Geochemical Report Nithi Mountain Molybdenum Property

TERRI 1 - 4 Claims Omineca Mining Division NTS Map Areas 93 F/15, 93 K/2 Latitude 53°58' North, Longitude 124°50' West British Columbia

November 12, 2004

Prepared for Leeward Capital Corp. Calgary, Alberta

By Terri B. Millinoff, B.Sc. and James W. Davis, M.Sc., P. Geol., F.GAC Taiga Consultants Ltd. Calgary, Alberta

Table of Contents

1.	Introduction	1
2.	Property Definition and Location	1
3.	Accessibility, Local Resources, Infrastructure, Physiography and Climate	1
4.	Claims Status	3
5.	Property History	3
6.	Regional Geology	5
7.	Property Geology	7
8.	Exploration Target and Deposit Type	9
	8.1 Molybdenum Mineralization on Nithi Mountain	10
9.	2004 Field Season Results	13
	9.1 Prospecting and Rock Geochemical Sampling and Geological Notes	13
10.	Summary and Conclusions	16
11.	Certificates	17
	11.1 Certificate – Terri B. Millinoff	17
	11.2 Certificate – James W. Davis	18
12.	Selected References	19

Appendix A – Analytical Procedures, Assay and ICP Certificates Appendix B – Personnel and Expenditures

List of Figures

Figure 1 – Regional Location Map	
Figure 2 – Claim Map	
Figure 3 – Regional Geology Map	
Figure 4 – Property Geology	

List of Tables

Table 1 – Claims Data	3
Table 2 – Production Reserves, selected Molybdenum Deposits	10
Table 3 – 1981 Drilling Results, Nithi Mountain.	11
Table 4 – Sample Locations, Geological Descriptions, 2004 work, Terri 1-4 claims	13
Table 5 – Assay Results, 2004 work, Nithi Mountain	15
-	

 $Map \; 1-\text{back pocket of report}$

1. Introduction

At the request of Leeward Capital Corp., Taiga Consultants completed a geological review, prospecting and rock geochemical analysis of the Nithi Mountain molybdenum property located in central British Columbia. This work was completed in October 2004. In order to do this evaluation, all relevant publicly available documentation was reviewed, prior to the commencement of field work. The sources of information included assessment reports and Minfile summaries along with geological maps and reports produced by the Geological Survey of Canada and the British Columbia Department of Mines. The results of the rock geochemical sampling program are the subject of this report.

2. Property Definition and Location

The Nithi Mountain property is located approximately 8 km south of the Town of Fraser Lake. This town is located 158 km west of the city of Prince George in central British Columbia (Figure 1). The property lies within NTS map sheet 93F/15. The high point of Nithi Mountain is located approximately along the claim line between the Terri 1 and Terri 3 claims at 124° 50' west longitude and 53°58' north latitude at an elevation of 1,352 meters ASL. The topography of the property moderately steep overall with maximum relief is approximately 450 meters. The uplands around the crest of Nithi Mountain have relatively subdued relief, while the south slopes are locally quite steep.

3. Accessibility, Local Resources, Infrastructure, Physiography and Climate

The Nithi Mountain property is accessible from Fraser Lake by four-wheel drive vehicles via the main Cowsunkit logging road and secondary logging roads. The main electrical power line for the Endako Mine is only 6.4 km to the north of the property. Fraser Lake is located along the Yellowhead Highway (B.C. Highway 16) and the main Canadian National rail line through central British Columbia to Prince Rupert. Two small airfields are located in the vicinity of the Fraser Lake area and are capable of accommodating light aircraft. Thus, there exists an excellent transportation and mining infrastructure within a relatively short distance from the property, which would allow the rapid development of any mineral deposits found within the vicinity.

According to Tipper (1963), piedmont glaciers from the Coast Mountains of British Columbia advanced eastward across the Nechako Plateau during Pleistocene time. The Nithi Mountain area lies within a glacially dissected part of the Nechako Plateau. Major east trending valleys separate the broken upland ridges (Carr, 1965). The ice masses coalesced over the Nechako plateau then moved toward east and northeast until meeting the Rocky Mountain barrier. Glacial striae that indicate a general eastward ice movement direction have been observed at the summit of Nithi Mountain (Davis, 1980). In late glacial time, during the retreat of the ice in this area along the Fraser River Valley (Tipper, 1971, Carr (1965), François Lake was dammed by stagnant ice at the southern foot of Nithi Mountain.

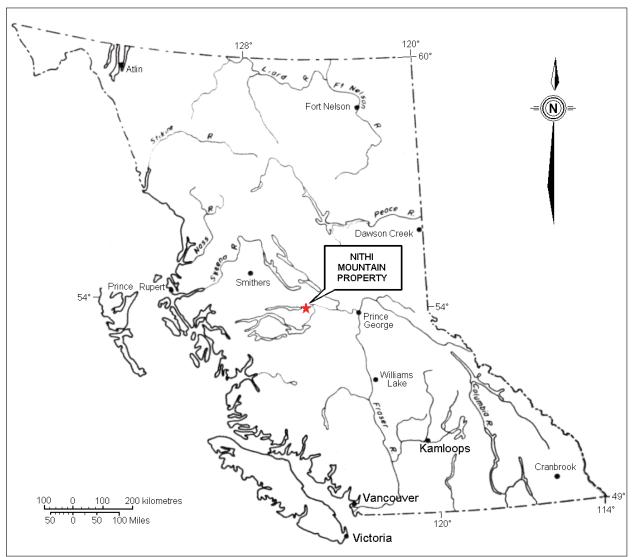


Figure 1 – Regional Location Map

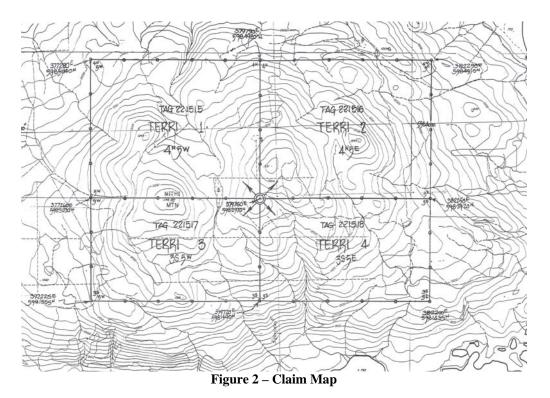
François Lake emptied into Fraser Lake through a rock-cut canyon, in its present spillway, the Stellako River. Carr (1965) sites as evidence of this, the existence of residual patches of glacial lake silts and gravels that rest on bedrock at low elevations along the shore of François Lake. Moreover, he also states that, although the topography has been strongly influenced by the east trending Pleistocene ice movement, the bedrock structure, joint and fault patterns have a more pronounced effect on the topography.

Currently, the topography within the region consists of areas with low relief in the valleys and moderate relief in upland areas such as at Nithi Mountain with relatively steep mountain sides. The elevation of Nithi Mountain is 1353 m ASL. The lowland areas are covered with thick glacial sediments. Vegetation on the property is dominated by spruce forests, much of which has now been logged off. Temperature range form -35° C in the winter to a maximum of 28° C in the summer. Average annual rainfall is 30.4 cm and annual snowfall is 191.5 cm. There are 92 frost free days on average in this area.

4. Claims Status

a .	T I	76 //	Number	•	Date of	Next
Claim	Tenure#	Tag#	of units	hectares	Record	Anniversary
Terri 1	40374	221515	20	500	Dec. 29/03	Dec. 15/04
Terri 2	40375	221516	20	500	Dec. 29/03	Dec. 15/04
Terri 3	40376	221517	15	375	Dec. 29/03	Dec. 11/04
Terri 4	40377	221518	15	375	Dec. 29/03	Dec. 16/04
			70	1750		

Table 1 – Claims Data


The exact location an extent of the claims is illustrated in Figure 2. Minimum exploration expenditures of \$7,000 must be met in order to keep the claims in good standing prior to the first anniversary date. The claims are registered in the name of Leeward Capital Corp., holder of 100 % interest in the property.

