

Geological Survey Branch Assessment Report Indexing System

Regional Geologist	, Smithers			Date Approv	ed: 2005.	04.11		Off Confid	lential:	2005.09.09
ASSESSMENT REPORT: 27577				Mining Divisi	ion(s): S	keena				
Property Name:	Surprise									
Location:	NAD 27 NAD 83 NTS:	Latitude: Latitude: 104A04E		Longitude: Longitude:	129 37 00 129 37 07	UTM: UTM:	09 09	6228297 6228481	461738 461618	
	BCGS:	104A022								
Camp:										
Claim(s):	Pin 1-6, Eld	dorado 1-2								
Operator(s): Author(s):	Pinnacle M Kruchkows	lines Ltd. ki, Edward F	R.							
Report Year:	2004									
No. of Pages:	89 Pages									
Commodities Searched For:						r.				
General Work Categories:	GEOL, GE	oc								
Work Done:	SILT Elemer Geological GEOL	Rock nts Analyzed	9 sample(s);) 1 For : Mul (9000.0	tielement	naps : 1 ; Scal	e(s) : 1:20 (000			
Keywords:	Jurassic, M monzonites		th Formation,	Salmon River F	ormation, Argil	lites, Rhyol	ites, An	desites, Tuf	fs, Quartz	
Statement Nos.:	3216461									
MINFILE Nos.:										
Related Reports:	07576, 096	618, 23935, :	24996, 27290)						

Page #: 1

Assessment Report on Geological and Geochemical Work **On The Following Claim**

> Pin 1 405238 Pin 2 405239 Pin 3 405227 Pin 4 405233 Pin 5 405242 Pin 6 405241 Eldorado 1 405595 Eldorado 2 405596

Statement Of Exploration #3216461 Contractive Contraction

Work permit # 203-1650248-0428

located 32 Km Northeast Of Stewart, British Columbia **Skeena Mining Division**

56 degrees 12 minutes latitude 129 degrees 37 minutes longitude

N.T.S. 104A/4E

Project Period: July 15 to September 7, 2003

On Behalf Of Pinnacle Mines Ltd. Vancouver, B.C.

Report By

E.R. Kruchkowski, B.Sc., P.Geo.

Date: December 5, 2004

TABLE OF CONTENTS

		Page
SUMMARY		Access
INTRODUC	TION	5
	Location and Access	5
	Physiography and Topography	6
	Personnel and Operations	6
	Property Ownership	7
	Previous Work	9
GEOLOGIC	CAL SURVEYS	12
	Regional Geology	12
	Local Geology	13
	Mineralization	15
GEOCHEM	ICAL	18
	Introduction	18
	Field Procedure and Laboratory Technique	18
	Statistical Treatment	19
	Anomalous Zones	20
PETROGRA	APHIC STUDIES	21
CONCLUSI	ONS	22
RECOMME	ENDATIONS	23
REFERENC	CES	25
STATEME	NT OF CERTIFICATE	26
STATEME	NT OF EXPENDITURES	27

LIST OF FIGURES

		After Page
Figure 1	Location Map	5
Figure 2	Claim Map	7
Figure2A	Claim Map	7
Figure 2B	Claim Map	7
Figure 2C	Claim Map	7
Figure 3	Geology Map	11
Figure 4	Geology Map	11
Figure 5	Property Geology Map	In back pocket
Figure 6	2004 Rock Geochemistry	In back pocket
Figure 6a	2004 Rock Geochemistry	After Page 19
Figure 6b	2004 Rock Geochemistry	In back pocket
Figure 6c	2004 Rock Geochemistry	After Page 19
Figure 7	Enterprise Tunnel Area- Sample Location Map	After Page 19
Figure 8	Map Showing Stibnite-Quartz Vein	After Page 19

LIST OF APPENDICES

APPENDIX I	Laboratory Methods and Specifications for Sam Analysis	ıple
APPENDIX II	Sample Description with Indicated Anomalous Values for Au, Ag, As and Cu	r
APPENDIX II I	Analysis Results	
APPENDIX IV	Petrographic Studies	

Page 1

SUMMARY

The Surprise property is located about 32 kilometers northeast and southeast of Stewart, British Columbia in the Skeena Mining Division. The property covers an area of Hazelton pyroclastic volcanic rocks and Bowser Lake sediments in contact with a variety of intrusive plutons associated with the main Coast Range Batholith.

The property contains approximately 16000 hectares within three separate claim groups totaling 32 Modified Grid claims.

The property lies within a belt of Jurassic volcanic rocks extending from the Kitsault area, south of Stewart, to north of the Stikine River. This belt is host to numerous gold deposits, in a variety of geological settings, including the producing Eskay Creek and formerly producing Snip and, Premier-Big Missouri mines. Reserves have been reported from a number of other properties including Red Mountain, the Brucejack Lake area and Georgia River. In addition, exploration companies, have reported numerous gold-silver showings along this belt of rocks At least three porphyry type deposits with either Cu-Mo, Cu-Mo-Au or Cu-Au mineralization are also present.

Teuton Resource Corp and Lateegra Resources Corp. have continued to drill their gold-silver discovery between the two of the above Pinnacle claim blocks. In the fall of 2002, Teuton Resources discovered high-grade gold-silver mineralization on the Del Norte Claim group, 10 kilometers south of the northern block of claims and 8 kilometers northeast of the second southern group of claims, comprising the Surprise property. Prior to the onset of winter, Teuton completed trenching and three drill holes. The results of the 2002 trenching include 10 meters of 0.179 opt Au and 8.4 opt Ag. The best drill hole - 2002-3 assayed 0.223 opt Au and 8.09 opt Ag over a drill length of 23.4 meters.

The bulk of the drilling has concentrated along the mineralized lithic tuff-mudstone contact connecting the K (Kosciuszko) zone and the LG vein areas. Including drilling completed in 2002 and 2003 and 2004, this trend has now been tested by 14 drill stations at intervals along an 1100-meter long strike length and a depth of 450 meters.

Teuton has announced drill results that show a significant mineralized system containing silvergold bearing mineralization hosted in near-vertically dipping, quartz-sulfide/sulfosalt vein breccia, with a majority of the intersections containing gold equivalent values greater than 0.40 oz/ton.

Pinnacle Mines Ltd conducted an exploration program on the northern portion of the Surprise property consisting of reconnaissance mapping for the above Salmon River/Mt Dilworth geological contact, prospecting and geochemical sampling along the above volcanic – sediment

Page 2

contact within various valleys tributary to Surprise Creek. As well, Pinnacle conducted work in order to locate the former Enterprise group located west of the northern claim holdings.

Based on the 2004 work by Pinnacle on the Surprise Creek property, the favorable volcanicmudstone horizon being explored by Teuton is present along the west edge of the Pinnacle claims. The program also located the area of the Enterprise group but the underground workings were inaccessible due to caving.

The 2004 exploration programs on the area of the Surprise property indicated mineralization within the present claim group is as follows:

- 1. Pervasive, fine-grained pyrite as well as pyritic bands in the grey lapilli tuff rhyolitic rocks. This rhyolite is present along the entire western length of the northern claim block extending from the Frances 1 claim south to the Pin 6 claim, a distance of approximately 15 kilometers.
- 2. Massive sulfide bearing, manganese stained tuffaceous chert/rhyolite boulders possibly from the base of the Salmon River formation on the Emma 5 claim. The boulders are large and can be up to 2 meters in diameter. Sulfide content is generally in semi-massive sulfide bands from 15 cm to 20 cm in width and can form up to 10 % of the boulders. The rocks carry galena, sphalerite, and chalcopyrite with minor pyrite. Source of these boulders is likely on the south side of the glacier in the NW corner of the Emma 1 and middle of the Pin 4 claim. In the area of the boulders, minor float boulders of massive pyrite and chalcopyrite were noted.
- 3. Black glassy appearing rhyolites have strong very fine grained pyrite mineralization forming up to 15 % of the rock Disseminated fine-grained galena-sphalerite have been noted in this type of rhyolite boulders in a number of different valleys located on the property. These boulders have been located over a strike length of 12 kilometers. This type of mineralized boulder may indicate the presence of Kuroko type Pb-Zn-Ag massive sulphides mineralization in the claim area.
- 4. Chalcopyrite in small stringer, pods and stockworks in sheared andesitic rocks on the Enterprise group.
- 5. Vuggy quartz float with massive galena and stibnite just west of the Enterprise tunnel.
- 6. A strong quartz-stibnite vein system up to 5 meters wide in the NW corner of the claim group.

Page 3

A total of 220 rock samples both outcrop and float as well as 19 silt samples were collected during the exploration program. Results of the samples indicate highly anomalous values for gold, silver, lead, zinc, arsenic and copper. Sample values for gold ranged from <0.5 ppb to a high of 3.9 ppm, for silver from <0.1 to 1305 ppm, for lead from 0.2 ppm to 9.1 %, for zinc from 6 ppm to > 10,000 ppm, for arsenic from <0.5 to >10,000 ppm and copper from 0.7 ppm to 8.67 %.

Petrographic studies on 4 rocks collected during the 2003 program were completed. The study was carried out to in order to determine the origin of the mineralizing events associated with these rocks. One of the samples studied indicated that the lack of any tectonically induced foliation or shearing implying that the formation of parallel bands and streaks of sulphides could have occurred during syngenetic rather than tectonic process. This fact, as well as the presence of chalcedony indicated the formation in a VMS environment.

Continued exploration has indicated the presence of favorable geology, high geochemical and assay results for a variety of elements along a geological contact that hosts deposits and mineral discoveries. It is underlain by the same stratigraphic sequence hosting the Del Norte Au-Ag discovery as well as the producing Eskay mine (reserves at the end of 2002 were 1.433 million tons of 0.998 opt Au and 44.9 opt Ag in the proven and probable reserve and 480,000 tons of 0.442 opt Au in the mineral reserve category).

An exploration program involving further prospecting, possible trenching, and further geochemical sampling is recommended for the property. Expected cost of the above programs is approximately \$250,000.

It is recommended that the following program be conducted:

- 1. Utilize the helicopter based in Stewart, BC to mobilize the crews to and from the property.
- 2. Locate any previous mineralized zones from past surveys, particularly a barite bearing felsic zone assaying 0,334 opt on the present day Pin 3 claim that was discovered in 1994 programs.
- 3. Sample as many of the numerous gossan zones on various parts of the property as possible. Particular attention should be paid to the Salmon River sediment/Mt Dilworth rhyolite contact, especially for massive sulphide occurrences.

Page 4

- 4. Continued silt geochemistry of streams in the property area.
- 5. Trench any highly mineralized zones located.

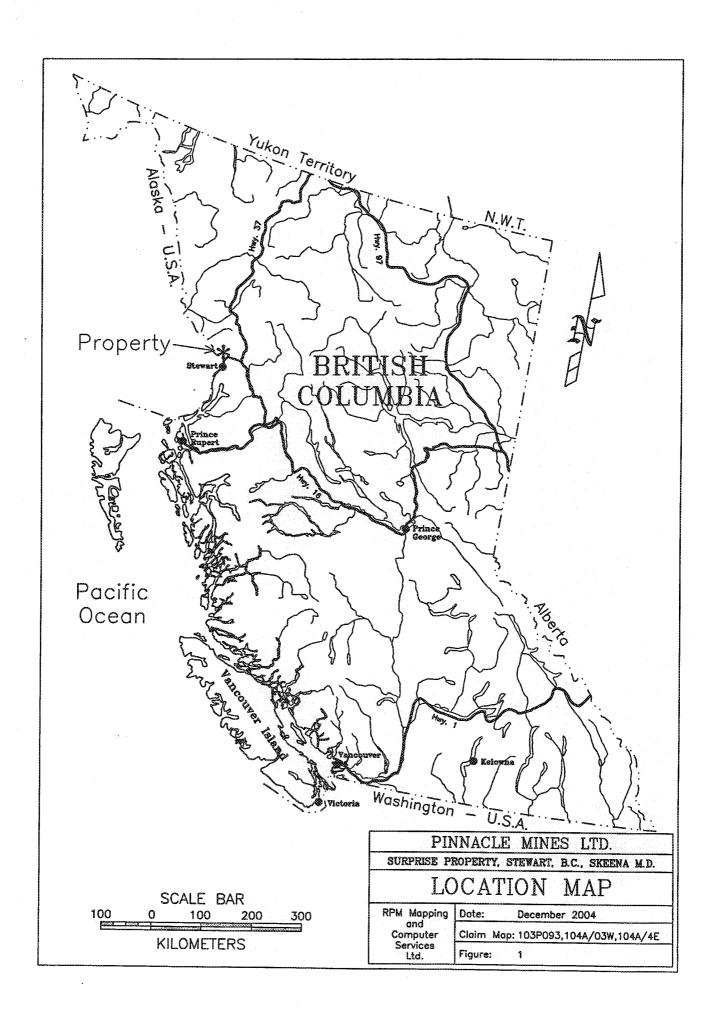
Page 5

INTRODUCTION

This report is primarily based on geological and geochemical results of an exploration program conducted by Pinnacle Mines Ltd. on the property during the period July 15 to September 7 2004. E. Kruchkowski assisted by a field crew conducted the program.

The report was prepared on data accumulated during the work program; data contained in previous assessment reports on the property as well as data obtained by the author from other surveys in the general area.

Location and Access


The northern claims form part of a contiguous group of 22 claims located about 32 kilometers northeast of Stewart and 15 kilometers northwest of Meziadin Lake, British Columbia. The claim area is approximately 56 degrees 12 minutes latitude and 129 degrees 37 minutes longitude on NTS sheet 104A/4E. Figure 1 shows the location of the claim area.

Access to the northern claims at the present time is by helicopter from Stewart or from the Ellsworth logging camp on Highway 37 about 30 km to the southeast. Nearest major road is the paved Highway 37 running between Stewart and Meziadin Junction, which passes within 6 kilometers of the property. Nearest road to the area is a non-maintained, former mine road running north along the west side of Surprise Creek to the former gold-silver producing Nordore mine about just west of the property.

The southern claims consist of 2 but separate contiguous group of 4 claims each located about 32 kilometers southeast of Stewart and 15 kilometers south of Meziadin Lake, British Columbia. The blocks are approximately 10 kilometers apart. The claim area is approximately 55 degrees 54 minutes latitude and 129 degrees 36 minutes longitude on NTS sheet 104A/3W 103P/14E. Figure 1 shows the location of the claim area.

Access to the southern claims at the present time is by helicopter from Stewart or from the Ellsworth logging camp on Highway 37 about 25 km to the east. Nearest major road is the paved Highway 37 running between Meziadin Junction and Kitwanga, which passes 25 kilometers east of the property.

The western Eldorado claims are located in the Bear River Pass at 56 degrees 07 minutes north latitude and 129 degrees 41 minutes west longitude on NTS 104A/4E. Access is either via paved Highway 37 A or by helicopter from Stewart, BC. An old horse trail extended from the valley

Page 6

floor to the area of the Enterprise underground workings. Condition of this trail is unknown although it is recognizable in the area of the Enterprise tunnel.

Physiography and Topography

The northern area of the Surprise property claims encompasses steep mountain slopes typical of the Coast Range region of British Columbia. The property is situated over Mount Patullo and the western headwaters of Surprise Creek. The property is at the eastern edge of the Coast Mountains and near the Interior Plateau. Topography is rugged with several easterly and northeasterly flowing glaciers transecting the area. Slopes range from moderate to precipitous. Elevations vary from about 600 m ASL in the southeastern portion of the property to about 2300 m ASL on ridges jutting out of the surrounding icefields. Just above the glaciers, thick morainal debris obscures the underlying geology. Maximum rock exposure occurs in early October when most of the annual snowfall has melted. The surface exploration is restricted to late summer and early fall. Most of the property can be traversed safely on foot although local areas contain occasional bluffs and cliffs.

Spruce and hemlock trees as well as small patches of tag spruce are present along the lower slopes of the mountain valleys, particularly the north facing edges. Alders grow along avalanche slopes and moraines. Alpine grasses, heather and arctic willows grow in patches along the talus, moraine and outcrops in the upper regions of the property.

Permanent snow occupies most depressions and gullies.

Thick glacial moraine is primarily restricted to lower elevations and valley floors with good rock exposure along ridge tops and creek beds.

The southern area of the Surprise property claims also encompasses steep mountain slopes typical of the Coast Range region of British Columbia. The property is situated over ridges and tributary streams to the South Willoughby Creek and the Flat River. The property is at the eastern edge of the Coast Mountains and near the Interior Plateau. Elevations vary from about 800 m ASL in the southeastern portion of the property to about 2200 m ASL on ridges. Topography is rugged with several easterly and southerly flowing glaciers transecting the area.

The Eldorado claims encompass the Bear River Pass at 450 meters elevation as well as extending to 1500 meters on the northern and southern valley slopes to the Bear River Pass. Sharp cliff faces with narrow wooded rock benches are present on the north side of the claims. The old underground workings on the Enterprise group are located on one of the rock benches.

Page 7

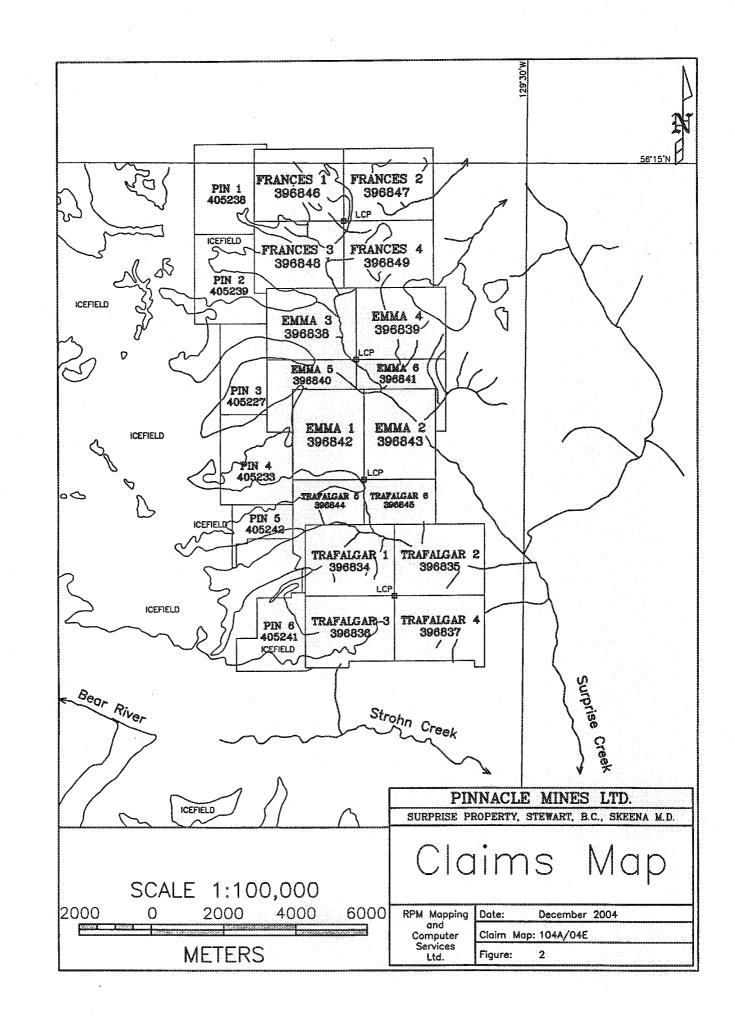
A flat upland area is present at the north edge of the Eldorado 1 claim with small tarns and numerous creeks.

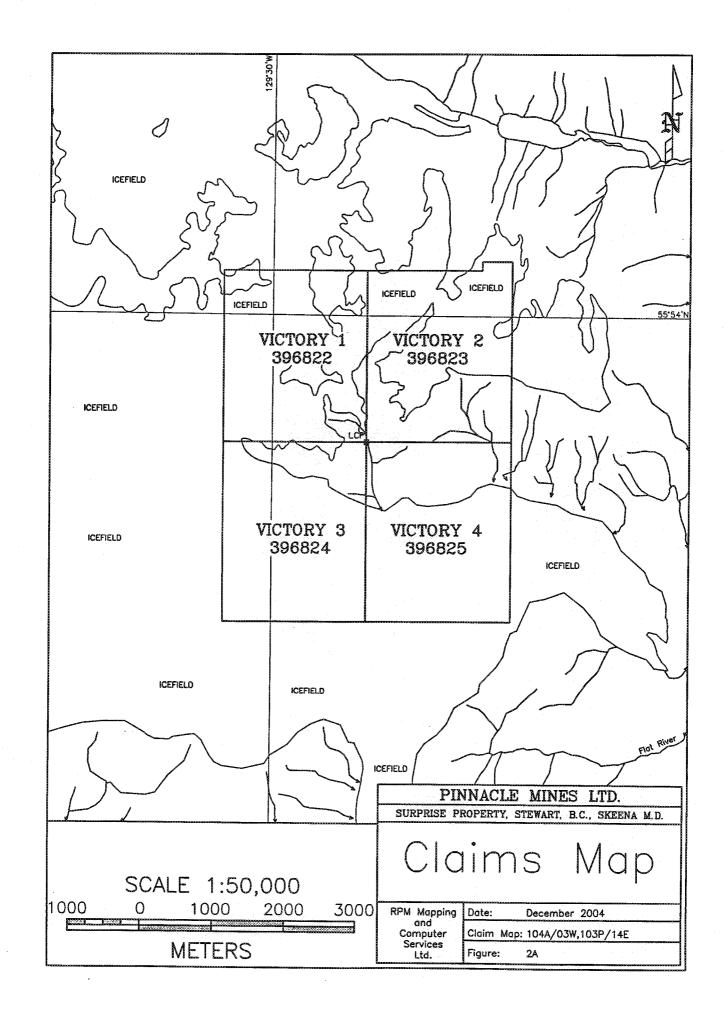
Personnel and Operations

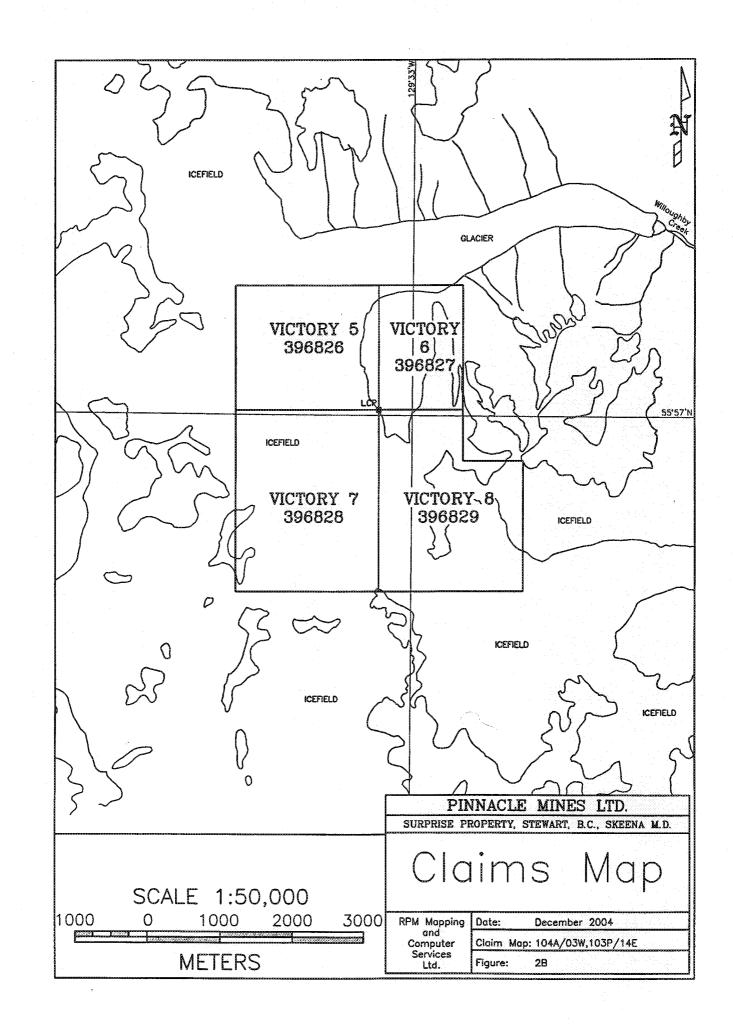
Personnel involved during the exploration program are listed below:

E. Kruchkowski	Consulting Geologist
C. Kruchkowski	Consulting Geologist
S. Kruchkowski	Geological Assistant
J. Morrison	Geological Assistant
T. Kruchkowski	Geological Assistant
R. Maynard	Geological Assistant
A. Walus	Consulting Geologist
E. Brantly	Consulting Geologist

Personnel mobilized either out of Stewart or Surprise Creek area, British Columbia to the job site utilizing a Hughes 500D helicopter, provided by Prism Helicopters, based in Stewart. The mobilization out of Surprise Creek utilized the helicopter based out of the Teuton exploration camp.


Personnel stayed in a motel in Stewart and acquired meals at local restaurants.


All samples were prepared and analyzed by Acme Analytical Laboratories and Assayers Canada in Vancouver, British Columbia.


Property Ownership

The Surprise property consists of a four separate claim groups located in the Surprise Creek area, the Willoughby Creek area and Flat River area. There are 32 claims totaling 640 units encompassing approximately 16,000 hectares. Relevant claim information with respective NTS map area is summarized below:

Name	Tenure	NTS Map Area	No. of Units	Expiry Date
Victory 1	396822	NTS103P083/103P093	20	September 20/2005
Victory 2	396823	NTS103P083/103P093	20	September 20/2005
Victory 3	396824	NTS103P083	20	September 20/2005
Victory 4	396825	NTS103P083	20	September 20/2005

73,

Page 8

Victory 5	396826	NTS103P093	20	September 20/2005
Victory 6	396827	NTS103P093	20	September 20/2005
Victory 7	396828	NTS103P093	20	September 20/2005
Victory 8	396829	NTS103P093	20	September 20/2005
Trafalgar 1	396834	NTS Map 104A/4E	20	September 20/2005
Trafalgar 2	396835	NTS Map 104A/4E	20	September 20/2005
Trafalgar 3	396836	NTS Map 104A/4E	20	September 20/2005
Trafalgar 4	396837	NTS Map 104A/4E	20	September 20/2005
Emma 3	396838	NTS Map 104A/4E	20	September 20/2005
Emma 4	396839	NTS Map 104A/4E	20	September 20/2005
Emma 5	396840	NTS Map 104A/4E	20	September 20/2005
Emma 6	396841	NTS Map 104A/4E	20	September 20/2005
Emma 1	396842	NTS Map 104A/4E	20	September 20/2005
Emma 2	396843	NTS Map 104A/4E	20	September 20/2005
Trafalgar 5	396844	NTS Map 104A/4E	20	September 20/2005
Trafalgar 6	396845	NTS Map 104A/4E	20	September 20/2005
Frances 1	396846	NTS Map 104A/4E	20	September 20/2005
Frances 2	396847	NTS Map 104A/4E	20	September 20/2005
Frances 3	396848	NTS Map 104A/4E	20	September 20/2005
Frances 4	396849	NTS Map 104A/4E	20	September 20/2005
Pin 1	405238	NTS Map 104A/4E	20	September 9/2005
Pin 2	405239	NTS Map 104A/4E	20	September 9/2005
Pin 3	405227	NTS Map 104A/4E	20	September 9/2005
Pin 4	405233	NTS Map 104A/4E	20	September 9/2005
Pin 5	405242	NTS Map 104A/4E	20	September 9/2005
Pin 6	405241	NTS Map 104A/4E	20	September 9/2005
Eldorado 1	405595	NTS Map 104A/4E	20	September 26/2005
Eldorado 2	405596	NTS Map 104A/4E	20	September 26/2005

Total

640 units

and the second states and the second s

Claim location is illustrated on Figure 2a, 2b, 2c and 2d, copied after available government NTS maps. Ownership is presently 100 % registered with Andrew Bowering of Vancouver, British Columbia.

The author located the claim posts on behalf of Andrew Bowering and can verify the quality and accuracy of the staking. The exact location of these claims would be subject to further surveys.

Page 9

Previous Work

Exploration began in the Stewart region about 1898 after the discovery of mineralized float by a party of placer miners. Sites which could be easily reached from Stewart were the first to be explored among which was the lower Marmot River area. This early phase of exploration culminated in 1910 when both Stewart and the neighboring town of Hyder, Alaska boasted a population of around 10,000 people. Another boom period began in the early 1920's after the discovery of the very rich Premier gold-silver-lead-zinc mine in the Salmon River area, northwest of Stewart.

From 1940 to 1979 there was little activity in the region due to lackluster precious metal prices. However when silver and gold prices skyrocketed in the early 1980's, many of the old properties were re-examined by both small and large exploration companies. Success by a number of exploration companies, particularly in the Unuk River has led to continued exploration in the general area. The relatively recent discovery and ongoing development of the intrusive-related gold deposits at Red Mountain located approximately 16 km east of Stewart, has again rekindled interest in the surrounding area.

The two properties that have recorded work in the late 1970's and in the immediate vicinity of the Surprise property claims are the Surprise Creek molybdenum and Goat Ridge gold-silver occurrences. The Surprise Creek property was held by Falconbridge who optioned it to Riocanex in 1981. Riocanex drilled three holes to test the larger of two rusty zones found previously by prospecting. The two identified zones measure 800 by 300 m and 1800 by 900 m and are mainly biotite hornfels with coincident anomalous fluorine values. The smaller zone is associated with an exposed porphyritic quartz monzonite stock. Geochemical sampling of the larger showed a concentric distribution of fluorine values, with the centre occupied by an icecap. The theory was that a similar quartz monzonite was responsible for the hornfels and that it was hidden below 55 to 70 m of ice. Three holes tested this hypothesis. The holes all intersected a section of quartz and feldspathetic quartz arenite followed by a section of graphitic siltstone (in holes 2 and 3 these sections repeat). Mineralization consists of < 1 to 2 % combined pyrrhotite and pyrite; Molybdenum and chalcopyrite are present in guartz veinlets with pyrite and pyrrhotite plus or minus calcite with rare fluorite. No assays were reported, just that molybdenum was not that abundant with the best value being 2 m of 0.1 % MoS2.

Report writer Downing concluded that sections cut by drill holes consist of thrust slices that have been selectively moved E-NE from the original position of hornfelsing and mineralization.

Page 10

The Goat deposit is located about 34 kilometers northeast of Stewart, approximately 5 kilometers north of the Stewart highway (37A) and just south of the Goat Glacier.

Newmont Mining and Granby Mining staked the showings in 1960 as the Surprise claim group. The claims were restaked in 1963 as the Goat group. Noradco acquired the claims in 1964 and completed trenching, sampling and 3 drill holes on the property. In 1968, an agreement with Shield Minerals Corp. ensured continued underground development. In 1971, Abitibi acquired the Shield Minerals interest and incorporated Nordore Mining Co. In 1974, Nordore rehabilitated the workings now on the Ken 1-4 and Goat A-H claims. In 1974, the Remus claims were acquired as a mill site. About 1770 tonnes of ore were stockpiled. In 1976, about 295 tonnes of ore was milled from a portable concentrator. Development work on the E vein recommenced in 1979 and "some" material was put through the concentrator. In 1980, underground development continued and the mill operated for several months. The mill was destroyed by fire in 1981 and all work ceased. Bond Gold carried out a geophysical survey over the property in 1990. In 1991, Cameco conducted geochemical surveys and sampling on the Ken and Hugh claims.

