

[ARIS11A]

Geological Survey Branch Assessment Report Indexing System

ARIS Summary Report

Regional Geologist, Smithers Date Approved: 2005.04.21 **Off Confidential:** 2005.09.02 **ASSESSMENT REPORT: 27586** Mining Division(s): Skeena **Property Name: Del Norte NAD 27** Latitude: 56 00 01 Longitude: 129 30 53 UTM: 09 6206016 467897 Location: Latitude: 56 00 00 Longitude: 129 31 00 UTM: 09 6206200 **NAD 83** 467777 NTS: 104A04E 104A003 BCGS: Camp: Croesus 1-4, Huratio 1-3, Lord Nelson 3-6, LH 3 Claim(s): Operator(s): Teuton Resources Corp. Cremonese, Dino M., Mastalerz, K Author(s): **Report Year:** 2004 141 Pages No. of Pages: Commodities Searched For: Gold, Silver DRIL, GEOC General Work Categories: Work Done: Drilling DIAD (36 hole(s);BQ) (4518.8 m) Diamond surface Geochemical ROCK Rock No. of maps : 1 ; Scale(s) : 1:5000 (115 sample(s);) Elements Analyzed For : Multielement SAMP Sampling/assaying (771 sample(s);) Elements Analyzed For : Multielement Jurassic, Mount Dilworth Formation, Salmon River Formation, Felsic volcanics, Andesites, Breccias, Sphalerite, Keywords: Galena, Tetrahedrite Statement Nos.: 3216279 **MINFILE Nos.:** 104A 163 **Related Reports:** 17660, 19168, 19642, 21535, 22103, 23323, 23832, 24357, 27210

Ministry of Energy and Mines

ASSESSMENT REPORT ON DIAMOND DRILLING & GEOCHEMICAL WORK ON THE FOLLOWING CLAIMS

CROESUS 1251848CROESUS 4251851HORATIO 1396309HORATIO 3396311LORD NELSON 3396304LORD NELSON 6396307LH 3404918

90

Commissioner's C

Gold

EVENT # 3216279 (Stat. of Exp.)

WORK PERMIT # MX-1-314

Located

34 KM EAST OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 00 minutes latitude 129 degrees 31 minutes longitude

N.T.S. 104A/4E, 104A/3W

PROJECT PERIOD: July 1 to October 24, 2004

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.

REPORT BY

K. Mastalerz, Ph.D D. Cremonese, P. Eng. 207-675 W. Hastings St. Vancouver, B.C. V6B 1N2

Date: December 31, 2004

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
	A. Property, Location, Access and Physiography B. Status of Property C. History D. References E. Summary of Work Done	1 1 2 4 6
2.	TECHNICAL DATA AND INTERPRETATION	7
	 A. Regional Geology B. Property Geology C. Rock Geochemical Sampling a. Introduction b. Discussion D. Diamond Drilling a. Introduction b. Treatment of Data c. Significant Drill Results d. Discussion-Mineralization/Alteration e. Core Recovery E. Field Procedure and Laboratory Technique F. Conclusions 	7 8 10 11 11 11 11 12 13 15 16 16

APPENDICES

I Work Cost Statement

II Certificates of Qualification

III Rock Sample Locations IV Rock Sample Descriptions & Results

V Pad and Drill Hole Data

VI Drill Logs & Gold-Silver Values VII Assay Certificates

ILLUSTRATIONS

Fig.	1	Location Map	Report Body
Fig.	2	Claims Map	Report Body
Fig.	3	Regional Geology Map	Report Body
Fig.	4	2004 Rock Geochemistry & Drill Hole	
		Location Map	Map Pocket
Fig.	5	2004 Trench Detail Map	Report Body
Fig.	6	Legend to Cross-Sections	Report Body
Fig.	7	Cross-Section: Drill Holes 1,2 & 3 (Pad C)	Report Body
Fig.	8	Cross-Section: Drill Holes 4,5,6& 10 (Pad B)	Report Body
Fig.	9	Cross-Section: Drill Holes 7,8,9 &13 (Pad J)	Report Body

		N	
- 0		× .	
- 60		SON.	
1.1		- N. A.	
1000			
C - 14			
10.00		10 A M	
- V-A	 w.,		
· · · ·	 ·		

Fig. 10 Cross-Section: Drill Holes 11,12 &14 (Pad ESh) Report Body Fig. 11 Cross-Section: Drill Holes 15,17 &19 (Pad EX1) Report Body Fig. 12 Cross-Section: Drill Holes 16,18 & 20 (Pad E) Report Body Fig. 13 Cross-Section: Drill Holes 21, 22,23 (Pad EX2) Report Body Fig. 14 Cross-Section: Drill Holes 24, 26, 28 (Pad D) Report Body Fig. 15 Cross-Section: Drill Holes 25 & 27(Pad EX3) Report Body Fig. 16 Cross-Section: Drill Holes 29, 30, 31 (Pad K) Report Body Fig. 17 Cross-Section: Drill Holes 32 & 33 (Pad L) Report Body Fig. 18 Cross-Section: Drill Holes 34 & 35(Pad M) Report Body Fig. 19 Cross-Section: Drill Hole 36 Report Body Fig. 20 LG Vein Structure-Drill Hole 20 Report Body Report Body Fig. 21 LG Vein Structure-Drill Hole 29 Fig. 22 Core Recovery Profile-Drill Hole 5 Report Body Fig. 23 Core Recovery Profile-Drill Hole 6 Report Body Fig. 24 Core Recovery Profile-Drill Hole 15 Report Body Fig. 25 Core Recovery Profile-Drill Hole 22 Report Body Fig. 26 Core Recovery Profile-Drill Hole 25 Report Body Fig. 27 Core Recovery Profile-Drill Hole 36 Report Body Fig. 28 Core Recovery Profile-Drill Hole 20 Report Body

1. INTRODUCTION

A. Property, Location, Access and Physiography

The property is located about 34 km east of Stewart, British Columbia. Nearest paved road is the Bear River Highway about 8 km to the north. Access during the 2004 program was by helicopter from a staging area just west of the Surprise Creek bridge on the Bear River Highway. There is a possibility that logging roads running west across the Nass River from Highway 37 may one day provide the closest approach to the property. 1

The Croesus and Horatio claims lie along both sides of the ridge dividing Del Norte and Nelson Creeks, two streams flowing east out of the Cambria Icefield and into the White River. Elevations vary from approximately 1050 meters on the creek bed at the eastern edge of the property to more than 2000 meters near ridge tops. Vegetation in the area changes from a mantle of mountain hemlock and balsam at low-lying elevations to shrubs, mountain grasses and heather at higher elevations. Slopes range from moderate to steep to precipitous.

Climate is relatively severe, particularly at higher elevations. Because the property lies on the eastern edge of the Cambria Icefield, precipitation is not as pronounced as in the immediate Stewart area.

B. Status of Property

Relevant claim information is summarized below:

Name	Tenure #	No. of Units	Expiry Date
Croesus 1	251848	15	May 4, 2010
Croesus 4	251851	20	May 4, 2010
Horatio 1	396309	20	Sept.9, 2010
Horatio 3	396311	20	Sept.9, 2010
Lord Nelson 3	3 396304	20	Sept.9, 2009
Lord Nelson (5 396307	18	Sept.9, 2009
LH 3	404918	20	Sept.8, 2008

Claim locations are shown on Fig. 2 after government N.T.S. maps. The claims are owned by Teuton Resources Corp. of Vancouver, British Columbia, but are currently under option to Lateegra Resources Corp. under terms whereby Lateegra can earn a 50% interest in the property by spending \$3,000,000 over a five year period.

Expiry dates listed above are contingent upon acceptance of this assessment report.

C. History

Records indicate that the property was originally staked as the "Bullion" claim, sometime prior to 1913. This early work was undoubtedly a follow-up to the small-scale placer gold operations reported to have taken place on Nelson, Del Norte and Willoughby Creeks.

Between this first staking and 1922, when the property was restaked as the Delnorte Group by Green and Ficklin of Hyder, Alaska, a small adit was driven on the north side of Del Norte creek to test a zone of quartz veining paralleling the contact between Bowser sediments and Hazelton volcaniclastics. In 1939, Owen McFadden of Stewart, backed by a syndicate, explored the ground by a series of fifteen open-cuts and some small popholes. At this time the property was known as the "Meziadin Group". In the same year, the property was visited by Dr. Mandy of the B.C. Department of Mines; Mandy examined and sampled several of Samples results indicated erratic low-grade gold the showings. mineralization associated with copper and occasional zinc values According to extant records, most of this (Ref. 7, 1939). sampling was from the north side of Del Norte Creek.

In the 1960's the area was explored again by companies searching for porphyry copper deposits. This, and subsequent work, was supported by helicopter. In the late 1970's and early 1980's, renewed exploration efforts concentrated on precious metals. Apparently, this work did not uncover anything of importance in the Del Norte Creek area (Ref. 6).

In 1987 Teuton Resources Corp. acquired the Croesus claims and carried out a program of rock and silt sampling (Ref. 9). Silt samples taken from the creek draining the Bullion showing returned moderate to highly anomalous values in gold, silver, copper, lead, and zinc. The best rock grab sample assayed 19,300 ppb Au and came from a quartz sulfide lens in a prominent gossan on the southern side of Del Norte Creek (Hardpan Creek area).

In 1988 Teuton followed up on these results with a limited program of geological mapping, prospecting, rock sampling and soil sampling in the Bullion and Hardpan Creek areas (Ref. 10). Two zones, one featuring lead-zinc mineralization, the other coppergold, were discovered in the Hardpan Creek drainage. Several grab samples taken peripheral to these zones returned anomalous values in gold, silver, copper, lead and zinc.

On the strength of the 1988 work, and collaterally because of the enthusiasm generated by the major Eskay Creek discoveries, Teuton was able to option the property to Goodgold Resources Ltd. in 1989. During 1989, Goodgold contracted Aerodat (Ref. 13) to carry out an airborne EM and Magnetometer survey over the property. Results outlined a magnetically higher central area (corresponding to volcanic rocks, and/or intrusives) flanked on the northwest and east by a lower slowly varying magnetic field (corresponding to sedimentary rocks). Goodgold also completed a small surface program concentrating on the Bullion area, with mixed results (Ref. 12).

In 1990, Goodgold mounted a major \$500,000+ program focussing mostly on the Hardpan Creek portion of the property and consisting of a preliminary phase of grid construction, mapping/prospecting, blasting/trenching, soil geochemical sampling, and geophysical surveying, followed by a second phase of diamond drilling entailing 12 holes (total 1,119m). Results of this work were compiled in a lengthy report by Bishop and Gal (Ref. 15, on file with BCEMPR). Highlights include the discovery of the gold-copper "O" zone, the gold-silver-(copper, lead, zinc) "Humdinger" zone, the lead-zinc-(gold-silver) "Grizzly" zone as well as several minor zones of precious and base metal mineralization. The best drill intercept was from Hole 90-1 on the O zone which ran 15.2m grading 0.107 opt gold and 0.410% copper.

In 1991 Goodgold carried out another \$100,000 of work before relinquishing its option. During this phase, which concentrated on the north side of Del Norte Creek, geochemical sampling, prospecting and mapping identified several strong multi-element soil geochem anomalies as well as a number of precious metal bearing quartz sulfide veins. Best assay came from a 1m chip sample across the NMG vein at its southernmost exposure: 0.31 oz/ton gold and 16.67 oz/ton silver. The vein was tentatively associated with a sharp, flanking silver soil anomaly. A zone of quartz calcite stringers, some highly auriferous, was also discovered north of the toe of Del Norte Glacier. Soil sampling over this area, named the "Crackle" zone, disclosed widespread elevated to anomalous copper values. Alteration patterns suggested a porphyry environment.

Teuton carried out more work the same season, mostly involving induced polarization surveys over the Crackle zone area. These surveys were only partially completed due to extreme weather but interpretation indicated at least two IP anomalies.

property was dormant during 1992. The However, in 1993, encouraging results from the large scale exploration and development program at the proximate Red Mountain property of Lac Minerals was a catalyst for further work at Del Norte. Teuton carried out a modest 1993 work program which included rock geochemical sampling at four sites within the Del Norte property. Sampling in the Crackle zone and vicinity resulted in the discovery of several new clusters of Au-Aq-As-(Zn-Cu) quartz sulfide stringers some with high gold values to just under 2.0 opt. These stringers are now known to occur over an area roughly 700 m square encompassing both sides of Del Norte Glacier.

From 1994-2001 very little work was carried out on the property. However, in 2002, crews investigating the area north of the Bullion zone, in the Nelson creek drainage, discovered a 3-10 m wide, quartz carbonate-sulfide cemented breccia in argillites carrying gold and silver values. The zone was exposed at the edge of a wasting icefield. Called the Kosciusko or "K" zone, it strikes roughly north-northwest and has an observable outcrop of about 50-100 metres. Continuity to the north is obscured by a snowfield and to the south by precipitous terrain.

A 2002 chip sample across the northern end of the zone returned 0.179 oz/ton gold and 18.4 oz/ton silver across a width of 10.0 metres. Three holes drilled from a single station located 12 m south of the chip sample intersected true widths of mineralization varying from 8.5 to 10 metres and carrying gold values ranging from 0.104 to 0.223 oz/ton and silver values ranging from 5.22 to 8.09 oz/ton.

In 2003 the property was optioned to Lateegra Resources Corp. under terms whereby Lateegra could earn a 50% interest by making total exploration commitments of \$3,000,000 over a five year period, in addition to share and cash payments. Nine holes were drilled in 2003 along the LG vein, a 0.5 to 1.25 m wide quartzsulfide vein following the north-northwesterly trending argillite-volcanic contact, and first outcropping about 500 m north-northwest of the K zone. Seven of these holes returned significant gold-silver values over narrow widths. The success of this program led to the large 2004 program which is the subject of this report.

D. References

- 1. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 3. GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR
- ALLDRICK, D.J.(1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.
- 5. ALLDRICK, D.J.(1985); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- 6. DOWNING, B.W. (1983); "Report on the Wilby Creek Group,

Meziadin Lake, B.C.", private report for Viscount Resources Corp.

- 7. BCDM SPECIAL REPORT 3 (1939); "Meziadin Group"--Geological sketch and sample map by Dr. J.T. Mandy, Resident Engineer, Prince Rupert.
- 8. BCDM MINISTER OF MINES ANNUAL REPORTS; 1922-77 1939-67
- 9. CREMONESE, D.M. (1988); Assessment Report on Geochemical Work on the Croesus Claims. On file with BCMEMPR.
- 10. CREMONESE, D.M. (1989); Assessment Report on Geochemical Work on the Croesus 2,3 Claims. On file with BCMEMPR.
- 11. CREMONESE, D.M. (1991); Assessment Report on Geological and Geochemical Work on the Croesus 1-4 Claims for Teuton Resources Corp. On File with BCMEMPR
- 12. CREMONESE, D.M. (1994); Assessment Report on Geochemical Work on the Croesus, 2,3,4 and Bond 7 Claims. On file with BCMEMPR.
- 13. CREMONESE, D.M. (2003); Assessment Report on Diamond Drilling & Geochemical Work on the Croesus 1,4 and Horatio 1,3 Mineral Claims. On file with BCMEMPR.
- 14. DVORAK, Z. (1989); Report on Combined Helicopter Magnetic, Electromagnetic and VLF Survey, Del Norte Area, Cambria Range, B.C.; Aerodat Ltd. Private Report for Goodgold Resources Ltd.
- 14. DEWONCK, B. AND HARDY, J. (1989); Summary Report on the Goodgold Resources Ltd. Del Norte Project and Max Project; Report by Orequest Consultants Ltd. for Goodgold Resources Ltd.
- 15. BISHOP, C. AND GAL, L. (1991); Summary Report on 1990 Geological, Geochemical, and Geophysical Surveys, Trenching and Diamond Drilling Results on the Del Norte Property. Report by International Kodiak Resources Inc. for Teuton Resources Corp. and Goodgold Resources Ltd. On File with BCMEMPR.
- 16. BRAY, ADRIAN (1992); Assessment Report-Geological and Geochemical Program on the Nelson Property for Lac Minerals Ltd.

- 17. BRAY, ADRIAN (1993); Assessment Report-Composite Talus Sampling Program on the Nelson Property for Lac Minerals Ltd.
- 18. LeBEL, J.L. (1989); Report on Del Norte Creek Property and Max Property. Private report for Sierra Madre Resources Inc.

E. Summary of Work Done.

The 2004 work program on the Del Norte Creek property was financed by optionee Lateegra Resources Corp. and operated by property owner Teuton Resources Corp. K. Mastalerz, Ph.D., and Alex Walus were the principal geologists on site. Both have previous experience in the Stewart region.

Preliminary helicopter trips were made into the property in July to select a suitable camp site. Major mobilization of camp, camp supplies and drilling equipment occurred August 5-6. A second drill was mobilized to the property August 12. Demobilization occurred from Sept. 18 to the 25, during which time the drills, core, camp and crew were taken out of the property. Reclamation of various sites on the property was also undertaken during this time. In October the property was also visited to take out some core which had been left behind.

The first drill was supplied by contractor Aggressive Diamond Drilling of Kelowna, BC. This drill used a thin-wall BQ string and completed 2,187.55 m of drilling. The second drill was supplied by Driftwood Diamond Drilling of Smithers, BC. This drill used a BQ string and completed 2,628.29 m of drilling. Altogether 36 holes were drilled totalling 4,518.84 m.

Camp and ancillary equipment were supplied by contractor Coureur des Bois out of Whitehorse, Yukon. Two to three personnel from Coureur remained on site during the program to maintain camp, construct drill pads, break camp and complete reclamation. Expediting services were supplied by Drifter Enterprises of Stewart, BC. (Jack Fillion). Drifter Enterprises also supplied camp food, materials, equipment as needed and also supervised diamond sawing of core. Granmac Services of Stewart, BC, provided fuel.

A contract Hughes 500 helicopter was supplied by Prism Helicopters (locally based in Stewart). Pilots Dave Reid and Yoshio Nishimura stayed in camp with the machine and shuttled personnel and supplies/core from camp to the various drill sites and back on a daily basis.

A total of 771 core samples were taken from the 36 holes and submitted for assay at the Pioneer Laboratories facility in Richmond, BC. The non-sampled half of the core was stored in a company shed in Stewart. Samples were routinely analyzed for geochem gold content and ICP. High silver values were assayed.

In addition 115 reconnaissance geochemical rock samples were taken from various sites of interest peripheral to the main LG-Kosciusko area. These were also analyzed at Pioneer. Some minor trenching was also completed during the 2004 program.

2. TECHNICAL DATA AND INTERPRETATION

A. Regional Geology

The property lies along the eastern edge of a broad, NNW trending belt of Triassic and Jurassic volcanic and sedimentary rocks termed by Grove (1971) as the "Stewart Complex". This belt is bounded to the west by the Coast Crystalline Belt (mainly granodiorites) and to the east by a thick series of sedimentary rocks known as the Bowser Assemblage (Middle Jurassic to Upper Jurassic age).

A major contact between sedimentary rocks of the Bowser Group and volcaniclastics of the lower Jurassic Hazelton Group passes north-south between Strohn Creek and the White River. Three west-east flowing tributaries of the White River with headwaters in the Cambria icefield are all known to carry placer gold. These streams, from north to south, are Nelson Creek, Del Norte (also known as "Porter") Creek and Willoughby Creek. The source of the placer gold has intrigued Stewart area prospectors for many years.

Prior to the Bond Gold/Lac Minerals gold discovery at Red Mountain, about 12 km west of the property, the area received little attention from government geologists. However, capsule descriptions of regional geology were written up in a few private reports. The author was able to locate a summation of regional geology in this area from such a report--a lengthy excerpt from Downing (1983) follows:

"Tectonically, the Bowser-Hazelton contact appears to be a thrust zone with Bowser sediment "slices" occurring within and overlying the Hazelton volcaniclastics to the west. No Hazelton rocks were noted overlying the Bowser sediments to the east. The Bowser sediments include shale, silt-mudstone, wacke and conglomerate while andesitic to rhyolitic tuffs and flows, limestone and argillite make up the Hazelton assemblage. The predominant dip direction of bedding in the Bowser sediments is northeasterly. Along the west fork to Surprise Creek, the Hazelton-Bowser contact is well preserved--tuffs and coarse tuff breccia overlain by a basal conglomerate grading to wacke-silt-mudstone-shale.

Several medium to coarse-grained porphyritic (potash feldspar) quartz monzonite and biotite granodiorite stocks occur along the

contact zone. Other intrusives include augite to hornblende plagioclase porphyries of possible volcanic origin and northwest trending lamprophyre and hornblende porphyry dykes which in places form a dyke swarm, all of which occur predominantly south of the Stewart highway (Nelson-Porter-Willoughby Creeks area). [Note: Downing uses "Porter" to describe Del Norte Creek--this is an alternative name].

Metamorphism is predominantly of the greenschist facies on a regional scale. Andalusite occurs in the argillites on the west fork to Surprise Creek. Biotite hornfels zones are associated with a majority of the quartz monzonite-granodiorite stocks.

The east-west flowing Strohn and Bear Creeks (Stewart highway section) occur along a major tectonic break which transects the northerly trending structural fabric in the Stewart area. The sense and amount of displacement along this break (strike slip fault?) is unknown. Displacement along the Bowser-Hazelton contact in the Willoughby-Bowser Lake area is unknown, however, offset along this contact on the Long Lake fault north of Stewart indicates approximately 1500 feet (Grove, 1971). A dominant pyritic shear zone up to ten meters across occurs near the Hazelton-Bowser contact from Willoughby to Porter Creeks."

Property location relative to regional geology is shown on Fig. 3.

B. Property Geology

[Note: The following observations were derived primarily from the 2004 fieldwork of K. Mastalerz, Ph.D., geologist).]

The 2004 Del Norte program was focused predominantly on drilling of the LG Vein and LG Vein extension areas (see Fig. 4). Minor geochemical reconnaissance rock sampling and trenching were also completed.

Although no systematic geological mapping was carried out, analysis of drill core, prospecting and local cursory inspection of outcrop has helped to elucidate the geology of the property in the Kosciusko-LG Vein-LG Vein Extension areas. This work has identified a package of felsic volcanogenic rocks situated between a thick succession of intermediate composition volcanics of the upper Hazelton Group and a siliciclastic succession or either the Salmon River Formation and/or Bowser Basin Group. This unit is thought to correspond stratigraphically to the Mt. Dilworth Formation, a unit which has regionally become of importance because of its association with the rich Eskay Creek gold-silver deposits. The true thickness of this unit varies between a few metres and few tens of metres. Predominant components of this unit are lapilli tuffs; felsic tuffs and tuff breccias appear less frequently. Layers of intermediate

LEGEND

STRATIFIED ROCKS

COVER

Middle to Upper Jurassic

	U	J	
_	_	_	
Г			۱

Jc

Upper Jurassic clastic rocks

MUJ Middle and Upper Jurassic clastic rocks

Lower to Middle(?) Jurassic clastic rocks

BASEMENT

Lower to Middle(?) Jurassic

rocks

Jdf Jrm

debris flow conglomerate and volcanic debris flows

Red Mountain sequence

ower Jurassio	3
hombler	de-feldspar-phyric volcanic

Jh Jd Jp Jmp Jme Jm Jvc Jt

Jcv

Jv

felsic volcanic rocks pyroxene-bearing volcanic and volcaniclastic rocks maroon pyroclastic rocks maroon epiclastic rocks maroon feldspathic pyroclastic and epiclastic rocks volcaniclastic rocks

andesite / dacite lapili and ash tuff

undivided clastic and volcanic rocks

undivided volcanic rocks

Upper Triassic

Tv volcaniclastic rocks

Triassic or older

PTb crowded feldspar-phyric basalt

PLUTONIC ROCKS Tertiary(?)

++++ quartz monzonite to diorite

Middle or Late Jurassic to Tertiary

Jtb Bromley Glacier pluton

Middle Jurassic to Cretaceous

Jkf felsic intrusions

Jkbp Bear Pass pluton

Jkb Buildog Creek pluton

Goldslide intrusion

Jkg

-

.... limit of mapping

limit of permanent ice

- thrust or reverse fault

high angle fault المريد

geological contact: known, inferred, assumed

KM

composition volcaniclastics and tuffaceous sediments occur occassionally in this package. These rocks are usually rich in black, muddy sedimentary matrix and reveal matrix-supported textures. Layered rocks of the felsic package are locally cut by small-scale aphanitic to fine-crystalline intrusives and hornblende-phyric dykes.

The felsic package lies conformably over the top of the succession of intermediate volcanics and apparently forms its stratigraphic continuation. This conclusion is supported by brief outcrop inspection in the southern LG Vein and LG Extension areas where concordant, lensoidal bodies of matrix-supported felsic lapilli tuffs appear between volcanics of intermediate composition of the uppermost portion of the Hazelton Group. Felsic volcaniclastics become progressively thicker and more frequent up the succession until they become the dominant lithology. A few drill-hole sections provide some evidence of a quite similar, transitional character of the upper contact of the felsic package. Locally, lapilli tuffs are replaced upwards by progressively more matrix-rich varieties, redeposited volcaniclastics (admixed epiclasts) and finally texturally diversified, dark grey, tuffaceous sediments. Layers of finegrained siliciclastics appear only rarely. The vertical (stratigraphic) compositional variability in this package suggests its transitional character as a member following the widespread accumulation of a pervasive succession of intermediate-composition volcanics and preceding a period of deposition of subqueous siliciclastics.

Volcanogenic rocks of the Hazelton Group are overlain by thick sedimentary succession which is here provisionally assigned to the Bowser Lake Group. The succession includes predominantly thin to medium bedded, black to dark grey argillites, siltstones and less frequent somewhat thicker bedded sandstones and sedimentary breccias. Sedimentary strata strike N-S and dip steeply-tosubvertically towards the east near the contact with the volcanic rocks. Further eastwards, and upwards in the succession, bedding becomes progressively shallower down to a range of 15-20 degrees within a distance of ca. 1-2 km from the contact. The contact between these units trends roughly from north to south and has a character of steep, composite tectonic thrust with minor sliced (and apparently duplexed) slabs underlying the main thrust. Gentle to intense folding locally accompanies some faulted packages. The best evidence for the character and trend of the contact is a high rocky bluff exposed near the Kościuszko Zone.

The geometry of the contact zone is much more complex and is apparently of multi-storey character. Volcaniclastics of the felsic package as well as locally adjacent black sediments display strong evidence of ductile-to-brittle shearing: this includes CS structures, narrow mylonite zones, local development of incipient foliation, tectonic breccias and various degree of

rock fracturing. All the planar structures strike meridionallyto-submeridionally, and display subvertical-to-vertical dips. This deformation style seems to be almost penetrative in the felsic package and dies out off both contacts of this unit.

Locally, geometry of the thrust zone is very complicated and it includes segments of overturned stratigraphic footwall (stratigraphic footwall becomes geometric hangingwall), as in the Kościuszko zone ridge. This and some other features (geometry of associated veins, fractures and faults) point to a hypothesis of inversely reactivated character of the originally prominent normal-fault zone. This zone originated most probably in an extensional regime as a western, steep normal-faulted boundary of an incipient Bowser Basin of half graben character. Subsequently, this deep rupture zone was reactivated in a compressional regime and partly followed by thrust, which led to a considerable inversion of the western portion of the Bowser Basin.

The structural features mentioned above have been overprinted by subsequent, and probably partly synchronous, associated deformations. The latter ones include NE-SE to W-E trending steep faults, of strike-slip to oblique-slip character, which most probably have developed and/or have been reactivated as complementary features during thrusting events. One of the latest stages of the deformation of the volcanogenic suite is responsible for development of steep, NW-SE trending faults and fissures that have been partly used and filled by hornblendephyric dykes. This stage can be assigned to upwarping of the Stewart Complex area, roughly coincident with the emplacement of the intrusives of the Coastal Plutonic Complex.

C. Rock Geochemical Sampling

a. Introduction

Reconnaissance rock geochemical samples were taken in 2004 from various localities around and peripheral to the area tested by diamond drilling. Locations and values have been plotted on Fig. 4 at a scale of 1:5,000. Sample locations were fixed by GPS. Rock sample descriptions are included in Appendix III, Rock sample locations and results are included in Appendix IV.

Some minor trenching was also carried out in two localities, one at the southern end of the LG vein (T-04-01 series) and one in the LG vein extension area (T-04-02 series). Trench locations are plotted on Fig. 4 (map pocket) and a detail trench map on Fig. 5 (report body).

Altogether 115 samples were taken.

			л. С ₁₉₂	A04-15	5 Chip 1.2m	165	28.8	50	329	133	276	20
egend	:]		TEUT		ESO		10 00		
\supset	contours of natural outcrops		DEL NORTE PROJECT 2004'						04'			
	trench outline	5	0	5	NTS	No.: 10	4A 04E	, Ske	eena Mi	ning Di	vision	
TF04-02-01	trench samples and thier numbers		meters		LG Vein	- Kos	ciusz Trei	ko Z	one es	- LG	Exter	nsion
A04-155	other samples					_	TICI	ion	03		7	KM

* - 60:1 Au/Ag price ratio

*** - troy ounzes per short ton

** - grams per metric ton

Trenches:

T-04-01, T-04-02

Fig. 5

Trench

▼ A04-155

80

o/b

overburden

geological contacts

structural measurements

b. Discussion

Minor surface sampling and trenching within the overburden covered southern extension of the LG vein (cf. T-04-01 series) returned gold-silver values consistent with previous sampling along LG vein exposures outcropping to the north. The full width of the vein was not exposed at this locality due to deep overburden.

In the LG vein extension area, grab sample A04-155 returned a highly anomalous value of 186,200 ppb gold. A little further south, float sample KM-058 returned 40,950 ppb gold. Trench T-04-02 tested quartz vein material in outcrop which returned anomalous gold (265-1,280 ppb) and arsenic values (1,088 to 3,793 ppm) over an 8m width.

D. Diamond Drilling

a. Introduction

Altogether 36 holes totalling 4,815 m were completed during the 2004 program. Of these, 18 holes totalling 2,187.55 m were completed by Aggressive Diamond Drilling of Kelowna, BC, using thin-wall BQ rods; 18 holes totalling 2,628.29 m were completed by Driftwood Diamond Drilling Ltd. of Smithers, BC, using smaller BQ drill rods.

Pad and drill hole locations are shown on Fig. 4. Various representative drill hole cross sections are shown on Figs. 6-19, inclusive. Detailed lithology and structure of the LG vein are shown on Figs. 20-21. Core recovery profiles of representative holes are shown on Figs. 22-28.

Pad and drill hole data/co-ordinates are presented in Appendix V; drill logs and gold-silver values in Appendix VI; and, assay certificates in Appendix VII.

b. Treatment of Data

Core from the holes were logged by K. Mastalerz, Ph.D., geologist and Alex Walus, geologist. The most common assay interval was 1.50m, however many smaller or larger samples being taken where needed according to observed mineralization or structure.

Sections of drill core showing mineralization were either diamondsawed or split, with one half submitted for assay and the other half stored in the company's shed in Stewart, BC. Samples were shipped by bus to the Pioneer Laboratories facility in Richmond, BC, where each sample was run for gold content (ppb tolerance) and 30 element ICP.

c. Significant Drill Results

A table of significant drill results is presented below:

Distance N from K Zone & Pad #	Drill Hole #	Dip Angle	From	То	Core Interval	Silver	Gold	Gold Equiv- alent*
(metres)		(degrees)	(metres)	(metres)	(metres)	(oz/ton)	(oz/ton)	(oz/ton)
325-N	2004-36	-58	127.6	136.2	8.6	7.89	0.088	0.222
			101.1	100.0			0.01	
545-L	2004-32	-50	101.4	103.8	2.3	28.96	0.24	0.723
•	2004-33	-60	142.4	143.8	1.4	27.56	1.051	1.51
610K	2004-29	-51	70.9	77.1	6.2	1.87	0.059	0.09
•	2004-30	-65	Hole	e did not rea	ch target der	oth due to te	chnical prob	lems
	2004-31	-72	147.2	148.1	0.9	32.56	0.201	0.743
	I	I	I	I				l
705-E	2004-16	-45	66.1	66.6	0.5	53.73	0.49	1.386
	2004-18	-55	83.0	84.1	1.1	16.29	0.43	0.701
	2004-20	-62.5	118.4	127.1	8.7	14.86	0.206	0.454
	Inclu	des	118.4	121.1	3.4	41.85	0.571	1.268
735-M	2004-34	-55	220.2	221.3	1.1	1.17	0.036	0.056
	2004-35	-65	40.6	43.0	2.4		0.152	0.152
				· · · · · · · · · · · · · · · · · · ·				· · · · ·
760D	2004-24	-55			No signific	cant results		
	2004-26	-70	97.8	98.1	0.3	55.01	0.185	1.102
			106.6	106.8	0.2	56.1	0.248	1.184
	2004-28	-80	161.3	163.4	2.1	1.81	0.06	0.09
830C	2004-01	-65	96.6	97.4	0.7	27.95	0.27	0.466
<u> </u>	2004-02	-75	149.0	152.6	3.6	8.67	0.244	0.389
	2004-03	-60		Less t	han 20% cor	re recovery i	n zone	1
				T		r		r
875B	2004-04	-60	103.9	107.0		18.69	0.358	0.669
	2004-05	-/0		Less t	nan 20% coi	e recovery i	n zone	
	2004-06	-75		Less t	nan 20% coi	e recovery i	n zone	

	2004-10	-65	113.4	114.8	1.4	5.72	0.143	0.238			
					. :						
955J	2004-07	-60	64.0	65.0	1.1	9.21	0.262	0.416			
·	2004-08	-70	79.9	81.3	1.4	18.67	0.201	0.512			
	2004-09	-77.5		D	id not reach	arget depth	th				
	2004-13	-85	95.0	96.2	1.2	17.1	0.146	0.43			
1,010	2004-11		All holes f	rom this pad	failed to read	h target hor	izon, proba	bly due			
E-Sh	2004-12		to fault dis	fault displacement to the east.							
	2004-14										
* Based on	i silver- gold i	ratio of 60:	1, according	g to prevailin	g silver and g	gold metal p	rices.				

Not included in the above table are eight holes drilled in the LG Vein extension area (Pads Ext1-3, see map). Analysis of drill core indicates these holes were primarily within volcanic rocks, and that the target volcanic-mudstone contact was offset to the east. Nevertheless all of the holes contained broad gold-silver-arsenic anomalous sections hosted in lithic tuffs, as well as occasional narrow gold-silver bearing quartz veins. In addition, each of these holes carried from 2-3 zones where core recovery was so poor that representative samples could not be taken.

d. Discussion-Mineralization/Alteration

The Del Norte Property lies in an envelope of regional greenschist facies. In the western parts of the property epidote is common, pointing to a slightly more advanced metamorphic grade. Some biotite hornfels are known locally to accompany contacts with intrusive stocks.

The LG Vein, Kościuszko Zone and LG Extension Zone are marked by a distinct alteration halo, with a propylitic zone constituting the outer envelope of the mineralization. This is characterized by chlorite, disseminated pyrite, sericite and pervasive carbonate impregnations and/or local irregular replacements and veins of quartz-carbonate including common and abundant calcite. The aureole appears on both sides of the mineralization interval, but it is much more evident west of the vein system within intermediate volcanics. A large portion of the felsic package lies in the argillic alteration envelope. It is characterized by clay minerals, sericite, local silica replacements and veins and very restricted occurrences of carbonates. Pyrite is common but usually it constitutes from less than 1% (usually) to 1-3% of the rock volume. Commonly, advanced alteration encompasses irregular

silica replacements, systems of quartz veins and veinlets, and rarely pervasive silica impregnations. Pyrite concentrates along the quartz vein walls. The zone is characterized by relatively common blebs, spots and irregular lenses of coarse crystalline, reddish-brown sphalerite, and less frequent galena and chalcopyrite. Silica alteration was apparently facilitated along fractures and shear zones.

Some fracture zones associated with subaerial exposure conditions show strong brown-yellowish limonite stain. These are commonly followed by intense calcite and carbonate impregnations and precipitates which have been actively formed recently in vadose to semi-vadose environments.

Field and diamond drill core observations indicate two main types of mineralization can be distinguished along the mineralized system encompassing the Kościuszko Zone, LG Vein and LG Extension:

1) Quartz veins and breccias and

2) Coarse crystalline base metal in shear zones

The most important mineralization is associated with quartz veins and breccias (LG Vein) which are spatially restricted to the felsic package and the footwall contact of the thrust zone. Geological evidence points to its common association with faulted and strongly fractured zones - one of the LG Vein/Breccia zone contacts is usually faulted and/or gouged (Figs. 20,21). Mineralization occurs as a galena, minor sphalerite, and fine grained sulfosalts, the latter finely disseminated in black cement filling interstices between quartz to graphitic (?) chalcedony breccia fragments. Sphalerite, galena and locally minor chalcopyrite appear as well as individual crystals, aggregates (blebs) and exceptionally irregular lenses in some quartz veins. Tetrahedrite occurs less frequently as small aggregates and individual crystals. Intervals intersected in drill holes display composite nature and vary from fractions of a metre to over 2 metres in length. Exposed to surface vein zones reach up to ca. 1.25 m in true thickness while individual component veins usually vary from a few centimetres to 40-60 cm in width.

Assayed grades vary in a broad range from several grams per metric tonne to more than 2 ounces per ton of gold equivalent (gold and silver combined). Silver to gold ratio also varies considerably (usually from less than 10 to over 500), however, the average oscillates around 100. Gold displays a strong positive correlation with Sb, Ag, Cd, and a weaker correlation with Zn, As, Pb. Contents of Zn and Pb are frequently higher than 1%, while Cu is abundant. The highest grade considerably less usually mineralization is associated with black-matrix jigsaw-fit quartz and/or chalcedony breccia, heavily mineralized portions of quartz veins and some fault zones rich in black (graphitic?) gouge (Figs.

20,21).

Macroscopic mineralization encountered in the main body of the felsic package consists primarily of blebs and irregular and/or lensoidal aggregates of sphalerite, and less abundant galena and chalcopyrite, which are accompanied by disseminated pyrite. Base associated with silica replacements, occurrences are metal subordinate veins and intense shear zones. Precious metal grades are much lower here and range from few hundred ppb to a few grams per ton gold and up to a few ounces per ton silver. The width of this zone intersected in drill holes varies from a few to over 20 metres. The drop in precious metal content at the contact between LG-Kościuszko Vein and silicified felsic tuffs is very sharp and different genesis of these types of rather points to mineralization. Contents of Sb, Cd and As used to be considerably elevated in these zones but on a much lower level than in the LG vein and correlatives.

There are also known swarms of small-scale lensoidal bodies of semimassive to massive sulphides (chalcopyrite being the most abundant sulphide). Prospecting revealed a few of such bodies but their exposed strike extents and widths are very restricted. These showings were not investigated in detail (excluding cursory grab sampling) during the 2004 program.

e.Core Recovery

The quality of recovered drill core material varied considerably, and was apparently dependent both on rock character and core diameter (two different drill rigs - equipped with BQ and BTW core barrels - operated simultaneously on the property). Overall core recovery ranged most often from 80-100 percent, but was frequently considerably lower within mineralized zones due to intense rock fracturing and fault gouges (Figs. 22-28).

In particular, consistently low core recovery was obtained in the LG Extension areas, probably because the BQ size drill rods were too small to handle the friable material encountered within the relatively wide, complex shear zone (Figs. 24-26).

Unfortunately, poor recovery was also a problem within several holes in the main LG vein area. As evidenced from LG intervals with high recovery, precious and base metal minerals are commonly concentrated in the matrix of the quartz/chalcedony breccias and within some fault gouges (Figs. 27 and 28)—-material which is quite friable in nature and easily susceptible to washing out unless extreme caution is taken during the drilling process. Plans for 2005 include re-drilling of certain holes with HQ size rods to see if this will assist in increasing core recovery to acceptable levels.

-

100 % DN04-25 sampled intervals 270° Azimuth Inclination -50° TD [m] 70.41 = 9.843 g/t over 0.30 m 14 95 9% 1.738 g/t over 0.65 m 82 % 0.554 g/t over 14.95 m Them were 0.5 cz/tonne Au Equiv*** 62 % 10.01 5.01 15 g/t Au Equiveren Lithology Alteration Core Recovery Scale 10 15 20 5 0 5 25 meters TEUTON RESOURCES CORP. **DEL NORTE PROJECT 2004'** NTS No.: 104A 04E, Skeena Mining Division LG Vein Extension P Drill Log KM 60:1 Au/Ag price ratio
grams per metric ton
troy ounzes per short ton 1 Pad Drill Hole: Fig. 26 EXT3 DN04-25

E. Field Procedure and Labratory Analysis

Analysis of core specimens collected during the 2004 program was carried out at the Pioneer Laboratories facility in Richmond, BC.

After standard rock sample preparation, the 30 element Inductively Coupled Argon Plasma analysis was intiated by digesting a 0.5 gm sub-sample from each field specimen with 3ml 3-1-2 HCl-HNO3-H20 at 95 deg. C for one hour, followed by dilution to 10 ml with water. The Atomic Absorption measurement for ppb tolerance gold was preceded by subjecting 10 gram samples to standard fire-assay preconcentration techniques to produce silver beads which were subsequently dissolved. Where required, assays were subsequently performed to test for individual metals using standard analytical echniques.

F. Conclusions

The 2004 program involved the drilling of 36 holes totaling 4,816 metres along the LG vein-Kosciuszko trend. Including drilling completed in 2002 and 2003, this trend has now been tested by 14 drill stations at intervals along a 1,800 m long strike length.

Drill results to date show a significant mineralized system containing silver-gold bearing mineralization hosted in nearvertically dipping, guartz-sulfide/sulfosalt vein breccia, with a majority of the intersections containing gold equivalent values greater than 0.40 oz/ton. An analysis of the silver-gold assays indicates that the average economic contribution of silver is almost identical to that of gold, using the 60:1 ratio between silver and gold prices currently prevailing. Core intervals show typical pinching and swelling associated with vein deposits. intersections are quite narrow within the Although several northern half of the LG vein exposure, it is reasonable to suppose that the vein averages between 0.5 to 1.2 m, consistent with surface observations (because the near-vertically dipping vein appears to flex at varying depths it is difficult to ascertain true widths rigorously).

From surface samples taken above the K zone, to the intersection at the bottom of DDH2004-34, silver-gold vein mineralization is now known to extend over a vertical range of 420 m. The system is open to strike extension some 600-800 m to the south into the Del Norte Creek valley, where the NMG silver-gold geochem anomaly and the 350 m long, coincident VLF-Mag-geochem "Bullion" anomaly remain to be drill tested.

In the area between the LG vein and LG vein extension, a fault appears to have displaced the favourable tuff-mudstone contact to the east (cf. E-Sh and Ext 1-3 pads). However, sampling by Lac Minerals in an area 250 m further north yet (cf. Refs. 16,17), indicates LG type mineralization probably continues beyond the northern limits of the areas drilled in 2004, as well. It is recommended that this hypothesis be tested by mapping, geochem sampling and geophysical surveys in 2005.

Of particular importance is the last hole of the 2004 program, DDH2004-36, which proved continuity of mineralization to within 320 m of the K zone, underscoring the probability that the LG vein and K zone mineralization are part of a continuous structure (an intervening icefield precludes surface confirmation). The mineralized interval in this hole was also substantially wider than the average intervals obtained in LG vein intersections to the north, suggesting a swelling of the structure in the direction of the K zone. Drilling in 2002 of the Kosciuszko zone encountered similar grades with true widths varying from 8.5 to 10 m.

Further work is warranted. This will entail comprehensive surface surveys, including prospecting, geological mapping, and trenching, and an expanded drill program to test undrilled stations between Pads L and N and the promising area between Hole 36 and the Kosciuszko zone.

Respectfully submitted,

A Mastak

K. Mastalerz, Ph.D.

Umara

D. Cremonese, P.Eng. Dec. 31, 2004

APPENDIX I - WORK COST STATEMENT

Field Personnel-Period July 1 to Oct. 24, 2004:

K Magtalerz Ph D Geologist	
47.5 days @ \$300/day	14,250
A. Walus, P. Geol., Geologist	12 050
E. Brantley, Geologist	13,950
24.5 days @ \$225/day	5,512
S. Sheffield, Rock climber/field hand 4.0 days @ \$225/day	900
D. Derouin, Cook 42.0 days @ \$300/day D. Cromonasa P. Eng. (Supervision)	12,600
34.5 days @ \$400/day	13,800
Helicopter - Prism Hel. (Hughes 500 based on site) Various dates between July to October 20, 2004 Crew/Drill/Equipment/Camp/Core Mob & Demob Contract machine rate @ \$952.30/hr. Fuel rate \$1.3375/liter	
Total charges	202,431
Drilling Costs (Contractor-Aggressive Diamond Dr.) Total thin wall BQ core size meters: 2,187.55 All-in cost including meterage, casing, parts, supplies, standby and mobilization:	207,441
Drilling Costs (Contractor-Driftwood Diamond Dr.) Total BQ core size meters: 2,628.29 All-in cost including meterage, casing, parts, supplies, standby and mobilization:	194,879
Camp Construction and Maintenance, Pad Building Coureur des Boiscontractor All-in cost including labor, lumber, tents, kitchen, generators, etc.	76,645
Expediting - Drifter Enterprises (Stewart) Camp food, transport, additional camp equip., diamond sawing of core, casual labor, etc.	69,159
Blasting - Ed and Corey Kruchkowski , & Powder, fuses, B-line	5,785
Communication (sat-phones/hand-held radios)/Computer	9,397
Fuel-Granmac Services	20,842
Food purchased directly (not through expediter)	1,440

18

Workman's compensation 2.60% of \$68,812	1,789
Travel Costs, Vehicle Rental, Misc.	8,228
Assay costs—Pioneer Labs Au geochem + 30 elem. ICP + rock sample prep 771 core + 115 field = 886 samples @19.85 Ag assays: 88 @ \$8.02/sample Sample Freight Charges	17,587 706 1,551
Report Costs	
Report and map preparation, compilation K. Mastalerz, Ph.D., 20.0 days @ \$300/day Report preparation, compilation and research	6,000
4.5 days @ \$400/day Draughting RPM Computer (large map)	1,800 240

TOTAL.... \$886,932

Amount Claimed Per Statement of Exploration #: \$281,400

Note 1: This report spans a period prior to and post the date of filing of the Statement of Exploration, namely, Sept. 2, 2004. The author, D. Cremonese, P.Eng., is satisfied that the amount claimed on the Statement of Exploration, \$281,400, was expended before Sept. 2, 2004.

Note 2: Please credit the excess amount to the PAC account of Teuton Resources Corp..

19

APPENDIX II - CERTIFICATES OF QUALIFICATION

- I, Krzysztof Mastalerz, do hereby certify that:
- I am a geologist with an office at 2005 Bow Drive, Coquitlam, B.C., presently working for Teuton Resources Corp. at 206-675 W. Hastings St., Vancouver, B.C.
- I am a graduate of the University of Wrocław, Poland, (M.Sc. with Honors in Geology in February of 1981, Ph. D. in December of 1990)
- 3. I have continuously practised my profession since graduation in 1981 as an academic teacher (University of Wrocław and A. Mickiewicz University at Poznań; 1981-1997), research associate for State Geological Survey of Poland (1993-1995) and independent consulting geologist (in Canada) since 1994.
- 4. This report is based upon work carried out on the Croesus and Horatio mineral claims, Skeena Mining Division from July to October of 2004.
- Dated at Vancouver, B.C. this 31st day of December, 2004.

