Assessment Report

on the

Gold Commission VANCOUVER **2004 Exploration Program** Grid, Geophysics, Trenching, Diamond Drilling

IXL PROPERTY

FRANKLIN CAMP

NTS 82E/9

Long: 118° 24' 45'' W Lat: 49° 32' 30" N (at approximate centre of property)

> Greenwood Mining Division British Columbia, Canada

> > Prepared for:

and

Cougar Minerals Corp. 789 West Pender - Suite 1450 Vancouver, B.C. V6C 1H2

New Cantech Ventures Inc. 431 Pacific St. - Suite 431 Vancouver, B.C. V6Z 2B6

By: Linda Caron, M.Sc., P. Eng. 717 75th Ave, Box 2493 Grand Forks, B.C. **V0H 1H0**

January 17, 2005

VOLUME 2 - APPENDICES 4 & 5 + MAPS

APPENDIX 4

Petrographic Report

PETROGRAPHIC REPORT ON 9 THIN SECTIONS FROM IXL PROPERTY

Sept. 10, 2004.

SUMMARY:

The protoliths for this suite of relatively strongly altered suite of rocks are varied, possibly including tuffaceous volcanic rocks (mainly crystal tuff or crystal-lithic tuff?) of about andesitic composition, and porphyritic, high-level intrusive rocks of about hornblende quartz diorite or rarely latite. The former includes samples 94-5c 426' and possibly 94-7c 312', plus 03-1 7.2m and 14.85m; the latter includes samples 94-6c 277', plus 03-1 29.8m, 37.8m and 64.6m. The last sample, from 03-1 100m, could be a strongly altered, fine pebble conglomerate or tuff-breccia, or a hydrothermal pebble breccia.

Alteration in these samples is strong to intense, locally destroying or severely modifying the original texture of the rock. It is mainly propylitic or transitional to phyllic in character, typified by the mineral assemblage chlorite-epidote-albite-quartz-calcite-pyrite-sphene/rutile, but locally significant quartz-epidote-chlorite-magnetite-minor chalcopyrite veining, and traces of K-feldspar (possibly locally secondary) suggest that the observed assemblage could in part overprint a former potassic assemblage. In one sample (94-7c 312') the assemblage seems to indicate a skarny or calc-silicate altered rock (epidote-quartz-garnet-carbonate-chlorite-pyrite-hematite-sphene/rutile).

Capsule descriptions are as follows:

94-5c 426: this sample appears to be a strongly sericite-?albite-epidote-chlorite-pyrite calcite altered, probably originally tuffaceous volcanic rock (crystal tuff?), possibly of about andesitic composition.

94-6c 277: the composition of this chlorite-calcite-epidote-quartz-sphene-pyrite altered sample (roughly equivalent plagioclase and K-spar, very rare primary quartz, containing euhedral amphibole relics), suggests a high-level porphyry or volcanic of about (hornblende?) latite composition (could be trachyte if most of the plagioclase is albite, or could be trachyandesite if the Kspar is partly secondary, or is overestimated in the mode).

94-7c 312: this sample appears to be a skarny or calc-silicate (epidote-quartz-garnet-carbonate-chlorite-pyrite-hematite<u>+</u>sphene/rutile) altered, ?felsic tuffaceous rock, with zones of massive replacement, cut by veinlets of carbonate-chlorite or quartz-carbonate.

03-1 7.2m: appears to be a crystal-lithic tuff composed of 50-60% albite-sericite-epidote-chlorite altered feldspar, 5-10% quartz, possible epidote-altered mafic shards, and 20-30% intensely quartz-epidote-magnetite-chalcopyrite veined, brecciated lithic fragments, in a fine-grained intensely altered matrix, cut by narrow, discontinuous calcite-pyrite veinlets.

03-1 14.85m: appears to represent a crystal tuff, possibly of intermediate composition (mainly plagioclase feldspar and relict mafic crystal shards, no obvious primary quartz) that has undergone intense microfracture-, fracture-and vein-controlled alteration to quartz, epidote, magnetite, pyrite,

chalcopyrite (and pervasive albite, sericite, and chlorite), as well as later fracture-controlled calciteminor pyrite. 03-1 29.8m: high-level intrusive porphyry, possibly of about ?hornblende quartz diorite composition, that has undergone moderate alteration to chlorite-epidote-albite-sericite-quartz-calcite, pyrite<u>+</u>chalcopyrite, sphene/rutile, K-feldspar.

03-1 37.8m: this also appears to be a high-level intrusive porphyry, possibly of hornblende or pyroxene(?) quartz diorite composition, that has undergone moderate alteration and veining to chlorite-epidote-quartz-albite-sericite-calcite-magnetite-sphene/rutile.

03-1 64.6m: strongly quartz-chlorite-sericite-albite-minor pyrite, sphene/rutile, apatite altered diorite or quartz diorite is veined by quartz-chlorite-pyrite-sphene; the boundary is marked by a late fracture filled with calcite, chlorite and minor pyrite.

03-1 100m: this sample might be characterized as a strongly quartz-albite-epidote-chlorite-carbonatepyrite (trace chalcopyrite, possible galena?)-sphene altered, fine pebble conglomerate or tuff-breccia (could also be a hydrothermal breccia).

Detailed petrographic descriptions and photomicrographs are appended. If you have any questions regarding the petrography, please do not hesitate to contact me.

Craig H.B. Leitch, Ph.D., P. Eng. (250) 653-9158 <u>cleitch@saltspring.com</u> 492 Isabella Point Road, Salt Spring Island, B.C. Canada V8K 1V4

94-5c 426: STRONGLY SERICITE-?ALBITE-EPIDOTE-CHLORITE-PYRITE-CALCITE-SPHENE ALTERED, POSSIBLY ORIGINALLY ANDESITIC CRYSTAL TUFF

Hand specimen is a pale greenish grey, fine-grained, strongly altered and pyritized rock of uncertain origin. Sulfides are finely disseminated and also locally controlled as elongated blebs along fractures. The rock is not magnetic, shows only minor reaction to cold dilute HCl, and no stain for K-feldspar in the etched offcut. Modal mineralogy in polished thin section is approximately:

Plagioclase (relict, sericitized)	40%
Sericite	20%
Epidote	15%
Chlorite	10%
Pyrite, trace chalcopyrite	10%
Carbonate (mainly calcite?)	3-5%
Sphene, trace rutile	1-2%

This sample is composed mainly of small, very crowded, plagioclase phenocrysts or shards and lesser, smaller, chlorite, carbonate, pyrite or epidote altered mafic relics set in minor very fine-grained matrix in which individual minerals are difficult to identify.

Plagioclase forms mainly euhedral to subhedral, somewhat rounded, broken crystals or shards <0.5 mm in diameter. Only traces of vague relict twinning remain due to strong alteration to minute flakes of sericite (mostly <10 microns in diameter) that generally replace about20-40% of the crystals. The remaining relict plagioclase may be albitized, but this is difficult to determine due to the abundance of sericite and absence of quartz to compare refractive indices with.

Mafic relics have mainly irregular to rarely subhedral outlines <0.25 mm (but locally up to almost 0.5 mm) in diameter; it is not possible to guess what the original mafic may have been. Alteration is complete, to chlorite (subhedral flakes <50 microns in diameter), epidote (subhedral mostly <0.1 mm in diameter), pyrite (euhedral to subhedral crystals up to 0.25 mm in size) and variable carbonate (subhedra mostly <50 microns in size) plus minor sphene (subhedral crystals mostly <20 microns in diameter, locally with traces of rutile as minute inclusions). Chlorite has optical properties (very pale, non-pleochroic green colour, first-order greenish grey, length-fast birefringence) indicative of a relatively magnesian composition, with Fe:Fe+Mg, or F:M, ratio possibly around 0.4. Epidote lacks distinct colour or pleochroism and may be relatively Fe-poor. Carbonate is likely mostly calcite to judge by the reaction to HCl, but may include lesser ankerite which appears to have higher relief than the calcite. Most of the finely disseminated pyrite in this sample appears to be replacing former mafic sites.

The matrix, which appears to make up <20% of the sample, is difficult to identify, but appears on the basis of lack of relief difference with the plagioclase, and white appearance in the etched offcut, to be mostly fine-grained plagioclase microlites (mostly <20 microns in diameter) partly altered to and mixed with even finer-grained sericite, chlorite, epidote and sphene/leucoxene (all mainly <10 microns in diameter). However, these identifications are tentative at this extremely fine grain size. Leucoxene is a term applied to very fine-grained, brownish mixtures of sphene and possibly rutile, generally with epidote.

Blebby or fracture-controlled pyrite (subhedral crystals up to about 0.5 mm in diameter rarely containing trace chalcopyrite as 20 micron inclusions or associated with subhedral chalcopyrite to 0.1 mm in diameter) is associated with epidote (subhedral mostly <0.1 mm in diameter) and locally with calcite (subhedral crystals that are optically continuous for up to 3 mm) and traces of sphene (subhedra <20 microns in diameter), along veinlets mostly <1 mm thick. The calcite appears not to be so much associated with pyrite as to merely displace it, implying that it is later than pyrite

In summary, this sample appears to be a strongly sericite-?albite-epidote-chlorite-pyritecalcite-sphene altered, probably originally tuffaceous volcanic rock (crystal tuff?), possibly of about andesitic composition.

94-6c 277: CHLORITE-CALCITE-EPIDOTE+QUARTZ-SPHENE-SERICITE-PYRITE ALTERED PORPHYRITIC ?HORNBLENDE LATITE

Hand specimen is fine-grained, pale grey-buff, strongly altered rock of uncertain derivation until the etched offcut is considered, which shows scattered relict mafic crystals with euhedral outlines up to 5 mm long in a matrix that stains yellow for K-feldspar, suggesting a porphyritic volcanic rock. The sample is magnetic and reacts to cold dilute HCl. Modal mineralogy in polished thin section is approximately:

Plagioclase (matrix, albitic?)	35%
K-feldspar (matrix, primary?)	30%
Chlorite	15%
Carbonate (mainly calcite?)	10%
Epidote	5%
Quartz (partly secondary)	1%
Magnetite, minor hematite	1%
Sphene, minor rutile	1%
Sericite	1%
Pyrite, trace chalcopyrite	<1%
Apatite	<1%

This sample consists of about 15-20% altered mafic relict phenocrysts in a matrix of small feldspar laths with interstitial chlorite, calcite, and minor quartz, sericite and magnetite/hematite.

The mafic relics have euhedral to subhedral outlines up to 3.5 mm in size (and aggregates to 8 mm long), with shapes distinctly suggestive of former amphibole (hornblende?). They are completely replaced (pseudomorphed) by mixtures of chlorite, carbonate, epidote, sphene, magnetite and locally pyrite and possibly minor quartz(?). Chlorite forms subhedral flakes up to about 0.15 mm in diameter with distinct green pleochroism and near-zero birefringence suggesting F:M probably near 0.5; carbonate, likely mostly calcite to judge by the reaction in hand sample, forms sub- to anhedral, ragged crystals mostly <0.1 mm in diameter that are locally mixed with minor epidote (strong yellow pleochroism, probably Fe-rich) to 50 microns and rare quartz (?) subhedra to 0.15 mm.

Sphene locally forms aggregates (relict phenocrysts?) up to 3 mm long, (subhedral crystals up to 1.2 mm long, commonly containing minute crystals of rutile <20 microns in diameter and magnetite <35 microns in diameter, both controlled along fractures. Magnetite also forms euhedral to subhedral crystals or aggregates up to about 1 mm in diameter, generally partly altered at margins and along partings to fine-grained hematite (subhedra mostly <50 microns in diameter), or is present as minute subhedra mostly <20 microns in diameter in the matrix. Pyrite occurs as irregularly shaped, sieve-textured aggregates up to 0.5 mm across, or locally as elongated blebs along narrow fracture veinlets, where it appears to have replaced magnetite and is rarely associated with trace chalcopyrite <25 microns in diameter.

The matrix consists of feathery feldspar laths or microlites mostly <0.1 mm long that are locally show polysynthetic twins, and so are likely plagioclase (possibly albitic?), mixed with lesser untwinned feldspar with negative relief (K-feldspar, mostly <50 microns in diameter) and relatively rare, interstitial quartz (anhedra <50 microns in diameter). Other interstitial minerals include chlorite (subhedral flakes mostly <35 microns in diameter), carbonate (subhedra mostly <50 microns across), rare sericite (subhedral flakes up to 30 microns in diameter) and magnetite/hematite (see above). Scattered apatite crystals form euhedra up to 0.15 mm in diameter.

Veinlets generally <0.2 mm thick are composed mainly of secondary quartz as subhedra mostly <0.35 mm long, with traces of epidote and calcite, and are cut by minor hairline (<25 micron thick) microfractures filled with sericite and carbonate. In summary, the composition of this chlorite-calcite-epidote-quartz-sphene-pyrite altered sample (roughly equivalent plagioclase and K-spar, very

rare primary quartz, containing euhedral amphibole relics), suggests a high-level porphyry or volcanic of about (hornblende?) latite composition (could be trachyte if most of the plagioclase is albite, or could be trachyandesite if the Kspar is partly secondary, or is overestimated in the mode).

94-7c 312: INTENSELY SKARN/CALC-SILICATE (EPIDOTE-QUARTZ-GARNET-CALCITE-CHLORITE-PYRITE-HEMATITE) ALTERED, FINE-GRAINED ?FELSIC TUFFACEOUS ROCK

Hand specimen is a skarny-looking, intensely altered rock apparently composed of reddish garnet?, yellow-green epidote and chlorite and abundant carbonate, cut by various epidote-pyrite or dark green chlorite veins. The rock is not magnetic, shows strong reaction to cold dilute HCl, and no stain for K-feldspar in the etched offcut. Modal mineralogy in polished thin section is approximately:

Epidote	35%
Quartz (mainly secondary)	25%
Garnet	10%
Relict feldspar (plagioclase?)	10%
Carbonate (mainly calcite?)	10%
Chlorite	5-7%
Pyrite	3%
Hematite	<1%
Sphene/rutile	trace

This sample consists mainly of very fine-grained (probably mostly secondary) quartz, epidote, and locally relict feldspar and minor carbonate, overprinted by intense stringer to blebby or massive epidote (locally with lesser carbonate, garnet, chlorite and pyrite) replacement, and cut by carbonate-chlorite or quartz-carbonate veins. The fine-grained background rock is faintly foliated, and contains small shard-like quartz crystals that suggest it may have been a tuff.

In the background rock, quartz ?shards have ragged, subhedral outlines mostly <0.1 mm in diameter, set in a matrix in which quartz, epidote, carbonate, possible relict plagioclase and minor chlorite and opaques (hematite, rutile) are mostly <20 microns in diameter, making identifications tentative. The faint foliation is caused by vague layering into slightly more quartz-rich or locally more epidote-rich, discontinuous laminae or elongate blebs (the latter could represent the sites of former mafic mineral shards).

The stringer to massive replacement consists mainly of interlocking epidote subhedra up to about 0.6 mm long (the crystals have highly irregular, diffuse boundaries and are strongly fractured, with intense yellow pleochroism indicating high Fe content). Carbonate, locally at the center of epidote masses, forms masses of interlocking subhedral crystals mainly <0.1 mm in diameter, and appears to be replacing garnet. The garnet, which forms small rounded sub- to euhedral crystals up to about 0.25 mm in diameter with distinct yellow-brown colour, is commonly difficult to see in the intensely altered rock. Chlorite, which forms subhedral flakes mostly <0.1 mm in diameter with optical properties (bright green to pale yellow-green pleochroism, near zero birefringence) indicating moderately high Fe content (F:M perhaps 0.5-0.6), may also form a replacement of garnet. Pyrite occurs as subhedral to cubic crystals mainly <1 mm in diameter, locally aggregating in elongate blebs up to 5 mm long.

Veins are generally less than about 2 mm thick, and are composed mainly of carbonate (coarse sub- to anhedral crystals up to 1.5 mm in diameter, likely mostly calcite) with patches (< 1 mm across) of chlorite (fine matted flakes mostly <35 microns in diameter, showing anomalous purple, length-slow birefringence indicative of F:M perhaps as high as 0.7). These are the dark veins seen in hand specimen. Paler-coloured veins are composed of quartz (subhedra up to 0.5 mm) and carbonate (subhedra to 0.25 mm); minor epidote, chlorite and pyrite may be accidentally trapped in the veins from the altered wallrock.

In summary, this sample appears to be a skarny or calc-silicate (epidote-quartz-garnet-carbonate-chlorite-pyrite-hematite+sphene/rutile) altered, ?felsic tuffaceous rock, with zones of massive replacement, cut by veinlets of carbonate-chlorite or quartz-carbonate.

03-1 7.2m: INTENSE ALBITE-QUARTZ-EPIDOTE-CHLORITE-CALCITE-SERICITE-PYRITE-MAGNETITE-CHALCOPYRITE ALTERED, VEINED, BRECCIATED CRYSTAL-LITHIC TUFF

Hand specimen is fine-grained, intensely altered and veined/fractured, pale to dark green, with abundant sulfides and magnetite. There is minor reaction to cold dilute HCl, but only trace yellow stain for K-feldspar in the etched offcut. Texture of the host rock is revealed best in the etched offcut, which shows what appear to be abundant, crowded plagioclase (rare K-feldspar, or rare Kspar cores to plagioclase) and lesser quartz shards or broken crystals, plus fragments of (previously veined) rock, as well as large (1-2 cm thick) quartz-sulfide-magnetite veins that appear to have been fragmented. Late pyritic veinlets cut the rock. Modal mineralogy in polished thin section is approximately:

Relict plagioclase (secondary, albitic?)	45%
Quartz (mainly secondary; minor primary)	25%
Epidote	10%
Chlorite	5%
Carbonate (mainly calcite?)	5%
Magnetite	3%
Pyrite	2%
Chalcopyrite	1-2%
Sericite	1-2%
K-feldspar (relict primary?)	1-2%
Rutile	<1%

The bulk of this sample consists of highly crowded crystals or shards of relict, altered feldspar (mainly plagioclase) and scattered relict quartz ?eyes in a minor amount of fine-grained matrix that is so fractured, microveined and altered as to be almost unrecognizable. Cognate fragments of intensely veined and/or altered, sulfide- and magnetite-mineralized rock are up to several cm in diameter, with mainly subangular to angular outlines. It is not clear which veins are cut off at margins of fragments, and which are cross-cutting, but it appears that narrow, irregular, carbonate-pyrite veins are the latest.

Overall, the host rock looks to be a crystal-lithic tuff, composed of about 50-60% feldspar, 5-10% quartz, and possibly an indeterminate amount of relict mafic shards in a fine-grained, altered matrix that also contains about 20-30% veined, altered lithic fragments. The feldspar shards have mainly subhedral outlines up to about 0.5 mm in diameter, and are strongly altered to probable albitic secondary alkali feldspar (a guess, based on lack of yellow stain in hand specimen, possibly negative relief compared to quartz in thin section, lack of twinning, and associated alteration to minute flakes of sericite, epidote/zoisite, and chlorite. Quartz shards (single or multiple crystal aggregates) have irregular outlines up to 0.5 mm in diameter, however most quartz shards are fine-grained aggregates of interlocking subhedra mostly <0.1 mm in diameter, and appear most likely to be fragments of quartz veins. Lithic fragments range from extremely fine-grained quartz and minor epidote and sericite or chlorite (trace rutile as minute subhedra <15 microns), to recognizable porphyritic or tuffaceous lithologies (containing albitized plagioclase phenocrysts or shards).

Intensely altered and veined lithic fragments are commonly composed of about 50-90% secondary (vein) quartz, forming interlocking subhedra mostly <0.2 mm in diameter, but locally with massive epidote (interlocking sub- to euhedral crystals up to 0.5 mm long; strong yellow pleochroism indicated moderate to high Fe content), chlorite (subhedral flakes mostly <0.15 mm in diameter with distinct green pleochroism and length-fast, anomalous green birefringence suggesting F:M perhaps about 0.5), sulfides and magnetite. Some of the fragments contain abundant magnetite (aggregates up to 0.5 mm across of subhedral crystals mostly <0.1 mm in diameter intergrown with epidote), in places closely associated with chalcopyrite as very fine sub- to anhedral crystals mostly <50 micross

in diameter (but locally up to 0.5 mm), and sparse pyrite as cubic euhedra to 0.1 mm in size. Pyrite, forming sub- to euhedral cubic crystals up to 1 mm in diameter, appears to be more commonly later (controlled along cross-cutting, but discontinuous, fractures or veinlets, in places with carbonate, likely mostly calcite, as subhedra that are optically continuous for up to 5 mm.

03-1 14.85m: INTENSELY ALBITE-QUARTZ-EPIDOTE-CHLORITE-CALCITE-SERICITE-PYRITE-MAGNETITE-CHALCOPYRITE ALTERED, VEINED, FRACTURED CRYSTAL TUFF

Dark greyish-green, intensely fractured, altered, and veined rock of uncertain derivation, cut by narrow sulfide stringers and locally strongly magnetic; there are only traces of yellow stain for Kfeldspar, possibly secondary (along microfractures), and late fractures show minor reaction to cold dilute HCl. Modal mineralogy in polished thin section is approximately:

Relict alkali feldspar (albitic?)	40%
Quartz (mainly secondary)	25%
Epidote	10%
Chlorite	10%
Carbonate (mainly calcite?)	5%
Sericite (after feldspar)	5%
Pyrite	2-3%
Magnetite	1-2%
Chalcopyrite	1%
K-feldspar (secondary?)	<1%
Sphene, rutile	<1%

Alteration in this sample is similar to 03-1 7.2m but the brecciated character, with veined fragments, is not so obvious, silicification is more abundant, and sericitization of alkali feldspar is stronger; K-feldspar, although minor, may be secondary. The protolith appears to be crowded crystal tuff, composed mainly of perhaps 60% small alkali feldspar shards, lesser relict mafic crystals, and minor (10% or less) interstitial matrix. This is cut by cut by a series of major (up to 1 cm thick) quartz-minor magnetite-sulfide-epidote veins which in turn are cut by carbonate fractures.

