ASSESSMENT REPORT

GEOCHEMICAL REPORT

on the

DOMIN PROJECT

Cariboo Mining Division, British Columbia, Canada

Property Location 93H/6E/7W 53° 26' 56" N 121° 16' 21" E

> Owners Gold City Industries Ltd. R. MacArthur A.Raven

> > Prepared for

Gold City Industries Ltd. Suite 550 - 580 Hornby Street Vancouver, British Columbia V6C 3B6

Prepared By

Bruce Laird, P.Geo. Alan R Raven

> December 21, 2004 Revised June 7, 2004

TABLE OF CONTENTS

1	IN	FRODUCTION	4
1 1 1 1	.1 .2 .3 .4	LOCATION AND ACCESS PHYSIOGRAPHY EXPLORATION HISTORY CLAIMS	4 6 6 7
2	RE	GIONAL GEOLOGY	9
2	2.1	STRATIGRAPHY AND STRUCTURE	9
3	PR	OPERTY GEOLOGY	9
	3.1 3.2	GEOLOGY MINERALIZATION	9 9
4	WO	DRK PROGRAM	13
4	4.1 4.2	Objectives Surface Program and Methodology	13 13
5	GE	OCHEMICAL SOIL ANOMALIES AND ROCK SAMPLES	14
	5.1 5.2 5.3 5.4	OVERVIEW STATISTICS ON GEOCHEMICAL SOIL DATA SUMMARY OF GEOCHEMICAL SOIL ANOMALIES SUMMARY OF ROCK SAMPLES	14 14 22 22
6	CO	NCLUSIONS	23
7	RE	COMMENDATIONS	23
7 7	7.1 7.2	Phase 1 Phase 2	23 23
8	BII	BLIOGRAPHY	24

LIST OF FIGURES

1	Domin Property Claim Location Map	
2	Regional Geology Map	
3	Index and Location Map - Stream Sediment and Rock Samples, 2004 grid	Area12
4	Gold Geochemical Soil Survey Results 2004	.16 and map pocket
5	Arsenic Geochemical Soil Survey Results 2004	.17 and map pocket
6	Lead Geochemical Soil Survey Results 2004	.18 and map pocket
7	Zinc Geochemical Soil Survey Results 2004	.19 and map pocket
8	Copper Geochemical Soil Survey Results 2004	.20 and map pocket
9	Antimony Geochemical Soil Survey Results 2004	.21 and map pocket

LIST OF TABLES

1	Domin Project Claims	18
2	Statistics on Geochemical Soil Data	14
3	Rock Sample Descriptions	22

LIST OF APPENDICES

I Analytical Resul	ts
--------------------	----

II Analytical Methodology

- III Statement of Costs
- IV Statements of Qualifications

1 Introduction

The Domin Project is under 100% option to Gold City Industries Ltd. and is strategically located in highly prospective ground with excellent potential for the discovery of major gold deposits. Significant past exploration programs including geochemical and geophysical surveys, geological mapping, mechanical trenching, bulk sampling and diamond drilling, have identified numerous anomalous zones that have either not been surveyed with geochemical or geophysical methods or have been under-explored.

The Domin Project is approximately 43 kilometers northeast of Wells BC. Gold City Industries Ltd. controls a 15 kilometre trend of prospective ground along the highly geochemically anomalous Isaac Lake Fault system. This area was first identified by a BC Regional Stream Geochemical Survey carried out in 1984. Shortly thereafter, in 1986, a prospector searching for placer gold recognized the potential of the area. This area contains the majority of the 95th percentile assayed samples in the regional geochemical study area for gold, lead, arsenic and antimony. The potential to discover economic mineralization in this area was further increased by the discovery and partial delineation of two significant gold showings at the north end of the property (North and South Zones) by Noranda Exploration Co. Ltd.

Gold City Industries Ltd. conducted a regional prospecting program followed by a 1000m diamond drill program in 2000. Drilling indicated 100m strikelength continuity of mineralization.

In 2004 Gold City Industries Ltd carried out an extensive soil geochemical survey to further delineate anomalous areas south of the Main Zone to the junction of the East and West Forks of Dominion Creek. This grid has a baseline length of 2200 metres with sample lines averaging 380 metres in length. Prospecting was carried out during the establishment of the grid but bedrock exposure is estimated at less than 2% thereby precluding any meaningful geological mapping or prospecting within the allotted time frame for the program. A stream sediment survey and prospecting program was carried out on a portion of the East and West Forks of Dominion Creek to determine if there were any areas of interest in that portion of the mineral claims.

The past and current surface work indicates strike-length potential for gold-base metal mineralization in excess of 600 metres. Further work is justified to evaluate this strikelength potential and beyond by initial prospecting and trenching followed by drilling based on positive results

1.1 Location and Access

The Domin Project is 43 kilometers northeast of the town of Wells and about 110 kilometers east-southeast of Prince George. The property is located on NTS map 93H/6E/7W and within the Cariboo Mining District of central British Columbia. The Project area stretches from the junction of Haggen Creek and Dominion Creek, northwest of Clear Mountain in the north to 3.5 kilometres up-stream of the junction of the East and West Forks of Dominion Creek in the south.

Access to the northern portion of the claims from Prince George is by Highway 16 east to a series of gravelbased Forest Service Roads (Bowron, Narrow and Haggen) and Forest/Mining roads (Rustad and Noranda). The final 13 kilometers are bush roads requiring a 4-wheel drive vehicle. A deactivated logging road from Bowron Lakes provides access to the southern portion of the claims. There is no road access to the central portion of the property. Location of the claims is shown on figure # 1.

1.2 Physiography

The property is situated along the western edge of the Cariboo Mountains. The maximum local relief is only 700 meters with the majority of the prospective ground at 1,200 to 1,500 metres about sea level. The terrain across the property has a moderate slope, although along Dominion Creek, the area of present known anomalies, there are steep slopes.

Most of the property is forested with mature spruce and balsam fir and is covered with a moderate to dense underbrush of dwarf willow, huckleberry and devil's club.

1.3 Exploration History

A prospector, Mr. N. Kencayd, identified mineralized quartz-galena-sphalerite boulders in Dominion Creek and subsequently staked the Dominion Creek Property. Previous to that a provincial government regional geochemical survey conducted in 1984 in this area identified significant geochemical anomalies (Pb, As, Sb, Co and Fe) along the watersheds in the Isaac Lake Fault structure. Several geochemical anomalies along the upper reaches of Dominion Creek were within the 95th and 98th percentile of all samples taken in the survey. High values were also obtained in Pb, As and Sb from the survey at the headwaters of Littlefield Creek.

The government returned in 1985 for a follow-up survey of the Dominion Creek area. Silt and panned concentrate samples confirmed anomalous values in Pb, As and Sb. Maximum gold values from silt samples were 20 ppb and up to 1000 ppb Au from panned concentrates.

The claims were optioned to Noranda Exploration Company Ltd., which carried out exploration programs from 1986 to 1988. They discovered 2 mineralized showings at the junction of the Discovery (Camp) Creek and Dominion Creek (North and South Zones). Noranda Exploration Company's exploration program included stream sediment and grid soil surveys, trenching and 53 NQ diamond drill holes totaling 3,484 meters. Drill results included 18 intercepts of one to ten meters in thickness with grades ranging from 4 grams per tonne (gpt) to 40 gpt of gold.

Noranda Exploration Company Ltd. in 1989 curtailed most of its exploration in British Columbia and returned the property to Mr. Kencayd. Mr. A. Raven purchased the property in that same year. He exposed the South Zone and stockpiled ore grade material. Mr. Raven entered into a joint venture with Aquila Resources Ltd. in 1990. The joint venture partners completed a 1,180 tonne bulk sample in 1992, which averaged 14.0 gpt of gold.

In the mid 1990s, after identifying the potential along the Isaac Lake Fault and south of the known mineralized zones, Gold City Industries Ltd. staked claims adjoining the Dominion Creek property. A combination of extremely anomalous results above the North and South Zones from the government surveys, anomalies at the headwaters of Littlefield Creek and the northwesterly direction of glacial ice indicated the strong potential for additional mineralization within the Domin Project area. Gold City Industries Ltd. acquired the option to the Dominion Creek claims on April 17, 2000.

In 2000 Gold City Industries Ltd carried out an exploration program consisting of prospecting, a limited soil sampling survey, rock sampling, geological mapping and a NQ diamond drilling program. The drilling was preformed by Aggressive Drilling of Kelowna with a total of 17 holes for a total of 1,012.9 metres. Geological mapping was carried out in select areas of Lower Discovery Creek, west side of Dominion Creek with detailed mapping at a scale of 1:200 done over the South Zone. A total of 57 rock samples were collected during the mapping program. A 1500 metre baseline was established sub-parallel to Dominion Creek for control of the proposed soil survey and additional mapping. A series of stream sediments were collected from creeks and intermittent drainages along the baseline that resulted in the generation of several additional anomalous areas. The soil program was curtailed as the focus was shifted to the drill program.

The drilling demonstrated at least 100 metre strike length continuity of an 8 - 13 metre wide deformation zone, the 2B Zone, which contains 2-3 quartz veins that locally contain (20-50%) Au-Ag-Pb-Zn mineralization. Hole 17, 60 metres to the east southeast of the 2B Zone shows the continuing lateral potential of the system. Sub-parallel to the 2B Zone are multiple deformation zones with auriferous quartz veins across a 50 metre section. These veins are less predictable and with shorter strike lengths.

1.4 Claims

The Domin Project property consists of 53 mineral claims (159 units) totaling approximately 1,950 ha. A portion of this property is owned 100% by Gold City and the remainder is under option from Mr. R. MacArthur and Mr. A. Raven. Gold City Industries Ltd. can acquire 100 % ownership with cash payments (\$454,000), Gold City Industries Ltd. shares (450,000) over a period of six years and completion of exploration work to maintain the property in good standing for 5 years. The property is also subject to a 2 % NSR royalty in favour of Mr. N. Kencayd. Gold City may purchase 1.5 % of the NSR back at anytime for \$350,000. (See table below for ownership)

Tenure No.	Claim Name	Status	Units	Title Holder
354009	DOM 1	Good Standing 2004/10/10	8	Gold City
354010	DOM 2	Good Standing 2004/10/10	20	Gold City
354014	DM 4	Good Standing 2004/10/10	1	Gold City
354015	DM 5	Good Standing 2004/10/10	1	Gold City
354016	DM 6	Good Standing 2004/10/10	1	Gold City
354017	DM 7	Good Standing 2004/10/10	1	Gold City
354018	DM 8	Good Standing 2004/10/10	1	Gold City
354019	DM 9	Good Standing 2004/10/10	1	Gold City
354020	DM 10	Good Standing 2004/10/10	1	Gold City
354276	DOM 3	Good Standing 2004/10/10	20	Gold City
354278	DM 11	Good Standing 2004/10/10	1	Gold City
375996	DM-20	Good Standing 2004/10/10	1	Gold City
375997	DM-21	Good Standing 2004/10/10	1	Gold City
375998	DM-22	Good Standing 2004/10/10	1	Gold City
375999	DM-23	Good Standing 2004/10/10	1	Gold City
376000	DM-24	Good Standing 2004/10/10	1	Gold City
376001	DM-25	Good Standing 2004/10/10	1	Gold City
376002	DM-26	Good Standing 2004/10/10	1	Gold City
376003	DM-27	Good Standing 2004/10/10	1	Gold City
376004	DM-28	Good Standing 2004/10/10	1	Gold City
376005	DM-29	Good Standing 2004/10/10	1	Gold City
376006	DM-30	Good Standing 2004/10/10	1	Gold City
376007	DM-31	Good Standing 2004/10/10	1	Gold City
376008	DM-32	Good Standing 2004/10/10	1	Gold City
376009	DM-33	Good Standing 2004/10/10	1	Gold City
376010	DM-34	Good Standing 2004/10/10	1	Gold City
376011	DM-35	Good Standing 2004/10/10	1	Gold City
376012	DM-36	Good Standing 2004/10/10	1	Gold City
376013	DM-37	Good Standing 2004/10/10	1	Gold City
376014	DM-38	Good Standing 2004/10/10	1	Gold City
376015	DM-39	Good Standing 2004/10/10	1	Gold City

Table 1: Domin Project Claims

(
376016	DM-40	Good Standing 2004/10/10	1	Gold City
376017	DM-41	Good Standing 2004/10/10	1	Gold City
376018	DM-42	Good Standing 2004/10/10	1	Gold City
376019	DM-43	Good Standing 2004/10/10	1	Gold City
376020	DM-44	Good Standing 2004/10/10	1	Gold City
205239	AK I	Good Standing 2014/10/10	10	Macarthur – 100% option to Gold City
205240	AK II	Good Standing 2014/10/10	15	Macarthur – 100% option to Gold City
205241	AK III	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
205242	AK IV	Good Standing 2014/10/10	3	Macarthur – 100% option to Gold City
353532	AK - 7	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
353533	AK - 9	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
353534	AK - 10	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
353535	AK - 11	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
353536	AK - 12	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
353537	AK - 14	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
353539	AK - 13	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
354277	DOM 4	Good Standing 2014/10/10	20	Macarthur – 100% option to Gold City
354280	DM 15	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
354281	DM 16	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
354282	DM 17	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
375994	AK-5	Good Standing 2014/10/10	18	Macarthur – 100% option to Gold City
375995	AK-8	Good Standing 2014/10/10	1	Macarthur – 100% option to Gold City
Total No. of Claims	53	Total No. of Units	159	

Note: Dates assume acceptance of work expenditures in this report

2 Regional Geology

2.1 Stratigraphy and Structure

Geology of the Dominion Creek area is made up of Precambrian to Permian/Triassic continental shelf clastic and carbonate rocks of the Cariboo Terrane. This Terrane is thrust against Precambrian to Paleozoic continental shelf clastic, carbonate and volcanic Barkerville Terrane. The regional geology is plotted on Fig # 2

3 Property Geology

3.1 Geology

The local geology is characterized by the unconformable contact between the Precambrian Isaac Formation (argillite and phyllite) and the overlying Precambrian Cunningham Formation (limestone). This contact coincides with the assumed trace of the strong northwest-trending Isaac Lake Fault Zone in this area. The fault follows the general northwesterly line of Dominion Creek.

The mineralization is structurally controlled and associated with the Isaac Lake Fault system. Subparallel and oblique faults in the South and North Zones probably acted as conduits and traps for silica-rich hydrothermal solutions. Precious and base metal-rich quartz veins resemble quartz-rich dilation segments that have been traced up to 60 meters in length on surface and 100m by drilling and are similar to the dilation cluster mineralization mined at the nearby Cariboo Gold Quartz Mine (19.5 million grams Au from 1.5 million tonnes)(Kocsis, 1997). This anomalous deformation zone appears to extend from the South Zone to the southeast toward the junction of the East and West Fork of Dominion Creek, a distance of approximately 3,000 meters and sub-parallel to the Isaac Lake Fault.

Glacial geology indicates that the property is extensively covered by a blanket of alluvium and glacial till. The movement of ice in this area is from southeast to northwest.

A more complete summary of the geology is presented in "Summary Report on the Domin Gold Property" (Kocsis, 1997a).

3.2 Mineralization

Recent geological surface mapping along the South Zone (Noranda, Gold City) indicates that mineralized quartz structures in the area are controlled laterally along multiple minor folds plunging anywhere from 2 to 7 degrees to the southeast, and in some places, anomalously, 7 degrees to the northwest. The axis of all observed folds is parallel to the foliation (S_1) of the local bedrock in the area. The 155 Fault located in the South Zone, mapped and named by Noranda, is postulated to be a structure affecting the location of mineralization.

A set of quartz structures, exposed along a 55 metre section of the lower mine pit access road, appear to be lateral stacked vein extensions along the synclinal nose of a single fold with an axial plane dipping 68 to 77 degrees to the southwest. The axis of this minor syncline strikes sinuously at about 130 degrees. The plunge of this fold axis locally undulates and varies from 7 degrees southeasterly to 7 degrees northwesterly.

The 11 metre long quartz structure located about 15 metres south of the road exposure, is also controlled along a minor synclinal nose striking sinuously at about 108 degrees. The axial plane of this fold dips 84 degrees to the southwest, and the axis plunges 6 degrees to the southeast.

The quartz structures in both of the above areas are nearly flat lying broadly concave-shaped bodies. Occasional pinched conical-concave-shaped quartz structures in these areas arise from repeated tightening and slacking along folds. Quartz structures observed along the east face of the main mine pit are vertically extended along the limbs of multiple tight folds, and in some cases show closure along minor anticlines. The large quartz structure obscured in the pit floor is probably controlled along the nose of a somewhat major anticline with axial parameters similar to neighbouring folds with exception to dragging and distortion along the 155 Fault.

The quartz structure located immediately west of the mine pit is probably dragged and dislocated northwesterly along the west block of the 155 Fault. This structure may be the extension of the quartz structure located 30 metres southerly along the east block of the 155 Fault. Both structures exhibit similar varieties and concentrations of sulfides (galena with less chalcopyrite, brown-coloured sphalerite, and pyrite).

Prominent sulfide concentrations along most of the quartz bodies exposed in the South Zone are commonly controlled within sheet-like quartz breccia structures, up to 30 centimetres wide, containing anywhere from 5% to 80% sulphides (in decreasing order fine-grained galena, and coarse-grained chalcopyrite-pyrite-sphalerite). Some thinly fractured zones are dominated by 5% to 8% semi-massive streaks of coarse-grained chalcopyrite. The brecciated zones are almost entirely confined to the outer edges of various quartz structures and adjacent to neighbouring host rock consisting of thinly inter-layered argillaceous microcrystalline limestone, and graphitic argillite (phyllite). The host rock contains 5% or more narrow quartz veins (< 2 centimetres wide) that parallel, and to a lesser extent crosscut local foliation. The crosscut veins are commonly disrupted and terminate along thin layers of pseudo chert-carbonate.

Sulfide/gold-enrichment within the quartz structures could have developed by either of the following two processes: 1) Sulfide-gold mineralization may have developed contemporaneous with late-stage deformation and subsequent brecciation resulting in enhanced fluidization at favourable temperatures and pressures; and/or 2) Carbonate-rich wall-rock may have been replaced with silica and auriferous sulfides at an earlier stage giving a false-breccia appearance. The latter process is preferably accepted for the following two reasons. 1) Some of the quartz-sulfide sheet structures are intricately folded within non-brecciated massive quartz bodies. It appears that tightly folded thin layers or inclusions of carbonate have been subsequently replaced with sulfides and silica. 2) A boulder of massive sulfide found at the toe of the mine pit landing illustrates a gradational change from barren quartz to massive siliceous sulfide to sulfide-enriched siliceous carbonate.

Replacement-type mineralization is best developed in gritty carbonates where high quantities of silt and sandsize quartz particles create the permeability. Most of the carbonates mapped adjacent to the quartz structures are pelitic although some thin gritty layers (generally less than 30 centimetres wide) have been mapped in the South Zone.

The interpretation given on Noranda's drill sections could be accurately illustrated as: 1) multiple stacked quartz structures within the noses of folds with axial planes progressively flattening at depth; and/or 2) vein structures occupying extensive listric shearing along the limbs of folds.

On the 2B vein structure, exposed mineralization and veining was traced for 60m before being covered under overburden. Chip sampling of this area returned significant gold values e.g. 4.9 metres of 17 grams/tonne and 0.8 metres of 77 grams/tonne.

4 Work Program

4.1 Objectives

The objective of the 2004 program was to expand the area covered by soil geochemistry in order to locate bedrock sources of the high-grade precious metal float mineralization on the property. Specific strategies and tasks were:

- 1. To expand the areas covered by soil geochemical surveys in order to determine the extent of the mineralized portion of the property.
- 2. To further investigate the origins of the previous soil anomalies and the transported high grade floats
- 3. If practical, to hand trench some of the soil anomalies identified by during earlier work programs
- 4. To prospect, map and sample any newly discovered exposures of bedrock.

4.2 Surface Program and Methodology

The Gold City Industries Ltd. 2004 exploration program consisted of a 21 day soil sampling and prospecting program. The field program ran from August 4 to 24, 2004 for a total of 105 man/days. Work was carried out from a tent camp situated on the property, mobilized and supplied by truck from Prince George

The primary target area of the 2004 field season was the intensely deformed zone projected along trend from the South Zone to the confluence of East and West Forks of Dominion Creek. This 2800 metre trend, which includes all but one of the previously located anomalies, is believed to be, either a splay of, or an area influenced by, the Isaac Lake Fault.

A slope corrected control grid was established by compass and tight chain to facilitate the collection of soil and rock samples, locate bedrock exposures and establish controls for any future surveys. The baseline has a bearing of 330/150 degrees, with grid lines a bearing of 240/160 degrees and a declination of 24 degrees East was used. Grid lines were spaced 25 metres apart from 18150N to 19600N and 50 metres apart from 17400N to 17950N, with samples collected and stations flagged at at 20 metre intervals. A Tyvek tag with the grid co-ordinate marked on it was secured by a wire tie to vegetation at each grid station. The grid covered an area of approximately 2,200 metres by 380 metres.

B-horizon soil was collected from hand dug pits 10-45 cm deep. Samples were placed in Kraft paper sample bags with their corresponding sample grid station written on each paper sample bag. A total of 1224 soil samples were collected from 26.9 line kilometres of grid.

The soil samples were collected using steel bladed shovels, placed in high strength Kraft soil bags, transported to base camp, air dried and packed for shipment to Acme Labs in Vancouver. Field notes collected at each site included: line and station number, line slope angle, line direction, topographic slope direction, soil colour, sample depth, any bedrock exposures in the area and comments non-consistent such as soil horizons, any swamps, creeks, previous grids or old workings

The grids were established from the vicinity the South Zone at 19600N 10100E to 17400N 10250E in the vicinity of the confluence of the forks of Dominion creek a distance of 2,200 metres. The grid entailed reestablishing and extending 2.2 kilometres of baseline and establishing 24.7 kilometres of gridlines to control sampling and prospecting within the deformation corridor. The extent of this grid is shown in Fig.3

Stream sediment samples were collected whenever an active or intermittent drainage pattern crossed the baseline and on portions of the East and West forks of Dominion Creek. A total of 23 silt samples were taken

during this program from along the lower western slopes draining into Dominion Creek and from the East and West forks of Dominion Creek.

5 Geochemical Soil Anomalies and Rock Samples

5.1 Overview

There are three areas of the grid that are gold/multi-element anomalies and have been named to help distinguish between them. The northern portion of the grid contains the Bear anomaly, the central portion the Caribou anomaly and the southern portion the Griz anomaly. The Bear anomaly extends from 18550N 10300E to 19600N 10300E, the Caribou anomaly extends from 18250N 10060E to 18900N 10120E and the Griz anomaly is from 17600N 10230E arcing westward to 17950N 10180E. The "centerline" of the anomalies is indicated on each of the results maps

5.2 Statistics on Geochemical Soil Data

Results of the soil survey are presented in Appendix I, in summary form below, and on Figures 4 through 9. The statistical analysis presented in Table 2 shows key elements and their corresponding evaluations. An anomaly was defined by the mean plus one standard deviation and a stronger anomaly starting at the mean plus two standard deviations, except for gold, where greater than 20 ppb Au is considered anomalous.

	Gold	Arsenic	Lead	Zinc	Copper	Antimony
	ppb	ppm	ppm	ppm	ppm	ppm
Mean	8.92	44.49	31.95	72.02	25.99	2.29
Std	19.31	52.61	26.16	33.46	13.56	2.94
1 st Std Dev	28.23	97.10	58.10	105.47	39.55	5.23
2 nd Std Dev	47.54	149.71	84.26	138.93	53.11	8.18
Maximum	328.7	730.90	611.50	460.00	210.00	61.1

Table 2: Statistics on Geochemical Soil Data

GOLD

Within the Bear anomaly there is a series of disjointed, one to three station gold anomalies that form a "corridor" with an orientation varying between 145 to 155 degrees. The "centre line" of the gold corridor extends from 18700N 10340E to 19600N 10300E. Gold values range from 6 ppb to 328 ppb

The central, Caribou, anomaly is a strong linear north trending zone that extends for ~550 metres from 18250N 10020E to 18800N 10300E. This gold anomaly is supported by a strong associated arsenic, antimony anomaly. The gold values range from 14 to 328 ppb. Incorporated into the data is soil grid results from the 2000 field work and reported in Assessment Report 26435.

In the south, the Griz anomaly is a small gold anomaly, 17750N 10200E to 17800N 10240E, that coincides with a weak arsenic anomaly. Values range from 15 to 33 ppb gold.

Arsenic

Within the Caribou anomaly there is a linear strong arsenic anomaly that is 50 to 200 metres wide and extends for ~650 metres from 18250N 10060E to 18900N 10120E. Arsenic values range from 37 ppm to 731 ppm.

Other arsenic anomalies include a circular (~150 metres diameter) area centred on 18400N 10300E with values ranging from 67 to 560 ppm arsenic. On line 17950N from 10140E to 10220E and extending 50 metres south to 17900N 10200E an arsenic anomaly, open to the north, includes a small gold anomaly. Values on line 17950N range from 71 to 345 ppm arsenic.

Lead

There is a strong correlation between the lead and the zinc anomalies except in the one area around 18375N 10000E where there is no zinc anomaly.

Two major lead anomalies were found in the grid area, one within the Bear anomaly and the other within the Griz anomaly area. The Bear lead anomaly is a linear disjointed series of anomalies that form a corridor that is co-incidental with the gold corridor. The lead anomaly extends from 18675N 10340E to 19600N 10320E with lead values ranging from 21 to 611 ppm.

The lead anomaly in the Griz area is an arcuate, near continuous anomaly extending northwest from 17600N 10230E to 17950N 10180E with lead values ranging from 23 to 205 ppm.

Zinc

The zinc anomalies are co-incident with the lead anomalies described above except for an area around 18350N 10000E where there is little zinc within the lead anomaly. Zinc values within the anomalies range from 80 to 460 ppm

Copper

Overall copper values are low throughout the survey area with background levels in the 19 to 20 ppm range and anomalous values in the 40 to 210 ppm range. There are three anomalous areas of copper which are also co-incidental with the lead/zinc anomalies.

In the Bear anomaly the copper forms a disjointed anomaly extending from 19325N 10400E to 19600N 10340E with values ranging from 23 to 141 ppm copper.

The southern portion of the Bear area contains a copper anomaly that extends from 18550N 10300E to 18900N 10300E with values in the 26 to 89 ppm range. The northern 2/3 of the anomaly is co-incident with the lead/zinc anomaly while the southern portion is peripheral to the lead/zinc anomaly.

The Griz area has a copper anomaly extending from 17600N 10260E and arcing west to 17950N 10180E. This anomaly is co-incident with the lead/zinc anomaly and contains values in the 43 to 290 ppm copper range.

Antimony

Although generally smaller in area than the gold/arsenic or the gold/lead/zinc anomalies, the antimony anomalies are nevertheless, co-incident with both groups of elements.. Values range from 3.9 to 62 ppm antimony.

5.3 Summary of Geochemical Soil Anomalies

The data plots indicate that there are two distinct populations of elements associated with the gold anomalies. They are, from north to south:

- in the Bear area there is a group of elements, gold/lead/zinc/copper/antimony but without appreciable arsenic values, that form an anomaly 950 metres long by 120 to 200 wide. The strike of this anomaly is 145 to 155 degrees which is similar to the strike of the 155 Fault in the South Zone

- in the Caribou area there is a north trending, linear gold/arsenic/antimony anomaly, approximately 550 metres long, that has only a very small portion of anomalous lead/zinc/copper. This is a distinctly different element signature than the Bear and Griz anomalies in that it has a strong arsenic signature and a very limited area with lead/zinc values. Its location between the Bear and Griz areas and its north/south trend suggest that this anomaly is a structurally controlled (fault) mineralized area that may be a separate mineralizing phase.

- the Griz anomaly, the most southern area of the grid, where the gold/lead/zinc/antimony signature is again repeated, suggesting that this anomaly is an offset extension of the Bear anomaly separated by the Caribou anomaly. Within this anomaly there is a unique portion that is the only area of the grid containing co-incident gold/arsenic/lead/zinc/antimony.

The survey grid area is located on a relatively steep side-hill area, slopes average ~ 20 degrees that may create an easterly downhill dispersion of all elements.

Tuble 5 Ro	ek bampie Descriptions D		K and L			3		
SAMPLE #	DESCRIPTION	Туре	Width	Au	As	Pb	Zn	Sb
			metre	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
D-04-R-R-01	Quartz vein material, barren	float	grab	4.0	11	2	7	0.2
R-02	Quartz, barren	float	grab	0.7	1	2	8	<.1
R-03	Quartz, milky	float	grab	<.5	1	1	4	0.1
R-04	Qtz stwk in metased	o/c	3.0	5.4	15	107	123	0.3
R-05	Qtz stwk in schist argillite	o/c	grab	0.5	10	31	33	0.2
R-06	Qtz vein in metased	o/c	grab	1.9	7	247	155	0.4
R-07	Qtz vein material	float	grab	3.3	8	6	10	0.3
DC04MR-01	Sil limestone, pyrite	float	grab	1.0	311	7	94	4.6
MR-02	Quartz with pyrite	float	grab	<.5	3	4	23	0.1

5.4 Summary of Rock Samples

 Table 3
 Rock Sample Descriptions – D-04-R—R and DC04-MR Series

o/c = outcrop (exposure), sdst = sandstone, qtz = quartz, stwk = stockwork, metased = meta-sedimentary Note: Mass spectrometry results are rounded to the closest ppm

The metal values for the samples collected are only slightly elevated from background therefore indicating there is little possibility of economic mineralization within the surveyed portion of the East and West Forks of Dominion Creek.

6 Conclusions

The soil geochemical survey carried out by Gold City in 2004 has delineated three extensive areas of gold, arsenic, lead, zinc and copper enrichment within the overlying soils. These anomalies whose combined length is 1,650 metres occur over a distance of 1,950 metres but are separated by 300 metres of un-sampled or mineralogically barren soil.

These results indicate that there is excellent potential to discover gold and base metal mineralization within the claims that comprise the Domin Project.

7 Recommendations

7.1 Phase 1

The property has several extensive gold/multi-element targets that need further exploration work that would include:

An extensive trenching program should be carried out in order to expose as much bedrock as possible within the soil anomalies. Targets for trenching should be selected always keeping in mind the down-slope dispersion of the target elements.

Geological mapping of all bedrock exposures noted during the establishment of the grid and any additional bedrock uncovered by the trenching program.

Detailed prospecting should be carried out in the up-slope areas of the anomalies for bedrock exposures and mineralized float.

7.2 Phase 2

A diamond drilling program should be carried out contingent upon the results of the trenching, geological mapping and sampling program

8 Bibliography

- Brown, A.S., 1957: Geology of the Antler Creek Area, Cariboo District, British Columbia, Department of Mines, Bulletin No. 38.
- Chapman, J.A., 1996: A Valuation of the Mineral Properties of Gold City Mining Corporation, October.
- Holland, S.S., 1954: Yanks Peak Roundtop Mountain Area, Cariboo District, British Columbia, Department of Mines, Bulletin No. 34.
- Kocsis, S., 1997a: Summary Report on the Domin Gold Property, Cariboo Mining District, Central British Columbia, unpublished report for GCMC and AMTI by Cariboo Mining Services, May 14.
- Kocsis, S., 1997b: Summary Report on the WelBar-Domin Gold Project, Cariboo Mining District, Central British Columbia, unpublished report for GCMC and AMTI by Cariboo Mining Services, April 11.
- Makepeace, D.K., 2004a: Summary Review of the WelBar and Domin Projects, Cariboo Mining District, Gold City Industries Ltd., July 7.
- Makepeace, D.K., 2004b. Addendum to Summary Review of the WelBar and Domin Projects, Cariboo Mining District, Gold City Industries Ltd., July 23.
- Makepeace, D.K., 1996: A Valuation of the Gold City Mining Corporation Mineral Properties, unpublished report for United Keno Hill Mines Limited, Pg 40.
- Minfile / pc, 1996: B.C. Mineral Property Database, Geological Survey Branch Mineral Resources Division, Ministry of Energy, Mines and Petroleum Resources.
- Cowley, Paul S., 2001: Geological, Geochemical and Drilling Report on the Domin Project. Gold City Industries Ltd., Assessment Report # 26435

APPENDIX I

Analytical Results

ACME ANALY (ISO 9	TICA 002	L L/ Acci	ABOR redi	ATC. ted	RII L Co	IS 5.)	LTD			852	E.	HA	STI	:NG	5 S'	F . 7	VAN	COU	VE:	R B	C	V6A	1R	6		рно	NE (604) 25	53 - 1	315	8 FA	X (6	04)25	3-1716	
										G	FO?	CHI	GMI	CA.	Ьі	ANA	ЦΥ	SIS	5 (CER	TI.	FIC.	ATI	E											AA	k
								Gc	old	Ci	tv	Tı	ıdu	ıst	ri	28	Lt	d.	- F	757	е :	₿A	405	500)2									s esp	474	A
												550	- 58	10 H C	ornby	/ St.	, V.	ancou	Jver	BC	V6C	3B6	55	88												
				<u></u>						<u>.</u>							<u></u>		<u> </u>		•	<u> </u>	<u></u>		<u> </u>			<u></u>	<u> </u>	<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u></u>
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	CO	Mn	⊦e	As	U	Au	1h	Sr	Cd nom r	SD	51 om n	V	Ca	۲ ۷,	La	Cr	Mg v	Ba	11	B	AI V	Na %	K 97,	W	Hg :	SC 11	5 9	Ga Se	Sample	
	ppm	ppin	ррш	ppii j	ppili	ppin	ppiii	ppiii	6	ppin	ppiii	hhn	ррш	ppin	hbiu t	phi b	on p	рш	<i>/</i> 0	<i>1</i> 0	эрш	phili	6	ppili	/0	ppin	-6	10		- inde	phin h	hu hhu	<i>k</i> 0	phu phu	giii	
G-1	1.3	2.7	1.9	43 •	<.1	4.7	4.4	596	2.00	<.5	1.7	.5	3.6	77	<.1 <	<.1	.2	43.	53.	080	7	45.6	.65	257	. 125	2 1	.02	.071	.53	.5<.	01 2	.0.4	<.05	5 <.5	15.0	
DCS-21	.4	32.7	31.9	92	.1 3	37.8	20.8	563	4.38	44.5	.9	9.3	6.9	28	.2 2	2.4	.6	3.	21 .	042	12	5.6	.19	21 .	.001	3	.42	.004	.03	.1 .	01 2	.8 <.1	. 59	1.7	7.5	
DCS-22	.3	42.5	33.5	99	.2 5	58.6	33.1	428	5.89	77.6	.6	10.0	7.9	58	.1 6	5.2	.8	4.	88.	044	14	5.7	. 25	15	.001	<1	. 34	.003	.02 <	<.1 .	01 3	.7 <.1	.89	1.7	15.0	
DCS-23	.4	37.6	31.7	105	.13	38.3	17.2	598	4.37	45.6	1.0	13.5	5.0	37	.24	1.4	.5	5.	36.	060	17	4.4	.09	25	.001	1	.36	.005	.03 •	<.1 .	.03 4	.4 <.1	<.05	1 <.5	15.0	
DCS-24	.4	38.7	41.0	100	.24	40.7	20.7	561	4.69	48.6	.8	14.1	6.0	32	.2 4	4.6	.7	5.	29.	062	22	5.4	.12	24	.001	1	.42	.007	.03 •	<.1 .	.03 4	.2 <.1	<.05	1.7	15.0	
	E	20.3	17 F	120	2.	16 /	22 Z	514	1 88	80.2	٥	14 6	5 9	15	2 1	5.8	6	A	27	053	1/	36	05	20~	001	2	20	005	03.	- 1	02 5	3 < 1	20	<1 5	15 0	
DCS-20	.5	10.0	20 8	109	.2.	16 /	20.0	5/5	4.00 / 8/	58 7	و. م	10 2	67	30	.0.	2.0 2.0	6	т. 5	26	050	23	6.5	13	25	003	1	18	000	.00	·. 1 . 1	02 0	0 < 1	15	1 6	15.0	
DCS-20	.7	12 0	15.2	40 .	< 1 2	25.5	14 1	549	3 53	7 1	. 5	<.5	5.9	355	<.1	1.0	.3	56.	06	027	14	8.6	.43	16	.002	<1	.51	.002	.02 •	<.1	01 1	.1 <.1	.18	2 < 5	15.0	
DCS-28	. 2	30.5	39.2	100	.1 :	38.2	22.6	521	4.74	48.1	.8	28.0	6.2	38	.2	2.3	.7	4.	31	047	12	4.8	.18	23	.001	1	.38	.004	.03	.6.	.01 3	.3 <.1	.52	1.7	15.0	
DCS-29	.4	32.0	37.8	95	.1 :	37.3	19.2	563	4.50	53.8	.9	6.7	6.3	38	.2 :	3.0	. 5	5.	34 .	.049	14	5.1	.17	25	.001	2	.38	.004	.03	.2.	.02 3	.5 <.1	. 47	1.8	15.0	
DCS-30	.3	36.9	28.5	83	.1 !	50.6	28.8	746	5.41	42.0	.7	7.1	9.8	112	.1 :	2.4	.7	41.	60	.043	21	8.2	. 28	25	.001	1	.43	.002	.02 ·	<.1<.	.01 3	.2 <.1	.74	1.7	7.5	
DCS-31	.5	29.8	31.9	93	.1 :	37.2	20.5	802	4.44	37.8	1.1	7.2	6.2	34	.2 :	3.3	.5	6.	.30	. 049	13	6.6	.21	30	.001	1	.48	.004	.04 ·	<.1 .	.02 3	.4 <.1	. 35	1.6	15.0	
DCS-M-01	.3	31.1	23.5	82	.1 4	42.4	20.9	475	4.45	20.4	.8	3.7	8.5	132	<.1	1.3	.6	61.	63	.053	21	9.9	.26	18	.002	1	.57	.002	.02 ·	<.1 .	.03 2	.7 <.1	.25	2.5	15.0	
RE DCS-M-01	.2	31.3	23.4	86	.1 4	40.4	20.2	489	4.57	20.1	. 8	3.5	8.6	138	<.1	1.4	.5	61.	67	. 056	23	10.7	.27	19	.002	1	.61	.002	.02	.1 .	.01 2	.9 <.1	.22	2.5	15.0	
DCS-M-02	.2	18.6	18.6	44	.1 :	27.4	11.3	339	3.08	27.9	.7	3.9	8.5	43	.1	2.4	.4	3.	28	. 098	26	4.8	.08	15	.002	1	.24	.002	.02	.1 .	.02 2	.4 <.1	<.05	1 <.5	15.0	
DCS_M_03	З	27 1	22.8	73	1	37 0	17 3	431	4 07	14 1	6	14	7 0	75	1	8	5	61	17	058	26	88	21	14	002	1	44	001	02.	< 1	01 2	1 < 1	22	1 < 5	15 0	
DCS-M-03	.0	31 7	29.7	86	1	41 0	18 5	371	5 08	11 1	1 0	5	6.9	70	< 1	.0	6	4	85	070	31	6.3	11	15	001	1	27	001	02	1	02 2	3 < 1	18	1 7	15.0	
DCS-M-05	.0	26.0	24 0	72	1	38.6	16.8	461	4.16	13.2	.7	<.5	6.8	37	.1	.9	.4	5.	37	.066	30	11.9	.18	13	.002	3	.46	.001	.02	.1<	.01 2	.2 <.1	<.05	1.7	15.0	
DCS-M-06	.3	25.5	21.7	84	.1	37.5	17.0	507	3.92	13.4	.6	.7	8.0	87	.1	.8	.5	71.	45	.070	32	12.0	.27	16	.002	<1	.63	.002	.02 .	<.1	.04 3	.0 <.1	<.05	2.7	15.0	
DCS-M-07	.5	52.3	32.6	98	.2	63.8	28.7	528	6.65	33.8	1.0	3.2	6.8	43	.1	2.0	.9	7.	.35	.076	20	9.3	.16	28	.002	1	.51	.002	.03	<.1 .	.04 3	.9 <.1	.72	1.9	15.0	
	-				-						_	o -	7.6		-	1 0	~	•	~ 1	0.57	00		10		0.00		45			-			0.5	o -		
DCS-M-08	.4	27.8	22.0	/1	.1	39.7	1/.7	448	4.32	10.6	./	2.5	1.2	33	.1	1.2	.5	8.	.24	.05/	29	8.4	.16	1/	.002	4	.45	.002	.02	.1.	.02 2	.5 <.1	<.05	2.5	15.0	
DCS-M-09	.2	19.0	1/.1	/5 64	.1.	29.1	13.8	3/b 207	3.39	12.3	.b	1.2	0.3	38 40	.⊥ 1	.8 1 /	.ა ნ	ο.	. 20 10	.05/	20 24	9.5 0 0	. ZI	11 10	.001	1 2	.51	.001	.01 .	≤.⊥. ∠1	.UI 2	.U <.L	<.U5	2.8	15.0	
	.2 12 1	20.9	20.2	122	. 1 .	27.0 21 E	11.7	39/	4.08 2 00	17 7	ס. גי	12 0	0.0	40	.⊥ 5 1	1.4 1 0 6	.5 1	0. 60	.40	.05/	34 12	0.0	. 17	135	003	17 0	.44	.001	.02	∽.⊥. ⊑∩	Z בט. כ 10	.4 5.1	>.UD		15.U 15.0	
STANDARD DS5	12.4	132.0	24./	100	.0	24.0	11./	/0/	2.33	1/./	0.2	42.0	2.9	49	0.1	+.0 0	.4	00.	.73	.00/	14.	100.3	.00	100	.090	1/ 2		.032	.10	0.0.	.10 3	./ I.U	~.05	/ 0.0	10.0	

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.
 SAMPLE TYPE: SILT SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

Sept. 17/04 DATE RECEIVED: AUG 24 2004 DATE REPORT MAILED:

ACME ANALYI (ISO 90 ACA	ICAI	I LA LCCT	BORA edit	TORI ed C	ES ?0.)	LTD	۰. <u>G</u> c) 1d	352 G Ci	E. EO ty	HA CHI 11 550	STI EMI 1 <u>du</u> - ⁵⁸	NGS CAI <u>st</u> i 0 Hoi	ST A Cie	· \ NA <u>s</u>	/ANC LYS Ltc , ^{Vai}	COU SIS <u>1.</u> ncou	VEF C F Iver	BC ERT ile BC V6	V IF # % 31	6A : ICA A4 36	1 R6 TE 050	03	PHON	IE (6)	04)2	:53 -	31	58 F2	X (60)4)2!	53 - 1	1716 A A	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn / ppm p	Ag om p	Ni ppm	Co ppm p	Mn I pm	Fe %	As ppm j	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm j	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba T ppm	i B %ppm	A1 %	Na %	K %	W Hg ppm ppn) Sc 1 ppm	Tl ppm	S Ga % ppr	a Se nppm	
SI D04R-R01 D04R-R02 D04R-R03 D04R-R04	.1 1.0 .3 1.4 .3	.4 3.6 1.3 2.8 3.7	.2 1.5 2.0 .5 106.5	<1 < 7 < 8 < 4 < 123	.1 .1 3 .1 3 .1 2	.2 3.6 1.3 2.6 9.7	<.1 .9 .2 .5 4.2 4	<1 . 54 . 28 . 49 . 38 2.	11 59 1 28 53 35 1	<.5 · 10.6 .8 · 1.1 · 15.0	<.1 .1 <.1 <.1 .1	.6 4.0 .7 <.5 5.4	<.1 .1 <.1 .1 1.9	2 2 <1 1 149	<.1 <.1 <.1 <.1 .3	<.1 · .2 · <.1 .1 · .3	<.1 <.1 <.1 <.1 .2	<1 1 <1 1 3	.11< .02 <.01 .01 2.54	.001 .001 .001 .002 .016	<1 <1 <1 <1 3	1.5 5.1 1.9 7.2 3.9	<.01 .01 <.01 <.01 .70	3<.00 3<.00 1<.00 1<.00 15<.00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.01 .02 .01 .02 .14	.492< .014 .008< .006< .020	.01 .01 .01 .01 .01	<.1<.01 1.5<.01 <.1<.01 2.6<.01 <.1<.01	1 2 2 2 2 2	<.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1	5 < 5 < 5 < 5 < 24 <	l <.5 l <.5 l <.5 l <.5 l <.5 l <.5	
D04R-R05 D04R-R06 RE D04R-R06 D04R-R07 DC04MR-001	1.1 .2 .2 1.3 1.8	2.8 3.0 3.2 4.1 27.3	31.1 247.7 259.5 5.5 6.9	33 155 152 10 < 94 <	.1 1 .6 9 .6 9 .1 0 .1 12	1.5 5.3 5.6 6.3 2.4 2	3.8 3 1.9 1 2.0 1 1.9 2 6.7 9	38 2. 56 1. 64 1. 36 . 38 4.	39 20 22 93 82 32	9.5 6.7 6.6 8.2 11.2	.2 .1 .1 .3	.5 1.9 2.1 3.3 1.0	2.1 .6 .5 2.7 1.2	60 20 20 10 1119	.1 .1 <.1 .1	.2 .4 .3 .3 4.6	.2 1.4 1.4 .1 .1	2 2 1 1 19	1.71 .55 .55 .34 11.34	.027 .006 .007 .006 .135	2 1 1 7 2	5.7 2.1 2.5 7.8 29.7	.29 .10 .10 .02 3.00	14<.00 8<.00 7<.00 9<.00 27 .00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.11 .07 .07 .06 .16	.014 .009 .009 .013 .005	.06 .03 .04 .04 .04	1.3<.01 <.1 .01 <.1 .01 2.0<.01 <.1<.01	2.6 1.0 1.1 . 7 . 10.6	<.1 .2 <.1 .1 <.1 .1 <.1<.(<.1 .7	23 < 6 < 8 < 15 < 75 <	1 <.5 1 <.5 1 .5 1 <.5 1 .5	
DC04MR-002 617317E 5920756N STANDARD DS5	.9 .2 12.8	17.9 16.9 140.4	3.6 23.1 25.0	23 < 69 < 138	.1 1 .1 2 .3 2	1.3 4.8 1 5.0 1	5.1 1 1.8 8 1.8 7	07 1. 05 3. 99 2.	16 67 99 :	2.9 7.5 18.0	.1 .9 6.1 4	<.5 <.5 43.7	.3 10.9 2.9	41 768 46	<.1 <.1 5.7	.1 .1 3.9	<.1 .4 5.9	1 10 62	.64 8.45 .76	.005 .048 .100	1 8 12	5.7 17.6 194.4	.05 .92 .69	4<.00 39 .00 139 .10	1 1 2 2 0 16	.04 1.35 2.12	.001 .015 .033	.02 .24 .15	1.5<.02 <.1<.02 5.0 .16	3 3.8 5 3.4	<.1 .4 .1 .6 1.1<.0	5 < 9 4	1 <.5 4 <.5 7 5.1	

GROUP 1DX - 15.00 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Sept. 16/04... DATE RECEIVED: AUG 24 2004 DATE REPORT MAILED: Data FA

ACME ANALY	TIC	AL L	ABO	RAT	ORI	ES	LTD	•	8	52	E. 1	IAST	ING	s s'	r.	VAN	COI	UVE	RI	3C	V6.	a 1r	26		PH	ONE	(60	4)2	53-	315	8 I	'AX (604)	253-:	.716
ΑΔ	002	AUU	LCU.	1.00		,				G	IOC	HEM	ICA	.L)	AN2	/LY	SI	S I	CEI	RTI	FI(CAT	E												AA
Ή Ľ Ύ Ľ							<u>Go</u>	<u>1d</u>	<u>Cit</u>	<u>y</u>	<u>End</u> 55	<u>ust</u> 0 - 5	rie 80 H	s] ornby	<u>Ltc</u> / St	<u>1.</u> ., v	F anco	il uve	⊖ f rBC	∦ A v6c	40 3B6	500	1	I	?ag	e :	Ĺ								ĽĽ
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppn	U ppm	Au ppb	Th ppm	Sr ppm µ	Cd opm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W Marana	Hg pm	Sc ppm p	TI S pm %	Ga Se ppm ppr	Sample gm
G-1 19600N 10100E 19600N 10120E 19600N 10140E 19600N 10160E	1.2 .5 .5 .4 .5	2.5 21.5 26.2 20.4 20.0	2.0 18.3 23.2 20.2 19.3	36 70 78 76 93	<.1 .1 .2 .1 .1	4.2 29.8 31.6 26.4 24.2	3.4 13.7 19.5 12.5 12.3	444 741 622 474 726	1.66 3.18 3.90 3.19 3.39	<.5 21.6 23.9 25.0 24.5	1.7 2.4 3.9 1.2 1.3	.8 3.7 2.2 6.5 2.1	4.0 5.9 5.1 5.1 4.3	69 - 37 28 43 20	<.1 .2 .4 .2 .2	<.1 1.2 1.2 1.3 1.3	.1 .3 .4 .3 .3	36 11 16 9 12	.45 .44 .27 .48 .17	.070 .065 .063 .062 .069	7 28 24 20 24	22.1 12.3 15.7 9.6 10.7	.46 .18 .14 .13 .11	179 55 60 50 44	.106 .003 .005 .002 .003	1 1 1 <1 <1	.81 1.04 1.40 .76 .83	.072 .005 .005 .008 .004	.40 .09 .08 .07 .06	1.0 . .1 . .1 . .1 . .1 .	01 06 07 05 07	2.1 3.2 3.0 2.6 < 2.5 <	.3<.05 .1<.05 .1<.05 .1<.05 .1<.05	4 <.9 2 .0 3 <.9 2 <.9 2 <.9	15.0 15.0 15.0 15.0 15.0 15.0
19600N 10180E 19600N 10200E 19600N 10220E 19600N 10240E 19600N 10260E	.4 .2 .4 .4 .4	31.7 23.2 20.5 26.9 16.8	40.9 20.0 25.1 53.4 26.0	99 67 64 67 38	.2 .1 <.1 .5 .4	41.9 28.7 23.5 25.1 16.9	16.9 13.4 9.2 11.0 6.4	681 360 187 252 176	4.35 3.38 5.00 5.36 3.47	32.7 19.1 26.3 29.2 23.6	1.7 .6 .5 .5 .5	23.1 2.2 3.2 24.9 5.4	4.6 8.1 5.1 3.9 2.2	38 15 7 14 35	.3 .1 .1 .2 .1	2.3 1.0 1.3 2.4 1.1	.4 .3 .4 .6 .5	13 12 13 12 10	.41 .12 .03 .13 .45	.069 .035 .035 .064 .156	26 34 26 27 20	12.1 10.4 12.4 9.9 7.6	.18 .17 .14 .08 .07	45 42 30 23 29	.006 .002 .003 .003 .003	<1 1 <1 <1 <1 1	.88 .89 .94 .67 .61	.004 .003 .004 .004 .004	.06 .07 .05 .04 .06	.1 . .1 . .1 . .1 . .1 .	07 04 04 05 09	3.9 < 2.4 < 1.7 < 1.4 < 1.0 <	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	2 .8 3 <.9 4 <.9 3 .9 2 .9	15.0 15.0 15.0 15.0 15.0 15.0
19600N 10280E 19600N 10300E 19600N 10320E RE 19600N 10280E 19600N 10340E	.7 .4 .5 .6	19.7 20.7 41.6 19.7 24.3	23.3 31.5 611.5 24.1 30.6	48 85 195 48 49	.1 .9 .5 .1 .2	19.4 29.8 34.2 18.6 15.5	10.1 10.5 21.7 9.7 6.5	311 591 533 297 127	3.33 3.80 6.19 3.42 3.24	26.5 35.1 69.4 27.8 26.2	.8 1.3 1.1 .8 .6	8.4 15.0 100.8 5.9 10.4	3.5 3.0 4.2 3.6 1.3	11 89 27 12 8	.1 .2 .9 .1 .1	1.6 7.8 2.4 1.6 1.8	.4 .4 .8 .5 .5	11 11 10 12 10	.06 .71 .19 .06 .01	.075 .166 .093 .080 .070	16 28 15 17 14	6.8 6.9 6.8 6.9 4.3	.04 .02 .03 .04 .02	18 50 18 18 18	.003 .003 .004 .003 .004	<1 1 1 1 <1	.85 .74 .93 .91 .41	.003 .004 .004 .003 .003	.03 .02 .02 .03 .03	.2 . .1 . 1.2 . .2 . .1 .	08 14 11 08 05	1.8 5.0 4.3 < 1.8 .9 <	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	2 .6 1 .9 2 .9 1 <.9	15.0 15.0 15.0 15.0 15.0
19600N 10360E 19600N 10380E 19600N 10400E 19575N 10100E 19575N 10120E	.6 .5 .3 .8 .4	12.5 70.6 47.8 29.2 20.0	24.4 96.4 36.7 18.4 16.7	27 132 106 114 73	.1 .5 .1 .3 .3	8.8 61.4 48.5 32.6 20.8	3.8 57.4 26.2 14.4 6.6	145 1185 714 1686 136	3.77 8.39 5.25 3.33 1.67	28.1 66.9 29.8 20.9 9.4	.4 1.0 .8 3.5 2.7	12.7 33.8 6.8 2.6 6.5	1.1 12.5 12.5 3.6 4.8	7 40 21 81 55	.1 .5 .2 .2 .2	2.1 4.2 2.4 1.3 .6	.5 1.1 .6 .3 .2	9 13 8 13 11	.02 .21 .15 .99 .70	.115 .107 .073 .149 .117	15 25 54 29 31	4.7 10.5 10.5 16.0 13.3	.01 .09 .22 .17 .18	8 28 25 64 58	.003 .001 .003 .007 .004	<1 <1 1 1	.27 1.12 .75 1.19 1.20	.005 .004 .004 .006 .007	.02 .02 .04 .10 .09	.4 . .3 . .1 . .1 . .1 .	05 17 06 10 07	.5 < 6.2 < 7.0 < 2.7 3.1	1<.05 1<.05 1<.05 1<.05 1.10 1.10	1 <.8 1 .8 2 .9 3 1.8 2 .9	15.0 15.0 15.0 7.5 15.0
19575N 10140E 19575N 10160E 19575N 10180E 19575N 10200E 19575N 10220E	.5 .4 .6 .4 .5	20.5 21.0 22.5 36.1 29.1	19.4 20.9 29.0 38.1 55.9	64 69 85 98 88	.1 .1 .2 .1 .1	25.8 26.0 31.1 45.1 40.1	13.7 14.0 19.2 21.0 32.5	684 586 861 710 682	3.41 3.58 4.29 4.47 4.92	27.0 25.9 32.9 35.4 46.0	1.5 .9 2.3 1.1 .8	4.0 4.6 8.9 6.8 2.4	5.8 5.7 6.2 6.6 7.2	33 20 30 34 14	.2 .1 .2 .2 .1	1.3 1.3 1.6 2.1 2.6	.3 .3 .4 .4 .5	11 12 14 14 9	.34 .17 .25 .30 .09	.067 .049 .088 .056 .054	30 32 27 33 27	11.5 11.1 14.3 12.3 12.3	.14 .11 .14 .18 .15	50 55 52 48 52	.003 .003 .004 .006 .002	<1 1 2 <1 1	1.10 .95 1.44 .89 1.17	.005 .004 .005 .005 .005	.07 .07 .09 .08 .09	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	06 05 09 03 06	2.7 2.1 < 3.9 4.3 < 3.3 <	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	3 <.! 3 <.! 3 .! 3 .! 2 .!	15.0 15.0 15.0 15.0 15.0 15.0
19575N 10240E 19575N 10260E 19575N 10280E 19575N 10300E 19575N 10320E	.5 .4 .5 .5 .4	21.8 19.8 21.4 64.5 29.1	30.4 20.3 23.6 74.1 36.3	72 41 52 93 887	.1 .1 .8 .3	22.6 17.2 19.1 60.6 46.8	21.2 7.1 8.3 41.7 27.1	828 94 176 1292 576	4.12 3.28 4.81 7.50 4.98	26.1 26.0 29.8 109.7 40.8	1.3 .4 .4 .7 1.5	4.2 4.3 8.8 10.1 21.9	6.7 3.6 2.7 3.3 7.7	13 9 9 57 32	.1 .1 .2 .2 .3	1.3 2.1 2.2 13.4 5.4	.4 .4 .5 1.6 .5	12 10 11 10 14	.09 .04 .02 .52 .29	.058 .058 .050 .085 .085	25 21 27 22 51	11.1 6.3 8.2 5.6 11.9	.12 .04 .05 .03 .10	33 19 30 39 32	.003 .003 .004 .001 .004	<1 <1 <1 2 <1	1.09 .56 .69 .48 1.31	.005 .005 .004 .003 .003	.05 .03 .03 .03 .03	.1 . .1 . .1 . <.1 . .1 .	06 08 05 15 1 13	3.3 < 1.4 < 1.4 2.0 < 9.4	:.1<.05 :.1<.05 .1 .06 :.1<.05 .1 .07	3 . 2 . 3 . 1 1. 2 1.	15.0 15.0 15.0 15.0 15.0 15.0
19575N 10340E 19575N 10360E 19575N 10380E 19575N 10400E 19550N 10100E	.5 .5 .6 .5	28.3 16.3 59.7 34.5 23.2	29.8 33.4 70.6 83.6 19.0	5 65 63 5 112 5 123 9 92	.1 .2 .1 .2 .1	24.0 16.2 39.9 34.4 32.0	12.5 7.9 23.8 25.3 16.0	290 304 625 1402 728	4.15 3.36 7.27 6.95 3.68	35.9 31.9 56.0 43.8 21.9	.9 .5 .8 .9 1.8	9.3 12.9 15.7 49.2 2.4	3.6 1.4 4.6 5.4 5.7	10 9 9 13 41	.2 .1 .1 .2 .1	5.5 4.3 4.1 3.0 1.1	.5 .4 1.4 .8 .4	10 8 11 10	.02 .02 .03 .07 .49	.046 .093 .114 .092 .070	17 12 19 20 27	5.9 4.9 6.1 8.7 11.4	.03 .02 .06 .07 .18	21 16 23 33 57	.002 .003 .005 .003 .003	1 <1 <1 1 1	.57 .35 .54 .78 .97	.003 .003 .004 .003 .005	.02 .02 .03 .04 .09	.1 . .6 . .3 . .3 . .1 .	07 05 04 06 04	3.8 < 1.5 < 2.3 < 3.9 < 2.7	:.1<.05 :.1<.05 :.1<.05 :.1<.05 .1<.05	1 .(1 .(2 .! 2 <.! 3 <.!	15.0 15.0 15.0 15.0 15.0 15.0
STANDARD DS5	13.0	142.5	25.2	2 138	.3	25.3	12.6	765	2.93	17.9	6.1	42.0	2.8	47	5.3	3.8	6.0	64	.72	.087	13	179.7	.66	136	.102	18	2.07	.036	.14	5.1 .	16	3.6 1	.1<.05	7 5.0	15.0
GROUP 1DX - (>) CONCENTR - SAMPLE TYP	15.00 ATION E: SC) GM S I Exce)IL SS	AMPLI EDS U 80 60	E LEA JPPER DC	ACHEI S LII	D WI MITS ample	TH 90 . SC es be) ML (ME M) ginn	2-2-2 INERA ing '	HCL- LS M/ RE' a	HNO3 Y BE Ire Ri	H2O PART eruns	AT 95 (ALLY and	DEG ATT 'RRE	ACKI	FOR D. Te Re	ONE REFI	HOU RACT t Re		DILUT AND S.	ED 1 GRAF	го зо РНТТО Б/Е	0 ML C SAI	, AN MPLE	IALYS S CA	ED B N LI	Y IC MIT A	P-MS. AU SC	- DLUB1			BIA	2.1		AS INTERNAL

Clarence Leong

DS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAM 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u> DATE RECEIVED: AUG 24 2004 DATE REPORT MAILED: Data 🕢 FA

Page	2
------	---

SAMPLE#	Mo	D	Cu DM D	Pb om Di	Zn	Ag pm	Ni mag	CO MCC	Mn Maa	Fe	, e 10 %	As om di	U Sm	Au daa	Th pom	Sr ppm	Cd ppm	Sb mag	Bi Dom 1	V maa	Ca %	P % (La ppm	Cr DDM	Mg % ۱	Ba ppm	Ti % I	B DDM	A1 %	Na %	К % р	W pm p	Hg S Dm pr	Sc 1 Sc 1	F1 S 5m %	S Ga Kopmi	Se San pm	nple qm
19550N 10120E 19550N 10140E 19550N 10160E 19550N 10180E 19550N 10200E	.6 .3 .5 .7 .6	24 22 13 22 37	.0 26 5 19 .9 16 .1 21 .1 34	.1 .6 .4 .7 .6	78 75 62 96 89	.1 2 .1 3 .1 1 .1 3 .1 3	28.3 30.1 19.2 30.0 38.2	12.7 14.0 10.1 15.0 20.8	228 304 239 968 659	4.3 3.5 2.8 3.4 5.5	5 24 2 26 5 19) 24 7 44	.7 1 .7 1 .5 .9 1 .8	.6 .2 .7 .9 .8 1	3.2 5.6 2.0 11.0 49.5	7.6 7.9 3.4 5.2 11.6	33 24 45 39 20	.2 .1 .2 .2 .1	.9 1.3 .9 1.1 2.0	.4 .4 .3 .3 .5	13 10 13 10 8	.33 .23 .56 .42 .14	.039 .039 .060 .078 .047	24 29 19 24 36	14.1 10.8 9.1 10.8 7.5	.19 .18 .10 .14 .15	53 48 39 45 24	.002 .002 .002 .002 .004 .004	<1 1 <1 1 <1 1 <1 <1	.24 .00 .73 .96 .50	004 004 005 005 003	.07 < .06 .06 .07 < .04	.1 . .1 . .1 . .1 . .1 .	03 2 03 2 05 1 05 2 01 3	.0 . .3 <. .5 <. .4 <. .0 <.	1<.05 1<.05 1<.05 1<.05		.6 .5 .5 .8 .5	15 15 15 15 15 15
19550N 10220E 19550N 10240E 19550N 10260E 19550N 10280E 19550N 10300E	.4 .5 .5 .6	26 33 30 25 29	.0 23 .3 28 .8 26 .4 32 .3 31	.5 .4 1 .3 .3 .8	84 12 75 59 78	.1 3 .4 4 .1 2 .1 2 .1 2	31.7 46.5 25.5 20.7 22.2	16.7 17.2 10.5 10.7 12.1	324 1200 315 271 426	3.8 4.0 5.8 4.0 4.2	5 33 7 29 1 42 3 43 8 38	.4 .5 1 .2 .8 .9 1	.8 .5 .5 .8 .0	2.9 4.6 3.4 9.2 23.6	8.0 6.0 2.5 2.1 5.2	19 50 6 10 7	.1 .5 <.1 .1 .1	1.2 1.4 2.2 2.0 2.1	.4 .4 .7 .5 .5	11 10 12 12 12	.17 .59 .02 .04 .01	.047 .101 .074 .070 .069	30 28 26 27 27	10.2 10.8 7.9 6.7 8.7	.17 .14 .05 .04 .05	34 60 21 22 21	.003 .002 .004 .004 .003	<1 11 <1 <1 <1 <1	.94 .26 .51 .57 .87	004 006 003 004 004	.05 .08 < .04 .03 .04	.1 . .1 . .1 . .1 .	04 2 10 3 05 1 04 1 05 2	.5 <. .9 . .5 <. .4 <. .1 <.	.1<.05 .1 .06 .1<.05 .1<.05 .1<.05	5 2 5 6 2 7 5 4 5 3 5 2	.5 .1 .5 .7 .6	15 15 15 15 15
19550N 10320E 19550N 10340E 19550N 10360E 19550N 10380E 19550N 10400E	.6 .6 .7 .7	27 24 34 43 35	.5 30 .5 49 .7 55 .6 47 .1 42	0.0 0.7 1 0.3 7.0 1 2.1 1	74 15 90 09 21	.1 2 .2 2 .1 3 .1 3	22.9 29.1 30.1 35.5 31.7	10.7 15.6 14.6 20.8 20.3	373 705 408 553 706	4.3 4.6 5.6 5.5 5.8	3 35 2 37 7 45 6 38 9 35	.4 .1 1 .6 .9 .0 1	.7 .3 .8 .8 .0	6.6 12.6 15.2 9.8 16.0	4.6 6.8 6.0 5.8 6.3	7 14 10 14 15	.1 .2 .1 .1	2.1 3.0 3.3 1.8 1.8	.5 .5 .7 .9	11 10 11 6 8	.03 .08 .03 .07 .14	.085 .094 .082 .087 .118	20 24 23 19 20	7.5 9.9 10.6 6.2 8.3	.05 .07 .09 .09 .09	48 33 22 29 45	.003 .002 .003 .002 .003	<1 <1 1 <1 <1 1	.75 .14 .85 .64 .71	004 004 004 005 005	.03 .03 .04 .04 .03	.2 . .1 . .1 . .1 .	07 2 12 4 07 2 04 2 04 2	.1 .0 .3 .5 < .8 <	. 1< . 05 . 1< . 05 . 1< . 05 . 1< . 05 . 1< . 05	5 2 5 2 5 2 5 2 5 2	.7 .7 .9 .5	15 15 15 15 15
19525N 10100E 19525N 10120E RE 19525N 10120E 19525N 10140E 19525N 10160E	.6 .5 .5 .5	24 33 34 25 18	.5 32 .1 20 .4 21 .6 21 .6 22	2.8).6 1 7 2.4	94 < 94 97 87 66	1 2 .1 2 .1 4 .1 2 .1 2	27.7 42.3 40.8 33.1 24.8	12.8 17.4 18.5 16.1 12.6	303 403 420 312 485	5.5 3.8 3.8 4.1 3.2	1 24 8 24 8 26 5 25 3 24	.6 1 .7 2 .1 2 .2 2 .2 1	.0 .5 .6 .5 .2	3.0 7.3 6.8 6.1 3.5	7.9 6.2 6.0 6.0 4.9	11 37 39 38 61	.2 .2 .1 .1	1.2 1.3 1.4 1.4 1.0	.4 .4 .4 .3	16 12 15 10 9	.04 .39 .40 .39 .75	.052 .075 .076 .092 .069	25 28 31 31 18	19.1 15.9 16.0 12.3 9.4	.16 .27 .28 .23 .13	54 42 44 33 55	.002 .006 .007 .006 .002	<1 1 1 1 1 1 <1 <1 <1	.72 .05 .04 .90 .86	005 005 005 004 004	.08 .07 .07 .06 .07	.1 . .1 . .1 . .1 . .1 .	05 2 04 3 05 4 05 3 06 2	.5 .9 < .2 < .2 < .4 <	. 1<.05 . 1<.05 . 1<.05 . 1<.05 . 1<.05	5 4 5 3 5 3 5 2 5 2	.5 .5 .7 .6 .8	15 15 15 15 15
19525N 10180E 19525N 10200E 19525N 10220E 19525N 10240E 19525N 10260E	.4 .6 .6 .5	18 28 24 25 26	.8 22 .0 42 .0 26 .3 26 .0 37	2.6 2.6 5.8 5.4 7.2	73 85 94 92 88	.1 .1 .1 .2 .2	25.5 28.7 28.4 29.1 26.4	16.1 17.3 15.6 15.7 17.4	359 713 742 746 622	3.6 6.0 3.6 3.6 4.5	9 24 0 29 7 27 9 28 9 33	.7 1 .4 1 .5 2 .7 1 .1 2	.2 .1 .2 .9 .5	3.1 4.4 5.0 11.4 8.4	6.9 11.0 5.2 5.4 7.7	38 11 40 40 15	.2 .2 .1 .2 .1	1.0 1.2 1.2 1.3 1.5	.4 .5 .4 .5	10 12 12 12 12 11	. 44 . 06 . 45 . 45 . 07	.049 .080 .084 .084 .082	27 24 26 26 30	10.5 18.8 11.3 11.2 13.2	.10 .16 .13 .13 .12	45 39 45 47 34	.002 .004 .004 .003 .004	<1 1 <1 1 1 1 1 1 1 1	.01 .78 .03 .02 .20	004 005 005 005 005	.06 .06 .07 .08 .06	.1 . .1 . .1 . .1 .	05 2 08 2 08 2 07 3 07 3	.3 < .5 .9 .0 .8	. 1<.05 . 1<.05 . 1<.05 . 1<.05 . 1<.05	5 3 5 3 5 3 5 2 5 3	.5 .9 .6 .8	15 15 15 15 15
19525N 10280E 19525N 10300E 19525N 10320E 19525N 10340E 19525N 10360E	.7 .7 .6 .5	21 36 32 16 26	9 33 5.8 22 2.3 53 5.7 19 5.5 44	3.9 2.1 3.6 1 5.4 4.2	94 < 91 < 00 40 71	<.1 2 <.1 2 .1 2 .1 2 .1 2	24.5 30.0 32.0 14.6 25.6	17.3 13.9 21.9 9.4 11.5	1082 249 951 272 327	4.3 4.6 6.3 2.5 4.2	7 29 1 34 9 37 9 22 7 52	.22 .7 .21 .0 .4	.6 .5 .3 .5 .7	20.2 14.3 8.3 8.8 9.1	7.0 3.8 7.7 2.4 4.5	10 9 12 6 8	.1 <.1 .2 <.1 .1	1.3 2.6 1.8 1.4 2.2	.4 .6 .3 .5	11 10 10 9 9	.04 .03 .07 .02 .03	.108 .077 .113 .055 .084	31 29 20 27 22	13.2 4.5 11.4 5.0 7.2	.13 .03 .05 .03 .07	37 9 25 13 30	.003 .004 .004 .004 .004	$ \begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 \\ 1 \\ 1 \end{array} $.21 .23 .03 .47 .68	. 004 . 003 . 004 . 003 . 004	.06 .03 .03 .03 .03 .04	.1 . .1 . .1 . .1 . .1 .	07 3 01 1 08 3 06 1 07 2	.5 .7 < .0 .1 < .0	. 1<.0 . 1<.0 . 1<.0 . 1<.0 . 1<.0	5 3 5 2 · 5 2 · 5 2 · 5 2 ·	.9 .5 .6 .5 .5	15 15 15 15 15
19525N 10380E 19500N 10100E 19500N 10120E 19500N 10140E STANDARD DS5	.3 7. .4 .5 13.3	48 24 22 21 145	3.5 53 4.0 22 2.4 23 3 21 5.8 25	3.6 1 2.3 3.1 1.4 5.3 1	.47 77 85 82 40	.2 .2 .3 .1 .3	55.0 26.7 29.7 27.2 25.7	33.9 12.6 15.2 12.2 12.6	1337 639 651 988 762	5.4 3.5 3.7 3.1 2.8	3 38 4 20 8 24 0 21 5 18	.8 1 .5 .7 1 .3 .6 6	.2 .9 .2 .9 .2	25.7 1.1 4.3 3.0 41.0	11.5 3.2 4.8 3.8 2.7	17 51 56 69 46	.3 .2 .1 .2 5.2	2.4 1.0 1.7 1.4 3.7	.6 .4 .3 .3 6.0	7 16 9 9 61	.11 .56 .66 .82 .72	.076 .083 .087 .092 .091	42 22 23 18 12	10.0 12.2 10.9 9.6 177.5	.17 .13 .15 .12 .68	28 71 61 58 136	.002 .005 .003 .003 .093	1 1 <1 <1 18 2	.21 .92 .89 .78 2.04	. 004 . 006 . 007 . 005 . 034	.04 .09 .08 .07 .13 4	.1 . .1 . .1 . .1 .	09 7 07 2 07 3 10 2 17 3	.0 < .2 .4 < .3 < .3 1	. 1<.0 . 1<.0 . 1<.0 . 1<.0 . 1<.0	5 2 5 3 · 5 2 5 2 5 7	0 5 7 5 0	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 3