I. Mastaha

K. Mastalerz, Ph.D.

I, Dino M. Cremonese, do hereby certify that:

- 1. I am a mineral property consultant with an office at 6737 Cartier Street, Vancouver, B.C.
- 2. I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practised my profession since 1979.
- 5. This report is based upon work carried out on the Croesus and Horatio mineral claims, Skeena Mining Division from July to October of 2004. I have full confidence in the abilities of all geological personnel used in the 2004 work program and am satisfied that the assessment work recorded in this report was done properly and with care.
- 6. I am a principal of Teuton Resources Corp., owner of the Croesus/Horatio claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 31st day of December, 2004.

D. Cremonese, P.Enq.

APPENDIX III

ROCK SAMPLE LOCATIONS

Sample No	Coord	dinates	Au	Ag	Cu	Pb	Zn	As	Sb
	Easting	Northing	ppb	ppm	ppm	ppm	ppm	ppm	ppm
A04-146	467.170	6,211,025	38	0.3	63	23	214	20	4
A04-147	467,170	6,211,025	10	0.5	58	37	169	35	3
A04-148	467,175	6,210,940	16	0.3	42	3	55	6	3
A04-149	467,175	6,210,940	6	0.3	48	205	48	13	3
A04-150	467,175	6,210,940	9	0.3	134	3	47	11	3
A04-151	467,175	6,210,940	25	0.3	93	3	31	26	3
A04-152	467,230	6,210,870	3	0.3	82	3	59	10	21
A04-153	467.330	6,210,825	1	0.3	56	12	41	8	6
A04-154	467,880	6,210,205	186200	1002.0	378	6515	1509	2965	652
A04-155	467,790	6,210,190	165	28.8	50	329	133	276	20
A04-156	467.627	6,210,500	920	16.2	17	62	60	159	9
A04-157	467,627	6.210.500	20	0.5	20	14	26	16	3
A04-158	467.625	6.210.670	23	0.4		3	9	11	3
A04-159	463,790	6.209.310	6380	52.3	702	>10000	>10000	>10000	171
A04-160	466,565	6.210.025	4	0.3	87	17	54	6	3
				0.0					
A04-167	466.925	6.207.935	105	0.3	17	4	16	12	3
A04-168	466 665	6.207.580	4	0.3	50	3	18	25	3
A04-169	466,496	6.207.540	10	0.3	9	5	4	14	3
A04-170	466,360	6 207 480	10	0.7	365	6	14	94	3
A04-171	466 365	6 207 420	5	0.3	89	3	2	12	3
A04-172	466 310	6 207 370	1	80.0	>10000	7	694	141	53
A04-173	466 310	6 207 370	640	1 3	561	9	125	81	186
A04-174	466 240	6 207 330	27	24.3	522	70	86	6484	492
A04-175	467 865	6 208 140	950	0.6	19	84	29	10	3
A04-176	467,865	6 208 140	35	1.8	10	176	146	16	3
A04-177	466 450	6 211 465	180	1.0	10	6	26		3
A04-178	466 490	6 211 620	18	0.0	20	3	2	Q	3
A04-170	466,490	6 211 620	10	0.0	51	0	35	2	3
A04-173	466 540	6 211 305	5	0.3	7	7	57	10	<u> </u>
A04-100	400,540	6 211 180	<u></u>	0.3	160			15	<u> </u>
A04-101	465,695	6 211 180	2	0.3	160			34	14
A04-102	403,095	6 212 445	23	0.4	112	4	175	21	
A04-103	407,755	6 212 145	10	0.0	110	5	5	26	<u> </u>
A04-104	467,705	6 212 485	2	0.3	31/1		198	7	
A04-105	467 705	6 212 485		0.3	0171	6	14	66	
A04-187	467 705	6 212 485	4	1 1	130	381	37	180	
A04-188	467,525	6 212 475	12	1.1	15	36	16	9	
A04-189	467 345	6 212 465	12	0.4		6	12	48	
704-100	407,040	0,212,400	10	0.0	ÿ			10	
EB04-01	468 045	6 208 775	78200	197.0	2718	>10000	>10000	16	23
2004 01	100,010	0,200,110							<u></u>
EB04-03	468 045	6,208,775	17600	1398.0	2001	>10000	>10000	210	1672
EB04-04	468 045	6 208 775	28450	620.0	865	>10000	>10000	306	940
EB04-04	467 075	6 208 715	20400	Q 2	17	324	520	200	
EB04-06	468 045	6 208 775	90 160	10.0	170	624	>10000	2 50	27
EB04-07	468 045	6 208 775	001	10.2	119	55 55	0000	23	
EB04-082	468 432	6 208 430	20	2.0 C A	<u>ר ט</u>	267	100	120	<u> </u>
EB04 085	168 122	6 208 / 20	00	0.4	1 20	201	15/	7	
	400,402	0,200,430	20	<u> </u>	12	/4	1.04	<u> </u>	
8	1	1	8	1		1	1		

Sample No	Coord	dinates	Au	Ag	Cu	Pb	Zn	As	Sb
	Easting	Northing	ppb	ppm	ppm	ppm	ppm	ppm	ppm
EB04-10	463,386	6,208,970	4	0.3	31	8	59	13	4
EB04-11	463,386	6,208,970	1	0.6	25	8	29	13	9
EB04-12	463,333	6,209,016	6	0.7	20	82	638	19	10
EB04-13	463,760	6,209,338	22600	130.0	705	>10000	>10000	>10000	569
EB04-14	463,745	6,209,420	25	1.0	177	145	215	46	4
EB04-15	466,546	6,210,001	360	6,1	44	188	53	309	8
EB04-16	466,557	6,210,007	180	3.5	70	530	761	1049	15
EB04-17	466.597	6,209,940	1	0.3	5	10	16	40	3
EB04-18	466,807	6,207,729	7	0.3	15	11	5	49	3
EB04-19	466.659	6,207,653	145	1.7	122	7	14	392	26
EB04-20	466,404	6.207.627	95	10.3	3288	16	74	113	3
EB04-21	466.347	6.207.567	2680	>100	2976	869	288	>10000	>2000
EB04-22	466,308	6,207,518	23	0.5	34	4	4	695	5
EB04-23	466 037	6 207 582	185	7.3	456	19	82	3264	87
EB04-24	465,936	6 207 692	6	1.0	35	5	24	56	17
EB04-25a	465 918	6 207 691	105	0.4	63	8	12	779	10
EB04-25b	465 918	6 207 691	140	1.5	34	20	20	626	16
EB04-255	468 106	6 207 113	140	1.5		10	154	36	
EB04-20	400,100	6 208 177	125	0.5	 	13	194	108	ິງ
ED04-27	407,043	6 208 177	120	1.0	42	24	100	100	<u>່</u> ງ
EB04-20	407,077	6 211 265	9	0.0	10	229	1234	32	ເ
ED04-29	400,351	6 211 296	/	0.3	123	9		10	<u>ა</u>
EB04-30	400,337	0,211,300	10	0.3	609	3		10	<u> </u>
EB04-31	405,700	0,211,189	1	0.3	12	5	/	15	3
EB04-32	405,703	0,211,210		0.3	30	8	38	00 55	<u> </u>
EB04-33	466,554	0,212,588	1	0.3	10	3	12	55	3
EB04-34	400,554	0,212,300	40	0.3	31	14	2	20	<u> </u>
KM-032	467,175	6,211,095	8	0.3	142	9	59	16	3
KM-033	467,070	6,210,982	22	0.3	78	7	6	10	3
KM-034	467,060	6,210,980	5	0.3	124	5	85	2	3
KM-035	467.220	6.210.785	23	0.3	28	17	52	19	8
KM-036	467.192	6,210,885	8	0.3	96	4	85	18	3
KM-037	467,260	6,210,905	47	0.3	471	3	100	11	ģ
KM-038	467.822	6.210.242	19	9.9	794	2359	1096	64	50
KM-039	467.805	6.210.240	4	3.4	172	223	321	23	24
KM-040	467,785	6.210.240	46	0.3	58	12	130	11	g
KM-041	467,775	6,210,150	185	2.8	21	19	224	154	8
KM-042	467,785	6.210.105	180	28.1	57	597	430	678	30
KM-043	467,965	6.208.785	7	0.3	30	69	216	32	3
KM-044	467,965	6.208.785	14	<u> </u>	74	17	78	75	
KM-045	467,990	6,208,740	12	13	210	30	2273	6	
KM-046	468 010	6 208 675	840	1.0	684	224	243	77	<u>م</u>
KM-047	467,990	6.208.635	120	6.5	71	154	7302	44	Ę
KM-048	467 985	6.208 612	120	<u>0.0</u> การ	13	4	125	8	
KM-049	468 015	6,208 690	810	0.0 Q 1		101	113	124	Q
KM-050	467 810	6 209 230	010 25		20	225	107	<u>، ۲</u>	11
KM-051	467 825	6 209 335	50	1.0	21	22.0	20	1/	
KM_052	467 755	6,210,475	10	0.0	<u>21</u> 4E	10	00	2/12	7
KM-052	467.800	6 210 /05	2010	4.2	10 E1	40	90 70	242	144
KM_05/	467 910	6 210 500	2210	103.0	10	440	10	504 C	<u> </u>
KM-055	467 760	6 210 220		0.0	12	50	100	0	а И Л
11111-000	1 701,100	0, ~ 10, ~ ~ 0	a Ö	1 J.Z	1 10	1 02	20	611	1 11 A. 11

Sample No	Coord	dinates	Au	Ag	Cu	Pb	Zn	As	Sb
	Easting	Northing	ppb	ppm	ppm	ppm	ppm	ppm	ppm
KM-056	467,805	6,210,025	490	0.3	23	12	82	37	5
KM-057	467,795	6,210,025	4	62.7	458	1418	117	34	54
KM-058	467,790	6,210,055	40950	1.2	6	91	34	98	6
KM-059	467,785	6,210,070	20	16.3	44	902	92	49	19
KM-060	468,350	6,210,270	120	0.3	35	26	74	48	5
			8						
T04-01-01	468,045	6,208,770	27	2.1	69	84	244	61	13
T04-01-02	468,045	6,208,770	8400	718.0	781	>10000	>10000	148	870
T04-01-04	468,045	6,208,770	160	5.0	50	201	2380	109	19
TF-04-02-01	467,790	6,210,185	360	34.6	92	942	496	1088	661
TF-04-02-02	467,790	6,210,185	305	22.3	63	371	686	1158	33
TF-04-02-03	467,790	6,210,185	340	24.7	111	84	1025	3066	27
TF-04-02-04	467,790	6,210,185	425	10.8	106	32	282	2591	21
TF-04-02-05	467,790	6,210,185	320	11.3	84	26	257	2654	24
TF-04-02-06	467,790	6,210,185	380	41.6	134	48	268	2270	68
TF-04-02-07	467,790	6,210,185	1280	32.1	103	58	252	3793	56
TF-04-02-08	467,790	6,210,185	265	12.9	138	21	241	2261	41
TF-04-02-09	467,790	6,210,185	125	4.1	117	42	195	354	25
TF-04-02-10	467,790	6,210,185	23	1.5	77	29	154	87	18
									a da serie da serie Esta serie da serie d
DNS04-1	466,780	6,211,450	47	0.3	195	13	77	27	3

APPENDIX IV

ROCK SAMPLE DESCRIPTIONS & RESULTS

Sample No	Sample	Description
	Туре	
A04-146	F	Sericite-carbonate replacement of volcanick rock + numerous Qtz veinlets
A04-147	F	Limonite-rich strongly alt'd rock cemented by Qtz
A04-148	F	Frags of barren looking Qtz
A04-149	F	Very strong sericite-carbonate-chlorite alt'd volcanic rock, 50% Qtz replacements
A04-150	F	Frags of vuggy Qtz with some clay pseudomorphs, limonite and tr. Sph
 A04-151	F	Frags of vuggy Qtz with some clay pseudomorphs, limonite and tr. Sph; more limonitic mixture
A04-152	F	Massive white Qtz and Qtz stockwork in sericite-carbonate alt'd volcanic rock
A04-153	F	Sericite-Carbonate alt'd volcanic rock
A04-154	G	10 cm wide Qtz vein with minor Ga; strike 300, subvertical
A04-155	C (1.20)	Subcrop - strongly fractured Qtz vein (LG-extension?)
A04-156	E E	Qtz with limonitic fragments
 A04-157	F	Qtz with limonitic fragments; small size frags
A04-158	F	Qtz with limonitic fragments, subcrop
A04-159	C (1.30)	1.5 m thick shear zone striking 340 deg (subvertical); Py, Sph and Ga replacements
A04-160	F	Subcrop - numerous Qtz frags with some clay minerals and tr Sph
A04-167	G	1.5-2 m wide fault zone: strong Carbonate-limonite and partly Qtz replacements
A04-168	F	Frags of limonitic gtz
A04-169	F	Frags of white Otz
A04-170	F	Frags of limonitic coarse-crystalline Qtz
A04-171	F	Frags of limonitic coarse-crystalline Qtz
A04-172	F	1 cm thick Otz vein with ca 3-5% Cnv
 A04-173	F	Sericite-carbonate alt'd rock with pervasive limonite replacements
A04-174	F	Strongly limonitic Otz
A04-175	C(0.60)	1 m wide Otz-sericite-Pv alt'd zone
A04-176	C(1.50)	4-8 m wide Otz-sericite-Pv alt'd zone (strike 050 deg)
Δ <u>04-177</u>	F	Strong Otz-Carbonate replacement
A04-177		Limonitic Otz
A04-170		Siltstone with Otz-limonite veinlets
A04-175		Sericite carbonate limonite alt's with strong Otz replacement
A04-100	l I	Andesite with diss Dyrrhotite and tr. Cov
A04-101		Strang clav limonito alt'd rock with numerous Calcite voins
A04-102	E	Plack araillite with 1.2% of finally disc. Sulfides
A04-103	E I	White where Vice 1-2 % of hitely diss. Sundes
A04-185		Chlorite alt/d rock with Malachite stain
A04-105		
A04-100		Silicified rock with reddich frage
A04-107	- I	Sariaita alay limonita altid falaia(2) rock
A04-100	r E	Vugev Otz with frage of limenitie, strength off d reakrook
A04-109		vuggy Qtz with hags of infomitic, strongly all d fockfock
EB04-01	G	Selection of mineralized frags of Otz vein/breccia and volcanics from trench T-04-01
 200101		
EB04-03	G	Silicified zone of felsic volcanic at the contact with LG vein, blebs of Sph and Ga, diss. Pv
 EB04-04	G	Fault gouge with some Qtz frags, frags of Sph and black graphitic? Matrix (sulfosalts, Ga?)
EB04-05	G	Qtz vein in intermediate volcanics just @ the edge of glacier
EB04-06	G	Fragment of Qtz vein with numerous Sph blebs
 EB04-07	G	15-20- cm thick Qtz vein in black sediments near LG Vein
 EB04-08a	F	Dark grey siltstone-to-argillite with some Qtz yeins, limonite stain
EB04-08b	F	Dark grev siltstone-to-argillite, limonite stain
	İ	

T	Sample No	Sample	Description
ŀ	FB04-10	G	Otz vein
ł	EB04-11	G	8-10 cm thick Otz vein striking @ 010 deg
ł	EB04-12	F	Collection of small frags of float from glacier drift
	EB04-13	G	Lens of massive sulfides (Pv, Cpv, Ga) up to 1 m wide, locally specs of Malachite
	EB04-14	F	Collection of small frags of float from glacier drift
	EB04-15	F	Collection of float of andesitic-to-intermediate volcaniclastics and Qtz veins
	EB04-16	G	Steeply dipping Otz vein in black sediments striking 160 deg
	EB04-17	F	Predominantly Otz float
	EB04-18	F	Otz vein
	EB04-10	G	Otz vein
1	EB04-10	F	Frags of Otz vein with semimassive sulfides (Cpv. Pv)
	EB04-20	F	Frags of Qtz vein with blehs of sulfides (Cov. Pv) and Malachite: diss Apv?
	EB04-21	G	15-20 cm thick Otz vein with small crystals of Ga
	EB04-22	E E	Otz-Carbonate (Calcite) vein diss Pv + Anv?
	EB04-23	6	Otz vein in black argillites
	EB04-25a	<u>с</u>	Up to 50 cm thick Otz vein
	EB04-256	6	Up to 50 cm thick Qtz vein
	EB04-26	6	Intermediate-to-felsic volcanic rock with thin Otz vein and abundant limonite stain
	EB04-20	G	Otz-Calcite vein tr Ga
	EB04-27	F	Quartz schist diss Pv
	EB04-20	G	Intermediate-to-felsic volcanic rock, strong Carbonate-Chlorite alt'n: limonite stain
	EB04-30	F	Green strongly sheared volcanic/volcanic/astic rock, diss Any, Py, Cov
	EB04-31	- -	Otz-Calcite vein tr. Ga
	EB04-37	F	Otz voin with abundant limonite stain at contacts
	EB04-32	F	Frags of Otz vein
	EB04-34	E	Frags of Otz vein
	LD07-07		
	KM-032	G	Otz veinlets and mod silica replacements in fractured intermediate volcanic. Carbonate alt'n
	KM-033	F	Erags of moderately silicified intermediate volcanic rock: diss + blebs of Pv and Pvrrhotite
	KM-034	G	Greenish porphyritic intermediate volcanic, slightly sheared, PV crystals
	KM-035	F	Frags of white coarse-crystalline massive Otz, no visible sulfides
	KM-036	F	Frage of white massive Otz with some fine Pv crystals
	KM-037	G	Calcite-Carbonate veinlets with diss Pv in moderately Chlorite-Sericite-Clav alt'd volcanic
	KM-038	G	Poorly developed shear zone (along 170 deg) in black sediments, thin Otz veins
	KM-039	G	Thin Otz veins and veinlets (along 135 deg) in black sediments
	KM-040	Ğ	Strongly sheared felsic lanilli tuff with abundant muddy matrix diss. Py
	KM-041	F	Frags of Otz veins white fractured diss Pv
	KM-042	G	20 cm thick Qtz vein (strike 150 deg) in intermediate-to-felsic volcanics
	KM-043	F	Frags of moderately silicified intermediate volcanic rock: blebs of Py
	KM-044	F	Frags of irregular Qtz replacements in intermediate volcanics
	KM-045	F	Frags of Otz-Calcite-Axinite veins in intermediate volcanics, vughs
	KM-046	F	Otz impregnations/replacements in light-creamy felsic? Volcanic rock, diss Py ca, 10%
	KM-047	F	Frags of Qtz veins, rust-colored, vuggy, diss Py, tr Ga & Sph
	KM-048	G	Thin Qtz vein trending 160 deg (dips 45deg W) in sheared/folded volcanic rock
and a second	KM-049	F	Otz vein, vellowish to grev, vuggy
and a second	KM-050	G	15 cm thick Otz vein in intermediate volcanics: strike 145 dip 65 SW: Carbonate alt'n zone
	KM-051	G	30 cm thick Otz vein locally sheared out distinctly fractured. Carbonate alt'n zone
ļ	KM-052	6	Thin Otz vein in felsic volcaniclastics, strike 023: rust-color Carbonate-Limonite alth
	KM-053	G	Un to 20 cm thick vein of white massive Otz with some specs of sulfides
	KM-054	F	Frags of thin Otz veins
	KM-055	F	Subcrop; frags of sheared felsic-to-intermediate volcanics

Sample No	Sample	Description
	Туре	
KM-056	G	Thin Qtz veins and lenses striking 015 deg. In shear-fault zone in felsic volcaniclastics
KM-057	F	Frags of Qtz vein, massive, white; with some Ga, tr. Cpy
KM-058	F	Frags of porous, rusty Qtz vein
KM-059	G	Thin Qtz vein (strike 150deg, dip 55deg W) in western marginal part of subvertical shear zone
KM-060	F	Numerous frags of coarse crystalline, white Qtz (vein?)
T04-01-01	C (1.20)	Strongly sheared/faulted felsic-to-intermediate volcanic; @ contact with LG Vein and dyke
T04-01-02	C (0.80)	Strongly fractured Qtz vein with abundant sulfides (Sph, Ga) and graphitic(?) fault gouge
T04-01-04	C (1.40)	Black argillites and siltstones with a few thin Qtz veinlets
TF-04-02-0	C (1.00)	Massive Qtz vein, rusty, very strongly fractured (shear zone), tr. Ga, Sph
TF-04-02-0	C (1.00)	Massive Qtz vein, rusty, very strongly fractured (shear zone), tr. Ga, Sph
TF-04-02-0	C (1.00)	Massive Qtz vein, rusty, very strongly fractured + argillite (shear zone), tr. Sph
TF-04-02-0	C (1.00)	Strongly sheared (subvertical) argillite or matrix-rich felsic lapilli tuff
TF-04-02-0	C (1.00)	Strongly sheared (subvertical) felsic-to-intermediate volcanics
TF-04-02-0	C (1.00)	Strongly sheared (subvertical) felsic-to-intermediate volcanics
TF-04-02-0	C (1.00)	Strongly sheared (subvertical) felsic-to-intermediate volcanics + thin Qtz veins
TF-04-02-0	C (1.00)	Strongly sheared (subvertical) felsic-to-intermediate volcanics; diss. Py
TF-04-02-0	C (1.00)	Strongly sheared (subvertical) felsic-to-intermediate volcanics; diss. Py
TF-04-02-1	C (1.00)	Strongly sheared (subvertical) felsic-to-intermediate volcanics; diss. Py
DNS04-1	ST	

F - float sample, G - grab sample, C (1.20) - chip sample (width in meters), ST - silt sample

APPENDIX V

PAD AND DRILL HOLE DATA

<u> </u>			Coordinates	· · · · · · · · · · · · · · · · · · ·			TD		
PAD	HOLE NO	Easting	Northing	Elevation	Azimuth	Tilt			
		[m]	[m]	[m]		(negative)	[ft]	[m]	
С	IDN04-01	467.880	6,209,242	1,293	85°	65°	374	114.00	
С	DN04-02	467,880	6,209,242	1,293	85°	75°	517	157.58	
C	DN04-03	467,880	6,209,242	1,293	85°	60°	317	96.62	
B	DN04-04	467 869	6 209 283	1 297	85°	60°	392	119.48	
B	DN04-05	467 869	6 209 283	1 297	85°	70°	455	138.68	
B	DN04-06	467.869	6,209,283	1,297	85°	75°	845	257.56	
B	DN04-10	467,869	6,209,283	1,297	85°	65°	433	131.98	
	DN04-07	467,888	6,209,378	1.232	85°	60°	237	72.24	
J	DN04-08	467,888	6.209.378	1.232	85°	70°	347	105.77	
<u> </u>	DN04-09	467,888	6,209,378	1.232	85°	77.5°	387	117.96	
J	DN04-13	467,888	6,209,378	1,232	85°	85°	543	165.51	
ESh	DN04-11	467 970	6 209 463	1 164	265°	45°	483	147.22	
ESh	DN04-12	467 970	6 209 463	1,104	265°	550	662	201 78	
ESh	DN04-12	467,970	6,209,463	1,164	085°	65°	407	124.05	
D	DN04.24	167 805	6 200 170	1 286	800	550	307	03 57	
5	DN04-24	407,095	6 200 170	1,200	1800	700	407	124.05	
D	DN04-20	467,895	6,209,170	1,286	80°	80°	536	163.37	
	DN04.48	407.005	0.000.140	4 025	0770	AEO	077	04.42	
	DN04-16	407,900	0,209,148	1,230	211	40	211	04.43	
	DN04-10	407,903	6 200 140	1,235	2770	62.5°	126	122.90	
	DIN04-20	407,903	0,209,140	1,200	211	02.0	430	102.08	
EXT1	DN04-15	467,755	6210183	1,285	070°	50°	667	203.30	
EXT1	DN04-17	467,755	6210183	1,285	070°	75°	233	71.02	
EXT1	DN04-19	467,755	6210183	1,285	070°	85°	315	96.01	
EXT2	DN04-21	467,825	6,210,135	1,235	260°	45°	214	65.23	
EXT2	DN04-22	467,825	6,210,135	1,235	260°	65°	300	91.44	
EXT2	DN04-23	467,825	6,210,135	1,235	260°	72°	340	103.63	
EXT3	DN04-25	467.855	6.210.040	1.170	270°	50°	231	70.41	
EXT3	DN04-27	467,855	6,210,040	1,170	270°	70°	455	138.68	
ĸ	DN04-29	467 991	6 209 048	1 255	2570	510	270	82 30	
ĸ	DN04-30	467 991	6 209 048	1 255	2570	65°	271	82.60	
ĸ	DN04-31	467,991	6 209 048	1,255	2570	720	550	167.64	
		407,331	0,200,040	1,200		12		0.00	
L	DN04-32	468,010	6,208,987	1,270	245°	50°	527	160.63	
L	DN04-33	468,010	6,208,987	1,270	245°	60°	497	151.49	
M	DN04-34	468.005	6,209,180	1,215	265°	55°	758	231.04	
M	DN04-35	468,005	6,209,180	1,215	265°	65°	954	290.78	
N	DN04-36	468,099	6,208,721	1,330	240°	58°	479	146.00	
	1	8	1 · · · · · · · · · · · · · · · · · · ·	1	1	1	1		

APPENDIX VI

DRILL LOGS & GOLD-SILVER VALUES

SEE MAP POCAET (MANILA ENVEZODE

Elevation

E

IN

APP

085°/-65°

114.00

Del Norte Project, 2004

Logging:

Drilling Company: Date Commenced:

Date Completed:

LG Vein; Pad C

1293

467 880

6 209 242

Del Norte, Horatio 3 Azimuth/inclination:

Final depth [metres]:

Comments:

		Sample Log
Aggressive		
07/08/2004	Sampling:	km
11/08/2004	Sampl, method	Drides cut (colit)
KM	Loboratory	. pind 3 cut (spin)

Laboratory:

Assay method:

K.M.

Samp	e	Lo	g	
Construction of the local division of the lo			÷	-
10				

Drill hole DN-04-01

Property, claim:

Target/Location:

UTM:

Sample No		Intonual	William States of Longitude					Rec'y estimation	KN
	From		1	Description	Sulphides				
	[m]	10	Length		rov 1	Remarks	Recovery	Ass	ays
DN0401.01	4.00	<u>[m]</u>	[m]		[76]	1902	[%]	Au	Ag
DN0401-01	4.60	5.10	0.50	Q-Epid V + fw rock; white, coarse, yugos	Dv 10/	and the second s		ppb [oz/t]	ppm [oz/t] a/t
DN0401-02	8.23	9.73	1.50	dgFLT, strgly slicksd	dios Pu 4 50/	1 2 1 1 1 1	í <u>></u> 98	2	0.
DN0401-03	9.73	11.23	1.50	dgFLT, sheared	diss Py 1-5%	Poor rec'y	78	12	0.
DIN0401-04	39.04	40.54	1.50	IcFT, strgly alt'd @ contact w/ OV: By opriched	diss Py 1-3%		78/201	10	0.0
DIN0401-05	40.54	40.74	0.20	QV; wht, coarse, vugas, hxx edges	diss Py 3-5%, loc >5%		100	545	0.3
DN0401-06	40.74	42.24	1.50	dgFLT, sheared, slicksd + Ovlete	Py 3-5%, Ga 1-5%, tr Cpy	S. Mar	100	<u></u>	2.0
DN0401-07	45.51	47.01	1.50	dgFLT, wk sheared, pum Ovlets 65.00	diss Py 1-3%, tr Ga, Sph	Sph, Galaq Qvlts	100		22.9
DN0401-08	47.01	48.51	1.50	dgFLT, wk sheared pum Oviets 05-90 rca	diss Py 1-3%, tr Ga, Sph	Sph, Ga ag Ovlts	100		<u>va 2.5</u>
DN0401-09	48.51	50.01	1.50	dgFLT, wk sheared num Oviets 65-90 rca	diss Py 1-3%, tr Ga, Sph	Sph. Ga.ad Ovits	100		2.7
DN0401-10	64.20	66.20	2.00	QV: whit coarse massive 50 read in 51 m	diss Py 1-3%, tr Ga, Sph	Sph. Ga ag Ovits	100	00	4.8
DN0401-11	66.20	67.85	1.65	doFLT sheared num Outer 55 as	Py tr-1%, Sph 0.5%	1 100 9 Q 110	100	12	2.1
DN0401-12	76.75	77.75	1.00	OV/svlets in InET Inversed at	diss Py 1-3%	100	100	32	2.8
DN0401-13	77.75	79.75	2 00	tET lavid shared	c-cr Py 1%, loc 3-5%, tr Sph. Ga	W a	100 %	49	1.2
DN0401-14	79.75	81.25	1.50	tET lov/d sheared, + Qviets 70-90rca	dissPy 1-3% (loc3-5%), tr Sph	Sph ag vløte	100	95	2.1
DN0401-15	81.25	82 75	1.50	tET louid sheared; + Qviets 70-90rca	dissPy 1-3% (loc3-5%), tr Sph	Sph ag viets	100	205	1.7
DN0401-16	82 75	84 28	1.001	tr 1, lay d, sheared; + Qvlets 70-90rca	dissPy 1-3% (loc3-5%) tr Sph	Sph og viets	1.00	43	1.5
DN0401-17	84 28	85 79	1.53	tr 1, lay d, sheared; + Qvlets 70-90rca	dissPy 1-3% (loc3-5%) tr Sph	Sph og viets	100	90	0.7
DN0401-18	85 78	97.20	1.5010	gFL1/IcF1, sheared, num Qvlets 45-65rca	dissPv 1-3% (loc3-5%) tr Sph. Co.	Sob bib O	100	32	0.9
DN0401-19	87.28	07.20	1.5010	gFLT/IcFT, sheared, num Qvlets 45-65rca	dissPv 1-3% (loc3-5%) tr Sph. Ga	Sph bib, Ga ag Qvits	100	<u> </u>	3.1
DN0401-20	89.70	00.78	1.50 0	IgFLT/IcFT, sheared, num Qvlets 45-65rca	dissPy 1-3% (loc3 5%), tr Sph, Ga	Sph blb, Ga ag Qvlts	100	270	3.7
DN0401-21	00.70	90.78	2.00 c	igFLT/lcFT, sheared, num Qvlets 45-65rca	dissPy 1-3% (1003-5%), ti Sph, Ga	Sph blb, Ga ag Qvlts	97	105	1.1
DN0401 22	90.70	92.78	2.00 0	IgFLT, sheared, num Qvlets 45-65rca	dissBy 1.3% (1003-5%), If Spn, Ga	Sph blb, Ga ag Qvlts	97	260	54
DN0401-22	92.78	94.28	1.50 d	gFLT, sheared, num Qviets 45-65rca	disoPy 1-3% (1003-5%), tr Sph, Ga	Sph blb, Ga	99	125	43
DN0401-23	94.28	95.40	1.12 d	gFLT, sheared, Qviets and 2cm QV 15rca	dissFy 1-3% (10c3-5%), tr Sph, Ga	Sph blb, Ga	82	70	0.0
DIN0401-24	95.40	96.62	1.22 (1	frags of dgFLT + minor O)	dissPy 1-3%, Ga 3-5% in thk QV		82	110	08.5
010401-25	96.62	97.37	0.75 (f	rags of Qtz)	uiss Py 1-3%7	v poor rec'y	16	125	24.4
JN0401-26	97.37	99.32	1.95 (f	rags of blk Arg/Sitst + Fault Gouges)	uissPy 5%, tr. Ga	v poor rec'y	13	9250	050 0
JNU401-27	99.32	100.47	1.15 (f	rags of blk Arg/Sitst + Oveins)	alssry3-5%	v poor rec'y	13 30 1	75	358.0
				-3.000 - 40003	dissPy3-5%, tr. Ga	v poor rec'y	17 2 32		
						the second s	-Telephone - Factor and	60	10.1

DN04-01 Sample Log

Pioneer

2015. 10

Del Norte Project, 2004

DN04-01 Sample Log

DN0401-28	100.47	102.05	1.58 blk Seds	Idica Pir 1.2				
DN0401-29	102.05	102.80	0.75 blk Sodo L num Quaine	UISSFY 1-5	v poor rec'y	1982-1982-28	80	3.6
DN0401-23	102.00	102.00	U.75 DIK Seds + hum Qveins	dissPy 1-3	v poor rec'v	2025-21	40	3.0
DN0401-30	102.80	105.80	3.00 blk Seds + few Q & Calc veins	disePv 1-3	ly poor rochy	CARRENOE SET	40	5.3
DN0401-31	105.80	106 65	0.85 blk Seds + few 0.8 Cole voice		v poor rec y	23	12	3.1
DN0404 00	100.05	100.00	0.00 bit 0003 1 lew Q & Calc Veins	aissPy 1-3		93	10	34
DINU401-32	106.65	108.00	1.35 blk Seds + few Qveins (incl 25 cm Qvein @ 106.6	5 dissPv 1-3		02		
DN0401-33	108.00	109 45	1 45 blk Seds			93	0	1.4
DN0404 24	400.45	100.00		alssPy 1-3		96	6	0.9
DIN0401-34	109.45	109,90	0.45 Qtz/Carb vein/bxx in blk Seds	dissPv 1-3		00		
DN0401-35	109.90	111 40	1 50 blk Seds w/t few Otz & Calc voine	dias Du 4.0			4	0.3
DN0404 26	444.40	440.00	1.50 bit obda Writew Giz & Odic Vellis	alssPy 1-3		99	2	0.7
DIN0401-36	111.40	112.90	1.50 blk Seds w/t few Qtz & Calc veins	dissPv 1-3		00	A	0.4
DN0401-37	112.90	114.00	1 10 blk Seds w/t few Otz & Calc voine	dias Du 4.0			4	0.4
			cholon oddo microw dc2 d Gale veins	JuissPy 1-3		99	7	0.8
I otal length o	r sampled in	tervals:	52.10			and the state of t		

Del Norte Project, 2004

Sample Log

Drill hole DN-04-02

Property, claim: Target/Location: UTM: E Del Norte, Horatio 3 Azimuth/inclination: 085°/-75° Drilling Company: Date Commenced: Aggressive 11/08/2004 LG Vein; Pad C 467 880 Final depth [metres]: 157.58 Sampling: KM Sampl. method: Dmd-s cut (split) EN Date Completed: 15/08/2004 6 209 242 Logging: K.M. Laboratory: Elevation 1293 Pioneer Assay method: Comments: Rec'y estimation:

Sample Log

Sample No		Interval	7	Description	Sulphides	Remarks	Pecoveru		
	From	To '	Length		[%]	i vernarka	recovery	ASSE	ays
	[m]	[[m]		[,~]		[70]	Au	Ag
DN0402-01	44.50	46.00	1.50	/dkgyFLT/ltgnshFT, slicksd	Idiss Pv 1-3%		<u> </u>	ppb [oz/t]	ppm [oz/t]
DN0402-02	46.00	47.50	1.50	/ltgnshFT	dies + blobs Dy 4 29/ pulfacette2	!	99	240	1.4
DN0402-03	47.50	49.00	1.50	mostly dkgy FLT contact w/t FT num Ovtets	diss Put 20/ Orb alassis?		100	34	1.3
DN0402-04	54.00	55.50	1.50	dkavFLT/ltanshFT + Ovlets	diss Py 1-5%, Spri along contact	!	100	140	1.5
DN0402-05	55.50	57.00	1.50	dkavFLT + Ovlets			100	160	3.1
DN0402-06	57.00	58.50	1.50	dkrivEl T + a faw Owlate	dissPy 1-3 (3-5)		100	60	1.7
DN0402-07	58.50	60.00	1.50	dkov FLT	dissPy 1-3 (3-5)		100	75	0.8
DN0402-08	60.00	61.50	1.50		dissPy 1-3 (3-5)	loc semimass Py	100	46	0.9
DN0402-09	61.50	63.00	1.50		dissPy 1-3 (3-5)		100	31	0.6
DN0402-10	63.001	64 00	1.00		dissPy 1-3 (3-5)		100	150	0.9
DN0402-11	64.00	66.00	2.00		dissPy ; tr. Sph, Cpy	Sph, Cpy in Qveins	100	54	0.9
DN0402-12	66.001	67.50	1.50		diss-blebsPy 3-5		100	75	0.5
DN0402-13	67.50	- 50.00	1.50		diss-blebsPy 3-5		100	90	0.0
DN0402-14	1 60 001	70.50	1.50	dkgyFL1 tractured	dissPy1-3, tr Sph	Sph along fxx	100		0.0
DN0402-14	03.00		1.50	dkgyFLT + a few Qvlets	dissPy; tr Ga Sph	Sph. Ga along Qv	100	120	3/
DN0402-15	92.00	93.50	1.50	dkgyFLT + a few Qvlets	dissPy ,tr Sph	Soh along Qy	100	32	0.4
DN0402-10	93.50	95.00	1.50	ltgnshFT	dissPy 1-3, tr Sph	Sph along Ov	100		0.3
DN0402-17	95.00	96.50	1.50	ltgnshFT + Qvlets	dissPv.tr Sph	Shh along Ov	100	20	0.3
DN0402-18	103.30		1.00	dkgyFLT + Qvlets + layers of FT	dissPv_tr Sph	Sph along Ov	100		0.3
DN0402-19	104.30	106.30	2.00	ltgnshFT/FLST	diss Pv 3-5% loc 5-7%		100		
DN0402-20	122.50	124.00	1.50	dkgyFLT + Qvlets	IdisePv 1-3 (3-5%)	++	100	210	0.6
DN0402-21	124.00	125.50	1.50	dkgyFLT + Qvlets	dies Dy 1 3 (2 5%) tr Sob	++	100	205	1.9
DN0402-22	125.50	127.00	1.50	dkavFLT + Qvlets & irregul Qoods	dice Dy 1 2 (2 50/)	++	100	28	1.6
DN0402-23	133.95	135.45	1.50	dkavFLT + Qvlets	disclopmin and Dy 2 50/	+	100	30	1.4
DN0402-24	135.45	136.95	1.50	dkavELT/ltanshET/ELST + few Oveins	UISS/SemimassPy 3-5%		100	21	1.0
DN0402-25	136.95	138.45	1.50	ItanshET/FLST + few Oveins		-	100	56	1.4
DN0402-26	138.45	139.95	1.50	dkovELT + num Oveine	dissPy 1-3 (loc smas/bd 5-10)		100	90	4.7
DN0402-27	139.95	141.45	1 50	dkavel T + num Oveine	dissPy 3-5 (1-3), tr Sph, tr Ga		100	320	6.7
- China State Street and Street a				INGYFET THUR QVEITS	dissPy 3-5 (1-3), tr Sph, tr Ga, tr C [/]	ργ	100	285	4.1

DN04-02

KM

Del Norte Project, 2004

DN04-02

								Sample Loo
DN0402-28	141.45	142.95	1.50 dkgyFLT + num Qveins	dissPy 3-5 (1-3) tr Sph tr Ca	······			
DN0402-29	142.95	144.45	1.50 dkgyFLT + Qveins	discPu 2.5		100	70	5.7
DN0402-30	144.45	145.95	1.50 dkgvFLT + few Oveins	dissFy 3-3		100	280	31.3
DN0402-31	145.95	147.45	1.50 dkavELT + few Oveins	uissPy 3-5 (1-3)		100	51	2.8
DN0402-32	147.45	148.95	1.50 dkgvEl T/ItET?ELST + pum Ovoins/rolmate	dissPy 3-5		100	65	14.0
DN0402-33	148,95	149.95	1 00 Otz vein fxx white loc cloudy	dissPy 3-5, Sph<0.5%, tr Ga		100	580	20.7 [18,1]
DN0402-34	149.95	150.87	0.92 Otz vein fxx, white, loc, cloudy	Py 3-5, Sph 0.5%, Ga ca.1%	top strgly miner	100	11120	387.0
DN0402-35	150.87	151.46	0.59 blkArg + fow Oviete	Py 3-5%, Sph ca. 1%, Ga ca.1-2%	miner varies trout	100	10800	412.0
DN0402-36	151.46	152.55	1.00 Ota voia five white lag all a	dissPy 1-3, tr Sph		100	610	115.0
DN0402.37	152 55	154.05	1.09 Qtz vein txx, white, toc. cloudy	Py 3-5%, Sph ca. 1%, Ga ca.1-2%	miner varies trout	100	7980	470.0
DN0402-01	152.00	154.05	1.50 DIKArg + rew Calc & Qtz veins	diss-blebsPy 1-3 (3-5), tr Sph	partly syngenetic Py	100	65	5 2 16 01
DN0402-30	154.05	155.55	1.50 blkArg/Sitst + few Calc & Qtz veins	diss-blebsPy 1-3 (3-5), tr Sph	partly syngenetic Py	100	05	0.0 [0.2]
DN0402-39	155.55	157.58	2.03 blkArg/Sltst + few Calc & Qtz veins	diss-blebsPy 1-3 (3-5)	partly syngenetic Py	100	00	3.1
I otal length of	sampled in	tervals:	56.63		In any official to the figure of the figure	100	4/	2.6

EOH @ 157.58

Recovery: ratio of measured core length to driller's block distance (see separate sheet); [in square brackets values estimated for sampled sub-intervals]

Page 2 of 2

Del Norte Project, 2004

Teuton Resources Corporation
Lateegra Resources Corporation

Drill hole DN-04-03

Property, claim:	Del Norte, Horatio	3 Azimuth/inclination: 085°/-60°	Drilling Company:	Aggressive		
Target/Location:	LG Vein; Pad C	Final depth [metres]: 96.62	Date Commenced:	15/08/2004	Sampling:	KM
UTM: E	467 880		Date Completed:	17/08/2004	Sampl. method	d: Dmd-s cut (split)
N	6 209 242		Logging:	K.M.	Laboratory:	Pioneer
Elevat	on 1293				Assay method	
		Comments:	Proper LG Vein apparently faulted out		Rec'y estimation	on: KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Ass	ays
	From	То	Length		[%]		[%]	Au	Ag
	[m] [[m]	[m]					ppb [oz/t]	ppm [oz/t] g/t
DN0403-01	35.65	37.15	1.50	ItcrFT/LST + Qvlets	dissPy 1-3%	fault @ top of interval	100	28	0.3
DN0403-02	37.15	38.40	1.25	ItcrFT/LST + Qvlets	dissPy 1-3%		100	35	1.2
DN0403-03	38.40	39.09	0.69	dkgyFLT + Qviets	dissPy 1-3%		100	75	3.3
DN0403-04	39.09	39.56	0.47	QtzVein	dissPy 1-3%, tr Ga, Sph		100	32	4.7
DN0403-05	39.56	40.77	1.21	IterFT	diss + blebs 3-5%		100	23	0.7
DN0403-06	53.85	55.35	1.50	dkgyFLT + thin Qvlets	dissPy 1-3%		100	18	0.3
DN0403-07	55.35	56.85	1.50	dkgyFLT + thin Qvlets	dissPy 1-3%		100	26	0.3
DN0403-08	56.85	58.35	1.50	dkgyFLT + thin Qvlets	dissPy 1-3%		100	19	0.3
DN0403-09	58.35	59.85	1.50	dkgyFLT/QV(9cm)/ltFT, slickensides	dissPy 1-3% up to 3-5%		100	17	0.7
DN0403-10	59.85	61.35	1.50	ItFT + num Qvlets	dissPy 1-3%		100	23	0.6
DN0403-11	66.70	68.20	1.50	dkgyFLT + num Qvlets	dissPy 3-5%		100	56	2.3
DN0403-12	68.20	69.70	1.50	dkgyFLT + num Qvlets	dissPv 1-3%		100	140	4.9
DN0403-13	69.70	71.20	1.50	dkgyFLT + a few Qvlets	dissPy 1-3%		100	28	0.3
DN0403-14	71.20	72.70	1.50	dkgyFLT + a few Qvlets	dissPy 1-3%		100	17	0.3
DN0403-15	72.70	74.15	1.45	dkgyFLT/ltFT	dissPy 1-3%		100	29	0.8
DN0403-16	74.15	75.65	1.50	dkgyFLT	dissPy 1-3%	· ·	100	430	5.6
DN0403-17	75.65	77.15	1.50	dkgyFLT/ItFT + abund Qveining	dissPy 3-5%, tr Sph		100	180	4.7
DN0403-18	77.15	78.65	1.50	dkgyFLT + num/a few Qveining	dissPy 1-3%, tr Sph		100	160	3.3
DN0403-19	78.65	80.15	1.50	dkgyFLT + num Qveins	dissPv 1-3%		100	205	5.8
DN0403-20	80.15	81.65	1.50	dkgyFLT + num Qveins	dissPy 1-3%		99	75	2.2
DN0403-21	81.65	83.15	1.50	dkgyFLT + num QrpImnts/veins	dissPv 1-3%, blebs Sph < 1%, tr	Ga	99	90	2.8
DN0403-22	83.15	84.43	1.28	dkgyFLT + num QrpImnts/veins	dissPv 1-3%, blebs Sph < 1%, tr	. Ga	98	1520	62.2 [66.2]
DN0403-23	84.43	85.50	1.07	Fault Gouge(s) in blk Seds/Arg + Qveins	dissPv 3-5%	ly poor rec'y	20-25	225	7.7
DN0403-24	85.50	87.50	2.00	blkArg	dissPv 3-5%		85	95	3.9
DN0403-25	87.50	89.00	1.50	blkArg/Sitst	dissPv 3-5%		100	8	1.6
DN0403-26	89.00	90.50	1.50	blkArg/Sitst	dissPv 3-5%		100	15	2.0
DN0403-27	90.50	91.70	1.20	blkArg/Sltst + Qvein(bxx)	dissPv 3-5%, tr. Ga		100	4	1.7
DN0403-28	91.70	93.20	1.50	blkArg/Sltst + Qvlets	dissPy 3-5%, tr. Sph		100	15	2.6
Total length o	f sampled in	tervals:	39,12				a a sur a		

EOH @ 96.62

Page 1 of 1

DN04-03 Sample Log

Del Norte Project, 2004

Drill hole DN-04-04

Property, claim: Del Norte, Horatio 3 Target/Location: LG Vein; Pad B-new UTM: E 467 869 N 6 209 283 Elevation 1297	Azimuth/inclination: 085%-60° Drilling Company: DriftWood Final depth [metres]: 119.48 Date Commenced: 8/21/2004 Date Completed: 22/08/2004 Logging: K.M.	Sampling: Sampl. method: Laboratory:	KM Dmd-s cut (split) Pioneer
Consider t	Comments:	Assay method:	

Sample Log

Sample Log				Commenta.				Pec'y estimation:	1/1.4
Sample No	1	Interval	and the second data second a			· · · · · · · · · · · · · · · · · · ·		recy esumation.	KIVI
	From	To	Length	Description	Sulphides	Remarks	Recovery	Ass	savs
	[m]	[m]	[m]		[%]		[%]	Au	Aq
DN0404-01	48.05	49.55	1.50	ItanshFT O-Siderite vein mustu				ppb [oz/t]	ppm [oz/t] g/t
DN0404-02	49.55	51.05	1.50	ItanshET + num Oveins	Py ca. 1		100	50	0.8
DN0404-03	51.05	51.67	0.62	ItanshET + num Oveins	Py 3-5; (Ga tr-0.5, Sph tr-0.5 in Q	v @ btm)	100	340	3.4
DN0404-04	51.67	52.24	0.57	Otz vein	Py 1-3, tr Ga, tr Sph		100	170	3.1
DN0404-05	52.24	53.74	1.50	dkavEl T/ltanshET + aveialata	Py 3-5, tr5 Ga		100	160	50.4
DN0404-06	53.74	55.24	1.50	tanshFT_rusty spots/lavers	Py 1-3; 0.5 Ga, 0.5 Sph, tr Stib in	veins	100	605	12.6
DN0404-07	55.24	56.74	1.50	ItanshET rusty spots/lavore	Py 3-5		100	240	1.2
DN0404-08	56.74	58.24	1.50	dkgyFLT + few Qylets	Py 1-3 (3-5)		100	9	0.7
DN0404-09	91.90	93.40	1.50	dkavFLT + few Oveins	Py 1-3 (3-5), tr Sph along Qveins		100	140	9.0
DN0404-10	93.40	94.90	1.50	dkgvELT + few Oveins	Py 1-3 (3-5)		100	75	0.8
DN0404-11	94.90	96.40	1.50	dkgyFLT + few thin Oveins	Py 1-3, tr. Sph		100	305	1.8
DN0404-12	96.40	97.90	1.50	dkavELT + few thin Oveins	Py 1-3		100	80	4.1
DN0404-13	97.90	99.40	1.50	ItanshFT + few thin Oveins	IPV 1-3		100	65	1.9
DN0404-14	99.40	100.90	1.50	ItFT/dkgvFt T + few Oveins	Py 3-5		100	125	1.1
DN0404-15	100.90	102.40	1.50	tFT/dkgvFLT + numer irregul Oveins	Py 1-3, tr. Sph		100	420	2.5
DN0404-16	102.40	103.90	1.50	dkavFLT + numer Oveins/mimots	Py 1-3, tr. Sph		100	280	4.3
DN0404-17	103.90	104.60	0.70	kavELT w/r mottled tyture + numor Oveine/relmat	Py 3-5		100	225	4.3
DN0404-18	104.60	107.05	2.45	Otz bcc + Fault Gouges	Py 3-5 (5-7), Sph 1-2, Ga ca. 0.5		60	2520	188.0
DN0404-19	107.05	110.34	3.29	lkArg, slicksd'd, enriched in Ry	Py 5-7, Ga 3-5, tr Sph, Sulfs	very poor rec'y	22	15050	768.0
DN0404-20	110.34	111.84	1.50	blkArg & Sltst, rich in Pv	Py 3-5 (5-7)	very poor rec'y	23	35	1.4
Total sampled	intervals:		30.13		ry 0-1		99	20	2.0
			-						NAMES OF TAXABLE PARTY OF TAXABLE PARTY.