In the body of the rock, alkali feldspar (likely mainly albitic) forms small relict crystal shards with subhedral to broken outlines mostly <0.25 mm in diameter. They are moderately overprinted by fine-grained sericite (flakes mostly <25 microns in diameter), which together with the lack of twinning suggests they have likely been albitized. Only rarely does trace yellow stain in the etched slab suggest the presence of minor (probably secondary) K-feldspar. Relict mafics have irregular outlines up to about 0.3 mm across, and are completely pseudomorphed by fine-grained chlorite (subhedral flakes to 30 microns with weak green pleochroism and anomalous green, length-fast birefringence suggesting moderate F:M perhaps around 0.5), epidote (subhedra mostly <0.1 mm in diameter with pale yellow pleochroism indicating moderate Fe content), and opaques (magnetite and sulfides, trace sphene/rutile). Sphene forms small subhedra mostly <25 microns in size, containing traces of rutile (<10 microns), commonly included in the epidote. In places, fracture or microfracture-controlled alteration of silicification or epidote is so intense as to become almost pervasive.

Veins consist of quartz (subhedral to anhedral, interlocking crystals mostly <0.2 mm in diameter) with patchy magnetite (subhedral crystals mostly <0.1 mm in diameter, locally in aggregates up to almost 2 mm across, intimately mixed with chlorite and minor epidote). Sulfides are mainly pyrite, forming sub- to euhedral crystals up to 0.5 mm in diameter that occur intergrown with the quartz, or along narrow stringers, commonly cutting the quartz vein in a perpendicular orientation. Some (but not all) of the pyrite stringers are associated with carbonate veinlets or fractures, mostly <1 mm thick, in which the carbonate (likely mostly calcite to judge by the reaction in hand sample) forms subhedral crystals up to about 1 mm in diameter. The carbonate locally brecciates the rock. Chalcopyrite forms small subhedral crystals mostly <0.15 mm in diameter that appear to be as, or slightly more abundant, in the intensely epidote-chlorite altered wallrock to the veins than in the veins themselves. Chalcopyrite occurs both associated with and not associated with the magnetite.

In summary, this sample appears to represent a crystal tuff, possibly of intermediate composition (mainly plagioclase feldspar and relict mafic crystal shards, no obvious primary quartz)

that has undergone intense microfracture, fracture-and vein-controlled alteration to quartz, epidote, magnetite, pyrite, chalcopyrite (and pervasive albite, sericite, and chlorite), as well as later fracture-controlled calcite-minor pyrite.

03-1 29.8m: HIGH-LEVEL INTRUSIVE (HORNBLENDE QUARTZ DIORITE PORPHYRY?) ALTERED TO CHLORITE-EPIDOTE-ALBITE-SERICITE-QUARTZ-CALCITE-PYRITE-SPHEN

Hand specimen is a pale grey-green, distinctly porphyritic, possibly high-level intrusive of intermediate composition (plagioclase and relict mafic phenocrysts visible) cut by abundant fractures and microfractures filled with pale buff-greenish epidote and white calcite (reacts to cold dilute HCl); traces of yellow stain in the etched offcut indicate possibly secondary Kspar. Sulfides are relatively minor, mostly pyrite; magnetite is absent. Modal mineralogy in polished thin section is approximately:

Plagioclase (mainly albitized, sericitized)	45%
Quartz (partly secondary)	25%
Chlorite	10%
Epidote	7%
Sericite (after feldspar)	5%
Carbonate (mainly calcite?)	3%
Pyrite	2%
Sphene, rutile	1%
K-feldspar (possibly secondary?)	1%
Chalcopyrite	<1%

This sample has a distinctly different texture from the previous two samples. It is composed of about 30-40% relict, altered plagioclase phenocrysts and perhaps 10% less well-defined, relict (chlorite-epidote altered) mafic crystals in a phaneritic, siliceous groundmass. Veinlets consist of epidote, quartz and minor carbonate.

Plagioclase phenocrysts have generally euhedral outlines up to about 2 mm in diameter, locally with relict primary compositional zoning preserved, or mimicked by sericite alteration. Many crystals show significant (10-20%) replacement by fine (mostly <20 micron diameter) flakes of sericite, accompanied by diffuse, poorly defined twinning that likely indicates albitization. The replacement by secondary alkali feldspar is most pronounced along narrow fractures or microfractures mostly <0.5 mm thick; rarely, along these, minor (secondary?) K-feldspar and quartz, both <0.1 mm in diameter, are found.

Mafic relics have irregular to rarely subhedral outlines up to about 3 mm long (possibly suggestive of former amphibole, likely hornblende). They are pseudomorphed by fine-grained chlorite (subhedral flakes to 0.25 with optical character, and F:M, similar to the previous sample), epidote (subhedra to 0.25 mm with moderate Fe content indicated by yellow pleochroism), pyrite (cubic crystals up to 0.5 mm in diameter) and minor sphene/rutile (minute aggregates mostly <35 microns in diameter). In places, carbonate (likely mostly calcite) also replaces the sites.

The groundmass consists of smaller, seriate-textured, altered plagioclase crystals mostly <0.5 mm in diameter, and interstitial, abundant quartz as subhedra mostly <0.25 mm in diameter. The quartz may be locally partly secondary, attacking the margins of sericitized plagioclase crystals. Minor chlorite-minor epidote-sphene/rutile altered mafic relics are also present in the groundmass.

Veins, rarely over 2 mm thick, consist mostly of quartz (subhedral, slightly strained crystals up to about 0.5 mm in diameter) or epidote (subhedra up to 0.4 mm long but more commonly <50 microns in diameter), locally with sulfides, and cut by later carbonate-filled fractures (<1 mm thick, composed mainly of calcite as subhedra up to 0.5 mm in diameter). Pyrite forms eu- to subhedral crystals up to about 0.5 mm in diameter, commonly controlled along cross-cutting epidote-rich stringers/veinlets up to about 0.5 mm thick. Chalcopyrite, forming minute blebs or subhedral crystals mostly <0.1 mm in diameter (locally <15 microns), is closely associated with quartz-epidote (and to a lesser degree, chlorite) alteration controlled along more diffuse, less well-defined fractures and

microfractures. Locally, chalcopyrite occurs in fractures cutting pyrite, possibly due to remobilization.

In summary, this appears to be a high-level intrusive porphyry, possibly of about ?hornblende quartz diorite composition, that has undergone moderate alteration to chlorite-epidote-albite-sericite-quartz-calcite-pyrite<u>+</u>chalcopyrite, sphene/rutile, K-feldspar.

03-1 37.8m: HIGH-LEVEL INTRUSIVE (QUARTZ DIORITE PORPHYRY?) ALTERED TO CHLORITE-EPIDOTE-QUARTZ-ALBITE-SERICITE-CALCITE-?MAGNETITE-SPHENE

Similar to the previous sample from 29.8m, crowded high-level intermediate intrusive porphyry characterized by small, altered plagioclase and relict mafic crystals in a phaneritic matrix; cut by quartz-epidote veins, microveins and fractures, late calcite fractures (react to cold dilute HCl). Rock is strongly magnetic, but shows only traces of yellow stain for Kspar in the etched offcut. Modal mineralogy in thin section is approximately:

Plagioclase (partly albitized, sericitized)	50%
Quartz (partly secondary)	30%
Chlorite	5%
Epidote	5%
Sericite	5%
Carbonate (mainly calcite?)	2%
Opaque (mostly magnetite?)	2%
Sphene, rutile	1%
K-feldspar (primary?)	trace

This sample consists of about 40-50%, rather crowded, albite-sericite altered plagioclase phenocrysts and chlorite-epidote altered, mafic relics set in a phaneritic, siliceous groundmass, cut by discontinuous quartz-magnetite-epidote-minor calcite veins and silicification patches (offset by epidote-chlorite microfracturing).

Plagioclase phenocrysts have generally euhedral outlines up to about 2 mm in diameter, locally with traces of relict primary compositional zoning, or twinning, preserved. Most crystals show significant (15-25%) replacement by fine (mostly <30 micron diameter) flakes of sericite and minor carbonate of similar size, accompanied by diffuse, poorly defined twinning that likely indicates albitization. The replacement by secondary alkali feldspar is most pronounced along microfractures mostly <50 microns thick.

Mafic relics have irregular to rarely subhedral outlines up to about 3 mm across (suggestive of former amphibole or possibly pyroxene). They are pseudomorphed by fine-grained chlorite (subhedral flakes to 0.25 mm with pale green pleochroism and anomalous blue, length-slow birefringence indicating F:M probably about 0.5-0.6), epidote (subhedra to 0.25 mm with moderate Fe content indicated by yellow pleochroism), opaque (subhedral crystals up to 0.5 mm in diameter, likely mostly magnetite) and minor sphene/rutile (minute aggregates mostly <45 microns in diameter). In places, carbonate (likely mostly calcite) also replaces the sites.

The groundmass consists of smaller, seriate-textured, altered plagioclase crystals mostly <0.5 mm in diameter, and interstitial, abundant quartz as subhedra mostly <0.15 mm in diameter. The quartz may be locally partly secondary, attacking the margins of sericitized plagioclase crystals, and in places semi-pervasive silicification appears to occur, accompanied by more abundant, fine-grained sericite and epidote. Small chlorite-minor epidote-sphene/rutile altered mafic relics are also present in the groundmass.

Veins, mostly <3 mm thick, consist mostly of quartz (subhedral, slightly strained crystals up to about 0.5 mm in diameter) and minor epidote (subhedra up to 0.2 mm long or more commonly <30 microns in diameter), locally with opaques, and cut by later carbonate-filled fractures (<0.5 mm thick, composed mainly of calcite as subhedra up to 0.35 mm in diameter). Opaques forms subhedral to anhedral crystals or aggregates up to about 1 mm across, that may be largely magnetite. Sulfides are not readily apparent and cannot be positively identified, lacking a polished surface.

In summary, this also appears to be a high-level intrusive porphyry, possibly of hornblende or pyroxene(?) quartz diorite composition, that has undergone moderate alteration and veining to chlorite-epidote-quartz-albite-sericite-calcite-magnetite-sphene/rutile.

03-1 64.6: STRONGLY QUARTZ-CHLORITE-SERICITE-ALBITE-PYRITE-RUTILE ALTERED DIORITE/QUARTZ DIORITE VEINED BY QUARTZ-CHLORITE-PYRITE-RUTILE, CALCITE

Hand specimen shows a medium green, relatively fine-grained (intensely altered) rock in which the texture has been destroyed, locally with abundant fine-grained, mostly pyritic, sulfide and grey, patchy to lensy or vein-like, secondary quartz plus late calcite-filled fractures (react to cold dilute HCl). The rock is not magnetic and there is no stain for K-feldspar in the etched offcut; modal mineralogy in polished thin section is approximately:

Quartz (largely secondary)	50%
Relict plagioclase (albitized, sericitized)	20%
Chlorite	15%
Sericite	10%
Pyrite, trace chalcopyrite, pyrrhotite	3-5%
Sphene, rutile	1%
Carbonate (mostly calcite?)	<1%
Apatite	<1%

One half of the section looks almost like a vein, composed mostly of relatively coarse-grained, secondary quartz with interstitial, chloritized relict mafic material, pyrite and minor, sericitized feldspar; the other half, highly altered wallrock, comprises mostly relict (sericitized) feldspar, quartz (probably partly secondary) and minor chlorite.

In the vein half, quartz forms mainly anhedral to subhedral, interlocking crystals up to about 0.6 mm in diameter that are generally only slightly strained (undulose extinction). Chloritized relics have highly irregular shapes mostly less than 1 mm across, interstitial to the quartz grains, suggesting the alteration of former mafic mineral crystals or aggregates. Chlorite, forming subhedral flakes mostly <50 microns in diameter with optical characteristics (very weak colour/pleochroism, grey-white, length-fast birefringence) indicating a magnesian composition, F:M perhaps 0.3-0.4, is mixed with sericite flakes of similar size, quartz to 0.1 mm, sphene as subhedra <30 microns in diameter, and locally apatite as euhedral prisms up to 0.1 mm long. Chlorite commonly contains minute crystals of rutile mostly <35 microns in diameter. Most of the sulfide in the vein portion is pyrite, forming subhedral crystals <0.5 mm in diameter although aggregates to 1 mm are present. Rare inclusions of chalcopyrite in pyrite have irregular, rounded bleb-like outlines <25 microns in size.

In the strongly altered wallrock, the ghosted outlines of possible former plagioclase (?) phenocrysts, similar in size and distribution to those in the high-level porphyries from 29.8 and 37.8 m in this hole, are vaguely defined as subrounded to subhedral patches up to 3 mm in diameter that are almost completely replaced by fine-grained (<35 micron diameter) secondary quartz, alkali feldspar and lesser chlorite (with included minute rutile or locally aggregates of sphene/rutile), and sericite. Elsewhere, the rock consists of intergrown patches of quartz (subhedral crystals <0.2 mm in diameter, likely mostly secondary) and interstitial, mainly strongly sericitized, alkali feldspar (likely albite; no yellow stain in etched offcut) plus chlorite, pyrite and sericite. Although some of the quartz may be derived from an originally fine-grained groundmass, as seen in the other samples from 29.8 and 37.8 m, it is not possible to be sure. Pyrite forms subhedral to ragged, almost anhedral crystals up to 0.25 mm in diameter that are generally most closely associated with chlorite, and appear to mark the sites of replaced former mafic crystals. Minute inclusions of chalcopyrite, pyrrhotite and possibly electrum (?, with strong polishing hardness difference), all <10 microns in size, are locally present in the pyrite.

Narrow fractures, especially along the boundary between the two rock types (vein and wallrock) are filled with carbonate (likely mostly calcite, as elongated subhedra up to 1 mm long) and minor chlorite and pyrite.

In summary, a strongly quartz-chlorite-sericite-albite-minor pyrite, sphene/rutile, apatite altered diorite or quartz diorite is veined by quartz-chlorite-pyrite-sphene; the boundary is marked by a late fracture filled with calcite, chlorite and minor pyrite.

03-1 100m:

Hand sample is white to grey-buff (mainly quartz, likely mostly secondary), with patches or possible fragments (?) of buff-coloured feldspar, yellow-green epidote and minor sulfides, plus carbonate that reacts vigorously to cold dilute HCl. A few large, pinkish, sieve-textured possible garnets (?), up to 8 mm across, are present (but not seen in the thin section). The rock is not magnetic and shows no significant stain for K-feldspar. Modal mineralogy in polished thin section is approximately:

Quartz (largely secondary)	55%
Secondary alkali feldspar (albite?)	25%
Epidote	5%
Chlorite	5%
Carbonate (mostly calcite?)	5%
Pyrite	3-5%
Sphene	<1%
Chalcopyrite, possible galena?	<1%, trace

This sample consists essentially of irregular-shaped patches up to almost 1 cm across (possible fragments?) composed of variably textured alkali feldspar, quartz, epidote, carbonate and locally sulfides, in a matrix that appears to be mostly secondary quartz. The overall impression is of a fine pebble conglomerate or lithic tuff-breccia that has been intensely altered, but it is hard to be sure.

Possible clasts have subrounded to irregular outlines. They are composed of 1) fine-grained quartz (interlocking subhedral to anhedral crystals mostly <0.15 mm in diameter and relatively unstrained, although locally up to almost 1 mm long and strongly strained, marked by strong undulose extinction, sub-grain development and minor suturing of grain boundaries), 2) fine-grained quartz and alkali feldspar mostly <0.1 mm in diameter, locally with relict ?plagioclase phenocrysts or lithic shards retained as ghost-like remnant sub- to euhedral outlines up to 0.6 mm long, and relict ?mafic sites composed of pale yellow epidote or colourless, i.e. Fe-poor, zoisite/clinozoisite (subhedra up to 0.25 mm in diameter) and chlorite (subhedral flakes up to 0.15 mm in diameter) plus pyrite, and 3) patches of chlorite (subhedral flakes to 0.1 mm with anomalous blue, length-slow birefringence indicating F:M around 0.5-0.6), epidote (subhedral crystals to 0.5 mm diameter with intense yellow pleochroism indicating high Fe content), and carbonate (probably mostly calcite, although some higher-relief material could be ankerite or dolomite, both forming ragged to skeletal, subhedral crystals up to 0.75 mm across). Alkali feldspar in these clasts appears to have negative relief compared to quartz, suggesting it is likely albite; it locally forms subhedra up to 0.2 mm across.

Pyrite, which forms ragged to locally skeletal subhedral crystals up to 1.5 mm in maximum dimension that are commonly fractured and contain abundant inclusions of silicates or carbonate up to 0.1 mm across, rarely contains small rounded bleb-like to subhedral inclusions of chalcopyrite mostly <0.1 mm in diameter. Traces of chalcopyrite are also found along fractures in and between the pyrite crystals, and as separate blebs in epidote/clinozoisite, adjacent to the pyrite, or along late fractures with carbonate. Rare inclusions in pyrite <50 microns long may be galena(?).

The matrix appears to be composed of minor amounts of very fine-grained, secondary quartz, with local additions of coarser-grained, clearly hydrothermal, epidote, chlorite, pyrite and carbonate. These minerals are also found along irregular, anastamosing fractures.

In summary, this sample might be characterized as a strongly quartz-albite-epidote-chloritecarbonate-pyrite (trace chalcopyrite, possible galena?)-sphene altered, fine pebble conglomerate or tuff-breccia (could also be a hydrothermal breccia).

December 2004

Project: IXL Property

Samples:	ddh 04-1:	44.0 m
-	ddh 04-2:	15.7 m, 37.2 m
	ddh 04-5:	36.6 m
	ddh 04-6:	35.3 m
	ddh 04-9:	10.2 m, 30.5 m
	ddh 04-10:	11.6 m, 16.76 m, 24.0 m, 96.1 m, 141.5 m, 209.3 m
	ddh 04-11:	89.5 m, 191.8 m
	ddh 04-12	180.5 m, 186.5 m

Summary:

Sample ddh 04-1 44.0 m is a brecciated felsic tuff that contains minor coarser grains of plagioclase and a few aggregates of plagioclase and lesser quartz in a groundmass dominated by anhedral, slightly interlocking plagioclase with much less abundant quartz and sericite. Pyrite and minor chalcopyrite form disseminated grains. Scattered replacement patches are of quartz and minor epidote. The rock was brecciated moderately, and brecciated zones are loci for discontinuous, fracture-filling veinlets of calcite and irregular veinlets and patches of sericite and pyrite. Calcite veinlets are dominant in one half of the section and pyrite and sericite veinlets are dominant in the other.

Sample ddh 04-2 15.7 m is a felsic tuff containing moderately abundant, anhedral plagioclase grains in a groundmass of much finer grained plagioclase with minor wispy seams and disseminated patches of leucoxene and minor disseminated pyrite and epidote. Scattered replacement patches are of epidote and chalcopyrite. Moderately abundant, irregular, in part braided veinlets and skeletal replacement patches are of calcite with minor quartz. A few late veinlets are of chlorite with minor to moderately abundant epidote and pyrite and locally abundant K-feldspar and quartz.

Sample ddh 04-2 37.2 m is a hypabyssal, porphyritic diorite/andesite containing anhedral plagioclase phenocrysts, clusters of smaller plagioclase grains and a few subhedral hornblende phenocrysts (altered to calcite-chlorite-plagioclase) in a groundmass dominated by much finer grained plagioclase with patches of calcite-chlorite after hornblende. Replacement patches are of epidote and pyrite with much less abundant chalcopyrite and quartz. Several veinlets are of calcite. One veinlet is of epidote-pyrite-chlorite.

Sample ddh 04-5 36.6 m is a banded calcite-garnet-plagioclase/quartz-pyrite skarn that contains three main zones. Zone A is characterized by an intergrowth of calcite with lesser, disseminated garnet. Zone B is dominated by garnet with minor interstitial plagioclase/quartz and calcite. Zone C contains garnet with interstitial plagioclase/quartz and much less abundant calcite. Pyrite forms disseminated porphyroblasts with inclusions of garnet. Sphalerite forms disseminated patches. Chalcopyrite forms disseminated grains. A few veins and several veinlets are of calcite with minor quartz and a few are of quartz with minor calcite.

Sample ddh 04-6 35.3 m contains angular fragments up to 2 cm in size of felsic tuff (A) that are enclosed in and partly replaced by a patchy matrix dominated by quartz with lesser plagioclase,

chlorite, epidote, and pyrite (B). Veins and veinlets are of calcite-epidote-chlorite-(pyrite-chalcopyrite). Minor veinlets and replacement patches are dominated by quartz.

Sample ddh 04-9 10.2 m is a volcanic wacke that contains abundant detrital grains that are dominated by equant fragments of plagioclase grains, very fine grained aggregates of plagioclase, and extremely fine grained aggregates of quartz. These are set in a groundmass dominated by plagioclase and chlorite with lesser leucoxene. Replacement patches are of calcite, epidote, and pyrite. Veins are of epidote-calcite-(quartz) and of calcite-quartz-epidote-pyrite.

Sample ddh 04-9 30.5 m is a hypabyssal diorite/andesite or very fine volcanic wacke that contains anhedral plagioclase phenocrysts and much less abundant hornblende phenocrysts in a groundmass of finer grained plagioclase. Disseminated replacement patches are of epidote and pyrite. Discontinuous, replacement veinlets are of epidote, of calcite, and of quartz.

Sample ddh 04-10 11.6 m is zoned strongly. Zone A is a porphyritic hypabyssal latite that contains phenocrysts of plagioclase and minor ones of quartz in a groundmass dominated by plagioclase. Zone B consists of a replacement zone dominated by sericite with lesser epidote and quartz. Zone C contains patches of hypabyssal latite in a groundmass of much finer grained plagioclase and abundant replacement patches of one or more of K-feldspar, quartz, pyrite, and epidote.

Sample ddh 04-10 16.76 m is a porphyritic dacite that contains phenocrysts of plagioclase (altered strongly to sericite and calcite), lesser phenocrysts of quartz, and minor ones of hornblende (altered completely to sericite and leucoxene) in an extremely fine grained groundmass dominated by plagioclase. A large replacement patch and numerous smaller ones are of quartz. An irregular replacement zone is of sericite-calcite. Abundant veins and veinlets are of calcite and a few are of quartz.

Sample ddh 04-10 24.0 m is a hypabyssal diorite/andesite or very fine volcanic wacke that was altered moderately producing diffuse textures that are most similar to those in Sample 04-9 30.6 m. Anhedral, coarser plagioclase grains are set in a groundmass of much finer grained plagioclase. Alteration is moderate to disseminated sericite and patches of calcite. Pyrite forms disseminated grains. Veinlets are of sericite-chlorite-pyrite, sericite-quartz, and calcite.

Sample ddh 04-10 96.1 m is a felsic tuff that contains minor phenocrysts of plagioclase in a groundmass of extremely fine grained plagioclase. In part of the sample the groundmass is slightly coarser grained and contains more quartz; this may be the result of early silicification. Irregular replacement patches are dominated by one or more of sericite, calcite, and pyrite. Irregular, discontinuous veins and veinlets are dominated by one or more of calcite, quartz, sericite, and pyrite. Several veinlets of quartz-sericite contain moderately abundant disseminated chalcopyrite and minor to moderately abundant calcite.

