

[ARIS11A]

Geological Survey Branch Assessment Report Indexing System

ARIS Summary Report

Regional Geologist,	Smithers	Date Approved:	2005.04.12	Off Confidential:	2005.12.15
ASSESSMENT RE	PORT: 27578	Mining Division(s):	Skeena, Liard		
Property Name: Location:	Eskay NAD 27 Latitude: 56 35 13 NAD 83 Latitude: 56 35 12 NTS: 104B09E BCGS: 104B060		07 20 UTM: 07 27 UTM:	09 6271758 431073 09 6271940 430959	
Camp: 050	Stewart Camp				
Claim(s):	Treaty, Bonsai 3				
Operator(s): Author(s):	Heritage Explorations Ltd. Bidwell, Gerald Eugene				
Report Year:	2004				
No. of Pages:	78 Pages				
Commodities Searched For:	Gold				
General Work Categories:	DRIL, GEOC				
Work Done:	Drilling DIAD Diamond surface Geochemical SAMP Sampling/assaying Elements Analyzed For : Mu	(2 hole(s);NQ) (674. (196 sample(s);) Iltielement	5 m) No. of maps : 4	4 ; Scale(s) : 1:25 000	
Keywords:	Jurassic, Salmon River Formation, Limestones	Betty Creek Formation,	Jack Formation, And	esites, Rhyolites, Tuffs, Arg	gillites,
Statement Nos.:	3221914				
MINFILE Nos.: Related Reports:	104B 078, 104B 280, 104B 007				
Related Reports:	00150, 08767, 12965, 14734, 1564 19872, 20603, 20756, 21318, 2154				9714,

FIPIELE show for salling

Sectors.

HERITAGE EXPLORATIONS LIMITED

ESKAY PROJECT

2004 FIELD PROGRAM

Diamond Drilling

On the

TREATY (250847) & BONSAI 3 (307393) claims

Skeena Mining Division, **British Columbia** Locations Treaty NTS 104B/9E Lat. 56 352N, Long. 130 07'W **NTS 104B.060** UTM Zone 9. 431000E / 6272000N CEOTOC Bonsai NTS 104B/10E Lat. 5637'N, Long. 130 33'W NTS 104B.068 UTM Zone 9 405000E / 6276000N **Owners: Heritage Explorations Ltd.,**

Juners: Heritage Explorations Ltd., Estey Agencies Ltd. & Teuton Resources Corp.

Operator: Heritage Explorations Ltd.

By

G. E. Bidwell, A. W. Worth,

December 16, 2004

TABLE OF CONTENTS

ľ

Ŋ

1. EXECUTIVE SUMMARY1
2. INTRODUCTION
3. LOCATION & ACCESS
4. PROPERTY STATUS
5. PERMITTING & ENVIRONMENT 5.1 Permitting
6. PREVIOUS INVESTIGATIONS
7. REGIONAL GEOLOGY 7.1 Regional Setting
9. FIELDWORK 9.1 2004 Program15
10. PROSPECTS 10.1a Bonsai Prospect
12. RECOMMENDATIONS
13. REFERENCES 18
14. STATEMENT OF QUALIFICATIONS

LIST OF FIGURES

Figure 1 –	Property Summary (1:200,000)	1a
Figure 2 –	Location Map	5a
	Regional Map (1:800,000) with geology	
Figure 4 –	Claim Map of Eskay Property (1:25,000)	pocket
Figure 5 –	Bonsai Prospect Drill Plan (1:10,000)	16a
	(a) Bonsai Drill Hole 04-10 Section (1:1,000)	16b
Figure 6 –	Treaty Prospect Drill Plan (1:10,000)	17a
_	(a) Treaty Drill Hole TP04-01 Section (1:1,000)	17b

TABLES

Table 1 – Hazelton Group reference sections in Eskay area, by I	MDRU8a
Table 2 – 2004 Drill Summary	
Table 3 – 2004 Drill Program-Anomalous Au/Ag intersections	

APPENDICES

I Assay Procedures - ACME Analytical Laboratories Ltd (b) Group 1F – Ultratrace by ICP-MS

II Assay Certificates (a) File # A403838 (a) File # A405917 (a) File # A406105

III Drill Logs (a) Bonzai Drill Hole BZ 04-10 (b) Treaty Drill Hole TP 04-01

IV Mineral Tenures

Constant of the

V Expenditures & Assessment Data – 2004

VI Geoinformatics Eskay Creek Lithology Codes and Colour Legend (a) Lithology Codes

i lithology codes

- ii alteration assemblage codes
- iii veining codes
- iv structures code

(b) Lithology Colour legend

1. EXECUTIVE SUMMARY

Heritage Explorations Ltd. has acquired mineral rights over an extensive area (53,283 hectares) in the Eskay Creek region of north-western BC. The claims cover highly prospective terrain with potential for polymetallic, precious metal-rich deposits similar to the Eskay Creek mine which is immediately adjacent to the Heritage landholdings. This report documents two drill holes undertaken in 2004.

The property is centered 80 km NNW of Stewart, BC and 290 km northwest of Smithers (Fig. 1). The Heritage camp was located at km 45 of a 60 km gravel road which accesses the Eskay Creek Mine off the Stewart-Cassiar Highway. The property is irregular in shape but overall extends 35 km east-west and 30 km north-south. The bulk of the claims are at the headwaters of the Unuk River which drains southwesterly for 75 km to tidewater in Alaska. All access on the property is by helicopter except in the immediate area of the mine road.

The Eskay property consists of 2,120 claim-units and one mineral lease, together covering approximately 53,283 hectares or 132,906 acres. The western portion of the claim package surrounds the Eskay Creek gold mine, owned and operated by Barrick Gold Corporation. The earliest expiry date for the mineral tenures is August 07, 2008. The single mineral Lease (ML 329001) is located at the summit of the Eskay Creek mine access road. Two blocks of claims are held by Heritage Explorations Ltd. under option from Teuton Resources Ltd. The Bonsai Option covers 9 claims at the headwaters of Harrymel Creek. The Treaty Option covers 5 claims at the head of Treaty Creek.

The Eskay property lies at the north end of the 150 km long historic Stewart mining district that extends southerly past Stewart to the Anyox area on Alice Arm. Mining in this region dates back to the early 1900s. In the immediate Iskut – Eskay area the first significant exploration began in the early 1930s when Tom Mackay and his associates started prospecting in the Ketchum Creek and Eskay Creek areas. This venture was backed by the Premier Mine at Stewart. Thirty prospects were identified, including the 21 zone. The claims were intermittently explored until 1988 when a joint venture of Stikine Resources and Calpine Resources confirmed massive sulphides at the 21 Zone and drilled hole 109, the "discovery hole" which intersected 61 meters averaging 99 gpt Au and 29 gpt Ag. The Eskay Creek discovery in 1988 initiated a staking rush and generated considerable interest and work in the Iskut area. Most of the prospects and showings on the Heritage claims, such as the Bonsai (1992), TV (1996). Jeff (1988), AP (1989), Tarn (1989) and the R-Grid (1988) were discovered in the exploration activity following the Eskay Creek discovery.

The Eskay Project is located along the western margin of Stikinia, one of the major accreted terranes that became incorporated into western North America along the western boundary of the Intermontane Belt of northwest British Columbia. Stikinia is comprised of well stratified Lower Devonian to Middle Jurassic volcanic and sedimentary strata and plutonic rocks. The volcanics and sediments formed within or adjacent to volcanic arcs and the plutonic rocks are generally co-magmatic with the volcanics. Within the Eskay region Stikinia is composed of four major tectnostratigraphic assemblages:

- 1) multiple deformed and metamorphosed clastic, carbonate and volcanic rocks of the Upper Paleozoic Stikine Assemblage;
- 2) Upper Triassic volcanic and sedimentary rocks of the Stuhini group;
- 3) Lower and Middle Jurassic subaerial and submarine volcanic and sedimentary rocks of the **Hazelton Group**; and
- 4) clastic sedimentary overlap assemblages of the Middle and Upper Jurassic Bowser Lake Group.

The main package of exploration interest is the Hazelton Group which hosts the polymetallic sulphides at the Eskay Creek mine. Mineral Deposit Research Unit (MDRU) studies in the 1990s defined three

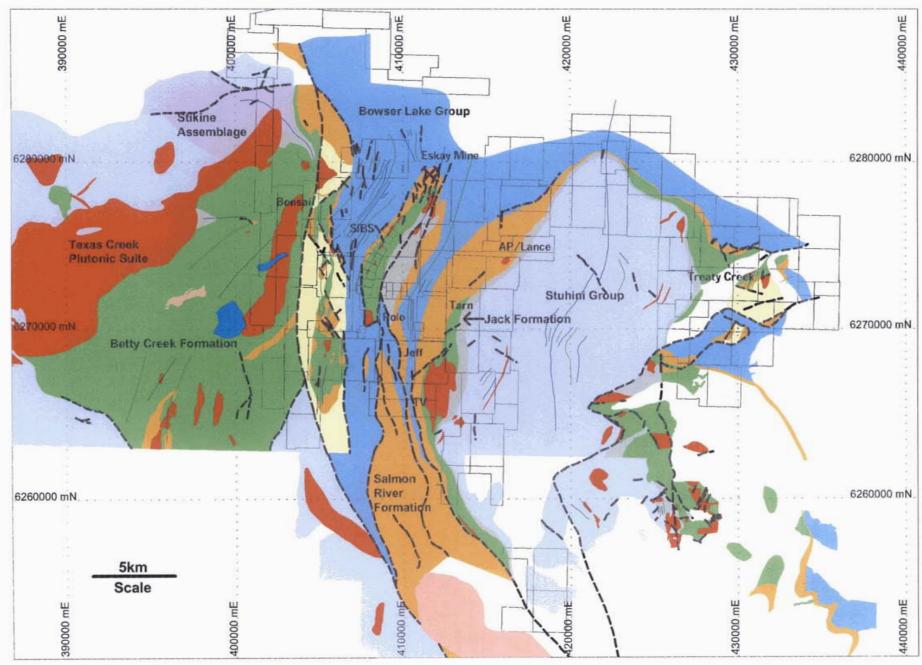


Figure 1 Property Summary

stratigraphic divisions within the Hazelton Group. They comprise, from lowest to highest, i) basal, coarse to fine grained, locally fossiliferous siliciclastic rocks (Jack Fm), ii) porphyritic andesitic composition flows, breccias and related epiclastic rocks; dacitic to rhyolitic flows and tuffs; and locally fossiliferous marine sandstone, mudstone and conglomerate (Betty Creek Fm), and iii) bimodal subaerial to submarine volcanic rocks and intercalated mudstone (Salmon River Fm).

Mesozoic intrusive activity in the Iskut River area involved two major events: (i) a Late Triassic magmatic pulse (228-221 Ma) of diorite, quartz monzonite and monzodiorite, and (ii) extended Early to Middle Jurassic plutonism that continued from 195 to 175 Ma. These plutons are contemporaneous with the volcanic units of the Hazelton Group and probably represent intrusive equivalents to these rocks.

The dominant structures in the Iskut River area are contractional folds and faults formed during Cretaceous Cordillera-wide shortening. This is manifest regionally by the Skeena Fold and Thrust Belt and by imbricate thrusting along the west flank of the Coast Belt. Four major folds trending north to northeast occur in the project area. They are from west to east, the Mackay Syncline, Eskay Creek Anticline, Unuk River Syncline and the McTagg Anticlinorium. The Eskay Creek Mine occurs on the western limb of the Eskay Creek Anticline and this location has been the focus of most of the exploration in the area. Major thrust faults in the area include the Sulphurets, Coulter Creek and Unuk River faults. The Sulphurets thrust fault is a gently west dipping, southeast verging fault, thrusting Stuhini Group strata over Bowser Lake and/or Hazelton Group stratigraphy. The Coulter Creek Thrust Fault is a gently east dipping, west verging fault, thrusting Hazelton Group strata over Bowser Lake Group stratigraphy. This fault occurs along the western margin of the SIB claims. Steep faults of variable orientation including north, northwest and northeast striking, are common throughout the project area and frequently cross cut folds and thrust faults. Slip directions cannot usually be determined, but Lewis (1992) suggests dip slip. It would seem questionable that all of these faults are of the same age and type. Mapping by Geoinformatics personnel at the SIB Prospect indicate that at least some of these faults localize and partition alteration and mineralization and must be considered important in exploration.

The initial work on the Eskay Project involved data capture, review and analysis by Geoinformatics beginning in 2001. Data collected included 332 drill holes, 34,000 geochemical samples of various types, 36 geological outcrop and interpretation maps, 29 geophysical datasets, mineral occurrence information, topographic and cadastral data. The culmination of the historical data compilation and processing phase of the project was the creation of a new geological interpretation map for the Eskay region. Prospectivity analysis of the project area could then be carried out based on the interpreted prospective geological settings.

The recent period of fieldwork began in 2001 when a geochemical orientation survey was undertaken in the general Eskay area to determine an appropriate stream sediment technique to locate the most prospective terrain (McGuigan and Gilmour, 2001). It was concluded that sieved silts from the high energy environment provided the best setting for consistent gold results. The 2002 field season encompassed a reconnaissance high energy sieved silt sampling program covering potential mineralized areas of the property, geological mapping of the SIB Claims, and 3,075 meters of diamond drilling on the SIB claims. The 2003 field program continued the primary effort on the SIB claims and undertook exploration of other showings/zones on the property, particularly the Bonsai, Polo, TV-Jeff, Tarn and Treaty prospects. The mapping at SIB initiated in 2002 was continued to complete the entire SIB claims at 1:1000 scale. Diamond drilling (3,840 meters in 14 holes) consisted of three holes in the Battleship Knoll area, seven holes on the new Hexagon structure, a large sericite-pyrite alteration zone on the east side of the SIB claims, one hole at the Lulu Zone and three holes on the Bonsai showing.

Drilling at Bonsai in 2003 intersected significant low grade gold/silver mineralization in pyritic rhyolite breccia, beneath the main gossan outcrop. The mineralized zone remained open at depth and to the south providing an excellent target for future exploration. One additional hole was added in 2004. This hole was located 69 meters south (along strike) from drill hole BZ 03-08. The hole intersected 28 meters of brecciated rhyolite with a pyrite-rich matrix, similar to the 2003 holes. Assay values were up to 0.35 gpt gold and averaged 0.24 gpt Au over 10.0 meters.

Fieldwork at Treaty Creek in 2003 by Peter Lewis greatly improved the knowledge and understanding of the various zones in the area. The geological mapping and evaluation highlighted a number of areas for follow up work. Re-evaluation of airborne EM data indicated a porphyry target 1.5 kms southeast of the East Treaty (Eureka) prospect. The porphyry target was drill tested in 2004 with a 496 meter hole. Results were disappointing. Unaltered intermediate to mafic volcaniclastics with minor argillites were intersected.

An airborne EM-magnetic survey was flown late in the 2004 field season. Both the Eskay-SIB trend and the Treaty Glacier areas were covered. The survey was undertaken by Aeroquest Limited using their AeroTEM time domain system. Results are pending and will form the basis of follow up work in 2005.

2. INTRODUCTION

Heritage Explorations Ltd. has acquired mineral rights over an extensive area (53,283 hectares) in the Eskay Creek region of north-western BC. The claims cover highly prospective terrain with potential for additional polymetallic, precious metal-rich deposits similar to the Eskay Creek mine which is immediately adjacent to the Heritage landholdings. The ground also offers potential for other precious metal deposit types such as large tonnage copper-gold porphyry deposits and intrusive related structurally controlled high grade gold-silver vein occurrences. These deposit types are represented in the general area by the Kerr and Brucejack Lake deposits respectively.

This report documents two drill holes undertaken by Heritage Explorations Ltd. on its Eskay landholdings in 2004. This program was preceded by a compilation of assessment reports and public data available from the intense exploration period (1984-1996) and field programs in 2001-2003.

The data compilation and subsequent interpretation and modelling was undertaken by Fractal Graphics Pty Ltd. (now Geoinformatics Exploration Australia Pty Ltd.) in 2001-2002. A small stream sediment orientation survey was also undertaken on the claims in 2001 by Teutoncomp Geological Services (McGuigan, 2001).

The 2002 fieldwork concentrated in the SIB claims area, immediately to the southwest of the Eskay Creek mine operated by Barrick Gold Corporation. Geoinformatics initiated geological mapping on the claims and carried out an eight hole (3075 m) diamond drill program in the SIB area. Teutoncomp Geological undertook a widespread stream sediment sampling program throughout the claims. Significant time was also spent field checking the prior data that was compiled by Geoinformatics.

In 2003 the field program consisted of (a) completion of geological mapping on the SIB claims, (b) follow-up of stream sediment gold anomalies on the east side of the SIB claims, (c) field checking of old data and new sampling/mapping in the Polo, TV, Jeff, Tarn, Treaty and Bonsai areas, and (d) 3,840 meters of diamond drilling (3 holes on Bonsai and 11 holes on the SIB claims). The drilling located a new structurally controlled alteration zone on the eastern side of the SIB claims (Hexagon Zone) and intersected significant mineralization under the main Bonsai showing.

The 2004 program consisted of two diamond drill holes, one in the area of the main Bonsai showing and the second just south of Sulphur Knob in the Treaty East area. The Bonsai hole tested the southern extension of the mineralization hosted in a brecciated rhyolite intersected in 2003. A shorter interval of similar style mineralization was intersected assaying up to 0.35 gpt gold. The Treaty hole tested a circular resistivity low cored by a magnetic high. The drilling intersected only unaltered Hazelton Group volcanics with minor fine clastic sediments.

3. LOCATION & ACCESS

The claims are located in the Stewart area of northwestern BC in NTS areas 104B/7, 8, 9 and 10 (Fig. 2 & 3). The property extends from 56-24'N to 56-44'N latitude and from 130-02' to 130-39'W longitude. Trim coverage is on 104B.048, 049, 057-060, 067-070, 077 and 078. UTM grid coordinates are 399,500E to 436,100E and 6,252,100 to 6,289100N in UTM Zone 9. The Liard-Skeena Mining Division boundary cuts across the northwest portion of the claim block. The fieldwork undertaken in 2004 was in the Skeena Mining Division.

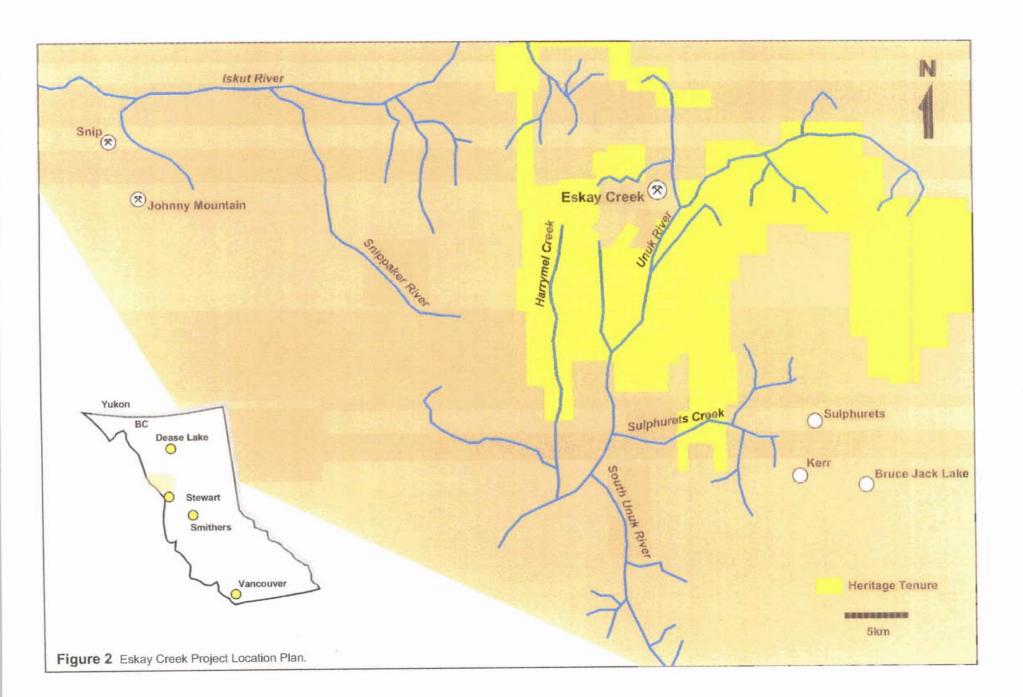
The property is centered 80 km NNW of Stewart, BC and 290 km northwest of Smithers. Vancouver is 1000 air kilometers to the southeast. The Alaska boundary is 35 km to the southwest of the property and tidewater is a further 40 km at Burrough's Bay, the mouth of the Unuk River.

The only road access into the area is via Stewart-Cassiar Highway (Hwy. 37) which leaves the Yellowhead Highway at Kitwanga, 100 km west of Smithers. The Stewart-Cassiar Highway is a good all-weather paved road and passes in a northwesterly direction 25 km east of the property (Fig. 3). Most basic services and supplies are obtained from Smithers, 500 km by road from the claims. Smithers is the regional center for northwestern B.C. and has daily air, bus and trucking services. A main CNR rail line also passes through Smithers connecting to tidewater at Prince Rupert.

In 2002 and 2003 Heritage worked out of a trailer/tent camp located at km 45 of the 60 km gravel road which accesses the Eskay Creek Mine off the Stewart-Cassiar Highway. This is a private road and permits are required from Barrick Gold Corporation to use the road and the campsite. In 2004 the field crew worked out of the Bell II Lodge on Highway 37.

Fixed wing access to the area can be made to an airstrip located along Hwy. 37 at Bob Quinn Lake 40 km northeast of the property

The property is irregular in shape but overall extends 35 km east-west and 30 km north-south. The bulk of the claims are at the headwaters of the Unuk River which drains southwesterly for 75 km to tidewater in Alaska. A small northwestern group of claims drains northerly into the Iskut River. Property elevations range from 150 meters to 2200 meters. The property is in a coastal climate zone and receives significant rainfall and snowfall. Due to the high precipitation icefields occupy the higher elevations and glaciers extend down the adjoining drainages, although presently the glaciers are in retreat. The Treaty, AP, Tarn and Johns Peak areas in particular have a significant glacier component.


All access on the property is by helicopter except in the immediate area of the mine road. Elevations above 1000 meters, as in the SIB area, are sparsely timbered and can be easily worked by helicopter. Lower elevations are more difficult, requiring chopper pads or creek/river openings accessible by helicopter. Much of the topography is quite rugged and traversing can be difficult and/or dangerous.

4. PROPERTY STATUS

The Eskay property consists of 194 claims (2,120 units) and one mineral lease, together covering approximately 53,283 hectares (532.8 km2 or 132,906 acres) as listed in Appendix IV and shown on Figure 4. The western portion of the claim package surrounds the Eskay Creek gold mine, owned and operated by Barrick Gold Corporation. The property is contiguous except for two small blocks on the south side, SC 5-8 on the north lobe of Frank Mackie Glacier, and SUL 1 & 2 on the Unuk River, just south of Sulphurets Creek (Fig 4). The bulk of the claims are held in the name of Heritage Explorations Ltd. or Estey Agencies, an associated company. Two blocks (Bonsai and Treaty) are held by Heritage under option from Teuton Resources Ltd. The Skeena-Liard mining division boundary passes through the northwest corner of the property with the bulk of the claims being in the Skeena Mining Division.

Assessment application, currently in process, has an earliest expiry date of August 07, 2008. Most of the claim package has also been common dated to January 31. See Appendix IV for details on the individual claims.

The single mineral Lease (ML 329001) is located at the summit of the Eskay Creek mine access road. This area covers the previous Aftom 10 & 11 claims. Barrick deposits its mine tailings in Albino Lake

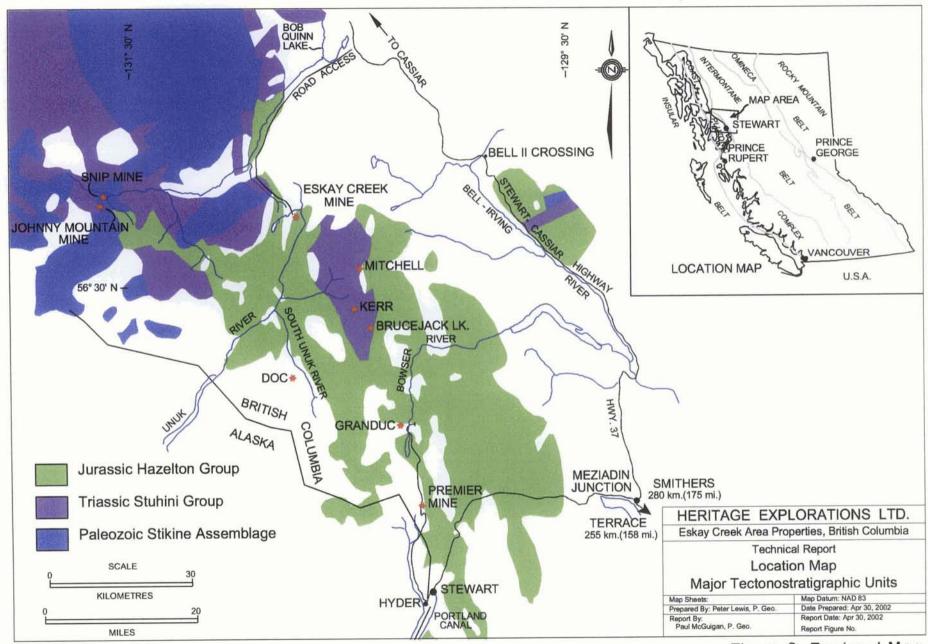


Figure 3 Regional Map

on the southern portion of the lease. In 2003 Heritage established a core storage site on the mineral lease at the summit of the access road.

Two blocks of claims are held by Heritage Explorations Ltd. under option from Teuton Resources Ltd. The Bonsai Option, signed in March, 2002 covers 9 claims at the headwaters of Harrymel Creek. Heritage may earn a 50% interest by making payments totaling \$75,000 and incurring expenditures of \$750,000 by March 31, 2006. The Treaty Option, also signed in March 2002, covers 5 claims at the head of Treaty Creek. Heritage may earn a 50% interest by making payments totaling \$75,000 and incurring expenditures of \$750,000 by March 31, 2006.

There are no known disputes with regard to the mineral claims. The SIB block of claims, to the southwest of the Eskay Creek mine, has been surveyed and pins have been placed in the field locating at least some of the corners of these two-post claims. However, as far as is known, none of the other claims have been surveyed and their positions may be revised in the future.

5. PERMITTING & ENVIRONMENTAL

5.1 Permitting

BC Ministry of Energy and Mines approval is required to undertake exploration work when a camp is located in the field and/or when there will be ground disturbance in the course of the fieldwork, i.e., trenching, drilling. In both 2002 and 2003 the Eskay Project work was carried out from an exploration camp at Km 45.5 on the Eskay Creek mine access road. As the road is privately owned by Barrick Gold Corporation and the mineral rights in the camp area are held by Barrick, permission was also required from Barrick for use of the road and the campsite. Road use and camp use permits were obtained from Barrick in both the 2002 and 2003 field seasons. In 2004 the fieldwork was undertaken from the Bell II Lodge so only a road permit was required from Barrick.

In May 2004 application was made and approval given for a 25 hole diamond drill program. A security bond of \$60,000 was already in place from the previous programs. When the actual drill locations were determined an amended Notice of Work was filed in June. Approval was quickly obtained and fieldwork proceeded on schedule.

The 2004 drill sites were reclaimed upon completion of the diamond drilling. A reclamation report will be filed in December 2004 which will include additional documentation of some of the 2003 drill site reclamation.

5.2 Environmental

There were no unusual environmental concerns throughout the 2002 and 2003 programs. All work undertaken was covered by applicable government permits. Most of the claim area has had mineral exploration intermittently in the past 15 years and one area, the SIB claims, has been worked periodically since the 1930s. The only signs of past work are scattered sites of diamond drilling, hand trenching and helicopter pads. The disturbance is minimal and the Ministry of Mines and Energy is aware of all the past work. Heritage Explorations Ltd. is not liable for any of the work prior to 2002.

6. PREVIOUS INVESTIGATIONS

The Eskay property lies at the north end of the 150 km long historic Stewart mining district that extends southerly past Stewart to the Anyox area on Alice Arm. Mining in this region dates back to the turn of

the century when prospectors stopped on the way back from the Klondike (Alldrick, 1993). Mining has been the lifeblood of the area with the Premier Mine (1918-1996), Anyox (1914-1936), Granduc (1971-1984), Dolly Varden (1919-1940), Snip (1991-1999) and now the Eskay Creek Mine (1995- present).

In the immediate Iskut – Eskay area the first documented exploration was for placer gold along Sulphurets Creek in 1898. The first hardrock claims were staked at the same time on the Cumberland prospect in the same area, but the work was short lived. The first significant exploration in the area began in the early 1930s when Tom Mackay and his associates started prospecting in the Ketchum Creek and Eskay Creek areas (McGuigan, 2002). This venture was backed by a syndicate involving the Premier Mine at Stewart. Premier optioned the Eskay property from 1935 to 1938 and thirty prospects were identified, including the 21 zone. Gold and silver-rich boulders containing orpiment and realgar were discovered in the 21 area but were not followed up at the time. (Britton et al, 1990). Following the Second World War numerous companies explored the Eskay area intermittently, with the emphasis alternating between precious metals and base metals. In the 1980s Kerrisdale Resources intersected the first stratiform mineralization in the 21A zone. In 1988 a joint venture of Stikine Resources and Calpine Resources confirmed massive sulphides at the 21 Zone and, following IP and geochemical surveys, drilled hole 109, the "discovery hole" which intersected 61 meters averaging 99 gpt Au and 29 gpt Ag (Roth, 2002).

The Eskay Creek discovery in 1988 initiated a staking rush and generated considerable interest and work in the Iskut area. Most of the other prospects and showings on the Heritage claims, such as the Bonsai (1992), TV (1996). Jeff (1988), AP (1989), Tarn (1989) and the R-Grid (1988) were discovered in the exploration activity following the Eskay Creek discovery.

The Sulphurets area contains large conspicuous pyritic gossans which attracted prospectors, including Tom Mackay, in the 1930s but extensive snowfields and glaciers inhibited prospecting. The first systematic exploration was by Granduc Mines and Newmont from 1960 to 1975. This work led to the discovery of several porphyry copper +/- gold and vein occurrences, including the Kerr, Sulphurets, Snowfield and West Zones. The main efforts in the area were in the early 1990s when Placer Dome was active on the Kerr and Sulphurets Gold porphyries, Newhawk JV on the Brucejack Lake veins and Newhawk Gold Mines on the Snowfield deposit. The area has been basically inactive since 1992 however Noranda acquired an option on the Kerr area in late 2002 and carried out minor work in 2003.

The earliest recorded work in the Treaty Creek area was by Consolidated Mining & Smelting (Cominco) in 1929-30. The work was recorded in the BC Ministry of Mines Annual Reports but no results were published. It is also reported that several prospecting syndicates explored the general Treaty area in the early 1950s and late 1960s but it wasn't until the 1980s that the area received a concentrated exploration effort. Teuton Resources undertook programs in the main showing areas (Eureka, Orpiment, Konkin, Goat Trail) from 1980 through to 1997, including several drill programs.

7. REGIONAL GEOLOGY

7.1 Regional Setting

The Eskay Project is located along the western margin of Stikinia, one of the major accreted terranes that became incorporated into western North America (Gordey et al, 1991) along the western boundary of the Intermontane Belt of northwest British Columbia. Stikinia is comprised of well stratified Lower Devonian to Middle Jurassic volcanic and sedimentary strata and plutonic rocks. The volcanics and sediments formed within or adjacent to volcanic arcs and the plutonic rocks are generally co-magmatic with the volcanics.

Within the Eskay region Stikinia is composed of four major tectnostratigraphic assemblages (Anderson, 1989):

1) multiple deformed and metamorphosed clastic, carbonate and volcanic rocks of the Upper Paleozoic Stikine Assemblage;

2) Upper Triassic volcanic and sedimentary rocks of the Stuhini group;

3) Lower and Middle Jurassic subaerial and submarine volcanic and sedimentary rocks of the **Hazelton Group**; and

4) clastic sedimentary overlap assemblages of the Middle and Upper Jurassic Bowser Lake Group.

The Stikine Assemblage rocks do not outcrop in the immediate Eskay Creek area. The nearest exposures are in the Snip area, about 20 km to the west.

The following descriptions of the regional rock units are taken from various papers presented in Metallogenesis of the Iskut River Area, Northwestern British Columbia, Mineral Deposit Research Unit (MDRU) Special Publication Number 1 (Lewis, et al, 2001). Reference is made to the source papers within the descriptions. Table 1, a summary of stratigraphic descriptions of Hazelton Group reference sections, is also based on fieldwork undertaken by MDRU.

7.2 Stuhini Group

The oldest Mesozoic strata in the Eskay Creek area are sedimentary and volcaniclastics rocks of the Triassic Stuhini Group (Lewis, 2001, p. 63). These define two major divisions: a dominantly sedimentary lower division, and a dominantly volcanic and volcaniclastic upper division. Most of the sedimentary division comprises undifferentiated fine-grained well-bedded rocks but coarser conglomerate layers serve as local stratigraphic markers. The volcanic division is locally subdivided into mafic to intermediate composition tuff and volcanic breccia, mafic porphyritic flows and felsic composition flows and flow breccia.

7.3 Hazelton Group

The extensive Mineral Deposit Research Unit (MDRU) studies in the 1990s defined three stratigraphic divisions within the Hazelton Group (Lewis, 2001, p. 77). They comprise, from lowest to highest, i) basal, coarse to fine grained, locally fossiliferous siliciclastic rocks, ii) porphyritic andesitic composition flows, breccias and related epiclastic rocks; dacitic to rhyolitic flows and tuffs; and locally fossiliferous marine sandstone, mudstone and conglomerate, and iii) bimodal subaerial to submarine volcanic rocks and intercalated mudstone. The designations Jack Formation, Betty Creek Formation and Salmon River Formation were applied to them respectively. See Table 1.

7.3 (a) Jack Formation

The basal Hazelton Group typically consists of locally fossiliferous conglomerate, sandstone and siltstone of the Jack Formation. These rocks are well exposed in the upper Unuk River/Sulphurets area and have been traced as far south as the Frank Mackie icefield. No exposures of the Jack Formation are known west of Harrymel Creek. The most complete and best exposed sections are located in alpine areas north and south of John Peaks and along the west side of Jack Glacier. Its inclusion within the Hazelton Group is based on the conformable relationship with overlying rocks and the often unconformable contact with Stuhini Group strata.

Table 1: Summary table of stratigraphic descriptions of Hazelton Group reference sections in theEskay Creek area, based on geological mapping completed by MDRU.

	And an in the state of the	Eskay Creek	John Peaks		
Salmon River Formation (includes Troy Ridge, Eskay Rhyolite, John Peaks, and Bruce Glacier members)		John Peaks Member: Interbedded pillowed to massive mafic volcanic flows, volcanic breccia, and hyaloclastite; intercalated mudstone and rhyolite layers Eskay Rhyolite Member: Massive, banded, rhyolite flows and flow breccia; some tuffaceous sections Bruce Glacier Member: Vesicular, locally perlitic dacite flows, welded lapilli to block tuff, lesser argillite	North of John Peaks: John Peaks Member: Massive, locally vesicular andesite flows, overlain by massive, flow-banded rhyolite and fine-grained, massive dolerite Bruce Glacier Member: Densely to moderately welded lapilli to block felsic tuff, locally massive flow-banded intervals. Grades up into into lithic tuff, volcaniclastic conglomerate/breccia South of John Peaks: Welded felsic lapilli to block tuff; overlying pillowed, plagioclase phyric basaltic flows with intercalated mudstone, tuffaceous mudstone.		
	Treaty Ridge Member	Volcaniclastic sandstone, argillite, and conglomerate; local bioclastic sandy limestone intervals	Highly variable, thinly bedded to massive argillite, limestone, sandstone, wacke, conglomerate; Local calcareous fossiliferous lenses.		
<u>Betty</u> <u>Creek</u>	Brucejack Lake member	Absent	Absent north of John Peaks; South of John Peaks: platy, green to maroon very fine grained siliceous tuff and phyllitic tuffaceous siltstone.		
<u>Fm.</u>	Unuk River member	Andesitic tuff, wacke, and debris flow deposits; minor volcaniclastic sandstone and conglomerate.	Absent south of John Peaks; north of John peaks = discontinuous andesitic block tuff and vesicular volcanic breccia.		
<u>Jack F</u>	Cormation	-Matrix to clast supported rounded cobble conglomerate w/ inter. comp. volcanic and mudstone clasts -grey, thickly-bedded fine grained sandstone/wacke to siltstone with whispy mudstone laminations -laminated to medium bedded siliceous mudstone to siltstone -coarse-grained, thickly bedded, fossiliferous (bivalves, ammonites) cross- stratified sandstone	-Thickly-bedded to massive, clast supported, rounded cobble to boulder conglomerate w/ abundant granitoid and lesser mudstone and volcanic (intermediate composition, plagioclase- phyric) clasts; coarse to medium grained sandstone matrix. -subangular tuffaceous siltstone fragments similar to subjacent units common at base. -thick (20-30 cm) discontinuous coarse grained sandstone layers common		

from McGuigan, 2002

Table 1 (continued)

		Bruce Glacier	Iron Cap	Treaty Creek
<u>Salmon River</u> <u>Formation</u> (includes Troy Ridge, Eskay Rhyolite, John Peaks, and Bruce Glacier members)		Bruce Glacier Member: Densely to moderately welded lapilli to block felsic tuff, locally massive flow-banded intervals. Felsic megabreccias near toe of Bruce Glacier. Grades up into lithic tuff, volcaniclastic conglomerate/breccia. Intercalated mudstone/argillite, massive felsic flows.	Bruce Glacier Member: Intercalated felsic lapilli tuff and welded ash flow tuff, succeeded by tuffaceous siltstone with argillite chips John Peaks Member: Intercalated argillite, limestone, pillowed basaltic flows, andesitic volcanic conglomerate	Bruce Glacier Member: Densely welded felsic ash tuff, succeeded by massive lapilli to block tuff, and uppermost welded spherulitic lapilli tuff John Peaks Member: Pillowed basaltic volcanic flows interbedded with broken pillow breccia, mudstone, hydroclastite breccia, and mafic sills. Grades upward into volcaniclastic breccia and conglomerate with abundant andesite and basalt clasts.
	Treaty Ridge member	Absent	Fossiliferous siltstone to sandstone	Medium-bedded volcaniclastic conglomerate, overlain by channelized, highly fossiliferous (pelecypods, belemnites, corals, bryozoans) calcereous sandstone and sandy limestone; passes upward into black argillite, conglomerate, turbiditic mudstone to sandstone, and siliceous tuffaceous sandstone
<u>Betty</u> <u>Creek</u>	Brucejack Lake member	Absent	Absent at Iron Cap; likely correlative unit at Brucejack Lake form dacitic flows and flow/dome complexes	Densely-welded felsic lapilli to ash tuff layers intercalated with polylithic volcanic conglomerate
<u>Fm.</u>	Unuk River member	Absent	Volcanic breccia and block tuff	Thick feldspar+horneblende- phyric volcanic breccia, block tuff, and volcanic conglomerate; intercalated lapilli tuff, massive andesite flows, rare mudstone- argillite; grades northward into condensed volcaniclastic sandstone/mudstone section
Jack Formation		-Basal thickly bedded to massive clast supported rounded granitoid, limestone, volcanic cobble conglomerate. -interlayered and overlying interbedded coquinoid (gastropods, pelecypods, bryozoans, corals, ammonites, belemnites) calcareous siltstone to f.g. sandstone. -upper thinly bedded, grey to silver phyllitic turbiditic mudstone to f.g. sandstone. -thickly bedded pelecypod- bearing limestone.	Volcaniclastic conglomerate to arenaceous sandstone, minor andesitic to basaltic flows	(Near Atkins Glacier) Thickly bedded siliceous siltstone, greywacke; discontinuous lenses of volcanic conglomerate w/ hb-pl phyric andesite-dacite clasts; mollusc coquinoid calcereous sandstones; channel scours, midstone rip-up clasts common; rare limestone layers up to 1 m thick

The Jack Formation is a lithologically varied sequence of sedimentary rocks which overlies Stuhini Group strata. The best reference sections occur at the Bruce Glacier/Jack Glacier area, south of John Peaks and nearby Eskay creek. At Bruce and Jack Glaciers the formation consists of a thin conglomerate containing clasts of Stuhini Group turbiditic mudstones and siltstones. Trough cross stratification and channelized sandstone and conglomerate layers are common. Overlying the basal sequence are fossiliferous limy sandstone, siltstone, turbiditic siltstones and interbedded sandstones, up to several hundred meters thick. There is a general transition southward towards John Peaks to a thicker basal conglomerate and sandstone, and a thinner calcareous and turbiditic component. At the reference section south of John Peaks the formation consists entirely of conglomerate and sandstone. West of the Unuk River in the Eskay Creek area, Jack Formation rocks comprise several hundred meters of thickly bedded to massive wackes with local conglomeratic lenses and cross-stratified intervals.

The basal contact of the Jack Formation is well exposed at the Jack glacier and south of John Peaks as a sharp angular unconformity. Along strike from these localities the contact is less distinct and bedding is concordant with underlying rocks. However, the unit can usually be recognized on the basis of the conglomerate beds at its base. In the Treaty Creek area to the east, the contact occurs at a concordant transition from the Stuhini Group volcanic conglomerates to Jack Formation interstratified coarse sandstone and conglomerate.

Fossil assemblages collected from the Jack Formation in the Unuk River area indicate a Lower Jurassic age. Isotopic age constraints from bounding units also corroborate an Early Jurassic age (Lewis, 1996).

7.3 (b) Betty Creek Formation

Lower Jurassic volcanic and volcaniclastic strata have been problematic for workers in the Iskut River area and stratigraphic nomenclature has been unevenly applied. Most of the studies assign intermediate composition rocks in this interval to either the Betty Creek Formation or the Unuk River Formation, and felsic rocks to the Mount Dilworth Formation. Much of the difficulty stems from the poor stratigraphic continuity of lithofacies and the lack of regional definitions. Lewis (2001, p. 79) has assigned the entire volcanic and volcaniclastic sequence from the Jack Formation to a distinct shift in style of volcanism in the lower Middle Jurassic to the Betty Creek Formation. This formation encompasses most of the rocks previously assigned to the Betty Creek and Unuk River Formations, as well as some rocks previously assigned to the Mount Dilworth Formation. Use of the Unuk River Formation is discontinued. Within the Betty Creek Formation, three members are defined. The Unuk River Member comprises andesitic composition volcanic and volcaniclastic strata. The Brucejack Lake Member of the Betty Creek Formation consists of andesitic to dacitic pyroclastic, epiclastic and flow rocks which stratigraphically succeed and may be in part laterally equivalent to parts of the Unuk River Member. The Unuk River and Brucejack Lake Members are overlain by marine sedimentary rocks of the Treaty Ridge Member.

