	18640	305,498
Total	52,719	4,492	84,477	6,203,584

Production recorded from Rocher Deboule mine is listed:

Reserves listed in a company report state there are 180,000 tonnes @ 11.34 g/t Au, 141.75 g/t Ag, 4% Cu and 4% Co (CIM Special Vol. 37, p.186, 1983). The ore reserves from a company report in 1951 state No.2 vein @ 200,000 tons 4.1% Cu, 0.4 opt Au, 4 opt Ag (Minister of Mines Annual Report, 1952, p.91-92). These figures do not meet the criteria for current CIM standards of mineral resource and mineral reserve estimates. A review of the data shows a section of good grade material is blocked out in the 1200 level of the No. 2 vein (roughly corresponding with the stated grade), but the measured tonnage is considerably less than the stated 180,000-200,000 tons, however the geologist/engineer who came up with the tonnage figure was extrapolating more than 50^2 ft (15^2 m) multiplied by the true width to give a calculated tonnage block of ore.

1987- Southern Gold Resources Ltd acquires the property and performs geological mapping and performed a detailed geophysical and geological compilation, concentrating on dip and strike extensions of known mineralization. From VLF-EM conductivity data, the main follow up targets occur within 200 meters of the intrusive contact with the volcanic/sediment country rock at 1,600-1,750 m (5,248-5,740 ft) elevation (approx. 50-150 m from the #4 Vein). Data compilation suggests additional targets occur on the relatively unexplored #1, #2A, and #3 Veins as well as dip and strike extensions of the #2 Vein. Based on numerous targets from geological, geochemical and geophysical work as well as previously developed reserves, a budget of \$350,000 is recommended to evaluate the economic mineral potential on the RD 1-6 claims. The proposed budget would fund a program of detailed geological mapping, trenching/drilling (total width/depth approx. 3,000-4,000 m). The main targets should be the contact zone EM targets recommended by Southern Gold Res. Inc. (Report by Trent Pezzot highlights L 500 W, stn 650 N: L 300 W, stn 475 N: L 100 W, stn 750 N, SOURCE: ASSESSMENT REPORT 16,575)

2002- Ministry of Energy and Mines, Geological Survey Branch published Fe-Oxide Cu-Au Deposit Potential which lists the new major mineral deposits recently discovered, e.g Olympic Dam (SE Australia), 2 billion tonnes 1.6% Cu, 0.04% U_3O_8 , 3.5 g/t Ag, 0.6 g/t

Au, and Candelaria (N Chile), 366 million tonnes 1.08% Cu, 0.26 g/t Au, 4.5 g/t Ag. The IOCG deposit characteristics are high iron content (hematite and/or magnetite), albite, Kfeldspar, sericite, carbonate, chlorite, quartz, amphibole, pyroxene, biotite, tourmaline and apatite gangue, with geochemically anomalous Fe, Cu, Au, Ag, Co, P, U, and REE's. The GSB publication lists the Rocher Deboule as having RGS stream sediments >95th percentile for Au, La, Fe, & Cu. The Rocher Deboule also contains geochemically anomalous values in Co, U and REE.as well as most of the gangue minerals common to IOCG deposits. The deep seated structural setting of the Rocher Deboule occurrence combined with a geochemical signature similar to other IOCG deposits increases the potential for an IOCG-type high grade and tonnage resource at depth. Although the Rocher Deboule is chemically different from the Yorke-Hardy Glacier Gulch porphyry Mo-W, mineralization from both deposits are related to Late Cretaceous Bulkley intrusions. The porphyry Mo-W ore zone on the Yorke-Hardy is centred about 1,500 ft (457 m) below surface and does not outcrop. The Rocher Deboule is classified as a vein/replacement type of occurrence, but the geochemical signature similar to IOCG deposits combined with the success of exploration of deep mineralization on the nearby Yorke-Hardy Mo-W deposits, as well as geochemically similar IOCG deposits such as those found in SE Australia and N Chile, suggests that the deeper exploration for porphyry mineralization is warranted on the Rocher Deboule occurrence.

In 2002, Ameridex Minerals Corporation performed geological mapping, geochemical rock and stream sediment sampling of the Rocher Deboule and Victoria abandon mine areas (central and east portion of RD 1 and west portion of RD 3 claims). The presence of high grade gold values (see rock chip sample AR 14-16 in following table) taken from the Victoria No. 1 vein (area of previous underground development), are notably associated with cobalt-nickel arsenide mineralization.

Sample No.	Width	ppm Mo	ppm Cu	ppm Pb	ppm Zn	ppm Ag	ppm Co	ppm As	ppm Bi	ppm Au
AR-1	0.4 m	1131	99999	825	9980	64.3	127	1470	3	0.61
AR-2	0.6 m	3941	47913	1165	6083	399.6	248	8109	49	1.56
AR-3	0.4 m	15	89393	6	280	0.3	208	60	40	.02
AR-4	0.5 m	106	97239	143	492	107.0	1388	35184	191	14.80
AR-5	0.7 m	139	83609	24	294	72.0	807	14473	63	5.06
AR-6	0.8 m	44	3377	955	99999	145.7	10	5726	3	1.78
AR-7	0.3 m	460	475	3	23	1.2	859	20809	205	9.78
AR-8	0.6 m	21	49163	76	279	21.8	88	1293	30	1.44
AR-9	0.6 m	1034	69429	86	441	51.2	197	4323	22	0.32
AR-10	0.5 m	7	99999	8	809	50.0	110	597	3	0.64

Rock chip samples taken from Rocher Deboule (AR1-13, & AR-18) and the Victoria Vein (AR 14-17) are listed as follows:

AR-11	0.4 m	14811	1105	3	44	1.8	17	320	5	0.11
AR-12	0.5 m	11	6407	10	59	4.5	67	1360	6	0.42
Sample No.	Width	ppm Mo	ppm Cu	ppm Pb	ppm Zn	ppm Ag	ppm Co	ppm As	ppm Bi	ppm Au
AR-13	0.3 m	18197	28	3	76	0.9	801	22017	14	0.11
AR-14	0.2 m	3790	17	3	41	19.5	1468	99999	2071	154.14
AR-15	0.2 m	2762	24	3	16	10.7	1694	99999	1421	125.13
AR-16	0.2 m	1999	37	3	51	7.1	1817	99999	926	59.29
AR-17	0.2 m	7785	131	3	21	0.7	630	3080	10	1.41
AR-18	0.4 m	9041	59613	80	399	104.2	537	14895	29	1.55

The sample descriptions of rock chip samples AR 1-13, & AR-18, from Rocher Deboule No. 2,3, & 4 Veins, are listed as follows:

Sample #	Description (Rocher Deboule No. 2,3, & 4 Veins)
AR-1	No.2 vein, 1380 m. elev., vein strike 080, dip 55 north, exposed in creek bed, 5-15% secondary tourmaline developed in porphyritic granodiorite, pyrite-chalcopyrite-sphalerite-molybdenite are main sulphides present, with minor arsenopyrite, malachite, and chalcocite
AR-2	No. 2 vein, (east extension) 1380 m. elev., vein strike 082, dip 58 north, exposed in creek bed, hosted in porphyritic granodiorite, pyrite-chalcopyrite-sphalerite-molybdenite are main sulphides present, with minor arsenopyrite, malachite, tetrahedrite, and chalcocite. Quartz-calcite gangue
AR-3	No. 3 vein, 1540 m.elev., exposed in creek bed approx. 60 m below timbered rail bridge (300 portal @ 1570 m. elev.), quartz gangue is brecciated, hosted in porphyritic granodiorite, pyrite-chalcopyrite are main sulphides present. Vein strike 074, dip 60 north.

AR-4	No.4 vein, 1675 m. elev., vein strike 075, dip 60 north, exposed near upper portal, 5- 15% secondary tourmaline developed in porphyritic granodiorite, chalcopyrite- pyrrhotite-arsenopyrite-cobaltite are main sulphides , with minor malachite, & chalcocite in quartz-hornblende-calcite-tourmaline gangue
AR-5	No.4 vein, 1645 m. elev., vein strike 078, dip 60 north, exposed in creek bed near east upper portal, 2-5% secondary tourmaline developed in porphyritic granodiorite, chalcopyrite-pyrrhotite-arsenopyrite-cobaltite present, with minor malachite, & chalcocite in quartz-hornblende-calcite-tourmaline gangue
AR-6	No.4 vein, 16405 m. elev., vein strike 077, dip 58 north, exposed near upper portal, 2-5% secondary tourmaline developed in porphyritic granodiorite, chalcopyrite-pyrrhotite-arsenopyrite-cobaltite are main sulphides present, with minor malachite, & chalcocite in quartz-hornblende-tourmaline gangue
AR-7	No.4 vein, 1680 m. elev., vein strike 075, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, chalcopyrite-pyrrhotite-are main sulphides present, with minor malachite, arsenopyrite & chalcocite in smoky quartz-hornblende-tourmaline-calcite gangue, some euhedral smoky quartz crystals.
AR-8	No.4 vein, 1675 m. elev., vein strike 075, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, chalcopyrite-pyrrhotite-are main sulphides present, with minor malachite, arsenopyrite & chalcocite in smoky quartz-hornblende-tourmaline-calcite gangue, some euhedral smoky quartz crystals.
AR-9	No.4 vein, 1675 m. elev., vein strike 075, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, chalcopyrite-pyrrhotite-molybdenite are main sulphides present, with minor malachite, arsenopyrite & chalcocite in smoky quartz-hornblende-tourmaline-calcite gangue, some euhedral smoky quartz crystals.