Proven and probable reserves in 1979 were 8800 tonnes grading 4782.9 grams per tonne silver and 10.6 grams per tonne gold. Recorded production during the period 1975 and 1979-81 was 1,794,049 grams of silver, 5,475 grams of gold, 52,641 kilograms of zinc, 4,071 kilograms of lead and 153 kilograms of copper.

During July to October, 1994 and July 1996, Teuton Resource Corp conducted an exploration program consisting of reconnaissance geochemical rock and silt sampling in conjunction with prospecting and reconnaissance geological mapping on the property to primarily evaluate the gold potential with emphasis on any intrusive related mineralization.

The survey over only a small portion of the claims indicated numerous types of mineralization; both in outcrop and float boulders. Mineralization noted in outcrop included the following:

- 1. Massive pyrite veins up to several meters in width occasionally accompanied by finegrained galena and sphalerite.
- 2. Pervasive, fine-grained pyrite mineralization in the rhyolitic rocks as well as pyritic bands in the sericite schists.
- 3. A weak but pervasive quartz-sulfide veinlet stockwork zone over a large portion of the Surp 6 claim.

Page 11

- 4. Quartz stringers with pyrite, galena, chalcopyrite, pyrrhotite and sphalerite along fault zones on the Surp 12 claim.
- 5. Weak quartz stockwork with pyrite and arsenopyrite in argillites on the Surp 8 claim.
- 6. Banded magnetite and hematite in calcareous, maroon volcanics on the Surp 6 claim.
- 7. Fine-grained pyrite, pyrrhotite and traces of chalcopyrite in sericitic rocks on the southern portion of the Surp 8 claim.

Results of the geochemical program indicate highly anomalous gold, silver, copper, arsenic, lead and zinc values widespread throughout the limited areas explored. Values as high as 0.334 opt Au, 6.94 opt Ag, 1.61% Cu, 1.25% As, 4.26% Pb and 4.41% Zn were obtained from different zones within the large and only partially explored claim holdings. The area of the former Surp 6 and 8 claims are underlain by the present Emma 3 and Frances 3 claims that comprise part of the Surprise property.

In 2003 Pinnacle collected a total of 78 rock samples outcrop and float as well as 23 silt samples during an exploration program. Results of the samples indicate highly anomalous values for gold, silver, lead, zinc, arsenic and copper. Sample values for gold ranged from <1 ppb to a high of 13.02 ppm, for silver from 0.2 to 3076.8 ppm, for lead from 5.7 to >9999 ppm, for zinc from 12 to 56,866 ppm, for arsenic from 1.9 to 9999 ppm and copper from 4.4 to 28,026 ppm

The southern claims are near the Willoughby prospect, which is located on a steep nunatak south of Meziadin Lake and 26 kilometers east of Stewart between the north and central forks of the Willoughby Glacier. A mineralized zone carrying low-grade gold and silver values was investigated in this area in 1941 and the Wilby group of claims was explored in 1945.

To date 11 mineralized occurrences have been located on the Willoughby property. Mineralization consisting of pyrite, pyrrhotite along with lesser sphalerite, galena and rare visible gold occurs in veins, stockwork and fracture fillings. In addition, pyrite and pyrrhotite occur as semi massive to massive occurrences in lenses and pods. Several of the zones appear to be intrusion related. The best drill intersection averages 40.1 grams per tonne gold and 109.6 grams per tonne silver over 11.7 meters in one of the zones.

The newly acquired Eldorado claims west of the northern block on Surprise Creek cover the area of the former Enterprise property. Considerable work was reported on this group prior to 1919, including 30 meters of drifting along an adit. In the period 1928-1931, considerable tunneling

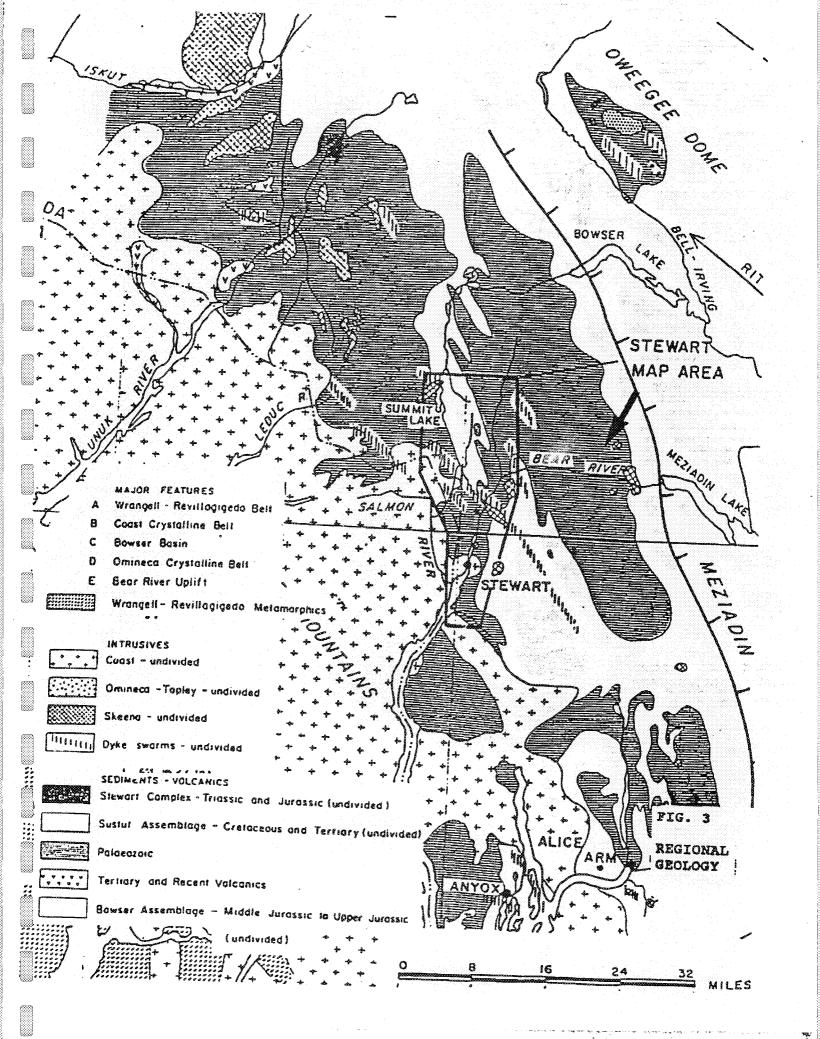
Page 12

along six further adits was reported. Numerous open cuts were also excavated along favorable zones.

In 1978, Tournigan Mining Explorations carried out surface sampling on the former Enterprise group.

GEOLOGICAL SURVEYS

Regional Geology


The Surprise claim blocks lie in the Stewart area, east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Hazelton Group and Bowser Lake Group that have been intruded by plugs of both Cenozoic and Mesozoic age.

According to C.F. Greig, in G.S.C. Open File 2931, the western portion of the claim area is underlain by Lower Jurassic volcanic rocks overlain by the Lower to Middle Jurassic Salmon River Formation at the east edge of the claims. The Salmon River formation is in turn overlain by the Upper Jurassic Bowser Lake sediments, east of the claim holdings.

At the base of the Hazelton Group is the lower Lower Jurassic Marine (submergent) and nonmarine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep discordant angles by a second, lithologically similar, middle Lower Jurassic volcanic cycle (Betty Creek Formation), in turn overlain by an upper Lower Jurassic tuff horizon (Mt. Dilworth Formation). Middle Jurassic non-marine sediments with minor volcanics of the Salmon River Formation unconformably overlie the above sequence.

The lower Lower Jurassic Unuk River Formation forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area, the Unuk River Formation is unconformably overlain by middle Lower Jurassic rocks from the Betty Creek Formation. The Betty Creek Formation is another cycle of troughfilling sub-marine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone and minor crystal and lithic tuffs, chert, limestone and lava.

- C

JURASSIC

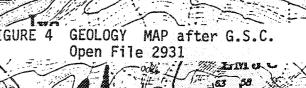
UJC Surt gray is block cluster sector-scale (1-6 m) bod gray, fine to maxim gray burberies); Rhersense com

paio gray or while . Myouts, and decisi . subscriptule con -

dara groon to gray and so

STIKINE ASSEMBLACE Darb group, revisions and a Inscructurest; commany com original, crowdod tracivite phonocrysts of programming in phonocrysts of programming in

Blar Cross skilore TN (hereas Carriers photos: ph


TSC Strates Crash philan: m(7-)

LIDLE OF LATE JURASSIC TO TERTLARY lans feld

scier phylant

[KDP] Bow Pass stations (b)

75

Page 13

The upper Lower Jurassic Mt. Dilworth Formation consists of a thin sequence varying from black carbonaceous tuffs to siliceous massive tuffs and felsic ash flows. Minor sediments and limestone are present in the sequence. Locally pyritic varieties form strong gossans.

The Middle Jurassic Salmon River Formation is a late to post volcanic episode of banded, predominantly dark colored siltstone, greywacke, sandstone, intercalated clarinet, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

Overlying the above sequences are the Upper Jurassic Bowser Lake Group rocks. These rocks mark the western edge of the Bowser Basin and are also located as remnants on mountaintops in the Stewart area. These rocks consist of dark grey to black clastic rocks including silty mudstone and thick beds of massive, dark green to dark grey, fine to medium grained arkosic litharenite.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

D. Aldrick's work to the north of Stewart has shown several volcanic centers in the surveyed area. Lower Jurassic volcanic centers in the Unuk River Formation are located in the Big Missouri Premier area and in the Brucejack Lake area. Volcanic centers within the Lower Jurassic Betty Creek Formation are in the Mitchell Glacier and Knipple Glacier areas.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic. Some are likely related to the late phase offshoots of the Coast plutonism, other are synvolcanic and tertiary. Double plunging, northwesterly - trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts on strikes parallel to the major fold axis, cross-axis steep wrench faults which locally turn beds, selective tectonization of tuff units and major northwest faults which turn beds. Figures 3 and 4 show the general geology of the property area.

Local Geology

The section on local geology is excerpted from a 2003 assessment report by the author:

Page 14

"Prior to the start of the geochemical program, reconnaissance mapping using the helicopter was carried out. This carried out in order to identify the areas of the Mt Dilworth/Salmon River contact similar to that hosting the Eskay Creek deposit and the nearby Teuton discovery in Nelson Creek, south of the northern Surprise claim block.

The northern Surprise claim group is underlain by a sequence of Lower Jurassic clastic and volcanic rocks intruded by felsic stocks and dykes and /or sills along the western portions of the property. Along the eastern edge of the claims, Lower to Middle Jurassic and Upper Jurassic sediments are present.

Just to the west of Emma 3 claim, large gossaned areas are related to sericite alteration and subsequent infusion of quartz and sulfide mineralization. The most intensely altered zone extends from the west side of the northwest corner of the Emma 3 claim to just west of the Emma 6 claim. In these sericitic zones, it is very difficult to determine what the host rock is. This sericite alteration zone is located in a thick sequence of rhyolite breccia, which is correlated with the Mt. Dilworth formation. This sequence consists of coarse clasts forming up to 30% of the rock surrounded by grey fine-grained matrix. Individual clasts are angular, up to 15 cm in size consisting of porphyritic rhyolite. Feldspars, which are euhedral to subhedral shaped form 20 % of the material in the clasts. Within the rhyolite breccia, discontinuous lenses or blocks of massive banded hematite and magnetite are present. A regional iron formation that has been identified 10-15 kilometers to the southwest of the claim block occurs within the Bear River pass area. The massive hematite and magnetite may represent blocks of that formation that occurred in the vicinity of the rhyolite breccia and that have been incorporated into the formation.

Based on the thick sequence of the rhyolite breccia and the angular nature of the breccia clasts, it is speculated that this area of the Surprise claim group may represent a volcanic center in the Jurassic period.

North and south of the above sequence, rocks in the Mt. Dilworth formation consist of grey, finegrained to glassy appearing rhyolites along a belt trending north across the Frances 3 claim and south along the Emma 1 and Trafalgar claims. It appears that the grey, fine-grained variety occurs along the west edge of the formation with a black glassy appearing variety in contact with the overlying Salmon River formation. The grey variety consists of small white rhyolite fragments up to 5 mm in a fine-grained ash matrix. Pyrite occurs as both fine-grained disseminations and as later veinlets filling cross cutting fractures. The black glassy variety is aphanitic with disseminated sulfides. Some varieties found in float consist of black rhyolite with banded massive pyrite forming up to 20 % of the rock. Some rocks also contain minor amounts of galena and sphalerite indicating a possible Kuroko type VMS situation containing Pb-Zn-Ag.

Page 15

Just west of the above rhyolite breccia, a thick sequence of maroon andesitic rocks occurs. Observed rocks consist of poorly sorted rounded volcanic fragments up to 20-30 cm in a finegrained groundmass. Near the east contact with the rhyolites, the fragmental volcanic contains aphanitic and very fine-grained felsic volcanic clasts. Along the contact area, it is common to observe thin lenses of maroon colored tuff horizons within the rhyolite formation. These horizons parallel the contact and appear to be restricted to within 10 meters of the contact. Extensive and pervasive carbonate alteration is very common in the maroon pyroclastics and flows.

East of the rhyolite, black argillites with minor interbedded tuffaceous chert are present. The argillites which are pyritiferous and thinly bedded tend to weather to a rusty color. On the Emma 3 claim in the northwest corner of the claim, east west fractures contain narrow discontinuous galena-sphalerite-carbonate veins that are up to 0.3 meters in width.

Along the east side of the northern Surprise claim block, thinly bedded argillites of the Bowser Lake group are present. These are locally pyritiferous weathering to a rusty color.

In the middle of the Frances 3 claim block, a medium grained grey, quartz monzonite outcrops. This intrusive extends from the valley floor to the upper slopes in the northern portion of the Frances 3 claim. Along the upper slopes, the monzonite is carbonate altered and weather into a rusty red color.

In the area of the monzonite, the argillites in the Bowser Lake formation have been hornfelsed to a light pink to dark grey rock containing fine-grained pyrrhotite."

Figure 5 shows the general geology of the Surprise claim block, particularly the Mt Dilworth/Salmon River contact as defined by reconnaissance mapping.

Mineralization

The 2004 exploration programs over parts of the Surprise property followed up on the exploration results of the 2003 program which indicated abundant and varied mineralization within the present claim group as follows: The 2004 work indicated several new styles of mineralization other than that indicated in 2003

1. Pervasive, very fine-grained pyrite as well as pyritic bands in the grey lapilli tuff rhyolitic rocks. This rhyolite is present along the entire western length of the northern claim block extending from the Frances 1 claim south to the Pin 6 claim, a distance of approximately

Page 16

15 kilometers. Pyrite can locally form up to 20 % of the rock with much of the sulphide occurring as void filling around volcanic clasts.

- 2. Massive sulfide bearing, manganese stained tuffaceous chert boulders possibly from the base of the Salmon River formation on the Emma 5 claim were located in the 2003 work program. The boulders are large and can be up to 2 meters in diameter. Sulfide content is generally in semi-massive sulfide bands from 15 cm to 20 cm in width and can form up to 10 % of the boulders. The rocks carry galena, sphalerite, and chalcopyrite with minor pyrite. Source of these boulders is likely on the south side of the glacier in the NW corner of the Emma 1 and middle of the Pin 4 claim. In the area of the boulders, minor float boulders of massive pyrite and chalcopyrite were noted. Work during 2004 traced these boulders to the base of the above glacier.
- 3. In 2003, black glassy appearing rhyolites were located with strong very fine grained pyrite mineralization forming up to 15 % of the rock Disseminated fine-grained galena-sphalerite have been noted in this type of rhyolite boulders in a number of different valleys located on the Trafalgar 1 and 5 claims. This type of mineralized boulder may indicate the presence of Kuroko type Pb-Zn-Ag massive sulphides mineralization in the claim area. These types of boulders have been observed a length extending from the Trafalgar 5 to Trafalgar 3 claims, a distance of approximately 6 kilometers. The boulders have been located at the south edge of the claim holdings during the 2004 work.
- 4. Chalcopyrite with pyrite in small stringer, pods and stockworks in sheared andesitic rocks on the Enterprise group. Locally the chalcopyrite-pyrite mineralization is accompanied by galena, sphalerite, chlorite, quartz and calcite. The mineralization is hosted in pyritic pyroclastic rocks that are variably chloritized. The mineralization is located within rocks that are just north of an iron formation that hosts the George Gold-Copper deposit several kilometers to the southwest. The best mineralization has been reported in the Frenchman tunnel, where a northwest striking, vertical fault gouge is well mineralized with chalcopyrite, pyrite and malachite. Above and northwest of the Enterprise tunnel, several small mineralized zones are exposed in numerous pits and tunnels.
- 5. Vuggy quartz float with massive galena and stibnite just west of the Enterprise tunnel. Float boulders up to 15 cm in width have been located on the talus slope at the base of a vertical cliff. This rock face is the source of this quartz-sulphide occurrence. Width and length of this mineralization is unknown at present due to inaccessibility.
- 6. A strong quartz-stibnite vein system up to 5 meters wide shear zone in the NW corner of the claim group. This mineralization has been traced on the ground over a strike length of

Page 17

300 meters and based on aerial view extends beyond the 300 meters that was sampled. The zone consists of a 2-5 meter wide brecciated zone with quartz filling the voids between clasts. Locally the zone will be entirely quartz filled. Numerous splays to the shear zone extend the overall width of the zone up to 15 meters in several places. In these locations, veins up to 4-5 meters wide, separated by weakly brecciated argillite form the east and west walls to the zones. Locally massive stibnite and arsenopyrite form pockets and stringers of mineralization that is up to 15-20 cm wide. Pyrite is common in the brecciated argillite but is not common in the quartz. Overall, sulphide mineralization is 5-10 % of the rock.

Teuton Resource Corp has been exploring a gold-silver occurrence between the two of the above Pinnacle claim blocks. In the fall of 2002, Teuton Resources discovered high-grade gold-silver mineralization on the Del Norte Claim group, 10 kilometers south of the northern block of claims and 8 kilometers northeast of the second southern group of claims, comprising the Surprise property. Prior to the onset of winter, Teuton completed trenching and three drill holes. The results of the 2002 trenching include 10 meters of 0.179 opt Au and 8.4 opt Ag. The best drill hole - 2002-3 assayed 0.223 opt Au and 8.09 opt Ag over a drill length of 23.4 meters. Work on the LG vein in 2003 by Teuton indicates several promising mineralized areas have been defined by exploration on the Del Norte property. The most significant occurs along a 2200-meter long trend connecting the Kosciuszko Zone, the LG Vein and the LG Vein Extension. Similar mineralogy and stratigraphic location indicates that all of three of these are related structures, although talus and ice obscure continuity in places. Gold and silver bearing vein mineralization has now been found over a vertical range of 450 meters, from the upper reaches of the Kosciuszko zone to the LG Vein area. The LG Vein mineralization apparently lies along a contact between mudstones at the base of the Salmon River Formation and felsic pyroclastics believed to be of the Mt. Dilworth Formation.

In addition, Teuton has announced the discovery of narrow, massive sulfide–gold-silver mineralization along the Mt Dilworth/Salmon River formation south of the above discovery.

The bulk of this drilling was concentrated along the mineralized lithic tuff-mudstone contact connecting the K (Kosciuszko) zone and the LG vein areas. Including all drilling completed in from 2002 to 2004, this trend has now been tested by 14 drill stations at intervals along an 1100-meter long strike length.

Drill results to date show a significant mineralized system containing silver-gold bearing mineralization hosted in near-vertically dipping, quartz-sulfide/sulfosalt vein breccia, with a majority of the intersections containing gold equivalent values greater than 0.40 oz/ton.

Page 18

The northern Surprise block is under lain by the same stratigraphic sequence hosting the new Teuton discovery as well as the producing Eskay mine (reserves at the end of 2002 were 1.433 million tons of 0.998 opt Au and 44.9 opt Ag in the proven and probable reserve and 480,000 tons of 0.442 opt Au in the mineral reserve category). This mine has been producing since the mid 1990's and reports suggest that there has been a new discovery associated with rhyolites in mine area.

In 1994 geochemical surveys, gold values up to 0.334 opt Au were obtained in quartz veinlets in a silicified felsic volcanic with no obvious sulfides, on the west edge of the Emma 5 claim. This occurrence was associated with abundant barite. Geochemically anomalous gold values were obtained in the surrounding area. Follow-up work in 1995 yielded gold assays up to 0.169 opt Au in this area. This mineralized zone should be sampled and evaluated in future surveys.

GEOCHEMISTRY

Introduction

Reconnaissance rock and silt geochemical samples were taken from the area of the northern Surprise claim group. The location of the samples is shown in figure 6 at a scale of 1: 5,000 in relation to the claim lines. Icefield boundaries have been taken from the most recent government topographic maps, however, these are often inaccurate: pronounced ablation in Stewart during the past years has exposed much new rock outcrop and reduced the size of snow and icefields considerably.

Altogether 220 rock samples were taken: 31 bedrock grab and 189 float. A total of 19 silt samples were collected. Locations for the all samples were located by reference to GPS locations.

Field Procedure and Laboratory Technique

Rock samples were taken in the field with a prospector's pick and collected in standard plastic sample bag. Grab samples were taken to ascertain character of mineralization at any specific locality. These samples consisted generally of three to ten representative pieces with total sample weight ranging between 0.5 to 2.0 kgs. Complete descriptions of the rock samples, in terms of type, noted mineralization and relationship to nearby features are located in Appendix III. In addition, all values for gold, silver, copper, lead, zinc and arsenic are included with any determined anomalous values (bold values) noted along with the descriptions.

Page 19

All rock and silt samples marked ERK, TEK, RDM and CK were analyzed at the Acme Analytical Laboratories facilities while the samples marked A and EB were analyzed by Assayers Canada, both in Vancouver, British Columbia. Rock samples were first crushed to minus 10 mesh (70 % of sample) using jaw and cone crushers. Then 250 grams of the minus 10-mesh material was pulverized to minus 150 mesh using a ring pulverizer. A modified Aqua Regia solution is added to each sample and leached for 1 hour at greater than 95 degrees Celsius. The resulting solution was then analyzed by atomic absorption. The analytical results were then compared to prepared standards for the determination of the absolute amounts. For the determination of the remaining trace and major elements Inductively Coupled Argon Plasma (ICP) was used. In this procedure a 0.5-gram portion of the minus 140-mesh material is digested with aqua regia for 1 hour at 95 degrees Celsius and made up to a volume of 20 mls prior to the analytical results to those of prepared standards. Appendix I has the methods and specifications description as supplied by Acme Analytical Laboratories.

No further analysis was used for follow-up analysis of base metals (where values were too high for quantitative measurement by ICP). Appendix II has the complete analyses results.

Statistical Treatment

As in other small-scale geochemical surveys, a cumulative frequency plot to determine background and threshold values (greater than threshold is considered anomalous) was not deemed practical for either the rock geochemical or silt sampling program. For the rock geochemical program, gold values greater than 100 ppb gold, silver values greater than 3.2 ppm, lead values greater than 160 ppm, zinc values greater than 320 ppm, arsenic values greater than 110 ppm and copper values greater than 360 ppm were considered anomalous in the Stewart area.

The silt sampling did not reveal any obvious anomalies, even though mineralized float rocks are present in the moraines and streambeds.

Figures 6, 6a, 6b and 6c at a scale of 1:5,000 shows the location plots for all sampling conducted with the values for Au, Ag, Pb, Zn, As and Cu listed in a table for the appropriate samples in the diagram. Figure 7 shows the sampling on the quartz-stibnite vein while figure 8 shows the sampling on the Enterprise group.

Page 20

Anomalous Zones

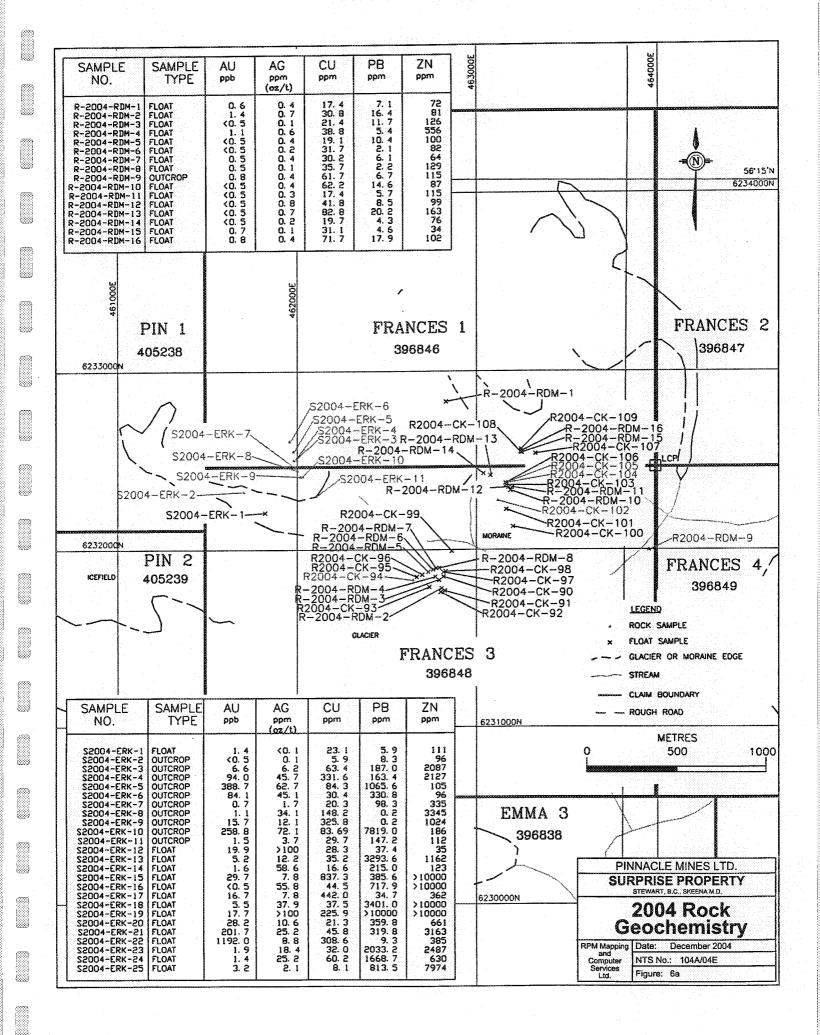
Rock geochemical sampling was principally restricted to float sampling of any identified mineralized rocks, either in float and bedrock. Sampling concentrated in the area of the projected contact of the Mt Dilworth and Salmon River formation in the area of the west portion of the northern Surprise claim block. Sampling was also carried out in order to locate the former Enterprise showings in Bear Pass.

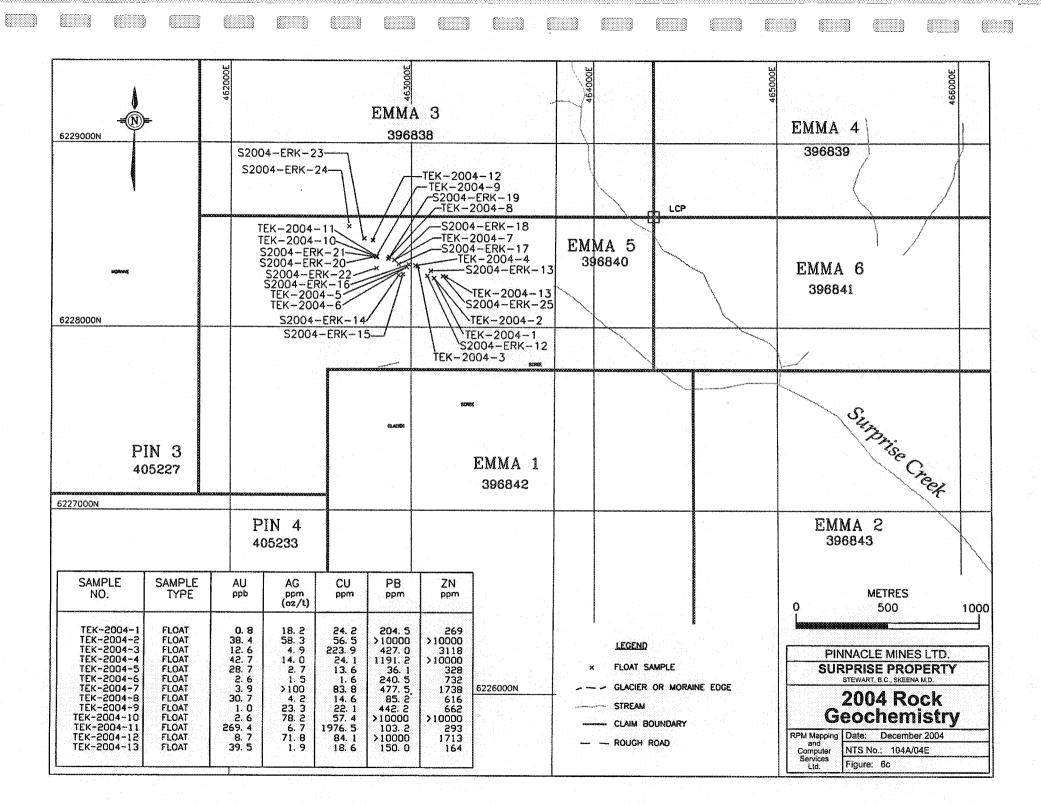
Results of the samples indicate highly anomalous values for gold, silver, lead, zinc, arsenic and copper and antimony. particularly in the ERK 3-11 samples. Sample values for gold ranged from <0.5 ppb to a high of 3.9 ppm, for silver from <0.1 to 1305 ppm, for lead from 0.2 ppm to 9.1 %, for zinc from 6 ppm to > 10,000 ppm, for arsenic from <0.5 to >10,000 ppm and copper from 0.7 ppm to 8.67 %.