SAMPLE#	Mo Cu ppm ppm	Pb Zn ppm ppm	Ag Ni (pm ppm p	co Mn Fe m ppm %	As U A ppm ppm pp	wu Th Sr bppmppm	Cd Sb Bi ppm ppm ppm	V Ca ppm %	PLa %ppm	Cr Mg Ba ppm % ppm	u Ti B A גע גע ג	INaKW %%%ppm	Hg Sc Tl ppm ppm ppm	S Ga Se Sar % ppm ppm	mple gm
19500N 10160E 19500N 10180E 19500N 10200E 19500N 10220E 19500N 10240E	.4 18.8 .4 16.7 .4 13.8 .5 17.6 .6 18.7	22.9 66 21.4 66 20.8 56 28.9 74 22.5 46	.1 23.3 16 .1 25.0 13 .1 17.7 9 .1 22.3 14 .1 18.0 8	1 639 3.72 2 551 3.50 6 268 3.44 0 631 4.06 0 159 3.59	24.1 1.0 2 26.2 1.0 2 26.6 .8 3 28.2 1.5 6 29.0 .6 2	1 4.5 28 5 5.9 28 6 6.6 9 7 5.0 30 9 3.9 7	.1 1.4 .4 .1 1.3 .4 .1 1.1 .4 .1 1.3 .4 .1 1.5 .4	10 .31 11 .34 9 .05 10 .37 11 .04	.069 20 .057 23 .048 23 .073 19 .052 23	10.4 .14 37 10.2 .15 40 9.8 .12 36 10.4 .12 34 7.3 .05 19	7 .003 3 .8 0 .002 2 .9 5 .002 1 .9 4 .002 1 .8 0 .002 2 .5	7 .005 .06 .1 1 .004 .06 .1 1 .003 .05 .1 5 .004 .05 .1 5 .003 .03 .1	.05 2.5 <.1<.(.05 2.5 .1<.(.05 2.0 .1<.(.07 2.3 <.1<.(.05 1.2 <.1<.()5 2 <.5)5 2 <.5)5 2 .5)5 2 <.5)5 2 <.5)5 2 <.5	15 15 15 15 15 15
19500N 10260E 19500N 10280E 19500N 10300E 19500N 10320E 19500N 10340E	.4 9.5 .5 23.2 .8 48.6 .4 14.6 .3 28.9	14.4 21 48.1 84 59.8 139 16.5 42 41.9 78	.1 7.5 3 .2 35.6 17 .3 49.0 22 <.1 15.9 8 .2 29.1 15	5 59 2.15 2 482 4.27 3 1102 5.74 1 254 2.78 7 639 4.62	19.9.3232.81.411254.71.22024.6.4840.6.78	9 2.6 5 6 3.5 19 5 9.0 35 0 2.4 10 9 4.2 29	<pre><.1 .8 .3 .2 1.9 .5 .5 3.3 .6 .1 1.6 .4 .3 2.9 .6</pre>	9 .02 12 .17 7 .32 9 .03 8 .30	2 .033 24 .066 23 .078 20 .067 20 .111 14	4.5 .02 18 9.8 .09 30 7.4 .06 26 5.1 .03 26 8.4 .11 30	3.002 1 .4 0.004 1 .8 5.001 2 .9 5.002 2 .4 0.002 1 .6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.04 .6 <.1<.0 .09 2.5 <.1<.0 .11 8.0 <.1<.0 .04 1.0 .1<.0 .08 2.2 <.1<.0)5 2 <.5)5 2 .5)5 1 1.2)5 2 <.5)5 1 <.5	15 15 15 15 15
19500N 10360E 19500N 10380E 19475N 10100E 19475N 10120E 19475N 10140E	.4 25.4 .3 21.9 .6 41.9 .4 23.6 .4 14.6	78.5 460 33.7 221 28.8 102 26.6 80 21.5 59	.1 28.2 11 .1 23.3 13 .5 44.4 18 .2 35.1 17 .1 19.8 10	4 455 4.64 0 458 3.18 6 1093 4.60 3 841 4.07 1 382 3.87	28.5.54620.9.9724.62.0527.61.1325.4.72	2 2.8 15 4 2.1 108 7 4.8 44 4 5.4 28 9 4.1 27	1.2 3.6 .6 2.3 1.3 .5 .4 1.5 .4 .1 2.5 .4 .1 1.4 .4	11 .07 6 1.81 17 .50 11 .30 12 .27	.086 15 .082 15 .139 26 .076 24 .088 21	9.3 .09 37 6.2 .07 42 16.4 .11 70 10.8 .17 39 11.3 .15 37	7.002 1.7 2.002 2.5 0.005 21.6 0.004 1.9 7.003 2.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.07 2.0 .1<.0 .09 2.3 < 1 .0 .13 4.6 .1<0 .06 3.1 < 1<0 .07 1.7 < 1<0	05 2 .5 09 2 .6 05 3 .8 05 2 .6 05 2 .6 05 2 .6 05 2 .6	15 15 15 15 15
19475N 10160E 19475N 10180E 19475N 10200E 19475N 10220E 19475N 10220E 19475N 10240E	.3 19.2 .5 21.1 .4 17.9 .4 19.1	18.56225.38122.27724.58223.181	.1 25.9 12 .1 30.1 18 .1 25.8 13 .2 25.1 13 .2 28.6 13	4 413 3.03 6 1001 3.99 0 657 3.46 2 554 3.63 4 875 3.29	27.0.7824.31.0725.11.0325.4.9225.41.14	.15.428.55.814.45.621.44.736.23.769	.2 1.4 .3 .2 1.2 .4 .2 1.3 .4 .3 1.4 .4 .2 1.6 .4	9 .31 15 .11 11 .18 11 .40 8 .96	062 26 .068 28 3 .087 27 .081 26 5 .093 20	8.4 .14 44 13.4 .11 51 10.3 .12 47 9.7 .12 39 8.9 .13 46	4 .003 2 .7 L .004 2 1.2 7 .003 2 1.1 9 .003 1 .9 5 .002 1 .8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.05 1.9 <.1<.05 0.08 3.0 .1<00 0.08 2.9 .1<00 0.09 2.6 <.1<00 0.09 2.4 <.1 0.09 0.09 0.00 0.00 0.00 0.00 0.00 0.	05 2 .6 05 3 .5 05 2 <.5 05 2 .5 06 2 .8	15 15 15 15 15
19475N 10260E RE 19475N 10260E 19475N 10280E 19475N 10300E 19475N 10320E	.5 24.1 .4 23.4 .5 26.0 .5 25.4 .6 33.0	24.47423.17425.98927.38242.865	.1 30.5 15 .1 28.9 15 .1 34.9 15 .1 33.3 17 .1 30.5 16	4 581 3.74 0 573 3.60 7 737 3.61 5 749 3.92 8 332 7.17	34.61.2733.91.2531.91.2836.21.1552.6.511	.9 6.3 25 .1 6.6 24 .9 4.9 53 .8 6.5 37 .3 2.7 7	.1 1.6 .4 .1 1.5 .4 .2 1.7 .4 .1 1.8 .4 .1 2.6 .9	9 .26 10 .26 9 .65 10 .41 14 .04	0 .067 27 0 .065 26 0 .090 23 .076 26 .081 21	9.4 .13 35 9.3 .13 35 9.4 .14 49 9.6 .14 43 11.4 .06 22	5 .002 <1 .8 5 .002 1 .8 9 .003 1 .8 8 .003 1 .8 2 .005 <1 .6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.06 2.7 <.1<.0 .06 2.7 <.1<.0 .07 2.7 <.1 .0 .06 2.8 <.1<.0 .06 1.5 <.1<.0	05 2 .5 05 2 <.5 07 2 .7 05 2 .6 05 4 .7	15 15 15 15 15
19475N 10340E 19475N 10360E 19475N 10380E 19450N 10100E 19450N 10120E	.3 5.9 .7 57.2 .4 25.9 .5 24.7 .6 24.5	14.2 14 89.8 126 55.0 78 41.0 81 34.3 97	.2 5.5 2 .4 59.6 35 .2 31.2 20 .5 31.8 21 .2 31.1 16	2 58 1.51 1 1200 7.29 4 680 5.24 3 201 3.21 7 753 4.35	10.1 .3 3 45.6 .9 8 26.5 .7 3 19.7 1.2 4 28.2 1.6 16	.4 1.3 6 .6 7.7 221 .0 7.8 16 .6 6.1 34 .5 5.6 34	<pre><.1 .4 .3 .2 2.5 1.4 .2 1.7 .9 .2 1.3 .5 .2 1.6 .5</pre>	8 .03 6 3.47 8 .21 13 .39 13 .40	3 .040 23 7 .113 31 .100 24 9 .116 22 9 .142 27	4.7 .03 18 11.2 .21 61 9.7 .12 18 13.4 .16 63 12.4 .12 50	3 .004 <1 .3 1 .001 1 .8 3 .002 <1 1.0 3 .003 2 1.4) .003 1 1.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.04 .5 <.1<.0 .13 6.9 <.1 .7 .09 3.5 <.1<.0 .07 2.9 .1 .0 .09 3.6 .1<.0	05 2 <.5 15 1 .9 05 2 <.5 09 3 <.5 05 3 .7	15 15 15 15 15
19450N 10140E 19450N 10160E 19450N 10180E 19450N 10200E STANDARD DS5	.7 22.8 .6 24.7 .4 14.4 .4 10.0 13.0 141.9	20.96124.18613.04511.24025.4133	.2 24.7 12 .3 29.6 17 .1 15.7 7 .1 12.6 6 .3 25.6 12	.8 616 3.39 .1 1708 3.66 .7 177 2.36 .8 268 1.99 .7 748 2.89	24.3 1.0 3 27.1 1.3 3 28.6 .3 4 19.3 .3 11 18.7 5.9 40	.8 1.4 44 .9 4.4 44 .0 4.9 18 .9 3.1 14 .8 2.7 47	.2 1.4 .4 .3 1.5 .4 <.1 1.2 .3 .1 .8 .3 5.2 3.7 5.8	16 .56 13 .57 11 .18 9 .16 62 .76	5.087297.145258.035325.045275.09212	9.6 .07 36 12.5 .16 71 5.2 .05 40 5.3 .04 24 183.1 .65 137	5 .006 1 .7 L .005 1 1.2 D .003 <1 .4 4 .002 <1 .4 7 .095 17 2.1	6 .005 .06 .1 2 .006 .08 .1 7 .004 .05 .1 1 .004 .05 .1 2 .033 .14 5.0	.06 1.5 <.1 .1 .08 3.8 .1<.4 .02 1.1 <.1<.4 .02 1.0 <.1<.4 .18 3.3 1.0<.4	06 3 .5 05 3 .7 05 2 <.5 05 2 .5 05 7 5.2	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data KFA

Page 4

ACME ANALYTICAL

SAMPLE#	Mo ppm	Cı ppn	i Pb i ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au Th ppb ppm	Sr ppm	Cd Sb ppm ppm	Bi ppm	V ppm	Ca %	P % p	La opm	Cr ppm	Mg % p	Ba opm	Ti % ا	B opm	A1 %	Na %	К %р	W N pm pp	Hg S pm pp	c Tl m ppm	S % [Ga Se S opm ppm	ample gm
19450N 10220E 19450N 10240E 19450N 10260E 19450N 10280E 19450N 10280E 19450N 10300E	.4 .4 .6 .6	10.7 11.0 20.6 25.0 30.5	11.3 13.5 32.2 35.7 42.7	29 29 64 59 51	.1 .1 .1 .1 .1	11.5 11.2 24.2 23.9 19.1	4.7 5.3 10.2 10.8 8.3	71 148 373 287 222	2.10 2.32 4.00 5.06 4.03	20.9 18.7 31.9 38.3 32.7	.4 .3 .7 .6 .6	3.6 3.0 3.3 2.3 2.7 4.0 7.4 3.2 7.6 2.0	5 4 7 6 6	<.1 1.0 .1 .9 .1 1.8 .1 2.2 .1 2.0	.3 .3 .4 .6 .5	12 10 10 11 10	.02 .03 .04 .02 .03	.040 .051 .073 .073 .073	24 22 17 18 17	5.7 5.6 8.4 9.1 6.5	.03 .04 .08 .06 .04	30 . 14 . 17 . 19 . 23 .	003 003 002 003 004	1 2 2 1 <1	.44 .44 .60 .65 .47	.003 .003 .004 .003 .004	.04 .04 .05 .04 .03	.1 .0 .1 .0 .1 .0 .1 .0 .3 .0	04 . 04 . 03 1. 05 1. 06 1.	9 .1 6 .1 6 <.1 3 <.1 1 <.1	<.05 <.05 <.05 <.05 <.05	2 <.5 2 <.5 2 <.5 2 .6 2 <.5	15 15 15 15 15
19450N 10320E 19450N 10340E 19450N 10360E 19450N 10380E 19450N 10400E	.5 .7 .4 .5	29.9 40.2 38.2 25.9 26.0) 62.1 2 68.0 2 59.4) 31.1) 42.5	78 74 98 93 83	.1 .2 .1 .1	28.9 35.0 42.8 41.5 31.2	16.5 22.5 31.0 15.5 17.2	562 639 4533 2193 938	6.47 6.44 13.01 5.10 4.70	57.9 70.2 47.9 31.1 30.8	.6 .8 1.3 1.0 .9	20.5 2.4 13.0 5.1 18.8 7.0 5.9 4.0 9.4 4.3	13 7 50 72 18	.2 3.7 .1 3.5 .2 3.0 .7 2.2 .3 2.1	.8 1.0 .6 .4 .7	12 9 5 7 8	.17 .03 .48 .80 .50	.084 .091 .047 .086 .084	16 17 21 21 20	10.1 9.1 6.6 7.5 8.7	.06 .08 .11 .11 .11	21 . 22 . 57 . 70 . 26 .	005 004 001 002 003	1 1 1 1 <1	.65 .61 .53 .73 .70	.004 .003 .004 .005 .004	.03 .03 .04 .05 .04	.1 . .1 . .1 . .1 .	06 1. 08 2. 05 6. 08 3. 07 2.	5 <.1 3 <.1 4 <.1 8 <.1 5 <.1	<.05 <.05 <.05 <.05 <.05	2 .6 1 .8 1 <.5 1 .8 2 .5	15 15 15 15 15
19425N 10100E 19425N 10120E 19425N 10140E 19425N 10160E 19425N 10180E	.6 .4 .5 .5	23.8 27.4 19.9 23.7 14.7	5 21.6 4 25.8 9 19.7 7 20.3 7 7.3	121 101 60 56 39	.3 .3 .2 .4 <.1	32.7 34.4 22.2 24.4 14.7	15.6 15.6 10.7 11.9 6.5	1857 1147 577 508 92	3.90 3.65 3.44 3.61 1.95	18.3 23.6 21.3 24.1 23.8	1.5 1.4 .7 .9 .3	2.8 4.7 4.9 5.9 11.4 2.8 6.6 3.8 2.8 3.3	38 42 22 26 6	.3 1.3 .2 1.4 .1 1.1 .2 1.2 <.1 1.2	.4 .4 .4 .3	12 9 14 13 14	.47 .55 .23 .28 .03	.171 .146 .071 .091 .030	25 28 28 27 33	13.2 11.1 11.4 10.6 3.6	.15 .17 .13 .12 .02	77 . 56 . 33 . 36 . 10 .	006 004 005 004 004	1 1 2 1 1 1 1	.14 .11 .84 .99 .19	.008 .007 .005 .005 .003	.09 1 .08 .06 .07 .03	.0 . .6 . .4 . .1 . .1<.	06 3. 07 3. 04 1. 09 2. 01 .	3 .1 4 .1 6 .1 0 <.1 8 <.1	<.05 <.05 <.05 <.05 <.05	3 .8 2 .7 3 <.5 3 <.5 3 <.5	15 15 15 15 15
19425N 10200E 19425N 10220E 19425N 10240E 19425N 10260E 19425N 10280E	.7 .4 .5 .6	21.2 20.5 16.7 44.4 28.0	2 18.0 5 26.8 7 13.2 4 74.2) 35.4	58 61 44 88 76	.1 .1 .1 .1 .2	24.1 26.3 19.1 39.1 25.4	11.1 11.3 7.9 23.3 14.6	351 268 163 562 584	3.42 3.50 2.74 6.18 4.31	24.6 29.3 28.4 67.3 39.1	.9 .6 .3 .6 .9	2.9 2.3 6.2 6.1 1.2 2.3 27.2 7.5 6.7 4.7	18 12 8 8 15	.1 1.3 .1 1.6 <.1 1.4 .1 3.9 .1 2.8	.4 .4 .4 1.0 .5	17 8 13 6 8	.20 .09 .03 .03 .17	.064 .064 .046 .110 .090	27 23 30 21 18	8.7 9.9 5.6 6.9 7.0	.06 .15 .03 .08 .07	24 . 34 . 22 . 16 . 26 .	.005 .002 .004 .002 .002	<1 1 1 <1 1	.66 .78 .34 .56 .73	.004 .004 .003 .003 .005	.04 .06 .03 .03 .04	.1 . .1 . .1 . .1 . .1 .	04 1. 07 1. 02 1. 06 2. 08 2.	5 <.1 7 <.1 0 .1 7 <.1 0 <.1	<.05 <.05 <.05 <.05 <.05	3 .5 2 <.5 3 <.5 1 .7 2 <.5	15 15 15 15 15
19425N 10300E RE 19425N 10300E 19425N 10320E 19425N 10340E 19425N 10360E	.6 .5 .6 .5	28.0 27.1 13.1 16.0 35.0) 34.3 7 33.5 7 13.7 5 22.8 3 44.7	90 89 45 59 81	.3 .2 .1 <.1 .1	29.5 28.9 14.1 16.9 35.9	15.0 15.3 6.6 7.6 20.3	805 825 322 297 645	3.87 4.07 2.45 3.31 5.37	33.2 34.0 21.7 24.2 45.8	1.6 1.6 .3 .5 1.0	5.5 5.1 11.5 4.9 8.3 3.2 2.8 2.4 14.0 8.9	24 25 12 13 9	.3 2.5 .3 2.5 .1 1.9 <.1 2.0 .2 3.7	.5 .5 .3 .4 .7	7 8 9 9	.28 .30 .07 .08 .04	.107 .101 .040 .062 .088	23 23 26 19 21	7.8 9.0 3.8 5.3 9.2	.10 .09 .03 .03 .10	36 . 37 . 26 . 20 . 19 .	. 002 . 003 . 003 . 004 . 003	1 1 1 <1 <1	.93 .93 .28 .39 .83	.006 .005 .003 .004 .002	.05 .05 .04 .04 .04	$ \begin{array}{c} .1 \\$	08 3. 09 3. 04 1. 02 1. 08 3.	0 .1 2 <.1 1 <.1 4 <.1 6 <.1	<.05 <.05 <.05 <.05 <.05	2 <.5 2 .5 2 <.5 2 <.5 1 <.5	15 15 15 15 15
19425N 10380E 19425N 10400E 19400N 10100E 19400N 10120E 19400N 10140E	.6 .5 .5 .4 .5	38. 20. 22. 18. 17.	7 57.9 3 33.4) 17.4 5 20.2 2 15.9	79 72 66 70 61	.1 .1 .1 .2	35.1 25.3 28.2 24.9 18.7	16.0 14.0 12.5 14.1 11.1	328 478 755 471 607	5.97 4.33 3.11 3.67 3.28	52.3 28.2 21.1 26.0 16.1	.7 1.1 .9 1.2 .7	9.7 7.9 5.8 4.9 6.9 4.1 6.2 5.6 2.8 1.6	9 38 23 30 16	.1 3.2 .2 2.6 .1 1.1 .1 1.2 .1 .7	.8 .6 .4 .4 .4	5 8 13 11 19	.05 .41 .22 .29 .16	.082 .073 .074 .085 .061	21 19 30 28 27	9.0 8.6 10.1 10.5 12.2	.14 .11 .10 .15 .11	16 23 40 46 29	. 002 . 002 . 004 . 003 . 008	<1 <1 2 1 1	.66 .74 .85 .96 .88	.003 .004 .004 .004 .004 .003	.03 .04 .07 .07 .04	.1 . .1 . .1 . .1 . .1 .	04 2. 04 2. 03 2. 05 2. 04 1.	5 <.1 6 <.1 3 .1 4 <.1 0 <.1	<.05 <.05 <.05 <.05 <.05	1 <.5 2 <.5 3 <.5 2 <.5 4 <.5	15 15 15 15 15
19400N 10160E 19400N 10180E 19400N 10200E 19400N 10220E STANDARD DS5	.3 .4 .4 .3 13.1	23. 26. 23. 21. 139.	9 18.5 1 22.7 3 24.5 3 25.1 3 24.2	74 88 93 90 134	<.1 .2 .1 .1 .2	29.3 36.2 34.3 29.3 24.5	16.1 15.5 16.3 14.4 11.7	334 737 790 665 746	4.00 3.68 4.08 4.10 2.87	54.6 28.2 30.9 33.5 17.7	.6 1.3 1.2 1.2 6.2	.8 8.9 6.9 6.6 4.2 7.7 8.3 7.1 42.3 2.6	6 42 16 22 45	.1 2.2 .1 1.3 .1 1.6 .1 1.6 5.4 3.8	.4 .4 .5 5.9	7 8 9 9 58	.01 .48 .14 .24 .72	.034 .095 .092 .087 .087	30 27 27 24 12	10.0 10.0 10.6 11.2 179.4	.16 .19 .18 .15 .64	33 . 51 . 40 . 41 . 131 .	.001 .003 .003 .003 .003 .096	1 1 1 <1 19 1	.84 .91 .04 .93 .93	.003 .004 .005 .004 .033	.06 .07 .07 .07 .14 4	.1 . .1 . .2 . .1 . .8 .	05 2. 06 3. 06 3. 04 3. 17 3.	2 <.1 3 <.1 1 <.1 2 <.1 3 1.0	<.05 <.05 <.05 <.05 <.05	2 <.5 2 .5 2 .5 2 .5 6 4.6	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

Page	5	

ACME ANALYTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd pm	Sb ppm	Bi ppm p	V pm	Ca %	Р %р	La pm	Cr ppm	Mg %p	Ba opm	Ti % ا	B opm	A1 %	Na %	К % р	W Hç pm ppn	j S n pp	Sc Tl om ppm	S %p	Ga Se S pm ppm	Sample gm
19400N 10240E 19400N 10260E N.S. 19400N 10280E 19400N 10300E 19400N 10320E	.6 - .4 .4 1.5	23.9 - 25.9 28.7 140.5	25.8 - 26.3 33.5 107.7	80 - 92 94 273	.1 .2 .2 .3	24.9 - 29.9 29.7 114.1	16.2 16.2 23.7 68.6	689 - 839 998 887	4.21 3.91 4.33 13.31	30.3 - 33.3 38.9 85.0	.8 .9 1.2 1.2	4.1 5.5 11.2 46.0	5.4 4.9 6.9 7.9	6 - 36 15 14	.1 .2 .1 .3	1.6 2.2 3.1 61.1	.4 .5 .5 2.5	12 - 8 8 7	.03 . - .47 . .11 . .02 .	.074 - 106 .101 .078	23 21 25 14	9.8 - 8.9 9.3 6.3	. 11 . 13 . 12 . 08	30 - 42 27 23<.	003 002 003 001	<1 1 1 <1	.85 .78 .96 .60	.004 .005 .004 .003	.05 .06 .05 .02 <	.1 .03 .1 .06 .1 .06 .1 .12	3 2. 5 3. 5 3. 2 10.	.5 <.1 .1 <.1 .7 <.1 .5 <.1	.05 .06 .05 .05	2 .5 2 .6 2 .7 <1 1.2	15 15 15 15
19400N 10340E 19400N 10360E 19400N 10380E 19400N 10400E 19400N 10420E	.5 .5 .3 .4 .4	28.5 35.9 27.6 18.4 33.6	37.7 48.0 37.3 27.3 38.1	108 97 78 73 96	.3 .2 .1 .1 .1	33.6 37.8 35.3 24.8 42.1	16.9 22.6 14.6 13.4 23.5	682 579 221 397 726	5.18 5.08 4.28 4.11 4.51	34.3 45.2 42.9 23.6 37.0	2.0 .7 .7 1.1 .9	7.7 13.9 17.8 2.8 10.4	3.9 8.4 10.9 5.1 6.7	39 7 13 24 21	.1 .2 .1 .1 .2	5.5 4.1 2.8 1.7 5.8	.7 .6 .5 .5 .5	10 7 6 11 10	.43 . .02 . .07 . .18 .	113 071 068 082 050	17 24 23 26 28	8.3 9.9 9.5 10.6 9.2	.07 .14 .17 .12 .13	29 . 23 . 26 . 28 . 30 .	003 002 001 003 004	1 <1 1 <1 1 <1 1 <1	.77 .83 .11 .04 .90	. 004 . 003 . 003 . 003 . 003	.03 < .04 .05 .04 .05	.1 .09 .1 .09 .1 .08 .1 .06 .1 .06	6 5 3 3 5 5 5 5	.4 <.1 .2 <.1 .0 <.1 .2 .1 .2 .1 .8 <.1	.05 .05 .05 .05 .05	$\begin{array}{ccc} 1 & 1.0 \\ 1 & .6 \\ 1 & .5 \\ 2 & .5 \\ 2 & .5 \end{array}$	15 15 15 15 15
19375N 10100E 19375N 10120E 19375N 10140E 19375N 10160E RE 19375N 10160E	.5 .5 .4 .4 .4	34.7 27.4 18.8 15.8 15.1	20.4 22.5 18.8 14.3 14.1	93 78 65 52 52	.3 .3 .1 .1 .1	42.3 29.9 25.7 16.8 15.8	17.1 14.8 13.7 7.8 7.4	936 662 586 190 172	3.95 4.00 3.41 3.29 3.19	24.5 24.3 22.5 15.6 15.0	1.2 1.3 .8 .5 .5	7.1 6.7 8.6 1.7 2.7	6.0 5.9 5.6 5.2 4.8	46 29 23 6 6	.3 .2 .1 .1 .1	1.4 1.2 1.0 .7 .6	.4 .4 .3 .3 .3	14 11 10 13 13	. 48 . 27 . 21 . 04 . 04	.093 .096 .069 .043 .045	31 26 27 30 29	13.3 12.7 10.2 9.6 9.3	.17 .18 .15 .10 .10	73 . 47 . 35 . 33 . 32 .	004 004 003 003 003	<1 1 <1 1 <1 <1 <1 1	07 03 .83 .90 .88	. 005 . 004 . 004 . 003 . 003	.09 < .07 .07 < .04 < .04 <	.1 .07 .1 .06 .1 .04 .1 .04 .1 .04	4. 3. 2. 1. 1. 1.	.1 .1* .2 <.1* .4 <.1* .4 .1* .3 <.1*	<.05 .05 .05 .05 .05 .05	3 .9 2 .7 2 <.5 3 .5 3 <.5	15 15 15 15 15
19375N 10180E 19375N 10200E 19375N 10220E 19375N 10220E 19375N 10240E 19375N 10260E	.4 .6 .4 .5	12.9 14.1 19.8 11.5 27.8	14.3 11.9 38.0 21.7 25.1	46 44 66 26 75	.1 .1 .2 .3	16.8 14.3 18.5 9.1 23.2	8.4 6.8 9.5 4.6 11.4	211 174 328 133 414	3.31 2.73 5.58 2.40 4.28	18.7 22.4 28.0 19.3 39.9	.4 .4 .6 .3	2.1 43.0 9.3 7.8 9.8	3.3 2.6 3.1 .8 2.5	9 5 6 5 7	.1 <.1 .1 .1 .1	.8 1.2 1.4 .9 4.1	.3 .3 .6 .4 .6	14 10 16 9 8	.08 . .01 . .03 . .02 . .01 .	.048 .042 .065 .120 .072	24 28 21 21 20	8.9 5.6 13.4 5.2 5.8	.07 .04 .12 .03 .04	20 . 22 . 19 . 14 . 26 .	004 003 006 005 003	<1 <1 <1 1 <1	.72 .49 .17 .37 .45	. 003 . 003 . 002 . 003 . 003	.03 < .03 .03 .03 < .03 <	.1 .04 .1 .02 .1 .04 .1 .03	$ \begin{array}{c} 1 \\ 2 \\ $.2 <.1 .0 <.1 .3 .1 .5 <.1 .6 <.1	<.05 .05 .05 .05 .05 .05	3 .5 2 <.5 3 .6 2 <.5 2 <.5	15 15 15 15 15
19375N 10280E 19375N 10300E 19375N 10320E 19375N 10340E 19375N 10360E	.6 .6 .5 .8	28.2 22.7 24.7 32.5 20.3	72.6 38.0 30.7 53.4 27.7	72 67 71 85 65	.1 .1 .2 .1 <.1	27.2 23.4 22.8 31.5 16.1	13.3 15.6 16.3 21.4 9.8	254 335 835 685 534	6.05 4.79 4.37 7.36 4.18	46.1 34.9 27.1 49.5 35.2	.6 .7 1.4 .6 .6	11.5 4.6 5.6 24.8 14.9	4.3 2.9 1.6 3.6 1.9	6 13 20 8 8	.1 .1 .2 .1 .1	3.3 2.5 1.9 3.1 3.9	.8 .6 .5 .8 .6	10 13 16 20 9	.02 . .11 . .25 . .05 .	.057 .062 .082 .110 .098	17 17 24 23 21	8.7 10.5 10.5 17.8 6.5	.07 .08 .07 .19 .04	11 . 20 . 18 . 29 . 18 .	003 006 008 017 003	<1 11 <1 <1 <1 <1	.77 .07 .89 .83 .52	. 003 . 003 . 003 . 003 . 003 . 003	.02 .03 .03 .03 .03 .04	.1 .04 .1 .08 .1 .08 .1 .04 .1 .04	2 3 3 3 4 2 3 1	.1 <.1 .7 <.1 .0 <.1 .1 <.1 .6 <.1	<.05<.05<.05<.05<.05<.05<.05	2 .7 2 .5 2 .6 3 1.1 2 <.5	15 15 15 15 15
19375N 10380E 19375N 10400E 19375N 10420E 19350N 10100E 19350N 10120E	.6 .7 .3 .4 .6	36.4 27.4 40.7 29.1 25.6	50.2 40.5 55.5 28.1 31.4	110 103 105 74 67	.3 .1 .2 .1 <.1	40.1 38.8 48.7 31.2 23.2	21.5 21.6 24.1 14.4 14.1	1152 1668 904 342 383	5.83 5.88 6.25 5.06 5.98	43.3 28.9 34.4 33.7 33.7	1.5 2.0 1.2 .5 .8	11.5 14.7 8.5 2.1 2.5	4.8 3.7 6.2 9.0 6.3	28 34 14 7 6 <	.2 .3 .4 .1 <.1	4.0 2.7 2.6 1.7 1.3	.7 .5 .8 .4 .5	11 12 9 8 11	.27 .36 .08 .08 .04 .05	.111 .103 .063 .048 .082	33 45 33 28 23	9.6 12.5 10.4 11.4 11.8	.12 .12 .15 .16 .09	34 . 29 . 21 . 41 . 19 .	004 005 003 002 003	<1 1 1 <1 <1 <1	.80 .92 .04 .86 .06	. 004 . 003 . 003 . 003 . 003	.05 .04 < .03 < .07 .05	.1 .07 .1 .08 .1 .07 .2 .03 .1 .09	7 6 7 7 7 5 8 2 5 2	.7 <.1 .5 <.1 .9 <.1 .1 <.1 .3 .1	<.05<.05<.05<.05<.05<.05<.05	2 .8 2 1.0 2 .6 2 <.5 4 .6	15 15 15 15 15
19350N 10140E 19350N 10160E 19350N 10180E 19350N 10200E STANDARD DS5	.5 .4 .3 .4 13.1	22.1 26.6 20.9 22.7 138.1	22.3 21.7 21.6 30.8 24.7	78 85 77 72 138	.2 .2 .1 .3	28.3 34.0 27.2 28.4 24.5	12.9 15.5 14.9 19.0 11.7	515 746 644 447 732	3.65 3.77 3.58 4.66 2.97	23.8 25.7 23.8 35.0 17.1	1.2 1.1 1.0 .7 6.1	4.0 5.7 2.8 3.3 40.4	4.7 6.7 6.6 8.6 2.7	27 33 14 11 45 5	.2 .1 .2 .1 5.3	1.2 1.3 1.4 1.9 4.0	.4 .4 .5 6.0	11 9 9 8 61	.29 .33 .11 .07 .72	.086 .093 .080 .055 .091	24 26 27 24 11 1	10.3 10.1 8.5 10.5 178.9	.14 .18 .14 .15 .64 1	40 46 35 43 34	004 003 003 002 092	<1 1 1 <1 <1 1 16 2	.03 .91 .88 .04 2.02	. 004 . 004 . 003 . 004 . 032	.06 .07 .05 < .06 .14 4	.1 .09 .1 .04 .1 .04 .1 .09 .1 .09	5 2 3 2 5 2 7 3	.7 .1 .1 <.1 .8 <.1 .6 <.1 .3 1.0	<.05 <.05 <.05 <.05 <.05	3 .5 2 .5 2 .5 2 .5 6 4.7	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 6

ACME ANALYTICAL																																		ACME	ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd opm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %µ	B opm	A1 %	Na %	К % р	W pm p	Hg S opm pp	c Tl m ppm	S %	Ga Se ppm ppm	Sample gm
19350N 10220E 19350N 10240E 19350N 10260E 19350N 10280E 19350N 10300E	.4 .6 .7 .6	12.6 21.4 39.9 17.6 39.7	13.2 28.9 85.6 21.9 72.1	30 54 101 64 94	.1 .1 .1 .1 .1	10.0 19.8 35.4 18.4 34.5	4.8 8.8 17.8 8.8 17.5	226 255 452 379 430	2.25 4.31 8.28 3.94 6.78	15.8 35.9 57.2 28.2 67.0	.3 .4 .6 .6	2.6 4.9 9.0 7.7 9.8	.9 1.8 4.3 1.1 5.6	5 7 6 9	.1 .1 .1 .1 .2	.7 1.9 4.2 2.2 9.2	.3 .5 .8 .4 .8	12 9 7 14 5	.03 .08 .02 .03 .07	.041 .090 .091 .066 .061	21 19 14 16 14	5.8 5.6 8.7 7.4 8.7	.03 .04 .07 .04 .08	20 25 17 43 15	.004 .003 .002 .004 .002	1 1 <1 <1	.33 .34 .55 .40 .62	.005 .003 .003 .003 .003 .004	.04 < .03 .02 .03 .02	1 . .1 . .2 . .1 . .1 .	03 . 07 1. 05 2. 06 . 08 2.	5 <.1 0 <.1 6 <.1 9 <.1 6 <.1	<.05 <.05 <.05 <.05 <.05	2 <.5 2 .5 1 1.0 2 <.5 1 .7	15 15 15 15 15
19350N 10320E 19350N 10340E 19350N 10360E 19350N 10380E 19350N 10400E	.7 .7 .5 .4	20.5 38.1 31.4 14.7 37.7	49.9 50.3 37.4 21.8 45.9	78 98 98 75 115	.1 .1 <.1 .4	19.8 32.1 26.5 15.6 49.6	10.8 20.1 13.8 7.1 18.2	477 1782 1975 351 1096	6.22 7.39 7.56 5.97 6.16	29.6 53.8 44.1 33.7 36.8	.8 2.3 1.9 .4 2.7	9.3 17.7 10.4 7.4 11.4	2.1 3.5 1.7 1.6 4.0	16 10 7 7 37	.1 .1 .2 .1 .4	2.8 6.0 4.3 3.4 3.4	.6 .7 .6 .4 .6	16 8 9 7 11	.23 .05 .02 .03 .49	.050 .066 .100 .045 .097	17 20 23 17 50	12.6 12.8 7.3 4.7 11.2	.09 .05 .06 .04 .13	16 27 32 22 41	.007 .004 .003 .002 .003	<1 1 <1 <1 1	.89 .70 .68 .32 .92	.003 .003 .003 .002 .004	.02 .03 .03 .03 .03 .05	.1 . .1 . .1 . .1 . .1 .	07 2. 15 7. 09 3. 04 1. 10 7.	0 <.1 7 <.1 5 <.1 3 <.1 4 <.1	<.05 <.05 <.05 <.05 <.05	3 .7 1 .8 2 .7 1 <.5 2 .9	15 15 15 15 15
19350N 10420E 19325N 10100E RE 19325N 10100E 19325N 10120E 19325N 10140E	.4 .4 .3 .4 .5	66.7 19.8 18.9 24.3 23.6	139.7 17.5 16.5 23.3 18.3	144 59 60 88 60	.1 .1 .2 <.1	47.8 23.3 22.3 32.2 24.2	41.9 12.1 11.5 12.6 9.6	1362 997 938 556 242	9.89 3.35 3.27 4.06 4.92	72.0 20.0 19.8 25.6 24.1	1.6 .6 .9 .5	21.1 3.0 1.9 4.3 <.5	12.3 3.7 3.5 6.5 2.4	6 18 18 25 12	.3 .1 .1 .1 .1	4.6 .9 .9 2.0 1.4	1.7 .3 .3 .4 .6	7 13 13 9 13	.02 .19 .19 .27 .16	.064 .069 .065 .076 .043	60 26 26 27 26	10.0 9.9 10.0 10.2 8.5	.14 .13 .13 .17 .05	18 37 38 46 10	.001 .004 .004 .002 .002	1 <1 <1 <1 <1	.67 .78 .72 .90 .47	.002 .003 .003 .005 .002	.03 .07 < .07 .06 .04	.1 . .1 . .1 . .1 .	10 9. 03 1. 03 1. 05 3. 03 1.	2 <.1 7 <.1 6 <.1 7 <.1 0 <.1	<.05 <.05 <.05 <.05 <.05	1 1.1 3 <.5 3 <.5 2 .5 4 <.5	15 15 15 15 15
19325N 10160E 19325N 10180E 19325N 10200E 19325N 10220E 19325N 10240E	.5 .5 .4 .5	31.2 23.3 26.2 22.8 24.8	28.4 24.3 32.8 36.9 32.8	79 81 79 61 53	.4 .1 .1 .1	36.1 29.0 32.0 21.9 20.6	27.4 14.7 18.6 9.7 10.0	1485 465 575 239 305	4.71 4.22 4.51 4.83 4.66	23.9 39.9 37.3 36.6 34.3	1.2 .7 .8 .4 .4	4.0 2.1 3.6 3.6 4.6	8.8 6.6 7.2 3.7 1.5	20 16 13 8 4	.2 .1 .1 .1 .1	1.3 2.3 2.3 2.4 2.1	.3 .4 .4 .5 .5	11 8 8 11 10	.23 .16 .12 .07 .02	.101 .051 .054 .048 .065	26 27 25 22 17	14.6 9.5 10.9 8.3 6.7	.12 .14 .16 .05 .05	40 36 32 26 13	.004 .003 .002 .003 .004	1 2 <1 <1 1 <1	2.01 .83 .92 .54 .44	.005 .003 .004 .003 .002	.08 .06 < .07 .04 .02	.1 . .1 . .1 . .1 .	16 3. 04 2. 04 2. 05 1. 04 1.	8 .1 8 <.1 7 <.1 5 <.1 0 <.1	<.05 <.05 <.05 <.05 <.05	3 .7 2 .5 2 .7 2 .6 2 .5	15 15 15 15 15
19325N 10260E 19325N 10280E 19325N 10300E 19325N 10320E 19325N 10340E	.6 .6 .5 .5	32.9 24.7 43.7 26.5 28.4	51.3 33.1 127.8 41.2 54.9	75 59 195 81 91	.2 .1 .2 .1 <.1	27.5 21.5 45.5 25.7 28.7	13.1 11.3 23.6 14.3 18.9	360 336 525 542 891	6.43 4.22 5.43 4.64 4.75	48.1 38.3 92.0 40.7 40.6	.6 .5 1.0 .9 1.2	8.1 16.2 48.7 8.9 11.6	2.4 2.3 3.8 3.5 4.8	7 9 30 7 9	.1 .1 .2 .1 .1	3.3 2.5 18.2 3.3 4.4	.8 .6 .8 .6	8 7 6 8 8	.05 .06 .14 .02 .04	.100 .069 .039 .077 .090	16 20 15 19 22	7.6 6.2 5.9 7.3 8.4	.05 .05 .06 .07 .08	20 14 34< 17 31	.003 .004 .001 .003 .003	<1 1 <1 <1	.50 .51 .67 .63 .84	.003 .003 .005 .003 .003	.03 .03 .04 < .04 .05	.1 . .1 . .1 . .1 . .1 .	07 1. 06 1. 09 5. 05 2. 08 3.	6 <.1 4 <.1 8 .1 4 <.1 6 <.1	<.05 <.05 <.05 <.05 <.05	2 .5 2 .6 1 .6 2 .7 2 .5	15 15 15 15 15
19325N 10360E 19325N 10380E 19325N 10400E 19325N 10420E 19300N 10100E	.4 .5 .4 .5 .6	29.0 23.7 30.6 70.4 23.2	44.2 30.5 40.2 53.6 22.4	97 101 94 155 68	.1 .1 .2 .2 .1	29.0 34.2 44.0 64.4 31.7	19.8 17.2 20.6 36.6 16.7	793 569 863 652 585	4.82 4.77 4.97 7.80 4.29	43.4 35.6 26.9 62.0 18.9	.8 .8 1.5 1.0 .9	9.3 5.3 4.5 11.2 1.3	2.9 3.6 5.3 12.8 6.2	10 27 39 26 19	.1 .1 .2 .1	4.1 2.8 2.3 2.5 1.0	.6 .5 .6 1.2 .4	7 12 9 7 14	.06 .29 .45 .24 .18	.074 .080 .102 .063 .056	23 20 25 22 29	7.3 12.1 9.7 7.7 14.5	.08 .16 .17 .17 .18	25 34 31 26 37	.002 .005 .003 .003 .003	1 1 2 1	.62 .85 .73 .47 1.19	.003 .004 .004 .005 .005	.04 .05 < .04 .06 .06	.1 . .1 . .1 . .1 . .1 .	05 2. 05 2. 06 5. 03 5. 06 2.	4 <.1 3 <.1 5 <.1 6 <.1 2 <.1	<.05 <.05 <.05 .08 <.05	1 < .5 2 .6 2 .9 1 .9 3 .5	15 15 15 15 15
19300N 10120E 19300N 10140E 19300N 10160E 19300N 10180E STANDARD DS5	.4 .4 .5 12.4	28.8 21.3 22.4 26.6 138.3	30.6 24.0 21.5 25.5 24.7	80 87 83 70 139	.1 .3 .1 .1 .2	31.3 27.6 32.1 29.5 24.8	19.7 13.6 16.5 13.8 11.7	754 403 708 463 778	4.27 3.61 3.89 4.16 3.02	35.1 22.9 23.2 39.7 17.3	.9 .9 .8 .6 6.0	6.7 9.5 1.6 6.1 45.5	7.8 6.3 5.2 4.3 2.7	9 22 17 14 36	.1 .1 .1 .1 5.3	1.6 1.6 1.2 2.0 4.0	.5 .5 .4 .5 5.9	9 9 11 9 60	.05 .23 .20 .14 .74	.071 .104 .065 .066 .086	31 25 25 22 11	11.2 11.2 13.2 8.4 182.7	.14 .15 .18 .11 .68	42 55 41 28 135	.002 .003 .004 .003 .091	<1 1 <1 1 17	1.07 1.06 1.01 .69 2.04	.004 .005 .004 .004 .032	.05 .06 .06 .04 < .15 4	.4 . .1 . .1 . .1 .	07 3. 07 3. 05 2. 03 1. 18 3.	6 <.1 3 .1 6 <.1 9 <.1 3 1.0	<.05 <.05 <.05 <.05 <.05	2 .6 2 <.5 2 .5 2 .5 6 4.9	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Page 7

SAMPLE#	Mo Cu Pb Zn Ag Ni C ppm ppm ppm ppm ppm ppm	o Mn Fe As U Au Th Sr Cd n ppm % ppm ppm ppb ppm ppm ppm	Sb Bi V Ca P La Cr Mg Ba ppm ppm ppm % % ppm ppm % ppm	Ti B Al Na K W Hg Sc Tl S Ga Se Sample % ppm % % % ppm ppm ppm ppm % ppm ppm gm
19300N 10200E 19300N 10220E 19300N 10240E 19300N 10260E 19300N 10280E	.5 25.5 31.4 69 <.1	3 314 4.75 36.2 .6 3.9 3.4 6 .1 3 831 4.64 32.3 .8 3.4 5.2 10 .1 7 387 5.21 41.9 .7 4.0 4.5 6 .1 3 688 8.82 63.7 .7 6.8 3.3 5 .1 0 371 6.67 53.5 .6 24.4 3.8 8 .1	2.2 .5 11 .03 .056 24 8.9 .07 18 . 2.0 .5 10 .09 .093 20 11.9 .09 21 . 2.1 .6 10 .02 .061 25 11.2 .15 18 . 3.5 .8 9 .02 .114 15 11.1 .07 20 . 6.7 .9 7 .02 .094 17 6.5 .06 17 .	004 1 .61 .003 .03 .1 .04 1.8 .1 .05 2 .5 15.0 004 1 .76 .004 .05 .1 .05 2.2 .1 .05 2 .6 15.0 004 1 .73 .003 .04 .1 .04 2.1 <.1<<.05
19300N 10300E 19300N 10320E 19300N 10340E 19300N 10360E 19300N 10380E	.6 20.6 13.7 46 .1 17.3 6. .4 31.0 31.7 89 .2 32.6 17. .6 28.2 34.3 85 .2 29.7 16. .6 31.9 38.8 89 .2 36.6 18. .5 36.0 42.6 81 <.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
19300N 10400E 19275N 10100E 19275N 10120E 19275N 10140E 19275N 10160E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 501 4.52 26.6 1.7 10.3 5.8 12 .5 4 416 4.10 32.5 .8 4.9 9.0 19 .1 7 487 3.91 24.8 .9 3.7 6.0 21 .1 2 133 2.27 15.5 .8 8.2 4.9 23 .1 2 277 4.82 25.2 .7 2.4 4.1 14 .2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	005 1 1.05 .004 .1 .07 4.3 .1 .05 2 .6 15.0 003 <1
19275N 10180E 19275N 10200E 19275N 10220E 19275N 10240E 19275N 10260E	.5 21.1 35.5 61 .1 20.5 9. .4 28.4 34.2 88 .2 31.6 21. .4 17.8 23.1 51 <1	9 243 4.39 61.9 .7 6.0 6.7 9 .1 5 668 4.73 43.0 .8 5.4 6.3 22 .2 6 253 3.81 32.0 .7 15.5 4.4 10 .1 0 1087 3.55 30.3 .8 19.7 4.2 20 .1 9 183 3.91 37.7 .4 8.3 1.5 13 <.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccc$
19275N 10300E 19275N 10320E 19275N 10340E RE 19275N 10340E 19275N 10360E	.4 19.7 19.2 56 .1 20.1 10. .4 16.7 21.9 50 <.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ 003 1 .52 .003 .04 .1 .05 2.5 <.1<.05 1 <.5 15.0 \\ 004 1 .44 .004 .04 .1 .03 1.1 <.1<.05 2 <.5 15.0 \\ 003 1 .68 .003 .04 .1 .03 2.5 <.1<.05 2 <.5 7.5 \\ 003 1 .70 .003 .04 .1 .03 2.6 <.1<.05 2 <.5 7.5 \\ 003 <1 .33 .003 .03 <.1 .03 .9 <.1<.05 1 <.5 15.0 \\ $
19275N 10380E 19275N 10400E 19250N 10100E 19250N 10120E 19250N 10140E	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 1256 4.42 34.8 1.4 6.5 4.6 18 .8 2 1044 4.96 27.6 1.2 10.5 5.5 15 .5 3 152 2.70 14.4 .5 1.5 1.2 9 .1 7 358 3.51 18.1 .6 .8 4.8 18 .1 1 411 3.66 22.9 .6 11.6 7.4 17 .1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
19250N 10160E 19250N 10180E 19250N 10200E 19250N 10220E STANDARD DS5	.3 15.7 18.2 59 .1 19.1 10. .4 28.5 25.2 72 .1 31.6 17. .4 22.6 22.0 55 <.1	9 399 3.58 23.0 .6 6.1 6.8 12 .1 5 432 4.36 40.6 .6 3.6 8.4 6 .1 2 395 4.01 34.5 .9 2.8 5.4 5 .1 5 867 7.18 52.7 .6 6.4 2.7 6 .1 0 755 3.03 19.1 6.1 45.0 2.8 45 5.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	002 1 .92 .003 .05 .1 .03 1.8 .1 .05 2 .5 15.0 002 1 .82 .003 .04 .1 .04 2.2 .1 .05 2 .5 15.0 004 1 .91 .003 .05 .1 .07 2.5 .1 .05 2 .5 15.0 007 1 .76 .003 .03 .1 .04 1.6 <.1<

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm j	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd pm p	Sb opm p	Bi pm p	V om	Ca %	PL %pp	_a cm	Cr ppm	Mg % p	Ba opm	Ti %	B opm	A1 %	Na %	К %р	W H pm pp	g Sc m ppm	T1 ppm	S G % pp	a Ses mppm	Sample gm
19250N 10240E 19250N 10260E 19250N 10280E 19250N 10300E 19250N 10320E	.4 .6 .4 .5 .4	18.4 41.1 16.2 24.7 20.2	21.9 67.8 19.6 23.7 23.9	48 82 57 66 48	.1 .1 .2 .1	17.1 35.4 18.8 24.3 16.3	8.5 22.4 9.5 14.7 8.3	337 859 229 565 415	3.77 7.50 3.55 3.97 3.88	28.1 52.6 27.9 32.6 26.0	.4 .7 .6 1.0 .6	3.1 6.8 3.6 11.3 8.0	2.7 4.9 3.5 4.3 2.9	5 < 7 9 < 12 6	 1 1 2 2 1 1 1 2 1 1 1 1 	1.2 2.6 1.7 2.3 1.2	.4 .8 .4 .4 .4	11 . 10 . 12 . 11 . 11 .	01 .0 04 .1 06 .0 09 .0 02 .1	84 2 21 2 61 3 88 3 17 3	22 23 1 30 35 35 1	8.3 15.4 9.2 9.5 10.1	.06 .11 .07 .09 .08	12 . 15 . 17 . 24 . 16 .	.001 .004 .003 .003 .004	1 1 <1 1 <1	. 47 . 83 . 69 . 79 . 74	. 002 . 007 . 002 . 003 . 002	.03 < .03 .04 .05 .04	.1 .0 .2 .0 .1 .0 .1 .0 .1 .0	2 .9 5 1.8 4 1.6 6 2.9 4 1.3	<.1 <.1< .1< <.1< .1< .1<	07 05 05 05 05 05	2 .6 2 .8 2 <.5 2 .6 3 .6	7.5 15.0 15.0 15.0 15.0 15.0
19250N 10340E 19250N 10360E 19250N 10380E 19250N 10400E 19225N 10100E	.5 .5 .5 .5 .4	19.2 25.4 29.3 29.2 23.4	23.6 28.4 30.5 184.3 17.9	49 81 80 267 77	.1 .2 .1 .3 .1	17.3 30.0 37.3 31.3 30.2	7.9 15.4 14.7 15.5 14.2	306 1178 272 699 609	4.14 4.13 5.05 4.32 3.76	31.1 33.9 30.5 31.3 26.6	.5 1.2 .6 1.1 1 .8	5.8 5.6 6.4 .33.8 4.1	2.3 4.3 10.5 5.2 6.6	6 23 8 37 17	.1 1 .2 1 .1 1 .2 2 .1 1	L.6 L.7 L.5 2.3 L.0	.5 .5 .4 .5 .3	11 . 13 . 13 . 9 . 11 .	01 .0 24 .1 06 .0 45 .1 17 .0	97 2 03 3 40 3 07 3 69 3	29 30 1 36 1 30 33 1	9.3 12.4 17.3 9.5 14.4	.06 .13 .28 .14 .24	15 63 26 25 38	.004 .004 .005 .004 .002	<1 11 <11 1 <1	.60 .01 .17 .65 .97	.002 .003 .003 .003 .003	.04 .06 .04 .04 .06	.1 .0 .1 .0 .1 .0 .8 .0 .1 .0	3 .9 6 2.6 5 2.1 8 4.4 3 2.3	<.1<. .1<. <.1<. <.1<. .1<.	05 05 05 05 05	2 .7 3 .5 2 .7 2 .5 3 .5	15.0 15.0 15.0 15.0 15.0
19225N 10120E 19225N 10140E 19225N 10160E 19225N 10180E 19225N 10200E	.5 .6 .6 .5	24.7 21.9 25.7 27.6 17.3	20.9 19.3 23.3 37.6 24.3	68 60 56 77 51	<.1 .1 .2 .1	28.2 23.6 26.6 28.8 16.2	11.5 11.4 12.9 17.1 10.3	298 339 473 477 341	5.08 4.74 5.13 5.00 3.49	22.9 23.5 28.8 39.9 30.7	.8 .6 .8 .9 .7	3.6 1.3 1.7 18.9 6.6	8.0 4.8 3.0 4.3 4.8	6 < 7 7 15 11	<.1 1 .1 .1 1 .2 2 .1 1	L.0 .9 L.0 2.0 L.2	.4 .4 .5 .6	13 . 13 . 19 . 11 . 10 .	03 .0 02 .0 02 .0 13 .0 08 .0	60 3 84 3 77 3 78 3 59 3	38 1 38 1 33 2 33 1 32	17.3 13.4 20.5 11.2 8.0	.22 .15 .12 .10 .06	26 23 16 28 22	.004 .004 .005 .004 .002	1 1 1 <1 <1 <1	. 19 . 89 . 90 . 87 . 74	.003 .003 .002 .004 .003	.06 .06 .04 .04 .04 <	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	3 2.3 3 1.9 4 1.6 6 1.8 5 1.8	.1< .1< .1< <.1< .1<	05 05 05 05 05	4 <.5 4 <.5 4 <.5 2 .5 2 <.5	15.0 15.0 15.0 15.0 7.5
19225N 10220E 19225N 10240E RE 19225N 10240E 19225N 10260E 19225N 10280E	.5 .4 .4 .4 .5	16.0 14.3 14.8 8.9 13.0	14.8 16.2 16.0 12.1 17.2	37 32 33 19 34	.1 <.1 .1 .2 .1	13.7 13.4 12.9 8.7 12.0	6.2 6.2 6.6 3.4 5.0	199 239 251 91 148	3.30 2.88 2.97 1.90 3.07	20.3 22.9 22.8 14.8 28.6	.4 .4 .4 .4 .3	5.2 1.6 3.5 3.1 1.7	1.0 1.6 1.7 .8 1.6	11 < 5 4 < 8 < 7	<.1 .1 <.1 <.1 .1 1	.8 .8 .9 .6 1.0	.4 .3 .3 .3 .4	13 . 9 . 9 . 9 . 11 .	13 .0 01 .0 01 .0 01 .0 09 .1 01 .0	173 2 163 2 163 2 163 2 195 3	29 25 25 27 31	8.8 7.0 7.4 5.8 5.9	.06 .05 .04 .04 .03	29 15 16 22 20	. 005 . 002 . 002 . 004 . 004	2 1 <1 1 1	. 42 . 52 . 49 . 34 . 44	.003 .003 .002 .002 .002 .003	.04 .04 < .03 .04 .05	.2 .0 .1 .0 .1 .0 .1 .0 .1 .0	6 .5 4 .6 3 .6 7 .3 3 .7	.1< .1< <.1< <.1 .1<	.05 .05 .05 .07 .05	3 <.5 2 <.5 3 <.5 2 <.5 2 <.5	15.0 7.5 7.5 15.0 15.0
19225N 10300E 19225N 10320E 19225N 10340E 19225N 10360E 19225N 10380E	.6 .4 .4 .4 .4	27.1 23.1 15.2 29.6 43.7	40.7 23.6 15.1 25.1 35.7	77 72 46 82 108	.1 .3 .1 .3 .1	24.5 25.8 15.0 36.1 44.8	13.1 13.1 7.5 16.3 29.8	876 689 325 1560 835	6.93 3.79 3.42 4.03 4.98	48.0 32.0 24.7 27.5 44.8	.6 .8 .5 1.9 1.0	9.0 3.0 4.0 5.2 16.6	4.6 3.5 2.2 4.0 14.3	10 12 7 36 8	.1 2 .1 2 .1 1 .3 1 .2 2	2.4 2.0 1.2 1.5 2.6	.7 .5 .4 .4 .6	12 . 9 . 11 . 13 . 6 .	02 .3 08 .0 03 .0 47 .1 02 .0	841 (1) 199 (1) 162 (1) 164 (1	30 1 32 36 28 1 48	13.1 8.1 7.8 16.7 9.4	.11 .08 .06 .18 .18	29 32 34 52 26	.005 .003 .003 .005 .001	<1 <1 <1 1 1 <1	.85 .66 .49 .14 .91	.003 .003 .003 .003 .006 .002	.06 .05 .04 .08 < .04	.1 .0 .1 .0 .1 .0 .1 .1 .1 .1	5 1.6 5 2.1 3 1.0 0 3.6 4 3.3	.1< <.1< .1< .1< .1<	05 05 05 05 05	3 .6 2 <.5 3 <.5 3 <.5 1 < <i>.</i> 5	15.0 15.0 15.0 7.5 15.0
19225N 10400E 19200N 10000E 19200N 10020E 19200N 10040E 19200N 10060E	.3 .5 .6 .5	43.6 24.9 24.6 20.2 20.5	107.6 19.9 24.4 17.5 13.4	403 63 55 49 47	.3 .1 .1 .1 .1	43.1 28.5 24.5 19.1 20.8	19.9 12.0 9.4 8.8 10.0	593 483 266 400 306	5.24 4.61 4.89 3.67 3.38	41.2 36.3 30.0 22.0 23.3	1.4 .8 .6 .6 .6	43.8 5.5 4.2 3.6 5.7	8.9 5.7 2.8 1.2 2.5	37 : 8 7 < 10 9 <	L.9 4 .1 1 <.1 1 .1 <.1 1	4.2 1.3 1.1 .7 1.0	.7 .3 .5 .4 .3	7. 14. 22. 19. 17.	38 .0 03 .0 03 .1 06 .1 07 .0	188 4 198 3 101 4 19 3 19 4	41 34] 41] 38] 43	8.7 15.7 13.8 11.0 8.8	.15 .18 .10 .06 .05	28 24 23 24 17	.002 .003 .010 .005 .005	1 <1 <1 <1 1	.58 .95 .60 .58 .51	.003 .003 .002 .003 .003	.04 .07 .05 .04 < .04 <	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	5 5.9 4 1.4 3 1.0 3 .6 3 .9	<.1< .1< <.1< <.1< <.1<	05 05 05 05 05	1 <.5 3 <.5 5 <.5 4 <.5 3 <.5	15.0 15.0 15.0 15.0 15.0
19200N 10080E 19200N 10100E 19200N 10120E 19200N 10140E STANDARD DS5	.5 .7 .5 .4 12.4	34.4 19.8 18.8 14.8 137.8	31.7 17.7 15.4 16.5 24.8	87 42 64 45 129	.1 .1 <.1 .3	42.0 16.8 20.5 15.8 24.6	23.7 8.5 7.8 6.1 11.7	746 211 151 134 769	5.44 4.07 4.51 3.64 2.99	53.0 21.6 18.1 27.8 17.5	1.1 .8 .5 .4 6.1	8.8 4.4 1.6 .9 42.0	10.6 2.5 8.1 5.4 2.9	17 7 7 5 47 {	.1 3 <.1 1 .1 .1 1 5.3 3	3.4 1.0 .7 1.3 3.8 6	.6 .4 .3 .3 5.0	9. 20. 7. 11. 60.	11 .0 03 .0 08 .0 02 .0 76 .0)79)72)50)41)90	34] 35] 33] 32 13]7	14.0 13.0 12.5 9.1 77.3	.17 .05 .18 .09 .69 1	27 17 32 20 135	.002 .005 .001 .002 .103	1 <1 <1 <1 18 1	.93 .85 .92 .71 .99	.003 .002 .002 .003 .033	.05 .03 .05 .04 < .14 4	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	3 2.8 5 1.2 4 1.2 3 1.0 8 3.4	<.1< <.1< <.1< .1< .1< 1.0<	05 05 05 05 05	2 <.5 3 .5 3 <.5 2 <.5 7 4.8	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

