

T COLOR

Ministry of Energy & Mines Energy & Minerals Division Geological Survey Branch

ASSESSMENT REPORT TITLE PAGE AND SUMMARY

TITLE OF REPORT [type of survey(s)] Geochemical, Prospecting and Trenching Report	TOTAL COST \$68,021.60
AUTHOR(S) Paul S Cowley Alan R Raven	_SIGNATURE(S)
NOTICE OF WORK PERMIT NUMBER(S)/DATE(S) STATEMENT OF WORK - CASH PAYMENT EVENT NUMBER(S)/DATE(S	YEAR OF WORK 2004
PROPERTY NAME TOMMY Jack CLAIM NAME(S) (on which work was done) TJ 10 (338272)	TJ 8 (370169)
COMMODITIES SOUGHT_Gold, Silver	1
MINERAL INVENTORY MINFILE NUMBER(S), IF KNOWN_094D031 MINING DIVISION_Omineca	NTC 094D/04
LATITUDE56_007_'" LONGITUDE	
OWNER(S)	_ 2)
MAILING ADDRESS Box 204 Madeira Park, BC V0N 2H0	
OPERATOR(S) [who paid for the work] 1) Gold City Industries Ltd	2)
MAILING ADDRESS 550 - 580 Hornby St	
Vancouver, BC V6B 3B6 PROPERTY GEOLOGY KEYWORDS (lithology, age, stratigraphy, structure Jurassic, Bowser Lake Group, Bulkley Intrusive Chalcopyrite, Pyrite, Galena, Sphalerite	· · · ·

REFERENCES TO PREVIOUS ASSESSMENT WORK AND ASSESSMENT REPORT NUMBERS 13778, 14631, 15515, 24589 26197, 26978

TYPE OF WORK IN THIS REPORT	EXTENT OF WORK (IN METRIC UNITS)	ON WHICH CLAIMS	PROJECT COSTS APPORTIONED (incl. support)
GEOLOGICAL (scale, area)			
Ground, mapping			
Photo interpretation			
GEOPHYSICAL (line-kilometres)			
Ground			
Magnetic			
Electromagnetic	· · · ·		
Induced Polarization			
Radiometric			
Seismic		***	
Other			
Airborne			
GEOCHEMICAL			
(number of samples analysed for) Soil 1502 (1170 colle	cted 2004) (332 Historic)	TJ 8 and TJ 10	21,417.73
Silt			
Rock 17		TJ 8 and TJ 10	included
Other	······································		
DRILLING			
(total metres; number of holes, size)			
Core			
Non-core			
RELATED TECHNICAL			
Sampling/assaying			
Petrographic	**************************************		
Mineralographic		·	
Metallurgic			
PROSPECTING (scale, area)			
PREPARATORY/PHYSICAL Line/grid (kilometres) 25.18	km (establish and collect samples)	TJ 8 and TJ 10	43,103.87
Topographic/Photogrammetric (scale, area)			
Legal surveys (scale, area)			
Road, local access (kilometres)/tra			
Trench (metres) 3 hand tre	enches total length 16 metres	TJ 8 and TJ 10	3,500.00
Other	· · · · · · · · · · · · · · · · · · ·		
		TOTAL COST	\$68,021.60

GEOCHEMICAL, PROSPECTING AND TRENCHING REPORT

ON THE

TOMMY JACK PROPERTY

Consisting of the TJ - 1 to 4, TJ 8, 9 and 10, TJ – 11 to 16 Mineral Claims (48 Units)

OMINECA MINING DIVISION

Lat. 56° 07' N Long. 127° 37 ' W N.T.S. 094D04E

Prepared for:

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

By:

Paul Cowley, P.Geo. and Alan Raven

December 13, 2004

Vancouver, B.C.

TABLE OF CONTENTS

	S	
	ΓΙΟΝ	
LOCATION,	ACCESS, PHYSIOGRAPHY	2 -
CLAIM DAT	Α	4 -
HISTORY O	F THE PROPERTY	6 -
GEOLOGY		6 -
	eology	
-	eology	
	tion	
	ent	
	GRAM	
	l	
	gy	
	al Sample Preparation and Analyses	
	LING PROGRAM	
	n of Geochemical Soil Anomalies	
	id	
	d	
	of Geochemical Soil Anomalies	
	id	
	l	
	NG PROGRAM	
	DNS	
RECOMMEN	NDATIONS	
Geochemis	try	
Trenching		23 -
Self Potent	ial Survey	23 -
V.L.F Surv	ey	24 -
	Mapping and Detail Prospecting	
	ES	
	List of Tables	
Table 1:	Claim Information	4
	Statistics on Geochemical Soil Data	11
Table 2:	Statistics on Geochemical Son Data	11
	List of Figures	
Figure 1:	Location and Access Map	3
Figure 2:	Claim Map	5
Figure 3:	Regional Geology	7
Figure 4:	Soil Grid and Trench Index Map	14
Figure 5:	•	15
-	Au Geochemical Soil Survey Results 2004	
Figure 6:	As Geochemical Soil Survey Results 2004	16
Figure 7:	Ag Geochemical Soil Survey Results 2004	17
Figure 8:	Pb Geochemical Soil Survey Results 2004	18
Figure 9:	Zn Geochemical Soil Survey Results 2004	19
Figure 10:	Hand Trench Index Map	21
Figure 11	Sample Layout in Trenches	22
i igui (11	Sumple Layout in Frenches	
APPENDIX	Analytical Results	
APPENDIX	II Rock Sample Descriptions	

APPENDIX III Statement of Costs

APPENDIX IVStatement of Qualifications

SUMMARY

The Tommy Jack property, under option to Gold City Industries Ltd., is composed of 48 claim units. The property is situated 95 kilometres north of Hazelton, B.C., in the Atna Range of the Skeena Mountains, near the confluence of Tommy Jack Creek with the Sicintine River.

The Tommy Jack property in conjunction with the adjoining Warren ground covers a 2 x 3.5 km zone of pervasive carbonate alteration. Within this zone are widespread gold-silver-lead-zinc-bearing quartz-carbonate veins in shears and stockworks in Bowser Group sedimentary rocks and in granodiorite (dacite) dykes and sills. The nature of the mineralization is compared to the Silver Standard Mine, 85 kilometres to the south (past production of 203,839 tonnes totaling 463,000 grams of gold and 236,000,000 grams of silver). However, gold mineralization found to date in float on the Tommy Jack appears to be of significantly higher gold tenor than at the Silver Standard Mine.

Work completed by Intertech Minerals in 1989, while in a joint venture with Noranda Exploration Ltd., included 14.1 kilometres of grid, geochemical sampling, geophysical surveys and geological mapping. This work generated a number of gold and multi-element soil anomalies to the southwest and southeast of the area worked by Noranda. Several strong VLF anomalies were also found to correlate with the general southwest trend of the geochemical anomalies. The targets generated by the Intertech work are now completely covered by the current Tommy Jack property. The highest grade gold values found to date (2.2 oz/t gold) are from float found in the vicinity southeast of the Noranda study area. The work done by Raven (1995) further extended the geochemical anomalies, particularly east of Unnamed Creek.

A short field program of detailed prospecting and hand trenching carried out by Gold City Industries in 2002 established that additional exposures of bedrock can be located even though the area has extensive glacial cover. The program was successful in locating numerous exposures of bedrock, both barren and mineralized, as well as confirming the bedding of the sedimentary rocks dips to the east in the northern portion of the property which calls into question the drill results of a number of the Noranda holes drilled in 1986/87.

In July and August of 2004, Gold City Industries Ltd. conducted a 24 day field program of geochemical soil sampling, hand trenching and prospecting.

The soil survey generated numerous gold/multi-element anomalies in the Western grid and a large Pb/Zn/As anomaly and triangular shaped Au/As anomaly in the Eastern grid. The 2004 soil program added new gold/multi-element (gold, silver, arsenic, lead and zinc) anomalies and extended others from the existing soil sampling database.

The relatively high values of mercury, arsenic and silver with sporadic gold values hosted by altered felsic intrusive and sedimentary rocks with varying degrees of silicification and quartz veining indicates the upper portion of an epithermal system.

Although bedrock sources of the high precious metal float material were not found, the results of the work conducted during the 2004 season are encouraging. Trenching, prospecting and sampling should continue on the Tommy Jack property. Geophysical and soil surveys should be expanded. Promising anomalies should receive more detailed soil sampling density.

OBJECTIVES

The objective of the 2004 program was to expand the area covered by soil geochemistry to better locate bedrock sources of the high-grade precious metal float mineralization on the property. Specific strategies and tasks were:

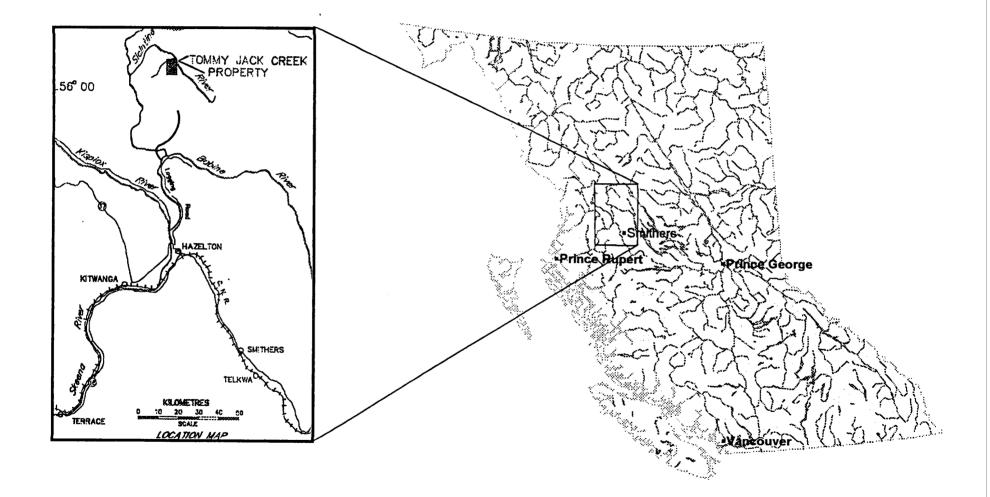
- 1. To expand the areas covered by soil geochemical surveys in order to determine the extent of the mineralized portion of the property.
- 2. To further investigate the origins of the previous soil anomalies and the transported high grade floats in light of the interpretation that the direction of the last ice movement was southerly (uphill).
- 3. To hand trench of some of the soil anomalies developed by Noranda/Intertech/Raven/Gold City during earlier work programs in order to determine their source.
- 4. To prospect, map and sample any newly discovered exposures of bedrock.

INTRODUCTION

The Tommy Jack property covers widespread gold-multi-element soil anomalies and geophysical anomalies (VLF and self-potential) occurring in Bowser Group sedimentary rock that are intruded by dacite dykes and sills. This ground is part of the former large claim group (139 units) held under option by Noranda in a joint venture with Gold Cap, and then Intertech Minerals (1986 to 1989). The "Warren" ground that adjoins the Tommy Jack property on the north and west was where most of the Noranda drilling took place but a much larger area (139 units) was the subject of preliminary exploration programs. These programs consisted of geochemical, geophysical and geological surveys that delineated a much larger area than that covered by the "Warren" ground. The anomalies (soil and geophysical), have not been fully defined and need much more work to determine their merits.

The purpose of this report is to summarize the results of the fieldwork conducted in 2004 by Gold City Industries Ltd. The 2004 field work consisted of an extensive soil sampling survey, hand trenching and detail prospecting. The report summarizes the previous work carried out by Noranda, Intertech and Raven.

LOCATION, ACCESS, PHYSIOGRAPHY

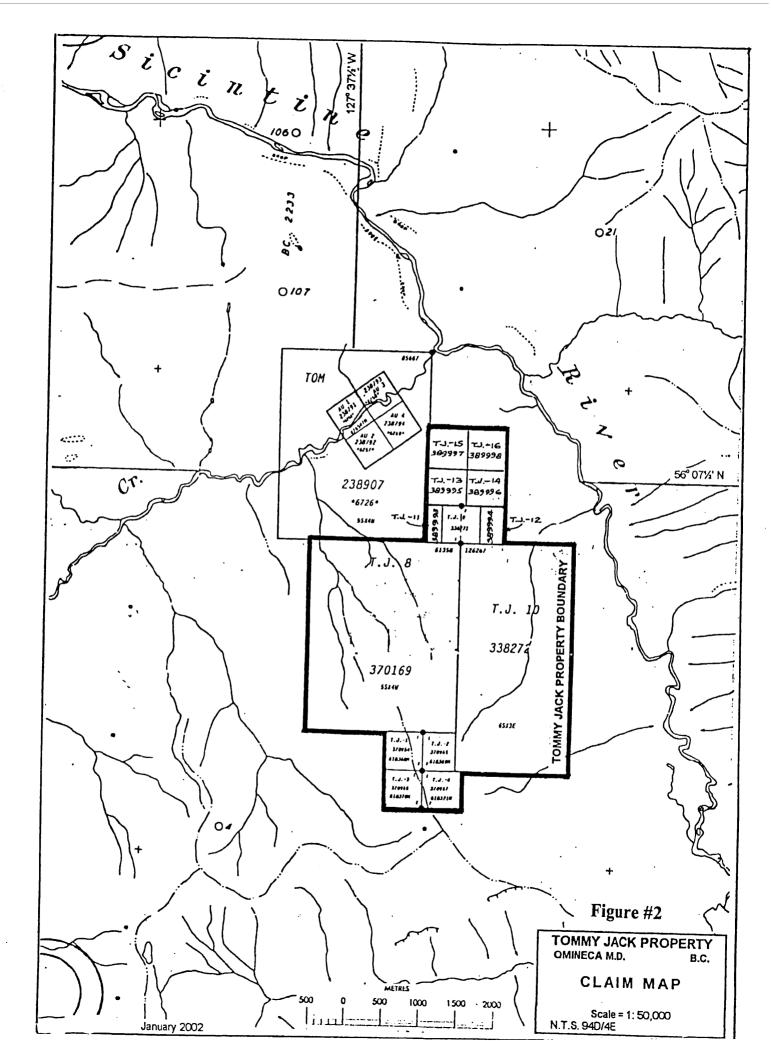

The Tommy Jack property is situated 95 kilometres north of Hazelton in the Omineca Mining Division (Figure No. 1). The property lies immediately to the south of the confluence of Tommy Jack Creek with the Sicintine River, which in turn flows into the Skeena River. The property is centered at Lat. 56° 07' N Long. 127° 37' W on map sheet N.T.S. 094D04E.

Access is by helicopter (approximately 1 hour) from Smithers. There are presently new logging roads being built into the immediate area. Currently, the closest road is about 10 kilometres to the south of the property.

The property is in the Atna Range of the Skeena Mountains. The slopes are gentle to moderately steep with elevations ranging from 1140 to 1760 metres. A heavy virgin forest growth of balsam, fir, spruce and hemlock covers most of the claim area up to 1500 metres elevation, above which heather, scrub fir and grass-covered areas.

LOCATION MAP Figure #1

,


CLAIM DATA

The Tommy Jack property comprises 48 claim units (Figure 2). All claims are owned 100% by Alan Raven and under option to Gold City Industries Ltd. Claim information is presented in Table 1 below.

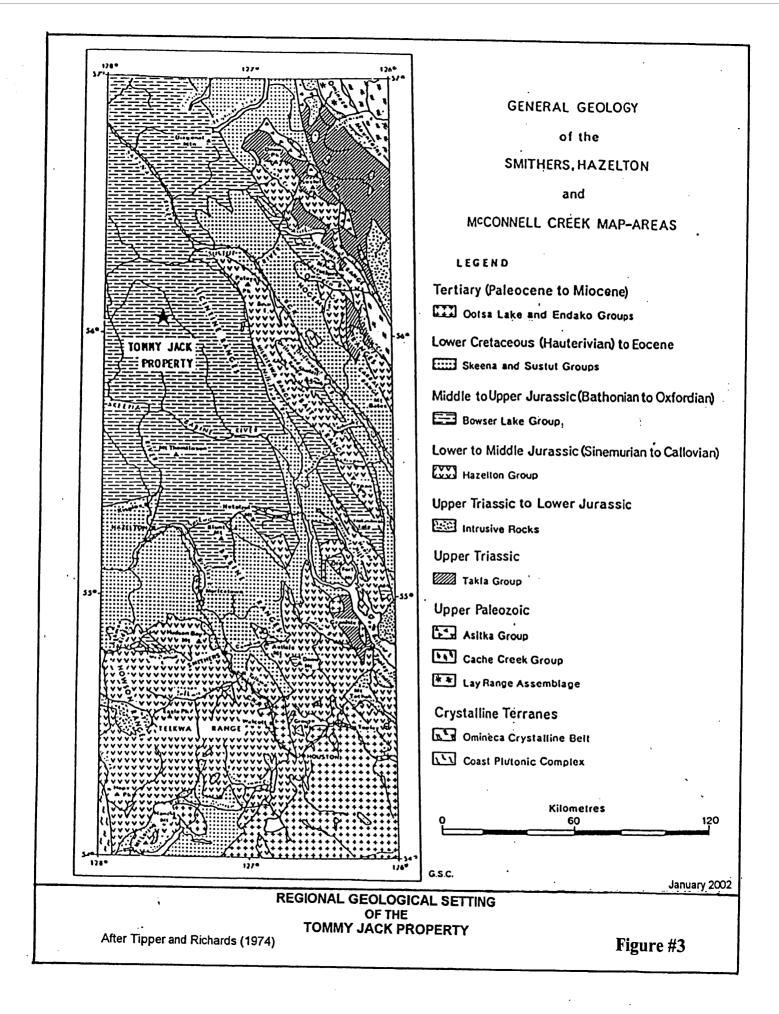
CLAIM	TENURE	STATUS	TAG	UNITS
NAME	NUMBER	Good standing	NUMBER	
TJ - 1	370954	2011-Oct-01	618368M	1
TJ - 2	370955	2011-Oct-01	618369M	1
TJ - 3	370956	2011-Oct-01	618370M	1
TJ - 4	370957	2011-Oct-01	618371M	1
TJ 8	370169	2011-Oct-01	61358	20
TJ 9	338271	2011-Oct-01	625415M	1
TJ 10	338272	2011-Oct-01	126267	18
TJ-11	389993	2011-Sept-16	698873M	1
TJ-12	389995	2011-Sept-16	698874M	1
TJ-13	389995	2011-Sept-16	698875M	1
TJ-14	389996	2011-Sept-16	698876M	1
TJ-15	389997	2011-Sept-16	698877M	1
TJ-16	389998	2011-Sept-16	698878M	1

Table 1: Claim Information

Note: Date assumes acceptance of work expenditures in this report.

HISTORY OF THE PROPERTY

- 1964-65: Canex Aerial Exploration
- 1984: Lorne Warren staked property.
- 1984-85: Property optioned by Noranda; conducted geological and geochemical surveys.
- 1986-87: Option continued and additional ground staked Noranda/Gold Cap JV; program of geological, geochemical, geophysical surveys with drilling carried out on the "Warren" ground.
- 1988-89: Option continued with Noranda/Gold Cap/Intertech JV; conducted geological, geochemical and geophysical surveys on the "Raven" ground, new targets generated.
- 1989-1995: Property idle but in good standing. Option with Warren dropped.
- 1995: Raven acquired 19 units as some of the ground covered by the new targets as ground lapses; conducted a geological, geochemical and prospecting program.
- 1996: Raven acquired 6 units as additional ground lapses (Warren also acquires adjoining claims).
- ♦ 1999: Raven acquired 24 units (which include 6 units staked in 1995) to cover target areas; conducted a geological, geochemical, geophysical surveys and prospecting program.
- ♦ 2001: Raven acquired 6 units on the north boundary; conducted a geological mapping, sampling, prospecting and hand-trenching program.
- 2002: Gold City Industries carried out a geological, geochemical and prospecting program
- Approximate total expenditures on exploration in the immediate area to date is \$775,000.00


Note: The majority of the Noranda/Gold Cap monies (drilling) were spent on Warren's ground that adjoins the Tommy Jack property on the north and west with the most of the remainder spent on what is now the "Raven" ground. (TJ series of mineral claims).

GEOLOGY

Regional Geology

The Tommy Jack Creek property lies in the Intermontane belt, one of the five major subdivisions of the Canadian Cordillera (Figure 3). The belt consists of Mesozoic volcanic and sedimentary rocks and is bounded on the east by the metamorphic rocks of the Omineca Belt and on the west by the Coast Crystalline Belt.

The rocks underlying the claim area are part of a thick assemblage of marine and non-marine sediments composed of shale, siltstone, sandstone and conglomerate (Figure 2). The assemblage, referred to as the Bowser Lake Group, was deposited in a broad basin (Bowser Basin) at least 200 kilometres wide and 300 kilometres long. This basin is interpreted by Eisbacher (1977) to be a marginal basin developed along the continental margin, open to the west and filled with sediments derived from a tectonically thickened welt in the east and from the older terranes and

volcanic chains on the west. Subsequent sea floor spreading and subduction resulted in:

1) the welding of the older volcanic-plutonic terranes onto the continental crust and

2) uplift and deformation of the rocks of the Bowser Basin.

Intrusive into the Jurassic Bowser Group sedimentary rocks are a Cretaceous series of stocks and small batholiths of porphyritic granodiorite and quartz monzonite termed the Bulkley Intrusions. They lie in a belt 80 kilometres wide and 300 kilometres long, and include a cluster of intrusions in the Atna and Sicintine Ranges in the north and extend southward to include the Quanchus Intrusions in the Whitesail Lake area. The Tommy Jack Creek property is ten kilometres north of the known northern limit of this belt.

The Bulkley Intrusions have a number of common characteristics including:

1) Cretaceous age (70 to 84 million years),

2) high level characteristics,

3) host to a number of important copper-molybdenum and molybdenum-tungsten deposits (Carter, 1981) such as Mt. Tomlinson and Glacier Gulch, and,

4) host to a number of important precious and base metal deposits such as the Silver Standard and Rocher Deboule Mines, both near Hazelton.

Property Geology

The Tommy Jack property is on the eastern edge of the Bowser Basin.

The property is underlain by the Bowser Sediments that, in the claim area, consist of interbedded sedimentary clastics; siltstone, arkosic sandstone, shale and argillite with minor conglomerates. There are exposures of siltstone and sandstone throughout the property. Minor conglomerate was encountered only by several of the drill holes in the area. These beds are gently folded with a generally westward dip and exposed on the East Scarp of Moret Ridge. The sedimentary units are further deformed by a series of fault zones on the property resulting in an east dip on the eastern boundary of the property.

The sediment package is intruded by a felsic unit of the Cretaceous Bulkley Intrusive Suite(?). The field term used is dacite. Multiple intersections of the dacite in the drill holes suggest that there are multiple dykes within fault zones (dyke swarms) or that intense faulting has broken single dykes into small sections. The dacites have pervasive sericite and carbonate alteration. The mafic minerals alter to chlorite.

Structure

Extensional tectonics generated steeply dipping multiple sub-parallel faults trending northwest to north as well as northeast to east. The northwest to north block faulting down-dropped a series blocks progressively eastward. This interpretation is based on drill sections, air photo lineaments and topography. There are a series of sub-parallel faults with a NNW strike that cross the property and are sub-parallel to or a splay of the major Sicintine fault zone that is located just to the east of the property. There are also indications of fault zones at almost right angles to the main fault zone as indicated by the drainage pattern of the bottom of Unnamed Creek, the strike of a dacite dike in Unnamed Creek and air photo lineaments on the southeast corner of the area. The fault interpreted by Allen (NNE trending) goes from the headwaters area of Beaver Creek towards the area of Noranda's most concentrated drilling. This NNE trending fault (Allen's) may

also be the reason for the fragmentation and deflection of the soil and VLF anomalies in the upper area of Beaver Creek. These block fault zones provided conduits and areas of weakness for the penetration of the intrusive bodies and the mineralizing solutions. Multiple episodes of fracturing resulted in the rock units becoming receptive to mineralization in both the sediments and the intrusive bodies.

There is a possible uplift of one of the central blocks as indicated by a circular feature expressed on the air-photo. This may be the result of a buried intrusive from which the dacite dykes may have originated and/or from which the mineralizing fluids may have derived.

Mineralization

Mineralization on the property consists of pyrite, arsenopyrite, galena, sphalerite, tetrahedrite and chalcopyrite, primarily in quartz veins or quartz-carbonate altered rock. The mineralization is related to dykes and/or faults hosted by veins, veinlets and/or stockworks and carries values in gold and silver. The alteration consists of quartz-carbonate (ankerite, calcite, dolomite) sericite and chlorite (mafic minerals in the granodiorite dykes). The dykes themselves show alteration (clay minerals, carbonate and sericite) and contain stockworks of mineralized quartz veins. The sandstones, being more permeable, show the greatest degree of carbonate alteration with ankerite, calcite and quartz-carbonate forming veins and fracture fillings. The carbonate alteration zone mapped to date is approximately 2 km. by 3.5 km. and is open to the southeast. In Allen's 1989 report for Intertech his statistical analysis indicates that there are at least two populations of mineralization, thus suggesting at least two mineralizing pulses and possible overprinting of alteration/mineralization.

The quartz and quartz/carbonate veining is multi-directional in both the sediments (sandstone and siltstone) and the dacite dykes. The data from previous drilling supports the interpretation that this veining occurs within broad fault zones within all rock types that the structures penetrate.

Historically (Noranda/Intertech/Raven), there have been many rock samples found throughout the property. Primarily, these samples are of float blocks but suspected of very local origin. They are typically of excellent precious metal grade. The grades range from 0.2 to 2.1 oz/ton gold and 0.3 to 74 oz/ton silver. These rock samples are usually of sulphide rich quartz but the quartz can be sulphide poor and still carry excellent gold grades (Noranda/Intertech data). The float samples can be found in most drainage patterns within the target area as well as scattered within the overburden. These float samples are found in an area from immediately west of Beaver Creek to east of Unnamed Creek, a distance of approximately 3 kilometres. This wide area that contains the float samples also crosses the strike of the structures and includes the geophysical and geochemical anomalies.

The relatively high values of mercury, arsenic and silver with sporadic gold values hosted by altered felsic intrusive and sedimentary rocks with varying degrees of silicification and quartz veining appears to indicate the upper portion of an epithermal system.

Ice Movement

Raven interpreted the last ice direction in the area was southerly based on air photos. There is, however, no obvious evidence of significant ice movement affecting soil anomalies. It is further interpreted that all the source rocks are therefore from the immediate vicinity.

WORK PROGRAM

Description

Gold City Industries Ltd. completed a 2004 exploration program consisting of a 24 field-day soil sampling, prospecting and trenching program. The field program ran from July 12, 2004 until August 4, 2004. Work was carried out from a tent camp mobilized by truck to the end of logging road in Tommy Jack pass and ferried by helicopter from road end to the property. Canadian Helicopters Ltd. based in Smithers provided helicopter services. Crews accessed work areas by foot from the tent camp.

Prior to the field season, 332 stored soil pulps from an earlier survey on the property were analyzed for 30 elements in order to extend the multi-element coverage.

Two slope corrected control grids (East and West Grids) were established to facilitate the collection of soil and rock samples, locate bedrock exposures and establish controls for any future surveys. Grid lines were spaced 100 metres apart with samples and stations established/collected at 20 metre intervals. A Tyvek tag with the grid co-ordinate marked on it was secured by a wire tie to vegetation at each grid station. West Grid covered an area of approximately 1500 metres by 1300 metres. The East Grid covered an area of 1300 metres by 800 metres and located 400 metres east of the West Grid. Both the West and East grids are tied to the same co-ordinate system which originates at 20000N 20000E located ~140 metres west of Beaver Creek.

B-horizon soil was collected from hand dug pits 10-65 cm deep. Samples were placed in Kraft paper sample bags with their corresponding sample grid station written on each paper sample bag. A total of 1170 soil samples were collected within the 25.18 kilometres of grid.

A total of 4 hand trenches were dug to expose or better expose bedrock from which 17 rock samples were collected.

Rock sampling during the 2004 program was restricted mainly to mineralized bedrock exposures located during the establishment of the control grid and some areas within previously located soil anomalies.

Descriptions of the samples are available in Appendix II.

Methodology

The slope corrected control grids were established by two man crews using compass, clinometers and hard chain. The soil samples were collected using steel bladed shovels, put into high strength Kraft soil bags, transported to base camp, checked for damaged or incorrectly numbered bags, air dried and packed for shipment to Acme Labs in Vancouver. Field notes collected at each site included: line and station number, line slope angle, line direction, topographic slope direction, soil colour, sample depth, any bedrock exposures in the area and comments not ordinary within the survey area such as soil horizons out of the ordinary, any swamps, creeks, previous grids or old workings.

Geochemical Sample Preparation and Analyses

Rock and soil samples were sent to Acme Analytical Laboratories Ltd. in Vancouver, BC. Rock samples were pulverized and sieved to -150 mesh. Soils were sieved to -80 mesh. Samples were analyzed for 30 elements. This involved a 30gm sample leached with 180 ml of HCL-HNO₃-H₂O at 95° C for one hour, diluted to 600ml and then analyzed by Optima ICP-ES and MS. Elements provided were the following: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, and Zn. Samples were run for fire assay- atom absorption finish for Au with a 2 ppb detection limit.

SOIL SAMPLING PROGRAM

Results of the soil survey are presented in Appendix I and in summary form below in text and Figures 5 through 9. A statistical analyses was conducted on the soil data set to determine anomalous values. Table 2 presents key elements and their corresponding values. Statistically, an anomaly was defined by the mean plus one standard deviation and a stronger anomaly starting at the mean plus two standard deviations. However, gold values greater than 20 ppb Au and silver values greater than 0.6 ppm Ag were considered anomalous.

	Gold	Silver	Arsenic	Lead	Zinc
	ppb	ppm	ppm	ppm	ppm
Average	25.8	1.61	128.5	51.5	128.2
Std	53.5	2.37	173.9	90.1	119.3
1 st Std Dev	79.3	3.98	302.3	141.5	247.5
2 nd Std	132.8	6.36	476.2	231.7	366.8
Dev					
Maximum	728.7	41.40	2191.7	1837.6	1396.0

Description of Geochemical Soil Anomalies

West Grid

Gold

A series of northwest trending $(330^{\circ} \text{ to } 340^{\circ})$ sub-parallel linear gold anomalies are defined by soils on the West Grid ranging in strike length from 200 to 700 metres. Values range from 0.9 ppb Au to 661 ppb Au. The end points of six anomalies are located by the following grid coordinates: 18700N x 21140E to 18800N 21060E; 19100N x 20980E to 19300N x 20840E; 19000N x 21240E to 19700N x 20860E; 19600N x 21140E to 19800N x 21080E; 19300N x 21740E to 19900N x 21640E; and 19700N x 21780E to 20000N x 21640E.

Arsenic

A near continuous northwest trending (340°) linear anomaly >1400 metres in length was established on the West Grid. This anomaly is coincident with one of the gold soil anomalies. Values ranged from 4.7 ppm As to 762 ppm As. The end points of the two anomalies are located by the following grid coordinates: 18500N x 21340E to 19800N x 21000E (disjointed linear) and

19400N x 21700E to 19600N x 21600E.

Lead

A series of short, ~200 to 250 metres, northwest trending linear lead anomalies are coincident with some of the gold anomalies. Values ranged from 5.9 ppm Pb to 1837 ppm Pb. The end points of four anomalies are located by the following grid coordinates: 19200N x 20840E to 19700N x 20880E; 19000N x 21200E to 19700N x 21040E; 19600N x 21140E to 19800N x 21000E; and 19300N x 21700E to 19600N x 21480E.

Zinc

A series (4) of short, ~200 metres, northwest trending linear sub-parallel zinc soil anomalies were identified on the West Grid and were found coincident with some of the gold soil anomalies. Values ranged from 27 ppm Zn to 1396 ppm Zn. The end points of four anomalies are located by the following grid coordinates: 19200N x 20840E to 19700N x 20880E; 19500N x 21200E to 19800N x 21000E; 19500N x 21360E to 19700N x 21300E; and 19800N x 21640E to 20000Nx 21400E

Silver

The overall high background values and the sporadic high values in the target area make it difficult to determine a preferred orientation for the silver soil anomalies. However, one discontinuous northwest trending (335°) linear silver soil anomaly 500-600 metres long appears to be located slightly offset to the west of the one gold soil anomaly. Values ranged from 0.2 ppm Ag to 12.4 ppm Ag

East Grid

Gold

The soil survey identified a triangular shaped gold soil anomaly 300 metres by 140 metres in size and located in the southwest portion of the grid. The gold soil anomaly coincides with a much larger arsenic soil anomaly described below. The gold values in this anomaly ranged from <0.5 ppb Au to 728 ppb Au. The end points of the anomaly are located by the following grid coordinates: 18900N x 22400E to 18900N x 22580E to 19100N x 22460E.

Arsenic

A large (500 metres long x 400 metres wide) arsenic soil anomaly has been identified in the southern portion of the grid. Arsenic values ranged from 0.9 ppm As to 2191 ppm As. It is interpreted that there appears to be two sources of the arsenic, one linked with the gold and the other with the lead/zinc. Examination of the raw analytical data suggests that there are two arsenic anomalies that merge into each other, one a triangular one associated with the gold and a linear one associated with the lead/zinc. The end points of the anomaly are located by the following grid coordinates: on line 18800N from 22300E to 22680E extending northerly to line 19500N while maintaining a width of about 400 metres.

Lead

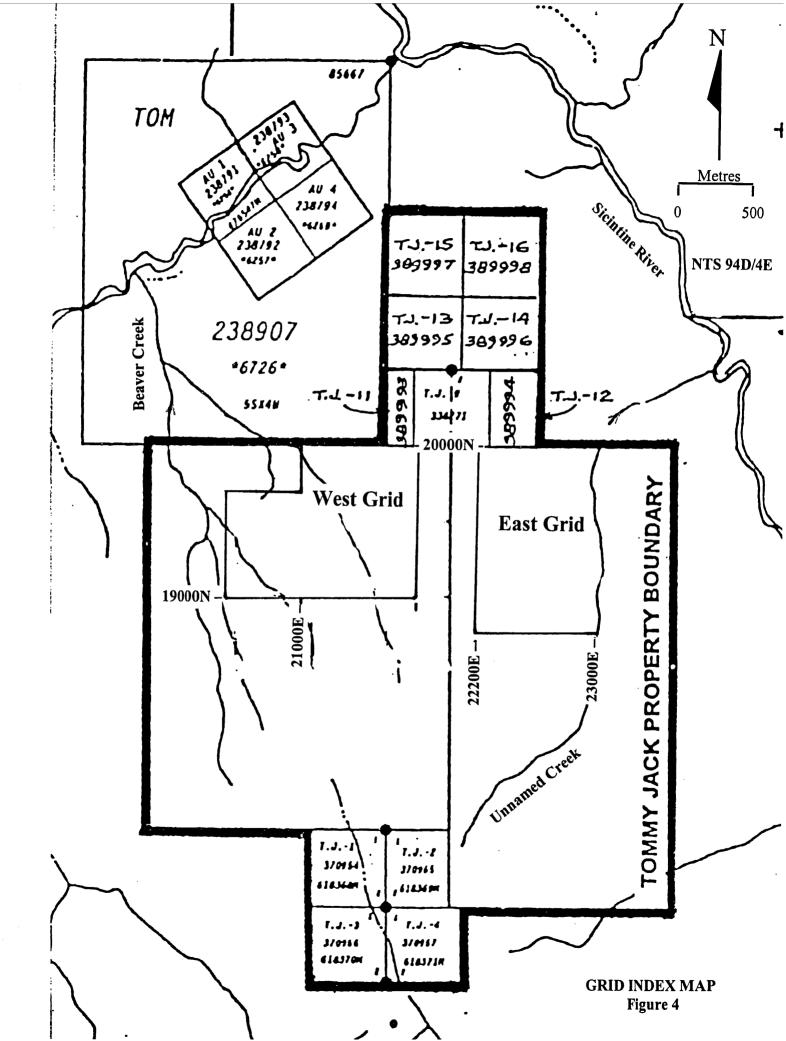
A northwest trending (330°) linear lead soil anomaly approximately 600 metres long is present on this grid. Values ranged from 38.9 ppm Pb to 1259.4 ppm Pb. coincident with the zinc anomaly. Another triangular lead anomaly trending north 300 metres long is located 260 metres west of the southern end of the above lead anomaly. Values ranged from 36.8 ppm Pb to 478.6 pm Pb. This anomaly appears to be coincident with the gold soil anomaly. The end points of the two anomalies are located by the following grid coordinates: 18900N x 22360E to 18900N x 22540E to 19200N x 22440E; and 18800N x 22900E to 19500N x 22460E.

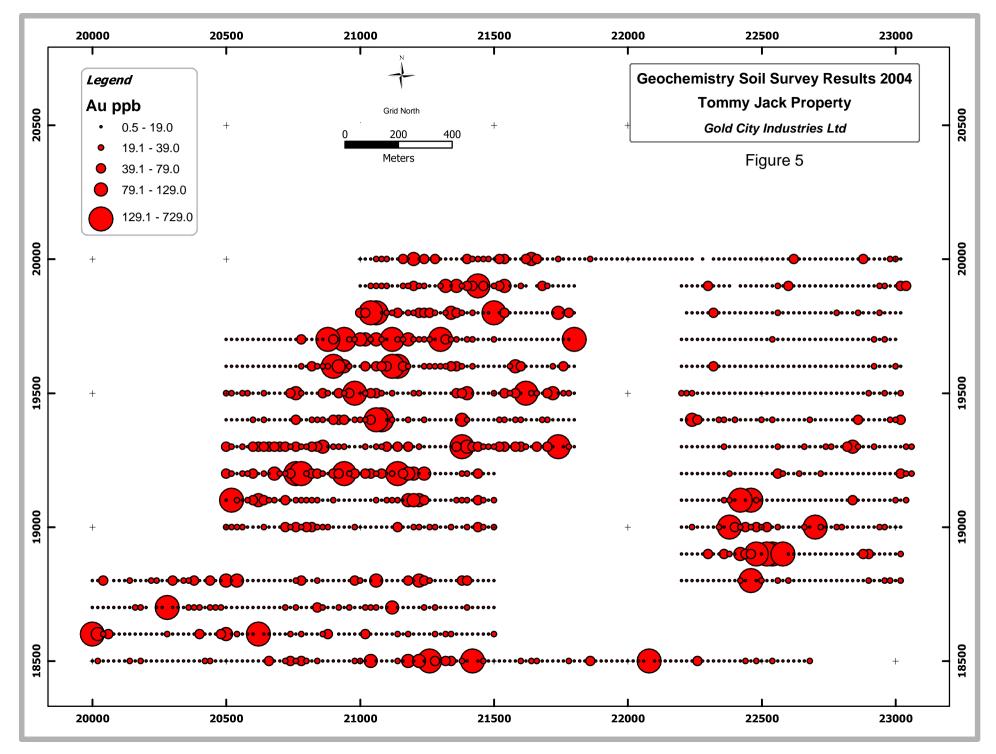
Zinc

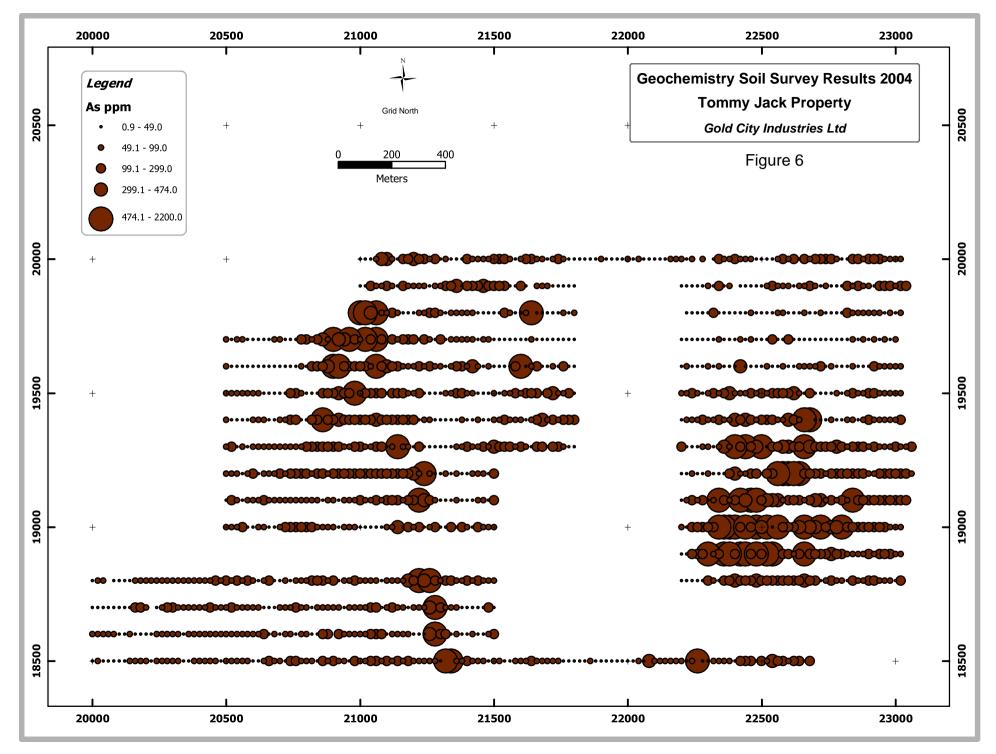
A pronounced northwest trending (330°) linear zinc soil anomaly approximately 800 metres long extends from the southeast corner of the grid toward the northwest corner. Values range from 70 ppm Zn to 936 ppm Zn. This anomaly coincides with the long lead soil anomaly described above. A second 200 metre long zinc soil anomaly is located approximately 200 metres west of the south end of the other zinc anomaly and is coincident with the gold anomaly. The end points of two anomalies are located by the following grid coordinates: 18800N x 22400E to 19000N x 22360E; and 18800N x 22900E to 19600N x 22420E.

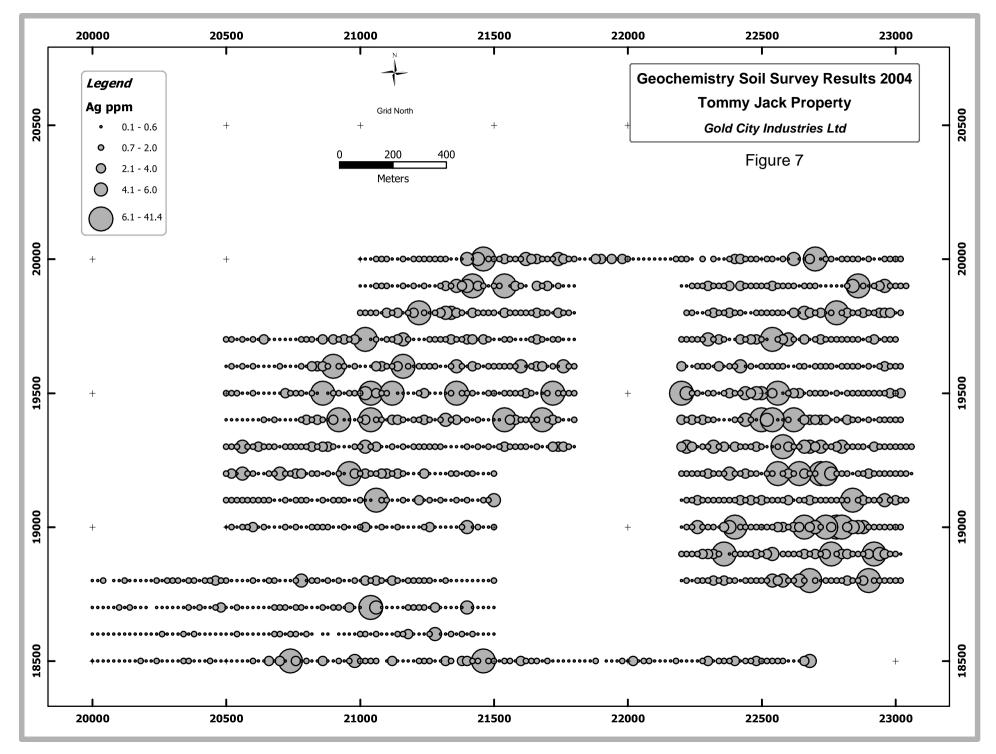
Silver

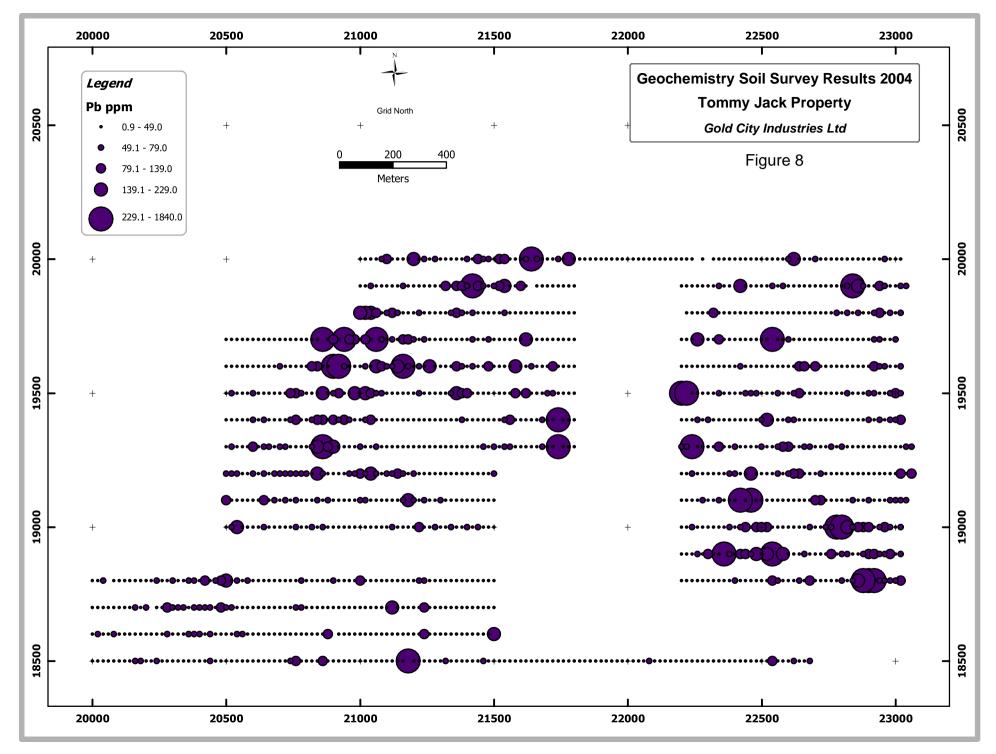
A northwest trending linear silver soil anomaly 800 metres long is coincident with the long zinc soil anomaly. Values ranged from 0.3 ppm Ag to 17.9 ppm Ag. A smaller linear silver soil anomaly 100 metres long overlaps the gold soil anomaly. Silver values in this anomaly range from 0.6 ppm Ag to 12.0 ppm Ag. The end points of the linear disjointed anomaly are located by the following grid coordinates: 18800N x 22880E to 19700N x 22300E.