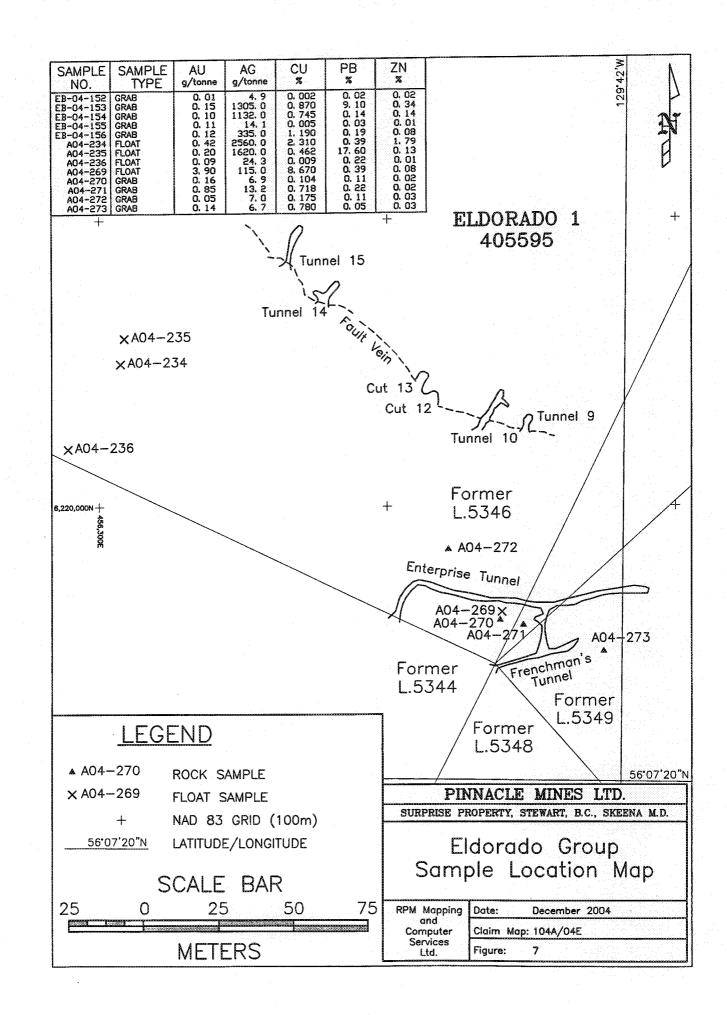
Appendix III has a complete list of the above values for the various rocks along with a brief geological description for each rock collected.

Numerous grey rhyolite boulders sampled indicated anomalous arsenic values occasionally in association with anomalous galena, silver and / or zinc values. Arsenic values in excess of 10,000 ppm have been obtained

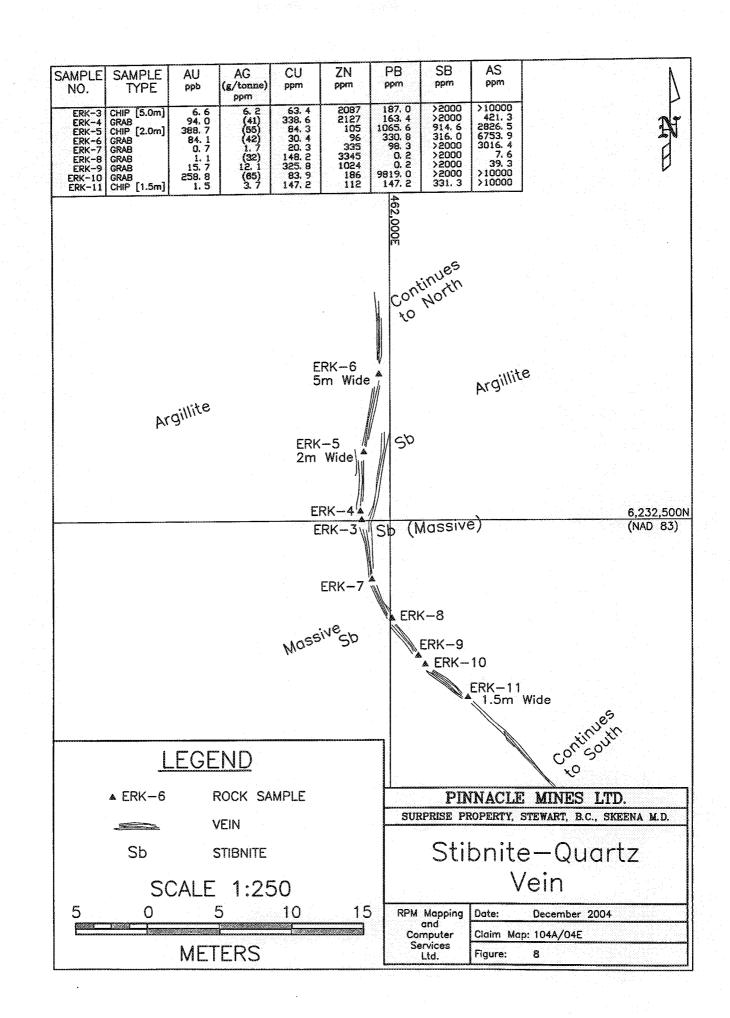
On the Emma 3 claim, large manganese stained tuffaceous chert boulders (ERK 13, 15, 19 and 23) were anomalous in lead, zinc, copper, arsenic and silver.


Throughout the area surveyed, numerous black glassy appearing rhyolite boulders were anomalous in lead, zinc, silver and rarely copper, gold and arsenic.


Of interest, one argillite boulder with thinly banded pyrite forming 10 % of the rock yielded 813 ppm Pb and 7974 ppm zinc on the Emma 3 claim.


Sampling of vuggy quartz float boulders with galena, tetrahedrite and stibnite on the Eldorado claims yielded up to 9.1 % Pb, 0.34 % Zn, 1305 ppm Ag and 0.67 % Cu.

Sampling of rocks on the dump of the caved Enterprise tunnel gave 3.9 ppm Au and 8.7 % Cu.


Further geochemical surveys are recommended to locate the source of the anomalous values and extend survey area.

())))) ()

Page 21

PETROGRAPHIC STUDIES

Alex Walus studied 4 samples from the 2003 exploration program and determined that on of the samples was formed in a sub-volcanic environment while one of them was formed in a VMS environment. He states" The sample is composed by alternating sections dominated either by quartz or carbonates. Quartz forms a mosaic of equigranular, slightly interlocking grains ranging in size from 0.01 to 0.2 mm. Quartz grains do not show so called undulatory extinction which is characteristic of quartz grains which undergone tectonic deformation. Carbonates occur as equigranular grains 0.02 to 0.2 mm in diameter. There are some minor quartz and carbonate veinlets, which in most cases are oriented perpendicular to the borders between quartz and carbonate dominated sections. Chalcedony (with a typical feathery appearance) is closely associated with sulphides. Small amount of chalcedony was replaced by carbonate. Sulphides occur as anhedral grains and small blebs ranging in size from 0.02 to 0.4 mm across. Most of them form parallel bands and streaks up to 1 mm wide, with the reminder being disseminated throughout the sample.

The origin of the examined rock is uncertain. The rock does not display any tectonically induced foliation or shearing, that's why, the formation of parallel bands and streaks of sulphides could have occurred during syngenetic rather than tectonic process. This fact, as well as the presence of chalcedony indicate the formation in VMS environment. "

Complete descriptions of Mr. Walus's studies are found in Appendix IV

Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia Report on Surprise Property

Page 22

CONCLUSIONS

- 1. The property lies within a belt of Jurassic volcanic rocks that is host to numerous gold deposits, extends from the Kitsault area, south of Stewart, to north of the Stikine River.
- 2. The property contains approximately 16000 hectares within four separate claim groups totaling 32 Modified Grid claims.
- 3. In the period July 15 to September 8, 2004 Pinnacle Mines Ltd conducted an exploration program on the northern portion of the Surprise property consisting of reconnaissance mapping for the above Salmon River/Mt Dilworth geological contact, prospecting and geochemical sampling along the above volcanic sediment contact within various valleys tributary to Surprise Creek. In addition work concentrated at locating the Enterprise showings on the Eldorado claims.
- 4. Geological observations noted indicate that the property is underlain by a sequence of altered and silicified Lower Jurassic Mt Dilworth rhyolites in contact with the overlying Salmon River sediments. This geological setting is host to the Eskay Creek deposit and the recent gold-silver discovery to the south of the northern Surprise claim block.
- 5. The geochemical survey indicates numerous occurrences of mineralization in outcrop and float boulders.
- 6. A total of 220 rock samples both outcrop and float as well as 19 silt samples were collected during the exploration program. Results of the samples indicate highly anomalous values for gold, silver, lead, zinc, arsenic and copper. Sample values for gold ranged from <0.5 ppb to a high of 3.9 ppm, for silver from <0.1 to 1305 ppm, for lead from 0.2 ppm to 9.1 %, for zinc from 6 ppm to > 10,000 ppm, for arsenic from <0.5 to >10,000 ppm and copper from 0.7 ppm to 8.67 %
- 7. The presence of favorable geology, high geochemical and assay results for a variety of elements obtained in the exploration programs and apparent numerous mineral occurrences make this property an excellent exploration target.
- 8. Further work consisting of prospecting, geochemical sampling, geological mapping and trenching is recommended.
- 9. Expected cost of the program is approximately \$250,000.

Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia Report on Surprise Property

Page 23

RECOMMENDATIONS

The recommended program is outlined as follows:

1. <u>Prospecting</u>

Prospecting should be carried out on all obvious but un-checked gossaned zones. In addition, prospecting should be conducted along the ridge and valley slopes on the Pin 3 claim. The long alteration zone with massive pyrite on the Emma 3 should be further delineated.

2. Geological Mapping

The property should have a grid patterns established over mineralized areas to facilitate survey control. Geological mapping should be conducted in order to establish the extent and nature of any rhyolite-associated mineralization, outline further mineralized zones and identify potential host rocks for any possible mineral deposits.

3. <u>Geochemical Surveys</u>

Further rock geochemistry is recommended particularly rock chip sampling in areas of known anomalous metal values and/or newly discovered zones.

4. Trenching

Several areas require trenching including the area of high gold values along the ridge top on the Pin 3 claim outlined in 1994-1995 surveys. Trenching should test massive pyrite bearing areas with appreciable lead and zinc values

Trenching would also include any newly discovered mineralization.

2 geologists @ \$700.00/day for 10 days -\$7,000,00 2 assistants @ \$300.00/day for 10 days - \$3,000.00

Estimated Cost of the Program

Geological Survey - Maps, Reports

\$10,000.00

Geochemical Survey

Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia <u>Report on Surprise Property</u>

Page 24

Helicopter – 100 hours @ \$1200.00/hour- \$120,000.00 1000 Rock Samples @ \$25.00 All Inclusive-\$25,000.00 2 geologists @ \$700.00/day for 20 days -\$14,000,00 2 assistants @ \$300.00/day for 20 days - \$6,000.00

\$165,000.00

Accommodation	
120 man days @ \$ 60.00/day	\$7,200.00
Vehicle rental	\$5,000.00
Mob/Demob	\$6,000.00
Consumables (plastic bags, fuel, explosives, etc.)	\$3,000.00
Trenching - drill, compressor rental)	\$10,000.00
Filing Fees	\$12,000.00
Reporting	\$10,000.00
Contingency	\$21,800.00

Total

\$250,000.00

Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia Report on Surprise Property

Page 25

REFERENCES

- 1. ALLDRICK, D.J. (1984); "Geological Setting of the Precious Metals Deposits in the Stewart Area", Paper 84-1, Geological Fieldwork 1983, B.C.M.E.M.P.R.
- 2. ALLDRICK, D.J. (1985); "Stratigraphy and Petrology of the Steward Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 3. B.C.M.E.M.P.R. (1979) Geological Fieldwork
- 4. CREMONESE, D. (1995), "Assessment Report on Geochemical Work on the Surp Claims".
- GREIG, C.J., ET AL (1994); "Geology of the Cambria Icefield: Regional Setting for Red Mountain Gold Deport, Northwestern British Columbia", p. 45, Current Research 1994-A, Cordillera and Pacific Margin, Geological Survey of Canada.
- 6. GROVE, E.W. (1971); Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- 7. GROVE, E.W. (1982); "Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 8. GROVE, E.W. (1987); Geology and Mineral Deposits of the Unuk, River-Salmon, River-Anyox, Bulletin 63, B.C.M.E.M.P.R.
- 9. KRUCHKOWSKI, E. R. and KONKIN, K. J. Field Notes on 1994 Exploration on the Surp Claims.
- 10. KRUCHKOWSKI, E.R., (1995) Report on Surp Property
- 11. KRUCHKOWSKI, E.R., (2003) Report on Surprise Property
- 12. KRUCHKOWSKI, E.R., (2003) Assessment Report on Surprise Property
- 13. TEUTON PRESS RELEASES AND WEBSITE

Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia <u>Report on Surprise Property</u>

Page 26

CERTIFICATE

I, Edward R. Kruchkowski, geologist, residing at 23 Templeside Bay, N.E., in the City of Calgary, in the Province of Alberta, hereby certify that:

- 1. I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- 2. I have been practicing my profession continuously since graduation.
- 3. I am a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.
- 4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. I am a consulting geologist working on behalf of Pinnacle Mines Ltd.
- 6. The main source of information has been the geological and sampling programs conducted by the author in 1994 and 2004 as well as involvement in the 1996 sampling programs within the area of the present claims. The author also has a general knowledge on the Stewart region gained in exploration programs in the period 1969 2003.
- 7. I am familiar with epithermal deposits having visited and worked on these types of deposits in Canada, USA and Mexico and have conducted exploration programs on these type of occurrences in the Stewart region.
- 8. I authorize Pinnacle Mines Ltd. to use information in this report or portions of it in its prospectus, any brochures, promotional material or company reports and consent to the placing of this report in the public file of the Canadian Venture Exchange.

Dec5/04 ERI E.R. Kruchkowskic B.Sc

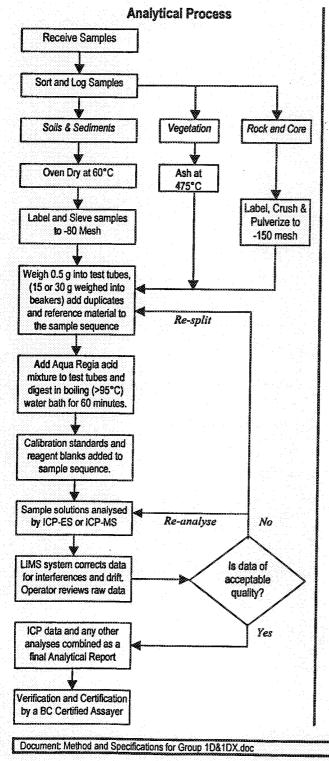
Pinnacle Mines Ltd. Skeena Mining Division Stewart, British Columbia Report on Surprise Property

×.

Page 27

STATEMENT OF EXPENDITURES

Field PersonnelAugust 26 to September 18,	2003	
E. R. Kruchkowski, geologist		
8 days at \$400.00/day		\$3,200.00
C. D. Kruchkowski, geologist		
Invoice for work -		\$10.977.33
S. Kruchkowski, geological assistant		
16 days at \$150.00/day		\$2,400.00
J. Morrison, geological assistant		
Invoice for work		\$12,000.00
T. Kruchkowski, geological assistant		
Invoice for work -		\$4,452.70
R. Maynard, geological assistant		
Invoice for work -		\$7,054.69
HelicopterPrism Helicopters based in Stewa	H B C	
Crew drop-off/pick-ups-July 16-Septen		
20.4 hours at \$1162.56/hour	1001 7, 200 4	\$23.716.22
20.4 hours at \$1102.50/hour		Φωσ.710.2.2
Sample Analysis		\$4,455.94
buinpre i marjene		······
Mob/Demob (home base to Stewart, return)		\$1,334.62
Vehicle Rental		\$2,500.00
Food/Accomodation		\$6,600.00
30 days @\$220/day		
Report Writing, Drafting, Copying		\$5000.00
	Total	\$83,791.50
		the second se


APPENDIX I

LABORATORY METHODS AND SPECIFICATIONS FOR SAMPLE ANALYSIS

A ACME ANALYTICAL LABORATORIES LTD.

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO₃ and de-mineralised H₂O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan6000 ICP mass spectrometer are analysed for 36 elements: Ag, AI, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sø, TI, Sr, Th, Ti, U, V, W, Zn.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS5 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye, Jacky Wang and Ken Kwock.

-7,1

Document: Method and Specifications for Group 1D&1DX.doc	Date: Oct 2, 2003 Pre	pared By: J. Gravel

852 East Hastings Street • Vancouver • British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Facsimile: (604) 253-1716 • Toll Free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

APPENDIX II

DESCRIPTIONS WITH INDICATED ANOMALOUS VALUES FOR AU, AG, AS, CU, PB and ZN CK-1

CK-2

CK-3

CK-4

CK-5

CK-6

Gray rhyolite tuff, angular crystal fragments up to 0.5 mm form 10% of the rock. Fine grained pyrite approximately 1-2%.

Au – 0.7 ppb	Ag – 0.2 ppm
Pb – 10.2 ppm	Zn – 146 ppm
Cu – 3.8 ppm	As – 88 ppm

Gray to black rhyolite crystal tuff, feldspar crystals, angular up to 15% of the rock. Fine pyrite approximately 1%.

Au –10.5 ppb	Ag – 4.2 ppm
Pb – 346.6 ppm	Zn – 178 ppm
Cu – 11.6 ppm	As – 37.8 ppm

Black, medium grained rhyolite, minor quartz veinlets up to 5 mm form 10% of the rock. Pyrite less than 1%.

Au – 7.2 ppb	Ag – 0.3 ppm
Pb – 12.7 ppm	Zn-35 ppm
Cu – 12.3 ppm	As – 47.2 ppm

Gray to white rhyolite lapilli tuff fragments, up to 2 cm, form 5% of the rock. Traces pyrite.

Au - <.5 ppb	Ag - 0.4 ppm
Pb – 20.1ppm	Zn - 7.0 ppm
Cu – 3.4 ppm	As – 125.1 ppm

Gray rhyolite lapilli tuff, heavy fine grained pyrite up to 20% of the rock.

Au – 1.1 ppb	Ag – 5.9 ppm
Pb – 39.7ppm	Zn – 1.8 ppm
Cu – 3.4 ppm	As – 52.2 ppm

Gray rhyolite tuff, fine grained pyrite 2%.

Au – <.5 ppb	Ag - <.1 ppm
Pb – 9.0 ppm	Zn – 65 ppm
Cu – 2.9 ppm	As - 52 ppm

CK-7

Gray to black, coarse grained lapilli tuff (rhyolite). Fine grained pyrite 10%.

Au – 12.3ppb	Ag - 1.4 ppm
Pb – 39.5ppm	Zn - 22 ppm
Cu – 9.4 ppm	As – 54.8 ppm

CK-8

836

Dark gray, coarse grained rhyolite lapilli tuff. 1% pyrite.

Au – <.5 ppb	Ag – 0.1 ppm
Pb – 16.4ppm	Zn - 32 ppm
Cu – 5.7 ppm	As – 61.8 ppm

	CK-9		ray rhyolite lapilli tuff. Fragments up to 4 of	cm surrounded by black chlorite
(5333),		veinlets.		
		Au – 4.4 ppb	Ag – 0.5 ppm	
		Pb – 32.7ppm	Zn - 9.0 ppm	
		Cu – 5.8 ppm	As – 91.8 ppm	
	OTF 10	Demen relate guer	to with minor green chlorite	
	CK-10	Barren white quar	tz with minor green chlorite.	
		Au – 13.0 ppb	Ag – 12.4 ppm	
		Pb – 16.3 ppm	Zn – 49 ppm	
		Cu – 4.5 ppm	As – 57.6 ppm	
	CK-11	Gray chlorite alter	red rhyolite lapilli tuff. Traces pyrite.	3
		Au –4.7 ppb	Ag – 3.5 ppm	
		Pb – 1.6 ppm	Zn - 32 ppm	
erren .		Cu – 1.9 ppm	As – 1.5 ppm	
	CK-12	Black, medium gr	rained lapilli tuff. Traces pyrite.	
Min		Au - <.5 ppb	Ag - 0.2 ppm	
		Pb – 14.4 ppm	Zn - 56 ppm	
		Cu – 4.2 ppm	As – 19.0 ppm	
	CK-13	Dark gray, glassy	appearing rhyolite lapilli tuff.	
00 2		Au - <.5 ppb	Ag – 0.4 ppm	
		Pb - 25.2ppm	Zn – 396 ppm	
		Cu – 16 ppm	As – 43.5 ppm	
	CK-14	Light gray, mediu across, form 5% of	im grained crystal rhyolite tuff. Coarse patc of the rock.	thes of pyrite, up to 0.5 cm
		Ann Frank		
		Au – <.5 ppb Pb – 64 ppm	Ag – 1.4 ppm Zn –96 ppm	
		Cu - 13.3 ppm	As - 11.5 ppm	
	CK-15	Light gray, fine g	rained rhyolite crystal tuff. Fine pyrite, 1-29	%
		Au – 20.9 ppb	Ag – 0.7 ppm	
		Pb – 26.4ppm	Zn – 21 ppm	
()) ()		Cu – 23.5 ppm	As – 81.1 ppm	
	CK-16	Thinly banded bla	ack argillite.	
		Au – <.5 ppb	Ag – 1.1 ppm	
		Au = <.5 pp b Pb = 7.9 ppm	Zn - 53 ppm	
- 6009		Cu - 28.9 ppm	As - 6.3 ppm	
99		- Frank		

CK-17	Gray, medium grained rhyolite lapilli tuff. Pyrite less than 1%.		
•	Au – <.5 ppb Pb –22 ppm Cu – 8.4 ppm	$\begin{array}{l} Ag = 0.1 \text{ ppm} \\ Zn = 49 \text{ ppm} \\ As = 34.4 \text{ ppm} \end{array}$	
CK-18	Gray brecciated rh	yolite lapilli tuff. Strong quartz veining, up to 10%. Pyrite 1-2%.	
	Au – 3.0 ppb Pb – 13.9 ppm Cu – 5.1 ppm	Ag - 0.7 ppm Zn - 31 ppm As - 60.5 ppm	
СК-19	Black, glassy appe	earing crystal rhyolite tuff. Pyrite 1%.	
	Au –14.5 ppb Pb – 28.7 ppm Cu – 16.8 ppm	Ag – 3.0 ppm Zn – 20 ppm As – 727.8 ppm	
СК-20	Black, glassy appe	earing crystal rhyolite tuff. Pyrite less than 1%.	
	Au – 14.9 ppb Pb – 223 ppm Cu – 7.1 ppm	Ag – 3.0 ppm Zn – 383 ppm As – 48.7 ppm	
CK-21	Black, glassy appe	earing rhyolite tuff. Pyrite 20-25% as fine grained interstial grains.	
	Au – 3.0 ppb Pb – 59.8 ppm Cu – 9.5 ppm	Ag – 1.7 ppm Zn – 48 ppm As – 78.2 ppm	
CK-22	Black, glassy appe	earing rhyolite crystal tuff. Pyrite 10-15%.	
	Au – 4.5 ppb Pb – 37.0 ppm Cu – 8.9 ppm	Ag – 3.5 ppm Zn – 46 ppm As – 95.9 ppm	
CK-23	Black, glassy appe	aring rhyolite crystal tuff. Pyrite 10-15%.	
	Au – <.5 ppb Pb – 38.2ppm Cu – 8.2 ppm	Ag – 0.4 ppm Zn – 18 ppm As – 147.8 ppm	
CK-24	Gray to black fine	grained rhyolite lapilli tuff, minor barren quartz veinlets. Pyrite 2%.	
	Au – 1.1 ppb Pb – 10.6 ppm Cu – 4.6 ppm	Ag – 0.4 ppm Zn – 12 ppm As – 21.9 ppm	

CK-25

CK-26

Chlorite altered, gray crystal lapilli tuff. Traces pyrite.

Au – <.5 ppb	Ag - 0.4 ppm
Pb – 15.1ppm	Zn - 43 ppm
Cu – 3.9 ppm	As – 42.2 ppm

Gray to black crystal tuff. Fine pyrite veins in bands between large clasts, approximately 25%.

Au – 2.1ppb	Ag – 1.5 ppm
Pb – 40.5ppm	Zn – 67 ppm
Cu – 8.4 ppm	As – 782.9 ppm

CK-27

Gray to black medium grained rhyolite lapilli tuff. Pyrite 2%.

Coarse grained rhyolite lapilli tuff, angular fragments up to 4 cm across.

Au – 0.9 ppb	Ag – 0.5 ppm
Pb – 81.6 ppm	Zn – 133 ppm
Cu – 16.9 ppm	As – 141.9 ppm

CK-28

CK-29

CK-30

CK-31

<u>.</u>

sej j

009 (j)j

iii) 🎡

Au -2.9 ppbAg - 2.7 ppmPb - 48.8 ppmZn - 16 ppmCu - 15.3 ppmAs - 125.7 ppm

Black, glassy appearing rhyolite crystal tuff. Fine grained pyrite as bands and seams, up to 20%.

Au – 9.7 ppb	Ag – 10.8 ppm
Pb – 649 ppm	Zn – 36 ppm
Cu – 36 ppm	As – 170.7 ppm

Gray to black crystal rhyolite tuff. Fine quartz carbonate veinlets, subparallel to each other, form 10% of the rock. Veinlets are from 1-5 mm in width.

Au – 4.6 ppb	Ag – 1.1 ppm
Pb – 79.3ppm	Zn – 68 ppm
Cu – 7.9 ppm	As – 24.0 ppm

White quartz with coarse pyrite patches, up to 4 cm across. Pyrite 10% of the rock.

Au – 40.1 ppb	Ag – 3.2 ppm
Pb – 36.6ppm	Zn – 1546 ppm
Cu – 49.0 ppm	As – 685.9 ppm

CK-32

Black, very thinly banded rhyolite ash tuff. Pyrite less than 1%.

Au – 3.3 ppb	Ag – 6.5 ppm
Pb – 2305.0ppm	Zn – >10000 ppm
Cu – 12.7 ppm	As – 293.8 ppm

	CK-33	Gray, coarse graine	d rhyolite crystal tuff. Pyrite 1%.	
		Au - 0.69 ppb	Ag – 1.2 ppm	
		Pb – 43.4ppm Cu – 7.5 ppm	Zn – 258 ppm As – 92.4 ppm	
	СК-34	Gray to black, med	ium grained crystal rhyolite tuff. M	Ainor quartz veinlets, up to 1 cm wide.
		Au – 1.3 ppb	Ag – 0.1 ppm	
		Pb – 14.8ppm Cu – 5.7 ppm	Zn – 79 ppm As – 36.6 ppm	
	CK-35	Red jasper.	A3 - 50.0 ppm	•2 •2
	CV-33			
		Au – .9 ppb Pb – 1026.0ppm	Ag – 0.8 ppm Zn – 1146 ppm	
		Cu – 15.9 ppm	As – 13.1 ppm	
	СК-36	Gray to black, glass the rock.	sy appearing rhyolite tuff. Fine pyr	ite, as wisps and stringers, form 15% of
		Au – <.5 ppb Pb – 1064.3 ppm	Ag – 10.8 ppm Zn – 834 ppm	
		Cu – 56.6 ppm	As – 493.5 ppm	
	CK-37	Green, medium gra	ined andesite with 10% pink to wh	ite barren quartz veinlets.
			Ag1 ppm	
			Zn – 20 ppm As – 26.2 ppm	
	017 20			
	CK-38		te tuff, with traces pyrite.	
		Au – <.52 ppb Pb – 22.1 ppm	Ag – 0.3 ppm Zn – 34 ppm	
		Cu - 6.5 ppm	As – 77.0 ppm	
	СК-39	Black, glassy rhyoli	ite tuff. Traces pyrite.	
.		Au – <.5 ppb	Ag – 8.3 ppm	
		Pb – 1398.3 ppm Cu – 56.9 ppm	Zn – >10000 ppm As – 323.7 ppm	
	CK-40		ed and altered rhyolite tuff. Traces	pyrite.
819.ma		Au – 6.7 ppb	Ag – 0.3 ppm	
		Pb – 16.7ppm	Zn – 46 ppm	
		Cu – 24.9 ppm	As –30.9 ppm	
2				

White, barren quartz veins.

Au – <.5 ppb	Ag – 0.1 ppm
Pb – 7.7 ppm	Zn – 102 ppm
Cu – 2.2 ppm	As – 6.8 ppm

CK-41a

CK-43

Black to gray rhyolite lapilli tuff. Pyrite 2-3%.

CK-42 Black rhyolite breccia – clasts composed of black glassy rhyolite with black chlorite and pyrite filling spaces between the clasts. Pyrite approximately 15%.

Au – <.5 ppb	Ag – 0.3 ppm
Pb – 1447.2ppm	Zn – 464 ppm
Cu – 17.0 ppm	As – 657.4 ppm

Dark gray, fine grained rhyolite lapilli tuff. Pyrite less than 2%.

Au – <.5 ppb	Ag – 0.3 ppm
Pb – 175.9ppm	Zn – 633 ppm
Cu – 35.3 ppm	As – 199.1 ppm

CK-44 Light gray rhyolite breccia. Clasts are up to 4 cm with pyrite forming 10% of the space between the breccia clasts.

Au – <.5 ppb	Ag – 3.6 ppm
Pb – 173.0 ppm	Zn – 92 ppm
Cu – 26.9 ppm	As ->10000 ppm

CK-45 Green, medium grained andesite with 5% barren quartz carbonate veinlets, up to 1 cm wide.

Au –1.5 ppb	Ag – 3.6 ppm
Pb – 173.0 ppm	Zn – 92 ppm
Cu –26.9 ppm	As ->10000 ppm

CK-46 Gray, coarse grained rhyolite lapilli tuff.

Au - <.5 ppb	Ag – 0.3 ppm
Pb – 169.3 ppm	Zn – 1307 ppm
Cu – 20.5 ppm	As – 39.0 ppm

CK-47 Black, glassy appearing rhyolite tuff with 1-2% pyrite.

Au – <.5 ppb	Ag – 10.1 ppm
Pb – 1184.5ppm	Zn – 589 ppm
Cu – 31 ppm	As – 353.1 ppm

CK-48	Gray, medium grai	ned feldspar porphyry. Traces pyrite.	
	Au – <.5 ppb Pb – 37.3 ppm Cu – 9.5 ppm	Ag – 2.8 ppm Zn – 90 ppm As – 90.4 ppm	
CK-49	Black, glassy appe	aring rhyolite tuff. Pyrite as fine grained interstial	veinlets up to 10%.
	Au – <.5 ppb Pb – 648.0ppm Cu – 24.5 ppm	Ag – 4.6 ppm Zn – 447 ppm As – 275.2 ppm	
CK-50	Brecciated, black a	argillite with 50% barren quartz-carbonate stockwo	ork.
	Au – <.5 ppb Pb – 101ppm Cu – 80.6 ppm	Ag –7.9 ppm Zn – 794 ppm As – 200.7 ppm	
CK-51	Black glassy rhyol	ite tuff, pyrite 5%.	
	Au – .5 ppb Pb – 670.2ppm Cu – 10.8 ppm	Ag – 1.2 ppm Zn – 3322 ppm As – 578.3 ppm	
CK-52	Black glassy rhyol	ite tuff, pyrite 1%.	
	Au – <.5 ppb Pb – 406.6 ppm Cu – 8.5 ppm	Ag – 1.2 ppm Zn – 863 ppm As – 1188.6 ppm	
 CK-53	Black glassy rhyol	ite tuff, pyrite 3-4%.	
	Au – <.5 ppb Pb – 2755.2 ppm Cu – 27.9 ppm	Ag – 7.1 ppm Zn – 1518 ppm As – 756.6 ppm	
CK-54	Black glassy rhyol 3-4%.	ite tuff, weakly brecciated, with 1-2% barren narro	w quartz veinlets. Pyrite
	Au – <.5 ppb Pb – 405.7 ppm Cu – 13.4 ppm	Ag – 0.5 ppm Zn – 208 ppm As – 3561.5 ppm	
CK-55	Barren white quart	tz carbonate.	
	Au – .6 ppb Pb – 10.6ppm Cu – 10.9 ppm	Ag – 0.1 ppm Zn – 24 ppm As – 8.6 ppm	

.