 \mathbf{O}

AR-10	No.4 vein, 1670 m. elev., vein strike 080, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, chalcopyrite-pyrrhotite are main sulphides, minor malachite, arsenopyrite & chalcocite in quartz-hornblende-tourmaline-calcite gangue.
AR-11	No.4 vein, 1665 m. elev., vein strike 078, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, chalcopyrite-pyrrhotite-molybdenite are main sulphides, minor malachite, & chalcocite in smoky quartz-hornblende-tourmaline-calcite gangue.
AR-12	No.4 vein, 1655 m. elev., vein strike 080, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, chalcopyrite-pyrrhotite are main sulphides, minor malachite, arsenopyrite & chalcocite in quartz-hornblende-tourmaline-calcite gangue
AR-13	No.4 vein, 1650 m. elev., vein strike 078, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, pyrrhotite-molybdenite-arsenopyrite are main sulphides, minor malachite, & chalcocite in quartz-hornblende-tourmaline-calcite gangue
AR-18	No.4 vein, 1645 m. elev., vein strike 075, dip 60 north, exposed near upper portal, 5- 10% secondary tourmaline/hornblende developed in porphyritic granodiorite, chalcopyrite-pyrrhotite-molybdeniteare main sulphides present, with minor cobaltite, malachite, arsenopyrite & chalcocite in smoky quartz-hornblende- tourmaline-calcite gangue, some euhedral smoky quartz crystals.

In addition to the Cu-Ag-Au values of economic interest (which returned values up to 14.8 g/t Au, >10% Cu, and 399.6 g/t Ag), the Rocher Deboule 2,3 & 4 Veins contain variable molybdenite, sphalerite, arsenopyrite & safflorite (which accounts for geochemically anomalous Mo-Zn-Co-As).Note- AR-8,9 contain 5,227 & 1,658 ppm La (pathfinder for IOCG-type deposit).

The sample descriptions of rock chip samples AR 14-17, from Victoria No. 1 Vein, are listed as follows:

Sample #	Description (Victoria No. 1 Vein)
AR-14	Victoria, No.1 vein, No. 1 Adit, 1679 m. elev., vein strike 086, dip 60 north, sample taken from back approx. 60 feet (18.3 m) from portal, porphyritic granodiorite host, chalcopyrite-pyrrhotite-arsenopyrite-cobaltite are main sulphides present, with minor malachite, & chalcocite in quartz-hornblende-tournaline gangue
AR-15	Victoria, No.1 vein, No. 1 Adit, 1679 m. elev., vein strike 086, dip 60 north, sample taken from back approx. 60 feet (18.3 m) from portal, porphyritic granodiorite host, chalcopyrite-pyrrhotite-arsenopyrite-cobaltite are main sulphides present, with minor malachite, & chalcocite in quartz-hornblende-tournaline gangue
AR-16	Victoria, No.1 vein, No. 1 open cut, 1859 m. elev., vein strike 088, dip 63 north, porphyritic granodiorite host, chalcopyrite-pyrrhotite-arsenopyrite-cobaltite are main sulphides present, with minor malachite, & chalcocite in quartz-hornblende-tournaline gangue
AR-17	Victoria, No.1 vein, No. 1 open cut, 1859 m. elev., vein strike 088, dip 63 north, porphyritic granodiorite host, chalcopyrite-pyrrhotite-arsenopyrite-cobaltite are main sulphides present, with minor malachite, & chalcocite in quartz-hornblende-tournaline gangue

There is a noticeable lack of copper bearing sulphide mineralization in the Victoria No. 1 Vein. The elevated Au-Mo-Co-As is consistent with values obtained by previous work. The geochemically anomalous bismuth values suggests the Victoria No. 1 contains variable bismuthinite. The Victoria Vein (represented by samples AR 14-17) have an average geochemical analysis value >100 ppm U. The background values of uranium from samples taken from the Victoria No. 1 Vein is about 4 times greater than that of the Rocher Deboule No. 2,3 & 4 Vein samples with the exception of AR-11 (a rock chip sample taken from Rocher Deboule No. 4 Vein contains 405 ppm U, and also contained 1.48% Mo).

In 2002, Ameridex took 6 stream sediment samples from the creeks that drain the Rocher Deboule No. 2,3 & 4 veins. Geochemical analysis is summarized in the following list:

Sample No.	Creek Size	Elevation	ppm Cu	ppm Pb	ppm Zn	ppm Co	ppm As	ppm Ag	ppm Au
ST-1	medium	1380 m	478	15	51	16	73	0.9	10
ST-2	medium	1380 m	4749	909	370	34	547	16.8	980
ST-3	large	1360 m	2577	188	428	15	184	11.9	810
ST-4	small	1560 m	1092	24	115	22	259	1.2	160
ST-5	small	1650 m	8208	1925	9682	320	1634	160.9	1640
ST-6	large	1625 m	1537	15	87	19	129	1.1	15

The higher gold-silver values obtained from ST-5 (1,640 ppb Au and 160.9 ppm Ag) correspond to elevated Cu-Pb-Zn-As-Co values and occur in the same area that Southern Gold located anomalous gold in soil (1987 Assessment Report 16,575). This is located near Portal 100 on the Rocher Deboule No. 4 vein and is considered a prime area of exploration. Stream sediment samples ST-3 and ST-6 were taken from the larger creek that drains the valley between the Highland Boy and Rocher Deboule workings. ST-3 contains elevated Cu-Au-Ag values and ST-6 (which was taken at higher elevation) contains elevated Cu and low Au-Ag values.

6.0 2004 WORK PROGRAM6.1 METHODS AND PROCEDURES

A Garmin etrex GPS was used for locating outcrop stations, as well as stream sediment, soil, and rock chip sample locations. The Garmin GPS was calibrated to take readings in NAD 83 utilizing UTC offset of -9 hours.

A total of 3 silt fraction stream sediment samples were taken from RD 3 claim at an elevation ranging from 1,470- 1,530 m. Samples were taken with a shovel from active stream channels and were wet screened through -20 mesh screens (locations see Fig. 6). Stream sediment samples were placed in marked kraft envelopes and shipped to Pioneer Labs, Richmond, B.C. and Acme Analytical Labs, Vancouver, B.C. for 30 element ICP and Au geochemical analysis (Appendix A).

A total of seven rock chip samples were taken (three from RD 1 and four from RD 3 claims at an elevation ranging from 1,680- 1,860 m (Fig. 6). The rock samples were taken across widths ranging from 0.2- 0.6 m. Rock chip samples consisted of acorn to walnut sized chips taken with rock hammer and maul averaging 2.5 kg in weight. Samples were placed in marked poly bags and shipped to Acme Labs, Vancouver, B.C. & Pioneer Labs, Richmond, B.C. for 30 element ICP and Au geochemical analysis.

A total of 17 soil samples were taken (10 from Highland Boy on RD 3 claim and 7 from Cap showing on RD 7 claim). The soil samples were taken with a mattock from a depth of 30-55 cm., averaging 0.5 kg in weight. Samples were placed in marked kraft bags and shipped to Acme Labs, Vancouver, B.C. & Pioneer Labs, Richmond, B.C. for 30 element ICP and Au geochemical analysis.

A total of 3,300 meter line-grid total field magnetometer surveying was carried out along 030 degree tie-lines. A 500 meter long 120 degree trending baseline was surveyed along L 5000 N (Fig 6 & 7). A GEM GSM 19T v6 magnetometer was used to take readings at 12.5 meter spacing. Data was correlated with common point looping to correct for diurnal variation in total field magnetic strength. National Research Canada website <u>http://www.geolab.nrcan.gc.ca</u> was consulted to check magnetic activity levels prior and after the survey. Data was plotted using Grass 5.0 software (Fig. 7).

6.2 PROPERTY GEOLOGY (ROCHER DEBOULE, HIGHLAND BOY AND VICTORIA MINERAL OCCURRENCES)

The Rocher Deboule, Highland Boy and Victoria vein systems are all hosted in porphyritic granodiorite. The granodiorite is coarsely crystalline, mottled grey, composed of 10% orthoclase, 60% andesine, 10% quartz, 10% biotite, 10% hornblende, and minor magnetite. The contact of the intrusive with hornfels Hazelton Group sediments and volcanics trends north-south and dips steeply west. In both the Rocher Deboule and Victoria vein systems, the vein furthest south extends westerly for a short distance from the granodiorite into the hornfels sedimentary and volcanic rock, but the others (including Highland Boy veins) lie entirely within the porphyritic granodiorite. The granodiorite is intruded by several types of dykes. One is a fine grained grey, quartz diorite dyke 50 ft (15 m) wide. Dykes are bordered by quartz and hornblende gangue. Lamprophyre dykes intrude the granodiorite and are older than the mineralization. The primary fissuring of the granodiorite was followed by hornblende, actinolite and quartz alteration, and later chalcopyrite, pyrite, pyrrhotite, arsenopyrite, tetrahedrite, magnetite, safflorite, and molybdenite.

The quartz-sulphide veins of Rocher Deboule generally trend 075 degrees and dip 55 north. The main veins are numbered 1 to 4 from south to north. The No. 2 & 4 veins are the ones where all the production came from. The veins are developed by 3 main adits at 4,167 ft (1,270 m), 4,428 ft (1,350 m), and 5,150 ft (1,570 m) elevation. The Rocher Deboule quartz-sulphide veins are hosted in porphyritic granodiorite which contacts hornfelsed clastic sediment sequence of the Lower Jurassic Hazelton Group to the west. The development work on the veins is entirely within the intrusive and terminates to the west in the hornfels Hazelton Group sediments. The dominant jointing and alteration in the porphyritic granodiorite is 070 degrees with a steep north dip, a secondary set of joints are developed at 165 degrees and dipping steeply west. Minor fine grained diorite, porphyritic andesite, and aphanitic dykes also occur in the porphyritic granodiorite stock.

