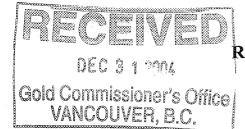


[ARIS11A]

Geological Survey Branch Assessment Report Indexing System



ARIS Summary Report

Regional Geologist	, Cranbrook Date Approved: 2005.04.06 Off Confidential: 2005.09.17
ASSESSMENT RE	PORT: 27576 Mining Division(s): Slocan
Property Name: Location: Camp: 006	Willa NAD 27 Latitude: 49 53 00 Longitude: 117 22 04 UTM: 11 5525505 473578 NAD 83 Latitude: 49 53 00 Longitude: 117 22 08 UTM: 11 5525725 473499 NTS: 082F14W Endet Endet
Claim(s):	Rush 1
Operator(s): Author(s):	Bethlehem Resources (1996) Corporation Gilmour, William R.
Report Year:	2004
No. of Pages:	405 Pages
Commodities Searched For:	Gold, Copper, Silver
General Work Categories:	GEOC, DRIL
Work Done:	Drilling UNDD Diamond underground (39 hole(s);B-10) (5282.8 m) No. of maps : 29 ; Scale(s) : 1:1000, 1:250 Geochemical SAMP Sampling/assaying (2795 sample(s);) No. of maps : 27 ; Scale(s) : 1:250 Elements Analyzed For : Multielement
Keywords:	Jurassic, Rossland Group, Roof pendants, Agglomerates, Conglomerates, Breccias
Statement Nos.:	3217115
MINFILE Nos.:	082FNW071
Related Reports:	01185, 07853, 08759, 09796, 10927, 13382, 15726

Underground Drilling Assessment Report

on the

Willa Deposit

Rush 1 Mineral Claim

Willa Property

Aylwin Creek

Silverton Area

Slocan Mining Division

British Columbia

BCGS Maps: 082F083, 084, 094 Latitude: 49° 53' 00'' North Longitude: 117° 22' 04" West Owner: Bethlehem Resources (1996) Corporation Consultants: Discovery Consultants Author: W.R. Gilmour, P.Geo December 17, 2004

TABLE OF CONTENTS

SUMMARY	Page 1
INTRODUCTION	Page 3
PROPERTY DESCRIPTION	
Location Access Physiography Claims HISTORY	Page 4 Page 4 Page 4 Page 5 Page 6
GEOLOGY AND MINERALIZATION Regional Geology Property Geology and Structure Alteration Mineralization	Page 9 Page 9 Page 12 Page 14
UNDERGROUND DRILLING Recommended Programme Underground Refurbishing for Drilling 2004 Drill Programme Drill Results Sampling and Analytical Procedures Quality Control and Quality Assurance Programme	Page 16 Page 18 Page 18 Page 21 Page 25 Page 30
CONCLUSIONS Mineralization & Geology Specific Gravity RQD Determinations Quality Control and Quality Assurance RECOMMENDATIONS	Page 33 Page 33 Page 34 Page 34
Further Exploration Quality Control and Quality Assurance	Page 35 Page 35
REFERENCES	Page 36
STATEMENT OF COSTS	Page 37
STATEMENT OF QUALIFICATIONS	Page 39

APPENDICES A – H

LIST OF FIGURES

Figure 1	Location Map	Following Page
Figure 2	Claim Location Map	Following Page
Figure 3	Underground Workings: Survey Stations	
-	+ Track Loop,1:1000	In Pocket
Figure 4	Underground Workings: Plan of	
-	Diamond Drill Hole Locations and	
	Target Areas, 1:1000	In Pocket
Figure 5	Plan of Mineralized Shell Intersections,	
	1:1000	In Pocket
Figure 6a	Drill Section DDHs 542 – 3: Geology	In Pocket
Figure 6b	Drill Section DDHs 542 – 3:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 7a	Drill Section DDHs 544 – 6: Geology	In Pocket
Figure 7b	Drill Section DDHs 544 – 6:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 8a	Drill Section DDH 547: Geology	In Pocket
Figure 8b	Drill Section DDH 547	• •
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 9a	Drill Section DDH 548: Geology	In Pocket
Figure 9b	Drill Section DDHs 548:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 10a	Drill Section DDHs 549 – 51, 572: Geology	In Pocket
Figure 10b	Drill Section DDHs 549 – 51, 572:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 11a	Drill Section DDH 552: Geology	In Pocket
Figure 11b	Drill Section DDH 552:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 12a	Drill Section DDH 553: Geology	In Pocket
Figure 12b	Drill Section DDH 553:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 13a	Drill Section DDHs 554, 570: Geology	In Pocket
Figure 13b	Drill Section DDHs 554, 570:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 14a	Drill Section DDH 555: Geology	In Pocket
Figure 14b	Drill Section DDH 555:	_
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 15a	Drill Section DDH 556: Geology	In Pocket
Figure 15b	Drill Section DDH 556:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 16a	Drill Section DDH 557: Geology	In Pocket
Figure 16b	Drill Section DDH 557:	
	Sample Numbers, Au-Cu-Ag values	In Pocket

Figure 17a	Drill Section DDH 558: Geology	In Pocket	
Figure 17b	Drill Section DDH 558:		
-	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 18a	Drill Section DDH 559: Geology	In Pocket	
Figure 18b	Drill Section DDH 559:		
U.	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 19a	Drill Section DDH 560: Geology	In Pocket	
Figure 19b	Drill Section DDH 560:		
U	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 20a	Drill Section DDH 561: Geology	In Pocket	
Figure 20b	Drill Section DDH 561:		
C	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 21a	Drill Section DDH 562: Geology	In Pocket	
Figure 21b	Drill Section DDH 562:		
0	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 22a	Drill Section DDH 563: Geology	In Pocket	
Figure 22b	Drill Section DDH 563:		
0	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 23a	Drill Section DDHs 564 – 5: Geology	In Pocket	
Figure 23b	Drill Section DDHs 564 – 5:		
	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 24a	Drill Section DDHs 566 – 7: Geology	In Pocket	
Figure 24b	Drill Section DDHs 566 – 7:		
	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 25a	Drill Section DDH 568 – 9: Geology	In Pocket	
Figure 25b	Drill Section DDH 568 – 9:		
0	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 26a	Drill Section DDH 571: Geology	In Pocket	
Figure 26b	Drill Section DDH 571:		
0	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 27a	Drill Section DDH 573: Geology	In Pocket	
Figure 27b	Drill Section DDH 573:		
U	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 28a	Drill Section DDHs 574, 577: Geology	In Pocket	
Figure 28b	Drill Section DDHs 574, 577:		
U	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 29a	Drill Section DDHs 575 – 6: Geology	In Pocket	
Figure 29b	Drill Section DDHs 575 – 6:		
-	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 30a	Drill Section DDH 578: Geology	In Pocket	
Figure 30b	Drill Section DDH 578 (scale 1:300):		
	Sample Numbers, Au-Cu-Ag values	In Pocket	
Figure 31a	Drill Section DDH 579: Geology	In Pocket	
Figure 31b	Drill Section DDH 579 (scale 1:300):		
	Sample Numbers, Au-Cu-Ag values	In Pocket	

Figure 32a	Drill Section DDH 580: Geology	In Pocket
Figure 32b	Drill Section DDH 580:	
	Sample Numbers, Au-Cu-Ag values	In Pocket
Figure 33	Core Duplicates: Au Thompson-Howarth Plot	Following Page 31
Figure 34	Core Duplicates: Cu Thompson-Howarth Plot	Following Page 31
Figure 35	Reject Duplicates: Au Thompson-Howarth Plot	Following Page 31
Figure 36	Reject Duplicates: Cu Thompson-Howarth Plot	Following Page 31
Figure 37	Pulp Duplicates: Au Thompson-Howarth Plot	Following Page 32
Figure 38	Pulp Duplicates: Cu Thompson-Howarth Plot	Following Page 32
Figure 39	Laboratory Standard AU-1, Au values	Appendix G
Figure 40	Laboratory Standard R-2a, Cu values	Appendix G

NB: Scale for all DDH Sections, except as noted, is 1: 250

LIST OF TABLES

Table 1	Claim Information	Page 5
Table 2	Willa Rock Classification	Page 10
Table 3	Summary of Drill Holes	Page 19
Table 4	Summary of Mineralized Shell	Page 23
Table 5	ROD Classification	Page 26
Table 6	Specific Gravity for Rock Types	Page 27
Table 7	Core Duplicates: Precision Values	Page 31
Table 8	Reject Duplicates: Precision Values	Page 31
Table 9	Pulp Duplicates: Precision Values	Page 32
Table 10	Surveyed Hole Collars: Location, Dip and Azimuth	Appendix A
Table 11	Down-Hole Dip and Azimuth Tests	Appendix B
Table 12	Rock Quality Designation (RQD) and Core Recovery	Appendix C
Table 13	Field and Laboratory Specific Gravity Determinations	Appendix D
Table 14	Field and Laboratory Blank Samples	Appendix E
Table 15	Laboratory Standards	Appendix F
	-	

Drill Logs for 04-542 to 04-580

Appendix H

PHOTOGRAPHS

P-1	Drill Set-Up	Page 19
P-2	Drilling in Progress	Page 21

SUMMARY

The Willa property is located in the steeply incised Aylwin Creek valley of southeastern British Columbia, south of Silverton and east of Slocan Lake. The Willa Au-Cu-Ag deposit underlies the Rush 1 claim on BC Geographic System map 082F084.

Good access to the property is available by road from Castlegar, Nelson, Revelstoke or Vernon. The 1025 Level portal is accessed to the east of Highway 6, 12 km south of New Denver, via gravel and 4-wheel drive roads for 1.4 km.

The property comprises 100 claim units and one mineral lease. The title is 100 % held by Bethlehem Resources (1996) Corporation, a wholly owned subsidiary of Orphan Boy Resources Inc. The ownership is subject to some underlying royalty agreements.

Northair Mines Ltd. completed 2,455 m of underground workings in the 1980s. These were refurbished in 2004 to facilitate the underground drill programme.

The deposit is within a roof pendant of Lower Jurassic Rossland Group basic volcanic and volcaniclastic rocks, and intruded by felsic dykes. The host rock is a heterolithic breccia. The 2004 underground drill programme comprised 39 drill holes totalling 5,282 m and costing \$ 940,000.

The 2004 underground drilling programme was designed to cover six areas adjoining known areas of Au-Cu-Ag mineralization that had either not been drilled or were under drilled. Specific drill holes were determined from a three-dimensional computer model of all known drilling.

The 2004 drilling in the peripheral areas of the Willa deposit was not successful in locating significant new zones of potentially economic Au-Cu-Ag mineralization. Drilling along the west edge of the West Zone better defined the boundaries of the zone.

A Au-Cu-Ag mineralized shell was identified. On a deposit scale, Au-Cu-Ag mineralization of economic interest seems to be enclosed within this mineralized shell. Any Au-Cu-Ag resource will be based on assay boundaries, not geological contacts.

In property exploration, the presence of the low-grade mineralized shell may indicate proximity to higher grade Willa-style mineralization.

Heterolithic breccia is the main host to the mineralized shell, but the shell boundaries are not strictly controlled by geology.

All aspects of quality control and quality assurance were monitored. The collection and security of core samples, the core recovery, the sample preparation procedures, the precision of the analytical results, the reproducibility of check samples, and the reproducibility of standards were all satisfactory.

The precision of results is excellent. This is most likely due to the fine grained nature of the gold and demonstrates that bulk sampling is not needed to assist in resource calculations.

It is recommended that the data collected during the 2004 drill programme be added to the historical data to direct further exploration and to produce a resource estimate.

Specific decisions on further work will be dependent upon reviewing the data in a threedimensional computer model.

INTRODUCTION

This drilling assessment report has been prepared by Discovery Consultants at the request of J.A. Chapman, P.Eng., of Bethlehem Resources (1996) Corporation. This report fulfills the obligations for the Statement of Work (Event No. 3217115) filed on September 17, 2004, covering the period January 1 to September 17, 2004, and totaling \$891,000.

The purpose of the underground programme was to drill recommended areas of the Willa Au-Cu-Ag deposit (Makepeace, 2003) to test for possible extensions of gold-coppersilver mineralization. The scope of this report is to present the analytical and geological results from the drilling. It is recommended that the data collected be added to the historical data to direct further exploration and to produce a resource estimate.

Discovery Consultants assisted S.L. Phillips in the management of the underground drilling. Discovery Consultants was responsible for the layout of drill holes, the geological and the geotechnical logging of the core, and the quality control aspects of the drill programme.

PROPERTY DESCRIPTION

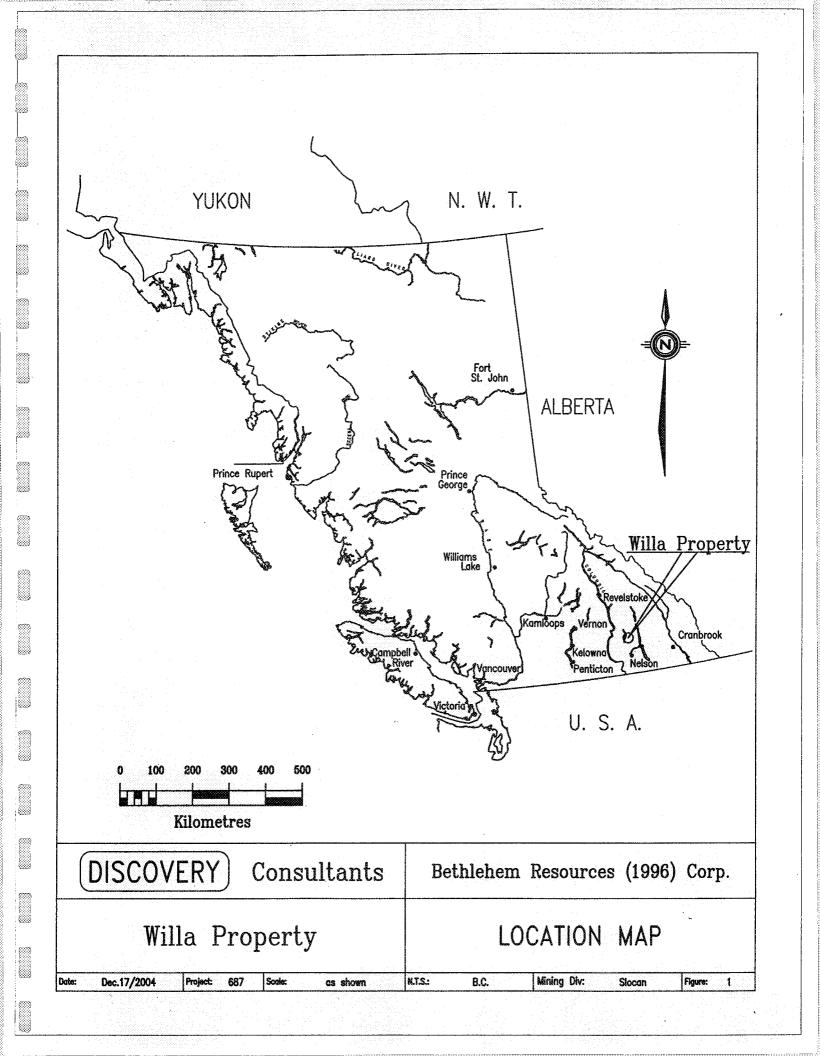
Location

The Willa property is located in the steeply incised Aylwin Creek Valley of southeastern British Columbia, south of Silverton and east of Slocan Lake (Figures 1 and 2). The property is mainly located in the northwest portion of BC Geographic System map 082F084, with some of the claims in the northeast of 082F083 and the southwest of 082F094. This area corresponds to NTS map sheet 082F14W.

The portal to the 1025 Level underground working of the Willa deposit is at 5526270 north and 473400 east, NAD 83 UTM. From the portal, Slocan Lake is about 2 km west and Highway 6 about 700 m west.

<u>Access</u>

The property is located approximately 7.5 km south of Silverton and 12 km south of New Denver, along Highway 6. The nearest airport is at Castlegar, 86 km to the south via Highways 6 and 3A. Nelson is 88 km to the south via Highway 6. Access to Vernon, in the Okanagan Valley, is 254 km west via Highway 6 and the Needles ferry. Revelstoke, on Highway 1, is 162 km north via Highways 6 and 23 and the Galena Bay ferry.


Access to the 1025 portal from Highway 6 is gained by turning north-eastward along the all-weather gravel Red Mountain Road for 650 m, then southerly via a four-wheel drive road for 750 m (Figure 2).

Physiography

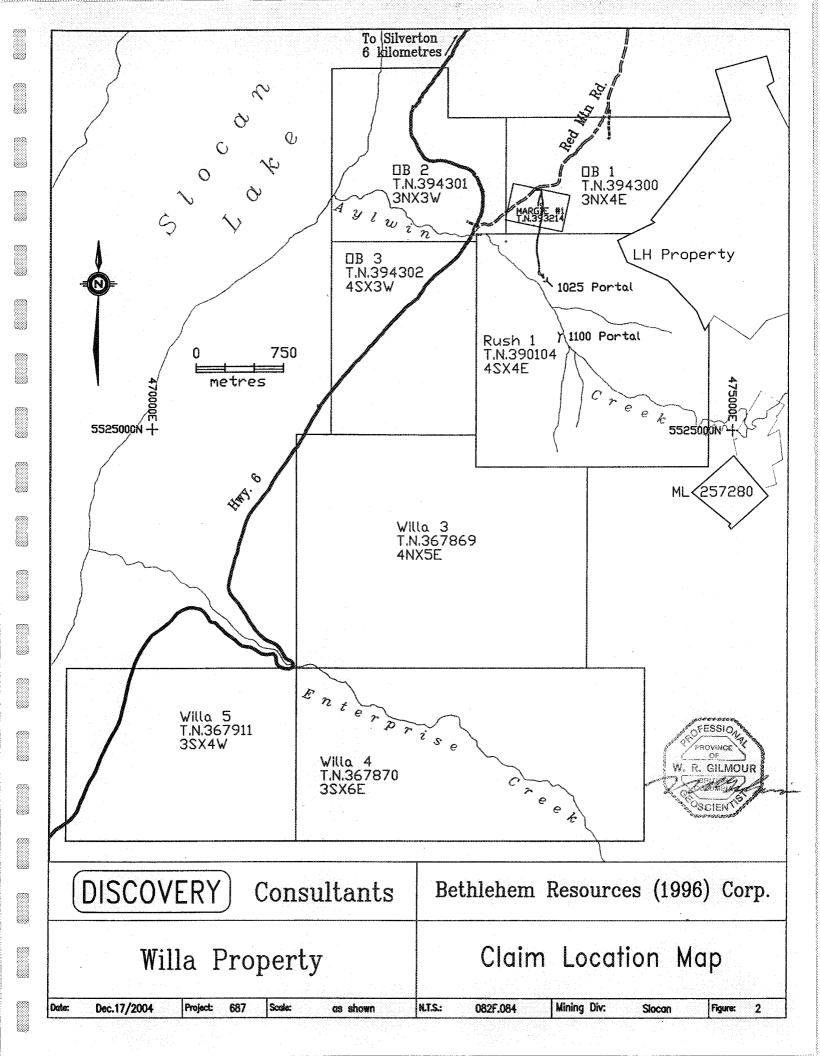
The following description is adapted from Makepeace (2003).

The Willa property is in forested, rugged terrain with elevations ranging from 550 metres at Slocan Lake to 2415 metres along the ridge separating Aylwin and Congo Creeks. Slopes are frequently greater than 35°. At low elevations the undergrowth can be quite thick with devil's club, stinging nettles and slide alder. The predominant deciduous trees are poplar and birch and commonly occur at lower elevations. The main portion of the property is treed by western hemlock, western red cedar, Douglas fir and larch. At the higher elevations, the forest grades into Engelmann spruce and alpine fir, and then into alpine meadows and windswept ridges (Heather, 1985).

The climate consists of cool winters and warm summers. A maximum temperature range of between -34° and $+40^{\circ}$ C (Heather, 1985) has been recorded

but in many years the range is -5° and $+30^{\circ}$. The annual precipitation can be quite high (1205 mm/year, Heather, 1985).

<u>Claims</u>


The property is 100 % owned by Bethlehem Resources (1996) Corporation, a wholly owned subsidiary of Orphan Boy Resources Inc. The ownership is subject to some underlying royalty agreements.

The property comprises one two-post claim (Margie #1), one Mineral Lease (Mt. Scenery) and seven four-post claims (Figure 2). The staked claims total 100 claim units. At the time of this report, the Margie # 1 and the Rush 1 claims are being surveyed for mineral leases.

The following table lists the claims and the expiry dates, subject to the approval of this assessment report.

Claim Name	Tenure Number	No. of Units	Expiry Date
Willa 3	367869	20	2014.09.29
Willa 4	367870	18	2014.09.29
Willa 5	367911	12	2014.09.29
Rush 1	390104	16	2006.09.29
Margie #1	393214	1	2007.05.03
OB 1	394300	12	2014.09.29
OB 2	394301	9	2014.09.29
OB 3	394302	12	2014.09.29

<u>Table 1</u> - Claim Information

HISTORY

The following is taken from Makepeace (2003):

The property has been explored off and on since 1893. However, the majority of the work to develop the property has occurred only more recently. In the mid-1960s Cominco, Amax Exploration and Western Mining Company identified possible economic copper and molybdenum mineralization. During the early 1980s the Willa property was explored on surface by a joint venture between Rio Algom Exploration Inc. and BP Minerals Ltd.

In April 1985, Northair Mines Limited joined the joint venture. They completed the present underground workings.

Treminco Resources Ltd. optioned the property in 1990. Exploration work consisted of re-sampling and re-mapping portions of the 1100 and 1025 Level drifts, and some environmental and pre-feasibility studies and designs were completed.

A brief summary of the history follows:

1893 - 3 adits driven by prospectors: Willa No.1 - 80 metres, Willa No.2 - 10 metres, Rockland - 70 metres.

1899 - Crown-granted claim known as the Rockland owned by Willow Gold Mining Co. produced 300 tons in 1899.

1900 - Rockland claim was then owned by W. Spinks, Graves and Watson. They completed 91 metres of drift in three adits (one on the north side and 2 on the south side of Aylwin Creek).

1901 - Granby Consolidated inspected the property and chip sampled the Willa #1, #2 and Rockland adits.

1912 - Granby Consolidated inspected the property and again turned it down (low grade).

1930s - claims were transferred to W. J. Nicholls.

1936 - optioned to Slocan Lake Gold Mining Company Inc. They completed another 32 metres of drifting and 3.6 metres of raising.

1955 - Egil Lorntzsen sampled the Rockland adit and found only trace gold.

1964 - the Rockland and adjoining claims (17 Crown-granted claims) were purchased by Northlode Exploration Ltd. from D.H. Hawkings with S.A. Millican's recommendations.

1964 - 1965 - Cominco optioned the property and completed 4 diamond drill holes. Minor copper and gold mineralization was found.

1964 - 1967 - D.H. Hawkings property was optioned to Rockland Mining Ltd. They carried out a small surface diamond drilling programme near the mineralized occurrences.

1967 - 1969 - Amax Exploration completed trenching and geochemical sampling of the surface. Gold-silver-copper and copper-molybdenum anomalies (1968) were discovered leading to a surface diamond drill programme. Good mineralization was intersected.

1970 - Western Mining Company and Amax Mining Company completed a joint venture on the claims. An underground diamond drilling programme for MoS_2 was completed using some of the old workings as setups.

1971 - 1975 - Crown-granted claims lapse.

1978 - 1979 - Pete Leontowicz and Bill Wingert acquired the property.

1979 - Rio Algom optioned the property and staked more claims. BP Minerals Ltd. staked the adjoining properties. Lithogeochemistry survey started.

1980 - 1984 - the Aylwin Joint Venture (Riocanex Inc. 50%, BP Canada 50%) explored the property with geochemical survey and drilling.

1981 - Hudson Bay Oil and Gas completed a geochemical survey on the LH Property.

1984 - BP Canada had acquired 72 % interest in the property.

1985 - Northair Mines Ltd. optioned the property for 50 % ownership (BP Canada 36%, Riocanex 14%).

1986 - 1987 - Northair drove the 1025 Level drift and the associated crosscuts.

- **1987** Northair completed the declines and the intermediate 1013 Drift.
 - The 1025 Level drifts and crosscuts were extended.
 - The 1100 Level and the 1100 Raise were completed.
 - Rib, face and muck sampling programme was completed.
 - Transport of Brandywine Mill to the Willa started.
 - Environmental baseline studies started.

1988 - Northair started the Environmental Assessment process, but met with considerable local opposition. Northair stopped all exploration and underground development.

1990 - Treminco Mining Ltd. optioned the property and studied the deposit but did no development work or diamond drilling.

2002 - Orphan Boy Resources Inc., by way of an Option to Purchase Agreement, acquired the property.

2004 – Orphan Boy Resources Inc. transferred title to Bethlehem Resources (1996) Corporation, a wholly-owned subsidiary of Bethlehem.

Over 50,000 metres of drilling were completed on the Willa prospect between 1965 and 1988 from 556 drill holes. Unfortunately, due to improper core storage, there is no way to identify the core that remains.

The MINFILE number for the Willa deposit is 082FNW071.

GEOLOGY AND MINERALIZATION

The following description is from Makepeace (2003):

Regional Geology

The Willa deposit is situated in the southern portion of the Selkirk Mountains within the Omineca Crystalline Belt.

The deposit is within a roof pendant composed of basic volcanic and volcaniclastic rocks, which was intruded by felsic dykes. The volcanics have been correlated to the Lower Jurassic Rossland Group. The pendant is enclosed and intruded by the Middle Jurassic Nelson batholith which is predominantly composed of coarse-grained granodiorite to quartz monzonite. Immediately to the north of the pendant is the Upper Triassic Slocan Group metasedimentary sequence of rocks that contains numerous silver-lead-zinc deposits. Structurally adjacent to the west of the Rossland Group is the Precambrian Valhalla Gneissic Complex, which is a highly metamorphosed terrane of remobilized granites and granitic gneisses.

The Slocan Lake Fault is the major structure in the area. This north-trending fault has a dip of 35° to 40° to the east and is of Eocene age.

Generally, the roof pendant rocks have been weakly metamorphosed to lower greenschist facies.

Property Geology and Structure

The property geology has been described in great detail by Heather (1985) and Wong and Spence (1995):

The lithologic units are illustrated in the table below with corresponding rock codes. The present digital geological database has maintained the lithology and the code numbers with the exception of white feldspar porphyry (5) and the hornblende feldspar porphyry (3). These units have been reclassified as feldspar porphyry (4) due to their similarity to feldspar porphyry. The digital database also includes a rock code for faults/shears and gouge (9) and overburden (10).