TD @ 119.48 m

Del Norte Project, 2004

DN04-05 Sample Log

Drill hole DN-04-05

Property, c	laim:	Del Norte, Horatio 3	Azimuth/inclination:	085°/-70°	Drilling Company:	DriftWood		
Target/Loc	ation:	LG Vein; Pad B-new	Final depth [metres]:	138.68	Date Commenced:	8/17/2004	Sampling:	KM
UTM:	E	467 869			Date Completed:	18/08/2004	Sampl. method:	Dmd-s cut (split)
	N	6 209 283			Logging:	K.M.	Laboratory:	Pioneer
	Elevation	1297					Assay method:	
			Comments:				 Rec'v estimation	KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Ass	ays
	From	То	Length		[%]		[%]	Au	Ag
	[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t] g/t
DN0405-01	54.00	55.50	1.50	ItFT w/t rusty zones, Qtz_Siderite? Veins	Py 3-5% (1-3%), tr. Sph	R-zone	100		
DN0405-02	55.50	57.00	1.50	ItFT/dgyFLT w/t rusty zones, Qtz_Siderite? Veins	Py 3-5% (1-3%), tr. Sph	R-zone	100	360	11.6
DN0405-03	57.00	58.50	1.50	dkgyFLTmm, thin rust-color Carbonate-Qtz zones	Py 3-5% (1-3%)	R-zone	100	405	20.5
DN0405-04	58.50	60.00	1.50	dkgyFLT/ltFT, thin rust-color Carbonate-Qtz zones	Py 3-5% (1-3%)	R-zone	100	310	11.4
DN0405-05	105.50	107.00	1.50	dkgyFLTmm + few thin Qveins	dissPy 1-3, tr Sph, (Ga)	Sph assoc w/t Qv	100	45	3.0
DN0405-06	107.00	108.50	1.50	dkgyFLTmm + few thin Qveins	dissPy 1-3, tr Sph, (Ga)	Sph assoc w/t Qv	100	205	2.4
DN0405-07	108.50	110.00	1.50	dkgyFLTmm + few Qveins	dissPy 1-3 (3-5)		100	60	4.5
DN0405-08	110.00	111.50	1.50	dkgyFLTmm + Qveins	dissPy 3-5		100	180	8.4
DN0405-09	111.50	113.00	1.50	dkgyFLTmm/ltFT+ Qveins	dissPy 1-3%, tr. Apy		100	205	28.1
DN0405-10	113.00	114.50	1.50	dkgyFLTmm+ num Qveins	dissPy 1-3%, tr. Ga, (The)		100	95	2.6
DN0405-11	114.50	116.00	1.50	dkgyFLTmm+ num Qveins	dissPy 1-3%, tr. Ga, (The)		100	56	4.6
DN0405-12	116.00	117.50	1.50	dkgyFLTmm+ num Qveins	dissPy 1-3%, tr. Ga	12cm Qv @ 117.23m	100	135	11.3
DN0405-13	117.50	119.00	1.50	dkgyFLTmm+ num Qveins	dissPy 3-5%, tr. Sph	Sph assoc w/t Qv	100	175	19.6
DN0405-14	119.00	120.50	1.50	dkgyFLTmm+ num Qveins	dissPy 3-5%, tr. Sph	Sph assoc w/t Qv	100	18	0.4
DN0405-15	120.50	122.00	1.50	dkgyFLTmm+ num Qveins & incip QrpImnts	dissPy 3-5%, tr. Sph	Sph blebs	100	95	13.9
DN0405-16	122.00	123.50	1.50	dkgyFLTmm + irregul Qveins/rplmnts	dissPy 3-5%, tr. Sph	Sph blebs	100	185	18.2
DN0405-17	123.50	125.00	1.50	dkgyFLTmm + irregul Qveins/rplmnts	dissPy 3-5%, tr. Sph	Sph blebs	100	80	2.4
DN0405-18	125.00	126.49	1.49	dkgyFLTmm + abund irregul Qveins/rplmnts	dissPy 3-5%, tr. Sph, Ga	Extremely Poor rec'y	[8]	190	1.5
DN0405-19	126.49	127.49	1.00	Qtz vein or bcc (strngly broken core)	dissPy, tr. Ga	Extremely poor rec'y	10	1320	130.0
DN0405-20	127.49	129.54	2.05	blk Arg/Seds w/t Qtz stockwork (strngly broken cor	dissPy, tr. Ga, Sph	Extremely poor rec'y	10	150	16.3
DN0405-21	129.54	131.00	1.46	Fault/tectonic Bcc of blkArg/Sltst + num Qvlets	dissPy 3-5%, Sph<1%	Sph isolated blebs	99	205	10.0
DN0405-22	131.00	132.50	1.50	blkArg/Sitst bxx/fxx + Qvlets	dissPy 1-3 (3-5%), Sph<1%		99	105	2.7
DN0405-23	132.50	134.00	1.50	blkArg/Sitst + few Q & Calc vlets	dissPy 1-3 (3-5)		91	190	3.9
DN0405-24	134.00	135.50	1.50	blkArg/Sltst + num Q & Calc vlets	dissPy 1-3 (3-5)		90		
Total sampled	intervals:		36.00						

Total sampled intervals: TD @ 138.62 m

Page 1 of 1

Del Norte Project, 2004

Drill hole DN-04-06

Property cla	aim	Del Norte Haratia 2	A miner the fire align sti		the second se			
Trans M		Dei Norte, Horatio 3	Azimuth/inclination: 08	5%-75%	Drilling Company:	DriftWood	Г	
Target/Loca	ition:	LG Vein; Pad B-new	Final depth [metres]:	257.56	Date Commenced:	10/00/0004		·····
UTM:	E	467 869			Dete Cemelatada	18/08/2004	Sampling:	KM
	N	6 209 283			Date Completed:	21/08/2004	Sampl. method:	Dmd-s cut (split)
	The section	0 200 200			Logging:	KM	Laboratory:	Dienee
	Elevation	1297					Laboratory.	Fioneer
		-	Comments:		······································	<u>_</u>	 Assay method:	
.							Dealer a three the	

Sample Log				Comments.				Rec'y estimation:	KM
Sample No	[Interval		Doografian					
	From	To	Length	Description	Sulphides	Remarks	Recovery	Ass	ays
	[m]	[m]	 [m]		[%]		[%]	Au	Ag
DN0406-01	59,50	61.00	1 50	lit(E)T				ppb [oz/t]	ppm [oz/t] g/t
DN0406-02	61.00	62.50	1.50	It(E)T Otz replacmat Otz Colo Cost wing	dissPy 1-3% (3-5%), tr Apy, Sulpho	wSil-Carb rplmnt	100	15	0.3
DN0406-03	62.50	64 00	1.50	dkovEl Tmm + Otz voine	dissPy 1-3%, tr Apy, Sulphosalts	"R" zone	100	95	1.1
DN0406-04	64.00	65.50	1.50	dkovEl Tmm + Calcite veins	dissPy 1-3%, 0.5-1% Sph in Qtz ve	"R" zone	100	57	1.2
DN0406-05	150.50	152 00	1 50	It/E)T few this Otz voice	dissPy 1-3%		100	16	0.3
DN0406-06	152.00	153.00	1.00	It/E)T thickor Otz voin in the middle	dissPy 3-5	wProp-Cal altn	100	185	17.0
DN0406-07	153.00	154.50	1.50	It(E)T few thin Otz voine	dissPy 3-5, Ga ca. 1% (QV), tr Sph	wProp-Cal altn	100	28	0.3
DN0406-08	160.00	161 50	1 50	(cr/FT)	alssPy 3-5	wProp-Cal altn	100	57	0.5
DN0406-09	161.50	163.00	1.50	davELT_Otz Colo voine	dissPy 3-5, tr Sph, Cpy, Apy	wProp-Cal altn	100	lost	lost
DN0406-10	163.00	164 50	1.50	dovELT, OZ-Calc Veins	dissPy 1-3, loc tr Ga, Sph	wProp-Cal altn	100	lost	lost
DN0406-11	164 50	166.00	1.50	doyFLT + 35 cm Qtz vein/rpicmt in upper part	dissPy 1-3, tr Sph	vwPpl-Cal, Sil-fl	100	190	23.9
DN0406-12	166.00	167.50	1.50	dgyr El	dissPy 1-3	mProp-Cal altn	100	95	3.6
DN0406-13	167.50	169.00	1.50	dayELT + few QLZ verns	dissPy 1-3 (3-5), loc v-ab Sph (20%	vwPpl-Cal, Sil-fl	100	220	16.9
DN0406-14	169.00	170.50	1.50	dgyFLT + thin QtZ veiniets	dissPy 1-3, tr Sph	vwProp-Cal altn	100	260	17.1
DN0406-15	170.50	172.00	1.50	dayFLT + trick Qtz veins/rpicmt	dissPy 3-5	vwPpl-Cal, Sil-fl	100	53	3.9
DN0406-16	172.00	173.50	1.50		dissPy 1-3, Sph 1-2, Ga 1, Cpy 0.5	vwProp-Cal altn	100	1820	89.3 [83.6]
DN0406-17	173 50	175 10	1.50	t/ET) + (four Objusticitate)	dissPy 1-3, tr Sph	wProp-Cal altn	97	305	6.3
DN0406-18	179.75	190.05	1.001	t FI T . O	dissPy 1-3	sProp-Cal altn	97	46	0.7
DN0406-19	180.25	181 75	1.50	dgFLT + Qtz veins	dissPy 1-3 (3-5), tr Sph		100	120	52
DN0406-20	194.40	195.00	1.50 0		diss Py 3-5, Sph 0.5-1		96	220	18.3
DN0406-21	185.00	197.40	1.50(dgFL1) loc bxx, strg Sil/Qtz rplmts, few Qtz veins	diss Py 3-5, tr. Sph		99	280	11.9
DN0406-22	202 50	205.00	1.501(ugFL1) loc bxx, strg Sil/Qtz rplmts, few Qtz veins	diss Py 3-5, tr. Sph		99	140	9.9
DN0406-22	205.00	205.00	1.5010	<u>agFL1 + 11cm Qtz vein (5% Sph, tr. Ga)</u>	dissPy 1-3, Sph <0.5, tr. Ga		100	450	71
DN0406-24	205.00	206.50	1.500	dgFL1 + few thin Qtz veins	dissPy 1-3		100	320	4.2
DN0406-25	200.50	208.00	1.501	tF1, app massive, crystal-rich, few thin Qtz veins	dissPy 1-3		100	145	0.9
DN0406-26	200.00	209.50	1.50	tF1, app massive, crystal-rich	c-cryst Py 3-5, Apy 0.5, tr. Sph		99	340	5.8
DN0406-27	209.50	211.00	1.50	tF1, app massive, crystal-rich	c-cryst+blebs Py 3-5, Apy 0.5, tr. Sp	h	98	920	27.7
DN0406-28	212.00	212.00	1.00 0	<u>Qtz vein/Qtz bcc in ItFT>dgFLT + few Qtz vlets</u>	c-crystPy 3-5, tr. Ga		98	240	7 3
0110400-20	212.00	213.50	1.50[0	IgFL1/ItF1 + num Qtz veins/rplmts, bxx/slicksds	dissPy 1-3, tr. Ga		96	240	92

DN04-06 Sample Log

Del Norte Project, 2004

1813 - 1820 - 18

DN04-06 Sample Log

DN0406-29	213.50	215.00	1 50 daELT + few thin yugay Otz voice	dia Dia 4.0	······································		÷	
DN0406-30	215.00	216.50	1 50 doELT/ItET + fow this ware Otrocial	dissPy 1-3		97	35	1.9
DN0406 31	216.00	210.00	1.50 ldgr EThter I + lew thin vuggy Qtz veins	dissPy 1-3 (3-5)		100	115	0.7
DN0406-31	210.00	210.00		diss+crystPy 1-3		100	10	0.3
DN0400-32	218.00	219.50	1.50 lite Tsmassive + rew Qtz veins w/t Sph, Ga, tr Cpy	Py ca. 5%, tr. Apy		100	295	3.0
DN0406-33	226.20	227.70	1.50 dgFLT strgly streched/slicksd	dissPy 1-3		100	20	1 9
DN0406-34	227.70	229.20	1.50 dgFLT slicksd + Qtz veins/rplmts/bxx	dissPy 1-3 (3-5)	rec'y ca. 85%	88	105	
DN0406-35	229.20	230.70	1.50 dgFLT slicksd + num Qtz rplmts/bxx	diss/lensPv 3-5, tr. Ga. Sph	1	95		2.2
DN0406-36	230.70	232.20	1.50 dgFLT slicksd + few Qtz rplmts/bxx	dissPv 1-3			105	3.5
DN0406-37	232.20	233.70	1.50 ItFT/daFLT + num Qtz rpimts	tr Sph Ga	100 V 00 950/	90	. 100	2.2
DN0406-38	233.70	235.20	1.50 Qtz bxx, rpimt in FLT	diss Dy/Maroon 2.7. tr Co	11ec y ca. 85%	90	69	5.5
DN0406-39	235.20	236 70	1.50 Otz byx_rolmt in FLT	diss Fy/Marcas 3-7, If Ga		100	420	28.7
DN0406-40	236 70	237.07	1 27 doELT + pum Otz rolmin/using	uiss Py/war 3-7, Spn~1, Ga~0.5		100	645	14.9
DNI0406 44	200.10	207.01		diss Py/Mar 3-7, tr. Sph, Ga	v low rec'y in lower pa	89	340	22.2
DN0400-41	237.97	230.01	0.84 Fault gouge, strgly broken core	[Py 1-3	rec'y ca. 12%	44	325	24.0
DIN0406-42	238.81	240.30	1.49 dgFL1 + Qtz veins/rplmts	Py 1-3, Sph~1, tr Ga		100	240	36
DN0406-43	240.30	241.80	1.50 blk tuffaceous seds + Qtz veins/rplmts	Py 1-5, Sph<0.5		100	185	33
DN0406-44	241.80	243.30	1.50 blk tuffaceous seds, in low part Qtz veins/rplmts	Py 1-5, Sph<0.5, tr Ga		100	105	0.0
DN0406-45	243.30	244.80	1.50 blk tuffaceous seds + num Qtz rolmts	Pv 1-5 Sph<0.5 tr Ga		100	240	0.1
DN0406-46	244.80	246.30	1.50 blk tuffaceous seds + num Qtz rolmts	Py 5-7% tr Ga Sph		100	340	10.1
DN0406-47	246.30	247.80	1.50 blk tuffaceous seds + num Otz mimts	Py 5-7% Gac1 Sabc0 5		100		3.0
DN0406-48	247.80	249 30	1.50 doELT/tuff sed num Otz roimts	Dy 2 5 Och 0 5 th Oc		100	180	2.6
DN0406-49	249.30	250.80	1.50 bik tuffaceous sode + vuigau Ota rolmte	Py 3-5, Spn~0.5, tr Ga		100	320	2.3
DN0406-50	250.80	250.00	1.50 doELT/luff cod ours Ob state	1Py 3-5, Sph~0.5, tr Ga		100	85	4.2
DN0406 51	250.00	202.00		Py 3-5, Sph~0.5		100	905	1.9
0110400-01	252.30	204.30	2.00 Teisic crackie bx tuff/Seds/Qtz	Py 1-3 (3-5)		100	65	3.6
I otal sampled intervals:			75.20			Language of the second s	And a subscription of the	

TD @ 257.56 m 100% rec'y over intervals with visible mineralization
Teuton Resources Corporation

Lateegra Resources Corporation

Del Norte Project, 2004

Drill hole DN-04-07

Property, claim	n: [[Del Norte, Horatio 3	Azimuth/inclination:	085°/-60°	Drilling Company:	Aggressive		<u>_</u>	
Target/Location	on: L	G Vein; Pad J-new	Final depth [metres]:	72.24	Date Commenced:	17/08/2004		Sampling	KNA
	E	467 888	· · · · · · · · · · · · · · · · · · ·		Date Completed:	19/08/2004		Sampl. method:	Dmd-s.cut (split)
1	N	6 209 378			Logging:	K.M.		Laboratory:	Pioneer
	Elevation	1232						Assay method:	
Sample Log			Comments:	· · · · · · · · · · · · · · · · · · ·				Rec'y estimation	KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Δοο	21/6
	From	То	Length		[%]	. tomano	[%]	Δ11	ays Ac
	[m]	[m]	[m]		L · - 1		[70]	nnh (oz/t]	ppm [oz/t] a/t
DN0407-01	7.70	9.20	1.50	ItFT, rust-color Carb-Qtz zones	dissPy 1-3, tr. Ga, Sph	R-zone	99	35	2000
DN0407-02	9.20	10.70	1.50	ItFT, strng rust-color Carb-Qtz zones	dissPy 1-3, tr Sph	R -zone	99	220	2.0
DN0407-03	10.70	12.20	1.50	ItFT>dkgyFLT, rust-color Carb-Qtz zones	dissPy 1-3	R -zone	99	120	
DN0407-04	12.20	13.70	1.50	dkgyFLT + thin Qvlets	dissPv 3-5	R -zone	100	65	2.1
DN0407-05	13.70	15.50	1.80	dkgyFLT/ItFT + thin QrpImnts	dissPy 1-3 (3-5)		100		3.0
DN0407-06	39.50	41.00	1.50	ItFt + few Qveins	dissPv 1-3		83	225	1.2
DN0407-07	41.00	42.50	1.50	ItFt + few Qveins	dissPv 1-3. tr . Soh. Ga < 0.5%		92	220	4.0
DN0407-08	42.50	44.00	1.50	ItFt/dkgyFLT + few thin Qveins	dissPv 1-3		84	195	10.9
DN0407-09	44.00	45.50	1.50	dkgyFLT + few thin Qveins	dissPv 1-3. Soh < 0.5%		01	105	1.9
DN0407-10	45.50	47.00	1.50	dkgyFLT + few thin Qveins	dissPv 1-3, tr. Sph		100	70	0.7
DN0407-11	47.00	48.50	1.50	dkgyFLT + few thin Qveins	dissPy 1-3, tr. Soh		100	120	0.9
DN0407-12	48.50	50.00	1.50	ItFT + few Qveins/incip rplmnts	dissPv 1-3 (3-5)		100	120	0.0
DN0407-13	50.00	51.50	1.50	dkgyFLT + few thin Qveins	dissPv 1-3		100		0.0
DN0407-14	58.95	59.35	0.40	dkgyFLT/TuffacSeds + stockwork of Qylets	dissPv 1-3		100	10	1.0
DN0407-15	62.98	63.98	1.00	ItET	dissPv 1-3 (3-5)		100	10	1.0
DN0407-16	63.98	65.05	1.07	Qtz Bcc/Fault Bcc in blk Seds	dissPy tr Ga		100	100	4.8
DN0407-17	65.05	66.55	1.50	dkgyFLT w/t abund mm/TuffacSeds	disePv 1-3		100	8980	316.0
DN0407-18	66.55	68.05	1.50	dkgvFLT w/t abund mm/TuffacSeds	discPy 1-3		100	180	17.5
DN0407-19	68.05	69.55	1.50	blkSeds/dkgvFLT + Oveins	disePv 1-3		1 100	25	2.5
DN0407-20	69.55	71.30	1.75	blkSeds + Oveins	disePv1.3 tr Sob		100	56	4.2

Total length of sampled intervals: EOH @ 72.24 28.52

Del Norte Project, 2004

Drill hole DN-04-08

Property, clair	m:	Del Norte,	Horatio 3	Azimuth/inclination: 085%-70%	Drilling Company				
Target/Location	on:	LG Vein; F	Pad J-new	Final depth [metres]: 105.77	Drining Company:	Aggressive			
UTM:	E	467 888		1 100.11	Date Commenced:	19/08/2004		Sampling:	KN
	N	6 209 378			Date Completed:	21/08/2004		Sampl. method:	Dmd-s cut (split
	Elevation	1232			Logging:	K.M.		Laboratory:	Pionee
,				Comments:				Assay method:	
Sample Log								Rec'y estimation	: KN
Sample No		Interval		Description	Quitabalan				
· · ·	From	То	Length	2 Costiption	Suprides	Remarks	Recovery	Ass	says
	[m]	[m]	[m]		[%]		[%]	Au	Ag
DN0408-01	16.25	17.75	1.50	IFT + few Qtz veins	dies Du2 6 to Os			ppb [oz/t]	ppm [oz/t] g/t
DN0408-02	17.75	19.10	1.35	FT + few Qtz veins	IdissPy3-5, tr Ga		100	42	0.3
DN0408-03	30.60	32.10	1.50	FLT/FT + num Otz veins/mlmnts	dissr y3-5		100	15	0.4
DN0408-03b					uisspy~3		100	165	0.9
DN0408-04	32.10	33.60	1.50	FLT + few Otz veins	dis-0.10			28	1.1
DN0408-05	33.60	34.60	1.00	FT + Calcite/Otz rolmnt/veins	JuissPy 1-3		100	33	1.1
DN0408-06	50.90	52,40	1.50	FLT + Otz veins byv/fractured textures	uissPy5-7		100	18	0.3
DN0408-06b	50.90	52,40	1.50	die tono, bxxinacidied textures	dissPy 3-5	sample split into two	99	85	0.6
DN0408-07	52.40	53,90	1.50	FLT + Otz vlets		lintervals	99	75	0.5
DN0408-08	53.90	55,40	1.50	ELT + num Otz veins loc hoo	dissPy 3-5		99	21	0.6
DN0408-09	55.40	57.10	1.70	FLT + few Otz veins	dissPy 1-3, tr Sph, Ga		100	85	0.7
DN0408-10	69.00	70.50	1 50	ELT + few thein Otz voine	dissPy 1-3		100	29	0.3
DN0408-11	70.50	72.00	1 50	ELT/ET + few Otz voins	dissPy 1-3		99	75	9.0
DN0408-12	72.00	73.50	1.50	ET/FLT + Otz voins	dissPy 1-3, tr Ga		99	21	14
DN0408-13	73.50	75.00	1 50	ELT + few Otz veine	dissPy 3-5, tr Ga, Sph		99	1650	29.2
DN0408-14	75.00	76.50	1.50	ELT/(ET) + Otz veins	dissPy 1-3		100	160	20.2
DN0408-15	76.50	78.00	1.50	ELT/(ET) + Otz voins	dissPy 1-3, Ga<0.5%, tr Cpy, Sph		100	60	9.5
DN0408-16	78.00	79.00	1.00	ELT + few Otz voins	dissPy 1-3, tr Ga		100	65	33
DN0408-17	79.00	79.90	0.90	FLT + few Otz veins	dissPy 1-3		99	35	17
DN0408-18	79,90	81 30	1 40	Otz veins/rolmoto in ELT/with- O-d	dissPy 1-3		99	20	28
DN0408-19	81.30	82.80	1.40	Bik Aroli + this Otzulate/shall	Py 3-5, Ga~3, Sph~2, tr Cpy, Sulfs	LG Vein	99	6890	640.0
DN0408-20	82 80	84 30	1.50	Bik Argil + thin QLZ Viets/stockwork	dissPy 1-3, tr Sph		100	460	104.0
DN0408-21	84 30	85.80	1.50	Dik Argil + some Qiz veins	dissPy 1-3, Sph<0.5%		100	205	14.0
DN0408-22	85.80	87.30	1.50	Bik Argil + some Qtz veins	dissPy 1-3, Sph 0.5-1.0%	1	100	120	16.0
DN0408-23	87.30	88.80	1.50	Dik Argii + some Qtz veins	dissPy 1-3, Sph 1-2, Ga 0.5-1.0%		100	85	20.0
DN0408-24	88.80	90.30	1.501	Dik Seus + very thin Qtz viets	dissPy 3-5, tr Sph		100	38	20.0
DN0408-25	90.30	91.80	1.501	Pik Seds + very thin Qtz viets	dissPy 3-5		100	43	3.0
DN0408-26	91.80	03 30	1.501	Dix Geus + very thin Qtz viets	dissPy 3-5, tr Sph		100	40	3.4
DN0408-27	93 30	94.80	1.501	Dik Seus + very thin Qtz viets	dissPy 1-3, tr Sph		100	38	5.4
DN0408-28	94.80	94.00	1.501	Dix Seds> Tect Bcc of Seds & Intermed Volccl	dissPy 1-3		100	20	0.0
Lotal length of	ampled in	00.00	1.001	internediate the Lapili tuff, not streched/sheared	dissPy 1-3		100		
-OH @ 105 77	sampled in	tervais.	41.35					U	0.5

Page 1 of 1

DN04-08 Sample Log

DN04-09 Sample Log

Teuton Resources Corporation Lateegra Resources Corporation

Del Norte Project, 2004

Drill hole DN-04-09

Property claim:	Del Norte Horatio 3	Azimuth/inclination:	0050/ 77 50		-		
Target/Legation:	LC Voie: Ded Leave		Jo57-11.5°	Drilling Company:	Aggressive		
	LG Veill; Pad J-new	Final depth [metres]:	117.96	Date Commenced:	21/08/2004	Sampling	EB (modif'd KM)
	467 888			Date Completed:	24/08/2004	Sampl method:	Dmd-s cut (split)
N	6 209 378			Logging:	E0	Lebereten:	Dino-s cut (spin)
Elev	vation 1232					Laboratory.	Pioneer
	· · · · · · · · · · · · · · · · · · ·	Comments:			l	Assay method:	
Sample Log		Commenta.		ample descriptions modified by KM		Rec'y estimation	: KM

Sample Log								Intec y estimation	<u>. K</u> N
Sample No		Interval		Description	Sulphides	Permarke	Decovery	1	
	From	То	Length		[%]	rtemarks	recovery	As	says
	[m]	[m]	[m]		[,0]		[70]	Au pob [oz/t]	Ag
DN04-09-01	16.39	17.67	1.28	FLT, few minor Qvs	Ga, Cov. Pv. 1% sulphides	mod Calc alt'n	03	1 ppb [02/1]	
DN04-09-02	22.50	23.50	1.00	FT, few Qvs with mineral'n halos	diss Py, Ga & Coy, 3% sulph	mod Calc alt'n	00	25	
DN04-09-03	23.50	24.95	1.45	FT, few Qvs with mineral'n halos	diss Py, Ga & Cpy, 3% sulph	mod Calc alt'n	93	120	0.0
DN04-09-04	24.95	26.42	1.47	FT and FLT, minor Qvs, grain fabric 20° rca	Ga and Pv (1%)	Imod Calc alt'n	02	120	1.4
DN04-09-05	26.42	27.91	1.49	FT and FLT, Qvs, and Qtz cemented breccia	Ga and Py (1%)	(Goethite stain)	92	75	1.0
DN04-09-06	27.91	29.11	1.20	FT and FLT, Qvs, and Qtz cemented breccia	Ga and Py (1%)	(Goethite stain)	95	1/0	0.9
DN04-09-07	45.46	46.95	1.49	FT, fabric 30° rca, fractured Qvs	none visible	fxx Ovs	95	220	1.
DN04-09-08	52.85	54.05	1.20	FLT w/t FT and QV	minor Ga and Soh (<1%)	Ove fyy		220	2.4
DN04-09-09	54.05	55.56	1.51	broken/fractured FLT, with few Qvs	minor Ga and Sob (<1%)	ELT fvv	70	12	0.7
DN04-09-09a	55.56	57.05	1.49	(FLT)	dissPv		70	1051	lost
DN04-09-10	60.20	61.63	1.43	FLT with QV	dissPy minor Ga-Soh (<1%)	Ove fyy		200	0.1
DN04-09-11	61.63	63.69	2.06	Qtz and Qtz cemented FLT	dissPy minor Ga-Sph (<1%)	Ovs comented	04	1051	iost
DN04-09-12	67.50	69.00	1.50	FLT and Qvs	dissPy_minor_Ga-Sph (<1%)	Ove fxy	01	130	1.3
DN04-09-13	71.22	72.62	1.40	FLT and Qvs	dissPy minor Ga-Sob (<1%)	Ove fxx	00	10	0.0
DN04-09-14	72.62	74.12	1.50	FLT and Qvs, grain fabric 30° rca	dissPy, minor Ga-Sph (<1%)	stringly stretched fabri	100	10	0.3
DN04-09-15	80.68	81.88	1.20	FLT + Qvls	dissPy minor h-met mortz'n	minor OV(La	100	21	0.0
DN04-09-16	81.88	82.49	0.61	QVLs with major mnrlz'n	Sph (3%) Ga (1%) Py (3.5%)	Major marin Tana	99	95	1./
DN04-09-17	82.49	84.03	1.54	black/grey FLT, some Qtz (broken up)	Ga (1%) & Py (1%)	Minor h mot moth	97	1890	254.0
DN04-09-18	84.03	85.08	1.05	FT with minor Qvs	Ga (1%) & Py (1%)	Minor D-met mmm	97	205	6.2
DN04-09-19	85.08	86.78	1.70	FLT, minor Qvs, stretched grain fabric		Distance (5.2	90	120	15.4
DN04-09-20	86.78	87.78	1.00	FLT, minor Qvs, stretched grain fabric	none visible	Qvs larger (5-6 cm)	95	29	8.9
DN04-09-21	87.78	89.88	2.10	FLT, wider Ovis	Dy (2.2%)	Qvs larger (5-6 cm)	96	85	37.7
DN04-09-22	89.88	90.38	0.50	drk-arev FLT w/t Ovs 2-5cm	(ice Dy (1.29())			140	36.0
DN04-09-23	90.38	91.53	1.15	Dark grev ELT Ovs perpendicular to ELT fabric	diss Fy (1-3%)	Isome Qvs	97	240	68.0 [62.8]
DN04-09-24	91.53	92.95	1.42	Brecciated FLT_Otz cemented foliation 30° ma	diss Py (1-3%)	strgly stretched fabric	98	205	24.2
DN04-09-25	92.95	94.46	1.51	crev-creamy ELT cemented with Otz		strgly stretched fabric	98	125	10.4
DN04-09-26	94.46	95.80	1.34	arevish areen FT	10155 Fy 1-3%, Ga 1-3%, Spn 1%		97	75	2.0
DN04-09-27	95.80	97.19	1.39	(FT with Ov)		Carbonate alt'n	96	48	1.3
				1	ry(3%) and Ga(3%)	I(graphitic?)	97	1780	183.0

Del Norte Project, 2004

DN04-09 Sample Log

DN04-09-28	97.19	98.70	1.51 Qtz cemented FLT,	disc Dy (19/)				
DN04-09-29	98.70	99.17	0.47 Core badly broken up, poss Fault Gauge		stretched fabric	- 98	320	16.3
DN04-09-30	99.17	100.27	1.10 Qtz cemented FLT		broken up	98	205	15.3
DN04-09-31	100.27	101.87	1.60 FLT	Py (2-5%), Ga (2%), Sph (2-4%)	Major mnrl'n zone	99	945	35.1
DN04-09-32	101.87	102 92	1.05/FLT	diss Py, minor b-met mnri'n	strong alt'n	100	305	59
DN04-09-33	102.92	104 22	1 30 ELT light green with minor Que theory L	diss Py, minor b-met mnrl'n	strong alt'n	99	205	10.5
DN04-09-34	104 22	105 37	1 15 Bady broken up ELT with Own if	diss Py, minor b-met mnrl'n	grain fabric 20° rca	98	160	73
DN04-09-35	105 37	106.37	1.10 Bady broken up PLT with QVs throughout	diss Py, minor b-met mnrl'n	minor Qvs	98	850	1.3
DN04-09-36	106.37	107.40		diss Py, minor b-met mnrl'n	broken at btm of int	99	610	97.1
DN04-09-37	107.40	107.40	1.03 Qtz cemented FLT,	diss Py (1%)		100	760	<u>97.4 [00.2]</u>
DN04-09-37	100.24	100.31	0.91 Qtz cemented FL1, carbonate eration	diss Py (1%)	Calc alt'n	100	/00	9.2
Tatal lagath of	100.31	109.80	1.49 FT with mod Calc alt'n	diss Py (<1%)	Calc alt'n	100	49	4.1
Total length of s	ampled in	tervals:	50.59	an a		100	1011	1.9

EOH @ 117.96

Page 2 of 2

. .

Rec'y estimation:

Teuton Resources Corporation Lateegra Resources Corporation

Del Norte Project, 2004

DN04-10 Sample Log

KM

Drill hole DN-04-10

Property, claim	1:	Del Norte, Horal	tio 3 Azimuth/inclination:	085°/-65°	Drilling Company:	D-iff		
Target/Location	n:	LG Vein; Pad B-	new Final depth [metres]:	131.98	Date Commenced		Constinue	
UTM:	E	467 869	· · · ·		Date Completed:	22/08/2004	Sampling:	KM
1	N	6 209 283			Logging:	AW	Jahoratory:	d. Drid-s cut (split)
	Elevation	1297					Assay mother	Pioneer
			Comments:		······································	1		· · · · · · · · · · · · · · · · · · ·

Sample Log

Sample No		Interval	******	Description	Sulphides	Domostro			
	From	То	Length	•	[%]	Remarks	Recovery	Ass	says
	[m]	[m]	[m]		[10]		[%]	Au	Ag
DN0410-01	14.60	14.75	0.15	ItarshEL & ET some thin Otz-Calcite voins				ppb [oz/t]	ppm [oz/t] g/t
DN0410-02	22.30	22.50	0.20	ItershEl & ET some thin Otz-Calcite voins	diseDu 1:2		100	2	0.3
DN0410-03	51.95	53.20	1 25	ItershET with numerous Otz rolmate	dissPy 1-3		1.00	59	1.1
DN0410-04	53.20	53.81	0.61	Zone of strong Otz rolmat in ET	UISSPY 3-5		100	225	1.4
DN0410-05	53.81	55.35	1 54	ItarshEl T + some this Otzucine & mines mines	dissPy 3-5, tr. Ga		100		5.4
DN0410-06	57 60	57 94	0.34	irregular Otz rolmot	dissPy 1-3, tr Apy		100	42	16.0
DN0410-07	57 94	59.54	1.60	dkavEl Tom this Otranias to include	Py 1-3 (3-5), tr Ga, Sulfs		100	985	9.2
DN0410-08	102.95	103.35	0.40	dkgyr Linnin, unin Gtz veins + incip rpimnts	dissPy 1-3, Sph,Ga tr<0.5, tr Cpy		100	23	2.0
DN0410-09	102.35	104.55	1 20	dkgyFLT with some Qtz rpimnts	dissPy 3-5, tr Ga		100	205	9.6
DN0410-10	104.55	104.55	1.20	dkyyrLinnn, rew Qtz veins	dissPy 1-3		100	180	40
DN0410-10	104.55	105.15	0.60	akgyr Limm, rew Qtz veins & incip rplmnts	dissPy 1-3, tr Ga, Sph		100	105	34.5
DN0410-11	105.15	105.58	0.43	numer Qtz veins & rplmnts	dissPy 3-5, Ga, Sph 1-2, Cpy tr<0.	5	100	780	48.0
DN0410-12	105.58	106.58	1.00	Iter Fi, numer Qtz veins & rplmnts	dissPy 3, tr Apy		100	60	
DN0410-13	106.58	107.55	0.97	ItcrHI, numer Qtz veins & rpimnts	dissPy 3, tr Apy		100	260	0.7
UN0410-14	110.36	111.75	1.39	dkgyFLTmm, sheared, numer incip Qtz rpimnts	dissPy 3-5		100	320	0.3
DN0410-15	111.75	113.03	1.28	(dkgyFLT) with strong , massive Qtz rplmnts	dissPy 3-5, tr Ga, Sph		100	205	7.0
DN0410-16	113.03	113.38	0.35	dkgyFLT strgly stretched	dissPy 1-3		100	205	30.1
DN0410-17	113.38	113.50	0.12	Qtz vein, strgly fxx to incip bxx	dissPy 3-5, Soh 1, Ga 1, tr Cov	original sample split	100	290	21.0
DN0410-17A	113.50	114.78	1.28	Qtz vein/rplmnts, incip bxx, in Tuffac Seds	dissPv 3-5, Soh 1, Ga 1, tr Cov	original sample split	100	4100	101.0
DN0410-18	114.78	117.09	2.31	Qtz vein/rplmnts, incip bxx, in Tuffac Seds	dissPv 3-5 Sph 1 Ga 1 tr Cpv	original sample spin	100	4980	205.0
DN0410-19	117.09	120.69	3.60	olkArg, strng fxx, incip sheared, few Otz veinlets	<u></u>	brokon ooro	90	145	19.0
DN0410-20	120.69	120.90	0.21	olkArg, faulted/sheared		broken core	80	150	5.1
DN0410-21a	120.90	121.80	0.901	olkArg + Qtz veins, loc incip bxx	disePu 1-3 Sob tr 2 tr Ca	loroken core	48	145	6.0
DN0410-21b	120.90	121.80			14/36/ y 1-3, 30/11/2, 1/ 68	sample split into two	48	36	3.2
Total length o	f samoled in	tervals:	21 73			Intervals		28	2.0

EOH @ 131.98 m

1 - original sample DN04-17 (int. 113.38-114.78) was mistakingly split into two intervals during DSC sampling

Page 1 of 1

Del Norte Project, 2004

DN04-11 Sample Log

Drill hole DN-04-11

Property, claim:	Del Norte, Horatio	1 Azimuth/inclination: 265%-45%	Drilling Company:	DriftWood		
Target/Location:	LG Vein; Pad E-Sh	ad Final depth [metres]: 144.17	Date Commenced:	22/08/2004	Sampling:	AW
UTM: E	467 970		Date Completed:	23/08/2004	Sampl. method: Dr	md-s cut (split)
N	6 209 463		Logging:	E.B.	Laboratory:	Pioneer
Elevat	ion 1164				Assay method:	
0	· .	Comments:			Rec'y estimation:	KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	22A	avs
	From	То	Length		[%]		10000001	A11	Ag
	[m]	[m]	[m]		1 · · · ·			ppb [oz/t]	ppm [oz/t] a/t
DN0411-01	89.80	91.10	1.30	FLT/FT		Carbonates	47	7	0.4
DN0411-02	91.10	92.80	1.70	dkgyFLT, loc Qtz veins	Py 1-2	Carbonates	NET 61	1390	25.5
DN0411-03	92.80	95.20	2.40	dkgyFLT, loc Qtz veins	Py 1-2	Carbonates	100	220	10.6
DN0411-04	95.20	96.70	1.50	redeposited FLT-Tuffac Seds	Pv 1-3	Carbonates	98	65	19.0
DN0411-05	96.70	98.20	1.50	redeposited FLT-Tuffac Seds	Pv 1-3	Carbonates	08	37	
DN0411-06	98.20	99.70	1.50	Qtz rplmnts in FLT	Pv 3-5		08	125	2.0
DN0411-07	99.70	101.20	1.50	Qtz rplmnts in FLT	Pv 3-5		08	120	0.3
DN0411-08	101.20	102.70	1.50	dkgyFLT, prob redeposited, sheared, fractured	Pv 1-3		06	130	
DN0411-09	102.70	104.20	1.50	dkgyFLT, prob redeposited, sheared, fractured	Pv 1-3			30	3.9
DN0411-10	124.80	126.20	1.40	FLT/FT, some Qtz veins	Pv 1-3	Carbonates		2490	2.4
DN0411-11	126.20	128.30	2.10	Qtz rplmnts in FLT/FT	Pv 3 Sph tr-3 Ga tr-5	Garbonates	07	3440	210.0
DN0411-12	128.30	129.80	1.50	Qtz rplmnts in FLT/FT	Py 1-3 tr Ga Sph			125	00.9
DN0411-13	129.80	131.30	1.50	FT/FLT, fracturet to tectonic(?) breccia	Pv 1-3	Carbonatas	100	130	1.2
DN0411-14	131.30	132.80	1.50	FT/FLT, fracturet to tectonic(?) breccia	Pv 1-3	Carbonates	100		0.3
DN0411-15	132.80	134.30	1.50	FLT/FT loc fractured	Pv 1-3		100	. 20	0.3
DN0411-16	134.30	135.80	1.50	FLT/FT	Pv 1-3		100	18	0.4
Total length o	f sampled in	tervals:	25.40		1.9.0		100	23	0.4

EOH @ 144.17 m

Recovery: ratio of measured core length to driller's block distance (see separate sheet); [in square brackets values estimated for sampled sub-intervals]

Del Norte Project, 2004

DN04-12 Sample Log

Drill hole DN-04-12

Property, clai	im:	Del Norte, Horati	o 1 Azimuth/inclination:	265°/-55°	Drilling Company:	DriftWood		
Target/Locat	ion:	LG Vein; Pad E-S	Shad Final depth [metres]:	201.78	Date Commenced:	23/08/2004	Sampling:	AW
UTM:	E	467 970			Date Completed:	25/08/2004	Sampl. method	d: Dmd-s cut (split)
	N	6 209 463			Logging:	AW	Laboratory:	Pioneer
	Elevation	1164					Assay method	
L			Comments:					

Sample Log

Sample No	l	Interval		Description	Sulphides	Remarks	Recovery	Ass	ays
-	From	То	Length		[%]		[%]	Au	Ag
	[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t] g/t
DN0412-01	6.10	7.20	1.10	blkArg	dissPy	Syngenetic Py		10	0.3
DN0412-02	49.60	49.65	0.05	Qtz vein ca. 5 cm wide @ 35 rca				10	0.7
DN0412-03	69.50	70.00	0.50	dkgyF-(Lithic)LT + 5 cm Qtz vein				105	1.2
DN0412-04	70.00	71.00	1.00	dkgyF-(Lithic)LT + numer Qtz rplmnts				360	0.5
DN0412-05	71.00	72.10	1.10	dkgyF-(Lithic)LT, strgly silicified	dissPy 3-5			85	1.5
DN0412-06	76.70	77.20	0.50	dkgyl-(Lithic)LT + numer Qtz rplmnts		wk Chlorit'n		4	0.3
DN0412-07	112.30	112.90	0.60	dkgyFLT, mod-strgly sheared, + some Qtz rplmnts				35	1.9
DN0412-08	112.90	114.00	1.10	dkgyFLT, mod-strgly sheared, + some Qtz rplmnts				195	3.5
DN0412-09	114.00	114.60	0.60	dkgyFLT, sheared, + Qtz rplmnts & Bcc (graph+Ga	tr Ga			5280	590.0
DN0412-10	114.60	116.00	1.40	dkgyFLT, mod-strgly sheared, + some Qtz rplmnts				28	9.5
DN0412-11	116.00	118.00	2.00	dkgyFLT, mod-strgly sheared, + some Qtz rplmnts				30	1.1
DN0412-12	118.00	120.00	2.00	dkgyFLT, mod-strgly sheared, + some Qtz rplmnts				145	5.3
DN0412-13	120.00	122.40	2.40	dkgyFLT, mod-strgly sheared, + some Qtz rplmnts				320	7.1
DN0412-14	125.40	125.80	0.40	gyFLT loc FLTmm, mod-weak shearing		intens green mnri		135	1.1
DN0412-15	128.80	129.60	0.80	gyFLT loc FLTmm, mod-weak shearing, Qtz rplmn	ts			80	7.5
DN0412-16	149.00	149.70	0.70	dkgyFLTmm, mod shear, minor Qtz rplmnts				35	1.0
DN0412-17	152.50	153.80	1.30	dkgyFLT + abund Qtz bxx with graph gouge	minor Py			225	12.8
DN0412-18	168.30	169.00	0.70	dkgyFLTmm, mod shear, minor Qtz rplmnts	minor Py			58	2.6
DN0412-19	180.80	180.95	0.15	Qtz vein	Py, tr Ga			4560	382.0
DN0412-20	187.70	188.50	0.80	dkgyFLTmm, mod shear, 20% Qtz rplmnts				45	0.3
DN0412-21	196.60	198.00	1.40	dkgyFLTmm, mod shear, 15-20% Qtz rplmnts				28	0.3
Total length o	f sampled in	tervals:	16.25						
EOH @ 201.7	78 m			-					

Del Norte Project, 2004

Drill hole DN-04-13

Sample Log

Property, c	laim:	Del Norte, Horatio 3	Azimuth/inclination:	085°/-85°	Drilling Company:	Aggressive			
Target/Loc	ation:	LG Vein; Pad J-new	Final depth [metres]:	165.51	Date Commenced:	24/08/2004	Sam	inlina:	KM
UTM:	E	467 888			Date Completed:	28/08/2004	Sam	pl. method:	Dmd-s cut (split)
	N	6 209 378			Logging:	K.M.	Labo	pratory:	Pioneer
	Elevation	1232		·			Assa	ay method:	
Commiss 1 -			Comments:				Rec	y estimation	KM