Sample ddh 04-10 141.5 m is a cataclastically deformed rock that contains fragments up to 1 cm in size of hypabyssal diorite (A) and one fragment of hypabyssal latite (B). These are set in a matrix of extremely fine grained plagioclase that contains minor to moderately abundant plagioclase crystal fragments whose texture is similar to that in the coarser fragments. Some textures suggest that the rock was deformed cataclastically. One patch of groundmass is free of plagioclase fragments (C). A large vein is of epidote-calcite-(chlorite). Several replacement patches up to a few mm across are of epidote. Calcite forms replacement patches and abundant irregular veinlets.

Sample ddh 04-10 209.3 m is a hypabyssal syenite that contains scattered phenocrysts of plagioclase, in part overgrown by K-feldspar, and minor ones of hornblende in a groundmass dominated by unoriented prismatic K-feldspar grains, with minor biotite and magnetite. Plagioclase was altered moderately to sericite-calcite overgrown moderately to strongly by K-feldspar, hornblende was replaced completely by various intergrowths of calcite/ ankerite, quartz, and rutile, and biotite was replaced slightly to moderately by quartz-rutile. Interstitial patches of calcite/ankerite and quartz probably are of replacement origin. Several veinlets are of quartz-(calcite) and a few are of calcite.

Sample ddh 04-11 89.5 m is a porphyritic hypabyssal latite/monzodiorite that contains phenocrysts of plagioclase, lesser ones of hornblende, and minor ones of quartz in a groundmass dominated by plagioclase, with lesser K-feldspar and chlorite, and minor calcite, quartz, pyrite, and leucoxene. Plagioclase phenocrysts were altered slightly to sericite and hornblende phenocrysts were altered completely to chlorite and calcite/ankerite. Replacement patches, veins and veinlets are of calcite.

Sample ddh 04-11 191.8 m is mainly a pyroxene amphibolite that is dominated by actinolite and much less abundant clinopyroxene, magnetite, biotite, and sphene. Clinopyroxene forms ragged cores of grains that were replaced moderately to strongly by actinolite. Some actinolite grains were replaced moderately to completely by pseudomorphic tremolite and patches of calcite-(hematite). A patch in one corner of the section is of metamorphosed syenite that is dominated by coarse grained microcline with less abundant, finer grained plagioclase. Irregular veinlets are of calcite and lesser chlorite; near these, amphibole commonly is replaced by pale green tremolite/actinolite.

Sample ddh 04-12 180.5 m is a metamorphosed diorite that is dominated by plagioclase with lesser actinolite and much less abundant epidote, biotite, and K-feldspar, and minor sphene, hematite, calcite, apatite, and chalcopyrite. The ragged texture indicates a metamorphic history. Plagioclase is altered slightly to moderately to sericite and minor epidote. Some actinolite grains are altered moderately to strongly to tremolite-(calcite) and minor epidote. A veinlet is of calcite with minor epidote.

Sample ddh 04-12 186.5 m is an amphibolite that is dominated by unoriented, slightly interlocking grains of actinolite with much less abundant interstitial grains of biotite, magnetite, K-feldspar, sphene, and apatite. Two veinlets up to 0.3 mm wide are dominated by chlorite with lesser calcite, K-feldspar, and epidote.

Photographic Notes:

The scanned sections show the gross textural features of the sections; these features are seen much better on the digital image than on the printed image. Sample numbers are shown in or near the top left of the photos and photo numbers at or near the lower left. The letter in the lower right-hand corner indicates the lighting conditions: P = plane light, X = plane light in crossed nicols, R = reflected light. Locations of digital photographs (by photo number) are shown on the scanned sections. Descriptions of individual photographs are given at the end of the report.

John G. Payne, Ph.D., P.Geol. Tel: (604)-597-1080 Fax: (604)-597-1080 (call first) email: jgpayne@telus.net

Sample ddh 04-1 44.0 m Brecciated Felsic Tuff Replacement: Quartz-(Epidote) Veinlets: Calcite, Pyrite, Sericite

Minor coarser grains of plagioclase and a few aggregates of plagioclase and lesser quartz are set in a groundmass dominated by anhedral, slightly interlocking plagioclase with much less abundant quartz and sericite. Pyrite and minor chalcopyrite form disseminated grains. Scattered replacement patches are of quartz and minor epidote. The rock was brecciated moderately, and brecciated zones are loci for discontinuous, fracture-filling veinlets of calcite and irregular veinlets and patches of sericite and pyrite. Calcite veinlets are dominant in one half of the section and pyrite and sericite veinlets are dominant in the other.

mineral	percentage	main grain s	size range (mm)
megacrysts		-	
plagioclase	2-3%	0.07-0.2	
quartz	minor	0.05-0.1	
groundmass			
plagioclase	80-85	0.005-0.01	
sericite	4-5	0.005-0.01	
quartz	4-5	0.02-0.05	
pyrite	2-3	0.05-0.15	
epidote	0.3	0.02-0.1	
leucoxene	0.2	dusty	
chalcopyrite	minor	0.03-0.05	(a few up to 0.1 mm)
replacement p	atches		· • •
quartz	1-2	0.03-0.1	
epidote	0.2	0.05-0.15	
veinlets			
calcite	2-3	0.05-0.3	
pyrite	0.3	0.05-0.1	
sericite	0.1	0.005-0.01	
quartz	minor	0.01-0.03	

Plagioclase forms anhedral grains and irregular patches of a few to several grains that are concentrated moderately near one end of the section. Some patches contain zones of quartz of uncertain origin (primary or replacement). Plagioclase is altered slightly to moderately to sericite.

In the groundmass, plagioclase forms equant, anhedral, slightly interlocking grains, some of which are altered slightly to sericite.

Quartz forms disseminated grains and patches up to 0.2 mm in size, some of which may have replaced plagioclase and/or mafic minerals.

Pyrite forms disseminated, euhedral to subhedral grains.

Epidote forms disseminated, anhedral grains and clusters of a few grains, in part associated with sulphides.

Leucoxene forms disseminated, dusty grains and wispy seams.

Chalcopyrite forms disseminated grains.

(continued)

A few replacement patches up to 2 mm across are of quartz and epidote.

The rock was brecciated moderately, and fragments healed by wispy, discontinuous veinlets. Calcite forms abundant, discontinuous, fracture-filling veinlets 0.02-0.2 mm wide. Most of these are concentrated near one end of the section.

Pyrite forms several discontinuous veinlets and lenses up to 0.15 mm wide. Some of these are intergrown with sericite and some contain minor chalcopyrite. Sericite also forms a few, wispy, irregular, discontinuous veinlets up to 0.1 mm wide. These veinlets are concentrated in brecciated zones in the opposite end of the section from the main zone of calcite veinlets.

A very few veinlets up to 0.03 mm wide are of quartz and minor calcite.

Sample ddh 04-2 15.7 m Felsic Tuff Veinlets: 1) Calcite-(Quartz); 2) Chlorite-Pyrite-Epidote-(K-feldspar-Quartz)

Moderately abundant, anhedral plagioclase grains are set in a groundmass of much finer grained plagioclase with minor wispy seams and disseminated patches of leucoxene and minor disseminated pyrite and epidote. Scattered replacement patches are of epidote and chalcopyrite. Moderately abundant, irregular, in part braided veinlets and skeletal replacement patches are of calcite with minor quartz. A few late veinlets are of chlorite with minor to moderately abundant epidote and pyrite and locally abundant K-feldspar and quartz.

mineral	percentage	main grain size range (mm)
coarser grains		
plagioclase	7-8%	0.03-0.1
groundmass		
plagioclase	75-80	0.005-0.01
epidote	0.3	0.03-0.07
leucoxene	0.3	dusty-0.01
replacement		
epidote	3-4	0.01-0.03
chalcopyrite	0.3	0.005-0.1
veinlets		
1) calcite	3-4	0.05-0.5
2) chlorite-pyrite	e-epidote- 2-3	0.01-0.03 (cl, qz, Kf), 0.02-0.05 (ep),
(K-feldspar-q	uartz-chalcopyr	ite) $0.02-0.2$ (py), $0.005-0.03$ (cp)

Plagioclase forms equant to slightly elongate grains and fragments of from 0.03-0.2 mm in size. These are concentrated moderately to strongly in patches and bands up to 2 mm wide. Some are altered slightly to moderately to sericite.

The groundmass is dominated by equant, interlocking plagioclase grains.

Epidote forms disseminated grains and clusters of a few grains. It also forms several replacement patches up to 0.5 mm in size and diffuse vein-like lenses up to 0.2 mm wide, many of which contain moderately abundant, disseminated grains of chalcopyrite (0.01-0.03 mm).

Leucoxene forms disseminated spots and lenses.

Replacement patches and lenses up to 1 mm in size are of epidote and moderately abundant, disseminated chalcopyrite.

Calcite forms discontinuous, fracture-filling veinlets up to 0.3 mm wide and a few zones up to a few mm across that contain abundant skeletal patches of calcite replacing the groundmass. Some veinlets contain minor quartz and a few contain minor pyrite and chalcopyrite.

A few veinlets up to 0.3 mm wide are of chlorite, pyrite, epidote, K-feldspar and quartz. Chalcopyrite forms minor grains in fractures in pyrite and interstitial to pyrite grains and disseminated grains in some epidote patches. A few seams up to 0.03 mm wide are mainly of chlorite. Some of these cut and offset calcite veinlets by up to 0.1 mm. A few veinlets are dominated by K-feldspar and epidote. Pyrite forms a few discontinuous veinlets up to 0.1 mm wide.

Sample ddh 04-2 37.2 m Hypabyssal, Porphyritic Diorite/Andesite Veins: Calcite-(Chlorite); Epidote-Chlorite-Pyrite

Anhedral plagioclase phenocrysts, clusters of smaller plagioclase grains and a few subhedral hornblende phenocrysts (altered to calcite-chlorite-plagioclase) are set in a groundmass dominated by much finer grained plagioclase with patches of calcite-chlorite after hornblende. Replacement patches are of epidote and pyrite with much less abundant chalcopyrite and quartz. Several veinlets are of calcite. One veinlet is of epidote-pyrite-chlorite.

mineral	percentage	main grain s	size range (mm)
phenocrysts			
plagioclase			
large	8-10%	0.3-0.8	(a few up to 1.5 mm)
medium	17-20	0.05-0.3	
hornblende	2-3	0.5-1.5	
groundmass			
plagioclase	35-40	0.01-0.03	
calcite-chlorite	12-15	0.02-0.05	
Ti-oxide/leucox	ene 0.5	0.005-0.02	
apatite	minor	0.1-0.25	
hematite/magnet	tite minor	0.15	
replacement			
pyrite	5-7	0.05-0.5	
epidote	4-5	0.03-0.1	
chalcopyrite	0.3	0.01-0.03	
quartz	0.1	0.03-0.05	
veinlets			
calcite	1-2	0.05-0.2	(0.3-0.7 mm in large vein)
epidote-pyrite-chlorite-(quartz-calcite) 0.2		0.02-0.1	

Plagioclase forms anhedral to locally subhedral, equant to prismatic phenocrysts. These grade downwards in size to interlocking aggregates of plagioclase grains (0.1-0.5 mm). All are altered slightly to sericite.

Hornblende forms subhedral, prismatic phenocrysts that were replaced completely by various aggregates of calcite and chlorite.

In the groundmass, plagioclase forms moderately interlocking grains that are intergrown with coarser grained patches of plagioclase and with patches of chlorite and calcite (after hornblende). Ti-oxide/leucoxene forms disseminated, irregular patches up to 0.5 mm in size. Many of these were nuclei for formation of clusters of pyrite grains. Apatite forms a few equant, anhedral grains. Hematite/magnetite forms one anhedral grain 0.15 mm across.

Epidote forms ragged replacement patches up to 1 mm in size. Many of these are associated with patches of pyrite and some contain a few grains of chalcopyrite.

Pyrite forms disseminated, anhedral to subhedral grains and clusters of several grains, in part intergrown with epidote. Some large patches of pyrite were partly granulated along their margins

Chalcopyrite forms disseminated, anhedral grains associated with chlorite-calcite after hornblende.

Quartz forms a few replacement patches up to 0.7 mm in size.

Calcite forms a few irregular veinlets from 0.02-0.1 mm wide and one vein 0.7 mm wide. A veinlet 0.03-0.05 mm wide is of epidote, pyrite, and chlorite with minor quartz and calcite.

Sample ddh 04-5 36.6 m Banded Calcite-Garnet-Quartz/Plagioclase-Pyrite Skarn

The sample contains three main zones. Zone A is characterized by an intergrowth of calcite with lesser, disseminated garnet. Zone B is dominated by garnet with minor interstitial plagioclase/quartz and calcite. Zone C contains garnet with interstitial plagioclase/quartz and much less abundant calcite. Pyrite forms disseminated porphyroblasts with inclusions of garnet. Sphalerite forms disseminated patches. Chalcopyrite forms disseminated grains. A few veins and several veinlets are of calcite with minor quartz and a few are of quartz with minor calcite.

percentage	main grain si	ze range (mm)
40-45	0.02-0.07	(a few up to 0.2)
30-35	0.05-0.1	
z 15-17	0.005-0.02	
2-3	0.05-0.5	
0.1	0.02-0.05	
minor	0.005-0.03	
minor	0.02-0.03	
5-7	0.1-1 (ct); 0.0	2-0.05 (qz)
0.3	0.02-0.05	-
	percentage 40-45 30-35 z 15-17 2-3 0.1 minor minor 5-7 0.3	percentage main grain si 40-45 0.02-0.07 30-35 0.05-0.1 z 15-17 0.005-0.02 2-3 0.05-0.5 0.1 0.02-0.05 minor 0.005-0.03 5-7 0.1-1 (ct); 0.0 0.3 0.02-0.05

In Zone A, garnet forms disseminated, equant, anhedral grains enclosed in abundant calcite. This grades into Zone B, which is dominated by garnet with only minor interstitial quartz/plagioclase and calcite and minor patches of pale green chlorite. This in turn grades into Zone C which is dominated by garnet with more abundant interstitial plagioclase/quartz and minor to locally moderately abundant calcite. Plagioclase/quartz also is concentrated in a few bands up to 0.5 mm wide in both Zones A and C. Plagioclase/quartz forms strongly interlocking aggregates of grains that are interstitial to garnet.

Pyrite forms disseminated grains and clusters of a few grains. It forms a few porphyroblasts up to 1.5 mm across that contain abundant embayments and inclusions of garnet; textures suggest that pyrite formed by replacement of interstitial calcite and plagioclase/quartz. Pyrite also forms disseminated grains mainly from 0.01-0.05 mm in size.

Sphalerite forms a few irregular patches up to 0.5 mm across in Zone B. It contains minor inclusions of chalcopyrite, probably of exsolution origin.

Chalcopyrite forms disseminated grains in sphalerite, in and bordering pyrite, and in garnet.

Veins up to 2 mm wider are dominated by calcite with minor patches of quartz.

One vein 0.2-0.3 mm wide is dominated by slightly interlocking quartz and much less abundant calcite.

Sample ddh 04-6 35.3 m Felsic Tuff Fragments in Quartz-(Chlorite-Pyrite-Epidote) Matrix Veins: Calcite-Epidote-Chlorite-(Pyrite-Chalcopyrite); Quartz

Angular fragments up to 2 cm in size of felsic tuff (A) are enclosed in and partly replaced by a patchy matrix dominated by quartz with lesser plagioclase, chlorite, epidote, and pyrite (B). Veins and veinlets are of calcite-epidote-chlorite-(pyrite-chalcopyrite). Minor veinlets and replacement patches are dominated by quartz.

mineral	percentage	main grain size range (mm)
coarser grains		
plagioclase	1-2%	0.05-0.15
groundmass		
plagioclase	40-45	0.005-0.01
leucoxene	1	dusty-0.005
pyrite	0.3	0.03-0.05
replacement		
quartz	35-40	0.01-0.03
plagioclase	5-7	0.005-0.015
chlorite	4-5	0.03-0.07
pyrite	2-3	0.05-0.2
epidote	1-2	0.03-0.05
chalcopyrite	0.3	0.02-0.1
Ti-oxide/leucoxene	0.1	0.005-0.02
Muscovite	trace	0.05-0.07
pyrrhotite	trace	0.005-0.01
veins, veinlets		
calcite-epidote-chlor	rite-quartz-(pyrite-	chalcopyrite) 2-3 0.02-0.1
quartz-(epidote-pyri	te-chlorite) 0.3	0.02-0.05

The felsic tuff fragments (A) contain scattered anhedral grains of plagioclase from 0.05-0.15 mm in size that are altered slightly to sericite. These grade downwards in size to that of the groundmass.

The groundmass of the fragments consists of interlocking grains of plagioclase with abundant, disseminated patches of leucoxene. Pyrite forms disseminated, anhedral grains.

The fragments are surrounded by a matrix that contains 2-5% anhedral plagioclase grains (0.05-0.15 mm) in a matrix dominated by quartz with minor to moderately abundant patches of extremely fine grained plagioclase and of chlorite. A few patches up to 1 mm across consist of a cluster of anhedral plagioclase grains from 0.1-0.2 mm in size. Plagioclase was altered slightly to sericite.

Chlorite forms clusters of up to a few grains. A few replacement patches up to 1.7 mm in size are dominated by chlorite with much less abundant quartz and pyrite.

Pyrite forms disseminated, subhedral to anhedral grains, many of which are associated with patches of chlorite. A few pyrite grains contain minor inclusions of pyrrhotite.

Epidote forms disseminated patches mainly less than 0.1 mm in size.

Chalcopyrite forms disseminated patches intergrown mainly with sulphides.

Ti-oxide/leucoxene forms ragged patches up to 0.2 mm in size.

Muscovite forms scattered flakes.

Veinlets up to 0.5 mm wide are of two or more of calcite, epidote, and chlorite, with scattered grains of pyrite and of chalcopyrite.

A few discontinuous veinlets up to 0.2 mm wide and replacement patches up to 0.5 mm across are of quartz; some of these also contain minor patches of epidote, pyrite, and chlorite.

Sample ddh 04-9 10.2 m Volcanic Wacke Veins: Epidote-Calcite-Quartz; Calcite-Quartz-Epidote-Pyrite

Detrital grains are dominated by equant fragments of plagioclase grains, very fine grained aggregates of plagioclase, and extremely fine grained aggregates of quartz. These are set in a groundmass dominated by plagioclase and chlorite with lesser leucoxene. Replacement patches are of calcite, epidote, and pyrite. Veins are of epidote-calcite-(quartz) and of calcite-quartz-epidote-pyrite.

mineral	percentage	main grain size range (mm)
detrital grains		
plagioclase	40-45%	0.5-0.8
quartz aggregate	4-5	0.01-0.03
ilmenite	minor	0.5
groundmass		
plagioclase	15-20	0.005-0.02
chlorite	3-4	0.005-0.015
epidote	0.3	0.05-0.1
replacement		
pyrite	3-4	0.05-0.5
calcite	1	0.03-0.1
epidote	0.5	0.03-0.07
chalcopyrite	minor	0.02-0.1
veins		
epidote-calcite-quartz	5-7	0.1-0.2
calcite-quartz-epidote-p	oyrite 2-3	0.03-0.2

Plagioclase forms anhedral grains and clusters up to 1.5 mm in size of a few to several grains. Alteration is slight to sericite. Scattered fragments are of very fine grained aggregates of plagioclase.

A few fragments are of angular quartz grains and aggregates of a few grains from 0.2-0.7 mm in size. These probably are of plutonic origin.

Equant fragments up to 1 mm in size are of aggregates of equant, slightly interlocking quartz grains.

A few patches up to 0.5 mm in size are of ilmenite that was altered completely to Ti-oxide/ leucoxene.

The groundmass is of slightly interlocking plagioclase and chlorite with moderately abundant leucoxene.

Replacement patches are dominated by pyrite, calcite, and epidote.

Chalcopyrite forms inclusions in pyrite grains and elongate patches along grain boundaries in pyrite aggregates.

A vein up to 5 mm wide and a few much smaller veinlets are dominated by epidote with lesser calcite and a few patches of quartz. Epidote has a pink colour in hand sample.

A vein up to 2 mm wide is dominated by calcite with lesser quartz, epidote, and pyrite. A few, discontinuous veinlets up to 0.3 mm wide are of calcite.

Sample ddh 04-9 30.5 m Hypabyssal Diorite/Andesite or Very Fine Volcanic Wacke

Anhedral plagioclase phenocrysts and much less abundant hornblende phenocrysts are set in a groundmass of finer grained plagioclase. Disseminated replacement patches are of epidote and pyrite. Discontinuous, replacement veinlets are of epidote, of calcite, and of quartz.

mineral	percentage	main grain size range (mm)
phenocrysts		
plagioclase	35-40%	0.15-0.5
hornblende	4-5	0.15-0.5
groundmass		
plagioclase	40-45	0.005-0.01
apatite	0.1	0.05-0.15
replacement		
epidote	4-5	0.05-0.1
pyrite	3-4	0.1-0.3
chalcopyrite	minor	0.01-0.05
veinlets		
1) epidote	1-2	0.05-0.1
2) calcite	0.3	0.02-0.05
3) quartz-(calc	ite) 0.2	0.02-0.05

Plagioclase forms anhedral, equant to prismatic phenocrysts and clusters of a few grains. Alteration is slight to sericite and moderate to dusty hematite inclusions that give the grains a medium grey colour.

Hornblende forms anhedral, prismatic phenocrysts that were replaced completely by chlorite and locally by calcite-chlorite; both types contain minor patches of leucoxene.

The groundmass is dominated by moderately interlocking, equant plagioclase grains that are relatively free of dusty hematite inclusions.

Apatite forms disseminated, equant, anhedral grains.

Pyrite forms disseminated, anhedral to subhedral grains, some of which are porphyroblastic. One pyrite-rich lens is 4 mm long and up to 1.5 mm wide. A few pyrite grains contain minor inclusions of chalcopyrite. Chalcopyrite also is concentrated moderately as disseminated grains in a few patches of epidote and of calcite.

Epidote forms disseminated, irregular replacement patches up to 0.5 mm in size.

A vein up to 0.5 mm wide and a few veinlets are dominated by epidote with much less abundant calcite and pyrite.