7.3 (b)(i) Unuk River Member

Andesitic composition flows, volcanic breccias and related epiclastic rocks are included within the Unuk River Member. It is well exposed throughout the eastern Iskut River area with the thickest best exposed sections at Eskay Creek, Johnny Mountain, Treaty Creek and Salmon Glacier. The thickness varies considerably: coarse volcanic breccias locally form accumulations up to 2 km thick; these localized deposits may pinch out completely in distances of less than 5 km.

Andesitic to dacitic flows and dark green volcanic breccias are intercalated with lapilli to block tuff, and lesser amounts of epiclastic sandstone and wacke. Volcanic breccias are monolithologic to slightly polylithic, commonly contain vesicular clasts and have a plagioclase-rich matrix. The Unuk River Member conformably overlies the Jack Formation in sections exposed at Eskay Creek, John Peaks, Salmon Glacier and Treaty Glacier.

7.3 (b)(ii) Brucejack lake Member

Dacitic to rhyolitic pyroclastic rocks, epiclastic rocks and volcanic flows within the Betty Creek Formation are assigned to the Brucejack Lake member. These rocks are well exposed in reference sections at Brucejack Lake, south of John Peaks and Johnny Mountain but it has not been found in the Eskay Creek area. Water-lain crystal tuffs and ash tuffs just south of John Peaks and multiple thin cooling units of crystal-rich welded lapilli tuff at Treaty Creek are likely equivalents. In the western Iskut River area at Johnny Mountain dacitic to rhyolitic flows and welded lapilli tuff form the Brucejack Member

Numerous new U-Pb dates indicate that the early pulse of felsic volcanism in the Hazelton Group near Iskut River spanned a 5-10 million year period ranging from 194 Ma to 185 Ma (Lewis, 1996).

7.3 (b)(iii) Treaty Ridge Member

Heterogeneous sedimentary strata including sandstone, conglomerate, turbiditic siltstone and limestone characterize the Treaty Ridge Member of the Betty Creek Formation. Many of the rock types of the Jack Formation are present in the Treaty Ridge Member but the occurrence of clasts derived from the Unuk River Member volcanic rocks and the absence of the granitoid clast conglomerate differentiate the two units.

The Treaty Ridge Member varies from a few meters to several hundred meters thick. Thickest sections are present at Treaty Creek and Eskay Creek.. The most distinctive rock type within the unit consists of rusty brown to tan weathering, bioclastic weathering sandstone and intercalated siltstone or argillite. At Treaty Creek the bioclastic unit is succeeded by a several hundred meter thick turbiditic mudstone to sandstone section. Bioclastic sandstones are also present in the Member at Eskay Creek and John Peaks where they are interstratified with siltstone, arenitic sandstone and heterolithic rounded cobble conglomerate. West of these areas a thick grey weathering medium bedded limestone and siltstone sequence is a probable stratigraphic equivalent.

7.3 (c) Salmon River Formation

The upper part of the Hazelton Group in the Iskut River area comprises dacitic to rhyolitic flows and tuffs, localized interlayered basaltic flows and intercalated volcaniclastic intervals. Although these different rock types can be mapped separately on a property scale, their interfingering nature and lack of continuity dictate that they be grouped into a single unit for regional mapping purposes (Lewis, 2001 p.81). This part of the Hazelton Group has attracted the most attention due to its association with mineralization at Eskay Creek, but at the same time its distribution, internal stratigraphy and age are poorly understood. Previous workers mapped felsic volcanic components as Mount Dilworth Formation, and mafic volcanic components as a distinct facies of the Salmon River Formation.. These assignments became problematic when more than one felsic horizon was recognized, and that mafic volcanic rocks occur both above and below the felsic intervals. The MDRU project assigned all Hazelton Group rocks above the Treaty Ridge Member to the Bruce Glacier, Troy Ridge, Eskay Rhyolite and John Peaks members.

7.3 (c)(i) Bruce Glacier Member

The Bruce Creek Member of the Salmon River Formation comprises widely distributed dacite to rhyolite flows, tuffs and epiclastic rocks. These rocks vary from as little as a few tens of meters to over

400 hundred meters in thickness, with the thickest accumulations on the west limb of the McTagg Anticlinorium between the Bruce Glacier and the Iskut River valley. Lithofacies within the member are highly variable both regionally and vertically in a given section. Deposits proximal to extrusive centres include banded flows, massive domes with carapace breccias, autoclastic megabreccias and block tuffs. Extrusive centres have been identified in the Iskut River area, including Brucejack Lake and Bruce Glacier.

7.3 (c)(ii) Troy Ridge Member

Sedimentary and tuffaceous sedimentary rocks of the Salmon River Formation are assigned to the Troy Ridge Member. This member includes the distinctive black and white striped strata known as the "pyjama beds" at Salmon River and are present to a lesser extent in northern parts of the area and the mineralized contact zone mudstone at Eskay Creek. Contact relations with other Salmon River Formation members are variable: for example, at Eskay Creek the member lies above the Eskay Rhyolite and Bruce Glacier Members, but below the John Peaks Member. Near the headwaters of Snippaker Creek the member is interstratified with rocks assigned to both the John Peaks and Bruce Glacier Members. These types of stratigraphic relationships suggests that the Troy ridge Member represents sediments accumulated during breaks in local volcanic activity.

7.3 (c)(iii) John Peaks Member

Mafic components of the Salmon River Formation, assigned to the John Peaks Member, are localized in their distribution and are missing from much of the Iskut River area. Generally they occur above the felsic members (Bruce Glacier and Eskay Rhyolite) but at Treaty Creek thick sections of mafic flows and breccias lie below welded tuffs of the Bruce Glacier Member. Mafic sections are thickest at Mount Shirley and near the mouth of Sulphurets Creek, and form intermediate thicknesses at Eskay Creek and Johnny Mountain. At Treaty Glacier the mafic components grade upward from pillowed and massive flows into broken pillow breccia, and finally hyaloclastite matrix supporting abundant irregular volcanic fragments.

7.3 (c)(iv) Eskay Rhyolite Member

Rhyolite flows, breccias and tuffs in the Eskay Creek area are assigned to the Eskay Rhyolite Member of the Salmon River Formation. Although this rhyolite is lithologically similar to some exposures of the Bruce Lake Member, it can be distinguished geochemically on the basis of an Al:Ti ratio of greater than 100 (Lewis, 1996). At Eskay creek the member forms a distinct mappable unit overlying the Bruce Glacier Member and underlying the John Peaks Member, with thicknesses of up to 250 meters.

Age constraints for the Salmon River Formation include U-Pb zircon ages from the Bruce Glacier Member and fossil collections from intercalated sedimentary sections assigned to the Troy Ridge Member. Because of the interfingering relationships of the different members these determinations are interpreted as being representative of the entire formation. U-Pb zircon dates obtained from the Bruce Glacier Member bracket the age of the unit to around 172-178 Ma (Lewis, 1996).

7.4 Bowser Lake Group

The contact of the Hazelton Group with the overlying mudstones of the Bowser Lake Group has been problematic for mappers in the Iskut River area. Lewis (2001, p, 29) proposed restricting the Hazelton Group to those stratigraphic successions containing significant proportions of primary volcanic strata, either as pillowed or massive flows, or tuffaceous turbidites. The contact with overlying Bowser Lake Group strata is therefore placed at the highest occurrence of these volcanic components.

The Middle and Upper Jurassic Bowser Lake Group contains the youngest Mesozoic strata in the Iskut river area. They are exposed over a broad region of the northern Cordillera, and concordantly overlap Hazelton Group strata. In general the Bowser Lake Group consists of a thick succession of shale and greywacke, with lesser amounts of interbedded chert-rich conglomerate. In the Eskay Creek area the unit consists primarily of thinly bedded turbiditic siltstone and mudstone, and subordinate conglomerate and sandstone. These coarser clastic components are useful markers for deciphering local structural and stratigraphic problems, but their discontinuity precludes usage as regional markers.

7.5 Intrusions

This description of the intrusive rocks is taken from MacDonald et al, (1996).

Mesozoic intrusive activity in the Iskut River area involved two major events: a Late Triassic magmatic pulse, and extended Early to Middle Jurassic plutonism that continued for approximately 20 million years (MacDonald et al., 1996). The earliest pulse, the Late Triassic (228-221 Ma) Stikine Plutonic Suite is dominated by hornblende-biotite diorite, quartz monzonite and monzodiorite and occurs as massive to foliated and lineated plutons.

The Jurassic intrusions have typically been divided into several temporally distinct suites. However, an enlarged Jurassic geochronological database demonstrates that intrusive activity is nearly continuous for the entire period from 195 to 175 Ma. Intrusions older than 180 Ma range from biotite-hornblende granodiorite and quartz monzonite to potassium feldspar megacrystic, plagioclase and hornblende porphyritic syenite and quartz monzonite. These plutons are contemporaneous with the lower volcanic units of the Early Jurassic Hazelton Group. Younger intrusions (180-175 Ma) are less extensive in the area and may be correlative with the Three Sisters plutonic suite to the west of the Iskut River area. The younger intrusions are contemporaneous with the uppermost volcanic sequence of the Hazelton Group in the Iskut River area and probably represent intrusive equivalents to these rocks.

7.6 Structural Geology

The dominant structures in the Iskut River area are contractional folds and faults formed during Cretaceous Cordillera-wide shortening (MacDonald et al, 1996). This is manifest regionally by the Skeena Fold and Thrust Belt and by imbricate thrusting along the west flank of the Coast Belt. Evidence for earlier regional deformation coinciding with the Triassic-Jurassic boundary is cryptic in much of the Iskut River area, but is well documented in some localities. For example, the boundary is marked by a sharp angular unconformity locally around the McTagg Anticlinorium, but elsewhere is concordant and transitional. At Johnny Mountain, southwest–verging megascopic folds and associated northeast-dipping cleavage in the Triassic sequence are overlain unconformably by an undeformed, flatlying Lower Jurassic volcanic sequence.

7.6 (a) Folding

The following description is taken from Lewis in chapter 5 of the MDRU special publication number 1 (2001).

Four major folds trend north to northeast occur in the project area. They are from west to east, the Mackay Syncline, Eskay Creek Anticline, Unuk River Syncline and the McTagg Anticlinorium.

The Mackay Syncline is cored by Bowser Lake Group sediments and has Hazelton Group stratigraphy exposed on its western limb. The Eskay Creek Anticline contains extensive exposure of Hazelton Group stratigraphy. The Eskay Creek Mine occurs on the western limb of the anticline and this location has been the focus of most of the exploration in the area. To the north the anticline plunges north

beneath Bowser Lake Group stratigraphy and to the south is truncated by the Coulter Creek thrust fault. The Eastern limb and hinge zone are less well studied and the exact location of the hinge is poorly constrained and is probably effected by faulting.

The Unuk River Syncline follows the Unuk River and is again cored by Bowser Lake Group sediments. These sediments extend down the Unuk River and merge with those of the Mackay Syncline, isolating the Hazelton Group strata in the Eskay Creek Anticline (Lewis, 2001).

The McTagg Anticlinorium is the dominant regional fold structure in the project area. It exposes a broad belt of folded Stuhini Group rocks between the Unuk River and the Sulphurets area. The anticlinorium plunges north beneath Hazelton and Bowser Lake Group stratigraphy and is bound to the west and east by faults which thrust Stuhini and Hazelton Group rocks from the core over younger adjacent strata (Lewis, 2001).

7.2 (b) Faulting

The project area contains significant regional faults including west and east directed thrust faults, steeply dipping north, northeast and northwest striking dip-slip faults and the north striking Harrymel strike-slip Fault (Lewis, 2001).

Major thrust faults in the area include the Sulphurets, Coulter Creek and Unuk River Faults. The Sulphurets Thrust Fault is a gently west dipping, southeast verging fault, thrusting Stuhini Group strata over Bowser Lake or Hazelton Group stratigraphy (Lewis, 2001). The Coulter Creek Thrust Fault is a gently east dipping, west verging fault, thrusting Hazelton Group strata over Bowser Lake Group stratigraphy. The fault occurs along the western margin of the SIB claims and was first identified by interpreting outcrop mapping and drill core relationships. The magnitude of displacement on the fault cannot be accurately determined. The Unuk River Thrust Fault follows the east flank of the Unuk River and verges roughly westward. The fault is poorly exposed and has been interpreted mainly from facing indicators of Hazelton Group strata in the John Peaks area (Lewis, et al, 2001).

Steep faults of variable orientation including north, northwest and northeast striking, are common throughout the project area and frequently cross cut folds and thrust faults. Slip directions cannot usually be determined, but Lewis (2001) suggests dip slip.

It would seem questionable that all of these faults are of the same age and type. Mapping by Geoinformatics personnel at the SIB Prospect indicate that at least some of these faults localize and partition alteration and mineralization. This would indicate late emplacement of mineralizing fluids along these structures, or that some of the faults are long lived structures that were re-activated post mineralization to cause the cross-cutting relationships. In any case these structures must be considered important when planning future exploration in the project area.

The South Unuk-Harrymel Shear Zone is a major, northerly striking, sinistral, strike-slip fault which bisects the Iskut River area. The shear zone varies from a narrow (<10 m) brittle shear zone in the north, to a >2 km wide shear zone in the south which accommodates up to 20 km or more displacement. This large regional fault separates the strongly folded and thrusted rocks to the east from less deformed strata to the west. The fault has been interpreted by various researchers to have dextral and sinistral strike slip offset, as well as eastside up and eastside down dip slip movement. Lewis(2001) suggests the fault may represent a major sinistral strike-slip fault, acting coevally with the folding and thrusting event, and forming a boundary between the fold/thrust belt to the east from the less deformed strata to the west.

8. MINERALIZATION STYLES

A review of available publications on deposits in the Iskut region of northwest British Columbia was completed by Geoinformatics and a synthesis of deposit styles for the region was produced.

The project area is considered prospective for a number of deposit styles, as follows:

8.1 Porphyry Copper-Gold and Transitional Deposits

Four superimposed hydrothermal mineralization styles represent the porphyry-epithermal transition:

- Stage 1: Porphyry copper-gold with banded quartz-pyrite and quartz-pyrite-chalcopyrite-gold breccia and stockworks.
- Stage 2: Intermediate to high level quartz-molybdenite-tourmaline veins.
- Stage 3: High level massive pyrite veins and breccia pipes enriched in Bi-Te-Sn-As.

Stage 4: Gold rich quartz-barite-galena-sphalerite-tetrahedrite-pyrargyrite-gold–acanthite veins and disseminations, enriched in Pb-Zn-Ag-Au-Sb-Cd-Hg-Te and developed at high and peripheral positions with respect to the magmatic/hydrothermal centres (represented by quartz stockworks).

Examples of porphyry copper-gold and related deposits include those of the Sulphurets Camp such as Kerr and Snowfields.

8.2 Intrusion Related Thermal Aureole Gold-Copper Veins and Stockworks

These intrusion related deposits are characterized by shear hosted quartz-pyrite veins and stockworks within and marginal to Texas Creek intrusions. Also includes pyritic breccias along intrusive contacts. Mineralization is syn-intrusive and forms along the thermal brittle-ductile transition envelope surrounding subvolcanic intrusions. Late magma movement generates local shearing and fracturing. Convecting hydrothermal fluids then precipitate gold-rich iron sulphides and gangue as en echelon vein sets and stockworks. Metal and alteration patterns are consistent with the distal portions of porphyry Cu-Au system.

Alteration consists of an inner potassic zone of sericite-pyrite-quartz and an outer potassic zone where pyrite is replaced by pyrrhotite. Anomalous (>0.3 g/t Au) gold-silver mineralization develops at the transition from the pyrite to the pyrrhotite-dominant alteration zones.

Examples of this type include the Snip Gold Mine (960,000t @ 28.5g/t Au) and Johnny Mountain (207, 000t @ 14.1g/t Au).

8.3 Low Sulphidation Epithermal Gold-Silver Veins and Breccia Veins

Epithermal gold-silver base metal veins and breccia veins closely linked to structures and intrusions of the Early Jurassic Texas Creek plutonic suite. These deposits are formed from many pulses of mineralizing fluids localized above a local dome in the underlying Texas Creek batholith. Mixing of cool, meteoric groundwater with hot sulphur, chlorine and metal-bearing magmatic fluids is the most likely mechanism for base metal and gold-silver deposition

The deposits form shear hosted, en echelon sets of quartz-carbonate-chlorite-K-Feldspar+/-sulphide veins developed at the faulted margin of intrusions, as vein stockwork peripheral to breccia zones and as complex quartz-carbonate+/-sulphide-cemented breccia veins.

Alteration is characterized by an inner siliceous zone, followed by an outer potassic (sericite) zone and more distal carbonate and chlorite zones.

Examples of this deposit style include Silbak Premier (5.88 Mt @ 10.6/t Au and 227g/t Ag) and Big Missouri 768,943t @ 2.37g/t Au and 2.13g/t Ag).

8.4 Eskay Creek-Type VMS Deposits (+/- Epithermal Gold Overprint)

The Eskay Creek deposit includes several deposits of polymetallic sulphide and sulphosalts as exhalative massive sulphide, stratabound breccias and discordant veins. Mineralization is inferred to have formed at or near the sea floor in a relatively shallow-water setting and resulted from fluid boiling during the last stages of felsic volcanism. Such a system could be thermally driven by syn-volcanic intrusions (Eskay Porphyry) with metals scavenged from the volcanic pile by deeply circulating sea water or derived from the intrusion.

The massive sulphides at Eskay Creek show atypical mineralogy and precious metal enrichment. One explanation for this is the high gold enrichment is the result of an overprinting epithermal system. In this model epithermal fluids were transported along structures (visible in the deposit) until they encountered the reducing carbonaceous sediments and/or the earlier syngenetic VMS mineralization. Precipitation of gold and other "epithermal" characteristic minerals then occurred preferentially in the sulphide rich sedimentary layers.

The Eskay Creek Mine is the only known economically viable example of this type of deposit in the region. The Lulu Zone mineralization at the SIB Prospect also falls into this deposit category.

8.5 Intrusion Related Gold-Silver-Copper Skarns

Skarn and vein-style mineralization occur along faults within brittle, calcareous rocks adjacent to Eocene biotite granodiorite to biotite-quartz monzonite. High gold/silver ratios and pyrrhotite dominated sulphide assemblages are characteristic of early Jurassic intrusive-related Au-pyrrhotite deposits.

The Snippaker Creek skarns are examples of this deposit style.

9. 2004 FIELDWORK

9.1 Bonsai area

A three hole program was undertaken by Heritage Explorations in 2003 to test the possibility of a steep mineralized zone under the main showing and investigate an area further west with the same brecciated rhyolite unit. Hole BZ-03-08 intersected the pyritic breccia zone under the main showing, resulting in a 64 meter interval grading 0.38 gpt gold and 27.1 gpt silver. The full length of the pyritic zone was anomalous and the values were higher than at the surface gossan, indicating a possible increase in grades with depth.

The breccia zone in hole BZ-03-08 was open along strike to the south. This was the area tested in 2004. The 2004 hole (BZ-04-10) was collared 69 meters south of the BZ-03-08 hole and drilled to a depth of 178.3 meters. Drilling was carried out June 27 to July 18. Two rhyolitic breccias were intersected within an argillite-mudstone sequence.

9.2 Treaty area

A review of the geophysics (magnetics, EM) at Treaty Creek in 2003 highlighted elements of a possible porphyry Cu-Au alteration signature on the Treaty Nunatak.

The classic porphyry signature would contain an isolated magnetic high of around 1-2km diameter surrounded by a magnetic low halo. The high is caused by magnetite within the potassic alteration zone and the low a zone of magnetite destructive phyllic and argillic alteration. The iron freed by the destruction of magnetite combines with sulphur to form pyrite, which in sufficient quantities can be seen in EM data. A coincident magnetic low and conductive high halo, surrounding a magnetic high is the type of signature a porphyry system may be expected to show. Elements of this signature can be seen in the Treaty Nunatak area.

A single hole was proposed to test this possibility. Locations for the hole were limited due to the steep terrain and icefields/glaciers. The hole (TP-04-01) was collared immediately to the southeast of Sulphur Knob. A 500 meter hole at -50 degrees was laid out to reach the magnetic high core of the porphyry signature. The hole was completed September 14-23 to a depth of 496.2 meters.

10. PROSPECTS - Program & Results

10.1 2004 Drilling

Drilling in 2004 comprised two holes for a total of 674.5 meters (Table 2). Figures 4, 5 and 6 show the drill hole locations.

Table 2. 2004 Drill Program Summary.	
--------------------------------------	--

Hole ID	Zone	Easting	Northing	Dip	Azimuth	Depth
BZ-04-10	Bonsai	404887	6276284	-70	270	178.3
TP-04-01	Treaty area	430959	6271940	-50	130	496.2
	Total meterage	White Barriel				674.5 m

A summary of anomalous intersections from the drill program are tabulated below (Table 3).

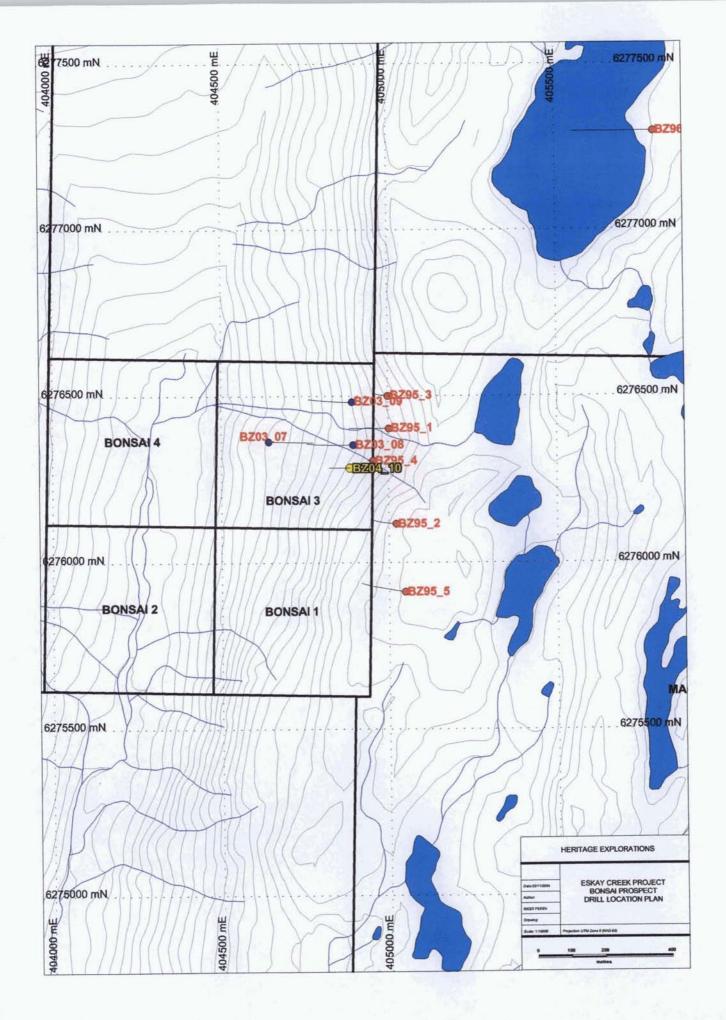

Hole ID	Zone	From m	To m	Widt h m	Grade Au g/t	Grade Ag g/t
BZ-04-10	Bonsai	92.0	102.0	10.0	0.24	14.24
1		122.0	140.0	18.0	0.17	15.31
TP-04-01	Treaty area	211.0	213.0	2.0	0.23	0.44

Table 3 2004 Drill Program - Anomalous Gold/Silver Intersections.

10.1a Bonsai Prospect

The Bonsai Prospect is comprised of a series of gossanous outcrops of rhyolite breccia with interbedded graphitic mudstones and coarser sediments. The outcrops occur on the very steep eastern slopes (grading to cliffs near the valley base) of Harrymel Creek. The lithologies are analogous to those at Eskay Creek and are mapped as part of the Salmon River Formation of Hazelton Group stratigraphy.

GPS surveys in 2003 at Bonsai determined that the lithology outcrops and drill collar positions from earlier drilling varied significantly from their recorded positions on existing maps. The drill collars

were subsequently DGPS located and adjusted in the database. The field mapping was also adjusted in the GIS database to a best fit based on DGPS locations of the main gossan outcrops.

The Bonsai Prospect review commenced with a re-interpretation of the historical data, particularly the drilling. The earlier work imposed a model of flat lying felsic (rhyolite) dykes as host to mineralization and the cause of the extensive gossanous outcrops at Bonsai. Previous drilling was therefore positioned up slope from the gossan outcrops and drilled to just below the horizontal level of these outcrops to test for flat lying mineralization.

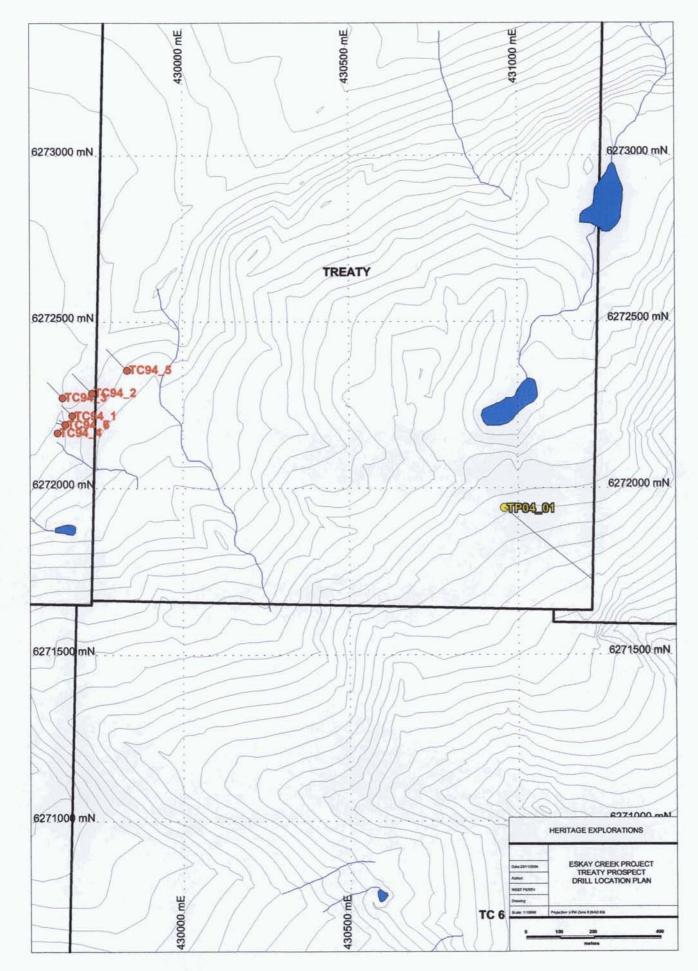
Field evaluation at Bonsai indicated that no conclusive evidence for a flat orientation of stratigraphy existed. Bedding, though variable, appeared to have a generally steep orientation. The gossanous outcrops were sampled and returned values similar to previous samples, with weak to moderate gold anomalism (~100ppb Au) and strong silver, mercury anomalism. Given a steep orientation to these gossanous pyritic zones, the prospect was considered untested and drilling was warranted.

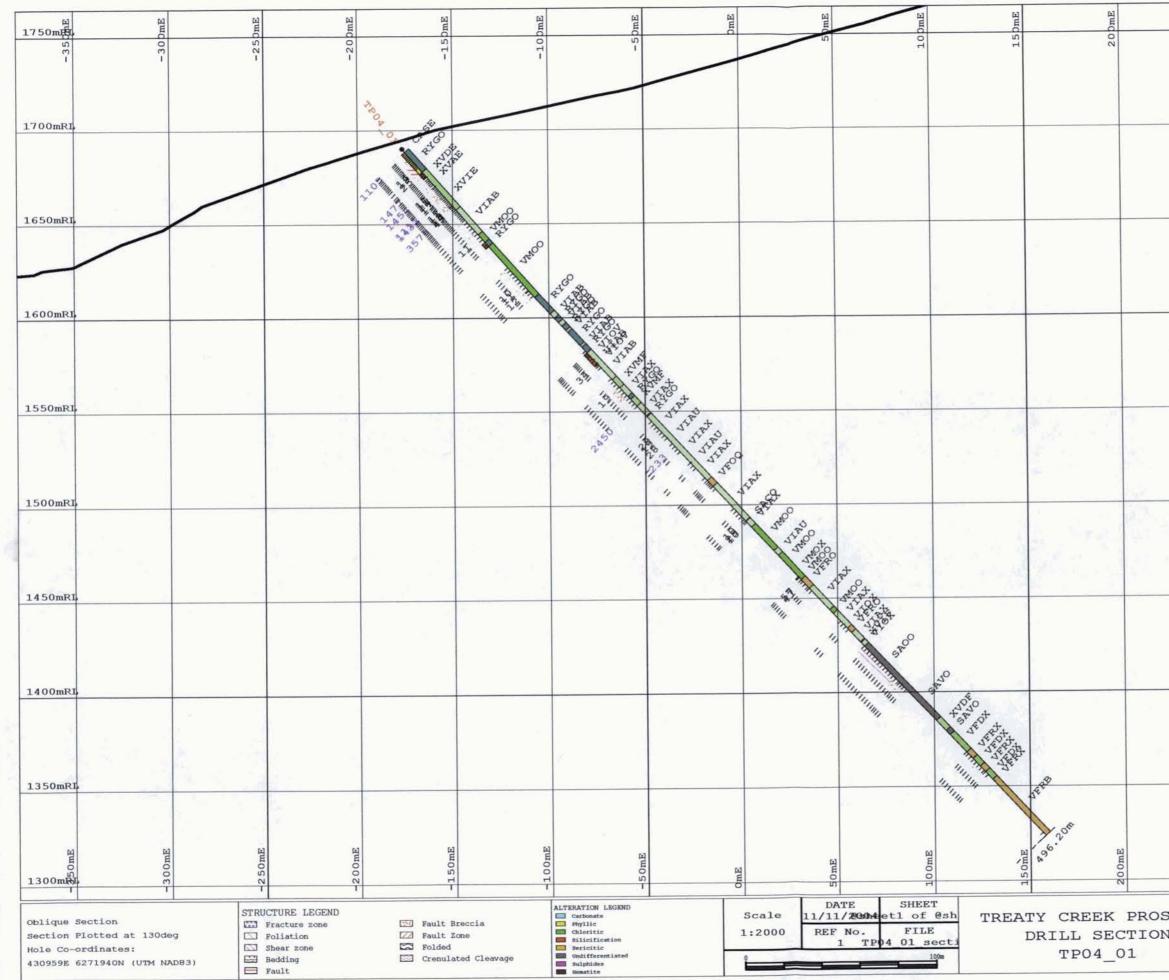
The three drill holes at Bonsai in 2003 intersected mostly rhyolite and an interbedded sequence of mudstone and sandstone. The gossanous material at surface occurs in core as a pyritic rhyolite breccia. Hole BZ-03-08 intersected a strong pyritic breccia zone, resulting in a wide gold/silver intersection of 64.0 meters grading 0.38 gpt gold and 27.08 gpt silver. These values were higher than on surface suggesting a possible increase in grade with depth. The breccia zone in hole BZ-03-08 was open at depth and along strike to the south.

The 2004 drill hole (BZ-04-10) was collared 69 meters to the south of BZ-03-08 to test the on strike extension. Two pyritic breccia zones were intersected, at 92.0 to 102.0 meters and at 122.0 to 146.0 meters. The gold/silver assays, as listed in Table 3 above, were anomalous but less than the results from BZ-03-08 in 2003.

10.1b Treaty Creek area

The 2004 field season in the Treaty area was comprised of one drill hole on the Treaty porphyry target described above.


The 496.2 meter hole was collared in a quartz sericite pyrite altered felsic to intermediate volcanic, part of the highly altered prominent Sulphur Knob unit exposed to the northwest of the drill site. The remainder of the hole was unaltered intermediate to mafic volcanics of the Hazelton Group with minor argillite/mudstone/sandstone units interlayered and conformable with the volcanics. The volcanics were mainly undeformed fragmentals with trace pyrite, weak chlorite, minor quartz veining, little shearing or faulting and minor brecciation. The fine clastics had more shearing, faulting and brecciation. There was no significant mineralization or alteration in the drill hole. Only one sample assayed above 50 ppb gold, as shown on Table 3 above.


11. CONCLUSIONS

11.1 Bonsai Prospect

The drill results from BZ-04-10 are not particularly encouraging for an extension of the main gossan showing to the south. The pyritic rhyolite breccia which hosts the gold values has reduced in both width and gold grades.

There are no recommendations for additional work pending receipt of the Aeroquest airborne survey results early in 2005.

Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц Ц				
Image: Speect Image: Speect<	OmE	DmE	DmE	750mRL
Image: Spect Image: Spect <td< td=""><td>52</td><td>e e</td><td>ŝ</td><td></td></td<>	52	e e	ŝ	
Image: Spect Image: Spect <td< td=""><td></td><td></td><td></td><td></td></td<>				
Image: Spect Image: Spect <td< td=""><td></td><td></td><td></td><td></td></td<>				
E CT				700mRL
E E E E E E E E E E E E E E E E E E E				
E CT				
E CT				6 - C
E E E E E E E E E E E E E E E E E E E				650mRL
Image: spece			~	21
LISSOMR LISSOM				
LISSOMR LISSOM				
500mR 1500mR 1450mR 1450mR 1400mR 1350mR 1350mR 1350mR 1350mR			3	L600mRL
500mR 1500mR 1450mR 1450mR 1400mR 1350mR 1350mR 1350mR 1350mR				
500mR 1500mR 1450mR 1450mR 1400mR 1350mR 1350mR 1350mR 1350mR				
500mR 1500mR 1450mR 1450mR 1400mR 1350mR 1350mR 1350mR 1350mR				
Here				1550mRL
Here				
Here Here Here Here N N N N	2.24			
Here Here Here Here N N N N			1.55	
450mR 4400mR 4400mR 1350mR 1350mR 1350mR 1350mR 1350mR	1.5			1500mRL
450mR 4400mR 4400mR 1350mR 1350mR 1350mR 1350mR 1350mR			C	
1400mR 1400mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR			· · · ·	
1400mR 1400mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR 350mR			1	1
PECT				1450mRL
BPECT				
BPECT				
PECT				
PECT				1400mRL
				107
				1 . 2
		and the second	40 4	1250mPI
SPECT				1350mRI
SPECT				1
SPECT				
SPECT	DmE	1	400	
the second se	250	100		1300mRL
the second se				20
MERTIAGE EXFLORATION		UPDIMA	GE EXPLORA	TTONS
	4	HERITA	GE EAFLORA	TOND

11.2 Treaty Creek area

No potential for porphyry gold and/or copper mineralization was evident in the Treaty hole. Further work in the general Treaty area should await the results of the Aeroquest airborne survey.

12. RECOMMENDATIONS

The results of the time domain airborne EM – magnetic survey carried out by Aeroquest Limited on the Eskay property in September 2004 are anticipated in January 2004. No recommendations are made at the present time pending receipt of these results.

13. REFERENCES

Alldrick, J.,

1993: Geology and Metallogeny of the Stewart Mining Camp, Northwestern British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 85, 105 pages.

Anderson, R. G.,

1989: A stratigraphic, plutonic and structural framework for the Iskut map area, Northwestern British Columbia; in Current Research, Part E, Geological Survey of Canada, Paper 89-1E.

Barrett, T.J.,

2003: 2002 Exploration Program: Lithogeochemistry and Chemostratigraphy of volcanic and associated rocks of the Eskay area, Iskut River area, Northwestern British Columbia.

Bidwell, G.E. and Worth, A.W.

2004: Eskay Project, 2003 & 2003 Exploration Programs; Geological and Geochemical Surveys, Diamond Drilling; British Columbia Ministry of Energy, Mines and Petroleum assessment report.

Britton, J., Blackwell, J. and Schroeter, T.,

1990: #21 Zone Deposits, Eskay Creek, Northwestern British Columbia; Ministry of Energy, Mines and Petroleum Resources, Exploration in BC, 1989, pages 197-223.

Gordey, S.P., Geldsetzer, H.H.J., Morrow, D.W., Bamber, E.W., Henderson, C.M., Richards, B.C., McGugan, A., Gigson, D.W., and Poulton, T.P.

1991: Part A. Ancestral North America; in Upper Devonian to Middle Jurassic assemblages, Chapter 8 of Geology of the Cordilleran Orogen in Canada, H. Gabrielse and C.J. Yorath (ed.); Geological Survey of Canada, Geology of Canada, no. 4, p. 221-328.

Kaip, A.W. and Kuran, D.L.,

1996: Diamond Drilling, Geological and Geochemical Report on the Bonsai Property; British Columbia Ministry of Energy, Mines and Petroleum assessment report (ARIS), 24281.

Lewis, P.D.,

1992: Structural evolution of the Iskut River area: Preliminary results, in Metallogenesis of the Iskut River area, Northwestern British Columbia; Mineral Deposit Research Unit Special Publication Number 1, pp. 63-76.

Lewis, P.D.,

1996: Geological maps of the Iskut River area, in Metallogenesis of the Iskut River area, Northwestern British Columbia; Mineral Deposit Research Unit Special Publication Number 1, pp. 77-83.

Lewis, P.D.,

2002: Report on Field Visit, Eskay Creek area properties; unpublished report by Lewis Geoscience Services Inc., for Heritage Explorations Ltd.

Lewis, P.D.,

2003: Exploration Potential of the Treaty Glacier Area, Stewart Mining District, Northern British Columbia; unpublished report by Lewis Geoscience Services Inc. for Heritage Explorations Ltd.

Lewis, P.D., MacDonald, A.J. and Bartsch, R.D.,

1992: Hazelton Group/Bowser Lake Group Stratigraphy in the Iskut River area: Progress and Problems, in Metallogenesis of the Iskut River area, Northwestern British Columbia; Mineral Deposit Research Unit Special Publication Number 1, pp. 9-30.

Lewis, P.D., Toma, A. and Tosdal, R.M. (compilers),

2001: Metallogenesis of the Iskut River area, northwestern British Columbia; Special Publication Number 1, Mineral Deposit Research Unit (MDRU), University of British Columbia, Vancouver, British Columbia.

Macdonald, A.J., Lewis, P.D., Thomson, J.F.H., Nadaraju, Gena., Bartsch, R.D., Bridge, D.J., Rhys, D.A., Roth, T., Kaip, A., Godwin, C.I., and Sinclair, A.J.,

1996: Metallogeny of an Early to Middle Jurassic Arc, Iskut River area, northwestern British Columbia; Economic Geology, V.91, p.1098-1114.

McGuigan, P.J.,

2002: Technical Report on the Eskay Properties of Heritage Explorations Ltd. and Glenfred Holdings Inc., Iskut River Area, Northwestern British Columbia; National Instrument 43-101 Technical Report.

McGuigan, P.J. and Gilmour, W.R.,

2001: Geochemistry of Stream Sediments from High Energy Depositional Sites on the Tag West and Tag East Claim Groups, Eskay Creek Area, BC (AR26734).

Roth, T.,

2002: Physical and Chemical Constraints on Mineralization in the Eskay Creek Deposit, northwestern British Columbia: Evidence from Petrography, Mineral Chemistry and Sulphur Isotopes; unpublished Ph.D. thesis, University of British Columbia, Vancouver, British Columbia, 424 pages.

Worth, T., Power, W., Cameron, G., Mason, R., Archibald, N., Stuart, R., and Bidwell, G.E.

2004: Application of the Geoinformatics Process to the Eskay Creek Project, Iskut Region, Northwestern British Columbia; unpublished report by Geoinformatics Exploration Australia for Heritage Explorations Ltd.

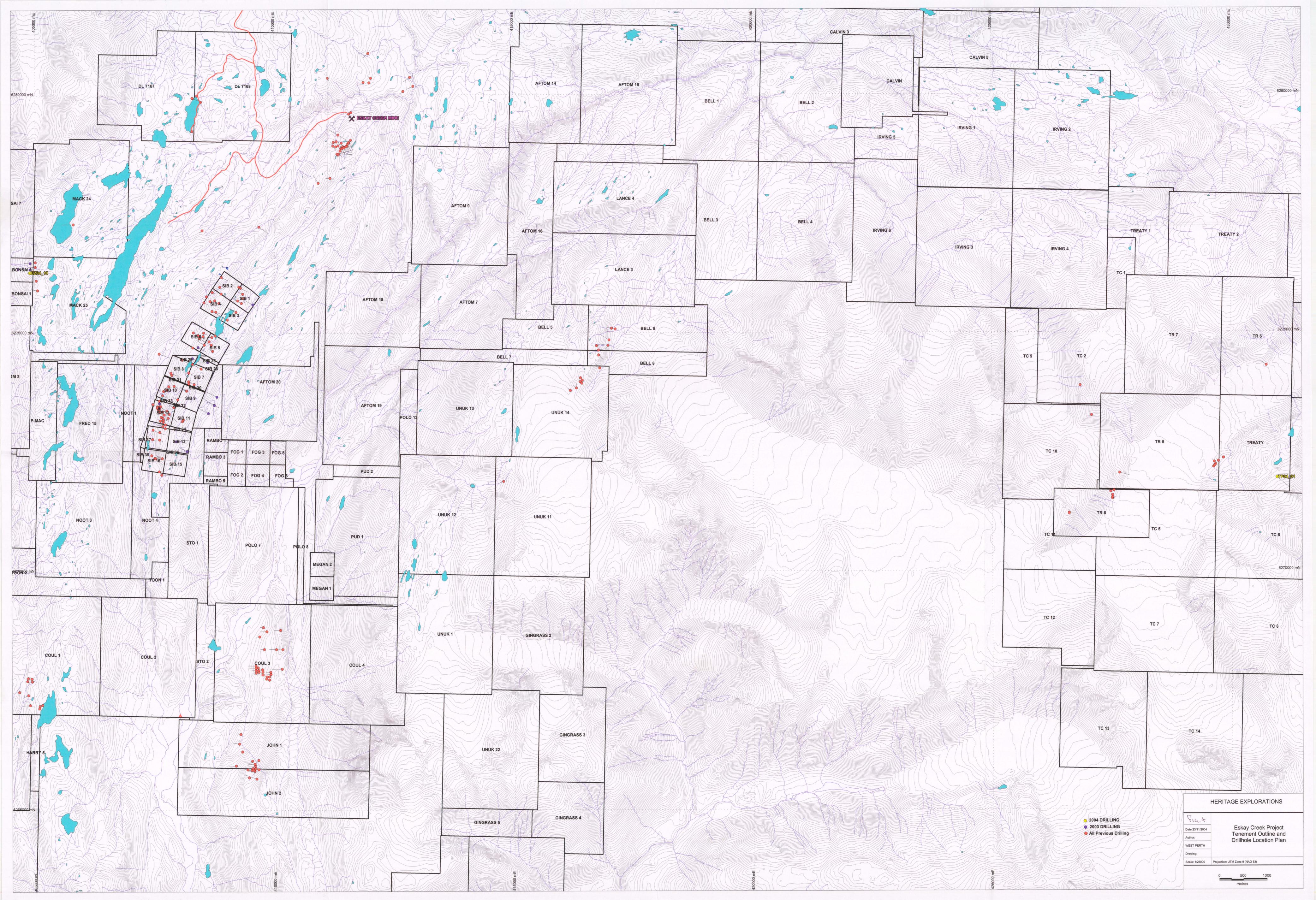
14. STATEMENTS OF QUALIFICATIONS

I, Gerald E. Bidwell, P.Geo., of 5186-44th Avenue, Delta, BC V4K 1C3, do hereby certify the following:

I am a consulting geologist with G. Bidwell & Associates Ltd. of Delta, BC.