Sample No		Interval		Description	Sulphides	Remarks	Recoverv	Ass	avs
	From	То	Length		[%]		[%]	Au	An
	[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t] g/t
DN0413-01	17.30	17.90	0.60	FLT, few QV	dissPy 1-3		100	95	1.0
DN0413-02	20.03	20.25	0.22	Qtz vein	Ga 1-3, tr Sph, Cpy		100	395	78
DN0413-03	45.25	46.75	1,50	FLT/FT + Qtz rplmnts	dissPy 1-3		100		
DN0413-04	50.00	51.00	1.00	FLT + few Qveins/rplmnts	dissPy 1-3, tr Ga		100	120	3.0
DN0413-05	51.00	52.50	1.50	FLT + num Qv/rplments	dissPy 1-3, Ga~1%, Sph~0.5%	<u> </u>	100	110	<u> </u>
DN0413-06	52.50	54.00	1.50	FLT + few Qveins-to stockwork	dissPy 1-3	+	99	180	1.0
DN0413-07	54.00	55.60	1.60	FLT + few Qveins-to stockwork	dissPy 3-5	T	97	145	4.2
DN0413-08	55.60	57.00	1.40	FT + Qv/rplments	dissPy 1-3, tr Apy		97	68	
DN0413-09	57.00	58.50	1.50	FT/FLT + few Q replments	dissPy 1-3, tr Apy		100	62	0.0
DN0413-10	58.50	60.00	1.50	FLT/FT + few Qv, incipient brecciation	dissPy 1-3	t	100	56	0.0
DN0413-11	60.00	61.50	1.50	FT/FLT + few Qv	dissPy 1-3, tr Ga		100	38	0.0
DN0413-12	61.50	63.00	1.50	FLT strgly slickensided, incip bxx	dissPy 3-5		100	25	
DN0413-13	63.00	64.40	1.40	FLT and sme QrpIments/Veins	dissPy 1-3		100	140	1.9
DN0413-14	64.40	66.00	1.60	FT/(FLT)	Pv 3-5 (5-7), tr Apy (in FT), Ga	h	100	65	0.9
DN0413-15	66.00	67.50	1.50	FLT + few QV	dissPy 3-5, tr Sph		100	95	3.8
DN0413-16	67.50	69.00	1.50	FLT loc bxx	Py 5-7 (3-5), Sph<0.5, tr Ga		100	605	15.3
DN0413-17	69.00	70.00	1.00	FLT + num Qrplments/bxx	Py 3-5, tr Sph, Ga		99	225	9.1
DN0413-18	92.00	93.50	1.50	FLT + QrpIments	ldissPv 1-3 (3-5)		100	70	2.0
DN0413-19	93.50	95.00	1.50	FLT + num Qrplments/veins	dissPv 1-3 (3-5), Sph~1, Ga~0.5		99	360	28.0
DN0413-20	95.00	96.20	1.20	FLT + num Qrplments	dissPv 1-3 (3-5), Sph 1-2, Ga~0.5		90	5010	585.0
DN0413-21	96.20	97.70	1.50	FLT + few Qveins	dissPy 1-3. tr Ga		99	180	5.8
DN0413-22	97.70	99.20	1.50	FLT + few Qveins	dissPv 1-3		100	140	8.0
DN0413-23	99.20	100.20	1.00	FLT + few Qveins/rplmnts	diss Py 1-3		100	305	2.0
DN0413-24	104.25	105.75	1.50	FLT/(FT) + Qv	dissPv 1-3		100	23	10
DN0413-25	105.75	107.25	1.50	FT + Qveins	diss Py 3-5		100	150	37
DN0413-26	115.70	117.10	1.40	FT + Q v	diss Py 3-5, Sph<0.5, tr Ga		100	105	15
DN0413-27	121.00	122.50	1.50	FLT + Qv, loc bxx/slicksds	dissPy 1-3		100	205	1.5
DN0413-28	122.50	124.00	1.50	FLT + Qv, loc bxx/slicksds, fault zone	dissPy 3-5		100	195	23

DN04-13 Sample Log

Del Norte Project, 2004

Teuton Resources Corporation Lateegra Resources Corporation

DN04-13 Sample Log

							Campio Lo
DN0413-29	124.00	125.50) 1.50 FLT + some QV	dissPv 1-3			
DN0413-30	125.50	127.00	1.50 FLT + some QV	dissPv 1-3	100	160	0.7
DN0413-31	130.25	131.75	1.50 FLT + few Qv/rplments	dissPy 1-3 (3-5) tr Sph. Co.	100	180	1.2
DN0413-32	131.75	133.25	1.50 FLT + few Qv, faulted lower part	diss Py 3-5 tr Ga	100	185	5.0
DN0413-33	133.25	134.75	1.50 FLT + few Qv	diss 1 y 5-5, il Ga	100	205	2.8
DN0413-34	134.75	135.75	1.00 FLT + irregul Qrolments	dissPy 5-3	100	190	2.8
DN0413-35	135.75	136.75	1.00 FLT + num Orpiments	dissi y 5-7 (10), Cpy~3, it Ga, Spn	100	620	254.0
DN0413-36	136.75	138.25	1.50 FLT + Q rplments, loc bxx	dissi y 1-0, il Ga	100	195	6.2
DN0413-37	138.25	139.75	1.50 FLT + few Oveins/rol's	dissPy 3-5, if Spn	100	920	8.2
DN0413-38	139.75	141.25	1.50 FLT + few Oveins/rpl's	dissPy 3-5	100	125	9.5
DN0413-39	141.25	142.75	1.50 FLT + few Orolments/veins	disspy 3-5	100	25	0.4
DN0413-40	142.75	144 25	1.50 FLT	alssPy 3-5, tr Sph	100	48	1.0
DN0413-41	144 25	145.40	1 15 ELT + few Overine	dissPy 3-5	100	35	3.1
DN0413-42	145 40	146 90	1.50 ELT/blkSada + Ou/mimonta	dissPy 1-3, tr Sph	100	28	1.3
DN0413-43	146.90	148.45	1.55/ELT/blkSeds + GWIpinients	dissPy 1-3, Sph~1, tr Ga	100	195	6.1
DN0413-44	148.45	1/0.40	1.50 ELT/blkSeds + fruit QV/piments	dissPy 1-3, tr Sph, Ga	100	80	2.2
DN0413-45	140.45	150.05	1.00/FLT/biKSeds + rew QV/rpiments	dissPy 1-3	100	140	15.0
DN0413-46	150.05	151.05	1.00 FL T/tuffaceous Seds + few Qtz veins	dissPy 1-3	100	68	28
DN0413-47	151 05	152.05	1.00 PET/fullaceous Seds + few Qtz veins, loc bxx	dissPy 3-5	100	195	21.4
DN0413-48	152.05	152.90	1.00 Qtz rpiments/occ	dissPy 3-5, Sph 2-3, Ga 1-2, Sulfs	100	240	29.8
DN0413-40	152.95	155.95	1.00 BXX Seds + loc Qtzbcc	dissPy 1-3, tr Sph, Ga	100	185	19.1
DN0413-43	155.95	155.00	1.05 Qtz rpiments & bxx Seds	dissPy 1-3, tr Sph, Ga	100	140	47.5
DN0412-51	155.00	100.00	1.50[FL1/blk Seds + few Qtz veins	dissPy 1-3, tr Sph, Ga	100	75	4.5
DN0413-51	150.50	158.10	1.60 Qtz rp/ments/vein	dissPy 1-3, Sph~0.5, Ga<0.5	100	80	
DN0413-52	158,10	158.50	0.40 Fault Bcc of blk Seds & Qtz	2	100	56	
DN0413-53	158.50	160.00	1.50 Blk Seds abund Qtz rpiments	dissPy 1-3, Ga~1%, Sph<0.5%	100	480	26.6
DIN0413-54	160.00	160.60	0.60 Blk Seds + some Qtz rplments	dissPy 1-3, Sph<0.5%	100	195	
DN0413-55	160.60	161.85	1.25 FLT + some Qtz rplments	dissPy 1-3, tr Sph	100	 	3.8
DN0413-56	161.85	163.10	1.25 Blk Seds + Qtz rpiments	dissPv 3-5 (1-3)	100	005	5.0
DN0413-57	163.10	164.00	0.90 Blk Seds + Qtz rplments	dissPv 1-3 (3-5)	100	220	24.6
DN0413-58	164.00	165.51	1.51 Blk seds/ FLT + Qtz rplments	dissPv 1-3 Sob~0.5 tr Ga	100	/60	26.2
Total sampled	intervals:		76.18		100	205	14.5

TD @ 165.51 100% rec'y over intervals with visible mineralization

Teuton Resources Corporation

Lateegra Resources Corporation

Del Norte Project, 2004

DN04-14 Sample Log

Drill hole DN-04-14

Property, cla	im:	Del Norte, Horati	io 3 Azimuth/inclination:	085%-45°	Drilling Company:	DriftWood		
Target/Loca	tion:	LG Vein; Pad E-	Shad Final depth [metres]:	124.05	Date Commenced:	25/08/2004	Sampling:	AW
UTM:	E	467 970			Date Completed:	26/08/2004	Sampl. metho	d: Dmd-s cut (split)
	N	6 209 463			Logging:	AW	Laboratory:	Pioneer
	Elevation	1164					Assay method	1:
			Comments:					

Sample Log

Sample No		Interval		Description		Sulphides	Remarks	Recovery	Ass	ays
	From	То	Length			[%]	1	[%]	Au	Ag
	[m]	[m]	[m]						ppb [oz/t]	ppm [oz/t]
DN0414-01	4.75	4.88	0.13	Qtz vein	ĺ			100	20	6.6
DN0414-02	6.10	6.19	0.09	Qtz vein @ 80 rca				100	90	0.3
Total length of sampled intervals: 0.22				an a		10 ¹ 0001001111111111111111111111111111	den en anna anna anna anna anna anna ann			

EOH @ 124.05 m No significant mineralization

Page 1 of 1

Del Norte Project, 2004

DN04-15 Sample Log

Drill hole DN-04-15

	the second secon							
Property,	claim:	Del Norte, Horatio 1	Azimuth/inclination:	070°/-50°	Drilling Company:	DriftWood		
Target/Lo	cation:	LG Ext; Pad EX1	Final depth [metres]:	203.30	Date Commenced:	27/08/2004	Sampling:	AW
UTM:	E	467,775		_	Date Completed:	28/08/2004	Sampl. method:	Dmd-s cut (split)
	N	6,210,183			Logging:	A.W.	Laboratory:	Pioneer
	Elevation	1,285					Assay method:	
			Comments:				Rec'y estimation	KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Assa	ys
1.1	From	To	Length		[%]		[%]	Au	Ag
	[m]	[m]	[m]					ppb [oz/t]	ppm [g/t]
DN0415-01	32.90	34,55	1.65	dkgyFLTmm + some Qtz rpimnts	Ру		100	580	4.2
DN0415-02	37.60	40.00	2.40	dkgyFLTmm + some Qtz rplmnts & veins	Py, Sph<1%, tr Ga, Cpy		ca. 50	280	95.2 [85.6]
DN0415-03	40.00	42.00	2.00	Qtz w/t some graphite gouge	Py, Ga		ca. 85	225	19
DN0415-04	62.00	62.18	0.18	Qtz vein + some graphite gouge	tr Py, Ga		99	690	3.4
DN0415-05	178.20	178.60	0.40	dkgyFLTmm, sheared, minor Qtz-Carbonate Veinir	ng		45	180	7.4
DN0415-06	178.60	180.90	2.30	dkgyFLTmm, sheared, minor Qtz-Carbonate Veinir	ng		45	245	24.7
DN0415-07	180.90	181.30	0.40	blkArg/F-ILTmm, catacl-mylon zone, Carb-(Q)veini	ng		ca.75	51	2.1
DN0415-08	187.70	188.10	0.40	blkArg/F-ILTmm, catacl-mylon zone, Carb-(Q)veini	ng		100	6	0.5
Total length of sampled intervals: 9.73		9.73		n an		, a a a a <u>a a</u> fairle da anna a sha a a anna sh		and the second se	

EOH @ 203.30

Recovery: ratio of measured core length to driller's block distance (see separate sheet); [in square brackets values estimated for sampled sub-intervals]

Del Norte Project, 2004

Drill hole DN-04-16

Property, cla	im:	Del Norte	, Horatio 3	Azimuth/inclination: 2779/ 459					
Target/Local	ion:	LG Vein; I	Pad J-new	Final depth [metros] 84.42	Drilling Company:	Aggressivo]		
UTM:	E	467 985	1	i mar deput (metres). 84.43	Date Commenced:	28/08/2004			
1	N	6 209 148			Date Completed:	20/08/2004		Sampling:	SS/KM
1	Elevation	1235			Logging:	23/06/2004		Sampl. method:	Dmd-s cut (split)
			I	Comment				Laboratory:	Pioneer
Sample Log				Comments:				Assay method:	
Sample No	T	Intonial						Rec'y estimation	KM
	Erom	Tai		Description	Suinhides				
	[m]		Length		Indes	Remarks	Recovery	Ass	savs
DN0416 01	[11]	ក្រា	[m]		[70]		[%]	Au	Ag
DN0410-01	45.71	46.11	0.40	Qtz-Carbon veins	$P_{\rm V} < 10/$			ppb [oz/t]	ppm loz/tl q/t
DN0416-02	55.83	56.08	0.25	BlkSeds	Dy 7 100		100	24	0.5
DN0416-02A	59.75	60.05	0.30	Qtz vein, fxx, in blk Arg	1-y 7-10%		100	58	0.5
DN0416-02B	62.49	62.69	0.20	Qtz vein, fxx, in blk Arg		additional sample	100	220	0.3
DN0416-03	65.84	66.14	0.30	blkArg, fxx, fault gouge?	nvs	additional sample	100	<u>ZZU</u>	2.0
DN0416-04	66.14	66.64	0.50	Qtz Bcc with blk graph matrix			94	54	2.7
DN0416-05	66.64	67.44	0.80	Otz Bcc	Ga 1-2%, Py 1%		100	510	20.3
DN0416-06	67.44	68.04	0.60	Qtz Bcc with blk graph moteix	dissPy, tr Ga<1%		100	16800	1842.0
DN0416-07	68.04	69.19	1.15	Otz Bcc//ein	dissPy, tr Ga<1%		100	580	9.6
DN0416-08	68.89	69.79	0.90	Otz Bco with blk greek and i	Ga <1%, Py <1%, tr Sph		100	245	6.2
DN0416-09	69.79	70.74	0.95	Otz voine in direct.	Sph <1% , tr Py		100	2080	22.7
DN0416-10	70.74	71 14	0.00	Otz veins in dkgyluffacSeds	loc tr Sph		100	2510	16.7
DN0416-11	71.14	72.24	1 10/	atz veins in akgyluffacSeds	finely dissPy		100	460	17.3
DN0416-12	72 24	73.00	0.051	aiz veins in dkgyl uffacSeds	loc Sph+Ga < 1%		100	245	37.4
DN0416-13	73.09	73.00	0.051	alz veins (5-10 cm), vuggy, in Tuffac Seds	loc Sph+Ga < 1%		100	605	6.3
DN0416-14	73.00	74.00	0.901	/olcanicles + minor Qtz veins	nvs		100	650	59.7
DN0416-15	74.00	74.99	1.00	olcaniclcs + minor Qtz veins	loc Sph+Ga < 1%		100	lost	ost
N0416-16	76.24	76.34	1.35 0	IkgyFLTmm with minor Qtz veins	Invs		100	305	7.6
N0416.17	77.00		1.35 d	lkgyFLTmm with minor Qtz veins	Invs		100	60	8.0
N0416-17		/8.44	0.75 d	kgyFLTmm with minor Qtz veins	dise By <19/		100	65	4.2
110410-18	81.20	82.00	0.80 d	kgyFLTmm with minor Qtz veins	tr Co <10/		100	35	4.5
otal length of	sampled int	ervals	14.85		U Ga <1%		100	120	1.2
OH @ 84.43 r	n							120	4.7

EOH @ 84.43 m

Page 1 of 1

DN04-16 Sample Log

Del Norte Project, 2004

. .

DN04-17 Sample Log

Drill hole DN-04-17

Property, claim:	Del Norte, Horatio	Azimuth/inclination: 070°/-75°	Drilling Company	Drift\\/ood	<u>г</u>	
Target/Location:	LG Ext; Pad EX1	Final depth [metres]: 71.02	Date Commenced:	8/29/2004	Sampling	
UTM: E	467,775		Date Completed:	30/08/2004	Sampl. method:	Dmd-s cut (split
N	6,210,183		Logging:	A.W.	Laboratory:	Pionee
Eleva	ition 1,285				Assay method:	
A		Comments:			Rec'y estimation	KN

Converte La v				comments.				Rec'y estimation	KM	
Sample Log			*****					· · · · · · · · · · · · · · · · · · ·		
Sample No		Interval		Description	Sulphides	Remarks	Recovery	٨٩٩	Leeove	
	From	To	Length		[%]	i tomanto	r0/1		ays	
	[m]	[m]	[m]	-	[10]		[76]	AU nob (or/#)	Ag	
DN0417-01	8.70	8.81	0.11	Qtz vein, limonitic, vugav			100	ppp [02/t]	ppm[02/t] g/t	
DN0417-02	18.80	19.05	0.25	dkgyFLTmm, some Qtz rolmnts, limonitic			100	50	0.3	
DN0417-03	21.25	21.65	0.40	dkgyFLTmm, some Otz rolmnts, limonitic			100	32	3.5	
DN0417-04	23.00	24.10	1.10	dkgvFLTmm, some Otz rpimots, limonitic			100	12	1.2	
DN0417-05	26.15	27.30	1.15	dkgvFLTmm, some Otz rolmots, limonitic			97	23	0.5	
DN0417-06	34.80	34.90	0.10	Otz vein	Dyr		94	12	1.6	
DN0417-07	35.60	35.75	0.15	Otz vein	Itr Py Cou		100	21	3.7	
DN0417-08	52.76	54 29	1 53	Otz vein	игу, Сру		100	9160	104.0	
DN0417-09	54 29	55 50	1 21	dkavEl Tmm/Mdet		Rec'y ca. 16%	18	41	1.1	
Total length o	f samoled in	ntervals:	4 79	laudit e unummidat		Seric-Carbonate alt'n	96	6	0.7	

EOH @ 71.02

Recovery: ratio of measured core length to driller's block distance (see separate sheet); [in square brackets values estimated for sampled sub-intervals]

Comments:

Del Norte Project, 2004

Drill hole DN-04-18

Property, claim: Del Norte, Horatio 3 Azimuth/inclination: LG Vein; Pad J-new Final depth [metres]: 277°/-55° Target/Location: UTM: E Drilling Company: Aggressive 29/08/2004 114.91 Date Commenced: E 467 985 Sampling: Date Completed: N 6 209 148 30/08/2004 Sampl. method: Dmd-s cut (split) Logging: Elevation)1265) K.M. Laboratory:

Sample Log

Sample No	Interval					Rec'y estimation	KI		
	From	To	Length	Description	Sulphides	Pomorka	1		
	[m]	[m]	fm1		[%]	Remarks	Recovery	Ass	says
DN0418-01	18.90	19.10	0.20	blk Arcillita L Oth O L i			[%]	Au	Ag
DN0418-02	39.60	40.25	0.20	dkay Silver	Py 3-5	Calcite zona		ppb [oz/t]	ppm [g/t]
DN0418-03	42 10	13 10	4.00	dkgy Silisione	Py 3-5		100	8	1.
DN0418-04	43 10	44.00	0.00	akgy Siltstone	Pv 3-5		100	4	1.
DN0418-05	44.00	44 70	0.90	Strong Calcite replacement in blk Seds			99	2	0.1
DN0418-06	47 40	47.65	0.70	bik Argilite, fractured/brecciated	Py 3-5		99	10	0.8
DN0418-07	53 45	52.60	0.25	okgyluffac Seds	Pv 3-5	Calcile zone	99	4	0.3
DN0418-08	53.60	54.60	0.15	Qtz vein in blk Tuffac Seds	IPv 5-7	Galcite zone	100	18	0.3
DN0418-09	54 60	54.00	1.00	blk Tuffac Seds + incip Qtz replmnts	Pv 1-3	Calcite zone	100	35	0.3
DN0418-10	59.95	60.45	0.25	Utz-Calcite rplment in Seds		Calcite zone	100	12	0.3
DN0418-11	60.00	60.70	0.50	racture zone or tectonic breccia in Seds			100	3	0.3
DN0418-12	76.00	09.70	0.50	tgrshFT	Pv 3-5 loc up to 10		100	12	18
DN0418-13	77.40	77.00	1.40	Redeposited Lapilli Tuff	Pv 3-5		100	20	13
DN0418-14	77.90	77.80	0.40[0	Qtz veins and rplmnts in FT	Py 3-5		100	2	0.3
DN0418-15	11.00	/8.55	0.75 F	Redeposited conglomerate loc brecciated	Py 3-5		100	10	0.0
DN0418-16	01.00	83.00	1.40 c	kgy Seds strongly fractured + some Qtz veins/rolr	nate		100	6	0.0
DN0418-17	03.00	83.45	0.45 F	ault Zone: fine-grained tectonic breccia. Otz rnlmr	Py + Marganita(2)		100	lost	ost
DN0418-18	03.45	84.10	0.65 T	ectonic breccia of Qtz veins/replmnts	i y Marcasite(?)	Sulfosalts(?)	100	12580	231
DN0418-10	04.10	84.60	0.50	Itz rplments in FLT(?), fractured	Py + Maragaile (2)	Sulfosalts(?)	100	16250	785
DN0418-20	04.00	85.90	1.30 d	kgyFLT, incip. Brecciation and Qtz rolmnts	y Marcasile(?)		100	580	38 8 129 21
DN0418-21	05.90	87.40	1.50 d	kgyFLT + thick Qtz rplmnts	Py 1-3 tr Co		100	375	89[8 1]
DN0418-22	87.40	88.90	1.50 d	kgyFLT + some Qtz veins	r y 1-5, u. Ga		100	340	0.0 [0.1]
DN0418-22	00.30	90.30	1.40 d	kgyFLT + some Qtz veins	and the second		100	165	4.0
DN0418-24	90.30	90.70	0.40 dl	<pre><gyflt +="" few="" pre="" qtz="" thin="" veins<=""></gyflt></pre>			100	80	5.5
DN0418-25	90.70	91.30	0.60 dl	<pre><gyflt +="" few="" pre="" qtz="" thin="" veins<=""></gyflt></pre>			100	13	1.4
DN0418-26	91.30	92.20	0.90 dl	kgyFLT + few thin Qtz veins			100	12	0.5
DN0418-27	92.20	93.70	1.50 dl	gyFLT + few thin Qtz veins			100	27	6.7
	93.10	95.20	1.50 dł	gyFLT + few thin Qtz veins			100	28	13
							100	520	1.6

Page 1 of 2

DN04-18 Sample Log

KM

Pioneer

Assay method:

Del Norte Project, 2004

Py 1-3, tr. Ga

Py 1-3, tr. Ga

Py 1-3, tr. Ga

Py 1-3, tr. Ga, Sph

Py 1-3

Py 1-3

Py 1-3

Py 3-5

reation Resources corporation	
Lateegra Resources Corporation	

95.20

96.70

98.20

99.70

101.20

102.70

104.20

108.65

114.45

Total length of sampled intervals:

EOH @ 114.91 m

DN0418-28

DN0418-29

DN0418-30

DN0418-31

DN0418-32

DN0418-33

DN0418-34

DN0418-35

DN0418-36

Locally (including some mineralized zones) rec'y lowered

96.70

98.20

99.70

101.20

102.70

104.20

105.20

110.11

114.91

34.17

1.50 dkgyFLT + few thin Qtz veins

1.50 dkgyFLT + few thin Qtz veins

1.50 dkgyFLT + few thin Qtz veins

1.00 dkgyFLT + some Qtz rpimnts

1.46 dkgyFLT & intervals of ltgrshFT

1.50 dkgyFLT + some thicker Qtz rplmnts

1.50 dkgyFLT + some thicker Qtz rplmnts

1.50 dkgyFLT + some thicker Qtz rplmnts

0.46 ItgrshFT/dkgyFLT + some Qtz rplmnts

Page 2 of 2

DN04-18 Sample Log

0.5

0.4

0.8

1.7

2.0

0.4

0.4

0.5

1.6

)

21

12

20

80

125

8

19

9

95

100

100

100

100

100

100

100

100

100

Del Norte Project, 2004

DN04-19 Sample Log

Drill hole DN-04-19

Teuton Resources Corporation

Lateegra Resources Corporation

					· · · · · · · · · · · · · · · · · · ·				
Property, clai	m:	Del Norte, Horatio 1	Azimuth/inclination:	070°/-85°	Drilling Company:	DriftWood			
Target/Locati	on:	LG Ext; Pad EX1	Final depth [metres]:	96.01	Date Commenced:	8/30/2004		Sampling:	AW
UTM:	E	467,775			Date Completed:	30/08/2004		Sampl. method:	Dmd-s cut (split)
	N	6,210,183			Logging:	AW		Laboratory:	Pioneer
	Elevation	1,285					-	Assay method:	
			Comments:		· · · · · · · · · · · · · · · · · · ·			Rec'y estimation	KM

Sample Log

	Interval		Description	Sulphides	Remarks	Recovery	Assa	ays
From	To	Length		[%]		[%]	Au	Ag
[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t]
26.20	26,40	0.20	dkgyFLTmm/ltcrFLT partly rplc'd by Qtz			90-100	240	15.5
26.84	26.95	0.11	Qtz-Limonite vein		1	100	23	2.3
83.90	84.10	0.20	Gouge graphitic + 5 cm Qtz vein			100	25	0.7
87.54	87.84	0.30	dkgyFLTmm, sheared with some gouge & Qtz rplr	mnts	exotic frags - bit chng	54-95	52	1.7
	From [m] 26.20 26.84 83.90 87.54	Interval From To [m] [m] 26.20 26.40 26.84 26.95 83.90 84.10 87.54 87.84	Interval From To Length [m] [m] [m] 26.20 26.40 0.20 26.84 26.95 0.11 83.90 84.10 0.20 87.54 87.84 0.30	Interval Description From To Length [m] [m] [m] 26.20 26.40 0.20 dkgyFLTmm/ltcrFLT partly rplc'd by Qtz 26.84 26.95 0.11 Qtz-Limonite vein 83.90 84.10 0.20 Gouge graphitic + 5 cm Qtz vein 87.54 87.84 0.30 dkgyFLTmm, sheared with some gouge & Qtz rpla	Interval Description Sulphides From To Length [%] [m] [m] [m] [%] 26.20 26.40 0.20 dkgyFLTmm/ltcrFLT partly rplc'd by Qtz 26.84 26.95 0.11 Qtz-Limonite vein 83.90 84.10 0.20 Gouge graphitic + 5 cm Qtz vein 87.54 87.84 0.30 dkgyFLTmm, sheared with some gouge & Qtz rplmnts	Interval Description Sulphides Remarks From To Length [%] [%] [m] [m] [m] [m] [%] 26.20 26.40 0.20 dkgyFLTmm//itcrFLT partly rplo'd by Qtz 26.84 26.95 0.11 Qtz-Limonite vein 83.90 84.10 0.20 Gouge graphitic + 5 cm Qtz vein 87.54 87.84 0.30 dkgyFLTmm, sheared with some gouge & Qtz rplmnts exotic frags - bit chng	IntervalDescriptionSulphidesRemarksRecoveryFromToLength[m][m][m][m][m][m]26.2026.400.2026.8426.950.11Qtz-Limonite vein90-10083.9084.100.2060uge graphitic + 5 cm Qtz vein10087.5487.840.30dkgyFLTmm, sheared with some gouge & Qtz rplmntsexotic frags - bit chng54-95	IntervalDescriptionSulphides [%]RemarksRecovery [%]AssurptionFromToLength[m][m][m][m][m][m]26.2026.400.2026.8426.950.11Qtz-Limonite vein10026.840.2083.9084.100.20Gouge graphitic + 5 cm Qtz vein10087.5487.840.30dkgyFLTmm, sheared with some gouge & Qtz rplmnts

Total length of sampled intervals: 0.81

EOH @ 71.02

Recovery: ratio of measured core length to driller's block distance (see separate sheet); [in square brackets values estimated for sampled sub-intervals]

Page 1 of 1

Teuton Resources Corporation

Lateegra Resources Corporation

Del Norte Project, 2004

.

Drill hole DN-04-20

Property, claim: Del Norte, Horatio 3 Target/Location: LG Vein; Pad E-new	Azimuth/inclination: 277°/-62.5° Final depth [metres]: 132.89	Drilling Company:	Aggressive	· · · · · · · · · · · · · · · · · · ·
UTM: E 467 985 N 6 209 148	102.03	Date Commenced:	30/08/2004 01/09/2004	Sampling: KM Sampl. method: Dmd-s cut (split)
Elevation 1235	Commente	Logging:	K.M.	Laboratory: Pioneer
Completer				hoody methou.

Sample Log

Sample Ne	1							[Rec y estimation	KN
Sample No	<u>-</u>	Interval		Description	Quality	This paper way to a successful statement in the statement of the second statement of the second statement of the			
	From	То	Length		Sulphides	Remarks	Recovery	Ass	avs
	[m]	[m]	[m]		[%]		[%]	Au	Aq
DN0420-01	117.65	117.76	0.11	probably shear zone in FT/FI T				ppb [oz/t]	ppm [oz/t] a/t
DN0420-02	117.76	118.20	0.44	intense Qtz rplmnt in FT/FI T		loose core material	98	650	1361100
DN0420-03	118.20	118.35	0.15	Fault gouge or shear zone in ET2	diss Py+Ga 3-5 (concentr along fr	act)	98	890	156 [12 0
DN0420-04	118.35	118.83	0.48	Strong Qtz replacements in FT, partly gauged		loose core material	98	1690	59 8 150 1
DN0420-05	118.83	119.19	0.36	Fault gouge, clavey slickensides + Otz brassia	Py 1-3, tr Ga		98	10250	332 (
DN0420-06	119.19	119.68	0.49	Qtz-Chalcedony breccia, blk comont	Py+Sph+Ga cement 3-4		98	34100	11941
DN0420-07	119.68	120.37	0.69	Qtz breccia to Qtz mimote	Ga+Sph+Sylfosalts 3-4	LG Vein	98	48900	1164.0
DN0420-08	120.37	121.13	0.76	Num Otz veins nitET irregul hvy fur	massive paches of Sph 5, Ga 3, P	y LG Vein	98	14520	1103.0
DN0420-09	121.13	122.20	1.07	Numerous Otz rolmats in ELT	dissPy 3-5, tr Ga, Sph		99	4280	73 0 156 0
DN0420-10	122.20	122.45	0.25	dkayFLT strongy slikepsided to course	Py 3-5, tr Ga, Sph		100	445	21 1 [10.5
DN0420-11	122.45	123.70	1.25	dkavFLT, minor FT	Py 1-3		100	460	1971161
DN0420-12	123.70	124.91	1.21	dkavELT with some this Otz vision	Py 1-3		100	320	0.7 [10.1
DN0420-13	124.91	125.66	0.75	strong Otz rolmats in ELT	Py 3-5, tr Ga, Sph tr-0.5		100	420	3.7 [10.1
DN0420-14	125.66	126.90	1.24	kavELT + few Otz veins	Py 3-5, Ga 1, tr Sph	1	100	3090	243.0
DN0420-15	126.90	127.09	0 19 5	Shear zone in Tuffae Sade	Py 3-5, tr Sph		100	2540	97140.0
DN0420-16	127.09	127.85	0.76	kovELT + few Otz voice	Py 5-7		100	2890	62.2 (50.4)
DN0420-17	127.85	128,45	0.60 0	kryELT + few Qtz veins	Py 3-5		100	2030	02.3 [32.1]
DN0420-18	128.45	128,95	0.50	trongly slikopsided diverting	Py 3-5		100	200	
DN0420-19	128.95	130.45	1 50 0	Ikov ELT with minor ET for Other	Py 3		100	200	16.9
DN0420-20	130.45	131,95	1 50 d	kov ELT with minor FT, few Qtz veins	Py 3-5, tr Sph, Ga		100		22.2
DN0420-21	131.95	132.89	0.94 d	kov ELT with minor FT, few Qtz veins	Py 3-5, tr Sph, Ga		100	100	20.0
DN0420-22	38 10	38.80	0.70	liekopeided his A rinn of F1, few Qtz veins	Py 3-5, tr Sph, Ga		100	115	2.7
N0420-23	41.35	41 45	0.10 5	lickensided bik Argillite + Calcite-Qtz veins	Py 1-3	Calcite	77	000	25.2
N0420-24	41.45	41.65	0.1015	lickensided bik Argillite + Calcite-Qtz veins	Py 1-3	Calcite	11	16	2.8
N0420-25	49 70	50.25	0.20 S	lickensided blk Argillite + Calcite-Qtz veins	Py 3-5	Calcite	100	4	0.3
N0420-26	50 35	50.55	0.65 0	tz vein/rplmnt in FT/FLT	Pv 1-3	Colorto	100	65	2.5
N0420-27	82.00	92.15	0.1010	ik Argillites, strgly fractured	Py loc up to 7-10		100	5	0.3
	02.00	02.10	0.15 d	kgy Siltstone, fractured	Pv 1-3	Coloito	100	105	0.3
						Calcite	100	7	0.3

DN04-20 Sample Log

Del Norte Project, 2004

DN04-20 Sample Log

DN0420-28	96 50	06 65	0.15	diverse Cittate and find					
DN0420-20	30.301	90.05	0.15[0	sitistone, tractured	Py 1-3	Calcite	100	12	03
DN0420-29	102.90	103.40	0.50 0	kgy Siltstone, fractured + few Qtz veins	Pv 1-3	Calcita	100		0.3
DN0420-30	103.40	103.90	0.50 c	kay Siltstone loc strongly slickensided loc Otz	Du 1 9		100	23	0.4
DN0420-31	105 20	105 30	0.10	kay Siltatona, los atronaly aliakan sideu, loc Q12	Fy 1-5	Argilic-Silica	100	33	0.9
DNI0420 22	105.20	100.00	0.1010	rkgy Sinstone, for strongly sinckensided, for Qtz	Py 1-3		100	53	2.6
DIN0420-32	105.30	106.90	1.60 0	kgy Siltstone, loc strongly slickensided, loc Qtz	Pv 1-3		100	22	2.0
DN0420-33	109.05	109.15	0.10b	lk Seds, loc fractured/brecciated, some Otz voing	Dy 1		100	22	0.5
DN0420-34	113.05	113 25	0.2015	Ik Sode loo frootured/breesisted, some Qtz vents	s Fy I		100	21	0.3
DNI0420.25	114 45	444.55	0.2010	in Seds, loc mactured/brecclated, some Qtz veins	SIPy 1		100	19	0.9
DN0420-35	114.40	114.55	0.10	lik Seds, loc fractured/brecciated, some Qtz veins	Py 1		100	25	0.0
DN0420-36	115.00	115.15	0.15lb	lk Seds, loc fractured/brecciated, some Otz veins	Dv 1.2		100	20	J.Z
DN0420-37	115 15	116 70	1 55 b	Ik Sede, log fractured/breesisted, some QL	5 F y 1-3		95	125	8.3
DNI0420 20	440.70	447.05	1.0010	in Seus, loc fractureu/brecciated, some Qtz veins	Py 1-3		95	72	1.8
DIN0420-38	116.70	117.65	0.95 5	Shear-slickenside zone in blk Seds, some Qtz	Pv 1		05	45	1.0
Total length of	f sampled in	tervals:	20.54		and the second second second second second		30	10+	3.9

EOH @ 132.89 m

Teuton Resources Corporation Lateegra Resources Corporation

Recovery: ratio of measured core length to driller's block distance (see separate sheet); [in square brackets values estimated for sampled sub-intervals]

Page 2 of 2

Teuton Resources Corporation

Lateegra Resources Corporation

Del Norte Project, 2004

e su come de

DN04-21 Sample Log

Drill hole DN-04-21

Property c	laim	Dol Norto Haratia 1	A minor the line alive at a set	00001 150				
Troperty, e		Der Norte, Horatio T	Azimuun/inclination:	2609-45	Drilling Company:	DriftWood		
Target/Loc	ation:	LG Ext; Pad EX2	Final depth [metres]:	65.23	Date Commenced:	30/08/2004	Samoling:	KM
		467,825	·		Date Completed:	31/08/2004	Sampl. method:	Dmd-s cut (split)
	Elevation	1 225			Logging:	K.M.	Laboratory:	Pioneer
L	Lievation	1,235	Commonter				Assay method:	
Sample Lo	a		Comments.				Rec'y estimation	KM

Sample Log

Sample No		Interval		Description	Sulphides	Domoska	Deservers	A	
	From	То	Lenath		rovi	Remarks	Recovery	Ass	ays
	ſml	[m]	[m]		[%]		[%]	Au	Ag
DN0421-01	2.60	4 00	1.40					ppb [oz/t]	ppm [oz/t]
DN0421-01	2.00	4.00	1.40	FLT?, slicilled, vyggy, rusty-wheatered	Py 3-5 (5-7)	subcrop?	98	1	0.4
DN0421-02	6.30	7.70	1.40	FL1?, silicified, vyggy, rusty-wheatered	Py 3-5 (5-7)	Low rec.v	89	15	10
DN0421-03	10.96	11.05	0.09	Qtz vein, brecciated texture	Py 1		96	5	0.5
DN0421-04	22.50	23.00	0.50	FT, incipient bxx + silicification penerative	Pv 1		100	2	0.5
DN0421-05	30.40	30.60	0.20	FT + lensoidail Py concentrations	Pv 3-5 (5-7)		100		0.4
DN0421-06	33.95	36.45	2.50	Fault Gauge?.		Van da andre andre	100	14	0.3
DN0421-07	36.45	37.75	1.30	Otz replments in FLT	Dv 2 5 (5 7)	very poor rec y	59°	/0	5
DN0421-08	37.75	38 70	0.95	dkavEl T + few Otz rolmote	Fy 3-3 (3-7)	Low rec,y	91	260	8.8
DN0421-09	38 70	39 70	1.00	dkovELT	Py 1-3	Low rec,y	91	90	26.3
DN0421-10	39.70	41.20	1.00		Py 1-3		94	18	0.6
DN0421-10		41.20	1.50		Py 1-3		100	28	0.3
DN0421-11	41.20	43.05	1.85	dkgyFLT	Py 1-3		100	12	07
DIN0421-12	43.05	43.45	0.40	Itgrsh FT	Py 1-3		100	60	0.3
DN0421-13	43.45	44.95	1.50	dkgyFLT	Pv 1-3		100	15	0.0
DN0421-14	57.00	57.25	0.25	FLT + incipient vuggy silica replacement	Py 1-3		100	10	0.3
DN0421-15	64.00	64.20	0.20	FLT + Qtz eplecments/veins	Py 1-3		100	0	0.3
Total length of	sampled ir	itervals:	15.04		11 9 1-0		1 100 1	10]	0.9
EOH @ 65.23									

Locally (including some mineralized zones) rec'y lowered

Del Norte Project, 2004

DN04-22 Sample Log

Drill hole DN-04-22

Property, c	laim:	Del Norte, Horatio 1	Azimuth/inclination:	260°/-65°	Drilling Company	DriftWood	· · · · · · · · · · · · · · · · · · ·	
Target/Loc	ation:	LG Ext; Pad EX2	TD @ [metres]	91.44	Date Commenced:	31/08/2004	Sampling	KM
UTM:	E	467,825			Date Completed:	01/09/2004	Sampl. method:	Dmd-s cut (solit)
	N	6,210,135			Logging:	K.M.	Laboratory:	Pioneer
L	Elevation	1,235	Commenter				 Assay method:	· · · · · · · · · · · · · · · · · · ·
Sample L	Na l		Comments:		· · · · · · · · · · · · · · · · · · ·		Rec'y estimation	KM

Sample Log

Sample No	L	Interval		Description	Sulphides	Remarks	Recovery	Ass	avs
	From	To	Length		[%]		[%]	Au	Aq
L	[m]	[m]	[m]					ppb [oz/t]	pom loz/tl
DN0422-01	6.45	6.95	0.50	Volcanicl, silicif (contact?)	Py 1-3		82	5	0 3
DN0422-02	9.15	9.35	0.20	Tuffac Seds bxx	Py 5-7		100	10	1.0
DN0422-03	25.62	26.62	1.00	FT + frags of Seds	Py 1-3, tr Apy	Calc alt'n	100	2	0.6
DN0422-04	29.32	30.48	1.16	Qtz rplments in FT/FLT	Py 1-3		100	28	0.0
DN0422-05	30.48	31.58	1.10	FT with rust-color intervals	Py 1-3	Calc/Sil impregn	100	16	0.0
DN0422-06	47.82	48.20	0.38	QtzVein + FT/FLT	Pv 1-3		100	4580	92.2
DN0422-07	48.20	48.83	0.63	Abund incip Qtz rplmnts in FLT	Py 1-3, tr-0,5 Sph, tr Ga		90		02.0
DN0422-08	48.83	49.33	0.50	FLT	Pv 1-3		08	32	2.4
DN0422-09	49.33	50.15	0.82	Qv + Qrplments in FLT	Pv 1-3		08	90	2.0
DN0422-10	50.15	50.95	0.80	FLT + mod Qrplments	Pv 1-3		08	130	Z.S
DN0422-11	52.80	53.20	0.40	FT + Qv	Pv 1-3	broken core	00	420	0.0
DN0422-12	53.86	54.86	1.00	FT/FLT + some Qv	Py 1-3 tr Any	BIOKEII COIE	99	420	1.0
DN0422-13	57.01	57.56	0.55	FT + some Qv	Py 1-3 tr Any		33	100	1.8
DN0422-14	57.56	57.91	0.35	Tuffac Seds + num Qrolments & v	Pv 3-5		94	305	2.5
DN0422-15	57.91	58.80	0.89	Qv/rplments in Tuffac Seds and/or FLT	Py 1-3	y poor (po 15%) rook	94	500	8.7
DN0422-16	58.80	59.80	1.00	FLT + few Qrolments	Pv 1-3	V poor (ca. 15%) rec y	[10-20]	000	20.4
DN0422-17	61.40	62.48	1.08	FLT + Orpiments	Py 1-3 tr Ca		[93]	460	4.8
DN0422-18	62.48	64.55	2.07	FLT + few Orplments	Py 1-3	· · · · · · · · · · · · · · · · · · ·	98	305	26.8
DN0422-19	64.55	66.68	2.13	FLT + rare Orpiments	 Dv 1-3		94	320	8.7
DN0422-20	70.00	71.60	1 60	ELT + few Orniments, gauges	Dy 1.2 tr Co		- 10	295	3.8
DN0422-21	74.28	74 58	0.30	FLT + Otz			99	50	0.9
DN0422-22	79.01	79.28	0.00	Fault gauge in Tuffac Seds	Py 1-3	broken core	100	9	0.3
DN0422-23	80.36	80.51	0.15	fault Gauge in ELT	Py1-3		100	14	0.8
DN0422-24	81 00	82.25	1.25		Fy 1-3		100	20	0.9
DN0422-25	82 25	83.00	0.75	ELT + fow QV	Py 1-3, tr Spn		100	54	1.6
DN0422-26	83.00	84.35	1 35		Py 1-3, tr Sph		100	80	2.6
DN0422-27	84 35	85.60	1.30		Py 1-3		100	90	1.4
	04.001	00.09	1.34]		IPy 1-3		100	80	7.0

Del Norte Project, 2004

DN04-22 Sample Log

DN0422-28	85.69	85.79	0.10 QV		Py 3-5, Sph -7, Ga 1-1.5		100	2630	782.0
DN0422-29	85.79	87.30	1.51 FLT + mod co	m_Qv/rpIments	Py 1-3 (3-5)		100	205	12.6
DN0422-30	87.30	88.80	1.50 FLT + mod co	m_Qv/rpIments	Py 1-3, tr-0.5 Sph		100	240	4.2
DN0422-31	88.80	90.30	1.50 FLT + Qv/rplm	ients	Py 1-3		100	18	1.4
Total longth of	f compled in	tonyola	20 10			and the second secon	-		

Total length of sampled intervals: 28.18 EOH @ 91.44 Locally (including some mineralized zones) rec'y lowered

Page 2 of 2

Del Norte Project, 2004

Drill hole DN-04-23

Property, c	laim:	Del Norte Horatio 1	Azimuth/inclination:	2608/ 728	[
Target/Loc	ation.	I G Ext: Pad EX2	Final dopth Imatraal	2007-72	Drilling Company:	DriftWood		
UTM.		167 825	i inal deput [metres]:	103.63	Date Commenced:	01/09/2004	Sampling:	KM
	N.	407,020		· · · · · · · · · · · · · · · · · · ·	Date Completed:	02/09/2004	Samol method:	Dmd-s cut (enlit)
	Elevation	1 235			Logging:	K.M.	Laboratory:	Pioneer
L	1		Comments:		l		 Assay method:	

Sample Log

				Comments:			· ·	Dealty action at	
Sample Log						TAL	······································	rec y estimation	KN
Sample No		Interval		Description	Sulphides	Remarks	Pacovary	1	
	From	To	Length		[%]	i terrarks	recovery	Assa	iys
	[m]	[m]	[m]		[,0]	· · · · ·	[70]	AU AU	Ag
DN0423-01	5.40	5.80	0.40	dkgy Tuffac Seds, silicified	Pv 1-3 tr Sph	Propyl altin zona	100		ppm [oz/t]
DN0423-02	9.40	9.80	0.40	dkgy redeposited(?) agg!omerate	Py ca. 3	Propyl alth 2016	100	9	0.3
DN0423-03	52.65	53.35	0.70	dkgyFLT + few Qtz veins	Py 1-3 tr Sph	riopyrait, ri zone	100	6	0.3
DN0423-04	53.35	54.85	1.50	same as above	Dy 1.3 tr Sph		100	16	4.8
DN0423-05	54.85	56.35	1.50	ItgrshFT/LT			100	18	2.7
DN0423-06	56.35	56.55	0.20	slickensided gouge (shear) with Otz veining	Dy 1.3 tr Co		100	12	0.7
DN0423-07	56.55	58.05	1.50	dkgyFLT + few Qtz veins	1 y 1-3, 11. Ga	Slickensides, tr. Ga	100	1410	2.8
DN0423-08	58.05	59.60	1.55	dkgyFLT + few Qtz veins	Dv 1-3		100	23	0.5
DN0423-09	59.60	60.01	0.41	slickensided zone in dkavFLT some Otz veins	Py 1-3		100	17	0.9
DN0423-10	60.01	60.24	0.23	Qtz replacement in FLT	Fy1-5		100	39	1.8
DN0423-11	60.24	61.75	1.51	dkavFLT	Dv 1.2	trags of Qtz breccia	100	240	1.9
DN0423-12	61.75	63.25	1.50	dkayFLT + few Otz veins	Dv1 2		100	24	1.3
DN0423-13	63.25	64.75	1.50	dkavELT	IFY 1-3		100	52	0.8
DN0423-14	67.00	67.50	0.50	dkavELT + few Otz veins	IP. 1-3		100	17	3.0
DN0423-15	70.00	70.50	0.50	dkay FLT	IPy 1-3		100	15	0.4
DN0423-16	70.50	72.00	1.50	dkay FLT	IFy 1-3		100	10	1.1
DN0423-17	72.00	73.50	1 50	dkov ELT	IPy 1-3		100	38	0.9
DN0423-18	73.50	75.00	1.50		Py 1-3		100	17	1.1
DN0423-19	75.00	75.90	0.90	dkay FLT	Py 1-3		100	15	1.5
DN0423-20	75.90	76.70	0.80	dkay FLT slickensided + numerous Otausias	IPy 1-3		100	51	2.1
DN0423-21	76,70	78.20	1 50	tarshET/LT + some Ota voice/minerous Qtz veins	Py 1-3, tr. Ga	tr. Ga	100	480	6.2
DN0423-22	78 20	79.35	1 15	torebET/LT + some Qtz veins/rpimnts	Py 1-3, tr. Ga		100	245	1.9
DN0423-23	79.35	81 55	2 20	strongly fractured ELT Foult serves + O	Py 1-3, Apy 1, tr. Sph		100	135	1.6
DN0423-24	81.55	82 73	1 19	strongly sheared dravELT same On	Py 3-5, tr. Sph, Ga	tr. Sph, Ga	99	605	8.7
DN0423-25	82.73	83 20	0 47 9	Slickenside/fault zono in dkouff T and Oi	Py 1-3, tr. Ga		99	110	5.3
DN0423-26	83.20	84.80	1 60 1	ble Argilite/Sieltetene	Py 3-5, tr. Sulfosalts(?)		99	185	4.9
DN0423-27	84 80	85 10	0 3010	Diz replacement/voine in http://www.			99	61	6.2
		00.101	0.50	atz reprocentent/veins in Dik Seds	IPy 3-5, tr. Sulfosalts(?)		99	160	6.6

DN04-23 Sample Log

Del Norte Project, 2004

DN04-23 Sample Log

DN0423-28	85.10	85.70	0.60	slicksd contact FT/bkARG, num Qveins/rplmnts	Py 3-5		99	240	4.7
DN0423-29	85.70	87.20	1.50	dkgyFLT/ltgrshFT, loc Qtz-Carbonate vlets	Py 1-3, tr. Apy	Calcite veining	100	90	3.5
DN0423-30	87.20	88.70	1.50	dkgyFLT/ltgrshFT, loc Qtz-Carbonate vlets	Py 1-3, tr. Apy	Calcite veining	100	220	4.4
DN0423-31	88.70	90.20	1.50	dkgyFLT/ltgrshFT, loc Qtz-Carbonate vlets	Py 1-3, tr. Apy	Calcite veining	100	135	2.1
DN0423-32	90.20	91.40	1.20	dkgyFLT/ltgrshFT, loc Qtz-Carbonate vlets	Py 1-3, tr. Apy	Calcite veining	100	75	0.8
DN0423-33	91.40	93.00	1.60	dkgyFLT with intervals of ItgrshFT	Py 1-3, loc 3-5	Carbonate alt'n	100	130	2,5
DN0423-34	93.00	94.50	1.50	dkgyFLT with intervals of ltgrshFT	Py 1-3, loc 3-5	Carbonate alt'n	100	23	1.3
DN0423-35	94.50	96.02	1.52	dkgyFLT with intervals of ItgrshFT	Py 1-3, loc 3-5	Carbonate alt'n	78	95	6.2
DN0423-36	96.02	97.57	1.55	Fault breccia of blk Argill & FLT + some Qtz veins	diss Py 3-5		78	260	19.9
DN0423-37	97.57	99.50	1.93	ltgrshFT	Py 1-3		88	37	2.0
DN0423-38	99.50	101.10	1.60	Fault/slickenside zone in FLT, num Qtz veins	Py 1-3, tr. Sulfosalts	fault, tr. Sulfosalts	92	1410	29.7
DN0423-39	101.10	102.35	1.25	dkgyFLT	Py 1-3		100	18	0.8
DN0423-40a	102.35	103.60		ltgrshFT	Py 1-3	pervasive Calcite		28	0.3
DN0423-40b	102.35	103.60	1.25			sample split in two	100	21	0.5

Total length of sampled intervals: 47.00 EOH @ 103.63

Locally (including some mineralized zones) rec'y lowered

Del Norte Project, 2004

.....

