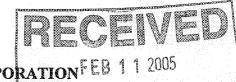


[ARIS11A]

Geological Survey Branch Assessment Report Indexing System

ARIS Summary Report


Regional Geologist	, Cranbrook	Date Approv	ed: 2005.0	08.08		Off Confid	ential:	2005.12.01	
ASSESSMENT RE	PORT: 27640	Mining Division(s): Nelson							
Property Name: Location:	Jazz NAD 27 Latitude: 49 16 00 NAD 83 Latitude: 49 16 00 NTS: 082F06W BCGS: 082F024	Longitude: Longitude:	117 18 00 117 18 04	UTM: UTM:	11 11	5456925 5457144	478174 478094		
Camp: 004	Ymir - Nelson Area								
Claim(s):	Stewart 6 -7, Dog 8 -13, Free Silv	er (L. 2902), Porph	2						
Operator(s): Author(s):	Emgold Mining Corporation Dandy, Linda, Brown, Jarrod								
Report Year:	2005								
No. of Pages:	93 Pages								
Commodities Searched For:									
General Work Categories:	DRIL, PHYS, GEOC								
Work Done:	SAMP Sampling/assaying Elements Analyzed For : M SOIL Soil (192 sample(Elements Analyzed For : M Physical	lultielement (106 sample(s);) lultielement	naps : 2 ; Scale		0, 1:666	6			
Keywords:	Jurassic, Rossland Group, Elise F Chalcopyrite, Molybdenite	ormation, Basalts,	Andesites, Arg	jillites, Silts	tones, T	uffs, Pyrrhc	tite, Pyrite	Э,	
Statement Nos.:	3221240								
MINFILE Nos.:	082FSW229, 082FSW300, 082FS	W311							
Related Reports:	01083, 02301, 06654, 07074, 077 25388, 25702, 26049, 26399, 266			19704, 228	329, 230	18, 23092,	23537, 24	123,	

1

GEOLOGICAL, GEOCHEMICAL AND DIAMOND DRILLING REPORT ON THE JAZZ PROPERTY

NELSON MINING DIVISION, BC MAPSHEETS: 082F.024 and 082F.034 LATITUDE 49°16'N LONGITUDE 117°18'E

for

EMGOLD MINING CORPORATION FEB 1 1 2005 1400 - 570 GRANVILLE STREET Commissioner's Office VANCOUVER, BC V6C 3P1

by

JARROD BROWN, P.Geo.

and

LINDA DANDY, P.Geo.

Consulting Geologists

January 2005

SUMMARY

1

The Jazz Property, containing several gold, silver, molybdenum, zinc and tungsten prospects, is located near the town of Salmo in southeastern British Columbia. The property lies predominantly within lower Jurassic Elise Formation (Rossland Group) mafic volcanics and associated mid Jurassic and younger intrusive rocks.

The Jazz Property consists of the former Stewart Property which has now been amalgamated with the adjoining Dog and Eclaire claims. The Stewart Property was worked by a number of operators from 1974 to 1998. Emgold Mining Corporation acquired the Stewart Property in 2001. Previous work on the property includes geology, geochemistry, geophysics, trenching and drilling. The drilling was concentrated on the Stewart Moly Zone, with a smaller drill program carried out on the in the Craigtown Creek area (over the Minova north grid).

In 2001, Emgold Mining Corporation conducted soil geochemical surveys in five grid areas – the Arrow, Po, North and South Craigtown and Quartz Stockwork Grids. This work was followed up in late 2003 by an airborne geophysical (magnetics, resistivity and electromagnetics) survey over the eastern and western sides of the property.

This report presents the results of the 2004 exploration program consisting of prospecting, rock and soil sampling, at the Po, Free Silver and Craigtown Creek projects, and diamond drilling results from the Craigtown Creek project.

For 2005, an exploration program of detailed geological mapping, excavator trenching and rock chip sampling in the Free Silver area is recommended. Also, with the recent significant increase in molybdenum prices, the Stewart Moly area will be re-evaluated and with a small diamond drill program being recommended to confirm and expand the molybdenum mineralization in that area. This exploration program is budgeted at \$450,000.00 and may be implemented in stages.

TABLE OF CONTENTS

1) INTRODUCTION	
2) LOCATION AND ACCESS	4
3) PHYSIOGRAPHY	5
4) HISTORY	5
5) WORK DONE BY EMGOLD MINING CORPORATION IN 2004	6
6) CLAINAINEODMATION	6
7) GEOLOGY	9
REGIONAL GEOLOGY	9
PROPERTY GEOLOGY	
Craigtown Creek area geology	
MINERALIZATION	14
ALTERATION	16
8) GEOCHEMISTRY	17
ROCK SAMPLING TECHNIQUES	17
Craigtown Creek area	
Free Silver area	
Porphyry Claims group	
Rock sampling conclusions	
SOIL GEOCHEMISTRY	
Craigtown Creek soils	
Roadcut Infill soils	
9) DIAMOND DRILLING	
10) CONCLUSIONS	
CRAIGTOWN CREEK AREA	
FREE SILVER AREA	
PO claims and ROADCUT AREA	
RECOMMENDED WORK PROGRAM	
11) REFERENCES	
APPENDICES	

APPENDIX I - ROCK CHIP SAMPLE RESULTS - CERTIFICATES OF ANALYSES

APPENDIX II - SOIL SAMPLE RESULTS - CERTIFICATES OF ANALYSES

APPENDIX III – DIAMOND DRILL LOGS

APPENDIX IV – DRILL CORE SAMPLE RESULTS – CERTIFICATES OF ANALYSES

TABLES

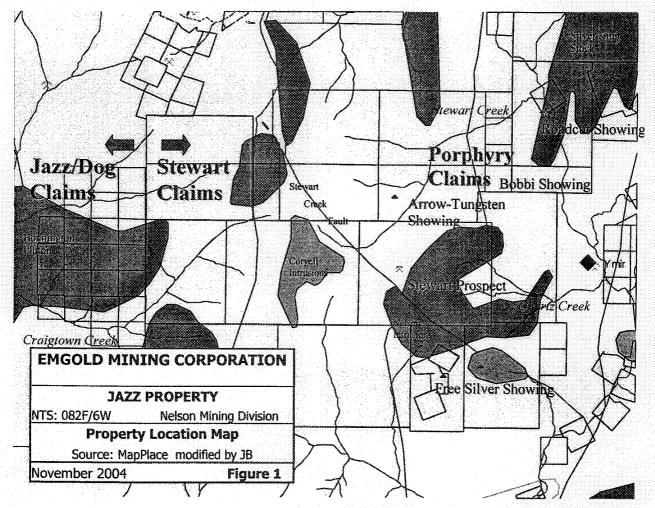
TABLE I Claim Information	8
TABLE II Rock Sample Results	19
TABLE III Soil Geochemistry Statistics	26
TABLE IV Drill Hole Collar Locations	
TABLE V Drill hole assay statistics for select metals	32

FIGURES*

Figure 1 – Property Location Map	4
Figure 2 – Claim and Grid location map	
Figure 3 – Regional Geology map	10
Figure 4 – Drill Hole and Sample locations (Craigtown Creek)	
Figure 5 - Rock Sample locations (Free Silver Claim area)	23
Figure 6 – Sample locations (Po claims)	. 24
Figure 7 – Au soil geochemistry (Minova Grid)	
Figure 8 – Airborne resistivity and Au geochemistry (Minova Grid)	. 28
Figure 9 – Au soil geochemistry (Orvana Grid)	, 29
Figure 10 - Airborne Resistivity and Au soil geochemistry (Orvana Grid)	
Figure 11 – JADH-1 StripLog	. 34
Figure 12 – JADH-2,3 StripLogs	. 35
Figure 13 – JADH-4,5 StripLogs	36
Figure 14 – JADH-7 StripLog	

*For Figures 4 through 10 at larger scales see Pockets in back of Report.

1) INTRODUCTION


The Jazz Property contains a number of gold, silver, molybdenum, tungsten, lead and zinc prospects, located near Salmo in southeastern British Columbia. This property was acquired in two parts – the original Stewart property was acquired by Emgold Mining Corporation from vendors Jack and Eric Denny in mid 2001. The Dog and Eclaire claims were added to the west side of the property after being optioned from Mo Kaufman in early 2004. The amalgamated property is called the Jazz Property.

4

Work done by Emgold in 2004 consisted of prospecting, rock and soil sampling, at the Po, Free Silver and Craigtown Creek projects, and drilling results from the Craigtown Creek project. The results from this program outline the presence of spotty copper-molybedenum +- gold mineralization on the Po claims, significant and widespread silver-lead-zinc mineralization on the Free Silver claims, and widespread gold-copper +- molybdenum, and minor silver-lead-zinc mineralization at the Craigtown Creek project. This report covers the details and results of the 2004 work program.

2) LOCATION AND ACCESS

The Jazz Property is located 7 kilometres north of Salmo, and directly west of Ymir, in the Nelson Mining Division of southeastern British Columbia (Figure 1). The claims are centred at latitude 49°16'N and longitude 117°18'E within mapsheets 082F.024 and 082F.034.

Access to the Jazz Property is either via the Erie Creek Road, 4 kilometres west of Salmo on Highway 3, or by the Stewart Creek Road, 4 kilometres north of Ymir on Highway 6. A number of logging and old mining roads provide access throughout the claims. These roads are in various conditions, some being maintained and others being overgrown with brush and alder.

3) PHYSIOGRAPHY

The Jazz Property is located in an area of rugged terrain. Topography on the property is steep with elevations ranging from 750 metres to 1,950 metres. Outcrop exposure is generally limited, but ridge crest outcrops are fairly common. The lower slopes and valley bottoms have extensive deposits of till.

Several portions of the claim area have been recently logged, with the remainder being covered with first and second growth forest consisting of dominantly conifer stands, but also some deciduous stands and minor brush fields.

The climate is moderate. Precipitation can occur throughout the year, but is lightest during the summer months. Most of the property is snow covered during December to April, with the highest regions not melting off until June or July. Temperatures typically range from -15° to 20° C annually.

4) HISTORY

The Jazz Property is located in an area of much early mining activity, with the Ymir, Erie, Sheep Creek and Nelson districts being sites of extensive exploration and production for over 100 years.

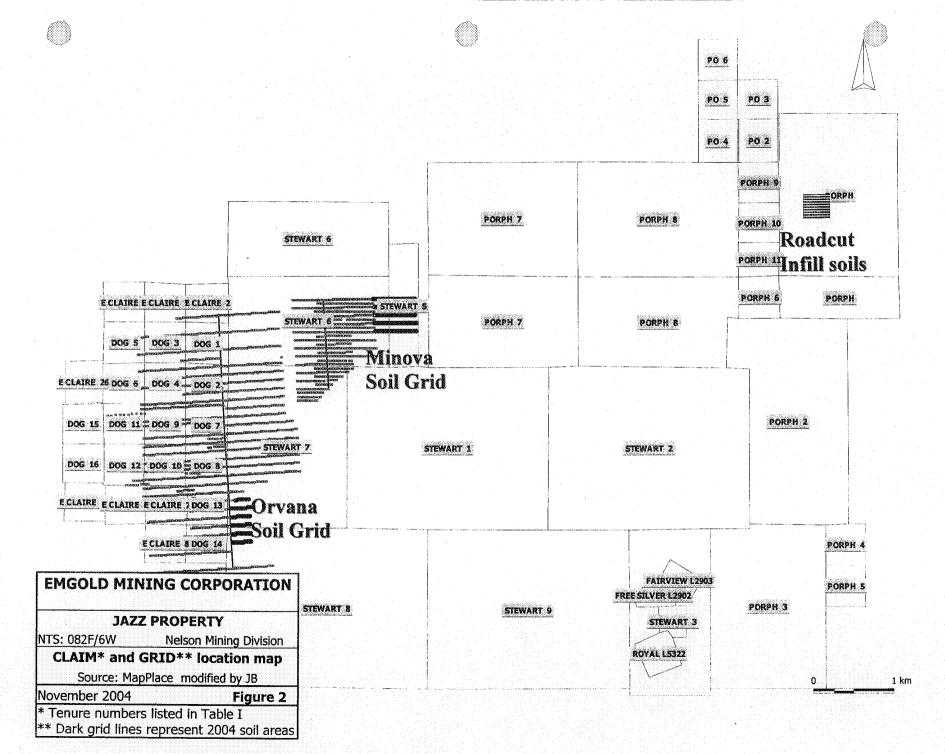
Recorded work on the Jazz Property began with surface exploration and development of the Arrow Tungsten showing by Premier Gold Mining Co. in 1942. Tungsten mineralization was identified over a 1000 foot (300 metre) strike length, with samples up to a few feet wide of over 1% WO₃. In the late 1960s and early 1970s, the property was explored for copper by Quintana and Copper Horn. Prospectors Eric and Jack Denny staked the property in 1978, and Shell Canada, followed by Selco, explored the property for molybdenum. Most of this work (including extensive drilling) was focused on the Stewart Moly and Breccia Summit areas. Large areas of the property were also soil sampled on a wide grid, and covered by airborne magnetic and impulse EM surveys.

From the mid 1980s to the mid 1990s, several groups explored the property for gold. US Borax and Lacana conducted geochemical surveys, concentrating in the Rest Creek area. Minova, followed by Cameco, explored the Craigtown Creek area with geochemistry and geophysics (induced polarization and magnetics). Cameco drilled four core holes into one of the targets identified by this work. The found extensive anomalous gold in altered andesite, diorite and feldspar porphyry (values in the low 10s to 100s of ppb, maximum 24,854 ppb over 1 metre in a quartz-sulphide vein). In 1996, Orvana Minerals conducted geologic mapping, rock, soil and moss mat sampling, and a ground magnetic and VLF-EM survey.

The most recent work done on the property prior to Emgold's option was in 1997 by Orvana Minerals. The Craigtown Creek grid area was extended and covered by soil geochemistry and geological mapping. Also road construction to the ridge between the south and main forks of Craigtown creek was completed in order to access drill target areas defined by previous work.

In 200, Emgold Mining Corporation conducted soil geochemical surveys in five grid areas – the Arrow, Po, North and South Craigtown and Quartz Stockwork Grids. This work was followed up in late 2003 by an airborne geophysical (magnetics, resistivity and electromagnetics) survey over the eastern and western sides of the property.

5) WORK DONE BY EMGOLD MINING CORPORATION IN 2004


In 2004, Emgold Mining Corporation applied the following work to the Stewart Property:

- 1. Po claims prospecting, lithogeochemical and soil geochemical sampling, and geological mapping.
- 2. Free Silver claims prospecting and lithogeochemical sampling.
- 3. Craigtown Creek area prospecting, lithogeochemical and soil geochemical sampling, geological mapping, and diamond drilling of 6 holes.

The grid locations can be seen on Figure 2. Fieldwork was carried out between June 13 and October 15, 2004, by a two to six person crew working out of the town of Salmo. Fieldwork was supervised by the authors.

6) CLAIM INFORMATION

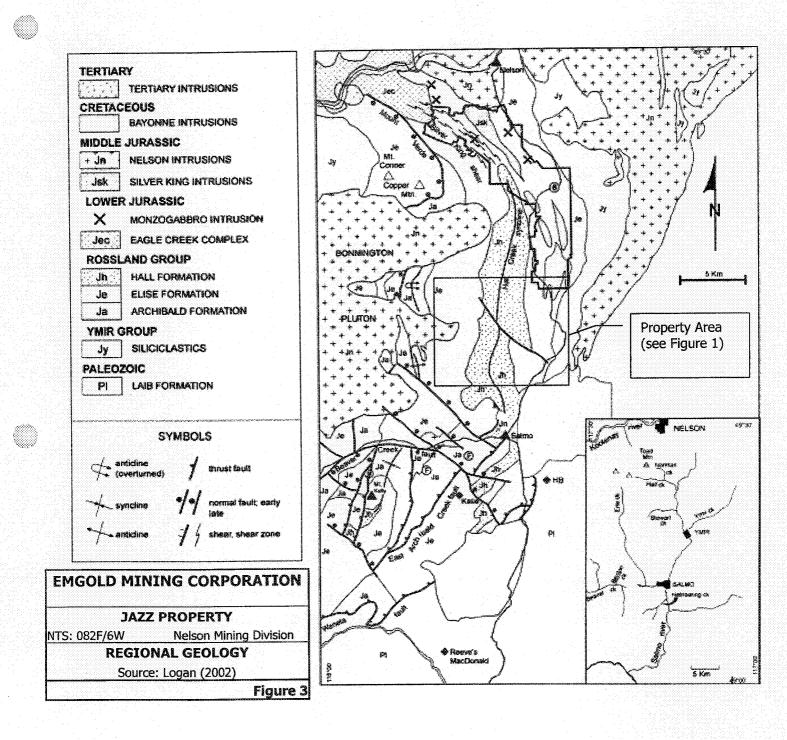
The Jazz Property is located within the Nelson Mining Division and consists of 13 modified grid and 39 two post claims to total 240 units (Figure 2). Claim information is listed in Table I.

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

TABLE I Claim Information

Project	Name	Tenure	Units	Expiry
EMR/STEWART	PORPH	384362	15	2010
EMR/STEWART	PORPH 2	387884	15	2010
EMR/STEWART	PORPH 3	387885	12	2010
EMR/STEWART	PORPH 4	387886	1	2010
EMR/STEWART	PORPH 5	387887	1	2010
EMR/STEWART	PORPH 6	387888	1	2010
EMR/STEWART	PORPH 7	393592	20	2010
EMR/STEWART	PORPH 8	393593	20	2010
EMR/STEWART	PORPH 9	393594	1	2010
EMR/STEWART	PORPH 10	393595	1	2010
EMR/STEWART	PORPH 11	393596	1	2010
EMR/STEWART	FAIRVIEW L2903	234612	1	2010
EMR/STEWART	FREE SILVER L2902	232633	1	2010
EMR/STEWART	ROYAL L5322	232634	.1	2010
EMR/STEWART	STEWART 1	232635	20	2010
EMR/STEWART	STEWART 2	232636	20	2010
EMR/STEWART	STEWART 3	232637	8	2010
EMR/STEWART	STEWART 5	232697	3	2010
EMR/STEWART	STEWART 6	232698	16	2010
EMR/STEWART	STEWART 7	232699	12	2010
EMR/STEWART	STEWART 8	393590	20	2010
EMR/STEWART	STEWART 9	393591	20	2010
EMR/JAZZ	DOG 1	314273	1	2012
EMR/JAZZ	DOG 2	314274	. 1	2012
EMR/JAZZ	DOG 3	314275	1	2012
EMR/JAZZ	DOG 4	314276	1	2012
EMR/JAZZ	DOG 5	314277	1	2012
EMR/JAZZ	DOG 6	314278	- [1 :	2012
EMR/JAZZ	DOG 7	321746	1	2012
EMR/JAZZ	DOG 8	321747	1	2012
EMR/JAZZ	DOG 9	321748	1	2012
EMR/JAZZ	DOG 10	321749	1	2012
EMR/JAZZ	DOG 11	321750	1	2012
EMR/JAZZ	DOG 12	321751	1	2012
EMR/JAZZ	DOG 13	338999	1	2012
EMR/JAZZ	DOG 14	339000	1	2012
EMR/JAZZ	DOG 15	370665	1	2012
EMR/JAZZ	DOG 16	370666	1	2012
				요즘 문제가

		240
PO 6	411857	1 2009
PO 5	411856	1 2009
PO 4	411855	1 2009
PO 3	411854	1 2009
PO 2	411853	1 2009
PO 1	411852	1 2009
E CLAIRE 26	358698	1 2010
E CLAIRE 20	358692	1 2012
E CLAIRE 9	356448	1 2012
E CLAIRE 8	356447	1 2012
E CLAIRE 7	356446	1 2012
E CLAIRE 6	356445	1 2012
E CLAIRE 4	356443	1 2012
E CLAIRE 2	356441	1 2012
	E CLAIRE 4 E CLAIRE 6 E CLAIRE 7 E CLAIRE 8 E CLAIRE 9 E CLAIRE 20 E CLAIRE 20 E CLAIRE 26 PO 1 PO 2 PO 3 PO 4 PO 5	E CLAIRE 4 356443 E CLAIRE 6 356445 E CLAIRE 7 356446 E CLAIRE 7 356447 E CLAIRE 8 356447 E CLAIRE 9 356448 E CLAIRE 20 358692 E CLAIRE 26 358698 PO 1 411852 PO 2 411853 PO 3 411854 PO 4 411855 PO 5 411856


9

7) GEOLOGY

Geology and mineralization of the Jazz Property is well described by Fredericks and Thomson (1998), and is summarized below:

REGIONAL GEOLOGY

The immediate region is underlain in the east by Paleozoic clastic and carbonate sedimentary rocks of the Kootenay Terrane, and in the west by Mesozoic volcanic rocks of the Quesnel Terrane. In this region, the stratigraphy of both the Kootenay and Quesnel Terranes have been folded and faulted along an east-west compressional axis. They are intruded by felsic volcanic rocks that range in age from Jurassic to Tertiary. Coeveal dioritic intrusions are common in the mafic andesitic volcanic rocks of the Jurassic Rossland Group. These tend to be relatively small bodies. Extensive late Mesozoic intrusive activity produced the widely distributed Nelson Group of intrusives of granitic to dioritic compositions. Eocene age, typically potassic (monzonite) intrusive rocks of the Coryell Group are also widely distributed in the region. Young (Tertiary) dykes and sills of rhyolite and felsite are common, and some small, more mafic intrusives are present. Much older clastic sedimentary rocks of the Proterozoic Aldridge (Belt) Supergroup outcrop extensively to the east.

PROPERTY GEOLOGY

The Jazz Property is underlain by sedimentary and volcanic rocks of the Jurassic Rossland Group, and by intrusive rocks of various younger ages (Figure 3). The oldest rocks are of the Elise Formation, the volcanic component of the Rossland Group. The Archibald Formation, which is the basal unit of the Rossland Group and composed of fine clastic sediments, outcrops west of the Stewart Property. The volcanic rocks of the Elise Formation are basaltic to andesitic in composition, tending to be porphyritic flows, breccias, pyroclastics and subvolcanic intrusives. A fairly significant component of this formation includes fine-grained, equigranular to porphyritic/aphanitic diorite/andesite. Phenocrysts of feldspar, augite and hornblende are common in some of the units.

Overlying the Elise Formation is the Hall Formation (also Jurassic Rossland Group). These rocks are mostly argillite, siltstone, fine-grained sandstone and minor conglomerate. They are rarely limy, but are commonly siliceous. Compositionally, the rocks are very heterolithic, with a variety of clasts, including a high percentage of volcanic fragments. The Elise and Hall Formations are folded into a broad north-south trending syncline (Hall Creek Syncline) that runs through the property and extends both north and south over a 20 kilometre strike length. This north-south structural feature is the strongest one on the property.

A variety of intrusive rock types and ages have intruded the older rocks. These belong to three major groups. The older group consists of coeval diorite intrusives in the andesite pile of the Elise Formation. These tend to be fine to medium-grained, equigranular and weakly porphyritic. They range from very weakly to moderately magnetic. They probably are not very large, occurring as dykes or sills a few metres thick. Flow lineation in feldspar or hornblende phenocrysts is seen near the intrusive contacts in drill core.

The next set of intrusive rocks is the Cretaceous Nelson intrusive suite, mostly quartz monzonite on the property, but also monzonite, granite and diorite. These tend to be large, in places composite, intrusive masses outcropping most extensively in the northern portion of the property, in the Stewart and Craigtown Creek drainages. Smaller stocks occur in the western portion of the property. Rocks of these intrusives are generally medium-grained, equigranular to porphyritic. They seem to range from weakly to fairly strongly magnetic. Porphyry molybdenum mineralization on the property is thought to be related to these intrusives.

Younger intrusives of the Coryell Suite (Eocene or later?) are also monzonitic, but tend to be a little more quartz-poor and alkaline than the Nelson rocks. They are typically biotitic and may be equigranular or porphyritic. They occur in both the east central and west central portions of the property. What are probably the youngest intrusives are rhyolite, latite and minor basalt sills/dykes that intrude the older Rossland rocks and both Nelson and Coryell intrusives. These cross-cutting intrusives are aphanitic to weakly porphyritic (rhyolite and latite may have quartz eyes), generally strike north-south and are widely scattered on the property. The rhyolite intrusives commonly have distinct flow banding near their contacts with the country rock. The dominant structural grain on the property is north-south. The Rossland Group stratigraphy generally strikes north-south, as does the Hall Creek Syncline. Northwest and northeast faults and shear zones are known on the property; they appear to be significant controls to mineralization. The common young rhyolite dykes and sills also strike north-south and dip steeply. All of these features indicate that the deformation occurred within a stress regime with an east-west compressional axis that was probably long-lasting and contemporaneous with accretion onto the North American continent.

Craigtown Creek area geology

Mapping was conducted in 1996 and 1997 by Orvana along road cuts and stream drainages in the Craigtown Creek area. The following geological summary is from Fredericks and Thomson, 1998, and is reproduced below as this area contains important gold mineralization.