I have been practicing my profession continuously since graduation in 1967, as a geologist in Canada and the United States of America. I worked continuously from graduation to 1996 as a geoscientist for Hudson Bay Exploration and Development Company Limited (1967-87), Mingold Resources Inc. (1987-1990) and Noranda Exploration/Hemlo Gold Mines (1990-96). Since 1997 I have been a principal of G. Bidwell & Associates Ltd.

I am a graduate of the University of Saskatchewan, with a Bachelor of Arts and Science degree in Geology in 1967.


I am a Professional Geoscientist in good standing with the Association of Professional Engineers and Geoscientists of British Columbia and a fellow of the Geological Association of Canada.

I have been the Exploration Manager of Heritage Explorations Ltd. and the Project Manager of the Eskay Project since May, 2003. I spent three weeks on site during the 2004 field program.

Respectfully submitted,

Gerald E. Bidwell, P. Geo.

Dated De 70, 2004 in Vancouver, BC.

APPENDICES

Assay Procedures - ACME Analytical Laboratories Ltd (b) Group 1F – Ultratrace by ICP-MS

II Assay Certificates (a) File # A403838 (a) File # A405917 (a) File # A406105

III Drill Logs (a) Bonzai Drill Hole BZ 04-10 (b) Treaty Drill Hole TP 04-01

IV Mineral Tenures

I

deater

V Expenditures & Assessment Data – 2004

VI Geoinformatics Eskay Creek Lithology Codes and Colour Legend

- (a) Lithology Codes
 - i lithology codes
 - ii alteration assemblage codes
 - iii veining codes
 - iv structures code
- (b) Lithology Colour legend

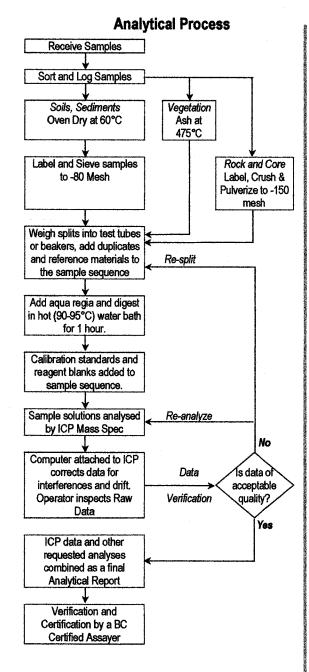
ESKAY PROJECT 2004 FIELD PROGRAM

Ŋ

Appendix I

Assay Procedure

ACME Analytical Laboratories Ltd.


Group 1F-MS Ultratrace by ICP-MS Aquia Regia

852 East Hastings Street • Vancouver, British Columbia • CANADA • V6A 1R6 Telephone: (604) 253-3158 • Fax: (604) 253-1716 • Toll free: 1-800-990-ACME (2263) • e-mail: info@acmelab.com

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1F-MS – ULTRATRACE BY ICP-MS • AQUA REGIA

Comments

Sample Collection

Samples may consist of soil, sediment, plant or rock. A minimum field sample weight of 200 gm is recommended.

Sample Preparation

Soil and sediment are dried (60°C) and sieved to -80 mesh (-177 μ m). Vegetation is dried (60°C) and pulverized or ashed (475°C). Moss-mats are dried (60°C), pounded and sieved to yield -80 mesh sediment. Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g aliquot is riffle split and pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Depending on the option package, aliquots of 1 to 30 g are weighed. QA/QC protocol includes inserting a pulp duplicate to measure analytical precision, a coarse (10 mesh) rejects duplicate to measure method precision (trench and drill core samples only) and an aliquot of in-house reference material STD DS3 to measure accuracy in each analytical batch of 34 samples.

Sample Digestion

A 6 mL/g aliquot of Aqua Regia (2:2:2 ACS grade HCl, ACS grade HNO₃, demineralised H₂O) is added to each sample. Samples are digested for one hour in a hot water bath (90-95°C) then diluted (20:1 mL/g final ratio). QA/QC protocol requires simultaneous digestion of two regent blanks randomly inserted in each batch.

Sample Analysis

Analysis is by an Elan 6000 ICP Mass Spec for the determination of 37 elements comprising: Au, Ag, Al, As, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, U, V, W and Zn. Extended element packages containing incompatible elements (Hf, Nb, etc.), REEs and PGEs are available. Larger samples (15 to 30 g) are recommended for precise analysis of elements subject to the nugget effect (eg. Au).

Data Evaluation

Raw data are reviewed by the instrument operator and by the laboratory information management system. The data is subsequently reviewed and adjusted by the Data Verification Technician. Finally all documents and data undergo a final verification by a British Columbia Certified Assayer who then signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Dean Toye and Jacky Wang.

Document: Methods and Specifications for Group 1F-MS.doc

Date: May 21, 2002

ESKAY PROJECT

and the second

2004 FIELD PROGRAM

Appendix II

Assay Certificates

(a) File # A403838
(b) File # A405917
(c) File # A406105

					H	er			re - 6		_				*****		******				100000		- 10 C - 10 C							a de la seconda	dwe		a)														
		<u></u>			30000																												<u></u>		<u> </u>						<u></u>	<u></u>				<u></u>	
SAMPLE#	Mo	Cu	Pb	Zr	1 A/) N	i Co	M	∩ F	e	/13	U		• •				-			۷	Ca		La	-	M	g .	Ва	Ti	В	A1	Na	ĸ	1	N S	SC	τı	S	, 1		Se						
	ppm.	ppm	ppm	ppr	i ppi	o ppi	в ррл	i pp	h !	č	ppm	ppm	ppt) pp)M	ppm	ppn	pp	en pp	m p	р т	8	*	ppm	ppm	3	3 1	ррия	8.	ppm	×	ž	8	ppr	n pp	л п	ppm	2	· pi	pb	ppm		i pp	מו, 	 	 	
SI	. 12	3.63	. 24	1.	i ·	55	2.1		L.0	4	.3	<.1		١ <.	1	2.7	.01	.0	2.0)2	<2 .	11<.(001	<.5	<.5	<.03	1 4	4.1<.)01	1	.01	.492	.01	<.)	1.	1. <	.02	<.01		<5	<.1	<.0;	2 <	.1			
A 136801	2.02	7.29	15.01	67.5	J 23	2 3.4	1.5	19	3 1.4	68	0.6	.2	<.2	2.	3 16	7.7	.35	3.9	7.0)6	21.	56.0	022	9.5	3.7	.06	6 8	0.9.	01	1	. 13	.015	. 13	.1	1 1	2	. 60	1.31	4	75	.8	<.0;	2	.5			
A 136802	6.65	11.09	15.92	112.8	3 16	6.	2.1	40	1 3.5	6 39	3.9	.2	.2	2 1.	3 23	5.2	47	11.6	1.6	5 ·	22.	53.(016	5.7	3.3	.10	0 20	0.5<.	001	3	. 20	.008	. 18	<.)	1 1	0 13	.08	3.74	58	59	.9	.0:	3.	.6			
A 136803	2.82	9.80	12.32	6 4.1) 11	1 3.6	5 2.0	34	5 1.2	0.6	57.4	.2	.4	2.	5 11	0.3	.35	2.6	7.4	7	<2 1.	90.0	016]	6.8	1.3	.15	5 129	9.9<.	01	3	.21	.006	. 19	<;	1,1	1 1	.09	.92	3	37	.4	<.02	2	.5			
A 136804	4.34	21.25	9.62	91.1	24	10.3	2 5.7	67	3 1.8	1 4	2.2	.2	3	3 2.	0 48	7.3	.52	2.0	6.1	4	84.	26 .0	049 1	10.8	3.8	.3	7 100	6.1.)01	3	. 31	.007	. 23	<	1 2	2	. 44	1.06	2	:87	.7	.04	ŧ.	.8			
A 136805	3.00	13.35	18.78	116.	5 52	2 6.	7 3.8	30	1.8	1 13	12.9	.1	3.7	1.	3 24	1.6	.74	7.7	8 . 1	9	22.	52 .0	032	6.2	1.6	.10	0 30	0.8<.	01	4	.23	.008	. 19	<.)	1 1	5 1	. 90	1.64	8	181	.7	. 0.	3	. 6			
A 136806	11.83	5.12	13.17	67.	1 45	ι.	9 1.2	2 17	1.1	3 10	1.5	.2	3.3	3.	1 11	4.7	.24	2.9	0.5	51	<2.	98.1	011 2	21.2	1.9	.1	1 69	5.0<.	01	4	.29	.006	. 25	<.	1.	8	.52	.95	; 1	.52	.1	< 07	2	.8			
A 136807	26.38	9.13	17.22	101.3	2 260	6.9	5 3.2	13	3 4.3	0 88	1.6	.1	72.2	2 1.	58	0.3	.42	23.0	5.1	5	<2.	76.0	052	8.4	3.2	. 08	8 14	4.2.1	01	5	.24	.006	. 21	<.]	1.	8 13	. 60	4.54	25	31	.4	.07	2 :	.7			
A 136808	8.55	13.17	14.19	58.(5 85 [.]	2 6.	5 4.0	5	3.7	4 44	5.9	.1	23.4		73	2.9	.37	22.6	5.1	4	2.	21 .0	033	2.2	4.4	.02	2 14	4.1<.0	01	2	. 20	.006	. 16	<.]	1 .	69	. 46	3.79	22	73	.4	.07	2	.6			
A 136809	28.72	13.14	17.12	474.4	125	5.1	3 2.6	11	2 17.9	2 688	7.9	.1 1	157.2	2 .	43	6.2 2	2.07	105.0	0.1	3	<2.	29.(027	.5	2.2	. 02	2 3	3.7 .0	001	2	. 16	.005	. 14	<.]	i .	3 88	. 18	>10	104	04	.9	. 02	: .	.8			
A 136810	6.15	6.43	20.04	19.3	3 64	1 3.1	2 1.7	7.	2 6.0	5 124	6.2	.2 1	158.5		36	3.3	. 19	27.2	1.1	.6	<2.	45.0	007	1.0	6.7	. 01	1 11	1.2 .0	01	2	. 15	.004	. 14	<.]	1.	3 13	.83	6.57	39	72	.3	.02	2	.5			
A 136811	8.18	5.97	28.04	42.1	1 91	2 3.6	5 1.4	4	9.2	4 177	0.4	.2 2	207.0	۱.	31	3.4	.43	40.6	3.1	.5 ·	<2 .	13 . (002	1.2	2.9	.01	16	6.8<.0	01	2	. 16	.004	. 16	<.]	ι.	3 12	.92	9.83	47	00	.5	<.02	2 .	.6			
A 136812	4.06	6.09	28.18	11.9	45	2.9	1.7	4	l 5.0	3 111	6.8	.1 1	158.8	ι.	91	3.3	. 10	22.2	6.1	.8	<2 .	12 .0	002	4.0	6.4	.01	1 13	1.9<.0	01	3	.21	.005	. 20	<.]	ι.	3 13	.13	5.65	49	20	.2	<.02	1.	.6			
RE A 136812	3.54	6.10	26.21	12.7	/ 41	3.:	3 1.5	4	l 5.1	0 112	1.9	.1 1	149.7	'.	8 1	3.4	.08	20.5	7.1	.7 ·	<2.	12 .(002	3.9	7.2	.01	1 12	2.5<.1	01	3	. 20	.005	. 18	<.]	ι.	4 12	. 19	5.27	45	.97	.3	< 02	2 .	.6			
RRE A 136812	3.61	5.55	23.66	11.0) 441	3 2.9	9 1.4	4	2 5.3	9 117	8.7	.1 1	153.6	i.	8 1	2.9	.08	22.2	3.1	.6	<2.	13 .(001	3.6	4.5	.01	1 11	1.1<.(01	3	. 18	.005	. 17	<.]	ι.	2 11	.71	5.91	46	81	.2	<.02	: .	.6			
A 136813	1.78	5.01	22.54	-4.4	154	1.0	5 1.2	4	3 2.49	ə 37	8.0	.1	49.2		42	1.8	.04	14.5	6.1	6 •	<2.	25 .0	002	1.3	3.0	.01	1 38	8.2<.(01	3	. 15	005	. 15	<.1	ι.	44	. 81	2.71	19	57	.2	<.02	: .	.5			
A 136814	4.11	6.54	22.43	12.8	1 300	2.4	1.5	5	1.79	9 21	6.8	.1	81.2	1.	1 3	6.8	.09	9.2	3.1	7 ·	<2.	38 .0	004	6.1	5.2	. 02	2 62	2.3<.(01	3	. 20	.006	. 18	<.]	ι.	44	.06	1.92	15	60	1.6	<.02	: 1	.7			
A 136815	F 12	10 00	22 47	20 ·			. 10	7	1 2 7	5 51	8 1	1	85 6		5 3	07	25	30.3	n 1	л.	<2	37 (110	26	47	01	1 41	1.9.0	01	2	13	015	14	< 1		6 12	42	2 75	13	10	2	or	,				

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

前指常

Data W2 FA ____ DATE RECEIVED: JUL 26 2004 DATE REPORT MAILED: 10/04

CAL LABORATORIA LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

AUTINGS JT. VANOUVEN IC VUN 1R6 PH. 604

Heritage Explorations Ltd. File # A403838 (b) 1280 - 625 Howe St., Vancouver BC V6C 2T6 Submitted by: Gerry Bidwell

																				<u></u>
SAMPLE#	Cs	Ge	Ηf	Nb	Rb	Sn	Та	Zr	Y	Ce	In	Re	Be	Li	Sample	Total				۲
	ppm	ppm	ppm	ppm	ppm	ppm	ppm p	ppm	ррт	ppm	ppm	ppb	ppm	ppm	gm	kg			×	
SI	2 01	< 1	< 02	<.02	1	<.1 <	05	.3	.02	<.1	<.02	<1	<.1	.1	30	÷.,				
A 136801	.60	<.1		.05	3.7		.05 1		6.49	20.7	.03	2	.4	.2		4.57				
A 136802	1.96	<.1			7.0	.5 <			4.85	12.0	.03	ž	.8	.3						
A 136802 A 136803	2.79			<.02	7.1		.05 1				.03	1	.6	.3						
A 136803	2.67			<.02	9.5		.05 1				.03	1	.7	1.3		2.01				
X 150004	2.07		.04	1.02	1.5				0.10	22.5	.05	•	••		50	2101				
A 136805	1.59	<.1	.05	<.02	7.2	.4 <	.05 1	1.6	5.60	13.4	.04	2	.6	.3	30	2.30				
A 136806	1.36		.06		10.1	.5 <			3.44		.02	1	1.1	.3		2.38				
A 136807	1.21	<.1	.04	.04	7.9		.05 1			16.9	.03	2	.6	.2	30	2.25				
A 136808	1	<.1		<.02	5.5		.05 1			5.9	.03	2	.4	.2		2.45				
A 136809	2.53	.1	.05	.06	4.9		.05 1			1.9	.05	3	.4	.1		2.78				 1
				•••																 , k
A 136810	.71	<.1	.06	.06	4.4	.5 <	.05 2	2.3	1.69	2.6	.02	11	.4	1	30	1.16				4
A 136811	.70	<.1	.07	.08	5.1	.7 <	.05 2	2.9	1.21	3.0	.02	6	-4	.2	30	2.64				
A 136812	.83	<.1	.07	.04	6.2	.5 <	.05 2	2.8	1.39	9.6	<.02	6	.4	.1	30	2.48				
RE A 136812	.84	<.1	.07	.03	6.4	.4 <	.05 2	2.6	1.39	9.3	<.02	8	.3	.2	30	-				
RRE A 136812	.87	<.1	.06	.05	5.7	.5 <	.05 2	2.3	1.25	8.8	<.02	5	.4	.2	30	-				5
A 136813	-44	<.1	.07	.02	4.9		.05 2				<.02	<1	.3	.1		2.31				
A 136814	.77	<.1	.06	.04	6,1	.4 <			2.47	14.2	.02	4	.4	.2		4.66				
A 136815	.32	.1	.05	.03	4.3	.4 <			2.53	6.2	.02	8	.1	.2	30	4.62				
A 136816	.43	<.1	.04	.03	3.9		.05 1			2.6	.02	8	.3	.3	30	4.41				
STANDARD DS5	6.18	.1	.06	1.69	14.3	6.3 <	.05 3	3.5	6.03	24.7	1.30	1>1	1.2	15.9	30	-	 			

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data We FA ____ DATE RECEIVED: JUL 26 2004 DATE REPORT MAILED: H.M. 10/04

E .

AL LABURATORIES LTD (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

VANCOUVER BC

VOA 1R6

PHUNE (604) 253-3158 FAX (604) 2

Heritage Explorations Ltd. File # A405917 (a) 1280 - 625 Howe St., Vancouver BC V6C 276 Submitted by: Gerry Bidwell

	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn F	e i	As i) Au	Th	Sr	Cđ	Sb	Bi	V C	a	P La	Cr	Mg	Ba	Ti	в	A1 M	la .	K W	Sc	TI	s	Ha	Se	Te	Ga		
		ppm	ppm	pps	ppm	ppb	ppm	ppm j	ppm	ž pj	om ppm	ı ppb	ppm	ppm	ppm	ppm	ppm p	opø.	8	≹ ppm	ppm	8	ppm	X .	ppm	X	3	ž ppm	ррт	ppm	8	ppb	ppm	ppm	ppm		
	<u>.</u>		(1				<u> </u>											.0 1	1 . 00													-				 	
	SI A 136817	.08							7.0																												
	A 136818																								-												
	A 136819								46 3.9																												
	A 136819 A 136820								35 2.8																												
	A 130820	5.11	33.72	76.49	8.1	24533	5.0	2.4	45 3.8	7 449	.2 .1	. 339.8	.4	20.9	.10 88	5.97	. 1 1	2.2	2 .00:	9.9	4.0	.03	10.3	.001	4.	.25.00	15 .2	2.5	.0	1/:12	3.83	3389	.4 •	<.UZ	1.3		
	A 136821	5.96	25.88	31.91	45.1	7326	13.4	4.6	45 2.9	0 289.	.3.1	134.2	2.0	17.2	. 19 58	3.44	. 15	3.1	1.002	2 14.3	9.8	.03	22.8	.001	3	.27 .00	7.2	4 1.7	.7	8.51	2.89	1935	.4	.03	1.3		
	A 136822	5.15	16.44	31.43	15.1	9928	4.6	1.7	209 2.5	6 486	.5.1	211.9	1.2 1	30.7	.05 64	1.82	. 10	4 1.1	5 .058	8 5.9	9.2	.06	42.7	.001	3	.24 .00	8.2	1.9	1.2	6.52	2.28	5008	4	:02	1.4		
	A 136823	4.78	7.69	29.24	7.7	1789	5.0	.9 ;	367 3.2	3 503.	.6.1	72.6	1.0 1	88.6	.02 42	7.35	. 10	4 1.6	2.054	4 4.1	14.2	.12	40.5	001	2	.24 .01	0.1	7 3.1	1.2	3.83	2.58	4532	.3	.03	1.4		
	A 136824	4.25	6.07	21.44	21.1	1279	1.7	.6	380 2.0	5 426	.7 .1	64.1	1.2 2	38.9	.03 43	3.97	. 10	3 2.0	9 .051	1 5.9	8.1	.09	54.8	.001	2	.20 .00	8.1	7 1.1	1.3	3.97	1.91	3242	.2	.05	1.1		
	A 136825	6.07	24.50	12.08	90.2	937	12.7	4.7	312 2.2	6 103	.3.2	1.0	1.2 1	60.7	.64 12	2.34	. 11	9 1.5	1.051	1 2.8	6.8	. 30	58.9	.001	6	.39 .01	5.2	8.8	3.0	.83	1.42	927	1.2	.02	1.1		
	A 136826								463 3.1																							-					
× .	A 136827								988 3.7																												
	A 136828								327 3.4																												
	A 136829								209 2.5																												
	A 136830	5.43	14.42	36.76	21.8	14389	5.4	2.2	86 3.0	5 754.	.6.1	140.2	.4	88.6	. 16 39	9.57 .	. 11	<2.5	7 .012	2 1.5	10.4	.02	29.1	.001	2	.18 .00	6.1	9 1.3	.6	21.21	3.09	4263	.3 •	<.02	.6		
	RE A 136830	5.52	14.30	36.78	21.4	14512	5.2	2.1	89 3.1	5 780.	.9.1	143.1	.5	91.1	. 15 40	.32 .	. 11	<2.5	3.012	2 1.5	11.7	.02	31.2	.001	2	.18 .00	6.1	9 1.3	.5	21.24	3.05	4458	.3	.02	.6		
	RRE A 136830	6.81	15.55	40.82	24.4	16963	7.6	2.4	97 3.5	4 918.	.8.1	166.0	.4	97.4	.13 46	5.42 .	. 11	2.6	2 .012	2 1.3	23.6	.02	24.2	.001	2	.16 .00	5.1	7 3.4	.5	25.51	3.55	5016	.4	.02	.6		
	A 136831	8.74	25.95	58.02	15.4	22919	7.8	3.5	62 4.2	5 1060.	9.1	197.8	.3	43.9	.13 .72	2.63 .	. 12	2.2	.010) 1.0	5.8	.02	16.4	.001	3	.23 .00	5.2	1.8	.6	31.08	4.24	3890	.3	.02	1.0		
	A 136832	5.17	17.65	31.73	36.2	9751	6.5	2.2	39 2.3	5 430.	3.1	64.6	.4	33.0	. 20 27	.67	. 14	2.2	.006	5 1.1	14.0	.02	26.0	.001	3	.24 .00	5.2	2 2.9	.4	10.72	2.27	1391	.3 <	<.02	.9		
	A 136833	5.14	35.68	46.63	9.4	18930	13.8	6.3	34 4.7	8 976.	6.1	264.4	1.8	17.3	. 17 93	8.98 .	.16	5.0	5.002	2 13.1	4.3	.04	12.6	.001	6	35 .00	6.2	7.6	.9	32.46	4.85	4537	. 6	.03	1.9		
	A 136834								84 4:1																												
	A 136835	3.09	12.90	45.59	12.9	11932	2.8	.5 1	180 2.3	3 298.	9.1	115.4	.9	42.8	.05 31	. 15 .	.09	3.3	5 .015	5.5	7.6	.06	32.4	.001	2	19 .00	5.10	8 1.8	.8	3.57	2.02	14020	.2	.02	1.1		
	A 136836								56 2.9																												
	A 136837								51 5.0																												
	A 136838	4.92	21.59	31.95	34.3	10095	8.1	2.7	73 2.1	5 397.	4.1	97.2	1.1	73.6	.24 39	. 85 .	. 10	4.5	.007	7.2	15.9	.02	49.5	.001	3.	20 .00	5.18	8 3.0	. 6	12.19	2.02	1578	.3	.03	1.2		
	A 136839	11 94	0 15	35 48	70.8	5050	1 0	121	48 3.4	1 558	3 1	130.7	1 3 1	48.6	42 16	49	10	<210	018	. 81	37	04	20.5	001	6	32 00	7 2/	4 1 0	7	11 42	3 40	1620	2	02	11		
	A 136840								46 1.2																												
	A 136841								268 2.5																												
	A 136842								70 6.4																												
	A 136843	2.94	30.58	/0.51	8.9	21221	4.8	2.3	63 3.49	431.	с.I	270.9	.4	20.5	.09 85	. 10 .	. 11 .	3.20	.005	1.2	3.7	.03	14.0	.001	з.	29.00	i .2	+ .5	/	10.00	5.33	3120	.5	.02 .	1.7		
	A 136844	5.95	14.09	35.99	29.4	12413	8.7	2.7 3	10 2.92	2 672.	7.1	127.0	.5 1	05.7	19 33	.55 .	.11	<2.6	.016	1.5	19.2	.02	27.7	.001	1.	19.00	6.19	3.4	.7	17.28	2.88	3265	.3 <	<.02	.7		
	A 136845								91 1.18																												
	STANDARD DS5																																				

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. otz1/2004

Data / FA DATE RECEIVED: SEP 27 2004 DATE REPORT MAILED:

ACML ANALYTICAL LABORATORIES LID. (ISO 9002 Accredited Co.)

BJZ E. MASTINGS ST. VANCOUVER BC VOA 1R6 PHONE (604) 2

HONE (604/233-3138 FAX (004) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Heritage Explorations Ltd. File # A405917 (b) 1280 - 625 Howe St., Vancouver BC V6C 2T6 Submitted by: Gerry Bidwell

SAMPLE#	Cs ppm	Ge ppm		ND ppm	Rb ppm		Ta ppm	Zr ppm	Y ppm	Се ррт	In ppm	Re ppb	Be ppm	Li S ppm	Sample gm	Total kg			
SI A 136817 A 136818 A 136819 A 136820	.66 .46 .62		.07 .10 .10	<.02 <.02 .04 .18 <.02	.1 6.9 7.0 9.5 9.3	.4 •	<.05 <.05 <.05 <.05 <.05	3.1 3.2	.02 1.40 1.21 1.24 1.30	<.1 2.5 3.0 2.8 2.8	<.02 .02 .02 .02 .02	1 5 4 1	<.1 .3 .1 .5 .4	.1 .4 .6 .7	30	2.45 2.50 4.70 2.18			
A 136823 A 136824	.84 2.58 3.47 2.24 3.25	<.1 <.1	.07 .05 .06	<.02 <.02 <.02 <.02 <.02 <.02	10.0 9.3 7.2 7.4 12.2	.4 < .5 <	<.05 <.05 <.05 <.05 <.05	2.6 2.3 2.5	3.43 3.97	26.9 13.3 10.7 14.7 7.1	<.02	1 1 1 9	.6 .3 .2 .2 .8	.5 .8 3.2 .3 1.2	30 30 30	4.55 5.10 4.90 3.00 3.50			
	.83	<.1 <.1	.04 .04 .06	<.02 <.02 <.02 <.02 .06	5.8 6.2 5.7 8.5 5.9	.6 < 2.2 < .5 <	<.05 <.05 <.05 <.05 <.05	1.6 1.8 2.3		10.0 16.7 22.4 6.6 3.5	.02 <.02 <.02 .03 .02	3 <1 <1 5 6		10.0 18.5 16.2 .9 .3	30 30 30	2.40 2.60 4.50 4.99 2.75			
RE A 136830 RRE A 136830 A 136831 A 136832 A 136833	.61 .61	<.1 <.1 <.1 <.1 <.1	.07 .09 .08	.06 .05 .05 .02 .02	6.0 5.6 7.4 7.5 10.1	.6 < .5 < .5 <	<.05<.05<.05<.05<.05<.05<.05	2.6 3.1 2.7	2.37 2.51 1.80 1.57 1.43	3.6 3.0 2.4 2.8 25.8	.02 .02 <.02 .02 .02	6 10 6 11 4	.1 <.1 .3 .3	.3 .2 .3 .3 .5	30	- 4.75 5.05 4.75			
A 136835 A 136836	1.00	<.1 <.1	.08 .08 .09	- 04 - 06 - 04 - 09 - 04	6.7 7.0 7.9 8.4 7.4	.4 < .4 < .5 <	- 05 - 05 - 05 - 05 - 05	2.6 3.0	3.45 1.70 2.30	12.1 13.3 16.6 24.8 14.9	<.02 <.02 .02	1 2 <1 2	.2 .1 .3 .3	.3 .3 .4 .4 .6	30 30 30	5.10 3.95 6.00 4.90 4.80			
A 136840	1	<.1	.07 .05 .09	.05 .04 <.02 .17 .06	8.6 15.5 22.5 7.9 11.6	1.2 < .8 < .7 <	.05 .05 .05 .05	2.1 1.3 3.2	3.53 3.78 11.50 2.13 1.35	16.2 47.4 15.7 3.5 3.2	<.02 .02 .06 .02 .02	3 2 11 17 1	.3 .9 1.2 .2 .5	.3 .8 2.1 .2 .8	30 30 30	4.75 1.20 1.35 1.25 2.25			
	3.24		.06			.7 < 1.0 < 6.4 <		2.0	3.12 3.61 6.13	3.7 48.9 25.0	.02 .02 1.35	9 1 1	.2 .8 1.3	.2 .8 16.3		2.62 1.15 -			

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

FA Data

DATE RECEIVED: SEP 27 2004 DATE REPORT MAILED:

			<u> </u>	<u>ier</u>	100													# 7 Subr			05 y:Ge		Pac Bidw		1	(a)										
	SAMPLE#	Mo	Cu	Pb	Zn	Ag I	vi Co	Mn	Fe	As	U Au	ı Th	Sr	Cd	Sb B	i V	Ca	ΡL	a Cr	Mg	Ba	Ti	B A1	Na	- K	W S	с Т1	s	Hg	Se	Te	Ga		<u></u>	0000000	
	· · · · · · · · · · · · · · · · · · ·	ррт	ppm	ppm	ppm p	ppb p	maga ma	ppm	% p	ypan pp	om ppb	ppm	ppm	ppm	opni ppi	m ppm	ž	8 pp	n ppm	ž	ppm .	∦ pp	ž mc	X	¥	ipm pp	m ppm	X	ppb	ppm p	opm p	pm				
	SI	.07	2.69	. 32	1.5	32	.3.3	7	.08 <	<.1 <.	.1.9) <.1	4.1	.01	.02 <.0	22	.22 .	001 <.	5 3.2	.03	4.90	001	1.06	. 648	.01 <	.i .	1 <.02	.06	<5	<.1 <.	.02	.1				
	A 136846																				65.6.0															
	A 136847 A 136848																				67.4 .0 17.2<.0															
	A 136849																				14.2<.0															
	A 136850	1 60	13 32	3 24	13 '	121 1	674	1:	80 3	12 <	1 6 6	5 1	23.3	02 1	90 3	92	01.	003 <	5 2 9	< 01	16.2<.0	101 <	<1 18	027	04 <	1	3 13	2 81	518	4 4	54	5				
	A 136851																				332.1 .0															
	A 136852																				210.0.0															
	A 136853																				858.1.0															
	A 136854	3.68	6.25 1	.2.00 3	38.8	46 1	.5 2.8	839 1	.03 1	6 .	2 6.6	5.9	107.2	. 08	.12 .1	34	2.65 .	024 21.	1 3.9	. 15	101.9 .0)07	1 .30	.025	.16 <	.I	6.05	.65	13	2 .	02 1	.5				
	A 136855																				141.6.0															
	A 136856	-								-											196.3 .0 176.9 .0															
	A 136857 A 136858																				149.7 .0															
	A 136859																				107.0.0															
	A 136860	.37	17.16	2.09 1:	31.6 3	393 5	.2 17.0	9 56 5	.31 1	8	4 28.6	5 1.1	38.9	.02	.13 .3	598	1.55 .	128 9.9	9 11.0	1.08	176.6 .0	98	3 2.75	.025	.25	.2 4.1	9.07	.08	15	.2 .	32 8	.4				
	RE A 136860	. 34	16.39	2.04 12	24.1 3	381 5	7 16.9	939 5	.21 1	.8.	4 29.5	1.1	37.8	.01	. 12 . 3	397	1.53 .	118 10.	10.0	1.07	167.2.0	94	1 2.70	.024	. 24	.2 4.	9.07	.08	18	.2 .	27 8	.0				
	RRE A 136860																				157.4.1															
	A 136861 A 136862																				248.1 .1 172.0 .0															
	A 136863	20	10.20	A 79 (04 9 (016 E	5 14 5	· 667 6	16 2			1.9	74 0	03	10 7	4 50	77	105 16 1	1 17	55	188.3 .0	06	4 1 60	015	70 d	1 5	a 11	03	42 -	< 1	27 3	9				
	A 136864																				378.8 .0															
	A 136865	2.67	6.46	2.94 3	31.1	31	.8 2.6	448 1	. 19	.4 .	3 2.3	1.4	49.3	.61	.06 .10	05	1.55 .	028 31.	5 1.9	. 16	250.9.0	02	1.42	.038	. 28 <	.1 1.6	0.07	.23	13	.1 .	04 1	.5				
	A 136866																				116.5 .0															
	A 136867	2.38	11.30	2.40 4	2.0	32 2	1 6.5	772 1	.92 6	.3.	2 1.5	1.0	94.2	.02	.09 .14	4 15	2.39 .1	036 15.	2.5	.36	225.5 .0	101	1.28	.032	.20 <	.1 2.3	2 .05	.42	10	.4 .	04	.8				
	A 136868	. 63	33.42	7.40 13	32.9	99 9	2 24.3	1833 é	.20 9	.7.	2 3.8	.9	83.9	. 12	. 19 . 3	1 170	3.43 .	099 12.0) 17.5	2.21	52.3 .0	21	1 2.89	.026	.11 <	.1 13.	5.04	.70	22	1.0.	12 10	.0				
	A 136869																				73.7 .1															
	A 136870 A 136871																				83.9 .1 74.5 .1															
																					72.6 .1															
	A 136873	6 95	57 17 1	14 62 10	25.6 2	229 35	6 16 0	814 4	24 14	9	1 6	7	268 9	61.3	10 12	2 57	3.74	077 11 4	31.3	1.48	80.4.0	73	3 2 09	.010	.16 <	.1 4 /	5 .22	. 83	151	.7 .	05 5	.0				
	A 136874	6.86	42.31]	19.29 17	20.1 2	230 16	0 15.4	859 4	.28 16	.4 .	1 .6	.9	234.3	.57 3	78 .19	9 44	3.18 .0	076 9.4			82.6.0															
	A 136875																				56.4 .1															
	A 136876																				64.9.1															
	A 136877	6.08	49.52 1	8.20 13	9.1 2	299 38	5 18.4	890 5	.02 17	.8 <.	1.5	.6	205.7	.613	.76 .12	2 60	2.86 .	124 12.0	25.5	1.98	90.3.0	51	3 2.5/	.008	.1/ <	.1 4	19	.89	128	./ .	U/ D	.0				
	STANDARD DS5	12.83	.43.67 2	5.05 13	7.3 2	274 24	5 11.5	792 3	.01 18	.66.	2 44.8	2.7	45.8	5.48 3	90 5.93	3 59	.75 .0	094 11.4	177.8	. 68	131.6.0	91 1	9 2.01	.031	.14 5	.2 3.2	2 1.07	.01	174 9	5.1 .	82 6	.4				<u>.</u>
GROUP 1F30 - 30. (>) CONCENTRATIO - SAMPLE TYPE: C	N EXCEEDS L	JPPER	LIMI) WIT ITS. nples	SOM	1E M	INER	ALS I	YAY	BE P	PART	IALL	Y AT	TACK	ED.	REF	RACT	ORY	AND (JTED GRAP	TO 6 HITIC	500 I S SAI	ML, / MPLES	NAL S CA	YSED N LI	BY Mit	ICP/ AU S	ES &	& MS BILI		J.H.	<u>ala</u>		R	73	
																		R	. /	,	2/04									10	7	Ē	17			

ACME ANALYTICA

Heritage Explorations Ltd. FILE # A406105

Page 2 (a)

Data

ACME ANALYTICA	4L																												ACME ANAL	YTICAL
SAMPLE#	Mo ppm	Cu ppm			n Ag nippb			Mn ppm		As l ppm ppr				Cd St opm ppn		V C ppm	a P % %	La ppm		Mg %	Ba ppm	Ti %p	B A1 pm %		K W ≵ppm	•••	T1 ppm		g Se 1 bppmpp	
A 136878 A 136879 A 136880 A 136881 A 136882	2.60 4.03 3.18	53.07 46.12 40.19	7.72 5.23 5.96	109.6 111.9 88.6	5 129 9 65 5 61	32.8 32.4 37.6	29.6 24.1 17.8	1026 993 813	6.53 6.02 4.05	11.2 14.9 < 13.2 < 9.8 < 10.9 <	.4 .2 .2	.2 24 .3 28 .4 27	4.9 5.7 8.0	.35 3.36 .41 2.52 .33 2.38	5.05 2.05 3.07	174 4.1 154 4.6 59 4.6	5 .145 2 .158 9 .095	6.1 7.1 8.1	27.5 3 28.7 2 37.0 2	8.14 2.88 2.00	57.0 55.3 76.1	.004 .003 .006	3 3.28 3 3.83 2 3.37 3 2.47 3 2.17	.011 .008 .008	.13 <.1 .13 <.1 .19 .1	9.3 7.5 4.0	.18 .16 .16	.81 12 .69 9	3 .6 .0 1 .5 .0	04 10.8 03 9.3
A 136883 A 136884 A 136885 A 136886 A 136887	4.80 7.99 6.49	49.36 43.17 40.15	6.15 12.92 11.47	119.0 132.7 107.1) 202 7 287 1 565	22.2 23.1 24.9	16.8 9.9 11.0	722 427 718	4.83 3.65 3.62	13.9 <. 19.9 <. 19.9 23.0 <. 15.9 <.	.3 .2 .2	.3 34 .4 15 .4 33	7.2 9.4 5.1	.54 2.64 .75 6.79 .53 2.89	4 .08 9 .13 9 .11	77 3.8 24 2.3	4 .162 5 .080 2 .074	10.3 7.9 4.5	16.9 1 9.2 10.4	.68 .74 .90	170.5 83.0 83.0	.002 .001 .001	4 2.04 3 2.46 3 1.47 2 1.20 3 1.97	.008 .006 .007	.21 <.1 .24 .3 .22 <.1	4.0 2.4 2.8	.18 .33 .23	.84 10 .78 9 .60 22 .10 13 .10 15	6 .7 .0 6 1.2 .0 4 .9 .0	04 5.1 05 6.0 05 3.2 06 2.8 06 4.4
A 136888 A 136889 A 136890 RE A 136890 RRE A 136890	2.36 1.64 2.41 2.26 1.93	3.36 9.56 9.92	15.33	102.4 84.1 82.3	4 298 1 262 3 255	1.7 5.8 5.6	.3 4.2 4.6	265 714 707	1.43 1.73 1.72	6.2 5.9 13.5 12.7 13.1	2.4 2 1.1 2 .5	1.8 4 1.3 18 1.4 18	1.5 7.0 6.5	.29 1.53 .21 1.55 .22 1.54	3 .15 5 .15 4 .15	13 2.8	8 .004 5 .024 3 .024	21.7 26.5 27.5	12.6 4.1 4.2	.16 .32 .32	34.0 59.9 61.5	.001 .001 .001	1 .27 1 .31 2 .42 2 .43 2 .43	.034 .026 .027	.09 .9 .21 <.1 .23 <.1	1.4 1.9 2.0	.05 .26 .26	.56 5 .72 4 .58 9 .63 10 .62 11	6 .1<.0 7 .2 .0)2 1.5)2 3.2)2 2.0)2 2.1)3 2.0
A 136891 A 136892 A 136893 A 136894 A 136895	.87	1.74 20.24 51.49	12.71 4.13	67.3 91.2 84.7	2 115 7 86	1.5 12.6 33.8	9.0 25.1	183 657 1310	.73 2.48 5.38		8 .8 2 .9 1.0		8.7 1.0 7,4	24 2.55 18 4.58	4 .14 5 .12 8 .03	<2 .5 <2 .5 20 1.8 76 4.6 71 4.9	4 .004 0 .077 2 .225	34.4 21.0 13.1	3.5 9.8 20.3 2	.08 .88 .46		.001 .001 .001	1 .20 3 .40 3 .72	.044 .028 .025	.22 <.1	.6 3.2 11.4		.61 9 .27 4	1 .2<.0 9 .2 .0 3 .2 .0	
A 136896 A 136897 A 136898 A 136899 A 136899 A 136900	1.94 2.04 2.33	3.79 3.60	14.51 16.94 11.03	83.6 100.4 106.8	5 539 4 424 3 558	4.8 3.7 35.3	.8 1.1 30.6	398 569 2458	1.38 1.42 6.77	88.4 .2 33.5 .4 10.0 .3 44.5 <.1 16.9 .3	5 1.4 3 .7 2.6	2.8 2 1.9 6 .2 25	9.0 2.9 6.8	26 1.76 28 1.50 16 2.48	5 .15) .16 3 .11	4.4 7.8	4 .005 4 .008 8 .168	47.3 35.5 9.4	13.3 3.3 32.6 3	.21 .39 .12		.001 .001 .004	5 .48 1 .17 2 .33 3 2.71 1 .15	.056 .051 .020	.05 <.1 .06 .5 .31 <.1	1.3 10.6	.09 .24	.26 6 .29 6 .19 5 .51 5 .32 5	6 .2<.0 9 .2<.0)2 1.5)2 1.5)2 3.4)3 8.7)2 1.0
A 136901 A 136902 A 136903 A 136904 A 136905	.93 1.34 .99	44.93 79.93	5.10 5.88 6.09	65.1 69.5 66.2	83 5 106 2 104	1.8 1.7 1.4	12.0 12.4 12.6	807 932 1218	3.18 3.41 3.21	1.7 .6 .7 .8 3.8 .6 30.6 .5 1.0 .7	1.4 6.1 5.8	2.3 7 2.1 6 2.1 15	1.6 5.3 8.2	03 .18 02 .24 04 8.22	.02 .02 .03	52 1.9 68 1.7	1 .110 3 .100 8 .104	22.4 23.6 13.7	1.2 1	.38 4 .61 4 .42 1	466.7 434.3 184.7	.012 .003 .001	1 2.35 1 1.73 1 1.85 2 .62 2 1.06	.024 .028 .012	.29 <.1 .22 <.1 .27 <.1	3.3 3.0 3.0	.05 .11	.05 1 .18 3 .33 18	0 .1<.0 9 .2<.0	
A 136906 A 136907 A 136908 A 136909 STANDARD DS5	1.03 1.36 2.14		23.68 5.82 4.91	133.8 120.5 77.6	3 106 5 120 5 148	1.5 1.3 1.4	11.8 10.3 12.1	980 912 1136	3.25 2.59 3.45	4.7 .7 4.8 .6	3.6 7.4 3.6	1.99 2.011 1.87	2.8 4.3 6.4	77 .25 69 .34 02 .31	.03 .03 .05	53 2.1 45 1.6 61 2.2	2 .109 6 .096 2 .111	22.4 17.1 19.0	.71 1.51 .71	.35 4 .14 1 .59 3	493.2 159.1 376.8	.043 .034 .047	1 1.74 1 1.83 1 1.57 1 2.05 18 2.11	.022 .015 .021	.31 <.1 .31 .2 .30 <.1	3.1 2.9 3.4	.08 .08 .11	.18 2 .30 2 .25	5 .1<.0 4 .2 .0 5 .1<.0 3 .1<.0 2 4.9 .8	2 6.3 2 5.1 2 7.0