Drill hole DN-04-24

Sample Log			i	Comments:			······································	Rec'v estimation	
				Commenter				Accou method	
L	Elevation	1284	1291				K.M.	Laboratory:	Pioneer
		0 209 109	0209171	·		Logoing:	02/03/2004	Sampi, method:	Dmd-s cut (split)
1	N	6 200 160	6 000 474			Date Completed:	02/00/2004	Completing.	
UIM:	IE I	467 893	467 897	· · · · · · · · · · · · · · · · · · ·		Date Commenced:	01/09/2004	Sampling:	KAA
TargevLocati	ion:	LG Vein; P	ad D	Final depth [metres]:	96.62	Date Commenced	Aggressive		
Taract/ conti	0.01	LONGICO,	CIUESUS I	Azimuth/inclination:	080%-55%	Drilling Company:	A		
Property, clai	m:	Del Norte	Croesus 1	Azimuth/inclination	00001 550				

Sample Log

								nec y estimation.	KN
Sample No		Interval		Description					
	From	То	Length	Doochphon	Sulphides	Remarks	Recovery	Assa	/S
	[m]	[m]	(m)	1 .	[%]		[%]	Au	Aq
DN0424-01	30.35	31.45	1.10	dkavFLT + thin Qtz veins	Dud o			ppb [oz/t]	ppm [oz/t]
DN0424-02	34.79	35.10	0.31	Qtz-Carbonate vein	Py 1-3	Calcite	97	17	0.3
DN0424-03	35.10	35.70	0.60	dkavFLT + few Otz vlets	Py < 1	Calcite	96	10	0.0
DN0424-04	44.40	44.90	0.50	dkgvFLT + few_Otz viets		Calcite	96	9	0.3
DN0424-05	49.55	49.80	0.25	Fracture zone in ItarshET + Otz-Calcite vision	IPY I		100	25	0.3
DN0424-06	49.80	50.85	1.05	litregular Otz rolmots in dkovELT		Calcite, rust color	100	40	2.1
DN0424-07	50.85	52.05	1.20	dkayELT sheared some this Otz viota/ralments	Py 1-3		100	140	14 4
DN0424-08	52.05	53.55	1.50	dkovEl T sheared some thin Qtz viets/plinnts	Py 1-3		100	65	22
DN0424-09	53.55	54.75	1.20	dkgvELT sheared, some thin Qtz viets/pirmits	Py 1-3		100	28	0.6
DN0424-10	54.75	55,60	0.85	felsic (2) anhanitic duke	Py 1-3		100	9	0.0
DN0424-11	55.60	57.00	1.40	dkavELT + few Otz veins/ralmatio	Py 1-3	Propylitic alt'n	100	12	0.3
DN0424-12	57.00	58.30	1 30	dkovELT + few Otz veins/relimits	IPy 1-3		100	7	0.3
DN0424-13	58.30	59.05	0.75	bk Tuffac Seds stratu fractured incir Of	Py 1-3		100	18	0.5
DN0424-14	59.05	60.55	1.50	bk Tuffac Seds, stroly fractured, incip Qtz rpimnts	Py 1-3		100		0.5
DN0424-15	60.55	62.00	1.00	dkryELT with numerous this Other L	Py 1-3		100	25	0.3
DN0424-16	62.00	63 50	1 50	dkgyFLT with numerous thin Qtz rpimnts	Py 1-3		100	12	0.0
DN0424-17	63.50	65 15	1.50	dkgyr E'r war namerous triin Qtz rpimnts	Py 1-3		100	23	0.3
DN0424-18	65 15	66 60	1.05	dkgyf i dkgyfi T t faw this Ot-	Py 1-3		100	16	0.7
DN0424-19	66.60	68 15	1.45	dkgyFLT + iew trin Qtz rpimnts	Py 1-3	loc Calcite veins	100	35	0.5
DN0424-20	68 15	69.80	1.00	dkgyrLT + numerous min Qtz rpimnts	Py 1-3		100		0.9
DN0424-21	69.80	71.65	1.03	dkgyFLT + lew thin Qtz rpimnts	Py 1-3		100		2.0
DN0424-22	71.65	72.75	1.00	dkgyrL1 + some thin Qtz rpimnts	Py 1-3		100	205	3.1
DN0424-23	72 75	73 201	0.45	akgy Congiomerate of bik Seds, incip Qtz veining	Py 1-3, tr. Ga		97	203	3.8
DN0424-24	73.20	74 70	1 50	Fault Dreccia of Dik Seds + Qtz veins	Py 1-3, tr. Ga, Sph, Sulfosalts(?)	LG Vein cut off	03	710	1.2
DN0424-25	74 70	75.90	1.50	ork Argilitte, some slickensides, fractures, Qtz v	Py 3-5, tr. Ga, Sph		03	110	82.2
DN0424-26	75.80	76.00	1.101	DIK Argilite	Py 3-5, tr. Ga, Sph		96	110	16.9
DN0424-27	76 20	76.20	0.40	edeposited FLT, (Tuffac Seds), incip Qtz v			100	30	1.8
DN0424-28	88.40	88.55	0.25	bik Argillite, some slickensides, fractures, Qtz v	Py 1-3	Calcite	100		1.5
Total length of	sampled int	00.00	0.15[0	Dik Seus, triin Calcite veins		Calcite	100		5.5
rotarionyuroi	sampled inti	ervais:	21.11			1	100		2.0

Page 1 of 1

DN04-24 Sample Log

Del Norte Project, 2004

 $\sigma_{\rm const} = 1$

DN04-25 Sample Log

Drill hole DN-04-25

Property, claim:	Del Norte, Horatio 1	Azimuth/inclination:	270°/-50°	Drilling Company	DriftWood		
Target/Location:	LG Ext; Pad EX3	Final depth [metres]:	70.41	Date Commenced:	9/2/2004	Sampling:	KM
UTM: E	467,855			Date Completed:	02/09/2004	Sampl, method:	Dmd-s cut (solit)
N	6,210,040			Logging:	K.M.	Laboratory:	Pioneer
Elevati	on 1,170				1	Assay method:	
		Comments:				Rec'y estimation	KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Ass	avs
	From	To	Length		[%]		[%]	Au I	Aq
	[m]	[m]	[m]			· · ·		ppb [oz/t]	ppm [oz/t]
DN0425-01	12.40	12.51	0.11	Fault/Slickenside zone in FLT	Py 1-3		100	245	0.5
DN0425-02	26.65	26.80	0.15	ItgyFT + some Qtz veins	Py~1, Sph<0.5		100	720	6.6
DN0425-03	30,15	30.30	0.15	ItgyFT + some Qtz veins/rpimnts	Py 1		100	12	20
DN0425-04	31.00	31.40	0.40	ItgyFT + some Qtz veins	Py 1		100	3	0.9
DN0425-05	35.05	35.40	0.35	dkgyFLT, sheared, some Qtz veins	Py 1-3, tr Ga, Sph		100	310	16.0
DN0425-06	35.40	36.60	1.20	ItgrshFT, incip Qtz rplmnts	Py 1-3		100	205	31
DN0425-07	36.60	36.90	0.30	Qtz vein/rplment @ ca 45 rca	Py 3-5, Sph ~7, Ga 3-5, Slfs		100	7560	137.0
DN0425-08	36.90	38.30	1.40	dkgyFLT/ltrgshFT, loc incip Qtz rplmnts	Py 1-3		96	210	1.9
DN0425-09	38.30	40.10	1.80	dkgyFLT/ltrgshFT, loc incip Qtz rplmnts	Py 1-3		88	21	0.8
DN0425-10	40.10	41.70	1.60	dkgyFLT/ltrgshFT, loc incip Qtz rplmnts	Py 1-3		93	105	1.2
DN0425-11	41.70	42.05	0.35	dkgyFLT/ltrgshFT, loc incip Qtz rplmnts	Py 1-3	·····	97	125	3.7
DN0425-12	42.05	43.25	1.20	dkgyFLT/ltrgshFT, loc incip Qtz rplmnts, slicker	nsda Pý 1-3		97	240	11
DN0425-13	43.25	43.89	0.64	dkgyFLT + some Qtz rplmnts	Pý 1-3		97	150	2.4
DN0425-14	43.89	46.94	3.05	FLT, FT, Qtz		Extrem poor rec'y	SERVER 9 - THE P	280	4.8
DN0425-15	46.94	48.10	1.16	dkgyFLT + numerous Qtz rplmnts	Py 1-3, tr. Sph	Poor rec'v	82	360	22.2
DN0425-16	48.10	48.75	0.65	ItgrshFT + few Qtz veins	Py 1-3		82	1420	19.1
DN0425-17	48.75	50.00	1.25	dkgyFLT, moder sheared	Py 1-3		83	445	4.2
DN0425-18	53.50	53.60	0.10	dkgyFLT, moder sheared	Py 1-3		100	2	0.7
DN0425-19	54.75	54.90	0.15	dkgyFLT, moder sheared, some Qtz veins	IPy 1-3		100	365	2.6
DN0425-20	56.10	56.45	0.35	dkgyFLT, moder sheared	Py 1-3		100	8	0.8
DN0425-21	56.45	57.35	0.90	dkgyFLT, moder sheared	Py 1-3		100	12	0.7
DN0425-22	57.35	57.65	0.30	dkgyFLT, moder sheared	Pv 1-3		100	3	0.7
DN0425-23	59.45	59.90	0.45	dkgyFLT, moder sheared	Pv 1-3		100	2	0.3
DN0425-24	60.50	60.65	0.15	dkgyFLT, moder sheared	Pv 1-3		100		0.3
DN0425-25	60.65	61.30	0.65	dkgyFLT, moder sheared	Pv 1-3		96	24	0.6
DN0425-26	61.30	61.60	0.30	dkgyFLT, moder sheared	Pv 1-3		96	4	0.0
DN0425-27	61.60	62.65	1.05	dkgyFLT, moder sheared	Pv 1-3		1901	14	0.5
DN0425-28	63.20	64.31	1.11	FLT, FT(?), Qtz		Extrem poor rec'v	125-30	7	0.5
DN0425-29	64.90	65.20	0.30	dkgyFLT/ltFT, some Qtz rplmnts	Py 1-3		1 100 1	5	0.6
Total length of	sampled in	tervals:	21.57		an ang ang ang ang ang ang ang ang ang a		<u>at a ser </u>		
EOH @ 70.41									

Page 1 of 1

Del Norte Project, 2004

Drill hole DN-04-26

Property, cla	im:	Del Norte,	, Horatio 1	Azimuth/inclination: 080°/-70°	Drilling Company:			··········	
Target/Local	tion:	LG Vein; I	Pad D	Final depth [metres]: 124.05	Date Commoncod:	Aggressive			·
UTM:	E	467 893	467 897		Date Completed:	02/09/2004	•	Sampling:	KN
1	N	6 209 169	6 209 171		Date Completed:	04/09/2004		Sampl. method:	Dmd-s cut (split
	Elevation	1284	1291		Logging:	K.M.		Laboratory:	Pionee
Sample Log	<u></u>	1	1 1201	Comments:				Assay method:	
Comale No.								Rec'y estimation	KN
Sample No		Interval		Description	Sulphides	Remarks I	Recovery	And	2010
	-riom	10	Length		[%]		[%]	Δ11	
DN0426.01		[11]					[,0]	nph loz/tl	
DN0426-01	52.90	53.90	1.00	dkgy FLT + Tuffac Seds, some thin Qtz veins	IPy 1-3	Calcite	100	7	
DN0426-02	53.90	54.03	0.13	dkgy FLT, some thin Qtz veins	Py 1-3	- Galoito	100	FC	0.0
DN0426-03	54.03	55.50	1.47	ItgrshFT, loc incip Qtz rplmnts	Py 3		100	30	1.6
DN0426-04	55.50	55.70	0.20	numerous Qtz rpimnts along contact FLT/FT	Pý 1-3		100	<u> </u>	1.0
DN0426-05	57.57	57.82	0.25	dkgyFLT/Tuffac Seds + some Qtz rplmnts	IPV 1-3		100	500	S.C
DN0426-06	59.25	59.60	0.35	ItgrshFT, loc Qtz veins	Py 1-3 tr Any		100	220	0.9
DN0426-07	60.30	60.60	0.30	ItgrshFT, loc Qtz veins	Py 1-3 tr Any		100	10	0.3
DN0426-08	65.40	65.75	0.35	Qtz vein, white massive	Py 1-3 tr Ga		100	85	0.3
DN0426-09	65.75	67.25	1.50	ItgrshFT-dkgyFLT, num thin Otz renimpts	1.91-0, 11. 08		98	170	8.3
DN0426-10	76.95	77.20	0.25	Idkgy Tuffac Seds + Otz			99	31	1.2
DN0426-11	79.85	80.40	0.55	ItgrshFT, sheared, loc incip Otz rolmats		strgly broken core	:100	12	0.3
DN0426-12	85.20	85.90	0.70	dkgvFLT, loc sme thin Otz rolmats	Dy 1 2		100	7	0.3
DN0426-13	87.25	87.75	0.50	dkgyFLT, loc sme thin Otz rolmots	Dy 1 2		100	10	0.5
DN0426-14	88.60	88.76	0.16	Otz vein white massive	IFy 1-3		100	23	0.3
DN0426-15	89.80	90.30	0.50	dkgvFLT_distinct_shearing_some_Otz_rolmoto	Du 1 2		100	58	2.7
DN0426-16	92.40	92.65	0.25	dkgyFLT, distinct shearing, some Qtz rolmits			100	265	4.8
DN0426-17	95.55	96 45	0.90	dkovELT_distinct shearing, some Qtz minnts	IFy 1-5		100	490	2.6
DN0426-18	96.45	97 77	1 32	relatively strong Otz rolmate offer ELT	Py 1-3		100	90	2.0
DN0426-19	97.77	98.07	0.30	Very strong Otz rolmate	Py1-3		100	95	2.5
DN0426-20	98.07	98 75	0.68	dkov Tuffac Sade + some Otz rolmate & using	Py 1-3, Sph 7, Ga 2-3	Ga, Sph	100	6340	1886.0
DN0426-21	100 55	102.30	1 75	dkgy funde deus i some diz rpinnits & veins			100	675	16.0
DN0426-22	102.30	102.50	0.21	arona Ota animate files File	Py 1-3		100	43	1.6
DN0426-23	102.00	102.01	0.31	Strong QLZ rpinnt after FL1	Py 1-3, tr. Sph, Ga		100	210	23
DN0426-24	102.01	104.10	1.49	ukgyFL1, sneared, moder Qtz rplmnts	Py 1-3, tr. Sph, Ga		100	35	84
DN0426-24	104.10	105.20	1.10	akgyFL1, sheared, moder Qtz rplmnts	Py 1-3, tr. Sph, Ga		100	14	13
DN0420-20	105.20	106.10	0.90	SkgyFL1, sheared, moder Qtz rplmnts	Py 1-3, tr. Sph, Ga		100	30	1.0
DN0420-20	100.10	106.57	0.47	tgrshF1 + numerous Qtz rplmnts	Py 1-3		100	50	1.4
DN0420-27	106.57	106.78	0.21	Jtz preccia with fine blk cement	Py 3-5, Ga+Sulfosalts 5-7	LG Breccia	100	8510	1025.0
DN0420-28	100.78	107.03	0.25	-auit gouge, muddy	Py 1-5	Fault	100	180	1923.0
DN0420-29	107.03	108.53	1.50	DIK Argillite + thin Qtz veins/vlets	Py 1-5		100	105	9.0
Tatal land	111.20	111.35	0.15 1	JIK Argillite + thin Qtz veins/vlets	Py 1-5		100	20	10.2
I otal length of	r sampled in	tervals:	19 79				100	20	2.9

Page 1 of 1

DN04-26 Sample Log

• -

Teuton Resources Corporation Lateegra Resources Corporation

Del Norte Project, 2004

DN04-27 Sample Log

Drill hole DN-04-27

Property, cla	im:	Del Norte,	, Horatio 1	Azimuth/inclination: 270°/-70°	Drilling Company	DriftMaad		r	
Target/Loca	tion:	LG Ext; Pa	ad EX3	Final depth [metres]: 138.68	Date Commenced:	02/00/2004		Constinue	
UTM:	E	467,855	,		Date Completed:	02/09/2004	1. A.	Sampling:	KN
	N	6,210,040			l ogging:	03/09/2004		Sampi, method: I	Jmd-s cut (split
	Elevation	1,170				N.IVI.		Laboratory:	Pionee
				Comments:	L			Assay method:	
Sample Log	1						····	Rec y estimation	KN
Sample No		Interval		Description	Sulphides	Remarks	Pergyany	1	
	From	To	Length		[%]	Remarks	recovery	Assa	ays
	[m]	[m]	[m]		[,0]		[70]	AU pob (a=/#]	Ag
DN0427-01	4.10	4.50	0.40	dkgyFLT, moder silicified	Py 1		The second second		ppm [oz/t]
DN0427-02	6.45	6.70	0.25	Intermediate Tuff	Py 1		[39]	3	0.3
DN0427-03	17.10	17.40	0.30	Intermediate-to-felsic volcaniclastic. Otz-calc veins		Duch marks October	99	1	0.3
DN0427-04	18.55	18.90	0.35	Intermediate-to-felsic volcaniclastic, Otz-calc veins		Rusty zone, Calcite	100	10	0.3
DN0427-05	31.50	31.80	0.30	Intermediate-to-felsic volcaniclastic, Qtz-calc voins		Calcile	[95]	2	0.4
DN0427-06	48.75	49.35	0.60	Intermediate-to-felsic volcaniclastic, Qtz colo voins		Calcite	100	1	0.3
DN0427-07	56.00	56.45	0.00	mdgyELT zones of silicification. Otz voialeta	Dud 2 to Cat		100	12	0.3
DN0427-08	61.95	62.35	0.40	ELT/FT	Fy 1-3, tr. Spn		100	510	12.3
DN0427-09	63.25	63 75	0.50	FLT/FT some slickensides	P 1-3		100	9	0.8
DN0427-10	63,75	64 15	0.00	dkovELT + nume Otz mimete	Py 1-3		[85]	27	0.3
DN0427-11	64.15	65.50	1.35	FI T	Py 1		[85]	28	4.2
DN0427-12	67.47	67.67	0.20	incin Otz might in Tuffon Soda	Py 1-3	broken core	85	23	0.4
DN0427-13	74.60	75 10	0.20	ELT/ET la de alle l'écelles	Py 1		100	10	0.8
DN0427-14	74.00	75.10	0.50	Obsusing in FLT	Py 1-3		100	38	0.8
DN0427-15	75.10	77.00	0.30				100	33	0.5
DN0427-16	77.00	77.75	0.75	FL1, SIICKESIDES	Py 1-3		100	31	0.3
DN0427-17	77.75	77.00	0.75	akgyFL1 with some Qtz rpimnts	Py 1-3		100	26	0.8
DN0427-18	77.06	70.05	0.21				100	18	0.3
DN0427-10	70.25	19.25	1.29	FLT/FT + few Qtz rplmnts	Py 1-3		100	23	1.5
DN0427-13	90.75	00.75	1.50	FL1/F1 + few Qtz rpimnts	Py 1-3		100	220	1.9
DN0427-20	00.75	81.75	1.00	FL1/F1 + few Qtz rpimnts	Py 1-3		98	20	0.5
DN0427-21	01.75	82.25	0.50	dkgyFLT + moder Qtz rpimnts	Py 1-3		98	40	0.8
DN0427-22	82.25	83.80	1.55	FT/FLT/Tuffac Seds	Py 1-3		98	12	0.6
DN0427-23	83.80	84.88	1.08	dkgyFLT, few thin Qtz veins	Ру 1-3		99	32	1.4
DN0427-24	04.88	86.60	1./2	akgyFL1, tew thin Qtz veins	Py 1-3		99	26	1.2
JN0427-25	92.15	93.05	0.90	dkgyFILT, thin Qtz veins	Py 1-3		99	225	17.6
JNU427-26	94.30	94.50	0.20	Qtz rplmnt in FT	Py 1-3, tr Sph		100	80	52
JNU427-27	94.50	96.05	1.55	FT, massive	Py 3-5		99	16	12

Del Norte Project, 2004

Teuton Resources Corporation Lateegra Resources Corporation

DN04-27 Sample Log

								= = Pro 20;
DN0427-28	96.05	96.30	0.25 FT strongly fractured	Py 1-3, tr. Sph		100	10	
DN0427-29	97.00	98.40	1.40 dkgy FLT, loc some Qtz veins/rplmnts	Py 1-3, tr. Apy		- 100	70	1.3
DN0427-30	98.40	99.40	1.00 dkgy FLT, loc some Qtz veins/rplmnts	Py 1-3, tr. Apy		92	70	1.6
DN0427-31	104.05	104.98	0.93 dkgy FLT, loc some Qtz veins/rplmnts	Pv 1-3		90	21	1.1
DN0427-32	109.00	109.50	0.50 dkgyFLT mod sheared, loc silica flood	Py 1-3 tr Sph Ga	and the second se	100	20	0.4
DN0427-33	109.50	111.60	2.10 dkgyFLT mod sheared, loc silica flood	Py 1-3 tr Sph. Ga		100	9	0.5
DN0427-34	111.60	112.25	0.65 Fracture zone in FLT, some Otz rolmots	Dy 1.3		99	5	0.3
DN0427-35	112.25	114.00	1.75 dkgvFLT	Dy 1 2	Droken core	95	90	1
DN0427-36	114.00	114.30	0.30 gouge (fault?)	Dy 1 2		95	28	0.6
DN0427-37	114.30	115.35	1.05 dkgvFt T + few incip Otz rolmots	Dy 1-3		95	14	1
DN0427-38	115.35	116.40	1.05 Tuffac Seds, fractured	Fy 1-3		90	16	0.5
DN0427-39	116 40	117.35	0.95 Gourse zone in Tuffac Sode, some Ota from	Py 1-3		90	12	1.7
DN0427-40	117 35	118.05	0.70 dkg/ELT with some Ota mimate			90	6	1.3
DN0427-40	119.05	120.00	2.25 dkout to allow the old pinnits	Py 3		95	3	0.5
DN0427-41	120.40	120.40		Py 1-3		95	35	13
DN0427-42	120.40	122.40	2.05 PL 1/F 1/Qtz		broken core	[50]	205	5
UN0427-43	122.45	122.75	0.30 dkgy Qtz Breccia, slickensides	Py 1-3, tr. Ga	straly broken core	501-25	950	42.2
DN0427-44	122.75	123.80	1.05 dkgyFLT + thin Qtz rplmnts	Py 1-3		66	120	
DN0427-45	127.20	127.90	0.70 FLT/FT, incip Qtz rplmnts localy	Py 1-3		100	20	0.3
DN0427-46	129.55	129.85	0.30 FLT/FT, incip Qtz rplmnts localy	Py 1-3		100		0.3
DN0427-47	134.30	134.85	0.55 dkgyFLT with some Qtz rplmnts	Pv 1-3		100	<u>0</u>	0.4
DN0427-48	134.85	135.50	0.65 dkgyFLT with some Qtz rplmnts	Pv 1-3		100		0.6
DN0427-49	136.65	136.80	0.15 dkgyFLT with some Qtz rplmnts	Pv 1-3		100		0.6
Total length of	f sampled inl	tervals:	40.88				25]	0.6

EOH @ 138.68

1 - numerous thin intervals of Qtz veining are usually associated with Ithological contacts and zones of frag's streching/shearing 2 - rec'y usually considerably lowered in Qtz veining intervals due to fracturing of the rock

Del Norte Project, 2004

DN04-28 Sample Log

Drill hole DN-04-28

Target/Location: LG Vein,	e, Horatio 3 Azimuth/inclination: Pad "D" Final depth [metres]:	080°/-80° 163.37	Drilling Company:	Aggressive		
N 6 209 169	3 467 897 9 6 209 171		Date Completed:	04/09/2004	Samplir Sampl.	ng: Al method: Dmd-s cut (spl
Elevation 1284	4 1291		Lugging.	AW	Laborat	ory: Pione
	Comments:	······································			Assay n	nethod:

Sample Log

Sample LUg								Recy estimation:	KN
Sample No		Interval		Description	Quiphida	No. of Concession, Name of Con			
	From	То	Length]	Suprides	Remarks	Recovery	Ass	ays
	[m]	[m]	[m]		[70]		[%]	Au	Ag
DN0428-01	48.10	48.80	0.70	F-I aphanitic rock, silicified	Pyblobs		-	ppb [oz/t]	ppm [oz/t] g/t
DN0428-02	59.95	61.20	1.25	dkgyFLTmm + 5-10% Qtz rolmnts	i y blebs	A REAL PROPERTY AND A REAL	100	6	0.3
DN0428-03	105.77	106.30	0.53	dkgyF-ILTmm, 10-15% Otz veins and rolmots		a di kawa sa kana sa kata sa kata kata kata kata kata ka	100	460	7.8
DN0428-04	112.10	112.17	0.07	Qtz vein @ 80 rca	Sabi Oa - 1 00/		100	320	4.9
DN0428-05	116.70	117.50	0.80	dkgyF-ILTmm, 25-30% Otz rolgants	Spri+Ga = 1-2%		100	1690	125.0
DN0428-06	142.00	143.50	1.50	dkgvF-ILTmm 10-15% irreg Otz veing and releasts			100	12	0.8
DN0428-07	143.50	145.00	1.50	dkgyF-ILTmm, 10-15% irreg Otz veins and rpimitis			100	305	2.2
DN0428-08	145.00	146.50	1.50	dkgyF-ILTmm, 10-15% irreg Otz veins and rolmnts			100	25	0.4
DN0428-09	146.50	148.00	1.50	dkgyF-ILTmm, 10-15% irreg Otz veins and rolmnts			100	8	0.8
DN0428-10	148.00	149.50	1.50	dkgyF-ILTmm, 10-15% irreg Qtz veins and rolmats			100	5	0.7
DN0428-11	149.50	151.00	1.50	dkgyF-ILTmm, 10-15% irreg Qtz veins and rolmnts			100	17	0.9
DN0428-12	151.00	152.50	1.50	dkgyF-ILTmm, 10-15% irreg Qtz veins and rolmnts			100	70	2.0
DN0428-13	152.50	154.00	1.50	dkgyF-ILTmm, 10-15% irreg Qtz veins and rolmnts			100	105	0.4
DN0428-14	154.00	155.50	1.50	dkgyF-ILTmm, 10-15% irreg Qtz veins and rolmnts			100	19	1.5
DN0428-15	155.50	157.00	1.50	dkgyF-ILTmm, 10-15% irreg Qtz veins and rolmnts			100	6	0.6
DN0428-16	157.00	159.10	2.10	dkgyF-ILTmm, 10-15% irreg Qtz veins and rolmnts			100	5	0.6
DN0428-17	159.10	161.30	2.20	dkgyF-ILTmm, 20-25% Qtz			100	180	2.6
DN0428-18	161.30		0.20	Qtz vein @ 40 rca (upper contact)			100	205	16.7
DINU428-19	161.50	163.37	1.87	Fault gouge , minor Qtz veining		LG vein	100	4050	106.0
I otal length of	sampled in	tervals:	24.72				100	1840	57.2

EOH @ 163.37

Del Norte Project, 2004

DN04-29 Sample Log

Drill hole DN-04-29

Property, cla	im:	Del Norte, Croesus	1 Azimuth/inclination:	257°/-51°	Drilling Company:	Aggressive		
Target/Locat	ion:	LG Vein; Pad K	Final depth [metres]:	82.60	Date Commenced:	06/09/2004	Sampling:	KM
UTM:	E	467 991			Date Completed:	07/09/2004	Sampl. method:	Dmd-s cut (split)
	N	6 209 048			Logging:	K.M.	Laboratory:	Pioneer
	Elevation	1255					 Assay method:	
			Comments:				Rec'y estimation	KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Ass	ays
	From	To	Length	1	[%]		[%]	Au	Ag
	[m]	[m]	[m]	han takan sa takan sa				ppb [oz/t]	ppm [oz/t]
DN0429-01	12.60	12.90	0.30	slicksd-gouge zone in blkArg with some Qtz veins	Py 1-3, tr Sph	*****		35	2.3
DN0429-02	20.40	20.55	0.15	slicksd-gouge zone in blkArg with some Qtz veins	Py 1-3			12	2.7
DN0429-03	28.00	28.20	0.20	Calcite-Qtz veins	Py~1			1	0.3
DN0429-04	31.00	31.15	0.15	slicksd-gouge zone in blkArg with some Qtz veins	Py 1-3, tr Sph			4	1.5
DN0429-05	37.50	37.60	0.10	concentr of syngenetic Py in blk Arg	Py7-10			3	2.8
DN0429-06	44.10	44.20	0.10	slicksd-gouge zone in blkArg with some Qtz veins	Py 3-5, Sph 0.5-1			7	1.1
DN0429-07	49.30	49.50	0.20	slicksd-gouge zone in blkArg with some Qtz veins	Py 3-5			5	0.4
DN0429-08	52.80	52.90	0.10	vuggy/silicified zone in blkArg	finelly dissPy+Marc			21	0.8
DN0429-09	57.45	57.65	0.20	dkgyTuffacSeds + incip Qtz rplmnts	Py 3-5			52	0.7
DN0429-10	57.65	57.85	0.20	dkgyTuffacSeds + nodul Py	Py 7-10			55	0.3
DN0429-11	60.55	61.05	0.50	dkgyTuffacSeds + incip Qtz rplmnts	Py 3-5			26	0.3
DN0429-12	61.85	61.98	0.13	dkgyTuffacSeds slicksd'd + thin Qtz veins	dissPy 3-5			110	2.7
DN0429-13	68.06	68.70	0.64	Redeposited Lapilli Tuff, few Qtz veins	Py 1-3			90	2.8
DN0429-14	68.70	69.07	0.37	Redeposited Lapilli Tuff, few Qtz veins	Py 1-3			120	3.5
DN0429-15	69.07	70.65	1.58	FT/FLT, relatively common Qtz veins	Py 3			240	3.1
DN0429-16	70.65	70.90	0.25	Qtz veins/rplmnts in Tuffaceous Mudstone	Py 3-5			2460	112.0
DN0429-17	70.90	71.47	0.57	Qtz vein, fxx, white-to-cloudy; relics of blkSeds	Py 3-5, Ga tr-<0.5, tr Sph			2280	101.0
DN0429-18	71.47	71.89	0.42	Qtz vein, fxx, white	Py 3-5, Sph ~1, Ga tr-<0.5, tr Tetrh			710	42.6
DN0429-19	71.89	72.24	0.35	Qtz vein, strgly fxx, mod abndt blk cement	Py 1-3, tr Sph, tr Ga			9820	110.0
DN0429-20	72.24	72.52	0.28	blk muddy gouge (Fault?) + Qtz chips	terer i teren	broken core		6650	542.0
DN0429-21	72.52	72.64	0.12	Qtz vein @ 40-45 rca, fxx, dkgy cement	dissPy-Marc 1-3, tr Ga			3950	148.0
DN0429-22	72.64	73.70	1.06	dkgyFLTmm, strgly sheared, some Qtz rplmnts	dissPy 1-3			705	13.3
DN0429-23	73.70	75.05	1.35	dkgyFLTmm, strgly sheared, some Qtz rplmnts	dissPy 1-3			305	28.0
DN0429-24	75.05	75.57	0.52	dkgyFLTmm, strgly sheared, abundt Qtz veins/rplm	dissPy 1-3, consid enriched @ the	base		5060	181.0
DN0429-25	75.57	77.05	1.48	dkgyFLTmm, mod sheared, some Qtz veins/rplmnl	dissPy 3-5			1960	7.1
DN0429-26	77.05	78.20	1.15	dkgyFLTmm, mod sheared, some Qtz veins/rplmnt	dissPy 3-5			430	2.8
DN0429-27	78.20	79.70	1.50	grgyF-I aphanitic? Volcanic? Rock	diss Py ∼1			22	0.5
Total length c	f sampled in	tervals:	13.97						

EOH @ 82.60 m

DN04-30

Sample Log

Teuton Resources Corporation

Del Norte Project, 2004

Lateegra Resources Corporation

Drill hole DN-04-30

Property, cla	im:	Del Norte, H	oratio 3	Azimuth/inclination:	257°/-65°	Drilling Company:	Aggressive		
Target/Local	ion:	LG Vein, Pa	d "K"	Final depth [metres]:	82.60	Date Commenced:	08/09/2004	Sampling:	AW (& KM)
UTM:	E	467 991				Date Completed:	11/09/2004	Sampl. method:	Drnd-s cut (split)
	N	6 209 048				Logging:	AW	Laboratory:	Pioneer
	Elevation	1255		· · · · · · · · · · · · · · · · · · ·				Assay method:	
		·······		Comments:				Rec'y estimation	n KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Assa	ays
	From	То	Length		[%]		[%]	Au	Ag
	[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t]
DN0430-02	48.30	50.70	2.40	blkSeds + 20-25% Qtz and Fault gouge?		broken core	67	85	1.2
DN0430-03	52.40	53.00	0.60	dkgyV-SBcc/TB + 20-25% Qtz veins & rplmnts			100	2	0.3
DN0430-04	56.40	59.10	2.70	dkgyV-SBcc/TB + 20-25% Qtz veins & rplmnts			100	5	9.5
DN0430-05	62.70	63.10	0.40	Fault Zone: gouge + 20-25% Qtz frags			100	80	2.2
DN0430-06	65.60	65.80	0.20	Qtz vein; vuggy, @ 25 rca			100	65	0.4
DN0430-07	76.00	78.00	2.00	dkgyV-SBcc/TB + minor Carbonate/Qtz veining			100	40	3.5
DN0430-08	78.00	78.50	0.50	Bcc of Qtz frags in blk graphitic matrix	finely dissem Py + tr Sph	frags of silica sinter?	(>67) g.;.	10	1.2
DN0430-09	78.50	80.30	1.80	dkgyFLT			67	13	0.9
DN0430-10	80.30	81.90	1.60	dkgyFLTmm wt some Arg frags, blk argil matrix	finely dissem Py + tr Sph		⊴ize(>67)	3	3.1
DN0430-01	81.90	82.60	0.70	dkgyFLTmm wt some Arg frags, blk argil matrix	finely dissem Py + tr Sph	incip Chalc cement	98	lost	ost
Total length o	f sampled in	tervals:	12.90						

EOH @ 82.60 m

Drill hole did not reach target (LG Vein) due to technical difficulties

Del Norte Project, 2004

DN04-31 Sample Log

Drill hole DN-04-31

Property, cla	im:	Del Norte, Horatio 3	Azimuth/inclination:	257°/-72°	Drilling Company:	Aggressive		·····
Target/Locat	ion:	LG Vein, Pad "K"	Final depth [metres]:	169.77 (169.88)	Date Commenced:	12/09/2004	Sampling:	AW (& KM)
UTM:	E	467 991	1		Date Completed:	14/09/2004	Sampl. method:	md-s cut (split)
1	N	6 209 048			Logging:	AW	Laboratory:	Pioneer
L	Elevation	1255					Assay method:	1
			Comments:			······	 Rec'y estimation	KM

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Assa	ays
	From	То	Length		[%]		[%]	Au	Ag
	[m]	[m]	[m]				• •	ppb [oz/t]	ppm [oz/t]
DN0431-01	34.90	35.00	0.10	Qtz vein			100	16	0.3
DN0431-02	46.50	47.85	1.35	Fault Zone in blkSeds + some Qtz rplmnts	Py 1-3 (cryst)	core broken to small d	100	260	1.1
DN0431-03	49.50	50.50	1.00	blkSeds in 50-60% rpl'd by Qtz	dissPy 1-3		100	16	7.2
DN0431-04	84.43	87.08	2.65	dkgyF-ILT		strg Seric-Carb alt'n	100	15	0.3
DN0431-05	87.08	87.48	0.40	Jigsaw-fit Bcc of FT, Chalc-finely dissPy matrix	finely dissPy+Marc, tr Sph	strg Chalc silica flood		43	28.4
DN0431-KM	87.48	88.30	0.82	Jigsaw-fit Bcc of FT, Chalc-finely dissPy matrix	finely dissPy+Marc, tr Sph	strg Chalc silica flood		42	0.3
DN0431-06	88.30	89.15	0.85	Jigsaw-fit Bcc of FT, Chalc-finely dissPy matrix	finely dissPy+Marc, tr Sph	strg Chalc silica flood		17	1.4
DN0431-07			0.00					9	1.2
DN0431-08			0.00					60	3.1
DN0431-08A	145.00	147.20	2.20	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clav) alt'n	· ·	280	28.2
DN0431-09	147.20	148.10	0.90	dkgyFLTmm, sheared, some Qtz veins & rplmnts	Sph+Ga = 3-5%	loc Seric-(Clay) alt'n		6920	1116.0
DN0431-10	148.10	150.00	1.90	dkgyFLTmm, sheared, some Qtz veins & rplmnts	. 4	loc Seric-(Clay) alt'n		320	5.0
DN0431-11	150.00	151.50	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clay) alt'n		340	7.2
DN0431-12	151.50	153.00	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clay) alt'n		1050	8.0
DN0431-13	153.00	154.50	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clay) alt'n		725	4.2
DN0431-14	154.50	156.00	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clay) alt'n		280	4.0
DN0431-15	156.00	157.50	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clay) alt'n		405	4.3
DN0431-16	157.50	159.00	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clay) alt'n		640	15.3
DN0431-17	159.00	160.50	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clav) alt'n		560	2.6
DN0431-18	160.50	162.00	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clav) alt'n		460	17.9
DN0431-19	162.00	163.50	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clav) alt'n		305	5.8
DN0431-20	163.50	165.00	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clav) alt'n		395	12.0
DN0431-21	165.00	166.50	1.50	dkgyFLTmm, sheared, some Qtz veins & rpimnts		loc Seric-(Clay) alt'n		380	10.8
DN0431-22	166.50	168.00	1.50	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clay) alt'n		450	32.2
DN0431-23	168.00	169.88	1.88	dkgyFLTmm, sheared, some Qtz veins & rplmnts		loc Seric-(Clav) alt'n		105	6.5
Total length of	formolod i	topialat	22.05		comple DNI0424 KM		0047440		

EOH @ 163.37

sample DN0431-KM = sample DN-04-31-01 from lab report no 2047149 sample DN0431-01 = sample DN-04-31-01 from lab report no 2047203

Page 1 of 1

100

Teuton Resources Corporation Lateegra Resources Corporation

Del Norte Project, 2004

DN04-32 Sample Log

Drill hole DN-04-32

Property, cla	aim:	Del Norte, Horatio 3	Azimuth/inclination:	245°/-50°	Drilling Company:	Aggressive		
Target/Loca	tion:	LG Vein, Pad "L"	Final depth [metres]:	160.63 (160.73)	Date Commenced:	14/09/2004	Sampling:	AW
UTM:	E	468 010			Date Completed:	16/09/2004	Sampl. method:	Dmd-s cut (split)
	N	6 208 987			Logging:	AW	Laboratory:	Pioneer
	Elevation	1270					Assay method:	
			Comments:					

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Assa	ays
	From	То	Length		[%]		[%]	Au	Ag
	[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t]
DN0432-01	35.83	36.50	0.67	blkSeds with strng Qtz rplmnts (ca. 75%)			100	2	0.3
DN0432-02	57.49	58.00	0.51	Qtz/Carbonate vein			100	3	0.3
DN0432-03	65.88	66.49	0.61	Fault gouge with Qtz/Carb rplmnts			ca. 30	115	6.7
DN0432-04	71.06	71.37	0.31	blkSeds with 60-70% Qtz rplmnts			100	51	0.4
DN0432-05	76.86	78.00	1.14	Qtz/Carbonate vein		······································	100	31	1.1
DN0432-06	87.60	88.70	1.10	Qtz vein			100	58	1.2
DN0432-07	98.00	100.00	2.00	blkMdst/FLTmm	Py 1-2	CERETE EXCERT Distancements and a second second	100	75	4.2
DN0432-08	100.00	101.45	1.45	blkMdst/FLTmm			100	360	14.8
DN0432-09	101.45	102.78	1.33	Qtz vein + 10 cm of Sulf-cemented QtzBcc	Py+Sph+Ga = 3-5	LG Vein	100	1252	1628.0
DN0432-10	102.78	103.80	1.02	Fault gouge with some Qtz (10-15%)	Py, tr Sph		100	2620	165.0
DN0432-11	103.80	105.00	1.20	blkMdst/FLTmm + loc Sulf streaks along foliation	dissPy 1-2; 13 cm (15% Py+Sph+G	a)	100	270	96.2 [84.9]
DN0432-12	105.00	106.60	1.60	blkMdst/FLTmm with minor Qv and rplmnts	······································		100	24	0.7
DN0432-13	134.05	135.50	1.45	F-ILTmm	diss Py 1-2		100	17	0.5
DN0432-14	143.30	144.30	1.00	F-ILTmm + some Qtz rplmnts	Py 3-4		100	23	0.8
DN0432-15	146.40	149.40	3.00	F-ILTmm	dissPy 12-3	· · ·	100	19	1.1
Total length o	f sampled ir	ntervals:	18.39		╸[┪]╗╴╕╕╺┑╕╴┙╡╴╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸╸		deren and a second s		

EOH @ 160.63

Del Norte Project, 2004

DN04-33 Sample Log

Drill hole DN-04-33

Property, cla	im:	Del Norte, Horatio	3 Azimuth/inclination: 245%-60%	Drilling Company:	Aggressivel		
Target/Locat	ion:	LG Vein, Pad "L"	Final depth [metres]: 151.49 (151.5	8) Date Commenced:	16/09/2004	Sampling	
	E	468010		Date Completed:	17/09/2004	Sampl. method	: Dmd-s cut (split
	Flevation	6208987		Logging:	AW	Laboratory:	Pionee
		12/0	Comments			Assay method:	

Sample Log

Sample No		Interval		Description	Sulphides	Pomorka	Decovery	A	
	From	То	Lenath	1	ro/ 1	Remarks	Recovery	Assa	ays
	[m]	ſm]	[m]		[70]		[%]	Au	Ag
DN0433-01	20.58	20.72	0.14	hikMdet/Sitet etrochy byy Carbonete (Otrocomete				ppb [oz/t]	ppm [oz/t]
DN0433.02	24.00	24.60	0.14	Introductional stringly bxx, Carbonate+Qtz cement			100	9	0.4
DN0433-02	24.09	24.00	0.51	DikSeds with Py enriched bands			100	5	07
DIN0433-03	(1.18	78.10	0.32	Fault gouge?		(core broken to chins	100	59	0.3
DN0433-04	101.26	101.30	0.04	Fault gouge - sericite/clay + minor Qtz rolmnts		(erre statistic to allpa	100	400	0.0
DN0433-05	102.60	103.40	0.80	(bluish Chalcedony, bxx, cement by Carbonates?)			100	180	2.6
DN0433-06	136.00	139 38	3 38	Fault course to - blk Mdet			100	90	0.3
DN0433-07	130.38	142 42	2.05	Foult gouge I miner Ob		strgly broken core	ca. 55 🤐 ⇒	205	5.3
DN0400-07	133.30	142.43	3.05	rault gouge + minor Qtz		strgly broken core	ca. 40	190	5.7
DN0433-08	142.43	143.33	0.90	Qtz Bcc with graphitic-Sulfide cement	Py+Sph+Ga+Tetrh = 5-7%		ca.95	49850	1223 0
DN0433-09	143.33	143.80	0.47	60-70% Qtz rplmnts	Pv+Sph+Ga+Tetrh = 1-2%		100	0590	140.0
DN0433-10	143.80	145.20	1.40	dgFLTmm + intvls afan Intrusive	dissPv		100	9300	412.0
Total length of	f sampled ir	ntervals:	11.01	ан ал ал ан	144001 3		100	370	7.3