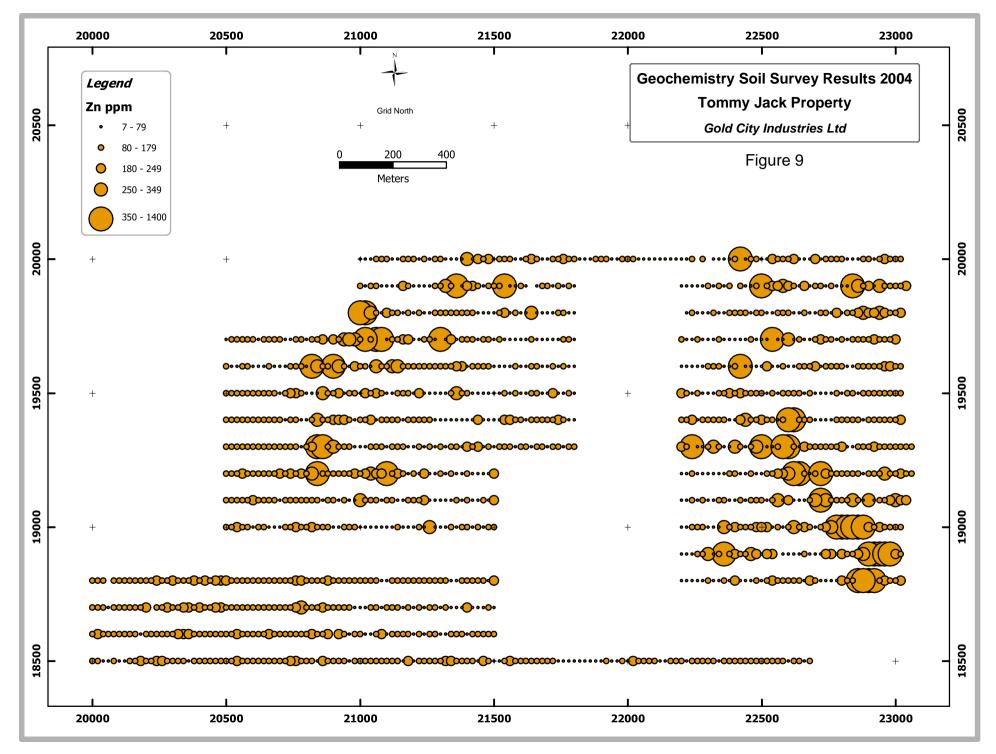

Discussion of Geochemical Soil Anomalies


West Grid

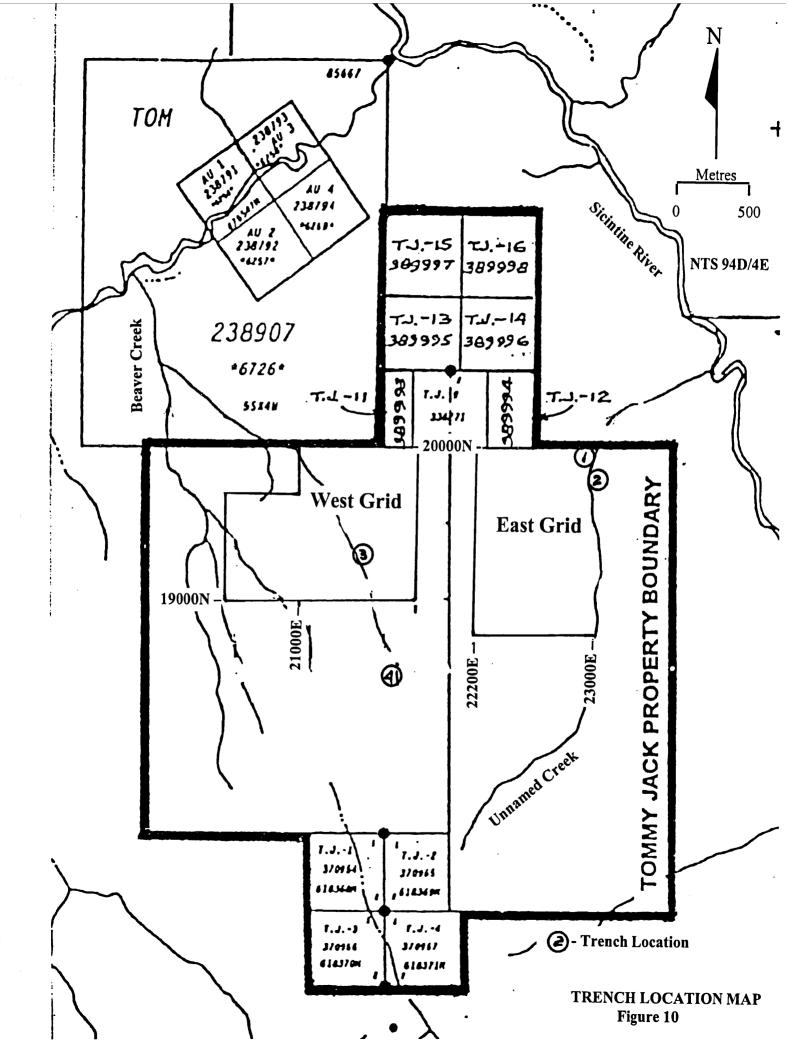

A series of northwest trending linear sub-parallel gold/multi-element anomalies cover an area of about 1400 metres long and 100 to 250 metres wide in the central area of the grid. The multielement component includes gold, silver, arsenic, lead and zinc. This swath of anomalies corresponds to an area of dacite dykes intruding the sedimentary rocks (sandstone, siltstone and minor conglomerates) that are transected by a series of northwest trending structures (faults ?) as interpreted from air photographs. Glacial dispersion, to the south and southeast, of the soil anomalies probably increased the physical size of the anomalies but the cohesiveness of the metal values suggests the dispersion was minimal.


East grid


The dispersion patterns and the element associations suggest two episodes of mineralization. The large northwest trending anomaly consists of coincident lead, zinc, arsenic and silver values with very little gold. This linear anomaly is very persistent over 800 metres and suggests an underlying bedrock source that is enriched in these metals. The anomaly situated \sim 200 metres west of the south end of the large anomaly and striking north-south, is primarily gold and arsenic rich with supporting lead and zinc values.

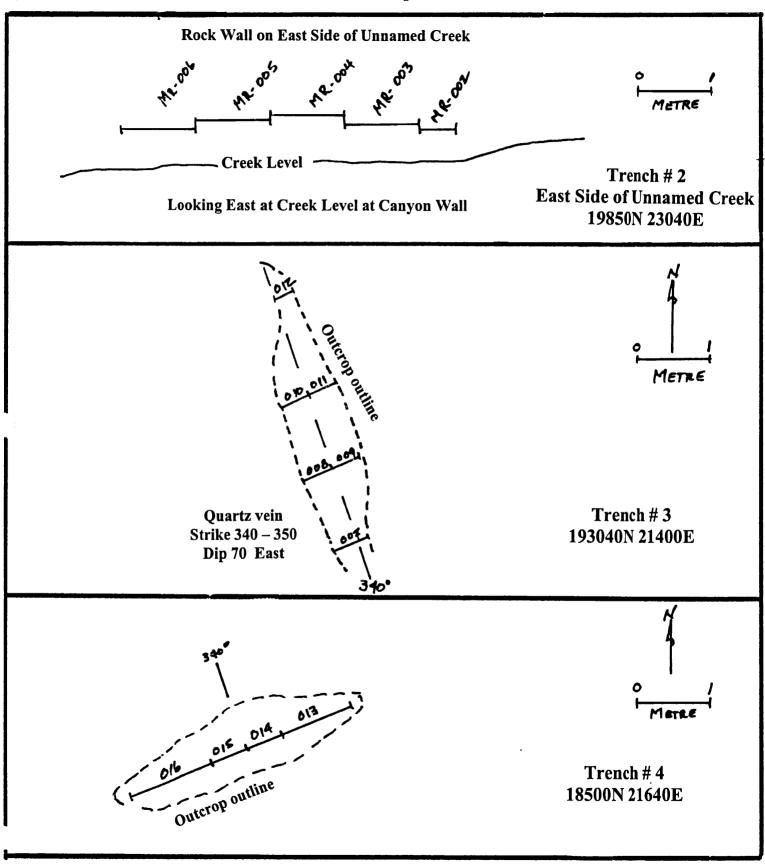


TRENCHING PROGRAM


Hand trenching was carried out on selective geophysical anomalies and areas of geochemical soil anomalies developed from previous work. The location of the trenches are shown in Figure 10. This handwork is slow and labour intensive, but is very beneficial to determine the source of the anomalies. These trenches were dug in various parts of the property as follows:

- 1. 19950N x 23040E on the West side of Unnamed Creek, subcrop of metasediments with quartz and pyrite, sample # MR-001
- 2. 19850N x 23040E on the East side of Unnamed Creek, exposed 4.5 metres of quartz stockwork in the sedimentary rock, sample # MR-002 to MR-006
- 193040N 21400E in an area of shallow overburden where a small creek had a concentration of quartz floats, the trench exposed ~12 metres of the quartz vein , attitude of the vein is 345°/70E, sulphide mineralization was pyrite, sample # MR-007 to MR-012
- 4. 18500N 21640E in the area of a 117ppb gold anomaly, trenching uncovered an area of small quartz veins in sedimentary rock, general strike of quartz veins is 340° with an east dip, sample # MR-013 to MR-016

Trenching revealed that even relatively low value gold anomalies may indicate bedrock mineralization and that the overburden can be penetrated by hand trenching.


PROSPECTING PROGRAM

The prospecting program was minimal because of time restrictions and for the most part was done in conjunction with the soil survey. The field crew made note of any bedrock exposures they encountered and when time permitted these exposures were examined. The prospecting did locate priority trenching locations and some of these were exposed and sampled during the field work. See figure 10 for locations and Appendix II for sample details.

Sample Layout in Trenches

T-04-MR Series of Samples

CONCLUSIONS

The exploration program of soil sampling, prospecting, and trenching carried out on the Tommy Jack property by Gold City Industries Ltd. in 2004 was successful in expanding the areas of gold/multi-element anomalies, locating new outcrops and exposing by hand trenching low level precious and base metal values from quartz veins.

The successful delineation of multiple linear gold/multi-element soil anomalies in both the West and East Grid suggests the presence of a mineralizing system within the property area. These multiple sub-parallel northwest trending linear soil anomalies range from 200 metres up to 1400 metres long in the West grid where they traverse the central area of the grid. In the East grid area a linear coincident lead, zinc, arsenic and silver anomaly 800 metres long traverses diagonally from the southeast corner to the northwest side. Located approximately 200 metres west of the south end of the lead/zinc anomaly there is coincident gold, arsenic, lead and zinc approximately 300 metres long but strikes north/south.

The hand trenching carried out during the 2004 program over soil anomalies proved useful in exposing bedrock with some quartz veining.

The relatively high values of mercury, arsenic and silver with sporadic gold values with varying degrees of silicification and quartz veining indicate the upper portion of an epithermal system.

Although the source of the high-grade precious metal float blocks was not found during the 2004 program, the results of the work conducted during the 2004 season are encouraging. The program indicated that detail prospecting and geological mapping can locate additional areas of mineralization.

RECOMMENDATIONS

Geochemistry

Expand the soil geochemistry survey to completely cover soil anomalies currently extending to the edges of the existing grids. Higher density soil sampling should be undertaken to better define most promising soil anomalies.

Trenching

More hand trenching should be carried out on the geochemical and geophysical anomalies. This handwork is slow and labour intensive but is very beneficial to help define the source of anomalies. Mechanized trenching should be considered in appropriate terrain.

Self Potential Survey

The SP survey should be expanded in order to more fully understand the structural components of the property as indicated by the graphite rich structures and to locate precise targets for further trenching. A few lines should be run over the best Noranda drill results to determine if there is an

SP signature. This would, of course, depend on permission from the owner of the "Warren" ground.

V.L.F Survey

An expansion of the area covered by the previous VLF survey is warranted in order to delineate any extensions of the present anomalies and to locate any further anomalies that might be associated with precious metal mineralization.

Geological Mapping and Detail Prospecting

Grid based geological mapping at 1:2000 scale should be undertaken to aid in the context of the mineralization and anomalies.

REFERENCES

- Allen, D.G. (1988). Summary report on the Tommy Jack Creek Property. Private report for Intertech Minerals Corp.
- Carter, N.C. (1981). Porphyry Copper and Molybdenum Deposits, West-Central British Columbia. B.C. Minister of Mines, Energy and Petroleum Resources Bulletin 64.
- Cowley, Paul and Raven, A (2002). Geological, Geochemical, and Prospecting Report on the Tommy Jack Property

B.C. Mines Energy and Petroleum Resources Assessment Report 26978.

- Dale, A. and McArthur, R. (1985)"Geochemical Report" on the Tommy Jack Creek Property. B.C. Mines Energy and Petroleum Resources Assessment Report 14631.
- Eisbacher, G. H. (1977). Mesozoic-Tertiary Basin Models for the Canadian Cordillera and Their Geological Constants. Can. Jour. of Earth Sciences , Vol. 14, pp. 2414 2421.
- Kindle, E.D. (1954). Mineral Resources, Hazelton and Smithers Areas, Cassiar and Coast Districts, British Columbia. Geological Survey, Memoir 223 (revised edition).
- Myers, D.E. (1988). 1987 Year End Report on the Tommy Jack Property, Noranda Exploration.
- Myers, D.E. (1986) Report on Drilling, Geophysics and Geochemistry on the Tommy Jack Property. B.C. Min. Mines Energy and Petroleum Resources, Assessment Report 15515.
- Myers, D.E. (1985) Geology and Geochemistry of the Tommy Jack Property. B.C. Min. Energy, Mines and Petroleum Resources, Assessment Report 13778.
- Raven, A.R. (1995) Geological, Prospecting and Geochemical Report on the TJ 9and 10 Mineral Claims Assessment Report #24589.
- Raven, A.R. (1999) Geological, Geophysical and Prospecting Report on the Tommy Jack Property consisting of the TJ 1 to 4, TJ 8 to 13 and TJ 17, 18 to 22 Mineral Claims Assessment Report #26197.
- Tipper H.W. and Richards, T.A. (1976). Jurassic Stratigraphy and the History of North-Central British Columbia. Geological Survey of Canada Bulletin 270.

APPENDIX I

Analytical Results

ACME AN	TIC						· · · · · · · · · · · · · · · · · · ·	•	8	52	E. H	AST:	ENG	ទទ	т.		CO	UVE	RE	C	V62	A 1R	6		PHC	NE (6 ()4)2	53-	315	8 1	FAX	(604)		171	.6
	9002	ACC						<u>dus</u>	<u>tri</u>		Lto	IEM 1. 1) - 58	<u>PRO</u>	JE)	CT	TC	MM	Y.	JAC	<u>:</u> K	F.	ile		A4	043	51	Pa	age	9 1				1	£	Æ
SAMPLE#	Mo ppm	Cu ppm) Zn ippm		Ni ppm	Co ppm		Fe %		s U nippmi				Cd ppm p					P % p		Cr ppm			Ti %p	BA1 pm %			W ppm p		Sc ppm p		Ga Sppnp		mple gm
20000N 21000E 20000N 21020E 20000N 21040E 20000N 21060E 20000N 21080E	.4 2.7 1.3	47.4	8.3 18.3 29.6	69 61 61 61	.3 .2 .9	15.8 8.3 11.7	16.5 8.1 15.6	1180 264 2193	5.15 2.77 4.21 5.06 5.94	6.1 18.9 88.9	7.3 5.1 9.2	1.4 1.0 20.4	1.3 .5 .3	37 8 6	.1 1 .1 1 .4 1	2 7 2	.1 .1 .2	39 43 60	.74 . .06 .	058 050 080	21 6 6	9.4 10.0 6.5 11.3 8.1	.05 .05 .23	263 . 71 . 71 .	001 001 009	2 1.10 2 .44 1 .61 1 1.39 1 .81	.005 .004 .006	.06 .02 .03	.1 . .6 . .5 .	06 1 03 08	0.6 3.2 4.0	.1<.05	1 3 < 5 <	.5 .5 .5	7.5 15.0 15.0 15.0 1.0
20000N 21100E 20000N 21120E 20000N 21140E 20000N 21160E 20000N 21180E	1.0 1.4 1.3	28.1 21.6 38.1	20.1 25.0 40.4	62 71 137	.4 .5 1.7	5.0 4.5 8.9	5.3 9.0 9.4	376 1300 947	5.17 3.69 2.89 10.36 6.16	51.3 37.0 173.4	1.1 5.1 4.1	3.7 1.5 70.0	.2 .1 .6	6 9 4	.21	.0 .9 .6	.2 .1 .2	69 64 89	.03 . .09 . .03 .	067 050 253	7 8 6		.08 .06 .27	44 . 83 . 39 .	005 009 005	1 1.19 1 .93 <1 .96 1 1.85 1 .71	.006 .006 .006	.02 .03 .03	.4. .3. .4.	07 03 08	2.4 2.0 4.8	.1<.05 .1<.05 .1<.05	i 7 < i 7 < i 8 <	.5 .5 .5	7.5 7.5 7.5 15.0 7.5
20000N 21200E 20000N 21220E 20000N 21240E 20000N 21260E RE 20000N 21260E	1.5 1.5 1.2	28.6 41.7 31.2	38.2 62.3 30.5	272 882 572	.9 1.3 1.0	5.8 6.9 7.4	7.6 9.7 7.1	483 609 355	7.91 4.18 9.23 6.13 6.03	141. 223. 55.4	7.2 1.2 4.2	14.1 64.4 12.5	.2 .3 .3	6 4 8	.2 1 .3 2 .2 1	3 0 2	.2 .5 .2	62 65 74	.07 .05 .13	056 142 054	7 7 5	13.3 5.4 12.6 12.5 13.1	.09 .11 .25	39 . 29 . 51 .	007 010 018	1 2.03 1 1.00 1 1.22 <1 1.67 1 1.57	.006 .006 .006	.02 .02 .03	.5. .4. .4.	05 10 06	2.3 2.4 3.2 <	.1<.05 .1<.05 .1<.05	7 < 9 7 <	.5 .5 .5	15.0 7.5 7.5 7.5 7.5 7.5
20000N 21280E 20000N 21300E 20000N 21320E 20000N 21340E 20000N 21340E 20000N 21360E	.7 1.3	35.9 33.9 7.4	10.5 43.5 3.4	5 90 5 74 1 15	.8 .8 .2	13.9 8.4 2.2	10.3 7.5 1.8	716	5.63 3.82 7.04 .74 .67	22. 66. 6.	2.3	6.6 9.5	.5 .6 .1	55 19 3	.7 1 .4 .5 .1 <.1	.7 .9 .3	.1 .2 .1	59 1 83 28	.00 .23 .03	054 057 030	8 5 8	15.8 16.4 16.1 4.7 2.3	.66 .27 .08	117 . 67 . 18 .	022 013 006	1 2.26 1 2.15 1 2.67 1 .46 3 .29	.008 .007 .006	.04 .02 .02	.2 . .4 . .2 .	04 08 03	6.5 4.7 .5 <	.1<.05	6 8 5 <	.5 .6 .5	15.0 15.0 15.0 1.0 1.0
20000N 21380E 20000N 21400E 20000N 21420E 20000N 21440E 20000N 21440E 20000N 21460E	1.2 1.9 1.2	74.2 36.6 171.4	54.8 18.9 109.1	8 257 9 72 183	4.9 .4 5.5	16.4 6.6 21.8	13.3 6.3 27.9	1994 117 1940	2.75 4.42 3.40 5.43 4.86	112. 63. 88.	1.5 1.1 0.7	45.4 19.7 35.2	.7 .4 1.0	59 31 88	2.2 1 .5 2.4 1	.2 .8 .6	.1 .2 .1	48 41 54 1	.99 .53 .38	112 037 139	15 6 24	15.5 4.3 18.0	.47 .08 .54	147 . 57 . 170 .	009 003 006	1 .77 2 2.34 1 .57 2 2.85 1 2.45	.008 .007 .011	.04 .03 .06	.3. .3. .3.	21 1 02 18 1	4.6 4.0 .2.1	.2 .07 .1<.05 .1 .10	61 3< 61	.3 .5 .2	15.0 15.0 7.5 1.0 7.5
20000N 21480E 20000N 21500E 20000N 21520E 20000N 21540E 20000N 21560E	1.2 1.9 1.5	19.2 34.7 47.6	48.7 116.9 85.0	7 65 5 84) 144	9. 9. 2.4	4.1 6.1 9.6	5.2 8.5 13.6	251 548 747	5.81 3.68 7.60 8.05 4.85	111. 163. 149.	7.1 5.4 3.4	12.6 46.7 48.4	.2 .4 .4	41 17 12	.61	.1 .8 .7	.1 .2 .2	57 79 63	.57	052 056 091	5 6 9	15.1 5.9 11.9 13.7 8.1	.14 .16 .29	65 . 79 122	008 018 015	1 2.28 2 .87 1 1.79 2 2.27 2 1.42	.006 .005 .006	.03 .02 .03	.6. .8. .5.	04 08 12	2.1 3.8 4.9	.1<.05 .1<.05 .1<.05	6 < 8 7	.5 .6 .6	7.5 7.5 15.0 15.0 15.0
20000N 21580E 20000N 21600E 20000N 21620E 20000N 21640E STANDARD DS5	1.4 .8 1.1	21.1 75.8 43.4	32.4 53.6 372.3	72 5 179 8 184	1.6 5.6 3.4	4.7 15.2 14.1	4.9 9.8 27.2	505 1453 4229	5.31 4.64 3.98 5.88 2.94	83. 117. 160.	2.3 5.6 9.4	13.9 75.4 85.0	.3 .5 .5	5 57 28	1.4 1 1.1 1	.1 .5 .7	.2 .1 .2	62 45 1 51	.04 .52	.060 .140 .182	8 15 11	12.2	.15 .55 .32	43 . 112 . 111 .	010 021 007	2 2.13 1 1.44 2 1.96 1 2.16 17 1.92	.007 .010 .009	.02 .04 .05	.3. .3. .5.	.07 .14 .15	2.1 8.4 4.1	.1<.05 .1 .09 .1<.05	9 < 6 1 8	.5 .5 .6	15.0 15.0 15.0 7.5 15.0

.eono

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 📈 FA

Data_

Page 2

ACME ANALYTICAL																																AUNE	ANALYTICAL
SAMPLE#	Мо	Си	рь	Zn	Δa	Ni	Со	Mn	-	As I	1 Δ11	Th	Sr	Cd	Sh	Bi	v	Ca	D	1.a	Cr	Ma	Ra	Ti	R 41	Na	ĸ	W	Ha Sa	• тı	5 (Ga Se S	Samolo
SAFELT	DDM			DDM D						ppm ppi								% %			ppm				m %								qm
	- Phil	hhiii	Phil	phu b	Piii P	-pin	Pp	ppin		ppin ppi		ppin	PPin	Phil b	yn P	pin p		~~~~	~ 1		PPin	۹ v		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ }		phi phi	i ppii	~ PF	au hhu	9.0
20000N 21660E 20000N 21680E 20000N 21700E 20000N 21720E 20000N 21740E	1.0 1.1 1.2	23.5 17.7 40.0	27.3 11.8 34.4	63 37 1 83 1	.9 6 .3 5 .5 9	5.4 5.0 9.1 1	6.3 5.7 0.3	2019 4. 771 4. 144 2. 461 7. 2821 3.	48 8 23 4 92 8	2.5 . 6.1 . 4.3 .	17.9 4.2 11.4	.2 .4 .8	10 5 5	.2 1 .2 .3 1	4 .9 4	.2 .1 .1	59 44 69	.12 .01 .03	.079 .036 .045	5 7 6	8.0 2.6 15.3	.19 .03 .35	57 .0 22 .0 51 .0	012 003 015	1 2.49 2 1.26 1 .74 1 2.15 2 2.47	.007 .004 .005	.04 .04 .02	.2. .5. .4.	10 2.4 04 1.8	.3 .1< .1<	.23 .05 .05	7 1.1 5 .5 7 .7	15.0
20000N 21760E 20000N 21780E 20000N 21800E 20000N 21820E 20000N 21840E	1.0 1.1 1.3	40.5 28.4 24.3	185.0 16.1 12.4	161 111 51	.6 15 .6 11 .4 7	5.0 1 4 1 '.4	3.4 1.5 6.7	2659 4. 655 4. 1113 4. 421 5. 275 2.	52 4 13 2 56 3	2.1 . 0.2 . 1.9 .	3 7.3 2 1.7 1 2.0	.4 .5 .3	20 10 4	.3 .1 .1	.9 .6 .9	.1 .1 .1	70 71 94	.26 .13 .05	.059 .081 .102	5 5 4	18.1 15.1	.68 1 .54 .34	.21 .0 85 .0 28 .0	011 014 050	1 2.57 1 2.58 2 2.39 1 1.58 1 1.32	.009 .008 .007	.05 .04 .02	.2 . .2 . .3 .	03 4.9 05 4.5 04 2.7) .1< 1<	.05 .05 .05	8 .6 8 .5 8 .6	15.0 15.0 15.0 15.0 15.0
20000N 21860E 20000N 21880E 20000N 21900E 20000N 21920E 20000N 21940E	1.1 .8 1.7	38.2 40.5 21.0	15.9 15.3 8.1	88 2 167 2 96	.3 7 .6 12 .4 5	7.9 2.9 1 5.1	7.2 3.5 6.1	206 2. 1541 3. 1996 4. 404 5. 3071 2.	334) 067 323	8.6 . 7.1 . 4.6 .	8 8.6 11.0 1.1	.2 .3 .4	51 53 24	.6 .5 1 .2	.9 .0 .7	.2 .1 .1	61 51 93	.78 .84 .40	.074 .122 .053	13 10 6	12.2 15.4 9.8	.43 1 .63 .18	.25 .0 92 .0 77 .0	017 017 007	3 .83 2 1.88 1 2.27 1 1.11 3 1.68	.008 .009 .006	.04 .04 .03	.4 . .2 . .3 .	10 8.7 10 7.3 03 3.0	.1< 1< .1< 1< .1<	.05 .05 .05	9 <.5 8 1.0 6 .7 8 .6 4 3.8	15.0 15.0
20000N 21960E 20000N 21980E RE 20000N 21780E 20000N 22000E 20000N 22020E	3.4 .9 1.8	39.8 37.0 31.4	22.1 182.4 17.7	126 2 145 83	.5 9 .5 13 .6 9).8 1 3.7 1).4	8.5 2.0 9.1	79 1. 3690 4. 576 4. 326 4. 508 3.	05 4 31 3 90 4	2.0 . 7.4 . 9.7 .	9 8.4 3 6.0 3 4.0	.4 .4 .2	138 19 51	1.1 .2 .3 1	8. 8. 0.	.1 .1 .1	50 2 64 72	2.27 .25 .68	.270 .062 .044	15 5 5	15.9 14.5	.41 2 .66 1 .41 1	216 .0 .13 .0 .02 .0	009 012 027	2 .92 4 2.54 1 2.49 1 2.03 1 2.09	.012 .009 .008	.05 .04 .04	.1 . .2 . .3 .	.24 7.3 .04 4.7 .05 3.8	3 .2 7 .1< 8 <.1<	.15 .05 .05	5 3.1 7 <.5	15.0 7.5 15.0 7.5 15.0
20000N 22040E 20000N 22060E 20000N 22080E 20000N 22100E 20000N 22120E	1.1 1.4 1.0	27.7 29.0 26.5	13.4 16.9 13.4	67 50 54	.5 9 .2 8 .2 7).0 3.0 7.3	8.6 7.7 7.6	394 5. 401 4. 353 9. 393 4. 510 6.	89 4 27 3 56 3	1.8 . 7.9 . 3.0 .	L 4.6 2 1.4 2 2.8	.2 .5 .2	5 5 5	.1 .1 1 .1	.8 .1 .9	.1 .1 1 .1	86 LOO 78	.04 .05 .06	.070 .103 .083	5 5 5	14.2 14.5 17.2 11.9 13.7	.46 .36 .35	50 .0 44 .0 46 .0	054 083 025	2 1.97 1 2.01 2 2.13 1 1.85 1 1.54	.006 .006 .006	.04 .03 .03	.2 . .3 . .3 .	.03 3.5 .06 3.7 .06 3.3	5 .1< 7 <.1< 8 .1<	.05 .05 .05	8 .5 8 <.5 9 .6 8 .7 7 .6	15.0 15.0 15.0 15.0 7.5
20000N 22140E 20000N 22160E 20000N 22180E 20000N 22200E 20000N 22200E	1.3 1.4 1.8	28.4 39.3 33.8	24.5 26.9 13.6	66 71 61	.4 7 .9 8 .7 5	7.51 3.2 5.0	1.5 7.9 6.4	606 5. 4740 7. 491 5. 443 9. 446 3.	40 7 94 6 10 7	9.8 <i>.</i> 3.1 . 2.1 .	2 5.7 2 4.5 2 2.3	.3 .3 .7	5 6 3	.1 1 .2 1 .1	0.1 1.0 .8	.1 .1 .1	83 74 63	.08 .06 .03	.214 .079 .042	4 4 5	15.8 12.9	.36 .29 .16	66 . 73 . 30 .	052 014 015	1 1.64 2 1.72 2 2.04 1 1.64 1 1.95	.006 .006 .004	.03 2 .03 .02	2.3. .3. .3.	.10 3.2 .08 3.8 .05 4.0	2 .1< 3 .1< 3 .1<	.05 .05 .05		15.0 15.0 7.5 7.5 7.5
20000N 22240E 20000N 22280E 20000N 22320E 20000N 22340E STANDARD DS5	$1.1 \\ 1.1 \\ 1.5$	21.5 31.9 24.7	12.1 19.0 11.7	114 53 70	.7 8 .6 6 .2 9	3.9 5.6 9.6	9.7 5.9 8.9	250 4. 653 3. 221 7. 315 4. 754 3.	37 5 73 4 36 14	6.0 . 2.2 . 0.7 .	3 3.1 3 6.2 1 2.0	.2 .9 .4	54 4 22	.2 .1 1 .3 2	.6 L.0 2.4	.1 .2 .1	45 77 51	.92 .04 .32	.049 .032 .030	6 5 8	13.2 16.4 4.2	.54 .29 .05	96 . 35 . 54 .	033 019 003	1 2.27 2 1.60 1 2.55 1 .68 9 2.03	.006 .005 .005	.03 .02 .02	.2. .3. .6.	.04 4.4 .07 3.9 .02 4.7	<pre><.1< .1< .1< .1< .1< .1<</pre>	.05 .05 .05	6 .9 5 .6 8 .8 5 .6 7 5.0	15.0 15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data KFA

Page 3

																		_																		
SAMPLE#	Мо	Cu				Ni									Cd S						La		Mg			B	A1							Ga		umple
	ppm	ppm	ррп	n ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm	ppm	opm p	pm p	ppm p	opm	*	*	ppm	ppm	8	ppm	*	ppm	*	%	% p	pm p	pm p	ppm p	pm %	ppm p	pm	gm
20000N 22360E 20000N 22380E 20000N 22400E 20000N 22420E 20000N 22420E 20000N 22440E	1.4 1.7 1.8	34.3 29.3 44.0	19.0 39.5 15.9) 65 5 99 9 550	.8 3.0 2.2	7.0 8.3 12.3	6.6 7.2 6.9	254 309 1940	7.33 5.63 3.05	93.9 59.4 99.9 54.0 91.4	.2 .2 .3	5.1 5.9 4.7	.8 .5 .4	4 5 60	.11	.5 .5 .8	.1 .1 .1	81 75 49	.03 .05 .95	.067 .047	6 6 9	17.1 18.8 15.7 14.6 11.6	.28 .37 .52	27 38 185	.033 .024 .008	1 1. 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1.	76 .0 98 .0 81 .0	05 06 07	.02 .03 .04	.4 . .4 . .3 .	08 3 08 3 09 4	3.5 3.4 4.8	.1 .09 .1<.05 .1 .06 .1 .06 .1 .06 .1<.05	8 8 61	.5 .5 .1	15.0 15.0 15.0 15.0 15.0
20000N 22460E 20000N 22480E 20000N 22500E 20000N 22520E 20000N 22540E	1.4 1.2 1.1	27.4 20.2 22.1	26.4 22.9 21.6	91 53 557	1.3 .3 1.2	6.9 4.6 4.7	7.6 5.3 5.1	525 391 282	6.24 4.40 3.75	59.4 41.6 35.2 35.1 46.5	.2 .2	2.7 1.4 3.0	.6 .2 .1	7 5 8	.21 .31 .11 .31 .31	.2 .5 .1	.1 .1 .1	92 81 78	.08 .04 .08	.063 .055 .051	6 6 7	10.0 7.9	.24 .18 .14	52 66 78	.022 .041 .023	<1 1. 1 1. 1 1.	88 .0 16 .0 40 .0	05 06 06	.02 .02 .03	.3 . .3 . .3 .	06 3 04 2 06 2	3.4 2.3 2.3	.1<.05 .1<.05 .1<.05 .1 .06 .1<.05	8 < 7 < 8 <	.5 .5 .5	15.0 15.0 15.0 15.0 15.0
20000N 22560E 20000N 22580E 20000N 22600E 20000N 22620E 20000N 22640E	1.0 1.3 1.0	35.0 88.8	39.8 54.1 155.8	96 90 204	.6 .5 4.8	6.6 9.6 8.1	6.4 8.8 8.5	209 405 310	3.01 7.52 6.36	86.9 181.7 84.8 231.7 40.8	.1 .2 .2 7	2.6 9.7 70.8	.4 1.0 .5	21 6 18	.41 .22 .59	.7 .0 .6	.1 .1 .4	44 83 40	.37 .07 .26	.039 .042 .070	8 5 5	5.1	.07 .41 .07	110 53 92	.003 .048 .001	1 . <1 2. 2 1.	92 .0 39 .0 11 .0	05 06 04	.04 .02 .05	.3 .0 .4 .0 .3 .1	02 3 06 4 13 4	3.7 4.6 4.9	.1<.05 .1<.05 .1<.05 .2<.05 .1<.05	5 8 < 5 1	.5 .5 .6	15.0 15.0 15.0 15.0 15.0
20000N 22660E 20000N 22680E 20000N 22700E 20000N 22720E RE 20000N 22720E	1.5 1.7 1.2	26.0 111.1 27.8	12.4 76.9 23.9	55) 208 066	2.3 6.9 .3	4.4 23.2 5.4	4.4 20.0 5.8	149 3591 316	3.30 5.05 5.47	159.8 82.9 124.9 172.5 159.6	.1 1.0 1 .1	1.8 10.1 9.5	.4 .7 .6	5 90 2 6	.21	.8 .9 .1	.1 .2 .2	77 44 1 86	.08 .72 .08	.031 .154 .039	7 27 7	7.6 5.9 15.5 9.3 7.7	.05 .36 .09	59 246 61	.006 .005 .009	31. 22. 11.	02 .0 52 .0 43 .0	05 11 06	.02 .06 .03	.5 .0 .5 .1 .3 .0	06 2 21 13 03 3	2.8 3.7 3.9	.1 .06 .1<.05 .2 .06 .1<.05 .1<.05	6 < 5 1 9 <	.5 .3 .5	15.0 15.0 7.5 7.5 7.5 7.5
20000N 22740E 20000N 22760E 20000N 22780E 20000N 22800E 20000N 22820E	1.1 1.2 .9	30.9 42.3 31.9	40.2 7.6 26.6	2 90 5 136 5 138	1.2 .3 .9	6.4 15.4 10.6	7.3 16.4 19.0	579 343 3886	7.44 3.97 4.77	288.4 159.7 60.6 36.2 17.6	.2 .1 .3	6.7 .6 2.1	.3 .4 .5	4 6 44	.31 .13 .9	.8 .0 .7	.1 .1 .1	66 47 63	.04 .09 .90	.088 .060 .178	6 12 9	11.6 12.3 4.5 12.4 6.8	.16 .05 .48	39 32 177	.007 .001 .003	11. 2. <12.	49 .0 54 .0 12 .0	06 05 08	.02 .03 .05	.5.0 .6.0)7 3)2 7)7 4	3.2 7.6 4.8	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	6 3 < 9	.5 .5 .7	15.0 7.5 15.0 7.5 7.5
20000N 22840E 20000N 22860E 20000N 22880E 20000N 22900E 20000N 22920E	.8 9. 1.2	23.7 22.2	30.0 30.5 29.0) 71 5 133 9 105	1.4 .3 1.2	8.2 7.2	6.6 8.2 6.7	380 828 310	5.44 6.80 6.86	165.6 103.3 85.5 166.6 100.3	.1 .1 6 .1	2.0 58.0 5.4	.5 .5 .6	2 6 4	.1 1 .1 3 .2 1 .2 2 .1 1	.9 .8 .2	.1 .1 .2	55 67 58	.02 .09 .02	.121 .146 .098	8 6 7	4.3 5.9 12.6 10.4 1.7	.07 .27 .19	29 51 52	.004 .016 .008	2 1. 2 1. 1 1.	L6 .0 B3 .0 57 .0	05 06 05	.03 .03 .03	.4 .(.4 .(.3 .()4 4)3 3)6 3	1.9 3.5 3.6	.1<.05 .2<.05 .1<.05 .1<.05 .1<.05	5 < 8 7	.5 .6 .6	15.0 15.0 7.5 15.0 15.0
20000N 22940E 20000N 22960E 20000N 22980E 20000N 23000E STANDARD DS5	1.2 1.1 1.7	31.5 50.0 45.6	59.1 48.9 44.9	209 139 150	1.7 .8 1.6	8.0 15.7 9.3	7.8 17.4 12.6	292 439 1367	6.17 4.69 4.02	102.7 65.0 49.2 80.5 18.0	.1 .2 2 .1 3	6.3 21.8 34.1	.6 .9 .2	4 7 19	.52 .31 .82	.6 .8 .1	.1 .2 .7	66 57 52	.04 .08 .50	.074 .050 .064	6 8 7	11.3 13.2 15.0 7.0 188.3	.28 .56 .12	45 58 64	.008 .020 .008	12. 12. 1.	21 .0 L7 .0 71 .0	04 06 05	.03 .05 .09	.4 .(.3 .(.5 .()7 4)5 5)4 2	1.2 5.5 2.8	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	7 5 4	.6 .5 .5	15.0 15.0 15.0 15.0 15.0

١

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

																																		ACME A	NALYTICAL
SAMPLE#	Мо	Cu	Pb	Zn	Aq	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Са	р	La	Cr	Mg	Ba	Ti	B	Al	Na	ĸ	WH	S	<u>с Т1</u>	s	Ga Se S	Sample
	DDM	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*		ppm			ppm j					*		ppm	ppm						*	х хг	יי ח מח והחו	ա որ		% n	opm ppm	gm
											••			<u> </u>	<u> </u>		- F ··· 1													- Pill PP	<u></u>	<u></u>	<u> </u>		
20000N 23020E	1.5	49.0	33.6	114	.8	9.7	9.6	460	4.00	76.8	.1	9.2	.2	8	.5 1	1.8	.4	58	.14	.061	5	9.6	.21	69	.008	11	.02 .	006	.03	.7.0	4 2	8 <.1<	: 05	5 <.5	15 0
19900N 21000E	1.1	15.5	5.5	83	.3	2.8	12.5	313	4.76	41.0	.1	7.5	.5	4	.1	.5	.1	78	.05	.071	5	1.6	.07	27<	.001							6 .1<		4 <.5	
19900N 21020E	1.5	36.1	5.5	48	.3	6.9	9.3	150	2.64	25.1	.2	2.7	.1	7	.1	.7	.1	57	.02	.058	9	4.2	.04	19	.005							5.1<		7 <.5	
19900N 21040E	1.1	39.9	56.4	102	.3	7.5	6.6	533	8.68	124.9	.1	19.4	.6	7	.2 2	2.1	.2	80	.05	.099	5	14.4	.19	39		ĩı	49	005	02	4 0	8 3	8.1	06	8.5	7.5
19900N 21060E	1.0	43.9	42.9	133	.6	12.2	12.2	703	4.50	83.3	.1	37.5	.7	7	.2 2	2.0	2	47	.09	064	Ř	11.8	40	59	004	<1 1	42	006	04	8 0	л л.	8.1<	.00	5 <.5	7.5
																	•				Ũ			05				000	.04	.0.0	• •.•	J .1~	.05	55	7.5
19900N 21080E	.8	40.9	18.6	64	.7	6.4	11.1	1169	6.01	49.7	.1	20.2	.6	7	.2	.9	.2	54	.07	.102	5	7.5	.06	42	.002	2	.70 .	006	.03	.3.0	8 3.	2 .1<	. 05	7 <.5	7.5
19900N 21100E	2.3	29.5	24.7	72	.8	10.2	13.6	308	5.48	99.3	.1	31.3	.4	2	.1 2	2.2	.1	122	.03	.064	4	8.9	.09	21	.003	<1	93	004	02	3 0	3 3	6 .1<	: 05	8 < .5	7.5
19900N 21120E	1.2	18.7	6.4	27								14.3									4	6.0	.11	32	002	<1	94	004	02	2 0	2 3	9.1<	: 05		15.0
19900N 21140E	.7	18.3	8.5	42								8.7											03	12	008	ĩ	32	003	01	3 0	$\frac{1}{2}$ 1	λ 1c	05		7.5
19900N 21160E	13	40.5	56.3	201																	6	12.5	28	88	002	-1 2	02.	0000	02	2 0	6 1	2.1<	.05		15.0
	1.0		00.0	201	1.0	2.1	10.0	211		120.0	•••	20.0		0	• •		• •	00	.05	.050	0	12.5	.20	00	.002	~1 2	. 00 .	000	.05	.5 .0	5 4.	2 .15	.05	0.5	15.0
19900N 21180E	1.2	29.1	31.9	85	.3	6.1	7.6	566	3.29	98.1	.1	21.6	.2	9	.2 1	1.6	.2	57	.10	.044	8	6.0	.14	36	.012	<1	97	006	04	5 0	1 3	0 1~	: 05	6 <.5	15.0
19900N 21200E		24.1			q	4.4	4.8	236	3.79	71.0	2	43.0	3	5	21	7	2	66	02	061	7	5.2	06	30	013	11	20	006	02	7 0	5 2	2 1-	· 05	0 <.5 9 <.5	15.0
19900N 21220E		31.4			4	6 2	5 9	286	4 68	74 8	2	35.8	6	5	1 1	6	1	63	02	052	8		10	10	007	1 1	51 ·	000	.02	1 .0	5 2	2 1-	.05	7 <.5	15.0
19900N 21240E		30.1										21.6										1 5	.15	11	011	1 1	. 10. 02	000	.03	.4.0 20	0 0.1 0 1	2 .1~	. 05 • AE	/ <.5 8 <.5	15.0
19900N 21260E		33.1										<.5								041	0	4.5	.00	44	.011	-1	.03. 72	000	.03	.0.0	2 1.1	9.1< 9.1<	.05		
199001 212000	. 5	00.I	0.0	55	.2	11.4	12.2	415	4.00	20.4	• •	×.5	.5	0			• 1	15	.15	.050	0	9.0	.07	40	.002	×1 .	.70.	005	.02	.2.0	2 2.	۶.۱۰	.05	6 <.5	7.5
19900N 21280E	17	34.8	32.5	90	1	47	94	1021	6 81	53.3	2	10.9	2	5	2 1		7	75	05	106	Q	83	no	55	010	-1 1	25	005	02	4 0	2 2	2 1-	. 05	12 <.5	15 0
19900N 21300E		30.6			1 1	7 1	7 9	419	3 82	53.8	.2	21 9	. 2	23	7	7	.,	48	29	063	, R	9.8	31	66	006							2.1× 2.1<		7 <.5	7.5
19900N 21320E		89.1																				18.2										2.1~ 9.2		7 1.6	7.5
19900N 21340E		43.0																				8.3										5.2 6.1		5.9	15.0
19900N 21360E																					18	15 0	51	170	000	12	21 .	000	.04	.3.0	/ J.1 0 12	J .I	.10	5 2.3	15.0
155000 210002	1.0	110.2	110.0	000	0.5			01/7	0.10	0/0.0	1.0	20.0	.0	105 0		-•4	. 2	7/1	., 4	.155	10	13.0	. 51	173	.000	1 2		012	.07	.4 .1	5 12.0	5.2	.00	5 2.5	15.0
19900N 21380E	1.8	105.4	88.5	38	2.8	10.4	8.0	1541	1.49	41.2	.9	20.1	.1	224	.4 1	.9 <	<.1	10 4	.74	.110	10	47	18	127	009	3	72	010	01	12	1 1	q 1	16	2 4.2	1.0
RE 19900N 21380E		102.3																				4.8										8.1		2 4.1	1.0
19900N 21400E		89.5																			14	12.1	33	117	010									5 1.8	
19900N 21420E	1.7	138.7	257.0	235	7.0	22.4	28.5	2135	5.04	141.7	1.3	65.5	.6	104	.92	2.4	2	42 1	.94	158	18	15 1	41	184	005	22	27	011	06	4 2	1 10	5 2	10		7.5
19900N 21440E	1.5	40.6	86.7	109	2.2	5.7	7.9	265	6.59	165.3	18	144 6)ğ	8	5 1	0	3	60	10	062	q	10.6	17	49	006	<1 1	70	005	.00	4 1	1 1	J.2 7 1e	05		15.0
1550011 221102	1.0					•		200	0105	100.0				Ŭ							-	10.0		7,7		-1 1	.,, .	005	.00		1 4.	, .1~	.05	/ .0	13.0
19900N 21460E	1.7	24.5	54.7	71	.7	4.4	5.3	326	5.95	314.1	.2	50.6	.4	4	.2 1	1.2	.2	81	.04	.043	9	8.3	.14	43	.012	21	53	006	.03	.4 .0	4 2	3 1<	: 05	12 <.5	15.0
19900N 21480E		28.7			.3	8.7	13.1	641	4.99	131.4	.2	7.4	.4	39	.4	.9	.1	32	.70	.084														4 .5	
19900N 21500E		43.5												5	3 2	2.3	1	79	05	039	5	17.8	33	52	024									7 <.5	
19900N 21520E		36.3																				10.7										3.1<			7.5
19900N 21540E		100.1																																7 1.7	
	1.5			550		-0.1	0	J-121	5.45	10.3	••	34.1	***	00 .			• •	57	.05	. 200	21	10.0		010	. 004	2 4	.20 .	012	. 10	.5 .2	J 12.1	J .J	.05	/ 1./	10.0
19900N 21560E	.9	22.4	22.3	53	.4	5.1	4.8	354	3.48	43.9	.1	5.9	.1	6	.1 1	1.5	.1	56	.07	.084	7	6.3	10	32	008	3	83	006	03	2 0	51	7.1<	: 05	6 <.5	15.0
19900N 21580E		17.1																																0 <.5 7 <.5	
19900N 21600E		33.0																																8.5	
19900N 21620E		33.7			.4	8.8	6.7	262	9.78	27.4	2	2.3	.7	ă	21	3		94	03	039		21.6										, .1< 9 .1<			15.0
STANDARD DS5		145.4			3	24 0	12 2	735	3 04	17 7	6.2	41 2	2 6	47 1	5 4 4	1 0 4	6.3	60	77	003	11 .	178 5	68	122	002	17 2	.13 .	003	16 5	.0.0	, j.: 7 2	211~	· 05		15.0
5174107810 000		2.0.4	20.0	100			*	,00	5.04	-/./			2.0	., .				00	.,,					102	.0.00	11 2		0.02	.10 0			<u>, , , , , , , , , , , , , , , , , , , </u>	.05	/ 4.7	10.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_____FA