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

-

ante contratta

Heritage Explorations Ltd. FILE # A406105

Page 3 (a)

Data

ACME ANALYTICAL																																 	ACME	ANALYTICA
	SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni Co	Mn	Fe	As L) Au	Th	Sr	Cd Sb	Bi	V (Ca F	PLa	Cr	Mg	Ba T	В	A1	Na	K W		T]	S Hg		e Te				
		ppm	ppm	ppm	ppm	ppb	opm ppm	ppm	% p	ряя ррп	n ppb	ppm	ppn p	pm ppm	ppm	ppm	2 3	ž ppm	ppm	5 1	opa S	¢ ppm	8 -	<u>x</u>	ž ppm	ppm ;	opm	ž ppb	ppm	n bbw	рра	 	· · ·	
	A 136910	1.71	53.00	135.31	66.8	148	1.5 11.8	1287	3.31 2	.2 .5	5 10.4	1.9 7	4.2 .	04 .24	.06	54 2.1	22 .113	1 17.0	1.2 1	.44 11	2.1.042	2 1	1:67.0	20 .1	.9.1	2.9	.07	66 9	.3	3 <.02	6.1			
	A 136911	1.60 2	255.19	663.07	72.7	345	1.5 10.9	1259	3.24 1	.9 .6	5.10.6	2.1 11	1.1 .	46 .29	.11	48 2.4	66 .107	7 19.4	.8 1	.30 6	6.0 .04	5 1	1.56 .0)22 .2	21.2	3.1	.06 .	85 17	.6	5 .03	5.4			
	A 136912	1.69 1	24.92	530.35	75.3	225	1.4 10.6	1168	3.20 .2	.1, .7	7 9.5	2.3 7	2.0 .	35 . 26	. 10	50 2.	10 .11	5 19.3	1.1 1	.32 9	2.8 .040	3 1	1.58 .0	22 .2	. 0	3.2	.06 .	76 12	9	<.02	5.4			
	A 136913	1.67 1	27.76	71.53	357.1	169	1.5 10.4	1142	3.29 2	.6 .6	5 9.0	2.0 14	6.5 4.	54 .29	.04	55 1.	71 .10	5 17.1	1.0 1	.53 5	8.1 .05	1 . 1	1.64 .0	. 120	7.2	2.9	. 05 .:	87 125	.1	.02	5.8			
	A 136914	1.09 1	12.18	16.56	75.5	183	1.6 12.0	1311	3.18 3	.4 .5	5 11.9	2.2 10	6.6 .	15 .28	.03	48 2.3	24 .109	9 22.6	2.01	.36 6	9.6 .00	5 1	1.56 .0)20 . j	9 <.1	2.7	.06 .	78 20	.1	<.02	5.6			
	A 136915	1.03	15.46	27.22	103.1	123	1.6 11.4	3376	4.71 2	.5 .2	2 6.7	1.2 19	4.8 .	50.17	.03	47 7.	99 .076	6 23.5	<.5 2	.80 5	7.2.00	1 1	.68.0)17 .1	3 <.1	2.5	.03 .	90 9	.2	2.02	2.5			
	A 136916															68 1.																		
	A 136917															70 1.																		
	A 136918															47 3.												42 23						
	A 136919															18 4.																		
	A 136920															15 4.9													-	.02				
	A 136921															24 3.																		
	A 136922															17 3.4					8.7 .00													
	A 136923															35 2.3																		
	A 136924	1.34	74.86	3.34	61.1	90	1.3 12.9	1160	3.24 2	.4 .6	5 34.3	2.4 16	2.5 .	02 .44	.04	41 2.5	58 .111	1 22.4	1.1 1	.43 25	3.8 .002	2 1	1.47 .0	. 20	2 <.1	3.0	.05 .:	32 55	.1	<.02	4.6			
	A 136925	1.77	54.07	13.96	50.9	105	1.1 10.6	1241	2.93 11	.8 .7	7 2.3	2.7 19	7.3 .	03 1.91	.03	27 3.	26 .105	5 21.7	<.5 1	.43 55	5.3 .00	1 2	.99 .0	15 .2	5 <.1	2.6	.07 .1	26 22	.1	<.02	2.8			
	A 136926	1.63	39.97	3.93	55.1	70	1.1 11.6	1036	3.01 2	.5 .9	9 1.8	2.6 13	1.9 .	03.22	.03	39 2.3	76.110	0 22.6	.8 1	.39 554	4.5 .012	2 1	1.61.0	17 .2	4 <.1	2.9	.07 .1	20 15	.2	? <.02	4.9			
	A 136927	2.53	25.75	13.93	93.3	471	2.3 15.1	1443	4.89 32	.2 .2	2 5.4	1.3 10	1.1 .	11 1.47	.13	72 2.3	17 .125	5 9.7	1.9 2	.05 9	3.1 .002	2 1	2.11 .0	17 .2	1 <.1	4.3	.14 .	61 31	5	.05	6.5			
	A 136928	.78	18.59	7.14	92.0	601	2.6 18.1	1733	5.57 7	.2 .1	17.8	1.0 6	0.2 .	07 1.34	. 12	104 1.9	90.138	8 10.8	2.1 2	.27 26	8.6.002	2 1	2.65.0	20 .1	4 <.1	5.9	. 15	31 41	.1	.02	10.0			
	A 136929	4.13	44.73	20.54	87.7	981	5.8 19.9	1407	6.24 12	.2 .1	1 18.7	1.1 6	8.8.	10 1.68	. 18	128 1.0	69 .110	0 8.1	10.2 2	.25 11	7.6.002	2 1	2.48 .0	. 120	3 <.1	7.3	.32 1.	16 54	.6	. 06	9.5			
	A 136930	1.22	31.30	11.24	99.7	802 1	.7 19.7	1688	5.97 14	.51	1 2.4	1.1 22	6.4 .	37 1.17	. 18	131 3.8	BQ .106	69.8	17.62	.57 284	4.4 .002	2 2	2.17 .0	15 .1	3.7	9.2	.24 .3	38 53	.6	i.05	7.4			
	RE A 136930	1.20	31.72	11.38	103.8	805 1	1.1 20.1	1673	5.89 14	.7 .1	1 2.9	1.1 22	5.2 .	38 1.23	. 18	130 3.3	78 .107	7 9.6	17.7 2	.55 31	1.0 .002	2 2	2.13 .0	15 .1	4.7	8.6	.24 .4	40 52	.6	.07	7.4			
	RRE A 136930	1.25	34,45	12.11	104.8	776 1	1.4 20.3	1641	5.89 14	.2 .1	1 2.0	1.2 20	7.7 .	39 1.14	. 17	130 3.0	64 .108	8 9.8	17.7 2	.56 29	4.6 .002	2 3	2.16 .0	17 .1	6.7	8.3	. 24	40 56	.6	.05	7.7			
	A 136931	1.18	25.04	3.16	121.4	149	9.7 21.0	1612	4.98 8	.1 .1	1 3.2	.77	9.5 .	06 .54	.11	107 2.0	04 .07e	6 7.2	13.4 2	.73 14	5.2 .002	2 1	2.96.0	21 .1	7.1	7.1	. 10 . 0	53 15	.4	.06	8.4			
	A 136932	1.51	19.07	5.12	124.4	202	9.8 25.1	1699	5.36 8	.9.1	4.9	.6 8	4.0.	06 .61	. 20	106 2.4	43 .075	5 5.9	15.3 2	.86 76	5.7 .002	2 1	2.97 .0	18 .1	6 <.1	6.8	.11 .8	38 17	.5	.07	8.1			
	A 136933	2.24	19 77	10.62	115.5	173 1:	3.3 28.0	2004	6.24 6	.2 .1	1 1.0	.8 16	5.3 .	05 .40	.07	152 4.9	59 .073	3 5.8	17.3 3	.52 4	9.7 .003	3 1	3.46 .0	17.1	1 <.1	9.9	.07 .3	37 22	.2	.03	10.1			
	A 136934															122 3.7							3.60.0	15 .1	4 <.1	8.6	.06 .2	25 19	.1	<.02	8.9			
	A 136935															138 4.5							3.66 .0	16 .1	5 <.1	10.0	.04 .:	30 11	.2	.02	10.0			
	A 136936															91 2.3							2.34.0	16 .1	8 <.1	7.3	.08 .3	32 27	.2	.04	6.9			
	A 136937															39 .6							1.07 .0	n .2	1 3.6	4.9	. 67 .4	19 74	1.7	. 13	2.5			
	A 136938															157 2.7												20 11						
	A 136939															162 2.9																		
	A 136940															124 3.1)1 <5						
	A 136941															141 3.3												21 <5						
	STANDARD DS5	12.61 1	39.79	25.67	134.5	282 2	1.8 11.4	783	2.99 18	.4 6.1	1 43.5	2.6 4	6.6 5.	31 3.52	6.14	59 .7	76 .095	5 12.4	184.2	.67 136	5.3.095	17	1.99.0	.134	4 4.8	3.4 1.	. 05 . (13 177	4.9	.86	6.5	 		

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICA

Pres. Col

in the second second

Heritage Explorations Ltd. FILE # A406105

Page 4 (a)

Data

ACME ANALYTICAL																																							 	 ACME	e anal	YTICAL	-
······································	SAMPLE#	Мо	Cu	Pb	o Zn	n Ag	Ni	Со	Mn F	e As	U	Au	Th	Sr	Cđ	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Sc	T1	, S	Hg	Se	Te	e G	a					
		ppm	ppm	ррт	n ppm	n ppb	ppm	ppm p	pn	\$ ppm	ppm	ppb	ppm	. ppm	ppm	ppm	ppm	ppn	×.	Χp	DIN .	ppm	ž	ppm	¥ р	pm	ŝ.	ž	% p	pm p	opm	ppm	ξ p	opb	ррп	рря	n ppi	m 	 	 			-
	A 136942	. 15	83.93	3.12	2 109.4	1 90	15.0 3	30.8 18	18 5.4	9.8	.2	3.1	.9	89.2	.04	.17	. 03	124 4	.26 .	105 9	.9 1	2.9 3.	17 20	3.4 .	109	23.	24 .0	16.	18	.1.8	3.6	.06	.11	6	.1	<.02	2 8.	6.					
	A 136943	. 15	49.33	33.54	191.6	5 102	13.4 2	28.8 22	03 6.0	2 2.1	.1	27.5	.7	61.8	. 38	. 15	. 10	152 2	.56 .	091 7	.6 1	6.73.	09 5	i6.7 .0	046	23.	18.Û	24.	12 <	.1 9	9.9	.04	.82	15	.5	. 04	ŧ п	4					
	A 136944	6.59	19.16	124.48	3 117.0) 437	7.6 2	22.1 15	50 4.9	0 13.2	.2	232.7	. 6	133.6	. 10	.37	.40	872	.44 .	107 8	.0 1	4.0 1.	72 4	4.3 .	017	12.	26.0	19.	18	.1 4	1.5	. 30	.99	26	.8	.17	77.	1					
	A 136945	.58	49.46	12.65	5 146.6	5 241	11.2 2	27.5 19	56 6.2	3 5.3	.1	6.0	.7	74.3	.05	.25	.23	127 2	.85 .	104 8	.1 1	5.6 2.	53 9	92.2 .1	017	13.	12.0	20 .	16 <	.1 7	7.3	.15	.64	16	.5	. 09	9.9.	9					
	A 136946	. 19	50.68	2.87	146.2	2 113	9.9 2	24.6 17	80 5.7	3 1.3	.1	7.1	.6	57.3	.01	.09	. 14	97 1	.53 .	092 8	.1 1	.2.9 2.	33 18	31.8 .0	010	22	9 0.0	15 .	20 <	.1 6	5.4	.05	.42	<5	.2	.06	5 9.1	Ø					
	A 136947	24	81.12	2 11	1 1 20 2	0 167	7 2 4	22 1 1E				1 2	7	50.0	02	11	18	78 1	82	181 10	8 1	1.8.1	97 17	77 9	014	12	79 N	15	21	. 1 5	5.4	11	20	16	2	10		ο.					
			69.34																																								
	A 136948 A 136949		32.26			-																																					
	A 136950		6.71																																								
	A 136951	2.50	20.24	3.53	5.1	l 135	1.3	6.9	29 4.5	4 /.1	1.	6.6	.1	11.2	.05	1.00	. 34	ь	.03 .	003 <	.5	1.6 .	.03	/.8<.1	JU1	<1.	20 .U	21 .	08 <	.1	.4	. 27 4	.59 5	3/3	0.0	. 56		5					
	A 136952	1.96	16.29	2.99	2.5	5 120	1.2	6.4	63.7	8 5.9	.1	6.4	.1	8.1	. 06	.92	.31	4	.01 .	002 <	.5	1.8 .	01	9.5<.	001	<1.	14 .0	13.	05	.3	.3	.23 3	.74 5	542	6.1	. 55	5.	4					
	A 136953	2.13	22.89	4.12	2 3.7	214	2.8 2	21.0	94.1	1 14.3	.2	6.3	.2	13.6	.23	1.48	.09	5	.02 .	002 <	.5	.9.	01	9.3<.(001	<1 .	22 .0	27 .	08 <	.1	.5	.33 4	.36 32	252	8.3	. 77	1. 1	8					
	A 136954	1.26	25.66	4.51	1.9	223	2.9 2	22.9	54.9	2 11.8	.1	5.2	.2	12.4	.17	1.23	. 44	4	.02.	002 <	.5	1.3 <.	01	8.0<.0	001	<1 .	20.0	14 .	06	. 2	.5	.44 5	.00 27	741	8.0	. 82	2.9	9					
	A 136955	2.09	30.42	6.65	5 3.0) 145	2.4 2	22.6	6 5.7	2 22.5	.2	9.0	.1	5.3	.07	1.87	. 20	4	.01 .	001 <	.5	.8 <.	.01	5.6<.0	001	<1.	17 .0	05.	03 <	-1	.6	.47 5	.77 13	352	5.5	.94	1 ° .)	6					
	A 136956	2.93	60.28	9.84	50.7	7 156	2.0	10.4	7 5.2	20 23.2	.2	14.4	.2	6.8	.23	2.34	.41	5	.01 .	001 <	.5	<.5 <.	01	6.1<.	001	<1.	14 .0	05.	04 <	.1	.5	.30 4	.88 15	515	3.9	.83	3.!	5					
	A 136957	2 50	22.30	7 99	2 352 0	מרו כ	3.0	83	633	1 15 8	,	10.0	1	74	50	2 50	44	4	02	001 <	5	10	01 1	10 4< 1	663	<1	12.0	04	64 <	. 1	.4	.25.3	.24 30	151	3.0	.51	1.	5					
	A 136958		9.30													-																											
	A 136959		31.88																																								
	A 136960		38.43																																								
	RE A 136960		37.70																																								
	KE A 130900	1.00	57.70	11.05	90.4	+ /14	5.0 4	27.5 21	.JJ U.Z	4 10.9	.1	J.J	.0	<i>u</i> 7.u	.00	.07	. 20	0, L		124 1	. 4	L L.		0.0	001	2 1.	00.0								1								
	RRE A 136960	1.66	40.13	11.12	2 100.5	5 707	5.5 2	27.3 21	83 6.2	27 10.8	.1	4.3	.8	67.9	.04	. 70	. 20	69 2	.33.	127 7	.8	2.4 2.	86 8	30.7.0	001	21.	06 .0	10 .	21 <	.1 6	5.4	.21	.82 1	127	1.4	. 08	3 2.	7					
	A 136961	1.12	45.83	9.06	5 89.1	1 864	5.3 2	21.1 15	72 5.5	9 18.4	.1	7.1	1.1	137.7	.05	1.24	. 27	68 2	.41 .	100 7	.7	2.2 2.	89 15	5.2<.0	001	2.	59.0	09.	19 <	.1 5	5.2	.24	.48 1	128	1.7	. 10) 1.9	5					
	A 136962	5.19	37.78	19.07	74.2	2 1477	8.1 2	25.7 17	11 5.3	9 31.5	.2	2.7	1.1	78.2	.05	1.33	. 22	63 2	.00.	100 7	.0	3.1 2.	.00 8	34.2.0	001	2.	93.0	11 .	18 <	.1 4	1.4	.70 1	.25 2	233	2.1	. 09	2.1	7					
	A 136963	. 68	70.79	12.53	89.1	l 604	14.9 2	25.6 13	31 5.4	4 8.2	.2	1.0	1.7	60.0	.03	. 45	.30	108 1	.54 .	121-11	.6 .2	25.3 3.	00 13	38.0 .0	002	13.	15.0	11 .	19 <	.14	1.2	.44	.36	57	.6	.09	8.5	5					
	A 136964	. 75	69.73	8.08	91.6	5 393	10.8 2	22.0 16	16 5.7	6 6.1	.1	.4	1.3	106.5	.03	.36	. 23	129 2	.19.	128 10	.8 1	.7.92.	96 24	12.3 .(002	13.	25.0	11 .	17 <	.1 4	1.6	. 18	. 26	37	.5	.06	5 8.9	9					
	A 136965	1 18	39.72	10.01	103.8	3 630	772	21 6 13	94 6 0	651	1	3	1.0	97 û	.05	.53	.13	122 1	.55 .	132 8	.91	3.0 2.	73 20	8.1 .0	002	13.	16.0	10 .	20 <	.1 3	3.9	. 14	. 69	39	.4	.04	1 9.1	1					
	A 136966		29.95																																								
	A 136967		19.05																														.63										
			14.59																																								
	A 136968		4.31																																								
	A 136969	2.21	4.31	11.47	114.9	1 43/	1.1 1	18.4 23	0/ 5.5	3 2.8	. 1	10.0	./	80.1	.04	.02	.05	101 0	. 39 .	104 11		1.7 3.	1/ 2	2.5 .1	- C	~1 2.	12 .0.	20 .	00 -			.04 1	. 54	10	.0		10.0	5					
	A 136970	1.22	4.86	10.25	116.9	457	1.5 1	18.1 19	34 5.2	2 3.1	<.1	9.8	.8	62.7	.04	.59	.04	123 1	. 80 .	135 9	.8	1.5 3.	19 5	i.5 .0	003	12.	90.0	27 .	09 <	.1 4	1.9	.06 1	. 25	12	.2	<.02	2 11.6	6					
	A 136971	1.64	11.02	12.00	118.6	500	1.3 1	17.6 20	10 5.7	5 3.6	.1	11.4	.7	78.0	.04	.72	.05	124 1	.94 .	145 9	.0	1.7 3.	21 2	4.8.0	003	12.	91.0	23 .	10 <	.1 4	1.8	.06 1	. 85	16	.3	. 05	5 11.0	3					
	A 136972	1.88	10.05	11.42	2 118.3	3 517	1.1 1	19.0 19	10 6.0	0 3.4	.1	11.3	.8	65.9	.02	.66	.06	131 1	.53 .	139 9	.0	1.9 3.	36 2	25.3 .0	003	23.	03 .0	25.	10 <	.1 4	4.8	.06 1	.94	16	.3	.04	11.3	3					
	A 136973	2.47	6.90	13.50	140.8	628	1.7 1	19.2 18	40 6.2	2 3.2	<.1	7.7	.8	59.3	.04	.73	.07	142 1	. 29 .	140 8	.3	2.23.	77 2	25.1.0)03 - ,	13.	17 .0	20.	11 <	.1 5	5.5	.06 2	. 15	32	.3	. 10) 11.6	6					
	STANDARD DS5	12.95	143.48	24.62	135.8	3 273	24.5 1	11.9 7	48 2.9	2 17.9	5.9	41.0	2.7	46.2	5.59	3.84 5	5.91	58	.73 .	094 12	.1 17	9.5 .	68 13	3.5 .0)96	16 1.	95 .0:	32 .	14 4	.9 3	3.3 1	.03	.04 1	175	4.7	.83	6.6	5					

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Heritage Explorations Ltd. FILE # A406105

Page 5 (a)

Data WC FA

ACME ANALYTI	ICAL																							<u>-</u>									ACM	E ANALYTIC	CAL
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb		Co ppm		-		U ppm			Sr ppm				V ppm	Ca %	P ۲		Cr ppm	Mg %	Ba ppm		B ppm				W Sc pm ppm				Se Te opm ppm	
136974 136975 136976 136977 136978	5.95 4.83	8.69 17.75 10.10	16.54 32.06 32.17 29.02 15.68	111.8 119.8 53.0	1111 1432 386	1.7 2.7 1.4	20.5 15.1 11.9	2028 2030 927	6.90 6.08 3.48	4.3 7.1 28.3	<.1 .1 .3	13.2 4.5 2.6	.4 .5 1.3	105.8 107.1 103.2 70.1 75.5	.06 .12 .14	1.13 1.37 1.36	.25 .12 .06	61 2 56 3 35 2	. 56 . 99 . 25	.143 .125 .107 .082 .103	7.9 6.2 8.7	1.5 2 2.5 2 .6 2	2.99 2.82 L.09	11.1 17.7 21.3	.002 .001 .001	1 2. 1 2. <1 1.	44 . 27 . 24 .	008 . 005 . 015 .	21 21 < 21 <	.3 3.2 .1 3.7	.07 .12 .12	4.57 3.10 2.11	62 111 15	.3 .15 .4 .19 .1 .19 .3 .02 .2 .09	5.8 4.9 3.5
136979 136980 136981 136982 136983	6.83 6.05 9.42	13.70 23.09 19.97	14.57 10.51 7.56 15.00 11.53	56.8 62.6 55.5	593 512 873	2.3 2.4 2.9	13.3 14.1 20.2	1471 1422 1472	3.82 3.64 4.04	72.0 50.2 90.4	.5 .6 .8	12.0 10.7 18.8	1.6 2.2 2.3	93.0 253.5 88.6 93.7 77.1	.03 .02 .04	.64 .47 .78	.04 .05 .06	59 3 73 2 71 3	.74 .97 .66	.109 1 .100 1 .111 1 .101 1 .103 1	4.0 4.2 4.0	.6 1.6 .9	L.26 L.30 L.10	30.6 44.1 22.1	.002 .002 .002	1 1. <1 1. <1 1.	66 . 74 . 59 .	022 . 019 . 017 .	23 < 23 25 <	.3 2.1 .1 2.6 .2 2.9 .1 3.1 .3 3.0	.25 .13 .30	1.55 1.18 2.06	17 18 • 28	.1<.02 .1<.02 <.1 .03 .3 .03 .1 .04	5.8 5.6 4.7
136984 136985 136986 E A 136986 RE A 136986	3.65 2.59 2.64		3.20	60.4	306 138 125	2.0 2.4 1.7	12.8 12.7 12.1	1483 1706 1663	3.63 3.49 3.39	13.5 8.2 8.1	.4 .5 .5	48.8 8.5 8.7	1.9 2.2 2.2		.03 .03 .03	1.11 .32	.04 .04 .04	56 2 62 3 61 3	.54 .49 .41	.220 .110 1 .122 1 .114 1 .116 1	3.7 8.3 7.7	1.3 .5 .6	1.65 1.70 1 1.66 1	133.7 168.9 168.6	.002 .002 .002	<1 2. <1 2. <1 2.	01 . 14 . 09 .	019 . 025 . 024 .	27 29 < 30 <	.1 3.6 .2 2.3 .1 3.6 .1 3.5 .1 3.3	.11 .09	.92 .33	27 < 9 < 11	.3 .27 .1<.02 .1<.02 .1<.02 .1<.02	6.6 7.3 7.2
136987 136988 136989 136990 136991	. 48 . 94 . 90	48.56 64.13 79.16 39.06 43.33	2.63 3.09 3.31	68.1 69.0 73.4 69.7 71.6	101 57 64 50 40	1.8 1.9 2.0	11.5 12.4 12.3	2279 1244 1169 1231 1021	3.17 3.39 3.39	.9 .8 .6	.6 .5 .6	3.4 1.7 2.9	2.6 2.4 2.3		.02 .02 .01	.29 .22 .23	.02 .03 .03	56 2 55 1 52 2	.53 .93 .11	.104 2 .120 2 .121 2 .111 2 .129 2	5.0 3.7 1.6	1.1 .5 1.4	1.77 1 1.91 3 1.86 5	165.7 347.7 552.5	.002 .002 .002	2 2. 1 2. 1 2.	15 . 31 . 34 .	020 . 019 . 019 .	31 < 30 < 34 <	.1 4.0 .1 3.6 .1 3.3 .1 3.3 .1 3.3	.07 .07 .08	<.01 .07	<5 < <5 < <5	.1<.02 .1<.02	7.0 7.1 6.5
136992 136993 136994 136995 136996	.36 .36 .75	41.48 32.65 5.50 46.13 45.71	2.60 5.16 3.16	70.8 68.5 69.0 63.2 71.9	50 60 19 73 58	1.7 1.7 2.2	11.6 9.7 11.5	983 843 865 942 2082	3.35 3.39 3.36	1.4 .4 2.0	.4 .4	.7 .3 1.6	2.1 2.0 1.9	77.1 104.9 59.2 71.3 108.1	.03 .02 .01	.18 .13 .29	.03 <.02 .05	58 1 57 1 54 1	.61 .47 .60	.127 2 .120 1 .114 1 .116 1 .093 1	8.8 9.5 6.8	.9 1 2.1 1 .9 1	1.75 1.87 3 1.63 3	90.7 318.6 349.0	.002 .002 .002	<1 2. <1 2. 1 2.	13 . 18 . 06 .	026 . 023 . 025 .	28 < 24 29 <	.1 3.3 .1 2.8 .3 2.7 .1 2.5 .4 2.9		.22 .05 .27	<5 < <5 < 5 <	<pre>4.1<.02 4.1<.02 4.1<.02 4.1<.02 4.1<.02 4.1<.02 1<.02 1<.02 </pre>	7.1 7.2 6.9
136997 136998 136999 137000 FANDARD DS5	1.85 .65 .83	57.40 45.81 59.01	2.35 13.50 10.46 297.01 24.95	73.0 110.7 122.8	71 72 146	27.4 106.4 102.3	15.9 30.7 26.6	1252 1462 1386	3.35 5.72 5.04	3.0 .5 2.6	.4 .1 .1	5.2 1.9 2.2	1.4 .4 .4	189.7 149.6	.04 .10 .43	.23 .09 .15	.04 .03 .03	85 2 155 4 145 3	.75 .07 .30	.140 1 .241 1 .223 1	3.8 8.1 1 5.9 1	38.8 1 46.4 4 127.5 3	L.98 1 4.10 4 3.91 1	125.5 163.4 112.5	.003 .039 .006	<1 2. 1 3. 1 3.	03 .0 51 .0 23 .0	027 . 026 . 022 .	22 12 < 11	.1 2.4 .2 3.6 .1 9.1 .2 8.3 .9 3.4	.06 .03 .03	.51 .23 .42	<5 7 19		7.4 11.1 10.4

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LT (ISO 9002 Accredited Co.)

Data W FA

GEOCHEMICAL ANALYSIS CERTIFICATE

BC

186

PHONE (604)25

FAX(604)25

arence

Heritage Explorations Ltd. File # A406105 Page 1 (b) 1280 - 625 Howe St., Vancouver BC V6C 2T6 Submitted by: Gerry Bidwell

36856 36857 36858 36859 36860 A 136860 A 136860 36861	.02 .01 .01 .01 .03 .88 .87 .99	<.1 <.1 <.1 .1 <.1 <.1 <.1 <.1 <.1 <.1 <	ppm <.02 .05 .04 .02 .04 .02 .04 .12 .13 .09 .11 .04 .08 .05 .04 .20 .19	ppm .02 .04 .03 .05 .03 .04 .52 .51 .21 .22 .02 .02 .02 .02 .02 .02 .02	ppm .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .5.3 .3 .5.3 .3 .5.3 .8.9 .6.4 .6.6 .7.4 .6.6	ppm pp .1 <.0 .3 <.0 .3 <.0 .3 <.0 .8 <.0 .3 <.0 .8 <.0 .0 .5 <.0 .6 <.0 .4 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	5 .7 5 1.5 5 1.6 5 1.2 5 .9 5 1.5 5 .9 5 3.9 5 3.9 5 3.8 5 3.5 5 3.7 5 1.2 5 2.1 5 1.4 5 1.2 5 .9 5 1.5 5 1.6 5 1.2 5 .9 5 1.5 5 .9 5 .9 5 .9 5 .9 5 .9 5 .1 5 .9 5	.28 .33 .26 .21 .27 3.67 4.26 4.03 6.14 8.43 8.35	ppm .1 .9 .8 .5 .5 .4 .7 25.7 24.3 35.8 36.5 17.6 15.9 18.9 17.9	ppm <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.03 .03 .03 .03 .03	ppb <1 <1 <1 1 <1 <1 <1 <1 <1 <1	ppm <.1 .1 .1 .1 .1 .1 .1 .1 .1 .1	ppm .3 .1 .1 .1 2.0 2.1 2.1 1.7 16.3 15.5 14.8 20.0	30 30 30 30 30 30 30 30 30 30	
36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36857 36858 36859 36860 A 136860 A 136860 36861	.02 .01 .01 .03 .88 .87 .99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 .1 <.1 <.1 <.1 <.1 <.1 <	.05 .04 .02 .04 .12 .13 .09 .11 .04 .08 .05 .04 .20	.04 .03 .05 .03 .04 .52 .51 .21 .22 .02 .02 .02 .02 .02 .02	.1 .1 .1 .4 6.0 5.9 7.1 5.3 8.9 6.4 6.6 7.4	.3 <.0 .3 <.0 .4 <.0 .3 <.0 1.5 <.0 .6 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	i 1.5 i 1.6 i 1.2 i .9 i 1.5 i 3.9 i 3.8 i 3.5 i 3.7 i 1.2 i 2.1 i 1.4 i 1.7	.28 .33 .26 .21 .27 3.67 4.26 4.03 6.14 8.43 8.35 11.10	.9 .8 .5 .4 .7 25.7 24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<1 1 1 <1 <1 <1 <1 1 1 1 1 1 1	.1 .1 <.1 <.1 <.2 .2 .2 .2 .2 .4	.1 .1 <.1 .1 2.0 2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30 30 30 30 30 30 30 30 3	1.44 2.14 1.92 1.65 2.05 1.67 1.12 2.35 2.81 4.70 4.59 4.92
36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36857 36858 36859 36860 A 136860 A 136860 36861	.01 .01 .03 .88 .87 .99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 .1 .1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.	.04 .02 .02 .12 .13 .09 .11 .04 .08 .05 .04 .20	.03 .05 .03 .04 .52 .51 .21 .22 <.02 .02 .02 .02 .07	.1 .1 <.1 .4 6.0 5.9 7.1 5.3 8.9 6.4 6.6 7.4	.3 <.0 .3 <.0 .4 <.0 .3 <.0 1.5 <.0 .6 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	i 1.5 i 1.6 i 1.2 i .9 i 1.5 i 3.9 i 3.8 i 3.5 i 3.7 i 1.2 i 2.1 i 1.4 i 1.7	.33 .26 .21 .27 3.67 4.26 4.03 6.14 8.43 8.35 11.10	.8 .5 .4 .7 25.7 24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	<1 1 <1 <1 <1 <1 <1 1 1 <1 <1	.1 .1 <.1 .2 .2 .2 .2 .2 .2 .4	.1 <.1 .1 2.0 2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30 30 30 30 30 30	2.14 1.92 1.65 2.05 1.67 1.12 2.35 2.81 4.70 4.59 4.92
36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36857 36858 36859 36860 A 136860 A 136860 36861	.01 .03 .88 .87 .99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 .1 .1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.	.04 .02 .04 .12 .13 .09 .11 .04 .08 .05 .04 .20	.03 .05 .03 .04 .52 .51 .21 .22 <.02 .02 .02 .02 .07	.1 .1 <.1 .4 6.0 5.9 7.1 5.3 8.9 6.4 6.6 7.4	.3 <.0 .4 <.0 .3 <.0 .8 <.0 1.5 <.0 .6 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	i 1.6 i 1.2 i .9 i 1.5 i 3.9 i 3.8 i 3.5 i 3.7 i 1.2 i 2.1 i 1.4 i 1.7	.33 .26 .21 .27 3.67 4.26 4.03 6.14 8.43 8.35 11.10	.8 .5 .4 .7 25.7 24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	1 <1 <1 <1 <1 <1 <1 <1 <1 <1	.1 <.1 <.2 .2 .2 .2 .2 .4	.1 <.1 .1 2.0 2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30 30 30 30 30 30	1.92 1.65 2.05 1.67 1.12 2.35 2.81 4.70 4.59 4.92
36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36857 36858 36859 36860 A 136860 A 136860 36861	.01 .03 .88 .87 .99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	.1 .1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.	.04 .02 .04 .12 .13 .09 .11 .04 .08 .05 .04 .20	.05 .03 .04 .52 .51 .21 .22 <.02 .02 .02 .02 .07	.1 <.1 .4 6.0 5.9 7.1 5.3 8.9 6.4 6.6 7.4	.4 <.0 .3 <.0 .8 <.0 1.5 <.0 .6 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	 1.2 .9 1.5 3.9 3.8 3.5 3.7 1.2 2.1 1.4 1.7 	.26 .21 .27 3.67 4.26 4.03 6.14 8.43 8.35 11.10	.5 .4 .7 25.7 24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	1 <1 <1 <1 <1 <1 <1 <1 <1 <1	.1 <.1 <.2 .2 .2 .2 .2 .4	<.1 .1 2.0 2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30 30 30 30 30	1.92 1.65 2.05 1.67 1.12 2.35 2.81 4.70 4.59 4.92
36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 A 136860 A 136860 36861	.01 .03 .88 .87 .99 .73 2.56 1.34 1.55 1.32 2.07 2.00	.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <	.02 .04 .12 .13 .09 .11 .04 .08 .05 .04 .20	.03 .04 .52 .51 .21 .22 <.02 .02 .02 .02 .02 .07	<.1 .4 6.0 5.9 7.1 5.3 8.9 6.4 6.6 7.4	.3 <.0 .8 <.0 1.5 <.0 .6 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	9 .9 5 1.5 5 3.9 5 3.8 5 3.5 5 3.7 5 1.2 5 2.1 5 1.4 5 1.7	.21 .27 3.67 4.26 4.03 6.14 8.43 8.35 11.10	.4 .7 25.7 24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 <.02 <.02 <.02 .03 .02 .03	1 <1 <1 <1 <1 1 1 <1 <1	<.1 <.1 .2 .2 .2 .2 .2 .2 .4	.1 2.0 2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30 30 30 30 30	1.65 2.05 1.67 1.12 2.35 2.81 4.70 4.59 4.92
36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 A 136860 A 136860 36861	.88 .87 .99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	.12 .13 .09 .11 .04 .08 .05 .04 .20	.52 .51 .21 .22 <.02 .02 .02 .02 .02	6.0 5.9 7.1 5.3 8.9 6.4 6.6 7.4	1.5 <.0 .6 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	3.9 3.8 3.5 3.7 1.2 2.1 1.4 1.7	3.67 4.26 4.03 6.14 8.43 8.35 11.10	25.7 24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 <.02 <.02 .03 .02 .03	<1 <1 1 1 <1 <1	.2 .2 .2 .6 .4	2.0 2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30 30	1.67 1.12 2.35 2.81 4.70 4.59 4.92
36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 A 136860 A 136860 36861	.88 .87 .99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	.12 .13 .09 .11 .04 .08 .05 .04 .20	.52 .51 .21 .22 <.02 .02 .02 .02 .02	6.0 5.9 7.1 5.3 8.9 6.4 6.6 7.4	1.5 <.0 .6 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0 .2 <.0	3.9 3.8 3.5 3.7 1.2 2.1 1.4 1.7	3.67 4.26 4.03 6.14 8.43 8.35 11.10	25.7 24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 <.02 <.02 .03 .02 .03	<1 <1 1 1 <1 <1	.2 .2 .2 .6 .4	2.0 2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30 30	1.67 1.12 2.35 2.81 4.70 4.59 4.92
36852 36853 36854 36855 36856 36857 36858 36859 36859 36860 4 136860 A 136860 36861	.87 .99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	.13 .09 .11 .04 .08 .05 .04 .20	.51 .21 .22 <.02 <.02 <.02 .02 .02	5.9 7.1 5.3 8.9 6.4 6.6 7.4	.6 <.0 .4 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0	3.8 3.5 3.7 1.2 2.1 1.4 1.7	4.26 4.03 6.14 8.43 8.35 11.10	24.3 35.8 36.5 17.6 15.9 18.9	<.02 <.02 <.02 .03 .02 .03	<1 <1 1 <1 <1 <1	.2 .2 .2 .6 .4 .4	2.1 2.1 1.7 16.3 15.5 14.8	30 30 30 30 30 30	1.12 2.35 2.81 4.70 4.59 4.92
36853 36854 36855 36856 36857 36858 36859 36859 36860 4 136860 A 136860 36861	.99 .73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1	.09 .11 .04 .08 .05 .04 .20	.21 .22 <.02 <.02 <.02 .02 .02	7.1 5.3 8.9 6.4 6.6 7.4	.4 <.0 .2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0	3.5 3.7 1.2 2.1 1.4 1.7	4.03 6.14 8.43 8.35 11.10	35.8 36.5 17.6 15.9 18.9	<.02 <.02 .03 .02 .03	<1 1 1 <1 <1	.2 .2 .6 .4 .4	2.1 1.7 16.3 15.5 14.8	30 30 30 30 30	2.35 2.81 4.70 4.59 4.92
36854 36855 36856 36857 36858 36859 36860 4 136860 A 136860 36861	.73 2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1 <.1 <.1 <.1	.11 .04 .08 .05 .04 .20	.22 .02 .02 .02 .02 .07	5.3 8.9 6.4 6.6 7.4	.2 <.0 .1 <.0 .2 <.0 .2 <.0 .2 <.0	3.7 1.2 2.1 1.4 1.7	6.14 8.43 8.35 11.10	36.5 17.6 15.9 18.9	<.02 .03 .02 .03	1 1 <1 <1	.2 .6 .4 .4	1.7 16.3 15.5 14.8	30 30 30 30	2.81 4.70 4.59 4.92
36855 36856 36857 36858 36859 36860 36860 A 136860 A 136860 36861	2.56 1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1 <.1 <.1	.04 .08 .05 .04 .20	<.02 .02 <.02 .02 .07	8.9 6.4 6.6 7.4	.1 <.0 .2 <.0 .2 <.0 .2 <.0	1.2 2.1 1.4 1.7	8.43 8.35 11.10	17.6 15.9 18.9	.03 .02 .03	1 <1 <1	.6 .4 .4	16.3 15.5 14.8	30 30 30	4.70 4.59 4.92
36856 36857 36858 36859 36860 A 136860 A 136860 36861	1.34 1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1 <.1	.08 .05 .04 .20	.02 <.02 .02 .07	6.4 6.6 7.4	.2 <.0 .2 <.0 .2 <.0	2.1 1.4 1.7	8.35 11.10	15.9 18.9	.02 .03	<1 <1	.4 .4	15.5 14.8	30 30	4.59 4.92
36857 36858 36859 36860 A 136860 A 136860 36861	1.55 1.55 1.32 2.07 2.00	<.1 <.1 <.1	.05 .04 .20	<.02 .02 .07	6.6 7.4	.2 <.0 .2 <.0	1.4 1.7	11.10	18.9	.03	<1	.4	14.8	30	4.92
36858 36859 36860 A 136860 A 136860 36861	1.55 1.32 2.07 2.00	<.1 <.1 .1	.04 .20	.02 .07	7.4	.2 <.0	1.7								
36859 36860 A 136860 A 136860 36861	1.32 2.07 2.00	<.1 .1	.20	.07				9.96	17 0	07	1	- 5	20.0	30	4.70
36860 A 136860 A 136860 36861	2.07 2.00	.1			6.6	.2 <.0									
A 136860 7 A 136860 7 36861 3	2.00		.19	07			4.0	8.51	19.5	.02	<1	.3	10.6	30	5.14
A 136860 (36861 3		1		.07	8.8	.3 <.0	4.4	10.81	19.9	.03	<1	.5	11.1	30	2.72
36861 3	1.98		.17	.07	8.1	.3 <.0	4.1	10.04	19.9	.03	<1	.3	10.7	30	-
		<.1	.22	.07	8.9	.3 <.0	4.3	10.45	19.6	.02	<1	.4	10.7	30	-
36862	3.85	<.1	.23	.06	10.8	.3 <.0	4.7	8.77	16.6	.02	1	.7	10.9	30	2.33
	3.69	<.1	.02	< 02	6.6	2.0 <.0	.7	9.39	22.3	.04	2	.6	10.3	30	2.10
36863 5	5.90	<.1	.05	<.02	11.4	.2 <.0	1.6	13.63	31.7	.04	<1	.7	6.1	30	3.50
	4.19	<.1	.05	.02	8.7	.3 <.0	1.9	13.53	30.8	.03	<1	.5	8.8	30	3.07
	1.58			.03	8.1	.2 <.0	3.2	5.12	51.3	<.02	<1	.5	1.4	30	4.41
															4.99
			.06	.03	5.6			4.76	28.0	<.02	2	.3	3.5		2.80
36868	1 41	1	07	03	36	3 < 0'	1.3	11.27	23.0	.05	1	.4	24.6	30	4.42
															4.74
															4.09
50872	.90	۲.۱		. 14	5.0	.5 <.0	1.5	0.21	12.5	.04	۲	- 2	10.7	50	2.00
		<.1	.14	.03	5.3				22.0	.03	3	.4	25.1	30	
36874 1	1.92	<.1	.07	.04	5.3	.2 < 0	1.7			.03	6	.4			4.47
36875	1.44	<.1	.20	.09	4.3	.7 <.0	2.9	10.17	20.5	.04	. 5	.6	33.3	30	4.34
			.18	.08	4.6	.3 <.0	2.4	10.56	20.5	.04	5	.8	39.4	30	4.00
			.09	.04	5.4			9.24	23.3	.03	6	.5	33.1	30	4.60
NDARD DS5	6.03	<.1	.06	1.71	14.3	6.4 <.0	3.6	6.04	23.6	1.33	1	1.5	17.4	30	-
33333333333333333333333333333333333333	5865 5866 5867 5868 5870 5871 5872 5873 5873 5874 5875 5875 5876 5877	5865 1.58 5865 1.24 5866 1.24 5867 1.14 5868 1.41 5869 .83 5870 1.26 5871 .76 5872 .90 5873 1.80 5875 1.44 5876 1.77 5877 2.34	5865 1.58 <.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