SAMPLE#

19200N 10160E

19200N 10180E

19200N 10200E

19200N 10220E

19200N 10240E

19200N 10260E

19200N 10280E

19200N 10300E 19200N 10320E

19200N 10340E

19200N 10360E

19200N 10380E

19200N 10400E

19175N 10000E

19175N 10020E

19175N 10040E

19175N 10060E

Мо

ppm

.7 31.8 29 1

.4

.4

.5 13.4.6 20.5 24.0 69

.6

.4 26.7

.3 20.0

Си

ppm

.4 26.4 27.9 77 47.2 80

.4 21.0 24.6 68

.6 24.9 43.4 102

19.6 17.2 48

Pb Zn Ag

ppm ppm ppm

33.7 90

21.0 41

32.9 82

30.1 70

Ni

ppm

4 46.8 52.3 100 .2 47.0 33.1 968 6.53 61.3

.5 26.1 43.7 89 .2 32.4 17.4 594 5.35 33.2

.4 36.7 48.8 111 .2 37.2 20.0 558 4.67 39.9

.5 27.6 20.3 76 .1 29.7 16.1 604 4.52 28.7

.6 21.6 17.2 78 .2 27.7 12.7 768 3.48 24.2

4 14.6 11.6 41 <.1 16.0 6.9 171 2.80 23.6

46.1 39.6 102 .1 43.9 27.3 514 5.46 55.8

Со

ppm ppm .1 28.4 14.6 311 5.28 47.0

.1 24.6 18.1 680 6.20 46.1

.2 30.0 17.5 718 4.51 40.1

.1 11.3 5.3 154 3.51 23.7

.1 20.9 11.1 376 4.40 25.5

.2 30.4 15.4 997 4.03 33.8

.1 20.7 11.1 464 3.40 32.3

.1 21.7 9.9 437 3.23 31.7

.2 24.0 19.4 792 4.35 38.3

.1 18.5 8.7 367 3.73 27.5

Mn

Fe

X ppm

As

Gold City Industries Ltd FILE # \$405001

Page	9	
r uqc	-	

	lust	-				• 		<u> </u>					<u>ــــــــــــــــــــــــــــــــــــ</u>							. ug	, C				A	CME ANALYTICAL
U mqc	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W ppm	Hg ppm	Sc ppm	T1 ppm	S %	Ga ppm	Se ppm	Sample gm
.7 1.2 .8 1.1 .9	2.6 6.4 8.6 8.5 15.1	7.3 5.1 4.8 12.8 11.9	6 7 22 9 12	.1 .2 .2 .4 .1	2.4 2.0 2.5 2.8 2.7	.5 .7 .6 .9 .7	11 19 7 8 5	.03 .04 .20 .04 .04	.060 .071 .095 .079 .038	26 27 24 32 43	12.7 17.5 7.3 11.5 6.7	.16 .13 .11 .17 .13	24 26 31 29 25	.002 .006 .002 .002 .002	<1 <1 <1 <1 <1 <1	1.08 1.16 .54 .97 .49	.003 .003 .004 .003 .003	.04 .04 .04 .04 .04	.1 .1 .1 .1 .1	.07 .12 .05 .07 .04	2.4 2.0 3.3 3.6 4.3	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	2 4 1 1	.5 1.0 .5 .7 <.5	15.0 15.0 15.0 15.0 15.0
.5 .9 .9 .7 .7	7.2 5.9 5.6 5.5 5.6	1.3 6.1 5.5 3.8 3.6	7 11 13 11 10	.1 .2 .1 .1	1.1 1.2 1.9 1.8 1.9	.5 .4 .5 .5	12 12 9 8 8	.02 .08 .08 .05 .03	.055 .095 .097 .097 .097 .083	28 28 28 28 30	8.5 13.8 9.7 7.7 7.0	.06 .16 .12 .08 .07	20 33 46 29 28	.005 .003 .002 .002 .002	<1 1 <1 <1 <1	.61 1.06 .68 .57 .52	.003 .003 .003 .003 .003	.03 .06 .04 .04 .04	.1 .1 .1 .1	.05 .07 .07 .05 .04	.6 1.6 2.5 1.8 1.9	.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	2 3 2 2 2	<.5 .6 <.5 <.5	15.0 15.0 15.0 15.0 15.0
1.2 .9 1.0 .8 .9	11.6 6.9 13.7 4.8 5.1	6.2 7.3 9.1 5.5 3.8	13 25 19 9 9	.2 .1 .2 .1 .2	2.4 1.8 3.2 1.0 1.0	.6 .7 .6 .3	8 9 8 13 15	.11 .29 .14 .05 .06	.126 .093 .065 .107 .087	28 24 34 30 41	9.6 12.0 8.8 16.7 13.7	.12 .15 .17 .22 .10	30 30 24 29 25	.003 .002 .003 .003 .004	<1 1 <1 <1 <1	.93 1.06 .57 .96 1.06	.003 .003 .003 .003 .003 .003	.05 .04 .03 .06 .06	.1 .1 .2 .1	.09 .08 .04 .04 .08	3.3 2.9 6.1 1.5 1.7	<.1 .1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	2 2 1 3 3	<.5 .5 .5 .5 .6	15.0 15.0 15.0 15.0 15.0
1.5 .4 .6	5.7 4.2 2.1	3.7 1.9 5.7	15 6 7	.1 <.1 .1	.9 1.0 1.3	.3 .3 .4	14 14 8	.11 .02 .06	.098 .091 .115	34 38 22	15.7 7.7 12.8	.18 .04 .16	42 19 23	.003 .004 .002	1 <1 <1	1.08 .41 .84	.004 .002 .003	.08 .04 .04	.2 .1 .1	.05 .03 .07	1.8 .6 1.3	.1 <.1 <.1	<.05 <.05 <.05	3 3 3	.5 5.> 5.>	7.5 15.0 15.0

19175N 10080E .5 23.0 22.0 62 .1 24.0 10.2 246 5.38 31.0 21.6 56 .1 21.2 9.7 246 4.57 23.1 .6 19175N 10100E .5 21.1 .5 5.3 5 .1 1.0 .3 10 .02 .063 27 11.9 .14 23 .003 <1 .92 .003 .05 .1 .05 1.4 <.1 <.05 3 .6 15.0 .4 25.2 20.2 67 <.1 25.5 10.4 231 3.90 22.2 .5 1.2 9.5 6 .1 .9 .4 8 .02 .078 35 10.8 .19 25 .002 <1 .69 .003 .06 <.1 .02 1.8 <.1 <.05 19175N 10120E 3 .5 15.0 13 <.1 4.8 3.4 89 .70 5.7 .3 34.1 1.7 4 <.1 .2 .1 7 .01 .037 34 19175N 10140E .1 5.5 4.0 2.9 .01 27 .002 <1 .21 .003 .03 <.1 .01 .4 <.1 <.05 2 <.5 15.025.8 20.8 76 .2 33.9 16.4 529 3.87 28.2 1.5 4.9 6.4 21 .2 1.4 .4 10 .22 .079 43 13.7 .20 37 .003 1 1.16 .003 .06 .1 .07 3.9 <.1 <.05 2 .9 15.0 19175N 10160E .5 .4 38.0 20.2 910 4.39 32.4 2.4 11.1 6.3 32 .2 1.4 .4 10 .35 .128 2 .7 19175N 10180E .5 30.0 56.8 108 34 12.9 .17 41 .005 <1 1.19 .004 .06 <.1 .11 4.6 <.1 <.05 15.0 .4 30.1 80 .3 26.1 14.1 703 3.69 28.0 1.8 4.3 4.6 21 .3 1.3 .5 8 .15 .121 29 10.3 .12 34 .002 <1 .96 .004 .05 <.1 .10 4.0 <.1 <.05 2 19175N 10200E 23.2 .5 7.5 24.6 20.1 70 .2 32.1 15.0 496 3.66 25.9 1.4 4.1 6.5 22 .1 1.3 .3 10 .22 .075 42 13.2 .20 37 .003 1 1.07 .004 .06 <.1 .07 3.8 <.1 <.05 2 .6 15.0 RE 19175N 10160E .5 .2 23.5 14.0 667 3.59 30.4 1.5 6.0 4.5 19 5 .19 .097 19175N 10220E .3 22.9 31.3 70 .2 1.9 .5 20 7.3.09 25 .001 1 .76 .003 .03 .1 .06 3.0 <.1 <.05 1 <.5 7.5 7 .1 45.2 28.7 564 6.89 87.1 .7 17.1 7.2 .2 4.1 1.1 4 .02 .065 22 5.7.09 19175N 10240E 58.7 113.8 120 20 .001 <1 .47 .002 .02 .5 .05 3.5 <.1 <.05 1 < 5 15.0 .4 7 .1 2.4 .6 8.03.058 27 19175N 10260E .5 32.5 35.7 87 .2 31.9 23.4 467 4.65 43.3 .6 6.0 6.7 11.4 .18 18 .006 <1 1.02 .002 .02 <.1 .06 2.1 <.1 <.05 1 .6 15.0 .4 27.8 15.8 748 3.95 36.6 1.3 9.4 5.2 11 .3 2.0 .6 7 .06 .102 24 8.0.10 33 .002 <1 .78 .003 .04 .2 .05 3.2 <.1 <.05 2 <.5 19175N 10280E .5 24.5 51.2 86 15.06.4 .09 34 .002 <1 .65 .002 .03 .1 .05 3.8 <.1 <.05 19175N 10300E .4 30.9 53.1 109 .2 28.2 19.6 816 4.06 42.3 1.3 15.0 5.7 8 .2 2.5 .6 6.04.091 23 1.5 15.0 19175N 10320E 22.2 33.7 64 .1 21.5 9.8 311 3.74 36.5 .7 8.9 2.6 7 .1 1.9 .6 8 .02 .163 22 6.8.07 .50 .003 .04 .1 .04 1.5 <.1 <.05 .4 20 .002 1 1.5 15.0 19175N 10340E .4 25.1 34.5 59 .3 20.4 9.7 396 4.46 42.2 .7 6.2 3.1 7 .1 1.7 .5 8 .03 .237 18 9.1.09 22 .002 <1 .51 .003 .03 .1 .05 1.4 <.1 <.05 2 <.5 7.5 19175N 10360E .5 18.5 24.6 45 .1 14.9 7.1 219 3.37 28.8 .4 6.6 3.4 7 .1 1.5 .5 8 .03 .104 22 7.1 .07 19 .002 <1 .50 .002 .04 .1 .06 1.0 <.1 <.05 2 <.5 15.0 19175N 10380E .3 39.6 36.3 83 .1 35.6 27.9 742 4.39 36.9 .8 12.3 13.3 6 .2 2.1 .6 6 .02 .049 33 8.5 .18 19 .001 <1 .78 .002 .04 .1 .07 3.6 <.1 <.05 1 <.5 15.0 12.4 138.9 24.8 132 .3 24.2 11.9 747 2.94 17.6 6.2 43.0 2.9 47 5.6 4.0 6.0 59 .76 .092 11 175.5 .69 134 .094 17 2.01 .034 .14 4.6 .18 3.4 1.0 < .05 STANDARD DS5 6 4.9 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Page 10

SAMPLE#	Mo ppm	ţ	Cu opm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	C pp	o l m p	Mn Om	Fe %	As ppm	U ppm	م pp	u T b pp	h S nippi	r (m pp	Cd Sm p	Sb pm p	Bi pm p	V	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %p	W pm p	Hg opm p	Sc T pm pp	ר. מת	SG %pp	a SeS Morppm	Sample gm	ייייייייייייייייייייייייייייייייייייי
19150N 10000E 19150N 10020E 19150N 10040E 19150N 10060E 19150N 10080E	.3 .4 .5 .4 .4	20 22 22 20 15	5.3).1 1 2.8 1).9 1 5.2 1	5.3 1.6 7.9 6.9 2.5	13 39 51 49 36	.2 .1 .1 .1 .1	5.2 16.2 23.1 19.1 15.1	2. 6. 11. 8. 7.	5 7 1 8 4 1 2 1 3	45 58 2 02 4 36 3 51 2	.79 .81 .17 .93 .63	9.3 22.3 28.7 31.1 25.5	.2 .4 .5 .5 .4	4. 4. 5. 3. 2.	02. 92. 25. 72. 42.	3 1 9 4 5	4 <. 5 <. 5 . 4 .	.1 .2 1 .1 1 .1	.3 .9 .0 .0 .9	.2 .3 .3 .4 .3	8 14 10 12 10	.02 .03 .03 .05 .01	.044 .096 .082 .084 .098	29 26 22 25 24	3.7 7.5 11.3 9.7 7.3	.03 .05 .13 .08 .07	18 20 23 17 21	.003 .004 .002 .003 .002	1 -1 -1 1	.31 .39 .73 .57 .48	.003 .002 .003 .003 .003	. 04 . 04 . 04 . 04 . 04	.1 .1 .1 .1 .1	.01 .04 .03 1 .03 .02	.4 <. .7 <. .2 <. .9 <. .7 <.	1 <.(1 <.(1 <.(1 <.(1 <.()5)5)5)5)5	2 <.5 3 <.5 2 .5 3 <.5 3 <.5 3 <.5	15.0 15.0 7.5 7.5 7.5	5
19150N 10100E 19150N 10120E 19150N 10140E 19150N 10160E 19150N 10180E	.4 .3 .3 .4 .4	14 17 19 13 14	4.1 1 7.1 1 9.4 1 3.7 1 5.6 2	1.8 4.1 3.2 3.9 2.0	42 48 53 34 44	.1 .1 .1 .2	16.1 19.4 23.2 14.0 18.3	6. 8. 9. 6. 7.	72 92 01 22 22	52 2 28 2 80 3 17 3 08 3	.58 .81 .12 .06 .32	21.3 21.2 20.9 15.6 29.0	.3 .4 .5 .4 .5	2. 1. 1. 1. 2.	72. 55. 17. 72. 23.	3 0 8 3 4 1	4 . 7 . 6 . 4 . 3 .	$ \begin{array}{c} 1 \\ $.8 .8 .9 .6 .3	.3 .3 .3 .3 .4	10 10 7 8 7	.01 .06 .04 .01 .12	.053 .071 .069 .108 .068	24 24 29 23 20	7.6 8.1 8.3 8.2 8.8	.09 .11 .16 .07 .07	25 23 21 15 34	.003 .002 .002 .003 .003	1 <1 1 1	.55 .65 .55 .51 .60	.003 .003 .002 .002 .002	.05 < .05 .05 .03 < .04	<.1 .1 <.1 <.1	.01 .03 1 .03 1 .06 .06 1	.8 <. .3 <. .5 <. .6 <. .2 <.	1 <.(1 <.(1 <.(1 <.(1 <.()5)5)5)5)5	3 <.5 2 <.5 2 <.5 2 <.5 2 <.5 2 <.5	7.5 7.5 15.0 15.0 1.0)))
19150N 10200E 19150N 10220E 19150N 10240E 19150N 10260E 19150N 10280E	.5 .4 .7 .6 .3	1! 22 4(2) 1(5.9 1 2.5 2).8 5 1.3 2).5 1	8.6 9.9 6.8 9.4 3.1	38 45 82 51 24	.1 .2 .3 .1	17.0 16.6 28.8 20.4 9.6	7. 8. 17. 11. 4.	1 1 6 3 1 3 7 4 5 1	55 3 17 4 13 6 99 4 69 2	.84 .70 .32 .58 .64	31.5 32.0 60.0 42.9 18.6	.4 .4 .5 .3	1. 4. 11. 4. 4.	8 1. 6 2. 3 6. 4 2. 9 1.	3 2 0 1 5	6 < . 5 . 7 . 6 . 4 < .	.1 1 .1 1 .1 2 .1 1	.3 .3 .5 .9	.4 .5 .8 .5 .3	12 9 5 12 8	.04 .01 .01 .04 .01	.131 .078 .076 .109 .110	23 18 20 19 22	6.5 8.8 7.0 12.9 6.4	.05 .06 .07 .13 .05	18 15 17 21 18	.005 .004 .002 .006 .003	1 1 <1 1	.37 .60 .66 .80 .46	.002 .003 .003 .003 .003 .002	.05 < .03 .02 .03 .04	<.1 .1 .1 .1 .1	.05 .06 1 .05 2 .06 1 .05	.7 <. .0 <. .2 <. .1 <. .5 .	1 <.0 1 <.0 1 <.0 1 <.0 1 <.0)5)5)5)5)5	3 <.5 2 .6 1 .9 2 .7 2 <.5	15.0 7.5 15.0 15.0 15.0)))
19150N 10300E 19150N 10320E 19150N 10340E 19150N 10360E 19150N 10380E	.3 .4 .4 .3 .4		5.6 1 3.2 3.3 5.5 3.8 2	1.7 9.5 9.8 9.4 7.8	15 17 19 18 62	.1 .1 .1 .3	6.1 6.4 8.5 5.4 22.4	2. 3. 3. 2. 14.	8 1 3 1 9 2 2 4	60 2 93 1 30 1 56 1 60 4	.10 .94 .96 .64 .27	13.3 15.1 14.4 10.5 22.4	.3 .3 .3 .7	120 2 2 3	7. 1. 9. 3. 04.	8 7 9 6 2 2	5 < 5 < 6	.1 .1 .1 .2 1	.4 .5 .5 .4 .0	.3 .3 .2 .3 .5	9 10 10 9 9	.02 .02 .02 .03 .35	.051 .096 .081 .087 .079	24 24 31 27 24	7.2 6.0 5.3 6.0 10.4	.06 .03 .02 .04 .11	15 24 14 24 28	.005 .004 .005 .005 .003	<1 1 1 1 2	.51 .43 .32 .39 .78	.002 .003 .003 .003 .003 .004	.03 < .03 .03 < .04 < .04	<.1 .1 <.1 <.1 .1	.03 .04 .03 .02 .05 2	.4 . .4 . .3 <. .4 . .0 <.	1 <.0 1 <.0 1 <.0 1 <.0 1 <.0	05 05 05 05 05	3 .5 3 <.5 2 <.5 3 <.5 2 .6	15.0 15.0 15.0 15.0 15.0)))
19125N 10000E 19125N 10020E 19125N 10040E 19125N 10060E 19125N 10080E	.4 .5 .4 .2	19 19 11 10 20	9.8 1 9.7 1 7.9 1 0.2 3.2 1	1.7 2.4 4.8 7.0 7.2	52 48 46 28 64	.1 .1 <.1 .1	21.3 18.2 16.7 10.6 26.3	9. 7. 6. 5. 10.	02 02 53 42 82	38 2 18 2 40 2 71 1 78 3	.88 .93 .56 .51 .44	29.0 28.1 24.7 16.7 20.2	.5 .6 .5 .3	6. 3. 4. 2.	52. 9. 11. 53. 79.	6 8 7 7 1	7 8 7 6 < 5	.1 1 .1 1 .1 .1 .1	.1 .1 .8 .5 .9	.3 .3 .3 .2 .3	14 15 13 9 7	.05 .05 .03 .05 .03	.061 .083 .089 .058 .053	30 28 30 37 27	9.0 9.1 8.7 5.6 10.5	.11 .06 .09 .05 .23	23 24 25 31 28	.004 .004 .004 .003 .001	<1 1 1 1 <1	.58 .52 .58 .37 .89	.002 .003 .003 .003 .003	.06 .06 .06 < .04 < .08	.1 .1 <.1 <.1 .1	.02 1 .02 .02 .02 .02 .02 1	.0 <. .6 <. .8 . .8 <. .7 <.	1 <.(1 <.(1 <.(1 <.(1 <.(05 05 05 05 05	3 <.5 3 <.5 3 <.5 2 <.5 2 <.5	15.0 15.0 15.0 15.0 15.0)))
19125N 10100E RE 19125N 10000E 19125N 10120E 19125N 10140E 19125N 10160E	.4 .5 .4 .4 .4	29 19 11 20 11	9.8 1 9.5 1 7.6 1 0.3 2 1.7 1	9.7 1.0 4.1 0.5 0.2	95 55 45 57 28	.3 .1 <.1 .3 .2	44.9 22.1 19.1 22.8 11.7	18. 9. 8. 13. 7.	4 8 2 2 4 1 0 7 1 3	15 4 31 2 76 2 38 3 79 2	.02 .93 .82 .75 .00	33.2 28.3 20.1 21.0 15.7	1.1 .6 .4 .7 .4	8 7 1 3 1	3 8. 2 2. 0 4. 7 2. 2 .	5 1 8 3 1 9 1 8	5 7 0 < 2 9	.2 1 .1 1 .1 1 .1 .1	.7 .1 .0 .9 .7	.4 .3 .3 .3	9 14 10 10 10	.14 .05 .09 .12 .10	.072 .061 .080 .121 .051	38 30 31 26 25	12.8 9.8 6.4 10.9 5.3	.20 .11 .07 .11 .03	49 23 21 27 17	.002 .004 .003 .004 .004	1 <1 <1 <1 <1 1	1.11 .60 .37 .83 .40	.004 .003 .002 .003 .003	.08 .06 .05 < .06 .03	.1 .1 .1 .1 .1	.06 3 .03 1 .02 1 .05 1 .02	.5 . .0 <. .1 <. .1 . .5 <.	1 <.(1 <.(1 <.(1 <.(1 <.(05 05 05 05 05	2 <.5 3 <.5 3 <.5 3 <.5 2 <.5	15.0 15.0 15.0 15.0 15.0)))
19125N 10180E 19125N 10200E 19125N 10220E 19125N 10240E STANDARD DS5	.3 .4 .4 .5 12.5	1 2 2 13	0.0 1 7.6 2 7.4 2 9.3 3 8.6 2	1.3 3.0 1.4 0.3 5.4	27 42 65 60 134	.1 .1 <.1 .1 .3	11.4 17.1 22.2 23.2 22.9	5. 7. 8. 13. 11.	.4 1 .5 2 .9 1 .0 5 .6 7	32 1 21 4 78 4 30 5 33 2	.89 .04 .17 .15 .96	15.2 29.1 39.6 35.3 17.8	.3 .4 .4 .5 6.1	1 10 9 6 44	4 . 1 1. 1 2. 5 2. 6 2.	7 8 9 1 7 4	5 < 5 7 < 6 7 5	.1 .1 1 .1 2 .2 1 .3 3	.8 .3 .0 .7 .8 6	.3 .4 .6 .6 .0	9 10 7 10 58	.04 .02 .02 .06 .71	.057 .060 .069 .103 .096	22 22 26 20 12	5.0 9.1 4.8 9.8 174.8	.04 .09 .04 .07 .70	15 15 22 20 135	.004 .005 .003 .004 .099	1 <1 1 16	.33 .56 .28 .53 2.07	.002 .003 .003 .003 .034	.03 .03 .03 < .04 < .14 4	.1 .1 <.1 <.1	.04 .04 .04 1 .06 .16 3	.5 <. .8 <. .3 <. .9 <. .4 1.	1 <.0 1 <.0 1 <.0 1 <.0 0 <.0)5)5)5)5)5	2 <.5 2 .5 2 <.5 3 .6 6 4.8	15.0 15.0 15.0 15.0 15.0))

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 11

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag opm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd S opm pp	b E m pp	Bi om pp	V om	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	К % рр	w Hg m ppm	Sc ppm	T1 ppm	S Ga % ppr	a SeS nppm	ample gm
19125N 10260E 19125N 10280E 19125N 10280E 19125N 10300E 19125N 10320E 19125N 10340E	.3 .5 .6 .4 .4	9.0 22.6 28.7 9.0 15.7	12.0 29.8 27.3 11.8 13.1	25 60 74 17 46 <	.1 .2 2 .1 2 .2 <.1 2	9.6 20.5 23.8 7.1 17.3	4.3 14.0 12.4 3.6 8.5	248 701 565 165 300	2.02 3.68 4.60 1.92 2.89	14.5 34.2 37.3 17.8 22.8	.3 .8 .6 .3 .4	5.2 12.7 8.6 5.7 2.8	.8 3.4 2.4 .8 1.7	6 6 5 5 6	.1 . .1 1. .2 1. .1 . <.1 1.	6 5 6 5 0	.3 1 .5 .6 1 .4 1 .4 1	LO 8 L2 L0 L3	.07 .02 .02 .02 .02 .05	.059 .103 .145 .107 .043	23 23 23 25 25	4.9 7.4 9.1 4.5 6.7	.04 .07 .05 .01 .04	23 17 19 11 14	.004 .003 .005 .003 .003	<1 1 <1 <1 <1	. 32 . . 66 . . 52 . . 28 . . 43 .	003 003 002 003 003 002	.03 . .03 . .03 . .03 <. .03 .	1 .05 1 .05 1 .05 1 .03 1 .03	.4 1.9 1.1 .3 .7	.l<. <.l<. <.l<. <.l<. <.l<.	05 05 05 05 05 05	2 .5 2 .7 2 .7 2 .6 3 <.5	15.0 7.5 15.0 15.0 7.5
19125N 10360E 19125N 10380E 19100N 10000E 19100N 10020E 19100N 10040E	.4 .4 .7 .5 .4	13.8 36.8 25.9 17.4 28.0	21.6 54.4 20.6 13.8 18.7	37 78 72 47 73	.1 .1 .2 .1 .2 .1	14.6 34.9 27.5 16.9 35.1	5.7 18.0 13.8 7.7 22.0	130 665 708 246 759	3.80 6.93 4.62 2.62 3.91	20.5 30.9 24.3 19.8 30.8	.4 .8 1.0 .4 1.0	105.4 6.6 5.5 3.6 6.8	2.0 9.6 2.1 1.3 8.6	8 < 16 14 6 9	<.1 . .2 1. .1 1. .1 1. .1 1.	9 7 0 5	.4 1 .7 .4 2 .3 1 .3	11 9 21 12 9	.06 .14 .14 .06 .09	.079 .106 .123 .107 .055	21 21 23 25 32	9.2 14.6 15.5 6.9 13.8	.08 .15 .13 .06 .22	24 21 44 20 24	.004 .002 .005 .004 .003	<1 <1 11 1 <1	.54 . .99 . .17 . .36 . .96 .	002 003 004 002 003	.03 . .03 . .08 . .04 <. .05 .	1 .07 2 .09 1 .07 1 .03 1 .04	.7 3.2 1.2 .5 2.2	.1<. <.1<. .1<. <.1<. <.1<.	05 05 05 05 05 05	3 .5 2 .8 5 .7 3 .5 2 .5	15.0 15.0 7.5 15.0 15.0
19100N 10060E 19100N 10080E 19100N 10100E 19100N 10120E RE 19100N 10120E	.4 .5 .5 .7	9.8 20.6 18.5 20.2 20.0	12.0 19.6 17.0 17.8 17.8	26 55 54 66 66	.1 .2 .3 .7 .7	8.8 20.1 19.3 21.5 22.5	5.6 10.8 11.4 11.3 11.4	284 860 733 1136 1164	1.70 4.03 3.03 3.21 3.35	10.4 23.1 20.8 20.9 21.2	.4 1.0 1.0 2.2 2.0	4.2 3.3 2.7 2.7 1.6	.6 1.8 3.5 4.0 4.6	6 13 10 29 28	.1 .2 .1 .2 1. .2 1. .2	4 9 9 1 0	.2 .4 1 .3 1 .3 1 .3	8 L4 L1 L0 9	.06 .16 .10 .39 .41	.064 .144 .080 .187 .192	26 25 29 29 28	5.2 12.6 10.2 14.4 14.5	.04 .10 .08 .12 .12	14 24 25 32 31	.004 .005 .005 .004 .004	<1 <1 <1 1 1 <1 1	.38 . .91 . .95 . .70 . .71 .	002 003 004 004 004	.04 <. .06 . .05 <. .06 <. .06 <.	1 .02 1 .06 1 .07 1 .19 1 .18	.4 .9 1.7 2.6 3.0	<.1<. <.1<. <.1<. .1<. .1<. .1<.	05 05 05 05 05 05	2 <.5 3 .7 3 <.5 2 1.0 2 .8	7.5 15.0 7.5 7.5 7.5
19100N 10140E 19100N 10160E 19100N 10180E 19100N 10200E 19100N 10220E	.4 .4 .5 .5 .4	16.0 15.2 15.6 24.9 18.7	11.7 12.4 16.8 26.5 20.4	45 < 41 < 52 75 45	<.1 <.1 .1 .3 .1	16.3 15.7 15.4 24.5 14.8	8.3 7.1 8.8 16.4 7.0	205 255 640 1409 144	2.62 2.47 2.86 3.52 3.64	24.4 21.2 22.1 29.6 25.2	.5 .5 1.0 1.2 .4	2.9 <.5 1.6 3.5 10.1	1.7 .9 2.2 4.0 1.7	6 10 11 36 5	.1 1. .1 1. .1 1. .2 1. .1 1.	3 0 2 7 3	.4 1 .3 1 .4 1 .4 .5 1	15 12 10 8 11	.03 .10 .09 .53 .02	.049 .058 .118 .150 .040	31 29 32 31 24	5.5 6.0 9.0 9.3 6.9	.03 .04 .07 .11 .04	15 29 19 34 16	.007 .007 .004 .004 .005	<1 1 1 1 1 <1	.39 . .39 . .80 . .07 . .42 .	002 003 004 004 002	.03 1. .04 . .05 . .04 . .02 <.	6 .03 2 .03 1 .07 1 .10 1 .05	.9 .6 1.5 3.0 .7	.1<. <.1<. .1<. .1<. .1<.	05 05 05 05 05 05	3 <.5 2 .5 2 <.5 2 .8 2 <.5	15.0 15.0 7.5 7.5 15.0
19100N 10240E 19100N 10260E 19100N 10280E 19100N 10300E 19100N 10320E	.8 .5 .5 .8 .5	36.0 10.4 18.7 17.8 10.8	54.3 26.1 31.1 26.5 18.9	69 38 46 39 31	.2 .2 .2 .1 .2	32.5 10.3 17.0 14.1 11.0	23.9 8.9 8.7 8.5 5.0	862 683 397 652 207	8.27 3.21 5.53 5.17 3.07	56.1 13.4 30.1 30.2 22.1	.6 .4 .5 .6 .4	25.9 1.2 14.7 4.1 24.9	4.8 2.5 1.5 1.1 .6	8 6 5 6	.2 2. .1 . .1 1. .1 1. .1 1.	2 6 2 1 0	.8 .3 .5 1 .5 1 .4 1	9 7 13 18 10	.09 .05 .02 .03 .03	.144 .119 .234 .331 .089	19 19 20 20 20	15.6 7.2 11.8 13.6 5.9	.10 .04 .07 .09 .04	15 14 22 26 11	.005 .004 .008 .010 .004	<1 <1 <1 <1 1	.87 . .52 . .55 . .74 . .43 .	002 003 003 002 002	.03 <. .02 <. .03 . .03 <. .03 <.	1 .08 1 .04 1 .06 1 .08 1 .06	1.7 .8 .8 .9 .4	<.1<. <.1<. <.1<. <.1<. <.1<. <.1<.	05 05 05 05 05 05	2 1.1 2 <.5 3 .5 3 .6 2 <.5	15.0 15.0 15.0 15.0 15.0
19100N 10340E 19100N 10360E 19100N 10380E 19075N 10000E 19075N 10020E	1.1 .5 .6 .8 .5	25.2 25.7 15.8 17.8 16.9	31.4 25.0 26.5 18.7 10.2	74 92 86 50 39 <	.6 .2 .1 .1 <.1	53.6 35.5 20.5 17.4 15.7	18.2 17.2 12.1 8.0 6.9	4428 1180 842 285 80	3.50 3.86 3.96 4.50 2.31	21.4 25.7 22.1 23.6 28.6	1.6 1.1 1.1 .5 .3	2.2 3.5 2.4 1.5 1.0	2.2 3.8 1.7 1.8 3.1	73 45 11 7 4	.7 2. .3 1. .1 1. .1 1. <.1 1.	1 8 2 0 5	.4 1 .4 1 .5 1 .4 2 .2 1	14 1 11 18 21 14	.05 .60 .09 .04 .01	.198 .120 .151 .052 .034	25 20 21 21 32	17.4 13.3 15.4 16.9 4.7	.15 .20 .15 .12 .02	99 49 30 28 13	.010 .008 .008 .008 .008	2 1 1 <1 1 1 <1	.08 . .87 . .06 . .81 . .34 .	005 004 003 003 002	.05 <. .04 <. .05 . .05 . .03 .	1 .15 1 .06 1 .05 1 .04 1 .01	2.6 2.7 1.4 .8	.1. <.1<. .1<. .1<. <.1<.	09 05 05 05 05 05	3 1.4 2 .8 3 .6 5 <.5 2 <.5	7.5 15.0 15.0 15.0 15.0
19075N 10040E 19075N 10060E 19075N 10080E 19075N 10100E STANDARD DS5	.3 .3 .5 .4 12.4	10.2 16.3 17.0 15.2 139.0	9.0 13.3 21.2 16.1 25.5	25 51 56 36 133	.1 .4 .1 .2 .3	10.3 17.4 21.4 13.9 24.4	7.2 8.5 9.7 6.0 11.6	373 356 467 188 783	1.48 3.14 3.90 3.50 2.99	11.1 24.9 24.1 19.1 17.5	.3 .4 .5 .4 6.1	<.5 9.9 1.6 2.1 42.8	1.2 3.8 2.1 3.5 2.7	7 10 6 4 44	.1 .1 1 .1 <.1 5.3 3	5 2 9 7 8 6	.2 1 .2 1 .3 1 .3 1 .3 5	11 10 13 10 58	.06 .14 .04 .02 .72	.045 .099 .064 .067 .089	26 23 20 25 11	5.1 8.5 13.4 8.3 185.2	.02 .09 .15 .08 .69	20 21 34 21 131	.004 .003 .004 .004 .095	<1 1 1 1 17 2	.33 . .66 . .86 . .62 . .02 .	003 003 003 002 032	.03 <. .05 . .06 <. .03 . .13 4.	1 .03 1 .06 1 .05 1 .04 7 .17	.5 1.1 1.2 .9 3.3	<.1<. <.1<. .1<. .1<. 1.1<.	05 05 05 05 05	2 <.5 2 <.5 3 <.5 3 <.5 7 4.9	15.0 15.0 7.5 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Ρ	aα	е	12
Τ.	ug		ㅗㅗ

SAMPLE#	Mo ppm	Cu Pl ppm ppr	o Zn n ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd Sb opm ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg % I	Ba ppm	Ti % p	B pm	A1 %	Va %	K W % ppm	Hg ppm	Sc 1 opm pp	TIS m %	Ga Se ppm ppm	Sample gm	=
19075N 10120E 19075N 10140E 19075N 10160E 19075N 10180E 19075N 10200E	.3 .5 .4 .5 .4	14.6 12.4 11.7 10.4 15.5 15. 14.3 18.4 13.2 15.	5 35 4 27 L 43) 40 L 33	.1 1 .2 1 .1 1 .1 1 .1 1	15.0 10.4 16.0 15.8 11.4	5.8 4.2 6.5 7.3 5.6	166 101 133 205 137	2.22 1.89 3.12 3.62 2.59	41.3 24.0 23.9 25.2 23.7	.4 .4 .4 .4 .4	8.4 2.0 1.7 2.4 3.1	2.8 .9 1.9 1.5 1.2	6 5 • 7 • 6 6	.1 2.4 <.1 1.1 <.1 1.6 .1 1.3 .1 1.2	.3 .3 .4 .4 .4	9 12 12 15 12	.03 .02 .03 .02 .03	.067 .067 .049 .184 .042	25 26 29 30 33	6.5 5.7 4.9 11.1 5.8	.07 .04 .02 .07 .03	19 36 18 27 28	.002 .003 .003 .004 .005	1 . 2 . 1 . 1 . <1 .	47 .0 39 .0 28 .0 46 .0 31 .0)3 .()3 .()2 .()2 .()3 .()5 .1)5 <.1)4 .1 04 <.1 04 .1	.04 .05 .03 .03 .02	1.0 <. .4 . .7 <. .6 . .7 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 <.5 2 <.5 2 <.5 3 <.5 3 .6	15.0 15.0 15.0 15.0 15.0	
19075N 10220E 19075N 10240E 19075N 10260E 19075N 10280E 19075N 10280E 19075N 10300E	.6 .3 .4 .5 .3	27.5 27.1 12.0 12. 6.7 10. 10.8 17. 11.1 20.) 71 5 20 2 15 9 18 2 23	.3 2 .1 .3 .2 .3	28.1 9.1 5.5 7.2 9.0	17.5 4.0 2.6 3.5 4.1	1983 116 80 153 332	3.89 2.12 1.77 2.94 2.34	22.8 12.7 10.8 15.2 15.0	1.2 .3 .4 .5 .4	2.8 2.4 8.7 3.1 4.8	2.4 .7 1.1 .7 .6	27 5 6 4 9	.2 1.6 <.1 .5 .1 .4 .1 .5 .1 .6	.5 .3 .3 .4 .3	11 9 8 15 11	.31 .01 .02 .02 .08	.119 .115 .075 .110 .090	41 27 27 26 25	10.7 6.0 4.9 8.6 6.6	.09 .02 .03 .04 .04	40 13 17 19 26	. 004 . 004 . 004 . 005 . 005	1 . <1 . 2 . 1 . <1 .	92 .0 29 .0 28 .0 51 .0 38 .0	05 .(03 .(03 .(02 .(03 .()5 <.1)3 .1)3 <.1 03 <.1 03 <.1 04 .1	.07 .04 .05 .06 .07	3.9 . .3 <. .3 . .3 . .3 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .8 2 .5 2 <.5 3 .5 2 <.5	7.5 7.5 15.0 15.0 15.0	
19075N 10320E 19075N 10340E 19075N 10360E 19075N 10380E 19050N 10000E	.5 .5 .6 .5 .3	13.0 18. 22.6 29. 21.3 27. 32.0 34. 22.7 16.	2 36 1 86 5 94 5 96 3 63	.2 .3 .1 .2 .2 <.1	11.2 23.2 23.5 34.1 31.5	5.4 16.0 17.6 20.4 16.2	210 1774 1473 872 498	3.37 3.85 4.30 3.96 2.99	23.0 29.0 27.9 38.2 30.5	.6 1.8 1.8 1.0 1.1	2.3 7.9 5.1 25.4 4.2	1.2 2.7 2.9 4.1 12.2	7 34 15 24 19	.1 .9 .2 1.7 .2 1.7 .2 4.7 .1 1.6	.4 .5 .5 .3	15 13 15 7 6	.02 .38 .13 .20 .13	.074 .141 .130 .082 .041	26 25 25 23 42	9.4 12.8 14.2 6.8 9.4	.07 .11 .12 .09 .16	25 51 30 32 28	.006 .005 .005 .002 .002	$egin{array}{cccc} 1 & . \ 1 & . \ 1 & 1. \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ \end{array}$	52 .0 94 .0 04 .0 60 .0 53 .0	04 .0 04 .0 04 .0 04 .0 04 .0)5 .1)6 .1)6 .1 06 <.1 09 <.1	.05 .09 .07 .05 .02	.6. 2.6. 2.3. 3.7 <. 2.5 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 <.5 3 .6 3 .7 1 .5 1 .6	15.0 15.0 15.0 7.5 15.0	
19050N 10020E 19050N 10040E 19050N 10060E 19050N 10080E 19050N 10100E	.8 .7 .6 .8 .6	21.5 22. 19.9 15. 15.3 8. 26.5 27. 26.0 20.) 83 3 110 3 38 0 58 5 83	.1 2 .2 2 <.1 2 .1 2 .2 2	25.7 21.1 15.7 25.5 29.5	14.9 9.7 6.7 10.9 14.2	1007 2969 114 247 1250	3.94 2.37 2.24 6.05 3.37	26.2 17.6 21.7 27.3 28.3	3.1 5.3 .4 .8 3.6	3.5 1.9 2.1 1.8 2.4	4.5 2.3 2.1 2.5 5.2	12 100 12 · 10 45	.2 1.2 .5 .9 <.1 1.0 .1 1.1 .2 1.6	.3 .2 .3 .6 .3	14 91 15 17 10	.07 1.23 .09 .04 .48	.131 .180 .039 .068 .104	26 21 36 29 27	16.4 11.5 5.6 13.9 13.6	.15 .13 .03 .07 .17	34 84 16 25 53	.003 .004 .004 .005 .003	1 1. 2 . 1 . 2 1.	05 .0 87 .0 28 .0 70 .0 01 .0	04 .1 04 .1 02 .1 03 .0	10 .1)8 .1)4 .1 05 .1 10 .1	.06 .19 .02 .04 .07	2.0 . 1.9 . .6 <. 1.2 . 3.9 .	1<.05 1 .08 1<.05 1<.05 1<.05	3 .7 2 .7 3 <.5 5 .6 2 .7	15.0 7.5 15.0 15.0 7.5	
19050N 10120E RE 19050N 10140E 19050N 10140E 19050N 10160E 19050N 10180E	.7 .7 .8 .5	22.3 22. 19.2 16. 18.5 15. 17.2 22. 19.4 21.	7 89 4 38 0 39 1 40 9 40	.3 2 .1 2 .1 2 .1 2 <.1 2	25.7 20.4 18.8 14.3 17.4	12.9 7.9 8.0 5.8 7.2	1494 220 209 236 272	3.55 4.14 3.92 3.77 4.12	27.9 31.3 31.0 16.4 17.6	3.9 .6 .5 .5 .5	2.1 .8 1.4 .8 1.6	3.7 1.6 1.3 1.4 2.0	57 8 8 7 6	.2 1.6 .1 .7 .1 .6 .1 .7 .1 .6	.3 .4 .3 .4 .5	10 25 22 16 13	.68 .02 .02 .04 .03	.162 .053 .051 .052 .073	27 26 25 26 24	13.5 19.0 18.4 9.5 11.5	.13 .08 .07 .06 .08	57 19 19 23 21	.004 .005 .005 .004 .003	1 . <1 . <1 . <1 . <1 .	97 .0 57 .0 55 .0 58 .0 67 .0	04 .1 02 .1 02 .1 02 .1)9 .1)3 .1)3 .1)3 .1)4 .1)3 .1	.10 .04 .03 .05 .05	3.7 .8 <. .8 .6 .7	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .9 5 <.5 4 .5 4 <.5 3 .5	7.5 7.5 7.5 15.0 15.0	
19050N 10200E 19050N 10220E 19050N 10240E 19050N 10260E 19050N 10280E	.5 .5 .4 .4 .4	14.3 16. 28.5 34. 29.8 34. 27.2 30. 15.0 15.	0 44 3 71 2 88 0 77 1 45	.1 .1 .3 .3 .1	14.9 25.4 35.9 29.7 14.4	9.1 14.2 18.7 17.3 6.7	395 561 1220 1069 336	3.04 4.83 4.02 3.90 2.63	18.4 30.7 33.1 32.3 21.8	.4 .8 1.7 1.5 .7	1.3 4.9 9.5 6.3 3.8	1.0 4.8 4.9 4.5 2.2	27 13 42 32 11	.1 .8 .2 2.0 .1 1.9 .1 1.9 <.1 1.2	.4 .6 .5 .5 .4	14 8 9 8	.30 .10 .47 .35 .08	.055 .086 .118 .104 .081	23 24 33 29 25	7.2 8.9 8.4 8.8 6.2	.05 .07 .12 .11 .05	30 24 39 31 20	.004 .002 .003 .002 .002	$egin{array}{cccc} 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ 1 & . \ \end{array}$	46 .0 62 .0 79 .0 75 .0 47 .0	03 .0 02 .0 10 .0 03 .0)4 .1)5 .2)5 .1 05 .1 05 .1	.05 .09 .08 .06 .04	.6 <. 1.6 <. 4.2 . 3.3 . 1.0 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 <.5 2 .7 1 .8 2 .6 2 .5	15.0 15.0 15.0 15.0 15.0	
19050N 10300E 19050N 10320E 19050N 10340E 19050N 10360E STANDARD DS5	.8 .4 .5 12.7	19.6 34. 27.8 25. 17.6 23. 21.7 32. 143.7 25.	5 47 9 84 1 58 7 80 5 138	<.1 .1 .2 .1 .3	17.7 37.4 20.2 24.3 25.1	10.9 17.6 13.4 16.0 12.2	707 752 965 950 763	6.19 3.91 3.40 4.41 3.07	25.2 30.6 25.0 27.7 18.2	.7 1.0 1.1 1.0 6.2	1.3 4.5 3.0 4.8 40.5	3.5 6.4 2.1 3.9 3.0	6 21 39 8 50	.1 1.5 .1 2.2 .2 1.2 .2 1.8 5.5 3.9	.4 .4 .5 6.2	16 10 13 12 62	.02 .18 .46 .03 .78	.121 .070 .097 .087 .092	17 35 21 22 13	18.3 11.0 10.5 12.3 185.8	.11 .19 .10 .08 .69	14 41 32 24 139	.003 .004 .005 .004 .100	<1 . 1 . <1 1. <1 1. 16 2.	83 .0 75 .0 86 .0 00 .0 08 .0	02 .0 03 .0 03 .0 03 .0 03 .0)3 .1)6 .1)5 .1 05 .1 18 4.8	.07 .04 .08 .09 .19	1.2 <. 4.2 <. 2.0 . 1.8 . 3.5 1.	1<.05 1<.05 1<.05 1<.05 1<.05	3 .7 2 .6 2 .6 2 .7 7 5.0	7.5 15.0 15.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 13

SAMPLE#	Mo) זמ	Cu Pt) Zn	Ag 1 DDD	j N n pr	li m	Co	Mn nom	Fe	As		U A m pr	\u \b	Th	Sr	Cd	Sb	Bi	V	Ca %	P ¥	La	Cr	Mg ¥	Ba	Ti %	B	A1 ¥	Na v	K ¥r	W	Hg	Sc T	1 S	Ga Se	Samp1	e
			Sin ppi					ppin			PP	<u>י ף</u>			PP		ppiii	phin	ppin	ppin	70			- ppiii	70	ppm	70	ppin			~ +			իս իի		ppm ppm	y	
19050N 10380E	.5	41	.5 51.8	3 113	3.2 1	2 43.	4 2	20.8	606 490	4.95	49.3	} . 1	814. 21	8	4.0	26	.3	4.2	.7	8 15	.26	.070	16 21	6.5	.09	29 34	.002	1	.43	.003	.03	.1.	.06 4	.5 <.	1<.05	1 <.5	15.	0
19025N 10000E	.5	15	.6 15.9) 00) 49) .1	l 17.	2	8.0	327	2.93	23.8	, 1. } .	82.	.3	2.4	9	.1	1.1	.3	12	.06	.050	18	9.1	.09	24	.003	1	.66	.003	.00	.1.	.03 I .03	.2 \. .9 <.	1<.05	3 <.5	15.	.0
19025N 10040E	.5	14	.7 14.2	2 45	5 <.]	l 17.	7	8.5	244	3.10	26.0).	51.	3	2.4	5	<.1	1.1	.3	14	.03	.057	25	9.1	.07	18	.003	<1	.51	.002	.03	.1	. 03	.8 <.	1<.05	3 <.5	15.	0
19025N 10060E	.5	9	.0 5.7	23	5	L 12.	4	4.6	131	1.38	15.8	3.	21.	. /	.6	6	<.⊥	.3	.3	18	.03	.081	24	12.4	.08	22	.003	<1	.34	.002	.03	.1.	.02	.3 <.	1<.05	4 <.5	15.	0
19025N 10080E	.3	26	.2 20.7	72	2	L 36.	0 1	5.3	314	3.60	29.8	31.	42.	5	6.8	18	.1	1.8	.4	6	.13	.044	24	8.2	.14	24	.001	<1	.56	.002	.04 <	<.1	.04 2	.5 <.	1<.05	1.5	15.	0
19025N 10100E	.8	20	.4 27.8	8 66) <. <u>.</u>	L 22.	51	.1.0	416	5.57	32.2	2 . 1	72.	1	2.1	16	.1	1.5	.5	21	.18	.063	23	18.3	.15	15	.007	1	.88	.003	.04	.1 .	.04 1	.2.	1<.05	5.5	15.	0
19025N 10120E 19025N 10140F	1.0	24 24	2 47 4	2 0/ 1 71	<	L ZZ. 1 26	0 1	44	564	4.34	51 7	, 1.	15. 82	0	1.5	7	.1 < 1	2.0	. ວ 5	10	.03	.143	20 22	17.6	.00	19	.005 008	<1 <1	./Z 91	200.	.04	.1.	.04 1 06 1	.U <. 6 <	1<.05	3.5 1<5	15. 15	0
19025N 10160E	.7	31	.8 29.5	5 102	2 .2	2 37.	9 2	21.1	1158	4.77	33.2	2 2.	94.	2	3.7	41	.2	2.0	.6	14	.45	.136	23	14.0	.15	35	.006	1 1	1.10	.004	.05 <	<.1	.09 3	.7 <.	1<.05	2.8	15.	0
19025N 10180F	8	23	5 35 6	5 74		2 27	5 2	28 1	1327	1 70	96 (12	13	8	23	57	z	3 N	5	16	66	114	10	17 1	12	30	007	-1 1	07	004	05	1	10 1	0	1 06	2 5	16	0
19025N 10200E	.4	25	.0 35.6	5 69) < .:	L 29.	0 1	4.3	274	4.83	33.4	, <u> </u>	6 12.	.1	5.6	7	.1	1.5	.4	13	.00	.036	25	16.5	.24	22	.004	<1 1	1.03	.003	.03	.1	.04 2	.9	1<.05	2 <.5	15.	0
19025N 10220E	.4	23	.2 37.9	9 53	3.	L 22.	6	9.6	172	5.20	28.2	2.	54.	.3	4.8	6	.1	1.8	.5	7	.02	.071	19	8.5	. 08	16	.002	<1	. 57	.002	.02	.1	.07 1	.5 <.	1<.05	1.5	15.	0
19025N 10240E	.4	22	.7 33.3	3 49) .	L 22.	7	9.8	175	5.04	31.5	5.	428. 70	.5	1.7	6 12	.1	2.0	.6	8	.02	.109	21	7.6	.05	21	.004	<1	.41	.003	.02	.1	.06 1	.0 <.	1<.05	2 <.5	15.	0
190230 102005	.0	20	.1 50.0	5 00) .:) 24.	51	.0.1	///	0.02	. 55.0		/ 0.	. U	1.9	10	. 1	1./	. /	14	.12	.100	20	13.9	.11	25	.000	<1]	1.08	.003	.03	.2.	.09 1	.5 <.	1<.05	2.0	15.	0
19025N 10280E	.4	17	.8 12.2	2 39) .	15.	2	6.4	91	2.92	24.	ļ .	3 14.	.0	1.3	5	<.1	1.5	.4	8	.01	.062	23	3.7	.02	14	.002	<1	.25	.002	.02	.1	.03	.7 <.	1<.05	2 <.5	7.	5
19025N 10280E	.5	25	.1 13.4 1 41 A	+ 30 5 74) L	L 15. 1 27	4 1	b.4 Зб	89 445	6.39	. 23	s.	353. 627	.8 0	1.4	6	<.1 < 1	1.4 2.2	.4	16	.UI	.066	20	4.0	.02	12	.002	<1 <1	.24	.002	.02	.1.	.02	./ <. ?	1<.05	1 <.5	/. 15	5
19025N 10320E	.4	25	.5 29.8	3 66	5.4	2 27.	3 1	5.0	606	3.76	30.2	2.	75.	.2	2.8	43	.2	1.8	.5	10	.50	.095	21	8.7	.11	30	.003	<1	.65	.003	.04	.2	.03 1	.3 . .2 <.	1<.05	2 <.5	15.	0
19025N 10340E	.5	21	.9 29.9	9 73	3.2	2 24.	4 1	.5.0	672	3.70	27.3		94.	. 8	1.9	57	.2	1.5	.5	12	. 63	.085	17	11.5	.16	33	.007	1	.70	.004	.04	.2	.08 2	.0 <.	1.06	2 <.5	15.	0
19025N 10360E	.6	52	.7 56.2	2 149	9.3	3 49.	47	4.2	3138	5.59	46.5	51.	9 32.	.2 1	.5.7	10	.3	3.6	.7	5	.07	.093	16	14.6	.08	17	.001	14	4.17	.003	.03	.1	.30 5	.9.	1<.05	1 1.1	15.	0
19025N 10380E	.4	51	.6 65.2	L 129) .	1 50.	03	33.9	669	6.21	56.3	31.	0 20.	.1	8.7	25	.2	4.9	.8	7	.20	.074	24	7.6	.15	18	.002	1	. 55	.003	.03	.1	.05 3	.8 <.	1<.05	1.5	15.	0
19000N 10000E	.8	23	.0 19.9	9 92	<u>.</u>	L 33. 2 26	01	3.5	1203	4.00	2/.8	34. ; g	14. 72	.6	4.1 2 1	55 65	.2	.9	.3	21	.60	.102	22	25.3	.36	53	.007	<]]	L.42	.005	.08	.1.	.08 2	.7.	1.06	4.5	15.	0
19000N 10020E	.8	35	.6 23.7	7 62	2	1 32.	71	2.3	300	4.95	33.3	; . ; .	74.	.0	3.4	7	.1	.9	.5	16	.09	.087	20 24	18.4	.13	41 46	.004	1	.93	.004	.07	.1.	.07 1 .08 1	.9 <. .3 .	1<.07	2.9 4<.5	15.	5
10000N 10000F	c	10	0 11	1	, <i>.</i>	1 10	0	C 0	1.00	0.11	20.0		4	0	1 0	c	1	-	~	17	00	075	00	0.7		0.0		-	~~			-		-				
19000N 10080E	.0	10 33	.0 11.4	+ 33 2 94	s	2 42	932	0.9	2393	4.37	20.5	, .	4. 32	.9	1.3	о 60	.1	.5	.3 4	1/	.03	.0/5	26	8./	.06	26 73	.003	<1 <1 1	.39	.003	.03 <	<.1. 1	.05 10 5	.6.	1 .06	3 <.5	15.	0
19000N 10100E	.8	38	.4 62.3	3 65	5 .	1 33.	1 1	7.2	593	9.06	82.2	2 .	8 4.	.2	4.7	13	<.1	4.6	.9	9	.05	.511	14	18.8	.09	37	.005	<1	.69	.003	.03	.1	.07 2	 . 0 <.	1<.05	2.8	7.	5
19000N 10120E	1.0	31	.7 28.2	2 115	5.	3 34.	4 1	.7.9	2417	4.09	31.	58.	32.	.3	3.7	84	.2	1.5	.4	15	.96	.198	25	18.4	.20	60	.007	1 1	.36	.005	.06 <	<.1	.12 3	.2.	1.07	3 1.2	15.	0
19000N 10140E	.7	17	.1 18.3	3 56)	1 21.	61	10.1	384	3.93	8 28.	» 1.	1 1.	.8	2.4	28	.1	1.3	.3	16	. 32	.063	21	16.6	.13	20	.004	<1	.75	.003	.04	.1 .	.04 1	.2.	1<.05	3 <.5	15.	0
19000N 10160E	1.0	21	.5 20.4	4 65	5.	1 22.	0 1	1.9	721	4.12	2 31.3	31.	52.	. 1	1.7	9	.1	1.6	.4	18	.05	.080	21	13.8	.06	19	.004	<1	.66	.002	.03	.2	.04 1	.2 <.	1<.05	3 <.5	15.	0
19000N 10180E	.7	31	.6 54.3	3 64	<	1 30.	1 1	15.6	735	6.53	82.8	3.	72.	.7	1.3	21	.1	2.5	1.0	17	.19	.252	19	11.7	.06	28	.004	<1	.40	.003	.03	.1	. 07	.8 <.	1<.05	4 <.5	15.	0
19000N 10200E	.5 7	35 28	9 58	3 92 7 71	·	348. 130	72	2/.5	1019	5.4t	50.0 37) 2. 1	1 /. 1 5	. L 9	/.6	45 q	.2	2.8	.6 6	9 11	.54	.118	28 18	15.3	.18	38	.004	1]	L.60	.004	.04	.2.	.10 4	.1 <.	1<.05	2.7	15.	0
STANDARD DS5	12.3	143	.8 25.5	5 136	5 .:	3 24	9 1	1.8	750	2.97	17.2	2 5.	9 45.	.6	2.7	45	5.4	3.9	5.9	62	.72	.092	11	185.9	.68	132	.093	18 2	2.01	.002	.14 4	1.9	.16 3	./ \. .4 1.	0<.05	2.0 74.7	15. 15.	0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_

Paqe	14

SAMPLE#	Mo DDM	p	Cu pm p	Pb ppm p	Zn	Ag	Ni pom	CC ngg	Mi זממ ו	ר F n	e % r	As pm p	U mqc	Au daa	Th mag	Sr ppm	Cd ppm	Sb ppm	Bi pom	V maa	Ca %	P %	La ppm	Cr pom	Mg %	Ba ppm	Ti %	B	A1 %	Na %	K % DI	W ama	Hg S om poi	c T m pp	1 S m %	Ga Se	Sample am	
19000N 10240E 19000N 10260E 19000N 10280E 19000N 10300E 19000N 10320E	.7 .6 .5 .6	26 22 16 22 29	.4 29 .7 24 .7 17 .8 78 .2 41).1 1.5 7.7 3.2	84 69 37 86 64	.2 .1 .1 .2 .1	24.8 20.9 13.7 26.0 25.1	14.5 11.2 6.1 15.6 14.6	155 61 22 246 72	4 3.7 4 3.7 7 3.0 4 5.7 0 6.3	73 28 76 26 07 22 73 33 32 41	1.1 2 5.7 1 2.3 3.2 1	2.0 1.1 .5 1.2 .7	9.4 5.1 10.3 2.4 27.1	2.5 2.6 1.0 4.3 2.0	31 7 5 105 7	.1 .1 <.1 .2 .1	1.5 1.6 1.2 3.1 2.0	.5 .5 .4 .7 .6	14 12 11 11 14	.39 .03 .01 .43 .04	.124 .071 .178 .185 .103	21 25 24 22 21	11.0 9.2 6.3 8.1 12.8	.10 .06 .03 .08 .07	32 21 19 56 18	.005 .003 .003 .003 .003 .004	1 1 <1 <1 <1 1	.76 .64 .30 .64 .68	.003 .002 .002 .003 .003	.04 .03 .03 .03 < .03 <	1 . 2 . 1 . 1 .	07 1. 05 1. 04 . 09 5. 04 1.	7 . 1 . 4 <. 3 . 4 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .5 2 <.5 2 <.5 1 <.5 3 .5	15.0 15.0 15.0 15.0 7.5	
19000N 10340E 19000N 10360E 19000N 10380E 18975N 10000E 18975N 10020E	.6 .4 .5 .7	32 52 40 18 16	.4 32 .9 36 .7 47 .3 21 .6 17	2.9 1 5.7 1 7.7 1.9 7.4	131 119 94 49 48	.3 .1 .1 .1 .1	34.7 46.9 42.9 16.9 16.2	21.5 29.8 24.9 9.5 7.4	173 51 72 42 19	3 4.2 9 4.9 2 5.1 7 3.2 7 3.3	23 31 98 44 19 43 21 20 35 29	6 1.6 1.6 1.1 1.2	1.6 .8 2 1.1 .6 .5	8.4 106.2 13.5 1.3 1.5	3.3 13.5 6.8 1.1 4.0	47 32 19 10 7	.2 .1 .1 .1	2.7 4.3 3.7 .8 1.4	.5 .6 .8 .4 .3	11 8 9 21 11	.69 .24 .15 .08 .04	.116 .075 .068 .059 .043	20 36 28 28 27	13.4 8.9 9.2 11.9 9.0	.19 .17 .14 .09 .06	45 25 33 27 23	.005 .005 .003 .009 .001	<1 1 <1 <1 <1	.88 .44 .70 .72 .64	.004 .004 .003 .003 .002	.04 .05 .04 .05 .05	$ \begin{array}{c} 1 \\ $	08 3. 02 4. 06 3. 04 . 03 1.	2 <. 5 <. 8 < <i>.</i> 7 . 0 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .9 1 <.5 1 .5 4 <.5 3 <.5	7.5 15.0 15.0 15.0 15.0	
18975N 10040E 18975N 10060E 18975N 10080E 18975N 10100E 18975N 10120E	.7 .5 .5 .5 .6	18 24 11 27 20	.2 17 .1 12 .0 14 .1 32 .9 18	7.8 2.1 4.7 2.8 3.3	63 27 30 75 52	.1 .1 <.1 .2	19.1 10.4 10.5 29.8 20.6	10.3 3.7 5.2 12.0 8.1	51 20 13 24 10	1 4.5 3 2.0 5 2.1 9 5.4 5 3.9	52 19 03 12 18 9 48 84 95 42).6 2.0).7 1.9 2.5	.7 .5 .4 .5	1.3 <.5 .5 1.2 5.2	3.1 .7 1.4 4.5 1.4	6 4 5 9 7	.1 .1 <.1 .1 .1	.9 .2 .4 5.6 3.2	.3 .3 .4 .4 .5	26 15 18 8 14	.05 .04 .01 .02 .01	.046 .055 .033 .067 .100	28 31 31 22 28	24.1 7.8 7.9 9.3 5.7	.20 .03 .03 .07 .02	21 24 13 32 14	.011 .005 .007 .002 .006	<1 1 <1 <1 <1 <1 <1 <1	. 23 . 40 . 38 . 57 . 28	.003 .003 .002 .003 .003	.05 .03 < .03 .05 .03	.1 . .1 . .1 . .1 .	07 1. 04 . 02 . 05 2. 04 .	3 . 3 . 6 <. 1 <. 9 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	5 .5 2 <.5 3 <.5 2 <.5 2 .5	15.0 15.0 15.0 15.0 15.0	
18975N 10140E 18975N 10160E 18975N 10180E 18975N 10200E 18975N 10220E	.4 .5 .6 .8	22 20 25 25 24	.7 28 .0 33 .4 35 .0 34 .5 39	3.0 1.6 5.1 4.5 9.1	60 88 72 73 76	.1 .2 .1 .3 .1	22.5 25.8 25.2 27.8 29.6	8.6 12.6 12.8 20.3 18.3	5 17 5 31 8 37 8 100 8 68	5 4.9 2 5.6 5 6.4 3 5.0 4 5.6	57 82 51 34 46 46 07 51 53 31	2.2 4.7 5.1 7 9	.4 .7 .6 .9 .9	1.7 48.4 5.1 4.2 15.5	4.2 4.9 2.0 2.1 6.1	10 16 8 30 18	<.1 .1 .2 .1 .1	5.1 1.9 3.3 2.5 2.2	.4 .5 .6 .5	8 10 12 17 9	.02 .16 .04 .36 .18	.069 .068 .070 .098 .078	26 28 25 25 25	6.8 12.7 10.3 13.3 13.3	.06 .10 .06 .10 .12	21 23 26 33 25	.002 .003 .004 .007 .003	<1 <1 <1 <1 1 <1 1	.47 .91 .64 .00 .17	.003 .003 .003 .003 .003 .003	.05 .04 .04 .04 .04 .05	.1 . .1 . .2 . .2 .	04 1. 07 1. 06 1. 08 2. 07 2.	6 . 8 <. 3 <. 2 . 5 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .5 2 .5 3 .6 3 .5 2 .5	15.0 15.0 15.0 15.0 15.0	
18975N 10240E 18975N 10260E 18975N 10280E 18975N 10300E 18975N 10320E	.6 .4 .4 .4 .5	31 14 6 25 36	.6 34 .1 20 .9 9 .6 37 .2 58	4.1).2).0 7.9 3.1 1	70 36 17 79 107	<.1 .1 .1 .1 .2	28.3 14.1 6.3 26.7 39.0	15.9 6.2 2.8 18.7 24.1	70 2 24 3 11 7 72 154	7 5.9 3 3.3 9 1.6 8 4.6 4 5.3	92 59 34 23 58 20 57 37 13 46).9 3.0).2 7.9 5.2	.6 .4 .3 .8 1.3	4.3 3.1 14.8 5.4 4.6	2.8 1.0 1.1 2.2 4.1	7 7 6 22 31	.1 <.1 <.1 .2 .2	3.0 1.0 .7 2.1 3.0	.7 .4 .3 .7 .7	13 11 11 14 13	.03 .01 .02 .22 .35	.114 .191 .052 .089 .117	26 26 35 25 29	10.6 7.4 4.8 12.8 13.0	.07 .04 .02 .12 .16	22 12 16 28 46	.004 .004 .007 .006 .005	<1 1 <1 <1 1	. 56 . 36 . 29 . 84 . 92	.003 .003 .002 .006 .004	.04 .04 .04 .05 .06 <	.1 . .1 . .1 . .1 .	03 1. 04 . 03 . 05 1. 07 4.	7 <. 5 <. 4 . 7 . 3 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 .5 2 .5 3 <.5 3 <.5 2 .7	15.0 15.0 15.0 15.0 15.0	
RE 19000N 10360E 18975N 10340E 18975N 10360E 18975N 10380E 18950N 10000E	.4 .8 .8 .2 .7	52 49 34 28 13	.6 38 .2 69 .6 49 .7 29 .5 12	3.3 1 5.6 1 9.2 9.0 2.9	118 102 89 87 35	.2 .1 .2 .1 .1	47.1 38.1 29.7 26.9 11.5	28.9 18.5 14.7 17.2 5.5	9 49 5 42 7 26 2 49 5 16	4 5.0 2 7.8 3 5.3 8 3.9 8 2.3	03 43 34 53 33 40 95 40 18 11	3.2 3.7).3).6	.8 .6 .8 .5 .5	34.5 14.0 14.4 13.6 6.9	13.4 5.8 7.4 7.4 1.7	33 9 9 13 17	.1 .1 .1 .1 <.1	4.4 4.2 4.4 4.2 .6	.6 1.1 .7 .4 .3	8 8 10 7 20	.24 .02 .06 .06 .21	.078 .118 .068 .043 .040	36 28 26 31 33	8.3 9.0 13.5 7.9 8.8	.17 .10 .18 .14 .08	23 14 21 19 25	.006 .004 .005 .003 .007	1 <1 <1 1 <1 <1 <1	.43 .56 .00 .53 .45	.004 .003 .002 .003 .003	.05 .04 < .03 < .04 < .04 <	.1 . .1 . .1 . .1 .	02 4. 04 2. 12 2. 04 2. 02 .	3 <. 0 <. 5 <. 7 < <i>.</i> 7 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	1 <.5 2 .9 1 .7 1 .5 4 <.5	15.0 15.0 15.0 15.0 15.0	
18950N 10020E 18950N 10040E 18950N 10060E 18950N 10080E STANDARD DS5	.9 .5 .4 .6 12.7	17 21 11 29 145	.3 14 .6 22 .8 7 .0 23 .2 25	4.0 2.9 7.1 3.0 5.8 1	41 56 30 83 139	.1 .1 <.1 .3 .3	15.4 22.6 12.8 31.2 25.0	6.2 10.6 5.6 14.8 12.4	2 9 5 30 5 7 3 131 5 78	2 1.9 2 4.9 3 1.6 3 3.7 1 2.9	98 18 54 31 51 13 70 23 99 17	3.0 8 3.9 3.1 3 7.2 6	.7 .5 .3 3.3 6.5	<.5 1.3 5.4 2.2 44.2	4.2 3.2 2.9 7.2 3.1	9 12 4 38 45	.1 .1 <.1 .2 5.3	.9 1.4 .8 1.4 3.8	.2 .4 .2 .4 5.9	17 11 15 10 63	.06 .07 .01 .49 .72	.046 .071 .031 .088 .087	31 28 42 52 13	7.0 9.8 4.4 15.5 192.2	.03 .06 .02 .23 .71	18 25 11 49 133	.002 .003 .005 .003 .101	<1 <1 <1 <1 1 18 2	.54 .50 .21 .05 .09	.003 .003 .002 .005 .034	.04 .04 .03 .08 < .14 4	1 . 6 . 1 . 1 . 7 .	03 1. 05 1. 01 . 08 5. 17 3.	0 . 0 . 5 <. 4 . 3 1.	1<.05 1<.05 1<.05 1.06 1<.05	3 <.5 3 <.5 3 <.5 2 .8 6 5.1	15.0 15.0 15.0 7.5 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 15