Age	D	Code	
	Lamprophyre Dykes		8
Middle Jurassic	Nelson Granite		7
Lower Jurassic	Heterolithic Breccia		6
	Feldspar Porphyry	White Feldspar Porphyry	5
		Feldspar Porphyry	4
		Hornblende Feldspar Porphyry	3
	Quartz Latite Porphyry		2
	Rossland Group Volcanics	Pyroclastics	1
		Augite Porphyry	
		Volcanic Siltstone	
		Biotite Schists	
· · · · · · · · · · · · · · · · · · ·	and the second	Source: Heathe	r, 1985

Table 2 - Willa Rock Classification

The Rossland Group volcanics are the oldest rocks on the property and make up approximately 75% of the roof pendant. The rocks in this group range from volcanic siltstone and tuff to coarse breccias and flows. The metavolcanic roof pendant is cut by two felsic porphyritic intrusions. The first intrusion is a quartz latite porphyry ring-dyke and two radial dykes that have a central core of feldspar porphyry and a crosscutting breccia pipe. The second intrusive consists of two sub-parallel igneous bodies consisting of white feldspar porphyry and hornblende feldspar porphyry. A heterolithic breccia intrudes the previous intrusions and volcanics. Lamprophyre dykes and faults crosscut and sometimes displace the previous lithologies.

Rossland Group Volcanics

Fragmental pyroclastic rocks make up roughly 70 % of the Rossland Group volcanics. They range from volcanic agglomerates and conglomerates to fine-grained crystal and lithic tuffs (Heather, 1985).

Augite porphyry sills or flows are present around the known Willa mineralization. The unit ranges from dark green to black-green and yellow-green and is usually altered (iron-stained or bleached). The augite and plagioclase phenocrysts are euhedral to subhedral and range in size from 0.5 to 4.0 mm. The matrix is composed of augite, feldspars and biotite.

Volcanic siltstone (hornfels) is usually interbedded with the augite porphyry and makes up only a small portion of the Rossland Group volcanics. The siltstone varies from green (actinolite-quartz-plagioclase-orthoclase) to grey to pink (biotite- plagioclase-orthoclase).

Biotite schist is found predominantly to the south and southeast of the heterolithic breccia. This black schist has been found in core and in outcrops and is believed to be related to the augite porphyry unit.

Quartz Latite Porphyry

The quartz latite porphyry unit forms a ring and radial dyke complex within the Rossland Group volcanics. Its composition ranges from quartz monzonite to granodiorite with large phenocrysts of plagioclase. The ring dyke structure is elliptical in shape trending 050° with a 5-kilometre by 1-kilometre size. The radial dyke radiates both inward and outward from the ring structure. There is up to 7 % pyrite in the quartz latite porphyry and when it is exposed on surface, the blocky fractured outcrop has a limonitic stain.

Feldspar Porphyry

The feldspar porphyry intrusive stock is centred within the quartz latite porphyry. It has an elliptical shape that trends 000°. This unit has phenocrysts of plagioclase and quartz with minor pyrite, apatite, titanite and magnetite. Outcrops are oxidized with skins of limonite and manganese oxide.

The white feldspar porphyry intrusive has been identified in 2 elongated bodies 1 kilometre north of the quartz latite porphyry ring dyke. These highly altered units have large plagioclase and small quartz phenocrysts with minor pyrite and hornblende.

The hornblende feldspar porphyry forms small intrusive bodies and dykes within the quartz latite porphyry and the feldspar porphyry. The large plagioclase and small hornblende phenocrysts are within a groundmass of orthoclase and quartz.

Heterolithic Breccia

The heterolithic breccia lies within the core of the quartz latite porphyry ring dyke and is roughly cylindrical in shape. The cross section of this pipe is 350 metres (north-south) by 200 metres. The outer portions of the breccia pipe form a crackle breccia texture. All the above lithologies other than the white feldspar porphyry have been identified as angular to rounded fragments of the pipe. The fragments normally show propylitic or potassic alteration. The matrix of the pipe is altered iron-rich rock flour composed of plagioclase, quartz and orthoclase with minor actinolite and biotite.

Nelson Granite

The Nelson granite is composed of a variety of granitic rocks ranging from porphyritic granite, quartz monzonite, syenite to granodiorite. The batholith encircles the volcanic roof pendant and does not outcrop near the Willa deposit. Granitic pegmatite dykes have been intersected in some of the deep diamond drill holes but the main Nelson batholith has not been intersected.

Lamprophyre Dykes

Mafic intrusive lithologies referred to as lamprophyre dykes are intersected in many drill holes within the intrusive complex. They normally trend north-south, are steeply dipping and are usually less than one meter thick. These dark green to black dykes are composed of plagioclase and/or pyroxene and biotite and contain varying amounts of orthoclase, quartz, amphibole, chlorite and olivine with minor apatite, titanite, zircon and magnetite.

Structure

There are several types of faults, which have been thought to localize the goldcopper-silver mineralization (Petersen, 1988). 'Paleo-faults' are north striking, vertically dipping faults that have been active throughout the mineral emplacement. They are thought to control the lamprophyre dykes. 'Flat faults' strike easterly and dip 15° to the north and may have reacted with the 'Paleofaults' to create vertical conduits for the mineral emplacement. 'Dislocation faults' strike northeast and dip 45° SE to vertical. They offset the 'Paleo-faults'. The 'Willa Fault', which has a strike of 040° and dips vertically, has no apparent offset. Contact faults follow the contact of the heterolithic breccia and probably serve as conduits for gold-copper-silver mineralization, but are narrow.

Alteration

Alteration around the Willa property has been described in detail by R.H. Wong and C.D. Spence in "Copper-gold mineralization in the Willa breccia pipe, southeastern British Columbia", 1995:

Hydrothermal alteration evident in the area of the Willa Deposit is a consequence of three discrete, but successive intrusive events and two major episodes of mineralization. Overlap and over-printing of the various alteration assemblages has resulted in a complex zonation. The two earliest alteration assemblages, associated with molybdenum mineralization, consist of biotite-pyrite and quartzpyrite-molybdenite. These are spatially associated with quartz latite porphyry. Following this and associated with intrusion of feldspar porphyry is a potassic assemblage of K-feldspar/biotite accompanied by up to 5% disseminated pyrite. Emplacement of heterolithic breccia was closely followed by pervasive calcium metasomatism resulting in a prograde calc-silicate alteration assemblage. It is believed that most, if not all, of the gold-copper-silver mineralization accompanied this alteration. Retrograde alteration of this calc-silicate assemblage resulted in the formation of and over-printing by minerals such as epidote, actinolite, gypsum, quartz, calcite, and zeolites. Emplacement of the Nelson batholith produced only minor propylitic effects in the Willa area.

Biotite-Pyrite Assemblage

Fine- to medium-grained black biotite accompanied by 2% to 5% disseminated and fracture-filling pyrite is locally preserved within mafic volcanic rocks adjacent to quartz latite porphyry. While more probably a product of contact metasomatism related to intrusion rather than a true hydrothermal alteration, it remains a recognizable assemblage where it is not over-printed by later hydrothermal events. The biotite also occurs as felted masses predominantly pseudomorphic after augite and may comprise up to 50% of the rock. Ubiquitous pyrite associated with this assemblage contributes to the large pyritic halo, which encloses the overall intrusive complex.

Quartz-Pyrite-Molybdenite Assemblage

Quartz-pyrite-molybdenite stockwork veins, sheeted veins, and pervasive flooded zones occur mainly in quartz latite porphyry but are also found within volcanic rocks adjacent to the quartz latite porphyry contact. Alteration around individual veins is best developed in the quartz latite porphyry where quartz-sericite-pyrite envelopes pass outward into zones of albitized plagioclase. Where the veins cut biotite-pyrite altered volcanic rocks, wall rock alteration is minimal, probably due to the dense, impermeable nature of theses rocks.

K-feldspar/Biotite Assemblage

A K-feldspar/biotite assemblage is spatially associated with the feldspar porphyry plug and locally is superimposed upon the first two alteration assemblages. Heather (1985) recognized a horizontal zonation within this assemblage with Kfeldspar dominant in the centre of the plug and biotite more prominent on the periphery. K-feldspar dominant alteration is marked by partial to total replacement of groundmass and plagioclase phenocrysts to yield a hard, whitishcoloured rock with the original textures obscured. Biotite-dominant alteration is marked by the development of disseminated, fine-grained, purple biotite laths, which impart a distinct pinkish colouration to the rock. Biotite development is most intense near the margins of the feldspar porphyry in zones of monolithic breccia. In these zones, fine-grained biotite, albitized plagioclase, and pyrite form the matrix of the brecciated rock.

Prograde Calc-Silicate Assemblage

Following development of the heterolithic breccia pipe, prograde calc-silicate alteration resulting from calcium metasomatism associated with the gold-coppersilver mineralization event resulted in replacement of the breccia matrix, and formation of veins and fracture-fillings in crackle-fractured clasts and peripheral crackle zones. The alteration assemblage consists of various combinations of the following materials listed in order of decreasing abundance: pyroxene, amphibole, epidote, garnet, plagioclase, K-feldspar, quartz, anhydrite, sphene, and calcite.

Retrograde Alteration Assemblage

Retrograde alteration of earlier calc-silicate alteration minerals is widespread as crosscutting veinlets and replacements. Epidote is particularly prominent as an alteration product within the garnet-anhydrite and pyroxene zones. Veinlets of amphibole, pyroxene, calcite, and quartz are seen to cut all of the prograde assemblages. Fibrous clusters of zeolite locally replacing garnet and sparry gypsum replacing anhydrite are also considered to represent retrograde alteration as the hydrothermal system collapsed.

Late-stage Veinlets

Veinlets consisting of varying proportions of calcite, chlorite, quartz, and gypsum are seen to crosscut all rock types, including Nelson plutonic rocks. They are especially common adjacent to late shear zones and may contain minor pyrite, hematite, or magnetite.

Mineralization

The following description is from Makepeace (2003).

There are two types of mineralization at the Willa deposit. The first is a calcalkali quartz-molybdenite stockwork and the second is the gold-copper-silver emplacement.

The quartz-molybdenite stockwork is weak but extensive in the quartz latite porphyry and volcanics north and west of the heterolithic breccia. Molybdenite occurs within the quartz and along the quartz vein boundaries. Due to the low grade of the molybdenum and the relatively small tonnage, this deposit is uneconomic to mine.

The gold-copper-silver mineralization is concentrated in three large zones (Main, West and East). The mineralization occurs in zones of weakness in fault zones and fault junctions. The mineralization is predominately chalcopyrite with varying amounts of pyrite and pyrrhotite. Propylitic alteration occurred during mineralization, as did zones of intense silicification and minor pyritization.

West Zone

The West Zone is the best defined portion of the Willa Deposit. It has been exposed on the 1025 Level (1000 Crosscut, 950 South Drift, 950 North Drift, 950 Crosscut and the 1025 Raise). The majority of the known mineralization is centred around 1025 metres elevation and is the reason for the main 1025 Level portal location. It has a crude north-south strike and a vertical dip and is approximately 200 metres in depth. The zone is predominantly within the heterolithic breccia. It has been documented that the mineralized zone is cut off to the north by the Willa fault and has been displaced to the south by crosscutting faults. Drill hole data seem to indicate that mineralization continues beyond these faults and into other lithologies. This is the only zone that has had a historic ore reserve estimate.

Main Zone

The Main Zone lies overtop and to the north of the other zones. It appears to have been offset at several locations along its crude north-south strike. This zone is exposed on surface by Aylwin Creek. The Willa No. 1 and Willa No. 2 Adits were collared in the Main Zone on either side of the creek. The exposed portion of the Main Zone is stained with limonite and chlorite. The zone is partially composed of heterolithic breccia as well as feldspar porphyry, quartz latite porphyry and Rossland Group volcanics. The offsets of the Main Zone can be subdivided into Main Zone and Upper Main Zone.

East Zone

The East Zone is presently the smallest of the three zones. This may be due only to the lack of drilling in this area. The majority of the zone is underneath the 1013 Decline, 1013 Level and 993 Decline. This zone is situated partially in heterolithic breccia and partially in Rossland Group volcanics. Further exploration is required to better define this zone.

UNDERGROUND DRILL PROGRAMME

Recommended Programme

The 2004 underground drilling programme was designed to cover six areas that had either not been drilled or were under drilled. These six areas (A through F on Figure 4) are adjoining known areas of Au-Cu-Ag mineralization.

The areas were defined by entering all the existing drill data into Surpac International Inc.'s Vision mining software package for three dimensional modeling. The computer modeled targets are described below and adapted from Makepeace (2003). Note that the following descriptions were written before the 2004 drilling.

Area A

This area is immediately south and along strike of the East Zone. There are several high-grade (> 3.5 g/t Au) blocks at the south end of the zone. Area A has not been drilled for the East Zone extension.

It is recommended that three widely spaced drill holes (approximately 450 metres total length) would be required to explore this area. The most appropriate drill station location would be in the 993 Decline. The alternative drill station would be at the end of the 1025 Level (950 South Drift) but this would require long holes to compensate for the more distant location. Further drilling would be required to delineate the East Zone extension if the drill holes were successful in intersecting mineralization.

Area B

Area B is immediately north and along strike of the East Zone. The 1013 Level was established as a drill station to explore this zone. Drill holes on the 1013 Level, North Crosscut were drilled to the south and intersected the zone. No vertical or north trending holes were ever drilled from this platform.

It is recommended that five drill holes be drilled in this area (approximately 600 metres total length). The 1013 Level, North Crosscut should be used as the drill station. Further drilling would be required to delineate the East Zone extension if the drill holes are successful in intersecting mineralization.

Area C

This area is northeast and along strike of the Main Zone. This area has not been drilled even though the 1100 Level, East Crosscut was driven to its boundary.

It is recommended that three drill holes be drilled in this area (approximately 300 metres total length). The 1100 Level East Crosscut should be used as the drill

station. Further drilling would be required to delineate the North Zone extension if the drill holes are successful in intersecting mineralization.

Area D

Area D is south and along strike of the West Zone. The past drilling from the end of the 1025 Level, 950 South Drift appears to have been short holes.

It is recommended that three drill holes be drilled in this area to explore a possible extension of this zone (approximately 600 metres total length). The original last drill station on 1025 Level, 950 South Drift could be used for these holes. If the drill holes were successful in intersecting mineralization, further drilling would be required. Depending on the location(s) of the intersections an extension of either the 1100 Level, South Drift and/or the 1025 Level, 950 South Drift would possibly be required to create drill station(s) better located to continue delineating the mineralization in this area.

Area E

This western area of the West Zone had a large volume of high-grade (> 3.5 g/t Au) blocks from one drill hole. It is recommended that two drill holes be drilled in this area to explore this high-grade (> 3.5 g/t Au) portion of the West Zone (approximately 250 metres total length). The west end of the 1025 Level, 950 Crosscut could be used as a drill station. Some additional drilling may be required to delineate this area if the drill holes are successful in intersecting mineralization.

Area F

From a detailed 3D examination of the Surpac block model and drill hole database, there are several drill intersection gaps and therefore possibly an absence of estimated blocks within the southern portion of the Main Zone. The gaps are:

5525570 N to 5525600 N
5525510 N to 5525540 N
5525440 N to 5525480 N

Each gap would require at least one drill hole to intersect that area. Unfortunately, due to the plunge of the Main Zone, only the first gap could be effectively reached with a 150-metre hole from the 1100 Level. All other gaps would require 250+ metre holes to achieve their targets. The alternative would be to use a surface drill to intersect all three gaps with three 100+ metre holes (approximately 400 metres). If the mineralization continues to the south further drilling would be necessary to delineate this extension of the Main Zone.

Underground Refurbishment for Drilling

Drilling of the targets outlined above required refurbishing of the 1025 Level workings to provide safe access and ventilation for the drill crew and equipment.

Refurbishing of the 1025 Level portal and underground workings commenced on February 29, 2004 with the ploughing of snow from the access road. A site inspection of the surface and underground took place on March 1st with the contract shift boss and the electrical contractor in attendance. Construction of the electrical switchgear shack started off site the next day. Site work started on March 8th with unloading of a one and a half ton electric locomotive and flatcar. Portal door repairs, track clearing, hand mucking and timbering of a fault zone area took place in March. A diesel powered generator arrived on April 2nd, complete with environmental fuel tank. The electrical system, that included electrical panels, dewatering-supply pump and ventilation fans was installed and tested by April 15th.

The 1100 Level portal was partially dug out in May to improve the ventilation of the 1025 Level by allowing more air to flow through the vent raise between the two levels and the portals.

Initially, drilling was planned on both the 1025 Level and the 1100 Level. However it was deemed more cost effective to re-configure several holes and drill them from the 1025 Level than to refurbish the 1100 Level portal; therefore, all drilling in the 2004 programme was conducted from the 1025 Level, or lower levels via the 1025 Level portal and decline.


2004 Drill Programme

The drill contract was awarded to Advanced Drilling of Surrey, BC. Two different drills were used during the programme, either a B-10 for the shorter holes or a Mini Myte for longer holes. Both drills were electric-hydraulic powered and designed for underground operation. A diesel generator located outside the 1025 Level portal supplied power to the drills and underground equipment.

Drill collars were surveyed and marked with foresights and backsights prior to drilling. The holes were marked with labelled wooden plugs after the drill moved to the next setup. The markers were driven into the hole collars to make identification easier for the surveyors and to distinguish the new holes from the numerous old holes from earlier programmes.

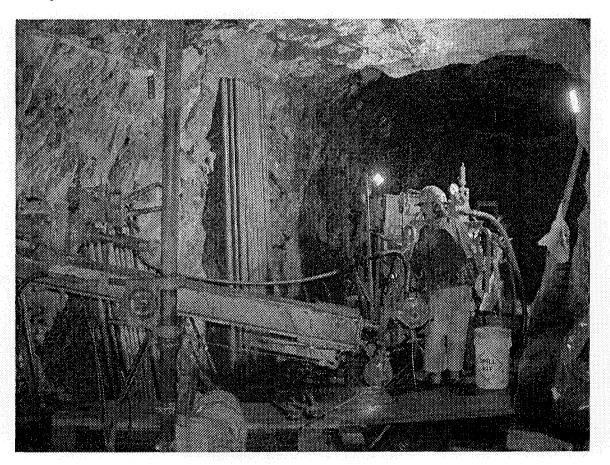
The drill equipment arrived on April 20th and was moved to the first set-up. The first hole was collared on April 21st. A total of 541 underground holes had been drilled during earlier drill programmes; therefore the first hole in this programme was labelled 04-542. Holes were numbered consecutively and drilled chronologically starting with 04-542 and

ending with 04-580. The drilling was completed on July 27th and the equipment was dismantled and packed for removal on July 28, 2004.

P-1 Drill Set-Up

In total, 39 holes for 5,282 m were drilled. The following table is a summary of the 2004 underground drilling.

Hole No.	Date Start	Date Complete	Length (m)
04-542	2004.04.21	2004.04.24	199.03
04-543	2004.04.24	2004.04.26	140.81
04-544	2004.04.26	2004.04.27	114.60
04-545	2004.04.28	2004.04.30	141.43
04-546	2004.04.30	2004.05.01	91.14
04-547	2004.05.01	2004.05.02	128.63
04-548	2004.05.03	2004.05.04	77.11
04-549	2004.05.04	2004.05.06	147.52
04-550	2004.05.06	2004.05.07	139.90
04-551	2004.05.08	2004.05.09	135.64


Table 3 - Summary of Drill Holes

Hole No.	Date Start	Date Complete	Length (m)
04-552	2004.05.09	2004.05.11	126.49
04-553	2004.05.11	2004.05.15	249.63
04-554	2004.05.16	2004.05.19	200.25
04-555	2004.05.25	2004.05.27	146.61
04-556	2004.05.27	2004.05.29	130.45
04-557	2004.05.29	2004.05.30	104.85
04-558	2004.05.31	2004.06.01	127.41
04-559	2004.06.01	2004.06.02	115.21
04-560	2004.06.03	2004.06.04	124.97
04-561	2004.06.05	2004.06.06	53.95
04-562	2004.06.06	2004.06.06	31.70
04-563	2004.06.07	2004.06.08	56.08
04-564	2004.06.08	2004.06.09	77.11
04-565	2004.06.09	2004.06.10	77.42
04-566	2004.06.10	2004.06.11	98.76
04-567	2004.06.12	2004.06.13	98.76
04-568	2004.06.13	2004.06.14	81.69
04-569	2004.06.14	2004.06.15	75.59
04-570	2004.06.15	2004.06.16	51.51
04-571	2004.06.16	2004.06.17	100.28
04-572	2004.06.18	2004.06.18	51.51
04-573	2004.06.19	2004.06.22	219.46
04-574	2004.06.22	2004.06.27	193.24
04-575	2004.06.28	2004.06.29	124.97
04-576	2004.06.29	2004.07.14	264.87
04-577	2004.07.14	2004.07.15	146.00
04-578	2004.07.16	2004.07.20	321.26
04-579	2004.07.20	2004.07.23	298.09
04-580	2004.07.24	2004.07.27	218.85
		TOTAL :	5282.78

Minor offsets and elevation shifts were often encountered during drill set-up; hence all the 2004 hole collars were re-surveyed after drilling to determine the exact co-ordinates and the elevation. Table 9 (Appendix A) shows survey data for the drill collar co-ordinates, elevation, dip and azimuth.

Down-hole survey data were collected using a Sperry-Sun Magnetic Directional Single Shot instrument (Table 10 – Appendix B). Magnetic minerals such as magnetite and pyrrhotite can influence this instrument; however, most readings appeared to correspond favourably to collar survey readings as the variance is within reasonable drill curve parameters. Transportation of the drill equipment throughout the workings was conducted using an electric locomotive that ran on tracks from outside the portal to the 1000 Crosscut on the 1025 Level. A combination of handcarts and an electric tugger was used to access the trackless workings, namely the 950 East Drift, the 950 Crosscut, the 993 Decline and the 1013 Level. Considerable manpower was needed to move the heavy drill into position especially on the decline so additional personnel assisted the drill crew during drill moves and set up.

The drillers transported the core to a location outside the 1025 Level portal at the end of each shift where it was collected by Discovery personnel and taken to a core logging facility.

P-2 Drilling in Progress

Drill Results

Mineralized Shell

Probability plots were used to determine different populations of results within the database. The plots have been done for all 2638 results.

<u>Gold</u>

The plot indicates that those values up to and including 0.16 g/t Au comprise background values. This point occurs at the 70 percentile. Values that are greater than 0.16 g/t are part of the mineralized shell. It is reasonable to have 30 percent of the results within the mineralized shell when drilling the periphery of the deposit. The graph from 0.17 g/t to 8.0 g/t (at the 99.3 percentile) is essentially straight – with a deviation of about the thickness of a pencil line. It appears that values from 0.17 to 8.0 g/t are one population.

This demonstrates that most of the mineralized shell does not have different and distinctive modes of mineralization, as would a high-grade vein within a low-grade wall-rock zone. As expected, the resource will be based on assay boundaries.

Copper

The plot indicates that those values up to and including 0.089 % Cu comprise background values. This point occurs, like that for gold, at the 70 percentile. Values that are greater than 0.089 % are part of the mineralized shell. The graph shows an inflection point at 0.45 % (at the 96.7 percentile). This creates two populations, one from 0.090 to 0.45 % and another greater than 0.45 % Cu. The geological controls on these populations are presently not known, but may become evident during the resource calculation.

Although there are two populations of copper values within the mineralized shell, the resource will be mainly based on assay boundaries.

Gold Equivalent

Gold equivalent (AuE) values were calculated from gold, copper and silver grades, based on \$US 12.80/g for Au, \$ 0.18/g for Ag and \$ 25.00/one percent for Cu. Gold equivalent values are somewhat artificial but they were calculated to help with identification of mineralized zones.

The plot indicates that those values up to and including 0.35 g/t AuE comprise background values. This point also occurs at the 70 percentile. Values that are greater than 0.35 g/t are part of the mineralized shell. The graph from 0.36 g/t is essentially straight – with a deviation of about the thickness of a pencil line. It appears that values from 0.36 g/t AuE are one population.

Silver

As the detection limit on silver was 2 ppm and the results only reported to the nearest ppm value, probability plots were not created for silver. Ag values of 4 ppm or greater were chosen for the mineralized shell.

A summary of the Au-Cu-Ag mineralized shell, for all intersections of 4.0 m or more, is shown in Table 4. The mineralized shell intersections are plotted in plan on Figure 5.