Three main stages of mineralization are present in the Rocher Deboule quartz-sulphide vein system. The first stage is primarily pegmatitic in nature and includes hornblende and quartz with lesser feldspar, apatite, magnetite, scheelite, and molybdenite. The second stage is the one of economic importance and contains chalcopyrite, glassy quartz, arsenopyrite, cobaltite, safflorite, glaucodot, and pyrrhotite. A third stage of mineralization includes milky quartz, terahedrite, sphalerite, galena, pyrite, and chalcocite. Gangue minerals filling combs of quartz include siderite and calcite. Secondary minerals include malachite, erythrite, and limonite. The precious metal values are associated with iron-cobalt sulparsenides, tetrahedrite, and chalcopyrite which occur in the second and third stage of mineralization. The west portion of the property is underlain by Hazelton Group Red Rose and Brian Boru Fm volcaniclastics, clastic sediments, marble/limestone, intermediate-mafic volcanics, and the east portion of the claims are underlain by Late Cretaceous Bulkley intrusives, which form a massive prominently jointed body of porphyritic (biotite & K-spar phenocrysts)-granodioritic (south portion of claims) to quartz monzonite (north portion of claims) in composition. Aplite, pegmatite, porphyritic andesite, felsite, lamprophyre and granitoid dykes/sills are common throughout the pluton. NNW trending steeply dipping joint structures are prominent in the contact zone of the Cretaceous pluton and Jurassic volcanics/sediments. This NNW trending joint set parallels the contact, and there is a subsidiary set of joints perpendicular to the contact which roughly trace the main mineral trend (i.e. 070 strike, moderate to steep N dip).

Based on the paragenetic sequence, the Rocher Deboule has 3 main phases of mineralization:

Stage	Gangue	Sulphides
3 (youngest)	Milky quartz, calcite, siderite, chlorite	tetrahedrite, galena, pyrite, sphalerite, chalcopyrite
2	Quartz, calcite, siderite, chlorite,	Chalcopyrite, pyrite, cobalt-nickel sulpharsenides, arsenopyrite, pyrrhotite,
1 (oldest)	Quartz, hornblende, apatite, tourmaline, pegmatites	Scheelite, magnetite, ferberite (FeWO ₄), molybdenite

The Victoria Vein system consists of 4 parallel east-west trending quartz-sulphide fissure veins. In 1926-40, the No. 1 vein (the northernmost) produced 51 tonnes @ 4.214 opt Au (with a 1:15 Ag:Au ratio). Reserves are listed at 1,000 tonnes @ 42.55 g/t Au, 2.84 g/t Ag, 2% Co. This is a Au-Co-Ni-U-Mo prospect, 3 of the 4 known 060 trending, steeply dipping qtz vein systems cut the granodiorite, the fourth occurs in the contact zone between granodiorite and hornfelsed sedimentary rocks south. Mineralization consists of Co-Ni sulpharsenides (safflorite), chalcopyrite, arsenopyrite, molybdenite, erythrite, and uraninite.

New Hazelton Gold-Cobalt Mines Ltd produced 26.6 tons from the Victoria No. 1 vein (1918), which assayed 1.24 opt Au, 1.4% molybdenum disulphide, 1.12% cobalt, 0.6% nickel, and 8.98% arsenic. The ore occurs as shoots along a strong fault hosted in coarse grain granodiorite. The fissure has been traced by open cuts and adits for of 1,500 ft (457 m) up a steep slope between elevations of 5,150-6,025 ft (1,570-1,836 m). Along the west end of the Victoria No. 1 vein the hornfels Hazelton Group sediments and volcanics outcrop at an elevation of 5,200 ft (1,585 m) and the vein splays and does not appear to be of economic interest. The hornfels sequence consists of complexly folded greywacke and garnetiferous argillite. At elevation 6,025 ft (1,836 m), the east west trending, moderate to steep dipping north quartz-sulphide fissure vein passes over the peak of the mountain and down into the Juniper Creek side of the divide. The fissure ranges from a few inches to 3 feet in width of sheared and altered granodiorite, and where ore shoots occur, this material is replaced by some quartz and hornblende and sulphides. A 12 inch channel sample from the No. 1 adit at 5,200 ft (1,585 m) elevation assayed 2.04 opt Au, 0.26 opt Ag, 0.02% Ni, 1.81% Co.

The Highland Boy upper and lower veins were the focus of exploration work by Ameridex Minerals in 2004, in order to determine the correlation between the 2,000-3,000 nT total field magnetic anomaly (from GSC airborne 1 inch to 1 mile scale coverage that was flown by Lockwood Surveys in 1967-69 see Fig. 5) and nearby mineral trends on the Highland Boy upper vein. Results from rock chip sampling the Highland Boy upper vein indicate there is relatively low arsenic-antimony values with elevated values of Cu-Ag-Au-Fe. The iron notably occurs as magnetite, and the magnetometer geophysical survey performed clearly shows a direct correlation between the Highland Boy upper vein and a 2,000-3,000 nT increase in total field, especially at the west end of the upper and lower vein (at stn 4750 E to 4800 E see Fig. 7). The magnetite zone as indicated by the magnetic survey (and verified by GSC Airborne 1967-1969 survey), correlates closely with Cu-Ag-Au bearing sulphide fissure vein mineralization in the 120 striking and north dipping at 65-75 degrees Highland Boy upper vein (Fig. 6 and 7).

The following chart shows a summary of samples taken in 2004 with significant geochemical analysis:

		1	······				
Sample No.	Type (width)	Description	Cu ppm	Ag ppm	As ppm	Fe %	Au ppb
M386031	Rock (0.6 m)	No. 4 vein, 1682 m elev. Py., cpy., pyo., mag., tetrah., gal., sph., in qtz-carbonate	>10,000	>100	537	39.86	840
M386032	Rock (0.5 m)	No. 4 vein, 1682 m elev. Py., cpy., pyo., mag., tetrah., gal., sph., in qtz-carbonate	>10,000	>100	4,604	14.30	785
RD-04- AR-1	Rock (0.5 m)	Highland Boy upper vein, 1,725 m elev. Py., cpy., pyo., mag., in qtz- carbonate	>10,000	22.9	100	32.44	3,107.5
RD-04- AR-2	Rock (0.3 m)	Highland Boy upper vein, 1,745 m elev. Py., cpy., pyo., mag., in qtz- carbonate	>10,000	7.1	66	21.58	1,173.0
Sample No.	Type (width)	Description	Cu ppm	Ag ppm	As ppm	Fe %	Au ppb
RD-04- AR-3	Rock (0.5 m)	Highland Boy upper vein, 1,745 m elev. Py., cpy., pyo., mag., in qtz- carbonate	>10,000	13.2	28	38.67	1,213.4
RD-04- AR-4	Rock (0.6 m)	Highland Boy upper vein, 1,745 m elev. Py., cpy., pyo., mag., in qtz- carbonate	>10,000	8.7	7	27.41	1,797.8

Sample	Туре	Description	Cu ppm	Ag ppm	As ppm	Fe %	Au ppb
No.							
L 5000 N	Soil	Stn 4700 E	3,785.9	1.3	112	10.72	79.4
Upper vn							
L 5000 N	Soil	Stn 4800 E	1,923.8	0.6	37	8.73	50.9
Upper vn							
L 5000 N	Soil	Stn 4850 E	>10,000	14.5	107	22.90	5,456.7
Upper vn							
L 5000 N	Soil	Stn 4900 E	5,136.7	25.6	98	25.61	11,131.2
Upper vn							
L 5000 N	Soil	Stn 4950 E	>10,000	5.3	132	14.20	313.2
Upper vn							
L 5000 N	Soil	Stn 5000 E	1,756.5	116.2	3,664	11.79	2,436.9
Upper vn							
L 4900 N	Soil	Stn 4475 E	4,936.6	5.4	36	11.96	704.4
Lower vn							
L 4900 N	Soil	Stn 4525 E	3,089.1	6.3	42	12.35	585.9
Lower vn							
L 4900 N	Soil	Stn 4575 E	1,995.5	3.0	212	39.94	45.6
Lower vn							
L 4900 N	Soil	Stn 4625 E	5,797.1	16.1	1,352	47.71	2,740.1
Lower vn							

Sample No.	Туре	Description	Cu ppm	Ag ppm	As ppm	Fe %	Au ppb
RD-04- AST-51	Stream sediment	1,480 m elev. Creek draining Highland Boy Lower Vein	143.1	0.2	17	11.32	64.7
RD-04- AST-52	Stream sediment	1,490 m elev. Creek draining Highland Boy Lower Vein	536.8	0.5	1,437	7.52	265.7

6.3 MAGNETOMETER SURVEY

The survey area was restricted to moderate slopes and hence did not cover the entire area where the airborne anomalies are shown on the GSC 1967-1969 map (Fig 5). The 2004 ground magnetometer survey outlined strong, positive total field anomalies in the west edge of the grid area along the Highland Boy upper and lower veins. It appears that considerable concentrations of magnetite are related to the Cu-Ag-Au bearing quartz-

carbonate-sulphide fissure veins of the Highland Boy upper and lower veins. The Chicago Creek Fault transects the centre of the grid area and is conspicuous as an anomalous magnetic low (Fig. 7). The north end of the grid area contains a broad high that occurs adjacent to a 300 meter wide gossan zone in the northeast portion of RD 3 claim, and this positive magnetic feature requires further investigation to explore for metallic mineralization, however there is no known copper zones east of the Chicago Creek Fault.

