

Geological Survey Branch Assessment Report Indexing System

[ARIS11A]

ARIS Summary Report

Regional Geologist, Nanaimo ASSESSMENT REPORT: 27565				Date Approved: 2005.05.24			Off Confidential:			2005.11.22	
				Mining Divis	Vancouver						
Property Name: Location:	Nugget Qu NAD 27 NAD 83 NTS:	een Latitude: Latitude: 092L14E	50 59 40 50 59 39	Longitude: Longitude:	127 1 127 1	3 16 3 22	UTM: UTM:	09 09	5650495 5650680	624839 624718	
	BCGS:	092L094								.	
Camp:											ŝ
Claim(s):	Queen, N	ugget									
Operator(s): Author(s):	Pacific To Molak, Bo	paz Resourc humil B.	es Ltd.								
Report Year:	2004										
No. of Pages:	68 Pages										
Commodities Searched For:											
General Work Categories:	GEOP, P	HYS, GEOC									
Work Done:	Geochem SAMF Elema SOIL Elema Geophysi EMG Physical LINE	ical P Sampling/a ents Analyze Soil (1) ents Analyze cal R Electroma Line/grid	assaying d For : Mu 06 sample(s) d For : Mu gnetic, groun (4.8 km	(16 sample(s);) Itielement ;) Itielement d (4.8 km n;)	;VLF)				·		
Keywords:	Jurassic-(Cretaceous, (Coast Plutoni	c Complex, Gree	nstones	, Argillit	tes, Quart	z diorites	s, Granodior	ites, Shea	ir zones
Statement Nos.:	3220540										
MINFILE Nos.:	092L 178	3,092L 179									
Related Reports:	04252, 07	7991, 11283,	24334, 2495	8, 25884, 26391,	27352						

GEOLOGICAL REPORT

- Andrewski

and the second second

R Provesti Manager

Contraction of the local distribution of the

A STREET

Contraction of the local division of the loc

ON THE

NUGGET QUEEN PROPERTY

Vancouver Mining Division

British Columbia

NTS 92L/14E, 92M/3E 50°59'30''N LATITUDE, 127°14' W LONGITUDE

Prepared for

Pacific Topaz Resources Ltd. 501-905 West Pender Street Vancouver, B.C. V6C 2T7 Canada

By

Bohumil B. Molak, Ph.D., P.Geo.

Vancouver

Tel.: (604) 669-5819

States -

Desigle

A CONTRACTOR OF A CONTRACTOR OF

Table of Contents

	page
1. Summary	3
2. Introduction and Terms of Reference	4
3. Discialmer 4. Descents Description and Location	4
4. Property Description and Location	5
5. Accessionity, Chinate, Local Resources, infrastructure and Physiography	5
0. History 7. Coolectical Setting	9
2. Demosit Terror	10
8. Deposit Types	10
9. Mineralization	11
10. Exploration	14
11. Drilling	25
12. Sampling Method and Approach	25
13. Sample Preparation, Analyses and Security	25
14. Data Verification	26
15. Mineral Processing and Metallurgical Testing	26
16. Mineral Resource and Mineral Reserve Estimates	26
17. Interpretation and Conclusions	26
18. Recommendations	27
19. References	28
20. Statement of Qualifications	29
Figures	
Figure 1: Location Map with Inset	6
Figure 2: General Outcrop Map	7
Figure 3: Geology and Vein Locations	8
Figure 4: Section A – A'	12
Figure 5: Shear Zone vs Quartz Veins Relationships	12
Figure 6: Veins, Rock Samples and VLF-EM Conductors Map (E Part)	15
Figure 7: Veins, Rock Samples and VLF-EM Conductors Map (W Part)	16
Figure 8: Soil Geochemistry Map; Au, Ag, Cu, Pb &Zn Anomalies	17
Figure 9: Soil Geochemistry Map. Gold Anomalies	18
Figure 10: Soil Geochemistry Map. Silver Anomalies	19
Figure 11: Soil Geochemistry Map. Copper Anomalies	20
Figure 12: Soil Geochemistry Map. Lead Anomalies	21
Figure 13: Soil Geochemistry Map. Zinc Anomalies	22
Figure 14: Soil Geochemistry Map. Arsenic Anomalies	23
Figure 15: Distribution Histograms	24
Figure 16: VLF-EM Survey (Fraser Filter) Survey Plan	24
Annendices	
Appendix 1: Stations, Soil Samples and VLF-EM Data	30
· · · · · · · · · · · · · · · · · · ·	

Appendix 2: Rock Sample Information

Appendix 3: Assay Certificates: Rocks/Soils

1. SUMMARY

At the request of Pacific Topaz Resources Ltd., the writer conducted geological mapping, soil and rock sampling and geophysical surveys at the Nugget Queen property in July 2004. The objective of these surveys was to extend the knowledge of mineralized structures and to obtain more detailed information about the contents and grade of the base and precious metals mineralization. During the ten days field work 106 soil samples, 16 rock samples were collected and 103 VLF-EM measurements were taken within the new grid that extends the previously investigated grid by 200 meters to the north-west.

The Nugget Queen property is situated approximately 35 kilometers north-east of Port Hardy between Nenahlmai and McKinnon Lagoons on the British Columbia mainland (NTS 92L/14E, 92M/3E). The area lies at a low altitude in a moderate climate and is accessible from Port Hardy by boat, float plane, or helicopter. The Nugget Queen property comprises two contiguous mineral concessions comprising 24 claim units covering an area of 600 hectares.

An old, base/precious metals mine that occurs on the Nugget Queen property produced more than 610 tons of ore during the 1940-s. The ore was processed in Tacoma and produced altogether 44.75 kilograms of silver, 20.9 kilograms of gold, 1.76 tons of copper, 10.2 tons of lead and 234 kilograms of zinc.

During the past three decades, the deposit has been explored using geochemical and geophysical surveys and limited Winke drilling. The surveys have identified eight quartz veins and several anomalous areas containing shear zone related, mesothermal, polymetallic, gold and silver mineralization.

The shear zones, hosted in metasedimentary and metavolcanic rocks, are accompanied by milky quartz (\pm carbonate) veins and silicified zones that contain sulfidic mineralization (mainly pyrite, pyrrhotite, chalcopyrite, galena and sphalerite) in the form of disseminations and fracture coatings. Gold and silver associate with the sulphidic mineralization. The veins range in width from a few centimeters up to 2.5 meters. The veins numbered 2 to 4 have a collective strike length of over 180 meters and width up to 1.5 meter; the vein # 6 (the Main Showing) has a length 37 meters and the width up to 2.5 meters and the vein # 8 has an approximate length of more than 50 meters and is up to 2.5 meters wide.

The shear zones and the host rocks have clear geochemical and geophysical signatures and several areas of coincident geochemical and geophysical anomalies have been indicated by these methods to occur intermittently in the extensions of the known mineralization over an area more than 500 meters long.

Based on the obtained results the writer recommends a two-phase exploration program. The first phase would consist of three weeks geochemical/geophysical surveys, mapping,

sampling, mechanical trenching and channel sampling to explore the veins 2, 3, 4 and 5 and their west/north-west extensions and the extensions of the vein # 8 to the east and west. The second phase would include 500 meters of core drilling to explore the depth extensions, thickness and contents of the potential mineralized zones.

2. INTRODUCTION AND TERMS OF REFERENCE

This report has been prepared at the request of the President and CEO of Pacific Topaz Resources Ltd. of Vancouver. The writer was retained on July 18, 2004 and together with the field assistant Michael Kleso conducted the fieldwork at the Nugget Queen property during the period July 19 - 29, 2004. The field work consisted of mapping, geochemical sampling and geophysical surveys and, based on the obtained results, a re-interpretation of geological, geochemical and geophysical data, a re-evaluation of mineral potential of the property and recommendations for further prospecting and exploration have been made.

The writer is a consulting geologist having many years of experience in mineral exploration, and a Professional Geologist registered with the Association of Professional Engineers and Geoscientists of British Columbia.

The terms of reference for this assignment include preparation of a qualifying geological report in compliance with the Standards of Disclosure for Mineral Projects as set out in the Canadian Securities Administrators' (CSA) National Instrument 43-101 and its Companion Policy 43-101CP, and in accordance with the technical reporting guidelines and requirements stipulated in CSA Form 43-101F1.

It is the writer' understanding that this report will be used to satisfy Pacific Topaz Resources' Ltd. obligation to file an independent technical report in support of written disclosure concerning the Nugget Queen property.

3. DISCLAIMER

It was not within the scope of this assignment to independently verify the legal status or ownership of the mineral properties, or of the underlying option agreement and transfers of title. Pacific Topaz Resources Ltd. provided general information concerning the location and current tenure status of the mineral concessions. The writer has not reviewed the land title status, the documents supporting the mineral rights, nor completion of the required payments, procedural requirements and filings referred to above for the Nugget Queen property concessions. No other, third party concessions are known to exist in the immediate vicinity of the Nugget Queen property.

This report contains references to prior investigations within the property boundaries. The original data, statements or interpretations upon which these are based were not available to the writer, and the writer therefore does not take any responsibility for such statements or interpretations, whether they have been made public or not.

September 15, 2004

4. PROPERTY DESCRIPTION AND LOCATION

The Nugget Queen property is located approximately 35 kilometers north-east of Port Hardy (Fig. 1). The property comprises 24 mineral concession units covering a total area of 600 hectares. It is located at 50°59'30''N latitude, 127°14' W longitude (NTS 92L/14E, 92M/3E) at elevation ranging from zero to 200 meters. It has a vegetation and climate typical of the west coast of the lower B.C. mainland.

Table 1: Claim Status

Claim Name	Tenure #	# of Units	Hectares	Due date
Nugget	333668	18	450	11-24-04
Queen	333667	6	150	11-24-04
TOTALS		24	600	

The concession, registered with the Vancouver Mining District, is shown in Fig. 1. The Fig 2 is a general outcrop map and a rectangle in the Fig. 2 shows the area covered by field mapping and sampling and geophysical survey addressed in this report.

5. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The Nugget Queen property is covered by a virgin forest made up mainly of cedar and minor spruce and pine. It has never been logged and many large, fallen trees and/or thick underbrush obstruct the passage. A 60 years old corduroy trail (Fig. 2) leads from the seashore to the main showing and a few old shortcut paths connect the veins # 4 and 5 with the corduroy trail and with a small lake that offers a good camping opportunity.

Recently, Interfor Forestry Company are constructing logging roads in the area (Fig. 2), which will pass about 700 meters west of the old mine (vein #6) and even closer to the newly explored areas. This will make the access to the property much easier and eventually, a reconstruction of the old corduroy trail could be considered to make a motorable access to the prospect. The forestry company's camp site is located at the eastern end of McKinnon Lagoon.

The rock exposure varies within the property. Most of the area has a moderate relief and dense vegetation and contains limited outcrop, although, there are some very steep to vertical areas (Fig. 7) and deep gullies where the outcrop is abundant. The overburden is generally thin, less than 1 meter.

The city of Port Hardy is the nearest industrial centre that provides all services required to conduct mineral exploration.

September 15, 2004

Π

Sec. - Sec.

Here and

September 15, 2004

-

Geological Report on the Nugget Queen Property

September 15, 2004

and the second

Geological Report on the Nugget Queen Property

 ∞

6. HISTORY

The history of the concession begun in the late 1930's with the mapping of seven mineralized quartz veins and subsequent staking of the Silta claim by the Mining Company of Canada (MCC). Mining of the main vein started in 1940 and during that and the following year 604 tons of ore were mined and shipped to Tacoma. The metal production amounted to 43 kilograms of silver, 20.8 kilograms of gold, 1.76 tons of copper and 9.7 tons of lead. The mining was resumed in 1949 and the resulting production was 1.7 kilograms of silver, 93 grams of gold, 441 kilograms of lead and 234 kilograms of zinc.

The claims were then dormant until 1973, when the QC 1-40 claims were staked and an electro-magnetic survey was conducted on claims QC 1-4. In 1979 the property was restaked as the Whelakis Group by F. Beban Logging Ltd.and geological mapping, sampling, magnetometer and VLF-EM surveys were conducted. Five shallow Winke holes totalling 156.8 meters were drilled in 1983 around the main vein without conclusive results. In 1990 the property was reverted to the Crown, but in 1991 the property was restaked by D. Heyman as Cherry 1-4 claims. Followingly, Nevin Sadlier-Brown Goodbrand Ltd. reviewed available geological information obtained in 1980 and recommended further program (Grove, 1996).

The property was re-staked again in 1995 as the Nugget and Queen claims and optioned to Solaia Ventures Inc. The geological, geochemical and geophysical surveys consisting of grid cutting, silt, soil and rock sampling, trenching and channel sampling and VLF-EM survey have been conducted (Yacoub and Young, 1997). The vein #8 was discovered during this survey. The results have shown that there is a potential for the extensions of the known veins and for new zones parallel to veins #s 2-3-4, 6 and 8, respectively. Accordingly, new exploration work was recommended to extend the geochemical and geophysical anomalies beyond the limits of 1995 survey and to carry out a new trenching program. The most important results of the trenching program are shown in the following table

Trench #	Host	Attitude	Au /width	Ag /width
1	Arg.	-	0.18/2.0	9.2/2.0
5	Arg.		21.99/0.60	>30?/0.6
8	Arg.	120/68-72NE	0.039/2.0*	0.6/2.0*
9A	Arg.	130/50-60NE	0.53/2.0	0.9/2.0
9B	Arg.	124/64NE	4.45/3.0	5.2/3.0
10	Arg.	110-130/70-80NE	3.37/1.0	1.5/1.0
12	Arg.	150-160/65-70NE	7.65/1.3	13.1/1.3

Explanations: values for gold (Au) and silver (Ag) in grams per ton; width in meters; * a float sample from this trench returned >100 g/t Au and 525g/tAg. Values for Au and Ag from trenches #s 4, 6, 11, 13 and 14 returned less than 0.06 and 0.6, respectively.

In, 1999, 2000 and 2003 the Pacific Topaz Resources Ltd. conducted additional geological investigations consisting of rock sampling, interpretation of assay results and recommendations (McCrossan 1999, 2000, 2003). 28 samples of float, from old dumps near veins #s 4, 5, 6 and 8 and two discontinuous chip samples from the veins #s 6 and 8 were collected. The average value for gold obtained from all samples was 4.56 g/t Au.

7. GEOLOGICAL SETTING

The Nugget Queen property lies within one of the poorly mapped and investigated areas of British Columbia. The early geological studies were undertaken by Richardson (1874), Dawson (1876), Whiteaves (1878), Leroy (1908) and Dolmage (in: Yacoub and Young, 1997). The Geological Survey of Canada initiated the "Coast Mountains" project in 1964 and the results were published in 1968.

According to new regional, geological scheme the Nugget Queen property area is part of the Insular Superterrane of British Columbia, which comprises the Wrangelia terrane on the Vancouver island and the Coastal Plutonic Complex along the adjacent southwestern mainland. The south-western part of the Coastal Plutonic Complex consists of intermediate plutonic rocks of granitoid and diorite composition with minor felsic gabbroic bodies that were emplaced between Middle Jurassic and Middle Cretaceous periods.

The rock suites of the Wrangelia Terrane consist of volcanic and marine assemblages ranging in age from Middle Triassic (?) to Early Cretaceous (?). These assemblages represent the remnants, or the roof pendants trending north-west that have been metamorphosed to green schist – amphibolite facies metamorphism and locally were assimilated by the Coastal Plutonic Complex.