DDH #	Target	From	To		Interval	Au	Cu	Ag	Au E
	Area	<u>(m)</u>	(m)		<u>(m)</u>	g/t	%	<u>g/t</u>	g/1
04 - 547	A	none							
04 - 561	A	0.0	6.0		6.0	0.30	0.161	2	0.64
04 - 562	A	none							
04 - 563	Α	8.0	38.0		30.0	1.98	0.668	8	3.40
04 - 564	A	2.0	14.0	·	12.0	0.33	0.156	2	0.65
		32.0	38.0		6.0	0.12	0.148	1	0.42
04 - 565	A	0.0	14.0		14.0	0.33	0.146	1	0.63
		48.0	52.0		4.0	0.27	0.174	3	0.64
04 - 566	A	0.0	12.0		12.0	0.41	0.140	2	0.71
		36.0	42.0		6.0	0.11	0.137	1	0.40
04 - 567	Α	0.0	12.0		12.0	0.32	0.119	2	0.57
1		30.0	38.0		8.0	0.10	0.124	1	0.36
04 - 568	A	0.0	14.0		14.0	0.34	0.181	2	0.72
04 - 569	A	0.0	32.0		32.0	0.53	0.260	3	1.08
04 - 555	В	none				·····			
04 - 556	В	98.0	102.0		4.0	0.31	0.147	4	0.64
04 - 557	В	66.0	86.0		20.0	1.06	0.114	1	1.30
		98.0		EOH	6.9	3.52	0.396	5	4.37
04 - 558	B	none				***********			
04 - 559	В	none			· · · · · · · · · · · · · · · · · · ·				
04 - 560	В	122.0	125.0	EOH	3.0	1.90	0.362	6	2.69
04 - 576	B	34.0	48.0		14.0	0.37	0.118	2	0.63
		62.0	66.0		4.0	0.20	0.134	2	0.48
		130.0	134.0		4.0	0.36	0.092	1	0.55
04 - 573	C	24.0	36.0		12.0	0.40	0.074	3	0.58
		46.0	94.0		48.0	0.36	0.141	4	0.69
04 - 574	С	40.0	106.0		66.0	0.63	0.239	4	1.16
04 - 575	C	44.0	70.0		26.0	0.40	0.164	2	0.75
		78.0		EOH	47.0	0.39	0.128	2	0.67
04 - 542	D	178.0		EOH	21.0	0.14	0.111	1	0.37
04 - 543	D	38.0	62.0		24.0	0.18	0.105	1	0.40
		120.0	124.0		4.0	0.20	0.121	1	0.45
04 - 544	D	6.0	14.0		8.0	0.24	0.156	4	0.60
		36.0	64.0		28.0	0.48	0.211	3	0.94
		90.0	98.0		8.0	0.29	0.076		0.45

Table 4 - Summary of Mineralized Shell

DDH #	Target Area	From	То		Interval	Au g/t	Cu %	g/t	Au E g/t
		<u>(m)</u>	<u>(m)</u>		(m)				
04 - 545	D	24.0	76.0		52.0	0.45	0.157	3	0.80
04 - 546	D	12.0	16.0	· · · · · · · · · · · · · · · · · · ·	4.0	0.22	0.184	5	0.64
		30.0	46.0	·····	16.0	0.23	0.140	2	0.54
		52.0	91.1	EOH	39.1	0.92	0.184	7	1.37
04 - 548	D	none		***					
04 - 549	E	0.0	118.0		118.0	5.12	0.587	16	6.50
		128.0	147.5	EOH	19.5	0.61	0.289	5	1.24
04 - 550	E	0.0	52.0		52.0	1.24	0.207	2	1.68
		106.0	110.0		4.0	0.23	0.091	5	0.47
		120.0	124.0		4.0	0.36	0.107	3	0.60
04 - 551	E	0.0	34.0		34.0	2.87	0.455	5	3.82
		64.0	68.0		4.0	0.31	0.113	3	0.5
		118.0	135.6	EOH	17.6	0.23	0.131	2	0.5
04 - 552	E	0.0	20.0		20.0	5.41	0.414	6	6.3
		94.0	126.5	EOH	32.5	0.51	0.049	1	0.62
04 - 553	E	0.0	40.0		40.0	2.08	0.223	4	2.5'
		98.0	102.0		4.0	0.32	0.034	2	0.4
		160.0	170.0		10.0	0.35	0.050	1	0.40
		196.0	200.0		4.0	0.72	0.138	5	1.05
		218.0	222.0		4.0	0.40	0.053	8	0.60
04 - 554	E	0.0	22.0		22.0	0.60	0.199	2	1.02
04 - 570	E	0.0	12.0		12.0	0.68	0.219	2	1.13
04 - 571	E	0.0	30.0		30.0	0.57	0.199	2	0.99
		36.0	40.0		4.0	0.32	0.097	1	0.52
04 - 572	Е	0.0	38.0		38.0	3.69	0.510	6	4.7
04 - 577	F	18.0	28.0		10.0	0.44	0.146	2	0.75
		36.0	78.0	- <u>43 68 - 199</u>	42.0	0.50	0.150	2	0.83
		84.0	110.0		26.0	0.18	0.124	2	0.44
		138.0	146.0	EOH	8.0	0.31	0.076	1	0.4
04 - 578	F	48.0	108.0		60.0	0.44	0.162	2	0.79
		148.0	194.0		46.0	0.54	0.161	2	0.89
		268.0	321.3	EOH	53.3	1.67	0.393	7	2.5
04 - 579	F	20.0	32.0		12.0	0.23	0.089	1	0.42
		54.0	220.0		166.0	0.70	0.172	3	1.0'
		238.0	276.0		38.0	0.22	0.130	3	0.52
04 - 580	F	34.0	38.0		4.0	0.44	0.106	3	0.69
		46.0	188.0		142.0	0.65	0.198	3	1.09

Sampling and Analytical Procedures

A sampling and analytical protocol for the underground drill programme was developed by J.A. Chapman, P.Eng. of Bethlehem Resources (1996) Corporation [Bethlehem]. Discovery Consultants [Discovery] of Vernon BC was responsible for ensuring the protocol was carried out. Acme Analytical Laboratories Ltd [Acme] of Vancouver BC was the main laboratory. ALS Chemex [Chemex] of North Vancouver BC handled duplicate core samples. Discovery Consultants was responsible for the layout of drill holes, the geological and the geotechnical logging of the core, and the quality control aspects of the drill programme.

Field Sampling Procedures

Drill Programme

An underground drilling programme was carried out on the Willa property during the spring and summer of 2004. The programme was based on the recommendations in the previously citied March 28, 2003 report by D.K. Makepeace, P.Eng. Advanced Drilling of Surrey BC performed the drilling. S.L. Phillips, B.Sc., was the mine site manager. Personnel from Discovery conducted core sampling and logging. The geological core logging was done by R.A. Tilsley, P.Geol., under the supervision of W.R. Gilmour, P.Geo.

Almost all drill hole set-ups were surveyed for location, dip and azimuth. Foresights and backsights were marked for the drillers. The drillers used a taught string between them to correctly align the drill. The holes were marked with labelled wooden plugs after the drill moved to the next set-up. The markers were driven into the hole collars to make identification easier for the surveyors and to distinguish the new holes from the numerous old holes from earlier programmes. After drilling was completed the location, dip and azimuth of all holes were resurveyed (Table 9 -Appendix A). All surveying was under the supervision of R.C. Power, B.C.L.S. of Vernon, BC.

A Sperry-Sun Magnetic Directional Single-Shot instrument was used to determine dips and azimuths at the end of most drill holes. The results are contained in Table 10 -Appendix B.

Holes were drilled on the 1025 Level and the 1013 Level. Both areas were accessed via the 1025 Level portal along a tracked passage using an electric tram locomotive pulling a flat deck utility car. Rubber tired hand carts were used to move the core and equipment in areas where trackless mining had been conducted. An electric tugger was used to assist the movement of core and equipment on the decline.

After removal of the core from the core barrel, the drillers placed run-marker blocks (in feet) at the end of runs. Footage markers were metricated at the core logging facility.

Transportation and Security

The drillers transported the core to the portal at the end of each ten-hour shift using a combination of handcarts, tugger, and the electric locomotive. The core was received by personnel from Discovery and taken by pickup truck to a rented core logging facility located 4.3 km from the mine site.

Core Logging Facility

The core logging facility was located within a gated yard, owned and occupied by a promining local resident. Three very vocal dogs guarded the yard and associated buildings. A large greenhouse with an industrial garage door was utilized as the core logging facility. Core logging benches were built and water hoses were obtained to adapt the greenhouse for core processing.

Geotechnical Measurements

The core was logged and photographed using natural light in the greenhouse. See Appendix H for complete drill logs.

Before splitting, the RQD (rock quality designation) values – the percent of core pieces within an interval that are greater than 10 cm in length – were determined. The following table shows a classification of the RQD values.

RQD	Rock Quality Classification		
<25%	Very Poor		
25 - 50%	Poor		
50 - 75%	Fair		
75 - 90%	Good		
90 - 100%	Excellent		

Table 5 - RQD Classification

Percent recovery values were also measured. In places the measured recovery exceeds 100%. This was caused by non-precise placement of run-markers and/or by non-precise measurement of runs by the drillers. This difference is not material to the results of the programme. The good recovery indicates that the analytical values are representative of the in situ rock.

The RQD and recovery geotechnical logs for the drill holes are contained in Table 11 - Appendix C.

Specific gravity values were determined in the field on stored ¹/₄ core samples (those with sample numbers ending in 00, 25, 50 and 75). Determinations were done by weighing pieces of quartered core of convenient length first in air and then submerged in water.

This was achieved by suspending the core pieces with monofilament fishing line beneath an electronic balance. A hole was drilled through the balance table to allow the fishing line to freely suspend the core in the air. A container of water below the balance table made it possible to repeat the weighing procedure with the core suspended below the water surface. The specific gravity was calculated using the formula below.

Specific Gravity = <u>Weight of sample (g)</u> Weight in air (g) – Weight in water (g)

Bulk density determinations were conducted on several samples by sealing the core in a thin layer of wax to prevent water from entering cracks, vugs or pores in the rock. Sealing the core was done by dipping warm core in hot wax and letting it cool prior to the weighing procedure. The sealed core was then suspended below the balance and weighed in air and weighed again submerged in water. The bulk density was calculated using the specific gravity formula and weights from the wax-sealed core.

The results of this determination are contained in Table 12 - Appendix D. The results are compared with the specific gravity determined by Acme. The following table shows the average values for the three main rock types.

Specific Gravity Determinations Average Values							
	n	Field	Lab				
Rossland Group	41	2.90	2.82				
Quartz Latite Porphyry	24	2.68	2.63				
Heterolithic Breccia	44	2.77	2.73				

<u>Table 6</u> - Specific Gravity for Rock Types

The field values are consistent with the laboratory values, although about 1.5 to 2.8 % higher on average. A difference is expected as the laboratory values are for a split of crushed rock from a 2.0 m interval while the field determination is from a piece of core from the same interval.

No significant difference was detected between the bulk density and the specific gravity of the Willa core indicating that the core was solid in nature with low internal porosity.

Core Sampling

The core was marked at 2.0-metre intervals and tagged for splitting and sampling. The two-metre length was standard, except at the start or the end of each hole where occasionally sample length varied to accommodate casing.

A field blank sample was inserted into the sample sequence at sample numbers ending in 49 or 99 (about 100-metre intervals). The field blank material was obtained from an

aplitic quartz-feldspar vein, exposed on the right rib of the 1025 Level a short distance in from the portal. The blank material generally contained no visible sulphides. The aplitic material was broken into core-sized pieces, placed in labelled plastic bags, and tagged similarly to the regular core samples.

Core Splitting

Rock saws were set up outside the greenhouse to longitudinally split the core for sampling. A mechanical splitter was used in some zones if it became impractical to cut the harder lithologies using the rock saws. Half the core was shipped to Acme for analysis while the other half was placed back in the core boxes.

Duplicate check samples were taken at 25-sample intervals (about 50-metre) from samples with numbers ending in 00, 25, 50, and 75. Here the remaining half core was longitudinally split to form ¹/₄ cores. One portion of the quartered core was sent to Chemex for check analysis and the remaining portion was kept in the core box. The split core was re-photographed and stored for future reference.

Labelling

All boxes were labelled with stainless steel or aluminum embossing labels. The labels were nailed to the ends of the core boxes with appropriate steel or aluminum nails depending on the label metal. The wooden core run-marker blocks were inscribed with black marker and pencil and nailed into position in the core boxes to prevent movement or loss.

Core Shipping

Sawn or mechanically split core samples were placed in plastic bags along with prenumbered sample tags. The corresponding sample number was written on both sides of the sample bag. The sample bags were closed with plastic cable ties and packed into poly woven rice bags fitted with a security tag and a cable tie fastener. Partially filled rice bags were locked in a large aluminum box when unattended until sufficient samples were processed to completely fill and secure a shipping bag.

Regular sample shipments contained a total of one hundred fifty samples (150). Most of the samples were driven to Nakusp by Discovery personnel and were transferred to bonded shippers who trucked the samples to Acme in Vancouver. Each shipment of 150 samples contained three field blanks and six duplicate core samples.

The duplicate field samples were also placed in plastic bags similarly to the regular samples and locked in the security box until sufficient samples accumulated to fill a shipping bag. Duplicate samples were packed in poly woven rice bags fitted with security tags and shipped separately to Chemex via bonded shippers.

Core Storage

The split core was stored in temporary, roofed core racks beside the greenhouse. The core was subsequently removed from the temporary racks, carefully cross-stacked and shipped to a storage facility at Bethlehem's Goldstream Mill Site for permanent storage.

Laboratory Sample Preparation and Analysis

Sample Preparation

At Acme the core samples were treated according to Acme Quote 04-032, dated February 25, 2004. The samples were dried and all the material in the samples was crushed to >70% minus 2.0 mm. After thorough mixing the sample was riffle split to produce a 250 g sub-sample. The remaining 2.0 mm reject was placed in sealed plastic bags and stored at Acme for possible future analysis and for metallurgical testing. The 250 sub-sample was pulverized to >95% minus 100 microns. After thoroughly mixing, 29.2 g was split off for gold and silver analysis and a 1.0 g sub-sample was taken for analysis of base metals and other elements. The remaining pulp sample was placed in sealed plastic bags and stored at Acme for possible future analysis.

At Chemex a similar process of sample preparation and analysis was carried out on duplicate field samples.

Specific Gravity

Acme measured the specific gravity of reject material from core samples with sample numbers ending in 00, 25, 50 and 75. The results of this determination are contained in Table 12 – Appendix D. The results are compared with the field determined specific gravity.

<u>Analysis</u>

Gold and silver values were determined by classical lead-collection fire assay on a one assay-ton (29.2 g) sample, followed by ICP emission spectrometry (Acme Group 6). Base metals and other elements were determined by aqua regia digestion on 1.0 g sample, followed by ICP emission spectrometry (Acme Group 7AR). Note that digestion is only partial for some minerals, especially silicates. However, digestion is excellent for base-metal sulphides.

All the analytical results are included with the geological logs in Appendix H.

Quality Control and Quality Assurance Programme

Collection and security

The procedures are described in the above section.

Contamination

For the 2004 underground drill programme, Discovery inserted a coarse blank sample every 50 samples, totalling 50. The blank material was from an aplitic quartz-feldspar vein, and therefore was not blind to the laboratory. The purpose of these blanks was to check for contamination within the preparation (crushing, pulverizing) process. The results demonstrate no significant contamination during the sample preparation process.

Acme inserted a silica sample at the start of every sample batch, totalling 18. The purpose of these blanks was to check for any preparation contamination from the preceding batch. The results were monitored on a regular basis.

The results of the field and laboratory blank samples are in Table 13 – Appendix E.

Precision

Duplicate samples are prepared and analysed to measure precision. Precision is defined as the percent relative variation at the two standard deviation (95%) confidence level. In other words, a result should be within two standard deviations of the mean, 19 times out of 20. The higher the precision number the less precise the results. Precision varies with concentration – usually the lower the concentration the higher the precision number. The precision values are determined from Thompson-Howarth plots. The duplicate sample results pair the original Acme results with either a Chemex check core sample, another sub sample from the rejects or another sub sample from the pulps.

Precision is a measure of the error in the analytical results from a variety of sources: (1) core sampling, (2) sample preparation and sub sampling, and (3) analysis. The core duplicates measure the error in all three of these parameters; the reject duplicates, the error in preparation, sub sampling and analysis; and the pulp duplicates, mainly the error in analysis. The duplicates should be inserted into the sample stream after the original sample. The homogeneity of the samples should increase with the process, from core sampling through to the analysis of sample pulps. The results of the duplicate samples were monitored on a regular basis.

Core duplicates

In total, 107 duplicate pairs of core samples were analysed. The pairs comprised $\frac{1}{2}$ -core samples analysed by Acme and $\frac{1}{4}$ -core samples analysed by Chemex. This procedure

will only give an estimate of the sampling precision, as a different sized sample was analysed by a different laboratory.

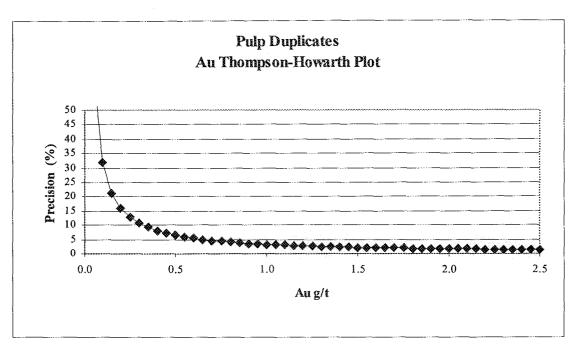
The Thompson-Howarth plots for Au and Cu are shown in Figures 33 and 34. The results are summarized in the following table.

Precision Values (%)					
Au g/t	0.5	1.0	1.5	2.0	
Au	6.6%	4.9%	4.3%	4.0%	
Cu %	0.1	0.15	0.2	0.3	
Cu	14.6%	9.8%	7.4%	5.0%	

<u>Table 7</u> - Core Duplicates: Precision Values Acme/Chemex, n = 107

At the 95% confidence level the precision values indicate about $a \pm 2\%$ error for 2.0 g/t Au values and about $a \pm 2.5\%$ error for 0.3% Cu values. This is the total error for sampling, preparation and analysis. This error is probably higher than if two ½-core samples were analysed consecutively within the same laboratory. Greater errors are produced when using a different core-sample size and a different laboratory.

Reject Duplicates


The laboratory systematically produced, about every 30 to 40 samples (89 pairs in total), another pulp sample from the saved reject (crushed) material. The Thompson-Howarth plots for Au and Cu are shown in Figures 35 and 36. The results are summarized in the following table.

Precision Values (%)						
Au g/t	0.5	1.0	1.5	2.0		
Au	5.6%	2.6%	1.6%	1.1%		
Cu %	0.1	0.15	0.2	0.3		
Cu	3.2%	2.2%	1.8%	1.3%		

<u>Table 8</u> - Reject Duplicates: Precision Values Acme, n = 89

At the 95% confidence level the precision values indicate about $a \pm 0.6$ % error for 2.0 g/t Au values and about $a \pm 0.7$ % error for 0.3 % Cu values. This is the total error for preparation and analysis.

31

67

Figure 33

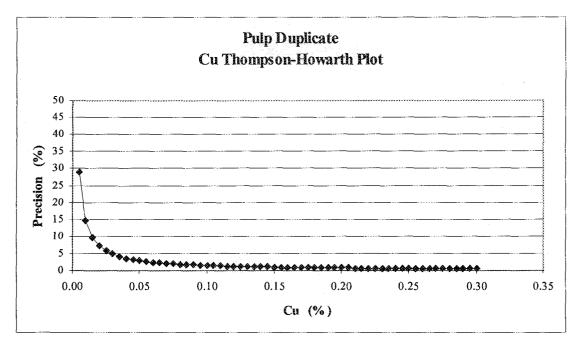


figure 34

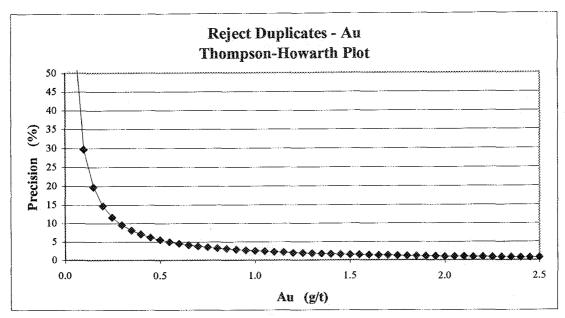


Figure 35

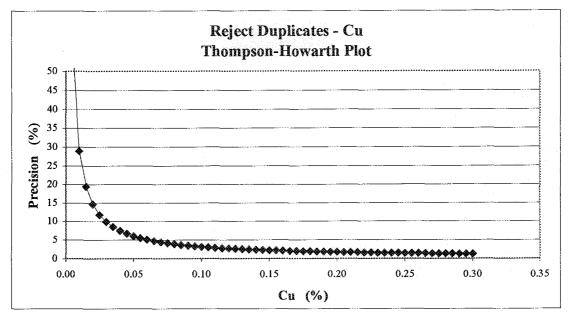


Figure 36

.

Pulp Duplicates

The laboratory systematically analysed, about every 30 to 40 samples (89 pairs in total), another pulp sample. The Thompson-Howarth plots for Au and Cu are shown in Figures 37 and 38. The results are summarized in the following table.

Precision Values (%)					
Au g/t	0.5	1.0	1.5	2.0	
Au	6.5%	3.3%	2.2%	1.7%	
Cu %	0.1	0.15	0.2	0.3	
Cu	1.5%	1.0%	0.8%	0.5%	

<u>Table 9</u>	-	Pulp Duplicates: Precision Values	
		Acme. $n = 89$	

At the 95% confidence level the precision values indicate about $a \pm 0.9$ % error for 2.0 g/t Au values and about $a \pm 0.3$ % error for 0.3 % Cu values. This is the error for analysis. The results were monitored on a regular basis.

Check Samples

Duplicate core samples, $\frac{1}{4}$ core, were sent to Chemex for analysis. The Thompson-Howarth plots for Au and Cu are shown in Figures 33 and 34. At 2.0 g/t Au, the precision value is 4.0 % and for 0.3 % Cu the precision value is 5.0 %.

Accuracy

Acme inserted two standards into the sample stream about every 35 samples. AU-1 was the gold assay standard and R-2a was the multielement standard. The results of the standards are shown in Table 14 - Appendix F.

Plots of the Au and Cu standard values with time are plotted on Figures 39 and 40. The results were monitored on a regular basis.

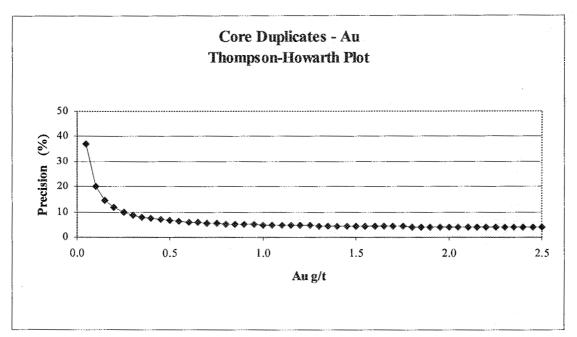


Figure 37

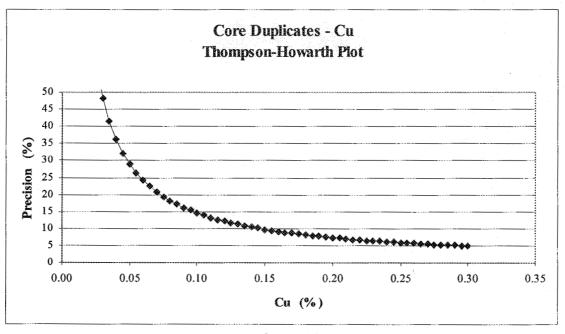


Figure 38

CONCLUSIONS

Mineralization & Geology

- The 2004 drilling in the peripheral areas of the Willa deposit was not successful in locating significant new zones of potentially economic Au-Cu-Ag mineralization.
- The drilling was successful in outlining the limits of the higher grade zones.
- The best results were from Area E, along the west edge of the West Zone.
- Drilling in Areas C and D failed to find significant north-south extensions of the Main Zone.
- Drilling in Areas B and A failed to find significant north-south extensions of the East Zone.
- Drilling in Area F failed to find significant mineralized zones in under-drilled areas of the Main Zone.
- A Au-Cu-Ag mineralized shell was encountered in 30 % of the intersections. On a deposit scale, Au-Cu-Ag mineralization of economic interest seems to be enclosed within this mineralized shell. This shell is statistically a single population.
- Grades > 0.35 g/t gold equivalent (see Results section) define the lower grade limit of the shell. Within this shell, any Au-Cu-Ag resource will be based on assay boundaries, not geological contacts.
- In property exploration, the presence of a low-grade mineralized shell may indicate proximity to higher grade Willa-style mineralization.
- Heterolithic breccia is the main host to the mineralized shell, but the shell boundaries are not strictly controlled by geology.
- The heterolithic breccia composition ranges from 100 % Rossland Group fragments to 100 % quartz latite porphyry, although a mixture is most common.

Specific Gravity

- The three main rock types have distinctive specific gravities. On average: Rossland Group 2.82, Quartz Latite Porphyry 2.63 and Heterolithic Breccia 2.73.
- There is not sufficient data to determine the specific gravity of zones that have economic potential.

RQD Determinations

• No detailed analysis of the RQD values has been undertaken for this report.

Quality Control and Quality Assurance

- Due to the good core recovery during drilling, the sampling was representative of the rocks drilled.
- The collection and security of core samples before the laboratories took custody were satisfactory.
- The sample preparation procedures were satisfactory and there was no significant contamination.
- The precision for the sample collection, preparation and analysis is excellent. This is most likely due to the fine grained nature of the gold. Wong and Spence (1995) report that the average gold grain size is 10 microns.
- The excellent precision for the duplicate core samples means that bulk sampling is not needed to assist in resource calculations
- It is not clear why the reject duplicates returned lower precision values for Au than did the pulp duplicates. However, the values are so low that the difference is not significant.
- Most of the error in the sampling, preparation and analytical processes is the result of inherent inhomogeneity of mineralization in the core, as to be expected.
 - The precision of the check Au and Cu results is excellent. However, the duplicate samples sent to another laboratory should not be a substitute for analysing duplicate pulps within the main laboratory. This inter-laboratory duplicate analysis does not measure accuracy. Its purpose is to "establish the reproducibility of analysis and the presence or absence of bias between the laboratories" (Smee, 1998).
- From the laboratory standards, almost all of the Au values are within acceptable limits. However, Figure 39 seems to indicate two populations of standards. Discovery is reviewing the results with the laboratory.
- The Cu standard results are consistent, with almost all ranging between 0.550 and 0.570 %.
- The results of the standards demonstrate no significant problems with the accuracy of Au and Cu values.

34

RECOMMENDATIONS

Further Exploration

It is recommended that the data collected during the 2004 drill programme be added to the historical data to direct further exploration and to produce a resource estimate.

Specific decisions on further work will be dependent upon reviewing the data in a threedimensional model.

Quality Control and Quality Assurance

In any future stope-definition drilling programme, field blank samples should be inserted on a more regular basis, say every 20 samples. Laboratory blank pulp samples, to monitor possible errors in the analytical process, should be inserted about every 20 samples.

On any future stope-definition drilling, duplicate core samples should comprise two ¹/₂core samples from the same drill interval. The duplicate sample should be inserted into the sample stream immediately following the initial sample.

The main laboratory results can be checked for reproducibility and for bias by sending pulp samples, along with inserted blind standards, to another lab.

For future stope-definition drilling, Bethlehem should consider producing its own standard(s) for the core material of the recent drilling. The standard would be submitted regularly into the sample stream to monitor accuracy

Respectfully Submitted

W.R. Gilmour, P.Geo.

Vernon, BC December 17, 2004

REFERENCES

Heather, K.B.

Makepeace, D.K.

Petersen, D.B.

Smee, B.

1985 The Aylwin Creek Gold-Copper-Silver Deposit, Southeastern BC, MSc Thesis, Queen's University, Department of Geological Sciences, Kingston, ON

2003 Willa Deposit, Preliminary Assessment Technical Report for Orphan Boy Resources Inc.

1988 Summary Report, Willa Project, Northair Mines Ltd.

1998 Overview of Quality Control Procedures Required by Mineral Exploration Companies, <u>in</u> Workshop on Quality Control Methods in Mineral Exploration, The Association of Exploration Geochemists

Wong, R.H. and Spence, C.D.