EOH @ 151.49

Page 1 of 1

Del Norte Project, 2004

DN04-34 Sample Log

Drill hole DN-04-34

Property, c	laim:	Del Norte, Horatio 3	Azimuth/inclination:	265°/-55°	Drilling Company:	DriftWood	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
Target/Loc	ation:	LG Vein, Pad "M"	Final depth [metres]:	231.04 (231.19)	Date Commenced:	14/09/2004	Sampling:	AV
UTM:	E	468005			Date Completed:	16/09/2004	Sampl. method:	Dmd-s cut (spli
Į	N	6209180			Logging:	WA	Laboratory:	Pionee
	Elevation	1215				·····	Assay method:	
			Comments:					

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Ass	ays
	From	То	Length		[%]		[%]	Au	Ag
	[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t]
DN0434-01	36.08	38.73	2.65	blkMdst/Sltst strngly bxx, Carbonate+Qtz rplmnts		and and the Halomondon property and the Annual Property of the	ca. 85	27	2.8
DN0434-02	135.42	136.80	1.38	blkMdst; bxx, Qtz rplmnts			ca. 75	150	18.6
DN0434-03	147.31	148.50	1.19	Fault intval; sericite-clay rplmnts, 10% Qtz	dissPy		100	510	41.3
DN0434-04	168.60	169.90	1.30	dkgyFLTmm, sheared; 15-20% Qtz rpimnts	Py		100	210	17.3
DN0434-05	172.32	173.54	1.22	dkgyFLTmm, sheared; 15-20% Qtz rplmnts	Ру		100	18	0.9
DN0434-06	182.26	183.30	1.04	dkgyFLTmm, sheared; 20-25% Qtz rplmnts	Py		100	190	2
DN0434-07	187.57	187.90	0.33	Fault gouge + 15-20% Qtz	Py	core broken to chips	100	110	4.3
DN0434-08	220.20	221.30	1.10	dkgyFLTmm, sheared; 15-20% Qtz rpimnts			100	1260	40.1
DN0434-09	227.83	228.70	0.87	Qtz vein		u. contact 15-20 rca	100	16	0.6
Total length o	f sampled in	itervals:	11.08		in all a superior and a state of the later and gradient and the state of the particular state of the particular		CALCULATION OF THE OWNER		

EOH @ 231.04

Page 1 of 1

Del Norte Project, 2004

DN04-35 Sample Log

Drill hole DN-04-35

Property, clai	m:	Del Norte, Horatio 3	Azimuth/inclination:	265°/-65°	Drilling Company:	DriftWood	[
Target/Locati	on:	LG Vein, Pad "M"	Final depth [metres]:	290.78 (290.97)	Date Commenced:	16/09/2004	Sampling:	WA I
UTM:	E	468005			Date Completed:	18/09/2004	Sampl. method:	Dmd-s cut (split)
	N	6209180			Logging:	AW	Laboratory:	Pioneer
	Elevation	1215					Assav method:	
			Comments:			······································		- L

Sample Log

Sample No		Interval		Description	Sulphides	Remarks	Recovery	Assa	ays
	From	То	Length		[%]		[%]	Au	Aq
	[m]	[m]	[m]					ppb [oz/t]	ppm [oz/t]
DN0435'-01	17.99	21.04	3.05	blk Seds with diss Py	Py 1-3		100	55	2.2
DN0435'-02	21.04	24.09	3.05	blk Seds with diss Py	Py 1-3		100	18	3.2
DN0435'-03	24.09	27.14	3.05	blk Seds with diss Py	Py 1-3		100	12	1.6
DN0435'-04	27.14	30.19	3.05	blk Seds with diss Py	Py 1-3		100	10	1.7
DN0435'-05	30.19	33.24	3.05	blk Seds with diss Py	Py 1-3		- Co-70	13	1.6
DN0435'-06	33.24	36.29	3.05	blk Seds with diss Py	Py 1-3		100	54	2.1
DN0435'-07	36.29	39.04	2.75	blk Seds with diss Py	Py 1-3	** <u></u>	100	29	0.3
DN0435'-08	39.04	40.56	1.52	blk Seds with diss Py	Py 1-3	7	100	16	0.3
DN0435-01	40.56	43.00	2.44	blk Seds with minor FLT	Py 5-7		100	5230	0.6
DN0435'-01A	43.00	45.44	2.44	blk Seds with minor FLT			100	7	0.3
DN0435'-09	45.44	48.49	3.05	blk Seds with minor FLT			100	13	0.3
DN0435-02	112.54	113.14	0.60	dkgy Siltstone	Py 1-2		100	325	2.5
DN0435-03	140.91	142.40	1.49	dkgy Siltstone	Py 1-2		100	12	0.3
DN0435-04	171.71	172.70	0.99	dkgy Siltstone	Py 1-2		100	14	0.3
DN0435-05	187.42	189.40	1.98	bluishgy Chalcedony breccia	Py 1-2		100	18	03
DN0435-06	189.40	191.84	2.44	bluishgy Chalcedony breccia	Py 1-2		100	20	3.9
DN0435-07	192.31	193.01	0.70	Fault gouge		broken core	80	210	25
DN0435-08	197.03	197.43	0.40	Qtz vein	· · · · · · · · · · · · · · · · · · ·	broken core	ca, 50	70	0.3
DN0435-09	201.00	201.90	0.90	dkgyFLT with 25% Qtz rplmnt		broken core	≪ca √70	17	0.8
DN0435-10	203.43	203.63	0.20	Qtz vein		broken core	100	26	0.0
DN0435-11	205.57	205.77	0.20	Fault gouge with some Qtz chips		1	100	1450	78.6
DN0435-12	260.16	260.46	0.30	Qtz vein		+	100		0.0
Total length of	sampled in	ervals:	18 13					<u>_</u>	0.0

EOH @ 290.78
Teuton Resources Corporation Lateegra Resources Corporation

Del Norte Project, 2004

DN04-36 Sample Log

Drill hole DN-04-36

Property claim:	Del Norte Haratia 2	A mine with fire all and the	0100/					
Torrett south	Der Norte, Horado 3	Azimuth/inclination:	240%-58°	Drilling Company:	Drift\Mood	1		
Target/Location:	LG Vein, Pad "N"	Final depth [metres].	146.00 (146.10)	Date Commoncod:	Dintvood	· · ·		
UTM: E	468099		110100 (110.10)	Date Commenced.	18/09/2004		Sampling:	AW
N	6209724			Date Completed:	19/09/2004	1	Sampl method:	Dmd e out (onlit)
14	0200721			Logging	A14/	ł	oumpr. mounou.	pinu-s cut (spin)
Elevation	1130				AVV	L	Laboratory:	Pioneer
		Commente:					Assay method:	
		Comments.						and the second se

Sample Log

Sample No		Interval		Description	Quinting	The subscription of the local data and the subscription of the subscription of the local data and the subscription of the subsc		TANK STREET, ST	
	From	To	Length	Decomption	Suprides	Remarks	Recovery	Assa	ays
	[m]	[m]	[m]		[%]		[%]	Au	Ag
DN0436-01	107.66	108.60	0.94	Qtz-Carbonate vein		The subject of the su		ppb [oz/t]	ppm [oz/t]
DN0436-02	123.44	124.85	1.41	blkSeds + 20-25% Otz rolmote			100	10	0.4
DN0436-03	124.85	126.15	1.30	blkSeds + minor Otz rolmots	Py		100	890	279.0
DN0436-04	126.15	127.60	1.45	blkSeds + minor Otz rolmots	Py, tr Spn		100	90	10.7
DN0436-05	127.60	130.00	2.40	Otz vein	Py, tr Spn, Ga		100	185	39.5
DN0436-06	130.00	132.00	2.00	Fault gouge + short Otz intervals	Py+Spn+Ga+Tetrn = 1-2%		100	4560	299.0
DN0436-07	132.00	134.00	2.00	Fault gouge + short Otz intervals			ca. 95	5040	335.0
DN0436-08	134.00	135.70	1.70	Fault gouge + short Otz intervals			ca. 95	370	25.6
DN0436-09	135.70	136.20	0.50	40-50% Qtz rolmots	Dy tr Ca		100	1680	92.8
DN0436-10	136.20	137.70	1.50	dkgyFLTmm + 15-20% Otz mimnts	Fy, tr Ga		100	2720	1459.0
Total length of	f sampled in	tervals:	15.20				100	140	9.2
EOH @ 290.7	8								

and Maria

APPENDIX VII

ASSAY CERTIFICATES

PIONEER J	la ()a	TORI	ES I	NC.	. *		#:	103-2	2691	VISC	OUNI	C W2	ΥY	Ć	MONE	nD,	BC	с	ANAD	A V	6 V 3	2R5			1	ELE	PHON	٩	04)2	31-8	165
TEUTON RI Project: Sample Type:	ESOURC : Cores	ES C	ORP.			GI	GO Mult dilu Ba, *Au and	C H ti-ele ted to Ti, B Analys is fin	E M ment IC o 10 ml , W ar sis - 1 nished	I C P Ana with d lim 0 gran by AA	A L lysis Wate ited n sam or g	 for ple raph	A M 500 This Na, is d ite	IA gram leac Ka igest furna	LYS sample hispi ndAl edwith ceAA.	is d artia De n aqui	S igest l for tecti a reg	C ted Mn, Mn, ion L gia,	E R with 3 Fe, C imit 1 MIBK e	T I ml of Ca, P, for Au extract	FI aqua .a, C is ed,	C A regi r, M 3 pp	4 T E a, g, n.		An Re Da	alyst port te: S	No. 20 eptemb	<u>>d1</u> 047129 per 10	<u>n</u> , 200	4	
ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Р	La	Cr	Mg	Ва	Ti	В	Al	Na	K	W	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
DN04 02-32	12	76	407	1338	20.7	29	21	2039	5.39	1742	9	ND	2	437	19.0	52	6	11	5.36	.146	2	55	1.53	63	.01	3	.37	.01	.21	>100	580
DN04 02-33	7	822	3937	4012	>100	13	7	1595	2.47	1706	8	5	2	142	66.0	665	4	10	1.63	.050	2	134	.43	37	.01	- 3	.26	.01	.10	6	11120
DN04 02-34	8	854	3383	4839	>100	10	2	595	2.27	318	8	6	2	72	80.2	723	3	7	1.17	.015	1	124	.33	29	.01	3	.15	.01	.06	3	10800
DN04 02-35	22	221	3015	3342	>100	54	10	2896	5.15	280	8	ND	2	354	51.8	166	4	42	5.56	.087	2	51	1.96	55	.01	3	.88	.01	.17	2	610
DN04 02-36	9	850	3471	3776	>100	12	3	484	2.23	337	8	3	2	47	58.9	716	7	5	.69	.019	1	157	.12	19	.01	3	-14	.01	.07	2	7980
DN04 02-37	19	44	144	653	5.3	40	8	1681	3.89	196	8	ND	2	302	6.8	19	3	15	4.80	.115	3	18	1.83	126	.01	3	.46	.01	.27	2	65
DN04 16-03	7	67	335	394	20.3	39	22	2248	6.01	216	8	ND	2	499	6.6	34	3	37	8.33	.158	5	19	2.30	76	.01	3	.89	.01	.27	2	510
DN04 16-04	1	3347:	>10000>	10000	>100	8	4	1678	3.35	521	8	10	2	398	1199.5	2000	3	8	6.58	.055	2	82	.60	33	.01	3	.22	.01	.10	2	16800
DN04 16-05	9	22	392	1290	9.6	24	12	1413	3.16	129	8	ND	2	337	20.2	14	3	7	5.26	.144	2	83	.94	54	.01	3	.34	.01	.19	2	580
DN04 16-06	10	13	441	75	6.2	18	11	1634	3.35	188	8	ND	2	404	1.0	11	3	8	6.28	.160	3	72	.82	57	.01	3	.41	.01	.21	2	245
DN04 16-07	10	37	997	2160	22.7	25	14	1704	4.60	567	8	ND	2	207	30.9	30	3	7	3.07	.128	2	68	.85	57	.01	3	.41	.01	.20	2	2080
DN04 16-08	6	26	552	867	16.7	22	14	2256	4.74	606	8	ND	2	273	11.3	22	3	10	4.05	.180	2	50	1.08	69	.01	3	.46	.01	.25	2	2510
DN04 16-09	10	38	447	1010	17.3	22	14	2150	4.34	166	8	ND	2	239	13.4	26	4	11	4.20	.185	3	68	1.18	71	.01	3	.50	.01	.24	2	460
DN04 16-10	6	37	3805	387	37.4	14	7	1443	2.38	109	8	ND	2	144	6.6	43	4	8	2,28	.097	2	77	.55	41	.01	3	.44	.01	.15	2	245
DN04 16-11	6	15	357	181	6.3	18	12	1626	3,83	340	8	ND	2	218	2.7	10	3	10	3.56	.140	4	57	1.06	66	.01	3	.44	.01	.23	2	605
DN04 16-12	5	115	1105:	10000	59.7	15	7	1475	3.52	185	8	ND	2	159	132.3	88	3	3	2.62	.099	1	103	.71	52	.01	3	.29	.01	.16	2	650
DN04 18-16	3	567	4464	5187	>100	30	14	1331	4.58	813	8	8	2	240	83.0	346	3	20	3.14	.103	2	66	1.03	49	.01	3	.79	.01	.19	2	12580
DN04 18-17	2	1512	>10000>	10000	>100	13	5	2152	3.20	587	8	6	2	90	376.1	1187	3	11	1.83	.037	1	79	.43	18	.01	3	.24	.01	.07	2	16250
DN04 18-18	6	82	2418	1906	38.8	32	13	1809	3.77	362	8	ND	2	198	29.5	52	3	11	2.67	.081	2	123	.74	36	.01	3	.31	.01	.14	2	580
DNO4 18-19	7	23	193	117	8.9	41	20	2092	4.83	349	8	ND	2	391	1.9	19	3	14	5.18	.143	3	54	1.47	44	.01	3	.44	.01	.15	2	375
DN04 20-01	4	59	188	197	13.6	263	53	2940	6.76	2253	8	ND	2	656	3.4	27	3	45	9.24	.257	9	61	2.71	112	.01	3	1.13	.01	.34	40	650
DN04 20-02	5	35	233	192	15.6	28	11	1687	3.87	433	8	ND	2	371	3.2	27	3	25	4.22	.169	3	55	.82	60	.01	3	.79	.01	.16	2	890
DN04 20-03	6	133	2108	1926	59.8	46	19	1308	4.92	935	8	ND	2	354	29.3	96	3	47	3.71	. 135	3	40	.82	39	.01	3	1.54	.01	.26	2	1690
DN04 20-04	3	692	5044>	10000	>100	57	16	2049	4.70	685	8	4	2	426	176.3	634	3	29	5.77	.125	4	55	1.39	49	.01	3	.90	.01	.15	2	10250
DN04 20-05	1	2853>	10000>	10000	>100	26	19	871	5.41	2029	8	10	2	238	831.4>	2000	3	56	1.92	.083	3	51	.66	32	.01	3	1.69	.01	.20	2	34100
DN04 20-06	2	2725>	10000>	10000	>100	5	2	270	1.74	2972	8,	37	2	47	470.6>	2000	3	8	.60	.010	1	156	.06	32	.01	3	.22	.01	.03	2	48900
DN04 20-07	1>	10000>	10000>	10000	>100	6	4	592	3.36	804	8	10	2	55	>2000>	2000	3	6	.86	.013	1	96	.13	7	.01	3	. 16	.01	.03	2	14520
DN04 20-08	5	136	1195	1650	73.9	17	10	2546	4.38	436	8	8	2	354	26.5	153	4	11	5.13	.058	1	71	1.52	52	.01	3.	.31	.01	.15	2	4280
DN04 20-09	3	39	543	500	21.1	29	20	2650	5.00	407	8	ND	2	338	7.9	38	3	12	5.29	.086	2	34	1.63	38	.01	3	.42	.01	.19	2	445
DN04 20-10	7	61	176	149	18.7	50	31	2231	5.14	309	8	ND	2	303	2.5	33	3	14	5.14	.107	3	25	1.51	59	.01	3	.49	.01	.22	2	460
															.:																

PIONEER LAE TORIES INC.

#103-2691 VISCOUNT WAY

MOND, BC CANADA V6V 2R5

TELEPHONE 04)231-8165

TEUTON RESOURCES CORP. Project: Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

Analyst 125 TBIM

Report No. 2047133 Date: September 11, 2004

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	к	W	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
DN04 01-33	7	48	26	126	.9	10	6	405	2.69	35	8	ND	2	164	1.2	5	3	4	1.72	.074	5	28	.47	116	.01	6	.53	.01	.29	2	6
DN04 01-34	4	30	22	169	.3	11	3	1232	3.55	39	8	ND	2	362	1.5	4	3	5	5.74	.045	3	42	.78	93	.01	. 5	.35	.01	.14	2	4
DN04 01-35	3	40	16	117	.7	15	5	614	3.34	56	8	ND	2	214	1.0	6	3	5	2.19	.044	3	19	.58	53	.01	8	.33	.01	.14	2	2
DN04 01-36	2	52	13	116	.4	15	4	711	3.24	39	8	ND	2	268	1.0	5	3	5	2.59	.057	3	31	.68	61	.01	3	.38	.01	.15	2	4
DN04 01-37	8	42	13	117	.8	13	7	809	3.09	44	8	ND	2	232	1.2	6	3	7	2.75	.108	5	25	.75	108	.01	7	.55	.02	.26	2	7
DN04 02-01	4	129	46	142	1.4	22	28	1928	6.09	226	8	ND	2	317	1.0	9	3	29	6.04	.091	2	23	1.64	125	.01	6	.76	.01	.20	2	240
DN04 02-02	2	60	93	176	1.3	20	33	2018	7.15	57	8	ND	2	382	1.3	6	3	62	6.27	.060	3	31	2.64	69	.01	11	1.42	.01	.18	2	34
0N04 02-03	4	73	35	167	1.5	27	21	2106	5.41	152	8	ND	2	240	1.5	15	3	15	5.94	.089	2	38	1.62	79	.01	11	.39	.01	.21	2	140
DN04 02-04	5	119	31	146	3.1	38	27	2399	5.75	238	8	ND	2	299	1.5	24	3	18	6.33	.095	1	26	1.86	68	.01	7	.36	.01	.20	2	160
DN04 02-05	6	166	22	189	1.7	29	19	1894	5.46	57	8	ND	2	228	1.5	19	3	18	4.90	.096	2	18	1.70	86	.01	7	.55	.01	.24	2	60
DN04 02-06	11	197	27	383	.8	25	21	1743	5.17	58	8	ND	2	236	2.6	11	3	16	4.76	.109	2	22	1.57	98	.01	6	.65	.01	.24	2	75
DN04 02-07	4	175	30	221	.9	27	21	2011	4.84	52	8	ND	2	243	1.2	13	3	15	4.63	.119	3	19	1.44	129	.01	7	.65	.01	.24	2	46
DN04 02-08	5	157	35	309	.6	35	27	2138	6.09	44	8	ND	2	301	1.5	11	3	29	5.47	.102	2	29	2.08	112	.01	9	1.23	.01	.22	2	31
DN04 02-09	7	333	54	418	.9	27	20	1685	4.95	39	8	ND	2	226	2.3	10	3	14	4.43	.110	2	24	1.37	116	.01	6	.52	.01	.24	2	150
DN04 02-10	1	115	195	9576	.9	24	23	2558	6.54	- 38	8	ND	2	358	82.6	12	3	34	6.43	.081	2	20	2.26	92	.01	- 6	.98	.01	.17	2	54
DN04 02-11	5	195	24	325	.5	23	24	1861	5.53	43	8	ND	2	256	1.7	13	3	21	4.82	.115	2	24	1.72	100	.01	10	.89	.01	.20	2	75
DN04 02-12	6	284	51	346	.9	22	19	1923	5.33	38	8	ND	2	237	2.5	10	3	11	4.66	.116	2	20	1.46	110	.01	5	.44	.01	.23	2	90
DN04 02-13	5	96	31	164	.4	24	24	1679	5.04	48	8	ND	2	353	1.1	6	3	32	5.32	.081	2	41	1.60	98	.01	9	.89	.01	.21	2	51
DNO4 02-14	5	120	96	208	3.4	28	18	2098	4.83	289	8	ND	2	314	1.7	20	3	14	5.54	.149	4	19	1.82	93	.01	6	.44	.01	.21	2	120
DN04 02-15	2	78	19	272	.3	26	19	2030	5.15	42	8	ND	2	257	1.8	5	3	26	5.43	.153	6	16	1.95	120	.01	6	.98	.02	.20	2	32
DN04 02-16	4	26	12	136	.3	12	13	1943	4.81	28	8	ND	2	428	.9	3	3	29	7.65	.152	9	15	1.72	109	.01	6	1.08	.02	.18	2	21
DN04 02-17	2	22	3	123	.3	7	17	1857	5.63	26	8	ND	2	306	.6	3	3	38	5.68	.154	9	6	2.01	113	.01	5	1.43	.03	.19	2	30
DN04 02-19	3	59	12	183	.6	9	21	1637	5.70	1395	8	ND	2	423	1.4	6	3	22	5.63	.128	7	14	2.01	110	.01	7	.81	.01	.24	2	210
0N04 02-20	4	124	31	194	1.9	50	19	2467	4.64	2459	8	ND	2	370	1.6	14	3	13	5.86	.131	4	24	2.01	114	.01	7	.48	.01	.27	2	205
DN04 02-21	5	113	26	220	1.6	44	21	1746	5.13	94	8	ND	2	289	1.6	18	3	13	4.36	.137	4	11	1.90	114	.01	7 *	.51	.01	.28	2	28
DN04 02-22	3	59	26	138	1.4	120	30	2168	5.56	146	8	ND	2	608	1.0	8	3	15	7.73	.121	4	36	2.50	89	.01	4 -	.39	.01	.20	2	30
DN04 02-23	4	84	26	222	1.0	37	18	1873	4.54	49	8	ND	2	452	1.6	12	3	13	6.03	.119	3	37	1.76	94	.01	5	.37	.01	.19	2	21
DN04 02-24	4	105	33	206	1.4	32	22	1889	5.32	80	8	ND	2	303	1.5	10	3	17	4.63	.147	4	21	2.08	104	.01	4	.41	.02	.22	2	56
02-25	3	306	56	401	4.7	36	36	2588	8.26	143	8	ND	2	304	2.7	11	7	28	5.83	.166	3	18	2.55	102	.01	7	.45	.01	.23	2	90
DN04 02-26	5	137	86	364	6.7	26	21	2415	5.28	190	8	ND	2	322	3.0	18	3	12	4.93	.135	2	31	1.74	104	.01	3	.42	.01	.23	2	320

ELEMENT		Cu	Pb	Zn	Ag	Nī	Co	ín Fe	As	U	Au	Th	¢	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ва	ті	B	AL	Na	ĸ	W	Au
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	obui b	om %	ppm	ppm	ppm	ppm	ppm	pon	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ррті	ppb
DN04 02-27 DN04 02-28 DN04 02-29 DN04 02-30 DN04 02-31	3 9 3 3 5	110 99 195 136 134	78 64 799 39 37	356 348 1423 358 417	4.1 5.7 31.3 2.8 14.0	24 29 28 24 31	20 26 20 26 28 20 20 26 24 27	73 5.40 78 4.95 59 5.30 57 5.23 23 5.62	95 81 122 125 334	8 8 8 8 8	ND ND ND ND ND	2 2 2 2 2	296 351 296 413 367	2.8 2.9 19.8 2.7 4.0	12 18 52 12 55	3 3 3 3 3	15 21 16 14 14	4.62 5.31 4.46 5.73 5.97	.137 .150 .148 .148 .150	3 2 4 3 3	17 57 26 15 16	1.82 1.84 1.64 2.05 1.88	118 109 118 112 96	.01 .01 .01 .01 .01	5 9 5 5 6	.48 .47 .54 .49 .47	.01 .01 .01 .01 .01	.27 .26 .30 .27 .27	2 2 2 2 2 2	285 70 280 51 65
DN04 02-38	25	48	153	921	3.1	53	95	57 2.95	109	8	ND	2	148	8.7	23	3	13	2.57	.086	4	19	.76	76	.01	7	.37	.01	.22	2	85
DN04 02-39	22	54	151	708	2.6	48	9 11	35 4.07	88	8	ND	2	205	7.1	24	3	16	4.48	.094	4	15	1.41	97	.01	6	.44	.01	.25	3	47
																									•					
														ر ۱۹۰۰ ۹۰۰ ۱																
								v						· . · . . · .																
•														an a									4							
							•																		·					
							• .																		•					
							· .																		÷					
							ĩ					•																		
																													PAGE 2	

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

TEUTON RESOURCES CORP.

Project:

Sample Type: Cores/Rocks

Analyst <u>CSdim</u> Report No. 2047139 Date: September 17, 2004

SAMPLE	Ag g/mt	
DN04-03-22	66.2	
DN04-04-04	50.4	
DN04-04-17	188	
DN04-04-18	768	
DN04-05-19	130	
DN04-07-16	316	
DN04-12-09	590	
DN04-12-19	382	
DN04-17-07	104	
EB-04-40	247	
EB-04-41	492	
KM 053	163	

PIONEER	LACATORIES	INC.

#103-2691 VISCOUNT WAY

MOND, BC CANADA V6V 2R5

TELEPHON. 604)231-8165

TEUTON RESOURCES CORP. Project: Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

Analyst <u>ESam</u> Report No. 2047130 Date: September 11, 2004

ELEMENT	Мо	Cu	Pb	Zņ	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	SP	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W	Au*
SAMPLE	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppni	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
DN04 03-20	2	65	113	267	2.2	40	17	2079	4.85	669	8	ND	2	262	1.8	18	3	10	6.31	.120	3	22	1.76	53	.01	7	.36	.01	.21	2	75
DN04 03-21	2	53	291	122	2.8	31	17	1509	4.48	147	8	ND	2	263	.8	17	3	9	5.60	.121	4	19	1.58	82	.01	5	.42	.01	.25	2	90
DN04 03-22	1	198	964	2852	62.2	30	15	2100	4.65	171	8	ND	2	322	26.0	130	3	9	6.03	.110	3	45	1.59	47	.01	7	.31	.01	.18	2	1520
DN04 03-25	2	60	29	109	1.6	22	6	536	3.33	84	8	ND	2	110	1.3	15	3	7	1.87	.033	3	22	.48	46	.01	7	.29	.01	.14	2	8
DN04 03-26	2	64	31	97	2.0	21	7	504	3.78	99	8	ND	2	132	.9	13	3	6	2.04	.059	3	4	.53	63	.01	4	.36	.01	.19	2	15
DN04 03-27	3	86	21	332	1.7	15	4	927	4.03	62	8	ND	2	190	4.0	10	3	7	3.74	.051	3	22	.77	55	.01	5	.31	.01	.16	2	4
DNO4 03-28	11	93	44	536	2.6	46	7	566	3.88	80	8	ND	2	127	7.0	19	3	16	2.41	.045	2	15	.57	49	.01	3	.32	.01	.15	2	15
DN04 04-01	1	53	19	60	.8	19	33	2697	6.71	179	8	ND	2	311	.5	7	3	49	7.42	.064	3	26	2.13	69	.01	8	.71	.01	.22	2	50
DN04 04-02	3	33	101	60	3.4	15	26	3126	7.05	1606	8	ND	2	372	.5	15	3	39	8.84	.050	3	26	2,68	31	.01	9	.25	.01	.15	2	340
DN04 04-03	1	18	31	65	3.1	24	30	2714	7.00	183	8	ND	2	359	.5	13	3	39	8.48	.068	3	15	2.55	35	.01	7	.32	.01	.19	2	170
DN04 04-04	6	222	384	88	47.8	8	7	1740	3.74	57	8	ND	2	204	1.3	169	3	15	4.86	.020	1	104	1.31	18	.01	6	.12	.01	.07	2	160
DN04 04-05	3	88	120	312	12.6	25	22	2357	5.90	5589	8	ND	2	606	2.6	63	3	14	6.01	.068	2	34	2.15	58	.01	3	.30	.01	.17	2	605
DN04 04-06	1	17	18	130	1.2	7	22	1609	7.70	1480	8	ND	2	406	.6	13	3	24	5.10	.147	9	20	2.61	39	.01	3	.35	.02	.16	2	240
DN04 04-07	2	26	9	103	.7	17	27	1808	7.67	106	8	ND	2	313	.5	9	3	44	5,35	.113	9	30	2.42	53	.01	3	.46	.02	.16	2	9
DN04 04-08	3	196	246	206	9.0	18	22	2515	5.14	1002	8	ND	2	309	1.3	28	3	14	5.25	.117	3	17	1.66	111	.01	4	.41	.02	.21	>100	140
DN04 04-09	1	70	16	103	.8	15	15	1341	4.43	320	8	ND	2	208	.5	6	3	11	3.86	.107	6	15	1.41	86	.01	7	.41	.01	.25	2	75
DN04 04-10	3	90	13	79	1.8	21	20	2266	5.19	422	8	ND	2	230	.5	12	3	11	5.15	.123	2	16	1.59	73	.01	5	.43	.01	.25	2	305
DNO4 04-11	1	52	57	81	4.1	12	13	1889	4.42	880	8	ND	2	241	.8	16	3	10	5.48	.106	4	26	1.49	156	.01	6	.35	.01	.21	2	80
DN04 04-12	5	47	17	74	1.9	13	17	1728	3.95	436	8	ND	2	238	.5	12	3	8	5.14	.100	3	27	1.32	55	.01	6	.35	.01	.21	2	65
DN04 04-13	1	36	7	68	1.1	14	17	2177	4.30	1307	8	ND	2	277	5،	11	3	14	5.67	.102	5	15	1.71	69	.01	4.	.40	.01	.24	2	125
DN04 04-14	1	53	21	159	2.5	20	21	2501	5.10	2041	8	ND	2	323	1.6	14	3	18	6.41	.114	4	16	1.81	58	.01	8	.41	.01	.24	2	420
DN04 04-15	1	40	23	61	4.3	12	13	2122	4.57	1203	8	ND	2	273	.6	13	3	7	5.57	.109	4	18	1.55	48	.01	5	.32	.01	.19	2	280
DN04 04-16	1	41	29	99	4.3	9	10	1651	3.56	208	8	ND	2	202	.8	17	3	9	4.46	.120	6	34	1.18	60	.01	8	.41	.01	.26	2	225
DN04 04-17	4	399	4620	2790	>100	23	14	3288	4.72	429	8	ND	2	266	43.0	283	3	8	3.98	.096	2	49	1.17	60	.01	7	.38	.01	.22	2	2520
DN04 04-18	8	1323	9677	5803	>100	39	9	448	3.51	340	8	8	2	63	102.7	974	3	31	.92	.052	2	75	.29	38	.01	3	.74	.01	.13	2	15050
DN04 04-19	6	52	30	190	1.4	19	4	765	3.37	358	8	ND	2	195	2.5	10	3	7	3.06	.046	3	58	.79	71	.01	3	.38	.01	.21	2	35
DN04 04-20	3	34	26	78	2.0	22	3	460	2.81	41	8	ND	2	126	1.2	14	3	5	2.17	.039	3	21	.56	44	.01	4	.27	.01	.13	2	20
DN04 05-01	1	18	3	42	.5	16	26	3463	8.02	1868	8	ND	2	379	.5	8	3	45	9.05	.059	2	20	2.47	51	.01	8	.40	.01	.23	2	145
DN04 05-02	3	86	144	287	11.6	21	20	2408	6.01	3018	8	ND	2	463	3.1	45	3	19	6.65	.067	2	26	2.03	53	.01	5	.30	.01	.17	2	360
DN04 05-03	3	190	65	242	20.5	24	22	1780	5.24	1561	8	ND	2	409	2.2	54	3	12	5.26	.084	1	23	1.77	65	.01	3	.36	.01	.19	2	405

PIONEER LABORATORIES INC.

#103-2691 VISCOUNT WAY

RICHMOND, BC CANADA V6V 2R5

TELEPHONE (604)231-8165

TEUTON RESOURCES CORP. Project: Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA. Analyst 1250M Report No. 2047136 Date: September 11, 2004

	Mo		Ph	 7n	10				 				ть					v					Ma		τ;						A#
SAMDIE	00			211	ng	111		PH I	re v	85		NU		21		50	D 1	•	va v	r %			rig V		۱۱ م	DOM.	АL 9/	N.C. %	۸ ۷	W	AU
Shire L	PPm	ppm	ppm	phu	ppii	ppin	ppm	ppii	10	ppn	ppii	ppin	ppii	ppm	երու	ppii	ppii	ppii	/6	/6	ppin	μμii	70	ppii	/0	ppin	10	/e	/0	ppm	ppo
DN04 03-01	1	42	10	76	.3	23	34	1928	7.00	333	8	ND	2	430	.5	4	3	94	6.72	.057	2	57	2.99	72	.01	3	1.84	.02	.08	2	28
DNO4 03-02	1	57	36	102	1.2	27	39	2188	7.24	84	8	ND	2	507	.5	3	3	95	7.10	.065	3	46	2.09	77	.01	5	1.77	.02	.15	2	35
DNO4 03-03	4	82	42	347	3.3	29	22	2619	5.01	193	8	ND	2	273	2.6	14	3	15	5.58	. 134	2	19	1.65	80	.01	8	.39	.01	.22	2	75
DN04 03-04	8	32	58	83	4.7	9	4	642	1.52	26	8	ND	2	105	.5	15	3	7	1.70	.029	1	141	.41	25	.01	3	.13	.01	.07	6	32
DNO4 03-05	1	57	13	129	.7	18	27	1681	6.43	148	8	ND	2	277	.5	7	3	24	4.76	. 158	6	14	1.63	98	.01	3	.65	.01	.23	2	23
DN04 03-06	1	69	10	88	.3	35	13	1593	3.97	44	8	ND	2	327	.5	12	3	12	5.42	.100	6	34	2.21	78	.01	3	.35	.02	.18	2	18
DNO4 03-07	2	86	9	105	.3	56	18	873	3.53	73	8	ND	2	170	.5	22	3	12	3.13	.115	5	24	1.38	77	.01	3	.36	.02	.19	2	26
DNO4 03-08	1	69	9	107	.3	63	18	725	4.39	88	8	ND	2	148	5	28	3	10	2.53	.094	4	20	1.37	116	.01	4	.34	.02	.15	2	19
DN04 03-09	2	83	49	116	.7	36	17	1082	3.71	140	8	ND	2	273	.6	14	3	15	4.97	.118	4	- 30	1.63	120	.01	3	.34	.02	.18	2	17
DN04 03-10	2	30	9	75	.6	9	12	1347	4.61	54	8	ND	2	278	.5	8	3	18	4.72	.138	5	29	1.44	116	.01	5	.27	.02	.15	2	23
DN04 03-11	5	69	20	117	2.3	23	21	1755	4.65	107	8	ND	2	332	.5	17	3	10	4.40	.117	4	18	1.63	91	.01	3	.35	.01	.20	2	56
DN04 03-12	3	61	26	115	4.9	20	22	1495	4.73	161	8	ND	2	346	.5	18	3	11	4.38	.094	5	10	1.62	78	.01	4	.36	.01	.22	2	140
DN04 03-13	3	60	14	98	.3	21	14	1072	4.23	40	8	ND	2	213	.5	7	3	10	3.38	.094	10	9	1.40	69	.01	3	.34	.01	.21	2	28
DNO4 03-14	1	65	7	85	.3	20	13	836	3.68	44	8	ND	2	185	.5	7	3	10	2.85	.103	12	7	1.26	71	.01	5.	.37	.01	.23	2	17
DNO4 03-15	1	66	26	117	.8	21	17	1517	4.81	145	8	ND	2	261	.5	. 9	3	15	4.50	.121	7	24	1.58	86	.01	3	.46	.01	.27	2	29
DN04 03-16	3	44	91	260	5.6	11	10	1742	3.30	1396	8	ND	2	222	2.4	21	3	6	3.81	.074	2	41	1.23	48	.01	4	.22	.01	.14	2	430
DNO4 03-17	3	28	42	209	4.7	14	15	2053	4.54	1268	8	ND	2	234	1.7	14	3	8	5.03	.101	3	24	1.52	55	.01	6	.31	.01	.19	3	180
DN04 03-18	3	41	24	94	3.3	32	19	1611	3.97	778	8	ND	2	224	.6	19	3	10	4.96	.122	4	20	1.42	53	.01	4	.37	.01	.22	2	160
DNO4 03-19	3	67	193	159	5.8	22	16	2024	4.60	205	8	ND	2	250	1.7	28	3	9	5.64	. 131	3	20	1.55	91	.01	3	.32	.01	.20	2	205
DNO4 03-23	6	46	230	569	7.7	18	.7	1030	3.51	81	8	ND	2	162	8.5	21	3	17	2.95	.052	2	28	.69	44	.01	3	.40	.01	.15	2	225
DNO4 03-24	10	57	73	299	3.9	27	9	1014	3.64	64	8	ND	2	154	3.0	18	3	15	3.19	.076	2	12	.80	53	.01	4	.34	.01	.17	2	95

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

TEUTON RESOURCES CORP.

>roject:

Sample Type: Cores/Rocks

Analyst <u>CSA</u>m Report No. 2047139 Date: September 17, 2004

	SAMPLE	Ag g/mt	
	DN04-03-22	66.2	
	DN04-04-04	50.4	
	DN04-04-17	188	
	DN04-04-18	768	
	DN04-05-19	130	
	DN04-07-16	316	
	DN04-12-09	590	
	DN04-12-19	382	
	DN04-17-07	104	
	EB-04-40	247	• *
A	EB-04-41	492	
)	KM 053	163	

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

TEUTON RESOURCES CORP.

Project:

Sample Type: Cores/Rocks

Analyst RSAM Report No. 2047139 Date: September 17, 2004

		Ag	
	SAMPLE	g/mt	
	DN04-03-22	66.2	
	DN04-04-04	50.4	
	DN04-04-17	188	
	DN04-04-18	768	
	DN04-05-19	130	
	DN04-07-16	316	
t	DN04-12-09	590	
	DN04-12-19	382	
	DN04-17-07	104	
	EB-04-40	247	
	EB-04-41	492	-
	KM 053	163	

PIONEER LA ATORIES INC. #103-2691 VISCOUNT WAY

MOND, BC CANADA V6V 2R5

TELEPHONE 04)231-8165

TEUTON RESOURCES CORP. Project: Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

Analyst Plan
Report No. 2047149
Date: September 22, 2004

ELEMENT	Mo	Cu	PH	<u>7</u> n	٨a	MŤ	<u>^</u>	Mes	F.	10		A	TL		<u>ل</u> رم		n:		0 -												
SAMPLE	nom	nom	500	יובג הזרארו ו		100	500	- 185 	ге •/	A5	, D	AU		21.		50	BI	v	ua v	• P • V	La	Ur	Mg	ва	11	в	AL	Na	K	W	Au*
	1-1	Plan.	P7-1		թթո	ppan	ppa	ppin	/0	ppin	ppm	ppin	μμi	рри	ppii	ppii	ppii	ppn	6	6	ppm	ppm	76	ppm	ኤ	ppm	76	76	%	ppm	ppb
DN-04-05-01	3	15	14	51	.8	19	42	3015	6.96	1663	8	ND	2	290	.5	5	5	42	7.33	.073	2	31	1.50	80	.01	3	.37	.01	.18	2	520
DN-04-07-01	2	67	22	? 72	.4	32	19	1484	6.01	81	8	ND	2	112	.5	4	3	13	3.43	.073	2	14	1.29	53	.01	3	.37	.01	.23	2	36
DN-04-07-15	2	44	30	296	4.8	9	10	1470	4.52	783	8	ND	2	336	2.8	10	3	8	5.52	.043	5	22	1.35	61	.01	4	.32	.01	.20	2	150
DN-04-08-01	2	8	64	78	.3	5	13	2053	5.44	80	8	ND	2	271	.5	5	6	14	6.28	.129	5	10	1.70	117	.01	3	.45	.01	.19	2	42
DN-04-08-02	1	23	3	101	.4	8	16	1928	5.52	36	8	ND	2	286	.6	3	3	15	5.94	.113	6	18	1.68	117	.01	3	.38	.01	.21	2	15
DN-04-08-03A	2	55	25	104	.9	17	17	1317	4.60	151	8	ND	2	285	1.0	4	3	8	5.61	.097	4	25	.95	81	.01	. 3	32	01	10	2	165
DN-04-08-03B	3	39	13	80	1.1	11	13	1222	4.34	36	8	ND	2	307	.5	3	7	8	6.21	.086	4	45	1.07	64	-01	3	26	01	17	2	28
DN-04-08-04	3	65	219	82	1.1	12	14	1303	4.83	33	8	ND	2	313	.6	5	3	10	4.58	-094	6	18	1.43	-91	.01	ंद	35	.01	10	2	22
DN-04-08-05	2	40	28	71	.3	5	17	1833	5.46	26	8	ND	2	780	.8	5	3	12	8.51	.090	6	14	1.26	85	.01	3	-60	.01	.13	2	18
DN-04-08-06A	2	42	17	[,] 114	.6	11	17	1505	4.91	448	8	ND	2	309	.5	3	3	9	5.25	.141	8	14	1.36	91	.01	3	.53	.01	.13	2	85
DN-04-08-06B	1	19	22	171	.5	15	11	2016	5.10	223	8	ND	2	275	1.3	۰. د	3	6	6.54	072	र	10	1 05	45	01	7	71	01	15	2	75
DN-04-08-07	2	55	24	176	.6	21	18	1391	5.57	152	8	ND	2	207	1.1	3	5	8	4.08	. 113	6	0	1.52	61	.01	4	.31	01	27	2	21
DN-04-08-08	1	47	13	169	.7	13	13	1690	5.03	386	8	ND	2	266	1.5	3	6	, Q	5.19	.090	3	20	1:54	52	01	7	.41		16	2	85
DN-04-08-09	1	35	7	' 52	.3	13	. 14	1868	4.81	312	8	ND	2	230	.5	4	8	8	5.50	. 108	5	13	1.55	54	.01	3	34	01	10	2	20
DN-04-08-10	. 6	86	89	258	9.0	28	17	1673	4.34	129	8	ND	2	219	2.2	26	3	12	5.13	.098	3	28	1.47	70	.01	3	.39	.01	.24	2	75
DN-04-08-11	4	21	46	205	1.4	9	12	998	3.27	198	8	ND	2	189	2.0	6	5	5	4.10	124	0	13	08	67	01	7	70	01	7/	2	21
DN-04-08-12	3	87	272	315	29.2	8	11	1789	4.38	111	8	ND	2	237	5 3	20	5	7	5 17	107	Ĺ	20	1 35	51	.01	7		.01	• 6.4 17	2	1450
DN-04-08-13	2	58	104	178	20.2	23	15	1987	4.58	138	8	ND	2	263	2.6	38	3	10	5 77	110	7	25	1 66	52	.01	د. ۲۰	- 27	.01	477	2	140
DN-04-08-14	1	42	44	65	9.5	19	9	2508	5.68	59	8	ND	2	306		25	3	10	7 72		र	20	2 24	5/	.01	7	.00	.01	477	2	40
DN-04-08-15	3	14	138	67	3.3	21	17	2353	5.63	83	8	ND	2	328	.7	12	6	26	8.05	.099	2	20	2.62	56	.01	3	.24	.01	.15	2	65
DN-04-08-16	1	12	21	87	1.7	18	14	2696	6.46	43	11	ND	2	395	.7	11	4	44	10.45	.075	3	22	3 65	30	01	7	22	01	12	2	35
DN-04-08-17	2	14	76	75	2.8	44	15	2287	6.24	72	11	ND	2	410		10	3	16	8.68	.097	- र	- 44	2 63	84	.01	7	-25	.01	45	2	20
DN-04-08-18	5	1320	9562	>10000	>100	23	7	1268	3.48	355	8	3	2	286	162.1	927	7	7	3 51	061	1	72	81	42	.01	2 7	-20 21	.01	- 1-3	2 2	4900
DN-04-08-19	19	368	1061	1302	>100	75	13	1552	4.28	489	8	ND	2	265	20.5	159		22	4.82	085	2	22	1 23	97C	.01	7	30	.01	46	2	440
DN-04-08-20	31	192	498	620	14.9	91	13	711	3.77	204	8	ND	2	148	9.3	60	3	14	2.96	.103	3	15	.73	51	.01	3	.28	.01	.18	2	205
DN-04-08-21	.19	56	340	434	16.0	51	9	1321	3.78	93	8	ND	2	279	5.1	42	3	12	5 29	101	3	10	1 41	72	01	7	28	01	17	E	120
DN-04-08-22	24	88	564	1116	20.0	58	10	1070	4.06	114	8	ND	2	223	17.3	47	4	12	4 21	102	्र द	14	0/	62	.01	5	30	01	10	7	95
DN-04-08-23	18	39	90	224	3.6	46	11	1299	4.33	82	8	ND	2	250	2.7	24	3	0	5.43	000	ँर	10	1 28	54	.01	- 	26	.01	• 17 17	2	20
DN-04-08-24	29	59	102	226	3.4	62	11	883	4.49	111	8	ND	2	188	2.3	30	5	17	4.01	111	्र	17	0/.	57	01	ר ד	.20	.01	+17 10	2	20
DN-04-08-25	32	56	100	241	3.4	67	13	1055	4.51	103	8	ND	2	238	2.4	32	3	18	4.63	.092	3	13	.99	67	.01	3	.34	.01	.21	2	40
																										-					