At the Nugget Queen property the roof pendant rocks represent metavolcanic greenstone of intermediate to mafic composition and marine, slaty argillite grading to black shale/schist with minor tuffaceous intercalations. The plutonic rocks on the property include quartz diorite, granodiorite and diorite (Figs. 4).

The regional structures in the area trend north-west. This trend also has the Malaspian Fault, which has been inferred to run along the axis of Nenahlmai Lagoon. The quartz veins and mineralized structures on the property trend east-west to north-west – south-east and dip steeply to the north. Previous studies (MCC, Grove, 1996, Yacoub and Young, 1997) have identified up to eight quartz vein exposures. The veins, numbered two to six, have a potential collective strike length of over 500 meters and are open to the west –north-west, east-south-east and at depth.

8. DEPOSIT TYPES

The Nugget Queen property is host to mesothermal type polymetallic vein mineralization emplaced either along east-north-east – west-south-west, or east-west trending shear zones. The shear zones developed during and/or after the extensional episode of shearing deformation and acted as conduits for hydrothermal fluids, which precipitated their

September 15, 2004

contents at the contact or about the metasedimentary black argillite shale/schist. The precipitation could have taken place due to reducing conditions prevailing within, or near the carbon-bearing lithology. At the same time, the carbon, or graphite in the country rock accumulated along the shearing planes and acted as lubricant for tectonic slabs moving along shear planes past each other.

Two vein systems occur at the property, the first trending roughly east – west (veins (#s 2, 3 and 4) and the second (veins #s 5, 6) trending $\sim 120^{\circ}$. The former is composed of almost equidistant undulations spaced 15 - 20 meters and striking between 75 and 110°. Both systems dip to north – northeast at angles ranging from 65° to nearly vertical. The vein # 8 may belong to the first system however, the information is not sufficient enough to date to substantiate this.

Based on the cross section constructed through the lithological unit and mineralized zone (Fig. 4) the rocks underlying the property represent tectonic scales trending uniformly north-west and dipping north-east. This tectonic assemblage is probably a result of collision that progressed from north, or north-east and the acute angle between the general structures/lithological boundaries and the two systems of mineralized veins are conducive to oblique collision and shearing deformation with dextral strain component (Fig. 5).

The absence of contact-metamorphic effects in volcanic rocks and black shale/schist suggests the plutonic and meta-sedimentary rocks on the property came into contact due to tectonic processes post-dating the intrusive event. In support of this, the alteration in the plutonic rock seems to be coeval with the low-grade metamorphism of the enclosing rocks and with the deformation event. After the collision, the argillitic black shale/schist and the metavolcanic rocks in the area probably formed tectonic scales (shingles) and a tight fold with the plutonic rock in its hinge. The "upper" part of this fold was later removed due to erosion.

9. MINERALIZATION

Generally, the mesothermal type polymetallic mineralizations comprise the following mineral association: native gold – pyrite – pyrrhotite - enargite – bournonite – chalcocite - argentite – tetrahedrite- chalcopyrite – bornite - galena – sphalerite- arsenopyrite – smaltite - niccolite – cobaltite (molybdenite - scheelite) – sulphosalts.

Based on the previous and present surveys and chemical analyses made for this report the following elemental and mineral associations emerge at Nugget Queen property:

a. Au - Ag - Bi - Cu - Pb - (Zn) - (W): native gold – native silver - argentite – bismuth and/or bismuthinite – chalcopyrite – galena – (sphalerite) – (scheelite)

September 15, 2004

- $b. \ Ag-Cd-Pb-Zn: \ native \ silver-argentite-galena-cadmium-bearing \ sphalerite$
- c. Fe Ni Co: pyrrhotite, pentlandite, cobaltite
- d. Sb Pb Zn Ag: tetrahedrite, stibnite
- e. Pb Zn: galena-sphalerite
- f. Ca Mg Sr: calcite dolomite magnesite siderite ankerite

September 15, 2004

No.

g. P - Ti - V - Sc - Ga: apatite - monazite - sphene - rutile - magnetite - ilmenite, vanadinite

Most mineralized veins are located in the sheared silicified, or brecciated argillite, or black shale/schist with subordinate, volcanic, tuffaceous intercalations and/or in the metavolcanic rock. The quartz vein # 1 does not contain notable mineralization and the vein # 7, hosted by the plutonic rock, is sterile.

The individual mineralized veins vary in thickness from centimeters to 2.5 meters and the veins #s 2, 3 and 4 are up to 180 meters long. However, collective length of the veins #s 2, 3, 4, 5 and 6 would exceed 500 meters, if their contiguity can be proved. The veins are open along strike and depth, and presumably the extent of most of them is much greater than that observed in the outcrops, mine, or trenches.

Table 2 summarizes information about the quartz veins on the property (based on Grove, 1996, Yacoub & Young, 1997 and data obtained during this survey):

#	Length	Thick	Attitude	Host	Min.	Ø width of	Øgrade	Σ of
						sample	for Au	assays
1	~100	1-3.5	40/85°NW	ABS	Q	· –	-	-
2	~60	~1.5	WNW/~90?	MV	q/sul			-
3	40	0.05-0.5	WNW/~90?	MV	q/sul	0.38	39.96	37
4	80	0.05-1.5	WNW/~90	ABS	q/sul]		
5	~80	~.5?	NW/?	ABS	q/ul			
6	29(37)	0.51-1.68	100/70°N	ABS	q/ul	0.66	22.26	15
7	?	?	?	GRD	?	-		-
8	~50	1-2	100/85°N	ABS	q/sul		0.66	4

Explanations: ABS – argillite-black shale/schist; MV – metavolcanics; GRD – granodiorite; Min. – mineralogy; q – quartz; sul – sulphides (mainly pyrite, chalcopyrite, galena, sphalerite, pyrrhotite); length, thickness, width of sample in meters; grade in grams per ton.

The sulphides and magnetite occur in the gangue minerals, or in encasing altered metasedimentary, or meta-volcanic rocks minerals in two generations; the older in the form of disseminations, blebs and/or clusters and the younger in the form of coatings along brittle fractures.

The precious metals mineralization associates with the sulphide mineralization, presumably in the form of microscopic inclusions. Silver may preferably associate with galena and/or tetrahedrite.

The gangue minerals at the property include quartz-carbonate-chlorite-sericite-graphite (or semi-graphite) and the wall-rock alteration includes moderate to intense silicification, carbonatization, chloritization, sericitization and argillitization, typical for mesothermal mineral deposits. The supergene alteration/oxidation products are bornite, malachite (on account of chalcopyrite); hematite, limonite, or goethite on account of magnetite and/or iron containing sulphide minerals

10. EXPLORATION

Geological mapping, soil and rock geochemistry sampling and geophysical surveys have been conducted on the Nugget Queen property from July 19 to 29, 2004 with the objective to explore the extensions of the base and precious metals mineralization. Based on the results of previous investigations (Grove 1996, Yacoub and Young 1997 and McCrossan 2003) the area north-west of existing survey coverage has been selected for this survey. A grid using the old baseline has been set up and stations spaced 20 meters were marked perpendicularly, north-west of line 3+80 W up to the line 6+00W.

A total of 106 samples from the B-horizon of soil were taken and 103 VLF-EM measurements were recorded at stations within the grid (Figs 8, 9, 10, 11, Appendix 1). In addition, 16 simple grab, chip, and discontinuous chip channel rock samples were collected from the veins #s 2, 3, 4, 5, 6 and 8 (Figs. 6, 7, Appendix 2, 3). All assay values for gold, silver and copper have been plotted on the maps (Figs. 9, 10 and 11), whereas only anomalous and significantly elevated assay values were plotted for lead, zinc and arsenic (Figs. 12, 13 and 14). The anomalous values printed in red and the anomalies east of the line 3+80 W inclusive come from the report of Yacoub and Young (1997). The maps in Figs. 9 to 11 actually show the area that has been covered by soil geochemistry and geophysical survey in July 2004.

The mono-elemental anomaly maps also show the mineralized veins and VLF-EM conductors to see how geochemical data correlate with the geological and geophysical data. The ranges for low, medium and highly anomalous values were adopted from the previous survey (Yacoub and Young, 1997) to allow for the integration of the old and new data. However, the values for lead and arsenic were adjusted as shown in the table below. The distribution histograms for gold, silver, copper, lead, zinc and arsenic are shown in Fig. 15. In general, a good agreement was found between the results for gold, silver, copper and zinc obtained in our and the previous survey (Yacoub and Young, 1997). In most cases the ranges are close to 90, 95 and 97.5 percentiles.

Element	Low	Medium	High	
Gold (ppb)	10-30	31 - 100	>100	
Silver (ppm)	0.4 - 0.5	0.6-0.8	>0.8	
Copper (ppm)	30-40	41 - 54	>54	
Lead (ppm)	25-40	41 - 60	>60	
Zinc (ppm)	75 - 100	101 - 150	>150	
Arsenic (ppm)	10-15	16-20	>20	

The following table lists the ranges for low, medium and high anomalous values:

Fig. 16

The VLF-EM measurements were made using a Sabre VLF-EM receiver model 27. The obtained data were Fraser filtered and computer plotted. D. Mark P. Geo processed the data and prepared the contour map showing the north-west extensions of A and B conductors (Fig. 16), which run north-west from the previously surveyed area.

The soil and rock geochemistry and electro-magnetic method proved to be suitable and cost effective methods during our survey. A new grid spaced 20 meters has been set up (without slope corrections) north-west of line 3+80 W to extend the prospected area by 200 meters (Figs. 7). The distances between stations +40S and -+60 S within the lines BL3+60 and 5+20 may be somewhat reduced due to an escarpment feature running between these lines (Fig. 7).

11. DRILLING

No data on historical drilling is available for the Nugget Queen property

12. SAMPLING METHOD AND APPROACH

The soil samples from B horizon were collected using a hand auger and rubber gloves were used for transfering the soil in the standard geochemical paper bags to prevent introduction of zinc and/or other trace elements into the samples.

The rock samples represent simple grab samples from the old dumps from the veins #s 4,5 and 6, chip samples from the outcropping veins # (2?) 3,4,5 and 8 and discontinuous channel samples across the true widths of the veins # 3 and 8. The rock samples were taken using geological hammer, and/or a sledge hammer with chisel to obtain discontinued channel samples. After collection, the samples were placed in the standard polypropylene bags, provided with a tag with sample number and closed with the flagging tape. The sample descriptions are included in the Appendix 2.

GPS readings (NAD 27) were recorded at most stations, however, due to dense canopy the signal was too weak at some stations to obtain accurate reading and the error may be in the order of 50 - 100 m.

13. SAMPLE PREPARATION, ANALYSES AND SECURITY

The soil and rock samples were not modified after collection. The writer personally transported the samples from the property to Vancouver and dispatched them securely to the ALS Chemex Laboratory for analysis. The ALS Chemex Laboratory quality system complies with the requirements of the international standards ISO 9001:2000 and ISO 17025:1999.

The rock samples were crushed, split, pulverized and assayed using the following procedures: ME-ICP41 – 34 elements aqua regia ICP-AES; GEO-AR01 aqua regia digestion, and gold and silver over limit were assayed using Ag-AA46 Ore grade Ag – aqua regia /AA; Au-AA23 Au 30g FA-AA finish; Au-GRA-21 Au30g FA-GRA finish

September 15, 2004

set. (see Appendix 3). The soil samples were dried, sieved (180µm) and assayed using ME-ICP41 – 34 elements aqua regia ICP-AES; GEO-AR01 aqua regia digestion

14. DATA VERIFICATION

The ALS Chemex Laboratory's quality control includes repeat sample assays as well as standard reference materials for gold and 34 elements suite (Appendix 3).

15. MINERAL PROCESSING AND METALLURGICAL TESTING

More than 610 tons of ore were mined out from the # 6 vein at the Nugget Queen property during the 1940-s. The ore was processed in Tacoma, and the production totalled 44.75 kilograms of silver, 20.9 kilograms gold, 1.76 tons copper, 10.2 tons of lead and 234 kilograms zinc (Minister of Mines, Annual Reports, 1939-1941, 1949). However, the information about processing methods and metallugical data were not available to the writer.

16. MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

The results of the present field work, sampling and assaying program cannot be used in any attempt to calculate, or estimate mineral resources or reserves for the Nugget Queen property.

17. INTERPRETATION AND CONCLUSIONS

The Nugget Queen property is host to mesothermal, vein type, polymetallic mineralization emplaced along east-north-east – west-south-west to east-west trending shear zones. The veins contain milky quartz (\pm calcite) with base/precious metals mineralization in the form of sulphide disseminations and fracture coatings. Most mineralized veins are located in the argillite, black shale/schist with tuffaceous intercalations and in metavolcanic rocks, or near their contacts. The width of the veins ranges between a few cm to 2.5 meters. The collective length of the veins #s 2,3,4,5, 6 and 8 may exceed 500 meters.

The geochemical survey indicates the vein system composed of veins #s 2, 3 and 4 continues to the west and attains a collective length of more than 200 meters. The average assays in 16 rock samples returned 2.65 g/t gold and 30.48 g/t silver. A 0.9 m discontinuous channel sample from vein # 3 (01530) returned 5.52 g/t gold and 3 g/t silver. Average value for gold in samples 01519 and 01520 is 6.09 g/t Au and for silver 15.7 g/t Ag. These values comply with the results obtained by McCrossan (2003) and with the results of trench sampling reported by Yacoub and Young (1997).

The electro-magnetic survey results obtained during this field trip can be harmonically incorporated with the previous surveys. These results indicate that the metasedimentary and metavolcanic host rocks continue along strike to the north-west and other mineralized structures can be anticipated to occur in these lithologies in this direction.

Based on the recent field work program and analytical results the area with the best potential appears to be the veins #s 2, 3, 4 and 5 and their extensions. The geochemical results indicate that the vein # 2 extends farther to the west and the approximate combined length of the mineralized zone thus exceeds 200 meters. This area should be given priority in the future exploration program. The second importance target appears to be the area of occurrence of # 6 and 8 veins. This area was selected and recommended in the previous survey (Yacoub and Young, 1997) and we fully support this selection.

The writer has no reservations in concluding that the Nugget Queen property has a merit for further exploration and remains to be an attractive polymetallic, gold and silver mineralization target. Its value may increase with the construction of logging roads by a private forestry company that will make the access and future exploration plans much easier.

18. RECOMMENDATIONS

We recommend the following, two phase exploration program.

The first phase would consist of a three week's campaign including geological mapping, sampling, geochemical and geophysical surveys in the north-western and south-eastern extensions of the existing geochemical/geophysical grid to explore the extensions of the known mineralized veins # 2 - 5 and 8 and to identify new exploration targets. We also recommend mechanical trenching to uncover the extensions of the veins # 2, 3 and 8 and channel sampling.

The second phase would consist of three weeks campaign including 500 meters of core drilling to explore the depth extensions, thickness and contents of mineralized veins.

Budget Estimates

Phase I (20 mandays) Senior Geologist Assistants (2) Geological mapping/sampling Geochemical prospecting Geophysical survey Trenching/channel sampling Assays Transportation Camp expenses Geological report Miscellaneous (10%) **Total:**

\$6,000.00 \$8,000.00 \$5,000.00 \$5,000.00 \$10,000.00 \$5,000.00 \$5,000.00 \$7,000.00 \$5,000.00 \$5,000.00 \$6,100.00 **\$67,100.00**

Phase II (20 mandays)

Data review and planning	\$5,000.00
Logistics	\$3,000.00
Senior Geologist	\$6,000.00
Assistants (2)	\$8,000.00
Geological mapping/sampling	\$5,000.00
Geochemical prospecting	\$5,000.00
Geophysical survey	\$5,000.00
Trenching/channel sampling	\$10,000.00
Assavs	\$5,000.00
Transportation	\$5,000.00
Access road reconstruction	\$5,000.00
Camp expenses	\$7,000.00
Core drilling (500m \$120/1m)	\$60,000.00
Geological report	\$5,000.00
Miscellaneous	\$13,400.00
Total	\$147,400.00

19. REFERENCES

Section of

Grove, E.W. 1996: Geological Report and Work Proposal on the Nugget Queen Claims, Seymour Inlet Area, B.C., Nevin Sadlier and Brown Goodbrand.