DATE RECEIVED: OCT 4 2004 DATE REPORT MAILED: Oct 28/04

TT

Heritage Explorations Ltd. FILE # A406105

Page 2 (b)

VTICAL

Data // FA

ACME ANALYTICAL																 	ACI	me anal
	SAMPLE#	Сs ppm	Ge H ppm pp		Rb ppm	Sn Ta ppm ppm	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm	Total %			. '
	A 136878		<.1 .1		4.3	.4 <.05	2.3			.04	4		44.9		5.43			
	A 136879		<.1 <.0		4.5	.3 <.05	-5	9.64		.05	2		54.5		5.86			
	A 136880		<.1 <.0			.2 <.05	.4	8.96		.04	4		47.2		5.03			
	A 136881 A 136882	•	<.1 <.0 <.1 <.0		6.2 6.1	.2 <.05	.7 .6	8.07 8.44		.03 .03	4 2	.4 .5	31.8 28.4		5.04 5.28			
	A 136883	2.22	<.1 <.0	2 <.02	6.3	.1 <.05	.5	7.94	20.7	.03	5	.5	24.8	30	5.43			
	A 136884		<.1 <.0		7.2	.1 <.05	.7	8.52		.03	4		27.1		4.75			
	A 136885	2.94	<.1 .0	2 <.02	8.1	.2 <.05	.8	4.67	14.6	.02	6	.7	15.3	30	4.90			
	A 136886		<.1 .0			.2 <.05	.8	7.43	9.1	.03	6		12.8		2.57			
	A 136887	1.91	<.1 <.0	2 <.02	6.6	.2 <.05	.6	6.64	14.5	.03	4	.5	22.2	30	3.92			
	A 136888		<.1 .0		3.6	.5 <.05		4.78		.04	1	.5	2.0		4.00			
	A 136889	1	<.1 .0			1.4 <.05		4.11		.08	2	.3	3.4		4.96			
	A 136890 RE A 136890	1.07	<.1 .0 <.1 .0		6.7 6.6	.4 <.05 .4 <.05				.04 .03		1.6 1.3	3.1 3.2	30	3.82			
	RRE A 136890		<.1 .0			.4 <.05		10.37		.04		1.6	3.5	30	-			
	A 136891	.78	<.1 .0	3.10	4.0	.4 <.05	3.3	5.23	60.9	.03	1	.9	.5	30	2.62			
	A 136892		<.1 .0			.4 <.05		5.30		.03	<1	.9	.6		2.68			
	A 136893		<.1 .0			.3 <.05		7.54		.04		1.0	.6		5.20			
	A 136894		<.1 <.0			.1 <.05		14.24		.04		1.4	2.9		4.65			
	A 136895	4.07	<.1 <.0	2 <.02	8.0	.1 <.05	.6	14.80	25.8	.04	1	1.5	2.0	- 30	4.00			
	A 136896		<.1 <.0		8.9	.4 <.05				.05	1	1.0	1.1		4.95			
	A 136897		<.1 .1		1.0	.2 <.05		8,98		.06	2	.5	1.4		4.37			
	A 136898		<.1 .0		1.8	.4 <.05		7.70		.07	4	.5	4.0		2.59			
	A 136899		<.1 .0		15.2	.4 <.05		14.05		.05	1		42.9		4.60			
	A 136900	.21	<.1 .1	.08	1.6	.7 <.05	5.2	6.10	54.5	.09	1	.8	.8	20	4.59			
	A 136901	1.15	<.1 .1	.02	8.6	.4 <.05	6.0	10.17	37.4	.02	1	.5	15.6	30	5.48			
	A 136902	1.18	<.1 .1	3 <.02	11.1	.7 <.05	5.1	8.06	39.7	.02	1	.5	7.1		5.04			
	A 136903	.89	<.1 .1) <.02		.4 <.05		7.36		.02	<1	.4	9.8		4.38			
	A 136904	1.61			9.3	.9 <.05		8.16		.02	<1	.3	2.5		3.42			
	A 136905	1.48	<.1 .0	3 <.02	11.2	1.0 <.05	3.5	8.31	38.1	<:02	1	.6	3.5	30	3.68			
	A 136906	.94	.1 .1		10.3	.4 <.05			39.2		<1	.4	7.6		4.86			
	A 136907		<.1 .2			.8 <.05		9.12		.02	<1	.5	7.5		4.55			
	A 136908	1	<.1 .1		12.2			8.92		.02	<1	.3	6.9		4.47			
	A 136909		<.1 .1		12.1	.7 <.05		9.42		.02	1	.5	9.7		5.52			
	STANDARD DS5	6.18	<.1 .0	1.75	14.8	6.2 <.05	3.7	6.45	24.0	1.30	1	1.1	16.6	30	-	 		

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

殽

Heritage Explorations Ltd. FILE # A406105

Page 3 (b)

Data WCFA

ACME ANALYTICAL	····																 	 ACME ANALYTICAL
	SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sn Ta		Ŷ	Ce	In	Re	Be		Sample			
· · · · · · · · · · · · · · · · · · ·		ppm	ррт	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	kg	 	
	A 136910	-93	<.1	.11	.05	7.6	.6 <.05	4.2	9.18	32.5	.02	<1	.5	9.5	30	5.24		
	A 136911	1	<.1	.19	.06	8.8	.7 <.05		9.70		.02	<1	.3	9.2		2.61		
	A 136912	+	<.1		.06	8.7	.6 <.05		9.77		.02	<1	.4	8.6		2.50		
	A 136913		<.1		.06	6.7	.9 <.05			33.7	.02	<1	.4	10.9		3.90		
	A 136914		<.1		.02		1.1 <.05		9.89		.02	<1	.5	9.9		5.22		
			_										_					
	A 136915		<.1		.03	5.1			14.99			<1		4.8	30	.90		
	A 136916	1			<.02	6.9	.7 <.05		8.51		.02	1		15.1		3.60		
	A 136917	.67		.15	.02	6.2	.8 <.05		8.88		.02	<1		17.0		5.67		
		1.29			<.02	7.1	.9 <.05		9.29		.02	<1	.4	9.1		2.70		
	A 136919	2.01	<.1	.04	<,02	7.3	.5 <.05	2.6	9.36	29.3	.02	<1	.5	.8	- 30	2.06		
	A 136920	2.05	<.1	.04	.02	7.1	.6 <.05	2.4	9.93	26.9	.02	<1	.4	.7	30	2.66		
		1.75				11.0	.5 <.05				<.02	1	.5	5.1		2.36		
		2.07		.06	.02	7.9	.4 <.05		9.77		<.02	<1	.3	1.7		3.42		
		1.62	<.1	.09	<.02	9.8	.3 <.05				<.02	<1	.6	7.2	30	2.79		
	A 136924	1.74	<.1	.06	<.02	8.8	.6 <.05	3.2	9.10	39.8	<.02	1	.4	10.5	30	4.40		
	A 136925	2.26	1 1	.09	<.02	0 3	.5 <.05	1.2	9.53	79 5	.02	1	.8	5.8	30	4.07		
		2.15		.15	.02	10.6	.6 <.05				.02	<1		10.8		3.36		
		1.38				6.6	.6 <.05		8.63		.03	2		19.0		5.25		
		1.10			<.02	4.5	.5 <.05	.8	8.97		.03	1				4.49		
	A 136929				<.02	3.9	.3 <.05				.04	1		25.1		5.48		
	A 136930	1.13	.1	.03	<.02	3.9	.5 <.05				.04	2		20.4		4.85		
		1.14			<.02	4.2	.4 <.05				.04	1		20.2	30	-		
		1.07			<.02	4.5	.4 <.05				.03	2		19.6	30	-		
		1.27				5.6	.8 <.05		5.48	13.7	.03	<1		26.2		2.73		
	A 136932	1.27	<.1	.03	<.02	4.8	.6 <.05	1.3	5.40	11.4	.03	2	.5	26.7	30	2.29		
	A 136933	1.18	< 1	<_02	<_02	3.8	.6 <.05	.5	6.16	11.6	.03	1	.5	33.4	30	5.14		
		1.95				5.0	.1 <.05	.5	6.60		.03	<1		30.8		4.60		
		1.57				4.9	.2 <.05	.7		14.1	.03	<1		29.8		5.15		
		1.32		.02		5.7	.2 <.05	.8		13.8	.03	1		14.8		5.04		
		1.95			<.02	6.6	.3 <.05	.9	5.34		.04	2	.6	5.7		4.92		
	A 130331		•••	.01		0.0		• • •	5154	1710	.04	-		2	50	11/2		
	A 136938	1.70	<.1	<.02	.06	5.4	.3 <.05	.7			.03	<1		17.1		5.11		
		1.27	<.1	.08	.02	3.7	.3 <.05	1.4	8.57		.03	<1		20.6		4.94		
		2.63		.10	.02	6.3	.2 <.05	1.4	9.68	18.6	.02	<1	.2	20.1	30	4.87		
		1.35		.10	.03	4.4	.3 <.05	1.5	7.29	14.3	.03	<1	.3	19.3	30	5.15		
		6.30	<.1	.08	1.70	14.8	6.4 <.05	4.0	6.44	23.9	1.30	<1	1.4	16.5	30	-		

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

The second se

Heritage Explorations Ltd. FILE # A406105

Page 4 (b)

Data WeFA

ACME ANALYTICAL																	 	 A	CME ANALYTICAL
	SAMPLE#	Cs ppm		Hf ppm	Nb ppm	Rb ppm	Sn T ppn pp		Y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm	Total kg	 		
	A 136942 A 136943 A 136944 A 136945 A 136946	1.87 1.28 1.04 1.30 1.77	.1 <.1 <.1	.10 .06 .05 .04 .03	.02 <.02 .02 <.02 <.02	7.0 3.9 5.8 5.2 6.5	.2 <.0 .4 <.0 .3 <.0 .3 <.0 .3 <.0	5 1.0 5 1.3 5 1.0	7.89 8.87		.03 .04 .02 .02 .03	<1 <1 3 <1 1	.5 .3 .4 .5 .6	19.8 20.5 12.3 17.9 15.8	30 30 30	5.32 5.21 5.10 5.20 5.37			
	A 136947 A 136948 A 136949 A 136950 A 136951	1.26 1.37 1.53 .61 .10	.1 <.1	.05 .04 .04 .11 .03	.02 <.02 <.02 .43 .02	7.0 7.1 8.3 5.6 1.4	.3 <.0 .7 <.0 .3 <.0 1.1 <.0 .4 <.0	5 1.1 5 1.4 5 3.8		17.7 19.3	.03 .02 .04 <.02 <.02	<1 1 <1 1 <1	.5 .4 .4 .1 <.1	13.3 12.2 16.8 1.7 .3	30 30	5.14 5.00 5.00 2.86 .46			
	A 136952 A 136953 A 136954 A 136955 A 136956	.07 .17 .17 .18 .17		.03 .03 .03 .04 .04	.03 <.02 .02 <.02 <.02	.8 1.1 .9 .6 .7	.3 <.0 .3 <.0 .3 <.0 .1 <.0 .1 <.0	5 1.4 5 1.0 5 1.1	.20 .38 .31 .19 .13	.4 .5 .4 .2 .1	<.02 .02 <.02 .02 .06	1	<.1 .1 <.1 <.1 <.1	<.1 <.1 .2 .4 <.1	30 30	.47 1.39 1.66 1.45 1.73			
	A 136957 A 136958 A 136959 A 136960 RE A 136960	.21 2.47 2.66	<.1 <.1 <.1	.05 2.02.02	<.02 <.02 <.02 <.02 <.02 <.02	.7 .4 5.1 5.4 5.5	.2 <.0 .2 <.0 .2 <.0 .2 <.0 .3 <.0	5 1.5 5 .7 5 .6	.27 .24 6.54 7.98 7.93	13.9	.13 <.02 .03 .03 .03	5 1 <1 2 4	<.1 <.1 .6 .4 .4	.2 .4 8.7 20.2 20.9	30 30	1.11 .86 .97 2.29 -			
	RRE A 136960 A 136961 A 136962 A 136963 A 136963 A 136964	3.28 1.81	<.1 <.1 <.1	.02 .03 .04	<.02 <.02 <.02 <.02 <.02 <.02	6.2 5.0 4.7 5.6 5.0	.3 <.0 .2 <.0 .3 <.0 .3 <.0 .3 <.0	5.7 5.1.1 5.1.2	5.97 6.04 6.26	15.5 14.7 13.2 22.0 20.6	.03 .03 .02 .02 .03	1 7 18 2 2	.5 .3 .4 .4 .6	24.0 21.3 22.2 22.2 25.3	30 30	- 2.12 1.88 2.50 2.61			
	A 136965 A 136966 A 136967 A 136968 A 136968 A 136969	.88	<.1 <.1 <.1	.03 .02 .04	<.02 <.02 <.02 <.02 <.02 <.02	5.6 5.5 2.6 2.9 1.7	.3 <.0 .2 <.0 .3 <.0 .2 <.0 .3 <.0	5.9 5.8 5.7	7.35 6.74	12.8 14.4	.03 .02 .02 .02 .03	1 1 3 <1 <1	.4 .3 .4 .3 .4	23.6 19.7 22.6 22.9 22.6	30 30 30	2.30 2.50 2.80 2.89 1.67			
	A 136970 A 136971 A 136972 A 136973 Standard DS5	E	<.1 <.1 <.1	.03 .03	<.02 <.02 <.02 <.02 <.02 1.76	2.9 3.1 3.0 3.1 14.2	.3 <.0 .3 <.0 .4 <.0 .3 <.0 6.2 <.0	5.7 51.1 5.8	9.69 8.83 8.23 7.78 6.03	18.5 18.5	.02 .03 .03 .03 1.29	<1 <1 <1 <1 <1	.4 .4 .3 .5 1.3	24.7 24.6 26.7 29.8 16.4	30 30	2.31 1.12 1.17 2.56	 ····		

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTIC

A CONTRACTOR OF A CONTRACTOR OF

Heritage Explorations Ltd. FILE # A406105

Page 5 (b)

Data UKFA

ACME ANALYTICAL		-															 	ACME	ANALYTICAL
	SAMPLE#	Cs	Ge	Нf	Nb	Rb	Sn Ta		Ŷ	Ce	In		Be		Sample				
		ppm	ppm	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	kg	 ··· <u>·····</u> ···		
	A 136974	1.17	<.1	.03	<.02	6.4	.2 <.05	1.1	9.68	13.5	<.02	1	.6	20.3	30	2.70			
	A 136975	1.02	.1	.03	<.02	5.4	.2 <.05		8.81		<.02	<1	.5			2.68			
	A 136976	1.13		.04	<.02	5.8	.2 <.05		8.71	12.6	.02	3		17.3		2,42			
	A 136977	1	<.1		<.02	6.1	.5 <.05			16.4		7	.2	9.2		2.26			
	A 136978		<.1		<.02	7.0			10.43		.02	4		15.1		2.70			
												•							
	A 136979	1.50	<.1	.10	<.02	7.9	.5 <.05	5.0	10.53	27.8	<.02	6	.2	11.8	30	2.92			
	A 136980	1.40		.13	<.02	7.6	.3 <.05				<.02	10		11.9		2.60			
	A 136981	1.64		.15	<.02	7.5	.3 <.05		10.14		.02	7		13.9		2.61			
	A 136982	1.67			<.02	7.7			10.44		.02	13		11.5		2.54			
	A 136983		<.1	.13	.49	7.8			11.22		<.02	12	.4	12.2		2.38			
			• •	••••	• • •														
	A 136984	1.42	<.1	.06	<.02	8.7	.3 <.05	2.2	8.50	17.0	.02	. 6	.9	21.9	30	.82			
	A 136985	1.27			<.02	7.9	.3 <.05		7.61	25.1	.02	3		12.8		2.30			
	A 136986	1.77			<.02	10.3	.4 <.05		8.93	32.8	.02	1	.4	16.0	30	2.41			
	RE A 136986	1.71	<.1	.10	.02	9.9	.3 <.05	4.7	8.84	31.1	.03	3	.4	14.7	30	-			
	RRE A 136986	1.65	<.1	.12	<.02	9.3	.3 <.05	4.5	9.10	31.6	.03	5	.3	14.2	30	-			
	A 136987	1.33	<.1	.10			1.5 <.05		9.87	34.5	.02	2	.4	17.8		2.13			
	A 136988	2.70	<.1	.10	<.02		.6 <.05	4.2	9.26	42.2	.02	<1	.6	14.4		2.28			
	A 136989	2.18	<.1	.09	.35	11.2	.3 <.05			40.2	.02	1	.5	15.7		2.59			
	A 136990	2.03	<.1	.11	<.02		.6 <.05		9.01	36.7	.02	1	.4	15.4		2.30			
	A 136991	1.86	<.1	.08	<.02	10.4	.6 <.05	3.4	8.97	44.4	.02	<1	.6	15.4	30	1.30			
															70				
	A 136992	1.75				10.4	.5 <.05		8.93	43.5	.02	<1	.4			1.43			
	A 136993	1.37				10_6	.7 <.05		8.53	32.5	.02	<1		14.8		2.72			
	A 136994	1.12		.09	<.02	7.8	.3 <.05		7.09	33.2	<.02	<1		15.6		1.81			
	A 136995	1.19		.10	<.02		.2 <.05		7.36	30.0	.02	1	.4	13.4		3.03			
	A 136996	.60	<.1	.11	.02	6.9	.8 <.05	4.4	8.61	25.7	.02	2	.4	13.9	50	5.02			
	17(007	01		11	< 02	0.0	(~ OE		0 11	33.3	~ 02	2	2	11.0	20	5.56			
	A 136997				<.02		.4 <.05		9.11 8.65	25.5	.02	23		14.5		5.12			
	A 136998	.95		.09	<.02	8.4	.3 <.05					2				5.30			
	A 136999	1.04	.1	.10	<.02	4.9	.4 <.05		12.44	33.4	.04	-1		24.7					
	A 137000	.96		.03	<.02	4.4	.7 <.05		10.44	30.1	.04	<1		24.2	30	4.96			
	STANDARD DS5	6.13	<.1	.08	1./0	14.4	6.5 <.05	2.9	0.04	24.2	1.30		1.5	17.1			 		

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ESKAY PROJECT

2004 FIELD PROGRAM

Appendix III

Diamond Drill Logs

(a) Bonsa Drill Hole BZ 04-10(b) Treaty Drill Hole TP 04-01

for lithology codes see Appendix VI

	L)			GE EXPLOR ILL HOLE L			BZ04_10				
eoinforma leader	tics Explorat	ion Pty Lt	d Second constants		inin distriction in the state of						an a	2
lole ID	BZ04	10		Hole type	Diamone	d drill Size NQ		Date commenced				
								Date completed	1/06/2004			
)ataSet 	BON		-4	Depth	178.30	m		Drilling company	Aggressive Drill	ina		
ocation Tenement	3073	ai Prospe 93	ct	Geologist Notes	Tony We	orth		uning company	Aggreeente prin			
					The second s		i di secondo de la compañía de la c				FTR WEBSTLEWSLEIM	
Collar L	ocation											
ield surve	y GPS	located										
		_		East	North	RL G	rid unit					
	Grid II	2		Last	NOLLI	<i>RL</i> 0	na um					
ocal Grid.	UTM_NA	D83		404887.00	6276284.00	990.00	m					
JTM Grid	UTM_NA NAD83_9	.D83 9		404887.00 404887.00	6276284.00 6276284.00	990.00 990.00	m					
JTM Grid Gurvey	UTM_NA	.D83 9	NY ABBING PARA STORE	404887.00 404887.00	6276284.00 6276284.00	990.00 990.00						a
JTM Grid	UTM_NA NAD83_9	.D83 9		404887.00 404887.00	6276284.00 6276284.00	990.00 990.00		alle ett stansgerigene att telstandstade		and a second second rest of rest of the		ġ
UTM Grid Gurvey At 0.00	UTM_NA NAD83_9	D83 9 Azimut 270	th AzimuthiD).0 Astronomic	404887.00 404887.00 UTM Azi. (270.0	6276284.00 6276284.00 Dip Method -70.0 Compass	9990.00 990.00 Comments		SIN MARKAN DI MARKAT SI SI SI DI MARKA	Structural and a state of the	www.com.com.com.com.com.com.com.com.com.com	an antai an	a
UTM Grid Survey At 0.00 178.00	UTM_NA NAD83_9 m m	D83 9 Azimut 270 270	th AzimuthiD	404887.00 404887.00 UTM Azi. (270.0	6276284.00 6276284.00 Dip Method	9990.00 990.00 Comments					20.5015162/10/10/10/10/10/10/10/10/10/10/10/10/10/	a
UTM Grid Gurvey At 0.00 178.00	UTM_NA NAD83_S m m	D83 Azimut 270 270 Grain	th AzimuthiD 0.0 Astronomic 0.0 Astronomic	404887.00 404887.00 UTM Azi. (270.0	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	990.00 990.00 Comments Lithology			Logged by	waterstoord and a second and a se	2012/02/2012/02/2012/2012/2012/2012/201	
UTM Grid Survey At 0.00 178.00	UTM_NA NAD83_S m m	D83) <i>Azimut</i> 270 270	th AzimuthiD).0 Astronomic	404887.00 404887.00 <i>UTM Azi.</i> (270.0 (270.0	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	990.00 990.00 Comments Lithology			Logged by	energy of the second		8
JTM Grid Survey At 0.00 178.00 itholog From	UTM_NA NAD83_S m m Y To m	D83 Azimut 270 270 Grain	<i>th AzimuthiD</i> 0.0 Astronomic 0.0 Astronomic <i>Lithology</i>	404887.00 404887.00 <i>UTM Azi.</i> (270.0 (270.0	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	9990.00 990.00 Comments Lithology xture %			constant of the second secon	: Tony Worth	20. 2012) (C. 10) (C. 20) (C. 20) (C. 20) (C.	a
JTM Grid Gurvey At 0.00 178.00 178.00 Sitholog From 0.00	UTM_NA NAD83_9 m m 19 <i>To m</i> 6.00	D83 Azimut 270 270 Grain Size	th AzimuthiD 0.0 Astronomic 0.0 Astronomic Lithology CASE	404887.00 404887.00 <i>UTM Azi.</i> (270.0 (270.0	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	990.00 990.00 Comments ture <i>Lithology</i> %			Logged by	nancestonen of the second s	22493126552555555555555555555555555555555555	e
JTM Grid GUTVEY At 0.00 178.00 itholog From 0.00 6.00	UTM_NA NAD83_9 m m Y To m 6.00 10.60	D83 Azimut 270 270 Grain Size	th AzimuthID 0.0 Astronomic 0.0 Astronomic 0.0 Astronomic CASE SACO	404887.00 404887.00 <i>UTM</i> <i>Azi.</i> (270.0 (270.0 <i>Major Texte</i>	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	990.00 990.00 Comments Lithology xture % 100 100			entertersonalises of the second s	: Tony Worth	2012 SALIS (RUC) (SALIS (SALIS (SALIS)) (RUC) (SALIS (SALIS (SALIS)) (RUC) (SALIS (SALIS (SALIS)) (RUC) (SALIS (SALIS (SALIS))	
JTM Grid Gurvey At 0.00 178.00 178.00 5.00 6.00 10.60	UTM_NA NAD83_S m m To m 6.00 10.60 37.50	D83 Azimut 270 270 Grain Size F F	th AzimuthiD 0.0 Astronomic 0.0 Astronomic 0.0 Astronomic CASE SACO XSAO	404887.00 404887.00 <i>UTM</i> <i>Azi.</i> (270.0 (270.0 <i>Major Texte</i> BED	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	990.00 990.00 Comments Lithology xture % 100 100 100			contraction of the second s	: Tony Worth		a
JTM Grid Gurvey At 0.00 178.00 itholog From 0.00 6.00 10.60 37.50	UTM_NA NAD83_S m m 70 m 6.00 10.60 37.50 44.20	D83 Azimut 270 270 Grain Size F F C	th AzimuthiD 0.0 Astronomic 0.0 Astronomic Lithology CASE SACO XSAO SOOX	404887.00 404887.00 <i>UTM</i> <i>Azi.</i> (270.0 (270.0 <i>Major Texte</i> BED	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	990.00 990.00 Comments Xture <i>Lithology</i> % 100 100 100 100			Logged by	: Tony Worth		a
JTM Grid Gurvey At 0.00 178.00 itholog From 0.00 6.00 10.60 37.50	UTM_NA NAD83_S m m 70 m 6.00 10.60 37.50 44.20	D83 Azimut 270 270 Grain Size F F C F	th AzimuthiD 0.0 Astronomic 0.0 Astronomic 0.0 Astronomic CASE SACO XSAO SOOX SACO	404887.00 404887.00 <i>UTM</i> <i>Azi.</i> (270.0 (270.0 <i>(</i> 270.0 <i>Major Texte</i> BED MON	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	9990.00 9990.00 Comments Lithology xture % 100 100 100 100 50			tors assesses and an and a second	: Tony Worth		e
JTM Grid 5. 178.00 178.00 5. 178.00 178.00 178.00 178.00 178.00 10.00 6.00 10.60 37.50 44.20	UTM_NA NAD83_9 m m 70 m 6.00 10.60 37.50 44.20 47.00	D83 Azimut 270 270 Grain Size F F C F C F C	th AzimuthID 0.0 Astronomic 0.0 Astronomic 0.0 Astronomic CASE SACO XSAO SOOX SACO SOOX SOOX	404887.00 404887.00 <i>UTM</i> <i>Azi.</i> (270.0 (270.0 (270.0 <i>Major Textu</i> BED MON MON	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	9990.00 990.00 Comments Lithology xture % 100 100 100 100 50 50			entransmannentenentenentenentenentenentenentene	: Tony Worth		a
JTM Grid GUIVEY At 0.00 178.00 itholog <i>From</i> 0.00 6.00 10.60 37.50 44.20 47.00	UTM_NA NAD83_S m m m 6.00 10.60 37.50 44.20 47.00 77.10	D83 Azimut 270 270 770 874 874 874 874 874 874 874 874 874 874	th AzimuthiD 0.0 Astronomic 0.0 Astronomic Lithology CASE SACO XSAO SOOX SACO SOOX SACO SACO	404887.00 404887.00 <i>UTM</i> <i>Azi.</i> (270.0 (270.0 (270.0 <i>Major Textu</i> BED MON BED	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	9990.00 990.00 Comments Lithology xture % 100 100 100 100 50 50 50 100			esteries and an and an and an and an and an	: Tony Worth		a
JTM Grid Gurvey At 0.00 178.00 iitholog From 0.00 6.00 10.60 37.50 44.20 47.00 77.10 80.60	UTM_NA NAD83_S m m 70 m 6.00 10.60 37.50 44.20 47.00 777.10 80.60	D83 Azimut 270 270 270 570 F F C F C F C F F C F	th AzimuthiD 0.0 Astronomic 0.0 Astronomic 0.0 Astronomic CASE SACO XSAO SOOX SACO SOOX SACO SOOX SACO XVRF	404887.00 404887.00 <i>UTM Azi.</i> (270.0 (270.0 <i>Major Textu</i> BED MON BED PBX	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	9990.00 990.00 Comments Lithology xture % 100 100 100 100 50 50 100 100			Logged by	: Tony Worth		a
JTM Grid Gurvey At 0.00 178.00 itholog From 0.00 6.00 10.60 37.50 44.20 47.00 77.10 80.60 86.00	UTM_NA NAD83_0 m m 770 m 6.00 10.60 37.50 44.20 47.00 77.10 80.60 86.00	D83 Azimut 270 270 70 70 70 70 70 70 70 70 70 70 70 70 7	th AzimuthiD 0.0 Astronomic 0.0 Astronomic 0.0 Astronomic CASE SACO XSAO SOOX SACO SOOX SACO XVRF VFRX	404887.00 404887.00 <i>UTM</i> <i>Azi.</i> (270.0 (270.0 <i>Major Texta</i> BED MON BED PBX PBX PBX	6276284.00 6276284.00 <i>Dip Method</i> -70.0 Compass -70.0 Artificial	9990.00 9990.00 Comments Lithology xture 100 100 100 100 50 50 50 100 100			Logged by	the contract of the second		a

A SAN PLANE

and a state of the second data

to south

Sector and the

alation

BZ04_10

Thursday, 11 November 2004

Page 1 of 5

							1 1			antai coda						
118.50	144.00		F VFRX	РВХ				100								
144.00	145.10		F VFRX	РВХ				50								
			F XSAO													
145.10	178.30		F XSAO	BED				100								
		unimation?			anaran anaran anaran an	11117 STREET BOLLERS	Ann and the area		TALIAR CONTRACTOR	THE ALTERNATION			and the other states to be such the	A Conservation Address and the	Martin Statements	
Alterati														 An address of the set of the se	an and a second of a second	
From	То	m	Alteration type	Style	Int.	Alt Min 1	Int.	Ait Min 2	Int.	Alt Min 3	Int.	Acc. minerals	Comments			
10.80	11.40		Silicic/Silicification	PV	STG	SI	STG	PY	WΚ							
44.50	46.10		Mineral Assemblage (un	PV	mod	ру	mod	CLAY	MOD	СН	WK					
77.10	79.40		Mineral Assemblage (un	PV	STG	SI	mod	СН	MOD	CLAY	MOD	PY				
79.40	88.00		Mineral Assemblage (un	PV	MOD	SI	mod	PY	MOD							
			Sulphidic	FF	MOD	PY	MOD									
88.00	92.00		Mineral Assemblage (un	PV	MOD	SI	mod	PY	MOD						-	
92.00	97.00		Mineral Assemblage (un	PV	MOD	SI	mod	PY	MOD	СН	WΚ					
			Sulphidic	FF	MOD	PY	MOD									
97.00	105.20		Mineral Assemblage (un	PV	MOD	SI	mod	PY	MOD							
118.00	144.00		Mineral Assemblage (un	PV	MOD	SI	mod	PY	MOD	СН	WK					
			Sulphidic	FF	MOD	PY	MOD									
144.00	145.10		Mineral Assemblage (un	PV	MOD	SI	mod	СН	MOD	CLAY	MOD	PY				
Veining		0384242453	n an thuiseach reiseann annan Mhaint Annan an th				OCCULTORALD	2270.72 <i>091.02770</i> .02770.0	SCHWEIGENSKER.	LENGTONECHON WARKE	ACTENDED CONTRACTOR		aranalar7544703774197	Signal Street Stre	lahitiyildi biya 1999	
From	у То	m	Vein type		Style			Int.	Av. th	ick Com	ments					
									(mn							
10.80	12.00		CARB	Stringe	er Veins			MOD)	5						
12.00	26.50		CARB	-	er Veins			WK		5						
26.50	32.00		CARB	Stringe	er Veins			MOD)	5 mod-	strong					
			CARB	Stringe	er Veins			WK		5 varial	ble/patch	У				
32.00	77.10		ONIND	-												
77.10	77.10 79.00		QZ/CARB		re Veins			MOD)	10						
77.10 79.00					re Veins er Veins			WK)	10 5						
77.10 79.00 87.00	79.00		QZ/CARB QZ/CARB QZ/CARB	Stringe)							
77.10 79.00	79.00 87.00		QZ/CARB QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe	er Veins			WK)	5						
77.10 79.00 87.00	79.00 87.00 100.00		QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe Stringe	er Veins er Veins			WK WK WK)	5 5 5 5						
77.10 79.00 87.00 100.00 106.00 122.00	79.00 87.00 100.00 106.00 122.00 130.20		QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins			WK WK WK WK)	5 5 5 5 5						
77.10 79.00 87.00 100.00 106.00 122.00 141.00	79.00 87.00 100.00 106.00 122.00 130.20 144.00		QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins		·	WK WK WK WK WK		5 5 5 5						
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00	79.00 87.00 100.00 106.00 122.00 130.20 144.00 178.30		QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins			WK WK WK WK WK MOE	D	5 5 5 5 5 5 10 patch	ny irregula					
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00	79.00 87.00 100.00 106.00 122.00 130.20 144.00 178.30	92334(7023727	QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins er Veins		SPECIFIC TO THE	WK WK WK WK WK MOE		5 5 5 5 5 5 10 patch	-	ar veins		96559999107010.0069		
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00	79.00 87.00 100.00 106.00 122.00 130.20 144.00 178.30	m	QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins er Veins	Samesestrosomesesterat	ty	WK WK WK WK WK MOE)	5 5 5 5 5 5 10 patch	-			Sector and the sector		
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00 Structu	79.00 87.00 100.00 106.00 122.00 130.20 144.00 178.30		QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins er Veins	MOD	fy	WK WK WK WK MOE)	5 5 5 5 5 5 10 patch	-		Status y Status Status Status Status	26122220122220		
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00 Structur From	79.00 87.00 100.00 122.00 130.20 144.00 178.30	m	QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB Structure	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins er Veins			WK WK WK WK MOE Comment) ts	5 5 5 5 5 5 10 patch	-		Menter y Ástronom et Brandska	26122280129291111122220		
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00 Structu <i>From</i> 11.00	79.00 87.00 100.00 106.00 122.00 130.20 144.00 178.30 ITE To 37.50	m	QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB Structure fracture	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins er Veins	MOD		WK WK WK WK MOE) ts	5 5 5 5 5 5 10 patch	-		nenacu su kasa manan su sa sa sa sa sa sa	No companya sa	- 	
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00 Structu <i>From</i> 11.00 44.30	79.00 87.00 100.00 122.00 130.20 144.00 178.30 Ire To 37.50 47.50	m	QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB Structure fracture fracture fracture	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins er Veins	MOD MOD INT MOD		WK WK WK WK MOE Comment) ts	5 5 5 5 5 5 10 patch	-		1997ada Marina Marina California	Norganita contractivado conce	-0.14548955542184789583	
77.10 79.00 87.00 100.00 106.00 122.00 141.00 150.00 Structu <i>From</i> 11.00 44.30 47.50	79.00 87.00 100.00 122.00 130.20 144.00 178.30 Ire To 37.50 47.50 47.80	m	QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB QZ/CARB Structure fracture fracture fracture fault gouge / clay/ pug	Stringe Stringe Stringe Stringe Stringe	er Veins er Veins er Veins er Veins er Veins er Veins	MOD MOD INT		WK WK WK WK MOE Comment) ts	5 5 5 5 5 5 10 patch	-			Ner (tanken sekanse)	45.443688700820640649883	

BZ04_10

1000元1000

Sec. 1

COLUMN TWO IS NOT

Thursday, 11 November 2004

Page 2 of 5

			and the second sec			S an) (
77.10	80.70) fault	zone			MOL	C										
80.70	105.20					MOE		Rehe	aled frac	tures							
105.20	107.00					STG			n core								
107.00	113.00					MOL											
113.00	118.00) fraci	ture			STG	;	broke	n core								
118.00	144.00) fract	ure			wκ		Rehe	aled frac	tures							
144.00	146.30	fault	zone			MOL	כ										
146.30	153.70	fract	ure			WK											
153.70	156.00	fract	ture			MOE	5										
156.00	164.00) frac	ture			WK											
164.00	166.00	fraci	ture			MOL	2										
166.00	177.80) frac	ture			WК											
177.80	178.30	fraci	ture			MOE)										
Minera		on _{Tot.}				558 2426 577 -	2.7.99.2775	antan 1937	UMPRESSES	**********	4977548748748896		oorretter top9t				:
From		om Sulp	h. Mineral 1	Style %	, Minera	12 S	tyle	%	Mineral	3 Styl	e	%	Com	ments			
10.60	37.50	•		DISS ().5					-							
37.50	44.50		2 pyrite	DISS	2												
44.50	45.00		5 pyrite	BD	5												
45.00	47.00		2 pyrite	DISS	2												
47.00	77.10	0.	5 pyrite	DISS ().5												
77.10	79.40)	1 pyrite	DISS	1												
79.40	88.00) 1() pyrite	BLB	10												
88.00	92.00) (5 pyrite	FF	5												
92.00	97.00) 1() pyrite	FF	10												
97.00	105.20) ;	5 pyrite	FF	5												
105.20	118.00) :	3 pyrite	BD	3								be dded	fg py			
118.00	125.00) :	2 pyrite	FF	2												
125.00	144.00) .	7 pyrite	FF	5								highly v	ariable di	stribution		
144.00	145.20) :	2 pyrite	DISS	2												
145.20			1 pyrite	DISS	1 ·												
Sample					Au FA	Au	Ag	Cu	Pb	Zn	As	Ba	Hg	Sb	Mn	1 - 613,90° 8819 6927	а
From	То т	Sample ID	Sample typ			ppb	ppb	ррт	ppm	ppm	ppm	ppm	ppb	ppm	ррт		
37.00	39.00	136801.00	CORE_HAL	F -0.0002		-0.2	232	7.29	15.01	67.9	80.6	80.9	475		193		
39.00	40.00	136802.00	CORE_HAL	F 0.0002		0.2	167	11.09	15.92	112.8	393.9	20.5	5859		404		
40.00	41.00	136803.00	CORE_HAL	F 0.0004		0.4	111	9.8	12.32	64	67.4	129.9	337		346		

0.0003

0.0037

0.0033

0.0722

0.3

3.7

3.3

72.2 2605

241 21.25

5**22** 13.35

5.12

451

Thursday, 11 November 2004

9.62

18.78 116.5

13.17 67.1

9.13 17.22 101.2 881.6

91.1

42.2 106.1

30.8

65

14.2

132.9

101.5

287

881

152

2531

673

304

177

133

Page 3 of 5

631.001

BZ04_10

41.00 42.00

77.00 78.00

78.00 79.00

79.00 80.00

136804.00

136805.00

136806.00

136807.00

CORE_HALF

CORE_HALF

CORE_HALF

CORE_HALF

Contract of the local division of the local	and the second second second

ALL STATES

and the second second

and the second

80.00	81.00	136808.00	CORE_HALF	0.0234	23.4	852	13.17	14.19	58.6	445.9	14.1	2273		57
81.00	82.00	136809.00	CORE_HALF	0.1572	157.2	1254	13.14	17.12	474.4	6887.9	3.7	10404		112
82.00	83.00	136842.00	CORE_HALF	0.1337	133.7	607	6.81	18.48	19	1275.3	8.9	3976	29.51	70
		136810.00	CORE_HALF	0.1585	158.5	641	6.43	20.04	19.3	1246.2	11.2	3972		72
83.00	84.00	136811.00	CORE_HALF	0.207	207	912	5.97	28.04	42.1	1770.4	6.8	4700		49
84.00	85.00	136812.00	CORE_HALF	0.1588	158.8	452	6.09	28.18	11.9	1116.8	11.9	4920		41
85.00	86.00	136813.00	CORE_HALF	0.0492	49.2	1540	5.01	22.54	4.4	378	38.2	1957	•	48
86.00	88.00	136814.00	CORE_HALF	0.0812	81.2	3000	6.54	22.43	12.8	216.8	62.3	1560		54
88.00	90.00	136815.00	CORE_HALF	0.0856	85.6	8003	10.08	32.47	38.3	518.1	41.9	1343		70
90.00	92.00	136816.00	CORE_HALF	0.1	100	7227	11.1	30.57	55.3	402.3	31.6	1117		57
92.00	93.00	136817.00	CORE_HALF	0.1617	161.7	14780	19.82	37.41	46.1	561.4	16.6	2569	44.29	39
93.00	94.00	136818.00	CORE_HALF	0.2427	242.7	18032	17.63	45.33	10.2	1002.7	15.5	2834	68.09	46
94.00	96.00	136819.00	CORE_HALF	0.3008	300.8	13014	20.2	43.1 2	6.3	351	20.9	1310	40.14	35
96.00	98.00	136843.00	CORE_HALF	0.2709	270.9	21221	30.58	70.51	8.9	431.8	14	3150	85.16	63
		136820.00	CORE_HALF	0.3398	339.8	24533	33.72	76.49	8.1	449.2	10.3	3389	88.97	45
98.00	100.00	136821.00	CORE_HALF	0.1342	134.2	7326	25.88	31.91	45.1	289.3	22.8	1935	58.44	45
100.00	102.00	136822.00	CORE_HALF	0.2119	211.9	9928	16.44	31.43	15.1	486.5	42.7	5008	64.82	209
102.00	104.00	136823.00	CORE_HALF	0.0726	72.6	1789	7.69	29.24	7.7	503.6	40.5	4532	47.35	367
104.00	105. 20	136824.00	CORE_HALF	0.0641	64.1	1279	6.07	21.44	21.1	426.7	54.8	3242	43.97	380
105.20	107.00	136825.00	CORE_HALF	0.001	1	937	24.5	12.08	90.2	103.3	58.9	927	12.34	312
117.90	119.00	136826.00	CORE_HALF	0.017	17	940	8.74	14.49	18.9	307.7	83.8	457	12.64	463
119.00	120.00	136827.00	CORE_HALF	0.072	72	1387	6.78	25.86	7.5	179.4	87.4	486	10.18	988
120.00	122.00	136828.00	CORE_HALF	0.0417	41.7	1298	5.73	17.62	7.2	147.5	96.7	226	7.56	327
122.00	124.00	136829.00	CORE_HALF	0.1248	124.8	10279	17.94	30.32	135.8	372.7	45.6	1912	33.2	209
124.00	126.00	136830.00	CORE_HALF	0.1402	140.2	14389	14.4 2	36.76	21.8	754.6	29 .1	4263	39.57	86
		136844.00	CORE_HALF	0.127	127	12413	14.09	35.99	29.4	67 2 .7	27.7	3265	33.55	110
126.00	128.00	136831.00	CORE_HALF	0.1978	197.8	22919	25.95	58.02	15.4	1060.9	16.4	3890	72.63	62
128.00	130.00	136832.00	CORE_HALF	0.0646	64.6	9751	17.65	31.73	36.2	430.3	26	1391	27.67	39
130.00	132.00	136833.00	CORE_HALF	0.2644	264.4	18930	35.68	46.63	9.4	976.6	12.6	4537	93.98	34
132.00	134.00	136834.00	CORE_HALF	0.1477	147.7	14696	24.75	42.71	10.5	832.7	15.6	7662	93.93	84
134.00	136.00	136835.00	CORE_HALF	0.1154	115.4	11932	12.9	45.59	12.9	298.9	32.4	14020	31.15	180
136.00	138.00	136836.00	CORE_HALF	0.1649	164.9	11728	21.48	34.76	6.9	626	26.1	4070	65.47	56
138.00	140.00	136837.00	CORE_HALF	0.3475	347.5	23152	30.37	50.86	11.5	1211.3	15.1	7764	171.2	51
140.00	142.00	136838.00	CORE_HALF	0.0972	97.2	10095	21.59	31.95	34.3	397.4	49.5	1578	39.85	73
142.00	144.00	136839.00	CORE_HALF	0.1 30 7	130.7	5959	9.15	35.48	70.8	558.3	20.5	1620	16.49	148
144.00	145.10	136840.00	CORE_HALF	0.0013	1.3	430	9.2	14.09	62.6	93.7	89.5	238	4.12	246
												<u></u>		·····