SAMPLE#	Мо	(Cu P	b Z	n Ag	9	Ni	Со	Mn	Fe	As	U	A	u Th	Sr	Cd S	Sb	Bi	۷	Ca	Ρ	La	Cr	Mg	Ba	Ti	В	A1	Na	К	WΗ	lg Sc	: T1	S	Ga Se S	Sample
	ppm	p	om pp	m pp	m ppr	n p	pm	ppm	ppm	X	ppm	ppm	pp	p bbu	ppm	ppm p	pm p	pm p	pm	%	*	ppm	ppm	*	ppm	% p	pm	%	%	% pp	om pp	m ppn	ı ppm	% p	pm ppm	gm
18950N 10100E 18950N 10120E 18950N 10140E 18950N 10160E 18950N 10180E	.8 .6 .4 .5 .3	26 20 12 15 26	.1 24. .2 29. .4 8. .5 19. .3 20.	6 7 0 8 9 3 6 5 2 7	3 .3 4 4 < 5 8	3 24 1 23 1 14 1 16 1 28	1.6 3.4 1.6 5.2 3.3	13.6 14.7 5.7 7.6 12.9	2457 602 67 268 300	3.42 4.47 1.91 3.63 3.70	19.7 37.5 59.4 44.9 30.1	2.9 .7 .3 .4 .5	<. 1. 3. 3.	5 2.4 0 2.7 6 2.2 9 1.9 1 7.0	74 32 7 9 10	.3 1 .1 1 <.1 3 .1 2 .1 2	.0 .9 .2 .2 .4	.4 .4 .3 .4	16 16 11 11 8	L.02 .28 .02 .04 .01	.151 .062 .031 .045 .040	41 25 29 26 29	16.4 12.4 3.5 7.7 8.7	.15 .11 .02 .06 .13	64 28 14 14 35	.005 .004 .003 .003 .003	2 1. 1 . 1 . 1 . 1 .	01 . 76 . 19 . 45 . 67 .	005 003 002 003 004	.07 < .04 .03 .04 .04 .07	.1 .1 .1 .0 .1 .0 .1 .0 .1 .0	3 2.9 5 1.5 1 .7 2 .8) .1< 5 <.1< 7 <.1 8 <.1< 8 <.1<	<.05 <.05 <.05 <.05 <.05	3 .8 3 .6 2 <.5 2 <.5 2 .5	15.0 15.0 15.0 15.0 7.5
18950N 10200E 18950N 10220E 18950N 10240E 18950N 10260E 18950N 10280E	.4 .4 .6 .4	11 12 27 33 11	.5 12. .6 20. .0 36. .4 43. .4 10.	9 2 4 4 3 6 1 8 6 3	9 . 3 . 9 . 9 <.	1 10 1 12 1 24 1 34 1 12).7 2.0 4.9 1.4 2.7	4.8 6.1 11.0 18.2 5.9	131 368 328 658 141	2.63 3.67 6.42 5.16 2.19	23.1 23.4 46.9 39.2 19.4	.3 .4 .6 .7 .3	5. 5. 9.	7 1.0 5 1.8 9 4.0 3 6.0 1 2.3	6 7 9 13 8	.1 1 .1 1 .1 2 .1 2 <.1 1	.5 .1 .6 .1 .3	.3 .4 .6 .7 .4	9 11 10 7 20	.01 .03 .05 .06 .02	.046 .064 .173 .088 .040	21 24 25 22 30	5.7 9.5 13.1 9.2 6.1	.02 .07 .12 .11 .03	16 23 13 30 16	.002 .004 .004 .002 .013	1 . 2 . <1 . 1 . 1 .	40 . 56 . 77 . 64 . 24 .	003 003 003 003 003 002	. 03 . 04 . 04 . 05 . 03	.2 .0 .1 .0 .1 .0 .1 .0 .1 .0	3.6 6.8 51.6 52.5 21.0) .1< <.1< <.1< <.1< <.1< <.1<	<.05 <.05 <.05 <.05 <.05	2 <.5 2 .6 2 .9 1 <.5 2 <.5	7.5 15.0 15.0 15.0 15.0
18950N 10300E 18950N 10320E 18950N 10340E 18950N 10360E 18950N 10380E	.6 .6 .8 .5	26 32 30 14 28	.4 37. .8 31. .7 58. .8 16. .8 45.	1 8 5 9 3 8 7 3 9 7	2 . 4 . 3 . 6 . 0 .	3 26 5 38 1 31 1 12 7 26	5.5 3.8 1.0 2.8 5.7	17.0 17.8 16.5 5.4 15.0	1705 3049 469 81 790	4.70 3.83 5.89 2.47 4.07	33.2 27.4 42.1 25.2 19.8	2.0 2.5 .9 .3 .9	3. 3. 12. 19. 4.	7 1.6 1 2.2 8 8.1 0 2.5 6 4.7	53 83 13 8 14	.3 1 .7 2 .2 5 <.1 1 .1 1	.5 .5 .3 .8 .7	.5 .5 .6 .5 .8	18 12 11 6 6	.62 1.15 .08 .01 .11	.141 .151 .093 .054 .085	26 21 18 25 24	14.7 12.2 12.7 3.5 5.6	.13 .15 .07 .03 .08	48 68 21 11 23	.009 .006 .003 .002 .003	3 1. 2 . 2 1. <1 . 1 .	16 . 96 . 35 . 24 . 51 .	004 006 004 003 004	.05 < .06 < .03 < .03 <	.1 .1 .1 .1 .1 .1 .1 .0 .1 .0	1 2.4 8 3.4 4 2.6 2 .7 6 2.5	.1< .1 .1 .1< .1< .1< .1<	.05 .07 .05 .05 .05	3 .9 2 1.0 2 .7 1 <.5 1 <.5	15.0 7.5 15.0 15.0 15.0
18925N 10000E 18925N 10020E 18925N 10040E 18925N 10060E 18925N 10080E	1.2 .8 .8 .8 1.2	14 15 19 21 24	.0 15. .8 20. .0 24. .3 19. .7 21.	7 4 8 7 4 8 5 6 9 10	6 < 2 9 5 .4 1	1 13 1 17 1 26 4 19 3 24	3.8 7.0 1 5.5 1 9.7 1 1.2 1	8.5 15.5 15.8 12.2 14.4	700 2103 2133 1621 3620	2.85 2.38 4.04 3.19 2.95	15.4 14.5 33.3 42.7 28.2	.5 6.6 8.8 10.3 12.1	1. 1. 1.	1 .8 6 .5 4 3.2 3 1.7 6 1.5	9 82 9 53 84	.1 .3 .2 1 .2 1 .4 1	.6 .6 .3 .0 .1	.3 .3 .4 .3 .3	23 13 16 15 14	.12 1.12 .07 .67 1.14	.078 .126 .151 .125 .121	28 15 28 25 15	10.6 15.6 19.9 18.1 15.2	.07 .15 .17 .14 .18	16 51 36 33 73	.007 .005 .006 .006 .006	1 . 3 . 2 1. 1 . 2 .	40 . 64 . 15 . 96 . 89 .	004 006 004 005 006	.05 < .05 < .06 .05 .05	.1 .0 .1 .1 .1 .0 .1 .1 .1 .1	3 .5 4 .7 7 1.8 2 1.6 5 1.3	5 <.1< 7 .1 8 .1< 5 <.1< 8 .1	.05 .06 .05 .05 .05 .06	4 <.5 2 .9 3 .7 3 .7 3 1.4	15.0 7.5 15.0 15.0 1.0
18925N 10100E 18925N 10120E 18925N 10140E 18925N 10160E 18925N 10180E	.8 .6 .5 .5	25 16 28 19 15	.2 26. .7 10. .2 23. .5 20. .4 12.	29 64 68 67 64	7 . 5 <. 9 . 7 . 6 .	2 25 1 17 2 30 2 19 1 15	5.0 1 7.6).9 1 9.4 5.2	14.8 6.5 15.0 8.3 7.9	1751 137 827 280 362	3.28 2.61 3.93 3.18 2.45	51.1 81.9 52.9 49.7 36.0	8.2 .3 2.4 1.1 1.4	1. 1. 3. 5. 1.	5 2.5 5 1.8 1 3.2 4 2.4 8 1.9	69 12 37 30 21	.2 2 <.1 3 .1 3 .1 2 .1 2	.7 .4 .1 .5 .2	.4 .3 .4 .3	9 15 9 9 10	.93 .07 .43 .28 .22	.134 .056 .088 .054 .048	13 29 22 22 25	11.5 5.3 7.2 6.8 4.7	.13 .02 .09 .07 .03	49 17 35 32 17	.004 .003 .002 .002 .002	$egin{array}{cccc} 1 & . \ 1$	75 . 25 . 65 . 46 . 33 .	006 002 006 004 003	. 04 . 04 . 07 . 05 . 03	.1 .1 .1 .0 .2 .0 .1 .0 .1 .0	1 2.1 4 1.0 6 3.0 7 1.5 5 1.2	1< .1< .1< .1< .1< .1<	<.05 <.05 <.05 <.05 <.05	2 1.2 3 <.5 2 1.0 1 .5 1 <.5	1.0 15.0 7.5 15.0 15.0
18925N 10200E 18925N 10220E 18925N 10240E RE 18925N 10240E 18925N 10260E	.5 .5 .4 .5 .5	17 19 20 19 18	.7 18. .5 16. .4 9. .5 9. .8 9.	2 4 8 5 9 5 9 5 5 4	4 . 1 . 3 <. 1 <. 5 <.	1 17 1 19 1 20 1 20 1 19	7.3 9.0).0).0).3	7.5 8.2 8.3 7.9 7.6	284 180 173 174 81	3.51 3.37 3.01 2.90 2.51	34.5 35.1 29.8 29.4 35.8	.4 .4 .3 .3	6. 4. 30. 4. 2.	1 1.5 0 1.4 0 2.4 3 2.4 7 3.0	8 6 6 7	<.1 1 <.1 2 <.1 1 <.1 1 <.1 2	.9 .1 .5 .6 .2	.4 .4 .4 .4 .3	9 11 12 11 10	.02 .01 .01 .01 .02	.182 .083 .037 .037 .029	28 28 34 33 35	6.5 6.5 4.0 3.7 3.4	.05 .03 .02 .02 .02	22 18 16 15 13	.003 .003 .004 .004 .004	1 . <1 . 1 . <1 . 1 .	37 . 44 . 23 . 23 . 21 .	003 003 003 003 003	. 03 . 04 . 03 . 02 . 03	.2 .0 .2 .0 .3 .0 .3 .0 .1 .0	5 .8 3 1.0 2 1.1 2 1.0 1 1.0	<pre>1 < .1< 1 < .1<</pre>	2.05 2.05 2.05 2.05 2.05 2.05	2 .5 2 .6 2 <.5 2 <.5 2 <.5	15.0 15.0 7.5 7.5 15.0
18925N 10280E 18925N 10300E 18925N 10320E 18925N 10340E STANDARD DS5	.4 .6 .4 12.3	23 24 25 28 141	.0 25. .7 46. .8 45. .3 64. .7 25.	1 8 3 7 9 11 2 9 1 13	7 < . 7 < . 4 . 7 .	3 27 1 23 1 30 1 28 3 24	7.8 3.4).7 3.9 4.7	14.2 12.3 17.1 14.4 11.8	654 483 955 298 737	4.01 4.70 4.52 3.21 2.99	32.4 36.0 36.5 50.1 17.5	1.4 .5 1.0 .6 6.1	4. 10. 4. 19. 44.	4 2.9 8 2.2 0 1.7 9 4.4 8 2.9	35 7 23 9 48	.1 1 .1 1 .2 2 .2 6 5.4 3	.6 .7 .8 .7 .9 5	.4 .5 .5 .5 .7	13 11 16 3 59	.37 .02 .17 .03 .76	.087 .088 .121 .027 .088	25 26 24 14 12	11.1 9.0 13.1 2.7 184.7	.12 .06 .12 .05 .68	48 15 42 14 134	.004 .004 .006 .001 .096	2 . 2 . 1 . 1 . 17 2.	83 . 45 . 90 . 26 .	005 003 004 002 036	.06 .03 .05 .02 < . .15 4	1 .0 1 .0 1 .0 1 .0 1 .0	9 2.8 3 1.1 5 2.2 3 2.8 6 3.6	<pre><.l< <.l< <.l< <.l< <.l< <.l< <.l< <.l<</pre>	.05 .05 .05 .05 .05	2 <.5 2 <.5 3 <.5 <1 .6 6 4.9	15.0 7.5 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Ρ	ag	e	1	6

SAMPLE#	Mo ppm	-	Cu ppm	Pb ppm	ד ער Zr ער Zr	ו A מקו	g m j	Ni ppm	Co ppr	۱ pt	1n xm	Fe %	A pp	s l m.ppm	i n p	Au pb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppr	۱ ppr	/ C 1	a %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %pp	W om p	Hg pm p	Sc T pm pp	ר] מת \$; Ga ; ppm j	Se Sa Spm	ample gm
18925N 10360E 18925N 10380E 18925N 10400E 18900N 10000E 18900N 10020E	.5 .5 .3 .3	4 3 2 1	1.1 7.1 5.3 7.3 8.2	64.7 70.8 29.5 12.6 7.5	121 127 8 127 8 22 8 24	· · · · · · · · · · · · · · · · · · ·	1 3 1 3 1 3 2 1 1	7.2 1.9 2.9 6.4 8.4	17.1 19.5 17.6 5.8 3.5	66 67 55 24 11	54 4 71 5 53 4 13 3 .6 1	.83 .03 .12 .41 .67	59. 51. 25. 39. 11.	7 .8 4 .9 6 .6 7 .4 5 .2	17 29 9	.9 .1 .5 .7 .5	3.5 4.6 8.0 3.0 2.1	25 13 13 6 4	.3 .2 .2 .1 .1	7.1 5.6 2.4 1.5 .5	.7) .1 3 .0 3 .1 9 .0 .0	.8 .0)6 .0 .0 .0)4 .0)2 .0)83)82)63)98)46	22 21 29 23 24	6.6 6.0 9.9 5.3 4.5	.08 .08 .26 .03 .03	40 30 16 33 23	.002 .002 .002 .002 .002 .001	2 2 1 1 1	.51 .53 .61 .51 .47	.004 .003 .002 .002 .002	.04 <. .04 <. .03 <. .04 <. .03 <.	.1 . .1 . .1 . .1 .	06 3 05 4 02 2 07 05	.2 <. .1 <. .7 <. .9 . .5 .	1<.05 1<.05 1<.05 1<.05 1<.05	1 1 2 2 2 3	.8 .6 <.5 <.5	15.0 15.0 15.0 15.0 15.0 15.0
18900N 10040E 18900N 10060E 18900N 10080E 18900N 10100E 18900N 10120E	.6 .5 1.6 .7 .5	1 2 1 2	9.5 5.0 1.5 6.5 6.7	23.4 13.4 34.5 17.2 30.6	52 36 5 66 2 48 5 81	2 . 5 . 5 . 8 .	1 1 1 1 2 2 1 1 2 3	6.9 3.3 3.3 6.7 8.9	7.1 5.7 20.5 8.7 14.4	34 31 106 37 66	96 82 86 13 13	.73 .39 .01 .29 .00	19. 7. 17. 63. 68.	8 .6 5 .8 6 2.9 4 .6 2 1.7	1	.8 .9 .9 .8 .7	1.4 1.5 1.4 1.4 5.3	7 26 46 21 25	.1 .1 .2 <.1 .1	.6 .4 .8 4.1 4.3	.4 .3 .5 .4	22 3 22 5 23 12 5 23	1 .1 1 .3 3 .5 2 .2 9 .2	.2 .0 34 .0 56 .1 22 .0 25 .0)87)53 [08)60)56	22 27 20 22 27	16.5 9.8 18.2 5.5 9.2	.11 .05 .12 .03 .14	26 18 33 22 36	.009 .016 .010 .003 .003	1 1 1 1	1.01 .51 1.54 .35 .76	.003 .003 .005 .003 .004	.04 .04 < .05 .04 .06	.1 . .1 . .1 . .1 . .2 .	06 03 09 1 04 1 04 2	.7 .9 < .2 .1 < .9 <	1<.05 1<.05 1<.05 1<.05 1<.05	5 4 5 2 5 2	.8 .5 .9 <.5 <.5	15.0 15.0 15.0 15.0 15.0
18900N 10140E 18900N 10160E 18900N 10180E 18900N 10200E 18900N 10220E	.6 .6 .7 .5 .6		2.6 2.0 3.9 9.6 4.8	24.2 19.1 41.1 36.9 37.1	2 68 65 79 64 68	3. 5. 9. 1. 3.	3 2 2 2 1 2 2 2 2 2 2 2	3.2 1.4 3.5 8.9 4.2	13.6 9.8 11.0 14.1 14.1	49 34 36 40 38	96 3 12 3 58 7 91 6 33 5	.85 .65 .06 .59 .71	100. 54. 52. 38. 43.	5 1.2 5 2.1 5 .9 5 .6 4 .7	1 2 2 9 12	.9 .6 .0 .7 .3	2.9 2.7 3.1 6.2 2.9	30 32 11 9 10	.1 .1 .1 .2	3.2 3.1 2.5 2.1 2.7	.5 .4 .5 .6		2 .2 3 .3 1 .0 7 .0	29 .0 38 .0)4 .0)4 .1)6 .0)74)61)91 19)65	22 26 22 31 24	9.5 7.1 14.6 9.7 12.2	.08 .06 .14 .10 .12	34 26 33 17 24	.003 .003 .004 .003 .005	1 <1 1 2	.74 .69 .88 .79 .97	.004 .003 .003 .003 .003	.06 .04 .03 < .04 .04 <	$ \begin{array}{c} 1 & . \\ 1 & . \\ 1 & . \\ 1 & . \\ 1 & . \\ 1 & . \\ \end{array} $	05 2 05 2 06 1 04 1 09 1	.0 <. .0 <. .4 <. .8 <. .4 <.	1<.05 1<.05 1<.05 1<.05 1<.05	2 2 3 3 2 2 2 2 2 2	.5 .5 .6 .7 .5	7.5 15.0 15.0 15.0 15.0
RE 18925N 10400E 18900N 10240E 18900N 10260E 18900N 10280E 18900N 10300E	.2 .6 .6 .4 .6		4.7 9.2 1.1 9.7 6.6	31.1 30.8 27.7 34.9 45.1	81 888 789 80 80 88	L. 3. 5. 2. 3.	1 2 2 2 3 2 3 3 1 3	9.3 9.6 9.5 7.7 2.6	17.0 17.6 20.4 18.7 19.7	57 157 61 73 54	70 4 72 4 19 4 33 4 14 5	.04 .39 .71 .71 .32	24. 37. 39. 41. 42.	8 .7 3 2.4 4 1.9 5 1.9 3 1.1	9 5 3 5 12	.1 .5 .1 .6	9.0 3.9 2.6 6.4 9.1	14 15 35 41 8	.1 .2 .2 .2	2.3 2.2 1.6 1.9 2.3	.5.4		7 .0 4 .1 5 .4 7 .4 8 .0)8 .0 .2 .0 13 .0 19 .0)4 .0)63)88)77)74)59	35 28 23 28 23	10.1 13.8 17.1 10.7 12.6	.27 .13 .21 .16 .13	18 43 35 45 35	.002 .005 .008 .003 .001	1 1 2 2	.67 1.18 1.33 .93 1.36	.003 .004 .005 .006 .004	.03 <. .05 <. .05 <. .08 <. .05 <.	$ \begin{array}{c} 1 \\ $	02 2 12 3 09 2 08 3 07 2	.7 <. .8 .4 <. .8 <. .5	1<.05 1<.05 1<.05 1<.05 1<.05	2 < 2 3 3 2 5 2	<.5 .6 .6 .7 .9	15.0 15.0 15.0 7.5 15.0
18900N 10320E 18900N 10340E 18900N 10360E 18875N 10000E 18875N 10020E	.7 .5 .4 .3	4 6 2 1	8.8 2.7 7.0 8.0 9.9	81.3 64.2 42.1 18.2 9.8	8 116 2 142 98 2 57 8 25	5. 2. 3. 7. 5.	3 4 1 5 2 3 1 2 1 1	0.6 5.7 3.4 0.1 0.6	22.6 37.9 17.9 7.2 4.1	38 68 76 43	38 6 37 6 53 4 32 4 79 2	.17 .22 .39 .42 .22	122. 55. 38. 68. 25.	5 1.6 6 1.2 4 .8 3 .4 7 .3	44 28 13	.1 .5 .7 .7 .5	L4.9 L2.7 4.0 2.1 1.6	15 12 31 9 4	.3 .2 .2 .1 <.1	6.4 6.3 3.5 3.2 .9	.7 1.0 .6 .4		5 .1 3 .0 3 .2 3 .0	.2 .1)2 .0 27 .0)8 .1)2 .0	19) 45) 87 149)39	17 41 25 26 29	14.3 8.2 6.8 8.4 5.3	.11 .16 .10 .08 .03	21 23 33 50 26	.001 .002 .002 .003 .003	2 2 1 1	2.21 .81 .59 .54 .45	.005 .004 .004 .003 .003	.05 <. .04 . .05 . .05 . .03 <.	$ \begin{array}{c} 1 \\ $	23 3 10 4 07 4 05 1 03	.6 .9 <. .8 <. .0 .6	1<.05 1<.05 1<.05 1<.05 1<.05		.1 .7 .5 .5 <.5	15.0 15.0 15.0 15.0 15.0 15.0
18875N 10040E 18875N 10060E 18875N 10080E 18875N 10100E 18875N 10120E	.6 .3 .7 .5 .5	1 2 3 3	7.6 8.7 9.2 2.6 3.8	15.0 6.7 26.3 35.7 32.6) 4(7 24 8 113 7 82 6 81) . 4 <. 3 . 2 <. L .	2 1 1 3 3 3 1 3 1 3	2.4 8.3 4.2 1.8 1.6	5.6 3.3 16.6 13.6 15.3	25 92 43 33	52 2 58 1 29 5 34 5 34 4	.91 .47 .18 .44 .24	16. 3. 33. 89. 159.	6 .6 5 .3 1 2.0 9 .6 8 .6	1 1 1 9	.1 .6 .3 .3 .2	3.1 1.8 3.9 5.1 6.5	5 26 10 10	.1 .1 .2 .1	.6 .4 1.1 4.4 8.2	.22		1 .0 7 .0 5 .3 7 .0 5 .0)3 .()5 .()4 .1)3 .()1 .()40)32 [10)80)30	23 30 27 24 26	12.7 4.3 19.2 8.2 5.4	.09 .02 .18 .07 .05	24 39 52 35 28	.003 .002 .006 .001 .001	1 2 1 1	1.07 .32 1.57 .52 .45	.003 .003 .005 .004 .004	.04 <. .04 <. .08 <. .06 <. .07	$ \begin{array}{c} 1 \\ $	06 02 09 2 04 2 02 2	.9 .4 .5 .4 <. .6 <.	1<.05 1<.05 1<.05 1<.05 1<.05	3 2 4 1 2 1	.6 <.5 .0 .7 .7	15.0 15.0 15.0 15.0 15.0
18875N 10140E 18875N 10160E 18875N 10180E 18875N 10200E STANDARD DS5	.8 .7 .4 .5 12.7	3 4 2 2 14	1.1 7.3 8.1 9.0 4.5	49.8 79.7 28.1 22.2 24.1	8 89 7 119 108 2 89 138	5. 5. 5. 5. 5.	1 2 4 5 1 4 4 2 3 2	9.1 2.6 3.6 8.8 4.7	23.6 45.6 34.0 12.4 11.8	108 108 159 77 79	81 6 55 6 50 4 76 3 94 3	.75 .39 .09 .22 .02	97. 79. 63. 43. 17.	9 1.0 5 2.0 9 2.2 2 5.1 1 6.0	2 164 6 11 45	.8 .5 .4 .8 .2	3.1 4.8 9.6 3.2 2.9	10 16 26 70 46	.2 .3 .1 .1 5.3	4.9 3.4 3.5 2.3 4.0	.6 .9 .5 .4		4 .0 9 .1 7 .2 3 .9 2 .7)3 .0 .3 .0 26 .0 90 .1 76 .0)89)98)65 _48)89	21 32 33 15 13	12.7 18.8 10.7 6.5 183.4	.07 .17 .10 .12 .66	34 47 28 27 138	.004 .002 .003 .001 .105	2 2 1 2 16	1.18 2.11 1.51 .63 1.98	.006 .005 .004 .006 .034	.06 .04 <. .04 . .04 . .04 .	1 . 1 . 1 . 1 . 8 .	08 2 14 5 07 4 10 2 18 3	.2. .6. .2 <. .8 <. .5 1.	1<.05 1<.05 1<.05 1 .08 1<.05	3 21 1 1 2 1	.7 .0 .8 2.2	15.0 15.0 15.0 7.5 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

Мо

ppm

Си

ppm

Pb Zn Ag Ni Co

ppm ppm ppm ppm ppm

Mn Fe As

%

U Au

SAMPLE#

Gold City Industries Ltd. FILE # A405001

ppm ppm ppb ppm ppm ppm ppm ppm %

Th Sr Cd Sb Bi V Ca

18875N 10220E 18875N 10240E 18875N 10260E 18875N 10280E 18875N 10300E		.8 .5 .3 .7 .6	31.4 28.5 33.2 62.7 31.5	31.1 32.1 28.1 47.3 83.0	7 76 5 104 7 87 3 155 6 87	5 .1 4 .3 7 .1 5 .2 7 .1	27.8 343.4 36.7 261.4 27.3	3 22.5 4 23.4 7 21.2 4 35.0 3 10.2	5 77 103 2 52 52 79 2 19	73 4.90 33 5.14 20 4.49 97 6.15 93 4.67	53.5 61.6 37.4 62.6 51.1	3.7 3.9 1.2 1.7 .5	12.9 9.7 7.4 14.3 53.4	6.5 6.5 10.3 12.0 4.4	48 18 9 11 7	.2 .2 .3 <.1	2.2 2.9 1.9 2.7 4.8	.5 .5 .9 .6	11 11 8 7 8	.48 .11 .02 .05 .01	.097 .087 .032 .054 .079	25 28 35 33 20	11.0 12.2 7.6 5.7 6.5	.11 .12 .15 .09 .06	31 . 38 . 32 . 31 . 19 .	002 003 001 001 002	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 .00 9 .00 1 .00 6 .00 8 .00	5 .04 4 .05 3 .07 4 .05 3 .03	.1 5 .1 7 .1 5 <.1 8 .1	.10 5 .11 6 .03 3 .06 5 .07 2	.9 <. .2 <. .8 <. .7 <. .0 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 1.4 2 .8 1 .6 1 .7 1 .6	15.0 15.0 15.0 15.0 15.0)))
18875N 10320E 18875N 10340E 18875N 10360E 18850N 10000E 18850N 10020E		.7 .8 .4 .4 .5	39.1 76.9 36.0 20.6 16.2	56.3 105.0 43.3 25.0 15.0	1 73 6 134 3 96 8 68 6 54	3 .2 4 .2 5 .1 8 <.1 4 .1	2 30.1 2 59.3 1 36.9 1 21.7	L 12.2 3 40.0 9 24.8 7 16.0 L 7.6	2 16) 59 3 56) 63 5 32	54 5.74 95 9.02 55 5.49 39 4.03 22 3.76	140.2 103.8 50.7 80.6 36.0	.4 1.2 1.1 .6 .5	39.1 50.8 14.6 1.5 <.5	3.6 9.0 5.1 4.0 5.1	9 9 11 10 7	<.1 .2 .1 .1 .1	11.1 10.4 5.7 5.0 1.4	1.1 1.6 .7 .3 .3	8 7 11 8 10	.01 .02 .04 .05 .03	.104 .058 .051 .044 .055	17 23 26 21 27	5.0 8.4 9.6 7.6 10.9	.05 .13 .13 .07 .15	19 . 36 . 27 . 38 . 24 .	001 001 003 002 002	<1 .5 1 .8 <1 .7 1 .5 <1 .8	2 .00 4 .00 8 .00 7 .00 4 .00	3 .03 3 .03 3 .03 3 .03 3 .03 3 .04	3 .1 3 .1 3 .1 3 .1 4 .1	.04 1 .07 4 .05 3 .04 1 .04 1	.9 <. .7 <. .7 <. .5 <. .2	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	1 .7 1 1.0 1 .9 1 <.5 3 .5	15.0 15.0 15.0 15.0 15.0)))
18850N 10040E 18850N 10060E 18850N 10080E 18850N 10100E 18850N 10120E		.7 .6 .5 .9 .7	19.3 12.7 32.1 19.7 25.6	17.4 13.1 29.9 32.1 29.1	4 74 7 42 9 90 3 61 8 77	4 .1 2 .1 0 .2 1 .1 7 .1	26.3 15.2 39.3 239.3 22.9 30.3	1 13.0 2 6.5 3 19.0 5 9.8 3 14.6) 36 5 24) 70 8 63 5 40	56 3.65 42 2.90 98 4.73 33 6.09 95 5.16	29.1 11.3 23.4 34.2 103.9	1.2 .4 3.3 1.8 1.2	2.4 <.5 1.4 .7 2.0	3.9 2.0 9.2 3.2 4.5	14 7 25 13 15	.1 .1 .1 .1 .1	1.3 .6 .9 1.6 5.4	.3 .4 .6 .4 .5	16 15 11 26 11	.09 .04 .26 .09 .05	.051 .045 .087 .085 .048	29 32 39 24 26	14.1 6.6 14.1 20.1 9.7	.24 .04 .25 .22 .08	38 . 21 . 45 . 24 . 23 .	004 005 003 009 004	$ \begin{array}{c} 1 & 1.0 \\ 1 & .2 \\ 1 & 1.0 \\ 1 & 1.2 \\ 1 & .6 \\ \end{array} $	1 .00 6 .00 6 .00 7 .00 2 .00	3 .05 2 .03 4 .07 4 .04 3 .05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.04 1 .02 .05 3 .06 1 .03 2	.5 . .8 <. .7 <. .4 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 .6 3 <.5 2 <.5 5 .9 2 .7	15.0 15.0 15.0 15.0 15.0)))
18850N 10140E 18850N 10160E 18850N 10180E 18850N 10200E 18850N 10220E		.8 .4 .5 .6 .5	28.2 29.1 29.7 28.9 15.2	20.9 48.0 48.0 21.9 15.3	9 61 0 73 0 79 9 77 3 41	1 .3 3 .1 9 .2 7 .1 1 <.1	32.9 37.9 48.9 31.4 13.9	5 14.5 5 33.7 9 29.7 4 16.1 9 6.9	5 184 7 60 7 46 1 44 9 22	40 3.11 08 5.07 57 4.64 46 4.47 21 2.89	31.3 40.9 41.0 45.5 28.8	13.3 2.7 2.5 3.7 .7	3.3 4.4 9.4 7.1 5.5	2.1 9.0 10.4 5.6 2.6	89 10 19 29 19	.3 .2 .2 .2 <.1	1.9 1.9 2.8 2.6 1.6	.3 .5 .5 .5 .3	8 7 7 13 11	1.12 .04 .10 .23 .12	.125 .069 .067 .043 .046	15 25 27 32 26	9.7 12.8 12.3 8.4 6.5	.15 .08 .10 .08 .06	39 . 33 . 36 . 30 . 20 .	003 002 001 003 004	2 .8 <1 1.9 2 1.9 2 .8 1 .4	1 .00 4 .00 3 .00 4 .00 8 .00	6 .04 3 .04 4 .05 4 .05 3 .04	+ .1 1 1 1 1	.09 1 .08 3 .10 3 .06 3 .03 1	.9 .6 <. .5 <. .2 <. .3 <.	1 .07 1<.05 1<.05 1<.05 1<.05 1<.05	2 2.0 1 .6 2 .8 2 .6 2 .5	1.0 15.0 15.0 15.0 15.0)))
18850N 10240E 18850N 10260E 18850N 10280E RE 18850N 10340E 18850N 10300E)E	.6 .7 .5 .4 .3	23.2 23.4 26.1 33.3 19.7	12. 29. 27. 40. 28.	9 66 5 80 8 72 6 83 3 57	6 .1 0 <.1 2 .1 3 .4 7 <.1	L 22.8 L 31.8 L 25.3 H 34.3 L 17.8	3 9.4 3 12.3 1 8.2 2 17.4 3 6.8	4 16 3 33 2 18 4 27 3 10	53 3.16 39 5.13 36 4.84 70 5.48 39 4.38	34.8 36.6 32.5 54.2 30.1	.4 1.1 .5 1.1 .4	11.1 5.4 18.8 12.8 6.0	4.0 4.5 5.5 6.5 6.0	17 13 9 34 7	<.1 .2 .1 .2 .1	2.3 2.0 1.7 3.3 1.7	.4 .4 .6 .4	12 14 9 10 8	.10 .07 .02 .40 .02	.052 .073 .079 .066 .052	35 25 32 27 27	4.4 13.7 10.0 10.6 8.5	.03 .14 .15 .18 .10	15 . 37 . 30 . 35 . 37 .	004 003 003 004 001	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .00 5 .00 2 .00 1 .00 8 .00	3 .03 4 .06 4 .06 4 .06 4 .06	3 .1 5 .1 5 .1 4 .1 5 .1	.02 1 .07 2 .07 1 .07 3 .05 1	.3 <. .2 . .6 <. .2 <. .5 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	1 <.5 3 .6 2 .8 2 .8 2 <.5	15.0 15.0 15.0 15.0 15.0))))
18850N 10320E 18850N 10340E 18850N 10360E 18825N 10000E 18825N 10020E		.5 .4 .3 .7 .9	27.0 31.5 41.6 20.4 23.5	41. 40. 39. 21. 19.	2 69 9 81 6 86 8 77 2 104	9 .1 1 .4 6 .2 7 .2 4 .2	20.9 4 31.7 2 45.6 2 23.4 2 24.9	9 10.1 7 16.4 5 21.6 4 17.5 9 13.7	16 4 24 5 49 5 111 7 262	56 5.15 46 5.25 93 5.18 19 3.59 24 3.40	47.4 53.5 54.8 65.4 49.9	.5 1.1 1.3 5.1 8.2	4.5 14.9 34.6 1.5 1.7	5.3 6.3 6.6 4.9 2.8	10 35 198 52 62	.1 .1 .2 .2	2.6 3.2 8.1 3.2 2.2	.7 .7 .3 .3	6 9 10 11 12	.02 .38 1.45 .52 .68	.055 .065 .093 .086 .137	24 26 30 23 25	5.8 10.3 9.2 14.3 14.8	.07 .17 .19 .12 .15	21 . 34 . 38 . 33 . 48 .	001 003 004 003 005	1 .5 1 .6 1 .6 <1 1.0 2 .9	57.00 5.00 4.00 1.00 5.00	4 .04 4 .04 4 .05 5 .06 5 .06	<pre><.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1</pre>	.04 1 .06 3 .05 5 .09 3 .10 2	.8 <. .0 <. .9 <. .2 . .6 .	1<.05 1<.05 1<.05 1.06 1.08	1 .7 2 .8 1 .6 2 .8 2 1.2	7.5 15.0 15.0 15.0 15.0	;)))
18825N 10040E 18825N 10060E 18825N 10080E 18825N 10100E STANDARD DS5	1	.5 .7 .8 .7 2.6	33.0 21.5 29.1 25.9 141.3	23. 36. 34. 44. 24.	7 89 5 59 2 83 1 71 2 139	9 .1 5 <.1 3 .3 1 <.1 5 .3	L 37. L 22. 3 28. L 23. 3 23.	1 16.9 2 8.7 5 16.1 9 13.6 5 12.0	9 70 7 52 1 153 5 61 9 77)6 4.04 22 5.71 32 4.27 16 5.17 71 3.01	60.7 19.8 26.0 38.8 17.3	7.0 .9 11.4 1.2 5.9	4.2 1.0 1.1 15.1 41.3	9.0 2.0 2.6 4.8 2.7	40 69 12 44	.2 .1 .2 .1 5.5	2.8 .7 1.1 1.6 3.6	.4 .8 .4 .6 5.9	8 18 14 11 59	.39 .03 .81 .06 .73	.057 .274 .129 .058 .094	38 25 43 24 11	11.2 13.0 16.7 8.1 179.8	.27 .07 .15 .05 .69 1	28 . 20 . 40 . 23 . 35 .	001 006 006 004 093	2 .7 1 .6 1 1.3 1 .5 18 1.9	8 .00 1 .00 2 .00 9 .00 9 .03	4 .06 4 .04 6 .07 4 .04 4 .14	5 .1 1 1 1 1 1	.05 4 .06 .11 3 .03 2 .16 3	.2 <. .8 <. .6 <. .1 <. .5 1.	1<.05 1<.05 1 .08 1<.05 0<.05	2 .7 4 .8 3 1.1 3 .5 6 5.0	15.0 15.0 7.5 15.0 15.0)

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data LFA

Page 18

Data 1 FA

SAMPLE#	Mo ppm	C pp	u Pt m ppr	o Zn nppm	ı Ağ	g N n pp	i Co m ppr) Mn 1 ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	Bi pm p	V pm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba opm	Ti % p	B pm	A1 %	Na %	K %	W ppm p	Hg opm p	Sc T pm pp	1 S m %	Ga Se ppm ppm	Sample gm
18825N 10120E 18825N 10140E 18825N 10160E 18825N 10180E 18825N 10200E	.9 .3 .7 .4 .6	24. 26. 39. 34. 55.	9 34.2 7 23.4 3 27.5 2 25.9 2 83.4	2 64 1 77 5 95 9 89 1 112	<	1 23. 1 34. 5 42. 1 37. 1 34.	8 13.0 8 14.8 6 20.3 1 15.9 5 21.0	5 630 532 4054 435 559	5.06 3.79 3.63 4.23 10.22	66.1 170.2 63.6 44.9 89.4	.6 3.5 9.9 2.5 .8	328.7 7.7 7.7 21.6 3.6	2.2 5.8 2.3 8.1 3.3	7 31 83 27 13	<.1 <.1 .4 .1 .1	3.9 4.8 2.3 2.9 12.0 1	.8 .5 .4 .5 .0	23 11 17 7 10	.03 .23 .86 .17 .08	.068 .037 .136 .026 .104	25 25 25 27 12	9.7 9.6 14.6 6.9 11.3	.04 .18 .23 .15 .04	18 30 70 31 19	.012 .003 .010 .001 .005	<1 . <1 . 1 1. 1 . 1 .	60 74 29 66 75	.003 .004 .006 .004 .004	.03 .05 .05 .04 .03	.1 . .1 . .1 . .6 . .1 .	03 1 04 3 16 3 04 4 09 2	.4 . .4 <. .8 . .3 <. .0 <.	1<.05 1<.05 1 .08 1<.05 1<.05	6 .5 1 <.5 2 1.1 1 .6 2 .7	15 15 15 15 15
18825N 10220E 18825N 10240E 18825N 10260E 18825N 10280E 18825N 10300E	.5 .6 .3 .7 .5	20. 16. 12. 30. 37.	5 26.9 2 48.4 2 15.9 2 78.9 5 36.6	9 52 4 46 9 54 5 95 5 97	<	1 19. 1 15. 2 13. 2 31. 1 41.	1 7.4 4 6.9 4 7.1 2 30.0 2 22.9	154 321 430 1294 5 931	3.75 4.48 2.51 6.38 4.84	31.6 28.9 22.8 37.7 50.2	.4 .5 .9 .9 1.8	15.1 4.9 73.5 5.8 10.9	2.4 1.4 1.2 6.3 6.8	10 8 31 26 27	<.1 .1 .1 .1 .2	1.9 1.3 .9 2.3 2.8	.4 .4 .3 .6	9 13 18 9 10	.04 .02 .27 .22 .19	.071 .083 .059 .093 .054	21 25 28 21 29	5.1 7.8 9.8 12.1 9.5	.05 .04 .08 .14 .17	16 22 23 27 38	.003 .005 .010 .004 .003	<1 . <1 . 1 . 1 1. 1 .	44 57 61 34 73	.003 .004 .004 .005 .005	.03 .03 .03 .04 .05	.1 . .1 . .1 . .1 . .1 .	05 1 07 06 08 2 05 4	.0 <. .5 <. .6 <. .6 <. .6 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .5 2 <.5 3 <.5 2 .7 1 <.5	15 15 15 15 15
18825N 10320E 18825N 10340E 18800N 10000E 18800N 10020E 18800N 10040E	.5 1.1 .8 .9 .8	55. 89. 18. 23. 16.	2 62.7 0 62.8 3 22.7 3 18.7 6 30.8	7 112 3 216 1 73 7 99 5 99	<	1 42. 3 80. 1 20. 2 25. 1 20.	3 21.3 3 61.3 7 11.3 1 13.3 2 12.3	419 1912 364 3294 758	8.26 8.31 3.75 3.10 4.83	55.8 74.8 78.0 58.0 31.3	.5 3.0 2.5 10.7 6.6	6.7 17.3 1.2 <.5 .6	5.5 11.5 2.1 1.7 2.1	11 23 27 112 32	<.1 .3 <.1 .3 .2	2.9 1 6.3 1 3.6 2.3 1.1	.2 .6 .3 .3 .4	9 6 14 13 1 21	.07 .07 .19 .23 .28	.073 .068 .058 .102 .084	25 30 23 16 22	7.2 6.8 9.3 14.1 18.2	.09 .12 .05 .18 .13	11 26 18 46 28	.002 .002 .005 .007 .010	1 . 1 1. 1 . 2 . 1 1.	50 35 73 86 49	.003 .004 .004 .007 .007	.04 .04 .05 .05 .05	.1 . <.1 . .1 . .1 . .1 .	03 2 08 9 03 1 12 1 09 1	.6 <. .4 <. .8 . .8 . .5 .	1<.05 1<.05 1<.05 1 .10 1 .06	2 .8 1 .5 2 <.5 2 1.4 4 .5	15 15 15 15 15
18800N 10060E 18800N 10080E 18800N 10100E 18800N 10120E 18800N 10140E	.6 .8 .5 .5	21. 19. 18. 26. 32.	9 30.6 6 25.3 8 11.4 3 22.4 1 33.6	5 59 3 72 4 54 4 62 5 87	<	1 25. 2 24. 1 21. 1 23. 4 42.	1 8.9 3 15.3 0 8.0 0 9.3 5 19.3	376 1000 160 234 1244	4.87 3.94 2.93 4.38 5.05	27.1 30.7 66.2 97.5 110.0	1.0 4.6 .3 .4 3.6	4.2 3.6 2.5 3.1 8.3	2.6 1.6 4.0 2.0 5.7	7 55 12 8 40	.1 .2 <.1 .1 .1	1.3 1.1 3.4 4.3 5.5	.6 .4 .3 .6 .6	14 22 13 10 11	.02 .58 .08 .02 .35	.138 .080 .032 .075 .076	25 24 30 23 22	11.9 16.1 3.0 5.2 9.9	.08 .18 .03 .04 .09	17 26 10 19 40	.004 .009 .005 .004 .003	1 . 11. 1 . <1 . 11.	58 05 25 39 24	.004 .006 .003 .003 .003	.04 .05 .03 .04 .06	.1 . .1 . .3 . .1 . <.1 .	06 07 1 01 1 03 1 10 5	.8 <. .5 . .3 <. .1 . .7 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 <.5 3 <.5 2 <.5 2 <.5 2 .7	15 15 15 15 15
18800N 10160E 18800N 10180E RE 18800N 10100E 18800N 10200E 18800N 10220E	.7 .8 .6 .5	24. 26. 18. 16. 21.	8 34.0 9 32.2 8 11.0 1 18.7 8 26.7) 73 2 85 5 56 7 75 7 86	<.	1 23. 2 32. 1 21. 1 19. 1 23.	4 10.3 0 22.9 6 8.3 3 9.6 8 18.6	318 710 165 728 1069	5.39 5.07 3.09 3.57 4.33	94.3 98.9 67.3 52.1 49.4	1.4 1.5 .4 1.6 2.5	9.8 2.6 1.2 3.5 6.3	3.3 2.1 4.1 1.8 3.7	10 55 13 40 19	.1 .2 <.1 .1 .1	4.6 4.8 3.4 2.2 2.1	.6 .6 .3 .4 .5	16 18 15 19 13	.03 .63 .08 .43 .12	.062 .085 .034 .082 .109	21 17 30 21 24	13.4 12.5 4.6 11.0 11.5	.09 .13 .03 .07 .09	23 33 11 24 30	.007 .006 .006 .006 .006	1 1. 1 1. <1 . 1 . 1 1.	16 05 26 75 03	.005 .005 .003 .005 .005	.04 .04 .03 .04 .05	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07 1 07 1 01 1 05 1 08 1	.6 . .7 <. .4 <. .5 . .9 .	1<.05 1 .06 1<.05 1 .06 1<.05	2 .8 3 <.5 2 <.5 3 <.5 2 <.5	15 15 15 15 15
18800N 10240E 18800N 10260E 18800N 10280E 18800N 10300E 18800N 10320E	.6 .5 .6 .5	27. 24. 21. 35. 20.	8 23.8 0 28.8 2 21.9 7 63.6 6 29.1	8 92 8 82 9 87 5 111 5 59		2 31. 1 29. 1 22. 1 37. 1 21.	2 14.6 7 17.6 3 12.1 8 18.2 1 8.6	894 642 1020 294 179	4.02 4.61 3.58 7.42 4.40	74.4 68.9 40.6 67.5 38.2	2.5 2.1 .9 .7 .5	15.6 10.6 7.3 7.8 6.5	3.5 4.4 1.6 6.8 4.3	38 11 54 21 9	.1 .1 .2 .1	3.1 3.2 2.1 2.9 2.0	.5 .5 .4 .8	11 11 12 9 10	.35 .04 .63 .14 .04	.098 .100 .082 .080 .065	23 22 18 18 21	9.3 9.3 7.4 11.2 5.4	.10 .09 .07 .12 .05	30 28 30 36 18	.003 .003 .004 .001 .002	1 . 1 . 1 . 1 1. 2 .	96 94 52 29 63	.005 .004 .005 .004 .004	.05 .04 .04 .05 .03	$ \begin{array}{cccc} .1 & .\\ .1 & .\\ .1 & .\\ .1 & .\\ .1 & .\\ .1 & . \end{array} $	07 2 07 3 09 1 07 3 07 1	.9 . .0 <. .4 <. .0 . .0 .	1<.05 1<.05 1 .10 1 .06 1 .09	2 .5 2 <.5 2 <.5 2 .6 2 .5	15 15 15 15 15
18800N 10340E 18800N 10360E 18800N 10380E 18775N 10000E STANDARD DS5	.4 .4 .7 12.5	25. 59. 49. 20. 139.	1 26.8 3 53.4 3 66.4 1 24.2 2 25.3	8 68 4 119 4 118 2 68 8 134	<	1 20. 1 59. 1 49. 1 24. 3 24.	7 8.9 B 33.7 D 30.9 4 14.9 5 12.0	158 767 537 591 786	4.38 6.94 6.12 4.22 2.93	39.3 159.4 60.0 24.7 17.6	.4 1.5 .6 2.8 6.2	5.7 22.8 35.7 1.0 44.1	3.0 12.6 6.9 2.0 2.9	11 27 53 10 46	.1 .3 .2 .1 5.4	2.4 4.2 1 6.2 1 1.2 3.9 5	.6 .0 .1 .4 .9	9 10 8 15 61	.02 .16 .45 .06 .71	.061 .055 .058 .079 .086	28 39 22 23 12 1	4.7 13.3 6.1 12.7 180.8	.04 .35 .15 .11 .66	21 26 32 23 131	.003 .005 .001 .006 .095	<1. 1. 1. 1. 15.2.	43 86 44 87 03	.003 .005 .005 .005 .005	.04 .04 .04 .04 .04 .14	.1 . <.1 . .5 . .1 . 5.0 .	03 1 05 6 04 4 04 1 17 3	.5 <. .5 <. .9 <. .1 <. .3 1.	1<.05 1<.05 1 .08 1<.05 0<.05	2 <.5 2 <.5 1 <.5 2 <.5 6 4.9	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 19

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag N opm pp	Vi C om pp	o Mn m ppm	Fe %	As ppm	U ppm	Au Th ppb ppm	Sr ppm p	Cd Sb pm ppm	Bi ppm p	V pnqc	Ca %	P %	La ppm	Cr ppm	Mg E % pp	Ba T om S	i B % ppmn	A1 %	Na %	К % ррі	l Hg n ppm j	Sc T Spm ppr	1 S m %	Ga Se S ppm ppm	ample gm
18775N 10020E 18775N 10040E 18775N 10060E 18775N 10080E 18775N 10100E	.6 .8 .7 .4 .4	19.0 15.9 17.6 35.2 26.7	20.3 21.1 23.2 33.7 18.8	80 73 62 82 64	.2 23 .1 19 .1 21 .2 45 .1 25	7 12. 3 14. 6 11. 9 18. 7 9.	6 1625 1 1492 3 688 4 1117 2 213	3.12 3.48 3.90 4.18 3.77	28.8 24.8 16.2 33.5 129.6	10.7 7.1 4.0 2.0 .4	.5 2.6 .7 1.9 <.5 2.5 1.8 6.8 2.1 2.5	52 50 18 42 8	.2 .9 .1 .8 .1 .5 .2 3.5 .1 4.2	.3 .4 .5 .6	15 20 18 7 11	.60 .42 .16 .41 .02	.103 .162 .086 .072 .044	22 21 29 35 27	16.8 . 16.6 . 14.5 . 10.1 . 5.2 .	24 3 17 3 11 2 19 3 03 1	31 .000 30 .000 26 .003 38 .003	6 1 6 <1 3 1 2 1 3 <1	1.04 1.18 1.11 .81 .34	.005 .004 .004 .004 .004 .003	.05 <. .06 . .04 . .05 <. .03 <.	.08 .09 .05 .05 .09 .09 .01	2.3 1.7 1.3 3.4 < 1.3 <	1 .07 1<.05 1<.05 1<.05 1<.05 1<.05	2 .8 3 .7 3 .7 2 .6 2 <.5	15 15 15 15 15
18775N 10120E 18775N 10140E 18775N 10160E 18775N 10180E 18775N 10200E	.4 .5 .6 .7	22.8 21.8 19.1 32.8 22.7	11.6 21.8 16.5 25.8 26.7	57 < 62 < 57 < 83 85	<.1 22 <.1 21 <.1 18 .3 36 .1 23	5 8. 1 8. 5 7. 7 17. 2 8.	3 128 4 247 5 224 1 1826 7 384	3.13 3.45 3.61 3.84 4.12	85.9 101.2 147.5 160.0 107.9	.3 .5 .4 5.9 2.6	1.7 4.6 2.7 3.5 1.9 2.6 5.9 2.0 19.4 1.0	10 < 11 12 49 12 <	<pre>4.1 4.0 .1 5.6 .1 4.8 .2 4.2 .1 3.5</pre>	.4 .5 .5 .4 .5	8 11 19 14 19	.02 .01 .01 .53 .03	.037 .051 .048 .108 .102	28 28 31 21 21	3.6 . 5.9 . 6.6 . 10.7 . 12.3 .	02 2 03 2 03 1 11 5 06 2	20 .00 25 .00 16 .01 50 .00 22 .00	2 <1 2 1 1 1 6 2 5 1	.24 .57 .32 .97 .77	.003 .004 .003 .006 .005	.03 . .05 . .04 . .07 . .06 .	1 .01 . 1 .03 . 1 .02 . 2 .11 . 1 .04 .	1.7 < 1.6 1.3 < 4.1 1.3	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 <.5 2 <.5 2 .5 2 1.4 3 .8	15 15 15 15 15
18775N 10220E 18775N 10240E 18775N 10260E 18775N 10280E 18775N 10300E	.5 .8 1.0 .4 .6	16.3 24.0 25.9 21.3 36.6	18.2 26.0 46.5 28.3 29.6	42 63 46 66 109	.1 15 .1 22 .1 19 .1 22 .3 40	9 5. 0 14. 6 8. 0 8. 3 17.	6 139 0 592 4 506 1 172 6 737	3.63 4.91 10.66 5.11 4.66	31.5 224.8 23.3 35.4 68.8	.4 .5 1.0 .5 1.8	4.7 1.3 14.5 1.8 2.9 3.8 4.6 6.7 54.2 4.5	10 < 9 21 9 < 39	1 1.9 1 3.5 2 .9 1 1.8 .2 3.6	.4 .6 .4 .5	10 18 10 8 11	.02 .04 .21 .02 .37	.127 .057 .136 .054 .087	25 27 13 32 30	6.4 . 8.5 . 26.3 . 13.3 . 11.3 .	03 1 04 2 12 3 16 2 20 4	19 .00 20 .00 35 .00 27 .00 40 .00	3 <1 7 <1 5 1 2 1 5 1	.43 .47 1.45 1.03 .79	.004 .004 .005 .004 .006	.04 . .04 . .04 . .07 . .06 .	.07 .03 2.16 .05 .05 .06	.7 . 1.2 <. 1.1 . 1.6 . 4.6 <	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .6 3 .5 4 1.1 2 .6 2 .9	15 15 15 15 15
18775N 10320E 18775N 10340E 18775N 10360E 18750N 10000E 18750N 10020E	.4 .5 .6 .4	27.9 42.9 32.1 14.4 24.7	28.4 68.0 46.1 13.4 19.5	106 112 77 37 65	.4 28 .1 38 .4 36 .2 17 .1 25	0 14. 8 23. 0 21. 0 7. 8 10.	5 1178 2 502 7 806 0 231 3 467	3.76 6.02 4.98 2.53 4.26	35.2 58.6 40.2 13.4 17.0	2.0 .8 1.5 .5 .6	12.3 2.5 8.7 6.9 8.7 4.5 <.5 1.0 .8 2.0	64 37 60 5 9	.2 1.9 .2 2.7 .1 1.9 .1 .4 .1 .7	.4 .9 .7 .3 .4	7 6 8 11 16	.75 .23 .59 .03 .04	.117 .057 .105 .094 .194	21 22 27 36 35	8.0 . 8.4 . 9.1 . 7.5 . 11.8 .	11 4 14 3 11 3 06 2 16 3	41 .003 34 .00 38 .003 23 .003 32 .003	3 1 1 1 3 1 3 <1 8 1	.64 .75 .81 .49 .78	.006 .005 .006 .003 .004	.05 . .04 . .05 <. .04 . .04 .	2 .08 2 .06 2 .09 4 .05 .05	2.4 < 3.2 < 4.5 .5 .8	1 .07 1<.05 1<.05 1<.05 1<.05 1<.05	1 1.0 1 .6 2 1.2 3 <.5 4 <.5	15 15 15 15 15
18750N 10040E 18750N 10060E 18750N 10080E 18750N 10100E 18750N 10120E	.4 .6 .8 .5	12.3 23.9 19.4 29.6 31.3	13.0 30.7 22.1 31.7 23.9	25 75 52 108 93	.2 10 .2 31 <.1 19 .1 35 .2 33	5 3. 3 18. 6 7. 1 17. 7 15.	7 113 7 796 8 224 9 822 0 1856	2.42 4.59 4.34 4.56 3.75	9.0 34.7 10.7 69.2 74.1	.4 2.5 .6 5.2 7.7	.7 .5 143.8 4.1 <.5 2.7 5.4 3.8 5.0 2.4	6 < 31 5 < 40 90	.1 .3 .2 .7 .1 .4 .1 5.7 .2 4.0	.4 .5 .6 .5 .4	14 15 31 9 10	.04 .36 .02 .33 1.06	.095 .094 .055 .069 .105	30 32 36 20 16	7.2 . 17.5 . 10.7 . 10.2 . 10.4 .	05 2 21 4 05 2 15 3 15 5	34 .00 40 .00 23 .02 31 .00 51 .00	4 <1 5 1 5 <1 3 2 6 1	.42 1.48 .49 .78 .86	.003 .006 .004 .005 .008	.04 <. .07 . .03 <. .05 . .06 .	.07 .07 .03 .05 .10 .10	.2 2.2 .9 3.0 < 4.0	1<.05 1<.05 1<.05 1<.05 1<.05 1 .07	$\begin{array}{ccc} 3 & .5 \\ 3 & .5 \\ 5 & .6 \\ 2 & .7 \\ 1 & 1.4 \end{array}$	15 15 15 15 15
18750N 10140E RE 18750N 10080E 18750N 10160E 18750N 10180E 18750N 10200E	.7 .7 .5 .4	17.7 19.4 24.3 22.1 14.1	18.7 20.9 13.2 11.0 29.1	71 < 54 < 73 < 61 < 40	<.1 19 <.1 18 <.1 23 <.1 22 .1 14	.6 8. .8 8. .2 10. .8 8. .1 5.	0 275 2 225 1 213 8 138 9 588	3.35 4.41 3.38 3.10 4.03	110.7 10.7 140.4 111.6 37.3	.8 .6 .4 .3 .3	1.4 1.0 .5 2.8 1.3 3.3 3.0 3.7 4.0 1.1	18 < 5 12 < 13 < 9	1 4.0 1 .4 1 4.3 1 3.4 .1 2.2	.4 .6 .4 .4	13 29 14 8 8	.10 .02 .04 .04 .03	.055 .057 .051 .044 .100	22 37 32 32 18	7.0 . 10.8 . 5.0 . 3.4 . 5.8 .	04 2 05 2 03 1 03 1 03 2	20 .003 24 .029 19 .003 15 .003 24 .003	3 <1 5 <1 7 <1 2 <1 3 1	. 40 . 52 . 25 . 26 . 44	.004 .004 .003 .003 .003	.05 . .04 . .04 <. .04 <. .04 .	.01 .03 .01 .03 .03 .03	.9 <. .9 <. 1.4 <. 1.2 . .9 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 <.5 5 .5 3 .5 2 .5 2 .5	15 15 15 15 15
18750N 10220E 18750N 10240E 18750N 10260E 18750N 10280E STANDARD DS5	.6 .5 .7 .7 12.5	20.4 17.5 30.2 24.7 138.8	16.1 14.6 38.7 39.6 25.5	44 54 92 65 134	.1 16 <.1 18 <.1 28 .1 23 .1 23 .3 25	.6 6. .1 7. .2 14. .6 11. .5 11.	7 97 3 157 7 550 8 506 7 793	2.93 3.22 7.50 5.70 2.99	53.1 63.6 64.4 68.7 17.8	.3 .3 .7 .5 6.1	8.6 2.1 6.0 2.5 13.7 2.9 60.1 1.7 43.0 2.9	10 14 15 8 48 5	.1 2.6 .1 3.3 .1 3.0 .1 2.0 .4 4.0	.4 .4 1.0 .8 5.9	11 12 11 10 64	.01 .05 .09 .02 .74	.050 .039 .068 .136 .091	28 29 24 27 13	5.1 . 4.9 . 11.1 . 8.4 . 190.8 .	02 2 03 2 07 2 06 2 68 13	21 .003 21 .003 20 .003 23 .009	3 <1 3 <1 3 1 5 <1 6 17	.40 .37 .67 .44 2.08	.003 .003 .004 .003 .035	.04 <. .04 . .04 . .03 . .15 4.	.02 .03 .04 .03 .03 .18	1.0 . 1.2 . 1.5 <. 1.0 . 3.5 1.0	1<.05 1<.05 1<.05 1<.05 1<.05 0<.05	2 <.5 2 <.5 4 .6 2 .6 7 4.7	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