Mark D. 1996: Geophysical Report on the Nugget Queen property.

McCrossan E. 2003: Nugget Queen property, Geological Report, Vancouver Mining Division

Minister of Mines Annual Reports, 1939-1941, 1949

Monger J.W.H. and Journeay J.M.1992: Guide to the Geology and tectonic Evolution of the Southern Coastal Belt. G.S.C. publ.

Yacoub F.F. and Young, J. 1997: Geological and Geochemical Report on the Nugget Queen Claim Group, Seymour Inlet Area, Vancouver Mining Division, B.C.

Queen Nugget Project

Summer Exploration Program

Phase I Preparation	\$	2,000.00
Crew Mobilization Cost	\$	1,000.00
Geologist (11days @ \$650/day)	\$	7,150.00
Field assistant (15 days @ \$250/day)	\$	3,750.00
Prospector (2 days flat rate \$1,000.00)	\$	1,000.00
Geophysics (\$500.00/km @ 2kms)	\$	1,000.00
Assays	\$	3,124.47
Equipment rental	\$	2,000.00
Misc. (equipment, sample bags, maps, etc)	\$	355.46
Truck Rental (11days @ \$60/day + \$0.60 per/km) 810kms	\$	1,146.00
Car Rental (1day @ \$60 + \$0.60 per/km) 810kms	\$	546.00
Gas	\$	209.96
Travel (Ferry & Boat, Bus, Cab)	\$	1,584.92
Accommodations	\$	143.75
Report and Compilation Geologist (12days @ \$600/day)	\$	7,200.00
Laptop Rental (4 weeks @ \$200/week)	\$	800.00
Management/Supervision (14days @ \$500/day)	\$	7,000.00
Camp Costs (\$25/day per person)	\$	550.00
Food	<u>\$</u>	840.01

\$41400.57

Total

\$41400.57

20. STATEMENT OF QUALIFICATIONS

I, Bohumil (Boris) Molák, Ph.D., P.Geo., do hereby certify that:

- 1. I am a Professional Geoscientist residing at 6240 Constable Drive, Richmond, BC, V7E 3Y2, Canada.
- 2. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (License No.28600).
- 3. I graduated from the Comenius University, Czechoslovakia, with a Bachelor of Science (Mgr.) Degree in Economic Geology in 1970. In 1980 I obtained the Master of Science Degree in Economic Geology (RNDr.) and in 1990 the title Doctor of Philosophy (CSc.) from the same, Comenius University. I have practiced my profession continuously since 1970.
- 4. Since 1970 I have been involved in geological research, prospecting, and exploration for precious and base metals, uranium, tungsten, molybdenum, nickel, cobalt, industrial minerals and hydrocarbons in Slovakia, Zambia, Cuba, Guinea, Canada, Chile and Argentina
- 5. I am presently a self-employed consulting geologist and have been in this position since July 31, 2003.
- 6. I conducted the field work and sampling on the Nugget Queen Property between July 19 and 29, 2004.
- 7. I am the Qualified Person for the purposes of National Instrument 43-101 and am responsible for all sections of this report. The sources of all information not based on personal examination are quoted in the report. The information provided by other parties is to the best of my knowledge and experience correct.
- 8. As of the date of this certificate I am not aware of any material fact or material change with respect to the subject matter of this report that is not reflected in this report, the omission of which would make the report misleading.
- 9. I am independent of Pacific Topaz Resources Ltd. in accordance with the application of Section 1.5 of National Instrument 43-101.
- 10. I have read National Instrument 43-101, Standards of Disclosure for Mineral Projects and Form 43-101F1, Technical Reports and this report has been prepared in compliance with NI 43-101 and Form 43-101F1 and in conformity with generally accepted Canadian mining industry practice.

Dated at Vancouver, BC, Canada, this 15th day of September, 2004.

Appendix 1							
Stations, Soil Samples & VLF-EM Data							
Easting	Northing	Station/sample	VLF-EM	Notes			
Line 4+0	0 W			· · · · · · · · · · · · · · · · · · ·			
625512	5650652	BL 4+00 W	+22	Baseline			
625520	5650426	+20 S	+32				
625500	5650609	+40 S	+32	Very steep slope			
625475	5650583	+60 S	+32	Medium steep			
625484	5650618	+80 S	+46	Near the creek			
625485	5650586	+100 S	+52	At the creek			
		+120 S	+40	On other (S) side of creek			
Line 4+2	0 W			• • • • • • • • • • • • • • • • • • • •			
No readin	ng	+20 N					
No readin	ng	+40 N					
No readin	ıg	+60 N					
No readin	ıg	+80 N					
No readin	ng	+100 N					
No readi	ng	BL 4+20 W		Baseline			
625500	5650624	+20 S	+36				
625493	5650621	+40 S	+30	Vertical outcrop of ABS, strike/dip 102/65 N			
625480	5650606	+60 S	+34	Vertical outcrop of ABS, strike/dip 102/65 N			
625450	5650632	+80 S	+44	Near creek, smooth slope			
625460	5650573	+100 S	+55	Outcrop 7m S of creek; sample 1527 (q+sulph)			
Line 4+4	0 W		•				
625494	5650695	+20 N	+18	Flat			
625469	5650676	+40 N	+10	Smooth slope			
625507	5650705	+60 N	-17	Medium slope			
625512	5650704	+80 N	-20	Medium slope			
625538	5650721	+100 N	-20	smooth slope			
625478	5650645	BL 4+40 W	+22	Baseline			
625480	5650840	+20 S	+28	Smooth slope			
No readin	ng	+40 S	+33	Steep to vertical, ABS outcrop, s/d 100/70 N			
625494	5650653	+60 S	+32	Very steep slope			
625463	5650596	+80 S	+45	Steep slope			
625454	5650587	+100 S	+55	Near creek (~5m)			
Line 4+60 W							
625489	5650679	+20 N	+16	Flat area			
625498	5650695	+40 N	+10	Valley			
625498	5650703	+60 N	-18	Valley			
625512	5650717	+80 N	-15	Smooth slope SW			
625517	5650728	+100 N	-22	Smooth slope to west			
625480	5650658	BL 4+60 W	+22	Smooth slope to west			
625466	5650651	+20 S	+24	Smooth slope to south			

September 15, 2004

-Manual -

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Line 4+80 W 625468 5650702 $+20$ N $+16$ Very smooth slope 625465 5650696 $+40$ N $+12$ Flat 625483 5650720 $+60$ N -12 625490 5650738 $+80$ N -20 625493 5650738 $+80$ N -20 625493 5650738 $+100$ N -24 Very dense underbrush 625433 5650678 $BL 4+80$ W $+32$ Smooth slope 625433 5650673 $+40$ S $+22$ Medium slope, ABS outcrop 120/70N 625446 5650673 $+40$ S $+22$ Steep slope 625413 5650650 $+60$ S $+22$ Steep slope 625415 5650638 $+80$ S $+40$ Medium to steep slope 625470 5650674 $+120$ S $+56$ Medium slope 625470 5650718 $+40$ N $+18$ 625470 5650751 $+40$ N $+14$ 625481 5650753 $+80$ N -20 $Valley$ 625482 5650753 $+80$ N 625481 5650753 $+80$ N -20 $Valley$ 625498 5650753 $+80$ N 625417 5650674 $+20$ S $+24$ 625443 5650674 $+20$ S $+26$ 625443 5650677 $+40$ S $+26$ 625443 5650677 $+40$ S $+26$ 625443 5650674 $+20$ S $+24$ 625447 565077 $+40$ S $+26$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
625444 5650678 BL 4+80 W $+32$ Smooth slope 625433 5650692 $+20$ S $+22$ Medium slope, ABS outcrop 120/70N 625446 5650673 $+40$ S $+26$ Very steep, ABS outcrop 115/65N 625431 5650650 $+60$ S $+22$ Steep slope 625415 5650638 $+80$ S $+40$ Medium to steep slope 625407 5650626 $+100$ S $+56$ Medium slope 625407 5650626 $+100$ S $+56$ Medium slope 625395 5650877 $+120$ S $+50$ Medium slopeLine $5+00$ W -66 Flat area 625470 5650718 $+40$ N $+14$ 625480 5650755 $+60$ N -6 625481 5650755 $+100$ N -22 625481 5650755 $+100$ N -22 625482 5650674 $+20$ S 625443 5650755 $+100$ N 625417 5650677 $+40$ S 625417 5650677 $+40$ S 625417 5650677 $+40$ S 426 Very steep to vertical, ABS outcrop $110/72N$ No reading $+60$ S $+26$ $C25440$ 5650763 $+20$ N 625447 5650716 $+40$ N 625470 5650733 $+60$ N 425 Very smooth slope 625477 5650747 $+80$ N 426 Very smooth slope 625477 5650776 $+40$ N 426 Very smo
625433 5650692 $+20$ S $+22$ Medium slope, ABS outcrop 120/70N 625446 5650673 $+40$ S $+26$ Very steep, ABS outcrop 115/65N 625431 5650650 $+60$ S $+22$ Steep slope 625415 5650638 $+80$ S $+40$ Medium to steep slope 625407 5650626 $+100$ S $+56$ Medium slope 625395 5650587 $+120$ S $+50$ Medium slope 625470 5650692 $+20$ N $+18$ 625470 5650718 $+40$ N $+14$ 625480 5650755 $+60$ N -6 625481 5650755 $+100$ N -20 625482 5650755 $+100$ N -22 625444 5650675 $+100$ N -22 625470 5650677 $+20$ S 625471 5650677 $+20$ S 625472 5650677 $+20$ S 625473 5650677 $+40$ S 625417 5650677 $+40$ S 625417 5650677 $+40$ S 426 Very steep to vertical, ABS outcrop $110/72N$ No reading $+60$ S $+26$ Utrop – finely banded ABS $110/65$ NLine $5+20$ W 40 N 625447 5650673 625073 $+20$ N 420 Very smooth slope 625470 5650733 460 N $+2$ 625477 5650747 480 N $+14$ $41lwrial sand?625477560747$
625446 5650673 $+40$ S $+26$ Very steep, ABS outcrop 115/65N 625431 5650650 $+60$ S $+22$ Steep slope 625415 5650638 $+80$ S $+40$ Medium to steep slope 625407 5650626 $+100$ S $+56$ Medium slope 625395 5650587 $+120$ S $+50$ Medium slope $11n 5 + 00$ W -66 Flat -66 625470 5650751 $+40$ N $+14$ 625480 5650755 $+60$ N -6 625481 5650753 $+80$ N -20 625498 5650755 $+100$ N -22 625498 5650755 $+100$ N -22 625444 5650685 BL $5+00$ W 625417 5650674 $+20$ S 625417 5650677 $+40$ S $+26$ Very steep to vertical, ABS outcrop 110/72NNo reading $+60$ S $+26$ $Line$ $5+20$ W -66 625440 5650693 $+20$ N 625447 5650693 $+20$ N 625447 5650716 $+40$ N 625477 5650716 $+40$ N 625477 565073 $+60$ N 625477 565073 $+60$ N 625477 565073 $+60$ N 625477 5650777 $+80$ N 625477 5650777 $+100$ N 626474 480 N -14 $4110xia1$ sand? 625477 5650777 $+100$ N 625478 5650770 </td
625431 5650650 $+60$ S $+22$ Steep slope 625415 5650638 $+80$ S $+40$ Medium to steep slope 625407 5650626 $+100$ S $+56$ Medium slope 625395 5650587 $+120$ S $+50$ Medium slope $1ine$ $5+00$ W $=$ $=$ 625470 5650722 $+20$ N $+18$ 625470 5650718 $+40$ N $+14$ Smooth slope 625480 5650705 $+60$ N -6 Flat area 625481 5650753 $+80$ N -20 Valley 625484 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650674 $+20$ S $+24$ Medium slope 625417 5650677 $+40$ S $+26$ Very steep to vertical, ABS outcrop $110/72$ NNo reading $+60$ S $+26$ Uine $5+20$ W $=$ 625447 5650693 $+20$ N 420 Very smooth slope 625477 5650716 $+40$ N 414 Very smooth slope 625477 5650774 $+80$ N 625474 5650776 $+100$ N 625474 5650776 $+100$ N
625415 5650638 $+80$ S $+40$ Medium to steep slope 625407 5650626 $+100$ S $+56$ Medium slope 625395 5650587 $+120$ S $+50$ Medium slopeLine $5+00$ W 625477 5650692 $+20$ N $+18$ 625470 5650718 $+40$ N $+14$ Smooth slope 625480 5650705 $+60$ N -6 Flat area 625481 5650755 $+100$ N -20 Valley 625498 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650774 $+20$ S $+24$ Medium slope 625417 5650677 $+40$ S $+26$ Very steep to vertical, ABS outcrop $110/72N$ No reading $+60$ S $+26$ Outcrop - finely banded ABS $110/65$ NLine $5+20$ W $=625447$ 5650716 $+40$ N $+14$ Very smooth slope 625447 5650716 $+40$ N $+14$ Very smooth slope 625477 5650747 $+80$ N $+14$ 625477 5650747 $+80$ N -14 Alluvial sand? 625474 5650774 $+80$ N -14 Alluvial sand?
625407 5650626 $+100$ S $+56$ Medium slope 625395 5650587 $+120$ S $+50$ Medium slopeLine $5+00$ W 625457 5650692 $+20$ N $+18$ 625470 5650718 $+40$ N $+14$ Smooth slope 625480 5650705 $+60$ N -6 Flat area 625481 5650753 $+80$ N -20 Valley 625498 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650674 $+20$ S $+24$ 625447 5650677 $+40$ S $+26$ 625417 5650677 $+40$ S $+26$ 625417 5650677 $+40$ S $+26$ 625440 5650693 $+20$ N $+26$ 625440 5650693 $+20$ N $+26$ 625440 5650693 $+20$ N $+26$ 625447 5650716 $+40$ N $+14$ Very smooth slope 625447 5650733 625470 5650733 $+60$ N $+2$ 625477 5650747 $+80$ N $+14$ 625477 5650747 $+80$ N -14 625484 5650777 $+80$ N -14 625484 5650777 $+100$ N -20
625395 5650587 $+120$ S $+50$ Medium slopeLine 5+00 W 625457 5650692 $+20$ N $+18$ 625470 5650718 $+40$ N $+14$ Smooth slope 625480 5650705 $+60$ N -6 Flat area 625481 5650753 $+80$ N -20 Valley 625498 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650674 $+20$ S $+24$ 625447 5650677 $+40$ S $+26$ 625417 5650677 $+40$ S $+26$ 625417 5650677 $+40$ S $+26$ 625440 5650693 $+20$ N $+26$ 625440 5650693 $+20$ N $+26$ 625440 5650693 $+20$ N $+20$ 625447 5650716 $+40$ N $+14$ Very smooth slope 625470 5650733 $+60$ N $+2$ 625477 5650774 $+80$ N -14 41100 NI -14 Alluvial sand? 625474 5650774 $+80$ N -14
Line 5+00 W 625457 5650692 $+20$ N $+18$ 625470 5650718 $+40$ N $+14$ Smooth slope 625480 5650705 $+60$ N -6 Flat area 625481 5650753 $+80$ N -20 Valley 625498 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650674 $+20$ S $+24$ Medium slope 625417 5650677 $+40$ S $+26$ Very steep to vertical, ABS outcrop $110/72N$ No reading $+60$ S $+26$ Outcrop - finely banded ABS $110/65$ NLine $5+20$ W $=$ $=$ 625447 5650693 $+20$ N $+20$ 625447 5650716 $+40$ N $+14$ Very smooth slope 625470 5650733 625477 5650747 $+80$ N -14 625477 5650770 $+100$ N 20 Allwisl sand?
625457 5650692 $+20$ N $+18$ 625470 5650718 $+40$ N $+14$ Smooth slope 625480 5650705 $+60$ N -6 Flat area 625481 5650753 $+80$ N -20 Valley 625498 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650674 $+20$ S $+24$ Medium slope 625417 5650677 $+40$ S $+26$ 625417 5650677 $+40$ S $+26$ 0 very steep to vertical, ABS outcrop $110/72N$ No reading $+60$ S $+26$ 1 under $5+20$ W $+26$ 625440 5650693 $+20$ N 625447 5650716 $+40$ N 625470 5650733 $+60$ N 625470 5650733 $+60$ N 625477 5650747 $+80$ N 625477 5650747 $+80$ N 625477 5650747 $+80$ N 625476 5650770 $+100$ N
625470 5650718 $+40$ N $+14$ Smooth slope 625480 5650705 $+60$ N -6 Flat area 625481 5650753 $+80$ N -20 Valley 625498 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650674 $+20$ S $+24$ Medium slope 625417 5650677 $+40$ S $+26$ Very steep to vertical, ABS outcrop $110/72N$ No reading $+60$ S $+26$ Outcrop - finely banded ABS $110/65$ NLine $5+20$ W $=$ $=$ $=$ 625447 5650693 $+20$ N $+20$ 625447 5650716 $+40$ N $+14$ Very smooth slope $=$ 625470 5650733 $+60$ N $+2$ 625477 5650747 $+80$ N -14 625477 5650770 $+100$ N -14
625480 5650705 $+60$ N -6 Flat area 625481 5650753 $+80$ N -20 Valley 625498 5650755 $+100$ N -22 Deep gullies, thick underbrush 625444 5650685 BL $5+00$ W $+26$ 625435 5650674 $+20$ S $+24$ 625417 5650677 $+40$ S $+26$ 625417 5650677 $+40$ S $+26$ 625417 5650677 $+40$ S $+26$ No reading $+60$ S $+26$ Outcrop - finely banded ABS 110/65 NLine $5+20$ W -6550693 $+20$ N $+20$ 625440 5650693 $+20$ N $+20$ 625447 5650716 $+40$ N $+14$ Very smooth slope -625470 5650733 625477 5650747 $+80$ N -14 625474 5650770 $+100$ N -14 625474 5650770 $+100$ N -14
625481 5650753 +80 N -20 Valley 625498 5650755 +100 N -22 Deep gullies, thick underbrush 625444 5650685 BL 5+00 W +26 625435 5650674 +20 S +24 Medium slope 625417 5650677 +40 S +26 Very steep to vertical, ABS outcrop 110/72N No reading +60 S +26 Outcrop - finely banded ABS 110/65 N Line 5+20 W
625498 5650755 +100 N -22 Deep gullies, thick underbrush 625444 5650685 BL 5+00 W +26 625435 5650674 +20 S +24 Medium slope 625417 5650677 +40 S +26 Very steep to vertical, ABS outcrop 110/72N No reading +60 S +26 Outcrop – finely banded ABS 110/65 N Line 5+20 W
625444 5650685 BL 5+00 W+26 625435 5650674 +20 S+24Medium slope 625417 5650677 +40 S+26Very steep to vertical, ABS outcrop 110/72NNo reading+60 S+26Outcrop - finely banded ABS 110/65 NLine 5+20 W
625435 5650674 +20 S +24 Medium slope 625417 5650677 +40 S +26 Very steep to vertical, ABS outcrop 110/72N No reading +60 S +26 Outcrop – finely banded ABS 110/65 N Line 5+20 W
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
No reading +60 S +26 Outcrop – finely banded ABS 110/65 N Line 5+20 W
Line 5+20 W 625440 5650693 +20 N +20 Very smooth slope 625447 5650716 +40 N +14 Very smooth slope 625470 5650733 +60 N +2 Smooth slope to north 625477 5650747 +80 N -14 Alluvial sand? 625484 5650770 +100 N 20 Alluvial sand?
625440 5650693 +20 N +20 Very smooth slope 625447 5650716 +40 N +14 Very smooth slope 625470 5650733 +60 N +2 Smooth slope to north 625477 5650747 +80 N -14 Alluvial sand? 625484 5650770 +100 N 20 Alluvial sand?
625447 5650716 +40 N +14 Very smooth slope 625470 5650733 +60 N +2 Smooth slope to north 625477 5650747 +80 N -14 Alluvial sand? 625484 5650770 +100 N 20 Alluvial sand?
625470 5650733 +60 N +2 Smooth slope to north 625477 5650747 +80 N -14 Alluvial sand? 625484 5650770 +100 N 20 Alluvial sand?
625477 5650747 +80 N -14 Alluvial sand?
625484 5650770 ±100 N 20 411
023464 5050770 ±100 IN -20 Alluviai sand?
625520 5650705 BL 5+20 W +24 Very smooth slope
625420 5650698 +20 S +20 S +20 S +20
625395 5650685 +40 S +24 Scarp (ABS)
625389 5650678 +60 S +22
Line 5+40 W
625437 5650713 +20 N +22
625447 5650718 +40 N +14 Smooth slope
625454 5650736 +60 N +8
625443 5650744 +80 N -18 Close to outcrop
625451 5650726 +100 N -20
625423 5650671 BL 5+40 W +22

