2004 DIAMOND DRILLING AND SOIL GEOCHEMISTRY EXPLORATION PROGRAM

LUSTDUST PROPERTY

OMINECA MINING DIVISION, BRITISH COLUMBIA, CANADA

(93N / 11W)

FOR

ALPHA GOLD CORPORATION 410 DONALD STREET COQUITLAM, B.C. V3K 3Z8

BY

DARYL J. HANSON, P.ENG. IN-DEPTH GEOLOGICAL SERVICES

JANUARY 10, 2005

TABLE OF CONTENTS

			Page
1.0	SUMI	MARY	1
2.0	INTR	ODUCTION AND TERMS OF REFERENCE	4
3.0	DISC	LAIMER	4
4.0	PRO	PERTY DESCRIPTION AND LOCATION	5
5.0		ESSIBILITY, CLIMATE, LOCAL RESOURCES, ASTRUCTURE AND PHYSIOGRAPHY	5
6.0	HIST	ORY	7
7.0	GEO	LOGICAL SETTING	7
	7.2 7.3 7.4	Regional Geology Lustdust Property Geology Summary Supracrustal Rocks Intrusive Rocks Structure	7 9 10 12 14
8.0	DEPO	OSIT TYPES	15
9.0	MINE	RALIZATION	18
		General Zn-Pb-As-Sb Vein Zone: Number 1 Zone Zn-Pb-Ag-Au CRD Mineralization: Number 2, 3,	18 19
	9.4	and 4b Zones Canyon Creek Skarn	19 21
10.0	2004	EXPLORATION PROGRAM	22
11.0	DIAM	OND DRILLING PROGRAM	23
		Core Sampling Procedures Core Sample Analyses Data Verification Reclamation Diamond Drilling Results: Canyon Creek Skarn Extension Diamond Drilling Results: Number 3 Oxide and Number 3 Extension Zones Diamond Drilling Results: Canyon Creek Skarn and Canyon Creek Skarn Footwall Zones	24 25 25 25 26 28

			page		
12.0	SOIL	GEOCHEMICAL SURVEYS	29		
	12.2 12.3 12.4	Sampling Method Field Sample Preparation and Security Analyses and Testing Procedures Data Verification Soil Geochemistry Results	30 30 30 30 30		
13.0	INTE	RPRETATION AND CONCLUSIONS	31		
14.0	REC	OMMENDATIONS	32		
15.0	2004	EXPLORATION PROGRAM EXPENDITURES	34		
16.0	REFE	ERENCES	36		
17.0	.0 CERTIFICATE OF AUTHOR				
		LIST OF FIGURES			
Figure 1. Lustdust Project Location Map, B.C. Canada					
Figure 2. Alpha Gold Claim Holdings, Lustdust Project					
Figure 3. Location Map of the Lustdust Property Showing Major Intrusions and Terranes					
Figure 4. Generalized Compilation Map of the Geology of the Lustdust Property					
Figure 5. 2004 Drill Hole Location Map					
Figure 6. 2004 Ag Soil Geochemistry					
Figure 7. 2004 As Soil Geochemistry					
Figure 8. 2004 Au Soil Geochemistry					
Figure 9. 2004 Cu Soil Geochemistry					

LIST OF TABLES

	page
Table 1. Summary of 2004 Drill Results	3
Table 2. Lustdust Claim Information, January 2005	6
Table 3. Exploration History Synopsis	8
Table 4. 2004 Drill Hole Summary Data	24

LIST OF APPENDICES

Appendix I 2004 Diamond Drilling Analyses and Core Recovery

Appendix II ALS Chemex Analytical Technique

Appendix III 2004 Diamond Drilling - Certificates of Analysis

Appendix IV CDN Resource Laboratories Ltd. - Standard CDN-CGS-2 and Blank CDN-CGS-5

Appendix V 2004 Soil Geochemistry - Certificates of Analysis

Compact Disc

- 1. Folders for each 2004 drill hole containing:
 - i. Lithology Log
 - ii. Assay Log
 - iii. RQD Log
 - iv. Survey Log
 - v. Digital Core Photographs
- 2. Digital Text Copy 2004 Lustdust Report
- 3. Digital Drawings 2004 Lustdust Report

1.0 SUMMARY

The Lustdust property comprises 242 contiguous, 2 and 4-post mineral claim units located in northcentral British Columbia, all of which are owned by Alpha Gold Corporation. The claims are underlain by Cache Creek Assemblage sedimentary and volcanic rocks which lie immediately west of a major regional and terrane bounding fault, the Pinchi Fault. Supracrustal rocks are cut by Eocene intrusive bodies ranging widely in composition from calc-alkaline diorite to monzonite to sub-alkalic rhyodadacite (Ray et al., 2002).

Gold and copper mineralization is hosted within a folded, upright to locally overturned, east-verging sequence of steeply west-dipping, northwest-striking limestones, mafic tuffs and siliceous phyllites. Gold and copper mineralization occurs in several forms, all of which are related to an Eocene hydrothermal system. Predominant styles of mineralization targeted by the 2004 exploration program include:

Carbonate hosted, precious metal enriched, massive sulphide mantos

2. Cu-Au skarns

The entire hydrothermal system, except for molybdenum rich veins and stockworks, is auriferous with 0.5 to >1 g/t gold values common throughout. Bonanza gold grades of >30 g/t Au over 1 to 9.7 m widths have been cored and may be associated with massive sulphide replacement bodies. The system is strongly zoned over at least 3000 m laterally and shows polyphase intrusive and mineralization characteristics typical of major Au-Cu-Zn-Pb-Ag skarn replacement systems found throughout the northern and southern cordillera.

Alpha Gold's 2004 exploration program was directed towards:

- 1. Fill-in exploration drilling of the Canyon Creek Skarn including the footwall zone.
- Drill testing the gold and arsenic soil geochemistry anomalies identified during the 2003 fieldwork for a possible northerly extension of the Canyon Creek Skarn.
- 3. Continuing the 2003 program to drill test the down-dip potential of the Number 3 Oxide Zone.
- 4. Continuing the 2003 soil geochemistry program.
- 5. Refining the excellent geologic base-map of the property.

Twenty-one (21) NQ diamond drill holes were completed between June 23 and October 7, 2004 totaling 6,010 m. Three hundred seventeen (317) split-core samples were taken for analysis. In addition, seven hundred twenty four (724) B-horizon soil samples were collected along 36.2 kilometers of gridlines. Reconnaissance geological mapping and sampling continued across the property. Total cost for the 2004 program was \$819,924 (Table 5).

Highlights of the 2004 program include:

- 1. The Canyon Creek Skarn Zone was extended approximately 400 meters to the north. This extension consists of prograde and retrograde exoskarn with high pyrrhotite:pyrite ratios, high pyroxene:garnet ratios, and high-grade precious metal values. These features are characteristic of gold skarns distal to the intrusion and close to the margins of the skarn envelope (Ray and Webster, 1997).
 - Drill-hole LD04-01 returned 176.0 g/t Ag and 4.02% Pb over 1.0m from 61.2-62.2 meters.
 - Drill-hole LD04-02 returned 50.7 g/t Au over 0.6m from 244.4 to 245.0 meters
 - Drill-hole LD04-08 returned 15.35 g/t Au over 1.2m from 148.6 to 149.8 meters
 - Drill-hole LD04-13 returned 12.70 g/t Au over 1.6m from 236.1 to 237.7 meters
 - Drill-hole LD04-14 returned 378 g/t Ag over 1.3m from 245.3 to 246.6 meters
- 2. The Number 3 oxide zone was extended 50 meters north of drill-hole LD03-27.
 - Drill-hole LD04-18 returned 2.23 g/t Au, 14.4 g/t Ag, and 2.75% Zn over 9.1m from 115.5 to 124.6 meters.
- 3. A 450 meter long, gold-arsenic soil geochemistry anomaly was identified 300 meters east of and parallel to the Canyon Creek Skarn Zone.

Significant drill-hole results are summarized in Table I.

DDH ID AZ. DIP (m) FROM (m) TO (m) Width (m) Au (g/t) Ag (g/t) Zn (%) Pb (%) Compose (%) Canyon Creek Skarn Extension LD04-01 0.85° -56° 61.2 62.2 1.0 0.31 176.0 0.87 4.02 0.0 LD04-01 0.85° -56° 119.6 125.1 5.5 0.88 6.0 0.0 0.0 LD04-02 0.86° -55° 171.6 175.8 4.2 0.26 8.8 0.10 0.0 LD04-02 0.86° -55° 244.4 245.0 0.6 50.70 3.7 0.0 LD04-02 0.86° -55° 255.5 256.3 0.8 0.72 3.0 0.0 LD04-08 0.76° -55° 148.6 149.8 1.2 15.35 0.0 LD04-09 0.86° -55° 195.3 197.5 2.2 0.61 0.0 LD04-09 0.86° -55° 214.8 21	TABLE I										
Canyon Creek Skarn Extension LD04-01 085° -56° 61.2 62.2 1.0 0.31 176.0 0.87 4.02 0. LD04-01 085° -56° 119.6 125.1 5.5 0.88 6.0 LD04-02 086° -55° 171.6 175.8 4.2 0.26 8.8 0.10 0. LD04-02 086° -55° 244.4 245.0 0.6 50.70 3.7 0. 1.0 1.0 0. LD04-02 086° -55° 255.5 256.3 0.8 0.72 3.0 0. 0. LD04-02 086° -55° 255.5 256.3 0.8 0.72 3.0 0. 0. LD04-08 076° -55° 148.6 149.8 1.2 15.35 0. 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 1.07 1.07 1.07 1.07 1.07 1.0		Ag Zn Pb	Ag Zn Pb	Ag Zn	Au			FROM	DIP	AZ.	DDH ID
LD04-01 085° -56° 61.2 62.2 1.0 0.31 176.0 0.87 4.02 0. LD04-01 085° -56° 119.6 125.1 5.5 0.88 6.0 0.0 LD04-02 086° -55° 171.6 175.8 4.2 0.26 8.8 0.10 0. LD04-02 086° -55° 244.4 245.0 0.6 50.70 3.7 LD04-02 086° -55° 255.5 256.3 0.8 0.72 3.0 0. LD04-08 076° -55° 148.6 149.8 1.2 15.35 0. LD04-08 076° -55° 195.3 197.5 2.2 0.61 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 262.1 263.5 <td< th=""><th>(m) (m) (g/t) (g/t) (%) (%)</th><th>g/t) (%) (%)</th><th>(g/t) (%) (%)</th><th>(g/t) (%)</th><th>(g/t)</th><th>(m)</th><th>(m)</th><th>(m)</th><th></th><th></th><th></th></td<>	(m) (m) (g/t) (g/t) (%) (%)	g/t) (%) (%)	(g/t) (%) (%)	(g/t) (%)	(g/t)	(m)	(m)	(m)			
LD04-01 085° -56° 119.6 125.1 5.5 0.88 6.0 LD04-02 086° -55° 171.6 175.8 4.2 0.26 8.8 0.10 0. LD04-02 086° -55° 244.4 245.0 0.6 50.70 3.7 0. LD04-02 086° -55° 255.5 256.3 0.8 0.72 3.0 0. LD04-08 076° -55° 148.6 149.8 1.2 15.35 0. LD04-08 076° -55° 195.3 197.5 2.2 0.61 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9											
LD04-02 086° -55° 171.6 175.8 4.2 0.26 8.8 0.10 0. LD04-02 086° -55° 244.4 245.0 0.6 50.70 3.7 LD04-02 086° -55° 255.5 256.3 0.8 0.72 3.0 0. LD04-08 076° -55° 148.6 149.8 1.2 15.35 0. LD04-08 076° -55° 195.3 197.5 2.2 0.61 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD	61.2 62.2 1.0 0.31 176.0 0.87 4.02 0.	76.0 0.87 4.02	176.0 0.87 4.02	176.0 0.8	0.31	1.0	62.2	61.2	-56°	085°	LD04-01
LD04-02 086° -55° 244.4 245.0 0.6 50.70 3.7 LD04-02 086° -55° 255.5 256.3 0.8 0.72 3.0 0. LD04-08 076° -55° 148.6 149.8 1.2 15.35 0. LD04-08 076° -55° 195.3 197.5 2.2 0.61 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-09 086° -55° 29.6 35.7 6.1 0.58 9.9 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 <	119.6 125.1 5.5 0.88 6.0	6.0	6.0	6.0	0.88	5.5	125.1	119.6	-56°	085°	LD04-01
LD04-02 086° -55° 255.5 256.3 0.8 0.72 3.0 0. LD04-08 076° -55° 148.6 149.8 1.2 15.35 0. LD04-08 076° -55° 195.3 197.5 2.2 0.61 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-09 086° -55° 29.6 35.7 6.1 0.58 9.9 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 <td>171.6 175.8 4.2 0.26 8.8 0.10 0.</td> <td>8.8 0.10</td> <td>8.8 0.10</td> <td>8.8 0.10</td> <td>0.26</td> <td>4.2</td> <td>175.8</td> <td>171.6</td> <td>-55°</td> <td>086°</td> <td>LD04-02</td>	171.6 175.8 4.2 0.26 8.8 0.10 0.	8.8 0.10	8.8 0.10	8.8 0.10	0.26	4.2	175.8	171.6	-55°	086°	LD04-02
LD04-08 076° -55° 148.6 149.8 1.2 15.35 0. LD04-08 076° -55° 195.3 197.5 2.2 0.61 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21	244.4 245.0 0.6 50.70 3.7	3.7	3.7	3.7	50.70	0.6	245.0	244.4	-55°	086°	LD04-02
LD04-08 076° -55° 195.3 197.5 2.2 0.61 0. LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82	255.5 256.3 0.8 0.72 3.0 0.	3.0	3.0	3.0	0.72	0.8	256.3	255.5	-55°	086°	LD04-02
LD04-09 086° -55° 151.2 158.7 7.5 1.07 LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.	148.6 149.8 1.2 15.35 0.				15.35	1.2	149.8	148.6	-55°	076°	LD04-08
LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.	195.3 197.5 2.2 0.61 0.				0.61	2.2	197.5	195.3	-55°	076°	LD04-08
LD04-09 086° -55° 214.8 216.1 1.3 1.54 80.3 LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.	151.2 158.7 7.5 1.07				1.07	7.5	158.7	151.2	-55°	086°	LD04-09
LD04-09 086° -55° 244.7 246.1 1.4 3.38 15.0 LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.		80.3	80.3								
LD04-09 086° -55° 262.1 263.5 1.4 1.17 5.4 LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.											
LD04-10 080° -55° 29.6 35.7 6.1 0.58 9.9 LD04-11 090° -55° 43.4 44.0 0.6 2.12 17.8 1.29 LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.							263.5	262.1		086°	
LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.		9.9	9.9	9.9	0.58		35.7	29.6	-55°	080°	LD04-10
LD04-11 090° -55° 86.5 89.3 2.8 1.27 34.8 0.33 LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.	43.4 44.0 0.6 2.12 17.8 1.29	17.8 1.29	17.8 1.29	17.8 1.29	2.12	0.6	44.0	43.4	-55°	090°	LD04-11
LD04-11 090° -55° 96.7 99.6 2.9 0.72 23.8 LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.											
LD04-11 090° -55° 107.7 109.4 1.7 4.64 16.9 0.21 0. LD04-11 090° -55° 112.7 122.8 10.1 0.82 14.7 0.							99.6	96.7	-55°	090°	LD04-11
		16.9 0.21	16.9 0.21	16.9 0.2	4.64	1.7		107.7	-55°	090°	LD04-11
including 115.4 118.6 3.2 1.43 28.4 0.	112.7 122.8 10.1 0.82 14.7 0.	14.7	14.7	14.7	0.82	10.1	122.8	112.7	-55°	090°	LD04-11
 	115.4 118.6 3.2 1.43 28.4 0.	28.4	28.4	28.4	1.43	3.2	118.6	115.4		including	
LD04-12 089° -55° 136.2 139.3 3.1 0.60 13.1 0.19	136.2 139.3 3.1 0.60 13.1 0.19	13.1 0.19	13.1 0.19	13.1 0.19	0.60	3.1	139.3	136.2	-55°	089°	LD04-12
LD04-13 087° -70° 105.9 107.7 1.8 0.36 20.9 0.53	105.9 107.7 1.8 0.36 20.9 0.53	20.9 0.53	20.9 0.53	20.9 0.5	0.36	1.8	107.7	105.9	-70°	087°	LD04-13
LD04-13 087° -70° 236.1 237.7 1.6 12.70					12.70		237.7	236.1	-70°	087°	LD04-13
LD04-13 087° -70° 298.9 302.2 3.3 0.88	298.9 302.2 3.3 0.88				0.88	3.3	302.2	298.9	-70°	087°	LD04-13
LD04-14 089° -55° 243.7 247.9 4.2 1.08 137.1 0.	243.7 247.9 4.2 1.08 137.1 0.	37.1	137.1	137.1	1.08	4.2	247.9	243.7	-55°	089°	LD04-14
including 245.3 246.6 1.3 0.86 378.0 0.										including	
LD04-15 092° -55° 88.0 89.5 1.5 0.33 59.7	88.0 89.5 1.5 0.33 59.7	59.7	59.7	59.7	0.33	1.5	89.5	88.0	-55°	092°	LD04-15
LD04-16 090° -55° no significant results	no significant results					t results	significant	no	-55°	090°	LD04-16
Canyon Creek Skarn										eek Skarn	Canyon Cre
LD04-03 050° -70° no significant results	no significant results					t results	significan	nc	-70°		-
LD04-04 050° -45° 109.0 110.1 1.1 0.36 15.0 0.	109.0 110.1 1.1 0.36 15.0 0.	15.0	15.0	15.0	0.36	1.1	110.1	109.0	-45°	050°	I D04-04
LD04-04 050° -45° 110.7 120.0 9.3 0.62 31.5 1.											
LD04-04 050° -45° 133.6 142.3 8.7 0.21 7.5 0.											
LD04-04 050° -45° 156.6 158.2 1.6 0.39 8.0 0.											
LD04-04 050° -45° 184.6 188.6 4.0 0.40 18.2 0.									-45°	050°	LD04-04
LD04-04 050° -45° 219.9 221.6 1.7 0.53 30.5 1.								219.9			LD04-04
LD04-05 053° -65° 185.6 191.5 5.9 1.37 18.0 1.	185.6 191.5 5.9 1.37 18.0 1.	18.0	18.0	18.0	1.37	5.9	191.5	185.6	-65°	053°	LD04-05
LD04-06 045° -45° 76.3 77.4 1.1 0.42 7.9 0.	76.3 77.4 1.1 0.42 7.9 0.	7.9	7.9	7.9	0.42	1.1	77.4	76.3	-45°	045°	LD04-06
LD04-06 045° -45° 159.0 160.1 1.1 2.54 0.			-						-45°		LD04-06
LD04-06 045° -45° 179.9 181.2 1.3 0.39 10.2 0.		10.2	10.2						-45°		
LD04-07 045° -65° 69.5 78.0 8.5 0.23 0.						8.5		69.5	-65°	045°	LD04-07
										_	
Number 3 Manto											
LD04-17 090° -45° no significant results	<u> </u>						Ū				
LD04-18 064° -55° 115.5 124.6 9.1 2.23 14.4 2.75	115.5 124.6 9.1 2.23 14.4 2.75	14.4 2.75	14.4 2.75	14.4 2.7	2.23	9.1	124.6	115.5	-55°	064°	LD04-18
LD04-19 064° -65° no significant results	no significant results					t results	significan	no	-65°	064°	LD04-19
LD04-20 000° -90° no significant results	no significant results					t results	significan	no	-90°	000°	LD04-20
LD04-21 000° -90° no significant results	no cignificant regults					t results	significan	nc	-90°	000°	I D04-21

As in the preceding seasons, particularly since 1996, positive exploration results continue to emerge on this property. The diversity in the style of mineralization continues to be a hallmark of Lustdust, as is quality of the gold-copper intersections associated with these mineralized zones. Lustdust remains one of the strongest precious metals skarn systems both vertically and horizontally in the northern cordillera. A continuing program of aggressive drilling is recommended for 2005 to test the large gold-arsenic soil geochemistry anomaly east of the Canyon Creek Skarn and to further define the known mineralized zones.

2.0 INTRODUCTION AND TERMS OF REFERENCE

This report has been commissioned by the management of Alpha Gold Corporation. The report documents all results of the 2004 diamond drilling and soil geochemistry program and outlines all significant changes to the geological database. The report is based on an extensive review and compilation of private corporate reports and documents as well as publicly available geological and scientific papers.

The report is also based on the author's personal knowledge of the property obtained during the period from June 25 to October 8, 2004. During this time, the author designed and supervised the drill program, including access construction and reclamation. The author also logged the core, supervised the core sampling, and supervised the soil geochemical surveys. All work was done according to accepted "best practices" for the industry.

3.0 DISCLAIMER

Implementation of the 2004 exploration program and the writing of this report have relied upon an abundance of excellent previous work. The surface geological map developed by several individuals, most particularly by Dr. Gerry Ray and his co-workers (Ray et al., 2002), has been extensively utilized. The author has also relied on many of the previous geological reports on this property, particularly the work of Evans (1996, 1997); Megaw (1999, 2000, and 2001) and Oliver (2002, 2003).

On a property with an abundance of historical drilling, conducted over a 60-year period, it would be surprising if all drill collars have been identified. Although a substantive effort has been made to accurately locate, survey and identify historical drill collars, not all of these have been identified and not all historical drill results, or the results of other technical surveys, are available.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Lustdust Property is located in the Omineca Mining Division of north-central British Columbia on NTS 93N/11W at latitude 55 34' North (Northing 6160175) and 125 25' West (Easting 347850), UTM Zone 10, NAD 83 (Figure 1).

Pursuant to agreements made July 15, 1989 and February 21, 1992, Alpha Gold acquired interest in 77 mineral claims known as the Lustdust Property, Omineca Mining Division. In 2003, net smelter returns were purchased for these claims. Technical and legal details of this purchase are available in the corporate and legal offices of Alpha Gold. Also during 2003, an additional 8 two-post claims overlying the historic Bralorne—Takla mercury mine were acquired by purchase.

With these recent additions, Alpha Gold Corporation's land holdings in the district total 242 contiguous claim units, for a total of 4808 hectares or 48 km² (Figure 2). A complete list of mineral claims and their expiry dates is provided in Table 2. No perimeter or legal surveys have been conducted across these claims and the writer has not personally examined the position of legal corner posts.

Six principal mineralized zones are identified on the property: the Number 1 (Takla Silver Mine), Number 2, Number 3, Number 4B, the Canyon Creek Skarn, and lastly the historic mercury mineralization at the Bralorne Takla Mercury Mine. To the writer's knowledge, the property is not subject to any environmental liabilities or other encumbrances.

2004 exploration work on the Lustdust property was completed in accordance with Amended Permit MX-13-19 as issued by the Ministry of Energy and Mines on June 3, 2004. The work approval number for the project was 04-1000323-0603.

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The property is located approximately 210 kilometers northwest of Prince George, B.C. and 36 km east of Takla Landing, where there is a B.C. rail-line. Lustdust is located immediately west of the old Bralone Takla Mercury Mine (Minfile 093N 008) and encompasses the Takla Silver Mine (Minfile 093N 009), (Figure 1).

Access is gained by traveling approximately 55 km along a paved road from Fort St. James towards Tachie Lake, then 70 km along the Leo Creek road, 62 km along the Driftwood Road, 25 km along the Fall-Tsayta road and 3 km along the Silver Creek road - a total distance of approximately 215 km northwest of Ft. St. James.

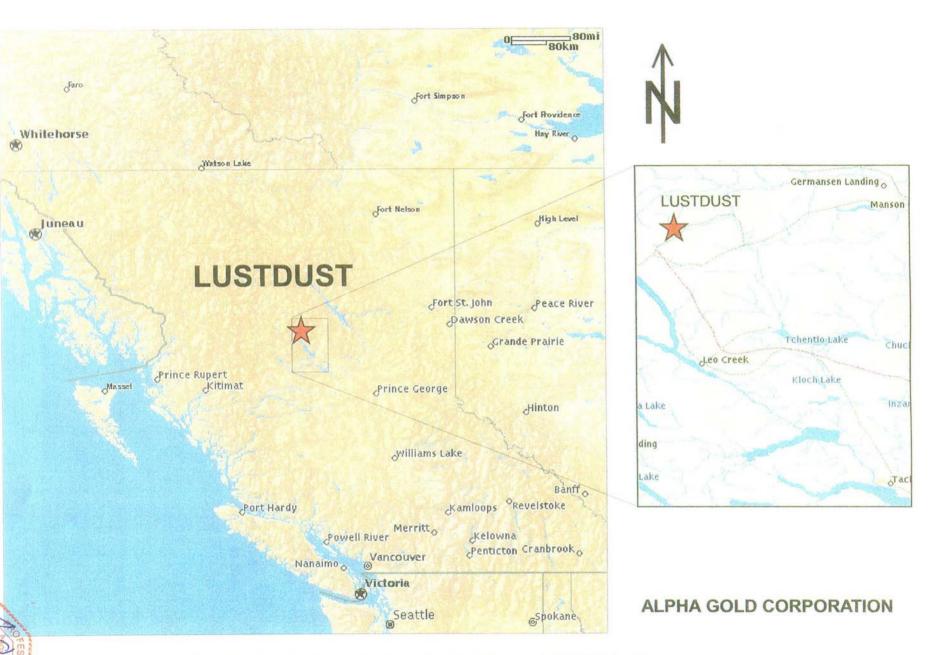
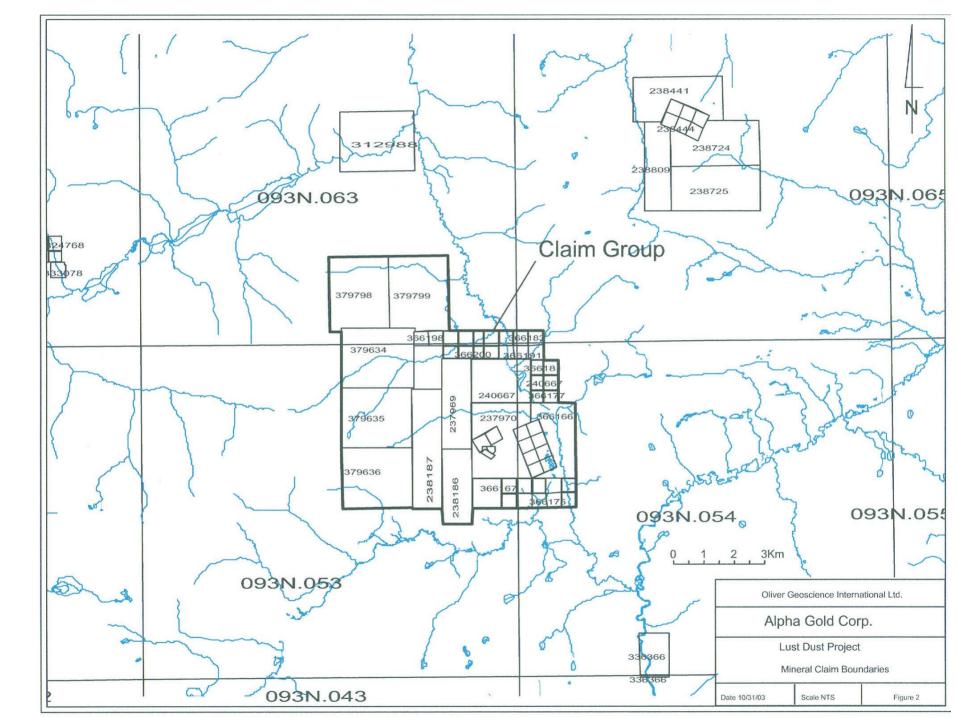



FIGURE 1: Map showing the location of Lustdust Property in British Columbia

	TABLE 2 LU	ISTUUST CLAIMS,	January 2005	
Claim Name	Tenure No.	Number of Units	Type of Claim	Expiry Date
M.V. 1	246007	1	2 post	15/10/2014
M.V. 2	246008	1	2 post	15/10/2014
Wow 1	238056	1	2 post	15/10/2014
L	237969	12	4 post	15/10/2014
M	237970	20	4 post	15/10/2014
Air	238053	4	4 post	15/10/2014
Р	238186	10	4 post	15/10/2014
Ink	238187	16	4 post	15/10/2014
Hogem	240667	12	4 post	15/10/2014
LD-1	366166	15	4 post	15/10/2014
LD-2	366167	1	2 post	15/10/2014
LD-3	366168	1	2 post	15/10/2014
LD-4	366169	1	2 post	15/10/2014
LD-5	366170	1	2 post	15/10/2014
LD-6	366171	1	2 post	15/10/2014
LD-7	366172	1	2 post	15/10/2014
LD-8	366173	1	2 post	15/10/2014
LD-9	366174	1	2 post	15/10/2014
LD-10	366175	1	2 post	15/10/2014
LD-10 LD-11		1	•	
LD-11 LD-12	366176	1	2 post	15/10/2014
	366177	-	2 post	15/10/2014
LD-13	366178	1	2 post	15/10/2014
LD-14	366179	1	2 post	15/10/2014
LD-15	366180	1	2 post	15/10/2014
LD-16	366181	1	2 post	15/10/2014
LD-17	366182	1	2 post	15/10/2014
LD-18	366183	1	2 post	15/10/2014
LD-19	366184	1	2 post	15/10/2014
LD-20	366185	1	2 post	15/10/2014
LD-21	366186	1	2 post	15/10/2014
LD-22	366187	1	2 post	15/10/2014
LD-23	366188	1	2 post	15/10/2014
LD-24	366189	1	2 post	15/10/2014
LD-25	366190	1	2 post	15/10/2014
LD-26	366191	1	2 post	15/10/2014
LD-27	366192	1	2 post	15/10/2014
LD-28	366193	1	2 post	15/10/2014
LD-29	366194	1	2 post	15/10/2014
LD-30	366195	1	2 post	15/10/2014
LD-31	366196	1	2 post	15/10/2014
LD-32	366197	1	2 post	15/10/2014
LD-33	366198	1	2 post	15/10/2014
LD-34	366200	6	4 post	15/10/2014
HOGEM 2	371049	1	2 post	15/10/2014
HOGEM 3	371050	1	2 post	15/10/2014
HOGEM 4	371051	1	2 post	15/10/2014
HOGEM 5	371052	1	2 post	15/10/2014
LD-35	379634	20	4 post	15/10/2014
LD-36	379635	20	4 post	15/10/2014
LD-37	379636	20	4 post	15/10/2014
LD-38	379798	20	4 post	15/10/2014
LD-39	379799	20	4 post	15/10/2014
N/A	404726	1	2 post	15/10/2014
N/A	404727	1	2 post	15/10/2014
N/A	404728	1	2 post	15/10/2014
N/A	404729	1	2 post	15/10/2014
N/A	404730	1	2 post	15/10/2014
N/A	404731	1	2 post	15/10/2014
N/A	404732	1	2 post	15/10/2014
N/A	404733	1	2 post	15/10/2014
60 claims	-10-1 JJ	242	2 post	10/10/2014
oo olalilla		E-7E		

TOTAL

The terrain is moderate, ranging in elevation from 1000-1525 m on the property. Lower elevations are covered by widely-spaced lodgepole pine. At elevations above 1200 m, forest cover consists of overmature spruce and balsam with an undergrowth of white rhododendron. Summers are short and rainy but even under these conditions many of the drainages are seasonal in nature with progressively diminished flows during the late summer and fall. Snow accumulations, during average winters, persist from late September through May-June at the higher elevations. Most of the exploration programs conducted on the property to date have been completed during the June to October field season.

6.0 HISTORY

The Lustdust property has been explored by a number of operators since the original discovery of the Number 1 Zone in 1944. A synopsis of the exploration history is listed in Table 3. Despite the fact that exposure is limited and that previous efforts have been hampered by poor understanding of the deposit type, new occurrences have been found on a regular basis both along strike to the north-northwest and south-southeast, and at depth.

7.0 GEOLOGICAL SETTING

7.1 Regional Geology

The Lustdust property is located within the Cache Creek Terrane directly west of the Pinchi Fault (Figure 3). The Pinchi Fault can be traced for 600 km through north-central B.C. and is believed to have been a major thrust fault which was later reactivated as a large right-lateral strike-slip fault (Paterson, 1977). In the project area, the Pinchi Fault separates Cache Creek rocks from the Jurassic Hogem Batholith and Triassic-Jurassic Takla rocks to the west. The Cache Creek Group is of Pennsylvanian-Permian age and consists of a >500 kilometer-long, >3000 meter thick, complexly deformed sequence of interbedded argillites, cherts, carbonates, and mafic to ultramafic volcanic and plutonic igneous rocks. Alpine peridotites and ophiolite fragments are locally present, especially to the north of the Lustdust property (Soregaroli, 1999, Schiarizza and MacIntyre, 1999).

Although some rock units are locally metamorphosed to blueschist facies, the overall metamorphic grade throughout the area is low. The argillites and cherts are typical, fine-grained, thinly bedded deep-marine sediments (Monger, 1977). The volcanic rocks are tholeitic and include andesitic to basaltic tuffs, flow-breccias, and pillow basalts - all of oceanic affinity. The

TABLE 3 EXPLORATION HISTORY SYNOPSIS

Year	Operator	Claims	Zone	Work Performed
1944		Wow #1	1	Zone 1 discovered and staked
1945	McKee Gp.	Wow #1	1	trenching, 106.7 m of drilling
	Leta Expl. Ltd.			
1952-	Bralorne	Wow 1, MV1	1,2,3	5306 m of trenching,
1954	Mines Ltd.	MV2, M	4b	1429 m of drilling
1960	Noranda Canex		п	7 rock cuts, 34 test pits, 200m hand
				and 1508m cat trenching
1963	Bralorne	Wow #1	1	sampling
1964	Takla Silver	Wow #1	1	229 m of drifting
	Mines Ltd.			
1966	п	Wow #1	1	229 m of underground ddh
1968	II .	Wow #1	1	1337 m of surface and 573 m of
	Anchor Mines Ltd.			underground ddh, 90 kg bulk sample
1978	Granby	MV1,2	1, 2,	Pulse EM, surface ddh
	Mining Corp	K,L,M	3, 4b	
1980	п	L,M	1, 2,	airborne mag, VLF, ground mag, VLF
			3, 4b	soil survey, 2 ddhs
1981	Noranda	L,M	4b	8 ddhs (7 wildcat)
	Expln. Co.			soil sampling and property mapping
1986	Welcome	Wow 1, MV	1, 3	sampling
	North Mines Ltd.	L, M	4b	
1986	Pioneer	Wow 1	1,2,	geological survey
	Metals	MV1, M	3, 4b	
1991	Alpha Gold	MV1	3	906.6m of drilling in 10 holes
1992	Alpha Gold	L, M	4b	trenching, 1520m of drilling in 30 holes
1993	Alpha Gold	L, M	4b	24 ddhs
1996	Teck Expl'n.		2,3,4b,4	geology, soils, trenching
1997	Teck Expl'n.		2,3,4b,4	soil sampling, 3062.8 m drilling in 16 holes
1998	Alpha Gold		1, 2, 3	1,103m of drilling in 14 ddhs
1999	Alpha Gold		3, 4b	3050m drilling in 18 holes, trenching CCS
2000	Alpha Gold		ccs	4680m drilling in 29 holes.
2001	Alpha Gold		CCS, Mo	Porphyry Mo-Cu: 2945 m in 10 holes
				CCS: 2664 m in 8 holes
2002	Alpha Gold	L,M	ccs	7790.4 m in 19 NQ boreholes.
2003	Alpha Gold	C.G's, L, M	CCS,1,3	7,908 m in 42 NQ boreholes
				37 km soil geochemistry
2004	Alpha Gold	L,M	CCS,3	6010 m in 21 NQ holes
				724 B horizon soil samples

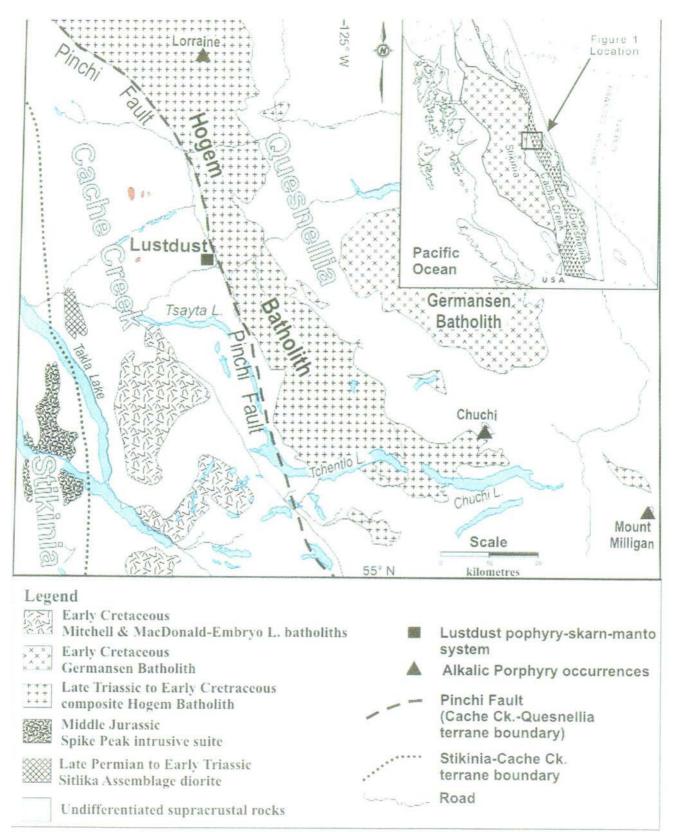


Figure 3: Location map of Lustdust property showing major intrusions and Terranes. Geology simplified from The MapPlace. (from: Ray and Webster, in progress)

carbonates are dominated by bioclastic to micritic and algal-bound shallow-water facies limestones, interpreted to have been deposited in a carbonate bank or reef environment (Monger, et al, 1991). Regional studies have emphasized the observation that contacts between most of the different lithologies are abrupt and probably are faults. However, detailed studies, executed close to Lustdust (Sano and Struick, 1997), have found limestone conglomerate and sandstones with volcanic fragments, and limestone fragments within the argillite-chert section. Similar relationships are seen in core at Lustdust and locally show uninterrupted gradation from massive limestones to mafic volcanic dominated successions.

The entire package is folded with a well-developed axial planar foliation with a north-northwest strike trend typical of the entire Intermontane Belt in which the Cache Creek Terrane lies (Gabrielse and Yorath, 1992). A wide range of Jurassic to Tertiary intrusions cuts the Cache Creek Assemblage and many of these are emplaced along the prominent NW-trending structures and stratigraphic breaks. Numerous mercury occurrences are present along the length of the Pinchi Fault (Albino, 1987) and a few gold and base metal occurrences are present within Cache Creek rocks near the Pinchi fault including the Lustdust, Indata and Axelgold properties. There are at least two alkalic gold-copper Porphyry systems in the immediate Lustdust area: J49 and Axel Properties (Schiarrizza, 2000).

7.2 Lustdust Property Geology: Summary

The Lustdust property is underlain entirely by Permian Cache Creek units that form upright to overturned asymmetrical, west-dipping, north-plunging folds. These folds parallel the north-northwest trending Pinchi fault that lies along the eastern property boundary. The stratigraphy strikes N-NW with generally vertical to moderate westerly dips. Very little bedding is preserved and structural information is rare except in road cuts. The explored part of the property is dominated by a variety of intrusions which cut carbonate rocks interbedded with graphitic and calcareous phyllites, cherts, cherty argillites, and mafic tuffs (Figure 4).

A composite intrusive center and linear dyke array, the "Glover Porphyry", occurs in the northwest and western portions of the explored part of the property. The stock is well-zoned and includes rocks ranging from mafic to felsic in composition. Pervasiveness of biotite hornfels and skarn increases towards the stock (Evans, 1998). Some of the intrusive phases contain significant amounts of magnetite and appear to be responsible for the large magnetic anomaly shown on published regional maps and in Alpha's 2000 ground-magnetics survey (Butler and Jarvis, 2000). Geochemical analyses, of several different intrusive phases, indicate that

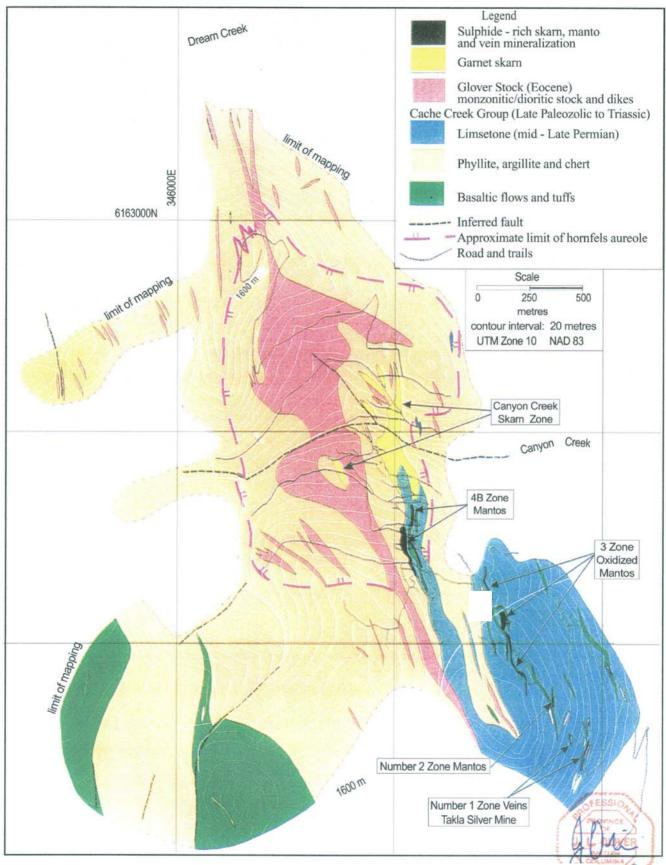


Figure 4. Generalized Compilation Geology of the Lustdust Property from (Ray et al, 2002)

some have borderline alkalic composition similar to intrusions related to Au-Cu porphyry deposits elsewhere in the region, including the "Babine Intrusions". Others have calc-alkaline compositions typical of B.C. copper skarns (Ray and Webster, 1997).

Several styles of mineralization are present on the property that appear zonally related to each other. From most proximal to distal these are:

- 1. Molybdenum-Copper-Gold Porphyry-style mineralization consisting of quartz-K-spar, pyrite, molybdenite and/or chalcopyrite veinlets associated with potassic, sericitic, and propylitic alteration in intrusive rocks (Glover Porphyry).
- 2. Multi-stage Garnet-Diopside skarn cut by Cu-Au-Ag-Zn bearing structures with surrounding dispersed Cu-Au mineralization (Canyon Creek Skarn).
- 3. Structurally and stratigraphically controlled massive sulfide Zn, Au, Pb, Ag, Cu replacement bodies [CRD] (4b, 3, and 2 Zones) and their oxidized equivalents.
- **4. Sulfosalt-rich veins** (Zone 1) which follow faults and are strongly associated with fine-grained, linear, felsic dykes containing high values of Au, Ag, Pb, Zn, Sb and Mn.

7.3 Supracrustal Rocks

Interpretations of primary stratigraphy are challenged by the strong regional deformation imposed on these rocks. In the area of extensive drilling of the 4b and Canyon Creek Skarn zones, several coherent rock panels may be described as follows:

- 1. Hanging-wall assemblages to the Canyon Creek Skarn are dominated by a sequence of thinly compositionally laminated, siliceous and/or argillaceous phyllites often with strong biotite compositional layers. These rocks are interpreted as ribbon cherts by British Columbia Geological Survey geologists with extensive regional experience. The argillaceous, clastic component, of the these rocks may increase towards the skarn – calc silicate horizon, particularly to the south towards the 4b zone.
- 2. Skarn assemblages are developed in weakly compositionallylayered limestones, in calcareous mafic tuffs, or rarely in siliceous phyllites.
- 3. Footwall assemblages to the Canyon Creek Skarn are dominated by rocks which are typically described as cherty argillites and/or cherts. Rocks in the footwall are similar to hangingwall rocks but qualitatively appear to have a higher proportion of quartz compositional layers and decreased biotite lamella.

Stratigraphic units are more fully described below:

Limestone (LS) Light to medium grey, sucrosic, recrystallized

limestone, locally with weak styloitic cleavages. These rocks bleach to off-white adjacent to skarn fronts. They may contain numerous internal horizons of both dark grey clastic beds and mafic tuffaceous horizons.

Calcareous Phyllite (CP)

Dark grey-brown, argillaceous interbeds are intercalated with thin, cm scale, calcareous lamella.

Calcite Knot Limestone (Lcs) Calcite knot limestones may contain either white cm scale calcite aggregates within a darker grey matrix, or they may be a gradational unit to mafic tuffs where 10-30% oval to cuspate calcite clasts are supported by a strongly calcareous, light to medium green matrix.

Siliceous Phyllite (SP) These rocks are defined by compositional layers formed by alternating foliation parallel biotite +/- lesser white micas, with quartz compositional layers. The protolith of these rocks is interpreted, by many workers, as ribbon cherts.

Chert (C)

With an increase in quartz content, to greater than 75% rock volume, the rocks are logged as cherts. Minor increases in biotite compositional layers may shift these rocks into a phyllitic chert (PC) field.

Argillite (A)

Argillite is a composite unit that includes a wide range of fine-grained, essentially non-calcareous, carbonaceous, thinly bedded sedimentary rocks. It includes argillites (A), cherty argillites (CA), thinly bedded cherts, carbonaceous argillites (CA). Graphitic layers are common throughout. Locally, the thinly bedded units contain fine-grained, continuous pyrite or pyrrhotite layers that appear to be part of the original sediments. As with all supracrustal rocks, these units are strongly deformed.

Mafic Tuffs (MT)

Mafic tuffs are well-foliated and often well compositionally layered dark green, to green and white mottled rocks with highly chloritic and locally calcitic matrices. The chlorite is interpreted to result from alteration of mafic-intermediate tuffaceous materials. 1-30 cm limestone fragments are the

dominant clasts, but fragments of intermediate and mafic volcanic rocks are also present. These rocks contain up to 2% finely disseminated pyrite and/or pyrrhotite and are geochemically anomalous for Pb, Zn, and Cu. Grading in limestone fragment size is common. Evans (1997, 1998) believed that there was only one mafic tuff unit and that it was a good marker bed. Previous fieldwork and core logging show that there are multiple mafic tuff units in the section and they show enough lateral variation that their utility as marker beds may be limited.

7.4 Intrusive Rocks

Mineralization throughout the Lustdust property shows a close association with the Glover Porphyry - a composite intrusive complex consisting of stocks and dikes ranging from diorite to monzonite to rhyodacite. Cu-Au skarn forms abundantly along stock and dike contacts (and replaces these rocks) and Zn-Au-Pb-Ag-Cu replacement mineralization is locally well developed along dike margins at more distal locales. Overall, mineralization shows zonation relative to the inferred center of the Glover Porphyry complex. Some of the compositional variations can be attributed to potassic alteration and silicification, which change the original intrusive composition and appearance in hand specimen, but the majority of the phase differences are real. Intrusive rock units include:

Monzonite (M)

A medium-grained equigranular to weakly porphyritic rock composed of plagioclase>K-feldspar, abundant elongate hornblende and euhedral biotite. Quartz is present, but in minor amounts. This unit crops out extensively as dikes throughout the southern and southwestern area, and the dikes seem to widen towards the 4b Zone. These dikes locally host replacement mineralization along their flanks.

Megacrystic Monzonite (Mp)

This intrusive phase is defined by the presence of very strongly plagioclase +/- quartz porphyritic monzonites. Contacts of these rocks with finer grained phases may be gradational.

Quartz Monzonite (QM) These rocks contain 10 -15% free quartz as discrete mm scale phenocrysts. The rock is also hornblende and biotite porphyritic and may be beginning to shift into a granodiorite field.

Diorite (D)

Diorites are fine to medium-grained, medium to dark gray-green and composed of plagioclase, biotite and hornblende phenocrysts. Accessory magnetite is locally abundant. The phases are distinguished largely on the presence and the abundance of biotite and hornblende. This distinction can be difficult to make in the finer-grained units where potassic alteration has replaced the hornblendes with secondary biotite. Color is determined by mafic phenocryst content and the degree of chloritic alteration.

Monzodiorite (MD) A shift to increased percentages of fine-grained matrix plagioclase and a decrease in mafic phases, hornblende and biotite are the characteristics of this unit. Free quartz is not identified.

Felsic Dykes (Fd)

Felsic dykes occur across the property. These are weakly porphyritic felsic rocks with sparse to prominent 1-3 mm quartz and feldspar phenocrysts set in a sugary fine-grained matrix of quartz and feldspar. They are locally well flow-banded with banding generally parallel to their overall orientation. Felsic dykes are often pervasively argillically altered or silicified making them difficult to distinguish from altered fine-grained monzonite. Felsic dykes in the Number 1 Zone commonly have vein mineralization along one or both contacts.

Plagioclase Porphyritic

Felsic Dykes (Fpd) Distinctive elongate, sericitized feldspar phenocrysts are abundant within this rock matrix and may exceed 35% rock volume. The rock also contains 5-8% coarse quartz phenocrysts.

Mafic Dykes (Bd)

Medium to fine-grained, undifferentiated mafic dykes.

Ultramafics (UM)

Green to dark black, uralitically altered, ultramafic intrusions. In their unaltered state, the intrusions are likely pyroxenites. Elevated interstitial magnetite is common. Pyrrhotite is locally noted. The intrusions

likely trace major strands of the Pinchi Fault. True brittle-ductile fabrics are common within these intrusions.

7.5 Structure:

Rocks underlying the Lustdust property have experienced multiple deformational events. In the absence of geochronological data, definitive age relations between these events are difficult to establish. However, overall map patterns, rock fabrics and discordant rock fabrics in drill core suggest that at least two penetrative deformational processes, D1 and D2, have influenced the current map pattern.

The development of a pronounced planar S1 fabric, often co-planar to bedding and primary compositional layers, defines an early D1, deformational process. These fabrics are most likely axial planar to the tight to isoclinal, upright to west overturned, east-verging folds. The data of Ray et al., (2002) suggests these folds plunge approximately 40-50° to the north-northwest. The distribution of bedrock lithology has been profoundly influenced by this event.

The rotation of S1 fabrics is evidence for post D1 processes. Although S1 fabrics are clearly rotated, S2 penetrative foliations are weakly developed and may be measured in only very selective core and rock samples. Ray et al. (2002) suggest that D2 folds have similar orientations to D1 folds, but tend to be slightly more open, and have shallower, 20° northwest plunges.

Regionally, folds in the Cache Creek assemblage are typically open (Schiarizza and McIntyre, 1999), but on the Lustdust property folds are generally asymmetrical and overturned with short, shallow, west-dipping western limbs and long, steep, west-dipping eastern limbs. Locally they are isoclinal. Tight folding is likely due to buttressing against the Pinchi Fault, which is believed to have originally been a major thrust fault (Paterson, 1977). Where observed, these folds have a 10-60 degree N-NW plunge and minor axial plane shears are common. The noses of antiforms are structurally thickened and fractured zones favorable for manto mineralization (Evans, 1998; Megaw, 1999).

The entire property has a strong NW-trending, grain reflecting bedding, tight asymmetric folding, and bedding plane faults. This structural fabric closely controls intrusive emplacement and most of the dykes of the Glover stock are strongly elongated along this N-NW structural grain. The most important, and consistent, fault structures demonstrated in drill core are roughly coplanar to bedding. Some of these faults have the appearance of early east verging reverse faults, which are largely

lithologically controlled and mostly identified in the immediate hangingwall to the Canyon Creek Skarn. These faults may be rotated into slightly steeper positions by latter extension faults.

The strongest and most strike discordant structural zone on the property is the structural zone and dyke system which hosts the Number 1 veins. This mineralized fault structure has a nearly north-south strike and moderate to steep west dip. In marked contrast, all structures, including lithology and major skarn bodies on the Lustdust property have strike relationships which average 150° to 160° and steep westerly dips.

Compilation of the sub-surface data with the surface geological plans suggests that right stepping lithologic offsets, which occur both to the north and south of Canyon Creek, are related to fold vergance effects - an east verging, right stepping antiform - rather than a fault related offset.

Mapping of carbonates on a property-wide scale (Evans 1997; 1998) shows a wide outcrop band in the southern portion of the property that appears to decrease in width to the north, largely disappearing at Canyon Creek. This may be an artifact of limited outcrop exposures as integration of the subsurface information from drilling suggests the northern continuity of the most easterly limestone package may be significantly better than initially interpreted (Figure 4). The limestone is asymmetrically folded and plunges north at 15-20°.

8.0 DEPOSIT TYPES

Carbonate replacement deposits (CRD) typically grade from lenticular or podiform bodies developed along stock, dike, or sill contacts to elongate-tabular bodies referred to as chimneys and/or mantos depending on their orientation. Limestone, dolomite and dolomitized limestones are the major host rocks. Ores grade outward from sulfide-rich skarns associated with unmineralized or porphyry-type intrusive bodies to essentially 100% polymetallic massive sulfide bodies. Both sulfide and skarn contacts with carbonate host rocks are razor sharp, and evidence for replacement greatly outweighs evidence for open-space filling or syngenetic deposition (Titley & Megaw, 1985). In reduced, high to low-temperature systems, proximal to distal metal zoning generally follows: Cu (Au, W, Mo), Cu-Zn (Ag), Zn-Pb-Ag, Pb-Ag, Mn-Ag, Mn, and Hg. This zoning may be very subtle and large scale (Prescott,1916; Morris, 1968) or tightly telescoped and smaller scale (Graf, 1997).

Many different features of CRDs tend to be well-zoned at district, deposit and hand-sample scales. The most important zonations are: 1) Ore and gangue mineralogy and metal contents; 2) Orebody geometry; 3) Intrusive geometry and composition; 4) Structural controls on mineralization; 5) Alteration; and 6)

Isotopic characteristics of wallrocks. In general, the largest systems show the best-developed zoning and repetition of zoning and paragenesis. Zoning tends to be most extensive in the elongate manto and chimney systems where individual zones may extend over kilometers vertically and laterally (1998). Zoning in large contact skarn systems is typically more compressed because of telescoping and repeated overprinting (Graf, 1997). In all cases, multi-phase mineralization is a reliable indicator of large systems.