Page 5

ACME ANALYTICAL																																		ALTIICAL	
SAMPLE#	Мо	Cu	Dh	Zn	Δα Ι		0 Mr	ı Fe	Δc	U.	Au	Th (Sr	Cd S	h B	ł	v	C a	PI	а	Cr	Μα	Ra	Ti	B	1 1	a	K W	На	50	T1 (S Ga	50 5	amolo	
SAMPLE#														ppm pp				% %			DDM			, , % p								s da Kippinip		am	
	ppm	ppm	- hbw	ppm p	pin pl	hii hh	iii ppi	1 10	phil	ры	hhn t	ihii hi		hhu hh	m pp	wi hł	, III	<i>1</i> 0	vµ	JIII	phii	~ }	ypin	~ F			<i>1</i> 0	* hhi	phii	ppm	phin ,	e hhii h	Pill	yiii	
19900N 21660E	1.8	28.9	15.7	53 3	.1 7	.16.	9 292	2 6.64	67.6	.2	7.3	.7	7	.21.	2.	2 8	36.	06.	028	5	15.6	.30	53.	.029	4 1.8	32.00	6.0	2.3	.08	3.8	.1 .0	7 10	.5	15.0	
19900N 21680E	1.4	36.3	47.5	98 1	.8 10	.39.	3 542	2 5.41	91.2	.3 !	51.2	.5	10	.31.	4.	1 6	51.	08 .	055	5	14.9	.35	76.	011	2 1.9	92 .00	6.0	3.4	.14	3.8	.1 .0	76	.5	7.5	
19900N 21700E	4.8	91.2	46.6	123 3	.3 9	.9 12.	2 3529	2.58	82.3	2.7 2	21.4	.7 1	59	1.1 1.	6.	1 2	273.	39 .	233 :	34	14.9	.24 2	231.	008	4 2.3	23.00	8.0	3.1	.31	14.9	.2.2	734	.7	7.5	
19900N 21720E									18.1																						<.1<.0			15.0	
19900N 21740E									17.5					.3 .																	.1<.0			15.0	
1998011 217 102	1.0	20.0	10.5	100 1			0 00.		1	•	0.0				• •				002	•	11.0							•		2.0				10.0	
19900N 21760E	1.1	16.6	13.2	36	.4 4	.64.	2 233	3 3.24	16.8	.2	1.2	.3	4	.1 .	6.	2 8	34	. 06	050	7	8.7	. 18	28.	054	2 1.	14 .00	6.0	3.2	.05	1.9	<.1<.0	59<	.5	7.5	
19900N 21780E		20.5	9.5						12.8		.5		31	.2 .							14.7										.1<.0		· -	15.0	
19900N 21800E		22.0							16.1					.2 .							14.2										<.1<.0			15.0	
19900N 22200E		15.6	8.4						21.4												10.8										<.1<.0			15.0	
19900N 22220E		14.5	7.0						13.7																						.1<.0			15.0	
199000 222202	1.1	14.0	7.0	02			1 200	0.20	10.7	••		• •	•		•••						0.2		20 .	020						1.0				10.0	
19900N 22240E	1.3	24.8	14.8	54 1	.2 7	.4 7.	5 616	5 5.13	23.3	.2	1.5	.4	5	.1 .	9.	1 7	79	. 06	063	5	13.6	.28	47	.039	11.3	72.00	5.0	2.2	.07	3.1	.1<.0	57<	.5	15.0	
19900N 22260E									38.0					.2							20.8										.1 .0			15.0	
19900N 22280E			11.0						37.4					.2 1.							5.9											5 10 <		15.0	
19900N 22300E									77.6																						.2 .1			1.0	
19900N 22320E			14.4																													5 10		15.0	
199000 220202	1.1	02.0	±	01 1			0 00		0011		2.0	••			• •					-										2.15	•= ••				
19900N 22340E	4.6	100.9	58.1	105 1	.4 12	.7 24.	8 3009	9 4.77	120.1	1.5	13.7	.5 1	05	.8 1.	1.	1 5	57 1.	59.	108 2	26	14.5	.39	122 .	.015	2 2.3	30 .03	.2 .0	4.2	.22	9.2	.1 .1	062	.0	7.5	
19900N 22360E	.8	60.6	18.5	66	.9 9	4 9.	2 104	5 2.24	43.3	.8	9.4	.4 1	23	1.0 1.	0.	.1 2	28 2.	56.	090	13	9.9	.34	132	.011							.1 .14			7.5	
19900N 22380E									68.4																						.5 .1		.4	7.5	
RE 19900N 22260E									40.8												21.5										.1<.0			15.0	
19900N 22420E									45.5																						.1 .1			7.5	
133001 224200	1.0	00.5	105.0	151 2	10	.0 10.	0 1.40		40.0			.0 1			• •				1,1		10.0	• • • •			1 2.		2.0	J .1		7.0			• •	7.0	
19900N 22440E	1.0	35.8	14.5	69	.7 9	.2 8.	8 35	9 6.36	32.1	.2	1.4	.8	5	.21	0.	.1 8	83	.05 .	056	6	18.7	.36	49	.045	1 2.	85 .00	6.0	2.2	. 09	5.1	<.1<.0	58	.6	15.0	
19900N 22460E	1.2	20.2	12.5	44	.6 5	.8 5.	1 244	4 2.45	18.7	.2	2.1 •	<.1	7	.1 .	6.	.1 7	74	. 06	035	5	10.1	.27	51	.012	<1 1.	66 .01	9.0	4.2	.04	1.7	.1<.0	58<	.5	7.5	
19900N 22480E	1.2	28.1	17.2	103	.6 11	.4 13.	7 105	7 4.21	30.4	.2	1.1	.1	15	.21	0.	.1 7	78	.20 .	036	7	16.3	.55	98	.017	1 2.	08.00	0. 8	5.2	.03	3.0	.1<.0	59<	.5	15.0	
19900N 22500E	1.8	38.2	15.3	1058 1	.6 12	.3 9.	7 339	4 3.75	46.2	.4	3.3	.4	54 2	3.4 2.	1.	.1 !	58	.93 .	089	9	15.9	.59 2	227	.011	2 2.	10 .00	0. 8	5.2	.10	5.6	.1 .0	771	.3	15.0	
19900N 22520E	1.3	34.3	29.3	93 1	.0 7	.8 6.	7 29	5 4.23	63.8	.4	3.5	.3	21	.7 1	0.	.1 6	69	.32 .	050	6	13.1	.27	81	.011	1 1.3	82 .03	0.0	3.2	.09	2.8	.1<.0	57	.5	15.0	
19900N 22540E	1.0	140.0	74.5	248 2	2.3 15	.2 9.	2 36	3 3.60	128.4	.6	7.0	.3	42	4.0 1.	5.	.2 !	59	.62 .	066	15	13.7	.34	143	.008	<1 1.3	85 .0 3	0.0	5.2	.08	4.0	.1<.0	58<	.5	7.5	
19900N 22560E	.8	22.8	45.8	235	.6 10	.8 10.	5 109	3.71	67.5	.2	30.0	.3	33	.7	8.	.1 (67	.45 .	046	8	14.7	.57	130	.017	1 1.	93 .0)7 .0	4.2	.03	3.9	.1<.0	58<	.5	15.0	
19900N 22580E									75.4																11.	26.0	6.0	3.3	.05	1.6	.1<.0	58<	.5	15.0	
19900N 22600E									64.9																12.	18.0)5.0	4.3	.06	4.6	.1<.0	58<	:.5	15.0	
19900N 22620E			39.9						46.3			.8		.2 1											<1 2.	64 .0)6 .0	3.3	.10	5.2	.1<.0	5 10	.7	15.0	
													-						•	_		-													
19900N 22640E	1.0	25.6	25.1	50	.4 4	.5 4.	9 19	9 5.20	59.2	.2	4.6	.8	7	.11	0.	.1 8	82	.04 .	032	7	10.6	.13	51	.014	11.	44 .0)7 .0	3.4	.08	3.3	.1<.0	57<	.5	15.0	
19900N 22660E				190 1	.0 14	.3 10.	6 50	1 5.33	92.3	.2	18.2	.6	25	.21							15.8				12.	04 .0)7 .0	3.2	.05	4.9	.1<.0	574	:.5	7.5	
19900N 22680E									289.8					.31							10.7											6 7		15.0	
19900N 22700E									55.2					.4 1																		98<			
STANDARD DS5																																5 7 4			
			2011																											*			-		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Data / FA

Page 6

SMPLEF by Cu Put Fe As U Au Th Cd Sh Fe Ca Pe Dep Dep <	ACME ANALYTICAL																																		ALME	ANALYTICAL	
ppm ppm ppm ppm ppm ppm ppm x ppm ppm x	SAMPI F#	Mo	Сп	Ph	7n	Aa	Ni	Co	Mn	Fe	As	u	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	Ła	Cr	Ma	Ba	Ti	B	A1	Na	к	W H	a So	: TI	S	Ga Se	Sample	
19900N 22200E 1.3 2.7 1.4 1.1 <	Srin LL#											-																									
199000 22740E 1.3 24.4 11.9 0.3 0.4 1.1 1.2 1.8 5 4 1 1.1 1.6 1.0 0.3 2 2.72 0.00 3 0.6 3.2 2.10 0.6 1.1 1.6 0.90 2.72 0.00 3 0.6 2.2 1.2 0.00 1.6 1.4 0.6 0.6 0.00 2.00 2.00 2.00 2.00 0.0 3 0.0 1.6 1.4 0.0 1.6 0.0 2 0.00 3 0.0 3 0.0 3 0.0 3 0.0 3 0.0 3 0.0 2 1.0 0.0 2 1.0 0.0 2 0.0 2 1.0 0.0 2 0.0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 2 1.0 1.0 1.0 2 2.7 0.0 0.0 2 0.0		PPIII	PP:::	PP	· pp	PPIII	PP	PPm	PP						PP	FF	FF										.	•							FF		
199000 22740E 1.3 24.4 11.9 0.3 0.4 1.1 1.2 1.8 5 4 1 1.1 1.6 1.0 0.3 2 2.72 0.00 3 0.6 3.2 2.10 0.6 1.1 1.6 0.90 2.72 0.00 3 0.6 2.2 1.2 0.00 1.6 1.4 0.6 0.6 0.00 2.00 2.00 2.00 2.00 0.0 3 0.0 1.6 1.4 0.0 1.6 0.0 2 0.00 3 0.0 3 0.0 3 0.0 3 0.0 3 0.0 3 0.0 2 1.0 0.0 2 1.0 0.0 2 0.0 2 1.0 0.0 2 0.0 2 1.0 0.0 2 1.0 0.0 2 1.0 0.0 2 1.0 1.0 1.0 2 2.7 0.0 0.0 2 0.0	19900N 22720F	1.3	27.0	16.7	85	.5	9.0	8.6	533	6.86	29.1	.3	3.5	.4	12	.2	1.1	.1	79	.19	.047	5	15.6	.42	68.	037	3 2.3	13 .	007	.02	.2 .0	53.6	5 <.14	<.05	8.7	15.0	
199000 22780C 1.1 38.6 19.5 82 5 1.1 28.6 19 1.2 28.6 19 1.1 28.6 19 1.1 28.6 19 1.1 28.6 19 1.2 27.6 1.0 1.2 1.6 1.2 1.7 1.1 1.0 2.6 0.0 0.0 29 1.0 1.2 1.6		1.3	24.4	11.9	40	.3	4.1	4.9	226	4.60	54.1	.2	1.8	.5	4	.1	1.1	.21	109	.03	. 023	5	9.6	.13	44.	036									9 <.5	15.0	
199000 22800 1.1 23.0 10.9 29 4.8 03 72 006 2 80 007 03 3.03 1.6 1.6 1.6 6 5 15.0 199000 228200 1.2 03.6 0.7 7.3 353 8.92 231.7 2 9.0 4 5 32.5 2 7.5 1.6 1.6 1.6 1.6 6.5 1.5 1.6		1.1	38.6	19.5	5 82	.5	11.4	11.2	524	6.78	22.5	.3	2.1	.8	8	.2	1.1	.1	65	.09	.042	5	19.0	.53	78.	042	2 2.3	72 .	007	.03	.3.1	0 5.2	2 <.1	<.05	6.8	15.0	
19900W 2280E 9 10.4 5.1 29 2 3.1 3.0 136 1.5 1.9 1.1 8 2.8 1.5 1.0 0.01 8 3.0 0.3 39 0.08 4 .55 0.07 0.2 3.01 .9 1.<		1.1	23.0	10.9	29	.4	2.7	2.8	101	2.18	17.4	.2	1.4	.2	7	.1	1.0	.2	68	.08	.029	9	4.8	.03	72.	006	2 .1	BO .	007	.03	.3 .0	3 1.6	i .1•	<.05	6.5	15.0	
19900N 2280E 1.2 37.6 50.7 353 8.92 231.7 2 9.0 4 5 3.2 5.2 72 0.6 0.67 4 14.9 15 46 140 0.07 2.3 0.07 3.9 1.< 0.6 5.9 7.5 19900N 2280E 1.2 10.7 22.33 36 4.5 15.1 1.1 1.6 60 2.2 1.1 0.6 5.5 1.3 1.6 62.2 1.2 1.3 1.4 0.6 2.1 2.5 1.3 1.6 0.6 2.2 1.3 1.3 0.6 1.4 7.1 3.1 1.4 1.2 0.7 1.4 0.1 0.0 1.4 1.4 1.2 0.2 1.3 0.3 0.6 1.4 7.1 3.1 7.4 2.4 1.3 0.1 1.4 1.4 1.4 1.2 1.2 1.3 0.3 0.05 1.4 <th1.4< th=""> 1.4 1.4</th1.4<>																																			6 <.5	15.0	
ippoint 22840E 1.2 13 14 10 12 12 12 12 12 13 10 12																																					
19900N 22806E 1.5 87.7 167.7 13.1 8.6 2.2.1 2.6 1.3 1.4 145 21 18.1 57.47 105 2.3 1.0 13.0 0.05 2.1 15.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.5.0 1.6.0 2.7 3.1.3 1.00 2.1 1.5.0 1.6.0 4.4.0 2.7 1.6.0 5.5 1.5.0 1.5.0 1.5.0 1.5.0 1.6.0 1.6.0 9.7 1.5.0 1.5.0 1.6.0 1.6.0 4.4.1 1.2.0 3.3 1.5.7 1.6.0 5.5 1.5.0	19900N 22820E	1.2	37.6	50.0	72	1.3	7.5	7.3	353	8.92	231.7	.2	9.0	.4	5	.3	2.5	.2	72	.06	.067														6.9	7.5	
19900N 22800E 1.2 25.9 53.3 148 7.5.9 5.6 617.3 10.2 27 4.4 17.5 1.6 0.8 0.44 1.4 131.004 2 1.16 0.07 0.4 4.03 2.7 1.2.05 5 5 15.0 19900N 22800E 1.0 0.5 13.5 73 7 4.6 4.3 123 7 6.6 1.7 1.7 1.4 1.1 1.2 2.6 0.60 2 1.1 0.00 0.4 4.03 3.0 1.5 0.00 5 1.2 2.0 5 5 5 5 5 5 5 1.00 2 1.2 5 4 5 7 5 5 1.5 1 1.2 1.4 1.3 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1	19900N 22840E	1.2	107.3	235.5	5 356	4.5	15.1	16.0	1324	3.90	65.2	.5	9.7	.4	70	3.8	2.0	.1	51	1.45	.120	17	15.6	.46	144 .	007											
19900N 22900E 1.0 22.7 30.8 182 5 5 5 1 1.2 5 34 1.0 1.0 2.4 7.5 1.0 10 7.4 1.4 131 .004 2 1.0 0.0 5 <5 5 5 5 15.0 19900N 22920E 1.1 54.3 92.7 92.7 4.6 1.7 1.8 6 8 7.4 4.1 1.2 0.5 7.5 1.5 0.0 6.5 1.5 0.5 1.5 0.6 3.0 4.6 1.5 0.6 1.7 1.4 8 7 4.4 0.2 40.1 1.6 0.1 0.6 6.4 0.6 6.9 1.2 0.6 6.4 0.6 6.4 1.4 0.6 7 8.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.4 0.6 1.2 0.0	19900N 22860E	1.5	87.7	185.6	5 327	7.5	21.3	18.9	1587	5.09	113.2	.7	13.1	.8	69	2.2	2.1	.2	61	1.34	.145	21	18.1	.57	247.	005									71.3	15.0	
19900N 22920E 1.0 30.5 13.5 73 7 4.8 4.3 193 3.3 32.5 1 3.0 6 14 7 1.3 1 74 26 062 8 6.2 1.3 90.005 3.1.03 005 1.0 3.0 8.2 1.4 1.5 93 5.5 1.5 1.5 1.5 1.5 1.3 1.4 1.	19900N 22880E	1.2	25.9	53.3	3 148	.7	5.9	5.5	617	3.31	80.4	.1	2.7	.4	44	1.7	1.5	.1	60	.85	.040	9	7.2	.13	137 .	006									5.5		
1990N 22940E 1.1 54.3 92.7 2590 2 21.28 0.04 0.6 3.06 6.5 1.4.05 4 5 1.29 0.05 0.5 1.22 0.05 0.5 1.4.05 4 5 0.36 1.22 0.05 0.5 3.04 1.5 1.4.05 4 0.5 0.3 1.22 0.05 0.5 3.04 4.5 1.4.05 5 5 5 1.6 1.5 0.5 3.04 1.4 0.5 1.4 0.5 1.22 0.05 0.5 4 0.5 5 5 1.5 0 1.4 0.5 1.4 0.5 1.4 0.4 0.6 0.05 1.4 0.5 1.5 0.05 0.5 4 0.5 1.5 1.4 0.5 0.5 1.4 0.5 1.5 0.5 4 5 1.5 0.5 1.5 0.5 0.5 0.5 4 4 5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	19900N 22900E	1.0	22.7	30.8	3 182	.5	4.8	5.8	544	3.22	57.6	.1	1.2	.5	34	1.0	1.0	.2	47	.57	.039	10	7.4	.14	131 .	.004	2 1.0	08.	800	.04	.2.0	3 3.3	3.1	<.05	5 <.5	15.0	
1990N 22940E 1.1 54.3 92.7 2590 2 21.28 0.04 .06 .3 .06 .6.5 .1.95 4 .5 .5 1990N 2290E 1.2 38.00 21.22 .05 .3 .4 .4 .4 .0 .4 .0 .5 .20 .6 .3 .4 .6 .5 .6 .6 .4 .6 .5 .6 .6 .4 .6 .5 .6 .6 .4 .6 .2 .6 .7 .6 .4 .0 .7 .6 .8 .1 .1 .6 .4 .6 .2 .6 .7 .6 .2 .6 .7 .6 .2 .6 .7 .6 .4 .0 .6 .0 .2 .1 .0 .6 .2 .6 .3 .6 .1 .0 .2 .1 .5 .0 .2 .1 .5 .0 .2 .1 .1 .1 .1 .2 .1 .0 .1 .1 .1 .1 .1 </td <td></td>																																					
15000 229600 1.5 46.3 63.7 130.4 0.1 1.1 1.0 2.2 2.4 38.0 0.05 2.1 2.2 0.05 0.6 .3 0.4 4.5 1.5 4.6 4.5 2.6 2.5 0.4 0.05 2.1 2.2 0.05 0.05 .4 0.06 0.4 0.3 9.1 1.05 4.5 5.5 5.5 0.6 0.7 7.5 5 0.4 0.05 0.4 0.05 0.4 4.05 1.4 0.06 0.4 0.05 0.4 4.06 5 7.5 19900N 23040E 1.4 65.6 7.1 1.4 9.1 1.6 8 1.4 0.44 1.4 0.44 4.04 5.0 0.6 1.4 0.05 0.6 5.0 8.6 1.5 0.05 5.0 8.6 1.4 0.06 4 1.4 0.06 4.04 4.06 1.4 0.06 4.06 4.06 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <td>19900N 22920E</td> <td>1.0</td> <td>30.5</td> <td>13.5</td> <td>573</td> <td>્.7</td> <td>4.8</td> <td>4.3</td> <td>193</td> <td>3.37</td> <td>32.5</td> <td>.1</td> <td>3.0</td> <td>.6</td> <td>14</td> <td>.7</td> <td>1.3</td> <td>.1</td> <td>74</td> <td>.26</td> <td>.062</td> <td>8</td> <td>6.2</td> <td>.13</td> <td>90.</td> <td>005</td> <td></td>	19900N 22920E	1.0	30.5	13.5	573	્.7	4.8	4.3	193	3.37	32.5	.1	3.0	.6	14	.7	1.3	.1	74	.26	.062	8	6.2	.13	90.	005											
199000 229800 1.2 38.0 40.5 1.5 3.8 8 3.9 1.2 35.0 6.5.3 1.33 6 1.5 2.6 2.5 1.0 1.7 5.4 0.08 2 1.4 0.06 0.4 4.03 3.9 .1 0.5 5 5 5 1.5 1.6 5 2.5 1.5 0.08 2 1.5 0.05 0.4 4.03 3.9 .1 1.6 5 5 5 1.5 0.05 0.5 4 0.6 5.0 1.4 0.5 1.4 0.6 1.4 0.6 4 0.08 2 1.4 0.06 0.4 4 0.05 5 4 0.6 5 1.5 0.1 1.6 1.6 6 4 0.6 8 1.4 0.08 1 1.0 1.5 0.6 1.4 0	19900N 22940E	1.1	54.3	92.7	259	2.3	14.6	15.9	483	5.58	177.2	.1	27.1	.8	6																						
19900N 23000E 1.3 48.2 41.8 136 1.2 13.4 1.4 1.3 1.4 1.4 1.4 1.4 3.6 4.009 2 1.59 .005 .05 .4 .06 5.0 .1 <t< td=""><td></td><td>1.5</td><td>46.3</td><td>63.7</td><td>/ 130</td><td>4.0</td><td>11.2</td><td>10.2</td><td>287</td><td>4.62</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		1.5	46.3	63.7	/ 130	4.0	11.2	10.2	287	4.62																											
19900N 23020E 1.2 51.6 57.1 174 9 17.2 14.7 642 4.57 104.0 2 79.0 1.0 9 8.2.6 3.4 6.14 0.64 8 14.0 4.7 54.0 12.2 1.7 2.0 5.0 46 15.0 19900N 23040E 1.4 65.8 70.6 188 11.2 11.7 4.37 724.4 2 64.8 3 11.2 11.7 1.4 37.24 2 64.8 3 11.2 1.7 4.3 72.4 2 64.8 3 11.2 1.7 4.3 72.4 2 64.8 3 11.2 1.7 4.3 7.5 1.1 81.005 1.4 0.00 4.0 4.7 1.4 5.7 7.5 19800N 21000E 1.4 63.9 69.2 185 1.7 1.3 82.4 2.4 5.2 4.8 1.0 1.3 2.4 5.2 4.02 0.3 6.1 4.3 0.04 2.1 0.02 2.48 0.04 0.3 4.03 </td <td></td> <td>1.2</td> <td>38.0</td> <td>40.5</td> <td>5 143</td> <td>.8</td> <td>8.9</td> <td>8.2</td> <td>306</td> <td>5.31</td> <td>133.6</td> <td>.1</td> <td>16.4</td> <td>.6</td> <td>4</td> <td>.5</td> <td>2.6</td> <td>.2</td> <td>55</td> <td>.04</td> <td>.076</td> <td>/</td> <td>8.8</td> <td>.1/</td> <td>54.</td> <td>800</td> <td></td>		1.2	38.0	40.5	5 143	.8	8.9	8.2	306	5.31	133.6	.1	16.4	.6	4	.5	2.6	.2	55	.04	.076	/	8.8	.1/	54.	800											
1990N 23040E 1.4 65.8 7.7 7.5 11 1.1 1.8 7.2 2.4 6.9 1.1 18 8.8 2.6 4.8 3.0 104 10.0 6.6 5.5 5.0 6.4 5.05 5.00 8.0 3.10 4.7 5.1 1.0 1.0 1.0 0.6 5.5 0.6 1.4 0.6 1.5 1.0 0.6 5.05 8.6 1.4 0.04 2.50 0.08 0.4 3.0 4.7 1.4 0.6 1.4 1.6 1.4 0.06 2.50 0.08 0.4 0.06 4.7 1.4 0.6 1.7 1.2 0.5 1.0 1.0 0.00 0.04 3.10 4.7 1.8 0.05 1.1 1.8 0.06 1.4 0.6 0.6 4.0 0.6 0.6 1.4 0.6 0.6 4.0 0.0 0.6 0.6 4.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	19900N 23000E	1.3	48.2	41.8	3 136	1.2	13.4	13.4	752	5.29	78.2	.2	16.0	.7	9	.6	2.4	.3	49	.19	.098	5	14.1	.43	64.	.009	21.	59.	005	.05	.4 .0	6 5.0	.1.	<.05	4 <.5	7.5	
1990N 23040E 1.4 65.8 7.0 188 1.7 22.7 22.3 1479 5.46 10.1 2 4.5 11.0 10.6 5.7 5.00 4.5 1.0 5.05 8.6 1.4.005 5.05 8.6 1.4.005 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 5.05 8.6 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.1.0.05 1.0 1.1.0.05 1.0 1.1.0.05 1.0 1.1.0.05 1.0 1.1.0 1.0.05 1.0 1.1.0 1.0.05 1.0 1.1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05 1.0 1.0.05			-1 -			~	17.0	14 7	<i>c</i> 40	4 67	104 0	~	70.0	1 0	•	•	~ c	2	40	14	064	0	14 0	47	E A	012	2.1	70	005	04			. 1.	- 05	4 0	15.0	
19800N 21000E .8 42.0 178.5 524 .8 11.2 11.2 11.2 12.4 .3 11.2 11.2 12.4 .3 11.2 11.2 12.4 .3 11.2 12.5 .5 12.6 .6 5 4.9 .08 11.4 .08 2.1 .5 .008 .04 .4 .06 4.7 .1 .5 .7 .5 .7 .5 .7 .5 .7 .5 .8 .005 7 7.4 .17 .8 .005 7 7.4 .11 .008 .04 .4 .06 .4 .06 .4 .06 .4 .05 .7 .5 .8 .005 1 .10 .007 .03 .5 .6 .4 .20 .033 .8 .005 1 .10 .007 .03 .5 .6 .4 .5 .21 .10 .11 .10 .10 .10 .10 .10 .10 .10 .10 .11 .10 .11 .10 .10 .10 .11		1.2	51.6	5/.1	1/4	.9	17.2	14./	1470	4.5/	104.0	.2	19.0	1.0	10	.0	2.0	.3	40 40	.14	.004	10	14.0	.4/	04. 75	012	21. -11	/ L . 01	000	.04	.4.0	4 D.0 5 D.4	· · · ·	<.U5			
19800N 21020E 1.2 51.1 120.1 734 .9 10.8 14.1 2282 4.27 536.5 .3 463 4 68 4.8 1.7 1.3 87 .008 2 1.39 .008 .04 .4 .06 4.7 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .007 .03 .5 .08 .0.0 .1 .10 .007 .03 .5 .08 .0 .1 .10 .007 .03 .5 .08 .0 .1 .10 .007 .03 .5 .08 .008 .04 .4 .06 .4 .06 .4 .05 .1 .07 .4 .8 .05 .1 .10 .007 .03 .5 .4 .5 .5 .2 .6 .6 .04 .06 .06 .4 .05 .1 .7 .5 .5 .2 .4 .2 .2 .2 .4 .2 .2 .2 .1 .00																																					
19800N 21040E 1.1 49.7 225.5 335 1.1 8.9 11.9 695 4.1 451.8 $2 \times 301.5^{-}$ 3 59 2.2 1.8 1.7 35 .89 0.56 7 7.4 1.7 88 .005 1 1.10 .007 .03 .5 .08 3.0 .1 .07 4 .8 7.5 RE 19900N 23040E 1.4 63.9 69.2 185 1.7 21.2 1436 5.26 100.2 .2 36.1 1.1 18 9.27 .6 46 .33 .081 10 16.4 .55 72 .01 2 .48 .004 .03 .4 .03 2.9 .1 .65 .5 15.0 19800N 21100E 1.6 67 65 7 .4 13 2 9 2 2 16 65 .07 0.08 1 2.10 6.7 .1 .6 .1 .2 .16 .16 .16 .1 .10 .1 .1		.8	42.0	1/8.5	5 524	.8	11.3	11.2	11/4	4.3/	724.4	.2	04.0	.3	11 CO	2.0	1.9	·.# 1 1	29	1 26	.002																
RE 19900N 23040E 1.4 63.9 69.2 185.1.7 21.5 21.2 1436 5.26 100.2 2 36.1 1.1 18 92.7 .6 46 .33 .081 10 16.4 .55 72 .012 2 1.4 .006 .6 .4 .05 7.9 .1 .1 .1 8 .9 .7 .6 46 .33 .081 10 16.4 .55 72 .012 2 1.4 .006 .6 4 .05 7.9 .1 .1 .5 .1 .5 .4 13 .2 9.2 .2 .1 .016 6 5.8 .07 40 .018 1 .68 .006 .4 .4 .03 .2 .1 .01 .1 .03 .2 .1 .01 .1 .03 .1 .01 .1 .1 .1 .03 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1		1.2	51.1	210.1	1 / 34	9	10.8	14.1	2282	4.2/	530.5	. 3	40.0 120 E	.4	00	4.0	1./	1.1	20.	1.20	.000																
19800N 21060E 1.4 33.0 107.8 97 .6 7.4 7.9 300 3.50 762.3 52.7 <td>19800N 21040E</td> <td>1.1</td> <td>49.7</td> <td>225.5</td> <td>5 335</td> <td>1.1</td> <td>8.9</td> <td>11.9</td> <td>090</td> <td>4.11</td> <td>451.0</td> <td></td> <td>130.5</td> <td>1.5</td> <td>59</td> <td>2.2</td> <td>1.0</td> <td>1.7</td> <td>30</td> <td>.09</td> <td>.050</td> <td>'</td> <td>7.4</td> <td>.1/</td> <td>00 .</td> <td>,005</td> <td>11.</td> <td>10.</td> <td>007</td> <td>.05</td> <td>.5 .0</td> <td>0 5.0</td> <td>, .T</td> <td>.07</td> <td>4.0</td> <td>1.5</td> <td></td>	19800N 21040E	1.1	49.7	225.5	5 335	1.1	8.9	11.9	090	4.11	451.0		130.5	1.5	59	2.2	1.0	1.7	30	.09	.050	'	7.4	.1/	00 .	,005	11.	10.	007	.05	.5 .0	0 5.0	, .T	.07	4.0	1.5	
19800N 21060E 1.4 33.0 107.8 97 .6 7.4 7.9 300 3.50 762.3 52.7 <td>RE 10000N 23040E</td> <td>14</td> <td>63.9</td> <td>69 2</td> <td>2 185</td> <td>1.7</td> <td>21.5</td> <td>21.2</td> <td>1436</td> <td>5.26</td> <td>100.2</td> <td>.2</td> <td>36.1</td> <td>1.1</td> <td>18</td> <td>.9</td> <td>2.7</td> <td>.6</td> <td>46</td> <td>.33</td> <td>.081</td> <td>10</td> <td>16.4</td> <td>.55</td> <td>72.</td> <td>.012</td> <td>2 1.</td> <td>74.</td> <td>006</td> <td>.06</td> <td>.4 .0</td> <td>5 7.9</td> <td>).1·</td> <td><.05</td> <td>4.5</td> <td>15.0</td> <td></td>	RE 10000N 23040E	14	63.9	69 2	2 185	1.7	21.5	21.2	1436	5.26	100.2	.2	36.1	1.1	18	.9	2.7	.6	46	.33	.081	10	16.4	.55	72.	.012	2 1.	74.	006	.06	.4 .0	5 7.9).1·	<.05	4.5	15.0	
19800N 21080E 1.9 25.3 16.3 74 2 7.0 8.8 787 3.69 96.5 1 5.7 4 13 2 9 2 42 15 0.46 6 5.8 0.7 40 0.18 1 .68 0.06 .04 4.03 2.6 .1 .1 6.7 8 1.5 2.42 .15 .046 6 5.8 .07 40 .018 1 .68 .006 .04 4.03 2.6 .1 .05 8 .5 7.5 19800N 21100E 1.0 46.1 87.5 126 1.5 3.6.9 .4 7 5 1.8 .3 65 .07 .085 8 1.2 .01 .007 .03 .4 .05 7 .7 7																						8	3.0	.04	21	.002	2.	48.	004	.03	.4 .0	3 2.9).l·	<.05	3 <.5	15.0	
19800N 21100E 1.1 67.8 68.6 194 2.5 16.9 12.6 1168 4.78 88.7 .5 24.7 .6 57 .8 1.6 .2 56 .86 .083 12 14.2 .45 114 .004 1 2.49 .009 .05 .2 .10 6.7 .1.6 .5 1.8 .3 65 .07 .085 8 13.0 .28 61 .008 .1 2.01 .007 .03 .4 .07 3.8 .1 .05 7 .7 7.5 19800N 21120E 1.2 50.7 58.5 177 2.1 14.8 11.7 506 4.65 68.6 .4 46.2 .6 17 .4 1.1 .2 48 .18 .105 10 15.7 .4 .07 .08 .07 .08 .005 4 .07 .08 .1 .10 .04 .05 .1 .10 .1 .04 .1 .04 .1 .01 .01 .17 .01 .04 .01 <td< td=""><td></td><td>1.9</td><td>25.3</td><td>16.3</td><td>3 74</td><td>.2</td><td>7.0</td><td>8.8</td><td>787</td><td>3.69</td><td>96.5</td><td>.1</td><td>5.7</td><td>.4</td><td>13</td><td>.2</td><td>.9</td><td>.2</td><td>42</td><td>.15</td><td>.046</td><td>6</td><td>5.8</td><td>.07</td><td>40</td><td>.018</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.5</td><td>7.5</td><td></td></td<>		1.9	25.3	16.3	3 74	.2	7.0	8.8	787	3.69	96.5	.1	5.7	.4	13	.2	.9	.2	42	.15	.046	6	5.8	.07	40	.018									8.5	7.5	
19800N 21120E 1.0 46.1 87.5 126 .8 9.9 10.3 884 7.26 152.4 .3 36.9 .4 7 .5 1.8 .3 65 .07 .085 8 13.0 .28 61 .008 1 2.01 .07 .03 .4 .07 3.8 .1 .05 7 .7 7.5 19800N 21140E 1.2 50.7 58.5 177 2.1 14.8 11.7 506 4.65 68.6 .4 46.2 .6 17 .4 1.1 2 48 18 105 10 15.7 .45 .75 .005 2 2.36 .008 .04 .5 1.4 8.0 .1 .2 .5 .10 .109 .4 .6 .1 20 2.25 .058 3 .4 .07 .13 .4 .12 2.25 .058 3 .4 .03 .14 .109 .14 .109 .14 .109 .14 .109 .14 .109 .22 .10		1.1	67.8	68.6	5 194	2.5	16.9	12.6	1168	4.78	88.7	.5	24.7	.6	57	.8	1.6	.2	56	.86	.083	12	14.2	.45	114 .	.004	12.	49.	009	.05	.2.1	0 6.3	1.1	<.05	7.8	15.0	
19800N 21140E 1.2 50.7 58.5 177 2.1 14.8 11.7 506 4.65 68.6 .4 46.2 .6 17 .4 1.1 .2 48 .18 .105 10 15.7 .45 75 .005 2 2.36 .008 .04 .5 .14 8.0 .1 5 .14 8.0 .1 1.2 5 .5 .8 15.0 .7 14.0 15.1 65 .5 3.2 3.4 438 1.40 26.5 .1 4.0 .1 109 .4 .6 .1 20 2.25 .058 3 4.9 .13 98 .005 4 .57 .010 .04 .2 .09 1.3 <1.12 2 .5 1.0 1.5 36.4 43.0 125 1.1 9.4 10.9 1046 2.74 48.9 .3 31.2 .2 130 1.1 1.4 .1 30 2.62 .085 4 9.6 .33 147 .008 3 1.11 .010 .04 .4 .08 3.8 .1 .09 3 2.1 7.5 2.4 106.1 22.5 29 3.5 7.8 3.8 1922 .74 20.8 3.5 23.1 .2 209 1.6 1.4 .1 4 4.91 .133 27 9.5 .10 94 .005 5 1.36 .013 .02 <1 .28 5.7 .1 .18 <1 8.6 7.5 .19800N 21200E		1.0	46.1	87.5	5 126	.8	9.9	10.3	884	7.26	152.4	.3	36.9	.4	7	.5	1.8	.3	65	.07	.085	8	13.0	.28	61	.008	12.	01 .	007	.03	.4 .0	7 3.8	3.1		7.7	7.5	
19800N 21160E .7 14.0 15.1 65 .5 3.2 3.4 438 1.40 26.5 .1 4.0 .1 109 .4 .6 .1 20 2.25 .058 3 4.9 .13 98 .005 4 .57 .010 .04 .2 .09 1.3 <.1																																					
19800N 21180E 1.5 36.4 43.0 125 1.1 9.4 10.9 10.4 2.4 48.9 3 31.2 2 130 1.1 1.4 1.30 2.62 .085 4 9.6 .33 147 .008 3 1.11 .010 .04 .4 .08 3.8 .1 .09 3 2.1 7.5 19800N 21200E 2.4 106.1 22.5 29 3.5 7.8 3.8 1922 .74 20.8 3.5 23.1 2 209 1.6 1.4 .1 4 4.91 .133 27 9.5 .10 94 .005 5 1.36 .013 .02 <1		1.2	50.7	58.5	5 177	2.1	14.8	11.7	506	4.65	68.6	.4	46.2	.6	17	.4	1.1	.2	48	.18	.105	10	15.7	.45	75	.005											
19800N 21200E 2.4 106.1 22.5 29 3.5 7.8 3.8 1922 .74 20.8 3.5 23.1 .2 209 1.6 1.4 .1 4 4.91 .133 27 9.5 .10 94 .005 5 1.36 .013 .02 <1 .28 5.7 .1 .18 <1 8.6 7.5 4.1 100.2 51.3 177 9.2 18.4 19.2 3194 3.50 70.0 2.8 63.7 .8 77 5.1 1.6 .1 30 1.34 .213 49 18.9 .23 125 .006 2 3.53 .011 .05 .2 .38 17.9 .1 .11 4 4.9 7.5		.7	14.0	15.1	1 65	.5	3.2	3.4	438	1.40	26.5	.1	4.0	.1	109	.4	.6	.1	20	2.25	.058	3	4.9	.13	98	.005											
19800N 21220E 4.1 100.2 51.3 177 9.2 18.4 19.2 3194 3.50 70.0 2.8 63.7 .8 77 5.1 1.6 .1 30 1.34 .213 49 18.9 .23 125 .006 2 3.53 .011 .05 .2 .38 17.9 .1 .11 4 4.9 7.5 19800N 21240E 1.3 28.4 20.1 52 .7 4.6 5.3 260 3.26 87.6 .1 42.3 .2 5 .1 1.7 .2 61 .07 .057 7 5.6 .07 24 .005 3 .87 .005 .03 .5 .05 2.4 .1 .1 .1 .1 4.9 7.5 19800N 21240E 1.3 28.4 20.1 52 .7 4.6 5.3 260 3.26 87.6 .1 42.3 .2 5 .1 1.7 .2 61 .07 .057 7 5.6 .07 24 .005 3 .87 .005 .03 .5 .05 2.4 .1 .1 .1 .1 4.9 7.5 19800N 21260E 1.9 30.0 185 55 .5 5.0 7.5 430 5.37 218.0 .1 40.4 .2 5 .2 1.2 .3 71 .07 .097 6 6.8 .07 34 .005 3 .92 .006 .04 .4 .07 2.5 .1 .1 .5 .5 .1 .5 .5 .5 .1 .5 .2 .2 .3 .7 .07 .097 6 6.8 .07 34 .005 3 .92 .006 .04 .4 .07 2.5 .1 .1 .5 .5 .5 .1 .5 <td></td> <td>1.5</td> <td>36.4</td> <td>43.0</td> <td>0 125</td> <td>1.1</td> <td>9.4</td> <td>10.9</td> <td>1046</td> <td>2.74</td> <td>48.9</td> <td>.3</td> <td>31.2</td> <td>.2</td> <td>130</td> <td>1.1</td> <td>1.4</td> <td>.1</td> <td>30</td> <td>2.62</td> <td>.085</td> <td>4</td> <td>9.6</td> <td>.33</td> <td>147</td> <td>.008</td> <td>31.</td> <td>11.</td> <td>010</td> <td>.04</td> <td>.4 .0</td> <td>8 3.</td> <td><u>.</u> 1</td> <td>.09</td> <td></td> <td></td> <td></td>		1.5	36.4	43.0	0 125	1.1	9.4	10.9	1046	2.74	48.9	.3	31.2	.2	130	1.1	1.4	.1	30	2.62	.085	4	9.6	.33	147	.008	31.	11.	010	.04	.4 .0	8 3.	<u>.</u> 1	.09			
19800N 21240E 1.3 28.4 20.1 52 .7 4.6 5.3 260 3.26 87.6 .1 42.3 .2 5 .1 1.7 .2 61 .07 .057 7 5.6 .07 24 .005 3 .87 .005 .03 .5 .05 2.4 .1 .05 6 .5 7.5 19800N 21260E 1.9 30.0 18.5 55 .5 5.0 7.5 430 5.37 218.0 .1 40.4 .2 5 .2 1.2 .3 71 .07 .097 6 6.8 .07 34 .005 3 .92 .006 .04 .4 .07 2.5 .1 .5 .5 .1 .05 6 .2 7.5 19800N 21280E 1.6 30.2 34.7 130 1.2 6.9 11.1 1252 5.02 116.5 .2 24.1 .2 11 .3 1.5 .3 66 .08 .083 7 9.3 .24 <t< td=""><td></td><td>2.4</td><td>106.1</td><td>22.5</td><td>5 29</td><td>3.5</td><td>7.8</td><td>3.8</td><td>1922</td><td>.74</td><td>20.8</td><td>3.5</td><td>23.1</td><td>.2</td><td>209</td><td>1.6</td><td>1.4</td><td>.1</td><td>4</td><td>4.91</td><td>.133</td><td>27</td><td>9.5</td><td>.10</td><td>94</td><td>.005</td><td>51.</td><td>36.</td><td>013</td><td>.02 <</td><td>.1.2</td><td>8 5.</td><td><u>, .1</u></td><td>.18</td><td></td><td></td><td></td></t<>		2.4	106.1	22.5	5 29	3.5	7.8	3.8	1922	.74	20.8	3.5	23.1	.2	209	1.6	1.4	.1	4	4.91	.133	27	9.5	.10	94	.005	51.	36.	013	.02 <	.1.2	8 5.	<u>, .1</u>	.18			
19800N 21260E 1.9 30.0 18.5 55 .5 5.0 7.5 430 5.37 218.0 .1 40.4 .2 5 .2 1.2 .3 71 .07 .097 6 6.8 .07 34 .005 3 .92 .006 .04 .4 .07 2.5 .1 .05 6 .5 7.5 19800N 21280E 1.6 30.2 34.7 130 1.2 6.9 11.1 1252 5.02 116.5 .2 24.1 .2 11 .3 1.5 .3 66 .08 .083 7 9.3 .24 75 .006 .04 .7 .05 2.5 .1 .05 8 .5 15.0 19800N 21300F 4 0 35.9 44.9 116 2.2 14.5 35.4 895 5.41 69.2 .5 8.0 .3 41 1.1 1.2 25 .94 .231 10 17.4 .26 78 .008 2 .65 .08	19800N 21220E	4.1	100.2	51.3	3 177	9.2	18.4	19.2	3194	3.50	70.0	2.8	63.7	.8	77	5.1	1.6	:1	30	1.34	.213	49	18.9	.23	125	.006	23.	53.	011	.05	.2.3	8 17.9	э.1	.11	4 4.9	7.5	
19800N 21260E 1.9 30.0 18.5 55 .5 5.0 7.5 430 5.37 218.0 .1 40.4 .2 5 .2 1.2 .3 71 .07 .097 6 6.8 .07 34 .005 3 .92 .006 .04 .4 .07 2.5 .1 .05 6 .5 7.5 19800N 21280E 1.6 30.2 34.7 130 1.2 6.9 11.1 1252 5.02 116.5 .2 24.1 .2 11 .3 1.5 .3 66 .08 .083 7 9.3 .24 75 .006 .04 .7 .05 2.5 .1 .05 8 .5 15.0 19800N 21300F 4 0 35.9 44.9 116 2.2 14.5 35.4 895 5.41 69.2 .5 8.0 .3 41 1.1 1.2 25 .94 .231 10 17.4 .26 78 .008 2 .65 .08										0.00			40.0	~	-		1 7	•	C1	07	057	7		07	24	005	2	07	005	02	с о	г ე		< 0E	6 . 5	7 6	
19800N 21280E 1.6 30.2 34.7 130 1.2 6.9 11.1 1252 5.02 116.5 .2 24.1 .2 11 .3 1.5 .3 66 .08 .083 7 9.3 .24 75 .009 1 1.60 .006 .04 .7 .05 2.5 .1<0.5 8 <.5 15.0 19800N 21300F 4.0 35 9 44 9 116 2.2 14.5 35.4 8095 5.41 69.2 .5 8.0 .3 41 1.1 1.1 .2 55 .94 .231 10 17.4 .26 78 .008 2 2.65 .008 .05 .2 .17 4.6 .1 .06 6 .7 7.5		1.3	28.4	20.	1 52	.7	4.6	5.3	260	3.26	8/.6	.1	42.3	.2	5	.1	1./	.2	61 71	.07	.05/	1	5.0	.0/	24	.005											
19800N 21300F 4 0 35 9 44 9 116 2 2 14 5 35 4 8095 5 41 69 2 5 8 0 3 41 1 1 1 1 2 55 .94 231 10 17 4 26 78 .008 2 2 .65 .008 .05 .2 .17 4 .6 .1 .06 6 .7 7.5		1.9	30.0	18.	b 55	.5	5.0	/.5	430	5.37	218.0	1.	40.4	.2	5	.2	1.2	.3	/1	.07	.09/																
		1.6	30.2	34.7	/ 130	1.2	6.9		1252	5.02	110.5	.2	24.1	.2	11		1.5	.ა	00	.08	.083																
SIANUAKU US5 12.8 145.5 25.3 139 .3 24.8 12.3 797 3.03 18.1 0.3 41.1 2.7 47 5.7 4.0 0.0 02 .70 .091 12 107.9 .00 133 .101 17 1.9 .034 .15 4.0 .17 3.4 1.1×.05 0 5.1 15.0		4.0	35.9	44.9	9 116	2.2	14.5	35.4	8095	5.41	69.2	.5	8.0	.3	41	1.1	1.1	.2	22	.94	.231	10	107 0	. 20	125	101	17 1	00.	000	.00	. 2 L Q 1	/ 4. 7 2		- 05			
	STANDARD DS5	12.8	145.5	25.	3 139	.3	24.8	12.3	/9/	3.03	10.1	0.3	41.1	2.1	4/	5.7	4.0	0.0	02	.70	.091	12	101.9	.00	100	. 101	1/ 1.	55.	0.04	.10 4	.0 .1		+ I.I	05	0 0.1	13.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 7