The Elise (Jurassic age Rossland Group) Formation volcanics underlie a large portion of the Craigtown Creek area, and hosts a significant part of the known mineralization. They strike generally north-south and dip moderately to steeply east. Lithologies of the Elise Formation are texturally highly variable. The rocks constitute essentially an andesitic volcanic pile, but include flows, clastics and intrusives. Colour varies from light to dark grey, green or almost black. Most of the rocks are either porphyritic/aphanitic andesite flows or tuffs. Feldspar, hornblende and augite phenocrysts are common. The tuffs vary from ashes to lapilli or even cobble tuffs. Rarely, bedding is visible in ashy beds. Dioritic, porphyritic coeval dykes and/or sills are also common. These commonly have flow lineations preserved in the phenocrysts, near the contacts with the country rock. Compositionally, rocks of the Elise Formation are seen to vary from andesite to gabbro. Some of the rocks are basalt, containing up to 25% dark green to black augite phenocrysts. In the western portion of the area, a narrow belt of fine-grained tuffaceous volcanics is exposed in road cuts. These rocks lie between the granite and diorite intrusives, and are hornfelsed. They possibly represent a small sliver of the Archibald Formation (rather than the Elise Formation), otherwise not represented in the area, caught between two intrusives. Alteration in the Elise Formation is widespread and commonly consists of a propylitic assemblage, with less common potassic, carbonate and silicification.

Overlying the Elise Formation on the east are argillite, siltstone and tuffaceous rocks of the Hall Formation. These rocks also strike north-south and dip steeply. They are dark grey, tan to black and thinly bedded. They nave not been identified as calcareous in the Craigtown Creek area although they are in other areas of the property. They are often graphitic. Mineralization of these rocks in the study area seems to be restricted to the contact aureole around the "West Moly Intrusion", which is mostly further east. This mineralization is limited to disseminated pyrite/pyrrhotite and minor small quartzsulphide veins. Alteration in this aureole includes silicification and hornfels (possible potassium metasomatism or silica flooding).

In the western portion of the area a variety of intrusive rocks occur. These probably represent in part; a lobe of Nelson (Cretaceous) granite, quartz monzonite and diorite and

extend eastward from the Bonnington pluton up Craigtown Creek. The granite is light speckled grey, pink and tan, medium to coarse-grained and unaltered. The diorite is medium to dark grey, medium to fine-grained, and tends to be more mafic in the west. It is generally unaltered to weakly propylitically altered. The monzonite and quartz monzonite outcrop extensively in the western portion of the grid area. This rock is medium to dark grey, medium-grained and generally equigranular to weakly porphyritic. It tends to be more quartz-rich in the southern portion of its distribution. It is generally unaltered or only weakly propylitically altered, except near its contact with the country rocks, where propylitic alteration is stronger. This rock intrudes the volcanic rocks of the Elise Formation.

Small monzonitic feldspar porphyry intrusive plugs occur in the Craigtown Creek area. These rocks were originally thought to belong to the Nelson intrusive group (Cretaceous). However, Hoy and Dunne (1988) suggest that rocks similar to these, including the Silver King porphyry, may be synvolcanic. One of these porphyries outcrops east of the 1996 grid on Anomaly Ridge, where Cameco drilled four holes. Other bodies are certain to underlie other areas, and the float is very common. These rocks are porphyritic, with 10-30% feldspar phenocrysts, ¼ to 1 cm long set in fine-grained, tannish grey groundmass. In places, anhedral quartz eyes constitute a few modal percent. Petrographic study indicates that the feldspar crystals are plagioclase. They are cream coloured and euhedral. In places they demonstrate a flow lineation. Mafics are mostly hornblende and minor biotite, and constitute a minor portion of the mode. The rocks often contain disseminated pyrite and in places are cut by stockwork quartz veinlets.

Fine-grained, felsic monzonitic intrusives occur in several portions of the Craigtown Creek area. These rocks may be from the same magmatic event as the feldspar porphyry intrusive described above, as they are compositionally similar. These rocks are light tan or grey, with pinkish hue in places, and contain only minor mafic minerals (generally 5% biotite). In places, especially near the ridge crest, brecciation is strong in these rocks. These appear to be intrusive breccias and show several cross-cutting relations. They are altered and mineralized, and are associated with anomalous gold and copper geochemistry in both soils and rocks. Several percent magnetite is a common component, both as fine to medium-grained disseminations and as stockwork veinlets, with or without quartz. Potassium feldspar and quartz veining and flooding are present in places. These rocks probably represent elongate intrusives, perhaps 100 metres wide by 400 metres long that were emplaced along the contact between the Elise Formation and the body of medium-grained monzonite. The strong northwest elongation implies structural control.

Latite and quartz latite dykes and small plugs occur in the Craigtown Creek area. They are probably Tertiary in age; they intrude the Rossland Group and the diorite and monzonite intrusives. The dykes are only a few metres in width and have strikes that range from northwest to northeast with steep dips. They are usually not altered or mineralized. However, a small plug of trachytic latite and quartz latite porphyry with quartz veinlet stockwork and anomalous gold (>1 g/t) outcrops in the area. This plug was

intruded along the same northwest striking zone of weakness that parallels the contact between the monzonite intrusives and the volcanics.

Rhyolite dykes are common on the Jazz Property, and a few of these traverse the Craigtown Creek area. They are also probably Tertiary, as they intrude the Rossland Group and the diorite and monzonite intrusives. They generally strike north-south and dip near vertically. They are a few metres in thickness. Texturally, the rhyolite is aphanitic, with minor quartz eyes in places. They have been mapped and logged as tuffs, flows or intrusives by other workers. Based on flow lineations, and chilled lower and upper contacts as seen in core, we believe that they are later intrusives. They are little altered except for some minor late quartz-carbonate veinlets. Sodium cobalt-nitrate staining of rhyolite dykes encountered in the Cameco drill holes indicates that they are very potassium rich. As there is little textural and mineralogical evidence to suggest significant alteration, it is assumed that the potassium is primary as microcrystalline K-feldspar. Some of them contain disseminated pyrite; in fact some earlier workers concluded that they are the source of the gold soil geochemical anomalies at Craigtown Creek. In our experience, they contain very little gold except where accompanied by quartz veinlet stockwork and pyrite.

Minor lamprophyre or porphyritic basaltic dykes, sills, and small plugs are present in the area. They are dark grayish brown, unaltered, not magnetic, and aphanitic, with minor biotite phenocrysts in places. They have distinct chill margins along both contacts in core. They also intrude the Rossland Group and the diorite and monzonite intrusives. They are probably late and unrelated to mineralization.

MINERALIZATION

The following mineralization summary is taken from Fredericks and Thomson (1998).

Mineralization on the property is widespread and varied. Included are porphyry molybdenum (and copper?) with high grade breccia (Stewart Moly), contact/skarn related molybdenum and tungsten (Arrow Tungsten), porphyry stockwork gold/copper (Craigtown Creek), stratabound sediment hosted gold-rich sulphide (replacement manto or exhalative, i.e. Arlington Mine, Gold Hill?), quartz-pyrite-arsenopyrite stockwork in sediments (Trixi V), sediment hosted silver-zinc-lead (Free Silver), and quartz-pyrite veins with gold (Craigtown Creek). Additionally, disseminated pyrite is common in several rock types, including andesite, argillite, rhyolite and diorite/monzonite intrusives.

In the Craigtown Creek area, six types of mineralization are known. These include: 1) disseminated and fracture filling pyrite and/or pyrrhotite, +/- chalcopyrite, 2) quartz-magnetite veinlets, 3) quartz veinlet stockwork, 4) pyrite veinlets, 5) quartz-carbonate veins, and 6) quartz-sulphide veins. The first four types are associated with potentially economic, bulk tonnage style gold and copper mineralization. The last type could be associated with the same system that produced the former mineralization types, but is a distinctly different target type that also has economic potential.

Pyrite and pyrrhotite as disseminated grains and fracture fillings is common in the Craigtown Creek area. This type of mineralization is observed in all of the rock types mapped in the area, with the exception of the granite intrusive and basalt dykes. Traces of chalcopyrite are present in places with mineralization, where it occurs in intrusive or volcanic rocks, usually in association with shearing, brecciation or quartz veinlets. Propylitically altered quartz monzonite and diorite generally has only 0.5 to 2% sulphide. Andesite typically has more sulphide; 2-3% in propylitic rocks and 5-10% in silicified rocks, in relative proportion to the amount of alteration. Potassically altered intrusive and volcanic rocks have less sulphide, generally in the 0.5 to 4% range. This type of sulphide is also very common in feldspar porphyry. In one area of the grid, disseminated and fracture-filling pyrite and pyrrhotite in andesite tuff consistently yield 1-2 g/t gold in rock samples.

Quartz-magnetite veinlets are common in the north-northwest trending contact zone between the felsic monzonite intrusives and the Elise volcanics. This zone has strongly anomalous gold and copper in soils. The host rocks are usually the intrusives and less commonly the volcanics. They are very rarely exposed in outcrop, mostly being seen in float or talus. The veinlets range from <1 millimetre to 5 millimetres in thickness, constitute 2-20% of the rocks and in places constitute a stockwork. Two or three stages of veining are visible in some hand samples with at least one stage in quartz only. Malachite stains are present in places, though the rocks rarely contain sulphide. Where sampled on the surface, rocks containing this type of mineralization contain anomalous gold (100 to 300 ppb range) and copper (200 to 500 ppm range).

Quartz and quartz-pyrite veinlet stockwork was observed in feldspar porphyry float in several places, and in the small latite plug mapped in the southern portion of the northwest striking zone of alteration and anomalous geochemistry that bisects the central portion of the grid. The rocks hosting this stockwork generally are moderately silicified, and contain several percent disseminated pyrite. Pyrite may also have been a component of the veinlets in some samples, but has been oxidized to limonite. This mineralization represents the potential for discovery of a large tonnage gold deposit, as several samples have returned gold values >1 g/t. This mineralization may represent more than one stage, as some rock samples contain high gold and low copper; others have high copper with high gold.

Pyrite veinlets in mafic andesite-basalt contain highly anomalous gold values in the central portion of Minova's southern grid, east of Craigtown Creek. Dark green to black augite porphyritic mafic andesite or basalt is exposed in a few small outcrops, subcrop and float. Petrographic study indicates that this rock is propylitically altered and fragmental. It typically contains a few percent disseminated pyrite. In a couple of small outcrops, vague pyrite veinlets and clots are present. These vague veinlets have northeast orientations. Samples of this material have run in the 8 to10 g/t gold range.

Quartz-carbonate veinlets are present in both the Bonnington Pluton monzonite-diorite intrusive rocks and the Elise volcanics. They seem to occur in sheared, weakly altered (propylitic) outcrops. Shear directions are either northeast or north-south, with near

vertical dips. Minor amounts of pyrite and or magnetite are present in the host rocks. Samples of these rocks have weakly anomalous gold and copper.

Quartz-calcite-sulphide veins occurring in Elise volcanic rocks were intersected in one of the 1994 Cameco drill holes. They range from 10-30 centimetres wide and contain mostly white quartz and calcite, with 10-30% sulphide (pyrite, pyrrhotite and minor chalcopyrite). One of these veins contains 24,854 ppb gold. They appear to have high enough grade potential to be considered as targets, even in an underground mining situation. They are not known to outcrop anywhere. It is possible that the northeast striking gold in soil anomalies located on the grid north of Craigtown Creek are related to this type of mineralization. These anomalies are fairly narrow and linear appearing to be derived of relatively narrow veins or structures. Veins like this have been demonstrated to occur around porphyry type mineral systems in other important mining camps in British Columbia.

ALTERATION

The following alteration summary is taken from Fredericks and Thomson (1998).

Various types of alteration are known on the Jazz Property. In the area of the porphyry molybdenum occurrences phyllic and potassic alterations are reported by earlier workers. Silicification is common in various rock types. Propylitic alteration of intrusive and volcanic rocks is widespread on the property. In the Craigtown Creek area, the focus of work in 1996 and 1997, alteration types observed included propylitic, silicification, carbonate, potassic and skarn.

In the Craigtown Creek area propylitic alteration is common in andesitic volcanic rocks of the Elise Formation. Patchy, pervasive epidote and chlorite tint the rocks green. Fractures in the Elise volcanics have fillings, coatings or selvages of these minerals. Intrusive rocks, including monzonite and diorite, also commonly display pervasive to fracture-controlled propylitic alteration, where mafic crystals have altered to chlorite and/or epidote. This alteration is not as ubiquitous in the intrusive as it is in the volcanic rocks. The propylitic alteration may be related to the margins of the Bonnington intrusive rocks that invade from the west, and the later fine-grained monzonite plugs that intrude the Elise/Bonnington contacts. Broad areas straddling the Bonnington contact also exhibit moderate to intense magnetite mineralization associated with the propylitic alteration. This is particularly evident in diorite and Elise volcanics underlying the broad magnetic high on the Orvana Grid between L83N and L91N from about 55+00 E to 57+00 E.

Silicification is intense within the Elise Formation andesite near Craigtown Creek. These rocks typically have a mottled, bleached colouration. Silicification is pervasive, and mafic minerals are entirely chloritized. The silicification is usually accompanied by disseminated pyrite or pyrrhotite. It is also coincident with anomalous soil and rock geochemistry (gold, copper, arsenic) in places, and therefore is assumed to be a function of the mineralization system. On the surface, these silicified rocks tend to form small, iron-stained ridges and knobs with sparse vegetation. They appear to be associated

primarily with northwest structures, also possibly intrusive contacts and northeast structures. On the ridge crest, silicified rocks appear to extend 100 metres east of the saddle where several northwest structures are mapped. This is also within 100 metres of an intrusive contact where potassic alteration is present.

Carbonate alteration is present in places in the andesite of the Elise Formation. This alteration can be either pervasive or veinlet/fracture controlled. Where pervasive, it tends to be apparent only when the rocks are subjected to HCl acid, or with petrography. Petrographic study indicates that most of the carbonate is ferroan dolomite and is generally a late alteration product. A few outcrops were located containing small veinlets of calcite, commonly associated with north-south or northeast shearing. In the north Minova grid area, a northeast trending zone of carbonate alteration, bleaching and pervasive hematite/limonite traverses the hillside just downhill and east of the Cameco drill holes. This zone is approximately 20 metres wide.

Potassic alteration is present in places in brecciated and veined fine-grained felsic monzonite intrusive rocks along the Bonnington Pluton – Elise Formation contact. This alteration is fairly weak, and consists of pinkish to grayish flooding and veinlets of potassium feldspar. Quartz +/- magnetite veinlets are commonly associated with this alteration.

Skarn alteration was observed in two locations in the Craigtown Creek area. A small outcrop of green calc-silicate skarn was found just off the western end of the 1996 grid. This rock contains green pyroxene, brownish garnet, and black amphibole (+/- chlorite). Similar skarn was found in float near the east end of the old road running up the north side of the North Fork of Craigtown Creek. The protolith is probably andesitic fragmental volcanic rock.

8) GEOCHEMISTRY

ROCK SAMPLING TECHNIQUES

During the 2004 exploration program on the Jazz Property a total of 141 rock grab and chip samples were collected. Chip samples were taken as continuous samples collected perpendicular to bedding or mineralizing structures wherever identifiable and consist of numerous 2 to 3 centimetre rock chips to total about 5 kilograms. Grab samples consist of 2 or 3 fist size pieces of rock representing a certain rock or mineralization type. All sample sites were marked with fluorescent flagging marked with the sample number.

Samples were placed in poly bags labelled with the corresponding sample number and were shipped to ACME Labs Ltd. in Vancouver for analyses. In the laboratory, samples were crushed to minus 200 mesh and fire assayed for gold, plus geochemically analyzed for 30 additional elements by the ICP method. One sample was selected to be assayed for tungsten by sodium fusion.

Certificates of Analysis for the rock sample results can be found in Appendix I. Table II summarizes the results from the surface rock grab and chip sampling program.

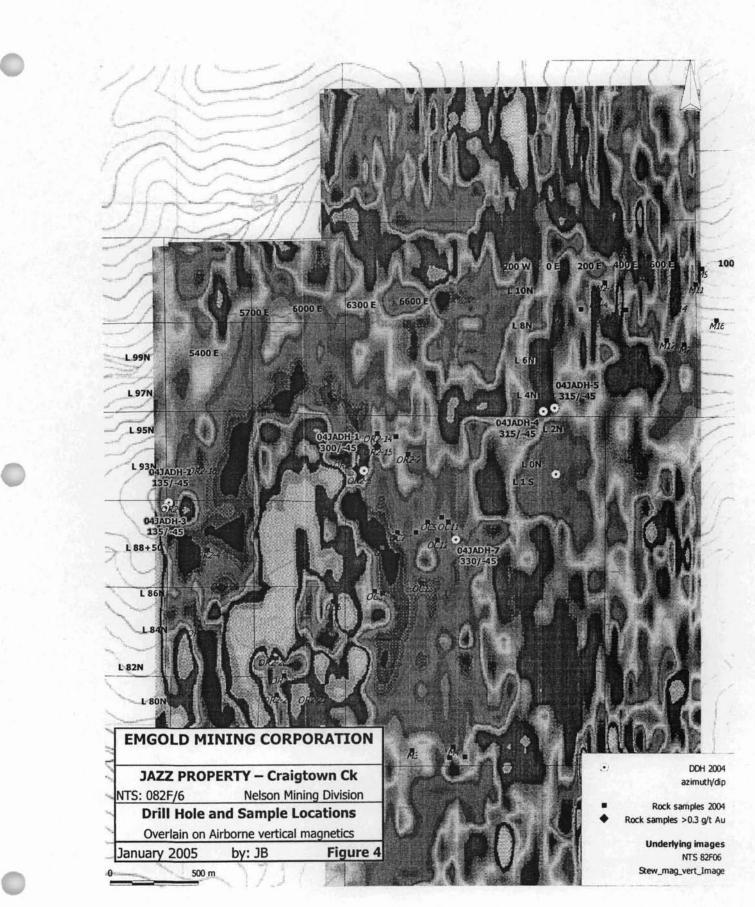
TABLE II ROCK SAMPLE RESULTSIncludes 2004 samples only. List sorted by highest Au followed by Ag.Underlined values determined by metallics assay.

SAMPLE	Grid	Description	Au**	Ag	Мо	(Cu	Pb	Zn	W
			gm/mt	ppm	ppm	F	محمد بالمراجع والمحاجم و	ppm		ppm
M2-3	Min – N	OC grab: silic. amph+-feld phyric IV-MV with bte-alt. and 2%ds py. no mag	0.24	<.3		9	242		40	3
V12-4	Min – N	1m chip nrml to min jnt on 343/81= same lith as prev w. 1% FF py, 2%Ds py (jnts 357/34, 226/86) 3m chip across hard silicified amphibole-feldspar phyric diorite. 5% py>po,	0.33			3	159		114	-0
DR2-9	JADH-1: 3-6m	8% amph, sig py FF	0.43			76	348	8		
DR2-15	Orvava	float- rusty silic IV-MV x'I tuff. 3% po>py & vugs with white stain	1.31		0.3	1	521	.7		
PO13	Bobbi	10 cm rep grab of qtz-mo vein on 150/20. Host is hornfelsed IV.	0.26	5	0.8	90	65	82	34	>100.
-S8	Free Silver	grab of light bluish grey vuggy pyritic qtz vein from medium sized dump, adjacent to microgranite dyke.	0.46		2.6	4	155	0.04		10
DR2-18	Orvava	3m chip in HW and normal to qtz vein on 210/75. =rusty and silic MV with abnt min. FF.	0.01		1.6	8	130	1333		
DR2-19	Orvava	composite chip of bluish-grey massive to semimassive aspy-py in qtz veins up to 18cm wide.	0.11		7.9	11	123	8205		2
OR2-20	Orvava ·	1.5m chip in FW of above. FW and HW samps do not inc. obv. qtz veins. see ORV23386,23387	0.01		4.7	3	198	1355		<2.
PO11	Bobbi	1m chip across sheared gossan IV – adjacent to mafic dyke on 340/85	0.18		6.6	20	273	6542		20
PO12	Bobbi	.8 m chip across sheared gossan IV – adjacent to mafic dyke on 340/85	0.04	1 3	4.8	41		>10000.		25
FS1	Free Silver	rep grab of 50cm qtz-feld vein with 1-3% soft silver min. (tetrahedrite?) w. malachite+/-azurite grab of F.G. MV-IV? with sig. calc-silicate alt. and gal-sphal-ankerite mineralization. Proximal to	0.06		<u>′0</u> 11	5 9	2848 1739	0.72 0.38		7
FS5 FS6	Free Silver Free Silver	Lamp. 3m chip of MV with bnded mssv sphal & lesser galena. wt stained and goss. Min. in shear on 228/72.	0.07 0.1	1 4	1 .2 <1.	a	183	1.52	25.99	<2.
FS7	Free Silver	1m chip across augite phyric diorite(andesite), well sheared and mineralized (gal+sphal) on 316/80	0.01	1 <u>11</u>	4	2	217	8.78		
FS9	Free Silver	composite grab of very gossanous volc. with abundnat sphal-gal (some massive)	0.1	1 7	5.6 <1.		60	2.83		
FS11	Free Silver	grab from dump of massive banded sphal+-gal+-cpy hosted in aug-monz	0.04	4 <u>21</u>	<u>8</u> <1.		3212	14.92		
FS12	Free Silver	1m chip across sheared and mineralized aug-monz on 033/86 grab of banded massive gal in aug-monz and MV (sheared contact and min on 183/65) (min on	0.0		<u>)9</u> <1.		438	10.74		
FS13	Free Silver	joint 285/84)	0.03			6	3147			
FS15	Free Silver	grab of massive banded siderite with minor gal hosted in MV	0.02	2 🔮	<u>88</u>	11	1849	1.81	0.18	<2.
FS22	Free Silver	2.5m chip acorss sheared and gossanous silic, FG MV. Min likely shear controlled on 350/67 and 227/52	0.0	1 2	0.6	5	80	0.70	3.34	<2.
FS23	Free Silver	grab of high grade from dump = semi-massive gal with minor sphal and siderite, tr mal.	0.06	3	<u>805</u> <1.		84	18.30	8.21	<2.
FS24	Free Silver	grab of massive to semi-massive gal-sphal in silic MV-IV. Shear controll min on 220/72 grab: semimassive gal+-sphal+siderite in lim-vuggy qtz vein. Shear hosted on 319/45 in crse x'l	0.04		<u>362</u> <1.		303	15.39		
FS26	Free Silver	andesite.	0.0		7.1 <1.		270			
M15	Min - N	chip, 25cm across qtz vein with sig clots of py and gal on 052/88 (note Au soils in area)	0.03	3	3.2	1	21	1418	3 425	<2.

OC5	Orvana	chip - 1m: hard massive grn-bl-gry andesite x'I tuff, with rusty pod and mal. (see ORV#24582)	0.04	0.6	4	647	7	67
OC13	Orvana	composite grab of OC: andesite- (Si-K?)-alt with <1% f. DS Po+-Py. (see OV#23953)	0.02 <.3		37	296	7	15 <2.
OR2-1	Orvana	80cm chip across Po-rich siliceous shear/joint structure on 220/72. High Si+-K alt.	0.03	0.4	185	1888	27	13
OR2-3	Orvana	1m chip in HW of 220/72 mineralized structure. SEE OR2-16 - 272m@040 (on strike)	0.01	0.5	65	1573	12	26 <2.
OR2-7	Orvana	composite grab of very gossanous boulder subcrop - similar to previous w 2-4% py=po	0.02	0.3	1	405	4	30 <2.
OR2-10	JADH-1: 6-9m	as above w. 4% po>py, 5% amph, minor py FF	0.16 <.3		8	405	7	27 <2.
OR2-14	Orvava	O/C grab of siliceous MV augite-phyric with minor malachite on FF - Tr qtz stringers	0.15	4.8	1	1555	7	33
OR2-21	Orvava	subcrop: mve-stnd grnsh-gry vol/intrusive brec. strng perv. mt, weak epd; commn cb+-py FF	0.15	0.4	3	425	17	126
P07	Bobbi	Coposite grab of bte-qtz monzonite w/pervasive lim. stn and FF jarosite.	0.01 <.3		112	41	7	46
PO15	Bobbi	grab of bull gtz vein on 100/steep	0.16	0.3	10	12	5	6>100
PO23	Quartz Creek	grab of aplite dyke with qtz-Mo stringers. Host is gossanous F.g augite phric volc	<.01 <.3		105	36	9	7
PO35	Road cut	composite grab of boulders conatining qtz-cb-chl-cpy-py-mal+-po+-bor? veins in country rock.	0.01	5<	:1.	7686	9	45
FS2	Free Silver	grab of semi-massive to massive Py+Po (Banded and Ds) after fine-grained IV-MV?	<.01	3.1	26	939	0.00	0.03 <2.
FS18	Free Silver	1m chip heavily silic MV-IV. 3-5% VF Ds py. no mag. 20m S is mod mag trachylte.	<.01 <.3		451	123	0.00	0.00

9

Craigtown Creek area


Samples were collected from three areas within the Jazz/Stewart claim areas (Figure 4): 1) Minova (Orvana) South (M1-M4), 2) Minova North (samples M5-M17, and M2-1 to M2-6), and 3) Orvana grids (OC1 to OC13, and OR2-1 to OR2-29). In all cases, traverses and sampling locations were designed to follow-up historical and newly acquired geochemical, and ground and airborne geophysical anomalies. Except for ridge top areas, the property is infamous for its lack of outcrop. Many samples labeled as *subcrop*, appear to be locally derived, as so much, as they often exhibit similar characteristics to the rare outcrops in a given area. Samples labeled *float* have unknown origin.