Expenditures on the property as of Oct/Nov 2004 are presented in Appendix B.

5. Property History

The original claims staked on Nithi Mountain were staked during the 1952-55 period for uranium. Mineralization in the form of the secondary uranium minerals was found in fractured rhyolite porphyry dyke within the Topley granite. The showing was located at an elevation of 1,070 m on the northwestern slope of Nithi Mountain. The dyke had a length of 185m and a width of about 30m and trended north-south. Exploration work on these original claims included trenching and drilling. Four drill holes were completed in 1956 by American Standard Mines who optioned the property. In all, a total of 100 m of drilling was completed. This uranium mineralization was found to have no depth extension and the claims were subsequently dropped.

With the discovery of the Endako Deposit in 1962 by Placer Development Ltd, there was a staking rush and exploration in the area for molybdenite. This exploration resulted in the staking of Nithi Mountain by various junior mining companies including R & P Metals Ltd. (Fraser Lake Mines), Fort Reliance Minerals, Dundee Mines, Jodee Explorations, and New Indian Mines. Trenching, soil sampling and limited diamond drilling were completed. The most significant results from this period of exploration was from a drill hole (N-14) completed by R & P Metals in 1964. This hole was drilled to a depth of 302 m and recovered 170 m averaging 0.10% MoS₂. Although molybdenum mineralization was discovered on many of these claims, systematic exploration was not carried out, in part due to the lack of a coherent land package in the area. Interest gradually waned in the late 1960's and most of the claims were allowed to lapse in the late 1960's.

In 1970, Nithex Exploration and Development Ltd. re-staked a large land package on Nithi Mountain and carried out an exploration program of trenching and diamond drilling in 1971 and 1973. In 1973, Nithex drilled a total of four short Winkie holes. One drill hole (N-4) encountered significant molybdenite mineralization consisting of 13.2 m grading 0.16 MoS₂.

In 1975, Amex Potash Limited optioned the claims held by Nithex and Fraser Lake Mines on Nithi Mountain and subsequently acquired additional claims in the area in order to complement this land position. Exploration carried out by Amex included geologic mapping, soil sampling, magnetic surveys and an induced polarization survey. In the summer of 1976 a percussion drilling program was completed by Amex on the Nithi Mountain property. A total of twelve holes totaling 975 m were completed. Subsequently, Amex dropped their option on this property. There was no significant exploration work completed on the property through the remainder of the 1970's.

In 1980, Rockwell Mining Corporation optioned the various mineral properties from Nithex and Fraser Lake Mines on Nithi Mountain and contracted Taiga Consultants Ltd. to carry out an exploration program on these properties. This exploration program consisted of soil and rock geochemical sampling, geological mapping and prospecting. Soils were analyzed for Mo, Mn, Fe and Zn. This was completed in the summer of 1980. Based on encouraging results obtained from this program, work continued into the fall of 1980, which consisted of road building, drill site preparation, trenching and additional rock geochemical sampling. In early 1981, additional road building was undertaken to open up a second access road on the Chris Showing. A diamond drilling program using NQ core for 1,818 m was completed from April to June, 1981. In addition to the exploration work carried out by Rockwell, a B.Sc. thesis, "Soil Conductivity as an Exploration Tool in conjunction with the Nithi Mountain Molybdenum Project, Fraser Lake, British Columbia" by Terri Millinoff was completed at the University of Windsor in 1981.

6. Regional Geology

The regional geology of the Hallet Lake map area, which includes Nithi Mountain, was based on mapping by Carr (1965) and Bright (1967). The stratigraphy was originally described by Tipper (1959). Subsequent mapping of the Hallett Lake map area by Carter (1982) and R.G.Anderson, R.L'Heureux, S.Wetherup and J.M.Letwin (1997) reassigns the mineralized phases on Nithi Mountain, from the Topley Intrusions (Jurassic age) to the François Lake Plutonic Suite (Early Cretaceous).

R G.Anderson, et.al (1997), states that these plutonic rocks cover much of the Hallet Lake map sheet. The authors summarize the regional lithologies as follows: Small late Triassic intrusions of fine grained pyroxenite and coarse grained plagioclase porphyry are the oldest units on the map sheet. Subsequent Jurassic intrusions form sequentially intruded biotite-hornblende diorite and gabbros, hornblende-biotite quartz monzonite and granodiorite.

The molybdenite mineralized intrusions are hosted within the early Cretaceous François Lake Plutonic suite. This suite contains quartz rich, leucocratic biotite monzogranitic phases that can be further subdivided, based on mineralogical and textural variations and intrusive relationships into a series early Cretaceous to mid-Cretaceous biotite granites and biotite monzogranites.

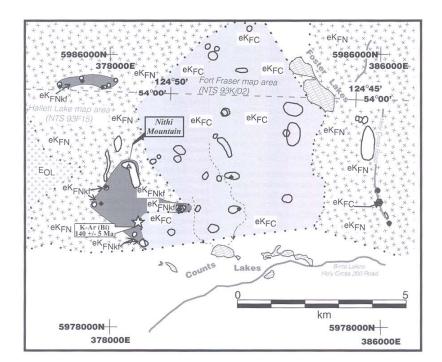
Volcanic flows and volcaniclastic lithologies occur over much of the region. These include the Upper Triassic Takla Group, Lower to Middle Jurassic Hazelton Group, the Eocene Ootsa Lake Group, the Eocene to Oligocene(?) Endako Group, and the Miocene Chilcotin Group. The Takla Group consists of greenish-grey clinopyroxene-porphyritic basalt, breccias, argillite and volcanic rocks. The Hazelton Group contains maroon-grey heterolithic and monolithic breccias and basalt. The Ootsa Lake Group has rhyolitic, dacitic, and andesitic flows; pyroclastics; and volcaniclastic units. The Endako Group contains vesicular basalt, plagioclase-porphyritic basalt, andesite and volcanics consist of dark grey, vesicular olivine basalts. Figure 3 illustrates the regional geology for the map area (R.G. Anderson, et al., 1997).



Figure 3 – Regional Geology Map

7. Property Geology

According to R.L'Heurex and R.G.Anderson (1997), three intrusive phases of the François Lake Plutonic Suite are present on Nithi Mountain and within the project area (Figure 4). These intrusive units have been assigned to the François Lake Plutonic Suite. Molybdenite mineralization is found in both phases of the Nithi Quartz Monzonite and the Casey Quartz Monzonite and Alaskite.


The Nithi Quartz Monzonite is subdivided by L'Heurex and Anderson, (1997) into the *eK FNkf: Nithi phase biotite monzogranite* with k-feldspar megacrysts and *eK FN: Nithi phase biotite monzogranite*. Previous mapping by Davis (1980) also subdivides the Nithi Quartz monzonite into two phases: (1) a medium grained, pink-grey, sub-porphyritic monzonite with abundant biotite and (2) a lighter pink coloured unit that is strongly porphyritic, coarsely crystalline with phenocrysts of perthitic orthoclase and aggregated quartz and plagioclase that account for a third of the rock mass. A rare pegmatitic phase of the Nithi Quartz Monzonite is present and composed of coarse euhedral quartz and feldspar crystals.

The *Casey-Quartz Monzonite* consists of 33% quartz, 40% orthoclase, 25% plagioclase and 2% biotite. The finer Casey Quartz Monzonite occurs at the margins of the body as dykes and veins. The Casey sometimes appears to have a porphyritic texture and a more extrusive appearance than the Nithi Quartz Monzonite. This unit is found in the stock or north arm of the stock on Nithi Mountain. Coarser grained parts of this unit may contain large phenocrysts of orthoclase and quartz up to 1 cm in size and these may account for up to 30% of the rock mass. These varieties consist of quartz 36%, orthoclase 30%, plagioclase 30%, biotite 3% and accessories 1%.