CRD mineralization is associated with polyphase intrusions that evolve from early intermediate phases towards late, highly evolved felsic intrusions and related extrusive phases. The intrusions most closely related to mineralization are usually the most evolved phases and these are not exposed in many districts. Dikes and sills characterize the intermediate reaches of CRDs and there is often evidence for multiple dike/sill emplacement events. These intrusions may be compositionally homogeneous or there may be compositional evolution between dike/sill phases (Graf, 1997). Textures range from porphyritic to aphanitic, locally with narrow gradations between textural domains. Chimney and replacement veins are the most common orebody types associated with these intrusions, although mantos locally occur along sill contacts. Intrusive stocks commonly occur beneath or adjacent to the most proximal portions of CRD systems, although in many cases they do not crop out. Where intrusions are exposed, they are generally less than 5 km² in areal extent. These stocks are generally polyphase with compositions grading from early diorite to late granite. Texturally, these intrusions range from equigranular to porphyritic and from massive to highly fractured. The central stocks may be barren, contain porphyry copper or molybdenum systems, or have marginal zones with porphyry copper or molybdenum affinities (Megaw, 1998). In many systems, the early phases of the intrusion have associated skarnoid or barren skarn, whereas skarn and ore mineralization are related to later, more highly differentiated phases (Meinert, 1995 and 1999; Graf, 1997; Megaw et al., 1998).

Structural fabrics are the dominant control on mineralization in CRDs, as they control intrusion emplacement and channel ore fluids into favorable host strata. Most CRDs lie in fold-thrust belts on major structural domes, arches, anticlines, synclines or homoclines, and most districts have structural grains controlled by faulting and fracturing related to regional deformation (Megaw et al. 1988). Orebodies are often elongate with parallel, district-wide structural trends, but may not be restricted to a given structure over great lengths.

The gradations seen in single orebodies or districts suggest that the various manifestations of the deposit type can be considered part of a spectrum (Einaudi et al. 1982; Megaw et al. 1988; Titley, 1993) ranging from:

- Stock contact skarns: formed against either barren or productive stocks
- 2. Dike and sill contact skarns
- 3. Dike and sill contact massive sulfide deposits
- 4. Massive sulfide chimneys
- 5. Massive sulfide mantos
- 6. Epithermal veins

Several features make CRDs highly desirable mining targets including: **1) Size**-CRDs average 10-13 million tons of ore and the largest range up to >50 million tons; **2) Grade**-ores are typically polymetallic with metal contents ranging from 2-12% Pb, 2-18% Zn, 60-600 g/T Ag, Tr-2% Cu and Tr-6 g/T Au. Many have byproduct credits for Cd, W, In, Ga, Ge, Bi, and S; **3) Deposit morphology**-orebodies show good continuity; **4) Extraction and Beneficiation**- CRDs are typically metallurgically docile, amenable to low-cost mining methods, and the environmental footprint is minimal.

Massive sulfide bodies lacking an associated intrusion characterize the distal zones of CRDs. These commonly have the form of high angle to vertical slab-like replacement veins; elongate pipe-like chimneys; or low angle to horizontal tabular or elongate, tongue-shaped, crudely stratabound mantos. Mantos may be developed entirely within selected beds or groups of carbonate beds, or may occur with one or more non-reactive, relatively impermeable sedimentary or intrusive rock contacts.

Development of carbonate rock alteration in CRDs, like mineralization, is highly variable in type and in scale. The major alteration types are:

- 1. Skarnoid or hornfels: These are typically very fine-grained, mineralogically simple, calc-silicate and silicate assemblages formed through thermal metamorphism without significant addition of outside components. Skarnoid typically forms from a limestone or shaly limestone precursor, whereas hornfels forms from shale or limy shale precursors. Hornfels and skarnoid commonly develop in the thermal aureole around the largest volume (often early) intrusive phase and may aid in ground preparation for later metasomatic events. Hornfels mineralogy may be zoned with respect to the thermal center, commonly with pyroxenes proximal and biotite more distal. Skarnoid and hornfels often contain abundant fine-grained pyrite or pyrrhotite, but seldom significant amounts of ore-metal sulfides unless it has been overprinted by subsequent hydrothermal events.
- **2. Skarn:** Skarns are fine to very coarse-grained, often mineralogically complex, calc-silicate or calcic-iron silicate assemblages formed through metasomatism with significant addition of outside components. **Endoskarn** is skarn formed at the expense of intrusive rock, **exoskarn** is skarn formed at the

expense of wallrocks to the intrusion, most commonly carbonates. Skarn commonly develops around lesser volume, more fluid-rich intrusive phases and may overprint hornfels or skarnoid to varying degrees. Anhydrous calc-silicate minerals (dominantly pyroxenes and garnets) characterize the early "prograde" skarn phase generated during rising temperatures related to magma emplacement. Hydrous calc-silicate minerals (dominantly amphiboles, chlorites, and clays) formed at the expense of predecessor prograde minerals characterize the later "retrograde" skarn assemblage. Retrograding occurs as temperatures drop and variable amounts of magmatic fluids and groundwater invade the skarn zone. Sulfides may be co-deposited with the calc-silicates, but more commonly are introduced along structures that cut the skarn, replacing skarn minerals and unskarned wallrocks. Complex mineralized skarn systems typically show multiple intrusive phases and a repetition of sulfides replacing calc-silicates, presumably reflecting successive intrusive and hydrothermal events. In some systems, different compositions of skarn and sulfides characterize each phase (Megaw et al., 1998).

- **3. Marbelization and recrystallization:** These are present in virtually all CRD systems and range from narrow zones around mineralization to zones 100s of meters wide (Titley & Megaw 1985; Megaw et al. 1988).
- **4. Silicification or Jasperoid development:** Fine-grained silica replacements of carbonate rocks, with or without appreciable amounts of metals, and are very common in the peripheries of some CRD systems (Titley & Megaw 1985; Megaw et al. 1988).

9.0 MINERALIZATION:

9.1 General

The Lustdust porphyry-skarn-replacement system is at least 3000 m long and 1000 m wide (Figure 4). The property is systematically zoned from a Mo-Cu-Au Porphyry system to Cu-skarn to Zn-replacement mantos to Ag-Pb-Zn replacement veins developed along en echelon mineralized zones extending away from the porphyry. The entire Lustdust system, outboard of the porphyry, is auriferous (0.5 to >1 g/T Au values are common) and associated with a minimum of three mineralized skarn horizons.

The Canyon Creek Skarn is now known to be zoned over at least 500 m vertically and increasingly shows the polyphase intrusive and mineralization characteristics typical of Cu-Zn skarn-replacement systems throughout the American Cordillera, such as San Martin, Zacatecas, Mexico and Antamina, Peru. So far, despite widespread anomalous values, no significant volumes of porphyry-style mineralization with economic grades have been found.

Principle characteristics of the main mineralized zones may be summarized as follows:

9.2 Zn-Pb-As-Sb Vein Zone: Number 1 Zone

The Number 1 Zone, located at the southern end of the property, was the site of the 1944 discovery of mineralization on the property. Here, the limestone and graphitic phyllites are cut by numerous monzonite and felsic dikes. Sulfosalt veins composed of nearly massive pyrite, sphalerite, galena, jamesonite, stibnite, arsenopyrite and freibergite with lesser open-space filling quartz and calcite occur both within the sedimentary rocks and along dike contacts. Dunne and Ray (2002) also report traces of very fine-grained calc-silicates in these bodies. Three separate veins have been recognized, all of which appear to dip steeply west. Felsic dikes are closely related to all three veins, but the veins do extend beyond the dikes in many places. The Number 1 Zone has the strongest structural control of any occurrence on this property. The presence of a regional antiformal crest is likely to be important to the development of significant mineralized zones as is the main fault structure.

Argentiferous Manganese Oxide Mineralization (AMOM) occurs throughout the Number 1-Zone. AMOM is a typical distal alteration product in certain major CRD systems (Megaw, 1998) and the Number 1 Zone is strongly anomalous in Mn (Evans, 1997). Based on inclusion chemistry and mineralogic relationships, Dunn and Ray (2002) suggested that the mineralization in this zone might be related to high sulphidation-type veins. However, the alteration mineralogy and textures of quartz and other gangue minerals do not support the high sulphidation model for these veins.

The principal vein was explored by underground drifting and drilling in the 1945 and 1964-65 seasons. The three ore-shoots (minimum 2 m true widths) above the adit level were reported to grade 3.6 g/t Au, 780 g/t Ag, and 5% combined Pb and Zn with 5% Sb. Historic drilling had notoriously bad recovery problems, so in many cases grade was not reported for potentially significant intersections. Compilation of all available data during the 2003 exploration season clearly indicated that the currently known strike length of the Number 1 Fault exceeds 750 m with a significant mineralized zone developed over approximately 450 m.

9.3 Zn-Au-Ag-Pb CRD Mineralization: Number 2, 3, 3 Extension, and 4b-Zones

Mineralization in these zones consists of roughly stratigraphically concordant massive sulfide bodies ("mantos") and their oxidized

equivalents. The mantos are best developed along permeable and karsted (?) carbonate beds in close proximity to chlorite-altered mafic tuff beds. The mantos occur through the Number 2 to Number 4b Zones and appear to merge into the Canyon Creek Skarn Zone. Drilling results have failed to find substantial discordant chimney feeders to these mantos, although narrow feeders may have been hit locally (Megaw, 1999). The mantos occur dominantly in structurally thickened and deformed zones along the crests of antiforms. There is some evidence for nesting, or repetition, of mantos in successive limestone beds, giving an overall morphology reminiscent of the stacked "saddle-reef" mantos.

Number 2 Zone

The Number 2 Zone is a minor oxidized replacement zone similar to the Number 3 Zone. The Number 2 Zone is located very close to the crest of a regional antiform which lies just north of the Number 2 Zone trenches. Surface sampling indicates an average of 2.3 g/t Au, 109 g/t Ag, 2.16 % Zn and 2.09 % Pb across an average of 5.3 meters true width. This zone has a strike length, based on surface oxidation, of approximately 200 meters. Its continuity at depth is much more problematic as significant intersections have not been obtained from drill holes to date.

Number 3 Zone

The Number 3 Zone contains the largest identified CRD resource identified to date at Lustdust. It is thoroughly oxidized to depths of greater than 100 meters from the surface. The style of mineralization may be highly amenable to low cost heap-leach extraction processes.

The thickest portions of this manto zone occur in carbonates surrounding a mafic tuff bed along the crest of a regional-scale antiform. The manto may have the form of an oxidized saddle reef replacement body. Drilling has failed to find a feeder vertically beneath it, suggesting that it was probably fed from one end with fluid migration concentrated along the non-reactive tuff bed. Evans (1997) felt that the conduit for this system was down dip along the west limb of the antiform (possibly with a NW rake). This zone, based on the trace of oxidation exposed in surface trenches, has a strike length exceeding 600 meters. The Number 3 zone appears to weaken to the south, south of the Number 2 Zone trenches. The northern extension of the Number 3 Zone has received very limited exploration, as has the down dip extensions to this mineralization.

Number 4b Zone

The Number 4b Zone CRD manto is developed along the 4b Antiform, a tight fold, with 60-degree west dips and a 10-15 degree plunge to the NW.

The trace of this fold lies some 300 meters to the west of the Number 3 Zone antiform. The two zones are linked by a north-northwest plunging synform. Mineralization occurs as a series of aligned, discontinuous (?) massive sulfide pods (with sparse calc-silicate minerals) following the crest of the fold and also along the contact between limestone on the east and hornfelsed graphitic phyllites to the west. A mafic tuff horizon within the limestone appears to be a major conduit for fluid movement, as is seen in the Number 3 Zone. The 4b Zone is, however, essentially unoxidized: sphalerite, arsenopyrite, coarse-grained well-zoned pyrrhotite, and pyrite are prominently displayed in surface trenches along the zone.

9.4 Canyon Creek Skarn (Number 4 Zone)

The Canyon Creek Skarn [CCS] or the Number 4 Zone, is the skarn-replacement zone lying north of the 4b Zone. The discovery of this skarn is recent enough that it was not included in Ray and Dawson's (1998) compilation on B.C. skarns. Prior to the 2001 season, this zone had been cut by 41 drill holes (97-9, 10, and 11; LD99-03 through 12; and LD00-02 through 29) and a few trenches (Evans, 1997, 1998; Megaw 1999, 2000). A high percentage of the pre-2001 holes in skarn intercept high-grade Cu-Au mineralization along structures cutting garnet-pyroxene skarn. Some of these mineralized structures were surrounded by zones of dispersed mineralization a few meters wide (Megaw, 1999; 2000).

At shallow levels, the skarn is composed of early coarse-grained greentan grossular-andradite garnet with minor fine-grained greenish-yellow diopside and rare vesuvianite or pyroxene (Ray et al., 2002). Specularite is locally very common as euhedral plates. At depth, a brown garnet stage crosscuts and overprints the green stage, and at even greater depths, a red-brown garnet stage appears (Megaw, 1999). These minerals replace massive limestone and locally replace intrusives (endoskarn). Drilling in 2001 showed that endoskarn increases with depth (cf. LD01-44, 45). Biotite hornfelsed siliceous phyllite is also overprinted by skarn, especially on the north side of Canyon Creek. Mafic tuff units are altered to distinctive green, banded chlorite-garnet units with 5-15% disseminated pyrite and trace chalcopyrite and sphalerite.

Retrograde hydration of the garnet-diopside skarn also increases with depth. In the retrograde zones, the brown-red, brown and green garnet stages are hydrated to a cream-colored mass of very fine-grained amphibole, chlorite, quartz, and clays or dark grayish-green masses of felted chlorite, locally preserving the shapes of dodecahedral garnet crystals. Retrograde alteration is often accompanied by a dramatic increase in magnetite, both as fine-grained masses and as pseudomorphs after bladed specularite, and increased amounts of chalcopyrite (Megaw, 2000, Ray et al., 2002)

Mineralization in the skarn occurs as Ag and Au-bearing chalcopyrite and bornite with abundant pyrite, variable sphalerite, and rare arsenopyrite and stibnite emplaced along and surrounding structures that cut the skarn (Megaw, 1999). Much of the sulfide replaces skarn silicates. Numerous stages of sulfide mineralization are identified as:

- 1. Chalcopyrite deposited in interstices and along garnet grain boundaries.
- 2. Early pyrrhotite (often later pseudomorphed to pyrite) with minor chalcopyrite and locally intergrown with sphalerite.
- 3. Pyrite or pyrrhotite (pseudomorphed to pyrite) that is brecciated and healed with later sphalerite or replaced by chalcopyrite.
- 4. Massive to dispersed, banded and chaotic chalcopyrite along structures and replacing adjoining skarn.
- 5. Magnetite with interstitial chalcopyrite and/or sphalerite, pyrite or pyrrhotite.
- 6. Sphalerite with chalcopyrite cut by later pyrite veinlets.
- 7. Massive sphalerite, brecciated and healed by chalcopyrite and sphalerite.
- 8. Mineralized skarn, brecciated and healed with epithermal style chalcedonic quartz.
- 9. Calcite veins filled with Au sulfides/sulfosalts cutting skarn.

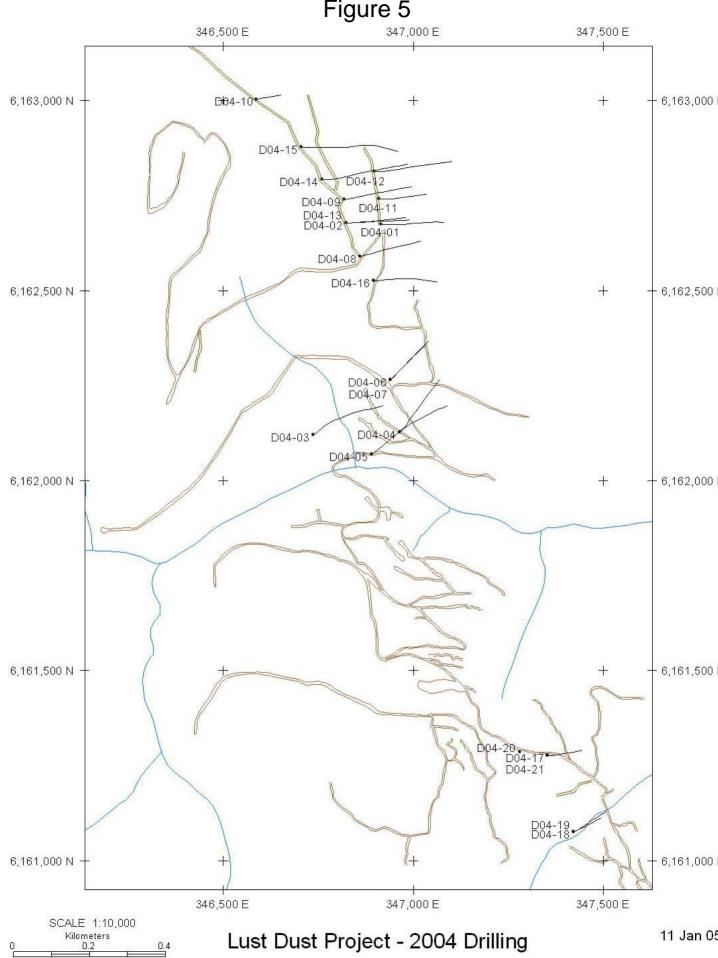
The skarn silicates tend to end abruptly and massive sphalerite-chalcopyrite-pyrite-pyrrhotite mineralization is locally well-developed along the contact of skarn with recrystallized limestone (marble front). It is near this front that the very high-grade gold grades associated with the 2002 drilling have been recognized (Oliver, 2002). High-grade gold and sulphide-rich replacement bodies may be considered transitional mineralization between the skarn and 4b style of replacement mineralization.

10.0 2004 EXPLORATION PROGRAM

The 2004 exploration program was directed toward expanding the known geological resource on the Lustdust property by:

- 1. Drill testing geochemical targets on-strike to the north-northwest of the Canyon Creek Skarn.
- 2. Drill testing the continuity of the Canyon Creek Skarn footwall zone.

- 3. Drill testing the hypothesis that the "synformal roll" (Oliver, 2003), associated with high grade mineralization in the Canyon Creek Skarn, plunges to the north-northwest.
- 4. Following-up the 2003 drill intersections in the Number 3 Zone by drilling along strike to the north-northwest of DDH 3-27.
- 5. Improving core recoveries from the Number 3 Zone.
- 6. Drill testing the Number 3 Extension Zone down-dip.
- 7. Conducting B horizon soil geochemistry surveys north and east of the Canyon Creek Skarn, and on the west side of the Glover Intrusive Complex.


11.0 DIAMOND DRILLING PROGRAM

The diamond drilling program utilized a Longyear 38, skid-mounted drill under contract from Britton Bros. Diamond Drilling Ltd. (Britton) based in Smithers, B.C. Drilling was undertaken using regular wireline equipment with the exception of LD04-18 where a triple tube and face-discharge bits were used in an attempt to get better core recoveries from the heavily oxidized massive sulphides.

Access to the drill sites utilized the extensive network of trails existing on the property. New access and drill pads were constructed using an excavator. Upon completion of each hole the collar was identified with a labeled pole.

In total 6,010.1 meters of NQ core, distributed among 21 holes, were drilled in the 2004 Lustdust exploration program. Collar locations and projected traces for these boreholes are plotted on Figure 5. Core was logged on site by Daryl J. Hanson, P.Eng. All lithologic, assay, survey and RQD logs are compiled and presented in digital form on Compact Disc 1 (CD 1). Tabulated assay data for gold, silver, arsenic, copper, zinc and core recovery for all boreholes is compiled and presented in Appendix I. The RQD was the only geotechnical data collected. Digital photographs of the core (except for 04-06, 04-07, 04-08 and 04-09 which were accidentally deleted) are also compiled on CD 1.

Drill hole collars and new access trails were surveyed by Nex Tech of Fort St. James using a GPS system operating in differential mode. In this mode, precision of the UTM location was determined to be less than 3.0 meters while the vertical precision was determined to be less than 4.0 meters. A summary of survey information, including UTM collar co-ordinates, elevation, azimuth, dip and total depth is presented in Table 4. Elevations of drill collars may locally appear discordant to topography on cross sections as drill hole elevations are based on the differentially corrected GPS data while cross sectional topography

is based on the British Columbia Government 1:20,000 scale trim maps with an estimated vertical accuracy of +/- 10 meters.

The attitude of the collar was measured using a Brunton compass with a declination of 23° while down-hole surveys were conducted using a Sperry Sun single shot instrument. Down-hole readings were taken at approximately 45 meter (150 ft.) intervals in all holes except for rare instances when the Sperry Sun was unavailable due to mechanical or electrical problems. It should be noted that the Sperry Sun readings can be influenced by magnetic minerals and that the holes drilled prior to 2002 were not down-hole surveyed.

TABLE 4									
2004 DRILL HOLE SUMMARY DATA									
DDH-ID	UTM E	UTM N	ELEVATION	LENGTH	AZIMUTH	DIP			
04-01	346912.90	6162674.42	1451.27	252.1	85.00	-56.00			
04-02	346820.53	6162677.68	1473.36	279.4	86.00	-55.00			
04-03	346733.88	6162119.47	1366.39	593.7	50.00	-70.00			
04-04	346962.51	6162127.09	1359.84	233.8	50.00	-45.00			
04-05	346888.66	6162068.93	1331.28	438.0	53.00	-65.00			
04-06	346937.51	6162264.32	1404.73	200.2	45.00	-45.00			
04-07	346937.51	6162264.32	1404.73	297.8	45.00	-65.00			
04-08	346857.79	6162589.72	1460.01	276.4	76.00	-55.00			
04-09	346816.21	6162739.96	1476.81	279.5	86.00	-55.00			
04-10	346585.36	6163003.40	1473.40	118.0	80.00	-55.00			
04-11	346906.94	6162741.21	1446.47	203.3	90.00	-55.00			
04-12	346895.19	6162813.19	1435.92	316.1	89.00	-55.00			
04-13	346820.53	6162677.68	1473.36	419.7	87.00	-70.00			
04-14	346757.48	6162791.74	1480.61	361.8	89.00	-55.00			
04-15	346702.47	6162877.28	1475.33	402.5	92.00	-55.00			
04-16	346893.36	6162525.76	1440.41	276.4	90.00	-55.00			
04-17	347351.28	6161276.85	1475.27	133.9	90.00	-45.00			
04-18	347419.69	6161074.82	1475.60	151.5	64.00	-45.00			
04-19	347419.69	6161074.82	1475.60	189.6	64.00	-65.00			
04-20	347277.91	6161286.06	1485.53	334.3	0.00	-90.00			
04-21	347351.28	6161276.85	1475.27	252.1	0.00	-90.00			

11.1 Core Sampling Procedures

Assay intervals were determined by the author at the time of logging. The intervals, ranging from 0.5 to 2.0 meters in length, were based on a combination of alteration, mineralogy, and lithology.

The core from each assay interval was split in half with a hydraulic core splitter. The splitting was done in a representative manner under the supervision of the author and there are no known biases in the samples. Half the core from each interval was double-bagged and the other half was returned to the core box for storage. Four-part tags were used to label the samples - two parts were sent to the laboratory, one part was stapled into the core box at the end of the sample interval and one part was retained in the sample book. Samples were stored in a secure

location on-site and then transported directly to the laboratory by Mr. R. Whatley, a director of Alpha Gold.

11.2 Core Sample Analyses

Samples were assayed at ALS Chemex Laboratories Ltd. in Vancouver, using a standard 34 element ICP package plus a 30 gram Au fire assay with an AA finish. Atomic Absorption analyses were performed on all over-limits Ag, Cu, Zn, and Pb samples. Over-limit Au samples were analyzed by a 30 gram fire assay with a gravimetric finish. A complete description of ALS Chemex analytical techniques for ICP-AES and assay procedures is presented in Appendix II and the Certificates of Analysis are attached as Appendix III. ALS Chemex is an ISO 9002 certified laboratory.

No specific gravity determinations were made during the 2004 program.

11.3 Data Verification

Standards and blanks were included in the sample stream every 20 samples as a measure of quality control. The ore reference standard used was CDN-CGS-2 prepared by CDN Resource Laboratories Ltd. of Delta, B.C. This standard has a recommended copper concentration value of 1.177 +/- 0.046% and a recommended gold concentration of 0.97 +/- 0.092 g/t with 95% confidence. A complete description of the origin, preparation and analysis of CDN-CGS-2 is attached as Appendix IV

The results of the analyses of standard and blank samples are shown in the assay logs (Appendix I). The arithmetic mean of 11 analyses of CDN-CGS-2 was 1.19% Cu and 0.918 g/t Au with a standard deviation of 0.02% for copper and 0.135 g/t for gold. The arithmetic mean of 10 blank analyses was 0.013% Cu and 0.008 g/t Au with a standard deviation of 0.005% for copper and 0.004 g/t for gold.

No duplicate samples were submitted to ALS Chemex and there were no duplicate analyses performed by other laboratories.

The author also checked the assay results for gross errors by crosschecking them with the lithologic log.

11.4 Reclamation

Upon completion of each hole the drill site was contoured using an excavator and seeded by hand with a roadside vegetation mix containing 20% Creeping Red Fescue, 20% Annual Ryegrass, 10% Perennial Ryegrass, 5% Kentucky Bluegrass, 18% Tall Fescue, 5% Orchard-grass,

10% Timothy, 2% White Clover, and 10% Single Cut Red Clover with the legumes inoculated. Felled timber around the site was limbed, lopped and either scattered or buried.

Felled timber along drill access trails was limbed, lopped and scattered and any exposed soil was seeded with the roadside vegetation mix. Water-bars were installed on the trails where appropriate.

All core boxes were labeled with metal tags, cross-stacked on logs pads, covered with plywood, and wrapped with chicken wire. Split boxes were stacked separately for easier access. The core is all stored on-site at the old Takla Silver Mine entrance.

11.5 Diamond Drilling Results: Canyon Creek Skarn Extension

LD04-01 intersected one mineralized, prograde skarn band from 125.1 to 129.7 meters and massive coarse grained pyrite with a trace of disseminated chalcopyrite and sphalerite from 119.6 to 125.1 meters within a thick sequence of phyllites. The massive pyrite interval grades 0.88 g/t Au and 6.0 g/t Ag. The prograde garnet skarn interval contains 15% pyrite, trace amounts of pyrrhotite and sphalerite and is weakly anomalous in gold, silver, and arsenic.

LD04-02 intercepted three mineralized, S1 conformable prograde skarn bands within a thick sequence of siliceous phyllites: Band #1, from 172.8 to 175.8 meters, contains 40% pyrrhotite, 1% chalcopyrite, and trace amounts of sphalerite; Band #2, from 244.4 to 245.0 meters, contains 5% pyrrhotite, 15% arsenopyrite, and trace amounts of chalcopyrite grading 50.7 g/t Au; Band #3, from 255.5 to 256.3 meters, contains 15% pyrrhotite.

LD04-08 encountered two mineralized, narrow, prograde mineralized skarn bands within a thick sequence of siliceous phyllites: Band #1, from 148.6 to 149.8 meters, contains 5% pyrrhotite, and 1% chalcopyrite grading 15.35 g/t Au; Band # 2, from 195.3 to 197.5 meters, contains 5% pyrite, 15% pyrrhotite, and less than 1% chalcopyrite.

LD04-09 cored two mineralized, narrow, prograde skarn bands, a mineralized retrograde skarn band, and a massive pyrite band within a phyllite sequence. The skarn band from 152.7 to 154.2 meters contains 2% pyrite, 20% pyrrhotite and 1% chalcopyrite. The skarn band from 158.2 to 158.7 meters contains 40% pyrrhotite, 0.5% chalcopyrite, trace pyrite and 2% arsenopyrite. The massive coarse grained pyrite interval from 214.8 to 216.1

meters grades 1.54 g/t Au and 80.3 g/t Ag. The mineralized retrograde skarn from 244.7 to 246.1 meters contains 2% pyrite, 5% pyrrhotite, 0.5% chalcopyrite, and 2% arsenopyrite grading 3.38 g/t Au and 15.0 g/t Ag.

LD04-10 failed to intersect skarn or massive sulphides within the phyllite sequence. Minor pyrite, sphalerite and arsenopyrite mineralization occurs between 26.2 and 36.0 meters.

LD04-11 intersected five mineralized zones in a siliceous phyllite sequence: massive siliceous pyrite, from 96.7 to 99.6 meters, with 20% coarse pyrite cubes; prograde skarn from 106.5 to 107.7 meters with 1% pyrite, 20% pyrrhotite and 2% chalcopyrite; retrograde skarn from 107.7 to 109.4 with 20% pyrite, 10% arsenopyrite, trace chalcopyrite, and trace sphalerite grading 4.64 g/t Au and 16.9 g/t Ag; retrograde skarn from 112.7 to 115.4 meters with 5% pyrite, 15% pyrrhotite, trace chalcopyrite and trace sphalerite; and massive pyrite with 50% coarse pyrite, 1% chalcopyrite, and 4% arsenopyrite from 115.4 to 118.6 meters.

LD04-12 failed to core massive sulphide or skarn mineralization. Minor pyrite, sphalerite, pyrrhotite and arsenopyrite mineralization occurs between 135.0 and 142.7 meters in siliceous phyllite.

LD04-13 cored four mineralized zones in a siliceous phyllite sequence: retrograde skarn from 200.7 to 204.8 meters with 7% pyrite, 7% pyrrhotite, and 0.5% chalcopyrite; prograde skarn from 236.1 to 237.7 with 3% pyrite, 10% pyrrhotite, and 1.5% chalcopyrite grading 12.70 g/t Au; prograde skarn from 300.6 to 302.1 meters with 5% pyrite, 5% pyrrhotite and 0.5% chalcopyrite; and massive sulphide with 35% pyrite, 35% pyrrhotite and 1% chalcopyrite.

LD04-14 intersected two contiguous mineralized zones in a phyllite and limestone sequence: a zone of altered intrusive(?) from 242.6 to 243.7 meters with 5% pyrite, 30% pyrrhotite, 2% chalcopyrite and trace sphalerite; and massive pyrite from 243.7 to 247.9 meters with 80% pyrite, 3% chalcopyrite, <1% sphalerite, trace arsenopyrite, and minor stibnite, grading 1.08 g/t Au, 137.1 g/t Ag, and 0.24% Cu.

LD04-15 encountered two mineralized sections in a sequence of phyllites and limestone: a quartz, pyrite, chalcopyrite vein(?) from 88.3 to 89.2 meters; and a pyritic zone from 292.1 to 293.0 meters with 50% pyrite and 2% sphalerite.

LD04-16 cored two contiguous mineralized sections in a phyllite sequence: a retrograde skarn from 83.8 to 85.9 meters with 5% pyrite, 45% pyrrhotite, and 5% chalcopyrite; and a prograde skarn from 85.9 to 86.8 meters with 7% pyrite, 5% pyrrhotite and 1% chalcopyrite.

11.6 Diamond Drilling Results: Number 3 Oxide and Number 3 Extension Zones

LD04-17 failed to encounter any mineralization down-dip of the Number 3 Extension Zone in a sequence of limestone, phyllite and mafic tuff. The drill roads broke off and the hole was abandoned at 133.9 meters.

LD04-18 cored three contiguous mineralized sections in a sequence of phyllites, limestone and mafic tuffs: a red oxide zone from 115.5 to 118.8 meters; a mixed massive sulfide and oxide zone from 118.8 to 122.4 meters with pyrite, sphalerite and arsenopyrite (no estimate of percentages); and a second red oxide zone from 122.4 to 124.6 meters. The combined interval from 115.5 to 124.6 grades 2.23 g/t Au, 14.4 g/t Ag, and 2.75% Zn. Core recovery for the entire zone averaged only 55%.

LD04-19 failed to intersect any mineralized sections in a sequence of phyllites, limestone and mafic tuffs below LD04-18.

LD04-20 encountered a pyrite, arsenopyrite, sphalerite, and chalcopyrite vein(?), from 290.1 to 290.4 meters, in a sequence of phyllites, limestone and mafic tuffs.

LD04-21 failed to intersect mineralization beneath LD04-17 in a sequence of phyllites, limestone and mafic tuffs.

11.7 Diamond Drilling Results: Canyon Creek Skarn and Canyon Creek Skarn Footwall Zones

LD04-03 cored a single mineralized section from 557.0 to 558.4 with 15% pyrite and 0.5% chalcopyrite in siliceous phyllite. After passing through the Glover Stock contact at 240.8 meters, the hole encountered a sequence of phyllites intruded by monzonite dykes to 483.6 meters. From 483.6 meters to the end of the hole at 593.7 meters, unmineralized prograde skarn is the dominant lithology with minor intercalated phyllite.

LD04-04 intersected six mineralized zones in a thick sequence of phyllites: a prograde skarn from 108.0 to 110.1 meters with 3%

pyrite and 0.5% chalcopyrite; a prograde skarn from 110.7 to 120.0 meters with 10% pyrite and 2% chalcopyrite grading 0.62 g/t Au, 31.5 g/t Ag and 1.57% Cu; a prograde skarn from 136.3 to 142.3 meters with 10% pyrite and 1% chalcopyrite; a prograde skarn from 184.6 to 185.1 meters with 10% pyrite and 1% chalcopyrite grading 2.14% Cu, 1.05 g/t Au and 42.1 g/t Ag; a prograde skarn from 186.6 to 188.6 meters with 10% pyrite and 1% chalcopyrite grading 1.14% Cu, 0.38 g/t Au and 20.9 g/t Ag; and a prograde skarn from 219.9 to 221.6 with 10% pyrite and 3% chalcopyrite grading 0.53 g/t Au, 30.5 g/t Ag and 1.71% Cu.

LD04-05 cored four mineralized intervals in a phyllite sequence with minor limestone: a prograde skarn from 185.6 to 193.0 meters, with 10% pyrite and 2% chalcopyrite (the interval from 185.6 to 191.5 grades 1.37 g/t Au, 18.0 g/t Ag and 1.28% Cu); massive pyrite from 327.2 to 327.5 meters with 90% pyrite and 0.5% chalcopyrite; a prograde skarn from 391.2 to 391.9 meters with 3% pyrite, 5% pyrrhotite, and 0.5% chalcopyrite; and a prograde skarn from 393.5 to 394.0 meters with 10% pyrite, 3% pyrrhotite, 1% chalcopyrite and 2% arsenopyrite.

LD04-06 encountered three significantly mineralized intervals in a phyllite-skarn sequence: a prograde skarn from 76.3 to 77.4 meters with 7% pyrite and 1% chalcopyrite; a prograde skarn from 159.0 to 160.1 meters with 2% pyrite grading 2.54 g/t Au; and a prograde skarn from 179.9 to 181.2 meters with 5% pyrite and 1% chalcopyrite.

LD04-07 intersected multiple pyritic prograde and retrograde skarns in a sequence of phyllites. No significant grades were encountered.

12.0 SOIL GEOCHEMICAL SURVEY

B-horizon soil geochemical surveys were conducted in two main areas: the area north and east of the Canyon Creek Skarn (the Dream Creek Grid), and the area west of the Canyon Creek Skarn and the Number 4b Zone (the Upper Canyon Creek Grid). A small, orientation grid was conducted to the south of the known mineralized zones. A total of 724 samples was collected on 36.2 kilometers of gridline.

Grid position was established by a compass with 23° declination and a hip-chain. Soil sample locations were marked with line and station numbers on metal tagged pickets every 50 meters on lines 100 meters apart. Control of the grid

position was achieved by acquiring GPS readings at the beginning and end of each line when conditions permitted.

All three grids cover areas of over-mature balsam forest and moderately to well drained soils with a good B-horizon soil underneath 10-30 cms of organic A-horizon.

12.1 Sampling Method

Samplers received on-the-job training in the techniques of B-horizon soil sampling. Sample horizons were identified and the rationale for collecting B-horizon soils was outlined. Sufficient sample was taken to fill a kraft soil sample bag. Field notes were taken for each sample describing the sample depth, horizon sampled, soil color, slope, and slope direction.

12.2 Field Sample Preparation and Security

Samples were air dried and stored in a secure location until they could be transported to the laboratory by Mr. R. Whatley, a director of Alpha Gold Corporation.

12.3 Analyses and Testing Procedures

Samples were assayed at ALS Chemex Laboratories Ltd. in Vancouver, using a standard 34 element ICP package plus a 30 gram Au fire assay with an AA finish. A complete description of ALS Chemex analytical techniques for ICP-AES and assay procedures is presented in Appendix II and the Certificates of Analysis are attached as Appendix V. ALS Chemex is an ISO 9002 certified laboratory.

12.4 Data Verification

No external standards were included with the soil geochemistry samples for analysis by ALS Chemex.

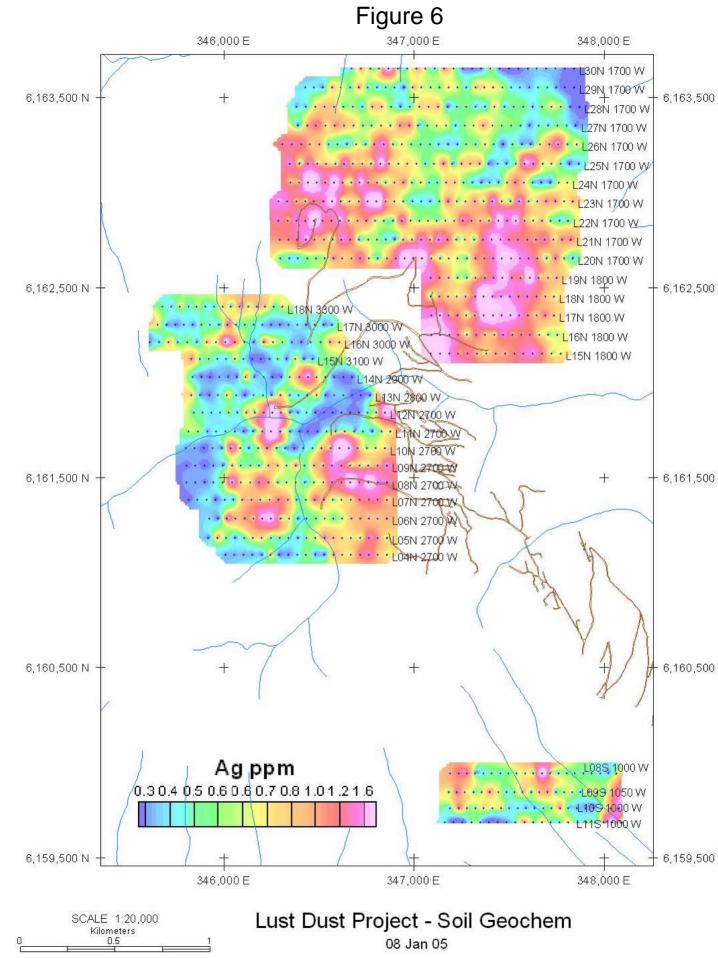
Random field checks were conducted by the author to ensure that samples were obtained from the proper locations and from the B-horizon. The author was also present for the collection of 75 samples.

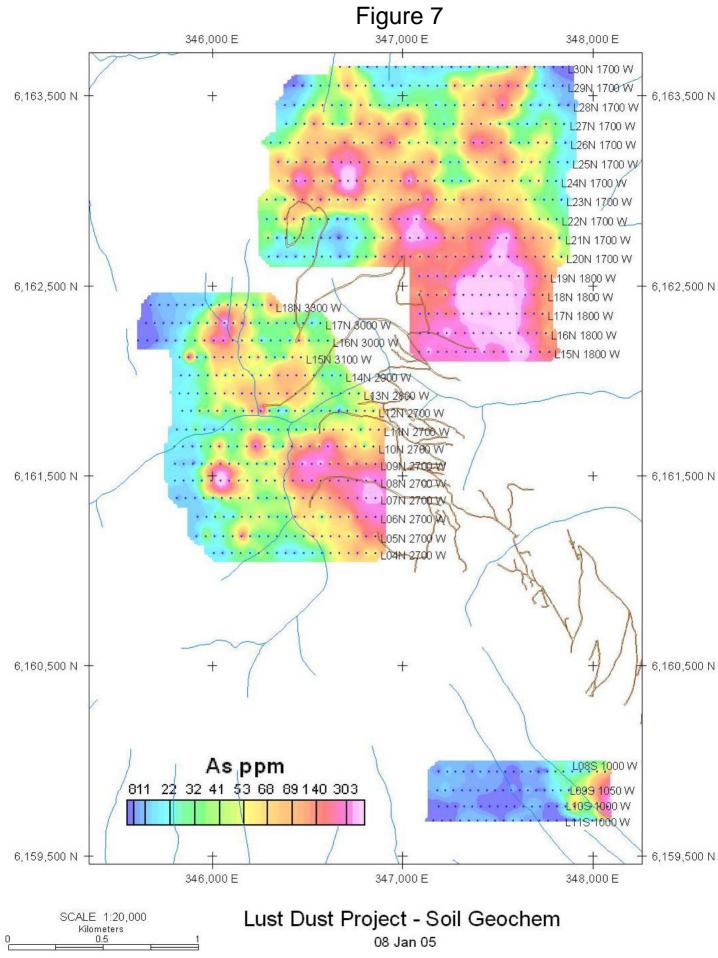
12.5 Soil Geochemistry Results

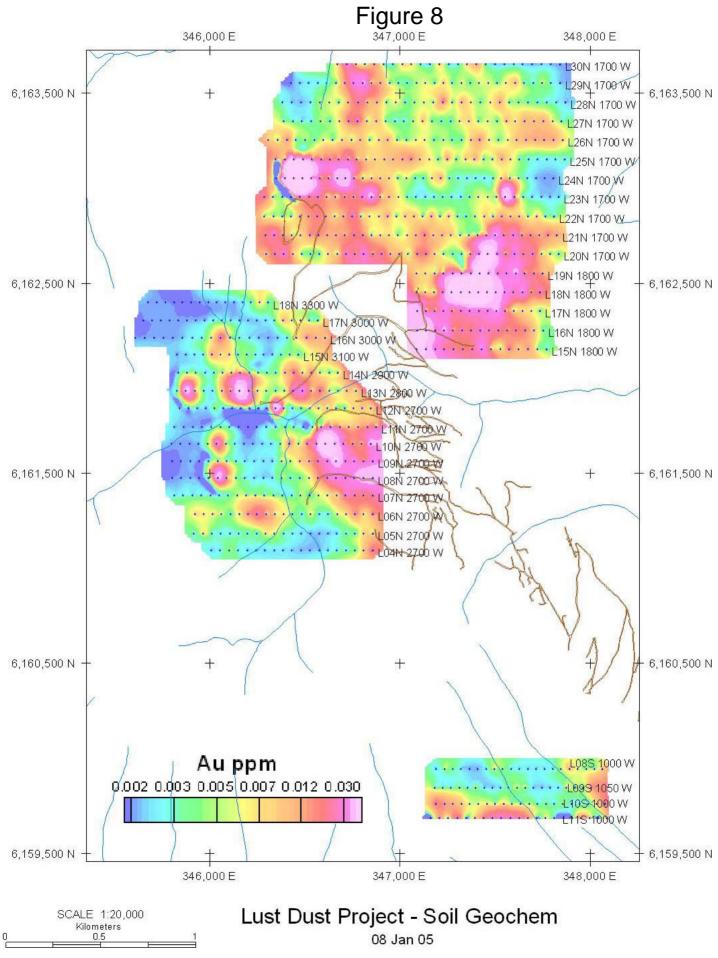
Soil geochemistry results for silver, arsenic, gold and copper are displayed on Figures 6, 7, 8 and 9 respectively.

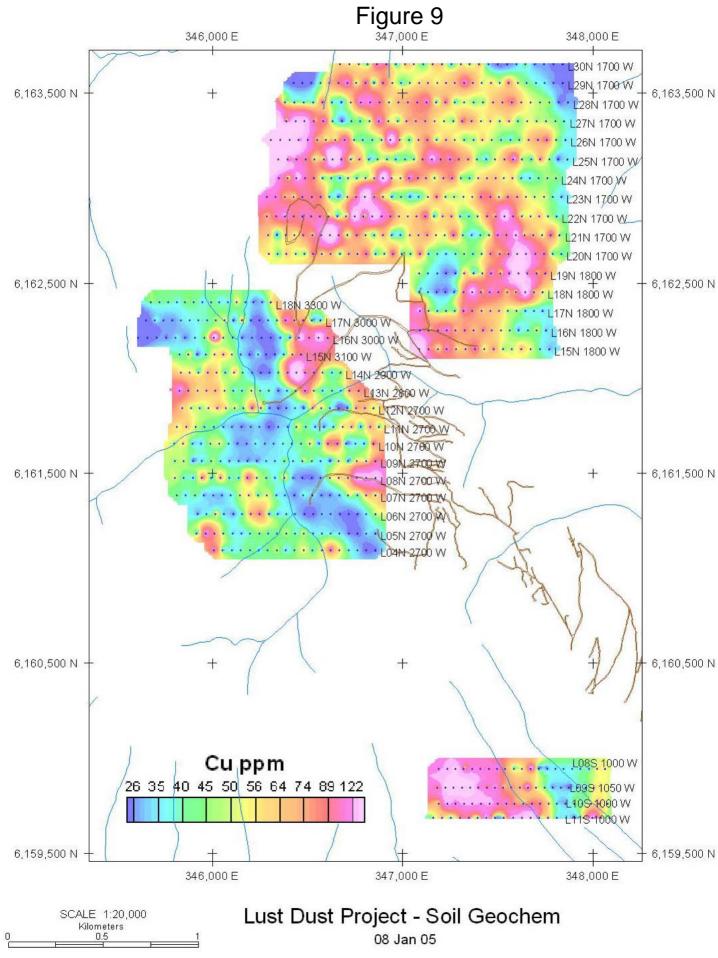
The most outstanding feature identified on the Dream Creek Grid is a large, multi-element, north-trending anomaly about 300 meters east of the

Canyon Creek Skarn Zone between lines 17N and 21N. This area is strongly anomalous in arsenic, gold, silver and copper. The strongest part of the anomaly is closed off in all directions.


The second most prominent anomaly on the Dream Creek Grid is located about 1000 meters northwest of the Canyon Creek Skarn Zone between lines 22N and 27N. The area is highly anomalous in copper and moderately anomalous in silver. The anomaly is completely open to the west.


The Upper Canyon Creek Grid revealed a small cluster of highly anomalous gold surrounded by moderately anomalous arsenic and silver values approximately 400 meters west of the Number 4b Zone.


13.0 INTERPRETATION AND CONCLUSIONS


The 2004 exploration program added significantly to the geological understanding and mineralized potential of the Lustdust property:

- 1. A 400 meter long, north-northwest extension of the Canyon Creek Skarn Zone was discovered by drilling a small arsenic-silver soil geochemistry anomaly. The new zone contains bonanza-style gold grades over narrow widths. This zone has many of the characteristics of gold skarn deposits (Ray and Webster, 1991):
 - high pyroxene:garnet ratios in the exoskarn
 - high pyrrhotite:pyrite ratios and mineral assemblages containing arsenopyrite
 - gold-sulphide mineralization is hosted in exoskarn distal to the intrusion
 - moderate to high sulphide content
 - prograde skarn development starts with a phase of biotite metasomatism
- 2. Drill hole LD04-18 extended the Number 3 Zone 50 meters to the north-northwest of DDH 3-27. The zone is still open at depth to the north-northwest and to the south-southeast of DDH 3-30.
- 3. A strong arsenic, gold, silver, copper soil geochemistry anomaly was outlined in an area mostly outside the current limit of geologic mapping. Based on similar soil geochemistry, the anomaly can be interpreted as a mineralized skarn to the east of and parallel to the Canyon Creek Skarn Zone.
- 4. Drilling on the Canyon Skarn zone has again indicated that the footwall position of the main skarn front remains a significant target, both along

- strike to the north and to the south. If fact, limited footwall drilling indicates that there is the potential for multiple footwall skarns.
- 5. Drill-hole LD04-03 confirmed the interpretation of a north-northwest plunge to the "synformal roll" of the Canyon Creek Skarn.

 Unfortunately, there was no high-grade intersected up to the point that the hole was abandoned in skarn at a depth of 593.7 meters.
- 6. Limited drilling failed to intersect the down-dip continuation of the Number 3 Extension Zone.
- 7. Using a split core tube and face discharge bits failed to improve recoveries in the Number 3 Oxide Zone.

14.0 RECOMMENDATIONS

The results of the 2004 exploration warrant a 2005 exploration program as follows:

- 1. Additional drilling of the Canyon Creek Extension Zone is warranted to follow-up on significant results in holes LD04-01, LD04-02, LD04-08, LD04-13 and LD-04-14. The drilling should be directed toward defining the on-strike and down-dip continuity of the mineralization.
- 2. The Number 3 Oxide Zone required additional drilling at depth to the north-northwest of LD04-18 and to the south-southeast of DDH 03-30. To improve recovery, future drilling of this zone should experiment with a combination of different polymers and with thin kerf NQ2 bits to penetrate faster with less water and fewer cuttings. The use of a hydraulic drill and a 5 ft. core barrel is also recommended.
- 3. The large, gold-arsenic-silver-copper soil anomaly east of the Canyon Creek Skarn Zone should be aggressively drill-tested. Soil geochemistry has proven to be a valuable exploration tool on the Lustdust property in the past and this is the strongest anomaly outlined to date.
- 4. Drill testing of the higher temperature skarns intersected in DDH 2-17, 2-18 and 2-19 should continue farther along strike to the north-northwest toward LD04-16. A drill pattern to test both the Canyon Creek Skarn Zone and the footwall skarns is recommended.
- 5. The geological map base was improved in the 2003 field season on an ad-hoc basis. A program of systematic 1:2500 scale mapping is

- recommended for the parts of the soil geochemistry grids that are outside the current limits of mapping.
- 6. The Dream Creek soil geochemistry grid should be expanded to the west to close off the copper-silver anomaly. A program of prospecting and geological mapping is also recommended for this area. Depending on the results of these programs, a limited diamond drilling program should be designed and implemented.
- 7. A limited diamond drilling program should be initiated to the west of the Number 4b Zone to test for antiformal closures in the Number 4b Zone similar to those in the Number 3 Oxide Zone, and to test the soil geochemical anomaly on the Upper Canyon Creek Grid.
- 8. A new core shack with adequate heating, lighting, bench space, and indoor storage should be constructed.

The costs to complete the recommended exploration program are estimated as follows (all figures in Canadian dollars):

2. 3.	6,000 m's of NQ drilling and related assaying: Geological (mapping, core logging, reporting) Data base development Ground geochemistry	\$ \$ \$ \$	600,000 80,000 45,000 50,000
	Road construction, environmental Studies	•	,
	and remediation	\$	40,000
6.	Lithogeochemistry	\$	3,000
7.	Petrography	\$	2,000
8.	Camp and logistical costs, contingencies and	\$	60,000
9.	management. Improvements to the Core Shack facilities	\$	20,000

Total: \$ 900,000

15.0 2004 EXPLORATION PROGRAM EXPENDITURES

1.	Diamond drilling 6,010.1 meters @ \$100/m (all inclusive cos	st)	\$601,010
2.	Assaying		\$21,240
3.	Transportation 2 - 4X4 pickup trucks (3 months) 1 - 4X4 pickup truck (1 month)		\$25,000
4.	Alpha camp cost (board)-		\$17,430
5.	Alpha camp cost (trailers)		\$16,000
6.	Drill site preparation, access construction, reclamation (excavator)		\$60,000
7.	Field Wages Geologist Soil sampling and core splitting		\$42,360 \$28,549
8.	Miscellaneous field costs		\$2,000
9.	Report		\$6,335
		TOTAL	\$819,924

The Lustdust property, by the nature of the deposit type, is a very complex geologic system that presents unique exploration challenges. Soil geochemistry coupled with improved geologic understanding will continue to discover new zones of mineralization on this property.

Daryl J. Hanson, P.Eng.

January 1, 2005 Telkwa, British Columbia, Canada

16.0 REFERENCES

- **ALBINO, G.V. (1987):** The Pinchi Mercury Belt, central British Columbia: near-surface expression of a Mother Lode-type mineralized system. *Geological Society of America*, Abstracts with Programs, **19:7**, A141-142.
- **BUTLER, D. B., & JARVIS, K.D.G. (2000):** Report on the 2000 Magnetometer survey over the LustDust Property. Whytecliff Geophysics Ltd. Report to Alpha Gold Corp., July 14, 2000, 11p.
- **DUNN, K.P.E. and RAY, G.E. (2002):** Constraints on fluid evolution at the Polymetallic Lustdust Porphyry-Skarn-Manto-Vein prospect, North Central British Columbia. British Columbia Ministry of Energy and Mines, Geological Fieldwork 2001, Paper 2002-1, pages 281 302.
- **EINAUDI, M.T., MEINERT, L.D., AND NEWBERRY, R.J. (1981):** In Skarn Deposits. *In* Economic Geology 75th Anniversary Volume. (B.J. Skinner, ed.) *Econ. Geol. Pub. Co.*, El Paso, TX. 317-391
- **EVANS, G. (1996):** Exploration of the Lustdust Property, Geology and Geochemical Report. Teck Corp. 18.
- **EVANS, G.** (1997): Diamond Drilling and Geochemical Report on the 1997 Exploration of the Lustdust property. Teck Corp. 16.
- **GABRIELESE**, H., AND YORATH, C.J., eds. (1992): Geology of the Cordilleran Orogen in Canada. *Geological Society of America*, **DNAG G-2**, 875.
- **GRAF, A. (1997):** Geology and porphyry-style mineralization of the Cerro de la Gloria stock associated with high-T, carbonate-hosted Zn-Cu-Ag (Pb) skarn mineralization, San Martin District, Zacatecas, Mexico. Unpubl. M.S. thesis, University of Arizona, Tucson, Arizona, 123p.
- **HEDENQUIST, J.W. and ARRIBAS, A., Jr. 1999:** Epithermal gold deposits: I. hydrothermal processes in intrusion-related systems, and II. Characteristics, examples and origin of epithermal gold deposits, in Molnar, F., Lexa, J. and Hedenquist, J.W. (eds.) Epithermal Mineralization of the Western Carpathians: Society of Economic Geologists, Guidebook Series, v. 31, p. 13-63.
- MacINTYRE, D.G., AND STRUIK, L.C. (1999): Nechako NATMAP Project, central British Columbia 1998 Overview British Columbia Geological Survey, Geological Fieldwork 1998, paper 1999-1 (downloaded from BCGS website, August, 1999).
- **MEGAW, P.K.M. (1998):** Carbonate-hosted Pb-Zn-Ag-Cu-Au replacement deposits: An exploration perspective. *In Mineralized intrusion-related skarn systems* (Lentz, D.R., ed.). *Mineralogical Association of Canada, Short Course Series* **26**, 337-358.
- **MEGAW, P.K.M., BARTON, M.D., and GRAF, A. (1998):** Polyphase skarn mineralization associated with a polyphase differentiated composite intrusion, San Martin-Sabinas District, Zacatecas, Mexico. *Geological Association of Canada/Mineralogical Association of Canada (GAC/MAC) May, 1998 Meeting, Quebec, Quebec, Abstracts*, A122
- **MEGAW, P.K.M., RUIZ, J., AND TITLEY, S.R. (1988):** High-temperature, carbonate-hosted, Pb-Zn-Ag massive sulfide deposits of Mexico: An overview. *Econ. Geol.* **83**, 1856-1885.
- **MEGAW, P.K.M., (1999):** Report on 1999 Drilling and Geological Study of the Lustdust Property, Omineca Mining Division, British Columbia, Canada: Alpha Gold Corp, October 14, 1999, 41.