655TD				
	CK-56	Gray rhyolite lapil	lli tuff, pyrite 1%.	
		Au – <.5 ppb Pb – 30.7ppm Cu – 4.6 ppm	Ag – 0.2 ppm Zn – 25 ppm As – 28.2 ppm	
	CK-57	Gray, medium gra	ined, rhyolite crystal tuff. Pyrite 1-2%.	
		Au – .6 ppb Pb – 50.9ppm Cu – 7.2 ppm	Ag – 0.6 ppm Zn – 17 ppm As – 53.6 ppm	
	CK-58	Light gray rhyolite	e crystal tuff. Pyrite 1-2%.	
		Au – <.5 ppb Pb – 198.8 ppm Cu –8.1 ppm	Ag – 2.1 ppm Zn – 33 ppm As – 510.8 ppm	
	CK-59	Light gray rhyolite	e lapilli tuff. Pyrite less than 1%.	
		Au - <.5 ppb Pb - 36.8ppm Cu - 3.7 ppm	Ag – 1.7 ppm Zn – 49 ppm As – 1017.6 ppm	
	CK-60	Light gray rhyoli	ite lapilli tuff. Pyrite less than 1%.	
		Au – <.5 ppb Pb – 357.9ppm Cu – 2.4 ppm	Ag – 1.7 ppm Zn – 33 ppm As – 1026.9 ppm	
	CK-61	Light gray breccia coarse blebs.	tted rhyolite tuff. Narrow chlorite veinlets bet	ween fragments. Pyrite 3% as
		Au – 2.2 ppb Pb – 186.6 ppm Cu – 4.0 ppm	Ag – 6.7 ppm Zn – 129 ppm As – 1984.2 ppm	
	CK-62	Gray, medium gra	ined lapilli tuff. Pyrite 2%.	
		Au -<.55 ppb Pb - 68.1 ppm Cu - 5.9 ppm	Ag – 1.5 ppm Zn – 47 ppm As – 323.8 ppm	
	CK-63	Gray, medium gra	nined lapilli tuff. Pyrite 2%.	
		Au – .8 ppb Pb – 325 ppm Cu – 6.7 ppm	Ag – 5.6 ppm Zn – 181 ppm As – 1636.9 ppm	
0000				

CK-64	Dark gray, fine grained rhyolite lapilli tuff. Pyrite less than 1%.			
	Au – <.5 ppb Pb – 43.7ppm Cu – 7.1 ppm	Ag – 0.6 ppm Zn – 275 ppm As – 275 ppm		
CK-65	Dark gray, fine grain	ned rhyolite lapilli tuff. Pyrite less than 1%.		
	Au – 3.4 ppb Pb – 135.8ppm Cu – 458.2 ppm	Ag –>116 ppm Zn – 624 ppm As – 206.3 ppm		
CK-66	Light gray, brecciate	ed rhyolite lapilli tuff. Pyrite approximately 5%.		
	Au – 5.0 ppb Pb – 529.5 ppm Cu – 21 ppm	Ag – 4.6 ppm Zn – 350 ppm As – 988.9 ppm		
CK-67	Gray, medium grain	ned rhyolite crystal tuff. Pyrite less than 1%.		
	Au – 1.3 ppb Pb –53.8 ppm Cu – 7.5 ppm	Ag – 1.4 ppm Zn – 31 ppm As – 75.8 ppm		
CK-68	Black glassy appear	ing rhyolite. Pyrite 1-2%.		
	Au – 1.0 ppb Pb – 53.8 ppm Cu – 6.1 ppm	Ag – 0.5 ppm Zn – 129 ppm As – 55.0 ppm		
СК-69	Black rhyolite cryst	al tuff. Traces pyrite.		
	Au – 1.2 ppb Pb – 65.8ppm Cu – 7.0 ppm	Ag –2.4 ppm Zn – 15 ppm As – 84.6 ppm		
CK-70	Black brecciated arg	gillite, with 10% quartz carbonate veinlets, random a	nd up to 5 mm wide.	
	Au – 1.1 ppb Pb – 163.0 ppm Cu – 31.6 ppm	Ag – 2.0 ppm Zn – 99 ppm As – 297.6 ppm		
CK-71	Black glassy rhyolit	te with 3-4% pyrite.		
	Au –1.1 ppb Pb – 2159.7 ppm Cu – 30.9 ppm	Ag – 20 ppm Zn – 965.2 ppm As – 210.1 ppm		
CK-72	Black, fine grained	lapilli tuff, pyrite as fine disseminations, approximat	ely 3%.	
	Au – 1.2 ppb Pb – 270.2 ppm Cu – 5.5 ppm	Ag – 4.8 ppm Zn – 13 ppm As – 621.8 ppm		

CK-73	Black glassy appea	ring rhyolite. 3-4% pyrite.
	Au – .9 ppb Pb – 6473.0 ppm Cu – 19.2 ppm	Ag – 3.3 ppm Zn – 271 ppm As – 258 ppm
CK-73a	Black, medium gra	ined rhyolite lapilli tuff. 5% pyrite.
	Au –.8 ppb Pb – 89.2 ppm Cu – 7.9 ppm	Ag –1.7 ppm Zn – 156 ppm As – 33.2 ppm
CK-75	Black, glassy appea	aring, medium grained rhyolite crystal tuff.
	Au – .6 ppb Pb – 99.9 ppm Cu – 4.7 ppm	Ag – 1.6 ppm Zn – 9.0 ppm As – 83.7 ppm
CK-76	Black, glassy appe	earing, medium grained rhyolite crystal tuff.
	Au – 1.8 ppb Pb – 84.2ppm Cu – 10.9 ppm	Ag – 4.4 ppm Zn – 136 ppm As – 54.3 ppm
CK-77	Black, glassy appea	aring rhyolite. Pyrite 2%.
	Au – <.5 ppb Pb – 2621.8ppm Cu – 17.5 ppm	Ag – 0.9 ppm Zn – 94 ppm As – 183.5 ppm
CK-78	Black, medium gra	ined rhyolite crystal tuff. Weak carbonate veinlets.
	Au – 1.1 ppb Pb – 230.8ppm Cu – 7.4 ppm	Ag – 1.8 ppm Zn – 25 ppm As – 96 ppm
CK-79	Black, glassy appe	aring, medium grained rhyolite crystal tuff. Pyrite 1-2%.
	Au – 1.1 ppb Pb – 36.0 ppm Cu – 5.4 ppm	Ag – 1.6 ppm Zn – 27 ppm As – 110.5 ppm
CK-80	Black, glassy appe	aring, medium grained rhyolite crystal tuff. Pyrite 1-2%.
	Au –1.2 ppb Pb – 201.6 ppm Cu – 4.2 ppm	Ag – .9 ppm Zn – 177 ppm As – 91.6 ppm
CK-81	Black, glassy appe	aring, medium grained rhyolite crystal tuff. Pyrite 1-2%.
	Au – .6 ppb Pb – 196.3 ppm Cu – 4.2 ppm	Ag – 0.9 ppm Zn – 171 ppm As – 90.5 ppm

CK-82	Silicified green and	lesite. Traces pyrite.			
	Au - <.5 ppb Pb - 47.9 ppm Cu - 4.3 ppm	Ag – 4.8 ppm Zn – 410 ppm As – 129.8 ppm			
CK-83	Coarse grained rhy	olite lapilli tuff. Pyrite 3	%.		
	Au – 3.4 ppb Pb – 140.6 ppm Cu – 44.34 ppm	Ag – 70 ppm Zn – 61 ppm As – 53.1 ppm			
CK-84	Black rhyolite brec	cia – black chlorite and p	yrite are found bet	ween clasts.	Pyrite 4%.
	Au – .7 ppb Pb – 49ppm Cu – 12.1 ppm	Ag – 7.4 ppm Zn – 14 ppm As – 31.3 ppm			
CK-85	Black glassy appea	ring rhyolite breccia. Py	rite approximately	20% between	clasts.
	Au – 1.2 ppb Pb – 406 ppm Cu –6.6 ppm	Ag – 38 ppm Zn – 72 ppm As – 47.3 ppm			
CK-86	Silicified brecciate	d rhyolite tuff. Pyrite 1-2	2%.		
	Au –1.6 ppb Pb – 1790.31ppm Cu – 4.9 ppm	Ag – 18.1 ppm Zn – 73 ppm As – 450.5 ppm			
CK-87	Black, weakly silic	ified crystal lapilli tuff.			
	Au –4.6 ppb Pb – 104.8 ppm Cu – 10.0 ppm	Ag – 4.4 ppm Zn – 13 ppm As – 32.5 ppm			
CK-88	Black glassy rhyoli	ite. Pyrite 1-2%.			
	Au – <.5 ppb Pb – 219.5 ppm Cu – 5.7 ppm	Ag – 1.5 ppm Zn – 38 ppm As – 191.5 ppm			
CK-89	Black, fine grained	l rhyolite tuff. Pyrite 1%	•		
	Au – 1.3 ppb Pb – 45.0 ppm Cu – 5.6 ppm	Ag – 1.7ppm Zn – 156 ppm As – 52.4 ppm			
CK-90	Dark gray rhyolite	lapilli tuff. Pyrite 1%.			
	Au – .7 ppb Pb – 26.9ppm Cu – 14.3 ppm	Ag – 0.7 ppm Zn – 127 ppm As – 23.4 ppm			

	CK-91	Black, fine grained	d argillite. Pyrite less than 1%.	
		Au – <.5 ppb	Ag – 2.2 ppm	
		Pb - 8.7 ppm	Zn - 196 ppm	
		Cu = 58.4 ppm	As - 16.5 ppm	
		Cu – Jo.4 ppm	715 – 10.5 ppm	
	CK-92	Black, glassy rhyo	lite, fine pyrite along banding in rhyolite	e. Pyrite bands up to 2 mm.
		Au – 19.7 ppb	Ag – 20 ppm	
		Pb – 216.8ppm	Zn – 8742 ppm	
		Cu – 240.0 ppm	As – 4530.1 ppm	
		Cu ziooppin	II	
	CK-93	Black, very fine g	rained, weakly brecciated argillite.	
		Au - <.5 ppb	Ag - 0.7 ppm	
2000		Pb – 7.7ppm	Zn – 125 ppm	
6333		Cu - 30.2 ppm	As – 21.9 ppm	
		Cu 90.2 ppm	IN MIN PPAN	
	CK-94	Black, very fine g	rained rhyolite tuff.	
		Au - <.5 ppb	Ag – 3.2 ppm	
		Pb – 8.5ppm	Zn –976 ppm	
100000		Cu – 255 ppm	As – 542.7 ppm	
		Ou 200 ppm		
	CK-95	Black, very fine g	rained rhyolite tuff.	
		Au – <.5 ppb	Ag - 0.5 ppm	
		Pb – 13.1ppm	Zn – 177 ppm	
		Cu - 64 ppm	As – 42.8 ppm	
		ou or ppin		
	CK-96	Black, very fine g	rained rhyolite tuff.	
		Au – 0.7 ppb	Ag – 0.6 ppm	
		Pb – 8.8 ppm	Zn – 109 ppm	
		Cu – 62.9 ppm	As – 11.2 ppm	
		ou ours ppm		
	CK-97	Red jasper.		
		Au – 5 ppb	Ag – .2 ppm	
		Pb – 32.2 ppm	Zn – 108 ppm	
		Cu – 8.0 ppm	As – 17.1 ppm	
	CK-98	Light gray rhyolit	e crystal tuff. Pyrite 1%.	
111,9				
		Au – 1.3 ppb	Ag – 0.7 ppm	
		Pb – 35.9 ppm	Zn – 182 ppm	
		Cu – 22.2 ppm	As – 33.7 ppm	
	CK-99	Dark gray rhyolite	e lapilli tuff. Pyrite 1%.	
		Au-<.5 ppb	Ag – 0.6 ppm	
			Zn - 41 ppm	
		Pb – 10.9ppm		
		Cu – 30.3 ppm	As – 3.9 ppm	
(##R				

CK-100	Gray, medium grain	ned feldspar porphyry	y, with barren white	vein.
	Au – 50.9 ppb Pb – 2.8ppm Cu – 66.6 ppm	Ag – 0.3 ppm Zn – 9.0 ppm As – 3085.3 ppm		
CK-102	Black argillite.			
	Au – .5 ppb Pb – 15.8 ppm Cu – 39.5 ppm	Ag – 0.4 ppm Zn – 48 ppm As – 210.9 ppm		
СК-103	White granodiorite	•		\$
	Au – 37 ppb Pb – 2.7ppm Cu – 58.5 ppm	Ag – 0.1 ppm Zn – 15 ppm As – 21.1 ppm		
CK-104	White granodiorite	•		
	Au – 37.8 ppb Pb – 2.7ppm Cu – 48.1 ppm	Ag – 0.1 ppm Zn – 34 ppm As – 8.5 ppm		
CK-105	White granodiorite	- -		
	Au – 3.2 ppb Pb – 2.4ppm Cu – 44.6 ppm	Ag – <.1 ppm Zn – 13 ppm As – 1.2 ppm		
CK-106	Barren white quart	Ζ.		
	Au – <.5 ppb Pb – .8 ppm Cu – 5.0 ppm	Ag - <.1 ppm Zn - 6 ppm As - <.5 ppm	•	
CK-107	Rusty black argillit	ta		
CIX-107	Au –1.9 ppb	Ag – 2.1 ppm		
	Pb – 48.46 ppm Cu – 244.8 ppm	Zn – 1308 ppm As – .5 ppm		
CK-108	Gray andesite tuff.			
	Au – 5.0 ppb Pb – 22.0 ppm	Ag – 1.9 ppm Zn – 459 ppm		
	Cu – 92.6 ppm	As - 1.0 ppm		

CK-109	Tan colored, altered	l rhyolite tuff.
	Au – 2.95 ppb Pb – 16.4ppm Cu – 95.9 ppm	Ag – 0.5 ppm Zn – 226 ppm As – 1.0 ppm
СК-110	Altered, medium gr	ained granodiorite.
	Au – <.5 ppb Pb – 20.ppm Cu – 12.9 ppm	Ag – 0.7 ppm Zn – 73 ppm As – 11.3 ppm
CK-111	Red jasper.	
	Au – .9 ppb Pb – 78.41ppm Cu – 6.2 ppm	Ag – 0.4 ppm Zn – 515 ppm As – 46.9 ppm
CK-112	Gray rhyolite lapilli	tuff. Pyrite 3%.
	Au – .5 ppb Pb – 25.0 ppm Cu – 4.4 ppm	Ag – 0.2 ppm Zn – 99 ppm As – 18.5 ppm
CK-113	Gray, fine grained l	apilli tuff. Pyrite 1-2%.
	Au – <.5 ppb Pb – 26.7 ppm Cu – 6.74 ppm	Ag – 0.4 ppm Zn – 24 ppm As – 28.4 ppm
CK-114	Black, fine grained	crystal lapilli tuff.
	Au – 0.5 ppb Pb – 97.7 ppm Cu – 42.8 ppm	Ag – 0.4 ppm Zn – 185 ppm As – 8.8 ppm
CK-115	Black, fine grained	crystal lapilli tuff.
	Pb – 178 ppm	Ag – .5 ppm Zn – 140 ppm As – 11.5 ppm
CK-116	Gray, sericite-altere	d rhyolite lapilli tuff.
	Au – <.5 ppb Pb – 25.4 ppm Cu – 4.2 ppm	Ag – 0.1 ppm Zn – 193 ppm As – 27.9 ppm
CK-117	Red jasper.	
	Au – 4.3 ppb Pb – 124ppm Cu – 3.7 ppm	Ag – 0.5 ppm Zn – 384 ppm As – 65.5 ppm

	CK-118	Gray, sericite-altered rhyolite ash tuff.	
	242 - 144 14	Au – 2.3 ppb Ag – 27.7 ppm	
(000)		Pb – 771.3 ppm Zn – 213 ppm Cu – 241.9 ppm As – 730.2 ppm	
	CK-119	Gray, sericite-altered rhyolite lapilli tuff. Pyrite 5-10%.	
		Au – 1.3 ppb Ag – 3.8 ppm	
		Pb – 75 ppm Zn – 27 ppm Cu – 39.1 ppm As – 66.6 ppm	
	CK-120	Gray, sericite-altered, fine grained lapilli rhyolite tuff. Pyrite 2%.	
- 	CR-120		
		Au – .8 ppb Ag – 4.7 ppm Pb – 71 ppm Zn – 3470 ppm	
		Cu - 39.6 ppm As $- 46.7 ppm$	
	CK-121	Black argillite.	*
		Au –1.7 ppb Ag – 15.8 ppm	
		Pb – 237 ppm Zn – 185 ppm	
		Cu – 46.9 ppm As – 200.6 ppm	
	CK-122	Black, fine grained rhyolite lapilli tuff.	
		Au – .7 ppb Ag – 10.3 ppm	
		Pb – 95 ppm Zn – 176 ppm Cu – 30.4 ppm As – 105.3 ppm	
		Cu = 50.4 ppm As $= 105.5 ppm$	
	CK-123	Gray, fine grained silicified argillite.	
		Au – 2.8 ppb Ag – 0.6 ppm Pb – 18.5ppm Zn – 181 ppm	
		Cu – 110.1 ppm As – .9 ppm	
	CK-124	Gray to black rhyolite breccia. Pyrite 2%.	
		Au – .7 ppb Ag – 5.8 ppm	
		Pb – 4112ppm Zn – 4112 ppm	
		Cu – 64.5 ppm As – 326.6 ppm	
	CK-125	Rhyolite crystal tuff. Carbonate veining approximately 5%.	
		Au – 1.5 ppb Ag – 4.7 ppm	
		Pb – 536.2ppm Zn – 4099 ppm Cu – 26 ppm As – 262.5 ppm	
		$Cu = 20$ hbm $W_2 = 505.2$ hbm	

	TITLE 1	<u>d.1</u>	an ailianna male Dhualita minor av	rrhotite blebs, rock is fine grained
	ERK-1		ay siliceous rock. Rhyolite, minor py	moute blebs, fock is fine granied
		tuff.		
		Au – 1.4 ppb	Ag – 60.5 ppm	
		Pb – 5.9 ppm	Zn – 111 ppm	
###		Cu-23.1 ppm	As – 3.7 ppm	
62397	ERK-2	Outcrop of fossilif	erous siltstone, medium grained, gray	. Weak pyrite less than 1%.
(5333)				
		Au -<.5 ppb	Ag – .1 ppm	
		Pb – 8.3 ppm	Zn – 96 ppm	
4777		Cu – 5.9 ppm	As – 3.4 ppm	
		an in the private k k at		
	ERK-3	Brecciated argillite	with quartz and black shiny stibnite.	Strong green stain, vein 1-1 ½ m in
		width.		
		WICHT.		
		Au – 6.6 ppb	Ag – 6.2 ppm	
		Pb – 187.0 ppm	Zn – 2087 ppm	
		Cu - 63.4 ppm	As - >10000 ppm	
		Cu – 05.4 ppm	AS ->10000 ppm	
###	ERK-4	Massive black stib	nita	
	EKK-4	IVIASSIVE DIACK SUD	Inte.	
(2222)		Au – <.1 ppb	Ag – 41 ppm	
65555				
		Pb – 163.4ppm	Zn – 2127 ppm	
		Cu – 331.6 ppm	As – 421.3 ppm	
		011	h - Companies provide poplat	
	ERK-5	Siliceous zone, gra	b of massive pyrite pocket.	
		100 7 L		
		Au – 388.7 ppb	Ag – 55 ppm	
		Pb – 1065.6 ppm	Zn – 105 ppm	
		Cu-84.3 ppm	As – 2826.5 ppm	
			a construction of the second	
	ERK-6	Quartz vein, very r	usty along zone. Zone is 5 m wide.	
0.00		Au – 84.1 ppb	Ag—42 ppm	
933) 933)		Pb – 330.8 ppm	Zn – 96 ppm	
		Cu – 30.4 ppm	As – 6753.9 ppm	
0002			a da anti-anti-anti-anti-anti-anti-anti-anti-	
(333)	ERK-7	Brecciated argillite	e, strong quartz veining. Sparse shiny	black mineral.
6333		Au – .7 ppb	Ag – 1.7 ppm	
6333		Pb – 98.3 ppm	Zn – 335 ppm	
		Cu – 20.3 ppm	As – 5016.4 ppm	
889 1				
	ERK-8	Massive shiny blac	k stibnite.	
		Au – 1.1 ppb	Ag – 32 ppm	
		Pb – .2 ppm	Zn – 3345 ppm	
		Cu – 148.2 ppm	As – 7.6 ppm	

ERK-9	Massive shiny black	stibnite.	
	Au – 15.7 ppb Pb – .2 ppm Cu – 325.8 ppm	Ag – 12.1 ppm Zn – 1024 ppm As – 39.3 ppm	
ERK-10	Quartz stockwork, u as black shiny stibni	p to 5 m wide, with green stained quartz, small ar te.	nounts of pyrite, as well
	Au –258.8 ppb Pb – 7819.03 ppm Cu – 83.9 ppm	Ag – 65 ppm Zn – 186 ppm As – >10000 ppm	
ERK-11	Quartz with very spa	arse shiny black stibnite.	
		Ag – 6.2 ppm Zn – 2087 ppm As – <10000 ppm	
 ERK-12	Gray rhyolite, fine g	rained with fine grained pyrite bands approximate	ely 15%.
	Au – 19.9 ppb Pb – 37.4ppm Cu – 28.3 ppm	Ag – >256 ppm Zn – 35 ppm As – 503.7 ppm	
ERK-13	Large rhyolite bould	er – fine grained pyrite as bands up to 0.5 cm. Tr	aces galena.
	Au – 5.2 ppb Pb – 3293.6 ppm Cu – 35.2 ppm	Ag – 12.2 ppm Zn – 1162 ppm As – 192.3 ppm	
 ERK-14	Gray rhyolite with fi	ine grained pyrite bands approximately 15%.	
	Au – 1.6 ppb Pb – 215 ppm Cu – 16.6 ppm	Ag – 57 ppm Zn – 123 ppm As – 161.8 ppm	
ERK-15	Manganese stained g	gray rhyolite. Fine grained pyrite approximately 5	5%. Minor sphalerite.
	Au –29.7 ppb Pb – 385.6 ppm Cu – 837.3 ppm	Ag – 7.8 ppm Zn – >10000 ppm As – 158.5 ppm	
ERK-16	15 cm gray rhyolite	cobble with 20-25% fine grained pyrite.	
	Au – <.5 ppb Pb – 717 ppm Cu – 44.5 ppm	Ag – 64 ppm Zn – >10000 ppm As – 446.8 ppm	

.

	ERK-17	15 cm cobble – gray	rhyolite with abundant fine grained pyrite approximately 5-7%.
		Au – 16.7 ppb Pb – 34.7 ppm Cu – 442 ppm	Ag – 7.5 ppm Zn – 362 ppm As – 61.9 ppm
	ERK-18	0.4 m boulder of gra	y rhyolite, traces galena, pyrite approximately 7%.
		Au – 5.5 ppb Pb – 3401.0 ppm Cu – 37.5 ppm	Ag – 35 ppm Zn – >10000 ppm As – 121.5 ppm
	ERK-19	Gray-white mangang galena-pyrite minera	ese stained boulder. 0.6 m in diameter, rhyolite with strong sphalerite- alization.
	۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰	Au –17.7 ppb Pb – >10000 ppm Cu – 225.9 ppm	Ag ->137 ppm Zn ->10000 ppm As - 41.4 ppm
	ERK-20		olite breccia with fine grained pyrite between clasts. Angular clasts m, pyrite approximately 7%.
		Au – 28.2 ppb Pb – 359.8 ppm Cu – 21.3 ppm	Ag – 10.6 ppm Zn – 661 ppm As – 369.3 ppm
	ERK-21	Boulder approximat approximately 30%	ely $0.6 \text{ m} - \text{rhyolite breccia with massive fine grained pyrite veins of the rock.}$
		Au – 201.7 ppb Pb – 319.8 ppm Cu – 45.8 ppm	Ag – 25.2 ppm Zn – 3163 ppm As – 420.8 ppm
	ERK-22	Quartz with semi-m	assive cube pyrite, approximately 40-50%.
		Au – 1140.0 ppb Pb – 9.3 ppm Cu – 308.6 ppm	Ag – 8.8 ppm Zn – 385 ppm As – 1170 ppm
	ERK-23	Large 1m x 0.5m bo	oulder – rhyolite with minor galena-sphalerite. Pyrite approximately 5%.
		Au – 1.9 ppb Pb – 2033.2 ppm Cu – 32. ppm	Ag – 18.4 ppm Zn – 2487 ppm As – 373.2 ppm
	ERK-24	0.3 m boulder of gra	ay rhyolite, fine grained pyrite approximately 5%.
		Au – 1.4 ppb Pb – 1668.7 ppm Cu – 60.2 ppm	Ag – 25.2 ppm Zn – 630 ppm As – 32.5 ppm
6000			

ERK-25

Float – 1.5 m argillite boulder, thinly banded pyrite approximately 10% in argillite.

ERK-25	Float – 1.5 m argillite boulder, thinly banded pyrite appro-			
	Au – 3.2 ppb Pb – 813.5 ppm Cu – 8.1 ppm	Ag – 2.1 ppm Zn – 7974 ppm As – 1604.1 ppm		
RDM-1	Black argillite.			
	Au – 0.1 ppb Pb – 7.1 ppm Cu – 17.4 ppm	Ag – .4 ppm Zn – 72 ppm As – 6.2 ppm		
RDM-2	Black argillite.			
	Au – 1.4 ppb Pb – 16.4 ppm Cu – 30.8 ppm	Ag - 0.70 ppm Zn - 81 ppm As - 42.0 ppm		
RDM-3	Black argillite.			
	Au – <.5 ppb Pb – 11.7 ppm Cu – 21.4 ppm	Ag – .1 ppm Zn – 126 ppm As – 2.4 ppm		
RDM-4	Black argillite.			
	Au – 1.1 ppb Pb – 5.4 ppm Cu – 38.8 ppm	Ag – .6 ppm Zn – 5562 ppm As – 8.2 ppm		
RDM-5	Black siltstone, m	inor 0.5 mm quartz veinlets.		
	Au – <.5 ppb Pb – 10.4 ppm Cu – 19.1 ppm	Ag – 0.4 ppm Zn – 100 ppm As – 38.4 ppm		
RDM-6	Black argillite wi	th fine cube pyrite, approximately 5%.		
	Au - <.5 ppb Pb - 2.1 ppm Cu - 31.7 ppm	Ag – .2 ppm Zn – 82 ppm As – 105.7 ppm		
RDM-7	Black argillite.			
	Au – 0.5 ppb Pb – 6.1 ppm Cu – 30.2 ppm	Ag – .4 ppm Zn – 64 ppm As – 10.1 ppm		
RDM-8	Black argillite.			
	Au – .5 ppb Pb – 2.2 ppm Cu – 35.7ppm	Ag – 0.10 ppm Zn – 129 ppm As – 6.3 ppm		
	•			

RDM-9	Black argillite with	h barren quartz carbonate stockwork, approximately 50%.
	Au – .8 ppb Pb – 6.7 ppm Cu – 61.7 ppm	Ag – .4 ppm Zn – 115 ppm As – 219.6 ppm
RDM-10	Black argillite.	
	Au <.5 ppb Pb 14.6 ppm Cu 62.2 ppm	Ag = .4 ppm Zn = 87 ppm As = 1.4 ppm
RDM-11	Black argillite. Py	write 2%.
	Au – <.5 ppb Pb – 5.7 ppm Cu – 17.4 ppm	Ag – 0.3 ppm Zn – 115 ppm As – 3.3 ppm
RDM-12	Black argillite.	
	Au – <.5 ppb Pb – 8.5 ppm Cu – 41.8 ppm	Ag8 ppm Zn - 99 ppm As - 1.4 ppm
RDM-13	Black argillite.	
	Au – <.5 ppb Pb – 20.2 ppm Cu – 82.8 ppm	Ag = .7 ppm Zn = 163 ppm As = 1.1 ppm
RDM-14	Black argillite with	th barren white quartz veinlets 5% of the rock.
	Au – <.5 ppb Pb – 4.3 ppm Cu – 19.7 ppm	Ag – .2 ppm Zn – 76 ppm As – 2.4 ppm
RDM-15	Rusty gray siltsto	ne.
	Au – .1 ppb Pb – 4.6 ppm Cu – 31.1 ppm	Ag – .1 ppm Zn – 34 ppm As – 2.3 ppm
RDM-16	Gray argillite.	
	Au – .8 ppb Pb – 17.9 ppm Cu – 71.7 ppm	Ag – 0.4 ppm Zn – 102 ppm As – 1.6 ppm
RDM-17	Gray sericite-alte	red lapilli rhyolite tuff.
	Au – .6 ppb Pb – 10.0 ppm Cu – 8.4 ppm	Ag – .1 ppm Zn – 859 ppm As – 39.7 ppm

	RDM-18	Green chlorite-alte	ered andesite with barren quartz veining.
		Au – .6 ppb Pb – 8.4 ppm	Ag – .1 ppm Zn – 117 ppm
		Cu – 2.5 ppm	As – 2.8 ppm
	RDM-19	Gray-green, fine g	rained rhyolite lapilli tuff.
		Au – <.5 ppb Pb – 14.5 ppm	Ag – <.1 ppm Zn – 99 ppm
		Cu – 3.1 ppm	As – 16.3 ppm
	RDM-20	Black, fine grained	l, rhyolite lapilli tuff.
		Au – .6 ppb Pb – 16.7 ppm	Ag - <.1 ppm Zn - 63 ppm
		Cu – 3.3 ppm	As - 2.2 ppm
	RDM-21	Gray, sericite-alter	ed rhyolite breccia, pyrite approximately 4%.
		Au – <.5 ppb Pb – 18.3 ppm	Ag – .2 ppm Zn – 145 ppm
6000		Cu – 3.4 ppm	As – 18.7 ppm
	RDM-22	Red jasper.	
		Au – 1.3 ppb Pb – 88.8 ppm	Ag – 1.6 ppm Zn – 1181 ppm
677)		Cu – 2.3ppm	As – 14.3 ppm
	RDM-23	Red jasper.	
		Au – <.5 ppb Pb – 21.9 ppm	Ag – .1 ppm Zn – 72 ppm
		Cu – .7 ppm	As – 8.6 ppm
	RDM-24	Gray, fine grained	lapilli tuff. Pyrite 5%.
		Au – <.5 ppb Pb – 42.0 ppm	Ag – .6 ppm Zn – 124 ppm
		Cu – 3.9 ppm	
	RDM-25	The second s	ay, medium grained rhyolite lapilli tuff.
		Au – <.5 ppb Pb – 28.1 ppm	Ag – 0.5 ppm Zn – 106ppm
		Cu – 3.4 ppm	As – 22.8 ppm
	RDM-26	Black, medium gra	ained rhyolite lapilli tuff. Pyrite 2%.
		Au – <.5 ppb Pb – 43.1 ppm	Ag – .7 ppm Zn – 84 ppm
		Cu – 4.9 ppm	As – 75 ppm