Only four samples were collected from the Minova South grid area, following up anomalous soil geochemical and previous lithogeochemical sampling on the southeast side of Craigtown Creek. All samples were intermediate to mafic crystal tuffs with up to 2% fracture controlled sulphides, including trace chalcopyrite. Only two of these samples came from outcrop (M1, M2). Despite elevated gold and copper found by previous workers, none of the four samples collected contained anomalous values. It is the opinion of the author, that areas at or below the elevation of sampling are extensively contaminated by exotic glacial till.

Samples M5 to M17 were mostly collected from outcrop and subcrop from the northern and eastern limits of the Minova grid, in the vicinity of the soil line extensions (L6N to L11N, 6+00E to 11+00E). Samples consist of diorite, crystal-lapilli tuffs and argillite. Only one sample (M15) was anomalous in lead-zinc-silver (Table II).

Samples M2-1 to M2-6 were collected in the northern limits of the Minova grid, following up very anomalous gold soil geochemistry centred on L10N 2+50E. The samples were collected along a west to east trend across the contact from diorite/monzonite feldspar porphyry (M2-1, M2-2), into silicified and biotite altered, amphibole-feldspar phyric andesites, with up to 3% disseminated and fracture controlled pyrite. The 2003, airborne resistivity image, is particularly good at discriminating this contact. Two of the andesite samples contain weak but anomalous gold (up to 0.33 g/t) and copper (242 ppm). North trending vertical magnetic lineations tie this area to the gold soil anomaly in the vicinity of the Cameco drill holes centred on L 6+50N 2+75 E.

Samples OC1 to OC13, were collected from the central to eastern part of the Orvana grid between L85N and L90N. All samples were either subcrop or float in areas of anomalous gold-copper soil geochemistry, with or without coincident high I.P. chargeability and low ground magnetic anomalies. Most samples are crystal-tuff andesites, with occasional rhyolite trachyite, and exhibit minor to intense silicification +- potassic alteration. Pyrrhotite is the most common sulphide, with lesser pyrite, and occasional chalcopyrite and malachite in quartz-carbonate+-chlorite fractures. Disseminated mineralization is less common and associated with silicification and potassic +- albite alteration. Despite some impressive alteration, assays proved to be quite poor. One sample was weakly anomalous in gold (OC3: 0.23 g/t); two samples were weakly anomalous in copper (OC5, OC13: 647, 296 ppm).

Samples OR2-1 to OR2-4 were collected from the northwestern part of the Orvana Grid in the vicinity of drill holes JADH-2 and 3. Here, fracture controlled massive to semimassive pyrrhotite mineralization, hosted in andesite, contains up to 1888 ppm copper and 309 ppm molybdenum. Gold values are insignificant. Sample OR2-16 (~250 metres to the northeast) is a chip sample across a similar mineralized structure. It is likely on strike with the previous samples, and contains 585 ppm copper. Samples OR2-18 to OR2-20 are 1140 metres southwest of OR2-1. These samples were collected from an old working, which exposed a 3 to 5 metre wide mineralized zone containing veins with massive to semi-massive arsenopyrite and pyrite. Samples were significantly anomalous in silver, lead, zinc (up to 88, 8000, 241 ppm, respectively).

Samples OR2-5 to OR2-15 and 17, were collected from the ridge area in the northeastern part of the Orvana Grid in the vicinity of drill hole JADH-1. Most samples are from outcrop, and are typically gossanous, heavily silicified amphibole-feldspar porphyry. Disseminated and fracture controlled pyrrhotite and lesser pyrite is associated with the hornfelsing silicic alteration. Maximum values for gold and copper are 1.5 g/t, and 1555 ppm respectively.

The remaining samples (OR2-21 to OR2-29) were collected from the southern and western parts of the Orvana grid, in order to follow up several significant gold geochemistry anomalies, and M. Kaufman's reports of mineralized intrusive breccia in the area. Several breccia samples were analyzed but only two contained very weakly anomalous gold and copper to a maximum of 0.15 g/t, and 425 ppm, respectively.

Free Silver area

Twenty-nine samples were collected and assayed from the Free Silver area (Figure 5). Sampling traverses were designed to follow-up known pits, adits and trenches. The different showings consistently contained semi-massive to massive sulphide, banded and fracture controlled mineralization including sphalerite, galena, tetrahedrite, chalcocite?, malachite, and azurite with gangue minerals pyrite, siderite and lesser pyrrhotite.

Samples collected from the western half of the claim area are hosted within silicified and well foliated chlorite schists, probably andesitic in composition. Samples collected on the northern tip of the main ridge, and along the easterly aspect, are predominantly intrusive; either augite phyric monzonite, or feldspar porphyry.

The twenty-nine samples average greater than 65 grams/tonne silver, with a maximum metallics assayed value of 641 ppm silver (sample FS13). This sample contains massive galena mineralization hosted in augite porphyry and has the highest recorded lead content (35%). Sample FS6 contains the highest zinc value of 26%, and also contains 1.5% lead and 42 ppm silver. FS6 is hosted in well foliated intermediate to mafic volcanics. Sample FS-11 contains massive, banded sphalerite-galena-chalcopyrite mineralization hosted in augite monzonite. It assayed the highest copper with 3212 ppm, plus 218 ppm silver, 14.9% lead, and 16.6% zinc.

The known mineral occurrences in the area tend to occur along the peripheries of magnetic high lobes, defined in the 2003 airborne survey (Figure 5).

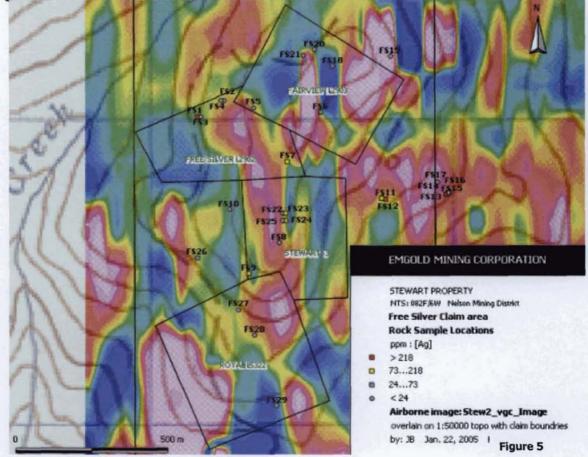
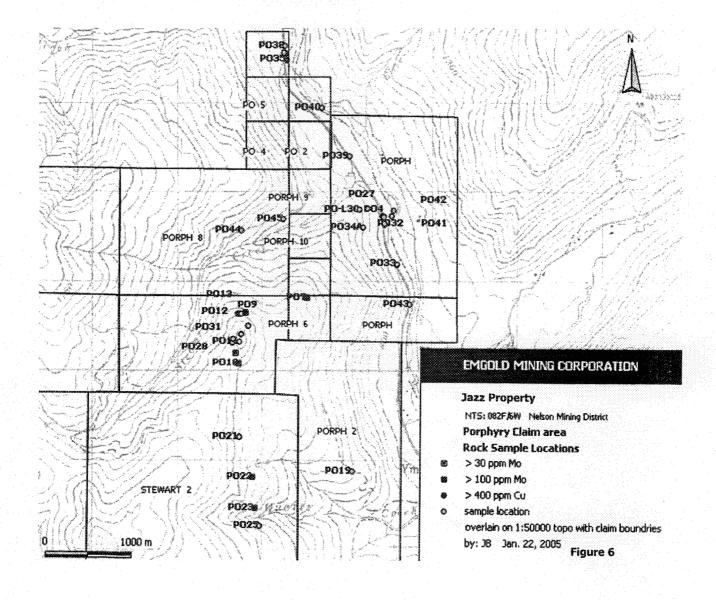


Figure 5 - Rock Sample locations (Free Silver Claim area)


Porphyry Claims group

This section includes samples from three areas in the Bonnington Range between the headwaters of Quartz Creek and the lower reaches of Stewart Creek (Figure 6).

The Roadcut showing is centred in the vicinity of the intersection of Stewart Creek with Highway 6. It is notable for a series of quartz veins up to 2 metres wide, that crosscut host Silver King porphyry and Elise Volcanics, along this significant southeast contact area. Reconnaissance soil sampling (200 metre spaced lines with 50 metre spaces stations) covered this area in 2003. Rock sampling in 2004, was done to followed-up several spotty gold soil anomalies from this prior soil sampling. Visible gold, 3 millimetres in diameter, was found in a vuggy quartz vein with abundant goethite, manganese staining and chlorite. Despite extensive sampling of the veins in this area, no significant gold assays were returned. Of the 22 samples collected along the roadcut and

railway line in this area, only one sample returned an anomalous value: PO-35 is comprised of boulder float containing quartz-carbonate-chlorite veining with chalcopyrite-pyrite-malachite-pyrrhotite +- bornite mineralization. Copper content in this sample is 7686 ppm.

Sixteen samples were collected from the Bobbi claims, in the area mapped by Selco in 1984. Sample PO-7 was collected from an old drilling site, and contained 112 ppm molybdenum. A series of old workings were found approximately 750 metres west of PO-7; they contain gossanous mineralized chloritic shears assaying up to 35 ppm silver, 1086 ppm copper, > 1% lead, and 5800 ppm zinc.

Several workings and mineralized outcrops were located on the minor peak, between 250 to 500 metres south of the previous samples, centred on 4500S/ 4000W. Reconnaissance 2003 gold soil geochemical anomalies brought us to this area for follow-up. Despite the presence of massive pyrrhotite mineralization with minor chalcopyrite, the highest assay in the area was only 0.28 g/t gold and 107 ppm copper. Sample PO15 contained greater than 100 ppm tungsten.

Reconnaissance gold soil geochemistry follow-up also took us into the headwaters of Quartz creek, where seven rock samples were collected. One sample only (PO23) was weakly anomalous in molybdenum (105 ppm).

Rock sampling conclusions

Samples from the Craigtown Creek area exhibit weak anomalous gold-copper mineralization, associated with alteration and mineralization signatures consistent with porphyry style mineralization. Minor occurrences of structurally controlled silver-leadzinc mineralization also occur at the western and eastern limits of the Craigtown Creek area. M. Kauffman suggested that some of the linear geochemical and geophysical anomalies in the Orvana grid area could be indicative of VMS style mineralization. To date, the author has not encountered stratabound mineralizing styles consistent with this interpretation, although the lack of outcrop on the property does not discredit it either.

The Free Silver area contains impressive massive to semi-massive conformable and nonconformable silver-lead-zinc +- copper mineralization; with silver values up to 641 ppm. Workings in the area are numerous, and mineralization is remarkably consistent. More work is recommended for this area.

Three mineralizing styles are apparent within the Porphyry Claims. Gold +- copper in quartz veins is apparent in hand samples along the highway; however, gold assays are negligible. Vein hosted silver-lead-zinc workings have been located on the aspect overlooking Stewart Creek. Copper-molybdenum +- tungsten porphyry style mineralization is apparent on the Bobbi claims and in the headwaters of Quartz Creek, albeit low grade. Overall, the assays for this area are disappointing, considering the discovery of visible gold along the Roadcut Showing, and the extensive gossanous silicification on the minor peak of the Bobbi claims.

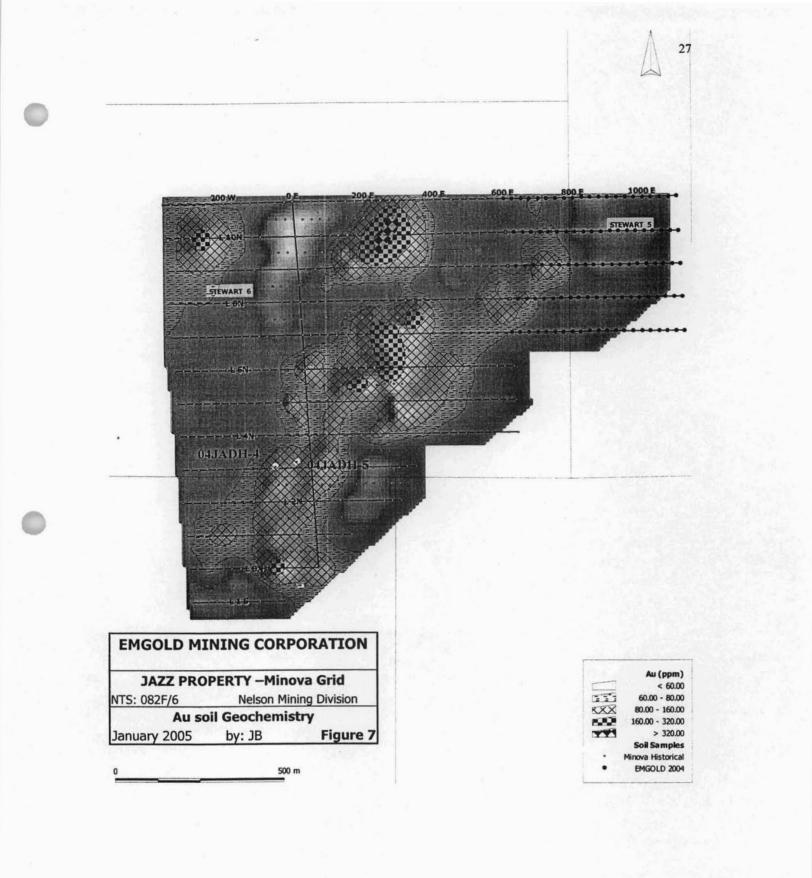
SOIL GEOCHEMISTRY

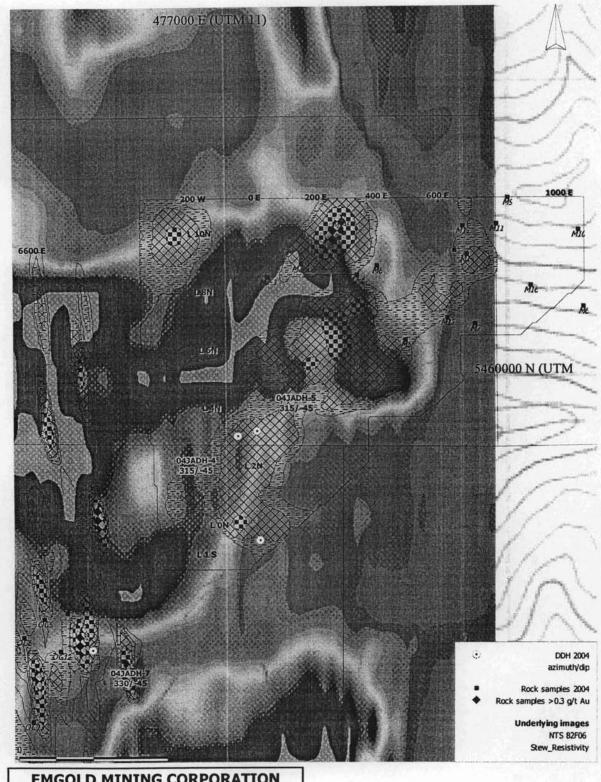
During the 2004 exploration program, a total of 192 soil samples were collected from three grid areas. These soil grids are named the Minova North, Orvana (Minova South) and Roadcut Grids (Table III, Figure 2). On the grids, soil lines were put in at 100 metre spacings with samples collected at 25 metre intervals on the Minova and Roadcut grids, and 30 metres intervals on the Orvana grid.

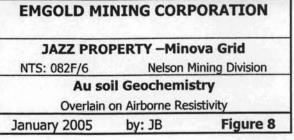
Samples were taken from the 'B' soil horizon whenever possible, and were collected using a mattock or shovel. Samples site were labelled with fluorescent flagging with the station number recorded on it, and soil was placed in correspondingly labelled Kraft soil bags. All soil samples were shipped to ACME Labs Ltd. in Vancouver for analyses. In the laboratory, samples were dried, sieved to -80 mesh and the fine fraction analyzed for gold by the wet geochemistry method and for 30 elements by the ICP method.

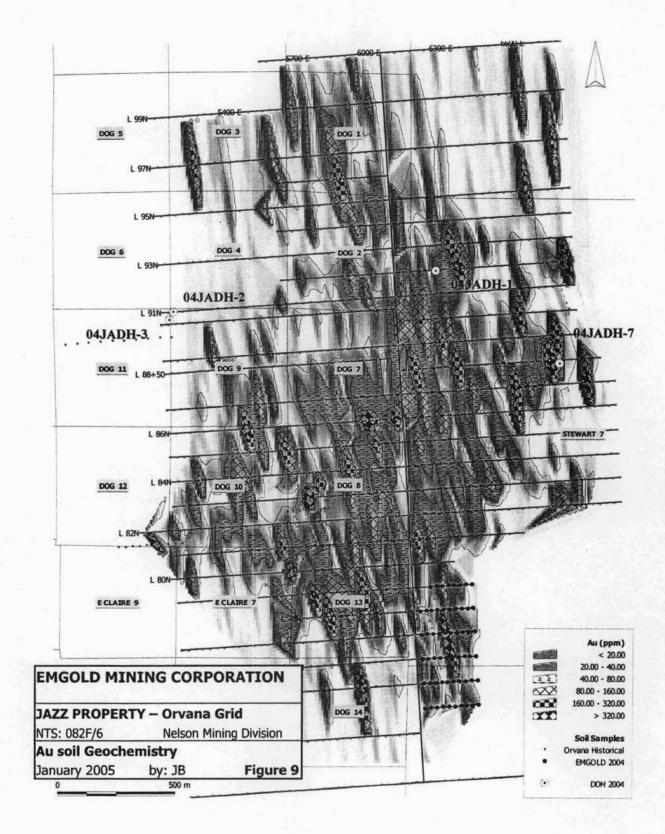
ACME Labs Ltd. Certificates of Analyses for the soil sample results can be seen in Appendix II. Figure 2 shows the location of the grids and Figures 7 to 10 show selected geochemical results for the various grids.

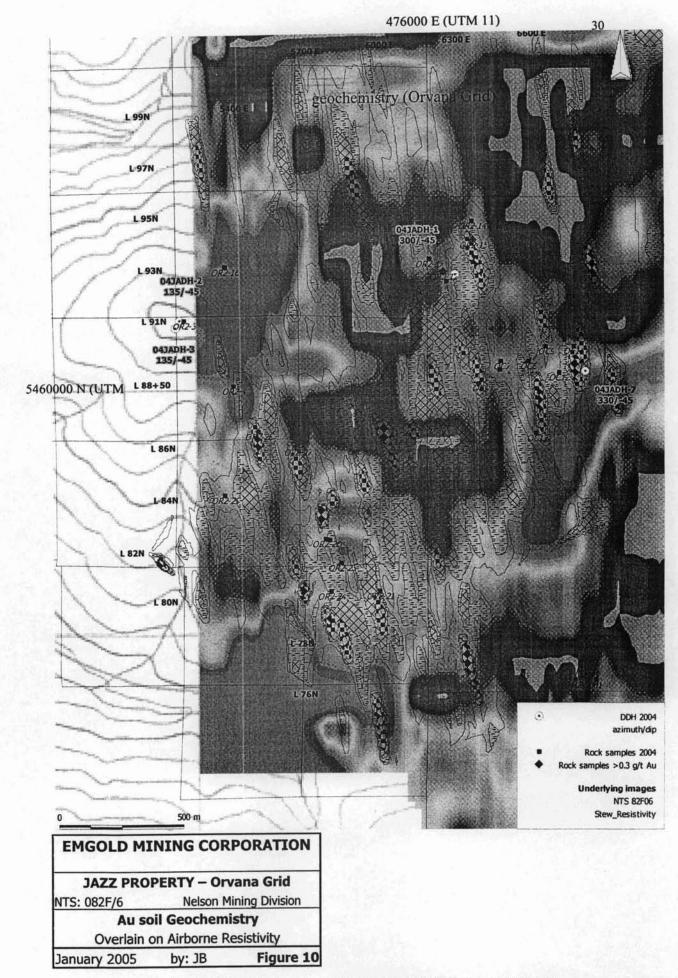
TABLE III Soil Geochemistry Statistics


Includes 2004 samples only. Stations with highest gold are listed in first column for each area.


Element	Minova soils n=106	Max	Average	Orvana soils n=58	Max	Average	Roadcut Soils n=28	Max	Average
Au	L9N 7+00E	262.3	23.7	L77N 61+25E	1031.4	57.2	L32S 25+25W	16.8	4.9
Мо		20.1	4.8		4.5	1.7		80.9	5.3
Cu		149	79.6		233.6	113.8		443.7	48.7
Pb		125.6	45.5		205.1	43.5		420.6	40.1
Zn		1122	376.4		654	177.4		700	178.3
Ag		1.8	0.6		1.6	0.6		3	0.5


Craigtown Creek soils


106 soil samples were collected as an extension to the Minova Grid North, including Lines 7N to 11N from 6+00E to 11+00E. Maximum and average values for Au, Mo, Cu, Pb, Zn and Ag are listed in Table III. Samples were collected along a moderate east aspect in shallow to moderate soils. Line 7 had very little outcrop, and moderate till. Lines 8-11 had moderate to abundant outcrops. The purpose of the sampling was to follow-up the open-ended northeast trending soil anomaly centred at L8N 6+00E (Figure 7). The 2004 soil sampling program, indicates that this soil anomaly extends out to, and ends, at L9N 8+00E (Figures 7, 8). The soil geochemical anomalies in this area correlate well with airborne apparent resistivity, predominantly on a northeast trend (Figure 8). North-northwest mineralized structures are also indicated. Rock samples from the grid area suggest there is also a good correlation between lithology and apparent resistivity. High resistivity correlates with feldspar porphyry stocks in the area. The soil geochemical anomalies straddle the margins of these contacts.


Soil extensions in the Orvana grid (Minova South), included 58 samples from L74N to L79N, between 60+25E to 62+50 E. The purpose of this grid extension was to discern if there was a southerly extension of the eastern NNE-trending coincident gold+-copper soil, I.P. chargeability and ground magnetic anomalies. Samples were collected from a heavily forested west aspect with little or no outcrop. Till appears to be abundant, and casts doubt on the validity of soil samples in this area. On the other hand, the linear and cohesive soil anomaly patterns (Figure 9, 10) are unrelated to topography, and match those on the north and west side of Craigtown creek, and suggests that the soil samples may be representative of the true B-horizon. One sample in the centre of the new grid, returned a value of 1030 ppb gold.

Figures 9 and 10 indicate that NNW trending mineralized features are predominant, with subordinate NE structures similar to those underlying the Minova North Grid. Overall, the gold geochemical anomalies on the Orvana grid are more spotty and discontinuous than the gold geochemical anomalies on the Minova grid.

Roadcut Infill soils

Twenty-eight soil samples were collected in 2004, between 2002-2003 reconnaissance soil lines covering the eastern and southern contacts of the Silver King porphyry. This included lines L29S to L32S, from 25+25W to 23+25W, and L42S, 46, 56, and 66 between 36+25W to 39+25W. Maximum and average values for gold, molybdenum, copper, lead, zinc and silver are listed in Table III. The purpose of the soil sampling was to delineate more accurately some of the gold geochemical anomalies in the area. Results of the 2002 to 2004 soil sampling indicate only spot highs and discontinuous north trending and north-northwest trending gold anomalies. Average gold in the soils is only 4.9 ppb in contrast to 24 and 57 ppb for the Minova and Orvana grids respectively. Average molybdenum, copper, lead and zinc are highest in the Roadcut soils.

9) DIAMOND DRILLING

During the fall of 2004, a total of 474.97 metres in 6 holes were diamond drilled in the Craigtown Creek area of the Jazz Property. Hole 04JADH-6 was abandoned because of excessive overburden (>25 metres).

The diamond drill holes were laid out to test, at depth and along strike, the gold and copper mineralization previously identified by soil geochemistry and coincident anomalous geophysical targets.

Drill hole collar locations are shown on Figure 4 and are listed in Table IV below. Strip logs are presented in Figures 11-14. Maximum and average assay results for select metals are presented in Table V. Drill logs, geotechnical logs and recovery sheets can be found in Appendix III and ACME Labs Certificates of Analyses for all drill core assays can be found in Appendix IV.