- **MEGAW, P.K.M., (2000):** Report on 2000 Drilling and Geological Study of the Lustdust Property, Omineca Mining Division, British Columbia, Canada: Alpha Gold Corp, October 14, 2000, 42.
- **MEGAW**, P.K.M. (2001): Report on 2001 Drilling and Geological Study of the Lustdust Property, Omineca Mining Division, British Columbia Canada, 50 pages.
- **MEINERT, L.D.** (1995): Compositional variation of igneous rocks associated with skarn deposits Chemical evidence for a genetic connection between petrogenesis and mineralization. *In* Magmas, fluids, and ore deposits (J.F.H. Thompson, ed.). *Min. Assoc. Can. Short Course Series* 23, 401-418.
- **MEINERT, L.D. (1999):** Skarns and skarn deposits: Summary and weblinks. Skarn Website. http://www.edu:8000/~meinert/skarnhp.html.
- **MONGER**, **J.W.H.** (1977): Upper Paleozoic rocks of the western Canadian Cordillera and their bearing on Cordillera evolution. *Canadian Journal of Earth Science*, **14**, 1832-1859.
- **MORRIS, H.T. (1968):** The Main Tintic Mining District, Utah. *In* Ore Deposits of the United States, 1933-1967 (J.D. Ridge ed.). Amer. Inst. Mining Eng. **2**, 1043-1073.
- **OLIVER, J. L. (2002):** Report on 2002 Exploration and Diamond Drilling Lustdust Property. Private internal report to Alpha Gold Corp., 62 pages.
- **OLIVER, J. L. (2003):** Report on 2003 Exploration and Diamond Drilling Lustdust Property. Private internal report to Alpha Gold Corp., 109 pages.
- **PATERSON, I.A. (1977):** The geology and evolution of the Pinchi Fault Zone at Pinchi Lake, central British Columbia. Canadian Journal of Earth Science, **14**, 1324-1342.
- **PRESCOTT, B. (1916):** The Main Mineral Zone of the Santa Eulalia District. *Am. Inst. Mining Eng. Trans.* **51,** 57-99.
- **PRESCOTT, B. (1926):** The underlying principles of the limestone replacement deposits of the Mexican Province. *Engr. Min. Jour.* **122**, 246-253, 289-296.
- **RAY, G.E. (2002):** Geological work completed at the Lustdust Property and in some surrounding areas, Central British Columbia, (093N/11W). Private internal report to Alpha Gold Corp., 24 pages.
- **RAY, G.E. AND WEBSTER, I.C.L. 1997:** Skarns in British Columbia; British Columbia Ministry of Employment and Investment, Bulletin 101, 260 pages.
- **RAY, G.E., AND DAWSON, K.M., 1998,** Mineralized skarns in the Canadian Cordillera, In Mineralized intrusion-related skarn systems (Lentz, D.R., ed.), *Mineralogical Association of Canada*, Short Course Series **26**, Quebec City, 1998, p. 475-518.
- RAY, G.E., WEBSTER, I.C.L., MEGAW, P.K.M., MCGLASSEN, J.A. AND GLOVER, J.K. (2002): The Lustdust property in central British Columbia: a polymetallic zoned porphyry skarn manto vein system; in Geological Fieldwork 2001, British Columbia Ministry of Energy and Mines, Paper 2002 –1 pages 257 280.
- **SANO**, H., AND STRUIK, L.C. (1997): Field properties of the Pennsylvanian-Lower Permian limestones of the Cache Creek Group, northwest of Fort St. James, British Columbia. *Geological Survey of Canada*, Current Research 1997-A, 85-73.

SCHIARIZZA, P., AND MacINTYRE, D.G. (1999): Geology of the Babine Lake-Takla Lake area, central British Columbia (93K/11,12,13,14; 93N/3,4,5,6. British Columbia Geological Survey, Geological Fieldwork 1998, paper 1999-1 (downloaded from BCGS website, August, 1999).

SCHIARIZZA, **P. (2000)**: Bedrock geology and Mineral occurrences, Old Hogem (Western part). British Columbia Geological Survey, Open File 2000-33, scale 1:100,000.

SOREGAROLI, A. (1999): Memo on regional geological, geochemical, and geophysical studies performed in the Lustdust area by research institutions. Report to Alpha Gold Corp., October, 1999.

TITLEY, S.R. (1993): Characteristics of High temperature carbonate-hosted massive sulfide ores in the United States, Mexico and Peru. *In* Mineral Deposit Modeling (R.V. Kirkham, W.D. Sinclair, R.I. Thorpe, and J.M. Duke, eds.). *Geol. Assoc. Can.* Special Paper **40**, 585-614.

TITLEY, S.R., AND MEGAW, P.K.M. (1985): Carbonate-hosted ores of the Western Cordillera: an overview. *A.I.M.E. Preprint* **85-115**, 17p.

TITLEY, S.R., AND MEGAW, P.K.M. (1995): The setting and genesis of high-temperature, massive, carbonate-hosted replacement ores. Society of Economic Geologists International Field Conference on Carbonate-hosted Lead-Zinc Deposits, St. Louis Missouri, June 3-6, 1995, Extended Abstracts, 314-316.

17.0 CERTIFICATE OF AUTHOR

- I, Daryl J. Hanson, P.Eng., do hereby certify that:
 - 1. I am a consulting geologist and the sole proprietor of

In-Depth Geological Services 16575 Quick East Road Telkwa, B.C. Canada, V0J 2X2.

- 2. I hold an BASc degree, conferred by the University of British Columbia in 1971.
- 3. I am a member, in good standing, of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I have worked as a geologist for over thirty years in the fields of exploration, mine development and mine operations.
- 5. I have read the definition of "qualified person" set out in the National Instrument 43-101 (NI 43-101") and certify that by reason of my education, affiliation with professional associations (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.
- 6. I am responsible for (subject to points noted in the "Disclaimer" section 3) the preparation of sections 1 16 of the technical report titled "Report on the 2004 Diamond Drilling and Soil Geochemistry of the Lustdust Property Omineca Mining Division, British Columbia, Canada, (93N/11W)" and dated January 1, 2005 ("the Technical Report") relating to the Lustdust property. I worked on site at the Lustdust property for 93 days between June 24 and October 8, 2004.
- 7. I have had no prior involvement with the Lustdust property, prior to the 2004 exploration season.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclosure which makes the Technical Report misleading.

- 9. I am independent of the issuer applying all the tests in section 1.5 of the National Instrument 43-101.
- 10.I have read National Instrument 43-101 and Form 42-101F1, and the Technical Report has been prepared in compliance with that instrument and form.
- 11.I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them, including electronic publication, in the public company files on their websites accessible by the public, of the Technical Report.

discounties by the patients, or the	
Dated this 10 th day of January, 2005.	
Signature of Qualified Person	Stamp of Qualified Person
Printed name of qualified person.	

Appendix I

2004 Diamond Drilling Analyses and Core Recovery

Assay Sample Log LD04-01

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
-	0.0	32.3	no sample								
322001	32.3	34.1	split core		1.8	100	0.034	1.9	629	144	577
	34.1	61.2	no sample								
322002	61.2	62.2	split core		1.0	100	0.307	176	1260	1075	8860
	62.2	117.4	no sample								
322003	117.4	119.6	split core		1.1	50	0.189	6.1	920	511	2860
322004	119.6	121.0	split core		1.4	100	1.080	11.1	3160	606	132
322005	121.0	122.5	split core		1.5	100	0.453	5.2	1980	192	140
322006	122.5	124.1	split core		1.6	100	1.420	2.8	3920	31	65
322007	124.1	125.1	split core		1.0	100	0.392	5.0	2830	64	1945
322008	125.1	126.6	split core		1.5	100	0.118	3.3	289	68	435
322009	126.6	128.1	split core		1.5	100	0.088	2.4	280	263	1275
322010	128.1	129.7	split core		1.6	100	0.147	2.4	247	279	292
	129.7	233.5	no sample								
322011	233.5	233.9	split core		0.4	100	0.700	22.9	>10000	295	460
	233.9	252.1	no sample								
EOH @ 252.1	m										

Date: 2004-06 Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	СР	SL	GL	AS	BN	MG	
0.0	3.0	O/B																			triconed - no core
3.0	78.3	SPbh											1	tr	tr	tr					Biotite Hornfelsed Siliceous Phyllite
			S1	24.1	55																w/ 60-80% light grey siliceous bands and 20-40% lt. brown biotite
			S1	29.6	57																lamellae defining S1 fol'n, wkly phyllitic, loc dk gy/blk arg. bands
			S1	35.7	60																local augen and mortar cataclastic textures
			S1	41.0	56																PY occurs as vnlts, stringers, patches and rare vns to 20 mm
			S1	50.0	40																(some PY vnlts are parallel to S1)
																					SL occurs as small blebs, in vnlts w/ PY and also in PY/CB vns
																					local tan coloured sericite hydrothermal alt. of biotite lamellae
																					24.8: gouge @ 62
																					24.8-25.2: broken core
																					31.0: gouge @ 26
																					31.5: "M" symmetry in S1
																					36.4: irreg. band or vn 15mm w/ PY/CB/SL sub-parallel to S1
																					39.9 tr CP in PY patches
																					46.6 PO as irreg patches
																					51.6-51.7 gouge @ 70
																					59.6 vnlt w/ PY/SL
																					59.8 gouge and rubble
																					60.3 mislatch
																					61.5 GL/SL/PY/CB vn; 65mm wide @ 52 (assuming N strike for
																					S1, vn would strike about 060 with a steep NW dip)
																					69.8 gouge
																					71.6 gouge
78.3	84.2	Md											tr								Monzonite Dyke
																					pale green, non-porph, wkly calc, non-mag
																					wk sauss. alt'n
																					PY as dissems and in vnlts w/ CB

Date: Logged By: Page 2/

rom	То	Rock	Mod	Stuct	CA	Alte	eratio	on					Mine	erali	izatio	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY F	PO	СР	SL	GL	AS	BN	MG	1
																					78.3-84.2 cont'd
																					upper cnt. not observed
																					lower cnt. sharp, irreg. (no attitude)
84.2	119.6	SPbh											1 t	r		tr					Biotite Hornfeled Siliceous Phyllite
			S1	90.5	50																lith. a/a 3.0-78.3
																					loc. sericite hydrothermal alt'n of BI lams.
																					wk, loc CL hydrothermal alt'n overprints sericite and biotite
																					PO as blebs
																					PY occurs as vnlts, stringers, patches and rare vns to 20 mm
																					(some PY vnlts are parallel to S1)
																					SL occurs as small blebs, in vnlts w/ PY and also in PY/CB vns
																					loc CB vns & bxia w/ CB matrix
																					117.4-119.6 10% PY, 1% SL
																					117.4-117.7 calcareous band w/ EP
19.6	125.1	MS											95 t	r	tr	tr					Massive Pyrite
																					v. coarse grained PY w/ <5% CB
																					tr. dissem. CP
																					upper cnt. generally conformable to fol'n @ 60
																					123.7-125.1 siliceous int. w/ 30% QZ (minor bxia w/ CB
																					matrix & blebs of SL to 20 mm)
25.1	129.7	SK-SF) T										15 t	r		tr				tr	Ca-Garn. Prograde Skarn intercalated w/ Siliceous Phyllite
						<u> </u>	_	<u> </u>													yellow-gr skarn w/ 20% siliceous massive pyrite
																					It gy laminated siliceous phyllite w/ 10% ser. rich comp. layers
									ļ												tr SL, MG, PO as blebs
	1 10 -	0.51.1							ļ												
29.7	148.9	SPbh						ļ					tr t	r		tr					Biotite Hornfelsed Siliceous Phyllite
			S1	133.0	57																It gy-It br laminated, wkly phyllitic, loc. cataclastic w/boudinage

Date: Logged By: Page 3/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Min	eral	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	СР	SL	GL	AS	BN I	MG	1
			S1	137.0	47																129.7-148.9 cont'd
			S1	142.8	59)															loc. PY+/- SL vns; tr PO as blebs
																					loc. white ser. alt'n of BI laminae
																					133.2 gouge
																					136.3 gouge
148.9	158.5	Mpd																			Porphyritic Monzonite Dyke
																					25-30% euhedral feldspar phenos. in a lt gy, fine gr. matrix
																					non-mag., non-calc.
																					upper cnt. v. irreg. & weakly chilled
																					lower cnt. sharp, planar, S1 conformable @ 60 w/ chilled margin
158.5	170.4												tr	tr							Biotite Hornfelsed Siliceous Phyllite
			S1	162.1	52																It gy-It br laminated, wkly phyllitic, w/ loc. cataclastic ints.
			S1	166.7	62																tr PY/PO as blebs in siliceous bands
																					164.9-165.5 milled breccia dyke w/ 70% monzonite frags and
																					30% siliceous phyllite frags.
170.4	181.5	Md											tr	tr							Monzonite Dyke
																					It gy, massive, non-calc, non-mag.
																					v. wk. ser.alt'n
																					tr PY in <vnlts; blebs<="" po="" td="" tr=""></vnlts;>
																					upper cnt. sharp, S1 conformable @ 67
																					lower cnt. sharp, S1 conformable @ 70
181.5	252.1	SP											1	0.5	tr	tr		tr			Siliceous Phyllite
			S1	183.6																	It gy-dk gy laminated, wkly phyllitic
			S1	189.6																	locally biotite hornfelsed
			S1	206.3																	loc. boudinaged siliceous laminae
			S1	212.4	60																PO/PY as blebs and rare stringers

Date: Logged By: Page 4/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izatio	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	CP	SL	GL	AS	BN	MG	
			S1	215.5																	181.5-252.1 cont'd
			S1	224.6																	193.1 gouge
			S1	229.5																	194.2 gouge & broken core
			S1	235.3	45																194.2-195.7 broken core
			S1	239.1	40																217.1-217.3 siliceous band w/ 1% AS blebs, 2% PY/PO blebs
			S1	245.7	40																218.0-218.1 siliceous band w/ tr AS
			S1	250.3	38																228.9-229.0 siliceous band w/ tr AS (appears to x-cut S1)
																					233.5-233.9 siliceous band w/ 5% PY as irreg. patches, 2% AS
																					as blebs, and 0.5% SL as blebs
																					233.8 minor ground core
																					235.5 "S" symmetry minor fold
																					240.0 10mm wide sde band, S1 conformable w/ PY/SL/AS/SB
																					243.0-243.1 siliceous band w/ 5% PY/PO and tr CP
																					246.3-246.5 siliceous band w/ 1% PO and tr CP
																					EOH @ 252.1 metres

Date: June 28, 2004 Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
3.0	` /		142.3	• •	
5.2	84	38	145.4	82	26
8.2	174	58	148.4	197	
11.3	187	60	151.5	259	
14.3	283	94	154.5	240	
17.4	230	74	157.6	275	
20.4	233	78	160.6	260	
23.5	202	65	163.7	250	81
26.5	105	35	166.7	290	97
29.6		16	169.8	184	59
32.6	76	25	172.8	184	61
35.7	207	67	175.9	270	87
38.7	210	70	178.9	274	91
41.8	200	65	182.0	260	
44.8	256	85	185.0	178	
47.9	220	71	188.1	186	
50.9	227	76	191.1	170	
53.9	139	46	194.1	152	
57.0	180	58	197.2	82	
60.0	232	77	200.2	247	
63.1	106	34	203.3	262	
66.1	231	77	206.3	282	
69.2	151	49	209.4	233	
72.2	98	33	212.4	264	
75.3	189	61	215.5	292	94
78.3	194	65	218.5	283	94
81.4	292	94	221.6	256	
84.4	289	96	224.6	274	91
87.5	278	90	227.7	265	
90.5	294	98	230.7	213	
93.6	248	80	233.8	187	60
96.6	235	78	236.8	159	53
99.7	227	73	239.9	39	
102.7	287	96	242.9	242	81
105.8			246.0		
108.8	145	48	249.0	251	84
111.9	269	87	252.1	261	84
114.9	276	92	-		_
118.0	243		EOH @ 252.1m	1	
121.0	238	79			
124.1	299	96			
127.1	256	85			
130.1	212	71			
133.2	160	52			
136.2	148	49			
139.3	76	25			
142.3					
2.0	I .				

Survey Log LD04-01

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		85		-56
158	48.2	73	95	38	-52
300	91.4	63	85	40.5	-49.5
450	137.2	63	85	46.75	-43.25
600	182.9	64	86	44	-46
825	251.4	71	93	45	-45

Assay Sample Log LD04-02

Date: July 9,2004 Page:1

Sample No.	From	То	Sample Type	S.G	Rec	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	170.1	no sample								
322012	170.1	171.6	split core		1.3	87	0.082	0.7	20	771	59
322013	171.6	173.1	split core		1.3	87	0.202	1.1	96	1005	51
322014	173.1	174.5	split core		1.4	100	0.263	10.5	186	2570	1440
322015	174.5	175.8	split core		1.3	100	0.320	15.8	3270	1370	1325
	175.8	244.4	no sample								
322016	244.4	245.0	split core		0.6	100	50.7	3.7	>10000	257	31
	245.0	255.5	no sample								
322017	255.5	256.3	split core		0.8	100	0.722	3.0	477	1155	45
	256.3	279.4	no sample								
EOH @ 279.4	m										

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on							Mi	nera	aliza	tion			Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
0.0	5.2	ОВ																			triconed casing - no core
5.2	13.1	Md											tr								Monzonite Dyke
																					It gy, non-porphyritic, non-magnetic, w/ 5% EP
																					PY as dissem and in vnlts w/ CB
																					wk sauss altn
																					lower cnt sharp @ 57 (sub conformable w/ S1)
13.1	170.1	SPbh											<1		tr	tr					Biotite Hornfelsed Siliceous Phyllite
			S1	16.6																	dk br-lt gy striped siliceous phyllite grading loc to phyllitic quartzite
			S1	26.5	78																30% dk br biotite rich lams define S1 loc altered (bleached) to white sericite
			S1	32.1	55																adjacent to PY+/-SL+/-CB vns
			S1	38.0																	BI lams are loc contorted and siliceous bands are loc disrupted and fragmented
			S1	41.8																	CP as blebs and in vnlts w/ PY
			S1	48.2	70																PY as patches, blebs, vnlts (larger patches assoc w/ CL alt'n)
			S1	64.6																	SL in rare vns w/ PY
			S1	71.8	62																28.9-29.2 monzonite dyke w/ upper cnt sharp @ 24 and lower cnt diffuse
			S1	83.2	62																89.0-89.9 gouge @ 20 and patchy CY alt'n
			S1	87.8	61																98.6-105.5 heavily broken up core and gouge w/ upper cnt @ 73 (S1 conformation)
			S1	94.1	65																and lower cnt @ 50 (S1 conformable)
			S1	97.8	72																117.2-118.0 15-20% PY spatially related to a dk gr, biotite hornfelsed, 30 mm w
			S1	106.0	55																mafic/int dyke w/ gouge on upper cnt @ 22 (PY appears to be replacing phyllit
			S1	117.1	70																120.7-120.9 minor gouge @ 20
			S1	119.7	53																127.1 gouge @ 70
			S1	126.5	62																129.6-129.8 gouge @ 45
			S1	130.9	35																139.0 lt gr tuffaceous? bands
			S1	136.2	62																142.3-142.6 gouge @ 30 w/ massive PY
			S1	139.0	50																146.1 gouge @ 65
			S1	144.1	55																147.3-148.3 gouge and broken-up core
			S1	148.4	62																151.4-151.8 dk green, chloritic (tuffaceous?) band w/ 15% PY
			S1	153.8	60																(lower cnt S1 conformable @ 42)
			S1	160.7	45																152.7-153.2 dk green, chloritic (tuffaceous?) band w/ 5% PY, EP
			S1	163.0	40																(S1 conformable)
			S1	168.2	43																158.5-159.1 strong PY+EP+CB vnlts, <vnlts< td=""></vnlts<>
						1															

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA	Alte							Mineralization C PY PO CP SL GL AS BN MG					Comments			
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	CP	SL	GL	AS	BN	MG]
170.1	172.8	SPbh											10								Biotite Hornfelsed Siliceous Phyllite
																					dk br-lt gy striped phyllite
																					PY as vns, patches
172.8	175.8	SKpm												40	1	tr					Mineralized Ca Garnet-CPx Prograde Incip Skarn
																					It gr w/ It red-br, v fine gr garnet patches loc dev in siliceous phyllite
																					grades loc to siliceous phyllite
																					172.8-174.2 30% PO, 1% CP, 3% EP, tr SL, 50% CB
																					174.2-174.5 massive PO w/ 2% CP
																					174.5-175.8 15% PO, 10% CB, 3%EP in a dark green, tuffaceous? rock
																					note: Is this skarn alt'n developed in siliceous phyllites or in calcareous
																					bands intercalated with phyllite?
175 0	177.7	CDhh.											1								Biotite Hornfelsed Siliceous Phyllite
175.6	1//./		S1	177.6	46								-								lith and min as above 13.1-170.1
			01	177.6	40																IIIII and min as above 13.1-170.1
177.7	182.2	Md											1			tr	tr				Monzonite Dyke
																					pale gy, weakly porphyritic
																					PY as patches, vns w/ +/-SL+/-GL
																					180.5-180.7 gouge w/ PY+SL vn
																					upper cnt sharp, irreg (no attitude)
																					lower cnt sharp @ 44 (S1 sub-conformable)
100.0	207.8	CDbb											1								Biotite Hornfelsed Siliceous Phyllite
102.2	207.6		C1	102.0	57																lith and min as above 13.1-170.1
			S1 S1	183.0 189.6																	
			S1	194.0																	187.5 PY+EP+CB compositional layer (tuffaceous?) 191.1-191.2 sand and rubble w/o gouge
			S1	194.0																	204.8 tuffaceous compostional layer @ 50 (S1 sub-conformable)
			S1	203.3																	204.6 tunaceous compostional layer @ 50 (\$1 sub-conformable)
			७ ।	203.3	48																
207.8	210.5	Md						1					1								Monzonite Dyke
																					lith & min as above 177.7-182.2
																					wk sauss alt'n of ca-plag
																					upper cnt sharp & irreg (no attitude)
																					lower cnt sharp and planar @ 32

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA	Alte	eratio	n							М	iner	aliza	ation			Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Ga	r Si	PY	PO	СР	SL	GL	AS	BN	MG	
210.5	244.4	SPbh											5								Biotite Hornfelsed Siliceous Phyllite
			S1	212.1	40																lith & min as above 13.1-170.1
			S1	215.7	58																PY in vns w/ "bleached" halos
			S1	221.4	50																BI hornfelsing becomes weaker from 230m onward
			S1	227.7	56																214.4-214.5 dark gr-br compositional layer conformable w/ S1;
			S1	234.4	57																20% PY/PO, 10% CB, 7% EP
			S1	239.0	46																240,1 6cm thick chloritic (tuffaceous?) w/ 10% PO & tr CP
																					local boudinage and mortar structure
																					242.1-242.5 calc-silicate skarn band w/ 30% yellow & brown garnet;
																					S1 conformable
																					thin skarn bands @ 243.2, 243.3, 243.9
0444	0.45.0	014												+_	ļ.,			1.5	-		
244.4	245.0	SKpm												5	tr			15			Mineralized CPx Prograde Skarn
							4					-		 	ļ		ļ	-	-		med gr color w/ 80% c-px, 10% CB
							4					-		 	ļ		ļ	-	-		cnts are sub-conformable to S1
							4					-		 	ļ		ļ	-	-		244.4-244.5 massive arsenopyrite
							4					-		 	ļ		ļ	-	-		incipient banding indicating tuffaceous protolith?
												-		-							PO as patches w/ tr AS+/-CP specks
245.0	255.5	SPhh												1							Biotite Hornfelsed Siliceous Phyllite
2 10.0	200.0	01 511	S1	245.1	44									+ •							typical dk br-lt gy siliceous phyllite w/ loc weak Bl dev (leaving hornfels aerole)
			S1	247.0	60																loc boudinage and mortar structures
			S1	252.1	50																loo bodanago ana mortai otraotaros
																1					
255.5	256.3	SKpm												15							Mineralized Ca Garnet-Epidote Prograde Skarn
																					pinkish-gr garnet-epidote skarn alt'n w/ 0.3m siliceous phyllite intercalated
																					loc retrograde alt'n of garnet to chlorite
																					cnts are sharp and planar (S1 conformable)
																					upper cnt @ 58; lower cnt @ 70
																					last 0.2 m of int is 80% PY w/ 10% lt red-br garnets to 2mm dia
256.3	261.5	SP												1				tr			Siliceous Phyllite
			S1	256.3	70																dk gy/blk-ltgy striped, w/ carbonaceous lams defining S1; no BI hornfelsing
																					generally boudinaged
																					256.8-257.9 broken core w/o gouge
																					258.4-258.9 broken core w/o gouge

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct		Alte												tion			Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Ga	^r Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					256.3-261.5 cont'd
																					260.9 EP+GA+CB band w/ 1% AS; S1 unconformable
261.5	272.3	Mpd											1								Porphyritic Monzonite Dyke
																Î					It gy, porphyritic w/ phenos to 10mm
																					1% mafics (BI)
																					30% plag phenos is a v fine gr, gr-gy matrix
																					upper cnt is sharp, planar @ 55 (20cm stoped frags)
																					lower cnt is sharp and irreg (no attitude)
																					PY as dissem, vnlts, <vnlts< td=""></vnlts<>
272.3	279.4	SP											1		tr						Siliceous Phyllite
			S1	273.4																	dk gy-wh striped w/ loc white sericite alt'n of dk gy lams
			S1	279.4	68																siliceous compositional layers are generally boudinaged
																					274.2-274.6 broken core w/ minor gouge
																					276.6-277.0 strongly "bleached" int w/ 10% PY as vns, patches
																					278.3-278.6 incip skarn w/ 5% PO, 3% PY, tr CP; S1 conformable;
																					EOH 279.4 metres
												<u> </u>									
												<u> </u>									
												<u> </u>									
												1	<u> </u>				<u> </u>				
												<u> </u>									

RQD Log LD04-02

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
5.2	` ,		148.4	` ′	
8.2	94	31	151.5	176	57
11.3	158		154.5	227	76
14.3	214	71	157.6	207	67
17.4			160.6	250	83
20.4	278		163.7	220	71
23.5	241	78	166.7	155	52
26.5	116		169.8	186	60
29.6			172.8	44	15
32.6			175.9	310	100
35.7			178.9	229	76
38.7	246		182.0	244	79
41.8	287		185.0	260	87
44.8			188.1	264	85
47.9	267		191.1	235	78
50.9			194.1	227	76
53.9	290		197.2	270	87
57.0	198		200.2	280	93
60.0	281		203.3	254	82
63.1	299		206.3	260	87
66.1	289		209.4	269	87
69.2	267		212.4	210	70
72.2	279		215.5	225	73
75.3			218.5	283	94
78.3	249		221.6	290	94
81.4			224.6	293	98
84.4		84	227.7	278	90
87.5	199		230.7	177	59
90.5	213		233.8	230	74
93.6	190		236.8	265	88
99.7	150		239.9	284	92
102.7		n/a	242.9	252	84
105.8	25		246.0	258	83
108.8	188	63	249.0	216	72
111.9	267		252.1	218	
114.9	217		255.1	218	
118.0	260		258.2	143	46
121.0	190		261.2	97	32
124.0	265		264.2	270	90
127.1				223	
130.1			270.3	265	88
133.2			273.3	256	85
136.2			276.4	155	50
139.3	169		279.5	148	48
142.3	144		2. 3.0	. 10	
145.4			EOH @ 279.4m	<u> </u>	
148.4					
	<u> </u>				

Survey Log LD04-02

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		86		-55
150	45.7	66	88	35.5	-54.5
300	91.4	62	84	36	-54
450	137.2	68	90	37.5	-52.5
600	182.9	64	86	38	-52
750	228.6	66	88	39	-51

Assay Sample Log LD04-03

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	336.0	no samples								
322018	336.0	336.6	split core		0.6	100	0.058	0.2	141	138	15
	336.6	483.6	no samples								
322019	483.6	485.2	split core		1.6	100	0.017	0.8	35	708	37
322020	485.2	486.9	split core		1.7	100	0.014	0.5	30	341	36
322021	486.9	488.8	split core		1.8	95	0.036	0.8	48	865	
322022	488.8	490.0	split core		1.1	92	0.039	1.4	21	1250	
322023	490.0	491.3	split core		1.2	92	0.041	0.9	10		
322024	491.3	492.7	split core		1.4	100	0.016		22		29
322025	492.7	494.4	split core		1.7	100	0.029	0.8	25	747	38
322026	494.4	495.8	split core		1.4	100	0.017	0.4	7	286	
322027	495.8	496.4	split core		0.5	83	0.026	0.6	25	728	28
	496.4	500.2	no samples								
322028	500.2	501.4	split core		1.2	100	0.005	0.2	16	257	37
322029	501.4	502.7	split core		1.2	92	0.016	1	22	404	336
322030	502.7	504.4	split core		1.7	100	0.01	0.3	24	316	
322031	504.4	505.8	split core		1.4	100	0.002	0.2	10	110	
322032	505.8	507.0	split core		1.2	100	0.012	0.4	48	465	29
	507.0	511.1	no samples								
322033	511.1	513.2	split core		1.1	52	0.007	0.5	25	231	16
322034	513.2	514.7	split core		1.5	100	0.011	0.4	191	308	19
322035	514.7	516.4	split core		1.7	100	0.011	0.6	173	299	116
	516.4	519.7	no samples								
322036	519.7	521.4	split core		1.7	100	0.002	0.3	173	182	
322037	521.4	523.3	split core		1.9	100	0.002	0.1	212	31	23
322038	523.3	524.2	split core		0.9	100	0.002	0.3	61	56	36
322039	524.2	526.0	split core		1.6	89	0.002	0.1	133	30	
322040	526.0	527.5	split core		1.5	100	0.002	0.1	300		
322041	527.5	529.1	split core		1.6	100	0.002	0.1	341	17	14
322042	529.1	530.6	split core		1.5	100	0.002	0.1	368	41	14
322043	530.6	532.1	split core		1.5	100	0.002	0.1	273	8	
322044	532.1	533.3	split core		1.2	100	0.007	0.4	17	125	32
	533.3	535.3	no samples								
322045	535.3	536.9	split core		1.6	100	0.002	0.1	280	3	14

Assay Sample Log LD04-03

Page: 2

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
322046	536.9	539.0	split core		2.1	100	0.002	0.2	36	44	64
322047	539.0	539.8	split core		0.7	88	0.002	0.1	303	4	14
	539.8	541.9	no samples								
322048	541.9	542.7	split core		0.8	100	0.002	0.1	61	4	18
	542.7	548.5	no samples								
322049	548.5		split core		1.6	94	0.002	0.1	87	26	19
	550.2	557.0	no samples								
322050	557.0	558.4	split core		1.4	100	0.066	1.9	37	1365	25
	558.4	565.1	no samples								
322051	565.1		split core		0.5	100	0.002	0.1	50	11	39
	565.6	568.5	no samples								
322052			split core		1.5	100	0.002	0.1	42	8	
322053	570.0	571.5	split core		1.5	100	0.002	0.1	24		
322054			split core		1.5	100	0.006	0.2	22		
322055	573.0	574.5	split core		1.4	93	0.007	0.3	43		
322056	574.5	576.0	split core		1.5	100	0.002	0.1	142	42	47
322057	576.0	576.8	split core		0.8	100	0.002	0.1	96	12	39
	576.8	581.9	no samples								
322058	581.9	583.5	split core		1.6	100	0.002	0.1	42	11	27
322059	583.5	585.0	split core		1.5	100	0.002	0.1	66		29
322060	585.0	586.5	split core		1.5	100	0.002	0.1	42	9	
322061	586.5	588.0	split core		1.5	100	0.002	0.1	42	42	23
322062	588.0	589.5	split core		1.5	100	0.002	0.1	69	13	
322063	589.5	591.0	split core		1.5	100	0.002	0.1	58	13	
322064	591.0	592.5	split core		1.5	100	0.002	0.1	95	34	22
322065	592.5	593.7	split core		1.2	100	0.002	0.1	156	11	20
FOUL 500 7											
EOH 593.7m											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on				М	inera	lizati	ion					Comments
•		TOOK		o tu o t	•				Ret	Y-Gar	Br-Gar S				-	GI	AS	RN	MG	
0.0	28.1	ОВ				1	OK	iviai	1.00	ı Gai	Br Gar G	<u> </u>	11.0	<u> </u>			,	D. (Overburden
																				0.0-27.4 triconed casing - no core
																				27.4-28.1 cored sand and rock frags (boulders)
																				5 \
28.1	62.1	D											1							Diorite (Glover Stock)
																				med gy-gr colour, non-mag, med gr, equigranular
																				10% mafics (HB+BI) w/ wk CL alt'n
																				PY dissem, stringers, vnlts, <vnlts, td="" vns<=""></vnlts,>
																				tr MO in vns w/ PY+QZ
																				35.1-35.4 gouge & broken core
																				45.7 QZ vn w/ PY+tr MO @ 21
																				47.1-47.3 vn w/ QZ+CL+PY+EP @ 25
																				49.4 gouge
62.1	76.4	D											3							Diorite (Glover Stock)
																				med gy-gr colour, non-mag., fine gr, equigranular
																				wk sauss alt'n
																				3-4% PY dissem, <vnlts< td=""></vnlts<>
																				1.3m upper contact has inclusions of above int (ie stoped cnt)
76.4	200.6	D											1						tr	Diorite (Glover Stock)
																				lith and min as above 28.1-62.1
																				occ QZ+PY+/-MO vns w/ KF halos
																				occ QZ+PY vns w/ argillic halos to 10 mm
																				loc tr MG dissem
																				76.5-77.5 broken core, sand, gouge
																				80.8 QZ vn w/ tr MO
																				82.9 broken core, gouge, slick @ 27
																				88.7 gouge @ 48
																				108.7 gouge @ 53
																				112.2-112.4 It gy monzonite dyke @ 32
																				128.4-128.6 It gy, pre-min monzonite dyke @ 45
																				136.8 gouge @ 42
·																				138.1 gouge @ 55
																				157.7 gouge @ 57
																				158.8 gouge (no attitude)

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA	Alte							Mineralization PY PO CP SL GL AS BN			Comments				
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar S	i P	PY PC) CP	SI	_ GL	_ AS	S E	BN MG	
200.6	218.0	Dp																	tr	Porphyritic Diorite (Glover Stock)
																				40% plag phenos, 2% mafic phenos
																				med gy, fine gr matrix
																				MG dissem
																				cnts grad over 10-20 cms
																				201.8 gouge (no attitude)
218.0	240.8	D											1							Diorite (Glover Stock)
																				equigranular phase
																				lith and min as above 76.4-200.6
																				221.1-221.3 fine gr, med to dk gy/gr andesite dyke w/ sharp cnts
																				upper cnt irreg (no attitude), lower cnt @ 34
																				223.9 gouge (no attitude)
																				loc tr MG dissem
																				lower cnt S1 conformable
																				240.8 calc-sil band w/ lt br GA+EP+CB
240.8	250.7	SPbh											2							Biotite Hornfelsed Siliceous Phyllite
			S1	247.7	25															dark br and white striped typical SPbh
																				2-3% PY dissem, <vnlts< td=""></vnlts<>
																				CB <vnlts loc<="" td=""></vnlts>
																				246.1 gouge (no attitude)
																				minor dyklets throughout int (< 40 mm)
																				246.3 gouge (no attitude)
250.7	270.8	Mpd											1							Porphyritic Monzonite Dyke
																				med to lt gy, non-mag, fine gr, w/ 10-30% plag phenos to 10 mm
																				2-3% BI books
																				250.7-251.9 v fine gr, dk gy border phase (chilled margin)
														1						upper cnt sharp, planar @ 25, S1 conformable
				 								\bot					4	_		lower cnt sharp, irreg (no attitude)
				 								\bot					4	_		269.5-270.8 v fine gr, dk gy border phase (chilled)
														1						wk sauss alt'n throughout int
				<u> </u>								_					\perp			PY in <vnlts, dissem<="" td="" vnlts,=""></vnlts,>
														1						

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA	Alte							Miner								Comments				
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar S	Si F	PY P	O C	P S	SL C	GL .	AS	BN	MG					
270.8	271.8												2								Biotite Hornfelsed Siliceous Phyllite				
			S1	271.0	30																lith & min as above 240.8-250.7				
271.8	286.2	Mpd											1								Porphyritic Monzonite Dyke				
																					lith & min as above 250.7-270.8				
																					upper cnt sharp, wkly chilled (no attitude due to broken core)				
																					banding near upper cnt @ 30 (parallel to cnt?)				
																					wk sauss alt'n throughout int				
																					loc tr dissem MG				
																					lower cnt sharp @ 30 (x-cuts S1)				
286.2	320.9	SPbh											2								Biotite Hornfelsed Siliceous Phyllite				
			S1	287.1	18																typical dk br-white striped w/ 5-25% dk br biotite rich compositional layers				
			S1	294.4																	defining S1 fol'n				
			S1	300.0																	PY as dissem, <vnlts, occ="" td="" vnlts,="" vns<=""></vnlts,>				
			S1	304.0																	BI is loc bleached to white MC adjacent to larger vns (hydrothermal alt'n)				
			S1	313.0																	289.6-290.4 broken core w/ gouge				
			S1	319.0	32																291.0-291.7 broken core W/ minor gouge				
																					293.4 10 cm gouge				
																					300.5 4 cm vuggy CB+QZ+PY vn @ 38 w/ bleached halos to 20 cm				
																					305.8 4 cm band of CB+MG+PY+HE @ 28 w/ EP alt'n in wall rock				
																					308.4 irreg S1 parallel to core axis w/ fold closures (F2 folds)				
																					314.0 3 cm v fine gr monzonite dyklet				
320.9	322.3	Md											1	tr						tr	Monzonite Dyke				
																					med gy-gr, slightly mag, w/ 10% BI books to 1mm				
																					v wk sauss alt'n				
																					BI loc alt'd to CL				
																					1-2% PY as dissem, <vnlts< td=""></vnlts<>				
																					local xenoliths of siliceous phyllite				
																					tr CP as dissem				
																					upper cnt sharp, planar @ 52 (x-cuts S1)				
																					lower cnt sharp & slightly irreg @ 42 (x-cuts S1)				
322.3	434.5	SPbh											1								Biotite Hornfelsed Siliceous Phyllite				
			S1	325.2	33																typical dk br & white striped w/ 10-20% BI rich lamellae defining S1				

Date: Logged By: DJH Page 4/

							on				Mineralization Si PY PO CP SL GL A						Comments		
		1			Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY F	ОС	P S	SL G	L AS	S E	BN MG	1
		S1	331.4	32															322.3-434.5 cont'd
		S1	336.0	28															PY as dissems, blebs, vnlts, occ vns w/ QZ+CB+/-tr MO
		S1	339.6	23															336.0-336.6 tr SP w/ 10-15% PY in lams parallel to S1
		S1	345.2	29															362.4-362.6 pale gy, v fine gr, monzonite dyke w/ cnts sharp and planar @ 42
		S1	351.8	15															(unconformable to S1)
		S1	358.6	26															370.0-370.3 It red-br & It gr mottled incip skarn w/ 15% PY, 15% CB, 5% EP,
		S1	364.5	23															and 20% v fine gr lt red-br garnet in patches and bands @ 20
		S1	369.7																370.3-371.1 med gy-gr monzonite dyke w/ upper cnt lost in ground core and
		S1	375.5																lower cnt @ 42
		S1	378.8	28															core dropped @ drill 367.9-370.9
																			371.7-372.4 two incip skarn bands unconformable to S1; pale red-br and gr
		S0?	387.7	23															mottled w/ 10% CB, 7% EP, 20% v fine gr, pale red-br garnet? (no xtls
																			visible - identified by coloration only), 5% PY as patches; true thickness
		S1																	of each band is about 40 mm; bands dip steeply east assuming steep westerly
		S1																	dip for S1
		S1	403.0																387.7 dk gr, calc-siloicate? Band w/ dissem HE+MG+PY conformable w/ S1 @ 23
		S1	408.8																399.0-399.6 monzonite dyke @ 15
		S1																	402.8-402.9 monzonite dyke @ 45
																			403.5-403.6 monzonite dyke @ 90
																			403.8-404.6 monzonite dyke @ 45
		S1																	410.7 20 mm monzonite dyke @ 85
		S1	433.4	25															413.0-416.9 large int of rubble and broken-up core w/ minor gouge and slicks @ 15
																			418.6-418.9 cored rubble (this material represents the material sloughed in the hole
																			when the swivel broke and the plug had to be fished out of the hole;
																			(this is not a structural zone)
																			419.7-419.9 cored sand and rubble
																			423.9-424.1 monzonite dyke @ 53
																			425.9 post D1 vn w/ QZ+PY+HS+SP @ 53, 20 mm wide
																			432.3 vn w/ HS+PY+SP+QZ @ 30, <10 mm wide, conformable w/ S1
437.8	Md											1							Monzonite Dyke
																			med to lt gy, non-porph, non-mag
																			PY as dissem, stringers, vnlts, <vnlts< td=""></vnlts<>
																			upper cnt sharp and planar @ 16
																			lower cnt diffuse @ ~ 16
	37.8	37.8 Md	\$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$1 \$	S1 358.6 S1 364.5 S1 369.7 S1 375.5 S1 378.8 S0? 387.7 S1 392.5 S1 397.6 S1 403.0 S1 408.8 S1 415.0 S1 417.3 S1 422.5 S1 433.4	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 417.3 23 S1 422.5 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 417.3 23 S1 422.5 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 417.3 23 S1 422.5 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 422.5 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 422.5 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 417.3 23 S1 422.5 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 422.5 23 S1 430.5 33 S1 433.4 25	\$1 358.6 26 \$1 364.5 23 \$1 369.7 28 \$1 375.5 25 \$1 378.8 28 \$0? 387.7 23 \$1 392.5 25 \$1 397.6 25 \$1 403.0 20 \$1 408.8 20 \$1 415.0 20 \$1 417.3 23 \$1 422.5 23 \$1 430.5 33 \$1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 422.5 23 S1 430.5 33 S1 433.4 25	\$1 \$358.6 26 \$1 \$364.5 23 \$1 \$369.7 28 \$1 \$375.5 25 \$1 \$378.8 28 \$0? \$387.7 23 \$1 \$392.5 25 \$1 \$397.6 25 \$1 \$403.0 20 \$1 \$408.8 20 \$1 \$415.0 20 \$1 \$417.3 23 \$1 \$422.5 23 \$1 \$430.5 33 \$1 \$433.4 25	\$1 358.6 26 \$1 364.5 23 \$1 369.7 28 \$1 375.5 25 \$1 378.8 28 \$0? 387.7 23 \$1 392.5 25 \$1 397.6 25 \$1 403.0 20 \$1 408.8 20 \$1 415.0 20 \$1 417.3 23 \$1 422.5 23 \$1 430.5 33 \$1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 417.3 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 47.3 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 408.8 20 S1 415.0 20 S1 417.3 23 S1 422.5 23 S1 430.5 33 S1 433.4 25	S1 358.6 26 S1 364.5 23 S1 369.7 28 S1 375.5 25 S1 378.8 28 S0? 387.7 23 S1 392.5 25 S1 397.6 25 S1 403.0 20 S1 403.0 20 S1 415.0 20 S1 417.3 23 S1 430.5 33 S1 430.5 33 S1 433.4 25

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	CP	SL	GL	AS	BN	1 MG]
437.8	438.6	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
																					typical SPbh with br biotite lams defining S1
438.6	446.8	Md											1							tr	Monzonite Dyke
																					med gy-gr, fine gr, locally porph, loc w/ BI books to 3mm
																					loc tr MG as dissem
																					PY as dissems
																					upper cnt wkly diffuse @ ~ 15
																					lower cnt is faulted (no attitude)
446.8	457.0	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	447.6																	typical br-white striped, w/ 10-20% br BI rich lams defining S1
			S1	452.0	23																PY as dissem, vnlts w/CL+EP+CY
																					453.0-455.7 generally broken core w/ loc gouge and slicks
457.0	477.7	Md											3							tr	Monzonite Dyke
																					med gy, fine gr, wkly magnetic,
																					wk-mod fracturing
																					PY in <vnlts, 10mm<="" alt'n="" halos="" sericite="" td="" to="" vnlts="" w="" white=""></vnlts,>
																					upper cnt faulted @ 43 w/ slicks
																					lower cnt gradational over 30 mm (no attitude)
																					465.4-468.3 partly assimilated xenoliths of dk gy, strongly mag, biotite hornfels
																					w/ mod compositional layering; hornfelsed meta-tuff?
477.7	483.6	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	478.1	40																typical dk br and lt gy striped rock
																					S1 fabric is v irregular
																					PY as dissems, <vnlts< td=""></vnlts<>
																					lower cnt grad over 10 cm
483.6	485.2	SKp											2							<1	Ca Garnet-CPx Prograde Skarn
																					It gr w/ pale red-br streaks and patches of fine gr lt br garnet
																					2% EP as irreg patches
																					PY as blebs and post skarn vnlts to 2mm
																					MG as small blebs

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct	CA	Alte	eratio	on				N	/linera	alizat	tion					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar S	i F	PY PC) CP	SL	GL	. AS	BN	MG	
485.2	486.9	SPbh											2							Biotite Hornfelsed Siliceous Phyllite
			S1	486.2	15															typical br and lt gy striped
																				loc EP as irregular patches
																				PY as streaks parallel to S1, vnlts, and dissem
486.9	488.8	SKp											3	tr						Ca Garnet-CPx Prograde Skarn
																				mainly massive grading loc to incip skarn alt'd siliceous phyllite
																				It gr w/ yellow and pale red-br patches and streaks w/ ca-rich garnet
																				PY as dissem, in post-skarn vnlts, <vnlts, and="" irreg="" patches<="" td=""></vnlts,>
																				CP as blebs w/ PY
																				loc EP in patches
																				MG as blebs w/ PY
																				cnts grad over 5-10 cms (no attitudes)
488.8	490.0	SPbh																		Biotite Hornfelsed Siliceous Phyllite
			S1	489.7	20)							3						tr	loc incip skarn developed sub-parallel to S1 and as irreg patches
																				PY as dissem, vnlts, <vnlts< td=""></vnlts<>
																				MG as borders on PY vnlts loc
490.0	491.3	SKp											7						tr	Ca Garnet-CPx Prograde Skarn
																				loc incip skarn dev in siliceous phyllite
																				It gr w/ patchy and streaky yellow and It red-br ca-rich garnet 15%
																				PY as patches, vnlts, dissem
																				MG as blebs w/ PY
																				cnts gradational over 10-20 cms (no attitudes)
491.3	492.7	SPbh											2							Biotite Hornfelsed Siliceous Phyllite
																				typical br-lt gy striped
	ļ			1			_										1			PY as stringers, dissem
							1							1			1			
492.7	494.4	SKp					1						7	1			1			Ca Garnet-CPx Prograde Skarn
							1							1		1	1			massive to loc incip skarn dev in monzonite and siliceous phyllite (ie endo and
							1							1			1			exoskarn) w/ cnts grad over 10-20 cms (no attitudes)
							1							1		1	1			It gr w/ patchy and streaky It red-br garnet
							1							1			1			PY as dissem, patches, <vnlts, 3mm<="" td="" to="" vnlts=""></vnlts,>
																				loc EP in patches

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on				М	inera	lizati	on					Comments
									Ret	Y-Gar	Br-Gar Si	P,	Y PO	СР	SL	GL	AS	BN	MG	
494.4	495.8	Md										Ť	2							Monzonite Dyke
																				med gy, non-mag, non-porphyritic
																				PY to 10% loc as dissem and <vnlts< td=""></vnlts<>
																				1% EP patches
																				gradational cnts w/ skarn
495.8	496.3	SKp										1	0							Ca Garnet-CPx Prograde Skarn
																				It gr w/ 30% It red-br garnet dev
																				PY in vnlts, patches, dissem
																				cnts grad over 10-20 cms
496.3	500.2												1							Biotite Hornfelsed Siliceous Phyllite
			S1	497.3	30															typical br-lt gy striped
																				PY in vnlts, <vnlts, dissem<="" td=""></vnlts,>
																				loc CL hydrothemal alt'n halos on vnlts
500.2	504.4	Md											2						tr	Monzonite Dyke
																				w/ mafic inclusions to 5cm
																				loc. Incip endoskarn devel
																				upper cnt grad over 10-20 cm
																				lower cnt obscurred in broken core
																				PY as dissem, <vnlts< td=""></vnlts<>
																				MG in vnlts w/ PY
																				500.8-501.4 incip endoskarn w/ minor MG+PY vnlts
																				501.9-502.4 healed bxia w/ rare SK frags (ie post SK bxia)
																				502.7-503.3 incip endoskarn
504.4	505.8												1							Biotite Hornfelsed Siliceous Phyllite
			S1	505.0	27															typical dk br-lt gy striped
																				PY as dissem, <vnlts< td=""></vnlts<>
505.8	507.0	SKp											4							Ca Garnet Prograde Skarn
																				pale yellow-gr massive ca-rich garnet skarn
																				PY as patches w/ QZ+CB, and in vnlts w/ QZ

Date: Logged By: DJH Page 8/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on				Mi	nera	lizati	ion			T		Comments					
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar Si	PY	PO	СР	SL	GL	AS	ΒN	I MG						
507.0	511.1	Mpd										2	2							Porphyritic Monzonite Dyke					
																				typical pale gr-gy, non-magnetic, w/ 20% plag phenos to 3mm					
																				wk sauss alt'n					
																				upper cnt sharp, planar @ 55					
																				lower cnt lost in ground core					
																				PY as dissem blebs					
511.1	513.2	SKr										10)							Chlorite-Calcite Retrograde Skarn					
																				v. pale gr-gy, w/o relict garnets					
																				ground and lost core at upper contact					
																				lower cnt grad. over 0.3m					
																				PY as patches and blebs					
513.2	516.4	SKp										2	2						tr	Ca Garnet Prograde Skarn					
																				pale yellow-gr mottled w/ wk retrograde ints near upper cnt (ie gradational)					
																				retrograde ints. are SKp bxia w/ CL rich matrix (ie post skarn hydrothermal bxia) PY as patches, vnlts, blebs assoc w/ retrograde ints					
																				PY as patches, vnlts, blebs assoc w/ retrograde ints MG as borders on PY vnlts					
																				MG as borders on PY vnlts HE (red, earthy) as borders on QZ vnlts					
516.4	519.7	Mpd										tr								Porphyritic Monzonite Dyke					
																				typical pale gy-gr, non-mag, post-Skarn dyke w/ xenoliths of Skarn near u.cnt					
																				u.cnt sharp, planar @ 17					
																				I.cnt sharp, planar @ 25					
																				PY as dissem. blebs					
519.7	523.3	SKp										1								Ca Garnet Prograde Skarn					
		'				1	Ì	1				1	1		1	Ì		1	1	Ca Garnet Prograde Skarn massive, pale yellow-gr and It red-br mottled w/ loc retrograde ints					
						1	1	1				1				1		1	1	PY as patches, blebs					
			1	1		İ		l					1						1	loc. HS patches (open space fillings) w/ PY+GY+QZ					
				1			l						1		1	l	l	1							
523.3	524.2	SKp					l					5	5		1	l		T		Ca Garnet Prograde Brecciated Skarn					
						1	1	1				1				1		1	1	v. distinctive int. w/ subangular to rounded skarn frags to 10mm in a matrix					
				1						<u> </u>					1					supported bxia; some frags have red HE borders or replacements					

Date: Logged By: DJH Page 9/

From	То	Rock	Mod	Stuct	CA	Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar S	Si	PY	РΟ	CP	SL	GL	AS	ΒN	I MG	
																					523.3-524.2 cont'd
																					u.cnt fairly sharp @ 27
																					I. cnt sharp and planar @48
																					PY as large patches & cubes in top 20cm (open space filling?)
524.2	533.3	SKp											1								Ca Garnet Prograde Skarn
																					pale yellow-gr & lt red-br mottled, massive prograde skarn w/ 0.3m retrogade skarn
																					at upper cnt w/ CL+CB+QZ
																					PY as patches, cubes to 10mm
																					HE in <vnlts< td=""></vnlts<>
																					u.cnt not observed
																					I.cnt sharp, planar @ 55 (x-cuts S1)
																					528.0-529.3 bxia w/ fine gr, siliceous matrix
533.3	535.3	SPbh																			Biotite Hornfelsed Siliceous Phyllite
			S1	533.5	30								tr								typical bk br - It gy striped w/ dk br Bl lams defining S1
																					PY in discontinuous <vnlts< td=""></vnlts<>
535.3	536.9	SKp											1								Ca Garnet Prograde Skarn
																					lith as above 524.2-533.3
																					PY as blebs, patfches
																					HS in patches w/ PY+QZ (open space filling?)
																					u.cnt sharp @ 38
																					I.cnt grad over 10cm (no attitude)
536.9	539.0	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	538.6	30																w/ 10% Ca Garnet Prograde Skarn bands intercalated
																					dk br - It gy striped w/ dk br BI defining S1
																					white sericite and chlorite alt'n of BI lams adjacent to skarn bands (photo)
																					this relationship seems to indicate that skarn is post hornfelsing
																					skarn bands are S1 conformable
																					PY as patches
								<u> </u>													EP as small blebs and in patches w/ HS
																					HS in patches w/ EP