According to L'Heureux and Anderson (1997), the Casey phase consists of pink to buff, medium grained, leucocratic and aplitic biotite monzogranite (Figure 4). Coarser varieties do occur but contacts are gradational. Basalt and rare quartz-alkali-feldspar porphyry dykes (similar to those at Endako and in the Nithi phase) intrude the Casey phase.

Minor intrusions found within the map area consist of aplite dykes and granite pegmatite (Davis, 1980), rhyolite porphyry dykes, quartz latite, dacite and andesite dykes. Dyke rocks appear to be pre-mineral in age (Davis, 1980). Dykes with quartz, orthoclase and plagioclase phenocrysts are found on the west side of Nithi Mountain within the Nithi Quartz Monzonite. Molybdenite mineralization found within this setting is unique to Nithi Mountain and the Endako Ore deposit within the Endako Quartz Monzonite (Davis, 1980). Small lamprophyre dykes, associated with shear zones and joints also occur on Nithi Mountain and at the Endako orebody, and they are post ore in age.

L'Heureux and Anderson (1997) provide an absolute and relative chronology for the Nithi Mountain area (Figure 3). In their report, biotite from megacrystic Nithi Quartz Monzonite, in close proximity to the contact with the Casey phase, was dated at Early Cretaceous (140 +-5Ma) by K-Ar method. This overlaps the K-Ar dates (144-141 Ma) for hydrothermal biotite in and near the Endako mine.

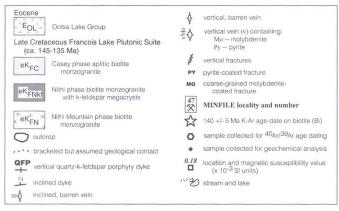


Figure 4 – Property Geology

8. Exploration Target and Deposit Type

Exploration in this area is focused on the low fluorine porphyry molybdenum deposit profile type. Porphyry molybdenum deposits are classified into two categories. The first is the alkalic-calcic granite type such as the Climax deposit. The second is the low fluorine calc-alkaline granodiorite type such as the Endako deposit.

Sinclair (1995) characterizes the Porphyry Mo (low-F-type) deposit as a calc-alkaline Molybdenum stockwork or a stockwork of molybdenite-bearing quartz veinlets and fractures in intermediate to felsic intrusive rocks and associated country rocks. The following description is from Sinclair (1995):

Deposits are low grade but large and amenable to bulk mining methods. These deposits are found in the tectonic setting of subduction zones related to arc/continent or continent/continent collision. The geological setting is that of high level to subvolcanic felsic intrusive centers and multiple stages of intrusion are common. They tend to be Archean to Tertiary; with Mezozoic and Tertiary examples most common. A variety of rocks may be host rocks. Tuffs or other extrusive volcanic rocks may be associated with subvolcanic intrusives. Genetically related intrusive rocks range from granodiorite, with quartz monzonite most common and they are porphyritic. The intrusive rocks are characterized by low F contents (generally <0.1% F) compared to the intrusive rocks associated with the Climax type porphyry Mo deposits. The deposits tend to form various shapes from inverted cup-like forms to roughly cylindrical to highly irregular forms. They are typically hundreds of meters across and range from tens to hundreds of meters in vertical extent. The ore tends to be structurally controlled in stockworks of crosscutting fractures and quartz veinlets, veins, vein sets and breccias. The mineralogy consists principally of molybdenite with or without chalcopyrite, scheelite, and galena. Gangue mineralogy would consist of quartz, pyrite, potassium feldspar, biotite, sericite, clays, calcite and anhydrite. The alteration mineralogy would consist of a core of potassic and silicic alteration characterized by hydrothermal K-feldspar, biotite, guartz and possibly anhydrite. Phyllic alteration would surround the inner potassic/silicic alteration core. Propylitic alteration may extend for hundreds of meters beyond the potassic/silicic and phyllic alteration zones. If argillic alteration is present it is characterized by kaolinite and typically is overprinted onto the other zones. Weathering may occur as yellow limonitic gossans after pyrite. There may also be yellow colored ferrimolybdite caused by the oxidation of molybdenite. Ore controls are related to multiple phases of intrusive activity. The genetic model is that of magmatic hydrothermal activity. Large volumes of magmatic, highly saline aqueous fluids under pressure strip Mo and other ore minerals from related magma. Multiple stages of brecciation related to explosive fluid pressure release from the upper parts of intrusives, results in the deposition of ore and gangue minerals in cross cutting fractures, veinlets and breccias in the outer rims of intrusives and in associated country rocks.

He goes on to describe the typical size as 100 Mt grading 0.1 to 0.2% Mo. Table 2 has examples from BC and the Yukon. He goes on to say that virtually all of Canada's Mo production comes from these types of deposits and as by-product from porphyry Cu-Mo deposits.

Deposit	Province	M.tons	% Mo	% MoS ₂
Endako	BC	336	0.087%	0.122%
Lucky Ship	BC	14	0.090%	0.126%
Boss Mtn.	BC	63	0.074%	0.104%
Adanac	BC	94	0.094%	0.132%
Kitsault	BC	108	0.115%	0.161%
Red Mountain	Yukon	187	0.100%	0.140%

 Table 2 – Production Reserves, selected Molybdenum Deposits

8.1 Molybdenum Mineralization on Nithi Mountain

Mineralization is described by L'Heureux and Anderson (1997) as post-intrusive quartz veins with two modes of molybdenite mineralization and alteration, common and widespread in the Nithi Mountain area. They describe small veins as a dominant, early set with a 070° trend, locally cross-cut by a north trending set or rare 120-130° trending veins. Fine grained molybdenite and rare specularite are associated with the 070° set. Pyrite and coarse grained molybdenite are most common along irregular fractures. A north trending fracture system was found in the Nithi phase, that locally cross cuts and displaces the 070° set of veins. The authors state that this suggests that the veining/mineralization is associated with the late stage intrusive and cooling associated with the emplacement of the Casey phase. The authors go on to describe alteration of the Nithi and Casey phases as widespread within 3 km of their western contact. Argillic alteration is intense, especially near the summit of Nithi Mountain, but the authors did not think that this was always associated with veining or mineralized fractures. All showings are considered to be of the low-fluorine type variety of the porphyry molybdenum mineralization type.

Whalen, et al. (2001) comments in the Canadian Journal of Earth Science that:

Significant porphyry Mo mineralization within the Endako batholith occurs in two locations, the Endako deposit and the Nithi Mountain area (Lefebure and Hoy 1996) of which the former has been the subject of much more detailed study. The Endako deposit is hosted by Endako phase and associated with two distinct quartz-Mo-bearing vein types and three alternation events (Bysouth and Wong 1995; Kimura et al. 1972; Selby et al. 2000). Although minor primary Mo mineralization is associated with k-feldspar alteration along the stockwork veins the majority of the ore is associated with ribbon veins bordered by sericitic alteration (Selby et al. 1995).

In the Nithi Mountain area, molybdenum mineralization is associated with pervasive propylitic alteration and intense clay alteration. East-northeast trending Mo-bearing veins are related to late stage Jurassic plutons. The age of emplacement of these veins has been dated at 143.7 to 145.2 million years based on analysis of hydrothermal biotite. During this period there were multiple mineralizing events.

The following is based on the 1981 report on drilling at Nithi Mountain by J.W. Davis.

