DIAMOND DRILL REPORT **ON THE TEXADA ISLAND PROJECT YEW GRID** JAN 2 7 2005 49°50'N, 124°34'W Gold Commissioner's Office S. 092F/15E & 10E VANCOUVER, B.C.N. Manaimo Mining District Nanaimo Mining Canada SURVEY BRANCH British Columbia, Canada for 555 Corporate Ventures Inc GE P.O. Box 2078 Vancouver, B.C. Canada

by

Gregory Thomson P. Geo. Rio Minerals Limited 910-475 Howe Street Vancouver, British Columbia V6C 2B3

September, 2004

TABLE OF CONTENTS

".

....

.

1.	S	UMMARY1
2.	I	NTRODUCTION
3.	Т	ENURE
4.	L	OCATION AND ACCESS
5.	Р	HYSIOGRAPHY AND CLIMATE 6
6.	H	IISTORY AND PREVIOUS WORK
7.	R	EGIONAL GEOLOGY
8.	P	ROPERTY GEOLOGY9
9.	E	XPLORATION TARGETS 12
	9.1. 9.2. 9.3. 9.4.	YEW AND HOLLY 12 BOLIVAR 14 M-21 15 SURPRISE MOUNTAIN (NANCY BELL AND SILVER TIP) 16
	9.4. 9.5.	PARIS - LOYAL
10	•	GEOPHYSICAL SURVEYS (2003)
11	•	2004 DIAMOND DRILL PROGRAM
12	•	2004 DRILL PROGRAM – DISCUSSION OF RESULTS
13	•	CONCLUSIONS AND RECOMMENDATIONS 28
14	•	REFERENCES
15	•	COST STATEMENT

APPENDICES

APPENDIX I	_	STATEMENT OF QUALIFICATIONS
APPENDIX II	_	DRILL LOGS
APPENDIX III	-	ASSAY CERTIFICATES
APPENDIX IV	-	DRILL SECTIONS

LIST OF FIGURES

AFTER PAGE

FIGURE 1	LOCATION MAP
FIGURE 2	REGIONAL GEOLOGY- CLAIM MAP
FIGURE 3	IP CHARGEABILITY ANOMALY – DRILL HOLE PLAN
FIGURE 4	DRILL HOLE COMPILATION PLAN

1. SUMMARY

A diamond drill program totalling 1541.4 meters in twenty five drill holes was carried out on the Yew Mining Lease 345340 (Yew 7) from July 5 to August 23, 2004.

555 Corporate Ventures Inc. holds title to the Yew Mining Lease as well as numerous single unit claims, crown grants, mining leases, and modified grid claims referred to collectively as the Texada Island Project. The company effectively controls the mineral rights to a large portion of northern Texada Island, British Columbia.

Texada Island is located approximately 120 kilometres northwest of Vancouver, BC, and is readily accessible by air and ferry. The island benefits from a well-developed infrastructure of services, tidewater access, and transportation methods. In addition, the company owns a small mill, which is currently operational on a intermittent basis.

The mining history of Texada Island dates back to the late 1800's when gold was discovered in volcanic hosted quartz veins in the Surprise Mountain area. This led to further discoveries of gold, copper, and iron, and the establishment of several small mines at the turn of the century. The two most significant producers were the Texada Iron Mines (approximately 10 million tons of iron ore concentrate and 1,897 ounces of gold to 1977, when production ceased) and the Marble Bay Mine, which produced 50,001 ounces of gold from 314,000 tons in the years from 1899 to 1929. Overall historic production is estimated at over 105,000 ounces of gold. In addition, a number of limestone quarries are in operation and produce 3-5 million tonnes of limestone for export per year.

Texada Island is underlain by two Triassic Formations – the volcanic Texada Formation and the limestone Marble Bay Formation, which have been equated to the Karmutsen and Quatsino Formations respectively, of the Vancouver Group on Vancouver Island. Rocks of the Mid to Upper Jurassic Island Plutonic Suite (formerly known as the Island Intrusives) intrude this sequence, as does a later, possible Tertiary event in the form of east-west trending dikes, which cut all units.

Mineralization on the island occurs in two main forms – skarn assemblages and quartz-carbonate veins. While the latter first attracted attention, the former has been the source of most of the mineral production on Texada. Skarn mineralogy is varied and complex, and generally not mappable on a property scale, hence the use of geophysics.

Report on the Yew Property for 555 Corporate Ventures Inc..

The mineralization can, however, be divided into two basic types: iron-rich (magnetite) and copper-gold rich skarns. Mineralization can include pyrite, chalcopyrite, bornite, sphalerite, and molybdenite.

The tenure holdings encompass both forms of mineralization and have been subjected to numerous early stage exploration programs in the past, which have resulted in favourable values in copper, gold, and associated minerals. Gold has been produced by the Bolivar Mill, located roughly in the centre of the claim group.

Two targets identified by previous operators, the Loyal and Yew Pit have been subjected to 3 Dimensional Induced Polarization survey, which shows an anomalous feature on the Loyal Grid extending through the central portion of the grid, and most pronounced on Lines 2000, 5000, 6000 and 7000 North. The depth to the top of this feature is in the order of 70 to 100 metres. In the resistivity response, this anomaly swings to surface on the eastern edge of the grid, in the area of the mafic intrusion outcroppings.

The skarn zone at the Loyal has been intermittently exposed along strike by shafts and trenches for 91 metres and is intersected by underground workings at 91 metres depth. In 1917 and 1918, a total of 342 grams of gold, 4821 grams of silver, and 4668 kilograms of copper were produced from a total of 54 tonnes mined (Mineral Policy data).

Five bulk samples taken in 1963 yielded an average content of 13.1 per cent copper, 3.56 grams per tonne gold, 521.05 grams per tonne silver and 1.1 per cent lead (Assessment Report 2918).

In the area of the Yew Pit, the Chargeability Inversion Models delineate an extensive anomalous feature extending through the entire grid from north to south. Depth to the top of this anomaly is in the range of 50 metres and it exhibits a shallow dip to the east. There is a moderate correlation between regions of lower resistivity and this chargeable zone. A potential interpretation of this anomaly is a mineralised limestone interbed within the volcanics flanked to the east and at depth by a diorite intrusion.

Massive pyrite, magnetite, pyrrhotite, minor chalcopyrite and trace bornite replaces limestone at the lower contact of the limestone bed. The mineralized zone is flat-lying, close to surface, thin and tabular, and ranges in thickness from 0.4 to 1.8 metres.

Representative samples of the sulphide layer from a pit assayed up to 61.29 grams per tonne gold and up to 56.90 grams per tonne silver (Vancouver Stockwatch, January 19, 1988). A second zone comprising garnet-epidote skarn within basalt occurs below the massive mineralization and contains visible native gold. A drill hole intersection over 30 centimetres assayed 128.92 grams per tonne gold (Assessment Report 14861).

2. INTRODUCTION

This report describes a diamond drill exploration program carried out on Mineral Lease 345340 (Yew 7) in July and August of 2004. It is also intended to be submitted as an assessment report to the British Columbia government as supporting evidence of work completed on the properties.

3. TENURE

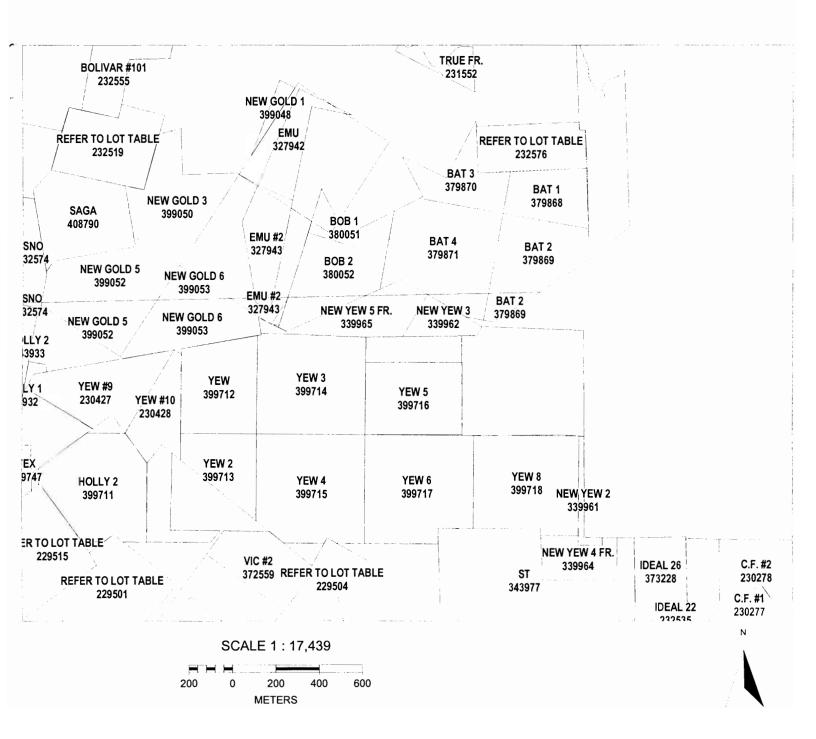
The following is a list of tenures owned by 555 Corporate Ventures Inc.:

Tenne Number	Claim Name	(Gwacz'?	iomber 1	Map Number	Work Recorded To	<u>M</u>	ining Division	ATE	里
229611	GOLDEN ROD #2	134703	100%	092F10E	2005.03.05	11	NANAIMO	1 4	un
229612	GOLDEN ROD	134703	100%	092F10E	2005.03.05]]	NANAIMO	1 ι	ın
229613	GOLDEN ROD FR.	134703	100%	092F10E	2005.03.05	11	NANAIMO	lι	n
<u>229734</u>	FIR FR.	134703	100%	092F10E	2005.03.05	11	NANAIMO	1.0	ın
229747	TEX	<u>134703</u>	100%	092F10E	2005.07.26	11	OMIANAN	16 u	ın
229748	ADA	134703	100%	092F10E	2005.07.26	11	NANAIMO	12 ម	ın
229749	BAY	134703	100%	092F15E	2005.03.08	11	NANAIMO	ไป	ın
230135	MP	134703	100%	092F15E	2005.02.14	11	NANAIMO	4 u	ın
230401	PAUL	134703	100%	092F15E	2004.12.31	11	NANAIMO	lu	ın
230403	PAUL FR.	<u>134703</u>	100%	<u>092F15E</u>	2004.12.31	11	NANAIMO	lu	ın
<u>230404</u>	RICHARD #2	<u>134703</u>	100%	<u>092F15E</u>	2004.12.31	11	NANAIMO	lu	n
230427	YEW #9	<u>134703</u>	100%	092F10E	2005.02.15	11	NANAIMO	1 บ	n
230428	YEW #10	134703	100%	092F10E	2005.02.15	11	NANAIMO	lu	n
230429	JON #2	134703	100%	<u>092F15E</u>	2004.12.07	11	NANAIMO	1 u	n
232480	CORTEZ	134703	100%	092F15E	2005.06.25	11	NANAIMO	l u	n
232481	CORTEZ #2	134703	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO	1 u	n
232482	CORTEZ #3	134703	100%	092F15E	2005.06.25	11	NANAIMO	1 u	n
232483	CORTEZ #4	134703	100%	092F15E	2005.06.25	11	NANAIMO	1 u	n
<u>232484</u>	CORTEZ #7	134703	100%	092F15E	2005.06.25	11	NANAIMO	l ur	n
	Report on the Ye	ew Proper	ty for 5	55 Corporate	/entures Inc		1	3	

Rio Minerals Limited

232485	CORTEZ #8	134703	100%	092F15E	2005.06.25	11	NANAIMO		lu	ın
232486	CORTEZ #9	134703	100%	<u>092F15E</u>	2004.12.31	11	NANAIMO		1 u	in
232487	CORTEZ #10	134703	100%	<u>092F15E</u>	2004.12.31	11	NANAIMO		1 u	n
232488	CORTEZ #5	134703	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO		1 u	In
232489	CORTEZ #6	<u>134703</u>	100%	092F15E	2005.06.25	11	NANAIMO		lu	ın
232490	CORTEZ #11	<u>134703</u>	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO		lu	n
<u>232491</u>	CORTEZ #12	<u>134703</u>	100%	092F15E	2005.06.25	11	NANAIMO		1 u	n
232492	CORTEZ #13	134703	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO		l u	n
232493	CORTEZ #14	134703	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO		lu	n
232494	CORTEZ #15	134703	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO		lu	n
232495	CORTEZ #16	<u>134703</u>	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO		lu	n
232496	ED NO.1	<u>134703</u>	100%	092F15E	2005.06.25	11	NANAIMO		lu	n
232497	ED NO.2	134703	100%	092F15E	2005.06.25	11	NANAIMO		lu	n
<u>232498</u>	ED NO.3	134703	100%	092F15E	2005.06.25	11	NANAIMO		l u	n
232518	IRISH I	134703	100%	092F15E	2004.11.15	11	NANAIMO		1 u	n
232519	REFER TO LOT TABLE	<u>134703</u>	100%	092F15E	2010.09.09	11	NANAIMO		l u	n
232553	ED FRACTION #1	<u>134703</u>	100%	092F15E	2004.12.31	11	NANAIMO		l u	n
232555	BOLIVAR #101	<u>134703</u>	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO	•	l u	n
232556	BOLIVAR #102	<u>134703</u>	100%	092F15E	2004.11.15	11	NANAIMO		1 u	n
232557	BOLIVAR #103	<u>134703</u>	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l ur	n
232558	BOLIVAR #104	134703	100%	092F15E	2004.11.15	11	NANAIMO	•	l ur	n
232559	BOLIVAR #105	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l ur	ı
232560	BOLIVAR #106	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l ur	ı
<u>232561</u>	BOLIVAR #107	<u>134703</u>	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l ur	1
232562	BOLIVAR #112	<u>134703</u>	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		lun	1
232563	BOLIVAR #113	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO	:	l un	ı
232564	BOLIVAR #114	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l un	1
232565	ALI BABA #108	134703	100%	<u>()92F15E</u>	2004.11.15	11	NANAIMO		l un	1
232566	BOLIVAR #115	<u>134703</u>	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l un	ì
232567	BOLIVAR #116	<u>134703</u>	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l · un	ı
<u>232568</u>	BOLIVAR #122	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l un	i i
232569	BOLIVAR #123	<u>134703</u>	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l un	l
<u>232570</u>	BOLIVAR #117	<u>134703</u>	100%	092F15E	2004.11.15	11	NANAIMO		l un	
<u>232571</u>	BOLIVAR #118	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l un	
232572	BOLIVAR #119	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO		l un	
232574	SNO	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO	;	l un	
232576	REFER TO LOT TABLE	134703	100%	<u>092F15E</u>	2005.01.03	11	NANAIMO		l un	

Report on the Yew Property for 555 Corporate Ventures Inc..


: 4

Rio Minerals Limited

306746	LINDEN #2	134703	100%	092F10E	2005.03.05	11	NANAIMO	l un
306753	LINDEN	134703	100%	092F10E	2005.03.05	11	NANAIMO	1 un
306754	LINDEN FR. #2	134703	100%	092F10E	2005.03.05	11	NANAIMO	l un
<u>306755</u>	LINDEN FR.	134703	100%	092F10E	2005.03.05	11	NANAIMO	l un
<u>313535</u>	MINER	134703	100%	092F15E	2004.12.31	11	NANAIMO	l un
<u>313536</u>	MINER #2	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO	l un
<u>313537</u>	MINER #3	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO	l un
<u>313538</u>	MINER #4	134703	100%	092F15E	2004.11.15	11	NANAIMO	l un
314315	MINER #5	134703	100%	092F15E	2004.11.15	11	NANAIMO	l un
<u>314316</u>	MINER #6	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO	l un
314317	MINER #7	134703	100%	092F15E	2004.11.15	11	NANAIMO	l un
<u>314318</u>	MINER #8	134703	100%	092F15E	2004.11.15	11	NANAIMO	l un
315057	MINER #9	134703	100%	<u>092F15E</u>	2004.11.15	11	NANAIMO	l un
318647	MINER #11	134703	100%	092F15E	2005.06.25	11	NANAIMO	l un
318648	MINER #10	134703	100%	092F15E	2005.06.25	11	NANAIMO	l un
339961	NEW YEW 2	134703	100%	092F10E	2004.09.13	11	NANAIMO	l un
339962	NEW YEW 3	134703	100%	092F10E	2004.09.13	11	OMLANAN	l un
339964	NEW YEW 4 FR.	134703	100%	092F10E	2004.09.13	11	NANAIMO	l un
339965	NEW YEW 5 FR.	134703	100%	092F10E	2004.09.13	11	NANAIMO	l un
345340	MINING LEASE	134703	100%	092F10E	2004.11.26	11	NANAIMO	27.1 ha
360858	TON ED	134703	100%	092F15E	2004.11.15	11	NANAIMO	l un
360859	TON ED #2	134703	100%	092F15E	2004.11.15	11	NANAIMO	i un
367494	BOLIVAR 24	<u>134703</u>	100%	092F15E	2004.11.15	11	NANAIMO	l un
<u>371879</u>	BOLIVAR 25	134703	100%	092F15E	2004.11.15	11	NANAIMO	l un
387682	GOLD 1	134703	100%	<u>092F15E</u>	2005.06.25	11	NANAIMO	l un
387683	GOLD 2	134703	100%	092F15E	2005.06.25	11	NANAIMO	l un
<u>399048</u>	NEW GOLD I	<u>134703</u>	100%	092F15E	2005.06.14	11	NANAIMO	l un
399049	NEW GOLD 2	134703	100%	092F15E	2005.06.14	11	NANAIMO	I un
399050	NEW GOLD 3	134703	100%	092F15E	2005.06.14	11	NANAIMO	l un
399051	NEW GOLD 4	<u>134703</u>	100%	<u>092F15E</u>	2005.06.14	11	NANAIMO	l un
399052	NEW GOLD 5	<u>134703</u>	100%	092F15E	2005.06.14	11	NANAIMO	l un
<u>399053</u>	NEW GOLD 6	<u>134703</u>	100%	092F15E	2005.06.14	11	NANAIMO	l un
<u>399374</u>	CB	134703	100%	092F15E	2005.02.14	11	NANAIMO	9 un
399375	DAVIS I	134703	100%	092F10E	2005.02.17	11	NANAIMO	20 un
399376	DAVIS 2	134703	100%	092F10E	2005.02.17	11	NANAIMO	4 un
399711	HOLLY 2	134703	100%	092F10E	2005.02.07	11	NANAIMO	l un
400118	RICHARD	134703	100%	092F15E	2005.02.13	11	NANAIMO	l un

Report on the Yew Property for 555 Corporate Ventures Inc..

Rio Minerals Limited

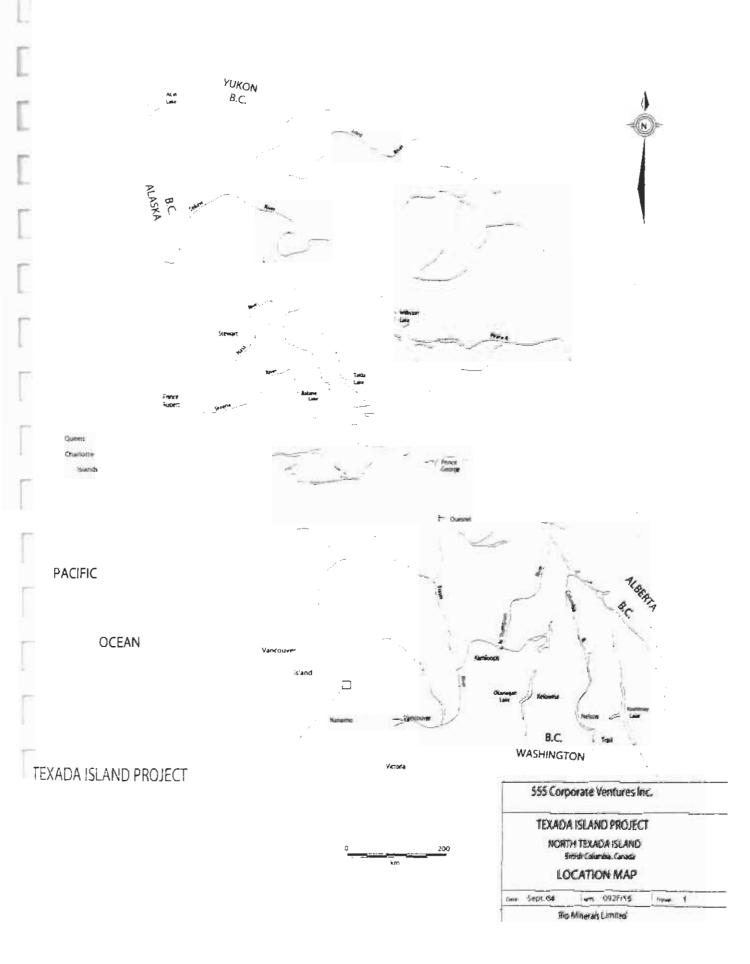
400119	EAGLE #1	134703	100%	092F15E	2005.02.13	11	NANAIMO	l un
400120	EAGLE #2	134703	100%	092F15E	2005.02.13	11	NANAIMO	l un
400121	EAGLE #3	134703	100%	092F15E	2005.02.13	11	NANAIMO	l un
400122	EAGLE #4	134703	100%	092F15E	2005.02.13	11	NANAIMO	l un

4. LOCATION AND ACCESS

The claim group encompasses the northern portion of Texada Island, BC., one of a group of islands known collectively as the Gulf Islands, in the Strait of Georgia, between the mainland and Vancouver Island (figure 1). Located within the Nanaimo Mining District, the property's geographical coordinates are:

North Latitude: 49° 50' West Longitude: 124° 34'

NTS map sheets: 92F 10E and 92F/15E. The area is located approximately 120 kilometers northwest of Vancouver.


Access to the island can be gained by regularly scheduled air service from the South Terminal at Vancouver International Airport to an airstrip located at Gillis Bay or to Powell River (a 45 minute flight), or by road (highway 101) and ferry via Horseshoe Bay and the Sunshine Coast to Powell River then on to the north end of Texada Island. A good network of roads services the island.

5. PHYSIOGRAPHY AND CLIMATE

The island is characterized by low relief with poor to moderate outcrop exposure due to variable thicknesses of glacial till. Small diameter spruce and fir with relatively little undergrowth constitute the dominant vegetation. Climate is generally mild and average annual precipitation is in the order of 70 to 100cm, falling mostly in the late fall and winter months. Fieldwork is possible year round.

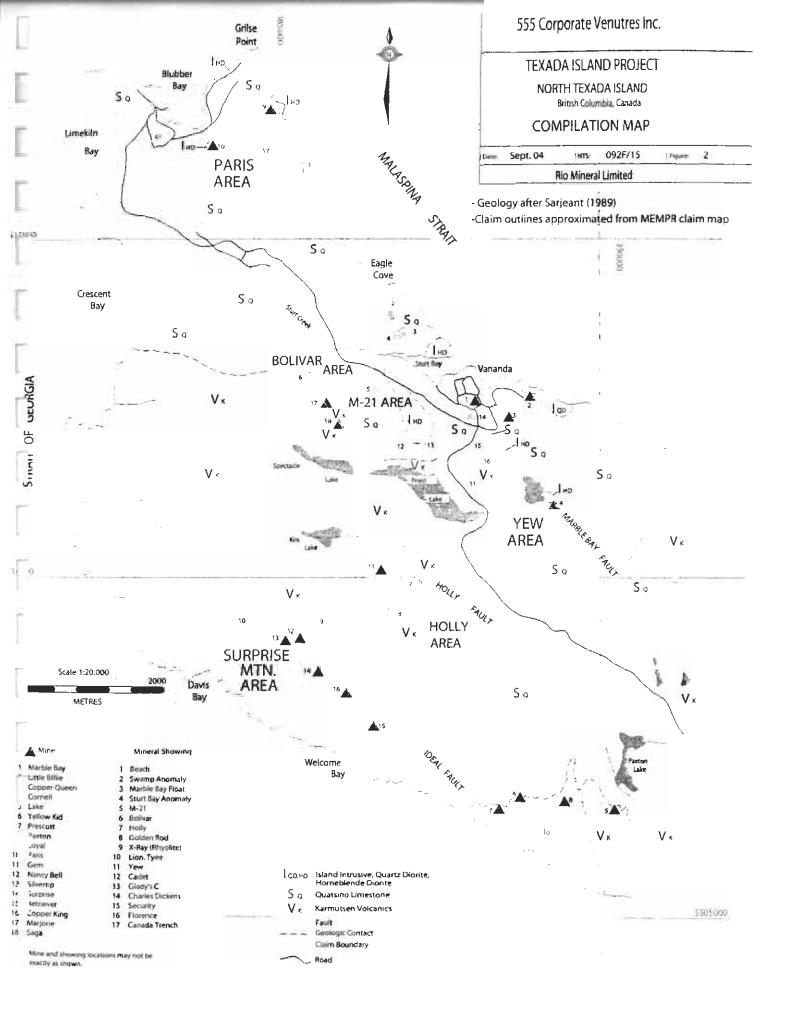
6. HISTORY AND PREVIOUS WORK

The mining history of Texada Island dates back to the 1800's when gold was discovered in volcanic hosted quartz veins in the Surprise Mountain area. This led to further discoveries of gold, copper, and iron, and the establishment of several small mines at the turn of the century.

The two most significant producers were the Texada Island Mines (approximately 10 million tons of iron ore concentrate and 1,897 ounces of gold 1977, when production ceased) and the Marble Bay Mine, which produced 50,001 ounces of fold from 314,200 tons of ore from 1899 to 1929. Overall historical island production is estimated at over 105, 000 ounces. In addition, a number of limestone quarries have operated over the years and continue to produce three to five million tonnes of limestone per year.

A number of companies have carried out exploration in the 1970's and 1980's, resulting in a variety of data, recorded to some extent as assessment reports, as well as private reports and sketches in company files. Rhyolite Resources Inc. began acquisition of an extensive package on contiguous mineral titles in the early eighties and carried out work on a number of fronts in subsequent years. The claim group was optioned to Echo bay Mines in 1988, who conducted detailed geological, geochemical, and geophysical surveys in 1988 and 1989. This work culminated in the drilling of nine holes. It is this claim group that 555 Corporate Ventures now owns.

The company also operates a small mill located on the Bolivar 24 claim. The company has at various times processed and stockpiled ore from the Yew Pit mining Lease, located 1km to the south. The material has produced gold, although at what grade is not known.


Exploration history specific to the target areas of interest to the company, which is limited to the northern part of the island, will be discussed as each is reviewed later in this report.

7. **REGIONAL GEOLOGY**

The following description is summarized from Webster and Ray (1990):

Texada Island is underlain by two Upper Triassic Formations – the volcanic Texada Formation and the limestone Marble Bay Formation – which have been equated to the Karmutsen and Quatsino Formations respectively of the Vancouver Group on Vancouver Island.

The Karmutsen rocks are a thick package of tholeitic basalts, unconformably overlying the Paleozoic Sicker Group of sediments exposed at the southern end of the island. The Quatsino limestone unit is a thick package of massive to well bedded platformal chemical sediments, disconformably overlying the volcanics.

Rocks of the Mid to Upper Jurassic Island Plutonic Suite (formerly know as the Island Intrusives) intrude this sequence, as does a later, possibly Tertiary, event in the form of east west trending dykes which cut all units.

Major structural features include folding and faulting prior to emplacement of the Island Plutonic Suite. The limestones and, to a lesser extent, the volcanics are deformed into a series of broad, northwest-trending open folds that plunge northward. Three northwest-striking lineaments, the Ideal, Holly and Marble Bay faults cut a set of northeasterly-trending faults. East-west structures are the youngest and control the emplacement of the Tertiary dikes.

It appears that the Marble Bay and, to a lesser extent, the Ideal faults controlled emplacement of some of the Jurassic intrusions and their associated skarn mineralization.

Mineralization on the island occurs in two main forms – skarn assemblages and quartz-carbonate veins. While the latter first attracted attention, the former has been the source of most of the mineral production on Texada.

Skarn mineralogy is extremely varied and complex, and generally not mappable on a property scale, however it can be divided into two basic types: iron-rich and copper-gold rich. Iron –rich skarns are concentrated along either the Marble Bay-Texada Formation contact, margins of the felsic Gillies Stock or some distance from the stock in either rock type, controlled by subvertical fractures (Prescott, Yellow Kid, Paxton and Lake deposits, operated by Texada Mines). Magnetite ore bodies adjacent to the stock, are generally associated with abundant garnet-pyroxene-amphibole skarn, while more distal deposits have less extensive skarn envelopes. Contacts between skarn and unaltered rock are generally sharp.

Zoning, where fully developed, consists of barren skarn close to the intrusion, grading outward to magnetite-rich skarn and then into marble. Locally, chalcopyrite and pyrite occur close to the outer margins of the skarn envelope, adjacent to limestone or marble.

Copper-gold skarns are more widely distributed and variable in mineralogy, occurring throughout the limestone unit and generally associated with more mafic dioritic intrusions. The most significant of these deposits are associated with the Marble Bay fault southeast of the town of Vananda and include the Marble Bay, Little Billy, Cornell and Copper Queen mines.

Main ore minerals are chalcopyrite and bornite with variable but minor amounts of molybdenite, pyrite, magnetite and sphalerite. Less developed occurrences include the Paris and Loyal mines, and the Canada Trench, near Blubber Bay, at the north end of the island.

Report on the Yew Property for 555 Corporate Ventures Inc..

Quartz and carbonate veins, carrying a varied suite of base and precious metals, are mostly located in or adjacent to north or northwest-trending faults or shear zones that cut the Karmutsen volcanics, underlying the Surprise Mountain area. Mineralization includes pyrite, chalcopyrite, galena, sphalerite and gold. More specific geological features will be detailed in the discussions on each of the target areas.

8. **PROPERTY GEOLOGY**

During the course of the recent diamond drill program on the Yew property the following rock units were observed:

Basalt (Karmutsen Group)

Dark, fine grained, often with distinct white zeolite-fill amydules, pervasive weak to moderate epidote +/- chlorite patches, fracture fillings and amygdule replacements, minor sporadic fine zeolite fracture fillings, pervasive fine grained pyrite disseminations, veinlets and fracture fillings (1-3% pyrite), non to weakly magnetic. This is the upper flow layer (10-20 meters) of basaltic rocks found on the Yew property and hosts the limestone (skarn/sulphide) interbed, near the lower gradational contact of the basalt with underlying basaltic flow breccia.

Basalt – flow breccia (Karmutsen Group)

Dark, fine grained, moderately magnetic, pervasive, distinctive dark magnetite-rich plagioclase phyric segregation patches, clots and bands. Trace disseminations or fracture fillings of fine grained pyrite with occasional localized increases as fracture fills or zeolite-associated openspace linings. Very minor traces of chalcopyrite are present, but nowhere of any economic significance. The distinction between the upper basalt layer and the lower basalt flow breccia unit is often difficult to make as magnetite segregation patches are locally present within the upper basalt unit and amygdaloidal zones are present within the lower basalt flow breccia unit. The basalt flow breccia unit extends to depth in the deepest drill holes and does not appear to be a favorable host to significant mineralization.

Report on the Yew Property for 555 Corporate Ventures Inc..

Limestone (Karmutsen Group)

The main limestone unit occurs as a sedimentary interbed unit within the upper basalt unit on the Yew property. Where skarning and sulphide (mainly pyrite) and magnetite replacements have affected the limestones, are found the most significant gold (+/- silver, copper) values on the property. The flat-lying, massive bedded limestone is typically fine grained, light gray, exhibiting sharp contacts with overlying and underlying basalts.

Mineralization related to the limestone horizon may occur as isolated bands of massive pyrite or magnetite or as mixed pyrite > magnetite. Skarn alteration, where present is generally a mottled mixture of pale brown garnet, pale green diopside, epidote and minor carbonate with partial silica replacement. Variable concentrations of pyrite, magnetite, minor to trace chalcopyrite or bornite and occasional specs of visible gold can be found throughout the skarn alteration. Limestone/skarn mineralization is generally of one to two meter widths. Vertical drill hole Y04-22, intercepted a 3 meter interval of limestone.

Feldspar Porphyry

A north-south trending feldspar porphyry dike is found throughout the central part of the mineral lease. It is believed that this dike unit, of possible Tertiary age, is directly related to the emplacement of skarn and sulphide mineralization present on the mineral property.