1995 Copper-gold mineralization in the Willa Breccia Pipe, Southeastern BC, <u>in</u> CIM Special Volume 46, Porphyry Deposits of the Northwestern Cordillera of North America, Paper 25, pp 401 - 409

STATEMENT OF COSTS

1.	Pro	fessional Services W.R. Gilmour, P.Geo.					
		Project planning, Data Cor	npilation, Report Wr	iting			
		April 15 - September 17					
			12 days @\$500/day	/	\$6,0	00.00	
		R.A. Tilsley, P.Geol.					
		Planning, Core Logging, D	ata Compilation, Re	port Writing			
		April 15 - September 17	1		50,0	00.00	
		-	100 days @\$500/da	ау			
		T.H. Carpenter, P.Geo.					
		May 1 - May 31					
		Project planning					
			3.0 days @\$500/da	V	1,:	500.00	
		S.L. Phillips, Mine Manager		,			
		Jan 15 - September 17					
		Supervision, Planning					
		Supervision, 1 mining	105 days @\$500/da	9.57	52.5	500.00	
			105 days @\$500/di	uy	-		6110,000.00
2	Per	rsonnel				-	
<i>4</i> 4 9	A.	Mine			1.		
	A •	W. Gerow (Shift Boss), Ma	ar 1 - Inly 31	\$12,767.70			
		J. Kelly (Shift Boss), Mar		22,945.00			
		J. Leontowicz, Mar 15 - Ju		23,916.91			
		G. Brekke, Mar 15 - Jul 31		12,301.00			
		G. Brekke, Mai 13 - Jul 51		\$71,9	030.61		
				ψ/13.			
	B.	Core Splitting/Sample Prep					
	D .	D. Strain, Apr 15 - May 31					
		42 days @\$400/day	•	16,800.00			
		K. Carpenter, May 2 - May	126				
		22 days @\$265/day	y 20	5,830.00			
		R. Coslett, May 15 - Jul 31		5,050.00			
		57 days @\$265/day		15,105.00			
		• •	10	15,105.00			
		A. McLean, May 27 - Jun	20	9,455.00			
		31 days @\$305/day D. Wu, Jun 30 - Jul 3		7,455.00			
		33 hrs @38.40/hr		1,267.20			
		33 hrs @38.40/hi		48,	457 20		
	C.	Drill Hole Lay-out			457.20		
	C.	R. Mitchell, Apr 15 - Jun 3	20				
		10 days @\$400/day	<i>,</i>	4	000.00		
		10 days @\$400/day		•	124,	387 81	
	D.	Office Personnel		va (a 6) 80 68 68	- 127,	207.01	
	D .			5	000.00		
		Drafting Scoretarial/Data Compilation			000.00		
		Secretarial/Data Compilation				000.00	
					-		133,387.81
							100,001.01

3.	Exp	Denses		
	A.	Analytical		
		ACME Lab		
		2,638 core sample @\$23.45/sample	61,861.10	
		50 field blank samples @\$23.45/sample	1,172.50	
		96 samples for specific gravity @\$9.00/sample	864.00	
		ALS Chemex Lab		
		107 field duplicate samples @\$29.50/sample	3,156.50	
		Freight (Van Kam Freightways, Greyhound, Arrow Lake Express)	5,990.52	
				73,044.62
	В.	Drilling		
		Advance Drilling (5,282 m)	340,583.26	
				340,583.26
	С.	Engineering/Surveying		
		Hatch Ltd.	11,823.15	
		RC Power & Associates Ltd. (surveying)	14,790.90	
		GeoSpectrum (D. Makepeace, P.Eng.)	2,174.33	
		J.A. Chapman Mining Services	3,000.00	
				31,788.38
	D.	Electrical & Equipment Rental		
		Tim McCrory Ltd. (electrical contractor, supplier, water pump)	121,072.84	
		Wrightway Charter (generator, transport)	43,341.46	
		Genex Mining	6,497.86	
		Savona Equipment	7,570.25	
		R. Kelly (core logging facility)	5,610.00	
				184,092.41
	E.	Miscellaneous & Supplies		
		Lodging & Meals	12,410.41	
		Communications	397.62	
		Office	120.10	
		Field Supplies	5,917.75	
		Fuel & Grease	8,136.39	
		Vehicle Fuel (Glacier View Service)	4,187.12	
		Timber (Clear Conscience Wood Products)	7,476.03	
		Other Supplies	11,017.45	
		Management Fees	6,601.88	
	_		4	56,264.75
	F.	Transportation		
		4x4 Apr 15 - Jul 31	3,760.00	
		Mileage Apr 15 - Jul 31	5,146.40	
		Fuel	2,311.70	11 010 10
				11,218.10
				\$696,991.52

Total:

\$940,379.33

Consultants

A Corporate Partnership

201 – 2928 29th Street Vernon, B.C. V1T 5A6 Telephone: (250) 542-8960 Fax: (250) 542-4867

Mail: P.O. Box 933 Vernon, B.C. V1T 6M8 e-mail: <u>discover@junction.net</u>

CERTIFICATE of AUTHOR

I, William R. Gilmour, B.Sc., P. Geo., do hereby certify that:

- 1. I am a partner of Discovery Consultants.
- 2. I graduated with a Science degree (geology major) from the University of British Columbia in 1970.
- 3. I am a member of the Association of Professional Engineers and Geoscientists of B.C. (License # 19743)
- 4. I have worked as a geologist for a total of 33 years since my graduation from university.
- 5. This report is based on field work carried out under my supervision.
- 6. I hold no interest, direct or indirect, in the Willa Property, Orphan Boy Resources Inc., or Bethlehem Resources (1996) Corp.

Dated this 17th Day of December, 2004

27 Ashow

Signature of William R. Gilmour

APPENDIX A

Surveyed Hole Collars: Location, Dip and Azimuth

Drill Holes 04-542 to 04-580

Table 10 -	Surveyed]	Hole Collars:	Location, Dip	and Azimuth

Drill Hole	<u>Northing</u> (m)	Easting (m)	Elevation (m)	<u>Azimuth</u> (dms)	<u>Dip</u> (dms)	Length (m)
542	5525311.555	473773.725	1031.352	215°52'46"	33.4226	199.03
543	5525311.563	473773.625	1030.278	218°09'12"	9°32'37"	140.8
544	5525312.399	473773.171	1030.779	243°46'44"	25°09'59"	114.60
545	5525312.561	473773.549	1031.735	242°50'22"	42°15'07"	141.43
546	5525312.512	473773.118	1030.426	247°16'29"	12°36'20"	91.14
547	5525313.214	473778.119	1029.289	80°49'20"	-12°53'17"	128.6
548	5525345.715	473759.477	1030.204	46°27'46"	24°00'36"	77.1
549	5525434.237	473660.718	1029.525	154°16'40"	14°02'10"	147.5
550	5525434.266	473660.706	1028.936	154°29'51"	-13°43'14"	139.90
551	5525434.772	473660.462	1030.383	154°26'35"	35°48'57"	135.64
552	5525433.475	473659.815	1029.263	187°27'03"	-0°21'53"	126.49
553	5525433.351	473657.973	1029.108	224°47'54"	0°19'31"	249.63
554	5525437.234	473655.322	1029.231	269°16'08"	0°02'26"	200.2
555	5525561.399	473885.341	1014.210	339°43'54"	-36°09'49"	146.6
556	5525560.527	473885.102	1014.183	322°33'33"	-45°46'53"	130.4
557	5525559.930	473884.879	1014.180	302°00'00"	-46°00'00"	104.8
558	5525582.740	473851.928	1014.464	26°31'24"	-41°34'33"	127.4
559	5525582.215	473852.654	1014.152	61°09'00"	-50°45'26"	115.2
560	5525582.745	473850.147	1017.049	326°45'17"	32°55'15"	124.97
561	5525469.601	473851.020	1015.149	143°43'21"	16°55'05"	53.98
562	5525471.299	473851.359	1015.236	106°48'10"	20°30'46"	31.70
563	5525469.752	473834.220	1010.316	121°17'19"	-19°59'45"	56.08
564	5525443.877	473807.339	1005.766	99°53'36"	10°09'10"	77.1
565	5525443.833	473807.082	1004.793	102°12'18"	-15°17'02"	77.42
566	5525443.153	473806.358	1005.088	129°05'23"	-9°59'54"	98.70
567	5525443.188	473806.291	1005.671	130°10'47"	11°42'05"	98.70
568	5525455.902	473819.046	1006.809	97°45'51"	-40°04'33"	81.69
569	5525456.077	473819.086	1009.403	90°32'50"	35°39'27"	75.59
570	5525437.267	473655.972	1028.280	268°35'06"	-30°08'33"	51.5 ⁻
571	5525438.111	473656.938	1028.897	313°32'12"	-15°15'44"	100.28
572	5525438.173	473657.414	1029.249	333°53'32"	1°52'02"	51.5 ⁻
573	5525692.350	473694.374	1027.373	61°31'52"	26°21'49"	219.4
574	5525691.246	473694.287	1028.575	89°15'23"	63°06'56"	193.24
575	5525691.298	473695.079	1027.454	88°38'27"	23°09'20"	124.97
576	5525691.197	473695.304	1026.009	91°17'43"	-21°22'34"	264.87
577	5525691.054	473694.989	1028.383	97°30'28"	38°50'34"	146.00
578	5525689.973	473693.335	1028.516	163°03'52"	48°09'20"	321.26
579	5525690.032	473693.639	1028.569	154°15'06"	46°16'30"	298.09
580	5525691.302	473693.574	1028.510	128°51'35"	61°12'40"	218.85

This data has been approved by R.C. Power & Associates, BCLS

W.R. Gilmour, P.Geo. Discovery Consultants

Discovery Consultants September 30, 2004.

APPENDIX B

Down-Hole Dip and Azimuth Tests

Table 11 - Down-Hole Dip and Azimuth Tests

Hole#	Test dip	Test Az	test depth n
04-542	no test		
04-543	no test		
04-544	no test		
04-545	46	254	141.40
04-546	12	249	8.5
04-546	16	252	91.14
04-567	-12	82	6.0
04-547	-7	83	128.6
04-547	-7	85	128.6
04-548	25	50	77.1
04-549	12	159	146.3
04-550	-6	163	139.9
04-551	41	162	135.6
04-552	8	181	126.4
04-553	16	234	249.6
04-554	13	277	194.1
04-555	-29	349	146.6
04-556	-49	332	130.4
04-557	-47	312	104.8
04-558	-37	29	127.4
04-559	-51	62	115.2
04-560	38	338	124.9
04-561	30	148	53.9
04-562	22	109	31.7
04-563	-17	125	56.0
04-564	15	104	46.6
04-565	-10	108	77.4
04-566	-4	136	98.7
04-567	18	138	98.7
04-568	-37	103	81.69
04-569	39	93	75.5
04-570	-28	269	51.5
04-571	-10	318	100.2
04-572	4	340	51.5
04-573	36	73	219.4
04-574	62	99	167.64
04-575	30	100	124.9
04-576	-4	91	264.8
04-577	45	110	146.00
04-578	40	171	321.20
04-579	39	164	298.09
04-580	54	136	115.82
04-580	53	135	218.85

Discovery Consultants W.R. Gilmour, P.Geo December 15, 2004

APPENDIX C

Rock Quality Designation and Core Recovery

Drill Holes 04-542 to 04-580

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-542

	R	un	
from	to	recovery	RQD
m	m	··· %	%
0.00	2.44	99	96
2.44	3.96	100	95
3.96	7.01	100	96
7.01	10.06	99	92
10.06	13.11	100	76
13.11	16.15	97	85
16.15	19.20	101	100
19.20	22.25	100	97
22.25	25.30	99	94
25.30	28.34	100	89
28.34	31.39	100	92
31.39	34.44	97	92
34.44	37.49	102	93
37.49	40.54	101	97
40.54	42.06	100	91
42.06	45.11	98	90
45.11	48.16	100	89
48.16	51.21	100	96
51.21	54.25	99	97
54.25	57.30	100	98
57.30	60.35	99	95
60.35	63.40	100	94
63.40	66.45	101	96
66.45	69.45	99	96
69.45	72.54	99	99
72.54	75.59	99	68
75.59	78.64	100	55
78.64	81.69	100	98
81.69	84.73	99	97
84.73	87.78	101	95
87.78	90.83	100	93
90.83	93.88	99	72
93.88	96.93	100	65
96.93	99.97	99	61
99.97	103.02	100	73
103.02	106.07	100	98
106.07	109.12	100	90
109.12	112.17	100	97
112.17	115.21	100	97

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged:	2004.04.23
Logged By:	Rob Tilsley

	Run	L	
from	to	recovery	RQD
m	m	%	%
115.21	118.26	100	99
118.26	121.31	99	87
121.31	124.36	100	86
124.36	127.41	102	99
127.41	130.45	101	89
130.45	133.50	98	86
133.50	136.55	99	70
136.55	139.60	101	98
139.60	142.65	99	92
142.65	145.69	98	97
145.69	148.74	99	95
148.74	151.79	101	89
151.79	154.84	101	95
154.84	157.89	98	93
157.89	160.93	101	93
160.93	163.98	99	86
163.98	167.03	100	87
167.05	170.08	100	99
170.08	171.60	106	100
171.60	174.65	96	95
174.60	177.70	99	84
177.70	180.75	102	99
180.75	183.79	98	96
183.79	186.84	101	99
186.84	189.89	101	92
189.89	192.94	99	76
192.94	195.99	99	93
195.99	199.03	100	96
199.03	E.O.H		

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-543

	Run		
from	to	recovery	RQD
m	m	%	%
0.00	0.61	100	100
0.61	3.66	100	95
3.66	6.71	101	91
6.71	9.75	101	95
9.75	12.80	99	76
12.80	15.85	100	87
15.85	17.37	100	76
17.37	20.42	100	99
20.42	23.47	103	90
23.47	26.52	97	80
26.52	29.57	100	87
29.57	31.09	102	90
31.09	34.14	98	88
34.14	37.19	99	95
37.19	40.23	100	75
40.23	43.28	99	72
43.28	46.33	99	76
46.33	49.38	97	95
49.38	52.43	103	99
52.43	55.47	99	94
55.47	58.52	98	91
58.52	61.57	99	85
61.57	64.62	99	95
64.62	66.14	100	100
66.14	67.67	94	80
67.67	70.71	91	95
70.71	72.24	100	90
72.24	75.30	96	85
75.30	78.33	100	93
78.33	81.38	99	86
81.38	82.91	96	84
82.91	85.95	97	83
85.95	89.00	98	98
89.00	92.05	100	83
92.05	95.10	99	95
95.10	98.15	99	87
98.15	101.19	100	99
101.19	104.24	98	96
104.24	107.29	102	79

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.04.28 Logged By: R.T.

	Run		
from m	tom	recovery %	RQD %
107.29	110.34	98	85
110.34	113.39	102	95
113.39	116.43	98	96
116.43	119.48	100	88
119.48	121.01	98	90
121.01	124.05	100	55
124.05	127.10	101	94
127.10	130.15	99	96
130.15	133.20	102	99
133.20	136.25	99	99
136.25	139.29	98	87
139.29	140.82	100	90
140.82	E.O.H.		

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

Run

RQD and Core Recovery Values

Hole # 04-544

RQD from to recovery m % % m 0.00 92 5.70 100 5.70 8.53 100 94 8.53 11.58 100 87 11.58 13.11 99 99 13.11 99 88 16.16 16.16 19.20 102 95 19.20 22.25 95 99 75 22.25 25.30 100 25.30 91 28.35 98 28.35 31.39 100 88 31.39 34.44 97 100 34.44 37.49 100 66 37.49 40.54 99 68 40.54 43.59 100 75 43.59 46.63 100 74 46.63 72 49.68 96 49.68 103 82 52.73 52.73 54.25 100 70 54.25 57.30 75 100 57.30 60.35 98 83 98 73 60.35 64.40 64.40 66.45 101 74 91 66.45 69.49 100 69.49 72.54 99 70 99 72.54 75.55 85 75.55 77.11 100 90 77.11 80.16 101 77 80.16 81.69 102 96 81.69 84.73 98 89 84.73 86.26 98 74 86.26 89.31 99 85 89.31 92.35 99 60 92.35 93.88 98 76 93.88 100 72 96.93 96.93 98.45 98 50 98.45 101.50 100 36 101.50 103.02 100 44 103.02 106.07 100 39 106.07 109.12 98 66

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.02 Logged By: R.T.

	R	un	
from	to	recovery	RQD
m	m	%	%
109.12	112.17	98	86
112.17	114.60	95	57
114.60	E.O.H.		

Willa Gold Project **Bethlehem Resources (1996) Corporation Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-545

	Rui		
from	to	recovery	RQD
m	m	%	%
0.00	4.27	94	84
4.27	5.79	106	94
5.79	8.84	99	98
8.84	11.80	99	93
11.89	14.94	96	91
14.94	17.98	103	100
17.98	21.03	95	90
21.03	24.08	98	96
24.08	27.13	99	97
27.13	28.65	100	98
28.65	31.70	101	93
31.70	34.75	9.9	61
34.75	37.80	102	73
37.80	40.84	101	82
40.84	42.37	98	95
42.37	45.41	99	67
45.41	48.46	101	90
48.46	51.51	99	79
51.51	54.56	100	84
54.56	57.61	100	75
57.61	59.13	100	72
59.13	62.18	100	75
62.18	65.23	99	92
65.23	68.27	98	88
68.27	69.80	100	50
69.80	72.85	100	85
72.85	75.89	100	93
75.89	78.94	99	96
78.94	81.99	101	98
81.94	85.04	100	97
85.04	88.09	101	99
88.09	91.13	99	99
91.13	94.18	101	98
94.18	97.23	102	99
97.23	100.27	98	92
100.27	103.33	99	96
103.33	106.37	101	96
106.37	109.42	102	83
109.42	112.47	97	80

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.04.30 Logged By: R.T.

	Run		
from	to	recovery	RQD
m n	m	%	%
112.47	115.57		88
115.57	117.04	100	80
117.04	120.09	101	88
120.09	123.14	99	98
123.14	126.19	100	95
126.19	129.23	100	95
129.23	132.28	98	96
132.28	135.33	100	79
135.33	138.40	99	88
138.40	141.43	100	96
141.43	E.O.H.		

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-546

Run recovery RQD from to % % m m 4.27 96 94 0.00 100 5.79 100 4.27 5.79 7.32 102 84 96 7.32 8.84 96 98 98 8.84 10.36 10.36 13.41 100 88 99 94 13.41 16.46 96 16.46 19.51 101 19.51 22.56 100 98 22.56 25.60 100 100 25.60 97 96 28.65 28.65 31.70 103 100 31.70 33.22 90 100 33.22 36.27 100 84 87 39.32 100 36.27 100 92 39.32 42.37 92 42.37 54.42 100 45.42 48.46 100 83 48.46 51.51 101 92 54.56 99 96 51.51 54.56 57.61 100 96 95 100 57.61 60.66 60.66 63.70 100 100 86 63.70 66.75 100 66.75 69.80 100 75 71.32 98 84 69.80 71.32 74.37 100 91 73 74.37 77.42 102 77.42 80.47 100 58 100 86 80.47 83.52 83.52 86.56 99 66 86.56 88.09 100 88 82 88.09 91.14 95 91.14 E.O.H.

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged:	2004.05.01	
Logged By:	R.T.	

Willa Gold Project **Bethlehem Resources (1996) Corporation** Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-547

	Rı	าม	
from	to	recovery	RQD
m	m	%	%
0.00	3.66	89	83
3.66	6.71	100	97
6.71	9.75	100	84
9.75	12.80	100	94
12.80	15.85	100	98
15.85	18.70	96	93
18.70	21.95	101	97
21.95	25.00	101	94
25.00	28.04	100	99
28.04	31.09	98	96
31.09	34.14	100	99
34.14	37.19	95	94
37.19	40.03	101	99
40.23	43.28	101	100
43.28	46.33	99	96
46.33	47.83	104	100
47.83	50.90	100	99
50.90	53.93	97	93
53.93	57.00	102	91
57.00	60.05	99	95
60.05	63.09	101	100
63.09	66.14	99	95
66.14	69.19	101	97
69.19	72.24	99	99
72.24	75.29	99	97
75.29	78.33	101	90
78.33	79.86	98	82
79.86	82.91	99	86
82.91	85.95	100	70
85.95	89.00	100	97
89.00	92.05	100	
92.05	95.10	100	97
95.10	98.15	100	94
98.15	101.19	100	85
101.19	104.24	98	93
104.24	105.77	99	92
105.77	108.80	101	97
108.80	111.86	101	96
111.86	114.91	101	88

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.05 Logged By: R.T.

	Run	L	
from	to	recovery	RQD
m	m	%	%
114.91	117.96	100	98
117.96	121.01	100	98
121.01	124.05	100	90
124.05	127.10	100	91
127.10	128.63	101	98
128.63	E.O.H.		

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-548

******	Run		
from	to	recovery	RQD
m	m	%	%
0.00	0.93	96	70
0.93	2.44	101	82
2.44	3.96	101	96
3.96	5.49	102	98
5.49	7.01	100	98
7.01	8.53	100	72
8.53	10.06	100	90
10.06	16.58	98	86
11.58	13.10	102	100
13.10	14.63	98	98
14.63	16.15	100	90
16.15	17.68	100	90
17.68	19.20	98	92
19.20	20.73	100	66
20.73	22.25	100	100
22.25	23.74	98	90
23.74	25.30	102	90
25.30	26.82	100	96
26.82	28.35	100	84
28.35	29.87	102	96
29.87	31.39	96	90
31.39	32.92	98	88
32.92	34.44	102	50
34.44	35.97	102	90
35.97	37.49	96	88
37.49	39.01	102	54
39.01	40.54	98	84
40.54	42.06	104	100
42.06	43.59	100	100
43.59	45.11	100	62
45.46	46.63	100	100
46.63	48.16	100	90
48.16	49.68	98	98
49.68	51.21	100	88
51.21	52.73	100	96
52.73	54.25	96	84
54.25	55.78	104	82
55.78	57.30	100	94
57.30	58.83	102	92

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged By:2004.05.07R.T.

	Run		
from	to	recovery	RQD
m	m	%	%
58.83	60.35	98	86
60.35	61.87	100	82
61.87	63.40	102	76
63.40	64.92	98	84
64.92	66.45	98	94
66.45	67.97	100	88
67.97	69.49	100	82
69.49	71.02	102	66
71.02	72.54	102	83
72.54	74.07	100	96
74.07	75.59	100	88
75.59	77.11	94	90
77.11	E.O.H.		

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-549

Run recovery RQD from to % % m m 0.00 2.74 98 94 100 4.27 100 2.74 4.27 7.32 99 99 99 102 7.32 10.36 10.30 13.41 99 89 91 16.46 100 13.41 100 16.46 19.51 101 97 91 19.51 22.56 95 22.56 25.60 103 100 25.60 28.65 100 98 82 31.70 28.65 100 91 31.70 34.75 34.75 37.80 87 66 39 37.80 40.84 100 43.89 99 53 40.84 43.89 45.42 100 88 85 45.42 48.46 100 92 48.46 51.51 100 92 51.51 100 53.04 98 53.04 56.08 100 77 56.08 59.13 100 85 59.13 62.18 100 86 65.23 100 62.18 65.23 66.75 102 82 69.80 98 48 66.75 69.80 72.85 102 61 72.85 75.90 98 42 28 75.90 78.94 100 78.94 84 80.47 104 64 80.47 83.52 96 71 100 83.53 86.56 55 100 86.56 89.60 97 57 89.60 92.66 54 103 92.66 95.71 92 100 95.71 98.76 78 98.76 101.80 99 101.80 104.85 101 93 87 104.85 107.90 100 107.90 97 56 110.95

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.06 Logged By: R.T.

	Run		
from	to	recovery	RQD
m	m	%	%
110.95	114.00	99	72
114.00	117.04	103	65
117.04	120.09	101	65
120.09	121.62	98	46
121.62	124.66	99	61
124.66	126.19	102	30
126.19	129.23	98	26
129.23	132.28	100	36
132.28	135.33	101	88
135.33	138.38	100	87
138.38	141.43	100	56
141.43	144.48	100	38
144.48	E.O.H.	97	45

8

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-550

		Run	
RQD	recovery	to	from
%	%	m	m
70	92	1.22	0.00
91	100	2.74	1.22
88	100	4.27	2.74
90	98	7.32	4.27
100	100	8.84	7.32
98	102	11.89	8.84
93	102	14.94	11.89
97	100	17.98	14.94
82	98	21.03	17.98
97	97	24.08	21.03
95	103	27.13	24.08
88	100	30.18	27.13
72	100	33.22	30.18
89	100	36.27	33.22
86	100	39.32	36.27
93	98	42.38	39.32
95	100	45.42	42.38
98	101	48.46	45.42
99	101	51.51	48.46
98	100	54.56	51.51
96	100	57.61	54.56
97	99	60.66	57.61
97	101	63.70	60.66
91	100	66.75	63.70
92	100	69.80	66.75
93	100	72.85	69.80
87	98	75.90	72.85
47	99	78.94	75.90
46	98	77.42	78.94
76	100	81.99	77.42
79	96	85.04	81.99
98	100	88.09	85.04
84	100	91.14	88.09
75	100	94.18	91.14
86	102	97.23	94.18
68	98	100.28	97.23
92	102	101.80	100.28
90	100	104.85	101.80
54	100	106.38	104.85

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged:2004.05.08Logged By:R.T.

Run				
from	to	recovery	RQD	
m	m	%	%	
106.38	109.42	100	82	
109.42	112.47	101	83	
112.47	115.52	99	61	
115.52	118.57	95	78	
118.57	121.62	99	69	
121.62	124.66	98	78	
124.66	127.71	102	75	
127.71	129.24	104	78	
129.24	132.28	98	76	
132.28	133.81	100	86	
133.81	136.86	102	90	
136.86	139.90	96	52	
139.90	E.O.H.			