Mineralized veins on the North, Central, South, Southwest showings have a common trend of 060° to 070° E. The 1m wide mineralized vein at the A-line Showing trends N45°E, dipping 27°N. The Chris and Terri showings trend 060 - 070° and consist of quartz-molybdenite veins hosted by Nithi quartz monzonite or Casey granite. Argillic

alteration is mild to intense. The mineralized zones appear to be spatially related to the contact between the Nithi quartz monzonite and the Casey granite.

In 1981 a diamond drilling program was employed to evaluate the significance of the molybdenite mineralization delineated on the Chris and Terri showings One drill hole at the Chris Showing intersected a combined thickness of 170 meters of molybdenite mineralization. The entire core was geologically logged, split and assayed at two meter intervals. Sludges were collected when possible and factored as 10% of the total reported assay. In some intersections, only the sludges returned analytical values of economic significance. Samples were analyzed for molybdenum and reported as weight equivalent molybdenum sulphide. Rossbacher Laboratory Ltd., of Burnaby, B.C. did the analytical work.

Based on the results of the 1981 drilling, a further 3050 m of drilling was recommended in order to define the extent, grade and continuity of this molybdenite mineralization. However, Rockwell Mining Corporation declined to continue work on the property due to a significant drop in the value of molybdenum. A summary of the sequentially continuous mineralized sections from the 1981 drill results, with a cut-off grade of 0.02% MoS₂, follows:

	1	1	, - ,	Nithi Mountain.
Drill Hole	Interval	metres	% MoS ₂	
R81-1	13-65	(52)	0.060	including 39-45 (6m) of 0.152%
	73-101	(28)	0.045	
	113-125	(12)	0.026	
	131-137	(6)	0.088	
	141-151	(10)	0.042	
	159-173	(14)	0.030	
	195-199	(4)	0.026	
R81-2	12-16	(4)	0.200	
	40-74	(32)	0.054	including 68-70 (2m) of 0.104%
	78-100	(22)	0.046	including 78-86 (8m) of 0.057%
	106-126	(20)	0.039	including 120-126 (6m) of 0.059%
	132-152	(20)	0.045	including 132-136 (4m) of 0.2%
	162-168	(6)	0.028	
	170-174	(4)	0.027	
	80-184	(4)	0.028	
	196-200	(4)	0.030	
R81-3	15-35	(20)	0.093	
	49-53	(4)	0.026	
	67-71	(4)	0.040	
	131-135	(4)	0.024	
	181-185	(2)	0.074	
R81-4	5-61	(56)	0.026	
	97-101	(4)	0.030	
	103-117	(14)	0.113	including 105-111 (6m) of 0.19%
	121-127	(6)	0.022	
	129-149	(10)	0.030	
R81-5	3-57	(54)	0.015	
	59-75	(16)	0.060	including 65-69 (4m) of 0.108%
R81-6	2-14	(12)	0.030	
	8-32	(24)	0.053	including 20-22 (2m) of 0.128%
	36-50	(14)	0.045	<u> </u>
	52-56	(4)	0.042	
	58-64	(6)	0.025	
	74-78	(4)	0.054	
R81-7	2-14	(12)	0.030	
	16-48	(32)	0.040	

Table 3 – 1981 Drilling Results, Nithi Mountain.

Drill Hole	Interval	metres	% MoS ₂	
	50-74	(24)	0.052	including 68-70 (2m) of 0.21%
R81-10	42-46	(4)	0.042	
	22-126	(4)	0.027	

While the overall values are generally lower than those at Endako, drilling to date has only partially evaluated the molybdenum potential of Nithi Mountain.

9. 2004 Field Season Results

9.1 Prospecting and Rock Geochemical Sampling and Geological Notes

During the month of October 2004, both old and new molybdenite showings on Nithi Mountain were sampled and analyzed, in a prospecting and geological and geochemical sampling program. Sample locations were plotted by GPS coordinates on Map 1 (back of report). Highest results were found in samples that came from new exposures made by road cuts built for logging purposes. These locations, rock sample descriptions and structural geology notes are as follows:

Number	Location	Description
TM 04 02	377960 5981944 road cut	dark grey qtz vein 8cm, argillic alteration of Nithi Quartz Monzonite (NQM),rusty weath.060/72 W, 150/90,040/90, picture ferrimolybdate w.qv, Mo ribbon pattern, dips 90 or steeply west
TM 04 03	378660 5981769 1166 road	fine veinlets with Mo vfg. and disseminated
TM 04 04	380301 5984483 1092	Argillically altered, .med. crystalline NQM with small, 1cm crosscutting quartz veins with some pyrite and Manganese staining in joints
TM 04 05	380355 5983503 1288	Quartz veins(qv), 50 cm width, 030/60W
TM 04 06	379853 5982318	old bob showing , Casey Quartz Monzonite(CQM) with small qv, with fg.diss Mo
TM 0407	380173 5982523	old Terri showing Small Mo veinlets in NQM
TM 04 08	377561 5981630	rusty alt.zone in c.g.Nithi QM, moderate potassic alteration
TM 04 09	379851 5982325	diss.Mo in CQM ,fg and has rhyolitic porphyry appearance, hematite, potassic alteration and some propylitic alteration plus sericite, and approx 1% Mo?
TM 04 10	380171 5982527	In NQM, Mo diss and in fracture coatings, Potassic alt and spec hem? Py oxidized
TM 04 11	380162 5982514	as above
TM 04 12	379782 5982346	,vfg diss Mo in CQM felsenmeer & at 379782,5982399
TM 04 13	379790 5982484	m.g .N QM w.sm.veinlet Mo,hem,ferrimo,moderate K alt
TM 04 14	380050 5983011	altered CQM, hem in veinlets, trace Mo,some K alt.
TM 04 15	387224 5984667 road	rusty weath, propylitically alt, & potassic alt along fracs of NQM, py, hematite
TM 04 16	377769 5982016	as above w py , hem and k alt that xcuts epidote, frac that trends 055
TM 04 17	377769 5982016	o/c has prop,arg.,sericitic alt of NQM with 2-3%vfg diss py and veinlet Mo
TM 04 18	377753 5982017	Mo Otz vein that is 5cm wide in o/c, 052/90, Picture. taken
TM 04 19	377665 5982074	Intensely altered NQM, fault gouge trends 053 (GSC loc?)
TM 04 20	377899 5982169 249 m	Mo in ribboned appearance qtz vein trending 050
TM 04 21	377934 5982154 1237 m	Qtz w spec hem, py, Mo , yellow ferrimolybdate , rusty weath, sericite
TM 04 22	377714 5982154	float from o/c in road, qtz w diss Mo and sericite
TM 04 23	380900 5983468	fg.NQM with qtz veinlet 1-2mm, Mo ,1/2 % diss py
TM 04 24	380556 5982833	Alt.NQM w sm. qv &diss.Mo in, fracs trend 060. 060 fracs cut 160 fracs
TM 04 25	30566 5982828 1251m	Dark ribboned qtz, o/c in roadbed. Other qv trends 016/90
TM 04 26	380591 5982576 1273m	arg. K alt NQM vfg.diss Mo in sm veinlets

Table 4 – Sample Locations and Descriptions, 2004 work, Terri 1-4 claims

Number	Location	Description
TM 04 27	379323 5982088 1176m	qv 060, 20cm in width & sheared ,dark grey and rusty weath arg.alt NQM
TM 04 28	as above along road	80 cm wide flat lying qv 120 strike,15 dip
TM 04 29	as above along road	angular bldr with x-cut qv's in k-alt NQM, some bldrs have slickenslides
TM 04 30	378565 5981710	road, rusty chloritic NQM, sm veinlets of dark chloritic-pyritic material

All of the samples were grab samples taken to confirm the presence and grade of mineralization. Trenching and channel sampling were not completed at this time. Samples were sent to Loring Laboratories in Calgary for both ICP analysis and assay for molybdenite. The ICP results and assay results plus certificates along with analytical procedures are presented in Appendix A of this report.