Examination of previous and present drill hole data suggests that the highest grades of gold mineralization are found within close proximity to the feldspar porphyry dike. The dike has likely provided the heat source producing the skarn alteration. The dike itself may be an important contributor of gold values to the skarn mineralization. The vertical drill hole Y04-04, contained a 1.85 m interval (35.35-37.2 m) returning 2264 ppb gold.

The porphyry unit has a general mottled texture with crowded indistinct medium grained plagioclase phenocrysts. The matrix is variably medium to dark grey, caused by the presence of weak to moderate fine grained magnetite concentrations. The porphyry unit contains extensive epidote alteration with numerous epidote-chlorite fracture fillings. Fractures have distinctive light grey siliceous to pale pink (potassic) alteration halos. Pervasive trace to 0.5% fine to medium grained disseminated pyrite is found throughout the porphyry.

Hornblende Porphyry

Dark greenish-gray hornblende porphyry dykes/sills are found throughout several of the drill holes. Black euhedral hornblende phenocrysts (10-30%) are present through a fine grained greenish gray groundmass. The hornblende porphyry dikes are found mainly within the lower basalt flow breccia unit, are narrow in width and are volumetrically unimportant. The hornblende porphyry dikes are generally lacking in sulphide mineralization.

Alteration

The basaltic rocks at the Yew prospect have undergone weak to moderate propylitic alteration with the production of epidote, chlorite and pyrite. This alteration effect is mainly present in the upper basalt unit at the Yew prospect. Carbonate and silica alteration is generally lacking within the basalts. Chlorite-epidote-pyrite alteration is also pervasive within the main north-south trending feldspar porphyry dike unit, which lies at the center of the surveyed grid/diamond drilling area. The presence of zeolite vugs/clots, amygdules and fracture fillings are considered to be related to primary rock composition. Pervasive fine grained disseminated magnetite is also considered to be a primary mineral component of the basalts.

The only area of significant alteration lies with the skarn-limestone horizon, occurring in relative proximity to the feldspar porphyry dike unit. Alteration within the skarned limestone consists of variable concentrations of diopside, epidote, garnet (grossularite) +/- quartz-carbonate, with associated pyrite and/ or magnetite and minor associated chalcopyrite, bornite and visible gold.

9. EXPLORATION TARGETS

Numerous showings and workings have been explored and developed over the years, with their history recorded or alluded to in widely varying detail with respect to changing property names and claim configurations. The following five areas, identified by their historical names, were specified as the company's priorities.

9.1. Yew and Holly

The following description is from British Columbia Ministry of Energy, Mines and Petroleum Resources Minfile data:

"The area is dominated by Upper Triassic Karmutsen Formation (Vancouver Group) volcanic rocks consisting of typically fine-grained and/or feldspar phyric basalts and amygdaloidal basalts with minor intercalated limestone beds. At the Yew occurrence, stratigraphy is comprised of three rock units of the Karmutsen Formation. A lower, thick series of green-grey basalt flows that texturally change from amygdaloidal and non-amygdaloidal sequences, is overlain by a thin, white-grey fine-grained limestone that rapidly thins and thickens over short distances. Overlying the limestone is an amygdaloidal basalt breccia with fragments of amygdaloidal basalt up to 15 centimetres. White zeolites, epidote, pyrite, quartz and chlorite comprise vesicle fillings within the basalts. Two hundred metres north of the occurrence, two small diorite plugs intrude the basalts. Massive pyrite, magnetite, pyrrhotite, minor chalcopyrite and trace bornite replaces limestone at the lower contact of the limestone bed. The mineralized zone is flatlying, close to surface, thin and tabular, and ranges in thickness from 0.4 to 1.8 metres."

High grade float was discovered on the Holly property in 1982, followed by discovery of a spectacular showing in 1984. Northair Mines Limited optioned a group of claims in 1985 that included the Yew and Holly properties.

Soil sampling, magnetic and self potential surveys were conducted, followed by the drilling of 465 meters on the Holly Crown Grant in 1985 and 270 meters on the Yew #7 in 1986 (Hicks, 1986).

Of thirteen holes drilled on the Yew #7, nine intersected massive sulphide mineralization averaging 0.376 oz/t gold over an average width of 0.4 m, occurring at a consistent depth of approximately 20 feet, at the contact between a lower volcanic member of the Karmutsen Formation and an overlying limestone interbed. A second zone below the main horizon was intersected in one hole, producing 3.761 oz/t gold over 1 foot (visible gold reported). The nature of this intercept has not been explored, although the possibility that it may be a feeder to the massive sulphide layer has been suggested.

In 1988, a review of tonnage potential of occurrences on a claim referred to as the Yew 7 claim was made by Kowalchuk. The area is presently covered by a mining lease. Kowalchuk based his calculations on SP (self potential) survey contours over known magnetite-pyrite-chalcopyrite-gold skarn horizons previously trenched and drilled.

Using an average thickness of 0.5 m, he arrived at figures of 34,810 tons "probable "at 0.5 oz/t gold and 78,810 tons "possible and probable" at 0.35 oz/t gold. (Note: these figures are quoted for historical reference only and do not meet current CIM standards for ore reserves. They are more correctly to be considered simply as an indication of the where the potential lies for resource definition using rigorous testing procedures such as closely spaced drilling). Kowalchuk also concluded that reconnaissance SP surveys on occurrences up to 1000 m away gave similar results to those used to calculate the "reserves" and that additional tonnage could be developed by further stripping, trenching and drilling.

Subsequent analysis of mining possibilities (Barker, 1988) envisioned open cut mining similar to coal strip mining but using a backhoe or excavator. Parameters used in this study are obviously well out of date and current mining economics, as well as metallurgical factors, would have to be reviewed.

Echo Bay mapped the Yew showing area in 1988 (Sarjeant, 1989). Reference is made to Rhyolite Resources' efforts to delineate reserves by trenching and air track drilling, which apparently did not succeed and indicated that the geology is complicated by faulting, however no records of this work have been reviewed.

Report on the Yew Property for 555 Corporate Ventures Inc..

9.2. Bolivar

The following description is from British Columbia Ministry of Energy, Mines and Petroleum Resources Minfile data:

"The Bolivar occurrence area is underlain by Upper Triassic Quatsino Formation limestone in an interdigitating contact with Karmutsen Formation basalt, both formations of the Vancouver Group. An irregular wedge, thinning to the northwest, of siliceous skarnified rock follows a structure that roughly parallels the limestone/basalt contact. Some disseminated pyrite and minor chalcopyrite occurs within this unit and along the contact with the basalt and limestone. The basalts are thick bedded, amygdaloidal and massive flows which locally are epidotized and cut by quartz veins.

The quartz veins range from a fraction of a centimetre to 50 centimetres or more in width and commonly contain pyrite and lesser amounts of pyrrhotite and chalcopyrite. Local intense zones of epidotization are accompanied by some silicification with associated pyrite, pyrrhotite and chalcopyrite. The limestone is mainly fine-grained and grey and cut by numerous basaltic dikes. Local zones within the limestone show varied intensity of recrystallization to marble. Black carbonaceous (graphitic) material occurs in pockets, along sinuous partings and along the outer margins of the recrystallized zones.

Native gold occurs as streaks and disseminations along subparallel graphitic slips in a sheeted zone of variably recrystallized limestone. Pyrite is also present but is most abundant in the carbonaceous material. The gold-bearing zone is 41 metres long, 3 metres wide and extends to a depth of 15 metres. Diamond drilling has indicated north dipping stratigraphy and a mylonitic contact zone with footwall basaltic volcanics. A sludge sample of drill core assayed up to 1.9 grams per tonne gold with minor values in silver (Assessment Report 11826).

Diamond drilling has also revealed that silver values are associated with stringer-type sphalerite veinlets, pyrrhotite and minor chalcopyrite in a graphitic shear zone in limestone elsewhere on the property. A 1734 tonne bulk sample from the Bolivar pit returned a total of 1031.14 grams of gold (Assessment Report 16702). Ore has subsequently been mined from the Bolivar pit where initial mill feed graded 5.14 grams per tonne gold (George Cross Newsletter #89, 1987). "

This area is very close to the mill owned by the company. It has been suggested that recovery of native gold in drill core may have been a problem. This factor, together with any other surface exploration data in the immediate vicinity, needs to be taken into consideration in further evaluation of the occurrence.

Report on the Yew Property for 555 Corporate Ventures Inc..

9.3. M-21

The following description is from British Columbia Ministry of Energy, Mines and Petroleum Resources Minfile data:

"The Marjorie occurrence area is underlain by Upper Triassic Karmutsen Formation amygdaloidal basalt close to the contact with Quatsino Formation limestone, both of the Vancouver Group. The basalts are fractured and sheared and host a series of eight parallel gold-bearing, pyritic quartz-calcite veins and stringers with variable amounts of siderite and ankerite. The veins strike west-southwest, dip vertically and occur within 100 metres of one another. They vary from a few centimetres to 1.2 metres in width, and attain a maximum strike length of 44 metres. Wallrock contacts are well-defined.

Mineralization in the veins also include minor amounts of native gold, pyrrhotite and occasional galena. A main shaft is developed on a vein (Main Shaft vein) on the Saga claim (Lot 216) where some historic production has taken place from drifting and stoping. At the face of the west drift a fault cuts off the vein. A grab sample of sorted ore from dump material from the west drift assayed 67.87 grams per tonne gold and 17.14 grams per tonne silver (Minister of Mines Annual Report 1922, page N237). Sixty-one metres south of the Main Shaft vein, an open cut exposes the Big vein which parallels the Main Shaft vein and dips 80 degrees north towards it. A chip sample taken across the Big vein assayed 10.96 grams per tonne gold (Minister of Mines Annual Report 1922, page N236). Five other veins occur between the Main Shaft vein and the Big vein. Forty-two metres north of the Main Shaft vein, an open cut exposes the No. 8 vein. A grab sample of sorted ore from dump material from an open cut on the No. 8 vein assayed 87.75 grams per tonne gold and 20.56 grams per tonne silver (Minister of Mines Annual Report 1925, page A287)."

The area was part of Echo Bay's exploration coverage, and geophysical surveys defined a number of targets that were not followed up due to higher priority placed on the Paris mine area. These geophysical features include five anomalous IP zones, with sources believed to be near surface metallic mineralization with a potential for associated gold. Among these targets is a showing historically known as the Gladys C.

The following description is from British Columbia Ministry of Energy, Mines and Petroleum Resources Minfile data:

"The Gladys C-Cadet occurrence area is underlain by a complex northwest trending sequence of Upper Triassic Quatsino Formation recrystallized limestone and Karmutsen Formation amygdaloidal basalt, both of the Vancouver Group.

Several small diorite bodies are evident with mafic diorite dykes and diorite dikes. A teardrop- shaped diorite intrusive occurs on the adjoining Volunteer claim (092F 268) to the northwest. The stratigraphy is strongly sheared in a north-northwest direction and is often faulted in the same direction. Intrusive bodies are commonly emplaced along these faults. A prominent fault on the Gladys C claim (Lot 135) forms a contact between basalt and limestone. Mineralization is localized in small patchy magnetite-garnet-pyroxene skarns developed in and near the fault. The magnetite skarns are variably mineralized with sphalerite, some chalcopyrite and to a lesser extent, galena and pyrite. A rock sample from a garnet-pyroxene skarn with chalcopyrite assayed 6.31 grams per tonne gold (Assessment Report 18672). Occasional chalcopyrite is also found in quartz stringers in basalt.

Three hundred and fifty metres west of the Gladys C claim, on the Cadet claim (Lot 138), garnet-pyroxene skarn encloses a magnetite-garnet core developed near a diorite intrusive. Rock samples of a magnetite-garnet skarn assayed 1.58 grams per tonne gold and samples from a garnet-pyroxene skarn with chalcopyrite assayed 8.64 grams per tonne gold (Assessment Report 18672)."

An adjacent grid area known as the Eagle Cove grid also produced geophysical targets that were not followed up.

9.4. Surprise Mountain (Nancy Bell and Silver Tip)

The following description is from British Columbia Ministry of Energy, Mines and Petroleum Resources Minfile data:

"The Surprise Mountain area is underlain by rhythmically layered amygdaloidal, feldspar porphyritic and spherulitic basalt flows of the Upper Triassic Karmutsen Formation (Vancouver Group). Mineralized quartz and quartz-carbonate veins with variable sulphide content are associated with narrow, steeply dipping shear zones.

The Nancy Bell occurrence is underlain by Karmutsen Formation amygdaloidal basalt and a thin interbed of limestone. The rocks are cut by a shear structure striking 145 degrees and dipping 65 degrees southwest. The shear zone is locally silicified, strongly chloritic and 2 to 3 metres wide in places. The zone hosts quartz and quartz- calcite veining. En echelon bodies of silicified and mineralized volcanics indicate a component of right lateral shearing. Mineralization consisting of pyrite, sphalerite, chalcopyrite and galena occurs on the footwall side of the veins. A composite grab sample of sulphide-rich material assayed 16.48 grams per tonne gold, 197.8 grams per tonne silver, 9.62 per cent copper, 2.9 per cent zinc and 0.09 per cent lead (Assessment Report 18672).

Past work includes a shaft developed on the shear zone, 240 metres northeast of the Silver Tip workings (092F 261)."

"The Silver Tip occurrence is underlain by amygdaloidal basalt of the Karmutsen Formation cut by a shear structure striking 315 degrees and dipping 75 to 80 degrees northeast. It can be traced for 250 metres along strike but appears to be cut off to the northwest by faulting. The shear zone is typically less than 1 metre in width and hosts quartz and quartz-carbonate veins. Mineralization in the veins consists of massive pyrite, chalcopyrite with lesser sphalerite and galena. Locally, the quartz veins exhibit a drusy texture. A 0.6 metre chip sample across the shear assayed 12.21 grams per tonne gold, 22.9 grams per tonne silver and 1.24 per cent copper (Assessment Report 18672).

A sample of carbonate vein and altered volcanic from dump material assayed 13.99 grams per tonne gold, 8.5 grams per tonne silver, 0.07 per cent copper, 1.8 percent zinc and 0.37 per cent lead. Although this material is common in the dump, recent mapping has not revealed any exposures (Assessment Report 18672). Work done includes two shafts 70 meters apart developed along the shear zone. Some drifting has also taken place."

Also evaluated by Echo Bay, this area produced both induced polarization and self potential anomalies that were recommended as drill targets. The Nancy Bell and Silver Tip occurrences are situated on separate splays of a northwest trending structure.

The depth potential is unknown, as is that of their intersection at depth. Intersections along strike are also potential exploration targets.

9.5. Paris - Loyal

The following description is from British Columbia Ministry of Energy, Mines and Petroleum Resources Minfile data:

"The area is predominantly underlain by massive limestone of the Upper Triassic Quatsino Formation (Vancouver Group) cut by a suite of elongate hornblende-rich dioritic intrusions that commonly contain mafic xenoliths and occupy major fractures. Mafic diorite dikes exhibit varying degrees of endoskarn alteration but exoskarn halos are generally less than 1 metre thick and, in many places, are totally lacking. Gangue mineralogy consists of garnet, pyroxene, amphibole, epidote and locally minor wollastonite. The Paris occurrence area is underlain by Quatsino Formation limestone intruded by two small diorite bodies and diorite dikes.

A distinct east trending quartz porphyry dike transects the Paris prospect and is thought to be of Cretaceous age. Skarn zones comprised in part of garnet, pyroxene and actinolite are developed at the limestone/diorite contacts. The skarns contain massive magnetite with disseminations and stringers of chalcopyrite, pyrrhotite, pyrite and sphalerite. A few shallow shafts have been sunk on some of the magnetite lenses. A rock sample of magnetite- garnet skarn with chalcopyrite assayed 12.86 grams per tonne gold and 22.8 grams per tonne silver (Assessment Report 18672). Crystalline native arsenic has recently been identified by x-ray diffraction in marbles adjacent to the outer margins of the skarn (Fieldwork 1989, page 262)."

Subsequent to its 1988 field program, which included airborne geophysics, Echo Bay Mines identified seventeen targets for ground follow-up in 1989 with induced polarization, magnetic and geochemical surveys. This work led to a focus on the Paris area, with two areas targeted for drilling. The primary area, proximal to the drill hole intrusive where anomalous surface sampling indicated a potential for subsurface mineralization, was drilled with three holes totaling 827 metres. Significant results were not obtained.

An additional six holes totaling 2044 meters intersected a number of gold bearing intervals, with

grades and intervals ranging from 0.109 oz/t over 0.8 meter to 0.831 oz/t over 1.55 meter (true widths likely to be shorter). These intercepts are all at significant depth, most approaching 200 meters and one in excess of 300 meters and may be related to the chargeability anomalies shown by the I.P. Survey.

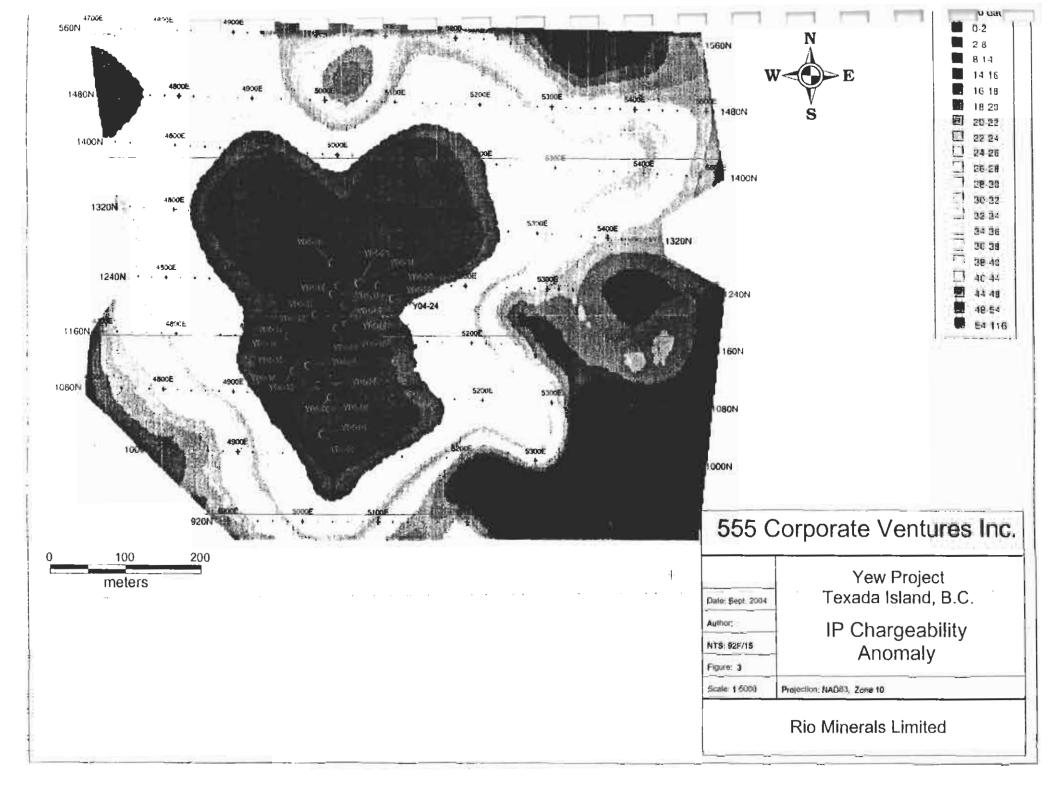
As is quite common on many showings throughout the island, grab samples from surface showings at the Paris produced significant gold values (12.85 g/tonne, 13.96 g/tonne, with resamples grading 2.47 g/tonne and 5.11 g/tonne). Channel samples, however, are generally poor (<100 ppb) with the exception of one sample at 6.08 g/tonne over 2.0 metres (Sarjeant and Nighswander, 1990).

10. GEOPHYSICAL SURVEYS (2003)

In June of 2003 SJ Geophysics conducted a 3D Induced Polarization Survey on behalf of 555 Corporate Ventures Inc. Resistivity and IP measurements were taken on approximately 6.9 kms on the Yew grid. The purpose of this survey was to carry out exploration of known and possibly undiscovered mineral concentrations over the mineral license area.

The Yew mineral occurrence consists of a near surface, narrow (0.5 to 2 m) zone of flat-lying skarn-altered and pyrite-magnetite replacements of a limestone bed.

The geophysical surveys were carried out to delineate the aerial extent of this known mineral zone and to locate other related mineral zones at depth.

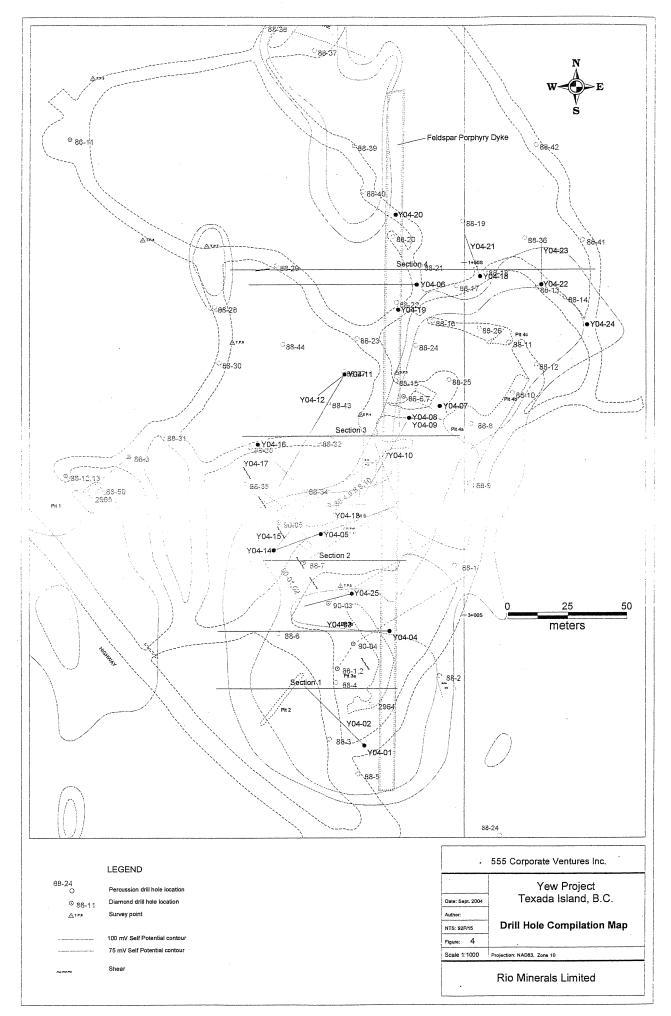

The Yew grid Inversion Models indicate a wide range in resistivity values, from 100 to 20,000 Ohm-m. A resistive feature in the eastern portion of the survey extends to depth in the north-central area of the grid. Diorite plugs lying north of the Yew occurrence may be the source of this resistive feature. During the course of the current diamond drill program, a north-south trending feldspar porphyry dike was encountered throughout the central part of the grid area. This dike may also be a major cause of the resistive feature.

The Chargeability Inversion Models delineate an extensive anomalous feature extending through the entire grid, from north to south. Depth to the top of this anomaly is in the range of 50 meters and exhibits a shallow westerly dip. There is moderate correlation between regions of lower resistivity and the chargeable zone.

A potential interpretation of this anomaly is a mineralized skarn zone, with higher mineral concentrations occurring in proximity to the feldspar porphyry dike. It is speculated that the near surface gold-enriched, flat-lying skarn/ massive pyrite-magnetite zones have been formed within a persistent limestone bed, with the highest mineral concentrations found within 40 to 50 meters east and west of the feldspar porphyry unit.

The current diamond drill program was carried out in part to test various aspects of the 2003 Induced Polarization surveys over the Yew mineral prospect. In particular, the diamond drill program attempted to locate additional, potentially economic mineral zones lying below the currently known near-surface skarn zone.

The current diamond drill program did not substantiate the cause of the-widespread, consistent chargeability anomaly that trends north-south through the grid area. It is proposed that higher than background concentrations of disseminated and fracture fill pyrite with pervasive magnetite may be the cause of the anomalous feature. This enhancement may be caused to a large part by the mineralizing effect of the north-south trending feldspar porphyry dike that has contributed high sulphide gold and magnetite concentrations within the main limestone horizon at the Yew prospect.



11. 2004 DIAMOND DRILL PROGRAM

The diamond drill contract for the Yew drilling program was awarded to Neill's Mining Co. of Victoria, B.C. The drill contractor provided a Hydracore 28 diamond drill and drilling was carried out with production of BTW (48mm) drill core. The drill program was carried out on the Yew Mining Lease 345340 (Yew 7) from July 5 to August 23, 2004.

A total of 25 drill holes totaling 1541.4 meters were drilled over the July –August period and are summarized in the following table:

Hole ID	From	То	Length	Azimuth	Dip	Area	Description
Y04-1	0	91.44	91.44	0	-90	pit area	no skarn (footwall)
Y04-2	0	50.29	50.29	315	-45	pit area	no skam (footwall)
Y04-3	0	102.41	102.41	_270	-45	pit area	no skarn (footwall)
Y04-4	0	152.4	152.4	0	-90	pit area	no skam (footwall) – feidspar porphyry dike
Y04-5	0	105.76	105.76	0	-90	pit area	no skarn (footwall)
Y04-6	0	141.42	141.42	270	-60	Road	no skarn (feldspar porphyry dike displacement)
Y04-7	0	60.35	60.35	0	-90	Cave	no recovery (skarn mined out)
Y04-8	0	31.7	31.7	0	-90	Cave	good skarn/mineralization
Y04-9	0	169.16	169.16	0	-90	Cave	good skarn/mineralization
Y04-10	0	54.86	54.86	210	-45	Cave	good skarn/mineralization
Y04-11	0	67.06	67.06	0	-90	Cave	good skarn/mineralization
Y04-12	0	80.62	80.62	210	-47	Cave	good skarn/mineralization
Y04-13	0	76.2	76.2	70	-45	pit area	weak skarn alteration
Y04-14	0	21.03	21.03	40	-52	pit area	weak skarn alteration
Y04-15	0	18.44	18.44	40	-45	pit area	weak skarn alteration
Y04-16	0	57.91	57.91	0	-90	pit area	minor limestone, no skarn
Y04-17	0	32	32	135	-48	pit area	no skam
Y04-18	0	15.24	15.24	0	-90	Road	0.75 m limestone with 3 cm massive pyrite
Y04-19	0	54.56	54.56	0	-90	Road	feldspar porphyry dike
Y04-20	0	20.73	20.73	0	-90	Road	feldspar porphyry dike
Y04-21	0	28.96	28.96	340	-50	Road	good skam/mineralization
Y04-22	0	30.48	30.48	0	-90	Road	3m limestone, minor mineralization
Y04-23	0	25	25	360	-45	Road	1.2 m limestone
Y04-24	0	22,86	22.86	0	-90	Road	no skarn, (footwall)
Y04-25	0	30.48	30.48	255	-47	pit area	weak skarn alt
		TOTAL	1541.4 m				

Drill hole sites were accessed using existing roads, within proximity of the main Yew pit. Three days of excavator work were required to rehabilitate some of the overgrown roads and to prepare several drill sites. All the diamond drilling was located within 150 meters of the main Yew pit (Pit 5). Drill holes were located using a hand-held GPS unit.

Drill hole locations were established both in proximity to the Yew pit and in areas without previous diamond drill coverage. A priority of the current drill program was to locate new areas of mineralization beyond the known area of flat-lying skarn mineralization.

A percussion drill program consisting of 50 short drill holes was carried out over several areas of the Mining Lease area in 1988. These holes provided limited information, with several of the holes lost to caving or water problems. The majority of the percussion holes were drilled to only 15 meter depths. Ten of these holes were drilled to less than 15 meters and 3 holes were drilled from 18 to 21 meters depth.

The current diamond drill program was carried out in several areas of the 1988 percussion drill program. The diamond drill program provided the advantage of consistent, measurable core intervals, which are not accurately available with a percussion drill program. The current drill program also tested for additional mineralized zones at far greater depths than was achieved by the 1988 percussion drill program.

All drill core was transported to the Bolivar mill site for logging and diamond saw sampling of prospective intervals. The drill core is stored at this location.

Drill core samples were personally delivered by the author and/or his assistant to Acme Analytical Laboratories Ltd. in Vancouver, B.C. All drill core samples were subjected to 30 element ICP analysis using aqua regia digestion. Fire geochemical methods were carried out for gold analysis on all samples.

12. 2004 DRILL PROGRAM – DISCUSSION OF RESULTS

The primary exploration target on the Yew prospect remains the near-surface skarn or pyritemagnetite replacement limestone horizon. Based on the recent diamond drill program, no justification can be made for deeper examination or testing of lower horizons below the main skarn/limestone horizon. It is suggested that the most prospective areas of future exploration on the Yew Mineral Zone lie on both the west and east sides of the north-south trending mottled feldspar porphyry dike. Drill exploration should be carried out to the north of the main Yew pit, on the west side of the porphyry dike. to the northern boundary of the mineral license. Exploration on the east side of the porphyry dike should be carried out northward from the area of drill holes Y04-07, Y04-08, Y04-09 and Y04-10 (area of previous underground cave excavation). Based on existing drill data, it is recommended that exploration not be carried out beyond 50 meters, both west and east of the margins of the controlling feldspar porphyry dike unit. It is apparent that skarn and/or mineralizing processes are very weak or erratic beyond the 50 meter influence of the feldspar porphyry dike.

The 25 drill holes of the recent drill program can be grouped based on various geological similarities or patterns. The following brief discussions will discuss these geological parameters.

A. Drill holes Y04-01, Y04-02, Y04-03, Y04-04, Y04-05, and Y04-24

Drill holes Y04-01, Y04-02, Y04-03, and Y04-04 were drilled south of the main Yew pit area. All these holes were drilled in footwall basaltic rocks below the level of the main mineralized skarn horizon. Drill hole Y04-04 was drilled along the western margin of the north-south feldspar porphyry dike unit.

Drill hole Y04-05 was drilled at the northern end of the main pit area and was drilled in an area that had seen previous stripping of the main flat-lying mineralized skarn horizon and was thus also drilled in footwall basalts.

Drill hole Y04-24 at the northeast area of drilling was also drilled in footwall basalts below the mineralized skarn horizon.

B. Drill holes Y04-13, Y04-14, Y04-15, and Y04-25

Drill holes Y04-13,14, and 15 were drilled from a common drill site intended to cross the central (Y04-13) and northern (Y04-14, Y04-15) portions of the main pit area. Weak skarn mineralization was encountered in all three of these drill holes and did not contain any values of significance.

Drill hole Y04-25, drilled approximately 40 meters southeast of drill holes Y04-13, Y04-14, and Y04-15 contained similar style weak skarn alteration.

Report on the Yew Property for 555 Corporate Ventures Inc..

22

Rio Minerals Limited

All four of these drill holes are considered to be drilled below or within the footwall of the main flat-lying mineral skarn horizon.

Fine grained disseminated pyrite, associated with the weak skarn alteration, does not appear to carry significant gold values. The area in which this drilling took place appears to lie too far west of the mineralizing influence of the main feldspar porphyry dike.

C. Drill holes Y04-16 and Y04-17

These two drill holes, located immediately north of the main Yew pit, contained no noticeable skarn alteration. This area may have been partially mined in the past and may have had mineralization removed, thus negating the possibility of mineralization in these drill holes. A more likely scenario would suggest that these two drill holes lie too far west of the mineralizing influence of the feldspar porphyry dike.

D. Drill holes Y04-06, Y04-19, and Y04-20

Drill holes Y04-19 and Y04-20 were drilled entirely within the north-south trending feldspar porphyry dike unit.

Drill hole Y04-06 was drilled between drill hole Y04-19 and Y04-20. Drill hole Y04-06 was drilled at -60 degrees dip, on a west azimuth. At the depth at which the mineralized skarn horizon should have been intercepted, the drill hole encountered the feldspar porphyry dike, thus negating the possibility of intersecting the skarn horizon in this drill hole.

E. Drill holes Y04-07, Y04-08, Y04- 09, Y04-10, Y04-11, Y04-12, Y04-18, Y04-21, Y04-22, and Y04-23

The drill holes listed above contained distinct limestone and /or skarn-related mineral zones related to alteration or mineral replacements of the limestone horizon.