Hole	Grid East	Grid North	Easting	Northing	CollarElevation	Azimuth	Dip	Length (m)
04JADH-1	61+74 E	91+98 N	476054	5459437	1623	300) -	45 102.72
04JADH-2	50+63 E	90+97 N	474938	5459266	1576	135	;	45 32.61
04JADH-3	50+46 E	90+71 N	474920	5459232	1619	135) -4	45 40.54
04JADH-4	1+06 W	3+04 N	477077	5459774	1444	315		45 100.96
04JADH-5	0+44 W	3+20 N	477141	5459795	1390	315	-4	45 99.36
04JADH-6	0+50 W	1+00 S	477151	5459417	-		tite Ø r ≢e kole	abandoned-
04JADH-7	66+30 E	87+92 N	476594	5459040	1410	330	-4	45 98.78
Total	•							474.97

TABLE IV Drill Hole Collar Locations

	Au		Cu		Мо		Pb		Zn		Ag	
Hole	max (g/t)			- T. T	max (ppm)	Mo average	max (ppm)	Pb average	max (ppm)	Zn average	max (ppm)	Ag average
04JADH-1	0.26	0.08	1406	385.57	142	20.52	621	55.68	2435	157.43	2.8	0.89
04JADH-2	0.01	0.00	382	289.70	512	119.40	7	5.67	58	32.70	0	-
04JADH-3	0.01	0.01	447	225.91	37	13.82	39) 14.13	89	61.82	0.3	0.30
04JADH-4	0.12	2 0.03	308	141.76	4	1.64	308	42.23	801	124.00	1.5	0.60
04JADH-5	0.35	5 0.09	208	116.92	4	1.67	48	17.09	1479	167.69	1	0.59
04JADH-6	-	-	-	-	-		-			#	_	
04JADH-7	0.43	0.07	511	177.82	15	4.44	409	57.56	836	98.00	1.9	0.57

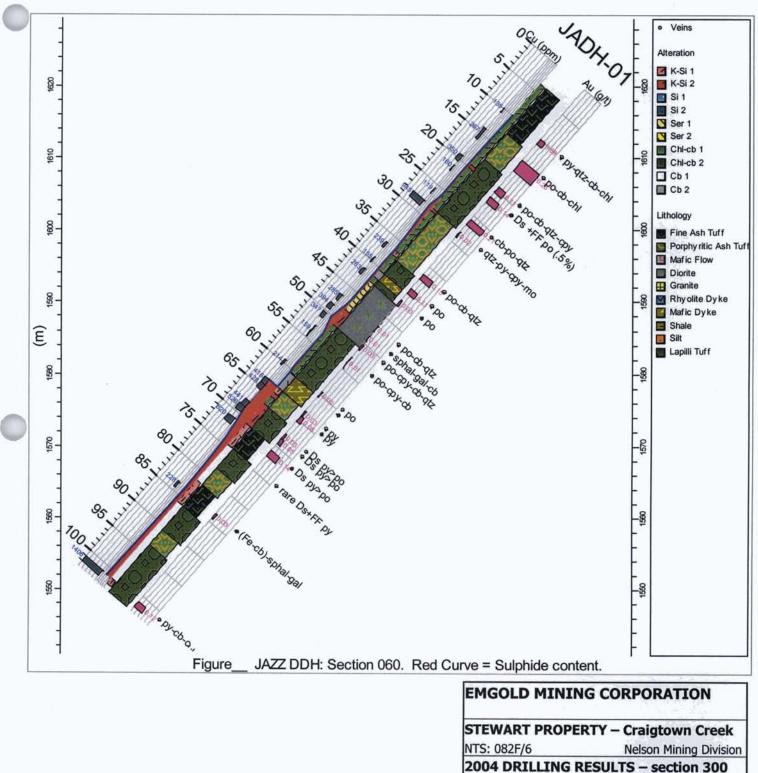
TABLE V Drill hole assay statistics for select metals

Hole JADH-1 was situated to drill through a NNW-trending mineralized and silicified zone exposed in outcrop at an old pit (see sample number OR2-5; Figure 4) and the exposed roadcut where chip sampling encountered up to 0.4 g/t gold (OR2-8 to OR2-12). This location was also chosen because of a coincident ground magnetics anomaly and nearby I.P. chargeability anomaly.

Lithologies in JADH-1 were a typical succession of Elise volcanic andesites including crystal and lapilli tuffs, fine ash tuffs, and a unique layer of coarsely amphibole-feldspar phyric diorite/andesite (Figure 11). One to three metre thick, fine grained, mafic dykes were encountered at 40 and 60 metres depth.

Weak to moderate pervasive and fracture controlled chlorite-carbonate alteration is typical throughout the hole, with occasional zones up to 10 metres thick of hard silicic +- potassic +- biotite alteration. Moderate to low pervasive, texturally destructive alteration was encountered at 43-47 metres.

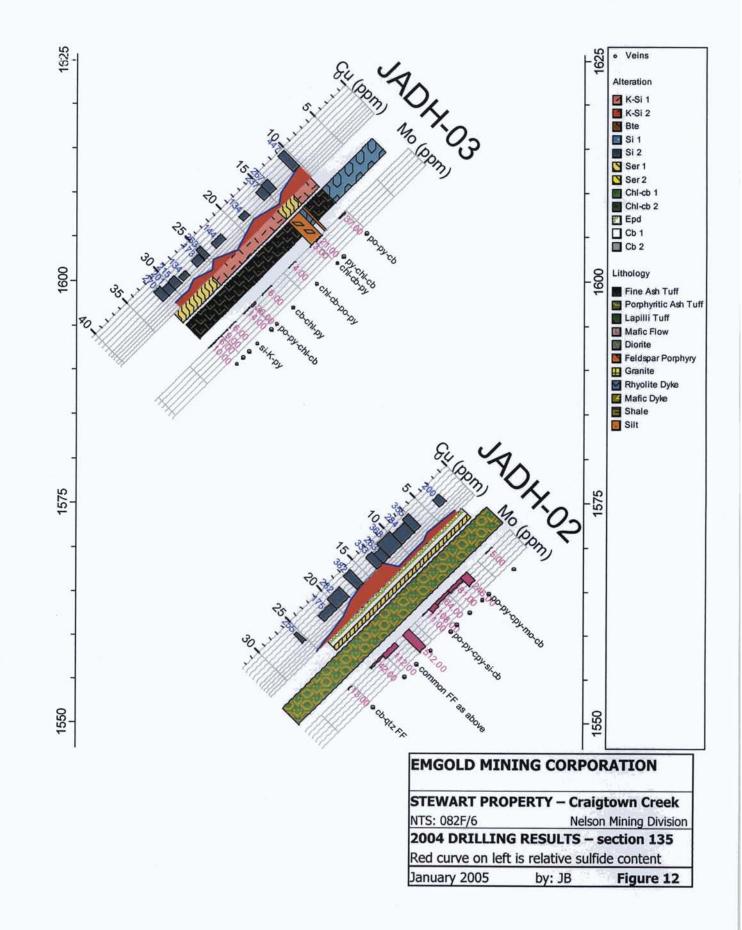
Pyrrhotite-chlorite-quartz-carbonate fractures with subordinate pyrite are predominant in the upper 60 metres of the hole. Pyrite-chlorite-carbonate fractures with lesser pyrrhotite and chalcopyrite are common in the lower 40 metres. Gold and copper values appear to be enriched in the pyrite rich structures.

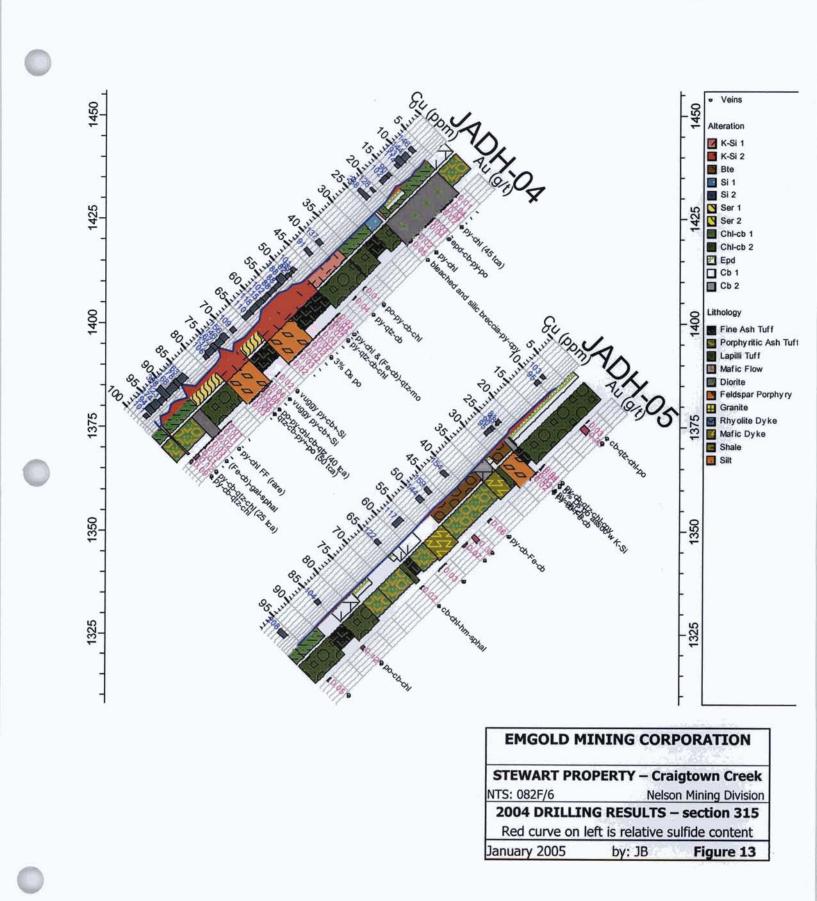

Holes JADH-2 and JADH-3 (Figure 12) were placed to intersect a massive banded pyrrhotite with minor chalcopyrite structure on 270/72-(*strike/dip*). JADH-2 intersected augite phyric andesite/basalt from top to bottom. JADH-3 intersected non-altered and non-mineralized rhyolite at the top of the hole, followed by fine ash tuff to the bottom, with coarsely feldspar-phyric dacite from 32 to 40 metres. Mineralized zones of pyrrhotite-pyrite-carbonate-chlorite are generally associated with pervasive moderate sericite-carbonate alteration with silicic-potassic? alteration enveloping the most mineralized structures. Moderate pervasive epidote alteration is present in non-silicified zones of JADH-2, but is not as evident in JADH-3. Bluish-white frosty quartz-carbonate

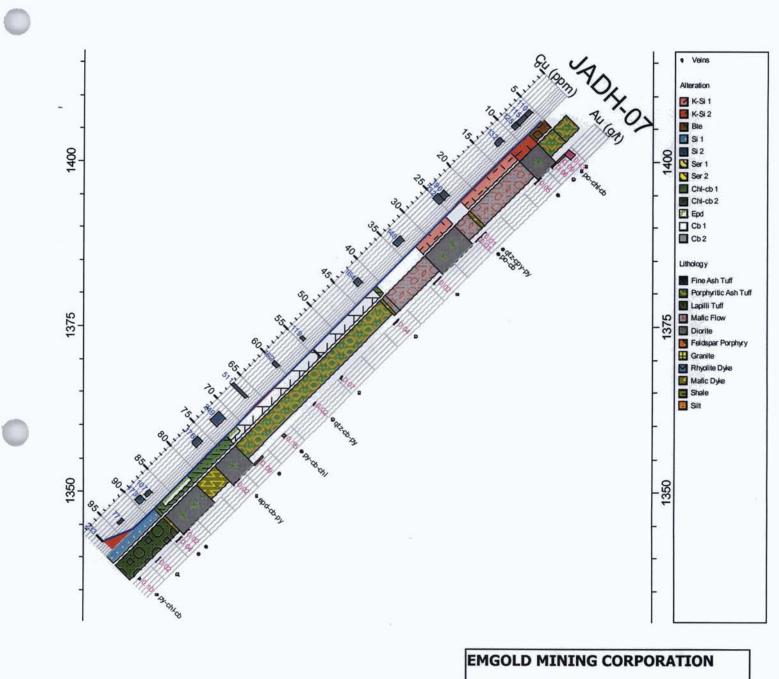
veins, associated with the previous mentioned sulphide veins, carry anomalous molybdenum.

33

Holes JADH-4 and JADH-5 were situated to test the southwestern extension of the broad Minova soil anomaly (Figures 7, 8). Both holes intersected typical successions of Elise volcanics, interrupted by up to 8 metre thick feldspar porphyry intrusions, and up to 4 metre thick mafic dykes (Figure 13). Weak to moderate chlorite+-carbonate alteration is prevalent throughout both holes, with epidote common in the upper 20 metres of both holes. Moderate to intense pervasive potassic+-silica alteration occurs in JADH-4 from 37 to 79 metres, straddling volcanic and feldspar porphyry contacts. In JADH-5, biotite alteration is present in the feldspar porphyry and surrounding volcanics, instead of hard K-feldspar alteration. Intensity of potassic alteration correlates to disseminated sulphide content; however, the highest grade gold-copper assays appear to be related to pyritechlorite-quartz-carbonate veins and fracture-fill, rather than potassium or biotite alteration.


Hole JADH-7 was situated to drill into the gold geochemical anomaly centred at L88N 66+30E. The upper one third of the hole encountered augite phyric basalt andesite, with interlaminated fine diorite (Figure 14). Weak to moderate pervasive biotite alteration is present from 5 to 8 metres followed by strong to moderate potassic alteration from 10 to 33 metres. Weak carbonate and chlorite-carbonate alteration characterizes the rest of the hole, with moderate epidote alteration from 81 to 98 metres. Gold-copper grades are associated with pyrrhotite-pyrite+-chlorite-carbonate fractures and veins.




 Red curve on left is relative sulfide content

 January 2005
 by: JB

Figure 11

STEWART PRO	PERTY – Cra	igtown Creek
NTS: 082F/6		on Mining Division
2004 DRILLING	RESULTS -	section 330
Red curve on left	is relative sul	fide content
January 2005	by: JB	Figure 14

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

37

Sample Preparation and Analyses

Sample preparation procedures used by Emgold Mining Corporation follow standard industry practice and professional guidelines. For drill core, after logging, the core was split using a standard manual core splitter. One half of the core was then placed in a labeled sample bag and the second half returned to the core box with its location marked with the same assay tag number.

38

Sampling intervals were restricted to favourable mineralized and altered zones. Sample intervals were usually one metre unless lithological or alteration changes warranted different interval widths.

The core to be assayed was shipped by trucking company from site directly to ACME Labs Ltd. in Vancouver, BC. All sample preparation was done at the laboratory by their staff. In the laboratory, core samples were initially jaw crushed and a 250 gram sub sample was riffle split out of the original sample. The sub samples were further crushed to -200 mesh, sieved and fire assayed for gold and analyzed for 30 additional elements by the ICP method.

Drill core is stored at the residence of Jack Denny in Salmo, BC.

10) CONCLUSIONS

The Jazz Property lies within very prospective geology and hosts a variety of mineral occurrences. Previous work on the property defined zones of significant molybdenum and gold (+/- copper) mineralization.

Work done by Emgold Mining Corporation in 2004 has led to the following conclusions and recommendations:

CRAIGTOWN CREEK AREA

The North and South Craigtown grids were designed to expand and/or close off gold soil anomalies found by previous exploration work. The 106 six soil samples collected as an extension to the Minova Grid North was successful in limiting the extent of the gold soil anomaly. Fifty-eight infill soils in the south grid found an interesting linear soil anomaly for gold, copper, lead and zinc that runs for the 500 metre length of the grid.

Rock samples from surface and drill core exhibit weak anomalous gold-copper and or minor molybdenum (JADH-2) mineralization, associated with alteration and mineralization signatures consistent with porphyry style mineralization. Minor occurrences of structurally controlled silver-lead-zinc mineralization also occur at the western and eastern limits of the Craigtown Creek area.

An analysis of the 2003 airborne data indicates there is a positive relationship between the presence of intrusive contacts and gold-copper soil anomalies. Resistivity highs, particularly in the Minova grid area, correlate well with known feldspar porphyry stocks. Anomalous gold soil geochemistry results tend to occur in resistivity lows, immediately adjacent to the highs. Vertical magnetic lineations, (lows adjacent to highs), also seem to be indicative of structural corridors that are significant with respect to mineralization. It is recommended that future programs, be directed by these findings.

FREE SILVER AREA

Twenty-nine samples were collected and assayed from the Free Silver area. Sampling traverses were designed to follow-up known pits, adits and trenches. The different showings consistently contained semi-massive to massive sulphide, banded and fracture controlled mineralization including sphalerite, galena, tetrahedrite, chalcocite?, malachite, and azurite with gangue minerals pyrite, siderite and lesser pyrrhotite. The twenty-nine samples average greater than 65 grams/tonne silver, with maximum metallics assayed values of 641 ppm silver, 35% lead and 26% zinc. A future program should include data compilation of known reports and updated mapping, followed by trenching and drilling to test some of the better targets at depth.

PO claims and ROADCUT AREA

The Po Grid lies along the southern most mapped extent of mid Jurassic Silver King intrusive with lobes on either side of Highway 6. The Silver King intrusive is known to host porphyry style gold mineralization on the Kena Property to the north. Several scattered gold soil geochemical anomalies were found on the west side of the grid, and a larger area of elevated gold soil values were found on the east side of the grid.

Follow up work in 2004 consisted of infill soil sampling and geological mapping accompanied by rock chip sampling. Results of the 2002 to 2004 soil sampling indicate only spot highs and discontinuous north trending and north-northwest trending gold anomalies. Average gold in the soils is only 4.9 ppb in contrast to 24 and 57 ppb for the Minova and Orvana grids respectively. Although average molybdenum, copper, lead and zinc are highest in the Roadcut soils.

Rock sampling in 2004, was done to followed-up several spotty gold soil anomalies from prior soil sampling. Visible gold, 3 millimetres in diameter, was found in a vuggy quartz vein with abundant goethite, manganese staining and chlorite. Despite extensive sampling of the veins in this area, no significant gold assays were returned. Of the 22 samples collected along the roadcut and railway line in this area, only one sample returned an anomalous value: PO-35 is comprised of boulder float containing quartz-carbonate-chlorite veining with chalcopyrite-pyrite-malachite-pyrrhotite +- bornite mineralization. Copper content in this sample is 7686 ppm.

Prospecting traverses through the Bobbi claims and Quartz Creek headwaters, indicate minor areas of interest containing weakly anomalous Cu- Mo +-W and Ag-Pb-Zn, showings.

RECOMMENDED WORK PROGRAM

For 2005, an exploration program of detailed geological mapping, excavator trenching and rock chip sampling in the Free Silver area is recommended. Also, with the recent significant increase in molybdenum prices, the Stewart Moly area will be re-evaluated and a small diamond drill program is recommended to confirm and expanded the molybdenum mineralization in that area. This exploration program is budgeted at \$450,000.00 and may be implemented in stages.

Respectfully submitted,

Linda Dandy, P.Geo.

40

Jarrod Brown, P.Geo.

-eng Ma/

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V15 1Y8 Phone: 250-828-0522 Fax:250-828-0512

11) REFERENCES

CARPENTER, T., and GRANT, B., 1985; Stewart Project (10138) Report on Activities and Results from 1984: BC Ministry of Energy and Mines Assessment Report.

41

DANDY, L., 2001; Geological and Geochemical Report on the Stewart Property: BC Ministry of Energy and Mines Assessment Report.

KAUFMAN, M.A., 2000; Unpublished Report on the Dog Claim Group.

FREDERICKS, ROBERT, T., and **THOMSON, I.**, 1997; Report of 1996 Geological, Geochemical and Geophysical Exploration Program, Stewart Property, BC: BC Ministry of Energy and Mines Assessment Report.

FREDERICKS, ROBERT, T. and **THOMSON, I.**, 1998; Report of 1997 Geological, Geochemical, and Physical Work Program, Stewart Property, BC: BC Ministry of Energy and Mines Assessment Report.

HOY, T. and ANDREW, K., 1989; Geology of the Nelson Map Area, Southeastern British Columbia: BC Ministry of Energy, Mines and Petroleum Resources, Open File 1989-11.

HOY, T. and ANDREW, K., 1989; The Rossland Group, Nelson Map Area, Southeastern British Columbia: BC Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1988, Paper 1989-1.

HUMPHREYS, N., 1992; Final Report on the Geology, Geochemistry and Trenching on the Denny Prospect, Cameco Corp.: BC Ministry of Energy and Mines Assessment Report #22829.

HUMPHREYS, N., 1993; Report on the Diamond Drilling on the Denny Prospect for Cameco Corp.: BC Ministry of Energy and Mines Assessment Report.

Logan, J.M., 2002. Kena Mountain Gold Zone. Geological Fieldwork 2002, pp. 133-152.

Cost Statement

Emgold Mining Corporation Stewart, Porph, Jazz Claims 1 June - 30 October 2004

1 June - 30 October 2004				Page 1 - 2
Gener	al			1 ayo 1 - 2
	23			
Senior Field Management:				
7 mdays @ \$450				3,150.00
Benefits @ 20%				630.00
Food & Accommodation, 1 pers., 7 mdays @ \$14.33				100.30
Rentals:				
4wd PUs 94 days @ \$50.74		\$ 4,770.00		
Field Office		300.00		5,070.00
Supplies & Sundry		a na serie de la contra de contra de serie y de plante de serie de serie de serie de serie de serie de serie de		755.60
Fuel				1,101.00
Shipments				165.16
Report Preparation				5,250.00
total General Expenditures			\$	16,222.06
Geolo	gical Mapping			
Saleries & Wages: 1 pers., 24.5 mdays @ \$300			\$	7,350.00
Benefits @ 20%				1,470.00
General Cost Apportioned: (24.5/87 X \$16,222.06)				4,568.28
Total Geological Mapping Cost:			\$	13,388.28
Total Ocological mapping Oost.				
Geoc	hemical Survey			
Saleries & Wages: 2 pers., 34.5 mdays @ \$274.64			\$	9,475.00
Benefits @ 20%				1,895.00
Assays and Analyses - Acme Labs:				
192 Soils for 36-element ICP @ \$14.19		\$ 2,724.14		
103 Rocks for Au & 30-element ICP) @ \$21.59		2,223.77		
40 Rocks for Au,Ag & 30-element ICP) @ \$25.72		1,028.76		
13 Pulps for Pb.Zn,Ag @ \$19.92		141.96		6,118.63
General Cost Apportioned: (34.5/87 X \$16,222.06)		in an		6,432.89
Total Geochemical Survey Cost:			\$	23,921.52
Diam	ond Drilling			
Saleries & Wages: 2pers 24mdays @ \$282.29			\$	6,775.00
Benefits @ 20%				1,355.00
Aggressive Diamond Drilling: 471.9m @ \$133.70				63,092.27
Truck				288.90
Power Saw				35.00
Drill Crew Room & Board				3,410.77
Assays and Analyses - Acme Labs:				1993년 2013년 1월 1973년 1979년 1973년 197
106 Core for Au & 30-element ICP @ \$21.59				2,288.54
				5,994.90
Custom Dozing				4,475.05
General Cost Apportioned: (24/87 X \$16,222.06)			\$	87,715.43
Total Diamond Drilling Cost:			Ψ.	St,r 10.70

Cost Statement

Emgold Mining Corporation Stewart, Porph, Jazz Claims 1 June - 30 October 2004

				Page 2 - 2
1	Reclamation			
Salaries & Wages: 1pers, 2mdays @ \$250			\$	500.00
Benefits @ 20%				100.00
Custom Dozing:				
315L Cat Excavator 6Hrs @ \$110		\$ 660.00		
Truck, Tandem Low Bed 2Hrs at \$70		 140.00		800.00
General Cost Apportioned: (2.0/87 X \$16,222.06	5)		· · ·	372.92
Total Reclamation Cost:			\$	1,772.92
	Staking			
Saleries & Wages: 1pers 2.0 mdays @ \$250.00			\$	500.00
Benefits @ 20%				100.00
Fees				60.00
General Cost Apportioned: (2.0/87 X \$16,222.0	6)			372.92
Total Staking Cost:			\$	1,032.92
TOTAL COST			\$	127,831.07

Geology	\$ 13,388.28
Geochemistry	23,921.52
Diamond Drilling	87,715.43
Reclamation	1,772.92
Staking	1,032.92
Total	\$ 127,831.07

13) QUALIFICATIONS

I, Linda Dandy, hereby certify that:

- 1. I am an independent Consulting Geologist with P&L Geological Services having an office at 3728 Ridgemont Road, Lac Le Jeune, British Columbia, V1S 1Y8.
- 2. I am a graduate of the University of British Columbia with the degree of Bachelor of Science in Geology (1981).
- I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (Registration No. 19236) and a Fellow of the Geological Association of Canada (Membership No. F5201).
- I have practiced my profession in North America since 1981, having worked as an employee and consultant for Major Mining Corporations and Junior Resource Companies.
- 5. This report is based upon a personal examination of all available company and government reports pertinent to the subject property, and upon fieldwork undertaken on the property between July 22 and October 31, 2004.

Linda Dandy, P.Geo.

Dinda Dandy, P.Geo. Consulting Geologist

January 28, 2004 Lac Le Jeune, B.C.

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

43

I, Jarrod Brown, hereby certify that:

- 1. I am an independent Consulting Geologist having an office at 6660-A Harrop-Procter Road, Nelson, BC, V1L 6R1.
- 2. I am a graduate of the University of Manitoba with the degree of Master of Science in Geology (2001).
- 3. I am a graduate of Simon Fraser University with the degree of Bachelor of Science in Physical Geography (1997).
- 4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, as a Professional Geoscientist (P.Geo. License No. 29239).
- 5. I have practiced my profession in North America since 1998, having worked as a consultant for various Junior Resource Companies, and government surveys.
- 6. This report is based upon a personal examination of all available company and government reports pertinent to the subject property, and upon fieldwork undertaken on the property from June to October 2004.