and the second se

Contraction of the second

States and

Allowing and

625410	5650630	+20 S	+22	
625405	5650685	+40 S	+22	
No signa	1	+60 S	+42	
No signa	1	(+80 S)	+55	
Line 5+6	0 W		•	
625400	5650731	+20 N	+24	
625415	5650727	+40 N	+24	
625430	5650732	+60 N	+24	Near bottom of valley
625436	5650761	+80 N	-4	Valley
625476	5650828	+100 N	-12	Smooth slope
625409	5650706	BL 5+60 W	+22	
625407	5650719	+20 S	+18	
625397	5650682	+40 S	+22	
625384	5650696	+60 S	+22	
Line 5+8	0 W			
No signa	1	+20 N	+30	Small streem
625411	5650747	+40 N	+24	Very steep/vertical outcrop (no attitude avail.)
625424	5650755	+60 N	+18	Very smooth slope
625401	5650776	+80 N	-2	Medium slope
625442	5650783	+100 N	-18	Very steep, siliceous sericitized rock outcrop
625400	5650729	BL 5+80 W	+24	Smooth slope
625384	5650712	+20 S	+24	
625372	5650698	+40 S	+24	Outcrop (ABS), limonitized fractures, 120/70N
625307	5650676	+60 S	+46	
Line 6+0	0 W	· · · ·		
625385	5650736	+20 N	+32	Close to creek, outcrop of ABS 110/70N
625386	5650755	+40 N	+34	outcrop of ABS 125/70N
625414	5650762	+60 N	+22	Medium slope
625412	5650782	+80 N	+4	Medium slope
625424	5650777	+100 N	-18	Outcrop (MS+sulph.), 120/60N, sample 1529
625383	5650737	BL 6+00 W	+22	Near the creek
625369	5650714	+20 S	+22	
625368	5650707	+40 S	+18	Medium slope
625350	5650706	+60 S	+44	
No readin	ng	(+80S)	+54	

Explanations: UTM readings using NAD27; ABS-argillite-black shale/schist; MS – mica schist; sulph.-sulphides; q-quartz; attitudes = strike and dip angles; sample stations in brackets –VLF-EM reading only (no soil sample taken).

APPENDIX 2

				1704	ck Sample In				
Sample #	Easting	Northing	Vein #	Vein/gangue	Strike/dip (°)	Width/length	Туре	Host/strike/dip	Mineralization
01517	625841	5650418	6	Q,graph;	100/65 N	0.5-1.7/29m	Grab	ABS	py-prh-chlc-ga;
01518	625841	5650418	6	Q	100/65 N	0.5-1.7/29m	Grab	ABS	py-prh-chlc-ga;
01519	625903	5650175	8	Q,silicif. ABS;	80/80 N	~2/~50m	DCH/2m	ABS, breccia	py-chlc-ga;
01520	625903	5650175	8	Q,silicif. ABS;	80/80 N	~2/~50m	DCH/2m.	ABS, breccia	Py-chlc-ga;
01521	625579	5650642	5	Q,graph;	95/70 N	~1/~75m	Chip	ABS 120/50NE	sulphides
01522	625538	5650605	5	Q	95/70 N	~1/~75m	Chip	ABS 120/50NE	sulphides
01523	625544	5650576	4	Q	85/90?	~1.5/~75m	Grab	ABS	sulphides
01524	625537	5650578	4	Q	85/90?	~1.5/~75m	Grab	ABS 130/75NE	sulphides
01525	625527	5650580	4	Q	85/90?	~1.5/~75m	Grab	ABS	sulphides
01526	625516	5650582	4	Q	85/90?	~1.5/~75m	Grab	ABS 130/75NE	sulphides
01527	625460	5650573	2	Q	85/90?	~1.5/~75m	Chip	MV	sulphides
01528	625415	5650580	2	Q	85/90?	~1.5/~75m	Chip	MV	sulphides
01529	625424	5650777	?	Q,carb?,feldsp?	85/90?	0.1m	Chip	MV 120/60 NE	py-chlc-
01530	625485	5650586	3	Q,silicif.chlor.graph;	70/60 N	0.6/~75m	DCH/0.9m	MV	sulphides
01531	625841	5650418	6	Q	100/65 N	0.5-1.7/29m	Grab	ABS 145/60NE	py-prh-chlc-ga;
01532	624438	5650187	N/A	Q, carb.,graph;	130/75 N	0.01m	Chip	ABS 130/75NE	sulphides

Rock Sample Information

Explanations: DCH-discontinuous channel sample; ABS argillite-blackshale/schist; MV-metavolcanics; silicif.-silicification; chlor-chloritization; Q – quartz; py – pyrite; chlc – chalcopyrite; ga – galena; prh-pyrrhotite; carb.-carbonate; feldsp-feldspar; graph.-graphite.

Ŋ

All states

1

Ŋ

APPENDIX 3

ASSAY CERTIFICATES

September 15, 2004

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6

Page: 1 Finalized Date: 21-AUG-2004 This copy reported on 3-NOV-2004 Account: PACTOP

QC CERTIFICATE VA04051515		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: Nugget Queen P.O. No.: This report is for 16 Rock samples submitted to our lab in Vancouver, BC, Canada on 4-AUG-2004.	WEI-21 PUL-31 SPL-21 CRU-31 LOG-22	Received Sample Weight Pulverize split to 85% <75 um Split sample - riffle splitter Fine crushing - 70% <2mm Sample login - Rcd w/o BarCode	
The following have access to data associated with this certificate: BOHUMIL MOLAK B. MOLAK B. MOLAK		ANALYTICAL PROCEDURES	INSTRUM

ANALYTICAL PROCEDUR	ES
DESCRIPTION	INSTRUMENT
34 Element Aqua Regia ICP-AES	ICP-AES
Ore grade Ag - aqua regia/AA	AAS
Au 30g FA-AA finish	AAS
Au 30g FA-GRAV finish	WST-SIM
	ANALYTICAL PROCEDUR DESCRIPTION 34 Element Aqua Regia ICP-AES Ore grade Ag - aqua regia/AA Au 30g FA-AA finish Au 30g FA-GRAV finish

To: PACIFIC TOPAZ RESOURCES ATTN: B. MOLAK 501-905 W PENDER ST VANCOUVER BC V6C 1L6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Head Co

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au 	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Col ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
01517 01518 01519 01520 01521		0.98 1.10 0.70 1.12 0.88	0.733 >10.0 0.031 >10.0 0.021	16.10 1 <u>2.15</u>	1.5 >100 0.6 70.8 1.0	0.56 0.15 0.81 0.08 2.08	79 <2 8 26 15	<10 <10 <10 <10 <10	120 10 50 20 80	<0.5 <0.5 <0.5 <0.5 <0.5	<2 54 <2 20 <2	0.24 0.31 0.09 0.01 1.74	25.4 388 0.6 14.0 6.0	10 11 5 3 15	41 100 141 120 73	134 6010 41 1345 78
01522 01523 01524 01525 01526		1.38 0.72 1.06 0.78 1.00	0.699 0.079 4.68 0.014 0.010		7.8 6.7 33.8 0.7 0.7	0.33 1.50 0.03 5.37 5.61	108 92 5630 8 29	<10 <10 <10 <10 <10	10 130 <10 170 230	<0.5 <0.5 <0.5 0.5 0.5	<2 <2 9 <2 <2	0.14 2.23 0.05 2.30 3.15	1.0 2.6 16.6 <0.5 <0.5	6 11 77 16 15	1 14 57 109 48 47	20 304 1270 62 54
01527 01528 01529 01530 01531		0.70 0.70 0.42 1.20 0.76	1.630 0.072 0.023 5.52 0.605		0.5 0.7 <0.2 3.0 47.2	0.50 6.83 1.32 3.01 0.44	19 6 <2 13 38	<10 <10 <10 <10 <10	50 250 90 140 20	<0.5 0.8 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 8	0.07 3.96 1.45 3.18 5.08	<0.5 <0.5 <0.5 <0.5 >500	7 35 12 17 14	41 18 16 159 37	5 235 66 187 503
01532	-	0.70	0.007		0.6	2.61	22	<10	60	<0.5	<2	2.29	1.4	16	25	70

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-JCP41 Sc ppm 1
01517	· ·	3.10	<10	<1	0.32	<10	0.20	86	63	<0.01	73	970	104	1.55	3	2
01518		3.86	<10	<1	0.02	<10	0.17	81	7	<0.01	87	80	>10000	4.16	151	1
01519		1.52	<10	<1	0.22	<10	0.62	237	3	<0.01	10	190	42	0.05	<2	2
01520		1.56	<10	<1	0.06	<10	0.01	10	2	<0.01	5 .	20	>10000	1.57	13	<1
01521		4.04	<10	<1	0.13	<10	0.41	383	30	0.23	97	790	40	3.12	3	4
01522		2.39	<10	<1	0.06	<10	0.07	39	10	<0.01	23	150	234	1.54	4	1
01523		2.68	<10	<1	0.58	<10	0.99	747	2	0.01	18	720	44	0.76	<2	2
01524		11.15	<10	<1	0.01	<10	0.02	32	<1	<0.01	198	10	4730	5.39	9	<1
01525	1	4.42	10	1	0.91	<10	1.30	488	<1	0.45	20	550	7	1.28	<2	7
01526		4.60	10	1 .	1.12	10	1.34	521	<1	0.24	16	2390	36	0.73	<2	9
01527		3.26	<10	<1	0.33	10	0.11	64	<1	<0.01	Э	180	8	3.03	<2	1
01528		6.33	20	<1	1.84	<10	2.24	692	<1	0.25	12	3190	<2	1.12	<2	21
01529		3.37	10	<1	0.51	<10	0.73	412	<1	0.15	4	1500	4	0.03	<2	8
01530		3.91	10	1	1.35	<10	1.65	870	<1	0.08	88	370	83	1.11	<2	12
01531		5.39	<10	2	0.04	<10	0.54	715	27	0.06	89	630	>10000	5.66	26	6
01532		5.03	10	<1	0.22	10	1.33	715	2	0.03	18	1380	22	0.38	<2	4