Drill hole Y04-07 was drilled above a cave-like excavation, where previous mineral extraction had taken place. This hole intersected the underground workings, resulting in a missing core section of the pre-existing mineral horizon. At the entrance to the cave excavation, a surface sample of massive magnetite was taken by D. Blann. Sample Y04-DB-1 returned 1154 ppb gold, 0.9 ppm silver and 911 ppm copper. Sample Y04-DB-2 was taken from a pit, located

Report on the Yew Property for 555 Corporate Ventures Inc.,

Rio Minerals Limited

approximately 40 meters north of sample location Y04-DB-1. Sample Y04-DB-2 returned 486 ppb gold, 1.3 ppm silver and 1020 ppm copper.

Drill holes Y04-08, Y04-09, Y04-10, Y04-11, Y04-12, and Y04-21 all intersected significant skarn/massive pyrite-magnetite mineralization. All of these holes lie within close proximity of the north-south trending feldspar porphyry dike unit. Drill holes Y04-11 and Y04-12 contained disrupted zones of sulphide/skarn alteration at considerably greater depth than adjoining drill holes. The mineral zones located in drill holes Y04-11 and Y04-12 likely represent downfaulted, attenuated mineral sections. Pressure effects due to the intrusion of the feldspar porphyry dike, are the likely cause of faulting and rock breakage, in the area of these two drill holes.

Drill holes Y04-18, Y04-22, and Y04-23 contained well defined limestone beds, but contained minor or lacking mineralization. Drill holes Y04-22 and Y04-23, which were drilled from the same location, are considered to lie at too great a distance from the mineralizing influence of the feldspar porphyry dike.

All diamond drill holes have been projected on to four different section lines and are presented in Appendix IV, at the back of this report. The section lines are displayed on Figure 4 (Drill Hole Compilation Map). Drill holes display general lithologic units and accompanying color-coded geochemical values for gold, copper and silver.

ز ج Rio Minerals Limited

The following table provides assay data related to significant mineral intervals within these drill holes.

Hole No.	Interval	Width	Description	Gold	Silver	Copper
			-	(ppb)	(ppm)	(ppm)
Y04-08	6.63-7.4	0.77 m	Semimsv py,mag + 20% diops., garnet, qtz	314	-	775
	7.4-7.67	0.27 m	Semimsv magnetite + pyrite, 20% skarn	2304	1.0	2304
	7.67-8.9	1.23 m	Pyritic basalt	4823	0.6	4823
Y04-09	7.01-7.84	0.83 m	Massive f.g. magnetite, 20% skam	512	0.3	1433
Y04-10	9.75-10.55	0.80 m	Massive pyrite w. 10-20% magnetite, quartz	4679	5.0	7366
Y04-11	18.92-20.42	1.50 m	Basalt w. 10 cm semimsv py @ 19.8 m	9405	0.5	242
	26.17-27.85	1.68 m	Massive coarse grained replacement pyrite	338 (296)		199
Y04-12	21.96-22.56	0.60 m	Massive pyrite, 20-30% magnetite, quartz	18563	2.6	2490
			(broken)		· · · · · · · · · · · · · · · · · · ·	
Y04-18	8.90-9.65	0.75m	Massive limestone w. 2.5 cm msv f.g pv	37	-	103
Y04-21	13.83-17.07	3.24 m	Skarn alt'n	86	-	202
	17.07-18.22	1.15 m	Skarn alt'n (msv py > magnetite (17.5-17.8)	325	0.8	2416
	18.22-18.92	0.70 m	Skarn alt'n	97	0.4	330
	18.92-20.0	1.08 m	Skarn alt'n (msv py>magnetite (19.1-19.3)	215		867
Y04-22	6.22-9.14	2.92 m	Massive limestone			
	6.1-6.4	0.30 m	Msv f.g magnetite	205	-	809
	10.1-10.3	0.20 m	Msv f.g py> magnetite	688	1.7	8315
	f.					
Y04-23	11.45-12.7	1.25	Massive limestone			

Discussion of Significant Mineralization

During the recent drill program consistently high gold values were returned from drill holes Y04-Y04-08, Y04-09, Y04-10, Y04-11 and Y04-12. Drill holes Y04-08, Y04-09 and Y04-10 were drilled from a common location, in the area of the cave excavation and lie on the east side of the feldspar porphyry dike. Drill holes Y04-11 and Y04-12 were drilled from a common location on the west side of the porphyry dike.

The following discussion of each of these five drill holes will indicate the economic significance of mineralization, in this area of the Yew prospect.

Y04-08

Drill hole Y04-08 was a vertical drill hole, drilled to 31.7 meters depth. Massive limestone was intersected at 6.27 to 6.63 meters. The limestone was followed by 1.04 meters of skarn mineralization from 6.63 to 7.67 meters.

From 6.63 to 7.4 meters, the skarn consisted of massive intermixed patchy fine grained pyrite and magnetite with approximately 20 % garnet, diopside and quartz. This section assayed **314 ppb gold** and **775 ppm copper.** The interval from 7.4 to 7.67 meters, consisted of massive fine grained magnetite with approximately 10% mixed garnet, diopside. This section assayed **2304 ppb gold** and **2496 ppm copper**.

The pyritic basalt following the skarn mineralization (7.67-8.9 m) returned **4823 ppb gold** and **758 ppm copper**.

Y04-09

Drill hole Y04-09 was a second vertical hole drilled from the same set-up as drill hole Y04-08.

Drill hole Y04-09 was drilled to 169.2 meters depth and contained similar style of skarn mineralization as that seen in adjacent drill hole Y04-08.

Massive limestone was intersected from 6.27 to 7.01 meters. Skarn mineralization occurred from 7.01 to 7.84 (0.83 m) meters. The mineralization consisted mainly of massive fine-grained replacement magnetite with approximately 20% scattered patches of pale brown garnet and pale green diopside. Pyrite was lacking within this skarn, which returned **512 ppb gold** and **1433 ppm copper**.

Y04-10

Drill hole Y04-10 was drilled at 210 degree azimuth and 45 degree dip, from the same location as drill holes Y04-08 and Y04-09

A mineralized skarn interval was encountered in this drill hole from 8.0 to 10.55 (2.55) meters. The true thickness of this interval is 2.0 meters.

From 8.0 to 9.75 meters skarn alteration consisted of equally mixed magnetite and garnet. The sampled interval returned **785 ppb gold** and **1377 ppm copper**. The interval from 9.75 to 10.55 meters consisted of massive pyrite + chalcopyrite with 10-20 % mixed magnetite and interstitial quartz. This section ran **4679 ppb gold** and **7366 ppm copper**.

A 3.11 meter (10.55-13.66 m) interval in the basalts, immediately following the skarn zone, returned 616 ppb gold and 2075 ppm copper.

```
Report on the Yew Property for 555 Corporate Ventures Inc..
```

Rio Minerals Limited

The strong skarn mineralization in drill holes Y04-08, Y04-09 and Y04-10 is directly related to the proximal location of the north-south trending feldspar porphyry dike. The porphyry dike unit was present in all three of these drill holes, at relatively shallow depths, below the skarn layer. The porphyry intersections likely occur as flat-lying sill apophyses, branching from the main vertical dike unit.

Y04-11

Drill holes Y04-11 and Y04-12 were drilled from a common location, approximately 35 meters northwest of drill holes Y04-08, Y04-09 and Y04-10. Drill hole Y04-11 was drilled vertically to 67.1 meters and drill hole Y04-12 was drilled to 80.6 meters, on an azimuth of 210 degrees at a 47 degree dip.

Massive, broken medium to coarse pyrite was intersected in Y04-11 at 26.17 to 27.85 (1.68) meters. This interval returned a relatively low value of **338 ppb gold** (296 ppb gold – rechecked).

An interval within the upper basalt unit of this hole at 18.92 to 20.42 (1.5) meters returned a high gold value of **9405 ppb gold**. It is believed that this high value was attributed to a 0.1 meter band of contained gold-bearing massive pyrite.

Y04-12

Drill hole Y04-12 contained strongly anomalous gold values to approximately 40 meters depth.

The most significant zone of mineralization was intersected at 21.96 to 22.56 (0.6) meters. This mineralization consisted of massive medium grained pyrite with approximately 20-30% interstitial magnetite and quartz. This interval contained the highest gold value of the drill program at 18,563 ppb gold and 2490 ppm copper.

Other significant intervals within this drill hole included **1367 ppb gold** at 8.23-9.75 meters and **1237 ppb gold** at 37.57 to 39.85 meters. These values are attributed to localized increased pyrite concentrations within basalts.

Significant areas of fracturing and breakage were noted in both drill holes Y0-11 and Y04-12. This disruption has likely been caused by pressure effects caused by the presence of the adjacent feldspar porphyry dike, which is the assumed cause of skarn mineralization of the main limestone bed at the Yew property.

The mineralized intervals in both drill holes Y04-11 and Y04-12 appear to have been downdropped through faulting. The faulting process has likely attenuated or shortened the original mineralized horizon. If this is the case, thicker mineralized skarn areas may be present immediately beyond this zone of intense breakage.

As noted in the discussion of drill hole Y04-08, Y04-09, Y04-10, Y04-11 and Y04-12, the strongest gold values occur in a combination of skarn alteration with associated pyrite and magnetite. The highest gold values appear to be directly proportional to the pyrite component. However, massive pyrite without accompanying skarn alteration, as seen in drill hole Y04-11, does not carry appreciable gold. Massive magnetite with or without accompanying skarn alteration and/or pyrite is also generally lacking in appreciable associated gold.

13. CONCLUSIONS AND RECOMMENDATIONS

The Yew prospect is only one several mineral zones contained within the extensive claim areas held by 555 Corporate Ventures Inc. The most promising areas of known mineralization include the Yew, Holly, Bolivar, M-21, Surprise Mountain, and Paris-Loyal. It is recommended that a review of existing data and field evaluations be made of all the known mineral occurrences within the claim holdings. Some targets recommended by previous operators such as Echo Bay Mines, but never pursued, could possibly be brought to the drilling stage, without the necessity of extensive work programs.

The potential of the company's holdings is enhanced in that they occur within a historic mining area, and a well established infrastructure with respect to services, year round accessibility, tidewater facilities, an existing mill and proximity to a major centre. In addition, the property benefits from having extensive data available and the inclusion a number of exploration focal points.

The recent diamond drilling program on the Yew Mining License 345340 was successful in further delineating the extent of the flat-lying gold (+ copper/silver) skarn zone, present on the property. The diamond drill program, which totaled 1541.4 meters was carried in 25 drill holes.

Nine of these drill holes contained variable thicknesses of skarn-associated mineralization, containing appreciable gold with accessory silver and copper values. This near surface mineral zone continues to be the most prospective zone of potential exploitation on the property.

The highest mineral grades within the skarn zone occur within close proximity to a persistent north south trending mottled feldspar porphyry dike.

All of the historical exploration work at the Yew property has been carried out within an approximate 150 meter radius of the Yew pit. This area represents only a small portion of a mineral zone of high economic potential. Based on past and current drill data, it highly recommended that further diamond drill exploration be carried out throughout the northern unexplored portion of the mineral lease

Further definition drilling is recommended to further delineate the main mineral layer. Using the north-south trending porphyry dike as a baseline, drilling should be carried out at least 50 meters west and 50 meters east of the margins of the porphyry. Drilling should be carried out northward from the main Yew pit and should be extended northward as far as appreciable mineralization is encountered, possibly as far as the north boundary of the mineral lease.

Diamond drilling should be carried out in a regular grid pattern, with east-west drill lines spaced 40 meters apart along the north-south baseline. Drill hole spacings are recommended at 15 meter, 30 meter, and 45-meter distances from both the western and eastern margins of the porphyry dike unit. Drilling should be carried out using a relatively small, easily moved diamond drill. The Hydracore 28 drill used in the recent drill program, is suitable for any future diamond drill program. Vertical drill holes are recommended and would require drilling to no greater than 50 meters depth.

A future program of close-spaced drilling would require additional roadwork to provide new drillsite access. Government permits should be secured to allow for a minimal amount of tree cutting that would be required in building the road access.

Prior to further drilling at the Yew property, it is also recommended that a comprehensive ground survey be carried out. The survey should accurately locate and tie-in all known drill collars and surface workings. Elevations of all drill collars should be determined during the survey.

In the short term, the potential exists for definition of a reserve of gold bearing skarn/massive sulphides at the Yew occurrence. A production decision could be made, contingent upon a further diamond drill program, as recommended in this report. Metallurgical bench tests should also be carried out to determine gold recoveries and if a sellable concentrate can be produced at the existing mill.

Report on the Yew Property for 555 Corporate Ventures Inc..

14. REFERENCES

Barker, D.J., (February, 1988)

Preliminary Evaluation of Mining Possibilities, Yew #7 Claim - Rhyolite Resources Inc. (internal report)

Dewonck, B., (November, 1999)

Summary Report on the Texada Island Project- Coast Mountain Geological Ltd. (internal report prepared for International Metals Research Management Ltd.)

Hicks, Ken (June, 1986)

Diamond Drilling and Geological Report on the Holly Property - Yew Claims for Northair Mines Limited

Kowalchuk, J.M. (January, 1988)

Probable and Possible Ore Reserves on the Yew #7 Claim, Texada Island, British Columbia, for Rhyolite Resources Inc. (internal report)

MINFILE

British Columbia Ministry of Energy, Mines and Petroleum Resources

Sarjeant, Paul T., and Nighswander, Mark (January, 1990)

Geological and Geophysical Surveys on the North Texada Property, North Texada Island, British Columbia, for Echo Bay Mines Ltd.

Sarjeant, Paul T. (April, 1989)

Geological and Geophysical Surveys on the North Texada Property, North Texada Island, British Columbia, for Echo Bay Mines Ltd.

Thomson, G. (October, 2003)

Geophysical Report on the Texada Island Project – Loyal and Yew Grids for 555 Corporate Ventures Inc.

Visser, S., Basil, C., (August 2003)

Induced Polarization Survey – Texada Island Project (Yew Grid) for 555 Corporate Ventures Inc.

Webster, I.C.L., and Ray, G.E. (1990)

Geology and Mineral Deposits of Northern Texada Island, *in* Geological Fieldwork 1989, Paper 1990-1, British Columbia Ministry of Energy, Mines and Petroleum Resources

Report on the Yew Property for 555 Corporate Ventures Inc..

15. YEW PROPERTY – COST STATEMENT

1. Diamond drilling: 5075 feet @\$20.00/ft		\$101,500.00
2. Drill demobilization		\$2,000.00
3. Professional Engineer: 7 days @ \$571.25/day		\$3,998.75
4. Professional Geologist: 37 days @ 385.87/day		\$14,277.19
5. Excavator: 14.0 hours@ \$90.00/hr.		\$1,260.00
6. Assays		\$8.307.31
7. Expenses		\$3,768.23
8. Report		\$5.254.00
9. Management Fee		\$15,506.47
	TOTAL:	\$155,871.95

Report on the Yew Property for 555 Corporate Ventures Inc...

APPENDIX I

STATEMENT OF QUALIFICATIONS

.

÷

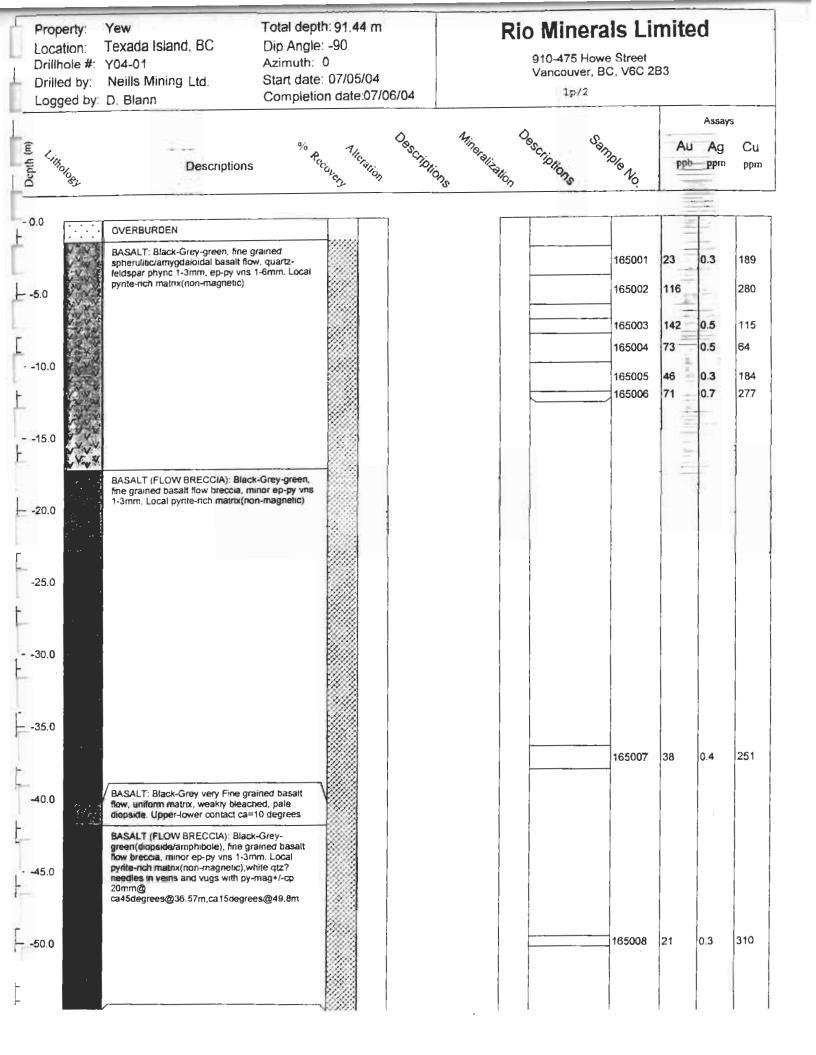
STATEMENT OF QUALIFICATIONS

I: Gregory R. Thomson, of Langley, B.C., do hereby certify:

- 1. That I am a consulting geologist residing at 3779 202 Street, Langley, BC.
- 2. That I am a graduate Geologist from the University of British Columbia (1970) and have over 25 years of mineral exploration experience in the province of British Columbia.
- 3. That I am a Profession Geoscientist registered in good standing in the Province of British Columbia
- 4. That the information contained in this report was based upon a review of previous reports and geological studies related to the property area.
- 5. I consent to the use of this report by International Metals Research Management Ltd. for it corporate purposes.
- 6. I do not own, either directly or indirectly, any interest in International Metals Research Management Ltd., 555 Corporate Ventures Inc, or any of their subsidiaries, or in the Texada Island Project described herein, nor do I expect to receive any.

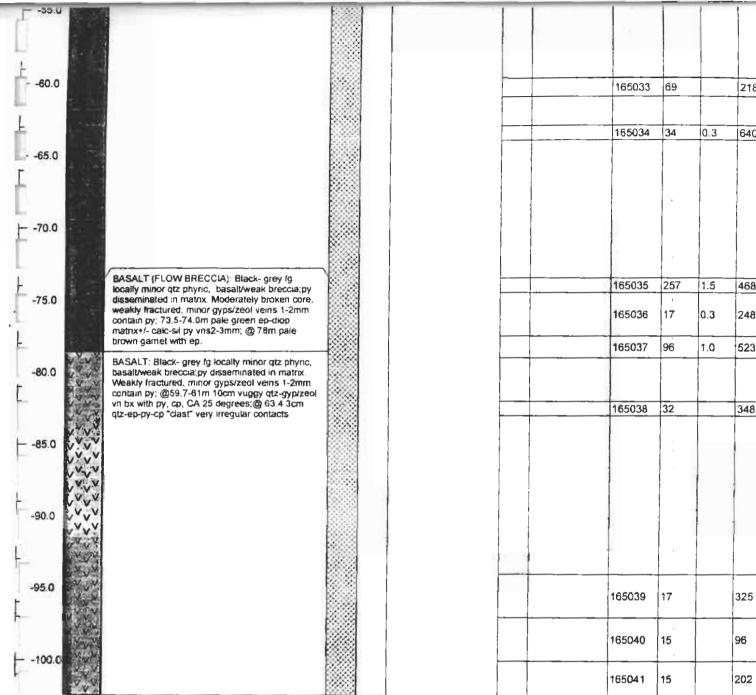
Dated at Vancouver, B.C., September, 2004

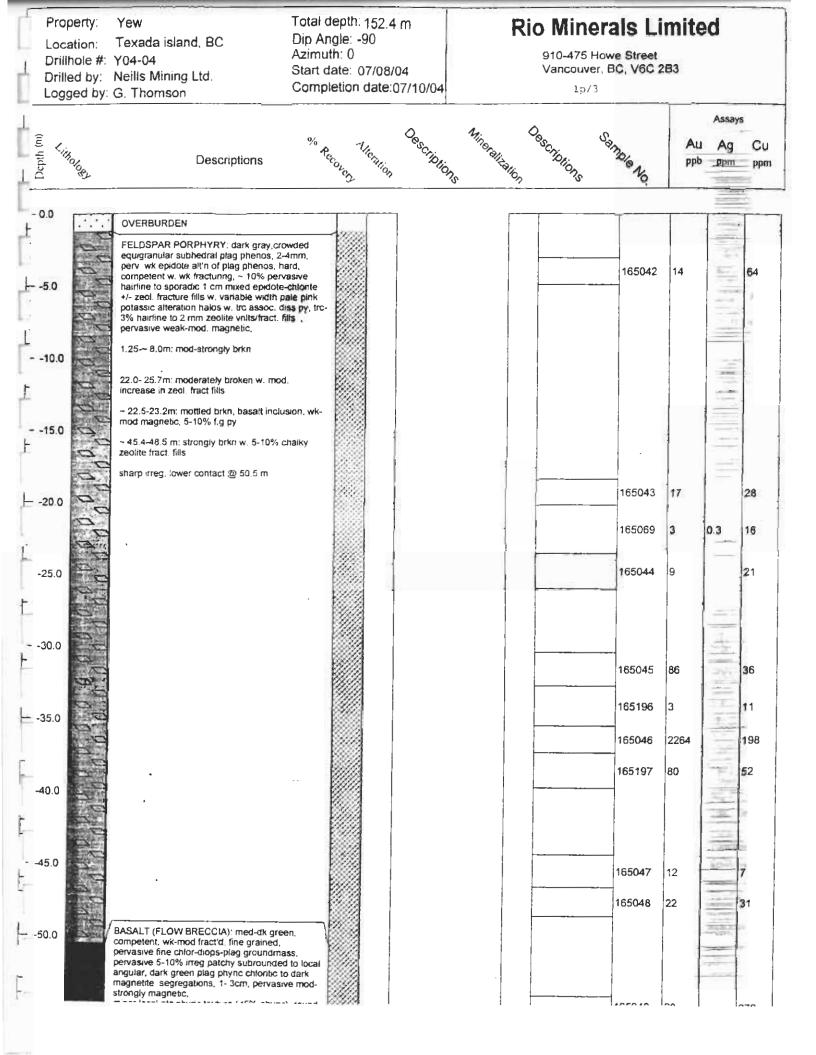
Gregory R. Thomson, P.Geo.


<u>APPENDIX II</u>

DRILL LOGS

-


•



55.0 1/4 1/4	/FAULT: Grey-green(chlorite), fine grained basalt flow breccia, subparallel shear zone, weak- magnetic), white calcite fracture fill veins and vugs with trace py- 10mm@ ca10degrees	165009 37	0.8 309
0.0	BASALT (FLOW BRECCIA): Grey- green(chlonte/pyroxine), fine grained, coarse heterolithic basalt flow breccia, local ep-pyrx py+/- tr cp fracture fill verse and vugs 1-10mm@ ca10-45degrees,		
5.0			
0.0			
i.0			
u.0		165010 12	0.3 217
5.0			
0		165011 7	182

Drillhole #:	Texada Island, BCDiY04-02AzNeills Mining Ltd.S	otal depth: 50.29 m p angle: _45 zimuth: 315 tart date: 07/06/04 stion date: 07/07/04	R		łowe Street r, BC, V6C 2		ed	
Depth (m)	% Descriptions	Secovery OF CTDION	Asinefalitation	Descriptions	Sannole No.	Au		Cu
- 0.0	OVERBURDEN		[T
	BASALT: Black-grey-green, fine grained,spherulitic/amygdaloidal basalt flows, broken along py-ep filled fractures 1-5mm, 10- 30/m with quartz-epidote-pyroxine, amphibole				165012	91	0.3	223
-5.0	selvages, rusty-FeOx. BASALT: Black-grey-green, fine				165013	64	0.5	219
-10.0	grained.spherulitic/amygdaloidal basaft flows, broken along py-ep filled fractures 1-5mm, 5- 10/m with quartz-epidote-pyroxine, amphibole selvages, rusty-FeOx.				165014	50	0.3	174
	BASALT: Pale-green, fine grained.spherulttc/amygdaloidal basalt flows.pervasive Qtz-ep-py+/-tr cp with guartz- epidote- amphibole matrix, qtz velns.							
-15.0	BASALT: Black-grey-green, fine grained.spherulitic/amygdaloidal basalt flows, broken along py-ep+/cp filled fractures 1-5mm, 5- 10/m with quartz-epidote-pyroxine, amphibole selvages, rusty-FeOx.				165015	59	0.3	177
-20.0	BASALT: Pale-green, fine grained, spherulitic/amygdaloidal basalt flows, pervasive Qtz-ep-py+/- tr cp with quartz- epidote amphibole matrix, qtz veins.							
-25.0	BASALT: Black-grey-green, fine grained, soherulitic/amygdatoidal basalt flows, minor Bx, broken along py-Qtz-ep+/cp filled fractures 1-20mm, 10-15/m with quartz-epidote- pyroxine, amph/bole selvages, Local Qtz-ep-py-				165016	168	0.6	667
	cp stringers @12.2mCA=45degrees 3cm, @13.4m CA=5degrees 1 cm, @14.93-15.3 pervasive ep-amph, tr pycp CA 45degrees.				165017	28	0.5	264
-30.0	BASALT (FLOW BRECCIA): Black-Grey- green(dopside/amphibole), fine grained basalt flow breccia, minor ep-py vns 1-3mm. Local pyrtte-rich matrix(non-magnetic), local white qtz? needles (wolt?)in veins and vugs with py-mag+/- cp							
-35.0					165018	32	0.7	384
-40.0						1	1.11	
						1		
-45.0					165019	48	0.4	275
-50.0					165020	46	0.5	198

Property: Location: Drillhole #: Drilled by: Logged by:	Texada Island, BCIY04-03ANeills Mining Ltd.S	Fotal depth: 102.41 m Dip angle: -45 Azimuth: 270 Start date: 07/07/04 letion date: 07/08/04	F	Rio Miner 910-475 Hor Vancouver, 1p/2	we Street		ed	
Depth (m)	Descriptions	Recovery Oescription	Alinerelikatio	Descriptions	TOIR NO.	Au	Assa J Ag b ppm	Cu
- 0.0 F	OVERBURDEN FELDSPAR PORPHYRY: Grey-cream, fg, feldspar porphyry diorite dike, tr py replacing epidote and chlonte spots along thin fractures, weakly FeOx. Tr cp contact broken, possible CA=30 degrees.				165021	2		18
[10.0 F	White-pale cream, coarse grained calcite vein, minor wallrock frags/breccia, trace pyrite, cp BASALT: Black-grey, fg uniform texture basalt flows, local minor quartz phyric zones, @11.3m				165022 165023 165024	6 11 27	1.0	1760 228
15.0	2cm polyphase, vuggy qiz vein with fg py, tr cp CA 30 degrees and wk qiz-py strgs 1-3mm to 13.0m;@17.3 2cm gypsum?-ca py vein bx CA 30 degrees:@18.2m 1-5mm qiz-py vn CA 10 degrees.	83333			165025 165026 165027	702 95 108	1.4 0.8 1.0	1415 416 891
-20.0	BASALT: Black- grey fg qtz phync, weak basalt breccia;py disseminated in matnx. Weakly tractured, minor veins 1-2mm contain py; BASALT (FLOW BRECCIA): Black- grey-pale green, fg qtz phync, heteroithic basalt breccia with zones of motiled, ductite green ep-diopside				165028	104	0.9	540
Ł	chi-qtz-gyp/zeol?-py nch matnx. Mod fractured, veins 1-5 mm contain qtz-chi-gyp/zeol?+1-5% py;@24.4-24.6 qtz-ep/diop chi-pybx, 25.1-25.7 re-bx qtz vn bx in chi-ep/diop-matrix- vfg py CA 10 degrees; 27.7-28.4 as previous less qtz				165029	138	0.7	519
30.0 	BASALT (FLOW BRECCIA): Black- grey fg locally minor qtz phyric, basalt/weak breccia;py disseminated in matrix. Weakly fractured, minor gyps/zeol veins 1-2mm contain py;				185030	94	0.3	266
-45.0 -	HORNBLENDE PORPHYRY: Grey-pale green, Ig, hbl porphyritic diorite; weak pervasive epidoti matrix, CA =10 degrees/broken; @47.8 20cm massive ep vn with moderate cp clots CA 20 degrees.	e			165031	19	0.5	235
	BASALT (FLOW BRECCIA): Black- grey fg locally minor qtz phyric, basait/weak breccia;py disseminated in matrix. Weakly fractured, minor gyps/zeol veins 1-2mm contain py; @59.7-61m 10cm vuggy qtz-gyp/zeol vn bx wrth py, cp, CA 25 degrees;@ 63.4m 3cm qtz-ep-py-cp "clast" very irregular contacts							

	1-4 mm w. trc assoc. f.g py-po , trc zeol. fract.	133332				100			1
+	fills				165050	-58-	-	=136=	=
	pervasive tro- 1% diss f.g py/fract fills, local 1-2								
ł	cm py clobs/fract. fills	-6333				-			-
60.0	BASALT (FLOW BRECCIA): continuation of above with increased distinct dk magnetite				165051	13		194	
	segregations/flow breccia texture, approx equally mixed irreg f.g. magnetite segregations w.					+			+
-	intervening pale green f.g plag-chlor-augite groundmass, mod-strong pervasive magnetic,		1775 C		165052	17	1	206	t-
1	magnetite segregations typically have fine-med gr. crowded subhedral plag lath porph texture, tro				100032	1"		200	-
65.0	fine zeolite fracture fills				1				
1	trc-2% pervasive diss/fracture fills py-po, very		2000 CE 000	3		-			
1. S. 1.	minor sporadic f.g. cpy mostly po associated in gtz phyric sections from ~ 86.0 - 129.9m								<u> </u>
1 70.0					165053	26		317	1
<u>⊢</u> -70,0						-	-		
							1		
1									
75.0	1								-
					165054	21		71	
í .									
5	@68.3m - 5 cm open cavily w. fine crystalline zeolite + pyrite								
80.0					165055	23		191	
г	70.3-70.8: mod perv. epid-silica alteration w. 3-5% f.g diss					-			
* E.	py				165056	24		213	
1. Sec. 2.	74.75-77.2								2
-85.0	wk-mod perv epidote alteration w. 1-2 % sporad c clots/fract. fills py + po								
					165057	35		280	-
1.000	70.0.00.4						1	-	Ũ.
F	78.9-80.1 10-15% qtz phyric, 2-4 mm, mottled grayish								
-90.0	green w. minor sporadic epidote-chlor clots w. assoc clots py-po with tro cpy, sulphides mainly				15		1		
1. A 4	as inclusions in qtz phenos			1 1					
F F	60,1-90.9 < 5% gtz phync texture, perv. trc-0.5 % py-pc,						1	1 1	
-95.0	localized minor patches chior-epidote w. assoc							a 8	
-95.0	coarse py-po, the cpy								
L I	90,9-97,5 weakly developed magnetice segregation texture.					<u> </u>			
	trc f.g diss py-po, minor py-po fract. fills				165058	35	0.3	200	
i− -100.0									
					165072	18	0.4	168	
	97.5-129.9				Í				
	strongly developed patchy magnetile segregation				165059	28	0.4	239	_
-105.0	texture, subrounded to angular, 2-5 cm, med green motified diops-chlor-plag f.g. groundmass,			├ ── ├ ── ─			0.4		
	pervasive sporadic zones qtz-phyric texture (5- 10%), pervasive sporadic epidote-chicr clots								_
	W.Assoc py-po +/- trc cpy, cpy mainly assoc. W. f.g po (py) in gtz phenos				165060	78		350	
	~114.0-115.83 mod. brkn w. increased zeolite fract, fi⊮s						+		
-110.0					165061	246	0.4	691	
	@ 122.55: 1-2 cm skarn band w. mixed brown garnet-calcite-magnetite and numerous cpy blebs					<u> </u>	<u> </u>		
					165062	.38	10.5	406	_
115.0	~ 124.7-129.9 qtz phyric fexture becomes coarser, less distinct								
	w. epidote inclusions, local coarse clots py-po, 0.5-3.0 cm							1	
							1	-	
170.0	Sharp lower contact at 40 deg, to core axis @ 129.9m			-	165063	167	0.7	366	_
-120.0									
					165064	123	0.3	321	-
									_
	1			45 L	1 1		1	+ 1	