	RDM-27	Sericite-altered, gr	ay andesite tuff.		
		Au – <.5 ppb	Ag4 ppm		
		Pb – 74.8 ppm	Zn - 63 ppm		
		· · · · · · · · · · · · · · · · · · ·	As - 7.7 ppm		
		Cu – 25 ppm	AS = 7.7 ppm		
	RDM-28	Black, fine grained	d glassy appearing rhyolit	e tuff. Thinly banded	d, pyrite 3%.
		Au – <.5 ppb	Ag – 3.0 ppm		
		Pb – 141 ppm	Zn – 1496 ppm		
		Cu – 62.6 ppm	As - 63.1 ppm		
				•	
	RDM-29	Black rhyolite bre	ccia. Pyrite 5%.		
		Au – <.5 ppb	Ag – 12 ppm		
		Pb – 214 ppm	Zn – >10000 ppm		
60004		Cu – 68.4 ppm	As – 298.4 ppm		
		<u> </u>			
	RDM-30	Gray rhyolite brec	cia, pyrite 7%.		
		Au – <.5 ppb	Ag6 ppm		
		Pb - 25.3 pp m	Zn - 135 ppm		
		Cu - 6.9 ppm	As - 35.1 ppm		
40000		Cu = 0.9 ppm	715 – 55.1 ppm		
	RDM-31	Gray rhyolite crys	tal tuff.		
10209		A. 5 mah	A ~ 1 0 mm		
		Au - <.5 ppb	Ag - 1.0 ppm		
		Pb – 150 ppm	Zn – 928 ppm		
		Cu – 15.86 ppm	As – 70.0 ppm		
	RDM-32	Gray, fine grained	rhyolite lapilli tuff.		
		Au-<.5 ppb	Ag – .2 ppm		
		Pb – 22.1 ppm	Zn – 70 ppm		
		Cu – 25.1 ppm	As - 1.4 ppm		
633					
	RDM-39	Medium grained g	rav granodiorite.		
6009					
		Au - 4.0 ppb	Ag5 ppm		
		Pb – 6.8 ppm	Zn – 48 ppm		
		Cu – 4.9 ppm	As-11.7 ppm		
	RDM-40	Medium grained r	bink to gray granodiorite.		
	a carata i V	The manual Developer P			
(333)		Au – 8.5 ppb	Ag – 1.1 ppm		
		Pb – 25 ppm	Zn – 52 ppm		
63		Cu – 7.8 ppm	As-8.5 ppm		

RDM-41	Medium grained pi	nk to gray granodio	rite.
	Au – 2.1 ppb Pb – 22.4 ppm Cu – 1.2 ppm	Ag – .9 ppm Zn – 61 ppm As – 4.0 ppm	
RDM-42	Fine grained silicif	ied granodiorite.	
	Au – .7 ppb Pb – 3.0 ppm Cu – 1.9 ppm		
RDM-43	Gray to pink grano	diorite.	e.
	Au – 1.2 ppb Pb – 6.8 ppm Cu – 2.5 ppm	Ag – .4 ppm Zn – 48 ppm As – 7.8 ppm	
RDM-44	Gray, fine grained	rhyolite.	
	Au – <.5 ppb Pb – 34.3 ppm Cu – 5.1 ppm	Ag – .3 ppm Zn – 49 ppm As – 6.3 ppm	
RDM-45	Gray chlorite-alter	ed green granodiorit	e.
	Au – <.5 ppb Pb – 2.0 ppm Cu – 1.7 ppm	Ag – .3 ppm Zn – 51 ppm As – 4.9 ppm	
RDM-45	Fine grained grano	diorite.	
	Au – <.5 ppb Pb – 2.0 ppm Cu – 1.7 ppm	Ag – .3 ppm Zn – 51 ppm As – 4.9 ppm	
RDM-46	Fine grained rhyoli	te tuff.	
	Au – 2.4 ppb Pb – 4.8 ppm Cu – 2.2 ppm	Ag – .5 ppm Zn – 61 ppm As – 6.7 ppm	
RDM-47	Gray, fine grained	rhyolite ash tuff. Py	rite approximately 10%.
	Au – .9 ppb Pb – 5.2 ppm Cu – 4.2 ppm	Ag – .5 ppm Zn –14 ppm As – 11.1 ppm	•
RDM-48	Gray, fine grained	rhyolite ash tuff. P	yrite approximately 10%.
	Au – .6 ppb Pb – 9.5 ppm Cu – 407.7 ppm	Ag – .7 ppm Zn – 58 ppm As – 9.2 ppm	

RDM-49	Black, fine grained	rhyolite ash tuff. Pyrite approxima	ately 5%.	
	Au – 4.1 ppb Pb – 61 ppm Cu – 39.0 ppm	Ag = .1 ppm Zn = 61 ppm As = 55.1 ppm		
TEK-1	Massive pyrite cobl	ole, approximately 15 cm.		
	Au – 0.8 ppb Pb – 204.5 ppm Cu – 24.2 ppm	Ag – 18.2 ppm Zn – 269 ppm As – 520.7 ppm		
TEK-2		coarse grained pyrite bands approx proximately 30 cm in diameter.	imately 5-10%. Trac	es fine grained
	Au –38.4 ppb Pb – >10000 ppm Cu – 56.5 ppm	Ag – 60 ppm Zn – >10000 ppm As – 895.7 ppm		
TEK-3	Gray carbonate-alte	ered rhyolite cobble approximately	15 cm. Traces galen	a, sphalerite.
	Au – 12.6 ppb Pb – 427 ppm Cu – 223.9 ppm	Ag – 4.9 ppm Zn – 3118 ppm As – 48.5 ppm		
TEK-4	Small 4 cm cobble	-rhyolite with carbonate-altered fr	racture. Traces galen	a.
	Au – 42.7 ppb Pb – 1191.2ppm Cu – 24.1 ppm	Ag – 14 ppm Zn – >10000 ppm As – 140.1 ppm		
TEK-5	0.4 m float boulder approximately 10-1	– rhyolite with quartz-pyrite veinl 5%.	lets up to 2 cm. Quar	tz stockwork
	Au – 28.7 ppb Pb – 36.1ppm Cu – 13.6 ppm	Ag – 2.7 ppm Zn – 328 ppm As – 68.2 ppm		
TEK-6	Quartz pebble with	minor galena.		
	Au – 2.6 ppb Pb – 240.5 ppm Cu – 1.6 ppm	Ag – 1.5 ppm Zn – 732 ppm As – 11.2 ppm		
TEK-7	Gray rhyolite with	8% fine grained pyrite. Approxim	ately 10% barren qua	ırtz veinlets.
	Au –3.9 ppb Pb – 477.5 ppm Cu – 83.8 ppm	Ag – >163 ppm Zn – 1738 ppm As – 212.4 ppm		

Au - 2.6 ppbAg - 77 ppmPb ->10000ppmZn ->10000 ppmCu - 57.4 ppmAs - 251.8 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au - 269.4 ppbAg - 6.7 ppmPb - 103.2 ppmZn - 293 ppmCu - 1976.5 ppmAs - 88 ppm		TEK-8	0.3 m boulder – coa approximately 10%		0.5 cm in carbonate-rich zor	e with jasper pyrite
$P_{0} = 83.2 \text{ ppm} \qquad Zh = 0.16 \text{ ppm}$ $Cu = 14.6 \text{ pp} \qquad As = 60.7 \text{ ppm}$ $TEK-9 \qquad Boulder approximately 0.3 m of rhyolite breccia. Fine grained pyrite approximately 8% between clasts. Au = 1.0 \text{ ppb} \qquad Ag = 23.3 \text{ ppm} Pb = 442.2 \text{ ppm} \qquad Zn = -662 \text{ ppm} Cu = 22.1 \text{ ppm} \qquad As = 145.4 \text{ ppm} TEK-10 \qquad Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%. Au = 2.6 \text{ ppb} \qquad Ag = 77 \text{ ppm} Pb = -300000 \text{ ppm} Cu = 57.4 \text{ ppm} \qquad As = -210000 \text{ ppm} Cu = 57.4 \text{ ppm} \qquad As = -210000 \text{ ppm} Cu = 57.4 \text{ ppm} \qquad As = -20000 \text{ ppm} Cu = 197.65 \text{ ppm} \qquad As = -88 \text{ ppm} TEK-11 \qquad Quartz \text{ with 40-50% coarse cube pyrite.} Au = 2.69.4 \text{ ppb} \qquad Ag = 6.7 \text{ ppm} Pb = -130.2 \text{ ppm} \qquad Zn = -233 \text{ ppm} Cu = 197.65 \text{ ppm} \qquad As = -88 \text{ ppm} TEK-12 \qquad Breeciated andesite with carbonate veins. Au = 8.7 \text{ ppb} \qquad Ag = 70 \text{ ppm} Pb = -10000 \text{ ppm} \qquad Zn = 1713 \text{ ppm} Cu = 34.1 \text{ ppm} \qquad As = -18.1 \text{ ppm} TEK-13 \qquad Quartz cobble with coarse pyrite approximately 5%. Au = 39.5 \text{ ppb} \qquad Ag = 1.9 \text{ ppm} Cu = 18.6 \text{ ppm} \qquad As = 164.9 \text{ ppm} A04-234 \qquad Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au = 420 \text{ ppb} \qquad Ag = 2560 \text{ ppm} Pb = -3900 \text{ ppm} \qquad Zn = 17,900 \text{ ppm}$		•	Au – 60.7 ppb	Ag -4.2 ppm		
Cu = 14.6 pmAs = 60.7 ppmTEK-9Boulder approximately 0.3 m of rhyolite breecia. Fine grained pyrite approximately 8% between clasts.Au = 1.0 ppbAg = 23.3 ppm Pb = 442.2ppmPb = 442.2ppmZn = 662 ppm Cu = 22.1 ppmCu = 22.1 ppmAs = 145.4 ppmTEK-10Manganese-stained boulder 0.3 m = green sphalerite and minor galetta. Pyrite approximately 			**			
TEK-9Boulder approximately 0.3 m of rhyolite breccia. Fine grained pyrite approximately 8% between clasts.Au = 1.0 ppbAg = 23.3 ppm Pb = 442.2ppmPb = 442.2ppmAg = 62 ppm Cu = 22.1 ppmTEK-10Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%.Mu = 2.6 ppbAg = 77 ppm Pb = >10000 ppm Cu = 57 4 ppmTEK-10Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%.Mu = 2.6 ppbAg = 67 ppm Pb = >10000 ppm Cu = 57 4 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au = 269.4 ppbAg = 67 ppm Pb = 23 ppm Cu = 1976.5 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Au = 8.7 ppbAg = 70 ppm Pb = >10000ppm Cu = 7171 ppm Cu = 184.1 ppm Cu = 184.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au = 39.5 ppbAg = 1.9 ppm Cu = 18.6 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au = 420 ppb Ag = 2560 ppm Pb = 3900 ppm Cu = 23,100 ppm	533			· · · · · · · · · · · · · · · · · · ·		
TEK-9Boulder approximately 0.3 m of rhyolite breccia. Fine grained pyrite approximately 8% between clasts.Au = 1.0 ppbAg = 23.3 ppm Pb = 442.2 ppm Zn = 662 ppm Cu = 22.1 ppm As = 145.4 ppmTEK-10Manganese-stained boulder 0.3 m = green sphalerite and minor galena. Pyrite approximately 5%.Au = 2.6 ppbAg = 77 ppm Pb = >10000ppm Zn = >10000 ppm Cu = 57.4 ppm As = 251.8 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au = 269.4 ppbAg = 6.7 ppm Pb = 103.2 ppm Zn = 293 ppm Cu = 1976.5 ppm As = 88 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Au = 8.7 ppbAg = 70 ppm Pb = >10000ppm Zn = 1713 ppm Cu = 84.1 ppm As = 18.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au = 39.5 ppbAg = 1.9 ppm Pb = 150 ppm Zn = 164 ppm Cu = 18.6 ppm As = 164.9 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% terahedrite, minor galena, chalcopyrite and sphalerite. Au = 420 ppb Ag = 2560 ppm Pb = 3900 ppm Zn = 17,900 ppm				· · · · · ·		
between clasts.Au = 1.0 ppbAg = 23.3 ppmPb = 442.2ppmZn = 662 ppmCu = 22.1 ppmAs = 145.4 ppmTEK-10Manganese-stained boulder 0.3 m = green sphalerite and minor galena. Pyrite approximately 5%.Mau = 2.6 ppbAg = 77 ppmPb = >10000ppmZu = >10000 ppmCu = 57.4 ppmAg = 6.7 ppmPb = 103.2 ppmZn = 293 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au = 269.4 ppbAg = 6.7 ppmPb = 103.2 ppmZn = 293 ppmCu = 1976.5 ppmAs = 88 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Au = 8.7 ppbAg = 70 ppmPb = >10000ppmZn = 1713 ppmCu = 84.1 ppmAg = 1.9 ppmPb = 150 ppmZn = 164 ppmCu = 18.6 ppmAs = 164.9 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au = 420 ppbAg = 2560 ppmPb = 3900 ppmZu = 17,900 ppmPb = 3900 ppmZu = 17,900 ppm			D	tal. 0.2 m of physlite	braccia Fine grained purite	approximately 8%
Au - 1.0 ppb Ag - 23.3 ppm Pb - 442.2ppm Zn - 662 ppm Cu - 22.1 ppm As - 145.4 ppm TEK.10 Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%. Mu - 2.6 ppb Ag - 77 ppm Pb ->100000ppm Zn ->10000 ppm Cu - 57.4 ppm As - 251.8 ppm TEK-11 Quartz with 40-50% coarse cube pyrite. Au - 269.4 ppb Ag - 6.7 ppm Pb - 103.2 ppm Zn - 203 ppm Cu - 1976.5 ppm As - 88 ppm TEK-12 Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins. Au - 8.7 ppb Ag - 70 ppm Pb - >100000ppm Zn - 1713 ppm Cu - 84.1 ppm As - 18.1 ppm Cu - 84.1 ppm As - 18.1 ppm Cu - 18.6 ppm Zn - 164 ppm Cu - 18.6 ppm Zn - 164 ppm Cu - 18.6 ppm Zn - 164 ppm Cu - 23,100 ppm Zn - 17,900 ppm Cu - 23,100 ppm Zn - 17,900 ppm Cu - 23,100 ppm Zn - 17,900 ppm		IEK-9		tery 0.5 m of myonte	breecia. The granted pyrice	upproximatory ovo
Au - 1.0 ppb Ag - 23.3 ppm Pb - 442.2ppm Zn - 662 ppm Cu - 22.1 ppm As - 145.4 ppm TEK.10 Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%. Mu - 2.6 ppb Ag - 77 ppm Pb ->100000ppm Zn ->10000 ppm Cu - 57.4 ppm As - 251.8 ppm TEK-11 Quartz with 40-50% coarse cube pyrite. Au - 269.4 ppb Ag - 6.7 ppm Pb - 103.2 ppm Zn - 203 ppm Cu - 1976.5 ppm As - 88 ppm TEK-12 Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins. Au - 8.7 ppb Ag - 70 ppm Pb - >100000ppm Zn - 1713 ppm Cu - 84.1 ppm As - 18.1 ppm Cu - 84.1 ppm As - 18.1 ppm Cu - 18.6 ppm Zn - 164 ppm Cu - 18.6 ppm Zn - 164 ppm Cu - 18.6 ppm Zn - 164 ppm Cu - 23,100 ppm Zn - 17,900 ppm Cu - 23,100 ppm Zn - 17,900 ppm Cu - 23,100 ppm Zn - 17,900 ppm			between clasts.			
Pb - 442.2ppmZn - 662 ppm Cu - 22.1 ppmZn - 662 ppm Cu - 22.1 ppmTEK-10Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%.Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%.Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%.Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%.Manganese-stained boulder 0.3 m - green sphalerite approximately to -57.4 ppm Pb ->10000ppm Cu - 57.4 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au - 269.4 ppbAg - 6.7 ppm Pp m Pb - 103.2 ppm Cu - 1976.5 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Mu - 8.7 ppbAg - 70 ppm Pb ->10000ppm Cu - 84.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Mu - 39.5 ppbAg - 1.9 ppm Pb - 150 ppm Cu - 18.6 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Mu - 420 ppbAg - 2560 ppm Pm Cu - 23,100 ppm			Au = 1.0 ppb	Ag - 23.3 ppm		
TEK-10 Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%. Au - 2.6 ppb Ag - 77 ppm Pb ->10000ppm Zu ->10000 ppm Cu - 57.4 ppm As - 251.8 ppm TEK-11 Quartz with 40-50% coarse cube pyrite. Au - 269.4 ppb Ag - 6.7 ppm Pb - 103.2 ppm Zn - 293 ppm Cu - 1976.5 ppm As - 88 ppm TEK-12 Brecciated andesite with carbonate veins. Au - 8.7 ppb Ag - 70 ppm Pb ->10000ppm Zn - 1713 ppm Cu - 84.1 ppm As - 18.1 ppm TEK-13 Quartz cobble with coarse pyrite approximately 5%. Au - 39.5 ppb Ag - 1.9 ppm Pb - 150 ppm Zn - 164 ppm Cu - 18.6 ppm As - 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au - 420 ppb Ag - 2560 ppm Pb - 3900 ppm Zu - 17,900 ppm Cu - 23,100 ppm Zu - 17,900 ppm						
TEK-10Manganese-stained boulder 0.3 m - green sphalerite and minor galena. Pyrite approximately 5%.Mu = 2.6 ppbAg = 77 ppm Pb =>10000 ppm Cu = 57.4 ppmPb =>10000ppmZu =>10000 ppm Cu = 57.4 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au = 269.4 ppbAg = 6.7 ppm Pb = 103.2 ppm Cu = 1976.5 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Au = 8.7 ppbAg = 70 ppm Pb =>100000ppm Cu = 1976.5 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au = 39.5 ppbAg = 1.9 ppm Cu = 164.9 ppm Cu = 18.6 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au = 420 ppbAg = 2560 ppm Cu = 23,100 ppmCu = 23,100 ppmCu = 23,100 ppm				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	¢.	
Pb = >10000ppmZn = >10000 ppm Cu = 57.4 ppmZn = >10000 ppm As = 251.8 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au = 269.4 ppbAg = 6.7 ppm Pb = 103.2 ppm Cu = 1976.5 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Au = 8.7 ppbAg = 70 ppm Pb = >10000ppm Cu = 84.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au = 39.5 ppbAg = 1.9 ppm Pb = 150 ppm Cu = 18.6 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au = 420 ppbAg = 2560 ppm Pb = 3900 ppm Cu = 23,100 ppm		TEK-10	Manganese-stained	boulder 0.3 m – gree	n sphalerite and minor galen	a. Pyrite approximately
Pb =>10000ppmZn =>10000 ppm Cu = 57.4 ppmAs = 251.8 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au = 269.4 ppbAg = 6.7 ppm Pb = 103.2 ppmPb = 103.2 ppmZn = 293 ppm Cu = 1976.5 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Au = 8.7 ppbAg = 70 ppm Pb = >10000ppmPb =>10000ppmZn = 1713 ppm Cu = 84.1 ppmCu = 84.1 ppmAs = 18.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au = 39.5 ppbAg = 1.9 ppm Pb = 150 ppm Cu = 18.6 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au = 420 ppbAg = 2560 ppm Pb = 3900 ppm Cu = 23,100 ppm	833		Au 26 mmh	$A \sigma = 77 \text{ nnm}$		
Cu = 57.4 ppmAs = 251.8 ppmTEK-11Quartz with 40-50% coarse cube pyrite.Au = 269.4 ppbAg = 6.7 ppmPb = 103.2 ppmZn = 293 ppmCu = 1976.5 ppmAs = 88 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins.Au = 8.7 ppbAg = 70 ppm Pb = >10000ppmPb = >10000ppmZn = 1713 ppm Cu = 84.1 ppmCu = 84.1 ppmAs = 18.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au = 39.5 ppbAg = 1.9 ppm Pb = 150 ppm Cu = 18.6 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au = 420 ppb Pb = 3900 ppm Cu = 23,100 ppm				The set is used Martinessi		
TEK-11 Quartz with 40-50% coarse cube pyrite. Au - 269.4 ppb Ag - 6.7 ppm Pb - 103.2 ppm Zn - 293 ppm Cu - 1976.5 ppm As - 88 ppm TEK-12 Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins. Au -8.7 ppb Ag - 70 ppm Pb ->10000ppm Zn - 1713 ppm Cu - 84.1 ppm As - 18.1 ppm TEK-13 Quartz cobble with coarse pyrite approximately 5%. Au - 39.5 ppb Ag - 1.9 ppm Pb - 150 ppm Zn - 164 ppm Cu - 18.6 ppm As - 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au - 420 ppb Ag - 2560 ppm Pb - 3900 ppm Zn - 17,900 ppm Cu - 23,100 ppm Zn - 17,900 ppm	8889 1			n i kan di burn konsensensensensen 🗗 🗖		
Au - 269.4 ppb Pb - 103.2 ppm Cu - 1976.5 ppmAg - 6.7 ppm Zn - 293 ppm 	9393		Cu = 57.4 ppm	745 – 251.0 ppm		
Pb - 103.2 ppm $Zn - 293 ppm$ $Cu - 1976.5 ppmAs - 88 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphaleriteapproximately 10% of carbonate veins.Au - 8.7 ppbAg - 70 ppmPb ->10000ppmPb ->10000ppmZn - 1713 ppmCu - 84.1 ppmCu - 84.1 ppmAs - 18.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au - 39.5 ppbAg - 1.9 ppmPb - 150 ppmCu - 18.6 ppmPb - 164 (very angular, brick size) of completely silicified rock cut by vein of vuggy quartzwith3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au - 420 ppbAg - 2560 ppmPb - 3900 ppmCu - 23,100 ppm$		TEK-11	Quartz with 40-50%	% coarse cube pyrite.		
Pb - 103.2 ppm $Zn - 293 ppm$ $Cu - 1976.5 ppmAs - 88 ppmTEK-12Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphaleriteapproximately 10% of carbonate veins.Au - 8.7 ppbAg - 70 ppmPb ->10000ppmPb ->10000ppmZn - 1713 ppmCu - 84.1 ppmCu - 84.1 ppmAs - 18.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au - 39.5 ppbAg - 1.9 ppmPb - 150 ppmCu - 18.6 ppmPb - 164 (very angular, brick size) of completely silicified rock cut by vein of vuggy quartzwith3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au - 420 ppbAg - 2560 ppmPb - 3900 ppmCu - 23,100 ppm$	83		Au – 269.4 ppb	Ag - 6.7 ppm		
Cu - 1976.5 ppm As - 88 ppm TEK-12 Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins. Au -8.7 ppb Ag - 70 ppm Pb ->10000ppm Zn - 1713 ppm Cu - 84.1 ppm As - 18.1 ppm TEK-13 Quartz cobble with coarse pyrite approximately 5%. Au - 39.5 ppb Ag - 1.9 ppm Pb - 150 ppm Zn - 164 ppm Cu - 18.6 ppm As - 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au - 420 ppb Ag - 2560 ppm Pb - 3900 ppm Zn - 17,900 ppm Cu - 23,100 ppm Zn - 17,900 ppm						
 TEK-12 Brecciated andesite with carbonate veins approximately 15% of rock. Galena and sphalerite approximately 10% of carbonate veins. Au = 8.7 ppb Ag = 70 ppm Pb = >10000ppm Zn = 1713 ppm Cu = 84.1 ppm As = 18.1 ppm TEK-13 Quartz cobble with coarse pyrite approximately 5%. Au = 39.5 ppb Ag = 1.9 ppm Pb = 150 ppm Zn = 164 ppm Cu = 18.6 ppm As = 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au = 420 ppb Ag = 2560 ppm Cu = 23,100 ppm 			· · · ·			
Pb \rightarrow >10000ppmZn $-$ 1713 ppm Cu $-$ 84.1 ppmCn $-$ 18.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au $-$ 39.5 ppbAg $-$ 1.9 ppm Pb $-$ 150 ppmPb $-$ 150 ppmZn $-$ 164 ppm Cu $-$ 18.6 ppmCu $-$ 18.6 ppmAs $-$ 164.9 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au $-$ 420 ppbAg $-$ 2560 ppm Pb $-$ 3900 ppmCu $-$ 23,100 ppmZn $-$ 17,900 ppm		TEK-12			approximately 15% of rock	. Galena and sphalerite
Pb \rightarrow >10000ppmZn $-$ 1713 ppm Cu $-$ 84.1 ppmAs $-$ 18.1 ppmTEK-13Quartz cobble with coarse pyrite approximately 5%.Au $-$ 39.5 ppbAg $-$ 1.9 ppm Pb $-$ 150 ppmPb $-$ 150 ppmZn $-$ 164 ppm Cu $-$ 18.6 ppmCu $-$ 18.6 ppmAs $-$ 164.9 ppmA04-234Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite.Au $-$ 420 ppbAg $-$ 2560 ppm Pb $-$ 3900 ppmCu $-$ 23,100 ppmZn $-$ 17,900 ppm			An 87 mph	$A \sigma = 70$ nmm		
Cu - 84.1 ppm As - 18.1 ppm TEK-13 Quartz cobble with coarse pyrite approximately 5%. Au - 39.5 ppb Ag - 1.9 ppm Pb - 150 ppm Zn - 164 ppm Cu - 18.6 ppm As - 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au - 420 ppb Ag - 2560 ppm Pb - 3900 ppm Zn - 17,900 ppm Cu - 23,100 ppm Zn - 17,900 ppm				N. 1977. 1998. doi:10.00070.00001111		
TEK-13 Quartz cobble with coarse pyrite approximately 5%. Au = 39.5 ppb Ag = 1.9 ppm Pb = 150 ppm Zn = 164 ppm Cu = 18.6 ppm As = 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au = 420 ppb Ag = 2560 ppm Pb = 3900 ppm Zn = 17,900 ppm Cu = 23,100 ppm Zn = 17,900 ppm						
Au = 39.5 ppb Ag = 1.9 ppm Pb = 150 ppm Zn = 164 ppm Cu = 18.6 ppm As = 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au = 420 ppb Ag = 2560 ppm Pb = 3900 ppm Zn = 17,900 ppm Cu = 23,100 ppm Zn = 17,900 ppm			Cu = 84.1 ppm	AS = 10.1 ppm		
A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au - 420 ppb Ag - 2560 ppm Pb - 3900 ppm Zn - 17,900 ppm Cu - 23,100 ppm		TEK-13	Quartz cobble with	coarse pyrite approxi	mately 5%.	
A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with 3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au - 420 ppb Ag - 2560 ppm Pb - 3900 ppm Zn - 17,900 ppm Cu - 23,100 ppm			Au – 39.5 ppb	Ag - 1.9 ppm		
Cu – 18.6 ppm As – 164.9 ppm A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au – 420 ppb Ag – 2560 ppm Pb – 3900 ppm Zn – 17,900 ppm Cu – 23,100 ppm Zn – 17,900 ppm						
A04-234 Float (very angular, brick size) of completely silicified rock cut by vein of vuggy quartz with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au - 420 ppb Ag - 2560 ppm Pb - 3900 ppm Zn - 17,900 ppm Cu - 23,100 ppm			••			
with3-5% tetrahedrite, minor galena, chalcopyrite and sphalerite. Au – 420 ppb Ag – 2560 ppm Pb – 3900 ppm Zn – 17,900 ppm Cu – 23,100 ppm						
Pb – 3900 ppm Zn – 17,900 ppm Cu – 23,100 ppm		A04-234	Float (very angular, with 3-5% tetrahedr	, brick size) of compleite, minor galena, cha	etely silicified rock cut by ve llcopyrite and sphalerite.	ein of vuggy quartz
Pb – 3900 ppm Zn – 17,900 ppm Cu – 23,100 ppm						
Cu – 23,100 ppm			Au – 420 ppb			
			Pb – 3900 ppm	Zn – 17,900 ppm		
			Cu – 23,100 ppm			
	6333					

.