Date: Logged By: DJH Page 10/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on				M	inera	alizat	ion					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar S	i P	Y PO) CP	SL	GL	AS	BN I	/IG	
539.0	539.8	SKp										<	_							Ca Garnet Prograde Skarn
																				typical It yellow-gr massive skarn
																				contacts are S1 conformable
																				PY as patches
539.8	541.9	SPbh											1							Biotite Hornfelsed Siliceous Phyllite
			S1	540.0	32															typical dk br - It gy striped w/ dk br Bl lams defining S1
																				BI loc alt'd to white sericite and chlorite
																				PY as small dissem blebs
																				rods stuck at 540.1m
541.9	542.7	SKp										<	1							Ca Garnet - CPx Prograde Skarn
			S1	542.7	30															It gr & yellow-gr mottled, v. fine gr
																				upper & lower cnts. sharp, S1 conformable @ 30
																				PY as small patches/blebs
542.7	548.5	SPbh										tr	tr							Biotite Hornfelsed Siliceous Phyllite
			S!	546.0	32															dk br - It gy striped w/ BI lams defining S1
																				loc. white MS+CL alt'n of BI lams
																				PY in vns, patches
																				PO in vn w/ PY+EP @ 30, 10mm wide
548.5	550.2	SKp										tr								Ca Garnet - CPx Prograde Skarn
																				w/ 30% white MS+CL alt'd siliceous phyllite w/ incip skarn dev
																				skarn becomes Cpx rich toward end of int.
																				cnts. sharp, S1 conformable @ 22
																				3-4% Fe-Mg garnet (deep red to blk in colour)
																				PY as patches, blebs
550.2	557.0	SPbh										tr						t		Biotite Hornfelsed Siliceous Phyllite
			S1	551.6	26															dk br-lt gy striped w/ loc white MS+CL alt'd ints.
																				occ. thin SK bands to 20mm, S1 conformable
																				PY as patches
											d									MG as rare blebs
						1	1													

Date: Logged By: DJH Page 11/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on				Mi	inera	aliza	tion					Comments						
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar Si	P١	Y PC	CP	SL	. GL	AS	BN	MG							
557.0	558.4	SPm										1:			.5					Mineraliazed Siliceous Phyllite						
																				w/ irreg patches and bands of SKp						
																				PY as large patches						
																				CP as blebs and small patches assoc W/ PY						
558.4	565.1	SPbh										tr		tr						Biotite Hornfelsed Siliceous Phyllite						
			S1	563.3	36															dk br-lt gy striped phyllite w/ <5% skarn bands (S1 conformable)						
																				loc. white MS+CL alt'd ints						
																				PY as dissems						
																				CP as dissems						
565.1	565.6	SKp										10	0							Ca Garnet Prograde Skarn						
																				It yellow-gr mottled, fine gr skarn						
																				w/ loc. CL+ACT retrogade patches assoc. w/ post SK bxia zones						
																				cnts sub-conformable to S1						
																				PY as patches						
																				HS as open space fillings HE (red, earthy) as streaks and borders on SK frags						
																				HE (red, earthy) as streaks and borders on SK frags						
565.6	568.5	SPbh										<1								Biotite Hornfelsed Siliceous Phyllite						
																				dk br-lt gy lam. phyllite w/ <5% SK bands (S1 conformable)						
																				566.3-566.6 gouge & broken core						
																				PY in threads, <vnlts, dissems<="" td=""></vnlts,>						
568.5	576.8	SKp											2							Ca Garnet Prograde Skarn						
																				It yellow-gr mottled w/ It red-br patches						
																				loc. CL+ACT? retrograde ints.						
																				upper cnt sharp, planar @ 50 (x-cuts S1)						
														-		1				lower cnt sharp, planar @ 35 (S1 conformable)						
														_		1				568.5-568.8 HE (red, earthy) in <vnlts< td=""></vnlts<>						
														_		1				PY as patches, blebs						
		05::						<u> </u>					_		_	4	1	4								
576.8	578.4			<u> </u>									1						<u> </u>	Brecciated Biotite Hornfelsed Siliceous Phyllite						
			S1	577.0	35								_		_	4	1	4		dk br-lt gy laminated phyllite w/ <5% SK bands/patches						
								<u> </u>					_	4	_	4	1	4		lower cnt grad over 0.4 m						
																				PY as vnlt's, dissems						

Date: Logged By: DJH Page 12/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on				IV	liner	alizat	tion					Comments
									Ret	Y-Gar	Br-Gar S					GL	AS	BN	MG	
578.4	581.9	CSgh										tr	_							Calc-Silicate Hornfels
																				white w/ v. It br irreg patches
																				wollastonite+QZ+garnet hornfels w/ <10% SKp patches
																				loc CL+ACT? rich SKr ints
																				lower cnt sharp, irregular (no attitude), ~5 deg to core axis
																				5% intercalated white MS+CL alt'd siliceous phyllite
																				PY as blebs
591.9	593.7	SKp											2							Ca Garnet - CPx Prograde Skarn
																				gr, yellow-gr, lt red-br, & white mottled
																				w/ 10% irreg. xtline calcite patches
																				loc narrow, CL+ACT? retrograde margins on post-skarn QZ+CB vns
																				PY as patches, blebs
																				tr HS as blebs
																				tr EP as blebs
											e dips at -7	70								EOH @ 593.7 metres
	(ie ska	rn didn	t flatter	n as pre	dicted	from	adjo	ining	secti	ons)										
													_						ļ	
													\perp			1		_		

RQD Log LD04-03

Date: Page 1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
27.4								
29.6	40	18	166.7			303.9		
32.6	179	60	169.8	256	83	306.9	254	85
35.7	248	80	172.8	257	86	310.0	267	86
38.7	213	71	175.9	203	65	313.0	278	
41.8	257	83	178.9	289	96	316.1	291	94
44.8	253	84	182.0	296	95	319.1	300	100
47.9	271	87	185.0	279	93	322.2	297	96
50.9	188	63	188.1	260	84	325.2	281	94
53.9	189	63	191.1	294	98	328.3	272	88
57.0	262	85	194.1	298	99	331.3	276	
60.0	181	60	197.2	229	74	334.3	287	
63.1	249	80	200.2	269	90	337.4	199	
66.1	241	80	203.3	248	80	340.4	256	
69.2	228	74	206.3	208	69	343.5	273	
72.2	298	99	209.4	258	83	346.5	174	
75.3	189	61	212.4	274	91	349.6	181	58
78.3	82	27	215.5	261	84	352.6	287	96
81.4	177	57	218.5	158	53	355.7	264	85
84.4	173	58	221.6	269	87	358.7	262	87
87.5	234	75	224.6	232	77	361.8	288	93
90.5	233	78	227.7	238	77	364.8	272	91
93.6	267	86	230.7	283	94	367.9	251	81
96.6	264	88	233.8	296	95	370.9	194	65
99.7	163	53	236.8	274	91	374.0	284	92
102.7	239	80	239.9	273	88	377.0	292	97
105.8	244	79	242.9	286	95	380.1	266	86
108.8	227	76	246.0	264	85	383.1	256	85
111.9	231	75	249.0	237	79	386.2	276	89
114.9	256	85	252.1	197	64	389.2	280	93
118.0	284	92	255.1	238	79	393.3	278	68
121.0	262	87	258.2	296	95	395.3	269	135
124.0	269	90	261.2	239	80	398.4	281	91
127.1	234	75	264.2	244	81	401.4	280	93
130.1	243	81	267.3	172	55	404.4	265	88
133.2	262	85	270.3	248	83	407.5		
136.2	270	90	273.4	207	67	410.5	278	93
139.3	212	68	276.4	300	100	413.6	240	
142.3	211	70	279.5	203	65	416.6	70	
145.4	233	75	282.5	264	88	419.7	264	85
148.4	271	90	285.6	289	93			
151.5	283	91	288.6	251	84	425.8		
154.5	287	96	291.7	36	12	428.8	291	97
157.6	256	83	294.7	96	32	431.9	293	
160.6	188	63	297.8	260	84	434.9	202	
163.7	216	70	300.8	281	94	438.0		
166.7	262	87	303.9	271	87	441.0	279	93

RQD Log LD04-03

Date: Page 2

) %

Survey Log LD04-03

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		50		-70.00
300	91.4	30	52	20.00	-70.00
600	182.9	41	63	20.00	-70.00
757	230.7	51	73	20.75	-69.25
997	303.9	42	64	20.00	-70.00
1387	422.7	56	78	20.00	-70.00
1475	449.6	59	81	20.00	-70.00
1637	498.9	54	76	20.75	-69.25
problems w	ı/ Sperry Su	n - no surve	y points afte	er 498.9m	

Assay Sample Log LD04-04

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
322066	14.8	16.0			1.2	100	0.034	0.6	125	176	20
	16.0	108.0	no sample								
322067	108.0	109.0			1.0	100	0.118	5.2	151	2880	
322068	109.0	110.1			1.1	100	0.359	15	229	8390	37
	110.1	110.7	no sample								
322069	110.7	111.9			1.2	100	0.203	2.9	1665	1775	
322070	111.9	113.4			1.5	100	0.356	7.7	217	4780	
322071	113.4	114.9			1.5	100	0.797	28.5	760	14500	141
322072	114.9	116.5			1.6	100	0.660	25.1	349		
322073	116.5	118.0			1.5	100	1.140	83.9	285	41300	357
322074	118.0	120.0			2.0	100	0.528	34.5	194	16200	85
			no sample								
322075	133.6	136.3			1.6	59	0.038	3.9	160	1810	
322076	136.3	137.7			1.4	100	0.181	6.9	289	4130	
322077	137.7	139.3			1.5	94	0.333	10.8	341	7180	
322078	139.3	140.8			1.5	100	0.109	6.5	344	4450	
322079	140.8	142.3			1.5	100	0.529	12	321	6730	
322080	142.3	143.8			1.5	100	0.078	64.5	223	178	
322081	143.8	145.4			1.5	94	0.065	10.9	305	198	
322082					1.5	100	0.039	0.4	174		
322083					1.3	87	0.021	0.3	170		
322084					2	100	0.102	1.1	203	142	20
	150.4	155.1	no sample								
322085	155.1	156.6			1.4	93	0.064		335	849	
322086	156.6	158.2			1.5	94	0.391	8		5600	
322087	158.2	159.4			1.1	92	0.129	4.7	762	173	
322088	159.4	161.9			2.2	88	0.033	8.3	143	248	60
322089	161.9	164.8			2.8	97	0.038	16.5	205	132	295
			no sample								
322090	184.6	185.1			0.5	100	1.045	42.1	360	21400	108
322091	185.1	186.6			1.5	100	0.220	6.6	79	2990	51
322092	186.6	188.6			2	100	0.376	20.9	431	11400	56

Assay Sample Log LD04-04

Page: 2

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	188.6	215.1	no sample								
322093	215.1	216.9			1.8	100	0.070	4	79	1125	34
322094	216.9	218.4			1.5	100	0.018	0.4	235	126	15
322095	218.4	219.9			1.5	100	0.105	4.6	336	2960	25
322096	219.9	221.6			1.7	100	0.529	30.5	629	17100	81
	221.6	233.8	no sample								
EOH 233.8m											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Mir	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
0.0	9.8	ОВ																			triconed casing - no core
9.8	14.8	SPbh											2								Biotite Hornfelsed Siliceous Phyllite
			S1	14.1	42																dk br - It gy striped
																					grades loc. to phyllitic chert
																					LI coatings on <vnlts< td=""></vnlts<>
																					BI lams loc. "bleached" to white MS+CL
																					PY in vnlts, <vnlts (post="" hornfles),="" patches<="" td=""></vnlts>
																					lower cnt. grad. over 0.2m
14.8	16.0	Md											15								Mineralized & Altered Monzonite Dyke
																					w/ <5% phyllite xenoliths
																					incip CY alt'n
																					no cnts visible (assimilated or destroyed by alt'n)
																					PY as patches, blebs
																					MO finely dissem, 0.5%
16.0	85.3	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	19.4	42																gen. dk br - It gy striped
			S1	25.0																	BI altered loc. to white MS+CL
			S1	30.8	58																PY in vnlts to 3mm, <vnlts, (loc="" 2-3%="" <vnlts<="" disssems="" in="" td="" vnlts,=""></vnlts,>
			S1	33.5	50																LI coating on fractures (<vnlts) 17.0m<="" td="" to=""></vnlts)>
			S1	40.3	55																20.4 gouge @ 23
-			S1	47.4	57																23.8 reset casing (cored 0.3m boulders)
			S1	52.4	62																27.1-29.8 sheared core and rubble
			S1	57.0	60																31.6-31.8 gouge & sheared core
			S1	61.8	50																35.7-36.0 rubbly core w/ slicks & gouge
			S1	66.5	44																41.9-42.1 v. fine gr. felsite dyke (pre-min) w/ upper cnt. lost in broken core;
			S1	72.2	45																lower cnt. sharp, planar @ 48; contains PY+pink CB+QZ vn
			S1	76.9	42																53.3-53.8 gouge and broken core
			S1	80.4	49							<u> </u>				1			<u> </u>		56.3-56.7 rubble and broken core w/o gouge
			S1	84.6	38							ļ	ļ			1	ļ		<u> </u>		57.2-62.1 Siliceous Phyllite (no hornfels) w/ grad. cnts.
																					62.1-65.4 Phyllitic Chert w/ <10% BI lams; grad. cnts
												ļ	ļ			1	ļ		<u> </u>		65.9-66.1 gouge & rubble
<u> </u>												<u> </u>				1					67.5-67.6 broken core & rubble w/o gouge
																					68.9-74.5 phyllitic chert w/ < 10% BI lams; grad. cnts

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA	Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					16.0-85.3 cont'd
																					78.1-79.0 phyllitic chert w/ grad. cnts
																					79.0-85.3 Siliceous Muscovite Phyllite w/ minor BI hornfels
																					74.9-82.9 core heavily broken w/ minor rubble; w/o gouge
85.3	93.9	Mpd																			Porphyritic Monzonite Dyke
																					It gy-gr, wkly mag., post min., w/ 30% plag phenos to 7mm
																					becomes distinctly less porphyritic @ 90.5m
																					upper cnt. sharp, irreg @ ~25
																					lower cnt. sharp, planar @ 37
93.9	108.0												<1		<.1						Biotite Hornfelsed Siliceous Phyllite
			S1	97.7																	grades loc. to Siliceous Muscovite Phyllite
			S1	101.2	52																dk br - It gy striped w/ BI lams defining S1
																					local dk gy/blk lams
																					loc. white MS alt'n of BI lams
																					PY as vnlts, <vnlts, patches<="" samll="" td=""></vnlts,>
																					CP as specks w/ PY patches
																					93.9-95.1 core broken w/ minor gouge
108.0	110.1												3		0.5						Mineralized Ca Garnet-CPx Prograde Skarn
			S0?	108.4	35																It gr, yellow-gr, It red-br mottled, massive
																					20% irreg. patches of xtline CA
																					PY as patches
																					CP as blebs
																					local incipient compostional layering (intercalated phyllite?)
																					local dk gr/blk CL+ACT? retrograde alt'n
																					upper cnt. obscurred in broken core
																					lower cnt. sharp, planar @ 58
110.1	110.7																				Biotite Hornfelsed Siliceous Phyllite
			S1	110.2	45								2								dk br - It gy striped w/ BI lams defining S1
																					loc white MS alt'n of BI lams
																					PY as <vnlts< td=""></vnlts<>

Date: Logged By: DJH Page 3/

rom	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	era	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-G	ar Si	PY	PO	СР	SL	GL	AS	BN	MG	
110.7	120.0	SKpm											10		2	_					Mineralized Ca Garnet Prograde Skarn
																					typical yellowish gr, lt gr, & lt red-br, massive to locally laminated
																					w/ 15% intercalated ca garnet-cpx skarn
																					PY variable as patches w/ square outlines
																				-	CP content variable (.3-2%) as patches to 50mm w/ PY
																					HS v. local as patches w/ PY+CP
																					loc. dk gr retograde ints w/ CL+ACT (CL replacing garnet along vns)
																					upper cnt sharp, planar @ 30
																					CA as white xtline patches loc (zones also have more CP+HS ie 113.4-114.9)
1																					CA rich bands throughout int. suggesting a limestone protolith
1																					
120.0	136.3	SPbh											1		tr						Biotite Hornfelsed Siliceous Phyllite
			S1	121.0	63																grades loc. to phyllitic chert and SP
			S1	125.7	60																med br - It gy striped w/ BI lams defining S1
			S1	130.3	60																BI lams loc. bleached to white MS
			S1	133.0	70																PY as <vnlts, blebs<="" td=""></vnlts,>
																					occ. skarn bands and patches (suggesting SK can form from SP)
																					122.3 skarn band @ 20, 50mm wide, tr CP
																					123.9-124.0 skarn band @ 30 (xcuts S1)
																					123.1-123.7 broken core w/o gouge
																					127.0-127.2 rubble & broken core w/o gouge
																					128.6-128.8 rubble & broke3n core w/o gouge
																					130.0 massive PY band, 30mm wide (xcuts S1), no attitude possible
																					133.6-134.0 SK band @ 55 (0.1m garnet sand)
																					134.3-134.5 SK band @ 65
																					136.1-136.2 SK band (garnet sand & rubble) - no attitude
136.3	142.3	SKpm											10		1						Mineralized Ca Garnet Prograde Skarn
																					typical yellow-gr, massive, w/ garnets to 3mm
																					upper cnt not observed due to ground core
																					lower cnt grad over 0.2m
																					PY as patches, blebs
																					HS as patches w/ CP
																					HE (red, earthy) @ 137.7
																					CA loc. as white xtline patches

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	era	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	СР	SL	GL	AS	BN	MG	1
142.3	148.7	LSm											10								Pyritic Limestone
																					loc. incip SK developed as patches and bands
																					It gy to loc. greenish-gy and It red-br
																					PY as coarse grained replacement patches (decreaing along int.)
																					144.5-144.7 pale gr/gy andesite dyke @ 34
																					142.4-142.7 SKp band w/ cnts grad over 50mm
																					142.9-143.2 SKp band w/ cnts grad over 50mm
																					148.4-148.7 SKp band w/ cnts grad over 50mm
148.7	150.4	PC											4								Phyllitic Chert
																					w/ loc incip SKp patches; <5% pyritic LS intercalated
																					It gy, v. wkly phyllitic
																					149.3-149.6 LS w/ 10% PY as square patches
																					150.2-150.4 incip SKp
150.4	155.1	SA											1								Siliceous Argillite
			S1	152.7	65	5															dk gy/blk, wkly phyllitic
																					loc. bleached w/ white MS proximal to sde. patches & bands
																					PY as patches, bands, vnlts
155.1	160.9	LSm											15								Pyritic Limestone
																					w/ loc. incip SKp patches and bands & 5% phyllitic chert intercalated
																					It gy/white, massive
																					PY as coarse replacement patches w/ coarse xtline CA
																					155.6-155.9 dk gy/blk, wkly phyllitic siliceous argillite
																					upper cnt. sharp, planar @ 45; lower cnt. lost in broken core
																					156.6-156.9 SKpm w/ 10% dissem. PY, 2% dissem CP,
																					upper cnt. grad. over 50mm; lower cnt. sharp, planar @ 30
160.9	161.9	SP																			Siliceous Phyllite
			S1	161.2	52	2							-								dk gy/blk - lt gy laminated, wkly phyllitic
																					loc. white MS alt'n
																					loc. patches SK (generally prograde w/ minor dirty gr. zoisite? retrograde alt'n)
164.0	160.4	1 0				-		1				-	20						_		Duridio Limentono
161.9	163.1	LSm			1	1	 	1	-			-	30		1	<u> </u>	-	-	1		Pyritic Limestone
																					It gy-white w/ 30% PY replacement patches w/ coarse xtline CA

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA	Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	CP	SL	GL	AS	BN	MG	
																					161.9-163.1 cont'd
																					upper cnt. sharp, planar @ 55
																					lower cnt. grad.over 0.2m
																					163.0-163.1 incipient skarn dev.
163.1	164.8												1								Limestone
			S1	164.0	55	5															It gy - med gy, banded, wkly phyllitic
																					small patches SKp dev.
																					<5% gy musc. defining S1
																					PY as vnlts, patches
164.8	167.3	PC											1								Phyllitic Chert
																					It gy, wkly phyllitic, w/ <5% gy muscovite defining S1
																					grad. cnts.
																					PY as vnlts, <vnlts< td=""></vnlts<>
167.3	168.4												1								Siliceous Phyllite
			S1	168.0	57																dk gy/blk - It gy laminated, wkly phyllitic
																					lower cnt. sharp, planar @ 54
																					PY as <vnlts< td=""></vnlts<>
168.4	170.3	LS											-			<u> </u>					Limestone
																					It gy, massive to wkly banded, w/ <5% SP intercalated
																					lower cnt. sharp, planar @ 65
4=0.0	4=0.0																				
170.3	173.9		0.4	470.0	0.5																Siliceous Phyllite
			S1	172.6	65)							-			<u> </u>					dk gy/blk - It gy laminated, wkly phyllitic
																					grades loc. to SPbh
																					171.8-171.9 v. fine gr., lt gr/gy, andesite dyklet w/ strong sauss. alt'n, tr PO
							1				ļ					-					blebs; cnts. sharp, planar @ 60
470.0	470.7	1.0					1				ļ					-					I Succession
173.9	178.7	LS				-	1				ļ		-								Limestone
						1	-									-					It gy, wkly laminated, w/ <5% SP intercalated
							1														lower cnt. sharp, planar, S1 conformable @ 50
						-	1														upper cnt. sharp, planar, S1 conformable @ 70
							<u> </u>														

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
178.7	180.5	SP												tr							Siliceous Phyllite
			S1	178.9	50																dk gy/blk - It gy laminated, wkly phyllitic, w/ 20% PC intercalated
																					loc. white MS atl'n
																					PO as blebs
180.5	181.2	LS											-								Limestone
																					It gy, massive w/ <5% intercalated SP
																					upper cnt. sharp, planar @ 43; lower cnt. sharp, planar @ 58
181.2	182.2	SP											tr								Siliceous Phyllite
																					dk gy/blk - lt gy laminated
																					S1 strongly contorted by F2 folding
																					PY as dissem., <vnlts< td=""></vnlts<>
182.2	183.2	LS											-								Limestone
																					It gy, massive, w/ 10% SA intercalated
																					upper cnt. sharp, planar @ 70
																					lower cnt. diffuse (no attitude)
183.2	184.6	SP											1								Siliceous Phyllite
																					It gy/white, loc. dk gy/blk phyllitic argillite w/ sericite alt'n over 80% of int.
																					grades loc. to SKp bands (ie SKp forming from SP?)
																					183.9-184.0 limestone
																					PY as vnlts, blebs
184.6	185.1	SKpm											10		1						Mineralized Ca Garnet Prograde Skarn
																					yellow-gr mottled w/ 30% white CA patches
																					cnts grad'l over 20mm (no attitudes)
																					PY as patches
																					CP as blebs
185.1	186.6	SP											2		<1						Siliceous Phyllite
																					It gy to loc. dk gy, laminated, wkly phyllitic
																					loc. sericite alt'n
																					PY as patches, vnlts, <vnlts< td=""></vnlts<>
																					CP as blebs near lower cnt.

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct			ratio								izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	CP	SL	GL	AS	BN	MG	
186.6	188.6	SKpm											10		1						Mineralized Ca Garnet Prograde Skarn
																					lith & min. a/a 184.6-185.1
																					upper cnt. sharp, fairly planar @ 60
																					lower cnt. sharp, fairly planar @ 45 (photo)
188.6	215.1	SP											<1								Siliceous Phyllite
			S1	190.5																	dk gy/blk - It gy laminated
			S1	195.6																	grades loc. to SPbh
			S1	200.0																	loc. wk. bxia w/ some boudinage structures
			S1	204.8	65																PY as vnlts, <vnlts< td=""></vnlts<>
			S1	211.9	65																207.8 - 208.0 boudinage
																					208.2 gouge
																					208.9 gouge
																					208.4 - 210.6 rubbly core
215.1	216.9	SPm											5		tr						Mineralized Siliceous Phyllite
			S1	216.6	50																w/ 10% SKp bands intercalated
																					dk gy/blk - It gy laminated
																					PY as massive bands, patches, vnlts
																					CP as blebs assoc. w/ SKp
216.9	221.6	SKpm											10		0.2						Mineralized Ca Garnet Prograde Skarn
																					w/ <5% CL retrograde alt'n
																					w/ <5% wkly altered SP intercalated
																					It yellow/gr - It red/br mottled, massive, mod. calc., loc. vuggy
																					loc. chalcedonic QZ infilling vugs
																					PY as patches, blebs,
																					CP as blebs
																					219.9-221.6 ~3% CP
																					cnts. grad. over 10cm
221.6	222.5	SP											2								Siliceous Phyllite
			S1	222.0	60																grades loc. to SPbh
																					dk gy/blk - It gy laminated,
																					PY as massive bands, blebs

Date: Logged By: DJH Page 8/8

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Mir	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
222.5	224.8	Md											-								Monzonite Dyke
																					lt-med gy/gr, non-porph, fine gr., non-mag.
																					v. wk. porph. text. near upper cnt. (plag. to 2mm)
																					lupper cnt. not observed
																					lower cnt sharp, irreg. (no attitude)
224.8	233.8																				
			S1	226.5									tr								Siliceous Phyllite
			S1	230.0	70																grades loc. to SPbh
																					dk gy/blk - It gy laminated
																					PY in vnlts
																					EOH @ 233.8 metres

RQD Log LD04-04

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
9.8	, ,		145.4	,	
11.3	134	89	148.4	231	77
14.3	241	80	151.5	100	32
17.4	269	87	154.5	198	66
20.4	270	90	157.6	210	
23.5	142	46	160.6	169	55
26.5	62	21	163.7	174	58
29.6	21	7	166.7	173	56
32.6	128	43	169.8	266	89
35.7	238	77	172.8	173	56
38.7	98	33	175.9	261	87
41.8	213	69	178.9	270	87
44.8	142	47	182.0	300	100
47.9	179	58	185.0	265	85
50.9	100	33	188.1	284	95
53.9	142	47	191.1	190	61
57.0	110	35	194.1	129	43
60.0	62	21	197.2	165	55
63.1	160	52	200.2	43	14
66.1	193	64	203.3	146	49
69.2	91	29	206.3		
72.2	215	72	209.4	183	61
75.3	170	55	212.4	12	4
78.3	105	35	215.5	88	29
81.4	49	16	218.5	235	76
84.4	190	63	221.6	282	94
87.5	268	86	224.6	157	51
90.5	100	33 89	227.7 230.7	128 84	43 27
93.6 96.6	275	19	233.8	130	43
99.7	57 149	48	233.0	130	43
102.7	149		EOH @ 233.8m	•	
105.8	298	96	LOTT @ 233.011		
108.8	182	61			
111.9		72			
114.9	242	81			
118.0	291	94			
121.0	293	98			
124.0	134	45			
127.1	240	77			
130.1	67	22			
133.2	97	31			
136.2	44	15			
139.3	183	59			
142.3	88	29			
145.4	164	53			

Survey Log LD04-04

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		50		-45.00
150	45.7	10	32	46.00	-44.00
387	118.0	15	37	49.50	-40.50
577	175.9	15	37	50.00	-40.00
767	233.8	15	37	53.50	-36.50

Assay Sample Log LD04-05

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	167.8	no sample								
322097	167.8	168.7			0.9	100	0.162	1.6	340	1230	37
322098	168.7	170.4			1.6	94	0.038	0.6	389	357	31
322099	170.4	172.2			1.8	100	0.065	0.9	474	506	
322100	172.2	173.1			0.9	100	0.23	3.6	36	1980	31
322101	173.1	174.6			1.4	93	0.062	0.3	222	317	23
322102	174.6	176.1			1.5	100	0.038	0.3	184	158	
322103	176.1	177.6			1.5	100	0.002	0.1	718	34	15
322104	177.6	179.1			1.5	100	0.002	0.1	723	10	16
322105	179.1	180.5			1.4	100	0.009	0.4	1115	175	14
	180.5	185.6	no sample								
322106	185.6	186.9			1.1	85	0.432	4.2	825	3490	21
322107	186.9	188.4			1.4	93	0.71	5.8	1290	4300	62
322108	188.4	190.0			1.5	94	0.308	2.8	599	2320	16
322109					1.5	100	3.98	58.3	882	40600	232
322110	191.5				0.9	60	0.038	0.9	825		19
322111	193.0				1.4	93	0.021	1	1205	616	
322112	194.5				1.5	100	0.041	0.7	893		13
322113	196.0	197.5			1.4	93	0.009	0.2	1480	92	12
322114	197.5				1.5	100	0.081	1.4	755	809	
322115	199.0	200.0			1.0	100	0.126	4.3	1165	2650	
322116	200.0	201.7			1.6	94	0.002	0.1	186	40	
322117	201.7	203.2			1.5	100	0.006	0.1	169	70	
322118	203.2	204.6			1.4	100	0.01	0.2	56	123	29
322119	204.6	206.1			1.5	100	0.013	0.4	204	126	29
	206.1	233.3	no sample								
322120	233.3	234.8			1.5	100	0.002	0.4	20	144	
322121	234.8				1.5	100	0.077	0.6		55	
322122	236.3				1.4	93	0.077	0.8	76	364	
322123	237.8	239.2			1.4	100	0.121	1	64	35	15
	239.2	239.9	no sample								
322124	239.9	241.0			1.1	100	0.014	0.1	25	31	23

Assay Sample Log LD04-05

Page: 2

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
-	241.0	242.1	no sample								
322125	242.1	243.9			1.8	100	0.013	0.1	79	87	28
322126	243.9	245.9			1.9	95	0.044	0.3	104	94	20
	245.9	319.1	no sample								
322127	319.1	319.6			0.5	100	0.029	4.7	66	1365	56
	319.6	327.0	no sample								
322128	327.0	327.5			0.5	100	0.328	5.8	898	1175	167
	327.5	349.3	no sample								
322129	349.3	349.5			0.2	100	0.029	1.8	163	527	54
322130			CGS-2		1		0.995	2.6	11	11900	81
322131			blank								
	349.5	387.0	no sample								
322132	387.0		•		1.1	100	0.051	0.1	272	17	32
322133	388.1	389.3			1.1	92	0.286	0.2	368	110	78
	389.3	391.2	no sample								
322134	391.2	391.9			0.7	100	0.099	1.9	13	954	295
	391.9	393,5	no sample								
322135	393.5	394.0			0.5	100	0.228	0.9	4770	622	32
	394.0	438.0	no sample								
EOH 438.0 m											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	СР	SL	GL	AS	BN	MG	
0.0	11.8	OB																			triconed casing - no core
11.8	22.0	OB																			cored boulders of monzonite and siliceous phyllite
22.0	40.4	CDLL											4			-					Distita Hampfaland Cilianaus Dhullita
22.0	48.4	SPbh	0.4	00.0	40								tr			-					Biotite Hornfelsed Siliceous Phyllite
			S1	26.0								<u> </u>				-					grades loc. to phyllitic chert
			S1	31.1	25																It-med br and It gy laminated, wkly phyllitic
			S1	43.1	15							ļ	ļ			-	ļ				PY in <vnlts, dissem.<="" td=""></vnlts,>
																					22.0-22.3 rubbly core w/ Fe oxide
																					23.8-24.1 rubbly core w/ Fe oxide
																					24.6-24.7 rubbly core w/ Fe oxide
																					25.4-25.6 cored boulders (reset casing)
																					28.0-28.2 sand, gouge and rubble
																					36.1 gouge and rubble
																					36.9 F2 fold closure; S1=44; S2=67 (note: if S1 strikes N-S, then S2 strikes
																					~015 az)
																					41.3 sand, gouge and rubble
																					44.9-45.1 sand and gouge
																					44.7-48.1 white sericite alt'n
40.4	10.0	N 4 -1																			W
48.4	49.2	Md										ļ	1			-	ļ				Monzonite Dyke
																					med-lt gy/gr, non-porph, non-mag, fine gr
																					PY in <vnlts< td=""></vnlts<>
																					cnts. sharp, slightly irreg. @ 55
49.2	50.9	SPbh											tr			1					Biotite Hornfelsed Siliceous Phyllite
	00.0	<u> </u>	S1	50.4	28																lith. and min. a/a 22.0-48.4
50.9	53.5	Mpd											0								Porphyritic Monzonite Dyke
																					w/ 30% plag phenos to 10mm
																					med gy/gr, non-mag, wkly calc.
					_																v. wk. saussurite alt'n
																					upper cnt sharp, planar @ 30
																					lower cnt gradational (ie assimilated)

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	era	lizati	on					Comments
									Ret	Y-Gar	Br-Gar	· Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	1
53.5	63.1	Mpd					-						1								Porphyritic Monzonite Dyke
																					pale gy, non-mag, w/ 50% plag phenos to 10mm
																					wk CY alt'n of plag
																					lower cnt. not observed
																					PY as vnlts, <vnlts, dissem<="" td=""></vnlts,>
																					57.2 gouge
																					59.9 gouge
																					62.6-62.7 sand, gouge, and rubble
63.1	167.8	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	65.8	45																med-dk br, lt gy laminated, wkly phyllitic
			S1	72.2	33																loc.white sericite (alt'n of BI laminae?)
			S1	76.6	47																PY in vnlts, <vnlts< td=""></vnlts<>
			S1	81.4	40																64.9-65.6 sericite alt'n
			S1	87.5	48																66.1-66.3 monzonite dyklet; cnts. not observed
			S1	92.5	45																67.1 gouge
			S1	97.8	54																67.9-68.2 gouge and rubble
			S1	104.3	54																69.1 gouge and rubble
			S1	109.8	50																69.7-69.8 gouge
			S1	113.4	38																75.3-75.4 gouge
			S1	118.6	52																77.2 gouge and rubble
			S1	125.0	55																90.9 gouge
			S1	130.1	50																92.0 gouge
			S1	134.0	62																93.6 35mm wide band, S1 conformable, w/ 30% fine gr. PY; 10% CA
			S1	138.7	53																and tr MO @ upper cnt.
			S1	144.2	57																97.8 10mm wide PY band (vn?), S1 conformable
			S1	148.4	60																109.0 gouge and rubble
			S1	153.4	58																109.2 gouge and rubble
			S1	160.5	50																106.8-107.3 siliceous argillite w/ grad. cnts.
			S1	162.2	42							1	<u> </u>			_					114.1-116.3 dk gy/blk, wkly phyllitic, wkly laminated, cherty argillite
			S1	166.6	55							1	<u> </u>			_					122.4-122.7 rubbly core w/ minor gouge
												_	<u> </u>								124.2-124.4 gouge and rubbly core
																					131.3-133.3 rubbly core
				 		<u> </u>						1	<u> </u>				ļ				132.3-132.5 bxia w/ SP frags in a CY matrix
												_	<u> </u>								141.3 rubbly core
																					142.5-142.6 rubbly core

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	СР	SL	GL	. AS	BN	MG	
																					63.1-167.8 cont'd
																					144.1-144.3 dk gy/blk cherty argillite (as above 114.1-116.3)
																					145.3-145.5 rubbly core
																					146.1-146.5 rubbly core
																					148.3-148.5 dk gy/blk cherty argillite as above 114.1-116.3
																					148.5-148.8 rubbly core
																					160.6-161.3 It gy siliceous laminae are broken w/ tapered and angular frags
																					163.8-164.0 chlorite phyllite (mafic tuff protolith?)
																					165.4 gouge and rubbly core
167.8	168.7	SKpm											15								Mineralized Ca-Garnet Prograde Skarn
																					It yellow/gr, massive, w/ 10% siliceous patches
																					loc. dk gr/blk CL/PY retrograde alt'n patches
																					upper cnt. wkly grad. @ 48
168.7	172.2	SKp											3								Ca-Garnet Prograde Skarn
																					It yellow/gr mottled, massive, non-calc
																					168.7-170.4 30% siliceous patches and 5% intercalated SP
																					upper cnt. gradational
																					PY as blebs/patches and in <vnlts< td=""></vnlts<>
172.2	173.1	Fd											3								Felsite Dyke
																					pale cream coloured, aphanitic, mod. calc, non-mag.
							<u> </u>									<u> </u>					pervasive ser. alt'n
																					PY/ fine gr. gy QZ irreg. vnlts w/ distinct blue/gr (CL?) halos
																					cnts. sharp and irreg. (no attitudes)
1=0.1	100 =	017											_						ļ		
173.1	180.5	SKp											2						ļ		Ca-Garnet Prograde Skarn
																			ļ		w/ 10% felsite frags (possible endoskarn)
				1		-	1		.							╀			 		typical yellow/gr, massive
				1		-	-						!			 			ļ		PY as patches/blebs, in <vnlts< td=""></vnlts<>
				<u> </u>		-	-						ļ			-					HS as xtline patches (open space fillings)
100.5	405.0	N4 1		_		-	1						 			1	ļ				M
180.5	185.6	Md		 		-	╂	-	-						<u> </u>	1		-	-		Monzonite Dyke
				 		_	 									╂—	1				med to lt gy/gr, wkly mag., med gr.
								l								1					non mineralized

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA	Alte								nera							Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	. AS	BN	MG	
																					180.5-185.6 cont'd
																					upper cnt sharp, fairly planar @ 50
																					lower cnt sharp, irreg
185.6	193.0	SKpm											5		2	2					Mineralized Ca Garnet Prograde Skarn
																					typical yellow-gr mottled skarn w/ garnets gen <1mm
																					PY as patches, vnlts, blebs
																					HS as loc xtl aggregations to 20mm
																					CP as blebs and small patches
																					187.4-187.8 post SK mineralized dyke?/vn? w/ gouge @ lower cnt
																					(contains SK frag./xenolith)
																					190.0-191.5 5% CP as patches
193.0	200.0	SPp											1		tr						Ca Garnet Prograde Skarn
																					typical It-med yellow/gr mottled, massive SK w/ garnets gen. < 1mm
																					upper cnt grad. over 1 m
																					lower cnt sharp, planar @ 62
																					PY +/- CA as patches (open space fillings), blebs
																					loc chalcedonic QZ as open space fillings
																					HS as loc patches
																					CP as loc blebs
200.0	201.7	SPp																			Ca Garnet Prograde Skarn
																					med gr/gy, massive SK w/ dk gr/yellow garnet xtls to 10mm
																					no sde mineralization
																					lower cnt grad over 20mm
201.7	204.6	SKp											1								Ca-Garnet Prograde Skarn
						1	1					Ì				Ì		1		1	It yellow/gr, fine gr, garnet skarn w/ 15% CA and loc siliceous patches
							1			1	1			l						l	PY as patches/blebs
																					HE in <vnlts< td=""></vnlts<>
							1			1	1			l						l	lower cnt sharp, planar, S1 conformable @ 45
										<u> </u>	1					1	1				
204.6	205.3	SPbh											2			1					Biotite Hornfelsed Siliceous Phyllite
										<u> </u>	1					1	1				med/dk br-lt gy laminated, mod phyllitic
						+	1					1		1	1	1	1	1	1	1	Py in <vnlts, and="" as="" blebs<="" td=""></vnlts,>

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA	Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					204.6-205.3 cont'd
																					BI rich laminae loc altered to sericite
205.3	206.1	SKp											2								Ca-Garnet Prograde Skarn
																					med yellow/gr, massive, non-calc
																					PY as blebs, small patches
																					tr red,earthy HE in <vnlts and="" as="" borders="" crypto-xtline="" on="" patches<="" qz="" td=""></vnlts>
																					upper cnt sharp, planar, S1 conformable @ 52
																					lower cnt wkly grad, planar, S1 conformable @ 44
206.1	233.3	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	207.8																	dk br-lt gy laminated, modly phyllitic
			S1	211.4	50																PY as blebs, <vnlts, irreg="" td="" vnlts<=""></vnlts,>
			S1	218.8	52																211.8-211.9 rubbly core w/o gouge
			S1	223.6	42																219.7-219.8 rubbly core w/o gouge
			S1	228.7	50																233.1-233.3 mylonitized cnt
			S1	232.6	50																
233.3	236.7	QZv											15								Mineralized Quartz Vein
																					(possible post Skarn silicified zone)
																					frags of skarn and monzonite in a siliceous matrix
																					10-15% CB
																					PY as large patches/blebs
																					loc SK bands @ 52
																					upper cnt sharp, planar @ 52
																					lower cnt v. irreg
236.7	239.2	Mdm											15								Mineralized and Altered Monzonite Dyke?
																					strong silicification and sauss. w/10% CA
																					10% white QZ patches
																					loc. Skarn bands and patches (ie incip. exoskarn?)
																					PY as large patches/blebs
																					lower cnt obscurred by massive PY patch
239.2	240.3	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	239.2	47																br-lt gy/wh, modly phyllitic

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	. AS	BN	MG	
																					239.2-240.3 cont'd
																					PY in vnlts w/ QZ and as scattered blebs
																					240.2-240.3 incip SK devel. w/ 7% PY blebs
240.3	241.0	Mdm																			Mineralized and Altered Monzonite Dyke?
																					lith and alt'n as above 236.7-239.2
																					upper cnt not observed
																					lower cnt not observed
241.0	242.1	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	241.3	50																br-It gy laminated, modly phyllitic
																					PY as blebs
																					small SK patches near lower cnt
242.1	245.9	SKp											2								Ca Garnet-CPx Prograde Skarn
			S1	242.4	49																It gr and yellow/gr mottled, wkly laminated (SP protolith?)
																					10-15% CB
																					PY as blebs/patches
																					tr HS xtls
																					minor chalcedonic QZ as open space fillings
																					upper cnt sharp, slightly irreg, x-cuts S1 @ 30
																					lower cnt grad
245.9	254.2	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	249.1	45																br-lt gy laminated, mod phyllitic
			S1	253.6	55																PY as <vnlts (irreg)<="" td=""></vnlts>
																					lower cnt not observed
																					253.7 CL/PY band @ 55
254.2	327.2	SP				1	1						tr	tr	tr	İ	1	1	1		Siliceous Phyllite
			S1	261.5	59																grades loc to dark gy, massive siliceous argillite
			S1	267.3																	dk gy-lt gy laminated, wk to mod phyllitic
			S1	270.1			1									İ	1	1	1		loc.ser alt'n
			S1	278.6			1								1		1	1	1		grades loc to SPbh and phyllitic chert
			S1	283.2			1								1		1	1	1		PY as blebs, in vnlts, in <vnlts< td=""></vnlts<>
			S1	288.2			1									1	1	1	1		PO as blebs

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
			S1	295.0	66																254.2-327.2 cont'd
			S1	300.9	68																CP as blebs w/ PO
			S1	306.6	57																265.3-265.4 rubbly core w/o gouge
			S1	311.5	65																267.2 "S" symmetry F2 fold
			S1	316.1	50																273.6-274.5 wkly to strly brecciated w/ siliceous frags in a fine gr matrix
			S1	321.9	60																274.9 band of massive, coarse PY x-cuts S1
																					280.9-281.3 QZ band w/ grad cnts
																					310.0-310.6 SPbh w/ grad cnts
																					316.3 gouge @ 50 (parallel to S1)
																					319.3-319.5 altered w/ 15% PY as irreg bands that x-cut S1, tr CP
																					320.6 "S" symmetry F2 minor folds
																					, ,
327.2	327.5	MS											90		0.5						Massive Pyrite
																					massive coarse gr pyrite w/ CP as blebs
																					upper cnt x-cuts S1, irreg
																					lower cnt sharp, irreg
327.5	330.9	LS																			Limestone
																					med gy, xtline, w/ <5% irreg dk gy/blk argillaceous patches
																					non-mineralized
330.9	341.4	SP											1								Siliceous Phyllite
			S1	330.9	33																dk gy/blk-lt gy laminated, wk to mod phyllitic
			S1	335.2	62																grades loc to phyllitic chert and SPbh
			S1	339.2	69																PY as <vnlts, and="" blebs,="" comp="" in="" layers<="" siliceous="" td=""></vnlts,>
																					S1 loc contorted; minor cataclastic text
																					·
341.4	349.3	Md											0								Monzonite Dyke (post Skarn)
																Ì					dk gy/gr, wkly porphyritic, non-mag
			İ																l		upper cnt irreg @ ~46 w/ stoped frags
																					PY on <vnlts< td=""></vnlts<>
			İ																l		wkly alt'd borders on fracts
																					,
349.3	356.1	LS											-								Limestone
		_	S0	356.1	46																med gy, massive
				1		t e	1						1					1			349.3-349.5 SKpm w/ 20% coarse PY and yellow/gr Ca Garn Sk

Date: Logged By: DJH Page 8/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	СР	SL	GL	AS	BN	MG	
																					349.3-356.1 cont'd
																					**looks like footwall skarn has been intruded by a monzonite dyke-bad luck!
																					lower contact of SK @ 42; SK w/20% CB patches suggesting LS protolith
																					lower contact sharp, planar @ 46
356.1	359.9												1								Siliceous Phyllite
			S1	358.9	54																dark gy to black, laminated, mod. phyllitic
																					PY as clots, patches, <vnlts< td=""></vnlts<>
																					fold nose or LS frag near upper cnt
359.9	360.4	LS											-								Limestone
																					med gy, massive w/ 10% dk gy patches
																					upper cnt sharp, fairly planar @ 50
																					lower cnt sharp, planar @ 85
360.4	364.6	SP											1								Siliceous Phyllite
			S1	363.0	58																dk gy/blk laminated, wk to mod phyllitic
																					PY in siliceous bands parallel to S1, <vnlts< td=""></vnlts<>
																					358.6-358.7 rubbly core
																					360.8-360.9 rubbly core w/gouge
364.6	365.8	PC											-								Phyllitic Chert
			S1	365.0	60																It gy metachert w/ 5% It br/wh laminae, wkly phyllitic
																					no sdes
365.8	373.8	SP											1								Siliceous Phyllite
			S1	367.4	60																dk gy/blk laminated, wk to mod phyllitic
			S1	371.1	55																PY as specks, <vnlts, bands="" parallel="" s1<="" siliceous="" td=""></vnlts,>
																					370.1-370.4 LS w/ sharp cnts, S1 conformable
373.8	376.7	LS											-								Limestone
																					med gy, massive, w/ 3% contorted argillaceous laminae (styolitic)
																					upper cnt sharp, planar, S1 conformable @ 40
																					lower cnt sharp, fairly planar, S1 conformable @ 75

Date: Logged By: DJH Page 9/

From	То	Rock	Mod	Stuct	CA	Alte									izatio						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	CP	SL	GL	AS	BN	MG	
376.7	379.1	SP											1								Siliceous Phyllite
																					dk gy/blk, wkly laminated, wkly phyllitic
																					wkly BI hormfelsing
																					S1 surfaces loc. irreg
																					wk ser +/- CL alt'n
																					PY in <vnlts< td=""></vnlts<>
379.1	381.9	LS											-								Limestone
																					med gy w/ 5% contorted dk gy laminae
																					upper cnt sharp, planar, S1 conformable @ 56
																					lower cnt sharp, fairly planar, S1 conformable @ 54
381.9	385.7	SP												tr							Siliceous Phyllite w/ 15% intercalated Limestone
																					dk gy/blk laminated, wkly phyllitic
																					loc. ser. alt'n
																					PO as small patches/blebs
385.7	387.0	LS																			Limestone
																					med gy, massive w/ 3% irreg arg. laminae
																					upper cnt sharp, fairly planar @ 22
																					lower cnt sharp, planar @ 39
387.0	389.3	SKp												0.5							CPx Prograde Skarn
																					med gy/gr, massive to loc. weakly laminated, calcareous
																					w/ 5% limestone remnants
																					loc ca garnet skarn dev.
																					PO as small patches/blebs (5% over last 0.3 metres)
389.3	391.2	SP											1	tr							Siliceous Phyllite
																					dk gy/blk wkly laminated, wkly phyllitic
																					mod fracts w/ CL
																					loc ser. alt'n as borders on <vnlts< td=""></vnlts<>
																					PY in <vnlts; and="" as="" blebs<="" in="" po="" td="" vnlts=""></vnlts;>
391.2	391.9	SKpm											3	5.0	0.5						Mineralized CPx Prograde Skarn
																					lith as above 387.0-389.3

Date: Logged By: DJH Page 10/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					391.2-391.9 cont'd
																					loc CL+? retrograde alt'n
																					PO as patches
																					CP as blebs
																					CP as blebs w/PO
																					PY as small patches/blebs
																					cnts sharp, irreg.
391.9	393.5	SP											tr								Siliceous Phyllite
																					dk gy/blk wkly laminated, wkly phyllitic
																					loc sericite alt'n
																					PY in <vnlts< td=""></vnlts<>
																					CL in <vnlts< td=""></vnlts<>
393.5	394.0	SKpm											10	3	1			2			Mineralized CPx Prograde Skarn
																					minor dk gr/blk CL retrograde alt'n
																					med gr, massive w/ 25% SP intercalated
																					PY as irreg patches
																					PO as irreg patches
																					CP as blebs w/ PO
																					AS as blebs w/ PY
																					cnts grad over several cms
394.0	431.9												tr	tr							Siliceous Phyllite
			S1	396.3																	dk gy/blk wkly to well laminated, wkly to strly phyllitic
			S1	404.7	59																PY in <vnlts, td="" vnlts<=""></vnlts,>
			S1	407.1	65																PO as blebs
			S1	413.0																	grades loc to lt gy phyllitic chert
			S1	418.1	18																402.0-402.1 gouge
			S1	419.2	0																413.0 "S" symmetry minor fold
			S1	421.2																	417.5 rubbly core w/ minor gouge
			S1	423.7	40																418.1-423.0 large F2 fold closure
			S1	428.9	54																423.7 minor gouge
431.9	434.0	Md											1								Monzonite Dyke
																					med gy/gr, non-porph, wkly mag.