7.0 DISCUSSION OF RESULTS

The geochemical study of the Rocher Deboule No. 2,3 & 4 Veins reveals elevated and economically important Cu-Ag-Au values with variable and significant Co-Mo-Pb-Zn-As-La. The Victoria No. 1 Vein exhibits elevated and economically important Au-Mo-Co values with variable and significant Ag-As-Ni-Bi-W-U. Both of these geochemical affinities are very unusual for the Cordillera as there are no comparable deposits with similar mineralogy. The ore distribution appears to have vertical continuity, as shown by longitudinal sections of the Rocher Deboule No. 2 & 4 Veins (Sutherland-Brown, 1960). Thus it seems logical to trace the continuity of the ore to depth with a focus on gold rich portions of the vein system. This would involve core drilling at 25 m intervals to outline the possibility of ore from the 300 to 1200 level (and deeper) on the No. 1,2,3 & 4 Veins. The focus of exploration should be to trace the extensions of the veins to depth.

The Victoria No.1 Vein has high grade gold values with high levels of arsenic. Similar to the Rocher Deboule veins, the Victoria No. 1 Vein is traced over a considerable distance without much change in orientation. It is reasonable to assume there is considerable depth extension of the vein and that the vein may contain sufficient gold grades to combat smelter penalties for high arsenic (and/or the mineralogy may change at depth). The Victoria Vein exhibits continuity over a distance of 1,000 ft (305 m) horizontally and vertically. This vein warrants a comprehensive program of deeper exploration.

The fact that both the Rocher Deboule and Victoria mineral occurrences contain a wide assortment of geological and geochemical similarities to IOCG deposits, and the fact that Late Cretaceous Bulkley intrusions (which are genetically linked to the Yorke-Hardy porphyry Mo-W deposit), contain deep seated structural elements (e.g. grand scale normal and thrusts faults) suggests that a program of deep exploration is warranted on the RD 1-8 claim group. Core drilling, detailed geological mapping and trenching of the Rocher Deboule Veins should focus on gold rich areas as defined by previous soil sample grid data. Core drilling should try to define depth extensions of known ore shoots as defined by stope outlines in longitudinal sections. Core drilling of the Victoria No. 1 Vein should target the depth extension of the middle and east end of the No. 1 Adit (5,510 ft., 1,680 m) near the contact of an E-W trending and moderate to steeply dipping fine grained diorite dyke, where most of the previous production came from. A program of moderate to deep target depth (300-1,500 feet) diamond drilling is warranted on the Highland Boy upper and lower veins. Proposed diamond drill hole collar locations would be from 1,900-1,950 m elevation and located 50-200 meters north of the upper vein surface trace. In order to diamond drill the Highland Boy veins, a support camp would

have to be established in the flat spot 150 m esat-southeast of the lowest working. This area is where the 1920,s tram line started and there is a good supply of running water in the creek gulley where the Chicago Creek Fault cuts through the porphyritic granodiorite.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the targets outlined in this sampling program, a series of diamond drill holes are proposed to test the depth extension of known surface mineralization. Concurrent with diamond drilling, a program of hand trenching, geological mapping and rock chip sampling is required to outline further extensions of known mineral trends and new zones. Figure 5 shows a plan view of proposed drilling which would be directed at the Highland Boy upper & lower vein, No. 1 Victoria Vein, and the No. 2,3 & 4 Rocher Deboule Vein Zones. A detailed budget of this exploration program is described as follows:

PROPOSED BUDGET FOR VICTORIA & ROCHER DEBOULE EXPLORATION TARGETS:

FIELD CRI	EW- Geologist, 2 geotechnicians, 1 cook 90 days	\$ 53,000.00
FIELD COS	STS- Helicopter charters, 40 hours	50,000.00
	Core drilling 10,000 feet (3,050 metres)	305,000.00
	Assays 800	16,000.00
	Equipment and Supplies	5,000.00
	Communication	5,000.00
	Food	8,500.00
	Transportation	4,000.00
REPORT		1,200.00

Total = \$ 437,700.00

REFERENCES-

Atkinson, D., 1983, The Geology of Glacier Gulch, A Porphyry Molybdenum-Tungsten Deposit, C.I.M. Bull. # 76.

Carter, N.C., 1974, Geology and Geochronology of Porphyry Copper and Molybdenum Deposits of West-Central B.C., Ph.D. Thesis, U.B.C.

GSC Airborne Magnetic Survey, Map 5245G, 1 inch=1 mile, Skeena Crossing Sheet 93 M/4, 1967-1969, survey flown by Lockwood Survey Corp Ltd.

Kirkham, R.V. 1969, A Mineralogical and Geochemical Study of the Zonal Distribution of Ores in the Hudson Bay Range, Ph. D., Univ. Of Wisconsin.

Minister of Mines, B.C. Ann. Repts., 1916 p.114-116, 1917 p.113, 1918 p.119, 1925 p.136, 1927 p.132, 1928 p.159, 1948 p.80-82, 1950 p.99.

Schroeter, T.G., Panteleyev, A., Lode Gold and Silver Deposits in NW British Columbia, Mineral Deposits of the Northern Cordillera, CIM Special Volume 47, p. 178-190.

Sutherland Brown, A., 1960, Geology of the Rocher Deboule Range: B.C. Dept. of Mines and Petroleum Res., Bull. 43, 78 p.

CERTIFICATE

I, Andris Kikauka, of Sooke, B.C., hereby certify that;

1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.

2. I am a Fellow in good standing with the Geological Association of Canada.

3. I am registered in the Province of British Columbia as a Professional Geoscientist.

4. I have practiced my profession for eighteen years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., South America, and for three years in uranium exploration in the Canadian Shield.

5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject property.

6. I have a direct interest in the subject claims and securities of Ameridex Minerals Corp. and this report is not intended for the purpose of statement of material facts and/or related public financing.

Andris Kikauka, P. Geo.,

A. Kikanka

November 30, 2004

ITEMIZED COST STATEMENT- RD 1-8 CLAIMS, Omenica Mining Division June 21-24, 2004 & August 26-31, 2004

FIELD CREW: Andris Kikauka (Geologist) 10 days Al Burgoyne (Geologist) 3 days	\$ 3,000.00 1,500.00
FIELD COSTS:	
Mob/demob	1,200.00
Assays 3 silts, 7 rocks, & 17 soil for 30 element ICP & Au	675.00
Magnetometer Rental	475.00
Helicopter Charters (2.2 hours)	2,125.00
Report	750.00
Total =	\$ 9,725.00

PIONEER LABORATORIES INC.

AMERIDEX MINERALS CORP. Project: Rocher Deboule Sample Type: Soils/Rocks

#103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5

GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

Analyst Sam
Report No. 2046168
Date: June 29, 2004

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	W	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
RD-04 0+00S₩	1	21	21	23	.3	2	1	48	14.86	53	8	ND	3	371	.5	3	3	26	.02	.143	14	12	.06	76	.01	3	.83	.31	.50	2	8
RD-04 0+50S₩	3	21	14	15	.3	5	4	199	4.21	63	8	ND	2	14 1	.5	3	3	31	.24	.135	9	18	.20	336	.01	3	1.03	.09	.24	2	1
RD-04 1+00S₩	3	23	13	30	.3	9	13	405	2.77	15	8	ND	3	43	.5	3	3	18	.11	.068	8	8	.08	152	.01	5	.79	.02	.13	2	1
RD-04 1+50SW	3	7	20	8	.3	2	1	29	2.45	26	8	ND	2	40	.5	3	4	15	.03	.070	4	9	.11	94	.01	5	.62	.04	.23	2	1
RD-04 2+00S₩	3	17	20	18	.3	4	6	150	3.68	19	8	ND	3	82	.5	3	3	21	.13	.130	10	13	.14	96	.01	7	.98	.05	.28	2	1
RD-04 2+505W	4	15	19	22	.3	4	4	190	4.83	22	8	ND	2	66	.5	3	3	33	.05	.098	11	17	.24	80	.01	5	.91	.05	.35	2	1
RD-04 3+00SW	5	24	17	24	.3	9	5	280	8.94	29	8	ND	3	122	.5	3	3	59	.15	.177	20	40	.37	92	.01	3	1.09	.21	.40	. 2	1
M386031 (Rock)	382>'	1 000 0	15	45	>100	7	1	23	39.86	537	12	ND	2	1	1.2	44	13	79	.04	.100	7	30	.05	4	.02	3	.40	.01	.01	2	840
M386032 (Rock)	2>1	10000	860	57 23	>100	134	3	2814	14.30	4604	13	ND	2	222	137.6>	2000	50	6	12.18	.001	3	11	2.99	5	.01	3	.02	.01	.01	2	785
M386033 (Rock)	9	112	26	103	3.0	34	20	461	4.85	26	8	ND	2	22	.5	15	3	85	.23	.108	8	96	1.49	37	.01	3	1.90	.05	.09	2	3

For Cu greater than 10,000 ppm, assay digestion is required for correct assay.

For Ag greater than 35 ppm, assay digestion is required for correct data.