Page 20

ACME ANALYTICA

SAMPLE#	Mo ppm	C pp	u m p	Pb pm p	Zn opm p	Ag ppm	Ni ppm	i (n pp	Co xm	Mn ppm	Fe %	As ppr	i U i ppm	A pp	u Th bppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %pr	W Ho m ppn	n pp	Sc T Sm pp	1 S m %	Ga Se ppm ppm	Sample gm	
18750N 10300E 18750N 10320E 18750N 10340E 18750N 10360E 18725N 10000E	.3 .5 1.0 .4 .3	36. 11. 50. 48. 15.	3 42 5 10 5 64 7 54 7 12	2.3 9.4 9.3 1 9.7 1 9.3	98 29 L40 L30 23	.1 <.1 .3 .2 .1	38.8 10.4 69.7 40.0 14.8	3 27. 4 4. 7 36. 9 29. 3 4.	5 4 1 6 7	582 61 940 682 69	4.96 2.06 9.76 6.04 2.41	63.1 25.7 197.2 71.4 8.2	1.0 2.8 1.8 2.4	12. 6. 88. 25.	4 7.3 2 1.5 1 5.3 9 6.4 9 2.4	26 7 31 31 3	.2 <.1 .3 .2 <.1	3.3 1.0 9.5 4.1 .1	.7 .2 1.5 .9 .4	6 9 5 7 10	.23 .01 .21 .28 .01	.043 .033 .075 .067 .101	23 28 20 24 22	7.3 2.7 5.0 7.1 6.8	.13 .02 .07 .16 .05	40 11 34 28 25	.001 .003 .001 .003 .002	1 <1 <1 <1 <1	.78 .19 .38 .62 .65	.005 .003 .004 .004 .004	.06 .02 < . .03 < . .03 .	1 .04 1 .03 1 .10 1 .08 1 .05	4 3. 3 .) 12. 3 5. 5 .	.1 <. .6 <. .2 <. .3 <. .5 .	1 .07 1 .08 1 .06 1<.05 1<.05	1 .5 1 <.5 <1 1.0 1 .5 4 <.5	15 15 15 15 15	
18725N 10020E 18725N 10040E 18725N 10060E 18725N 10080E 18725N 10100E	.5 .5 .6 .7 .7	14. 22. 28. 18. 18.	1 11 3 21 2 23 7 30 8 25	6 2 8 3	32 56 80 80 68	.1 .1 .2 .1 .1	12.9 21.5 31.1 29.9 27.4) 5. 5 7. 13. 9 19. 13.	3 7 9 9 0 2	392 293 547 761 437	2.55 4.98 4.53 4.39 3.31	5.7 14.4 51.0 38.0 28.8	.3 .6 6.6 4.4 6.3	<.: 1.: 1.: 3.:	5 1.0 4 3.1 9 3.2 9 4.1 2 1.8	4 46 52 88	.1 .1 .1 .3	.2 .5 1.8 1.2 1.4	.3 .5 .5 .6 .4	13 12 11 11 10	.03 .01 .51 .59 .15	.068 .098 .076 .088 .091	29 28 24 22 16	6.3 13.6 10.0 12.8 9.1	.04 .18 .08 .25 .16	23 27 21 24 37	.003 .006 .005 .004 .005	<1 <1 1 1 2	.55 .96 .89 .91 .70	.003 .004 .006 .006 .008	.03 .04 .04 < .03 .03	1 .05 1 .06 1 .06 1 .06 1 .06	5 . 5 2. 5 3. 1 1.	.5 .8 .3 < .1 < .8	1<.05 1<.05 1<.05 1<.05 1<.05 1.12	3 <.5 3 .7 2 1.3 2 1.1 2 2.1	15 15 15 15 15	
18725N 10120E 18725N 10140E 18725N 10160E 18725N 10180E 18725N 10200E	.6 .5 .6 .8 .7	29. 21. 48. 23. 26.	3 29 6 27 1 54 1 19 8 19	.8 .4 .7 1 .1 .0	96 95 L09 < 77 < 78	.1 .2 <.1 <.1 .6	35.0 24.7 39.1 23.4 36.0) 18. 7 17. 16. 9. 9. 23.	5 9 1 7 3 0 1	524 608 384 349 515	4.84 4.15 6.76 4.54 3.93	120.9 62.8 140.2 110.4 79.4	4.6 2.9 2.7 5 6.6	13. 5. 27. 4. 11.	6 2.9 9 2.4 6 6.0 5 2.8 3 2.8	53 73 11 12 57	.1 .2 .1 <.1 .2	5.1 4.1 7.8 5.5 3.5	.5 .5 .7 .6 .4	13 9 5 11 16	.54 .85 .02 .06 .65	.070 .131 .050 .060 .102	18 14 20 23 16	11.3 7.5 6.1 5.5 13.4	.16 .11 .06 .03 .12	26 33 17 15 36	.006 .003 .001 .003 .011	<1 1 <1 <1 1 1	.76 .71 .45 .44	.007 .008 .003 .004 .007	.05 .04 .03 <. .03 .03	1 .08 1 .12 1 .04 1 .03 1 .16	3 3. 2 2. 4 3. 3 1. 5 3.	.9 <. .8 . .3 <. .6 . .1 .	1<.05 1 .10 1<.05 1<.05 1<.05 1<.05	2 1.0 1 1.4 1 .9 2 <.5 2 1.3	15 15 15 15 15	
18725N 10220E 18725N 10240E RE 18725N 10260E 18725N 10260E 18725N 10280E	.6 .6 .6 .6	41. 16. 17. 17. 63.	6 32 7 13 6 19 5 20 1 53	2.4 1 3.8 9.7 9.2 3.4 1	L05 66 73 73 L23	.5 <.1 .2 .2 .4	56.1 18.1 18.5 17.0 55.4	29. 7. 9. 9. 33.	4 6 5 2 0	775 223 302 313 847	5.42 3.30 3.43 3.64 6.49	167.3 77.6 55.6 55.3 55.8	5.2 .4 2.2 2.1 2.5	28. 13. 9. 35. 182.	5 5.0 6 3.0 9 2.1 0 2.1 2 9.0	49 15 36 36 37	.2 <.1 .1 .1 .2	7.7 3.3 2.8 2.6 3.0	.6 .4 .4 .9	8 12 10 12 7	.51 .07 .38 .40 .32	.076 .033 .049 .050 .064	17 21 17 18 36	9.4 4.8 6.0 6.7 6.8	.10 .03 .06 .06 .15	31 18 24 24 31	.002 .002 .004 .003 .001	1 1 <1 1 1 1	37 .35 .61 .62 .66	.007 .005 .005 .005 .005	.04 .03 .03 .03 .03 .05	1 .16 1 .03 1 .06 1 .06 1 .10	5 4. 3 1. 5 1. 5 1. 5 1.	.5 <. .4 <. .6 <. .7 <. .4 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	1 1.1 2 <.5 2 .6 2 .7 1 1.0	15 15 15 15 15	
18725N 10300E 18725N 10340E 18725N 10360E 18700N 10000E 18700N 10020E	.5 .6 .5 .4 .7	35. 34. 25. 30. 16.	3 42 6 38 0 39 6 25 8 9	2.6 1 1.4 1.5 5.7 1.1	LO2 81 < 97 61 42 <	.2 <.1 .1 .1 <.1	36.6 27.6 25.0 27.6 19.1	5 22. 5 15. 5 14. 5 8. 7.	6 0 8 3 3	563 402 470 335 266	5.29 4.55 4.44 5.68 2.44	41.5 44.6 39.9 15.3 19.1	5 2.3 5 .7 9 1.1 8 .6 3	10. 13. 10. 2. 2.	5 6.7 9 4.5 2 5.0 1 6.2 2 1.7	36 9 13 6 6	.2 .3 .2 .1 <.1	2.1 2.3 2.4 .5 .8	.6 .6 .5 .3	7 9 8 13 27	.36 .04 .09 .06 .04	.079 .054 .066 .087 .030	22 26 20 24 35	7.5 7.7 6.1 16.4 8.9	.12 .09 .08 .17 .03	24 19 19 40 15	.002 .003 .002 .003 .003	<1 <1 1 1 1	.66 .67 .61 .02 .26	.006 .004 .004 .003 .002	.04 .03 .03 .03 .03	1 .09 1 .06 1 .04 1 .08 1 .02) 4. 5 2. 4 2. 3 1. 2 .	.2 <. .5 <. .9 <. .0 . .7 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	1 .8 2 .7 1 .5 4 .6 3 <.5	15 15 15 15 15	
18700N 10040E 18700N 10060E 18700N 10080E 18700N 10100E 18700N 10120E	.9 .4 .8 .9 .7	17. 18. 29. 31. 31.	4 23 6 23 5 24 5 59 1 45	8.4 8.5 9.4 1 9.0 1	83 73 99 L04 L05 <	.1 .2 .1 <.1	19.1 31.4 34.7 33.5 35.7	11. 15. 14. 5 19. 7 17.	3 1 8 9 9 1 6 9 2	151 612 968 677 582	3.66 4.33 3.58 6.33 7.27	13.3 12.9 16.6 163.8 160.0	3 3.5 6.3 8.6 1.6 .8	1. 1. 3. 19.	6 1.5 8 2.5 1 2.3 4 2.9 8 3.7	37 34 52 31 12	.1 .1 .2 .1 .1	.3 .6 .9 6.4 5.6	.4 .4 .8 .6	20 25 12 12 9	.47 .45 .74 .31 .10	.074 .062 .127 .069 .059	21 28 25 13 15	13.8 25.3 11.4 9.1 9.9	.11 .39 .18 .06 .06	33 30 30 24 36	.007 .018 .006 .003 .002	1 1 1 3 1 1	.94 .47 .77 .80 .85	.003 .004 .005 .004 .004	.03 .04 <. .04 <. .03 .03	1 .08 1 .07 1 .07 1 .03 1 .08	3 1. 7 2. 7 2. 3 2. 3 2.	.0 <. .5 <. .1 . .5 . .4 .	1<.05 1 .08 1 .13 1<.05 1<.05	4 .5 4 .5 2 1.5 2 .5 2 .7	15 15 15 15 15	
18700N 10140E 18700N 10160E 18700N 10180E 18700N 10200E STANDARD DS5	.4 .5 .6 .6 12.9	17. 21. 32. 22. 144.	8 16 1 27 3 34 9 37 9 25	.4 .7 .9 .5 1	41 < 54 86 85 40	<.1 .1 .1 .1 .2	14.8 19.6 30.8 22.9 24.7	3 5. 5 8. 3 14. 9 11. 7 12.	8 0 8 8 5	102 289 475 410 742	3.43 5.28 5.75 4.92 3.00	53.0 93.8 126.6 107.6 17.3	.4 .5 .6 1.4 6.3	3. 3. 11. 10. 41.	3 2.6 3 1.6 5 2.7 3 3.2 4 2.7	7 7 10 23 47	<.1 <.1 <.1 .1 5.3	2.4 3.6 5.6 5.3 3.7	.4 .5 .8 .5 5.8	10 10 9 10 62	.01 .02 .04 .23 .72	.046 .106 .070 .071 .087	20 16 22 16 12	4.8 8.4 5.0 7.3 177.0	.02 .08 .04 .08 .66	19 18 15 18 133	.002 .004 .003 .002 .096	<1 <1 1 <1 17 2	.49 .62 .43 .63 .02	.003 .002 .002 .004 .034	.02 .03 .03 < .03 < .03 .13 4	1 .05 1 .08 1 .03 1 .04 9 .16	5 1. 3 1. 3 2. 4 1. 5 3.	.0 <. .2 <. .1 . .9 <. .3 1.	1<.05 1<.05 1<.05 1<.05 1<.05 0<.05	2 <.5 2 .7 2 .5 1 .7 6 4.8	15 15 15 15 15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data LFA

Page 21

ACME ANALYTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr opm p	Cd opm	Sb ppm p	Bi opm p	V ppm	Ca %	P % إ	La ppm	Cr ppm	Mg % (Ba opm	Ti % p	B	A1 %	Na %	K W %ppm	Hg ppm p	Sc T pm ppr	1 S n %	Ga Se S ppm ppm	Sample gm
18700N 10220E 18700N 10240E 18700N 10260E 18700N 10280E 18700N 10300E	.4 .7 .7 .4 .7	24.5 52.0 22.3 14.7 36.9	27.4 42.3 34.1 11.1 82.1	79 108 73 41 107	.2 .4 <.1 .1 .1	23.7 42.6 18.4 14.9 30.7	14.4 33.7 23.9 5.7 12.1	730 1104 2212 95 238	4.31 5.74 4.33 2.59 6.15	102.0 119.8 92.2 57.8 53.4	1.3 2.5 3 3.4 1 .3 .6 1	9.9 8.1 2.5 5.8 .3.9	3.3 10.6 3.5 2.0 6.2	43 9 8 8 10	.1 .1 <.1 .2	5.2 6.2 3.9 2.7 3.6	.5 .8 .6 .3 .8	8 9 10 7	. 49 . 02 . 04 . 02 . 07	.081 .066 .103 .052 .071	14 21 17 25 18	5.3 8.3 7.0 3.4 7.1	.08 .11 .05 .02 .08	26 . 26 . 20 . 11 . 22 .	002 001 003 002 002	2 . 1 1. 1 . 1 . 1 .	47 .0 27 .0 59 .0 29 .0 88 .0	04 . 04 . 03 . 02 . 03 .	.04 .1 .04 <.1 .04 .1 .03 <.1 .03 .1	.04 2 .12 5 .08 2 .02 .07 2	.9 <. .3 .4 .8 <. .4 <.	1 .07 1<.05 1<.05 1<.05 1<.05 1<.05	1 1.1 1 1.0 1 1.2 2 <.5 1 .8	15 15 15 15 15
18700N 10320E 18700N 10340E 18675N 10000E 18675N 10020E 18675N 10040E	.5 .4 .5 .7	59.8 34.8 28.2 22.6 15.5	61.9 48.1 23.1 23.4 20.5	134 90 57 68 80	.3 .1 .5 .2	64.0 31.7 23.6 32.2 20.3	31.3 17.4 11.6 17.2 14.4	1464 483 434 662 921	7.09 4.98 6.23 4.02 3.76	48.2 52.2 8.1 29.4 8.9	1.8 1 1.2 1 .6 4.7 7.2	.5.8 .8.5 .6 1.5 .7	12.2 6.8 6.1 5.0 1.5	34 11 4 45 44	.3 .2 .3 .2 .3	3.7 3.5 .3 .6 .4	.9 .7 .5 .4 .3	9 8 15 11 27	.26 .04 .03 .54 .54	. 119 . 053 . 084 . 082 . 097	40 27 22 41 23	10.5 6.5 17.3 23.2 21.6	.23 .09 .23 .34 .25	29 . 24 . 23 . 24 . 39 .	003 001 002 006 013	2 . 1 . 1 1. 2 1. 1 1.	70 .0 67 .0 18 .0 39 .0 45 .0	05 . 03 . 03 . 04 . 05 .	.06 <.1 .04 .1 .04 <.1 .04 .1 .04 .1	.05 9 .04 4 .06 .10 3 .12 1	.4 <. .1 <. .8 <. .2	1<.05 1<.05 1<.05 1<.07 1.07 1.08	$\begin{array}{cccc} 1 & 1.0 \\ 1 & .6 \\ 5 & .6 \\ 3 & 1.0 \\ 4 & .7 \end{array}$	15 15 15 15 15
18675N 10060E 18675N 10080E 18675N 10100E 18675N 10120E 18675N 10140E	.5 .5 .4 .5 .7	29.0 22.1 9.6 31.2 40.8	25.2 28.8 12.6 38.4 38.6	83 57 21 91 81	.1 .1 .8 .1	32.2 21.5 9.0 50.8 30.5	15.1 7.4 3.6 32.8 10.0	594 183 55 699 209	4.85 4.99 1.86 5.56 6.78	18.5 22.7 19.0 137.2 69.2	4.9 .6 .3 2.3 1 .5 1	1.6 1.4 2.1 0.5 7.2	7.0 4.0 .6 6.4 5.4	33 10 7 36 12	.1 .1 <.1 .2 .1	.8 1.0 .9 6.4 8.4	.5 .5 .3 .5 .7	11 11 11 9 7	.36 .04 .03 .41 .01	.081 .193 .058 .088 .072	23 25 26 16 16	12.3 9.7 5.0 8.1 6.5	.20 .13 .03 .08 .05	30 . 41 . 22 . 31 . 22 .	003 003 006 003 001	2 . 1 . <1 . 1 1. <1 .	94 .0 63 .0 44 .0 81 .0 74 .0	04 . 03 . 03 . 05 . 03 .	.05 <.1 .04 <.1 .04 <.1 .04 <.1 .04 <.1	.06 2 .04 1 .03 .17 5 .07 2	2.2 .3 < .4 .4 .4 .6 <	1<.05 1<.05 1<.05 1<.06 1<.05	2 .6 3 <.5 3 <.5 1 .6 1 .9	15 15 15 15 15
18675N 10160E 18675N 10180E 18675N 10200E 18675N 10220E 18675N 10240E	.5 .5 .6 .9	20.7 23.7 27.2 32.6 54.5	15.1 19.8 28.9 45.6 62.5	51 57 66 75 85	<.1 <.1 <.1 .2	17.7 21.0 22.9 29.4 40.0	6.6 9.1 11.2 14.3 26.8	121 258 319 439 1196	3.79 3.71 5.48 7.06 8.55	69.4 85.1 115.2 132.0 148.3	.4 .4 .6 .6 .9 1	2.8 9.5 6.0 9.8 4.7	3.6 3.2 4.4 6.5 8.5	10 < 9 < 8 7	<.1 <.1 .1 .1 .2	4.2 3.6 3.8 5.0 3.8	.6 .5 .6 .7 1.1	9 7 7 7 8	.01 .01 .02 .02 .03	.065 .069 .070 .092 .202	25 25 22 21 18	3.9 5.1 7.5 9.6 11.3	.02 .04 .06 .08 .12	19 . 18 . 32 . 23 . 33 .	002 004 002 002 003	<1 . 1 . <1 . 1 . 2 1.	46 .0 47 .0 75 .0 88 .0 31 .0	03 . 03 . 03 . 03 . 04 .	.04 <.1 .04 <.1 .04 <.1 .04 <.1 .04 <.1	.05 1 .03 1 .07 1 .08 2 .12 2	4 3 8 2 9	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .6 1 .5 2 .8 1 .7 2 1.1	15 15 15 15 15
18675N 10260E 18675N 10280E 18675N 10300E 18675N 10320E 18675N 10340E	.7 .7 .5 .6	39.6 36.5 33.4 47.0 51.5	50.7 53.3 38.0 100.8 42.2	77 66 82 93 104	.2 .2 .8 .1 .1	37.6 30.6 43.4 33.0 42.3	19.8 18.0 25.5 30.4 22.0	480 852 676 684 458	6.71 7.80 4.56 5.83 5.25	133.7 65.5 38.0 46.5 76.3	.8 1 .9 1 4.1 1 .9 1 2.0 2	.4.5 .1.3 .5.1 .5.0 .2.1	7.8 3.4 9.3 8.4 7.8	9 9 28 8 29	.1 .2 .1 .2 .1	3.4 2.5 1.6 2.0 5.7	.8 .8 .6 .9 1.1	7 8 7 6 6	.04 .06 .34 .02 .10	.068 .256 .104 .075 .069	25 19 31 26 28	10.2 10.6 11.9 7.6 5.4	.13 .07 .09 .10 .10	34 . 34 . 32 . 17 . 41 .	002 005 004 003 001	<1 1. <1 . 1 2. <1 . 1 .	11 .0 80 .0 58 .0 97 .0 56 .0	04 . 03 . 05 . 03 . 04 .	.04 <.1 .04 .1 .05 <.1 .04 <.1 .04 <.1	.10 2 .14 1 .20 6 .08 3 .04 4	2.5 < .6 < 5.6 < 3.1 .9 <	1<.05 1<.05 1 .09 1<.05 1<.05	1 1.0 2 1.3 1 1.6 1 1.0 1 .5	15 15 15 15 15
18650N 10000E 18650N 10020E 18650N 10040E 18650N 10060E RE 18650N 10080E	.5 .6 .7 .5	24.1 24.4 23.2 29.2 30.9	20.4 17.7 32.2 26.9 27.5	65 63 110 64 70	.1 .1 .3 .1 .1	25.8 28.1 30.6 29.8 28.0	10.2 11.5 22.1 11.3 10.5	215 300 1845 381 244	4.31 3.98 4.70 5.87 5.27	20.8 17.8 12.8 16.8 34.4	.8 .8 4.3 .7 .6	2.2 1.1 8.8 <.5 .8	3.9 3.0 4.9 5.5 2.8	7 13 25 6 8	.1 .1 .2 .1 .1	.8 .7 .6 2.2	.4 .4 .5 .6	13 15 13 12 10	.04 .14 .28 .03 .02	.071 .053 .155 .235 .070	36 35 26 30 22	9.5 9.4 17.6 14.2 6.6	.07 .11 .17 .23 .05	21 . 35 . 28 . 23 . 14 .	003 005 006 006 002	<1 . 1 . 1 2. 1 . <1 .	87 .0 74 .0 16 .0 95 .0 59 .0	04 04 05 04 03	.04 .1 .05 .1 .05 <.1 .05 .1 .03 <.1	.04 1 .03 1 .12 2 .05 1 .04 1	3 2.1 2.1 4 < 6	1<.05 1<.05 1 .07 1<.05 1<.05	4 .7 4 .6 3 .9 3 .7 2 .5	15 15 15 15 15
18650N 10080E 18650N 10100E 18650N 10120E 18650N 10140E STANDARD DS5	.5 .6 .6 .6 12.0	31.6 42.4 29.9 31.5 145.8	26.3 54.2 40.0 22.4 24.3	72 89 89 80 130	.1 .1 <.1 .3	28.0 40.5 30.9 28.6 24.3	10.6 15.6 17.2 13.4 11.8	250 340 964 426 743	5.36 6.67 6.85 5.25 3.00	36.2 631.0 153.9 139.1 17.5	.6 .6 .8 6.1 4	.7 7.2 4.4 5.0 40.1	2.8 3.5 4.1 5.8 2.7	9 11 14 11 45 5	.1 .1 .2 .1 5.3	2.3 12.9 6.7 4.2 3.6	.6 .9 .9 .6 5.9	9 8 10 9 59	.02 .01 .06 .02 .72	.069 .100 .061 .053 .092	23 19 17 26 12	6.5 7.7 7.0 6.1 180.2	.05 .06 .04 .05 .67	14 . 24 . 23 . 22 . 138 .	002 002 003 002 002 091	<1 . <1 . <1 . 1 . 16 2.	59 .0 52 .0 84 .0 70 .0 07 .0	03 . 03 . 04 . 04 . 33 .	.03 .1 .04 .1 .04 .1 .04 <.1 .14 4.8	.03 1 .06 1 .05 2 .03 2 .17 3	7 8 2.5 2.7 3.4 1.0	1<.05 1<.05 1<.05 1<.05 1<.05 0<.05	2 .5 2 .8 3 .6 2 .7 7 5.2	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Page 22

SAMPLE#	Mo ppm	Cu ppm	Pb ppm j	Zn ppm p	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	Բ % բ	La opm	Cr ppm	Mg % j	Ba opm	Ti %	B ppm	A1 %	Na %	K % pr	H W Iq mc	Hg So pm ppr	: Tl n ppm	S (% p	Ga Se S om ppm	Sample gm
18650N 10160E 18650N 10180E 18650N 10200E 18650N 10220E 18650N 10240E	.6 .5 .8 .5 .6	36.4 40.4 39.3 23.1 35.4	50.1 38.6 51.5 30.3 42.4	97 164 100 51 79	.23 .34 .13 .31 .12	34.7 15.1 35.6 .8.5 29.0	17.6 28.7 18.9 13.5 15.8	502 874 407 513 328	6.63 5.84 7.64 4.56 6.40	123.1 110.3 142.7 40.7 156.3	.9 1.9 .7 .6 .7	8.7 22.1 47.3 9.3 35.6	9.1 6.4 3.4 5.1 6.5	11 32 9 8 7	.1 .5 .1 .1 .1	4.0 6.7 4.5 1.7 3.1	.6 .7 .9 .5 .8	9 11 11 11 8	.07 .37 .02 .07 .01	.077 .092 .074 .092 .092 .071	21 18 17 17 20	10.7 11.5 7.3 8.7 8.3	.13 .18 .04 .06 .07	34 39 22 28 25	.002 .003 .003 .003 .003 .002	1 1 <1 1 <1 <1 1 <1 1 <1 1	.18 .07 .80 .08 .00	004 005 005 004 003	.04 .06 .03 < .04 .03 <	.2 .1 .1 .1 .1 .0 .1 .1	11 2.6 10 4.0 05 2.2 10 1.4 07 2.2	5 .1) .1<, 2 <.1<, 4 .1<, 2 <.1<,	.06 .05 .05 .05 .05	2 .8 2 .6 2 .7 2 .8 2 .8	15 15 15 15 15
18650N 10260E 18650N 10280E 18650N 10300E 18650N 10320E 18650N 10340E	.5 .4 .6 .6	43.0 16.5 57.1 39.1 41.6	35.0 15.2 53.5 40.3 49.8	98 46 < 131 66 92	.2 4 .1 1 .6 6 .1 2 .4 3	4.6 4.6 2.3 25.3 88.8	23.5 6.5 34.5 15.8 20.7	587 156 946 440 566	5.13 2.77 6.19 5.51 5.74	43.3 24.4 54.3 69.7 75.8	1.8 .5 2.6 .7 1.2	28.2 5.5 13.1 14.1 24.6	9.7 3.9 10.0 3.0 5.0	26 7 42 8 46	.2 .1 .3 .1 .2	1.3 1.1 2.8 2.2 2.9	.6 .4 .9 .7 .9	5 7 7 8 10	.20 .02 .45 .03 .55	.059 .046 .100 .103 .102	29 25 28 20 16	5.4 4.4 12.6 8.0 10.6	.09 .03 .15 .07 .14	40 21 35 13 27	.001 .002 .003 .002 .002	1 <1 <1 1 1 <1	.66 .38 .41 .51 .98	004 003 006 003 003	.05 .03 .04 < .03 < .03	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	09 5.2 03 1.1 14 6.3 05 1.8 10 3.9	2 <.1<, l <.1<, l <.1<, l <.1<, l <.1<, l <.1<, l <.1<, l <.1<,	.05 .05 .05 .05 .05	1 .7 1 .6 1 1.4 1 .9 2 .8	15 15 15 15 15
18625N 10000E 18625N 10020E 18625N 10040E 18625N 10060E 18625N 10080E	.6 .5 .5 .7 .5	22.3 23.9 26.9 25.7 28.4	20.7 27.7 34.5 36.7 31.9	91 86 84 60 59	.2 2 .3 2 .1 3 .1 2 .1 2	26.1 29.3 30.0 21.9 22.2	14.3 17.7 18.0 11.6 14.1	1697 766 426 556 425	3.81 4.75 5.90 7.37 4.96	14.1 12.3 17.1 13.5 9.8	1.6 .9 1.1 .9 .6	<.5 .9 .6 .6 <.5	3.4 5.2 8.9 2.5 5.4	12 15 9 5 5	.2 .1 .1 .2 .1	.7 .7 .9 .5	.4 .5 .5 .7 .7	17 13 9 25 13	.08 .10 .06 .03 .04	.108 .087 .087 .111 .062	31 32 21 19 26	16.7 13.5 16.0 19.1 13.7	. 19 . 22 . 17 . 13 . 18	71 40 21 18 19	.004 .003 .002 .010 .003	<1 1 <1 1 <1 1 <1 1 <1 1 <1	.26 .10 .23 .22 .79	004 003 003 004 004	.07 < .05 .04 < .03 < .03 <	.1 .(.1 .(.1 .(.1 .(09 1.0 06 1.0 09 2.1 08 1.2 06 1.4	5 .1< 5 < 1< 1 .1< 2 < 1< 4 < 1<	.05 .05 .05 .05 .05	3 .5 3 <.5 2 .9 6 1.0 4 .5	15 15 15 15 15
18625N 10100E 18625N 10120E 18625N 10140E 18625N 10160E 18625N 10180E	.6 .6 .6 .7	25.1 63.1 36.9 24.0 31.6	33.3 36.7 17.5 24.1 21.4	61 133 95 < 65 78	.1 2 .5 6 .1 3 .1 2 .1 2	24.7 53.6 32.5 20.9 27.3	9.5 37.9 11.4 8.3 12.6	250 698 416 262 548	4.54 5.21 4.39 4.59 5.39	38.6 204.3 197.4 132.0 82.0	.6 3.6 .4 .4 .5	2.6 18.4 10.9 6.8 55.8	3.0 6.3 3.2 1.6 2.2	9 42 12 9 9	.1 .2 <.1 .1 .1	2.3 12.8 9.0 6.6 3.8	.5 1.0 .9 .5 .5	10 6 10 11 12	.08 .28 .03 .01 .01	.059 .065 .062 .083 .068	19 16 20 18 25	8.1 4.1 3.7 5.1 8.7	.08 .09 .04 .03 .06	20 26 21 18 24	.003 .001 .002 .003 .004	<1 1 <1 <1 <1 <1	.59 .48 .22 .38 .55	003 004 003 004 004	.04 .05 < .03 < .04 .03 <	.1 .0 .1 .0 .1 .0 .1 .0	08 1.2 05 4.8 02 2.2 04 1.2 04 1.2	2 <.1<, 3 <.1<, 1 <.1<, 2 .1<, 4 <.1<,	.05 .05 .05 .05 .05	2 .9 1 .8 2 .5 2 .6 2 .8	15 15 15 15 15
18625N 10200E 18625N 10220E 18625N 10240E 18625N 10260E 18625N 10280E	.7 .7 .5 .5	21.8 22.7 34.9 26.9 46.5	19.9 15.9 42.9 36.7 46.9	84 104 85 57 108	.1 4 .3 7 .9 3 .3 2 .4 4	47.5 75.6 33.9 29.9 46.6	15.1 18.6 18.3 16.7 22.4	6577 10878 488 273 574	6.44 5.54 6.49 4.52 5.62	67.7 46.7 31.0 24.0 46.6	2.1 .9 .9 2.3 1.8	13.1 8.6 21.9 14.8 22.1	1.5 1.0 7.5 6.4 7.0	44 122 16 49 39	.1 .3 .2 .2 .2	3.3 2.4 1.3 1.1 2.2	.4 .3 .6 .5 .8	9 9 5 9 6	.41 .48 .12 .52 .31	.076 .116 .101 .078 .089	13 9 18 19 23	4.8 6.3 7.5 9.1 8.1	.06 .09 .07 .06 .10	153 281 30 19 55	.003 .004 .001 .003 .003	<1 2 <1 <1 1 <1	.37 .42 .96 .50 .96	. 004 . 006 . 004 . 004 . 005	.04 .04 < .03 .03 .04	.1 .1 .1 .1 .2 .1 .2 .1	11 2.0 15 1.0 12 2.9 15 3.9 14 6.9) < .1<, 5 .1<, 5 < .1<, 9 < .1<, 5 < .1<,	.05 .10 .05 .05 .05	2 1.4 1 1.8 1 1.1 1 1.0 1 1.1	15 15 15 15 15
18625N 10300E 18625N 10320E 18600N 10000E 18600N 10020E 18600N 10040E	.5 .5 .7 .6	35.5 25.4 23.1 30.4 26.3	41.2 29.2 21.4 24.9 35.8	71 74 72 72 52	.4 3 .2 2 .4 3 .2 2 .2 2	32.5 27.5 32.2 28.9 23.1	24.6 12.9 18.0 10.0 7.9	481 561 1028 239 422	5.24 3.97 4.29 6.19 6.83	49.8 41.1 18.5 15.6 14.0	1.7 1.2 5.9 .8 .7	26.0 20.5 <.5 .9 2.1	8.0 4.4 2.5 5.6 1.7	23 25 41 13 5	.1 .1 .3 .1 .1	2.2 1.7 .7 .7	.8 .5 .4 .5 .7	7 9 23 15 17	.18 .19 .56 .13 .04	.073 .086 .112 .070 .149	19 18 25 21 17	8.0 6.9 23.9 14.6 13.5	.06 .07 .27 .19 .08	22 39 46 32 35	.002 .002 .008 .002 .002	<1 1 <1 1 1 <1 <1 <1	.08 .75 .36 .96 .67	003 004 005 003 002	.03 .03 .06 .04 < .03 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 3.: 07 2.: 10 2.(07 1.4 10 .(l <.l<, 7 .l<, 1 .l<, 1 .l<, 5 <.l<,	.05 .05 .05 .05 .05	1 .8 1 .6 3 .9 5 .7 4 1.0	15 15 15 15 15
RE 18600N 10040E 18600N 10060E 18600N 10080E 18600N 10100E STANDARD DS5	.6 .6 .8 .7 12.6	25.8 34.4 39.8 27.4 142.0	36.2 160.1 36.3 33.3 24.3	51 110 100 86 134	.2 2 .2 4 .6 4 .3 3 .3 2	22.9 45.8 42.6 37.3 24.6	8.0 21.4 25.8 20.3 12.1	415 463 1415 1090 762	6.51 7.64 5.51 4.72 2.93	13.4 55.2 37.5 56.6 18.0	.7 1.3 5.1 5.1 6.2	<.5 4.8 3.7 4.6 42.0	1.4 10.3 5.0 4.1 2.8	5 15 40 36 47	.1 .4 .2 .2 5.4	.5 1.8 2.0 2.3 4.0	.7 1.2 .7 .6 5.9	17 9 9 14 60	.04 .12 .43 .43 .71	.147 .104 .102 .069 .096	18 11 16 17 11	13.0 14.5 10.4 13.2 186.2	.08 .09 .17 .19 .66	35 30 31 31 134	. 004 . 003 . 004 . 008 . 090	<1 <1 1 <1 <1 16 1	.65 .38 .65 .83 .79	003 004 005 005 005	.03 < .03 .04 .04 .14 4	.1 .1 .1 .1 .4 .1 .1 .(11 .(11 2.1 10 5.3 08 3.(16 3.3	5 .1< 7 <.1< 8 <.1< 5 <.1< 8 1.0<	.05 .05 .05 .05 .05	4 .8 2 .9 1 1.3 2 1.1 7 5.1	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🔶 FA

Page 23

SAMPLE#	Mo ppm	C pp	u P m pp	b Zn m ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg % p	Ba opm	Ti % ا	B ppm	A1 %	Na %	K W %ppm	Hg ppm p	Sc Tl pm ppm	S %p	Ga Se Sa opm ppm	ample gm
18600N 10120E 18600N 10140E 18600N 10160E 18600N 10180E 18600N 10200E	.6 .7 .6 .4 .6	42. 42. 25. 19. 35.	7 31. 9 50. 7 23. 3 12. 2 27.	1 116 7 98 2 63 5 57 7 94	.2 .1 .1 .4 .2	40.4 32.7 20.8 20.5 27.3	22.8 14.6 8.4 8.9 15.5	357 422 192 341 480	4.54 7.42 5.30 3.30 5.76	100.6 225.9 108.2 48.6 36.8	2.5 .5 .4 2.4 .9	21.4 15.2 8.3 3.7 4.4	5.5 4.7 2.9 2.4 3.8	35 10 7 34 58	.1 .1 .1 .1 .1	5.0 7.0 3.5 1.6 2.0	.6 .7 .6 .3 .7	5 7 7 9 9	.32 .02 .02 .41 .51	.058 .079 .075 .049 .049	15 16 18 26 18	5.0 8.5 6.0 5.9 7.8	.09 .07 .04 .05 .08	22 26 20 25 27	.001 .002 .002 .004 .004	1 <1 <1 <1 <1	. 49 . 78 . 67 . 58 . 67	. 003 . 003 . 003 . 003 . 003	.05 .1 .04 .1 .03 .1 .04 <.1 .04 .1	.06 5 .07 2 .06 1 .06 2 .09 2	.0 <.1 .6 <.1 .4 .1 .6 <.1 .9 <.1	.06 <.05 <.05 <.05 <.05	1 <.5 2 .7 2 <.5 2 .5 2 <.5	15 15 15 15 15
18600N 10220E 18600N 10240E 18600N 10260E 18600N 10280E 18600N 10300E	.5 .4 .5 .5 .4	35. 20. 24. 29. 34.	1 32. 1 31. 9 28. 1 23. 0 34.	9 93 3 71 4 76 7 80 1 79	.3 .1 .1 .3 .1	45.7 25.7 33.4 32.3 40.0	23.2 12.3 17.4 15.4 20.0	635 164 663 427 463	5.45 4.20 4.14 4.27 4.06	87.3 42.6 35.7 49.1 49.7	1.5 .5 .6 1.4 1.1	29.9 11.5 9.5 10.8 19.3	5.7 3.7 3.6 3.1 7.7	60 56 23 66 19	.1 .1 .2 .2 .2	2.8 2.3 1.5 2.4 1.9	.6 .5 .5 .5 .5	7 8 7 8 7	.64 .59 .15 .76 .11	.075 .058 .076 .079 .037	26 18 21 19 31	9.6 5.7 6.8 8.7 6.6	.09 .07 .07 .08 .09	42 23 43 37 28	. 004 . 002 . 002 . 004 . 002	1 1 1 <1 1 1	.10 .60 .70 .92 .88	. 004 . 004 . 003 . 004 . 003	.04 .2 .04 .1 .04 .1 .04 .1 .04 .1 .03 .1	.14 6 .06 2 .06 2 .10 3 .08 3	.1 <.1 .2 .1 .8 .1 .2 <.1 .4 <.1	<.05 .06 <.05 .06 <.05	2 .8 2 <.5 1 <.5 2 .6 1 <.5	15 15 15 15 15
18600N 10320E 18600N 10340E 18575N 10000E 18575N 10020E 18575N 10040E	.5 .3 1.0 .9 .6	37. 42. 17. 33. 23.	9 45. 0 41. 8 27. 2 37. 5 22.	0 75 4 122 4 65 8 92 3 109	.1 .1 .1 .2	34.4 40.6 29.0 37.0 28.9	24.7 29.8 18.4 25.3 12.4	731 291 676 825 1028	5.70 4.67 5.50 6.10 3.34	45.5 143.6 28.8 31.5 11.7	.9 .5 2.8 6.7 3.4	7.6 41.3 <.5 1.7 2.8	7.2 6.0 1.7 5.8 4.1	14 162 8 13 60	.2 .3 .2 .1	2.0 3.9 .7 1.2 .7	.7 1.2 .3 .7 .4	6 4 9 32 18 6	.07 5.55 .06 .10 .80	.071 .045 .065 .070 .118	25 16 21 33 18	8.3 4.0 41.2 20.4 11.0	.10 .20 .18 .15 .20	23 56 34 29 31	.002 .001 .015 .006 .003	<1 2 1 1 <1 1 1	. 86 . 28 . 49 . 97 . 87	. 002 . 005 . 003 . 003 . 004	.03 .1 .05 <.1 .03 .1 .04 .1 .05 .1	.06 3 .02 5 .08 1 .08 2 .07 2	.0 <.1 .3 .1 .8 <.1 .9 .1 .6 <.1	<.05 .28 <.05 <.05 .05	2 <.5 1 .5 5 .5 4 .6 2 1.2	15 15 15 15 15
18575N 10060E RE 18575N 10060E 18575N 10080E 18575N 10100E 18575N 10120E	1.0 .9 .8 .5	20. 21. 38. 44. 53.	9 37. 4 38. 4 43. 2 42. 0 34.	5 78 0 81 8 112 7 107 1 127	.1 .2 <.1 .1	23.9 24.0 35.8 40.1 45.8	12.4 12.7 20.5 20.8 27.7	578 590 490 290 602	5.97 6.19 4.57 5.15 5.28	16.7 17.0 58.6 54.6 30.7	6.6 7.2 3.0 .7 .9	1.3 1.1 12.4 6.7 12.9	3.5 3.6 3.6 3.6 12.4	35 36 36 27 10	.2 .1 .2 .1 .1	.6 .6 6.0 7.2 1.7	.6 .6 .6 .6	14 14 5 3 4	.42 .42 .23 .07 .01	.064 .069 .067 .036 .036	21 20 17 8 31	16.1 17.0 6.3 4.0 9.1	.08 .09 .06 .03 .11	20 20 18 16< 37	.005 .005 .002 .001 .001	<1 <1 1 1 <1 1 <1 1	.97 .03 .50 .46 .12	. 003 . 003 . 003 . 003 . 003 . 003	.03 <.1 .02 <.1 .04 .1 .03 <.1 .05 <.1	.07 1 .08 1 .05 4 .06 3 .09 3	.9 <.1 .9 <.1 .4 <.1 .1 <.1 .5 .1	<.05 <.05 <.05 <.05 <.05	4 .8 4 1.0 1 .9 1 <.5 1 .5	15 15 15 15 15
18575N 10140E 18575N 10160E 18575N 10180E 18575N 10200E 18575N 10220E	.4 .8 .6 .6	39. 55. 43. 29. 45.	5 33. 5 46. 1 35. 5 29. 6 31.	9 100 9 118 2 95 6 93 5 117	.3 .1 .3 .2 .1	45.1 48.5 39.1 32.6 43.3	17.3 28.4 26.7 18.6 24.5	312 490 630 897 476	4.51 6.12 5.02 4.32 5.22	23.6 53.4 129.8 52.0 40.7	1.2 1.3 1.0 1.2 1.3	8.1 15.1 36.1 9.1 18.4	10.6 10.2 6.6 4.3 9.5	17 10 9 31 9	.1 .2 .1 .1 .2	1.9 2.3 3.5 2.8 2.0	.5 .6 .5 .6	4 6 5 3	.02 .01 .02 .25 .01	.065 .057 .061 .066 .040	25 26 26 20 38	8.1 7.3 7.5 5.1 5.7	.05 .06 .10 .07 .10	32 27 24 30 24	.001 .001 .002 .001 .001	1 1 <1 1 1 1 <1	.55 .26 .97 .51 .49	. 003 . 003 . 003 . 004 . 002	.04 .1 .04 .1 .04 .1 .04 .1 .04 .1	.14 4 .10 4 .08 3 .05 3 .03 3	.0 <.1 .3 .1 .6 <.1 .6 .1 .7 <.1	<.05 <.05 <.05 <.05 <.05	1 .5 1 .7 1 .6 1 1.1 1 <.5	15 15 15 15 15
18575N 10240E 18575N 10260E 18575N 10280E 18575N 10300E 18575N 10320E	.4 .7 .9 .4 .3	39. 34. 72. 63. 56.	2 43. 7 44. 7 60. 0 46. 5 41.	4 93 7 65 5 108 3 113 9 122	.2 .1 .2 .3 .2	44.8 28.6 167.5 63.3 54.8	22.7 20.8 97.3 34.3 30.9	529 729 9904 858 682	5.12 5.91 6.88 6.52 6.69	28.2 68.3 41.2 62.9 75.8	.9 .9 2.7 1.0 1.0	16.9 18.2 17.9 11.4 10.3	11.2 4.4 12.9 10.7 5.9	11 9 25 53 40	.2 .2 .4 .2 .2	1.4 2.0 1.7 2.3 2.9	.6 .7 1.3 .9 1.0	7 7 6 6	.07 .06 .07 .61 .23	.062 .087 .056 .089 .061	30 20 34 43 24	10.1 9.7 7.1 9.4 5.4	.18 .06 .08 .16 .09	30 22 145 31 36	.001 .004 .001 .002 .001	<1 1 <1 1 1 1 1	.14 .04 .94 .71 .42	. 003 . 003 . 003 . 003 . 003	.04 .1 .03 .1 .03 .1 .04 .1 .05 .1	.07 2 .10 2 .10 7 .07 7 .05 6	.9 <.1 .0 .1 .6 .1 .8 <.1 .1 <.1	<.05 <.05 <.05 <.05 <.05	2 <.5 2 .8 2 .8 1 .7 1 .5	15 15 15 15 15
18400N 10000E 18400N 10020E 18400N 10040E 18400N 10060E STANDARD DS5	.8 .8 .7 .9 13.1	32. 26. 45. 44. 148.	0 34. 7 17. 3 64. 4 46. 2 24.	2 67 4 63 2 105 5 120 3 138	.1 .5 .1 .3	28.0 24.8 41.0 48.5 24.9	10.6 10.2 17.3 25.0 12.6	302 1291 152 1172 769	7.71 3.50 4.28 5.46 3.12	12.7 11.0 79.2 730.9 18.6	.8 3.6 3.0 3.7 6.1	.8 1.3 10.4 76.9 45.0	4.0 1.2 6.1 2.8 2.7	7 62 30 58 47	.1 .1 .2 .1 5.5	.8 .4 5.9 16.5 3.7	.7 .4 .6 .7 6.1	16 14 8 7 61	.05 .74 .19 .48 .76	.156 .091 .041 .068 .095	23 20 24 16 13	16.7 9.6 7.9 7.0 179.9	.11 .09 .11 .10 .68	32 22 20 28 139	.006 .005 .002 .002 .002 .102	<1 1 <1 <1 19 2	.86 .65 .51 .46 .12	. 002 . 005 . 003 . 003 . 035	.03 .1 .03 .1 .03 .2 .04 .5 .14 4.9	.07 1 .05 .03 3 .06 3 .19 3	.5 <.1 .9 <.1 .5 <.1 .4 <.1 .8 1.1	<.05 .09 <.05 <.05 <.05	4 .6 3 1.3 2 .5 1 1.2 7 5.2	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 24

ACME ANALYTICAL

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm j	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au Th ppb ppm	Sr ppm	Cd ppm	Sb ppm	Bi opm p	V	Ca %	P % p	La opm	Cr ppm	Mg %p	Ba opm	Ti % pp	BA1 m%	Na %	К %р	W Hg mgg mg	l S	ic Tl m ppm	S (% pp	Ga Se S om ppm	ample gm
18400N 10080E 18400N 10100E 18400N 10120E 18400N 10140E 18400N 10160E	.6 1.0 .7 .7 .6	34.7 31.5 25.4 18.5 43.4	39.1 47.5 27.4 32.0 40.9	83 111 81 64 105	.1 3 .4 4 .1 2 .1 2 .2 4	31.1 43.5 25.2 22.0 49.7	13.9 34.0 11.2 11.9 26.9	507 2581 368 440 1153	6.06 5.74 3.99 4.06 5.23	97.5 86.0 65.9 99.4 133.2	.7 6.2 1.4 1.8 3.4	3.2 4.5 9.4 6.2 3.6 4.4 6.9 5.3 17.3 7.6	8 48 13 21 38	<.1 .2 .1 .2 .1	3.0 3.7 2.9 2.4 3.9	.7 .7 .5 .5 .7	8 8 10 8 11	.03 .45 .04 .11 .35	.096 .088 .065 .070 .067	21 17 23 19 29	7.4 10.2 6.0 6.9 11.3	.07 .12 .06 .07 .18	15 .0 43 .0 20 .0 21 .0 32 .0	03 02 < 02 01 <	1 .54 1 .93 1 .53 1 .83 1 1.10	.003 .008 .003 .003 .003 .004	.03 .04 .04 .03 .04	.1 .02 .2 .06 .1 .03 .1 .04 .1 .07	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 .1 < 7 .1 < 5 .1 < 6 .1 < 5 <.1 <	. 05 . 05 . 05 . 05 . 05 . 05	2 .8 1 .9 2 .7 2 .8 2 1.2	15.0 15.0 15.0 15.0 15.0 15.0
18400N 10180E 18400N 10200E 18400N 10220E 18400N 10240E 18400N 10260E	.8 .3 1.6 .9 .7	38.3 31.8 13.9 30.4 36.5	77.1 25.9 6.4 28.7 35.2	79 · 91 199 102 99	<.1 3 .1 3 .2 9 .1 6 .1 3	32.9 39.7 54.6 60.7 31.1	19.5 19.5 25.3 23.2 26.6	1200 512 5069 5495 1841	8.72 4.32 33.74 7.48 5.72	112.8 44.6 67.4 136.9 200.3	1.1 1.5 3.3 2.5 2.0	2.7 3.8 9.4 9.2 5.2 1.8 26.7 3.6 48.5 8.1	11 16 74 14 14	.1 .1 .4 .2 .2	3.5 1.3 1.4 2.2 3.7	.8 .4 .1 .6 .6	15 7 3 6 7	.04 .10 .82 .07 .06	.250 .060 .041 .077 .085	21 39 9 22 24	19.0 7.4 2.9 6.4 8.4	.12 .11 .06 2 .07 1 .08	22 .0 30 .0 215 .0 134 .0 26 .0	05 < 02 < 02 01 <	1 .90 1 .59 2 .19 1 .77 1 1.00	.004 .003 .004 .003 .004	.04 .05 .01 < .04 .04	.1 .04 .1 .03 .1 .07 .1 .14 .1 .10	1. 2. 13. 3. 2.	7 .1 < 5 <.1 < 1 <.1 < 6 .1 < 8 .1 <	.05 .05 .05 .05 .05	4 1.1 1 <.5 1 2.3 1 .9 2 1.1	7.5 15.0 15.0 7.5 15.0
18400N 10280E 18400N 10300E 18400N 10320E 18400N 10340E 18400N 10360E	.6 .6 .5 .5	39.8 34.4 32.3 32.5 29.7	39.2 36.3 30.0 37.1 24.6	101 95 99 101 87	.1 4 .1 2 .2 4 .2 5	40.9 27.8 40.2 38.2 33.5	18.5 17.7 21.5 21.9 17.7	869 1079 2399 2014 854	6.02 6.15 5.56 5.78 4.11	235.0 453.8 194.6 186.6 70.6	3.0 1.2 1.3 1.4 1.3	32.7 3.7 24.9 5.0 22.8 3.6 19.8 3.5 36.6 5.6	21 10 50 50 519 541	.1 .1 .2 .1 .1	3.2 4.6 3.2 3.2 2.3	.8 .7 .5 .6 .5	9 5 4 5 5	.13 .02 .49 .11 .35	.064 .072 .069 .084 .064	33 25 19 26 33	8.6 6.1 4.5 5.7 6.2	.10 .06 .10 .09 .14	37 .0 26 .0 60 .0 41 .0 26 .0	02 01 < 01 02 02	1 .88 1 .59 1 .44 1 .54 1 .47	.004 .003 .003 .004 .004	.04 .04 .03 .05 .04	.1 .08 .2 .05 .1 .06 .1 .05 .1 .03	3 3. 2 2. 5 2. 5 2. 8 2.	4 .1 < 0 <.1 < 6 <.1 < 8 <.1 < 5 <.1 <	. 05 . 05 . 05 . 05 . 05	2 .6 1 .9 1 .9 1 .8 1 <.5	15.0 7.5 15.0 15.0 15.0
18400N 10380E 18375N 10000E 18375N 10020E 18375N 10040E 18375N 10060E	.4 .6 .9 .5 .4	18.6 30.2 14.9 34.6 21.6	24.6 42.3 14.3 17.9 10.9	74 93 57 63 48	.1 .3 .2 .2 .1 .1	23.0 27.1 17.5 36.5 21.5	16.6 14.0 7.5 12.4 9.1	566 328 217 88 53	4.68 6.89 2.73 3.82 2.21	17.7 6.0 7.4 158.4 59.1	1.3 3.3 4.9 .4 .3	3.1 6.6 <.5 7.7 <.5 1.4 18.3 5.6 .5 6.4	5 18 7 15 71 5 19 4 12	<.1 .3 <.1 <.1 .1	.8 .4 .4 15.9 3.0	.5 .5 .6 .5	9 10 12 8 8	.10 .10 .78 .06 .02	.058 .081 .055 .034 .044	30 17 17 14 28	15.0 15.9 8.8 3.6 3.8	.23 .06 .07 .03 .04	27 .0 55 .0 15 .0 22 .0 25 .0	102 < 102 105 < 102 101	1 1.11 1 1.90 1 .65 2 .31 2 .53	.002 .007 .009 .004 .004	.03 < .03 .03 .03 .03 .04	.1 .04 .1 .14 .1 .05 .1 .02 .1 .06	1. 2. 1. 2. 1. 5. 1.	8 <.1 < 1 .1 < 2 <.1 < 9 .1 < 4 .1 <	.05 .05 .05 .05 .05	2 .5 3 .8 2 1.1 1 <.5 2 <.5	15.0 15.0 15.0 15.0 15.0
18375N 10080E RE 18375N 10080E 18375N 10100E 18375N 10120E 18375N 10140E	.3 .4 .3 .5 .4	15.3 14.9 11.3 16.7 13.9	14.8 14.8 11.4 18.8 16.9	36 38 29 49 36	.2 .2 .1 .1 .1	13.8 13.4 11.4 15.6 14.0	5.4 5.1 4.8 5.9 5.2	115 112 298 175 134	2.66 2.57 1.65 2.95 2.47	59.8 56.6 54.5 79.2 64.9	.3 .3 .4 .5	.9 4.2 1.7 3.7 7.2 2.4 1.7 2.2 3.1 1.3	2 8 7 10 8 8 2 12 8 8	<.1 <.1 <.1 .1 .1	3.2 2.9 2.7 2.8 2.3	.4 .4 .3 .4 .4	6 7 6 7 8	.02 .02 .01 .03 .01	.071 .070 .077 .088 .090	19 19 28 23 25	3.2 3.3 4.6 4.6 4.8	.03 .03 .04 .03 .03	16 .0 15 .0 25 .0 36 .0 19 .0	01 < 02 02 03 03	1 .41 1 .41 1 .36 1 .42 1 .34	.003 .003 .003 .004 .004	.04 < .04 < .04 < .04 < .04	.1 .05 .1 .05 .1 :02 .1 .04 .1 .04		9 <.1 < 9 .1 < 6 .1 < 8 .1 < 6 <.1 <	.05 .05 .05 .05 .05	1 <.5 1 <.5 2 <.5 2 <.5 2 <.5	7.5 7.5 15.0 15.0 15.0
18375N 10160E 18375N 10180E 18375N 10200E 18375N 10220E 18375N 10240E	.3 .6 .6 .5	11.6 15.8 14.4 18.4 22.2	10.5 14.6 24.7 25.0 30.0	34 59 64 71 76	.1 .1 <.1 .1 .1 .1	12.2 19.3 18.0 20.6 25.3	4.6 9.3 9.8 13.4 12.1	102 446 548 257 402	1.95 3.12 4.75 3.89 3.94	28.4 29.9 28.0 46.5 107.4	.3 2.7 .7 1.5 2.0	72.3 1.0 2.2 3.1 2.1 1.9 5.1 4.3 27.9 4.1) 9 . 33) 8 3 16 . 38	.1 .1 .1 .1 .1	1.5 1.5 1.1 1.8 2.2	.3 .4 .5 .5	7 8 15 8 8	.08 .32 .04 .09 .33	.061 .061 .062 .069 .071	22 24 25 25 22	3.6 5.1 9.8 8.1 7.7	.02 .05 .06 .06 .08	16 .0 16 .0 16 .0 20 .0 24 .0	103 102 105 < 102 <	2 .26 1 .51 1 .62 1 .82 1 .66	.003 .004 .003 .004 .006	.03 < .04 .04 .04 .04 .04	.1 .05 .1 .04 .1 .05 .1 .06 .1 .05	5 . 1. 5 . 5 1. 5 2.	5 <.1 < 1 .1 < 9 .1 < 4 <.1 < 3 <.1 <	.05 .05 .05 .05 .05	2 <.5 2 .5 2 <.5 2 <.5 2 <.5 2 .8	15.0 15.0 15.0 15.0 15.0
18375N 10260E 18375N 10280E 18375N 10300E 18375N 10320E STANDARD DS5	.6 .5 .3 12.3	27.6 16.6 31.7 21.1 137.8	31.5 23.1 33.2 26.9 24.0	85 58 92 70 134	.1 .1 .1 .1 .1	26.0 14.9 51.5 23.6 24.3	21.9 9.5 22.4 12.0 11.6	1138 442 2158 809 742	4.71 3.50 5.24 4.49 2.86	94.9 78.4 58.4 21.3 17.4	1.3 1.7 1.0 .9 5.8	13.4 4.6 10.0 4.4 12.3 5.8 .6 4.0 41.3 2.7	5 11 9 69 9 / 45	.1 .1 .2 .1 5.3	2.7 1.7 2.2 1.0 3.5	.6 .5 .6 .6 5.7	8 9 7 1 10 58	.04 .02 .39 .06 .69	.106 .066 .111 .148 .084	27 25 32 29 11	8.5 6.8 8.5 11.1 178.2	.09 .06 .16 .11 .64	20 .0 14 .0 46 .0 19 .0	02 < 02 < 03 < 03 < 90 1	1 .61 1 .72 1 .56 1 .73 8 1.97	.003 .003 .003 .003 .003 .031	.04 .04 .04 .03 .13 4	.1 .03 .1 .04 .1 .06 .1 .04 .7 .16	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 <.1 < 4 .1 < 9 <.1 < 7 <.1 < 2 1.1 <	. 05 . 05 . 05 . 05 . 05	2 .7 2 .6 1 .7 2 <.5 6 4.7	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 25

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au T ppb pp	h Sr m ppm	Cd ppm	Sb ppm j	Bi opm p	V opm	Ca %	Р % р	La	Cr ppm	Mg E % pp	Ba Ti om %	B ppm	A1 %	Na %	К %р	W Hg mgq mc	j Sc ippm	T1 ppm	S Ga Se % ppm ppm	Sample gm	
18375N 10340E 18375N 10360E 18375N 10380E 18350N 10000E 18350N 10020E	.4 3 .3 2 .4 1 .7 2 .9 5	85.6 27.6 4.2 25.1 1 56.0	36.5 26.0 20.3 100.3 35.9	85 80 47 < 70 126	.1 4 .1 3 .1 1 .1 2 .2 5	5.6 8.4 6.1 3.1 2.8	27.2 21.4 8.6 9.3 21.1	970 732 281 129 458	5.67 4.69 4.81 4.33 4.40	34.1 20.2 13.6 15.2 211.7	.8 .9 .6 2.0 3.6	6.0 8. 3.8 7. 1.9 3. 3.3 8. 21.0 4.	2 69 1 40 3 10 9 13 9 62	.1 .1 <.1 .2 .2	1.8 1.2 .7 1.1 21.4	.7 .6 .5 .4 L.0	7 1 9 12 10 5	. 17 . 39 . 05 . 08 . 40	.088 .082 .044 .044 .044	35 33 23 15 17	8.6 . 10.7 . 10.5 . 10.2 . 5.3 .	22 2 24 2 13 3 07 2 11 2	20 .002 20 .002 34 .001 25 .001 24 .001	1 1 <1 <1 1	.49 .61 .79 1.11 .34	.003 .004 .004 .018 .007	.02 .03 .02 .03 .03	.1 .04 .1 .03 .1 .03 .2 .13 .2 .05	4.3 3.1 31.1 32.0 54.2	<.1 .0 <.1 .0 <.1<.0 <.1<.0 <.1<.0	19 1 .7 16 2 .6 15 3 < .5 15 2 .7 15 1 .6	15.0 15.0 15.0 7.5 15.0	
18350N 10040E 18350N 10060E 18350N 10080E 18350N 10100E 18350N 10120E	.8 2 .5 3 .4 2 .3 1 .4 1	21.8 35.4 23.5 17.9 14.4	30.2 23.4 22.1 13.7 11.7	62 79 61 48 37	.7 1 .1 3 .1 2 .1 1 .1 1	7.7 2.4 1.3 7.4 4.0	14.8 11.4 8.8 6.3 5.7	707 98 146 134 124	3.86 3.64 3.46 2.84 2.62	729.6 244.9 34.6 35.6 31.2	5.0 .4 .3 .3 .3	93.5 2. 6.8 4. 1.1 4. 5.0 2. 1.1 1.	0 59 9 9 8 8 9 7 2 5) .1) <.1] .1 / <.1 5 <.1	6.8 9.5 4.3 2.4 1.6	.7 .7 .5 .5 .4	9 9 6 10	.53 .02 .03 .04 .02	. 101 . 034 . 048 . 073 . 052	11 19 23 21 24	8.6 . 4.2 . 4.1 . 4.2 . 5.0 .	08 3 05 2 04 3 04 1 03 1	85 .002 26 .001 36 .001 .8 .001 .6 .003	<pre><1 <1 <</pre>	.62 .41 .50 .38 .34	.008 .005 .004 .003 .004	.03 .03 .04 < .04 < .03	.1 .17 .1 .03 .1 .05 .1 .05 .1 .02	2.2 3 1.8 5 1.2 5 .9 2 .6	.1<.0 .1<.0 .1<.0 .1<.0 <.1<.0	15 2 1.2 15 2 <.5	7.5 15.0 15.0 15.0 15.0	
18350N 10140E 18350N 10160E 18350N 10180E 18350N 10200E 18350N 10220E	.7 1 .4 2 .7 3 .5 5 .4	19.2 23.2 34.7 53.8 8.7	19.1 41.7 27.1 52.2 12.3	58 61 72 112 33	 .1 1 .2 1 .4 3 .2 4 .1 	.7.6 .9.4 81.6 4.6 7.9	8.7 8.4 16.8 28.3 3.8	187 236 1098 817 89	3.54 4.66 4.33 6.18 1.88	91.2 91.1 76.4 93.9 16.2	2.5 .7 5.7 1.8 1.0	2.5 2. 6.4 3. 5.4 1. 14.9 8. 4.7 1.	1 7 2 7 7 57 4 45 4 16	7 .1 7 .2 5 .2 5 .1	3.3 3.6 2.6 3.7 .6	.4 .6 .6 1.1 .3	12 6 15 7 11	.02 .03 .68 .39 .09	.043 .058 .109 .067 .045	18 14 21 30 25	7.3 . 8.0 . 13.1 . 7.3 . 5.7 .	04 1 06 1 12 3 17 2 05 1	.6 .002 .8 .002 31 .008 28 .003 .8 .003	<pre><1 <1 <</pre>	.61 .62 .92 .45 .46	.005 .007 .009 .006 .004	. 02 . 03 . 04 . 04 . 03	.1 .04 .1 .07 .1 .13 .1 .04 .1 .04	1.2 1.2 2.2 4.0 4.8	<.1<.0 <.1<.0 .1<.0 <.1<.0 .1<.0	15 2 <.5	7.5 7.5 15.0 15.0 7.5	
RE 18350N 10220E 18350N 10240E 18350N 10260E 18350N 10280E 18350N 10300E	.4 .6 2 .6 3 .3 .2 3	9.0 27.4 30.9 9.5 30.7	12.0 32.1 39.7 20.2 29.3	31 83 86 36 80	.1 .1 2 .1 3 .1 .1 3	8.8 24.2 32.5 9.2 88.8	4.0 19.1 24.4 4.2 18.0	88 1008 1319 117 562	1.84 4.25 4.87 3.91 4.23	15.9 49.0 59.6 18.3 21.4	1.0 2.6 2.3 .4 .6	<.5 1. 7.1 2. 9.1 2. <.5 3. 4.4 8.	5 14 4 17 9 16 5 6 9 41	<pre><.1 / .2 / .2 / .1 / .1</pre>	.6 1.8 2.4 .7 1.4	.3 .6 .7 .6 .5	8 10 10 15 9	.09 .10 .15 .03 .43	.042 .123 .103 .052 .105	23 24 25 21 39	5.5 . 9.0 . 10.6 . 11.2 . 10.6 .	04 1 11 2 13 2 10 2 22 2	27 .002 23 .009 23 .004 27 .003 24 .009	2 <1 5 1 4 <1 8 <1 5 <1	.46 .64 .74 .83 .66	.004 .006 .005 .004 .004	.03 .04 .04 .02 .03 <	.1 .05 .1 .09 .1 .06 .1 .05 .1 .04	5 .8 9 2.0 5 2.5 5 .9 4 4.9	<.1<.0 <.1<.0 <.1<.0 .1<.0 <.1<.0	15 3 <.5	7.5 15.0 7.5 15.0 15.0	
18350N 10320E 18350N 10340E 18350N 10360E 18350N 10380E 18350N 10380E 18325N 10000E	.3 2 .4 3 .3 2 .3 3 .5 2	29.0 35.6 29.4 31.6 29.5	39.4 32.1 29.0 28.1 95.9	81 91 90 73 64	$ \begin{array}{c} .1 & 3 \\ .1 & 4 \\ .1 & 4 \\ .1 & 4 \\ .1 & 2 \\ \end{array} $	89.5 14.5 11.3 11.0 25.9	25.1 24.5 24.9 19.5 11.9	886 488 835 740 174	5.29 5.07 5.40 4.55 3.84	24.4 23.8 16.3 16.1 11.0	1.0 .7 .7 1.1 .6	2.7 9. 4.4 8. 1.0 9. .8 7. .8 8.	5 51 6 104 4 41 4 28 1 11	.2 4 .1 1 .1 3 .1 1 .1	1.6 1.6 1.2 1.2 .5	.7 .7 .6 .5 .4	5 7 1 8 7 7	.52 .49 .30 .27 .04	.082 .081 .089 .076 .033	42 32 47 50 31	9.2 . 10.6 . 12.6 . 9.8 . 6.6 .	.22 1 .28 1 .29 3 .22 2 .08 2	.9 .002 18 .003 33 .003 23 .003 21 .003	$2 <1 \\ 3 1 \\ 3 <1 \\ 3 1 \\ 3 1 \\ -1 \\ -1$.50 .59 .74 .62 .64	.010 .005 .009 .004 .005	.03 .04 < .05 < .04 < .04 1	.1 .03 .1 .02 .1 .03 .1 .03 .8 .04	8 4.0 2 3.8 3 3.8 3 4.1 4 1.6	<.1<.0 <.1 .1 <.1<.0 <.1<.0 <.1<.0	05 1 <.5	7.5 15.0 15.0 15.0 15.0	
18325N 10020E 18325N 10040E 18325N 10060E 18325N 10080E 18325N 10100E	.8 2 .6 4 .5 3 .5 3 .4 1	22.3 46.9 32.4 33.3 12.7	19.1 40.7 15.3 40.4 17.8	65 74 69 65 40	.2 2 .1 2 .1 2 .3 2 .4 1	22.8 28.5 23.4 27.3 13.1	8.1 13.7 7.2 10.9 5.2	476 194 130 157 206	3.21 4.29 3.05 5.82 2.65	146.3 184.8 333.6 56.6 34.9	2.4 .7 .3 .5 .3	1.9 2. 4.7 5. 1.3 2. <.5 4. 1.7 1.	8 43 3 16 3 14 5 7 4 9	3 .1 5 <.1 4 <.1 7 .1 9 <.1	8.9 15.1 17.3 3.5 2.5	.4 1.0 .5 .7 .4	6 6 8 11	.31 .07 .01 .03 .03	.036 .047 .035 .065 .042	13 23 21 20 24	3.9 . 5.7 . 3.5 . 8.3 . 6.6 .	.05 2 .07 2 .02 1 .11 2 .05 1	23 .003 22 .003 15 .002 24 .002 18 .003		.34 .39 .18 .81 .45	.004 .004 .003 .004 .003	.03 .03 .02 .04 .04	.3 .09 .1 .03 .1 .01 .1 .08 .1 .04	5 1.8 3 2.0 1 1.2 3 1.8 4 .8	.1<.(<.1<.(<.1<.(.1<.(.1<.()5 1 <.5)5 1 .5)5 1 <.5)5 2 .5)5 2 <.5	7.5 7.5 15.0 15.0 15.0	
18325N 10120E 18325N 10140E 18325N 10160E STANDARD DS5	.5 2 .4 2 .4 3 12.7 14	26.5 21.1 38.8 44.3	27.2 16.1 56.9 25.3	71 50 83 139	.1 2 <.1 1 <.1 3 .3 2	26.4 19.9 35.5 24.7	12.9 7.6 20.9 12.4	341 176 414 753	4.46 3.13 4.86 2.99	47.2 31.5 56.0 17.9	2.7 .3 .6 6.2	2.0 3 1.9 2 6.9 7 40.8 2	9 45 2 10 4 8 9 48	5 .1) .1 3 .1 3 5.3	3.0 2.1 3.1 3.8	.6 .5 .8 6.3	9 9 9 61	.51 .06 .03 .72	.065 .053 .051 .093	20 27 26 12 1	7.2 . 6.2 . 10.8 . 188.3 .	.12 2 .06 1 .16 2 .68 1	26 .002 19 .002 22 .002 33 .095	2 1 2 <1 2 <1 5 16	.63 .32 .89 2.12	.005 .002 .005 .034	.04 .04 < .04 < .14 5	.1 .09 .1 .03 .1 .06 .2 .17	5 2.1 3 1.0 5 2.2 7 3.3	<.1<.(<.1<.(.1<.(1.1<.(05 2 .6 05 2 <.5 05 2 .7 05 6 5.0	15.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data K FA