Willa Gold Project **Bethlehem Resources (1996) Corporation** Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-551

Run				
from	to	recovery	RQD	
m	m	%	%	
0.00	1.53	98	80	
1.53	4.57	96	87	
4.57	6.10	100	100	
6.10	9.14	97	97	
9.14	12.19	98	93	
12.19	15.24	100	75	
15.24	18.29	100	97	
18.29	21.34	100	92	
21.34	24.38	99	97	
24.38	27.43	99	95	
27.43	30.48	101	86	
30.48	33.53	98	88	
33.53	36.58	102	43	
36.58	39.62	100	52	
39.62	41.15	100	36	
41.15	44.20	100	40	
44.20	45.72	.90	87	
45.72	48.77	100	70	
48.77	51.82	100	64	
51.82	54.86	99	63	
5486.00	56.56	100	44	
56.56	59.44	100	45	
59.44	60.96	102	77	
60.96	64.01	98	63	
64.01	65.53	100	66	
65.53	68.58	100	44	
68.58	70.10	100	16	
70.10	73.15	100	67	
73.15	74.68	100	35	
74.68	76.20	98	17	
76.20	79.25	100	67	
79.25	82.30	102	51	
82.30	83.82	96	72	
83.82	86.87	100	61	
86.87	89.92	101	65	
89.92	94.49	100	88	
94,49	97.54	100	90	
97.54	100.58	99	91	
100.58	103.63	100	81	

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.09 Logged By: R.T.

	Run				
from	to	recovery	RQD		
m	m	%	%		
103.63	106.68	100	94		
106.68	109.73	99	97		
109.73	112.78	99	87		
112.78	115.82	101	65		
115.82	118.87	100	75		
118.87	121.92	100	82		
121.93	123.44	102	90		
123.44	126.49	99	85		
126.49	129.54	99	64		
129.54	131.06	100	70		
131.06	134.11	100	63		
134.11	135.64	100	24		
135.64	E.O.H.				

Willa Gold Project **Bethlehem Resources (1996) Corporation Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-552

	R	un	
from	to	recovery	RQD
m	m	%	%
0.00	4.27	100	97
4.27	7.32	99	99
7.32	10.36	100	97
10.36	13.41	99	96
13.41	16.46	101	97
16.46	19.51	100	99
19.51	22.56	100	99
22.56	25.60	101	99
25.60	28.65	99	97
28.65	31.70	100	96
31.70	34.75	99	99
34.75	37.80	101	100
37.80	40.84	98	98
40.84	43.89	101	95
43.89	46.94	101	97
46.94	50.00	100	98
50.00	53.04	100	92
53.04	56.08	100	93
56.08	59.13	99	99
59.13	62.18	101	86
62.18	65.23	99	99
65.23	68.28	99	97
68.28	71.32	102	100
71.32	74.37	101	98
74.37	77.42	100	96
77.42	80.47	99	92
80.47	83.52	99	95
83.52	86.56	100	65
86.56	88.09	100	76
88.09	91.14	100	89
91.14	94.18	99	81
94.18	97.23	100	82
97.23	100.28	101	78
100.28	103.33	99	86
103.33	106.38	100	90
106.38	109.43	100	89
109.43	112.47	102	100
112.40	115.52	101	93
115.52	118.57	99	99

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.12 Logged By: R.T.

Run				
from m	to m	recovery %	RQD %	
118.57	121.62	99	99	
121.62	124.66	101	96	
124.66	126.49	105	98	
126.49	E.O.H.			

Willa Gold Project Bethlehem Resources (1996) Corporation **Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-553

Run					
from	to	recovery	RQD		
m	m	%	%		
0.00	4.27	97	83		
4.27	7.32	100	81		
7.32	10.36	101	95		
10.36	13.41	99	98		
13.41	16.46	100	97		
16.46	19.51	100	99		
19.51	22.56	101	98		
22.56	25.60	100	96		
25.60	28.65	101	97		
28.65	30.18	99	92		
30.18	33.22	99	96		
33.22	36.27	102	95		
36.27	39.32	100	89		
39.32	42.37	100	92		
42.37	45.42	100	88		
45.42	48.46	98	98		
48.46	51.51	102	96		
51.51	54.56	101	98		
54.56	57.61	103	96		
57.61	60.66	99	94		
60.66	63.70	99	95		
63.70	66.75	98	94		
66.75	69.80	101	95		
69.80	72.85	99	92		
72.85	74.37	106	99		
74.37	77.42	97	80		
77.42	80.47	102	98		
80.47	83.52	100	99		
83.52	86.56	100	98		
86.56	89.61	.99	98		
89.61	92.66	101	97		
92.66	95.71	99	99		
95.71	98.76	100	96		
98.76	101.80	101	92		
101.80	104.85	100	94		
104.85	107.90	99	97		
107.90	110.95	100	97		
110.95	114.00	100	97		
114.00	117.04	98	96		

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.17 Logged By: R.T.

	Run			
RQD	recovery	to	from	
%	%	m	m	
100	100	120.09	117.04	
100	102	123.14	120.09	
100	100	126.19	123.14	
100	100	129.24	126.19	
100	100	132.28	129.24	
99	99	135.33	132.28	
100	101	138.38	135.33	
90	100	141.43	138.38	
98	99	144.48	141.43	
97	100	147.52	144.48	
99	101	150.57	147.52	
99	100	153.62	150.57	
95	100	156.67	153.62	
92	100	159.72	156.67	
97	100	162.76	159.72	
94	98	165.81	162.76	
96	100	168.86	165.81	
81	99	171.91	168.85	
94	100	173.43	171.91	
96	100	174.96	173.43	
82	105	178.00	174.96	
59	95	181.05	178.00	
91	103	184.10	181.05	
95	101	187.15	184.10	
96	98	190.20	187.15	
96	100	193.24	190.20	
96	96	196.29	193.24	
85	102	199.34	196.29	
93	101	202.39	199.34	
98	102	205.44	202.39	
91	101	208.48	205.44	
99	99	211.53	208.48	
90	101	214.58	211.53	
76	101	217.63	214.59	
61	104	220.68	217.63	
45	100	223.72	220.68	
75	100	226.77	223.72	
36	101	229.82	226.77	
30	100	232.87	229.82	

Hole # 04-553

	Run				
from	to	recovery	RQD		
m	m	%	%		
232.87	235.92	100	33		
235.92	238.96	100	41		
238.96	242.01	98	52		
242.01	245.06	97	38		
245.06	249.63	105	36		
249.63	E.O.H.	· · · · ·			

Willa Gold Project Bethlehem Resources (1996) Corporation **Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-554

	Rı	ın	
from	to	recovery	RQD
m	m	%	%
0.00	0.61	100	100
0.61	2.13	100	97
2.13	5.18	100	94
5.18	8.23	100	98
8.23	11.28	99	99
11.28	14.33	100	91
14.33	17.37	101	98
17.37	20.42	100	97
20.42	23.47	101	96
23.47	26.52	99	97
26.52	29.57	100	95
29.57	32.61	98	94
32.61	35.66	102	97
35.66	38.71	99	98
38.71	41.76	101	97
41.76	44.81	99	96
44.81	47.85	100	96
47.85	50.90	101	98
50.90	53.95	102	97
53.95	57.00	98	78
57.00	60.05	101	91
60.05	63.09	100	97
63.09	66.14	99	98
66.14	69.19	100	95
69.19	72.24	99	81
72.24	75.29	100	89
75.29	78.33	100	88
78.33	81.38	99	59
81.38	84.43	101	64
84.43	87.48	100	69
87.48	90.53	100	62
90.53	93.57	102	79
93.57	96.62	98	22
96.62	99.67	100	34
99.67	102.72	100	25
102.72	105.77	97	41
105.77	108.81	99	24
108.81	110.34	100	36
110.34	113.39	100	60

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.20 Logged By: R.T.

nginin makani manangan		Run	······································
RQD	recovery	to	from
%	%	m	m
38	100	116.43	113.39
23	100	119.48	116.43
52	98	122.53	119.48
45	101	125.58	122.53
75	101	128.63	125.58
48	100	131.67	128.63
71	100	134.72	131.67
79	102	140.82	134.72
87	100	143.87	140.82
79	100	146.91	143.87
50	100	149.96	146.91
93	101	153.01	149.96
80	100	156.06	153.01
51	100	159.11	156.06
45	99	162.15	159.11
56	101	165.20	162.15
73	100	168.25	165.20
86	101	171.30	168.25
85	101	174.35	171.30
66	103	177.39	174.35
49	99	180.44	177.39
89	99	183.49	180.44
81	100	186.54	183.49
87	100	189.59	186.54
56	99	192.63	189.59
52	100	194.16	192.63
42	100	195.68	194.16
52	100	198.73	195.68
70	96	200.25	198.73
		E.O.H.	200.25

Willa Gold Project **Bethlehem Resources (1996) Corporation Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-555

683

Run				
from	to	recovery	RQD	
m	m	%	%	
0.00	0.30	100	50	
0.30	3.35	96	95	
3.35	4.88	107	96	
4.88	7.92	98	97	
7.92	10.97	93	92	
10.97	14.02	111	94	
14.02	17.07	102	96	
17.07	20.12	102	93	
20.12	23.16	99	97	
23.16	26.21	99	95	
26.21	29.26	101	96	
29.26	32.31	100	97	
32.31	35.36	100	96	
35.36	38.40	95	93	
38.40	41.45	101	96	
41.45	44.50	102	97	
44.50	47.57	102	96	
47.57	50.60	101	99	
50.60	53.65	102	93	
53.65	56.70	100	100	
56.70	59.74	96	94	
59.74	62.79	104	92	
62.79	65.84	99	97	
65.84	68.88	103	98	
68.88	71.93	100	94	
71.93	74.98	99	94	
74.98	78.03	100	99	
78.03	81.08	100	74	
81.08	84.13	102	93	
84.13	87.17	101	75	
87.17	90.22	100	94	
90.22	93.27	99	82	
93.27	96.32	101	81	
96.32	99.36	99	83	
99.36	102.41	100	64	
102.41	105.46	100	26	
105.46	106.99	100	70	
106.99	110.03	102	69	
110.03	113.08	95	67	

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.26 Logged By: R.T.

	Run	1	
from	to	recovery	RQD
m	m	%	%
113.08	116.13	103	81
116.13	117.65	98	50
117.65	120.70	104	56
120.70	122.20	98	30
122.20	125.27	102	55
125.27	128.32	97	35
128.32	129.84	96	50
129.84	132.89	96	47
132.89	137.46	99	20
137.46	140.51	80	28
140.51	143.56	92	24
143.56	146.61	93	33
146.61	E.O.H.		

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-556

	R	un	
from	to	recovery	RQD
m	<u> </u>	%	%
0.00	0.61	13	0
0.61	2.74	65	63
2.74	5.79	100	73
5.79	8.84	99	95
8.84	11.89	100	97
11.89	14.94	99	96
14.94	17.98	103	93
17.98	21.03	102	98
21.03	24.08	100	97
24.08	27.13	99	99
27.13	30.18	101	98
30.18	33.22	100	96
33.22	34.75	98	98
34.75	37.80	109	99
37.80	40.80	91	72
40.80	43.89	101	97
43.89	46.94	100	92
46.94	49.99	99	97
49.99	53.04	100	94
53.04	56.08	100	93
56.08	59.13	100	96
59.13	62.18	101	76
62.18	65.23	101	93
65.23	68.28	100	95
68.28	71.32	100	53
71.32	74.37	99	52
74.37	77.42	100	88
77.42	78.94	100	90
78.94	81.99	98	95
81.99	85.04	102	86
85.04	88.09	100	79
88.09	91.14	101	89
91.14	94.18	99	87
94.18	97.23	100	91
97.23	100.28	99	72
100.28	103.33	102	95
103.33	106.38	102	95
106.38	109.42	100	93
109.42	110.95	99	88

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.05.30 Logged By: RT

Run				
from m	to m	recovery %	RQD %	
110.95	114.00	101	86	
114.00	117.04	99	85	
117.04	120.09	101	82	
120.09	123.14	100	92	
123.14	126.19	101	70	
126.19	129.24	98	89	
129.24	130.45	105	95	
130.45	E.O.H.			

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-557

Run RQD to from recovery % m % m 0 0.00 0 0.61 67 0.61 2.13 104 4.27 76 71 2.13 90 4.27 7.31 102 97 7.31 10.36 101 102 98 13.41 10.36 99 98 13.41 16.45 97 16.45 19.51 101 98 94 19.51 22.55 101 77 25.60 22.55 94 25.60 28.65 98 101 97 31.70 28.65 98 31.70 34.75 100 37.79 101 97 34.75 96 101 37.79 40.84 97 46 43.89 40.84 94 46.94 102 43.89 49.99 97 46.94 101 49.99 100 64 53.03 99 72 56.08 53.03 104 92 56.08 59.13 99 101 59.13 62.18 99 65.23 102 62.18 97 68.27 100 65.23 101 89 71.32 68.27 91 100 74.36 71.32 95 74.36 77.42 98 96 99 77.42 80.47 77 80.47 83.51 100 85 83.51 86.56 100 89.61 100 81 86.56 100 102 89.61 92.66 96 92.66 95.71 99 94 100 98.76 95.71 98.76 94 101.80 99 96 101.80 104.85 100 104.85 E.O.H.

Date Logged:	2004.05.30	
Logged By:	R.T.	

RQD and Core Recovery Values

Hole # 04-558

		Run	ang and san territoria. Ang ang ang ang ang ang ang ang ang ang a
RQD	recovery	to	from
%	%	m	m
76	103	0.91	0.00
62	100	2.44	0.91
85	102	5.49	2.44
94	100	8.53	5.49
95	100	11.58	8.53
97	100	14.64	11.58
80	101	17.68	14.64
69	101	20.73	17.68
84	100	23.77	20.73
86	99	26.83	23.77
91	99	29.87	26.83
79	98	32.93	29.87
90	102	35.97	32.93
93	102	39.01	35.97
92	98	42.06	39.01
90	102	45.11	42.06
96	100	48.16	45.11
98	98	51.21	48.16
82	100	55.78	51.21
94	100	58.83	55.78
98	100	61.87	58.83
99	101	64.92	61.87
96	99	67.97	64.92
100	101	71.02	67.97
99	99	74.07	71.02
99	100	77.11	74.07
97	100	80.16	77.11
99	102	83.21	80.16
89	100	86.26	83.21
78	100	89.31	86.26
86	101	92.35	89.31
95	98	95.40	92.35
90	100	98.45	95.40
96	100	101.50	98.45
97	100	104.55	101.50
98	101	107.59	104.55
97	101	110.64	107.59
94	98	113.69	110.64
98	102	115.21	113.69

Date Logged:	2004.06.01
Logged By:	R.T.

	Run		
from m	to m	recovery %	RQD %
115.21	118.26	99	86
118.26	119.78	99	95
119.78	122.83	98	94
122.83	125.88	100	96
125.88	127.41	96	96
127.41	E.O.H.		

RQD and Core Recovery Values

Hole # 04-559

		Run	
RQD	recovery	to	from
%	%	m	m
90	98	2.44	0.00
98	100	3.96	2.44
94	98	7.01	3.96
96	102	10.06	7.01
95	101	13.11	10.06
93	100	16.15	13.11
96	99	19.20	16.15
93	98	22.25	19.20
97	102	25.30	22.25
98	101	28.35	25.30
94	100	31.39	28.35
93	100	34.44	31.39
96	99	37.49	34.44
92	102	40.54	37.49
96	100	43.59	40.54
95	99	46.63	43.59
97	100	49.68	46.63
94	101	53.73	49.68
97	102	55.78	53.73
96	100	58.83	55.78
97	99	61.83	58.83
96	98	64.92	61.87
98	102	67.97	64.92
97	101	71.02	67.97
85	97	74.07	71.02
94	100	75.59	74.07
93	101	78.64	75.59
94	100	81.69	78.64
95	101	84.73	81.69
96	103	87.78	84.73
94	100	90.83	87.78
92	101	93.88	90.83
91	99	96.93	93.88
95	100	99.97	96.93
97	100	103.02	99.97
93	99	106.07	103.02
95	99	109.12	106.07
94	98	112.16	109.12
96	101	115.21	112.16

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged:2004.06.04Logged By:R.T.

Run			
from	to	recovery	RQD
m	m	%	%
115.21	E.O.H.		

RQD and Core Recovery Values

Hole # 04-560

	Rı	ın	
from	to	recovery	RQD
m	m	%	%
0.00	0.91	100	87
0.91	3.96	100	89
3.96	5.49	98	92
5.49	8.53	99	97
8.53	11.58	101	95
11.58	14.63	100	94
14.63	17.68	100	85
17.68	20.73	102	94
20.73	23.77	101	97
23.77	26.82	102	94
26.82	29.87	97	57
29.87	32.92	100	58
32.92	35.97	100	81
35.97	39.01	102	89
39.01	42.06	99	90
42.06	45.11	103	93
45.11	48.16	100	92
48.16	51.21	101	84
51.21	54.25	100	90
54.25	57.30	101	71
57.30	60.35	102	65
60.35	63.40	99	74
63.40	64.92	96	64
64.92	67.97	97	83
67.97	69.49	100	51
69.49	72.54	95	67
72.54	7559.00	97	64
75.59	78.64	101	94
78.64	81.69	101	98
81.69	84.74	100	94
84.74	87.78	99	76
87.78	90.83	102	98
90.83	93.88	98	58
93.88	96.93	98	79
96.93	99.97	100	68
99.97	101.50	100	64
101.50	104.55	100	75
104.55	107.59	101	98
107.59	110.64	101	90

Date Logged:	2004.06.06
Logged By:	R.T.

	Run	L .	
from	to	recovery	RQD
m	m	%	%
110.64	113.69	102	94
113.69	116.74	97	92
116.74	119.79	98	16
119.79	122.83	99	68
122.83	124.97	97	21
124.97	E.O.H.		

RQD and Core Recovery Values

Hole # 04-561

	Run	1	
from	to	recovery	RQD
m	m	%	%
0.00	2.13	101	90
2.13	3.66	98	94
3.66	6.71	99	95
6.71	9.75	101	92
9.75	12.80	100	43
12.80	15.85	100	50
15.85	18.90	100	77
18.90	21.95	100	91
21.95	24.99	99	90
24.99	28.04	99	93
28.04	31.09	99	96
31.09	32.61	100	96
32.61	35.66	101	97
35.66	38.71	99	96
38.71	41.76	100	91
41.76	44.81	101	98
44.81	47.85	100	97
47.85	50.90	100	93
50.90	53.95	97	94
53.95	E.O.H.		

Date Logged:	2004.06.07	
Logged By:	R.T.	

RQD and Core Recovery Values

Hole # 04-562

	Rur		
from	to	recovery	RQD
m	m	%	%
0.00	4.27	97	85
4.27	7.32	100	66
7.32	10.36	96	84
10.36	13.41	104	
13.41	16.46	100	98
16.46	19.51	100	77
19.51	22.56	99	93
22.56	25.60	99	96
25.60	28.65	98	95
28.65	31.70	95	94
31.70	E.O.H.		

Date Logged:	2004.06.08
Logged By:	R.T.

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-563

	Rur	1	
from	to	recovery	RQD
m	m	%	%
0.00	2.13	99	59
2.13	4.27	86	47
4.27	7.32	102	75
732.00	10.36	100	71
10.36	13.41	101	96
13.41	1646	101	98
16.46	19.51	102	87
19.51	22.56	102	83
22.56	25.60	100	90
25.60	28.65	100	97
28.65	31.70	100	98
31.70	34.75	100	85
34.75	37.80	99	73
37.80	40.84	100	86
40.84	42.37	102	50
42.37	45.42	95	60
45.42	48.46	99	61
48.46	51.51	98	49
51.51	54.56	100	89
54.56	56.08	92	93
56.08	E.O.H.	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

Date Logged:	2004.06.08
Logged By:	R.T.

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-564

Run			
RQD	recovery	to	from
%	%	m	m
66	98	2.44	0.00
90	102	3.96	2.44
93	101	7.01	3.96
95	102	10.06	7.01
97	101	13.11	10.06
98	100	16.15	13.11
97	100	19.20	16.15
96	100	22.25	19.20
66	98	23.77	22.25
98	100	26.82	23.77
96	100	29.87	26.82
98	100	32.92	29.87
97	99	35.97	32.92
91	100	39.01	35.97
78	101	42.06	39.01
49	100	45.11	42.06
82	100	48.16	45.11
95	100	51.21	48.16
92	97	54.25	51.21
90	100	57.30	54.25
83	102	60.35	57.30
63	102	63.40	60.35
86	101	66.47	63.40
80	98	69.49	66.47
88	100	72.54	69.49
96	100	75.59	72.54
94	102	77.11	75.59
		E.O.H.	77.11

Date Logged:	2004.06.09
Logged By:	R.T.

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-565

	Run			
RQD	recovery	to	from	
%	%	m	m	
73	96	2.74	0.00	
86	100	4.27	2.74	
95	103	7.32	47.27	
86	96	10.36	7.32	
97	101	13.41	10.36	
92	95	16.46	13.41	
96	103	19.51	16.46	
95	102	22.56	19.51	
94	103	25.60	22.56	
93	99	28.65	25.60	
67	102	31.70	28.65	
87	99	34.75	31.70	
93	103	37.80	34.75	
97	99	40.84	37.80	
96	101	43.89	40.84	
93	105	46.94	43.89	
97	97	49.99	46.94	
96	98	53.04	49.99	
65	100	56.08	53.04	
59	100	59.73	56.08	
93	101	62.18	59.73	
94	100	65.23	62.18	
97	100	68.28	65.23	
94	99	71.32	68.28	
95	99	74.37	71.32	
58	102	77.42	74.37	
		E.O.H.	77.42	

Date Logged:	2004.06.10	
Logged By:	R.T.	

RQD and Core Recovery Values

Hole # 04-566

Run RQD recovery from to % m m % 99 64 0.00 4.27 4.27 8.80 101 86 89 11.89 101 8.80 98 14.94 101 11.89 90 14.94 17.98 101 100 93 17.98 21.03 90 100 21.03 24.08 24.08 27.13 99 65 101 95 27.13 30.18 100 94 33.22 30.18 94 33.22 36.27 100 93 39.32 99 36.27 95 39.32 42.37 103 98 81 42.37 45.42 76 45.42 48.46 100 92 48.46 99.99 100 100 85 99.99 53.04 89 56.08 98 53.04 100 93 56.08 59.13 59 102 59.13 62.18 78 100 62.18 63.70 86 63.70 66.75 99 99 93 66.75 69,80 92 106 69.80 71.32 99 96 74.37 71.32 98 82 74.37 77.42 78.94 100 96 77.42 78 99 78.94 81.99 81.99 85.04 101 89 90 100 85.04 88.09 100 80 88.09 91.14 82 92.66 106 91.14 98 98 92.66 95.71 93 100 95.71 98.76 98.76 E.O.H.

Date Logged:	2004.06.11	
Logged By:	R.T.	

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-567

Run RQD to recovery from % % m m 92 55 1.22 0.00 58 1.22 2.74 102 77 2.74 5.79 99 75 100 5.79 8.84 72 10.36 98 8.84 96 13.41 100 10.36 84 100 16.46 13.41 26 100 16.46 17.98 99 69 17.98 21.03 24.08 101 80 21.03 80 100 24.08 27.13 100 96 27.13 28.65 93 99 28.65 31.70 97 93 31.70 34.70 86 37.80 99 34.70 100 92 40.84 37.80 65 43.89 99 40.84 74 98 43.89 46.91 89 46.91 49.99 100 70 51.51 96 49.99 102 80 51.51 54.56 71 99 54.56 57.61 79 102 57.61 60.66 72 94 60.66 62.18 62.18 65.23 101 83 89 68.28 99 65.23 100 92 71.32 68.28 98 96 74.37 71.32 95 74.37 77.41 102 94 80.47 100 77.41 94 80.47 83.52 102 87 83.52 86.56 98 99 86.56 89.61 100 99 94 89.61 92.66 83 95.71 100 92.66 91 92 95.71 98.76 98.76 E.O.H.

Date Logged:	2004.06.13	
Logged By:	R.T.	

RQD and Core Recovery Values

Hole # 04-568

		T.	
non		Run	
RQD	recovery	to	from
%	%	m	m
98	101	2.44	0.00
98	98	3.96	2.44
88	98	7.01	3.96
76	101	10.06	7.01
84	99	13.11	10.06
84	101	16.15	13.11
87	98	19.20	16.15
89	100	22.25	19.20
91	98	25.30	22.25
98	100	26.82	25.30
90	100	29.87	26.82
91	100	32.92	29.87
87	98	35.97	32.92
77	96	34.01	35.97
80	99	42.06	34.01
76	94	45.11	42.06
80	95	48.16	45.11
86	99	51.21	48.16
89	98	54.25	51.21
87	99	57.30	54.25
93	100	60.35	57.30
97	98	63.40	60.35
80	104	64.92	63.40
78	102	67.97	64.92
88	104	69.49	67.97
70	97	72.54	69.49
81	99	75.59	72.54
55	102	78.38	75.59
52	105	81.69	78.38
		E.O.H.	81.69

Date Logged:	2004.06.14
Logged By:	R.T.

Willa Gold Project **Bethlehem Resources (1996) Corporation Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-569

	R	un	
from	to	recovery	RQD
m	m	%	%
0.00	2.44	96	63
2.44	3.96	108	78
3.96	7.01	112	86
7.01	10.06	102	90
10.06	13.10	96	79
13.10	16.15	102	87
16.15	19.20	99	91
19.20	22.25	100	95
22.25	25.30	101	92
25.30	28.35	100	71
28.35	31.39	97	78
31.39	34.44	110	84
34.44	37.49	95	63
37.49	39.01	104	44
39.01	42.06	97	87
42.06	45.11	102	83
45.11	48.16	97	94
48.16	51.21	99	95
51.21	54.25	101	92
54.25	57.30	101	94
57.30	60.35	99	70
60.35	63.40	100	69
63.40	66.45	99	85
66.45	69.49	98	78
69.49	72.54	100	96
72.54	75.59	99	97
75.59	E.O.H.		

Date Logged:	2004.06.15
Logged By:	R.T.

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-570

Run RQD to recovery from m m % % 57 0.00 2.74 98 2.74 4.27 102 98 4.27 7.32 99 92 7.32 10.36 99 86 99 96 13.41 10.36 13.41 16.46 100 97 16.46 19.51 99 96 19.51 22.56 101 97 22.56 25.60 101 96 25.60 28.65 100 97 96 28.65 30.17 100 91 97 30.17 33.22 104 92 33.22 34.75 37.80 96 34.75 101 95 37.80 40.84 102 40.84 43.89 88 101 43.89 45.42 96 84 45.42 48.46 102 100 48.46 51.51 100 89 51.51 E.O.H.

Date Logged:	2004.06.17
Logged By:	R.T.