ELEMENT		Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe %	As	U	Au	Th	ş POTI	Cd	Sb	Bi	V	Ca %	P V	La	Cr	Mg %	Ba	Ti *	B	Al %		K Y	W	Au
		PP			t-l-u	ppii	pp.	Phai	70	Phu	P.Sou	ppin	Phu	بىلى	- Phu	ppii	ppin	pp	~	70	ppan	Physic	20	ppan	/9	ppan	70	70	76	PP"	μυ
DN04 05-04	3	127	24	304	11.4	34	28	1999	6.59	1132	8	ND	2	489	2.3	28	3	25	6.21	.071	2	25	2.20	66	.01	.3	.64	.01	.18	2	310
DN04 05-05	2	91	32	270	3.0	22	23	1777	5.36	2238	8	ND	2	350	2.6	9	3	15	4.89	.120	3	14	1.71	123	.01	3	.59	.01	.26	2	45
DN04 05-06	4	98	30	169	2.4	23	24	1844	5.41	328	8	ND	2	318	9	9	3	11	4.87	.102	3	15	1.78	96	.01	3	.37	.01	.21	2	205
DN04 05-07	4	112	11	165	4.5	23	25	1641	5.25	2356	8	ND	2	322	.7	16	3	10	4.55	.117	3	15	1.62	94	.01	3	.36	.01	.21	2	60
DN04 05-08	6	78	23	170	8.4	23	19	1838	5.04	4927	8	ND	2	383	1.1	20	3	10	4.89	.115	3	24	1.66	111	.01	4	.41	.01	.24	.2	180
DN04 05-09	3	133	10	192	28.1	23	20	2065	5.46	3463	8	ND	2	377	1.3	61	3	10	5.23	.108	4	19	1.83	110	.01	3	.29	.01	.17	7	205
DN04 05-10	2	86	21	174	2.6	30	18	1932	5.15	1294	8	ND	2	326	1.6	9	3	10	4.93	.117	4	26	1.70	98	.01	3	.35	.01	.21	2	95
DN04 05-11	4	79	30	160	4.6	27	17	1911	4.81	1912	8	ND	2	365	1.6	13	3	11	5.21	.125	3	18	1.60	107	.01	3	.39	.01	.22	2	56
DN04 05-12	5	82	51	140	11.3	31	18	2235	4.86	3902	8	ND	2	380	1.4	32	3	11	5.30	.108	3	37	1.58	92	.01	3	.36	.01	.21	2	135
DN04 05-13	6	89	20	135	19.6	34	21	2474	5.11	4743	8	ND	2	408	1.6	54	3	11	5.21	.130	3	22	1.66	93	.01	3	.39	.01	.22	2	175
DN04 05-14	5	6	34	83	.4	6	6	1916	3 83	63	8	ND	2	440	8	8	र	15	6.84	0/.1	2	107	1 15	22	01	7	20	01	11	2	18
DN04 05-15	4	58	49	108	13.9	33	16	3120	4.88	1109	о 8	มก	2	440	. <u>ی</u> ۱ ۵	70	3	0	6 14	110	ב ד	38	1 05	102	01	. J 	.20	01	18	2	05
DN04 05-16	8	45	103	138	18.2	24	13	3978	4.46	798	8	มก	2	320	17	26	7	, Я	6 80		2	20 %0	1 70	75	.01		.52	.01	12	2	185
DN04 05-17	- 3	11	42	75	2.4	25	23	2000	6 08	225	8	ND	2	341	1 0	7	र र	ō	6 72	007	2	7/	1.82	7/.	.01	יד ד		.01	18	2	80
DN04 05-18	2	11	13	76	1.5	32	28	2287	6.36	706	8	ND	2	344	.9	6	3	15	6.62	.097	2	31	1.91	80	.01	3	.40	.01	.22	2	190
DN04 05-19	16	240	2143	1187	>100	14	3	352	1.29	60	8	ND	2	58	19.0	165	3	9	- 88	.018	1	337	.22	31	.01	3	-20	.01	. 11	2	1320
DN04 05-20	13	264	143	335	16.3	37	9	1135	4.29	94	8	ND	2	293	4.3	52	3	16	4.80	. 101	3	35	1.43	47	.01	3	32	01	.19	2	150
DN04 05-21	14	139	259	1109	10.0	37	11	709	3.43	98	8	ND	2	289	11.8	47	3	15	3.60	.113	3	55	1.15	81	01	3	47	01	28	2	205
DN04 05-22	8	48	72	209	2.7	19	9	919	2.96	73	8	ND	2	218	2.0	13	3	10	3.98	.127	5	16	1.28	64	.01	3	.41	.01	.24	2	105
DN04 05-23	29	57	108	446	3.9	61	12	354	2.62	135	8	ND	2	93	4.4	24	3	14	1.51	.105	3	28	.39	67	.01	3	.37	.01	.23	2	190
DN04 07-01	4	86	16	70	. 2.0	18	13	1322	4.14	63	8	ND	2	269	.9	7	3	12	4.69	.109	3	34	1.25	131	.01	3	.37	.01	.19	2	35
DN04 07-02	4	59	61	220	1.9	24	18	2839	6.24	171	8	ND	2	196	2.1	3	3	24	5.09	.078	2	55	1.36	72	.01	3	.37	.01	.20	2	220
DN04 07-03	5	51	123	127	2.7	16	13	1745	3.81	76	8	ND	2	117	1.4	6	3	13	4.17	.144	5	20	.81	94	.01	6	.43	.01	.26	2	120
DN04 07-04	12	146	67	69	3.5	42	16	2208	4.25	72	8	ND	2	178	.9	11	3	11	5.07	.099	2	54	1.84	57	.01	4	.24	.01	.14	2	65
DN04 07-05	8	73	28	72	1.2	47	17	1480	3.88	86	8	ND	2	165	.7	6	3	11	4.26	.135	3	78	1.37	75	.01	3	.27	.01	.16	2	35
DN04 07-06	2	41	39	182	4.3	12	18	2180	5.36	475	8	ND	2	379	2.0	7	3	12	6.49	.112	4	25	1.55	64	.01	3	.32	.01	.18	2	225
DNO4 07-07	4	60	341	235	10.9	17	19	1969	5.42	891	8	ND	2	405	2.9	19	3	12	6.32	.132	3	33	1.61	65	.01	3	.39	.01	.20	2	2020
DN04 07-08	2	42	28	66	1.9	16	19	1923	4.65	1038	8	ND	2	320	.6	11	3	11	5.85	.112	4	20	1.35	76	.01	3	.41	.01	.24	2	185
DN04 07-09	2	62	23	138	.7	18	21	1295	4.48	518	8	ND	2	263	1.0	4	3	10	4.73	.104	6	26	1.17	71	.01	3	.41	.01	.23	2	95
DN04 07-10	1	56	29	146	.9	14	16	1688	4.25	330	8	ND	2	417	.8	5	3	8	5.59	.102	4	21	1.15	66	.01	3	.39	.01	.19	2	70
DN04 07-11	3	46	41	121	.6	26	18	2971	5.32	493	8	ND	2	363	1.0	4	3	11	6.48	.147	7	16	1.71	88	.01	3	_44	.01	.26	2	120
DN04 07-12	1	49	61	139	.8	46	26	3142	6.74	104	8	ND	2	467	1.2	4	3	15	8.23	.228	14	25	2.08	97	.01	3	.48	.01	.26	2	
DN04 07-13	2	77	23	133	1.0	24	19	1614	4.50	80	8	ND	2	247	.9	3	3	8	4.67	.126	4	16	1.40	76	.01	4	.+0			2	72
DN04 07-14	32	35	81	125	1.8	17	18	2520	4.21	49	8	ND	2	382	9	3	3	32	8.54	.130	3	43	1.82	53	.01	<u>ז</u>	28	01	14	2	10
DN04 07-16	12	536	4299	4528	>100	25	4	588	2.34	333	8	5	2	136	69.6	168	3	13	2.35	.032	1	112	.33	16	.01	4	.28	.01	.05	2	8980

	<u>an an a</u>													6																	
EL EMENT) Cu	Ph	7n	٨٥	Mā	60	Mo	Ēe	Ac	. 18	Δ (1)	ты	Sr	- A	sh	Ri	v	Ca	þ	la	Cr	Ma	Ba	Ti	в	AL		ĸ	W	Au
SAMPLE		nom	nom	5000	-79 		nom	000	%	000	0	200	000	nom	non.		xom	000	%	%	noa	bom	<u>s</u>	DOM	%	maa	%	%	%	ppm	daa
		P.P	pp	b.J.w.r	ppu	μγ.,	ppin	ppm	10		pp. i		pp	FF	Ppin	. P P-11 P	· [***	r.h			F.F	F.F								••	
DN04 07-17	19	298	202	849	17.5	35	12	1333	4.25	251	8	ND	2	269	10.2	29	3	14	4.11	.105	3	31	1.33	65	.01	3	.33	.01	.20	2	180
DN04 07-18	11	38	69	336	2.5	28	9	1829	4.24	106	8	ND	2	312	4.1	7	3	12	6.15	.086	3	15	2.38	124	.01	3	.27	.01	.16	2	25
DN04 07-19	14	46	43	380	4.2	33	8	878	3,56	128	8	ND	2	193	4.4	9	3	7	3.24	.078	2	.17	.90	44	.01	3	.25	.01	.14	2	56
DNO4 07-20	20	50	186	826	7.5	51	10	1070	3.12	99	8	ND	2	646	10.1	20	3	12	5.81	.117	4	21	.53	78	.01	5	.37	.01	.21	2	75
DN04 10-01	4	15	11	101	.3	10	13	1169	3.38	14	8	ND	2	135	.5	3	3	48	2.92	.074	11	84	.77	140	.01	5	1.48	.02	.29	2	2
DN04 10-02	3	24	18	50	1.1	17	19	2680	5.49	68	8	ND	2 3	2098	.6	3	3	113	11.00	.049	3	89	2.09	60	.01	3	1.53	.02	.08	2	59
DN04 12-02	11	14	12	56	.7	10	3	1816	3.42	13	8	ND	2	216	.7	4	3	5	4.57	.014	3	209	1.37	184	.01	3	.18	.01	.10	2	10
DN04 12-03	2	34	70	487	1.2	3	7	807	3.57	1959	8	ND	3	359	4.0	12	3	7	2.59	.116	11	18	1.24	91	.01	3	.40	.02	.22	2	105
DN04 12-04	5	4	12	118	.5	9	7	2585	2.31	6822	8	ND	2	1023	2.2	4	3	3	6.66	.068	4	92	.74	51	.01	3	.18	.01	.10	2	360
DN04 12-06	2	26	21	46	.3	3	9	2682	3.72	15	8	ND	2	1253	.5	3	3	23	8.07	.090	7	50	1.29	122	.01	3	.99	.03	.11	2	4
DN04 12-07	10	56	23	174	1.9	42	17	1441	4.80	152	8	ND	2	371	1.3	6	4	11	4.45	.133	4	19	1.55	103	.01	3	.44	.01	.26	2	35
DN04 12-08	9	28	41	71	3.5	26	13	1452	4.21	1165	8	ND	2	372	.6	12	3	8	4.33	.126	3	47	1.35	60	.01	3	.29	.01	.17	2	195
DN04 12-09	7	1049	1349	1251	>100	73	21	1952	4.72	777	8	5	2	459	25.6	856	3	14	5.23	.144	3	65	1.79	58	.01	4	.41	.01	.17	2	5280
DN04 12-18	2	18	124	369	2.6	6	9	2129	4.56	88	8	ND	2	391	3.9	4	3	7	5.31	.107	7	23	1.50	76	.01	3	.40	.01	.15	2	58
DN04 12-19	6	585>	10000	2591	>100	17	8	1891	4.23	109	8	8	2	304	45.0	399	3	16	4.35	.058	2	128	1.40	49	.01	3	.44	.01	.15	2	4560
DN04 13-01	4	53	77	147	1.0	18	14	1579	4.58	66	8	ND	2	141	1.2	3	3	10	4.17	.080	3	48	.93	57	.01	3	.33	.01	.17	2	95
DN04 13-02	12	96	754	892	7.8	7	4	1115	3.07	20	8	ND	2	185	9.4	4	3	7	3.42	.023	1	145	.99	19	.01	3	.17	.01	.06	8	395
DN04 13-03	3	48	26	114	.6	21	15	2465	4.56	49	8	ND	2	490	.9	. 4	3	8	7.34	.106	9	19	1.58	72	.01	3	.38	.01	.21	2	5
DN04 13-26	2	14	69	140	2.1	10	11	2158	4.95	110	8	ND	2	228	1.4	- 6	3	14	4.75	.125	5	33	1.32	85	.01	5	.47	.01	.25	2	65
DN04 14-01	13	20	198	81	6.6	10	6	377	1.70	6	8	ND	2	207	1.1	8	3	43	2.13	.029	2	294	.19	27	.01	3	.43	.03	.04	2	20
DN04 14-02	9	19	14	32	.3	6	5	1054	1.95	11	8	ND	2	793	.5	. 3	3	10	6.66	.041	2	199	.72	208	.01	3	.21	,02	.11	2	90
DN04 15-04	5	53	98	1714	3.4	12	11	678	2.43	6561	8	ND	2	120	23.7	27	3	8	1.98	.051	3	116	.38	80	.01	4	.35	.01	.16	2	690
DN04 15-08	4	14	50	187	.5	54	10	3526	3.60	84	8	ND	2	1240	3.0	14	3	13	15.06	.064	- 5	27	3.66	59	.01	3	.14	.01	.09	2	6
DN04 17-01	4	2	5	13	.3	3	2	4266	1.62	7	8	ND	2	3134	.6	3	3	19	20.35	.027	4	83	.41	40	.01	3	.27	.01	.03	2	50
DN04 17-02	2	55	11	116	3.5	36	21	1660	5.96	220	8	ND	2	86	.6	10	5	19	2.88	.173	16	30	.35	72	.01	3	.48	.01	.22	2	32
DN04 17-03	5	54	0	91	1.2	27	20	1495	5.24	77	8	ND	2	186	:5	6	3	12	4.62	.098	5	32	1.06	97	.01	3	.40	.01	.22	2	12
DN04 17-04	5	50	12	81	5	20	17	1107	4.41	58	8	ND	2	356	.5	4	4	9	4.35	.116	5	48	.94	91	.01	3	.41	.01	.24	2	23
DN04 17-05	4	55	14	07	1.6	26	18	1421	5 33	125	8	ND	2	108	.5	5	3	14	3.73	.120	5	52	.52	107	.01	4	.48	.01	.27	2	12
DN04 17 05	-7 15	15	17	76	77	6	1	/11	1 10	10	8	ND	2	181	7	· 0	3	6	1 70	028	1	334	.35	20	.01	3	.09	.01	.04	2	21
DN04 17-00	44	701	1051	1124	-J.1 - 100	7	. I ว	477	40	- 74	- C	5	2	24	12 /	170	7		28	013	. 1	747	06	17	.01	7	07	01	04	2	9160
JN04 17-07	10	201	1001	1120	>100		· 2	121	.07	50		L	2	20	16.4	110	-	-	.20	.015						_	.01	.01		-	,,,,,
DN04 17-08	4	18	30	118	1.1	7	4	3503	4.56	43	8	ND	2	473	.8	· 6	3	8	7.85	.075	5	69	2.03	62	.01	- 3	.28	.01	.15	2	41
DN04 17-09	4	35	21	81	.7	12	12	1390	3.79	41	8	ND	2	262	.5	5	4	9	4.36	.163	10	14	1.01	170	.01	3	.41	.01	.22	2	6
DN04 17-13	3	27	79	104	8.1	12	14	1749	4,44	116	8	ND	2	275	1.1	15	3	7	4.61	.139	3	31	1.29	70	.01	3	.36	.01	.21	2	160
DN04 18-03	18	.41	14	274	.7	32	8	2527	4.10	49	8	ND	2	469	2.9	14	3	26	9.00	.108	- 4	10	3.63	80	.01	3	.27	.02	.12	2	2
DN04 18-04	29	53	63	727	,8	65	8	1122	3,61	90	8	ND	2	1237	8.3	8	3	13	7.68	.095	3	35	.55	94	.01	3	.42	.01	.15	2	10

ELEMENT SAMPLE		Cu ppm	Pb ppm	Zn ppn	Ag ppm	N i ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	S, ppm	Cd	Sb ppm	Bi ppm	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Tî %	B) ۸۱ ۶	R a %	к %	W ppm	Au
DN-04-08-26	59	66	144	004	55	87	14	751	1.15	110	0	110	2	174	0.0	70	4	22	7 17	474	,	24		(0	01	7	70	01			70
DN-04-08-27	7	37	153	306	2.7	35	14	1668	5 15	76	่ 8	ND	2	222	7.0	-37 27	7	15	5.41	107	4 5	15	.00 1 30	60	.01	. 7	. 30	.01	-22	2	26
DN-04-08-28	1	20	14	91	.3	5	10	1540	5.17	34	8	ND	2	229	8	 	ך צ	18	6 33	168	2		1.20	52	.01	ב ד		.01	-21	2	20
DN-04-10-03	1	18	28	42	1.4	15	27	2969	6.72	638	8	ND	2	311	.0	10	7	40	8.25	.100	7	70	2 1/	75	.01	7		.02	17		225
DN-04-10-04	5	28	69	173	5.4	6	5	991	2.23	51	8	ND	2	113	2.8	25	5	11	2.80	.021	1	95	.65	65	.01	5	.10	.01	.06	2	80
DN-04-10-05	1	142	107	255	16.0	34	29	1860	6.72	5940	8	ND	2	586	2.0	81	3	13	6.31	.066	1	18	2.16	48	.01	6	.27	.01	.15	2	42
DN-04-10-06	1	68	55	159	9.2	9	33	2059	7.78	1415	8	ND	2	692	1.2	30	3	38	7.21	.072	3	19	2.28	51	.01	3	.27	.01	.15	2	985
DN-04-10-07	2	94	90	236	2.0	17	17	2624	4.88	77	8	ND	2	263	1.7	11	3	13	5.13	.128	3	16	1.75	89	.01	3	.45	.01	.23	2	23
DN-04-10-08	4	80	21	116	9.6	26	19	2372	4.77	3196	8	ND	2	407	.5	27	3	9	5.78	.089	2	49	1.83	63	.01	3	.31	.01	.19	2	205
DN-04-10-09	4	78	110	225	4.0	26	20	2423	4.71	2054	8	ND	2	317	1.6	13	3	8	5.13	.093	1	36	1.73	58	.01	3	.26	.01	.16	2	180
DN-04-10-10	3	138	40	118	34.5	24	20	3089	5.60	219	8	ND	2	288	1.3	63	3	11	6.36	.098	1	30	2.01	68	.01	3	.35	.01	.21	2	105
DN-04-10-11	8	190	2782	723	48.0	18	16	1263	3.93	1274	8	ND	2	222	9.9	92	3	9	3.61	.062	1	83	1.06	62	.01	3	.22	.01	.14	2	780
DN-04-10-12	5	10	20	59	.7	6	4	1550	4.54	175	8	ND	2	233	.5	6	5	9	5.65	.031	6	60	1.50	27	.01	3	.12	.02	.08	2	60
DN-04-10-13	4	8	15	46	.3	8	8	1387	4.55	810	8	ND	2	234	.5	4	3	7	5.03	.042	4	66	1.35	37	.01	3	. 19	.02	.12	2	260
DN-04-10-14	4	39	60	59	7.6	22	14	1849	5.21	1156	8	ND	2	341	.5	21	5	9	5.10	.131	2	49	1.39	56	.01	3	.30	.01	.18	70	320
DN-04-10-15	10	101	347	427	30.1	13	8	999	2.25	238	8	ND	2	238	5.0	80	3	5	2.67	.071	2	83	.66	30	.01	4	. 19	.01	.12	>100	205
DN-04-10-16	5	94	267	635	21.6	43	17	1777	4.74	465	8	ND	2	334	7.0	61	3	9	4.79	.122	3	39	1.53	77	.01	8	.48	.01	.28	79	295
DN-04-10-17	8	339	849	911	>100	31	11	1163	2,98	436	11	ND	2	222	12.4	209	3	15	3.00	.106	2	139	.88	39	.01	7	.39	-01	.16	10	4160
DN-04-10-18	20	223	209	1591	19.0	57	11	1404	4.64	115	8	ND	2	230	18.0	50	3	23	4.74	.091	2	72	1.28	68	.01	3	.31	_01	. 15	2	145
DN-04-10-19	31	126	102	3521	5.1	72	9	835	3.92	121	8	ND	2	196	35.3	30	3	23	4.02	.105	2	24	.68	74	.01	3	.36	.01	.21	2	150
DN-04-10-20	34	93	105	1407	6.0	80	11	396	4.83	168	8	ND	2	88	13.5	38	3	27	1.82	.073	2	20	.34	39	.01	3	.39	.01	.21	2	145
DN-04-10-21A	27	101	72>	10000	3.2	69	7	975	2.93	86	8	ND	2	367	123.4	25	3	23	7.49	.078	3	35	.46	58	.01	10	33	.01	.16	2	36
DN-04-10-21B	20	60	47	4876	2.0	53	5	1557	2.58	74	8	ND	2	555	45.6	16	3	22	14.03	.054	6	39	.48	52	.01	4	.28	_01	.14	2	28
DN-04-11-01	1	44	7	110	.4	35	15	1629	4.63	86	8	ND	2	400	.5	4	3	8	5.05	. 131	11	14	1.56	100	_01	3	.45	02	.24	2	7
DN-04-11-02	7	122	654	944	25.5	51	16	1638	4.56	1628	8	ND	2	403	14.1	42	3	16	4.19	.120	3	38	1.48	61	.01	3	.46	.01	.17	2	1390
DN-04-11-03	25	109	86	224	19.6	79	21	1477	5.09	485	8	ND	2	425	2.1	33	3	21	6.15	.140	5	29	2.34	126	.01	3	.49	.02	.24	42	220
DN-04-11-04	4	44	95	203	6.0	75	22	2057	5.44	266	8	ND	2	528	2.3	21	3	18	8.27	. 152	4	41	2.95	210	.01	3	.36	.01	.21	2	65
DN-04-11-05	5	50	13	58	2.0	56	20	1196	4.48	92	8	ND	2	241	.5	12	3	24	5.38	.161	4	19	1.64	82	.01	. 4	.45	.01	.26	2	37
DN-04-11-06	4	56	75	175	6.3	73	21	1611	5.21	261	8	ND	2	298	1.6	22	3	19	6.25	.151	3	36	2.18	58	.01	3	.38	.01	.22	2	125
DN-04-11-07	7	24	73	93	2.7	119	30	1902	6.82	178	8	ND	2	380	.5	17	3	27	7.69	.172	3	37	2.68	53	.01	3	.35	.01	.20	2	130
DN-04-11-08	5	26	96	176	3.9	65	22	1909	6.48	240	8	ND	2	316	2.0	17	3	22	7.60	.119	2	36	2.56	42	.01	3	.46	.01	.19	2	90
DN-04-11-09	3	39	17	54	2.4	33	18	1528	5.63	51	8	ND	2	316	.5	18	3	18	6.96	.125	3	20	2.37	52	.01	3	.40	.01	.20	2	70
DN-04-11-10	7	533	3158	2687	>100	54	20	2280	5.29	391	8	ND	2	319	42.3	318	6	12	5.36	.117	3	29	1.77	77	.01	3	.40	.01	.21	2	3480
DN-04-11-11	9	147	1777	1058	66.9	25	15	2226	5.71	394	8	ND	2	327	16.0	92	3	9	4.52	.092	2	32	1.23	64	.01	3	.36	.01	.17	2	3440
DN-04-11-12	5	44	141	164	7.2	21	17	1751	5.56	87	8	ND	2	293	1.7	16	3	18	5.84	.103	3	18	1.64	99	.01	3	.44	.01	.22	2	135

PAGE 2

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

:EUTON RESOURCES CORP. roject: ample Type: Cores

An Analyst Report No. 2047187 Date: October 01, 2004

	Ag
SAMPLE	g/mt
DN-04-28-18	106
DN-04-31-09	1116
DN-04-32-09	1628
DN-04-32-10	165
DN-04-32-11	84.9

, .

PIONEER LA	er () i c	FORI	ES II	NC.			#1	.03-2	691 1	/ISC	OUNT W	АУ	Þ	MON	ю, вс	e c	ANAD	A V	6V (2R5			г	TELEI	PHONE		04)2	31-8	165
TEUTON RES Project: Sample Type:	SOURCI Core	es c	ORP.			G I	E O Mult dilu Ba, *Au and	C H i-elen ted to Ti, B, Analys is fir	E M] ment IC o 10 ml , W an sis - 1 nished	C C P Ana with d Lim O gran by AA	A L lysis - Water. ited for n sample or graph	A M 500 This Na, is d	Y A gram leac K a igest furna	L Y S sample h is pa nd Al. ed with ce AA.	is dige is dige ntial f Detec aqua n	C ested for Mn ction regia,	ER with 3 , Fe, C Limit 1 MIBK 6	T I ml of Ca, P, for Au extract	F I aqua La, (is ed,	C A regia Cr, Mg 3 ppm	TE		An Re Da	alyst port te: 0	No. 20	47226 15,	2004		
ELEMENT	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U Au ppm ppm	Th ppm	Sr ppm	Cd ppm	Sb B ppm pp	i V n ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	Al %	Na %	К %	W	Au*
DN-04-10-17B	7	472	1109	1265	>100	26	8	1179	3.05	262	8 ND	2	213	21.0	340	3 14	3.08	.069	1	92	.72	51	.01	3	.25	.01	.12	2	4980

For Ag greater than 35 ppm, assay digestion is required for correct data.

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

CEUTON RESOURCES CORP.

`roject:

Sample Type: Cores

Analyst ESam Report No. 2047170

Date: September 24, 2004

SAMPLE	Ag g/mt
DN-04-06-15	83.6
DN-04-08-18	640
DN-04-08-19	104
DN-04-09-16	254
DN-04-09-22	62.8
DN-04-09-27	183
DN-04-09-35	80.2
DN-04-10-17/-	101
DN-04-11-10	218
DN-04-13-20	585
DN-04-13-34	254
DN-04-15-02	85.6
DN-04-22-28	782
DN-04-25-07	137

IONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

ASSAY CERTIFICATE

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

EUTON RESOURCES CORP.

roject:

ample Type: Cores

Analyst <u>ESalm</u> Report No. 2047170

Date: September 24, 2004

SAMPLE	Ag g/mt
DN-04-06-15	83.6
DN-04-08-18	640
DN-04-08-19	104
DN-04-09-16	254
DN-04-09-22	62.8
DN-04-09-27	183
DN-04-09-35	80.2
DN-04-10-17	101
DN-04-11-10	218
DN-04-13-20	585
DN-04-13-34	254
DN-04-15-02	85.6
DN-04-22-28	782
DN-04-25-07	137

PIONEER LAB TORIES INC.

#103-2691 VISCOUNT WAY

MOND, BC CANADA V6V 2R5

TEUTON RESOURCES CORP. Project: Sample Type: Cores/Rocks GEOCHEMICAL ANALYSIS CERTIFICATE

R

Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA. Analyst <u>EGym</u> Report No. 2047150 Date: September 22, 2004

ELEMENT	Мо	Cu	Pb	Zn	Αα	Ni	Co	Mn	Fe	As	IJ	Au	Th	Sr		sh	Ri	v	Ca	Þ	la	Cr	Ma	Ro	 Ti		A 1	Na	r		A: 0*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ррл	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
DN-04-16-01	13	28	36	392	.5	26	5	2921	6.16	46	8	ND	2	600	4.9	я	3		0 7.8	045		54	2 00	81	01		20	01	11		 2/
DN-04-16-02	12	21	31	6	.3	4	1	87	10.36	1111	8	ND	5	106	.5	6	6	14	.31	.088		123	.12	35	.07	्र	30	.07	11. 19.	2	24 58
DN-04-16-02A	8	26	169	284	2.0	26	12	1540	3.07	65	8	ND	2	502	4:1	6	3	12	6.15	.071	2	135	1.34	77	.01	र र	.50	.01	.10	2	220
DN-04-16-028	10	35	18	84	2.7	68	28	1821	4.61	145	8	ND	2	617	1.1	14	3	19	7.33	.110	4	88	2.02	42	.01	ž	.42	01	13	2	54
DN-04-16-18	4	70	40	115	4.7	25	16	1596	4.76	560	8	ND	2	481	1.2	11	5	9	4.92	.088	3	54	1.43	65	.01	3	.29	.01	.18	2	120
DN-04-18-01	4	155	38	146	1.5	19	2	1956	8.09	20	8	ND	2	295	1.3	5	5	28	4.49	.103	4	95	1.48	48	.01	3	.30	.02	.12	2	8
DN-04-18-02	16	73	12	250	1.3	31	. 9	319	3.87	76	8	ND	2	159	3.1	10	3	9	1.75	.070	3	12	.56	71	.01	4	.41	.01	.16	2	4
DN-04-18-06	14	56	11	11	.3	4	2	70	4.36	61	8	ND	5	474	.5	4	3	24	.72	.296	11	34	.11	126	.01	.3	.57	.01	.33	2	18
DN-04-18-10	43	68	35	292	1.8	135	32	1142	4.81	68	8	ND	2	389	4.7	12	3	113	5.49	.267	8	83	2.35	161	.01	3	1.03	.01	.12	2	12
DN-04-18-11	1	69	3	86	1.3	186	26	1330	7.01	33	8	ND	2	474	.5	11	3	21	7.65	.283	11	69	3.31	109	.01	3	1.43	.01	.14	2	20
DN-04-18-35	3	77	5	93	.5	15	13	1464	4.35	44	8	ND	2	295	.5	5	3	11	4.15	.143	7	23	1.23	76	.01	3	.49	.01	.21	2	9
DN-04-18-36	7	52	161	929	1.6	16	17	1753	4.90	1332	8	ND	2	409	7.9	[:] 9	3	17	5.83	.127	5	26	1.61	176	.01	5	.47	.01	.23	2	95
DN-04-20-17	4	48	49	109	16.9	20	15	1756	4.12	293	8	ND	2	273	1.7	36	3	11	3.88	.113	4	14	1.11	73	.01	3	.40	.01	.24	2	280
DN-04-20-18	4	65	13	94	22.2	22	18	1924	4.61	304	8	ND	2	367	1.6	43	3	11	4.87	.122	4	9	1.36	64	.01	6	.42	.01	.22	2	245
DN-04-20-19	4	38	64	169	20.0	15	15	1766	3.95	261	8	ND	2	303	2.6	29	5	13	4.41	.121	5	11	1.21	72	.01	6	.38	.01	.24	2	180
DN-04-20-20	3	10	13	84	2.7	17	15	1504	3,49	163	8	ND	2	272	.9	9	3	10	3.83	.109	5	13	1.07	76	.01	5	.41	.01	.26	2	115
DN-04-20-21	2	58	. 27	99	25.2	25	19	1320	3.89	505	8	ND	2	259	2.0	44	3	10	3.58	.116	4	7	1.00	77	.01	3	.40	.01	.25	2	650
DN-04-21-03	12	114	15	72	.5	38	13	3777	4.82	16	8	ND	2	1815	.5	21	3	11	22.77	.044	17	28	1.90	183	.01	3	.36	.02	.19	2	5
DN-04-21-04	8	72	3	24	.4	3	4	1315	2.32	5	8	ND	6	213	.5	5	3	12	3.45	.092	14	85	.94	177	.01	3	.29	.04	.17	2	3
DN-04-21-05	2	9	7	62	.3	1	14	887	4.25	13	8	ND	2	199	.5	3	3	9	2.81	.145	11	13	.74	282	.01	3	.60	.02	.37	2	14
DN-04-21-14	- 3	92	12	125	.3	19	19	1387	5.10	29	8	ND	2	332	.5	11	3	20	5.37	-117	4	30	1.73	291	.01	3	.64	.02	.24	2	6
DN-04-21-15	4	111	15	85	.9	33	21	2271	5.91	42	8	ND	2	322	.6	9	3	15	6.57	.114	3	33	2.06	180	.01	3	.49	.02	.25	2	10
DN-04-22-01	5	58	4	147	.3	299	42	1630	7.85	103	8	ND	2	56	.5	317	3	24	.92	.238	35	93	.18	131	.01	3	.88	.01	.20	2	5
DN-04-22-02	22	96	24	135	1.2	123	38	1058	7.49	72	8	ND	2	310	.7	30	3	39	4.71	.653	. 7	86	1.51	106	.01	- 3	1.03	.01	.34	2	10
DN-04-22-03	6	39	6	39	.6	25	10	1704	3.34	65	8	ND	2	364	.5	7	3	7	6.46	.112	10	15	1.33	124	.01	4	.39	.02	.20	2	2
DN-04-22-04	11	15	12	46	1.2	13	10	1627	3.78	45	8	ND	2	174	.7	8	3	10	4.97	.097	3	80	1.06	157	.01	6	.30	.01	.18	2	28
DN-04-22-05	5	20	8	48	.9	5	11	1607	3.27	27	8	ND	5	196	.5	6	3	10	4.18	.111	10	27	1.11	137	.01	5	.40	.02	.23	2	16
DN-04-22-06	10	142	800	505	82.3	15	10	1176	3.33	207	8	3	2	167	8.0	100	3	7	2.88	.098	2	89	.74	82	.01	4	.35	.01	.20	2	4580
DN-04-22-07	1	12	12	46	2.2	6	10	1380	4.83	553	8	ND	2	209	.5	8	3	7	4.02	.122	4	23	1.08	100	.01	5	.47	.01	.27	2	60
DN-04-22-08	4	25	8	49	2.8	11	9	1960	4.64	114	8	ND	2	246	.5	11	5	11	5.74	.082	3	57	1.63	82	.01	9	.39	.01	.23	2	32

TELEPHONE 04)231-8165

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

TEUTON RESOURCES CORP.

>roject:

Sample Type: Cores

Analyst 12 Sam

Report No. 2047135 Date: September 10, 2004

			Ag				
	SAMPLE		g/mt				
	DNO4 02-21)	10 1				
	DN04 02-32	2	307				
	DN04 02-3.	1	JU7 A10				
	DN04 02-34	*	412				
	DN04 02-3	5	115				
	DN04 02-50	,	470				
	DN04 02-37	7	6.2				
	DN04 16-03	3	18.1				
	DN04 16-04	1	1842				
	DN04 16-09	5	9.8	 · · · · · · · · · · · · · · · · · · ·	· .	e george de la composition de la compos	
•	DN04 16-06	5 14 14 14 14	5.9				
	DN04 16-07	, 7	19.8	· · · · ·	a ta shekara	ti di ta estre	
	DN04 16-08	3	14.2				
	DN04 16-09	• ·	15.8				
	DN04 16-10)	38.1				
	DNO4 16-11	L	5.6				
	DNO4 16-12	2	50.2				
	DN04 18-16	5	231				
	DN04 18-17	7	785				
	DN04 18-18	3	29.2				
	DN04 18-19	9	8.1				
	DN04 20-0	L	10.9				
	DN04 20-02	2	12.9				
	DN04 20-03	3	50.1				
	DN04 20-04	1	332				
	DN04 20-09	5	1184				
	DN04 20-06	5	1163				
	DN04 20-07	7	4042			·	
	DN04 20-08	3	56.9				
	DN04 20-09	Ð	18.1				
	DN04 20-10)	16.1				
	DN04 20-13	L	10.1				
	DN04 20-12	2	245				
11. Too	DN04 20-13	3	146				
	DN04 20-14	1	10.1				
	DN04 20-1	5	52.1				

UTON RESOURCES CORP. oject: mple Type: Cores

	Ag
SAMPLE	g/mt
DN04 20-16	19.5

PIONEER L	A. .	YAY	7	Mon	D, 1	BC	c	ANAD	v v	6V 2	2R5			T	ELEI	PHONE	·	94)2	31-81	L65										
TEUTON RE Project: Sample Type:	Cores	es c	ORP.			GI	E O Muli dilu Ba, *Au and	C H ti-eler ted to Ti, B, Analys is fir	EM nentIC 510 ml , Wan sis - 1 515 hed	IC PAna with dlim 0gran by AA	A L lysis - Water. ited for n sample or gran	A .500 This Na, is c	N A gram Lead K a ligest	LYS sample h is pa and Al. ced with	I : is di rtial Det aqua	S igesi for cecti a reg	C ed w Mn, on L jia,	ER ith 3 Fe, C imit f MIBK e	TI ml of a, P, or Au extract	F I aqua La, C is ed,	C A regia r, Mg 3 ppn	. T E 1, 1, 1.		An Rej Da	alyst port te: O	No. 20 ctober	<u>501</u> 47203 08,	2004		
ELEMENT	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	U At	ı Th	Sr	Cd	Sb	Bi		Са	P	La	Cr	Ma	Ba	Ti	B	AL	Na	<u></u> к	v	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm ppr	n ppn	ppm	ррл	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
DN=0/-20-22	5	38	10	206	2.8	23	5	018	3 73	74	8 M	. 2	1.77	5 0	8	र	12	5 62	445	14	۷۵	1 17	81	01	3	34	01	10	2	16
DN-04-20-22	17	10	3	181	2.0 Z	17	2	1580	1 28	16	8 M	, <u>-</u>	13/0	23	6	ר ד	10	11 18	023	۰-۱ ک	185	38	AA	.01	्र र	15	.01	.10	2	4
DN-04-20-24	25	42	3 74	561	25	42	6	1266	2 18	53	8 N	2	375	. 7 4	11	7	0	8 20	077	4	45	36	101	.01	3	.23	.01	.14	5	65
DN-04-20-25		7	3	33	.3	16	3	178	1.56	17	8 N	2	73	.5	3	3	ý	.75	_041	1	127	.27	19	.01	.3	.17	.01	.04	2	5
DN-04-20-26	12	20	8	13	.3	.0	2	201	3.29	-41	8 NI	2	358	.5	. 4	3	12	1.43	.221	3	46	.34	114	.01	5	.70	.02	.33	2	105
BU 01 20 27			7	00	7	24	A /	4000	/ 57	-	0 1/2					7		F 70	47/	,	71	4 7/	G /	04	7	10	07	74	5	~
DN-04-20-27	د ء	79	47	80	.) 7	20	10	1222	4.00	20	8 NL) <u> </u>	410	· .)	: 0	د 7	11 0	2.39	470	4 E	20 45	1.74	04 71	_01 _01	כ ד	-40	ີດາ	•21 21	2	43
DN-04-20-28	ו ז	90	11	97 97	د. ،	40	17	1055	4.00	200	O NL) (\ 1	210	د. ∡	12	כ ד	0 7	5.90	120	- 7 - 7	12	1.00	51	.01	<u>ר</u>	بدد. ۲۵	.02	20	2	27
DN-04-20-29	2	71	24 45	207	4 7	20	17	1200	4.07 5.09	214	0 NL 9 N	, 2 , 3	5/1		7	ר ד		5.00	006	ר. ד	17	2 58	50	01	י ד	.30	.01	27	2	21
DN-04-20-35	4	11/	28	127		72	14	1407	5 38	168	8 M	, 2 , 2	3/5	5	17	7		5.88	103	יב ד	12	1 82	57	.01	ר ד	26	.01	.23	2	10
		1.4	20	16	• /	- -	14	. 1123	فال و ل	100	0.11	, L			••	Ĩ.	Ŭ	2,00		5		1006	21			8120			-	.,
DN-04-24-01	4	51	16	142	.3	26	22	1311	5.44	20	8 NI	2	212	.5	3	3	45	3.68	.141	5	25	1.66	116	.01	3.	1.84	.02	.12	2	17
DN-04-24-02	5	9	25	68	.4	5	4	2051	3.92	9	8 NI) 2	1860	.5	6	3	7	13.24	.043	4	64	1.19	48	.01	3	.36	.01	.07	2	10
DN-04-24-03	5	59	15	92	.3	27	17	1289	3.55	24	8 NI) 2	223	.5	10	3	13	3.63	.109	4	37	.76	107	.01	3	.73	.01	.13	2	9
DN-04-24-04	3	66	19	128	.3	19	14	1280	4.15	20	8 NE) 2	269		9	3	13	3.85	.104	4	28	1.44	. 99	.01	3	.56	.01	.14	2	25
DN-04-24-27	13	88	52	1097	5.5	41	6	950	3.90	89	8 N) 2	325	14.5	30	3	23	5.27	.357	6	22	,59	51	.01	3	.31	.01	.14	2	19
DN-04-24-28	16	65	11	799	2.0	43	6	969	4.97	83	8 NI	2	192	12.7	11	3	15	3.36	.089	4	11	.84	63	.01	3	.30	.02	.15	2	17
DN-04-25-01	3	65	43	211	.5	5	15	1697	4.09	30	8 NI) 2	410	1.6	5	3	34	5.40	.143	5	26	1.14	604	.01	3	1.26	.01	.43	2	245
DN-04-25-02	5	36	282	680	6.6	6	14	3676	6.88	400	8 N.) 2	578	6.5	16	3	9	7.86	.106	5	38	2.49	181	.01	. 5	.39	.01	.29	2	720
DN-04-25-03	2	29	24	50	2.0	2	12	1696	3.91	16	8 NI) 2	363	.5	7	3	10	5.39	.103	3	23	.83	182	.01	5	.37	.01	.28	2	12
DN-04-25-04	4	16	40	38	.9	1	6	1702	2.47	7	8 NI) 7	251	.5	5	3	7	4.24	.067	10	57	.89	92	.01	. 3	.18	.02	.12	2	3
DN-04-25-18	3	21	19	77	.7	13	9	1529	3.25	31	8 NI	2	207	.5	5	3	14	3.57	.054	4	51	1.11	138	.01	5	.53	.01	.32	2	2
DN-04-25-19	5	65	37	138	2.6	23	18	1358	4.59	293	8 NI) 2	299	.8	8	3	12	4.18	.118	3	90	1.21	108	.01	5	.48	.01	.31	2	365
DN-04-25-20	4	67	22	95	.8	33	14	1654	4.15	54	8 NI) 2	276	.5	7	3	6	4.86	.108	3	18	1.56	64	.01	3	.28	.01	.16	2	8
DN-04-25-21	16	61	29	120	.7	25	16	1739	3.72	55	8 N	2	292	.7	13	3	11	5.36	.101	3	33	1.24	109	.01	3	.33	.01	.20	2	12
DN-04-26-04	. 15	76	37	94	5.9	11	17	2760	5.84	3164	8 N	2	336	.8	16	3	10	5.21	.147	3	83	1.41	53	.01	3	.25	.01	.16	2	560
DN-04-26-05	2	47	8	67	.9	12	12	2007	5.83	47	8 N) 2	296	.5	6	3	14	7.88	.083	3	54	2.35	73	.01	3	.30	.01	.16	2	220
DN-04-26-06	2	34	13	103	.3	20	28	2152	5.64	77	8 N) 2	423	.5	6	3	22	6.34	.074	2	34	1.95	43	.01	3	.34	.01	.11	2	10
DN-04-26-07	3	20	3	67	.3	12	15	2044	4.14	41	8 N	2	332	.5	5	3	16	5.85	.031	2	75	1.81	31	.01	3	.15	.01	.09	2	85
DN-04-26-08	8	15	529	761	8.3	9	6	3651	2.98	115	8 N) 2	227	8.1	13	3	7	3.81	.024	1	122	.65	37	.01	3	11	.01	.05	6	170
DN-04-26-09	3	. 16	70	56	1.2	14	17	3076	5.21	56	8 N) 2	364	.5	6	3	19	7.10	.075	2	45	2.00	40	.01	3	.17	.01	.12	2	31
					14 - ¹																									
																	7													 .