-125.0			165065	66	0.4	388
			165066	20	0.9	238
-130.0	FELDSPAR PORPHYRY: light-med gray, crowded, equigranular, subhedral-euhedral plag phenos, 2-3 mm, wk perv. epidote alteration of plag phenos, 10-15% fg. augite through groundmass, non magnetic to ~ 140.0 m, wk- mod, magnetic @140.0-141.05					
	BASALT (FLOW BRECCIA): qtz phyric mottled					
-140.0	basait. brkn upper contact, broken lower contact with sharp contact along core axis from 142.95- 143.2m, 17 cm feldspar porphyry inclusion @		165070	6	0.4	130
	142.2 m, ~ 0.5 % diss/clots py, strongly magnetic		165067	58	0.3	281
-145.0	FELDSPAR PORPHYRY: leispar porphyry, as above, contains zone of mixed fpd (feldspar porphyry diorite) with mottled flow breccia basalt		165068	307	1.1	530
	@ ~ 144.0-144.8m, contains strong irreg. skam patch @ 144.4-144.55 w. mixed epidole-		165071	5		90
	carbonate-magnetic w.iocally coarse py clots, mod magnetic to 143.2-146.3					
-150.0	e d					
55-1						

ן Drillhole #: ץ	Fexada Island, BC 704-05 eill's Mining Ltd.	Total depth: 105.77 m Dip Angle:-90 Azimuth: 0 Start date: 07/11/04 Completion date: 07/12/04	F	Rio Minerals L 910-475 Howe Street Vancouver, BC, V6C 1p/2	2	ed
Depth (m)	Descriptions	[%] Recovery	Mineralication	Descriptions Santole No.	Au _{ppb}	ng ou
-0.0	OVERBURDEN		-		-	
	BASALT: dark to med. greenish gray, in dark magnetite rich zones/bands w. inte- fine grained pale to med. green diopside plagioclase groundmass, pervasive strou-	echionte-	-	165073	-	0.3 857
E -15.0	magnetic, 1-2% pervasive, sporadic fine epidote/zeolite fracture fills(locally to 1.0 mod brkn from 1-~ 160 m (5-20 cm pieco clasts (round-subangular, 0.5-3.0 cm), p trace 0.5% diss f.g py, locally as fracture minor trc. f.g. cpy, minor (<5%), scattere rounded qtz phenos, 2-4 mm 1.74-7.0 m quartz phyric texture with irreg. roundish phenos, 3-10 mm, approx 10-15% throug section	tom). sesj. gation iervasive ed wht qtz		165075	28	333
-20.0				165076	27	157
t t	BASALT: continuation of above:		F	165077	13	199
	weakly developed dark magnetite segreg (~10% vol) w. pale green fine grained dio chlor-plag, groundmass, pervasive modes strongly magnetic, generally hard compet local zones of increased fracturing w. loci concentrations of zeolite fracture fills, trc l epidote +/- zeolite fracture fills, weakly developed scattered quartz phenos, mino sporadic epidote alteration patches often associated pynte and minor trc cpy	posside- rate to tent with al fine				
1000	strongly fractured basalt w. 2-5% zeolite f fills @ 39.6-41.5, 45.72-46.25, 52.25-53.0 56.1	fracture)4, 55.0-				
-40.0	pervasive trc-0.5% diss py , minor tocal py tracture fills/patches	Y		165078	17	
	55.3-55.8 pervasive weak to moderate epidote altera (contact alteration) w. increased zeo/ite ve	eining, Hilla		165079	18	257
45.0	strongly brkn, broken contact w. felspar po dionte at 55.8-56.0m @ 10 deg. to core a					
	FELDSPAR PORPHYRY: feldspar porphylionte: competent weakly fract'd cale vellowish o	AP26833		165080	20	216

a	med, grain, subhedral plag phenos w. wk perv epidote alteration, medium gray fine groundmass,		1			165081	17		150
100	~ 20% fine grained pyroxene phenos, 0.5-1,0				1	165082	12		87
	mm, non magnetic except as noted, trc hairline epidote/zeolite /ract. fills,								
	sharp upper contact at 10 deg. to core axis						1		
	56 0-57.5					10		1	1.
	very broken w. dark gray matrix, some shear surfaces, 3-5% wht zeolite +/- epidote fract fills, 3-5 mm, wk-mod. magnetic								83
	66.0-68.0 dark gray matox, wk-mod. magnetic								
	sharp lower contact @ 10 deg. to core axis					165083	9	+	106
1.0	BASALT (FLOW BRECCIA): mottled, equally mixed imeg 20-30% drk f.g. magnetite					165084	44	0.5	332
	segregations w. pale-med green fine grained diopside-chlor-plag groundmass, trc. pervasive f.g dissem, py, perv, mod-strongly magnetic					165085	50	0.4	247
							ļ		
	73.35-76.4					165086	233	0.3	707
. N	gray, m siliceous w. mod perv. epidote, trc-0.5% diss. f.g py w. local increased py fract. fills,								-
	bands/clots, 2 cm msv py band @ 74.7 m @ 30 deg. to c.a.								
	79.75: 5-10 cm open cavity w. 50 % wht med. gr.crystatline zeolite + 50% med. gr. pyrite								
	gr.crystalline zeolite + 50% med. gr. pyrite selvages								
	90.3: 10 cm open cavity w. fine-coarse wht/clear crystalline zeolite w. coarse pyrite selvages								
ļ									
1			1	-		165087	156		30
1									
				1					
CT LEASE						1		1	
							1		
							1		
ł					1		1		
									-
						165088	12		203
·									
		1000000	1		1		1	1	

Drillhole #: Drilled by:	Texada island, BC Dip Angle: -6	0 15/04			Howe Street er, BC, V6C 2		J
C'inclose	% Descriptions	Sucovery Oscillon	Anneraliz	alion Cescriptions	Samole No.	Au	Assays Ag Cu ppm ppm
	OVERBURDEN BASALT: fine grained massive basait, dark greenish gray, plag phyric/armygdaloidal w. partia						
5.0	epidote replacements, round-subangular, 2-5 mm, perv. local patchy epidote all'rufracture fills, wk - mod magnetic, wk-mod. brkn, perv. 0.5-1% f. g. diss/fract. fill pyrite				165108 165109	27 47	167
1)	@ 5.67m: 10 cm band msv. coarse grain py w. mod. epid. alt'n @ 5.4-5.67 m FELDSPAR PORPHYRY: mottled, med. grained crowded pale green equigranular plag. phenos, pale green sulceous-chior groundmass w. dark				165110	7	21
1: /	(magnette?) streaks, - 2-5% homblende laths, 2 3 mm, strong pervasive epidote replacement spots, 2-5 mm (5-10%), perv. sporadic epidote + chiorite fract. fills w. whit felspathic alteration halos, locally w. pale pink K-spar, trc-0.5% diss						
000	py mainty associated w. epid-diop fracture alteration				165111	68	88
20.0							
25	i dan menangan kanangan kanang				165112	2	6
	BASALT: msv fine grained dark gray busak, wk- mod. magnetic, whit zeolite arrygdules, 2-5 mm to 1-2 cm roundisb ireg. patches, 15-25%				165113	10	43
JD	annygdules epidole repliaced @ 25.3-26.0 m, < 5% annygdules 27.85- ~33.2 m, 1-2 % perv. epidote +/- zeolite fract. fills, hairline-3 mm, local epidote patches/bands, trc t.g. diss py						
15.0							
0.	-						
5.					165114	39	250
0.0							
	BASALT (FLOW BRECCIA): same as for 24.7- 51.0 m				165115	20	194

Bit State Provide Lobit Control manual parts are provided and provided parts and provid							-	-		
10 RAMAT TY LOOV RECORD: (presentes and presentes and presentes and presentes distribution) Image: constraints (f)	00.0	HORNCLENDE PORPHYRY, med gray, w. 15% hb laths, 1+10mm, 5% epid, patches, 2-5% diss or additional analysis - 20 day, hb 2					165116	10		203
Bitlant regregation of segments for engineering the segment for engineering the segment for enginee										
0 general plag-chronic region (large structure) general plag-chronic region (large structure) 0 4 33.10 cm of general region (large structure) general region (large structure) 0 4 53.2 i 10 cm of general region (large structure) general region (large structure) 1 3 assertige broken and structure) general region (large structure) general region (large structure) 70 2 6 10 cm of general region (large structure) general region (large structure) 71 2 77.472.77 77.453.75 10 cm of general region (large structure) 72 77.453.75 10 cm of general region (large structure) 10 cm of general region (large structure) 73 10 cm of general region (large structure) 10 cm of general region (large structure) 10 cm of general region (large structure) 74 77.457.77 17 cm of general region (large structure) 10 cm of general region (large structure) 10 cm of general region (large structure) 74 10 cm of general region (large structure) 75 10 cm of general	1	~50%dark magnetite rich segregations - plag								
100 mignets, tre dealines, ill injette 47 epr 700 53.8 1: 0. or diggene diag associations, method associations, instance (g. 7-13.275, 54. 8 hotophy tables and finatures (g. 7-13.275, 54. 9 1 700 67.677.77 710 70.747.77 711 70.747.77 712 70.747.77 713 70.747.77 714 70.747.77 715 70.747.77 715 70.747.77 716 70.747.77 717 70.747.77 718 84.747.77 719 70.747.77 719 70.747.77 710 70.747.77 711 70.747.77 712 70.747.77 713 70.747.77 714 70.747.77 715 70.747.77 716 70.747.77 717 70.747.77 718 70.757.77 719 70.757.77 719 70.757.77 719 70.757.77 719 70.777	6-0	green plag-chlor (epid) diopside groundmass, trc.								
0 #3.81: 1: 0: at dynamic diary power within any pix 3: 3: 5: 3: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	12									
0 allong instructing (§ 33.4.5.3 f) 700 allong instructing (§ 7.4.7.75.64, nonseed by you can and instruction, molecular, dogs 40.66.6.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		75.34-75.54: strongly broken-fractured								
100 Bascher (b) -74.375.44, commission by cover interaction, monetaxion, does not associate that the basic within due to does not associate the basic within due to does not associate that the basic within due to does not associate the basic within due to does not associate the basic within the basic due to does not associate the basic within the basic due to does not associate the basic due to does not due to does not associate the basic due to does not due to does not associate the basic due to does not due to does not associate the basic due to due to does not associate the basic due to due to does not associate the basic due to does not associate the basic due to does not associate the basic										
700 Processes processes Processes processes Processes processes Processes processes Processes		The second second second second				· · · · · · · · · · · · · · · · · · ·	165117	52	0.4	289
00 Becally occurs in registrice bands with mich 700 as as a systematic age 20:00 mp. to a the first of the	10	increased pyrite +/- magnetite, w.iocal massive-								
700 a also or as aborded: Pact IIII. 102 122 9 770 g 30 deg. fo. 2 288 288 770 g 30 deg. fo. 2 30 deg. fo. 2 318 770 a strain or as aborded: Pact IIII. 195112 92 3 318 770 g 30 deg. fo. 2 30 deg. fo. 3 221 9607801 may 1 770 a strain or as aborded: Pact IIII. 195112 982 3 318 770 a strain or as aborded: Pact IIII. 195122 62 306 771 a strain or as aborded: Pact IIII. 195122 62 306 771 a strain or as aborded: Pact IIII. 195122 62 306 773 a strain or as aborded: Pact IIII. 195122 62 306 773 a strain or as aborded: Pact IIII. 195122 62 306 774 a strain or as aborded: Pact IIII. 195122 62 306 775 a strain or as aborded: Pact IIII. 195122 62 306 775 a strain or as aborded: Pact IIII. 195122 62 306 776 a strain o		locally occurs in repetitive bands within chlor-					1			=
med grav, meg grave dimestore band, bedding grave 00.01 m (200 m (2	70.0				<u> </u>		165118	102	<u> </u>	122
(a) 30 deg, 10 c.a (b) 40 deg, 10 c.a (c) 40 deg, 10	D	67.67-67.77					165119	28		288
77 Internet to a second gray, 100, 20%, 25% schedural to large schedure second gray, 100, 25% schedural to large 25 mm, t019 gray, 100, 25% schedural to large 125 mm, t019 gray, 100, 25% schedural to large schedure schedure, 100, 25% schedural to large schedure, 101, 25%	1.				-		165120	36	0.3	321
Image: Second	75-0				-			+		+
In hartine hads near contacts, contacts In hartine hads near contacts <td>· ·</td> <td>HORNBLENDE PORPHYRY: pale-med gray, 10-</td> <td></td> <td></td> <td>-</td> <td></td> <td>165122</td> <td>62</td> <td></td> <td>306</td>	· ·	HORNBLENDE PORPHYRY: pale-med gray, 10-			-		165122	62		306
BASALT (FLOW BRECCIA): BASALT (FLOW BRECCIA): 150 IESTAL 150 IESTALT (FLOW BRECCIA):	144	in hairline fracts near contacts, contacts			-				0.3	
3 1 165140 8 36 180 80 058815 15 19 pressive land, pair yellow, bedding @ 30 165122 43 231 165 0.5.8.5.5 19 gray metione land, 2 x 4 cm patch / g diss 165124 6 203 165125 292 165125 292 165125 292 165125 292 165125 292 165125 292 165125 292 165125 292 165125 165126 165126 165126 165126 165124 165126 165126 165126 165126 165126 165126 165126 165126 165126 165126 122 234 15.0 165128 165128 165 149 165128 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 149 165128 16 </td <td>E 35</td> <td>EMM .</td> <td></td> <td></td> <td>-</td> <td>, </td> <td>100142</td> <td></td> <td></td> <td></td>	E 35	EMM .			-	, 	100142			
150 #8 05-88 15 1 (g meta band, pale yellow, bodding @ 10 9 (s - 3) 95 8-35.9 1 (65122) 43 2231 165122 29 292 165125 29 292 165125 29 292 165125 29 292 165125 29 292 165126 29 292 165125 29 292 165126 29 292 165121 165126 29 165126 29 292 165121 165126 29 165121 165126 165126 165121 165121 165121 165121 165121 165121 165121 165121 165121 165121 165126 32 234 165121 165126 32 234 150 165126 32 234 165121 16 149 165126 165122 12 254 165127 150 165128 16 149	3)				-		105110	9	<u>-</u>	26
88 05-88 15 (g limestone band, pale yelow, bedding @ 30 deg. to c.a							165140	8		30
88 05-88 15 (g limestone band, pale yelow, bedding @ 30 deg. to c.a					1					
88 05-88 15 (g limestone band, pale yelow, bedding @ 30 deg. to c.a	35.0									
dig. to c.a 95.8-95 9 165123 43 223 1 g.ray intestore band. 2 x 4 cm patch l.g diss 165125 29 292 100.0 HORNBLENDE PORPHYRY: dark gray-pale 165125 29 292 100.0 Intesting transportance 165126 14 15 100.0 Intesting transportance 165141 15 49 100.0 Intesting transportance 165141 15 49 100.0 Intesting transportance 165127 68 224 115.0 Intesting transportance 165127 68 224 115.0 Intesting transportance 165127 68 224 165128 <	-			ţ.	-					
100.0 HORNBLENDE PORPHYRY: dark gray-pale greensh gray - 20% suinetral dk hombende phenos, 0.5-3mm, local map pale greensh gray - 20% suinetral dk hombende phenos, 0.5-3mm, local map pale greensh gray - 20% suinetral dk hombende phenos, 0.5-3mm, local map pale greensh gray - 20% suinetral dk hombende phenos, 0.5-3mm, local map pale greensh gray - 20% suinetral dk hombende phenos, 0.5-3mm, local map pale mod-strongly magnetic, mod plan, @gray = 124-131 m 15.0 165126 32 165127 68 165128 16 165128 16 165128 16 165128 16	1									
IO IO IO IO IO IO IO IS IO IO IS IO IO IS IO IO IO IO IO IS <td< td=""><td></td><td>95.8-95.9 (.g.gray imestone band, 2 x 4 cm patch f.g. diss</td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></td<>		95.8-95.9 (.g.gray imestone band, 2 x 4 cm patch f.g. diss							<u> </u>	
100.0 WORNBLENDE PORPHYRY: dark gray-pale greeniab gray, = 20% submitted defines through groundmass, 0.5-2mm, perv patchy epoide w. monor angular magnetide dots, tro-0 5% dass p., sharp contacts @ 70 deg C* 0 H65141 15 49 100.0 BASALT (FLOW BRECCIA): 165126 32 234 110 Idefi126 32 234 110 165127 68 264 111 165128 16 149	ж а						165125	29	1	292
100.0 WORNBLENDE PORPHYRY: dark gray-pale greeniab gray, = 20% submitted defines through groundmass, 0.5-2mm, perv patchy epoide w. monor angular magnetide dots, tro-0 5% dass p., sharp contacts @ 70 deg C* 0 H65141 15 49 100.0 BASALT (FLOW BRECCIA): 165126 32 234 110 Idefi126 32 234 110 165127 68 264 111 165128 16 149	s.,									
100.0 WORNBLENDE PORPHYRY: dark gray-pale greeniab gray, = 20% submitted defines through groundmass, 0.5-2mm, perv patchy epoide w. monor angular magnetide dots, tro-0 5% dass p., sharp contacts @ 70 deg C* 0 H65141 15 49 100.0 BASALT (FLOW BRECCIA): 165126 32 234 110 Idefi126 32 234 110 165127 68 264 111 165128 16 149	100									
greenish gray. ~ 20% einetral dk homblende phenos, 06-3nm, locally to 10 cm. fg plag phenos through groundmass, 0.5-2mm, pev. patchy epdote w. minor local epd. trad. fills, mod-strongly magnetic, moro angular magnetite clots, trz-0.5% diss py, sharp contacts @ 70 deg to c.axis 165141 15 49 BASALT (FLOW BRECCIA): 165126 165126 32 234 15.0 165127 68 264 165128 16 149 20 16 149	15							1		
greenish gray. ~ 20% einetral dk homblende phenos, 06-3nm, locally to 10 cm. fg plag phenos through groundmass, 0.5-2mm, pev. patchy epdote w. minor local epd. trad. fills, mod-strongly magnetic, moro angular magnetite clots, trz-0.5% diss py, sharp contacts @ 70 deg to c.axis 165141 15 49 BASALT (FLOW BRECCIA): 165126 165126 32 234 15.0 165127 68 264 165128 16 149 20 16 149	1									
greenish gray. ~ 20% einetral dk homblende phenos, 06-3nm, locally to 10 cm. fg plag phenos through groundmass, 0.5-2mm, pev. patchy epdote w. minor local epd. trad. fills, mod-strongly magnetic, moro angular magnetite clots, trz-0.5% diss py, sharp contacts @ 70 deg to c.axis 165141 15 49 BASALT (FLOW BRECCIA): 165126 165126 32 234 15.0 165127 68 264 165128 16 149 20 16 149	1							ĺ		
greenish gray. ~ 20% einetral dk homblende phenos, 06-3nm, locally to 10 cm. fg plag phenos through groundmass, 0.5-2mm, pev. patchy epdote w. minor local epd. trad. fills, mod-strongly magnetic, moro angular magnetite clots, trz-0.5% diss py, sharp contacts @ 70 deg to c.axis 165141 15 49 BASALT (FLOW BRECCIA): 165126 165126 32 234 15.0 165127 68 264 165128 16 149 20 16 149	100.0							i I		
phenos through groundmass, 0.5-2mm, perv. patchy epdole w. minor local epdol. fract. fils, mod-strongly magnetic, minor angular magnetic tots, tr-0.9% diss py, sharp contacts @ 70 deg to c.axis BASALT (FLOW BRECCIA): 1 <td>0.00</td> <td>greenish gray, ~ 20% eunedral dk homblende</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>]</td> <td>}</td> <td></td>	0.00	greenish gray, ~ 20% eunedral dk homblende]	}	
mod-strongly magnetic, minor angular magnetite clots, tro-0.5% diss py, sharp contacts @ 70 deg to class 165141 15 49 BASALT (FLOW BRECCIA): ark, strongly magnetic, mod brkn @ ~ 124-131 ark		phenos through groundmass, 0.5-2mm, perv.								
1 D C axis BASALT (FLOW BRECCIA): 1 D dark, strongly magnetic, mod brkn @ ~ 124-131 m 15.0 165126 32 165127 68 165128 16 165128 16 165128 16 165128 16	1	mod-strongly magnetic, minor angular magnetite					165141	15		49
1 1 <td>C-0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	C-0									
15.0 20 20		BASALT (FLOW BRECCIA):						i i		
15.0 20 20								Í	1	
15.0 20 20										
20	1 1									
20	-									
2(
2(15.0						165126	32		234
26							165127	68		264
							165128	16		149
	20-									
165129 30 336										
							165129	30		336
	-		3892 I	[ļ					L

4		1		
42 J		165130	33	275
10.0				
50.0		8	1	
		1		
100				
5.0			1 1	
12.11.1			1 1	
(17 A.L.)		-	++-	-
	10-15% py m	165132	10	52
0.0	fracts @ 139.14-139.84	165131	38	82

Ē

[

[

•

Property:		Total depth:60.35 m		Ri	o Minei	als Li	mite	ed	
. ;ation: Drillhole #: Drilled by: Dred by:	Neill's Mining Ltd.	Dip Angle: -90 Azimuth: 0 Start date: 07/14/04 Completion date: 07/15	/04		910-475 Ho Vancouver, 1p/2		B3		
: <u>igcu bj</u>								Assa	rs
TIJOICEL	Descriptions	* Rucovery	Scribtions Min	Grafitation	escriptions	and No.	AL ppt		Сц ррпі
				-					
	OVERBURDEN BASALT: dark gray, 10-15% qtz/plag	/				165090	6		212
	amygdaloidal, wk-mod magnetic, 2-10 to crystalline (plag)./ocally 30% perv. 2-3% epidote +/- chlor clots/ fine	20080				165091	13	0.4	170
i.0	fuls w. minor assoc f.g. py., qtz phenos/amygdules locally chlor, replac 2.0 % f.g diss py,	893823				165092	116		312
	6.2-6.6 m increased pervasive epidote-diopside a patches and fracture fills, w. 10-15% m grained py+/- mag. fracture fills	alteration red.				165093 165094_	101 71	0.6	730
	LOST CORE: core lost through interse	ction with			8	165095	62		41
	MAGNETITE: mixed finely ground fine			-		165096	249		91
	mixed magnetite + pyrite, remnants of underground mining, lower 6 cms cont massive coarse pyrite and massive f.g	ains 🛛 🕅 🕄 👘				165097	25		150
22.2	BASALT: dark gray, quartz phyric base previous to sulphide layer), trc. to 0.5 %	lit (as 6 pyrite,				165098	13		122
:0.0						165099	37		344
VVVV	BASALT (FLOW BRECCIA): gradation	at from				165100	58	0.5	661
ϵ	above, distinct irreg to roundish to ang plag phyric magnetite segregation patc green groundmass (chlor-plag-diopside	ular f.g hes, pale			· · · · · · · · · · · · · · · · · · ·	165101	35		197
	brkn @ 23.9-24.5, 26.3-26.82, 29.9-32, trc diss. f.g pynte +/- cpy					165102	87		315
Ţ.	25.2-25.43 semi-msv. coarse py in open cavities w	. very f.g							
20 20	gray zeeolite crystal needle linings								
					·- · ·	165103	9		165
5.0								[
f l									
<u> </u>									
5									
s									
).0									
						165104	39		268
						165105	40	0.3	286

15.		165106	40	0.3	280
		165107	40		252
.0	L		1	_	1

Γ

Γ

ľ

[

[

Property: Yew . cation: Texad Chillhole #: Y04-0 Drilled by: Neill's I gged by: G. Th)8 s MiningLtd.	Total depth Dip Angle: Azimuth: (Start date: Completion	-90 D	/04			910 -4 75 Ho	rals Li we Street BC, V6C 2		d	
				<u> </u>	1.					Assay	5
-ihology	Description	s [%] 1	Seconery.	Description	Mineraliz Ps	ation Se	Criptions .	Sample No.	Au ppb	Ag ppm	Cu ppm
amyg fills/ci 1-2%	ALT: fine grained, dark gray, 1's, 2-4 mm, 1-2% perv. epid fots w. 1-2 % diss py, diss/fract. fill pyrite overall, limonite fract. coatings to ~	+/- chior fract. mod. brkn w.									
mod.	STONE: pale yellowish gray epid alt'n @ 6,53-6.63, lowe to core axis							165133	49		286 28 775
	RN: uintermixed patchy semi etite-pynte, ~ 20% intermixe							165136= 165137	314 2304= 4823	1.0 0.6	2496 758
1) diopsi grain 7.4m,	ide, whit replacement qtz, sp pale brown garnet, garnet n , frc. cpy, several specs a gold	oradic coarse						165148	20		99
SKAR	RN: massive fine grained ma gamet +/- diops, patches	ignetite w. ~						165149	15		80
1.) BASA	ALT: fine grained, dark gray, magnetic, ~ 1-2% epid. frac ract. fill py, 10-15% zeol. am	t. fills, 0.5-1%						165143	38		229
w. par	rtial chiorte replacements, lo eldspar porphyry @ 45 deg.	ower contact						165144	35	0.4	240
20.0								165145	67	0.3	190
siliceo chlor d	SPAR PORPHYRY: light gra bus, 2-5% epid, fract, fills (h cores, +/- py , fract's have vi	airline-5mm)w. ariable width						165146	23		21
w. dk (tray alteration halos, indistin greenish gray (qtz-chlor) gro trc-1% diss. pyrite, locally to etic	oundmass,						165138	43		31
	ily brkn, wht bleached w. pe ract fills and chior-epid ait'd (165139	101		10

Property: Location:		p angle: -90		ţ.	Rio Mi	nerals Li	mite	be		
Drillhole #:	Y04-09 Az	zimuth: 0 art date: 07/16/04				75 Howe Street uver, BC, V6C 2	B3			
	0	ompletion date: 07/1	9/04		1	lp/3				
			~	4	^			Assay	3	
	Descriptions	% Recovery	Description	Mineralitat	^{Clescribion}	Sanok No.	Au ppt	•	Cu ppm	ALL ALL
).0		1000000	7							-
	BASALT: med-dk gray, fine grained, n magnetic, perv. 1-3% as fracture fills/v 2-3% zeoł. amygdules 2-4 mm w. part replacements, mod brkn, perv. ciots/p.	wk patches, jat epid. atches fine				165151	31 29	0.4	115	
5.0	grained pyrite, broken contact w. under marble, increased epidote alt'n @ 6.17							0.4		+
	LIMESTONE: pale gray, fine grained, interbedded msv mixed pyrite-magnet	contains ite @ 6.6-				165153	35 257	0.5	233	
	6.8 SKARN: replacement skam- primanly					165155	512	0.3	1433	Ŧ
10.0	fine grained magnetite w. ~ 20% patch brown msv garnet +pale green diopsid	nypale //				165156	279	0.9	1243	1
	BASALT: med. greenish gray, fine gra perv. hairline epidote+/- chior fract. fills magnetic, wk-mod. brkn, 2-3% f.g pyri	s, mod.				165157	15		32	
15.0	13.5-16.25 10-20% roundish plag/zeol. amygdule: w. localized py/epid replacements	s, 2-10 mm								
0.0										
				-		165158	26	0.4	58	+-
25.0						165159	24		18	t
	FELDSPAR PORPHYRY: mottled, me	d-dk gray								+
30.0	siliceous-chior f.g groundmass, crowde grained equigranular plag, phenos, pervasive epidote +/- chior +/- py fract hairline -3mm w.pale gray (qtz) to pale spar) alteration halos, trc. diss f.gr-me locally as fract fills, weakly magnetic @ 49.9	. fills, epink (K- ed gr py,				165160	111		67	
35.0	27.0-29.26 strongly brkn, w. bleached pale gray-w f.g.chlor. alt'd f.g (1-3 mm) alt'd mafic ; 2% epid replaced plag phenos/fracture 3% diss/fract fill py.	ohenos, 1-								
0.0						165161	26		24	
				-		103101	20		24	
5.0				a de la companya de la						
100				-		165162	8		48	-
50.0	BASALT (FLOW BRECCIA): ~ equally irreg f.g. dark plag phync magnetite sa pathes, 2-5 cm w. pale green f.g. diops plag groundmass, wk- locally brku/frac	gregation				103102			-70	

F		1000000								1
TT III							1	ı î		
1										
L -60.0	4					1				
	4			} 1	}	{	}			
	1									
-65.0						165163	20		316	
-										C States
-	4				Ì	ł				
T.	4						ĺ			
-70.0	4									-
-										
Г	FELDSPAR PORPHYRY: med green					ł			Ì	100
L	intermediate plag porphyry, fine gr. crowded plag phenos 1-2 mm, mod. magnetic, dissem. f.g-m.g									
L -75.0	pyrite, 1-3 mm blebs (10%) @ 75.25-75.5, sharp contacts (u.cont @ 60 deg, I. cont @ 40 deg.)			ļ		165164	36	0.3	286	+
L 1000		-				105104	30	0.5	200	+
	BASALT (FLOW BRECCIA): basalt flow breccia, as above, minor sporadic zeolite vnits to 0.5 cm				7					· -
F D	103.62-104.94						ł			
-80.0	patchy irreg atteration w. partial horblende porphyry inclusions									
P. 199						[
F	~ 91.0-93.35 mod-strongly brkn									
T	4			1						
- 85.0	4									
+	4						[
	4			}				1		
F.	4									
	4									
	4						<u> </u>	<u> </u>	+-	4-
	4					165165	17	0.5	202	
									<u> </u>	
95.0						165166	6		16	
EL 18 BO	4			<u> </u>			-		+	+
1000	4									
	4						ł			
- 100.0										
	4					ł				
1	HORNBLENDE PORPHYRY: medium grained,								1	\downarrow
f 105.0	gray green, perv. wk-mod epidote, ~15% anhedrat hornblede phenos, 2-4 mm, chlotized w.					165176	28		324	1
105.0	py replacements, 5-8% diss pyrite, non magnetic, sharp irreg. contacts					165183	20	0.3	214	
Designable						 	+	+	+	+
F .	BASALT (FLOW BRECCIA): basalt flow breccia, as above				ļ		ļ			
- 110.D	~ 114.0-187.17				1	}				
+	marked increase in wht qtz phyric/amygdule texture, qtz occurs as interstitial irregular					ĺ		1	{	
F	roundish clots/small patches/ isolated bodies, 1-2								ĺ	
18 J. L.	cm, often w. assoc. f.g. py. clots +/- epid +/- f.g. trc. py + minor trc. cpy, qtz comprises ~ 10-20%									
H 115.0	of rock volume							1		
-	117.4-117.7 ~ 20% pyrite bands, subparallel to c. axis					ļ				
1	149.88-150.07						+			_
L	vuggy zeolite veining w. fine zeol. vug linings w.		[}	165167	91		327	
-120.0	f.g-m.g, 20-30% assoc. py									
										\square
r i i i				L		ļ		<u> </u>	∔	<u> </u>
}	4					165168	98		328	

			1		1		
TT Brokke	8000			125400			
			+	165169	31	0.3	291
Hard Street Stre					1	ļ	
+		<u> </u>		<u> </u>	<u> </u>	<u> </u>	+
-130.0				165170	53		250
The second second			+	+	+		-+
- Read and a second sec			+		1	+	1751
				165171	31		210
		├──	+		+	+	+
-135.0			<u> </u>				
				165172	52		263
The second se			1		1		
			Approved and				
140.0	88883	ļ			1		
pre-				+	+	+	+ +
	88883			165173	31		189
- k				<u> </u>	<u> </u>	<u> </u>	
-145.0							
and the second sec	10000					1	
			· · · · · ·			ł	
ti i i i i i i i i i i i i i i i i i i						[
FT-1							
1 150.0				165174	54	0.4	280
- ⁴				165175	27		162
				1031/5	21		102
					1	+	
F				165177	102	0.7	500
155.0							
		···	+	+	+	+	+ +
						[
4					ĺ		
- Contraction of the local diversity of the l			+	165178	33	+	221
-160.0			+			+	
				165179	20		167
			+		+	+	+++
			1	165180	45		232
	18883			100100	45		232
165.0							++-
105.0	683333			165181	37		286
				100101	90		200
					1	+	
	23222	1		165182	71		249