BZ04_10

Thursday, 11 November 2004

Page 4 of 5

	136845.00	CORE_HALF	0.0015	1.5	409	7.06	13.29	49.3	81.4	121.3	219	3.31	191	
145.10 146.00	136841.00	CORE_HALF	0.0003	0.3	609	32.57	13.91	149.2	66.4	84.1	566	11.29	268	

BZ04_10

Thursday, 11 November 2004

Page 5 of 5

	L			GE EXPLORATIO LL HOLE LOG	ONS		TP04_01	
Header	atics Explorat r	ιοη μτγ μτα						
Hole ID	TP04	01	Hole type	Diamond drill	Size NQ		Date commenced	
DataSet	TRE	ATY	Depth	496.20 n	'n		Date completed	1/09/2004
Location		ty Porphyry targ	Geologist	Gerry Bidwell			Drilling company	HY-Tech Drilling
Tenement			Notes			•		
	Location	ter en		n na Printen kan an an bana an				zan manan manan kara san kada manan dan manan kara dan tang tang tang tang tang tang tang ta
Field surve	ey GPS	located						
	Grid II)	East	North	RL Gr	id unit		
Local Grid	I UTM_NA	D83	430959.00	6271940.00	1690.00	m		
UTM Grid	_		430959.00	6271940.00	1690.00			
Survey		ananan kasaran kasaran Kasaran kasaran k						
At		Azimuth Azimuth		Dip Method	Comments			
0.00	m	130.0 Astrono	Azi. mic (130.0	-50.0 Compass				
118.90	m	130.0 Astrono	•	-47.5 AcidBottle				
110100								
240.80	m	130.0 Astrono		-47.5 AcidBottle				
240.80 362.70	m	130.0 Astrono	mic (130.0	-47.0 AcidBottle				
240.80	m	130.0 Astrono 130.0 Astrono	mic (130.0			an ta she		
240.80 362.70 490.40	m m	130.0 Astrono 130.0 Astrono	mic (130.0	-47.0 AcidBottle -47.0 AcidBottle	Lithology %	Comments		Logged by: Gerry Bidwell
240.80 362.70 490.40	m m 9y	130.0 Astrono 130.0 Astrono Grain	mic (130.0 mic (130.0	-47.0 AcidBottle -47.0 AcidBottle	Lithology			
240.80 362.70 490.40 Litholog	m m 9y <i>To m</i>	130.0 Astronov 130.0 Astronov Grain Size Lithology	mic (130.0 mic (130.0	-47.0 AcidBottle -47.0 AcidBottle	Lithology %			
240.80 362.70 490.40 Litholog <i>From</i> 0.00	m m gy <i>To m</i> 2.13	130.0 Astrono 130.0 Astrono Grain Size Lithology CASE	mic (130.0 mic (130.0 <i>Major Textu</i>	-47.0 AcidBottle -47.0 AcidBottle re <i>Minor Texture</i>	Lithology % 100			
240.80 362.70 490.40 Litholog <i>From</i> 0.00 2.13	m m gy <u>To</u> m 2.13 16.20	130.0 Astronou 130.0 Astronou Grain Size Lithology CASE F RYGO	mic (130.0 mic (130.0 <i>Major Textu</i> BAN	-47.0 AcidBottle -47.0 AcidBottle re Minor Texture PYC	<i>Lithology</i> % 100 100			
240.80 362.70 490.40 Litholog <i>From</i> 0.00 2.13 16.20	m m 70 m 2.13 16.20 19.80	130.0 Astronoo 130.0 Astronoo Grain Size Lithology CASE F RYGO XVDE	mic (130.0 mic (130.0 <i>Major Textu</i> BAN MAS	-47.0 AcidBottle -47.0 AcidBottle re <i>Minor Texture</i> PYC BED	Lithology % 100 100 100			
240.80 362.70 490.40 Litholog <i>From</i> 0.00 2.13 16.20 19.80	m m 9y 2.13 16.20 19.80 26.30	130.0 Astronom 130.0 Astronom Size Lithology CASE F RYGO XVDE F XVAE	mic (130.0 mic (130.0 <i>Major Textu</i> BAN MAS BED	-47.0 AcidBottle -47.0 AcidBottle re Minor Texture PYC BED PYC	Lithology % 100 100 100 100			
240.80 362.70 490.40 Litholog <i>From</i> 0.00 2.13 16.20 19.80 26.30	m m 2.13 16.20 19.80 26.30 43.10	130.0 Astronom 130.0 Astronom Size Lithology CASE F RYGO XVDE F XVAE F XVAE F XVIE	mic (130.0 mic (130.0 <i>Major Textu</i> BAN MAS BED TFC	-47.0 AcidBottle -47.0 AcidBottle re Minor Texture PYC BED PYC	Lithology % 100 100 100 100 100			
240.80 362.70 490.40 Litholog <i>From</i> 0.00 2.13 16.20 19.80 26.30 43.10	m m 2.13 16.20 19.80 26.30 43.10 60.60	130.0 Astronom 130.0 Astronom Size Lithology CASE F RYGO XVDE F XVAE F XVAE F XVIE C VIAB	mic (130.0 mic (130.0 <i>Major Textu</i> BAN MAS BED TFC MO	47.0 AcidBottle 47.0 AcidBottle me Minor Texture PYC BED PYC BAN	Lithology % 100 100 100 100 100 100			

Data Data -----

A CONTRACTOR

Contraction of the

TP04_01

Thursday, 11 November 2004

Page 1 of 11

105.10	117.00		RYGO	MO	MAS	100
117.00	120.20		VIAB	MAS		100
120.20	123.30		RYGO	MO	MAS	100
123.30	125.90		VIAB	MAS		100
125,90	129.00		RYGO	MO	MAS	100
129.00	130.40		VIAB	MAS		100
130.40	139.90		RYGO	MO	MAS	100
139.90	141.20		VIAB	MAS		100
141.20	145.20		RYGO	MO	MAS	100
145.20	150.30	F	VIOV	MO	MAS	100
150.30	152.70		VIAB	MAS		100
152.70	153.70	F	VIOV	MO	MAS	100
153.70	164.70		VIAB	MAS		100
164.70	170.60	F	XVMF			100
170.60	176.80	F	VIAX	PBX		100
176.80	178.90		RYGO	MO	MAS	100
178.90	183.80	F	XVMF			100
183.80	191.00		VIAX	PBX		100
191.00	191.50		RYGO	MO	MAS	100
191.50	207.00		VIAX	PYC		100
207.00	209.80		VIAU	MAS		100
209.80	224.70		VIAX	PYC		100
224.70	225.30	F	VIAU	MAS		100
225.30	237.90		VIAX	PYC		100
237.90	242.20	F	VFOQ	MAS		100
242.20	267.10		VIAX	PYC		100
267.10	267.30	F	SACO	BAN		100
267.30	271.50		VIAX	PYC		100
271.50	288.70	м	VMOO	MAS	PYC	100
288.70	292.10	F	VIAU	MAS		100
292.10	301.10	м	VMOO	MAS	PYC	100
301.10	307.80		VMOX	PYC		100
307.80	309.80	F	VMOO	MAS		100
309.80	316.10	F	VFRO	MAS		100
316.10	331.60		VIAX	PYC		100
331.60	334.40	F	VMOO	MAS		100
334.40	342.40		VIAX	PYC		100

Contraction of the

TP04_01

Page 2 of 11

										Main a			No. 10			-statility
342.40	345.20		VIOX	PYC			100									
345.20	348.40	F	VFRO	MAS			100									
348.40	355.10		VIAX	MAS			100									
355.10	355.60		XVIF	PYC			100									
355.60	358.30	М	VIOX	PYC			100									
358.30	386.55	F	SAOO	PYC			100									
386.55	412.70	F	SAVO	MAS			100									
412.70	420.10		XVDF				100									
420.10	423.10		SAVO	MAS			100									
423.10	435.70	М	VFDX	PYC			100									
435.70	440.40		VFRX	PBX			100									
440.40	446.00	С	VFDX	PBX			100									
446.00	450.00		VFRX	PBX			100									
450.00	455.50	С	VFDX	PBX			100									
455.50	457.00	F	VFRX	PBX			100									
457.00	496.20	F	VFRB	MAS			100									
		Marting Constants						andra an anna an		TING STATES		ander som a				
Alterati	on Tom	Alto	ration type	Style	Int.	Alt Min 1	nt. Alt Min	2 int.	Alt Min 3	Int.	Acc. minerals	s Comment	e			
2.13	16.20	Phylli		PV	nn.	QZ	SERI	4 III.	PY	<i></i>	Acc. minieraiz	s comment	3			
16.20	17.40	-	/Silicification	FLD		QZ										
17.40	19.80	Silicio	/Silicification	FLD		QZ										
19.80	26.30	Pyriti				CH										
26.30	42.70	Pyriti				CH										
42.70 66.00	66.00 68.80	Pyriti	c /Silicification	FLD		CH QZ										
68.80	145. 20	Pyriti		ru		CH										
145.20	149.50		/Silicification	FLD		QZ										
149.50	152.70		/Silicification	FLD		QZ										
152.70	1 53.70	Silicio	Silicification	FLD		QZ										
153.70	287.00	Pyriti				CH										
287.00	292.00	Pyriti				CH	EP									
307.80 375.50	308.30 386.50		/Silicification	FLD		QZ CH										
		Pyriti								NERSEALE						
Veining																
From	То т	Vein	type		Style		I	nt. Av.t. (m.	hick Comr m)	nents						
2.13	2.20	qz		Irregul	ar/deformed	d/segmented		,								
3.30	3.50	qz				1/segmented										
5.90	6.10	ру			ated Veins											
6.50	6.80	ру		Brecci	ated Veins											
									3004				· · · · · · · · · · · · · · · · · · ·	D		

TP04_01

Thursday, 11 November 2004

Page 3 of 11

9.70	9.80	qz	Sheeted Veins					
11.00	11.20	ру	Brecciated Veins					
17.60	18.00	qz	Massive Veins					
18.30	18.60	qz	Brecciated Veins					
19.40	19.60	qz	Fracture Veins					
26.80	26.85	qz	Cockade		1			
32.40	32.50	qz	Massive Veins		3			
34.00	34.20	qz	Irregular/deformed/segmented		2			
34.50	37.20	qz	Irregular/deformed/segmented					
39.80	42.60	qz	Irregular/deformed/segmented					
43.60	44.30	qz	Brecciated Veins					
46.20	48.20	qz	Brecciated Veins					
66.50	69.50	qz	Irregular/deformed/segmented					
75.20	76.10	qz	Irregular/deformed/segmented					
88.75	88.95	qz	Brecciated Veins					
94.00	100.30	qz	Irregular/deformed/segmented					
102.70	104.90	qz	Irregular/deformed/segmented			~		
170.60	172.00	qz	Brecclated Veins					
181.40	181.80	qz	Fault-related veins		4			
181.80	210.60	qz	Irregular/deformed/segmented		1			
237.90	243.10	qz	Cockade					
243.10	259.40	qz	Irregular/deformed/segmented					
259.40	261.80	qz	Brecciated Veins					
261.80	278.20	qz	Irregular/deformed/segmented					
386.50	440.40	qz	Fault-related veins					
440.40	447.00	qz	Fault-related veins					
447.00	450.00	qz	Fault-related veins					
456.00	496.20	qz	Fault-related veins					
MUNICIPALITY STEPRE	949454974248757748				ine an and a state of the second states			
Structu	ire							
From	То т	Structure	Intensity	Comments				
5.20	5.30	fault gouge / clay/ pug	WK					
6.40	6.80	fault gouge / clay/ pug	WK					
		shear/ shear zone						
7.30	8.00	shear/ shear zone	MOD					
10.10	10.40	fault gouge / clay/ pug	INT					
10.80	11.80	fault gouge / clay/ pug	INT					
11.80	16.00	fault gouge / clay/ pug	INT					
17.80	18.00	shear/ shear zone	MOD					
18.20	18.40	shear/ shear zone	MOD					
24.00	24.80	shear/ shear zone	mob					
24.00	26.30	breccia						
29.90	30.40	breccia						
31.40	32.60	breccia						
01.40	52.00	5,000						

100000

Contraction of the

tresignet.

TP04_01

Page 4 of 11

33.00	34.00	breccia	
37.80	39.90	breccia	
39.90	40.20	breccia	
50.20	50.70	shear/ shear zone	
58.80	59.20	breccia	INT
84.10	85.00	breccia	WK
88.70	88.90	breccia	INT
96.30	96.50	breccia	STG
100.00	100.30	breccia	STG
104.20	104.80	shear/ shear zone	
170.50	172.00	breccia	
173.30	176.70	breccia	
196.90	197.20	shear/ shear zone	MOD
232.60	232.90	shear/ shear zone	WK
267.10	267.20	shear/ shear zone	
308.10	308.20	shear/ shear zone	
315.80	316.00	shear/ shear zone	
358.20	386.50	shear/ shear zone	
381.30			
	381.90	fault gouge / clay/ pug	
382.80	381.90 383.20	fault gouge / clay/ pug fault gouge / clay/ pug	
382.80 385.70			STG

100

Notice and

129800

Point Structure

and the second second

BORCOOR

		icture					Dip/	
Depth	m	Feature	Alpha	Beta Gamma	Young. Dir	Dip/ Plunge	Plunge Dir.	Reliability Comments
2.50		Gneissosity	85.0					
2.90		Gneissosity	85.0					
3.20		Gneissosity	70.0					
4.20		Gneissosity	70.0					
5.20		Gneissosity	80.0					
6.50		Gneissosity	70.0					
8.00		Gneissosity	90.0					
9.50		Gneissosity	80.0					
10.50		Gneissosity	80.0					
12.80		Gneissosity	90.0					
13.50		Gneissosity	80.0					
15.00		Gneissosity	60.0					
16.00		Gneissosity	70.0					
18.20		Bedding	25.0					
20.90		Bedding	35.0					
21.30		Bedding	55.0					
22.50		Bedding	60.0					
23.00		Bedding	50.0					

TP04_01

Thursday, 11 November 2004

Page 5 of 11

						-		-Sector							George	
27 50		odding			25.0											
27.50 30.30		ledding Iedding			35.0 40.0											
125.40		ault plane														
170.50		ault plane			80.0											
282.30		hear			50.0											
						eransera										
Mineral From		n Tot. m Sulph.	Mineral 1	Style	% Mineral	12	Style	%	Mineral 3	Stude		%	Cor	nments		
2.13	6.50		pyrite	DISS	// minara		July 1G	70	innerar o	Olyne		/0	00,	minino		
6.50	11.00	10	pyrite	DISS												
11.00	16.20	6	pyrite	DISS												
16.20	19.80	1	pyrite	DISS												
19.80	23.00	1	pyrite	DISS												
23.00	26.30	10	pyrite	DISS												
33.00	33.20	10	pyrite	PAT												
33.20	38.30	8	pyrite	DISS												
38.30	39.85	4	pyrite	DISS												
39.85	40.20	10	pyrite	DISS												
40.20	58.00	3	pyrite	DISS												
58.00	66.00	2	pyrite	DISS												
66.00 68.80	68.80 114.00	4 1	pyrite pyrite	DISS DISS												
114.00	144.00	0.5	pyrite	DISS												
144.00	156.00	2	pyrite	DISS												
156.00	164.50	0.5	pyrite	DISS												
164.50	170.00	3	pyrite	DISS												
170.00	184.00	0.5	pyrite	DISS												
184.00	195.00	0.5	pyrite	DISS												
195.00	207.00	1.5	pyrite	DISS												
211.00	217.00	1.5	pyrite	DISS												
225.00	237.90	1.5	pyrite	DISS												
237.90	242.30	3	pyrite	DISS												
242.30	244.00	1.5	pyrite	DISS												
244.00	496.20	1	pyrite	DISS		oser stor				elandersean der	190343269 729 522	725 4 7 25 7 72	ener en	KARAN KARANGAN KARAN		
Sample	s			PI	ot Au FA	Au	Ag	Cu	Pb	Zn	As	Ba	a Hg	Sb	Mn	
From	To m	Sample ID	Sample ty	pe Au_pp		ppb	ppb	ppm	ppm	ppm	ppm	ppm	-	ppm	ppm	
2.13	3.00	136846	CORE_HA	LF 0.004	5	4.5	634	10.96	3.31	2.6	7.9	65.6	687	3.62	2	
3.00	4.00	136847	CORE_HA		5	1.5	1105	7.32	3.45	4.1	2.9	67.4	462	3.5	2	
4.00	5.00	136848	CORE_HA	LF 0.000	9	0.9	668	13.85	3.41	1.6	5.2	17.2	1192	4.51	-1	
5.00		136849	CORE_HA		7	5.7	400	13.9	3.55	1.6	13.7	14.2		3.35	2	
6.00		136850	CORE_HA			6,6	121			1.3	3.2	16.2		1.9	1	
0.00	1.00		00112_17	0.000	-	0.0							0,0		•	
			••• •••													

TP04_01

Thursday, 11 November 2004

Page 6 of 11

7.00	8.00	136951	CORE_HALF	0.0066	6.6	135	20.24	3.53	5.1	7.1	7.8	573	1	29
8.00	9.00	136952	CORE_QUAR	0.0064	6.4	1 20	16.29	2.99	2.5	5.9	9.5	542	0.92	6
		136953	CORE_QUAR	0.0063	6.3	214	22.89	4 .1 2	3.7	14.3	9.3	3252	1.48	9
9.00	10.00	136954	CORE_HALF	0.0052	5.2	223	25.66	4.51	1.9	11.8	8	2741	1.23	5
10.00	11.00	136955	CORE_HALF	0.009	9	145	30.42	6.65	3	22.5	5.6	1352	1.87	6
11.00	12.00	136956	CORE_HALF	0.0144	14.4	156	60.28	9.84	50.7	23.2	6.1	1515	2.34	7
12.00	13.00	136957	CORE_HALF	0.019	19	130	22.3	7.98	153.9	15.8	10.4	3051	2.5	6
13.00	16.20	136958	CORE_HALF	0.0247	24.7	175	9.3	2.46	5.6	8.1	54.5	361	2.72	12
16.20	17.00	136959	CORE_HALF	0.0081	8.1	490	31.88	5.93	73.2	10.3	109.5	231	1.11	1225
17.00	18.00	136960	CORE_HALF	0.0044	4.4	709	38.43	11.51	100.3	10.3	67.7	134	0.7	2187
18.00	19.00	136961	CORE_HALF	0.0071	7.1	864	45.83	9.06	89.1	18.4	155.2	128	1.24	1572
19.00	19.80	136962	CORE_HALF	0.0027	2.7	1477	37.78	19.07	74.2	31.5	84.2	233	1.33	1711
19.80	21.00	136963	CORE_HALF	0.001	1	604	70.79	12.53	89.1	8.2	138	57	0.45	1331
21.00	22.00	136964	CORE_HALF	0.0004	0.4	393	69.73	8.08	91.6	6.1	242.3	37	0.36	1616
22.00	23.00	136965	CORE_HALF	0.0003	0.3	630	39.72	10.01	103.8	5.1	208.1	39	0.53	1394
23.00	24.00	136966	CORE_HALF	0.0012	1.2	848	29.95	15.62	107.9	6.3	70.9	54	0.74	1775
24.00	25.00	136967	CORE_HALF	0.0002	0.2	1454	19.05	31.13	116.5	8.9	28.3	86	1.73	1469
25.00	26.30	136968	CORE_HALF	0.0006	0.6	764	14.59	16.8	115.7	5.1	20.1	34	0.93	1942
26.30	27.00	136969	CORE_HALF	0.0106	10.6	437	4.31	11.47	114.9	2.8	22.5	16	0.62	2307
27.00	28.00	136970	CORE_HALF	0.0098	9.8	457	4.86	10.25	116.9	3.1	51.5	12	0.59	1934
28.00	29.00	136971	CORE_QUAR	0.0114	11.4	500	11.02	12	118.6	3.6	24.8	16	0.72	2010
		136972	CORE_QUAR	0.0113	11.3	517	10.05	11.42	118.3	3.4	25.3	16	0.66	1910
29.00	30.00	136973	CORE_HALF	0.0077	7.7	628	6.9	13.5	140.8	3.2	25.1	32	0.73	1840
30.00	31.00	136974	CORE_HALF	0.017	17	569	6.64	16.54	102.5	2.8	13.2	38	0.8	2090
31.00	32.00	136975	CORE_HALF	0.0132	13.2	1111	8.69	32.06	111.8	4.3	11.1	62	1.13	2028
32.00	33.00	136976	CORE_HALF	0.0045	4.5	1432	17.75	32.17	119.8	7.1	17.7	111	1.37	2030
33.00	34.00	136977	CORE_HALF	0.0026	2.6	386	10.1	29.02	53	28.3	21.3	.15	1.36	927
34.00	35.00	136978	CORE_HALF	0.0009	0.9	513	15.02	15.68	76.4	8.9	46	43	0.97	1578
35.00	36.00	136979	CORE_HALF	0.0092	9.2	503	20.27	14.57	56.7	52.9	42.7	14	0.81	1533
36.00	37.00	136980	CORE_HALF	0.012	12	593	13.7	10.51	56.8	72	30.6	17	0.64	1471
37.00	38.00	136981	CORE_HALF	0.0107	10.7	512	23.09	7.56	62.6	50.2	44.1	18	0.47	1422
38.00	39.00	136982	CORE_HALF	0.0188	18.8	873	19.97	15	55.5	90.4	22.1	28	0.78	1472
39.00	39.85	136983	CORE_HALF	0.0142	14.2	971	15.43	11.53	52.2	94.4	31.4	45	0.71	1643
39.85	40.20	136984	CORE_HALF	0.0007	0.7	3576	42.05	66.9 1	107.1	25.5	21.6	184	3.07	1090
40.20	41.00	136985	CORE_HALF	0.0488	48.8	306	36.68	10.14	60.4	13.5	133.7	27	1.11	1483
41.00	42.00	136986	CORE_HALF	0.0085	8.5	138	51.13	3.33	68.2	8.2	168.9	9	0.32	1706

Media de Ver

100

TP04_01

Thursday, 11 November 2004

Page 7 of 11

42.00	43.00	136987	CORE_HALF	0.0052	5.2	101	48.56	5.55	68.1	2.3	908.2	6	0.24	2279
43.00	44.00	136988	CORE_HALF	0.0034	3.4	57	64.13	2.63	69	0.9	165.7	-5	0.29	1244
44.00	45.00	136989	CORE_HALF	0.0017	1.7	64	79.16	3.09	73.4	0.8	347.7	-5	0.22	1169
45.00	46.00	136990	CORE_HALF	0.0029	2.9	50	39.06	3.31	69.7	0.6	552.5	-5	0.23	1231
46.00	47.00	136992	CORE_QUAR	8000.0	0.8	50	41.48	2.07	70.8	0.6	146.1	-5	0.19	983
		136991	CORE_QUAR	0.0013	1.3	40	43.33	1.94	71.6	0.5	92.6	-5	0.18	1021
47.00	48.00	136993	CORE_HALF	0.0007	0.7	60	32.65	2.6	68.5	1.4	90.7	-5	0.18	843
48.00	49.00	136994	CORE_HALF	0.0003	0.3	19	5.5	5.16	69	0.4	318.6	-5	0.13	865
49.00	50.00	136995	CORE_HALF	0.0016	1.6	73	46.13	3.16	63.2	2	349	5	0.29	942
50.00	52.00	136996	CORE_HALF	0.0009	0.9	58	45.71	3.34	71.9	2.4	419.7	-5	0.19	2082
52.00	54.00	136997	CORE_HALF	0.0016	1.6	49	38.26	2.35	63.5	2	381.8	-5	0.14	1399
54.00	56.00	136998	CORE_HALF	0.0052	5.2	71	57.4	13.5	73	3	1 2 5.5	-5	0.23	1252
56.00	58.00	136999	CORE_HALF	0.0019	1.9	72	45.81	10.46	110.7	0.5	463.4	7	0.09	1462
58.00	60.00	137000	CORE_HALF	0.0022	2.2	146	59.01	297.01	122.8	2.6	112.5	19	0.15	1386
60.00	62.00	136901	CORE_HALF	0.0108	10.8	65	31.36	4.36	80.6	1.7	329.7	5	0.21	1107
62.00	64.00	136902	CORE_HALF	0.0014	1.4	83	44.93	5.1	65.1	0.7	466.7	10	0.18	807
64.00	66.00	136903	CORE_HALF	0.0061	6.1	106	79.93	5.88	69.5	3.8	434.3	39	0.24	932
66.00	67.50	136904	CORE_HALF	0.0058	5.8	104	64.99	6.09	66.2	30.6	184.7	182	8.22	1218
67.50	69.00	136905	CORE_HALF	0.0021	2.1	85	40.7	31.27	71.7	1	385.2	29	0.15	1034
84.00	86.00	136906	CORE_HALF	0.0029	2.9	36	23.99	3.17	65.8	0.7	386.5	-5	0.2	770
86.00	88.00	136907	CORE_HALF	0.0036	3.6	106	67.25	23.68	133.8	1.4	493.2	24	0.25	980
88.00	90.00	136908	CORE_HALF	0.0074	7.4	120	50.54	5.82	120.5	4.7	159.1	26	0.34	912
90.00	92.00	136909	CORE_HALF	0.0036	3.6	148	55.53	4.91	77.6	4.8	376.8	8	0.31	1136
92.00	94.00	136910	CORE_HALF	0.0104	10.4	148	53	135.31	66.8	2.2	112.1	9	0.24	1 287
94.00	96.00	136912	CORE_QUAR	0.0095	9.5	225	124.92	530.35	75.3	2.1	92.8	12	0.26	1168
		136911	CORE_QUAR	0.0106	10.6	345	255.19	663.07	72.7	1.9	66	17	0.29	1259
96.00	98.00	136913	CORE_HALF	0.009	9	169	127.76	71.53	357.1	2.6	58.1	125	0.29	114 2
98.00	100.00	136914	CORE_HALF	0.0119	11.9	183	112.18	16.56	75.5	3.4	69.6	20	0.28	1311
100.00	100.50	136915	CORE_HALF	0.0067	6.7	123	15.46	27.22	103.1	2.5	57. 2	9	0.17	3376
100.50	102.00	136916	CORE_HALF	0.0056	5.6	110	64.85	7.82	83.7	3.2	67.9	10	0.19	1432
102.00	104.00	136917	CORE_HALF	0.0045	4.5	86	28.86	39.98	82.1	3.3	68.3	6	0.19	1308
144.00	145.20	136918	CORE_HALF	0.0026	2.6	85	70.01	4.01	59.8	1.7	227.6	23	0.59	1344
145.20	146.00	136919	CORE_HALF	0.0022	2.2	160	161.69	92.66	85.3	39.4	303.6	98	13.12	1347
146.00	147.00	136920	CORE_HALF	0.0055	5.5	93	22.98	16.85	53.8	9.3	220.8	28	2.75	1400
147.00	148.00	136921	CORE_HALF	0.0024	2.4	144	42.36	7.05	89.9	11.9	139.6	27	4.79	1349
148.00	149.50	136922	CORE_HALF	0.0029	2.9	68	42.89	4.42	48.4	0.9	118.7	15	0.15	1287

100.000

TP04_01

Thursday, 11 November 2004

Page 8 of 11

149.50	151.00	136923	CORE_HALF	0.002	2	128	161.02	3.74	57.4	1	663.8	19	0.2	1 028
151.00	153.00	136924	CORE_HALF	0.0343	34.3	90	74.86	3.34	61.1	2.4	253.8	55	0.44	1160
153.00	154.60	136925	CORE_HALF	0.0023	2.3	105	54.07	13.96	50.9	11.8	555.3	22	1.91	1241
154.50	156.00	136926	CORE_HALF	0.0018	1.8	70	39.97	3.93	55.1	2.5	554.5	15	0.22	1036
164.00	166.00	136927	CORE_HALF	0.0054	5.4	471	25.75	13.93	93.3	32.2	93.1	31	1.47	1443
166.00	168.00	136928	CORE_HALF	0.0078	7.8	601	18.59	7.14	92	7.2	268.6	41	1.34	1733
168.00	170.00	136929	CORE_HALF	0.0187	18.7	981	44.73	20.54	87.7	12.2	117.6	54	1.68	1407
170.00	172.00	136930	CORE_HALF	0.0024	2.4	802	31.3	11.24	99.7	14.5	284.4	53	1.17	1688
172.00	174.00	136931	CORE_QUAR	0.0032	3.2	149	25.04	3.16	121.4	8.1	145.2	15	0.54	1612
		136932	CORE_QUAR	0.0049	4.9	202	19.07	5.12	124.4	8.9	76.7	17	0.61	1699
174.00	176.00	136933	CORE_HALF	0.001	1	173	19.77	10.6 2	115.5	6.2	49.7	22	0.4	2004
176.00	178.00	136934	CORE_HALF	0.0006	0.6	126	51.49	3.08	112.6	2.9	156.2	19	0.31	1784
178.00	180.00	136935	CORE_HALF	0.0018	1.8	71	16.54	3.03	160.8	2.6	495.8	11	0.18	2530
180.00	182.00	136936	CORE_HALF	0.0032	3.2	149	38.54	4.88	123.2	10	236.9	27	0.4	1560
182.00	184.00	136937	CORE_HALF	0.0013	1.3	2450	56.09	20.62	97.2	14.5	99	74	1.32	787
195.00	197.00	136938	CORE_HALF	0.0032	3.2	176	117.21	2.3	129.3	2.8	509.5	11	0.11	1797
197.00	199.00	136939	CORE_HALF	0.009	9	126	63.81	7.52	112.6	0.6	399.8	-5	0.11	1716
199.00	201.00	136940	CORE_HALF	0.0293	29.3	57	5.59	1.82	83	0.3	96.1	-5	0.11	1472
201.00	203.00	136941	CORE_HALF	0.0193	19.3	82	10.94	3.1	101.5	0.4	436.8	-5	0.11	1533
203.00	205.00	136942	CORE_HALF	0.0031	3.1	90	83.93	3.12	109.4	0.8	203.4	6	0.17	1818
205.00	207.00	136943	CORE_HALF	0.0275	27.5	102	49.33	33.54	191.6	2.1	56.7	15	0.15	2203
211.00	213.00	136944	CORE_HALF	0.2327	232.7	437	19.16	124.48	117	13.2	44.3	26	0.37	1550
213.00	215.00	136945	CORE_HALF	0.006	6	241	49.46	12.65	146.6	5.3	92.2	16	0.25	1956
215.00	217.00	136946	CORE_HALF	0.0071	7.1	113	50.68	2.87	146.2	1.3	181.8	-5	0.09	1780
225.00	227.00	136947	CORE_HALF	0.0042	4.2	157	81.12	2.44	129.2	3.3	177.9	16	0.11	1594
227.00	229.00	136948	CORE_HALF	0.0034	3.4	180	69.34	3.39	125.6	7. 2	254.1	19	0.15	1688
236.00	237.90	136949	CORE_HALF	0.0045	4.5	85	32.26	5.72	142.6	4.3	82.4	5	0.15	2098
237.90	239.00	136950	CORE_HALF	0.0042	4.2	94	6.71	6.1	29.7	1.1	135.1	-5	0.09	568
239.00	240.00	136851	CORE_QUAR	0.002	2	62	16.31	7.29	41.2	1.4	332.1	54	0.25	557
		136852	CORE_QUAR	0.0032	3.2	58	14.66	9.56	41.7	1.3	210	23	0.16	653
240.00	241.00	136853	CORE_HALF	0.002	2	51	4.49	5.46	37	1	858.1	-5	0.09	614
241.00	242.00	136854	CORE_HALF	0.0066	6.6	46	6.25	12	38.8	1.6	101.9	13	0.12	839
242.20	244.00	136855	CORE_HALF	0.0026	2.6	58	50.28	1.89	106	1	141.6	6	0.1	1320
258.00	260.00	136856	CORE_HALF	0.0054	5.4	167	54.11	4.18	118.5	5.6	196.3	17	0.13	1534
260.00	262.00	136857	CORE_HALF	0.0029	2.9	151	58.5	2.41	92.7	3	176.9	15	0.11	1546
262.00	264.00	136858	CORE_HALF	0.0036	3.6	174	34.5	3.97	115	5.5	149.7	13	0.26	1551

Contract of the local division of the local

-

Constant of the second s

si tang Salah

1

Standing and

TP04_01

Thursday, 11 November 2004

Page 9 of 11

264.00	266.00	136859	CORE_HALF	0.0104	10.4	173	49.18	2.38	100.2	2.9	107	18	0.14	11 25	
266.00	267.10	136860	CORE_HALF	0.0286	28.6	393	17.16	2.09	131.6	1.8	176.6	15	0.13	956	
267.10	268.00	136861	CORE_HALF	0.0097	9.7	238	43.66	6.11	102.6	8.8	248.1	21	0.38	976	
307.70	308.40	136862	CORE_HALF	0.0035	3.5	214	111.17	9.96	91	5.2	172	31	0.12	1193	
308.40	310.00	136863	CORE_HALF	0.0565	56.5	216	10.39	4.78	94.8	2	188.3	42	0.1	663	
310.00	311.20	136864	CORE_HALF	0.0471	47.1	338	86.66	7.25	118.8	1.4	378.8	41	0.1	831	
311.20	313.00	136865	CORE_HALF	0.0023	2.3	31	6.46	2.94	31.1	0.4	250.9	13	0.06	448	
313.00	315.00	136866	CORE_HALF	0.0014	1.4	22	3.25	3.11	23.8	0.6	116.5	11	0.05	396	
315.00	316.00	136867	CORE_HALF	0.0015	1.5	32	11.3	2.4	42	6.3	225.5	10	0.09	772	
316.10	318.00	136868	CORE_HALF	0.0038	3.8	99	33.42	7.4	132.9	9.7	52.3	22	0.19	1833	
340.00	342.00	136869	CORE_HALF	0.0008	0.8	207	43.78	31.26	113.6	10.2	73.7	33	0.64	1076	
342.00	344.00	136870	CORE_HALF	-0.0002	-0.2	127	15.91	17.1	97.3	11.3	83.9	39	0.67	1012	
344.00	346.00	136871	CORE_QUAR	-0.0002	-0.2	236	44.41	19.92	64	10.2	74.5	30	1.13	902	
		136872	CORE_QUAR	0.0005	0.5	265	33.7	27.99	65.5	12	72.6	42	1.25	1038	
358.20	360.00	136873	CORE_HALF	0.0006	0.6	229	57.17	14.62	125.6	14.9	80.4	151	3.1	814	
360.00	362.00	136874	CORE_HALF	0.0006	0.6	230	42.31	19.29	120.1	16.4	82.6	133	3.78	859	
362.00	364.00	136875	CORE_HALF	-0.0002	-0.2	118	57.85	16.32	111.9	14.2	56.4	78	2.37	1138	
364.00	366.00	136876	CORE_HALF	0.0006	0.6	131	53.19	14.84	121	13.2	64.9	83	2.74	1056	
366.00	368.00	136877	CORE_HALF	0.0005	0.5	299	49.52	18. 2	139.1	17.8	90.3	128	3.76	890	
368.00	370.00	136878	CORE_HALF	0.0005	0.5	80	42.68	7.82	104.4	11.2	60.9	51	1.6	1153	
370.00	372.00	136879	CORE_HALF	0.0004	0.4	129	53.07	7.72	109.6	14.9	57	122	3.36	1026	
372.00	374.00	136880	CORE_HALF	0.0002	0.2	65	46.12	5.23	111.9	13.2	55.3	93	2.52	993	
374.00	376.00	136881	CORE_HALF	0.0002	0.2	61	40.19	5.96	88.6	9.8	76.1	91	2.38	813	
376.00	378.00	136882	CORE_HALF	0.0005	0.5	107	40.7	7.91	102.1	10.9	74.3	133	2.64	843	
378.00	380.00	136883	CORE_HALF	-0.0002	-0.2	202	40.62	7.35	100.1	13.9	82.2	109	2.52	770	
380.00	382.00	136884	CORE_HALF	0.0003	0.3	202	49.36	6.15	119	19.9	170.5	96	2.64	722	
382.00	384.00	136885	CORE_HALF	0.0002	0.2	287	43.17	12.92	132.7	19.9	83	226	6.79	427	
384.00	385.00	136886	CORE_HALF	-0.0002	-0.2	565	40.15	11.47	107.1	23	83	134	2.89	718	
385.00	386.55	136887	CORE_HALF	0.0003	0.3	266	40.41	8.05	112.6	15. 9	68.8	151	4.16	643	
386.55	388.00	136888	CORE_HALF	0.0013	1.3	192	3.58	13.19	69.4	6.2	34.2	51	1.21	219	
388.00	390.00	136889	CORE_HALF	0.0024	2.4	298	3.36	39.56	102.4	5.9	34	46	1.53	265	
435.60	437.00	136890	CORE_HALF	0.0011	1.1	262	9.56	15.43	84.1	13.5	59.9	97	1.55	714	
437.00	439.00	136891	CORE_QUAR	0.0009	0.9	158	2.1	15. 97	72.3	7.4	45.3	68	0.53	178	
		136892	CORE_QUAR	0.0008	0.8	141	1.74	13.97	67.3	6.7	24.3	61	0.54	183	
439.00	441.00	136893	CORE_HALF	0.0009	0.9	115	20.24	12.71	91.2	26.8	80.3	99	2.55	657	
441.00	443.00	136894	CORE_HALF	0.001	1	86	51.49	4.13	84.7	66.5	113.8	43	4.58	1310	

Constant of the second

TP04_01

Thursday, 11 November 2004

Page 10 of 11

	Second second	

443.00 445.00	136895	CORE_HALF	0.0013	1.3	137	50.16	4.41	79.2	71.6	126.8	38	4.85	1388
445.00 447.00	136896	CORE_HALF	0.0019	1.9	247	25.34	10.38	82.8	88.4	112.6	63	3.96	1001
447.00 449.00	136897	CORE_HALF	0.0014	1.4	539	3.79	14.51	83.6	33.5	23.9	66	1.76	398
449.00 450.00	136898	CORE_HALF	0.0007	0.7	424	3.6	16.94	100.4	10	13.8	59	1.5	569
450.00 452.00	136899	CORE_HALF	0.0026	2.6	558	5 2 .87	11.03	106.8	44.5	33.6	56	2.48	2458
494.00 496.20	136900	CORE_HALF	0.0006	0.6	212	1.88	22.92	121.9	16.9	6.9	51	1.7	473