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP

100

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1			н - н - н			
01517 01518 01519 01520 01521		13 13 5 2 83	0.01 <0.01 0.03 0.01 0.14	<10 <10 <10 <10 <10	10 <10 <10 <10 <10	32 10 18 5 120	<10 <10 <10 <10 <10	511 7230 38 98 502	312				· .		
01522 01523 01524 01525 01526		3 36 2 107 104	0.02 0.05 <0.01 0.19 0.21	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	19 35 <1 93 107	<10 <10 <10 <10 <10	39 85 178 98 110			an La caracteria		. • .		
01527 01528 01529 01530 01531		7 120 9 83 321	0.01 0.38 0.30 0.17 <0.01	<10 <10 <10 <10 <10	<10 <10 <10 <10 10	2 110 111 88 36	<10 <10 <10 30 10	8 86 51 61 >10000							
01532		75	0.08	<10	<10	50	<10	150							

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6

Page: 1 Finalized Date: 17-AUG-2004 This copy reported on 3-NOV-2004 Account: PACTOP

QC	CERTIFICATE VA04	051517		SAMPLE PREPARATION	1
			ALS CODE	DESCRIPTION	
Project: Nugget Queen P.O. No.: This report is for 106 Soil sa	imples submitted to our lab in V	/ancouver, BC, Canada on	WEI-21 SCR-41 LOG-22	Received Sample Weight Screen to -180um and save both Sample login - Rcd w/o BarCode	
The following have acces	s to data associated with th	is certificate:		ANALYTICAL PROCEDUR	ES
B. MOLAK	BOHUMIL MOLAK		ALS CODE	DESCRIPTION	INSTRUMENT
<u> </u>		<u>_</u>	Au-AA23 ME-ICP41	Au 30g FA-AA finish 34 Element Agua Regia ICP-AES	AAS ICP-AES

To: PACIFIC TOPAZ RESOURCES ATTN: B. MOLAK 501-905 W PENDER ST VANCOUVER BC V6C 1L6

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Chesa

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

1000

Project: Nugget Queen

Samala Dagariation	Method Analyte Units	WEI-21 Recvd Wt. kg	Au-AA23 Au ppm	ME-ICP41 Ag ppm	ME-ICP41 A! %	ME-ICP41 As ppm	ME-ICP41 B ppm	ME-ICP41 Ba ppm	ME-ICP41 Be ppm	ME-ICP41 Bi ppm	ME-ICP41 Ca %	ME-ICP41 Cd ppm	ME-ICP41 Co ppm	ME-ICP41 Cr ppm	ME-ICP41 Cu ppm	ME-ICP41 Fe %
Sample Description	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5	1	1	1	0.01
BL 4+00 W		0.40	0.006	0.3	0.47	3	<10	50	<0.5	<2	0.05	<0.5	<1	12	5	0.75
L 4+00 W +20 S		0.32	0.131	0.5	0.82	4	<10	40	<0.5	<2	0.07	<0.5	1 .	8	6	1.62
L 4+00 W +40 S		0.32	0.011	0.4	2.88	<2	<10	30	0.7	<2	0.37	0.6	5	20	25	3.51
L 4+00 W +60 S		0.44	0.007	0.2	3.65	8	<10	30	<0.5	<2	0.13	<0.5	5	27	15	3.71
L 4+00 W +80 S		0.26	0.007	0.2	5.14	8	<10	30	0.5	<2	0.15	<0.5	4	36		3.27
L 4+00 W +100 S		0.20	0.007	0.3	2.40	2	<10	20	< 0.5	<2	0.23	<0.5	10	25	20	1.88
L4 +20 W +20 N		0.32	< 0.005	0.2	0.52	<2	<10	20	< 0.5	<2	0.09	<0.5	1	18	4	2.54
L4 +20 W +40 N		0.26	<0.005	<0.2	3.57	<2	<10	10	<0.5	<2	0.14	<0.5		112	41	3.54
L4 +20 W +60 N		0.22	0.005	0.2	0.42	2	<10	-10	<0.5	<2	0.10	<0.5	1	14	4	0.73
L4 +20 W +80 N		0.26	<0.005	<0.2	0.30	~2	<10	< 10	<0.5	~~	0.05					1.00
L4 +20 W +100 N		0.24	<0.005	<0.2	2.25	<2	<10	10	<0.5	<2	0.09	<0.5 <0.5	2	34	20	1.00
BL 4+20 W		0.32	<0.005	<0.2	0.18		<10	10	<0.5	<2	0.01	<0.5	-1		3	0.99
L 4+20 W +20 S		0.22	0.009	0.2	0.52	2	<10	20	<0.5	<2	0.05	<0.5	1	14	3	1.45
L 4+20 W +40 S		0.22	0.006	0.3	1.06	<2	<10	20	<0.5	<2	0.12	<0.5	5	32	32	4.89
L 4+20 W +60 5		0.38	<0.005	0.4	5.24	<u> </u>	<10	70	0.5		0.12	0.0		10	14	4.00
L 4+20 W +80 S	1.1	0.34	0.014	0.2	1.44	5	<10	50	<0.5	<2	0.05	<0.5	3 10	19	14	4.38
L 4+20 W +100 S		0.36	0.048	<0.2	2.02	4	.<10	20	<0.5	<2	0.26	<0.5	12	37	11	5.93
L4 +40 W +20 N		0.26	<0.005	0.3	2.73	о с	<10	30	<0.5	-2	0.03	<0.5		10	21	4.09
L4 +40 W +40 N		0.32	-0.007	0.0	5.76	0	<10	20	<0.5	~2	0.07	<0.5	11	122	52	4.05
		0.28	<0.005	0.2	0.23		10				0.10	-0.5		00	10	1.00
L4 +40 W +80 N		0.42	<0.005	<0.2	0.71	<2	<10	10	<0.5	<2	0.07	<0.5	3	20	14	1.09
L4 +40 W +100 N		0.36	<0.005	<0.2	1.12	<2	<10	10	<0.5	<2	0.71	<0.5	2 - 1	27	4	1 30
BL 4+40 W		0.28	<0.005	<0.2	0.50	13	<10	10	<0.5	<2	0.04	<0.5	~1		2	0.19
L 4+40 W +20 S	· · ·	0.34	0.240	0.6	0.50	3	<10	20	<0.5	<2	0.03	<0.5	2	40	16	1.97
L 4+40 W +40 3		0.24	<0.005	0.2	2.50		10	40	0.0		0.00	0.0		54	20	5.20
L 4+40 W +60 S		0.22	0.005	0.4	8.06	13	<10	40	0.6	<2	0.09	0.6	. D	54	20	5.30
L 4+40 W +80 S		0.24	<0.005	1.3	6.95	11	<10	70	<0.5	3	0.10	<0.5	460	45	69	5.00
L 4+40 W +100 S		0.42	0.027	0.9	4.75	3	<10	50	1.0	3	0.26	-0.5	400	40	11	5.65
L4 +60W +20 N		0.28	<0.005	0.2	3.30	10 .	<10	40	<0.5	3	0.00	<0.5	2	27	8	0.70
L4 +60 W +40 N		0.32	<0.005	0.5	1.74	<2	<10				0.11	<0.0		105		7.15
L4 +60 W +60 N	· [0.30	< 0.005	0.6	4.28	12	<10	10	<0.5	2	0.11	<0.5	16	135	10	3.75
L4 +60 W +80 N		0.20	<0.005	0.2	0.54	<2	<10	<10	<0.5	-2	0.06	<0.5	4	20	10	0.59
L4 +60 W +100 N		0.48	<0.005	<0.2	0.45	<2	<10	10	<0.5	<2	0.20	<0.5	3	14	37	613
		0.24	0.012	-0.3	1.92	10	<10	20	<0.5	~2	0.04	<0.5	. 1	72	25	8.36
L 4+0U W +2U 0		0.20	0.000	<0.2	0.00	16	< 10	6V	~0.5	~~	0.00				4	0.04
L 4+60 W +40 S		0.24	0.006	<0.2	1.08	<2	<10	20	<0.5	<2	0.10	<0.5	1	21	4	2.04
L 4+60 W +60 S		0.30	<0.005	0.2	3.23	4	<10	230	<0.5	<2	0.17	<0.5	4	21	19	6.01
L 4+60 W +80 S		0.26	<0.005	<0.2	2.70	5	<10	30	<0.5	<2	0.10	<0.5	τ. Έλ		17	4.78
L 4+60 W +100 8	I	0.34	0.017	0.2	4.16	12	<10	40	<0.5	2	0.14	<0.5	6	47	21	5.47
L 9700 W 71200			U. G. V. F.			1 5J		· · · ·		in La Acti, Minerestacione stationesti	5	*****	TO DESCRIPTION OF COMPARISON		n an	-

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	WEI-21 RecvdWt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-IGP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
BL 4+80 W L 4+80 W +20 S L 4+80 W +40 S L 4+80 W +60 S		0.42 0.20 0.18 0.28	<0.005 <0.005 0.009 <0.005	<0.2 0.2 0.2 <0.2	0.59 0.68 1.18 1.93	2 6 4 <2	<10 <10 <10 <10	10 30 40 40	<0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.07 0.19 0.39 0.23	<0.5 <0.5 <0.5 <0.5	2 2 5 7	22 7 16 12	2 7 15 12	0.89 1.15 3.28 5.18
L 4+80 W +80 S L 4+80 W +100 S L 4+80 W +120 S L 4+80 W +20 N		0.26 0.24 0.28 0.24	<0.005 <0.005 0.006 <0.005	<0.2 0.2 0.5 0.2	7.79 3.43 2.17 3.56	9 10 <2 21	<10 <10 <10 <10	100 70 50 70	1.1 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.15 0.22 0.12 0.07	<0.5 <0.5 <0.5 <0.5	4 8 5 3	26 35 41 47	30 20 13 25	2.73 4.87 4.25 5.98
L 4+80 W +40 N L 4+80 W +60 N L 4+80 W +80 N L 4+80 W +80 N		0.38 0.28 0.44 0.52	<0.005 <0.005 <0.005 <0.005	0.4 <0.2 <0.2 <0.2	0.84 2.40 1.10 1.11	3 9 <2 4	<10 <10 <10 <10	10 30 <10 10	<0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.15 0.11 0.07 0.26	<0.5 <0.5 <0.5 <0.5	1 16 2 8	20 120 31 39	5 14 16 4	1.53 4.33 5.39 2.05
L5 +00 W +20 N L5 +00 W +40 N L5 +00 W +60 N		0.38 0.32 0.40	<0.005 <0.005 <0.005	0.3 0.4 0.2	7.36 4.73 3.87	<2 15 <2 3	<10 <10 <10	10 70 10	<0.5 <0.5 <0.5	<2 <2 <2 <2	0.10 0.16 0.16 0.16	<0.5 0.5 <0.5	3 11 4 4	66 111 44 54	17 53 23 34	4.00 - 6.71 1.74 - 2.90
L5 +00 W +100 N BL 5+00 W L 5+00 W +20 S L 5+00 W +40 S		0.36 0.38 0.20 0.30	<0.005 <0.005 0.035 <0.005	<0.2 <0.2 <0.2 0.2	4.58 3.64 5.22 4.34	<2 2 17 <2	<10 <10 <10 <10	20 10 40 20	0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2	0.23 0.08 0.08 0.13	<0.5 <0.5 <0.5 <0.5	7 3 4 5	67 54 73 39	<u>69</u> 9 20 31	2.84 4.79 7.11 3.82
L 5+00 W +60 S L5 +20 W +20 N L5 +20 W +40 N		0.28 0.18 0.24	<0.005 <0.005 <0.005	0.4 0.2 0.2	4.51 0.30 3.88	5 <2 11	<10 <10 <10	80 30 60	<0.5 <0.5 <0.5	<2 <2 <2	0.13 0.03 0.21 0.18	<0.5 <0.5 <0.5	4 <1 14	33 8 43	26 4 37 21	5.47 2.90 6.02 5.24
L5 +20 W +60 N L5 +20 W +80 N L5 +20 W +100 N BL 5+20 W		0.30	<0.005 <0.005 <0.005 <0.005	<0.2 <0.2 <0.2 <0.2	0.44 1.35 0.64	2 <2 8 <2	<10 <10 <10 <10	<10 <10 10 10	<0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2	0.10	<0.5 <0.5 <0.5	4 30 1	19 29 27	1 13 12	0.86 7.15 4.31
L 5+20 W +20 S L 5+20 W +40 S L 5+20 W +60 S	:	0.44 0.32 0.28	0.011 0.087 0.006	<0.2 0.3 0.2	1.98 3.58 8.51	12 12 9	<10 <10 <10	30 40 60	<0.5 <0.5 0.8	<2 <2 <2	0.07 0.10 0.09	<0.5 0.7 <0.5	5 5 4	57 38 40	12 25 38	6.15 6.51 6.00
L5 +40 W +20 N L5 +40 W +40 N L5 +40 W +60 N L5 +40 W +80 N L5 +40 W +100 N		0.30 0.50 0.26 0.18 0.32	<0.005 <0.005 <0.005 <0.005	<0.2 <0.2 <0.2 <0.2 <0.2	1.50 1.01 0.09 2.79	-∠ 4 <2 <2 <2	<10 <10 <10 <10 <10	20 20 10 <10	<0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2	0.08 0.19 0.24 0.16	<0.5 <0.5 <0.5 0.5	5 6 1 9	26 30 <1 74	- 12 9 4 31	3.30 1.87 0.09 10.10
EL 5+40 W L 5+40 W +20 S L 5+40 W +40 S L 5+40 W +60 S Bl, 5+60 W		0.36 0.22 0.36 0.22 0.36 0.26	<0.005 <0.005 0.028 <0.005 <0.005	<0.2 0.2 <0.2 <0.2 <0.2 <0.2 <0.2	2.27 2.78 4.66 5.05 2.89	19 3 22 5 17	<10 <10 <10 <10 <10 <10	30 60 50 60 40	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2	0.07 0.13 0.09 0.11 0.29	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5 5 6 4 25	62 42 30 33 61	10 33 35 24 20	7.44 6.02 6.35 5.73 9.31

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

....