SAMPLE#	Mo ppm	C pp	iu Pl m ppr	b Zn 11 ppm	n A npp	g N m ppr	i Co n ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	Bi opm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %p	Ba pm	Ti E % ppr	8 A1 1 %	Na %	K %pj	W Hç om ppr	Sc ppm	Tl S ppm S	3 Ga Se % ppm ppm	Sample gr	e n
18325N 10180E 18325N 10200E 18325N 10220E 18325N 10240E 18325N 10260E	.7 .6 .5 .4 .5	18. 26. 13. 12. 11.	8 11.4 4 33.3 1 21.3 9 18.0 8 17.3	4 51 3 124 2 51 6 35 7 63	1 . 1 . 5 .	2 32. 3 27.3 1 12. 1 11.3 1 15.3	5 12.3 2 17.6) 7.3 2 6.8 1 6.2	5842 1036 539 634 529	1.28 4.63 3.34 3.16 3.31	9.0 43.5 38.4 28.9 11.5	19.1 3.6 .6 .5 .5	1.8 3.9 2.5 4.6 1.0	.4 2.5 1.1 .8 1.9	244 70 7 6 8	1.1 .2 .1 .1 .1	1.5 1.6 1.2 1.0 .6	.2 .6 .5 .5	4 4 13 12 10 13	4.04 .86 .03 .03 .08	.131 .140 .062 .136 .074	5 16 24 20 19	6.6 12.1 8.7 8.1 14.2	.21 1 .19 .06 .08 .13	21 .0 38 .0 18 .0 19 .0 60 .0	03 3 06 1 05 <1 04 <1 06 <1	8 .38 .91 .44 .47 .93	.034 .006 .003 .003 .003	. 02 . 03 . 03 . 03 . 03	.1 .19 .1 .09 .1 .04 .2 .07 .1 .09	.6 2.4 .7 .6 .9	.1 .18 .1<.09 .1<.09 <.1<.09 <.1<.09	3 1 5.4 5 2 1.1 5 2 <.5 5 2 <.5 5 3 .5	1.(15.(15.(15.(15.()))))
18325N 10280E 18325N 10300E 18325N 10320E 18325N 10340E 18325N 10360E	.3 .4 .3 .4 .3	7. 30. 31. 33. 20.	0 15. 9 45. 0 34. 3 43. 4 37.	0 24 1 75 0 91 9 86 0 92	1 . 5 . 1 . 5 . 2 <.	2 7.1 1 34.1 1 46.1 1 44.1 1 27.1	2 3.5 3 21.3 3 24.4 3 24.4 5 18.9	217 688 694 929 754	2.51 5.14 5.14 5.86 5.11	15.4 21.0 23.2 154.4 17.1	.3 1.0 .7 .7 .7	1.7 2.8 4.0 42.9 13.0	4.4 8.0 9.2 6.3 6.1	5 26 89 79 20	<.1 .2 .1 .1 <.1	.5 1.1 1.6 4.3 1.1	.4 .8 .7 .8 .7	8 9 4 6 9	.03 .25 1.46 1.14 .14	.058 .103 .072 .066 .090	20 47 30 28 37	8.4 10.8 9.3 7.9 10.7	.10 .13 .28 .23 .18	19 .0 25 .0 20 .0 30 .0 35 .0	02 <1 02 1 02 <1 02 <1 01 1 02 <1	74 1.04 51 47 68	.002 .002 .003 .006 .003	.03 .02 < .03 .04 < .03	.1 .06 .1 .06 .1 .03 .1 .03 .1 .03	5 .8 5 5.3 8 4.1 8 4.2 8 2.1	.1<.09 .1<.09 <.1 .14 <.1 .10 <.1<.09	5 3 <.5 5 2 1.0 4 1 .6 5 1 .9 5 2 <.5	15.0 15.0 7.9 15.0 15.0)) 5 0 0
18325N 10380E 18325N 10400E 18300N 10000E 18300N 10020E 18300N 10040E	.4 .4 1.5 .3 .6	19. 17. 37. 12. 32.	8 18. 5 23. 6 51. 5 9. 0 37.	9 37 1 68 0 103 5 29 9 67	7 . 3 <. 3 . 9 <. 7 .	2 12. 1 23. 1 58. 1 12. 1 27.) 4.6 3 13.1 3 24.8 3 4.6 2 9.6	105 396 1680 75 234	2.91 3.75 6.15 1.57 4.47	17.6 15.3 16.6 14.1 159.3	.5 .6 3.8 .2 .4	5.8 2.4 3.3 1.1 3.2	2.7 5.4 9.0 5.2 3.9	10 18 15 7 11	.2 .1 .3 <.1 .1	1.5 1.2 .8 1.0 10.9	.4 .4 .6 .2 .6	7 6 9 4 10	.03 .21 .08 .05 .04	.069 .059 .053 .016 .042	19 32 28 24 18	7.7 9.0 9.7 2.7 7.2	.08 .17 .11 .02 .06	27 .0 25 .0 40 .0 13<.0 20 .0	02 <1 02 <1 02 1 01 1 03 1	57 54 81 21 35	.004 .004 .004 .003 .003	.03 < .03 .04 .02 .03	.1 .06 .1 .03 .2 .07 .1 .01 .3 .03	5 1.0 3 2.3 7 4.1 	.1<.08 <.1<.08 .1<.08 <.1<.08 <.1<.08	5 2 <.5 5 2 <.5 5 2 .7 5 2 <.5 5 2 <.5 5 2 <.5	15.(7.5 15.(7.5 15.() 5) 5 0
18300N 10060E 18300N 10080E 18300N 10100E 18300N 10120E RE 18325N 10240E	.6 .8 .6 .5	17. 50. 35. 20. 13.	7 12. 8 39. 2 28. 8 13. 0 19.	2 45 5 68 5 80 8 63 0 36	5 <. 3 .) . 3 . 5 .	1 16. 4 79. 3 34. 2 20. 1 11.	5 5.1 3 21.0 4 15.5 9 8.3 7 7.1	69 2865 160 1967 639	2.42 3.93 4.21 2.31 3.07	135.6 244.4 43.4 54.9 29.5	.7 31.1 1.2 2.4 .6	3.9 14.3 1.2 2.0 2.6	2.8 2.5 3.9 .9 1.1	11 49 50 58 7	.1 .3 .3 .2 .1	8.3 7.0 5.6 2.2 1.1	.3 .6 .8 .3 .5	11 7 8 12 12	.03 .39 .49 .77 .03	.040 .136 .055 .130 .136	18 15 18 13 24	4.2 9.2 5.5 7.0 8.4	.03 .11 .09 .10 .08	19 .0 46 .0 27 .0 34 .0 21 .0	03 1 04 1 02 <1 07 2 05 <1	24 72 65 2 .61 51	.004 .006 .004 .007 .003	. 04 . 04 . 04 . 04 . 04	.3 .02 .1 .22 .1 .09 .1 .09 .1 .09	2 1.5 2 2.8 5 2.1 9 .9 7 .7	<.1<.09 .1<.09 .1<.09 .1<.09 <.1<.09	5 1 <.5 5 2 2.7 5 2 .6 5 2 1.4 5 2 .5	7.5 15.0 7.5 7.5 15.0	5) 5 5 0
18300N 10140E 18300N 10160E 18300N 10180E 18300N 10200E 18300N 10220E	.4 .4 .5 .5 .4	13. 21. 28. 14. 16.	7 6. 5 25. 3 38. 2 18. 0 26.	5 29 0 66 2 86 5 53 4 45) <. 5 . 5 . 7 .	1 13. 3 21. 3 31. 2 12. 1 16.	7 5.3 2 11.6 9 18.9 9 6.7 1 6.9	63 366 351 310 217	2.06 4.03 5.18 3.32 4.38	22.9 25.9 34.9 22.9 25.1	.3 1.4 1.3 .4 .5	3.3 2.1 3.4 .9 1.6	5.4 3.4 3.5 1.7 1.5	8 38 47 8 5	<.1 .2 .2 .1 .1	1.1 1.6 2.6 1.2 1.5	.3 .5 .6 .4 .5	13 12 12 15 13	.03 .44 .53 .06 .03	.035 .070 .074 .053 .062	37 19 21 23 24	4.2 10.6 12.2 9.4 9.7	.02 .12 .13 .06 .07	13 .0 24 .0 23 .0 28 .0 20 .0	08 1 04 1 04 1 07 1 06 <1	25 .1.06 .1.02 	.002 .004 .004 .003 .005	.03 .03 < .04 .04 .03 <	.1 .01 .1 .08 .1 .09 .1 .06	.9 1.5 2.2 5 .9 5 .7	<.1<.08 .1<.08 .1<.08 .1<.08 <.1<.08	5 2 <.5 5 2 .8 5 2 .7 5 3 .5 5 3 .5	15.0 15.0 15.0 15.0 15.0)))))
18300N 10240E 18300N 10260E 18300N 10280E 18300N 10300E 18300N 10340E	.3 .5 .4 .4 .3	15. 17. 21. 8. 23.	1 15. 4 37. 0 41. 4 16. 1 25.	9 48 4 53 1 72 8 32 5 84	3. 3. 2. 2. 2. 4. 4. 4.	2 14. 1 19. 1 26. 1 10. 1 33.	0 9.0 6 12.5 8 12.1 3 4.5 0 17.7	299 395 285 85 646	3.16 5.16 6.35 3.62 4.01	13.9 20.0 24.4 29.6 17.5	.6 .6 .9 .3 .7	4.5 2.1 3.3 .8 1.5	3.7 6.2 11.8 5.1 7.2	11 5 13 5 36	.1 .1 <.1 .1	.8 1.1 1.2 .8 1.3	.4 .6 .5 .5	9 11 13 18 7	.10 .02 .10 .02 .33	.043 .057 .075 .021 .070	21 19 20 26 35	8.2 15.3 19.6 11.1 9.2	.07 .15 .13 .10 .24	20 .0 20 .0 64 .0 22 .0 26 .0	02 1 03 <1 03 1 03 1 03 <1 02 1	73 1.26 1.84 98 57	.003 .003 .003 .003 .003 .005	.03 .02 < .02 < .02 < .02	.1 .05 .1 .08 .1 .10 .1 .03 .1 .03	5 1.4 8 1.5 9 2.8 8 1.3 8 2.5	<.1<.09 .1<.09 <.1<.09 .1<.09 <.1<.09	5 2 <.5 5 3 .8 5 2 .6 5 4 <.5 5 2 <.5	15.0 15.0 15.0 15.0 15.0)))))
18300N 10360E 18300N 10380E 18300N 10400E 18275N 10000E STANDARD DS5	.2 .3 .2 .7 12.4	25. 14. 29. 35. 138.	7 26. 8 46. 0 32. 6 29. 5 24.	4 72 8 108 8 91 5 80 8 138	2 . 3 . 1 . 2 . 3 .	1 35. 2 24. 1 34. 2 37. 2 24.	2 17.0 5 18.3 7 26.0 9 17.7 2 11.8	696 531 1052 580 747	4.23 4.94 4.97 4.80 2.93	17.6 25.7 15.7 10.0 17.8	.8 .9 .9 3.7 6.0	3.5 2.1 1.5 1.5 40.3	6.4 4.8 10.3 8.6 2.8	23 40 12 17 47	.1 .3 .2 .2 5.5	1.2 1.7 1.5 .6 3.8 (.5 .9 .5 .6 6.0	7 7 9 9 61	.33 .24 .05 .11 .75	.070 .136 .050 .078 .087	41 28 51 32 12	9.8 11.5 12.3 12.2 182.6	.23 .08 .25 .14 .67 1	24 .0 39 .0 36 .0 34 .0 37 .1	02 <1 02 <1 02 1 02 1 02 1 03 18	61 1.13 1.09 92 1.96	.003 .004 .003 .005 .033	.03 < .02 .03 < .04 .14 5	.1 .03 .1 .09 .1 .09 .1 .08 .1 .08	3 3.0 2.5 4.4 3.8 3.5	<.1<.0 <.1<.0 <.1<.0 .1<.0 1.1<.0	5 2 .6 5 1 .5 5 2 .7 5 2 .8 5 7 4.9	15.0 15.0 15.0 15.0 15.0))))

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 27

SAMPLE#	Mo ppm	Cı ppr	u Pb n ppm	Zn ppm	Ag N ppm pp	li C m pp	o Mi ni ppr	n Fe n %	As ppm	U ppm	Au ppb	Th ppm j	Sr opm p	Cd opm	Sb ppm p	Bi ppm p	V opm	Ca %	۶ P	La opm	Cr ppm	Mg % p	Ba opm	Ti % p	B	A1 %	Na %	K % pp	W Hg m ppm	Sc ppm	T1 ppm	S Ga Se % ppm ppm	Samp	le gm
18275N 10020E 18275N 10040E 18275N 10060E 18275N 10080E 18275N 10100E	.5 .9 .6 .8 .9	20.3 33.3 47.9 26.8 18.9	3 22.8 1 43.7 9 42.6 3 32.3 9 5.5	46 76 54 90 23	.1 18. .3 67. .8 42. .1 24. .4 29.	4 5. 1 17. 8 10. 7 10. 9 3.	8 60 3 3512 2 453 5 334 7 1973	5 2.72 2 3.41 3 2.85 4 4.17 3 .83	16.9 82.2 49.3 661.9 30.9	.4 5.4 16.5 1.4 28.6	1.1 8.2 8.1 7.6 3.1	6.1 2.0 1.4 2.9 .5	8 < 87 145 55 294	.1 .5 .1 .1 1 .5	1.1 7.4 3.8 13.1 3.1	.4 .5 .4 .7 .1	7 51 142 9 44	.04 .02 2.00 .49 4.71	.030 .079 .155 .051 .093	26 11 23 14 2	3.9 6.3 18.3 6.1 5.8	.03 .12 .26 .08 .24	15 . 52 . 31 . 23 . 44 .	001 001 010 002 003	<1 . 2 . 2 1. <1 . 3 .	40 .0 43 .0 12 .0 43 .0 26 .0	06 13 16 105 19	.03 . .04 . .04 . .04 . .02 <.	2 .04 3 .07 1 .28 1 .05 1 .16	1.2 2.5 2.5 1.9 .6	.1<.0 .1<.0 <.1 .1 <.1<.0 .1<.0	05 2 <.5 05 1 1.6 10 3 2.8 05 1 .6 17 1 5.8	15 7 1 15 1	.0 .5 .0 .0
18275N 10120E 18275N 10140E 18275N 10160E 18275N 10180E 18275N 10200E	.5 .6 .5 .4 .4	19.8 19.8 26.9 17.1 10.7	3 14.4 3 23.6 9 27.0 1 20.5 7 16.3	53 75 85 44 36	.2 20 .2 20 .3 27 .1 17 <.1 12	1 7. 1 10. 8 14. 5 8. 3 6.	9 149 5 999 3 108 2 229 5 229	9 2.43 5 3.57 2 4.09 9 3.69 5 3.42	34.8 47.3 43.3 26.5 22.5	2.3 1.7 1.8 .4 .5	1.5 3.7 1.6 1.2 1.9	1.2 1.4 1.5 1.9 1.7	50 74 53 7 14	.2 .2 .1 .1	2.2 2.4 2.5 1.4 1.1	.3 .5 .5 .5 .4	17 16 14 13 22	.63 .95 .70 .05 .11	.036 .131 .104 .042 .033	21 16 20 28 29	7.6 10.5 9.5 9.5 10.1	.07 .14 .11 .09 .07	18 . 38 . 30 . 20 . 17 .	.007 .006 .005 .003 .008	<1 . 1 . <1 . <1 . <1 .	48 .0 90 .0 87 .0 69 .0 61 .0	04 08 07 03 03	.03 <. .05 <. .04 . .03 . .03 .	1 .05 1 .09 1 .09 1 .04 1 .03	1.4 1.5 1.5 .9 .9	<.1<.0 .1<.0 .1<.0 .1<.0 .1<.0)5 3 .7)5 3 .9)5 3 .9)5 3 .9)5 2 <.8)5 4 <.8	15 15 15 15 15	.0 .0 .0 .0
18275N 10220E 18275N 10240E 18275N 10280E 18275N 10300E 18275N 10320E	.4 .5 .4 .3	35.8 36.0 22.0 18.0 25.0	8 68.0 0 32.5 0 41.6 6 19.2 0 31.8	100 65 84 57 61	.2 45 .1 31 .3 25 .1 22 .1 32	1 31. 5 15. 7 21. 4 10. 1 18.	3 61 3 44 3 109 3 22 1 51	4 5.77 4 4.31 4 5.57 2 3.04 4 4.42	82.1 50.1 22.0 9.9 20.5	1.5 .5 1.0 .6 .9	13.5 9.8 2.7 1.0 2.4	10.0 3.8 6.4 4.3 4.9	35 18 27 9 < 50	.2 .1 .2 .1 .1	2.9 4.6 1.4 .7 1.3	.8 .6 .7 .4 .6	11 10 7 6 6	.38 .09 .28 .07 .70	.066 .054 .120 .050 .078	36 21 26 28 35	16.9 8.2 10.9 8.1 8.1	.22 .09 .17 .13 .14	21 . 24 . 28 . 29 . 19 .	.004 .002 .001 .001 .001	<1 1. <1 . <1 . <1 . <1 . <1 .	62 .0 48 .0 82 .0 49 .0 56 .0	06 04 06 10 09	.03 . .03 <. .03 <. .03 . .03 .	1 .13 1 .07 1 .07 1 .05 1 .05	4.2 2.6 2.9 1.3 2.5	<.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0)5 2 .9)5 2 <.9)5 2 <.9)5 2 <.9)5 2 <.9)5 1 <.9	15 15 15 7 15	.0 .0 .0 .5 .0
18275N 10340E 18275N 10360E 18275N 10380E RE 18275N 10380E 18275N 10400E	1.3 .3 .4 .4 .4	44.2 23.0 20.0 20.9 14.9	7 49.6 0 33.3 6 27.6 9 28.6 5 29.0	96 70 68 69 56	.2 55 .1 30 <.1 25 <.1 25 <.1 25 <.1 19	2 26. 5 22. 7 16. 0 16. 2 9.	6 91 0 63 4 63 9 70 7 30	8 6.31 8 4.44 8 4.48 1 4.67 6 4.59	13.9 16.0 15.8 16.0 13.5	1.3 .8 .6 .7 .6	2.4 1.8 2.3 2.3 .7	4.8 5.1 4.8 4.8 3.5	83 24 < 15 15 < 9	.2 <.1 .1 <.1	1.2 1.2 1.1 1.2 1.0	.6 .5 .5 .5	5 1 7 9 9 10	.23 .26 .09 .09 .04	.126 .092 .101 .101 .044	27 32 32 34 28	8.4 9.3 10.5 11.6 12.2	.21 .19 .20 .21 .17	36 18 22 24 22	.002 .001 .002 .002 .002	1 . <1 . <1 . <1 . <1 .	51 .0 60 .0 70 .0 70 .0 95 .0	09 04 03 03 05	.04 <. .03 . .04 . .04 . .03 .	1 .06 1 .05 1 .02 1 .03 1 .04	2.9 2.6 1.6 1.6 1.3	<.1<.0 <.1<.0 <.1<.0 <.1<.0 .1<.0)5 2 .5)5 2 <.5)5 2 .6)5 2 <.5)5 2 <.5	15 15 15 15 15	.0 .0 .0 .0
18250N 10000E 18250N 10020E 18250N 10060E 18250N 10080E 18250N 10100E	.7 .6 .4 .3 .4	27.1 29.1 18.1 8.1 28.4	8 26.6 5 26.3 3 28.8 6 24.6 4 22.0	64 75 73 68 78	.1 27 .1 26 .2 24 .1 16 .1 45	0 12. 3 16. 4 6. 0 7. 3 15.	1 29 3 59 9 21 7 19 0 138	1 4.66 5 3.56 5 2.58 2 2.80 4 3.61	7.2 5.8 9.0 18.5 17.2	2.8 9.6 6.8 1.9 1.0	1.0 1.1 3.3 .8 4.0	3.6 6.8 4.6 4.9 8.0	33 19 66 38 < 42	.1 .1 .1 .1 .1	.5 .5 1.2 1.0 1.6	.5 .5 .3 .3 .4	16 6 4 9 8	.27 .12 .82 .38 .46	.047 .075 .069 .034 .076	24 28 22 22 38	12.3 9.3 7.0 12.2 10.2	.13 .12 .14 .30 .24	17 30 19 21 28	.004 .001 .002 .003 .005	<1 . <1 . 1 . <1 . <1 .	71 .(69 .(50 .(80 .(59 .()07)03)07)04)04	.03 <. .04 . .04 . .04 . .04 .	1 .04 1 .08 2 .07 1 .03 1 .03	1.4 3.1 3.0 1.7 3.9	<.1<.(<.1<.(<.1<.(<.1<.(<.1<.(05 4 .6 05 2 1.3 05 1 1.1 05 2 .6 05 2 .6	15 15 15 7 15	.0 .0 .0 .5
18250N 10120E 18250N 10140E 18250N 10160E 18250N 10180E 18250N 10200E	1.0 .5 .4 .4 .4	21.4 33.5 18.1 32.5 31.5	4 26.5 9 38.0 2 24.0 9 40.0 9 42.8	5 87 66 38 80 80 74	.1 41 .1 29 .1 15 .1 27 .2 29	.8 16. .2 11. .7 5. .5 11. .8 13.	8 392 0 18 6 11 8 25 4 25	4 3.29 8 5.39 0 3.86 4 5.04 2 4.17	61.5 27.2 23.6 222.2 62.7	6.0 .6 .4 .5 .7	2.3 2.2 1.9 17.9 7.9	1.7 8.4 5.0 8.0 4.9	79 9 6 < 14 11	.4 .1 <.1 .1 .1	2.7 1.6 1.5 5.1 2.4	.3 .7 .4 .6 .7	6 8 10 8 9	.90 .04 .02 .12 .05	.116 .047 .037 .049 .052	14 29 30 27 26	8.4 12.0 8.4 7.4 7.7	.16 .14 .09 .10 .12	59 29 23 47 19	.003 .002 .002 .001 .001	1 . 11. <1 . <1 . <1 .	52 .0 04 .0 75 .0 57 .0 66 .0)08)03)04)03)03	.03 . .03 <. .03 . .03 . .03 .	1 .06 1 .07 1 .04 1 .09 1 .05	1.5 1.9 1.3 1.9 2.1	.1<.0 <.1<.0 .1<.0 .1<.0 .1<.0)5 1 1.8)5 2 <.5)5 2 <.5)5 2 <.5)5 2 <.5	7 15 15 15 15	.5 .0 .0 .0 .0
18250N 10220E 18250N 10240E 18250N 10260E 18250N 10280E STANDARD DS5	.6 .4 .5 .5 12.6	88. 12. 11. 32. 143.	5 50.2 7 28.3 7 27.9 0 42.8 8 25.2	2 134 3 43 9 36 3 69 2 140	.2 80 .1 13 .1 11 .1 31 .3 24	.1 49. .9 5. .3 4. .8 15. .2 11.	4 74 7 17 8 22 0 47 8 79	4 7.74 7 4.08 6 4.65 3 5.56 7 2.99	127.2 13.6 11.1 24.0 18.0	.8 .4 .5 .9 6.2	14.6 .8 .9 3.7 41.3	3.8 1.4 1.1 10.6 2.9	34 6 10 47 5	.1 .1 .1 .1 5.3	11.3 .7 .8 1.5 3.9 (1.6 .6 .5 .8 5.1	4 13 11 10 62	.17 .03 .02 .06 .76	.047 .067 .060 .094 .090	12 22 18 24 12	3.8 10.5 9.4 14.3 190.1	.05 .10 .08 .20 .67	42 17 13 20 137	.001 .003 .002 .002 .002 .100	1 . <1 . <1 . <1 1. 18 2.	33 .0 78 .0 68 .0 04 .0 01 .0)04)03)03)02)34	.04 . .03 . .02 <. .02 . .15 5.	1 .04 1 .04 1 .04 1 .08 1 .17	5.9 .7 .7 3.2 3.5	<.1 .2 .1<.0 .1<.0 <.1<.0 1.1<.0	24 1 .6 05 3 <.5 05 2 <.5 05 2 <.5 05 7 4.9	7 15 15 15 15	.5 .0 .0 .0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 2	28
--------	----

SAMPLE#	Mo ppm	C pp	u Pt m ppn) Zn 1 ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	Bi ppm p	V mqc	Ca %	P %	La ppm	Cr ppm	Mg % ا	Ba ppm	Ti %	B ppm	A1 %	Na %	K % p	W pm p	Hg S pm pp	c Tl m ppm	S %p	Ga Se opm ppm	Sample gm
18250N 10300E 18250N 10320E 18250N 10340E 18250N 10360E 18250N 10380E	.3 .3 .2 .5 .3	10. 21. 34. 22. 31.	1 14.7 7 33.4 5 35.6 1 40.5 0 32.6	28 98 90 570 572	.1 .2 .1 <.1 .1	8.4 27.3 37.7 27.6 43.7	5.5 13.4 20.5 23.0 20.8	596 691 494 874 713	2.20 4.24 5.68 5.04 4.79	13.4 19.3 26.2 19.2 21.8	.4 .7 .8 .7 .9	1.9 4.5 5.7 2.1 2.7	1.1 5.1 10.0 3.8 8.7	4 24 25 14 24	.1 .1 .2 .1 .1	.6 1.0 1.8 1.5 1.4	.5 .7 .7 .6 .6	8 8 9 6	.02 .24 .23 .12 .23	.104 .128 .096 .097 .074	19 29 27 20 49	7.0 10.2 11.1 11.5 8.9	.07 .12 .21 .20 .20	19 60 20 15 21	.002 .002 .002 .002 .002 .002	1 <1 1 <1 <1	.50 .72 .81 .62 .57	.003 .005 .005 .004 .003	.03 .03 < .03 .04 .02	.1 . .1 . .1 . .1 .	03 . 06 3. 05 3. 03 1. 04 3.	7 <.1< 3 .1< 9 <.1< 5 <.1< 8 <.1<	<.05 <.05 <.05 <.05 <.05	2 .5 2 <.5 2 .7 2 .6 1 .6	15.0 15.0 15.0 15.0 15.0
18250N 10400E 18225N 10000E 18225N 10020E 18225N 10040E 18225N 10060E	.3 .8 .7 .6 1.0	16. 24. 17. 31. 38.	7 27.9 3 25.0 0 16.8 9 27.1 8 26.1) 62) 73 3 43 78 86	.1 .1 .1 .2	22.5 24.5 16.6 33.2 72.2	12.0 15.2 8.5 16.4 32.6	490 1167 566 335 5491	4.18 3.74 2.27 4.34 5.70	15.2 18.2 9.5 9.4 9.9	.8 5.5 18.6 3.7 3.8	1.6 1.4 .9 1.1 2.0	4.4 2.8 1.4 5.2 5.2	37 73 101 49 68	.1 .1 .2 .1 .2	1.1 1.1 .4 .5 .6	.5 .4 .3 .5 .6	9 11 1 9 1 8 9	.48 1.05 1.21 .61 .79	.089 .106 .128 .059 .084	22 16 23 19 20	10.1 18.5 16.6 10.5 12.4	.16 .17 .14 .15 .18	24 33 29 25 79	.002 .004 .005 .001 .002	<1 1 <1 <1 <1	.85 .84 .73 .69 .92	.005 .010 .021 .005 .009	. 04 . 05 . 04 . 04 . 04	.1 . .1 . .1 . .1 . .1 .	05 2. 06 2. 14 1. 03 2. 06 2.	9 <.1< 2 .1< 7 <.1 2 <.1< 9 .1<	<.05 .05 .12 .05 .05	3 .5 2 .9 2 1.8 2 .7 2 1.3	15.0 7.5 1.0 7.5 15.0
18225N 10080E 18225N 10100E 18225N 10120E 18225N 10140E 18225N 10160E	.5 .5 .4 .5 .2	21. 20. 33. 22. 3.	5 60.4 8 39.3 9 45.0 5 26.1 9 5.1	4 81 3 90) 120 L 72 L 8	.1 .1 .1 .1	31.6 43.0 48.8 30.3 3.8	13.0 31.6 25.9 14.1 1.1	338 2493 1397 461 31	4.24 4.49 5.81 3.95 .61	17.2 13.8 65.9 41.8 4.8	3.1 1.9 1.6 1.5 .2	2.1 1.0 4.5 3.5 <.5	4.9 5.0 4.8 4.7 2.9	49 36 57 41 5	.2 .3 .2 .1 <.1	1.2 1.2 2.7 2.2 .2	.4 .5 .9 .5 .2	6 8 8 5	.55 .40 .61 .46 .04	.079 .069 .102 .060 .022	17 18 28 24 19	7.7 10.0 9.7 9.1 2.6	.11 .13 .22 .16 .02	19 47 36 20 17	.001 .002 .002 .002 .002 .001	<1 <1 <1 <1 <1	.61 .81 .56 .56 .30	.005 .005 .005 .004 .004	.03 .03 .04 .03 .02 <	.8 . .1 . .2 . .2 .	05 3. 06 3. 03 4. 04 2. 03 .	8 <.1< 1 .1< 1 <.1< 2 <.1< 4 <.1<	<.05 <.05 <.05 <.05 <.05	1 .8 2 .7 2 1.0 1 .7 2 <.5	7.5 7.5 15.0 15.0 1.0
18225N 10180E 18225N 10220E 18225N 10240E 18225N 10260E 18225N 10280E	.4 .5 .4 .6	27. 19. 15. 15. 14.	0 35.6 6 27.9 8 21.9 9 32.3 1 29.9	5 79 9 69 9 53 9 92 9 44	.1 .4 .1 .3	31.2 20.8 13.7 18.8 14.3	15.4 17.8 9.3 11.2 6.9	199 719 485 726 608	4.70 4.00 3.59 5.29 5.54	48.3 13.0 15.3 13.3 13.4	.6 1.4 .5 .8 .6	5.3 3.4 3.5 1.1 1.9	7.3 3.1 1.5 2.2 1.4	11 23 5 9 8	.1 .2 .1 .1	2.2 .9 .9 .9	.5 .6 .6 .7	10 15 11 17 16	.08 .31 .03 .07 .05	.056 .089 .078 .132 .276	23 30 17 19 17	12.0 12.6 10.0 19.9 16.4	.15 .10 .09 .16 .12	30 30 20 20 16	.002 .005 .003 .006 .005	<1] <1] <1] <1] <1]	L.19 L.19 .77 L.08 .74	.004 .005 .004 .004 .011	.04 .03 < .03 .03 .02 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	07 2. 11 3. 04 . 09 1. 04 .	4 <.1< 1 .1< 8 <.1< 2 .1< 7 <.1<	<.05 <.05 <.05 <.05 <.05	2 <.5 2 .6 3 <.5 3 .7 4 .5	15.0 15.0 15.0 15.0 15.0 15.0
18225N 10300E 18225N 10320E 18225N 10340E 18225N 10360E 18225N 10380E	.4 .4 .3 .4 .4	8. 9. 6. 23. 11.	7 17.1 5 21.2 7 19.0 3 34.1 0 20.7	L 37 2 45 0 33 L 69 7 42	.1 .1 <.1 .1 <.1	11.1 11.1 8.1 19.9 13.5	5.5 7.6 3.7 14.1 6.2	453 635 108 489 118	3.77 3.25 3.09 4.06 5.31	11.4 40.7 10.9 30.1 15.1	.4 .4 .4 .7 .4	1.3 1.5 .6 6.8 3.3	1.1 3.2 3.2 4.0 3.0	6 6 8 5	.1 .1 .1 .1 .1	.7 .9 .5 3.6 .9	.5 .5 .6 .4	14 13 12 8 11	.04 .03 .03 .06 .03	.134 .069 .049 .081 .056	18 19 21 19 26	12.6 12.0 9.3 8.1 10.8	.11 .10 .10 .10 .10	34 32 24 16 16	.003 .003 .002 .001 .002	<1 <1 <1 <1 <1 <1 <1	.69 1.14 .72 .66 .61	.003 .004 .004 .004 .003	.03 .03 .03 < .03 .03	.1 . .1 . .1 . .1 . .1 .	06 . 07 1. 03 . 05 2. 04 .	6 <.1< 0 .1< 8 .1< 2 <.1< 7 <.1<	<.05 <.05 <.05 <.05 <.05	3 .5 3 <.5 3 <.5 2 <.5 3 .5	15.0 15.0 15.0 7.5 15.0
18225N 10400E 18200N 10000E 18200N 10020E 18200N 10040E RE 18225N 10300E	.4 .5 .4 .3 .5	9 86 29 42 9	2 33.6 1 85.6 7 25.4 7 36.3 0 18.9	5 47 5 113 4 81 3 87 9 37	<.1 .2 .1 .1 .1	12.6 109.1 37.2 49.2 11.2	6.4 64.8 21.4 28.3 5.4	214 600 979 636 458	4.91 10.94 4.39 5.95 3.94	18.8 41.7 12.1 19.1 11.3	.4 1.4 1.1 .9 .4	1.2 6.0 1.5 1.5 1.0	4.1 9.0 6.6 8.6 1.4	6 248 50 115 6	<.1 .2 .1 .1 .1	.9 3.1 2 1.0 1.4 .7	.5 2.2 .4 .8 .5	10 5 9 7 13	.02 4.20 .36 L.79 .04	.048 .070 .094 .080 .134	22 30 43 33 18	10.8 7.2 11.4 10.5 12.6	.21 .25 .29 .30 .11	20 23 31 25 35	.002 .002 .003 .002 .002	<1 2 <1 1 <1	.78 .36 .80 .63 .71	.004 .005 .004 .004 .003	.03 .03 < .05 < .04 < .02	.1 . .1 . .1 . .1 .	03 1. 05 4. 06 3. 03 3. 07 .	2 <.1< 7 <.1 3 <.1< 9 <.1 5 .1<	<.05 .43 .05 .11 <.05	3 <.5 1 1.1 2 .8 2 .6 3 .6	15.0 7.5 15.0 15.0 15.0
18200N 10060E 18200N 10080E 18200N 10100E STANDARD DS5	.3 .4 .3 12.5	28 37 26 141	5 23.9 9 32.0 1 23.9 9 25.9	9 79) 94 9 66 5 138	.1 .1 .1 .3	36.3 46.4 25.4 24.7	17.5 20.1 10.4 11.7	670 515 191 740	3.85 4.77 3.58 3.00	50.8 40.8 25.8 18.4	.6 .7 .6 6.4	6.0 11.0 3.8 43.6	9.1 9.5 6.6 2.9	29 23 6 47	.1 .1 .1 5.6	2.9 2.9 2.5 3.9 (.4 .5 .4 6.2	12 10 9 62	.34 .25 .03 .72	.066 .064 .045 .101	31 30 25 12	12.4 11.4 9.5 190.5	.26 .23 .14 .71	45 36 38 137	.004 .003 .001 .094	1 <1 <1 19 1	.82 .72 .73 .99	.006 .005 .005 .034	.11 .07 .05 .15 4	.1 . .1 . .1 . .9 .	01 3. 01 3. 05 1. 16 3.	3 <.1< 9 <.1< 8 <.1< 5 1.1<	<.05 <.05 <.05 <.05	2 <.5 2 <.5 2 .5 6 4.8	15.0 15.0 7.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 29

SAMPLE#	Mo ppm	p	Cu opm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	M PP	n m	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm p	Sb opm p	Bi opm p	V pm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %p	W pm p	Hg opm p	Sc pm pp	T1 pm	S Ga % ppr	a SeS nppm	Sample gm
18200N 10120E 18200N 10140E 18200N 10160E 18200N 10180E 18200N 10200E	.4 .4 .5 .6	28 6 21 18 7	8.0 2 5.4 3 3 8.1 2 7.8 2	28.4 8.2 32.8 21.4 13.2	72 19 51 69 29	.1 <.1 .1 <.1	31.0 7.2 19.1 27.3 7.0	13.8 2.6 7.0 16.0 3.4	38 6 15 99 9	34. 51. 94. 53. 33.	49 3 68 1 28 3 91 2 05 2	88.0 5.4 82.5 26.8 20.0	.5 .2 .5 .9	3.9 <.5 4.5 2.4 .5	6.1 1.2 3.0 2.2 3.1	6 4 5 12 6	<.1 2 <.1 .1 1 .1 1 <.1	2.1 .7 .7 .3 .7	.5 .4 .5 .4 .3	10 21 12 17 17	.03 .02 .04 .13 .04	.054 .019 .088 .065 .035	24 25 20 25 27	12.7 6.2 13.0 17.7 8.1	.18 .03 .11 .24 .05	18 14 17 24 30	.003 .008 .003 .007 .003	<1 <1 1 1 <1	. 78 . 48 . 73 . 04 . 76	.005 .003 .003 .004 .004	.04 .02 .03 .04 < .02	.1 . .1 . .1 . .1 . .1 .	07 1 03 10 1 05 1 03	.7 < .4 .1 .4 .7 <	.1 <.(.1 <.(.1 <.(.1 <.(.1 <.()5)5)5)5)5)5)5)5	2 .6 4 <.5 3 .7 3 <.5 3 <.5	15.0 15.0 15.0 15.0 15.0
18200N 10220E 18200N 10240E 18200N 10260E 18200N 10280E 18200N 10300E	.4 .4 .3 .5	16 7 20 11	5.3 (7.8 (7.0).9 (1.3 (38.3 15.4 9.9 35.4 16.6	49 27 19 80 39	.1 <.1 <.1 .1 .1	18.8 7.6 6.0 19.9 10.4	9.5 3.3 4.9 11.1 5.8	40 14 31 77 37	2 4. 1 2. 7 1. 6 6. 5 3.	15 1 52 48 06 1 05 1	6.0 9.6 6.8 8.3	.5 .4 .3 .6 .4	2.6 .8 .9 3.0 2.9	5.0 1.5 2.0 6.5 1.6	7 4 4 7 4	.1 1 .1 .1 .1 1 .1 1	.4 .3 .0 .6	.6 .4 .3 .6 .5	8 13 7 9 12	.07 .02 .02 .05 .05	.092 .042 .043 .078 .079	13 23 21 18 18	10.6 9.3 7.0 15.1 10.6	.06 .07 .07 .13 .10	21 19 16 30 23	.002 .003 .001 .003 .002	<1 <1 <1 <1 1 <1	.91 .68 .59 .08 .71	.004 .003 .003 .003 .003	.02 .02 < .02 < .02 < .02 <	.1 . .1 . .1 . .1 . .1 .	09 1 06 05 10 2 06	.6 .7 < .5 < .1 < .7 <	.1 <.(.1 <.(.1 <.(.1 <.(.1 <.()5)5)5)5)5)5)5)5	2 .7 3 .5 2 <.5 2 .8 3 <.5	15.0 15.0 7.5 15.0 15.0
18200N 10320E 18200N 10340E 18200N 10360E 18200N 10380E 18175N 10000E	.4 .4 .4 .4	13 19 6 10 30	3.9 5.8 5.4).2).5	15.4 24.8 11.8 53.2 30.3	50 54 22 63 81	.1 .1 .2 .3	18.6 18.8 6.6 16.3 35.1	8.9 11.0 2.9 9.6 16.6	34 33 20 59 77	63. 53. 02. 83. 64.	06 1 90 1 02 36 1 53 2	19.5 15.2 9.2 11.8 20.9	.4 .6 .3 .8 3.1	1.2 1.5 1.4 1.4 18.5	2.2 4.7 .6 3.8 5.4	6 5 32 33	.1 1 .1 .3 .2 1	. 0 . 8 . 6 . 6 . 4	.3 .5 .3 .4 .5	14 13 13 7 12	.03 .03 .03 .42 .35	.054 .061 .048 .074 .103	28 19 19 17 40	13.2 14.6 6.2 9.7 14.4	.17 .12 .04 .08 .19	23 22 18 21 33	.004 .003 .003 .002 .003	<1 <1 1 <1 <1 <1 <1	.85 .15 .37 .74 .97	.003 .004 .003 .005 .005	.03 .03 .03 .02 .05	.1 . .1 . .1 . .1 .	04 09 1 05 07 1 07 3	.9 .3 .4 < .6 < .3	.1 < .(.1 < .(.1 < .(.1 < .(.1 < .(05 05 05 05 05 05 05	3 .5 3 .6 3 <.5 2 .5 3 .7	15.0 15.0 15.0 7.5 15.0
18175N 10020E 18175N 10040E 18175N 10060E 18175N 10080E 18175N 10100E	.6 .3 .3 .5	38 24 31 17 16	3.7 4.6 1.2 7.7 5.8	48.8 36.6 22.6 24.0 27.9	102 76 80 62 84	.3 <.1 .1 .1 .6	42.6 28.1 38.7 23.6 25.4	27.2 13.6 18.9 10.5 11.7	2 139 5 27 6 47 5 24 148	2 4. 0 3. 8 3. 4 4. 2 4.	80 5 78 5 78 5 35 3 22 3	54.5 59.3 54.3 34.2 33.1	1.2 .6 .6 .6 1.7	10.5 6.5 6.1 2.2 1.9	5.6 7.3 12.4 3.0 2.4	22 11 65 11 26	.2 4 .2 5 .1 3 .1 2 .2 1	1.3 5.0 3.2 2.5 1.9	.6 .5 .4 .4 .4	10 10 13 1 18 19	.27 .07 .57 .10 .33	.120 .055 .054 .035 .133	35 28 36 29 31	11.5 9.6 13.7 15.1 16.1	.18 .15 .26 .21 .19	37 26 49 29 52	.003 .002 .009 .005 .006	<1 1 <1 1 <1 <1 1	.05 .71 .90 .97 .32	.007 .004 .009 .004 .004	.05 .04 .17 .04 .04	.1 . .1 . .1 . .1 . .1 .	08 3 05 2 01 3 03 1 11 3	.8 .2 < .8 < .4 .4	.1 <.(.1 <.(.1 <.(.1 <.(.1 <.(05 05 05 05 05 05	2 .9 2 <.5 2 <.5 3 <.5 3 .6	15.0 15.0 15.0 15.0 15.0 15.0
18175N 10120E 18175N 10140E 18175N 10160E 18175N 10180E 18175N 10200E	.5 .8 .7 .4	24 21 29 16 17	4.7 1.3 5.7 5.1 7.1	30.5 25.5 26.9 19.3 23.5	89 57 60 82 123	.4 .1 .2 .2	31.5 21.8 24.9 28.8 21.5	20.9 10.1 12.6 13.8 12.2	9 160 41 5 53 106 2 178	34. 45. 55. 43. 73.	52 35 09 35 2 59	44.9 51.7 45.9 21.6 20.1	1.1 .5 .5 1.2 3.1	4.1 1.3 1.8 1.7 2.5	2.0 2.3 2.1 2.8 2.3	22 7 5 26 22	.3 2 .1 2 .1 2 .2 1 .2 1	2.2 2.5 2.2 1.1	.6 .5 .7 .3 .4	16 22 13 15 18	.34 .05 .03 .42 .31	.133 .082 .165 .085 .147	29 28 23 25 24	14.6 16.6 14.3 16.3 15.6	.16 .15 .13 .33 .21	39 28 25 41 38	.004 .008 .004 .009 .009	<1 1 <1 <1 <1 <1 <1 1	.15 .84 .76 .97 .09	.006 .004 .004 .005 .005	.04 < .04 .04 .05 < .04	(.1) (.1) (.1) (.1) (.1) (.1)	10 2 05 1 05 1 05 2 09 2	.1 .3 .0 .2 < .2	.1 <.(.1 <.(.1 <.(.1 <.(.1 <.(05 05 05 05 05 05	3 .7 4 .5 3 .6 3 .5 3 .6	7.5 15.0 15.0 15.0 15.0
18175N 10220E RE 18175N 10040E 18175N 10240E 18175N 10260E 18175N 10280E	.5 .3 .6 .4	13 25 27 13 27	3.5 5.1 1.8 3.2 1.9	17.4 36.3 25.9 20.6 48.1	93 72 78 41 61	.3 <.1 .1 .1 .1	18.8 27.9 23.7 14.9 21.2	8.9 13.5 9.1 6.4 13.4) 148 5 28 24 9 27 9 32	83. 43. 54. 83. 45.	35 : 93 ! 61 : 57 : 96 4	L5.2 59.4 L7.1 L6.4 49.0	1.8 .6 .6 .4 .7	2.0 6.4 2.0 .6 6.4	1.9 6.8 5.0 2.1 5.5	30 13 9 8 5	.1 .1 5 .1 1 .1 .1	.8 5.4 1.1 .8 1.4	.4 .5 .4 .4	18 9 16 12 12	.47 .08 .06 .06 .02	.116 .059 .080 .070 .085	21 29 23 23 19	16.4 9.8 18.9 12.5 14.7	.18 .16 .22 .12 .14	49 27 38 35 23	.006 .002 .006 .004 .003	<1 1 <1 <1 1 <1 <1 <1	23 .75 39 .77 18	.006 .004 .004 .004 .004	.04 .05 .04 .03 .02	.1 . .1 . .1 . .1 .	11 1 04 2 12 1 09 1 08 1	.6 .4 < .7 < .0 .4	.1 <.(.1 <.(.1 <.(.1 <.(.1 <.(05 05 05 05 05 05	3 .6 2 <.5 3 .7 3 <.5 2 .6	15.0 15.0 15.0 15.0 15.0
18175N 10300E 18175N 10320E 18175N 10340E 18175N 10360E STANDARD DS5	.7 .6 .3 .4 12.3	59 18 12 13	5.1 3.3 2.8 3.4 3.3	40.9 31.4 19.0 27.4 23.8	83 66 42 33 139	.1 .2 .1 .1 .3	30.4 22.5 14.3 9.7 24.7	22.2 18.1 7.0 4.6 11.9	2 69 123 31 5 20 9 74	6 6. 7 4. 4 2. 3 4. 3 2.	36 72 83 56 93	48.7 40.5 13.3 13.7 18.0	.6 .6 .5 .5 5.8	2.9 4.4 1.9 4.7 38.9	1.3 4.6 2.7 2.1 2.9	6 10 8 5 47	.1 2 .1 1 .1 .1 5.2 3	2.0 2 1.3 .6 .8 3.7 9	2 .6 .5 .6 5.8	12 12 8 16 60	.02 .09 .05 .03 .75	.159 .106 .078 .049 .091	20 19 21 22 12	8.9 16.7 8.5 10.1 189.9	.06 .13 .09 .09 .68	19 25 28 17 134	.005 .004 .002 .004 .004 .097	<1 <1 1 <1 <1 16 1	.44 .37 .69 .73 .99	.017 .004 .003 .003 .034	.03 .03 .03 .02 .14 4	.1 . .1 . .1 . .1 .	05 14 1 05 1 04 18 3	.8 < .5 .3 .7 .4 1	.1 <.(.1 <.(.1 <.(.1 <.(.1 <.(.0 <.(05 05 05 05 05	2 .7 2 .9 2 <.5 5 <.5 7 4.9	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data & FA

Page 30

ACME ANALYT

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag N opm pp	Ni C om pp	Co Dom p	Mn Fe pm %	As ppm	U ppm	Au ppb	Th ppm (Sr opm p	Cd Sb pm ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti % p	B A	.] N %	а К 8 % р:	W pm p	Hg S pm pp	c Tl m ppm	S (% pp	Ga Se S om ppm	ample gm
18175N 10380E 18150N 10000E 18150N 10020E 18150N 10040E 18150N 10060E	.5 .4 .5 .6	12.0 23.1 49.7 11.0 18.5	23.6 32.9 49.4 11.6 11.3	48 < 55 83 18 43 <	<.1 10 .2 30 .6 38 .1 7 <.1 17	4 5. 1 19. 8 30. 2 2. 5 7.	7 3 1 5 4 7 8 0 1	30 2.50 08 4.98 66 5.20 64 1.98 32 2.65	24.9 20.3 53.2 18.8 53.6	.3 : .9 1.6 .4 .3	16.8 1.8 9.4 2.5 1.8	2.5 6.4 13.8 1.0 2.0	11 11 9 4 < 7 <	.1 3.0 .2 1.4 .2 4.9 .1 1.9 .1 4.9	.4 .6 .8 .3 .4	9 16 9 15 17	.05 .14 .07 .01 .02	.046 .083 .115 .039 .039	14 29 31 23 28	3.6 15.1 14.1 5.8 5.2	.03 .20 .14 .02 .03	33 . 20 . 23 . 15 . 21 .	001 005 001 005 005	1 .3 1 1.2 1 1.7 <1 .3 1 .3	5 .00 7 .01 1 .00 3 .00 0 .00	4 .03 1 .04 3 .04 3 .03 4 .02 <	.1 . .2 . .2 . .1 . .1 .	03 1. 08 2. 16 6. 05 . 02 1.	1 .1< 4 <.1< 0 <.1< 5 <.1< 0 <.1<	<.05 <.05 <.05 <.05 <.05	2 <.5 4 .5 1 1.3 2 <.5 2 <.5	15.0 15.0 7.5 15.0 15.0
18150N 10080E 18150N 10100E 18150N 10120E 18150N 10140E 18150N 10160E	.5 .4 .4 .5	16.2 15.6 7.5 6.8 14.7	15.6 21.5 15.4 15.8 21.5	36 33 18 16 31	.2 14 .1 13 .3 6 .1 5 .1 12	.7 5. .4 5. .9 3. .4 2. .7 6.	7 1 6 2 0 1 6 10 5 4	62 2.94 78 4.04 48 2.13 73 1.79 12 3.12	37.3 72.0 18.0 15.5 31.8	.4 .4 .3 .3 .4	1.2 1.8 .5 3.2 3.3	.9 1.0 .8 .8	5 < 5 < 6 < 5	.1 2.2 .1 2.6 .1 .6 .1 .5 .1 1.5	.4 .6 .3 .4 .5	16 14 14 10 14	.02 .02 .02 .05 .02	.112 .111 .164 .185 .071	28 27 28 23 24	7.1 7.7 8.1 5.7 7.9	.04 .05 .04 .03 .05	21 . 19 . 17 . 40 . 18 .	004 003 008 003 005	1 .4 1 .4 1 .4 <1 .3 1 .4	5.00 3.00 4.00 1.00 6.00	3 .03 < 3 .03 < 5 .04 < 6 .03 3 .03	.1 . .1 . .1 . .1 . .1 .	03 . 03 . 03 . 10 . 03 .	6 .1< 4 <.1< 4 <.1< 4 .1< 7 .1<	<.05 <.05 <.05 <.05 <.05	3 <.5 3 .5 3 <.5 3 <.5 3 <.5 3 <.5	7.5 15.0 15.0 15.0 15.0
18150N 10180E 18150N 10200E 18150N 10220E 18150N 10240E RE 18150N 10240E	.4 .6 .4 .5	13.0 37.4 7.6 14.4 13.3	25.8 63.7 11.2 29.9 29.9	43 91 18 36 35	.1 13 .1 34 .1 6 .2 12 .2 12	.5 7. .9 14. .1 2. .5 5. .0 5.	.0 4 .7 2 .9 1 .2 2 .2 2	19 4.07 83 7.48 77 1.59 16 4.63 09 4.52	30.7 45.5 12.6 22.3 22.5	.4 .7 .3 .4 .4	.8 4.2 1.8 2.7 1.4	1.7 6.0 .9 1.8 1.2	8 7 5 < 4 < 5 <	.1 1.5 .1 4.2 .1 .6 .1 1.1 .1 1.2	.5 .9 .3 .5 .4	14 10 11 13 15	.09 .04 .02 .03 .03	.139 .100 .072 .100 .099	20 19 22 18 22	8.2 13.2 6.2 10.8 11.4	.05 .14 .04 .08 .08	28 . 19 . 21 . 17 . 19 .	005 003 004 003 003	<1 .5 1 .8 1 .4 <1 .5 <1 .5	9.00 9.00 6.00 7.00	4 .04 < 4 .02 < 3 .04 < 4 .02 < 4 .03	.1 . .1 . .1 . .1 . .1 .	08 . 07 2. 05 . 04 . 04 .	9 <.1< 5 <.1< 5 .1< 8 <.1< 7 .1<	<.05 <.05 <.05 <.05 <.05	3 <.5 2 .7 3 <.5 3 .5 3 .5	15.0 15.0 15.0 7.5 7.5
18150N 10260E 18150N 10280E 18150N 10300E 18150N 10320E 18150N 10340E	.5 .6 .3	13.5 20.0 18.5 24.0 10.0	27.3 49.6 30.0 47.5 14.8	60 63 64 66 35	.1 17 .1 18 .3 21 .1 25 .1 7	.4 12. .3 7. .2 12. .5 17. .4 4.	.9 4 .8 1 .2 3 .8 7 .7 1	37 3.57 97 4.40 83 3.70 64 6.07 97 2.63	19.2 30.7 27.5 26.7 9.6	.5 .4 .6 .8 .4	.5 8.5 3.1 1.1 <.5	1.7 3.8 2.5 6.3 3.7	8 8 21 7 5	.1 1.0 .1 1.7 .2 1.7 .1 1.3 .1 .4	.4 .5 .5 .8	15 11 12 11 10	.07 .03 .26 .05 .02	.049 .057 .093 .097 .043	26 22 22 19 22	11.7 9.9 8.6 17.9 8.6	.11 .12 .08 .11 .08	33 . 23 . 26 . 19 . 36 .	.006 .003 .004 .006 .002	1 .8 <1 .7 <1 .8 <1 1.0 <1 .7	80 .00 19 .00 80 .00 97 .00 18 .00	5 .03 4 .04 < 6 .04 < 7 .02 3 .04	.1 . .1 . .1 . .1 . .2 .	05 1. 05 1. 07 1. 10 2. 03 .	1 <.1 4 <.1 6 .1 2 .1 9 .1	<.05 <.05 <.05 <.05 <.05	3 <.5 2 .5 2 <.5 2 1.0 2 <.5	15.0 15.0 7.5 15.0 15.0
18150N 10360E 17950N 9900E 17950N 9920E 17950N 9940E 17950N 9960E	.3 .5 .4 .7 .8	13.6 14.1 30.7 32.0 23.8	31.4 18.4 25.0 41.4 27.3	34 41 81 80 85	.2 14 .1 14 .1 37 .4 32 .2 24	.2 6. .7 7. .1 14. .0 14. .4 11.	.02 .33 .14 .15 .15	07 3.35 70 3.64 28 4.24 72 8.28 36 7.34	23.5 11.6 20.8 28.5 23.3	.5 .5 .7 .9 .6	4.0 <.5 1.9 1.9 <.5	4.1 2.0 11.7 8.2 2.7	10 4 8 5 18	.1 2.0 .1 .9 .1 1.5 .2 1.5 .2 1.2	.5 .4 .3 .6 .7	8 14 13 15 21	.09 .01 .04 .02 .58	.057 .071 .054 .216 .154	18 25 36 26 21	8.9 11.0 17.0 25.9 17.9	.08 .09 .32 .23 .15	21 . 19 . 32 . 30 . 74 .	.002 .004 .003 .006 .006	<1 .6 <1 .7 <1 1.2 <1 1.5 1 .8	52 .00 74 .00 25 .00 56 .00 39 .00	4 .03 2 .03 3 .07 < 3 .04 3 .04	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 1. 04 . 06 2. 12 1. 08 1.	3 <.1 7 .1 4 .1 7 .1 0 .1	<.05 <.05 <.05 <.05 <.05	3 .5 4 <.5 3 .5 3 .9 6 .6	15.0 15.0 15.0 15.0 15.0
17950N 9980E 17950N 10000E 17950N 10020E 17950N 10040E 17950N 10060E	.5 .7 .3 .4 .5	23.9 26.0 14.3 14.8 21.4	26.6 40.8 32.2 37.6 22.2	71 77 57 60 74	.1 33 .2 22 .1 16 <.1 18 .1 28	.1 15 .8 12 .6 8 .6 9 .5 16	.63.76. .76.04 .74.74	46 4.76 54 7.69 28 4.46 01 5.38 94 3.83	21.9 58.7 10.8 13.5 29.4	1.0 .7 .7 .6 3.1	<.5 2.5 <.5 <.5 1.6	7.8 2.0 4.3 1.9 2.4	8 12 9 12 30	.1 1.2 .1 7.7 .3 1.0 .2 1.3 .2 1.2	.4 .6 .5 .6 .4	10 17 9 11 21	.09 .13 .10 .11 .63	.064 .098 .091 .073 .107	29 23 15 13 32	18.3 19.2 12.3 15.6 25.0	.31 .14 .10 .10 .28	25 56 42 26 41	.003 .006 .002 .004 .014	<1 1.2 1 1.0 <1 .0 1 .7 <1 1.0	25 .00 10 .00 17 .00 19 .00 19 .00	3 .04 3 .04 2 .03 3 .02 < 4 .05 <	.1 . .1 . .1 . .1 . .1 .	04 1. 07 1. 06 1. 05 1. 11 3.	9 <.1 5 .1 4 .1 1 <.1 6 .1	<.05 <.05 <.05 <.05 <.05 .07	3 <.5 4 .5 2 <.5 3 <.5 4 .6	15.0 15.0 15.0 7.5 15.0
17950N 10080E 17950N 10100E 17950N 10120E 17950N 10140E STANDARD DS5	.7 .6 .5 .3 12.7	23.6 11.2 23.2 27.7 138.3	26.4 24.6 30.2 25.3 25.2	67 43 62 64 132	.2 25 .1 12 .1 21 .1 27 .3 23	.2 15 .1 8 .3 8 .1 9 .7 11	.8 11 .9 4 .3 1 .0 1 .4 7	90 3.94 54 5.02 82 5.59 42 5.37 41 2.97	36.8 16.1 55.4 189.5 17.5	2.8 .6 .5 6.2	.8 <.5 2.0 9.9 42.3	2.5 1.7 2.9 4.5 2.9	39 20 9 10 46 9	.2 1.4 .1 .9 .2 2.4 .1 8.9 5.6 3.9	.5 .5 .6 .6 6.0	15 26 14 7 58	.84 .43 .08 .07 .72	.114 .051 .068 .042 .093	34 20 26 17 12	19.6 15.2 12.1 8.4 189.0	.14 .08 .09 .08 .68	38 28 32 27 135	.007 .010 .003 .002 .095	1 1.1 <1 .8 <1 .8 1 .9 17 1.9	.3 .00 36 .00 33 .00 56 .00 94 .03	5 .05 < 4 .03 3 .03 4 .04 4 .14 4	.1 . .1 . .1 . .1 . .1 .	12 3. 05 1. 04 1. 04 2. 17 3.	4 .1 1 .1 4 .1 2 <.1 4 1.0	.06 <.05 <.05 <.05 <.05	3 .8 5 <.5 4 .5 2 .5 6 5.0	7.5 7.5 15.0 7.5 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data LFA

Paq	e	3	1
	_		

ACME ANALYTICAL

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	PI	La	Cr	Mg	Ba	Ti	BA	Na	K V	N Hg Sc	T1	S Ga	Se Sa	ample
	ppm	ppm	ppm	ppm p	opm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm p	opm	ppm	ppm p	mqc	%	%pj	pm	ppm	%p	pm	% p	pm %	ś %	% ppr	n ppm ppm	ppm	% ppm	ppm	gm
17950N 10160E 17950N 10180E 17950N 10200E 17950N 10220E 17950N 10220E 17950N 10240E	.7 .4 .9 .8	127.3 45.2 79.1 83.5 18.1	88.8 84.4 58.4 84.5 34.0	210 150 136 179 54	.1 .1 .2 .3 .1	110.9 67.3 44.2 79.8 20.3	51.1 44.9 41.1 46.8 7.8	514 713 1144 1183 229	10.45 5.10 7.57 11.14 6.89	345.7 71.6 172.6 91.7 25.2	.8 .9 .9 1.1 .6	25.5 13.5 95.8 14.6 1.8	7.1 11.7 4.7 11.9 3.0	7 12 14 52 5	.1 .3 .3 .2 .1	40.1 3.7 10.5 9.5 1.4	1.9 .7 1.4 1.5 .6	2 5 7 10 11	.01 . .06 . .04 . .13 . .02 .	039 055 070 079 080	6 15 15 24 18	4.9 13.0 4.0 7.9 15.0	.04 .10 .02 .07 .15	14<.0 42<.0 43 .0 49 .0 26 .0	001 001 001 001 001 003	1 .30 1 2.26 2 .58 2 .54 1 .86) .002 5 .004 8 .003 4 .003 5 .003	.02 < .04 .02 < .04 < .02	L .05 4.5 L .12 5.1 L .08 6.1 L .05 8.7 L .08 .9	<.l<. <.l<. <.l .: <.1 .:	05 <1	.5 .6 <.5 .8 .5	7.5 7.5 15.0 15.0 7.5
17950N 10260E	.6	23.9	37.3	63	.1	26.2	13.1	467	6.41	30.2	.8	4.1	3.0	7	.2	1.8	.5	14	.06 .	089	26	16.6	. 15	18 .0	005	1 1.05	5 .003	.02 <	L .07 1.2	<.l<.	05 2	.6	15.0
17950N 10280E	.5	18.0	40.2	59	.4	27.7	11.2	281	6.19	35.9	.9	3.3	3.1	12	.1	1.4	.6	16	.11 .	096	18	21.1	. 16	44 .0	007	1 1.61	.004	.03	L .11 1.7	.l<.	05 3	.6	15.0
17950N 10300E	.4	49.0	51.0	120	.3	58.6	29.5	628	5.39	52.9	1.1	17.0	16.0	19	.3	2.5	.7	6	.14 .	082	53	10.7	. 14	33 .0	001	1 1.52	2 .005	.03 <	L .12 7.1	.l<.	05 1	.6	15.0
17900N 9900E	.3	7.7	9.3	14	.1	6.7	2.5	39	1.87	5.5	.3	<.5	3.0	4 <	<.1	.3	.2	12	.01 .	035	31	7.5	. 04	21 .0	003	<1 .79	9 .004	.03 <	L .04 .6	.l<.	05 4	<.5	15.0
17900N 9920E	.4	15.4	16.7	50	.3	18.9	7.8	1410	3.75	10.4	.5	1.1	4.5	5	.1	.6	.3	12	.03 .	080	27	14.8	. 18	42 .0	003	1 1.08	8 .003	.04 <	L .09 1.0	.l<.	05 4	<.5	15.0
17900N 9940E 17900N 9960E 17900N 9980E 17900N 10000E 17900N 10020E	.8 .3 .7 .5 .6	15.5 4.4 14.8 18.0 11.7	17.0 8.0 19.2 18.3 10.7	56 12 61 78 36	.3 <.1 .2 <.1 .1	19.7 4.0 16.6 30.5 14.2	7.7 1.9 10.4 13.1 4.8	1431 69 1036 492 95	3.14 1.32 3.17 3.87 2.24	11.1 4.6 12.6 20.3 11.3	6.5 .2 6.3 2.2 .9	<.5 1.2 .7 .7 <.5	1.1 .5 1.5 6.1 1.4	32 5 40 18 35	.1 <.1 .1 .1 .1	.7 .3 .6 1.2 .5	.3 .2 .3 .3 .2	16 8 18 14 24	.55 . .04 . .80 . .27 . .63 .	079 048 136 059 041	28 21 23 33 29	15.0 5.1 18.1 17.7 9.9	.10 .03 .14 .29 .05	45 .0 17 .0 33 .0 31 .0 36 .0	006 003 008 005 005	1 .74 <1 .38 1 1.03 1 1.06 <1 .75	005 002 005 003 003 003	.04 . .03 <. .04 <. .05 <. .04 .	L .06 1.0 L .04 .2 L .09 1.2 L .04 1.9 L .01 1.1	.1<. <.1<. <.1<. <.1<. .1<.	05 3 05 2 07 3 05 3 05 3	.5 <.5 .7 <.5 <.5	15.0 15.0 15.0 15.0 15.0
17900N 10040E	.4	18.4	24.5	75	.2	21.5	16.3	447	3.34	20.9	1.8	4.1	5.4	36	.1	1.4	.3	9	.53 .	075	28	10.5	. 16	32 .(002	1 .77	2 .005	.05 .	L .06 2.6	<.l<.	05 2	<.5	15.0
17900N 10080E	.3	32.4	32.7	91	.2	41.5	18.8	538	4.01	38.8	.9	5.1	10.6	20	.1	3.0	.4	9	.13 .	061	44	10.6	. 21	38 .(003	1 .86	.005	.07 .	L .04 3.8	<.l<.	05 2	<.5	15.0
17900N 10100E	.7	25.6	29.3	97	.2	31.8	20.4	1995	4.43	22.3	2.5	4.3	3.5	16	.3	1.3	.4	21	.20 .	132	46	21.6	. 21	52 .(008	1 1.82	2 .006	.06 .	L .12 4.3	.l<.	05 4	.8	15.0
17900N 10120E	.6	22.8	25.8	57	.3	20.8	8.0	239	4.80	33.0	.6	2.6	1.9	6	.1	1.9	.4	13	.03 .	173	23	12.7	. 17	21 .(004	<1 .79	2 .003	.03 .	L .08 1.1	.l<.	05 3	.7	15.0
17900N 10140E	.7	17.8	23.8	41	.2	15.6	6.1	184	5.13	24.5	.6	1.0	2.8	5	.1	1.3	.5	18	.01 .	087	23	15.2	. 13	24 .(004	<1 1.02	2 .003	.03 .	2 .06 1.1	.l<.	05 3	.7	15.0
17900N 10160E 17900N 10180E 17900N 10200E 17900N 10220E 17900N 10240E	.7 .7 .6 .8 .5	22.6 51.9 29.7 69.7 15.8	37.2 67.2 70.9 102.4 23.9	64 106 66 142 48	.1 .4 .1 .5 .1	23.0 45.1 24.8 42.7 13.9	8.4 23.0 16.6 30.1 6.8	288 440 803 1198 189	6.47 10.08 8.79 10.90 3.93	39.3 102.9 67.3 86.0 29.0	.5 .9 .6 .9 .4	3.5 3.9 4.6 10.6 5.6	2.4 2.8 2.7 8.2 2.8	7 9 4 9 6	.1 .1 .2 .2 .1	2.2 10.3 1.7 3.4 1.3	.6 1.4 .9 1.2 .4	13 12 14 10 10	.03 . .03 . .02 . .05 . .02 .	109 317 134 175 060	25 11 21 17 23	12.2 11.0 14.4 17.9 7.4	.10 .08 .09 .13 .06	25 .0 21 .0 19 .0 28 .0 22 .0	004 004 004 003 003	<1 .83 1 .69 <1 .84 <1 1.16 <1 .64	3 .004 9 .004 4 .004 5 .004 4 .003	.04 . .03 . .02 . .03 . .03 .	L .07 1.1 L .07 2.5 L .08 1.2 L .08 3.5 L .06 1.0	.1<. .1<. .1<. .1<. .1<.	05 3 05 2 05 3 05 2 05 2 05 2	.7 .9 1.0 1.2 .6	7.5 7.5 7.5 7.5 15.0
RE 17900N 10080E 17900N 10260E 17900N 10280E 17900N 10300E 17850N 9900E	.4 .4 .5 .3 1.1	35.7 12.7 71.5 42.3 19.8	32.9 24.4 68.7 53.8 20.7	102 43 157 130 73	.2 .1 .3 .1 .3	45.1 13.1 60.0 42.0 31.9	19.9 6.2 53.4 20.1 14.8	542 298 1050 495 907	4.25 3.75 8.16 5.45 4.29	40.9 22.1 78.1 50.6 20.4	.9 .4 .9 .8 4.7	6.4 13.1 25.1 14.4 .5	10.5 1.5 12.9 9.4 2.4	20 8 13 32 22	.2 .1 .2 .1 .1	3.1 1.0 3.0 3.3 .9	.4 .5 1.2 .7 .4	9 14 6 6 19	.15 . .06 . .15 . .27 . .33 .	.067 .042 .063 .074 .101	42 27 28 26 38	10.7 7.8 6.3 6.3 18.2	.21 .06 .12 .12 .13	39 .0 28 .0 27 .0 28 .0 29 .0	004 006 001 002 006	1 .86 <1 .65 <1 .82 1 .53 <1 1.30	5 .005 5 .003 2 .004 3 .005 0 .004	.08 .04 .03 < . .04 < . .05	L .04 4.1 L .04 .9 L .06 5.4 L .04 6.0 L .07 1.7	<.l<. .l<. <.l<. .l<. .l<.	05 2 05 3 05 1 05 1 05 4	.5 .5 .9 .6	15.0 15.0 15.0 15.0 15.0
17850N 9920E	.3	21.8	20.1	83	.1	31.5	13.2	575	3.43	25.9	1.2	1.9	6.1	23	.1	1.3	.4	9	.26 .	079	37	10.5	.19	25 .(004	1 .69	0.003	.04	L .03 2.7	<.l<.	05 2	.7	7.5
17850N 9940E	.3	14.1	21.9	79	<.1	20.6	10.8	302	3.92	29.8	.7	1.3	5.8	17	.1	1.1	.4	12	.13 .	071	30	13.7	.21	33 .(003	<1 .92	2.003	.04 <	L .05 2.2	.l<.	05 2	.6	15.0
17850N 9960E	.5	29.8	25.3	75	.1	35.9	20.7	587	4.16	29.2	1.0	7.6	8.3	24	.1	1.5	.5	10	.25 .	066	35	11.4	.18	25 .(003	<1 .93	3.003	.04	L .05 2.5	<.l<.	05 2	.5	15.0
STANDARD DS5	12.5	137.8	25.3	138	.3	24.2	11.6	740	2.98	17.9	5.8	38.2	2.7	45 5	5.3	3.7	5.6	57	.73 .	089	11 1	.79.9	.69 1	32 .(086	17 2.04	4.032	.14 4	5 .16 3.3	1.l<.	05 2	4.7	15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