January 28, 2005 Nelson, BC

Jarrod A. Brown, M.Sc., P.Geo. Consulting Geologist 44

Anar Ann

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V15 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

APPENDICES

45

APPENDIX I – ROCK CHIP SAMPLE RESULTS – CERTIFICATES OF ANALYSES **APPENDIX II** – SOIL SAMPLE RESULTS – CERTIFICATES OF ANALYSES

APPENDIX III – DIAMOND DRILL LOGS

APPENDIX IV – DRILL CORE SAMPLE RESULTS – CERTIFICATES OF ANALYSES

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

APPENDIX I

ROCK CHIP SAMPLE RESULTS

CERTIFICATES OF ANALYSES

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

				En	ngo	<u>1d</u>	<u>Mi</u>	<u>nir</u>	<u>.g C</u>	<u>OI</u> 1400). - 5	<u>PR</u> 70 g	OJ] ranv	IСЛ 111	<u> J</u> st.	AZZ , Va	<u>I</u> incou	Fi] wer	.e # BC V60	A4 (2 3P1)32	49	Pā	age	1						
SAMPLE#			Pb ppm					Mn ppm							Cd ppm				Ca %		La ppm		Mg %	Ba ppm		B ppm	Al %	Na %			Au** gm/mt
SI P030+05S-26+00W 0C-1 0C-2 0C-3	1 <1	<1 5 111 150 87	<3 16 4 <3 6	59 56	<.3 <.3 <.3 <.3 .3	<1 3 15 19 3	4 8	870 871 920	.07 2.50 4.39 5.92 2.26	<2 <2	<8 <8		3 <2 <2	68 61 51	<.5	<3 4 3	ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	25. 119 184	1.08 .30 .61	.043	11 1 3	<1	<.01 .59 2.34 2.82 .31	5 161 72 208 85	<.01 .02 .02 .21 .03	<3	.01 1.05 2.54 2.95 .72	.53 .07 .02 .05 .07	.74		<.01 <.01 .01 .03 .23
0C-4 0C-5 0C-6 0C-7 0C-8	431	135 647 145 7 38	11 7 16 10 6	67 30 37	<.3 .6 .3 <.3 <.3	11 21 33 2 12	19 23	1211 192 302	2.82 4.53 2.17 1.70 1.26	5 2 31 63 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2	123 70 41	<.5 .5 <.5 <.5 <.5	<3 3 5 3 3 3	ও ও ও	80 133 53 1 22	1.04 2.81 1.45 1.11 .08	.141 .152 .132 .045 .031	5 7 4 9 1	10 50 24 <1 2	.71 1.82 .50 .15 .45	106 208 98 121 83	.19 .16 .18 .05 <.01	4	1.19 1.91 .86 .84 .52	.10 .07 .08 .05 .01	.52 1.12 .14 .57 .10		.03 .04 .01 <.01 <.01
0C-9 0C-10 0C-11 0C-12 0C-13	2 2 2	132 45 88 127 296	9	25 15 26	<.3 <.3 <.3 <.3 <.3	15	17 7 11 25 28	237 186 364	3.71 1.97 2.81 4.37 4.30	22 5 13 4 4		<2 <2 <2	<2 <2 <2	51 49 79	<.5 .5 <.5 <.5 <.5	<3 <3 <3	ও ও ও	47 72 85	.40 .57 .43 1.30 .78	.075 .102 .170	8 3	<1 <1 <1 18 40	1.22 .29 .52 .99 .48	41 64 64 79 60	.16 .16 .20 .21 .17	<3 <3 <3	1.37 .68 .93 1.25 .74	.09 .11 .10 .13 .08	.13 .18 .29 .47 .28	<2 2	<.01 <.01 .03 .05 .02
M-1 RE M-1 M-2 M-3 M-4	<1 3 8	15 15 130 148 114	8 4 6	34 51 26	<.3	28 14	35 27 24	1912 1019 373	5.01 4.94 4.77 3.94 3.07	23 8 14	<8	<2 <2 <2	<2 <2	117 58 85	<.5 <.5 <.5 <.5	3 3 <3	<3 <3 <3	145 140 95	3.58 3.51 1.50 1.25 1.25	.137 .169 .132	4 3 4	87 55	2.12 2.08 1.76 1.08 .95	102 100 244 164 174	.04 .17 .21	7 <3	1.79 1.76 1.98 1.50 1.10	.05 .04 .07 .14 .11	.39 .38 .95 .57 .37	<2	.01 .01 .02 <.01 .01
M-5 M-6 M-7 M-8 M-9	1 <1 2	122 50 114 3 94	<3 9 21	93 62 19	<.3 <.3 <.3	11 17 2	14 27 1	987 1248 123	5.17 5.34 6.22 .88 5.09	9 9 2	<8 <8 <8	<2 <2 <2	<2 <2 <2	27 50 4	<.5 .5 <.5	<3 4 <3	ব্য ব্য ব্য	116 170 6	1.99 .43 1.36 .03 1.36	.176 .223 .009	10 8 <1	11 20 <1	1.65 1.87 2.40 .09 1.76	12	.17 .02 .01 <.01 .22	7 13 3		.06 .06 .06 .01 .17	1.44 .21 .25 .03 .17	<2 <2 <2	.03 <.01 <.01 <.01 <.01
M-10 M-11 M-12 M-13 M-14	111		14 7 <3	75 64 25	<.3 <.3	17 7 4	13 11 5	874 562 310	3.40 4.03 3.30 1.76 4.22	13 7 7	<8 <8 <8	<2	<2 <2 <2	60 48 16		5 <3 <3	<3 <3	17	.90	.129 .123 .045	5 6 7	6 <1	.81 1.33 .88 .19 1.41	96 90 55 66 45	.11 .16 <.01	5 11 5	1.30 1.59 1.07 .64 1.70	.04 .11 .12 .05 .08	.22 .11 .16 .28 .17	<2 <2 2	<.01 <.01 <.01 <.01 .03
M-15 M-16 M-17 PO-1 PO-2	1 4 <1	71 20	5	168 43 80	.7 <.3 <.3	15 29 3	15 10 4	1204 692 728	4.33 2.45 2.86	13 31 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	60 138 52	1.4 .6 5	4 3 <3	ও ও ও	124 30 11	1.49 3.43 .73	.135	6 6 4	26 12 <1	1.50 .70	57 76 37	<.01 <.01	9 5 11	.20 1.73 .53 1.42 .63	.08 .05	.33 .21 .10	<2 <2	.01
STANDARD DS5/AU-1	13	147	26	134	.3	25	12	764	3.02	19	<8	<2	3	46	5.7	5	7	61	.76	.092	11	183	.68	139	.10	16	2,02	.04	.14	6	3.37
GROUP 1D - 0.50 GM (>) CONCENTRATION AU** BY FIRE ASSAN ASSAY RECOMMENDED - SAMPLE TYPE: ROO Data / FA	EXCE FRO FOR	eds (M 1 / Rock	JPPER A.T. AND DC	LIM SAMP CORE <u>Sa</u>	ITS. LE SAM mple	SOł PLES s bej	4E M IF <u>ginn</u>	INERA CU PB <u>ing '</u>	LS MA	YBE S> <u>reR</u>	PAR 1%, / erun	rial AG > <u>s an</u>	14 A 30 d <u>'R</u>	TTAC PPM <u>RE'</u>	KED. & AU are	RE > 1 <u>Reje</u>	FRAC 000 ct R	TORY PPB eran	AND G	O 10 M RAPHIT	IC S/	NALY: AMPLI	SED BY Es can	ICP-E LIMIT	S. AU S	OLUB	1117Y.	SUM S	Clare	<u>す</u> て 、 ん	170

Page 2

ACME ANALYTICAL

 ACME ANALYTICAL												e internet Caso dai							، منتقد الم										مەربىيە	ACHE ANALY	TIÇA
 SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm			100 C 100 C 100 C	As ppm					Cd ppm	Sb I ppm pj		V Sm	Ca %		La ppm		Mg %	Ba Ti ppm %	B ppm		Na %	K %		Au** gm/mt	1997 1997 1997
	<1 1 14 7 112	2 35 42 47 41	45 30 140 17 7	524 100 77 106 46	<.3		38	2738 965 909	3.70 6.08 3.83 5.56 1.43	2 3 40 16 22	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 12 <2 <2 4		2.8 <.5 .6 <.5	4 <3 <3	<3 4	68 1 56 71	12.54 .86 .44	.541		88 34 57		603<.01 2895<.01 203 .13 102 .14 71 .02	3 <3 <3		.02 .04 .04	.25 .52 .29	<2 <2 <2 <2 <2 <5	<.01 <.01 .01 .02 .01	
PO-8 PO-9 PO-10 PO-11 PO-12	2 14 12 20 41	137 283 54 273 1086>	19 7 11 6542 10000			7 113			3.97 6.22 1.95 7.80 10.64		<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	54 9 14	<.5 <.5 .8 3.2 4.4	<3 <3 14	<3 5 <3 10 <3 3 <3 8 <3 12	07 36 38	.16 .27	.176 .173 .047 .149 .096	4 4 2 7 13	16 <1 9	.41 .61 .46 .51 1.20	26 .13 26 .14 26<.01 42 .01 13<.01	10 <3 5	.87 1.33 .73 1.27 2.12	.06 :.01 :.01	.11 .10 .23	37 8 20	<.01 <.01 <.01 .18 .04	
PO-13 PO-14 PO-15 PO-16 PO-17	90 3 10 3 29	65 88 12 147 26	82 83 5 8 7	34 56 6 31 5	.8 <.3 <.3 <.4	4 5 2 5 4	1 7 <1 9 1	88 551 43 390 71	2.28 3.80 .95 3.83 1.17	17 16 13 <2 <2	<8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57 4	<.5 <.5 <.5 <.5 <.5	<3 <3	<38	29 2	2.17 .03 1.52	.004	6	4 13 <1 4 <1	.08 .67 .01 .46 .01	16 .04 50 .12 17<.01 68 .12 7<.01	7 4 <3	.25 1.69 .04 1.23 .03	.04 .01 .07	.17 .03> .18	4	.26 <.01 .16 .02 .22	
P0-18 P0-19 P0-20 RE P0-20 P0-21	37 3 5 6 17	171 77 12 13 39	7 3 7 6 29	21 25 31 30 207	.3 <.3 <.3 <.3 <.3	14 8 9 9 46	9 2 3	180 1360 632 634 2495	5.08 1.04 1.03	<2 3 <2 <2 6	<8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 9 9	31 17 17		<3 <3	4 6 <3 22 <3 2 4 2 <3 11	23 21 22	.04		2 8 8	9 18 <1 <1 23	.21 .32 .11 .11 .36	43 .11 50 .13 249<.01 248<.01 150<.01	10 <3 <3	1.67 1.11 .39 .41 1.03	.05 .03 .03	.11 .13 .13	5 <2 7 6 <2	.01 .01 .01 <.01 .01	
PO-22 PO-23 PO-24 PO-25 PO-26	77 105 7 1 3	109 36 5 11 4	3 9 41 4 <3	54 7 167 20 50	<.3 <.3 <.3 <.3 <.3	11 2 6 2 8		70 1978 521	1.29 1.13	2 <2 5 <2 <2	<8 <8 <8		2 4 10 2 <2	60 31 8 12 7		<3 <3 <3	<3 <3	21 33 6 8 9	.05 .06	.141 .018 .023 .017 .002	12 8	<1 <1 <1	.04 .05 .07	28 .13 51 .04 104<.01 64<.01 12 .01	- <3 3 <3		.04 .04 .04	.13 .28 .11	3 2 4 <2 5	<.01 <.01	
P0-27 P0-28 P0-29 P0-30 P0-31	2 2 17 5 4	2 167 9 104 59	<3 <3 82 5 3	72	<.3 <.3 .4 1.9 <.3	12 3 3	19 1	126 51	4.19	13 102	<8 <8 <8	3	<2			<3 4 <3 1	<3 8 4	2 80 18 1 56	1.91 .02 .01	.001 .169 .007 <.001 .141	4 1 <1	12 <1 <1	.31 .21	5<.0' 42 .1' 7<.0' 4<.0' 130 .19	<3 <3 <3		.19 01.> 01.>	.14 .04 <.01	<2 5 7 2 3	<.01 <.01 .28	
FS-1 FS-2 FS-3 FS-4 Standard DS5/AU-1	5 26 10 5 12	94 75		286	>100 3.1 .6 6.2 .3	28 9	42 22 6	1352 1801		17 9 97	13 <8 <8	<2 <2 <2	<2 3 <2	60	4.0 .6 7.7	3 25 2	<3 5 270	8 39 72 25 58	2.95 .64 .19	.038 .052 .195 .031 .087	3 13 1	7 2 3	.98 .48 .20	189 .03	5 17 2 5 1 <3	1.04 .98 .34	.01 .04 .01	.31 .10	23		

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_____FA

Å Å ()				Emg	101	d M	(ini:	ng C	orp	. 1	PRO	JE	CT () JAZZ	F	IL	3 #	A40	324	.9				Pag	je 3				L
ACHE ANALYTICAL	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm		Mn ppm	Fe %	As ppm		Au ppm					Bi ppm		Ca %	A. A. A. A. A. A.	La ppm	Cr ppm	Mg Ba % ppm	Ti %	B ppm	Al %	Na %			Au** gm/mt
FS-5 FS-6 FS-7 FS-8 FS-9	9 <1	1739 183> 217> 155	3786 10000> 10000> 354 10000	1137 10000	11.0 41.2 >100 2.6	230	57 21 26 21	4621 6060 17434 114 50000	5.26 3.86 8.18 1.32 19.13>	173 390 6 4 10000	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2	368 150 42 1 12	7.0 1183.7 110.0 1.3 22.7	21	<3 <3 46	25 52 1	6.73 2.76 .48 .01 .44	.533 .050 .227 .002 .020		280 3 77 <1 10		.06 .01 .01 <.01 <.01	10 18 5		.02 .02 .01 <.01 <.01	.31 .12 .32 .01 .10	2 <2 <2 10 <2	.07 .10 .01 .46 .10
STANDARD DS5/AU-1	13	137	26	132	.3	24	11	758	2.93	18	<8	<2	2	44	5.4	3	7	58	.72	,090	11	186	.67 135	.09	17	1.96	.04	. 14	6	3.34

Sample type: ROCK R150 60C.

Data_____FA

(ISC 002 Accredited)		CE11FICATE		A /
	Emgold Mining Corp. PROM 1400 - 570 Granville St., Vancouve	<u>JECT JAZZ</u> File # A403249 r BC V6C 3P1 Submitted by: Spurlin Edward	IR ards	۳Ľ"
	SAMPLE#	Pb Zn Ag** % % gm/mt		
	PO-12 FS-1	1.65		
	FS-1 FS-6 FS-7 FS-9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	STANDARD R-23	a 1.48 4.25 158		

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AG** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: ROCK PULP

DATE RECEIVED: JUL 26 2004 DATE REPORT MAILED: JN. ...

Data

	LABORATORIES LTD. 852 B. HASTINGS ST. " "COUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604" "53-1716 credited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE
ΤT	Emgold Mining Corp. PROJECT JAZZ File # A403402 1400 - 570 Granville St., Vancouver BC V6C 3P1
SAMPLE#	Mo Cu Pb Zn Ag Ni Co Mn. Fe As U Au Th Sr Cd Sb Bi V. Ca . P La Cr. Mg Ba Ti B. Al. Na K. W Au** ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
SI PO-32 PO-33 PO-34 STANDARD DS5/AU-R	<1

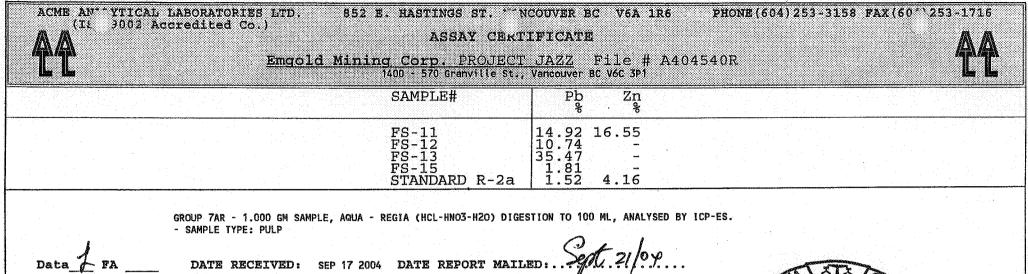
GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Data / FA

DATE RECEIVED: JUL 9

JUL 9 2004 DATE REPORT MAILED :. Any 20/04

A 4	Å					E	mg	<u>21d</u>	<u>Min</u>		Cd	orp	• I	PRO	l an <u>JECI</u>	' J	AZ2	3	Fil€	: #	A4 0		40	P	age	1						4	A
SAMPLE#	Mo ppm	Cu		Zn		Ni		Mn		As	U	Au	Th	Sr		Sb	Bi	V	Ca	P	La			Ba			Al	Na	ĸ			Au**	
SI FS-10 FS-11 FS-12 FS-13	<1 <1 <1 <1 <1	1 95 3212 438	<pre>ppm <3 5310 >10000 >10000 >10000</pre>	10000 8113	<.3 7.2 >100	54	<1 58 51 23	8 16302 42536 26150 25514	.09 7.48 14.49 9.88	57 89 37	<8 <8 <8 <8 <8		<2 5	4	<.5 45.9 787.6 34.9 26.2	<3 105 62	<3 <3 106 <3	<1 39 11	% .18 5.82 .34 .72 .03	.001 .181 .024 .239 .022	15 2 22	<1 176 4	<.01 4.03 1.48	129 6 120		10 14 19	% .01 1.71 .16 1.28 .59	<u></u>	<.01 .17 .04 .32 .04	<2 <2 <2 <2 <2	m/mt <2 8 218 109 641	gm/mt 01 01 .04 .01 .03	1.34 1.53 1.00 1.00
S-14 S-15 S-16 S-17 JR2-1	11 43 58	129 1849 159 101 1888	712 >10000 57 215 27	475 1817 97 71 13	1.1 35.0 .5 .8 .4	35 27 28	9> 21 19			29 <2 3		<2 <2 <2 <2 <2 <2 <2 <2	2 6 4 2 ~2	33 44 50 89 24	1.7 6.2 <.5 <.5 <.5	<3 26 <3 <3 <3	3 <3 <3	115 40 107 89 45	1.26 .55 1.26 1.73 .56	.173 .054 .182 .219 .095	5 11 11	38	.94 1.57 .73 1.08 .36	74	<.01	6 13 12 8 4	1.05 .44 .94 2.44 .53	.07 <.01 .07 .36 .04	.23 .14 .23 .48 .23	<2 <2 2 7 3	<2 38 <2 <2 <2 <2	<.01 .02 .01 .03 .03	2.23 1.2' 1.1(1.1(1.18
)R2-2)R2-3)R2-4)R2-5)R2-6	65 3 11	110 1573 8 259 323	62 12 30 14 18	28 26 31 15 20	<.3 .5 <.3 <.3 .3	5 18	13 1	363 334 165 212 245	3.61 4.20 .73 3.96 4.91	3 4	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 15 <2	45 54 5 40 30	<.5 <.5 <.5 <.5 <.5	ୟ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ		78 71 4 67 104	.96 1.22 .03 1.06 .54	.118 .146 .011 .129 .138	3 10 4	57 55 <1 30 11	.71 .57 .13 .58 .86	16	.13 <.01 .14	6 5 3 6 6	.89 .89 .46 .76 1.11	.08 .08 .02 .05 .04	.15 .12 .11 .25 .26	<2	\$ \$ \$ \$ \$ \$ \$ \$.01 .01 .01 .08 .04	2.1 .9 1.5 1.5 1.3
DR2-7 DR2-8 RE OR2-8 DR2-9 DR2-10	5 4 76	405 336 343 348 405	4 15 13 8 7	30 37 36 21 27	.3 <.3 <.3 <.3 <.3 <.3	16 17 13	25	438 229 233 274 279	6.64 3.96 4.03 4.19 4.28	4 5 4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2	15 49 50 60 56	<.5 <.5 <.5 <.5 <.5	ୟ ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	ଏ ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	142 60 61 80 80	.52 .79 .81 1.07 .98	. 126 . 155 . 158 . 212 . 197	5 5 4	18 12	1.78 .53 .55 .60 .62	35 23 24 42 36	. 15	11 9 6 5 5	2.04 .79 .80 .85 .88	.04 .05 .05 .09 .08	.87 .15 .15 .21 .15	< < < < < < < < < < < < < < < < < <><><><><><><><><><><><><><><><><><><><>	<2 <2 <2 <2 <2	.02 .12 .13 .43 .16	1.2 3.2 1.9 2.4
DR2-11 DR2-12 DR2-13 DR2-14 DR2-15	9 3 1	334 348 155 1555 521	12 4 13 •7 7	25 18 17 33 23	<.3 <.3 <.3 4.8 .3	18 36 71	31	340 244 370 420 457	4.14 3.78 3.79 2.57 6.36	15 22 101	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	59 44 70	<.5 <.5 <.5 <.5 <.5	ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	ଏ ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	80 78 64 30 137	.92 .96 .76 1.48 1.16	.140 .195 .128 .111 .166	4 2 1	47	.82 .61 1.16 .57 1.42	35 39 21 15 54	.17 .18 .09	3 8 5 11 7	.99 .93 1.37 .72 1.49	.07 .07 .04 .02 .07	.28 .21 .45 .23 .40	<2 <2 <2 3 <2	<2 <2 <2 5 <2	.11 .05 .01 .15 1.31	1.8 2.2 1.2 1.7 1.1
DR2-16 DR2-17 DR2-18 DR2-19 DR2-20	10 8 11	585 666 130 123 198	18 10 1333 8205 1355	13 22 124 241 22	.3 .7 11.6 87.9 24.7	6 3 11	65 24 8 43 1	259 103 252 75 224	4.55 2.30 5.11 10.08 5.30	2 20 235	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		52 43 15 8 13	<.5 <.5 .6 1.6 <.5	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<3 <3 23 114 62	62	1.09 .45 .15 .02 .15	.140 .079 .097 .017 .092	5 7 2	14 7 12 5 3	.37 .23 .43 .07 .37	31		10 6 8 8 8	.78 .58 .78 .26 .76	.05 .04 .02 .01 .03	.08 .16 .26 .20 .15	<2 <2 <2 <2 <2 <2 <2	<2 <2 12 86 25	.02 .08 .01 .11 .01	2.0 3.0 2.3 1.1 1.3
20-34 20-35 20-36 20-37 20-38	<1 <1 32 6 <1	7686 16 35	59 9 16 8 11	144 45 38 18 51	.8 5.0 <.3 <.3 <.3			1439 1054 551 675 853		5 2 3		<2 <2 <2	< < < < < < < < < < < < < < < < < < <	270 172 228	<.5	ব্য ব্য ব্য	⊲ ⊲ ⊲	36 14 3	3.84 3.96 1.97 3.23 4.47	.135 .051 .066	3 4 3	10 3 4 5 10	.94	54 34 69	<.01 .08 <.01 <.01 .14	3 7 3	1.14 1.00 .34 .22 1.53	.02 .02 .03	.18 .09	4 <2 <2	5 <2 <2	<.01 .01 <.01 .01 <.01	1.4 .9 .3(.2) .4(
(>) AG*' ASS/	is SI JP 10 CONC * & / AY RE AMPLE) - 0 Entr/ (U** 1 Commi	.50 GM ATION E BY FIRE ENDED F E: ROCK	R-2a/A SAMPLE XCEEDS ASSAY OR ROC R150	LEACH UPPER FROM K AND 60C	IED W LIM 1 A. CORE <u>Se</u>	/ITH IITS. T. S SAM Imple	3 ML 2 SOME AMPLE. PLES I s begi	-2-2 MINE F CU nning	HCL-H RALS PB ZN <u>'RE'</u>	NO3- MAY AS are	H2O BE P > 1% <u>Rer</u>	AT 9 ARTI , AG <u>uns</u>	5 DEC ALLY > 3(and	5.4 3. C FC ATTACK) PPM 8 <u>'RRE' a</u> ?ORT	R ON ED. AU re R	E HC REF > 10 ejec	DUR, RACT 100 P <u>t Re</u>	ORY AN	D TO 1 D GRAF	10 ML 9HITI	, AN C SA	ALYSE	9 8 7	ICP-F	s.	2.00 Solubi		JUME	A	156 110 1	3.40	