Samples TM-04-01 to 03, TM-04-08, TM-04-16, 17, 18, 19, 20, 21,27,28,29 and 30 were collected during prospecting traverses that discovered new areas of mineralization. These samples appear to be part of a zone of mineralization continuous with the old showings and previous drilling. This zone, coined the "Alpha Zone" has a general trend of 070. The Alpha zone is characterized by extensive argillic alteration, which is bounded by phyllic alteration. Both the Nithi Quartz Monzonite and the Casey Quartz Monzonite are hosts to the mineralization .The Nithi Quartz Monzonite is generally a pale pink medium crystalline rock and but where argillic alteration is intense it has a pale greenish-white crumbly appearance. The Casey Quartz Monzonite is much finer grained, with a porphyritic texture and has a pale pink colour. Where significant mineralization was found the alteration associated with the mineralization was argillic but also sericite appeared to be easier to identify in the Casey Quartz Monzonite.

The mineralization on Nithi Mountain appears to be structurally controlled and is found in quartz veins that have a trend of 055 to 070 and tend to dip steeply to the west or 90. Some of the mineralization noted in the northwest portion Terri 2 claim may be due to structural offsets related to the "East Fault", a crosscutting structure to the Alpha zone (Map 1, back pocket of this report). This structure appears to cut off the mineralization of the Alpha zone to the east as prospecting east of the fault scarp did not encounter mineralization.

Mineralized locations within the claims exhibit potassic and argillic alteration with grey quartz stockwork as fracture fillings with disseminated molybdenite and sometimes pyrite. When rusty, chloritic, prophyllitic alteration was found, there did not appear to be any significant mineralization and this was confirmed in this program, on a preliminary basis by assay results.

Thirty rock chip samples were collected over the Terri 2, 3 and 4 claims. Prospecting over the Terri 1 claim did not encounter significant mineralization but further work is required on this claim as the southeast corner of the claim is crossed by the general trend of the mineralization.

The 30-element ICP analysis for the 30 samples collected did not reveal any correlation between Mo ppm and the other elements tested except for weak correlation with Al% and Ni ppm. The Alumina is most likely due to the argillic alteration associated with the mineralization, and the weak nickel correlation may be due to trace nickel sulphide. Thirty samples do not provide for any statistical certainty, so this data is only preliminary in nature. Samples TM-04-03, TM-04-16

and TM-04-22 returned the highest amounts of Mo ppm and they were all collected along the new road exposures of mineralization from the Terri 3 claim. Other significant Mo mineralization was collected at sample sites TM-04 03&30 on Terri 3, TM-04-27, 28 and 29 also on Terri 3, TM-04-07, 10 & 26 from Terri 4, and TM-04-14 and 24 from the Terri 2 claim. Map 1 in the back pocket of this report shows the location of these samples within the context of the Alpha zone which trends 070 across Nithi Mountain and the 4 claims. Samples TM-04-06 and 07 were taken from old showings that were mineralized but did not exhibit as much alteration as was found in the southwest portion of the Terri 3 claim.

Assay results as shown in Table 5 confirm the presence of significant molybdenite mineralization observed within the rock chip grab samples. This data in conjunction with observed intense argillic alteration and structural control for mineralization is encouraging for further exploration work.

1 4010	- <i>i</i>			
Sample No.	% MoS2		Sample No.	% MoS ₂
TM -04-01	.049		TM-04-16	.425
TM-04-02	.091		TM-04-17	.026
TM-04-03	.179		TM-04-18	.132
TM-04-04	.058		TM-04-19	.013
TM-04-05	.011		TM-04-20	.132
TM-04-06	.050	Bob showing*	TM-04-21	.083
TM-04-07	.110	Terri showing*	TM-04-22	.217
TM-04-08	.013		TM-04-23	.072
TM-04-09	.031		TM-04-24	.127
TM-04-10	.140		TM-04-25	.038
TM-04-11	.035		TM-04-26	.101
TM-04-12	.018		TM-04-27	.138
TM-04-13	.031		TM-04-28	.013
TM-04-14	.091		TM-04-29	.133
TM-04-15	.017		TM-04-30	.011

Table 5 – Assay Results, 2004 work, Nithi Mountain

* Old showings resampled

10. Summary and Conclusions

Rock samples collected on Nithi Mountain during the 2004 field season and the subsequent analytical data derived from those samples, has identified new areas mineralization associated with zones of intense argillic alteration. The new mineralization is spatially related to previously known showings by a structure that trends 070. The mineralization along this structure (the Alpha Zone) appears to be terminated in the eastern portion of the claims by the "East" fault which trends 140. Grab samples were analyzed for molybdenite by ICP and fire assay and returned encouraging results confirming field observations.

The Nithi Mountain molybdenum property is well located in central British Columbia with regard to roads, railroad, and power. The property has a demonstrable potential for hosting a molybdenum deposit based on the geological setting and the newly discovered molybdenum mineralization. Only limited drill testing has been carried out to the east of the new zone On this basis, Nithi Mountain is deemed to be a property of merit and as such, worthy of additional exploration expenditures. ICP, assay results, analytical procedures and certificates are in Appendix A, at the back of this report. A list of personnel and expenditures for this program are found in Appendix B.

11. Certificates

11.1 Certificate – Terri B. Millinoff

I am the co-author of the report entitled "Geochemical Report, Nithi Mountain Molybdenum Property" submitted for assessment in November 2004. I hereby make the following declarations:

My name is Terri B. Millinoff and I am a Consulting Geologist with Taiga Consultants Ltd. My office address is #4, 1922- 9th Avenue SE. Calgary, Alberta T2G 0V2. Taiga Consultants Ltd. has a Permit to Practice from the Alberta Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) since 1978.

I am a project geologist with Taiga Consultants Ltd. I am a graduate of the University of Windsor, Windsor, Ontario with a B.Sc. in Geology in 1981. I was a member in good standing of APEGGA from 1986 to 1996. In addition to 14 years of field experience in mineral exploration, my relevant experience for purposes of completing this report includes a B.Sc. thesis completed at the University of Windsor in 1981 entitled "Soil Conductivity as an Exploration Tool, Nithi Mountain, British Columbia".

The Geochemical Report presented is based on my personal involvement in the field program and a review of all available geological and technical data on the claims.

Dated at Calgary, Alberta, November 12, 2004

Terri B. Millinoff

11.2 Certificate – James W. Davis

I am the co-author of the report entitled "Geochemical Report, Nithi Mountain Molybdenum Porperty", submitted for assessment in November 2004. I hereby make the following declarations:

My name is James W. Davis and I am a Consulting Geologist with Taiga Consultants Ltd. My office address is #4, 1922 - 9th Avenue SE, Calgary, Alberta T2G 0V2. I am the vice president of Taiga Consultants Ltd., which has a Permit to Practice form the Alberta Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) since 1978.

I am a senior geologist and vice president of Taiga Consultants Ltd. I am a graduate of St. Louis University, St Louis, Missouri with a B.Sc. in Geology in 1967 and a M.Sc. in Geology in 1969. I am a long-standing member (since 1974) of the Professional Geologist in the Province of Alberta (APEGGA) and a Fellow of the Geological Association of Canada. In addition, I am a member is good standing of the Canadian Institute of Mining and Metallurgy and the Society of Economic Geologists I have continuously practised as a geologist for the past thirty-four years. My relevant experience for purposes of completing this technical report includes the following:

- Exploration Geologist, Geophoto Services Ltd., 1969 to 1973.
- Exploration Geologist, Union Oil Company of Canada, 1973 to 1977.
- Consulting Geologist, Taiga Consultants Ltd., 1977 to the present.

The Geochemical Report presented is based on my personal involvement if the field program and a review of all available relevant geological and assessment data on the claims. This information has been personally reviewed and conclusions presented in this report are made in the context of my years of experience in mining exploration in the Canada.