																		-		·													ANALTITCAL	<u> </u>
Sample#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P I	La	Cr	Mg E	a Ti	В	A1	Na	K	W Hg	Sc	Tl	S Ga S	e Sample	
	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	*	ppm	ppm	ppb	ppm	ppm	ppm p	pm p	opm p	pm	%	%р	pm	ppm	% pp	m %	ppm	*	8	% p	pm ppm	ррт	ррп	% ppm pp	n gm	
19800N 21320E 19800N 21340E 19800N 21360E 19800N 21380E 19800N 21380E 19800N 21400E	1.4 1.7 1.7	55.4	65.7 101.5 73.9	145 176 128	4.9 2.4 .7	19.1 14.2 9.3	10.8 14.6 8.3	2112 356	3.84 3.89 3.79	90.7 91.8 87.2	.6 .7 .4	93.5 41.3 35.0	.4 .7 .3	84 109 82	1.1 1 1.7 1 .5 1	.2 .2 .1	.4 .1 .1	37 1 46 1 59 1	.46 . .74 . .34 .	122 097 061	15 16 8	9.6 15.1 12.1	,28 11 .47 19 .36 12	4 .005 6 .008 1 .008	<1 1 <1 2 <1 1	91 41 80	.009 .009 .010	.05 1 .06 .04	.1 .17 .2 .17 .3 .08	6.7 11.1 4.9	.1 .1 .1 .1 .1 .1 .1 .1	24 <1 6. 12 4 2. 11 5 3. 07 6 1. 05 8 <.	17.5 15.0 15.0	
19800N 21420E 19800N 21440E 19800N 21460E 19800N 21480E 19800N 21480E 19800N 21500E	9. 5. 1.0	18.4 27.7 37.2	31.8 13.4 20.0	53 35 33	1.0 1.1 1.1	3.6 4.3 5.8	4.4 2.5 6.0	1135 151 1136 2416 100	2.80 .52 1.26	43.2 12.9 28.8	.3 .4 .5	9.6 7.9 <u>10.5</u>	.1 .1 <.1	59 225 176	.5 1.3 .9 1	.9 .9 .4	.1 .1 .1	56 45 73	.78 . .19 . .96 .	043 130 094	7 9 7	7.1 4.0 3.7	.19 12 .20 14 .17 16	0.003	<11 5 4	.44 .56 .43	.010 .013 .014	.03 .02 .03	.3 .06 .2 .14 .1 .14	2.3 1.4 .9	.1 .0 .1 .2	21 <1 2. 25 1 3.	5 15.0 7.5 1.0	
19800N 21520E 19800N 21540E 19800N 21560E 19800N 21580E 19800N 21580E 19800N 21600E	1.7 .8 1.0	24.5 60.6 22.3 28.7 21.3	66.0 21.3 19.7	244 51 120	2.8 .6 .8	16.5 4.5 11.5	13.2 4.5 9.8	3753 274 774	6.49 3.04 5.48	257.4 74.1 25.8	.6 .1 .2	51.4 12.8 2.2	.7 .1 .4	55 7 6	1.71 1.11 .21	7 2 0	.2 .1 .1	67 58 67	.82 . .08 . .11 .	164 049 078	16 7 5	18.2 5.9 16.3	.57 17 .11 3 .51 4	4 .028 3 .013 0 .013 8 .061 0 .054	12 4 22	.89 .97 .10	.011 .007 .007	.06 .04 .03	.3 .14 .2 .04 .2 .09	7.7 2.2 4.1	.1 .(.1<.()5 6 <.!	2 15.0 5 7.5 5 15.0	
19800N 21620E 19800N 21640E 19800N 21660E 19800N 21680E 19800N 21680E 19800N 21700E	19.8 1.3 1.2	64.0 21.5 16.7	15.1 15.8 6.7	275 38 30	1.9 3.9 .7	12.3 4.1 4.1	38.6 5.4 4.2		13.13 1.23 3.29	694.8 35.6 22.3	1.9 .5 .2	12.8 8.0 2.9	.4 .2 .2	118 332 7	5.92 1.2 .2	.3 < .6 .7	:.1 .1 .2	22 2 16 2 80	.40 . .94 . .05 .	162 2 114 028	23 8 7	8.0 6.9 7.7	.13 66 .19 14 .11 3	7 .005 0 .004 0 .021	21 4 <11	.42 .87 .10	.010 .013 .006	.02 .04 .02	.3 .19 .2 .16 .2 .05	8.5 3.8 2.0	.4 .1)5 8 <.	5 1.0 5 7.5 5 15.0	
19800N 21720E RE 19800N 21580E 19800N 21740E 19800N 21760E 19800N 21780E	1.0 2.6 .8	28.7 26.7 30.9 36.5 24.9	19.3 13.8 9.7	115 116 105	.8 3.4 1.2	10.9 5.7 17.1	10.0 5.1 12.7	765 216 632	5.48 1.75 4.52	24.8 35.5 61.2	2. 1.6 .3	1.8 <u>99.6</u> 7.6	.4 .1 .6	6 168 13	.2 1 .4 1 .4	0 7 .9	.1 .1 .1	67 17 3 71	.09. .73. .22.	078 047 031	5 4 7	17.3 4.7 19.3	.51 4 .10 8 .74 8	5 .014 8 .055 4 .004 0 .049 0 .079	1 2 2 2 2	.16 .40 .52	.005 .010 .008	.02 .03 .04	.2 .10 .3 .12 .2 .06	4.0 2.8 5.9	<.1 .(<.1<.(<.1 .(.1<.(.1<.()5 6 .)7 2 2.)5 6 .	5 15.0 7 7.5 5 15.0	
19800N 21800E 19800N 22220E 19800N 22240E 19800N 22260E 19800N 22280E	.9 3.2 .8	34.5	2.9 20.9 7.1	8 100 19	.8 1.6 .4	3.8 11.1 2.6	1.2 16.3 1.2	1117 140 2561 55 417	.40 3.22 .89	2.6 39.8 12.1	1.1 1.2 .3	4.1 11.7 2.8	.1 .4 .1	239 117 166	.4 1 .7 1 .4	.1 < .1 .6	1.1 .1 .1	54 432 163	.78 . .81 .	070 177 043	8 11 10	3.3 13.5 3.6	.17 7 .48 14 .18 9	3 .009 8 .006 2 .014 3 .008 2 .015	5 21 1	.39 .83 .66	.013 .009	.01 .04 .02	.2 .11 .2 .15 .3 .07	1.0 7.5 1.5		17 14. 12 53. 19 21.	1.0 15.0 7.5	
19800N 22300E 19800N 22320E 19800N 22340E 19800N 22360E STANDARD DS5	2.8 .8 1.3	41.5 92.9 30.2 33.2 144.7	108.8 20.8 26.7	100 31 54	3.2 1.2 1.3	14.8 5.1 6.4	17.8 8.5 6.7	5690 663 427	3.92 .74 4.81	293.1 20.7 33.9	1.4 .5 .4	40.1 2.9 6.8	.5 .1 .1	107 156 9	2.51 .61 .4	2 3 < .8	.1 <.1 .1	36 2 10 4 77	.58 . .04 . .10 .	116 3 087 041	31 9 8	12.6 4.6 12.9	.45 20 .20 12 .25 4	1 .006 8 .015	22 4 11	.08 .86 .91	.011 .010 .008	.03 .02 .03	.2 .23 .1 .12 .2 .05	8.5 1.6 2.5	.2 .0 .1 .1 <.1<.0	05 8 08 4 10 1 1.1 05 10 05 6) 7.5 3 1.0 7 15.0	,

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data & FA

Data_____FA

Page 8

ACHE ANALYTICAL		ACME ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga pom pom pom pom pom pom pom pom % pom pom pom pom pom pom pom pom pom % % pom % pom % pom % pom pom pom pom pom %	
19800N 22380E 19800N 22400E 19800N 22420E 19800N 22440E 19800N 22440E 19800N 22460E	1.2 43.2 20.5 84 2.2 9.0 11.1 2145 2.25 40.9 .9 7.5 .2 115 .9 1.1 .1 26 2.98 .126 12 9.3 .34 150 .013 3 1.48 .011 .04 .2 .16 3.7 .1 .13 3 1.2 47.3 45.7 99 .7 11.9 15.9 2023 3.93 28.0 .4 1.9 .2 48 .7 .9 .1 61 1.02 .085 8 15.1 .57 133 .024 1 2.16 .01 .05 .2 .06 3.7 .1 .05 7 1.2 52.1 20.2 87 .7 13.7 26.8 1183 4.06 30.6 .6 3.9 .6 66 .5 .9 .1 57 1.50 .52 191 .008 2 2.47 .010 .06 .2 .12 5.3 .1 .07 7 1.3 32.3	1.4 1.0 .8 15.0 .9 1.0 .6 15.0 <.5 15.0
19800N 22480E 19800N 22500E 19800N 22520E 19800N 22540E 19800N 22540E 19800N 22560E	1.0 34.5 9.0 3 1.2 833 3.92 38.9 .3 6.1 .9 1.6 2.74 .039 7 15.4 .69 98 .053 1 2.00 .007 .04 .2 .03 4.8 .1 .05 .1 1.0 .034 .5 .03 .1 1.2 .033 .1 .1 .04 .04 .039 7 15.4 .69 98 .053 1 2.00 .007 .04 .2 .03 4.8 .1 .05 .1 .1 1.04 .04 .04 .1 1.4 2.97 .076 5 5.3 .21 95 .010 2 .1 .08 1.0 <.1 .10 2 .1 .10 .1 .14 2.97 .076 5 5.3 .21 95 .010 2 .1 .08 1.0 <.1 .10 .2 .1 .10 .1 .14 2.97 .076 5 5.3 .21 .95 .010 2 .1 .08 <th><.5 15.0 .6 15.0 .8 1.0 .9 7.5 <.5 15.0</th>	<.5 15.0 .6 15.0 .8 1.0 .9 7.5 <.5 15.0
19800N 22580E 19800N 22600E 19800N 22620E 19800N 22640E 19800N 22640E 19800N 22660E	.9 27.1 27.3 141 .4 11.7 10.1 939 3.75 45.3 .2 7.0 .5 38 .4 1.0 .1 61 .48 .050 8 15.8 .60 160 .013 1 2.27 .008 .05 .2 .03 4.4 .1<0.5 7 1.5 30.4 20.0 69 2.4 7.6 6.9 304 3.52 34.4 .3 2.0 .1 26 .5 1.0 .1 67 .35 .058 9 10.9 .34 96 .019 1 1.65 .008 .04 .2 .07 2.3 .1<0.5 7 1.4 25.0 17.4 49 .5 4.9 5.5 210 2.47 25.4 .2 2.9 .1 20 .3 .9 .1 61 .31 .026 8 7.0 .20 75 .021 <1 1.12 .007 .04 .3 .02 1.8 .1<0.5 7	<.5 15.0 <.5 15.0 .5 15.0 .5 15.0 1.3 1.0
19800N 22680E 19800N 22700E 19800N 22720E 19800N 22740E 19800N 22740E 19800N 22760E	1.1 44 14.0 41 .6 4.9 3.0 84 1.52 37.1 .2 3.7 .1 94 1.5 1.1 .1 26 1.96 .033 7 5.0 .13 120 .008 2 .59 .011 .02 .2 .05 1.4 <.1 .08 3 2.5 80.7 47.9 153 2.2 12.0 17.8 5624 3.49 52.4 .6 2.5 .4 80 3.8 1.0 .1 48 1.67 .119 15 12.5 .34 230 .006 1 2.00 .010 .06 .2 .12 5.1 .2 .06 6 .9 27.5 15.7 87 .3 9.1 8.3 512 4.11 32.3 .2 2.6 .3 36 .2 .9 .1 68 .39 .035 6 13.5 .37 89 .029 2 2.06 .010 .05 .2 .02 3.6 .1<05 8	.9 1.0 .7 7.5 .7 1.0 <.5 15.0 .5 7.5
19800N 22780E 19800N 22800E 19800N 22820E RE 19800N 22840E 19800N 22840E	1.1 17.2 13.7 58 .6 5.1 4.7 207 4.07 19.0 .2 1.9 .3 17 .2 .8 .1 82 .27 .052 6 10.5 .19 57 .039 <1 1.48 .007 .03 .3 .05 2.8 <.1<0.5 8 1.6 30.1 70.2 179 3.4 5.3 6.5 442 6.81 238.5 .1 8.0 .3 6 .6 9.5 .2 111 .07 .107 5 9.1 .15 35 .055 1 1.35 .008 .04 .3 .06 3.1 .1 .06 9 1.0 46.4 31.8 130 .9 10.1 8.7 338 5.00 61.5 .1 4.7 .6 7 .5 2.3 .1 56 .09 .054 6 12.6 .41 61 .030 1 1.62 .005 .03 .3 .05 4.3 .1<05 5	1.5 7.5 .5 15.0 .6 7.5 .6 7.5 .6 7.5 .6 7.5
19800N 22860E 19800N 22880E 19800N 22900E 19800N 22920E 19800N 22940E	1.0 46.8 43.1 345 2.9 14.2 19.7 783 4.67 50.4 .2 8.3 .8 13 1.7 2.2 .1 57 .23 .060 9 14.7 .52 137 .014 1 2.00 .006 .04 .3 .08 7.1 .1<0.5 5 1.0 53.4 48.9 206 1.6 12.7 13.5 546 4.83 50.7 .2 7.2 .7 18 .7 2.5 .1 58 .37 .057 8 13.8 .45 101 .010 1 1.84 .008 .05 .3 .06 7.2 .1<0.5 5 1.1 57.1 49.2 199 1.2 14.8 15.5 805 4.45 51.1 .2 12.5 .7 26 1.0 2.6 .1 51 .48 .054 9 14.1 .54 108 .022 1 1.74 .009 .06 .3 .06 7.7 .1<0.5 5	.7 15.0 .5 7.5 .5 15.0 <.5 15.0 .6 15.0
19800N 22960E 19800N 22980E 19800N 23000E 19800N 23020E STANDARD DS5	1.0 56.4 49.7 175 2.0 15.8 15.4 1122 4.22 53.5 .3 13.9 .8 56 1.5 2.0 .1 45 1.07 .096 12 13.2 .58 184 .007 2 2.07 .011 .08 .3 .09 9.8 .1 .06 5 .8 31.5 36.7 95 .5 11.8 14.6 701 3.48 26.4 .2 8.8 .6 33 .6 1.8 .1 41 .52 .076 8 12.1 .48 84 .026 2 1.29 .009 .05 .3 .07 5.9 .1 .08 4	.6 7.5 .7 15.0 .7 7.5 .6 15.0 5.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

44

Page 9

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Ρ	La	Cr	Mg	Ba	Ti	ΒA	Na	K	W	Hq	Sc	TI S	Ga Se	Sample
	ppm	ррт	ppm	ppm	ppm	ppm	ррт	ppm	*	ppm	ppm	ppb	ppm	ppm	opm p	pm p	opm p	pm	*	ង ព្	opm	ppm	× 1	opm	۶ ټ	pm	۲ ۲	*	ppm p	pm	ppm p	pm %	ppm ppm	gm
19700N 20500E 19700N 20520E 19700N 20540E 19700N 20560E 19700N 20560E	1.3 .9 1.0	24.1 30.8 32.0	44.0 22.4 26.4 29.1 20.4	84 86 96	.6 .5 1.3	5.6 8.5 9.7	6.7 7.9 8.0	593 506 451	5.30 6.68 6.27 5.03 3.90	44.1 54.5 49.9	.2 .1 .1	11.1 3.9 3.9 13.3 2.3	.6 .6 .6	4 3 4	.3 1 .1 .2 1 .2 1 .2 1 .2 1	.9 .2 .2	.1 .1 .1	70 67 61	.02 .02 .03	087 134 061	7 8 7	13.6	.17 .28 .33	49 49 54	.003 .002 .003	1 1.4 1 1.8 1 1.9 1 1.8 <1 1.4	5 .010 .006 5 .005	.02 .03 .03	.4 .2 .3	. 07 . 08 . 08	3.0 3.8 3.6	.1<.05 .1<.05 .1<.05	8 <.5 7 .5 6 <.5	15.0 15.0 15.0
19700N 20600E 19700N 20620E 19700N 20640E 19700N 20660E RE 19700N 20660E	1.4 2.4 .7	14.3 91.3 33.8	19.2 11.0 39.1 47.2 45.4	48 144 118	.2 2.2 .3	3.8 16.0 9.0	4.7 15.5 8.4	347 2240 402	4.13 3.90 4.43 3.44 3.28	41.6	.1 .6 .2	.5 9.4 <u>11 4</u>	.4 .8 .7	5 82 11	.1 1.6 1 .2 1	.6 .4 .2	.1 .1 .2	69 57 1 52	.04 .53 .16	065 138 059	9 33 11	7.3 16.7 10.0	.14 .41 2 .35 1	43 218 116	. 002 . 002 . 003	1 1.7 1 1.3 1 2.4 1 1.7 <1 1.6	008.8 2.009 0.007	.04 .05 .04	.2 .2 .2	.05 .16 .02	1.9 7.7 3.8	.1<.05 .1<.05 .1<.05	8 <.5 6 1.0	7.5 15.0 7.5
19700N 20680E 19700N 20700E 19700N 20720E 19700N 20740E 19700N 20760E	1.0 .4 1.1	32.1 16.2 25.5	30.4 28.8 19.2 16.9 13.6	87 44 66	.4 .1 .5	7.7 5.2 5.4	8.1 7.4 6.3	689 236 322	4.54 4.77 5.30 4.55 5.40	53.8	.2 .1 .1	5.9 1.3	.5 .3 .5	6 4 5	2 1. 1 2. 1 1.	.1 .5 .0	.1 .2 .2	60 63 64	.04 .03 .04	.084 .050 .086	8 10 8	11.4 10.4 9.6	.31 .26 .16	50 52 50	007 001 003	<1 2.0 1 1.8 2 1.8 1 1.3 <1 2.5	5.006 .006 .006	.03 .05 .03	.2 .1 .2	.05 .04 .06	3.4 2.4 2.7	.1<.05 .1<.05 .1<.05	7 <.5 8 <.5 7 <.5	15.0 15.0 7.5
19700N 20780E 19700N 20800E 19700N 20820E 19700N 20840E 19700N 20840E 19700N 20860E	.3 .7 1.6	37.4 39.9 29.5	23.7	74 118 133	1.2 1.5 .3	9.4 16.2 6.4	6.7 11.0 7.2	721 1188 376	5.47 3.58 3.64	105.3 109.3 52.9 148.4 470.3	.1 .1 .1	10.5 16.2 15.3	.4 .6 .6	3 7 13	.1 1 .7 1 .5 1	.8 .9 .6	.1 .1 .2	42 35 64	.03 .06 .21	099 047 025	6 10 9	5.9 5.4 6.1	.11 .15 1 .10	38 174< 58	.001 .001 .006		005 .005 .006 .006	.04 .03 .02	.1 .1 .2	.07 .03 .02	4.9 5.4 3.3	.2<.05 .2<.05 .1<.05	3.5 3<.5 6<.5	15.0 15.0 15.0
19700N 20880E 19700N 20900E 19700N 20920E 19700N 20940E 19700N 20940E 19700N 20960E	2.1 1.0 1.4	135.8 51.0 45.8	18.2 678.4	199 96 320	2.9 .7 2.8	14.1 5.8 5.7	21.0 8.1 9.0	7369 438 456	5.67 5.37 4.74	96.6 622.9 461.8 462.0 516.7	.6 .1 .2	13.9 312.4	.3 5. 5.	68 18 34	5.92 .41 1.36	2.8 7 5.1	.4 .1 .4	23 1 64 56	.55 .33 .78	. 183 . 034 . 037	15 8 10	9.1 7.0	.14 .14 .14	150 46 71	.008 .004 .004		5 .007 .006 .006	.03 .03 .03	.4 .3 .3	.15 .04 .05	6.3 3.4 3.4	.1<.05	3 2.0 6 <.5 6 <.5	7.5 7.5 7.5
19700N 20980E 19700N 21000E 19700N 21020E 19700N 21040E 19700N 21060E	1.6 2.3 2.0	25.5 81.4 34.9	35.4 105.0 29.2	86 360 83	.4 6.4 .5	4.7 16.2 4.9	5.6 16.8 5.5	398 2708 339	4.76 4.80 5.52	256.7 96.6 579.9 142.4 1721.8	.1 1.1 (.1	79.7 125.0 32.1	.3 .9 .5	5 65 6	.21 4.62 .21	.3 2.2 .5	.4 .4 .2	73 36 1 78	.04 .59 .05	.045 .192 .030	7 19 8	7.2 17.4 5.5	.08 .35 .07	31 89 35	.014 .006 .003	1 2.2	2 .006) .011 3 .005	.03 .05 .02	.4 .5 .5	.05 .31 1 .02	2.3 11.1 3.4	.1<.05 .1<.05 .1<.05	8 <.5 4 2.1 8 <.5	7.5 7.5 7.5
19700N 21080E 19700N 21100E 19700N 21120E 19700N 21140E STANDARD DS5	.3 .8 1.0	18.0 38.4 57.9	64.9 11.4 65.7 39.1 25.3	29 116 104	1.6 1.0 2.8	2.8 12.8 11.2	2.1 11.1 11.7	615 958 560	.48		.2 .40 .8	3.5 151.3 24.9	.2 5.5 .3	158 58 86	.6 .4 1 .9 1	.5 .7 .5	.1 .1 .1	34 45 44]	.08 .99 .68	.074 .071 .109	6 9 13	3.7 12.8 13.5	.17 .52 .35	59 78 80	.005 .012 .011	1 1.8	5 .012 2 .007 9 .008	.02 .04 .03	.1 .3 .3	.15 .08 .15	2.0 < 5.4 4.5	11. 11. 1<.05. 1<.05.	. 1.9 5.7	1.0 15.0 7.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data______FA

Page 10

									_																								nura,	ANALTICAL
SAMPLE#	Мо	Cu	Pb	Zn	Aa	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ba	Ti	B A1	Na	ĸ	W	ła	Sc 1	2 17	Ga Se	Sample
	DDM	DDm				DDM		DDM	8	ppm		ppb							*		ppm	DDM			хр					•	aga mac			gm
		PP	PP	FF	F F		F.F	PP		PP	PP		PP	PP	PP		1	-Pin							~ P		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ }	in h		շես ել		hhu hhu	giii
19700N 21160E 19700N 21180E 19700N 21200E 19700N 21220E 19700N 21220E 19700N 21240E	2.0 1.5 .9	39.4 34.6 10.3	98.9	184 78 33	1.8 .4 .3	9.1 6.9 1.9	23.3 8.1 2.3	1258 617 113	4.94 5.20 1.84	115.3 137.0 112.9 30.8 153.0	.2 .1 .2	98.2 28.7 19.4	.4 .3 .3	32 6 5	.6 .2 .1	2.0 2.8 .5	.4 .2 .1	62 71 42	.53 .03 .06	.088 .068 .047	7 6 6	16.1 11.7 9.5 4.0 11.2	.32 .20 .06	107 . 43 . 27 .	004 010 003	1 3.27 <1 1.83 2 1.42 1 1.09 2 1.64	.008 .006 .006	.05 .04 .03	.9 .0 .6 .0 .3 .0)4 4)3 3)4]	4.3 . 3.7 . 1.5 .	.1<.05 .1<.05 .1<.05	8 <.5 8 .5 6 <.5	7.5 7.5 7.5 7.5 15.0
19700N 21260E 19700N 21280E 19700N 21300E 19700N 21320E 19700N 21340E	1.1 2.2 2.6	43.8 88.6 21.9	43.7	27 385 56	1.1 .8 .8	3.6 9.2 7.6	3.0 11.1 8.8	109 651 240	1.03 5.52 2.21	93.3 18.1 235.7 41.0 67.4	$\overset{.1}{\underset{.1}{}}$	10.4 221.2 40.9	.1 >.5 .4	124 26 11	1.0 .6 .2	.9 2.9 1 1.1	.1 1.4 .1	28 2 50 73	2.82 .04 .21	.040 .035 .042	6 6 11	5.1 5.8	.13 .07 .10	67 46 37	009 005 002	1 1.75 2 .67 3 .83 2 .72 1 2.29	.010 .005 .007	.03 .03 .04	.2 .0 .6 .0 .3 .0)7 1)3 4)6 4	L.9 . 4.0 . 4.2 .	.1<.05 .1<.05 .1<.05	31.5 5.8 6<.5	15.0 7.5 7.5 1.0 7.5
19700N 21360E 19700N 21380E 19700N 21400E 19700N 21420E 19700N 21440E	1.6 1.4 3.5	21.6 51.7 51.7	28.4 48.0 42.5 77.5 12.2	103 89 171	1.7 2.7 2.1	6.6 8.6 16.3	6.9 9.0 20.1	213 482 3091	3.15 2.96 4.37	68.4 61.9 64.3 89.9 12.9	.4 .5 .9	19.0 24.2 21.9	.3 .2 .6	54 161 91	.4 .6 1.7	.4 1.1 1.1	.2 .1 .1	53 37 2 50 1	.70 2.76 1.66	.093 .102 .114	7 12 13		.25 .29 .55	107 . 142 . 184 .	006 007 011	2 1.85 2 2.35	.011 .010 .011	.04 .04 .05	.2 .1 .7 .1 .2 .1	1 4 4 4 3 9	4.0 4.2 9.2	.1<.05 .1 .08 .1<.05	7.8 53.2	7.5
RE 19700N 21440E 19700N 21460E 19700N 21480E 19700N 21500E 19700N 21520E	2.0 1.1 1.2	30.6 29.6 20.9	12.1 35.0 51.2 29.2 3.6	137 98 50	2.2 .8 .5	10.2 7.6 8.4	8.0 8.5 7.0	363 737 417	4.51 4.18 5.63	12.9 51.9 96.6 25.1 16.7	.5 .1 .1	9.3 16.4 35.8	.1 .4	98 33 9	.5 .3 .2	.9 1.5 1.2	.1 .2 .1 :	65 1 65 114	.50 .13	.060 .056 .035	7 6 5	20.6	.45 .29 .37	155 . 63 . 53 .	018 013 033	1 1.77 1 2.20 <1 1.51 2 1.65 7 .31	.009 .008 .007	.04 .03 .03	.3 .1 .3 .0 .2 .0	10 4 03 2 06 3	4.5. 2.5. 3.5.	.1<.05 .1<.05	8 1.6 7 <.5 9 <.5	7.5 7.5 15.0 7.5 1.0
19700N 21540E 19700N 21560E 19700N 21580E 19700N 21600E 19700N 21620E	1.0 .9 1.1	14.5 23.6	17.1	30 25 42	.6 .4 .5	4.4 4.5 5.6	4.0 3.5 5.2 5.9 3.3	138 457 477	3.91 3.02 5.86	43.5 27.2 20.0 36.2 23.7	.3 .1 .2	6.0 <.5	.3 .2 .5	6 7 4	.2 .1 .1	.7 .6 .9	.1 .1 .1	66 79 91	.08 .10 .04	.035	5 5 5	5.9 12.7 8.5 11.8 3.3	.17 .14 .22	40 . 30 . 36 .	017 035 033	5 .75 1 1.98 3 1.00 2 1.74 2 .80	.006 .008 .005	.02 .03 .02	.3 .0 .2 .0 .3 .0)8 3)3 2)7 3	3.4 . 2.1 . 3.3 .	.1<.05 .1<.05 .1<.05	8 <.5 9 .6	1.0 7.5 7.5 15.0 7.5
19700N 21640E 19700N 21660E 19700N 21680E 19700N 21700E 19700N 21720E	3.8 5.9 1.2	85.6 17.4 28.5	17.7 15.9 10.1 13.2 20.3	33 14 57	2.1 1.2 .2	8.1 4.0 7.6	5.5 6.4 7.7	2883 2758 444	.88 .85 5.71	53.1 27.8 8.0 42.3 29.5	1.3 1.2 .1	7.9 1.7 2.2	.2 .1 .5	317 215 16	.9 1.2 .1	1.2 .9 1.2	.1 .1 .1	14 3 10 4 79	3.80 4.28 .03	.099 .092	20 7 5	13.6 6.6 4.6 9.5 10.7	.17 .11 .17	168 128 34	020 005 014	2 2.14 3 .99 5 .58 2 1.36 1 1.92	.016 .014 .006	.02 .02 .03	.1 .2 .1 .1 .3 .0	22 2 11 1 04 3	2.7 1.2 3.5	.1 .09	8 <.5	7.5 1.0 1.0 15.0 15.0
19700N 21740E 19700N 21760E 19700N 21780E 19700N 21800E STANDARD DS5	1.5 1.9 1.2	21.2 17.6 13.5	21.9 8.7 17.6 4.5 25.4	92 89 30	.5 .5 .3	7.7 3.4	8.4 7.5 3.8	330 360 112	3.70 3.19 1.46	23.7 21.5 17.6 25.7 17.9	.3 .1 .1	.5 <u>2.8</u> 218.1	.3 .3).4	20 7 8	.2 .1 .1	.4 .4 1.4	.1 .1 .1	57 52 39	.28 .07 .07	.048 .033 .024	6 7 8		.55 .42 .05	104 53 31	009 009 002	1 1.54 1 2.05 1 1.81 2 .69 17 1.99	.008 .007 .007	.02 .03 .03	.1 .0 .3 .0 .1 .0)5 3)3 2)1 2	3.5 <. 2.7 . 2.2 .	.1<.05 .1<.05 .1<.05	7.5 9<.5	15.0 15.0 7.5 7.5 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

Page 11

																																ACH	ANALYTICAL	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm p			Ni ppm			Fe %			Au ppb							Ca %	PL Xpp			Mg Ba % ppm		BA ppm							Ga Se ppm ppm	Sample gm	
19700N 22200E 19700N 22220E 19700N 22240E 19700N 22260E 19700N 22280E	.5 .4 3.3	28.6 27.2 33.3	26.2 1 5.0 4.0 151.5 1 7.4	29 30 40	.9 .6 .7	3.0 3.0 1.8	1.0 1.1 47.1	213 44 9777	.27 .51 4.84	4.2 34.1	.3 .2 .4	1.4 2.4 5.6	.1 .1 .1	135 122 51 2	.6 .6 2.8	.8 .7 .9	.1 .1 .2	13 63 551	.07. .48. .23.	106 3 043 104 3	12 6 10 1	2.9 3.5 3.8	.22 92 .09 91 .16 86 .32 184 .19 167	.003 .015 .009	6 .5 2 .3 <1 2.6	5.004 3.005 3.008	.03 .02 .05	.1.> .1. .2.	18 1 09 1 08 2	.0 <.1 .0 <.1 .2 .1	.18 .15 .06	3 1.1 <1 1.1 1 .9 8 .6 2 1.2	7.5 7.5 7.5 7.5 7.5 7.5	
19700N 22300E 19700N 22320E 19700N 22340E 19700N 22360E 19700N 22380E	.6 1.7 .5	21.0 67.3 17.8	11.3 116.8 1 26.1	37 11 50	1.2 2.8 1.4	3.6 9.6 2.3	3.0 16.3 2.5	56 5983 590	1.31 2.64 .50	33.9 74.3 7.4	.6 1.4 .4	9.8 7.1 2.3	.1 .2 .1	61 95 2 111	.4 2.71 .6	.7 .1 .7	.1 .1 .1	19 1 31 2 3 3	.67. .69.	057 126 1 095	6 17 1 7	4.5 1.4 3.4	.26 223 .12 119	.010 .008 .005	<1 .7 2 1.7 5 .5	3.005 5.007 3.008	.03 .04 .02	.1 . .2 . .1 .	10 1 17 3 15	.5 <.1 .5 .2 .9 <.1	.09 .09 .11	1 1.5 2 1.2 5 1.7 1 .9 7 <.5	1.0 7.5 7.5 1.0 7.5	
19700N 22400E 19700N 22420E 19700N 22440E 19700N 22440E 19700N 22460E 19700N 22480E	.9 .9 1.1	185.5 48.1 68.6	15.8 2.5 13.8 1	56 23 13	3.2 1.0 2.0 :	9.0 4.5 12.4	4.0 1.0 11.9	187 226 1068	2.13 .28 3.02	64.7 7.7 50.1	2.2 .5 .7	7.6 2.6 4.8	.2 .1 .3	161 1 209 94 1	1.61 .92 1.11	6 2.1 < 7	.1 .1 .1	193 15 392	.67 . .16 . .14 .	090 2 091 1 092 1	27 13 15 1	9.5 2.7 3.1	.18 112 .21 141 .20 117 .51 137 .18 139	.009 .004 .012	<1 1.3 6 .5 1 1.6	3.006 5.007 3.007	.02 .02 .05	.1 . .1 . .1 .	21 5 15 1 16 5	.4 .1 .4 .1 .4 .1	.10 .15 <.05	2 .6 3 4.2 1 1.7 5 1.5 3 1.0	7.5 7.5 1.0 7.5 1.0	
19700N 22500E 19700N 22520E 19700N 22540E 19700N 22540E 19700N 22560E 19700N 22580E	.4 1.5 .3	24.1 74.8 26.8	.9 399.5 4 17.3	11 13 1 72	.3 4.6 : 1.1	2.7 12.4 3.1	.1 12.0 .8	28 2180 81	.10 2.60 .20	1.6 237.8 7.9	.1 1.6 .2	<.5 23.4 1.7	<.1 .3 .1	136 101 4 128 1	.5 1 4.8 1 1.4 1	2 < 3 6 <	.1 .1 .1	13 302 <13	.73 . .54 . .62 .	034 173 3 047	3 33 1 6	1.9 2.5 2.4	.13 106 .13 83 .35 197 .13 101 .14 111	.002 .004 .002	4 .1 3 2.2 3 .3	7.007 1.012 5.006	.02 .07 .02	<.1 . .1 . <.1 .	07 36 6 11 1	.4 <.1 .2 .1 .0 <.1	.11 .11 .12	<1 1.2 <1 .5 4 3.1 <1 1.1 <1 1.4	1.0 1.0 7.5 1.0 1.0	
19700N 22600E RE 19700N 22640E 19700N 22620E 19700N 22640E 19700N 22640E 19700N 22660E	1.3 .7 1.2	41.8 41.9 37.1	20.6 1 9.8 18.5 1	124 56 126	.5 1.4 .5	14.5 6.3 13.6	16.2 4.4 14.4	843 240 814	4.39 1.68 4.16	42.2 25.6 39.5	.3 .3 .3	3.0 2.6 5.8	.5 .2 .5	34 123 34	.3 1 .5 1 .2 1	.3 .1 .2	.1 .1 .1	65 20 3 64	.64 . .43 . .67 .	072 1 079 1 072 1	11 1 12 11 1	5.6 6.6 6.1	.46 187 .69 105 .29 134 .67 105 .11 97	.059 .005 .067	1 2.1 2 1.0	7 .008 5 .008 4 .011	.05 .03 .06	.3. .2. .2.	04 6 10 2 04 6	.3 <.1 .5 .1 .2 .1	<.05 .07 <.05	5 1.1 7 <.5 3 .8 6 <.5 2 .6	7.5	
19700N 22680E 19700N 22700E 19700N 22720E 19700N 22740E 19700N 22740E 19700N 22760E	.9 1.3 1.4	50.4 91.5 53.9		119 207 149	1.4 2.5 .6	9.7 15.9 15.8	11.6 18.4 13.7	1621 1053	3.08 4.07 4.63	36.7 46.2 37.2	.5 .6 .4	2.9 5.1 2.3	.6 .4 .2	67 87 3 37	.8 1 1.9 .5 1	.1 .6 .0	.1 .1 .1	44 1 58 2 78	.59. .05. .63.	090 182 078	91 131 101	2.5 6.8 9.7	.46 130 .55 226 .74 158	.012 .005 .024	1 1.5	7 .009 9 .013 9 .011	.05 .11 .08	.1 . .2 . .1 .	07 4 12 6 04 5	.1 .1· .2 .2· .0 .1·	<.05 <.05 <.05		1.0 1.0 7.5 15.0 15.0	
19700N 22780E 19700N 22800E 19700N 22820E 19700N 22840E STANDARD DS5	1.1 1.1 2.3	32.1 19.1 46.5	14.6 18.3 1 11.1 23.3 25.4 1	120 58 81	.6 .6 .8	11.1 5.8 9.3	10.2 5.9 9.9	553 352 405	6.52 4.22 7.24	30.3 16.9 67.8	.2 .1 .1	4.5 .7 4.0	.4 .2 .4	8 6 3	.4 1 .4 .1 3	L.O .7 3.4	.1 .1 .2	84 83 71	.10 . .07 . .03 .	084 100 120	6 1 7 6 1	8.6 9.9 0.3	.46 71 .19 49 .20 50	.037 .014 .004	1 1.6	3 .011 5 .007 4 .005	.05 .05 .07	.2. .2. .3.	07 4 05 2 07 3	.0 .1 .6 .1 .6 .1	<.05 <.05 <.05	9 <.5 8 .5 9 <.5 7 .5 7 4.8	15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Page 12

																_																ACHE AN	
SAMPLE#	Мо		Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd St) B	i V	Ca	Р	La	Cr	Mg	Ba	Ti	B A1	Na	к	W	Hq Sc	TI	S	Ga Se S	Sample
	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	*	ppm	ppm	ppb_p	pm p	pm p	opm ppr	n ppr	n ppm	*	8	ppm	ppm	8	opm	% pp	xm %	*	* 1	ppm p	pm ppm	ppm		pm ppm	gm
19700N 22860E 19700N 22880E 19700N 22900E 19700N 22920E 19700N 22940E	1.4 1.1 1.1	37.3 38.7 62.0 64.7 43.4	69.0	107 177 224	.4 1.8 2.7	9.4 17.1 16.9	8.7 16.0 18.7	701 610 972	6.79 4.51 4.78	57.6 47.6 67.2	.1 .3 .3	1.5 10.0 11.1 26.5 12.0	.4 .8 .8	4 29 44 1	.2 3.0 .8 2.9 .2 2.9) .: 5 .: 5 .:	166 48 154	.04 .56 .86	.084 .091 .110	5 10 12	15.6	.28 .54 .62	51 .0 108 .0 122 .0)13)04)08	2 .90 2 1.48 1 1.67 2 1.98 1 1.88	.005 .007 .012	.03 .05 .07	.4. .3.	06 3.8 05 8.7 08 8.5	.1 < .1 <	<.05 <.05 <.05	4 <.5 6 <.5 5 .5 6 .9 5 .5	15.0 15.0 15.0 7.5 15.0
19700N 22960E 19700N 22980E 19700N 23000E 19600N 20500E 19600N 20520E	$1.1 \\ 1.3 \\ 1.1$	43.3 43.7 56.8 53.3 36.8	41.8 29.6 49.4 30.2 21.3	143 186 113	.6 .6 .2	12.3 23.3 11.7	15.0 23.7 11.4	529 1723 382	4.71 5.02 4.49	44.7 49.8 55.8	.3 .2 .1	20.2 9.9 14.8 1 9.3 2.5	.9 .0 .8	18 32 1 6	2 1.2 .0 2.3 .1 1.7	2 .1	172 59 53	.24 .56 .05	.058 .082 .079	8 10 11	15.9 15.5 11.2	.54 .65 .34	111 .(95 .(77 .()27)39)02	1 2.05 1 2.19 2 1.71 1 1.73 1 1.53	.006	.04 .06 .05	.3.	03 6.7 05 8.3 03 4.6	.1 <	<.05 <.05 <.05		15.0 15.0 15.0 15.0 7.5
19600N 20540E 19600N 20560E 19600N 20580E 19600N 20600E 19600N 20620E	1.0 1.1 .5	14.7 43.4 56.6 25.1 29.3	7.8 16.8 18.7 10.7 16.7	32 102 93 37 65	.6 .3 .6	13.1 11.7 2.7	11.0 12.7 3.0	739 603 376	3.83 3.98 4.12	20.4 25.9	.2 .2 .1	1.6 3.4 2.2 <.5 2.6	.61 .6 .3	12 67 6	.3 .9 .3 .7 .1 .2		1 40 1 34 2 54	.69 .46 .06	.085 .073 .130	9 10 9	10.0 7.4 7.5	.33 1 .16 1 .10	145 .0 19<.0 50 .0)01 <)01 <)01	1 1.44	.010 .007 .007	.06 .04 .03	.3 . .6 . .1 .	06 6.9 03 7.1 08 2.5	.1 < <.1 < .1 <	<.05 <.05 <.05		15.0 15.0 15.0 1.0 15.0
19600N 20640E 19600N 20660E RE 19600N 20660E 19600N 20680E 19600N 20700E	$1.3 \\ 1.5 \\ 1.1$	29.5 47.9 47.5 41.1 25.3	13.9 23.5 23.7 17.3 54.8	95	.1 .1 .2	10.4 10.0 8.8	9.3 9.6 7.5	502 497 417	6.06 6.16 5.03	18.4	.1 .2 .2 .1 .1	.8	.6 .6	7 7 5	.1 .7	.1 	1 109 1 115 1 66	.03 .04 .04	.086 .084 .178	9 9 10	17.8 18.8	.32 .33 .30	81 .0 84 .0 46 .0)02 <)02 <)02 <	1 1.52 1 1.78 1 1.72 1 1.56 2 1.34	.006 .006 .007	.04 .05 .05	.2 . .2 . .1 .	06 4.3 06 4.6 05 4.1	.1 < .1 < .1 <	<.05 <.05 <.05	7 <.5 8 <.5 8 <.5 6 <.5 7 <.5	15.0 7.5 7.5 15.0 7.5
19600N 20720E 19600N 20740E 19600N 20760E 19600N 20780E 19600N 20800E	1.4 .8 1.3	43.3 51.0 66.4 50.2 35.0	16.3 20.7 12.9 34.5 5.6	83 92 140	.2 .1 .8	8.3 11.2 16.8	5.8 5.1 15.7	161 119 7642	3.80 4.58 3.96	46.6 13.0 59.0	.1 .2 .3	<.5 9.3 2.3 30.8 1.8	.4 .6 .6	40 49 51 1	2 1.4 1 .1 .9 .1 .8 1.6	1. 1 5. 1 5. 1	1 52 1 48 1 46	.03 .02 .68	.070 .045 .123	8 11 9	7.4 8.6 11.5	.09 .07 .38 2	74 .(77<.(256 .()02)01 <)06	1.82	.006 .006 .007	.03 .03 .06	.2 . .1 . .3 .	03 4.1 02 5.6	.1 < .1 < .2 <	<.05 <.05 <.05		15.0 15.0 15.0 15.0 7.5
19600N 20820E 19600N 20840E 19600N 20860E 19600N 20880E 19600N 20900E	1.6 1.2 3.4	105.9 73.1	106.1 45.5	318 168 151	3.5 2.3 .6	14.8 15.7 9.0	18.5 13.8 13.2	2180 1480 479	4.17 4.16 4.86	116.0 107.5 314.9	.6 .4 .2	25.7 28_6	.4 .5 .3	91 4 35 1 30 1	.2 1.6 4 .9 6 1.3	5.1 9.1 8.6	1 42 1 48 5 40	1.72 .65 .47	.152 .069 .049	13 12 4	12.5 13.3 7.2	.33 .59 .09	82 .0 88 .0 60 .0)02)11)04 <	1 1.38 1 1.97	.011 .007 .008	.04 .05 .02	.1 . .3 . .2 .	15 8.5 07 6.2 04 2.7	.1 < .1 < .1 <	<.05 <.05 <.05	7 1.5 3 1.9 6 .7 6 1.0 6 1.8	15.0 7.5 15.0 15.0 15.0
19600N 20920E 19600N 20940E 19600N 20960E 19600N 20980E STANDARD DS5	1.4 1.6 1.8	46.2 44.7 60.7 52.9 144.7	376.4 62.9 11.7 32.8 25.2	123 39 227	.6 .1 .6	7.2 7.4 9.4	7.4 10.0 8.7	440 232 473	6.96 4.05 6.18	209.0 215.5 160.7	.2	83.6 115.0 25.3 1 16.3 41.4 2	.6 .1 .4	9 2 37	.2 1.9 .1 3.4 .8 1.7	9. (9. 1.	5 72 5 45 2 72	.07 .03 .81	.043 .027 .064	7 18 7	12.0 2.3 13.6	.16 .03 .35	71 .0 19 .0 77 .0)06 <)05)10		.006 .003 .006	.02 1 .03 .03	. L.O .3. .3.	03 4.1 01 2.6 04 4.8	.1 < .1 < .1 <	<.05 <.05 <.05	6 .6 8 <.5 6 .5 8 .6 6 4.9	15.0 15.0 7.5 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/_ FA