TELEPHONE (604)231-8165

ACME ANALYTICA (19002)	L Li Acc:	ABOI red:	RATO	DRI 1 C	ES 20.	, LJ)	٢D.			85	2 GI	E. Eo	н СН	as' (En	TI: 41	ngs CA	3 S L	ST . Al) NAI	D Y	COU SI(JVE S	ir Ce	BC RT	'TF	76A 710	1 רא!	R6 F E		I	онv	NE	(6()4)	25	3 -	31:	58	F2	٩X	(60	ິ) *	53-	-1' ^	71	.6 /	
tt		1	Ame	ri	.de	x	<u>Mi</u> c/o	ne ^{Go}	ra Idre	1 <u>2</u> a R	<u>a (</u> lesc	<u>20</u> ouro	<u>rp</u> ces) . Co	<u>P</u> r,	<u>RO</u> Whi	<u>JE</u> te	ICT Roc	<u>C I</u> :k B	<u>200</u> c v	<u>=he</u> 48 1	er 166	 s	<u>eb</u> Subr	<u>ior</u> nitt	<u>lle</u> ed	by:	F'i Anc	le Iris	# Ki)	A tauk	.4 (.a)54	104	۱.											•		
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	A	u T	h S	ir i	Cd s	ib 1	81	٧	Ca	P	La	Cr	Mg	8a	TI	Al	Na	ĸ	W	Zr	Ce	Sn	Y	Nb	Та	8e	Sc	Li	Ś	, RI	b H	lf	Au*				
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	x	ppm	ррл	рр	n pp	m pp	xn p	pm pg	ya ng	pm p	mqq	x	\$ F	mqc	ppm	8	ppm	8	x	8	8	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	орл	2	рря	n pp	m	ppb				
51	.7	5.2	52.1	38	.3	.3	<1	27	. 17	1	.4	<.	1.	4 17	1	.2	.7	.5	27.	38.0	11 2	2.0	2.8	.12	180.	038	.91	>10	. 20	.2	80.5	4	1.7	2.7	.7	<.1	<1	<1	1.8	.4	1 2.1	92.	1	<.5				
RD-04-AR-1	69.9	>10000	1552.0	563	22.9	328.8	615	910 3	32.44	100	5.0	4.4	4.	1 1	62	.9 23	4 8	.1	26.	20.0	02 3	3.8	.9	.08	11.	007	. 13	.044	.01	>200	1.2	5	11.5	2.8	.3	<.1	1	<1	.9	>10	, J	в.	1 310)7.5				
RD-04-AR-2	730.5	>10000	19.0	89	7.1	165.6	300	1089 2	21.58	6 6	145.5	1.4	4 8.	0 4	0 <	1 18	73	.7 1	194 1.	08 . 0	42 220	D.O 1	18.1	.60	10.	037 1	85	.075	.40	>200	11.9	242	7.0	6.0	.4	<.1	1	7	16.4	>10	24.	5.	5 11	73.0				
RD-04-AR-3	417.6	>10000	377.5	249	13.2	97.0	56	532 3	38.67	28	13.9	1.0	B 1.	1 3	14 1	.2 9	1 2	.0 3	301.	84.1	84 51	1.0 1	10.2 1	1,13	26.	072 1	10	.092	.03	>200	4.3	58	11.5	5.5	.9	<.1	4	10	8.1	8.2	2 1.6	6.	1 12	13.4				
RD-04-AR-4	63.0	>10000	10.7	42	8.7	80.0	40	608	27.41	7	10.4	1 .s	9 [.] .	1 4	6 <	.1 8	.8 2	.8	81.	14-10	15 10	0.2	.8	.35	8.	.023 1	. 20	.143	<.01	>200	.6	13	16.0	1.8	.3	<.1	<1	5	1.2	>10	11.2	2 <.	1 179	97.8				
	13.6	146.0	20.6	173	3	20.2	15	1057	4 19	22	7 4		1 6	0.34	.n 5	2 6	0 E	0 1	110 2	27 1		7 4 7	41 0 1	1 25	710	433.7	02	1 947	1 46	0.7	50.2	54	6 0	16 1	م د	6	2	19	57 A				a .40	0.04				

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS. - SAMPLE TYPE: ROCK R150 AU* IGNITED, BY ACID LEACHED, ANALYZE BY ICP-MS. (15 GM)

Out 2/04

Data <u>(</u>FA _____ DATE RECEIVED: SEP 9 2004 DATE REPORT MAILED: Assay recommend for Cu 7 1% Au > 1000 ppL

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

TICAL LABORATORIES LTD. ACME AN (ISO 9002 Accredited Co.)

COUVER BC V6A 1R6 852 E. HASTINGS ST.

GEOCHEMICAL ANALYSIS CERTIFICATE

Ameridex Minerals Corp. PROJECT Rocher Deboule File # A405403 c/o Goldrea Resources Cor, White Rock BC V4B 1E6 Submitted by: Andris Kikauka

	Mo	ſu	 Ph		An	Ni	0	Mn	Fe	<u>م</u>	u	Δ.,	Th	Sr	60	Sh	R1	v	Га	р	La	Cr.	Ma	Ra.	Ti A		la X	,	ບ 7	'r ()	. Cn	v	Nh	Ta	Bo	67	14	6	Ph	LIF	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	2	ppn	ppm	*	ppm	8	8	* *	К рр	a pp	л рр	. ppm	ррт	рра	ppm	ppm	ppm	рря	8	ppra	рря	ppb
 		<u> </u>									.,,					-												i													
G-1	.9	3.6	19.2	59	<.1	4.3	5	820	2.55	4	2.6	<.1	6.3	659	<.1	.1	.3	55	2.70	.079	24.1	44.5	.75	963.2	82 7.9	4 2.6	01 3.05	; .	87.	4 4	1.1	13.9	18.8	1.1	4	5	36.3	<.1	112.8	.6	.6
L5000N 4700E	81.2	3785.9	32.7	131	1.3	90.9	295	3452	10.72	112	23.4	<.1	9.5	262	.5	11.4	1.3	110	1.55	. 214	81.2	28.6	.82	463 .1	96 6.8	33.9	51 1.23	3 59.	0 13.	1 11) 1.4	20.2	5.2	.5	1	10	27.7	<.1	63.6	.5	79.4
L5000N 4800E	101.4	1923.8	12.1	89	.6	45.7	39	1653	8.73	37	46.8	<.1	10.3	131	.7	13.8	.3	136	.75	.068	20.6	28.2	.80	513 .1	65 9.5	57.5	25 2.93	3 29.	39.	9 3	9.6	13.2	4.2	.4	2	13	18.7	<.1	119.5	.5	50.9
L5000N 4850E	369.4	>10000	26.2	47	14.5	107.7	77	613	22.90	107	16.4	4.3	6.8	160	.2	29.2	4.8	185	. 76	084 1	32.2	23.4	.56	28 .1	43 3.4	18 .5	36 .62	2 >20	06.	7 15	5 7.5	8.9	3.8	. 2	1	5	11.7	2.8	37.0	.3	5456.7
L5000N 4900E	818.8	5136.7	40.1	52	25.6	43.1	45	978	25.61	98	11.2	8.6	6.5	244	<.1	29.3	5.3	196	.95	.081 1	36.9	23.5	.74	980 .3	41 3.4	14 .6	54 .51	l >20	0 10.	1 15	9 14.7	10.3	3.0	.2	1	6	11.0	<.1	26.5	.4	11131.2
																																	:								
L5000N 4950E	108.7	>10000	57.2	96	5.3	58.3	101	1994	14.20	132	28.8	.3	10.0	141	.9	61.9	1.9	201	1.12	. 141 1	28.0	23.3	L.00	110 .:	35 5.3	36.5	32 1.47	7 >20	09.	1 15	5 4.9	19.5	3.4	.3	2	9	21.3	1.6	74.2	.4	313.2
L5000N 5000E	13.0	1756.5	15.9	105 1	116.2	30.0	28	873	11.79	3664	5.6	1.1	16.5	261	.4	>4000	3.0	125	1.51	.071	13.3	40.4 1	.24	461 .2	85 5.2	20 1.0	98 . 86	3 48.	2 10.	8 3	I 9.2	12.8	8.4	.8	1	9	16.9	<.1	47.1	.5	2436.9
L4900N 4475E	183.9	4936.6	15.9	72	5.4	110.7	39	1247	11.96	36	16.6	.7	14.4	633	.2	4.0	.9	151	2.02	. 111 1	01.2	39.4	1.06	387 .2	262 6.6	57 1.1	72 .99	э з.	8 10.	4 14	1.4	19.0	8.6	.7	1	10	43.2	<.1	56.2	.5	704.4
L4900N 4525E	259.6	3089.1	15.6	59	6.3	106.0	44	1080	12.35	42	16.6	1.3	13.0	760	.1	9.0	9	147	2.07	. 109	78.7	36.9	.96	428 .2	249 6.6	51 1.1	33 1.01	L 3.	6 10.	6 12	1.6	18.6	8.2	.7	1	9	41.0	<.1	56.8	.5	585.9
RE L4900N 4525E	252.6	3026.4	14.5	54	5.3	101.0	45	1135	12.31	40	15.9	.7	12.3	717	<.1	9.6	1.0	153	1.97	. 105	74.5	36.1	.92	418 .2	253 6.3	34 1.0	56 1.01	I 3.	58.	3 11	2 1.8	17.1	8.3	.7	1	9	39.8	<.1	54.6	.5	563.2
L4900N 4575E	1439.2	1995.5	27.6	26	3.0	35.3	10	203	39.94	212	86.3	<.1	7. 2	149	.2	22.3	.9	282	. 50	.082 3	307.7	17.5	.22	59.(170 2.1	11.2	80 .22	2 11.	73.	5 36	1.1	8.4	2.0	.2	1	3	23.8	<.1	19.8	.2	45.6
L4900N 4625E	>4000	5797.1	39.6	16	16.1	406.5	103	440	47.71	1352	1.3	2.6	4.2	13	<.1	31.0	16.1	350	. 09	.076 2	231.5	3.6	.10	26.)41 .7	75.0	33 .0(52.	72.	6 32	1 2.6	7.4	.9	<.1	1	2	5.7	<.1	4.3	.1	2740.1
STANDARD DST5/DS5	12.9	153.4	30.5	164	.3	30.2	15	1053	4.25	22	7.3	<.1	6.5	355	4,9	6.9	5.9	117	2.40	. 106	27.0	227.0	1.21	689 .4	31 7.1	10 1.9	39 1.41	1 10.	1 48.	2 5	2 6.8	14.9	8.3	.6	2	12	25.2	<.1	57.8	1.7	40.5

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS.