Date: Logged By: DJH Page 11/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Min	era	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	СР	SL	GL	AS	BN		
																					431.9-434.0 cont'd
																					upper cnt ~S1 conformable @ 52
																					lower cnt x-cuts S1 @ 62
																					PY as dissems, in vnlts
434.0	438.0	SP											1								Siliceous Phyllite
																					dk gy/blk mod laminated, mod phyllitic
																					PY in siliceous bands, <vnlts (irreg)<="" td=""></vnlts>
																					` *
																					EOH @ 438.0 metres
									1										1		
																			İ		
					<u> </u>					1											
					-	<u> </u>	-		-			-							 	-	
				1	<u> </u>	-				ļ									-		
																_					
																<u> </u>			ļ		
					ļ													<u> </u>			
																<u> </u>			 		

RQD Log LD04-05

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
11.8			145.4	, ,	
14.3	64	26	148.4	145	48
17.4	0	0	151.5	161	52
20.4	13	4	154.5	225	75
23.5	68	22	157.6	236	76
26.5	64	21	160.6	164	55
29.6	74	24	163.7	241	78
32.6	75	25	166.7	106	35
35.7	260	84	169.8	249	80
38.7	259	86	172.8	301	100
41.8	219	71	175.9	303	98
44.8	131	44	178.9	286	95
47.9	236	76	182.0	277	89
50.9	225	75	185.0	246	82
53.9	187	62	188.1	234	75
57.0	138	45	191.1	282	94
60.0	167	56	194.1	213	71
63.1	21	7	197.2	266	86
66.1	150	50	200.2	284	95
69.2	96	31	203.3	286	92
72.2	116	39	206.3	231	77
75.3	99	32	209.4	129	42
78.3	98	33	212.4	226	75
81.4	181	58	215.5	283	91
84.4	290	97	218.5	188	63
87.5	260	84	221.6	142	46
90.5	169	56	224.6	238	
93.6	156	50	227.7	232	75
96.6	194	65	230.7	206	69
99.7	110	35	233.8	143	46
102.7	140	47	236.8	285	95
105.8	127	41	239.9	301	97
108.8	129	43	242.9	289	96
111.9	210	68	246.0	279	90
114.9	277	92	249.0	203	
118.0	120	39	252.1	223	
121.0	290	97	255.1	227	76
124.0	95	32	258.2	196	63
127.1	234	75	261.2	244	81
130.1	113	38	264.2	247	82
133.2	16	5	267.3	178	
136.2	65	22	270.3	236	79
139.3	233	75	273.4	272	88
142.3	129	43	276.4	241	80
145.4	150	48	279.5	256	83

RQD Log LD04-05

Date: Page: 2

282.5	222	1	422.7	31	0
285.6	191	62	425.8	106	34
288.6	221	74	428.8	296	99
291.7	181	58	431.9	212	68
294.7	176	59	434.9	229	76
297.8	294	95	438.0	239	77
300.8	266	89			
303.9	201	65	EOH @ 438.0m	1	
306.9	217	72			
310.0	280	90			
313.0	254	85			
316.1	273	88			
319.1	206	69			
322.2	211	68			
325.2	148	49			
328.3	267	86			
331.3	158	53			
334.3	191	64			
337.4	170	55			
340.4	164	55			
343.5	194	63			
346.5	165	55			
349.6	216	70			
352.6	241	80			
355.7	299	96			
358.7	187	62			
361.8	129	42			
364.8	153	51			
367.9	54	17			
370.9	148	49			
374.0	151	49			
377.0	246	82			
380.1	122	39			
383.1	278	93			
386.2	272	88			
389.2	286				
392.3	292	94			
395.3	200	67			
398.4	152	49			
401.4	184	61			
404.4	183	61			
407.5	125	40			
410.5	104	35			
413.6	261	84			
416.6	130	43			
419.7	205	66			

Survey Log LD04-05

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		53		-65.00
150	45.7	28	50	26	-64.00
300	91.4	29	51	27.75	-62.25
450	137.2	27	49	30.25	-59.75
600	182.9	27.5	49.5	31	-59.00
758	231.0	33	55	33.5	-56.50
900	274.3	42	64	36	-54.00
1150	350.5	38	60	40	-50.00
1437	438.0	50	72	42.35	-47.65

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
-	0.0	17.4	no sample								
322136	17.4	18.4			0.9	90	0.619	1.4	22	868	
322137	18.4	19.1			0.7	100	0.191	0.9	198	551	29
322138	19.1	20.8			1.6	94	0.046	0.5	22	234	26
	20.8	26.4	no sample								
322139	26.4	27.2			0.8	100	0.023	0.4	12	154	30
	27.2	42.0	no sample								
322140	42.0	43.3			1.3	100	0.188	4.2	10	2860	22
	43.3		no sample								
322141	48.7	50.3			1.6	100	0.154	1.2	127	464	25
	50.3		no sample								
322142	50.9	52.4			1.5	100	0.141	3.6	226	1950	
322143	52.4	53.4			1	100	0.045	0.6	48	165	21
	53.4		no sample								
322144		71.3			0.7	100	0.139	1.1	150	470	22
	71.3		no sample								
322145		77.4			1.1	100	0.424	7.9	258	3270	60
	77.4		no sample								
322146		126.6			1.6	94	0.023	0.1	241	24	25
			no sample								
322147		135.6			1.7	100					
322148					1.3	100	0.067	0.1	310		
322149					1.3	93	0.340	0.1	179	39	24
		140.2	no sample								
322150			standard				0.933		19		
322151			blank				0.011	0.1	6		
322152		141.8			1.6	100	0.040		191		19
322153					1.7	100	0.126	0.3	273	144	23
			no sample								
322154		146.6			1.5	100	0.045				
322155					1.5	100	0.065				
322156	148.1	149.6			1.5	100	0.863	0.1	256	102	17

Page: 2

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
322157	149.6	150.8			1	83	0.009	0.1	168	170	9
	150.8	159.0	no sample								
322158	159.0	160.1			1.1	100	2.540	1.8	267	670	32
	160.1	179.9	no sample								
322159	179.9	181.2			1.3	100	0.394	10.2	186	4710	70
	181.2	189.2	no sample								
322160	189.2	190.8			1.6	100	0.029	0.2	80	126	39
	190.8	192.2	no sample								
322161	192.2	193.6			1.4	100	0.043	0.4	42	138	39
322162	193.6	194.8			1.2	100	0.018	0.3	41	107	43
	194.8	200.2	no sample								
	·							·			
EOH @ 200.2	m							·			

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Min	eral	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
0.0	17.4	O/B																			Overburden
																					triconed - no core
17.4	17.7	SKrm											10								Pyritic Retrograde Skarn
																					dk gr, wkly calc., CL+ACT? rich skarn
																					PY as small patches/blebs, dissems.
17.7	18.4	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
																					pervaisive CL alt'n
																					w/ 5% patches of unaltered SPbh
																					pale gr/gy, wkly laminated, wkly phyllitic
																					PY as dissems. and in <vnlts< td=""></vnlts<>
18.4	19.1	SKpm											10								Pyritic Ca Garnet Prograde Skarn
																					grad. loc. to CL+ACT retrograde skarn and siliceous phyllite
																					pale red/br, wkly calc to mod in retrograde, massive
																					PY as patches/blebs
19.1	42.1	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	21.9																	variably CL alt'd to 20.9
			S1	26.5	60																grades loc. to phyllitic chert
			S1	35.0	56																PY in <vnlts and="" as="" cl="" dissems.<="" selveges="" td="" w=""></vnlts>
			S1	40.1	48	3															med/dk br-lt gy laminated, wkly phyllitic
																					20.7-20.8 SKpm band, S1 conformable @ 65
																					26.1-26.3 dk gr, non-mag, non-calc, massive mafic tuff w/ 5% dk gr/blk spots
																					26.4-27.2 QZ vn? w/ 5% PY loc. (possible phyllitic chert); no cnts observed
																					26.7-26.8 SKpm w/ minor retrograde alt'n, 3% EP, 5% PY
																					37.2-37.5 PY+ser alt'd rx w/ 20% PY; cnts grad
42.1	43.2	MZ											25		tr						Mineralized and Altered Rock
																					It gy, sericite+pyrite+qz altered; possible monzonite protolith
																					cnts grad over 10cms
																					PY as dissems, in patches/blebs
43.2	48.7	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	46.3	30																dk/med br-lt gy laminated, wkly phyllitic

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA	Alte									lizati						Comments
				1		Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	ΒN	MG	
																					43.2-48.7 cont'd
																					grades loc to phyllitic chert
																					PY in <vnlts< td=""></vnlts<>
48.7	50.3	SKpm											15		0.3						Mineralized Ca Garnet Prograde Skarn
																					It red/br & It yellow/gr mottled, fairly massive, wkly calc. SK
																					w/ 20% lt gy/gr, wkly calc. patches
																					upper cnt sharp, irreg
																					lower cnt sharp, planar, S1 conformable @ 55
																					PY as patches, interstitial to garnet xtls.
																					CP as blebs
50.3	50.9	SPa											2								Altered Biotite Hornfelsed Siliceous Phyllite
																					It gy/gr, sericite altered, laminated, wkly phyllitic
																					(note: post alt'n vnlts have narrow SK halos)
																					grades loc. to SKpm
																					PY mostly assoc. w/ SKpm band as patches, blebs, dissems
50.9	52.4	SKpm											15		tr						Mineralized Ca Garnet Prograde Skarn
																					lith & min as above 48.7-50.3
																					CP as small blebs
																					upper cnt sharp, irreg
																					lower cnt sharp, planar, S1 conformable @ 54
52.4	70.6	SPbh											2								Biotite Hornfelsed Siliceous Phyllite
			S1	53.4																	med br-lt gy laminated, wkly phyllitic
			S1	58.5	52	2															grades loc to siliceous phyllite
			S1	64.1	63	3															loc atlered to ser+CL
			S1	69.3	68	3															loc SK bands intercalated
																					PY in <vnlts, td="" vnlts<=""></vnlts,>
																					52.4-52.8 strong sericite alt'n w/ 5% PY
				1			ĺ														54.4-54.6 SK band; lower cnt not observed; upper cnt sharp, S1 conformable
				1			ĺ														54.7 gouge
																					55.6-55.8 SK band w/ cnts sharp, planar, S1 conformable
																					56.3-57.5 strongly fractured to loc. brecciated w/ dk gr CL rich matrix
						1	1									1			1		59.1-59.3 SK band w/ pale red/br garnets; sharp irreg cnts

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					52.4-70.6 cont'd
																					60.5-62.5 0.3m core recovered, gouge & rubble (fault zone)
70.6	71.3	SKpm-	·SP										7								Mineralized Ca Garnet Incipient Prograde Skarn
																					patchy devopment of It red/br Ca garnets in well laminated SP where SK not
																					pervasive
																					PY as patches/blebs
																					cnts irreg and grad.
71.3	76.3	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	74.8	57																med br-lt gy laminated, wkly phyllitic w/ minor SK intercalated
																					loc sericite+CL alt'n
																					PY in vnlts and as dissems.
																					71.9-72.0 SKpm w/ grad cnts
76.3	77.4	SKpm											7		0.3	3					Mineralized Ca Garnet Incipient Prograde Skarn
																					It gr & It red/br mottled, massive, wkly calc SK w/ minor SP intercalated
																					grades loc. to wk CL retrograde SK
																					PY as patches/blebs
																					CP as small blebs
77.4	89.3	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	80.3																	med br-lt gy laminated, wkly phyllitic
			S1	85.0																	minor CL alt'n proximal to PY vnlts
			S1	88.5	52																S1 loc. irreg and contorted
																					PY as blebs and in <vnlts< td=""></vnlts<>
																					0.2 m healed bxia @ lower cnt
89.3	102.5	Mpd											1								Porphyritic Monzonite Dyke
																					It gy, non-mag, crowded porphyry w/ 40% feld. phenos to 5mm, 5% mafics
																					v. wk sauss atl'n
																					PY as dissems.
																					upper cnt sharp, planar @ 45
																					lower cnt not observed

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	СР	SL	ď	AS	BN	MG	
102.5	107.3												<1								Biotite Hornfelsed Siliceous Phyllite
			S1	106.0	51																It br-lt gy laminated, wkly phyllitic
																					S1 loc. irreg to contorted
																					PY in <vnlts< td=""></vnlts<>
																					105.5 gouge
107.3	108.7	Md											tr								Monzonite Dyke
																					med. gy/gr, fine gr., non-mag, non-calc, post mineral
																					PY as dissems.
																					upper cnt not observed
																					lower cnt sharp, irreg
108.7	124.9	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	110.1	49																It br-It gy laminated, wkly phyllitic
			S1	117.8	65																S1 loc irreg
			S1	122.0	60																PY as blebs, and in <vnlts< td=""></vnlts<>
																					114.6-114.7 SKp band; S1 conformable
																					115.2 "S" symmetry F1 minor fold
																					116.4 rubbly core w/ gouge
																					122.6-122.7 bxia zone
124.9	126.6	SKp											1								Ca-Garnet Prograde Skarn
																					It gr-It red/br mottled, massive, loc wkly calc
																					w/ loc dk gr/blk CL retrograde spots
																					PY as blebs
																					upper cnt sharp, planar, S1 conformable @ 47
																					lower cnt sharp, planar, @ 85; x-cuts S1
126.6	133.9	SP											1		tr						Siliceous Phyllite
			S1	128.4	65																grades loc. to SPbh
			S1	133.3	50																dk gy/blk-lt gy laminated, wkly phyllitic
																					loc SK bands to 1cm; near upper cnt
																					loc CL alt'n near upper cnt and proximal to massive sulfide band
																					PY in <vnlts, blebs<="" patches="" td=""></vnlts,>
																					CP as blebs assoc. w/ massive sulfide band
																					130.6 3cm massive PY+tr CP band; x-cuts S1

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct		Alte									izatio						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	CP	SL	GL	AS	BN	MG	
133.9	135.6	SKrm											15		tr						Mineralized Ca-Garnet Prograde Skarn (incipient retrograde alt'n)
																					It red/br-wh patchy coloration, massive, wkly calc, loc vuggy
																					loc CL+PY retrograde assemblage
																					PY as patches
																					CP as blebs
																					1% HS as small patches
																					tr SB xtls to 4mm long
																					upper cnt not observed due to broken core
																					lower cnt grad. over 20 cms.
135.6	138.3	SKp											2								Ca-Garnet Prograde Skarn
																					It yellow/gr and It red/br patches, massive, wkly calc; v. fine gr
																					minor patches of CL+PY retrograde alt'n
																					PY as patches, and in <vnlts< td=""></vnlts<>
																					lower cnt sharp, irreg; x-cuts S1
138.3	140.2												1								Sericite Altered Siliceous Phyllite
			S1	138.8	60																It gy (loc med/dk gy), laminated, wkly phyllitic
																					PY as patches, and in vns
																					post SK bxia at lower cnt
140.2	143.5	SKp											2								Ca-Garnet Prograde Skarn
																					lith & min a/a 135.6-138.3
																					PY as patches/blebs
																					loc. vuggy w/ large PY cubes
																					upper cnt sharp, planar @ 57
																					lower cnt sharp, irreg
																					patch of SP near lower cnt
143.5	145.1												<1								Sericite Altered Siliceous Phyllite
			S1	144.3	61																lith & alt'n a/a 138.3-140.2
																					loc SK bands w/ sharp irreg cnts
																					PY in <vnlts, assoc="" bands<="" blebs,="" patches="" sk="" td="" w=""></vnlts,>
																					144.5 healed bxia w/ dk gy matrix

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct	CA	Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	CP	SL	GL	AS	BN	MG	
145.1	150.8	SKp											2								Ca-Garnet Prograde Skarn
																					lith & alt'n a/a 135.6-138.3
																					loc. CL retrograde alt'n
																					HE (red, earthy) in <vnlts< td=""></vnlts<>
																					PY in patches/blebs, <vnlts< td=""></vnlts<>
																					upper cnt grad. over 20mm
																					lower cnt sharp, planar @ 60
150.8	151.7	SPbx											1								Brecciated Siliceous Phyllite
																					incip to strongly bxiated w/ up to 10% siliceous matrix
																					PY as blebs
151.7	156.0	MPd											-								Porphyritic Monzonite Dyke
																					It gr/gy, non-mag, non-calc,fine gr, w/ 25% euhedral felds. phenos
																					upper cnt sharp, irreg
																					lower cnt sharp, planar @ 45
156.0	159.0	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
																					It br/gy laminated, wkly phyllitic, loc. bxiated
																					grades loc to phyllitic chert in upper part of int
																					PY in vnlts, <vnlts< td=""></vnlts<>
																					bxiated lower cnt
159.0	160.1	SKp											2								Ca-Garnet Prograde Skarn
																					lith a/a 135.6-138.3
																					grades loc to ca garnet-CPx skarn
																					PY as irreg patches
																					upper cnt sharp, slightly irreg
																					lower cnt sharp, v. irreg (photographed to show SK forming from SP)
160.1	179.9												1								Siliceous Phyllite w/ loc. Skarn bands
			S1	163.8																	dk gy/blk wkly laminated, wkly phyllitic
			S1	176.8	68	3															grades loc to SPbh
																					loc sericite alt'n
																					loc <vnlts &="" (retrograde="" alt'n?)<="" blk="" cl="" dk="" fine="" garnet="" gr="" halos="" td="" w=""></vnlts>
																L	L		L		loc strongly bxiated w/ fine gr siliceous matrix

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	СР	SL	GL	AS	BN	MG	
																					160.1-179.9 cont'd
																					PY in vnlts, <vnlts, bxia="" matrix<="" td=""></vnlts,>
179.9	181.2	SKpm											5		1						Mineralized Ca-Garnet Prograde Skarn
																					w/ 10% SP intercalated
																					PY as patches
																					CP as patches/blebs
																					upper cnt sharp, planar @ 75
																					lower cnt sharp, wkly irreg @ 52
181.2	189.2	SP											1								Siliceous Phyllite
																					lith & alt'n a/a 160.1-179.9
																					PY in <vnlts< td=""></vnlts<>
																					187.9-188.1 SK band w/ sharp, irreg cnts
189.2	190.8	SKp											2								Ca-Garnet Prograde Skarn
																					w/ minor CL+CB+MO? retrograde bands
																					It yellow/gr & It red/br mottled, massive, wkly calc
																					PY as patches
																					upper cnt sharp, irreg
																					lower cnt sharp, irreg
190.8	192.2	SP											<1								Siliceous Phyllite
			S1	192.0	55																lith & alt'n a/a 160.1-179.9
																					PY in <vnlts< td=""></vnlts<>
192.2	194.8	SKp-S	Р										1		tr						Incipient Ca-Garnet Prograde Skarn
		<u> </u>																			Ca garnet & CPx bands and patches developed in siliceous phyllite
																					PY in <vnlts, blebs<="" patches="" td=""></vnlts,>
		1		1													1	1			CP in blebs assoc w/ MO?
		1		1													1	1			193.1-193.6 massive SKp
																					194.2-194.8 massive SKp
		1	1	1						1											upper cnt grad over 10cm
		i e		<u> </u>										1			1	1	1	1	lower cnt sharp, planar @ 85
		i e		<u> </u>										1			1	1	1	1	The state of the s
																	1				
		I	I	1	l .	<u> </u>				I .]		<u> </u>	<u> </u>		1			1	<u> </u>	I .

Date: Logged By: DJH Page 8/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Mir	eral	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РО	CP	SL	GL	AS	BN	MG	
194.8	200.2												1								Siliceous Phyllite
			S1	195.3	60																med to drk gy/blk laminated, wkly phyllitic
			S1	197.0	73																PY as small patches, <vnlts< td=""></vnlts<>
																					PY as small patches, <vnlts 197.3="" 5cm="" band;="" conformable<="" s1="" sk="" td="" wide=""></vnlts>
																					EOH @ 200.2 metres
						1								1		i i		1			
																Ì					
																t					
	ı		L	I .			1			l .						1	·				ı

RQD Log LD04-06

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
17.4	rtab (om)	1145 70	151.5	red (om)	1142 /0
20.4	88	29	154.5	111	37
23.5	139	45	157.6	132	43
26.5	239	80		124	41
29.6	248	80	163.7	49	16
32.6	220	73	166.7	132	44
35.7	176	57	169.8	21	7
38.7	119	40	172.8	35	12
41.8	101	33	175.9	64	21
44.8	113	38	178.9	62	21
47.9	171	55	182.0	138	
50.9	268	89	185.0	66	22
53.9	246	82	188.1	106	34
57.0	177	57	191.1	219	73
60.0	92	31	194.1	192	
63.1	63	20	197.2	188	
66.1	199	66		170	57
69.2 72.2	165	53			
	202 119	38	EOH @ 200.2m	1	
75.3 78.3	207	69			
81.4	207	7			
84.4	199	66			
87.5	115	37			
90.5	213	71			
93.6	157	51			
96.6	256	85			
99.7	244	79			
102.7	265	88			
105.8	137	44			
108.8	116	39			
111.9	107	35			
114.9	117	39			
118.0	83	27			
121.0					
124.0	108	36			
127.1	234	75			
130.1	165	55			
133.2	167	54			
136.2	171	57			
139.3		72			
142.3		61			
145.4	207	67			
148.4	215	72			
151.5	236	76			

Survey Log LD04-06

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		45		-45
157	47.9	22.5	44.5	46	-44
307	93.6	21	43	47.25	-42.75
457	139.3	21.5	43.5	48	-42
607	185.0	26	48	49	-41

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	12.2	no sample								
322163	12.2	14.3			1.7	81	0.187	0.6	403	765	26
322164	14.3	15.7			1.4	100	0.984	0.9	521	922	19
322165	15.7	17.4			1.7	100	0.108	1.0	92	801	42
322166	17.4	18.9			1.4	93	0.121	1.0	11	760	27
	18.9	21.5	no sample								
322167	21.5	22.5			1.0	100	0.055	0.7	35	433	21
	22.5	45.8	no sample								
322168	45.8	47.5			1.6	94	0.026	0.3		159	22
322169	47.5	48.9			1.4	100	0.028	0.3	27	135	22
	48.9	59.8	no sample								
322170			standard				0.919	2.6	20	11900	95
322171			blank				0.014	0.1	3		49
322172	59.8	61.3			1.5	100	0.033	0.9		360	24
322173	61.3	62.2			0.9	100	0.100	1.2	41	672	30
322174	62.2	63.1			0.9	100	0.031	0.8		579	28
322175	63.1	64.6			1.5	100	0.015	1.0	96		35
322176	64.6	66.1			1.5	100	0.056	0.3	141	80	22
322177	66.1	67.2			1.1	100	0.040	2.2	97	1655	48
322178	67.2	68.2			1.0	100	0.181	3.1	23		29
322179	68.2	69.5			1.3	100	0.095	2.5		1060	31
322180	69.5	70.5			1.0	100		3.2	28		37
322181	70.5	71.5			1.0	100		3.0			44
322182	71.5	73.1			1.6	100	0.234	1.1	399		38
322183	73.1	74.8			1.6	94	0.381	3.3	323	2050	35
322184	74.8	76.5			1.7	100	0.119	0.5	248		39
322185	76.5	78.0			1.5	100		4.1	140		37
322186	78.0	79.4			1.3	93		2.4	156		35
322187	79.4	80.9			1.5	100	0.197	4.0	114	1870	47
322188	80.9	82.4			1.5	100	0.133	1.3	162	1005	34
322189	82.4	83.6			1.2	100	0.207	1.1	257	166	
322190			standard				0.922	2.5	7	11900	93

Page: 2

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
322191			blank				0.010	0.1	8	130	46
322192	83.6	85.1			1.5	100	0.077	1.5	118	990	40
322193	85.1	87.0			1.9	100	0.140	1.3	132	748	39
322194	87.0	88.8			1.8	100	0.080	0.6	569	347	33
322195	88.8	90.5			1.7	100	0.130	0.8	70	278	
322196	90.5	92.4			1.9	100	0.112	1.6	29	929	29
	92.4	115.7	no sample								
322197	115.7	117.4			1.7	100	0.201	3.3	55	1645	30
	117.4	143.6	no sample								
322198	143.6	145.3			1.7	100	0.072	1.2	66	675	
322199	145.3	146.6			1.3	100	0.009	0.3	28	59	
322200	146.6	147.4			0.8	100	0.057	0.7	48	404	27
	147.4	150.9	no sample								
322201	150.9	152.3			1.4	100	0.088	0.4	106	258	23
	152.3	173.1	no sample								
322202	173.1	174.1			1.0	100	0.073	0.3	118	388	9
322203		175.5			1.4	100	0.132	0.8	447	169	11
322204	175.5	176.9			1.4	100	0.050	0.8	317	16	
322205	176.9	178.9			2.0	100	0.026	0.7	341	25	11
	178.9	212.2	no sample								
322206		213.8			1.5	94	0.043	0.7	107	132	72
322207					1.5	94	0.098	1.1	147	237	64
322208	215.4	216.9			1.5	100	0.120	3.6	280	1735	71
			no sample								
322209		226.2			1.5	100	0.064	0.7	134	34	
322210			standard				0.903	2.5	18	12200	88
322211			blank				0.006	0.1	4	130	47
322212		227.7			1.5	100		0.2	133		
322213	227.7	229.2			1.5	100	0.078	0.6	174	189	53
	229.2		no sample								
322214	238.2	239.9			1.6	94	0.083	0.7	249	198	61
	239.9	246.5	no sample								

Page: 3

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
322215	246.5	247.8			1.3	100	0.119	1.5	112	866	35
	247.8	268.0	no sample								
322216	268.0	269.0			1.0	100	0.010	0.3	65	35	19
322217	269.0	270.4			1.4	100	0.034	3.1	81	12	6
322218	270.4	271.9			1.5	100	0.045	0.7	126	11	16
322219	271.9	273.4			1.5	100	0.007	0.1	150	23	11
322220	273.4	274.9			1.5	100	0.040	0.6	214	408	25
322221	274.9	276.5			1.6	100	0.143	1.1	618	574	26
	276.5	297.8	no sample								
EOH @ 297.8	m										

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Mir	nera	izati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	СР	SL	GL	. AS	BN	MG	
0.0	12.2	O/B																			Overburden
																					triconed casing (no core)
12.2	15.7	SKpm											15								Mineralized Ca-Garnet Prograde Skarn
																					yellow/gr & It red/br mottled, massive, fine to med gr, non-calc
																					loc. vuggy
																					PY as patches, vns, vnlts
																					v. minor dk gr CL retrograde alt'n patches
15.7	17.4	SKrm											15								Mineralized Chlorite Retrograde Skarn
																					w/relict SP patches and 10% SKpm bands intercalated
																					dk gr & lt gy mottled
																					interpretation: interval is gradational from SP to SK and has been incompletly
																					retrograde atl'd to CL
																					PY as patches, vns, vnlts
																					upper cnt sharp, planar @ 60
																					lower cnt sharp, irreg
																					15.7-15.9 SP w/ minor CL alt'n
17.4	63.1	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	25.4	55																med br-lt gy laminated, wkly phyllitic
			S1	31.1	55																w/ <5% SKrm intercalated
			S1	35.7	55																grades loc to phyllitic chert
			S1	42.0	45																PY as blebs, in <vnlts< td=""></vnlts<>
			S1	49.6	52																17.4-19.4 3% PY in vnlts, <vnlts< td=""></vnlts<>
			S1	53.7	40																21.5-21.7 SKrm; upper cnt sharp, planar @ 58; lower cnt not observed
			S1	61.2	60																32.6 PY+CB+QZ vn; 2cms @ 15
																					36.0-36.3 PY+EP patches
																					45.8-46.5 SKp; upper cnt sharp, planar, S1 conformable @ 50; lower cnt
																		1			sharp, irreg; 4% PY
													<u> </u>								47.9 photo
							Ш							ļ				1			48.6-48.9 SKr; med gr, CL rich, wkly calc, w/ 5% SKp patches; 0.5% shining
																		1			bl/blk unknown mineral (moly?); cnts sharp, planar, x-cut S1 @ 15
							Ш							ļ				1			54.5-56.2 no recovery (washed core-gouge?)
																		1			59.8-60.2 SKrm; w/ dk gr/blk CL patches, 10% PY, 5% SKp, 20% SP
																					61.3-61.9 SKrm; w/ 30% PY, 2% blue/gy unknown mineral, 10% dk gr/blk

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	CP	SL	GL	AS	BN	MG	
																					17.4-63.1 cont'd
																					CL patches; wkly calc; 5% SKp patches; upper cnt grad; lower cnt sharp,
																					irreg.
																					61.9-62.2 SPm w/15% PY (bxia?)
																					57.5 gouge
63.1	67.2	MZ											30		0.1						Mineralized Zone
																					PY as coarse cubes & large patches in a lt gy, altered, vuggy, siliceous rock
																					(altered SP?) w/ 15% med gr CL patches
																					CP as small blebs
																					<1% unknown blue/gy, shiny metallic mineral (MO?)
																					upper cnt not observed
																					lower cnt grad over 0.1m
																					64.4-64.7 gouge
																					64.8-65.1 gouge
67.2	71.5	SPa											2		tr						Sericite Altered Siliceous Phyllite
			S1	68.2	57																It gr/gy, wkly laminated, wkly phyllitic, loc mineralized w/ PY+/- CP; 5% red/br
			S1	70.5	62																skarn bands/patches
																					PY as blebs/patches and in vnlts, <vnlts< td=""></vnlts<>
																					CP as blebs w/ PY assoc w/ SKp bands/patches
																					lower cnt grad over 0.3m
																					67.2-67.7 mineralized w/ PY + unknown blue/gy metallic min.
																					68.6-68.7 coarse PY
71.5	74.8	SKpm											5		tr						Mineralized Ca-Garnet Prograde Skarn
																					w/ loc dk gr CL retrograde alt'n and 5% SP
																					yellow/gr & It red/br mottled, massive, v. wkly calc
																					PY as large cubes, patches/blebs
																					CP as blebs
																					lower cnt grad.
74.8	76.5	SKpm-	SP										10								Mineralized Ca-Garnet Prograde Skarn - Siliceous Phyllite intercalated
																					ie transition zone
																					60% It red/br garnet SK; 40% It gr/gy siliceous phyllite
																					PY as large patches/cubes

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					74.8-76.5 cont'd
																					tr HS as small blebs
76.5	82.4	SPa											2		tr						Sericite Altered Siliceous Phyllite
			S1	80.8	72																It gr/gy, wkly laminated, wkly phyllitic
																					<5% SKp bands, patches, vns
																					PY as large patches, cubes, vnlts
																					CP as small blebs assoc w/ SK bands/patches
																					loc. SPbh
																					loc mineralized w/ PY (associated w/ SK bands)
																					upper cnt grad; lower cnt grad over 10mm
82.4	83.6	MZ											30								Mineralized Zone (SKrm?)
																					PY as coarse xtline cubes
																					10% dk gr/blk CL retrograde patches
																					20% patches of Ca-Garnet Prograde Skarn
83.6	87.0	SPa											5		tr						Sericite Altered Siliceous Phyllite
			S1	84.0	38																lith & alt'n a/a 76.5-82.4
																					5% SKp bands, vnlts
																					loc mineralized (PY assoc w/ incompletely retorgrade altered SK)
																					PY as patches, and in vnlts
																					CP as blebs
																					84.6-85.1 bxia zone w/ 30% CL matrix
87.0	88.8	SKp											3								Ca-Garnet Prograde Skarn w/ 5% retrograde patches
																					It red/br, massive, wkly calc
																					PY as blebs, irreg vnlts
																					SB as rare needles
88.8	92.4	SPbh											1		tr						Biotite Hornfelsed Siliceous Phyllite
																					It br-It gy laminated, wkly phyllitic
																					loc CL+sericite alt'n of Bl
																					5% SKp bands w/ tr CP
																					1% SKr w/ dk gr/blk CL and relict SKp
																					PY as blebs, and in vnlts, <vnlts< td=""></vnlts<>

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					88.8-92.4 cont'd
																					CP as specks in SK bands/patches
92.4	95.1	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	94.8	58																It br-It gy laminated, wkly phyllitic
																					loc CL+sericite alt'n of BI
																					PY in <vnlts< td=""></vnlts<>
95.1	96.5	Md											-								Monzonite Dyke
																					pale gr/gy, massive, fine gr., non-mag
																					upper cnt sharp, irreg
																					lower cnt bxiated w/ minor SP frags
00.5	100.0	145																			
96.5	109.6	MPd					-						tr			-					Porphyritic Monzonite Dyke
																					It gy, w/ 3% feld phenos to 10mm and 5% mafic minerals (HB)
																					2% scattered EP blebs
																					PY in vnlts
				1																	98.2-101.9 less porphyritic w/ grad cnts
109.6	163.1	SPhh		1									1		tr						Biotite Hornfelsed Siliceous Phyllite
100.0	100.1	01 011	S1	114.9	40																med br-lt gy laminated, wkly phyllitic
			S1	119.5																	loc CL+sericite alt'n assoc w/ fractures and vnlts
			S1	124.2			1									1			1		PY in <vnlts, td="" vnlts<=""></vnlts,>
			S1	128.2	46																grades loc. to siliceous phyllite
			S1	132.7	46																116.2-116.5 CP assoc w/ SK band
			S1	138.0																	130.1-130.8 rubbly core w/o gouge
			S1	143.0																	139.0-140.1 heavily broken core w/o gouge
			S1	149.4	40																140.7-141.2 heavily broken core w/o gouge
			S1	153.9																	143.6-144.3 med gr/gy, massive, siliceous (calcsilicate?) int. w/ 7% PY in
			S1	160.0																	vnlts, <vnlts, and="" selvages<="" td="" vnlt=""></vnlts,>
																					144.3-144.6 PY+QZ (replacement?) w/ 30% PY as patches and in vnlts
																					145.1 4cm wide bxia w/ 40% dark gy, sde rich matrix
																					146.9-147.4 Ca Garnet-CPx prograde SK wk wk to mod CL retrograde alt'n;
																					massive w/ loc relict lams; upper cnt faulted @ 49; lower cnt grad
																					151.1-151.8 massive cubic PY w/ 30% interstitial QZ+CB; lower cnt
																					sharp, planar @ 50; upper cnt grad @ 15

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	СР	SL	GL	AS	BN	MG	
																					109.6-163.1 cont'd
																					151.8-152.3 tr CP as blebs
163.1	173.1	SP											1		tr						Siliceous Phyllite
			S1	165.2																	dk gy/blk-lt gy laminated, wkly phyllitic
			S1	169.0	20																PY in vnlts, <vnlts< td=""></vnlts<>
																					CP in vnlt w/ PY
																					upper cnt grad over 1-2 metres
																					grades loc to SPbh
173.1	174.1	SKp											3								Ca-Garnet Prograde Skarn
																					It yellow/gr mottled, massive, wkly calc
																					upper cnt sharp, irreg @ ~15 (x-cuts S1)
																					lower cnt grad over 10cms
																					PY as patches
174.1	178.9	MZ											70								Mineralized Zone
																					massive coarse cubic PY w/ 30% QZ+sericite patches
																					tr green mariposite?
																					shiny blue-gy, soft unknown mineral to 176.4 (MO?)
																					lower cnt grad over 0.3m to sericite altered siliceous phyllite
																					loc bxia zones w/ SP frags
178.9	191.2	MPd											-								Porphyritic Monzonite Dyke
																					med gy/gr, non-mag, wkly calc, non-mineralized, w/ 3% feld phenos to 10mm
																					wk sauss alt'n of ca plag
																					178.9-182.0 PX phyric w/ 15% phenos to 3mm
																					179.0-179.2 bxia zone w/ SP frags in a CL rich matrix; upper cnt sharp,
																					planar @ 50; lower cnt sharp, planar @ 20
																					upper cnt sharp, chilled, planar @ 55
																					lower cnt sharp, planar, w/ gouge @ 70
191.2	204.1	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	196.7																	It br-It gy laminated, wkly phyllitic
			S1	201.2	40																grades loc to biotite hornfelsed phyllitic chert
																					loc sericite+CL alt'n

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					191.2-204.1 cont'd
																					PY in vnlts, as patches
																					196.7 SKp band
																					197.2 F2 fold closure; S2 @ 45
204.1	207.0	PC											2								Phyllitic Chert
																					It gy, v wkly laminated, v wkly phyllitic
																					PY in vns, vnlts, w/ QZ
																					grad cnts
207.0	224.7												1		tr						Biotite Hornfelsed Siliceous Phyllite
			S1	207.7	53																It br-It gy laminated, wkly phyllitic
			S1	211.7	47																grades loc to SP and PC
			S1	217.1	47																occ SKp bands/patches throughout
			S1	221.2	43																PY in vnlts, <vnlts< td=""></vnlts<>
																					loc CL alt'n proximal to SKp bands
																					212.2-212.7 SKp (ca garnet+clinopyrox), massive, wkly calc; upper cnt
																					wkly grad, S1 conformable @ 30; lower cnt sharp, irreg, x-cuts S1 @ ~20
																					215.4-215.6 SKp a/a 212.2-212.7 w/ irreg, sharp cnts; tr CP blebs
																					216.0-216.2 SKp patch w/ tr CP blebs
																					216.7-216.8 SKp patch; tr CP blebs
																					220.8-221.0 SKr band
																					221.7 PY+QZ vn 10mm wide
																					222.4 1% CP as belbs over 5 cms
224.7	229.2	MZ											15								Mineralized Zone (Incipient Skarn?)
																					PY+QZ replacement? patches w/ 25% SKp patches/bands
																					coarse, cubic PY to 20mm
																					HE (red, earthy) loc assoc w/ SKp
																					upper cnt sharp, irreg
																					lower cnt sharp, planar, S1 conformable @ 45
229.2	238.2	SP											<1		tr						Siliceous Phyllite
			S1	229.7	41																dk gy/blk-lt gy laminated, wkly phyllitic
			S1	232.3	43																grades loc to SPbh
																					CL alt'n proximal to upper cnt

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
																					229.2-238.2 cont'd
																					S1 loc v. irreg to contorted
																					PY as patches, and in vnlts, <vnlts< td=""></vnlts<>
																					CP as blebs w/ PY loc
																					236.8 SKp patch w/ tr CP as blebs
238.2	239.0	SKr											1								Chlorite Retrograde Skarn
																					dk gr/blk, massive to incip laminated, wkly calc
																					w/ 20% relict patches/bands SKp
																					PY as patches/blebs
																					upper cnt sharp, irreg
																					lower cnt grad
239.0	239.8	SKp											tr								Ca-Garnet Prograde Skarn
																					med gr & yellow/gr mottled w/ lt red/br patches, massive, wkly calc
																					PY as blebs
																					lower cnt sharp, irreg
239.8	246.7	SP											tr								Siliceous Phyllite
			S1	244.4	30																dk gy/blk-lt gy laminated, wkly phyllitic
																					S1 generally disrupted or contorted
																					PY in vnlts w/ QZ
																					246.5-246.7 5% PY
246.7	247.8	SKp											7		tr						Ca-Garnet Prograde Skarn
																					It gr, yellow/gr, and It red/br mottled, massive, wkly calc
																					w/ 5% chloritic SKr patches
																					2% SP bands intercalated
																					PY as patches, and in vnlts
																					CP as blebs w/ PY
																					247.2 gouge @ 25
247.8	269.0	SP											tr								Siliceous Phyllite
			S1	248.9																	dk gy/blk-lt gy laminated, wkly phyllitic, w/ augen text
			S1	253.6	32																grades loc SPbh
			S1	259.0	35																loc sericite alt'n

Date: Logged By: DJH Page 8/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
			S1	262.8	30																247.8-269.0 cont'd
																					PY in vnlts w/ QZ and in vns to 10mm w/ sericite selvages
																					247.8-248.3 bxia and gouge @ 40
																					257.4-257.5 QZ+PY+CP vn w/ sericite alt'n selvages to 10 cms
																					268.0-269.0 massive pyrite bands and patches
269.0	270.4	QV											5								Quartz Vein(s?)
																					white, massive, loc vuggy
																					5% SKp frags
																					PY as large cubes, patches
																					upper cnt not observed; lower cnt sharp, planar @ 78
270.4	276.5	SKp											2								Ca-Garnet Prograde Skarn
																					med gr, lt yellow/gr, and lt red/br mottled, massive, wkly calc, loc vuggy
																					PY as patches/blebs/bands
																					271.7-271.9 1% blue/gy unknown sde (MO?)
																					274.0-274.1 bxia w/ QZ+CB matrix; QZ+SKp frags
																					275.5-275.6 massive fine gr sdes replacing garnet (v. interesting texture)
																					276.0-276.3 distinctive yellow/br, coarse gr SK band; loc sandy
																					lower cnt sharp, irreg
276.5	297.8	SP											-								Siliceous Phyllite
			S1	281.0																	dk gy/blk-lt gy laminated, wkly phyllitic
			S1	284.5																	grades loc to SPbh 276.5-289.0
			S1	289.6																	276.5-276.7 strong <vnlts bxia="" cl="" matrix<="" td="" to="" w="" wk=""></vnlts>
			S1	293.2	42																295.3 gouge
																					EOH @ 297.8 metres
					_																

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	121.7	no sample								
322222	121.7	122.5			0.8	100	0.065	1.4	407	10	37
	122.5	148.6	no sample								
322223	148.6	149.8			1.2	100	15.350	1.8	70	806	33
	149.8	195.3	no sample								
322224	195.3	196.5			1.2	100	0.770	1.7	334	1610	37
322225	196.5	197.5			0.9	90	0.426	1.5	520	638	22
	197.5	276.4	no sample								
EOH @ 276.4											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on .					Min	era	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	r Si	PY	РΟ	СР	SL	GL	. AS	BN	MG	
0.0	3.0	O/B																			Overburden
																					triconed casing - no core
3.0	107.4												<1		tr						Biotite Hornfelsed Siliceous Phyllite
			S1	8.7	62																It br-It gy laminated, v. wkly phyllitic
			S1	15.8																	PY in <vnlts, qz="" td="" vnlts,="" vns<=""></vnlts,>
			S1	18.5	65																loc bxia w/ rotated and augened siliceous frags
			S1	23.5	60																14.3 yellow oxide on fractures
			S1	29.2	67																16.5 CP in QZ vn w/ PY (x-cuts S1)
			S1	36.0																	18.2 PY+QZ+CB vn; 15 mm; S1 conformable
			S1	58.5																	19.8 15mm gouge @ 65
			S1	63.3																	36.6 30mm gouge
			S1	67.6																	37.2 rubbly core w/ gouge
			S1	72.6																	56.5-57.2 gouge and rubbly core
			S1	78.3																	65.0 gouge
			S1	85.7	63																65.3 QZ+SP+PY+SB?+GL; 20 mm wide, S1 conformable @ 62
			S1	92.1	67																71.2 gouge; 10mm wide @ 55
			S1	96.4	50																93.7-95.1 bxia zones
			S1	102.3	62																99.7-100.0 bxia zones
			S1	105.8	55																101.3-101.5 bxia
																					102.8 gouge @ 68
																					104.2 gouge (no attidude)
107.4	110.8	Md											<1								Monzonite Dyke
																					med to lt gy/gr, non-mag.,wkly calc, non-porphritic, fine gr
																					PY as blebs and in <vnlts< td=""></vnlts<>
																					wk sauss alt'n of ca plag
																					upper cnt sharp, planar @ 55
																					lower cnt sharp, irreg
																					107.7 gouge; 10 mm wide @ 25
																					109.0 gouge; 10 mm wide @ 45
110.8	113.1												<1							1	Biotite Hornfelsed Siliceous Phyllite
			S1	111.9	73								<u> </u>							1	lith and mineralization a/a 3.0-107.4
													<u> </u>							1	
																	1				

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	CP	SL	GL	AS	BN	MG	
113.1	119.7	Md											<1								Monzonite Dyke
																					lith a/a 107.4-110.8
																					grades loc to med grained
																					PY as specks/blebs, in <vnlts, 118.6<="" @="" and="" in="" qz="" td="" vnlt="" w=""></vnlts,>
																					upper cnt sharp, irreg
																					lower cnt sharp, planar @ 38
119.7	121.7												<1								Biotite Hornfelsed Siliceous Phyllite
			S1	120.6	53																lith and mineralization a/a 3.0-107.4
121.7	122.5	Mdm											10								Pre-Mineral Monzonite Dyke?
																					possibly strongly altered SP
																					strong PY+CY alteration
																					xenolith of SP
																					upper cnt sharp, irreg; lower cnt sharp, planar @ 33
122.5	148.6												<1								Biotite Hornfelsed Siliceous Phyllite
			S1	124.0																	lith a/a 3.0-107.4
			S1	127.5	60																PY in <vnlts, and="" in="" qz<="" td="" vnlts="" w=""></vnlts,>
			S1	135.9	57																grades loc to wkly bxiated
			S1	139.7	59																142.9-144.2 bxiated siliceous comp. layers
																					148.4-148.6 CL alt'n
148.6	149.8	SKpm												5	1						Mineralized Ca Garnet-Clinopyroxene Prograde Skarn
																					wkly mineralized, med green w/ lt red/br patches, massive, non-calc
																					w/ fine gr garnets loc. dev
																					PO as patches, and in vnlts, <vnlts< td=""></vnlts<>
																					CP as blebs w/ PO
																					upper cnt not observed
																					lower cnt sharp, planar, x-cuts S1 @ 68
149.8	195.3												tr								Biotite Hornfelsed Siliceous Phyllite
			S1	151.4	35																lith a/a 3.0-107.4
			S1	157.5																	PY in <vnlts< td=""></vnlts<>
			S1	161.0	55																loc CL alt'n
			S1	166.8	60											\mathbb{L}^{-}					159.1 PO+tr CP bleb related to <vnlt< td=""></vnlt<>

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
																					149.8-195.3 cont'd
			S1	172.8	64																173.9-174.6 bxiated siliceous comp layers
			S1	178.4	40																181.1-181.8 phyllitic chert w/ grad cnts
			S1	186.2	55																191.2 bxia dyklet @ 35
			S1	191.5	55																, and the second
			S1	194.3																	
195.3	197.5	SKpm											5	15	<1						Mineralized Ca Garnet-Clinopyroxene Prograde Skarn
		•																			w/ 10% SP intercalated (ie exoskarn)
																					yellow/gr & med gr mottled, massive to loc incip laminated, non-calc
																					grades loc to massive PO w/ CP blebs
																					cnts are sharp, irreg
																					PO as post skarn patches & streaks
																					PY as patches
																					<5% CL retrograde alt'n
																1					196.3 bxia dyklet; 30 mm @ 37
																					196.5-197.5 PY>>PO
																			<u> </u>		100.0 107.0 1 1721 0
197.5	201.7	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	200.5	57																grades loc to siliceous phyllite
																					It br-lt gy wkly laminated, wkly phyllitic, wkly hornfelsed
																					PY in <vnlts, and="" as="" dissems<="" td=""></vnlts,>
																					199.0 gouge
																					199.9-200.2 heterolithic bxia with monzonite and siliceous phyllite frags
																					201.1-201.4 bxia zone
201.7	210.2	MPd											-			<u> </u>					Porphyritic Monzonite Dyke
																					med gy/gr, loc wkly calc., non-mag, non-mineralized,
																					w/ 10% feld phenos to 15mm
																			l		upper cnt sharp, planar @ 44
										<u> </u>											lower cnt not observed
																			t		209.3 gouge; 10 mm @ 40
										<u> </u>				1		1			1		gg-, C
210.2	235.6	SPbh								<u> </u>			1								Biotite Hornfelsed Siliceous Phyllite
			S1	218.8	67														l		lith a/a 197.5-201.7
			S1	224.7										1		 					w/ 25% SP intercalated w/ grad cnts

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					210.2-235.6 cont'd
			S1	230.4	55																loc wk bxia w/ siliceous comp layers broken & rotated
																					PY in <vnlts, and="" as="" dissems<="" td="" vnlts,=""></vnlts,>
																					214.1 calc silicate band; 50 mm; 3% PO, mod. calc, S1 conformable
																					214.2 calc silicate band; 50 mm; 3% PO, mod calc, S1 conformable
																					227.8-230.1 sericite altered w/ 3% PY as patches
																					lower cnt grad over 50 mm
235.6	258.0												<1								Siliceous Phyllite
			S1	235.8																	dk gy/blk-lt gy laminated, wkly bxiated, wkly phyllitic
			S1	241.1	65																grades loc to SPbh
			S1	246.9																	PY in vnlts, and as dissems
			S1	250.8																	244.0-246.7 SPbh
			S1	256.8	70																246.3 QZ+PY+SP vn; 15mm @ 67
																					252.1-253.4 lost and heavily broken, rubbly core
																					255.3-255.6 rubbly core
																					256.9 gouge @ 70
258.0	265.7	MPd											<1								Porphyritic Monzonite Dyke
																					It gr/gy, non calc, non-mag, w/ 3% feld phenos to 10mm
																					PY as disssems
																					upper cnt sharp, planar @ 72 w/ gouge
																					lower cnt sharp, planar @ 50
																					264.6 gouge
265.7	271.2	SP											1								Siliceous Phyllite
			S1	270.5	65																lith a/a 235.6-258.0
																					wk to strong bxia w/ rotated siliceous frags
																					PY in <vnlts and="" as="" patches<="" td=""></vnlts>
271.2	272.7	Md											1								Monzonite Dyke
																					It gy/gr, non-porph, non-mag, non-calc
																					PY in <vnlts, td="" vnlts<=""></vnlts,>
																					upper cnt fairly sharp, planar @ 42
																					lower cnt sharp, planar @ 80
												<u> </u>				L					

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	era	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
272.7	276.4	SP					<u> </u>				2. 00.	<u> </u>	<1	-	<u> </u>	T					Siliceous Phyllite
			S1	275.5	70																lith a/a 235.6-258.0
																					PY as blebs and fine dissems
																					275.0 heterolithic bxia @ 68
																					275.7-276.0 heterolithic bxia w/ frags of SP and monzonite; upper cnt not observed; lower cnt sharp, planar @ 63
																					observed; lower cnt sharp, planar @ 63
																					EOH @ 276.4 metres
			<u> </u>		1																
			<u> </u>																		
							Ì	İ											Ì	İ	
							1									Ì			1	1	
							1												1	1	

RQD Log LD04-08

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
3			136.2	231	
5.2	102	46	139.3	218	70
8.2	205	68	142.3	211	70
11.3	249	80	145.4	216	70
14.3	143	48	148.4	134	45
17.4	221	71	151.5	249	80
20.4	230	77	154.5	235	78
23.5	286	92	157.6	278	90
26.5	184	61	160.6	247	82
29.6	229	74	163.7	222	72
32.6	165	55	166.7	223	74
35.7	204	66	169.8	212	68
38.7	116	39	172.8	187	62
41.8	135	44	175.9	254	82
44.8	267	89	178.9	242	81
47.9	82	26	182.0	244	79
50.9	59	20	185.0	252	84
53.9	198	66	188.1	279	90
57.0	138	45	191.1	205	68
60.0	145	48	194.1	203	68
63.1	176	57	197.2	248	80
66.1	193	64	200.2	157	52
69.2	246	79	203.3	220	71
72.2	216	72	206.3	194	65
75.3	245	79	209.4	217	70
78.3	266	89	212.4	242	81
81.4	233	75	215.5	247	80
84.4	240	80	218.5	210	70
87.5	291	94	221.6	269	87
90.5	253	84	224.6	268	89
93.6	220	71	227.7	231	75
96.6	217	72	230.7	203	68
99.7	144	46	233.8	241	78
102.7	89	30	236.8	222	74
105.8	184	59			
108.8	133	44	242.9	266	
111.9	176	57	246.0	254	82
114.9	248	83	249.0	175	58
118.0	257	83	252.1	173	56
121.0	262	87	255.1	19	6
124.0	210	70	258.1	76	25
127.1	226	73	261.2	202	65
130.1	261	87	264.2	146	49
133.2	208	67	267.3	135	
136.2	231	77	270.3	237	79

RQD Log LD04-08

Date: Page: 2

273.4	191	1		
273.4 276.4	241	80		
EOH @ 276.4	m			
EUN @ 276.4	[1]			

Survey Log LD04-08

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		76		-55
157	47.9	51.5	73.5	36	-54
367	111.9	53	75	36.75	-53.25
487	148.4	54.5	76.5	37	-53
607	185.0	56	78	37.5	-52.5
907	276.4	54.5	76.5	37.75	-52.25

Assay Sample Log LD04-09

Page: 1

Sample No.	From	39.6	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	39.6	no sample								
322226	39.6	41.3			1.7	100	0.044	5.8	87	1115	83
	41.3	130.1	no sample								
322227	130.1	133.2			2.9	94	0.046	1.7	221	93	885
322228	133.2	136.2			2.9	97	0.042	1.3	294	85	558
322229	136.2	139.3			3.0	97	0.086	0.9	78	131	542
322230			standard				0.585	2.8	17	12000	87
322231			blank				0.010	0.2	6	139	46
322232	139.3	142.3			2.8	93	0.100	1.6	863	112	256
322233	142.3	145.4			3.0	97	0.040	1.4	40	276	150
	145.4	151.2	no sample								
322234	151.2	152.7			1.5	100	2.410	0.6	76	310	38
322235	152.7	154.2			1.5	100	0.477	1.3	164	1180	24
322236	154.2	155.7			1.5	100	0.954	0.3	258	185	
322237	155.7	157.2			1.5	100	0.312	0.2	184	58	
322238	157.2	158.7			1.5	100	1.175	0.7	>10000	616	31
	158.7	214.8	no sample								
322239	214.8	216.1			1.3	100	1.535	80.3	2740	22	47
	216.1	244.7	no sample								
322240	244.7	246.1			1.4	100	3.380	15.0	9220	300	653
	246.1		no sample								
322241	262.1	263.5			1.3	93	1.165	5.4	1525	488	142
	263.5	279.5	no sample								
EOH @ 279.5	m										

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
0.0	6.1	O/B																			triconed casing- no core
6.1	26.8	SPbh											2		tr						Biotite Hornfelsed Siliceous Phyllite
			S1	8.4	63																lt/med br- lt gy laminated, wkly phyllitic
			S1	14.3	75																loc sericite alt'n
			S1	21.7	65																grades loc to phyllitic chert
			S1	26.4	70																PY in <vnlts, patches<="" td="" vnlts,="" vns,=""></vnlts,>
																					CP as rare blebs
																					25.4 QZ+SP vn @ 35; 10mm
26.8	27.7	Fd											3	5							Felsite Dyke
																					It gy, vf grained, non-mag, non-calc, non-porph
																					PY as dissems
																					upper cnt faulted @ 68
																					lower cnt sharp, planar @ 58
27.7	152.7	SPbh											2		tr						Biotite Hornfelsed Siliceous Phyllite
			S1	31.6																	lith a/a 6.1-26.8
			S1	34.2	75																PY in <vnlts, dissems<="" td="" vnlts,="" vns,=""></vnlts,>
			S1	46.9	68																35.8-35.9 massive, f grained PY vn; upper cnt not observed; lower cnt sharp,
			S1	52.8	60																planar @ 60
			S1	58.2	60																37.0 gouge & rubble
			S1	63.1	58																39.6-41.3 0.5% CP as blebs and in vnlts w/ PY
			S1	66.3	62																41.0 CY alt'n/gouge
			S1	73.5	70																61.5 tr SP in stringer
			S1	78.6	67																95.7-95.9 felsite dyklet @ 53
			S1	84.4	62																97.8-98.6 rubble & gouge; upper cnt not observed; lower cnt @ 62
			S1	88.7	60																130.1-134.7 strong sericite alt'n; 0.3% SP as blebs in QZ vnlts; strong <vnlts< td=""></vnlts<>
			S1	92.8	60																w/ PY; 5% PY as patches and in <vnlts, as="" elongated="" td="" tr="" vnlts;="" xtls<=""></vnlts,>
			S1	101.0	75																138.7-139.6 as above 130.1-134.7
			S1	105.5	59																143.2-145.4 strong sericite alt'n; strong <vnlts &="" as="" blebs;<="" cp="" py="" td="" tr="" w=""></vnlts>
			S1	110.2	70																5% PY as patches, blebs and in <vnlts< td=""></vnlts<>
,			S1	115.0																	147.2-147.5 patchy prograde CPx skarn developed
			S1	123.2	58																151.2-151.6 massive, dark gr, wkly calc, CPx prograde skarn w/ 20% PO
,			S1	128.3	60																as patches & 0.5% CP as blebs; upper cnt sharp, irreg, x-cuts S1; lower
			S1	131.1	55																cnt sharp, planar, S1 conformable; note: skarn is forming from SPbh

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct			eratio								izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
																					27.7-152.7 cont'd
			S1	135.9																	146.4-147.0 gouge
			S1	142.1	63																
			S1	148.4	62																
152.7	154.2	SKpm											2	20	1						Mineralized CPx Prograde Skarn
																					med gr, massive, wkly calc
																					PO as patches and in <vnlts (discontinuous="" cracks)<="" td=""></vnlts>
																					CP as blebs w/ PO
																					PY as patches
																					upper cnt sharp, planar @ 60
																					lower cnt sharp, irreg
154.2	158.2	SPbh											2	2							Biotite Hornfelsed Siliceous Phyllite
			S1	156.0	40																It br-It gy laminated, wkly phyllitic
																					loc sericite alt'n
																					strong <vnlts cl<="" td="" w=""></vnlts>
																					<10% irreg SKp patches/bands
																					PY in <vnlts cl<="" td="" w=""></vnlts>
																					PO as patches/blebs in skarn
158.2	158.7	SKpm											tr	40	0.5	5		2			Mineralized CPx Prograde Skarn
																					med gr, massive, wkly calc
																					PO as large patches
																					AS as patches (mainly in top 20 cms of interval)
																					CP as blebs in PO
																					upper cnt sharp, irreg
																					lower cnt sharp, irreg, x-cuts S1
158.7	175.2	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	161.4	34																It br-It gy laminated, wkly phyllitic,
			S1	164.5	57																loc bxiated with siliceous augen
			S1	169.5																	incomplete biotite hornfelsing
			S1	174.3	58																loc sericite alt'n
																					PY as blebs