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-571

Run from recovery RQD to m m % % 0.00 2.74 100 90 92 4.27 96 2.74 4.27 7.32 99 96 7.32 10.36 98 97 10.36 13.41 102 98 97 13.41 16.46 101 16.46 19.51 101 96 96 19.51 22.56 98 22.56 25.60 99 97 25.60 27.13 100 97 27.13 101 98 30.18 99 30.18 33.22 101 102 95 33.22 36.27 36.27 99 96 39.32 90 39.32 42.37 100 69 42.37 45.42 101 89 45.42 48.46 99 84 98 48.46 51.51 54 51.51 54.56 100 76 54.56 56.08 106 86 56.08 59.13 101 22 59.13 60.66 96 104 30 60.66 62.18 62.18 65.23 100 47 65.23 68.28 101 84 67 68.28 71.32 98 100 58 71.32 74.37 74.37 77.42 102 65 77.42 80.47 99 74 99 52 80.47 83.52 83.52 86.56 99 34 100 56 86.56 89.61 93 89.61 92.66 102 92.66 97.23 98 52 97.23 100.28 99 38 100.28 E.O.H

Date Logged:	2004.06.18
Logged By:	R.T.

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-572

	R	un	
from	to	recovery	RQD
m	m	%	%
0.00	1.22	92	65
1.22	4.27	102	82
4.27	5.79	102	98
5.79	8.84	101	96
8.84	11.89	101	93
11.89	14.94	99	92
14.94	17.98	100	89
17.98	21.03	102	98
21.03	24.08	99	96
24.08	27.13	101	97
27.13	30.18	99	85
30.18	33.22	98	93
33.22	36.27	105	89
36.27	39.32	102	92
39.32	42.37	97	90
42.37	45.42	101	86
45.42	48.46	99	95
48.46	51.51	101	97
51.51	E.O.H.		

Date Logged:	2004.06.19
Logged By:	R.T.

RQD and Core Recovery Values

Hole # 04-573

	Ri	un	
from	to	recovery	RQD
m	m	%	%
0.00	3.05	95	42
3.05	4.57	96	46
4.57	7.62	101	54
7.62	10.67	99	78
10.67	13.72	102	86
13.72	16.76	98	50
16.76	18.29	100	64
18.29	21.34	98	41
21.34	24.38	97	51
24.38	27.43	98	21
27.43	30.48	97	33
30.48	32.00	108	30
32.00	35.05	100	71
35.05	38.10	99	36
38.10	41.15	101	47
41.15	44.20	102	70
44.20	45.72	102	74
45.72	48.77	97	90
48.77	51.82	100	94
51.82	54.86	102	98
54.86	57.91	99	97
57.91	60.96	100	96
60.96	64.01	102	65
64.01	67.06	100	48
67.06	68.58	98	96
68.58	71.63	99	83
71.63	74.68	102	46
74.68	76.20	102	58
76.20	79.25	101	56
79.25	80.77	102	96
80.77	83.82	101	97
83.82	88.39	98	55
88.39	91.44	97	0.5
91.44	92.96	98	0.1
92.96	96.01	99	0.8
96.01	99.06	100	54
99.06	102.11	100	56
102.11	105.16	101	64
105.16	108.20	100	63

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.06.22 Logged By: R.T.

Run				
from	to	recovery	RQD	
m	41	%	%	
108.20	111.25	102	77	
111.25	114.30	98	41	
114.30	117.35	101	67	
117.35	120.40	99	73	
120.40	123.44	101	61	
123.44	128.20	98	73	
128.20	131.06	102	43	
131.06	134.11	99	67	
134.11	135.64	100	64	
135.64	138.68	98	58	
138.68	140.21	98	30	
140.21	143.26	101	58	
143.26	146.30	100	82	
146.30	149.35	98	34	
149.35	150.88	102	54	
150.88	153.92	99	90	
153.92	156.97	96	88	
156.97	160.02	103	62	
160.02	163.07	98	78	
163.07	164.60	100	50	
164.60	169.16	99	70	
169.16	172.21	101	50	
172.21	175.26	101	82	
175.26	178.31	99	34	
178.31	182.88	100	62	
182.88	185.93	98	54	
185.93	188.98	100	46	
188.98	192.02	104	85	
192.02	195.07	99	7 2	
195.07	198.12	98	83	
198.12	201.17	98	80	
201.17	204.22	101	87	
204.22	207.26	101	92	
207.26	210.31	99	94	
210.31	213.36	100	90	
213.36	216.41	99	88	
216.41	219.45	99	. 84	
219.45	E.O.H.			

RQD and Core Recovery Values

Hole # 04-574

		Run	
RQD	recovery	to	from
%	%	m	m
38	100	2.74	0.00
28	96	4.25	2.74
34	96	5.79	4.25
60	98	7.32	5.79
50	100	8.84	7.32
36	98	10.36	8.84
76	102	11.88	10.36
74	100	13.41	11.88
50	98	14.94	13.41
70	100	16.46	14.94
78	98	17.98	16.46
38	108	19.51	17.98
60	106	21.03	19.51
62	98	22.56	21.03
98	106	24.08	22.56
38	94	25.60	24.08
86	100	27.13	25.60
56	100	28.65	27.13
30	100	30.18	28.65
24	100	31.70	30.18
39	100	33.22	31.70
12	98	34.75	33.22
8	99	36.27	34.75
36	99	37.80	36.27
28	99	39.32	37.80
24	99	40.84	39.32
70	99	42.37	40.84
40	98	43.89	42.37
32	99	45.41	43.89
24	99	46.94	45.41
60	100	48.46	46.94
65	100	50.00	48.46
76	100	51.51	50.00
74	100	53.04	51.51
70	100	54.56	53.04
76	100	56.08	54.56
52	96	57.61	56.08
86	98	59.13	57.61
90	100	60.65	59.13

Date Logged:	2004.06.27	
Logged By:	R.T.	

Run				
RQD	recovery	to	from	
%	%	m	m	
44	100	62.18	60.65	
50	98	63.70	62.18	
48	102	65.23	63.70	
58	90	66.75	65.23	
60	102	68.28	66.75	
64	98	69.80	68.28	
38	98	71.32	69.80	
36	104	72.85	71.32	
62	110	74.37	72.85	
38	90	75.90	74.37	
56	104	77.42	75.90	
40	98	78.94	77.42	
56	100	80.47	78.94	
92	100	81.99	80.47	
66	99	83.52	81.99	
84	102	85.04	83.52	
46	100	86.56	85.04	
78	100	88.09	86.56	
50	104	89.61	88.09	
62	96	91.14	89.61	
42	100	92.66	91.14	
20	100	94.18	92.66	
(94	95.71	94.18	
- 8	100	97.23	95.71	
(98	98.76	97.23	
12	99	100.28	98.76	
(98	101.80	100.28	
(94	103.33	101.80	
14	96	104.85	103.33	
14	100	106.38	104.85	
38	98	107.90	106.38	
20	100	109.40	107.90	
28	100	110.95	109.40	
42	102	112.47	110.95	
2	100	114.00	112.47	
20	99	115.52	114.00	
(100	117.04	115.52	
22	101	118.57	117.04	
2(- 99	120.09	118.57	

		-574	Hole # 04		
Run					
	recovery	to	from		
	%	m	m		
2	100	123.14	120.09		
2	98	124.66	123.14		
1	99	126.19	124.66		
8	102	127.74	126.19		
7	99	129.24	127.74		
3	101	130.76	129.24		
7	101	132.28	130.76		
4	100	133.81	132.28		
1	100	135.33	133.81		
5	102	136.86	135.33		
5	98	138.38	136.86		
	100	139.90	138.38		
	99	141.43	139.90		
2	100	142.95	141.43		
6	102	144.48	142.95		
4	102	146.00	144.48		
2	98	147.52	146.00		
	98	149.05	147.52		
3	100	150.57	149.05		
1	98	152.10	150.57		
6	102	153.62	152.10		
4	102	155.14	153.62		
1	100	156.67	155.14		
3	98	158.19	156.67		
6	98	159.72	158.19		
4	102	161.24	159.72		
2	102	162.76	161.24		
4	100	164.29	162.76		
5	102	165.81	164.29		
3	98	167.34	165.81		
7	98	168.86	167.34		
8	99	170.38	168.86		
7	100	171.91	170.38		
3	99	173.43	171.91		
4	98	174.96	173.43		
5	100	176.48	174.96		
6	108	178.00	176.48		
7	108	179.53	178.00		
5	76	179.55	179.53		
2	70	181.05	179.35		
	58	184.10	181.03		
1	22	184.10	182.58		
1	22	185.62	185.62		
	24	187.14	185.62		
	44	188.67	187.14		

		Run		
	from	to	recovery	RQD
100000	m	m	%	%
		4		
	190.20	191.72	48	0
	191.72	193.20	40	0
	193.20	E.O.H.		

6533

<u>8000</u>

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-575

	Run		
from	to	recovery	RQD
m	m	%	%
0.00	1.52	100	78
1.52	4.57	90	34
4.57	7.62	99	39
7.62	10.67	101	62
10.67	13.72	100	53
13.72	16.76	99	26
16.76	19.81	102	50
19.81	22.86	101	59
22.86	24.38	100	40
24.38	27.43	99	29
27.43	30.48	100	44
30.48	33.53	101	56
33.53	36.58	104	59
36.58	39.62	102	83
39.62	42.67	101	90
42.67	47.24	100	90
47.24	50.29	102	99
50.29	53.34	100	65
53.34	56.39	100	97
56.39	59.44	100	96
59.44	62.48	99	95
62.48	65.53	100	98
65.53	68.58	100	99
68.58	71.63	100	97
71.63	74.68	100	98
74.68	77.72	99	97
77.72	80.77	100	92
80.77	83.82	100	50
83.82	86.87	100	76
86.87	89.92	96	95
89.92	92.96	104	99
92.96	96.01	98	92
96.01	99.06	102	52
99.06	102.11	100	76
102.11	105.16	100	67
105.16	108.20	103	98
108.20	111.25	97	68
111.25	114.30	100	90
114.30	117.35	99	97

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged:2004.06.29Logged By:R.T.

	Run	1	
from m	to m	recovery %	
117.35	120.40	101	75
120.40	123.44	101	69
123.44	124.97	100	98
124.97	E.O.H.		

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

RQD and Core Recovery Values

Hole # 04-576

Run RQD to recovery from % % m m 74 2.74 96 0.00 36 2.74 4.26 100 7.31 100 41 4.26 69 7.31 10.36 102 70 14.94 99 10.36 100 59 14.94 17.98 54 21.03 100 17.98 70 24.08 101 21.03 13 27.13 99 24.08 66 27.13 30.18 100 33.22 100 61 30.18 24 100 33.22 36.27 53 101 39.32 36.27 82 100 39.32 42.37 99 70 42.37 45.42 48.46 101 88 45.42 99 59 51.51 48.46 100 61 54.56 51.51 93 99 54.56 57.61 101 48 57.61 60.66 43 60.66 63.70 101 66.75 99 51 63.70 73 103 66.75 69.79 94 72.85 99 69.79 90 99 72.85 75.90 100 95 75.90 78.40 92 78.40 81.99 99 85.04 100 75 81.99 91 88.09 101 85.04 105 89 91.14 88.09 87 99 94.18 91.14 45 97.23 101 94.18 94 97.23 100.28 101 70 100.28 103.34 99 101 71 106.38 103.34 102 88 109.42 106.38 93 104 109.42 112.47 72 112.47 115.52 101 90 115.52 118.57 94

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.07.02 Logged By: R.T.

enter 1919 - State		Run	
	recovery	to	from
	%	m	m
82	102	121.62	118.57
60	100	124.66	121.62
65	99	127.71	124.66
78	98	130.76	127.71
60	100	133.81	130.76
71	101	136.86	133.81
68	101	139.90	136.86
67	99	142.95	139.90
65	99	146.00	142.95
88	100	149.05	146.00
44	100	152.10	149.05
45	100	155.14	152.10
0	100	156.67	155.14
35	100	159.72	156.67
16	100	161.24	159.72
47	99	164.29	161.24
58	102	167.34	164.29
57	101	170.38	167.34
72	101	173.43	170.38
87	105	176.48	173.43
61	95	179.53	176.48
99	102	182.58	179.53
93	98	185.62	182.58
94	100	188.67	185.62
94	100	191.72	188.67
96	102	194.77	191.72
92	100	197.81	194.77
89	100	200.86	197.81
95	99	203.91	200.86
96	99	206.96	203.91
93	99	210.01	206.96
77	100	213.06	210.01
86	100	216.10	213.06
87	100	219.15	216.10
79	99	222.20	219.15
76	100	225.25	222.20
8	99 ~	228.30	225.25
91	106	231.34	228.30
89	98	234.40	231.34

Hole # 04-576 Run RQD recovery from to m m % % 234.40 237.44 98 60 102 237.44 240.49 93 243.54 89 240.49 99 246.58 243.54 99 91 246.58 249.63 99 86 249.63 252.68 102 99 252.68 255.73 100 90 255.73 258.78 100 86 258.78 97 261.82 100 261.82 89 264.87 100 264.87 E.O.H.

Willa Gold Project Bethlehem Resources (1996) Corporation **Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-577

		Run	
RQD	recovery	to	from
%	%	m	m
0	100	1.22	0.00
18	99	4.27	1.22
49	99	7.32	4.27
68	101	10.36	7.32
31	101	13.41	10.36
50	100	14.94	13.41
51	100	17.98	14.94
52	100	21.03	17.98
65	99	24.08	21.03
42	101	25.60	24.08
61	99	28.65	25.60
0	99	30.18	28.65
43	99	33.22	30.18
59	100	36.27	33.22
58	100	39.32	36.27
59	94	42.37	39.32
50	106	45.42	42.37
88	100	48.46	45.42
78	100	51.51	48.46
81	99	54.56	51.51
85	102	57.61	54.56
64	99	60.66	57.61
79	100	63.70	60.66
84	100	66.75	63.70
76	100	69.80	66.75
68	100	72.85	69.80
91	101	75.90	72.85
54	100	78.94	75.90
82	100	82.00	78.94
83	100	85.04	82.00
73	99	88.09	85.04
92	100	91.40	88.09
100	100	94.18	91.40
94	99	97.23	94.18
97	100	100.28	97.23
95	101	103.33	100.28
86	102	106.38	103.33
91	- 99	109.42	106.38
92	98	112.47	109.42

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.07.16 Logged By: R.T.

	Run		
from	to	recovery	RQD
m	m	%	%
112.47	115.52	100	87
115.52	118.57	99	94
118.57	121.62	100	29
121.62	123.14	100	18
123.14	126.19	99	47
126.19	127.70	98	35
127.70	130.76	100	0
130.76	133.81	100	4
133.81	135.33	100	6
135.33	136.85	100	0
136.85	138.38	98	12
138.38	139.90	99	0
139.90	142.95	100	40
142.95	146.00	98	69
146.00	E.O.H.		

Willa Gold Project **Bethlehem Resources (1996) Corporation Underground Drilling 2004**

RQD and Core Recovery Values

Hole # 04-578

		Run	
RQD	recovery	to	from
%	%	m	m
11	80	1.22	0.00
47	95	4.27	1.22
38	100	7.32	4.27
59	100	10.36	7.32
74	100	13.41	10.36
48	100	14.94	13.41
44	97	17.98	14.94
65	99	21.03	17.98
85	102	24.08	21.03
55	98	27.13	24.08
51	99	30.18	27.13
58	100	33.22	30.18
21	100	36.27	33.22
19	99	39.32	36.27
27	98	42.36	39.32
57	99	45.42	42.36
72	98	48.46	45.42
47	99	51.51	48.46
51	102	56.08	51.51
58	98	59.13	56.08
47	99	62.18	59.13
40	103	65.23	62.18
62	101	68.28	65.23
44	99	71.32	68.28
81	98	74.37	71.32
56	98	77.42	74.37
49	99	80.47	77.42
35	100	83.52	80.47
70	101	86.56	83.52
50	100	89.61	86.56
66	100	92.66	89.61
13	98	94.18	92.66
84	100	97.23	94.18
77	102	100.28	97.23
36	100	103.33	100.28
48	106	104.85	103.33
28	98	107.90	104.85
23	100	109.42	107.90
22	98	110.95	109.42

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

Date Logged: 2004.07.20 Logged By: R.T.

	Rur	1	
from	to	recovery	RQD
m	m	%	%
110.95	114.00	100	82
114.00	117.04	99	54
117.04	120.09	100	22
120.09	123.14	99	23
123.14	126.19	101	19
126.19	129.24	100	20
129.24	132.28	99	21
132.28	135.33	100	49
135.33	136.86	96	18
136.86	139.90	100	28
139.90	141.43	100	29
141.43	144.48	100	15
144.48	146.00	100	0
146.00	149.05	101	45
149.05	150.57	100	27
150.57	153.62	65	6.5
153.62	156.67	90	47
156.67	159.72	100	19
159.72	161.24	98	37
161.24	164.28	100	21
164.28	167.34	100	28
167.34	170.38	100	57
170.38	173.43	100	27
173.43	174.96	100	30
174.96	178.00	101	37
178.00	181.05	100	26
181.05	184.10	101	34
184.10	187.15	100	21
187.15	190.20	100	16
190.20	193.24	101	13
193.24	196.29	99	69
196.29	199.34	100	58
199.34	202.39	102	50
202.39	205.44	98	14
205.44	206.96	100	0
206.96	210.01	100	·24
210.01	213.06	100	41
213.06	216.10	99	48
216.10	219.15	101	53

Hole # 04-578

		Run	
RQD	recovery	to	from
%	%	m	m
67	100	222.20	219.15
60	99	225.25	222.20
50	101	228.30	225.25
86	100	229.82	228.30
26	100	231.34	229.82
41	96	232.87	231.34
46	104	235.92	232.87
34	100	237.44	235.92
72	103	240.49	237.44
48	98	242.01	240.49
63	99	245.06	242.01
38	100	248.11	245.06
80	101	251.16	248.11
32	99	254.20	251.16
66	100	257.25	254.20
59	100	260.30	257.25
75	99	263.35	260.30
86	99	266.40	263.35
57	102	269.44	266.40
44	99	272.50	269.44
35	101	275.54	272.50
41	98	278.59	275.54
56	101	281.64	278.59
81	101	284.68	281.64
75	99	287.73	284.68
22	100	289.26	287.73
53	104	292.30	289.26
61	98	295.35	292.30
65	99	298.40	295.35
83	99	301.45	298.40
90	99	304.50	301.45
92	98	307.54	304.50
59	95	310.59	307.54
98	104	313.64	310.59
83	100	316.69	313.64
69	100	318.21	316.69
57	101	321.28	318.21
		E.O.H.	321.28

RQD and Core Recovery Values

Hole # 04-579

-579

	Run		
from	to	recovery	RQD
m	m	%	%
0.00	2.74	97	13
2.74	3.96	90	0
3.96	7.01	99	25
7.01	10.06	101	73
10.06	13.11	100	61
13.11	16.15	99	60
16.15	19.20	101	57
19.20	22.25	99	36
22.25	25.30	101	31
25.30	28.35	101	59
28.35	31.40	99	54
31.40	34.44	98	51
34.44	37.49	99	33
37.49	40.54	101	82
40.54	43.59	98	77
43.59	45.11	104	60
45.11	48.16	100	84
48.16	49.68	104	64
49.68	52.73	100	83
52.73	55.79	100	46
55.79	58.83	101	72
58.83	61.87	99	38
61.87	64.92	100	44
64.92	67.97	98	56
67.97	71.02	102	42
71.02	72.54	97	66
72.54	75.59	102	20
75.59	78.64	101	53
78.64	81.69	100	79
81.69	84.73	102	49
84.73	87.78	100	50
87.78	90.83	99	72
90.83	93.88	101	76
93.88	96.93	98	73
96.93	99.97	100	52
99.97	103.02	100	37
103.02	104.55	100	24
104.55	107.59	100	33
107.59	109.12	98	24

Date Logged:	2004.07.23
Logged By:	R.T.

		Run	******
RQE	recovery	to	from
%	%	m	m
45	102	112.17	109.12
47	101	115.21	112.17
52	100	118.26	115.21
56	99	121.31	118.26
38	102	122.89	121.31
28	100	125.88	122.89
34	101	128.93	125.88
27	99	131.99	128.93
16	100	133.50	131.99
25	100	136.55	133.50
39	99	139.60	136.55
4(101	142.65	139.60
21	99	145.70	142.65
76	101	148.74	145.70
5(100	151.79	148.74
88	100	156.36	151.79
59	100	159.41	156.36
29	98	162.46	159.41
28	100	165.51	162.46
54	100	167.03	165.51
39	98	170.08	167.03
16	94	171.60	170.08
14	90	174.65	171.60
13	96	176.17	174.65
48	101	179.20	176.17
44	110	180.75	179.20
55	99	183.79	180.75
16	100	185.32	183.79
29	100	188.37	185.32
24	101	191.41	188.37
33	99	194.46	191.41
30	102	197.51	194.46
59	101	200.56	197.51
55	100	203.61	200.56
50	100	206.65	203.61
48	100	208.18	206.65
52	99	211.23	208.18
12	98	212.75	211.23
22	101	215.80	212.75

Hole # 04-579

		Run		
RQE	recovery	to	from	
%	%	m	m	
57	102	218.85	215.80	
69	101	221.89	218.85	
60	99	224.94	221.89	
80	101	228.00	224.94	
41	100	229.51	228.00	
73	101	232.56	229.51	
59	98	235.61	232.56	
63	99	238.66	235.61	
53	97	241.71	238.66	
77	101	244.75	241.71	
76	100	247.80	244.75	
90	100	250.85	247.80	
66	99	253.90	250.85	
89	102	255.42	253.90	
44	98	260.00	255.42	
(98	261.52	260.00	
5	100	263.04	261.52	
32	99	264.57	263.04	
42	100	266.09	264.57	
43	110	267.61	266.09	
33	95	270.66	267.61	
48	105	273.71	270.66	
39	95	276.76	273.71	
90	100	278.28	276.76	
49	100	281.13	278.28	
69	97	284.38	281.13	
95	102	287.43	284.38	
96	104	288.95	287.43	
90	100	292.00	288.95	
85	99	295.05	292.00	
68	100	298.09	295.05	
		E.O.H.	298.09	

RQD and Core Recovery Values

Hole # 04-580

	Rı	ın	
from	to	recovery	RQD
m	m	%	%
0.00	4.27	92	29
4.27	7.32	90	19
7.32	10.36	99	48
10.36	13.41	101	72
13.41	14.94	102	72
14.94	17.98	100	88
17.98	21.03	101	48
21.03	24.08	99	84
24.08	27.13	97	45
27.13	30.18	102	56
30.18	33.22	100	70
33.22	36.27	95	56
36.27	39.32	100	33
39.32	42.37	97	15
42.37	43.89	98	10
43.89	46.94	97	19
46.94	48.46	104	76
48.46	51.51	102	51
51.51	54.56	100	54
54.56	57.61	96	43
57.61	59.13	99	29
59.13	62.18	100	37
62.18	65.23	98	52
65.23	68.27	95	69
68.27	69.80	98	71
69.80	71.32	100	84
71.32	74.37	100	64
74.37	75.90	100	46
75.90	77.42	98	26
77.42	78.94		43
78.94	80.74	100	32
80.74	83.52	94	78
83.52	86.56	99	48
86.56	89.61	100	34
89.61	92.66	99	47
92.66	94.18	100	76
94.18	97.23	100	39
97.23	98.76	100	24
98.76	101.80	98	30

Date Logged:	2004.07.26
Logged By:	R.T.

Run									
from	to		RQD						
m	m		%						
101.80	103.33	100	7						
103.33	106.38	100	16						
106.38	107.90	98	0						
107.90	110.95	101	41						
110.95	112.47	100	C						
112.47	115.52	99	29						
115.52	117.04	100	6						
117.04	120.09	98	18						
120.09	121.62	102	43						
121.62	123.14	98	29						
123.14	126.19	96	21						
126.19	127.71	100	C						
127.71	130.76	99	12						
130.76	132.28	98	e						
132.28	133.81	98	C						
133.81	136.86	90	13						
136.86	138.38	99	(
138.38	141.43	99	10						
141.43	144.48	98	43						
144.48	146.00	100	32						
146.00	149.05	99	81						
149.05	150.57	98	78						
150.57	153.62	98	52						
153.62	155.14	98	42						
155.14	158.19	101	68						
158.19	161.24	96	46						
161.24	162.76	108	64						
162.76	165.81	101	67						
165.81	168.86	100	92						
168.86	171.91	100	90						
171.91	174.96	97	68						
174.96	176.48	112	86						
176.48	178.00	102	48						
178.00	179.53	100	38						
179.53	182.58	91	42						
182.58	185.62	100	47						
185.62	187.15	98	(
187.15	190.20	99	22						
190.20	191.72	98	16						

Hole # 04	4-580		
	Rur	l	
from	to	recovery	RQD
m	m	%	%
191.72	193.24	106	24
193.24	196.29	101	13
196.29	197.82	100	0
197.82	199.34	100	7
199.34	200.86	100	17
200.86	203.91	100	36
203.91	205.44	100	14
205.44	208.48	100	15
208.48	210.01	102	27
210.01	211.53	100	16
211.53	213.06	100	18
213.06	216.10	100	66
216.10	218.85	93	24
218.85	E.O.H.		