Dated at Calgary, Alberta, November 12, 2004

James W. Davis, P.Geol., F.GAC

12. Selected References

- Anderson, R.G.; L'Heureux, R.; Wetherup, S.; Letwin, J.M. (1997): Geology of the Hallet Lake map area, central British Columbia: Triassic, Jurassic, Cretaceous and Eocene? Plutonic rocks; <u>in</u> Current Research 1997-A; Geological Survey of Canada, pp.107-116
- Carr, J.M. (1965): Nithi Mountain; British Columbia Ministry of Mines and Petroleum Resources, Annual Report 1964, pp.62-63
- Carter N.C., (1982): Porphyry copper and Molybdenum deposits west central British Columbia; British Columbia Ministry of Energy Mines and petroleum Resources, Bulletin 64, p. 44-45.
- Davis, J.W.; Aussant, C.H. (1980): Geochemical Report on the Nithi Mountain Moly Property Project, Fraser Lake, British Columbia; assessment report for Rockwell Mining Corporation.
- Davis, J.W. (1981): Road Building, Trenching, and Geochemical Report on the Nithi Mountain Molybdenum Property, Fraser Lake, British Columbia: assessment report for Rockwell Mining Corporation

----- (1981): Drilling Report on the Nithi Mountain Molybdenite Property, Fraser Lake, British Columbia; assessment report for Rockwell Mining Corporation

- Harris, F.R. (1975): Geological, Geophysical, Geochemical Report on the Nithi Mountain Property: for Amex Potash Limited (Assessment File 5714)
- ----- (1976): Assessment Report on Percussion Drilling on Nithi Mountain Property: for Amex Potash Limited (Assessment File 5915)
- L'Heureux, R.; Anderson, R.G. (1997): Early Cretaceous plutonic rocks and molybdenite showings in the Nithi Mountain area, central British Columbia; <u>in</u> Current Research 1997-A; Geological Survey of Canada, pp.117-124
- Mate, D.J.; Levson, V.M. (1999): Quaternary Geology of the Marilla Map Area; <u>in</u> www.em.gov.bc.ca/Mining/Geolsurv/Surficial/NechakoMap/default.htm

Nechako River Minfile, www.em.gov.bc.ca/mining/Geolsurv/minfile/mapareas/93fcov.htm

- Roberts, A.F. (1970): Report on the Nithi Mountain Property: for Nithex Exploration & Development Ltd. (Assessment File 2841)
- ----- (1970): Geochemical report on Nithi Mountain: for Nithex Exploration & Development Ltd. (Assessment File 2842)

- ----- (1970): Report on Nithi Mountain Property and Drill Logs for Holes No.1 and 2: assessment report for Nithex Exploration & Development Ltd.
- ----- (1973): Drilling Report on Holes N1-73 and H4-73: for Nithex Exploration & Development
- Sinclair, D.W. (1995): Porphyry Mo (Low-F-type) in Selected British Columbia Mineral Deposit Profiles, Volume 1 – Metallics and Coal (Lefebure, D.V. and Ray, G.E., ed.), British Columbia Ministry of Employment and Investment, Open File 1995-20, p.93-96 <u>in</u> www.em.gov.bc.ca/Mining/Geolsurv/Metallicminerals/MineralDepositProfiles/
- Struik, L.C. (1998): Bedrock geology, Fraser Lake, British Columbia; Geological Survey of Canada, Open File 3559
- Tipper, H.W., et al. (1963): Nechako River Map Area, British Columbia: Geol. Survey Canada Memoir 324
- Whelan, J.B., et al., (2001) Geochemistry and Nb Isotopes of the François Lake plutonic suite, Endako Batholith; host and progenitor to the Endako molybdenum camp, central British Columbia; <u>in</u> Can Journal of Earth Science, Vol.38, No.4, pp.603-628

Loring Laboratories Ltd. 629 Beaverdam Rd NE Calgary, Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Preparation Procedures for Geochemical Samples

- 1 <u>Soil and Silts</u>:
 - a) The soil sample bags are placed in dryer to dry at 105°C.
 - b) Each sample is passed through an 80 mesh nylon sieve. The +80 mesh material is discarded.
 - c) The -80 mesh sample is placed into a coin envelope and delivered to the laboratory for analysis.
- 2 <u>Lake Sediments</u>:
 - a) The sediment sample bags are placed into the dryer at 105°C until dry.
 - b) The dried material is transferred to a ring and puck pulverizer and ground to -200 mesh.
 - c) The -200 mesh pulp is then rolled for mixing, placed into a coin envelope, and taken to the laboratory for analysis.
- 3 <u>Rocks and Cores</u>:
 - a) The samples are dried in aluminum disposable plans at 105° C.
 - b) They are then crushed to 1/8'' in jaw crusher.
 - c) The 1/8'' material is mixed and split to sample pulp size.
 - d) The sample is then pulverized to 100 mesh, using a ring and puck pulverizer.
 - e) The -100 mesh material is rolled on rolling mat and transferred to sample bag. The sample is then sent to the laboratory for analysis.

Au, Gold (Fire Assay/AA)

- 1. Weight 10 gm sample into a fire assay crucible with the appropriate amount of fluxes, flour, and mix.
- 2. Add silver inquart.
- 3. Place crucible in assay furnace and fuse for 40 minutes.
- 4. Pour samples, remove slag and then cupel buttons.
- 5. Place beads in test tubes and dissolve with aqua regia.
- 6. After dissolution is complete, bulk to appropriate volume and run against similarly prepared gold standards on AA.

BASE METALS and ARSENIC

- 1. Weigh 0.5 gm sample into a 22x177 mm test tube. Along with checks, blanks, and certified reference materials interspersed amongst the samples.
- 2. Add 2 ml 1:1 HNO3, 3 ml conc HCl to each test tube.
- 3. Place test tubes in aluminum racks which have been on the hot plate at high heat beforehand to heat the sand.
- 4. Digest the samples for 1 hour on a two-switch plate.
- 5. Remove tubes and place in wire racks and allow to cool.
- 6. Dilute to the 10 ml mark with distilled water and then mix well on the vortex mixer.
- 7. Analyze on the ICP.

Preparation of Low-Grade Molybdenum Samples for AA Analysis

<u>SCOPE</u>: This document applies to all samples within the range of the concentration present in Rougher Tail, Flotation Feed and First Cleaner Tails. Mine drill hole cuttings and diamond drill core samples fall within this category.

<u>PURPOSE</u>: The purpose of this document is to describe the steps required for the preparation of samples containing 0.750% MoS2 or less.

<u>PROCEDURE</u>: Weigh 2 grams into 250 ml beakers. Add 40 ml of 30% HCl, cover and digest for 10-15 minutes on a 3 switch plate. Filter through #2 fast fold papers into waste catch beakers. Wash 3 times with hot water to ensure that all oxides are removed.

<u>NOTE</u> – Before filtering, if oxide content of sample is required, place a 200 ml Phosphoric flask containing 25 ml of AlCl3 solution under the funnel. Wash the sample 3 times with hot water, add 10 ml of HCl, cool and bulk to the mark. The sample is ready for analysis on the AA.

Now place the filter papers containing the sulfides back into the beakers and place in front of the fuming hood. Add 5 ml HCl, 10 ml HNO3 and 8 ml of HCLO4 to the samples. The addition of these acids must be done in this order and done in front of the fuming hood. Put covers back on the beakers.

Place the beakers on a 3 switch plate until vigorous white fumes have evolved. Move to the edge of the hot plate and fume a further 3-5 minutes. Remove from the hot plate and cool.

Wash the lids and sides of the beakers with distilled water and add 20 ml of concentrated HCl. Place on the hot plate and bring to a boil. Boil at least 3 minutes. Remove from the hot plate and place on the beaker shelf over the funnel racks in numerical order. Rinse off the lids using distilled water in a plastic wash bottle.