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct			eratio								izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РО	СР	SL	Ğ	AS	BN	MG	
175.2	181.8	Md											2								Monzonite Dyke
																					It gr/gy, fine gr, non-mag, non-calc, v. wkly porphyritic
																					PY as dissems and in <vlts< td=""></vlts<>
																					upper cnt sharp, planar @ 38
																					lower cnt sharp, planar @ 58
181.8	205.5												<1	tr							Biotite Hornfelsed Siliceous Phyllite
			S1	183.0																	It br-It gy laminated, wkly to mod phyllitic
			S1	186.0																	PY in vnlts, <vnlts and="" dissem<="" td=""></vnlts>
			S1	189.8																	PO as small blebs
			S1	197.4	64																siliceous lams are loc. bxiated
			S1	202.0	64																lower cnt grad over 3 m
																					184.9 CY alt'n & bxia, S1 conformable @ 60
																					190.8 PY+AS+SP vnlt @ 68; 2mm
																					198.8 PY+SP+AS vn @ 70
205.5	212.7	SP											tr	tr							Siliceous Phyllite
			S1	211.2	42																dk gy/blk- lt gy laminated, wkly phyllitic
																					PY/PO in <vnlts and="" as="" dissems<="" td=""></vnlts>
																					lower cnt grad over 0.2m
212.7	215.1	SPbh											<1	tr							Biotite Hornfelsed Siliceous Phyllite
																					It br-It gy laminated, wkly phyllitic
																					grades loc to dk gy/blk siliceous phyllite
																					PY/PO as dissems
																					214.6-215.1 CL+sericite alt'n
																					214.8-215.1 15% PY as patches, irreg bands, and in vnlts
215.1	216.1	MS											90								Massive Pyrite
																					v coarse grained pyrite cubes w/ 10% CY+CB+QZ
																					tr gy unknown sde (MO?)
																					upper cnt grad over 0.3m
																					lower cnt v. wkly grad
216.1	244.7	SPbh											tr	<1	tr						Biotite Hornfelsed Siliceous Phyllite
			S1	218.5	70																a/a 212.7-215.1 w/ incomplete biotite hornfelsing

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					216.1-244.7 cont'd
			S1	224.6																	It br-dk gy/blk-lt gy laminated, wkly phyllitic
			S1	230.3	55																siliceous lams loc broken and augened
			S1	238.3	44																PO/PY as patches, dissems
																					CP as blebs w/ PO/PY
																					238.4-238.7 massive, med gy limestone; upper cnt sharp, irreg; lower cnt
																					sharp, planar, S1 conformable @ 52
																					238.7-244.7 siliceous augen
244.7	246.1	SKrm											2	5	0.5	5		2			Mineralized Chlorite - Actinolite? Retrograde Skarn
																					w/ 30% siliceous phyllite intercalated
																					med "dirty" gr & gy/gr mottled, mod. calc
																					PY/PO as small patches/blebs
																					CP as blebs w/ PO
																					AS as local blebs
																					1% greenish/gy, unknown metallic mineral as small blebs loc.
246 1	279.5	SP											<1	tr							Siliceous Phyllite
			S1	250.0	69											1					dk gy/blk - It gy laminated, wkly phyllitic
			S1	255.4	65											1					siliceous lams loc broken and augened
			S1	260.1	58																grades loc to SPbh
			S1	266.0																	PY in vnlts, <vnlts< td=""></vnlts<>
			S1	273.2	33																PO as blebs
			S1	278.6	48																246.1-250.0 siliceous lams broken and augened
																					262.0-279.5 S1 contorted
																					262.1-262.6 CPx SKpm band w/ 2% PO, 1% AS; wk CL retrograde; 25%
																					SPm w/ 10% PY
																					262.6-263.5 SPm w/ 10% PY in vnlts, <vnlts, patches<="" td=""></vnlts,>
																					265.7-265.9 bxia vn w/ PY+SP+AS+unknown gy sde @ 70 w/ 10mm gouge
																					at upper cnt
																					268.1 bleb CP
																					273.0 heterolithic bxia vn w/ monzonite + SP frags @ 51; 30mm wide
																					273.9-274.0 heterolithic bxia vn a/a 273.0
																					274.5 heterolithic bxia vn a/a 273.0; 40 mm wide @ 50
EOH @	279.5	j																			

RQD Log LD04-09

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
6.1	, ,	·	139.3	268	-
8.2	94	96	142.3	110	86
11.3	202	64	145.4	111	37
14.3	197	76	148.4	108	36
17.4	228	64	151.5	254	36
20.4	198	63	154.5	266	82
23.5	188	69	157.6	276	89
26.5	214	54	160.6	142	89
29.6	162	71	163.7	177	47
32.6	220	67	166.7	115	57
35.7	202	43	169.8	225	38
38.7	133	50	172.8	118	73
41.8	150	40	175.9	200	39
44.8	125	56	178.9	281	65
47.9	168	56	182.0	239	94
50.9	173	33	185.0	204	77
53.9	100	28	188.1	201	68
57.0	84	36	191.1	266	65
60.0	112	80	194.1	284	89
63.1	240	69	197.2	189	95
66.1	214	92	200.2	174	61
69.2	275	69	203.3	237	58
72.2	214	87	206.3	232	76
75.3	261	68	209.4	274	77
78.3	211	93	212.4	299	88
81.4	279	66	215.5	269	100
84.4	204	82	218.5	273	87
87.5	245	55	221.6	238	79 75
90.5	169	64	224.6	231	75
93.6	193	37	227.7	241	80
96.6	115 169	56 54	230.7 233.8	257	83 85
99.7 102.7	169	68	236.8	256 227	73
102.7	204	78	239.9	246	82
103.8		74		268	86
111.9	223	58	246.0	271	90
114.9	180	78	249.0	282	91
118.0	235	84	252.1	244	81
121.0	261	61	255.1	261	84
124.0	184	91	258.1	262	87
127.1	272	68	261.2	160	53
130.1	211	80	264.2	95	31
133.2	240	73	267.3	82	27
136.2	227	89	270.3	166	54
139.3	268	0	273.4	210	70

RQD Log LD04-09

Date: Page: 2

273.4 276.4 279.5	210			
276.4	256	85		
279.5	218	85 70		
210.0	210	70		
FOLL @ 070 F				
EOH @ 279.5	m			
		1		

Survey Log LD04-09

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		86		-55
157	47.9	54	76	38	-52
347	105.8	56	78	39.5	-50.5
477	145.4	59	81	41	-49
607	185.0	56.5	78.5	42.25	-47.75
757	230.7	57.5	79.5	44	-46
907	276.4	59.5	81.5	44.75	-45.25

Assay Sample Log LD04-10

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	29.6	no sample								
322242	29.6	32.6			1.7	57	0.639	9.5	5270	125	686
322243	32.6	35.7			1.8	58	0.516	10.2	3850	146	965
	35.7	76.9	no samples								
322244	76.9	78.3			1.4	100	0.077	2.8	238	361	265
	78.3	118.0	no samples								
EOH @ 118.0	m										

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
0.0	2.4	O/B																			Ticoned overburden
																					no core
2.4	8.2	Md											1								Monzonite Dyke
																					It gy/gr to pale cream, non-porph, non-mag, non-calc, fine gr
																					PY in <vnlts &="" blebs="" envelopes<="" gy="" silica="" td="" w=""></vnlts>
																					lower cnt sharp, planar @ 32
8.2	25.2	SP												tr							Siliceous Phyllite
			S1	12.3																	dk gy/blk-lt gy laminated, wkly phyllitic
			S1	16.0	45																dk gy/blk laminae are generally contorted
																					It gy laminae are generally broken
																					grades loc to SPbh
																					PO in QZ vns and as blebs
																					loc sericite alt'n
																					24.0-25.2 CY+sericite alt'n partially dev.
25.2	26.2	Md											tr			tr		tr			Monzonite Dyke
																					lith a/a 2.4-8.2
																					cnts sharp, irreg
																					PY+AS?+SL assoc. w/ late stage QZ+CB vns
26.2	65.1	SP											tr	<1				tr			Siliceous Phyllite
			S1	28.2																	a/a 8.2-25.2
			S1	36.7																	PY in vnlts
			S1	41.6																	PO as blebs and in irreg <vnlts< td=""></vnlts<>
			S1	44.3																	26.2-36.0 SL+PY+AS? in vnlts (planar & irreg) and patches
			S1	50.4	38		1														48.3 PY+tr AS in vnlt
			S1	60.0	35		1														63.8-64.6 crackle zone w/ CB in <vnlts, td="" vnlts,="" vns<=""></vnlts,>
																					lower cnt grad over 3 m
							1														
65.1	89.2	SPbh											tr	tr							Biotite Hornfelsed Siliceous Phyllite
			S1	66.1	58																It br-Itgy laminated, wkly phyllitic
			S1	72.7	62																loc sericite alt'n of br Bl lams
			S1	76.5			1														PO as blebs and in vnlts
			S1	82.1	60																PY as blebs and in vnlts w/ PO

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					65.1-89.2 cont'd
			S1	88.0	34																69.2 band w/ andalusite porphs. to 5mm (some xtls are faintly chiastolitic)
																					76.9-78.3 incip. bxia w/ PY/PO in vnlts; PY as patches; CP as blebs;
																					5-20% total sdes
89.2	96.1	Md											<1								Monzonite Dyke
																					med greenish/br, wkly porph, v. wkly calc, non-mag, med gr
																					PY in <vnlts and="" as="" dissems<="" td=""></vnlts>
																					upper cnt sharp, irreg
																					lower cnt sharp, irreg
96.1	99.9	SPbh											tr	tr	tr						Biotite Hornfelsed Siliceous Phyllite
			S1	98.9	58																It br-It gy laminated, wkly phyllitic
																					PY/PO as blebs
																					CP as blebs w/ PY/PO
99.9	104.2	Md											-								Monzonite Dyke
																					It gy, v. wkly porph, non-mag, non-calc, v.fine gr
																					upper cnt sharp, planar @ 33
																					lower cnt sharp, planar, S1 conformable @ 70
104.2	118.0												-	tr							Biotite Hornfelsed Siliceous Phyllite
			S1	105.1	50																It to med br-It gy laminated, wkly phyllitic
			S1	110.3	49																PO as blebs
			S1	114.7	57																105.4 F2 fold w/ S2 @ 70
EOH @	118.0	m																			

RQD Log LD04-10

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
2.4	. (- /			1 (2 /	
5.2	94	34			
8.2	148	49			
11.3	264	85			
14.3	213	71			
17.4	261	84			
20.4	241	80			
23.5	230	74			
26.5	136	45			
29.6	308	99			
32.6	194	65			
35.7	206	66			
38.7	226	75			
41.8	205	66			
44.8	240	80			
47.9	267	86			
50.9	237	79			
53.9	242	81			
57.0	248	80			
60.0	249	83			
63.1	274	88			
66.1	268	89			
69.2	241	78			
72.2	230	77			
75.3	269	87			
78.3	273	91			
81.4	215	69			
84.4	227	76			
87.5	221	71			
90.5	276	92			
93.6	243	78			
96.6	244	81			
99.7	221	71			
102.7	247	82			
105.8	274				
108.8	204	68			
111.9	249	80			
114.9	258	86			
118.0	251	81			
50 11 6 442 5					
EOH @ 118.0i	m				

Survey Log LD04-10

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		80		-55
no Sperry S	Sun tests (w	aiting for pa	ırts)		

Assay Sample Log LD 04-11

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	14.6	no sample								
322245	14.6	16.8			2.0	91	0.511	1.4	2540	45	585
	16.8	41.3	no sample								
322246	41.3	41.9			0.6	100	0.383	9.1	1550	978	349
	41.9	43.4	no sample								
322247	43.4	44.0			0.6	100	2.120	17.8	816	474	12900
	44.0		no sample								
322248		87.9			1.4	100			>10000	160	5760
322249		89.3			1.3	93	1.565	64.9	>10000	267	1000
322250			standard				0.799	2.9	29	12100	95
322251			blank				0.007	0.1	9	134	46
	89.3		no sample								
322252	96.7	98.2			1.3	87	0.703	34.8	6740	4020	1850
322253	98.2	99.6			1.2	86	0.735	12.1	9910	467	246
	99.6		no sample								
322254		106.5			1.8	100	0.097	2.6			166
322255	106.5	107.7			1.2	100	0.048	2.6		1120	56
322256		109.4			1.7	100	4.640		>10000	1015	2060
322257	109.4	111.1			1.5	88				220	86
322258		112.7			1.6	100			973		235
322259		114.0			1.3	100	0.224	5.1	1055		701
322260		115.4			1.4	100	0.810	11.4	1940		1835
322261		116.9			1.5	100			8820		467
322262	116.9	118.6			1.7	100	1.530	16.3			380
322263		120.1			1.4	93	0.386	6.2	4640	251	1070
322264		121.5			1.4	100			1810		538
322265		122.8			1.3	100	0.764	12.0	3870	485	431
	122.8	203.3	no sample								
EOH @ 203.3	m										

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Mir	nera	lizati	ion					Comments
						Hfs	Sk	Mar I	Ret	Y-Gar	Br-Ga	^r Si	PΥ	PO	СР	SL	. GL	_ AS	BN	MG	1
0.0	6.1	O/B																			triconed overburden
																					no core
6.1	56.5	SPbh											1	tr		tr		tr			Biotite Hornfelsed Siliceous Phyllite
			S1	8.4	56																It to med br-It gy laminated, wkly phyllitic
			S1	14.0	60																siliceous lams generally broken w/ loc augen text
			S1	19.9	60																sericite + CY alt'd loc where PY increases
			S1	25.2	71																PY in vnlts, <vnlts, and="" as="" dissems<="" td=""></vnlts,>
			S1	34.8	59																SP in vnlts w/ PY
			S1	42.5	40																PO as blebs
			S1	46.0	61																AS in vnlt w/ PY+SP
			S1	52.4	53																6.1-15.7 LI in <vnlts< td=""></vnlts<>
																					14.6-16.8 CY+sericite alt'n w/ 5% PY, tr SP
																					14.8 20mm gouge @ 65
																					35.9-40.6 wk sericite alt'n w/ strong <vnlts; +="" 3%="" py="" sp<="" td="" tr=""></vnlts;>
																					41.3-41.9 sericite alt'n w/ strong <vnlts; 1%="" 10%="" as+="" cp<="" py+="" td="" tr=""></vnlts;>
																					43.4-44.0 sericite alt'n w/ strong <vnlts &="" 7%="" cp<="" py+tr="" td="" vnlts;=""></vnlts>
																					45.4 20 mm gouge @ 57
																					grades loc to siliceous phyllite toward end of interval
																					55.5-55.9 gouge & rubbly core; upper cnt not observed; lower cnt sharp,
																					planar @ 80
																					55.9-56.1 sericite alt'n w/ PY+SP vnlts & PY patches; mineralization is
																					x-cut by late QZ vns
56.5	58.0	Md											5	5		tr					Monzonite Dyke
																					It gr/gy (loc. pinkish), wkly porph, non-mag, non-calc
																					<5% CL alt'd mafics
																					sericite+PY alt'd
																					PY in vnlts and as patches and dissems
																					SP in vnlts w/ PY
																					cnts not observed due to broken core
58.0	65.2	SPbh											tr	tr		tr					Biotite Hornfelsed Siliceous Phyllite
			S1	58.5	51																It br-dk gy-lt gy laminated, wkly phyllitic
																					incomplete BI hornfelsing
										_											loc sericite alt'n w/ PY

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct			ratio								izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					58.0-65.2 cont'd
																					PY in <vnlts, and="" as="" dissems<="" qz="" td="" vns="" w=""></vnlts,>
																					SP in vnlt w/ PY
																					PO as dissem. specks
																					61.7 minor gouge
																					63.6-65.2 30% irreg QZ vns
65.2	68.4	Md												1							Monzonite Dyke
																					pale gy/cream, non-mag, non-calc, wkly porph
																					w/ 5% pale gr, saussuritized plag phenos to 2mm
																					PO as dissems
																					upper cnt sharp, planar @ 50
																					lower cnt sharp, irreg
68.4	75.3	SP											tr			tr					Siliceous Phyllite
			S1	70.7	68																dk gy/blk-lt gy laminated, wkly phyllitic
			S1	75.0	60																grades loc to SPbh (ie incomplete hornfelsing)
																					PY in vnlts, <vnlts and="" as="" patches<="" td=""></vnlts>
																					SP in vnlts w/ PY
																					lower cnt grad
75.3	96.7	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	82.0	58																lith a/a 58.0-65.2 (ie incomplete hornfelsing)
			S1	87.7	65																grades loc to siliceous phyllite
			S1	92.9	47																loc sericite alt'n w/ PY in <vnlts< td=""></vnlts<>
																					PY in <vnlts, and="" as="" dissems<="" td=""></vnlts,>
																					78.4-81.4 rubbly core w/ minor gouge; no cnts observed
																					86.5-87.1 30% massive, fine gr PY; 1% gy unknown sde; mod. CY alt'n;
																					upper cnt grad; lower cnt sharp, planar @ 51
																					86.7 gouge; no cnts observed
																					87.1-87.9 vnlts w/ PY+SP+tr CP
																					89.1-89.2 GL+PY+AS vn @ 40
																					90.6-90.8 irreg white QZ vns
																					93.5-93.8 QZ+PY w/ white CY patches (altered ?); 10-30% massive PY w/
																					loc laminae (indicating replacement of SP?); cnts @ 49

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	CP	SL	GL	AS	BN	G	
96.7	99.6	MS											20								Massive Siliceous Pyrite
																					20% PY as coarse cubes; 75% QZ; 5% CY patches (alt'n of?)
																					loc vuggy and friable w/ QZ xtls
																					loc laminae (indicating replacement of SP?)
																					upper cnt faulted @ 27; lower cnt sharp, planar @ 15
																					96.9-97.0 large CP patch
99.6	106.5												<1	tr		tr		tr			Biotite Hornfelsed Siliceous Phyllite
			S1	104.6	50																It br-It gy laminated, wkly phyllitic
																					loc sericite alt'n proximal to PY patches, vnlts, <vnlts< td=""></vnlts<>
																					PY in <vnlts, td="" vnlts<=""></vnlts,>
																					SP in vnlts w/ PY
																					AS in vnlts w/ PY+SP
																					PO in <vnlts, (increasing="" cnt)<="" lower="" td="" toward="" vnlts=""></vnlts,>
																					104.8-104.9 QZ+ 25% PY
106.5	107.7	SKpm											1	20	2						Mineralized Ca-Garnet, Clinopyroxene Prograde Skarn
																					med gr-lt yellow/gr mottled, massive, wkly to mod. calc
																					<5% CL+ACT retrograde alt'n
																					20% intercalated siliceous phyllite
																					PO as large patches
																					PY in vnlts, <vnlts (in="" bands)<="" phyllite="" siliceous="" td=""></vnlts>
																					CP as blebs
																					upper cnt sharp, irreg
																					lower cnt sharp, irreg
107.7	109.4	SKrm											25		tr	tr		10			Mineralized Chlorite Retrograde Skarn
																					25% dk gr (CL+CY?) patches to 4mm
																					* very distinctive rx type w/o relict garnet outlines*
																					PY as masses and coarse cubes
																					AS as small xtls w/ CL+CY
																					SP as blebs
																					CP as blebs
																					107.7-108.0 massive PY
																					lower cnt grad

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	СА	Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
109.4	112.7	SP/SK	pm											5	tr	tr					Siliceous Phyllite
																					w/ 25% SKpm intercalated as irreg patches and bands
																					<5% retrograde alt'n of skarn component
																					pale gy-white wkly laminated, very wkly phyllitic
																					PO as patches in ca-garnet, clinopyroxene prograde skarn
																					SP in vnlts w/ PY
																					CP as blebs in SKpm patches
112.7	115.4	SKrm											5	15	tr	tr				0.5	Mineralized Chlorite, Actinolite? Retrograde Skarn
																					w/ 10% ca-garnet prograde patches
																					It blue/gy-lt red/br-dk gr mottled; mod calc
																					PO as patches/blebs
																					PY as patches
																					MG as patches
																					SP as blebs
																					CP as blebs w/ PO
																					upper cnt wkly grad
																					lower cnt fairly sharp, irreg
115.4	118.6	MS											50		1			4			Massive Pyrite
																					PY as coarse cubes w/ 40% interstitial QZ and 10% CL+CY patches
																					AS as small patches w/ dark gr CL+CY patches (retrograde alt'n?)
																					CP as blebs mainly @ 116.0
																					grades to SKp w/ 30% SKr patches @ lower cnt
																					lower cnt sharp, planar @ 40
118.6	122.8	SPm											7		0.3	tr		tr			Mineralized Siliceous Phyllite
																					w/ 20% intercalated SPbh
																					It gy-dk gy/blk, wkly laminated, wkly phyllitic
																					laminae are generally contorted
																					loc sericite+CL alt'n proximal to mineralization
																					PY in vns, vnlts, <vnlts< td=""></vnlts<>
																					AS in vnlts w/ PY+SP
																					SP in vnlts w/ PY+AS
																					CP as blebs (mainly 122.5-122.8
																\perp					lower cnt grad over 0.2m

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct		Alte									izati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РΟ	CP	SL	GL	AS	BN	MG	
122.8	127.0	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	124.4	47																It br-It gy laminated, wkly phyllitic
																					grades loc to siliceous phyllite (ie incomplete hornfelsing)
																					v wk, localized sericite alt'n
																					PY in vnlts and as blebs
127.0	134.9	SP											tr			tr					Siliceous Phyllite
			S1	132.6	41																It gy/blk-lt gy laminated, wkly phyllitic
																					S1 generally contorted; siliceous lams broken and rotated
																					grades loc to SPbh
																					PY in vnlts and in blebs
																					SP in vnlts w/ PY+CB
134.9	138.6	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
																					It br-It gy laminated, wkly phyllitic
																					grades loc to siliceous phyllite (ie incomplete hornfelsing)
																					PY as dissems
																					gradational cnts
																					
138.6	140.9	SP											<1								Siliceous Phyllite
			S1	139.7	50																dk gy/blk-lt gy laminated, wkly phyllitic
																					PY in <vnlts and="" irreg="" rare="" td="" vns<=""></vnlts>
																					loc silicified patches w/ sdes
																					pooling paramon paramon my case
140.9	157.8	SPbh											<1					tr			Biotite Hornfelsed Siliceous Phyllite
			S1	148.4	50																It br-lt gy-dk gy/blk laminated, wkly to mod phyllitic
			S1	154.3																	incompletely BI hornfelsed
			S1	157.0																	localized, wk sericite alt'n
			0.	107.0																	PY in rare vns w/ QZ+/-AS @ 50 (~ S1 conformable), <vnlts, and="" as="" dissems<="" td=""></vnlts,>
																					AS as blebs in PY vns
																					150.3-150.6 rubbly core w/ gouge
							1	1						1		1		+		1	157.6-157.7 dk gy pebble dyke w/ lt gy milled frags to 5mm
							1	1						1		1		+		1	157.7 GL+SP vn @ 62; 15mm
							+	-						-		 		1		1	107.7 OE101 VII © 02, 10111111
157.8	168.6	Md					 						<1	1		tr		tr			Monzonite Dyke
		-																			It gy/gr, med gr, non-mag, non-calc

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct		Alte								nera							Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					157.8-168.6 cont'd
																					PY in vnlts
																					PO as blebs
																					AS in vnlts w/ PY
																					SP in vnlts w/ PY
																					upper cnt broken w/ 10 cm gouge @ 53
																					lower cnt sharp, planar @ 63
168.6	178.3	SPbh											<1	tr							Biotite Hornfelsed Siliceous Phyllite
			S1	170.9																	grades loc to siliceous phyllite (ie incomplete hornfelsing)
			S0	171.4	55																It br-It gy laminated, wkly phyllitic
			S1	177.4	69																PY in <vnlts, td="" vnlts<=""></vnlts,>
																					PO as scattered blebs
																					171.4-171.5 Biotite Phyllite band
																					175.2-175.3 bxia w/ monzonite and siliceous phyllite frags
																					176.1-176.4 Biotite Phyllite band w/ grad cnts
178.3	192.1	Mpd											-								Porphyritic Monzonite Dyke
																					It gy/br, non-mag, non-calc, wkly porphyritic, unmineralized
																					2% euhedral feld phenos to 15mm
																					upper cnt sharp, planar @ 55
																					lower cnt sharp, irreg @ ~54
																					189.1-189.9 siliceous phyllite xenolith
192.1	193.0	Bxia											-								Breccia Zone
																					heterolithic breccia w/ frags of monzonite and siliceous phyllite in a dk to med
																					gy matrix
																					upper cnt sharp, planar @ 44
																					lower cnt 50mm gouge @ 75
193.0	203.3	SPbh											1	tr	tr						Biotite Hornfelsed Siliceous Phyllite
			S1	194.1	58																a/a 168.6-178.3
			S1	198.0	57																grades loc to siliceous phyllite (ie incomplete BI hornfelsing)
																					PY as patches and in vnlts
																					PO as blebs and in vnlts
																					CP in vnlts w/ PO+QZ

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	on					Mir	nera	lizati	on					Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					193.0-203.3 cont'd
																					loc. strong sericite alt'n
																					194.8-195.5 sericite alt'n w/ 5% PY as patches/blebs
																					198.5 heterolithic bxia @ 63; 20 mm wide
																					198.9-199.0 dk gy, fine gr, wkly calc, non-mag dyklet w/ rare monzonite
																					frags to 10mm; cnts sharp, planar @ 58
																					199.0-199.9 strong sericite alt'n
																					199.9-200.3 gouge and rubbly core
EOH @	<u>203.3</u>	3 m																			
																1					
																1					
																1					
																	1				
		1								1						1	l				
		1								1						1	l				
																1					
						1								1		1		1			
						1								1		1		1	1		
						1								 		†	1	t			
						1								1							
						1								 		†	1	t			
						1		 						t		1					
														1		1			1		
		 				1				 						1					
			<u> </u>		<u> </u>	I	1	L			1		<u> </u>	<u> </u>		1	<u> </u>	1	<u> </u>	<u> </u>	I .

RQD Log LD04-11

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
6.1	1142 (611)	1142 70	139.3	292	70
8.2	83	40	142.3	213	71
11.3	230	74		256	83
14.3	128			209	70
17.4	157	51	151.5	86	28
20.4	199	66	154.5	221	74
23.5	224	72	157.6	209	67
26.5	265	88	160.6	268	89
29.6	241	78		278	90
32.6	218	73		271	90
35.7	257	83	169.8	239	77
38.7	201	67	172.8	234	78
41.8	249	80	175.9	237	76
44.8	182	61	178.9	257	86
47.9	227	73		255	82
50.9	222	74		279	93
53.9	129	43		286	92
57.0	96	31	191.1	293	98
60.0	98 212	33 68		200 287	67 93
63.1 66.1	200	67	200.2	206	69
69.2	200	73		99	32
72.2	250	83		99	52
75.3	171		EOH @ 203.3m	<u> </u>	
78.3	175	58			
81.4	94	30			
84.4	127	42			
87.5	157	51			
90.5	231	77			
93.6	226	73			
96.6	202	67			
99.7	156	50			
102.7	93	31			
105.8	228	74			
108.8					
111.9	268				
114.9	298				
118.0	293				
121.0	258	86			
124.0	234	78			
127.1	161	52			
130.1	292	97			
133.2 136.2	267 266	86 89			
130.2	292	94			
139.3	292	94			

Survey Log LD04-11

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		90		-55
157	47.9	66	88	37	-53
307	93.6	57.5	79.5	40.5	-49.5
457	139.3	63	85	40.5	-49.5
667	203.3	60	82	42	-48

* magnetic interference?

Assay Sample Log LD04-12

Page: 1

Sample No.			Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0	134.7	no sample								
322266					1.5	100			2540		
322267	136.2	137.6			1.4	100	0.268	5.9	4210	166	122
322268	137.6	139.3			1.6	94	0.878	19.0	7210	193	3450
322269	139.3	140.8			1.5	100	0.143		1560		1850
322270			standard				0.875	2.7	14	11600	88
322271			blank				0.002	0.1	6	130	
322272					1.5	100	0.022	1.2			
322273					1.4	93	0.235	5.3	3410	117	1750
	143.8	316.1	no sample								
EOH @ 316.1											
2011 @ 010.1											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA	Alte	ratio	n					Mir	nera	lizati	ion					Comments
						Hfs	Sk	Mar F	Ret	Y-Gar	Br-Gar	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
0.0	6.1	O/B																			triconed overburden
																					no core
6.1	24.9	SP											tr								Siliceous Phyllite
			S1	12.3	56																dk gy/blk-lt gy laminated; wkly to moderately phyllitic
			S1	16.2	48																<10% SPbh intercalated
			S1	22.0	55																It gy, siliceous lams are locally broken w/ frags rotated and augened
																					6.1-7.4 rubble and gouge (no attitude)
																					8.1-8.3 rubble & gouge @ 68
																					PY as blebs
																					LI in <vnlts< td=""></vnlts<>
																					23.4 QZ+PY+CP vn; 4.5 cms wide; lower cnt S1 conformable; upper cnt
																					x-cuts S1
																					lower cnt gradational
24.9	32.6	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	25.9	62																It br-It gy laminated; wkly phyllitic
			S1	32.0	52																PY in <vnlts and="" td="" vnlts<=""></vnlts>
																					LI in <vnlts locally<="" td=""></vnlts>
																					lower cnt gradational
32.6	37.2	SPa											1		tr	tr					Altered Siliceous Phyllite
																					It gy, laminated, wkly phyllitic
																					sericite alteration of biotite rich laminae of SPbh
																					grades loc. to SPbh
																					mod. QZ <vnlt stwk<="" td=""></vnlt>
																					PY in vnlts
																					CP in vnlts w/ PY
																					SL in vnlts w/ PY
																					LI in <vnlts locally<="" td=""></vnlts>
																					lower cnt gradational
																					35.7-36.0 rubbly core w/o gouge
37.2	46.2	SPbh											tr	tr		tr		tr			Biotite Hornfelsed Siliceous Phyllite
			S1	37.5	73																It br-It gy laminated, wkly phyllitic, w/ loc dk gy/blk laminae
			S1	44.0	56																PY/PO as blebs and in <vnlts< td=""></vnlts<>

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					37.2-46.2 cont'd
																					SL and AS in CB vnlt
46.2	52.9	Md											tr								Monzonite Dyke
																					It to med gr/gy; non-magnetic; non-calc; wkly porphyritic
																					PY as rare patches to 10mm
																					upper cnt sharp, planar @ 70
																					lower cnt sharp; slightly irregular @ ~42
52.9	112.0	SP											tr			tr		tr			Silcieous Phyllite
			S1	53.9	62																dk gy/blk-lt gy laminated, wkly phyllitic
			S1	61.3																	grades locally to SPbh w/ It br laminae
			S1	72.9	50																S1 loc disrupted; It gy siliceous laminae are broken and rotated
			S1	81.4	60																PY in <vnlts< td=""></vnlts<>
			S1	84.4	56																local wk QZ vn stwk
			S1	93.6	52																66.2 PY+SL+AS+QZ+CB vn @ 55; 10 mm wide
			S1	99.1	42																85.7-86.8 white QZ veining w/ tr PO; SL vnlt x-cuts QZ vn
			S1	102.7	60																89.9-90.5 It br, wkly plag phyric, felsite dyke; upper cnt sharp @ ~47; lower
			S1	108.0	55																cnt sharp, irreg (no attitude)
																					92.5-92.6 QZ vn stwk
																					95.0-95.1 QZ+PY irreg vn @ 25 w/ 25% gy/br material and strong QZ+ser
																					alteration envelope
																					97.3-97.6 graphitic gouge and rubble
																					100.4-101.0 irreg QZ vn stwk
																					108.8 GL+SL+PY vns (2) @ 65; 10mm and 15mm; minor gouge @ cnts
																					110.3 PY+tr SL vn @ 70 w/ minor gouge
112.0	122.4	Mpd											<1			tr					Porphyritic Monzonite Dyke
																					It gr/gy - med gy/gr, porphyritic, non-mag, non-calc
																					w/ 10% feldspar phenos to 10x10mm in a med grained matrix
																					tr muscovite
																					PY as dissems
																					SL as blebs
																					upper cnt sharp, planar @ 50
																					lower cnt sharp, planar w/ minor bxia @ 65

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	AS	BN	MG	
122.4	135.0	SP											1	tr	tr						Siliceous Phyllite
			S1	127.0																	dk gy/blk-lt gy laminated, wkly phyllitic
			S1	130.3																	w/ irreg white QZ (vns?) locally
			S1	133.2	59																PY in <vnlts< td=""></vnlts<>
																					PO as blebs and in gashes
																					CP as blebs w/ PO
																					128.7-128.9 rubbly core w/o gouge
135.0	142.7	SPm											3	<1		<1		<1			Mineralized Siliceous Phyllite
			S1	140.5	58																dk gy/blk-lt gy laminated, wkly phyllitic
																					grades locally to unmineralized siliceous phyllite
																					SL/AS/PY/PO in irreg vnlts, gashes, & <vnlts< td=""></vnlts<>
																					loc. PY+QZ+CB+/-AS vns? to 20cms (x-cuts S1)
																					139.2 GL+SP+AS vn @ 47; 30 mm wide (x-cuts S1)
																					142.6-142.7 rubble w/ minor gouge @ 52
142.7	156.5	SP											<1	<1	tr						Siliceous Phyllite
			S1	145.4	44																dk gy/blk-lt gy laminated
			S0	146.5	47																It gy siliceous bands are broken and frags are rotated and augened
			S1	152.4	53																PY/PO as blebs and in <vnlts 2mm<="" and="" irreg="" td="" to="" vnlts=""></vnlts>
																					146.5-147.1 dk gr, massive chloritic rock w/ 10% siliceous bands; upper cnt
																					(SO) parallel to S1; lower cnt gradational
																					155.6-156.5 sericite alt'n of argillaceous laminae
156.5	167.7	Md?											<1	<1		tr	tr?	tr			Weakly Mineralized Monzonite Dyke?
																					med gy/gr, non-porph, non-mag, v. wkly calc
																					minor QZ+sericite alt'n proximal to mineralized vnlts, <vnlts< td=""></vnlts<>
																					locally mineralized w/ PY+PO+/-SL+/-GL+/-AS in vnlts and <vnlts< td=""></vnlts<>
																					upper cnt sharp, planar @ 26
																					lower cnt sharp, planar @ 50
																					(becomes less mineralized toward end of interval)
167.7	172.8	SP											<1								Siliceous Phyllite
			S1	170.5	30																dk gy/blk-lt gy laminated, wkly to modly phyllitic
																					strongly fractured core w/ local rubble and minor gouge
																					loc BI and sericite alt'n of argillaceous laminae

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct		Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	PO	CP	SL	GL	. AS	BN	MG	
																					167.7-172.8 cont'd
																					minor irreg. white QZ vn stwk
																					PY in <vnlts< td=""></vnlts<>
172.8	186.3	Mpd																			Porphyritic Monzonite Dyke
																					cream colored, non-mag, strongly porph., non-mineralized
																					w/ 30% feldspar phenos to 15x10mm
																					upper cnt brecciated w/ minor siliceous phyllite xenoliths
																					lower cnt brecciated from 185.4 w/ siliceous phyllite xenoliths
186.3	281.4	SP											tr	tr	tr						Siliceous Phyllite
			S1	188.1	37																dk gy/blk-lt gy laminated, wkly to modly phyllitic
			S1	195.1	42																It gy siliceous laminae are generally broken w/ loc augen texture
			S1	200.5																	local wk BI hornfels developed
			S1	205.3	76																local QZ+sericite alt'n of argillaceous laminae
			S1	212.5	40																PY in vnlts, <vnlts< td=""></vnlts<>
			S1	220.4	40																PO as blebs w/ PY
			S1	224.4	53																CP in PO blebs locally
			S1	230.5	50																201.7-202.2 rubble and gouge
			S1	233.8	65																207.6-207.7 rubble and gouge
			S1	240.9																	213.1-213.3 rubble and gouge
			S1	245.5																	218.6 graphitic slip
			S1	251.1	52																222.8 AS in <vnlt< td=""></vnlt<>
			S1	257.2	60																grades locally to phyllitic chert
			S1	262.7	58																local irreg, white QZ vn stwk
			S1	267.8	70																246.5-281.4 siliceous laminae are locally broken (angular and augen frags)
			S1	273.4	63																267.6 gouge @ 63; 50 mm wide
			S1	280.3	44																
281.4	282.4	Md																			Monzonite Dyke
																					It gy/gr, non-mag, non-calc, non-porph
																					w/ 15% med br/gy patches
																					upper cnt sharp, irreg
																					lower cnt sharp, planar @ 43

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA	Alte									lizati						Comments
						Hfs	Sk	Mar	Ret	Y-Gar	Br-Gar	Si	PY	РО	CP	SL	GL	AS	ΒN	MG	
282.4	295.9	SP											tr	tr							Siliceous Phyllite
			S1	285.4																	dk gy/blk-lt gy laminated, wkly phyllitic
			S1	290.7	60																It gy siliceous laminae are generally broken (angular and augen frags)
																					local irreg white QZ vns
																					PY/PO as blebs
295.9	298.4	SSa												<1							Argillaceous Siltstone
			S0	298.4	25																med gy, v. wkly laminated, v. wkly phyllitic
																					PO as blebs and patches
																					upper cnt gradational
																					lower cnt sharp, planar @ 25
298.4	316.1	SP																			Siliceous Phyllite
			S1	301.2	48																dk gy/blk-lt gy laminated, wkly phyllitic
			S1	308.4																	w/ 5% interbedded phyllitic argillaceous siltstone and phyllitic chert
			S1	314.5																	It gy, siliceous laminae are generally broken (angular and augen frags)
																					306.7 PY+SL vn @ 60; 8mm wide
																					306.9 SL+GL+PY vn @ 58; 12mm wide
EOH @	2 316.1	meter	s S																		
			Ī																		
													 								
			1			1	1					-	1		-			-	-		
													1								
													1								
													-								
													1								
			1			-	1						1	-	-			-	-	-	

RQD Log LD04-12

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
6.1	. (,		139.3	244	
8.2	16	8	142.3	243	81
11.3	177	57	145.4	211	68
14.3	246	82	148.4	257	86
17.4	251	81	151.5	259	84
20.4	245	82	154.5	276	92
23.5	252	81	157.6	220	71
26.5	245	82	160.6	287	96
29.6	253	82	163.7	251	81
32.6	264	88	166.7	238	79
35.7	166	54	169.8	153	49
38.7	61	20	172.8	71	24
41.8	210	68	175.9	270	87
44.8	241	80	178.9	258	86
47.9	233	75	182.0	259	84
50.9	269	90	185.0	256	85
53.9	284	95	188.1	216	70
57.0	278	90	191.1	154	51
60.0	289	96	194.1	238	79
63.1	287	93	197.2	204	66
66.1	261	87	200.2	149	50
69.2	268	86	203.3	156	50
72.2	249	83	206.3	124	41
75.3	254	82	209.4	153	49
78.3	263	88	212.4	231	77
81.4	284	92	215.5	194	63
84.4	224	75	218.5	232	77
87.5	279	90	221.6	229	74
90.5	227	76	224.6	249	83
93.6	232	75	227.7	277	89
96.6	116	39	230.7	286	95
99.7	148	48	233.8	264	85
102.7	218	73	236.8	259	86
105.8	121	39	239.9	248	80
108.8		37	242.9	280	93
111.9	172	55	246.0	256	83
114.9	247	82	249.0	274	91
118.0	291	94	252.1	236	76
121.0	169	56	255.1	273	91
124.0	206	69	258.2	214	69
127.1	185	60	261.2	212	71
130.1	196	65	264.2	143	48
133.2	184	59	267.3	71	23
136.2	281	94	270.3	216	72
139.3	244	79	273.4	303	98

RQD Log LD04-12

Date: Page: 2

273.4	303			
276.4	261	87		
279.5	276			
282.5	271	90		
285.6	229	74		
288.6	277	92		
291.7	242	78		
294.7	289	96		
297.8	287	93		
300.8	261	87		
303.9	267	86		
306.9	22	7		
310.0	251	81		
313.0	300	100		
316.1	284	92		
3.3.1	201	52		
				

Survey Log LD04-12

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		89		-55
157	47.9	64.5	86.5	39	-51
307	93.6	57.5	79.5	40.5	-49.5
457	139.3	56	78	41	-49
607	185.0	60	82	42	-48
757	230.7	64	86	42.75	-47.25
1037	316.1	56	78	46	-44

Assay Sample Log LD04-13

Page: 1

Sample No.	From		Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0		no sample								
322274	105.9	107.7			1.8	100	0.358	20.9	2400	124	5320
	107.7	200.7	no sample								
322275	200.7	202.2			1.5	100	0.047	1.0	25	563	
322276	202.2	203.7			1.5	100	0.019	0.9	39	582	39
322277	203.7	204.8			1.1	100	0.035	1.1	51	573	43
	204.8	231.2	no sample								
322278	231.2	232.7			1.5	100	0.090	1.9	64	740	46
	232.7	236.1	no sample								
322279	236.1	237.7			1.5	94	12.700	3.0		2090	
322280	237.7	239.1			1.4	100	0.087	2.3	339	590	239
	239.1		no sample								
322281	291.5	292.8			1.2	92	0.267	0.9	106	299	
322282	292.8	293.9			1.1	100	0.089	0.4	337	97	29
322283	293.9	295.2			1.3	100	0.073	0.5	87	279	
322284	295.2	297.0			1.8	100	0.057	0.1	40	82	
322285	297.0	298.9			1.9	100	0.167	0.6	120	105	39
322286	298.9	300.6			1.7	100	0.587	1.5	110	318	
322287	300.6	302.1			1.5	100	1.215	1.6	111	778	68
322288	302.1	303.6			1.5	100	0.084	0.2	203	36	
322289	303.6	305.3			1.7	100	0.461	2.6	199	714	
322290			standard				1.025	2.9	21	11600	
322291			blank				0.002	0.0	7	130	45
	305.3	365.8	no sample								
322292	365.8	366.9			1.1	100	0.067	1.2	154	300	39
			no sample								
322293		370.2			1.5	100	0.053	0.9	544	66	
322294	370.2	371.4			1.2	100	0.110	0.6	201	203	
322295		372.6			1.0	83	0.031	1.3	246	336	197
322296	372.6	373.5			0.9	100	0.072	2.7	378	2870	
322297	373.5	374.7			1.1	92	0.049	0.4	228	127	35

Assay Sample Log LD04-13

Page: 2

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	374.7	419.7	no sample								
EOH @ 419.7	1										
				<u> </u>		1				1	
										+	
								-			
								-			
				-							
										+	
				 						+	
				 						+	
				 						+	

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA				Alter	ation					M	inera	aliza	tion			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	PO	СР	SL	GL	AS	BN	MG	
0.0	4.3	O/B																			triconed - no core
4.3	12.3	Md											tr								Monzonite Dyke
																					med gy, slightly mag, wkly calc, fine grained
																					w/ 3-4% mafics
																					local chl. alt'n of mafics
																					wk sauss. alt'n of plag.
																					PY in <vnlts ep<="" td="" w=""></vnlts>
																					lower cnt sharp, planar @ 50
12.3	31.1	SPbh											<1		tr						Biotite Hornfelsed Siliceous Phyllite
			S1	14.8	48																It gy-med br/gy laminated, v. wkly phyllitic
			S1	20.6																	br/gy biotite rich laminae are generally contorted
			S1	24.8																	grades locally to phyllitic chert
			S1	28.3	53																local wk sericite alt'n of biotite rich laminae is related to sde mineralization
																					in vns & vnlts
																					PY in vns, vnlts, <vnlts, and="" as="" blebs<="" td=""></vnlts,>
																					CP as blebs w/ PY
																					MO (tr) in <vnlts cnt<="" monzonite="" proximal="" td="" to=""></vnlts>
																					23.1 gouge @ 62; 20 mm wide
																					28.6-30.1 rubbly core w/ local gouge
31.1	33.3	Md											<1								Monzonite Dyke
																					lt gy, non-mag, wkly calc, v. wkly porph
																					wk <vnlts alt'n="" biotite="" envelopes<="" td="" w=""></vnlts>
																					wk sauss. alt'n of plag
																					PY in vnlts, <vnlts< td=""></vnlts<>
																					upper cnt sharp, planar @ 30
																					lower cnt sharp, planar @ 33
33.3	200.7	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	35.7	60																lith and alt'n a/a 12.3-31.1
			S1	39.9																	PY in vnlts, <vnlts and="" as="" blebs<="" td=""></vnlts>
			S1	47.5												Ī					PY+QZ vns to 10mm
			S1	50.5	42																MO (tr) in vnlt w/ PY+CB
			S1	57.2	53																57.3 QZ vn @ 26; 60 mm

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA				Alter	ation								tion			Comments
						Hf	s Sk	Ма	r Ret	Chl	Ser	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	1
																					33.3-200.7 cont'd
			S1	63.4	63																100.3 tr SL in vnlt w/ PY
			S1	68.6	42																105.9-107.7 mineralized zone w/ 7% PY as patches/blebs, 0.1% AS as
			S1	73.0	60																blebs, tr MO; SL/GL vn @ 52/14mm; 10% white CY in structurally
			S1	76.8	54																controlled zones @ 27/10cm
			S1	85.8	63																114.4-114.9 rubble and gouge @ 45
			S1	90.5	53																114.9-116.4 rubble w/ minor gouge
			S1	96.2	50																119.1 PY/SL vnlt
			S1	102.8	45																125.0 SL/PY/GL? vn @ 28/15mm w/ gouge on cnts
			S1	105.3	53																129.2-129.4 breccia, rubble & gouge @ 20
			S1	111.7	35																130.1-130.5 rubble & gouge (no attitude)
			S1	118.4	40																131.3 PY/CP vnlt @ 23/5mm w/ gouge at cnts
			S1	123.5																	137.2 bxia zone @ 20/23mm
			S1	127.2	54																142.5 PY/SL vnlt @ 56/9mm
			S1	136.2	54																150.6 QZ/CB?SL vnlt @ ?/2mm
			S1	140.1	44																154.5-155.5 phyllitic chert
			S1	147.4	42																155.5 QZ/PY vn @ 80/10mm
			S1	149.9	60																164.1-166.2 rubble and gouge (no attitude)
			S1	157.0	57																168.6 PY/AS bleb
			S1	163.7	38																172.2-173.3 chlorite/PY altered rx w/ 5% PY as blebs, 0.5% EP; massive,
			S1	171.3	33																wkly calc, wkly mag; cnts sharp, irregular
			S1	179.2	52																184.0 structurally controlled CL/EP/PY alt'n @ 20/25mm
			S1	188.4	35																185.2 structurally controlled CL/EP/PY alt'n @ 20/15mm
			S1	198.5	54																191.1 gouge @ 42
																					191.4-191.5 gouge & QZ/PY vn @ 56/25mm
200.7	204.8	Sk/rm				-		-					7	7	0.5	<u> </u>					Mineralized Chlorite-Actinolite? Retrograde Skarn
200.7	204.0	SKIIII													0.0	' 					dk gr, felted, non-calc, w/ 2% EP as patches/blebs assoc. w/ PY
																+					grades locally to It red/br mottled calcium garnet prograde skarn and
							-	+	1			<u> </u>	1			1			-	1	siliceous phyllite; ie incomplete prograde and retrograde alt'n
						1		+	1							+		1	1		PY as patches/blebs and in vnlts
						1		1	1					\vdash		+	\vdash	1	1		PO as patches/blebs
						\vdash		+	1			1	\vdash	1		1	1		1		CP as blebs w/ PO
						1	+	+	+			 			1	1	1	1	+		upper cnt irreg, sharp
						1	+	+	+			 			1	1	1	1	+		lower cnt gradational
						1		1	1							1			1	1	Tomor on graduitorial

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA					ation								tion			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	РО	СР	SL	GL	AS	BN	MG	
204.8	209.3	Fd											1								Felsite Dyke
																					It gy to med gy/gr, wkly porphyritic w/ plag phenos to 3mm in a felsic matrix
																					w/ local exoskarn developed proximal to PY vnlts
																					PY in vnlts +/- QZ and in <vnlts< td=""></vnlts<>
																					1% EP as blebs
																					lower cnt sharp, planar @ 85
209.3	236.1	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	212.8																	lith and alt'n a/a 12.3-31.1
			S1	219.8																	PY in <vnlts, qz<="" rare="" td="" vnlts="" w=""></vnlts,>
			S1	229.0																	212.4 bia vn w/ SL/PY/AS @ 38/10cm
			S1	234.3	64																214.7 PY/SL/QZ vn @ 5/7mm
																					214.7 PY/SL/AS vn @ 22/9mm in dk gy QZ vn
																					215.1 PY/SL in dk gy QZ vn @ 18/5mm
																					222.4 PY/SL/QZ/AS vn @ 48/14mm
																					222.3-225.7 sericite alt'n of biotite rich laminae
																					231.3-231.5 SKp; It gr-lt red/br-lt yellow/gr mottled, non-calc; 5% PY as
																					blebs, and in vnlts; cnts are sharp, irreg (x-cuts S1)
																					232.3-232.5 10% PY and 1% AS in irreg vns & vnlts
																					231.2-232.7 mineralized siliceous phyllite w/ 5% PY in <vnlts, td="" vnlts<=""></vnlts,>
																					lower cnt gradational
236.1	237.7	SKpm											3	10	1.5						Mineralized Ca-Garnet, Clinopyroxene? Prograde Skarn
																					It to med gr-lt red/br mottled, massive, non-calc
																					w/ <2% dk gr/blk chlorite retrograde alt'n
																					PY as blebs
																					PO as patches/blebs
																					CP as blebs
																					237.4-237.7 massive PO
																					lower cnt fairly sharp, irregular
237.7	239.1	SKpm											5					tr			Incip. Developed Ca-Garnet, Clinopyroxene Prograde Skarn
																					It to med green-It red/br mottled, wkly laminated
																					PY as blebs and in <vnlts< td=""></vnlts<>
																					AS associated w/ white QZ vn (pod?)
									1												lower cnt sharp, irreg, x-cuts S1

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA				Alter	ation					Mi	nera	aliza	tion			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
239.1	246.4	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	241.9	61																lith and alt'n a/a 12.3-31.1
			S1	243.1	60																PY in <vnlts, td="" vnlts<=""></vnlts,>
																					occ. irreg, white QZ vns w/ PY/CL
																					240.2 massive PY vn w/ dk gr/blk alt'n envelopes @ 23/25mm
246.4	247.6	Md											5								Mineralized Monzonite Dyke
																					med gr, non-calc, non-mag, wkly porph
																					pervasive sauss. alt'n
																					PY in vnlts and as patches w/ dk gr/blk CL alt'n halos
																					upper cnt sharp, slightly irreg @ 58
																					lower cnt sharp, irreg
																					cnts x-cut S1
247.6	291.5	SPbh											<1								Biotite Hornfelsed Siliceous Phyllite
			S1	248.9	52																lith and alt'n a/a 12.3-31.1
			S1	254.7	47																local dk gy, argillaceous laminae (incomplete hornfelsing)
			S1	260.4	40																local QZ+sericite bleached zones
			S1	266.3	70																PY in vnlts, <vnlts< td=""></vnlts<>
			S1	273.4	63																261.2-261.7 QZ+sericite alt'n of biotite rich laminae w/ 5% PY as patches,
			S1	279.4	55																blebs, and in vnlts
			S1	285.4	56																269.2-269.3 CB/PY bxia vn
			S1	289.7	48																280.4 PY/QZ vn @ 46/50mm
291.5	292.8	SP-SK											2	2							Intercalated Biotite Hornfelsed Siliceous Phyllite and Ca-Garnet,
																					Clinopyroxene Prograde Skarn
																					60-70% typical laminated, wkly phyllitic SPbh
																					30-40% It gr & It red/br mottled and banded prograde skarn
																					<5% dk gr/blk CL retrograde alt'n
														ļ							PY/PO as patches/blebs in skarn bands
														ļ							
292.8	293.9	SP											tr	<1			ļ				Siliceous Phyllite
														<u> </u>			ļ				dk gy/blk-lt gy laminated, wkly phyllitic
								<u> </u>						<u> </u>			<u> </u>				w/ <5% intercalated skarn
														<u> </u>			ļ				local sericite alt'n of dk gy/blk argillaceous laminae
																					PY in <vnlts< td=""></vnlts<>

Diamond Drill Log LD 04-13

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA				Alter	ation								ation			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PY	РΟ	СР	SL	GL	_ AS	BN	I MG	1
																					292.8-293.9 cont'd
																					PO in vnlts and as blebs
293.9	295.2	SKp											<1	4	0.2	2					Ca-Garnet, Clinopyroxene Prograde Skarn
																					med gr w/ patches of lt red/br, massive, locally calc w/ 5% xtline CA patches
																					PY as blebs
																					PO as patches/blebs
																					CP as small specks w/ PO
																					upper cnt sharp, planar @ 70 (x-cuts S1)
																					lower cnt sharp, irreg
295.2	297.7												<1	2	tr						Intercalated Biotite Hornfelsed Siliceous Phyllite and Ca-Garnet,
			S1	295.3	64																Clinopyroxene Prograde Skarn
																					30-40% skarn bands w/ v. irreg cnts x-cutting S1
																					Skarn lithology a/a 291.5-292.8
																					60-70% typical, laminated SPbh
																					PO as blebs
																					PY in vnlts, <vnlts and="" as="" dissems<="" td=""></vnlts>
																					CP as specks w/ PO
																					lower cnt gradational
		_																			
297.7	298.9	SPm											7								Mineralized and Altered Siliceous Phyllite
																					It gy, wkly laminated, wkly phyllitic
																					PY as patches and in vnlts, <vnlts< td=""></vnlts<>
																					lower cnt gradational
298.9	300.6																				
			S1	299.5	58								2								Siliceous Phyllite
							-					ļ				-	-	4	-	-	dk gy/blk-lt gy laminated, wkly phyllitic
				1			1										-	_		1	grades locally to SPbh
				1			1										-	_		1	local QZ+sericite alt'n patches assoc. w/ increased PY content
				1			1	<u> </u>	ļ								1	_	-	1	PY in vnlts +/- QZ and as blebs
				1												-	-	1	+	1	299.2-300.6 QZ+sericite alt'n w/ increased PY and 1% EP
000.0	000 1	014		1									<u> </u>			_	-	+	+	1	
300.6	302.1	SKpm		_								ļ	5	5	0.5		-	+	-	+	Mineralized Ca-Garnet, Clinopyroxene Prograde Skarn
																					w/ 10-20% CL/ACT retrograde alt'n

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct	CA				Alter	ation								tion			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					300.6-302.1 cont'd
																					It gr-It red/br mottled w/ patches of dk gr, massive, v. wkly calc
																					300.6-300.9 30% dk gr/blk CL retrograde alt'n w/ EP
																					PY as patches/blebs
																					PO as blebs
																					CP as specks w/ PO
																					upper cnt gradational
																					lower cnt sharp, fairly planar @ 50
302.1	305.3	SPbh											2	1							Biotite Hornfelsed Siliceous Phyllite
																					w/ 10% clinopyroxene skarn bands (cnts S1 conformable)
																					It gy-It br laminated, wkly phyllitic
																					40% QZ+sericite alt'n of biotite rich laminae assoc w/ increase in PY+/-EP vnlts
																					PY in vns, vnlts and as patches
																					PO as blebs
																					304.5-304.7 30% PY/ 5% CP/ MG as patches or as poorly developed vns
305.3	365.8	SPbh											1								Biotite Hornfelsed Siliceous Phyllite
			S1	306.0																	dk br-lt gy laminated, wkly phyllitic
			S1	313.8																	<5% QZ+sericite altered bands assoc w/ PY in vns, vnlts
			S1	320.7	62																grades locally to siliceous phyllite (incompletely hornfelsed)
			S1	324.0																	It gy siliceous laminae are locally broken w/ some augened frags
			S1	327.7	32																PY in vnlts, <vnlts< td=""></vnlts<>
			S1	333.0																	317.7-317.8 structurally controlled retrograde skarn band @ 25
			S1	339.1	40																322.0 structurally controlled retrograde skarn band @ 28; x-cuts S1; wk QZ+
			S1	345.7	53																sericite alt'n envelopes
			S1	349.5																	322.2-322.4 light gy pebbles (probably not part of this interval - may have
			S1	354.9																	fallen down hole when bit was changed
			S1	361.7	33																323.9 PY/QZ vn @ 39/15mm
																					336.9 5cm retrograde skarn band w/ PY/CL/CY
																					340.7 clinopyroxene skarn band @ 34/60mm w/ 4% PO patches/blebs and
																					2% PY blebs; x-cuts S1
																					343.2 15mm retrograde skarn band w/ CL/PY; 35mm QZ+sericite alt'n halos
																					347.2-347.6 heavily fractured and rubbly core w/ gouge @ 347.6
																					347.6-347.9 dk gr/blk retrograde skarn band w/ CL/PY
																					349.7-349.9 retrograde skarn w/ CL/PY/CY; x-cuts S1; QZ+sericite envs.