- SAMPLE TYPE: SOIL SS80 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (15 GM) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data V FA

PHONE (604) 253-3158 FAX (60-253-1716

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Ameridex Minera SAMPLE# No Cu Pb Zn Ag N1 Co Goldre SAMPLE# No Cu Pb Zn Ag N1 Co Mn Fe As U pom ppm	GEOCHEMICAL ANA	VALYSIS CERTIFICATE	PHONE (604) 253-3158 FAX (60 253-1
SAMPLE# No Cu Pb Zn Ag N1 Co Mn Fe As U ppm pm pm	als Corp. PROJECT ea Resources Cor, White Rock	<u>FROCHET Deboule</u> File # k BC V48 1E6 Submitted by: Andris Kik	A405405
G-1 1.6 4.4 19.2 56 <.1 4.7 4 758 2.38 3 2.8 • RD-04-AST-51 9.1 143.1 11.7 84 .2 26.2 14 1071 11.32 17 8.0 •	Au Th Sr Cd Sb 81 V Ca ppm ppm ppm ppm ppm ppm \$	P La Cr Mg Ba Ti Al Na K W Z Xi ppm ppm Xi ppm Xi Xi Xi ppm pp	Zr Ce Sn Y No Ta Be Sc Li S Ro Hf Au* xpm ppm ppm ppm ppm ppm ppm X ppm ppm ppb
RD-04-AST-52 19.4 536.8 64.5 205 .5 90.1 53 1143 7.52 1437 6.1 • RD-04-AST-53 4.3 108.9 11.1 89 .2 25.2 16 1245 12.27 17 8.2 •	 <.1 6.9 689 <.1 .1 .2 54 2.57 .07 <.1 18.2 281 .2 3.4 .2 302 3.03 .10 <.1 8.2 224 1.3 32.7 .8 164 1.48 .13 <.1 7.1 297 .2 3.6 .2 401 2.63 .12 	.078 25.7 45.7 .63 990 .270 7.06 2.603 2.88 1.2 7. .109 53.6 118.9 1.27 483 .626 6.09 1.991 1.51 6.6 11. .136 24.1 60.0 1.47 613 .450 7.20 1.465 1.75 8.5 17. .129 55.0 180.3 1.31 661 7.17 5.78 1.984 1.61 3 14.	'.7 50 1.1 14.4 18.7 1.3 3 5 33.7 <.1

GROUP 1EX - 0.25 GM SAMPLE DIGESTED WITH HCLO4-HNO3-HCL-HF TO 10 ML. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. FOR SOME MINERALS & MAY VOLATIZE SOME ELEMENTS, ANALYSIS BY ICP-MS. -- --

- SAMPLE TYPE: SILT SS80 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (15 GM)

Data N FA ____ DATE RECEIVED: SEP 9 2004 DATE REPORT MAILED: Oct 2/04

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

rocherdeboulemagaug28

Gem Systems GSM-19T 4051391 v6.0 5 III 2004 t-d2.v6 ID 1 file 01survey.m 15 II 00

				connected
timo	line	station	field pt	field nT
001002 0			F7524 07	
001002.0	05100E	04900 00N	57524.97	99
001102.0	05100E	04912.50N	5/323.9/	99
001146.0	05100E	04925.00N	57438.16	99
001258.0	05100E	04937.50N	57590.05	99
001350.0	05100E	04950.00N	57395.48	99
001434.0	05100E	04962.50N	57364.46	99
001502.0	05100e	04975.00N	57340.34	99
001526.0	05100E	04987.50N	57269.60	99
001622.0	05100E	05000.00N	57202.54	39
001658.0	05100F	05012.50N	57427.69	99
001942.0	05100F	05025 00N	57691 10	44
002014 0	05100E	05037 50N	56383 05	ño
002014.0	051000	05057.000	57810 76	00
002030.0	05100E	05062 504	57054 70	00
002116.0	05100E	05002.50N	57554.70	33
002140.0	05100E	05075.00N	57999.51	99
002218.0	05100E	05087.50N	5/9/4./9	.99
002250.0	05100E	05100.00N	5/812.5/	99
002330.0	05100E	05112.50N	5/834.4/	99
002410.0	05100E	05125.00N	57914.98	99
002454.0	05100E	05137.50N	58045.52	99
002526.0	05100E	05150.00N	57947.34	99
002558.0	05100E	05162.50N	58006.70	99
002626.0	05100E	05175.00N	58036.98	99
002722.0	05100E	05187.50N	58154.17	99
010302.0	05050E	05200.00N	57987.66	99
010334.0	05050F	05187.50N	57716.23	19
010406 0	05050F	05187 50N	57878 57	ãã
010434 0	05050E	05175 00N	57847 66	ag
010502 0	05050E	05162 50N	57670 20	00
010524 0	05050E	05102.JUN	57701 22	00
010534.0	05050E	05130.00N	57701.52	99
010020.0	05050E	05137.30N	57009.01	99
010710.0	05050E	05125.00N	57590.39	49
010734.0	05050E	05125.00N	5/5/3.84	99
010926.0	05050E	05112.50N	57601.29	99
011014.0	05050E	05100.00N	57253.49	99
011038.0	05050E	05087.50N	57211.27	99
011130.0	05050E	05075.00N	57315.33	99
011202.0	05050E	05062.50N	57461.60	99
011234.0	05050e	05050.00N	57576.58	99
011310.0	05050e	05037.50N	57506.92	99
011346.0	05050E	05025.00N	57672.53	99
011418.0	05050E	05012.50N	57690.36	39
011434.0	05050E	05012.50N	57691.42	99
011702.0	05050E	05000.00N	57620.14	99
011734.0	05050F	04987.50N	57670.68	99
011810.0	05050F	04975.00N	57631.70	99
011846 0	05050E	04962 50N	57546 99	ăă
011926 0	05050E	04950 00N	57711 52	åå
011954 0	050500	04937 50N	57934 45	aa
012026 0	050502	04937.30N	58008 73	00
012020.0	010105	04923.00N	57025 04	99
012210.0	010100	04912.30N	57555.34	00
012446 0	05000E	04500.00N	57050.79	33
012522	05000E	04912.3UN	57900.04	33
012522.0	05000E	04925.00N	5/90/.55	09
012534.0	05000E	04925.00N	5/908.65	33
012706.0	05000E	04937.50N	57792.00	99
012750.0	05000E	04950.00N	57805.39	99
012834.0	05000E	04962.50N	57123.05	99
012910.0	05000E	04975.00N	57621.95	99
013006.0	05000E	04987.50N	57593.31	99
013222.0	05000F	05000.00N	57587.31	99