-

÷

roper		Total depth: 54.86	m	17	Rio Mir	nerals Lir	nite	d	
	on: Texada Island, BC	Dip Angle: -45			910.47	5 Howe Street			
Care of the Care o	e #: Y04-10	Azimuth: 210	.			iver, BC, V6C 2E	33		
	by: Neill's Mining Ltd. t by: G. Thomson	Start date: 07/19/04 Completion date: 0	I		11	p/1			
Logged	by. G. Thomson	Completion date. V	1120104			· · · · · · · · · · · · · · · · · · ·	1		
			•		^			Assays	3
(m) Indan (m)		% Recovery Alteration	Descriptions	Asineralizations	Descriptions	Sannola No.	Au	Ag	Cu
I Thop	Descriptions	[%] R _{ecovery} ¹ Iteration	Chiptic	-alle	, Tippin	no _{lo}	ppb	ppm	ppm
Littologi (m	2	Let O	ે ેંગુ	, ^v	ôn ^v i	No			
							1		
0.0			7	Г			r	<u> </u>	· · · · ·
Sec.	BASALT: fine gr, med-dk greenish fract'd, 5-10% wht zeol./plag amyg	dules, round-							
1	subangular/jagged, 2-4 mm, weaki perv. 3-8% pynte as 1-2 cm patche			ľ					
11	minor sporadic epidote patches, of py patches					165184	36	0.3	123
						165185	54	0.3	251
1	~6.71-8.0 strongly brkn, w. increased epid. a	lt'n w. 5-10%				105105	54		
	ру			ŀ		165186	68	0.4	259
1	SKARN: strongly brkn, mainly equa patchy coarse gr. pale brown garn					165187	785		1377
10.0	magnetite, ~10% pyrite patches/ck	ots within	}	Ę		165188_	4679_	5.0	7366
	gamet, 5-10% fine pale patchy pak diopside	e green				405400	646		2075
-	9.75-10.55					165189	616	1.4	2075
-	mod. brkn, mainly massive med-co w. 10-20% mixed gray qtz? and ma			ŀ					+ +
-15.0	through groundmass					165190	83		375
	lower contact @ 70 deg. to c. axis	/		F				· ·	++
-	BASALT: basalt, as above								
	strongly brkn @ 10.55-11.28								1
-20.0	@13.7 m			[
-	strong vuggy epidote (5 cm)							1	
E E	14,3-18,0								1 1
-	10-20% perv. wht zeoi, amygdules roundish, 0.5-2.0 cm	, ineg							
25.0	FELDSPAR PORPHYRY: dark gra	w moltled				1			
H K	groundmass, crowded plag. pheno partial-complete epid. replacement	s, 2-3 mm w. 🛛 🔅 🔅							
-	phenos., pervasive sporadic epidol	te +/- chlor.		ŀ		165191	169	0.4	345
30.0	fract. fills, 1-3 mm, weakly magneti trc. diss py	c, mod. brkh,		ļ. ļ.		100101		0.4	
+	BASALT: dark greenish gray, f. g.,	weakly							
-	magnetic, irreg. patchy zeolite amy complete epid/chrlor/py replaceme						L	ļ	ļ
100	py, sharp I. cont @ 60 deg.					165195	80		258
-35.0	FELDSPAR PORPHYRY: dk-med			F		165192	5		33
4	mottled w. vague foliated texture 4 vague indistinct, elongate plag phe	nos, 2-4 mm, 🛛 🗱					-		↓ _ -
	locally epid +/- chlor. replaced, stro epidote+chlor core fract fills, fractu	re areas have		ŀ		165193	30		118
	irreg wht -pale pink (qtz, K-spar) at 10-20% epid+chlor, sporadic wht q						1		
40.0	10%) w.assoc. clots/fract. fills med- pyrite-generally associated w. epid	-coarse gr.							
	alteration, trc-0.5 %								
	pyrite overall, minor local py. fract.								
·	@ ~ 35.2 m: 2-3 cm band of pale b w. ~30 % wht qtz selvages, minor a								
45.0	BASALT: dark gray, fine grained, n	nod. magnetic,							
-1	1-2 % weak scattered zeol, amygd trc chlor-epid +/- zeol, fine fract, fills	ules, 1-4 mm,							
-	basalt flow breecia texturte @ 46.4								
1.	110								
	and a second							{	
-	1.14							[
F									
-				F		165194	15	1	439
							· · · · · · · · · · · · · · · · · · ·		

Property:	Yew	Total depth: 67.05	m	B	tio Miner	als L	imite	bs	
	Texada Island, BC	Dip Angle: -90			_				
Drillhole #:		Azimuth: 0			910-475 Ho				
Contract of the second s	Neill's Mining Ltd.	Start date: 07/20/ Completion date:			Vancouver,	8C. VOC	283		
l gged by:	G. Thomson		07721704		lp/2				
Acres (11 A.							Assa	ys
E.	•	%	Cescribions	Mineralitation	Descriptions	5			
in	Descriptions	% Recover	S. Chick	Of all	Cripe.	anoie No.	AL	9	Storika - La
081	Descriptions	OVer.	tion tions	Tation	"One	° V	ppt	ppm	ppm
			0.	/	v	<u> </u>			
)			—	_				- r	
	OVERBURDEN								
就是	BASALT: f.g. med-dk greenish gray	amydaloida							
1. 1.	basalt, pervasive (10-20%) irreg, with amydules, 1-7 mm, mod, magnetic,			ĺ					
5.0	sporadic zeol. +/- epid. bands/patch clots, trc. epid/zeol hairline fract. fills	es +/- py							
	py., 20-30% dk plag phyric magnetil							1	
140. 1	bands/patches								
	FAULT: 15.09-15.55: v. brkn basalt							1	
- 0	complete epid. arryg. replacements magnetic, local clots 1-3 cm f.g py, i	nod fract. fill							
11-1	epid/chlor 15.55-16.6: very brkn basalt w. loca								
- 400	mod-strong perv. +/- fract. fill epid., i broken/gouge @ ~ 18.2-16.36 w. 2-	1% f.g py, –							
	10 cm f.g. brkn, alt'd plag, porph @ - 16.46m	~ 16.26-							
1_0	16.6-16.78: 10-15 cms, msv. f.g.,py interbands of 10-15% f.g magnetite	w. fine				165201	140	0.3	304
- Augumenty	BASALT: fine grained, amygdaloidal	mod dly				165203		1.3	391 3211
No. of March 199	greenish gray, fine plag phyric textur	e, wk-mod		ļ		165204	162	0.5	557
20.0	magnetic, 1-2% sporadic 1-2 mm py fract fills, locally as irreg, patches, no					165205	9405	0.5	242
T V V	amydaloidal after 19.8 m, mod. brkn					165206	450	0.4	285
XXX	~10 cm semimassive py @ ~ 19.8 m		Î				•	0.4	
						165207	106	 	145
2: 1	SKARN: massive coarse gr. pynte (n	o magnetite)				165208	83	0.4	294
4262202	, minor strongly epid altered basalt in strong-intensely brkn chlor-epid, alt'd					165209	43	ļ	116
- teres	(fault) @ 26.67-26.85m					165210	338		199
	BASALT: basait, fine grained, med-d gray, wk-mod brkn, mod, magnetic, t					165211	136		96
3(mm zeol fract fills, perv. f.g pyrite as mm blebs (diopside associated)/local					405940			
	patches/fract. fills, 3-7% py., pyrite pe from 28.17-~ 41.0 m, sporadic zeol +	rvasive KSKKS		<u> </u>		165212	439	0.6	1092
4150	qtz patches @ 38.1-38.35, minor spo phync magnetite segregation patches	radic plag				165213	104		307
35,0						IUGETO			507
13.0	@ ~ 42.67-42.8 broken strong veined zeolite band					165214	91		232
	strong zeol. amygdaloidal texture @					165215	805		464
	45.72. marks gradet, transition from basalt flowbreccia, trc 0.5 % diss/fra	basait to act. fill py.			+				
.c						165216	75		319
10.50									
1									
5									
	BASALT (FLOW BRECCIA): mixed pa	atchy dk				165217	28		160
	plag phync magnetite segregation pat grained pale green diops-chlor-plag,	0000021			+	165234	64		
	groundmass, mod-strongly magnetic, zeol. amygdule texture @ 51.82-53.4	trc fine 122351				100204			266
0.0	zeol. fract fills, trc-0.5% diss/fract fill p								
		133663							

		165218 13 214

Property:	1 C W	Total depth: 80.62 m Dip angle: -47	F	Rio Mine	erals Lin	nite	d	
Drillhole #:	Y04-12	Azimuth: 210 Start date: 07/21/04		910-475 ⊦ Vancouve	lowe Street r, BC, V6C 28	33		Ī
		Completion date:07/22/04		1p/2				
	_						Assays	
E.		[%] Recovery	Mine alisto,	Descriptions	Sample No.	Au	Ag_	Cu
"illology	Descriptions	% Recovery	iotion alicatio	intions.	DIO NO	рро	- bbu	ppm
57.		<i>y</i>				1	Mar	
-	OVERBURDEN: broken amydałoidal rubbie to ~ 3.5 m	basalt				-	-	1
Γ	BASALT strongly altered basalt mo	ittled w.				ļ		
5.0	perv. qtz-chlor-epid alt, n med-yellowi vague med. gr. plag. porph texture 10% perv. diss/clots f.g. py, trc cpy. often have fine magnetite nms/inclus	3-6%, locally ov blebs			165219	562	1.1	1852
	sporadic pitted texture w. qtz/zeol, fil generally wk-non-magnetic, but local darker gray areas w. increased py	ings, rock is			165220	410	0.8	1315
100	BASALT:				165221	1367	0.6	837
1)	8.63-12.5 dk gray f.g. mod. magnetic, 30-40% (diopside alt'd plag phyric) magnetite	dark	_		165222	79	2	282
	ato patches, wk-mod aft a mygdules, @ mod-strongly brkn w. chloritic sheare 1-2% scattered py. blebs, 1-3 mm	b9.85-10.95:			165223	84		218
1_3 9/4/	12.5-14.0: attered basalt w. strong pa epidote all'n w. 6-15% assoc. diss/ci cpy				165224	168	0.4	610
NAV.	14.0-20.5: med-dk greenish gray f.g. 20-30% dk magnetite segregation pa (diopside all'd-plag phyric), 2-5 % ep	itches			165225	248	0.8	1260
20.0	patches/ait'd anyg's, 0.5-1.0 cm, as: / locally 5-10%	soc py, 2-3%,		1	165226	376	1.3	1889
Vent	20.5-21.96 strongly brkn w.perv mod-strong pale	chv/oitted			165227	18563	2.6	2490
50.00	epid +/- zeol zones, 2-5% alt'n assoc	1.g py			165228	200	0.3	430
H	SKARN: brkn, massive med grained 20-30% intermixed msv. f.g magneti	e + qtz			165229	141	0,4	504
2.0	BASALT: brkn, f.g dk gray basatt							
iC _	HORNBLENDE PORPHYRY: pale-n green, mod-strongly brkn, 15-25% er homblende laths, 2 mm-1.0 cm	ned grayish uhedral						
	BASALT: mod. brkn, dark gray, f.g., taxture, 2-3% fine epid+/- chlor fract. lower cont @60 deg. to c.axis	wk arnyg. fills, sharp	-		165230	141		63
5.0	HORNBLENDE PORPHYRY: med g -20% f.g (1mm) to 1.0 cm euhedral phenos/laths, sporadic patchy epid + sharp lower contact @60 deg. to c. a	homblende /- chlor.,						
C	BASALT: f.g, med gray, wk-mod. ma 2%, 1-2 mm epid fract fills, local epic patches w. increased py, generally to throughout, locally 0.5-1%	+/- zeol. alt'n			165231	1237	0.9	1069
	32.6m: 15 cms semmsv banded gr. py	fine-coarse						
5.0	39.2-39.4: 2 cm fract fills of mixed vu w. f.g py, locally strong intermixed/se							
	BASALT (FLOW BRECCIA): trc. spo fills	rad, py fract.						
).0	HORNBLENDE PORPHYRY: med g wague indistinct contacts, 1-2% f.g.p. 1-2 mm, 10-20% euhedral hb laths, 2 % perv py clots, trc diss cpy (epid. perv. patchy/fract. fill epidote, vague porphyntic texture (chill margin) @ c 49.76-50.1, 51.25-51.57 w. 10% diss py	lag phenos, 2-10 mm, 1- assoc'd), -non ontacts @			165147	15		66
			1	I	1	1	1	i 1

5.U	strongly magne magnetite segre	W BRECCIA): wea etic, ~40% dk plag. regation patches/ar adic pyrite dissemir	phyric Joular mag.												
	1-2% py fract.	fills @ 62.48-65.15													
.0															
											165232	62		210	
0		,							-						
	1 					-									
					•							ан ал			
).0										1 . 			All and a second		
						5					· • 1				
0		n ann a'							27 L - -				<u>.</u>	10000000000000000000000000000000000000	
				** . * **										· · · · · · · · · · · · · · · · · · ·	روب میں میں ا مربعہ میں ا
78"					-	J						-	<u>9</u>		
C		,	·					l	• • •		165233	33	0.3	332	•
anar.										-			an Singer and Singer and Singer Singe		
									*			1		an a	
177.cz												- 777 - 777 - 777			
											r 	- 67		4 	
14(3).5											[
			анана. Аланананан				1 a 12		t t		•				
49,49.4							-								
					n						•				
- (41) -				- 								 	and an		
				• •						-					
										***		11			
				· 								6a +660	1954 (. 29		
										1.1					
													34		
			т.		÷							- 186	11 - Antonio de la composición		
														Atomici	an a
•••		4 													the state of the state
														atattapi (23) an an a an an an	
														no destadado Trica destadado	an 2010 an 1 an 2011 an 1 mailtean 1
													8*5 88		
													1 - May 200	g na thia	9-7 1 -

ation: Drillhole #: Drilled by:	Texada Island, BCDY04-13ANeill's Mining Ltd.S	otal depth: 76.2 m ip angle: -45 zimuth: 70 tart date: 07/22/04 ompletion date: 08/11/04	R	910-475 How Vancouver, E	ve Street		ed	
Hology	Descriptions	% Recovery	Aine alitation	Descriptions St	TIOIR NO.	Al	Assa J_Ag b ppm	Cu ppm
	OVERBURDEN				-	T	1	
	BASALT: fine grained, light - med gree wk-mod wht amygdules, 10-15%, 2-4 n perv. epidote patches, 1-2 % isolated clots, dissem's, fract. fill	ım, wk			165235	64		274
.0	hairline-2 mm zeol. fract. fiils, mod. brk magnetic w. minor localized plag-phyn magnetite segregation patches	n, non-			165236	72	0.50	285
20-	SKARN: f.g, pale green, mottled limesti				165237	82	0.30	199
	wk epid. alt'n @ 8.27-8.9, 5-10% diss. 1 sporad, wht zeol. fract. fills, 3-5%	.g py.			165238	97	0.40	130
	BASALT: f.g. pale-med. greenish gray, magnetic, 15-20%, 1-2 mm wht zeol. ar		-	-	165239	98	0.40	177
	13.7-15.7 m, moderate - locally strongh sporadic 1-2 mm zeol /- epid. fract. fills, plag phyric magnetite segregation patc	brkn, - 10-15%	1		165240	44		313
5.v	trc., locally 1-2% pyrite as dissem/fract. minor carb/zeol +/- epid. +/- py patches	fills, a, pyrite			165241	24		223
. v . v	and epidote generally trc after ~ 26.0 m		-		165242	65		258
1	18.43-18.55				165243	161	-	222
0.0	6-7 cm gray gtz band w. 10-20% diss f. followed by 6 cm msv. coarse grain pyn		_		165198=	77	1	480
V V V	and contact @40-60 deg to core axis				165244	32		334
	23.96-24.06 two 3 cm limestone bands @ 40 deg. to axis	core			165245	34		301
					165246	36		345
					165247	37		471
5.0								
					165248	42		271
	BASALT: continuation from above, w loc moderate increase in plag phyric magne	alized			165249	116		244
U	segregation patches, trc dissem py @45.32 2 cm open-space w. wht med-coarse zec				165250	44	0.30	276
1 242	strong pynte-magnetite selvages	////e,						
11.200.0000	lower contact @ 40 deg. to core axis							
.0	FELDSPAR PORPHYRY: med-dk gray groundmass, crowded equigranular, sub- euhedral plag phenos, wkly brkn, wk. per alt'n of plag phenos,	v. epid.						
in the second	dk, non-epid all'n, wkly magnetic @ 48.5 53.15-53.88	49.9,						

).U	snarp lower contact @ 40 degrees to core axis	XXXXX	1	1	1	1 1	1
	BASALT: similar to 43.3-48.5 m						
	mod. increase in plag. phyric magnetite						
ר - ר	segregation patches (10-20%), mod. magnetic, mod-strong localized wht zeol. amygdule texture, trc. diss py						
	@58.05 carb-epid-py patches across 4 cm		-				
)	n an				2 PART 12		
-					4		
.0	FELDSPAR PORPHYRY: mottled, med-dk gray groundmass, perv. sporadic epidote + chlorite bands/fracture fills, 1-3 mm, locally to 1 cm, wider chlor-epidoite bands have light gray alteration halos, plag phenos (~40%), 2-3 mm, anhedral- subhedral, trc to locally 0.5% diss f.g-m.g pyrite						
າ ເຊິ່ງ							
				er 19 19 St	1		n
							n – Alfrica Borna († 1848) 1
1					• • • •	in an angle in the second s	ni 1995 - Landard Mariana, ang Pangarang 1997 - Landard Pangarang, ang Pangarang 1997 - Landard Pangarang, ang Pangarang
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							ing ang ang ang ang ang ang ang ang ang a
				ana ang ang ang ang ang ang ang ang ang			an An ann an Christian An Christian
рарат — — — — — — — — — — — — — — — — — — —							p (astronomic a
a a a a a a a a a a a a a a a a a a a							
							e
					4 		and an
i inter							an a
•					- - - -		The management of a second second second
		•					
					-		
					- 1		
							•
· ·							
					:		
					-		
					:		

Property: Yew cation: Texada Islar Unillhole #: Y04-14 Drilled by: Neili's Mining Igged by: G. Thomson	al depth: 21.03 m 5 Angle: -52 muth: 40 ort date: 08/11/04 mpletion date: 08/11/	04	Rio Minerals Limited 910-475 Howe Street Vancouver, BC, V6C 2B3 1p/1						
L'illology	Descriptions	% Recovery	Scriptions	Mineralization	Descriptions	Serrole No.	Au ppb	Assays Ag ppm	Cu ppm
iccalized amygo @ 1.5-~ 10.36n wk-mod. magne	ed-dk greenish gray, mino dule patches, mod-strongly n. etc, trc-0.5% diss/fract, fill	y brkn pynte,							
SKARN: discon irreg. mixed pair (50%), epidote i minor asoc. py,	mag. clots	atches.				165251 165252 165253	38 71 55		233 154 196
10.8-12.0 wk. perv. epid a w. irreg. whit car py clots, increas clots	uation from above, It'n, skarn patch @ 10.75-1 bonate bands w. 5-10% lo red epidole, 5% isolated ga	calized				165254 16525 5 165256	939 60 49		169 235 267
HORNBLENDE 20-30% med-crs crystals, 1-3 mm	placements of amygdules PORPHYRY dark greenis grained euhedral homble h, locally to 3 cm, perv. wk adic epid. fract fills, trc zeo	ende epid.				165257 165258	61		50 222 600
sharp upper con	Alexandra a	s			<u></u>				500
20.58-20.87	t. fill py assoc. w. pale gra	y qtz?							

Property: Yew ication: Texada Island, BC Drillhole #: Y04-15 Drilled by: Neill's Mining Ltd. ogged by: G. Thomson	Total depth: 18.44 m Dip Angle: -45 Azimuth: 40 Start date: 08/12/04 Completion date: 08/12/04	Rio Minerals Limited 910-475 Howe Street Vancouver, BC, V6C 2B3 1p/1						
Descriptions	[%] R _{ecover}	Atinesalication Samon	A Pr Vo		Сц ррт			
OVERBURDEN BASALT: dk gray, fine-grained, wkly brkn, trc-0.5% diss/fract fill py., wk a @ ~ 6.1-7.3 m trc zeoVepid fract fills 5.0								
SKARN: 30% motiled limestone patr wit chlor-epid, 5% garnet clots, 0.5-1 trc fine mgt blebs/clots		11	65261 22 65262 44		183 255			
BASALT: as above, strongly brkn 8, mod sporadic epid, alt'n of amydules 15.7 m		11	65263 108 65264 55 65265 56		404 449 178			
@10.75 5 cm carbonale-epidote band			65060 70					
1 0 HORNBLENDE PORPHYRY: dark g 20-30% med-crs grained euhedral h crystals, 1-3 mm, localty to 3 cm, per alt'n, minor sporadic epid, fract fills, t fills	omblende v wk epid.		65266 72		198			
indistinct upper contact								

ſ

• -

Sniihole #: Driiled by:	Texada Island, BC	16 Azimuth: 0 s Mining Ltd. Start date: 08/19/04				Rio Minerals Limited 910-475 Howe Street Vancouver, BC, V6C 2B3 1p/2						
inology	Descriptions	% Recovery	Descriptions	Mine alication	Oescriptions Sa	TOIR NO	Au ppb	Assays Ag Cu ppm ppm				
	OVERBURDEN LIMESTONE: brkn, f.g. yellowish w. 0.5-1 % f.g. diss oxidized py pecs, in green malachile on fract's BASALT: zone of continuous med - basalt, local sporadic patches of pla magnetite, wi-mod brkn, wi localize epidote alteration from 5.57 – 16.8 zeol. amydule replacement by epido localized pyrthc bands/clots assoc. v zeol. vugs/fract. fills/amygdules, trc. fills to 3 mm. trc whit zeol. amugdules +/- trc. py. strong (10-20%) amygdule texture (m 7 cm semimsv vuggy py +zeol. (@ 4 55.75-57.91 sporadic 0.5-2 cm py fract. fills	wk limonite, hinor pake dk gray g. phyric d patchy m, also wk te, minor v sporadic zeol. fract. moderate- 2 ~ 10.8-14.7				165267	14	222				

-00.0	6-01	10000		-	[-			 1
T	20.2					165269	57	0.3	270	
12		Percent.	1							
Γ										
										ļ
E										ļ
1										ļ
-										ļ
Γ										ļ
										ļ
Γ										ļ
										ļ
Γ										
h.,										ļ
Γ								81		ļ
1										ļ
Γ								-		ļ
4.1										
-										ļ
1										
-										
Γ										
1										ļ
2										ļ
										ļ
3										
1										
4										
-										ļ
l.										
T										
-										

Property: Yew ication: Texada Island, BC Urillhole #: Y04-17 Drilled by: Neill's Mining Ltd. igged by: G. Thomson	Total depth: 32.0 m Dip Angle: -48 Azimuth: 135 Start date: 08/19/04 Completion date:08/20/04	Rio Minerals Lir 910-475 Howe Street Vancouver, BC, V6C 2E 1p/1	
Descriptions	[%] Recovery	Mineralization Describitons Santole No.	Assays Au Ag Cu ppb ppm ppm
OVERBURDEN GRAVEL AND SAND: mixed cobble diorite/granodionie, basait, sand-clar basait frags HORNBLENDE PORPHYRY: brkn of grained, perv. wk epid BASALT: zone of continuous med gr basait, wk-mod brkn, trc-1% diss/fra 24.38-29.15 moderate-strong (10-20%) amygdule 8.8-14.75 m, wk-mod magnetic strongly broken, fractured @ 18.3-19 0.00	es of quartz ay comented coarse pray, f.g. act. fill py. @ le texture @ ~	165270 165271 165271 165272 165273	92

Property: Yew L cation: Texada Island, BC Drillhole #: Y04-18 Drilled by: Neill's Mining Ltd. L gged by: G. Thomson	Total depth: 15.24 m Dip angle: -90 Azimuth: 0 Start date: 08/20/04 Completion date:08/20/04	Rio Minerals L 910-475 Howe Stree Vancouver, BC, V6C 1p/1	t	
Description	ons ^{% Recovery Criticity}	Mineralication Samole No.	Assay Au Ag ppb ppm	s Cu ppm
OVERBURDEN BASALT: med-dk gray, f.g, no fract'd, mod. pervasive sporad +/- zeol., chlor, py corroded, limonitic @ 0.9- ~ 1, wk-mod armygdules, 1-2% zeo	ic patches of epid 3 m, trc-0.5% py,	16527		33 62
3 x 6 cm py-mag. clot @ 3.35 7.8-9.75 mod-strong vuggy ep-4-+/- zec		16527 16528 16528	42	59 64 103
1) 3% patchy/fracture fill py. 8,0-8,1 patchy pale brown garnet		165275		95
LIMESTONE: light gray, f.g. m wk py +/- chlor on fract's, 2.5 c f.g replacement py @ 9.6 m		165280	29	127
BASALT. dark gray, f.g., mod. v.f.g. diss py w. 1-2 mm py frac overail), mod. fract'd				

Property:Yew ication:Total depth: 54.56 mication:Texada Island, BCDip Angle: -90ilhole #:Y04-19Azimuth: 0Drilled by:Neill's Mining Ltd. igged by: G. ThomsonStart date: 08/20/04 Completion date: 08/21/04	Rio Minerals Limited 910-475 Howe Street Vancouver, BC, V6C 2B3 1p/1
Chillology Descriptions Recovery	Assays Alinoralitàlico trons litàlico trons No. Assays Au Ag Cu ppb ppm ppm
5.0 OVERBURDEN FELDSPAR PORPHYRY: mottled texture, light to dark gray, medium grained indistinct crowded plag. phenos, med to dark gray siliceous groundmass, pervasive abundant chlorite-epidote fracture fills (hairline to 4 mm), chlorite core w. epidote selvages, chlor-epid. fractures have vague light gray to locally pale pink (K-spar) alteration halos, pervasive partial replacement of plag. phenos. by epidote, pervasive 1-2 mm chlor att'd mafic	165282 13 10
 phenos (2-5%), 1-2% hailine to 2 mm zeolite fract. fills, trc dissem py, mnor local increased py, concentrations assoc. w. chlor-epid fract. fills 40.54-44.66 strongly broken 	165283 91 0.3 76
	165284 4 3
15.0 (5.v	165285 12 75 165286 211 0.5 201
0.0	165287 27 51

Drillhole #:Y04	kada Island, BC 4-20 ilf's Mining Ltd.	Total depth: 20.73 m Dip Angle: -90 Azimuth: 0 Start date: 08/21/04 Completion date: 08/21/04			Howe Street er, BC, V6C 2		d	
Littology.	Descriptions	% Recovery	Minerallie	Oescholions	Sannole No.	Au _{ppb}	Assay: Ag ppm	5 Cu ppm
0 F	DVERBURDEN ELDSPAR PORPHYRY: see belo 09.73 m ASALT: dark gray, amygdaloidal, 20 deg. to c. axis ELDSPAR PORPHYRY: mottled o dark gray, medium grained indis ag. phenos, med to dark gray sili roundmass, pervasive abundant of acture fills (hairline to 4 mm), chko pidote selvages, chlor-epid. fractu poradic vague pale pink (K-spar) alos, ervasive partial replacement of pl pidote, pervasive 1-2 mm chlor af henos (2-5%), -2% hailine to 2 mm zeolite fract. , minor local increased py. conce	sharp u. cont texture, light timet crowded ceous chiorite-epidote onte core w. ures have alteration ag. phenos. by t'd mafic fills, trc dissem			165288	19 5		53
The second se	ssoc. w. chlor-epid fract. fills				165290	11		14

Drillhole #: Drilled by:	Texada Island, BC	Dip Angl Azimuth Start dat		Ri	910-475 Ho Vancouver, 1p/1	we Street		ed	
-ithology	Descriptior	°∕ ∩s [%]	Seconery Oresting	Mineralitation	Descriptions	ATTOIR NO.	Au	9	s Cu pprn
-	OVERBURDEN BASALT: dark gray, fine grained magnetic, perv. wk-mod amygd.								
A.V	mm (locally glomeroporphyntic) replacements, 1-2 % epid +/- ch	w.partial epid.				165291	45	0.3	270
0	1% diss/fract fill f.g. pyrite,	ior iraci: inia, 0.0-				165292	39		275
						165293	15		211
0						165294	15	-	169
1 Taken	BASALT: very broken, perv. mod alt'n, perv. limon, coatings, trc di					165295	33		289
54Y 6	strongly amygdaloidal basait at					165296	30		348
.)	BASALT: strongly mottled w. per alt'n, mod-strongly brkn, 1-2 % d					165297	86		202
相推	SKARN: epidote-quartz garnet s brkn-crumbiy w.intense alteration					165298	325	0.8	2416
	carb all'n, strong pervasive epid dispersed white, frothy, vuggy, lo	lote w. equally				165299	97	0.4	330
0	quartz, 10-20% brownish garnet	paiches (~ 10-				1653 0 4	215	1	867
V.V	20%), trc fig. diss py.					165300	30	0.3	177
W VIN V	17.5-17.8 massive f.g. banded pyrite (80%) magnetite (20%), probable carbo replacement			ļ		165301	31		256
	SKARN: epidote (garnet) skarn (perv. mod-strong epid. atra, bm 19.3-19.45.					165302	79		279
	19.1-19.3 msv f.g banded pyrite (80%) w. ir magnetite (20%), strong carb.alf/ py @ 18.92-19.1, 19.3-19.45, 10 19.6-20.0m	n w. 5-10% f.g		[165303	25		102
	BASALT: dk gray, f.g., wk-mod. r	nagnetic, minor	1						

SASAL1. dk gray, r.g., wk-indu, magnetic, minor sporadic whit zeol.amygd's, 3-5% sporadic epid. fract. fills/patches, 1-2 5 v.f.g. diss py, minor local epid +/- py. fract. fills/clots, mod. brkn

Unlihole #: Drilled by:	Texada Island, BC	Total depth: 30.48 m Dip Angle: -90 Azimuth: 0 Start date: 08/22/04 Completion date: 08/22/04		910-475	erals Li Howe Street ver, BC, V6C 2		d	
· "Ihology	Descriptions	[%] Accovery	Nineral,	Descriptions	Serriole No.	Au ppb	Assays Ag ppm	Cu ppm
	BASALT: Amydaloidal basait, fine g gray, wk-mod magnetic 6.1-6.22 altered/skamed basait, with strong magnetite, pervasive 10-20% pynte fracture fills, massive across 1-2 cm LIMESTONE: massive fine grained limestone/marble, trc. v.f.g. py, wea 6.22-6.36 massive f.g. magnetite (carbonate in w. 3-5% interstitual gray carbonate, clots/bands, sharp lower contact wi limestone @ 80 deg, to core axis 2-3 cm f.g. honey brown gamet pate py @ 9.14 m sharp lower contact @ 70 deg, to c. BASALT: weakly amygdaloidal to 11 diss/fract fill py throughout 10.13-10.26 massive fine grained pynte (80%) + (20%) -carbonate band @ 80 deg, to is strong epidote selvages (1-3 cms) 16.7- ~ 19.5 moderate epidoto +/- zeolite fract fill to c. axis, 1-2 mm 20.65-21.1 wht carb/limestone band w. u. cont (c. axis, strongly broken, soft w. stron epidote-pynte at 20.85-21.1 (fault?)	chlor-epid- e clots and ms @ 6.22 m Hight gray akly brkn replacement) 10-15% pynte th pate gray ch w. strong .a 6.25 m, trc magnetite replacement) c. axis, mod- is @ 80 deg. @ 20 deg. to ng - carb-			165306 165306 165307 165309 165310		0.70	478 809 30 260 8315 1599
	1 cm carb, band @ 30 deg. at 28,53	m /						

29.18-29.28 carb. band @ 20 deg. to c. axis

roperty: Yew cation: Texada Island, BC rillhole #: Y04-23 rilled by: Neill's Mining Ltd. ngged by: G. Thomson	Total depth: 25.0 m Dip angle: -45 Azimuth: 360 Start date: 08/22/04 Completion date: 08/22/04	Rio Miner 910-475 Hor Vancouver, 1p/1	we Street		bd	
Description	[%] R _{ecovers} Description	Mineralization Cescriptions	Thole No.	Au _{ppb}	Assay Ag ppm	s Cu ppm
OVERBURDEN BASALT: dark gray, fine grained, amygdaloidal texture, perv. epid. amygdules, sporadic epid. fract. f py. disseminations/fracture fill/iso 7.0-9.0 strong amyg. texture, perv. wk-mu 1.0% py., wk-mod perv. epid. amy 10.75-11.45 zone of very brkn, strongly epid. a (epidote-silica-carb skam), trc. dis LIMESTONE: light gray, massive, micritic limestone /marble, trc. v.f. brkn 12.5-12.7 patchy/layered chlor-garnet streak diss py BASALT: as above, perv. wk-mod epidote patches/fract. fill amygdule patches, 2-4 mm. trc ha fills	epiacement of its +/- f.g. py, trc lated clots ad. epidote, 0,5- ig replacements it'd basait s f.g. py fine grain- g. py, mod. s w. 0.5-1% fig sporadic amygdule py, intermittent		165332 165312 165313 165314 165315 165316 165317 165318 165319	38 54 41 72 13 86 247 11 13	0.3	207 298 304_ 127 39_ 365 882 92_ 183

ſ

Property: Yew ication: Texada Island, BC prillhole #: Y04-24 Drilled by: Neill's Mining Ltd. gged by: G. Thomson	Total depth: 25.9 m Dip angle: -90 Azimuth: 0 Start date: 08/22/04 Completion date: 08/23/04	Rio Minerals Li 910-475 Howe Street Vancouver, BC, V6C 2 1p/1	
Cithology Descriptions	% Recovery October	Anineralization Descriptions Samole No.	Assays Au Ag Cu ppb ppm ppm
 i.0 i.0	ct. fills to ~ 14.0 b, w. epid e axis, strong	165320	36 566 70 103

Ī

Ţ

ſ

T

Drillhole #: Drilled by:	Texada Island, BC	Total depth: 30.48 m Dip Angle: -47 Azimuth: 255 Start date: 08/23/04 Completion date: 08/2	3/04	Ric	910-475 Ho Vancouver, 1p/1	we Street		ed	
- inclosed	Descriptions	% Recovery	Descriptions	Ince alization	Scriptions	Ganble No.	Au ppl		Cu
	OVERBURDEN							T	T
5.0	BASALT: dark gray, fine grained, co zeol. amygdules, ~20%, 3-10 mm a 2 % whi zeol. fract. fills, trc-1% diss 15.3-19.1 2-5% py as sporad. 3-5 mm fract. fil	t 7.0-8.8 m, 1- /fract. fill py				165322	119	0.3	524
	 1-2 cm carb. band at 17.85 m, 10-20 axis 19.1-24.86 wk-mod skarn alt'd basalt. rreg. mo sporadic epidote patches, local vag (garnet) patches, 2-3 % chalcedonk (local vein brecciation), mod perv. e throughout, trc-1% pynte w. locally b concentrations in areas of vein brec 	ttled texture gue brownish -chilor vnits pidote ligher				165323	550	1.6	1620
	carb. alt'n 3 x 4 cm pyrite ciol @ 20.05 m					165324	128	0.5	476
20.0	20.4-20.65 coarse crystalline calcite patches, 4 calcite band @ 22.65 m	cm coarse				165325	127	0.6	476
	SKARN: motified skam altered carbo to dk gray, mainly carbonate with pe	rvasive				165326	80		249
	chlonte, ~ 20% vague patchy brown patches, perv. sickensides on fract.					165327	119	0.7	528
	25.74-25.83 epid-carb-chlor patch, 2-5% diss f.g	ру 🦉				165328	85		64
Sec. 2	BASALT: dark, fine grained basalt (a					165329	105		334
3(L. w	zeol/epid fract fills, 1-2 % diss py fine often cubic, 1-3 mm, minor local epid patches/fract fills	a,gr -med gr.,				165330	97	0.4	556

ſ

APPENDIX III

ASSAY CERTIFICATES

•

ALLI. ц ц ATC 90C COTI

ICPIE

A A

i Lil ed

в.