Page 13

ACME ANALYTICAL																																	ACME ANA	LTIICAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb E	3i	٧	Ca	Р	La	Cr	Mq	Ba	Ti	B A1	Na	к	W Ha	Sc	TI	S Ga	Se S	ample
	DDM	ppm	ppm	DDW	ppm	DDM	DDM	DDW	*	ppm	ppm	ppb	ppm	pom r	oom p	Dm DI	om D	Dm	%	8 1	DDM	ppm	*		% p				nda mac					qm
	••						••					••						•		•	•	••							- <u>r rr</u>		FT			
19600N 21000E	1.6	40.1	35.7	83	.2	5.8	5.7	215	5.51	113.7	.2	15.3	.3	19	.21	.8	.2	76.	. 38	.037	6	9.1	.13	62.	012	<1 1.05	.006	.03	.4 .04	3.5	.1<.0	5 6	<.5	15.0
19600N 21020E	1.7	42.9	51.5	110	.3	8.8	8.1	365	7.83	117.7	.2	46.1	.7	17	.31	.7	.2	71.	.31	.025		16.3				6 1.86			.4 .04				<.5	15.0
19600N 21040E	1.4	18.5	29.5	48	.4	4.5	4.6	213	2.81	65.0		7.7										5.6				<1.84	.006	.03	.2 .04	2.0	<.1<.0	5 7	<.5	7.5
19600N 21060E			150.6							520.3	.6	69.7	.5	49 :	l.6 1	.9	.3	48.	.97	.077	10	14.7	.42	113 .	005	1 1.92	.007	.04	.4 .13	9.0	.1.0	07 5	1.6	15.0
19600N 21080E	.9	74.9	99.5	177	3.6	16.4	16.9	1300	4.04	230.1	.5	54.7	.4	50 0	1.91	.3	.2	46 1.	. 05	. 118	12	13.2	.41	121 .	005	<1 1.98	.008	. 04	.3.15	7.6	.1 .0	95	1.5	7.5
19600N 21100E	1.5	28.4	70.0	159	1.1	4.7	7.4	429	3.34	332.3			.1	31	.61	.2	.4	63 .	. 57	.046	6	5.9	.12	55.	004	<1 .98	.009	.03	.4 .03	1.8	.1<.0)5 9	<.5	7.5
19600N 21120E	.9	55.5	59.8	326	1.0	16.0	15.5	850	4.29	159.6	.30	155 8	.7	34 3	1.2 1	.8	.5	52 .	.61	.084	10	13.7	.63	59.	023	<1 1.74	.008	.05	.3.05	7.5	<.1<.0	5 5	.6	15.0
19600N 21140E	1.0	71.4	206.4	276	2.5	9.6	6.9	415	4.48	243.5	.50	310 P	.4	49 :	1.21	.3	.4	40 1.	. 06	.071	10	9.3	.24	51.	003	<1 1.63	.007	.04	.5.12	5.1	.1 .0	8 5	1.8	7.5
19600N 21160E	1.2	73.6	280.1	174	12.1	17.5	20.8	1825	5.09	97.3	1.5	69.3	1.1	39 2	2.6 1	.7	.1	43.	. 69	.209	32	17.8	.25	115 .	005	<1 3.67	.011	.05	.5.50	15.3	.1.0	8 4	2.7	15.0
19600N 21180E	.9	45.8	51.3	150	1.1	15.4	14.2	738	4.70	97.1	.2	27.6	.7	20	.51	.7	.1	51 .	.33	.038	8	13.3	.46	105 .	006	7 1.83	.007	.04	.5.04	5.2	.1<.0	5 5	.6	7.5
19600N 21200E	1.2	30.0	37.8	82	.4	6.1	7.1	564	3.44	78.3	.1	10.0	.1	5	.11	.6	.1	57 .	.03	.065	6	7.2	.17	39.	008	<1 1.30	.007	.04	.5 .03	2.1	.1<.0	56	<.5	7.5
19600N 21220E	1.1	45.8	54.4	122	.9	10.3	10.5					12.1									7	14.0	.38	70.	011	<1 1.88	.006	.04	.5.04	4.6	.1<.0)57	.5	7.5
RE 19600N 21220E	1.2	48.7	54.0	126	.9	11.1	10.9	531	5.59	103.2	.2	15.2	.5	10	.4 2	.4	.1	62	. 11	.046	6	13.9	.40	71.	009	<1 1.92	.006	.04	.7.04	4.7	.1<.0)57	<.5	7.5
19600N 21240E	1.1	48.0	48.6	164	1.1	15.8	13.7	811	4.61	97.9	.3	21.9	.7	20	.51	.8	.1	53	. 25	.057	10	13.9	.59	96.	011	<1 2.06	.007	.05	.5.05	6.4	.1<.0)56	.6	15.0
19600N 21260E	1.1	47.7	184.4	107	.7	10.1	9.8	488	6.20	103.9	.3	26.3	.3	8	.3 2	.8	.1	62	.08	.060	7	14.1	.40	51.	012	<1 1.97	.007	.04	.6.05	4.0	.1<.0)5 7	.6	15.0
			10/11	10,	••	2012	5.0							-							•													
19600N 21280E	1.4	66.5	49.0	158	.8	16.0	18.2	1527	4.08	66.2	.6	38.0	.5	53	.71	.8	.1	52	.99	.087	10	14.6	.56	103 .	024	1 2.13	.009	.05	.5.08	8.7	.1<.0)5 5	1.7	15.0
19600N 21300E	1.1	29.4	40.0	91	.4	7.5	7.6	370	5.34	67.8	.2	22.5	.7	5	.21	.4	.1	68	.04	.050	6.	11.8	.28	59.	007	7 1.99	.006	.04	.5.04	3.8	.1<.0)57	<.5	15.0
19600N 21320E			43.0				6.2					32.7									7	7.1	.19	72 .	006	<1 1.45	.008	.04	.4 .03	2.9	.1<.0)57	<.5	7.5
19600N 21340E			43.4				10.9					39.3									9	15.4	.56	126 .	017	<1 2.10	.008	.05	.3.04	4.7	.1<.0)5 7	.6	15.0
19600N 21360E		69.7										50.0										15.2				2 2.75			.1 .27				3.7	7.5
19600N 21380E	2.0	46.7	62.8	239	1.1	12.4	13.7	711	4.62	164.9	.9	24.4	.5	60	.91	4	.1	50	.95	.070	13	15.3	.40	127 .	005	<1 2.00	.009	.05	.3.08	7.0	.1<.0)5 5	1.5	15.0
19600N 21400E			46.7				6.3		3.59	63.2	.2	13.8	.4	10	.11	.1	.5	78	.12	.032	7	8.6	.20	67.	010	4 1.47	.007	.03	.2.04	3.4	.1<.0)59	.6	7.5
19600N 21420E																					12	16.6	.59	210 .	006	<1 2.18	.011	.04	.4 .13	9.3	.1.0)75	4.6	15.0
19600N 21440E			47.5				7.1					10.4														<1 2.05							<.5	15.0
19600N 21460E			21.8				9.7																			8 2.10							<.5	15.0
150001 EI 100E	1.1	0112	2210			20.0	• • •						. –																					
19600N 21480E	20	46.9	93.7	144	1.0	12.1	30.2	2046	5.12	66.6	.5	10.3	.5	34	1.0	.9	.2	72	.45	.121	8	13.4	.36	175 .	004	<1 2.37	.012	.06	.3 .06	5.4	.1<.0)5 8	.6	7.5
19600N 21500E			30.7							33.3		6.2	.2	93	.5	.8	1	48 1	.54	056	17	10.7	.20	116	011	<1 1.78	.009	.03	.2 .11	5.1	.1<.0)5 6	2.0	15.0
19600N 21520E			14.6				6.0			21.7			.4													<1 1.98								15.0
19600N 21520E		31.4					7.1			23.8		1.3														<1 2.77								15.0
19600N 21540E			20.3				5.9					20.8						93								<1 2.07							.6	15.0
13000M ST200F	1.1	JJ.0	20.0	40	.9	5.5	5.9	010	0.00	02.9	.0	20.0	• •	U							Ū	14.0		00 .	JLU	1 2.07								10.0
19600N 21580E	1 2	5/ 0	154.7	170	٥	12 0	12 0	002	5 37	120 0	3	83.6	6	8	4 1	8	2	55	14	063	7	14.5	47	55	018	<1 2:32	.007	.03	.3 .11	4.7	.1<.1)5 6	.8	15.0
19600N 21600E					5.2	14 4	0 6	1206	6 00	697 2	1 0	53.0 53.1	1 6	01	2 6 2	1 6	1	34 2	20	334	, 43	12 5	13	125	034	13 2.85	010	01	3 62	18.8	1 3	38 7	10.2	7.5
	3.9	242.2	15.3	00	5.3	14.4 C 4	3.0 17	210	2 12	201.2	4.3	1 1	1.0	91 . 91 .	2.03	,.u	1	50 2	.23 NO	036	75	15.0	.10	58	015	<1 1.61	010.	02	2 04	2.2	1< 1)5 Å	<.5	15.0
19600N 21620E	.9	22.3	12.8	40	.5	0.4	4./	14606	3.13	20.1	. 2	1.1	1.0	74	 • • •	.0	.⊥ ?	25 1	40							<1 3.83							1.9	7.5
19600N 21640E					1.8	11.1	24.0	14090	0.50	/0.1	.9	5.9	1.0	/4	4.U J	1.5	.2	35 I	.45	.300	14	105 0	.13	122	010	16 1.96	1009	16	10 10	4.9 33	1 1 2 1	12 0)5 6	4.9	15.0
STANDARD DS5	13.0	145.0	24.9	141	.3	24.1	12.4	794	3.03	17.9	6.2	41.4	2.7	45	5.6 4	1.0 6	.0	59	./3	.089	11	102.0	.70	132 .	. 095	10 1.90	.034	.15	4.9.10	3.3	1.1~.(0 0	4.7	10.0
1																																		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

Page 14

ACME ANALYTICAL																																	_
SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Со	Mn	Fe	As	U	Au	Th Sr	Cd	Sb	Bi	٧	Ca	Ρ	La	Cr	Mg		Ti			К И			· · · ·	Ga Se	Sample	
0/11/22/	DDM					ppm	ppm	ppm	8	ppm	ppm	ppb p	opm ppm	ppm	ppm	ppm p	pm	8	% p	opm	ppm	% [opm	% р	pm 🕷	8	% ppn	n ppm	ррт р	pm %	ppm ppm	gm	
19600N 21660E	5.4	79.1	26.2	109	2.7	11.2	15.5	5343	2.61	128.4	4.3	16.1	.4 127	2.1	1.6	.1	25	3.16	.173	30	12.8	.23	198 .0 102 .0		3 1.93 3 1.68							1.0	
19600N 21680E		/2.2 15.3	14./ 9.0		2.5	0.1	3.8 29	448	1.80	24.0	0.2	6.8	.3 147 .3 14						.038				102 .0	06	1 1.80	.006	.02 .2	2.03	3.1 <	.1<.05	12 <.5		
19600N 21700E 19600N 21720E	37	45 0	125 5	135	12	11 9	11.0	861	5.18	62.5	1.0 2	20.6	.6 76	1.3	1.1	.2	42	1.21	.102	16	14.5	.27	112 .0	14	2 3.60	.009	.03 .2	2.14	6.4	.1<.05	6 1.5	15.0	
19600N 21720E	2.1	15.0	7.3	23	.2	2.6	2.8	76	1.19	13.0	.2	2.4	.1 102	.3	.5	.1	30	1.92	.038	6	3.4	.07	101 .0	03 ·	<1.75	.006	.03 .2	2.05	1.3 <	.1<.05	4.8	15.0	
19600N 21760E 19600N 21780E 19600N 21800E	7.3	110.7	23.2	114 79	5.9 : 1 0	12.2	8.6	5001 419	2.54	101.5 42.9 45.1	2.8 .4 .2	40.3 18.0 8.6	.7 125 .1 8 .2 6	2.0 .3 .2	1.5 .8 1.0	.1 .2 .1	25 2 44 61	2.82 .06 .04	. 298 . 069 . 039	47 8 7	14.3 9.0 14.1	.25 .27 .46	172 .0 56 .0 43 .0	10 03 10	3 2.70 <1 1.73 <1 2.07	.009 .006 .006	.03 <.1 .04 .2 .04 .4	L .36 2 .08 4 .07	9.1 1.6 3.1	.2 .13 .1<.05 .1<.05	4 4.8 6 <.5 7 <.5	7.5 15.0	
19600N 22200E	6	<i>A</i> 1 8	44 6	22	27	37	95	390	1 21	20.1	.7	5.7	.1 149	.9	.8	.1	10 3	3.92	.111	15	5.1	.17	82.0	07	2 1.08	.007	.02	81. 1	1./ <	.1.10	21.2		
19600N 22220E	1.6	26.4	18.2	63	.5	5.8	5.3	299	5.12	62.1	.2	7.0	.2 8	.3	1.0	.1	82	.12	.056	7	13.8	.17	111 .0	06	<1 1.42	.006	.04 .2	2.06	3.2	.1<.05	9 <.5	7.5	
19600N 22240E 19600N 22260E 19600N 22280E 19600N 22280E 19600N 22300E	.6 1.4 .6	23.4 22.2 31.2	9.9 15.7 9.7	28 72 77	.4 .7 1.4	4.2 5.1 4.8	3.4 6.1 3.1	107 428 295 476	1.69 3.43 2.04	28.6 32.1 18.1 55.2	.2 .2 .6	3.2 2.8 5.2 1 3	.4 7 .2 49 .1 110 4 30	.2 .2 1.2 3	.5 .9 .6 1 4	.1 .1 .1	27 48 25 31	.10 1.45 3.16	.071 .045 .063 .048	8 5 9 7	4.4 6.7 7.2 5.5	.08 .18 .24 .11	71 .0 55 .0 102 .0 93<.0	01 07 08 01	1 .99 <1 .97 2 1.08 <1 .79 17 1.95	.008 .006 .008 .005	.04 . .03 . .03 . .05 .	1 .05 2 .06 2 .10 3 .02	1.9 2.7 < 2.4 < 5.2	.1<.05 .1<.05 .1 .08 .1<.05	4 <.5 5 <.5 3 1.2 3 <.5	7.5	
19600N 22320E	12.1	141./	23.5	135	.5	23.9	11.4	700	9.UZ	19.0	5.7	41.0	2.9 43	5.5	0.0	0.0	55				1001												
19600N 22340E 19600N 22360E 19600N 22380E 19600N 22400E 19600N 22400E 19600N 22420E	.6	43.7 15.4 33.7 75.0 155.5	8.3 8.0 5.9	46 30 124	.5 1.4 1.8	4.1 2.5 5 1	3.9 2.9 1.8	202 158 525	1.95 1.18 .40	20.4 21.1 34.9	.2 .5 1.5	3.6 3.0 5.3	.3 132 .1 100 .1 161 .2 225 1.3 128	.4 .6 3.0	.6 5. 1.2	.1 .1 <.1	37 13 3	2.27 3.93 4.69	.049 .065 .100	6 16 18	8.0 5.1 5.7	.26 .18 .20	88 .0 98 .0 129 .0	09 08 02	3 1.52 2 .93 3 .80 7 .87 4 2.71	.007 .008 .008	.03 . .02 . .02 <.	2 .08 1 .12 1 .20	1.9 < 1.6 < 3.6	1<.05 1.08 1.1.11	5 4 .6 8 2 .9 . <1 3.7	1.0 1.0 1.0	
19600N 22440E 19600N 22460E 19600N 22480E 19600N 22500E RE 19600N 22500	1.6 1.3 .5	15.4 104.2 19.4 15.7 14.6	26.7 15.1 3.7	65 68 30	1.4 .3 .6	8.5 5.9 3.2	10.2	2825 420 57	1.94 3.35 .59	28.5 40.8 6.7	.7 .2 .2	1.9 1.8 .7	.2 53 .1 136 .1 82 .1 106 .1 100	1.9 .3 .5	1.5 1.0 .3	.1 .1 <.1	26 50 12	3.11 2.00 2.69	.037 .094 .051 .054 .051	11 5 5	8.2 10.3 5.8	.23 .31 .12	64 .0 161 .0 107 .0 91 .0 87 .0)15)19)10	2 .53 4 1.04 2 1.00 2 .43 3 .39	.009 .006 .008	.03 . .03 . .02 .	2.14 2.04 2.09	1.9 2.7 < .9 <	1<.05. 1<.05: 1<.07.	551.2 56.5	1.0 15.0 1.0	
19600N 22520E 19600N 22540E 19600N 22560E 19600N 22580E 19600N 22580E 19600N 22600E	.3 .7 .9	44.9 20.8 38.7 24.0 8.5	2.0 2.4 25.0) 18 25	.6 1.2 .6	2.6 4.5 6.0	.6 5. 7.3	58 119 458	.17 .22	2.6 7.6 83.2	.1 .2 .2	.8 2.2 13.0	.2 58 .1 122 .1 153 .2 64 <.1 100	2 1.1 3 1.5 4 .4	.7 2.1 1.0	<.1 <.1	2 2 35	3.19 4.12 1.52	.046 .072 .043	4	2.6 3.1 9.0	.11 .17 .31	172 .(82 .(88 .(119 .(76 .()03)02)03	2.46	.010 .012 .009	.01 <. .02 <. .04 .	1 .08 1 .10 2 .05	1.0 · 1.9 · 3.2	<.1 .12 <.1 .12		1.0 1.0 7.5	
19600N 22620E 19600N 22640E 19600N 22660E 19600N 22680E STANDARD DS5	3.2 3.0 1.6	2 44.7 46.6	82.1 81.6 16.4	l 146 5 166 4 105	.9 .9	12.5	22.0	8532 9590	4.29	64.4 64.1	.5 .4	3.3 1.5	.5 5	5 2.9 3 2.8	1.4 1.3 1.3	.6 .2	55 67 77	1.06 1.16 42	.114 .130 059	9 9 8	16.5 14.6 14.8	.35 .39 .45	230 . 229 . 124 .	006 004 006	<1 .42 1 2.60 <1 3.08 <1 2.07 18 1.96	.011 .012 .009	.09 . .09 . .06 .	5 .10 4 .10 3 .03	5.2 6.4 4.2	.2<.0 .2 .1 .1<.0	39<.5 59.5	7.5 7.5 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

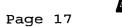
Page 15

ACHE ANALYTICAL																																		AC	.ME ANA	LYTICAL	_
SAMPLE#	Mo	Cu	Dh	Zn	٨٩	Ni	Со	Mn	Fe	As		Διι	Th	Sr	Cd	Sh	Ri	v	Ca	P	La	Cr	Μα	Ba	Ti	B	Al	Na	ĸ	W	Ha S	c T	I S	Ga Se	e Sarr	nole	
SAMPLE#	טח הממ				•		DDM		10	ppm	-	ppb r							×	% p		DDM			* r									ppm ppm		am	
	phu	- ppi	phu		hhii	phii	Phu	ppin		Phil	ppiii	pho i	phu l	shii t	Nui F		Pin P	Piii	~	~~ F		P.P.III		PP		·P···			- P	<u></u>	P PP			PP··· PP··			
19600N 22700E		52 6	01 /	102	1 2	12 E	24 0	5295	6 26	64.0	٨	4.7	Q	52 ·	1 1	o	2	an	87	096	7	19 1	٨Q	225	003	13	24	016	12	2	05.6	5 (2< 05	11 <.5	5	1.0	
										126.1	.1				.31				.29			7.5											1<.05	8 <.!		7.5	
19600N 22720E	.9	12.5	3/.0	43	.0	3.0	3.7	229	2.09	29.0	.1	2.8			.31				.44			14.2				1 2					03 4.		1<.05	7 <.	-	7.5	
19600N 22740E	.9	20.7	24.0	1 1 20	.0	10 6	9.0	090 120	3.54	52.3		7.6										13.7													-	1.0	
19600N 22760E	.9	29.7	20.7	100	.0	10.0	12.0	423	2 06			6.4										14.0														7.5	
19600N 22780E	.8	29.1	32.0	5 103	.ა	12.0	12.0	903	3.90	34.9	.2	0.4	.5	10	. 5 .		• •	55	. 17	.005	U	14.0	. 51	50	.007	-1 1			.04		00 4.	• • •	1 00	0	·		
100000	1 0	07.0		140		7 5	0 A	1055	2 00	39.4	2	1 0	E		1 4 1	1	2	46	20	068	10	05	21	199	002	1 1	72	008	05	2	07 4	6	1< 05	6 <.!	5	7.5	
19600N 22800E	1.0	27.0	32.9	140	./	7.5	8.4	1955	2.80	39.4	.3	1.9	.5	23.	1.4 1		. 2	40	.00	142	10	13.2	10	100 ·	002	21	62	000	.05	·~ ·	00 2	0	1<.05	9 <.		7.5	
19600N 22820E										35.4		.9	.4	4	.1		.21	.07	.03	.143													1<.05			5.0	
19600N 22840E	1.3	35.3	22.1	l 79	1.7	8.8	7.9	378	6.64	49.2	.1	3.2		3	.4	1.6	.1	12	.02	.091		14.7														7.5	
19600N 22860E	.9	41.2	2 47.7	/ 131	.7	13.3	9.1	399	4.65	43.7	.2	6.6		8	.5 .	1.5	.1	52	.12	.070		15.5											1<.05		-		
19600N 22880E	.8	32.9	31.3	3 105	.4	10.6	8.5	414	3.71	32.6	.1	5.0	.6	10	.4]	L.5	.1	48	.11	.060	1	12.8	.37	/0	.006	11	.55	.008	.05	.2.	05 4.	2.	1<.05	5 <.!	2	1.0	
																				÷	-								~~	~		•			.		
19600N 22900E	.6	33.1	. 37.4	121	.6	12.3	12.2	627	4.03	32.7	.2	12.4	.6	18	.3 1	1.3	.1	53		.059													1<.05				
19600N 22920E	1.3	50.2	2 84.8	3 160	.5	12.9	15.7	730	5.55	107.9	.2	29.7	.8	8	.5 :	L.8	.1	68	.06	.042	6	16.0	.35	128	.006	<1 2	.14	.008	.06	.2 .	05 5.	9 .	1<.05	7 <.!	-	1.0	
RE 19600N 22920E	1.2	48.7	87.3	L 153	.5	13.0	14.6	687	5.38	107.0	.2	25.7	.8	7	.6	l.6	.1	65	.06	.043	6	15.9	.35	130	.002	<1 2	.11	.008	.06	.2.	04 6.	1 .	1<.05	7 <.	-	1.0	
19600N 22940E	8	37 4	61 3	7 148	8	12 1	15.2	691	4.38	49.2	.2	16.1	.8	11	.4 :	1.5	.1	55	.14	.051	9	14.9	.54	101	.007	<11	.92	.007	.05	.2.	.05 5.	8.	1<.05	6 <.!		7.5	
19600N 22960E	11	43 8	74.0	9 207	2.1	11.6	19.5	998	4.59	65.0	.2	13.3	.7	28	.9	1.1	.1	62	.43	.062	9	14.4	.40	144	.002	12	.04	.012	. 08	.2.	.106.	.5 .	1<.05	6 <.!	5	1.0	
IJOOUN LEJOUL																																					
19600N 22980E	10	47 (1 44 3	7 201	13	11.8	12.4	889	4.16	63.5	.3	11.4	.6	27	.9	1.3	.1	57	.47	.079	11	14.5	.45	120									1<.05		5	1.0	
19600N 23000E	1.0	51 0	5 42 9	R 162	1 1	14 3	13.9	830	4 24	57.4	2	20.5	.8	26	.8	2.0	.1	48	.45	.087	11	13.4	.58	67	.022	<11	.69	.007	.04	.3 .	.04 7.	.3 <.	1<.05	5 <.!	5 1	15.0	
19600N 23020E	. ,	52	7 52 1	5 154		16 2	18 0	1037	4 35	60.9	2	18.5	g	28	1.1	1.9	.2	50	.49	.101	12	14.1	.66	76	.029	11	.87	.012	.05	.5	.04 7.	.7 .	1<.05	5 <.!	5 1	15.0	
19500N 20500E	1 0	41 1	2 20 1	5 115		8 1	6.8	280	3 20	68.1	1	23.6	.3	16	3	1.6	1	45	.14	.058	9	7.9	.14	70	.002	1	.89	.007	.05	.4	.05 3	.7 .	1<.05	4 <.	5	7.5	
	1.0	91.0	7 61 4	0 110 0 104	.0	0.1	0.0	461	3 77	66.2	.5	28 7	 6	ĩũ	.3	1 4	ī	44	16	049		9.6				11							1<.05			7.5	
19500N 20520E	1.1	35.	51.	2 124	.0	5.5	5.7	431	0.77	00.1	• •	20.7		15			••	••			-			•••													
19500N 20540E	1 0	22	: 20	A 11A	6	0 6	7 /	212	1 02	60.9	1	17 8	5	14	5	13	1	50	08	037	8	8.7	.21	62	.001	11	.28	.008	.05	.3	.03 3	.2.	1<.05	5 <.	5 1	15.0	
	1.0	30.0		4 114	.0	0.0	5 7.4 E 0	212	2 00	50.2	.1	10 1	6.	11	.2	1 1	1					7.5											1<.05		5 1	15.0	
19500N 20560E						12.4	12.0	1750	3.00	50.2	. 2	20 0										13.0											1<.05			15.0	
19500N 20580E		44.								50.7			. U 2	21		1.1	.2	E2	20	072		12.1											1<.05			15.0	
19500N 20600E		51.			/	13.0	1/.1	611	4.00	50.5	.1	15.5	.0	21	.5	1.5	.1	55	.20	065	8	8.9	16	37	001								1<.05		-	7.5	
19500N 20620E	1.0	41.	9 32.	0 93	.5	8.8	0.2	011	4.00	57.5	.1	10.0	.0	9	. 2	1.0	. 2	55	.00	.005	0	0.5	.10	07								• •			-		
105000 005405		40	- 40	0 101		11 0	12 E	1600	A 61	48.9	2	20 1	5	10	٨	1 1	2	50	05	054	7	12 0	33	102	002	11	93	.007	.05	.2	.04 4	.4 .	1<.05	6 <.	5	15.0	
19500N 20640E	.8	43.	5 43.	3 131	. 4	11.2	12.5	1090	4.01	40.9	.2	20.1	.5	10	.4	1.1	. 2	55	.03	054	4	11 0	200.	67	002								1<.05	-			
19500N 20660E	.9	42.	4 20.	6 8/	.2	9.4	9.3	565	4.32	36.7	.2	3.1	.5	9	.1	1.0	.1	20	.03			11.0	.30	75-	.004								1<.05			15.0	
19500N 20680E	.8	38.	920.	8 87	'.2	9.9	13.4	587	4.89	27.1	.1	3.4	.5	56	.1	.8	.1	42	.11	.084	5	8.1	.07	/5<	.001											15.0	
19500N 20700E	1.0	44.	7 10.	577	.2	2 10.8	8.7	206	3.22	30.4	.1	4.0	.4	42	.1	.8	.1	51	.0/	.055	11	7.2	.05	43	.001								1<.05				
19500N 20720E	1.1	48.	725.	0 138	2.6	5 10.4	14.5	4310	3.79	44.9	.2	11.9	.6	49	.6	1.0	.2	52	.37	.099	10	10.3	.12	2/0	.001	11	.23	.007	.05	.1	.09 6	.2.	1<.05	4.	0	7.5	
-																												<u>-</u>			0F F	•	1 - 05	4 -		15 0	
19500N 20740E	.9	49.	8 85.	2 190	.9	11.0) 15.1	917	4.40	149.8	.2	77.9	.6	38	.5	1.7	.3	42	. 59	.052	7	9.9	.34	111	.001	11	1.43	.007	.04	.4	.05 5		1<.05	4 <.		15.0	
19500N 20760E	1.0	53	3 89	2 214	1.9	12.1	17.1	795	4.36	161.3		102 D	.6	41	.6	1.8	.3	45	.63	.052	- 7	9.8	.36	111	.001	11	1.62	.007	.04	.5	.05 4	.5.	1<.05	4 <.			
19500N 20780E		82	6 58	4 107	1.9	11.3	3 9.4	1380	1.95	68.8	.2	37.0	.3	123	1.9	1.2	.1	20 2	2.58	.119	11	7.3	.29	93	.002								1 .08			1.0	
19500N 20700E		10	0 3	E 3/	ו ה	ः २१	25	100	1 86	27 8	1	3.6	. 4	-58	.4	.2	.1	30	1.13	.027	8	4.7	. 19	- 88<	:.001								1 .07		-	7.5	
STANDARD DS5	12 7	140	A 25	3 133	1 1	24	5 11 6	736	2.93	17.4	6.2	44.1	2.6	46	5.3	3.8	5.9	58	.72	.087	11	187.5	.67	132	.090	17 1	L.94	.033	.14 4	1.8	.17 3	.31.	0<.05	64.	8	15.0	
	16.1	140.	. 20.	0 100																									-								

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA


Data AFA

Page 16

	ACME ANALYTICAL																																ALAL	ANALTIILAL	
	SAMPLE#	Mo	Cu	Pb	7n	Aa	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Са	Р	La	Cr	Mg	Ba	Ti	B A1	Na	к	W Hg	Sc	T] 9	Ga Se S	Sample	
	0.11.12/	ppm	ppm				ppm			8	DDM		ppb							*		DDM	DDM			× DD		8					K DDM DDM	am	
	• • • • • • •		PP	P.P	PP 1		FF					FF	PP	F F ···	FF 1							- -	- F F ···	- 1	F					F F.F.		FF	- FL FE		
	19500N 20820E	5	43.3	82	31	15	52	22	121	60	19.4	2	44	2	160	1.5	5	1	7 :	3 50	056	10	3.4	22	81 0	03	4 46	010	02	1 08	21	<.1 .18	3 1 .6	7.5	
	19500N 20840E		18.5	4.8							11.9												5.6				3.59			.1 .03		.1 .12		7.5	
	19500N 20860E										219.8																1 2.11					.2 .16		1.0	
	19500N 20880E										112.8																1 1.30					.1 .06		7.5	
	19500N 20900E																																7 <.5	7.5	
	19300M 20900E	1.4	41.7	55.7	152	.0	1.2	9.9	501	5.00	100.1	. 2	17.5	• 2	40	. ,	. 5	. 2	77	.00	.000	'	5.0	.20	02 .0	07 I	0 1.00	.007	.04	.2.00	0.0	.1 .0/	7 4.5	7.5	
	19500N 20920E	2 1	64 1	02.2	247	1 2	92	0 0	296	6 39	A72 0	2	60 1	6	A7 ·	1 0	1 2	٨	72	75	056	o	12.6	22	75 N	06	2 1 94	nna	0.4	1 07	51	1< 04	5 10 .5	15.0	
		2.1	26.1	20.2	247 .	1.0	U.2.	5.5	200	0.00	228.4	.5	25 4	.0	- 17 · 0	1.0	1.0	.7	77	./ 3	024	0	£ 1	. 22	20 0	0.0	1 1 00	.005	.07	5 02	2.1	.1<.0	5 7 <.5	15.0	
	19500N 20940E																																		
	19500N 20960E										120.0																					.1<.0		7.5	
	19500N 20980E																															.1<.0		7.5	
	19500N 21000E	1.4	21.7	21.6	49	.6	4.3	4.6	267	3.30	63.7	.1	16.7	.2	7	.2	1.2	.2	80	.04	. 039	8	6.1	.08	37.0	09 <	1 1.17	.005	.03	.5.03	2.1	.1<.0	5 8 <.5	15.0	
	19500N 21020E	.9	76.5	165.2	226	5.2	12.0	10.9	2660	2.41	237.0	.6	33.1	.3	106	5.7	1.2	.1	22 2	2.86	.177	15	8.3	.33 1	.07 .0	05							7 32.0	1.0	
	19500N 21040E	1.1	88.4	133.9	125	7.6	10.0	13.8	2724	2.31	239.0	1.6	44.2	.3	140	3.0	1.4	.1	18 3	3.11	.196	17	10.3	.29 1	.17 .0	05	3 1.65	.009	.03	.2 .28	7.7	.1 .18	3 23.1	1.0	
	19500N 21060E										291.5																2 1.50	.010	.05	.6.15	5.2	.1 .12	2 4 1.2	7.5	
	19500N 21080E										200.1																2 1.64	.009	.05	.2 .12	6.0	.1 .12	2 4 1.4	7.5	
	19500N 21100E	1.0 E	22 1	0 6	25	1 7	2.0	12.0	104	20	12.2		3 6	1	146	ĝ	Ω	1	3	2 72	063	5	2 1	10	59 0							<.1 .17		1.0	
	19200M 211005	.5	33.1	9.0	25	1./	3.0	. 9	104	.20	12.2	. 2	5.5	. 1	140	.0	.0	• •	5,	5.72	.005	5	2.1	.15	55 .0	00	+ .01	.010	. 02				1 1.0	1.0	
	RE 19500N 21100E	r	30.0	0 5	24	16	2 6	7	02	24	10.7	2	2 2	1	127	٥	7	1	3.	2 65	060	٨	27	18	54.0	03	3 3 0	000	02 <	: 1 00	111	< 1 2	1 1 1.1	1.0	
		.5	30.0	0.0	24	1.0 C E	3.0	10 2	2402	.24	133.7	. 2	20 1	.1	144	12	· / 1 1 -	- 1	5.	2 20	.000	11										<.1 .18		1.0	
	19500N 21120E	.0	40.0	23.3	35	0.5	0.2	10.2	3492	1.11	102.0	.5	10.4	.1	144	1.5	1.1 ° 1 E	·.1 1	- CO 1	3.30 AE	.033	10	4.5	.1/	00 0	00						.1<.0		7.5	
	19500N 21140E	1.3	35.8	30.7	151	.4	9.8	11.1	709	4.14	103.0	.2	13.0	.3	20	.4	1.5	.1	70	.40	.000	10	12.1	.32	09.0	00						.1<.0		15.0	
	19500N 21160E										101.2																							7.5	
	19500N 21180E	.9	24.5	43.5	87	.3	6.3	6.3	295	3.10	69.6	.1	11.8	.4	13	.2	1.0	· 1	51	.17	.045	8	8.3	.25	/6 .0	103 <	1 1.50	.007	.05	.3 .04	2 3.2	.1<.0	5 0 ~.5	1.5	
						_								_	_	-		-				~	~ ~	••				007				1 . 0		10.0	
	19500N 21200E	.8	24.3	30.1	59	.3	5.4	4.7	200	3.70			22.4										9.2									.1<.0		15.0	
	19500N 21220E										103.8	.4	22.9	.2	45	1.0	1.1	.2	44	.66	.157		11.0									.1<.0		7.5	
	19500N 21240E	1.1	24.0	24.3	40	2.0	4.2	3.5	129	2.14			14.1	.2	- 7	.4	.6	.1	40	.04	.080											.1<.0		7.5	
	19500N 21260E	1.6	25.8	20.8	59	.4	5.9	9.2	1177	3.29	37.9	.2	4.8			.4	.9	.1	64	. 49	.060	8										.1<.0		7.5	
	19500N 21280E	1.5	25.5	20.0	57	.4	5.3	8.7	1155	3.20	36.6	.2	5.9	.2	28	.4	.9	.1	63	. 49	.062	8	8.6	.25	68.0)05	1 1.59	.008	.05	.2 .0	5 3.2	.1<.0	57<.5	7.5	
	19500N 21300E	1.2	20.2	18.0	56	.3	5.5	5.1	199	2.70	29.6	.1	2.9	.3																		.1<.0		7.5	
	19500N 21320E	2.5	12.6	12.5	53	.2	6.1	8.0	555	6.28	67.5	.2	2.9	.8	4	.1	.7	.1	109	.02	.039	7	12.5	.15	26.0)01 <	1 1.19	.008	.03	.2 .0	3 4.8	.1<.0	5 6 < .5	7.5	
	19500N 21340E			50.1									15.3							.03	.071	5	13.5	.24	40.0)09	1 1.71	.006	.04	.5.0	2.6	.1<.0	56.7	7.5	
	19500N 21360E	2 0	04.4	164 7	200	0.3	10 1	16.8	1020	4 70	164.3	1 1	75 5	1 0	37	24	14	2	39	51	240	19	16.8	34 1	29 0	09	1 3.17	.010	.07	.4 .3	9.2	.1.0	9 5 1.7	7.5	
		2.5	24.4 25 A	104.7	233	5.5	5.4	6.2	216	5.94	115.9	1.1	61 6	1.0	6	2	1 8	.5	77	04	064	7	9.6	14	48 0	111						.1<.0		7.5	
1	19500N 21380E	1.4	35.4	102.7	90	.0	5.0	0.2	910	5.04	110.9	.2	01.0	.4	U		1.0	. 2	<i>''</i>	. 04	.004	'	5.0	. 14	-10.0		- 1.51								
	19500N 21400E	1 2	26.0	83.7	120	٥	6.0	67	260	3 32	87 3	21	1202	٨	28	5	1 1	2	54	30	082	9	9.4	.26	107 0)03 <	1 2.11	.007	.04	.5.0	5 3.1	.1<.0	57.5	15.0	
		1.3	16 7	20.3	163	. J C	5.2	1 0.7	140	2 01	51 2		11 1	.1	22	.5	7.	1	54	45	026	7	87	21	72 0	118	1 1 25	008	03	1 0	125	.1<.0	5 7 .6		
1	19500N 21420E	1./	10./	20.3	4/	.0	5.3	4.0	149	2.00	00.0	. 4		.1	52	. 2	1 1		02	. 7.5	040	ć	15 0	.20	26 0	171	1 1 97	005		2 0	2 2 1	.1<.0	5 9 6	15.0	
1	19500N 21440E	1.4	26.9	22.0	49	.4	1.1	5.9	242	1.11									04	.00	.049	7	10.9	10	20.0	112	1 1 50	.000	.05	۰. ۲. ۲.	121	1~ 0	5 9 .5	7.5	
1	19500N 21460E	1.3	22.9	18.2	46	.3	4.6	4.5	209	0.43	48.1	.2	2.7	.0	4	.1	1.1	.2	90	.02	.040	12	100.1	.12	JU .U	110	1 1.00	.000	.00	.0.0	1 J.1	.1<.0		15.0	
L	STANDARD DS5	13.2	145.3	25.7	140	.3	25.2	12.0	765	2.99	18.6	6.2	42.4	2.9	52	5.0	3.8	b.4	- 01	./9	.094	13	190.0	.09	143.1	102 1	0 2.10	.034	. 10 4	+.0 .1	3.5	1.2<.0	5 / 4.0	15.0	—
-																																			

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

ACHE ANALYTICAL																																	ACME ANAL	YTICAL
SAMPLE#	Мо	Cu		Zn	Ag	Ni		Mn		As			Th							Р						B A1					Tl			•
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	*	ppm	ppm	ppb	ppm p	pm	ррлі	ppm p	ppm p	pm	*	% p	pm	ppm	Хр	pm	% pp	m %	*	% p	pm ppm	ppm	ppm	% ppm	ppm	gm
19500N 21480E 19500N 21500E 19500N 21520E 19500N 21540E 19500N 21560E	1.6 1.0 2.7	24.2 21.7 7.5 30.6 31.8	23.7 1.6 33.4	49 17 88	.7 .1 .8	4.3 1.2 7.7	3.8 .3 9.8	272 3 17 205 9	3.61 .16 5.67	53.4 1.6	.2 .1 .3	23.3 <.5 75.0	.1 .1 1 .3	15 27 37	.4 .4 .7	.8 .2 1.1	.1 .1 .2	63 32 98	.18 2.12 .40	.057 .043 .071	7 1 7	7.4 3.3 11.2	.12 .03 .18	59 .0 56 .0 90 .0)09)03)08 <	1 2.06 1 1.29 5 .13 1 2.24 1 1.43	.007 .010 .008	.02 .02 < .03	.2 .05 .1 .12 .3 .06	1.7 .5 3.1	.1<.0. 1.1.> .1<.0)5 7 18 <1)5 10	<.5 .7	15.0 15.0 1.0 15.0 7.5
19500N 21580E 19500N 21600E 19500N 21620E RE 19500N 21620E 19500N 21640E	1.6 1.6 1.5	24.5 50.4 51.2	23.6 94.0 93.7	41 64 65	.8 2.3 2.2	5.5 8.2 8.0	7.2 8.8 8.9	1490 (633 8 634 8	5.62 3.10 3.34	183.6 49.5 274.1 281.0 112.3	.2 .4	2.1 278 0 58.7	.3 .4 .5	6 13 12 ·	.2 .5 .6	.9 2.0 2.1	.1 .2 .2	82 49 50	.03 .05 .04	.069 .083 .088	6 7 7	8.3 10.7 10.9	.09 .14 .14	29 .0 43 .0 45 .0)05 <)08)07 <	1 3.15 1 1.25 1 1.69 1 1.81 1 1.90	.007 .005 .005	.03 .03 .03	.3 .04 .5 .13 .5 .12	2.9 3.2 3.3	.1<.(.1<.(.1<.()58))56))555	.5 .5 1.1 1.0 .8	15.0 1.0 7.5 7.5 15.0
19500N 21660E 19500N 21680E 19500N 21700E 19500N 21720E 19500N 21720E	.4 .9 2.8	44.3 5.3 29.6 126.8 25.6	3.1 54.9 61.2	8 54 227	.4 .8 6.9	1.2 5.8 18.8	1.1 6.7 11.5	36 470 (3199 (.47 3.27 3.79	145.1 14.0 121.5 361.4 78.6	.1 .2 1.1 0	5.5 64.4	.2 .3 1.0	5 5 83	<.1 .2 1.5	.2 · 1.9 2.4	<.1 .2 .1	18 78 40	.02 .03 L.67	.015 .088 .161	10 5 57	1.5 12.1 29.7	.02 .14 .25 2	19 .0 36 .0 50 .0)03)20)07	1 1.78 1 .56 1 1.56 3 3.09 1 1.35	.004 .005 .011	.02 .02 .05	.1 .02 .3 .08 .1 .39	.5 3.1 61.7	.1<.(.1<.(.2 .1	05 4 05 7 13 3	.5 <.5 <.5 3.4 <.5	15.0 15.0
19500N 21760E 19500N 21780E 19500N 21800E 19500N 22200E 19500N 22220E	3.2 1.1	21.8	39.5 48.8	125 32 192	1.9 .6 12 9	12.0 4.0 17.7	12.4 3.7 15.9	1551 142 1534	5.10 2.49 4.09	242.5 47.9 57.5	1.4 .2	33.8 8.7 20.7	.3 .1 .6	71 10 71	.9 .1 1.3	1.5 1.6 2.3	.2 .1 .2	52 55 43	1.32 .07 1.58	.140 .044 .146	15 7 20	14.7 6.0 15.7	.34 1 .10 .53 1	.71 .0 47 .0 .26 .0)10 <)11)12	1 1.57 1 2.15 1 1.29 2 2.22 1 2.45	.009 .007 .008	.05 .03 .04	.2 .18 .3 .04 .2 .16	5.4 1.6 9.7	.1 .1 .1<.(.1 .(10 6 05 7 08 5	2.4	7.5 7.5 15.0 15.0 7.5
19500N 22240E 19500N 22260E 19500N 22280E 19500N 22300E 19500N 22320E	1.4 2.0 4.2	40.6 27.1	47.1 15.4 9.6	172 52 59	1.8 .5 1.3	14.0 6.5 11.6	18.5 6.8 10.4	9617 533 369	3.57 7.95 4.20	128.1 75.6 47.0 93.0 104.1	.5 .2 .1	2.1 5.0 1.6	.6 .7 .4	87 6 2	1.1 .1 <.1	2.9 1.0	.1 .2 .2	24 102 59	2.04 .05 .03	.167	11 6 7	9.2 14.2	.23 2 .25 .05	249 .0 32 .0 17 .0	004 065 < 004 <	<pre><1 2.30 2 2.17 <1 1.66 <1 1.06 1 1.57</pre>	.010 .006 .003	.04 .03 .03	.3 .10 .3 .00 .4 .03	5 5.4 5 3.5 3 2.4	.1 .1 .1<.(.1<.(12 3 05 10 05 6	/ .5 3 1.1) <.5 5 <.5 3 <.5	7.5 7.5 15.0 7.5 15.0
19500N 22340E 19500N 22360E 19500N 22380E 19500N 22400E 19500N 22420E	2.1 1.4 1.2	28.5	41.6 19.8 29.2	120 211 178	1.1 2.2 1.6	8.3 8.9 4.0	8.9 9.7 5.3	591 583 231	9.19 4.94 7.41	97.3 148.1 327.6 89.4 67.5	.3 .7 .3	15.0 4.7 5.6	.5 .3 .4	21 84 12	.4 .9 1.6	1.7 1.1 1.2	.3 .2 .2	111 62 95	.33 1.11 .21	.056 .089 .076	7 9 8	18.8 12.1 12.4	.35 .34 2 .13	96 .0 205 .0 73 .0	054 008 · 007	<1 2.15 1 2.05 <1 1.98 1 1.67 1 1.30	.007 .007 .007	.03 .04 .03	.4 .00 .3 .10 .2 .0	5 3.9) 3.9 7 2.9	.1<. .1 . .1 .	05 10 13 9 10 11) <.5	15.0 15.0 7.5 15.0 15.0
19500N 22440E 19500N 22460E 19500N 22480E 19500N 22500E STANDARD DS5	1.6	48.7 93.6	56.6 52.7	95 112	2.2 4.0	5.9 13.5	42.3 22.8	3285 4954 656	4.69 3.88	110.5 78.0 232.8	.4 1.4 1.4	4.4 6.4 5.3	.3 1.1 3	48 92 62	1.7 2.2 2.5	1.2 2.0 1.9	.3 .2 .2	31 39 44	1.08 2.15 1.37	.155 .184 .079	15 34 26	7.8 14.7 13.5	.12 .38 .41	127 .(190 .(111 .(004 003 014	2 2.54 <1 1.93 1 2.89 1 1.88 18 1.93	006 .006 . 011 .011 . 010 .010	.04 .05 .03	.2 .1) 2.7 3 10.5 5 6.0	.1 . .2 . .1 .	09 0 12 0 06 0	5.8	7.5 15.0 1.0 7.5 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 18

ACME ANALYTICAL	_				_							_																				A	CME ANA	ALYTICAL	_
SAMPLE#	Mo	Cu	Ph	7n	Aq	Ni	Со	Mn	Fe	As	1I	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Ma	Ba	Ti	B A1	Na	ĸ	W Ha	Sc	T1	S Ga S	ie Sar	mole	
0/11/22/	nda						ppm		8	DDM D	-							-	x		opm	ppm			% r							% ppm pp		gm	
						FF		P.P	-		F		-1 -1				F F		-																
19500N 22520E	.4	21.7	9.6	45	.3	3.5	5.2	283	2.19	89.6	.1	<.5	.1	38	.4	.7	.1	25	.88	.029	4	5.1	.17	48.	016	3.56	.005	.01	.2 .03	1.5	<.1<.	05 3 <.	5	7.5	
19500N 22540E										149.4												13.9	.51	156 .		3 2.42							8 :	15.0	
19500N 22560E										132.9 1																4 2.04							9	1.0	
19500N 22580E	1.6	39.7	21.1	119	.4	10.4	12.0	682	4.27	101.9	.2	4.7	.4	29	.2 1	4	.1	64	. 59	.042	8	13.6	.48	120 .	007	1 1.61	.006	.04	.3 .03	4.5	.1<.(05 6 <.	5 !	15.0	
19500N 22600E	1.2	46.5	37.5	145	1.7	11.9	16.3	2654	4.18	179.2	.8	8.0	.5	46 🛛	1.3 1	4	.2	45	.99	.072	15	12.1	.37	158.	003	1 1.93	.007	.05	.3 .09	7.7	.1<.(055.	7	7.5	
19500N 22620E										446.9 1																1 2.41								15.0	
19500N 22640E										86.8 1																2 1.63								1.0	
19500N 22660E										40.8												6.6				2.79								7.5	
19500N 22680E																						16.0				3 1.77								7.5	
19500N 22700E	.4	46.0	3.7	41	1.5	3.9	.4	25	.24	3.8	.2	<.5	.1 1	L37 🗄	1.3 1	1.8	.1	13	3.28	.042	7	2.8	.16	102 .	004	4.34	.011	.01 <	.1 .08	1.6	<.1 .0	09 <1 .	6	1.0	
					_		-					-									-										. .		~		
19500N 22720E		57.2					.3	27	.16	4.3	.2	<.5	.1	153	1.2 2	2.6 <	:.1	13	3.26	.053	8	2.2	.14	90.	.002	3.32	.011	.02 <	.1 .08	1.2	<.1 .	15 <1 .	9	7.5	
19500N 22740E		38.2																														16 <1 1.		1.0	
19500N 22760E		8.2				1.3	.9			15.2 <																						16 1 <.		1.0	
19500N 22780E	1.1	41.1	34.2	94	1.4	8.0	8.8	389	6.79	49.6	.3	2.7	1.2	5	.4]	1.0	.1	73	.04	.037	5	20.6	.36	67.	.007	1 3.50								15.0	
19500N 22800E	.5	9.9	3.5	23	.3	1.6	1.7	72	1.03	18.2	.1	<.5	.1	12	.1	.6	.1	41	.20	.026	5	2.8	.03	64.	.004	3.31	.007	.02	.3 .05	.9	<.1<.(05 3 <.	5	7.5	
											~ -		~								-	10.0	~~	- 0		0 1 00	005	0.2	F 00		1 - 1	ог <i>с</i> .	- .	15.0	
19500N 22820E										93.0										.034						2 1.92								7.5	
19500N 22840E										131.8																1 1.99									
RE 19500N 22780E	1.0	40.3	32.3	90	1.4	8.1	8.2	394	6.66	48.6	.3	3.5.	1.2	5	.4.	L.U	.1	/1	.03	.038	4	20.1	. 34	04.	.008	<1 3.53	.005	.02	.3 .10	5.4	5,15.0	05 7.	/ J		
19500N 22860E																				.120	4	9.2										05 10 <.		15.0	
19500N 22880E	1.0	38.7	41.3	5 97	1.1	7.3	9.2	415	4.04	91.9	.2	9.0	.2	59	.7 :	1.8	.1	53]	.15	.063	7	8.5	.23	122	.007	1 1.33	.009	.05	.6 .04	3.7	.1.0	08 6 <.	5	7.5	
19500N 22900E	0	47 6		162	0	15 2	15 0	1026	1 22	115 2	2 1	07	7	32	<u>م</u>	2 6	1	40	61	052	7	14.0	64	132	nna	<1 1.57	006	05	4 03	6 5	1< 1	05 5 <.	5	15.0	
19500N 22900E	. o . 8	47.0 52.1	57.4	150	. 7	15.0	15.5	078	4.22	113.0	21	A 1	.'7	41	.0 4	2.0	1	46	68	077	Ŕ	13.3	57	138	007	1 1.78	000	06	4 .00	6.5	1<	05 5 .		7.5	
19500N 22920E										84.9											ă	10.8	28	106	012	<1 1.10	007	03	4 .05	2.7	< 1 .0	08 4 .		7.5	
19500N 22940E										84.4																<1 1.64								15.0	
19500N 22980E										64.7																<1 2.11								15.0	
199000 229002																																			
19500N 23000E	1.0	60.5	6.86.9	162	1.6	14.9	13.4	1081	4.34	67.7	.2 1	2.6	.5	44	1.2 2	2.6	.1	42	.79	.082	8	11.3	.46	131	.004	<1 1.54	.008	.05	.4 .06	6.4	.1./	08 5.	.5 .	15.0	
19500N 23020E	.8	50.4	57.8	3 175	2.5	13.7	16.2	1262	3.97	68.5	.2 1	9.3	.6	51	.8 :	2.0	.1	46	.96	.088	8	12.8	.45	155	.004	<1 1.55	.006	.05	.4 .09	7.0	.1.(08 4 <.	.5 3	15.0	
19400N 20500E										51.9	.1 1	1.0	.8	31	.4	1.0	.1	52	.31	.064	10	12.7	.40	190	.001	<1 1.54	.006	.04	.3 .05	7.1	.1<./	05 5.	.7 .	15.0	
19400N 20520E		32.4	23.2	2 106	.2	10.8	11.6	531	3.78	34.1	.1	8.0	.5	30	.2	.9	.1	.54	.29	.065	10	10.7	.30	112	.001	<1 1.41	.006	.04	.3 .07	3.3	.1<./	05 5 <.	.5	15.0	
19400N 20520E		29.7	38 9	92	. 2	8.7	8.3	364	3.52	34.9	.1	5.7	.5	27	.2	1.0	.1	47	.28	.051	8	9.9	.25	55	.002	<1 1.24	.007	.04	.2 .02	3.3	.1<./	05 5 <.	.5	15.0	
194000 200402		2011	0015			•																													
19400N 20560E	.9	30.4	23.1	109	.2	11.5	12.3	694	3.82	30.4	.1	9.4	.5	28	.2	.9	.1	47	.32	.051	8					<1 1.45								7.5	
19400N 20580E	9	56.7	29.0) 123	.1	15.1	12.8	478	5.18	36.3	.2	3.7	.6	13	.3	1.2	.1	57	.14	.064	7	14.0	.38	78	.002	<1 1.91	.006	.04	.3 .03	4.6	.1<./	05 5 <.		15.0	
19400N 20600E	1.0	65 6	5 59 A	5 169	.2	14.2	13.4	722	4.81	98.5	.2	19.6	.7	10	.4	2.2	.2	51	. 08	.059	9	10.1	.31	78	.001	<1 1.50	.004	.03	.4 .04	÷ 5.6	.1<./	05 5 .	.6	15.0	
19400N 20620E	9	40.4	21.0) 99	- 3	9.3	8.2	319	4.25	52.0	.1	5.0	.3	27	.3	.9	.1	61	.27	.065	9	10.0	. 28	65	.003	<1 1.27	.007	.03	.5.02	2 3.5	.1<.	05 6 <.	.5	15.0	
STANDARD DS5	12.5	147 1	24	3 139	.3	25.5	11.8	790	3.02	18.9 !	5.9 4	12.0	2.4	47	5.7	3.8 !	5.9	60	.71	.093	11	190.3	.67	137	.091	16 1.96	.032	.15 4	.7 .16	5 3.3	1.0<.	05 6 5	.0	15.0	
	10.0																																		