ELEMENT		Cu	Pb	Zn	Âg	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	B	AL		K	W	Au
SAMPLE	ppii	ppn	ppn	ppm	ppin	ppn	ppm	ppn	10	ppm	ppm	ppm	ppn	ppm	ppm	ppn	- Abul	ppm	76	76	ppm	ppn	76	ppm	10	ppm	10	76	76	ppm	ppp
DN-04-22-09	2	17	35	55	2.9	11	9	2088	5.01	261	8	ND	2	249	.7	9	3	16	5.80	.070	3	31	1.68	117	.01	8	.61	.01	.37	2	80
DN-04-22-10	5	33	34	43	5.8	25	. 19	2005	5.56	376	. 8	ND	2	277	"5·	16	4	12	5.38	.116	2	51	1.47	65	.01	3	.36	.01	.20	2	130
DN-04-22-11	4	76	19	194	1.6	9	12	2863	4.51	4092	8	ND	2	270	1.4	7	3	15	4.85	.102	3	30	1.38	114	.01	5	.51	.01	.29	2	420
DN-04-22-12	3	64	19	177	1.9	43	17	3259	5.34	2078	8	ND	2	343	1.3	14	3	10	6.46	.116	3	28	2.21	123	.01	3	.32	.01	.17	2	160
DN-04-22-13	2	38	16	193	2.5	10	13	2622	4.46	3083	8	ND	2	190	1.3	17	3	6	3.01	.124	3	19	.80	84	.01	6	.42	.01	.23	2	305
DN-04-22-14	28	43	69	104	8.7	48	25	3490	4.23	2108	8	ND	2	334	.9	27	3	25	4.77	.096	2	97	1.54	91	.01	4	.36	.01	.19	2	360
DN-04-22-15	6	86	563	422	20.4	28	18	2449	4.88	488	8	ND	2	247	5.7	30	3	44	4.54	.110	3	60	1.49	76	.01	7	1.20	.02	.41	2	505
DN-04-22-16	2	86	21	94	4.8	24	21	2987	6.12	2373	8	ND	2	366	.7	11	4	23	6.13	.115	2	19	1.98	103	.01	3	.44	.01	.26	2	480
DN-04-22-17	6	155	481	339	26.8	24	18	1750	4.07	1657	8	ND	2	211	4.7	30	3	16	3.69	.103	3	54	1.18	89	.01	3	.41	.01	.22	2	305
DN-04-22-18	3	42	175	88	8.7	12	11	1884	3.87	396	8	ND	2	232	1.1	14	3	17	4.30	.111	3	34	1.31	92	.01	4	.39	.01	.21	2	320
DN-04-22-19	4	12	101	48	3.8	18	14	1867	4.38	313	8	ND	2	275	.5	8	3	17	4.53	.110	3	33	1.36	96	.01	3	.33	.01	.21	2	295
DN-04-22-20	12	34	33	77	.9	28	.15	1922	5.02	82	8	ŅD	2	286	.5	10	3	13	5.76	.117	3	29	1.61	106	.01	5	.35	.01	.22	2	50
DN-04-22-21	4	23	12	47	.3	11	9	1475	4.05	27	8	ND	2	298	.5	5	3	8	5.21	.062	3	82	1.69	99	.01	3	.31	.01	.20	2	9
DN-04-22-22	2	65	8	108	.8	22	16	2123	5.08	117	8	ND	2	237	.8	6	3	14	5.16	.111	5	27	1.84	232	.01	3	.44	.01	.25	2	14
DN-04-22-23	4	53	12	26	.9	26	19	1290	4.45	134	8	ND	2	139	.5	6	3	18	2.91	.107	4	37	1.14	123	.01	4	.65	.01	.39	2	20
DN-04-22-24	3	52	19	177	1.6	15	15	1615	3.67	540	8	ND	2	165	1.4	8	3	8	3.93	.105	5	21	1.20	79	.01	7	.41	.01	,26	2	54
DN-04-22-25	2	59	17	53	2.6	20	14	1825	4.22	169	8	ND	2	218	.5	10	3	12	5.14	.081	4	31	1.54	74	.01	.3.	.37	.01	.24	2	80
DN-04-22-26	2	55	18	231	1.4	25	19	1691	5.05	228	8	ND	2	244	2.1	9	3	12	5.42	.097	3	19	1.65	97	.01	3 -	.39	.01	.24	2	90
DN-04-22-27	3	40	28	75	7.0	20	15	1820	4.26	180	8	ND	2	224	.8	16	3	12	5.07	.112	4	16	1.56	65	.01	7	.39	.01	.24	2	80
DN-04-22-28	9	1347>'	10000>	10000	>100	12	7	781	2.17	165	8	ND	2	109	191.8	1275	5	11	1.99	.030	3	249	.62	71	.01	4	.46	.01	.27	2	2630
DN-04-22-29	3	59	53	435	12.6	23	17	1947	4.63	384	8	ND	2	292	6.1	29	3	13	5.32	.093	3	21	1.70	65	.01	3	.36	.01	.22	2.	205
DN-04-22-30	2	57	23	66	4.2	19	14	1852	4.63	899	8	ND	2	288	.6	15	3	11	4.96	.103	3	25	1.58	71	.01	3	.35	.01	.23	2	240
DN-04-22-31	2	33	6	53	1.4	17	13	1725	4.74	100	8	ND.	2	246	.5	6	3	9	5.67	.087	3	31	1.71	73	.01	- 3	.30	.01	.20	2	18
DN-04-23-01	2	50	7	180	.3	27	13	947	4.21	43	- 8	ND	2	110	.9	10	5	14	2.04	.091	4	23	.67	102	.01	3	.92	.01	.20	2	9
DN-04-23-02	1	70	21	90	.3	78	.19	1445	6.84	21	8	ND	2	341	.5	17	3	26	6.12	.115	5	44	2.28	76	.01	3	1.41	.01	.20	2	6
DN-04-23-03	- 1	34	24	75	4.8	13	9	2924	4.25	63	9	ND	2	295	.7	10	3	14	6.21	.138	8	31	1.95	194	.01	3	.43	.01	.27	2	16
DN-04-23-04	3	87	23	81	2.7	34	24	2034	4.27	58	8	ND	2	228	6	17	3	17	5.60	.153	5	21	1.70	138	.01	3	.45	.01	.28	2	18
DN-04-23-05	1	17	5	73	.7	6	7	1923	3.63	23	8	ND	2	214	.7	5	3	12	5.04	.162	9	14	1.52	126	.01	8	.50	.01	.30	2	12
DN-04-23-06	7	27	202	512	2.8	26	21	897	3.26	228	8	ND	2	215	8.2	28	3	21	2.60	.110	2	152	.77	122	.01	3	.76	.01	.36	3	1410
DN-04-23-07	1	9	19	62	.5	22	20	2351	5.29	70	8	ND	2	246	.5	9	3	14	6.60	.106	4	25	1.93	82	.01	3	.36	.01	.24	2	23
DN-04-23-08	1	9	15	64	.9	22	21	2289	5.00	76	9	ND	2	250	.5	7	3	15	6.30	.110	3	20	1.85	72	.01	3	.32	.01	.22	2	17
DN-04-23-09	1	8	43	67	1.8	23	26	2801	5.79	176	8	ND	2	239	.6	8	3	19	6.62	.109	3	43	1.94	111	.01	3	.44	.01	.24	2	39
DN-04-23-10	9	10	66	121	1.9	9	5	582	1.55	128	8	ND	2	92	1.5	- 4	3	8	1.53	.059	3	200	.38	49	.01	5	.24	. 01	.14	2	240
DN-04-23-11	2	10	21	43	1.3	28	21	2641	5.28	89	8	ND	2	194	.5	10	3.	14	6.45	.110	3	26	1.96	119	.01	3	.37	.01	.25	2	24
DN-04-23-12	2	14	20	54	.8	38	24	2203	5.07	59	8	ND	2	200	.5	12	3	17	5.90	.136	4	15	1.83	76	.01	3	.42	.01	.27	2	52

ELEMENT SAMPLE		Cu	Pb ppm	Zn	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	SI ppm	b0 mqq	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti % I	B ppm	Al %	٢	к %	W ppm	Au ppb
DN-04-23-13	3	24	10	57	8	27	10	2012	4 87	4.8		ND	2	240	- 5	10	י. ד	15	6 09	122	4	. 10	1 82	75	01	3	.30	.01	25	2	17
DN-04-23-14	1	11	7	45	.4	30	21	1400	3.90	40	8	ND	2	132	.5	11	3	15	3.70	.129	. 7	14	.74	146	.01	3	.50	.01	.31	2	15
DN-04-23-15	5	13	22	58	1.1	32	21	1751	4.98	37	8	ND	2	280	.5	11	3	.11	5.98	.167	4	30	1.59	119	.01	3	.37	.01	.24	2	10
DN-04-23-16	3	13	17	51	.9	19	15	1668	4.09	29	8	ND	2	244	.5	8	3	12	5.45	.149	5	16	1.52	144	.01	- 3	.41	.01	.26	2	38
DN-04-23-17	2	14	25	43	1.1	13	14	1883	3.40	27	8	ND	2	422	.5	: 7	- 3	9	8.07	.144	5	18	1.30	139	.01	3	.38	.01	.23	2	17
DN-04-23-18	4	12	57	92	1.5	21	19	2660	4.81	46	8	ND	2	245	.9	9	4	14	6.50	.109	3	23	1.99	131	.01	3	.33	.01	.21	2	15
DN-04-23-19	5	12	52	153	2.1	14	15	2886	4.95	60	8	ND	2	233	1.4	10	3	18	5.88	.110	2	23	1.60	101	.01	6	.50	.01	.23	2	51
DN-04-23-20	7	16	209	124	6.2	11	.10	1728	4.06	331	8	ND	2	202	.9	14	3	9	2.98	.125	3	43	.85	61	.01	4	.41	.01	.16	2	480
DN-04-23-21	4	4	145	273	1.9	2	3	925	1.76	108	8	ND	2	96	3.6	. 12	3	3	1.47	.056	4	75	.32	45	.01	12	.23	.01	.16	2	245
DN-04-23-22	4	3	114	305	1.6	2	3	1446	2.24	116	8	ND	2	147	4.5	7	3	3	2.32	.074	4	52	.49	60	.01	3	.30	.01	.21	2	135
DN-04-23-23	7	35	142	96	8.7	18	15	2105	5.34	377	8	ND	2	292	1.0	16	3	14	4.56	.126	3	43	1.26	60	.01	7	.41	.01	.17	2	605
DN-04-23-24	4	29	37	107	5.3	17	17	1886	4.70	170	8	ND	2	272	.7	13	3	11	5.23	.119	3	30	1.45	84	.01	3	.36	.01	.19	2	110
DN-04-23-25	12	16	118	129	4.9	12	10	1697	4.20	368	8	ND	2	203	1.4	· 13	3	7	3.48	.119	3	26	1.01	66	.01	3	.39	.01	.19	2	185
DN-04-23-26	13	19	96	75	6.2	24	12	2242	3.82	100	8	ND	2	325	.8	16	3	6	5.97	.243	4	- 19	1.27	81	.01	3	.37	.01	.19	2	61
DN-04-23-27	12	17	149	99	6.6	16	14	1047	3.21	225	8	ND	2	150	1.2	15	3	6	2.51	.142	5	58	.62	76	.01	6	.41	.01	.24	2	160
DN-04-23-28	7	17	142	116	4.7	10	14	2058	4.48	287	8	ND	2	285	1.6	12	3	9	4.63	.121	7	35	1.30	76	.01	4	.35	.01	.20	2	240
DN-04-23-29	3	15	· 35	63	3.5	9	9	2452	4.27	108	9	ND	2	335	.6	9	3	10	5.31	.129	6	13	1.48	79	.01	7	.36	.01	.21	2	90
DN-04-23-30	3	17	166	399	4.4	6	10	2384	4.06	133	8	ND	2	256	5.5	9	3	7	4.52	.103	3	18	1.16	73	.01	- 5	.38	.01	.20	2	220
DN-04-23-31	2	38	27	47	2.1	5	9	1566	2.81	760	8	ND	2	171	.5	· 9	3	9	2.93	.117	4	10	.72	86	.01	4	.44	.01	.25	2	135
DN-04-23-32	2	39	9	52	8.	5	. 7	3030	4.74	827	8	ND	2	261	.5	5	3	10	5.46	.102	4	15	1.46	74	.01	4	.39	.01	.21	2	75
DN-04-23-33	3	52	17	35	2.5	11	16	2540	4.04	360	8	ND	3	154	.5	11	3	10	3.68	.111	3	16	.97	77	01	7	.40	.01	.22	2	130
DN-04-23-34	3	16	14	43	1.3	15	21	3635	5.27	143	8	ND	2	237	.5	. 8	3	11	6.30	.100	2	16	1.72	83	.01	3	.38	.01	.22	2	23
DN-04-23-35	2	35	49	77	6.2	19	22	3551	5.70	129	8	ND	2	274	.8	16	3	15	6.65	.115	1	14	1.93	78	.01	3	.41	.01	.23	2	95
DN-04-23-36	6	135	76	99	19.9	30	26	1435	4.38	268	8	ND	2	197	.8	27	3	15	3.23	.134	2	18	1.09	63	.01	3	.49	.01	.19	2	260
DN-04-23-37	2	153	11	225	2.0	25	19	2100	5.34	9 9	8	ND	2	259	1.1	12	3	16	4.34	.119	5	16	1.70	76	.01	3	.43	.01	.18	2	37
DN-04-23-38	4	106	26	197	29.7	24	15	2093	4.19	649	8	ND	2	270	1.4	43	3	12	4.24	.107	3	34	1.47	64	.01	3	.38	.01	.17	2	1410
DN-04-23-39	4	80	14	116	.8	25	21	1570	5.11	93	8	ND	2	255	.5	[°] 10	4	17	4.03	.108	4	20	1.76	64	.01	.3	.44	.01	.17	2	18
DN-04-23-40A	1	38	8	64	.3	20	32	2703	6.66	193	8	ND	2	445	.5	10	3	37	8.09	.060	2	12	2.51	37	.01	3	.72	.01	.14	2	28
DN-04-23-40B	1	49	6	103	.5	28	37	2377	7.64	94	8	ND	2	398	.5	11	3	37	6.96	.061	3	20	2.63	38	.01	3	.73	.01	.14	2	21
DN-04-25-05	2	53	689	514	16.0	26	17	1753	4.23	102	8	ND	2	426	7.2	31	3	10	4.59	.119	5	27	1.37	147	.01	3	.46	.01	.28	2	310
DN-04-25-06	3	22	88	161	3.1	4	10	1958	4.13	173	8	ND	2	209	1.9	. 11	3	9	4.36	.144	6	16	.55	219	.01	· 5 ·	.49	.01	.26	2	205
DN-04-25-07	4	234	3180>	10000	>100	9	8	652	2.10	87	8	. 5	2	108	198.2	169	4	8	1.76	.060	3	127	.38	64	.01	- 4	.31	.01	.15	2	7560
DN-04-25-08	2	14	60	86	1.9	8	12	1450	4.48	170	8	ND	2	223	1.0	7	3	9	4.74	.122	4	13	1.22	76	.01	7	.39	.01	.20	2	210
DN-04-25-09	1	13	9	39	.8	10	9	1407	4.04	58	8	ND	2	238	.5	6	3	11	5.06	.123	6	14	1.29	119	.01	5	.48	.01	.27	2	21
DN-04-25-10	1	39	16	55	1.2	20	14	1259	3,94	203	8	ND	2	233	.5	12	5	11	4.38	.145	5	9	1.38	113	.01	3	.50	.01	.28	2	105

PIONEER LA ATORIES INC.

#103-2691 VISCOUNT WAY

IMOND, BC CANADA V6V 2R5

TELEPHONE 604)231-8165

TEUTON RESOURCES CORP. Project: Sample Type: Cores GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis - .500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.

1

Analyst Report No. 2047163 Date: September 24, 2004

ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	W	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
DN-04-20-30	1 -	76	64	187	.9	36	18	817	3.45	283	9	ND	2	222	1.9	14	3	12	3.94	.135	4	9	1.01	52	.01	4	.45	.01	.21	2	33
DN-04-20-31	2	88	17	128	2.6	29	11	1187	4.77	181	8	ND	2	492	1.2	11	3	17	6.67	.102	4	17	1.62	86	.01	4	.67	.01	.27	2	53
DN-04-20-32	2	86	12	125	.5	37	16	872	4.28	128	8	ND	2	273	.9	10	3	14	4.81	.128	4	11	1.42	66	.01	4	.54	.01	.24	2	22
DN-04-20-35	2	112	109	778	3.2	42	17	720	3.90	366	8	ND	2	201	6.7	16	3	17	3.73	.118	5	15	1.10	86	.01	4	.72	.01	.31	2	25
DN-04-20-36	5	66	1321	290	8.3	35	14	651	2.83	671	8	ND	2	239	2.9	24	3	13	3.28	.156	2	91	.70	93	.01	4	.54	.01	.23	5	125
DN-04-20-37	2	79	58	241	1.8	44	16	1329	4.89	240	8	ND	2	304	2.1	16	3	12	5.78	.124	4	12	1.78	76	.01	3	.49	.01	.23	3	72
DN-04-20-38	2	76	78	52	3.9	48	17	1596	4.92	177	8	ND	3	391	.6	21	3	19	5.78	.140	4	15	1.64	79	.01	3	.67	.01	.25	2	45
DN-04-24-05	5	79	23	81	2.1	25	24	2689	7.38	195	8	ND	2	217	.6	11	6	29	7.57	.087	3	21	.88	121	.01	3	.46	.01	.20	2	40
DN-04-24-06	13	60	225	333	14.4	23	17	1840	3.66	86	8	ND	2	278	4.1	35	3	11	4.22	.105	2	77	1.08	53	.01	3	.29	.01	.13	2	140
DN-04-24-07	2	19	43	319	2.2	8	9	1604	3.71	95	8	ND	2	386	2.6	12	3	11	5.16	.121	6	17	1.08	76	.01	3	.40	.01	.19	2	65
DN-04-24-08	4	11	11	49	.6	10	10	1187	3.38	22	8	ND	2	684	.5	7	3	11	6.88	.119	5	23	1.05	129	.01	4	.48	.02	.22	2	28
DN-04-24-09	22	23	40	58	.9	31	. 14	989	4.06	38	9	ND	2	756	.6	15	3	12	7.02	.111	3	25	.82	95	.01	4	.51	.01	.21	2	9
DN-04-24-10	2	9	6	60	.3	3	6	1370	3.50	10	8	ND	2	811	.6	6	3	15	6.32	.108	9	27	1.10	198	.01	3	.40	.03	.15	2	12
DN-04-24-11	14	17	21	69	.3	18	13	1276	3.79	32	8	ND	2	1020	.6	12	3	14	7.67	.111	4	17	.96	106	.01	4	.48	.02	.19	2	7
DN-04-24-12	4	18	4	87	.5	7	8	1009	3.50	24	8	ND	2	816	6	6	3	12	5.57	.113	10	23	.97	159	.01	4	.53	.02	.22	2	18
DN-04-24-13	4	26	12	125	.3	25	16	851	2.62	42	8	ND	2	700	.6	11	3	7	6.21	.112	5	25	.75	151	.01	5	.65	.01	.31	2	6
DN-04-24-14	2	11	15	57	.3	15	6	1182	2.41	22	8	ND	2	1321	.5	11	3	4	14.38	.111	3	9	.59	213	.01	3	.31	.01	.15	2	25
DN-04-24-15	9	15	23	71	.3	20	12	1127	3.53	28	9	ND	2	1102	.7	13	3	11	10.39	,132	4	16	.95	175	.01	3	.39	.01	.17	2	12
DN-04-24-16	16	19	28	72	.7	19	11	921	3.09	43	8	ND	2	497	.7	12	3	10	4.85	.115	6	16	.69	134	.01	4	.51	.01	.23	2	23
DN-04-24-17	1	18	7	84	.3	3	13	1485	4.41	28	8	ND	2	492	.5	5	3	14	5.43	.121	8	17	1.22	107	.01	3	.52	.02	.21	2	16
DN-04-24-18	4	23	9	54	.9	29	15	1505	4.40	55	8	ND	2	475	5	13	3	13	7.13	.110	4	28	1.58	96	.01	3	.45	.01	.20	2	35
DN-04-24-19	3	37	12	37	2.6	33	16	1404	4.74	69	8	ND	2	486	.5	18	3	15	7.47	.131	5	26	1.63	193	.01	3	.41	.01	.19	2	21
DN-04-24-20	1	64	20	77	3.1	12	22	1399	6.51	1071	8	ND	2	620	.5	19	3	22	8.16	.179	6	18	1.48	141	.01	3	.45	.01	.21	2	45
DN-04-24-21	1	74	24	122	5.8	10	21	1525	5.50	1871	8	ND	2	586	1.0	24	3	32	7.63	.232	- 7,	17	1.28	111	.01	4	.68	.01	.32	2	205
DN-04-24-22	6	57	39	101	7.2	47	16	1186	3.98	317	8	ND	2	400	.9	32	3	15	5.03	.131	5	22	1.37	74	.01	4	.55	.01	.26	2	70
DN-04-24-23	17	133	1782	2152	82.2	41	10	1835	3.66	456	8	ND	2	363	26.3	112	3	17	4.80	.110	2	60	.79	62	.01	3	.42	.01	.17	2	710
DN-04-24-24	26	74	107	426	16.9	50	9	1126	3.48	103	8	ND	2	436	4.5	38	3	13	5.60	.067	2	31	.55	50	.01	3	.32	.01	.15	2	110
DN-04-24-25	15	47	34	556	1.8	34	11	690	3.25	76	8	ND	2	184	5.5	17	3	13	3.26	.105	4	11	.60	95	.01	4	.47	.01	.21	4	30
DN-04-24-26	5	46	34	160	1.5	24	15	1344	5.67	107	8	ND	3	386	1.5	14	3	12	5.91	.113	4	21	.88	77	.01	3	.63	.01	.22	2	23
DN-04-26-01	2	94	43	426	.8	20	12	1821	5.03	38	8	ND	3	245	3.7	7	3	15	4.81	.073	7	18	1.56	92	.01	4	.48	.01	.20	3	7

FI FMENT		Cu	Ph	7n	۸n	Ni	Co	Mo	Fo	٨e	11	A11	Th			ch	5:	v	<u>(</u> ,	D	10	Cn	Ma	p.	T :	: B	AI	<i>(</i> 133)			A.,
SAMPLE	Dom	ppm	ppm	pom	DD01	pom	mag	con	۲ ۰	DOM	DOM I	com	maa	DOM		ີອອກາ	ia moo	v moon	دع %	r %	DOM	nom.	rig %	bom	۱۱ %	nom .	AL %		× ×	W	AU
DU 01 07 47							1.1.				FF~ 1					PP						Plan		PP		-				ppm	ppo
UN-04-25-15	3	64	. 19	57	.8	21	19	2012	4.87	48	<u>୍</u> ଷ	ND	2	240	.5	10	3	15	6.09	.122	4	19	1.82	75	.01	3	.39	.01	.25	2	17
DN=04=23=14	1	11		45	.4	30	21	1400	3.90	40	8	ND	2	132		11	3	15	3.70	.129	7	14	.74	146	.01	3	.50	.01	.31	2	15
DN-04-23-15	2	15	22	58	1.1	32	21	1/51	4.98	- 37	8	ND	2	280	.5	. 11	3	11	5.98	.167	4	30	1.59	119	.01	3	.37	.01	.24	2	10
UN-04-23-16	5	15	17	51	.9	19	15	1668	4.09	- 29	8	ND	2	244	.5	8	3	12	5.45	.149	5	16	1.52	144	.01	3	.41	.01	.26	2	- 38
DN-04-23-17	2	14	25	43	1.1	13	14	1883	3.40	27	8	ND	2	422	.5	7	3	9	8.07	.144	5	18	1.30	139	.01	3	.38	.01	.23	2	17
DN-04-23-18	4	12	57	92	1.5	21	19	2660	4.81	46	8	ND	2	245	.9	9	4	14	6.50	.109	3	23	1.99	131	.01	3	.33	.01	.21	2	15
DN-04-23-19	5	12	52	153	2.1	14	15	2886	4.95	60	8	ND	2	233	1.4	10	3	18	5.88	.110	2	23	1.60	101	.01	6	.50	.01	.23	2	51
DN-04-23-20	7	16	209	124	6.2	11	10	1728	4.06	331	8	ND	2	202	.9	14	3	9	2.98	.125	3	43	.85	61	.01	- 4	.41	.01	.16	2	480
DN-04-23-21	4	4	145	273	1.9	2	3	925	1.76	108	8	ND	2	96	3.6	12	3	3	1.47	.056	4	75	.32	45	.01	12	.23	.01	.16	2	245
DN-04-23-22	4	3	114	305	1.6	2	. 3	1446	2.24	116	8	ND	2	147	4.5	7	3	3	2.32	.074	4	52	.49	60	.01	3	.30	.01	.21	2	135
DN-04-23-23	7	35	142	96	8.7	18	15	2105	5.34	377	8	ND	2	292	1.0	. 16	3	14	4.56	.126	3	43	1.26	60	.01	7	.41	.01	.17	2	605
DN-04-23-24	4	29	37	107	5.3	17	17	1886	4.70	170	8	ND	2	272	.7	13	3	11	5.23	.119	3	30	1.45	84	.01	3	.36	.01	.19	2	110
DN-04-23-25	12	16	118	129	4.9	12	10	1697	4.20	368	8	ND	2	203	1.4	13	3	7	3.48	.119	3	26	1.01	66	.01	3	.39	.01	.19	2	185
DN-04-23-26	13	19	96	75	6.2	24	12	2242	3.82	100	8	ND	2	325	.8	16	3	6	5.97	.243	4	19	1.27	81	.01	3	.37	.01	.19	2	61
DN-04-23-27	12	17	149	99	6.6	16	14	1047	3.21	225	8	ND	2	150	1.2	15	3	6	2.51	.142	5	58	.62	76	.01	6	.41	.01	.24	2	160
DN-04-23-28	7	17	142	116	4.7	10	14	2058	4.48	287	8	ND	2	285	1.6	12	3	9	4.63	.121	7	35	1.30	76	-01	4	.35	-01	-20	2	240
DN-04-23-29	3	15	35	63	3.5	9	9	2452	4.27	108	9	ND	2	335	6	. 9	3	10	5.31	.129	6	13	1.48	79	.01	7	.36	.01	.21	2	90
DN-04-23-30	3	17	166	399	4.4	6	10	2384	4.06	133	8	ND	2	256	5.5	9	3	7	4.52	.103	3	18	1.16	73	.01	5	.38	.01	-20	2	220
DN-04-23-31	2	38	27	47	2.1	- 5	.9	1566	2.81	760	8	ND	2	171	.5	9	3	9	2.93	.117	4	10	.72	86	.01	4	.44	.01	.25	2	135
DN-04-23-32	2	39	9	52	.8	5	7	3030	4.74	827	8	ND	2	261	.5	5	3	10	5.46	.102	4	15	1.46	74	.01	4	.39	.01	.21	2	75
DN-04-23-33	3	52	17	35	2.5	11	16	2540	4.04	360	8	ND	3	154	.5	11	3	10	3.68	.111	3	16	.97	77	.01	7	.40	.01	.22	2	130
DN-04-23-34	.3	16	14	43	1.3	15	21	3635	5.27	143	8	ND	2	237	.5	. 8	3	11	6.30	.100	2	16	1.72	83	.01	3	.38	.01	.22	2	23
DN-04-23-35	2	35	49	77	6.2	19	22	3551	5.70	129	8	ND	2	274	.8	16	3	15	6.65	.115	1	14	1.93	78	.01	3	.41	.01	.23	2	95
DN-04-23-36	6	135	76	99	19.9	30	26	1435	4.38	268	8	ND	2	197	.8	27	3	15	3.23	.134	2	18	1.09	63	01ء	3	.49	.01	.19	2	260
DN-04-23-37	2	153	11	225	2.0	25	. 19	2100	5.34	. 99	8	ND	2	259	1.1	12	3	16	4.34	.119	5	16	1.70	76	.01	3	.43	.01	.18	2	37
DN-04-23-38	4	106	26	197	29.7	24	15	2093	4.19	649	8	ND	2	270	1.4	43	3	12	4.24	.107	3	34	1.47	64	01ء	3.	.38	.01	.17	2	1410
DN-04-23-39	4	80	14	116	.8	25	21	1570	5.11	93	8	ND	2	255	.5	10	4	17	4.03	.108	4	20	1.76	64	.01	3	.44	.01	.17	2	18
DN-04-23-40A	1	38	8	64	.3	20	32	2703	6.66	193	8	ND	2	445	.5	10	3	37	8.09	.060	2	12	2.51	37	.01	3	.72	.01	.14	2	28
DN-04-23-40B	1	49	6	103	.5	28	37	2377	7.64	94	8	ND	2	398	.5	11	3	37	6.96	.061	3	20	2.63	38	.01	3	.73	.01	.14	2	21
DN-04-25-05	2	53	689	514	16.0	26	17	1753	4.23	102	8	ND	2	426	7.2	31	3	10	4.59	.119	5	27	1.37	147	.01	3	.46	.01	.28	2	310
DN-04-25-06	3	22	88	161	3.1	4	10	1958	4.13	173	8	ND	2	209	1.9	11	3	9	4.36	.144	6	16	.55	219	.01	5	.49	.01	.26	2	205
DN-04-25-07	4	234	3180>	10000	>100	9	. 8	652	2.10	87	8	5	2	108	198.2	169	4	8	1.76	.060	3	127	.38	64	.01	4	.31	.01	.15	2	7560
DN-04-25-08	2	14	60	86	1.9	8	12	1450	4.48	170	8	ND	2	223	1.0	7	3	9	4.74	.122	4	13	1.22	76	.01	7	.39	.01	.20	2	210
DN-04-25-09	1	13	9	39	.8	10	9	1407	4.04	58	8	ND	2	238	.5	6	3	11	5.06	.123	6	14	1.29	119	.01	5	.48	.01	.27	2	21
DN-04-25-10	1	39	16	55	1.2	20	14	1259	3.94	203	8	ND	2	233	.5	12	5	11	4.38	.145	5	9	1.38	113	.01	3	.50	.01	.28	2	105

ELEMENT		Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	รเ	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ba	Ti	B	AL		к	W	Au
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppn	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	16	%	ppm	ppb
DN-04-25-11	2	46	29	59	3.7	20	15	1794	4.86	183	8	ND	2	350		16	3	12	5.34	.113	3	18	1,66	115	.01	7	.50	.01	.29	2	125
DN-04-25-12	1	90	3	45	1.1	4	13	1562	5.05	234	8	ND	2	284	.5	4	3	12	4.34	.151	5	4	1.42	113	.01	4	.61	.01	.30	2	240
DN-04-25-13	1	50	12	51	2.4	17	16	1551	4.82	208	8	ND	2	274	.5	10	4	10	4.84	.128	4	18	1.43	128	.01	8	.49	.01	.26	2	150
DN-04-25-14	2	32	277	234	4.8	17	9	2184	5.16	224	8	ND	2	357	2.8	11	3	13	6.45	.109	4	21	2.08	88	.01	5	.53	.01	.28	2	280
DN-04-25-15	4	103	95	155	22.2	25	14	2371	5.53	730	8	ND	2	273	2.1	40	3	12	5.28	.115	2	35	1.59	62	.01	7	.41	.01	.22	2	360
DN-04-25-16	1	103	30	89	19.1	18	39	3587	7.78	6834	8	ND	2	780	.9	51	3	20	8.48	.060	2	14	3.22	74	.01	3	.31	.01	.19	2	1420
DN-04-25-17	3	69	21	129	4.2	15	16	1836	4.61	1776	8	ND	2	303	1.1	20	3	8	4.67	.106	3	14	1.45	80	.01	3	.41	.01	.24	2	445
DN-04-25-22	7	61	39	256	.7	25	15	1670	3.95	43	8	ND	2	252	2.0	6	4	16	4.76	.094	3	41	1.59	94	.01	3	.40	.02	.21	2	3
DN-04-25-23	1	95	7	92	.3	78	29	1677	5.54	94	8	ND	2	301	.5	16	3	15	5,68	.084	3	35	2.62	60	.01	3	.35	.02	.18	2	2
DN-04-25-24	3	21	19	109	.3	8	7	2741	3.59	22	8	ND	2	286	.7	3	3	15	6.08	. 105	7	37	1.61	88	.01	3	.47	.02	.23	2	2
DN-04-25-25	4	88	21	157	.6	21	17	1444	4.37	47	8	ND	2	223	1.3	7	3	8	4.10	.110	5	22	1.40	. 82	.01	3	.40	.01	.22	2	24
DN-04-25-26	4	56	23	179	.6	18	15	1841	3.51	42	8	ND	2	826	1.4	. 4	3	7	7.62	.089	4	45	1.01	85	.01	3	.37	.01	.22	2	4
DN-04-25-27	3	66	16	182	.5	29	13	1351	4.46	49	8	ND	2	231	1.3	6	3	9	4.04	.108	5	17	1.38	85	.01	3	.37	.01	.20	2	14
DN-04-25-28	2	46	10	109	.5	13	14	1063	4.56	36	8	ND	2	205		7	3	17	2.99	.112	14	13	1.42	116	.01	3	.36	.02	.18	2	7
DN-04-25-29	2	37	32	138	6	41	15	2053	4.99	63	8	ND	2	313	.5	11	3	23	5.43	.112	5	37	1.79	84	.01	3	.36	.02	.14	2	5
DN-04-27-01	1	85	12	68	.3	27	15	1073	4.25	24	8	ND	2	74	.5	3	5	35	2.12	.128	11	25	1.32	117	.01	3	1.70	.03	.19	2	3
DN-04-27-02	1	74	3	56	.3	2	11	1519	4.21	11	8	ND	2	321	.5	3	3	42	5.56	.150	7	7	1.01	135	.02	4	1.88	.03	.24	2	1
DN-04-27-03	2	50	12	48	.3	4	12	3862	6.87	15	8	ND	2	288	.5	4	3	23	9.18	.092	6	13	.92	225	.01	3	.57	.01	.23	2	10
DN-04-27-04	3	79	8	81	.4	3	17	1395	5.02	21	- 8	ND	2	79	.5	3	3	22	3.78	.168	9	13	.17	238	.01	3	.86	.03	.33	2	2
DN-04-27-05	2	15	6	160	.3	1	11	3716	4.46	2	8	ND	2	368	.5	3	3	30	4.89	.156	12	14	1.88	171	.01	3	1.12	.03	.24	2	1
DN-04-27-06	1	12	3	110	.3	1	11	2262	4.02	5	8	ND	2	425	.5	4	3	10	3.93	. 174	14	8	1.49	354	.01	3	.44	.02	.29	2	12
DN-04-27-07	4	50	212	210	12.3	25	14	1663	4.77	73	8	ND	2	280	2.5	25	3	15	5.16	.103	3	26	1.45	124	.01	3	.36	.01	.23	2	510
DN-04-27-08	2	31	7	94	.8	5	6	951	3.71	13	8	ND	2	250	5	8	3	10	2,92	.103	7	11	.90	167	.01	3	.60	.01	.25	2	9
DN-04-27-09	2	24	6	117	.3	4	11	1533	5.16	19	8	ND	2	473	.5	4	4	9	4.41	.125	6	8	1.22	124	.01	3	.69	.01	.22	2	27
DN-04-27-10	11	41	101	130	4.2	12	12	1236	3.44	41	9	ND	2	259	.7	10	3	14	3.41	.052	2	90	1.00	127	.01	3	.51	.01	.24	2	28
DN-04-27-11	5	72	10	89	.4	16	17	2201	5.22	38	8	ND	2	395	.5	12	3	17	5.53	.119	3	14	1.63	133	.01	3	.69	.01	.26	2	23
DN-04-27-12	4	122	-85	213	.8	14	16	1831	5.15	49	8	ND	2	391	.9	9	3	17	5.20	.090	3	39	1.43	76	.01	3	.65	.01	.36	2	10
DN-04-27-13	3	100	5	74	.8	12	16	1964	4.48	44	8	ND	2	273	.5	9	3	11	4.38	.121	4	21	1.29	137	.01	3	.46	.01	.27	2	38
DN-04-27-14	9	19	17	70	.5	8	7	2516	2.97	21	8	ND	2	1189	.8	3	3	6	10.02	.053	5	38	.99	68	.01	5	.31	.01	.16	2	33
DN-04-27-15	2	18	5	39	.3	5	7	935	3.91	22	8	ND	2	249	.5	6	3	13	3.86	.129	13	19	1.01	128	.01	3	.62	.02	.36	2	31
DN-04-27-16	13	51	28	66	.8	18	18	1381	3.64	99	8	ND	2	295	.5	15	3	16	4.96	.128	4	14	.91	110	.01	3	.72	.01	.27	2	26
DN-04-27-17	4	8	11	26	.3	5	3	2671	1.79	8	12	ND	2	1189	.5	5	3	5	14.02	.055	4	74	.56	84	.01	4	.24	.01	.12	2	18
DN-04-27-18	4	17	22	- 34	1.5	7	8.	1517	2.68	86	8	ND	2	502	.6	6	3	12	10.30	.119	4	18	1.02	108	.01	3	.36	.01	.15	2	23
DN-04-27-19	3	36	22	65	1.9	9	11	1684	4.00	1279	8	ND	2	199	.5	11	3	10	4.44	.122	5	12	1.24	91	.01	5	.48	.01	.25	2	220
DN-04-27-20	3	40	7	40	.5	9	9	1102	3.47	47	8	ND	2	163	.5	10	3	10	3.68	.121	6	9	1.01	71	.01	3	.55	.01	.24	2	20

PIONEER I		LORI	ES I	NC.			#	103-2	2691	VISC	OUNT	WAY	R	01	ND,	BC	С	ANAD	A V	6V	2R5			ï	ELE	PHON	E	2 (4 ر	31-8	165
TEUTON RE Project: Sample Type:	ESOURC	ES C	ORP.		GEOCHEMICAL ANALYSIS CERTIFICATE Multi-element ICP Analysis500 gram sample is digested with 3 ml of aqua regia, diluted to 10 ml with Water. This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and Al. Detection Limit for Au is 3 ppm. *Au Analysis - 10 gram sample is digested with aqua regia, MIBK extracted, and is finished by AA or graphite furnace AA.										An Rej Da	alysi port te: (No. 20 No. 20	01,	2004											
ELEMENT	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U A	u Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	W	Au*
SAMPLE	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm pp	n ppr	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb
DN-04-28-01	1	16	11	92	.3	3	12	919	4.57	4	8 N	5 3	190	.5	. 3	3	28	3.28	.068	15	23	1.52	65	.01	3	1.99	.04	.10	2	6
DN-04-28-02	1	106	22	83	7.8	28	20	1696	5.12	7443	8 N	2	277	.6	22	3	11	4.24	.128	4	19	1.28	84	.01	3	.39	.01	.24	2	460
DN-04-28-03	9	67	33	130	4.8	35	21	1576	4.56	335	8 N	2 2	632	.6	13	3	12	5.10	.108	3	22	1.78	113	.01	3	.37	.01	.22	2	320
DN-04-28-05	5	49	38	92	.8	23	15	2207	3.78	50	10 NI	2	2123	.5	÷ 9	3	8	10.97	.101	3	31	1.29	81	.01	3	.28	.01	.17	2	12
DN-04-28-06	1	90	25	97	2.2	29	19	1609	4.55	657	8 Ni	2	330	.5	. 8	3	17	4.23	.097	4	27	1.47	202	.01	3	.50	.01	.31	2	305
DN-04-28-07	2	34	26	94	.4	28	19	1522	5.89	63	8 NI	D 2	274	.5	. 9	3	11	4.48	.109	3	38	1.66	92	.01	4	.40	.01	.24	2	25
DN-04-28-08	2	64	37	108	.8	28	22	2097	4.66	59	8 NI	2	346	.6	13	3	13	5.66	.132	5	15	1.95	188	.01	3	.51	.01	.27	2	8
DN-04-28-09	2	67	19	111	.7	28	25	1653	4.61	62	8 NI	2	253	.5	. 9	3	12	4.00	.124	5	26	1.55	88	.01	6	.50	.01	.27	2	5
DN-04-28-10	1	65	13	104	.9	29	22	1986	4.73	216	8 NI) 2	374	.5	6	3	10	5.27	.146	3	22	1.72	73	.01	3	.43	.01	.22	2	17
DN-04-28-11	1	57	18	201	2.0	24	17	1410	4.81	669	8 NI) 2	265	1.2	7	3	10	3.70	.104	5	20	1.34	165	.01	3	.37	.01	.23	2	70
DN-04-28-12	1	21	10	55	.4	27	23	544	1.90	598	9 NI) 2	170	.5	3	3	9	2.08	.108	11	26	.56	94	.01	3	.47	.01	.29	2	105
DN-04-28-13	1	64	19	55	1.5	20	19	1725	4.29	70	8 NI) 2	425	.5	8	3	16	4.71	.143	6	11	1.38	155	.01	3	.43	.01	.26	2	19
DN-04-28-14	1	85	6	53	.6	20	22	1653	4.50	61	8 NI) 2	311	.5	7	3	12	4.17	.133	10	14	1.36	127	.01	3	.57	.01	.33	2	6
DN-04-28-15	3	51	3	36	.6	15	20	1717	3.99	50	8 NI) 2	334	.5	4	3	12	4.58	.130	8	19	1.33	111	.01	3	.55	.01	.30	2	5
DN-04-28-16	1	47	12	239	2.6	20	20	1741	4.02	1232	8 NI	2	325	2.3	· 10	3	15	4.55	.120	6	20	1.41	109	.01	6	.57	.01	.33	2	180
DN-04-28-17	3	67	185	153	16.7	21	14	1982	4.56	471	8 NI	2	338	1.7	32	3	13	4.80	1096	3	55	1.50	192	.01	3	.39	.01	.20	2	205
DN-04-28-18	5	388	3647	2590	>100	17	6	1311	2.80	1771	10 NI) 2	209	41.1	425	3	15	2.33	.065	1	137	.54	112	.01	5	.34	.01	.12	2	4050
DN-04-28-19	1	174	1060	1301	57.2	47	19	1061	4.62	283	8 NI) 2	328	16.8	59	3	29	3.72	.142	5	16	1.23	67	.01	4	1.05	.01	.25	2	1840
DN-04-30-02	15	25	64	302	1.2	29	9	1825	4.40	64	8 NI) 2	466	3.3	13	3	24	7.29	.111	4	23	1.88	62	.01	4	.34	.01	.17	2	85
DN-04-30-03	5	41	4	11	.3	2	1	185	2.46	23	8 N.) 2	155	.5	12	3	15	.92	.121	5	27	.76	131	.01	3.	.50	.01	.28	2	2
-DN-04-30-04	2	97	135	236	9.5	55	20	484	3.56	119	8 N.	2	298	2.8	[,] 20	3	15	2.69	.154	6	35	1.07	63	.01	3	.65	.01	.18	2	5
DN-04-50-05	13	60	38	160	2.2	73	19	944	4.45	130	10 NI	2	501	1.8	17	3	39	5.02	.094	4	43	2.10	56	.01	8	.57	.01	.18	2	80
DN-04-30-07	1	89	197	81	3.5	42	18	1409	5.33	165	8 N) 2	518	.6	7	3	9	5.85	.134	. 3	16	2.06	62	.01	3	.56	.01	.19	2	40
DN-04-30-08	2	46	9	98	1.2	110	16	1694	4.40	231	8 NI) 2	514	.8	6	3	16	6.34	.317	8	59	2.23	57	.01	3	.54	.01	.18	2	10
DN-04-30-09	1	21	9	62	.9	110	20	1970	5.17	179	8 NE	2	691	.5	10	. 4	20	8.57	.192	10	53	3.31	57	.01	3	.36	.01	.17	2	13
DN-04-30-10	1	54	22	188	3.1	27	18	1480	5.10	59	8 N.) 2	368	1.5	11	3	31	5.48	.140	4	14	2.10	47	.01	8	.50	.01	.18	2	3
DN-04-31-02	3	68	51	155	1.1	18	12	1083	5.51	2296	8 N.	2	372	1.2	. 3	3	13	4.01	.123	3	13	1.91	74	.01	6	.47	.01	.25	2	260
DN-04-31-03	5	104	104	120	7.2	75	19	994	5.36	188	8 N.	2	497	1.3	17	4	18	4.62	.160	4	146	2.11	58	.01	3	.37	.01	.20	2	16
DN-04-31-04	1	43	4	86	.3	110	23	1932	5.54	169	8 N.) 3	304	.5	12	3	11	7.15	.257	18	32	3.80	93	.01	3	.46	.01	.24	2	15
DN-04-31-05	10	81	2455	2551	28.4	39	15	1839	3.87	165	10 NC) 2	676	45.2	51	3	8	9.49	.149	5	18	1.39	76	.01	6	.36	.01	.22	2	43
																									·					

......

	<u> (</u>	A.													atta.													1990 -			
ELEMENT		Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	Ρ	La	Cr	Mg	Ва	Τi	В	Al) K	W	Au
SAMPLE	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppn	ppm	ppm	ppm p	opm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	7.	%	ppm	ppb
DN-04-31-06	7	24	51	104	1.4	22	9	1084	2.19	30	10	ND	2	175	.9	15	3	3	4.49	.016	2	131	2.45	67	.01	4	. 14	.01	.08	2	17
DN-04-31-08A	1	109	278	204	28.2	19	27	2183	6.46	96	8	ND	2	395	2.9	70	4	23	8.20	.122	4	17	2.76	96	.01	6	.32	.01	.20	16	280
DN-04-31-08	2	13	13	19	3.1	10	11	1594	3.16	81	8	ND	2	307	.5	. 9	3	7	4.11	.086	3	44	1.53	53	.01	3	.26	.01	.18	2	60
DN-04-31-09	1	1825>	10000>	10000	>100	18	9	1155	3.87	558	8	3	2	197	615.4	1727	3	6	2.14	.094	1	117	.58	38	.01	6	.22	.01	.14	>100	6920
DN-04-31-10	23	19	101	147	5.0	42	24	1582	3.79	248	8	ND	2	283	1.8	15	3	7	3.86	.125	2	64	1.11	64	.01	5	.35	.01	.22	2	320
DN-04-31-11	13	24	303	363	7.2	53	23	1954	5.05	336	8	ND	2	448	5.2	20	3	12	5.96	.144	3	- 36	1.68	75	.01	5	.43	.01	.26	5	340
DN-04-31-12	6	24	367	526	8.0	26	21	1804	4.94	641	8	ND	2	369	6.4	12	3	13	4.87	.114	2	35	1.32	83	.01	6	.43	.01	.28	9	1050
DN-04-31-13	3	18	70	- 77	4.2	16	13	2075	4.16	329	8	ND	2	376	1.0	- 12	3	9	5.27	.126	3	32	1.51	75	.01	3	.40	.01	.25	2	725
DN-04-31-14	2	21	40	43	4.0	41	15	1935	4.24	350	8	ND	2	408	.5	13	3	10	5.65	.117	4	34	1.73	66	.01	3	.39	.01	.23	3	280
DN-04-31-15	2	22	64	59	4.3	52	18	2901	4.68	334	. 8	ND	2	466	.9	15	3	11	8.04	.175	4	47	2.78	79	.01	3	.42	.01	.26	2	405
DN-04-31-16	4	55	286	463	15.3	74	22	1999	5.18	527	8	ND	2	484	6.0	39	3	15	6.09	.162	4	31	1.77	77	.01	8	.46	.01	.27	12	640
DN-04-31-17	. 1	10	59	198	2.6	3	7	1996	3.40	513	8	ND	2	279	2.4	- 7	3	7	4.09	.126	6	22	1.03	86	.01	10	.50	.01	.30	>100	560
DN-04-31-18	1	66	303	117	17.9	18	12	2407	4.00	327	8	ND	2	343	1.8	42	3	9	5.83	.105	3	35	1.46	66	.01	5	.39	.01	.24	5	460
DN-04-31-19	3	25	88	70	5.8	14	11	1925	3.63	441	8	ND	2	422	.9	13	3	9	5.37	.111	3	33	1.15	63	.01	8	.39	.01	.22	3	305
DN-04-31-20	1	41	78	186	12.0	26	19	1900	4.37	262	8	ND	2	312	2.7	26	3	15	5.44	.122	3	26	1.44	51	.01	5	.41	.01	.19	2	395
DN-04-31-21	4	36	100	125	10.8	24	15	2174	4.41	245	8	ND	2	354	1.6	23	3	11	6.02	.106	2	37	1.64	49	.01	3	.31	.01	.18	2	380
DN-04-31-22	2	62	2172	204	32.2	17	14	2323	4.27	321	8	ND	2	329	3.4	43	3	13	5.83	.123	3	19	1.62	64	.01	5	.40	٥1.	.23	5	450
DN-04-31-23	2	27	120	135	6.5	17	18	2383	4.14	164	8	ND	2	388	2.0	15	3	15	6.10	.136	5	22	1.62	68	.01	9	.46	.01	.25	2	105
DN-04-32-05	2	10	32	536	1.1	31	12	3700	3,58	59	8	ND	2	2206	5.4	7	3	8	21.39	.049	7	43	2.31	37	.01	3	.23	.01	.08	2	31
DN-04-32-06	15	32	71	376	1.2	36	7	1379	4.12	336	8	ND	2	302	3.9	13	3	14	5.53	.061	2	83	1.59	37	.01	5	.24	.01	.12	2	58
DN-04-32-07	10	103	43	594	4.2	112	30	882	4.85	301	8	ND	2	275	5.9	. 17	3	15	4.00	.161	6	32	1.48	80	.01	4	.42	.01	.23	2	75
DN-04-32-08	25	64	600	717	14.8	58	14	900	4.21	125	8	ND	2	211	9.9	37	3	15	3.43	.114	4	12	1.11	60	.01	4	.41	.01	.21	2	360
DN-04-32-09	1	3790>	10000>	10000	>100	20	4	2053	4.17	689	8	8	2	- 93	592.2>	2000	4	13	1.39	.027	1	72	.33	23	.01	3 ·	.42	.01	.08	2	12520
DN-04-32-10	2	395	3566	3598	>100	61	18	2783	5.67	344	8	ND	2	454	58.8	293	3	16	6.90	.127	3	52	1.97	79	.01	6	,49	.01	.24	15	2620
DN-04-32-11	1	169	6081>	10000	96.2	14	14	4216	4.22	220	8	ND	2	717	180.5	133	3	9	7.85	.171	4	31	1.18	96	.01	4	.39	.01	.22	2	270
DN-04-32-12	3	40	12	41	7	45	17	676	3.05	42	8	ND	2	167	.5	17	3	3	4.07	.048	2	88	1.81	67	.01	5	.26	.01	.15	2	24
DN-04-32-13	3	72	29	150	.5	105	30	1422	6.03	21	8	ND	2	366	.7	3	3	33	5.46	.106	3	164	2.27	79	.01	7	1.12	.02	.16	2	17
DN-04-32-14	1	84	127	274	.8	30	24	2202	5.32	14	8	ND	2	478	1.9	3	3	11	5.01	.130	3	21	1.71	68	.01	5	.44	.02	.21	2	23
DN-04-32-15	3	108	169	438	1.1	20	19	2564	4.92	18	8	ND	2	287	2.4	3	3	31	4.66	.126	3	23	1.61	160	.01	3	1.39	.02	.26	2	19

For Pb, Zn greater than 10,000 ppm, assay digestion is required for correct data. For Ag greater than 35 ppm, assay digestion is required for correct data.

PAGE 2

PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

ASSAY CERTIFICATE

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

TEUTON RESOURCES CORP. Project:

Sample Type: Cores

Analyst	2Sam
Report No.	2047187

Date: October 01, 2004

	Ag
SAMPLE	g/mt
DN-04-28-18	106
DN-04-31-09	1116
DN-04-32-09	1628
DN-04-32-10	165
DN-04-32-11	84.9

.

IONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL.(604)231-8165

ASSAY CERTIFICATE

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

EUTON RESOURCES CORP.

ample Type: Cores

Analyst RS Salin Report No. 2047225

Date: October 13, 2004

SAMPLE	Ag g/mt
DN-04-28-04	125
DN-04-33-08	1223
DN-04-33-09	412
DN-04-36-02	279
DN-04-36-05	299
DN-04-36-06	335
DN-04-36-09	1459
DN-04-10-17B	205

PHONE NO. : 604 522 8954

PIONEER LABORATORIES INC #103-2691 VISCOUNT WAY RICHMOND, BC CANADA V6V 2R5 TEL. (604)231-8165

ASSAY CERTIFICATE

Ag Analysis - 1.000 gm sample is digested with 50 ml of aqua regia, diluted to 100 ml with water and is finished by AA.

TEUTON RESOURCES CORP. Project: Sample Type: Cores

Analyst

Report No. 2047225 Date: October 13, 2004

SAMPLE	Ag g/mt
DN-04-28-04	125
DN-04-33-08	1223
DN-04-33-09	412
DN-04-36-02	279
DN-04-36-05	299
DN-04-36-06	335
DN-04-36-09	1459
DN-04-10-17 B	205