TIN ST. ່າວບາ нg

GEOCHEMICAL ANALYSIS CERTIFICATE

TΚ

6

۳A

111

111

Clarence

SAMPLE#	Mo ppm	Cu ppm			-	Ni ppm				As ppm									Ca %		La ppm p		Mg %	8a ppm	ті % (B ppm	Al %	Na %	К %	W A ppm		TOTAL kg
61 65001 65002 65003 65004	<1 1 2 2	<1 189 280 115 64		53 40 52	.3 <.3 .5	111 111 87	38 83	456 383 465	.05 4.40 5.14 7.57 10.45	2 5 7	13 <8 <8 9 <8	<2 <2	<2 <2	51 37 18	<.5 <.5	3 <3 <3	<3 <3 <3 <3 <3	147 134	1.60 1.45 1.12	<.001 .076 .075 .087 .087	1 1 1 1 1 1	143 124 132	1.89 1.94	34 31 13	.29 .45 .35	4 <3 12	.01 2.78 2.26 1.80 1.88	.47 .30 .24 .09 .17	.01 .43 .57 .24 .35		116 142	3.67 3.71 1.90 3.10
65005 65006 65007 65008 65009	1 1 2 <1	184 277 251 310 309	<3 4 <3	40 37 51 43 78	.7 .4 .3	102 100 88	45 53 48	396 498 484	5.34 6.27 6.47 6.17 6.42	15 8	<8 <8	<2 <2 <2	<2 <2 <2	42 40 63 81 109	<.5 <.5 <.5	5 <3 3	<3 <3 <3 <3 <3 <3	121 145 160	1.36 1.48 1.44 1.93 4.38	.083 .078 .077 .076 .073	1 ⁻ 1 ⁻ 2 ⁻	104 117 124	1.90 1.89 2.43 1.61 3.27	40 23 13	.37 .45	17 <3 6	2.02 2.36 2.61 2.59 4.12	.21 .22 .22 .40 .13		<2 <2 <2 <2 <2 <2	71 38 21	3.9 .8 2.9 1.5 3.0
65010 65011 65012 65013 65014	1 1 <1 1 1	217 182 223 219 174	4 <3 <3	54 63	<.3 .3 .5	113 114 114 127 113	33 40 36	655 500 562	6.39 5.87 5.49 5.32 5.05	<2 6 7	<8 <8 <8 <8 <8	<2 <2 <2	<2 <2 <2	47		<3 <3 3	<3 <3 <3 <3 <3 <3	169 135 155	1.18 1.41 1.23 1.25 1.35	.071 .073 .083 .081 .081	1 1 1	141 143 176	2.78 2.36	59 33 30 31 21	.51 .49 .41 .40 .44	<3 <3 7	2.66 2.75 2.14 2.40 2.11	.12 .18 .14 .11 .13	- 31 - 25 - 46 - 49 - 41	<2 <2 <2 <2 <2 <2 <2	7 91 64	3.6 4.9
165015 RE 165015 RRE 165015 165016 165017	1 1 2 1	177 176 181 667 264	<3 5 6	35 35 37 60 50	.3 .5 .4 .6	80 77 104	33 32 45	352 346 517	4.70 4.77 4.62 4.94 5.69	8 9 6	<8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2	41	<.5 <.5	6 4	<3 <3 <3 <3 <3	134 130 141	1.55 1.56 1.55 1.62 1.61	.080 .081 .079 .083 .074	2 2 1	118 109 133	1.58 1.60 1.56 2.27 2.80	17 17 11		14 14 <3	1.57 1.59 1.57 2.20 2.71	.11 .11 .11 .15 .16	.27 .27 .26 .12 .19	<2 <2 <2 <2 <2 <2	64 45	5.1
165018 165019 165020 165021 165022	<1 1 1 2	384 275 198 18 17	<3 <3	43 47 39	.4 .5 <.3	116 105 5	53 34 6		5.59 6.62 5.39 2.01 1.97	4 6 2	<8 <8	<2 <2 <2 <2 <2 <2	<2 <2 5	65 76	<.5 <.5	4	<3 <3	163	1.56 1.54 2.07 1.54 1.23	.076 .070 .071 .069 .066	1	133 114	2.28 2.61 2.70 .74 .53		.37 .43 .37 .09 .09	4 6 6	2.69 2.98	.19 .19 .22 .35 .27	.08 .25 .23 .31 .13	<2 <2 <2 <2 <2 <2	48 46 2	5.1 2.4 5.0
165023 165024 165025 165026 165027	<1 1 <1 1 1	60 228 1415 416 891	<3 5 <3	46 57 59	.7 1.4 .8	47 111 112 113 113	40 35 · 43	483 453 499	5.74	7 13 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	175 91 45	<.5 <.5 <.5 <.5 <.5	6 10 5 4 5	<3 <3 <3	85 145 150 160 159	12.01 1.97 1.38 1.61 1.49	.078 .081	2 1 1	141 123 130	1.07 2.14 2.33 2.56 2.40	61 36 29	.20 .31 .37 .40 .38	10		.25 .26 .16 .15 .22	.27 .20 .12 .21 .27	<2 <2 2	702 95	2.1
165028 165029 165030 165031 165032	1 1 <1 2 1		<3 4 <3	57 56 54	.7 .3 .5	127 112 128 110 95	55 44 30	477 648	4.22 4.88	11 16 4	<8 <8 11	<2 <2 <2	<2 <2 <2	222 173 35	<.5 <.5 <.5 <.5	4 4 6 4	<3 <3 <3	140 121 151 162 164	5.33 3.51 2.49 1.23 1.70	.073 .071	<1 1 1	117 128 143	2.63	74 76 39	.36 .36 .35	<3 5 3	3.52 3.48 3.71 3.26 3.06	.30 .30 .15	.59 .70	<2 <2	104 138 94 19 17	6.0 4.9 1.8
STANDARD DS5#AUR	13	147	24	137	.3	26	12	750	3.03	18	<8	<2	2	46	5.6	4	3	60	.77	.094	11	188	.70	136	.10	16	2.05	.04	. 15	6	488	

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 19 2004 DATE REPORT MAILED: Data FA

R__ Min_als ___C. Junada FILL # A+U3643

Page 2

NALYTICAL																																ACHE ANALY	ITICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn								Sb			Ca	Р	La C	r	Mg	Ba	Ti	В	AL	Na	ĸ			TOTAL	
	ppm	ррп	ppm	ppm	ppn	ppm	ppm	1 ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm pp	m	% [ppm	% r	pm	%	%	%	ppm	ppb	kg	
165033	2	218	5	50	<.3	106	80	683	5.98	28	<8	<2	<2	102	<.5	<3	<3	139	3.57	.068	1 12	1	2.71	14	40	7	3.53	.21	.14	<2	69	.63	
165034		640							5.52	- 9	<8	<2							1.59				2.51		.40		2.54		.13	<2	34	.71	
65035	1 :	468							6.87			<2							2.32				2.78		.41		2.48	.14	.27	2	257	.59	
65036		248							6.42		11								1.04						.51		2.63	.08	.25	<2		2.86	
165037	1 ·	523							5.72						<.5					.076			2.94		.48			.11	.45	<2		3.10	
65038	1	348	11	77	~ 7	112	٨٥	821	5 /2	10	۶2	-2	.2	37	< 5	~7	~7	162	1.62	076	1 17	27	2 05	25	47	~7	2.50	12	.15	2	22	1.94	
65039		325							6.08										1.48	.078					.46		2.78	.17		<2		5.85	
65040	1	96							4.17											.140			1.45		.28			.13					
65041	I –	202	•						5.74										1.15				3.05					.15	.30	<2		5.67	
65042	· ·		-			• • • •																										4.12	
55042	1	64	5	29	<.3	9		3 204	2.06	<2	<0	<2	2	120	<.>	<3	<3	44	1.25	.075	7 1	15	.64	51	.12	د	1.77	.26	. 19	<2	14	2.98	
65043	3		-		<.3		-		2.04		<8								1.61	.069	-	9	.93	64	.09			.17	.25	<2		3.50	
65044	3		-		o <.3	_			2.00							<3			1.68	.070	8	3	.75		.08		1.59	.14	.20	4	9	5.09	
65045	3	36	5	43	<.3				2.20			<2			<.5		<3		1.61	.071	8	1	.80	45	.09	9	1.80	. 19	.25	<2	86	4.17	
65046	2	198	<3	- 41	<.3	53			2.50		<8	2	5	114	<.5	3	<3	26	2.37	.063	6	6	.76	60	.07	6	1.64	. 13	.30	<2	2264	3.02	
65047	4	7	′ <3	31	<.3	5 2	2 4	4 397	1.95	3	<8	<2	4	96	<.5	<3	<3	34	1.62	.067	9	7	.60	41	.09	6	1.77	.21	.19	<2	12	1.64	
65048	2	31	4	35	.>	5 2	. 6	5 372	1.79	2	<8	<2	4	43	<.5	<3	<3	31	1.87	.064	7	4	.65	29	.09	5	1.82	.10	.21	<2	22	2.00	
65049	1	379) <3	45	i <.3	5 121	- 38	8 454	5.51	12	<8	<2	<2	109	<.5	<3	<3	171	1.98	.073	2 1	29	3.25	63	.43	13	4.08	.30	.44	<2	28	2.16	
65050	2	136	57	60) <.3	8 81	155	5 674	5.91	57	<8	<2	<2	39	<.5	<3	<3	82	1.96	.046	1	78	2.30	8	.35	9	2.10	.11	.04	2	58	.61	
65051	1	194	4	53	\$ <.3	5 119	42	2 665	6.34	16	<8	<2	<2	99	<.5	<3	<3	184	1.52	.074	1 1	51	3.49	34	.43	10	3.50	.21	.14	<2	13	2.74	
E 165051	1	191							6.21										1.48	.073			3.42		.41		3.44	.20	. 14	2	14	-	
RE 165051	<1	187	< <3	54		119	2 47	3 670	6.34	16	<8	<2	2	97	<.5	3	<3	184	1.54	074	2 1	49	3.49	33	.42	13	3.57	.21	. 14	2	13	-	
65052	1	206	5 <3	49					3 7.32										1.69	.074			3.96	49	.45		4.19	.25	.34	<2		3.06	
65053	1								5.94										2.00				2.61		.49		3.22	.29		<2			
65054	1	71							5 3.61		10								2.02				1.09		.19		1.36	.11		<2		2.51	
65055	1 -	19							5.15		<8								1.45	.080			2.22		.56		1.95	.18	.07			4.28	
	'	17		, ,		5 74	4	1 3 30	, ,,,,	22	10	~2	12	74	`` .,	`	1	155	1.40	.000		22	2.22	20	. 50	5	1.95	.10	.09	×2	23	4.20	
65056	1	213	57	58	3 <.:	3 89	2 50	0 562	2 5.93	29	<8	<2	<2	100	<.5	<3	<3	163	1.76	.091	21	23	2.06	28	.46	11	2.29	.30	.13	<2	24	1.78	
65057		280							5.82						<.5				1.50				2.60				2.69	.32	.20	2		2.63	
65058	-	200							5.69		<8								1.69				2.23		.43		2.21	.20	.12			2.58	
65059	1 .	239							5.39										1.73				2.42		.50		2.47		.15	<2		2.61	
65060) <3						6.03							<3			2.05	.083			2.05		.49		2.40	.31	.05	<2		3.97	
02000	'							0 040		,	-0	12	12	.01		· J	4	114	2.05	.005			2.05		. 47	12	2.40		.05	12	10	3.71	
65061	1	69	1 <3	5 9	1.	5 139	6	4 720	5.60	19	<8	<2	<2	64	<.5	<3	<3	197	1.27	.091	<1 1	72	2.88	32	.41	<3	2.76	.17	.12	2	246	5.79	
65062	2	2 400	6 3	3	3.	7 6	7 2	5 494	\$ 5.35	13									3.22								2.44	.53	.07			1.09	
65063	1	36							5.21										1.87				2.23		.51		2.49		.04			1.88	
165064		32																	2.22				2.08		.43		2.17		.07			3.37	
STANDARD DS5#AUR									7 3.02												12 1						2.03		.14		493		
	1								3.32												12 1	/-					2.05				-7/3		

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

																														ACHE ANALTITO
SAMPLE#	Mo Cu ppm ppm			-					As		Au			b) mag	Sb ppm (Bi	V	Ca %		La Cr ppm ppm		Ba ppm	Ti %	B ppm	Al %	Na %	K %		Au** ppb	Sample kg
	1	11											-							FEW FEW		FF		<u> </u>				PP'''		~9
165065	1 388	5	44	.9	93	34	440	5.41	10	<8	<2	2	57	<.5	5	6	139	1.41	.085	2 123	1.75	10	.41	14	1.76	.20	.04	<2	66	3.57
165066	<1 238	6	43	.7	96	41	496	4.98	21	<8	<2	2	54	<.5	6	4	141	1.62	.082	1 127	1.81	10	.44	13	1.81	. 18	.03	<2	20	2.79
165067	<1 281	-	45	.3	101	38	460	4.47	28	<8	<2	<2	35	.5	4			1.45	.076	2 89	1.73	7	.35	4	1.96	.17	.02	<2	58	3.49
165068	1 530	8	48	1.1	66	37	559	4.46	28	9	<2	2	50	.6	5	<3	110	1.72	.069	3 66	1.72	9	.27	10	2.09	. 15	.02	<2	307	3.83
165069	4 16	<3	39	.3	15	6	429	2.51	6	<8	<2	4	159	<.5	3	5	56	1.71	.068	7 21	1.09	103	.12	5	1.91	.18	.30	<2		4.12
	1																												- I	
165070	3 130	5	63	-4	26	25	738	4.21	7	<8	<2	<2	51	<.5	4	<3	125	2.03	.071	5 27	2.11	14	.24	4	2.43	.13	.04	<2	6	2.17
165071	1 90	<3	59	<.3	15	18	682	3.69	2	<8	<2	<2	53	<.5	7	<3	105	1.53	.069	4 19	1.91	12	.22	7	2.24	. 10	.04	·<2	5	1.58
165072	1 168	3	68	.4	104	32	599	6.00	7	<8	<2	<2	74	<.5	6	4	179	1.28	.082	1 143	2.40	31	.42	8	2.15	.17	.13	3	18	2.49
165090	3 212	<3	29	< 3	83		305			<8				<.5	ŭ		154	1.60	.073	1 116			.26	<3	2.95	.26	.31	<2	6	5.56
165091	1 170		20				236							<.5	6	_		1.17	.109	2 112		18	.33	ş	1.55	.16			47	
163091	1 1/0	(20	.4	13	24	230	4.75	5	10	~2	~2	45	`. 」	0	5	134	1.17	. 109	2 112	1.21	10		У	1.55	. 10	.15	<2	13	2.60
165092	2 312	<3	34	<.3	88	39	337	4.60	16	10	<2	<2	77	<.5	6	<3	112	2.29	.077	2 81	1.27	15	.36	7	2.35	.30	.13	<2	116	4.05
165093	<1 730	<3	61	.6	118	113	589	9.90	69	8	<2	<2	43	<.5	<3	3	101	2.54	.074	2 83			.31	10	1.55	. 16	. 15	<2	101	1.38
RE 165093	<1 708	_			115		573			<8	_	-		<.5			99	2.47	.073	2 77			.30		1.47	.16	.14	_	111	1.50
RRE 165093	<1 679		61	•	111		551			-				<.5			96	2.35	.074	2 76		• •	.29	12	1.45	.15	.14			
		-																										_		
165094	1 433	5	41	. ა	96	30	416	4.97	' 12	<8	<2	<2	90	<.5	5	4	142	1.83	.084	2 118	1.59	27	.34	(2.16	.26	.27	<2	71	1.82
165095	1 41	3	38	<.3	84	11	423	5 15	3	<8	<2	<2	64	<.5	4	<3	142	1.73	.082	2 125	1.60	25	.31	<3	1.95	.22	.23	<2	62	5.23
STANDARD DS5/AU-R	12 140	_	130			•••	744		-			_		5.7	4		59	.75	.094	11 185		138			1.98	.04	.14	-		
OTABOARD DODTAO R	1 140																									.04				

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	LAL Accre					Lo		(era	GEO als	CHE In	EMI(CAI Ca	, A ina	NAI da	LYS F	IS 110	CE ∋ #	RTI	FICA 0378	A TE 32		age		(004	143	1 	1 0C	AA ()	DU4	1400	Å
SAMPLE#	Mo Cu ppm ppm			•			Mn ppm		As ppm									Ca %		La ppm p		Mg %	Ba ppm	Ti %	B ppm	Al %	Na %		w ø ppm	Au** s ppb	ample kg
S1 165073 165074 165075 165076	<1 1 2 857 <1 116 1 333 3 157	7 <3 <3	34 31 38	<.3 <.3	110 87	27 44 20	435 460 600	5.16 5.92 5.11	4 4 5	<8 <8 <8	<2 <2 <2	<2 <2 <2	69 58 29	<.5 <.5 <.5	<3 <3 4	<3 ' <3 ' <3 '	151 167 158	1.44 1.36	.076 .080	2 2 1	149 152 145	1.96	44 40 61	.44 .50 .41	6 <3 6	.02 2.44 2.40 2.26 2.50	.14	.57 .67	<2 <2 2	<2 188 19 28 27	4.82 5.66 3.58 4.12
165077 165078 165079 165080 165081	<1 199 1 303 1 257 <1 216 2 150	3 <3 3	43 48 36	<.3 <.3 <.3	87 103 94	35 47 44	647 675 506	5.43 6.48 4.74	14	<8 <8 <8	<2 <2 <2	<2 <2 <2	35 104 63	<.5 <.5 <.5	3 <3 3	<3 <3 <3	177 196 120	1.53 1.77 1.24 1.89 3.24	.076 .077 .063	1 2 1	140 150 111	3.86 2.86 3.06 2.72 1.87	11 30 10	.49 .48 .51 .46 .32	4 3 4	3.91 2.68 2.61 3.11 2.28	.22 .11 .14 .16 .09	.13 .19	<2 2	13 17 18 20 17	5.05 2.71 2.24 3.52 1.87
165082 165083 165084 165085 165086	2 87 1 106 2 332 1 247 20 707	<3 <3 4	57 57 58	<.3 .5 .4	18 105 81	18 36 33	823 559 639	4.65 4.95 5. 3 9	7 46 28	<8 <8 <8	<2 <2 <2	<2 <2 <2	61 71 111	<.5 .5 <.5	<3 3 5	<3 <3 <3	144 138 138	1.48 1.78	.067 .080 .117	6 2 2	31 127 97	2.03 2.18 2.55 2.62 1.32	48 71		<3 4 3	2.18 2.47 2.76 3.14 1.41	.15 .26	.06 .29 .36	<2 <2 2 2 2 <2		2.00 1.94 4.74 3.83 4.74
165087 165088 165089 RE 165089 RRE 165089	13 30 1 203 <1 113 2 116 1 92	<3 3 <3	48 15 3 154	<.3 <.3 <.3	123 151 152	50 35 36	681 1254 12 3 3	7.04 7.07 7.04	4 13 12	<8 <8 <8	<2 <2 <2	<2 <2 <2	65 26 26	<.5 <.5 <.5	<3 3 <3	<3 <3 <3	174 249 250	1.70 1.85 1.84	.076 .087 .085	2 1 1	157 226 222	2.33 3.32 5.08 5.08 5.17	59 83 83	.47 .51 .62 .62 .62	5 7 4	2.67 3.66 4.57 4.57 4.79	.24 .07 .07	.45 .71	<2 <2 3 <2 4	156 12 19 16 11	2.31 3.34 2.27
165096 165097 165098 165099 165100	2 91 <1 150 2 122 1 344 <1 661	<3 6 <3	42 35 31	<.3 <.3 <.3	95 81 128	20 24 65	486 408 404	5.42 5.25 6.10	6 5 8	<8 <8 <8	<2 <2	<2 <2 <2	46 55 66	<.5 <.5 <.5	4 <3 <3	<3 <3 <3	168 162 142	1.60	.076 .079 .081	2 2 2	126 109 106	2.23 2.20 1.99 2.25 2.20	15 22 24		4 3 5	1.88 2.57 2.41 2.14 1.86	.19 .30 .20		<2 <2 <2	249 25 13 37 58	2.45 3.56 2.27 5.91 5.83
165101 165102 165103 165104 165105	<1 197 <1 315 1 165 <1 268 1 286	3 <3 3	44 48 44	<.3 <.3 <.3	100 105 94	71 33 38	428 416 372	8.58 5.83 5.21	3 9 5 4 10	<8 <8 <8	<2 <2	<2 <2 <2	29 47 53	<.5 .5 <.5	<3 5 <3	<3 <3 <3	190 174 144	1.15 1.51 1.69	.064 .075 .078 .067 .070	1 2 2	140 141 132	2.82 3.46 2.10	36 24 9	.44 .42 .41	3 <3 <3	2.93 2.28 3.46 2.52 2.65	.12 .19		<2 2 <2	35 87 9 39 40	1.82 4.79 2.08 3.55 3.86
165106 165107 165108 165109 165110	1 126	 < 3 7 7 7 7 7 10 11 12 12 13 14 1	29 52 72	<.3 <.3 <.3	66 96 77	30 44 35	387 451	4.93 6.52 8.20	3 4 2 5 0 14	<8 <8 8	<2 <2 <2	<2 <2 <2	55 105 97	<.5 <.5 <.5	3 3 <3	<3 <3 <3	145 220 129	1.89 1.48 1.67	.047	2 1 2	125 172 125	3.16 2.26	10 99 43	.42 .39 .34	3 <3 4	2.78 2.28 3.51 2.41 1.53	.23	.33	2 <2	27	3.57 5.99 2.55 6.17 2.23
STANDARD DS5/AU-R	12 139	26	131	.3	25	12	746	2.90	5 17	<8	<2	3	46	5.5	4	6	60	.74	.091	12	190	.68	137	.11	15	1.97	.04	.13	6	478	-
GROUP 1D - 0.50 G (>) CONCENTRATION ASSAY RECOMMENDED - SAMPLE TYPE: COU Samples beginning Data & FA	EXCEEDS FOR ROO RE R150 (RE' BI	S UPP CK AN 60C re Re	ER L D CO	IMIT RES AU**	S. AMPL GRO	Some ES 11 UP 31 E' a	MINE FCU B-3 reRe	RALS PB ZI 0.00 ject	MAY NAS GMS	BE P > 1% AMPL ns.	ARTI , AG E AN	ALLY > 3 ALYS	ATT OPPI ISB	ACKEI M & J Y FA,	AU > /ICP	REFRA 1000	CTOR PPB	RY AND		ITIĆ						DLUBIL	TY OUH		5	B 7	CERTED AS
All results are co																		V	1		ost	of the	e ana	lysis	onl	у.		Cla	renc	x Leo	HE HE

٦

Page 2

																														ALM	E ANALYTICAL
SAMPLE#	1	Cu ppm			-			Mn							Cdi ppm p				Ca %		La Cr ppm ppm		Ba		В ppm	Al %	Na %				Sample
	ppii	ppiii	ppin	ppn	ppin	ppii	ppii	ppii	/6	ppii	phil	ppin	ppiii	ppiii	ppin 1	-pin	ppii	ppiii	/0	/6	phu phu	/0	ppin	6	ppiii	/0	/0	/•	ppm	aqq	kg
165111 165112 165113 165114	<1 3 5 1	6 43 250	<3 <3	21 30 36	<.3 <.3 <.3	93	4 19 26	227 329 289	1.68 1.23 2.77 4.68	3 2 5	<8 <8 <8	<2 <2 <2	3 3 <2	353 201 43	<.5 <.5 <.5 <.5	<3 <3 <3	<3 <3 <3	24 77 140	1.51 1.58 1.12		7 4 6 <1 5 55 2 151	.54 .97 2.22	35 66 13	.08 .23 .33	<3 <3 4	2.22	.25	.08 .24 .62 .11	<2	68 2 10 39	4.69 4.38 2.15 4.89
165115	<1	194	<3	40	<.3	103	33	322	5.47	2	<8	<2	<2	81	<.5	<3	<3	170	1.46	.072	2 159	2.46	54	.39	<3	2.68	.23	.25	<2	20	3.18
165116 165117 165118 165119 165120	<1 <1 <1	289 122	<3 3 <3	66 79 46	.4 <.3 <.3	124 100 95	44 34 34	625 843 434	5.31 5.87 9.93 5.50 5.18	30 269 13	<8 <8 <8	<2 <2 <2	<2 <2 <2	35 33 68	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	142 195 177	1.49 1.21 1.64 1.71 1.61	.072 .071 .072	2 156 1 171 1 184 2 170 2 161	3.18 3.83 2.35	8 76 58	.33 .35 .42	4 <3 <3	3.58 2.97	.22	.22 .04 .70 .52 .64	2 4 <2	10 52 102 28 36	2.80 1.54 1.27 5.32 2.48
165121 165122 165123 165124 165125	<1 <1 <1	306 231	<3 3 <3	37 51 63	<.3 .3 <.3	98 97 126	39 34 35	359 493 401	18.75 4.97 5.20 6.12 5.63	25 22 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	68 127 32	.5 <.5	<3 3 <3	<3 <3 <3	159 161 210	1.33 1.24	.077 .071	1 135 2 153 2 168 2 189 2 165	2.34 2.27 3.33	79 34 86	.35 .42 .44	<3 3 <3	2.75 2.03 2.88	.23 .16	.14 .60 .23 1.15 .66	<2 <2 <2		1.87 3.49 1.75 1.90 2.22
165126 165127 165128 165129 165129 165130	2	234 264 149 336 275	8 <3 <3	36 49 42	<.3 <.3 .3	98 114 117	44 36 44	296 364 333	5.56 5.34 5.92 5.04 4.83	7 <2 5	<8 <8 <8	<2 <2 <2	<2 <2 <2	61 51 21	<.5 <.5 <.5 <.5 <.5	<3 <3 <3	<3 <3 <3	164 199 166	1.60 1.54 1.32 .98 1.41	.073 .070 .073	2 155 1 136 2 173 2 152 2 133	2.28 3.24 2.55	39 76 67	.34 .37 .40	<3 <3 <3	3.42	.25 .21 .13	.56 .44 1.02 .58 .22	<2 <2 <2	32 68 16 30 33	3.47 2.75 3.01 4.87 2.18
RE 165130 RRE 165130 165131 165132 165133	<1 1 <1 <1 1	52	<3 3 3	39 47 55	<.3 <.3 <.3	96 119 120	41 37 42	284 492 610	4.92 4.98 7.06 5.99 4.32	3 30 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	57 48 67	<.5 <.5 <.5 <.5 <.5	<3 3 <3	<3 <3 <3	160 185 178	1.44 1.53 1.12 1.51 1.32	.072 .074 .074	2 139 2 182	2.08 3.14 3.23	27 83 125	.33 .46 .52	<3 <3 3	2.67 2.77 2.87 3.30 1.68	.26 .16 .21	1.04	2 <2 <2	28 31 38 10 49	3.35 2.94 2.62
165134 165135 165136 165137 165138	<1	775 2496 758	<3 <3 <3	43 131 55	<.3 1.0 .6	15 36 103	66 12 36	780 506	.68 26.33 31.92 7.45 2.82	172 103 9	<8 <8 <8	<2 <2 <2	<2 <2 <2	8 11 96	<.5	<3 <3 3	<3 3 <3	12 10 101	34.09 9.30 3.68 1.65 1.41	.020 .006 .066	2 4 2 8 3 112	.11 .08 1.97	3 4 43	.01 .02 .37	<3 3	.07	.01 .29	.01 .01 .36	<2 2 <2	2 314 2304 4823 43	.75 1.18 .55 2.79 6.63
165139 165140 165141 165142 STANDARD DS5/AU-R		36 49 520	<3 3 8	23 19 46	.3	5 11 3 9	14 17 24	265 225 435	2.26 4.15 4.18 6.09 3. 02	5 23 3 9 9 16	<8 <8	<2 <2 <2	<2 <2 <2	112 103 97	s <.5 7 <.5	3 <3 3	<3 <3 <3	102		.200 .153 .147	49 622	.70 .71 2.10	24 47 91	.15 .19 .29	<3 <3 <3	1.05 1.50 1.36 2.31 2.00	.33 .19 .19	.19	<2 <2 <2	8 15	1.78 2.87 2.73 2.56