Page 32

SAMPLE#	Мо	С	u Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	A٦	Na	K V	l Hg	Sc	Tl	S Ga	Se S	ample
	ppm	рр	m ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	opm p	opm p	opm p	pm p	pm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	% ppr	ı ppm	ppm p	opm	% ppr	ppm	gm
17850N 9980E 17850N 10000E 17850N 10020E 17850N 10040E 17850N 10060E	.7 .5 .4 .3 .4	17. 13. 13. 10. 14.	8 16.3 5 14.5 7 10.3 0 15.5 1 16.9	54 44 30 37 34	.1 .1 .1 .2	18.3 14.1 11.2 10.3 12.9	8.8 10.0 5.2 8.2 6.6	407 626 189 593 351	3.70 2.86 2.21 2.82 2.64	27.5 18.4 19.1 6.9 16.2	.8 .5 .4 .5	4.4 1.6 1.2 <.5 1.0	1.5 1.0 2.8 1.9 1.8	5 11 3 < 5 6	.1 .1 .1 .2 .1	.8 .6 .6 .3 .7	.4 .3 .3 .3	20 18 14 11 14	.04 .15 .02 .08 .05	062 059 048 081 036	25 28 30 30 26	13.0 10.1 7.8 9.0 8.0	.13 .11 .08 .08 .07	25 31 25 29 33	. 005 . 004 . 004 . 004 . 003	<1 <1 1 1 1	.84 .76 .67 .84 .62	.003 .003 .003 .003 .003 .003	.05 .1 .05 <.1 .04 .1 .03 <.1 .03	.03 .04 .04 .04 .04 .04	.7 .6 .7 .8 .9	.1 <. <.1 <. .1 <. <.1 <. <.1 <.	.05 4 .05 3 .05 3 .05 3 .05 3	<.5 <.5 <.5 <.5 <.5	15.0 7.5 15.0 15.0 1.0
17850N 10080E 17850N 10100E 17850N 10120E 17850N 10140E 17850N 10160E	.5 .5 .4 .4 .4	18. 20. 15. 20. 12.	7 19.1 4 24.7 2 14.9 5 21.8 9 21.6	43 45 43 51 29	.2 .2 .1 <.1 .1	16.4 20.0 13.3 20.2 12.0	6.5 12.6 7.2 8.2 5.0	239 545 455 211 143	3.88 3.65 2.81 4.17 3.53	25.3 22.7 20.5 40.5 20.7	.5 .7 .4 .3	3.8 .6 3.7 3.7 1.8	3.3 2.0 1.8 1.6 1.5	5 7 6 5	.2 1 .2 1 .1 3 .1 2 .1 1	L.6 L.3 L.3 2.1 L.3	.3 .4 .3 .5 .4	12 15 13 15 12	.03 .06 .03 .03 .02	.068 .064 .055 .203 .064	22 22 28 28 23	10.7 12.4 7.9 7.8 7.4	.10 .11 .06 .05 .05	33 . 35 . 38 . 19 . 19 .	.002 .004 .003 .005 .003	<1 1 1 1 1	.81 .95 .53 .42 .59	.003 .004 .003 .003 .004	.04 . .04 . .04 . .04 . .03 .	. 04 . 05 . 02 . 03 . 04	.9 1.0 .7 .8 .6	.1 <. .1 <. .1 <. <.1 <. .1 <.	.05 3 .05 3 .05 2 .05 3 .05 3	<.5 <.5 <.5 <.5 <.5	7.5 7.5 7.5 7.5 7.5 7.5
17850N 10180E 17850N 10200E 17850N 10220E 17850N 10240E 17850N 10260E	.4 .3 .5 .4	19. 7. 10. 18. 31.	6 27.2 9 4.5 7 7.7 8 37.6 0 62.9	46 21 31 57 69	.1 .1 <.1 .1 .1	17.3 7.5 9.9 15.7 24.3	8.4 3.2 3.9 7.6 13.7	254 64 85 507 760	4.06 1.23 1.89 4.11 5.96	42.3 17.0 31.2 35.7 49.7	.5 .2 .2 .4 .5	4.5 3.0 1.5 9.6 3.8	4.3 3.2 4.8 3.1 7.9	4 4 < 5 < 8	.1 1 <.1 <.1 .1 1 .1 1	L.5 .7 .7 L.2 L.5	.4 .2 .3 .4 .8	10 10 11 10 8	.02 .01 .05 .04 .06	. 066 . 030 . 035 . 059 . 090	21 30 33 23 22	9.2 3.3 3.0 9.5 10.4	.11 .02 .02 .11 .07	15 16 19 35 26	.002 .003 .002 .003 .003	<1 1 1 <1 <1 <1	.84 .24 .29 .66 .60	.003 .003 .003 .003 .003	.03 .1 .02 <.1 .03 .1 .03 .1	.04 .01 .02 .05 .08	1.1 .6 .6 1.0 2.1	.1 < <.1 < .1 < <.1 < <.1 < <.1 <	. 05 2 . 05 2 . 05 3 . 05 2 . 05 2	.5 <.5 <.5 <.5 .7	7.5 15.0 15.0 15.0 15.0
17850N 10280E 17850N 10300E 17800N 9900E 17800N 9920E 17800N 9940E	.5 .4 .6 .6	29. 45. 13. 18. 15.	9 49.5 2 42.1 2 18.6 9 21.1 5 18.4	76 113 59 44 52	.1 .1 .3 .1 .1	27.3 47.5 15.0 16.9 16.0	15.4 24.2 10.5 8.3 6.1	423 589 602 343 155	5.31 5.51 3.23 4.26 3.95	48.0 57.9 15.0 25.8 25.4	.7 .8 1.9 .6 .5	4.6 13.0 2.1 1.2 2.0	5.7 7.3 2.0 2.6 4.7	8 46 24 5 6 <	.1 2 .1 5 .1 .1 .1 <.1	2.4 5.8 .7 .9 .7	.6 .7 .4 .4 .4	9 8 19 13 14	.06 .40 .32 .04 .05	. 066 . 067 . 079 . 059 . 049	20 19 31 24 24	10.3 5.6 13.7 12.9 11.8	.14 .13 .16 .13 .16	22 29 39 21 36	.003 .002 .006 .004 .003	1 2 1 1 1 <1	.82 .45 .02 .79 .83	.003 .005 .004 .003 .003	.03 .2 .05 <. .05 . .04 . .04 .	2 .06 .03 .05 .04 .03	2.3 · 5.7 · 1.4 .8 · 1.1	<.1 < <.1 < .1 < <.1 < .1 <	.05 2 .05 1 .05 4 .05 3 .05 4	<.5 .7 <.5 <.5 <.5	7.5 15.0 15.0 7.5 15.0
17800N 9960E 17800N 9980E 17800N 10000E 17800N 10020E 17800N 10040E	.6 .5 .5 .6 .4	18. 14. 20. 18. 14.	6 19.7 5 17.8 8 23.6 4 23.9 9 18.2	67 51 49 43 29	.2 .1 .2 .9	23.3 18.1 21.1 17.9 10.7	13.2 8.8 10.1 8.1 4.8	732 298 322 341 320	3.39 3.32 4.28 4.27 2.07	23.4 33.1 30.2 26.8 13.8	1.7 .7 .7 .6 .6	2.0 2.0 <.5 1.3 <.5	2.4 3.9 1.3 1.7 .6	19 14 8 4 4	.2 .1 .1 .1 .1 .2	.8 1.0 1.2 .9 .7	.3 .4 .5 .4 .3	17 14 17 12 14	.30 .21 .08 .02 .04	. 094 . 053 . 117 . 131 . 058	23 29 28 23 16	17.7 13.3 12.3 9.9 8.3	.21 .21 .11 .08 .08	45 33 24 25 26	. 005 . 004 . 006 . 004 . 004	1 1 1 <1 1	. 27 . 94 . 71 . 55 . 74	.004 .003 .004 .006 .004	.06 < .05 .04 .03	L .07 L .02 L .05 L .04 L .06	1.5 1.1 .8 .6 .4	.1 < .1 < <.1 < <.1 < .1 <	.05 3 .05 3 .05 3 .05 3 .05 3	.6 <.5 .5 <.5 .5	7.5 15.0 15.0 7.5 1.0
RE 17800N 10100E 17800N 10060E 17800N 10080E 17800N 10100E 17800N 10100E	.5 .4 .7 .4 .4	9. 10. 27. 9. 15.	1 12.0 7 12.9 8 35.4 8 11.5 4 18.6	31 23 48 32 35	.1 .1 .1 .1 <.1	8.8 12.0 21.9 8.7 13.0	4.8 3.5 10.7 5.3 7.5	609 85 425 648 525	1.78 2.24 5.01 1.88 2.81	13.1 22.4 40.0 12.8 22.7	.4 .3 .5 .3 .4	1.6 1.8 2.8 2.1 1.7	.9 3.1 1.9 .7 1.1	7 6 < 5 < 5	.1 <.1 : .1 : <.1 .1	.6 1.7 1.7 .6 .9	.3 .4 .6 .3 .4	17 12 15 17 13	.12 .05 .02 .12 .04	.060 .103 .124 .061 .080	29 24 23 27 27	7.0 6.2 11.0 7.9 7.0	.06 .04 .08 .06 .04	50 26 25 48 24	.006 .003 .003 .005 .005	1 <1 <1 <1 1	. 43 . 43 . 55 . 45 . 33	.003 .003 .003 .003 .003	.05 .04 .03 .04 .03	L .03 L .06 2 .04 L .04 L .02	.4 .9 .3 .4	.1 < .1 < .1 < <.1 < <.1 <	.05 3 .05 3 .05 3 .05 3 .05 3	<.5 <.5 <.5 <.5 <.5	15.0 15.0 7.5 15.0 7.5
17800N 10140E 17800N 10160E 17800N 10180E 17800N 10200E STANDARD DS5	.7 .6 .6 12.4	19 20 21 28 145	8 27.0 8 42.5 1 30.0 7 40.3 2 24.9	89 80 62 64 135	.2 .3 <.1 .1 .3	19.9 21.5 18.9 21.1 24.3	15.2 16.8 8.4 10.2 12.0	2245 2016 290 350 794	3.36 4.15 4.73 5.51 3.00	17.2 23.3 31.1 41.9 18.2	1.7 1.3 .6 .6 6.0	5.1 1.9 .9 4.5 42.8	1.1 1.7 2.2 3.7 2.7	25 22 7 7 44	.2 .3 .1 .1	1.1 1.6 1.7 1.8 4.0 6	.4 .5 .6 .0	17 18 16 12 61	.67 .58 .05 .07 .77	.176 .169 .081 .091 .096	20 19 25 24 11	13.7 14.5 9.5 10.4 189.8	.13 .16 .07 .09 .68	39 41 18 26 135	.007 .008 .005 .004 .093	1 1 1 1 1 2 16 2	.14 .13 .63 .87 .04	.004 .005 .003 .003 .033	.04 . .04 . .03 . .03 . .15 4.8	L .08 L .09 L .05 L .08 B .18	1.3 1.9 1.0 1.6 3.3	.1 < .1 < <.1 < <.1 < 1.1 <	.05 3 .05 3 .05 3 .05 3 .05 3	<.5 .7 <.5 .5 4.9	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Page 33

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As U	Au	Th	Sr	Cd St	Bi	V	Ca	P % n	La	Cr M	1g Ba	a Ti n %	B	A1 %	Na %	K % nn	W Hg	Sc T	1 S	Ga Se S	ample
17800N 10220E 17800N 10240E 17800N 10260E 17800N 10280E 17750N 9920E	.6 .7 .8 .5 .6	42.1 52.6 28.5 101.4 19.3	47.6 87.3 23.6 106.6 15.5	116 156 89 < 185 46	.3 4 .4 4 <.1 2 .2 6 .1 1	7.9 3.6 3.3 5.7 7.2	29.0 31.3 9.0 51.3 6.9	1345 1234 199 724 510	5.28 6.68 4.83 11.95 3.73	52.6 1.1 60.7 1.6 32.4 .5 135.5 1.1 30.1 .4	8.9 33.7 9.6 25.4 2.0	6.4 8.4 3.0 10.4 2.7	17 19 5 15 4	.3 3.9 .3 2.8 .1 1.6 .3 5.5 .1 .9	.8 .6 .5 1.9 .5	8 6 11 6 14	.28 . .25 . .01 . .10 .	149 105 075 040 158	20 20 24 21 25	8.3 .1 5.7 .0 4.4 .0 6.2 .1 8.8 .1	.1 34)7 27)4 17 .2 30	4 .003 7 .002 1 .003 0 .001 2 .003	1 1 2 1 1 1	.32 . .97 . .37 . .43 . .58 .	006 004 003 003 002	.04 <. .03 . .02 <. .03 <. .04 <.	1 .08 1 .08 1 .03 1 .04 1 .04	4.2 <. 5.6 <. 1.5 <. 6.1 <. .7	1 .09 1<.05 1<.05 1<.05 1<.05 1<.05	2 1.0 1 1.4 2 <.5 1 .8 4 <.5	15 15 15 15 15 15
17750N 9940E 17750N 9960E 17750N 9980E 17750N 10000E 17750N 10020E	.7 .5 .6 .7	23.2 22.2 26.2 20.4 22.7	16.5 15.4 17.7 21.7 34.0	52 73 89 48 55	.1 1 .1 2 .1 2 .1 1 .1 1	7.8 6.3 9.7 5.6 6.9	7.7 12.1 14.4 6.3 10.0	266 520 832 144 495	4.54 3.35 3.79 4.50 5.62	31.6 .7 26.9 .7 41.4 1.0 23.6 .6 17.7 .9	3.1 3.1 3.3 242.5 8.2	3.2 6.3 5.2 1.9 2.6	3 11 12 7 5	.1 1.2 .1 .9 .2 1.2 .1 1.1 .1 1.0	.4 .3 .4 .5 .7	14 12 14 15 22	.02 . .13 . .14 . .04 . .03 .	059 043 070 056 084	25 28 28 25 23	12.8 .1 13.4 .3 15.0 .2 9.7 .0 14.9 .1	.2 20 31 41 29 41 38 29 .3 21) .004 1 .003 3 .003 9 .006 1 .008	1 11 <11 1 11	.98 . .05 . .16 . .77 . .43 .	002 003 003 004 003	.04 . .05 <. .07 . .05 . .04 .	1 .05 1 .02 1 .03 1 .05 1 .09	.9 <. 1.6 <. 1.8 <. 1.0 . 1.1 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 .5 3 <.5 3 <.5 3 <.5 5 .8	15 15 15 15 15
17750N 10040E 17750N 10060E 17750N 10080E 17750N 10100E 17750N 10120E	.6 .6 .8 .6	25.4 29.5 19.6 17.5 31.8	30.4 79.4 37.7 23.5 57.2	50 78 45 45 73	.1 1 .1 3 .1 1 .1 1 .1 3	.8.4 1.0 .5.9 .6.0	6.7 13.5 7.2 7.7 16.2	152 353 328 398 725	6.41 5.95 4.48 3.96 6.03	27.1 .6 36.8 .7 21.5 .5 28.5 .4 37.9 .7	4.0 2.8 1.8 18.2 2.0	2.1 5.2 1.6 1.2 3.6	6 7 6 5 8	.1 2.5 .1 3.7 .1 1.6 .1 1.7 .1 2.6	.6 .5 .6 .4	12 11 25 15 15	.06 .03 .03 .03 .03 .03	103 083 196 123 291	19 24 25 25 26	11.2 .1 11.5 .1 11.2 .0 8.3 .0 18.1 .2	.0 1(15 2()6 2:)5 2(25 2(5 .005) .004 1 .018) .008) .009	1 1 1 1	.70 . .75 . .49 . .45 . .99 .	003 003 003 003 003 003	.03 . .03 . .04 . .03 . .03 .	3 .07 6 .03 1 .03 1 .03 2 .03	1.1 <. 1.8 <. .9 . .8 <. 1.7 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 .7 2 .5 4 <.5 2 <.5 3 .7	15 15 15 15 15
17750N 10180E 17750N 10200E 17750N 10220E 17750N 10240E 17750N 10260E	.5 .7 .8 .6 .7	28.1 42.7 31.8 64.4 29.0	36.4 275.9 70.7 58.0 39.6	65 189 129 137 72	.1 2 .2 3 .3 3 .3 6 .2 2	20.8 86.5 80.2 54.1 21.6	9.8 16.9 20.9 34.8 10.2	350 554 1125 982 282	6.60 5.27 5.07 6.03 4.59	38.4 .6 54.5 1.6 48.7 1.7 89.6 1.7 45.7 1.1	2.6 71.8 15.1 8.2 13.0	2.5 5.6 4.7 7.8 5.2	9 27 24 27 11	<pre><.1 1.5 .2 6.6 .3 3.5 .2 1.8 .1 1.5</pre>	.6 .9 .7 1.1 .8	14 6 8 6 8	.13 .37 .44 .24 .10	067 092 122 061 079	23 18 16 19 18	13.1 .0 5.5 .0 8.1 .0 5.5 .1 7.1 .0)8 18)8 20)9 30 11 39)7 29	3 .005 5 .002 0 .003 5 .002 9 .002	<1 1 1 1	.71 . .49 . .78 . .65 . .67 .	003 004 004 004 004 004	.02 . .04 <. .04 . .04 . .04 .	1 .03 1 .04 1 .07 1 .06 1 .05	1.1 <. 4.2 <. 4.1 <. 5.4 <. 1.9 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 .6 1 .8 1 .6 1 .8 2 <.5	15 15 15 15 15
17750N 10280E 17700N 9920E 17700N 9940E 17700N 9960E RE 17750N 10280E	.3 .4 .6 .7 .4	21.4 20.4 17.8 23.5 22.5	33.8 15.9 15.3 19.3 34.2	76 60 50 83 80	<.1 2 .2 1 <.1 1 .2 2 <.1 2	20.7 .9.0 .8.1 25.6 22.0	12.9 6.6 6.9 14.4 13.1	380 207 171 1374 378	3.95 4.35 3.59 3.80 3.90	49.7 1.2 35.2 .5 28.6 .5 38.1 1.1 50.1 1.2	6.0 2.6 1.8 3.9 6.7	4.8 4.4 1.3 2.4 4.7	12 6 6 18 11	.1 2.0 .1 .9 .1 1.0 .2 1.3 .1 2.1	.6 .4 .4 .4 .6	7 12 13 15 6	.04 .04 .06 .23 .04	060 082 087 131 055	18 27 30 28 17	4.5 .0 12.4 .1 9.7 .1 15.0 .1 4.7 .0)4 28 19 60 10 40 19 43 19 43	3 .001 5 .004 5 .004 3 .005 7 .001	2 1 1 1 1 1	.68 . .82 . .59 . .09 . .66 .	003 002 003 003 003	.03 <. .05 <. .05 <. .06 . .03 .	1 .04 1 .06 1 .03 1 .05 1 .05	4.4 . .9 . .6 <. 1.4 . 4.6 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	1 <.5 3 <.5 3 <.5 3 <.5 1 <.5	15 15 15 15 15
17700N 9980E 17700N 10000E 17700N 10020E 17700N 10040E 17700N 10060E	.5 .4 .7 .5	31.9 23.6 22.5 19.3 18.8	23.2 21.9 24.5 15.4 20.6	120 52 61 46 43	.2 3 <.1 2 .1 2 <.1 1 <.1 1	86.8 21.6 20.7 .9.5 .8.2	16.6 7.9 8.9 7.8 8.3	1152 151 454 216 307	4.22 5.60 6.46 3.18 3.91	42.5 2.0 66.4 .7 48.1 .8 34.4 .5 33.5 .6	3.5 1.7 1.6 .8 2.1	6.0 3.1 3.8 1.6 .9	25 6 5 5 5	.2 1.4 <.1 1.4 .1 1.2 .1 1.0 .1 1.0	.4 .5 .5 .5	14 12 16 17 16	.31 .03 .03 .04 .03	116 069 106 066 083	33 25 25 30 25	18.4 .3 13.1 .1 19.3 .1 7.8 .0 10.6 .0	81 50 14 19 17 20 16 19 17 19	6 .006 9 .005 0 .007 9 .006 5 .005	<1 1 1 1 <1 2	.28 . .78 . .18 . .49 . .60 .	004 002 003 003 002	.08 . .05 . .04 . .04 . .03 .	1 .05 1 .04 2 .06 2 .02 1 .07	3.1 . .9 <. 1.1 . .7 <. .5 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 <.5 4 <.5 4 .6 3 <.5 4 <.5	15 15 15 15 15
17700N 10080E 17700N 10100E 17700N 10120E 17700N 10140E STANDARD DS5	.4 .6 .5 .5 12.6	39.6 19.6 26.0 22.3 140.5	53.7 31.3 32.1 31.1 25.2	85 49 57 64 138	.1 3 <.1 1 .1 2 .2 2 .2 2	82.8 .7.7 21.9 24.1 24.3	17.1 6.8 9.0 12.5 11.8	428 165 244 571 727	5.70 5.64 4.58 4.46 3.03	45.4 .6 26.1 .5 27.2 .6 29.0 .7 17.7 5.8	4.9 3.6 5.3 1.6 40.1	9.3 2.7 7.1 2.9 2.7	7 4 5 16 46	.1 3.4 .1 1.3 .1 1.7 .1 1.2 5.2 3.8	.7 .6 .4 .5 6.0	6 12 9 10 61	.04 .03 .03 .25 .72	.121 .082 .071 .093 .089	28 23 22 22 11 1	11.2 .1 12.1 .1 11.0 .1 11.1 .1 80.8 .6	16 1 12 19 11 2 15 2 55 13	7 .003 9 .005 3 .003 1 .004 3 .093	1 1 <1 17 2	.89 . .67 . .91 . .91 .	003 003 003 003 003 033	.04 . .03 . .03 . .04 . .15 4.	2 .04 1 .04 3 .09 1 .06 8 .17	2.0 <. .8 <. 1.4 <. 1.6 <. 3.4 1.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .5 3 <.5 2 .5 3 <.5 7 4.9	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 34

ACME ANALYTICA

																																		1	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm) Zn ippm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm j	U ppm	Au ppb	Th ppm p	Sr opm p	Cd opm	Sb ppm p	Bi opm p	V pm	Ca %	P % (La opm	Cr ppm	Mg % p	Ba opm	Ti % p	BA1 pm %	Na %	K % [W W pm pi	lg om	Sc T ppm pp	"1 S m %	Ga Se ppm ppm	Samp1 g	e m
17700N 10160E 17700N 10180E 17700N 10200E 17700N 10220E 17700N 10240E	.9 .7 .5 .6	38.4 37.3 19.7 44.9 46.2	83.0 64.9 34.7 76.6 28.7	94 77 43 5 109 7 109	.3 .1 .6 .1	35.4 26.6 15.8 52.4 55.2	41.2 17.7 7.7 40.3 24.9	1386 693 299 1265 395	8.91 7.77 4.53 7.51 4.41	35.9 43.4 32.1 72.4 58.4	1.3 .6 .5 1.7 .9	3.9 3.2 2.4 11.1 9.4	5.6 3.7 1.6 10.9 11.9	19 7 5 21 35	.2 .1 .1 .3 .1	1.7 1.5 .9 2.9 1 5.1	.8 .8 .5 .2 .6	13 . 13 . 12 . 9 . 7 .	.30 . .04 . .04 . .35 . .21 .	. 131 . 089 . 117 . 112 . 068	15 20 22 29 29	19.8 11.4 9.3 14.2 6.5	.16 .08 .08 .10 .16	30 . 22 . 14 . 22 . 31 .	006 005 004 003 002	1 2.03 1 .94 1 .61 1 2.44 1 .62	.004 .003 .003 .003 .004	.03 .03 .03 .02 .02	.1 .1 .1 .0 <.1 .0 <.1 .1	12)9)7 19)2	2.5 . 1.6 <. .7 <. 7.0 <. 6.0 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	3 .6 4 .6 3 .6 2 1.7 1 .6	15. 15. 15. 15. 15.	0 0 0 0
17700N 10260E 17700N 10280E 17650N 9850E 17650N 9870E 17650N 9890E	.5 .4 .8 .5	43.7 43.6 20.0 11.0 9.1	97.7 45.2 20.2 11.9 5.4	7 159 2 98 2 54 9 29 4 23	.2 .1 .2 .1 <.1	46.2 48.3 16.9 9.9 8.4	20.2 25.2 9.2 5.1 3.5	469 547 705 425 52	5.47 4.89 4.12 2.61 1.17	61.6 73.7 29.4 16.4 12.0	.9 1.1 .7 .4 .3	16.5 10.6 2.0 3.6 <.5	5.8 7.4 3.0 .8 2.1	35 25 4 7 3 <	.3 .1 .1 .1 .1	7.1 7.0 .9 .5 .4	.8 .8 .4 .3 .2	7 6 21 18 17	.25 . .15 . .03 . .06 .	.061 .058 .073 .048 .022	17 19 26 28 33	5.4 5.0 19.0 9.5 4.8	.08 .09 .25 .05 .02	26 . 32 . 23 . 23 . 13 .	001 001 007 005 005	2 .55 1 .59 1 1.37 1 .75 <1 .44	.004 .004 .004 .005 .002	.03 < .03 < .04 .04 < .04 <	<.1 .0 <.1 .0 <.1 .0 <.1 .0 <.1 .0	04 04 07 03 01	8.1 <. 5.7 <. 1.2 . .5 . .4 .	$\begin{array}{l} 1 < .05 \\ 1 < .05 \\ 1 < .05 \\ 1 < .05 \\ 1 < .05 \\ 1 < .05 \end{array}$	1 .7 1 .8 4 <.5 4 <.5 3 <.5	15. 15. 15. 7. 15.	0 0 0 5 0
17650N 9910E 17650N 9930E 17650N 9950E 17650N 9970E 17650N 9990E	.4 .5 .4 .5	22.0 16.7 16.4 24.7 22.3	24.5 25.8 11.5 32.8 24.2	5 44 3 29 5 37 3 53 2 55	.1 .1 <.1 .1 .1	16.9 13.3 14.4 21.3 19.7	6.2 4.6 6.1 8.2 9.5	149 229 123 193 337	5.31 3.95 2.30 7.64 5.10	49.8 46.0 35.5 51.0 24.4	.6 .6 .4 .7 1 .7	3.3 2.5 2.1 139.2 .9	3.1 1.3 1.6 3.2 3.9	3 4 4 4	.1 .1 .1 .1 .2	1.0 .9 .8 1.2 .8	.5 .5 .4 .7 .4	15 15 17 14 15	.02 .02 .02 .02 .02 .02	.074 .206 .049 .074 .086	24 22 33 21 22	13.7 10.7 5.9 15.7 17.3	.12 .06 .03 .12 .18	19 . 30 . 20 . 22 . 30 .	004 005 009 005 006	1 1.06 1 .63 1 .38 1 1.12 1 1.29	.003 .003 .003 .003 .003 .004	.03 .04 .04 .04 .04	.1 . .1 . .1 . .1 . .1 .	05 07 02 07 07	1.0 . .5 . .6 <. 1.1 . 1.2 .	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	4 .6 4 <.5 3 <.5 4 .6 3 .5	7. 15. 15. 15. 15.	5 0 0 0 0
17650N 10010E 17650N 10030E 17650N 10050E 17650N 10070E 17650N 10090E	.6 .7 .6 .9	24.7 16.5 24.2 32.8 27.9	20.6 22.2 18.9 26.3 35.9	5 55 2 41 9 58 3 136 9 94	<.1 .1 .1 .1 .2	20.8 15.5 19.7 35.8 25.1	8.8 7.5 8.8 23.9 15.8	256 385 748 2679 2696	5.19 4.83 3.87 4.32 3.80	35.1 27.5 36.7 32.4 31.3	.6 .7 1.4 4.3 1.9	.8 14.7 2.8 2.3 1.4	2.4 1.6 2.0 5.9 2.8	5 6 9 26	.1 .1 .3 .2	1.1 .8 .9 1.1 1.5	.6 .5 .5 .5	16 19 15 18 13	.03 . .04 . .04 . .07 . .36 .	.096 .220 .118 .171 .221	30 27 31 31 28	13.1 14.8 13.5 22.3 13.4	.16 .09 .10 .15 .12	62 . 17 . 38 . 43 . 61 .	008 007 006 011 007	1 .84 2 .83 2 .91 1 2.35 1 1.18	.003 .003 .004 .004 .004	.04 .04 .05 .06 .06	.1 . .1 . .2 . .2 . .2 .	05 05 04 15	.9 <. .6 <. 1.2 . 4.0 . 2.3 .	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	4 <.5 5 <.5 4 <.5 4 .9 3 .6	7. 7. 15. 15.	5 5 0 0
17650N 10100E 17650N 10130E 17650N 10150E 17650N 10170E 17650N 10190E	.5 .5 .6 .6	30.7 26.7 24.1 26.1 36.8	41.9 21.9 26.9 38.1 66.0	9 57 9 33 9 54 L 54) 73	.1 .2 .2 .1 .2	26.8 13.5 18.1 19.7 28.5	8.3 4.8 7.6 8.9 19.0	184 157 281 224 576	6.22 3.15 5.18 5.20 8.00	35.3 15.4 29.3 37.5 61.1	.7 .6 .5 .5	1.4 2.2 3.0 3.0 7.3	3.0 1.6 4.6 1.2 3.0	8 < 5 6 4	<.1 .1 .1 .2 .2	2.4 .9 1.0 .9 1.5 1	.9 .3 .5 .7 1.0	10 11 9 12 11	.08 .03 .02 .05 .01	. 162 . 052 . 124 . 095 . 104	20 25 22 20 17	10.5 7.0 10.6 8.8 13.5	.08 .03 .12 .06 .09	11 . 19 . 30 . 27 . 12 .	004 005 003 005 005	1 .69 <1 .58 1 .93 2 .65 1 1.07	.004 .003 .003 .003 .003	.03 .03 .04 .03 .02	.2 . .4 . .1 . .1 .	10 05 06 08 07	1.3 <. .7 <. 1.2 . .8 . 1.3 .	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	4 .7 2 <.5 3 <.5 4 <.5 3 .7	15. 15. 7. 15. 15.	0 0 5 0 0
RE 17700N 10160E 17650N 10210E 17650N 10230E 17650N 10250E 17600N 9850E	.8 .5 .5 1.2 .5	37.3 45.8 78.6 209.9 11.4	80.0 98.4 128.7 205.7 15.2) 95 4 91 7 138 7 290 2 20	.3 .1 .2 .6 .2	35.0 36.5 57.7 135.6 9.3	38.6 23.5 52.0 95.8 3.4	1419 790 1436 676 100	8.95 9.30 9.49 22.23 3.10	34.5 76.1 117.4 137.2 20.1	1.3 .8 1.6 1.3 .4	2.6 3.4 16.8 18.0 1.3	5.9 6.3 17.9 8.6 1.0	19 6 12 94 3	.3 .2 .4 .2 2 .1	1.8 1.9 1 4.3 1 23.0 5	.8 1.1 1.9 5.3 .5	10 5 4 2 19	.30 .03 .12 .56 .01	.130 .105 .079 .020 .057	15 17 26 6 28	19.4 15.0 11.9 1.8 8.6	.16 .13 .14 .06 .04	29 . 27 . 24 . 36<. 13 .	006 004 001 001 007	2 2.01 1 1.06 2 2.03 1 .27 1 .59	.004 .004 .003 .003 .003	.03 .02 .02 .02 .02	.1 . .1 . <.1 . <.1 .	12 12 17 1 03 04	2.2 . 2.1 <. 0.2 <. 5.8 <. .3 .	1 <.05 1 <.05 1 <.05 1 1.40 1 <.05	3 .7 2 .8 1 1.2 <1 1.5 4 <.5	15. 7. 15. 15. 7.	0 5 0 5 5
17600N 9870E 17600N 9890E 17600N 9910E 17600N 9930E STANDARD DS5	.4 .4 .5 .6 12.5	12.5 16.9 21.2 34.3 146.2	14.3 13.9 17.8 32.8 25.2	3 26 9 32 3 54 3 62 2 133	.1 .2 .1 .1 .3	10.8 13.0 19.6 30.0 24.4	3.8 5.4 11.4 11.9 11.9	154 404 777 421 734	2.59 3.89 3.99 5.68 2.95	28.6 27.1 46.7 86.7 18.2	.4 .4 .6 .8 5.9	2.8 1.6 2.7 3.4 43.7	3.7 1.0 1.8 1.6 2.7	3 < 4 7 7 47 5	<.1 .1 .2 .1 5.3	.6 .7 1.1 1.8 3.9 6	.3 .4 .4 .8 5.3	10 15 15 14 58	.01 .02 .08 .06 .72	.067 .140 .088 .261 .093	27 28 23 26 11 1	8.5 9.7 12.9 12.8 177.6	.10 .08 .11 .12 .68	20 . 26 . 32 . 62 . 137 .	004 006 004 005 096	1 .64 1 .68 1 .90 1 .77 17 2.06	.002 .002 .003 .003 .032	.03 .04 .05 .05 .14	.1 . .1 . .1 . .3 . 4.9 .	08 06 05 03 17	.6 .5 .8 .9 3.5 1.	1 <.05 1 <.05 1 <.05 1 <.05 0 <.05	3 <.5 4 .6 4 <.5 4 .5 6 4.6	15. 15. 15. 15. 15.	0 0 0 0 0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data \mathcal{L}_{FA}

Page 35

SAMPLE#	Mo ppm	C pp	u Pb m ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd Sb opm ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg % p	Ba ppm	Ti %	B / ppm	41 %	Na %	К %р	W pm p	Hg S pm pp	c T m pp	"] S m %	Ga Se ppm ppm	Samp1	le gm
17600N 9950E 17600N 9970E 17600N 9990E 17600N 10010E 17600N 10030E	.7 .5 .6 .7 .5	20. 31. 37. 34. 24.	6 16.0 2 25.0 6 43.0 1 51.5 5 26.9	47 72 72 75 46	.1 1 .1 2 .1 3 .2 3 <.1 1	7.8 5.5 6.0 0.3 9.6	8.4 10.4 18.9 22.1 7.7	409 3 300 8 686 7 1874 6 250 4	3.74 5.48 7.44 5.97 4.41	37.9 50.4 78.1 55.6 22.3	.6 .7 .9 1.2 .5	1.3 2.8 6.0 2.7 1.2	.7 5.1 7.8 4.8 1.6	7 5 12 20 6	.1 1.0 .1 1.6 .1 1.9 .1 1.8 .1 1.1	.4 .5 .7 .7	21 13 11 15 15	.07 .03 .10 .26 .04	.082 .097 .159 .169 .066	24 25 24 23 26	10.9 13.4 19.1 18.9 8.8	.05 .19 .24 .15 .04	28 . 37 . 24 . 22 . 17 .	006 004 004 005 005	2 .0 1 .9 1 1.0 1 1.1 1 1.1	62 . 95 . 03 . 24 . 52 .	.003 .003 .004 .006 .003	.04 .05 .05 .04 .04	.2 . .3 . .3 . .3 . .2 .	04 . 03 1. 05 1. 06 1. 04 .	5 <. 3 . 5 . 4 . 6 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 .5 3 .6 3 .7 4 .7 3 <.5	15. 15. 7. 7. 15.	.0 .0 .5 .5 .0
17600N 10050E 17600N 10070E 17600N 10090E 17600N 10110E 17600N 10130E	.4 .6 .5 .5	26. 47. 35. 28. 40.	3 28.1 8 87.1 1 48.6 5 44.6 5 56.7	59 93 90 84 87	<.1 1 .1 3 .2 4 .2 3 .1 2	8.2 7.4 0.4 0.9 8.9	7.0 20.0 26.1 20.0 11.4	184 3 607 6 1002 4 835 4 288 3	3.86 5.90 4.68 4.71 7.51	30.0 37.1 40.6 48.5 63.1	.5 1.1 1.5 1.5 .8	4.3 7.2 7.3 5.5 4.5	4.9 13.2 8.3 6.4 6.1	15 8 19 32 7	.1 2.5 .1 2.1 .2 1.8 .1 1.3 .1 2.9	.6 .8 .6 .7	9 11 10 11 11	.02 .05 .22 .45 .04	.057 .068 .103 .127 .098	25 24 26 22 24	6.6 19.2 11.9 12.2 14.5	.07 .23 .15 .20 .09	50 . 17 . 31 . 44 . 15 .	. 002 . 003 . 003 . 003 . 003	1 1 1 1 1 2 1 <1	47 . 18 . 49 . 07 . 85 .	.003 .003 .004 .005 .004	.03 .04 .04 .05 .03	.1 . .2 . .1 . .2 . .2 .	03 1. 05 2. 08 3. 07 3. 06 1.	3 <. 4 . 6 . 0 . 6 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 <.5 2 .9 2 .6 2 .5 3 .8	15 15 15 15 15	. 0 . 0 . 0 . 0 . 0
17600N 10150E 17600N 10170E 17600N 10190E 17600N 10210E 17600N 10230E	.7 .6 .4 .6	33. 19. 25. 16. 32.	7 60.6 7 26.3 0 34.6 8 22.3 5 62.3	82 45 46 57 94	.3 2 .1 1 .1 1 .1 1 .1 3	8.1 4.5 7.0 5.6 2.1	13.8 5.5 8.1 7.5 17.2	437 8 159 4 176 3 426 3 410 4	8.71 4.12 3.61 3.32 4.94	42.5 30.6 31.2 26.7 49.3	1.1 .6 .5 .8	2.9 4.3 3.8 2.2 6.8	3.0 2.8 3.5 1.6 8.7	7 4 5 17 8	.4 1.9 .1 1.2 .1 1.3 .1 1.1 .2 2.0	.7 .6 .5 .4 .6	20 12 11 12 10	.06 .01 .02 .20 .04	.104 .086 .082 .048 .039	15 24 23 25 26	23.9 9.5 8.5 8.5 11.5	.23 .07 .09 .09 .21	25 . 23 . 24 . 39 . 27 .	. 009 . 003 . 004 . 005 . 004	2 1 <1 . 1 <1	39 . 77 . 65 . 50 . 97 .	.005 .003 .003 .003 .003	.04 .03 .03 .04 .02 <	.1 . .2 . .2 . .2 .	11 1. 06 . 06 . 03 . 05 3.	5. 9. 9. 6<. 0<.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 1.1 3 <.5 2 .5 2 <.5 2 .5	7. 15. 15. 15. 15.	.5 .0 .0 .0 .0
17600N 10250E 17550N 9850E 17550N 9870E 17550N 9890E 17550N 9910E	.4 .3 .6 .4	25. 7. 21. 25. 27.	9 44.6 3 6.1 3 21.3 1 18.4 9 21.8	68 14 50 60 93	.1 2 .1 .2 1 .1 2 .2 3	2.2 6.6 9.1 3.7 2.3	8.6 2.4 7.9 9.1 15.5	184 101 660 453 1474	4.77 1.15 4.48 3.88 3.49	39.1 12.6 37.1 58.7 34.9	.6 .3 .6 .8	5.5 1.2 5.4 8.0 2.7	6.4 2.2 1.9 4.4 4.3	8 3 4 8 35	.1 1.8 <.1 .3 .1 1.0 .1 1.5 .2 1.4	.6 .3 .4 .4 .4	7 11 15 9 12	.05 .01 .03 .06 .55	.061 .082 .171 .160 .124	17 31 29 23 22	8.9 4.9 12.6 11.0 15.9	.13 .03 .12 .15 .21	15 . 17 . 20 . 49 . 67 .	.002 .003 .005 .003 .003	<1 . <1 . 1 . <1 .	73 . 52 . 81 . 72 . 89 .	.004 .006 .005 .003 .005	.02 .03 < .04 .06 .06	.1 . .1 . .1 . .1 .	04 1. 02 . 06 . 08 1. 08 2.	6 <. 4 . 7 . 0 . 1 .	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	2 .6 4 <.5 3 <.5 3 <.5 2 .7	15 15 7 15 15	.0 .0 .5 .0 .0
17550N 9930E 17550N 9950E 17550N 9970E 17550N 9990E 17550N 10010E	.6 .5 .6 .4	31. 18. 19. 24. 25.	5 43.4 6 15.2 3 9.3 3 28.8 8 26.1	77 52 41 72 83	.1 3 .1 1 <.1 1 .3 2 .2 3	6.8 8.5 7.6 8.6 1.5	15.9 7.3 6.7 15.7 17.7	360 448 136 750 671	4.86 3.05 2.13 3.71 3.81	41.1 26.1 28.1 24.3 23.0	.9 .5 .4 1.1 1.2	6.0 1.3 1.2 4.3 3.8	5.9 2.2 3.3 5.3 6.1	8 5 19 14	.1 1.4 .1 .8 <.1 1.0 .1 1.0 .1 1.0	.4 .4 .3 .4 .4	15 14 14 13 9	.08 .04 .02 .27 .16	.093 .085 .039 .076 .088	22 27 38 30 25	15.6 9.8 5.8 12.4 11.3	.18 .12 .02 .18 .18	71 . 24 . 20 . 36 . 37 .	. 004 . 004 . 004 . 004 . 004	1 1 1 <1 <1 <1	23 . 62 . 31 . 98 . 79 .	008 005 004 005 005	.08 .06 .04 .06 .04	.2 . .1 . .1<. .1 . .2 .	06 1. 02 . 01 . 06 2. 06 2.	8 . 8 . 8 <. 0 . 8 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	3 <.5 3 <.5 3 <.5 3 <.5 2 <.5	7 7 15 7 15	.5 .5 .0 .5 .0
17550N 10030E 17550N 10050E 17550N 10070E RE 17550N 9850E 17550N 10090E	.6 .8 .5 .3	26. 21. 23. 7. 25.	2 21.6 9 28.1 8 47.1 4 6.3 8 42.6	46 53 70 14 69	.1 1 .2 2 .2 2 .1 .2 2	8.7 0.1 6.6 6.3 5.5	7.4 8.1 17.8 2.6 17.8	262 409 644 102 810	4.36 4.81 4.29 1.18 4.23	23.6 25.7 32.4 13.4 42.5	.6 .8 .9 .3 1.1	.5 .9 7.0 1.3 4.6	1.7 1.4 4.7 2.3 4.3	6 8 28 3 18	<.1 .9 .1 .9 .1 1.6 <.1 .3 .2 1.4	.5 .5 .3 .5	16 14 10 11 11	.04 .11 .33 .01 .29	.190 .103 .116 .078 .100	25 24 22 35 22	11.3 14.0 10.5 4.9 9.7	.06 .09 .15 .03 .13	31 . 20 . 31 . 18 . 29 .	. 005 . 004 . 004 . 003 . 003	<1 1 <1 <1 <1	42 . 68 . 83 . 55 . 80 .	. 003 . 005 . 006 . 006 . 005	.04 .05 .05 .04 < .04	.1 . .1 . .2 . .1 . .2 .	04 . 05 . 08 2. 03 . 07 2.	8 <. 7 <. 6 <. 5 . 5 <.	1<.05 1<.05 1<.05 1<.05 1<.05 1<.05	4 <.5 3 .6 2 .7 4 <.5 2 <.5	15 7 15 15 7	.0 .5 .0 .0 .5
17550N 10110E 17550N 10130E 17550N 10150E 17550N 10170E STANDARD DS5	.4 .5 .5 12.5	20. 22. 28. 14. 140.	3 27.2 5 30.8 2 26.3 7 21.2 6 25.5	48 54 53 29 130	.1 1 .1 2 .1 2 .1 1 .2 2	7.3 20.0 20.0 1.0 23.9	11.1 9.1 8.3 4.9 11.5	382 297 159 107 745	3.29 3.77 3.47 2.71 2.90	30.8 28.9 35.2 24.5 17.6	.9 .6 .4 .4 6.0	3.7 10.3 3.8 1.2 41.3	4.9 1.8 1.3 .8 2.7	5 13 6 4 47	.1 1.0 .1 1.2 .1 1.3 <.1 .8 5.3 3.8	.4 .5 .6 .5 6.0	11 12 16 12 58	.03 .10 .03 .02 .72	.065 .064 .053 .062 .091	23 22 26 21 11	8.3 7.7 6.8 6.0 178.2	.08 .07 .04 .04 .64	18 . 19 . 16 . 13 . 136 .	. 004 . 004 . 005 . 004 . 095	<1 . <1 . <1 . <1 . 17 1.	78 . 47 . 39 . 36 . 94 .	.004 .005 .003 .003 .034	.04 .04 .03 .03 .14 5	.2 . .2 . .3 . .1 .	05 1. 05 1. 03 . 04 . 17 3.	8 . 0 <. 9 <. 6 <. 3 1.	1<.05 1<.05 1<.05 1 .06 1<.05	2 .5 2 <.5 3 <.5 2 <.5 6 5.0	15 15 15 15 15	. 0 . 0 . 0 . 0 . 0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

Page 36

SAMPLE#	Mo ppm) pi	Cu Pt om ppr	o Zi n ppi	n A m pp	Ag om	Ni ppm	Co ppm	Mr ppr	n I N	Fe %	As ppm	U ppm	AL ppt	Th ppm	Sr ppm	Co ppr	d Sb n ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B	A1 %	Na %	K % (W	Hg ppm	Sc ppm	T1 ppm	S % p	Ga Se S opm ppm	ample gm	
17550N 10190E 17550N 10210E 17550N 10230E 17550N 10250E 17550N 9850E	.5 .4 .4 .4 .4 .4	11 15 41 27 10	.2 19.3 .5 17.4 .7 52.8 .3 36.8	3 3 4 3 5 9 3 8 7 2	17 . 18 . 15 . 18 . 27 .	.1 1 .1 1 .1 3 .1 2 .2 1	0.8 2.7 7.1 8.3 1.3	6.9 5.2 21.5 14.5 4.2	260 230 637 514 188) 2.1) 2.1 7 5.1 1 4.1 3 2.1	26 1 56 2 19 4 57 2 09 2	.7.1 21.2 8.1 28.6 28.6	.4 .4 .8 .7 .3	6.3 2.5 7.7 2.5 2.6	8 .8 5 .8 7 8.1 5 5.0 5 1.6	10 5 7 12 3	<	1 .7 1 .8 2 2.0 1 1.3 1 .6	.3 .4 .7 .6 .3	14 13 9 11 10	.14 .04 .04 .09 .02	.051 .072 .067 .096 .105	25 24 29 23 22	5.2 6.6 10.4 11.1 6.6	.04 .05 .19 .17 .07	18 18 23 27 12	.005 .004 .003 .003 .002	<1 2 1 <1 1	.40 .42 .82 .84 .57	.004 .003 .003 .003 .003	.04 .04 .05 .04 .04	.1 .1 .2 .2 <.1	.03 .03 .06 .03 .03	.5 .5 3.2 2.2 .4	<.1< <.1< <.1< <.1< .1<	.05 .05 .05 .05 .05 .05	3 <.5 3 <.5 2 <.5 3 <.5 3 <.5 3 <.5	15 15 15 15 15	
17500N 9870E 17500N 9890E 17500N 9910E 17500N 9930E 17500N 9950E	. 6 . 4 . 4 . 7 . 6	31 13 28 22 20	.3 24.3 .4 11.3 .6 21.3 .5 14.0 .0 16.0	1 6 7 3 1 7 0 4 5 4	57 - 5 19 < 5 14 < 5 18 < 5 17 < 5	.13 .11 .13 .11 .11	0.1 3.4 2.2 9.6 7.4	13.8 5.9 14.3 6.5 6.7	399 230 366 152 219	5 4. 2 2. 5 4. 2 3. 3 3.	47 5 26 2 00 3 36 3 66 3	51.0 22.7 34.7 37.0 37.7	.7 .4 .7 .5	8.4 2.7 4.9 2.3 2.0	6.8 3.5 7.0 2.5 1.4	5 6 9 5 8	<	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.4 .3 .4 .5	13 10 13 13 17	.04 .05 .08 .03 .03	.091 .064 .052 .069 .138	26 29 32 27 28	14.4 8.9 13.2 9.5 8.4	.26 .15 .28 .07 .05	24 48 31 19 39	.004 .003 .006 .003 .005	<1 1 1 1 1	1.04 .63 .86 .54 .42	.003 .007 .004 .003 .004	.05 .05 .06 .04 .04	.1 <.1 <.1 .1 .2	.05 .02 .02 .03 .03	1.5 .8 1.9 .8 .5	<.1< <.1< <.1< .1< .1<	.05 .05 .05 .05 .05	3 .5 3 <.5 3 <.5 3 <.5 4 <.5	15 15 15 15 15	
17500N 9970E 17500N 9990E 17500N 10010E 17500N 10030E 17500N 10050E	.4 .4 .5 .6	16 37 39 29 23	.3 15.4 .7 42.3 .1 36.3 .6 31.4 .7 28.0	4 4 2 8 3 8 8 8 6 6	15 . 17 . 16 . 15 .	.1 1 .2 3 .1 3 .2 2 .1 2	3.1 4.9 5.0 8.8 2.4	6.8 21.6 20.8 14.6 12.5	26: 53: 53: 53: 58: 58: 53:	1 2. 3 4. 5 4. 5 4. 3 4.	66 2 51 4 45 3 15 3 18 2	20.5 42.4 34.1 37.1 28.8	.5 1.3 1.1 1.3 .8	1.1 6.6 2.7 10.4 1.8	1.5 8.4 9.5 6.2 3.3	17 13 11 15 10	. 4	1 .7 2 1.6 2 2.0 2 1.3 3 1.0	.3 .8 .6 .5 .5	14 9 11 13	.26 .10 .11 .20	.059 .066 .069 .085 .082	25 28 31 28 20	8.4 10.6 11.6 11.2 13.1	.08 .16 .18 .15 .15	46 41 30 32 28	.004 .003 .004 .003 .004	1 1 1 <1 <1	.57 .80 .90 .86 .87	.005 .003 .003 .004 .004	.05 .05 .06 .04 .04	.2 .2 .3 .1 .3	.04 .05 .05 .06 .06	.7 2.9 2.4 2.8 1.3	<.1< <.1< <.1< <.1< <.1<	.05 .05 .05 .05 .05	3 <.5 2 <.5 2 <.5 2 <.5 3 <.5	15 15 15 15 15	
17500N 10070E 17500N 10090E 17500N 10110E 17500N 10130E 17500N 10150E	.5 .6 .3 .6 .5	30 26 14 36 15	.5 44.3 .6 52.0 .6 13.3 .2 62.1 .2 15.1	3 8 6 9 3 3 1 8 0 3	89 98 86 84 87	.22 .22 .11 .23 .11	8.5 6.4 3.6 3.3 5.0	18.8 16.6 5.1 23.0 6.3	1036 1296 163 850 203	54. 54. 12. 06. 12.	38 3 06 3 24 2 97 4 56 1	36.5 34.0 26.2 48.1 16.8	1.5 1.5 .4 .9 .4	4.9 4.7 8.6 3.9 2.4	9 4.8 7 3.8 5 1.8 9 4.6 1 1.2	26 28 6 7 5		2 1.4 5 1.1 1 .7 3 1.9 1 .7	.5 .5 .3 .9 .4	11 10 10 12 12	.41 .51 .07 .04 .04	.106 .129 .061 .097 .133	27 23 27 23 25	12.8 10.3 5.5 14.6 6.4	.16 .14 .04 .16 .05	41 35 24 22 19	.004 .004 .004 .005 .003	1 2 3 1 2	.98 .97 .40 .80 .39	.005 .007 .003 .003 .003	.05 .05 .04 .04 .04	.2 .1 .1 .1 .2	.08 .08 .06 .05 .05	2.7 2.1 .6 1.8 .5	<.l< .l <.l< <.l< <.l	.05 .06 .05 .05 .07	2 <.5 2 <.5 2 <.5 3 .5 3 .5	15 15 15 15 15	
17500N 10170E 17500N 10190E 17500N 10210E RE 17500N 10210E 17500N 10230E	.3 .5 .4 .5 .4	16 15 27 26 10	.7 14. .7 23. .6 36. .7 35. .7 13.	62 73 16 57 33	28 36 59 70 30	.2 1 .1 1 .3 2 .3 2 .1	3.4 5.4 1.3 2.2 9.3	6.1 7.3 14.9 14.8 3.2	89 318 872 912 139	9 2. 3 3. 2 4. 1 3. 5 2.	11 1 72 2 03 3 98 3 47 1	18.3 21.2 33.7 33.4 15.8	.4 .5 1.1 1.2 .4	3.3 1.1 9.6 3.3	3 2.2 1 1.5 5 4.4 3 4.4 5 4.5	3 5 6 5 5	•	1 .8 1 .9 1 1.2 1 1.2 1 .6	.5 .4 .5 .3	10 12 11 10 8	.01 .03 .04 .04 .04	.068 .148 .135 .130 .066	24 28 26 24 24	4.7 10.3 10.8 10.6 9.4	.03 .10 .13 .13 .07	17 22 33 32 27	.003 .006 .004 .004 .002	1 1 1 1 1	.37 .51 .83 .83 .71	.003 .003 .003 .003 .003	.03 .03 .05 .04 .03	.1 .1 .2 .2 .1	.04 .04 .09 .08 .08	.7 .7 1.9 1.9 .7	.l< <.l< <.l <.1 .l<	.05 .05 .05 .07 .07	3 <.5 3 .5 2 <.5 2 <.5 3 <.5	15 15 15 15 15	
17500N 10250E 17450N 9850E 17450N 9870E 17450N 9890E 17450N 9910E	.5 .6 .4 .5	27 15 18 17 20	.3 29. .6 14. .6 14. .7 17. .2 13.	8 6 6 3 2 3 1 5 5 4	52 36 36 50	.1 1 .1 1 .1 1 .2 1 .1 1	9.3 4.6 4.8 8.5 8.3	16.4 5.5 5.8 8.2 6.4	634 300 342 272 182	43. 33. 73. 73. 73.	99 3 58 2 02 3 65 3 40 4	30.5 23.9 36.7 36.7 41.1	.9 .4 .5 .5	6.8 4.9 2.7 1.9	5 8.5 9 1.4 9 3.1 7 5.0 9 1.7	6 3 3 4 5	<.	1 1.2 1 .9 1 .8 2 .9 1 1.1	.5 .4 .3 .4 .4	9 20 11 12 14	.04 .01 .01 .02 .02	.090 .102 .083 .059 .094	25 32 29 29 29	11.1 9.7 9.6 10.7 8.2	.13 .07 .12 .13 .06	26 15 23 30 23	.002 .009 .003 .003 .003	1 : <1 1 <1 <1 1	1.29 .63 .80 .91 .49	.009 .002 .002 .002 .002	.04 .04 .04 .04 .04	.2 .1 <.1 .1 .1	.08 .03 .04 .04 .05	2.3 .7 .8 1.0 .7	.1< .1< .1< .1 <.1<	.05 .05 .05 .06 .05	2 .6 3 <.5 3 <.5 3 <.5 3 <.5 3 <.5	15 15 15 15 15	
17450N 9930E 17450N 9950E 17450N 9970E 17450N 9990E STANDARD DS5	.6 1.2 .6 .9 13.3	24 26 30 16 141	.7 22. .1 44. .1 25. .9 24. .2 25.	35 97 46 33	52 71 56 36 38	.22 .22 .13 .11	20.8 3.9 0.7 2.2 4.0	8.7 12.6 12.3 5.2 11.8	292 720 240 270 753	2 4. 3 7. 3 4. 3 4. 3 2.	72 4 17 3 65 4 58 2 95 1	48.1 37.2 42.0 23.4 17.7	.6 .9 1.1 .5 6.0	1.8 2.0 5.4 1.4 43.9	3 1.9) 2.3 4 9.4 4 2.3 9 2.7	5 7 6 44	5.	2 1.4 2 1.1 2 1.2 1 .7 2 3.8	.5 .8 .5 .5 5.9	16 24 11 14 58	.04 .06 .05 .07 .73	.059 .081 .054 .043 .091	26 23 28 27 11	11.8 20.0 15.9 10.2 183.6	.09 .15 .19 .07 .68	15 23 29 16 137	.007 .007 .002 .004 .094	1 <1 <1 1 1 17	.69 1.32 1.33 .71 2.08	.002 .004 .003 .003 .032	.03 .04 .03 .03 .14	.1 .1 .2 .3 5.3	.04 .05 .06 .07 .17	.8 1.0 1.9 .8 3.3	<.1< .1< <.1< <.1< 1.1<	.05 .05 .05 .05 .05	3 <.5 5 .5 3 <.5 4 <.5 7 4.9	15 15 15 15 15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data \mathcal{L} FA

Page 37

SAMPLE#	Mo ppm	p	Cu pm p	Pb opm p	Zn Spm p	Ag opm	Ni ppm	Сс ррп	n p	Mn pm	Fe %	As ppr	; U 1 ppm	A pp	u b ţ	Th opm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppr	• Mg 1 %	Ba ppm	Ti %	B ppm	A1 %	Na %	К %	W pm	Hg ppm p	Sc opm p	T1 pm	S (% p	Ga Se S om ppm	Sample gm
17450N 10010E 17450N 10030E 17450N 10050E 17450N 10070E 17450N 10090E	.8 .9 .6 .5	33 30 31 28 29	.3 67 .9 39 .6 30 .8 31 .6 34	7.7 9.0 0.9 L.8 4.1	88 65 62 57 63	.1 .1 .2 .1 .1	29.4 18.8 27.9 24.5 24.4	14.2 7.8 10.5 8.2 10.3	2 3 3 2 5 3 2 1 3 2	53 5 46 5 20 5 97 5 08 4	.51 .19 .18 .20 .54	30.9 20.2 33.4 33.9 36.6) 1.3 2 .8 4 1.1) .7 5 .5	5. 1. 3. 3. 6.	6 9 2 2 1 4 0 2 8 3	9.9 2.0 1.0 2.9 3.5	7 6 20 5 5	.2 .2 <.1 .1 .1	1.2 .8 1.2 1.2 1.1	.6 .5 .6 .6	14 16 13 13 12	.04 .02 .27 .02 .02	.064 .068 .089 .069 .060	34 29 31 28 25	13.6 12.7 14.3 11.9 9.7	5 .13 7 .07 8 .12 9 .12 7 .09	19 27 23 22 20	.002 .003 .003 .002 .002	1 1 2 2 2	1.27 .73 1.03 .76 .66	.003 .004 .003 .003 .003	.04 .04 .05 .04 .04	.6 .2 .2 .2 .1	.07 2 .09 .05 2 .07 .06 2	2.3 .9 < 1.3 .9 1.3	.1 <. .1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05 05 05 05	3 <.5 4 .7 3 .5 3 .6 3 .6	15 15 15 15 15
17450N 10110E 17450N 10130E 17450N 10150E 17450N 10170E 17450N 10190E	.5 .6 .6 .5 .6	27 20 45 12 24	.5 24 .6 21 .0 50 .8 19 .6 31	4.4 1.8 0.4 5.6 1.1	48 34 93 29 60	.1 .1 .1 .3	21.8 15.8 40.6 10.8 20.6	8.0 6.2 21.1 4.0 9.3) 1 2 1 6) 2 3 5	88 3 86 3 34 5 51 3 44 3	.99 .84 .52 .14 .74	26.4 21.1 43.9 17.9 32.2	4 .6 1 .5 9 .8 9 .4 2 .7	2. 1. 4. 5. 4.	9 2 3 1 8 1 9 1 5 2	2.2 L.0 D.2 L.3 2.5	6 4 5 8	<.1 .1 .1 .1	1.0 .7 1.5 .5 .9	.5 .5 .7 .4 .5	14 15 10 10 10	.07 .02 .04 .02 .07	.076 .061 .064 .104 .156	26 28 33 32 30	10.7 9.7 16.3 7.4 9.6	7 .09 7 .05 8 .26 4 .06 5 .12	26 30 28 22 49	.003 .003 .003 .003 .003 .003	1 2 1 2 1	.75 .62 1.15 .56 .64	.002 .003 .003 .003 .003	.04 .03 .05 .04 .05	.2 .1 .1 .1 .1	.06 .06 .07 2 .03 .04 2	.8 .5 2.2 < .4 1.0 <	.1 <. .1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05 05 05	3 <.5 3 <.5 2 .9 2 <.5 2 .5	15 15 15 15 15
17450N 10210E 17450N 10230E 17450N 10250E 17450N 10270E 17450N 9850E	.6 .4 .6 .4	28 27 36 48 16	.2 29 .4 31 .5 60 .6 50 .8 11	9.6 1.1 0.4 0.3 1 7.1	72 56 93 103 36	.5 .1 .2 .3	25.6 23.0 30.7 49.2 13.9	11.8 12.0 21.3 25.9 5.1	3 6 0 6 3 7 5 10 1 1	55 4 10 4 11 5 65 5 99 3	.05 .14 .05 .81 .35	37.4 38.4 44.4 28.3 33.2	4 .9 4 .9 4 1.6 3 1.0 2 .5	4. 3. 7. 6. 3.	0 4 3 4 4 10 9 6 0 1	4.9 4.8 0.5 5.4 L.1	7 8 6 107 4	.1 .1 .1 .1 <.1	1.2 1.2 1.4 1.7 .8	.5 .5 .6 .8 .4	9 11 10 8 14	.05 .04 .03 2.26 .02	.137 .198 .083 .107 .088	29 33 34 38 31	11.6 12.0 13.9 9.9	5 .18) .15) .17) .16 5 .09	32 25 29 34 23	.003 .003 .002 .002 .003	1 1 1 1	.86 .71 1.34 .63 .73	.003 .003 .003 .003 .003	.06 .06 .04 .04 .04	.2 .4 .2 .1 .2	.07 .05 .08 .08 .07 .05	L.4 < L.7 2.5 5.5 < .4	<pre>x.1 <. .1 <. .1 <. x.1 <. x.1 <. .1 <.</pre>	05 05 05 05 05	3 .7 2 .6 2 .8 1 .8 3 .5	15 15 15 15 15
17400N 9870E 17400N 9890E 17400N 9910E 17400N 9930E 17400N 9950E	.6 .6 .8 .7 .6	25 27 26 25 26	.0 2 .9 2 .7 2 .2 19 .7 2	1.5 3.3 5.1 9.7 3.6	53 68 61 49 60	.1 .2 <.1 <.1	23.7 28.8 23.2 22.1 25.7	9.1 10.7 10.9 8.2 14.6	1 3 7 3 9 5 2 1 5 2	21 4 70 5 28 4 53 4 74 4	.74 .10 .66 .22 .02	48.0 38.3 42.4 37.3 31.4	5 .7 3 1.3 4 1.3 7 .6 4 1.2	2. 2. 4. 1. 4.	1 2 7 9 3	1.8 3.1 3.8 1.6 3.2	5 26 21 4 7	.1 .1 <.1 .1	1.4 1.0 1.2 1.2 1.0	.5 .6 .4 .5	19 14 15 16 10	.02 .39 .25 .01 .04	.102 .085 .078 .049 .065	35 28 27 34 35	12.7 14.0 13.1 9.5 13.3	7 .13) .13 L .10 5 .05 3 .22	22 37 34 16 25	.007 .003 .003 .003 .003	<1 <1 <1 <1 <1	.76 .89 .90 .52 1.12	.003 .003 .003 .002 .002	.05 .05 .04 .05 .05	.1 <.1 .1 .3 .2	.04 .06 .03 .02 .03	.8 L.6 L.4 .8 < L.8	.1 <. .1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05 05 05	4 .7 4 .5 4 .5 3 <.5 3 <.5	15 15 15 15 15
17400N 9970E 17400N 9990E 17400N 10010E 17400N 10030E 17400N 10050E	.9 .7 .6 .5	25 28 46 20 29	.6 30 .9 39 .1 60 .7 50 .1 31	5.6 9.1 0.9 0.6 7.2	71 72 116 72 75	<.1 .1 .3 .1 .1	24.5 29.0 46.6 20.5 32.7	11.3 14.0 34.2 15.5 20.2	3 2 2 9 5 5 2 8	85 5 26 5 88 5 10 4 41 5	.80 .12 .27 .03 .05	28. 29. 30.9 29.9 33.9	2 2.0 7 1.3 9 2.5 9 2.1 9 2.4	1. 2. 4. 3. 2.	4 8 9 8 5 1 5 5	3.5 3.9 2.5 7.1 7.6	8 10 17 18 25	.2 .1 .4 .1	1.0 1.7 1.5 1.3 1.6	.6 .6 .7 .5	13 11 9 10 10	.06 .06 .17 .14 .26	.070 .074 .086 .082 .070	30 28 31 27 29	16.3 14.5 12.6 11.7 13.6	3 .13 5 .20 5 .15 7 .15 5 .18	21 21 23 28 32	.002 .002 .002 .002 .002	<1 <1 <1 <1 <1	1.30 1.25 1.67 .98 1.05	.003 .003 .004 .003 .003	.03 .04 .05 .04 .05	.3 .2 .2 .2 .2	.07 .06 .13 .05 .06	2.1 2.1 5.4 2.1 2.5	.1 <. .1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05 05 05	3 .6 3 <.5 2 .9 2 <.5 2 .5	15 15 15 15 15
17400N 10070E 17400N 10090E 17400N 10110E 17400N 10130E 17400N 10150E	.4 .5 .7 .7 .6	43 28 36 38 30	.4 40 .0 29 .6 44 .3 41 .9 40	8.9 9.7 4.5 2.1 0.2	79 51 71 85 64	.1 .1 .2 .4 .1	35.1 24.1 30.9 30.8 24.3	16.3 9.0 17.2 19.8 14.7	3 2 2 2 2 6 3 7 7 4	76 5 32 5 10 8 07 5 56 5	.63 .81 .58 .44 .60	37.9 32.9 31.4 34.0 43.4	9.6 9.6 1.8 5.8 4.6	6. 1. 3. 4. 3.	9 1 5 3 2 1 0 1 6 3	2.5 3.4 3.2 5.2 2.5	5 5 4 5 4	.1 .1 .2 .2	1.8 1.1 1.5 1.1 1.2	.8 .6 .7 .7 .7	7 16 13 12 13	.03 .03 .02 .03 .02	.049 .127 .103 .095 .072	27 28 26 24 23	16.5 12.6 20.7 13.0 12.0	5 .25 5 .09 7 .20 0 .14 0 .09	23 24 21 28 19	.001 .003 .004 .004 .004	<1 <1 <1 1 <1	1.23 .87 1.34 1.08 .90	.003 .003 .002 .003 .002	.04 .03 .03 .03 .03	.1 .1 .2 .1	.05 2 .10 .09 1 .15 1 .10 1	2.1 .9 L.9 < L.8 L.2 <	.1 <. .1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05 05 05	2 .7 4 .6 3 1.0 2 .9 3 .7	15 15 15 15 15
RE 17400N 10150E 17400N 10170E 17400N 10190E 17400N 10210E STANDARD DS5	.6 .6 .6 .5 12.5	31 17 29 14 140	.0 3 .1 2 .6 1 .2 1 .1 2	8.5 7.8 8.9 9.8 4.5	64 42 57 31 135	.1 .4 .2 .2 .3	24.2 14.6 22.0 12.8 24.3	14.9 6.8 12.6 5.7 11.5	9 4 8 2 5 3 7 3 5 7	53 5 83 5 22 3 24 2 67 2	.54 .05 .72 .83 .98	42.1 21.0 29.1 29.1 17.1	3 .6 5 .6 5 1.5 3 .6 5 5.8	3. 1. 2. 2. 44.	6 0 5 2 8	2.9 1.4 5.5 2.2 2.9	4 4 7 47	.1 .1 .1 .1 5.3	1.2 .7 1.2 .9 3.8	.7 .5 .4 .4 5.8	12 16 13 8 62	.02 .03 .02 .03 .74	.075 .088 .058 .127 .088	24 24 35 27 12	12.0 16.3 10.1 7.3 186.8) .10 3 .14 1 .08 3 .06 3 .68	20 23 14 20 135	.004 .006 .002 .003 .106	<1 <1 <1 <1 15	.95 .98 .79 .53 2.07	.002 .002 .002 .003 .035	.03 .03 .03 .04 .15	.1 .1 .3 .1 4.8	.08 1 .07 .04 1 .03 .17 3	1.3 .7 1.8 < .7 3.6 1	.1 <. .1 <. .1 <. .1 <. .1 <. .1 <.	05 05 05 05 05	3 .8 4 .6 3 .5 2 .6 6 4.9	15 15 15 15 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data \mathcal{L}_{F}

ACHE ANALYTICAL	Gold City Industries Ltd.	FILE # A405001	Page 38	
SAMPLE# Mo Cu Pb Zn Ag Ni	Co Mn Fe As U Au Th Sr Cd Sb Bi V	Ca P La Cr Mg Ba Ti B	Al Na K W Hg Sc Tl	S Ga Se Sample
ppin ppin ppin ppin ppin ppin ppin	hu bhu % hhu bhu bho bhu bhu bhu bhu bhu	а арри рри арри арри		» ppili ppili gili
17400N 10230E .4 11.8 19.3 28 .1 9.8 5	5.4 338 2.57 31.7 .5 <.5 1.7 5 .1 .8 .4 9 .	02 .106 18 6.3 .06 17 .003 1	.53 .003 .03 .1 .03 .7 .1 <	.05 2 <.5 15
17400N 10250E .5 17.5 23.0 38 .1 13.5 7	7.0 199 3.05 27.0 .9 <.5 3.4 6 .1 .7 .4 8 .	04 .075 18 8.4 .08 24 .002 1	.90 .003 .03 .1 .04 1.0 .1 <	.05 3 <.5 15
17400N 10270E .3 29.7 32.2 78 .1 37.6 20	0.6 946 4.71 29.6 1.1 <.5 6.3 37 .1 1.2 .5 9 .	46 .112 33 12.8 .23 24 .005 1	.81 .003 .03 .1 .04 4.5 <.1 <	.05 2 .5 15
STANDARD DS5 12.6 148.0 25.6 134 .3 24.8 11	9 792 3.03 18.3 6.2 <.5 2.7 44 5.6 3.7 6.3 60 .	71 .095 11 189.8 .69 132 .087 17 2	.02 .031 .13 4.7 .18 3.3 1.1 <	.05 7 5.0 15

Sample type: SOIL SS80 60C.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/FA

APPENDIX II

Analytical Methodology

ACME ANALYTICAL LABORATORIES LTD.