Table 12 - Rock Quality Designation (RQD) and Core Recovery

APPENDIX D

188

Field and Laboratory Specific Gravity Determinations

Drill Holes 04-542 to 04-580

Page 1 of 4

<u>Table 13</u> - Field and Laboratory Specific Gravity Determinations

Willa Gold Project Bethlehem Resources (1996) Corporation Underground Drilling 2004

Specific Gravity Measurements Acme: done on reject samples (crushed rock) Core Logging Facility: done on whole pieces of core

Acme WO #	Acme Sample #	<u>Hole #</u>	<u>From - To</u> (m)	<u>SG at</u> <u>CLF</u>	<u>SG at</u> Acme	Rock Type	Comments
A401916R	R 190025 04-542 48-50 2.97 2.87		Augite Porphyry Ros V				
A401916R	190051	04-542	98-100	2.83		Augite Porphyry Ros V	
A401916R	190075	04-542	146-148	2.94	2.83	Augite Porphyry Ros V	
A401916R	190100	04-542	194-196	2.88	2.86	Augite Porphyry Ros V	
A401916R	190125	04-543	44- 46	2.80	2.80	Qtzite/Siltite Ros V	
A401916R	190150	04-543	92-94	2.88	2.88	Augite Porphyry Ros V	
A402050R	190175	04-544	2-4	2.95	2.89	Augite Porphyry Ros V	
A402050R	190200	04-544	50- 52	2.75	2.66	Siltite Ros V	
A402050R	190225	04-544	100-102	2.93	2.88	Augite Porphyry Ros V	
A402050R	190250	04-545	34-36	3.85	2.95	Siltite Ros V	CLF sample contained 30% py
A402050R	190250	04-545	34-36	2.73	2.95	Siltite Ros V	CLF sample contained 1% py
A402050R	190275	04-545	84-86	2.84	2.86	Augite Porphyry Ros V	2% py, 1% cpy
A402050R	190300	04-545	132-134	2.98	2.87	Augite Porphyry Ros V	1% ро & ру
A402221R	190325	04-546	40- 42	2.65	2.63	QLP	tr py
A402221R	190350	04-546	88-90	2.84	2.86	Augite Porphyry Ros V	
A402221R	190375	04-547	46- 48	2.91	2.84	Augite Porphyry Ros V	
A402221R	190400	04-547	94-96	2.87	2.81	Augite Porphyry Ros V	
A402221R	190425	04-548	16-18	2.73	2.71	Qtzite/Siltite Ros V	
A402221R	190450	04-548	64-66	2.97	2.84	Augite Porphyry Ros V	
A402294R	190475	04-549	36-38	2.66	2.84	Heterolithic Breccia?	
A402294R	190475	04-549	36-38	2.81	2.84	Lamprophyre Dyke	
A402294R	190500	04-549	84-86	2.84	2.70	Heterolithic Breccia	

Page 2 of 4

8

Acme WO #	Acme Sample #	<u>Hole #</u>	From - To (m) 134-136	<u>SG at</u> <u>CLF</u> 2.97	SG at Acme 2.91	Rock Type	Comments				
A402294R	190525	04-549				Heterolithic Breccia	w/ cpy & py, po				
A402294R	190525	04-549	134-136	2.79	2.91	Heterolithic Breccia	w/ tr py				
A402294R	190550	04-550	34-36	2.90	2.81	Ros V					
A402294R	190575	04-550	84-86	2.93	2.72	Heterolithic Breccia	Mafic vol frags w/ qtz stringers				
A402294R	190600	04-550	132-134	2.67	2.63	Heterolithic Breccia	QLP frags				
A402336R	190625	04-551	42-44	2.67	2.62	Heterolithic Breccia	QLP frags				
A402336R	190650	04-551	90-92	2.68	2.65	Heterolithic Breccia	QLP frags				
A402336R	190675	04-552	4-6	2.81	2.75	Heterolithic Breccia					
A402336R	190700	04-552	52-54	2.84	2.76	Augite Porphyry Ros V					
A402336R	190725	04-552	102-104	2.69	2.59	QLP					
A402336R	190750	04-553	24-26	2.99	2.81	Ros V	w/ po & py				
A402454R	190775	04-553	74-76	2.81	2.73	Ros V	w/ qtz stringers				
A402454R	190800	04-553	122-124	2.78	2.80	Ros V	w/ qtz stringers				
A402454R	190825	04-553	172-174	2.65	2.58	QLP					
A402454R	190850	04-553	220-222	2.56	2.57	Clay altered QLP					
A402454R	190875	04-554	20-22	2.69	2.68	Heterolithic Breccia					
A402454R	190900	04-554	68-70	2.68	2.63	QLP					
A402470R	190925	04-554	118-120	2.66	2.63	Altered QLP					
A402470R	190950	04-554	166-168	2.68	2.61	QLP					
A402470R	190975	04-555	16-18	2.89	2.85	Mafic Ros V					
A402470R	191000	04-555	64-66	2.84	2.82	Mafic Ros V					
A402470R	189025	04-555	114-116	2.67	2.57	QLP					
A402470R	189050	04-556	16-18	2.91	2.80	Ros V					
A402671R	189075	04-556	66-68	2.78	2.76	Qtzite/Siltite Ros V					
A402671R	189100	04-556	114-116	2.69	2.61	QLP					
A402671R	189125	04-557	36-38	2.93	2.95	Augite Porphyry Ros V					
A402671R	189150	04-557	86-88	2.96	2.78	Ros V					
A402671R	189175	04-558	28-30	2.89	2.78	Mafic Ros V					
A402671R	189200	04-558	76-78	2.68	2.64	QLP	w/ hornblende				
A402672R	189225	04-558	126-127.4	2.68	2.66	QLP					
A402672R	189250	04-559	46-48	2.95	2.85	Mafic Ros V					
A402672R	189275	04-559	96-98	2.69	2.58	QLP					

.

Page	3 of 4
r ago	

Acme WO #	Acme Sample <u>#</u>	<u>Hole #</u>	<u>From - To</u> (m)	<u>SG at</u> <u>CLF</u>	<u>SG at</u> <u>Acme</u>	<u>Rock Type</u>	<u>Comments</u>
A402672R	189300	04-560	28-30	2.96	2.74	Mafic Ros V	
A402672R	189325	04-560	78- 80	3.11	2.76	Altered mafic Ros V	w/ epidote & magnetite
A402672R	189350	04-561	0-2	2.73	2.66	QLP	
A402921R	189375	04-561	50- 52	2.75	2.58	QLP	w/ py
A402921R	189400	04-563	12-14	2.75	2.74	Heterolithic Breccia	w/ py
A402921R	189425	04-564	6-8	2.84	2.68	Heterolithic Breccia	Altered Ros vol seds frags w/ 3-4% py
A402921R	189450	04-564	54-56	2.75	2.64	QLP	
A402921R	189475	04-565	26-28	2.89	2.72	Heterolithic Breccia	Altered Ros vol seds frags w/ 2% py
A402921R	189500	04-565	74-76	2.75	2.64	QLP	
A403025R	189525	04-566	46-48	2.94	2.86	Augite Porphyry Ros V	
A403025R	189550	04-566	94-96	2.91	2.92	Augite Porphyry Ros V	
A403025R	189575	04-567	46- 48	2.72	2.83	Ros V seds	
A403025R	189600	04-567	94-96	2.99	2.85	Mafic Ros V	
A403025R	157025	04-568	44-46	2.89	2.81	Mafic Ros V	w/ epidote & py
A403025R	157050	04-569	10-12	2.80	2.68	Heterolithic Breccia	w/ felsic sed frags, 2% py
A403026R	157075	04-569	60-62	2.67	2.59	Heterolithic Breccia	QLP frags
A403026R	157100	04-570	32-34	2.69	2.60	QLP	breccia?
A403026R	157125	04-571	30-32	2.67	2.61	QLP	~1% py
A403026R	157150	04-571	78-80	2.66	2.60	Heterolithic Breccia	QLP frags ~2% epidote
A403026R	157175	04-572	28-30	2.86	2.81	Mafic Ros V	w/ 2% py, some epidote
A403026R	157200	04-573	24-26	2.59	2.59	Heterolithic Breccia	
A403114R	157225	04-573	74-76	2.74	2.82	Heterolithic Breccia	
A403114R	157250	04-573	122-124	2.74	2.66	Felsic Ros V	
A403114R	157275	04-573	172-174	2.96	2.88	Mafic Ros V	
A403114R	157300	04-574	0-2	2.62	2.59	Heterolithic Breccia	QLP frags
A403114R	157325	04-574	50- 52	2.78	2.67	Heterolithic Breccia	Altered vol frags
A403114R	157350	04-574	98-100	2.83	2.78	Heterolithic Breccia	Mafic vol frags
A403316R	157375	04-574	148-150	2.69	2.61	QLP	
A403316R	157400	04-575	14-16	2.67	2.58	Heterolithic Breccia	QLP frags
A403316R	157425	04-575	64-66	2.82	2.83	Hetero Breccia QLP	w/ 5% py
A403316R	157450	04-575	112-114	2.97	2.80	Augite Porphyry Ros V	
A403316R	157475	04-576	38-40	2.81	2.72	Heterolithic Breccia	

Page 4 of 4

) Norma

<u>Acme WO #</u>	<u>Effe wO # (m)</u>		<u>From - To</u> (m)	<u>SG at</u> <u>CLF</u>	SG at Acme	Rock Type	Comments	
A403316R			80- 82	2.74 2.		Heterolithic Breccia		
A403781R	157525	04-576	136-138	2.68	2.71	QLP		
A403781R	157550	04-576	184-186	2.64	2.68	QLP		
A403781R	157575	04-576	234-236	2.65	2.83	QLP		
A403781R	157600	04-577	18-20	2.61	2.86	Heterolithic Breccia	Mafic vol frags	
A403781R	157625	04-577	68-70	2.80	2.72	Heterolithic Breccia	QLP frags	
A403781R	157650	04-577	116-118	2.87	2.67	Heterolithic Breccia	Mafic vol frags	
A403878R	157675	04-578	20-22	2.79	2.71	Mafic Ros V		
A403878R	157700	04-578	68-70	2.78	2.68	Heterolithic Breccia	Mafic vol frags	
A403878R	157725	04-578	118-120	2.92	2.83	Heterolithic Breccia	Varied frags	
A403878R	157750	04-578	166-168	2.91	2.86	Heterolithic Breccia		
A403878R	157775	04-578	216-218	2.74	2.72	Heterolithic Breccia		
A403878R	157800	04-578	264-266	2.70	2.67	Heterolithic Breccia	QLP frags	
A403969R	157825	04-578	314-316	2.85	2.74	Feldspar porphyry	ру	
A403969R	157850	04-579	40-42	2.72	2.67	Ros V		
A403969R	157875	04-579	90-92	2.98	2.76	Heterolithic Breccia		
A403969R	157900	04-579	138-140	2.76	2.69	Heterolithic Breccia		
A403969R	157925	04-579	188-190	2.85	2.82	Heterolithic Breccia		
A403969R	157950	04-579	236-238	2.81	2.72	Heterolithic Breccia		
A404131R	157975	04-579	286-288	2.81	2.76	Heterolithic Breccia		
A404131R	158000	04-580	36-38	2.63	2.58	Clay altered QLP		
A404131R	149025	04-580	80-82	2.77	2.75	Heterolithic Breccia	QLP	
A404131R	149050	04-580	134-136	2.85	2.78	Heterolithic Breccia		
A404131R	149075	04-580	184-186	2.69	2.71	Heterolithic Breccia		

(2000)

Discovery Consultants W.R. Gilmour, P.Geo. December 15, 2004

NB: Acme values should be more representative of the sample interval

APPENDIX E

Field and Laboratory Blank Samples

Drill Holes 04-542 to 04-580

Page 1 of 2

Table 14 - Field and Laboratory Blank Samples

Lab Blank Prep Sample (Silica):

WO #	Sample	Au	Cu	Ag	Fe	Mo	W	Pb	Zn	Cd	As	Sb	Hg	Bi	Ni
	Number	g/t	%	g/t	%	%	%	%	%	%	%	%	%	%	%
A401916	SI	0.00	0.001	2	0.04	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402050	SI	0.00	0.000	0	0.03	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402221	S1	0.01	0.001	0	0.06	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402294	SI	0.00	0.000	0	0.05	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.001	0.00	0.001
A402336	SI	0.00	0.001	0	0.05	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402454	SI	0.00	0.001	0	0.08	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.001	0.00	0.001
A402470	SI	0.01	0.000	0	0.10	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402671	SI	0.00	0.000	0	0.12	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402672	SI	0.00	0.000	0	0.04	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402921	SI	0.00	0.000	0	0.06	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A403025	S1	0.00	0.000	0	0.12	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.001
A402026	SI	0.00	0.000	0	0.00	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403114	SI	0.01	0.001	0	0.05	0.000	0.000	0.00	0.00	0.000	0.00	0.002	0.000	0.00	0.001
A403316	SI	0.00	0.000	0	0.02	0.001	0.000	0.00	0.00	0.000	0.00	0.000	0.001	0.00	0.000
A403781	SI	0.00	0.000	0	0.06	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403878	SI	0.00	0.000	0	0.05	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403969	SI	0.00	0.000	0	0.01	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A404131	SI	0.00	0.000	0	0.04	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000

Page 2 of 2

WO #	Sample	Cr	Co	Mn	Mg	Ca	Sr	K	Al	Na	Р
	Number	%	%	%	%	%	%	%	%	%	%
A401916	SI	0.000	0.000	0.00	0.00	0.12	0.000	0.04	0.01	0.44	0.000
A402050	S1	0.000	0.000	0.00	0.00	0.15	0.000	0.03	0.01	0.37	0.003
A402221	SI	0.000	0.000	0.00	0.00	0.14	0.000	0.02	0.02	0.41	0.001
A402294	S1	0.000	0.000	0.00	0.00	0.06	0.000	0.02	0.01	0.26	0.001
A402336	S1	0.000	0.000	0.00	0.00	0.12	0.000	0.00	0.01	0.49	0.000
A402454	SI	0.000	0.000	0.00	0.00	0.15	0.000	0.00	0.01	0.52	0.000
A402470	SI	0.000	0.000	0.00	0.00	0.19	0.000	0.02	0.03	0.53	0.000
A402671	S1	0.000	0.000	0.00	0.01	0.41	0.001	0.02	0.03	1.31	0.001
A402672	S1	0.000	0.000	0.00	0.00	0.15	0.000	0.00	0.01	0.50	0.000
A402921	SI	0.000	0.000	0.00	0.00	0.13	0.000	0.03	0.01	0.61	0.000
A403025	SI	0.000	0.000	0.00	0.00	0.15	0.000	0.04	0.00	0.58	0.000
A402026	SI	0.000	0.000	0.00	0.00	0.10	0.000	0.00	0.01	0.38	0.000
A403114	SI	0.000	0.000	0.00	0.00	0.09	0.000	0.02	0.00	0.37	0.000
A403316	SI	0.000	0.000	0.00	0.01	0.15	0.000	0.01	0.01	0.47	0.001
A403781	S1	0.000	0.000	0.00	0.00	0.24	0.000	0.01	0.01	0.66	0.000
A403878	S1	0.000	0.000	0.00	0.01	0.26	0.001	0.03	0.01	0.85	0.003
A403969	S1	0.000	0.000	0.00	0.00	0.14	0.000	0.00	0.01	0.46	0.000
A404131	SI	0.000	0.000	0.00	0.00	0.13	0.000	0.00	0.01	0.49	0.001

Page 1 of 4

Field Blank Samples (rock samples):

WO #	Sample	Au	Cu	Ag	Fe	Mo	W	Pb	Zn	Cd	As	Sb	Hg	Bi	Ni
	Number	g/t	%	g/t	%	%	%	%	%	%	%	%	%	%	%
A401916	E 190050	0.00	0.002	0	0.44	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A401916	E 190099	0.01	0.005	0	0.55	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A401916	E 190149	0.01	0.002	0	0.62	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402050	E 190199	0.01	0.005	0	0.74	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402050	E 190249	0.01	0.005	0	0.77	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402050	E 190299	0.01	0.004	0	0.77	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402221	E 190349	0.01	0.004	0	0.67	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402221	E 190399	0.01	0.003	0	1.05	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402221	E 190449	0.01	0.003	3	0.51	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402294	E 190499	0.00	0.005	0	0.54	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402294	E 190549	0.00	0.003	0	0.54	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402294	E 190599	0.02	0.002	0	0.54	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402336	E 190649	0.01	0.002	0	0.60	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402336	E 190699	0.02	0.004	0	0.69	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402336	E 190749	0.02	0.003	0	0.62	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402454	E 190799	0.07	0.003	0	0.71	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402454	E 190849	0.06	0.010	0	1.00	0.001	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402454	E 190899	0.00	0.002	0	0.54	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402470	E 190949	0.01	0.002	0	0.54	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402470	E 190999	0.01	0.003	0	0.67	0.000	0.000	0.00	0.00	0.000	0.00	0.002	0.000	0.00	0.001
A402470	E 189049	0.00	0.003	3	0.59	0.000	0.001	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A402671	E 189099	0.00	0.002	0	0.61	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402671	E 189149	0.01	0.005	0	0.74	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.001
A402671	E 189199	0.01	0.000	0	0.22	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A402921	E 189399	0.03	0.006	0	0.58	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402921	E 189449	0.00	0.002	0	0.68	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402921	E 189499	0.01	0.000	0	0.68	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A403025	E 189549	0.00	0.004	2	0.59	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A403025	E 189599	0.01	0.004	0	0.49	0.000	0.001	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403025	E 157049	0.00	0.002	0	0.56	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A402026	E 157099	0.00	0.003	0	0.00	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402026	E 157149	0.01	0.003	0	0.00	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A402026	E 157199	0.00	0.002	2	0.50	0.000	0.000	0.00	0.00	0.000	0.00	0.002	0.000	0.00	0.001

.

(

Page 2 of 4

WO #	Sample	Cr	Co	Mn	Mg	Ca	Sr	К	Al	Na	Р
	Number	%	%	%	%	%	%	%	%	%	%
A401916	E 190050	0.000	0.000	0.00	0.03	1.81	0.002	0.33	0.40	0.17	0.000
A401916	E 190099	0.001	0.000	0.00	0.02	1.20	0.002	0.26	0.29	0.13	0.002
A401916	E 190149	0.000	0.000	0.00	0.06	1.11	0.002	0.48	0.59	0.21	0.002
A402050	E 190199	0.001	0.000	0.00	0.10	0.92	0.002	0.41	0.62	0.23	0.002
A402050	E 190249	0.001	0.000	0.01	0.06	1.74	0.002	0.23	0.28	0.11	0.001
A402050	E 190299	0.001	0.000	0.00	0.05	1.79	0.002	0.49	0.71	0.30	0.000
A402221	E 190349	0.001	0.000	0.00	0.07	1.09	0.001	0.21	0.25	0.10	0.004
A402221	E 190399	0.002	0.000	0.01	0.24	0.92	0.002	0.55	0.72	0.26	0.003
A402221	E 190449	0.000	0.000	0.00	0.03	1.16	0.002	0.23	0.23	0.08	0.002
A402294	E 190499	0.001	0.000	0.00	0.07	1.09	0.001	0.17	0.21	0.07	0.001
A402294	E 190549	0.001	0.000	0.00	0.02	0.34	0.001	0.13	0.23	0.11	0.001
A402294	E 190599	0.002	0.000	0.00	0.04	1.12	0.002	0.17	0.26	0.09	0.001
A402336	E 190649	0.001	0.000	0.00	0.02	0.38	0.001	0.18	0.25	0.11	0.001
A402336	E 190699	0.001	0.000	0.00	0.03	0.49	0.001	0.15	0.27	0.10	0.000
A402336	E 190749	0.001	0.000	0.00	0.03	0.46	0.001	0.26	0.37	0.17	0.000
A402454	E 190799	0.001	0.000	0.00	0.04	0.51	0.001	0.16	0.28	0.10	0.001
A402454	E 190849	0.001	0.000	0.00	0.08	0.54	0.004	0.15	0.17	0.06	0.009
A402454	E 190899	0.000	0.000	0.00	0.02	0.94	0.001	0.12	0.18	0.06	0.003
A402470	E 190949	0.000	0.000	0.00	0.04	2.92	0.002	0.28	0.27	0.11	0.006
A402470	E 190999	0.002	0.000	0.00	0.04	1.34	0.001	0.17	0.23	0.09	0.000
A402470	E 189049	0.001	0.000	0.00	0.05	2.20	0.002	0.33	0.33	0.11	0.003
A402671	E 189099	0.000	0.000	0.01	0.02	0.89	0.001	0.24	0.26	0.12	0.000
A402671	E 189149	0.000	0.000	0.00	0.02	0.58	0.001	0.36	0.45	0.20	0.001
A402671	E 189199	0.000	0.000	0.00	0.00	0.72	0.001	0.08	0.10	0.02	0.001
A402921	E 189399	0.000	0.000	0.00	0.02	0.76	0.001	0.21	0.28	0.12	0.001
A402921	E 189449	0.001	0.000	0.00	0.03	1.37	0.002	0.38	0.53	0.25	0.003
A402921	E 189499	0.001	0.000	0.00	0.03	0.50	0.001	0.23	0.40	0.19	0.000
A403025	E 189549	0.000	0.000	0.00	0.07	0.93	0.001	0.18	0.27	0.10	0.000
A403025	E 189599	0.000	0.000	0.00	0.04	1.86	0.002	0.47	0.39	0.10	0.001
A403025	E 157049	0.001	0.000	0.00	0.02	1.26	0.002	0.25	0.23	0.14	0.001
A402026	E 157099	0.000	0.000	0.00	0.02	0.68	0.001	0.26	0.29	0.13	0.001
A402026	E 157149	0.000	0.000	0.01	0.02	0.94	0.001	0.20	0.24	0.10	0.002
A402026	E 157199	0.001	0.000	0.00	0.03	1.06	0.001	0.19	0.17	0.04	0.000

Page 3 of 4

WO #	Sample	Au	Cu	Ag	Fe	Mo	W	Pb	Zn	Cd	As	Sb	Hg	Bi	Ni
	Number	g/t	%	g/t	%	%	%	%	%	%	%	%	%	%	%
A403114	157249	0.02	0.001	0	0.64	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.002	0.01	0.000
A403114	157299	0.03	0.002	0	0.19	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403114	157349	0.01	0.003	0	0.46	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A403316	157399	0.01	0.004	0	0.57	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403316	157449	0.01	0.003	0	0.54	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403316	157499	0.01	0.002	2	0.83	0.000	0.000	0.00	0.00	0.000	0.00	0.002	0.000	0.00	0.000
A403781	157549	0.01	0.003	0	0.59	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A403781	157599	0.00	0.004	0	0.64	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403781	157649	0.00	0.004	0	0.49	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A403878	157699	0.01	0.004	0	0.57	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A403878	157749	0.01	0.004	0	0.45	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.001	0.00	0.001
A403878	157799	0.00	0.004	0	0.50	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403969	157849	0.01	0.003	0	0.57	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403969	157899	0.00	0.004	0	0.51	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.000
A403969	157949	0.01	0.003	0	0.54	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.000	0.00	0.001
A404131	157999	0.01	0.003	0	0.56	0.000	0.000	0.00	0.00	0.000	0.00	0.001	0.000	0.00	0.000
A404131	149049	0.03	0.004	0	0.64	0.000	0.000	0.00	0.00	0.000	0.00	0.000	0.001	0.00	0.000

.

Page 4 of 4

. r

WO #	Sample	Cr	Co	Mri	Mg	Ca	Sr		Al	Na	Р
	Number	%	%	%	%	%	%	%	%	%	%
A403114	157249	0.001	0.000	0.00	0.05	1.97	0.002	0.78	0.71	0.40	0.000
A403114	157299	0.000	0.000	0.01	0.03	1.15	0.001	0.46	0.56	0.22	0.000
A403114	157349	0.000	0.000	0.01	0.03	2.96	0.003	0.63	0.56	0.21	0.001
A403316	157399	0.000	0.000	0.01	0.03	2.67	0.003	0.38	0.40	0.16	0.002
A403316	157449	0.000	0.000	0.01	0.03	2.05	0.002	0.53	0.49	0.19	0.000
A403316	157499	0.001	0.000	0.01	0.02	0.37	0.001	0.30	0.30	0.13	0.002
A403781	157549	0.001	0.000	0.00	0.02	0.35	0.001	0.21	0.29	0.11	0.000
A403781	157599	0.000	0.000	0.00	0.03	1.42	0.001	0.21	0.21	0.09	0.002
A403781	157649	0.000	0.000	0.00	0.03	1.98	0.002	0.43	0.51	0.17	0.001
A403878	157699	0.000	0.000	0.00	0.02	1.17	0.002	0.24	0.34	0.12	0.000
A403878	157749	0.000	0.000	0.00	0.03	0.87	0.002	0.29	0.39	0.19	0.000
A403878	157799	0.000	0.000	0.00	0.02	0.43	0.001	0.17	0.24	0.09	0.001
A403969	157849	0.000	0.000	0.00	0.04	0.76	0.001	0.15	0.21	0.09	0.002
A403969	157899	0.001	0.000	0.00	0.02	0.50	0.001	0.15	0.20	0.08	0.000
A403969	157949	0.001	0.000	0.00	0.05	0.75	0.001	0.16	0.18	0.08	0.002
A404131	157999	0.001	0.000	0.00	0.02	0.37	0.001	0.14	0.20	0.09	0.000
A404131	149049	0.001	0.000	0.00	0.03	0.75	0.001	0.19	0.24	0.12	0.000

APPENDIX F

(iii)