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🖌 FA

Page 19

ACME ANALYTICAL		ACHE ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Ti	S Ga Se Sample
	no cu no c	n %ippmippmi gm
19400N 20640E 19400N 20660E 19400N 20680E 19400N 20700E 19400N 20720E	L.1 45.2 52.5 128 .6 10.1 10.2 343 4.54 93.1 .2 27.0 .5 44 .3 .8 .3 56 .06 .059 11 9.8 .14 132 .001 <1 1.40 .006 .04 .2 .03 3.7 . 0 46.5 31.6 93 .3 12.7 10.5 377 6.08 38.7 .3 8.3 .9 9 .2 .8 .1 64 .03 .034 9 17.8 .41 58 .004 <1 2.47 .005 .03 .2 .06 4.7 .3	L<.05 7 <.5 15.0 L<.05 3 .5 7.5 L<.05 6 <.5 7.5
19400N 20740E 19400N 20760E 19400N 20760E 19400N 20780E 19400N 20800E 19400N 20820E	1.1 57.1 65.1 129 .2 12.7 11.5 461 6.33 139.5 .1 17.0 .6 29 .4 1.2 .2 70 .42 .030 7 16.8 .44 111 .009 1 2.02 .007 .04 .4 .03 5.3 .9 40.7 113.6 96 .4 6.6 8.0 355 3.63 137.8 .1 49.3 .2 39 .6 1.3 .2 62 .70 .034 8 8.2 .23 81 .008 <1	1<.05 6 .5 7.5 1 .15 <1 1.1 1.0 1 .11 1 1.2 1.0
19400N 20840E 19400N 20860E 19400N 20880E RE 19400N 20880E 19400N 20900E	.9 70.3 96.9 265 2.5 11.2 11.4 606 4.36 181.8 .3 32.3 .3 49 .7 1.0 .2 42 .99 .065 10 11.1 .37 68 .005 1 1.44 .008 .05 .3 .08 5.0 .1 1.6 71.6 137.7 177 1.1 10.1 9.4 .363 5.25 528.9 .2 37.1 .6 11 .5 1.0 .4 49 .11 .049 11 8.8 .14 63 .003 <1	1<.05 6 .6 7.5 1<.05 7 <.5 7.5
19400N 20920E 19400N 20940E 19400N 20960E 19400N 20980E 19400N 21000E	1.9 119.4 78.3 236 6.6 20.0 17.8 2105 4.44 326.4 1.5 66.0 .5 62 2.4 1.4 .3 32 1.13 .215 21 12.7 .30 117 .005 1 2.48 .011 .04 .2 .33 8.3 . 1.6 54.7 97.7 195 .3 10.6 10.3 466 6.40 288.8 .2 45.8 .5 13 .4 1.2 .5 70 .12 .066 9 13.9 .32 84 .008 1 2.22 .008 .04 .4 .05 4.2 . 1.6 43.9 57.9 133 .2 9.9 11.5 960 8.66 175.1 .2 17.9 .4 9 .3 1.0 .3 61 .05 .119 7 12.7 .35 8.010 1 1.71 .007 .05 .3 .06 4.0 .05 .12 .06 .031 9 7.9 .15 <t< td=""><td>1<.05 7 .6 15.0 1<.05 7 <.5 15.0 1<.05 9 <.5 15.0</td></t<>	1<.05 7 .6 15.0 1<.05 7 <.5 15.0 1<.05 9 <.5 15.0
19400N 21020E 19400N 21040E 19400N 21060E 19400N 21080E 19400N 21100E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .15 3 3.2 1.0 1<.05 7 .6 1.0 1<.05 8 <.5 15.0
19400N 21120E 19400N 21140E 19400N 21160E 19400N 21180E 19400N 21200E	1.0 71.0 32.8 179 3.6 12.6 8.9 3039 3.48 171.6 .6 26.9 .3 60 1.4 1.1 .1 39 1.37 .185 19 14.8 .42 155 .008 1 2.23 .008 .05 .4 .18 6.1 . .9 46.9 34.4 150 2.7 9.8 8.3 2620 2.60 183.4 .6 19.0 .2 85 1.3 .8 .1 27 2.06 .195 15 11.1 .38 141 .006 2 1.81 .012 .05 .2 .19 4.8 1.1 29.8 26.8 72 .6 7.9 7.0 402 6.50 119.0 .2 5.1 .3 7 .21.0 .1 86 .04 .062 6 17.4 .31 41 .045 3 1.86 .007 .04 .2 .07 .7 1.0 31.9 38.1 128 .3 118 10.1 <	1 .09 4 .9 7.5 1<.05 9 <.5 15.0 1<.05 6 <.5 15.0
19400N 21220E 19400N 21240E 19400N 21260E 19400N 21280E STANDARD DS5	1.1 47.3 40.3 101 1.3 11.4 24.0 880 3.07 23.0 .4 10.3 .5 26 .6 .5 .1 37 .44 .104 14 12.8 .44 77 .002 <1	1<.05 6 2.2 15.0 1<.05 8 <.5 15.0 1<.05 7 .6 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

							-																										ACHE	ANALYTICAL	
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb I	Bi	٧			La		Mg			B A			K W				5 Ga Se		
	ppm	ppm	ppm	ppm p	pm	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm	ppm p	opm p	pm p	pm p	pm	%	% p	opm	ppm	% (pm	%р	pm	*	* :	% ppm	ppm	ppm	t mqc	t ppm ppm	i gm	
19400N 21300E 19400N 21320E 19400N 21340E 19400N 21340E 19400N 21360E 19400N 21380E	1.0 .7 2.9	30.5 54.9 28.8 13.1 25.2	25.3 8.8 43.9	18 4 24 1 52 2	1.7 1.8 2.5	4.9 3.4 4.1	5.5 1.9 12.5	520 410 3926	.98 .46 1.17	11.2 4.5 27.3	.8 .3 .3	10.0 7.9 4.2 14.2 93.4	.2 .1 .1	215 146 1 85 2	.9 L.1 2.7	.8 .6 .4	.1 .1 .1	83 23 141	8.94 8.53 49	.152 .118 .108	17 10 4	5.5 4.0 5.1	.17 .17 .13	95. 50. 113.	.005 .003 .004	3.7 5.5 2.5	7 .01 0 .01 3 .01	1.0 4.0 1.0	1.1 3.1 4.1	.27 .13 .16	3.0 · 1.8 · 2.1	.1 .1	8 12.4 0 <11.8	1.0 1.0 1.0	
19400N 21400E 19400N 21420E 19400N 21440E 19400N 21440E 19400N 21460E 19400N 21480E	1.3 1.2 1.3	22.2 17.2 29.1 16.2 25.0	13.6 46.6 19.2	68 217 1 50	.2 L.3 .3	5.9 9.5 3.8	5.6 7.7 3.5	275 335 157	3.38 4.30 2.42	38.4 49.1 32.8	.1 .2 .1	20.8 12.7 15.3 11.5 11.6	.5 .4 .2	45 24 24	.1 .5 .2	.5 .7 .6	.2 .2 .1	78 51 53	.54 .26 .32	.032 .069 .040	7 7 8	11.8 11.3 11.1 6.7 8.7	.30 .25 .15	80 . 93 . 72 .	.009 .006 .009	$ \begin{array}{c} 1 & 1.2 \\ 1 & 1.8 \\ 1 & .9 \end{array} $	26 .00 37 .00 94 .00	8.0 7.0 7.0	3.2 4.4 5.2	.02 .10 .04	2.8 3.4 2.0	.1<.0 .1<.0 <.1<.0 .1<.0 .1<.0	5 8 .5 5 6 .7 5 6 <.5	7.5 15.0	
RE 19400N 21480E 19400N 21500E 19400N 21520E 19400N 21520E 19400N 21540E 19400N 21560E	1.7 1.8 9.8	26.1 35.8 38.9 70.2 35.4	25.7 35.7 59.9	75 69 198 2	.5 .4 7.2 1	6.4 6.0 3.8	7.9 5.9 18.6	438 397 5874	5.88 7.72 3.19	87.6 88.5 136.1	.1 .2 2.8	14.1 24.5 31.8	.2 .2 .9	6 6 143:	2 1 2. 2 1 2. 3.5 1	0 2 4	.2 1 .1 .1	105 87 25 2	.05 .06 2.19	:149 .093 .304	5 6 23	10.1 11.9 14.4 14.0 9.1	.24 .22 .22	40 . 41 . 170 .	.012 .021 .012	2 1.9 1 1.9 2 3.9	52 .00 31 .00 54 .01	8.0 7.0 0.0	5.4 3.3 3.1	.07 .07 .32	3.1 3.1 10.5	<pre><.1<.0 .1<.0 .1<.0 .1<.0 .2 .2 .2 .0 .2 .0</pre>	58.6 58.7 234.3	5 7.5 7 15.0 8 7.5	
19400N 21580E 19400N 21600E 19400N 21620E 19400N 21620E 19400N 21640E 19400N 21660E	1.9 1.1 1.2	45.2 39.0 21.3 37.2 20.2	32.2 12.6 39.3	122 3 55 128	1.2 .9 .9 1	9.7 4.8 L0.5	8.2 3.8 10.2	445 255 996	4.37 2.06 4.06	66.6 32.8 70.4	.3 .3 3	33.6 10.1 12.8	.4 <.1 3	10 8 15	.31	7 .4 .7	.1 .1 .1	73 49 67	.09 .05 .15	.046 .070 .063	10 6 11	11.6 8.8 14.2	.28 .20 .48	88 44 103	.008 .007 .012	<1 1.9 1 1.9 1 2.3	37 .00 54 .00 27 .01	17 .0 19 .0 .1 .0	14 .2 15 .2 16 .3	2.06 2.08 3.04	3.8 1.4 3.9	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	15 / ./ 15 7 .7 15 8 .7	7.5 7.5 7.5 7.5	
19400N 21680E 19400N 21700E 19400N 21720E 19400N 21740E 19400N 21760E	1.7 3.4 4.0	54.1 41.9 54.8 34.3 35.9	11.3 27.8 385.3	120 88 197	1.7 2 2.8 1 .7	20.1 12.0 7.4	16.3 12.4 8.2	615 1053 307	4.97 3.26 3.70	85.2	.6 1.5 .4	28.3 13.1	.5 .4 5	31 93 14	.3 1.0 3	.8 .9 .8	.1 .1	56 30 1 45	.46 1.78 .15	.107 .207 .085	13 38 10	16.0 12.9 8.0	.45 .17 .12	129 148 79	.010 .012 .003	12. 22. <11.	B2 .01 97 .01 61 .00	.0 .0 .1 .0 .6 .0)5 .2)4 .1)4 .2	2 .10 2 .24 2 .08	5.4 5.7 3.8	.1 .1 .1<.0 .1 .1 .1<.0 .1<.0	1561.5 143.3 156.7	5 7.5 3 7.5 7 1.0	5)
19400N 21780E 19400N 21800E 19400N 22200E 19400N 22220E 19400N 22220E 19400N 22240E	1.7 1.2 1.1	22.1 32.5 39.8 37.2 45.3	6.9 28.2 26.7	43 107 123	.6 2.5 .9	4.7 8.3 12.4	8.5 9.2 11.4	298 2343 751	2.36 3.39 4.69	86.7	1.3 .4 .3	2.3	.1 .3 .3	112 64 30	.4 .5 .2	.6 1.1 1.5	.2 .1 .2	24 33 56	2.41 1.29 .55	.094 .166 .111	7 14 8	8.3 10.5 14.2	.13 .21 .56	97 103 73	.005 .005 .010	11. 11. <11.	12 .00 58 .00 90 .00). 8(). 8(). 6()3 .1)5 .1)3 .4	L .12 L .12 4 .06	2.2 3.3 4.2	.1<.0 <.1 .1 .1 .1 <.1<.0 .1 .1	1 51.1)5 6.7	8 1.0 1 7.5 7 7.5) 5 5
19400N 22260E 19400N 22280E 19400N 22300E 19400N 22320E STANDARD DS5	1.7 2.2 1.2	29.4 45.0 42.5 36.6 148.9	18.2 65.2 28.8	99 96 96	2.6 .9 .6	17.0 9.9 10.5	13.9 16.9 10.7	460 1539 722	5.28	117.5 86.0	5.4).5	9.8 10.5	.2 .4	10 17 7	.4 .4 2	2.9 1.1 1 1	.6 .2 1	35 74 66	.14 .24 08	.122	12 15 6	6.9 14.3 14.8	.11 .26 .44	57 84 56	.003 .014 .013	<1 1. <1 2. <1 1.	36 .01 27 .01 79 .01). 36). 80). 36)4 .4)5 .3)3 .3	4 .07 3 .09 1 .04	2.5 4.2 3.6	.1<.0 .1<.0 .1<.0 .1<.0 1.1<.0)5 10 .9)5 10 .9	8 7.5 9 15.0 5 7.5	5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_LFA

Page 21

ACME ANALYTICAL																							AUNE	ANALTIILAL
SAMPLE#	Mo Cu ppm ppm		Zn Ag ppm ppm		Co ppm	Min Fe ppn %					Cd Sb ppm ppm				La ppm		Mg Ba % ppm		BA1 ppm %	Na %	K W Hg %rppπrppm		S Ga Se % ppm ppm	Sample gm
19400N 22340E 19400N 22360E 19400N 22380E 19400N 22400E 19400N 22420E	1.5 28.3 1.3 19.7 1.3 30.1	8 26.4 16.3 34.3	86 .3 36 .3 72 .6	8.1 4.1 5.5	8.6 4.1 5.4	560 5.17 185 3.41 443 4.19	61.2 57.7 463.8	.3 29 .2 7 .2 20	.0 .3 .3 .2 .5 .5	6 4 6	.2 1.1 .1 1.0 .1 2.8	.2 .2 .2	71 .(94 .(74 .)	08 .057 03 .040 03 .047	8 6 7	13.2 6.7 6.7	.37 76 .13 38 .08 48	.022 .012 .017	1 1.90 <1 1.14 1 1.12	.007 .005 .005	.06 .4 .05 .04 .3 .06 .03 .2 .04 .03 .4 .03 .04 .3 .06	3.2 .1 1.9 .1< 2.8 .1<	.06 9 <.5 .05 9 <.5 .05 8 <.5	15.0 15.0 7.5 7.5 15.0
19400N 22440E 19400N 22460E 19400N 22480E 19400N 22500E 19400N 22520E	1.3 172.6 1.7 37.9 1.8 32.3 1.5 86.6 1.5 67.3	35.2 25.1 52.3	130 .8 115 .5 181 7.0	10.1 9.8 18.4	9.1 10.7 15.8 1	254 5.84 423 5.75 823 5.24	174.6 65.6 185.5	.333 .25 .820	.1 .5 .6 .4 .5 .6	5 20 31 5 47	.7 1.7 .3 1.7 1.7 2.1	.2 .2 .4	63 . 53 . 45 1.	32 .061 57 .054 12 .161	. 8 8 . 19	10.8 10.4 15.9	.23 147 .23 84 .43 121	.006 .007 .009	1 1.58 2 1.30 2 2.08	.007 .007 .009	.06.2.20.04.3.05.04.3.04.04.2.23.04.1.19	3.8 .1< 3.5 .1 6.9 .1	.05 7 <.5 .06 7 <.5 .08 6 1.6	7.5 15.0 7.5 7.5 7.5
19400N 22540E 19400N 22560E 19400N 22580E 19400N 22600E 19400N 22620E	1.1 17.9	9 42.6 3 15.4 2 61.6	70 .5 100 .4 424 1.0	4.4 5.4 11.9	5.7 5.9 28.5 2	350 3.18 210 4.93 863 5.98	55.0 95.3 308.6	.2 4 .2 3 .8 11	.8 .2 .6 .2	2 56 2 31 4 23	.3 1.1 .4 1.1 2.4 3.4	.1 .1 .3	62 1.4 69 .0 53 .4	40 .029 69 .036 43 .091) 6 5 6 13	7.6 11.2 16.5	.23 112 .28 65 .42 78	.039 .008 .019	<1 1.04 <1 1.39 2 2.00	.009 .007 .009	.04 .1 .23 .04 .1 .05 .03 .2 .03 .04 .2 .06 .04 .1 .19	2.2 <.1 2.8 <.1< 6.5 .1	.08 7 <.5 .05 8 <.5 .06 7 .5	7.5 7.5 7.5 15.0 7.5
RE 19400N 22620E 19400N 22640E 19400N 22660E 19400N 22680E 19400N 22680E 19400N 22700E	2.4 143.4 3.3 34.6 1.5 177.9 1.5 88.4 .3 46.9	5 11.1 9 39.5 4 44.2	88.3 1793.5	4.7 14.2 15.1	5.9 20.5 1 17.2 1	186 4.64 372 4.02 492 4.74	52.5 508.7 513.1	.3 1.2 10 1.3 32	.5 .4 .1 .5	19 572 38	.5 2.2 2.1 3.1	.2 .2 .2	75 . 35 1. 41 .	33 .047 57 .099 76 .119	9 9 16 5 15	7.4 12.1 13.6	.09 70 .34 122 .44 115	.007 .006 .006	2 .95 2 1.52 1 1.74	.006 .008 .007	.04 .2 .19 .03 .2 .04 .04 .2 .13 .05 .3 .13 .03 .1 .13	2.9 <.1< 7.4 .1< 12.6 .1<	.05 9 <.5 .05 5 1.1 .05 4 1.4	7.5 15.0 15.0 15.0 1.0
19400N 22720E 19400N 22740E 19400N 22760E 19400N 22780E 19400N 22800E	.5 111.1 .5 100.3 1.5 25.2 1.1 41.6 1.1 37.4	3 6.7 2 34 <i>.</i> 9 5 40.4	60 .4 135 .6	8.7 5.5 14.5	4.6 21.4	127 .34 142 5.43 582 4.08	15.2 80.5 35.8	.7 4 .2 4 .3 7	.4 . .9 .: .8 .8	L 147 3 14 3 19	.5 1.6	<.1 .1 .1	23. 72. 49.	89 .073 23 .028 32 .04	15 37 59	4.4 10.2 12.7	.50 110	.002 .009 .004	5 .56 <1 1.38 1 2.24	.011 .006 .008	.01 <.1 .15 .02 <.1 .16 .02 .4 .03 .05 .3 .04 .03 .2 .03	2.5 <.1 2.8 .1 4.9 .1<	.20 <1 2.6 .07 6 <.5 .05 5 .5	1.0 1.0 15.0 15.0 15.0
19400N 22820E 19400N 22840E 19400N 22860E 19400N 22880E 19400N 22900E	.7 33.9 1.1 25.2 .8 43.6 .9 33.2 1.2 62.8	2 18.6 6 35.0 2 30.0	84 .7 99 .9 67 .4	4.6 12.1 6.5	4.2 10.0 6.0	154 3.29 374 5.47 214 4.54	76.6 48.5 49.9	.1 2 .1 43 .2 4	2.0 . 3.3 . 1.3 .4	L 31 7 6 4 5		.1 .1 .1	64 . 55 . 59 .	75 .044	46 17 47	5.8 15.8 10.5	.33 142 .13 102 .48 55 .19 56 .29 100	.016 .007 .006	1 1.83 1 1.33	.007 .006 .007	.04 .2 .09 .05 .3 .03 .03 .2 .05 .03 .3 .05 .04 .4 .06	4.4 .1< 3.1 .1<	.07 6 <.5 .05 6 <.5	7.5
19400N 22920E 19400N 22940E 19400N 22960E 19400N 22980E STANDARD DS5	1.3 57.4 1.2 59.9 1.0 44.0 1.0 49.9 12.7 145.9	5 58.3 6 27.6 5 55.7	143 1.3 94 1.2 148 1.7	3 14.9 2 9.0 7 14.4	15.6 8.1 14.7	753 4.86 313 3.93 838 4.19	5 72.3 72.8 56.5	.3 12 .2 9 .2 19	2.3 . 5.7 . 9.1 .	7 37 5 12 3 30	.6 2.2 .4 1.4 .7 2.7	.1 .1 .1	59 . 51 . 50 .	72 .06 18 .06 54 .07	38 97 110	13.6 11.3 14.3	.45 120 .47 120 .28 80 .53 123 .68 133	.009 .004 .008	2 1.84 1 1.36 2 1.78	.010 .008 .007	.06 .4 .03 .06 .3 .05 .04 .2 .06 .05 .4 .06 .16 5.1 .15	6.3 .1< 5.0 .1 7.3 .1	.05 6 .7 .07 5 <.5 .06 5 <.5	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA

 $_{Data} \mathcal{L}_{FA}$

Page 22

ACHE ANALYTICAL																										ANCHIOR
SAMPLE#	Mo Cu	ı Pb Zn	Ag Ni	Co M	n Fe	As U	Au	Th	Sr Co	1 Sb	Bi	٧	Ca	ΡL	.a (Cr Mo	Ba	Ti	B A1	Na	K	W Hg	Sc	T1 S	Ga Se S	Sample
	זוסט וווסט זוסט וווסט			1 ppm pp						n ppm j			*	% рр	om pp	om Š	ppm	۲ (ppm %	8	% pp	wn ppm	ppm	ppm 🗶	ppm ppm	gm
								<u> </u>	· · · · · ·		· · · ·															
19400N 23000E	.9 50.9	71.0 158	1.0 15.2	14.5 88	1 4.09	78.4 .2	30.3	.9	24 .8	3 2.8	.1	45	.41 .4	081	9 13.	.0.53	3 105	.006	1 1.63							15.0
19400N 23020E	1.0 52.3	3 97.6 197	.6 14.5	6 16.4 95	7 4.52	133.5 .2	50.0	.8	17 .6	5 3.2	.1	47	.29 .	081	8 12.	.7.46	5 96	.006	1 1.55							
19300N 20500E	1.8 54.2	2 35.0 154	1.2 18.3	8 18.8 194	5 5.08	54.2.5	42.7	.9	36.9	€ 1.2	.1	56	.62 .	104 1	13 17.	.3.55	5 150	.002	<1 1.80	.007	.05 .	2.11	10.9	.1<.05		
19300N 20520E	4.4 66.5	55.8 96	1.6 12.8	8.4 492	26.85	117.4 .5	23.8	.5	93 1.4	4 1.6	.1	42 1	.64 .	107]	L2 10.	.7.23	312	.001	<1 1.42	.008	.04 .	4.15	10.9	.2<.05	3 4.1	7.5
19300N 20540E	1.1 46.4	37.1 111	.8 14.6	5 15.8 68	6 4.60	36.1 .2	12.4	.8	21 .0	5.8	.1	46	.41 .	071 1	11 11.	.8.50	126	.001	<1 1.79	.007	.03 .	2.07	8.5	.1<.05	5.7	15.0
								-								1 0/	051	001	1 1 60		07	<u> </u>	10.1	1 - 05	410	7 5
19300N 20560E	1.1 73.4	44.7 127	4.3 12.9	12.0 116	1 3.79	71.3 .6	24.8	.5	/5 .9	91.2	.1	3/ 1		108 1		.1.20	251	.001	1 1.60	.011	.0/ .	3.20	12.1	.1<.05	4 1.6	7.5
19300N 20580E	3.0 103.8	3 24.9 127	1.2 17.2	2 12.4 44	8 3.96	18.5 1.6	10.9	.6	68 1.0	J 1.0	.1	56	.91 .	139 1	11 1/.	.9.35	207	.002	<1 2.10	.008	.03 .	1.24	15.9	.1 .0/	7 3.3	7.5
19300N 20600E	3.7 80.1	88.9 164	1.7 18.6	5 23.4 245	8 4.66	91.0 .8	52.5	.6	6/ 1.0	5 2.1	.1	48 1	.14 .	094 1	12 13.	./.48	5 132	.004	1 1.02	.012	.06 .	b .10	9.8	.1<.05	44.5 5.7	
19300N 20620E	1.7 31.0	44.0 91	2.6 6.8	3 7.4 32	5 3.77	54.9 .2	56.0	.5	14 .7	21.2	.1	53	.18 .	069	/ 9.	.3.10	5 92 5 00	.003	1 1.35	.000	.04 .	4.09	3.9	.1<.05	5.7 8.5	
19300N 20640E	1.5 36.9	57.0 110	.8 8.6	0 7.6 26	8 5.09	/5.2 .3	4/.5	.6	29 .	5 1.9	.2	60	.49 .	001	8 11.	.8 .31	00	.004	<1 1.90	.007	.04 .	4.00	4.4	.1<.05	0.5	15.0
100001 000005	0 45 4	5 60.0 170	0 1/ 0	12 2 02	0 / 20	68 / 2	A7 6	g	22 1	5 1 5	2	60	51	043	9 15	1 5/	1117	007	1 1.95	007	05	4 05	67	1< 05	6.6	15.0
19300N 20660E	.9 45.0	4 47.0 136	.014.0	10.0 55	6 2 00	627 2	39.3	.0	A0 .	4 1 2	.2	52	64	043	9 14				1 1.95							
19300N 20680E		4 47.0 130 5 53.4 138					59.5								11 15				2 2.09							
19300N 20700E	./ 30.0	5 53.4 130 7 62.5 173	0 14.2 1 3 13 3	2 10.0 73 2 14 0 74	8 4 37		39.2	8	29 1	612	1								1 2.00							15.0
19300N 20720E 19300N 20740E	7 41.7	9 41.9 152	1 3 13 6	5 11 8 101	4 4 07	69 1 3	37.8	.6	57	5 1.4	.1	54	.89	078	9 14	.2 .47	176	.007								
19300W 20740E	./ ++	9 41.9 132	. 1.5 10.0	, 11.0 101	1 11.07																					
19300N 20760E	.8 48.	5 44.6 141	1.0 15.5	5 12.6 75	4 4.21	62.9.3	45.1	.9	37 .	6 1.9	.1	56	.57 .	092 1	11 14	.6.5	5 110	.015	1 1.83							
19300N 20780E	1.0 57.9	9 40.5 70	.8 12.9	9 11.2 165	5 4.40	88.1 .2	29.9	.6	12 .:	3 3.9	.2	58	.08 .	067	98	.4 .13	L 63	.003	2 1.05							7.5
19300N 20800E	1.0 45.0	6 37.9 152	.6 12.2	2 11.8 47	4 4.77	107.4 .2	20.4	.6	22 .	5 1.2	.1	63	.28 .	.039	9 13	.8.47	7 114	.007	1 1.95							
19300N 20820E	1.1 87.0	0 75.6 234	2.8 16.9	9 11.6 183	3 4.79	111.6 .3	43.2	.7	64 .	B 1.6	.2	51 1	.04 .	118	13 13	.1.47	7 160	.006	2 2.36							
19300N 20840E	1.5 59.0	6 159.2 402	2 .9 13.8	3 23.3 563	7 6.02	160.0 .3	43.4	.4	56 2.	5 1.8	.7	45	.99 .	106	9 11	.1.2	5 147	.014	<1 1.62	.007	.05	.2.09	6.9	.1<.05	6.9	15.0
19300N 20860E	.9 82.3	3 353.2 358	3 2.0 14.9	9 13.5 167	4 4.76	133.9 🦽	$110,\mathcal{I}$	' .5	49 2.	6 1.4	.4	50	.91 .	172	10 15	.7.4	5 91	.010	2 2.08	.008	.05	.2 .13	; 7.9	.1<.05	5 1.3	
RE 19300N 20760E	.7 48.3	7 39.0 153	3 1.1 15.8	3 11.9 77	9 4.22	65.2 .3	48.3	.9	37.	6 1.8	.1	56	.57 .	.088	11 14	.8 .54	4 102	.017	1 1.79							
19300N 20880E	1.2 122.3	3 109.4 163	3 2.2 15.9	5 10.1 43	8 4.38	129.3 .5	17.6	.2	53 3.	0 1.2	.2	51 1	00 .	.065	11 10	.6 .2	1 84	.014	1 1.56	.008	.04	.3.09	3.7	.1<.05	8.8	15.0
19300N 20900E	1.6 36.3	3 149.8 274	6 8.	5 12.3 95	8 5.25	225.1 .1	22.7	.4	25 1.	0 1.3	.2	71	.35 .						1 1.38							7.5
19300N 20920E	1.1 45.3	3 45.1 159	.4 13.0	5 13.4 100	1 5.52	122.4 .2	25.7	.6	10.	5 1.1	.2	67	.07 .	.063	/ 16	./ .4	4 83	.006	1 2.27	.005	.04	.3 .04	4.9	.1<.05	7 <.5	15.0
						62 1 1	24 1	2	20	2 0	2	71	25	044	79	7 10	A 64	008	1 1 22	007	04	3 03	1 3 0	.1<.05	8 <.5	15.0
19300N 20940E	1.1 31.	5 34.7 97 0 35.3 130	.3 /.0	0 7.3 30	18 3.2/	00.1.1	34.L	.3	20 .	2.0 212	.2	/1 77	.20.	053					1 2.16							15.0
19300N 20960E		0 35.3 130 6 18.8 67						.5 1	JU . 7	2 1.6	. 2	97	.57 .		6 11									.1<.05		7.5
19300N 20980E	1.5 49.	6 18.8 6/ 9 52.6 72	2.05.0 7127	0 0.0 4J	0 /.19	154 3 2	4.4												<1 1.93							15.0
19300N 21000E	1.1 39.	9 52.6 77 4 23.4 77	7 A A 11 1	1 U./ 20 N 7/1 104	7 0.00 7 7 05	70 2 1 /	34 0	΄ <u>Δ</u> 1	20 1	613	1	17 2	.05. 997													7.5
19300N 21020E	1.3 134.	4 23.4 //	, 4.4 II.	0 7.4 100	2.00	13.2 1.4	0.40			5 1.5	• •	1, 1							2 1.05				0.5		- •••	
19300N 21040E	1642	5 29.2 14	7 1.5 11	5 12.2 153	37 3.65	74.2 .5	13.7	.3	791.	1 1.1	.2	41 3	1.50 .	.135	11 13	.4.4	679	.009	1 1.93	.009	.04	.2 .12	2 5.8	.1 .08	4.9	7.5
19300N 21040E	1574	1 51 8 163	2 2 1 14.3	3 17.3 91	6 4.01	151.6 .4	33.8	.5	64 1.	8 1.5	.2	46 1	L.25 .	. 090	9 14	.2.4	6 97	.013							5 1.3	7.5
19300N 21080E	1 1 38	3 40.4 12	3 .5 8	6 8.3 3	2 4.90	106.0 2	22.0	.5	13	8 1.0	.2	68	.14	. 065	7 11	.4.2	6 88	.010	<1 1.75	.007	.04	.4 .04	\$ 3.5			15.0
19300N 21100E	7 12	3 10.7 2	0.53.	0 3.2 112	26 1.51	47.4 .1	54.4	<.1	4.	1.6	.1	36	.02 .	.039	83	.8.0	3 40	.005	2.63	.005	.03	.2 .03	3.6	.1<.05	6 <.5	15.0
STANDARD DS5	12.8 146	0 25.4 13	2 .3 25	4 11.9 78	30 3.01	18.0 6.1	41.3	2.7	47 5.	6 3.8	6.0	60	.72 .	.091	11 190	.5.6	6 135	.091	17 1.95	.032	.14 5	.0.17	/ 3.4	1.1<.05	64.9	15.0
	12.0 140.																									

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_

Page 23

ALME ANALTITUAL																																			
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B A	1 Na	n K	W	Hg	Sc T	1 S	Ga Se	Sam	ple
	ppm	ppm	ppm	ppm p	ppm	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm p	opm p	pm	ppm p	opm y	ppm	*			ppm		ррт	% p	pm	* *	%	ррт	ppm p	pm pp	m %	ppm ppm		gm
19300N 21120E 19300N 21140E 19300N 21160E 19300N 21160E 19300N 21180E 19300N 21200E	1.2 .9 2.4	41.6 31.7 45.6	47.8 41.2 4.0	103 81 61	.5 1 1.4 .2	LO.6 7.7 9.1	9.8 7.5 8.6	572 231 274	5.23 3.19 3.36	555.2 61.2 55.2	.2 .3 .1	8.7 76.9 15.3 75.3 1.3	.2 .4 .2	6 25 13 <	.1 .3 .1	1.5 .7 1.6	.2 .1 .1	67 47 45	.03 .51 .02	.091 .085 .049	6 9 9	14.1 8.8 2.4	.31 .25 .04	44 . 85 . 25 .	009 004 007	1 1.8 2 1.6 1 2.0 3 .2 1 1.4	2 .006 3 .007 0 .005	5.04 7.04 5.03	.6 .3 .3	.06 3 .08 3 .03 1	.4 . .6 . .6 .	1<.05 1<.05 1<.05	7.6 6.6 2<.5	1 1	5.0 5.0 5.0 7.5 5.0
19300N 21220E 19300N 21240E 19300N 21260E 19300N 21280E 19300N 21280E 19300N 21300E	1.1 2.5 1.3	25.3 60.8 35.1	13.9 26.6 21.6	46 135 64	.7 .7 1 .6	4.9 16.4 6.9	5.0 19.1 7.7	155 1230 494	3.93 4.96 9.46	20.6 40.4 39.9	.4 .5 .3	8.2	.5 .5 .4	31 30 5	.2 .4 .3	.7 1.0 1.1	.1 .1 .2	55 68 97	.51 .41 .03	.061 .130 .129	6 11 5	10.9 17.5 17.1	.17 .48 .21	60. 143. 37.	006 013 023		3 .007 4 .010 0 .006	2.02 0.04 0.03	.2 .3 .3	.093 .085 .093	.8 <. .9 . .9 .	1<.05 1<.05 1<.05	6.8	1! 1! 1!	7.5 5.0 5.0 5.0 5.0 5.0
19300N 21320E 19300N 21340E 19300N 21360E 19300N 21380E RE 19300N 21380E RE 19300N 21380E	1.3 1.3 1.4	28.5 41.1 23.5	25.7 39.9 14.9	104 89 31	.2 .3 .5	6.8 9.3 2.7	5.8 8.5 3.4	205 343 147	3.90 5.54 4.82	10.0 49.0 66.1 50.8 51.1	.2 .3 .1	17.4 63.5	.2 .4 .3	53 8 5	.2 .6 .1	.8 1.0 .9	.1 .1 .2	64 76 76	.88 .11 .02	.049 .063 .037	5 6 7	14.8 7.1	.29 .41 .06	83. 53. 24.	010 011 010	1 .9 <1 1.5 1 2.0 <1 1.2 2 1.3	00.006 3.007 3.005	5.03 7.03 5.02	.5 .5 .3	.05 3 .05 4 .03 2	.5 <. .2 . .2 .	1<.05 1<.05 1<.05	8.6 9<.5	1! 1!	7.5 5.0 5.0 7.5 7.5
19300N 21400E 19300N 21420E 19300N 21440E 19300N 21440E 19300N 21460E 19300N 21480E	2.2 2.7 2.4	48.2 53.3 40.9	31.4 42.5 57.8	111 214 67	.4 1.5 : .5	9.1 13.2 6.0	10.6 15.0 5.9	431 1364 477	7.74 4.90 9.17	94.4 97.1 112.5	.4 .7 .4	228 50.1 44.2 27.4 22.6	.4 .4 .6	11 55 1 5	.5 .3 .5	1.0 1.1 1.1	.2 .2 .3	68 51 92	.11 .80 .03	.075 .161 .072	6 13 9	18.7 14.6 17.2	.35 .40 .16	52. 117. 34.	013 011 048	12.3 12.4	6.006 0.008 3.008	5.02 3.04 3.03	.4 .3 .5	.06 4 .10 5 .08 3	.3. .6.	1<.05 1<.05 1<.05	71.2 12.7	1	7.5 7.5
19300N 21500E 19300N 21520E 19300N 21540E 19300N 21540E 19300N 21560E 19300N 21580E	4.5 5.4 1.7	58.0 65.9 8.9	26.3 74.6 77.8	155 174 131	1.5 2.1 1.1	12.3 13.4 2.2	11.8 20.1 4.1	1329 1857 380	4.63 4.86 3.18	140.8 132.0 130.8	.7 1.1 .3	38.0 43.7 63.6 16.3 45.6	.5 .61 1.1	51 105 17	.6 .8 .4	1.1 1.5 .4	.2 .2 .1	42 53 26	.73 1.51 .28	.164 .160 .074	8 10 9	13.2 15.4	.37 .40 .05	100 . 176 . 70 .	008 010 002	1 2.0	B .007 2 .010 3 .005	7.04 0.06 5.04	.2 .4 .1	.11 5 .13 7 .05 1	.1 . .2 . .5 .	1<.05 1<.05 1<.05	71.0 5.5	1	5.0 7.5 7.5 5.0 5.0
19300N 21600E 19300N 21620E 19300N 21640E 19300N 21660E 19300N 21680E	1.1 .7 2.5	48.7 13.8 38.4	43.4 13.5 41.1	150 28 130	.9 .5 .7	14.5 3.4 12.4	14.7 3.7 19.7	1006 769 2657	6.00 1.71 6.32	92.1 21.9 148.2	.3 .2 .6	46.5 21.6 11.5 75.5 16.5	.8 <.1 .3	7 6 19	.5 .1 .6	1.3 .5 2.1	.1 .1 .2	67 28 52	.05 .10 .20	.062 .157 .155	6 5 15	18.0 6.7 12.6	.53 .12 .26	74 . 36 . 140 .	019 008 010	<pre><1 2.2 2 2.4 5 .8 1 1.6 1 1.6</pre>	3 .007 0 .007 9 .009	7 .05 7 .06 9 .04	.3 .2 .3	.10 5 .12 .09 4	.5 . .9 . .0 .	1<.05 1<.05 1<.05	7.5 5.5 91.0	1	7.5 5.0 7.5 7.5 5.0
19300N 21700E 19300N 21720E 19300N 21740E 19300N 21740E 5TANDARD DS5	3.5 2.7 3.7	57.0 43.1 35.7	23.8 723.7 23.9	101 177 77	2.9 2.9 2.5	9.4 11.8 6.5	14.1 15.1 6.9	1126 1067 381	4.09 4.57 8.28	134.0 142.1 84.5	1.4 .5(13.8 509.8 4.9	.4 .4 .1	77 24 15	.9 .6 1 .9	1.3 10.4 .8	.1 .2 .1	42 54 73	1.83 .41 .25	.201 .119 .156	21 9 8	13.4 13.3 13.5	.23 .52 .16	123 . 108 . 89 .	011 009 014	<1 1.3 1 2.4 1 2.1 1 2.5 17 1.9	8.010 8.009 7.007) .04 9 .05 7 .03	.2 .3 .3	.17 6 .09 4 .19 3	.7 . .6 . .2 .	1 .08 1<.05 1<.05	53.1 7.7 7.8	1 1 1	5.0 5.0 5.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 24

ACME ANALYTICAL																							_											
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th S	r	Cd	Sb	Bi	۷	Ca		La					B A1								ample
0.1.1.20	DDM	ppm	ppm	ppm	ppm			ppm	*	ppm p	opm p	pb p	pm pp	m p	pm	ppm p	pm p	ppm	*	۲ 🖌	ppm	ppm	%р	pm	% рр	m %	*	%	opm pi	m ppm	ppm	% ppm	ppm	gm
19300N 21780E 19300N 21800E 19300N 22200E 19300N 22220E 19300N 22240E	1.9 3.0 1.2	35.3 44.9 27.9	31.4 21.4 68.1 70.9	118 117 197 90	.7 .3 2.7 4.2	11.8 12.7 11.7 8.1	15.9 17.3 10.9 8.7	1602 1918 6631 635 4062	4.66 5.41 6.57	45.9 45.5 213.3 37.5 36.2	.3 7 .5 7 .2 1	7.6 7.1 1.4	.2 1 .7 3 .3	5 31 5	.2 .4 .1	.9 2.2 2.3	.2 .4 .2	62 46 85	.17 .53 .06	.077 .169 .125	8 11 5	16.2 12.1 12.3	.62 .26 1 .23	93 .00 24 .01 39 .02	08 10 23	2 2.89 2 2.55 2 2.22 1 1.61 1 1.50	.008 .006 .006	.04 .04 .03	.2 .0)3 2.3 11 7.3)7 3.3	.1<.(.2<.(.1<.()58))56))59)	.7 .5	7.5 15.0 15.0 15.0 15.0
19300N 22260E 19300N 22280E 19300N 22300E 19300N 22320E 19300N 22340E	1.2 1.2 2.0	27.6 22.7	4.1 27.5 32.5 35.2 112.2	61 139 293	.8 .7 4.5	4.0 6.3 12.1	6.9 8.5	331 416 201	2.29 3.82 4.13 2.05 4.04	30.4 49.1 49.8 45.3 87.6	.1 11 .2 6 .1	1.0 5.8 .6	.6 .6 .2	6 5 3	.1 .4 .3	1.7	.1 .2 .1	49 65 44	.05 .02 .03	.043 .049 .039	8 7 12	6.7 10.0 3.8	.09 .21 .04	30 .00 54 .00 15 .00	05 05 05	1 .42 4 1.00 1 1.87 4 .50 1 1.32	.006 .006 .006	.03 .03 .02	.1 .1 .2 .0 .2 .0)4 1.9)6 3.7)4 1.0	.1<.(.1<.(.1<.()56)59)54	<.5 .5 <.5	15.0 15.0 15.0 7.5 15.0
19300N 22360E 19300N 22380E 19300N 22400E 19300N 22420E 19300N 22440E	.8 16.2 2.2	19.4 96.6 28.5	25.2 17.4 71.5 40.9 25.3	47 256 177	.4 2.7 .7	3.5 22.3 10.6	3.8 21.4 10.7	201 649 168	2.97 8.29 2.51	374.5 75.6 519.0 231.7 592.0	.1 4 .2 2 .1 18	4.7 2.6 3.4	.1 .5 .2 1	3 4 0	.1 .3 .2 1	1.6 1.0 6.9 7.3 1.8	.2 .4 .5	59 57 70	.02 .07 .03	.046	8 6 9	6.0 5.2 5.3	.09 .08 .05	45 .03 42 .00 24 .00	10 04 03	3 1.15 1 1.13 3 .68 1 .46 1 1.55	.007 .005 .005	.02 .04 .02	.2 . .1 . .2 .	04 1.6 05 3.0 02 2.0	.1<.(.1<.(.1<.(056 054 055	.8 <.5	7.5 15.0 1.0 15.0 17.5
19300N 22460E 19300N 22480E 19300N 22500E 19300N 2250E 19300N 22540E	2.1 4.8 .9	54.0 36.6 13.1	55.1	277 706 27	3.8 .7 .3	9.7 11.7 4.3	10.2 27.9	363 12098 125	4.88 4.89 1.51	103.9 399.4 1194.9 43.6 244.7	.5 .3 .1	9.4 7.7 3.2	.3 3 .2 3 .1	33 2 37 10 6 <	2.9 .2 :.1	1.8 2.6 .5	.2 .3 .4	58 52 33	.61 .60 .04	.126 .101	10 6 8	14.0 2.7	.33 .40 2 .03	87 .00 61 .00 17 .00	08 20 06	1 1.67 1 2.35 2 2.09 3 .26 1 .96	.009 .007 .006	.04 .05 .03	.2 . .2 . .6 .	16 4.1 06 3.4 02 .7	.1<.(.2<.(.1<.(05 7 05 9 05 3	<.5 <.5 .6 <.5 <.5	15.0 7.5 15.0 7 <i>.</i> 5 7.5
19300N 22560E 19300N 22580E 19300N 22600E 19300N 22600E 19300N 22620E RE 19300N 22640I	1.3 1.0 1.9	89.3 43.9 31.7	52.1 118.1 134.3 38.2 43.0	485 524 93	6.8 3.2 1.2	9.1 10.7 6.3	7.9 9.2 7.5	1234 439 342	3.06 4.12 5.00	242.6 388.2 445.0 241.5 146.8	.7 1 .6 1 .2	7.8 7.2 8.3	.2 (.6 ; .3 ;	50 5 32 1 36	5.1 5 5	3.8 2.2 2.2	.4 .2 .3	36 43 66	1.20 .61 .71	.119 .075	15 10 6	12.7 9.1	.26 1 .38 .18	03 .0 92 .0 72 .0	109 105 115	1 .94 1 1.67 1 1.91 1 1.40 1 1.28	.009 .008 .007	.04 .04 .03	.2. .3. .4.	16 4.0 10 5.3 06 3.1	.1<. .1<. .1<.	05 5 05 6 05 7	<.5 .7 <.5 <.5 .5	7.5 15.0 7.5 7.5 7.5 7.5
19300N 22640E 19300N 22660E 19300N 22680E 19300N 22700E 19300N 22720E	1.7 1.6 1.4	233.5 109.4 73.9	60.8 41.9	247 151 167	4.4 5.7 2.8	15.6 12.5 15.1	30.5 22.6 19.1	2020 2675 1282	5.05 3.90 5.03	151.3 962.3 357.1 290.2 225.3	1.42 1.41 .81	7.1 0.6 6.1	.3 .4 .8	82 4 87 1 49	1.9 7 .6	3.4 2.8	.2 .2 .2	42 37 56	1.71 1.84 .95	.173 .150	17 22 12	13.5	.30 1 .33 1 .51 1	.39 .0 .39 .0 .15 .0)16)19)05	2 1.24 1 1.72 1 1.97 1 1.98 1 1.66	.008 .013 .009	.04 .05 .04	.2. .2. .3.	15 5.6 20 8.1 09 9.6	.l<. .l . .l<.	05 5 06 5 05 6		7.5 15.0 7.5 15.0 7.5
19300N 22740E 19300N 22760E 19300N 22780E 19300N 22800E STANDARD DS5	1.3 1.4 2.4	44.7 41.6 113.7	49.6 29.1	5 137 1 113 5 210	1.4 2.8 4.8	10.7 10.2 14.6	9.7 10.4 15.6	618 410 8409	5.62 6.21 4.74	149.1 131.9 339.4 104.8 19.0	21. 41. 1.2	9.6 2.0 7.6	.8 .4 .5	4 23 60 2	.2 .4 2.5	2.4 1.5 2.0	.1 .1 .3	55 65 48	.06 .41 1.13	.082 .070 .246	6 8 23	12.0 13.3 15.4	.36 .32 1 .27 1	41 .0 01 .0 95 .0)08)16 <)23	1 1.54 1 1.58 1 2.21 1 2.36 7 2.09	.005 .007 .011	.04 .03 .05	.4 . .3 . .1 .	08 4.6 12 4.5 18 7.0	.1<. .1<. .2<.	05 5 05 8 05 11	<.5 .5 1.2	7.5 15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_____FA