ESKAY PROJECT

147450 au

ſ

2004 FIELD PROGRAM

Appendix IV

Mineral Tenures

法認定

Contraction of the second

Claim Name	Owner	Recording Date	Tenure No.	Units	Expiry
REATY	Teuton Resources Corp.	9-Jan-80	250847	12	January 9, 2014
R 5	Teuton Resources Corp.	30-Sep-85	251229	20	September 30, 2014
R 6	Teuton Resources Corp.	30-Sep-85	251230	15	September 30, 2014
R 7	Teuton Resources Corp.	30-Sep-85	251231	20	September 30, 2014
R 8	Teuton Resources Corp.	30-Sep-85	251232	8	September 30, 2014
COUL 1	Heritage Explorations Ltd.	28-Feb-86	251344	20	January 31, 2010
COUL 2	Heritage Explorations Ltd.	28-Feb-86	251345	20	January 31, 2010
COUL 3	Heritage Explorations Ltd.	28-Feb-86	251346	20	January 31, 2010
COUL 4	Heritage Explorations Ltd.	28-Feb-86	251347	20	January 31, 2010
JNUK 1	Heritage Explorations Ltd.	28-Feb-86	251358	20	January 31, 2010
JNUK 11	Heritage Explorations Ltd.	28-Feb-86	251360	20	January 31, 2010
JNUK 12	Heritage Explorations Ltd.	28-Feb-86	251361	20	January 31, 2010
JNUK 13	Heritage Explorations Ltd.	28-Feb-86	251374	16	January 31, 2010
JNUK 14	Heritage Explorations Ltd.	28-Feb-86	251375	16	January 31, 2010
JNUK 22	Heritage Explorations Ltd.		251379	20	
		28-Feb-86			January 31, 2010
PARADIGM 2	Teuton Resources Corp.	28-Apr-87	251838	12	April 28, 2014
ANCE 3	Heritage Explorations Ltd.	28-Apr-87	251844	18	January 31, 2010
ANCE 4	Heritage Explorations Ltd.	28-Apr-87	251845	18	January 31, 2010
SKOOKUM	Heritage Explorations Ltd.	13-Jan-89	252352	16	January 31, 2010
SIB 26	Heritage Explorations Ltd.	29-Jun-89	252871	- 1	January 31, 2014
SIB 27	Heritage Explorations Ltd.	29-Jun-89	252872	1	January 31, 2014
SIB 28	Heritage Explorations Ltd.	29-Jun-89	252873	1	January 31, 2014
SIB 29	Heritage Explorations Ltd.	29-Jun-89	252874	1	January 31, 2014
SIB 30	Heritage Explorations Ltd.	29-Jun-89	252875	1	January 31, 2014
SIB 31	Heritage Explorations Ltd.	29-Jun-89	252876	1	January 31, 2014
SIB 32	Heritage Explorations Ltd.	29-Jun-89	252877	1	January 31, 2014
SIB 33	Heritage Explorations Ltd.	29-Jun-89	252878	1	January 31, 2014
SIB 34	Heritage Explorations Ltd.	29-Jun-89	252879	1	January 31, 2014
SIB 35	Heritage Explorations Ltd.	29-Jun-89	252880	1	January 31, 2014
SIB 36	Heritage Explorations Ltd.	29-Jun-89	252881	1	January 31, 2014
SIB 37	Heritage Explorations Ltd.	29-Jun-89	252882	1	January 31, 2014
SIB 38	Heritage Explorations Ltd.	30-Jun-89	252883	1	January 31, 2014
SIB 39	Heritage Explorations Ltd.	30-Jun-89	252884	1	January 31, 2014
POLO 7	Heritage Explorations Ltd.	04-Sep-89	253015	20	January 31, 2010
POLO 8	Heritage Explorations Ltd.	04-Sep-89	253016	20	January 31, 2010
AFTOM #7	Heritage Explorations Ltd.	16-Sep-89	253146	16	January 31, 2010
AFTOM #9	Heritage Explorations Ltd.	15-Sep-89	253147	20	January 31, 2010
AFTOM #14	Heritage Explorations Ltd.	13-Sep-89	253152	20	January 31, 2010
AFTOM #15	Heritage Explorations Ltd.	13-Sep-89	253153	20	January 31, 2010
AFTOM #16	Heritage Explorations Ltd.		253154		
AFTOM #18	Heritage Explorations Ltd.	18-Sep-89 17-Sep-89	253154	16 16	January 31, 2010
AFTOM #18	Heritage Explorations Ltd.	16-Sep-89	253155	20	January 31, 2010
AFTOM #19	Heritage Explorations Ltd.	17-Sep-89		20	January 31, 2010
			253157		January 31, 2010
P-MAC#1	Heritage Explorations Ltd.	14-Sep-89	253176	1	January 31, 2010
P-MAC#2	Heritage Explorations Ltd.	14-Sep-89	253177	1	January 31, 2010
P-MAC#3	Heritage Explorations Ltd.	14-Sep-89	253178	1	January 31, 2010
P-MAC#4	Heritage Explorations Ltd.	14-Sep-89	253179	1	January 31, 2010
P-MAC#5	Heritage Explorations Ltd.	14-Sep-89	253180	1	January 31, 2010
P-MAC#6	Heritage Explorations Ltd.	14-Sep-89	253181	1	January 31, 2010
P-MAC#7	Heritage Explorations Ltd.	14-Sep-89	253182	1	January 31, 2010
P-MAC#8	Heritage Explorations Ltd.	14-Sep-89	253183	1	January 31, 2010
P-MAC#9	Heritage Explorations Ltd.	14-Sep-89	253184	1	January 31, 2010
P-MAC#10	Heritage Explorations Ltd.	14-Sep-89	253185	1	January 31, 2010
POLO 13	Heritage Explorations Ltd.	15-Sep-89	253240	5	January 31, 2010
FRED 15	Heritage Explorations Ltd.	11-Oct-89	253295	15	January 31, 2010
S.I.B.#1	Heritage Explorations Ltd.	31-May-72	255254	1	December 15, 2014
S.I.B.#2	Heritage Explorations Ltd.	31-May-72	255255	1	December 15, 2014
S.I.B.#3	Heritage Explorations Ltd.	31-May-72	255256	1	December 15, 2014

Claim Name	Owner	Recording Date	Tenure No.	Units	Expiry
S.I.B.#4	Heritage Explorations Ltd.	31-May-72	255257	1	December 15, 2014
6.I.B.#5	Heritage Explorations Ltd.	31-May-72	255258	1	January 31, 2014
6.I.B.#6	Heritage Explorations Ltd.	31-May-72	255259	1	January 31, 2014
S.I.B.#7	Heritage Explorations Ltd.	31-May-72	255260	1	January 31, 2014
S.I.B.#8	Heritage Explorations Ltd.	31-May-72	255261	1	January 31, 2014
S.I.B.#9	Heritage Explorations Ltd.	31-May-72	255262	1	January 31, 2014
S.I.B.#10	Heritage Explorations Ltd.	31-May-72	255263	1	January 31, 2014
S.I.B.#11	Heritage Explorations Ltd.	31-May-72	255264	1	January 31, 2014
S.I.B.#12	Heritage Explorations Ltd.	31-May-72	255265	1	January 31, 2014
S.I.B.#13	Heritage Explorations Ltd.	31-May-72	255266	1	January 31, 2014
S.I.B.#14	Heritage Explorations Ltd.	31-May-72	255267	1	January 31, 2014
S.I.B.#15	Heritage Explorations Ltd.	31-May-72	255268	1	January 31, 2014
S.I.B.#16	Heritage Explorations Ltd.	31-May-72 31-May-72	255269	1	January 31, 2014
RAMBO 1	Heritage Explorations Ltd.		304070	1	
RAMBO 3		09-Sep-91		1	January 31, 2010
	Heritage Explorations Ltd.	09-Sep-91	304072		January 31, 2010
RAMBO 5 FOG 1	Heritage Explorations Ltd.	09-Sep-91	304074	1	January 31, 2010
	Heritage Explorations Ltd.	05-Oct-91	305317	1	January 31, 2010
FOG 2	Heritage Explorations Ltd.	05-Oct-91	305318	1	January 31, 2010
FOG 3	Heritage Explorations Ltd.	05-Oct-91	305319	1	January 31, 2010
FOG 4	Heritage Explorations Ltd.	05-Oct-91	305320	1	January 31, 2010
FOG 5	Heritage Explorations Ltd.	05-Oct-91	305321	1	January 31, 2010
FOG 6	Heritage Explorations Ltd.	05-Oct-91	305322	1	January 31, 2010
NOOT 1	Heritage Explorations Ltd.	29-Nov-91	306723	20	January 31, 2010
NOOT 2	Heritage Explorations Ltd.	29-Nov-91	306724	20	January 31, 2010
NOOT 3	Heritage Explorations Ltd.	23-Nov-91	306725	20	January 31, 2010
NOOT 4	Heritage Explorations Ltd.	23-Nov-91	306726	20	January 31, 2010
BONSAI	Teuton Resources Corp.	17-Jan-92	307389	18	January 17, 2014
BONSAI 7	Teuton Resources Corp.	17-Jan-92	307390	10	January 17, 2014
BONSAI 1	Teuton Resources Corp.	17-Jan-92	307391	1	January 17, 2014
BONSAI 2	Teuton Resources Corp.	17-Jan-92	307392	1	January 17, 2014
BONSAI 3	Teuton Resources Corp.	17-Jan-92	307393	1	January 17, 2014
BONSAI 4	Teuton Resources Corp.	17-Jan-92	307394	1	January 17, 2014
LINK FR	Heritage Explorations Ltd.	24-Jul-92	311923	1	January 31, 2010
CALVIN	Heritage Explorations Ltd.	17-Sep-92	313285	20	January 31, 2010
Mineral Lease	Heritage Explorations Ltd.	06-Sep-96	329001		September 6, 2005
MACK 24	Teuton Resources Corp.	3-Aug-94	329242	20	August 3, 2014
MACK 25	Teuton Resources Corp.	3-Aug-94	329243	16	August 3, 2014
PUD 1	Heritage Explorations Ltd.	25-Feb-99	367934	20	January 31, 2010
PUD 2	Heritage Explorations Ltd.	25-Feb-99	367935	4	January 31, 2010
MEGAN 1	Heritage Explorations Ltd.	25-Feb-99	367943	1	December 15, 2014
MEGAN 2	Heritage Explorations Ltd.	25-Feb-99	367944	1	December 15, 2014
STO 1	Heritage Explorations Ltd.	15-Dec-99	373857	10	January 31, 2010
STO 2	Heritage Explorations Ltd.	15-Dec-99	373867	5	January 31, 2010
JOHN 1	Heritage Explorations Ltd.	12-Feb-01	384019	16	January 31, 2010
JOHN 2	Heritage Explorations Ltd.	12-Feb-01	384020	16	January 31, 2010
IRVING 1	Heritage Explorations Ltd.	04-Jun-01	387231	20	January 31, 2010
IRVING 2	Heritage Explorations Ltd.	04-Jun-01	387232	20	January 31, 2010
IRVING 3	Heritage Explorations Ltd.	04-Jun-01	387233	20	January 31, 2010
IRVING 4	Heritage Explorations Ltd.	04-Jun-01	387234	20	January 31, 2010
Bell 1	Heritage Explorations Ltd.	04-Jun-01	387234	20	
Bell 2					January 31, 2010
	Heritage Explorations Ltd.	04-Jun-01	387238	20	January 31, 2010
Bell 3	Heritage Explorations Ltd.	04-Jun-01	387239	15	January 31, 2010
Bell 4	Heritage Explorations Ltd.	04-Jun-01	387240	20	January 31, 2010
Bell 5	Heritage Explorations Ltd.	04-Jun-01	387241	8	January 31, 2010
Bell 6	Heritage Explorations Ltd.	04-Jun-01	387245	10	January 31, 2010
Bell 7	Heritage Explorations Ltd.	04-Jun-01	387248	7	January 31, 2010
Bell 8	Heritage Explorations Ltd.	04-Jun-01	387249	5	January 31, 2010
TOON 1	Heritage Explorations Ltd.	10-Sep-01	389463	2	January 31, 2010

Claim Name	Owner	Recording Date	Tenure No.	Units	Expiry
······	Heritage Explorations Ltd.	10-Sep-01	389464	12	January 31, 2010
IARRY 1	Heritage Explorations Ltd.	16-Nov-01	390911	20	January 31, 2010
IARRY 2	Heritage Explorations Ltd.	16-Nov-01	390912	15	January 31, 2010
IARRY 3	Heritage Explorations Ltd.	16-Nov-01	390913	20	January 31, 2010
SC 1	Heritage Explorations Ltd.	16-Nov-01	390914	20	January 31, 2010
C 2	Heritage Explorations Ltd.	16-Nov-01	390915	20	January 31, 2010
SC 3	Heritage Explorations Ltd.	16-Nov-01	390916	20	January 31, 2010
SC 3	Heritage Explorations Ltd.	16-Nov-01	390917	20	January 31, 2010
SC 5	Heritage Explorations Ltd.	16-Nov-01	390918	20	December 15, 2008
SC 5	Heritage Explorations Ltd.	16-Nov-01	390919	20	December 15, 2008
SC 0 SC 7		16-Nov-01	390920	20	December 15, 2008
	Heritage Explorations Ltd.			20	December 15, 2008
SC 8	Heritage Explorations Ltd.	16-Nov-01	390921		
	Heritage Explorations Ltd.	17-Nov-01	390922	6	January 31, 2010
TC 2	Heritage Explorations Ltd.	17-Nov-01	390923	16	January 31, 2010
TC 3	Heritage Explorations Ltd.	17-Nov-01	390924	20	January 31, 2010
	Heritage Explorations Ltd.	17-Nov-01	390925	20	January 31, 2010
FC 5	Heritage Explorations Ltd.	17-Nov-01	390926	20	January 31, 2010
	Heritage Explorations Ltd.	17-Nov-01	390927	20	January 31, 2010
FC 7	Heritage Explorations Ltd.	17-Nov-01	390928	20	January 31, 2010
TC 8	Heritage Explorations Ltd.	17-Nov-01	390929	20	January 31, 2010
HARRY 4	Heritage Explorations Ltd.	22-Mar-02	392425	20	January 31, 2010
HARRY 5	Heritage Explorations Ltd.	22-Mar-02	392426	4	January 31, 2010
KING 1	Heritage Explorations Ltd.	22-Mar-02	392427	3	January 31, 2010
KING 2	Heritage Explorations Ltd.	22-Mar-02	392428	16	January 31, 2010
KING 3	Heritage Explorations Ltd.	22-Mar-02	392429	18	January 31, 2010
KING 4	Heritage Explorations Ltd.	22-Mar-02	392430	18	January 31, 2010
KING 5	Heritage Explorations Ltd.	22-Mar-02	392431	18	January 31, 2010
KING 6	Heritage Explorations Ltd.	22-Mar-02	392432	12	January 31, 2010
KING 7	Heritage Explorations Ltd.	22-Mar-02	392433	18	January 31, 2010
TC 9	Heritage Explorations Ltd.	21-Mar-02	392434	8	January 31, 2010
TC 10	Heritage Explorations Ltd.	21-Mar-02	392435	20	January 31, 2010
TC 11	Heritage Explorations Ltd.	21-Mar-02	392436	16	January 31, 2010
TC 12	Heritage Explorations Ltd.	21-Mar-02	392437	16	January 31, 2010
TC 13	Heritage Explorations Ltd.	21-Mar-02	392438	20	January 31, 2010
TC 14	Heritage Explorations Ltd.	21-Mar-02	392439	20	January 31, 2010
VALCANO 1	Heritage Explorations Ltd.	22-Mar-02	392440	18	January 31, 2010
VALCANO 2	Heritage Explorations Ltd.	22-Mar-02	392441	18	January 31, 2010
VALCANO 3	Heritage Explorations Ltd.	22-Mar-02	392442	16	January 31, 2010
VALCANO 4	Heritage Explorations Ltd.	22-Mar-02	392443	16	January 31, 2010
VALCANO 5	Heritage Explorations Ltd.	23-Mar-02	392444	9	January 31, 2010
VALCANO 6	Heritage Explorations Ltd.	23-Mar-02	392445	18	January 31, 2010
VALCANO 7	Heritage Explorations Ltd.	23-Mar-02	392446	18	January 31, 2010
VALCANO 8	Heritage Explorations Ltd.	22-Mar-02	392447	16	January 31, 2010
VALCANO 9	Heritage Explorations Ltd.	22-Mar-02	392448	16	January 31, 2010
CALVIN 2	Heritage Explorations Ltd.	23-Mar-02	392449	14	January 31, 2010
CALVIN 2 CALVIN 3	Heritage Explorations Ltd.	23-Mar-02	392449	14	January 31, 2010
	Heritage Explorations Ltd.	23-Mar-02 23-Mar-02	392450	14	January 31, 2010
CALVIN 5					
CALVIN 5	Heritage Explorations Ltd.	23-Mar-02	392452	20	January 31, 2010
GINGRASS 1	Heritage Explorations Ltd.	21-Mar-02	392453	6	January 31, 2010
GINGRASS 2	Heritage Explorations Ltd.	21-Mar-02	392454	20	January 31, 2010
GINGRASS 3	Heritage Explorations Ltd.	21-Mar-02	392455	12	January 31, 2010
GINGRASS 4	Heritage Explorations Ltd.	21-Mar-02	392456	9	January 31, 2010
GINGRASS 5	Heritage Explorations Ltd.	21-Mar-02	392457	12	January 31, 2010
IRVING 5	Heritage Explorations Ltd.	23-Mar-02	392458	9	January 31, 2010
IRVING 6	Heritage Explorations Ltd.	23-Mar-02	392459	18	January 31, 2010
TREATY 1	Heritage Explorations Ltd.	20-Mar-02	392460	12	January 31, 2010
TREATY 2	Heritage Explorations Ltd.	20-Mar-02	392461	20	January 31, 2010
TREATY 3	Heritage Explorations Ltd.	20-Mar-02	392462	20	January 31, 2010

Claim	Owner	Recording	Tenure	Units	Expiry
Name		Date	No.		
TREATY 4	Heritage Explorations Ltd.	20-Mar-02	392463	6	January 31, 2010
TREATY 5	Heritage Explorations Ltd.	20-Mar-02	392464	20	January 31, 2010
TREATY 6	Heritage Explorations Ltd.	20-Mar-02	392465	20	January 31, 2010
TREATY 7	Heritage Explorations Ltd.	20-Mar-02	392466	4	January 31, 2010
TREATY 8	Heritage Explorations Ltd.	20-Mar-02	392467	6	January 31, 2010
TREATY 9	Heritage Explorations Ltd.	20-Mar-02	392468	20	January 31, 2010
TREATY 10	Heritage Explorations Ltd.	20-Mar-02	392469	12	January 31, 2010
LANCE 5	Heritage Explorations Ltd.	9-Jun-02	394157	6	January 31, 2011
MEGAN 3	Heritage Explorations Ltd.	9-Jun-02	394158	4	June 9, 2010
MEGAN 4	Heritage Explorations Ltd.	8-Jun-02	394159	3	June 9, 2010
SKI	Heritage Explorations Ltd.	9-Jun-02	394160	5	January 31, 2011
DWAYNE 2	Heritage Explorations Ltd.	8-Jun-02	394161	7	January 31, 2011
AFT	Heritage Explorations Ltd.	9-Jun-02	394162	2	January 31, 2011
SHIRLEY	Heritage Explorations Ltd.	9-Jun-02	394163	3	June 9, 2010
FREDDY 1	Heritage Explorations Ltd.	9-Jun-02	394164	3	January 31, 2011
FREDDY 2	Heritage Explorations Ltd.	9-Jun-02	394165	3	January 31, 2011
SUL 1	Heritage Explorations Ltd.	7-Aug-03	404668	20	August 7, 2008
SUL 2	Heritage Explorations Ltd.	7-Aug-03	404669	20	August 7, 2008
TOTAL	192	claims	•	2,118	

ſ

2,118

ESKAY PROJECT

2004 FIELD PROGRAM

Appendix V

Expenditures & Assessment Data

Eskay Project Timesheet T travelling Treaty C camp Bonsai JUNE JULY SEPTEMBER OCTOBER 26 27 28 29 13 14 15 25 30 2 3 11 12 16 17 18 19 20 21 22 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 1 2 3 Total 1 Mandavs Sat Wed Thu Fri Sat Sun Моп Tue Wed Thu Fri Sat Ѕυл Mon Tue Wed Thu Fri Sat Mon Tue Wed Fri Sat Sun Mon Tue Med Th Fri Sat Suc Mon Tue Wed Thu Eri Sun Mon Тни Eri Heritage / Geoinformatics Gerry Bidwell T Bo T Bo C Bo Bo T Bo Tr Bo Bo T TT TT TT TT TT TT TT TT TT Tr т 18 Tony Worth Bo 17 Minconsult Tim Bissett Bo T Bo Bo Bo Tr T Bo Bo Bo Tr Arden Braden Bo T Bo Bo Bo Bo Bo Bo Bo Tr TT TT TT TT TT TT TT TT Tr Tr Tr 38 John Greenwood Tr Tr Bob Aggressive Drilling Bo M. Mcl ellan Bo Bo Bo Bo Bo Bo M Rennie R. Repolusk
 Bo
 Bo
 Bo
 Bo
 Bo

 Bo
 Bo
 Bo
 Bo
 Bo
 Bo Bo Bo Bo Bo Bo Bo 12 G. Nixon Bo Bo Bo Bo Bo D. Smith T. Rank Bo Bo Bo Bo Bo Bo Bo
 B0
 B0
 B0
 B0
 B0
 B0
 B0

 B0
 B0
 B0
 B0
 B0
 B0
 B0
 B0

 B0
 B0
 B0
 B0
 B0
 B0
 B0
 B0

 B0
 B0
 B0
 B0
 B0
 B0
 B0
 B0
 D Miles R. Lawrick Hy-Tech Drilling T. Hooper Tr S. Schiller 10 ग ग ग ग ग ग ग ग ग ग 10 P. Greene Tr 10 C Petersen J. Giling 2 2 6 6 6 6 6 6 6 6 6 5 1 1 1 1 1 1 2 2 171 6 2 2 2 2 0 Total Mandays 3 3 8 8 8 671 0 1.7 6 6 67 6 171 6 14 22 30 36 43 44 44 45 52 58 64 70 77 83 89 97 107 113 119 125 131 137 143 149 155 160 161 162 163 164 165 **Cumulative Total** 3 5.3 21.4 5.1 6.4 1.8 5.3 1.6 5.7 9.3 6.4 8.3 4.7 3.5 6.2 5.5 6.3 4.2 8.9 0.8 2.4 1.8 4.2 3.8 3.8 3.1 1.2 4.0 2.8 2.0 1.7 1.6 Helicopter Time 67.8 73.1 94.5 99.6 106.0 107.8 113.1 114.7 120.4 129.7 136.1 144.4 149.1 149.1 **Cumulative Total** 3.5 9.7 15.2 21.5 25.7 34.6 35.4 37.8 39.6 43.8 47.6 51.4 54.5 55.7 59.7 62.5 64.5 66.2 29 45 155 Samples 16 200 200 16 Cumulative Total

2004 ASSESSMENT	Total Expenditures	Expenditure applicable for
2004 A33E35WEN I	Jun 25 - Nov 30, 2004	assessment
Geol consulting (logging)	18,400.00	16,000.00
Geological modelling & core logging	32,705.83	10,000.00
Airborne geophysics	337,500.00	
Office supplies	2,532.78	390.98
Diamond Drilling (contractor charges)	82,312.20	82,312.20
Analytical fees	5,575.48	5,575.48
Core boxes	3,368.21	3,368.21
Field supplies (core saw rental)	14,910.99	13,919.99
Camp rental (truck rental)	13,194.93	13,194.93
Camp construction (core storage)	413.14	413.14
Camp equipment storage	5,100.00	
Accomodation / travel	35,206.38	29,901.57
Communication	9,552.65	8,019.44
First aid	57.99	57.99
Field labour	20,464.52	20,464.52
Helicopter	194,780.35	194,780.35
Miscellaneous	285.31	285.31
Fuel	14,203.66	4,455.02
Freight charges	2,060.83	2,060.83
Land & permits (Barrick road permit)	1,000.00	1,000.00
GST (subtracted)	-6,859.12 -	3,484.43
Total	786,766.13	402,715.53

ESKAY PROJECT

Annual Contraction

2004 FIELD PROGRAM

Appendix VI

Geoinformatics Eskay Creek Lithology Codes and Colour Legend

(a) Lithology Codes

i lithology codes

ii alteration assemblage codes

iii veining codes

iv structures code

(b) Lithology Colour Legend

(see pocket)

STRUCTUR	ES - Normalised table structure - for Ductile, Brittle and Primary structures								10 C 10 10 10	1	1	
											PRIMARY STRUCTURES	
					-					-4	massive undeforme	d MAS
HOLE_ID riginal_fro Original_to		CODE	INTENSITY		ANGLE	angle to the core axis	dip	dip direction		-4.2	bedding / bedde	d SOO
	PRIMARY STRUCTURES		-			1.			1		graded beddin	g SOG
	massive undeformed	MAS										
	bedding / bedded	S00	()	absolute	()	angle to c/a	(12)	(123)			DUCTILE STRUCTURES	
	graded bedding	SOG	wk	weak	5	sub parallel to c/a					undivided foliation -cleavag	
	bedding , parallel	SOP	wk	poorly							schistosit	
	bedding, top known	SOT	wk	(+/-)	<u> </u>						lamination	s SFL
	bedding, top unknown	SOU	wk	some							crenulation cleavag	e SFC
	bedding, vertical	SOV	wk	partly					the second second second		S-C fabri	c SSC
			med	medium	RULES	Create small (0.1m or ft) fault int	tervals whe	ere faults are recorde	d as point features		mylonite/mylonite zon	e SMY
			med	moderate		Eg: Faults recorded at 54.m, 64.	.2m, and 72	2.1m become			shear/ shear zon	e SHZ
	DUCTILE STRUCTURES		med	well developed		54.0 - 54.1m, 64.2 - 64.3m, 72.1	- 72.2m				1	
	undivided foliation -cleavage	SFO	stg	strong		Use 0.1m interval with care and	discretion.			linear fab	ic (constrictional or stretched features) LIO
	foliation, vertical	SFV	stg	throughout		Use same rule for feet					lineation intersection(bed/clv, clv/clv) LIX
	schistosity	SFS	int	intense		as in 72.1ft to 72.2ft					lineation minera	I LIM
	laminations	SFL				() Use absolute angle to the o	core axis				lineation rodding	LIR
	crenulation cleavage	SFC	unk	finely		For subparallel angles to the o	core axis -	use 5 degrees			lineation of fold axis	s LFA
	S-C fabric	SSC	unk	numerous							lineation of M vergent fold axis	s LFM
	mylonite/mylonite zone	SMY	unk	unknown							lineation of Z vergent fold axi	s LFZ
	shear/ shear zone	SHZ									lineation of S vergent fold axis	s LFS
	linear fabric (constrictional or stretched features)	LIO										
	lineation intersection(bed/clv, clv/clv)	LIX									folded lithologie	5 FOL
	lineation mineral	LIM	EXAMPLES						e state - etc.		anticlin	e FAO
	lineation rodding	LIR	54.7 - 78.3m An i	intensely faulted and	d brecciated	I mylonitic rock					syncline	e FSO
	lineation of fold axis	LFA	54.7 - 78.3 ZFX/u	nk					1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		fold axial plan	e FAP
	lineation of M vergent fold axis	LFM	54.7 - 78.3 SMY/i	nt					1 A 197 - 19 3 3			
	lineation of Z vergent fold axis	LFZ							 Strategy (1998) 			
	lineation of S vergent fold axis	LFS							a is strategic		BRITTLE STRUCTURES	
			78.3 - 80.1m Fau	It gouge, fault breck	cia	an edited according to the form the form	$\sigma = \alpha (- \alpha)$				faul	t ZFO
	folded lithologies	FOL	78.3 - 80.1m ZFG	/unk					Surface and second second		fault zone	ZFZ
	anticline	FAO	78.3 - 80.1m ZFX	/unk							reverse faul	t ZFR
	syncline	FSO	80.1 - 101.5m Str	rongly folded chert I	oeds with we	ell developed fracture cleavage					normal faul	t ZFN
	fold axial plane	FAP	80.1 - 101.5m FO	L/str							thrust faul	t ZFT
			80.1 - 101.5m FR	O/med							strike-slip faul	t ZFS
									2		fault gouge/ clay/pug	ZFG
	BRITTLE STRUCTURES										(e.g:slickensides/slickenlines/sli	c ZFL
	fault	ZFO									fault breccia	a ZFX
	1	2.0									cataclastic	
1											Cataciasti	250
4												
	fault zone				c rock with d	liscing, surfaces show slickenlines						
	reverse fault		foliations are 65 d									
0	normal fault	ZFN	101.5 - 110m SFC	D/wk/65							fracture	FRO
1 .	thrust fault	ZFT	101.5 - 110m ZFL	Junk							fracture zone	FRZ
.US	strike-slip fault	ZFS	110 - 132.8m A w	eakly folded phyllite	e with well d	eveloped micaceous mineral linea	tions					
	fault gouge/ clay/pug	ZFG	110 - 132.8m FO	L/wk							joints/ jointing	JOO
\sim /	fault lineations (e.g:slickensides/slickenlines/slickenfibres/slips)	ZFL	111 - 132.8m LIN	//med					the second products	1		
Cherry 1	fault breccia	ZFX									VEINING (for maps only)	
~ 2	cataclastic	ZFC							*		Undiferentiated vein	VOO
YA YA			132.8 - 167 Well	developed bedding	with variable	e angles subparallel to the core ax	is				Vein_texture_dominant mineral	eg: VMQ = massive quartz ve
.0			132.8 - 167m SO	O/med/5								
4	fracture	FRO										
×	fracture, vertical	FRV									Codes Added	
	fracture zone	FRZ									Contact	Ct
<	joints/ jointing	JOO									Flow Banding	FB
	8		=								Foliation 1st generation	S1
											Foliation 2ND generation	S2

oodes nadea	
Contact	Ct
Flow Banding	FB
Foliation 1st generation	S1
Foliation 2ND generation	S2
Foliation Moderate	Sm
Foliation Shear Zone	Sz
Foliation Strong	Ss
Foliation strong 1st generation	Ss1
Foliation strong 2nd generation	Ss2
Foliation Weak	Sw
Intersection lineation S0/S1	L01
Intersection lineation S1/S2	L12
Slickenside	SI
	Contact Flow Banding Foliation 1st generation Foliation 2ND generation Foliation Moderate Foliation Moderate Foliation Shear Zone Foliation Strong Foliation Strong 1st generation Foliation strong 2nd generation Foliation Weak Intersection lineation S0/S1 Intersection lineation S1/S2

ESKAY CREEK LITHOLOGICAL LEGEND

INTRU	SIVE ROCKS	SEDIM	ENTARY ROCKS	VOLCA	NICLASTIC ROCKS	INTER	STRATIFIED ROCKS
	IOOO Undifferntiated Intrusives		SOOO Undifferentiated Sediments		YOOO Undifferentiated Volcaniclastics	diak (XOOO Undifferentiated Interstratified Rocks
	IFOO Felsic Intrusives		SAOO Mudstone/argillite		YFOO Felsic Volcaniclastics		XSOO Interstratified Sedimentary Rocks
	IFGO Granite intrusive		SCOO Chert		YFCO Rhyodacitic tuff		XSAO Mudstone +/- Siltstone +/- sandstone +/- conglomerate
	IFNO Granodiorite		SGOO Conglomerate		YFDO Dacite tuff		XSIO Siltstone +/-mudstone +/-sandstone
	IFKO Syenite	-	SIOO Siltstone		YFRO Rhyolitic tuff		XSGO Conglomerate +/- sandstone +/- wacke +/- siltsone/mudstone
	IFRO Rhyolitic intrusive		SLOO Limestone		YIOO Intermediate tuff		XSSO Sandstone +/-siltstone/mudstone +/-conglomerate
	IIOO Intermediate intrusive		SSOO Sandstone		YIAO Andesite tuff		XSLO Limestone +/-siltstone +/-sandstone
	IIMO Monzonite		SWOO Wacke		YMOO Mafic tuff		XSWO Wacke +/- siltstone/mudstone +/- conglomerate +/- polymictic breccia
	IIDO Diorite	VOLCA	NIC ROCKS		YMBO Basalt tuff		XSCO Chert +/- mudstone +/- siltstone
	IIZO Quartz monzonite		VOOO Undifferentiated Volcanics	OTHER			XVOO Interstratified volcanic and epiclastic Rocks
	IIIO Monzodiorite	1.5	VFOO Felsic lava		OOOO Unknown and unidentified (?)		XVAO Interstratified andesitic volcanics and epiclastic rocks
	IIQO Quartz diorite		VFDO Dacite lava		QOOO Quartz		XVCO Interstratified rhyodacitic volcanics and epiclastic rocks
	IMOO Mafic intrusive		VFRO Rhyolite lava		AOOO Altered Rock		XVDO Interstratified dacitic volcanics and epiclastic rocks
	IMDO Dolerite		VIOO Intermediate Volcanic Rocks				XVFO Interstratified felsic volcanics and epiclastic rocks
	IMPO Gabbro		VIAO Andesite lava				XVIO Interstratified intermediate volcanics and epiclastic rocks
	ILDO Lamprophyre		VMOO Mafic Volcanic Rocks				XVMO Interstratified mafic volcanics and epiclastic rocks
METAM	ORPHIC ROCKS		VMBO Basalt lava				XVBO Interstratified basalt volcanics and epiclastic rocks
	ROOO Undifferentiated Metamorphics		VFCO Rhyodacite Lava				XVRO Interstratified rhyolitic volcanics and epiclastic rocks
	RSOO Meta-sedimentary rocks		Cotos A Cotos				XYOO Interstratified volcaniclastics +/- epiclastic rocks
	RYOO Meta-volcaniclastic rocks			CAL			XYAO Interstratified andesitic volcaniclastics +/- epiclastic rocks
	RVOO Meta-volcaniclastic rocks	× .	CONTRACTOR OF THE OWNER	Sold and	4		XYBO Interstratified basaltic volcaniclastics +/- epiclastic rocks
	ROSO Metamorphic schistoserocks			2	A BR		XYCO
			Survey and	A.	C. W.CH		XYDO Interstratified dacitic volcaniclastics +/- epiclastic rocks
			C	0)		(YFO
				and the second second	ſ		nterstratified rhyolitic volcaniclastics +/- epiclastic rocks
							nterstratified intermediate volcaniclastics +/- epiclastic rocks
							nterstratified mafic volcaniclastics +/- epiclastic rocks
							XYRO nterstratified rhyolitic volcaniclastics +/- epiclastic rocks