Float (very angular, brick size) of vuggy quartz vein with 10% of galena, minor tetrahedrite A04-235 and wad. Au – 200 ppb Ag – 1620 ppm Pb – 176,000 ppm Zn – 1300 ppm Cu - 4620 ppm Float (1x1m) of completely silica replaced rock with 5-7% pyrite and some wad. A04-236 Ag – 24.3 ppm Au – 90 ppb Zn – 100 ppm **Pb** – 2200 ppm Cu - 90 ppm٢ A04-269 Float from sub outcrop of moderately silicified and chloritized andesite with 30-40% of combined pyrite and chalcopyrite. Sample was taken from a small pile of rocks removed from a pit above. Ag –115 ppm Au – 3900 ppb Pb – 3900 ppm Zn – 800 ppm Cu – 86,700 ppm Grab sample from the wall of a small pit. Weakly silicified andesite with 1-2% disseminated A04-270 pyrite. Au -160 ppb Ag – 6.9 ppm Zn – 800 ppm Pb – 3900 ppm Cu – 1040 ppm Chip 1.0 m across silicified andesite with 3-5% pyrite and abundant limonite. The zone A04-271 strikes N-S, it is 1-2 m wide and can be traced for 7-8 m. Ag – 13.2 ppm Au – 850 ppb Pb - 2200 ppm Zn – 200 ppm Cu – 7180 ppm Grab from chloritized andesite with 2-3% pyrite. A04-272 Au - 50 ppbAg – 7.0 ppm Pb - 1100 ppm Zn – 300 ppm Cu - 1750 ppm Chip 1.0 m from carbonates-quartz altered andesite with 1% pyrite, trace chalcopyrite and A04-273 minor malachite stain. The zone is irregular, fracture controlled, up to 1 m wide, 2.5 m long (open on the bottom). Ag – 6.7 ppm Au – 140 ppb

 Au - 140 ppb
 Ag - 6.7 ppm

 Pb - 500 ppm
 Zn - 300 ppm

 Cu - 7800 ppm
 Zn - 300 ppm

EB-04-152	Float. Highly silici	fied rock with limonite stain, gray to w	hite silica with yellow-red stainin
		4.0	
1 a		ng – 4.9 ppm	
	Pb –200 ppm – 2	Zn – 200 ppm	
	Cu – 20 ppm		
EB-04-153	Float. Galena-pyrit	te in quartz-barite rock.	
	Au –150 ppb	Ag – 1305.0 ppm	
	Pb -91,000 ppm	Zn - 3400 ppm	
		2n – 3400 ppm	
	Cu – 8700 ppm		
EB-04-154	Quartz float, vuggy	looking with a gray sulfide.	
	Au –100 ppb	Ag –1132.0 ppm	
	Pb –1400 ppm	Zn – 1400 ppm	
	Cu – 7450 ppm		
	Cu – 7450 ppm		
		1 - mite and murite	Grav sulfide may possibly be
EB-04-155		barite carrying gray sulfide and pyrite.	Gray suffice may possibly be
	stibnite.		
	Au –110 ppb	Ag –14.1 ppm	
	Pb 300 ppm	Zn – 100 ppm	
	Cu – 50 ppm		
	Co coppin		
ED 04 150	Flast Europe Entern	anian Trumpol	
EB-04-156	Float. From Enterp	JISC I UIIIICI.	
	· · · ·		
	Au – 120 ppb	Ag – 335 ppm	
	Pb – 1900 ppm	Zn – 800 ppm	
	Cu – 11,900 ppm		

APPENDIX III

¢

ANALYSIS RESULTS

ACMB ANALYTICAL (LEC 9003 AG	LABORATORIES LTD. 852 8. HASTINGS ST. VAN Gredited Co.) ABBAY CERTI		NE(604)253-3158 PAX(604)25)-1716
TT	<u>Pinnacle Mines</u> F1 505 - 1549 Marine Drive, West Varcouver BC V	le # A405319R 7V 1H9 Submitted by Andrew Bower	ing C
	SAMPLB#	Ag** Au** gm/mt gm/mt	
	R2004-CK-65 R2004-CK-83 R2004-CK-85 S2004-ERK-4 S2004-ERK-5	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
	S2004-ERK-6 S2004-ERK-8 S2004-ERK-10 S2004-ERK-12 S2004-ERK-14	42 - 32 - 65 - 256 - 57 -	
	S2004-ERK-16 RE S2004-ERK-16 S2004-ERK-18 S2004-ERK-19 S2004-ERK-22	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	TEK-2004-2 TEK-2004-7 TEK-2004-10 TEK-2004-12 STANDARD R-2a/AU-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	GROUP 6 - PRECIOUS NETALS BY FIRE ASSAY FROM 1 A.T. S - SAMPLE TYPE: ROCK PULP Semples heginating 'RF' are Revues and 'RRE' are Rejec	ct Reruns.	
Data FA	DATE RECEIVED: SEP 27 2664 DATE REPORT MAIL	ED. Oct 7/04	Clarence Leong
			A LEAS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

A ME WALLITCAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

852 H. HAS'LINGS SL. JANCOUVER BU

FIIONE (00+) 253-3158 FRA (60+) 433+1,10

VGA INO

Pinnacle Mines File #/A405319 Page 1 305 - 1549 Marine Drive, West Vancouver BC V7V 1H9 Submitted by: Andrew Bowering

AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	Fe %	As ppm		Au ppb	Th ppm p		Cd ppm	Sb ppm p			Ca %	P % p		Cr ppm	Mg %		Ti % p		A1 %		К %р		Hg ppm p	Sc ppm			Ga S ppm pp
I 2004-CK-1 2004-CK-2 2004-CK-3 2004-CK-4	.1 2.7 20.9 1.2 6.4		.3 10.2 346.6 12.7 20.1	146	.2 4.2 .3	.4 1.2 8.5 4.2 11.2	2.4 1.4 9.1	92 359	.08 1.98 2.86 2.89 2.25	37.8 47.2	.9 2.3 .6	.7 10.5 7.2	5.9 4.8 2.7 2	6 15 217	1.6 1.3 .2	2.5 <	.1 .1 .1 1	2 . 4 . 10 2.	.09 . .18 . .97 .	033 028 076	13 10	2.2 < 6.9 9.7 3.4 5.5	.04 .03	62 . 47 . 46 .	001 001 002	2. 3. 3.	27 . 25 . 22 .	642 012 015 022 020	22 < 24 1 18 <	.1 .2 .1	.06 .05 .07 1	.6 .6 1.3	.1 .1 .9	1.25 2.58	<1 <. 1 <. 1 . 1 <. 1 <.
2004-CK-5 2004-CK-6 2004-CK-7 2004-CK-8 2004-CK-8 2004-CK-9	3.1 22.8 1.6 4.6 21.7		39.7 9.0 39.5 16.4 32.7	65	<.1 1.4 .1	5.9 10.8 5.9 4.9 12.9	1.4 6.1 2.6	68 47 44	2.93 2.37 4.38 9.47 2.23	52.0 54.8 61.8	2.7 1.2 .3	<.5 12.3 <.5	6.3 5.3 1.4	16 27 8	.2 .1 <.1	5.9 < 9.9 < 4.6 8.9 9.8	:.1 .2 .1 1	6. 7.	.25 . .22 . .14 .	049 029	12 12 4	10.8 3.0 5.4	.01 .02 .08 .08 .02	69 . 21 . 7 .	001 001 003	5. 1. 5.	24 . 40 . 39 .	005 008 029 016 006	.25 1 .20 .29	5 .1 .7	.07 .16 .03 .08 .08	.6 1.5 1.1	.2 .2 .6	1.39 3.89	1 <. 1 . 1 . 1 .
2004-CK-10 2004-CK-11 2004-CK-12 E R2004-CK-12 2004-CK-13	2.8 3.1	4.5 1.9 4.2 4.1 16.0	16.3 1.6 14.4 15.4 25.2		<.1 .2 .2	12.4 3.5 2.0 1.9 7.5	6.9 1.2 1.3	444 22 26	3.54 2.68 1.68 1.70 7.37	1.5 19.0 20.1	.1 1.3 1.4	4.7 <.5 <.5	.2 8.1 8.8	59 6 6	.1 .5 .4	.1 < 2.3 <	<.1 2 <.1 <.1	221. 3. 3.	.20 . .06 . .06 .	032 031 033	1 16 17	7.0 11.2 15.1 14.6 4.2	.45 .01 .02	28 . 80 . 85 .	001 001 001	21. 4 4	09 . 28 . 30 .	005 009 008 008 016	.04 < .28 1 .30 1	:.1 5 5	.07 .01 .04 .05 .16	1.3 .5 .6	<.1 .1 .1	.06 1.14	1 2 < 1 < 1 < 5 <
2004-CK-14 2004-CK-15 2004-CK-16 2004-CK-17 2004-CK-18	.5 2.6 2.9	13.3 23.5 28.9 8.4 5.1	64.0 26.4 7.9 22.0 13.9	21	.7 1.1 .1	7.4	18.9 3.2 6.7	343 102	4.34 2.93	81.1 6.3 34.4	.2 .1 .4	20.9 <.5 <.5	1.7 .5 2.5	9 6 14	<.1 .1 <.1	13.1 2.2 10.0	.1 .1 .1	20 39 21	.23 . .06 . .38 .	122 037 118	8 4 11	13.4 2.5 22.3 2.1 10.7	.04 L.10 .11	34 83 33	004 001 003	6 11 5	.35 .51 .43	.029 .021 .023 .015 .008	.28 < .10 .22 <	<.1 .4 <.1	.06 .07 .01 .06 .28	3.0 2.5 1.8	.7 .1 .2	3.61 .64 3.32	
		9.5	28.7 223.0 59.8 37.0 38.2	383 48	3.0 1.7 3.5	3.0 4.4 9.3 24.7 18.3	1.3 1.5 2.6	146 16 116	5.93 2.58 5.28 3.51 14.49	48.7 78.2 95.9	2.4 .7 1.3	14.9 3.0 4.5	6.3 5.1 2.7	28 4 3	4.4 .4 .4	8.6 · 24.6	<.1 <.1 .1	2 2 7	.32 . .03 . .01 .	032 024 003	12 12 8	5.2 7.7 5.4 7.2 3.6	.03 .01 .02	55 17 26	001 001	1 5 3	.18 .17 .26	.005 .003 .005	.17 1 .22 < .21 1	l.2 <.1 l.2	.09 .08 .31	.6 .4	.2 .3	5.64 1.95 5.14 3.17 >10	1 11 14
2004-CK-24 2004-CK-25 2004-CK-26 2004-CK-27 2004-CK-28	3.7 97.0	8.4 16.9	10.6 15.1 40.5 81.6 48.8	113	.3 1.5 .5	2.6 1.5 16.1 7.8 2.7	3.2 2.9 2.3	61 90 192	5.56 3.50 13.22 10.52 8.75	42.2 782.9 141.9	1.2 2.1 1.6	<.5 .6 .9	5.3 2.1 4.0	12 4 36	<.1 .6 .1	6.8 34.0 20.6	<.1 .1 .2	2 5 7	.24 . .04 . .78 .	030 017 034	13 3 5	5.2 3.0 6.1 5.6 6.5	.04 .02 .10	26 5 10	001 002 003	4 8 7	.33 .27 .43	.004 .012	.25 < .23 1 .22 <	<.1 1.0 <.1	.05 .26	.4 .5 .9	1.7 1.9 .2		1 < 1 2 1 1
2004-CK-29 2004-CK-30 2004-CK-31 2004-CK-32 2004-CK-33	10.5 2.8 42.6	7.9 49.0	36.6 2305.0>	68 1546	1.1 3.2 6.5	8.1 1.3 2.5	1.9 2.5 20.7	183 17 14992	2.06 13.65	24.0 685.9 293.8	5.0 .1 3.2	4.6 40.1 3.3	6.7 .1 .2	30 2 8	.6 45.7 54.7	3.6 2.0 37.5	.1 3.9 <.1	2 <1 27	.29 .01 . .26 .	.040 .002 .003	11 <1 2	5.5 15.4 14.5 11.7 5.0	.08 .01 .12	79 10< 27<	.001 .001 .001	2 <1 1	.27 .04 .03	.004 .002	.22 .02 .02	1.4 6.8 1.7 2	.02 .35 26.08	1.0 .1 .3	.1 <.1 9.4	1.13 1.57 2.95	1 1 1 < <1 1 1 4 <
standard DS5	11.9	139.2	24.0	136	.3	23.6	11.9	742	2.96	17.8	5.7	40.8	2.5	45	5.3	3.5	5.7	60	.72	.089	11	181.7	.64	132	. 087	19 1	.99	.033	.12	4.5	.17	3.2	1.1	<.05	6 4
GROUP 1D> (>) CONCE - SAMPLE	(- 15 ENTRAT TYPE:	.0 GM ION EI ROCK	SAMPLE XCEEDS R150 &	UPPER 50C	LIM Sa	ITS. mples	SOME begi	E MINE	RALS	MAY I are	BE PA Reru	NRTIA Jins a	95 DE LLY A nd 'R	TTAC	KED. are	REI Rejea	FRACT	ORY Inune	AND <u>s.</u>	GRAF	PHIT	IC SĂ	IPLE S	YSEC 6 CAP) BY I LIM	ICP-I	MS. J SO	ILUB I		SIM	ATA T	<u>ट</u> 1	<u> </u>	79	RIE

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

CME ANALYTICAL							· · · ·	<u>.</u>		<u> </u>	1.1.1		100				 		-11- 		<u></u>				:	1		· · · · ·				last)	201			ACHE ANALYTIC
	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni Co	Mn	Fe	As	U	Au	Th	Sr (d S	D B1	٧	Ca	P I	La	Cr M	lg B	Ba Tl	E	I Al	Na	K	W	Hq	Sc	TI	S	Ga	Se		
		ppm	ppm	ppa p	i ma	opm p	рря рря	ррв	8						ж рр								5a 8										DDM	1.1		
							-	0.0												·	<u>.</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							•			<u> </u>				
	R2004-CK-34		5.7 1				1.4 3.3			36.6																						.77	.3	<.5		
•	R2004-CK-35		15.9 102				1.4 1.2		4.88	13.1	5.2	.9	.2	23 3.	9 6.	€ <,1	168	. 66 .1	007	4 21	.6.0	14 5	53 .006	i <]	.11	.002	.01	7.7	.90	.2	.1	<.05				
	R2004-CK-36	16.1	56.6 106	4.3 8																															•	
	R2004-CK-37		2.2		20	.1	.3 1.2	93	.51	26.2	1.7	.7	9.1	6.	1 1.	<. 1	2	.04 .0	022 2	23 6	5.7 .0	<u>i</u> 1 4	41 .001	1 3	.19	.012	.21	.1	.13	.5	.2	<.05	<1	<.5		
	R2004-CK-38	36.7	6.5 2	2.1	34	.3 4	1.8 3.3	765	2.00	77.0	1.4	<.5	4.7 1	.06 <	1 6.	3 <.1	16 1	2.25 .0	698	33 9	.1 .1	2 6	53 .013	3	.35	.098	.07	.9	. 16	1.4	.6	1.20	2	.9		
	R2004-CK-39	53.2	56.9 139	8.3>100	00 8	B.3 9	5.1 34.9	6026	9.96	323.7	12.7	<.5	1.4 1	30 63	9 41.	1.1	54	7.47 .4	082	14 5	.0 .6	i9 5	51 .054	ļ 4	1.79	.005	. 10	.3	2.66	3.1	7.4	5.34	5	3.5		
	R2004-CK-40	2.5	24.9 1	6.7	46	.3 1	1.1 2.2	630	1.76	30.9	1.4	6.7 1	0.0	87	2.	5.4	4	1.65 .0	047	76	5.3 .1	0 7	70 .001	2	.36	.006	.30	.4	.02	.7	.1	.82	1	<.5		
	R2004-CK-41	.6	2.2	7.7 1			.6 .7			6.8	.1	<.5	<.1	23 .	4 .	<.1	2	.26 .0	007 •	<1 10	.1 .0	1	8 .001	1	03	.008	.01	.1	.01	.2	.1	<.05	<1	<.5		
	R2004-CK-41a	1.2	5.1 1	4.8	91	.1 1	1.8 3.9	1016	1.94	45.8	1.1	<.5	7.1	51 .	1 1.	1.1	31	1.90 .0	950 3	12 10).5 .3	14	17 .091		.58	.060	.05	.5	.04	2.1	.3	.74	3	<.5		
	R2004-CK-42	13.7	17.0 144	7.2 4	64	.3 2	2.7 2.5	1017	2.77	657.4	1.3	<.5	.1	15 14.	0 29.	ا.> ا	51	.50 .0	012	1 15	.7 .0	2 3	36 .001	. 2	.07	.002	<.01	.1	.13	.3	2.0	1.04	<1	<.5		
	R2004-CK-43	11 5	35.3 17	50 G	99		0 A 7 T	2746	A 20	100 1	,	~ =	1.0	70	0 6													_				_				
	R2004-CK-44				00 00 4	.34 25	2.4 7.7	3/40	4.20	199.1	.1.	5.5	1.0	79.	8 8.	1.1	83	2.89 .1	064)	10 /	.6.5	36	52.099	9 5	1.22	.021	. 16	8.	. 18	3.8	1.9	2.06	4	<.5		
	R2004-CK-45		26.9 17 5.8 2		92 . 70	3.0	.0 0.1	. 999	17.08	>10000	./	<.5	3.4 00 r	/8 .	/ /9.	1.8	4	2.32 .0	027	5 3	1.0.1	.7	9.001	3	.19	.019	. 15	.1	.34	1.0	>100	>10	1	.7		
	R2004-CK-46				/u 07	.2	.8 4.3	0/2	2.11	03.3	2.3	1.5	8.8 2 ov v	.39 .	2.	.2 	11 2	2.90 .0	056	12 3	.8 .3	10 19	3.107	5												
	R2004-CK-40		20.5 16		07 11	.3.	1.9 10.2	9583	4.3/	39.0	1.1	<.5	9.7 1	21 2	1 1.	2.1	23 (6.92 .0	976 1	17 1	.3 1.1	5 18	30 .088	3. 1	1.86	.016	.31	.4	.17	2.8	1.0	1.03	5	<.5		
	N2004-6K-47	55.9	31.0 118	4.5 5	09 10	0.1 3	3.4 0.2	292	2.80	353.1	2.5	<.5	.4	4 11.	0 31.	5 <.1	16	.04 .(004	1 29	0.1 .0	14 6	57 .001	4	.08	.002	.04	.7		3	6.7	1.40	<1	<.5		
	R2004-CK-48	7	0 E. 2	ن د د	00 4			000	0.01														1	2.4		1. 121 - 1										
	R2004-CK-49	./ วรา	9.5 3	11.0 : 10.0 : A	90 i 47 i	2.0 4 C 1	.5 2.3	329	9.31	90.4	.3	<.5	3.8	32	/ 5.	<. <u>.</u>	. 4	.50 .4	024	8 6	5.3 .1	0 1	.003	. 3	.19	.031	.09	.1	. 10	.9	29.2	9.21	1	<.5		
	R2004-CK-50	29.3	24.5 64	0.0 4	47 4 04 ·	9.00 J	1.0 3.4	1013	0.75	2/5.2	2.4	<.5	.2	11 1.	4 27.	l . 1	49	.68 .	009	2 18	.9 .0	17 . 2	34 .001	2	.26	.001	.03	1.4	. 19	.3	2.6	3.19	1	<.5		
	RE R2004-CK-50	32.7	80.6 10	1.0 /:	94 1	7.9.3	1.0 1.7	990	12.55	200.7	.3	<.5	.1 3	39 13.	9 115. 5 105	1. E	. 19 /	2.40 .1	039	<1 9	.9.6	3 2	20<.003	. 2	.12	.006	.06	.1	.71	1.5	.7	>10	<1	35.6		
	R2004-CK-51	AC 1	78.7 10	4.2 0. 10 0.0	22 I 22 I	1.7 34	1.6 1.7 1.5 9.5	900	12.00	193.7		<.5 F	.1 1	30 12	5 105.	1. U	19	2.27 .0	036 •	<1 10	1.1 .6	x0 2	21<.001	. 2	.12	.006	.06	.1	.66	1.5	.7	>10	<1	34.2	•	
	N2004-0K-01	40.1	10.8 67	0.2 33	~~ .	1.2	1.5 2.6	9752	12.21	5/8.3	2.1	.5	.1	00 14.	0 51.	/ <.1	36	2.32 .0	004	2 15	5.9 .2	29 1	13 .001	4	. 19	.001	<.01	.3	1.98	.7	4.2	6.96	1	1.2		
	R2004-CK-52	162.3	8.5 40	6.6 8	63 4	4.3	1.8 3.1	1518	14.95	1188.6	1.0	<.5	.3	3	2 122.	1 <.1	. 36	.07 .0	010	1 18	1. 0.1	12 1	13 .002	2 2	2.30	.002	.03	1.1	.71	.5	7.4	>10	2	.7		
	R2004-CK-53	63.1	27.9 275	5.2 15	18 1	7.1 7	1.4 8.2	959	12.25	756.6	5.0	<.5	.4	12 1	0 45.	3 <.1	188	.28 .	115	6 17	.8 .3	32	9.006	5 4	1.05	.001	.01	.6	1.80	2.6	7.4	>10	. 4	2.7		
	R2004-CK-54	74.5	13.4 40	5.7 2	06	.5	2.7 4.1	200	7.35	3561.5	2.7	<.5	<.1	64	7 243.	5 <.1	12	.06 .	003 ·	<1 20).4 .0	01 1	10<.001	1	.02	.001	<.01	.5	10.75	.1	62.6	7.23	<1	<.5		
	R2004-CK-55		10.9 1							8.6	.7	.6	4.8	20 <	1 2.	4.1	4	.85 .0	033	8 15	5.3 .0)5 R	03 .001	L 4	. 18	.012	. 15	<.1	.02	.8		.07	<1	<.5		
	R2004-CK-56	3.3	4.6 3	0.7	25	.2	.4 .9	19	1.24	28.2	2.8	<.5 1	2.0	4	1 8.	5 <.1	. 6	.01 .0	623	19 5	5.9 .0)1 24	42 .001	12	2.27	.004	.23	.1	.05	.5	.2	<.05	1	<.5		
	R2004-CK-57	8.3	7.2 5	0.9	17	.6	.8.7	59	2 50	53.6	1.8	6	9 2	٥	3 . 18	7 2 1	16	64	045	in A		19 9/	AE 014		67	0.94		,				40				
	R2004-CK-58		8.1 19	A A	80 3	21	.8 3.6	24	2.15	510.9	2.0	2 U.	0.2	5	-2 17	/ ~.1 1 ~ 1	10	.04 .1	040 · . NAC · ·	10 9 14 6		12 24	40, CP	• •	5 .02	.035	.29		.04	1.6	.3	.40	3	<.5		
	R2004-CK-59		3.7 3				1.7 4.1																													
	R2004-CK-60		2.4 35																													1.25				
	R2004-CK-61			17.5 16.6 1	50 . 50 .	1.1 C 7	.4 2.1		2.00	1020.9	1.2	~ .5	4.9	10 <	.1 17.	9 < 1	. 8	.01 .	. 110	13 5	o.6 .6	11 11	/3 .002	2 3	5.20	.004	.27	.1	.73	.4	2.6	1.69	1	<.5		
	N2004-CK-01	5.5	4.0 18	0.0 1	29	0.7	.9 2.0	יני נ	3.85	1904.2	.8	2.2	4.9	3	.7 38.	9 <.1	. 6	.04 .	009	6 5	5.1 .6)1 2	23 .001	1 4	.22	.004	.26	.1 3	1.34	.5	5.4	3.39	1	<.5		
	R2004-CK-62	2.5	5.9 (8,1	47	1.8	1.5(5 14	1.59	323.8	.6	<.51	0.7	6	1 n.	3 < 1	6	.02	035	9 13	3.2 < 0	11 11	62 .001		2 18	60.4	- 28		12	.5	p	.54	,	~ 5		
	R2004-CK-63	3.7	6.7 32	5.0 1	81 .	5.6	.5 5.7	2 . 4	3.96	1636.9	1.2	.8	5.6	2 1	5 36.	4 < 1	5	<.01	008	9 4	1.6	11 1	21 .001		1 21	200	26	1	1 24	3						
	R2004-CK-64	2.3	7.1 4	3.7 2	75	.6	1.4 1.3	31	1.26	93.5	1.2	<.5 1	0.4	.9	4 4	5 < 1	7	.07	041	15 12	2.6 0	12	59 001	1 1	1 19	603	16	< 1	07		3.8	3.01	1	0		
	R2004-CK-65	4.6 4	58.2 13	5.8 6	24 >	100	.5 5.1	284	2.60	206.3	4.2	3.4	3.6	26 2	3 119	4 1	14	.28	196	19 2	23 0	14 1	36 003			003	- 10	1	.07	27	11	14	- 1	∼.5 1.6		
	STANDARD DS5	12.5 1	44.9 2	5.6 1	38	.3 2	4.4 12.0	767	3.03	17.9	6.3	44.7	2.9	52 5	7 3	9 5 0	61	76	092	13 100) 5 4	58 1	35 .002		7 2 10	.000	16		.40	2.1	1.1	.14 ~ 00	. 4	1.0		
	······				-		-													10.130			00 .090	, U	2.10	.000	. 10	4.7	. 17	. 3.4	1.0	<.u5		0,0		

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

ICAL

ACHE ANALYTICAL						:	• • • ₁		P	inna	clo	e M	ine	8	F	ILE	#	A4	053	19								I	Page	3				,
Sample#	Mo ppm	Cu ppm		Zn ppm					Fe %				Th ppm				Bi ppm p		Ca %		La ppm	Cr ppm		Ba ppm		B ppm	A1 %	Na %	K W %ppm				S Ga % ppm	
R2004-CK-66 R2004-CK-67 R2004-CK-68 R2004-CK-69 R2004-CK-70	2.7 2.4 3.6	21.0 7.5 6.1 7.0 31.6	529.5 53.8 53.8 65.8 163.0	31 129 15	1.3 .5 2.4	.7 1.3 1.0	1.4 2.8 5.1	55 93 65	2.63 2.13 2.72 1.80 35.38	75.8 55.1 84.6	1.3 1.4 2.2	1.3 1.0 1.2	10.8 11.2 6.7	9 8 3	.1 .2 .2	10.3 5.6 14.5		7 7 5	.09 .11 <.01	.014 .058 .062 .008 .031	20 18 8	8.1 3.7 4.4 5.7 1.6	.04 .04	201 97 104	.003 .002 .001	3 3 3	.35 .31 .18	.010 .013 .010	.22 1.3 .29 .1 .28 .8 .20 .1 .06 2.6	.06 .10 .09	1.1 1.2 .3	.21. .51.	79 1 42 1 42 1	<.5 <.5 <.5 <.5 <.5
R2004-CK-71 R2004-CK-72 R2004-CK-73 R2004-CK-73a R2004-CK-75	13.0 210.1	5.5 19.2 7.9	2159.7 270.2 6473.0 89.2 99.9	13 271 156	4.8 3.3	1.0 1.0 1.6	.8 9.4	14 58 58	1.46	210.1 621.8 258.0 33.2 83.7	.3 2.9 1.5	1.2 .9 .8	3.0 7.0 10.3	6 5 13 4	.2 2.4 .6		.1		<.01 .01 .11	.037	9 15		.11	139 100 85	.001	1 1 1	.13 .15	.004 .004 .007	.21 .1 .26 1.0 .19 .1 .23 1.3 .25 .1	.21 .31 .11	.6 .5 1.4	.2 .3 1.	36 1 14 1 39 4	<.5 <.5 <.5 <.5
R2004-CK-76 R2004-CK-77 R2004-CK-78 R2004-CK-79 R2004-CK-80	190.3 97.0 2.6	7.4 5.4	84.2 621.8 230.8 36.0 201.6	94 25 27	.9 1.8 1.6	1.3 2.0	15.5	315 41 29	.90	54.3 183.5 96.0 110.5 91.6	.8 .6 .6	<.5 1.1	8.5 3.5 3.7 8.6 6.3	4 4	1.0 .3 .1	19.7 54.9 30.3 7.8 5.6	<.1 .1	6	<.01 <.01 .08	.003	6 10 11	11.4 6.0 10.1 7.2 9.6	<.01 .01 .05	87 142 87	.002 .002 .002 .002 .002 .001	1 3 2	.13 .17 .31	.003 .004 .003	.30 1.6 .23 .1 .23 1.2 .20 <.1 .21 1.7	1.68 1.05 .12	.3 .6 .9	.3 1. .7 1. .5 .8 .4 1.	50 <1 47 1 40 3	<.5 <.5 <.5 <.5 <.5
RE R2004-CK-80 R2004-CK-81 R2004-CK-82 R2004-CK-83 R2004-CK-84	4.0 1.7 3.9	12.7 4.3	196.3 47.9 215.7 140.6 49.0	9 410 61	1.0	.7	1.0	18 445 130	2.04 1.54 4.90 5.57 2.10	90.5 620.9 129.8 53.1 31.3	1.6 .4	<.5	2.9	8 7 6	1.4 .1	17.1 13.6	.1 <.1 <.1 .1 .2	7 89 116	.02 .02	.014 .020	9 6 12	8.9 13.0 12.4 8.9 11.1	.01 .48 .16	61 27 67	.001 .002 .004 .003 .002	1 21 3	.16 .54 .66		.16 .1	.10 .13 .37	.7 3.6	.1 . 1.0 1.	29 1 30 16	<.5 <.5 <.5 <.5 <.5
R2004-CK-85 R2004-CK-86 R2004-CK-87 R2004-CK-88 R2004-CK-89	13.3 6.5 3.3	4.9 10.0	406.0 1790.3 104.8 219.5 45.0	73 13 38	37.5 18.1 4.4 1.5 1.7	.7 .7	.2 .2 .2 .4 5.5	23 23 16	4.52	47.3 450.5 32.5 191.5 52.4	.3 .8 4.1	4.6 <.5	.7 2.2 7.5 1.6 8.7	13 74	<.1 .5	37.6	.1 .2 2.2 .1 .2	5 12 20	<.01 <.01 .04 .41 .10	.004 .019 .237	18 9 10	9.1 13.5 10.6 6.7 15.4	<.01 .01 .01	296< 42 197	.001	4 2 2	.11 .18 .26	.005 .008 .006	.19 .9 .21 .2 .30 .3	.15	.6 .4 2.0	.82. .7.	25 1 50 2 08 1	<.5 <.5 <.5 <.5 <.5
R2004-CK-90 R2004-CK-91 R2004-CK-92 R2004-CK-93 R2004-CK-94	17.1 28.4	240.0 30.2	216.8 7.7	196 8742 125	2.2 20.0 .7	21.2 75.0 12.5	9.9 20.7 5.8	415 108 287	3.40	23.4 16.5 4530.1 21.9 542.7	.1 1.1 .1	<.5	1.1 .7	7 9 1 8	1.6 118.7	15.4 1.8	.1 .1 45.2 .2 .2	14 42 52	.13 .12	.106	6 2 5	5.4 3.9 12.7 14.1 7.0	.54 .30 .62	54 25 93	.002 .028 .001 .085 .026	1 1 11	.93 .65 .03	.033	.22 .3 .59 .1 .14 4.4 .64 <.1 .48 .1	.10 .53 .02	1.5 1.4 3.0	.2 2. .7 2. .1 7. .4 1. .6 3.	38 2 20 2 44 4	43.8 7.7
R2004-CK-95 R2004-CK-96 R2004-CK-97 R2004-CK-98 STANDARD DS5	1.0		13.1 8.8 32.2 35.9 25.8	109 108 182	.6 .2 .7	9.5 .9 2.1	15.1 5.1 13.3	808 6148 168	2.70	42.8 11.2 17.1 33.7 18.2	.1 2.3 41.7	.5 1.3	.9 1.9 .2 4.2 2.7	22	4.9 1.9	1.6 1.1 3.4	<.1	86 48 1 29	.08 14.65 .55	.049	3 2 7	5.8 4.7	1.44 .21 .03	106 1310 60	.134 .012 .007	<1 2 2 2	2.42 .22 .31	.035	.97 .4 L.01 .1 .01 .9 .24 .8 .15 4.9	.02	5.2 .6 1.2	.6 1. .5 1. .3 . 1.3 1. 1.0 <.	12 12 06 1 84 1	<.5 1.0