Page 25

ACME ANALYTICAL																																			_
SAMPLE#	Мо	Cu	Pb	Zn	Aa	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd S	b B'	i V	Ca	Р	La	Cr	Mg	Ba '	ſi I	B A1	Na	κ	WI	łg	Sc	T1 S	S Ga S	e Sar	mple	
5/4/1 22/1	DDM	ppm					ppm		*	ppm	ppm	ppb	ppm p	opm p	iqq mqc	прр	m ppm	*	*	ррт	ppm	× p	pm	% pp	n %	*	% r	opm pj	pm p	opm p	pm %	k ppm pp	m	gm	
19300N 22820E 19300N 22840E 19300N 22860E 19300N 22880E 19300N 22800E	.9 .9 1.2 9	22.3 22.2 44.8 27 9	20.4 24.9 46.0 34.2	62 54 133 130	1.0 1.3 1.2 1.3	5.6 3.9 6.4 6.8	7.8 4.4 9.2 7.2	640 278 746 351	4.86 3.94 4.07	111.8 194.8 111.0	.2 2 .2 .1	22.2 23.1 7.3	.1 .2 .4	7 31 17	.9 1.3	3.1 8.1 3.1	278 262 157	.15 .74 .31	.107 .076 .066	5 11 6	9.6 7.4 8.6	.09 .14 .18	60 .0 26 .0 48 .0)9 : 11)2 <	1 1.25 3 .98 1 1.28 1 1.08 1 1.93	.005 .006 .006	.05 .04 .03	.4 .1 .5 .1 .3 .1	10 2 05 3 05 2	2.0 3.7 2.8	.1<.05 .1<.05 .1<.05	57. 56<	5 5 5	7.5 15.0 15.0 7.5 15.0	
19300N 22920E 19300N 22940E 19300N 22960E 19300N 22980E 19300N 22980E 19300N 23000E	.7 1.0 9	50.3 47.1 51.3	37.0 38.8 36.8	142 136 120	.6 .7	14.6 12.9 14.0	16.0 17.5 18.8	612 723 987	4.16 4.49 4.80	56.9 63.3 83.6	.2 .1 .2	11.9 6.9 8.7	.9 .7 .9	12 22 25	.4 1. .7 1. .4 1.	3. 6. 7.	1 50 2 52 1 54	.21 .38 .49	.061 .070 .071	9 8 9	14.3 13.2 14.7	.50 1 .47 1 .60 1	12 .0 126 .0 113 .0	09 < 07 < 08 <	1 2.44 1 1.81 1 1.59 1 1.72 1 1.25	.006 .008 .008	.04 .05 .05	.3 .1 .2 .1 .2 .1	03 6 02 5 03 6	5.9 5.4 < 5.8 <	.1<.0. 1<.0! 1<.0!	55. 55.	7 5 8	15.0 15.0 15.0 15.0 15.0	
19300N 23020E 19300N 23040E 19300N 23060E RE 19300N 23060E 19200N 20500E	.9 1.1 1.0	40.1 41.8 43.9	52.6 77.8 78.4	148 168 170	1.2 1.3 1.5	13.9 13.4 13.6	11.3 17.2 17.7	549 1081 1118	3.75 4.37 4.43	59.2 104.8 107.7	.2 .2 .2	21.1 19.7 22.8	.6 .9 .9	32 33 34	.3 1. .8 2. .9 1. .8 1. 1.1 1.	2. 9.	1 46 1 46 2 46	52 5.48 5.49	.093 .086 .086	9 8 8	13.2 12.0 12.4	.46 .47 .50	83 .0 78 .0 77 .0	16 06 < 06	1 1.70 1 1.48 1 1.38 2 1.49 1 1.47	.007 .007 .007	.06 .05 .05	.5. .7. .6.	06 5 04 6 04 6	5.8 5.8 < 5.9	.1<.0! 1<.0! 1<.0!	55. 54. 55.	5 7 9	15.0 15.0 7.5 7.5 15.0	
19200N 20520E 19200N 20540E 19200N 20560E 19200N 20580E 19200N 20580E 19200N 20600E	1.1 1.3 1 1	50.1 74.7 46.6	50.5 29.0 47.1	143 186 97	.4 4.3 .6	12.2 20.6 8.4	10.2 16.3 8.4	441 1732 602	4.70 5.03 7.45	50.0 37.5 92.2	.1 .5 .2	6.8 22.4 20.8	.6 .9 .6	29 31 7	.4 1.	2. 0. 3.	1 62 1 56 1 65	2 .59 5 .70 5 .03	.049 .123 .075	8 17 7	13.3 17.9 13.6	.43 .59 .24	152 .0 164 .0 43 .0	04 02 < 07	1 2.41 1 1.76 1 2.59 1 1.88 1 1.52	.007 .009 .007	.04 .06 .03	.2 . .1 . .3 .	03 ! 12 14 08 4	5.4 4.5 4.7	.1<.0 .1<.0 .1<.0	56. 561. 57.	5 0 6	7.5 15.0 15.0 15.0 15.0	
19200N 20620E 19200N 20640E 19200N 20660E 19200N 20680E 19200N 20680E 19200N 20700E	$1.1 \\ 1.0 \\ 1.1$	50.3 25.3 52.7	54.7 34.4 67.2	136 99 159	.3 .6 1.1	11.4 6.4 16.3	9.5 6.4 18.8	398 692 1072	5.14 3.27 4.28	98.2 53.8 76.6	.2 .1 .2	22.6 17.3 88.9	.8 .4 1.0	10 10 36	.4 . .3 1. .3 . 1.1 2. 1.7 1.	7. 9. 0.	2 58 1 51 1 49	3.09 1.07 9.55	0.097 0.056 0.085	7 7 10	12.1 8.0 13.4	.31 .21 .58	68.0 93.0	04 04 25	1 1.74 1 1.89 2 1.45 1 1.63 2 2.58	.006 .006 .010	.04 .05 .07	.4 . .4 . .4 .	05 ! 02 : 04 :	5.2 3.1 7.8	.1<.0 .1<.0 .1<.0	5 5 < 5 6 < 5 5 5	5 5 7	7.5 7.5 15.0 15.0 7.5	
19200N 20720E 19200N 20740E 19200N 20760E 19200N 20780E 19200N 20800E	1.1 1.3 2.3	65.7 62.2 74 5	57.0 56.9 79.0	188 179 195	.7 2.8 2.4	19.1 16.2 17.6	18.4 13.1 18.5	1025 861 1205	4.79 5.21 5.59	101.2 147.4 164.2	.2 .3	45.5 159 1352	1.1 .7 .8	39 41 44	.8 1. .8 2. .6 1. 1.0 1. .4 1.	0. 4. 9.	2 59 3 53 2 53) .53 3 .75 3 .90	086 .086 . .133 .091	11 10 11	14.5 13.4 11.1	.60 .59 .55	107 .0 66 .0 72 .0	29 08 05	2 1.44 2 1.93 1 1.94 1 1.92 1 1.86	.012 .008 .007	.09 .06 .06	.4 . .3 . .6 .	03 (09 (08 (8.8 8.9 8.1	.1<.0 .1<.0 .1<.0	56 551 561	5 6 7	15.0 15.0 15.0 15.0 15.0	
19200N 20820E 19200N 20840E 19200N 20860E 19200N 20860E 5TANDARD DS5	1.9 1.4 2.2	45.8 45.6	154.0 70.9	375 132	.7 .5 7	11.6 9.8	21.9 9.4	3656 642 878	6.52 6.18 4 44	142.8 121.6 95.3	.2 .2	48.9 20.3	.3 .6	33 6 22	1.6 1. 1.2 1. .2 1. .3 . 5.6 3.	3.	.2 67 .2 64 .3 59	7.59 4.00 9.37).126 3.073 7.058	7 6 9	13.0 11.8 7.7	.34 .28 .17	94 .0 59 .0 59 .0	08 10 < 07	1 1.87 1 1.87 1 1.39	.007 .006 .007	.05 .03 .04	.3. .4.	05 06 04	4.1 4.2 4.0	.1<.0 .1<.0 .1<.0		.6 .9 .1	15.0 7.5 15.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 26

ACME ANALYTICAL																																AUTE AN	ALTIILAL
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba Ti	В	Al	Na	ĸ	W Hg	Sc	TI	S Ga	Se S	ample
- "	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm j	ppm p	opm ppm	ppm	ppm	*	% p	pm	ррт	×р	pm %a	ppm	*	x	% pp	m ppm	ppm	ppm	% ppm	ррт	gm
19200N 20900E 19200N 20920E 19200N 20940E 19200N 20960E 19200N 20960E 19200N 20980E	1.4 1.3 1.2		38.8 46.8 64.9	108 107 173	.9 .4 6.0	9.8 6.7 16.8	9.2 7.5 15.8	382 335 1459	5.49 7.38 4.56	198.1 123.4 134.3	.2 .2 .9	43.6 32 38.5	.7 .4 .8	7 9 85 1	.2 1.4 .2 1.4 .2 1.6	.2 .3 .2	70 69 45	.07 .12 1.58	.030 .056 .191	6 5 21	12.9 11.4 14.4	.26 .15 .39 1	33 .017 76 .010 65 .009 50 .006 03 .007	1 1. 2 1. 1 2.	88 .0 52 .0 44 .0	05 06 12	.03 . .03 . .07 .	4.06 4.04 2.24	4.3 3.6 11.2	.1 <. .1 <. .1 <. .1 <. .1 <.	05 8 05 8 05 5	<.5	15.0 15.0 7.5 7.5 15.0
19200N 21000E 19200N 21020E 19200N 21040E 19200N 21060E 19200N 21080E	1.0 .8 .9		58.4 145.4 60.1	249 272 218	3.2 1.3 1.4	16.8 17.3 15.0	18.2 17.0 21.5	1047 1395 1210	5.12 5.03 5.29	191.6 138.6 118.8	.6 .4 .8	39.7 52.5 27.9	.9 .6 .5	52 1 33 48 1	0 .9 .9 1.8 0 1.4	.2 .2 .2	50 53 52	1.16 .69 .98	.198 .102 .125	18 11 16	15.3 16.1 16.9	.38 1 .61 .45		12.	68 .0 98 .0 29 .0	10 07 09	.06 . .05 4. .05 .	3 .21 3 .10 3 .16	10.5 9.4 9.1		05 6 05 5 05 6	1.2	1.0 7.5 15.0 15.0 15.0
19200N 21100E 19200N 21120E 19200N 21140E 19200N 21160E 19200N 21180E	1.1 1.7 1.1		53.0 113.2 66.1	124 247 121	.7 2.0 .8	11.4 14.3 11.9	10.8 21.4 12.6	536 4732 546	6.51 5.89 5.78	156.1 169.3 103.3	.2 .4	35.8 55.4 50.4	.8 .7 1.0	5 21 1 6	.4 1.5 .2 1.6	.2 .3 .2	65 60 48	.04 .28 .08	.059 .149 .072	6 11 6	15.4 15.7 13.4	.40 .46 1 .40	54 .017 14 .007	<pre><1 3. 1 2. </pre> <pre></pre>	32 .0 60 .0 80 .0	06 10 05	.03 . .07 . .03 .	4 .08 3 .08 4 .13	5.1 6.0 4.7	.1 <.(.1 <.(05 7 05 9 05 5	.8	7.5 15.0 7.5 15.0 7.5
19200N 21200E 19200N 21220E 19200N 21240E 19200N 21240E 19200N 21260E 19200N 21280E	1.0 1.4 1.1	49.8 40.6 63.3 27.1 22.2	33.9 21.8 19.3	65 191 48	.3 2.3 .5	7.2 14.9 4.3	7.4 10.4 4.6	397 2346 185	6.23 4.09 (3.36	86.6 612.7 51.4	.2 .5 .2	84.8 9.8	.2 .5 .7	5 48 18		.1 .4 .2	60 27 64	.03 .96 .33	.062 .128 .041	6 18 7	11.6 9.1 5.2	.25 .28 .07	30 .019 32 .014 99 .005 42 .005 30 .010	11. 11. 11.	65 .0 44 .0 35 .0	06 07 06	.03 . .04 . .02 .	3 .07 3 .13 2 .03	3.1 7.5 2.7	.1 <. .1 <. .1 <. .1 <. <.1 <.	05 7 05 4 05 8	.5 1.1 <.5	15.0 15.0 7.5 15.0 15.0
19200N 21300E 19200N 21320E 19200N 21340E 19200N 21340E 19200N 21360E 19200N 21380E	2.0 1.6 1.2	39.4 30.2 39.3 35.5 29.4	30.6 36.1 27.9	55 143 74	.2 1.0 .7	5.6 11.5 9.9	10.3 10.3 8.0	2200 722 431	9.46 6.36 7.44	52.3 46.8 71.5	.2 .4 .2	6.0 11.3	.2 .3 .6	4 9 3	.1 1.0	.2 .2 1	85 52 72	.03 .10 .02	.132 .136 .077	9 7 5	12.5 15.4 17.6	.20 .42 .54		5 11.	59 .0 02 .0 16 .0	06 07 05	.03 . .03 . .02 .	3.05 5.10 3.05	2.2 3.1 4.6		05 10 05 7 05 7	.7 .7 .7	15.0 15.0 15.0 15.0 15.0 15.0
19200N 21400E 19200N 21420E 19200N 21440E RE 19200N 21440E 19200N 21460E	1.1 1.1 1.0	29.6	23.1 38.6 37.4	72 72 68	.6 .2 .2	6.0 5.9 5.9	5.6 6.4 6.3	323 276	4.37 3.38 3.19	83.6 81.2 76.1	.2 .2 .2	15.6 44.7	.1 .2 .2	13 12 11	.4 .7 .3 .9 .2 1.2 .2 1.1 .2 .9).2 2.3	68 58 58	.15 .12 .12	.089 .063 .047 .043 .079	8 7 6	9.3 8.9 8.6	.19 .24 .22	50 .011 55 .009 50 .008	<pre><1 <1 2. </pre> <pre><1 12. </pre> <pre><1 11. </pre> <pre><1 11. </pre> <pre><1 11. </pre>	34 .0 21 .0 08 .0)07)06)05	.03 . .02 . .02 .	3 .04 4 .03 3 .02	2.0 3.0 2.9	.1 <. <.1 <. .1 <.	05 9 05 6 05 6	.5 <.5	15.0 7.5 7.5 7.5 15.0
19200N 21480E 19200N 21500E 19200N 22200E 19200N 22220E STANDARD DS5	2.1 .9 1.7	26.6 52.1 16.9 22.5 146.6	64.0 9.1 13.9	192 24 53	1.9 .7 1.8	13.2 2.5 4.2	11.2 2.5 4.4	120 370	4.62 1.87 3.23	188.4 27.3 39.0	.5 .2 .4	18.6 10.8 10.4	.4 .2 .1	56 5 4	.2 .7 .7 1.0 .2 .4 .4 .6 5.3 4.0).3 .2 .2	45 26 42	.81 .03 .02	.078 .068	13 8 13	14.7 4.7 8.3	.46 .06 .13	38 .010		23 .0 11 .0 30 .0)10)06)07	.03 .03	2 .10 2 .08 3 .07	3.9 1.1 1.1	.1 <. .1 <. .1 <.	05 9 05 6 05 8	<.5 .6	7.5 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 27

ALME ANALTTICAL																																	NALYTICAL
SAMPLE#	Мо	Cu	Pb	Zn	Aq	Ni	Со	Mn	Fe	As	U	Au	Th S	r C	d	Sb	Bi	V	Ca	Р	La	Cr	Ma	Ba	Ti	B A1	Na	ĸ	W Ha	Sc	T1 (S Ga Se	Sample
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppb p	opm pp	m pp	m p	opm p	pm p	pm	*	% p		ppm	•		% pp							% ppm ppm	
19200N 22240E 19200N 22260E 19200N 22280E 19200N 22300E 19200N 22320E	1.1 .9 .6	33.7 23.4 16.4 12.9 15.3	16.0 32.6 24.7	30 38 43	1.0 1.0 2.6	3.6 3.2 4.1	4.0 3.7 4.3	224 395 214	5.10 4.08 2.37	57.2 31.2 37.8 64.8 38.4	.4 .2 .1	6.5 3.9 2.9	.1 .2 .1	3. 5. 3.	2 1 1 9	2.6 .9 .9 0.1 .2 1	.2 .2 .2	75 71 43	.03	.062 .076 .052	6 4 6 7 6	9.8 12.1 6.1 2.6 2.9	.15 .08 .03	22 .0 32 .0 16 .0)29)06)04	2 1.14 1 1.74 1 1.21 4 .54 3 .58	.006 .006 .005 .004	.02 .01 .02 .02	.2 .06 .3 .15 .2 .05 .1 .04	2.9 2.2 1.4 1.0	.1<.0 <.1<.0 .1<.0	5 8 <.5 5 7 .8 5 9 <.5 5 5 <.5	7.5 15.0 15.0 15.0
19200N 22340E 19200N 22360E 19200N 22380E 19200N 22400E 19200N 22420E	.9 1.2 1.5	24.5 13.1 41.0 27.4 7.1	11.3 60.5 59.3	28 164 119	1.8 5.8 .6	2.6	3.2 8.7 6.0	412 400 579	3.15 4.86 6.57	44.3 19.2 134.0 340.9 77.2	.2 .3 2 .2 1	.7 < 7.7 5.6	:.1 .7 .3	3. 4. 3.	1 7 5 2 3	.6 .6 5.4 3.3	.2 .3 .5	79 55 93	.04 .06 .02	. 072 . 062 . 098	5 5	9.2 6.8 13.1 9.6 1.7	.08 .42 .16	24 .0 42 .0 45 .0)12)08)18	2 1.37 3 1.11 1 2.15 2 1.40 3 .74	.006 .005 .005	.02 .02 .03	.3 .07 .2 .15 .2 .07	1.0 4.1 2.4	.1<.0	59<.5 56.6 58<.5	7.5 15.0 15.0
19200N 22440E 19200N 22460E 19200N 22480E 19200N 22500E 19200N 22520E	2.1 1.2 .7	12.6 33.9 25.4 6.6 33.5	147.4 17.7 4.6	130 43 25	1.8 1.2 .4	8.3	8.4 4.5 2.6	561 263 201	5.29 5.03 .88	95.6 121.7 100.7 14.6 218.8	.4 1 .2 .1	0.5 8.5 1.5	.1 .2 .1	7. 5. 7.	61 41 1	6 4	.3 .3 .1	69 91 23	.08 .06 .10	. 109 . 029	8 4 10	5.8 12.9 10.3 3.9 12.4	.37 .15 .04	71 .0 35 .0 35 .0)29)25)07	2 .99 2 2.11 2 1.27 2 .40 1 1.64	.007 .006 .007	.04 .02 .03	.3 .10 .3 .12 .1 .04	3.0 2.1 .6	.1<.0 <.1<.0 .1<.0	5 10 .5 5 7 .5 5 4 <.5	15.0 7.5 7.5
19200N 22540E 19200N 22560E 19200N 22580E 19200N 22600E 19200N 22620E	1.7 1.3 2.0	32.1 51.5 49.2 89.2 58.8	78.4 40.0 53.6	189 195 344	6.2 1.5 2.4	6.5 7.9 8.0	10.7 10.7 20.4	1637 480 1716	4.02 5.17 4.56	493.4 860.5 828.9	.56 .62 1.51	2.3 1.0 1.8	.3 6 .1 7 .2 5	33. 52. 04.	7 2 6 2 2 2	2.3 2.4 2.4	.4 .3 .3	54 1 47 1 47 1	.30 .44 .02	. 099 . 090 . 091	11 6 10	10.6 11.2 10.8	.23 1 .22 1 .18 1	21 .0 22 .0 25 .0	007 014 019	2 2.36 2 1.31 1 1.44 2 1.32 2 1.76	.007 .007 .007	.04 .02 .03	.4 .13 .2 .12 .2 .11	5.1 3.6 5.6	.1 .0 <.1 .0 .1<.0	6 5 .6 6 5 .7 5 7 .5	15.0 7.5 7.5
19200N 22640E RE 19200N 22640E 19200N 22660E 19200N 22680E 19200N 22700E	5.3 1.1 1.4	250.6 249.0 34.2 32.0 28.0	124.7 45.0 28.3	931 99 65	14.4 3.9 1.2	27.0 6.6 6.4	16.7 8.5	16158 883 840	2.91 6.49 7.79		1.5 3 .2 1 .3 1	5.7 5.7 1.0	.9 10 .1 .1	033. 5. 5.	35 21	5.3 L.8 L.4	.3 .4 .3	25 2 69 97	.24 .06	. 383 . 126 . 153	60 5 7	12.4 11.7 10.3 12.5 7.6	.24 3 .13 .16	28 .0 40 .0 37 .0)08)16)32	2 2.43 3 2.67 1 1.23 2 1.37 2 1.14	.011 .005 .006	.05 .03 .03	.2 .39 .4 .12 .3 .13	20.2 2.1 2.7	.4 .1 .1<.0 .1<.0	7 43.1 5 6<.5 5 8.7	1.0 15.0 15.0
19200N 22720E 19200N 22740E 19200N 22760E 19200N 22780E 19200N 22800E	.8 1.5 1.6	99.8 62.5 84.5 42.2 31.2	22.9 47.8 26.5	191 145 95	6.0 5.9 1.5	14.8 12.7 6.8	11.7 20.8	757 2465 656	4.81 4.75 8.68	78.6	.51 .51 .5	2.0 0.5 4.8	.3 3 .5 3	3. 31. 11.	9 1 2 2	L.6 2.0 L.4	.1 .2 .2 1	59 55 06	.68 .72	.114 .130 .067	15 20 6	16.2 13.3	.64 1 .43 1 .18	03 .0 11 .0 49 .0	026 012 062	1 2.00 2 2.23 2 2.30 1 1.93 1 1.34	.009 .008 .006	.04 .04 .02	.1 .13 .2 .14 .3 .08	6.8 7.6 3.5	.1<.0 .1<.0 <.1<.0	5 71.2 5 71.0 5 12 .8	15.0 7.5 15.0
19200N 22820E 19200N 22840E 19200N 22860E 19200N 22880E STANDARD DS5	1.5 1.2 1.2	34.4 45.1 40.5 31.9 146.5	32.9 31.9 43.6	102 107 79	.3 1.2 1.7	7.8 6.9	6.5 8.9	430 622 909	6.57 9.39 8.76	105.3 194.6 170.2 142.9 17.9	.21 .2	9.2 0.7 8.4	.5 .7 .5	5. 4. 5.	1 2 7 1 4 1	L.7 2.5 L.6 L.8 3.9 6	.3 .4 .2	96 64 99	.04 .03 .08	.122 .135 .279	5 5 4	15.1 10.9 13.7 13.1 176.7	.16 .25 .24	50 .0 40 .0 43 .0	009 018 029	1 1.94 2 1.35 1 2.03 2 1.44 7 2.01	.005 .004 .005	.03 .02 .04	.4 .05 .5 .11 .3 .13	3.2 3.7 3.5	.1<.0 .1<.0 .1<.0	5 8 .5 5 7 .5 5 7 .5	15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Page 28

ACME ANALYTICAL																																ACRE	ANALTICAL	
 SAMPLE#	Mo DDM	Cu ppm		Zn ppm	-	Ni DDM	Co ppm		Fe %	As DDM	U mod				Cd Sb pm ppm			Ca %		La	Cr ppm											Ga Se : opm ppm	Sample gm	
 19200N 22900E 19200N 22920E 19200N 22940E 19200N 22940E 19200N 22960E 19200N 22980E	1.8 1.3 1.3 1.2	34.5 39.3 33.8 33.6	25.3 37.4 35.5 32.3	95 86 88 258	2.2 1.1 .9 1.3	7.8 9.0 8.3 13.4	8.5 11.7 9.1 18.2	699 1490 920 1299	8.09 8.13 5.72	94.2 68.7 145.6 167.9	.4 .3 .2 .3	11.5 6.3 8.9 10.9	.8 .3 .5 .7	5 4 4 19	· · · -	.2 .2 .3 .3	74 91 104 53	.03 .04 .28	.122 .212 .110	6 7 7	16.1 14.3 14.3	.33 .24 .38	51 . 40 . 103 .	012 020 006	1 1.9	8 .007 6 .005 2 .006	7.03 5.03 5.04	.3 .7 .3	.10 3. .07 3.0 .09 6.0	1.1 8.1 5.1	1<.05 1<.05 1<.05	7 .8 8 1.0 8 .8 6 .9 6 .9		
19200N 23000E 19200N 23020E 19200N 23040E 19200N 23060E 19100N 20500E	1.4 1.3 1.1	53.0 45.2 39.7	95.4 45.8 81.3	186 114 129	.8 1.2 .5	9.6 11.3 13.2	15.8 12.2 16.3	3538 1014 860	7.25 8.18 4.28	261.6 128.3 97.5	.2 .2 .2	41.7 26.8 38.5	.3 .5 .9	5 5 14	.2 1.4 .3 3.5 .2 1.9 .4 2.2 .6 .9	.3 .3 .2	81 84 47	.03 .07 .20	.122 .106 .084	6 6 8	12.6 15.4 12.3	.19 .37 .42	76 . 66 . 63 .	.016 .019 .005	11.7 11.5	3 .005 9 .005 1 .006	5.04 5.03 5.03	.6 .4 .6	.07 3. .06 4. .04 5.	9.1 9.1 6.1	1<.05 1<.05 1<.05		15.0 15.0 15.0 15.0 7.5	
19100N 20520E 19100N 20540E 19100N 20560E 19100N 20580E 19100N 20580E 19100N 20600E	1.2 .9 1.0	40.6 34.2 37.5	48.4 21.2 31.5	168 80 121	.7 1.3 1.2	9.6 9.0 8.5	7.4 4.7 7.9	397 326 314	5.56 2.42 3.22	87.2 38.0 54.4	.3 .1 .2	21.4 7.1 30.5	.7 .3 .4	20 109 56	.2 2.1 .6 1.1 .9 1.0 .5 1.3 .5 1.6	.2 .1 .1	65 30 44	.17 2.52 1.12	.064 .067 .056	10 8 8	12.9 7.5 9.1	.26 .23 .23	107 . 137 . 140 .	.002 .003 .006	2 1.4 1 2.0 1 1.1 1 1.3 1 2.1	8 .007 3 .009 9 .008	7.04 9.04 3.05	.4 .2 .3	.05 4. .07 3. .06 4.	8. 0. 6.	1<.05 1<.05 1<.05	8 .7 7 .8 3 1.0 4 1.1 6 .8	7.5 15.0 7.5 15.0 7.5	
RE 19100N 20600E 19100N 20620E 19100N 20640E 19100N 20660E 19100N 20680E	.9 1.7 1 4	37.7 65.1 37.6	46.5 97.9	160 178	.7 1.5 6	11.8 15.7 8 1	11.5 45.1 9.4	754 2325 591	4.66 8.58 4.89	71.8 127.4 64.5	.2 .3 .2	86.0 41.9 22.6	.6 1.0 .6	19 14 1 23	.5 1.5 .5 1.6 1.0 2.3 .3 1.2 .6 2.0	.1 .3 .2	64 68 62	.25 .13 .27	.065 .126 .067	10 9 8	15.5 19.6 11.1	.49 .44 .23	112 . 119 . 129 .	.008 .011 .004	1 2.1 1 2.5 <1 1.7	7 .008 2 .000 8 .003	3 .05 5 .03 7 .04	.4 .6 .2	.03 4. .11 8. .05 4.	8. 3. 3.	1<.05 1<.05 1<.05	6 1.1 6 .8 6 1.0 7 .6 5 .8	7.5 15.0 7.5 7.5 15.0	
19100N 20700E 19100N 20720E 19100N 20740E 19100N 20760E 19100N 20780E	$1.7 \\ 1.3 \\ 1.5$	47.9 28.3 45.4	73.6 35.6 50.0	5 159 5 90 9 92	1.2 .4 .6	14.3 7.3 8.9	15.7 7.5 7.7	740 253 285	4.47 2.99 4.75	98.3 55.9 84.3	.5 .2 .2	47.2 18.9 30.4	.8 .2 .6	35 49 10	.2 1.0 .8 1.3 .4 .6 .2 1.0 .5 .8	.2 .2 .2	48 34 60	.56 .78 .11	.085 .052 .039	10 4 7	14.4 8.3 10.2	.45 .20 .20	67 74 68	.006 .004 .005	<1 .8 1 1.9 1 1.0 1 1.7 1 1.7	4 .000 5 .009 2 .009	3 .04 9 .04 5 .02	.3 .2 .4	.07 8. .06 3. .04 3.	0. 2. 7.	1<.05 1<.05 1<.05	6 .5 5 1.6 3 .8 6 .6 5 .8	7.5	
19100N 20800E 19100N 20820E 19100N 20840E 19100N 20860E 19100N 20880E	2.8 1.6 1.3	59.9 47.4 36.8	36.9 53.0 16.4) 141) 138 4 42	.3 .4 1.6	9.6 10.7 6.0	15.4 10.1 4.4	1094 469 713	5.49 6.82 1.38	93.6 95.0 21.6	.1 .2 .2	28.0 19.5 5.2	.7 .7 .1	30 27 120	.3 .9 .2 1.1 .3 1.3 .5 .9 .2 1.4		62 66 14	.55 .51 3.39	.044 .047 .069	8 8	11.1 13.7 5.0	.29 .36 .19	92 77 58	.006 .007 .007	1 1.6 1 2.1	5.00 0.00 8.01	5.04 6.03 0.02	.3 .4 .1	.03 4. .12 1.	8. 7. 6<.	1<.05 1<.05 1 .06	2 1.7		
19100N 20900E 19100N 20920E 19100N 20940E 19100N 20960E STANDARD DS5	1.5 1.7	35.9 34.5 44 1	10.0 26.3 27	528 3130 374	1.0	4.6 8.4 7.1	3.7 8.9 6.9	620 647 330	.89 4.02 7.36	12.1 72.0 89.2	.3 .3 .2	5.1 10.8 17.6	.1 .2 .5	159 56 10	.8 1.4 .6 1.2 .4 1.2 .2 1.3 5.5 3.9	2.1 2.2 3.2	11 56 74	4.68 1.25 .17	.095 .060 .046	5 9 6	5.7 11.7 13.1	.16 .37 .19	47 72 40	.007 .012 .012	1 1.8 2 1.6	2 .01 1 .00 3 .00	0.02 7.03 5.02	.1 .2 .4	.15 1. .06 3. .05 4.	5<. 8. 0.	1 .14 1<.05 1<.05	5 2.2 2 4.4 6 1.8 8 .7 6 5.0	1.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 29

ACHE ANALYTICAL		ACME ANALYTICAL
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc 1	
	ppm ppm ppm ppm ppm ppm ppm % ppm ppm pp	pm % ppm ppm gm
19100N 20980E 19100N 21000E 19100N 21020E 19100N 21020E 19100N 21040E 19100N 21060E		.1<.05 8 .6 7.5 .1<.05 8 .6 7.5 .1<.05 6 .5 15.0
19100N 21080E 19100N 21100E 19100N 21120E 19100N 21140E 19100N 21160E	1.1 37.8 31.5 75 .5 6.7 7.1 407 5.99 158.1 .2 20.0 .2 5 .2 1.5 .2 71 .03 .066 7 10.9 .15 41 .012 1 1.28 .006 .03 .4 .07 3.1 .	.1<.05 7 .6 15.0 .1<.05 9 .6 15.0
19100N 21180E RE 19100N 21180E 19100N 21200E 19100N 21220E 19100N 21220E		.1<.05 7 .7 7.5 .1<.05 6 .6 15.0 .2 .08 5 .9 7.5
19100N 21260E 19100N 21280E 19100N 21300E 19100N 21320E 19100N 21320E 19100N 21340E	1.5 24.1 57.6 44 .6 4.5 4.8 413 4.73 43.0 .2 17.6 .1 5 <.1 .9 .1 77 .03 .079 7 9.6 .15 27 .016 1 1.43 .007 .03 .3 .05 2.2 . .8 9.9 3.7 18 .2 2.0 2.0 170 .91 18.6 .1 3.9 <.1 5 <.1 .4 .1 30 .05 .037 8 4.0 .04 23 .006 3 .54 .007 .03 .3 .03 .6 .	.1<.05 8 .5 15.0
19100N 21360E 19100N 21380E 19100N 21400E 19100N 21420E 19100N 21440E	2.4 30.6 49.0 137 .6 6.9 22.0 4653 4.59 55.4 .5 22.2 .1 21 .7 1.0 .2 48 .34 .104 10 11.4 .30 83 .007 1 1.88 .007 .05 .3 .07 3.2 . 1.1 22.4 11.0 37 .2 4.2 4.5 252 3.05 42.6 .1 33.4 .1 5 .1 0.0 .09 .043 6 5.7 .66 49 .006 5 .62 .006 .02 .3 .04 1.8 .9 23.8 21.2 80 .7 6.4 6.4 267 3.18 33.5 .3 28.1 .3 18 .3 .5 .1 49 .32 .058 9 10.7 .35 3.007 1 1.94 .006 .02 .2 .05 3.0 .1 .1 .1 .8 .2 58 .01 .040 8 .52	.1<.05 6 .5 7.5 .1<.05 8 .6 15.0 .1<.05 8 .5 15.0
19100N 21460E 19100N 21480E 19100N 21500E 19100N 22200E 19100N 22220E	5.2 73.4 23.3 188 5.0 16.5 10.4 2969 3.18 130.3 3.7 21.7 1.0 158 3.2 1.2 .2 29 1.85 .201 28 15.9 .34 203 .004 3 3.78 .012 .05 .3 .23 14.1 . 1.1 26.1 42.0 51 .5 5.7 6.5 416 7.67 38.4 .3 2.9 .4 3 .2 .8 .2 107 .02 .083 4 14.6 .25 31 .050 1 2.38 .005 .02 .2 .09 3.7 .	.1<.05 4 1.2 1.0 .1 .10 4 4.5 7.5
19100N 22240E 19100N 22260E 19100N 22280E 19100N 22300E STANDARD DS5	1.6 41.2 52.5 80 1.3 8.3 7.8 414 5.78 102.7 .2 8.6 .7 5 .4 1.8 .2 49 .04 .090 6 11.8 .24 40 .005 2 1.78 .006 .03 .3 .10 3.6 .	.1<.05 9 .6 15.0 .1<.05 5 .7 7.5 .1<.05 9 .6 7.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_

Page 30

ACME ANALYTICAL																														ALME A	NALYTICAL
SAMPLE#	Мо	Cu	Pb Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd S	b B	i V	Ca	Р	La	Cr	Mg	3a Ti	В	Al	Na	κw	Ha	Sc	T1 S	S Ga Se	Sample
	ppm	ppm	ppm ppm	ppm	ppm	ppm	ppm	*	ppm p	opm	ppb	ppm	ppm j	opm pp	прр	m ppm	*	*	ррт	ppm	х́р	sm 🗴		*	*					ppm ppm	gm
19100N 22320E 19100N 22340E 19100N 22360E 19100N 22360E 19100N 22380E 19100N 22400E	1.2 1.2 .8	42.6 49.3 14.3	28.8 68 77.2 81 48.9 91 11.6 30 17.8 60	.7 .6 .7	9.5 10.6 2.5	9.0 12.6 2.6	897 770 108	7.02 2.14	622.6 138.0 70.6	.2 .1	20.8 23.6	.3 .8 .1	6 5 4	.2 2. .4 2. .4 2. .1 1. .1 2.	9. 0. 2.	3 50 3 53 2 54	.08 .08 .03	.251 .087 .063	5 6 8	17.6 15.7 4.8	.18 .42 .04	39 .010 56 .007 47 .012 27 .004 23 .005	11. 12. 1.	75 .0 40 .0 91 .0	05. 04. 05.	02 .6 03 .3 02 .4 03 .2 03 .4	.17 .09 .06	2.4 4.6 .9	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	55.9 55.6 57<.5	15.0 15.0 7.5 15.0 15.0
19100N 22420E 19100N 22440E 19100N 22460E 19100N 22480E 19100N 22500E	1.2 1.0 1.0	30.3 23.0 23.5	304.8 159 35.3 77 478.6 94 34.7 101 27.0 119	.6 2.8 .7	6.4 4.9 4.9	6.5 5.1 7.0	309 373 858	7.89 4.66 4.57	357.0 1666.2 495.9	.2 .2 .2	11.0 165 31.4	.6 .3 .1	7 6 28		2. 3. 7.	4 87 9 73 7 64	.07 .06 .53	.056 .054 .069	6 8 7	8.6	.25 .17 .17 1		12. <11. <11.	56 .0 28 .0	104 . 105 . 105 .	02 .4 04 .4 03 .3	.06 .08 .05	3.5 2.3 2.0	.1<.05	5 9 <.5 5 8 <.5 5 8 <.5	15.0 15.0 15.0 15.0 15.0
19100N 22520E 19100N 22540E 19100N 22560E 19100N 22580E 19100N 22580E 19100N 22600E	1.6 1.7 1.2	35.1 51.1 18.1	33.9 59 45.4 109 23.8 261 18.3 39 29.0 214	.6 1.4 1.1	9.1 13.0 3.2	7.5 9.0 3.4	318 824 146	4.42 3.51 2.24	321.8 359.1 60.5	.3 .8 .2	16.1 11.4 10.5	.5 .5 .2	11 31 5	.6 1. 1.7 2. .1 1.	9. 2. 7.	4 57 2 49 2 46	.15 .57 .05	.051 .116 .036	8 13 9	11.8 13.4 4.5	.36 .53 .04		11. 11. 2.	86 .0 65 .0 81 .0	106 . 106 . 105 .	03 .3 03 .3 03 .2 02 .4 04 .3	.06 .06 .07	3.5 5.8 1.3	.1<.05 .1<.05 .1<.05	5 6 .5 5 5 .6 5 5 <.5	15.0 15.0 15.0 15.0 15.0
19100N 22620E RE 19100N 22600E 19100N 22640E 19100N 22660E 19100N 22680E	1.0 1.6 1.4	38.2 25.3 19.1	24.0 69 30.3 226 30.0 58 18.4 52 40.2 135	2.4 .9 1.6	5.9 5.1	9.8 6.4 4.1	886 523 180	3.65 6.99 3.98	155.6 68.9	.4 .3 .2	12.2 9.0 3.5	.4 .8 .4	29 4 8	.2 1. .1 1.	9. 4. 2.	2 52 3 104 2 74	.53 .03 .08	.101 .065 .030	13 8 6	14.3 12.8 11.2	.63 .23 .23	52 .027 81 .021 43 .035 41 .012 03 .014	1 1. 1 2. 1 1.	04 .0 64 .0	07 . 05 . 05 .	04 .4	.08 .09 .07	5.4 3.4 2.7	.1<.05 .1<.05	5 6 <.5 5 10 < <i>.</i> 5 5 8 <.5	15.0 15.0 15.0
19100N 22700E 19100N 22720E 19100N 22740E 19100N 22760E 19100N 22780E	1.6 1.3 1.6	43.8 35.1 36.5	81.7 250 121.1 375 38.4 312 43.0 118 32.4 83	1.4 1.8 1.4	11.4 11.0 6.7	13.2 10.5 9.6	983 760 743	6.10 4.43 10.02	362.9 92.0	.3 .3 .4	14.2 5.3 10.9	.5 .2	18 10 7	.83. .71. 1.71.	9. 7. 8.	4 66 2 63 4 84	.25 .13 .08	.113 .062 .090	9 7 7	12.4 12.9 17.8	.29 1 .38 .21	73 .005 74 .007 79 .053	11.	65 .0 71 .0 28 .0)06 .)06 .)05 .	04 .2 02 .3	.06 .06 .12	4.1 3.1 4.0	.1<.05	5 7 <.5 5 7 <.5 5 8 .6	15.0
19100N 22800E 19100N 22820E 19100N 22840E 19100N 22860E 19100N 22880E	1.3 1.9 1.2	31.3 187.0 35.8	36.8 81 30.4 93 66.6 333 46.9 89 30.6 79	1.0 24.1 1.5	7.1 41.9 7.4	7.4 18.8 7.0	541 7929 372	5.20 4.92 5.46	87.2 474.4 141.8	.2 .9	13.3	1.3	5 53	.1 1. .3 1. 5.3 3. .4 2. .2 1.	3. 6. 3.	2 70 2 42	.03 1.00 .03		9 25 8	9.8 20.0	.21 .40 2 .15	50 .006	13.	58 .0 07 .0 41 .0)07 .)10 .)06 .	05 .3 07 .1 04 .3	.07 .50	3.2 26.9 2.8	.1<.05 .1<.05 .3 .13 .1<.05 .1<.05	5 9<.5 3 62.7 5 6<.5	
19100N 22900E 19100N 22920E 19100N 22940E 19100N 22960E STANDARD DS5	1.7 1.2 1.4	30.1 42.3 45.8	75.0 337 25.2 64 44.7 110 42.6 142 25.4 129	1.4 .8 4.2	5.0 8.1 10.1	4.2 8.4 12.0	175 856 1733	2.92 4.05 5.12	112.6 235.5	.1 .1 .2	9.5 15.0 10.8 11.3 42.4	.5 .3	4 7 6	.22. .42.	0. 1. 6.	3 65 3 53 4 49	.03 .06 .02	037 078 078 078	11 8 8	4.9 6.2 7.9	.06 .09 .12	14 .001 45 .004 84 .002 68 .003 34 .096	1 11 11	11 .0 22 .0)05 .)07 .)07 .	03 .3 05 .4 05 .4	.04 .04 .09	2.3 3.2 2.9	.1<.05	5 7 <.5 5 5 <.5 5 5 <.5	15.0 7.5 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_AFA