<u>NOTE</u> – Rougher tail and scavenger tail samples are filtered into 100 ml flasks, containing 12 ml AlCl3. All other samples are filtered into 200 ml Phosphoric flasks containing 25 ml of AlCl₃ solution. This effectively doubles the concentration, increasing the accuracy of the assay.

To continue – filter into the flasks using #2 fast fold Whatman papers. Wash 3-4 times with hot water. Bulk flasks to the neck and cool to 20 C. Bulk to line, stopper and shake well.

The samples are now ready for analysis on the Atomic Absorption Spectrophotometer.

Preparation for 30-element ICP analysis

- 1. 0.5 gram sample is weighed into a test tube.
- 2. 5 ml of 1-3-2 HNO3-HCl-water mixture is added to test tube
- 3. Samples are heated at 95°C for 1 hour in aluminum digestion blocks.
- 4. Samples are cooled and 5 ml of distilled water is added to adjust volumes to 10 ml.
- 5. Samples are mixed on vortex mixer and allowed to settle.
- 6. ICP is turned on and allowed to warm up for 15 minutes before standardization and analysis.
- 7. Samples are transferred to auto sampler tubes and placed in racks.
- 8. Samples, checks, and standard reference samples are analyzed by ICP for 30-element package.
- 9. Final analysis is checked to ensure all QA/QC controls are met, and report is generated for client.

Nithi Mountain Property, BC TERRI 1-4 Mineral Claims

Loring Laboratories Ltd. 629 Beaverdam Rd NE

629 Beaverdam Rd NE Calgary, Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

To: TAIGA CONSULTANTS LTD. #4, 1922 – 9th Avenue SE Calgary, Alberta File No : 47042 Date : November 3, 2004 Samples : Rock

Attn: Jim Davis

Certificate of Assay

Sample No.	MoS ₂ %	
TM-04-01	0.049	
TM-04-02	0.091	
TM-04-03	0.179	
TM-04-04	0.058	
TM-04-05	0.011	
TM-04-06	0.056	
TM-04-07	0.110	
TM-04-08	0.013	
TM-04-09	0.031	
TM-04-10	0.140	
TM-04-11	0.035	
TM-04-12	0.018	
TM-04-13	0.031	
TM-04-14	0.091	
TM-04-15	0.017	
TM-04-16	0.425	
TM-04-17	0.026	
TM-04-18	0.132	
TM-04-19	0.014	
TM-04-20	0.132	
TM-04-21	0.083	
TM-04-22	0.217	
TM-04-23	0.072	
TM-04-24	0.127	
TM-04-25	0.038	
TM-04-26	0.101	
TM-04-27	0.138	
TM-04-28	0.013	
TM-04-29	0.133	

$MoS_2 \%$	
0.011	
0.128	
0.094	
	0.011

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Assayer

To: TAIGA CONSULTANTS LTD.

Calgary, Alberta

Attn: Jim Davis

1588, 530- 8th Avenue S.W.

Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

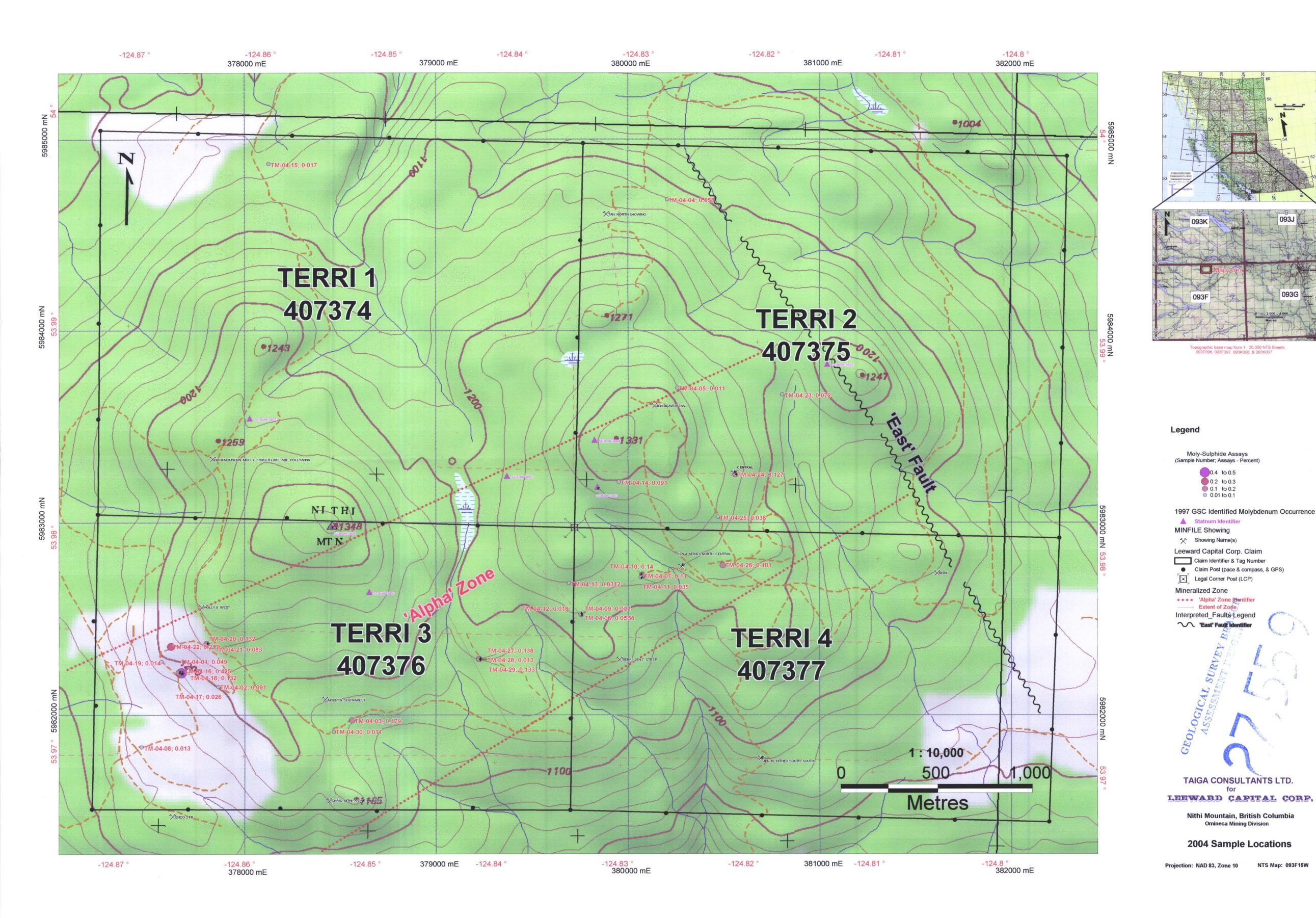
FILE: 47042

DATE: October 22, 2004

30 ELEMENT ICP ANALYSIS

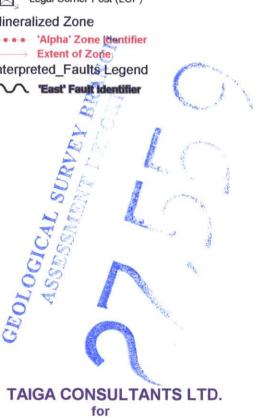
Sample	Ag	LA	As	Au	B	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Ma	Ma	Mo	Ma	Ni	P	DL	01	_						
No.	ppm	%	ppm	ppm	ppm	ppm	ррп	1 %	ppm					%	DDA	1 %	DDD	1 ppm	%	ppr		Pb		Sr			U	V	W	Zn
TM-04-01	2.1	0.33		<1	27	52	18	0.03		19	185			0.24	8	0.05			0.04		and in case of the local division of the loc	ppn	1 ppm		No. of Concession, name	of the local division of the local divisiono	фрп	n ppr	n ppn	n ppm
TM-04-02	0.8	0.45	2	<1	22	47	<1	0.01	<1	11	204			0.26		0.03			0.01	15			1	14	8	< 0.01	2	8	<1	7
TM-04-03	<0.5	0.53	2	<1	28	37	<1	0.09	<1	13	181	20		0.14		0.16			0.09	23	0.01	21	<1	11	5	<0.01		9	<1	5
TM-04-04	<0.5	0.51	2	<1	22	17	<1	0.02	<1	5	174	7		0.31		0.02		27	0.03	23 5	0.02	12	<1	6	12			17	<1	13
TM-04-05	< 0.5	0.37	<1	<1	22	10	<1	0.01	<1	5	177	9		0.23		0.01	69	40	0.01	37		11	2	4	15		-	7	<1	5
TM-04-06		0.46	2	<1	22	16	<1	0.01	<1	7	217	9		0.31	9	0.01	29		0.01	11	< 0.01		2	2	9	< 0.01	-	8	<1	10
TM-04-07	<0.5	0.41	1	<1	22	10	<1	0.01	<1	3	175	3		0.30		0.01			0.01	12			<1	3	9	<0.01		9	<1	4
TM-04-08		0.37	2	<1	26	37	<1	0.02	<1	9	127	11		0.17		0.02			0.04	7	129-54		<1	1	14	<0.01		8	<1	4
TM-04-09	<0.5	0.23	1	<1	27	6	<1	0.03	<1	5	156	4		0.15	7	0.02	100		0.09	6	< 0.01		2	5	7	< 0.01		8	<1	3
TM-04-10	< 0.5	0.24	1	<1	24	7	<1	0.01	<1	6	113	9		0.08	12	0.01	15		0.09		<0.01		1	<1	8	< 0.01		5	<1	2
TM-04-11	<0.5	0.54	2	<1	22	12	<1	0.01	<1	4	226	4		0.39	_	0.01	24		0.03	and the second second	A Designation of the local division of the l		<1	1	6	< 0.01	<1	6	<1	5
TM-04-12	<0.5	0.51	1	<1	23	14	<1	0.02	<1	4	179	6			11	0.01	9		0.01	7	0.00.1	13	1	1	15	< 0.01	<1	10	<1	4
TM-04-13	<0.5	0.42	1	<1	20	10	11	0.01	<1	5	156			0.32		0.01	37		0.01	7	<0.01	16	1	3	9	<0.01		6	<1	4
TM-04-14	<0.5	0.31	<1	<1	27	6	9	0.01	<1	7	172			0.15		0.01	34	522		9	< 0.01	8	<1	1	8	< 0.01		5	<1	4
TM-04-15	<0.5	0.78	<1	<1	27	30	21	0.13	1	27	190	4	1.39			0.29			0.03	15	<0.01	27	<1	2	11	< 0.01	<1	7	<1	18
TM-04-16	1.1	0.53	1	<1	26	58	23	0.00	<1	13	89	2		0.35		0.03	the second day of the second day is not the second day of the second day of the second day of the second day of	2490			0.04	12	1	11	<1		<1	27	<1	15
TM-04-17	1.8	0.47	<1	<1	23	42	27	0.01	<1	10	166		0.49		3	0.02	22	The second second	0.02	6	< 0.01	2	<1	4				9	3	2
TM-04-18	27.4	0.40	<1	<1	25	46	145	0.00	1	15	195		0.78			0.02	12		0.01		<0.01	9	2	2		< 0.01		7	<1	4
TM-04-19	<0.5	0.47	<1	<1	24	43	20	0.01	<1	16	219		0.87		-	0.03	13		0.04	7	< 0.01	171	<1	4	<1	< 0.01		11	<1	4
TM-04-20		0.28	<1	<1	25	31	32	0.01	<1	8	233		0.38			0.02			0.01			11	2	5	1	< 0.01		12	<1	5
TM-04-21	05220	0.36	<1	<1	25	55	63	0.00	1	22	263		1.17	and the second se	-	of the local division in which the local division in which the local division in the loc	21	227		_	<0.01	21	<1	1	and the second division of the second divisio	< 0.01	-	8	<1	2
TM-04-22	1.3		<1	<1	26	70	5	0.01	<1	12	187	3	0.63	0.33				1280				40	1	2		<0.01	2	12	3	4
TM-04-23	< 0.5		<1	<1	32	9	13	0.02	<1	7	149		0.36				76	379		1.1.1	0.01	21	<1	6		< 0.01	<1	8	<1	9
TM-04-24	<0.5		1	≮1	24	7	11	0.03	<1	5	168					0.02		727				8	<1	1	10	0.01	3	9	<1	7
TM-04-25	<0.5	the second se	2	<1	24	80	7	0.02	<1	5	203		0.26			1	41		0.01			12	<1	5		2000.02	<1	7	<1	6
TM-04-26	<0.5	1.1.1	<1	<1	27	6	18	0.01	<1	7	115		0.35			0.02	-	557		_		15		6		< 0.01	7	7	<1	4
TM-04-27	0.5		1	<1	26	43	11	0.01	<1	5	197		0.26		-			774			2	15		<1		< 0.01	<1	5	<1	22
TM-04-28	<0.5	-	<1	<1	23	11	<1	0.01	<1	3	206		0.17				95		0.01		100000000000000000000000000000000000000	32	<1	2		< 0.01	1	5	<1	4
TM-04-29	<0.5		2	<1	25	3	12	0.01	<1	4	186		0.21					100				10	2	2		< 0.01	3	5	<1	10
To the second	<0.5		<1	<1	25	26	<1	0.06	<1	13	155		0.73			0.12			0.09		<0.01	6	<1	1		<0.01	2	6	<1	3
TM-04-20R	6.1	0.26	2	<1	26	31	33	0.00	<1	8	228		.39 (Contraction 1 is		744 (-	0.02	9	1	5	4		<1	11	<1	17
STD	1.6		140	<1	27	41	33	1.61	4	60	99		3.45 (1.65							<1			Currente -	<1	8	<1	2
Mo Std.	<0.5	0.62	2	<1	30	69	30	0.80	1	22						1.37	490	505 0	0.43 1			-					<1 1	08	<1 '	146
																	100	000 0	1.00	13	0.06	7	<1 (52	<1	0.03	<1 :	26	4	23

0.500 Gram sample is digested with Aqua Regia at 95 C for one hour and bulked to 10 ml with distilled water.

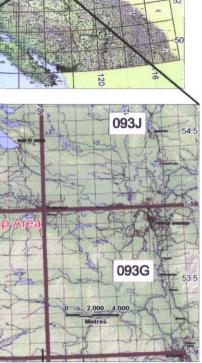

Partial dissolution for Al, B, Ba, Ca, Cf, Fe, K, La, Mg, Mn, Na, P, Sr, Ti, and W.

"R" denotes duplicate sample analyzed.

Certified by:


Appendix B – Personnel and Expenditures

Personnel											
T.Millinoff	9 days field, mapping, prospecting, sampling										
	3 days report writing										
	12	days @ \$	500	6,000.00							
J.W.Davis	9 days field, senior geologist										
	9	days @ \$	600	5,400.00							
airfare	2 geologi	sts, return	1,057.61								
freight	samples a	102.51									
equipment rentals				151.14							
truck rental				1,416.15							
fuel				109.40							
food & accommodation				493.04							
assays and ICP analyses	30	samples		625.50							
-				\$15,355.35							


2004 Sample Locations

Omineca Mining Division

e

Topographic base map from 1 : 20,000 NTS Sheets 093F096, 093F097, 093K006, & 093K007