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-IGP41 Or ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
L 5+60 W +20 N		0.30	<0.005	<0.2	1.69	8	<10	20	<0.5	<2	0.14	<0.5	4	21	13	3.28
L 5+60 W +40 N		0.28	<0.005	0.2	0.84	4	<10	40	<0.5	<2	0.13	<0.5	2	12	3	1.04
L 5+60 W +60 N	3	0.38	<0.005	<0.2	1.96	<2	<10	20	<0.5	<2	0.29	<0.5	6	33	28	2.14
L 5+60 W +80 N		0.32	<0.005	<0.2	4.73	5	<10	10	0.5	<2	0.14	<0.5	15	99	42	8.29
L 5+60 W +100 N		0.34	<0.005	<0.2	3.01	5	<10	30	<0.5	<2	0.19	<0.5	16	49	44	6.35
L 5+60 W +20 S		0.34	<0.005	<0.2	2.45	5	<10	40	<0.5	<2	0.07	<0.5	4	34	20	6.27
L 5+60 W +40 S		0.40	<0.005	<0.2	2.08	2	<10	10	< 0.5	<2	0.06	<0.5	2	32	9	4.62
L 5+60 W +60 S		0.24	0.005	0.3	3.99	8	<10	40	<0.5	<2	0.12	0.5	4	28	20	3.88
L5 +80 W +20 N		0.32	<0.005	<0.2	1.97	<2	<10	80	<0.5	<2	0.16	<0.5	9	34	8	2.97
L5 +80 W +40 N		0.26	<0.005	0.2	3.96	5	<10	90	<0.5	<2	0.23	0.6	4	38	28	4.06
L5 +80 W +60 N		0.32	<0.005	<0.2	1.08	<2	<10	40	<0.5	<2	0.27	<0.5	4	16	18	1.86
L5 +80 W +80 N		0.40	<0.005	<0.2	3.37	<2	<10	10	<0.5	<2	0.16	<0.5	33	55	62	5.61
L5 +80 W +100 N		0.40	<0.005	<0.2	1.94	7	<10	20	<0.5	<2	0.26	<0.5	9	50	38	6.20
BL 5+80 W		0.28	0.012	<0.2	4.32	19	<10	70	<0.5	2	0.12	0.5	22	72	26	5.01
L 5+80 W +20 S		0.26	<0.005	<0.2	4.16	7	<10	20	<0.5	<2	0.11	0.5	5	37	24 .	4.59
L 5+80 W +40 S		0.22	<0.005	0.3	1.16	17	<10	550	<0.5	<2	0.16	<0.5	4	10	19	3.58
L 5+80 W +60 S		0.22	0.0081	0.6	8.07	6	<10	220	0.9	<2	0.30	0.9	18	37	69	4.96
L6 +00 W +20 N		0.24	<0.005	0.2	2.51	4	<10	90	<0.5	<2	0.13	0.7	136	54	52	10.40
L6 +00 W +40 N		0.26	<0.005	0.2	1.40	8	<10	110	<0.5	<2	0.19	<0.5	2	20	17	3.18
L6 +00 W +60 N		0.18	<0.005	<0.2	0.07	<2	<10	10	<0.5	<2	0.20	<0.5	2	<1	Э	0.11
L6 +00 W +80 N		0.32	<0.005	<0.2	4.68	2	<10	40	<0.5	<2	0.21	<0.5	18	139	101	3.87
L6 +00 W +100 N		0.40	<0.005	<0.2	1.46	<2	<10	10	<0.5	<2	0.21	<0.5	6	45	15	4.52
BL 6+00 W	1.1	0.46	<0.005	<0.2	5.09	26	<10	30	<0.5	<2	0.06	0.5	8	93	28-	6.35
L 6+00 W +20 S	1	0.38	<0.005	<0.2	5.09	2	<10	10	<0.5	<2	80.0	<0.5	3	48	16	4.39
L 6+00 W +40 S	1	0.26	<0.005	<0.2	0.63	3	<10	40	<0.5	<2	0.13	<0.5	2	14	6	4.50
L 6+00 W +60 S		0.40	<0.005	0.3	3.43	5	<10	30	<0.5	<2	80.0	<0.5	2	37	14 ·	4.85

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

C. State

Project: Nugget Queen

	Method Analyte	ME-ICP41 Ga	ME-ICP41 Hg	ME-IGP41 K	ME-ICP41 La	ME-ICP41 Mg	ME-ICP41 Mn	ME-ICP41 Mo	ME-ICP41 Na	ME-ICP41 Ni	ME-ICP41 P	ME-ICP41 Pb	ME-ICP41 S	ME-ICP41 Sb	ME-ICP41 Sc	ME-ICP41 Sr
Sample Description	LOR	ррт 10	ppm 1	% 0.01	ppm 10	% 0.01	pp m 5	រព្រះក 1	% 0.01	ppm 1	pp.m 10	ppm 2	% 0.01	ppm 2	ppm 1	ppm 1
BL 4+00 W		10	1	0.02	<10	0.25	62	17	<0.01	2	80	5	0.02	3	1	4
L 4+00 W +20 S		10	1	0.05	<10	0.25	98	. 1	0.01	2	120	11	0.02	2	2	7
L 4+00 W +40 S		20	1	0.02	10	0.49	311	4	0.01	6	300	16	80.0	3	4	13
L 4+00 W +60 S		20	2	0.02	10	0.31	140	16	< 0.01	6	270	18	0.05	2	3	9
L 4+00 W +80 S		10	1	0.02	10	0.22	118	2	0.01	14	430	0	0.05	2	4	0
L 4+00 W +100 S		10	1	0.02	<10	0.29	173	2	0.02	9	550	7	0.10	<2	1	13
L4 +20 W +20 N		10	1	0.02	<10	0.27	86	1	< 0.01	4	110	5	0.01	3	· 1	. 2
L4 +20 W +40 N		10	1	0.02	<10	0.97	206		0.01	25	120	3	0.03	3	5	3
L4 +20 W +60 N		10	1	0.01	<10	0.17	60	<1	-0.01	. 6	50	4	<0.01	<2	-1	4
L4 +20 W +80 N		10		0.01	<10	0.17	04	<1	<0.01		50	4	<0.01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
L4 +20 W +100 N		10	<1	0.01	10	0.11	50	<1	< 0.01	4	350	8	0.03	<2	2	5
BL 4+20 W		10	1	0.01	<10	0.02	13	17	<0.01	2	100	3	0.01	3	1	~
L 4+20 W +20 S		10	1	0.03	<10	0.06	23	2	<0.01	<1	120	14	0.02	-2	2	19
		10	<) 1	0.03	<10	0.56	189	2	<0.01	5	240	6	0.03	~2	7	12
L 4+20 W +60 S		10		0.04	10	0.52	245	~	0.01		2.50		0.04		· · ·	
L 4+20 W +80 S		20	<1	0.04	<10	0.23	134	4	<0.01	7	140	8	0.02	<2	2	6
L 4+20 W +100 S		10	1	0.03	<10	0.61	359	1	0.02	20	110	4	0.02	<2	5	4
L4 +40 W +20 N		20	1	0.02	<10	0.20	11	10	<0.01	4	210	10	0.04	2	5	3
L4 +40 W +40 N		10	1	0.01	<10	1.06	00	1	0.01	0 31	220	3	0.05	3	, a	5
L4 +40 W +60 N		10	I	0.02	<10	1.00	230		0.02		220		0.00			
L4 +40 W +80 N		10	<1	0.01	<10	0.53	134	<1	< 0.01	8	120	6	0.01	2	2	3.
L4 +40 W +100 N		20	1	0.04	<10	0.27	105	<1	0.01	4	130	11	0.02	2	2	4
BL 4+40 W		20	<1	0.01	<10	80.0	29	34	<0.01	2	100	11	0.02	-2	-1	4
L 4+40 W +20 S		20	1	0.02	<10	0.04	104	5	<0.01	Ę	960	41***	0.04	3	6	6
L 4+40 W +40 S		10	I	0.03	10	0.38	124	I	<0.01	5	200		0.00			
L 4+40 W +60 S		10	3	0.01	<10	0.22	130	2	< 0.01	7	320	7	0.12	4	9	6
L 4+40 W +80 S		10	2	0.02	<10	0.37	231	2	< 0.01	13	310	4	0.07	. 3 .0	ю. О	8
L 4+40 W +100 S		10	1	0.02	10	0.42	5570	6	0.01	42	190	31	0.05	~~	. 5	3
L4 +60W +20 N		10	1	0.01	<10	0.18	50	10	<0.01	5	170	10	0.05	-2	2	5
L4 +60 W +40 N		10	I	0.01	<10	0.11			(0.01		170		0.02			-
L4 +60 W +60 N		10	1	0.01	<10	0.68	299	3	< 0.01	31	220	6 .	0.04	3	. /	. 3
L4 +60 W +80 N	1	10	1	0.01	<10	0.17	70	1	<0.01		60	6	<0.01	2	2	9
L4 +60 W +100 N		10	<1	0.01	<10	0.13	79	<1	-0.01	2	220	10	0.07	-2	6	6
BL 4+60 W		10	<1	0.09	<10	0.45	104	20	<0.01	о. О	230	15	0.02	~2	7	4
L 4+60 W +20 S		20	Z	0.02	<10	0.36	124	4	<0.01	<u> </u>	210		0.07	~~	4 4	
L 4+60 W +40 S		20	<1	0.01	<10	0.10	53	3	<0.01	<1	100	13	0.02	<2	1	ь 14
L 4+60 W +60 S	-	10	<1	0.04	10	0.53	314	4	0.02	3	170	5 10	0.03	<2	D I	14
L 4+60 W +80 S		10	<1	0.04	<10	0.46	190	4	<0.01	9	250	12	0.03	<2		10
L 4+60 W +100 S	1	10	<1	0.02	<10	0.35	132	2	<0.01	0	200	13	0.04	~~	4	7
1.4+60 W +120 5		IU Nonesconteres	< 	0.03			(40) 	6 	* V. V I	l I		Loss to what we are a set			-	**************************************

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units	ME-ICP41 Ga ppm	ME-JCP41 Hg ppm	ME-ICP41 K %	ME-ICP41 La ppm	ME-ICP41 .Mg %	ME-ICP41 Mn ppm	ME-ICP41 Mo ppm	MIE-ICP41 Na %	ME-ICP41 Ni ppm	ME-ICP41 P ppm	ME-ICP41 Pb ppm	ME-ICP41 S %	ME-ICP41 Sb ppm	ME-ICP41 Sc ppm	ME-ICP41 Sr ppm
Sample Description	LOR	10	1	0.01	10	0.01	6	· 1	0.01	1	10	2	0.01	2	1	1 .
BL 4+80 W		10	1	0.01	<10	0.28	84	2	<0.01	5	100	7	0.03	2	1	6
L 4+80 W +20 S		<10	<1	0.03	<10	0.16	87	1	<0.01	2	270	4	0.07	<2	1	25
L 4+80 W +40 S		10	<1	0.04	<10	0.34	257	1	0.02	4	510	8	80.0	<2	2	20
L 4+80 W +60 S		10	<1	0.05	<10	0.54	244	1	0.01	3	290	6	0.04	<2	3	17
L 4+80 W +80 S		10	1	0.03	10	0.31	174	2	<0.01	9	460	10	0.08	<2	6	14
L 4+80 W +100 S		10	<1	0.03	<10	0.42	226	3	<0.01	14	300	14	0.04	<2	5	13
L 4+80 W +120 S		10	<1	0.01	<10	0.12	100	2	<0.01	6	150	10	0.02	<2	2	22
L 4+80 W +20 N		10	<1	0.02	<10	0.28	102	21	<0.01	· 21	170	10	0.03	0	- 4	2J 5
L 4+80 W +40 N		10	1	0.01	<10	0.17	270	-1	<0.01	4 70	80	6	<0.01	-2	5	4
L 4+80 W +60 N		10		0.07	<10	2.29	3/6	<1	<0.01	75	00	<u> </u>	<0.01			
L 4+80 W +80 N		20	<1	0.01	<10	0.15	84	1	<0.01	2	90	6	0.04	3	2	3
L 4+80 W +100 N		20	<1	0.01	<10	0.74	166		0.01	15	100	10	0.02	~?	. 11	5
L5 +00 W +20 N		10	1	0.01	<10	0.15	65	3	<0.01	00	200	10	0.09	~2	6	8
L5 +00 W +40 N		10	1	0.02	<10	0.81	346	5	<0.01	10	200	10	0.05	~2	4	6
L5 +00 W +60 W		10		0.01	<10	0.25			0.01	12	230		0.07			
L5 +00 W +80 N		10	<1	0.01	10	0.20	80	<1	0.01	11	290	3	0.05	<2	5	
L5 +00 W +100 N		10	1	0.02	10	0.40	154		0.01	10	160	19	0.10	-2	5	3
BL 5+00 W		10		0.01	<10	0.14	150	2	<0.01	<u>о</u>	210	27	0.04	2	7	12
L 5+00 W +20 S		20	2	0.02	<10	0.43	1/2	1	0.01	8	120	10	0.03	<2	9	7
L 5+00 W +40 5		10		0.02	<10	0.52		<u>`</u>	0.01		040	10	0.05	-0	E	10
L 5+00 W +60 S		10	1	0.03	<10	0.48	226	2	<0.01	9	340	7	0.05	.2	2	5
L5 +20 W +20 N		<10	1	0.02	<10	0.21	110	4	0.01	16	390	11	0.00	-2	5	24
		10	<1 +	0.04	<10	0.55	412		<0.01	13	260	8	0.03	-2	4	5
L5 +20 W +80 N		20	-1	0.01	<10	0.30	81	<1	< 0.01	13	50	7	<0.01	<2	1	2
		10		0.01	+10	0.00	1070		-0.01		540	Q	PD 0	-2	2	6
L5 +20 W +100 N		10	<1	0.02	-10	0.20	57	1	<0.01	ۍ حا	80	19	0.02	<2	1	3
BL 5+20 W		20	<1	0.01	<10	1.16	202	4 6	<0.01	13	150	10	0.02	<2	6	8
L 5+20 W +20 G		10	1	0.04	10	0.61	294	3	<0.01	9	340	13	0.06	<2	6	14
L 5+20 W +60 S		10	<1	0.03	<10	0.40	174	3	<0.01	7	280	13	0.10	<2	9	14
15+40 W +20 N		<10		0.01	<10	0.04	22	2	< 0.01	<1	80	2	0.01	<2	<1	7
15 +40 W +40 N		10	<1	0.01	<10	0.12	114	10	<0.01	10	130	6	0.01	<2	1	6
15 +40 W +60 N		10	<1	0.01	<10	0.34	381	1	< 0.01	10	150	5	0.02	3	1	5
L5 +40 W +80 N		<10	<1	0.02	<10	0.08	23	<1	<0.01	<1	260	2	0.07	<2	<1	14
L5 +40 W +100 N		20	- 1	0.02	<10	0.53	258	- 1	0.01	13	190	8	0.03	<2	3	3
BL 5+40 W		20	<1	0.01	<10	0.88	215	8	<0.01	13	170	12	0.03	<2	5	15
L 5+40 W +20 S	. 1	10	1	0.14	<10	0.71	297	3	0.01	9	200	18	0.04	<2	7	9
L 5+40 W +40 S		10	. 1 .	0.04	<10	0.55	241	Э	<0.01	7	190	14	0.05	<2	6	14
L 5+40 W +60 S		10	<1	0.08	<10	0.66	240	2	0.01	5	220	10	0.05	<2	7	11
BL 5+60 W		20	<1	0.03	<10	0.78	94 4	10	<0.01	16	280	16	0.05	<2	3	13