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO₃ and de-mineralised H₂O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan6000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga, Hg,* K, La, Mg, Mn, Mo, Na, Ni, P, Pb, *S*, Sb, *Sc, Se, Tl*, Sr, Th, Ti, U, V, W, Zn.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS5 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau, Ken Kwok, Dean Toye and Jacky Wang.

Document: Method and Specifications for Group 1D&1DX.do	Date: Jan 15, 2004	Prepared I	3y: J. Gra	vel

ACME ANALYTICAL LABORATORIES LTD.

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3B & 3B-MS - PRECIOUS METALS BY FIRE GEOCHEM

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 30 g are weighed into fire-assay crucibles.

Sample Digestion

The sample aliquot is custom blended with fire assay fluxes, PbO litharge and a Ag inquart. Firing the charge at 1050°C liberates Au \pm PGEs that report to the molten Pb-metal phase. Once cooled the Pb button is recovered then fired in a MnO cupel at 950°C to render a Ag \pm Au \pm PGE dore bead. The bead is weighed and parted (i.e. leached in 1 mL of hot HNO₃) to dissolve Ag then 10 mL of HCl is added to dissolve the Au \pm PGEs. A Rh fire assay requires inquarting with Au for quantitative analysis.

Sample Analysis

Group 3B: Solutions analysed by a Jarrel Ash Atom-Comp 975 ICP-ES determine Au only. Analyses on a Perkin Elmer Elan 6000 ICP-MS determine Au, Pt and Pd.

Group 3B-MS: Lower Au, Pt and Pd detection limits are achieved by a longer determination time on the Elan 6000 ICP-MS.

Rh by Au inquart gives a quantitative analysis. Rh by Ag inquart is semi-quantitative owing to the limited solubility of Rh in Ag.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like OC-80, Au-S, Au-R, Au-1 or FA-10R and FA-100S monitor accuracy. Group 3B-MS incorporates new crucibles and additional reagent blanks to permit accurate analysis at very low concentration levels.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

	Document: Method and Specifications for Group 3B-MS.doc	Date: Mar. 17, 2004	Prepared By: J. Gravel
--	---	---------------------	------------------------

APPENDIX III

Statement of Costs

STATEMENT OF COSTS

DOMIN PROPERTY 2004 EXPLORATION PROGRAM

FIELD PERSONNEL			
A. Raven - Field Manager (High Range Exploration	21 ½ days,		5,375
Ltd.)			
M. Moorman - Field Assistant	21 days		5,250
Rainbow and Sunshine Holdings (3 field assistants)	21 days		24,239
FOOD AND ACCOMMODATION			6,508
VEHICLE RENTALS			
Prime Truck Rentals Prince George			3.157
			0,107
EQUIPMENT AND SUPPLIES			
Field Supplies			1,089
Fuel & Lubes			776
AIRCRAFT SUPPORT			
Helicopter – Pacific Western in Prince George			3,355
LABORATORY ANALYSIS			
Acme Analytical Laboratories			17,028
REPORT PREPARATION			3,000
		TOTAL	\$ 69,777.00

APPENDIX IV

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

Bruce L. Laird, P.Geo. 2892 W 35th Avenue Vancouver, B.C. V6N 2M4

I, Bruce L. Laird, P.Geo. hereby certify that:

I am currently employed as a Consultant by:

Gold City Industries Ltd. Suite 550- 580 Hornby Street Vancouver, B.C. V6C 3B6 Telephone: 604-682-7677

I graduated with a Bachelor of Science Degree in Geology, from the University of British Columbia, Canada, in 1984.

I am a registered Professional Geoscientist with the association of Professional Engineers and Geoscientists of the Province of British Columbia, Canada, License Number 21581.

I have worked as a geologist for a total of 20 years since my graduation from university.

I am not independent of the issuers. I hold common shares and options with Gold City Industries Ltd.

Dated at Vancouver, B.C. this 21st day of December, 2004.

Signature Bruce L Laird
STATEMENT OF QUALIFICATIONS

ALAN RAVEN

- I, Alan Raven, of Box 204, Madeira Park, British Columbia, V0N 2H0 hereby certify as follows:
- 1. I have been directly involved in the mining industry as a prospector and project field manager since 1969.
- 2. Between 1977 and 1998 I have taken a variety of prospectors' courses and exploration short courses.
- 3. My field exploration experience includes geochemical and geophysical surveying, diamond drilling, prospecting, mapping, crew training, and exploration project management in British Columbia and the Western United States (Washington, California, Nevada, Arizona, and Utah).
- 4. I hold a portion of the title to the Domin mineral property, which is currently under option to Gold City Industries Ltd.
- 5. Since 2000 I have been retained through my company, High Range Exploration Ltd., as a field manager for Gold City Industries Ltd. I was on site for the entire 2004 geochemical survey program described in this report. I was not involved in the handling of samples.
- 6. This Assessment Report is an accurate account of the 2004 exploration season for the Domin property.

Dated at Vancouver, B.C this 21st day of December, 2004.

Alan Raven

18500

0.5 1.9 1.9 0.5 0.5 2.5 0.5 0.5 1.6 0.8 0.5 2.0 9.9 $\bigcirc^{25.5}$ 13.5 $\bigcirc^{95.8}$ 14.6 1.8 4.1 3.3 17.0

Legend

2,1 1,7 3,5 2,6 10.8 7.2 13.1 20.8 8.0 15.4 16.0 8.1 13.8 20.9 11.3 4.9 7.3 3.9 13.1 4.9 4.6 4.6 3.7 8.2 11.8 3.4 17.7 3.3 4.3 0.8 3.2 9.9 3,1 4,2 2.5 14.8 4.3 4.8 6.1 5.5 6.1 0.8 1.3 10 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

2.1 4.8 3.7 4.6 21.4 15.2 8.3 3.7 4.4 29.9 11.5 9.5 10.8 19.3 7.6

 $1,5 \quad 1,7 \quad 4,2 \quad 1,0 \quad 1,1 \quad \bigcirc^{15.1} (7,7) \quad 7,7 \quad 7,7 \quad \bigcirc^{21.6} 3,6 \quad \bigcirc^{15.1} 4,9 \quad \bigcirc^{73.5} 5,8 \quad 10.9 \quad 6,7$

0,5 0,8 0,7 0,5 5,4 5,0 1,4 1,3 3,0 4,0 8,6 6,0 13,7 12,4 6,2

2,1 2,2 1,6 0,8 1,1 3,4 19.8 3,8 3,8 11,6 10,8 9,9 381 12,5 5,8 13,9 15.8 18.5

2,2 1,1 8,8 0,5 0,7 7,2 4,4 5,0 8,7 ^{22.1} ^{47.3} 9,3 ^{35.6} ^{28.2}

2,6 ^{18.4} 10.9 6,8

4.5 11.3 28.5 13.6

 $1,4 \hspace{0.1in} 2,1 \hspace{0.1in} 10.5 \hspace{0.1in} \overset{17.2}{\overset{}{}} 2,8 \hspace{0.1in} 9,5 \hspace{0.1in} 6,0 \hspace{0.1in} 9,8 \hspace{0.1in} \overset{14.7}{\overset{}{}} 1\overset{14.5}{\overset{}{}} 1\overset{1}{\overset{}{}} \overset{15.1}{\overset{}{}} \overset{15.0}{\overset{}{}} \overset{22.1}{\overset{}{}}$

1.0 0.5 0.7 0.5 1.8 2.1 1.7 2.7 1.9 5.9

0,9 0,5 1,4 1,9 1,9 3,2 13.6 5,9

0,5 1,7 2,8 1,3 2.4 6,7 12.9 8,1 15.1

1,2 0,5

0.6 1.5

0,5

+

0,5 0,9 0,6 0,6 0,5

15.6 10.6 7.3 7.8 6.5 5.7 22.8 35.7

5.5 13.1 14.1 24.6

25.9

13.9 10.2

Griz Anomaly

19.4 4,7 14.5 2,9 4,6 12.3 8,7 8,7

9,1 18.4 16.9 18.2 17.9 11.4 10.3

2,2 2,1 5,1 ^{27.9} 13,4 10,0 12,3 0,6 6,0 3,8 1,9 0,5 0,5 18.3 0,5 0,9 7,2 1,7 3,1 4 1.0 0.8 3,3 21.0 4.4 2.7 13.0 5.8 2.4 1.5 3.5 2.1 1.5 3.3 1.1 2.3 0.7 1,5 1,1 1,0 1,1 2,7 1,6 18.5 10.5 1,8 9,4 0.5 3.2 3.3 0.8 4.2 1.8 2.7 0.5 8.5 3.1 1.1 0.5 4.0

Caribou Anomaly

17500

18500

0.5 1.1 0.5 1.2 0.7 0.7 0.5 4.1 5.1 4.3 2.6 1.0 3.5 3.9 4.6 10.6 5.6 13.1 ^{25.1} 14.4		Au (ppb)
0,5 1,9 1,3 7,6 4,4 1,6 1,2 0,5 1,0 3,8 0,6 3,7 3,7 1,8 4,5 3,0 1,5 9,6 3,8 4,6 13.0		
2,1 1,2 2,0 2,0 2,0 0,5 1,3 0,5 1,8 2,8 2,1 1,7 5,1 1,9 0,9 4,5 8,9 33 .7 9,6 25 .4		· 0 - 14
2,0 3,1 3,1 3,3 242.5 8,2 4,0 2,8 1,8 18.2 2,0 2,6 2,6 71.8 15.1 8,2 13.0 6,0		° 15 - 19
2 ,6 1,8 3,9 3,5 1,7 1,6 0,8 2,1 4,9 3,6 5,3 1,6 3,9 3,2 2,4 11,1 9,4 $\bigcirc^{16.5}$ 10,6		• 20 - 29
2,0 3,6 0,5 3,3 2,5 2,1 0,9 0,8 14.7 2,8 2,3 1,41,4 2,2 3,0 3,0 7,3 3,4 16.8 18.0		· 30 - 49
1,3 2,8 1,6 2,7 3,4 1,3 2,8 6,0 2,7 1,2 4,3 7,2 7,3 5,5 4,5 2,9 4,3 3,8 2,2 6,8 5,5		
1,2 5,4 8,0 2,7 6,0 1,3 1,2 4,3 3,8 0,5 0,9 7,0 4,6 3,7 10,3 3,8 1,2 6,3 2,5 7,7 2,5		50 - 400
2,6 8,4 2,7 4,5 2,3 2,0 1,1 6,6 ₊ 2,7 10,4 1,8 4,9 4,7 8,6 3,9 2,4 3,3 1,1 9,6 1,5 6,5	+	+
0,9 4,9 2,7 1,9 1,8 2,0 5,4 1,4 5,6 1,2 3,1 3,0 6,8 2,9 1,3 4,8 5,9 4,5 4,0 3,3 7,4 6,9		Gold City Industries Ltd.
3,0 2,1 2,2 4,7 1,9 4,3 1,4 2,9 4,5 3,5 2,5 6,9 1,5 3,2 4,0 3,6 1,0 2,5 2,2 0,5 0,5 0,5		Domin Property 2004 Soil Survey Au (ppb) Figure - 4
10000	10500	11000

9500	10000	10500
n f f Grid North	1 1 1 2 <th2< th=""> <th2< th=""> <th2< th=""></th2<></th2<></th2<>	
1000	36.5 2.4 15.5 2.6 16.9 16.0 36.0 37. 31.0 36.0 38.0 27.0 38.0 37.0 31.0 38	<section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header>

68.3 25.7 16.6 3.5 33.1 89.9 68.3 25.7 16.6 3.5 33.1 89.9 68.9 97.9 79.5 63.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 68.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 43.2 53.5 61.6 37.4 62.6 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 103.8 50.7 69.9 40.2 51.1 140.2 100.2 100.2 100 140.2 100.2 80.6 36.0 29.1 11.3 23.4 34.2 40.9 41.0 45.5 28.8 34.8 36.6 32.5 30.1 47.4 53 5 54.8 65.4 49.9 60.7 19.8 26.0 38.8 66.1 63.6 44.9 89.4 31.6 28.9 22.8 37.7 50.2 55.8 74.8 $13.4 \quad 17.0 \quad 9.0 \quad 34.7 \quad 10.7 \quad 69.2 \quad 74.1 \quad 110.7 \quad 140.4 \quad 111.6 \quad 37.3 \quad 53.1 \quad 63.6 \quad 64.4 \quad 68.7 \quad 63.1 \quad 25.7 \quad 1972 \quad 71.4 \quad 110.7 \quad 140.4 \quad 111.6 \quad 37.3 \quad 53.1 \quad 63.6 \quad 64.4 \quad 68.7 \quad 63.1 \quad 25.7 \quad 1972 \quad 71.4 \quad 10.7 \quad 10$ 8,2 5,7 14,4 51.0 38.0 28.8 120.9 62.8 140.2 110.4 79.4 167.3 77.6 56.3 55.8 41.5 44.6 39.9 Griz Anomaly Caribou Anomaly 15.3 19.1 13.3 12.5 16.6 $\begin{array}{c}163.8 \\ 0\end{array}$ $\begin{array}{c}160.0 \\ 0\end{array}$ 53.0 93.8 126.6 107.6 102.0 119.8 92.2 57.8 53.4 48.2 52.2 8,1 29,4 8,9 18,5 22,7 19,0 137.2 69.2 69.4 85.1 115.2 132,0 148.3 133.7 65.5 38,0 46,5 76.3 $20,8 \quad 17,8 \quad 12,8 \quad 16,8 \quad 36,2 \quad \bigcirc \\ 631.0 \quad 153.9 \quad 139.1 \quad 123.1 \quad 110.3 \quad 142.7 \quad 40.7 \quad \bigcirc \\ 100.1 \quad \odot \\ 10$ 18.5 15.6 14.0 55.2 37.5 56.6 100.6 225.9 108.2 48.6 36.8 87.3 42.6 35.7 49.1 49.7 45.5 143.6 20 31.5 11.7 16.7 58.6 54.6 30.7 23.6 58.4 129.8 52.0 40.7 28.2 68.3 41.2 62.9 75.8 41.0 77.0 103.0 151.0 66,0 38.0 45.0 71.0 58.0 47.0 33.0 75.0 49.0 57.0 $\begin{array}{c} 120.0 & 675.0 & 712.0 \\ 33.0 & 1071.0 \\ \end{array} \begin{array}{c} 2773.0 \\ 97.0 \\ 31.0 \\ 19.0 \\ \end{array} \begin{array}{c} 99.0 \\ 99.0 \\ 99.0 \\ 99.0 \\ 60.0 \\ 46.0 \\ 36.0 \\ 36.0 \\ 36.0 \\ 36.0 \\ 11.0 \\ 66.0 \\ 193.0 \\ \end{array}$ $18.0 \quad \bigcirc 557.0 \\ 1335.0 \quad \bigcirc 150.0 \\ 42.0 \\ 15.0 \quad 44.0 \\ 49.0 \\ 49.0 \\ 18.0 \\ 27.0 \\ 29.0 \\ \bigcirc 193.0 \\ 22.0 \\ 22.0 \\ 193.0 \\ 22.0 \\$ $\begin{array}{c} 1000 \\ 590 \\ 975.0 \\ 650 \\ 4490 \\ 551.0 \\ 412.0 \\ 59.0 \\ 975.0 \\ 651.0 \\ 412.0 \\ 59.0 \\ 975.0 \\ 651.0 \\ 412.0 \\ 59.0 \\ 975.0 \\ 651.0 \\ 412.0 \\ 59.0 \\ 975.0 \\ 651.0 \\ 412.0 \\ 651.0 \\ 414.0 \\ 66.0 \\ 66.0 \\ 66.0 \\ 66.0 \\ 66.0 \\ 66.0 \\ 67.4 \\ 136.9 \\ 200.3 \\ 235.0 \\ 453.8 \\ 194.6 \\ 189.6 \\ 67.6 \\ 17.7 \\ 11.0 \\ 79.2 \\ 730.9 \\ 97.5 \\ 86.0 \\ 65.9 \\ 99.4 \\ 133.2 \\ 112.8 \\ 44.6 \\ 67.4 \\ 136.9 \\ 200.3 \\ 235.0 \\ 453.8 \\ 194.6 \\ 189.6 \\ 70.6 \\ 70.6 \\ 17.7 \\ 11.0 \\ 79.2 \\ 730.9 \\$ $1_{1.0} \stackrel{146.3}{\longrightarrow} \stackrel{184.8}{\longrightarrow} \stackrel{333.6}{\longrightarrow} \stackrel{56.6}{\longrightarrow} \stackrel{34.9}{\longrightarrow} \stackrel{47.2}{\longrightarrow} \stackrel{31.5}{\longrightarrow} \stackrel{56.0}{\longrightarrow} \stackrel{9.0}{\longrightarrow} \stackrel{43.5}{\longrightarrow} \stackrel{38.4}{\longrightarrow} \stackrel{28.9}{\longrightarrow} 1_{1.5} \stackrel{15.4}{\longrightarrow} 2_{1.0} \stackrel{23.2}{\longrightarrow} \stackrel{154.4}{\longrightarrow} 1_{7.1} \stackrel{17.6}{\longrightarrow} 1_{5.3} \stackrel{15.3}{\longrightarrow} 1_{5.5} \stackrel{15.4}{\longrightarrow} 1_{5.5} \stackrel$ 16.6 14.1 159.3 135.6 244.4 43.4 54.9 22.9 25.9 34.9 22.9 25.1 13.9 20.0 24.4 29.6 17.5 17.6 25.7 15.7 10.0 16.9 82.2 49.3 661.9 30.9 34.8 47.3 43.3 26.5 22.5 82.1 50.1 22.0 9.9 20.5 13.9 16.0 15.8 13.5 7,2 5,8 9,0 18,5 17,2 61.5 27,2 23,6 0 222.2 62.7 127.2 13,6 11,1 24,0 13,4 19,3 26,2 19,2 21,8 15,2 18.2 9.5 9.4 9.9 17.2 13.8 65.9 41.8 4.8 48.3 13.0 15.3 13.3 13.4 11.4 40.7 10.9 30.1 15.1 18.8 41.7 12.1 19.1 50.8 40.8 25.8 38.0 15.4 32.5 26.8 20.0 16.0 9.6 6.8 18.3 11.9 19.5 15.2 9.2 11.8 16.4 49.0 48.7 40.5 13.3 13.7 24.9 20.9 54.5 34.2 33.1 44.9 61.7 45.9 21.6 20.1 15.2 17.1 20.3 53.2 18.8 53.6 37.3 72.0 18.0 15.5 31.8 30.7 45.5 12.6 22.3 19.2 30.7 27.5 26.7 9.6 23.5

18500

18000

17500

18500

19500

19000

_ | 1

+	+	Legend
	11.6 20.8 28.5 23.3 21.9 58.7 10.8 13.5 29.4 36.8 16.1 55.4 189.5 345.7 71.6 172.6 91.7 25.2 30.2 35.9 52.9	[∞] As (ppm)
	5,5 10,4 11,1 4,6 12,6 20,3 11,3 20,9 38,8 22,3 33,0 24,5 39,3 102.9 67.3 86.0 29,0 22,1 78.1 50 ,6	· 0 - 29
	20.4 25.9 29.8 29.2 27.5 18.4 19.1 6.9 16.2 25.3 22.7 20.5 40.5 20.7 42.3 17.0 31.2 35.7 49.7 48.0 57.9	° 30 - 59
	15.0 25.8 25.4 23.4 33.1 30.2 26.8 13.8 22.4 40.0 12.8 22.7 17.2 23.3 31.1 41.9 52.6 60.7 32.4 135.5	• 60 - 99
	30.1 31.6 26.9 41.4 23.6 17.7 27.1 36.8 21.5 28.5 37.9 38.4 54.5 48.7 89.6 45.7 49.7	• 100 - 149
	35.2 28.6 38.1 42.5 66.4 48.1 34.4 33.5 45.4 26.1 27.2 29.0 35.9 43.4 32.1 72.4 58.4 61.6 73.7	
	29.4 16.4 12.0 49.8 46.0 35.5 51.0 24.4 35.1 27.5 36.7 32.4 31.335.3 15.4 29.3 37.5 61.1 76.1 117.4 137.2	• 150 - 730
	20.1 28.6 27.1 46.7 86.7 37.9 50.4 78.1 55.6 22.3 30.0 37.1 40.6 48.5 63.1 42.5 30.6 31.2 26.7 49.3 39.1	
	12.6 37.1 58.7 34.9 41.1 26.1 28.1 24.3 23.0 23.6 25.7 32.4 42.5 30.8 28.9 35.2 24.5 17.1 21.2 48.1 28.6	
+	28.6 51.0 22.7 34.7 37.0 37.7 20.5 42.4 34.1 37.1 28.8 36.5 34.0 26.2 48.1 16.8 18.3 21.2 33.7 15.8 30.5	Gold City Industries Ltd.
	23.9 36.7 36.7 41.1 48.1 37.2 42.0 23.4 30.9 20.2 33.4 33.9 36.6 26.4 21.1 43.9 17.9 32.2 37.4 38.4 44.4 28.3	Domin Property
	33.2 48.6 38.3 42.4 37.7 31.4 28.2 29.7 30.9 29.9 33.9 37.9 32.9 31.4 34.6 43.4 21.6 29.5 29.8 31.7 27.0 29.6	2004 Soil Survey As (ppm)
		Figure - 5
9500	10000	

Bear Anomaly

11000

19500

19000

18500

18000

10500

18.3 23.2 20.2 19.3 40.9 20.0 25.1 $\stackrel{53.4}{\bigcirc}$ 26.0 23.3 31.5 $\stackrel{611}{\bigcirc}$ 30.6 24.4 $\stackrel{96.4}{\bigcirc}$ 36.7 18.4 16.7 19.4 20.9 29.0 38.1 55.9 30.4 20.3 23.6 74.1 36.3 29.5 33.4 70.6 83.6 19.0 26.1 19.6 16.4 21.7 34.6 23.5 28.4 26.3 32.3 31.8 30.0 49.7 55.3 47.0 42.1 32.8 20.6 21.7 22.4 22.6 42.6 26.8 26.4 37.2 33.9 22.1 53.6 15.4 44.2 53.6 22.3 23.1 21.4 22.9 21.4 20.8 28.9 22.5 14.4 48.1 59.8 16.5 41.9 78.5 33.7 28.8 26.6 21.5 18.5 25.3 22.2 24.5 23.1 24.4 25.9 27.3 42.8 14.2 8.8 55.0 41.0 34.3 20.9 24.1 13.0 11.2 11.3 13.5 32.2 35.7 42.7 62.1 68.0 59.4 31.1 42.5 21.6 25.8 19.7 20.3 7.3 18.0 26.8 13.2 $\overset{74.2}{\bigcirc}$ 35.4 34.3 13.7 22.8 $\overset{44.7}{\bigcirc}$ 33.4 17.4 20.2 15.9 18.5 22.7 24.5 25.1 25.8 26.3 33.5 7 37.7 48.0 37.3 27.3 38.1 20.4 22.5 18.8 14.3 14.3 11.9 38.0 21.7 25.1 \bigcirc 38.0 30.7 \bigcirc 53.4 27.7 \bigcirc 40.5 \bigcirc 55.5 \bigcirc $28.1 \ 31.4 \ 22.3 \ 21.7 \ 21.6 \ 30.8 \ 13.2 \ 28.9 \ \bigcirc^{85.6} 21.9 \ \bigcirc^{72.1} \ \bigcirc^{49.9} \ \bigcirc^{50.3} \ 37.4 \ 21.8 \ 45.9 \ \bigcirc^{139.7} \ \bigcirc^{139.7}$ 17.5 23.3 18.3 28.4 24.3 32.8 36.9 32.8 ^{51.3} 33.1 ^{127.8} 41.2 ^{54.9} 44.2 30.5 40.2 ^{53.6} 22.4 30.6 24.0 21.5 25.5 31.4 31.0 35.5 ^{43.5} ^{40.9} 13.7 31.7 34.3 38.8 ^{42.6} 33.5 29.5 23.6 23.8 25.6 35.5 34.2 23.1 23.6 23.0 19.2 21.9 30.8 18.2 27.5 59.9 11.6 15.1 17.9 18.2 25.2 22.0 42.4 21.9 67.8 19.6 23.7 23.9 23.6 28.4 30.5 17.9 20.9 19.3 23.3 37.6 24.3 14.8 16.2 12.1 17.2 40.7 23.6 15.1 25.1 35.7

19.9 24.4 17.5 13.4 31.7 17.7 15.4 16.5 27.9 47.2 33.7 52.3 39.6 21.0 24.0 32.9 30.1 24.6 43.4 43.7 48.8 20.3 17.2 17.2 11.6 22.0 21.6 20.2 4.0 20.8 56.8 30.1 31.3 35.7 51.2 53.1 33.7 34.5 24.6 36.3 5,3 11.6 17.9 16.9 12.5 11.8 14.1 13.2 13.9 22.0 18.6 29.9 56.8 29.4 13.1 11.7 9.5 9.8 9.4 27.8 11.7 12.4 14.8 7.0 17.2 19.7 14.1 20.5 10.2 11.3 23.0 21.4 30.3 12.0 29.8 27.3 11.8 13.1 21.6 20.6 13.8 18.7 12.0 19.6 17.0 17.8 11.7 12.4 16.8 26.5 20.4 54.3 26.1 31.1 26.5 18.9 31.4 25.0 26.5 18.7 10.2 9.0 13.3 21.2 16.1 12.5 10.4 15.1 18.0 15.1 27.0 12.6 10.2 17.9 20.2 18.2 29.1 27.6 34.5 16.8 22.0 15.3 8.3 27.0 20.6 22.7 15.0 22.1 21.9 16.0 34.3 34.2 30.0 15.1 34.6 25.9 23.1 32.7 51.8 18.8 15.9 14.2 5.7 20.7 27.8 30.2 47.4 29.5 35.5 35.6 37.9 33.3 0 12.2 41.6 29.8 29.9 56.2 65.1 19.9 18.0 23.7 11.4 27.2 62.3 28.2 18.3 20.4 54.3 44.3 58.7 29.1 24.5 17.7 78.2 41.6 32.9 36.7 47.7 21.9 17.4 17.8 12.1 14.7 32.8 18.3 28.0 31.6 35.1 34.5 39.1 34.1 20.2 9.0 37.9 58.1 65.6 49.2 29.0 12.9 14.0 22.9 7,1 23.0 24.6 29.0 8,9 19.6 20.2 12.9 20.4 36.3 43.1 10.6 37.1 31.5 **58**.3 16.7 45.9 15.7 20.8 24.4 19.5 21.9 26.2 10.6 23.6 20.6 12.6 18.2 16.8 9.9 9.5 25.1 46.3 45.9 64.2 64.7 70.8 29.5 12.6 7.5 23.4 13.4 34.5 17.2 30.6 24.2 19.1 41.1 36.9 37.1 30.8 27.7 34.9 45.1 18.2 9.8 15.0 6.7 26.3 35.7 32.6 49.8 79.7 28.1 22.2 31.7 32.5 28.7 47.3 83.6 56.1 105.6 43.3

19000

Griz Anomaly

21.8 19.2 23.7 36.5 34.2 44.1 34.2 23.4 27.5 25.9 83.4 26.9 48.4 15.9 78.5 36.6 62.7 628 22.1 18.7 30.5 30.6 25.3 11.4 22.4 33.6 34.0 32.2 18.7 26.7 23.8 28.8 21.9 63.6 29.1 26 8 53.4 66.4 24.2 20.3 21.1 23.2 33.7 18.8 11.6 21.8 16.5 25.8 26.7 18.2 26.0 46.5 28.3 29.6 28.4 68 0 46.1 13.4 19.5 13.0 30.7 22.1 31.7 23.9 18.7 13.2 11.0 29.1 16.1 14.6 38.7 39.6 42.3 10.4 12.3 11.6 21.2 23.8 30.3 25.2 29.8 27.4 ^{54.7} 19.1 19.0 32.4 13.8 20.2 ^{53.4} 42.6 38.4 ^{39.5} 25,7 9,1 23,4 23,5 24,5 59.4 45.0 16.4 27,7 34.6 37.9 27,4 42.3 34.1 11,1 82.1 61.9 48.1 23.1 23.4 20.5 25.2 28.8 12.6 38.4 38.6 15.1 19.8 28.9 45.6 62.5 50.7 53.3 38.0 0 42.2 20.4 17.7 32.2 26.9 26.3 54.2 40.0 22.4 50.1 38.6 51.5 30.3 42.4 35.0 15.2 53.5 40.3 49.8

25.8 15.6 17.4 13.7 29.9 32.3 29.8 20.9 48.0 48.0 21.9 15.3 12.9 29.5 27.8 28.3 41.2 40 9 39.6

-0.7 27.7 34.5 36.7 31.9 33.3 36.7 17.5 24.1 21.4 19.9 15.9 42.9 36.7 46.9 41.2 29.2 Caribou Anomaly 1.4 24.9 35.8 160.1 36.3 33.3 31.1 50.7 23.2 12.5 27.7 32.9 31.3 28.4 23.7 34.1 45.0 41.4 27.4 22.3 37.5 43.8 42.7 34.1 33.9 46.9 35.2 29.6 31.5 43.4 44.7 60.5 46.3 41.9

10000

52 36 51 32 21 19 19 44 68 42 41 38 19 77 **8** 39 38 26 9 31 18 28 64 33 36 42 34.2 17.4 64.2 46.5 39.1 47.5 27.4 32.0 40.9 77.1 25.9 6.4 28.7 35.2 39.2 36.3 30.0 37.1 24.6 24.6 42.3 14.3 17.9 10.9 14.8 11.4 18.8 16.9 10.5 14.6 24.7 25.0 30.0 31.5 23.1 33.2 26.0 36.5 26.0 20.3 ^{100.3}/35.9 30.2 23.4 22.1 13.7 11.7 19.1 41.7 27.1 ^{52.2}/₀ 12.3 32.1 ^{39.7}/₂ 20.2 29.3 ^{39.4}/₃ 32.1 29.0 28.1 95.9 19.1 40.7 15.3 40.4 17.8 27.2 16.1 56.9 11.4 33.3 21.2 18.6 17.7 15.0 45.1 34.0 43.9 37.0 18.9 23.1 ^{51.0} 9,5 37,9 12,2 ³⁹,5 28,5 13,8 6,5 25,0 38,2 18,5 26,4 15,9 37,4 ^{41,1} 16,8 25,5 26,4 ^{46,8} 32,8 29.5 22.8 43.7 42.6 32.3 5.5 14.4 23.6 27.0 20.5 16.3 68.0 32.5 41.6 19.2 31.8 49.6 33.3 27.6 29.0 26.6 26.3 28.8 24.6 22.0 26.5 38.0 24.0 40.0 42.8 0 28.3 27.9 42.8 14.7 33.4 35.6 40.5 32.6 27.9 25.0 16.8 27.1 26.1 60.4 39.3 45.0 26.1 5.1 35.6 27.9 21.9 32.3 29.9 17.1 21.2 19.0 34.1 20.7 33.6 85.6 25.4 36.3 23.9 32.0 23.9 28.4 8.2 32.8 21.4 13.2 38.3 15.4 9.9 35.4 16.6 15.4 24.8 11.8 0

30.3 48.8 36.6 22.6 24.0 27.9 30.5 25.5 26.9 19.3 23.5 17.4 25.9 20.6 48.1 40.9 31.4 19.0 27.4 23.6

32.9 49.4 11.6 11.3 15.6 21.5 15.4 15.8 21.5 25.8 63.7 11.2 29.9 27.3 49.6 30.0 47.5 14.8 31.4

Legend

10000	10500	11000
		Figure - 6
17.1 21.5 23.3 25.1 19.7 23.6 36.6 39.1 60.9 50.6 37.2 48.9 29.7 44.5 42.1 40.2 27.8 18.9 19.8 19.3 23.0 32.2		Domin Property 2004 Soil Survey Pb (ppm)
14.6 14.2 17.1 13.5 22.3 44.9 25.4 24.3 $\stackrel{67.7}{\longrightarrow}$ 39.0 30.9 31.8 34.1 24.4 21.8 $\stackrel{50.4}{\longrightarrow}$ 15.6 31.1 29.6 31.1 $\stackrel{60.4}{\longrightarrow}$ 50.3	+	Gold City Industries Ltd.
6,1 21.3 18.4 21.8 43.4 15.2 9.3 28.8 26.1 21.6 28.1 47.1 42.6 27.2 30.8 26.3 21.2 19.3 17.4 $\overset{52.5}{\longrightarrow}$ 36.8 9.7 24.1 11.7 21.1 14.0 16.6 15.4 42.2 36.3 31.8 28.6 44.3 52.6 13.3 $\overset{62.1}{\longrightarrow}$ 15.0 14.6 23.7 36.1 13.3 29.8		
15.2 14.3 13.9 17.8 32.8 16.0 25.0 43.0 51.5 26.9 28.1 		
20.2 11.9 5.4 24.5 25.8 11.5 32.8 24.2 20.6 22.2 18.926.335.941.9 21.9 26.9 38.1 66.0 98.4 128.7 128.7		85 - 612
15.9 15.3 19.3 23.2 21.9 24.5 15.4 20.6 53.7 31.3 32.1 31.1 0 44.9 34.7 6.6 28.7 45.2		• 60 - 84
15.5 16.5 15.4 17.7 21.7 34.0 30.4 79.4 37.7 23.5 57.2 36.4 275.9 70.7 58.0 39.6 33.8		• 50 - 59
18.6 21.1 18.4 19.7 17.8 23.6 23.9 18.2 12.9 35.4 11.5 18.6 27.0 42.5 30.0 40.3 47.6 67.3 23.6 106.6		• 40 - 49
20.7 20.1 21.9 25.3 16.3 14.5 10.3 15.5 16.9 19.1 24.7 14.9 21.8 21.6 27.2 4.5 7.7 37.6 62.9 49.5 42.1		
9,3 16,7 17,0 8,0 19,2 18,3 10,7 24,5 32,7 29,3 25,8 23,8 37,2 0 20,2 70,9 102.4 23,9 24,4 68,7 53,8		. 0 - 39
18.4 25.0 41.4 27.3 26.6 40.8 32.2 37.6 22.2 26.4 24.6 30.2 25.3 0 44.5 58.4 64.5 34.0 37.3 40.2 51.0		Pp (ppm)

18500		Griz Anomal	۸ ۳ ۵۵۵
0			Legend
1800	+ 41 81 80 85 71 77 57 60 74 67 43 62 64 210 150 136 179 54 63 59 120	+	Zn (ppm)
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0 - 59
	7^3_{\circ} $\overset{83}{\bigcirc}$ $\overset{79}{\circ}$ $\overset{75}{\circ}$ 54 44 30 37 34 43 45 43 51 29 46 21 31 57 69 76 $\overset{113}{\bigcirc}$		• 60 - 79
	59 44 52 67 51 49 43 29 23 48 32 35 $\overset{89}{\circ}$ $\overset{80}{\circ}$ 62 64 116 $\overset{116}{\circ}$ $\overset{156}{\circ}$ $\overset{89}{\circ}$ $\overset{185}{\circ}$		• 80 - 104
	46 52 73 89 48 55 50 78 45 45 73 65 65 189 129 137 72 76		• 105 - 139
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		140 - 460
	54 29 23 44 29 37 53 55 55 41 58 136 94 57 33 54 54 73 91 138 290		- 140 400
	20 26 32 54 62 47 72 72 75 46 59 93 90 84 87 82 45 46 57 94 68		
	14 50 60 93 77 52 41 72 83 46 53 70 69 48 54 53 29 37 38 95 88		Gold City Industries Ltd.
1750	27 67 39 74 48 47 45 87 86 85 66 89 98 36 84 37 28 36 69 30 62	+	Domin Property
	36 36 50 44 52 ${}'1$ ${}'66$ 36 ${}'00$ ${}'65$ ${}'62$ 57 ${}'63$ 48 34 ${}'0$ 29 ${}'00$ ${}'72$ 56 ${}'00$ ${}'00$ ${}'00$ 36 53 68 61 49 60 71 72 ${}'16$ 72 75 79 51 71 ${}'85$ 64 42 57 24 38 29 ${}'78$		2004 Soil Survey
	ý ý ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Zn (ppm)
			Figure - 7
	10000	10500 I	11000 I

N	10000	10500	11000	
	21.5 26.2 20.4 20.0 31.7 23.2 20.5 26.9 16.8 19.7 20.7 41.6 24.3 12.5 70.6 47.8			
	29.2 20.0 20.5 21.0 22.5 36.1 29.1 21.8 19.8 21.4 64.5 29.1 28.3 16.3 59.7 34.5			
V	23.2 24.0 22.5 13.9 22.1 37.1 26.0 33.3 30.8 25.4 29.3 27.5 24.5 34.7 43.6 35.1			
	24.5 33.1 25.6 18.6 18.8 28.0 24.0 25.3 26.0 21.9 36.8 32.3 16.7 26.5 48.5			
Grid North	+ 24.0 22.4 21.3 18.8 16.7 13.8 17.6 18.7 9.5 23.2 48.6 14.6 28.9 25.4 21.9	+	+	9500
	^{41.9} 23.6 14.6 19.2 21.1 17.9 19.1 24.4 24.1 26.0 25.4 33.0 5.9 57.2 25.9			,
	24.7 24.5 22.8 24.7 14.4 10.0 10.7 11.0 20.6 25.0 30.5 29.9 40.2 38.2 25.9 26.0			
	23.5 27.4 19.9 23.7 14.7 21.2 20.5 16.7 44.4 28.0 28.0 13.7 16.6 35.8 38.7 20.3			
	22.0 18.5 17.2 23.9 26.1 23.8 21.3 23.9 25.9 28.7 140.5 28.5 35.9 27.6 18.4 33.6			
	34.7 27.4 18.8 15.8 12.9 14.1 19.8 11.5 27.8 28.2 22.7 24.7 32.5 20.3 36.4 27.4 40.7			
	29.1 25.6 22.1 26.6 20.9 22.7 12.6 21.4 39.9 17.6 20.5 38.1 31.4 14.7 37.7 66.7	Poor Anomaly		
	19.8 24.3 23.6 31.2 23.3 26.2 22.8 24.8 32.9 24.7 43.7 26.5 28.4 29.0 23.7 30.6 70.4	Deal Anomaly		
	34.7 22.0 19.5 22.8 21.1 28.4 17.8 22.1 20.6 19.7 16.7 24.4 13.9 28.0 25.4			
	14.7 22.3 22.9 15.7 28.5 22.6 32.9 18.4 41.1 16.2 24.7 20.2 19.2 25.4 29.3 29.2			
	23.4 24.7 21.9 25.7 27.6 17.3 16.0 14.3 8.9 13.0 27.1 23.1 15.2 29.6 43.7 47.6			
	24.9 24.6 20.2 20.5 34.4 19.8 18.8 14.8 26.4 31.8 29.1 46.8 46.1 13.4 20.5 26.7 20.0 21.0 24.9 26.1 36.7			
	27.6 19.6 21.6 14.6 23.0 21.1 25.2 5.5 25.8 30.0 23.2 22.9 58.7 32.5 24.5 30.9 22.2 25.1 18.5 39.6			
	6.3 20.1 22.8 20.9 15.2 14.1 17.1 19.4 13.7 15.6 15.9 22.5 ^{40.8} 21.3 10.5 5.6 8.2 13.3 6.5 18.8			
	19.8 19.7 17.9 10.2 23.2 29.8 17.6 20.3 11.7 10.0 17.6 27.4 29.3 9.0 22.6 28.7 9.0 15.7 13.8 36.8			
	25.9 17.4 28.0 9.8 20.6 18.5 20.2 16.0 15.2 15.6 24.9 18.7 36.0 10.4 18.7 17.8 10.8 25.2 25.7 15.8			
	17.8 16.9 10.2 16.3 17.0 15.2 14.6 11.7 15.5 14.3 13.2 27.5 12.0 6.7 10.8 11.1 13.0 22.6 21.3 32.0			
	22.7 21.5 19.9 15.3 26.5 26.0 22.3 18.5 17.2 19.4 14.3 28.5 29.8 27.2 15.0 19.6 27.8 17.6 21.7 41.5			
0	20.6 15.6 14.7 9.0 26.2 20.4 24.3 24.2 31.8 23.5 25.0 23.2 22.7 26.1 17.8 25.1 25.5 21.9 52.7 51.6			0
1900		+	+	1900
-	18.3 16.6 18.2 24.1 11.0 27.1 20.9 22.7 20.0 25.4 25.0 24.5 31.6 14.1 6.9 25.6 36.2 45.2 34.6 28.7			X
	13.5 17.3 21.6 11.8 29.0 26.1 20.2 12.4 15.5 26.3 11.5 12.6 27.0 33.4 11.4 26.4 32.8 30.7 14.8 28.8			
	14.0 15.8 19.0 21.3 24.7 25.2 16.7 28.2 19.5 15.4 17.7 19.5 20.4 18.8 23.0 24.7 25.8 28.3 11.1 37.1 25.3			

	17.3 8.2 19.5 15.0 21.5 16.5 26.7 22.6 22.0 23.9 29.6 24.8 29.2 21.1 29.7 26.6 48.8 04.7 27.0
	$18.0 9.9 17.6 8.7 29.2 32.6 33.8 31.1 47.3 28.1 29.0 31.4 28.5 33.2 \bigcirc 13.5 39.1 76.9 36.0 \bigcirc 0 0 0 0 0 0 0 0 $
	20.6 16.2 19.3 12.7 32.1 19.7 25.6 28.2 29.1 29.7 28.9 15.2 23.2 23.4 26.1 19.7 27.0 31.5 41.6
	18.3 23.3 16.6 21.9 19.6 18.8 26.3 32.1 24.8 26.9 16.1 21.8 27.8 24.0 21.2 35.7 20.6 25 1 59.3 49.3
	20.1 19.0 15.9 17.6 35.2 26.7 22.8 21.8 19.1 32.8 22.7 16.3 24.0 25.9 21.3 36.6 27.9 42.9 32.1
	14.4 24.7 12.3 23.9 19.4 29.6 31.3 17.7 24.3 22.1 14.1 20.4 17.5 30.2 24.7 36.3 11.5 50.5 48.7
	15.7 14.1 22.3 28.2 18.7 18.8 29.3 21.6 48.1 23.1 26.8 41.6 16.7 17.5 63.1 35.3 34.6 25.0
	30.6 16.8 17.4 18.6 ^{29.5} 31.5 31.1 17.8 21.1 32.3 22.9 24.5 ⁵²⁴⁰ 22.3 14.7 36.9 ^{59.8} 34.8
	28.2 22.6 15.5 29.0 22.1 9.6 31.2 40.8 20.7 23.7 27.2 32.6 54.5 39.6 36.5 33.4 47.0 51.5
	24.1 24.4 23.2 29.2 31.6 42.4 29.9 31.5 36.4 40.4 39.3 23.1 35.4 43.0 16.5 ^{57.1} 39.1 41.6
Caribau Anomaly	22.3 23.9 26.9 25.7 28.4 25.1 63.1 36.9 24.0 31.6 21.8 22.7 34.9 26.9 46.5 35.5 25.4 Griz Anomaly
	<u>42 7 42 9 25 7 19 3 35.2 35.1 20.1 24.9 29.1 34.0 37.9 42.0</u>
	17.8 33.2 23.5 20.9 38.4 44.2 53.0 39.5 55/5 43.1 29.5 45.6 39.2 34.7 72.7 63.0 56.5
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	27 36 50 36 22 21 16 46 51 24 37 23 15
	25 43 40 36 20 9 14 42 29 30 33 6 21
	$^+$ $^ ^ ^ ^ ^ ^ ^ ^-$
	29 61 44 42 23 12 25 14 22 45 26 27 37
	21 35 24 33 27 30 29 41 30 45 25 26 25
	32.0 26.7 45.3 44.4 34.7 31.5 25.4 18.5 43.4 38.3 31.8 13.9 30.4 36.5 39.8 34.4 32.3 32.5 29.7 18.6
	30.2 14.9 34.6 21.6 15.3 11.3 16.7 13.9 11.6 15.8 14.4 18.4 22.2 27.6 16.6 ^{31.7} 21.1 ^{35.6} 27.6 14.2
	25.1 ^{56.0} 21.8 35.4 23.5 17 9 14 4 19.2 23.2 34.7 ^{53.8} 8.7 27.4 30.9 9.5 30.7 29.0 35.6 29.4 31.6
	37.6 12 5 32.0 17 7 ^{50.8} 35.2 20.8 13 7 21.5 28.3 14 2 16 0 15 1 17 4 21.0 8 4 23.1 25.7 14 8 29.0
	$35.6 \ 20.3 \ 33.1 \ 47.9 \ 26.8 \ 18 \ 9 \ 19.8 \ 26.9 \ 17 \ 1 \ 10 \ 7 \ 35.8 \ 36.0 \ 22.0 \ 18 \ 6 \ 25.0 \ 44.7 \ 23.0 \ 20.6 \ 14 \ 5$

Legend Cu (ppm) 18500

18000

+

18000

18 8 21 8 14.1 29 8 17.8 13.5 13.7 10.0 14.1 18.7 20.4 15.2 20.5 12.9 18.6 7.9 10.7 18.8 31 0 29.9 45.2 13.2 18.9 15.5 18.6 14.5 20.8 18.4 14.9 10.7 27 8 9.8 15.4 18.8 20.8 21.1 28.7 42.1 52.6 28.5 101.4 9 30 - 39	
13.2 18.9 15.5 18.6 14.5 20.8 18.4 14.9 10.7 27.8 9.8 15.4 19.8 20.8 21.1 28.7 $\overset{42.1}{\circ}$ 28.5 $\overset{52.6}{\circ}$ 28.5 $\overset{101.4}{\circ}$	
\sim $11 - 19$	
$20^{4} 17.8 23^{5} 31.9 23^{6} 22^{5} 19.3 18.8 \xrightarrow{39.6} 19.6 26^{0} 22^{2}.3 38.4 37.3 19.7 \xrightarrow{44.9} 46.2 43.7 43.6}$	
$ \sum_{n=1}^{2^{\circ}_{0}0} 1_{1,0} 9_{1,1} 2_{0,0}^{\circ} 1_{6,4} 2_{0,7}^{\circ} 1_{6,4} 2_{0,7}^{\circ} 2_{0,3}^{\circ} 2_{0,7}^{\circ} 2_{0,7}^{\circ} 2_{0,1}^{\circ} 2_{0,1}^{\circ$	
11.4 12.5 16.9 21.2 34.3 20.6 31.2 37.6 34.1 24.5 26.3 47.8 35.1 28.5 40.5 33.7 19.7 25.0 16.8 32.5 25.9	
7.3 21.3 25.1 27.9 31.5 18.6 19.3 24.3 25.8 26.2 21.9 23.8 25.8 20.3 22.5 28.2 14.7 11.2 15.5	
$10.9 \stackrel{31.3}{}_{0}134 \stackrel{28.6}{}_{0}235 \stackrel{20.0}{}_{0}163 \stackrel{37.7}{}_{0}39.1 \stackrel{29.6}{}_{0}237 \stackrel{30.5}{}_{0}266 \stackrel{14.6}{}_{0}362 \stackrel{15.2}{}_{15.2}167 \stackrel{15.7}{}_{0}273 \stackrel{27.6}{}_{0}10.7 \stackrel{27.3}{}_{0}37 \stackrel{14.6}{}_{0}362 \stackrel{14.6}{}_{0$	1 t d
15.6 18.6 17.7 20.2 24.7 26.1 30.1 16.9 33.3 30.9 31.6 28.8 29.6 27.5 20.6 45.0 12.8 24.6 28.2 27.4 36.5 48.6	
16.8 25,0 27,9 26,7 25,2 26,7 25,6 28,9 61 20,7 29,1 434 28,0 366 38,3 30,9 17,1 29,6 14,2 11,8 17,5 29,7 Domin Property 2004 Soil Survey 2004 (ppm)	
Figure - 8	
10000 10500 11000	

+

	10000	10500	11000
Ν			
	1,2 $1,2$ $1,3$ $1,3$ 2.3 $1,0$ $1,3$ 2.4 $1,1$	$\begin{array}{c} 6 \end{array} \xrightarrow{7.8} 2.4 \hspace{0.1cm} 1.8 \hspace{0.1cm} 2.1 \hspace{0.1cm} 4.2 \hspace{0.1cm} 2.4 \hspace{0.1cm} 0 0$	
	1,3 0,6 1,3 1,3 1,6 2.1 2.6 1,3 2.1 2	$\overset{13.4}{\circ} \overset{5.4}{\circ} \overset{5.5}{\circ} \overset{4.3}{\circ} \overset{4.1}{\circ} \overset{3.0}{\circ} \overset{\circ}{\circ} \overset{\circ}{\circ}$	
	$1,1$ 0,9 $1,3$ 0,9 $1,1$ $\overset{2.0}{\circ}$ 1,2 $1,4$ $\overset{2.2}{\circ}$		
	1,2 1,3 1,4 1,0 1,0 1,2 1,2 1,3 1,5 ⁷		
V	+ 1.0 1.7 1.4 1.4 1.3 1.1 1.3 1.5 0.8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+
	$1.5 \ \bigcirc{2.5}{0} \ 1.4 \ 1.4 \ 1.2 \ 1.3 \ 1.4 \ 1.6 \ 1.6 \ .7$		
Grid North	1,3 1,6 1,4 1,5 1,2 0,8 1,0 0,9 1,8 2		
	$1,3$ $1,4$ $1,1$ $1,2$ $1,2$ $1,3$ $1,6$ $1,4$ $\overset{3.9}{\odot}$		
	1,1 1,2 0,7 ^{2,2} 1,3 1,6 1,6 1,6 ²	$2.2 3.1 \bigcirc 5.5 4.1 2.8 1.7 \bigcirc 5.8$	
	1,4 1,2 1,0 0,7 0,8 1,2 1,4 0,9 4.1 3	$3.3 \ 2.5 \ 1.9 \ 3.1 \ 3.9 \ 4.0 \ 2.7 \ 2.6 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	
	1,7 1,3 1,2 1,3 1,4 1,9 0,7 1,9 ^{4,2}	$ \begin{array}{c} 2.2 \\ \bigcirc \\ \bigcirc \\ 18.2 \\ \end{array} \begin{array}{c} 6.0 \\ \bigcirc \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 6.0 \\ \bigcirc \\ 0 \\ 0 \\ \end{array} \begin{array}{c} 4.3 \\ \odot \\ 0 \\ \end{array} \begin{array}{c} 3.4 \\ 0 \\ \odot \\ 0 \\ \end{array} \begin{array}{c} 4.6 \\ \odot \\ 0 \\ \end{array} $	
	1,0 $1,6$ $1,6$ $1,2$ 2.0 2.2 2.0 2.1 3.5 ($ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	1.0 1.5 0.5 1.2 0.9 0.7 ² .4 1.1 1.6 1.3 1.2 1.6 0.5 0.4 (0.5 0.6 0.9 1.7 1.7 4.7	
	1.6 1.2 0.9 1.0 1.1 1.6 1.6 0.6 0.7 0.6 0.8 $\frac{2}{2}$ 1.9 1.9	· · · · · · · · · · · · · · · · · · ·	
	1.1 1.1 1.1 0.3 1.8 1.5 2.0 3.0 2.0 3.0 1.5 1.8 2.0 1.7	· · · · · · · · · · · · · · · · · · ·	
	0.9 0.9 0.9 0.5 1.2 $\frac{4.6}{1.5}$ 1.3 1.6 2.5 2.8 2.1 1.5 1.6	2 3.1 2.0 2.7 4.3 3.7	1
	0.8 1.4 0.9 0.2 0.4 $\stackrel{5.6}{\frown}$ 3.2 $\stackrel{5.1}{\frown}$ 1.9 3.3 2.5 2.2 3.0 1.0 (0.7 2.1 3.0 4.2 4.4 4.2	Т
	0,6 0,9 1,4 0,8 1,4 1,0 1,9 3,2 2,2 2,4 1,5 1,1 2,6 2,1	³ 1,5 ^{2.5} ^{5.3} 1,8 1,7	
	0,6 0,6 1,3 1,0 1,1 2,7 3,4 3,1 2,5 2,2 1,9 2,1 1,5 2,2	.6 1.7 2.8 67 7.1 5.6 2.4	
		. ⁹ 2.3 6.4 6.3 3.5	
	3.2 0.9 0.6 0.4 1.1 $\overset{4.4}{\bigcirc}$ $\overset{8.2}{\bigcirc}$ $\overset{4.9}{\bigcirc}$ 3.4 3.5 2.3 2.2 2.9 1.9 2	2.7 4.8 11.1 10.4 5.7	
	50 54 00.00 00.00		

	5.0 1,4 1,3 0,6 0,9 1,6 5.4 1,9 1,9 2.8 2.6 1,6 2.3 2.0 1,7 1,7 2.6 3,2 6.1
	3.2 2.2 2.8 0.7 1.1 1.6 3.9 4.8 2.3 2.9 12.0 1.9 1.3 0.9 2.3 2.8 2.9 6.8
Cariboo Anomaly	3.6 2.3 1,1 1,3 1,1 3.4 4.3 $\bigcirc 0 \\ \bigcirc 0 \\ 0 \\$
Canboo Anomaly	1,2 $0,9$ $0,8$ $0,5$ 3.5 4.2 4.0 5.6 4.8 4.2 3.5 $1,9$ 3.5 $0,9$ $1,8$ 3.6 $1,9$ 2.7 $1,9$
	$0.4 \ 0.7 \ 0.3 \ 0.7 \ 0.4 \ \overset{5.7}{{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$
	$0, 10, 20, 51, 81, 21, 4 \xrightarrow{5.1}{4.1} \xrightarrow{7.8}{7.8} \xrightarrow{5.5}{5.5} \xrightarrow{7.7}{3.3} \xrightarrow{7.6}{3.0} \xrightarrow{2.1}{2.3} \xrightarrow{2.4}{0}$
	0.5 0.3 0.6 0.9 0.4 5.0 2.4 3.6 5.0 5.3 5.2 6.4 3.9 2.7 3.6 3.7 3.7 3.6 3.7
	$0.3 \ 0.6 \ 0.8 \ 1.0 \ 0.9 \ 0.4 \ 0.7 \ 4.2 \ 3.6 \ 3.8 \ 3.4 \ 2.5 \ 1.6 \ 2.0 \ 3.7 \ 0.5 \ 0.6 $
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	Griz Anomal
	07 12 07 06 60 7.2 17 19 23 35 2.8 2.0 14 2.0 17 2.3 2.9
	$10.0021.00\ 7.00\ 3.00\ 0.00\ 0.00\ 0.00\ 5.00\ 4.00\ 0.00\ 6.00\ 4.00\ 0.00$
	$0.00 \qquad \begin{array}{c} 15.00 \\ 18.00 \\ 18.00 \end{array} 3.00 0.00 0.00 3.00 0.00 0.00 0.00$
	$4.00^{27/00} 5.00 5.00 4.00 0.00 4.00 0.00 5.00 5.00$
	5.00 6.00 4.00 3.00 0.00 3.00 3.00 4.00 5.00 5.00 6.00 5.00
	0.8 0.4 5.9 16.5 3.0 3.7 2.9 2.4 3.9 3.5 1.3 1.4 2.2 3.7 3.2 4.6 3.2 3.2 2.3 0.8
	0.4 0.4
	$1,1 \overset{2^{1.4}}{\longrightarrow} \overset{6.8}{\longrightarrow} \overset{9.5}{\longrightarrow} \overset{4.3}{\longrightarrow} \overset{2.4}{\longrightarrow} 1,6 \overset{3.3}{\longrightarrow} \overset{3.6}{\longrightarrow} 2,6 \overset{3.7}{\longrightarrow} 0,6 \overset{1.8}{\longrightarrow} 2,4 \overset{2.4}{\longrightarrow} 0,7 \overset{1.4}{\longrightarrow} 1,6 \overset{1.6}{\longrightarrow} 1,2 \overset{1.2}{\longrightarrow} 1,2$
	$0.5 \overset{8.9}{\longrightarrow} \overset{15.1}{\longrightarrow} \overset{17.3}{\longrightarrow} \overset{3.5}{\longrightarrow} \overset{2.5}{\longrightarrow} \overset{3.0}{\longrightarrow} \overset{2.1}{\longrightarrow} \overset{3.1}{\longrightarrow} \overset{1.5}{\longrightarrow} \overset{1.6}{\longrightarrow} \overset{1.2}{\longrightarrow} \overset{1.0}{\longrightarrow} \overset{0.6}{\longrightarrow} \overset{0.5}{\longrightarrow} \overset{1.1}{\longrightarrow} \overset{1.6}{\longrightarrow} \overset{4.3}{\longrightarrow} \overset{1.1}{\longrightarrow} \overset{1.5}{\longrightarrow} \overset{1.2}{\longrightarrow} \overset{1.2}{\longrightarrow} \overset{1.5}{\longrightarrow} \overset{1.5}{\overset} \overset{1.5}{\overset} \overset{1.5}{\overset} \overset{1.5}{\overset} \overset{1.5}{\overset} \overset{1.5}{\overset} \overset{1.5}{\overset} \overset{1.5}{\overset} \overset{1.5}{\overset$
	$0,8 1,0 \bigcirc \\ 0,8 1,0 \bigcirc \\ 0,8 3,0 0,8 1,1 1,2 0,8 1,3 1,2 1,7 1,5 \bigcirc \\ 0,8 1,2 1,7 1,5 \bigcirc \\ 0,8 1,3 1,2 1,7 1,5 \odot \\ 0,8 1,3 1,$
	$0,6 1,1 \bigcirc 7.4 3,8 \bigcirc 13.1 3,1 2,2 2,4 2,5 1,4 1,1 2,9 \bigcirc 4.6 1,4 0,7 1,3 1,2 1,2 1,1 1,0$
	$0.5 \ 0.5 \ 1.2 \ 1.0 \ 1.6 \ 2.7 \ 1.6 \ 1.5 \ 0.1 \ 2.4 \ 0.7 \ 0.8 \ 1.5 \ 0.6 \ 1.0 \ 1.8 \ 1.5 \ 1.4 \ 1.1$
	3.1 1.0 1.4 2.9 2.9 2.5 2.1 0.7 1.7 1.3 0.7 1.0 0.4 0.3 1.0 0.6 1.0 0.8 0.6 0.6
	1,4 $4,3$ $0,6$ $0,8$ $3,0$
	+ +
0.9 1.5 1.5 1.2 1	$2 \stackrel{7.7}{\bigcirc} 1, 0 1, 3 1, 2 1, 4 0, 9 2, 4 \bigcirc \begin{array}{c} 8.9 & 40.1 \\ \bigcirc \end{array} \stackrel{3.7}{\bigcirc} \begin{array}{c} 10.5 & 9.5 \\ \bigcirc \end{array} \stackrel{1, 4 1, 8 1, 4 2, 5 \\ \bigcirc \end{array}$

18500

18000

18500

+

18000 +

Legend Sb (ppm)

> 0 - 1.9 ٥

	10000	10500	11000
	0,8 1,4 1,0 1,2 1,2 1,0 1,0 1,7 1,5 1,3 1,6 1,8 1,1 1,5 1,1 1,2 0,7 1,2 0,9 0,8 0,7 1,2		Figure - 9
	0,9 0,8 0,9 1,1 1,4 1,1 1,2 0,7 1,2 0,8 1,2 1,2 1,1 1,0 0,7 1,5 0,5 0,9 1,2 1,2 1,4 1,7		Sb (ppm)
17500	0.6 1.4 0.6 1.4 1.1 1.3 0.7 1.6 $^+$ $\overset{2.0}{\odot}$ 1.3 1.0 1.4 1.1 0.7 1.9 0.7 0.8 0.9 1.2 0.6 1.2	+	2004 Soil Survey
	0,3 1,0 1,5 1,4 1,4 0,8 1,0 1,0 1,0 0,9 0,9 1,6 1,4 1,0 1,2 1,3 0,8 0,7 0,8 20		Domin Property
	0,5 0,6 0,7 1,1 1,8 1,0 1,6 1,9 1,8 1,1 2,5 2,1 1,8 1,3 2,9 1,9 1,2 1,3 1,1 2,0 1,8		Gold City Industries Ltd.
	0,9 0,5 0,4 1,0 0,9 0,8 1,2 0,8 1,1 0,8 0,9 1,1 1,5 ^{2,4} 0,9 1,0 0,9 1,5 1,9 0, ^{4,3}		
	0,9 1,0 1,3 1,4 1,4 1,2 1,0 1,0 ^{3,4} 1,3 1,7 1,2 1,7 1,5 0,9 ^{2,9} O		8.0 - 62.0
	0.9 1.2 0.9 1.2 1.1 1.0 2.5 3.7 1.6 1.7 2.6 1.5 $\overset{6.6}{\bigcirc}$ 3.5 1.8 1.5 2.0		© 5.0 - 7.9
	0.7 0.9 0.7 0.8 1.0 1.2 0.9 0.7 1.7 1.7 0.6 0.9 1.1 1.6 1.7 1.8 $\stackrel{3.9}{\odot}$ $\stackrel{2.8}{\odot}$ 1.6 $\stackrel{5.5}{\bigcirc}$		• 4.0 - 4.9
	0,9 1,3 1,1 1,5 0,8 0,6 0,6 0,3 0,7 1,6 1,3 1,3 ^{2,1} 1,3 1,5 0,7 0,7 1,2 1,5 ^{2,4} 5.8		• 2.0 - 3.9
	0.3 0.6 0.7 0.3 0.6 1.2 0.5 1.4 3.0 1.3 1.9 1.3 2.2 0.5 1.7 3.4 1.3 1.0 3.0 3.3		