Page 2

SAMPLE#	Mo ppm			Zn			T T	1.000	Fe %					Sr ppm		Sb ppm			Ca %	1 S. C.	La Cr ppm ppm	M	g Ba % ppm	Ti %	B ppm	Al %	Na %	K %			Au** gm/mt	Sample kg	
P0-39 P0-40 P0-41 P0-42 P0-43	2 <1 3	139 78 2 105 34	14 5 20	48 19 97	<.3 <.3 .4	30 3	19 4 29	736	8.86 2.34 4.98	10 6 111	<8 <8 <8	<2 <2 <2	<2 <2 <2	20 55 44	<.5 <.5 .6	<3 <3	12 <3 3	87 8 71	.41 1.15 .64	.098 .082 .110	3 279 4 54 9 6 2 33 2 11	1.2 .3	9 19 2 49 3 133	.01 .02	5 3 5	3.36 1.69 .62 1.74 1.40	.02 .04 .03 .04 .04	.14 .08 .18 .59 .11	<2 <2	<2 <2 <2 <2 <2 <2 <2 <2	.01 .07 .01	1.80 2.60 .94 2.43 1.76	
PO-44 PO-45 STANDARD	1	39 8 141	7	103 29 136	<.3	1	18 1 12	608	4.81 1.14 3.00	<2	<8		-3	87	<.5 <.5	<3		38 4 61	1.22 1.26 .73	.040	10 11 11 4 13 189	1.0 .1 .6		<.01 .01 .10	3 3 16	1.67 .48 2.00	.02 .04 .04	.16 .19 .14	<2 <2 6	<2 <2 159		.70 1.32	19

Standard is STANDARD DS5/R-2a/AU-1.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

N.,

ACME ,								TD.		852	B.	HAS	ITIN	IGS	ST. V	ANC	:003	7BR	BC	V6A	1R6	PH	ONE	(604) 25	3-31	58 1	YAX ()	504) 253 ·	-1716	
AA	I	301)2 Ac	cred	ıced	CO	•)			G	EOC	HE	MIC	'AL	AN.	ZS	IS	CI	SRTI.	FICA	TE										A A	
								Emao	1d 1	Min	ina	c	ort	,.	PROJI	ECT	' J	AZ2	5 F.	ile	# A4()494	4								41141	
																					oy: Linda										llas files	
SAMPLE#	100000701	Cu	Pb	Zn	ni ni ngagang	Ni			Fe %	As	000000000	-05000000	Th		:	20005150		V			La Cr ppm ppm		Ba ppm		8 ppm	Al %				Au** gm/mt	Sample kg	
	ppm	hhii	ppm	mqq	hhi	ppm	hhu	ppm	<i>/</i> o	ppin	ppii	ррян	bbw	ppar	hhu	рря	ppii	ppm									<u></u>				<u>N</u>	<u>.</u>
SI	1 N N 1	4	<3	<1		<1		·	.05	<2	<8	<2	- 1 10 10 10 10 10	3	- 2	<3		10.00		<.001						<.01					4 00	
OR2-21		425	17	126	.4			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10		<2	<8	<2			.5	1.1.1.1.1.1.1			2.43							1.33		.11	2		1.20	
OR2-22		55	15	35	<.3					5		<2	2		<.5	· · · · · · · · · · · · · · · · · · ·	- 10 T - 1									.83		.29	2		1.77	
OR2-23		98	30	64	<.3		11			33	<8	<2			.5	<3		59		.152		1.09				1.35					2.13	
OR2-24	1	68	5	75	<.3	. 7	15	1299	3.89	10	<8	<2	2	60	<.5	<3	<3	137	.95	.117	8 19	1.28	82	.11	6	1.67	.04	.18	2	.04	1.47	
OR2-25	21	21	6	16	<.3	1	11	1126	3.85	15	<8	<2	2	23	<.5	<3	<3	69	.16	.063	11 5	.40	94	<.01	3	.91	.04	.17	2	.08	1.22	
OR2-26	3		20	142		372				6	<8	<2	5		<.5			133	6.60	.276	37 366	5.36	646	.02	<3	2.46	.02	.13	2	<.01	2.41	
0R2-27		9	13	23		4			2.91	120			<2	10	<.5	<3	<3	40	.17	.082	3 5				<3	.65	.01	.20	2	. 15	1.78	
OR2-28		82	4	16		52			2.09		<8		<2		<.5	<3	<3	59	.90	.093	4 76	.85	140	.15	<3	1.24	.13	.40	2	.02	1.35	
OR2-29		10	8	30	<.3				2.59	26	<8	<2	2			<3		26			13 12			<.01			<.01	.11	3	.02	1.80	
M2-1	<1	66	186	417	.4	8	9	405	2.74	190	<8	0	<2	51	2.9	<3	<3	47	.73	.100	6 11	.63	40	.09	<3	.86	.07	.11	2	.05	1.14	
M2-2		21	6	27	<.3					7		<2		83	<.5	<3					4 15		27			1.16	.08	.09	3	.08	1.31	
M2-3	- I	242	<3	40	<.3		16			6			<2	- T.T. T.		<3			1.09	.160						1.66	.08	.22	3	.24	1.70	
M2-4		159	<3	114		65			6.57				<2		<.5			141		.159						2.33		.14	2	.33	1.69	
M2-5		132	58	257			17		4.36		<8	<2			1.2			91						.16		1.41	.09	.12	2	.05	1.43	
M2-6	3	106	4	14	<.3	5	6	283	4.01	4	<8	<7	<2	77	<.5	<3	<3	51	-61	.119	3 10	- 32	24	.11	<3	.81	.07	.10	2	.06	1.86	
RE M2-6		103	3	13					3.91		<8	<2		76		<3										.79	.07	.09	2			
FS-18	451		6	39			16		4.84		9	<2	2		<.5			140		.178		· · · · · · · · · · · · · · · · · · ·				1.71	.10	.11	3	C17, CO.	.68	
FS-19		71	8	44	<.3				3.60	41		<2		82		<3		98					44			1.27		.17	5		2.30	
FS-20		63	10	42	<.3				2.43	2		<2		71		<3		55		.125			27			.69	.12	.13	3		1.75	
FS-21	11	59	10	60	< 3	10	12	1029	3 28	6	<8	<2	6	37	5	<3	<3	77	52	111	13 17	58	1.8	05	<3	1.13	.07	.20	3	.01	1.36	
FS-22			7041>					8478		86	<8	<2	4		193.1						13 19			<.01						.01	1.67	
FS-23								20623		42	<8	<2			529.8									<.01				.14				
FS-24	<1	303>	10000>	10000	>100	26	31	7837	6 44		<8				1527.8									<.01			<.01	.09		.00	1.66	
FS-25			1154					3462				<2	2						4.13									.24	2	.04	1.76	
FS-26	1.1	270-	10000>	10000	67 4		4.4	10810	E 84	18	-0			75	353 7			~ P		05-7												
STANDARD	and the second second	145						776				<2	2 3	75	252.7				1.43				9					.17			1.27	
- INIPANU		172	5 /	173	· · · · ·	<u></u>	12	110	3.04	10		-6		40	2.1	4	0	02	. 13	.073	12 193	.08	157	. 10	17	2.11	.04	. 14		5.45	•	

Standard is STANDARD DS5/AU-1.

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

10/04

Data K FA ____ DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED

ACME AN**YTICAL LABORATORIES L (I. 9002 Accredited Co.)		ERTIFICATE ECT JAZZ File # A4049		*253-1716 ÅÅ
	SAMPLE#	Pb Zn Ag** % % gm/mt		
	FS-22 FS-23 FS-24 FS-26 STANDARD PBC-1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
GROUP 7AR - 1.000 AG** BY FIRE ASSAY - SAMPLE TYPE: ROC Data FA DATE RECEIV		O_{I}	-ES.	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1.5

ACME ANALYTICA (IF)002	Accrec					D.												r bc Sert	V67 IFIC			P	HON	E (6	04):	253-3	158	Faj	<u>c(60</u>	4125	3-1716 M /
ĽŤ					E						Co le s											1050 da Dar									Τí
SAMPLE#	Mo Cu ppm ppm			Ag ppm					As ppm		Au ppm			Cd ppm			V ppm	Ca %		La ppm	0.007.707		Ba ppm		B ppm	Al %				Au** gm/mt	Sample kg
SI FS-27	<1 <1 6 62			<.3 <.3	1	2012 N.S	37 989	.06				- 1 2 5.			<3 <3		110 A 414	.08 2.30	<.001			<.01 1.08		<.01	<3 6			<.01		<.01 <.01	2.35
FS-28	4 31	T	- 517	<.3			758		- 1.T	<8	<u>-</u>			1997 - E. M.	<3		112	1.21	.129		9	.66		.17		1.08	.10		<u></u> .	<.01	1.89
FS-29 0R2-30	5 37 4 780			<.3 6.9			626 603			<8 8	<2 <2		1.5.5	<.5 <.5		<3 81	108 219	.95 .55		A	11 8	.89 1.44	1. T. T. T. L.	.13 .10		1.01 1.35	.10 .02	.53 .18		.01 01.>	.77 2.61
OR2-31 STANDARD DS5/AU-1	4 601 13 146	16 25		1.7 <.3	6 24		617 737		-		-	<2 3		<.5 5.7	<3 5	1.1.1	190 58	.99 .72			8 183		43 135	.12 .10		1.24 1.99	.05 .04	.27 .15		.01 3.40	3.80

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C

FA Data

DATE RECEIVED: AUG 30 2004 DATE REPORT MAILED: Sept. 11/04.

APPENDIX II

SOIL SAMPLE RESULTS

CERTIFICATES OF ANALYSES

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

ľť.						E	mg	<u> 1</u>	<u>M:</u>	ln:	Lnc	<u>1 C</u>	<u>or</u> 140	<u>p.</u>)	P. 570	<u>ROi</u> Gre	<u>JE(</u> invi	<u>TT</u> ile	J St.	<u>AZZ</u> , Vanc	F	ile er BC	# v6C	A4 3P1	03	250	I.	Page	2 L	-							1	Ľ	I
AMPLE#	Mo ppm	C pp						Со ррп				As opm p								Bi V pm ppm		P %				g Ba Kippmi	Ti %	B A ppm	 8	Na %	K %pp	W H om pt	lg S om pp	Sc T xm pp			a Se mppr		np1 g
-1 79N 60+75E 79N 61+00E 79N 61+25E 79N 61+50E	1.8 2.7 2.3	139. 170. 171) 1 7 2 3 2	7.5	112 113 109	.5 .4 1 0	21.2 24.9 32.2	17.7 21.8 22.6	703 895 950	4.(4.()3 1(58 1) 89 1/	5.1 3.4 1.8	.5 .6 5	18. 36. 185	6. 91. 52	9 2 3 2 6 2	29 24 25	.5 .4 3	.5 .6 5	.3 100 .3 121 .3 114	.27 .22 .24	.111 .069 .144	6 8 7	34.2 43.0 49.8	1.14 1.14 1.14	2 159 4 105 4 135	.122 .166 .156	1 .8 2 2.5 1 2.7 1 3.1 2 3.0	5.0 2.0 5.0	12 . 12 . 12 .	13 11 09	.3.(.4.(.3.()5 3.)5 4.)7 4.	2. 3. 3.	1 <.(1 <.(1 <.(15 15 15 1	8 . 9 .(0 .(5 5	1 1 1 1 1
79N 61+75E 79N 62+00E 79N 62+25E 79N 62+50E 78N 60+25E	1.9 1.6 2.7	187. 118. 74	3 1 5 1	7.4 9.8	108 175 167	.4 1.0 2	29.5 29.5 23.1	26.7	1030	5.6 2 4.9	52 1: 54 2 18 1	2.9 7.8 5.4	.5 .7 5	63. 21. 32	62. 53. 41	02	24 34 23	.4 .8 6	.6 .6 8	4 112	.24 .61 .25	.131 .210 .093	6 23 7	48.2 61.1 43.7	1.9 1.3	l 170 5 200 3 109	.219 .149 .170	1 2.6 1 3.9 1 2.9 <1 2.7 1 3.4	0.0 5.0 5.0	12 . 35 . 15 .	24 16 09	.4 .(.4 .(.8 .()66.)75.)64.	.8. .4. .2.	2 <.(2 <.(1 <.()5 1)5)5 1	1.(9.; 0.(5 7 5	1 1 1 1
78N 60+50E 78N 60+75E 78N 61+00E 78N 61+25E 78N 61+50E	$1.6 \\ 1.3 \\ 1.3 \\ 1.3 \\ 1.5 $	99. 109. 190.	75 82 31	3.5 4.2 5.3	162 123 144	.4 .4 .4	22.5 21.4 34.5 24 1	19.6 22.0 24.8	1369 1067 784) 4. / 5. / 5.	46 1 29 54 97 1	2.5 9.1 7.6	.7 .4 .4	17. 30. 19. 20	01. 21. 51. 62	.9 .9 .7	22 27 26 27	.6 .4 .4	.4 .5 .5 4	.4 110 .3 142 .3 147 4 121	.19 .26 .26 .24	.117 .165 .148 .254	8 6 5 7	33.9 34.2 44.7 38.9	.90 1.4 1.9 1.0	8 141 1 176 2 226 7 150	.177 .212 .220 .172	1 3.4 1 2.8 1 3.0 <1 2.9 1 3.0	8.0 6.0 3.0 8.0	13 . 12 . 10 . 12 .	14 17 29 14	.3 .5 .5 .6	10 4. 06 4. 04 4. 06 4.	.2 .2 .6	2 <.(2 <.(2 <.(2 <.()5 1)5 1)5 1)5 1	0 . 1 <. 0 <.	9 5 5 6]]]]
.78N 61+75E .78N 62+00E .78N 62+00E .78N 62+25E .78N 62+25E .78N 62+50E	2.2 1.1 1.0 1.0	116. 81. 78. 61	92 91 51 42	1.3 6.7 5.2 0 8	138 118 114 112	1.6 .5 .4 4	30.7 22.2 22.2	27.7 23.0 23.7 23.7	83 105 102	45. 44. 74.	182 291 181 881	3.3 4.6 4.5 4 4	.6 .5 .5	37. 23. 17. 20.	92 82 12 12	.7 .3 .3	26 22 21 20	.4 .4 .4 .3	.8 .6 .6	.5 118 .4 104 .3 105 .4 91	.23 .20 .22 .17	.122 .170 .166 .278	10 7 7 6	46.3 30.5 30.6 24.9	1.1	7 170 2 195 1 182 8 181	.179 .170 .170 .160	<1 3.3 <1 3.5 1 3.5 2 3.6 2 3.4	4.0 9.0 1.0 8.0	14 . 15 . 15 . 15 .	12 13 13 11	.5 . .4 . .5 . .4 .	06 6. 06 4. 06 4. 06 3.	.3 .8 .5 .7	2 <.! 2 <.! 2 <.! 2 <.!	05 1 05 1 05 1 05 1	LO . LO . LO .	7 7 7 6	
.77N 60+25E .77N 60+50E .77N 60+75E .77N 61+00E .77N 61+25E	2.8 2.4 1.3 1.2	87. 158. 102. 143.	4 2 6 3 1 2 0 4	6.9 1.0 6.9 5.3	154 153 160 174	.5 .4 .5 .8	22.9 25.2 22.9 24.6	24.0	124 75 139 94	34. 14. 04. 14.	05 1 80 1 80 1 80 1 31 1	1.6 3.4 1.5 3.2	.7 .7 .4 .5	11. 43. 19. 20.	52 92 61 72	.8 .4 .9 .1	21 27 28 1 29 1	.6 .7 .0 .0	.5 .6 .6 .6	.3 97 .6 117 .4 116 .3 100	.20 .31 .27 .26	.248 .206 .175 .172	7 7 7 6	25.6 40.4 32.1 34.0	5.8 1.1 	3 133 9 150 6 176 7 172	.173 .159 .165 .163	1 4.5 <1 3.0 <1 2.6 1 3.1 1 3.3	7.0 6.0 2.0	19 13 12 12	.09 .13 .11 .18	.4. .7. .5.	07 4 07 4 04 4 07 4	.7 .6 .2 .6	.2 <. .2 <. .1 <. .2 <.	05 05 05 05	10.	9 1 7 8	
L77N 61+50E L77N 61+75E L77N 62+00E L77N 62+25E L77N 62+50E	1.4 1.8 1.7	101. 100. 99.	1 2 9 2 9 1	0.7 1.6 6.7	143 121 104	.4 .3 .3	27. 30. 27.	7 29.	2 167 123 49	64. 84. 04.	98 2 74 1 59 1	2.8 9.7 6.2	.5 .6 .6	40. 58.	22 82 92	.4 .9 .7	23 22 22	.5 .4 .3	.7 .8 .5	.4 109 .4 116 .3 109	.19 .20 .19	.274 .184 .172	8 9 8	35.5 42.1 37.7	51.0 1.1 1.1	0 211 7 197 4 126	.150 .171 .172	1 2.9 1 3.2 1 3.6 <1 3.6 1 3.6	3.0 4.0 1.0)12)14)14	.08 .11 .11	.4 . .4 . .3 .	07 4 06 4 11 4	.2 .9 .8	.2 <. .2 <. .1 <.	05 05 05	11 . 10 .	6 7 8	
L76N 60+25E L76N 60+50E L76N 60+75E L76N 61+00E L76N 61+25E	1.5 1.7 2.1	118 85 97	1 3 9 2 8 3	80.5 27.8 38.8	105 131 341	.5 .9 .8	29. 26. 31.	l 19. 5 22. 4 27.	9 52 102 139	04. 43. 64.	02 1 83 1 39 1	0.7 0.4 1.6	.6 .6 .6	28. 15. 26.	52 92 42	.6 .3 .2	24 18 32 2	.3 .6 .3	.5 .4 .9	.5 100 .4 91 .4 103	.23 .16 .30	.110 .159 .122	7 7 8	43.2 35.9 36.8	2.9 .8 .9	9 136 1 133 6 186	.162 .167 .177	<1 3.0 1 3.0 1 3.2 1 3.2 <1 2.9)6 .(1 .(23 .()13)13)14	.11 .09 .09	.5. .4. .5.	06 4 07 3 11 4	.2 .9 .2	.1 <. .1 <. .2 <.	05 05 05	8. 9. 10.	6 8 9	
standard DS5																												16 1.9											
GROUP 1DX - (>) CONCENT - SAMPLE TY Data	RATIO	N EX	CEEC	S U	PPER C	LII <u>S</u>	MITS ampl	i. S es b	OME egin	41 NE nî ng	RAL	S MA E'a	Y BE re f	PAF	₹71A <u>15_</u> 8	ILLY	ATI 'RRE	FACK <u>=</u> /	(ED. are	ONE H REFR <u>Reject</u> AILEJ	ACTO Rer	RY AN	ID GI	RAPHI		SAMP	NALYS Les (ED BY AN LIM	ICP- IT A	MS. NUS	olub	ILII	Y	UNP (1	<u>م</u> 1.		7®	ES 1

a de la companya de la contra companya de la debate

			D.	-								A 71		~			<u>^-</u>			<u> </u>	N/- F	<u>-</u> т.	n	A.7	<u>k1 - </u>	~	W Hg	50	T1 (Se S	amalu
SAMPLE#	Mo	Cu ppm	2 C C C C	Zn		Ni		Mn ppm	Fe %	As ppm p		Au Th ppb ppm						Р %р		Cr ppm	Mg E % DE			A1 %			w Hy DDM DDM			s ua K ppm		anıp n Qi
	ppm	phin	phu	рри	рыя	рри	phii	hhu	•	իհա ի	pu	pbp bbu	hhii l	ן יייקי	hii ht	w phu	~	<u>4 e</u>		hhiii	<u>v h</u> t	111 - 20						bbm		• • • • • • • •	ppm	
-1	1.2	2.3	2.0	40	<.1	3.9	3.4	470	1.71	<.5 2	2.0	<.5 4.1	68 •	<.1 <	.1 .	1 37	.49	.076	7	42.3	.47 19	6.103							.2 <.0		<.5	1
76N 61+50E	1.4	82.0	64.9	226	.5	24.1	24.7	1543	3.81	10.7	.5 3	389.4 1.9	22	1.1	.4	4 86	.19	.158	6	27.8	.82 19	2.138							.2 <.0		12 S. A. C. C.	1
.76N 61+75E	1.5	114.7	38.5	159	.3	25.0	23.6	1515	4.29	10.7	.3	44.5 1.5	25	.5	.5 .	3 108	.22	.119	6	34.0 1	.08 20	5.133	12	.39	.011	.09	.5 .03	3.9	.2 <.0	; 7	.6	1!
76N 62+00E												23.4 1.8				4 99			6	31.0	.96 17	7.124	12	.57	.012	.09	.5.05	3.5	.1 <.0	58		1;
76N 62+25E												35.1 2.0		.4	.8 .	4 92	.17	.169	6	28.8	.76 15	8.136	13	.17	.011	.07	.5.03	3.4	.1 <.0	59	.5	1
	2.0				•••																											
76N 62+50E	1.8	89.5	27.7	122	.6	23.0	23.6	965	4.19	15.1	.5	19.3 2.2	21	.3	.6.	4 101	.17	. 182		32.5					.012				.2 <.0	- 1 - Lee	.7	12
75N 60+25E	1.3	112.3	45.0	110	.4	25.3	23.7	1258	4.47	10.6	.5	59.4 1.9	28			5 105			8	31.0 1	.01 23	9.154					.4 .05		.1 <.0			1
75N 60+50E		109.9	35.3	127	.3	26.0	25.8	1611	4.78	10.7	.5	27.1 1.8	38	.6	.5 .	4 110	.32	.136	8	32.8 1	.02 26	2.157							.2 < 0			19
75N 60+75E		129.6	30.4	114	5	25.5	25.3	678	4.90	11.6	.5	70.1 2.2	31	.3	.5 .	4 116	.26	.094	9	36.3 1	.03 14	8.176							.2 <.0			1
75N 61+00E												13.6 2.0				5 99			7	31.4	.92 17	9.141	1 2	.65	.010	.10	.5 .03	3.4	.1 <.0	58	<.5	1
																													1.1		1	
.75N 61+25E	1.1	81.8	58.5	654	.5	26.2	18.8	1181	3.74	11.6	.6	10.1 2.2	24	3.6	.5	4 80	.22	.149	7	26.9	.67 19	6.160							.2 <.0			1
.75N 61+50E	1.1	96.6	67.4	538	.2	26.0	25.4	1922	4.37	13.2	.3	38.6 1.7	44	2.8	.6	4 106	.36	.126		32.6 1									.2 <.0			1
75N 61+75E	1.3	99.1	55.5	262	.5	25.9	26.9	1559	4.30	13.0	.5	9.8 2.0	34	1.0	.4	4 103	.27	.135	8	30.1 1	.00 20	0.172	2 2	.92	.013	.13	.4 .04	3.9	.2 <.0	5 10	.5	. 1
75N 62+00E												23.6 2.2			.7	4 110	.31	.119	8	36.2 1	02 2	5.158							.2 <.0		.7	1
75N 62+25E	1.3	116.0	63.5	210	.4	34.3	27.8	1396	4.48	30.4	.5	24.8 2.0	29	1.0	.7	3 115	.25	.118	8	41.2 1	14 10	5 .154	2 2	.92	.012	.10	.4 .04	4.4	.2 <.0	59	.6	1
E L75N 62+25E												42.8 2.1				.3 115				42.7]									.2 <.0		.7	1
75N 60+25E												30.7 2.3								61.3]									.1 <.0		.7	1
74N 60+50E												27.3 1.8				.3 103				29.5									.1 <.0		.6	1
.74N 60+50E												36.1 1.9								31.1									.2 <.0			. 1
.74N 60+75E	1.5	100.6	30.3	124	.5	22.1	23.4	1051	4.85	10.6	.4	32.3 1.9	30	.5	.8	.4 119	.24	.171	6	35.3	.95 1	5 .162	22	64	.012	.10	.4 .03	3.4	.1 <.0	5 10	.6	1
74N 61+00E	1 /	92.0	20 /	101	٤	10.2	20.2	1221	A A6	11 A	٨	12.0 1.8	20	· A-	7	A 10A	27	242	6	30.8	00 1	0 12		17	011	10	1 0/	2.2	.1 <.0	5 0	.6	-1
.74N 61+25E												27.6 1.9								35.4									.1 <.0			1
.74N 61+50E												20.9 1.7								40.5 1									.1 <.0		<.5	1
.74N 61+75E												19.7 2.0								38.4									.1 <.0			1
.74N 62+00E																.4 113			-	39.3									.1 <.0			1
.74N 02TUUE	1.4	102.5	00.0	0 190		29.5	25.9	11/2	4.55	22.5	. 5	51.2 2.4	23	1.3	•	.4 105	.23	.104	9	39.3	.95 1	00 .14	1 1 6).24	.012	. 10	.4 .04	· ••.0	. 1 ~.0	3 10		
74N 62+25E	17	129.0	205	201	7	30.2	27.8	911	4 50	51.3	8	42.8 2.7	27	7	7	4 108	27	125	15	45.7	09 1	16 13	11	3.45	.012	.10	.4 .08	5.3	.2 <.0	58	.9	1
74N 62+50E												33.2 2.5								40.3									.1 <.0		.7	
L11N 6+00E												107.8 1.4													.010				.2 <.0		1.3	1
1L11N 6+25E												19.8 1.7																	.2 <.0]
1L11N 6+50E												71.4 1.1																	.1 <.0			1
						11.0		000						2.0		.0 00														2 6		
L11N 6+75E	2.9	72.7	37.9	206	1.5	20.3	17.0	1750	5.46	62.1	.7	38.2 1.2	9	.8						26.4	.73	56.06	5 3 2	2.34	.009	.06	.2 .07	3.2	.1 <.0	5 10	1.6	
L11N 7+00E	4.0	102.1	43.2	2 203	.9	25.5	21.8	1755	4.49	59.8	1.1	126.8 .9	8	.9 1	1.3	.5 81	.08	.131	15	27.6	.65	57.04	1 3	3.18	.008	.06	.2 .11	3.2	.1 <.0	5 9	2.1	1
4L11N 7+25E	2.4	39.3	25.	110	1.2	12.8	10.5	889	4.83	40.6	.6	17.4 1.3	10	.71	6	.5 99	.07	.204	8	21.3	.46	33 .07	2 2 2	2.00	.009	.07	.2 .11	3.0	.1 <.0	5 12	1.0	1
ML11N 7+50E												19.9 .8												2.48	.009	.09	.2 .09	2.5	.2 <.0	59	1.3	1
1L11N 7+75E												98.1 3.4												3.10	.017	.08	.2 .07	4.5	.2 <.0	58	1.1	1
TANDADD DCT	10 P	140 0	or			~ ~ ~			A A7	10 0			4.5			1 ~~		000		107 6	<i>c</i> o -	40 00			000	10	F 1 11		10.0	, ,		
STANDARD DS5	12.5	143.5	25.	136	.3	24.8	11.9	/96	3.0/	18.0	5.9	41.8 2.8	45	5.5 3	s.y 6	.1 62	./0	.088	12	187.6	.68 1	42.09	o 1/ 1	1.96	.032	.13	5.1.18	1 3.3	1.0 <.0	5 b	5.3	1

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_/FA

8 G.	N 1.			12.1	.	000.	918	6. C.	
	5			8.8	- A		-	1.11	
	222		1.11		÷.	- A	<i>1</i>		
Y	- 7		- X.		66	- A		ч.	
- N. S	× .		- A	A	AWA -	- AL			
						- 84		× 6.	
			- 10					-3.0	
			.04					0.0	
				. 20	12.12.1		26		
				. 19 9	0.00		NП		
				. 89	100		58		
				. 80	100				
				- 22	1.1			1.1	
				-	-		100	-	
			40	100		i A E	¥7.	10	A.A.
			RU	ME.	- 49	wu,	. 1 1	IU.	ML.