A few wispy veinlets up to 0.03 mm wide are dominated by calcite and quartz. One veinlet 0.02 mm wide is dominated by quartz.

Sample ddh 04-10 11.6 m Zoned: Porphyritic Hypabyssal Latite Hypabyssal Latite with Quartz-Sericite-Pyrite Alteration Sericite/Muscovite-Quartz-Epidote Alteration

The sample is zoned strongly. Zone A is a porphyritic hypabyssal latite that contains phenocrysts of plagioclase and minor ones of quartz in a groundmass dominated by plagioclase. Zone B consists of a replacement zone dominated by sericite with lesser epidote and quartz. Zone C contains patches of hypabyssal latite in a groundmass of much finer grained plagioclase and abundant replacement patches of one or more of K-feldspar, quartz, pyrite, and epidote.

Zone A ((25-30% of section)	
mineral	percentage	main grain size range (mm)
phenocryst	S	
plagioclase	2 12-15%	0.3-1.5
quartz	1-2	0.3-0.5
groundmas	55	
plagioclase	30-35	0.01-0.02
quartz	4-5	0.02-0.03
pyrite	2-3	0.05-0.2
apatite	minor	0.05-0.07
zircon	trace	0.05
replacemen	nt	
sericite	4-5	0.01-0.03
epidote	1-2	0.03-0.07
calcite	1-2	0.03-0.05

Plagioclase forms subhedral phenocrysts that were altered slightly to sericite and patches of calcite. A few patches up to a few mm across consist of aggregates of anhedral plagioclase grains. Quartz forms scattered, subrounded phenocrysts.

The groundmass is dominated by equant, slightly interlocking plagioclase grains with disseminated patches of chlorite (probably after hornblende).

Pyrite forms disseminated, subhedral to euhedral grains, many of which have a slight, partial rim of calcite.

Leucoxene forms irregular patches up to 0.3 mm in size, in part associated with pyrite.

Apatite forms disseminated, subhedral, equant grains.

Zircon forms one stubby, euhedral grain.

The zone was brecciated slightly, and sericite and pyrite were formed along fractures in the host rock.

Zone B	(5-7% of section)
--------	-------------------

mineral	percentage	main grain size range (mm)
sericite/muscovite	80-85%	0.02-0.1
epidote	10-12	0.05-0.1
quartz	3-4	0.03-0.07
pyrite	0.3	0.05-0.2

(continued)

Sample ddh 04-10 11.6 m (page 2)

Zone B is a replacement zone dominated by sericite/muscovite. Epidote forms subradiating to massive patches intergrown with sericite. Quartz forms patches up to 0.5 mm in size of anhedral grains. Pyrite forms scattered, subhedral to euhedral grains.

Zone C (60-65% of section)			
mineral	percentage	main grain size range (mm)	
plagioclase	60-65%	0.2-0.5; 0.005-0.01	
K-feldspar	15-17	0.1-0.5	
quartz	12-15	0.01-0.03	
chlorite	2-3	0.03-0.05	
pyrite	3-4	0.05-0.1	
calcite	0.3	0.02-0.05	
Ti-oxide	0.1	0.02-0.05	
chalcopyrite	minor	0.03-0.07	

This zone is variable in composition. It contains patches up to 2 mm across of aggregates of anhedral, moderately interlocking plagioclase grains (0.15-0.5 mm). These grade into zones of much finer grained plagioclase and K-feldspar. Plagioclase was altered slightly to sericite.

K-feldspar forms irregular replacement patches after plagioclase, relic plagioclase was altered strongly to sericite. Some finer grained replacement patches of K-feldspar also contain quartz.

Quartz forms abundant, irregular, replacement patches of equant, slightly interlocking grains. Grain size varies moderately from patch to patch. Scattered ovoid replacement patches up to 1 mm in size are dominated by slightly interlocking aggregates of quartz.

Interstitial to some patches of plagioclase is moderately abundant chlorite in patches up to 0.15 mm in size.

Pyrite forms disseminated, subhedral to euhedral grains and clusters and trains of grains.

Calcite forms scattered replacement patches up to 0.2 mm across and veinlets up to 0.03 mm wide.

Ti-oxide forms disseminated, irregular patches up to 0.2 mm in size. Some of these were loci for precipitation of pyrite.

Chalcopyrite forms scattered grains.

veinlets (1-2%	of section)	
mineral	percentage	main grain size range (mm)
calcite-(quartz)	0.5-1%	0.02-0.1
sericite-pyrite	0.3	0.02-0.05

A veinlet 0.2 mm wide is dominated by calcite grains, many of which are oriented subperpendicular to the walls of the veinlet. A few smaller veinlets are of calcite and/or quartz.

In Zone C, an irregular veinlet 0.05 mm wide is of sericite with moderately abundant pyrite.

Sample ddh 04-10 16.76 m

Porphyritic Dacite Replacement Patches: Quartz Veins, Veinlets: Calcite, Quartz

Phenocrysts of plagioclase (altered strongly to sericite and calcite), lesser phenocrysts of quartz, and minor ones of hornblende (altered completely to sericite and leucoxene) are set in an extremely fine grained groundmass dominated by plagioclase. A large replacement patch and numerous smaller ones are of quartz. An irregular replacement zone is of sericite-calcite. Abundant veins and veinlets are of calcite and a few are of quartz.

mineral percentage		main grain size range (mm)	
phenocrysts			
plagioclase	5-7%	0.5-1.5	
quartz	1-2	0.5-0.7	
hornblende(?)	0.3	0.5-1	
apatite	minor	0.1-0.2	
groundmass			
plagioclase	40-45	0.005-0.01	
sericite	8-10	0.005-0.01	
calcite	3-4	0.01-0.03	
pyrite	3-4	0.05-0.2	
replacement			
quartz	20-25	0.05-0.1	
veins			
calcite	7-8	0.05-0.5	
quartz	1-2	0.02-0.07	

Plagioclase forms subhedral to euhedral phenocrysts that were replaced strongly to completely by sericite and irregular patches of calcite.

Quartz forms scattered, subrounded phenocrysts. One quartz phenocryst was cut and offset 0.6 mm along a wispy veinlet of calcite-sericite 0.03 m wide.

Hornblende(?) forms subhedral phenocrysts that were replaced completely by sericite and leucoxene.

In one corner of the section, a patch 2 mm across with nearly orthogonal outlines consists of an intergrowth of quartz and sericite (possibly after plagioclase). The rectilinear shape of this patch suggests that it is an altered phenocryst, but the original mineral is uncertain. A few patches of quartz up to 0.5 mm in size have rectangular outlines and may be secondary after plagioclase or mafic phenocrysts.

Apatite forms a few subhedral to euhedral phenocrysts.

The groundmass is dominated by equant, moderately to strongly interlocking plagioclase grains.

Sericite forms very irregular replacement patches up to a few mm in size. Some patches contain minor to moderately abundant calcite. Some of this sericite may be secondary after plagioclase phenocrysts, but the original texture was destroyed and sericite replaced both phenocrysts and surrounding groundmass.

(continued)

Pyrite forms disseminated, euhedral to subhedral grains. A few grains are bordered by one or two flakes of muscovite.

A few replacement patches up to a few mm across are of slightly coarser grained plagioclase and quartz with lesser patches of sericite and minor ones of calcite.

At one end of the section is a large replacement patch dominated by quartz with minor calcite and pyrite. It contains a few fragments up to 1 mm in size of the host rock.

Several veins up to 0.7 mm wide and numerous discontinuous veinlets from 0.03-0.1 mm wide are of calcite. A few contain patches of subhedral to euhedral quartz grains. Veins are particularly abundant in the patch of replacement quartz.

A few discontinuous veinlets up to 0.5 mm wide are of quartz.

Sample ddh 04-10 24.0 m

Hypabyssal Diorite/Andesite or Very Fine Volcanic Wacke Sericite-Calcite Alteration Calcite-Quartz Veins

The sample is altered moderately and textures are somewhat diffuse. Textures are most similar to those in Sample 04-9 30.6 m. Anhedral, coarser plagioclase grains are set in a groundmass of much finer grained plagioclase. Alteration is moderate to disseminated sericite and patches of calcite. Pyrite forms disseminated grains. Veinlets are of sericite-chlorite-pyrite, sericite-quartz, and calcite.

mineral	percentage	main grain size range (mm)
phenocrysts		
plagioclase	20-25%	0.05-0.25
groundmass		
plagioclase	50-55	0.005-0.03
leucoxene	0.3	dusty-0.01
apatite	trace	0.1-0.15
replacement		
sericite	3-5	0.005-0.02
pyrite	3-5	0.03-0.3
calcite	2-3	0.03-0.05
quartz	1-2	0.03-0.3
epidote	0.2	0.02-0.05
chlorite	0.2	0.05-0.1
chalcopyrite	minor	0.02-0.07
veins		
sericite-chlorite-	pyrite 2-3	0.01-0.03 (se, cl), 0.05-0.2 (py)
sericite-quartz-(o	chlorite-chalco	pyrite) 0.5 0.01-0.02 (se), 0.03-0.07 (qz, cl, cp)
calcite-(quartz)	1-2	0.05-0.5

Plagioclase forms anhedral, equant to slightly prismatic grains that were altered moderately to sericite and ragged patches of calcite.

Leucoxene forms disseminated, ragged patches and lenses. Apatite forms disseminated, anhedral to subhedral grains.

Sericite forms anhedral replacement patches whose origin is uncertain; they may be after phenocrysts or may be replacement of the rock as a whole. Some replacement patches consist of intimate intergrowths of sericite and calcite.

Pyrite forms disseminated, subhedral to euhedral grains and clusters of a few to several grains. A few of these have overgrowths on one side of chlorite up to 0.15 mm thick. Most pyrite grains contain dusty to extremely fine silicate inclusions and a few contain an inclusion of chalcopyrite up to 0.01 mm in size.

Calcite forms irregular replacement patches up to 0.3 mm in size.

Quartz forms a few replacement patches up to 1 mm in size; some of these contain disseminated grains of chalcopyrite.

A few lenses up to 1.5 mm long are of a dense aggregate of anhedral epidote and calcite.

Pale green chlorite forms scattered equant grains and patches up to 0.1 mm in size.

Chalcopyrite forms minor disseminated patches in silicates and a few patches interstitial to pyrite.
(continued)

Sample ddh 04-10 24.0 m (page 2)

Two subparallel veinlets up to 0.7 mm wide are of sericite, chlorite, and pyrite. Pyrite forms euhedral to subhedral grains

A few veinlets up to 0.1 mm wide are of sericite and quartz. Some of these also contain patches of chlorite and of chalcopyrite. Sericite also forms wispy lenses and patches that cut the rock.

Calcite forms irregular, in part diffuse veinlets up to 0.5 mm wide as well as discontinuous lenses, mainly from 0.03-0.1 mm wide. In some veins, grains are subparallel and oriented at 60-70° to the walls of the veinlet. A few veins contain subordinate patches of quartz.

Sample ddh 04-10 96.1 m Felsic Tuff Replacement: Quartz; Calcite, Sericite, Pyrite Veinlets: Calcite, Quartz

Minor phenocrysts of plagioclase are set in a groundmass of extremely fine grained plagioclase. In part of the sample the groundmass is slightly coarser grained and contains more quartz; this may be the result of early silicification. Irregular replacement patches are dominated by one or more of sericite, calcite, and pyrite. Irregular, discontinuous veins and veinlets are dominated by one or more of calcite, quartz, sericite, and pyrite. Several veinlets of quartz-sericite contain moderately abundant disseminated chalcopyrite and minor to moderately abundant calcite.

0.3

Plagioclase forms subhedral prismatic to equant phenocrysts that are concentrated moderately to strongly in a few patches in the section.

Quartz forms one angular, detrital grain.

In part of the rock, the groundmass is dominated by equant, interlocking plagioclase grains. Disseminated patches of calcite and sericite may, in part, be replacements of original plagioclase grains from 0.05-0.1 mm in size. In the other part of the rock, the groundmass is slightly coarser grained and contains moderately abundant quartz; this zone may represent an early, silicification of the host rock.

Leucoxene forms disseminated spots.

Apatite forms scattered, anhedral, equant grains.

(continued)

(cp)

A few irregular replacement patches up to a few mm across are dominated by sericite; some contain patches of pyrite and interstitial chlorite.

Pyrite forms disseminated, subhedral to euhedral grains and clusters up to a few mm across of a few to many grains. A few diffuse, discontinuous veinlets up to 0.2 mm wide consist of trains of these grains.

A few replacement patches are dominated by quartz with much less abundant chlorite and chalcopyrite.

Calcite forms lensy, discontinuous veinlets up to 1 mm wide. Some of these contain minor to moderately abundant quartz. In some large veins, calcite grains are elongated and oriented at a high angle to the length of the vein, and in others, grains are equant and show no preferred orientation. One slightly banded calcite vein up to 1 mm wide cuts a quartz veinlet 0.2 mm wide.

Quartz forms a few discontinuous veinlets up to 0.3 mm wide; some of these contain minor calcite. One veinlet up to 0.3 mm wide is dominated by quartz with much less abundant, interstitial calcite along its centreline.

A few veinlets up to 1 mm wide are dominated by quartz and/or sericite and contain disseminated patches of chalcopyrite and of chlorite. The largest vein contains several chalcopyrite patches from 0.1-0.3 mm in size.

Sample ddh 04-10 141.5 m

Cataclastically Deformed Hypabyssal Diorite Veins and Replacement: Epidote, Calcite, (Chlorite, Quartz)

Three fragments up to 1 cm in size are of hypabyssal diorite dominated by plagioclase (A). One exotic fragment is of hypabyssal latite (B). These are set in a matrix of extremely fine grained plagioclase that contains minor to moderately abundant plagioclase crystal fragments whose texture is similar to that in the coarser fragments. Some textures suggest that the rock was deformed cataclastically. One patch of groundmass is free of plagioclase fragments (C). A large vein is of epidote-calcite-(chlorite). Several replacement patches up to a few mm across are of epidote. Calcite forms replacement patches and abundant irregular veinlets.

mineral	percentage	main grain :	size range (mm)
fragments		_	
diorite			
plagioclase	20-25%	0.3-1	
K-feldspar	3-4	0.02-0.05	(only in fragment A')
chlorite	0.5	0.02-0.05	
leucoxene	0.3	dusty-0.03	
latite			
plagioclase	3-4	0.05-0.1	
groundmass			
megacrysts			
plagioclase	17-20	0.1-0.5	
groundmass			
plagioclase	35-40	0.005-0.01	
chlorite	1-2	0.03-0.05	
leucoxene	1	dusty-0.05	
pyrite	0.5	0.02-0.05	
chalcopyrite	minor	0.02-0.15	
veins and repl	acement		
epidote-calcite	e-(chlorite) 5-7	0.03-0.15	
calcite	2-3	0.05-0.8	

Fragment A consists of interlocking, subhedral plagioclase grains (0.1-0.8 mm) with less than 5% interstitial patches of extremely fine grained plagioclase with patches of leucoxene/Ti-oxide and minor disseminated pyrite and 2-3% ragged, replacement patches of calcite.

Fragment A' consists of an intergrowth of slightly more elongated plagioclase grains with 20-25% much finer grained interstitial patches of plagioclase and K-feldspar with disseminated leucoxene and 2-5% irregular replacement patches of calcite and minor pyrite. Many larger plagioclase grains were replaced slightly by irregular patches of K-feldspar.

Fragment A" is somewhat similar to Fragment A, but contains 30% interstitial patches of slightly interlocking, equant plagioclase (0.01-0.02 mm).

Fragment B (latite) consists of an unoriented intergrowth of prismatic and lesser equant plagioclase grains (0.05-0.15 mm) with minor disseminated leucoxene, patches of calcite, and pyrite.

(continued)

The groundmass contains abundant, anhedral grains of plagioclase in a groundmass of much finer grained plagioclase with much less abundant patches of chlorite and disseminated, ragged patches of leucoxene. Zone C is free of coarser plagioclase fragments.

Epidote forms replacement patches up to a few mm across, whose margins range from sharp to ragged. Some epidote patches contain aggregates of chalcopyrite and pyrite up to 0.5 mm across.

Calcite forms irregular replacement patches up to 0.5 mm in size in both groundmass and fragments.

Pyrite forms disseminated, subhedral to euhedral grains that are concentrated moderately to strongly in certain parts of the section.

Chalcopyrite forms minor disseminated patches.

A large, slightly discontinuous vein up to 0.5 mm wide and a much narrower branch are dominated by epidote with lesser calcite and minor chlorite. In an alteration envelope up to 2 mm wide about the vein, the wall rock contains minor disseminated patches of epidote.

Calcite forms several, irregular veins from 0.1-0.5 mm wide and numerous, discontinuous veinlets up to 0.1 mm wide.

Sample ddh 04-10 209.3 m

Hypabyssal Syenite Replacement, Veinlets: Quartz-Calcite/Ankerite

Scattered phenocrysts of plagioclase, in part overgrown by K-feldspar, and minor ones of hornblende are set in a groundmass dominated by unoriented prismatic K-feldspar grains, with minor biotite and magnetite. Plagioclase was altered moderately to sericite-calcite overgrown moderately to strongly by K-feldspar, hornblende was replaced completely by various intergrowths of calcite/ ankerite, quartz, and rutile, and biotite was replaced slightly to moderately by quartz-rutile. Interstitial patches of calcite/ankerite and quartz probably are of replacement origin. Several veinlets are of quartz-(calcite) and a few are of calcite.

mineral	percentage	main grain si	ze range (mm)
phenocrysts			
plagioclase	7-8%	1-2	
hornblende	2-3	1-1.7	
biotite	1-2	0.5-1	
groundmass			
K-feldspar	82-85	0.5-1	
magnetite	1	0.05-0.2	
quartz	0.1	0.07-0.2	
apatite	0.1	0.1-0.2	
pyrite	minor	0.05-0.1	
replacement, ve	ins		
calcite/ankerite	4-5	0.1-0.3	
quartz	2-3	0.01-0.03	(a few grains up to 0.4 mm)

Plagioclase forms subhedral, prismatic to equant phenocrysts, many of which were overgrown by K-feldspar. Plagioclase was altered moderately to strongly to extremely fine intergrowths of sericite and calcite. Some K-feldspar probably was formed by replacement of plagioclase.

Hornblende forms a few subhedral to euhedral, prismatic phenocrysts. Some were replaced completely by calcite/ankerite with minor sericite/muscovite and disseminated grains of rutile. A few were replaced by aggregates of quartz and minor disseminated grains of Ti-oxide and minor to moderately abundant patches of calcite/ankerite; quartz-rutile textures are similar to those bordering biotite grains. Some quartz-rich patches also contain local clusters of sericite/muscovite intergrown with patches of Ti-oxide.

Biotite forms a few flakes with pleochroism from light straw to deep brownish red or red. Most are surrounded by very fine grained quartz containing disseminated grains of rutile; these aggregates probably are secondary after biotite. One biotite flake was replaced moderately by patches of calcite/ankerite.

The groundmass is dominated by unoriented, prismatic grains of K-feldspar that contains abundant, dusty hematite inclusions.

Magnetite forms disseminated, equant grains that were replaced strongly to completely by slightly translucent, deep reddish brown hematite.

Quartz forms minor interstitial patches.

Apatite forms subhedral to euhedral, prismatic grains.

Pyrite forms disseminated, subhedral grains.

(continued)

Calcite/ankerite forms interstitial patches, probably of replacement origin. These patches are dominated by calcite with zones, mainly along their margins of much higher relief that are interpreted to be ankerite.

Quartz is concentrated in discontinuous veinlets up to 0.2 mm wide and a few irregular patches. One of the veinlets has a lens of coarser grained calcite in its core.

A few veinlets up to 0.15 mm wide are dominated by calcite with minor quartz.

Sample ddh 04-11 89.5 m Porphyritic Hypabyssal Latite/Monzodiorite Veins, Veinlets: Calcite

Phenocrysts of plagioclase, lesser ones of hornblende, and minor ones of quartz are set in a groundmass dominated by plagioclase, with lesser K-feldspar and chlorite, and minor calcite, quartz, pyrite, and leucoxene. Plagioclase phenocrysts were altered slightly to sericite and hornblende phenocrysts were altered completely to chlorite and calcite/ankerite. Replacement patches, veins and veinlets are of calcite.

mineral	percentage	main grain s	size range (mm)
phenocrysts			
plagioclase	15-17%	0.5-1.7	(one grain 2.3 mm long)
hornblende	4-5	0.5-1.5	
quartz	0.5	0.1-0.3	(one grain 0.9 mm across)
groundmass			
plagioclase	55-60	0.01-0.1	
K-feldspar	10-12	0.01-0.03	
chlorite	4-5	0.02-0.05	
calcite	1-2	0.05-0.1	
quartz	1	0.05-0.3	
leucoxene	0.5	0.005-0.02	
pyrite	0.5	0.05-0.5	
apatite	minor	0.05-0.1	
pyrrhotite	trace	0.005-0.01	
veins			
calcite	3-4	0.1-3	

Plagioclase forms euhedral to subhedral, prismatic phenocrysts that were altered slightly to moderately to sericite.

Hornblende forms subhedral to euhedral, equant to prismatic phenocrysts that were replaced completely by chlorite and calcite with ragged patches of leucoxene.

Quartz forms one subrounded phenocryst 0.9 mm across and a few, small, rounded phenocrysts.

The groundmass contains equant to slightly prismatic plagioclase grains with interstitial patches of finer grained plagioclase and K-feldspar, with lesser interstitial patches of chlorite, disseminated interstitial grains of quartz, and ragged replacement patches of calcite.

Leucoxene forms ragged patches, commonly associated with chlorite.

Pyrite forms disseminated, anhedral to locally subhedral grains, a few of which contain minor inclusions of pyrrhotite.

Apatite forms disseminated, anhedral to subhedral, equant to prismatic grains.

Calcite forms irregular replacement patches up to 2 mm across, a few veins up to 1.5 mm wide, and several veinlets from 0.01-0.05 mm wide. Many grains in the largest veins are over 2 mm in size. One small veinlet 0.15 mm wide contains a patch 0.02 mm across of chalcopyrite and bornite.