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

			<u> </u>							<u></u>					2	<u>.</u>		_					-											1			 ACHI
	SAMPLE#	Mo	Cu	₽b	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	¥	Ca	ΡL	a	Cr I	Mg B	a Ti	В	Al	Na	ĸ	W H	g Sc	n	S	Ga	Se		 ÷.,
and the second sec		ppm	ppa	рря	рря	рря	ppm	ppa	ррт	\$	ppm	ppa	ppb	ppm	ppa	ppm	ppm	ppa	ppa	\$	\$ pp	ол р	pm	\$ pp	a 8	pps	8			ppa pp				ppm			
																		-																			
	R2004-CK-99	9.8	30.3	10.9	41	.6	2.9	2.7	57	1.66	3.9	.2	<.5	1.9	32	.2	2.6	.2	5	.21 .1	17 2	20 1	.1 .6	06 39	7 .002	2	.52 .	617	.30	<.1 .0	3 1.2	.2	.36	1	3.9		
•	R2004-CK-100	2.4	66.6	2.8	9	.3	1.9	6.6	43	1.30	3085.3	1.5	50.9	5.2	10	.1	1.5	2.4	2	.10 .0	35	58	.00	02 17	.005	<1	.36 .	014	.27	5.0 <.0	1.3	<.1	. 69	1	1.1		
	R2004-CK-102	8.4	39.5	15.8	48	.4	90.5	13.5	128	4.32	210.9	.3	.5	3.2	13	< 1	4.2	1.6	24	.13 .0	70	7 35	.1 .5	50 6	.002	11	.19 .	025	.29	.1 <.0	1 3.0	.1	2.18	3	2.7		
	R2004-CK-103	1.6	58.5	2.7	15	.1	1.4	2.4	300	1.41	21.1	2.5	37.0	8.2	24	.1	.2	1.0	4	.89 .0	54	8 2	.8 .1	10 18	1.007	1	.59	640	. 29	.4 <.0	1.5	<.1	.70	2	.9	÷ .	
	R2004-CK-104	1.8	48.1	2.7	34	• .1	1.4	2.6	275	1.62	8.5	2.6	37.8	8.2	36	.4	.2	1.2	41	.44 .0	66 1	11 4	. 1 .1	11 18	5 .004	1	.56 .	037	. 26	.3 <.0	1.4	.1	.80	2	.5		
			·																																		
	R2004-CK-105		44.6				1.8					2.1					.2	.3	6	.56 .0	60 1	10 3	.4 .1	11 163	2 .036	1	.56 .	049	. 24	.6 <.0	1.6	<.1	.57	2	.5		
	R2004-CK-106		5.0				1.5				<.5	<.1	<.5	<.1	64	<.1	.1	<.1	1	.97 .0	24	1 12	.5 .1	13 !	5<.001	<1	.05	006 <	.01	<.1 <.0	1.5	<.1	.06	<1	<.5		
			244.8								.5	.3	1.9	2.0	17	-8	8.6	1.5	87	.26 .0	57	3 66	.9 1.4	41 2	.110	1 1	.61 .	054	.54	.1 .0	1 5.5	.7	9.66	6	12.8		
			92.6									.8					1.6	25.9	154	.48 .0	53	6 294	.8 2.1	15 8	1.119	12	2.26 .	182 1	.51	.3 .0	2 8.5	1,3	1.76	11	1.9		
	R2004-CK-109	14.2	95.9	16.4	226	.5	144.2	21.1	913	4.84	1.0	.5	2.9	2.5	68	2.1	1.3	13.3	211	.98 .1	91	6 192	.4 1.9	90 5	5.214	2 2	2.61 .	261 1	.40	.6 <.0	1 13.1	.9	2.36	11	2.1		
	R2004-CK-110	ÿ	12.9	20.0	72	7	2.0	20	000	9 76		ć				-																					
	R2004-CK-111		6.2									.6 1.6								.44 .0										<.1 .1				1			
	R2004-CK-112		4.4										.9 5		105	.3				.37 .0										2.4 .6				1			
			4.6				.6				18.5			6.4		.1				.16 .0										<.1 .1				3			
	R2004-CK-113		6.7					1.9			18.9			6.3						.16 .0										<.1 .1				3			
	VC004-04-110	4,9	0.7	20.7	24	.4	.9	1.7	20	1.09	28.4	.3	<.5	2.9	14	.1	4.3	<.1	4	.02 .0	41 1	12 4	.8 .(03 15	9 .030	3	.30 .	028	.37	.1 .1	1 1.3	.1	.98	1	<.5		۰.
	R2004-CK-114	1.8	42.8	97.7	185	.4	1.0	4.7	45	1.31	8.8	.6	.5	4.1	9	.4	3.1	<1	-13	.31 .1	16 2	21 3	6	15 16	5 053	3	65	022	30	.1 .0	0 9 6	,	75	4	£		
	R2004-CK-115		22.9					3.6				.5								.34 .0										.2 .1							
	R2004-CK-116	1.1	4.2	25.4	193	.1						.2								.14 .0										.1 .0					<.5		
	R2004-CK-117		3.7									.7								.40 .0										6.5 .1				2			
	R2004-CK-118	3.2	241.9	771.3	213	27.7	29.1	125.1	30	4.07							15.1													.1 1.4							
																										•						0.1	1.20	•	6.7		
,	R2004-CK-119	3.4	39.1	75.0	27	3.8	3.9	13.6	30	8.68	66.6	.2	1.3	.8	3	.3	26.9	.1	11	.02 .0	33	5 3	.5 .6	02 1:	1 .002	3	.31 .	608	.31	<.1 .3	9 1.6	10.0	8.73	1	.5		
	R2004-CK-120	3.2	39.6	71.0	3470	4.5	4.7	21.9	103	2.99	46.7	.3	.8	2.4	20	28.1	7.2	.1	17	.36 .0	87 1	11 4	.3 .6	03 4	5 .003	4	.44 .	008	.50	.1 4.2	9 1.6	3.8	3.33	1	<.5		
	R2004-CK-121	58.1	46.9	237.0	185	15.8	5.2	18.2	483	5.86	200.6	.5	1.7	1.4	13	11.9	27.9	.4	60	.02 .0	47 1	11 14	.3	38 6	5 .004	. 5 1	1.44 .	062	.25	<.1 .4	2 2.7	5.2	2.45	7	.8		
	R2004-CK-122	33.1	30.4	95.0	176	10.3	3.9	19.2	419	5.86	105.3	.4	.7	1.4	10	1.4	21.6	.3	46	.13 .0	67	8 6	.6	39 5	3 .003	7 1	1.47	003	.30	<.1 .4	1 2.4	4.0	2.93	6	<.5		
	R2004-CK-123	6.2	110.1	18.5	181	.6	128.0	22.6	1391	6.20	.9	.4	2.8	.9	102	.9	1.2	15.1	165-1	.15 .0	54	2 183	.2 2.	15 5	9 . 195	1 3	3.37 .	377 1	.92	.1 .0	3 12.1	1.4	2.96	15	2.6		
			64.5								326.6						51.0	.2	15 3	1.17	15 1	17 3	.1 .1	12 3	2 .003	8	,49	012	. 35	.1 8.1	8 3.9	23.6	3.22	1	<.5		
		38.9	26.0	536.2	4099	4.7	4.6	40.6	3294	5.83	262.5	.6	1.5	2.1	48	57.2	15.1	<.1	14 4	.88 .1	11 1	12 1	.4 .1	12 43	3 .127	4	.71 .	800	.32	.5 3.2	3 2.9	2.3	5.15	2	.6		
	S2004-ERK-1	.5	23.1	5.9	111	<.1	60.5	36.4	1493	6.54	3.7	.2	1.4	.5	98	.4	1.1	.1	264 2	2.00 .0	55	3 129	.3 3.9	90 23	8 .521	4 ;	3.48	053	.11	.1 .0	3 24.4	.1	.41	13	<.5		
	S2004-ERK-2		5.9									.2								.74 .0				69 6			1.67 .	034	.11	<.1 .0	2 2.9	.1	.06	5	<.5		
	S2004-ERK-3	1.1	63.4	187.0	2087	6.2	8.7	4.7	41	2.20	>10000	1	6.6	<.1	10	38.4	>2000	.1	5	.07 .0	15	18	.0.	01 3	3<.001	4	.17	005	.13	<.1 .4	8 1.1	.2	2.27	<1	15.1		
	S2004-ERK-4	7	221 è	163 A	9197	AE 7	É E	2.0	101	7 00	401 0					<i>.</i>	- 0000									-			8		_						
	S2004-ERK-5		331.6 84.3														>2000			.08 .0				04 3						<.1 .5							
	S2004-ERK-6																914.6			.02 .0				01 2						.2 .1							
	STANDARD DS5		30.4														316.0													.1 .0							
		****	146.5	23.4	140		23.3	12.0	744	3.03	10.0	0.5	42.0	2.9	50	0.0	4.0	0.5	63	.11 .0	98 1	13 189		6/ 13	6.108	16	2.06 .	032	. 15	4.9 .1	8 3.6	1.1	< .05	7	5.0		

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 4

ACME ANALYTICAL

Page 5

ACHE ANALYTICAL											3 (° 1, 4)	- A.	1. ¹	A-26		1	5 ¹		12.14					1						· .				
	SAMPLE#	Mo	Cu I	Pb Zn	Ag	Ni C	20 H	in Fe	As	U	Au	Th	Sr	Cd	Sb	B1	٧	Ca	PI	La	Cr Mk	a Ba	TI	B /	1 Na	ĸ	W	Ha	Sc	Ti-	s	Ga	Se	
	SMILLER	ppn p		-10 211 DAR DOM	·	ppa pp			рря			ррт		ppm		ppm		×	- 14 - F	print p		N 60 6 19	% pp		8 8			- °."	ppm			DDa		
		bhu h	hiir h	w hhu	i Phia	hha ht	w hh	Ali 9	Ph.	pha	- thn	pha	hhu	рры		hhu	P.D.		- PI	рин М		, Mbia	* *		~ ~	~			P.F.					····-
	S2004-ERK-7	1.3 20	3 08	3 335	17	9.6 4.	8 77	37 2.11	5016 4	1	7	٨	70	4 8	>2000		10	1.15 .0	163	3 10	2 21	61.	001	7 3	0 .010	20	1.5	.05	3.3	.1	.68	1	5.2	
	S2004-ERK-8	.2 148				5.1		5 2.60	7.6				78 4		>2000	.1		2.34 .0			.5 .7				4 .003		<.1	.84	.3					
	S2004-ERK-9	<.1 325				2.2		35 .54	39.3		15.7				>2000	.3		<.01<.0							2<.001							<1	.7	
	S2004-ERK-10					10.7 4.		51 4.82							>2000	.3	4					1 21 .			1 .005				1.8			<1 2		
	S2004-ERK-11					6.7 2		13 1.54														1 33 .			0 .004				1.0			<1		
	52004 CIA 11	5.7 2.							10000	•••				1.0										• ••	• • • • • •									
	S2004-ERK-12	386.1 28	.3 37	.4 35	5 >100	1.4 6	.7 2	30 12.19	503.7	.5	19.9	<.1	71	<.1	192.5	.1	1	.04 .0	020	<1 3	.6 <.0	32	001	1.1	1 .005	. 10	3.4	2.65	.6	3.3	>10	<1	<.5	
	S2004-ERK-13					6.1 5							106 1		89.7		6	.24 .0				32		1.3	3 .003	. 10	3.7	1.53	1.5	.6	1.96	<1	.6	
	S2004-ERK-14	41.6 16				1.6 8		33 3.34			1.6			.4	75.6							1 36.		5.3	2 .005	. 16	1.7	3.14	.8	1.5	3.54	1	<.5	
	\$2004-ERK-15	342.0 837				7.1 11									53.0			2.05 .0			.9 .3			1.1	9 .002	. 12	4.3	1.79	1.5	1.6	3.20	1	.5	
	S2004-ERK-16					4.6 17		61 8.84					65 19									2 13			23 .013							1	1.1	
	02001 2.00 20																																	
	S2004-ERK-17	2.3 44	2.0 34	.7 362	2 7.8	4.1 14	.2 61	17 2.83	61.9	.7	16.7	1.5	108	8.2	74.3	.4	5	.59 .0	031	8 6	.8 .2	L 59.	001	1.	24 .006	.20	1.3	.86	2.1	.1	2.70	<]	<.5	
	S2004 - ERK - 18					3.2 6							121 14		65.7	.1	9	1.38 .0	012	1 20	.1 .0	1 25 3	001	1.1	.005	.13	2.1	47.31	2.4	6.1	3.96	1	1.0	
	S2004-ERK-19					6.5 5									216.1	.2	5	2.17 .0	016	3 21	.1 .7	7 36<	001	1.0	05 .002	.04	5.2	49.27	1.9	.8	5.02	<]	1.8	
	S2004-ERK-20	25.3 2	.3 359	.8 661	1 10.6	1.1 5	.6 12	29 5.44			28.2				28.0			. 14 . (<1 3	.0 .0	1 24	001	5.	.003	. 14	1.4	2.55	1.0	6.6	5.40	1	.5	
	S2004-ERK-21	27.9 4		.8 3163	3 25.2	2.1 5				.3	201.7	.ì	81	15.9	31.4	5.9	3	.63 .1	033	<1 5	.4 .0	1 108	001	3	.002	.09	2.3	21.69	1.0	6.5	>10	1	.6	
	S2004-ERK-22	113.7 30	3.6 9	.3 385	5 8.8	6.2 21	.3 55	26 25.69	1170.0	.7	1192.0		6	2.5	17.0	17.8	3	.21 .	027	<1 5	.3 .0	6 162	.001	2.	49 .007	.17	2.3	1.03	2.1	.6	>10	1	5.8	
	S2004-ERK-23	27.1 3	2.0 2033	.2 2487	7 18.4	3.7 11	.3 11	59 3.65	373.2	.6	1.9	1.6	67	23.2	24.7	.1	5	2.18 .	066	6 8	0. 0.	2 29	001	4 .	26 .004	.26	2.0	1.72	1.8	1.9	3.08	1	<.5	
	S2004-ERK-24	1.5 6).2 1668	.7 630	0 25.2	6.0 13	.0 3	48 2.03	32.5	.2	1.4	.5	159	5.3	47.2	.1	9	.45 .1	079	97	.3 .0	2 44	002	3.	25 .007	. 20	1.0	.70	2.0	.6	1.91	1	<.5	
	S2004-ERK-25	117.1	8.1 813	5 7974	4 2.1	2.1 9	.4 140	04 12.11	1604.1	10.7	3.2	.2	267	25.9	22.4	<.1	57	13.40 .	008	4 2	2.7 .2	6 13	002	4 1.	29 .005	,01	.5	1,19	5.2	86.1	7.22	3	.9	
	RE S2004-ERK-25	118.9	7.7 790	.4 783	5 2.1	1.6 9	.4 136	91 11.89	1570.6	10.4	2.0	2	269	26.4	22.B	<.1	58	13.25	800	4 3	3.1 .2	6 12	.002	41.	28 .004	.01	.6	1.14	4.7	85.9	7.35	3	.9	
	R2004-RDH-1	2.2 1	7.4 7	1 7	2.4	7.7 4	.0 12	03 1.89	6.2	.1	.6	.5	173	.3	16.3	.1	35	2.33 .	036	3 20).6 .3	3 223	.063	1 :	78 .060	.26	.1	.06	4.9	.7	.42	3	2.5	
	R2004-RDM-2	12.1 3	0.8 16	5.4 8	1.7	19.4 3	.5 3	80 2.09	42.0	.2	1.4	1.5	29	.3	9.8	.2	62	.47				3 115			96 .058						.67			
	R2004-RDM-3	.6 2	1.4 11	1.7 12	6.1	16.9 10	.4 6	71 4.90	. 2.4			1.7	64	.1	2.8		43					7 113			69 .039				3.4		.22			
	R2004-RDM-4	2.4 3	8.8 8	5.4 55		11.0 4		05 2.13						9.0		<.1					5.5 .3				71 .079		- 17 -		5.6		.46			
	R2004-RDM-5	3.5 1	9.1 10).4 10	0.4	6.8 2	.6 3	195 1.59	38.4	.1	<.5	.6	43	1.1	3.7	.1	33	.61 .	022	5 1	3.4 .2	3 48	.003	<1.	50 .084	.02	<.1	.03	3.3	.,1	. 19	2	3.5	
												· .		_																				
	R2004-R0M-6	1.3 3		2.1 8		5.5 4							43	.8		.1					5.6 .2				34 .028							1		
	R2004-RDM-7	2.2 3		5.1 6		10.7 4							29	.3		.1		.66 .			5.2.2				65 .028									
	R2004-R0H-8	2.3 3		2.2 12		42.9 9								.2		<.1	53	.51 .			7.3 .(33 .049				3.6			5		
	R2004-RDM-9	2.7 6		6.7 11		98.9 20						2.9		.1	2.3							6 207			02.015				3.5					
	R2004-RDH-10	3.5 6	2.2 1	4.6 8	17.4	133.7 20).3 4	38 4.28	1.4	.3	<.5	3.0	18	.2	2.7	.7	89	.37 .	. 108	5 11	9.1 1.3	58 55	.150	11.	81 .043		2	.03	5.7	.5	2.14		1.6	
	and and a second se										_									•	· .					4							4.0	
1	R2004-R0M-11	2.3 1		5.7 11		11.2 2				.1		1.5		1.2	2.3		7					17 55												
	R2004-RDM-12	.84		8.5 9		18.5 6		302 3.64					153	.3	5.8			1.90			6.4				10.030							3		
	R2004-RDM-13	3.0 8		0.2 16		155.3 30						2.8		8	4.6		55					54 51			79 .022				2.1			5		
	R2004-RDM-14	2.9 1			-	5.6 2							299	.1	2.8			2.65				78 29 57 136							4.9				.6 5.0	
	STANDARD DS5	12.4 14	7.0 2	5.0 13	n .3	25.0 1		101 3.04	1/.8	0.0	43.0	2.8	50	5.3	4.0	0.2	10		. voo	10 10		u 190	1033	1/ 2.	00 .035		· · · /	.15	3.5	1.0	vo		9.0	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

Page 6

												<u></u>			******	*****	11111			in the second	<u></u>	i na la	ani na si sa					·	<u></u>			<u>. (</u> 22			 <u></u>
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Ma Fe	As	U	Au	Th	Sr	Cđ	Sb	81	Ŷ	Ca	P	La	Cr	Mg	Ba 1	1 1	A1	Na	K	W	Hg	Sc	т	S	Ga	Se	
	ррл	ppm	рря	ppa	рряя	ppn	ppin j	opin X	ppa	рря	ppb	рря	рря	ppm	ppa	ppm	ppm	*	8	ppm	ррл	8	ppm	\$ ppr	1 8	8	\$	ррл	ppm	ppm	рря	8	ppa p	ipra	
	Lan 19 - 19 - 19 - 19								79711111								1	6		1.	10		e e e e e e e e e e e e e e e e e e e			10.0				• ••••				;-;-;-;-;-;-;-;-;-;-;-;-;-;-;-;-;	
R2004-RDM-15		31.1	4.6	34	.1	31.8	8.5	299 1.41	2.3	.1	.7	.8	18	· .1	1.6	2.6	61	.24	.043	3 1	25.5	.72	111 .07	3 1	. 96	.097	.55	.3	.01	5.8	.3	.39	4	.7	
R2004-RDM-16	3.1	71.7	17.9	102	.4 1	19.8 1	8.9 1	373 4.20	1.6	.3	.8	2.6	120	.4	2.2	8.4	172	1.46	. 146	4 1	47.0 1	. 35	79 .15	0 1	3.19	.465	1.14	.9	.02	9.9	.8	2.08	10 2	2.3	
R2004-RDM-17	2.5	8.4	10.0	859	.1	3.6	8.18	126 4.81	39.7	1.3	.6	1.2	75	7.6	10.8	1	6	4.25	.050	9	3.6	.73	45.00	2	. 42	.008	. 18	<.1	.06	3.7	.2	.08	1 •	.5	
R2004-R0N-18	.6	2.5	8.4	117	.1	1.8	6.2.4	226 2.07	2.8	.2	.6	.8	472	.6	.8	<.1	34 1	9.87	.042	7	1.9	.50	633 .00	3 (.66	.009	.23	.1	.05	3.7	<.1	<.05	2 <	. 5	
R2004-RDM-19	.4	3.1	14.5	99	<.1	.5	3.7	192 3.93	16.3	.2	<.5	3.0	16	· .1	2.3	.1	8	.52	. 155	16	<1	.45	123 .01	8 9	1.41	.006	.49	<.1	.07	2.9	.1	1.49	3.	:.5	
0000 4 0014 DA		• •										÷		-										_											
R2004-RDM-20		3.3	16.7					366 1.92															120 .06		.79						<.1		4 <		
R2004-RDM-21		3.4	18.3					125 4.46							2.5			. 19		13	<1		41 .04		1.12						.1		3 <		
R2004-RDM-22		2.3	88.8					389 7.63								.1							273 .01		.32						<.1		1		
R2004-RDM-23	4.1		21.9	72				511 9.09				<.1				<.1		. 18			10.8		43 .00		.03						<.1		<1 <		
R2004-RDM-24	8.8	3.9	42.0	124	.0	1.1	2.5	53 5.85	53.1	5	<.5	2.8	7	6	7.3	<.1	4	. 19	.065	13	8.0	.06	23 .01	8 2	.41	.030	.29	.1	.24	1.4	.1	5.90	2	.7	
R2004-RDM-25	1.7	3.4	28.1	106	.5	1.2	5.4 24	170 2.09	22.8	.3	<.5	1.9	120	1.1	4.1	<.1	14	3.24	.052	n	3.2	.51	66 .00	2 2	.29	.005	.26	.1	.07	6.2	.3	.99	1 •	: 5	
R2004-RDM-26	3.9	4.9	43.1					44 2.16															110 .02		.41						.3		2 <		
R2004-RDM-27	.6	25.0	74.8					185 2.77								<.1							207 .00		.63					5.3		.36	1.		
R2004-RDM-28	4.5	62.6	141.0	149	3.0	4.3.2	1.3	73 1.13	63.1	7	<.5	2,3	11	3.8	11.3	.6	13	.13	.058	14	6.6	.06	155 .00	3 1	.58	.004	.35	<.1		2.4		.59	1		
R2004-RDM-29	13.7	68.4	214.0 >	10000	12.0	19.1 4	1.7	43 1.55	298.4	2.1	<.5	.9	- 11							11	8.1	.01	62 .OK						10.29				.1.1		
R2004-RDM-30	3.7	6.9	25.3	135	.6	1.0	3.2	181 2.15	35.1		<.5	4.6	12	9	5.2	<.1	18	.30	.077	15	9.9	.13	117 .07	6 <	.42	.048	. 16	.1	.20	3.0	.1	1.68	3 .	c.5	
R2004-RDM-31	9.4	15.8	150.0	928	1.0	3.3 2	4.4 2	852 2.31	70.0	.6	<.5	2.8	51	9.0	4.4	<.1	17	4.20	.139	13	1.9	.13	186 .15	6	.96	.007	.39	.6	.73	4.3	1.4	1.27	2	<.5	
R2004-R0M-32	3.8	25.1	22.1	70	.2	9.4	5.8	527 2.81	1.4	2.3	<.5	13.2	20	.3	.9	.2	47	.25	.071	7	6.6 1	.07	81 .00	15	1.36	.052	.13	<.1	.04	2.4	.1	.20	7	.6	
R2004-RDN-39	5.1	4.9	6.8	48	.5	2.5 1	2.6	549 2.95	11.7	3.3	4.0	15.5	6	.1	.5	2.7	42	.13	.053	14	4.9	.68	35 .00	5	2 1.16	.079	.07	.8	.02	3.3	.1	.37	6	1.8	
R2004-RDM-40	26.3	7.8	25.0	52	1.1	3.8 1	8.9	539 3.16	8.5	3.8	8.5	12.4	8	<.1	.7	3.4	31	.12	.044	15	7.8	.63	162 .00)6	1.06	.049	.14	.5	.01	2.5	<.1	.26	5	1.5	
RE R2004-RDM-40	27.8	8.8	25.8	54	11	4 6 1	70	538 3.22	, a .	1 2 0	12 A	12 0	8	e 1	10	3.7	20	12	.046	15	9 2	63	160 .00		1 1.05	066	14	.5	. 61	n 6	<1	27	5		
R2004-R0M-41		1.2	22.4					672 4.9					5			2.3							28 .00		l 1.69						<.1				
R2004-R0M-42		1.9	3.0					515 3.48						.1		1.1							192 .0		1 1.11						<.1		6		
R2004-RDM-43		2.5	6.8	48				153 2.0						<.1		.7							203 .00		77						<.1		4		
R2004-RDM-44		5.1	34.3	49				357 6.00				1.7		.1		4		.33					35 .0		5 1.31						<.1		6		
																										1000				0.0		1.00			
R2004-RDM-45	3.7	1.7	2.0	51	.3	5.8 1	4.2.1	045-3.10	5 4.9	1.2	<.5	8.3	29	.1	.5	.6	62	1.52	.133	13	4.5 1	1.17	74 .0	3	2 1.12	.066	.13	<.1	.01	6.5	<.1	.61	6	2.3	
R2004-RDM-46	6.8	2.2	4.8	61	.5	3.9 2	7.2	225 4.8	6.7	1.2	2.4	8.9	7			1.9							34 .00		l 1.67				<.01				10		
R2004-RDM-47	3.7	4.2	5.2	14	.5	1.3 1	9.3	68 2.7	5 11.1	1.9	.9	12.4	9	<.1	.8	1.6	29						92 .0		1.45	.095	.02				<.1		4		
R2004-RDM-48	2.2	407.7	9.5	58	.7	5.31	8.5	468 7.1	3 9.2	2.3	.6	3.3	15			.2							29 .0		3 1.52						<.1		8		
R2004-R0M-49	2.5	39.0	9.8	61	.1	2.5	7.0	471 4.1) 55.3	.7	4.1	5.9	16			1.6		.21	.105	16	14.0	.77	194 .0						<.01				8		
												• •																44					•		
TEK-2004-1	15.3	24.2	204.5	269	18.2	5.2 1	4.3 2	014 7.7	1 520.7	.6	.8	1.4	133	2.0	16.9	<.1	23	2.09	.090	6	2.9	.11	21 .0	06	2.30	.005	. 28	.6		2.1	6.7	6.42	1	.6	
TEK-2004-2	18.5	56.5	>10000 >	>10000	58.3	.9	4.1	716 4.9	2 895.7	3.7	38.4	<.1	84	1047.0	426.2	<.1	9	.70	.010	<1	4.7	.02	14<.0	91 <	1 .06	.003	.03	.4	>100	1.1	5.9	>10	3	<.5	
TEK-2004-3	10.8	223.9	427.0	3118	4.9	1.7	5.91	178 2.6	3 48.	5.6	12.6	2.5	27	22.8	10.3	1	8	.50	.074	12	4.0	.08	114 .0	02	3 .22	.005	.21	.3	.59	1.8	.6	1.28	1	1.2	
TEK-2004-4	63.2	24.1	1191.2 :	>10000	14.0	2.6 1	1.5	771 1.6	3 140.	3.6	42.7	.4	67	87.3	23.9	.9	10	1.24	.032	2	8.1	.01	54 .0	D1	1.20	.605	.14	1.2	5.64	1.7	3.2	1.89	1	1.2	
 standard DS5	13.2	146.2	25.2	136	.2	25.2 1	1.4	737 2.9	5 18.7	6.5	45.9	2.8	49	5.3	3.9	6.0	58	.73	.086	13	182.5	.65	137 .1	00 1	8 1.97	.034	.14	5.3	.17	3.6	1.0	<.05	6	5.1	
							1.1					1.1						-							2	- 24-									 -

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACHE ANALYTICAL

•

Data F

ÂÅ.	P					-		-		= nnac:) <u> </u>	-	<u>}</u> (μ η			®			-			-	т				<u>–</u>	©– ₽
ACME ANALYTICAL	<u>.</u>									mac.	Te	1411	162	СТ	116	# A	40	221	<u> </u>			 		•		r	Page		رد از <u>محمد از ا</u>	ACME ANA	ALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm p	U ppm	Au ppb p	Th Sr ppm ppm		Sb ppm	Bi ppm pp	V m	Ca %	Р %р	La pm	Cr Mg ppm %	g Ba ≰ppm	Ti %p	4 F - 11	1 %	Na %	K W %ppm	Hg Sc ppm ppm	c T1 n ppm		Ga S ppm p
TEK-2004-5	6.4	13.6	36.1	328	2.7	1.2	12.1	696	3.59	68.2	.5	28.7	.9 98	3 2.1	3.0	4.5	7	.21 .	.079	4	3.2 .01	1 22	.002	2 .3	0.1	006 .1	19.4	.56 2.1	1.5	2.20	1 •
TEK-2004-6	.6	1.6	240.5	732	1.5	.4	.2	22	. 31	11.2 <	<.1	2.0	<.1 5	4.1	1.8	<.1	1	.01 .		<1	6.0<.01			2.0	- e e	003.0	01 .1		2 <.1	.12	
	74.4	83.8		1/00	>100	2.8	0.6	166	2.89	212.4	.7	3.9	.1 56	16.2	27.0	.2	1		.000	<1	10.4<.01	1 17<	¢.001	1 .1	.9 . (006 .7	12 .9	10.01	7 4.7	2.69	
TEK-2004-8	3.4	14.6	85.2	616	4.2		6.2 5		4.82	60.7	.4	30.7	.1 444	\$ 5.6			10 7		.013	5	3.1.09	9 15	.001	1 .(7.1	002.0	05 3.2	1.42 1.3			
TEK-2004-9	28.2	22.1	442.2	662	23.3	2.9	6.8	81	7.54	145.4	.2	1.0	<.1 16	5 4.2	39.9	<.1	3	.04 .	.008	<1 :	13.9<.01	16	.001	1.2	21.0	005 .1	11 .3	4.14 1.4	1.9	7.58	1
TEK-2004-10	13.3	57.4	>10000>1	10000	78.2	6.4	24.0	113	4.55	251.8	.3	2.6	.1 70) 481.0	65.4	<.1	1	.22 .	.063	<1	3.1 .01	18	.001	1.1	6.0	. 800	13.3	>100 1.3	3 5.6	6.53	- 1
TEK-2004-11	80.3 1	.976.5	103.2	293	6.7	2.8	51.7 2	2824 2	24.77	2600.7	.2	269.4	.2 7	1.7	115.7	5.2 <	<1	.11 .	009	1	7.7.04	4	<.001	1.0	4.0	001 .0	02.7	2.55 .5	5.2	>10	<]
TEK-2004-12	1.0	84.1	>10000	1713	71.8	1.9	9.77	/712	2.31	18.1	.2	8.7	.9 319	15.1	66.8	.1 2	23 14	4.85 .	064	13	5.6 .32	2 119	.076	2.5	2.0	008 .3	38.5	1.50 3.0	J.4	.95	2
TEK-2004-13	32.7	18.6	150.0	164	1.9	2.4	6.3	205	4.48	164.9	.3	39.5	.1 38	1.1	8.5	5.7	4	.22 .	009	1	9.8<.01	1 19	.001	1.(4 .1	001 .0	03.2	.21 .4	1.2	4.09	<
STANDARD DS5	12.5	140.7	24.0	137	3	24.2	12 6	747	2.99	17.9 6	6 6	41.7	2.6 47	7 5.4	3 8	6.3 6	:2	.73 .	090	11 11	85.5.68	2 1 2 0	.097	16 1.9	0 0	034 ·	13 4.8	.19 3.3	211	<.05	(

Sample type: ROCK R150 60C.