Page 3

	ACHE ANALI (ICAL					<u> (</u>												<u>ciricizi</u>														tine fore		ANALYTICAL
	SAMPLE#	Mo	Cu ppm	Pb ppm	Zn			Co ppm	Mn	Fe %	As ppm pp					d Sb m ppm				Р % с		Cr ppm			Ti % p	B A1				Hg S opm pp			Ga Se	Sample qm
		hhu	- phus	- Phin	ppin	<u>ייילק</u>	Phin Phin	- ppin	РЪні		hhii hh	111	hho hl	hii hh	in pp		ppin	ppin		4 °	,hui	Ч	~ P	<u></u>	<u>4 %</u>	hu v		~~~	hhii I	phu ph			ppin ppin	900
	G-1	1.3	2.2	2.0	40	<.1	3.9	3.6	480	1.77	.71.	7	<.5 3	.8 7	0 <.	1 <.1	.1	38	.52	.078	7	46.4	.48 1	. 94	106	<1 .82	.083	.38	.3<	.01 1.	83	<.05	4 <.5	15.0
	ML11N 8+00E	20.1	84.3	54.3	1058	1.1	61.4	19.0	1884	6.38	186.1 1.	2	7.11	.8	92.	7 5.0	.4	148	.13	.197	17	56.4	.83 1	. 00	034	1 2.28	.008	. 05	.2	.07 4.	3.3	<.05	8 2.8	15.0
	ML11N 8+25E	3.0	60.2	41.0	304	.4	32.6	16.2	1283	4.00	55.0 .	8	5.61	.9 1	3 1.	0 1.5	.4	79	.13	.165	9	32.0	.73	79.	074	1 2.98	.011	.06	.2	.06 2.	7 .2	<.05	8 1.2	15.0
	ML11N 8+50E	1.4	74.6	35.2	179	.6	39.9	23.2	1010	4.07	55.9 .	8	5.0 2	.2 2	1.	7 1.1	.3	73	.15	.158	11	38.3	.79	79.	084	2 3.46	.011	.05	.2	.07 3.	6 .1	<.05	8 1.2	15.0
	ML11N 8+75E	1.1	62.3	51.0	189	.3	25.1	17.1	1459	3.48	84.6 .	6	5.21	.0 2	01.	1 1.2	.3	68	.22	.123	8	26.9	.70 1	.01	072	3 2.43	.013	.08	.1	.05 2.	7 .1	<.05	8.7	15.0
	ML11N 9+00E	1.4	57.2	83.4	205	.3	26.0	18.3	1986	3.80	62.5 .	5 1	0.1 1	.0 2	11.	5 2.3	.5	78	.20	.116	7	28.8	.79	95	080	3 2.25	.014	.06	.1	.04 2.	7 .1	<.05	9.7	15.0
	ML11N 9+25E										89.7 .															1 2.31	.011	.05	.2	.05 3.	1.2	<.05	8 1.1	15.0
	ML11N 9+50E										56.2 .											25.4				3 2.16	.011	.07	.1	.07 2.	4.3	<.05	10 1.1	15.0
	ML11N 9+75E	1.9	50.4	76.9	228	.5	25.1	18.0	2112	5.01	54.0 .	6	1.91	.2 2	20 1.	1 1.8	.5	86	.27	.218	8	30.2	.68 1	. 104	073								12 1.0	15.0
	ML11N 10+00E	1.9	57.0	63.1	166	.3	23.7	18.3	2266	3.36	23.9 .	6	2.2	.6 1	71.	2 2.0	.5	60	.15	.162	7	23.5	.51	97.	061	2 2.11	.011	.08	.2	.06 1.	9.2	2 <.05	9.8	15.0
	ML11N 10+25E	27	10.2	27 0	103	1	15.9	70	760	2 00	11.8 1.	۰ ۵	26	6 1	A	g 1 7	Б	54	07	123	10	22.1	44	61	663	3212	013	10	2	06 1	a 2) < 05	10 1.1	15.0
	ML11N 10+25E		39.3								19.3					5.9						23.1											13 1.0	15.0
	ML11N 10+75E		29.4								19.5 .															2 2.48								7.5
	ML11N 11+00E										42.5 .																						9 1.8	15.0
	ML10N 6+00E										14.4 1.																						10 1.2	15.0
	HEIGH GOUL	- 1. 0	55.0	10.5	102		10.0	11./	10/1	2.34	17.7 1.	0 0	2.3	. 9 1	,	7 I.I	• 4	00	.19	.134	7	20.5	.70	00.	.070	2 0.00	.011	.07	• •	.11 6.	J .1	00	10 1.2	70.0
	ML10N 6+25E										38.3 .															1 3.30	.011	.06	.2	.08 3.	9.1	<.05	9 2.0	15.0
	ML10N 6+50E	2.0	80.7	72.6	190	.5	25.3	26.5	3126	4.10	38.2 .	84	4.4	.4 1	81.	0 2.2	.5	80	.19	.172	13	27.6	.72	91.	045	2 2.56						2 <.05		
	ML10N 6+75E	2.4	117.1	58.6	273	.7	23.7	33.4	4385	5.19	93.0 .	8 3	7.91	.0]	.72.	8 2.2	.6	67	.22	.152	18	20.6	.58 1	120 .	052	2 2.46						2 <.05		15.0
	RE ML10N 6+75E	2.4	119.1	60.4	270	.7	24.8	34.3	4404	5.33	92.8 .	85	6.91	.0 1	.8 2.	72.2	.6	71	.23	.153	19	21.4	.59 1	120 .	053	2 2.43								15.0
	ML10N 7+00E	2.1	103.7	61.2	222	.6	30.9	31.3	3679	4.89	216.3 .	8 4	2.2	.9 1	18 1.	9 1.5	.5	72	.20	.177	15	24.5	.71 1	105 .	055	2 2.91	.010	.08	.3	.08 3.	4.2	2 <.05	9 1.6	15.0
	ML10N 7+25E	4.9	89.1	56.6	310	.5	34.9	30.6	6049	4.83	88.4 .	7 11	4.5	.7 1	62.	6 2.1	.7	85	.23	.169	16	30.9	.71 2	214	044	2 2.24	.011	.09	.2	.07 2.	5.4	4 <.05	9 1.8	15.0
	ML10N 7+50E	3.3	66.6	54.4	315	.5	30.0	29.2	3109	5.03	100.7 .	7 5	8.9	.8 2	24 2.	2 1.6	.5	107	.23	.234	12	32.3	.76	188	060							2 <.05	10 1.4	15.0
	ML10N 7+75E	6.8	81.6	33.7	475	.5	38.5	31.3	2696	5.10	133.2 .	8 1	4.8	.9 1	5 2.	4 2.0	.4	110	.15	.207	13	35.9	.82 1	131	050	2 2.59						2 <.05		15.0
	ML10N 8+00E	2.3	58.8	39.2	330	.3	28.1	28.0	2511	3.94	105.2 .	6	6.0	.6 2	24 2.	3 1.8	.3	79	.19	.150	11	30.1	.83 1	130	078								10 1.0	15.0
	ML10N 8+25E		55.7			.3	25.0	23.3	2547	3.55	52.9 .	6	3.3	.7 1	19 1.	4 1.4	.3	69	.16	.121	9	26.3	.69	97.	.087	4 2.53								15.0
	ML10N 8+50E	1 1	59 0	120 4	391	2	20 0	27 0	3357	3 pn	52.3 .	6	2.9	7 .	20.2	610	E	60	27	164	o	28.1	72 1	105	067	5 2.31	01 <i>E</i>	07	1	06.2	Б , ,	2 <.05	9.9	15.0
	ML10N 8+75E																				12	20.1	02	190 .	007	2 2.47								15.0
	ML10N 9+00E	11.8	78 1	78.8	532	6	55 2	33.0	3738	5 11	256.7 .	8 1	0.2	Α.	20 4	121	د. م	100	.10	167	12	20.3	70 1	00. 168	040	3 2.24								15.0
	ML10N 9+25E	6.1	69 6	83 7	385	6	30 0	24 0	2483	4 30	129.7 .	g 1	2.2	8	20 7.	3 3 0	.0	103	.10	195	12	35.0	60	122 ·	055	2 2.35								15.0
	ML10N 9+50E	9.2	83.5	77.1	440	.9	50.3	28.3	2944	4.74	165.8 1.	0	5.7	.8 2	22 2.	8 3.7	.4	78	.21	.277	14	32.3	.68	135	.039	2 2.31	.012	.07	.2	.03 3.	8.2	2 <.05	8 2.5	15.0
	ML10N 9+75E																																	
	ML10N 10+00E	5.4	05.2	38.9	503	.8	44.2	23.0	105/	4.45	112.5 1.	U	2.9 1	.Z]	LZ Z.	2 3.6	.3	86	.14	.147	13	37.2	.80	107.	.056	2 2.69								いい あおりの いいり
	ML10N 10+00E ML10N 10+25E	10.9	09.2	05.1	503	1.2	52.1	22.4	1820	5.44	74.2 .		5.81	.4	13.	1 0.6	.4	85	.13	.232	17	34.4	.61	98.	.032	1 2.24				.06 4.		3 <.05	55555 Tot 1 10755	
	ML10N 10+25E	0./	00.1	52.0	458	1.1	53.9	30.9	2007	0.18	153.5 1.	2	4.31	.5	122.	0 5.5	.4	11/	.14	.168	14	57.8	.96	98.	.063	3 2.94						5 <.05		
	ML10N 10+50E	5.0 27	70 0	2/.4	50/	./	03.8	29.3	2295	0.10	62.0 1.	U 1	2.3	.9 3	32 4.	4 4.5	.4	90	.66	.1/0	19	38.9	.71	142	.039	3 2.17	.009	.07	.I	.07 4.	0.4	1 <.05	7 3.1	
	FICTON TAAVOF	0./	/8.6	20.5	532	.5	80.6	36.3	1903	5.80	49.8 I.	1	J.8 1	.6 2	22 3.	/ 4.1	.3	89	.35	.164	19	48.2	.81	167	.047	2 3.05	.011	.06	.2	.07 4.	5.6	o <.05	7 3.9	15.0
	Standard 055	12.3	142.9	25.4	139	.3	24.3	11.8	764	3.00	17.9 6.	14	0.2 2	.ġ.	14 5.	63.8	6.0	61	.71	.088	11	191.0	.66	139	.090	16 1.93	.032	.13	4.8	.19 3.	3 1.0) <.05	6 4.9	15.0
80																																		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

ACME ANA

Data / FA

L.,	ACHE ANALITICAL			<u>, dan</u>																						جف بشميقة	مند، <u>برومند ان</u>				<u></u>	<u></u>		л ы	AC MARCHINE	.n.
:	SAMPLE#	Mo ppm	Cu ppm						Mn ppm	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P. Y	La	Cr ppm	Mg	Ba	Ti v	B A1 DDm %								Sample om	
		μμιι	phu	hhu	i hhiu	ррян	hhi	h bhi	i hhii	•	hhu	phu	hhn	- Phu	рри і	vhu h	17 m	shu h	ihuu	-	~	Ррш	ppin	^0	Phil		<u>v vid</u>		~~~~	phu l	shu bi	<u>, bbu</u>		ppin ppin	9.11	<u></u>
	G-1	1.2	2.6	2 1	10	- 1		1 3 6	523	1 00		10	, c	10	76 .	1	- 1	1	20	51	094	7	18 0	54	210	115	<1 .88	084	42	٨<	01 2	0 3	: 05	5 < 5	15	
					901	<u>,</u>	4.4	10.5	1040	1.90	22 2	1.9	1.0	4.0	10 1	2			67	12	271	6	27 0	67	110	. 113	3 2.78	010	07	- A	08 2	7 /	05	9 2.1	15	
	ML10N 11+00E	5.9	03.0	21.0	291	.0	43.0	0 18.0	1242	4.92	33.2	. 9	1.0	1.0	10			.4.	0/ .	10.	173	2	5/.5	.0/	110	104	3 2.70	.010	07	 					15	
	ML9N 6+00E	2.0	56.1	15.5	133	.3	23.0) 14.1	1026	3.51	14.8	.8	13.7	2.0	13	.5	.9	.3	70 .	13	1/1	9	50.0	. 50	69	.104	2 3.10	.011	.07	.0	.07 3.	1 .1	UO	91.0	15	
	ML9N 6+25E	2.1	104.3	27.3	192	.4	29.7	26.8	2054	4.62	30.5	.8	20.2	1.1	32]	1 1	2	.3	80.	36	. 147	11	52.5	. /6	114	.081	2 2.99	.012	.0/	.5	.08 3.	5 .1	<.U5	9 2.0		
	ML9N 6+50E	2.9	129.8	29.1	222	.5	30.5	5 31.5	3227	5.01	37.3	1.0	19.2	.5	51 3	3.01	1	.4	81.	.76 .	.171	18	39.7	.81	110	.054	2 2.53	.014	-07	.2	.05 3.	4 .1	<.05	93.0	15	
	ML9N 6+75E	4.5	114.5	33.5	361	5	42.1	28.8	2934	5.20	78.7	1.1	103.1	.9	17 2	2.9 1	. 5	.4	86 .	20 .	178	15	41.1	83	154	.060	2 3.03	.009	.07					91.6	15	
	ML9N 7+00E	5.0	106.6	39 8	519	5	57 C	27 7	2446	5 55	96.7	9	262.3	1.5	31 2	4 1	6	.51	10 .	46.	.248	15	47.9	1.00	107	.058	1 2.84	.009	.07					9 1.9	15	
	ML9N 7+25E	6.0	87 A	10 7	515	7	13 6	24 1	2530	5 10	122 0	g	52 0	12	18 2	5 1	8	5 1	09	20	261	15	41.0	.88	136	.075	1 2.85	.011	.08	.3	.05 3.	5 .1-	<.05	10 1.3	15	
	ML9N 7+50E	0.0	0/ 1	26 1	COL	E	61 0	> 27.1	1674	5 71	127 6	1 0	190 /	12	11 1	5 1	7	5 1	31	12	262	14	54 9	92	89	054	2 2.62	007	06	2	06.3	4 1.	< 05	8 1.9	15	
		9.7	79.1	20.1	001		20.1	22.1	1706	J./1	107.0	1.0	203.4	1 1	17 1	6 1	6	. O T	01 .	10	240	0	AO 0	70	07	08/	2 3.04	012	07	2	08.3	4 1.	05	910	15	
	ML9N 7+75E	2.3	13.0	. 30.0	253	. Э	30.1	20.0	11/00	4.29	55.0	· • •	2.9	1.1	1/ 1	.01		.0	01 .	10	. 249	9	40.0	.19	51	.004	2 0.04	.016		• -				5 1.0	10	
					i da a a							-								- 	140	~	00 4		70	001	0 0 70	011	07	5	06 2	ñ 1.	- 00	011	15	
	ML9N 8+00E	2.2	74.0	49.5	264	.4	31.0) 21.6	1658	4.23	65.0	.6	3.5	.8	1/ 1	1.3 1	4	.3	Π .	17	. 148	9	36.4	.80	/0	.081	2 2.73	.011	.07	. 2	00 2	9 1	.00	9 1.1		
	ML9N 8+25E	1.9	63.5	72.5	298	.3	26.1	1 25.4	2235	4.33	57.2	.6	2.9	.7	14 2	2.11	.9	. 4	76	13	.207	7.	31.6	.81	85	.075	1 2.40	.012	.08	.2	.07 2	5 .1	<.05	9.8	15	
	ML9N 8+50E	2.5	89.6	125.6	324	,4	40.6	5 31.7	2663	4.65	92.3	. 6	9.6	.6	23 2	2.8 3	3.1	.6	74	.24	.152	9	38.4	. 89	94	.062	2 2.35	.013	. 08	. 6	.07 3	4 .2	<.05	8 1.3	15	1.
	ML9N 8+75E	5.1	105.5	97.5	594	.8	55.6	5 56.8	3 4418	5.24	164.6	. 9	9.2	.8	43 (5.7 3	3.1	.9	66 .	59	. 199	20	37.6	.74	162	.046	3 2.48	.011	.09	.3	.06 3	.6.2	<.05	7 2.5	15	
	ML9N 9+00E	5.7	83.5	67.9	431	.3	48.5	5 47.1	3790	4.64	153.0	1.1	4.4	. 4	28 3	3.6 2	2.7	.8	74	37	. 187	16	38.8	.76	132	.040	3 2.85	.010	.09	.2	.04 2	6 .2	<.05	8 1.3	15	
	ML9N 9+25E	3.6	77 1	47 6	287	A	37 1	23 6	2744	4 30	68.0	5	ç	Δ	17	1 4 1	8	Δ	71	19	143	8	35 5	85	120	047	2 2.48	.011	.07	1	.06 2	6 .2	<.05	8 1.1	15	
	ML9N 9+50E		76.7																									011	nq	2	07 2	6 2	< 05	8 1.4	15	
	ML9N 9+75E		82.8																																15	
		5.0	02.0	/4./	407	.3		- 29.0	2000	4.70	100.2	.0	4.0	.0	19 .).J (4.D.	1.3	02	.19	.190	11	74.0	1.10	201	.000	3 2.00								15	
	ML9N 10+00E	9.7	86.1	43.8	486	.5	65.1	5 34.4	1 2929	4.96	108.1	1.2	4.5	.5	33)./ :	5.U	.4	69	.49	.1/8	14	34.9	.01	. 220	.042	3 2.69	.012	.08	. 4	.07 2	.5.4	.00	7 2.7		
	ML9N 10+25E	12.3	112.3	44.5	. 6//	.5	85.6	5 42.1	2/31	6.90	108.5	1.1	1.7		22	1.8 (5.5	.3]	110	.21	.214	18	59.0	.97	138	.049	3 2.54	.009	.06	.3	.04 3	.8.5	<.05	/ 3.9	15	
																			2						(~~				AF			
	ML9N 10+50E		74.3																				55.9												15	
	RE ML9N 10+75E																																		15	
	ML9N 10+75E																										1 2.70								15	
	ML9N 11+00E	9.9	70.9	24.0	403	.5	58.4	4 25.8	3 4043	5.57	39.3	.6) 1.1	16	2.9	3.7	. 4	67	. 15	.187	13	48.7	.87	270	.041	2 1.93	.009	.06	.2	.07 3	.3.7	<.05	6 2.0	15	
	ML8N 6+00E	2.7	93.9	24.3	3 207	.7	30.3	1 23.4	1248	4.85	38.7	.8	41.0	2.5	17	.8	1.0	.4	90	.17	.201	10	42.6	.81	101	.106	1 3.22	.011	.09	.4	.10 4	.4 .1	<.05	10 1.9	15	
	ML8N 6+25E	6.0	73.2	29.2	2 545	1.0	40.4	4 19.3	3 2139	5.18	118.4	.7	65.2	2.5	13	1.3	1.7	.5 1	128	.14	.246	14	49.9	.87	153	.061	1 2.60	.009	.08	.3	.06 4	.6 .2	<.05	10 1.6	15	
	ML8N 6+50E																										2 3.20								15	
	ML8N 6+75E																										2 3.07								15	
	ML8N 7+00E																										3 3.09								15	
	ML8N 7+25E																																		15	
	MLON /+23E	3.9	/1.1	30.0	0 0/0	5.4	3/ .	9 21.8	5 1/5/	5.00	87.3	6 <i>I</i>	1.0	5 1.7	10	3.7	1.4	•4	95	. 18	. 195	12	38.1	. 85	5 1/3	.065	2 2.79	010.	.07	.2	.05 4	.42	<.05	9 1.2	15	
	ML8N 7+50E	4.4	97.8	58.1	483	6	43.	6 25.0	5 1742	5.21	143.4	. 7	19	317	11	1.6	19	4	98	12	201	12	41.4	1.02	87	057	2 3.11	009	08	2	05 5	5 2	< 05	8 1.4	15	
	ML8N 7+75E																										2 2.78								15	
	ML8N 8+00E																										2 2.96								15 15	
	ML8N 8+25E																																			
																											2 2.71								· · · · · · · · · · · · · · · · · · ·	
	ML8N 8+50E	2.9	/1.9	79.1	: 428	5 .5	32.	8 22.1	8 2391	5.03	62.9	1.6	1	1.1	11	1.4	1.7	.8	84	.13	.225	8	40.7	. 88	\$ 91	.063	2 2.70	008	.07	.3	.08 3	.4.2	<.05	91.1	15	
	standard DS5	12.5	146.6	25 1	5 138	} 3	24	8 12 (0 792	2 99	18 2	61	42	, , , ,	45	57	4 0	61	60	72	091	12	188 6	67	7 142	000	17 1.96	5 0.32	14	50	17 9	411	< 05	751	15	
<u> </u>	- 0 0.0 000						<u>-</u>	u 16.)		<u> </u>	10.1	- V. I	76.0	/		<u> </u>		V, 1		• 1 6-	.021		100.0		140	.033	17 1.31	,r	• • • •	5.0	0	. 7 2.2	05	* 9.1	10	<u></u>