					20
	012246 0 0500			ardeboulem	agaugzø
		0E 05012.3	DUN 57550.	76 00	
\mathbf{C}	013354 0 0500	0E 05025.0	57373.	70 99	
	013458 0 0500	0 = 05050)ON 57429	87 99	
	013522 0 0500	0F 05062 5	ΩN 57273	20 99	
	013546 0 0500	0F 05075 0	10N 57158	02 99	
	013622.0 0500	0F 05087.5	ON 57289	70 99	
	013702.0 0500	0F 05100.0	ON 57382.	01 99	
	013746.0 0500	OF 05112.5	50N 57289.	43 99	
	013818.0 0500	0E 05125.0	ON 57514.	19 99	
	013902.0 0500	OE 05137.5	50N 57455.	96 99	
	013938.0 0500	OE 05150.0	ON 57324.	77 99	
	014006.0 0500	OE 05162.5	ON 57263.	81 99	
	014034.0 0500	0E 05175.0	ON 57363.	14 99	
	014130.0 0500	OE 05187.5	ON 57430.	81 99	
	021706.0 0495	05200.C)ON 57399.	69 99	
	021738.0 0495	OE 05187.5	50N 57448.	98 99	
	021810.0 0495	0E 05175.0	0N 57429.	54 99	
	021834.0 0495	OE 05162.5	ON 57514.	88 99	
	021918.0 0495	OE 05150.0	00N 57426.	21 99	
	021946.0 0495	OE 05137.5	ON 57272.	57 99	
	022022.0 0495	OE 05125.0	ON 57399.	17 99	
	022050.0 0495	OE 05112.5	ON 57491.	38 99	
		UE 05100.0	UN 5/8/6.	/9 99	
		UE U5087.5	ON 57580.	44 99	
		UE U50/5.0	UN 57514.	47 99	
			ON 57550.	70 99	
	022420.0 0493		ION 57420.	22 00	
	022502.0 0495	0E 05057.5	ON 57327.	33 39 A1 00	
	022022.0 0493	0E 05025.0	37390.	1 JJ	
\cap	023226 0 0495	OF 05000 0	ION 57469	88 99	
	023258.0 0495	OF 04987 5	ON 57557	25 99	
\bigcirc	023342.0 0495	OF 04975.0	ON 57763.	73 99	
	023406.0 0495	0F 04962.5	ON 58112.	65 99	
	023430.0 0495	OE 04950.0	ON 58498.	88 99	
	023510.0 0495	OE 04937.5	ON 58562.	74 99	
	023546.0 0495	OE 04925.0	ON 58686.	55 99	
	023630.0 0495	OE 04912.5	ON 58207.	95 99	
	023722.0 0495	0E 04900.0	0N 57756.	15 99	
	024026.0 0490	OE 04887.5	ON 57872.	11 99	
	024058.0 0490	0E 04900.0	ON 57803.	37 99	
	024226.0 0490	OE 04912.5	ON 57851.	74 99	
	024302.0 0490	0E 04925.0	ON 57937.	50 99	
	024350.0 0490	UE 04937.5	UN 5/9/4.	86 99	
		UE 04950.0	UN 58103.	12 99	
	024500.0 0490		UN 50015.	40 99	
	024020.0 0490	0E 04973.0	ΩN 57613	18 00	
	024730.0 0490	0 = 04907.3	ΩN 57100	66 99	
	024846 0 0490	OF 05012 5	ON 57242	42 99	
	024918 0 0490	OF 05025.0	ON 57424	74 99	
	025002.0 0490	OF 05037.5	ON 57516.	89 99	
	025030.0 0490	0E 05050.0	ON 57498.	59 99	
	025114.0 0490	0E 05062.5	ON 57493.	81 99	
	025158.0 0490	0E 05075.0	ON 57367.	20 99	
	025246.0 0490	OE 05087.5	ON 57503.	18 99	
	025314.0 0490	0E 05100.0	ON 57653.	84 99	
	025350.0 0490	OE 05112.5	ON 57430.	51 99	
	025426.0 0490	0E 05125.0	ON 57445.	5 8 9 9	
	025458.0 0490	OE 05137.5	ON 57500.	19 99	
	025534.0 0490	OE 05150.0	ON 57500.	67 99	
\cap	025602.0 0490	OE 05162.5	ON 57470.	47 99	
Ú	025646.0 0490	OE 05175.0	UN 57435.	75 99	
	025734.0 0490	UE 05187.5	UN 57454.	65 99	
	030130.0 0485	UE 05200.0	UN 57284.	54 99	
	030238.0 0485	UE 05187.5	UN 57492.	25 99	
	030318.0 0485	UE 05175.0	UN 57473.	// 99	

 \bigcirc

				rocherd	eboule	emagaug28
1	030402.0 04	850E 05	162.50N	57045.11	99	linagaageo
\cup	030450.0 04	850E 05	150.00N	57349.56	99	
	030518.0 04	850E 05	137.50N	57338.59	99	
	030606.0 04	850E 05	125.00N	57103.80	99	
	030634.0 04	850E 05	112.50N	57052.70	99	
	030722.0 04	850E 05	100.00N	57050.89	99	
	030810.0 04	850E 05	087.50N	56927.49	99	
	030846.0 04	850E 050	075.00N	56609.58	99	
	030946.0 04	850E 050	J62.50N	50/52.10	99	
			130.00N	56011 22	99	
	03114.004	850E 050	025 00N	57425 39	99	
	031234 0 04	850F 050	012.50N	56691.61	79	
	031258.0 04	850E 05	012.50N	56665.72	69	
	031318.0 04	850E 05	012.50N	56657.52	69	
	031410.0 04	850E 05	012.50N	56623.88	59	
	031502.0 04	850E 050	000.00N	58066.21	99	
	031614.0 04	850E 04	987.50N	57955.65	99	
	031650.0 04	850E 04	975.00N	57796.13	99	
	031730.0 04	850E 04	962.50N	58177.69	99	
	031806.0 04	850E 04	950.00N	58549.34	/9	
	031830.0 04	850E 04	930.00N	58074 20	30	
	031922.0 04	850E 04	937.30N	58077 33	20	
	031958.0 04	850F 04	937.50N	57972.13	39	
	032054.0 04	850E 04	925.00N	58204.92	9 9	
	032138.0 04	850E 04	912.50N	58530.18	<u>9</u> 9	
	032402.0 04	800E 04	900.00N	58323.62	99	
	032514.0 04	800E 049	912.50N	58726.68	69	
	032530.0 04	800E 04	912.50N	59004.09	99	
	032626.0 04	800E 04	925.00N	58222.33	79	
\cap	032642.0 04	800E 049	925.00N	58348.30	89	
	032/42.0 04	800E 04	937.50N	58105.00	99	
	032022.0 04	800E 04	950.00N	57990 00	99	
	032946 0 04	800E 04	975 00N	57606.79	79	
	032958.0 04	800E 04	975.00N	57601.92	69	
	033230.0 04	800E 04	987.50N	00000.00	ÕÕ	
	033306.0 04	800E 04	987.50N	00000.00	00	
	033442.0 04	800E 05	000.00N	00000.00	00	
	033634.0 04	800E 05	000.00N	61140.61	69	
	033750.0 04	800E 050	012.50N	60105.61	99	
	033846.0 04	800E 050	J25.UUN	59583.04	99	
	034010.0 04	800E 050	J57.50N	58248 62	99	
	034210 0 04	800E 050	062 50N	58080 65	ăă	
	034238.0 04	800E 05	075.00N	58245.69	99	
	034322.0 04	800E 05	087.50N	57392.07	99	
	034358.0 04	800E 05	100.00N	57197.79	99	
	034446.0 04	800E 05	112.50N	57779.33	99	
	034514.0 04	800E 05	125.00N	57049.15	99	
	034546.0 04	800E 05	137.50N	56868.31	99	
	034622.0 040		162 EON	50045.4L	99	
	034034.0 04	800E 05	175 00N	00000 00	00	
	034754 0 04	800E 05	175.00N	60964.95	19	
	034914.0 04	800E 05	187.50N	58132.03	<u>9</u> 9	
	035922.0 04	750E 05	200.00N	58783.14	79	
	035942.0 04	750E 05	200.00N	58793.89	69	
	041714.0 04	750E 05	187.50N	57068.12	99	
	041806.0 04	750E 05	175.00N	57361.25	99	
	041858.0 04	750E 05	162.50N	57363.45	99	
\bigcirc	042006.0 04	750E 05	137 EON	57057 51	99	
	042120.0 04 042242 0 04		125 00N	28066 03	99	
	042334 0 04	750E 05	112 50N	58072 13	99	
	042418_0_04	750F 05	100.00N	57870-02	<u>99</u>	
	042526.0 04	750E 05	087.50N	58059.75	99	

			1	rocherd	eboulemagaug28
A	042634.0	04750e	05075.00N	58460.17	99
U	042818.0	04750E	05062.50N	59827.05	59
	042838.0	04/50E	05062.50N	50034.80 50821 04	49 70
	042930.0	04750E	05050.00N	59794.94	99
	043146.0	04750E	05037.50N	61082.58	99
	043234.0	04750E	05025.00N	64841.52	19
	043314.0	04750E	05025.00N	58792.87	19
	043430.0	04/50E	05012.50N	57630.17	89
	043442.0	04750E	05000_00N	57756.78	99
	043850.0	04750E	04987.50N	57944.75	99
	043938.0	04750E	04975.00N	57916.58	39
	043954.0	04750E	04975.00N	58185.59	79
	044022.0	04750E	04962.50N 04962 50N	59002.21	49
	044110.0	04750E	04950.00N	59825.23	49
	044130.0	04750E	04950.00N	59667.65	59
	044158.0	04750E	04937.50N	58871.13	69
	044218.0	04750E	04937.50N 04925 00N	59138 66	99
	044454.0	04750E	04912.50N	58843.15	99
	044614.0	04750E	04900.00N	58779.94	99
• •	045054.0	04750E	04887.50N	58281.65	99
	045130.0	04750E	04875.00N	58363.08	79 70
	214038.0	05000F	05225.00N	57229.37	99
	214126.0	05000E	05237.50N	57325.95	99
	214206.0	05000E	05250.00N	57535.55	99
	214306.0	05000E	05262.50N	57722 04	99
\cap	214558.0	05000E	05287.50N	57679.04	99
\bigcirc	214614.0	05000E	05300.00N	57659.74	99 99
	214718.0	05000E	05312.50N	57693.29	99
	214810.0	05000E	05325.00N	5/83/.82	99
	215022.0	05000E	05350.00N	57850.96	99
	215058.0	05000E	05362.50N	57404.05	99
	215206.0	05000E	05375.00N	57625.91	99
	215542.0	05000E	05387.50N	57469.92	99
	215646.0	05000E	05412.50N	57223.38	99
	215730.0	05000E	05425.00N	57340.22	99
	215838.0	05000E	05437.50N	57191.05	99
	215934.0	05000E	05450.00N	5/302.50	99
	220040.0	05000E	05475.00N	57421.94	99
	220330.0	05000E	05487.50N	57571.48	99
	220542.0	05000E	05500.00N	57640.10	99
	220730.0	05000E	05512.50N	57667 31	99
	221014.0	05000E	05537.50N	57614.19	99
	221154.0	05000E	05550.00N	57593.10	99
	221314.0	05000E	05562.50N	57307.68	99
	221420.0	05000E	05575.00N	57265 57	99
	221802.0	05000E	05600.00N	57478.01	99 99
	221934.0	05000E	05612.50N	57705.13	99
	222122.0	05000E	05625.00N	57748.09	99
	222310.0	05000E	05650 00N	57831 00	90 22
	222730.0	05000E	05662.50N	57897.05	99
\sim	222922.0	05000E	05675.00N	57414.71	99
U	223050.0	05000E	05687.50N	57993.06	99
1.2.00	223450.0	05000E	05700.00N	5/832.52	99
	223818.0	05000E	05712.50N	58349.55	79
	223922.0	05000E	05725.00N	58819.75	99