Page 31

ACME ANALYTICAL																																		
 SAMPLE#	Мо	Cu			Ag				Fe						d Sb			Ca		La		Mg		i E		Na		W H	•	: T1		a Se Si		
	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	*	ppm	opm p	pp pj	om pp	m pp	m ppm	ppm	ppm	*	<u> </u>	ppm	ppm	% p	pm	% ppn	1 %	8	Хp	pm pp	m ppm	ppm	% ppm	i ppm	gm	
19100N 22980E 19100N 23000E 19100N 23020E 19100N 23040E 19000N 20500E	1.1 1.0 1.0	70.3 37.7	71.6 64.4 59.2	262 214 196	3.3 1.4 1.2	18.4 9.6 12.1	12.5 10.5 9.8	2756 745 649	4.74 4.57 4.06	130.8	.4 27 .2 9 .2 34	.5 1 .7 .9	.02 .81 .72	93. 7.	0 2.1 5 1.7 7 2.1	.2 .2 .1	46 58 45	.48 .24 .42	.109 .079 .071	23 8 11	13.7 10.9 9.8	.42 1 .31 1 .37 1	80 .00 27 .00 19 .00	2 1 2 1 2 <]	2.05 1.85 1.61	.008 .007 .006	.06 .10 .06	.4 .19 .5 .04 .7 .09	5 13.9 4 6.0 5 5.8) .1<.) .1<.) .1<.) .1<.) .1<.	.05 6 .05 6 .05 5		7.5 15.0 15.0 15.0 15.0	
19000N 20520E 19000N 20540E 19000N 20560E 19000N 20580E 19000N 20600E	.9 1.0 1.8		188.8 35.2 23.5	214 129 91	.4 .6 .7	12.1 10.6 13.7	10.2 8.6 17.7	657 387 1332	4.61 4.67 4.66	101.2 37.1	.2 24 .1 21 .3 5	.9 .4 .5	.62 .61 .65	5. 5. 8.	5 1.3 3 1.5 7 .8	.2 .1 .1	59 61 39	.29 .15 .71	.083 .065 .110	10 8 11	12.6 11.3 8.5	.47] .34 .26]	14 .00 64 .00	3 <1 3 1 1 1	1.97 1.57 1.17	.007 .006 .010	.05 .04 .05	.2 .0 .3 .0 .2 .0	5 5.1 3 4.9 8 10.5	2 .1<. 1<. 9 .1<. 5 .1 .	.05 6 .05 7 .06 3	<.5	7.5 15.0 15.0 15.0 7.5	
19000N 20620E 19000N 20640E 19000N 20660E 19000N 20680E 19000N 20700E	1.5 .8 1.4	29.5 38.9 33.1 73.6 62.2	59.1 29.4 25.2	133 54	1.2 .3 .1	9.5 6.0 11.7	7.7 5.8	334 305 322	6.04 8.13 4.91	88.0 23.3 26.9	.2 16 .2 22 .2 4 .1 3 .1 4	2.2 .7 .3	.7 1 .7 .7 2	2. 5.	3 1.9 3 1.4 1 .5 2 3.0 1 .6	.1 .2 .2	62 67 32	.07 .02 .02	.053 .089	8 10 11	13.8 14.9 5.9	.35 .23 .09	61 .00 67 .00 55 .00	5 <1 1 <1 1 <1	2.00 1.91 .98	.006 .006 .006	.03 .03 .03	.3 .0 .1 .1 .1 .0	6 4.9 0 4.3 3 6.4		.05 7 .05 2	/ <.5 / .6 2 .6	15.0 15.0 15.0 15.0 15.0 15.0	
19000N 20720E 19000N 20740E 19000N 20760E 19000N 20780E 19000N 20800E	1.5 2.9 2.2	37.5 54.5	26.4 65.8 48.2	95 180 134	.3 1.1 .5	9.8 14.0 11.6	7.5 18.4 11.0	210 1268 610	3.47 5.46 3.97	139.9 104.1	.1 23 .5 46 .5 29	8.1 5.1 9.2	.56 .71 .64	7. 7.	2 2.6 4 1.2 3 .8	.1 .3 .2	57 51 54	.04 .10 .73	.045 .097 .088	10 12 8	7.3 12.2 12.7	.08 .33 .44	81 .00 82 .00	3 1 4 <1 6 1	.94 2.11	.005 .007 .007	.04 .05 .04	.2 .0 .4 .0	3 3.5 8 8.0 7 5.8	5 .1<. 5 .2<. 9 .1<. 8 .1<. 7 .1<.	.05 5 .05 6 .05 6	5.6 51.7 51.4	15.0 15.0 15.0 15.0 15.0	
19000N 20820E 19000N 20840E 19000N 20860E 19000N 20880E 19000N 20900E	1.5 2.4 2.1		38.5 55.7 32.2	116 158 123	$1.1 \\ 1.8 \\ 1.8$	9.8 12.4 13.3	9.6 12.9 12.4	389 1083 944	3.26 4.07 3.68	49.8 80.7 68.4).7).4).6	.555 .65 .56	6. 6. 50.	3 .6 6 1.0 5 1.0	.1 .2 .2	46 48 47	1.10 1.03 1.09	.096 .116 .127	9 14 12	11.1 13.6 14.2	.46 .39 1 .43	95.00	8 1 3 <1 4 1	1.61 2.03 2.06	.008 .009 .011	.04 .05 .06	.5 .0 .2 .1 .3 .1	8 5.8 1 9.4 1 8.8	5 .1<. 8 .1<. 4 .1<. 8 .1 . 5 .1<.	.05 5 .05 5 .08 5	5 1.5 5 1.5	15.0 15.0 15.0 15.0 7.5	
19000N 20920E 19000N 20940E 19000N 20960E 19000N 20980E 19000N 21000E	3.7 2.8 2.2	7.6 29.5 25.7 37.0 14.7	37.8 21.8 26.8	109 98 97	.9 .5 .2	7.6 7.5 9.4	12.3 10.9	878 648 514	4.04 4.34	78.0 68.4 82.2	.2 23	2.2 3.3 3.8	.8 3 .5	16. 38. 9.		.2 .2 .2	52 60 61	.86 .66 .09	.076 .041 .051	11 10 7	12.2 11.1 10.8	.24 .28 .29	75 .00 59 .00	14] 12 <] 15]	1.72 1.93 1.44	.009 .008 .007	.04 .03 .04	.2 .1 .2 .0 .3 .0	0 5.8 4 5.0 5 4.1) <.1 . 3 .1<.) .1<. 1<. .1<. 3 <.1 .	.05 5 .05 7 .05 6	2 .5 5 1.9 7 1.1 5 <.5 1 2.2	1.0 7.5 15.0 7.5 1.0	
RE 19000N 21000E 19000N 21020E 19000N 21040E 19000N 21060E STANDARD DS5	.9 1.2 1.2	15.3 39.6 17.4 17.9 136.1	7.3 9.3 7.9	3 16 3 24 9 33	2.8 .2 .3	4.1 2.9 4.5	4.1	192 103 222	2.55 5.04	35.8 46.0 13.7	.3 € .1 11 .2	5.1 1.3 .6	.1 16 .2 1 .5	5. 1.	4 .9 1 .9 1 .5	.1 .1 .2	6 64 169	3.99 .11 .05	.081 .041 .026	7 9 5	4.2 5.6 10.3	.22 .05 .13	51 .01 35 .00 31 .16	.0 4 15 1 162 1	.46 .78 .1.15	.010 .006 .007	.01 .03 .02 <	.1 .1 .4 .0 .1 .0	4 1.5 6 1.3 5 2.6	3 <.1 . 5 <.1 . 3 <.1<. 5 <.1<. 5 1.1<.	.13 2 .05 7 .05 13		1.0 7.5 15.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 32

																															AUNE A	NALYTICAL
SAMPLE#	Мо	Cu	Pb	Zn	Aq	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd Sb	Bi	٧	Ca	Р	La	Cr	Ma	Ba	Ti	B A	Na	ь К	W Ho	Sc	T1	S Ga Se	Sample
	ppm	ppm	ppm	ppm p	ppm	ppm	ppm	ppm	8	ppm	ppm				opm ppm			*	*	ppm	ppm			× c	DAN S	1	8	ppm ppn	חסמ ו	maa	% ppm ppm	
19000N 21080E 19000N 21100E 19000N 21120E	2.2	16.1 28.6 35.0	13.9	50	.2	4.3	5.3		.99 5.63 7.85	4.5 56.1 93.6	.2	.8 7.0	.1 .3	5 8	.1 .2 .1 1.1 .2 1.7	.1	22 99	.03	.056 .100 .110	8		.05	27 . 37 .	001 006	1.10	00.006 005.005	5.05 5.02	.1 .05	.4	.1<.0	15 3 <.5 15 8 <.5	7.5 15.0
19000N 21140E 19000N 21160E	1.7 1.6	50.9 26.8	22.1 2.8	102 1 51	1.0 1 .2 1	l0.1 l2.1	18.0 10.5	8574 274	5.62 2.93	350.8 19.4	.2 .1	55.6 <.5	.3 .1	31 14 •	.3 1.8 .1 .3	.8 .1	24 65	.45 .03	.158 .070	10 9	4.4 13.3	.07 2 .08	256 . 25 .	003 002	1.57 2.49	005 .005 . 004	.05 .03	.2 .09 .1 .02	2.9 1.1	.2<.0 .1<.0	15 6 .6 15 5 <.5	7.5
19000N 21180E 19000N 21200E 19000N 21220E 19000N 21240E 19000N 21260E	1.2 1.1 .9	25.1	22.2 102.6 14.9	40 127 30	.2 .5 1 .7	4.6 1.1 4.2	4.4 11.9 4.5	316 4495 223	3.87 4.34 4.68	64.0 241.6 47.8	.2 .3 .2	20.9 7.2	.2 .2 .1	9 35 7	.1 .9 .1 1.0 .8 1.0 .1 .7 .3 1.1	.2 .2 .1	63 50 76	.02 .65 .07	.175 .050	10 9 8	5.7 11.2 14.8 9.3 20.0	.11 .50 .11	29 . 98 . 52 .	013 010 008	1 1.13 2 2.04 1 1.27	005 . 007 . 007 .	.03 .04 .02	.2 .04 .3 .06 .3 .05 .3 .08 .1 .29	1.9 3.2 2.0	.1<.0 .1<.0 .1<.0	57<.5 56<.5 57<.5	15.0 15.0 15.0
19000N 21280E 19000N 21300E 19000N 21320E 19000N 21340E 19000N 21360E	1.0 1.3 1.4	44.9 38.1 26.9 44.6 10.7	17.0 11.4 49.5	46 39 82	.4 .3 .2	6.0 5.1 8.8	5.4 5.1 8.8	472 366 569	5.11 4.91 7.55	37.8 34.7 114.3	.2 .2 .3	9.8 11.5	.1 .3 .6	6 6 5	.2 1.2 .2 .7 .2 .8 .4 1.5 .2 .3	.3 .1 .1	55 72 69	.07 .04 .04	.184 .065 .067 .048 .059	6 6 6	14.4 13.4 11.2 17.2 4.4	.26 .19 .40	40 . 38 . 37 .	012 006 030	1 1.42 1 1.30 <1 2.30	005 007 004	.02 .03 .02	.3 .06 .4 .08 .2 .06 .6 .06 .1 .07	2.3 2.6 4.3	<.1<.0 .1<.0 .1<.0	5 5 <.5 5 7 <.5 5 7 <.5	15.0 15.0 15.0
19000N 21380E 19000N 21400E 19000N 21420E 19000N 21440E 19000N 21460E	1.2 1.3 1.5	38.3 71.7 19.9 81.4 31.8	71.9 14.8 55.7	119 4 43 97	4.4 1 .3 .6	2.2 3.6 9.6	12.8 3.9 8.2	2933 323 388	3.64 4.98 7.24	27.6	1.1 .2 .2	17.5	.8 .2	33 1 4 23	.4 .5 .7 1.0 .1 .8 .3 1.9 .2 1.1	.1 .2 .6	32 77 57	.53 .03 .02	.254 .062 .084	35 7 6	14.1 8.5 9.0	.35 .11 .12	74 . 21 . 30 .	008 008 006	12.53 11.14 11.29	007 005 006	.04 .02 .02	.2 .06 .2 .19 .3 .05 .5 .06 .4 .06	15.1 2.1 2.9	.1 .1 .1<.0 .1<.0	0 41.5 5 9<.5 5 6<.5	15.0 15.0 15.0
19000N 21480E 19000N 21500E 19000N 22200E 19000N 22220E 19000N 22240E	2.4 1.1 1.1	37.8 36.3 19.0 14.2 43.6	19.1 13.6 13.0	83 40 21	.7 .4 1.3	8.4 5.2 3.3	8.2 4.1 2.2	244 110	6.15 3.07 1.18	79.9 54.9 25.6	.4 .2 .4	9.3 23.4 2.3 18.0 21.8	.2 .1 .1	25 5 8	.3 1.2 .4 1.1 .2 .7 .2 .3 .5 1.6	.1 .2 .2	84 26	.36 .03 .04	.075 .048 .057 .106 .057	8 7 6	13.4 10.4	.36 .18 .14	62 . 29 . 31 .	014 005 001		.006 .007 .007	.02 .03 .03	.4 .03 .3 .07 .2 .06 .1 .15 .3 .14	3.2 1.7 .9	<.1<.0 .1<.0 .1 .0	5 6 .7 5 9 <.5 7 5 .5	15.0 15.0 7.5
19000N 22260E 19000N 22280E 19000N 22300E RE 19000N 22300E 19000N 22320E	1.7 1.5 1.4	38.8 22.7 33.0 31.5 34.6	43.1 40.3 37.7	177 76 74	.9 .7 .6	3.0 5.8	5.1 5.8 5.6	337 325	2.80 5.47 5.30	272.1 158.6 153.2	.3 .3 .3	16.7 14.3 13.8	.2 .1 .1	18 5 4	.8 1.3 .5 3.8 .5 1.7 .3 1.7 .4 2.2	1.0 .3 .3	38 54 54	.27 .03 .03	.075 .086 .086	10 6 6	8.6	.12 1 .18 .17	117 . 39 . 36 .	003 005 005	1 1.17 <1 1.38	.006 .005	.06	.1 .22 .1 .04 .4 .08 .2 .08 .4 .12	1.5 1.8 1.5	.1<.0 .1<.0 .1<.0	5 6 <.5 5 6 .5 5 6 <.5	7.5 7.5 7.5
19000N 22340E 19000N 22360E 19000N 22380E 19000N 22400E STANDARD DS5	1.5 2.8 3.4	38.9	29.4 58.4 44.9	339 2 120 9 240 6	2.3 1 5.6 5.1 1	0.2 9.4 4.6	8.1 7.7 10.4	3419 806 5569	3.43 3.88 3.95	513.5 837.3 589.8	.5 .4 (.8	12 3 28 40.3	.6 .4 .5	39 3 24 29 3	.2 2.5 3.2 2.4 .5 6.6 3.1 3.8 5.3 3.9	.5 11.7 .4	40 38 45	.74 .27 .48	.134 .111 .142	10 8 16	12.1 9.0 12.0	.46 2 .28 .37 1	205 . 66 . 183 .	003 003 006	1 1.53	.006	.04 .07 .06	.3 .05 .3 .06 .3 .06 .2 .13 4.7 .17	3.8 2.4 4.5	.1<.0 .1<.0 .2<.0	5 7 .5 5 5 <.5	15.0 15.0

4

Sample type: SOIL SS80_60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Page 33

ACHE ANALYTICAL	ACHE ANALYTICAL
SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hg Sc Tl S G	a Se Samole
	mippini gmi
hhur hhur hhur hhur hhur hhur hhur hhur	<u></u>
19000N 22420E .9 30.3 62.9 113 1.5 6.9 7.1 565 6.49 273.6 .3 22.0 .3 7 .2 2.0 .5 70 .11 .143 7 10.5 .26 72 .010 2 1.81 .007 .05 .4 .09 2.0 .1	7 <.5 15.0
	6 <.5 15.0
19000N 22460E .9 26.2 27.4 113 1.4 5.9 6.9 529 6.38 206.4 .4 32.1 .2 5 .4 1.3 .7 94 .06 .089 5 12.9 .29 56 .021 2 2.04 .006 .06 .2 .08 2.1 .1<05 1	0 <.5 15.0
19000N 22480E 1.7 48.4 93.8 195 .8 8.7 9.3 708 7.67 583.0 .3 57.1 .9 5 .3 5.0 3.3 63 .07 .082 6 12.2 .28 65 .007 2 1.93 .005 .05 1.3 .07 2.9 .1<.05	7 <.5 15.0
19000N 22500E 1.2 46.1 80.9 181 1.4 11.6 11.1 639 7.60 322.5 .3 33.2 1.1 4 .6 2.5 .6 63 .04 .077 6 19.0 .48 63 .008 1 2.83 .006 .04 .8 .14 4.0 .1<.05	6 .7 15.0
19000N 22520E 1.2 43.0 106.1 191 1.3 10.4 12.7 684 6.68 548.7 .3 47.7 1.1 5 .5 3.0 1.7 54 .06 .076 6 14.1 .36 56 .006 <1 2.21 .005 .03 .4 .10 3.5 .1<.05	
	.0 .5 15.0
	5.5 7.5
	6 <.5 7.5
19000N 22600E 1.6 42.2 25.9 85 1.5 9.2 8.0 303 8.68 116.7 .3 5.0 1.0 5 .3 1.5 .3 103 .03 .038 6 17.8 .31 43 .032 1 2.62 .006 .03 .4 .10 4.2 .1<.05 1	.0 .5 15.0
19000N 22620E 1.3 70.5 47.3 271 3.2 20.5 18.3 697 5.26 290.7 .4 11.0 .7 39 .9 2.4 .2 62 .63 .092 11 16.0 .61 131 .013 <1 2.43 .010 .06 .3 .07 7.2 .1<.05	7 <.5 15.0
19000N 22640E 1.6 27.5 45.9 82 2.0 5.2 6.6 653 6.64 358.3 .2 4.7 .4 5 .3 2.7 .5 85 .04 .075 7 9.6 .10 38 .012 1 1.75 .005 .03 2.3 .12 2.7 .1<.05 1	0 <.5 15.0
19000N 22660E 1.9 90.1 38.1 219 6.1 19.5 14.3 2215 4.67 679.5 .7 29.5 .7 32 1.4 2.6 .3 62 .54 .114 17 19.6 .66 140 .013 <1 2.43 .010 .05 .3 .14 9.6 .1<.05	7 .8 15.0
19000N 22680E 1.9 31.7 52.3 102 2.1 4.4 11.8 371 3.01 426.1 .3 10.0 .3 30 .5 1.9 .4 41 .63 .058 10 4.8 .09 86 .007 2 1.34 .008 .03 .5 .05 2.0 .1<.05	6 <.5 15.0
19000N 22700E 1.1 44.6 30.9 60 4.2 5.9 5.7 234 7.50 464.6 .2336 .4 6 .3 12.7 .2 73 .03 .048 5 13.4 .21 32 .024 1 1.59 .005 .02 .4 .11 3.0 .1<.05	8 .6 15.0
19000N 22720E 1.5 46.5 46.6 111 1.5 7.5 7.4 330 6.58 588.4 .2 36.9 .7 4 .4 3.1 1.8 61 .02 .064 6 10.2 .14 37 .008 1 1.56 .005 .02 1.2 .08 3.0 .1<.05	7 .6 15.0
	4 1.4 7.5
	6 <.5 1.0
	5 2.7 15.0
	6 2.3 7.5
	02.3 7.5
	6 <.5 7.5
	7 .7 15.0
	4 1.3 7.5
	6.5 1.0
19000N 22900E 1.2 35.5 95.4 181 1.1 6.8 8.8 392 4.29 147.9 .1 9.6 .6 18 .7 2.0 .2 51 .39 .059 6 8.2 .21 90 .004 <1 1.45 .005 .03 .4 .04 3.5 .1<.05	6 <.5 15.0
19000N 22920E 1.2 34.4 38.7 109 1.1 6.6 8.4 474 5.92 195.5 .1 5.6 .7 8 .3 2.2 .2 67 .16 .062 6 7.9 .14 60 .004 <1 1.40 .005 .04 .4 .04 3.1 .1<.05	7 <.5 15.0
	8.6 7.5
	5 <.5 7.5
	7 .5 15.0
	7 <.5 15.0
	5 <.5 7.5
	5 <.5 15.0
18900N 22200E 1.9 25.5 14.8 45 .6 4.9 4.4 322 4.44 34.2 .3 2.8 .1 24 .3 .7 .2 101 .45 .101 8 8.6 .12 51 .013 1 1.26 .008 .03 .3 .07 1.4 .1<.05 1	1 <.5 15.0
	5 <.5 7.5
STANDARD DS5 12.4 144.2 26.1 135 .3 24.0 11.7 787 2.98 18.0 5.9 42.9 2.7 44 5.4 3.8 6.0 60 .73 .093 11 188.0 .69 136 .098 16 2.05 .034 .16 5.1 .17 3.4 1.0<.05	7 5.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 34

ACME ANALYTICAL											_																		<u> </u>	T1 (Comple
SAMPLE#	Mo Dom	Cu ppm	Pb ppm			Ni ppm	Со ррт		Fe %	As ppm p					Cd Sb ppm ppm			Ca %		La ppm	Cr ppm			Ti Xip	B A1 pm %			Wi Hg ppm ppm			S Ga Se Sppm ppm	Sampie gm
18900N 22240E 18900N 22260E 18900N 22280E 18900N 22300E 18900N 22300E	1.1 1.0 1.4 1.3	26.6 38.9 51.4 40.0	19.5 55.6	59 90 111 322	1.0 1.0 2.3 2.6	5.9 9.9 6.9 7.3	5.5 8.4 7.8 6.7	397 375 345	5.94 6.01 7.01	120.7 232.7 156.9 769.0 77.0	.3 .3 .3	6.3 72.6	.4 .3 1.2	7 6 6 6	.1 1.3 .2 5.3 .4 5.1 .7 9.4 .8 .7	.3 .4 .7	66 93	.02 .06 .04	.092 .106 .066 .062 .110	7 7 7	10.6 11.6 14.8	.18 .21 .20	39. 35. 49.	003 004 002	1 1.78 <1 1.67 <1 2.17	.006 .006 .006	.04 .03 .03	.2 .07 .2 .10 .2 .09 .5 .13 .2 .14	2.7 2.6 3.3	.1 .06 .1<.05 .1<.05	5 8 <.5 5 9 <.5 5 10 <.5	15.0 7.5
18900N 22340E 18900N 22360E 18900N 22380E 18900N 22400E 18900N 22400E 18900N 22420E	4.0 .6 1.2	172.3 29.4 24.9	21.4 403.1 64.5 36.8 112.0	1249 144 206	12.0 .4 .8	22.4 4.1 6.4	18.4 4.5 7.2	9242 234 692	4.90 3.62 3.51	144.8 1154.0 2 640.9 229.1 1009.7	2.0 .3 .3	37.4 16.7	1.3 .6	58 2	.6 1.9 2.7 4.4 .2 5.0 .2 1.9 .1 5.2	.8 1.5 .7	36 47 54	1.20 .05 .07	.326 .116	39 8 9	19.8 5.5 8.2	.33 1 .12 .25	87. 60. 86.	013 003 004	2 2.82 1 1.50 <1 1.66	.014 .007 .007	.09 .06 .08	.2 .09 .1 .31 .2 .06 .3 .03 .4 .07	14.6 1.6 2.0	.3 .11 .2<.05 .2<.05	5 9<.5	7.5 15.0
18900N 22440E 18900N 22460E 18900N 22480E 18900N 22500E 18900N 22500E 18900N 22520E	1.5 .8 1.1	47.6 40.3 23.0	61.3 153.7 38.1	271 189 77	1.7 3.2 1.7	10.7 8.9 6.4	10.5 10.4 6.9	777 790 286	4.63 5.95 4.52	219.4	.4 .4 0 .3	39.6 58.8 16.4	1.3 .7 .2	6 7 8 6 5	.2 4.7 .5 2.9 .4 3.9 .2 3.8 .7 4.8	.7 1.0 1.4	47 45 60	.10 .03	.123 .088 .105 .086 .088	8 7	13.2 9.9 6.0	.35 .29 .07	76 . 59 . 41 .	004 004 003	<1 2.62 <1 1.76 <1 1.15	.006 .007 .006	.06 .07 .04	.3 .09 .4 .12 .5 .09 .2 .10 .5 .14	3.8 2.5 1.5	.1<.05 .1<.05 .1<.05	55.5 55.5 57.5	15.0 7.5 7.5
RE 18900N 22460E 18900N 22540E 18900N 22580E 18900N 22600E 18900N 22620E	1.9 1.0 1.2	101.0 17.2 18.7	61.8 243.6 154.3 17.0 14.4	236 41 51	4.3 1.9 .8	15.5 3.4 4.3	29.7 2.6	1771 112 266	5.44 2.05 3.02		.7 6 .4 6 .2	238.7	1.4 .7	41 5 7	1.6 7.2 .3 1.2 .1 1.0	1.1 .4 .3	38 41 80	.88 .04 .04	.117 .080 .080	24 7 9	11.3 10.0 5.9	.38 .17 .08	98 . 32 . 30 .	.002 .004 .002	1 2.09 <1 2.05 1 1.04	.008	.05 .04 .03	.3 .13 .2 .14 .2 .14 .2 .07 .1 .06	7.1 2.2 1.6	.1<.0	5 41.2 5 9 .8 5 8 <.5	1.0 7.5 7.5
18900N 22640E 18900N 22660E 18900N 22680E 18900N 22700E 18900N 22720E	1.3 1.3 .9	34.5 21.7	57.5 32.6 23.5	145 72 45	2.1 .7 3.5	8.2 4.9 3.1	8.9 5.4 3.7	627 265 140	7.28 4.06 1.94	285.5 599.3 150.3 113.9 159.0	.2 .2 .1	8.3 2.2 10.9	.2 .1 .1	7 13 4	.1 2.8 .3 4.7 .3 1.6 .1 3.5 .2 1.7	.9 .2	104 64 44	.05 .24 .02	.043 .087 .070 .046 .074	6 8 9	11.4 7.3 3.5	.14 .15 .03	30 65 20	.008 .004 .003	<1 1.58 1 1.27 <1 .77	.006 .006 .004	.03 .04 .03		2.6 1.6 .7	.1<.0 .1<.0 .1<.0	57<.5	7.5 15.0 15.0
18900N 22740E 18900N 22760E 18900N 22780E 18900N 22800E 18900N 22800E 18900N 22820E	1.9 1.5 1.5	77.3 24.4 46.3	100.0	248 66 206	18.4 .7 2.7	14.6 4.7 13.0	15.4 4.9 11.6	5273 235 574	3.51 3.51 6.85	221.9 336.5 100.6 144.7 81.1	.5 .2 .3	12.6 14.5 14.9	.2 1 .1 1.1	103 4 5	3.4 3.7	.4 .3 .2	28 78 58	2.54 .02 .06	.139 .062 .094	15 8 6	10.6 5.7 18.5	.25 2 .06 .44	205 31 53	.007 .005 .006	2 1.48 1 1.14 <1 3.44	009 .009 006 .006	.04 .03 .04	.3 .12 .3 .29 .3 .07 .4 .17 .3 .13	4.6 1.5 5.2	.1 .1 .1<.0 .1<.0	1 4 1.6 5 8 <.5 5 6 1.0	1.0 7.5 15.0
18900N 22840E 18900N 22860E 18900N 22880E 18900N 22900E STANDARD DS5	1.1 1.0 1.3	37.1 49.1 52.5	47.8 38.9 67.5 114.3 25.4	188 266 559		9.2 13.7	8.5 14.7	342 936 879	5.94 4.38 3.94	77.2	.2 .2	7.3 46.7 46.7	.8 .7 .6	4 5 6 17 46	.5 1.8 .5 1.9 .4 1.9 3.3 1.9 5.6 3.9) .1) .1 ; .2	60 50 44	.04 .08 .30	.058 .049 .086	9 11 11	12.3 13.3 10.5	.28 .47 .34	82 93 157	.002 .002 .002	<1 2.10 <1 1.72 <1 1.54	006. 2.006 008.	.04 .04 .05	.3 .15 .3 .09 .3 .09 .3 .09 4.7 .17	4.1 5.3 7.1	.1<.0 .1<.0 .1<.0	5 6 <.5 5 5 <.5 5 5 .6	15.0 7.5 1.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 35

ACME ANALYTICAL											•	_																						ACME AND	
SAMPLE#		Cu pm		Zn		Ni		Mn ppm	Fe %		U mqq			Sr opm p		Sb ppm	Bi ppm j		Ca %	Р % р	La opm	Cr ppm	Mg % (Ti %p			a K %%			Sc ppm p			Sa Se S mippmi	Sample gm
18900N 22920E 18900N 22940E 18900N 22960E 18900N 22980E 18900N 22980E 18900N 23000E	1.0 86 1.0 55 .9 45 .9 51 .8 39	.6 .9 .0	79.4 (74.4 (54.6 (11.9 (664 7 605 4 492 2 375 1	7.6 1.1 2.2 1.6	14.1 10.5 11.3 12.8	11.6 12.5 10.4 18.2	1518 732 590 1185	3.88 4.01 3.99	93.6 116.3 105.7 158.2	.5 .2 .2 .2	12.6 12.5 11.6	.6 .6 .8	22 1 36 1 17 1	9 7 9	1.4 .6 1.3	.2 .2 .2	40 1 49 43 45 45	.40 .77 .30	.059 .065 .069	13 7 9	10.5 11.6 11.2	.29 .37 .33	133 . 145 . 167 .	.002 .001 .002	<1 1.9 <1 1.7 <1 1.6 <1 1.9 1 1.7	6.00 9.00 0.00	9.06 8.05 8.05	.3 .3 .2	.05 .07 .10	6.0 6.1 6.8	.1 <. .1 <. .2 <.	05 05 05	4 1.3 5 .6 5 .8 5 .7 5 .7 5 .7	7.5 7.5 7.5 7.5 7.5 7.5
18900N 23020E 18800N 22200E 18800N 22220E 18800N 22240E 18800N 22260E	1.1 27 2.2 20 2.0 23 1.7 31 1.0 27	.3 .4 .8	15.1 11.1 16.4	43 40 61	.3 .6 .5	5.0 5.5 8.2	7.3 5.0 7.9	1538 604 412	5.82 5.94 6.46	24.8 33.5	.2 .2 .2	.5 .6	.2 .2 .2	5 5	.1 .1	1.0 .6	.3 .2 .1	49 132 141 97 120	.04 .05 .04	.154 .115 .104	7 7 6	11.3 12.2 14.3	.13 .21 .29	36 28 36	.019 .036 .018	<1 1.4 1 1.9 1 1.6 1 1.8 <1 1.7	8 .00 8 .00 3 .00	7.05 8.03 7.04	.1 .1 .2	.07 .07 .10	2.4 2.9 2.9	.1 <. .1 <. .1 <.	.05 1 .05 1 .05	l2 .5 8 .9	15.0 15.0 7.5 15.0 7.5
18800N 22280E 18800N 22300E 18800N 22320E 18800N 22340E 18800N 22340E	.8 21 1.8 37 1.1 14 1.8 13 1.7 29	7.0 1.3 3.5	27.4 31.7 24.0	83 (38 (33 (1.0 3.2 1.7	7.4 3.5 3.5	6.8 2.8 3.8	326 147 157	7.44 2.27 2.07	222.1 98.4 40.0	.3 .2 .2	13.1 6.7 3.0	.5 .1 .3	8 5 5	.2 .1	.8	.6 .4 .3	117 76 95	.05 .03 .03	.045	7 7 8	17.5 9.0 7.4	.26 .16 .10	42 34 30	.014 .007 .068	1 2.2 <1 1.8 <1 1.3	26 .00 32 .00 38 .00	6.06 7.04 7.04	.3 .1 .1	.14 .12 .06	3.4 2.2 2.6	.1 <. .1 <. .1 <.	.05 .05 .05		15.0 15.0 7.5 15.0 7.5
18800N 22380E 18800N 22400E 18800N 22420E 18800N 22420E 18800N 22440E 18800N 22460E	2.8 21 2.9 26 1.5 67 1.0 17 .3 8	5.0 7.1 7.5	63.1 31.6 21.1	187 64 53	1.0 .5 1.0	4.3 1.4 4.6	14.7 3.5 5.5	3599 281 330	5.23 2.19 3.03	464.1 274.0	.4 .2 .2	4.0 15.7 21.1 12.4 626.4	.5 .9 .2	6 4 7	.3 .1 .1	1.2 .5 1.0	1.2 .4 .5	47 19 76	.05 .05 .04	.123 .044 .053	9 11 9	12.2 6.5 1.4 8.7 1.8	.11 .04 .18	99 37 49	.005 .001 .008	2 1.9 1 1 1.1	59 .00 73 .00 73 .00	9.10 5.05 9.07	.2 .1 .1	.06 .04 .04	1.4 1.0 2.3	.2 <.	.05 .05 .05	11 .5 8 .5 5 <.5 10 .6 6 <.5	15.0 7.5 7.5 15.0 7.5
18800N 22480E 18800N 22500E 18800N 22520E 18800N 22540E 18800N 22540E	1.2 33 1.0 34 1.1 27 2.0 31 2.1 68	4.7 7.4 1.5	41.5 31.2 96.0	79 93 217	1.3 .9 5.4	7.2 5.6 10.7	6.8 6.1 8.2	335 272 446	5.52 5.71 6.12	177.3 157.1 188.7	.4 .2 .3	22.7 6.5 8.1	.2 .3 .6	8 8 4	.2 .1 .3	2.3 1.8 1.1 5.2 2.3	.8 .4 .3	106 81 63	.07 .07 .04	.103 .082 .082	7 7 11	10.5 17.9 10.4 7.8 11.2	.28 .16 .09	55 58 51	.010 .009 .003	$\begin{array}{c} 1 \ 1.9 \\ 1 \ 1.4 \end{array}$	98 .01 47 .01 34 .01)8.05)7.07)8.05	.4 .4 .2	.12 .07 .10	2.7 2.7 3.5	.1 <. .1 <. .1 <. .2 <. .1 <.	.05 .05 .05	8 .9 8 .9 7 .6 9 .8 4 1.7	7.5 15.0 7.5 15.0 15.0
RE 18800N 22560E 18800N 22580E 18800N 22600E 18800N 22620E 18800N 22640E	2.0 67 1.9 52 2.0 28 1.2 18 1.6 70	2.4 8.6 5.5	44.9 24.3 43.8	89 85 80	4.7 .9 1.5	4.8 6.5 4.1	5.3 6.1 8.5	205 224 625	4.59 4.77 3.05	195.6 193.7 234.7	.5 .2 .2	7.8	.7 1.1 .2	33 5 16	.5 .1 .3	1.8 1.3 1.0 .5 1.2	.3 .7 .3	58 110 50	.70 .03 .28	.093 .062 .069	15 10 10	9.4 7.3	.13 .16 .18	59 37 76	.003 .006 .006	<1 1.	87 .0 45 .0 19 .0)9 .03)8 .09)8 .06	.3 .2 .1	.09 .06 .04	4.4 3.2 1.8	.1 <. .1 <.	.05 .05 .05	4 1.5 8 .9 10 .5 7 .5 6 .8	7.5 15.0 7.5 7.5 1.0
18800N 22660E 18800N 22680E 18800N 22700E 18800N 22720E STANDARD DS5	1.0 18 1.5 24 2.3 24 .1 2 12.7 14	4.1 4.3	89.4	245 107	6.2 1.0	4.9 6.6	4.5 5.8	5 174 151 18	2.29	145.8 233.9	.1 .2 2	5.3 14.9 4 0	.4 .8 3	12 9 5	.5 2. 1 >	20.9 3.1 < 1	.3 .3 <.1	61 68 1	.04 .04 .05	.038 .027 .010	12 12 14	3.6 3.6 <1	.05	26 23 18	.003	$\begin{array}{c} 1 \\ 1 \\ 1 \end{array}$	79 .0 68 .0 22 .0	06 .04 06 .03 05 .03	· .3 · .5 ? <.1	.03	2.3 2.5 .2	.2 < . .1 < . .1 <	.05 .05 .05	8 .5 6 .6 6 .5 2 <.5 7 5.1	7.5 15.0 15.0 7.5 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Gold City Industries Ltd. PROJECT TOMMY JACK FILE # A404351

Page 36

																																				with 110/05
SAMPLE#	Mo ppm	Cu ppm	Pb ppm p		Ag	Ni ppm	Co	Mn ppm	Fe %	As	U nom	Au ppb	Th					V	Ca	÷.	La ppm	Cr ppm		Ba ppm		B ppm	A1 %	Na ¥		W DDm D	-	Sc ppm p		S Ga % ppm		ample gm
	- Phil			<u>, inde</u>	Phu -	<u> </u>	- PP	PPiii	~		<u>ppin</u>	-440	PPin	Phil	<u>hhiii</u>	PPin	PPin	Phil	Ň	Ň	Phil	- PPiii	~	Pp	~	<u> </u>	~	~	~	phi b	pin	phu b	pin v	• phil	ppii	gin
18800N 22740E	1.7	24.8	23.4	65	.9	5.7	6.7	247	5.29	87.2	.2	7.8	.6	4	.2	2.7	.3	81	.01	.076	8	6.9	.07	26	.005	1	.98	.005	.03	.3 .	.06	1.9	.1<.05	59	.5	7.5
18800N 22760E	1.6	31 1	11.4	65	7	6.8	5.9	168	3 00	132.0	2	3.8	.8	6	2	2.3	.3			.059	10		.05		.001	1	03	.005	03	.3 .	03	2.2	.1<.05	5 7	6	7.5
					•••																8													• •	1.0	
18800N 22780E		43.8	21.6			6.0				94.8		1.1		3		1.2				.109	8	8.4			.001			.005			.08		.1<.05		1.0	15.0
18800N 22800E	1.3	27.4	65.9 1	198 :	1.7	9.1	7.6	346	4.13	88.0	.2	12.0	.4	16	.5	1.3	.3	51	.25	.091	8	9.4	.37	89	.004	<11	. 68	.006	.03	.3.	.04	3.4	.1<.05	5 T	.8	15.0
18800N 22820E	3.1	63.8	40.0 1	175 2	2.8	11.5	8.5	229	7.97	44.5	.3	1.9	.9	15	.6	2.2	.3	65	.22	.095	9	12.7	.25	90	.001	<11	. 89	.006	.03	.2 .	.08	4.0	.1<.05	57	.9	15.0
1000000 220202																																				
18800N 22840E	3.0	32.3	60.2 1	134	.6	7.0	6.5	330	5.06	299.0	.2	1.8	.6	5	.3	2.3	.2	85	.05	.090	9	7.3	.07	49	.002	<1	. 98	.005	.03	.2 .	.04	2.6	.1<.05	59	.5	7.5
18800N 22860F	1.3	40.1	155.1 4	435 1	1.2	11.2	12.6	703	6.57	80.0	.2	4.9	.8	19	.7	2.9	.2	84	.29	.120	9	13.9	.35	79	.002	1 2	2.06	.005	.03	.3 .	.08	4.0	.1<.05	58	.7	15.0
	23	60 7	243 0 3	381 5	23	05	13 7	1069	4 71	96.6								69							003	1 1	53	006	03	3	10	37	1 0	7 7	5	
																																÷		• •		
RE 18800N 23000E																																			.6	
18800N 22900E	2.3 1	161.8	1259.4 8	851 43	1.4 :	19.4	14.8	2405	4.12	159.1	1.9	31.3	1.1	85	7.9	3.8	.2	38 0	1.60	.354	38	19.3	.25	138	.004	22	2.57	.010	.05	.1.	.94 2	2.2	.2 .16	5 4	3.2	7.5
18800N 22920E	1.5	46.2	297.9 4	483 🔅	1.9 :	10.6	11.6	1158	6.71	111.0	.3	5.9	1.2	54	1.2	3.6	.3	87	.97	.058	12	21.3	.35	66	.002	<11	.82	.008	.02	.2 .	10	4.1	.1<.0!	58	.9	7.5
18800N 22940F	1.2	46.2	59.8 1	124	1.7	8.9	8.8	465	4.79	95.8	.2	10.5	.8	5	.4	2.2	.1	55	.06	.065	7	12.2	.28	40	.007	11	.42	.006	.03	.3 .	.07	3.7	.1<.05	5 5	1.0	15.0
																															04				0	
																																			.0	
18800N 22980E	1.2	62.8																								11		.012	. 08	.2.	08 I	.0.5	.1 .0/	/ 5	.8	7.5
18800N 23000E	.7	45.4	49.2 1	139 🔅	1.0 0	15.8	14.3	528	4.00	47.9	.2	10.9	1.0	30	.7	1.7	.1	55	.53	.083	8	15.6	.75	92	.022	11	86	.012	.07	.3.	.02	7.1	.1 .07	16	.5	15.0
1																																				
18800N 23020E	1.1	61.4	99.4 2	208	1.4	19.7	21.3	1163	4.67	124.4	.2	28.3	1.2	62	1.3	2.9	.2	51	1.68	.081	7	13.4	.79	120	.015	11	. 75	.017	. 11	.4	.03	8.4	.1 .09	95	.8	15.0
STANDARD DS5	12.6	144.6	25.2	139	.3 :	24.5	11.8	781	3.00	19.0	6.1	43.8	2.9	44	5.5	3.8	6.0	60	.72	.087	11	178.9	.68	131	.090	16 1	.93	.032	.14	4.7	.17	3.4 1	1.0<.05	57	4.8	15.0
18800N 22860E 18800N 22880E RE 18800N 23000E 18800N 22900E 18800N 22940E 18800N 22960E 18800N 22960E 18800N 23000E 18800N 23020E	1.3 2.3 .7 2.3 1.5 1.2 .9 1.2 .7 1.1	40.1 69.7 44.7 161.8 46.2 46.2 57.7 62.8 45.4 61.4	155.1 4 243.0 3 48.5 1 1259.4 8 297.9 4 59.8 1 64.6 1 69.0 1 49.2 1 99.4 2	435 381 138 851 4 124 181 176 139 208	1.2 2.3 .8 1.4 1.9 1.7 1.3 1.5 1.0	11.2 9.5 15.7 19.4 10.6 8.9 16.8 17.0 15.8 19.7	12.6 13.7 14.0 14.8 11.6 8.8 17.7 16.6 14.3 21.3	703 1069 508 2405 1158 465 1281 2345 528 1163	6.57 4.71 3.95 4.12 6.71 4.79 4.06 3.88 4.00 4.67	80.0 96.6 47.3 159.1 111.0 95.8 83.3 93.5 47.9 124.4	.2 .3 .2 1.9 .3 .2 .3 .2 .2 .2	4.9 2.6 10.7 31.3 5.9 10.5 25.6 19.5 10.9 28.3	.8 .4 1.0 1.1 1.2 .8 1.0 .9 1.0 1.2	19 29 31 85 54 5 33 42 30 62	.7 5.4 .7 7.9 1.2 .4 1.7 2.7 .7 1.3	2.9 1.8 1.4 3.8 3.6 2.2 2.1 1.5 1.7 2.9	.2 .3 .1 .2 .3 .1 .2 .1 .1 .1	84 69 51 38 55 46 45 55 51	.29 .42 .51 1.60 .97 .06 .58 .77 .53 1.68	.120 .093 .080 .354 .058 .065 .087 .093 .083 .081	9 16 9 38 12 7 12 15 8 7	13.9 11.0 14.7 19.3 21.3 12.2 12.6 13.3 15.6 13.4	.35 .15 .25 .25 .35 .28 .58 .54 .75 .79	79 104 91 138 66 40 95 122 92 120	.002 .003 .026 .004 .002 .007 .015 .007 .022 .015	1 2 1 1 1 1 2 2 <1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.06 53 81 2.57 82 42 42 42 42 42 42 42	.005 .006 .013 .010 .008 .006 .011 .012 .012 .012	.03 .03 .07 .05 .02 .03 .07 .08 .07 .11	.3 . .3 . .2 . .1 . .2 . .3 . .3 . .2 . .3 . .3 . .4 .	08 10 02 94 2 10 07 04 08 1 02 .03	4.0 3.7 6.8 22.2 4.1 3.7 8.8 10.5 7.1 8.4	.1<.05 .1 .07 .1<.05 .2 .16 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1<.05 .1	5 8 7 7 5 6 6 4 5 8 5 5 5 5 7 5 7 6 9 5	.8 .8 .5 .8	15.0 1.0 15.0 7.5 15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

APPENDIX II

Rock Sample Descriptions

Rock Sample Descriptions – T-04-MR Series

SAMPLE	DESCRIPTION	Туре	Widt	Au	Ag	Pb	Zn	As
#			h metre	(ppb)	(pp m)	(ppm)	(ppm)	(ppm)
MR-001	Dark grey metased, qtz crystals filling vugs, pyrite	Grab		<5	2.1	96	31	18
MR-002	Qtz stwk in metaseds, very minor pyrite	Chip	0.5	9.1	0.4	20	46	23
MR-003	As 002, contiguous to north	Chip	1.0	21.8	0.9	23	109	37
MR-004	As 002, contiguous to the north with 003	Chip	1.0	35.2	0.7	74	214	54
MR-005	As 002, contiguous to the north with 004	Chip	1.0	6.6	0.8	27	172	30
MR-006	As 002, contiguous to the north with 005	Chip	1.0	37.7	2.2	610	1003	55
MR-007	Qtz vein material with pyrite and areas of grey graphitic qtz	Chip	0.45	5.0	5.7	213	123	687
MR-008	As 007	Chip	0.4	1.1	1.2	60	140	170
MR-009	Black qtz (graphite inclusions), qtz flooded graphitic slst	Chip	0.4	70.7	2.0	108	161	360
MR-010	Qtz vein material with pyrite and areas of grey graphitic qtz	Chip	0.4	94.1	13.4	263	112	410
MR-011	Black qtz (graphite inclusions), qtz flooded graphitic slst	Chip	0.4	22.1	1.2	57	191	235
MR-012	Black qtz, graphitic slst, qtz filled vugs	Chip	0.25	<.5	2.7	96	45	801
MR-013	Brown weathering metased (slst, sdst) with qtz and pyrite in contact with qtz vein	Chip	1.0	94.2	1.3	19	61	4752
MR-014	Qtz vein material with pyrite and arsenopyrite	Chip	0.5	1900.7	5.0	249	61	<10000
MR-015		Chip	0.5	582.5	4.3	40	21	<10000
MR-016	Buff brown weathering sdst/slst	Chip	0.7	187.6	0.7	15	109	3562
MR-017	Galena and sphalerite in brecciated sdst, sdst fragments have some unmineralized qtz veinlets	Grab		5.2	49.5	>10000	<10000	117

o/c = outcrop (exposure), sdst = sandstone, slst = siltstone (includes mudstone, claystone and very fine sdst), qtz = quartz, stwk = stockwork, carb. = carbonate usually ankerite, rep. = representative, X = across Analytical values: Au in ppb, Ag, Pb, Zn and As are in ppm. Note: Mass spectrometry results are rounded to the closest ppm or ppb

APPENDIX III

Statement of Costs

STATEMENT OF COSTS

TOMMY JACK PROPERTY 2004 EXPLORATION PROGRAM

FIELD PERSONNEL		
A. Raven - Field Manager (High Range Exploration Ltd.)	26 days,	6,500.00
M. Moorman - Field Assistant	23 days	5,750.00
Rainbow and Sunshine Holdings (2 field assistants)	24 days	12,446.51
FOOD AND ACCOMMODATION		4,388.57
VEHICLE RENTALS		1,200.00
EQUIPMENT AND SUPPLIES		
Field Supplies		2,323.53
Fuel & Lubes		405.79
AIRCRAFT SUPPORT		(200 47
Helicopter – Mobilization/Demobilization		6,389.47
Canadian Helicopters Limited, Smithers, BC		
EXPEDITING SERVICES		5,700.00
LABORATORY ANALYSIS		21,417.73
		,
REPORT PREPARATION		1,500.00
	TOTAL	\$ 68,021.60

APPENDIX III

Statement of Qualifications

PAUL S. COWLEY, P.GEO.

I, Paul S. Cowley, P.Geo., of 207-270 West 1st Street, North Vancouver, British Columbia hereby certify as follows:

- 1. I graduated with Honours with a Bachelor of Science degree in Geology, from University of British Columbia, Canada, in 1979.
- 2. I am a registered Professional Geologist of the Northwest Territories, Canada, Registration Number L445, since October 5, 1989.
- 3. I am a registered Professional Geoscientist of the Province of British Columbia, Canada, Registration Number 24350, since June 1999.
- 4. I have been directly involved in the mining industry for 24 years. I have worked directly in exploration of Epithermal and Mesothermal gold, Volcanogenic Massive Sulfide, porphyry copper, coal, diamonds and industrial minerals projects during this time.
- 5. In 2004, I was retained by the Gold City Industries Ltd. as a non-independent consultant (currently Vice President of the Company) for the evaluation of the Tommy Jack property. I was not on site for some the 2004 soil, trenching and prospecting program described in this report.
- 6. This Assessment Report is an accurate account of the 2004 exploration season for the properties contained.

Dated at Vancouver, B.C. this 13th day of December, 2004.

PAULS.COWLEY, P. GEO.

ALAN RAVEN

- I, Alan Raven, of Box 204, Madeira Park, British Columbia, V0N 2H0 hereby certify as follows:
- 1. I have been directly involved in the mining industry as a prospector since 1969.
- 2. Between 1977 and 1998 I have taken a variety of prospectors' courses and exploration short courses.
- 3. My field exploration experience includes geochemical and geophysical surveying, diamond drilling, prospecting, mapping, crew training, and exploration project management in British Columbia and the Western United States (Washington, California, Nevada, Arizona, and Utah).
- 4. I hold title to the Tommy Jack mineral property, which is currently under option to Gold City Industries Ltd.
- 5. Since 2000 I have been retained through my company, High Range Exploration Ltd., as a field manager for Gold City Industries Ltd. I was on site for the entire 2004 mapping, trenching, and prospecting program described in this report. I was not involved in the handling of samples.
- 6. This Assessment Report is an accurate account of the 2004 exploration season for the Tommy Jack property.

Dated at Vancouver, B.C this 13th day of December, 2004.

alon R A

Alan Raven