Date: Logged By: DJH Page 7/

						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					305.3-365.8 cont'd
																					351.7-352.0 rubble and gouge
																					352.3 minor gouge
																					356.4-356.5 healed bxia w/ frags of monzonite and siliceous phyllite in a
																					dk gy/blk matrix
265.0	370.2	SP		1									2								Siliceous Phyllite
303.6	370.2	SF	S1	367.4	30									1							dk gy/blk-lt gy laminated, wkly phyllitic
			01	307.4	30							-				+					<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><pre><</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
																-					
							1					-	-	<u> </u>		-					grades locally to SPbh
																					PY as patches/blebs and in vnlts
370.2	372.6	SKp											3	2							Clinopyroxene Prograde Skarn
																					med gr, massive, non-calc
																					<5% dk gr/blk CL retrograde alt'n as patches and as borders on <vnlts< td=""></vnlts<>
																					PO as patches/blebs (increasing toward lower cnt)
																					PY in <vnlts, and="" as="" blebs<="" patches="" td=""></vnlts,>
																					upper cnt intercalated w/ siliceous phyllite
																					lower cnt gradational
372.6	373.5	MS											35	35	1						Massive Sulphide
																					w/ <5% med gr, clinopyroxene prograde skarn
																					10% dk gr/blk CL retrograde skarn
																					10% QZ
																					cnts gradational
																					PY/PO as massive patches
																					CP as blebs w/ PO
	07.4	014																			
3/3.5	374.7	SKp		0= · =	<u>.</u> .							1	2	1		1					Clinopyroxene Prograde Skarn
			S1	374.7	30							1	<u> </u>			1					w/ relict laminations
																					med gr, wkly laminated, non-phyllitic, non-calc
												ļ				<u> </u>					lower cnt S1 conformable
																					PY as blebs and in <vnlts< td=""></vnlts<>
2747	200.0	SP										_	_			4		4			Ciliana de Dhyllita
3/4./	382.0	95	04	202.2	00							1-	3	-		tr		tr			Siliceous Phyllite
			S1	380.0	36							1	l	1	I	1	I	I		1	dk gy-lt gy laminated, wkly phyllitic

Date: Logged By: DJH Page 8/

From To	Rock Mo	d Stuct	CA	Alteration		Mineralization	Comments
				Hfs Sk Mar Ret Chl	Ser Si	PY PO CP SL GL AS BN MG	

	1 1		ſ	1		г г		1	1	1		1				
															_	374.7-382.0 cont'd
															_	grades loc to SPbh
																<2% med green, clinopyroxene prograde skarn
																PY in vns w/ QZ, vnlts, and as patches (+/- SL)
																AS as blebs in healed bxia at 380.0
382.0	395.7	SP									<1					Siliceous Phyllite
			S1	385.9	47											dk gy-lt gy laminated, wkly phyllitic
			S1	392.2	32											grades locally to SPbh; no skarn alteration
																<1% QZ+sericite alt'n of dk gy, argillaceous laminae
																PY in <vnlts, and="" as="" blebs<="" patches="" td=""></vnlts,>
																382.2-384.1 rubble and gouge w/ lower cnt @ 30
															1	393.8-395.7 CP in vnlts @ 30/12mm and @ 40/1mm
395.7	413.8	Mpd					-							\dashv	 +	Monzonite Porphyry Dyke
000.7	110.0	mpu													+	It tan to pale br, non-mag, non-calc, med-coarse gr
															+	w/ 3% feldspar phenos to 15x10mm
															+	local CY alt'n of plag
															+	upper cnt sharp, irreg
															+	lower cnt sharp, irreg
														+	+	lower citt sharp, irreg
413.8	419.7	SP									<1	<1				Siliceous Phyllite
			S1	418.9	50											dk gy/blk-lt gy laminated, wkly phyllitic
																grades locally to SPbh
																PY in <vnlts, td="" vnlts<=""></vnlts,>
																PO as small blebs
																415.5-415.9 healed bxia w/ 10% monzonite and 90% siliceous phyllite frags
EOH @	2 419.7	meters	S													
					_											

RQD Log LD04-13

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
4.3	Ì		136.2	, ,	
5.2	21	23	139.3	231	75
8.2	183	61	142.3	263	88
11.3	226	73	145.4	260	84
14.3	219	73	148.4	161	54
17.4	254	82	151.5	283	91
20.4	235	78	154.5	264	88
23.5	218	70	157.6	237	76
26.5	76	25	160.6	219	73
29.6	99	32	163.7	246	79
32.6	170	57	166.7	54	18
35.7	206	66	169.8	164	53
38.7	162	54	172.8	259	86
41.8	215	69	175.9	256	83
44.8	198	66	178.9	204	68
47.9	203	65	182.0	196	63
50.9	260	87	185.0	267	89
53.9	217	72	188.1	230	74
57.0	147	47	191.1	274	91
60.0	175	58	194.1	224	75
63.1	245	79	197.2	266	86
66.1	239	80	200.2	288	96
69.2	232	75	203.3	266	86
72.2	279	93	206.3	287	96
75.3		72	209.4	289	93
78.3	259	86	212.4	209	70
81.4	265	85	215.5	237	76
84.4	286	95	218.5	244	81
87.5	293	95	221.6	260	84
90.5	296	99	224.6	211	70
93.6	269	87	227.7	274	88
96.6	273	91	230.7	191	64
99.7	236	76	233.8	173	56
102.7	258	86	236.8	213	71
105.8	239	77	239.9	234	75
108.8	167	56	242.9	281	94
111.9	289	93	246.0	279	90
114.9	206	69	249.0	274	91
118.0	54	17	252.1	272	88
121.0	216	72	255.1	244	81
124.0	166	55	258.1	273	91
127.1	169	55	261.2	232	75
130.1	143	48	264.2	199	66
133.2	120	39	267.3	231	75
136.2	219	73	270.3	263	88

RQD Log LD04-13

Date: Page: 2

270.3			413.6		
273.4	278	90	416.6	223	74
276.4	249	83	419.7	269	87
279.5	264	85			
282.5	273	91	EOH @ 419.7m		
285.6	261	84			
288.6	215	72			
291.7	275	89			
294.7	251	84			
297.8	271	87			
300.8	286	95			
303.9	276	89			
306.9	262	87			
310.0	219	71			
313.0	254	85			
316.1	288	93			
319.1	249	83			
322.2	207	67			
325.2	272	91			
328.3	273	88			
331.3	284	95			
334.3	211	70			
337.4	259	84			
340.4	281	94			
343.5	274	88			
346.5	178	59			
349.6	193	62			
352.6	214	71			
355.7	247	80			
358.7	170	57			
361.8	97	31			
364.8	76	25			
367.9	226	73			
370.9	159	53			
374.0	236	76			
377.0	201	67			
380.1	206	66			
383.1	118	39			
386.2	171	55			
389.2	227	76			
392.3	208	67			
395.3	255	85			
398.4	289	93			
401.4	276	92			
404.4	283	94			
407.5	266	86			
410.5	262	87			
413.6	300	97			

Survey Log LD04-13

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		87		-70
150	45.7	64	86	20.75	-69.25
300	91.4	64	86	21	-69
450	137.2	62	84	22	-68
600	182.9	67	89	22.75	-67.25
750	228.6	61	83	23.5	-66.5

Assay Sample Log LD04-14

Page: 1

Sample No.	From		Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	224.5	no sample								
322298	224.5	226.1			1.6	100	0.342	0.3	4680	76	248
322299	226.1	227.7			1.6	100	0.122	0.2	1300	45	82
322300	227.7	229.2			1.5	100	0.257	0.4	1220	101	33
	229.2	237.0	no sample								
322301					1.7	100	0.131	0.4	56	102	54
	238.7	241.1	no sample								
322302	241.1	242.6			1.5	100	0.064	3.2	175	146	986
322303	242.6	243.7			1.1	100	0.047	10.0	95	1210	1330
322304	243.7	245.3			1.5	94	1.290	35.3	2620	2070	429
322305					1.3	100	0.857	378.0	2640	3410	410
322306	246.6	247.9			1.3	100	1.030	21.4	4350	1820	240
	247.9	323.9	no sample								
322307	323.9	325.2			1.3	100	0.086	0.5	2590	288	112
	325.2	361.8	no sample								
EOH @ 361.8											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA			Α	tera	ation					М	iner	alizat	tion			Comments
						Hfs	Sk	Mar F	Ret	Chl	Ser	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
0.0	4.3	O/B																			triconed - no core
4.3	14.0	SPbh											<1			tr					Biotite Hornfelsed Siliceous Phyllite
			S1	7.8	56																It gy-It br laminated, wkly phyllitic
			S1	12.4	56																LI on fractures to 5.2
																					SL in vnlt @ 7.5 (1-2mm wide)
																					PY in vnlts, <vnlts< td=""></vnlts<>
14.0	18.4	Md											1								Monzonite Dyke
																					med gy/gr, non-calc, variably mag, non-porph
																					pervasive CL alt'n
																					PY as blebs and in <vnlts, td="" vnlts<=""></vnlts,>
																					MG in vnlts
																					upper cnt sharp, planar @ 53
																	-				lower cnt sharp, planar @ 58
18.4	24.5	SPbh											tr								Biotite Hornfelsed Siliceous Phyllite
			S1	21.9	58																lith a/a 4.3-14.0
																					PY in <vnlts< td=""></vnlts<>
24.5	40.5	Md							Î				<1			tr				1	Monzonite Dyke
																					med greenish tan/gy, wkly mag, non-calc, non-porph, w/ 5% biotite books
																					local CL alt'n of biotite
																					local CY alt'n of plag
																					PY as dissems and in <vnlts< td=""></vnlts<>
																					1% dissem EP
																					SL in vns w/ PY
																					MG in vnlts
																					upper cnt not observed due to broken core
																					lower cnt sharp, slightly irreg @ 47
																					37.5 SL/PY vn @ 22/13mm
40.5	135.7	SPbh											<1	tr		tr					Biotite Hornfelsed Siliceous Phyllite
			S1	40.7	62																med br-lt gy laminated, wkly phyllitic
			S1	43.4	43																loc. QZ+sericite alt'n of biotite rich laminae
			S1	48.7	66																loc. CL alt'n of biotite rich laminae

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct						ation						inera					Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	PO	CP	SL	GL	AS	BN	MG	
																					40.5-135.7 cont'd
			S1	52.4	57																PY as blebs and in vnlts, <vnlts< td=""></vnlts<>
			S1	58.8	60																SL in vnlts w/ PY
			S1	63.7	53																PO as blebs w/ tr CP (begins at ~113m)
			S1	71.4	65																41.0-41.5 rubble and gouge
			S1	74.7	58																41.8-41.9 gouge (no attitude)
			S1	80.8	67																46.8 gouge @ 57/5cm
			S1	89.0	66																49.4-49.8 rubble
			S1	93.3	70																51.9 gouge (4cm); no attitude
			S1	99.5	47																54.6-54.9 gouge and rubble @ 52
			S1	102.9	68																63.7-64.0 gouge and rubble (no attitude)
			S1	108.2	62																67.2 QZ/PY vn @ 50/4cm
			S1	113.3	74																91.4-91.7 monzonite dyklet; upper cnt not observed due to broken core;
			S1	120.5	55																lower cnt sharp, planar @ 67
			S1	125.5	58																87.5-87.7 rubbly core w/o gouge
			S1	130.0	70																117.4 healed bxia zone w/ PY/SL @ 10/??mm
			S1	134.9	62																124.1-126.3 QZ+sericte alt'n of biotite rich laminae
																					124.5-124.6 two bands of gouge
																					125.7-125.9 rubble
																					131.5-131.7 rubble and minor gouge
																					133.1-133.2 rubble w/o gouge
135.7	136.7	Fd																			Felsite Dyke
																					It greenish cream, v. wkly porph, non-mag, non-calc
																					no mineralization
																					no alteration
																					upper cnt sharp, slightly irreg @ 40
																					lower cnt bxiated and irreg. (no attitude)
136.7	224.5	SPbh				9	tr						<1		tr	tr					Biotite Hornfelsed Siliceous Phyllite
			S1	140.2	64																It to med br-lt gy laminated, wkly phyllitic
			S1	145.2	62																<5% siliceous phyllite intercalated
			S1	151.4	57																PY in vns, vnlts
			S1	157.3	67																CP/SL as blebs in vnlts w/PY
			S1	162.5	55																157.4-157.6 gouge and heavily fractured core @ 70
			S1	168.1	60																170.2-172.4 0.5% PO as blebs w/ tr CP

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA				Alter	ation						inera					Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	PO	CP	SL	GL	AS	BN	MG]
																					136.7-224.5 cont'd
			S1	175.4	61																186.4-187.0 0.5% PO as blebs w/ tr CP
			S1	181.3	59																192.5-194.6 5% PY in vnlts, <vnlts< td=""></vnlts<>
			S1	186.6	70																197.5-197.7 5% CP + 3% PY in vns, vnlts
			S1	191.1	61																211.4-217.7 S1 contorted (no attitudes)
			S1	196.9	47																219.2-219.3 med gr, incipient clinopyroxene skarn band w/ 3% PY
			S1	203.2	67																222.0-222.2 rubble and gouge
			S1	206.7	43																222.5-222.6 rubble and gouge
			S1	218.1	60																
			S1	223.2	67																
224.5	227.8	SP-SK	р				2				tr	tr	2	1				0.2	2		Siliceous Phyllite
																					w/ 20% irreg patches of incip clinopyroxene, prograde skarn
																					dk gy/blk-lt gy laminated, wkly phyllitic
																					local QZ+sericite alt'n of biotite rich laminae
																					Skarn patches x-cut S1
																					PO/PY in skarn patches as blebs
																					AS as scattered xtls in skarn and in vnlts
227.8	237.0	SPbh				9					tr	tr	1								Biotite Hornfelsed Siliceous Phyllite
			S1	235.0	70																It to dk br-It gy laminated, wkly phyllitic
																					local QZ+sericite alt'n of biotite rich laminae
																					PY in <vnlts, and="" as="" blebs<="" td=""></vnlts,>
																					228.8 tr AS in irreg vnlt
																					233.7-233.9 rubble w/ minor gouge
																					234.3 gouge @ 56
																					236.0-237.0 2 narrow clinopyroxene skarn bands w/ 2% PY + tr AS
237.0	238.7	SKp-S	Р			4	6							2							Clinopyroxene Prograde Skarn
																					w/ 40% siliceous phyllite intercalated
																					med gr, mod calc, massive to wkly laminated
																					PO as blebs
238.7	242.6	Md											<1			0.2					Monzonite Dyke
																					It gy/gr, wkly calc, non-mag, med grained
																					sauss alt'n of plag

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA				Alter	ation						inera		-			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	PO	CP	SL	GL	. AS	BN	MG	
																					238.7-242.6 cont'd
																					PY in <vnlts< td=""></vnlts<>
																					SL in <vnlts locally<="" td=""></vnlts>
																					upper cnt fairly sharp, planar @ 50 (possible alt'n cnt - above unit maybe
																					exoskarn in part)
																					lower cnt indistinct (possible gradational alt'n cnt)
242.6	243.7	MZ											5	30	2	tr					Mineralized Zone
																					w/ 50% massive, wkly calc, strongly altered, intrusive? rx w/o relict textures
																					PO as massive bands
																					CP as small blebs
																					PY as blebs in altered host rx
243.7	247.9	MS											80		3	0.1		tr			Massive Pyrite
																					PY as coarse grained masses w/ 15% QZ matrix
																					CP as blebs
																					5% cavities
																					246.0 stibnite needles
																					243.9 SL as patches
																					246.8 AS xtls
																					lower cnt sheared @ 63
247.9	252.3						tr				tr	tr	1								Biotite Hornfelsed Siliceous Phyllite
			S1	248.3	55																It gy-med br laminated, wkly phyllitic
			S1	249.9	60																local QZ+ser alt'n of biotite rich laminae
																					PY in vns, vnlts, and as patches/blebs
252.3	256.2	Md												<1		tr					Monzonite Dyke
																					pale gr/gy, non-mag, wkly porph, non-calc
																					mod hornfelsing, grades loc to siliceous phyllite
																					PO as blebs
																					SL in vnlts
																					upper cnt sharp, planar @ 70
																					lower cnt sharp, planar @ 70

Date: Logged By: DJH Page 5/

То	Rock	Mod	Stuct	CA				Alter	ation					M	inera	aliza	tion		BN MG		
					Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	PO	СР	SL	GL	AS	BN	MG		
306.2	SPbh									tr										Biotite Hornfelsed Siliceous Phyllite	
		S1	257.7	52																It br-dk gy-lt gy laminated, wkly phyllitic	
		S1	261.6	70																mod biotite hornfelsing; grades loc to siliceous phyllite	
		S1	270.4	72																local QZ+ser alt'n of biotite rich and argillaceous laminae	
		S1	276.7	61																PY in <vnlts< td=""></vnlts<>	
		S1	281.0	74																263.9 SL/GL/PY vn @ 75/50mm	
		S1	285.2																	263.8-264.1 rubble and gouge @ 70	
		S1	290.8																	264.7-264.9 It gy dyke w/ 10% wallrock frags	
		S1	295.8																	266.2-266.5 med gr, massive, clinopyroxene skarn w/ PY/AS mineralization;	
		S1	300.4																	upper cnt S1 conformable @ 60; lower cnt irreg (x-cuts S1)	
		S1	306.1	60																275.0 PY/AS vnlt @ ??/4mm wide	
																				275.2 PY vn @ 75/30mm w/ gouge at cnts	
																				275.3-275.6 massive PY vn? w/ gouge @ 75	
																				279.7 PY/QZ/SL/AS vn @ 55/5mm	
																				288.4-292.0 siliceous phyllite w/ gradational cnts	
																				298.6-298.9 QZ/CB vuggy vn @ 75 w/ gouge at cnts	
310.1	LS												tr	tr	tr		tr			Limestone	
																				med gr, massive	
																				AS/PO/SL/CP in irreg vnlts	
																				5% QZ/CB vns	
																				upper cnt sharp, planar @ 73 (appears to x-cut S1)	
																				patch w/ PY/dk gr/blk CL/AS ~ 4cm dia @ lower cnt	
311.8					1								<1				tr			Biotite Hornfelsed Siliceous Phyllite	
		S1	311.3	70																dk gy-lt gy-dk br laminated, wkly phyllitic	
																				wk biotite hornfelsing	
																				PO as blebs	
																				AS in irreg vnlts	
320.4	Mpd											1								Porphyritic Monzonite Dyke	
																				med gy/gr, strongly porph, non-mag, wkly calc	
																				w/ 10% zoned feldspar phenos to 15x10mm	
																				upper cnt sharp, irreg w/ 0.5m chilled	
																				lower cnt sharp, irreg w/ 0.4m chilled	
	310.1	306.2 SPbh 310.1 LS 311.8 SPbh 320.4 Mpd	S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S	S1 257.7 S1 261.6 S1 270.4 S1 276.7 S1 281.0 S1 285.2 S1 290.8 S1 295.8 S1 300.4 S1 306.1 S1 306.1 S1 311.8 SPbh	S1 257.7 52 S1 261.6 70 S1 270.4 72 S1 276.7 61 S1 281.0 74 S1 285.2 70 S1 290.8 58 S1 295.8 72 S1 300.4 68 S1 306.1 60 310.1 LS 311.8 SPbh S1 311.3 70	306.2 SPbh	SPbh S1 257.7 52 S1 261.6 70 S1 270.4 72 S1 270.7 61 S1 281.0 74 S1 285.2 70 S1 290.8 58 S1 295.8 72 S1 300.4 68 S1 306.1 60 S1 306.1 60 S1 311.8 SPbh S1 311.3 70 S1 S1 311.3 70 S1 S1 S1 S1 S1 S1 S1 S	306.2 SPbh	306.2 SPbh	S1 257.7 52 S1 261.6 70 S1 270.4 72 S1 276.7 61 S1 281.0 74 S1 285.2 70 S1 290.8 58 S1 295.8 72 S1 300.4 68 S1 306.1 60 310.1 LS 310.8 SPbh 1 S1 311.3 70	306.2 SPbh	306.2 SPbh	306.2 SPbh	306.2 SPbh	306.2 SPbh	306.2 SPbh	306.2 SPbh	306.2 SPbh	306.2 SPbh	306.2 SPbh	

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct	CA				Alter	ation					М	iner	aliza	tion			Comments
						Hfs	Sk			Chl	Ser	Si	PΥ	РΟ						MG	
320.4	324.1	SPbh					tr						<1								Biotite Hornfelsed Siliceous Phyllite
			S1	322.1	50																dk gy-med br-lt gy laminated, wkly phyllitic
																					wk biotite hornfelsing
																					PY in <vnlts, td="" vnlts<=""></vnlts,>
																					323.9-324.1 incip skarn bands w/ 1% AS + 1% PO
																					lower cnt obscurred by skarn alt'n
324.1	328.9	LS					2														Limestone
024.1	320.9	LO						1						1		1	-	 	-		med gy, massive
																	-		+		324.1-324.6 clinopyroxene prograde skarn w/ 25% limestone patches,
								1						1		1	-	 	-		15% PO, 1% CP
								1						1		1	-	 	-		324.6-325.9 10% clinopyroxene prograde skarn patches and bands w/
																	+				PY/AS/CP 325.0-325.2
																	+				328.7-328.9 clinopyroxene prograde skarn band @ 62
																	+	1			320.7-320.9 Clinopyroxene prograde skarn band @ 02
28.9	334.3	SPbh				4	tr						<1	<1	tr						Biotite Hornfelsed Siliceous Phyllite
			S1	330.2	77																dk gy-med br-lt gy laminated, wkly phyllitic
																					wk to mod biotite hornfelsing
																					S1 generally contorted
																					PY in vnlts, <vnlts< td=""></vnlts<>
																					PO as blebs w/ CP
																					328.9-329.1 healed bxia w/ monzonite and siliceous phyllite frags in a dk gy
																					/blk matrix; tr AS xtls
																					329.1-330.7 10% incip skarn patches
334.3	344.2	Md											<1	tr	tr		+	tr			Monzonite Dyke
																					It to med gy/gr, non-mag, wkly calc, non-porph, fine gr
																					PY in vnlts, vns
																					PO as blebs
																					CP in vnlts
																					334.7 PY/CP/AS vn @ 40/15mm
																					upper cnt sharp, planar @ 37
																					lower cnt sharp, irreg
244.0	358.1	SP				+r	-						-1		4r	-	-	+r			Siliceous Phyllite
544.2	338.T	32	S1	346.8	75	tr	-	 				-	<1	1	tr	1	+	tr	-		dk gy/blk-lt gy laminated, wkly phyllitic

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct						ation					M	inera	aliza	tion			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PY	PO	CP	SL	GL	_ AS	BN		
																					344.2-358.1 cont'd
			S1	353.8	65																It gy, siliceous laminae generally broken and augened
			S1	356.3	55																PY in vnlts
																					CP in vnlts w/ PY+AS
																					344.2-344.7 mod biotite hornfelsing
358.1	361.8	Mpd																			Porphyritic Monzonite Dyke
																					med gy/gr, porphyritic, non-mag, non-calc
																					2% feldspar phenos to 12x10mm
																					upper cnt sharp, planar @ 57
																					upper cnt sharp, planar @ 57 358.1-358.3 xenoliths of siliceous phyllite
EOH @	2 361.8	3 meters	<u> </u>																		
																		1			
																	1		+		
																	+	+	-		
																			+		
																		+	+		
																	+	+			
																	-		-		
												1		1			+	-	-		
												1		1			+	-	-		
												<u> </u>		<u> </u>		-	1			<u> </u>	
																1	1	-			
												<u> </u>		<u> </u>		<u> </u>	1	1		<u> </u>	
												 		 		ļ	1				

RQD Log LD04-14

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
4.3	,		136.2	147	
5.2	11	12	139.3	174	56
8.2	24	8	142.3	188	63
11.3	241	78	145.4	154	50
14.3	208	69	148.4	198	66
17.4	121	39	151.5	239	77
20.4	238	79	154.5	215	72
23.5	233	75	157.6	190	61
26.5	194	65	160.6	193	64
29.6	259	84	163.7	184	59
32.6	220	73	166.7	190	63
35.7	232	75	169.8	175	56
38.7	199	66	172.8	249	83
41.8	156	50	175.9	252	81
44.8	124	41	178.9	226	75
47.9	197	64	182.0	255	82
50.9	76	25	185.0	253	84
53.9	91	30	188.1	268	86
57.0	119	38	191.1	257	86
60.0	196	65	194.1	187	62
63.1	82	26	197.2	181	58
66.1	98	33	200.2	174	58
69.2	172	55	203.3	191	62
72.2	202	67	206.3	183	61
75.3	122	39	209.4	274	88
78.3	117	39	212.4	234	78
81.4	89	29	215.5	140	45
84.4	249 101	83 33	218.5	164 109	55 35
87.5 90.5	89	30	221.6 224.6	18	<u> </u>
93.6	103	33	227.7	154	50
96.6	241	80	230.7	286	95
99.7	235	76	233.8	38	12
102.7	238	79	236.8	239	80
105.8	210				
108.8	268	89	242.9	291	97
111.9	283	91	246.0	270	87
114.9	276	92	249.0	228	76
118.0	231	75	252.1	268	86
121.0	261	87	255.1	256	85
124.0	180	60	258.1	235	78
127.1	118	38	261.2	239	77
130.1	264	88	264.2	246	82
133.2	121	39	267.3	23	
136.2	147	49	270.3	259	

RQD Log LD04-14

Date: Page: 2

270.3	259			
273.4	298	96		
276.4	234	78		
279.5	210	68		
282.5	213	71		
285.6	253	82		
288.6	221	74		
291.7	241	78		
294.7	183	61		
297.8	283	91		
300.8	216	72		
303.9	247	80		
306.9	269	90		
310.0	268	86		
313.0	234	78		
316.1	162	52		
319.1	260	87		
322.2	219	71		
325.2	250	83		
328.3	287	93		
331.3	188	63		
334.3	281	94		
337.4	144	46		
340.4	257	86		
343.5	223	72		
346.5	198	66		
349.6	161	52		
352.6	144	48		
355.7	201	65		
358.7	263	88		
361.8	300	97		
EOH @ 361.8				
EOH @ 361.6				

Survey Log LD04-14

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		89		-55
150	45.7	62	84	37	-53
300	91.4	55	77	38	-52
450	137.2	54	76	38.5	-51.5
600	182.9	57	79	40	-50
750	228.6	57.5	79.5	41	-49
900	274.3	56	78	41.5	-48.5
1050	320.0	60	82	43	-47
1187	361.8	56	78	43	-47

Assay Sample Log LD04-15

Page: 1

Sample No.			Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	88.0	no sample								
322308	88.0	89.5			1.5	100	0.327	59.7	963	14000	705
	89.5	292.1	no sample								
322309	292.1	293.0			0.9	100	0.148	7.8	939	1440	9710
322310			standard				1.040		14	11900	85
322311			blank				0.007	0.1	5	127	49
			no sample								
322312	383.3	384.8			1.5	100	0.067	0.8	6100	231	19
	384.8	402.5	no sample								
FOH @ 402 F											
EOH @ 402.5											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA					ation						inera					Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PY	PO	СР	SL	GL	AS	BN	MG	
0.0	3.7	O/B																			Triconed - no core
3.7	4.1	SPbh				9							1								Biotite Hornfelsed Siliceous Phyllite
																					It to med br-lt gy laminated, wkly phyllitic
																					PY in vnlts
4.1	43.6	Md											1								Monzonite Dyke
																					med gy, non-mag, non-calc, med grained, non-porph, locally gr/gy
																					w/ 7% mafics (wk CL alt'n)
																					3% EP blebs locally
																					PY in <vnlts, and="" as="" dissems<="" td=""></vnlts,>
																					upper cnt sharp, planar @ 55
																					lower cnt sharp, planar @ 61
43.6	48.9	SPbh				9							2								Biotite Hornfelsed Siliceous Phyllite
,,,,			S1	44.5	48																med br-lt gy laminated, wkly phyllitic
																					S1 very irreg
																					PY in vns, vnlts and as dissems
																					43.6-43.9 QZ vn; locally bxiated w/ CB matrix; tr MO in very irreg vnlt
																					l lois toto all till, totally strated in the manny in the mittery mag till
48.9	51.9	Fd											4								Felsite Dyke
																					It cream, porphyritic, non-mag, non-calc
																					w/ 10% anhedral plag to 2mm in an aphanitic matrix
																					PY in vnlts, vns
																					upper cnt sharp, planar @ 51
																					lower cnt sharp, planar @ 30
51.9	186.1	SPbh				9					tr	tr	1	tr	tr	1	1		1		Biotite Hornfelsed Siliceous Phyllite
			S1	52.6	37									1		1	1		1		lith a/a 43.6-48.9
			S1	62.0	50												1				local QZ+ser alt'n of biotite rich laminae
			S1	73.1	63																S1 irreg to 87.0 and locally thereafter
			S1	77.0	67									l							PY in vnlts, <vnlts, (2-3%="" locally)<="" td="" vns=""></vnlts,>
			S1	84.1	45																PO as blebs
			S1	90.3	33																CP as specks w/ PO
			S1	94.6	50									l –			1		1		79.2-84.9 QZ+ser alt'd siliceous phyllite w/ 2-3% PY in vnlts, <vnlts, td="" vns<=""></vnlts,>
			S1	100.3	55																79.6-80.0 QZ/PY/CL vn?; cnts fairly sharp, irreg; 15% PY as patches/blebs

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA				Alter	ation					М	inera	alizat	tion			Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PY	PO	CP	SL	GL	AS	BN	MG]
																					51.9-186.1 cont'd
			S1	106.2	57																81.2-81.4 QZ/PY/CL vn?; 15% PY as patches/blebs; cnts sharp, planar @ 40
			S1	112.7	71																88.3-89.2 QZ/PY/CP/CL zone (vn, pod, or whatever!); 6% CP, 15% PY as
			S1	119.9	55																patches; 10% siliceous phyllite inclusions w/ CL alt'n
			S1	123.4	60																86.1-88.3 QZ+ser alt'n
			S1	129.9	54																109.3 SL in vnlt
			S1	135.4	55																114.3-119.9 S1 contorted
			S1	139.4	59																138.4-138.5 QZ vn or pod/lens w/ tr PY/CP/PO
			S1	147.2	61																148.8-149.2 QZ+ser alt'd w/ 5% PY as patches
			S1	152.1	47																157.1-157.3 gouge
			S1	157.7	48																169.5-169.8 strongly fractured core and gouge
			S1	163.6	60																171.2-171.9 strongly fractured core and rubble w/ minor gouge; lower cnt @ 5
			S1	166.3	42																174.6 tr AS in <vnlt (irreg)<="" td=""></vnlt>
			S1	173.4	64																181.7-181.8 rubble and gouge
			S1	179.7	42																182.5 SL/GL/PY vnlt @ ??/2mm
			S1	185.5	53																
100.4	407.0												1					4	-		Foliate Pulse
186.1	187.0	Fd											1					tr			Felsite Dyke pale gr/cream, non-mag, non-calc, non-porph
																					wk sericite alt'n; local CY alt'n
														<u> </u>			-				PY in vnlts, and as dissems
																					AS as blebs
																					healed bxia at upper cnt @ 45
																					lower cnt sharp, fairly planar @ 30
																					lower on sharp, ramy planar & 50
87.0	292.1	SPbh				9					tr	tr	<1	<1		tr					Biotite Hornfelsed Siliceous Phyllite
			S1	188.2	48																It br-It gy laminated, wkly phyllitic
			S1	197.0	50																grades locally to siliceous phyllite
			S1	201.6	37																local QZ+ser alt'n of biotite rich laminae
			S1	206.2	55																PY in <vnlts< td=""></vnlts<>
			S1	215.1	62																PO as blebs
			S1	220.1	50																SL in vnlts
			S1	226.1	58																189.0-189.5 It cream felsite dyke; upper cnt not observed; lower cnt @ 70 w/
			S1	230.8	40																0.1m breccia
			S1	239.4	48																191.7-192.5 QZ+ser alt'n w/ PY vn 12mm wide and SL vnlt 2mm wide
			S1	250.3	57																199.0-199.3 rubble w/ minor gouge @ 40

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct						ation						inera					Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					187.0-292.1 cont'd
			S1	266.9	55																210.2 PY/CP/QZ vnlt 4mm wide
			S1	269.4	47																210.9-211.0 gouge and rubble @ 60
			S1	273.7	57																219.0 PY/SL vn 5mm wide
			S1	280.5	43																222.6 rubble and gouge 3 cm wide
			S1	284.5	45																228.9 PY/PO/tr CP vnlt 0-3mm wide
			S1	290.6	55																230.5 SL vnlt 2mm wide
																					244.4-247.5 QZ+ser alt'n
																					251.0-266.0 S1 very contorted
																					259.4 PY/SL/AS vnlt 4mm wide
														ĺ			1				265.6 PY/SL vn 14mm wide w/ QZ+ser alt'n envelope to 15mm
																					283.0 PY/SL vn @ 15/8mm
																					283.2 PY/SL vn @ 15/10mm
292.1	292.3	MS											80)							Massive Sulphide (Vein?)
																					80% fine grained PY; 20% QZ+CB
																					v. wkly banded
																					cnts sharp, planar @ 45
292.3	293.0	BXm											20)		4	ļ.				Mineralized Breccia Zone
																					frags of monzonite in a matrix of PY/SL/CB
																					lower cnt not observed
																					note: pre-mineral dyke has been brecciated
293.0	295.0	SPbh				2					4	4	1								Siliceous Phyllite
																					dk gy-lt gy laminated, wkly to modly phyllitic
																					grades loc to SPbh
																					QZ+ser altered locally
																					PY in vnlts
						1	1					i i	T	1		1	1		1	1	293.0-294.0 QZ+ser altered
						1	1					i i	T	1		1	1		1	1	294.5 monzonite dyklet
						1	1					i i	T	1		1	1		1	1	1
295.0	297.4	Md										t	T	tr		1	1		1	1	Monzonite Dyke
						1	1					i i	T	1		1	1		1	1	med gr/gy, non-mag, non-calc, non-porph, med grained
						1	1					i i	T	1		1	1		1	1	PO as blebs
																			1	1	upper cnt sharp, irreg

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA				Alter	ation						inera					Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PY	PO	CP	SL	GL	AS	BN	MG	
																					295.0-297.4 cont'd
																					lower cnt sharp, planar @ 22
297.4	302.7	SP											>1	tr							Siliceous Phyllite
			S1	299.4	42																dk gy/blk-lt gy laminated, wkly phyllitic
																					PY in <vnlts, and="" as="" dissems<="" td=""></vnlts,>
																					PO as blebs
302.7	304.1	SPbh				9					tr	tr	<1					tr			Biotite Hornfelsed Siliceous Phyllite
																					It br-It gy laminated, wkly phyllitic
																					local QZ+ser alt'n of biotite rich laminae
																					PY in vnlts
																					AS in vnlt
304.1	307.1	Md											<1	<1							Monzonite Dyke
																					lith a/a 295.0-297.4
																					PY in vnlts, <vnlts< td=""></vnlts<>
																					PO in <vnlts, and="" as="" blebs<="" td=""></vnlts,>
																					upper cnt sharp, irreg
																					lower cnt sharp, planar @ 67
307.1	313.3	SP				<1							<1	<1							Siliceous Phyllite
			S1	308.4	63																dk gy/blk-lt gy laminated, wkly phyllitic
			S1	312.8	68																grades loc to SPbh
																					PY as dissems
																					PO as blebs
313.3	314.4	LS											<1	<1	tr						Limestone
																					It-med gy, massive
																					upper cnt mineralized w/ PO/PY/CP as patches over 0.2m
																					lower cnt faulted w/ gouge @ 47
																					mineralized 313.3-313.5 only
																					,
314.4	357.0	SP				<1						1	<1	<1	tr	0.1	T	tr	1		Siliceous Phyllite
			S1	315.5	48							1					T	1	1		dk gy/blk-lt gy laminated, wkly phyllitic
			S1	319.4	51			1				1	i i	1		1	1	Ì	1		grades locally to SPbh

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct						ation						inera					Comments
						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PY	PO	CP	SL	GL	_ AS	3 BN	MG	
																					314.4-357.0 cont'd
																					PY in vns, vnlts and as dissems
																					PO as blebs +/- CP
																					AS in vns w/ PY+SL
																					SL in vns w/ PY+AS
																					321.5 vn w/ PY+SL+AS 15mm
																					325.2 vnlt w/ PY+SL+AS 3mm
																					326.1 vn w/ SL+AS 20mm
																					336.2 vnlt w/ PY+CP 3mm
																					339.3 vnlt w/ PY+QZ+SL+AS 3mm
																					351.6 vn w/ PY+CB 14mm
																					355.7-357.0 20% white QZ patches
0.5.7.0	000.4												_								
357.0	369.4	Mpd					ļ	ļ					1								Porphyritic Monzonite Dyke
																					It gr/gy, med grained, non -mag, wkly calc, porphyritic
																					w/ 5% feldspar phenos to 15x10mm
																					PY as blebs
																					357.0-359.1 chilled margin
																					lower cnt sharp, planar @ 43
																					368.7-369.4 chilled margin w/ 10-20 cm siliceous phyllite xenoliths
369.4	378.2	SP											<1								Siliceous Phyllite
000.4	070.2		S1	369.6	46								` '				1	1			dk gy/blk-lt gy laminated, wk to mod phyllitic
			01	303.0	70																PY in <vnlts, and="" as="" dissems<="" td="" vnlts=""></vnlts,>
																		1			T THE VIRIES, VIRIES AND AS DISSOITS
378.2	384.7	LS											1					1			Limestone
																					med gy, massive
																					PY in vns, vnlts, patches
																					10% QZ & QZ+CB vns
																					upper cnt sharp, planar @ 45
							İ											1			0.1m clinopyroxene prograde skarn at lower cnt w/ 10% PO/PY patches, 3% AS,
														T		1	T	1			0.5% CP; cnt gradational
														T		1	T	1			
384.7	396.0	SP					tr				tr	tr	tr	tr		1	T	1			Siliceous Phyllite
			S1	387.3	55									Î							dk gy/blk-lt to med gy laminated, wkly phyllitic
			S1	392.0													1				5% QZ vns and patches

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct	CA				Alter	ation						inera					Comments
ı						Hfs	Sk	Mar	Ret	Chl	Ser	Si	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
																					384.7-396.0 cont'd
																					PY in <vnlts< td=""></vnlts<>
																					PO as specks in QZ vns
																					<5% QZ+ser alt'n proximal to clinopyroxene prograde skarn bands x-cutting S1
206.0	396.8	LS																			Limestone
390.0	390.0	LO																			
							1					1					1	ļ	-		lith a/a 370.2-384.7
																					CB vn @ upper cnt
																					0.1m clinopyroxene prograde skarn @ lower cnt w/ 10% PO and 0.1% CP
396.8	402.5	SPa				<1					7		1	1				tr			Altered Siliceous Phyllite
			S1	401.3	43																dk gy/blk-lt gy laminated, wkly phyllitic
																					70% QZ?+ser alt'n proximal to clinopyroxene prograde skarn bands to 10mm
																					x-cutting S1
																					PY as patches proximal to skarn bands
																					PO as blebs proximal to skarn bands
																					AS in vnlts to 1mm
EOH @	402.5	meters	S																		
ļ																1	1				

RQD Log LD04-15

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
3.7	1145 (0111)	1145 70	136.2	218	1145 70
5.2	111	74	139.3	293	95
8.2	203	68	142.3	300	100
11.3	213	69	145.4	284	92
14.3	228	76	148.4	283	94
17.4	236	76	151.5	171	55
20.4	242	81	154.5	244	81
23.5	197	64	157.6	251	81
26.5	178	59	160.6	260	87
29.6	158	51	163.7	284	92
32.6	109	36	166.7	239	80
35.7	271	87	169.8	246	79
38.7	175	58	172.8	138	46
41.8	154	50	175.9	243	78
44.8	204	68	178.9	251	84
47.9	264	85	182.0	163	53
50.9	256	85	185.0	194	65
53.9	287	96	188.1	236	76
57.0	226	73	191.1	220	73
60.0	289	96	194.1	252	84
63.1	231	75	197.2	286	92
66.1	161	54	200.2	201	67
69.2	182	59	203.3	230	74
72.2	175	58	206.3	298	99
75.3	108	35	209.4	281	91
78.3	131	44	212.4	186	62
81.4	243	78	215.5	236	76
84.4	266	89	218.5	243	81
87.5	257	83	221.6	269	87
90.5	249	83	224.6	252	84
93.6 96.6	204 219	66 73	227.7 230.7	286 261	92 87
99.7	249	80	233.8	277	89
102.7	228	76	236.8	286	95
105.8		80			97
108.8	261	87	242.9	272	91
111.9	256	83	246.0	249	80
114.9	280	93	249.0	256	
118.0	213	69	252.1	285	92
121.0	197	66	255.1	290	97
124.0	213	71	258.1	256	85
127.1	296	95	261.2	263	85
130.1	295	98	264.2	289	96
133.2	283	91	267.3	283	91
136.2	218	73		267	89

RQD Log LD04-15

Date: Page: 2

270.3	267			
273.4	296	95		
276.4	236	79		
279.5	203	65		
282.5	276	92		
285.6	255	82		
288.6	287	96		
291.7	280	90		
294.7	168	56		
297.8	235	76		
300.8	248	83		
303.9	254	82		
306.9	281	94		
310.0	234	75		
313.0	246	82		
316.1	273	88		
319.1	268	89		
322.2	229	74		
325.2	280	93		
328.3	231	75		
331.3	247	82		
334.3	275	92		
337.4	248	80		
340.4	213	71		
343.5	260	84		
346.5	278	93		
349.6	184	59		
352.6	211	70		
355.7	226	73		
358.7	234	78		
361.8	253	82		
364.8 367.9	281 254	94 82		
370.9	237	79		
374.0	269	87		
377.0	268	89		
380.1	200	71		
383.1	198	66		
386.2	252	81		
389.2	256	85		
392.3	242	78		
395.3	243	81		
398.4	222	72		
401.4	261	87		
402.5	88		EOH @ 402.5	

Survey Log LD04-15

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		92		-55
157	47.9	66	88	37	-53
307	93.6	71	93	37.25	-52.75
450	137.2	66	88	38	-52
600	182.9	69	91	39.25	-50.75
750	228.6	55	77	41	-49
900	274.3	70	92	42	-48
1050	320.0	77	99	43.25	-46.75
1200	365.7	83	105	45	-45

Assay Sample Log LD04-16

Page: 1

Sample No.			Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	83.8	no sample								
322313		84.8			1.0			1.4			39
322314	84.8	85.9			1.1	100	0.049	0.6	32	889	41
322315	85.9	86.8			0.9	100	0.030	1.3	45	882	44
322316					1.5	100	0.067	1.0	12	444	28
322317	88.3				1.5	100	0.095	2.1	55		
322318					1.5	100	0.019	0.6	39	263	26
	91.3	276.4	no sample								
EOH @ 276.4											
_											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion					M	iner	aliza	ation			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	РΟ	СР	SL	. GL	. AS	BN	I MG	
0.0	4.2	O/B																			triconed casing - no core
																					· · · · · · · · · · · · · · · · · · ·
4.2	53.9	SPbh				9					tr	tr	1								Biotite Hornfelsed Siliceous Phyllite
			S1	8.9	65																med br-lt gr/gy laminated, wkly phyllitic
			S1	14.2	62																PY in vns, <vnlts< td=""></vnlts<>
			S1	20.1	62																11.3-11.4 rubble w/o gouge
			S1	23.5	41																12.1-12.2 rubble and gouge
			S1	29.1	45																16.7-16.8 rubble w/o gouge
			S1	33.1	58																37.0 MO on fracture w/ PY
			S1	38.7	64																37.7-38.2 rubbly core
			S1	43.6	65																41.0 MO/PY/QZ vn 10mm
			S1	49.7	60																51.1-51.7 QZ+ser alt'd w/ 4% PY as patches
																					51.7-52.3 rubble and gouge @ 80
																					interval maybe a wkly tuffaceous sediment
53.9	64.8	SPa				1				8			1		tr						Altered Biotite Hornfelsed Siliceous Phyllite
			S1	55.4	62																mod to strong CL alt'n of biotite rich laminae giving the rock a distinctive pale
																					green colour
																					poorly defined S1
																					PY in vnlts +/- EP, <vnlts< td=""></vnlts<>
																					wk to mod CL <vnlts< td=""></vnlts<>
																					58.1-58.3 gouge and strongly fractured core
																					gradational cnts
64.8	69.2	SPbh				9							1		tr						Biotite Hornfelsed Siliceous Phyllite
			S1	66.4	55																med br-lt gy laminated, wkly phyllitic
																					PY in vnlts, <vnlts, and="" as="" dissems="" in="" laminae<="" siliceous="" td=""></vnlts,>
																					CP in <vnlts py<="" td="" w=""></vnlts>
69.2	83.8	SPbh				7				3	<1	<1	2								Biotite Hornfelsed Siliceous Phyllite
			S1	71.8	56																med br-lt gy laminated, wkly phyllitic
			S1	76.5	55																local QZ+ser alt'n of biotite rich laminae
			S1	81.8	45																local CL/PY/EP alt'n patches
																					PY in vns, irreg atl'n patches, <vnlts, td="" vnlts<=""></vnlts,>
																					72.2 gouge @ 75

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion					Mi	nera	aliza	tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	PO	CP	SL	GL	AS	BN	MG	
83.8	85.9	SKrm					3							45							Mineralized Chlorite, Actinolite? Retrograde Skarn
																					dk gr, massive w/ patches of red/br Ca-Garnet Prograde Skarn
																					beautiful example of retograde alt'n of garnet to chlorite
																					5% EP
																					PY as patches, blebs and in vnlts
																					84.0-84.8 massive PO
																					CP as blebs
																					upper cnt sharp, planar, S1 conformable @ 40
																					lower cnt sharp, irreg
85.9	86.8	SKpm					8	2					7	5	1						Mineralized Ca-Garnet Prograde Skarn
																					It red/br, massive, fine grained
																					w/ 20% dk gr, actinolite? retrograde skarn patches
																					PY as patches, blebs and in vnlts
																					PO as patches, blebs
																					CP as blebs
																					lower cnt sharp, planar, S1 conformable @ 56
86.8	90.6					1		<1		9	<1	<1	5								Altered Siliceous Phyllite
			S1	88.0	35																It gr-It gy laminated, wkly phyllitic
																					CL+/- ser alt'd
																					grades locally to SBbh
																					PY as patches, blebs and in vnlts
																					88.5-88.9 SKrm band w/ cnts conformable to S1 @ 35 w/ 20% PO and
																					10% PY as patches
90.6	103.7					7				3	<1	<1	2								Biotite Hornfelsed Siliceous Phyllite
			S1	95.1	55																med br-lt gy laminated, wkly phyllitic
			S1	97.7	45																local CL/EP/PY alt'n
																					local QZ+ser alt'n
																					PY in <vnlts, blebs,="" td="" vnlts<=""></vnlts,>
																					91.3-92.1 fine grained monzonite dyke w/ gradational cnts; med gy, non-mag
																					non-calc; 1% PY in <vnlts< td=""></vnlts<>
103.7	193.1					9				<1	<1	<1	1				<u> </u>		<u> </u>		Biotite Hornfelsed Siliceous Phyllite
			S1	107.5	55																med br-lt gy laminated, wkly phyllitic

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA				lterat							tion			Comments		
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	PO	CP	SL	GL	AS	BN	MG	
																					103.7-193.1 cont'd
			S1	113.3	50																tr CL and QZ+ser alt'n bands
			S1	117.0	62																PY in <vnlts, 23mm="" and="" as="" cb="" dissems<="" gouge,="" td="" to="" vnlts="" vns="" w=""></vnlts,>
			S1	122.8	60																117.2-118.9 strongly fractured w/ rubble and gouge
			S1	128.7	56																120.6-121.0 strongly fractured w/o gouge
			S1	133.3	73																121.9-122.1 strongly fractured core w/o gouge
			S1	141.0	64																125.3-125.6 strongly fractured core w/o gouge
			S1	145.1	55																125.8-126.2 strongly fractured w/o gouge
			S1	149.4	60																130.5-130.6 It gy qtz-monzonite dyklet w/ gradational cnts
			S1	154.8	50																150.4-150.6 healed bxia w/ PY frags @ 60
			S1	158.2	57																151.4-151.7 healed bxia w/ PY+monzonite frags @ 58
			S1	162.8	63																163.2-163.4 massive PY vn? @ 67 w/ gouge at contacts
			S1	170.6	67																163.6-164.0 rubble, gouge and strongly fractured core
			S1	176.9	65																164.6-164.8 rubble and gouge
			S1	180.9	72																165.3-166.1 rubble, gouge and strongly fractured core
			S1	186.5	65																167.7-170.1 strongly fractured core w/ rubble and gouge @ 70
			S1	190.6	65																176.3-176.4 80% PY as irreg patches
																					191.1-193.1 strongly fractured core w/o gouge
193.1	209.0	Mpd							<1												Porphyritic Monzonite Dyke
																					med gy/gr, non-calc, non-mag, porphyritic, med grained
																					w/ 10% feldspar phenos to 10x10mm
																					non-mineralized
																					wk, local CY alt'n of plag
																					193.1-194.1 altered diorite; dk gr, fine to med grained, magnetic; w/ 10-15%
																					mafics; 80% altered (CY or ser) w/ 5% PY in vns, vnlts; upper cnt @ 70;
																					lower cnt @ 45
																					194.1-194.3 monzonite chilled against diorite
																					201.3-202.4 strongly fractured w/ gouge
209.0	212.5	Dd								<1	<1	<1	1								Diorite Dyke
																					dk gr, non-porph, magnetic, w/ 10-15% mafics
																					local CL and QZ+ser alt'n proximal to PY mineralization
																					PY in <vnlts, and="" as="" dissem<="" td="" vnlts=""></vnlts,>
																					upper cnt sharp, irreg
																					lower cnt not observed due to broken core

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct				Α						tion			Comments				
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	РΟ	CP	SL	GL	AS	BN	MG	
																					209.0-212.5 cont'd
																					212.0-212.5 strongly fractured core w/ gouge
212.5	214.4					9							1								Biotite Hornfelsed Siliceous Phyllite
			S1	213.5	63																med br-lt gy laminated, wkly phyllitic
																					PY in <vnlts, and="" as="" blebs<="" patches="" td="" vnlts,=""></vnlts,>
214.4	276.4	Dd								<1	<1		1								Diorite Dyke
																					lith, alt'n, min. a/a 209.0-212.5
																					upper cnt sharp, planar @ 65
																					214.4-214.6 chilled cnt
																					215.5-215.7 rubble and gouge
																					246.2 healed bxia w/ PY/AS; upper cnt @ 60; lower cnt @ 80
																					264.5-264.7 strongly fractured core w/ gouge
																					269.2-269.7 strongly fractured core w/ gouge
EOH @	276.4	meters	3																		