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

,

ACHE ANALY

SAMPLE#	1					Co Mn opm ppm									Bi pm pp	-	Ca %		La Cr ppm ppm		Ba ppm	Ti %	B Bbu	Al %	Na %		A W maja		ample kg
165151 165152 165153 165154 165155	1 18	5 <3 5 <3 6 <3	3 36 3 37 3 17	.4 <.3 .5	75 86 15	38 292 32 405 28 350 32 793 22 683	5.49 4.71 10.54	12 16 76	<8 <8 <8	<2 <2 <2	<2 <2 <2	44 < 47 < 183	.5 .5 .6	<3 <3 <3	<3 16 4 13 <3 1	2 3 6	.88 1.12 1.47 19.74 2.47	.055 .052 .020	1 109 1 143 1 123 1 18 1 9	2.61	34 49 2	.31 .29 .37 .08 .01	7 7 11	1.86 2.79 2.65 .17 .07	.13 .18 .24 .01 .01	. 13 . 29 . 40 . 01 . 01	<2 <2 <2		3.22 4.67 3.71 1.70 2.08
165156 165157 165158 165159 165160	1 3 <1 5 4 1	2 < 8 < 8	3 35 3 41 3 29	5 <.3	100 106 6	59 414 34 390 28 364 12 293 17 225	4.50 4.74 2.33	11 14 6	<8 <8	<2	<2 <2 5	65 < 67 < 18 <	.5 .5	<3 <3 <3	<3 12	9 9 7	1.82 1.70 1.77 1.34 1.36	.068 .070 .082	2 106 1 131 1 131 8 12 7 6	1.77 1.53 .78	64 66	.33 .40 .11	4	1.84 2.67 2.13 .94 .71	.26 .31 .26 .08 .09	22 51 46 14	<2 <2 <2		4.27 3.89 4.19 2.75 2.56
165161 165162 165163 165164 165165	2 4 <1 31 1 28	8 < 6 < 6	3 33 3 56 3 29	5 <.3 7 .3	7 100 66	7 301 7 299 42 406 29 273 38 657	2.26 5.09 4.61	4 15 14	<8 <8	<2 <2 <2	4 <2 <2	107 < 39 < 55 <	.5	<3 <3 <3		7 59 22	1.08 1.14 1.18 1.60 1.42	.066 .063 .108	7 16 1 119 4 67	.66 2.94 .96	82 37 13	.12 .29 .37	<3 8 8	1.35 1.73 3.04 1.50 3.38		.32 .27 .05	2 <2 <2	26 8 20 36 17	2.42 2.83 2.06 1.86 3.75
165166 165167 165168 RE 165168 RRE 165168	1 32 1 32 <1 32	7 < 8 5 <	3 34 4 43 3 4	3 <.3 1 .4	105 117 121	14 239 53 355 39 436 40 437 39 422	5.40 5.99 6.03	26 51 53	<8 <8 <8	<2 <2 <2	<2 <2 <2	50 < 51 < 51 <	<.5 <.5	<3 3 3	<3 11 <3 13 <3 15 <3 15 <3 15	59 58 58	1.85 1.32 1.35 1.35 1.30	.074 .077	1 123 1 143 2 138	1.91 2.40 2.42	27 27	.38 .42	4 7 9	1.82 2.17 2.48 2.46 2.41	.20 .18 .18	.12 .24 .22 .23 .22	<2 <2 <2	6 91 98 85 94	4.08 6.76 2.17 -
165169 165170 165171 165172 165173	3 25	i0 < 10 < 53	3 4 3 5 5 5	7 <.3 8 <.3 2 <.3	117 118	40 430 46 412 37 505 45 419 39 447	5.69 4.90 5.62	9 18 16 13	<8 <8 <8	<2 <2 <2	<2 <2 <2	67 < 60 < 69 <	<.5 <.5	<3 <3 <3	<3 15 <3 15	52 58 44	1.30 1.53 1.80 1.43 1.56	.076	1 138 1 141 2 128	2.25 2.21 2.49	99 71 76	.42 .40 .42	10 6 8	2.26 2.62 2.32 2.54 2.25	.27	.50 .72 .50 .58 .73	<2 <2 <2	31 53 31 52 31	2.29 3.86 4.07 2.53 7.83
165174 165175 165176 165177 165178	<1 32	52 < 24 00 <	 	7 <.3 1 .7	85 100	60 381 22 424 35 401 74 372 56 338	4.18 5.34 4.95	5 10 9 5 18	<8 <8	<2 <2 <2	<2 <2	44 · 74 · 41 ·	<.5 <.5 <.5	<3 <3 <3	<3 12 <3 12 <3 14 3 12 4 12	35 46 30	2.23 1.69 1.35 1.49 1.66	.076 .074	1 119 1 122 2 113	1.69 1.90 1.59	54 32 61	.34 .43 .39	3 7 7	2.12 2.03 2.02 1.81 2.06	.23 .21	.21 .33 .17 .43 .46	<2 <2 <2	54 27 28 102 33	2.78 3.89 2.63 7.06 2.08
165179 165180 165181 165182 STANDARD DS5/AU-R	<1 2 <1 2 <1 2	32 • 36 • 49 •	<3 4 <3 4 <3 4	5 <.3 0 <.3 1 <.3	8 83 8 108 8 111	23 412 29 377 36 399 57 376 12 738	4.15	5 9 5 11 7 15	<8 <8 <8	<2 <2 <2	<2 <2 <2	57 56 63	<.5 <.5 <.5	<3 <3		29 29 44	1.78 1.61 1.58 1.56 .74	.076 .075 .076	2 111 2 121	1.50 1.90 1.96	63 75 54	.36 .38 .41	<3 6 6	2.46 1.98 2.21 2.10 2.01	.24 .25 .20		<2 <2 <2	20 45 37 71 490	4.75 6.53 5.31 4.48

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

,

Data + FA

OCITTCA NAI **TIF** TE

Rio Minerals Inc. Canada File # A404046 Page 1 910 - 475 Howe St., Vancouver BC V6C 2B3 Submitted by: Andrew Molnar

SAMPLE#		Cu ppm				_											Sb ppm			Ca %		La La				Ti %		Al %				**uA daa	Sample kg
SI	<1	<1	<3	3	3 <	.3	<1	<1	<2	.04	<2	<8	<2	<2	2	<.5	<3	<3	<1	.07	<.001	<1	<1	<.01	2.	<.01	<3	.01	. 33	5<.01	<2	<2	
165143	-	229								4.36																					s <2		6.71
165144	-	240								3.94										1.44		1	118	1.50	39	.24	<3	2.24	.23	.25	<2	35	6.48
165145	1	190 21	2	9 4 <u>1</u>	נ ייי	.3	97	49	200	4.20 2.73	14	<0 ~9	<2	~2	19	<.5	<5	< 3 ~7	113	1.50	.075	5 1	115	1.52	/8 25	.28	<5	2.21	.20	5.51	<2	67	6.13
165146	ļ '	21		יכ ו	4 <		60	30	200	2.75																							4.41
165147	1	66		3						3.45	8	<8	<2	<2	93	<.5	<3	<3	116	1.73	.152	2 3	24	1.20	33	.23	<3	1.53	.13	5.17	<2		4.94
165184 165185	2	123 251								4.41	7	~0	~2	~2	120		~7	<5 ~7	101	1.33	.000) <1	95	1.4/	41	.29	< S	2.13	.24	2.40	2	36	4.30
165186		259	, 7	נ נ 7 ק	0	.5	62	26	293	3.08	12	<0 <8	~2	<2	76	< 5	<3	~3	90	2 11	126	, 1 , 7	75	1 27	41	.32	<u>د</u>	2.45		2.2	2		3.29 2.22
165187			<	3 10	, 9 <	3	25	22	990	26.74	130	<8	<2	<2	9	1.0	<3	<3	16	8.03	.019	3	<1	.13	3			.17				785	4.01
165188	4	7366	5 < ⁷	3 6	55	. 0	52	830	221	29.23	246	<8	5	<2	7	< 5	5	10	13	1 70	004	5 2	2	10	2	03	~7	. 12	01	1 01		4679	2.18
165189		2075								4.22												2				.35	<3	2.19	37	3 .20	2	616	4.38
165190	1									5.62																						83	5.18
165191	1									7.00														1.09								169	2.55
165192	3	33	5 5	53	6 <	.3	7	7	315	2.11	3	<8	<2	4	167	<.5	<3	<3	39	1.43	.073	37	9	.78	69	.09	<3	2.22	.23	3.30	3	5	2.39
165193	4	118	3 (63	7 <	. 3	18	11	391	2.11				3	107	<.5	<3	<3	50	1.82	.073	5 5	28	.84	73	. 17	<3	1.58	3.18	B.39	9 <2	30	5.30
165194	2	439								5.05	3	<8	<2	<2	64	<.5	<3	<3	167	1.66	.087	71	91	1.20	11	.35	<3	2.10	.28	B.04	4 <2	15	. 1.79
165195	2		3 4	46	3 <	<.3	82	55	452	4.85	19	<8	<2	<2	96	<.5	3	<3	1 6 6	1.56	.091	1 1	118	1.83	79	.38	<3	2.08	3.19	9.49	92		3.52
RE 165195	1 -	251		45	9 <	<.3	78	52	439	4.70	15	<8	<2	<2	95	.5	<3	<3	161	1.52	.088	B 1	113	1.76	77	.38	<3	2.02	2.10	B.41	B 2		-
RRE 165195	2	255	5 !	5 6	1	.5	80	57	445	4.78	17	<8	<2	<2	87	.5	<5	<5	160	1.43	.090	J 1	115	1.82	79	.37	<3	2.00	0.10	6.49	92	92	-
165201										4.98										1.50				1.30								140	3.23
165202	· ·	391								3.72														1.12								133	2.08
165203		3211								16.42														.37				.47				1705	.93
165204 165205	1 -	557 242					70 84			6.40										1.74				1.38								162 9405	4.61 3.33
10200	1	240		5 4		.,	04	20	370	0.40	, 10		7	~2	22		·)	`	1.74	1.74	. 000	5 2		1.50		.54	1	1.70		2.10	5 2	9405	3.33
165206		285								4.34														1.48								450	3.42
165207		145								4.0														1.10				2.07				106	3.13
165208 165209	-	294 110								3.10														1.17				1.79					3.18
165210	-	199								25.4														.95								338	2.14 4.63
105210	-																						04	.,,									4.05
165211	1									3.4														1.33	6	.36	<3	1.6	1.1	8.0	5 <2	136	4.37
165212	1 .	1097																														439	3.17
165213	-	30								4.7														1.97								104	6.70
165214 165215		237 46								4.8 4.4																					7 <2 1 <2	91 805	3.49 3.72
																																	5112
STANDARD DS5/AU-R1	13	14	0 2	0 1.	54	.4	25	11	/36	2.9	11	5	<2	2	47	5.2	5		59	.73	.09	0 13	1//	.64	135	.10	16	1.9	1.0	4.1	4 6	556	-
GROUP 1D - 0.50 GM S (>) CONCENTRATION EX	SAMPL (CEED	e le. S up	ACHE PER	D WI	ITH Its	3 M	ML 2 Some	-2-2 MIN	HCL	-HNO3 S MAY	- H2O BE F	AT S PARTI	5 DE	G. C ATT	FOR ACKE	ONE	HOU	R, D ACTO	ILUT RY A	ED TO ND GR	10 I APHI	ML, A TIC S	NALY	SED E ES CA	N LI	P-ES MIT	AU S	OLUB	ILIT	۲ . ۸	81A	5	à/CE
ASSAY RECOMMENDED FO																		O PP	в											S			
- SAMPLE TYPE: CORE										0 GM		E AN	IALYS	IS E	Y FA	V/ICP			4										1	0	1.	P	
Samples beginning 'F	RE' a	re R	erun	ns ar	nd	'RRE	E'a	re F	ejec	t Rer	uns.								1	0 1	61	16								2	(. K.	1
Data FA		1	DAT	EI	RE	CEI	VE	D:	AUG	3 20	04	DAT	'E F	EPO	RT	MA	ILEI): <i>[</i>	14:-	L									($\langle \rangle$	CI	arence	Leong
																								f the		lysi		1		4	2		

Rio Minerals Inc. Canada FILE # A404046

SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V. Ca. P La Cr. Mg Ba Ti B. Al Na ppm ppm ppm ppm ppm ppm ppm ppm . % ppm ppm ppm ppm ppm ppm ppm ppm % % % ppm ppm	K W Au** Sample % ppm ppb kg
165216 165217 165218 165219 165220	<1 319 <3 29 <.3 97 42 323 5.07 7 <8 <2 <2 52 <.5 <3 <3 143 1.49 .076 1 101 1.63 21 .36 <3 2.08 .22 .3 <1 160 7 65 <.3 111 51 462 6.30 6 <8 <2 <2 109 <.5 <3 <3 162 1.34 .083 <1 111 3.00 27 .37 <3 2.97 .22 .3 <1 214 <3 40 <.3 109 35 465 5.01 13 <8 <2 <2 54 <.5 3 <3 144 1.41 .076 1 115 2.75 32 .30 <3 3.19 .20 .3 1 1852 5 32 1.1 107 51 186 2.24 9 <8 <2 <2 97 .6 <3 <3 126 1.91 .040 2 85 .47 9 .52 3 1.15 .26 .47 1315 <3 26 .8 81 166 135 5.13 7 <8 <2 <2 45 <.5 <3 <3 96 1.00 .071 1 70 .40 10 .37 <3 .76 .11 .5	20 <2 75 6.69 37 <2 28 3.40 30 <2 13 3.40 06 <2 562 3.69
165221 165222 165223 165224 165225	3 837 <3	10 <2 1367 3.26 34 <2 79 4.22 16 <2 84 6.45 11 <2 168 4.08
165226 RE 165226 RRE 165226 165227 165228	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 <2 376 4.33 11 <2 398 - 10 <2 424 - 15 <2 18563 1.37
165229 165230 165231 165232 165233	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08 <2 141 2.53 13 <2 141 2.97 12 2 1237 5.30 13 <2 62 5.47
165233 165235 165235 165236 165237 165238	A 1 266 <3 54 <.3 120 69 525 6.78 6 <8 <2 <2 39 <.5 <3 <3 181 1.01 .079 <1 128 3.28 31 .34 <3 2.85 .13 . 2 274 <3 64 <.3 81 45 535 4.30 8 <8 <2 <2 111 <.5 <3 <3 141 1.86 .072 1 110 1.83 46 .39 <3 2.30 .28 . 1 285 <3 63 .5 81 35 452 5.41 19 <8 <2 <2 85 <.5 <3 <3 163 1.21 .066 1 128 2.24 37 .33 <3 2.48 .21 . 1 199 <3 60 .3 92 55 599 6.72 46 <8 <2 <2 155 <.5 3 <3 135 1.93 .048 1 106 2.43 62 .29 <3 3.70 .26 . 2 130 3 49 .4 53 28 1930 6.41 76 <8 <2 <2 257 .6 <3 <3 73 12.71 .052 2 44 2.06 20 .14 <3 1.87 .03 .	43 <2 23 2.44 37 2 64 3.54 36 <2 72 5.25 81 <2 82 2.52
165239 STANDARD DS5/AU-R1	<1 177 <3 77 .4 102 41 763 5.88 33 <8 <2 <2 188 <.5 <3 <3 187 2.31 .083 <1 124 2.61 59 .35 <3 3.00 .29 .	49 <2 98 2.63

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

				als Inc. Car St., Vancouver BC Vo				
SAMPLE#		b Zn Ag Ni mppmppmppm		U Au Th Sr Co pprnpprnpprnpprnpprnpprn		P La Cr Mg Ba %ppm ppm %ppm		K WAu** Sam % ppm ppb
SI Y04-DB-1 Y04-DB-2 STANDARD DS5/AU-R1	<1 911 < 6 1020 <	3 41 .9 13 3 26 1.3 43	21 459 36.47 399 19 405 27.32 184	<8 <2 <2 3 <.5 14 <2 <2 3 .7 8 <2 <2 7 .5 <8 <2 3 47 5.3	7 <3 10 28 .67 9 <3 <3 61 1.75	<pre><.001 <1 <1 .02 4 .030 2 10 .10 6 .075 1 17 .06 4 .094 13 184 .64 137</pre>	.04 <3 .35 .01 .08 <3 .20 .01	.01 <2 <2 .03 <2 1154 1 .02 <2 486 1 .15 6 571
(>) CONCENTRATION	EXCEEDS UPPE FOR ROCK AND ICK R150 60C	R LIMITS. SOM CORE SAMPLES AU** GROUP	E MINERALS MAY BE IF CU PB ZN AS > ' 3B - 30.00 GM SAMI	PARTIALLY ATTACKED 1%, AG > 30 PPM & AU PLE ANALYSIS BY FA/	. REFRACTORY AND G U > 1000 PPB ICP.	D 10 ML, ANALYSED BY IC RAPHITIC SAMPLES CAN LI		
Data FA	DA	ATE RECEIVE	ED: AUG 3 2004	DATE REPORT M	MAILED: . M.Y.	16/04	CUMUE OIL	CLER IN INC.
3							Clarence Leo	ng Al
. 	- · · ·		<u>.</u>		د می		a an	

LOC ICA ... NALIJIS TIFICATE

Rio Minerals Inc. Canada 910 - 475 Howe St., Vancouver BC V6C 2B3 Submitted by: Andrew Molnar

SI 165148		pmr			-	Ni ppm		Mn ppm							Cd ppm				Ca %		La Cr ppm ppm	-	Ba ppm	⊺i %	B ppm	Al %	Na %	K %		Au** : ppb	Sample kg
	<1	-1	17	1	1 3	<1	<1	2	.04	<2	<8	~2	<2	3	<.5	<3	4	<1	18	< 001	<1 <1	< 01	4	< 01	<3	.01	.77	.01	<2	<2	-
	•	-	-	•		100		432	4.75	7					<.5				1.64							2.58	.32			20	5.08
165149	-	77 80	-		<.3			446	5.65	7	_	_			<.5		_		1.31	.076						1.90				15	5.22
165196	•		•		<.3			426	2.16	<2	<8								1.55	.063		.71	69	.10		2.24				3	4.74
165197	2		-		<.3		-	400	2.06	2									1.51				75				.24			80	5.19
165198	20	56	<3	9	<.3	41	2	173	19.14	29	<8	<2	<2	7	<.5	3	5	20	1.19	.012	1 30	.39	3	.06	<3	.46	.03	.03	<2	198	.38
165199	24	80	<3	38	<.3	88	28	487	4.75	10	8	<2	<2	76	<.5	4	<3	148	1.95	.072	2 136	1.70	24	.39	8	2.78	.36	.27	<2	77	4.2
165240	23	13	<3	48	<.3	84	35	478	5.07	8	<8	<2	<2	65	<.5	5	<3	166	1.63	.077	2 127	1.80	28	.47	8	2.27	.30	.33	2	44	6.3
165241	<1 2	23	4	43	<.3	82	39	451	6.04	6	<8	<2	<2	35	.7	4	<3	175	1.23	.086	3 120	1.95	30	.50	7	1.76	.15	.31	<2	24	3.9
165242	12	59	3	40	<.3	88	34	455	5.16	6	<8	<2	<2	72	<.5	4	<3	154	1.59	.079	2 127	1.75	25	.47	9	2.09	.24	.23	2	59	3.0
RE 165242	22	58	4	42	<.3	89	35	459	5.16	7	<8	<2	<2	72	.5	4	<3	155	1.61	.079				.48	-	2.11		.23	<2	72	
RRE 165242	12	49	<3	42	<.3	87	35	455	5.15	8	<8	_			.7				1.59							2.07		.23	-		
165243			-			88		487	4.62	6									1.76						-	2.51			_		1.6
165244								518	4.66										1.78	.069						2.70					3.4
STANDARD DS5/AU-R	13 1	45	24	136	.3	25	12	741	2.95	17	<8	<2	3	45	5.7	5	7	60	.74	.091	13 188	.68	135	.11	16	1.97	.04	.14	5	485	

Data FA

DATI

DATE RECEIVED: AUG 16 2004 DATE REPORT MAILED: 1. 1. 1. 2. 1. 1. ...

10C

JUNE AUCLEULUSY LUN,

ICA NAI ISTIFTE

Rio Minerals Inc. Canada File # A404955 Page 1 910 - 475 Howe St., Vancouver BC V6C 2B3 Submitted by: Andrew Molnar

		Cu ppm			-				Mn ppm							Cd ppm				Ca %		La ppm		•••	Ba ppm	Ti %	ррт	Al %	Na %		W / ppm		ample kg
5245 5246 55247 55248	<1 <1 <1		<3 <3 <3	34 36 57	<.3 <.3 <.3	10 10 9	3 0 4	35 40 32	599 659	.16 4.93 5.34 5.72 6.42	6 4 4	<8 10 12	<2 <2 <2	<2 <2 <2	44 79 35	<.5 <.5 <.5	3 4	<3 <3 <3	143 152 182	.29 1.87 1.55 1.14 1.38	.001 .076 .078 .075 .085	1 1 1	127 118 121	.01 2.18 2.64 2.89 2.86	31 29 41	<.01 .40 .42 .39 .44	3 3 6	.02 2.63 2.85 2.59 2.93	1.14 .23 .22 .10 .19	.01 .41 .30 .46 .15	<2	<2 34 36 37 42	- 5.46 5.90 5.35 6.41
5249 5250 55251 55252 55253	1 2 <1	244 276 23 3 154 196	7 9 7	52 56 34	.3 <.3 <.3	12 8	3 8 3	53 30 26 1	635 583 319	5.72 6.57 6.21 5.51 6.13	9 19 133	<8 <8	<2 <2 <2	<2 <2 <2	89 117 156	<.5	3 <3 4	<3 <3 <3	197 222		.076 .078 .092 .052 .096	1 2 1	132 123 74	3.02 3.34 2.61 1.43 1.68	42 67 46	.39 .38 .47 .22 .47	6 4 <3	3.32 3.53 3.62 2.18 1.63	.23 .19 .28 .12 .11	.51 .50 .54 .26 .08	<2 3 <2 2 2	116 44 38 71 55	6.68 6.56 3.13 1.94 2.94
55254 55255 55256 55257 55258	<1 2 <1	169 235 267 50 222	6 6 11	63 58 54	<.3 <.3 <.3	5 11 5 10 5 1	4 19 1	41 45 27	602 542 636	5.61 5.70 5.35 4.00 4.56	16 48 26	13 <8 <8	<2 <2 <2	<2 <2 <2	172 98 51	<.5	7 5 3	<3 <3 <3	148 114	3.10 1.88 1.61 2.52 1.72		2 2 5	148 146 10	2.07 2.15 2.05 1.69 2.13	57 60 22	.45 .43 .34 .19 .37	4 <3 <3	2.84 3.06 2.71 1.68 2.52	.19 .28 .25 .07 .26	.14 .28 .39 .12 .44	2 <2	939 60 49 234 61	5.20 3.09 2.58 3.00 5.59
55259 55260 55261 55262 55263	1 <1 <1	41 600 183 255 404	13	58 65 61	< .	712 314 38	23 57 35	36 49 37	590 765 628	11.57 4.56 6.08 6.58 5.87	5 7 3 18 3 26	<8 <8 8	<2 <2 <2	<2 <2 <2	50 120 114	.5 <.5 <.5	6 3 8	<3 <3 <3	89 141 204 227 141	1.08 1.71 2.94 2.41 5.40	.070 .075 .096	2 2 3	111 135 138	1.79 2.28 2.56 2.87 2.28	53 27 59		<3 <3 <3	1.39 3.19 3.05 3.72 2.85	.06 .27 .24 .25 .13	.06 .72 .16 .46 .27	<2 <2 2	92 110 22 44 108	.5 .5 2.1 3.4 1.7
65264 65265 65266 E 165266 RE 165266	<1 <1 1	449 178 198 199 196	5 8 <3	61 53 54	<.	38 37 37	86 72 7 3	36 44 45	593 533 539	5.47 6.43 5.10 5.20 5.49	5 13 5 29 1 32	<8 <8 <8	<2 <2 <2	<2 <2 <2	156 88 89	<.5 <.5	3 5 6	<3 <3 <3	143 187 145 146 155	2.00 2.15 1.87 1.90 1.98	.092 .111 .112	3 3 3	129 99 97	1.47 2.01 1.74 1.75 1.82	47 34 34	.50 .39 .40	<3 <3 <3	1.68 2.26 1.99 2.01 2.12	.20 .13 .17 .17 .19	.26 .17 .17	<2 <2 <2	55 56 72 71 100	1.8 6.0 6.8
65267 65268 65269 65270 65271	3 1 1	222 197 270 386 421	<3 <3 4	35 36 78	; <. ; . ; .	3 8 3 9 3 12	98 29	34 78 30	521 1005	.40 5.34 6.83 5.09 6.56	4 8 2 9 5 3	s <8 <8 <8	<2 <2 <2	<2 <2 <2	84 47 65	<.5 <.5 <.5	<3 3 4	<3 <3 <3	142 147 167	37.29 1.72 2.36 3.57 2.90	.075 .075 .082	2	107 102 160	.18 2.05 1.82 2.74 2.15	12 13 10	.01 .38 .43 .37 .48	6 3	.05 2.65 2.34 2.54 2.27			<2 <2 <2	8 14 57 92 98	1.1 4.0 4.8 1.6 4.6
65272 65273 65274 65275 65276	1 <1 <1	818 439 343 33 62	9 4 4	45 34 39	5 <. 4 <. 7 <.	3 3 3	97 92 74	61 53 47	457 395 370	6.2 6.0 5.6 4.6 3 .6	1 6 14 7	7 10 5 8 7 <8	<2 <2 <2	<2 <2 <2	43 61 35	<.5 <.5 <.5 <.5 <.5	5 5 <3	<3 <3 <3		1.20 1.25 1.50 1.39 1.32	.095 .085 .055	3 2 2	127 109 89	2.23 1.79 1.33 1.53 1.76	22 9 37	.43 .33 .38	<3 5 <3	1.98 1.64 1.84 1.67 2.13	.13 .21 .09	.17 .07	<2 <2 <2	101 70 167 33 25	4.4 3.2 3.8 4.2 6.3
TANDARD DS5/AU-R	13	147	24	134	4	3	25	12	787	3.0	8 1	7 <8	<2	3	46	5.7	4	7	61	.75	. 097	<u>′</u> 12	189	.69	139	.11	17	2.10	.04	.15	<u>5</u> .	494	
GROUP 1D - 0.50 (>) CONCENTRATIC ASSAY RECOMMENDE	ON E	XCEE	DS U	PPE	R LI	MIT	s.	SOM	IE MI	NERAL	S MA	Y BE	PART	IALL	Y AT	TACKI	Đ.	REF	RACTO	RY AND								OLUBIL	ITY.	6	ABLA	10	Iò,
- SAMPLE TYPE: (Samples beginni	CORE	R15	0 60	c	۵	1 **	CD	aiin	39 -	30.0	0 см	SAME		NAL Y	212	BY F	A/IC	5) Kart	- G	100								Ø	r (2.1) 9 - 191

SAMPLE#	1	Cu ppm						Mn mqq						Sr	Cd ppm	Sb	Bi	۷	Ca %	Ρ	La	Cr ppm	Mg	Ba		В	Al %	Na %		W mqq	Au** 9	Sample kg
165277 165278 165279 165280 165281	1 1 1 2 6	103 95 127	<3 <3 <3	12 44 27	<.3 <.3 <.3	4 99 107	35 31 42	756 374 278	3.10 4.62 5.12	76 8 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	637 44 83	.7 <.5 <.5	<3 4 3	<3 <3 3	3 146 156	1.53 34.03 1.72 1.81 2.41	.008 .082 .078	<1 2 2	2 130 155	.13 1.71	4 30 23	<.01 .37 .31	<3 <3 <3	.06 2.01 2. 3 5	<.01 .23	.74 .01 .28 .16 .34	<2 <2 <2		3.85 1.56 5.23 6.79 2.80
165282 165283 165284 165285 165286	2 2 5 2 4	10 76 3 75 201	<3 3 <3	27 29 24	<.3 .3 <.3 <.3 <.5	3 2 2	6 5 3	338 297 277	3.71 2.56 2.29 2.11 2.67	3 4 3	<8 <8	<2 <2 <2	4 3 3	72 153 78	5 <.5 2 <.5 3 <.5 3 <.5 3 <.5	<3 <3 <3	4 <3 <3	33 35	1.11 1.15 1.68 1.10 1.29	.069 .068 .069) 6 5 9 8	6 4 3 2 8 8	.69 .70 .53	28 42 47	.08 .07 .08	<3 <3 <3	2.11 1.59 2.67 1.12 1.02	.19 .37 .14	.22	<2 <2 <2	13 91 4 12 211	3.20 2.27 1.94 3.70 1.95
165287 165288 165289 165290 RE 165290	2 1 <1 3 2	53 34 14	<3 <3 <3	31 30 25	<.3 <.3 <.3 <.3 <.3	4 3 2	13 2 14	240 227 255	2.40 2.26 1.61 2.11 2.09	4 <2 3	<8 <8 <8 <8 <8	<2 <2 <2	4 4 3	90 55 101	4 <.5) <.5 5 <.5 1 <.5 8 <.5	<3 <3 <3	<3 3 3	33 26 27	1.00 .66 1.03	.072	2 7) 8) 7	3 4 7 8 3 3 7 5 7 4	.57 .56 .55	45 18 30	.09 .08 .08	<3 <3 <3	1.29 1.58 1.06 1.37 1.33	.23 .11 .18	.19 .07 .12	<2 <2 <2	27 19 5 11 4	1.58 6.01 2.14 1.77
RRE 165290 165291 165292 165293 165294	1 2 1	211	<3 <3 <3	25 27 30	; .3 / <.3) <.3	76 80 88	29 33 35	221 247 284	2.05 4.39 4.83 5.40 4.46	<2 3 5	<8 <8	<2 <2 <2	<2 <2 <2	49 54 41	9 <.5 9 <.5 4 <.5 8 < <i>.</i> 5 1 <.5	<3 4 5	<3 <3 3	134 172	1.39 1.23 1.16	.080 .067 .064	5 2 7 1 4 2	1 128 2 141	1.38 1.80 2.09	35 29 26	.28 .29 .29	<3 <3 <3	1.34 2.32 2.53 2.55 2.68	.27 .24 .20	.69 .30	<2 <2 <2	3 45 39 15 15	2.58 6.38 6.91 1.90
165295 165296 165297 165298 165299	4	348 202 2410		5 19 5 44 5 94	2 <.3 4 <.3 4 .8	57 5 20 5 39	22 13 172	225 416 47 3	2.60 2.05 2.51 21.28 4.59	7 9 110	< 8 < 8 < 8	<2 <2 <2	<2 <2 <2	7 7 2	5 1.2	<3 <3 <3	<3 <3 <3	73 48	2.42 4.23 6.15	.073 .119 .038	8 3 9 7 8 2	3 42 3 52 7 11 2 21 3 133	.38	19 9 4	.35 .19 .15	<3 <3 <3	1.46 2.17 1.34 .38 2.44	.34 .15 .01	.14 .06 .02	<2	33 30 86 325 97	3.89 3.45 4.55 2.47 1.81
165300 165301 165302 165303 165304	1	250 279 102		5 3 5 3 5 2	5 < 4 < 7 <	5 115 5 125 5 105	33 44 39	306 301 293	3.95 4.58 5.06 4.64 14.93	5 6 5 7 5 10	5 <8 <8 > <8	<2 <2 <2	<2 <2 <2	6 6 5	0 <.5 0 <.5 9 <.5	3	3 <3 <3	131 129 138 138 44	1.68 1.37 1.60	-070 -084 -090	5 7 4 7 6 3	2 131 2 113	1.69 1.80 1.45	58 69 86	.33 .34 .30	<3 <3	1.66 2.28 2.18 2.23 .60	.24	.40 .43 .49	<2	30 31 79 25 215	
165305 165306 165307 165308 STANDARD DS5/AU-R	<	3 26	7 < 0 <	36 322 37	3 <. 8 . 4 <.	3 29 4 7 3 87	7 107 7 4 7 33	673 1204 504	4.72 26.12 .65 3.95 3.04	2 63 5 8	5 <8 3 <8 5 <8	<2 <2 <2		2 4 2 39 2 2	7 .5 5 1.7 0 <.5		s 4 s <3 s <3	134	6.74 36.60 1.61	.02 .01	7 : 0 < 3 :	2 32 1 <1 3 110	77. 07. 1.69	4 6 34	.09 .01 .38	<3 <3 <3		.01 <.01 .21	<.01 .40	<2 <2 <2	13	.88 5.77