Sample ddh 04-11 191.8 m

Pyroxene Amphibolite; Patch of Metamorphosed Syenite Veinlets: Calcite-(Chlorite)

The sample is dominated actinolite and much less abundant magnetite, biotite, and sphene. Clinopyroxene forms ragged cores of grains that were replaced moderately to strongly by actinolite. Some actinolite grains were replaced moderately to completely by pseudomorphic tremolite and patches of calcite-(hematite). A patch in one corner of the section is of metamorphosed syenite that is dominated by coarse grained microcline with less abundant, finer grained plagioclase. Irregular veinlets are of calcite and lesser chlorite; near these, amphibole commonly is replaced by pale green tremolite/actinolite.

mineral	percentage	main grain size range (mm)		
actinolite	83-85%	0.5-2		
magnetite	4-5	0.05-0.5		
biotite	2-3	0.5-1		
sphene	1	0.03-0.07	(a few grains up to 0.2 mm)	
epidote	0.2	0.03-0.07	(a few grains up to 0.5 mm)	
pyrite	trace	0.01-0.03		
syenite				
K-feldspar	4-5	0.3-2		
plagioclase	1-2	0.05-0.5		
calcite	0.2	0.03-0.1		
veins, veinlets				
calcite	2-3	0.02-0.2		
chlorite	0.3	0.02-0.05		
pyrite	trace	0.03-0.05		

Actinolite forms anhedral, slightly interlocking, prismatic grains with pleochroism from light to medium green. Some grains were altered moderately to completely in patches to pseudomorphic, colourless to pale green tremolite with minor to abundant irregular patches of calcite. Some patches of calcite contain abundant ragged patches of dusty to extremely fine grained hematite.

Biotite forms subhedral flakes and clusters of several flakes with pleochroism from pale to medium brownish green.

Clinopyroxene forms a few patches of moderately corroded grains that were replaced moderately by actinolite. Some of the actinolite was replaced by tremolite/actinolite and calcite.

Magnetite forms disseminated, anhedral grains. Many have a thin rim or partial rim of sphene. Hematite occurs in scattered patches bordering magnetite grains and locally forms a weak replacement within margins of magnetite grains. A few biotite grains adjacent to a magnetite grain contain flame-like aggregates or a lens of hematite growing along cleavage planes outwards from the contact with the magnetite grain. A few other biotite grains contain up to a few thin lamellae of hematite along cleavage planes.

Sphene forms disseminated, anhedral to subhedral grains included in actinolite grains and rims on magnetite grains. A few grains are altered slightly to moderately to Ti-oxide/leucoxene.

Epidote forms disseminated, anhedral grains and patches.

Calcite forms interstitial patches up to 1.5 mm in size that grade into calcite-altered amphibole. Pyrite forms disseminated, anhedral grains.

(continued)

Sample ddh 04-11 191.8 m (page 2)

In one corner of the section is a patch a few m across of metamorphic syenite (of feldspar segregation) dominated by coarse grained K-feldspar with much less abundant, much finer grained plagioclase. Plagioclase was replaced slightly to moderately by irregular patches of calcite. Calcite also forms scattered, interstitial patches up to 0.3 m in size.

Veinlets up to 0.2 mm wide are dominated by calcite with locally moderately abundant patches of chlorite. Pyrite forms a few lensy patches up to 0.2 mm long. Adjacent to many veinlets, actinolite was altered moderately to strongly to pseudomorphic tremolite.

Sample ddh 04-12 180.5 m

Metamorphosed Diorite Veinlet: Calcite-(Epidote)

The rock is dominated by plagioclase with lesser actinolite and much less abundant epidote, biotite, and K-feldspar, and minor sphene, hematite, calcite, apatite, and chalcopyrite. The ragged texture indicates a metamorphic history. Plagioclase is altered slightly to moderately to sericite and minor epidote. Some actinolite grains are altered moderately to strongly to tremolite-(calcite) and minor epidote. A veinlet is of calcite with minor epidote.

mineral	percentage	main grain size range (mm)			
plagioclase	65-70%	0.3-0.7	(a few from 1.2 -2 mm)		
actinolite	12-15	0.2-1	(a few from 2-3.5 mm)		
epidote	5-7	0.2-0.5			
biotite	4-5	0.3-1			
K-feldspar	3-4	0.2-0.7			
sphene	0.7	0.05-0.15			
hematite	0.2	0.02-0.08			
apatite	0.1	0.05-0.1			
calcite	0.1	0.05-0.2			
chalcopyrite	0.1	0.01-0.05	(a few up to 0.15 mm)		
magnetite	0.1	0.03-0.07	(a few up to 0.3 mm)		
pyrite	trace	0.05-0.1			
bornite	trace	0.01-0.02			
veinlet					
calcite-(epidote)	0.2	0.03-0.07			

Plagioclase forms anhedral, slightly interlocking grains, a few of which were altered moderately to sericite.

Actinolite forms ragged prismatic grains with pleochroism from light to medium green. Some grains, including most of the coarser ones, were replaced moderately to strongly in patches by pale green tremolite.

Epidote forms ragged grains and patches, in part replacing actinolite and in part replacing plagioclase.

Biotite forms ragged flakes with pleochroism from light to medium, brownish green.

K-feldspar forms anhedral interstitial grains and also forms replacement patches along and near borders of some plagioclase grains.

Sphene forms anhedral, disseminated grains.

Calcite forms anhedral, interstitial grains.

Apatite forms disseminated, subhedral to anhedral, equant to prismatic grains.

Pyrite forms anhedral grains

Magnetite forms anhedral, equant grains, some of which were altered slightly to hematite.

Chalcopyrite forms anhedral grains, commonly associated with epidote. A few patches of chalcopyrite contain one to a few grains of bornite.

One patch 0.3 mm across contains an intergrowth of chalcopyrite, pyrite, and platy hematite. Hematite forms patches up to 0.2 mm in size of anhedral to platy grains.

A veinlet 0.1 mm wide is dominated by calcite with much less abundant epidote.

Sample ddh 04-12 186.5 m

Amphibolite Veinlets: Chlorite-Calcite-K-feldspar-Epidote

The sample is dominated by unoriented, slightly interlocking grains of actinolite with much less abundant interstitial grains of biotite, magnetite, K-feldspar, sphene, and apatite. Two veinlets up to 0.3 mm wide are dominated by chlorite with lesser calcite, K-feldspar, and epidote.

mineral	percentage	main grain size range (mm)		
actinolite	85-87%	0.5-1.5	(a few up to 2.5 mm long)	
biotite	5-7	0.2-0.5		
magnetite	4-5	0.1-0.5		
K-feldspar	1-2	0.1-0.15		
sphene	1-2	0.05-0.15		
apatite	0.7	0.05-0.1	(a few grains from 0.2-0.4 mm long)	
epidote	minor	0.05-0.15		
chalcopyrite	trace	0.02-0.03		
veinlets				
chlorite-calcite	-K-feldspar-epie	dote 1-2	0.03-0.15	

Actinolite forms anhedral, slightly interlocking, prismatic to equant grains with pleochroism from pale to light/medium, slightly brownish green. Many grains contain abundant, commonly platy opaque inclusions that are oriented along major crystallographic directions in actinolite. A few patches up to 0.4 mm in size are of subradiating aggregates of tremolite.

Biotite forms disseminated flakes with pleochroism from straw to light, brownish green. A few grains were replaced moderately to completely in plates parallel to cleavage by pale green, pseudomorphic chlorite. A few grains were replaced slightly to moderately by patches of K-feldspar. One elongate grain 0.8 mm long was replaced by a very fine grained aggregate of K-feldspar with wispy relic seams of sericite/muscovite oriented parallel to the length of the grain.

Magnetite forms disseminated, anhedral grains, many of which were replaced slightly to moderately by hematite in irregular patches near margins of the grains. Some magnetite grains are rimmed partly by sphene.

K-feldspar forms disseminated, interstitial grains.

Sphene forms disseminated, anhedral grains.

Apatite forms disseminated, anhedral grains.

Epidote forms a few patches up to 0.2 mm in size.

Calcite forms scattered anhedral, in part ragged grains.

Chalcopyrite forms one elongate grain

An irregular veinlet up to 0.4 mm wide is of chlorite and calcite with lesser K-feldspar and epidote. An irregular veinlet up to 0.2 mm wide is of chlorite with patches of epidote. Veinlets contain angular fragments of the host rock, including several sphene grains.

APPENDIX 5a

Logistical Report - Induced Polarization, Magnetometer and VLF Surveys

by SJ GEOPHYSICS LTD.

LOGISTICAL REPORT

Cougar Mineral Ltd.

3D Induced Polarization Survey

Exploration Project

SEPTEMBER 2004

Grand Forks, BC, Canada

Location of Control point at the center of the grid (approximately) 397840E 5488735N (WGS 84 Zone 11U)

PREPARED FOR COUGAR MINERALS LTD.

Survey by SJ Geophysics Ltd.

Report by

Jesse Corrigan Cameron Wallace S.J.V. Consultants Ltd. Date: October/November 2004

TABLE OF CONTENTS

1.	Introduction	. 1
2.	Location and Line Information	. 1
3.	Field Work and Instrumentation	. 2
4.	Geophysical Techniques	. 3
	4.1. IP Method4.2. Discussion of Directional Effect on the IXL Grid	.3 4
5.	Appendix 1 – Statement of Qualifications	6
	5.1. Cameron Wallace	. 6
6.	Appendix 3 – Instrument Specifications	.7
	 6.1.Iris Elrec 10 IP Receiver. 6.2.GDD Tx II IP Transmitter. 6.2.ED + ON ON PLANE CONTRACTOR OF CONTR	7
	6.3.EDA OMNI-Plus Specifications	.9

1. INTRODUCTION

Cougar Minerals Ltd. contracted the services of SJ Geophysics Ltd. to conduct an Induced Polarization survey over areas of the IXL Mine property near Grand Forks, BC. The gathered data was then to be used in determining the location of future drill holes and trench targets.

2. LOCATION AND LINE INFORMATION

Located roughly a 1.5 hour drive North of Grand Forks, the grid was prepared with 11 slopecorrected lines, tied together with a baseline at 10100N. The slope of terrain varied from between 0 % to as much as 100% in areas. Lines 5800E through 5200E were 1.1 km in length, lines 5100E through 4800E were 1 km in length. The survey was conducted at 50 meter spacing. The grid was reached via forestry access roads. The helpers used a hand-held radio to communicate with traffic and lead the drive each morning. Following the departure of the helpers, a short-range hand-held field radio was programmed for crew use.

3. FIELD WORK AND INSTRUMENTATION

The survey was conducted during the period from September 9th, 2004 to September 25th, 2004. This includes 2 days for mobilization, and demobilization. The geophysical data was collected from September 11th to September 24th of 2004. During 10 days of production 13 Km of IP data were collected. Following the IP survey 11.8 Km of Mag/VLF data were collected. Five days were lost due to equipment problems, setup, and weather.

The geophysical crew consisted of 5 members, Tony Cade, Jesse Corrigan Dominic Kot. Helpers Mike Hibberson and Chris Shuster were supplied by the client. Jesse was the receiver operator, and Dominic was the transmitter operator for the majority of the survey. The IP survey required current lines on either side of the receiver with one additional line along the receiver line to provide additional shallow detail. Mike and Chris worked current lines for the duration of the survey. Tony and Dominic alternated on the transmitter and current during the survey. Tony and Dominic conducted the Mag/VLF following the IP survey, after the rest of the crew had departed.

The instrumentation used in the field consisted of an Elrec 10 Receiver and a GDD TxII transmitter for the IP survey. The Mag/VLF was conducted using EDA units with VLF capability.

The detailed specifications are located in Appendix 6 of this report.

4. **Geophysical Techniques**

4.1. IP Method

The time domain IP technique energizes the ground surface with an alternating square wave pulse via a pair of current electrodes. On most surveys, such as this one, the IP/Resistivity measurements are made on a regular grid of stations along survey lines.

After the transmitter (Tx) pulse has been transmitted into the ground via the current electrodes, the IP effect is measured as a time diminishing voltage at the receiver electrodes. The IP effect is a measure of the amount of IP polarizable materials in the subsurface rock. Under ideal circumstances, IP chargeability responses are a measure of the amount of disseminated metallic sulfides in the subsurface rocks.

Unfortunately, there are other rock materials that give rise to IP effects, including some graphitic rocks, clays and some metamorphic rocks (serpentinite for example). So from a geological point of view, IP responses are almost never uniquely interpretable. Because of the non-uniqueness of geophysical measurements it is always prudent to incorporate other data sets to assist in interpretation.

Also, from the IP measurements the apparent (bulk) resistivity of the ground is calculated from the input current and the measured primary voltage.

IP/resistivity measurements are generally considered to be repeatable to within about five percent. However, they will exceed that if field conditions change due to variable water content or variable electrode contact.

IP/resistivity measurements are influenced, to a large degree, by the rock materials nearest the surface (or, more precisely, nearest the measuring electrodes), and the interpretation of the traditional pseudosection presentation of IP data in the past have often been uncertain. This is because stronger responses that are located near surface could mask a weaker one that is located at depth.

4.2. Discussion of Directional Effect on the IXL Grid

When processing the data for a 3D IP survey a pseudo-section is produced for quality control. These sections split the data up into 6 different parts based on the relation of the transmitting line to the receiver line, and based on the relation of the transmitting station to the receiving dipole. In this particular data set we noticed something very interesting. The difference in the amplitude of the calculated resistivity was quite dramatic based on the relation of the current electrode to the receiving dipole. The amplitude of the resistivity is calculated from the recorded current, recorded voltage and the location of the transmitting and receiving poles. Because of this we often find that any calculated resistivity values that fluctuate systematically, and with any relation to survey design, are an indication of a problem in location, such as mislabeled stations. When the receiving dipole was on the south side of the electrode the amplitude of the calculated resistivity was roughly half the amplitude of the same calculated resistivity from the other side, so of course we examined the location database and the labeling. We were unable to find any errors, and, as the difference between the calculated resistivity when the current electrode was north of the receiving dipole compared to when it was to the south of the receiving dipole appeared almost systematic, but no longer related to the survey design, we began to realise that this was a pronounced instance of the directional effect.

There has been an increasing awareness in geophysics of what is called the directional effect in relation to IP. This roughly means that the position of the receiving dipole in relation to the position of the transmitting current electrode can affect the resulting shape, presence, size and amplitude of the calculated resistivity. This increased awareness has been present due to a slow move away from one direction 2D IP surveying. Fortunately, the survey done was 3D IP, so we were able to discover this affect and provide an inverted result. As we are very interested in discovering more details of this effect we are interested in re-surveying the area to make sure it is repeatable, depending on if and when it might be possible for us to spare a crew and if Cougar Minerals Ltd. would be able to allow us access to the property. We may also conduct a standard 2D survey over the same area to further compare the results. The inversion program seemed to be able to resolve the anomalies quite well, though we would be curious to see how accurately this

corresponds with drill results and geological results.

There is also the question of the extent of the anomalies, as they are not fully covered by the grid, further surveying done to the SouthWest and NorthWest of the grid, as well as to the East should allow a more complete map of the anomalies in the area, this may also allow us to further resolve any directional effects. Further discussion of the possible anomalous extents based on geophysics and surrounding geology is recommended, as the exact size and shape of possible grid extensions relies on a number of factors.

Respectfully Submitted

Cameron Wallace Bsc.

Geophysical Technician

SJ Geophysics Ltd./ S.J.V. Consultants Ltd.

Delta, B.C.

5. Appendix 1 – Statement of Qualifications

5.1. Cameron Wallace

I, Cameron Wallace, of the city of Vancouver, Province of British Columbia, hereby certify that:

- 1. I graduated from the University of Victoria 2003 with a Bachelor of Science degree majoring in geography.
- 2. I have been working in mineral and oil exploration since February 2004.
- 3. I have no interest in Cougar Minerals Ltd., or in any property within the scope of this report, nor do I expect to receive any.

Signed by: _____

Cameron Wallace Geophysical Technician

Date: _____

6. Appendix 3 – Instrument Specifications

6.1. Iris Elrec 10 IP Receiver

Technical:

Input impedance:	10 Mohm
Input overvoltage protection up to	1000V
Automatic SP bucking with linear	drift correction
Internal calibration generator for a	true calibration on request of the operator
Internal memory:	3200 dipoles reading
Automatic synchronization and re-	synchronization process on primary voltages signals
whenever needed	
Proprietary intelligent stacking pro	cess rejecting strong non-linear SP drifts
Common mode rejection:	More than 100 dB (for Rs =0)
Self potential (Sp)	: range: -15V - +15V
	: resolution: 0.1 mV
Ground resistance measurement	
range:	0.1-100 kohms
Primary voltage	: range: 10µV - 15V
	: resolution: 1µV
	: accuracy: typ. 1.3%
Chargeability	: resolution: 10µV/V
	: accuracy: typ. 0.6%
Conoral	
Dimensions:	31x21x25 cm
Weight (with the internal	9 kg
hattery):	9 Kg
Operating temperature range:	30°C 70°C
Case in fiber glass for registing to t	-JUC - /UC
Case in fiber-glass for resisting to I	LICIA SHOCKS AND VIDIATIONS

6.2. GDD Tx II IP Transmitter

Input voltage:

Output power: Output voltage: Output current: Time domain: Operating temp. range Display Dimensions (h w d): Weight: 120V / 60 Hz or 240V / 50Hz (optional)
1.4 kW maximum.
150 to 2000 Volts
5 ma to 10Amperes
Transmission cycle is 2 seconds ON, 2 seconds OFF -40° to +65° C
Digital LCD read to 0.001A
34 x 21 x 39 cm
20kg.

Cougar - IXL 2004

6.3. EDA OMNI-Plus Specifications

Operating modes	Total field, base, tie-line
Operating temperature	-45 to +50 deg. C.
Sensor	Proton precession
Dynamic range	18,000 - 110,000 gammas
Tuning	Automatic over entire range
Polarizing cycle	+/- 15% relative to ambient field of last stored total field Microprocessor controlled
Processing sensitivity	+/- 0.02 gammas
Resolution	0.1 gammas
Absolute accuracy	+/- 1 gamma at 50,000 gammas at 23 deg. C
Statistical error reject threshold	+/- 2 gammas over total temperature range 0.2 gammas
Statistical error resolution	0.01 gammas
Memory	-
Field	1300 readings
Tie-line points	100 readings
Base station	5500 readings

APPENDIX 5b

Magnetometer data

Line	Station	FieldStrength	Line	Station	FieldStrength
4800	10300	55975.9	4800	9637.5	56322.4
4800	10287.5	56070.3	4800	9625	56322.9
4800	10275	56139.6	4800	9612.5	56325.6
4800	10262.5	55998.8	4800	9600	56328.8
4800	10250	55997.4	4800	9587.5	56343.9
4800	10237.5	56131.3	4800	9575	56350.5
4800	10225	55992.6	4800	9562.5	56371.4
4800	10212.5	56045.6	4800	9550	56357
4800	10200	56000.3	4800	9537.5	56666.4
4800	10187.5	56087.8	4800	9525	56690.5
4800	10175	56061.2	4800	9512.5	56442.9
4800	10162.5	56040.7	4800	9500	56436.1
4800	10150	56065.7	4800	9487.5	56431.6
4800	10137.5	56191.9	4800	9475	56443.8
4800	10125	56186.1	4800	9462.5	56449.1
4800	10112.5	56308.6	4800	9450	56460.9
4800	10100	56258.6	4800	9437.5	56506.5
4800	10087.5	56423.6	4800	9425	56515.6
4800	10075	56544.6	4800	9412.5	56522.3
4800	10062.5	56534	4800	9400	56554.6
4800	10050	56485.5	4800	9387.5	56633.7
4800	10037.5	56475.7	4800	9375	56666.3
4800	10025	56427.4	4800	9362.5	56678.7
4800	10012.5	56452.9	4800	9350	56869.7
4800	10000	56457.3	4800	9337.5	56645.7
4800	9987.5	56649	4800	9325	56578.6
4800	9975	56607.2	4800	9312.5	56720.6
4800	9962.5	56687.7	4800	9300	56739
4800	9950	56586.6	4900	9300	57178.4
4800	9937.5	56606.7	4900	9312.5	57219.9
4800	9925	56680.5	4900	9325	57141.5
4800	9912.5	56666.1	4900	9337.5	57043.4
4800	9900	56588.4	4900	9350	57004.1
4800	9887.5	56569.4	4900	9362.5	56958.4
4800	9875	56535.3	4900	9375	56774.4
4800	9862.5	56501.7	4900	9387.5	56713.3
4800	9850	56489.9	4900	9400	56664.9
4800	9837.5	56460.3	4900	9412.5	56677.2
4800	9825	56451.1	4900	9425	56890.6
4800	9812.5	56430.1	4900	9437.5	56586.1
4800	9800	56418.8	4900	9450	56571.3
4800	9787.5	56404.3	4900	9462.5	56588.3
4800	9775	56392	4900	9475	56585.7
4800	9762.5	56375.8	4900	9487.5	56562.6
4800	9750	56362	4900	9500	56572.5
4800	9737.5	56360	4900	9512.5	56567.8
4800	9725	56335.9	4900	9525	56587.9
4800	9712.5	56333.1	4900	9537.5	56649.7
4800	9700	56306.4	4900	9550	56676.2
4800	9687.5	56345	4900	9562.5	56752.6
4800	9675	56326.2	4900	9575	56572.4
4800	9662.5	56304.5	4900	9587.5	56639.3
4800	9650	56317.3	4900	9600	56682.5