GEOINFORMATICS ESKAY CREEK LITHOLOGY CODES - flat table structure

Fine-grained lamprophyre intrusive ILDF

Medium-grained lamprophyre intrusive ILDM

Coarse-grained lamprophyre intrusive ILDC Lamprophyric breccia ILDX

FG_lith VOLCANICLASTIC code	FG_lith INTRUSIVE code	_ FG_III VOLCANIC code	SEDIMENTS _code	TEXTURAL QUALIFIERS	METAMORPHIC	FG_lith_ code TEXTURAL QUALIFIERS	FG_ INTERSTRATIFIED code		OTHER	FG_lit code
ndifferentiated Volcaniclastic Rocks YOOO		Undifferentiated Volcanic Rocks VOOO		U (massive)	Undiff Metamorphic rocks	ROOOC (chloritic +/-)			o man	
Undiff epiclastic tuff YOOE Massive/blocky undiff tuff +/-tuff breccia YOOU	Undiff Felsic Intrusives IFOO	Massive undiff lava VOOU	Feldspathic epiclastic sediment SOKE	l (polymictic)		ROSOF (feldspathic +/-)	Undifferentiated Interstratified Rocks XOO Undifferentiated Interstratified Sedimentary Rocks XSO		Casing	CASE
Undiff lithic tuff +/-tuff breccia YOOR	Undiff felsic intrusive IFOO Undiff massive felsic intrusive IFOU	Undiff phyric lava VOOP Undiff lava; flow-banded VOOB	Sedimentary breccia SOOX	E (epiclastic)	Undiff Meta-volcanic rocks	RVOOB (Biotitic +/-)	Undifferentiated Interstratified Epiclastic Sedimentary rocks XSO		Unknown and unidentified (?) Lost core	000 LOS
Undiff lapilli tuff; variably welded +/-tuff breccia YOOL	Porphyritic felsic intrusive IFOP	Undiff autoclastic breccia +/- undiff lava VOOX	Feldspathic tuffaceous sediment SOVE Calcareous sediment SOBO	B (variably bedded) E (fine-grained)	Undiff meta-volcanic amphibolite		Undiff conglomerate +/- sandstone +/- wacke +/- siltsone/mudstone XSG	O B (calcareous)	Overburden	OVE
Undiff crystal tuff +/-tuff breccia YOOY	Fine-grained felsic intrusive IFOF		Undiff Conglomerate SGOO	M (medium-grained)	Undiff meta-volcanic phyllite Undiff meta-volcanic schist	RVPOA (Andalusite +/-) RVSOS (Sericitic +/-)	Chert pebble to cobble conglomerate with sandstone XSG Polylithic quartz pebble conglomerate and quartz wacke XSG		Strongly altered rock texture obliterat	
Undiff ash tuff +/-tuff breccia YOOA	Medium-grained felsic intrusive IFOM	Cherty undiff lavas VOOQ	Undiff conglomerate SGOO	C (coarse-grained)	Undiff meta-volcanic gneiss	RVGOE (epidotized +/-)	Volcanic conglomerate and sand/siltstone XSG			
Undiff tuff breccia +/- Undiff tuff YOOX Undiff tuff, fine-grained YOOF	Coarse-grained felsic intrusive IFOC	Fine grained undiff lava VOOF	Undiff feldspathic/arkosic conglomerate SGKO	G (graded)	Undiff meta-volcanic hornfels		Undiff sandstone +/-siltstone/mudstone +/-conglomerate XSS		FAULT ZONES	704
Undiff tuff; medium-grained YOOF	Felsic intrusive breccia IFOX Undiff granite intrusive IFGO	Medium grained undiff lava VOOM	Undiff carbonaceous conglomerate SGCO	X (breccia)		RYOO	Andesitic epiclastic rocks; coarse-grained sandstone to conglomerate XSS	A = V (Volcanic)	Fault zone	ZOC
Undiff tuff; coarse-grained YOOC	Undiff massive granite IFGU	Coarse grained undiff lava VOOC Undiff Felsic Volcanic Rocks VFOO	Undiff lithic conglomerate SGRO Undiff Polymict Conglomerate SGPO		Undiff meta-volcaniclastic amphibolite		Volcanic sandstone, conglomerate, local bioclastic sandy limestone intervals XSS	H (cherty)	Sedimentary hosted fault zone	ZSO
			ondin Polymice Congiomerate SGPO		Undiff meta-volcaniclastic phyllite	RYPO	Thinly bedded feldspathic sandstone/wacke, siltstone, mudstone XSSI	KR (lithic)	Volcanic hosted fault zone	ZVO
f Felsic Volcaniclastics YFOO f felsic tuff YFOO	Porphyritic granite IFGP	Undiff felsic lava VFOO	Undiff granitic conglomerate SGGO		Undiff meta-volcaniclastic schist	RYSO	Medium to thickly bedded feldspathic sandstone and heterolithic tuffaceous			12012-02
ff felsic tuff YFOO	Fine-grained granite IFGF	Massive felsic lava VFOU	Undiff quartzose conglomerate SGQO		Undiff meta-volcaniclastic psammite	RYMO	conglomerate XSSI Volcanic sandstone and conglomerate +/-siltstone/mudstone XSSI		Volcaniclastic hosted fault zone	ZYO
Undiff felsic epiclastic tuff YFOE	Medium-grained granite IFGM	Felsic lava; quartz +/- feldspar phyric VFOP	Ditte Later	ND F	NO WEAKS		Undiff (lithic) wacke +/- siltstone/mudstone +/- conglomerate +/- polymictic		Metamorphic hosted fault zone	ZRO
Massive/blocky felsic tuff +/-tuff breccia YFOU	Coarse-grained granite IFGC	Felsic lava, quality +- leidspar phyric VFOP	Pebble-boulder quartz conglomerate SGQM Undiff arenaceous conglomerate SGSO		Undiff meta-volcaniclastic gneiss		breccia XSW	0	Granitoid/intrusive hosted fault zone	ZIOC
Felsic lithic tuff +/-tuff breccia YFOR	Granite breccia IFGX	Felsic autoclastic breccia +/- felsic lava VFOX	Undiff volcanic conglomerate SGVO	F (granule M (pebble-cobble)	Undiff meta-volcaniclastic hornfels I Undiff Meta-sedimentary rocks	RYFO RSOO	Feldspathic wacke +/- polymictic breccia XSW			
Felsic lapilli tuff; variably welded +/-tuff breccia YFOL	Undiff rhyolitic intrusive IFRO	Felsic hyaloclastite +/- felsic lava VFOH	Undiff felsic conglomerate SGFO	C (boulder)	Undiff meta-sedimentary pelite		Quartz-lithic wacke and carbonaceous mudstone XSW Polymictic volcanic wacke +/- volcaniclastics XSW		1 1 1 1	
Felsic crystal tuff +/-tuff breccia YFOY Felsic ash tuff +/-tuff breccia YFOA	Undiff massive rhyolite intrusive IFRU Porphyritic rhyolite intrusive IFRP	Cherty felsic lavas VFOQ	Undiff mafic conglomerate SGMO		Undiff meta-sedimentary phyllite		Polymictic volcanic wacke +/ carbonaceous mudstone XSW	T	1 1	
Felsic tuff breccia +/- felsic tuff YFOX	Fine-grained rhyolite intrusive IFRF	Fine grained felsic lava VFOF Medium grained felsic lava VFOM	Undiff andesitic conglomerate SGAO		Undiff meta-sedimentary schist		Polymictic volcanic wacke and andesitic volcanics XSW		1. Pr	
Felsic tuff; fine-grained YFOF	Medium-grained rhyolite intrusive IFRM	Coarse grained felsic lava VFOC	Undiff hematitic conglomerate SGIO Undiff chert conglomerate SGHO		Undiff meta-sedimentary psammite		Polymictic volcanic wacke and mafic volcanics XSW		1 marsh	
Felsic tuff; medium-grained YFOM	Coarse-grained rhyolite intrusive IFRC	Undiff rhyolite lava VFRO	Undiff fossiliferous conglomerate SGLO		Undiff meta-sedimentary gneiss Undiff meta-sedimentary hornfels		Polymictic volcanic wacke and felsic volcanics XSW			
Felsic tuff, coarse-grained YFOC	Rhyolite intrusive breccia IFRX	Massive rhyolite lava VFRU	Undiff calcareous conglomerate SGBO		Chain meta-sedimentaly normers	KSFO	Polymictic volcanic wacke and epiclastics (debris flow) XSW Undiff siltstone +/-mudstone +/-sandstone	*	8	
	Undiff granodiorite IFNO	Rhyolite lava; quartz +/- feldspar phyric VFRP	Undiff sulphidic conglomerate SGZO				Black, variably bedded siltstone/mudstone (with rare sandstone laminae) XSIC		1	
Undiff rhyolitic epiclastic tuff YFRE Massive/blocky rhyolitic tuff +/-tuff breccia YFRU	Undiff massive granodiorite IFNU	Rhyolite lava; flow-banded VFRB	Undiff Sandstone SSOO				(Pale green thinly bedded) Siliceous siltstone +/-mudstone XSIH		4	
Rhyolite lithic tuff +/-tuff breccia YFR	Porphyritic granodiorite IFNP Fine-grained granodiorite IFNF	Rhyolite autoclastic breccia +/- rhyolitic lava VFRX	Undiff sandstone SSOO				Volcanic siltstone +/-mudstone XSIV	1		
Rhyolite lapilli tuff; variably welded +/-tuff breccia YFRL	Medium-grained granodiorite IFNM	Rhyolite hyaloclastite +/- rhyolite lava VFRH Cherty rhyolite lavas +/- autobreccia VFRQ	Undiff feldspathic/arkosic sandstone SSKO				Polymictic volcanic siltstone and epiclastics (debris flow) XSIE	1000		
Rhyolite crystal tuff +/-tuff breccia YFRY	Coarse-grained granodiorite IFNC	Undiff dacite lava VFDO	Undiff carbonaceous sandstone SSCO Undiff lithic sandstone SSRO		1		Undiff mudstone +/-siltstone +/-sandstone +/- conglomerate XSAC		1	
Rhyolite ash tuff +/-tuff breccia YFRA	Granodiorite breccia IFNX	Massive dacite lava VFDU	Undiff granitic sandstone SSGO				Carbonaceous mudstone +/- sitstone +/- chert XSAC	NI	12 C	
Rhyolite tuff breccia +/- rhyolite tuff YFRX	Undiff syenite IFKO	Dacite lava; quartz +/- feldspar phyric VFDP	Undiff quartzose sandstone SSQO				Sulphidic mudstone +/- siltstone +/- chert XSAZ Mudstone, volcanic wacke +/- volcaniclastic XSAV		1	
Rhyolite tuff; fine-grained YFRF Rhyolite tuff; medium-grained YFRM	Undiff massive syenite IFKU	Dacite lava; flow-banded VFDB	Undiff arenaceous sandstone SSSO				Mudstone and quartz-lithic wacke XSA			
Rhyolite tuff; coarse-grained YFRM	Porphyritic syenite IFKP Fine-grained syenite IFKF	Dacite autoclastic breccia +/- dacitic lava VFDX	Undiff volcanic sandstone SSVO		1		Mudstone, volcanic breccia +/- chert XSAX		1	
tuff YFDO	Medium-grained syenite IFKM	Dacite hyaloclastite +/- dacite lava VFDH Dacite lava; pillowed +/ -pillow breccia VFDW	Undiff felsic sandstone SSFO Undiff andesitic sandstone SSAO		1		Mudstone and tuffaceous sediments XSAE			
Undiff dacitic epiclastic tuff YFDE	Coarse-grained syerite IFKC	Cherty dacitic lavas +/- autobreccia VFDQ	Undiff mafic sandstone SSAO		1		Undiff limestone +/-siltstone +/-sandstone XSLC			
Massive/blocky dacitic tuff +/-tuff breccia YFDU	Syenite breccia IFKX	Undiff rhyodacite lava VFCO	Undiff hematitic sandstone SSIO		1		Variably bedded limestone and calcareous sittstone XSLE Undiff chert +/- mudstone +/- sittstone XSCC		1	
Dacite lithic tuff +/-tuff breccia YFDR	Undiff Intermediate Intrusives IIOO	Massive rhyodacite lava VFCU	Undiff chert sandstone SSHO				Undifferentiated interstratified volcanic and epiclastic Rocks XVOC		_	
Dacite lapilli tuff; variably welded +/-tuff breccia YFDL Dacite crystal tuff +/-tuff breccia YFDY	Undiff intermediate intrusive IIOO Undiff massive intermediate intrusive IIOU	Rhyodacite lava; quartz +/- feldspar phyric VFCP	Undiff fossiliferous sandstone SSLO				Undiff volcanics and argillaceous epiclastics XVOF			
Dacite of ystar un theur breccia YFDA	Porphyritic intermediate intrusive IIOU	Rhyodacite lava; flow-banded VFCB Rhyodacite autoclastic breccia +/- rhyodacitic lava VFCX	Undiff calcareous sandstone SSBO				Undiff volcanics and arenaceous epiclastics XVO	1		
Dacite tuff breccia +/- dacite tuff YFDX	Fine-grained intermediate intrusive IIOF	Rhyodacite autocrastic breccia +/- rhyodacitic lava VFCX Rhyodacite hyaloclastite +/- rhyodacite lava VFCH	Undiff sulphidic sandstone SSZO Undiff Wacke SWOO				Undiff volcanics and and rudaceous epiclastics XVOC			
Dacite tuff; fine-grained YFDF	Medium-grained intermediate intrusive IIOM	Cherty rhyodacitic lavas +/- autobreccia VFCQ	Undiff wacke SWOO				Undiff volcanics and associated debris flow (volcanics wacke) XVOE			
Dacite tuff; medium-grained YFDM	Coarse-grained intermediate intrusive IIOC	Undiff Intermediate Volcanic Rocks VIOO	Undiff feldspathic/arkosic wacke SWKO				Undiff pillowed volcanics, pillow breccia and intervolcanic sediments XVOV Undiff volcanic breccia, and intervolcanic sediments XVOX			
Dacite tuff; coarse-grained YFDC odacitic tuff YFCO	Intermediate intrusive breccia IIOX Undiff diorite	Undiff intermediate lava VIOO	Undiff carbonaceous wacke SWCO				Undiff hyaloclastitic volcanics and intervolcanic sediments XVO			
Undiff rhyodacitic epiclastic tuff YFCE	Undiff diorite IIDO Massive diorite intrusive IIDU	Massive intermediate lava VIOU Intermediate lava; hbl/cpx-feldspar phyric VIOP	Undiff lithic wacke SWRO				Undiff phyric volcanics and intervolcanic sediments XVOF			
Massive/blocky rhyodacitic tuff +/-tuff breccia YFCU	Porphyritic diorite intrusive IIDP	Intermediate lava, hbi/cpx-leidspar phyric VIOP	Undiff granitic wacke SWGO Undiff guartzose wacke SWGO				Undiff flowbanded volcanics and intervolcanic sediments XVOE			
Rhyodacite lithic tuff +/-tuff breccia YFCR	Fine-grained diorite intrusive IIDF	Intermediate autoclastic breccia +/- intermediate lava VIOX	Undiff arenaceous wacke SWSO				Highly vesicular/amygdaloidal undiff volcanics and intervolcanic sediments XVOV Interstratified felsic volcanics and epiclastic rocks XVFO			
Rhyodacite lapilli tuff; variably welded +/-tuff breccia YFCL	Medium-grained diorite intrusive IIDM	Intermediate hyaloclastite +/- intermediate lava VIOH	Undiff volcanic wacke SWVO				Interstratified felsic volcanics and epiclastic rocks XVFO Felsic volcanics and argillaceous epiclastics XVFF			
Rhyodacite crystal tuff +/-tuff breccia YFCY Rhyodacite ash tuff +/-tuff breccia YFCA	Coarse-grained diorite intrusive IIDC	Intermediate lava; pillowed +/ -pillow breccia VIOW	Undiff felsic wacke SWFO				Felsic volcanics and arenaceous epiclastics XVFP			
Rhyodacite tuff breccia +/- rhyodacite tuff YFCX	Diorite breccia IIDX Undiff monzonite IIMO	Intermediate lava; amygdaloidal VIOV	Undiff andesitic wacke SWAO				Felsic volcanics and and rudaceous epiclastics XVFC			
Rhyodacite tuff; fine-grained YFCF	Massive monzonite intrusive IIMU	Undiff andesite lava VIAO Massive andesite lava VIAU	Undiff mafic wacke SWMO Undiff hematitic wacke SWIO				Felsic volcanics and associated debris flow (volcanics wacke) XVFE			
Rhyodacite tuff; medium-grained YFCM	Porphyritic monzonite intrusive IIMP	Andesite lava; hbl/cpx-feldspar phyric VIAP	Undiff cherty wacke SWHO				Felsic volcanic breccia, and intervolcanic sediments XVFX			
Rhyodacite tuff; coarse-grained YFCC	Fine-grained monzonite intrusive IIMF	Andesite lava; flow-banded VIAB	Undiff fossiliferous wacke SWLO				Felsic hyaloclastitic volcanics and intervolcanic sediments XVFH Felsic phyric volcanics and intervolcanic sediments XVFP			
ff Intermediate Volcaniclastics YIOO ff Intermediate tuff YIOO	Medium-grained monzonite intrusive IIMM	Andesite autoclastic breccia +/- andesitic lava VIAX	Undiff calcareous wacke SWBO				Felsic physic volcanics and intervolcanic sediments XVFP Felsic flowbanded volcanics and intervolcanic sediments XVFB			
ff Intermediate tuff YIOO Undiff intermediate epiclastic tuff YIOE	Coarse-grained monzonite intrusive IIMC Monzonite breccia IIMX	Andesite hyaloclastite +/- andesite lava VIAH	Undiff sulphidic wacke SWZO				Highly vesicular/amygdaloidal felsic volcanics and intervolcanic sediments XVFV			
Massive/blocky intermediate tuff +/-tuff breccia YIOU	Undiff quartz diorite	Andesite lava; pillowed +/- pillow breccia VIAW Andesite lava; amygdaloidal/vesicular VIAV	Undiff Siltstone SIOO Undiff siltstone SIOO				Interstratified rhyolitic volcanics and epiclastic rocks XVRC			
Intermediate lithic tuff +/-tuff breccia YIOR	Massive quartz diorite intrusive IIQU	Undiff Mafic Volcanic Rocks VMOO	Undiff feldspathic/arkosic siltstone SIKO				Rhyolitic volcanics and argillaceous epiclastics XVRF			
ntermediate lapilli tuff, variably welded +/-tuff breccia YIOL	Porphyritic quartz diorite intrusive IIQP	Undiff mafic lava VMOO	Undiff carbonaceous siltstone SICO				Rhyolitic volcanics and arenaceous epiclastics XVRN Rhyolitic volcanics and and rudaceous epiclastics XVRC			
Intermediate crystal tuff +/-tuff breccia YIOY	Fine-grained quartz diorite intrusive IIQF	Massive Mafic lava VMOU	Undiff lithic siltstone SIRO				Rhyolitic volcanics and associated debris flow (volcanics wacke) XVRE			
Intermediate ash tuff +/-tuff breccia YIOA Intermediate tuff breccia +/- intermediate tuff YIOX	Medium-grained quartz diorite intrusive IIQM Coarse-grained quartz diorite intrusive IIQC	Mafic lava; hbl/cpx-feldspar phyric VMOP	Undiff granitic siltstone SIGO				Rhyolitic volcanic breccia, and intervolcanic sediments XVRX			
Intermediate tuff; fine-grained YIOF	Quartz diorite breccia IIQX	Mafic lava: flow-banded VMOB Mafic autoclastic breccia +/- mafic lava VMOX	Undiff quartzose siltstone SIQO				Rhyolitic hyaloclastitic volcanics and intervolcanic sediments XVRH			
Intermediate tuff; medium-grained YIOM	Quartz monzonite IIZO	Maric autoclastic breccia +/- maric lava VMOX Maric hyaloclastite +/- maric lava VMOH	Undiff arenaceous siltstone SISO Undiff volcanic siltstone SIVO		1		Rhyolitic phyric volcanics and intervolcanic sediments XVRP			
Intermediate tuff, coarse-grained YIOC	Massive quartz monzonite intrusive IIZU	Mafic pillow lava +/- pillow breccia VMOW	Undiff felsic sitstone SIFO		1		Rhyolitic flowbanded volcanics and intervolcanic sediments XVRB			
andesite tuff YIAO	Porphyritic quartz monzonite intrusive IIZP	Mafic lava; amygdaloidal/vesicular VMOV	Undiff andesitic siltstone SIAO		1		Highly vesicular/amygdaloidal rhyolitic volcanics and intervolcanic sediments XVRV Interstratified dacitic volcanics and epiclastic rocks XVDO			
Undiff andesitic epiclastic tuff YIAE Massive/blocky andesitic tuff +/-tuff breccia YIAU	Fine-grained quartz monzonite intrusive IIZF	Undiff basalt lava VMBO	Undiff mafic siltstone SIMO		1		Dacitic volcanics and epiclastic rocks AVDO Dacitic volcanics and argillaceous epiclastics XVDF			
Andesite lithic tuff +/-tuff breccia YIAD	Medium-grained quartz monzonite intrusive IIZM Coarse-grained guartz monzonite intrusive IIZC	Massive basalt lava VMBU Basalt lava; hbl/cpx-feldspar phyric VMBP	Undiff hematitic siltstone SIIO		1		Dacitic volcanics and arenaceous epiclastics XVDM			
Andesite lapilli tuff; variably welded +/-tuff breccia YIAL	Quartz monzonite breccia IIZX	Basalt lava, hbi/cpx-reidspar phyric VMBP Basalt lava: flow-banded VMBB	Undiff cherty siltstone SIHO Undiff fossiliferous siltstone SILO		1		Dacitic volcanics and and rudaceous epiclastics XVDC			
Andesite crystal tuff +/-tuff breccia YIAY	Undiff monzodiorite IIIO	Basalt autoclastic breccia +/- basalt lava VMBX	Undiff calcareous siltstone SIBO		1		Dacitic volcanics and associated debris flow (volcanics wacke) XVDE Dacitic volcanic breccia, and intervolcanic sediments XVDX			
Andesite ash tuff +/-tuff breccia YIAA	Massive monzodiorite intrusive IIIU	Basalt hyaloclastite +/- basalt lava VMBH	Undiff sulphidic sittstone SIZO		1		Dactic volcanic breccia, and intervolcanic sediments XVDX Dactic hyaloclastitic volcanics and intervolcanic sediments XVDH			
Andesite tuff breccia +/- andesite tuff YIAX Andesite tuff; fine-grained YIAF	Porphyritic monzodiorite intrusive IIIP Fine-grained monzodiorite intrusive IIIF	Pillow basalt +/- pillow breccia VMBW	Undiff Mudstone/argillite SAOO		1		Dacitic phyric volcanics and intervolcanic sediments XVDP			
Andesite tuff; medium-grained YIAM	Medium-grained monzodiorite intrusive IIIM	Basalt lava; amygdaloidal/vesicular VMBV	Undiff argillite SAOO Undiff feldspathic/arkosic argillite SAKO		1		Dacitic flowbanded volcanics and intervolcanic sediments XVDB			
Andesite tuff; coarse-grained YIAC	Coarse-grained monzodiorite intrusive IIIC		Undiff feldspathic/arkosic argillite SAKO Undiff carbonaceous argillite SACO		1		Highly vesicular/amygdaloidal dacitic volcanics and intervolcanic sediments XVDV			
Mafic Volcaniclastics YMOO	Monzodiorite breccia IIIX		Epiclastic carbonaeous argillite SACE		1		Interstratified rhyodacitic volcanics and epiclastic rocks XVCO			
	Undiff Mafic Intrusives IMOO		Undiff lithic argilite SARO		1		Rhyodacitic volcanics and argillaceous epiclastics XVCF Rhyodacitic volcanics and arenaceous epiclastics XVCM			
Undiff mafic epiclastic tuff YMOE Massive/blocky mafic tuff +/-tuff breccia YMOU	Undiff mafic intrusive IMOO		Undiff granitic argillite SAGO		1		Rhyodacitic volcanics and arenaceous epiclastics XVCM Rhyodacitic volcanics and and rudaceous epiclastics XVCC			
Massive/blocky matic tuff +/-tuff breccia YMOU Mafic lithic tuff +/-tuff breccia YMOR	Undiff massive mafic intrusive IMOU Porphyritic mafic intrusive IMOP		Undiff quartzose argillite SAQO		1		Rhyodacitic volcanics and associated debris flow (volcanics wacke) XVCE			
Mafic lapilli tuff, variably welded +/-tuff breccia YMOL	Fine-grained mafic intrusive IMOP		Undiff arenaceous argillite SASO		1		Rhyodacitic volcanic breccia, and intervolcanic sediments XVCX			
Mafic crystal tuff +/-tuff breccia YMOY	Medium-grained matic intrusive IMOM		Undiff volcanic argiilite SAVO Undiff felsic argiilite SAFO		1		Rhyodacitic hyaloclastitic volcanics and intervolcanic sediments XVCH			
Mafic ash tuff +/-tuff breccia YMOA	Coarse-grained mafic intrusive IMOC		Undiff andesitic argillite SAAO		1		Rhyodacitic phyric volcanics and intervolcanic sediments XVCP			
					1		Rhyodacitic flowbanded volcanics and intervolcanic sediments XVCB			
Mafic tuff breccia +/- Mafic tuff YMOX	Mafic intrusive breccia IMOX		Undiff mafic argillite SAMO		1		Highly vesicular/amygdaloidal rhyodacitic volcanics and intervolcanic sediments XVCV			
Mafic tuff; fine-grained YMOF Mafic tuff; medium-grained YMOM	Undiff gabbro IMPO Massive gabbro intrusive IMPU		Undiff hematitic argillite SAIO		1		Interstratified intermediate volcanics and epiclastic rocks XVIO			
Mafic tuff; coarse-grained YMOC	Porphyritic gabbro intrusive IMPU		Undiff cherty argillite SAHO Undiff fossiliferous argillite SALO		1		Intermediate volcanics and argillaceous epiclastics XVIF			
pasalt tuff YMBO	Fine-grained gabbro intrusive IMPF		Undiff calcareous argillite SALO		1		Intermediate volcanics and arenaceous epiclastics XVIM			
Undiff basaltic epiclastic tuff YMBE	Medium-grained gabbro intrusive IMPM		Undiff sulphidic argillite SAZO		1		Intermediate volcanics and and rudaceous epiclastics XVIC			
Massive/blocky basaltic tuff +/-tuff breccia YMBU	Coarse-grained gabbro intrusive IMPC		Undiff Chert SCOO		1		Intermediate volcanics and associated debris flow (volcanics wacke) XVIE Intermediate pillowed volcanics, pillow breccia and intervolcanic sediments XVIW			
Basalt lithic tuff +/-tuff breccia YMBR	Gabbroic breccia IMPX		Undiff chert SCOO		1		Intermediate pillowed volcanics, pillow breccia and intervolcanic sediments XVIW Intermediate volcanic breccia, and intervolcanic sediments XVIX			
그는 것이 같은 것이 같은 것이 같은 것이 있는 것이 같은 것이 있는 것이 같은 것이 있는 것이 있는 것이 같은 것이 같이 있는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 없는 것이 같이 있다.	Undif Dolerite IMDO		andesitic chert SCAO		1		Intermediate volcanic breccia, and intervolcanic sediments XVIX Intermediate hyaloclastitic volcanics and intervolcanic sediments XVIH			
Basalt crystal tuff +/-tuff breccia YMBY Basalt ash tuff +/-tuff breccia YMBA	Massive dolerite intrusive IMDD		Hematitic chert SCIO				Intermediate phyric volcanics and intervolcanic sediments XVIP			
Dasait ash turi +/-turi preccia YMBA	Porphyritic dolerite intrusive IMDP		Sulphidic chert SCZO				Intermediate flowbanded volcanics and intervolcanic sediments XVIB			
Basalt tuff breccia +/- Basalt tuff YMBX	Fine-grained dolerite intrusive IMDF		Corbonación de Lacado							
Basalt tuff; fine-grained YMBF	Medium-grained dolerite intrusive IMDM		Carbonaceous chert SCCO Brecciated carbonaceous chert SCCX			I	Highly vesicular/amygdaloidal intermediate volcanics and intervolcanic sediments XVIV			
Basalt tuff; medium-grained YMBM	Coarse-grained dolerite intrusive IMDC		Undiff Limestone SLOO				Interstratified andesitic volcanics and epiclastic rocks XVAO			
Basalt tuff; coarse-grained YMBC	Doleritic breccia IMDX		Undiff limestone SLOO				Andesitic volcanics and argillaceous epiclastics XVAF Andesitic volcanics and arenaceous epiclastics XVAM	1		
	Undiff lamprophyre ILDO		Undiff arenaceous/sandy limestone SLSO		1		Andesitic volcanics and arenaceous epiclastics XVAM Andesitic volcanics and and rudaceous epiclastics XVAC			
	Massive lamprophyre intrusive ILDU Porphyritic lamprophyre intrusive ILDP		Undiff fossiliferous limestone SLLO Undiff dolomititic limestone SLDO		1		Andesitic volcanics and associated debris flow (volcanics wacke) XVAE	1		
	EVEN PRODUCTION OF A PROVIDENT AND A PROVIDENTA AND A PROVIDENT AND A PROVIDA AND AN		Lindu dolomitic limestone el DO			1				

Andesitic volcanics and associated debris flow (volcanics wacke) XVAE Andesitic pillowed volcanics , pillow breccia and intervolcanic sediments XVAW Andesitic volcanic breccia, and intervolcanic sediments XVAX Andesitic hyaloclastitic volcanics and intervolcanic sediments XVAH Andesitic phyric volcanics and intervolcanic sediments XVAP Andesitic flowbanded volcanics and intervolcanic sediments XVAB Highly vesicular/amygdaloidal andesitic volcanics and intervolcanic sediments XVAV Interstratified mafic volcanics and epiclastic rocks XVMO Mafic volcanics and argillaceous epiclastics XVMF Mafic volcanics and arenaceous epiclastics XVMM Mafic volcanics and and rudaceous epiclastics XVMC Mafic volcanics and associated debris flow (volcanics wacke) XVME Mafic pillowed volcanics , pillow breccia and intervolcanic sediments XVMW Mafic volcanic breccia, and intervolcanic sediments XVMX Mafic hyaloclastitic volcanics and intervolcanic sediments XVMH Mafic phyric volcanics and intervolcanic sediments XVMP Mafic flowbanded volcanics and intervolcanic sediments XVMB Highly vesicular/amygdaloidal mafic volcanics and intervolcanic sediments XVMV Interstratified basalt volcanics and epiclastic rocks **XVBO** Basaltic volcanics and argillaceous epiclastics XVBF Basaltic volcanics and arenaceous epiclastics XVBM Basaltic volcanics and and rudaceous epiclastics XVBC Basaltic volcanics and associated debris flow (volcanics wacke) XVBE Basaltic pillowed volcanics , pillow breccia and intervolcanic sediments XVBW Basaltic volcanic breccia, and intervolcanic sediments XVBX Basaltic hyaloclastitic volcanics and intervolcanic sediments XVBH Basaltic phyric volcanics and intervolcanic sediments XVBP Basaltic flowbanded volcanics and intervolcanic sediments XVBB Highly vesicular/amygdaloidal basaltic volcanics and intervolcanic sediments XVBV Undifferentiated interstratified volcaniclastics +/- epiclastic rocks XYOO Undiff volcaniclastics and argillaceous epiclastics XYOF Undiff volcaniclastics and arenaceous epiclastics XYOM Undiff volcaniclastics and and rudaceous epiclastics XYOC Undiff volcaniclastics and associated debris flow (volcanic wacke) XYOE Undiff tuff breccia, minor flows and interbedded sediments XYOX Undiff lapilli tuff +/- ash tuff +/- interbedded sediments XYOL Undiff ash tuff +/- lapilli tuff +/- interbedded sediments XYOA Undiff lithic tuff +/- interbedded sediments XYOR Undiff crystal tuff +/- interbedded sediments XYOY Interstratified felsic volcaniclastics +/- epiclastic rocks XYFO Felsic volcaniclastics and argillaceous epiclastics XYFF Felsic volcaniclastics and arenaceous epiclastics XYFM Felsic volcaniclastics and and rudaceous epiclastics XYFC Felsic volcaniclastics and associated debris flow (volcanic wacke) XYFE Felsic tuff breccia, minor flows and interbedded sediments XYFX Felsic lapilli tuff +/- ash tuff +/- interbedded sediments XYFL Felsic ash tuff +/- lapilli tuff +/- interbedded sediments XYFA Felsic lithic tuff +/- interbedded sediments XYFR Felsic crystal tuff +/- interbedded sediments XYFY Interstratified rhyolitic volcaniclastics +/- epiclastic rocks XYRO Rhyolitic volcaniclastics and argillaceous epiclastics XYRF Rhyolitic volcaniclastics and arenaceous epiclastics XYRM Rhyolitic volcaniclastics and and rudaceous epiclastics XYRC Rhyolitic volcaniclastics and associated debris flow (volcanic wacke) XYRE Rhyolitic tuff breccia, minor flows and interbedded sediments XYRX Rhyolitic lapilli tuff +/- ash tuff +/- interbedded sediments XYRL Rhyolitic ash tuff +/- lapilli tuff +/- interbedded sediments XYRA Rhyolitic lithic tuff +/- interbedded sediments XYRR Rhyolitic crystal tuff +/- interbedded sediments XYRY Interstratified dacitic volcaniclastics +/- epiclastic rocks XYDO Dacitic volcaniclastics and argillaceous epiclastics XYDF Dacitic volcaniclastics and arenaceous epiclastics XYDM Dacitic volcaniclastics and and rudaceous epiclastics XYDC Dacitic volcaniclastics and associated debris flow (volcanic wacke) XYDE Dacitic tuff breccia, minor flows and interbedded sediments XYDX Dacitic lapilli tuff +/- ash tuff +/- interbedded sediments XYDL Dacitic ash tuff +/- lapilli tuff +/- interbedded sediments XYDA Dacitic lithic tuff +/- interbedded sediments XYDR Dacitic crystal tuff +/- interbedded sediments XYDY Interstratified rhyodacitic volcaniclastics +/- epiclastic rocks XYCO Rhyodacitic volcaniclastics and argillaceous epiclastics XYCF Rhyodacitic volcaniclastics and arenaceous epiclastics XYCM Rhyodacitic volcaniclastics and and rudaceous epiclastics XYCC Rhyodacitic volcaniclastics and associated debris flow (volcanic wacke) XYCE Rhyodacitic tuff breccia, minor flows and interbedded sediments XYCX Rhyodacitic lapilli tuff +/- ash tuff +/- interbedded sediments XYCL Rhyodacitic ash tuff +/- lapilli tuff +/- interbedded sediments XYCA Rhyodacitic lithic tuff +/- interbedded sediments XYCR Rhyodacitic crystal tuff +/- interbedded sediments XYCY Interstratified intermediate volcaniclastics +/- epiclastic rocks XYIO Intermediate volcaniclastics and argillaceous epiclastics XYIF Intermediate volcaniclastics and arenaceous epiclastics XYIM Intermediate volcaniclastics and and rudaceous epiclastics XYIC Intermediate volcaniclastics and associated debris flow (volcanic wacke) XYIE Intermediate tuff breccia, minor flows and interbedded sediments XYIX Intermediate lapilli tuff +/- ash tuff +/- interbedded sediments XYIL Intermediate ash tuff +/- lapilli tuff +/- interbedded sediments XYIA Intermediate lithic tuff +/- interbedded sediments XYIR Intermediate crystal tuff +/- interbedded sediments XYIY Interstratified andesitic volcaniclastics +/- epiclastic rocks XYAO Andesitic volcaniclastics and argillaceous epiclastics XYAF Andesitic volcaniclastics and arenaceous epiclastics XYAM Andesitic volcaniclastics and and rudaceous epiclastics XYAC Andesitic volcaniclastics and associated debris flow (volcanic wacke) XYAE Andesitic tuff breccia, minor flows and interbedded sediments XYAX Andesitic lapilli tuff +/- ash tuff +/- interbedded sediments XYAL Andesitic ash tuff +/- lapilli tuff +/- interbedded sediments XYAA Andesitic lithic tuff +/- interbedded sediments XYAR Andesitic crystal tuff +/- interbedded sediments XYAY Interstratified mafic volcaniclastics +/- epiclastic rocks XYMO Mafic volcaniclastics and argillaceous epiclastics XYMF Mafic volcaniclastics and arenaceous epiclastics XYMM Mafic volcaniclastics and and rudaceous epiclastics XYMC Mafic volcaniclastics and associated debris flow (volcanic wacke) XYME Mafic tuff breccia, minor flows and interbedded sediments XYMX Mafic lapilli tuff +/- ash tuff +/- interbedded sediments XYML Mafic ash tuff +/- lapilli tuff +/- interbedded sediments XYMA Mafic lithic tuff +/- interbedded sediments XYMR Mafic crystal tuff +/- interbedded sediments XYMY Interstratified basaltic volcaniclastics +/- epiclastic rocks XYBO Basaltic volcaniclastics and argillaceous epiclastics XYBF Basaltic volcaniclastics and arenaceous epiclastics XYBM Basaltic volcaniclastics and and rudaceous epiclastics XYBC Basaltic volcaniclastics and associated debris flow (volcanic wacke) XYBE Basaltic tuff breccia, minor flows and interbedded sediments XYBX Basaltic lapilli tuff +/- ash tuff +/- interbedded sediments XYBL Basaltic ash tuff +/- lapilli tuff +/- interbedded sediments XYBA Basaltic lithic tuff +/- interbedded sediments XYBR Basaltic crystal tuff +/- interbedded sediments XYBY

ALTERATION ASSEMBLAGE CODES - Normalised table structure - allowing multiple entries for each interval

0

-

1

Note: All min type includes both attension and mineral types as described in the logs AGSO mineral code atbreviations have been adopted for mineral types Alt_style captures the described style from the log - which may describe distribution and geometry

(internet)

(married

original_original		and the second second	style, distribution,	
im _to	Alt_min_type UND_Altered (undifferentiated)	Alt_intensity () "absolute %	Alt_style geometry ane enestomosing	
	AL Abitc	tr trace	bd banded	
	AR Argilic	wk weak	bib blebs	
1	BZ Biotization CN Carbonatization	med medium med moderate	box boxwork ckd cockade	
	CD Chalcedonic	med moderate stg strong	cia cieste	
	CH Chloritization	int intense	clu clusters	
	EZ Epidotization		col colloform	
1	FN Fenilization GRA Graphilic	wk (+/-)	diss disseminated fill fill	
1	G5 Greisen	wit minor	ff fracture filling	
	HM Hematization	wik partly	fid flooded	
	KA Kaolinitic MI Micaceous	w/k petchy	frag fragments	
	PH Phylic	wk rare wk scattered	fram framboidal feel fracture selvage	
	KO Polassic	wk some	gran granular	
	PP Propylisc PR Pyrilic		hei halo	
	PR Pyritic SS Saussertised		lam taminae Ion lenticular	
	SR Sericitization		mass massive	
	5Z Serpentinization	unk variable	met metrix	
	SL Silicic SK Skam	unk unknown	mot mottled rep replacement/overprint	
	SO Sode	UNK GROOMI	pat patches	
	SU Subhidic		pv pervasive	
	SY Syenitized UNK unknown		rcry recrystalised rib ribbon	
	ACN acanibile		spo spotted	
	ACT actinoite		stain staining	
	ADU adularia		vsel vein selvage	
	AEG aegitine AGT aegitine-augite		wrk was-rock	
	AEN senignatie			
1	AlK alkinite		unk no style mentioned	
	AK akermanite ALB elabandite			
	ALB sisbandite AB sibite			
	ALN allanite			
1	ALG allargentum			
	ALP allophane ALM almandine			
	ALT allaite			
	AKT aluminokataphorite			
	ALSI aluminosilicate (unspecified)			
	ALU alunite	S		
	AMB amblygonite AMS amesite			
	AMPH amphibole			
RULES	Alt min type			EXAMPLES
	Multiple alteration and mineral types can be captured	and for the same interval		42.1 - 53.7m A strongly altered trachy-andesite with 2-3% pyrite stringer veins 42.1 - 53.7m UND/stg/none
	ie alteration group types and specific mineral type			(Note that the vein style and vein mineralis are captured in the Vein table)
	NOTE: "Massive talc-chlorite-carbonate alteration Individual mineral codes TLC, CL and CARB would			53.7 - 65.8m Massive grey, variably säcified rock with patchy carbonate and chiorite blebs. Scattered and disseminated epi+ser+/-mag 53.7 - 65.8m SL/wk/mass
	51.5 - 65.7m TLC unk mass	to be captured for this interval as tok	7#5	53.7 - 65.8m CARBWebbb
	51.5 - 65.7m CL unk mass			53.7 - 85.8m CL/wkb/b
	51.5-65.7m CARB unk mass			53.7 - 65.8m EP/wk/dise
	Alt intensity			53.7 - 65.8m SERivskidias 53.7 - 65.8m MGT/wkidias
1			d (eq 2-3%), use meen value ie 2.5	65.8 - 75.9m Very weak sericite elteration, silica overprinting (mod - strong). Altered clasts of dacite with stibnite, quartz and Fe-Carbonate 85.8 - 75.9m SERWwkinone
	"Where absolute % is recorded, capture the num	eric value. Where a range is specifie		do.e + / J.anii Ochirwinione
	% values can be assigned to weak, moderate, str			65.8 - 75.9m SL/med/oprt
				65.8 - 75.9m SLImediopri 65.8 - 75.9m STBlunkhone
	% values can be assigned to weak, moderate, str			65.8 - 75.9m SL/med/oprt
EXAMPLES	% values can be assigned to weak, moderate, sin on interogation of the data 13.0 - 27.68m Pyrite 4 to 5%, as selvedges within	ong and intense values a quartz-calcite stock work and veir	array,	05.8 - 75.9m STBlunkinone 05.8 - 75.9m STBlunkinone 05.8 - 75.9m SZWikinone 05.8 - 75.9m FECBwikinone
EXAMPLES	% values can be assigned to weak, moderate, sin on interogation of the data 13.0 - 27.65m Pyrite 4 to 5%, as selvedges within Veins at 45 deg to c.a. range from 3.0 to 10mm in	ong and intense values a quartz-calcile slock work and vein widah(ave 2 to 2.5mm), freq of 50 p	array,	#5.8 - 75.9m SLimed/opri #5.8 - 75.9m STB/unk/none #5.8 - 75.9m SCB/wk/none #5.9 - 75.9m FECB/wk/none 75.9 - 92.16m K-feidspar flooding is strong in volcanic fragments. Sericite is moderate.confined to felspar phenocrysListrs in groundmass.
EXAMPLES	% values can be assigned to weak, moderate, sin on interogation of the data 13.0 - 27.68m Pyrite 4 to 5%, as selvedges within	ong and intense values a quartz-calcile slock work and vein widah(ave 2 to 2.5mm), freq of 50 p	array,	05.8 - 75.9m STBlunkinone 05.8 - 75.9m STBlunkinone 05.8 - 75.9m SZWikinone 05.8 - 75.9m FECBwikinone
EXAMPLES	% values can be assigned to weak, moderate, sin on interception of the data 13.0 - 27 68m Partle 4 to 5%, as selvedges within Veins at 45 deg to c.a. range from 3.0 to 10mm in Pyrite and Sphalerite are captured in the vein	ong and intense values a quartz-calcite stock work and veir width(eve 2 to 2.5mm), freq of 60 po ling table	erray. r mtr. Trace sphalerite	65.8 - 75.9m 82/Withone 65.8 - 75.9m 372/Withone 65.8 - 75.9m 372/Withone 65.8 - 75.9m 22/16m KFBidspar flooding is strong in volcaric tragments. Sericite is moderate.confined to felspar phenocryst laths in groundmass. 75.9 - 92.16m K-feldspar flooding is strong in volcaric tragments. Sericite is moderate.confined to felspar phenocryst laths in groundmass. 75.9 - 92.16m K-feldspar flooding is strong in volcaric tragments. Sericite is moderate.confined to felspar phenocryst laths in groundmass. 75.9 - 92.16m KF/Sitsg/IId 75.9 - 92.16m KF/Sitsg/IId 75.9 - 92.16m KF/Sitsg/IId
EXAMPLES	% values can be assigned to weak, moderate, sin on interception of the data 13.0 - 27.68m Pyrite 4 to 5%, as selvedges within Veins at 45 deg to c.a. range from 3.0 to 10mm in Pyrite and Sphalerite are captured in the vein 27.66 - 56.0m Increased potassic veining(3-5%).	ong and intense values a quartz-calcite slock work and vein width ave 2 to 2.5mm), treg of 60 pr ning table tr pytle as disseminations and selve	array, r mit. Trace sphalerite signs, int sericitic and chloritic allin.	65.8 - 75.9m St.Bunkthoone 75.9 - 92.16m K-feidsper flooding is strong in volcaric fragments. Sericite is moderate confined to felsper phenocryst latins in groundmass. Prite (4-5%) disseminations and euthedral blebs, selvedges within chiorite veins. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. Sericite is moderate, confined to felsper phenocryst latins in groundmass. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m PVI.5d(las)
EXAMPLES	% values can be assigned to weak, moderate, sin on interogation of the data 13.0 - 27.66m Pyrtle 4 to 5%, as selvedges within Verins at 45 day to c.a. range from 3.0 to 10mm in Pyrtle and Sphalerite are captured in the valin 27.66 - 56.0m Increased potassic veining(3-5%), Potaselic veining captured in the valin table a	ong and intense values a quartz-calcite slock work and vein width ave 2 to 2.5mm), treg of 60 pr ning table tr pytle as disseminations and selve	array, r mit. Trace sphalerite signs, int sericitic and chloritic allin.	65.8 - 75.9m SLimendicort 65.8 - 75.9m STBlunk/hone 65.8 - 75.9m STBlunk/hone 65.8 - 75.9m STBlunk/hone 75.9 - 92.19m K-fieldspar flooding is strong in volcanic fragments. Sericitle is moderate.confined to felspar phenocryst latins in groundmass. Pythe (4-5%) disseminations and eutedral blobs, selvedges within chloritle veins. 75.9 - 92.19m K-fieldspar flooding is strong in volcanic fragments. Sericitle is moderate.confined to felspar phenocryst latins in groundmass. 75.9 - 92.19m K-fieldspart 75.9 - 92.19m SERBimsdimrep 75.9 - 92.19m PY1.5/bitle
EXAMPLES	% values can be assigned to weak, moderate, sin on interception of the data 13.0 - 27.68m Pyrite 4 to 5%, as selvedges within Veins at 45 deg to c.a. range from 3.0 to 10mm in Pyrite and Sphalerite are captured in the vein 27.66 - 56.0m Increased potassic veining(3-5%).	ong and intense values a quartz-calcite slock work and vein width ave 2 to 2.5mm), treg of 60 pr ning table tr pytle as disseminations and selve	array, r mit. Trace sphalerite signs, int sericitic and chloritic allin.	65.8 - 75.9m St.Bunkthoone 75.9 - 92.16m K-feidsper flooding is strong in volcaric fragments. Sericite is moderate confined to felsper phenocryst latins in groundmass. Prite (4-5%) disseminations and euthedral blebs, selvedges within chiorite veins. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. Sericite is moderate, confined to felsper phenocryst latins in groundmass. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m K-Feidsper flooding is strong in volcaric fragments. 75.9 - 92.16m PVI.5d(las)

VEINING CODES - Normalised table structure - multiple entries for each interval

	A. Cart					Vein minera		
		FACTUAL vein style directly from log	includes: style-geometry- structure-size	code		code abbreviation as for AGSO minerals		NOTES
		BND	Boudinaged Vein	()	*absolute %	UNK	unknown	Each entry in this table describes one 'set' of veins or
		BRX	Vein Breccia	tr	trace	and the second second		a unique type of veins. Note that any interval may have
		CKD	Cockade Vein	wk	weak	ACN	acanthite	different types of veins or vein 'sets'. A common
		COL	Colloform Vein	med	medium	ACT	actinolite	observation is that one vein set cross-cuts another.
		CON	Conjugate Veins	med	moderate	ADU	adularia	
		CRC	Crackle Vein	stg	strong	AEG	aegirine	The style, intensity, and mineral composition
		DRU	Drusy	int	intense	AGT	aegirine-augite	are recorded for each vein set.
		EEN	En Echelon Veins			AEN	aenigmatite	
		EXT	Extensional Vein	wk	few	AIK	aikinite	Style is normally chosen from the library table. If you
		FELD	Narrow felsic dyke/vein	wk	minor	AK	akermanite	find styles in your logs that do not match the library,
		FMV	Fine/micro-veins	wk	(+/-)	ALB	alabandite	please have them added to the library.
		FOL	Folded vein	wk	some	AB	albite	
		FRV	Fracture Veins	wk	partly	ALN	allanite	
		FTV	Fault-related veins	wk	rare	ALG	allargentum	
		HLN	Hairline Veins	wk	scattered	ALP	allophane	
		INTD	Narow intermediate dyke/vein	wk	patchy	ALM	almandine	
		IRR	Irregular / undeformed / segmented			ALT	altaite	
		LAC	Laced veinlets	unk	common	AKT	aluminokataphorite	
		The second se	Laminated Veins	unk	numerous	ALSI	aluminosilicate (unspecified)	
		LAMD	Narrow lamprophyre dyke/vein	unk	many	ALU	alunite	
		MAS	Massive Veins	unk	regular	AMB	amblygonite	
		PEG	Net-like veining	unk	irregular	AMS	amesite	
		PLN	Pegmatite Veins	ł		AMPH	amphibole	
		PTY	Planar Veins	1000	VOLUME AND ADDRESS OF	etc	etc etc etc	EXAMPLES For numerous veins of < 1 ft width within an interval, determine absolute % for that interval (eg)
		RIB	Ptygmatic folded veins Ribbon Veins	unk	unknown intensity			60.0 - 95.0m : Laminated quartz-mica veins at 65.5m, 78.2m, 88.9m are 20-25cm wide
		SHR				1		absolute % = 1.7 (0.6m/35m)
		SHT	Sheared Veins					light of the light had been a second or an end of the second second second second second second second second s
			Sheeted Veins	1		1		78.8 - 88.0m Qtz - Fe-Carbonate vein at 80.3m. Vein is 5-7cm wide
		SIG	Sigmoidal Veins			1		don't capture
			Seams Staalsundt Vision					
		STK	Stockwork Veins	1				68.0 - 88m Otz - Fe-Carbonate veins at 68.5m, 69.2m, 71.5m, 74.3m, 78m, and 85.3m
		STR	Stringer Veins	ł		1		Vein widths vary from 5-7cm
		SYND	Stylolitic	1				68.0 - 88m UND/1.5/QZ/FECB (an absolute % intensity is determined, (0.3m/20m)
		TEN	Narrow syenitic dyke/vein					
		UND	Tension Gashes	ł				88.0 - 96.0m Rare colloform crosscutting veins of quartz with trace py and pyrrhotite
		WSP	Undifferentiated Veins / veinlets			Sec. 35		88.0 - 96.0m COL/wk/QZ/PY/PO
		IMSP	Wispy	1		No. 10. 1		
						1	100	96.0 - 102.3m 6-8% wispy veins of qtz-py+/-ccp 96.0 - 102.3m WSP/7/QZ/PY/CCP
FA "In Mu	CTUAL Vein_st regular quartz str	tyle ringer veins" is be	hat describes visible gold at coded as STR (- stringer veins), b are to be captured in order of intensi		lar may mean deformed	l, rather than sp	atial distribution.	102.3 - 145m Felsic tuff with numerous stringer quartz-pyrite veins between 105-125m and at 132-14 Numerous fine grained lamprohyric "finger thick" dykes throughout and these cross cut veining. 102.3 - 145m LAMD/unk 105-125m STR/unk/QZ/PY 132 - 143m STR/unk/QZ/PY
Ve	in intensity appli		in the table, and is not the intensity o tring (as in common, numerous, man	1000	vein_min_1, _2 or _3.		공항공항공품	13.0 - 27.66m Pyrite 4 to 5%, as selvedges within a quartz-calcite stock work and vein array. Veins at 45 deg to c.a. range from 3.0 to 10mm in width(ave 2 to 2.5mm), freq of 50 per mtr. Trace s 13.0 - 27.66m STK/11.25/QZ/CAL/PY/SP
85	a percentage (w	here it generally r	neans the percentage of the rock that	t is composed	1946 - Constanting St.			27.66 - 43.0m Brecciated quartz and Fe-carbonate veins at 70 degrees to c/a to 1cm wide (6-10per
		cribed in the log it	is entered into the database as a nu	merical value	(eg: 2-3% of the interva	al is carbonate v	eins), use mean value (le 2.5)	27.66 - 43.0m BRX/8.0/QZ/FECB
	ze of intervais general, do not o	create intervals sn	naller than 1ft (~0.3m) in length					 43.0 - 53.0m 3% pyrite as granular patches and stringers. 43.0 - 53.0m STR/1.5/PY (the remaining 1.5% pyrite is captured in the alteration table as a mineral assemblage)
Ift	he vein style, int	ensity, or compos	ition changes, or is unique for an inte	rval that is 2ft	in length (~0.6m) ALW	AYS create a n	aw interval	fore remaining there by the to ophysics in the antiophysics more as a united groophing (a)
Le: 1 -		cm) never code coder discretion i0cm) always code						