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-IGP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Se ppm 1	ME-ICP41 Sr ppm 1
L 5+60 W +20 N L 5+60 W +40 N		10 10	1 <1	0.02	<10 <10	0.20 0.15	160 95	9 7	<0.01 <0.01	7 3	200 90	8 10	0.06 0.03	<2 3	2	9 8
L 5+60 W +60 N L 5+60 W +80 N L 5+60 W +100 N		<10 10 10	<1 1 <1	0.02 0.02 0.42	<10 <10 <10	0.21 0.51 1.05	93 239 435	1 <1	<0.02 <0.01 0.01	19 21	190 340	5 7	0.06 0.05	<2 <2 <2	7 4	2 5
L 5+60 W +20 S L 5+60 W +40 S L 5+60 W +60 S L 5+60 W +60 S L 5 +80 W +20 N L 5 +80 W +40 N		10 20 10 10 10	<1 <1 1 <1	0.05 0.01 0.03 0.07 0.02	<10 <10 <10 <10 <10	0.71 0.11 0.25 0.71 0.60	334 64 498 522 296	3 2 2 3 8	<0.01 <0.01 <0.01 <0.01 <0.01	4 3 6 10 12	150 110 390 220 180	12 12 40 ≁ 13 8	0.03 0.03 0.06 0.02 0.03	<2 <2 <2 <2 <2 <2 <2	6 2 4 4 7	8 4 7 17 23
L5 +80 W +60 N L5 +80 W +80 N L5 +80 W +100 N BL 5+80 W L 5+80 W +20 S		10 10 10 10 10	1 <1 <1 1 1	0.06 0.04 0.04 0.06 0.02	<10 <10 <10 <10 <10	0.31 0.54 0.60 0.73 0.25	184 514 210 615 153	<1 1 1 3 2	<0.01 <0.01 0.01 <0.01 <0.01	6 17 14 16 12	260 210 200 240 210	7 7 6 12 10	0.05 0.04 0.03 0.05 0.04	<2 <2 <2 <2 <2 2	2 5 3 7 5	10 2 5 14 6
L 5+80 W +40 S L 5+80 W +60 S L6 +00 W +20 N L6 +00 W +40 N L6 +00 W +60 N		10 10 10 10 <10	<1 1 2 <1 <1	0.04 0.07 0.02 0.02 0.01	<10 <10 <10 <10 <10	0.30 1.64 0.43 0.29 0.05	164 470 3840 117 58	15 2 4 12 <1	<0.01 0.04 <0.01 0.02 <0.01	9 33 18 9 <1	280 210 350 200 100	7 89- 14 9 <2	0.07 0.05 0.05 0.04 0.02	22 22 22 22 22 22 22	2 14 5 2 <1	19 40 11 25 9
L6 +00 W +80 N L6 +00 W +100 N BL 6+00 W L 6+00 W +20 S L 6+00 W +40 S		10 10 10 10 20	বা বা বা 1	0.06 0.01 0.02 0.01 0.01	<10 <10 <10 <10 <10 <10	1.42 0.42 0.70 0.16 0.08	296 131 205 79 87	1 <1 4 1 3	0.01 0.01 <0.01 <0.01 <0.01	61 13 16 7 1	180 120 180 200 130	7 4 15 6 10	0.03 0.02 0.04 0.05 0.01	<2 <2 <2 <2 <2 <2 <2	6 2 9 5 1	5 3 6 4 6
L 6+00 W +60 S		10	<1	0.01	<10	0.13	80	4	<0.01	5	160	12	0.03	<2	3	5

a starting

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2							-	-		·
BL 4+00 W		0.17	<10	< 10	62	<10	8										
		0.16	<10	<10	116	<10	12										
L 4+00 W +60 S		0.15	<10	<10	155	<10	79										
L 4+00 W +80 S		0.16	<10	<10	104	<10	70.										
L 4+00 W +100 S		0.09	<10	<10	90	<10	26					 ·					
L4 +20 W +20 N		0.39	<10	<10	109	<10	10										
L4 +20 W +40 N		0.46	<10	<10	138	<10	25										
L4 +20 W +60 N		0.24	<10	<10	77	<10	8										
L4 +20 W +80 N		0.21	<10	<10	88	<10	5		 								
L4 +20 W +100 N		0.18	<10	<10	55	<10	19										
BL 4+20 W		0.18	<10	<10	203	<10	9										
L 4+20 W +20 S		0.21	<10	<10	42	<10	5										
L 4+20 W +40 S		0.14	<10	<10	62	<10	31										
L 4+20 W +60 S		0.30	<10	<10	154	<10	38		 		 	 					
L 4+20 W +80 S		0.33	<10	<10	250	<10	32										
L 4+20 W +100 S		0.29	<10	<10	161	<10	30										
L4 +40 W +20 N		0.32	<10	<10	215	<10	28										
		0.18	<10	<10	129	<10	44	$\sim f_{\rm el}$									
		0.34	<10	<10		(10)	44										
L4 +40 W +80 N		0.32	<10	<10	77	<10	13										
		0.38	<10	<10	242	<10	14										
L 4 40 W 120 S		0.37	<10	<10	245	<10	5										
L 4+40 W +40 S		0.20	<10	<10	98	<10	24										
L 4+40 W +60 S		0.23	<10	<10	133	<10	25				 		 				
L 4+40 W +80 S		0.20	<10	<10	123	<10	33										
L 4+40 W +100 S		0.29	<10	<10	136	<10	110			· ·							
L4 +60W +20 N	1	0.29	<10	<10	240	<10	69										
L4 +60 W +40 N		0.19	<10	<10	72	<10	8										
L4 +60 W +60 N		0.51	<10	<10	184	<10	33										
L4 +60 W +80 N		0.54	<10	<10	176	<10	11										
L4 +60 W +100 N		0.40	<10	<10	110	<10	7										
BL 4+60 W		0.25	<10	<10	210	<10	57										
L 4+60 W +20 S		0.35	<10	<10	220	<10	34								- 		
L 4+60 W +40 S		0.37	<10	<10	142	<10	10										
L 4+60 W +60 S		0.33	<10	<10	168	<10	40										
L 4+60 W +80 S		0.33	<10	<10	197	<10	44										
L 4+60 W +100 S		0.23	<10	<10	160	<10	40										
L 440U W +12U 5		0.29	< 1U.	< I U	192		JU	the case date at the	 anes - engine de stâte	-		TT THE AMENNES AND ST	Distant, Casardan			######################################	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2											
BL 4+80 W L 4+80 W +20 S L 4+80 W +40 S L 4+80 W +60 S L 4+80 W +80 S		0.14 0.06 0.11 0.22 0.13	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	63 40 96 126 61	<10 <10 <10 <10 <10	10 17 27 33 31											
L 4+80 W +100 S L 4+80 W +120 S L 4+80 W +20 N L 4+80 W +40 N L 4+80 W +60 N		0.31 0.25 0.43 0.23 0.30	<10 <10 10 <10 <10	<10 <10 <10 <10 <10	142 189 379 111 134	<10 <10 <10 <10 <10	56 21 205 17 32					· · · ·	- · ·	-				
L 4+80 W +80 N L 4+80 W +100 N L5 +00 W +20 N L5 +00 W +40 N L5 +00 W +60 N		0.61 0.46 0.20 0.44 0.24	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	162 139 115 216 80	<10 <10 <10 <10 <10	12 24 24 118 23				 - ·			• .				
L5 +00 W +80 N L5 +00 W +100 N BL 5+00 W L 5+00 W +20 S L 5+00 W +40 S		0.14 0.16 0.25 0.26 0.21	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	97 116 176 203 142	<10 <10 <10 <10 <10	10 26 14 32 49											
L 5+00 W +60 S L5 +20 W +20 N L5 +20 W +40 N L5 +20 W +60 N L5 +20 W +60 N L5 +20 W +80 N		0.22 0.13 0.20 0.39 0.25	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	134 96 134 217 78	<10 <10 <10 <10 <10	35 8 35 32 6							-		· .		
L5 +20 W +100 N BL 5+20 W L 5+20 W +20 S L 5+20 W +40 S L 5+20 W +60 S		0.09 0.34 0.42 0.19 0.20	<10 <10 <10 <10 10	<10 <10 <10 <10 <10	136 239 296 160 130	<10 <10 <10 <10 <10	13 16 67 53 48								· .			
L5 +40 W +20 N L5 +40 W +40 N L5 +40 W +60 N L5 +40 W +80 N L5 +40 W +80 N		0.08 0.27 0.25 0.01 0.43	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	50 192 93 2 244	<10 <10 <10 <10 <10	9 57 15 14 26	· .										
BL 5+40 W L 5+40 W +20 S L 5+40 W +40 S L 5+40 W +60 S BL 5+60 W		0.36 0.33 0.21 0.25 0.28	<10 <10 <10 10 10	<10 <10 <10 <10 <10 <10	263 229 152 164 232	<10 <10 <10 <10 <10 <10	54 60 44 50 99		Second and March	n staline, man 50777		and and an	1	1997 III 1997 - 1992 - 1993		Demographic with a starting	9998-0966 HUZING TALISTICAS	

Contraction of the

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W. PENDER ST. VANCOUVER BC V6C 1L6 Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Concession of the local division of the loca

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		1 - 1	-			н 				н Н	
L 5+60 W +20 N		0.17	10	<10	131	<10	36											
L 5+60 W +40 N		0.22	<10	<10	66	<10	24											
L 5+60 W +60 N		0.07	<10	<10	121	<10	12											
L 5+60 W +80 N		0.45	<10	<10	157	<10	27											
L 5+60 W +100 N		0.36	<10	<10	134	<10	57							 	 			_
L 5+60 W +20 S		0.39	<10	<10	223	<10	43											
L 5+60 W +40 S		0.29	<10	<10	250	<10	13											
L 5+60 W +60 S		0.17	<10	<10	116	<10	42											
L5 +80 W +20 N		0.23	<10	<10	106	<10	60											
L5 +80 W +40 N		0.29	<10	<10	221	<10	225							 	 	 	1 A.	
L5 +80 W +60 N		0.17	<10	<10	71	<10	21											
L5 +80 W +80 N		0.39	<10	<10	130	<10	31											
L5 +80 W +100 N		0.39	<10	<10	185	<10	27											
BL 5+80 W		0.25	<10	<10	146	<10	72											
L 5+80 W +20 S		0.23	<10	<10	156	<10	52					**						_
L 5+80 W +40 S		0.19	<10	<10	140	<10	87											
L 5+80 W +60 S		0.26	10	<10	142	<10	309											
L6 +00 W +20 N		0.28	<10	<10	192	<10	82											
L6 +00 W +40 N		0.21	<10	<10	192	<10	76											
L6 +00 W +60 N		0.01	<10	<10	4	<10	6				-							
L6 +00 W +80 N		0.39	<10	<10	104	<10	46											
L6 +00 W +100 N		0.47	<10	<10	204	<10	14											
BL 6+00 W		0.42	<10	<10	236	<10	59											i
L 6+00 W +20 S		0.24	<10	<10	147	<10	19											
L 6+00 W +40 S		0.41	<10	<10	232	<10	12											
L 6+00 W +60 S		0.25	<10	<10	158	<10	26											

ALS	5 5	ALS Canada I 212 Brookst North Vanco Phone: 604	SC ENCE IN AI td. bank Avenue buver BC V7J 2 984 0221	Ter NALYTICA 2C1 Canada Fax: 604 984		K STRY		To: PACI 501-9 VANO Proje	FIC TOPA 05 W PEN COUVER E	Z RESOUI IDER ST 3C V6C 1L Queen	RCES 6	· · ·		Tota Finalized	P al # Pages Date: 21-/ Account	age: 2 - A 4 (A - C) AUG-2004 PACTOP
									QC	CERTI	FICATE	OF AN	ALYSIS	VA0	4051515	6
Sample Description	Method Analyte Units LOR	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
							STAN	DARDS								
BPL-04 Target Range - Lower Bo Upper Bo CU-106 Target Range - Lower Bo	ound Nind	• • • •	47.5 43.8 50.6				х. 									
Upper Bo G2000 G2000 Target Range - Lower Bo Upper Bo	aund aund		•	3.5 3.5 2.9 3.9	1.84 1.87 1.86 2.06	476 464 434 534	10 <10 <10 20	880 850 740 920	1.0 0.9 ≪0.5	<2 <2 <2 4	0.50 0.50 0.46 0.58	7.6 7.4 6.3 8.9	25 24 22 29 29	70 66 64 60	311 303 272 334	3.72 3.79 3.41 4.19
JWB-JV-1 JWB-JV-1 JWB-JV-1 Target Range Tower Br Upper Br MER-03	and	0.662	-	22.0 23.1 19.6 24.4	0.64 0.64 0.58 0.73	519 502 461 567	<10 <10 <10 20.3	150 360 130 190	<0.5 <0.5 <0.5	10 <2 3 4	0.37 0.37 0.36 0.46	48.2 40.0 50.0	10 9 2. 8 12	47 44 56	7720 7090 8670	3.16 2.89 3.55
MER-03 Targel Range Lower Bo OXK18 OXK18 Tarvel Parse Lower Bo	ound ound	0.681 0.626 0.730 3.58 3.50														
Upper B: OXM16 Target Range - Lowar Bi Upper Br	aund aund aund	371	15.25 14.05 16.25													
						•	BLA	NKS								
BLANK BLANK BLANK BLANK		<0.005	<0.05	<0.2	<0,01	. <2	<10	<10	<0.5	<2	<0.01	<0.5	<1	<1	<1	<0.01
BLANK BLANK Target Range - Lower B Upper Br	ound Sund	<0.005 <0.005 0.010	<0.05 0.10	<0.2 <0.2 0.4	<0.01	<2 <2 4	<10 <10 20	<10 • <10 20	<0.5 <0.5 1.0	<2 \$2 4	<0.01 <0.01 0.02	<0.5 <0.5 = 1.0	<1 <1 2	<1 <1 2	<1 <1= 2	<0.01 <0.01
					•				 							н

al service and a s

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	NE-ICP41 Ag ppm 0.2	ME-1CP41 Ai % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
			_				DUPL	CATES								
ORIGINAL DUP Target Range - Lower Bo Upper Bo	ound The second s	0.437 0.443 0.408 0.472														
ORIGINAL DUP Target Range - Lower Bo Upper Bo	olund Hund	0.910 1.220 1.000 1.130		<u> </u>	<u></u>	N			-			· · · · · · · · · · · · · · · · · · ·			<u></u>	
ORIGINAL DUP Target Range - Lower Bo Upper Bo	ound	<0.005 <0.005 <0.005 <0.010													······································	
ORIGINAL DUP Target Range - Lower Bo Upper Bo	ound	0.009 0.008 <0.005 0.010	-	· .											. .	
ORIGINAL DUP Target Range - Lower Bo Upper Bo	bund	<0,005 0,007 <0,005 0,010									- - -					
ORIGINAL DUP Target Range - Lower Bo Upper Bo	ound Bund															
01520 DUP Target Range - Lower Br Upper Bo	ound ound		12.15 14.40 12.50 14.05												•	
01525 DUP Target Range - Lower Bo Upper Bo	ound Rund			0.7 0.4 <0.2 1.0	5.37 5.07 4.94 5.50	8 6 3 11	<10 <10 <10 20	170 160 140 190	0.5 <0.5 <0.5 1.0	<2 <2 <2 <2 4	2.30 2.24 2.14 2.40	<0.5 <0.5 <0.5 1.0	16 15 13 18	48 46 43 51	62 59 55 66	4.42 4.28 4.11 4.59

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP

Project: Nugget Queen

Method Analyte Units Sample Description LOR	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	NE-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
						DUPLI	CATES								
01532 DUP Target Range - Lower Bound Upper Bound			0.6 0.6 <0.2 1.0	2.61 2.62 2.46 0)= 2.77	22 24 18 28	<10 <10 <10 20	60 60 40 80	<0.5 <0.5 <0.5 1.0	<2 <2 <2	2.29 2.29 2.16 2.42	1.4 1.4 <0.5	16 16 13 191	25 25 22 28	70 67 63 74	5.03 5.02 4.75 5.30
												•			
															•
L													· · · ·		5 s