		<u></u>		<u> </u>		<u>.</u>				<u> </u>					8))				-	 ()		8 					-
ACME ANAI (ISO								D.		852	B.	HA:	STI	ngs	ST	. VI	anc	ouv	ER	BC	Ve	5a 11	R6		PH	DNE	(60	4)Z	53~	31;	58 X	A.A.	004	1) 4:	oo-1	71.
	500	a nu			au .					G	eoc	HE	MI	CAI	, A	NAL	'YS	IS	CE	IRT]	C F I	CA1	'E													A
							30	5 - 1	540 W	P1 arine										405 Subm		:0 d by:	Anda	-	9 outer											
					<u></u>			<u> </u>				ve,	ncat		icour	ei Di	~ * *			SCAM		u uy.	- Al IQI	(C 10)		1119										
SAMPLE#	Мо	Cu	e . C 8) Zn	1000	Ni			Fe		U		Th		Cd			۷			La	Cr	Mg		Ti		A1	Na			Hg 1					Sample
	ppm	ppm	ppn	i ppin	ppm	ppm	ppm	ppm	*	ppm	ppm	ppp	ppm	ppm	ppm	ppm	ppm	ppm	*	\$	ppm	ppm	\$	ppm	*	ррп	*	*	<u>% </u>	pm	ppm p	xn pp	M	% pp	m ppm	gm
SS2004 CK-1		37.4								67.5																1	.77	.004	.06	.2	.06 1	.7 .	4 .8	86	2.6	15.0
SS2004 CK-2										79.5																1					.08 1		4 1.1		2.8	15.0
SS2004 CK-3		30.3								54.0												14.0						.004			.07 1		3.7		2.6	15.0
SS2004 CK-4		35.7		3 129						50.3												13.0				1					.06 1		2.5		2.6	15.0
SS2004 CK-5	1.5	30.4	30.2	2 123	.5 2	1.0	9.2	/42	2.60	46.1	.5	8.9	2.1	46	1.1	4.6	.1	21	1.22	.105	8	14.7	.61	63	.005	1	.75	.004	.05	.1	.06 1	.6.	3 .5	59	2 <.5	15.0
SS2004 CK-6	1.8	37.9	45.1	153	.7 2	5.8	13.6	757	3.40	78.3	.5	28.2	1.8	46	1.1	5.6	1	21	1.17	.108	7	16.2	.61	59	.006	<1	.75	.004	.05	.2	.09 1	.6.	4 1.	12	2 1.0	15.0
SS2004 CK-7										109.0																1					.10 1				2 1.0	15.0
SS2004 CK-8	1.8	37.3	41.6	5 141	.6 2	3.3	11.4	819	3.14	63.9	.6	10.6	2.0	51	1.1	5.4	.1	20	1.34	.117	7	15.4	.66	63	.005	1	.80	.004	.05	.2	.06 1	.6	3.8	84	2.6	15.0
SS2004 CK-9										111.3						4.3	.1	42	.37	.133	9	21.9	.96	36	.018	11	.29	.006	.05	.4	.03 2	.4.	1.1	12	5.5	15.0
SS2004 CK-10A	3.1	98.2	73.6	5 445	.6 1	3.8	13.8	1919	5.64	42.4	1.2	5.9	2.4	24	3.3	2.7	.2	110	.35	.103	13	16.4	.69	160	.018	2	.90	.006	.06	.1	.09 4	.0.	.4 .2	29	5.9	1.0
SS2004 CK-10B	2.7	63.0	76.7	220	1.3 2	9.7	23.8	721	5.31	181.6	.6	49.1	1.8	51	1.8	10.8	.2	22	1.27	.123	7	14.5	.60	53	.007	1	.70	004	05	.5	.15 1	6	9 2.4	90	2 1.6	15.0
SS2004 CK-11										66.1																					.11 2		9		3 < 5	15.0
SS2004 CK-12										32.0																		.010			.38 4		3 .1		5 .9	1.0
SS2004 CK-13	.8	37.5	42.2	2 214	.3	5.4	16.8	955	4.54	14.7	.8	3.0	2.2	29	1.4	1.0	.2	80	1.04	.107	12	5.7	1.08	90	.106						.05 4				4 .8	15.0
SS2004 CK-14										21.1																5 1	.38	.009	.08	.1	.02 5	.0.	4 .]	14	5 <.5	15.0
RE SS2004 CK-1	1.7	37.7	40.1	152-	.6 2	2.3	11.6	736	3.04	72.5	.6	11.1	2.1	49	1.0	5.6	1	19	1.42	.114	8	12.7	.63	62	.006	1	75	004	06	2	.07 1	8	3 .9	93	2.7	15.0
SS2004 CK-16		45.7			.8 6	8.8	40.1	9729	3.75	51.0	1.2	2.8	1.7	25	18.9	3.0	.2	33	.29	.112	20	32.7	.65	250	.008						.10 3		9.0		4 3.0	7.5
SS2004 CK-17	1.8	11.7	26.9	9 103	.2 3	34.9	12.6	1429	3.01	24.3	.3	13.1	.9	7	.7							32.2									.02 1		2 < 1		5 < .5	15.0
SS2004 CK-18	45.2	28.7	59.3	3 453						355.7		.9	1.5	14	1.8							24.0									.08 2				3 3.3	15.0
SS2004 CK-19	4.7	24.2	37.6	5 274	.4 3	38.9	8.1	746	2.68	32.8	.6	.5	1.4	19	2.4	3.5	.1	26	.22	.078	12	22.9	.53	116	.005						.04 2		.3 .(3 2.0	15.0
STANDARD DS5	12.2	148.1	24.4	4 142	.3 2	25.7	11.9	785	2.99	17.9	6.3	41.8	2.9	45	5.6	3.8	6.0	61	.76	.092	12	190.5	.67	140	.100	15 1	. 98	.033	.14	5.0	.16 3	.6 1	.1 <.	05	6 5.0	15.0
and the second																																	(With Street of Street			

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data / FA

12355555555

ent 23/04 DATE RECEIVED: SEP 7 2004 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

FROM : Assayers Canada

FAX NO. :604 327 3423

Oct. 15 2004 06:51PM P2

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Assay Certificate

4V-1039-RA1

Oct-15-04

Company: Mountain Boy Minerals Project:

Attn:

Randy Kasum

We hereby certify the following assay of 19 rock samples submitted Oct-04-04

Sample Name	Au g/tonne	Au-check g/tonne	Ag g/tonne	Cu %	Pb .%	Zn %	· · · · ·
EB-04-152	0.01		4.9	0.002	0.02	0.02	705
EB-04-153	0.15		1305.0	0.870	9.10	0.34	TERIM
EB-04-154	0.10		1132.0	0.745	0.14	0.14	
EB-04-155	0.11		14.1	0.005	0.03	0.01	() () () () () () () () () () () () () (
EB-04-156	0.12	- 1. 	335.0	1.190	0.19	0.08	
EB-04-157	2.35		281.0	2.290	0.23	7.30	
EB-04-158	0.16		2.1	0.008	0.01	0.02	
EB-04-159	0.02		0.8	0.006	0.01	0.02	
EB-04-160	0.02		0.2	0.002	0.01	0.02	
A04-234	0.42	0.38	2560.0	2.310	0.39	1.79	•
A04-235	. 0.20		1620.0	0.462	17.60	0.13 -	7
A04-236	0.09		24.3	0.009	0.22	0.01	Enterpris
A04-237	83.77	88.16	330.0	2.570	3.19	25.40	
A04-238	0.10		3.8	0.012	0.01	0.06	
A04-239	0.12		2.9	0.011	0.03	0.08	
A04-240	0.02	• ••••••••••••••••••••••••••••••••••••	0.2	0.001	0.01	0.01	
A04-241	0.01		0.3	0.001	0.01	0.02	
A04-242	0.01		0.2	0.001	0.01	0.02	
A04-243	0.01		0.2	0.001	0.01	0.01	
*DUP EB-04-152			4.6	0.002	0.02	0.02	
*DUP A04-234			2590.0	2.320	0.40	1.81	
*97-45	1.44						
*CPb-1			627.0	•	· • • • • • • • • • •	4.43	
*KC-la				0.628	2.24		
*BLANK	<0.01		<0.1	<0.001	<0.01	<0.1	

Certified by

FROM :Assayers Canada

Project:

FAX NO. :604 327 3423

Oct. 15 2004 06:52PM P5

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

4V-1048-RA2

Company: Mountain Boy Minerals

Oct-15-04

3

Attn: Randy Kasum

We hereby certify the following assay of 13 rock samples submitted Oct-06-04 by Randy Kasum.

Sample Name	Au g/tonne	Au-check g/tonne	Ag g/tonne	Cu %	Pb %	Zn %	
A04-269	3.90	3.73	115.0	8.670	0.39	0.08-	ENTAPri
A04-270	0.16		6.9	0.104	0.11	0.02	ENIN
A04-271	0.85		13.2	0,718	0.22	0.02	
A04-272	0.05	•	7.0	0.175	0.11	0.03	
A04-273	0.14	•	6.7	0.780	0.05	0.03	
EB-04-161	0.01		0.8	0.013	0.06	0.06	
EB-04-162	0.01		0.6	0.005	0.01	0.01	
EB-04-163	0.01		1.0	0.002	0.01	0.01	
EB-04-164	0.01		0.2	0.002	0.01	0.01	
EB-04-165	0.01	0.01	0.2	0.001	0.01	0.01	
EB-04-166	0.01		1.1	0.001	0.01	0.01	
EB-04-167	0.01		0.3	0.001	0.01	0.01	
A04-255	0.01		0.5	0.001	0.01	0.01	· ·
*DUP A04-269			114.0	8.690	0.38	0.08	
*DUP EB-04-165	•		' 0.3	0.001	0.01	0.01	
*97-45	1.45	****					
*CPb-1			627.0			4.40	
*KC-1a				0.628	2.21		
*BLANK	<0.01		<0.1	<0.001	<0.01	<0.01	

APPENDIX IV

PETROGRAPHIC STUDIES

DESCRIPTION OF POLISHED THIN SECTIONS: S-17, S-22, S-28, S-41

Report for: Ed Kruchkowski Pinnacle Mines Ltd Vancouver, BC February 24, 2004

٨

Sample S-17

Feldspar phenocrysts bearing rock, very strong K-feldspar alteration, mineralization with pyrite and sphalerite.

Mineral composition:

Secondary K-feldspar	90-95%
Sericite	2-3%
Quartz	1-2%
Muscovite	<1%
Plagioclase	<1%
Pyrite	4-5%
Goethite	<1%
Sphalerite	0.5-1%

The original rock contained 15-20% of euhedral to subhedral feldspar phenocrysts which have been completely replaced by secondary K-feldspar and to lesser extent by sericite. The bulk of secondary K-feldspar along with a portion of pyrite form very fine grained (0.01-0.03 mm across) groundmass. Pyrite and sphalerite occur as irregular blebs and small grains ranging in size from 0.01 to 2.0 mm in diameter. In several places there are replacements of goethite after pyrite. Pyrite is disseminated throughout the sample with most of its large grains and sphalerite concentrated in a sulphide zone along the edge of the thin section. The sulphide zone contains also quartz, muscovite and plagioclase.

Due to complete alteration it is not possible to determine the original rock. The only certain thing is that the rock contained phenocrysts of plagioclase and/or K-feldspar. The original rock could have been a part of a subvolcanic intrusion, a flow or a layer of tuff. The rock was later strongly sericitized followed by an introduction of K-feldspar and fine grained pyrite. The last event was a precipitation of coarser grained pyrite and sphalerite along with quartz, muscovite and plagioclase gangue. The presence of muscovite and plagioclase indicate formation in a high temperature environment.

A rock composed of quartz, carbonates and sulphides

Sample S-22

Mineral composition:

Quartz	80-85%
Calcite	15-20%
Pyrite	0.1-1.0%
Goethite	0.1-1.0%
Chalcopyrite	0.1-1.0%
Sphalerite	0.1-1.0%
Galena	<0.1%

The bulk of the sample consists of a mosaic of equigranular, slightly interlocking quartz grains ranging in size from 0.02 to 0.3 mm across. Larger quartz grains form patches and discontinuous veinlets. Calcite occurs as equigranular grains 0.2-0.8 mm in diameter which make up irregular patches. Pyrite, goethite (replacements after pyrite), chalcopyrite, sphalerite, and galena are present as anhedral to subhedral grains 0.02-0.5 mm across disseminated throughout the sample. The sample lacks any characteristic feature which would indicate the environment in which the sample have formed.

Sample S-28 A rock composed of quartz, carbonates and sulphides Possible VMS environment ?

Mineral composition:

Quartz	55-60%
Chalcedony	1-2%
Carbonates	35-40%
Sphalerite	1-2%
Galena	trace
Bournonite ?	trace

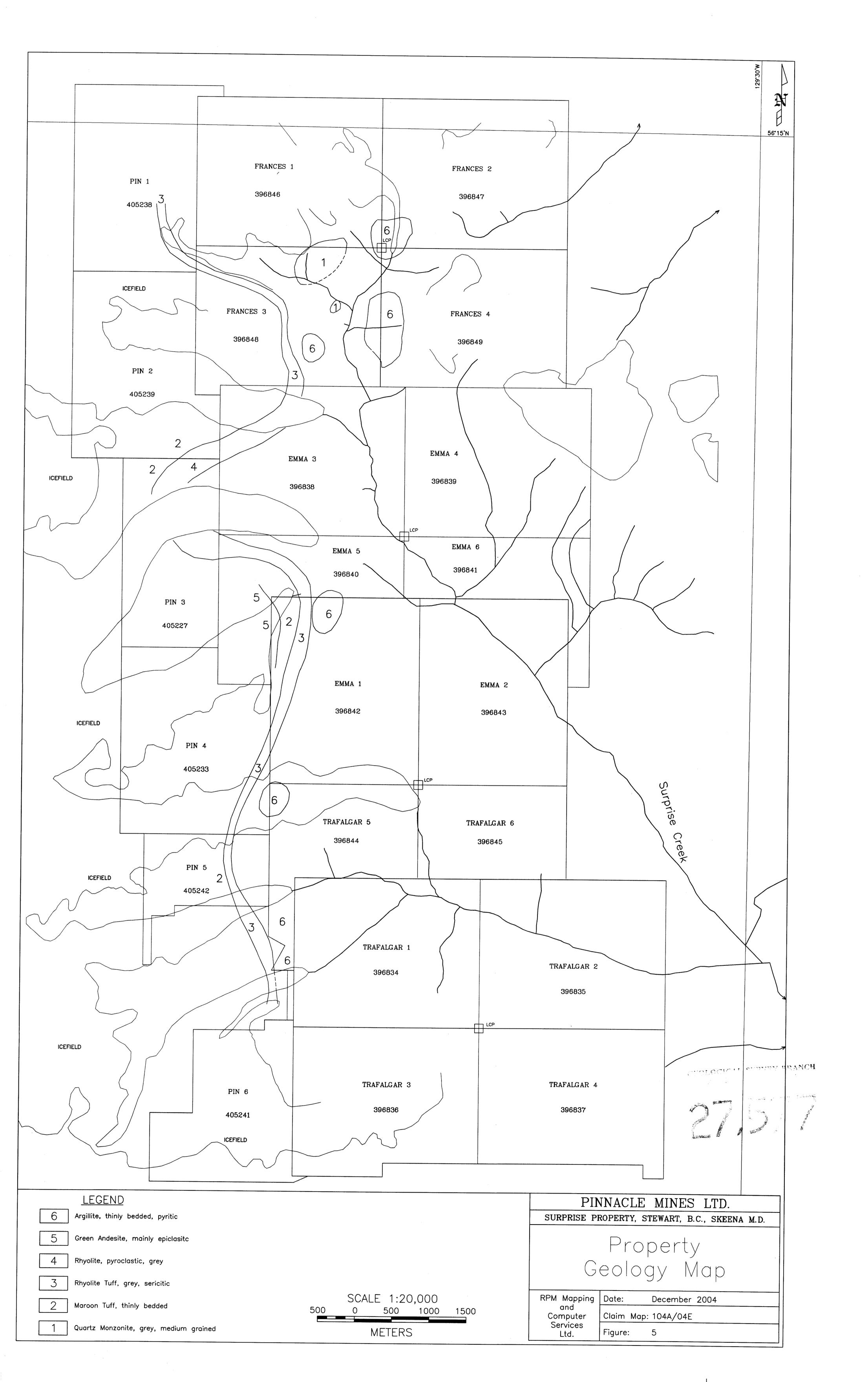
The sample is composed by alternating sections dominated either by quartz or carbonates. Quartz forms a mosaic of equigranular, slightly interlocking grains ranging in size from 0.01 to 0.2 mm. Quartz grains do not show so called undulatory extinction which is characteristic of quartz grains which undergone tectonic deformation. Carbonates occur as equigranular grains 0.02 to 0.2 mm in diameter. There are some minor quartz and carbonate veinlets, which in most cases are oriented perpendicular to the borders between quartz and carbonate dominated sections. Chalcedony (with a typical feathery appearance) is closely associated with sulphides. Small amount of chalcedony was replaced by carbonate. Sulphides occur as anhedral grains and small blebs ranging in size from 0.02 to 0.4 mm across. Most of them form parallel bands and streaks up to 1 mm wide, with the reminder being disseminated throughout the sample.

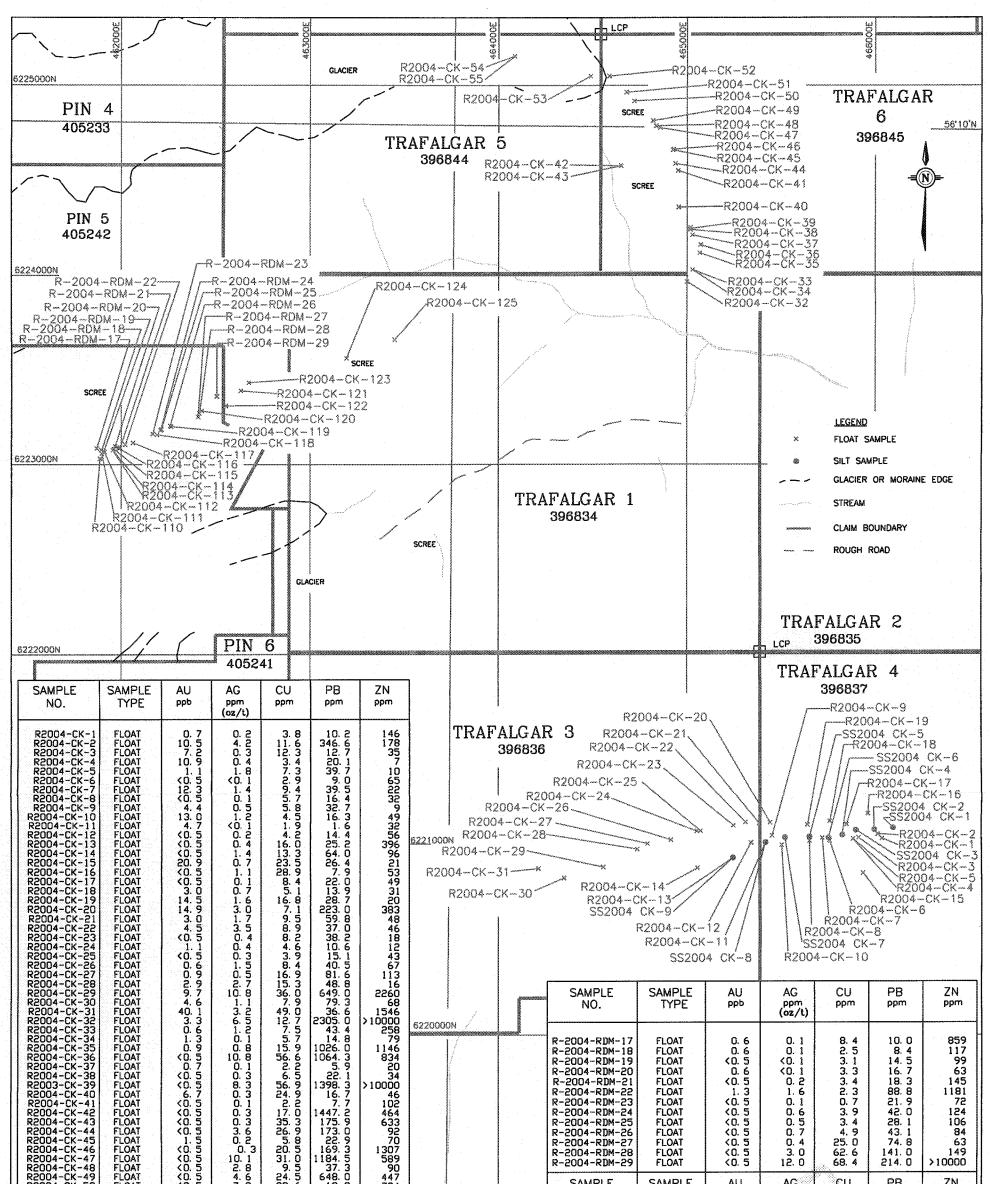
•

The origin of the examined rock is uncertain. The rock does not display any tectonically induced foliation or shearing, that's why, the formation of parallel bands and streaks of sulphides could have occurred during syngenetic rather than tectonic process. This fact, as well as the presence of chalcedony indicate the formation in VMS environment.

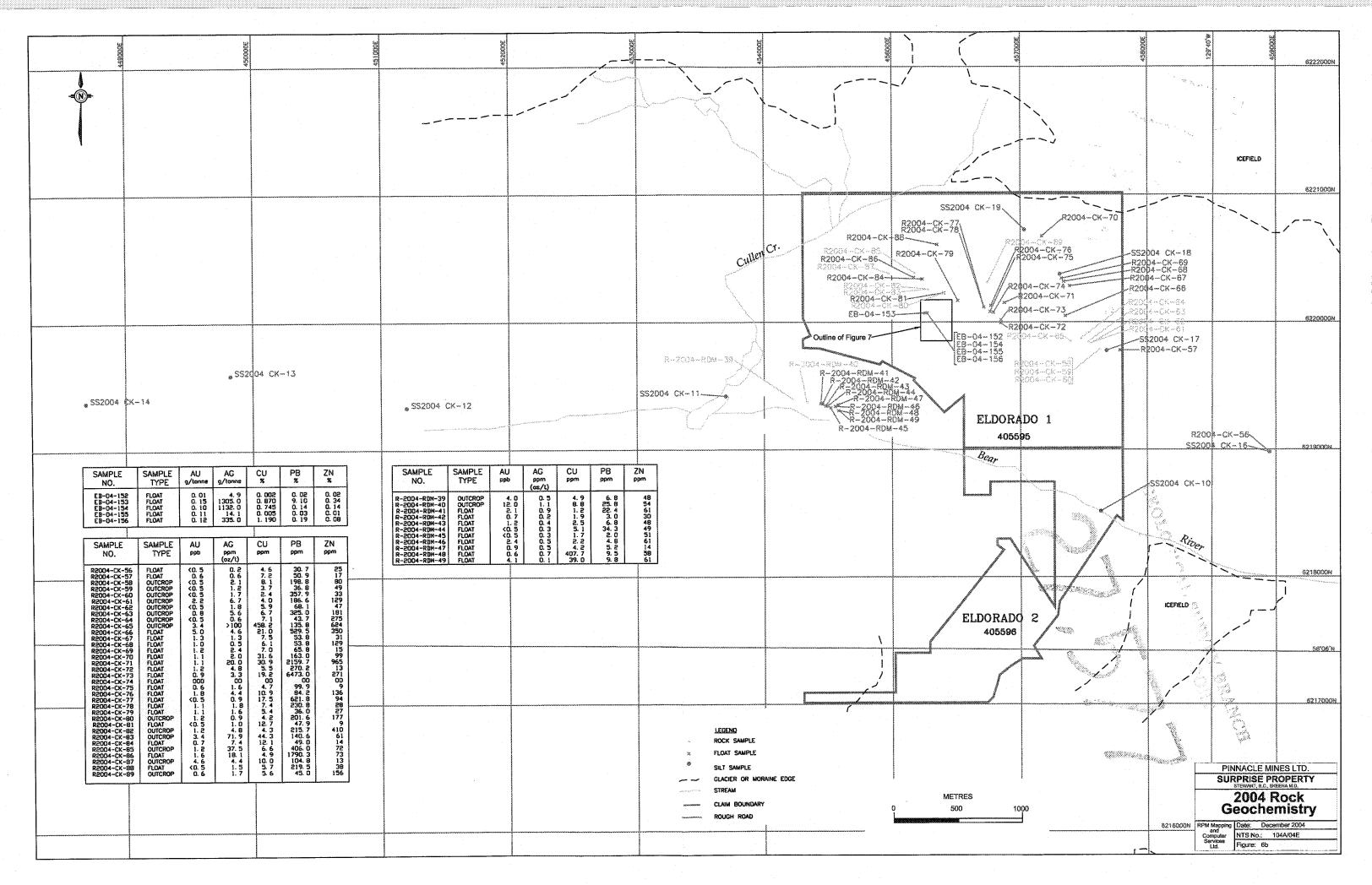
Sample S-41 A rock composed of quartz with minor carbonate and sulphides

Mineral composition:


Quartz	95-99%				
Carbonates	<1%				
Galena	1-2%				
Sphalerite	0.0-1.0%				
Pyrite	<0.1%				
Chalcopyrite	trace				


Quartz occurs as partly interlocking grains ranging widely in size from 0.02 to 1.0 mm in diameter. Larger quartz grains form mostly separate patches and irregular, discontinuous veins. Some grains display moderate undulatory extinction. Carbonates make up one irregular patch 1.5 mm across composed of equigranular grains 0.02-0.05 mm across. Sulphides occur as anhedral disseminated grains ranging in size from 0.02 to 1.0 mm in diameter.

The sample lacks any feature indicative of any specific environment of the rock formation.


Alex Walus, M.Sc. Ph: (604) 592-6046

٢

R2004-CK-49 FLOAT R2004-CK-50 FLOAT R2004-CK-51 FLOAT R2004-CK-52 FLOAT R2004-CK-53 FLOAT	<0.5 4.6 <0.5 7.9 0.5 1.2 <0.5 4.3 <0.5 7.1	24. 5 648. 0 80. 6 10. 0 10. 8 670. 2 8. 5 406. 6 27. 9 2755. 2	447 794 3322 863 1518		SAMPLE NO.	SAMPLE TYPE	AU ppb	AG ppm (oz/t)	CU ppm	PB ppm	ZN ppm
R2004-CK-54 FLOAT R2004-CK-55 FLOAT R2004-CK-90 FLOAT R2004-CK-91 FLOAT R2004-CK-92 FLOAT R2004-CK-92 FLOAT R2004-CK-93 FLOAT R2004-CK-95 FLOAT R2004-CK-95 FLOAT R2004-CK-96 FLOAT R2004-CK-97 FLOAT R2004-CK-98 FLOAT R2004-CK-99 FLOAT R2004-CK-99 FLOAT R2004-CK-100 FLOAT R2004-CK-101 FLOAT R2004-CK-102 FLOAT R2004-CK-103 FLOAT R2004-CK-104 FLOAT R2004-CK-105 FLOAT R2004-CK-106 FLOAT R2004-CK-107 FLOAT R2004-CK-108 FLOAT R2004-CK-107 FLOAT R2004-CK-108 FLOAT R2004-CK-107 FLOAT R2004-CK-107 FLOAT R2004-CK-108 FLOAT R2004-CK-109	<0.5	13.4 405.7 10.9 10.69 14.3 26.9 58.4 216.8 30.0 216.8 30.0 13.1 64.0 13.1 64.0 35.9 64.0 325.9 30.66 000 39.55 10.88 220.03 10.88 20.05 15.87 48.0 24.08 98.5 12.77 44.6 24.88 24.00 20.55 98.1 24.04 99.5 16.4 99.5 16.4 99.5 16.4 99.5 16.4 99.5 16.4 99.5 16.4 99.5 12.0	208 127 196 8725 976 109 108 182 41 900 48 15 13 459 43 13 459 223	6219000N 6218000N	SS2004 CK-1 SS2004 CK-2 SS2004 CK-3 SS2004 CK-4 SS2004 CK-4 SS2004 CK-6 SS2004 CK-7 SS2004 CK-7 SS2004 CK-10A SS2004 CK-10A SS2004 CK-10A SS2004 CK-11 SS2004 CK-12 SS2004 CK-12 SS2004 CK-14 SS2004 CK-14 SS2004 CK-17 SS2004 CK-17 SS2004 CK-19	l	22.8 13.0 14.7 4.2 8.9 28.2 39.8 10.6 *9.6 5.9 49.6 5.9 49.6 2.9 18.1 3.0 30.8 2.8 13.1 0.9 0.5	0.7 0.6 0.5 0.5 0.5 0.6 0.3 0.6 0.3 0.6 0.3 1.8 0.3 0.3 0.3 0.3 0.5 0.4 0.5 0.4	37. 4 34. 8 30. 3 35. 7 30. 4 37. 9 41. 3 37. 3 58. 1 98. 2 63. 0 39. 4 301. 9 37. 5 29. 8 45. 7 11. 7 28. 7 24. 2	37. 2 43. 8 33. 9 30. 3 30. 2 45. 1 54. 9 41. 6 76. 7 147. 2 45. 4 42. 2 14. 4 267. 5 26. 9 59. 3 37. 6	136 150 129 123 153 163 141 98 445 220 301 205 214 102 970 103 453 274
R2004-CK-111 FLOAT R2004-CK-112 FLOAT R2004-CK-113 FLOAT R2004-CK-114 FLOAT R2004-CK-115 FLOAT R2004-CK-115 FLOAT R2004-CK-115 FLOAT R2004-CK-116 FLOAT R2004-CK-117 GRAB R2004-CK-117 GRAB R2004-CK-117 GRAB	0.95 0.4 0.55 0.4 0.55 0.4 0.55 0.4 0.55 0.4 0.55 0.1 0.55 0.55 0.1 0.55 0.	6.2 78.4 4.4 25.0 6.7 26.7 42.8 97.7 22.9 178.0 4.2 25.4 3.7 124.0	515 99 24 185 140 193 384 384			- 49 - 49			PINNACLE MINES LTD. SURPRISE PROPERTY STEWART, B.C., SKEENA M.D.		YTY
R2004-CK-118 FLOAT R2004-CK-119 FLOAT R2004-CK-120 FLOAT R2004-CK-121 FLOAT R2004-CK-122 FLOAT R2004-CK-123 FLOAT R2004-CK-124 GRAB	2.3 27.7 1.3 3.8 0.8 4.5 1.7 15.8 0.7 10.3 2.8 0.6 0.7 5.8	241. 9 771. 3 29. 1 75. 0 39. 6 71. 0 46. 9 237. 0 30. 4 95. 0 110. 1 18. 5 64. 5 878. 5	213 27 3470 185 176 181 4 <u>11</u> 2	<u>56'06'N</u> O	METRES 500	1000 - 		RPM Mappin and Computer	Computer NTS No.: 104A/04E		
R2004-CK-125 FLOAT	1.5 4.7	26.0 536.2	4099			,		Services Ltd.	Figure: 6	6	