Line	Station	FieldStrength	Line	Station	FieldStrength
4900	9612.5	56540.8	5800	9462.5	56813.4
4900	9625	56522.6	5800	9475	56759.1
4900	9637.5	56648.3	5800	9487.5	56772.4
4900	9650	56649.7	5800	9500	56791.4
4900	9662.5	56465.5	5800	9512.5	56817.1
4900	9675	56467.8	5800	9525	56805.1
4900	9687.5	56504.4	5800	9537.5	56804.7
4900	9700	56508.9	5800	9550	56769.8
4900	9712.5	56492.2	5800	9562.5	57136.1
4900	9725	56501.9	5800	9575	56966.9
4900	9737.5	56495.9	5800	9587.5	56909.6
4900	9750	56515.1	5800	9600	57047.3
4900	9762.5	56526.4	5800	9612.5	57097.5
4900	9775	56531.2	5800	9625	57058.5
4900	9787.5	56554.6	5800	9637.5	57047.1
4900	9800	56598.2	5800	9650	57088.9
4900	9812.5	56682.5	5800	9662.5	57179.8
4900	9825	56817.9	5800	9675	57178.6
4900	9837.5	56697.4	5800	9687.5	57216.9
4900	9850	56707	5800	9700	57297.2
4900	9862.5	56733.1	5800	9712.5	57359.5
4900	9875	56795.6	5800	9725	57424.4
4900	9887.5	56818.7	5800	9737.5	57426.1
4900	9900	56722.1	5800	9750	57442.6
4900	9912.5	56749.2	5800	9762.5	57485.8
4900	9925	56782	5800	9775	57514.6
4900	9937.5	56740.6	5800	9787.5	57550.2
4900	9950	56796.3	5800	9800	57601.9
4900	9962.5	56815.6	5800	9812.5	57661.2
4900	9975	56855.4	5800	9825	57726.2
4900	9987.5	56760.1	5800	9837.5	57754.2
4900	10100	56683.4	5800	9850	57809.4
4900	10112.5	56663.3	5800	9862.5	57852.3
4900	10125	56671	5800	9875	57902.3
4900	10137.5	56651.8	5800	9887.5	57935.8
4900	10150	56647.8	5800	9900	58001.8
4900	10162.5	56716.8	5800	9912.5	58047.7
4900	10175	56629.8	5800	9925	58084.9
4900	10187.5	56523.2	5800	9937.5	58091
4900	10200	56599.1	5800	9950	58142.8
4900	10212.5	56650	5800	9962.5	58215.6
4900	10225	56585.1	5800	9975	58203.8
4900	10237.5	56326.8	5800	9987.5	58234.1
4900	10250	56275.8	5800	10012.5	58031.5
4900	10262.5	56393.9	5800	10025	57937.7
4900	10275	56387.5	5800	10037.5	57826.2
4900	10287.5	56189.4	5800	10050	57927
4900	10300	56369.9	5800	10062.5	57995.6
5800	9400	56646.8	5800	10075	57906.6
5800	9412.5	56640.1	5800	10087.5	57610.5
5800	9425	56668.1	5800	10100	57672
5800	9437.5	56689.5	5800	10112.5	57661
5800	9450	56705.6	5800	10125	57700.7

Line	Station	FieldStrength	Line	Station	FieldStrength
5800	10137.5	57587.4	5700	10237.5	56796.03247
5800	10150	57591.1	5700	10225	56832.6162
5800	10162.5	57708.4	5700	10212.5	56853.90013
5800	10175	57637.2	5700	10200	56986.08414
5800	10187.5	57401.4	5700	10187.5	57018.46819
5800	10200	57428	5700	10175	57046.15252
5800	10212.5	57718.7	5700	10162.5	57096.03703
5800	10225	57562.6	5700	10150	57184.72176
5800	10237.5	57387.7	5700	10137.5	57252.00655
5800	10250	57356.3	5700	10125	57334.59145
5800	10262.5	57370.4	5700	10112.5	57387.97692
5800	10275	56807.4	5700	10100	57386.36278
5800	10287.5	56670.2	5700	10087.5	57441.2492
5800	10300	56670.5	5700	10075	57462.73638
5800	10312.5	56561.8	5700	10062.5	57524.61278
5800	10325	56458.1	5700	10050	57167.09017
5800	10337.5	56428.5	5700	10037.5	57753.76814
5800	10350	56204.1	5700	10025	58001.34669
5800	10362.5	56101.1	5700	10012.5	58017.82535
5800	10375	56203.2	5700	10000	58025.60429
5800	10387.5	56062.5	5700	9987.5	58013.88596
5800	10400	55906.5	5700	9987.5	58014.56777
5800	10412.5	55815.8	5700	9975	58023.24991
5800	10425	55615.8	5700	9962.5	58043 33266
5800	10437.5	55469.6	5700	9950	58202 11552
5800	10450	55368.8	5700	9937 5	58180 49854
5800	10462.5	55405.9	5700	9925	58172 98012
5800	10475	55526 1	5700	9912.5	58090 46212
5800	10487 5	55735.7	5700	9900	58050 84488
5800	10500	55877.9	5700	9887.5	58024 42855
5700	10487 5	55253.2	5700	9875	57983 51309
5700	10475	55306.2	5700	9862 5	57955 89853
5700	10500	55253 1	5700	9850	57856 78468
5700	10487 5	55295.7	5700	9837.5	57802 37199
5700	10407.5	55373.6	5700	9825	57771 75976
5700	10475	55421.6	5700	9812.5	57706 54793
5700	10402.0	55/08/	5700	9800	57648 03637
5700	10437 5	55664.9	5700	9787 5	57606 52624
5700	10437.3	56106.2	5700	9707.5	57564 21644
5700	10425	56037.8	5700	9775	57559 00694
5700	10412.0	56004.6	5700	9750	57/78 70753
5700	10297.5	56004.0	5700	0727.5	57401 68802
5700	10307.5	56200 1	5700	9737.3	57491.00002
5700	10362.5	56290.1	5700	9723	57275 96047
5700	10302.5	56560.3	5700	9712.3	57373.00947
5700	10337 5	56527.5	5700	0697.5	57222 1512
5700	10337.3	50557.5	5700	9007.3	57352.1513
5700	10323	56511 4	5700 EZO0	9010 0662 5	57220 42210
5700	10312.3	56640.0	5700	300Z.3	57177 10000
5700	10300	50012.0	5700	9000 0627 F	57172 51402
5700	10207.5	56700 40050	5700	9037.5	57126 106 14
5700	102/3	56770 76564	5700	9025	57100 10041
5700	10202.0	50779.70004	5700	9012.5	57100.19831
5700	10250	30799.94903	5700	9000	57007.2903

Line	Station	FieldStrength	Line	Station	FieldStrength
5700	9587.5	57035.28251	5600	9862.5	57646.5154
5700	9575	57017.87159	5600	9875	57641.77856
5700	9562.5	56966.26065	5600	9887.5	57677.20008
5700	9550	56849.14963	5600	9900	57712.91154
5700	9537.5	57240.43823	5600	9912.5	57798.30488
5700	9525	57121.72677	5600	9925	57781.91634
5700	9512.5	56949.81495	5600	9937.5	57781.92578
5700	9500	56835.40286	5600	9950	57822.25133
5700	9487.5	56812.39071	5600	9962.5	57905.36279
5700	9475	56803.07858	5600	9975	58066.19638
5700	9462.5	56787.06662	5600	9987.5	57904.17966
5700	9450	56768.85462	5600	10000	57345.86775
5700	9437 5	56739 13986	5600	10012.5	57423 45305
5700	9425	56713 62508	5600	10025	57509 42224
5700	9412.5	56714 80991	5600	10037.5	57427 76528
5700	9400	56700 89439	5600	10050	57344 41033
5600	9400	57351 48744	5600	10062 5	57394 69361
5600	9/12 5	57104 58052	5600	10002.5	57317 10105
5600	9/25	56950 37222	5600	10075	57/66 2286
5600	0427.5	56976 36434	5600	10100	57112 76421
5600	9437.3	56006 75579	5600	10100	57113.70421
5600	9430	56900.75576	5600	10112.5	57112.10509
5600	9402.5	56027 62021	5600	10125	56000 20959
5600	9475	50927.03931	5600	10137.5	50999.39656
5600	9487.5	56887.02988	5600	10150	56923.9201
5600	9500	569/1.219/3	5600	10162.5	56818.61545
5600	9512.5	57033.2	5600	10175	56681.22892
5600	9525	57486.76796	5600	10187.5	56563.71623
5600	9537.5	57094.17338	5600	10200	56619.72568
5600	9550	57103.00496	5600	10212.5	56639.16732
5600	9562.5	57086.93453	5600	10225	56580.38884
5600	9575	57093.17617	5600	10237.5	56560.2345
5600	9587.5	57103.09166	5600	10250	56512.67615
5600	9600	57103.21519	5600	10262.5	56501.81175
5600	9612.5	57111.95017	5600	10275	56384
5600	9625	57139.04151	5600	10287.5	56365.27654
5600	9637.5	57178.57309	5600	10300	56327.85805
5600	9650	57197.77124	5600	10312.5	56217.53743
5600	9662.5	57212.7666	5600	10325	56135.41823
5600	9675	57246.65592	5600	10337.5	56131.49619
5600	9687.5	57272.80902	5600	10350	56096.37486
5600	9700	57325.43998	5600	10362.5	56003.04997
5600	9712.5	57357.43131	5600	10375	55836.32295
5600	9725	57398.69045	5600	10387.5	55820.39167
5600	9737.5	57438.17776	5600	10400	55740.66038
5600	9750	57481.46507	5600	10412.5	55534.23336
5600	9762.5	57515.93426	5600	10425	55484.31274
5600	9775	57555.9787	5600	10437.5	55411.78928
5600	9787.5	57573.08412	5600	10450	55399.76155
5600	9800	57609.64929	5600	10462.5	55385.84022
5600	9812.5	57684.84666	5600	10475	55357.21817
5600	9825	57715.09976	5600	10487.5	55406.88618
5600	9837.5	57769.48506	5600	10500	55381.86342
5600	9850	57775.72206	5500	10500	55284.31044

Line	Station	FieldStrength	Line	Station	FieldStrength
5500	10487.5	55298.8884	5500	9825	57472.35275
5500	10475	55288.45498	5500	9812.5	57499.20917
5500	10462.5	55323.5308	5500	9800	57436.45642
5500	10450	55552.70023	5500	9787.5	57383.77278
5500	10437.5	55497.58103	5500	9775	57398.11157
5500	10425	55484.15828	5500	9762.5	57372.19196
5500	10412.5	55557.53268	5500	9750	57293.34626
5500	10400	55619.31206	5500	9737.5	57307.11608
5500	10387.5	55602.99002	5500	9725	57274.08731
5500	10375	55788.46513	5500	9712.5	57246.06559
5500	10362.5	55754.33029	5500	9700	57243.34386
5500	10350	55841.576	5500	9687.5	57230.29196
5500	10337.5	55888 24898	5500	9675	57209 62934
5500	10325	55972 62693	5500	9662.5	57208 01185
5500	10312.5	56042 80987	5500	9650	57181 44711
5500	10300	56008 98498	5500	9637.5	57187 88025
5500	10287 5	56058 6601	5500	9625	57129 2275
5500	10207.5	56155 83023	5500	9612.5	57120 38181
5500	10262.5	56178 5089	5500	9600	57120.30101
5500	10202.0	56221 07075	5500	0587.5	57000 86008
5500	10230	56274 55557	5500	9507.5	57090.00000
5500	10237.3	56215 22027	5500	9575	57030 51312
5500	10223	56342 19276	5500	9502.5	56086 64062
5500	10212.3	56270 75674	5500	9550	57019 66210
5500	10200	56401 42042	5500	9537.5	57010.00319
5500	10107.5	56240 9027	5500	9525	57 393.99351
5500	10175	50549.0027	5500	9512.5	57052.03371
5500	10162.5	50084.40715	5500	9500	57019.26403
5500	10150	56613.04226	5500	9487.5	57003.4
5500	10137.5	56625.71596	5500	9475	56979.02704
5500	10125	56699.29036	5500	9462.5	56998.75693
5500	10112.5	56789.26121	5500	9450	56974.99251
5500	10100	56859.63205	5500	9437.5	56964.61529
5500	10087.5	56941.4965	5500	9425	56923.94375
5500	10075	57001.65668	5500	9412.5	56893.68218
5500	10062.5	57140.73393	5500	9400	56879.8199
5500	10050	5/151.904/8	5400	9400	56899.86504
5500	10037.5	5/1//.16212	5400	9412.5	56932.78212
5500	10025	57394.29954	5400	9425	57441.30276
5500	10012.5	57353.7	5400	9437.5	57351.21913
5500	10000	57442.71932	5400	9450	57115.43763
5500	9987.5	57404.85388	5400	9462.5	57054.55613
5500	9975	57366.68773	5400	9475	57014.48531
5500	9962.5	57446.04979	5400	9487.5	56985.8088
5500	9950	57482.79069	5400	9500	56996.73228
5500	9937.5	57499.23865	5400	9512.5	57028.45861
5500	9925	57519.3859	5400	9525	57041.58281
5500	9912.5	57575.41763	5400	9537.5	57049.10985
5500	9900	57650.84795	5400	9550	57028.04187
5500	9887.5	57525.57687	5400	9562.5	57002.38386
5500	9875	57471.80931	5400	9575	57027.90948
5500	9862.5	57521.21241	5400	9587.5	57064.33652
5500	9850	57467.54344	5400	9600	57114.25929
5500	9837.5	57450.89492	5400	9612.5	57126.48278

Line	Station	FieldStrength	Line	Station	FieldStrength
5400	9625	57102.11551	5000	10012.5	57065.72329
5400	9637.5	57132.24042	5000	10000	57039.87751
5400	9650	57127.48312	5000	9987.5	57012.96364
5400	9662.5	57135.06709	5000	9975	57001.43748
5400	9675	57157.80481	5000	9962.5	56986.33796
5400	9687.5	57158.33043	5000	9950	56993.28421
5400	9700	57146.76815	5000	9937.5	56942.55439
5400	9712.5	57145.39875	5000	9925	56941.98788
5400	9725	57154.83291	5000	9912.5	56908.84848
5400	9737.5	57154.05995	5000	9900	56892.70112
5400	9750	57154.00122	5000	9887.5	56855.58086
5400	9762.5	57185.7973	5000	9875	56825.16061
5400	9775	57222.34071	5000	9862.5	56752.34514
5400	9787.5	57241.69408	5000	9850	56724.39777
5400	9800	57245.47165	5000	9837.5	56782.47799
5400	9812.5	57134.7218	5000	9825	56742.60989
5400	9825	57193.98477	5000	9812.5	57073.48644
5400	9837.5	57240.15024	5000	9800	56974.65981
5400	9850	57262.94347	5000	9787.5	56782.67943
5400	9862.5	57236.28474	5000	9775	56723.54163
5400	9875	57277.51321	5000	9762.5	56674.48676
5400	9887.5	57342.1737	5000	9750	56640.86332
5400	9900	57343.21711	5000	9737.5	56584.4622
5400	9912.5	57333.43917	5000	9725	56619.93876
5400	9925	57713.07333	5000	9712.5	56691.72329
5400	9937.5	57366.39468	5000	9700	56757.59984
5400	9950	57445.92101	5000	9687.5	56677.49298
5400	9962.5	57454.04307	5000	9675	56677.24242
5400	9975	57406.16513	5000	9662.5	56664.01419
5400	9987.5	57332.4	5000	9650	56664.06045
5000	10300	56240.463	5000	9637.5	56639.33222
5000	10287.5	56195.97512	5000	9625	56651.57687
5000	10275	56142.00861	5000	9612.5	56645.85662
5000	10262.5	56172.49633	5000	9600	56651.12998
5000	10250	56149.67608	5000	9587.5	56657.41611
5000	10237.5	56198.41754	5000	9575	56674.78469
5000	10225	56212.36061	5000	9562.5	56684.36443
5000	10212.5	56256.90686	5000	9550	56687.60271
5000	10200	56357.14833	5000	9537.5	56683.89841
5000	10187.5	56405.4201	5000	9525	56681.6319
5000	10175	56368.45518	5000	9512.5	56697.9941
5000	10162.5	56750.8764	5000	9500	56735.45949
5000	10150	56740.53222	5000	9487.5	56841.1201
5000	10137.5	56765.38325	5000	9475	56813.8488
5000	10125	56730.82632	5000	9462.5	56913.51738
5000	10112.5	56728.07895	5000	9450	56837.36364
5000	10100	56779.6555	5000	9437.5	56690.1067
5000	10087.5	56854.61451	5000	9425	57266.14019
5000	10075	56810.37193	5000	9412.5	57203.08963
5000	10062.5	56860.2756	5000	9400	56916.12791
5000	10050	56934.61388	5000	9387.5	56909.76778
5000	10037.5	57107.9697	5000	9375	56919.60766
5000	10025	57134.11276	5000	9362.5	56960.14593

Line	Station	FieldStrength	Line	Station	FieldStrength
5000	9350	57059.78421	5100	10000	57408.02657
5000	9337.5	56838.97831	5100	10012.5	57462.84735
5000	9325	56947.43892	5100	10025	57468.36208
5000	9312.5	56885.61866	5100	10037.5	57524.62032
5000	9300	56970.2	5100	10050	57428.27856
5100	9300	56744.91811	5100	10062.5	57327.3281
5100	9412.5	56741.81893	5100	10075	57262.27938
5100	9425	57020.19713	5100	10087.5	57413.8324
5100	9437.5	56858.14493	5100	10100	57294.78542
5100	9450	56832.8831	5100	10112.5	57371.74192
5100	9462.5	56781.23264	5100	10125	57295,79668
5100	9475	56918.68566	5100	10137.5	57041.341
5100	9487 5	56881 34216	5100	10150	56942 39749
5100	9500	56899 29866	5100	10162.5	56825 44007
5100	9512.5	56930 2221	5100	10175	56650 40353
5100	9525	56899 57686	5100	10187.5	56578 95829
5100	9537.5	56916 46898	5100	10200	56481 21827
5100	9550	5691/ 52895	5100	10200	56532 07120
5100	9562 5	56896 98893	5100	10212.5	56373 13007
5100	0575	56707 03673	5100	10225	56280 18603
5100	9575	56730 05321	5100	10237.5	56247 02697
5100	9507.5	56667 68013	5100	10250	56049 02912
5100	9000	56709 07747	5100	10202.5	50040.03012
5100	9012.5	50790.97747	5100	10275	50150.29050
5100	9625	50073.13397	5100	10207.5	56250.34416
5100	9637.5	56988.4748	5100	10300	56176.49718
5100	9650	50849.0220	5200	10400	55841.59111
5100	9662.5	56731.85126	5200	10387.5	55911.75365
5100	9675	56725.76231	5200	10375	55872.0823
5100	9687.5	56667.74921	5200	10362.5	55934.60922
5100	9700	56517.87787	5200	10350	56006.56572
5100	9712.5	56541.15084	5200	10337.5	56080.40134
5100	9725	56626.0882	5200	10325	56165.95436
5100	9737.5	57030.70294	5200	10312.5	56183.90564
5100	9750	57031.45422	5200	10300	56193.26562
5100	9762.5	56922.4055	5200	10287.5	56190.21168
5100	9775	56827.36722	5200	10275	56237.86295
5100	9787.5	56799.6663	5200	10262.5	56242.50727
5100	9800	56802.92279	5200	10250	56267.26029
5100	9812.5	56808.36537	5200	10237.5	56370.96807
5100	9825	56827.02709	5200	10225	56414.50717
5100	9837.5	56868.46793	5200	10212.5	56374.74279
5100	9850	56905.01573	5200	10200	56475.74883
5100	9862.5	56942.14776	5200	10187.5	56740.27574
5100	9875	56981.7973	5200	10175	57090.39396
5100	9887.5	57001.51204	5200	10162.5	57265.35742
5100	9900	57088.87028	5200	10150	57521.1
5100	9912.5	57266.61634	5200	10137.5	57511.33433
5100	9925	57377.2711	5200	10125	57576.09005
5100	9937.5	56974.4015	5200	10112.5	57415.74729
5100	9950	57228.35626	5200	10100	57442.00605
5100	9962.5	57310.65011	5200	10087.5	57454.96482
5100	9975	57324.41009	5200	10075	57431.80221
5100	9987.5	57411.16833	5200	10062.5	57567.45792

Line	Station	FieldStrength	Line	Station	FieldStrength
5200	10050	57600.61363	5200	9387.5	57028.52367
5200	10037.5	57585.07087	5200	9375	56991.48549
5200	10025	57517.36533	5200	9362.5	56947.74121
5200	10012.5	57406.82331	5200	9350	56942.30303
5200	10000	57390.98208	5200	9337.5	56984.96332
5200	9987.5	57309.82325	5200	9325	57055.62667
5200	9975	57384.96522	5200	9312.5	56992.77627
5200	9962.5	57365.78734	5200	9300	57112.12893
5200	9950	57315.12778	5300	9300	56874.98578
5200	9937.5	57314.05448	5300	9312.5	56851.88041
5200	9925	57212.58117	5300	9325	56828.55292
5200	9912.5	57147.11093	5300	9337.5	57242.31627
5200	9900	57083.79102	5300	9350	56945.78267
5200	9887.5	57100.02077	5300	9362.5	57217.83228
5200	9875	57131.42682	5300	9375	57003.70021
5200	9862.5	57074.54894	5300	9387.5	56993.12843
5200	9850	57066.97564	5300	9400	56978.09636
5200	9837.5	56951.27484	5300	9412.5	56952.15055
5200	9825	56903.63514	5300	9425	56962.31542
5200	9812.5	56756.34119	5300	9437.5	56957.27419
5200	9800	56896.03961	5300	9450	56944.52227
5200	9787.5	57005.0434	5300	9462.5	56955.87951
5200	9775	56878.98231	5300	9475	56962,13675
5200	9762.5	56776 86167	5300	9487.5	57301 59246
5200	9750	56886 82954	5300	9500	57262 25886
5200	9737.5	56971 5921	5300	9512.5	57130 01916
5200	9725	56946 74476	5300	9525	57079 07793
5200	9712.5	56780 91801	5300	9537.5	57043 03822
5200	9700	56751 67672	5300	9550	57028 6031
5200	9687.5	56762 95913	5300	9562.5	56994 26339
5200	9675	57032 87055	5300	9575	56980 68551
5200	9662.5	56965 39878	5300	9587.5	56977 98698
5200	9650	56935 13464	5300	9600	56983 85338
5200	9637.5	57011 48119	5300	9612.5	56993 87397
5200	9625	56993 64759	5300	9625	56992 6419
5200	9612.5	56901 58803	5300	9637.5	56995 90067
5200	9600	56903 95291	5300	9650	57007 26096
5200	9587.5	56892 52616	5300	9662.5	57031 51209
5200	9575	56894 57576	5300	9675	57016 06475
5200	9562.5	56885 53911	5300	9687.5	57015 70825
5200	9550	56905 39329	5300	9700	57013 70898
5200	9537.5	56909 54901	5300	9712.5	56990 24705
5200	9525	56907 21388	5300	9725	57003 15237
5200	9512.5	56920 06501	5300	9737.5	57033 87296
5200	9500	56936 82684	5300	9750	57017 92714
5200	9487 5	56073 67/01	5300	9762 5	56088 35537
5200	9475	56986 84284	5300	9775	56983 8561
5200	9462.5	56995 70619	5300	9775	57026 35989
5200	0402.J	56992 07107	5300	0,01.0	57035 20821
5200	9430 0/27 F	57010 22821	5300	9000 0810 E	57002 72/67
5200	0/15	56982 87011	5300	0825	56970 62100
5200	0/125	57023 02//	5300	0837 5	57050 6186
5200	9412.J 9400	57064 58017	5300	0007.0 0850	57031 11018
5200	0-00	01001100011	5500	0000	0.00