224122.0 224222.0 224330.0 224438.0 224518.0 224554.0 224554.0 224726.0 224726.0 224842.0 224926.0 225042.0 225042.0 225146.0 22538.0 225322.0 225546.0 225546.0 225546.0	05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E 05000E	05737.50N 05750.00N 05762.50N 05775.00N 05787.50N 05800.00N 05812.50N 05825.00N 05825.00N 05837.50N 05850.00N 05862.50N 05887.50N 05900.00N 05912.50N 05925.00N 05937.50N 05950.00N	rocherdd 59181.76 59195.67 59043.57 58998.34 59023.01 58659.99 58789.34 58798.73 58699.86 58553.14 58213.46 58813.26 58749.64 58841.75 58389.14 58989.49 58345.12 58676.06 58675.69 58633.07	eboulemagaug28 99 99 99 99 99 99 99 99 99 99 99 99 99
224810.0	05000F	05837.50N	58699.86	99
224842.0	05000E	05850.00N	58553.14	99
224926.0	05000E	05862.50N	58213.46	99
225006.0	05000e	05875.00N	58813.26	99
225042.0	05000e	05887.50N	58749.64	99
225146.0	05000E	05900.00N	58441.75	99
225238.0	05000E	05912.50N	58389.14	99
225322.0	05000E	05925.00N	58989.49	99
225410.0	05000E	05937.50N	58345.12	99
225502.0	05000E	05950.00N	586/6.06	99
225546.0	05000E	05962.50N	58495.69	99
225630.0	05000E	05975.00N	58033.07	99
225720.0	05000E	06000 00N	58870 69	99
225902.0	05000E	06012 50N	58445 51	99
225938.0	05000E	06025.00N	58301.86	99
230018.0	05000E	06037.50N	58278.21	99
230114.0	05000E	06050.00N	58296.46	99
230214.0	05000E	06062.50N	58395.17	99
230302.0	05000e	06075.00N	58554.56	99
230426.0	05000E	06087.50N	59067.39	99

- 0

()

Ο

rocherdeboulemagaug29

Gem Systems GSM-19T 4051391 v6.0 5 III 2004 t-d2.v6 ID 1 file 02survey.m 16 II 00

	1.4		Ed al dama	corrected
time	11ne	station		rield ni
002006.0	05100E	06100.00N	58327.32	99
002054.0	05100E	06087.50N	58500.65	99
002150.0	05100E	06075.00N	58519.27	99
002226.0	05100e	06062.50N	58866.24	99
002306.0	05100E	06050.00N	58632.66	99
002406.0	05100E	06037.50N	58516.29	99
002526 0	05100F	06025 00N	58624.11	99
002610 0	05100F	06012 50N	58459 95	ğğ
002642 0	05100E	06000 00N	58581 98	ăă
002042.0	05100E	05087 50N	58610 51	99
002720.0	05100E	05907.JUN	50019.51	00
002810.0	051000	05975.00N	50420.52	99
002902.0	05100E	05962.50N	50472.90	99
002938.0	05100E	05950.00N	50045.05	99
003034.0	05100E	05937.50N	58405.04	99
003130.0	05100E	05925.00N	58263.18	99
003226.0	05100E	05912.50N	58399.41	99
003254.0	05100E	05900.00N	58437.91	99
003330.0	05100E	05887.50N	58446.26	99
003650.0	051 0 0e	05875.00N	58525.29	99
003730.0	051 0 0e	05862.50N	58669.23	99
003814.0	051 0 0E	05850.00N	58754.28	99
003846.0	05100E	05837.50N	58845.03	99
004022.0	05100E	05825.00N	58610.16	99
004058.0	05100E	05812.50N	58991.05	49
004202.0	05100E	05800.00N	58712.29	99
004410.0	05100F	05787.50N	58188.75	99
004438 0	05100F	05775.00N	57911.20	99
004522 0	05100F	05762.50N	58063.67	99
004654 0	05100F	05750 00N	58086 19	99
004722 0	05100E	05737 50N	58056 31	ăă
004722.0	05100E	05725 00N	57974 02	åå
004010.0	05100E	05712 50N	57552 80	99
004922.0	05100E	05712.50N	57603 06	00
004950.0	05100E	05700.00N	57005.00	99
005054.0	05100E	05007.50N	J/034.0/	99
005114.0	05100E	050/5.00N	50025.55	99
005238.0	05100E	05002.5UN	5/922./3	99
005322.0	05100E	05650.00N	58056.50	99
005450.0	05100E	05637.50N	5/939.1/	99
005726.0	05100E	05625.00N	58454.76	99
010550.0	05100E	05612.50N	58010.89	99
010726.0	05100E	05600.00N	57959.24	99
010758.0	051 0 0E	05587.50N	57940.75	99
010846.0	05100E	05575.00N	57554.84	99
011102.0	05100E	05562.50N	57805.00	99
011134.0	051 0 0e	05550.00N	57952.36	99
011214.0	051 0 0E	05537.50N	57866.14	99
011246.0	05100E	05525.00N	58041.19	99
011330.0	05100E	05512.50N	58073.32	99
011418.0	05100E	05500.00N	57929.39	99
011518.0	05100E	05487.50N	57839.41	99
011606.0	05100F	05475.00N	57908.77	99
011630 0	05100F	05462.50N	58006 22	99
011654 0	051005	05450 00N	58023 85	99
011726 0	051005	05437 50N	58087 90	99
011750 0	051005	05425 00	58060 87	åå
011826 0	051002	05412 50N	57878 20	ãã
011850 0	05100	05400 000	58122 14	99
011014 0	05100E	05387 504	58260 05	99
011950 0	051002	05375 00N	57076 16	99
014424 0	051000	03373.000	57570.10	00
014510 0	05100E	03302.3UN		00
VI4JI0.0		UD איזער ביי UUN	30344.D/	77

()

			rocherdeboulemagaug29
014554.0	05100F	05337.50N	58619.49 99
014626 0	05100E	05325 00N	58652 36 99
014020.0	051000	05323.00N	
014/06.0	03100E	05512.5UN	50034.70 99
014750.0	05100E	05300.00N	58249.42 99
014842.0	05100E	05287.50N	57949.50 99
014922.0	05100E	05275.00N	58268.63 99
014958.0	05100E	05262.50N	57786.87 99
015034 0	05100F	05250 00N	57818 56 99
015118 0	05100F	05237 50N	58008 47 99
015150.0	051002	05235 001	57845 86 00
015150.0	051002	05223.00N	57043.00 33
015222.0	05100E	05212.50N	5/954.90 99
015250.0	05100E	05200.00N	5/95/.3/ 99
015838.0	05200E	05200.00N	57347.60 99
015934.0	05200e	05187.50N	57430.19 99
020006.0	05200e	05175.00N	57307.20 99
020050.0	05200E	05162.50N	57117.35 99
020126.0	05200F	05150.00N	57082.87 99
020150 0	05200F	05137 50N	57159 04 99
020226 0	05200E	05125 00N	57110 10 99
020220.0	052000	05112 50N	56037 12 00
020230.0	052000	05112.30N	56778 25 00
020314.0	052006	05100.00N	50778.53 39
020338.0	05200E	05087.50N	56889.71 99
020406.0	05200E	05075.00N	57064.01 99
020430.0	05200E	05062.50N	57071.64 99
020458.0	05200e	05050.00N	57174.88 99
020538.0	05200E	05037.50N	57343.64 99
020630.0	05200E	05025.00N	57364.92 99
020714.0	05200E	05012.50N	57544.62 99
020742.0	05200F	05000_00N	57824 33 99
020814 0	05200F	04987 50N	57763 48 99
020838 0	05200E	04975 00N	57764 21 99
020000000	052000	04062 50N	57633 07 00
020300.0	052005	04050.00N	57262 52 00
020934.0	03200E	04930.00N	J/JUJ.J2 33
020954.0	05200E	04937.5UN	5/564.50 99
021018.0	05200E	04925.00N	5/48/.63 99
021038.0	05200E	04912.50N	57561.68 99

LOOKING NORTH AT 1,000 LEVEL PORTAL. PORTAL GIVES ACCESS TO THE NO 2 VEIN (1,380 m ELEVATION).

MILL BUILDING AT 1,200 LEVEL PORTAL (1,280 m ELEVATION).

AMERIDEX MINERALS CORP.-ROCHER DEBOULE PROJECT

NO 4 VEIN PORTAL AT 1,700 m ELEVATION. LOOKING WEST TOWARDS SEVEN SISTERS.

Highland Boy upper vein (lower left). Possible campsite for drill camp

RD 3 claim northeast gossan

Looking northeast on RD 3 claim. Gossan is located in northeast portion of RD 3

Rusty zone (lower left) is surface trace of Highland Boy upper vein. Looking southwest down Juniper Creek.

Looking north on RD 3 claim. Hazelton in background

Grid hub L5000N 5000E Highland Boy upper vein looking NW

Chicago CK. fault south of Highland Boy veins

Highland Boy vein at stn 4850E on BL 5000N

Highland Boy lower Eupper vein looking northwest

Goats grazing on slope (north facing) across from Highland Boy