Laboratory Standards

Drill Holes 04-542 to 04-580

1 of 6

<u>Table 15</u> - Laboratory Standard

<u>80000008</u>

60000

WO #	Sample	Au	Cu	Ag	Fe	Mo	W	Pb	Zn	Cd	As	Sb	Hg	Bi	Ni
	Number	g/t	%	g/t	%	%	%	%	%	%	%	%	%	%	9
A401916	R-2a/AU-1	3.28	0.569	157	22.74	0.051	0.060	1.56	4.12	0.030	0.24	0.131	0.185	0.00	0.360
A401916	R-2a/AU-1	3.27	0.562	156	22.46	0.050	0.055	1.52	4.21	0.029	0.23	0.127	0.176	0.00	0.35
A401916	R-2a/AU-1	3.28	0.559	155	22.98	0.050	0.056	1.52	4.23	0.029	0.23	0.130	0.182	0.00	0.358
A401916	R-2a/AU-1	3.30	0.568	158	22.57	0.051	0.059	1.55	4.28	0.030	0.24	0.131	0.183	0.00	0.360
A401916	R-2a/AU-1	3.30	0.564	158	22.55	0.050	0.056	1.53	4.29	0.030	0.24	0.133	0.179	0.00	0.356
A402050	R-2a/AU-1	3.29	0.557	158	23.25	0.052	0.059	1.58	4.22	0.031	0.24	0.135	0.181	0.00	0.369
A402050	R-2a/AU-1	3.37	0.553	154	22.74	0.050	0.058	1.56	4.25	0.030	0.24	0.130	0.182	0.00	0.357
A402050	R-2 a/AU-1	3.35	0.550	156	22.28	0.049	0.057	1.47	4.20	0.028	0.23	0.122	0.170	0.00	0.347
A402050	R-2a/AU-1	3.36	0.551	152	22.69	0.050	0.059	1.51	4.24	0.030	0.23	0.128	0.175	0.00	0.370
A402050	R-2 a/AU-1	3.38	0.556	154	22.75	0.050	0.056	1.50	4.26	0.029	0.25	0.132	0.177	0.00	0.365
A402221	R-2a/AU-1	3.32	0.561	157	22.99	0.051	0.058	1.54	4.26	0.030	0.25	0.132	0.178	0.00	0.366
A402221	R-2a/AU-1	3.32	0.557	155	22.34	0.050	0.058	1.49	4.25	0.028	0.23	0.123	0.171	0.00	0.369
A402221	R-2a/AU-1	3.33	0.553	155	22.22	0.049	0.054	1.45	4.25	0.029	0.23	0.127	0.172	0.00	0.360
A402221	R-2a/AU-1	3.31	0.555	157	22.67	0.049	0.060	1.48	4.24	0.029	0.23	0.131	0.172	0.00	0.370
A402221	R-2a/AU-1	3.29	0.560	158	22.96	0.050	0.055	1.49	4.20	0.029	0.23	0.131	0.172	0.00	0.371
A402294	R-2a/AU-1	3.36	0.554	152	22.65	0.050	0.057	1.52	4.22	0.029	0.23	0.130	0.175	0.00	0.368
A402294	R-2a/AU-1	3.37	0.560	157	22.40	0.050	0.054	1.48	4.25	0.028	0.23	0.128	0.174	0.00	0.367
A402294	R-2a/AU-1	3.32	0.553	155	22.25	0.048	0.054	1.47	4.25	0.028	0.22	0.128	0.170	0.00	0.363
A402294	R-2a/AU-1	3.33	0.566	155	22.53	0.051	0.059	1.47	4.26	0.030	0.24	0.134	0.184	0.00	0.363
A402294	R-2a/AU-1	3.39	0.553	156	22.89	0.050	0.056	1.50	4.22	0.029	0.22	0.130	0.173	0.00	0.372
A402336	R-2a/AU-1	3.36	0.560	157	22.75	0.049	0.055	1.53	4.30	0.028	0.22	0.129	0.175	0.00	0.362
A402336	R-2a/AU-1	3.35	0.563	153	23.11	0.050	0.058	1.51	4.27	0.030	0.24	0.132	0.179	0.00	0.372
A402336	R-2a/AU-1	3.36	0.566	154	23.04	0.050	0.058	1.50	4.25	0.029	0.23	0.133	0.177	0.00	0.361
A402336	R-2a/AU-1	3.38	0.563	156	22.49	0.051	0.059	1.52	4.31	0.030	0.24	0.133	0.179	0.00	0.369
A402336	R-2a/AU-1	3.31	0.554	154	22.76	0.050	0.058	1,49	4.21	0.029	0.23	0.127	0.171	0.00	0.367
A402454	R-2a/AU-1	3.34	0.558	156	22.57	0.049	0.067	1.50	4.25	0.029	0.23	0.129	0.171	0.00	0.376
A402454	R-2a/AU-1	3.36	0.563	156	22.41	0.049	0.067	1.47	4.29	0.029	0.24	0.130	0.174	0.00	0.375
A402454	R-2a/AU-1	3.40	0.558	155	22.63	0.050	0.076	1.53	4.26	0.030	0.25	0.128	0.178	0.00	0.376
A402454	R-2a/AU-1	3.29	0.550	157	22.48	0.050	0.064	1.50	4.26	0.029	0.23	0.128	0.175	0.00	0.371
A402454	R-2a/AU-1	3.24	0.553	156	22.36	0.048	0.067	1.49	4.25	0.029	0.23	0.126	0.172	0.00	0.363
A402470	R-2a/AU-1	3.36	0.557	153	22.49	0.049	0.067	1.51	4.28	0.029	0.24	0.120	0.172	0.00	0.368
A402470	R-2a/AU-1	3.36	0.559	153	22.50	0.049	0.059	1.52	4.27	0.029	0.24	0.129	0.175	0.00	0.378
A402470	R-2a/AU-1	3.36	0.562	156	22.53	0.050	0.070	1.53	4.29	0.029	0.25	0.122	0.174	0.00	0.369

2 of 6

WO #	Sample	Cr	Co	Mn	Mg	Ca	Sr	K	Al	Na	P
	Number	%	%	%	%	%	%	%	%	%	%
A401916	R-2a/AU-1	0.073	0.046	0.20	1.61	2.46	0.172	0.55	1.33	0.20	0.083
A401916	R-2a/AU-1	0.072	0.045	0.20	1.58	2.31	0.172	0.49	1.25	0.16	0.079
A401916	R-2a/AU-1	0.071	0.044	0.20	1.64	2.38	0.165	0.56	1.29	0.20	0.079
A401916	R-2a/AU-1	0.073	0.046	0.20	1.60	2.45	0.166	0.52	1.29	0.19	0.084
A401916	R-2a/AU-1	0.072	0.045	0.20	1.68	2.43	0.166	0.54	1.33	0.19	0.083
A402050	R-2a/AU-1	0.075	0.046	0.21	1.67	2.45	0.170	0.53	1.29	0.18	0.085
A402050	R-2a/AU-1	0.073	0.044	0.20	1.62	2.35	0.167	0.52	1.38	0.18	0.086
A402050	R-2a/AU-1	0.072	0.043	0.20	1.52	2.27	0.161	0.51	1.38	0.18	0.079
A402050	R-2a/AU-1	0.071	0.045	0.20	1.63	2.37	0.163	0.55	1.26	0.18	0.080
A402050	R-2a/AU-1	0.072	0.044	0.21	1.59	2.36	0.172	0.54	1.38	0.18	0.074
A402221	R-2a/AU-1	0.073	0.045	0.20	1.59	2.36	0.169	0.51	1.36	0.20	0.081
A402221	R-2a/AU-1	0.070	0.043	0.20	1.55	2.29	0.157	0.49	1.25	0.19	0.076
A402221	R-2a/AU-1	0.072	0.044	0.20	1.59	2.36	0.165	0.51	1.31	0.19	0.081
A402221	R-2a/AU-1	0.072	0.043	0.20	1.54	2.32	0.163	0.52	1.36	0.22	0.080
A402221	R-2a/AU-1	0.074	0.044	0.20	1.59	2.39	0.173	0.55	1.33	0.21	0.076
A402294	R-2a/AU-1	0.072	0.044	0.20	1.57	2.35	0.168	0.51	1.36	0.19	0.085
A402294	R-2a/AU-1	0.071	0.044	0.20	1.55	2.30	0.162	0.50	1.32	0.15	0.082
A402294	R-2a/AU-1	0.070	0.044	0.20	1.51	2.24	0.162	0.49	1.33	0.18	0.082
A402294	R-2a/AU-1	0.074	0.046	0.21	1.65	2.41	0.171	0.56	1.28	0.20	0.084
A402294	R-2a/AU-1	0.072	0.045	0.20	1.56	2.33	0.166	0.53	1.38	0.18	0.082
A402336	R-2a/AU-1	0.071	0.044	0.20	1.52	2.29	0.170	0.51	1.35	0.20	0.077
A402336	R-2a/AU-1	0.072	0.044	0.20	1.58	2.35	0.172	0.50	1.36	0.19	0.083
A402336	R-2a/AU-1	0.072	0.045	0.20	1.59	2.35	0.173	0.53	1.37	0.19	0.083
A402336	R-2a/AU-1	0.073	0.044	0.20	1.57	2.33	0.169	0.52	1.37	0.18	0.084
A402336	R-2a/AU-1	0.071	0.043	0.20	1.55	2.30	0.166	0.51	1.26	0.19	0.073
4402454	R-2a/AU-1	0.071	0.045	0.20	1.61	2.30	0.162	0.53	1.32	0.16	0.072
4402454	R-2a/AU-1	0.071	0.045	0.20	1.60	2.28	0.165	0.48	1.34	0.19	0.075
402454	R-2a/AU-1	0.072	0.045	0.20	1.67	2.39	0.168	0.55	1.31	0.20	0.079
402454	R-2a/AU-1	0.073	0.044	0.20	1.60	2.37	0.169	0.50	1.33	0.21	0.081
402454	R-2a/AU-1	0.070	0.044	0.19	1.59	2.25	0.158	0.52	1.30	0.20	0.074
402470	R-2a/AU-1	0.072	0.044	0.19	1.62	2.34	0.159	0.50	1.35	0.19	0.082
402470	R-2a/AU-1	0.073	0.045	0.20	1.63	2.35	0.162	0.50	1.33	0.14	0.080
A402470	R-2a/AU-1	0.073	0.044	0.20	1.63	2.35	0.172	0.57	1.35	0.14	0.072

3	of	6

WO #	Sample	Au	Cu	Ag	Fe	Мо	W	Pb	Zn	Cd	As	Sb	Hg	Bi	N
_	Number	g/t	%	g/t	%	%	%	%	%	%	%	%	%	%	%
A402470	R-2a/AU-1	3.36	0.561	154	22.45	0.049	0.069	1.52	4.25	0.028	0.24	0.129	0.177	0.00	0.37
A402470	R-2a/AU-1	3.34	0.553	156	22.38	0.050	0.062	1.50	4.28	0.028	0.24	0.125	0.173	0.00	0.37
A402671	R-2a/AU-1	3.37	0.567	150	22.60	0.049	0.065	1.52	4.22	0.029	0.24	0.128	0.174	0.00	0.37
A402671	R-2a/AU-1	3.35	0.567	156	22.65	0.051	0.070	1.57	4.27	0.030	0.25	0.131	0.181	0.00	0.38
A402671	R-2a/AU-1	3.40	0.561	157	23.06	0.047	0.067	1.59	4.16	0.030	0.23	0.131	0.181	0.00	0.37
A402671	R-2a/AU-1	3.39	0.560	155	22.66	0.050	0.072	1.52	4.28	0.029	0.25	0.131	0.176	0.00	0.37
A402671	R-2a/AU-1	3.32	0.564	157	24.28	0.048	0.069	1.50	4.18	0.030	0.24	0.124	0.175	0.00	0.37
A402672	R-2a/AU-1	3.39	0.555	153	22.86	0.049	0.065	1.47	4.17	0.029	0.25	0.131	0.172	0.00	0.35
A402672	R-2a/AU-1	3.37	0.563	152	23.04	0.049	0.064	1.44	4.18	0.028	0.25	0.131	0.178	0.00	0.35
A402672	R-2a/AU-1	3.37	0.555	157	23.56	0.050	0.062	1.54	4.22	0.030	0.23	0.133	0.180	0.00	0.37
A402921	R-2a/AU-1	3.31	0.569	155	23.11	0.048	0.070	1.57	4.22	0.031	0.24	0.130	0.179	0.00	0.37
A402921	R-2a/AU-1	3.39	0.559	155	22.79	0.049	0.074	1.54	4.12	0.029	0.24	0.128	0.172	0.00	0.37
A402921	R-2a/AU-1	3.38	0.570	155	23.54	0.048	0.071	1.59	4.31	0.031	0.24	0.136	0.184	0.00	0.38
A402921	R-2a/AU-1	3.26	0.561	155	23.44	0.048	0.073	1.56	4.21	0.030	0.24	0.130	0.178	0.00	0.38
A402921	R-2a/AU-1	3.28	0.569	153	22.95	0.048	0.076	1.53	4.24	0.030	0.23	0.133	0.178	0.00	0.37
A403025	R-2a/AU-1	3.38	0.570	160	23.10	0.049	0.076	1.51	4.28	0.031	0.24	0.134	0.185	0.00	0.38
A403025	R-2a/AU-1	3.40	0.566	158	22.82	0.048	0.074	1.56	4.30	0.030	0.24	0.132	0.182	0.00	0.38
A403025	R-2a/AU-1	3.35	0.568	155	22.68	0.047	0.068	1.56	4.24	0.030	0.24	0.132	0.178	0.00	0.37
A403025	R-2a/AU-1	3.41	0.558	154	22.78	0.049	0.062	1.57	4.04	0.028	0.23	0.127	0.168	0.00	0.35
A403025	R-2a/AU-1	3.38	0.554	156	22.85	0.046	0.078	1.53	4.23	0.030	0.25	0.128	0.174	0.01	0.36
A402026	R-2a/AU-1	3.39	0.554	156	22.39	0.049	0.059	1.46	4.11	0.028	0.24	0.127	0.168	0.00	0.37
A402026	R-2a/AU-1	3.39	0.552	155	22.52	0.049	0.060	1.47	4.14	0.028	0.24	0.129	0.169	0.00	0.36
A402026	R-2a/AU-1	3.37	0.555	156	22.56	0.050	0.055	1.48	4.16	0.028	0.24	0.129	0.170	0.00	0.37
A402026	R-2a/AU-1	3.36	0.556	156	22.36	0.048	0.060	1.63	4.19	0.028	0.24	0.129	0.172	0.00	0.37
A402026	R-2a/AU-1	3.42	0.554	150	22.90	0.050	0.064	1.55	4.15	0.032	0.25	0.136	0.184	0.00	0.39
A403114	R-2a/AU-1	3.42	0.564	158	22.60	0.048	0.071	1.51	4.30	0.031	0.23	0.131	0.181	0.00	0.39
A403114	R-2a/AU-1	3.43	0.558	156	22.69	0.047	0.062	1.57	4.22	0.029	0.23	0.130	0.183	0.00	0.37
A403114	R-2a/AU-1	3.39	0.555	156	23.15	0.050	0.064	1.49	4.29	0.029	0.24	0.131	0.175	0.00	0.37
A403114	R-2a/AU-1	3.42	0.561	158	22.57	0.050	0.053	1.53	4.25	0.028	0.23	0.126	0.169	0.00	0.36
A403114	R-2a/AU-1	3.43	0.559	156	22.86	0.049	0.061	1.48	4.19	0.027	0.23	0.124	0.168	0.00	0.36
A403316	R-2a/AU-1	3.45	0.557	159	23.05	0.050	0.060	1.51	4.16	0.028	0.24	0.131	0.173	0.00	0.37
A403316	R-2a/AU-1	3.38	0.550	157	23.58	0.051	0.066	1.53	4.05	0.029	0.24	0.129	0.175	0.00	0.36
A403316	R-2a/AU-1	3.41	0.552	157	23.22	0.051	0.059	1.52	4.06	0.028	0.24	0.127	0.174	0.00	0.35
A403316	R-2a/AU-1	3.34	0.545	157	22.96	0.050	0.056	1.56	4.08	0.028	0.24	0.127	0.173	0.00	0.35
A403316	R-2a/AU-1	3.42	0.572	158	24.04	0.048	0.060	1.50	4.24	0.029	0.23	0.122	0.180	0.00	0.38
A403781	R-2a/AU-1	3.42	0.555	157	22.64	0.049	0.062	1.52	4.17	0.028	0.22	0.123	0.170	0.00	0.36

4 of	6
------	---

WO #	Sample	Cr	Co	Mn	Mg	Ca	Sr	K	Al	Na	Ι
	Number	%	%	%	%	%	%	%	%	%	%
A402470	R-2a/AU-1	0.071	0.046	0.20	1.64	2.32	0.165	0.53	1.33	0.20	0.07
A402470	R-2a/AU-1	0.074	0.045	0.20	1.63	2.39	0.159	0.54	1.36	0.16	0.08
A402671	R-2a/AU-1	0.074	0.043	0.20	1.67	2.43	0.166	0.53	1.32	0.18	0.07
A402671	R-2a/AU-1	0.076	0.045	0.21	1.71	2.48	0.169	0.55	1.36	0.21	0.08
A402671	R-2a/AU-1	0.072	0.044	0.20	1.67	2.41	0.168	0.54	1.33	0.23	0.078
A402671	R-2a/AU-1	0.072	0.044	0.20	1.59	2.34	0.159	0.49	1.34	0.20	0.08
A402671	R-2a/AU-1	0.071	0.043	0.20	1.67	2.40	0.167	0.55	1.33	0.23	0.077
A402672	R-2a/AU-1	0.072	0.042	0.21	1.62	2.39	0.168	0.55	1.34	0.21	0.075
A402672	R-2a/AU-1	0.072	0.042	0.21	1.63	2.41	0.174	0.59	1.38	0.23	0.076
A402672	R-2a/AU-1	0.072	0.045	0.20	1.78	2.42	0.162	0.58	1.36	0.22	0.077
A402921	R-2a/AU-1	0.072	0.044	0.20	1.75	2.43	0.156	0.60	1.31	0.15	0.08
A402921	R-2a/AU-1	0.071	0.045	0.20	1.68	2.30	0.153	0.54	1.22	0.18	0.078
A402921	R-2a/AU-1	0.074	0.044	0.21	1.78	2.45	0.162	0.54	1.35	0.20	0.086
A402921	R-2a/AU-1	0.072	0.045	0.20	1.73	2.42	0.161	0.55	1.34	0.18	0.083
A402921	R-2a/AU-1	0.072	0.046	0.20	1.70	2.35	0.170	0.53	1.30	0.20	0.079
A403025	R-2a/AU-1	0.072	0.046	0.20	1.73	2.39	0.160	0.57	1.29	0.23	0.08
A403025	R-2a/AU-1	0.072	0.045	0.20	1.77	2.40	0.161	0.47	1.36	0.19	0.08
A403025	R-2a/AU-1	0.072	0.044	0.20	1.74	2.38	0.168	0.53	1.36	0.19	0.084
A403025	R-2a/AU-1	0.067	0.043	0.19	1.52	2.26	0.162	0.49	1.27	0.18	0.077
A403025	R-2a/AU-1	0.068	0.043	0.20	1.65	2.26	0.170	0.54	1.24	0.20	0.078
A402026	R-2a/AU-1	0.067	0.043	0.20	1.57	2.29	0.164	0.50	1.27	0.19	0.075
A402026	R-2a/AU-1	0.069	0,043	0.20	1.57	2.33	0.168	0.53	1.33	0.19	0.076
A402026	R-2a/AU-1	0.069	0.043	0.20	1.57	2.33	0.169	0.50	1.31	0.19	0.079
A402026	R-2a/AU-1	0.067	0.043	0.20	1.58	2.28	0.162	0.51	1.26	0.19	0.078
A402026	R-2a/AU-1	0.074	0.047	0.21	1.63	2.45	0.171	0.52	1.39	0.21	0.082
A403114	R-2a/AU-1	0.073	0.046	0.21	1.62	2.34	0.169	0.51	1.36	0.20	0.082
A403114	R-2a/AU-1	0.073	0.045	0.21	1.71	2.42	0.168	0.53	1.43	0.21	0.080
A403114	R-2a/AU-1	0.067	0.044	0.20	1.62	2.32	0.165	0.51	1.25	0.19	0.081
A403114	R-2a/AU-1	0.069	0.045	0.20	1.61	2.37	0.159	0.50	1.34	0.19	0.078
A403114	R-2a/AU-1	0.068	0.043	0.20	1.61	2.33	0.158	0.50	1.34	0.19	0.078
A403316	R-2a/AU-1	0.072	0.044	0.20	1.67	2.42	0.168	0.52	1.40	0.19	0.079
A403316	R-2a/AU-1	0.069	0.045	0.21	1.70	2.44	0.153	0.51	1.42	0.19	0.077
A403316	R-2a/AU-1	0.070	0.044	0.20	1.64	2.38	0.155	0.51	1.35	0.19	0.077
A403316	R-2a/AU-1	0.070	0.044	0.20	1.63	2.36	0.154	0.50	1.33	0.18	0.078
A403316	R-2a/AU-1	0.071	0.045	0.21	1.67	2.41	0.161	0.55	1.34	0.21	0.078
A403781	R-2a/AU-1	0.072	0.043	0.21	1.59	2.34	0.161	0.51	1.30	0.16	0.078

	-	~
- 5	of	6

WO #	Sample	Au	Cu	Ag	Fe	Mo	W	Pb	Zn	Cđ	As	Sb	Hg	Bi	N
	Number	g/t	%	g/t	%	%	%	%	%	%	%	%	%	%	%
A403781	R-2a/AU-1	3.47	0.564	158	23.09	0.050	0.066	1.53	4.24	0.028	0.23	0.128	0.175	0.00	0.367
4403781	R-2a/AU-1	3.39	0.557	156	23.02	0.050	0.062	1.53	4.24	0.029	0.23	0.126	0.175	0.00	0.368
4403781	R-2a/AU-1	3.39	0.556	157	22.63	0.049	0.063	1.50	4.19	0.028	0.22	0.124	0.171	0.00	0.363
4403781	R-2a/AU-1	3.48	0.551	160	22.62	0.050	0.065	1.48	4.13	0.028	0.23	0.125	0.175	0.00	0.368
4403878	R-2a/AU-1	3.40	0,552	156	22.44	0.049	0.064	1.48	4.20	0.029	0.24	0.126	0.180	0.00	0.373
4403878	R-2a/AU-1	3.43	0.554	154	22.70	0.050	0.064	1.52	4.18	0.029	0.23	0.128	0.176	0.00	0.370
403878	R-2a/AU-1	3.45	0.553	155	23.06	0.049	0.061	1.47	4.07	0.028	0.23	0.125	0.175	0.00	0.366
403878	R-2a/AU-1	3.38	0.550	153	22.86	0.049	0.069	1.53	4.11	0.028	0.24	0.128	0.181	0.00	0.371
403878	R-2a/AU-1	3.44	0.559	157	23.36	0.050	0.066	1.53	4.22	0.030	0.24	0.132	0.178	0.00	0.370
403969	R-2a/AU-1	3.40	0.563	155	22.42	0.050	0.064	1.48	4.16	0.027	0.22	0.122	0.169	0.00	0.361
4403969	R-2a/AU-1	3.44	0.556	158	22.41	0.050	0.070	1.52	4.17	0.028	0.23	0.122	0.171	0.00	0.368
4403969	R-2a/AU-1	3.42	0.562	157	22.97	0.050	0.069	1.52	4.21	0.028	0.23	0.125	0.172	0.00	0.365
403969	R-2a/AU-1	3.42	0.553	157	23.25	0.050	0.070	1.52	4.15	0.028	0.23	0.123	0.175	0.00	0.351
403969	R-2a/AU-1	3.45	0.562	153	22.71	0.050	0.067	1.55	4.24	0.029	0.23	0.127	0.178	0.00	0.374
<u>A404131</u>	R-2a/AU-1	3.46	0.566	160	22.81	0.051	0.073	1.53	4.23	0.030	0.23	0.130	0.178	0.00	0.374
404131	R-2a/AU-1	3.41	0.550	161	22.50	0.049	0.071	1.46	4.13	0.028	0.23	0.128	0.175	0.00	0.370
404131	R-2a/AU-1	3.43	0.555	158	22.43	0.049	0.071	1.55	4.27	0.029	0.23	0.126	0.173	0.00	0.372
404131	R-2a/AU-1	3.42	0.565	159	22.45	0.050	0.070	1.49	4.23	0.028	0.24	0.126	0.177	0.00	0.365
404131	R-2a/AU-1	3.38	0.552	161	22.34	0.050	0.077	1.53	4.18	0.029	0.23	0.126	0.180	0.00	0.366

6	of	6

WO #	Sample Number	Cr %	Co %	Mn %	Mg %	Ca %	Sr %	K %	A1 %	Na %	P %
A403781	R-2a/AU-1	0.074	0.045	0.21	1.62	2.35	0.173	0.52	1.33	0.19	0.086
A403781	R-2a/AU-1	0.073	0.044	0.20	1.60	2.32	0.162	0.51	1.29	0.19	0.076
A403781	R-2a/AU-1	0.073	0.045	0.20	1.56	2.29	0.167	0.50	1.30	0.20	0.075
A403781	R-2a/AU-1	0.073	0.044	0.20	1.59	2.34	0.168	0.51	1.29	0.18	0.079
A403878	R-2a/AU-1	0.071	0.044	0.20	1.59	2.34	0.172	0.51	1.29	0.19	0.076
A403878	R-2a/AU-1	0.073	0.045	0.21	1.63	2.38	0.170	0.52	1.30	0.19	0.077
A403878	R-2a/AU-1	0.070	0.044	0.20	1.58	2.33	0.167	0.51	1.28	0.21	0.075
A403878	R-2a/AU-1	0.071	0.044	0.21	1.65	2.42	0.173	0.52	1.35	0.21	0.076
A403878	R-2a/AU-1	0.074	0.044	0.21	1.68	2.48	0.172	0.55	1.38	0.20	0.084
A403969	R-2a/AU-1	0.072	0.044	0.20	1.56	2.27	0.160	0.50	1.27	0.19	0.079
A403969	R-2a/AU-1	0.073	0.045	0.20	1.59	2.33	0.161	0.50	1.27	0.19	0.080
A403969	R-2a/AU-1	0.072	0.044	0.20	1.59	2.31	0.161	0.49	1.38	0.20	0.085
A403969	R-2a/AU-1	0.072	0.044	0.20	1.58	2,31	0.158	0.50	1.25	0.16	0.075
A403969	R-2a/AU-1	0.074	0.045	0.20	1.61	2.37	0.168	0.49	1.29	0.20	0.074
A404131	R-2a/AU-1	0.074	0.045	0.21	1.71	2.43	0.169	0.51	1.35	0.17	0.084
A404131	R-2a/AU-1	0.072	0.044	0.21	1.69	2.37	0.166	0.51	1.32	0.18	0.077
A404131	R-2a/AU-1	0.072	0.044	0.20	1.75	2.43	0.161	0.52	1.32	0.20	0.077
A404131	R-2a/AU-1	0.073	0.045	0.21	1.69	2.37	0.164	0.50	1.31	0.19	0.087
A404131	R-2a/AU-1	0.073	0.045	0.21	1.71	2.42	0.162	0.50	1.29	0.18	0.084

APPENDIX G

83

Laboratory Standards – Figures

Drill Holes 04-542 to 04-580

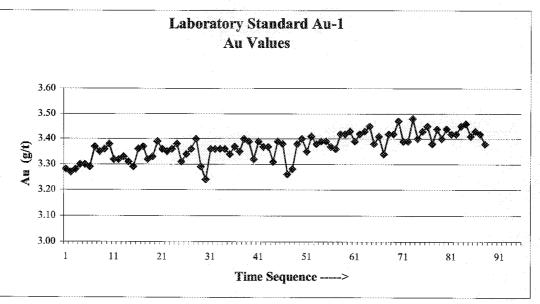


Figure 39

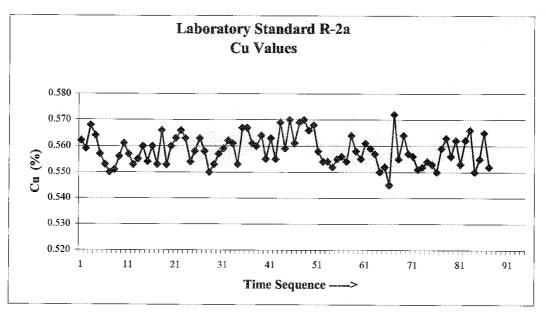


Figure 40