Line

Line	Station	FieldStrength
5300	9862.5	57126.73382
5300	9875	57187.40554
5300	9887.5	57229.74751
5300	9900	57238.11849
5300	9912.5	57287.76352
5300	9925	57318.3009
5300	9937.5	57343.60622
5300	9950	57354.54666
5300	9962.5	57377.90543
5300	9975	57370.16878
5300	9987.5	57417.42602
5300	10000	57456.18631
5300	10012.5	57478.31148
5300	10025	57466.94887
5300	10037.5	57385.5
5300	10050	57443.01936
5300	10062.5	57443 85808
5300	10075	57326 78954
5300	10087.5	57341 01374
5300	10100	57329 37181
5300	10112 5	57343 42425
5300	10125	57408 7557
5300	10127 5	57373 29523
5300	10150	56060 22185
5300	10162 5	56826 85089
5300	10102.5	56181 37186
5300	10175	56300 00171
5300	10107.5	56252 02268
5300	10200	56406 66050
5300	10212.5	50490.00059
5300	10225	56421 62077
5300	10237.3	56107 55174
5300	10250	56172 17017
5300	10202.3	56109 60256
5300	10275	50106.00250
5300	10287.5	56079.42514
5300	10300	56031.5437
5300	10312.5	55901.70540
5300	10325	55932.18564
5300	10337.5	55803.60581
5300	10350	55816.82597
5300	10362.5	55717.65259
5300	10375	55699.17195
5300	10387.5	55702.29454
5300	10400	55611.1147
5400	10500	55298.82789
5400	10487.5	55281.18193
5400	10475	55413.20129
5400	10462.5	55434.92468
5400	10450	55419.56905
5400	10437.5	55393.29889
5400	10425	55414.22148
5400	10412.5	55511.47794
5400	10400	55559.00456

9	Station	FieldStrength
5400	10387.5	55619.43038
5400	10375	55642.16103
5400	10362.5	55841.30055
5400	10350	55866.81991
5400	10337.5	55956.74411
5400	10325	55952.27638
5400	10312.5	55958.51026
5400	10300	55962.52478
5400	10287.5	56010.64494
5400	10275	56008.86511
5400	10262.5	56052.49495
5400	10250	56244.21754
5400	10237.5	56385.95626
5400	10225	56261.27804
5400	10212.5	56271.80224
5400	10200	56307.4224
5400	10187.5	56277.76112
5400	10175	56243.57725
5400	10162.5	56445.2071
5400	10150	56704.22646
5400	10137.5	56843.44911
5400	10125	56892.76928
5400	10112.5	57000.40638
5400	10100	56967.22978
5400	10087.5	56802.06366
5400	10075	57392.22093
5400	10062.5	57062.14432
5400	10050	57167.37174
5400	10037.5	57164.30159
5400	10025	57157.33708
5400	10012.5	57234.36451
5400	10000	57373.1

4800	10300	55975.9
4800	10287.5	56070.3
4800	10275	56139.6
4800	10262.5	55998.8
4800	10250	55997.4
4800	10237.5	56131.3
4800	10225	55992.6
4800	10212.5	56045.6
4800	10200	56000.3
4800	10187.5	56087.8
4800	10175	56061.2
4800	10162.5	56040.7
4800	10150	56065.7
4800	10137.5	56191.9
4800	10125	56186.1
4800	10112.5	56308.6
4800	10100	56258.6
4800	10087.5	56423.6
4800	10075	56544.6
4800	10062.5	56534
4800	10050	56485 5
4800	10037.5	56475 7
4800	10025	56427.4
4800	10012.5	56452.9
4800	10012.0	56457.3
4800	9987 5	566/0
4800	9907.5	56607.2
4800	9975	56687.7
4000	9902.0	56586 6
4000	9950	56506.7
4000	9937.3	50000.7
4000	9925	50000.5
4000	9912.5	56599 4
4000	9900	56560.4
4000	9007.5	56525.2
4000	9070	56501 7
4800	9862.5	56501.7
4800	9850	56489.9
4000	9637.5	50460.3
4800	9825	56451.1
4800	9812.5	56430.1
4800	9800	56418.8
4800	9787.5	56404.3
4800	9775	56392
4800	9762.5	56375.8
4800	9750	56362
4800	9737.5	56360
4800	9725	56335.9
4800	9712.5	56333.1
4800	9700	56306.4
4800	9687.5	56345
4800	9675	56326.2
4800	9662.5	56304.5
4800	9650	56317.3
4800	9637.5	56322.4

Line 4800

4800	9625	56322.9
4800	9612.5	56325.6
4800	9600	56328.8
4800	9587.5	56343.9
4800	9575	56350.5
4800	9562.5	56371.4
4800	9550	56357
4800	9537.5	56666.4
4800	9525	56690.5
4800	9512.5	56442.9
4800	9500	56436.1
4800	9487.5	56431.6
4800	9475	56443.8
4800	9462.5	56449.1
4800	9450	56460.9
4800	9437.5	56506.5
4800	9425	56515.6
4800	9412.5	56522.3
4800	9400	56554.6
4800	9387.5	56633.7
4800	9375	56666.3
4800	9362.5	56678.7
4800	9350	56869.7
4800	9337.5	56645.7
4800	9325	56578.6
4800	9312.5	56720.6
4800	9300	56739
4900	9300	57178.4
------	--------	----------
4900	9312.5	57219.9
4900	9325	57141.5
4900	9337.5	57043.4
4900	9350	57004.1
4900	9362.5	56958.4
4900	9375	56774.4
4900	9387.5	56713.3
4900	9400	56664.9
4900	9412.5	56677.2
4900	9425	56890.6
4900	9437.5	56586 1
4900	9450	56571.3
1000	9462.5	56588 3
4000	9402.5	56585 7
4900	0/87 5	56562.6
4900	9407.5	56572.5
4900	9500	50572.5
4900	9512.5	56597.0
4900	9525	56587.9
4900	9537.5	56649.7
4900	9550	56676.2
4900	9562.5	56752.6
4900	9575	56572.4
4900	9587.5	56639.3
4900	9600	56682.5
4900	9612.5	56540.8
4900	9625	56522.6
4900	9637.5	56648.3
4900	9650	56649.7
4900	9662.5	56465.5
4900	9675	56467.8
4900	9687.5	56504.4
4900	9700	56508.9
4900	9712.5	56492.2
4900	9725	56501.9
4900	9737.5	56495.9
4900	9750	56515.1
4900	9762.5	56526.4
4900	9775	56531.2
4900	9787.5	56554.6
4900	9800	56598.2
4900	9812.5	56682.5
4900	9825	56817.9
4900	9837.5	56697.4
4900	9850	56707
4900	9862.5	56733.1
4900	9875	56795.6
4900	9887.5	56818.7
4900	9900	56722 1
4900	9912 5	56749 2
4900	9925	56782
4900	9925	56740 6
4900	0050	56796 2
1000	0062 5	560150.5
4300	3302.0	00010.0

4900	9975	56855.4
4900	9987.5	56760.1
4900	10100	56683.4
4900	10112.5	56663.3
4900	10125	56671
4900	10137.5	56651.8
4900	10150	56647.8
4900	10162.5	56716.8
4900	10175	56629.8
4900	10187.5	56523.2
4900	10200	56599.1
4900	10212.5	56650
4900	10225	56585.1
4900	10237.5	56326.8
4900	10250	56275.8
4900	10262.5	56393.9
4900	10275	56387.5
4900	10287.5	56189.4
4900	10300	56369.9

5000	10287.5	56195.97512
5000	10275	56142.00861
5000	10262.5	56172.49633
5000	10250	56149.67608
5000	10237.5	56198.41754
5000	10225	56212.36061
5000	10212.5	56256.90686
5000	10200	56357.14833
5000	10187.5	56405.4201
5000	10175	56368.45518
5000	10162.5	56750.8764
5000	10150	56740.53222
5000	10137.5	56765.38325
5000	10125	56730.82632
5000	10112.5	56728.07895
5000	10100	56779.6555
5000	10087.5	56854.61451
5000	10075	56810.37193
5000	10062.5	56860.2756
5000	10050	56934.61388
5000	10037.5	57107.9697
5000	10025	57134.11276
5000	10012.5	57065.72329
5000	10000	57039.87751
5000	9987.5	57012.96364
5000	9975	57001.43748
5000	9962.5	56986.33796
5000	9950	56993.28421
5000	9937.5	56942.55439
5000	9925	56941.98788
5000	9912.5	56908.84848
5000	9900	56892.70112
5000	9887.5	56855.58086
5000	9010	50025.10001
5000	9002.0	56724 20777
5000	9000	56782 47700
5000	9037.5	567/2 60080
5000	0812.5	57073 48644
5000	9012.0	5607/ 65081
5000	9787.5	56782 67943
5000	9775	56723 54163
5000	9762.5	56674 48676
5000	9750	56640 86332
5000	9737.5	56584.4622
5000	9725	56619.93876
5000	9712.5	56691.72329
5000	9700	56757.59984
5000	9687.5	56677.49298
5000	9675	56677.24242
5000	9662.5	56664.01419
5000	9650	56664.06045
5000	9637.5	56639.33222
5000	9625	56651.57687

5000	9612.5	56645.85662
5000	9600	56651.12998
5000	9587.5	56657.41611
5000	9575	56674.78469
5000	9562.5	56684.36443
5000	9550	56687.60271
5000	9537.5	56683.89841
5000	9525	56681.6319
5000	9512.5	56697.9941
5000	9500	56735.45949
5000	9487.5	56841.1201
5000	9475	56813.8488
5000	9462.5	56913.51738
5000	9450	56837.36364
5000	9437.5	56690.1067
5000	9425	57266.14019
5000	9412.5	57203.08963
5000	9400	56916.12791
5000	9387.5	56909.76778
5000	9375	56919.60766
5000	9362.5	56960.14593
5000	9350	57059.78421
5000	9337.5	56838.97831
5000	9325	56947.43892
5000	9312.5	56885.61866
5000	9300	56970.2

5100	9300	56744.91811
5100	9412.5	56741.81893
5100	9425	57020.19713
5100	9437.5	56858.14493
5100	9450	56832.8831
5100	9462.5	56781.23264
5100	9475	56918.68566
5100	9487.5	56881.34216
5100	9500	56899.29866
5100	9512.5	56930.2221
5100	9525	56899.57686
5100	9537.5	56916.46898
5100	9550	56914.52895
5100	9562.5	56896.98893
5100	9575	56797.03673
5100	9587.5	56739.05321
5100	9600	56667.68013
5100	9612.5	56798 97747
5100	9625	56873 13397
5100	9637.5	56988 4748
5100	9650	56849 6226
5100	9662.5	56731 85126
5100	9675	56725 76231
5100	9687 5	56667 7/0231
5100	0700	56517 97797
5100	9700	56541 15084
5100	9712.0	50541.15004
5100	9720	50020.0002
5100	9131.3	57030.70294
5100	9750	57031.45422
5100	9762.5	50922.4055
5100	9775	50627.30722
5100	9/8/.5	56799.6663
5100	9800	56802.92279
5100	9812.5	56808.36537
5100	9825	56827.02709
5100	9837.5	56868.46793
5100	9850	56905.01573
5100	9862.5	56942.14776
5100	9875	56981.7973
5100	9887.5	57001.51204
5100	9900	57088.87028
5100	9912.5	57266.61634
5100	9925	57377.2711
5100	9937.5	56974.4015
5100	9950	57228.35626
5100	9962.5	57310.65011
5100	9975	57324.41009
5100	9987.5	57411.16833
5100	10000	57408.02657
5100	10012.5	57462.84735
5100	10025	57468.36208
5100	10037.5	57524.62032
5100	10050	57428.27856
5100	10062.5	57327.3281

5100	10075	57262.27938
5100	10087.5	57413.8324
5100	10100	57294.78542
5100	10112.5	57371.74192
5100	10125	57295.79668
5100	10137.5	57041.341
5100	10150	56942.39749
5100	10162.5	56825.44007
5100	10175	56650.40353
5100	10187.5	56578.95829
5100	10200	56481.21827
5100	10212.5	56532.97129
5100	10225	56373.13997
5100	10237.5	56289.18603
5100	10250	56347.02687
5100	10262.5	56048.03812
5100	10275	56156.29636
5100	10287.5	56250.34416
5100	10300	56176.49718

5200	10400	55841.59111
5200	10387.5	55911.75365
5200	10375	55872.0823
5200	10362.5	55934.60922
5200	10350	56006.56572
5200	10337.5	56080.40134
5200	10325	56165.95436
5200	10312.5	56183.90564
5200	10300	56193.26562
5200	10287.5	56190.21168
5200	10275	56237.86295
5200	10262.5	56242.50727
5200	10250	56267.26029
5200	10237.5	56370 96807
5200	10225	56414 50717
5200	10212.5	56374 74279
5200	10212.0	56475 74883
5200	10200	56740 27574
5200	10107.5	57000 20206
5200	10175	57090.39390
5200	10102.5	57205.55742
5200	10150	5/521.1
5200	10137.5	57511.33433
5200	10125	57576.09005
5200	10112.5	57415.74729
5200	10100	57442.00605
5200	10087.5	57454.96482
5200	10075	57431.80221
5200	10062.5	57567.45792
5200	10050	57600.61363
5200	10037.5	57585.07087
5200	10025	57517.36533
5200	10012.5	57406.82331
5200	10000	57390.98208
5200	9987.5	57309.82325
5200	9975	57384.96522
5200	9962.5	57365.78734
5200	9950	57315.12778
5200	9937.5	57314.05448
5200	9925	57212.58117
5200	9912.5	57147.11093
5200	9900	57083.79102
5200	9887.5	57100.02077
5200	9875	57131.42682
5200	9862.5	57074.54894
5200	9850	57066.97564
5200	9837.5	56951.27484
5200	9825	56903.63514
5200	9812.5	56756.34119
5200	9800	56896 03961
5200	9787 5	57005 0434
5200	9775	56878 08221
5200	9762 5	56776 86167
5200	0750	56886 82054
5200	0727 5	56071 5024
5200	9131.3	20311.2921

5200	9725	56946.74476
5200	9712.5	56780.91801
5200	9700	56751.67672
5200	9687.5	56762.95913
5200	9675	57032.87055
5200	9662.5	56965.39878
5200	9650	56935.13464
5200	9637.5	57011.48119
5200	9625	56993.64759
5200	9612.5	56901.58803
5200	9600	56903.95291
5200	9587.5	56892.52616
5200	9575	56894.57576
5200	9562.5	56885.53911
5200	9550	56905.39329
5200	9537.5	56909.54901
5200	9525	56907.21388
5200	9512.5	56920.06501
5200	9500	56936.82684
5200	9487.5	56973.67491
5200	9475	56986.84284
5200	9462.5	56995.70619
5200	9450	56992.07107
5200	9437.5	57010.32831
5200	9425	56982.87944
5200	9412.5	57023.02446
5200	9400	57064.58017
5200	9387.5	57028.52367
5200	9375	56991.48549
5200	9362.5	56947.74121
5200	9350	56942.30303
5200	9337.5	56984.96332
5200	9325	57055.62667
5200	9312.5	56992.77627

5300	9300	56874.98578
5300	9312.5	56851.88041
5300	9325	56828.55292
5300	9337.5	57242.31627
5300	9350	56945.78267
5300	9362.5	57217.83228
5300	9375	57003.70021
5300	9387.5	56993.12843
5300	9400	56978.09636
5300	9412.5	56952.15055
5300	9425	56962.31542
5300	9437.5	56957.27419
5300	9450	56944.52227
5300	9462.5	56955.87951
5300	9475	56962.13675
5300	9487.5	57301.59246
5300	9500	57262.25886
5300	9512.5	57130 01916
5300	9525	57079 07793
5300	9537.5	57043 03822
5300	9550	57028 6031
5300	9562 5	5600/ 26330
5300	9575	56980 68551
5300	9575	56077 08608
5300	0600	56093 95339
5300	9000	56003 97307
5300	0625	56002 6410
5300	9020	50992.0419
5300	9037.5	50995.90007
5300	9650	57007.26096
5300	9002.3	57031.51209
5300	9075	57016.06475
5300	9687.5	57015.70825
5300	9700	57013.70898
5300	9/12.5	56990.24705
5300	9725	57003.15237
5300	9737.5	57033.87296
5300	9750	57017.92714
5300	9762.5	56988.35537
5300	9775	56983.8561
5300	9787.5	57026.35989
5300	9800	57035.29881
5300	9812.5	57008.73467
5300	9825	56979.68122
5300	9837.5	57050.6186
5300	9850	57031.11018
5300	9862.5	57126.73382
5300	9875	57187.40554
5300	9887.5	57229.74751
5300	9900	57238.11849
5300	9912.5	57287.76352
5300	9925	57318.3009
5300	9937.5	57343.60622
5300	9950	57354.54666
5300	9962.5	57377.90543

5200	0075	57270 16979
5300	9975 0007 F	57370.10070
5300	9907.5	57417.42002
5300	10000	57450.16031
5300	10012.5	57478.31148
5300	10025	57466.94887
5300	10037.5	57385.5
5300	10050	57443.01936
5300	10062.5	57443.85808
5300	10075	57326.78954
5300	10087.5	57341.01374
5300	10100	57329.37181
5300	10112.5	57343.42425
5300	10125	57408.7557
5300	10137.5	57373.29523
5300	10150	56969.22185
5300	10162.5	56826.85089
5300	10175	56181.37186
5300	10187.5	56309.90171
5300	10200	56252.02268
5300	10212.5	56496.66059
5300	10225	56353.79608
5300	10237.5	56431.63077
5300	10250	56197.55174
5300	10262.5	56173.17917
5300	10275	56108.60256
5300	10287.5	56079.42514
5300	10300	56031.5437
5300	10312.5	55961.76548
5300	10325	55932.18564
5300	10337.5	55803.60581
5300	10350	55816.82597
5300	10362.5	55717.65259
5300	10375	55699.17195
5300	10387.5	55702.29454
5300	10400	55611.1147

5400	10500	55298.82789
5400	10487.5	55281.18193
5400	10475	55413.20129
5400	10462.5	55434.92468
5400	10450	55419.56905
5400	10437.5	55393.29889
5400	10425	55414.22148
5400	10412.5	55511.47794
5400	10400	55559.00456
5400	10387.5	55619.43038
5400	10375	55642.16103
5400	10362.5	55841.30055
5400	10350	55866.81991
5400	10337.5	55956,74411
5400	10325	55952,27638
5400	10312.5	55958.51026
5400	10300	55962 52478
5400	10287.5	56010 64494
5400	10207.0	56008 86511
5400	10262.5	56052 49495
5400	10202.0	56244 21754
5400	10237 5	56385 05626
5400	10237.3	56261 27804
5400	10225	56271 90224
5400	10212.0	56207 4224
5400	10200	56277 76112
5400	10107.0	56242 57725
5400	10175	56445.57725
5400	10102.5	50445.2071
5400	10150	56704.22646
5400	10137.5	56843.44911
5400	10125	56892.76928
5400	10112.5	57000.40638
5400	10100	56967.22978
5400	10087.5	56802.06366
5400	10075	57392.22093
5400	10062.5	57062.14432
5400	10050	57167.37174
5400	10037.5	57164.30159
5400	10025	57157.33708
5400	10012.5	57234.36451
5400	10000	57373.1
5400	9400	56899.86504
5400	9412.5	56932.78212
5400	9425	57441.30276
5400	9437.5	57351.21913
5400	9450	57115.43763
5400	9462.5	57054.55613
5400	9475	57014.48531
5400	9487.5	56985.8088
5400	9500	56996.73228
5400	9512.5	57028.45861
5400	9525	57041.58281
5400	9537.5	57049.10985
5400	9550	57028.04187

5400	9562.5	57002.38386
5400	9575	57027.90948
5400	9587.5	57064.33652
5400	9600	57114.25929
5400	9612.5	57126.48278
5400	9625	57102.11551
5400	9637.5	57132.24042
5400	9650	57127.48312
5400	9662.5	57135.06709
5400	9675	57157.80481
5400	9687.5	57158.33043
5400	9700	57146.76815
5400	9712.5	57145.39875
5400	9725	57154.83291
5400	9737.5	57154.05995
5400	9750	57154.00122
5400	9762.5	57185.7973
5400	9775	57222.34071
5400	9787.5	57241.69408
5400	9800	57245.47165
5400	9812.5	57134.7218
5400	9825	57193.98477
5400	9837.5	57240.15024
5400	9850	57262.94347
5400	9862.5	57236.28474
5400	9875	57277.51321
5400	9887.5	57342.1737
5400	9900	57343.21711
5400	9912.5	57333.43917
5400	9925	57713.07333
5400	9937.5	57366.39468
5400	9950	57445.92101
5400	9962.5	57454.04307
5400	9975	57406.16513
5400	9987.5	57332.4

5500	10500	55284.31044
5500	10487.5	55298.8884
5500	10475	55288.45498
5500	10462.5	55323.5308
5500	10450	55552.70023
5500	10437.5	55497.58103
5500	10425	55484.15828
5500	10412.5	55557.53268
5500	10400	55619.31206
5500	10387.5	55602.99002
5500	10375	55788.46513
5500	10362.5	55754.33029
5500	10350	55841.576
5500	10337.5	55888 24898
5500	10325	55972 62693
5500	10312.5	56042 80987
5500	10300	56008 98/98
5500	10287.5	56058 6601
5500	10207.3	50050.0001
5500	10275	56179 5090
5500	10262.5	50176.5069
5500	10250	56231.97975
5500	10237.5	56274.55557
5500	10225	56315.22927
5500	10212.5	56342.18376
5500	10200	56370.75674
5500	10187.5	56401.43043
5500	10175	56349.8027
5500	10162.5	56684.46715
5500	10150	56613.04226
5500	10137.5	56625.71596
5500	10125	56699.29036
5500	10112.5	56789.26121
5500	10100	56859.63205
5500	10087.5	56941.4965
5500	10075	57001.65668
5500	10062.5	57140.73393
5500	10050	57151.90478
5500	10037.5	57177.16212
5500	10025	57394.29954
5500	10012.5	57353.7
5500	10000	57442.71932
5500	9987.5	57404.85388
5500	9975	57366.68773
5500	9962.5	57446.04979
5500	9950	57482.79069
5500	9937.5	57499 23865
5500	9925	57519 3859
5500	9912 5	57575 41763
5500	0012.0	57650 8/705
5500	0887 5	57525 57627
5500	3007.3 007F	57/71 20021
5500	2013	57521 21214
5500	3002.3 0050	57/67 5/2/4
5500	9007 5	57467.54344
0000	9837.5	57450.89492