		ALS Canada L 212 Brookst	SC ENCE IN A			X STRY		To: PACI 501-9 VANO	FIC TOPA 105 W PEN COUVER E	Z RESOU IDER ST 3C V6C 1L	RCES			Tota Finalized	P al # Pages I Date: 21-, Account	age: 2 - B : 4_(A - C) AUG-2004 : PACTOF
(AL	S)	North Vanco Phone: 604	ouver BC V7J 984 0221	2C1 Canada Fax: 604 984	0218			Proje	ct: Nugget	Queen						
									Q(CERT	FICATE	OF AN	ALYSI	5 VA0	4051515	5
Sample Descriptio	Method Analyte Units N LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-JCP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	NE-ICP41 Mn ppm 5	ME-ICP41 No ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
						<u></u>	STAN	DARDS		<u></u>			_			
BPL-04 Target Range - Lowe Uppe	Bound Bound													• • •		
CU-106 Target Range - Lowe Uppe	Bound Bound												•			
G2000 G2000	Round	10 10	<1 2	0.43 0.42	20 20	0.67 0.66 0.60	566 566	4 5	0.01 0.04	283 275 256	950 930 840	667 655 601	0.24 0.27	19 26	7 7	66 69 50
Uppe JWB-JV-1	Bound	20 <10	2	0.48 0.24	40 10	0.76 0.13	630 703	8 85	0.04	316 15	1050 200	739 4470	0.30	27 104	9 1	74 51
JWB-JV-1 JWB-JV-1 Target Range - Lowe	Bound	<10 <10	1	0.24 0.22	<10 <10	0.12 0.12	669 607	85 78	0.15	13 13	180 170	4080 3880	0.71 0.63	98 83	1 *1	49 44
MER-03 MER-03	Bound	20	2 3 94	0,29	20	0.16	* #0 753	98	0.15	i sa 18	230	4750	N. 0.79	. 105	. Z .	58
Target Range - Lowe Uppe OXK18	Bound Bound															
OXK18 Target Range - Lowe Uppe	r Bound															
OXM16 Target Range Lowe	Bound															
oppo					· .		BLA	NKS								
BLANK BLANK BLANK		<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2	<0.01	<2	<1	<1
BLANK BLANK BLANK		<10	<1	<0.01	<10	<0.01	<5	<1	<0.01	<1	<10	<2	<0.01	<2	<1	1
Target Range - Lowe Uppe	Bound Bound	<10	<1 2	<0.01 0.02	<10 20	<0.01 0.02	<5 10	* <1 - 2	<0.01	<1 -2	<10 _20	<2 4	<0.01 0.02	*2 4	×1 2	<u> </u>

ALS	5	ALS Canada LI 212 Brooksb North Vanco Phone: 604 S	SC INCE IN A ank Avenue uver BC V7J 984 0221	2C1 Canada Fax: 604 984		K STRY		To: PACI 501-9 VANO Proje	FIC TOPA 05 W PEN COUVER E	Z RESOUI IDER ST 3C V6C 1L Queen	RCES .6	•		Tota Finalized	P: I # Pages: Date: 21-/ Account:	age: 4 - B 4 (A - C) AUG-2004 PACTOP
									QC	CERTI	FICATE	OF AN	ALYSIS	VA0 4	051515	· · · · · · · · · · · · · · · · · · ·
Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K %	ME-ICP41 La ppm	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 No ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	NE-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
			 _				DUPLI	CATES		<u> </u>						
01532 DUP Target Range - Lower B Uppar B	ound	10 10 <10	<1 <1 <1	0.22 0.23 0.19 0.26	10 10 <10	1.33 1.35 1.25	715 715 669 761	2 1 <1	0.03 0.04 <0.01	18 19 16 21	1380 1400 1300 1480	22 21 16* 27	0.38 0.38 0.34 0.42	<2 <2 <2 4	4 4 2 8	75 75 69
·····				. <u>.</u>								<u> </u>	· · · · · · · · · · · · · · · · · · ·			
		· · · ·														
	-															
													- -			
· · ·																

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP

Project: Nugget Queen

Method Analyte Units Sample Description Lor	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	
			-			STAN	DARDS	
BPL-04								
Target Range - Lower Bound								
CU-106							133	
Target Range - Lower Bound Upper Bound							131	
G2000	0.05	<10	<10	66	<10	1260		
Target Range - Lower Bound	0.05	<10	<10 <10	59	<10	1235		
Upper Bound	0.07	20 <10	20 <10	74 13	20 <10	1385		
JWB-JV-1	0.02						22	
JWB-JV-1 Target Range - Lower Bound	0.02	<10 <10	<10 <10	13	<10 <10	9180 8550	20	
Upper Bound	0.03	20	20	15	20	>10000	24	
MER-03								
Target Range - Lower Bound Upper Bound								
OXK18		•						
Target Range - Lower Bound								
Upper Bound								
Parget Range - Lower Bound	1. A.							
Upper Bound								
						BLA	NKS	
BLANK								
BLANK BLANK	<0.01	.<10	<10	<1	<10	<2		
BLANK	<0.01	<10	-10	~1	<10	-2	<1	
BLANK	-0.01	-10	-10		-10			
Target Range - Lower Bound	<0.01	<10 20	<10 20	<1	<10 20		2	
					•			
	<u> </u>							

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP

QC CERTIFICATE OF ANALYSIS VA04051515

Project: Nugget Queen

Method ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 ME-ICP41 Ag-AA46 Analyte Ti TI U v ₩ Zn Ag Units % ppm ppm ppm ppm ppm ppm Sample Description LOR 0.01 10 10 .1 10 2 1 **DUPLICATES** ORIGINAL DUP Target Range - Lower Bound Upper Bound ORIGINAL DUP Target Range - Lower Bound Upper Bound ORIGINAL DUP Target Range - Lower Bound Upper Bound ORIGINAL DUP Target Range - Lower Bound - Upper Bound ORIGINAL DUP Target Range - Lower Bound Upper Bound ORIGINAL 853 851 DUP Target Range - Lower Bound 829 Upper Bound 875 01520 DUP Tarcet Rance - Lower Bound Upper Bound 01525 0.19 <10 <10 93 <10 98 DUP 0.18 <10 <10 91 <10 94 Target Range - Lower Bound 0/16 <10 <10 85 <10 87 Upper Bound 0.21 20 20 99 20 105

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 21-AUG-2004 Account: PACTOP 22

Project: Nugget Queen

QC CERTIFICATE OF ANALYSIS VA04051515

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	
							DUPLI	CATES	
01532 DUP Target Range - Lower Br Upper Br	Sund Sund	0.08 0.08 0.06 0.10	<10 <10 <10 20	<10 <10 <10 20	50 50 46 55	<10 <10 \$10 \$20	150 144 136 158		
		- -							
		• •							
	-								
	,				-				
· · · · · · · · · · · · · · · · · · ·									

ALS)	ALS Canada Li 212 Brooksb North Vancou Phone: 604 S	SC INCE IN A ank Avenue uver BC V7J 984 0221	Che NALYTICA 2C1 Canada Fax: 604 984		X STRY	· · ·	To: PACI 501-9 VANO Proje	FIC TOPA 005 W PEN COUVER E ct: Nugget	Z RESOUR IDER ST 3C V6C 1L Queen CERTI	RCES 6 FICATE	OF AN	ALYSI	Tota Finalized	P Il # Pages Date: 17-, Account 4051517	'age: 4 - A : 4 (A - C) AUG-2004 : PACTOP
ample Description	Method Analyte Units LOR	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fø % 0.01	ME-ICP41 Ga ppm 10
							DUPLI	CATES		- <u> </u>						
_5 +00 W +100 N DUP Target Range Lower Bo Upper Bo	und und	<0.005 <0.005 <0.005 0.010														
L 5+40 W +20 S DUP Target Range - Lower Bo Upper Bo	und	<0.005 <0.005 <0.005 0.010			· · · · ·								· · ·			
_ 5+40 W +40 S DUP Farget Range - Lower Bo Upper Bo	und Lind		<0.2 <0.2 <0.2 0.4	4.66 4.67 4.41 4.92	22 23 17 28	<10 <10 <10 20	50 60 30 80	<0.5 <0.5 ≪0.5	<2 <2 <2 4	0.09 0.09 0.07 0.11	<0.5 <0.5 <0.5 1.0	6 6 4	30 30 27 34	35 33 30 38	6.35 6.40 6.04 6.71	10 10 <10 //
_ 5+80 W +60 S DUP Target Range - Lower Bo Upper Bo	und und	0.008 0.014 <0.005 0.022							······································			· · · · · ·				
ORIGINAL DUP Target Range Lower Bo Upper Bo	fund lund - a		<0.2 <0.2 <0.2 0.4	1.48 1.48 1.39	2 5 ~2	<10 <10 <10 20	130 130 100 160	<0.5 <0.5 <0.5 1.0	<2 <2 <2 4	0.78 0.80 0.73 0.85	<0.5 <0.5 <0.5 1.0	9 8 6	28 26 24 30	1 1 ×1 5 8 2	3.94 3.93 3.72 4.15	<10 <10 <10 20
													-			
												···				
						·										

ALS	\$	ALS Canada L 212 Brooksb North Vanco Phone: 604	SC ENCE IN A td. vank Avenue uver BC V7J 984 0221	2C1 Canada Fax: 604 984	ME AL CHEMIS	K STRY		To: PACI 501-5 VAN	FIC TOPA 005 W PEN COUVER E ct: Nugget	Z RESOU IDER ST 3C V6C 1L Queen	RCES 6			Finalized Date: 17- Account	age: 3 - B 4 (A - C) AUG-2004 PACTOP	
Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-1CP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01
ORIGINAL DUP							DUPLI	CATES				· · · · · · · · · · · · · · · · · · ·	··· · ·			
ORIGINAL DUP	ound															
Target Range & Lower B	ound				-							- 				<u> </u>
Target Range - Lower B Upper B ORIGINAL	ound													·		
DUP Target Range - Lower B Upper B	ound				,										· .	

DUP Target Range - Lower Bound Upper Bound 173 0.02 550 7 0.10 <2 13 L 4+00 W +100 S 0.02 <10 0.29 2 9 1 0.09 1 DUP 0.01 <10 0.29 186 2 0.01 12 520 9 0.09 <2 1 12 0.08 1 <0.01 490 10 Target Range - Lower Bound <1 <0.01 <10 0.26 161 <1 8 4 0.07 <2 <1 0.06 15 0.11 0.32 580 Upper Bound × 7 0.02 20 198 0.02 13 12 0.12 4 2 L4 +40 W +40 N DUP Target Range - Lower Bound Upper Bound L 4+80 W +20 S 0.03 <10 0.16 87 <0.01 2 270 4 0.07 <2 1 25 0.06 <1 1 260 0.06 <2 25 0.03 <10 0.17 88 <1 < 0.01 5 0.06 DUP <1 <1 1 0.04 - <2 -<1 230 <2 <1 22 0.04 Target Range - Lower Bound <1 <0.01 <10 0.14 73 <1 <0.01 Upper Bound 2 0.02 2.00 300 0.09 28 0.08 0.05 20 0,19 102 • •

		ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada						To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6							Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP			
	•	Phone: 604	984 0221	Fax: 604 984	0218													
Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-1CP41 Ng % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01		
							DUPLI	CATES						· · ·				
L5 +00 W +100 N DUP Target Range - Lower Bi Upper Bo	ound ound								(
L 5+40 W +20 S DUP Target Range - Lower Bi Upper Bo	ound				<u>, , , , , , , , , , , , , , , , , , , </u>								,					
L 5+40 W +40 S DUP Target Range - Lower Br	ound	1 1 <1	0.04 0.04 0.32 0.06	<10 <10 <10 20	0.55 0.55 0.50	241 246 221 266	3 3 <1	<0.01 <0.01 <0.01 0.02	7 5 4 8	190 200 170 220	14 11 8	0.05 0.05 0.03 0.07	<2 <2 <2 4	6 6 4	14 14 11	0.21 0.21 0.18 0.24		
L 5+80 W +60 S DUP Target Range - Lower B Upper Bo	ound				· , · ·	. <u>.</u>												
ORIGINAL DUP Target Range - Lower B Upper B	ound	<1 <1 <1 2	0.27 0.26 0.23 0.30	10 10 ≪10 20	0.64 0.64 0.59 0.63	1005 1005 945 1065	1 1 ~1 2	0.11 0.11 0.08 0.14	2 3 •1	1000 1020 940 1080	5 6 ~2 10	<0.01 0.02 <0.01 0.02	<2 <2 #2	2 2 ~1	55 55 50 60	0.21 0.21 0.18		

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Project: Nugget Queen

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2		-		
							STANDARDS			
G2000		<10	<10	65	<10	1235				
G2000		<10	<10	67	<10	1270				
G2000		<10	<10	67	<10	1240			2000 - 100 -	
G2000		<10	<10	67	<10	1275				
Linner Bo	pung	20	20	39 74	20	1385				
JWB-JV-1		<10	<10	12	<10	9290				
JWB-JV-1		<10	<10	12	<10	9580				
JWB-JV-1		<10	<10	13	<10	9350				
JVVB-JV-1 Tamet Danne _1 ower Br	und	<10	<10	13	<10	9510				
Upper Bo	und	20	20	15	20	>10000				
MER-03										
MER-03										
MER-03	wed									
Upper Bo	wind									
OXK18							·			
OXK18										
OXK18										
Larget Kange - Lower Bo										1
	CALLIN					· ·				
							BLANKS			
BLANK										
BLANK										
BLANK		<10	<10	<1	<10	<2				
BLANK		<10	<10 <10	<1	<10	<2				
		<10	<10	<1	<10	<2				-
BLANK				•						
Target Range - Lower Bo	bund	<10	≤10	<1	<10	<2				
Upper Bo	ound	20	20	2	20	4				1
4. C.						1 A.				
		L			-		· · · · · · · · · · · · · · · · · · ·			

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP

Project: Nugget Queen

Neth Analy Unit Sample Description Loi	od ME-ICP41 rte Ti s ppm t 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
ORIGINAL DUP Tatget Range - Lower Bound						DUPLICATES
ORIGINAL DUP Target Range - Lower Bound Upper Bound						
ORIGINAL DUP Target Range - Lower Bound Upper Bound			<u></u>			
ORIGINAL DUP Target Range - Lower Bound Upper Bound						
ORIGINAL DUP Target Range - Lower Bound Upper Bound		. <u></u>				
L 4+00 W +100 S DUP Target Range - Lower Bound Upper Bound	<10 <10 <10 <10 <20	<10 <10 <10 20	90 96 86.	<10 <10 <10 20	26 29 22* 33	
L4 +40 W +40 N DUP Target Range - Lower Bound Upper Bound						
L 4+80 W +20 S DUP Target Range - Lower Bound Upper Bound	<10 <10 <10 20	<10 <10 <10 20	40 39 36 43	<10 <10 <10 20	17 17 12 22	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: PACIFIC TOPAZ RESOURCES 501-905 W PENDER ST VANCOUVER BC V6C 1L6 Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 17-AUG-2004 Account: PACTOP Project: Nugget Queen

Method Analyte Units Sample Description LOR	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2				
L5 +00 W +100 N DUP Torret Range - Lower Bound				 		DUPLICATES			
Upper Bound L 5+40 W +20 S DUP Target Range - Lower Bound				· .	<u>.</u>		 	 	
Upper Bound L 5+40 W +40 S DUP Target Range - Lower Bound Upper Bound	<10 <10 <10 20	<10 <10 <10 20	152 152 142 162	<10 <10 <10	44 43 37 50				
L 5+80 W +60 S DUP Target Range - Lower Bound		·					<u> </u>	· · · · · · · · · · · · · · · · · · ·	,
ORIGINAL DUP Target Range - Lower Bound Upper Bound	<10 10 <10 20	<10 <10 <10 20	77 75 70 82	<10 <10 ×19 20	120 119 110 129				