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

Page 3

۱

SAMPLE#							-			Mn ppm							Sr om p					Ca %			a Cr m ppm		Ba ppm		B B B B B B B B B B B B B B B B B B B		Na %		К %р		u** ppb	Sampl
165309	-	5 87	15	<3	68	1	7 '	124	127	412	17.90	21	<8	<2		2	23 1	.8	<3	<3	56	4.44	041	n	2 31	69	16	21	<	5	3.06		09	<2	688	
165310																						1.61								5 1.6			23		51	6.
165311											2.51											16.40	.03		1 23					5 1.0			.09		12	0.
165312	1			-				•••			3.47											1.49								5 1.5			25		54	2.
65313		2 3		-				•			2.36											9.56			5 12					5 1.4			.14		41	1.
65314	<'	1 1	27	10	74	ł	.4	3	4	664	.56	12	<8	<2	! <	23	77 1	.9	<3	6	20	35.34	.02	7	1 2	.05	i 4	<.01	1 3	3 .0	7 <.01	ι.	.01	<2	72	2
65 315		2	39	<3	60) <	.3	76	23	822	2.29	8	10	<2	? <	2	64 <	.5	4	<3	61	9.45	.07	8	2 80	1.60	5 5	.31	1 <	3 1.6	5.03	5.	.08	<2	13	
65316	1	1 3	365	<3	53	3 <	.3	81	35	489	3.79	3	9	<2	2 <	2	21 <	.5	<3	<3	126	2.18	.09	0	3 113	1.71	29	.48	3 <3	3 1.4	7.17	7.	.21	<2	86	5
65317	<	18	382	<3	41	۱	.4	82	35	299	3.58	2	<8	<2	2 <	2	26 <	.5	<3	<3	107	1.19	.08	3	2 104	1.4	37	.30) <	3 1.4	5.12	2.	. 24	<2	247	6
65318											2.72		<8	<2	2 .<	2	47 <	.5	<3	<3	87	3.78	.06	8	2 107	1.59	9	.3	1 <	3 2.3	7 .09	, ,	. 20	<2	11	1
65319																						1.27			3 126	1.13	5 16	.20	6 <	3 1.4	5.14	÷.	. 13	<2	13	2
65320																						2.17			4 107	1.8	11	.40	5 <	3 1.9	3.18	3.	. 13	<2	36	1
RE 165320																						2.14			3 114	1.79	7 10	- 40	6 <	3 1.9	1.18	з.	. 13	<2	27	
RE 165320																						2.29			4 117	1.8	3 11	.5	1 <	3 2.0	3.20).	. 13	<2	33	
165321	<	1	103	<3	50	0 <	.3	89	55	433	7.82	78	<8	<	2 <	2	45	.5	4	<3	155	2.25	.08	0	2 124	2.0	3 11	.4	0 <	3 2.9	9.3	3.	. 13	<2	70	2
165322																						1.53								3 2.4			. 29			-
165323											4.87																			3 2.1			.07	<2	550	2
65324											5.74																			3 2.7			. 13	<2	128	5
165325																						2.28								4 3.2			. 11	_	127	4
165326		1	24 9	<3	5	7 <	.3	103	46	908	6.64	31	<8	3 <7	2 <	2 1	36 <	.5	<3	<3	121	4.41	.07	9	1 98	2.5	7 45	.3	1 <	3 2.9	6.1	9	.36	<2	80	7
165327																						5.48											. 16	<2	119	4
165 328																						19.61											.40	<2	85	2
165329		1	334																			1.73								3 2.8			.51	<2	105	2
165330	<		556																			1.29	.07	2	1 120	2.6	3 19	.3	7 <	3 2.5	6.1	1	.28	<2	97	3
165331		1	25 3	<3	5 1	5 <	<.3	71	78	163	30.21	43	s <	3 <	2	2	12	.7	<3	<3	33	1.25	.02	3	1 45	.5	B 3	.1	3 <	3.4	9.0	2	.01	2	296	
165332																						1.30											. 12	_		_
STANDARD DS5/AU-R	1	3	145	24	13	5	.3	25	12	749	2.99	18	3 <	8 <	2	3	46 5	5.5	3	7	58	.74	.09	3 1	11 180	.6	B 135	.1	01	6 2.0	0.0	4	.14	4	499	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

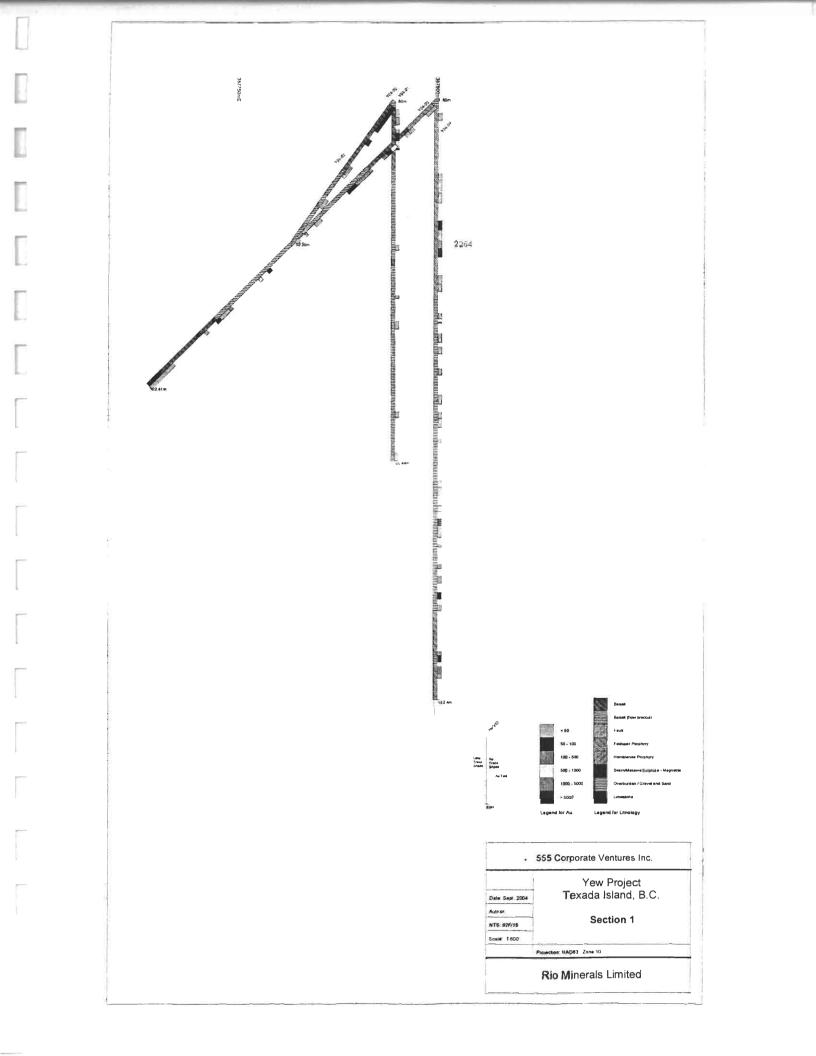
APPENDIX IV

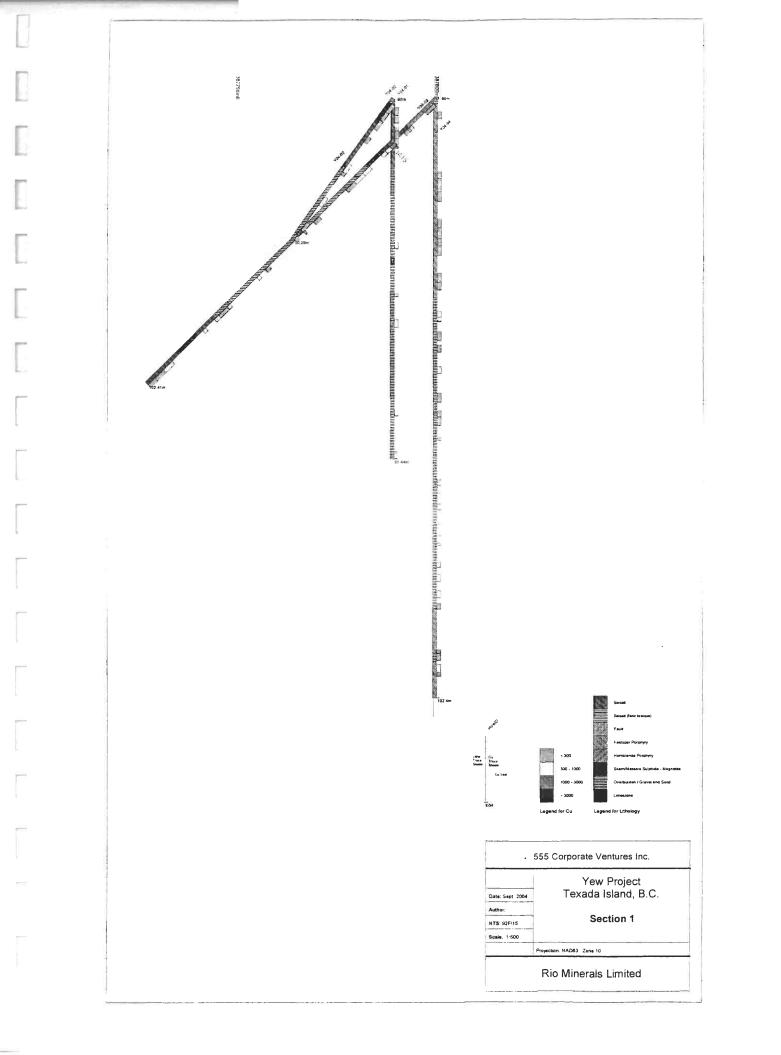
DRILL SECTIONS

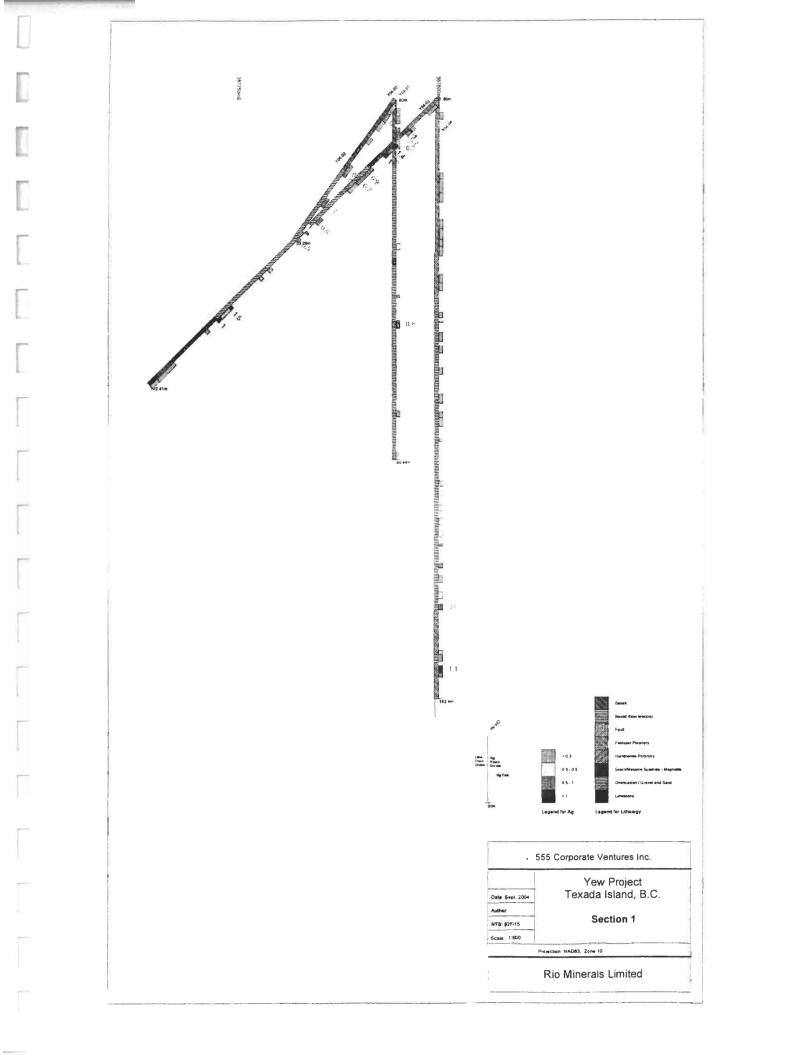
•

.

.....

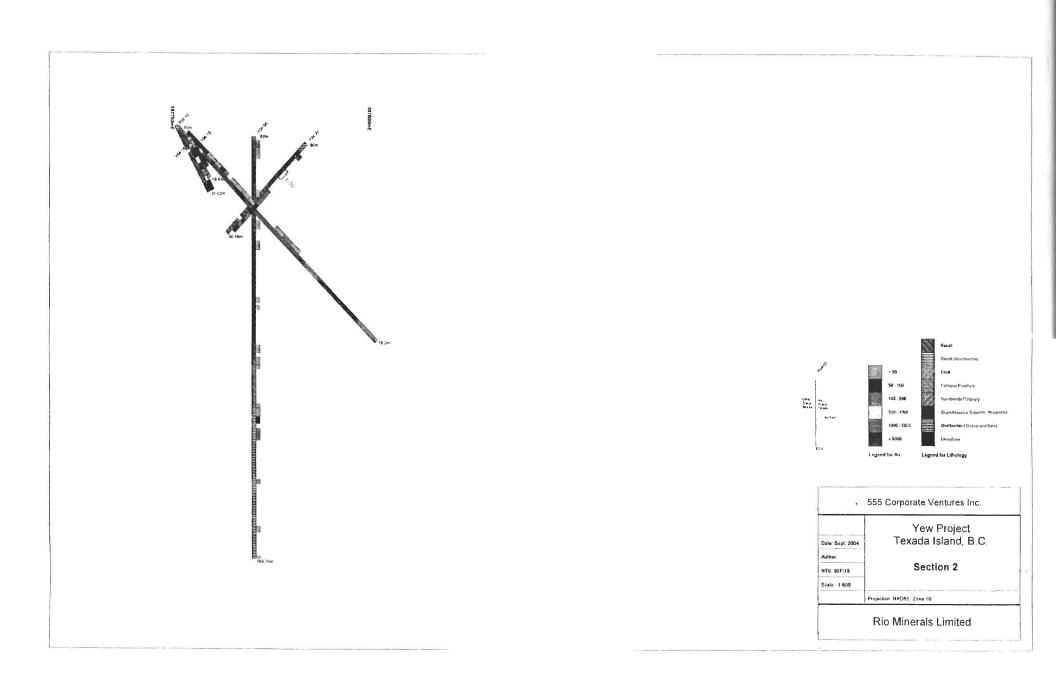

÷

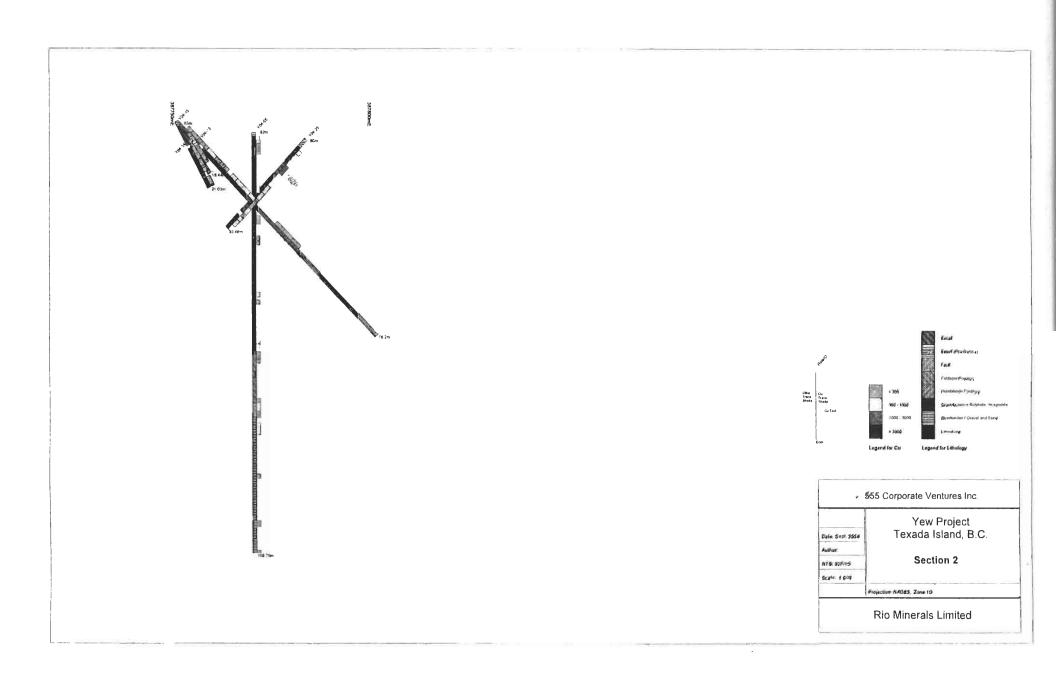

:

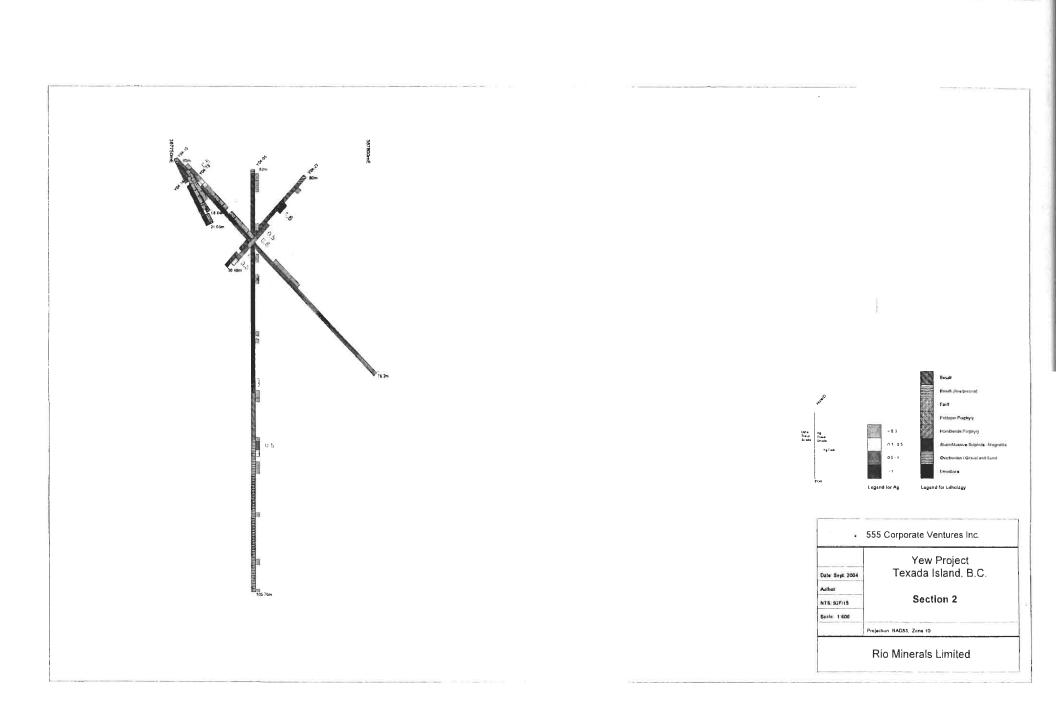

DRILL HOLE SECTIONS

SECTION 1

i

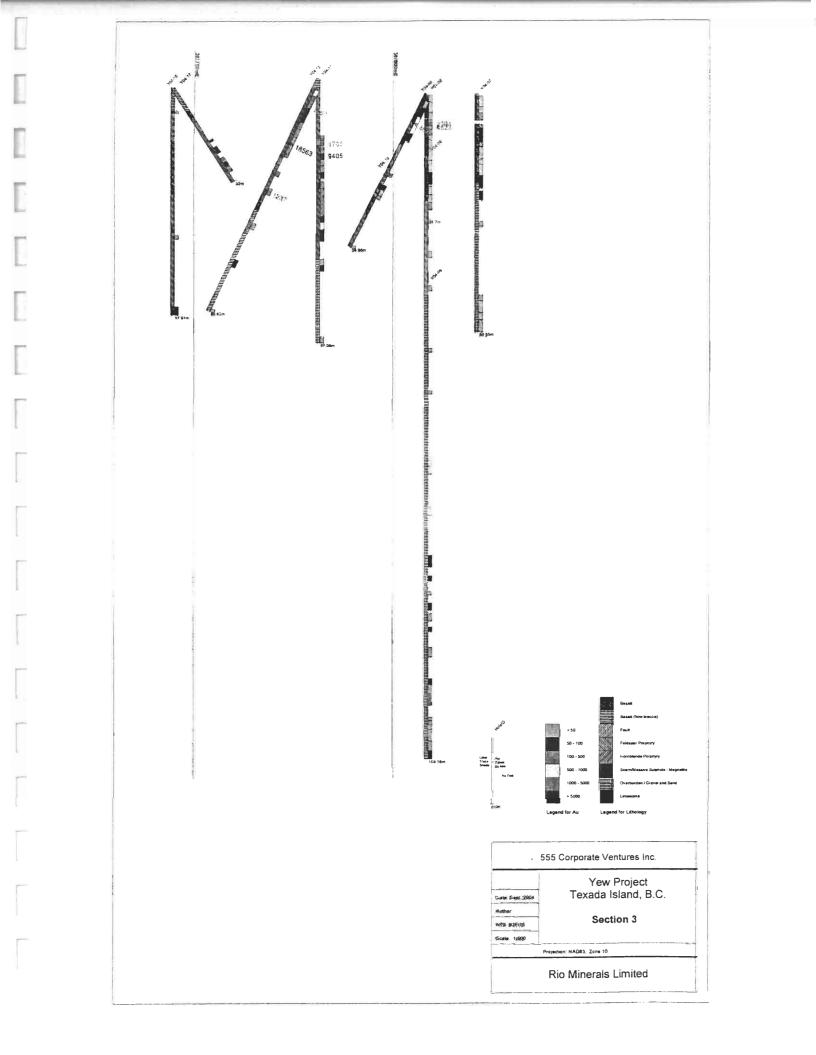


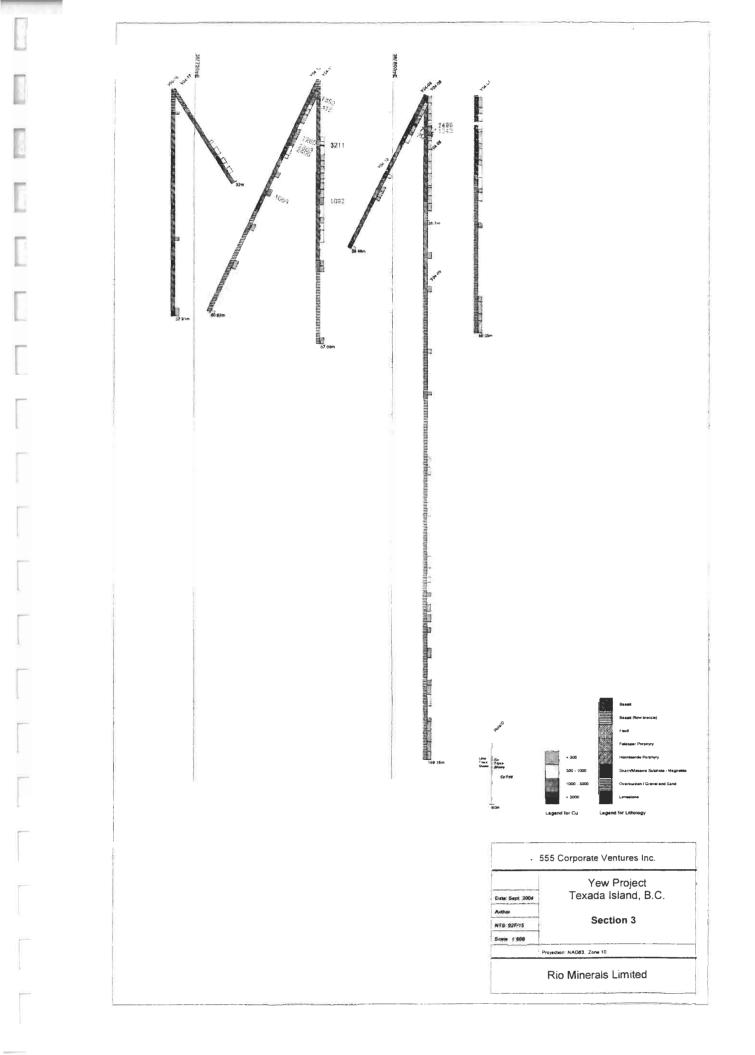


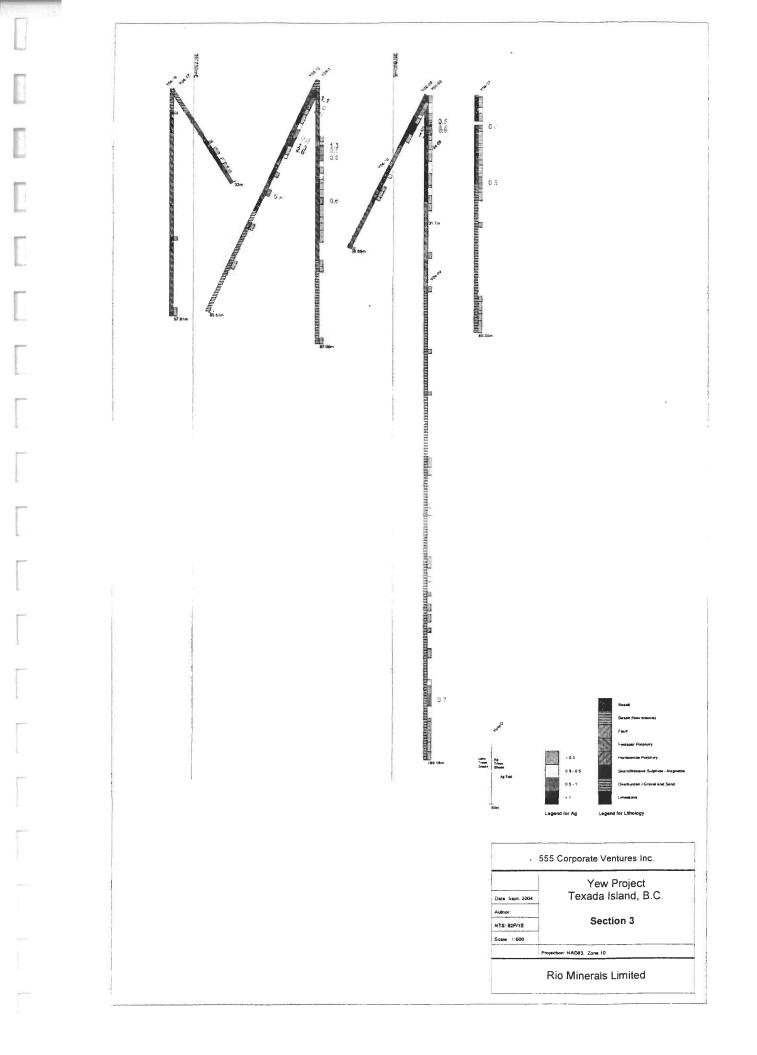


DRILL HOLE SECTIONS

SECTION 2

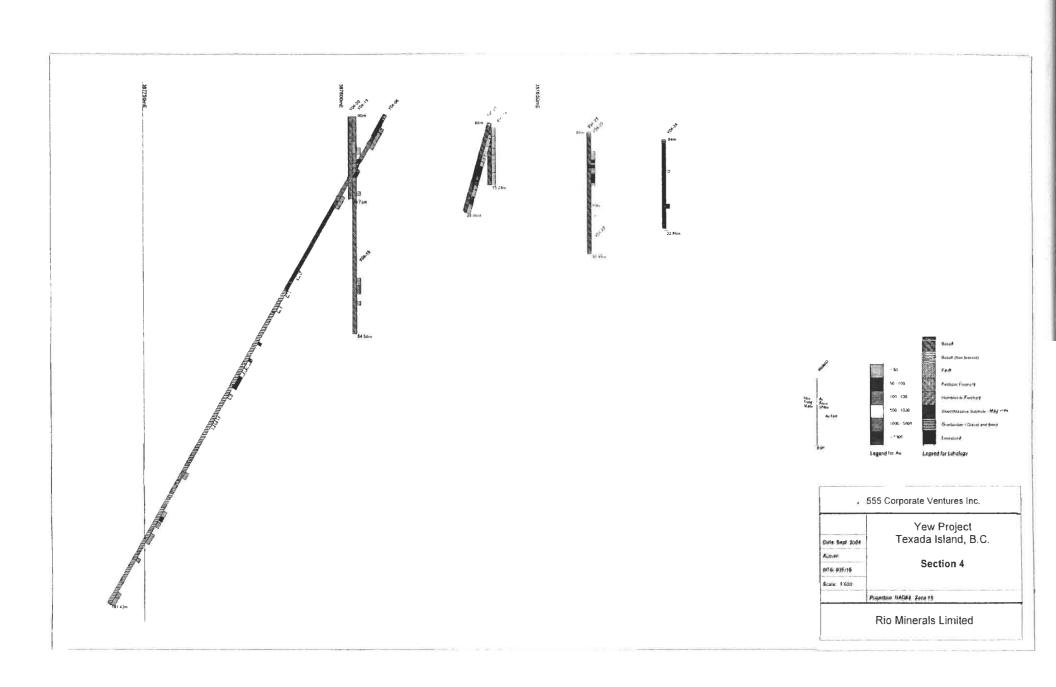

- 43

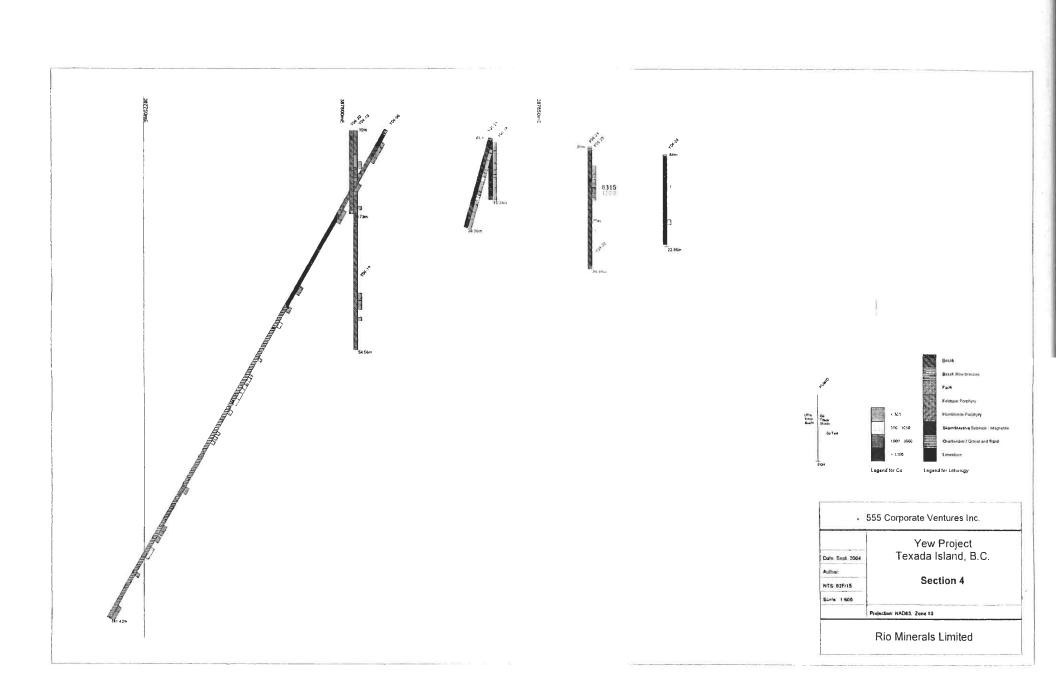

DRILL HOLE SECTIONS


÷

;

SECTION 3





DRILL HOLE SECTIONS

SECTION 4

i.