5500	0825	57472 35275
5500	0812.5	57/00 20017
5500	0012.0	57439.20917
5500	9000 0707 5	57430.43042
5500	9/0/.5	57363.77276
5500	9775	5/398.1115/
5500	9762.5	57372.19196
5500	9750	57293.34626
5500	9737.5	57307.11608
5500	9725	57274.08731
5500	9712.5	57246.06559
5500	9700	57243.34386
5500	9687.5	57230.29196
5500	9675	57209.62934
5500	9662.5	57208.01185
5500	9650	57181.44711
5500	9637.5	57187.88025
5500	9625	57129.2275
5500	9612.5	57120.38181
5500	9600	57124.31142
5500	9587.5	57090.86008
5500	9575	57086.58279
5500	9562.5	57039.51312
5500	9550	56986.64062
5500	9537.5	57018.66319
5500	9525	57393.99351
5500	9512.5	57052.63371
5500	9500	57019.26403
5500	9487.5	57003.4
5500	9475	56979.02704
5500	9462.5	56998.75693
5500	9450	56974.99251
5500	9437.5	56964.61529
5500	9425	56923.94375
5500	9412.5	56893.68218
5500	9400	56879.8199

5600	9400	57351.48744
5600	9412.5	57104.58052
5600	9425	56950.37222
5600	9437.5	56876.36434
5600	9450	56906.75578
5600	9462.5	56919.94791
5600	9475	56927.63931
5600	9487.5	56887.02988
5600	9500	56971.21973
5600	9512.5	57033.2
5600	9525	57486,76796
5600	9537.5	57094 17338
5600	9550	57103 00496
5600	9562.5	57086 93453
5600	9575	57093 17617
5600	9587 5	57103.00166
5600	9507.5	57103.09100
5000	9000	57103.21519
5600	9012.5	57111.95017
5000	9625	57139.04151
5600	9637.5	57178.57309
5600	9650	5/19/.//124
5600	9662.5	5/212.7666
5600	9675	57246.65592
5600	9687.5	57272.80902
5600	9700	57325.43998
5600	9712.5	57357.43131
5600	9725	57398.69045
5600	9737.5	57438.17776
5600	9750	57481.46507
5600	9762.5	57515.93426
5600	9775	57555.9787
5600	9787.5	57573.08412
5600	9800	57609.64929
5600	9812.5	57684.84666
5600	9825	57715.09976
5600	9837.5	57769.48506
5600	9850	57775.72206
5600	9862.5	57646.5154
5600	9875	57641.77856
5600	9887.5	57677.20008
5600	9900	57712.91154
5600	9912.5	57798.30488
5600	9925	57781.91634
5600	9937.5	57781.92578
5600	9950	57822.25133
5600	9962.5	57905.36279
5600	9975	58066.19638
5600	9987.5	57904.17966
5600	10000	57345.86775
5600	10012.5	57423.45305
5600	10025	57509.42224
5600	10037.5	57427.76528
5600	10050	57344,41033
5600	10062.5	57394 69361

5600	10075	57317.10105
5600	10087.5	57466.2286
5600	10100	57113.76421
5600	10112.5	57112.16359
5600	10125	56968.86901
5600	10137.5	56999.39858
5600	10150	56923.9201
5600	10162.5	56818.61545
5600	10175	56681.22892
5600	10187.5	56563.71623
5600	10200	56619.72568
5600	10212.5	56639.16732
5600	10225	56580.38884
5600	10237.5	56560.2345
5600	10250	56512.67615
5600	10262.5	56501.81175
5600	10275	56384
5600	10287.5	56365.27654
5600	10300	56327.85805
5600	10312.5	56217.53743
5600	10325	56135.41823
5600	10337.5	56131.49619
5600	10350	56096.37486
5600	10362.5	56003.04997
5600	10375	55836.32295
5600	10387.5	55820.39167
5600	10400	55740.66038
5600	10412.5	55534.23336
5600	10425	55484.31274
5600	10437.5	55411.78928
5600	10450	55399.76155
5600	10462.5	55385.84022
5600	10475	55357.21817
5600	10487.5	55406.88618
5600	10500	55381.86342

5700	10487.5	55253.2
5700	10475	55306.2
5700	10500	55253.1
5700	10487.5	55295.7
5700	10475	55373.6
5700	10462.5	55421.6
5700	10450	55498.4
5700	10437.5	55664.9
5700	10425	56106.2
5700	10412.5	56037.8
5700	10400	56004.6
5700	10387.5	56091.4
5700	10375	56290.1
5700	10362.5	56380.5
5700	10350	56569.2
5700	10337.5	56537.5
5700	10325	56571
5700	10312.5	56514.4
5700	10300	56612.6
5700	10287 5	56659.9
5700	10207.5	56722 18253
5700	10275	56770 76564
5700	10202.0	56700 04002
5700	10200	56706 02247
5700	10237.5	56022 6162
5700	10220	50032.0102
5700	10212.0	50053.90013
5700	10200	50900.00414
5700	10107.5	57016.46619
5700	10175	57046.15252
5700	10162.5	57096.03703
5700	10150	57184.72176
5700	10137.5	57252.00655
5700	10125	57334.59145
5700	10112.5	5/38/.9/692
5700	10100	57386.36278
5700	10087.5	57441.2492
5700	10075	57462.73638
5700	10062.5	57524.61278
5700	10050	57167.09017
5700	10037.5	57753.76814
5700	10025	58001.34669
5700	10012.5	58017.82535
5700	10000	58025.60429
5700	9987.5	58013.88596
5700	9987.5	58014.56777
5700	9975	58023.24991
5700	9962.5	58043.33266
5700	9950	58202.11552
5700	9937.5	58180.49854
5700	9925	58172.98012
5700	9912.5	58090.46212
5700	9900	58050.84488
5700	9887.5	58024.42855
5700	9875	57983.51309

5700	9862.5	57955.89853
5700	9850	57856.78468
5700	9837.5	57802.37199
5700	9825	57771.75976
5700	9812.5	57706.54793
5700	9800	57648.03637
5700	9787.5	57606.52624
5700	9775	57564.21644
5700	9762.5	57559.00694
5700	9750	57478.79753
5700	9737.5	57491.68802
5700	9725	57402.97865
5700	9712.5	57375.86947
5700	9700	57323.06038
5700	9687.5	57332.1513
5700	9675	57252.64226
5700	9662.5	57220.43316
5700	9650	57177.12398
5700	9637.5	57172.51493
5700	9625	57126.10641
5700	9612.5	57100.19831
5700	9600	57067.2903
5700	9587.5	57035.28251
5700	9575	57017.87159
5700	9562.5	56966.26065
5700	9550	56849.14963
5700	9537.5	57240.43823
5700	9525	57121.72677
5700	9512.5	56949.81495
5700	9500	56835.40286
5700	9487.5	56812.39071
5700	9475	56803.07858
5700	9462.5	56787.06662
5700	9450	56768.85462
5700	9437.5	56739.13986
5700	9425	56713.62508
5700	9412.5	56714.80991
5700	9400	56700.89439

5800	9400	56646.8
5800	9412.5	56640.1
5800	9425	56668.1
5800	9437.5	56689.5
5800	9450	56705.6
5800	9462.5	56813.4
5800	9475	56759.1
5800	9487.5	56772.4
5800	9500	56791.4
5800	9512.5	56817.1
5800	9525	56805.1
5800	9537.5	56804.7
5800	9550	56769.8
5800	9562.5	57136.1
5800	9575	56966.9
5800	9587.5	56909.6
5800	9600	57047.3
5800	9612.5	57097.5
5800	9625	57058.5
5800	9637.5	57047.1
5800	9650	57088.9
5800	9662.5	57179.8
5800	9675	57178.6
5800	9687.5	57216.9
5800	9700	57297.2
5800	9712.5	57359.5
5800	9725	57424 4
5800	9737.5	57426.1
5800	9750	57442.6
5800	9762.5	57485.8
5800	9775	57514.6
5800	9787 5	57550.2
5800	9800	57601.9
5800	9812.5	57661.2
5800	9825	57726.2
5800	9837 5	57754.2
5800	9850	57809.4
5800	9862.5	57852 3
5800	9875	57902.3
5800	9887 5	57935.8
5800	9900	58001.8
5800	9912.5	58047.7
5800	0025	58084 9
5800	9925	58001
5800	9957.5	581/2 8
5800	9950	58215.6
5800	0075	58203.8
5800	9975	58203.0
5800	100125	52021 5
5800	10012.5	57027.7
5800	10020	57826 2
5800	10037.3	57020.Z
5800	10050	57005 6
5000	10002.0	57000 0
2000	10075	01900.0

5800	10087.5	57610.5
5800	10100	57672
5800	10112.5	57661
5800	10125	57700.7
5800	10137.5	57587.4
5800	10150	57591.1
5800	10162.5	57708.4
5800	10175	57637.2
5800	10187.5	57401.4
5800	10200	57428
5800	10212.5	57718.7
5800	10225	57562.6
5800	10237.5	57387.7
5800	10250	57356.3
5800	10262.5	57370.4
5800	10275	56807.4
5800	10287.5	56670.2
5800	10300	56670.5
5800	10312.5	56561.8
5800	10325	56458.1
5800	10337.5	56428.5
5800	10350	56204.1
5800	10362.5	56101.1
5800	10375	56203.2
5800	10387.5	56062.5
5800	10400	55906.5
5800	10412.5	55815.8
5800	10425	55615.8
5800	10437.5	55469.6
5800	10450	55368.8
5800	10462.5	55405.9
5800	10475	55526.1
5800	10487.5	55735.7
5800	10500	55877.9

TRENCH 04-1

TRENCH 04-1 137m long Trench is a re-excavation of the lower part of Newmont's 1969 Trench 3, which was bad 60m sloughed and had not reached bedrock in many places Newmont trench is 3m deep with no bedrock. This interval was not re-excavated. 3-4m deep (from 0-25m) 5-6m deep (from 25-38m) 10+m deep (from 38-43m) 2-4m deep (from 68-115m) 1-2m deep (from 115-137m) trends ~315° on gentle NW slope samples 4708-4748 ob Trench is 10+m deep in hardpan and blue clay. Bedrock not reached. qtz-py-seric alt'd qfp with local silic'd zones. 5% py, tr to 0.5% cpy, weak mal + Mn stain. qtz-py-ser ∖ fp∖ _____ 30m @ 0.86g/t Au, 0.65% Cu wk – mod silic'd qfp, 5% py, minor cpy \fp` mod — str silic'd, 10% py — diss + vnlts, 1% v fine diss cpy, mod magnetic wk silic'd, str ep + chl + mag alt'n, 10-15% py, diss + vnlts \pm qtz to 3mm, 1% cpy, diss and with py in vnlts 21m @ 1.16g/t Au, 0.83% Cu —— **Fv**× Dark green xtal tuff, patchy v. strong magnetic mod silic'd, patchy weak ep, 5—10% py, tr cpy water filled fp 51+87E 100+18 GEOLOGY, SAM & RE

<u>LEGEND</u>

fp IXL monzonite to diorite, feldspar ± quartz porphyry. Typically leucocratic, very strongly altered (silic, argillic) and very pyritic. Fv Franklin Group intermediate volcanics (greenstone), crystal ± lapilli tuff, and volcanic breccias. FI Franklin Group limestone and limestone breccia. Fs Franklin Group sediments (argillite, siltstone, tuffaceous siltstone, siliceous tuff, chert).

ation	∕ ⁴⁷⁶⁸	Chip	sample
eddIng	× ⁴⁹⁰¹	Grab	sample
	IXL03-1	Diam	ond dr ill hole
	=====	Road	
ced to	3m@1.1g/t Au 1.2% Cu	Weig grad	hted average e
pyrite		mag	magnetite
chalc	opyrite	sphal	sphalerite
galen	а	chl	chlorite
malachite		az	azurite

COUGAR MINERALS CORP.	
NEW CANTECH VENTURES INC.	
IXL PROPERTY	
FIGURE 7	
TRENCH 04-1 DGY, SAMPLE LOCATION & RESULTS	S
10m	
(day	

FILENAME: IXL-FIG7-TR04-1.DWG

DRAWN BY: LJC / ŋw

				LE	GE	<u>ND</u>		
	oh		Overburde	'n				
			Overbuide					
P	EOCEN	NE						
N	Ei		Coryell sy	enite ar	nd pula	sk i te dykes,	sills an	d stocks.
	JURA	ssic	TO CRET	TACEO	US			
	gd d		Nelson gr	anodio	rite to d	iorite.		
	fp		IXL monz Typically argillic) ar	onite to leucocr nd very	diorite atlc, ve pyritic.	, feldspar ± ry strongly a	quartz p altered (oorphyry. s illi c,
	TRIAS	SIC	(?)					
	Fv		Franklin C crystal ± I	Group ir apilli tu	ntermeo ff, and	liate volcani volcanic bre	ics (gree eccias.	enstone),
	FI		Frank li n C	Group l i	meston	e and limes	tone bre	eccia.
	Fs		Franklin G siltstone,	Group s siliceou	edimen is tuff, c	its (arg illi te, chert).	siltston	e, tuffaceous
	Fcg		Franklin C May be de ("sharpsto groundma	Group c omInan one") or ass.	onglom tly cher · may b	ierate. Fine t pebble coi e polymictic	to med nglomer Calca	ium grained. ate reous
		•	Sulfide m	nineraliz	zation	√ ⁴⁷⁶⁸	Chip	sample
	30	Strike / Dip of Bedding			edding	× ⁴⁹⁰¹	Grab	sample
	∽∽∽ Fault					•	Diam	ond drill hole
	~~~\		Outcrop			IXL03-1	Road	
	\·	;	Location	roforon	cod to	3m@1.1g/t A	u, Weig	hted average
	+ 51+6 101+2	7E 20N	2004 IXI	L grid	iceu io	1.2% 66	grad	e
	sk	ska	m	py	pyrite		mag	magnetite
	silic	silio	ified	сру	chalc	opyrite	sphal	sphalerite
	ер	epi	dote	gal	galen	а	chl	chlorite
	qtz	qua	irtz	mal	malac	chite	az	azurite
	seric	ser	icite					





		TRENCH 0	4-4 ANA	LYTICA	L RESU	ILTS		
Sample #	Interval (m)	Sample Width (m)	Au ppb	Aug/t	Ag g/t	Cu ppm	Pb ppm	Zn pp
4786	0 - 2.5	2.5	15		0.5	101	66	95
4787	2.5 - 5	2.5	10		0.3	70	28	71
4788	5 - 7.5	2.5	30		0.4	124	32	58
4789	7.5 - 10	2.5	25		<0.2	65	18	47
4790	20 - 22.5	2.5	35		0.5	299	22	39
4791	22.5 - 25	2.5	40		0.4	209	20	37
4792	25 - 28	3	25		0.2	129	12	40
4793	28 - 30	2	70		0.9	442	20	70
4794	30 - 32	2	25		0.7	281	24	69
4795	32 - 34	2	35		0.7	316	58	77
4796	34 - 35	1	215		3.1	691	18	41
4797	35 - 36	1	785		3.4	3454	24	145
4798	36 - 37	1	>1000	1.22	4.7	3705	26	146
4799	37 - 38	1	660		2.3	1521	70	169
4800	38 - 39	1	>1000	1.43	2.2	3842	48	129
4801	39 - 41	2	280		0.5	736	30	108
4802	41 - 43	2	115		0.7	489	34	110
4803	43 - 44.5	1.5	80		0.5	498	24	96
4804	44.5 - 46	1.5	250		0.8	305	20	84
4805	86 - 88	2	65		0.4	338	18	18
4806	88 - 91	3	95		1.1	585	18	39
4807	91 - 94	3	55		0.8	646	22	36
4808	94 - 97	3	85		1.3	714	12	28
4809	97 - 100	3	75		1.0	814	22	29
4810	100 - 103	3	65		1.3	816	62	39
4811	103 - 106	3	60		0.6	572	20	29

4813  109 - 112  3  80    4814  112 - 115  3  60    4815  115 - 118  3  60	00  0.8  1066  20  35    00  0.6  645  22  30    00  0.5  806  16  26	GEOLOGY, SAME	PLE LOCATIONS
4816 118 - 121 3 28	85 1.3 2096 12 32	SCALE: 1:200	
4817 121 - 124 3 10	05 0.6 583 10 26		10m
4818 124 - 126 2 20	05 0.3 820 14 48		
		DRAWN BY: LJC / nw	
		DATE: NOVEMBER 2004	FILENAME: XL-FIG10-TR04-4.D







4888	4887-91 are	1	>1000	2.01	2.6	5303		28	93	$/$ $/$ $/$ 0u	GEOLOGY, SF	AMPLE LOCATIO
4889	contin samples	1	>1000	1.83	12.5	>10000	1.08	28	140		2 F	RESULTS
4890	across width	1	>1000	2.23	9.5	>10000	1.31	26	143			LUUEIU
4891	of zone	1.5	185		2.0	2061		26	157		SCALE: 1:200	10
4892	112 m	grab	>1000	11.8	5.8	>10000	2.07	<2	88		0	TUM
4893	112 m	grab	>1000	7.73	5.6	>10000	1.03	6	106			
											DRAWN BY: LJC / rjw	
											DATE: NOVEMBER 2004	FILENAME: IXL-FIG13-TR04-7.









	LEGEND									
	ob	Overburden								
(L		overburgen								
Þ	EOCENE									
g N	Ei	Coryell syenite and pula	skite dykes, sills and stocks.							
80.5g/t Ag	JURASSIC	TO CRETACEOUS								
	gd d	Nelson granodiorite to d	iorite.							
		Ū								
	fp	IXL monzonite to diorite	, feldspar ± quartz porphyry							
		argillic) and very pyritic.	ry strongly altered (silic,							
	TRIASSIC	(2)								
		Freedulter One and the second	U-t							
	FV	crystal ± lapilli tuff, and	volcanic breccias.							
	FI	Franklin Group limeston	e and limestone breccia.							
	Fs	Franklin Group sedimen siltstone, siliceous tuff, o	ts (argillite, siltstone, tuffaceous chert).							
RENCH 04-11										
	Fcg	Franklin Group conglom	erate. Fine to medium grained.							
		May be dominantly cher ("sharpstope") or may b	t pebble conglomerate							
		groundmass.	e polymicuo. Galcareous							
	• • •	Sulfide mineralization	^{√4768} Chlp sample							
	30	Strike / Dip of Bedding	× ⁴⁹⁰¹ Grab sample							
	~~~~	Fault	Diamond drill hole							
	/>	Outcrop								
	\/	Leastion referenced to	3m@1.1g/t Au, Woighted average							
	+ ^{51+67E} 101+20N	2004 IXL grld	grade							
			X							
	sk ska	rn py pyr i te	mag magnetite							
	silic silic	ified cpy chalc	opyrite sphal sphalerite							
	ep epie	dote gal galen	a chl chlorite							
\checkmark	qtz qua	irtz mal malao	hite az azurite							
N I	seric ser	cite								
/										
TRENCH 04	-11									
a re-excave	a re-excavation of an old, sloughed 1969 Newmont									
approx 25x	10m irreg	ular stripped area	с. с							
average U.5-1m deep trench is level to v low N sloping										
samples 49	13-4943	iow it sloping								
n Pb% Znppm Zn%										
4 1267										
0 1.90 >10000 2.57		COUGAR MINER	RALS CORP.							
0 1.90 >10000 2.57 4 9367 8 5333		COUGAR MINER & NEW CANTECH VI	ENTURES INC.							
0 1.90 >10000 2.57 4 9367 8 5333 0 1.97 >10000 13.10 0 2.89 >10000 13.20		COUGAR MINER NEW CANTECH VI IXL PROP	ENTURES INC.							
0 1.90 >10000 2.57 4 9367 8 5333 0 1.97 >10000 13.10 0 2.89 >10000 13.20 0 6.10 >10000 10.70 0 .95 >10000 4.67		COUGAR MINEF NEW CANTECH VI IXL PROF FIGURE	ALS CORP. ENTURES INC. PERTY 17							
0 1.90 >10000 2.57 4 9367 8 5333 0 1.97 >10000 13.10 0 2.89 >10000 13.20 0 6.10 >10000 10.70 0 0.95 >10000 4.67 2 1154 6 9965	GEOL	COUGAR MINEF NEW CANTECH VI IXL PROF FIGURE TRENCH	ALS CORP. ENTURES INC. PERTY 17 10 4-11 LE LOCATIONS							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GEOL	COUGAR MINE NEW CANTECH VI IXL PROF FIGURE TRENCH OGY, SAMP & RES	ALS CORP. ENTURES INC. PERTY 17 104-11 LE LOCATIONS JLTS							
0 1.90 >10000 2.57 4 .9367 .9367 8 .5333 .107 0 1.97 >10000 13.20 0 6.10 >10000 10.70 0 0.95 >10000 4.67 2 1154	GEOL SCALE: 1:100	COUGAR MINE NEW CANTECH VI IXL PROF FIGURE TRENCH OGY, SAMP & RESU	ALS CORP. ENTURES INC. PERTY 17 104-11 LE LOCATIONS JLTS							
$\begin{array}{ccccccc} 0 & 1.90 & >10000 & 2.57 \\ 8 & & 9367 \\ 8 & & 5333 \\ 0 & 1.97 & >10000 & 13.20 \\ 0 & 6.10 & >10000 & 13.20 \\ 0 & 0.95 & >10000 & 10.70 \\ 0 & 0.95 & >10000 & 4.67 \\ 2 & & 1154 \\ 6 & & 2865 \\ 8 & & 399 \\ 0 & 4.76 & >10000 & 11.32 \\ 6 & & 9433 \\ 0 & 3.28 & >10000 & 1.80 \\ 0 & > 10000 & 1.04 \\ \end{array}$	GEOL	COUGAR MINER NEW CANTECH VI IXL PROF FIGURE TRENCH OGY, SAMP & RESU	ALS CORP. ENTURES INC. PERTY 17 104-11 LE LOCATIONS JLTS							

Survey by: SJ Geophysics Ltd. IP Inversion by: S.J.V. Consultants Ltd. Processing Date: Oct, 2004 Projection: UTM Datum: NAD83 Zone: 11 Mapping Date: Oct, 2004

- **Contour Lines**
- Rivers

Roads

IXL Grid

Grand Forks, BC - Canada

Magnetic Survey Contour Plan Map Total Field Magnetic Intensity (nT)