RQD Log LD04-16

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
4.3			136.2	239	
5.2	14	16	139.3	270	87
8.2	107	36	142.3	199	66
11.3	163	53	145.4	179	58
14.3	170	57	148.4	258	86
17.4	165	53	151.5	236	76
20.4	258	86	154.5	172	57
23.5	266	86	157.6	71	23
26.5	237	79	160.6	182	61
29.6	216	70	163.7	144	46
32.6	285	95	166.7	21	7
35.7	190	61	169.8	23	7
38.7	93	31	172.8	247	82
41.8	96	31	175.9	238	77
44.8	207	69	178.9	214	71
47.9	94	30	182.0	152	49
50.9	213	71	185.0	189	63
53.9	163	54	188.1	241	78
57.0	226	73	191.1	163	54
60.0	229	76	194.1	54	18
63.1	264	85	197.2	229	74
66.1	209	70	200.2	203	68
69.2	216	70	203.3	168	54
72.2	184	61	206.3	245	82
75.3	206	66	209.4	240	77
78.3	211	70	212.4	187	62
81.4	236	76	215.5	120	39
84.4	255	85	218.5	133	44
87.5	286	92	221.6	199	64
90.5	254	85	224.6	203	68
93.6	211	68	227.7	161	52
96.6	238	79	230.7	173	58
99.7	274	88	233.8	157	51
102.7	234	78	236.8	192	64
105.8	281			269	
108.8	241	80	242.9	208	69
111.9	264	85	246.0	177	57
114.9	202	67	249.0	171	57
118.0	144	46	252.1	179	58
121.0	55	18	255.1	150	50
124.0	153	51	258.1	221	74
127.1	128	41	261.2	161	52
130.1	162	54	264.2	47	16
133.2	189	61	267.3	100	32
136.2	239	80	270.3	107	36

RQD Log LD04-16

Date: Page: 2

270.3	107			
273 4	181	58		
270.3 273.4 276.4	103	34		
270.4	103	34		
EOH @ 276.4	-			

Survey Log LD04-16

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		90		-55
150	45.7	59	81	37	-53
300	91.4	65	87	37	-53
450	137.2	67.5	89.5	38	-52
600	182.9	72	94	38.75	-51.25
750	228.6	77	99	40.25	-49.75
900	274.3	75	97	42	-48

Assay Sample Log LD04-17

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	133.9	no sample								
EOH @ 133.9	m										
<u> </u>											
·											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA		Α	Iterat	tion					Mi	ner	aliza	ation			Comments
						SKp	SKr	CY	CL	Ser	QΖ	PY	РΟ						MG	
0.0	6.7	O/B																		triconed- no core
6.7	7.1	O/B																		cored boulders
7.1	14.8	SP										<1								Siliceous Phyllite
																				dk gy/blk w/ lt gy disrupted siliceous laminations, wkly phyllitic
																				S1 highly irregular
																				PY as fine dissem. grains
																				lower cnt not observed due to broken core
																				13.4-13.5 rubble and gouge
14.8	19.0	CP																		Calcareous Phyllite
																				dk gy/blk w/ lt gy disrupted carbonate bands/laminations; wkly phyllitic;
																				(looks like siliceous phyllite but It gy laminae are calcareous rather than
																				siliceous); occasional bands of massive gy limestone to 10 cm
																				no sde mineralization noted
																				no alteration
19.0	21.0	LS																		Limestone
																				dk gy, massive, w/ mod CB stwk vns
																				non-mineralized; no alt'n
																				cnts not observed due to broken core
		_																		
21.0	23.5	CP																		Calcareous Phyllite
																				lith a/a 14.8-19.0
																				lower cnt gradational
																				no alt'n; no mineralization
																				22.6-23.0 rubble w/o gouge
23.5	27.9	AT																		Mafic Ash Tuff
												<u> </u>	ļ					1		It gr or br/gy, massive, wkly calc
						1										_	╄	1		10% LS frags or clasts
						1										_	╄	1		no alt'n; no mineralization
						1										_	╄	1		23.5-24.8 minor argillaceous laminae
						1										_	╄	1		mod <vnlts cl="" infilling<="" td="" w=""></vnlts>
																				upper cnt gradational; lower cnt sharp and irreg

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion								tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	PO	СР	SL	GL	AS	BN	MG	
27.9	34.0	CP																			Calcareous Phyllite
			S1	34.0	60																locally graphitic
																					lith, alt'n, mineralization a/a 14.8-19.0
																					27.9-28.3 15% mafic ash tuff intercalated
34.0	38.0	LS																			Limestone
																					med-dk gy, massive
																					no alt'n; no mineralization
																					cnts not observed due to broken or missing core
38.0	39.7	CP																			Calcareous Phyllite
																					lith, alt'n, and mineralization a/a 14.8-19.0
																					locally graphitic
																					lower cnt not observed due to broken core
																					38.1-38.2 rubble and graphitic gouge
																					39.5-39.7 rubble w/o gouge
39.7	121.6	LS																			Limestone
																					med-dk gy, massive, local wk <vnlts oxide="" stain<="" td="" w=""></vnlts>
																					minor FeMg carbonate patches (alt'n?)
																					no mineralization
																					39.7-40.3 wkly argillaceous (ie gradational cnt)
																					40.3 sharp, irreg cnt
																					70.0-89.1 no oxide stain on <vnlts< td=""></vnlts<>
																					89.1-89.2 sulphide + oxide zone w/ 15% SL, 10% PY, 2% GL, 20% oxide,
																					and 50% limestone patches
																					89.2-99.7 minor oxide on wk <vnlts< td=""></vnlts<>
																					99.7-103.2 strongly fractured core w/ oxide on mod <vnlts< td=""></vnlts<>
																					** started coring w/ triple tube at 101.5
																					99.7-102.7 1.8m reccovered
																					101.5 3cms oxide pebbles recovered
																1					101.5-101.8 rubble w/o gouge
																1					102.7-104.2 wk <vnlts fractures<="" on="" oxide="" td="" w=""></vnlts>
																					104.2-112.0 wk <vnlts fractures<="" local="" on="" oxide="" td="" w=""></vnlts>
																					111.6 rubble w/ gouge
																					112.0-121.6 v. wk <vnlts fractures<="" o="" on="" oxide="" td="" w=""></vnlts>

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA				lterat							ine						Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	PO	CF	' SI	LG	L	AS	ΒN	MG	
																						39.7-121.6 cont'd
																						111.6-116.3 It br and It gy limestone varieties w/ 20% dk gy limestone
																						patches (darker gy variety maybe coarser grained - more recrystallized);
																						lower cnt sharp, irregular
																						lower cnt faulted @ 70
121.6	121.9	CP																				Calcareous Phyllite
																						lith, alt, and mineralization a/a 14.8-19.0
																						121.6-121.8 graphitic gouge
121.9	126.1	Md								2												Monzonite Dyke
																						It gy/gr, non-calc, non-mag, wkly porphyritic
																						wk CL alt'n of mafic minerals
																						no mineralization
																						upper cnt sharp, planar @ 53
																						lower cnt sharp, planar @ 78
126.1	133.9	CP																				Calcareous Phyllite
			S1	130.7	65																	lith, alt'n and mineralization a/a 14.8-19.0
																						mod phyllitic
																						127.7-127.9 rubble w/o gouge
																						130.4-130.5 graphitic gouge @ 78
																						131.8-133.9 20% intercalated dk gy limestone (ie gradational cnt to LS)
																						133.8 possible LS cnt
EOH @	133.9	meters	S																			RODS BROKE OFF AND HOLE WAS ABANDONED
																						Note: return was lost at 101.5 in oxidized rubble (is this the down dip
																						continuation of the #3 extension zone

RQD Log LD04-17

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
6.7					
8.2	33	22			
11.3	57	18			
14.3	56	19			
17.4		59			
20.4		66			
23.5		40			
26.5		86			
29.6		73			
32.6		50			
35.7		62			
38.7	200	67			
41.8		61			
44.8		85			
47.9		77			
50.9	234	78			
53.9	271	90			
57.0		84			-
60.0		94			-
63.1	272	88		ļ	1
66.1	229	76			1
69.2	209	67			
72.2	214 171	71			+
75.3 78.3		55 83			
81.4		85		<u> </u>	+
84.4		92		<u> </u>	+
87.5		84			
90.5		59			
93.6		37			
96.6		75			
99.7		74			
102.7	34	11			
105.8		51		 	+
108.8				1	
111.9		64		1	
114.9		82			†
118.0		46			†
121.0		53			1
124.0		61			
127.1	185	60			
130.1		39			
133.2		49		1	
133.9			EOH @ 133.9		
		3			

Survey Log LD 04-17

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		90		-45
150	45.7	58.5	80.5	45	-45
300	91.4	57.5	79.5	44.5	-45.5

Assay Sample Log LD04-18

Page: 1

Sample No.	From		Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	78.3	no sample								
322319					1.7	77	0.002	0.5	124	42	84
			no sample								
322320					1.3	87	0.006				1215
322321					1.2	75	0.002				
322322					1.5	94	0.002				
322323					1.7	85	0.006				
322324					0.9	36	0.219		>10000	186	31600
322325					1.5	50	5.940		>10000	1175	
322326					0.7	50	0.764		>10000	1045	3620
322327					0.7	70	0.772		>10000	1365	25300
322328					1.2	100			>10000	243	96200
322329					0.8	80	0.006	0.3	284	6	750
	125.6	151.5	no sample								
EOH @ 151.5											

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	tion					Mi	ner	aliza	ation			Comments
					_		SKr			CL	Ser	QΖ	PΥ	PΟ					BN	MG	
0.0	4.3	O/B					1														Triconed - no core
4.3	8.1	Md											tr								Monzonite Dyke
																					It gr/gy, fine to med grained, non-mag, mod calc
																					PY in <vnlts< td=""></vnlts<>
																					LI in <vnlts< td=""></vnlts<>
																					lower cnt not observed due to broken core
8.1	17.2	CP											<1								Calcareous Phyllite
			S1	9.6	77																dk gy/blk-lt gy laminated, wkly phyllitic, variably calc
			S1	14.1	77																grades locally to bands of massive LS and zones of argillaceous LS
																					also grades locally to siliceous phyllite
																					PY as blebs/specks
																					lower cnt gradational
																					8.1-8.2 strongly fractured w/ gouge
																					9.0-9.2 graphitic gouge and rubble
																					15.3-15.4 rubble and graphitic gouge @ 61
																					15.1 2cm graphitic gouge
							ļ						<u> </u>					ļ			
17.2	18.0	AP											<1								Argillaceous Phyllite
																					dk gy/blk, v. wkly laminated, wkly phyllitic
																					PY as small blebs
												<u> </u>					-				lower cnt sharp, planar @ 30
40.0	0.4.0																-				
18.0	34.2	LS																			Limestone
																					med gy, massive, recrystallized
																					no alt'n, no mineralization
																					18.0-18.6 argillaceous laminae
																	-		-		24.3-24.5 void (lost return) - no oxide <vnlts< td=""></vnlts<>
34.2	38.9	Md					1			<1							+	1			Monzonite Dyke
54.2	50.9	iviu				 	1	1		-		\vdash					+	1	\mathbf{I}	 	It gr/gy, non-mag, non-porph, wkly calc
							1					1		\vdash		-	+	1	1		w/ 3% CL alt'd mafics
						-	+	 				1					+	+	+	-	no mineralization
																	+		1		upper cnt faulted w/ gouge @ 54
							1	1				1	1	1		<u> </u>	+	1	1		34.2-34.8 chilled margin w/ oxide in <vnlts< td=""></vnlts<>

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA				Iterat									ation			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	PO	СР	SL	. GL	. AS	BN	MG	
																					34.2-38.9 cont'd
																					lower cnt sharp, planar @ 57
																					37.6-38.9 chilled margin w/ 10% plag phenos to 2mm; oxides in <vnlts< td=""></vnlts<>
																					37.7-37.8 gouge @ 53
38.9	78.3	LS																			Limestone
																					med gy, massive, recrystallized
																					a/a 18.0-34.2
																					no alt'n; no mineralization
																					41.2-41.4 strongly fractured core w/ lt br CY and oxides in <vnlts< td=""></vnlts<>
																					48.7-52.9 wkly fractured w/ minor lt br CY in <vnlts< td=""></vnlts<>
																					52.9-53.4 strongly fractured w/ It br CY in <vnlts< td=""></vnlts<>
																					53.4-78.3 wkly fractured w/ minor lt br CY in <vnlts, 4mm<="" td="" to="" vnlts=""></vnlts,>
78.3	92.3	MT							5	5			<1								Mafic Tuff
			S1	89.3	57																med gy/gr to dirty gy/gr, wkly phyllitic, strongly calc, gritty to fine grained
																					w/ rounded frags of LS to 4cms dia.
																					local strong oxide zones w/ CY alt'n and rubbly core
																					pervasive CL alt'n of mafic tuff
																					PY as disssem grains
																					upper cnt not observed due to broken core
																					lower cnt not observed due to broken core
																					71.3-71.6 10% dissem PY
																					78.4-80.5 strong CY alt'n zone w/ It br to red/br oxides
																					84.4-86.2 mod to strong oxide interval
																					92.0-92.3 rubbly core w/ minor oxide - no gouge
																					91.5 dk gy CY gouge
92.3	95.8	LS																			Limestone
																					massive, med/dk gy, recrystallized
																					wkly fractured w/ oxides on <vnlts< td=""></vnlts<>
																					no mineralization; no alt'n
																		Ī			
95.8	99.8	MT							5	5											Mafic Tuff
																		Ī			lith, alt'n a/a 78.3-92.3
																					mod fractured w/ local CY and oxides on <vnlts< td=""></vnlts<>

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA		Α	Iterat	tion					Mi	nera	aliza	tion			Comments
						SKp			CL	Ser	QΖ	PY	РΟ					ΒN	MG	
																				95.8-99.8 cont'd
																				no mineralization observed
																				cnts not observed due to broken core
																				97.4-97.5 It gy CY gouge
99.8	102.8	SP						2												Siliceous Phyllite
																				dk gy/blk-lt gy laminated, wkly phyllitic, vuggy
																				strongly fractured w/ 15% lt br CY alt'n
																				oxide minerals in <vntls< td=""></vntls<>
																				It gy, siliceous laminations are locally boudinaged
																				no mineralization observed
																				lower cnt not observed due to broken core
102.8	115.5	LS						<1												Limestone
																				med gy w/ br patches, massive, mod fractured
																				It br oxide in <vnlts &="" altered="" br="" cy="" minor="" oxide="" red="" td="" w="" zones<=""></vnlts>
																				possible wk FeMg carbonate atl'n (It br)
																				no mineralization observed
																				110.3 red/br oxide and CY, 4cm wide
																				111.6-112.0 rubbly core w/o gouge
																				113.7-114.0 rubble w/ 4cms red/br oxide & CY
115.5	118.8	OX						8												Red Oxide Mineralized Zone
																				deep red/br, CY altered
																				no primary sulphides observed
																				upper cnt sharp and irreg (see photo)
																				lower cnt not observed due to lost core
																				** unsure of lower cnt postion due to lost core
																				118.0-124.4 samples taken between core blocks due to lost core
110 0	122.4	MS-OX	,					2				?			?	-	?			Massive Pyritic Sulphides w/ 20% Oxides
110.0	122.4	1013-07	`					-				-			۲		:			dk gy/blk, ground up core w/ local CY alt'n
						 									\vdash	\mathbf{I}		1		PY as coarse grained cubes
						 									\vdash	\mathbf{I}		1		AS as patches
																				possible SL
															1	1				121.0-122.4 30% oxide

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion					Mi	nera	aliza	tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	РΟ	СР	SL	GL	AS	BN	MG	
																					118.8-122.4 cont'd
																					** unsure of lower cnt due to broken and lost core
122.4	124.6	OX							8												Red Oxide Mineralized Zone
																					a/a 115.5 to 118.8
																					deep red/br; CY alt'n
																					no sulphide mineralization observed
																					lower cnt not observed due to broken and lost core
																					note: sulphides possibly sheared and CY altered to create oxide zones
124.6	142.3	LS																			Limestone
																					med to dk gy, massive, mod fractured
																					med to dk red/br oxides on <vnlts< td=""></vnlts<>
																					local incip bxia
																					possible wk FeMg carbonate alt'n (It br patches and lenses)
																					lower cnt gradational
142.3	149.6	LS																			Limestone
																					lith a/a 124.6 to 142.3
																					wkly fractured w/ minor, med to dk br oxides in <vnlts< td=""></vnlts<>
																					no oxides in <vnlts 146.0<="" below="" observed="" td=""></vnlts>
																					no sulphides observed; no alt'n
149.6	151.5	Md								<1	2										Monzonite Dyke
																					It gy/gr, wkly porph, non-mag, non-calc
																					<5% CL alt'd mafics
																					wk to mod sericite alt'n
																					wkly fractured locally w/ white CY on surfaces
							1														no sulphide mineralization
							1														upper cnt not observed due to broken core
							1	1													149.6-150.0 gouge w/ felsic rock frags (sheared chilled margin)
EOU 6	1645	motor						1		-						-	-				
EOH @	5.וכו ש	meters	5					1				-		-		-					
						1	1	1	1			}	-	 			-		}		

RQD Log LD04-18

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
4.3	1145 (6)	1142 70	125.6	(6)	1142 /6
5.2	63	70	126.8	0	0
8.2	226	75	128.6	0	
11.3	82	26	130.1	16	
14.3	85	28	133.2	62	20
17.4	44	14	136.2	50	17
20.4	203	68	139.3	94	30
23.5	266	86	142.3	179	60
26.5	188	63	145.4	158	51
29.6	261	84	148.4	165	55
32.6	196	65	151.5	177	57
35.7	92	30			
38.7	96		EOH @ 151.5m	1	
41.8	184	59			
44.8	123	41			
47.9	256	83			
50.9	172	57			
53.9	143	48			
57.0	270	87			
60.0	230	77			
63.1	244	79			
66.1	267	89			
69.2 72.2	253 238	82 79			
75.3	230	79 78			
78.3	167	56			
81.4	94	30			
84.4	117	39			
87.5	106	34			
90.5	94	31			
93.6		0.			
96.6	118	39			
99.7	108	35			
102.7	76	25			
105.8	54	17			
108.8	59	20			
111.9	97	31			
114.9	142	47			
118.0	56	18			
121.0	0	0			
122.4	0	0			
122.8	0	0			
123.4	0	0			
124.0	0	0			
125.6	54	34			

Survey Log LD04-18

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		64		-45
157	47.9	31.5	53.5	44.5	-45.5
300	91.4	36	58	44	-46
450	137.2	34.25	56.25	42.25	-47.75

Assay Sample Log LD04-19

Page: 1

Sample No.	From	То	Sample Type	S.G	Rec.	% Rec.				ppm Cu	
322330			standard				1.045		28	12000	108
322331			blank				0.008	0.1	20	128	62
	0.0	117.8	no sample								
322332	117.8	119.5			1.5	88	0.002	0.5	104	6	1450
322333	119.5	121.0			1.3	87	0.032	1.7	886	36	4110
322334					1.1	73	0.002	0.3	39	3	218
	122.5	189.6	no sample								
					ļ						
EOH @ 189.6	m										
					<u> </u>						
					1						
					-						
					<u> </u>				 		
					1						
					 						
					†						
					†						

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion					Mi	iner	aliz	ation			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	PΟ	СР	SL	. I GI	LIAS	BN	II M	<u> </u>
0.0	3.7	O/B																1			triconed casing - no core
3.7	9.4	Md								2											Monzonite Dyke
																					It to med gy/gr, non-mag, v. wkly calc, fine grained, equigranular
																					CL alt'n of mafics
																					wk sauss. alt'n of plag
																					no sulphides observed
																					lower cnt not observed due to broken core
9.4	12.0	SP																			Siliceous Phyllite
																					dk gy/blk-lt gy laminated, wkly phyllitic
																					no alt'n; no sde mineralization
																					lower cnt not observed due to broken core
																					9.8-10.1 strongly fractured core w/ 0.1m graphitic gouge
12.0	16.8	CP																			Calcareous Phyllite
																					dk gy/blk-lt gy laminated, wkly phyllitic, wkly calc
																					grades locally to siliceous phyllite
																					no alt'n; no sde mineralization
																					strong CB stwk vnlts to 2mm
																					lower cnt not observed due to broken and lost core
16.8	19.7																				Siliceous Phyllite
			S1	18.9	72																lith, alt'n and mineralization a/a 9.4-12.0
																					lower cnt sharp, planar @ 53
																					16.8-17.5 graphitic gouge & rubble
19.7	44.1	LS																			Limestone
																					med to dk gy, massive, recrystallized
																					wk pressure solution sutures
																					wkly fractured w/o infilling
																		1			local strong <vnlts< td=""></vnlts<>
																					no alt'n; no sde mineralization
																		1			mod CB vnlts to 3mm wide
																		1			19.7-21.0 argillaceous
																					34.9-35.0 cherty nodules? to 3mm dia

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA				lterat									tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	PO	CP	SL	. GL	AS	BN	MG	
																					19.7-44.1 cont'd
																					37.5-44.1 minor It orange/br ox on wk fractures
																					43.8-44.0 gouge w/rock frags & healed bxia @ 60 (It br gouge w/ oxides)
44.1	48.0	Md							1	2	1										Monzonite Dyke
																					It gr/gy, non-calc, non-mag
																					CL alt'n of mafics
																					ser. alt'n of plag
																					no mineralization
																					upper cnt sharp, irreg
																					lower cnt sharp, planar @ 42
																			Ī		44.1-44.6 chilled margin w/ gouge
																					47.5-48.0 chilled margin
																					· · · · · · · · · · · · · · · · · · ·
48.0	86.1	LS																			Limestone
																					med to dk gy, massive, recrystallized
																					wk to locally strong CB vnlt stwk
																					wk pressure solution sutures
																					no alt'n; no sde mineralization
																					48.0-54.0 wk to mod fracturing w/ It br CY + oxides as infillings
																					54.0-77.6 wk fracturing w/ tr lt br CY+oxides as infillings
																					77.6-86.1 wk to mod fracturing w/ med br CY+oxides as infillings
																					ÿ v
86.1	104.0	MT								2			1								Mafic Tuff
			S1	91.4	73																It, dirty, gy/gr and med gy, well laminated to locally massive, fine grained
			S1	98.8	47																w/ 10 % calcareous laminations
																					w/ occasional LS and volc. frags to 3cm
																					PY locally in laminations
																					CL alt'n of mafic frags
																					86.1-85.5 strongly fractured & rubbly w/ orange oxide & CY infillings
																	1		1		89.0-90.5 mod fractured w/ orange oxide & CY infillings
																1	1		1		90.5-93.7 wkly fractured w/ orange/br oxide infillings
																	1		1		91.3-91.6 10% PY in laminations parallel to S1
																1			1		97.2-97.3 grey gouge
																1			1		98.4-98.9 10% PY in laminations parallel to S1
																1	1	1	1		99.6-99.7 grey gouge @ 34

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA				lterat									tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
																					86.1-104.0 cont'd
																					99.8-100.4 10% PY in laminations parallel to S1
																					102.1-102.4 rubbly core w/o gouge
																					lower cnt sharp, irreg
104.0	106.2	LS																			Limestone
																					med gy, massive, recrystallized,
																					local incip bxia
																					no alt'n; no mineralization
																					wkly fractured w/ orange/br oxide infillings
106.2	108.8	MT								3											Mafic Tuff
																					lith a/a 86.1-104.0, w/ <10% calcareous laminations
																					strongly fractured w/ minor orange/br oxide and CY infillings
																					CL alt'n of mafic laminae
																					no sde mineralization
																					upper cnt sharp, planar @ 33
																					lower cnt not observed due to lost core
108.8	110.6	LS																			Limestone
																					med gy, massive, recrystallized
																					modly fractured w/ orange/br ox infillings
																					no alt'n; no mineralization
																					lower cnt sharp, planar @ 12
110.6	114.6	CP											1								Calcareous Phyllite
																					dk gy/blk-lt gy laminated, wkly phyllitic
																					grades locally to argillaceous and massive limestone
																					PY as patches
																					no alt'n
																					lower cnt sharp, irreg
114.6	116.1	SP											<1								Siliceous Phyllite
			S1	115.6	60																dk gy/blk-lt gy thinly laminated, mod phyllitic
																					w/ 5% argillaceous limestone intercalated
																					PY as blebs

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA				terat									tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					114.6-116.1 cont'd
																					no alt'n
																					114.6-114.8 dk gy gouge
																					115.0 5cm dk gy gouge
																					115.2-115.3 dk gy gouge @ 47
																					lower cnt not observed due to gouge & lost core
116.1	117.8	LS																			Argillaceous Limestone
																					med gy-dk gy/blk, wkly laminated, non-phyllitic
																					grades locally to massive, med gy LS
																					modly fractured w/ minor lt orange oxide infilling
																					strong CB stwk vnlts
																					no alt'n; no mineralization
																					116.1-116.3 rubbly core w/ gouge
																					117.6 It br CY (gouge?)
																					lower cnt gradational
117.8	123.1	LS																			Limestone
																					med gy, massive, recrystallized
																					strongly fractured w/ It orange/br CY & oxide infilling
																					no alt'n; no sde mineralization
																					120.6-120.7 dk red/br CY & oxide
																					lower cnt gradational
123.1	168.7	LS																			Limestone
																					med gy, massive, recrystallized
																					locally argillaceous
																					no alt'n; no mineralization
																					wkly fractured w/ minor oxide infilling
																					130.5-133.6 argillaceous
																					130.9 3cm med gy gouge
																					note: loc lt br patches of wkly recrystallized limestone 139.6-150.0
168.7	173.6	Md								<1											Monzonite Dyke
																					It gy/gr, non-mag, non-calc, non-porph
																					CL alt'n of 5% mafics

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA				lterat						Mi	nera	aliza	tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					168.7-173.6 cont'd
																					no sde mineralization
																					upper cnt not observed due to broken core
																					168.7-170.2 chilled margin
																					169.4 2cm gouge @ 53
																					lower cnt not observed due to broken core
																					173.5-173.6 chilled margin w/ banding @ 64
173.6	189.6	LS																			Limestone
																					med gy, massive, variably recrystallized
																					no alt'n; no mineralization
																					v. wk fracturing w/o oxide infilling
EOH @	189.6	meters	3																		
							1														

RQD Log LD04-19

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
3.7	, ,		128.6	,	
5.2	84	56	130.1	81	54
8.2	223	74	131.7	86	54
11.3	114	37	133.2	49	33
14.3	88	29	134.7	69	46
17.4	158	51	136.2	71	47
20.4	109	36	137.8	102	64
23.5	261	84	139.3	34	23
26.5	235	78	140.8	98	65
29.6	251	81	142.3	73	49
32.6	213	71	143.9	72	45
35.7	267	86	145.4	114	76
38.7	216	72	146.9	76	51
41.8	214	69	148.4	37	25
44.8	116	39	150.0	94	59
47.9	119	38	151.5	106	71
50.9	170	57	153.0	86	57
53.9	121	40	154.5	105	70
57.0	262	85	156.1	87	54
60.0	216	72	157.6	131	87
63.1	183	59	159.1	132	88
66.1	194	65	160.6	125	83
69.2	247	80	162.2	91	57
72.2	205	68	163.7	111	74
75.3	224	72		126	84
78.3	171	57	166.7	136	91
81.4	53	17	168.2	136	91
84.4	52	17	169.8	58	36
87.5	52	17	171.3	56	37
90.5	54	18	172.8	42	28
93.6	143	46	174.3	75	50
96.6	178	59	175.9	88	
99.7	149	48	177.4	86	57
102.7	132	44	178.9	106	71
105.8					
108.8	73	24	182.0	64	40
111.9	127	41	183.5	112	75
114.9	178	59	185.0	103	
118.0	64	21	186.5	100	67
121.0	43	14	188.1	109	
122.5	24	16	189.6	117	78
124.0	64	43	EQ U. 6. 400 5		
125.6	106		EOH @ 189.6 r	n	
127.1	71	47			
128.6	109	73			

Survey Log LD04-19

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0		64		-65
150	45.7	43	65	26	-64
300	91.4	39	61	26	-64
450	137.2	40	62	26	-64
600	182.9	37.5	59.5	26.25	-63.75

Assay Sample Log LD04-20

Page: 1

Sample No.			Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	141.2	no sample								
322335	141.2	142.2			1.0	100	0.002	0.1	130	9	1620
	142.2	186.1	no sample								
322336	186.1	186.9			0.8	100	0.011	0.4	45	99	49
	186.9	289.8	no sample								
322337		290.8			1.0	100	0.193	0.9	>10000	392	752
	290.8	334.3	no sample								
EOH @ 334.3	<u>m</u>										
				1							
								ĺ			ĺ

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA			Α	lterat	ion					M	iner	aliza	ation)		Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	PO	CP	SL	GL	. AS	S BN	MG	
0.0	3.7	O/B																			triconed - no core
3.7	46.1	SP																			Siliceous Phyllite
			S1	6.3	30																dk gy/blk-lt gy, thinly laminated, mod phyllitic
			S1	12.4	30																grades locally to calcareous phyllite
			S1	18.9	26																no alt'n; no mineralization
			S1	22.0	31																local QZ patches (sweats?)
			S1	27.7	30																minor CB vns to 10mm
			S1	32.8	31																local small F2 folds (indicated by S1 parallel to core axis)
			S1	38.8	5																6.0-6.4 calcareous
			S1	40.0	10																8.2-9.3 calcareous
			S1	45.6	5																19.2-19.5 calcareous
																					13.0-13.4 rubbly core w/ minor gouge
																					23.7 5cm rubble and gouge
																					25.2-25.5 rubble w/ minor gouge and lost core
																					28.8-29.0 rubble and gouge
																					41.8-44.8 rubble, gouge and >1.5m lost core
																					41.2-41.6 limestone; upper cnt sharp, planar @ 45; lower cnt not observed
46.1	60.0	Md								<1											Monzonite Dyke
																					It gr/gy, non-porph, non to wkkly mag, fine grained, wkly calc
																					CL alt'n of 3-5% mafics
																					wk sauss. alt'n of plag
																					no sde mineralization
																					upper cnt sharp, planar, @ 50
																					lower cnt sharp, planar @ 10
60.0	87.7	CP																			Calcareous Phyllite
			S1	61.7	32																dk gy/blk-lt gy laminated, wkly phyllitic
			S1	63.1	52																grades locally to massive, gy LS
			S1	72.4	37																no alt'n, no mineralization
			S1	75.1	44																wkly fractured w/ minor orange/br oxide infilling
			S1	79.6	42																64.4-68.0 strong CB stwk vnlts to 4mm
			S1	86.9	47																67.5-67.9 limestone w/ calcareous phyllite frags
																					70.1-71.6 med to dk gy, massive to wkly laminated, limestone w/ 25% CB
																					patches/blebs; gradational cnts; locally argillaceous

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA				lterat									tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					60.0-87.7 cont'd
																					71.6-72.7 PO blebs/patches to 20mm
																					72.7-73.1 tuffaceous; 40% pale gr/gy laminations; S0 parallel to S1
																					lower cnt gradational
87.7	92.3	SP												<1							Siliceous Phyllite
																					dk gy/blk-med gy laminated, wkly phyllitic, carbonaceous
																					grades locally to calcareous phyllite
																					PY as dissems, blebs
																					no atl'n
																					cnts gradational
92.3	99.5	CP																			Calcareous Phyllite
			S1	94.1	33																lith, alt'n a/a 60.0-87.7
			S1	97.0	38																no sde mineralization
																					cnts gradational
99.5	108.3	SP											<1	<1	tr	tr		tr			Siliceous Phyllite
			S1	99.7	37																lith and alt'n a/a 87.7-92.3
																					PY/PO in QZ/CB vnlts, and as dissems
																					101.3 CP/AS/SL in QZ vn @ 10/1-10mm; siliceous phyllite frags
																					locally <vnlts cl<="" td="" w=""></vnlts>
																					upper and lower cnts gradational
•																					107.0-107.2 massive, gy, limestone
																					104.5 PY/SL/QZ vnlt
																					siliceous laminae are generally broken and boudinaged
108.3	120.1	LS																			Limestone
			S1	110.5	21																med gy, massive to local wkly laminated, variably recrystallized
																					no alt'n, no mineralization
																					109.3-110.0 calcareous phyllite
120.1	134.2	Md								<1			<1	<1							Monzonite Dyke
																					med gy/gr, wkly porph, wkly calc, locally wkly mag (PO), fine grained
							1							İ			İ				PY/PO as dissems
							1									İ					1% EP blebs

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA				terat									tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					120.1-134.2 cont'd
																					wk sauss alt'n of plag
																					cnts sharp, planar @ 33
																					126.5-127.0 limestone xenolith
																					131.1-131.9 limestone xenolith
134.2	145.8	LS											tr			tr					Limestone
																					med gy, massive, variably recrystallized
																					no alt'n
																					141.6-141.8 3-5% PY and 1% SL as blebs
																					lower cnt gradational
145.8	156.4	LS																			Argillaceous Limestone
																					med gy, massive w/ 5% dk gy/blk argillaceous thin laminations
																					locally bxiated w/ CB matrix
																					no alt'n; no sde mineralization
																					lower cnt sharp, planar @ 45
																					146.0-146.1 strongly fractured w/ oxides and tr scorodite infillings
																					152.3-156.4 strong CB stwk vnlts
156.4	156.8	MT								8											Mafic Tuff (Chloritic Phyllite)
																					dirty gy/gr, wkly phyllitic, w/ angular gy limestone frags
																					pervasive CL alt'n
																					no sde mineralization
156.8	159.1	Md							1				tr								Monzonite Dyke
																					fine grained, dk gy/gr, non-porph, non-mag, wkly calc
																					wk CL alt'n of mafics
																					5% EP blebs
																					wk sauss alt'n of plag
																					PY as dissem grains
																					upper cnt sharp, planar @ 45 w/ wk chilled cnt
																					lower cnt sharp, irreg
159.1	163.3	MT							8				<1	<1							Mafic Tuff
			S1	160.0	45																med gr to dirty gy/gr, wkly phyllitic, locally wkly laminated

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion					Mi	nera	aliza	tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					159.1-163.3 cont'd
																					w/ angular frags of gy LS (a/a 156.4-156.8)
																					PY/PO as dissem grains
																					pervasive CL alt'n
163.3	167.4	Md								1			tr								Monzonite Dyke
																					lith, alt'n, mineralization a/a 156.8-159.1
																					cnts sharp, irreg, w/ chilled margins to 5cm
167.4	168.7	MT								8			<1								Mafic Tuff
																					lith, alt'n a/a 159.1-163.3
																					PY in <vnlts and="" as="" dissems<="" td=""></vnlts>
168.7	174.7	Md								1			tr								Monzonite Dyke
																					lith, alt'n, mineralization a/a 156.8-159.1
																					upper cnt sharp, planar @ 38 w/ chilled margin
																					lower cnt sharp, planar @ 12 w/ chilled margin
174.7	194.3									8			<1								Mafic Tuff
			S1	193.5	38																med gy/gr, wkly phyllitic, ash tuff
																<u> </u>	<u> </u>				w/ 5% It gy LS lapilli & 15% dk gy/gr CL alt'd frags
																					180.9-188.1 15% angular, dk gy/gr, CL alt'ed lapilli
																					183.6-184.2 dk gy mafic interval w/o CL alt'n; 3% LS lapilli
												ļ							-		186.1-186.9 mafic interval a/a 183.6-184.2; 10% PY dissem and in patches
																	<u> </u>				lower cnt sharp, planar @ 50
104.2	203.1	LS																			Limestone
194.3	203.1	LS												1			-		1		med gy, massive, recrystallized
														1			-		1		no alt'n; no mineralization
							1	1				<u> </u>		1					1		local strong CB stwk vnlts
																					lower cnt sharp, irreg
																					lower chi sharp, irreg
203.1	240.7	MT								8											Mafic Tuff (Chloritic Phyllite)
	0.7		S1	203.7	50		t		 	ا ا		 					1	1	1		lith, alt'n, mineralization a/a 174.7-194.3
			S1	207.9	35		1									t	1		1		note: a few LS frags are subrounded w/ chilled? margins
			S1	215.5			1	t —	 		 	1		1		1	t		1		204.5-205.4 dk gy, mafic rich interval w/ wk CL alt'n a/a 183.6-184.2

Date: Logged By: DJH Page 5/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion							aliza				Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
																					203.1-240.7 cont'd
			S1	221.4	40																205.9-206.2 a/a 186.1-186.9 w/ 10-15% PY (lithologically controlled); cnts
			S1	229.8	34																sharp, planar @ 35; interval is wkly laminated, med gy, sericite? alt'd
			S1	232.5	23																(felsic tuff protolith?)
																					219.3-219.8 dk gy tuffaceous phyllite
																					223.1-225.2 dk gy argillaceous tuff
																					228.1-232.0 dk gy argillaceous tuff
																					lower cnt gradational
240.7	243.4	CP																			Calcareous Phyllite
			S1	243.8	40																dk gy/blk-lt gy laminated, wk to mod phyllitic
																					no alt'n; no sde mineralization
																					lower cnt sharp, planar @ 60
243.4	244.6	LS																			Limestone
																					med gy, massive, variably recrystallized
																					no alt'n, no mineralization
																					lower cnt sharp, wavy @ 40
244.6	265.8	SP											<1	<1							Siliceous Phyllite
			S1	245.5	55																dk gy/blk-med gy laminated, wkly phyllitic
			S1	247.8	54																grades locally to calcareous phyllite
			S1	252.3	52																no alt'n
			S1	254.4	50																PY/PO as patches/blebs (sometimes parallel to S1), and in <vnlts; some<="" td=""></vnlts;>
			S1	260.4	38																patches have PO cores and PY rims
																					siliceous phyllite/tuff cnts show evidence of soft sediment deformation
																					246.0-252.3 bands of It gy, laminated, fine grained, wkly phyllitic tuff?
																					252.3 nice cnt w/ S0 parallel to S1
																					lower cnt gradational
265.8	269.8	CP											<1								Calcareous Phyllite
			S1	269.4	50																lith a/a 174.7-243.4
																					no alt'n;
																					grades locally to siliceous phyllite
																					PY in <vnlts< td=""></vnlts<>
							1	1						1		İ			l I		lower cnt gradational

Date: Logged By: DJH Page 6/

From	То	Rock	Mod	Stuct	CA			Α	terat	ion					М	inera	aliza	tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	СР	SL	GL	AS	BN	MG	
269.8	272.0	SP											<1								Siliceous Phyllite
																					lith, alt'n a/a 244.6-265.8
																					siliceous laminae are generally broken and locally boudinaged
																					PY in vnlts, <vnlts, and="" as="" dissems<="" td=""></vnlts,>
																					lower cnt sharp, planar @ 65
272.0	274.1	CP											<1								Calcareous Phyllite
																					lith, alt'n and mineralization a/a 265.8-269.8
																					lower cnt sharp, planar @ 38
274.1	279.5	SP											<1	<1							Siliceous Phyllite
			S1	274.2	43																lith a/a 244.6-265.8
			S1	279.0	43																grades locally to calcarous phyllite
																					PY/PO as patches/blebs and in <vnlts< td=""></vnlts<>
																					siliceous laminae are generally broken and locally boudinaged
																					lower cnt- 0.3m bxia w/ LS frags in a dark gy matrix
279.5	286.9	LS																			Limestone
																					med gy, massive, recrystallized
																					no alt'n; no mineralization
																					lower cnt gradational
286.9	290.1	LS																			Argillaceous Limestone
																					med gy, recrystallized
																					w/ <5% dk gy, argillaceous laminae
																					no alt'n, no mineralization
290.1	290.4	MS											70		tr	4		2			Massive Sulphide (Vein?)
																					PY/SL/AS/CP w/ 10% CB and 10% rock frags (siliceous phyllite?)
																					cnts @ 30 to core axis
290.4	296.2	SP											<1	<1							Siliceous Phyllite
																					lith a/a 244.6-265.8
																					grades locally to calcareous phyllite
																					w/ minor It gy tuffaceous laminae
																					no alt'n

Date: Logged By: DJH Page 7/

From	То	Rock	Mod	Stuct					lterat									tion			Comments
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	CP	SL	GL	AS	BN	MG	
																					290.4-296.2 cont'd
																					PY/PO as patches/blebs and in <vnlts, td="" vnlts<=""></vnlts,>
																					lower cnt gradational
296.2	313.4																				Argillaceous Limestone
			S1	309.0	50																med to dk gy, recrystallized
																					w/ <5% irreg, argillaceous laminae
																					grades locally to calcareous phyllite
																					no alt'n, no mineralization
																					gradational lower cnt
																					308.4-309.2 calcareous phyllite
																					310.0-310.4 calcareous phyllite
313.4	325.6	LS																			Limestone
																					med gy, massive, variably recrystallized
																					grades locally to argillaceous limestone
																					non-alt'n; no mineralization
																					lower cnt gradational
325.6	333.7	LS																			Argillaceous Limestone
																					lith, alt'n, mineralization a/a 296.2-313.4
																					grades loc to calcareous phyllite
																					327.1-327.3 healed bxia @ 30 w/ limestone frags in a dk gy matrix
																					328.9-329.3 calcareous phyllite w/ sharp cnts @ 30 (graphitic)
																					lower cnt gradational
333.7	334.3	SP											2								Siliceous Phyllite
																					lith a/a 244.6-265.8
																					no alt'n
																					PY as patches/blebs, and in <vnlts< td=""></vnlts<>
EOH @	334.3	meters	3																		

RQD Log LD04-20

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
3.7	, ,		136.2	89	
5.2	89	59	139.3	191	62
8.2	112	37	142.3	249	83
11.3	92	30	145.4	164	53
14.3	53	18	148.4	203	68
17.4	98	32	151.5	229	74
20.4	181	60	154.5	295	98
23.5	113	36	157.6	162	52
26.5	22	7	160.6	238	79
29.6	77	25	163.7	251	81
32.6	209	70	166.7	238	79
35.7	0	0	169.8	201	65
38.7	33	11	172.8	254	85
41.8	107	35	175.9	198	64
44.8	0	0	178.9	221	74
47.9	112	36	182.0	149	48
50.9	198	66	185.0	273	91
53.9	121	40	188.1	296	95
57.0	108	35	191.1	277	92
60.0	186	62	194.1	259	86
63.1	72	23	197.2	239	77
66.1	156	52	200.2	167	56
69.2	209	67	203.3	178	57
72.2	254	85	206.3	276	92
75.3	251	81	209.4	263	85
78.3	174	58	212.4	260	87
81.4	121	39	215.5	197	64
84.4	255	85	218.5	189	63
87.5	231	75	221.6	208	67
90.5	268	89	224.6	239	80
93.6	212	68	227.7	219	71
96.6	260	87	230.7	279	93
99.7	191	62	233.8	213	69
102.7	189	63	236.8	294	98
105.8	221	71	239.9	184	59
108.8	182	61	242.9	211	70
111.9	209	67	246.0	210	68
114.9	222	74	249.0	287	96
118.0	191	62	252.1	226	73
121.0	189	63	255.1	251	84
124.0	237	79	258.1	210	70
127.1	167	54	261.2	219	71
130.1	154	51	264.2	271	90
133.2	151	49	267.3	168	54
136.2	89	30	270.3	255	85

RQD Log LD04-20

Date: Page: 2

270.3	255			
273.4	204	66		
276.4	191	64		
279.5	101	33		
282.5	177	59		
285.6	126	41		
288.6	265	88		
291.7	253	82		
294.7	248	83		
297.8	258	83		
300.8	238	79		
303.9	295	95		
306.9	246	82		
310.0	264	85		
313.0	239	80		
316.1	173	56		
319.1	156	52		
322.2	194	63		
325.2	152	51		
328.3	222	72		
331.3	265	88		
334.3	286	95		
EOH @ 334.3				

Survey Log LD04-20

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0				-90

Assay Sample Log LD04-21

Page: 1

Sample No.			Sample Type	S.G	Rec.	% Rec.	ppm Au	ppm Ag	ppm As	ppm Cu	ppm Zn
	0.0	163.7	no sample								
322338	163.7	164.7			0.9	90	0.002	18.1	156	502	6740
	164.7	203.8	no sample								
322339	203.8	204.8			0.9	90	0.148	1.8	6970	67	535
	204.8	252.1	no sample								
EOH @ 252.1	m										

Date: Logged By: DJH Page 1/

From	То	Rock	Mod	Stuct	CA			Α	Iterat	ion			l		Mi	nera	aliza	tion			Comments		
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	РΟ					BN	MG			
0.0	6.1	O/B																			triconed casing - no core		
																					· · · · · · · · · · · · · · · · · · ·		
6.1	18.2	SP												<1							Siliceous Phyllite		
			S1	11.3	40																dk gy/blk-med gy laminated (irreg), wkly phyllitic		
			S1	15.1	38																w/ <5% It gy (tuffaceous) irreg laminae		
			S1	17.5	60																no alt'n		
																					PY in <vnlts and="" as="" blebs<="" td=""></vnlts>		
																					13.4 graphitic gouge, 3cm wide @ 74		
																					lower cnt gradational		
18.2	39.0	CP												<1							Calcareous Phyllite		
			S1	27.7	60																dk gy/blk-med gy laminated, wkly phyllitic		
			S1	34.2	55																grades locally to gy, massive limestone and to dk gy massive argillite		
			S1	37.2	30																<5% intercalated, volcanic sandstone or tuff		
																					no alt'n		
																					S1 generally irreg		
																					PY as blebs and in <vnlts, and="" compositional="" in="" laminae="" proximal="" td="" to="" volcanic<=""></vnlts,>		
																					sandstone layers (syngenetic?)		
																					lower cnt gradational		
39.0	50.6	LS																			Argillaceous Limestone		
																					med gy, massive, recrystallized		
																					wkly argillaceous w/ <2% wispy laminae		
																					no alt'n, no sde mineralization		
																					wkly fractured w/ minor yellow and orange oxide infilling		
50.6	85.5	LS																			Limestone		
																					med gy, massive, recrystallized		
																					grades locally to argillaceous limestone		
																					wkly fractured w/ pale yellow and orange/br oxide infilling		
							1														no alt'n; no sde mineralization		
							<u> </u>					ļ											
85.5	87.5	MT																			Mafic Tuff		
							<u> </u>					ļ									85.5-86.0 It gr/tan, wkly laminated, wkly phyllitic w/ boudinaged LS frags		
																					86.0-87.5 dirty gr/br, massive, non-phyllitic, heterolithic ash tuff w/ rare LS		
																					and volcanic lapilli		

Date: Logged By: DJH Page 2/

From	То	Rock	Mod	Stuct	CA				Iterat									ation			Comments	
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	PO	CP	SL	GL	. AS	BN	MG		
																					85.5-87.5 cont'd	
																					upper cnt sharp, planar @ 20	
																					lower cnt gradational	
87.5	130.5	LS																			Limestone	
																					med gy, massive, recrystallized	
																					locally argillaceous	
																					no alt'n; no sde mineralization	
																					wkly fractured w/ minor orange oxide infilling	
																					100.0-103.0 patches of lt gy and white, unrecrystallized LS (chalky)	
																					lower cnt sharp, steep, irreg	
130.5	148.4	MT											<1	<1							Mafic Tuff	
			S1	132.5	35																med gy/gr, locally It gy laminated, locally massive, calcareous ash tuff	
			S1	135.9																	wkly phyllitic; locally argillaceous; distinctive, angular to subrounded LS lapilli	
			S1	145.3	35																no alt'n	
																					PY/PO as blebs in laminae parallel to S1 (syngenetic?	
																					131.7-139.9 distinctive "spotted", dk gy/gr lapilli; poorly sorted, wkly phyllitic	
																					135.0 3cm lt gy gouge	
																					139.3-139.5 shear w/ gouge @ 20	
																					lower cnt gradational	
148.4	151.1	CP											<1	<1							Calcareous Phyllite	
			S1	150.1	34																dk gy/blk-lt gy laminated, wkly phyllitic	
																					w/ <3% mafic tuff intercalated	
																					boudinaged LS frags	
																					unit is gradational from siliceous phyllite to limestone	
																					no alt'n	
																					PY/PO as small blebs in compositional layers parallel to S1	
																					lower cnt sharp, slightly irreg, S1 conformable @ 30	
151.1	152.7	LS																			Limestone	
																					med gy, massive, recrystallized, v. wkly argillaceous	
																					no alt'n, no sde mineralization	
																					152.0-152.2 calcareous phyllite	
																					lower cnt sharp, planar @ 45	

Date: Logged By: DJH Page 3/

From	То	Rock	Mod	Stuct	CA			A	terat	ion					Mi	nera	aliza	tion			Comments	
						HF	SKp	SKr	CY	CL	Ser	QΖ	PΥ	РΟ	CP	SL	GL	AS	BN	MG		
152.7	153.9	CP											<1	<1							Calcareous Phyllite	
																					lith, alt'n, and mineralization a/a 148.4-151.1	
																					w/ minor tuffaceous laminae	
																					lower cnt sharp, planar @ 45	
153.9	155.1	LS																			Limestone	
																					lith, alt'n, and mineralization a/a 151.1-152.7	
																					lower cnt sharp, irreg	
155.1	159.0	CP											<1	<1							Calcareous Phyllite	
																					dk gy-lt gy laminated, wkly phyllitic	
																					w/ minor tuffaceous laminae (pale gr/gy)	
																					PY/PO as dissem grains and patches	
																					lower cnt gradational	
159.0	163.4												1								Siliceous Phyllite	
			S1	161.0	38																dk gy/blk - It gy laminated, wkly phyllitic	
																					<5% lt gr/gy chloritic laminae	
																					no alt'n	
																					PY as blebs in compositional layers parallel to S1	
																					lower cnt not observed due to broken core and gouge	
																					160.2-160.4 graphitic gouge	
163.4	212.9												tr			tr		tr			Limestone	
			S1?	165.4	68																med gy, massive, recrystallized	
																					no alt'n; no mineralization	
																					163.4-163.5 4, parallel, vuggy PY/SL vns @ 32/ v. irreg and discontinuous	
																					163.4-165.4 argillaceous w/ S1 developed	
																					177.4-177.9 strongly fractured w/o gouge	
																					203.3-203.8 strongly fractured w/o gouge	
																					204.2-204.5 vuggy & brecciated w/ 10% PY blebs & 3% AS blebs	
																					205.3-206.8 strongly fractured w/o gouge	
																					206.8-207.7 healed bxia w/ 10% CB matrix; 2% PY blebs w/ tr SL	
																					207.9-211.1 strongly fractured	
																					211.1-212.6 2% PY in vnlts, <vnlts< td=""></vnlts<>	

Date: Logged By: DJH Page 4/

From	То	Rock	Mod	Stuct	CA			Α	terat	tion					Mi	ner	aliza	tion			Comments	
						HF	SKp	SKr	CY	CL	Ser	QΖ	PY	PY PO CP SL GL AS		AS	BN	II MC				
212.9	223.1	Md					- 4	-	<1	<1											Monzonite Dyke	
																					pale gr/gy, non-mag, non-calc, non-porph, med grained	
																					CL alt'n of mafics; plag wkly altered	
																					no sde mineralization	
																					upper cnt not observed due to broken core; chilled margin	
																					221.1-223.1 strongly fractured w/ CB+CY infilling	
																					lower cnt not observed due to broken core; 0.3m chilled margin	
222.4	252.1	LS																			Limestone	
223.1	252.1	LS																				
																					med gy, massive, recrystallized	
																					local CB vns to 15cm	
												-	ļ	ļ		<u> </u>	-	-	-	-	mod CB stwk nvlts	
																					no alt'n; no sde mineralization	
												-									240.4 2cm healed bxia @ 85 w/ monzonite, phyllite, and limestone frags in	
																-				-	a dk gy, calcareous matrix	
FOLL 6	050.4												-	ļ		1	<u> </u>	-	-	-		
EOH @	252.1	meters	S										<u> </u>	-								
												-	ļ	ļ		<u> </u>	-	-	-	-		
												-	ļ	ļ		<u> </u>	-	-	-	-		
													ļ			1	1					
																	1					
																\perp						

RQD Log LD04-21

Date: Page:1

block	RQD (cm)	RQD %	block	RQD (cm)	RQD %
	(3117)		136.2	230	77
6.1			139.3	234	75
8.2	87	41	142.3	267	89
11.3	204	66	145.4	156	50
14.3	113	38	148.4	259	86
17.4	210	68	151.5	250	81
20.4	216	72	154.5	247	82
23.5	234	75	157.6	207	67
26.5	241	80	160.6	135	45
29.6	254	82	163.7	94	30
32.6	209	70	166.7	80	27
35.7	233	75	169.8	107	35
38.7	202	67	172.8	169	56
41.8	248	80	175.9	228	74
44.8	207	69	178.9	177	59
47.9	263	85	182.0	231	75
50.9	266	89	185.0	151	50
53.9	252	84	188.1	197	64
57.0	254	82	191.1	243	81
60.0	194	65	194.1	221	74
63.1	186	60	197.2	268	86
66.1	199	66	200.2	198	66
69.2	243	78	203.3	249	80
72.2	153	51	206.3	38	13
75.3	183	59	209.4	114	37
78.3	121	40	212.4	54	18
81.4	202	65	215.5	112	36
84.4	226	75	218.5	133	44
87.5	219	71	221.6	129	42
90.5	209	70	224.6	73	24
93.6	268	86	227.7	219	71
96.6	243	81	230.7	124	41
99.7	186	60	233.8	164	53
102.7	203	68	236.8	168	56
105.8		75		259	
108.8	290	97	242.9	195	65
111.9	246	79	246.0	224	72
114.9	279	93	249.0	164	55
118.0	253	82	252.1	203	65
121.0	271	90	FOLL @ 252.4		
124.0	293		EOH @ 252.1		
127.1	214	69			
130.1	228	76			
133.2	241	78			
136.2	230	77			

Survey Log LD04-21

UTM Northing: UTM Easting: Elevation:

Depth (ft)	Depth (m)	Azimuth	Corrected	Inclination	Dip
0	0				-90