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 5

	ACHE ANALYTICAL																			n. Utilann			a da t						in dia a			وبينين فستستحدث	A	CHE ANALYTICAL	
	SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Mg	Ba	Ti	B A1	Na	ĸ	W	Hg Sc	TI S	Ga Se	Sample	
1		ppm	ppm	ppm	ppm	ppm r	pm	ррт	ppm	8	ppm	ppm	ppb) ppm	ppm	ррт	ррт	ppm p	opm	*	% p	pm	ppm	8	ppm	8	opm %	*	% p	opm p	pm ppm	ppm %	ppm ppm	gm	
	G-1	1.2	2.2	1.7	27	<.1 3	2 /	2.2	120 1	62	Q	16	- 5		60	< 1	< 1	1	35	42	066	6	38.0	41	169	101	1.72	.068	.33	.3<.	01 1.7	.3 <.05	3 <.5	7.5	
	ML8N 8+75E			63.0	365	.4 40).4 162	6 0 1	423 I	70	56.0	1.0	21	1.6	14	1 1	1 7	Â	84	14	213	11	45.4	94	101	067	3 2.87	.010			06 3.8	.3 <.05		15.0	
	ML8N 9+00E			92.1		.6 52			2619 5			• • •	2.1	1 1	34	27	1 7	1 1	ing	46	.179	14	50 3	1 17	87	060	2 3.03					.4 <.05	8 1.9	15.0	
	ML8N 9+25E			60.8	420	.0 52	1.1 J	4.1 Z 0 E 4	2019 D	200	62.0	.0	6.7	, ¹ .1	20	20	2 0	7	82	28	100	11	45 5	1 04	161	046	2 2.81				07 3.4	.3 <.05		15.0	
	ML8N 9+25E			45.2	307	.4 50	1.02	9.02 067	2040 U 911E E	10	10 2	./ Q	1 9		20	10	2.0	- F	82	25	154	13	48.3	1 10	101	036						.3 <.05		15.0	
	MLON 9+50E	5.9	90.0	49.2	205	.4 ၁	J.9 Z	9.0 2	2112 0	0.10	40.2	••	1.0		20	1.5	4.4		02.	. 20	.134	10	10.0		TOT		0 2.01								
	ML8N 9+75E	6.3	79.4	31.4	251	.3 48	3.8 2	3.7 1	1666 4	.87	54.1	.8	2.5				2.0									.061	2 2.96				06 3.4	.3 <.05		15.0	
	ML8N 10+00E	7.5	100.7	32.5	406	.6 62	2.2 3	0.2 2	2183 5	6.89	95.1	.9	3.6	i 1.3	19	2.1	3.0				.172						2 2.87				04 4.4			15.0	
	ML8N 10+25E	12.2	149.0	37.5	755	.7 81	1.85	7.0 4	4019 7	.45	102.3	. 9	2.0	1.1	21	5.9	3.9	.71			. 223						1 3.04							15.0	
	ML8N 10+50E	17.8	104.6	63.2	550	.6 72	2.7 3	8.6 3	3834 6	5.37	63.6	1.5	2.9	9 9	43	3.5	5.1	.6 1	104	.66	.205	17	45.1	1.10	190	.045	3 2.58	.009				.5 <.05		15.0	
	ML8N 10+75E	7.2	82.3	22.8	371	.3 45	5.0 2	3.7]	1980 5	5.04	33.8	.9	2.1	.8	32	3.4	3.0	.4	76	. 50	.157	12	36.9	.79	153	.060	2 2.25	.010	.07	.3 .	06 3.2	.3 <.05	5 82.1	15.0	
	NH ON 11.00F	0.4		40.0	40F		1.7.9		3376 5	10	A1 0	7	2.5		- 21	2.2	2.1	6	ED	22	1 20	11	20 7	60	177	061	2 1 99	000	08	2	06.2.2	.4 <.05	6 2.1	15.0	
	ML8N 11+00E			42.3		.20	1./ 3	3.0	2374 5	. 13	41.3		2.4		10	3.4	17	.0	100	.20	100	10	AE 1	1.00	1.1.27	.001						.2 <.05		15.0	
	ML7N 6+00E			25.9															109	.19	.190	10	20.1	1.00	12/	057	2 2.77	.005	00	.0	01 6 0	2 < 05	5 8 1.3	15.0	
	ML7N 6+25E			31.9					3958 5												.100												5 9 1.4	15.0	
	ML7N 6+50E			36.4					1921 5																								5 9 1.1	15.0	
	ML7N 6+75E	2.4	95.1	49.9	456	.8 44	4.5 2	1.3	1601 5	».13	97.7	/	8.8	\$ 1.9	18	1./	1.7	.3	TOT	. 42	.193	12	48.8	1.10	141	.059	5 5.22	.009	.00		00 0.4	.2 ~.0.	, , ,,,	13.0	
	ML7N 7+00E			73.1		.8 49	9.8 2	9.0	1871 5	5.92	149.9	.6	15.2	2 1.6	16	2.3	2.0	.4	108	.19	.212	13	45.1	1.18	148	.033							5 10 1.2		
	ML7N 7+25E	5.0	122.5	5 74.1	1122	1.3 6	5.63	1.1	2250 5	5.91	188.7	3.1	20.6	5 1.8	38	8.2	2.1	.4	104	.51	.110	38	53.8	1.08	3 161	.049						.3 <.05		15.0	
	ML7N 7+50E			5 25.8					1918 4										90	.19	.157	9	49.7	.98	3 145	.084							5 91.3	15.0	
	ML7N 7+75E	2.4	73.8	36.5	319	.5 4	1.6 2	6.0	2214 4	1.81	44.9	.6	1.6	5 1.4	17	1.6	1.2	.3	94	.20	.183	10	50.0	1.03	3 144	.075	2 2.87	.012	.08	.2 .	05 4.1	.3 <.05	5 91.2	15.0	
	ML7N 8+00E			37.8																	.174						1 2.94	.010	.07	.2 .	05 4.4	.3 <.05	5 91.2	15.0	
	DE 10 71 0.00E				004				2161 4		AF C			. 1 C	1.4		1.0		OC.	1.4	167	10	AA E	04	: 120	072	1 2.85	000	07		05 4.0	.2 <.0	5 9 1.0	15.0	
	RE ML7N 8+00E			2 38.0		.4 3	0.4 2	4.3	2101 4	4.02	45.0	0.0	1.1	1.0	14	1.0	1.2	.3	100	.14	.10/	10	44.0 E0.C	1 10	1 1 1 2 2	.070							5 9 1.3	15.0	
	ML7N 8+25E			3 26.4																						.100	2 3.53				07 5.4				
	ML7N 8+50E			30.5																													5 10 1.2		
	ML7N 8+75E	2.5	72.0	3 24.2	332	. 5 3	5./ 2	4.4	1044 :	5.00	40.3	0.0	1.:	5 1.5	10	1.1	1.1	.0	100	.10	.204	10	41.0	1.10) 114) 10 <i>1</i>	.000	2 2.94		.00	. 2 .	00 2 0	. 2 01 A - 01	5 10 1.3	15.0	
	ML7N 9+00E	3.0	12.5	3 42.2	340	.4 3	0.4 2	4.0	2901 4	4.04	40.4	/	1.1	¥ 1.Z	10	۷.۵	1.3	.4	0/	.10	.194	10	40.0	1.00	J 104	.004	2 2.34	.010	.05	• • •	00 0.7		3 10 1.0	10.0	
	ML7N 9+25E	3.4	74.2	2 48.0	386	.3 4	0.9 2	25.5	2293 4	4.94	53.0	.7		9 1.1	30	2.0	1.8	.4	92	.30	.158	10	50.5	1.10) 153	.086	2 2.75	.012	.09	.2	03 4.2	.3 <.0	5 91.1	15.0	
	ML7N 9+50E	5.3	80.4	1 27.8	298	.44	2.1 2	23.9	1398 4	4.87	39.0	.8	1.2	2 1.5	15	1.6	2.2	.4	96	.16	.157	11	47.1	1.05	5 123	.079	2 2.90	.009	.09			.4 <.0			
	ML7N 9+75E			38.7			3.7 2	24.6	2110	5.20	41.8	.6		8 1.3	16	1.6	2.1									.070	1 2.67	.007	.09	.2 .	04 4.4	.4 <.0	5 91.1	15.0	
	ML7N 10+00E			1 29.9					1555 !																	.191			.14	.2	04 4.6	.3 <.0	5 10 .9	15.0	
	ML7N 10+25E		1.7.7.0.5	5 53.6	1.17	.3 4	0.5 2	23.2	2023	4.69	30.4	.7	2.4	4 2.1	15	2.9	1.0	.9	92	.16	.203	9	49.8	1.06	5 165	.121	2 3.27	.009	.11	.2	03 4.2	.3 <.0	5 10 1.0	15.0	
	M 741 10. FOF				100				ocor		40.4				10	<u> </u>	1 .		07		150	10	41 4	<u>,</u>	1 1 7 1	000	-1 0.00	000	07	2	07 4 9	C - 0	5 9 1.8	15.0	
	ML7N 10+50E																	.b	8/	.11	.158	12	45.4	ୢୢୖୄ୳	5 1/1	.092	<1 2.93			.4	07 4.2	.) < .U			
	ML7N 10+75E			2 16.6														.3	103	.19	.282	11	11.1	1.3	5 182	.112	2 3.17		100.00		05 4.8				
	ML7N 11+00E	7.3	79.	1 22.0	591	.4 5	0.02	26.7	2077	5.48	44.4	· 1.1	2.4	4 1.6	36	3.1	2.6	.5	81	.53	.249	15	40.4	8(5 1/9	.084	2 3.00					.5 <.0			
	P0L42S 39+25W	2.0	54.4	4 19.6	225	.6 2	3.6 1	16.6	1156	3.66	15.0).6	3.4	4 1.9	13	.8	1.0	.7	72	.17	.205	6				.108				and the second second second			5 10 .7		
	P0L42S 38+75W	2.6	50.7	7 35.4	291	1.6 1	5.2 1	18.5	994 :	3.53	43.7	′.6	5.	1 2.7	9	1.6	1.3	2.6	69	.08	.154	5	13.4	.2	/ 93	. 140	1 3.20	.013	.05	4.3	.06 2.8	.1 <.0	5 12 .5	15.0	
	STANDARD DS5	12.4	146.	5 25.4	137	.3 2	5.0	11.9	793	3.05	19.1	l 6.1	40.	4 2.7	44	5.9	3.9	6.4	61	.71	.087	12	190.9	. 6	6 143	.094	17 1.92	.031	.13	5.2	.20 3.4	1.1 <.0	5 65.2	15.0	
										******	• • • • • • • • • • • • • • • • • • • •										****														100.00

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

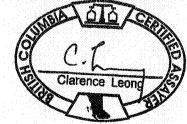
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_LFA

						1	Emg	old	Mj	.nir	ıg (Coi	:р.	Р	RO	JE(© ?T	JA	.ZZ	I	FIL	E #	Α4	103	250)				Pa	ge	6		ACME	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm		Mn ppm	Fe %		s U nppm		Th ppm						Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	BA1 ppm %	Na %	К %		Hg ppm pj			5 Ga 5 ppm p		Sample gm
Ġ-1	2.4	3.7	3.0	44	<.1	4.8	4.4	628	2.15	. <.!	5 2.4	.5	4.8	88	<.1	<.1	.1	44	.69	.077	9	21.8	.58	259	.138	2 1.10	.147	.50		112 2		.3 <.05	19 11 1 1 1 J		15.0
POL42S 38+25W	80.9	443.7	420.6	328	3.0	9.3	27.6	2332	15.75	120.9).5	7.4	.9	18	2.1	3.9	4.8	142	.24	.201	5	13.3	.22	97	.052	1 1.31						.1 <.05			7.5
POL46S 39+75W	2.5	15.6	19.2	69	.2	8.0	5.1	387	4.10	12.0).5	2.4	2.6	6	.2	.8	.7	82	.05	.131	5	19.1	. 20	59	. 158	1 2.46	.010	.04		1.		.2 <.05		.6	15.0
POL46S 39+25W	4.2	73.1	20.0	181	.5	24.6	13.9	543	4.14	23.	6. 2	15.4	3.0	16	.6	1.1	.4	92	.17	.105	7	37.2	.91	151	.109	1 3.33	.009	.09		.09 4		.2 <.05		1	15.0
POL56S 37+75W	8.7	56.9	15.3	336	.8	26.6	20.7	1516	4.38	11.0	ŝ.7	3.3	2.5	22	1.6	.7	.5	107	.27	. 256	6	24.1	. 68	261	.135	2 3.07	.012	.10	1.3	.06 3	.5	.2 <.05	5 10	.6	15.0
POL56S 37+25W	5.7	41.2	13.0	196	7	13.7	16.4	2352	3.86	8.0)) 7	1.7	2.7	19	.7	.6	.5	85	.20	.237	6	17.5	.47	166	.127	1 2.78	.013	.07	1.0	.06 3	.2	.2 < .05	5 10	.6	15.0
POL66S 36+75W		47.1	125.9	700	- C. (20)				3.85		2.0	2.3	2.8	20	1.5	.9	.9	102	.15	.217	6	23.8	.53	102	.119	2 3.12	.011	.06	1.0	.09 3	.5	.2 <.05	5 10 1	0	15.0
POL66S 36+25W			12.7					966	3.59				12.4	17	1.0	.5		84	.20			27.6	.62	164	.131	2 3.00	.015	.10	1.4	.08 3	.2	.2 <.05	, 8	.5	15.0
M-6E 7+50W		91.7	33.0							103.	1.6		5 2.1		1.9	1.8	.5	128	.19	.199	11	49.7	1.03	142	.071	3 2.81	.011	.09	.4	.05 4	.6	.2 <.05	5 91	6	15.0
STANDARD DS5			- 7713		• •	1007	77.05			18.					5.7	3.8	6.0	62	.72	.089	11	189.6	.66	138	.095	17 1.91	.030	.13	5.1	.18 3	.3 1	.1 <.05	565	5.2	15.0

Sample type: SOIL SS80 60C.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.


Data AFA

		LABO ccred					85	2 B	. н	Ast	ING	s s	IT.	4++	NCC	עטכ	er.	BC	V	6A 1	.R6		Þ.	HONE ((504)	25:	1-3	158	fa	X (6)) <i>•</i>	253	-171	.6
АА ́́́́				,				GE	OCI	IEM	IC7	٩Ľ	AN	۲	¥S1	CS.	CI	ert	IF	ICA'	re												A.	A
TA A					Emo	101 ¢	M-	Ini	nσ	Co	гD.	P	RO	JE(ĊТ	JZ	٩Z7	Z	Fi	le	# 1	\4 C)34(33									/ T //	Ŧ٩.
						'												r BC															L	
SAMPLE#	Мо		Pb Zn					As										Р		Cr		Ba	Ti	B A1	ere i contro			Hg			· · · · · · · · · · · · · · · · · · ·		Samp1	
	ppm	ppm	ppm ppm	ppm p	m pp	m ppm	%	ppm	ppm	ppb	ppm	opm p	opm p	opm p	pm p	pm	*	%	opm	ppm	*	ppm	8	spm %	*	%	ppm	ppm p	pm p	pm S	s bbw	ppm	g	<u>n</u>
PO L29S 23+75W	.8	19.0 1	8.1 77	.2 12	8 11.	0 1906	2.72	7.0	.7	7.7	2.7													1 4.04									15.	
PO L29S 23+50W		26.9 1																		35.4				1 2.80						.1<.0			15.	
PO L29S 23+25W																								3 <.01						.2.08			15.	
PO L295 23+00W		17.7 2																						1 3.60						.1<.0			15.	2
PO L30S 24+25W	.9	24.3 1	9.1 129	.2 18	4 13.	3 861	2.90	15.3	.5	3.5	2.8	16	.6	.8	.5	70.	15	. 255	5	33.0	.37	138	.165	1 3.51	.013	.06	.4	.03 2	2.4	.2<.0	5 11	<.5	15.	0
PO L30S 23+50W	1.2	32.0 1	9.3 102	.4 15	3 10.	8 1090	2.47	12.5	1.0	2.2	3.4	11	.7	.5	.3	52.	09	. 188	8	27.5	.34	102	.134	1 3.81	.013	.05	.5	.11 3	.3	.2<.0	5 10	.8	15.	0
PO L30S 23+25W	1.2	30.8 1	7.2 126	.4 16	3 12.	6 1818	3.09	12.6	.6	1.5	3.5	12	.4	.6	.3	58.	11 .	.365	6	33.8	.40	93	.149	1 4.24	.011	.06	.5	.12 2	2.7	.2<.0	5 10	.8	15.	0
PO L31S 25+00W	.7	22.8 2	7.6 135	.1 18	9 11.	5 741	2.90	14.4	1.6	1.7	4.1	29	.8	.5	.5	55 .	35	. 384	8	29.0	.35	173	.144	2 3.82	.015	.08	.4	.03 2	.6	.2<.0	5 11		15.	
PO L31S 24+75W	1.7	51.4 1	6.1 132	.3 28	0 14.	4 740	3.29	14.7	1.0	3.6	2.8	25	.6	.8	.3	69 .	26	.157	10	45.0	.62	140	.114	2 3.35	.012	.08	.5	.06 3	1.2	.2<.0	59	.9	15.	0
PO L31S 24+50W	.9	25.8 2	2.1 180	.1 19	0 13.	3 1440	2.87	11.6	.5	2.3	2.8	27	.9	.6	.4	55.	23	. 299	8	33.3	.39	210	.126	2 2.73	.014	.08	.2	.04 2	2.4	.2<.0	5 10	<.5	15.	0
PO L31S 24+25W	1.2	33.6 1	5.3 143	.4 23	1 13	8 1311	2.79	10.6	.7	2.6	3.4	15	.8	4	4	62	14	.290	6	34.7	.50	176	.149	1 4.05	.014	.07	.4	.07 2	2.9	.2<.0	5 10	.7	15.	0
PO L31S 24+00W		29.4 1																		40.7	.50	122	.130	1 3.61	.012	.07	.4	.07 2	2.9	.2<.0	5 11	.6	15.	0
PO L31S 23+75W	.9	19.5 1	6.2 112	.2 13	6 8.	9 1269	2.31	11.1	.9	1.4	3.3	16	.6	.5	.3	42 .	15	.494	6	17.8	.23	91	.175	2 5.31	.019	.05	.3	.13 2	2.3	.2<.0	5 12	.8	15.	0
PO L32S 25+75W	1.1	35.9 1	5.2 115	.1 21	5 13.	6 1335	2.78	5.4	1.0	2.5	2.8	20	.4	.5	.4	60 .	19	.109	13	35.6	.52	125	.140	1 3.10	.012	.09	.3	.05 2	2.8	.2<.0	59	.7	15.	0
PO L32S 25+25W	1.0	18.1 7	1.7 289	.3 12	9 10.	0 5238	3.22	7.2	3.0	16.8	4.8	57 1	l.2	.51	.0	34 .	64	.340	20	15.9	.31	534	. 088	3 2.55	.016	.12	.2	.08 2	2.8	.3<.0	58	.6	7.	5
RE PO L32S 25+25W	1.0	17.4 6	2.9 261	.3 11	.79.	6 4834	3.03	6.5	2.8	13.5	4.5	52 1	1.2	.5	.9	34	.65	. 337	20	16.1	.31	526	.093	3 2.45	.016	.13	.2	.07 2	2.8	.2<.0	57	.5	7.	5
PO L32S 24+75W	·	23.4 1				8 906								1. T						22.0				2 4.60	.016	.07	.3	.04 2	2.2	.2 .0	7 11	.7	15.	0
PO L32S 24+25W		29.7 5	2																	21.6				3 4.47	.021	.09	.4	.04 2	2.8	.2<.0	5 12	.6	15.	0
PO L32S 23+75W	.9	37.8 1	4.3 116	.2 24	4 16.	4 571	3.40	9.1	.6	5.7	3.3	30	.3						7	48.0	.75	128	.121	1 3.30	.012	.11	.3	.05 3	3.0	.2<.0	5 10	.5	15.	0
PO L32S 23+25W		40.1 1													.3	51	.21	.256	9	26.8	.47	124	.162	1 4.01	.015	.08	.3	.09 3	3.2	.2<.0	5 10	.8	15.	0
STANDARD DS5	12.9	146.5 2	5.3 136	.3 24	.9 12.	7 784	2.98	18.9	6.0	46.9	2.7	47 9	5.6 3	3.8 6	5.6	62	74	.097	13	182.1	67	137	.096	18 2.00	.034	.13	4.9	.17 :	3.4 1	.1<.0	57	4.9	15.	0

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Dat FA

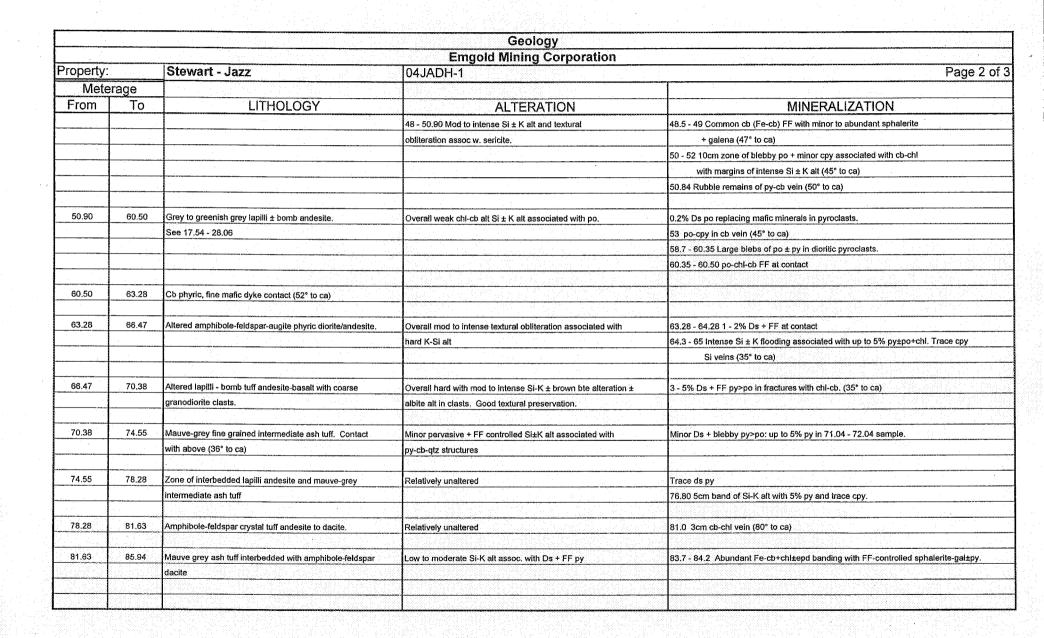
prly 19/04 DATE RECEIVED: JUL 9 2004 DATE REPORT MAILED:.

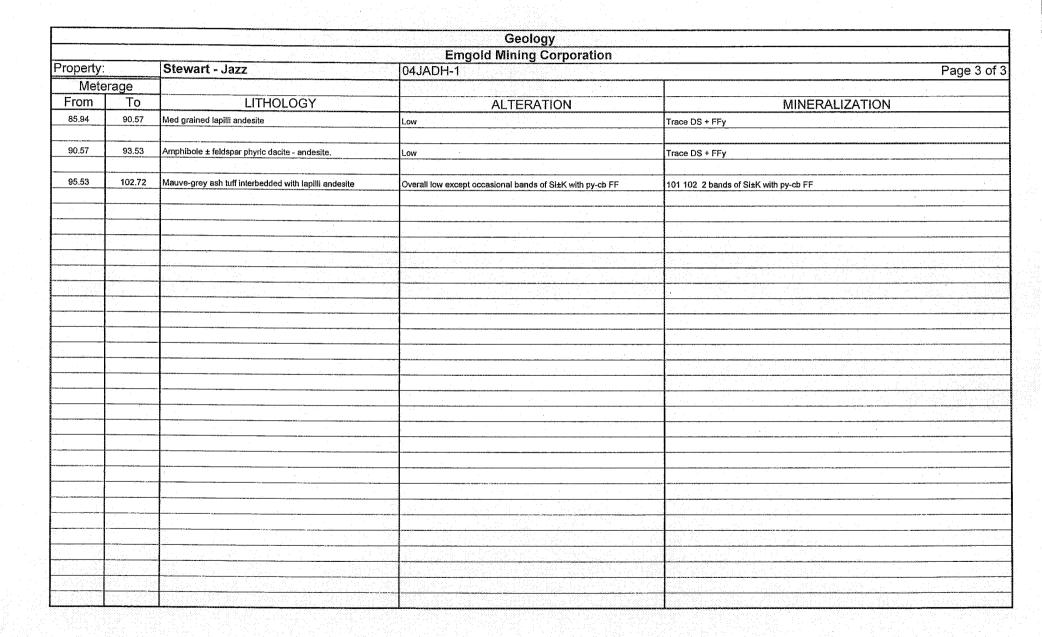
APPENDIX III

DIAMOND DRILL LOGS

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

Geological Log Hole - ID 04JADH-1 Computer Log: V 04-1


EMGOLD MINING CORPORATION PROJECT: stewart/jazz


PAGE 1 of 1 DATE: Sep 30, 2004

Coordinates	TRA	CE MINERALIZATION	ALT	ERATION INTENSITY	1	
Easting Northing Elevation Orientation	0 1 2 3	NONE TRACE 0.1% TO 1% >1%	0 1 2 3	NONE WEAK MODERATE STRONG		
Bedrock (m) Casing (m)	LOGGE					

								MIN	NERA	LIZA	TION										
								TRA	CE			MIN	IOR		1	ALTE	RATIO	N			
					-					F	eO	% Fe	Sulph	1							
DDH	FROM	то	WIDTH	SAMPLE #	lith	Au	Сру	Мо	т	Mt	Hm	%PY	%PO	Epd	Chl	Bte	K +Si	Ser .	Cb	Veining	#V's/ section
04JADH-1	9.88	10.72	0.84	175603								0.1			1		1		2	py-qtz-cb-chl	1
04JADH-1	14.00	16.00	2.00	175604								0.1	0.2		1.				2	po-cb-chl	1
04JADH-1	19.30	20.30	1.00	175605			1						0.5		2	1	3		1	po-cb-qtz-cpy	3
04JADH-1	21.21	22.21	1.00	175606									0.4		1		2		2		
04JADH-1	25.60	26.60	1.00	175607									0.2				1		2	cb-po-qtz	ંગાં
04JADH-1	28.06	29.06	1.00	175608			2	1				- 1	0.5				3	2	3	gtz-py-cpy-mo	2
04JADH-1	36.38	37.38	1.00	175609									0.2		1	1	1	1	1	po-cb-qtz-cpy	2
04JADH-1	39.21	40.21	1.00	175610									0.3			1	1	1	1	po	
04JADH-1	41.50	42.50	1.00	175611									3			1	1	1	1	00	
04JADH-1	46.74	47.74	1.00	175612									0.4				1		1	po-cb-qtz	3
04JADH-1	48.53	49.53	1.00	175613								1							3	sphal-gel-cb	4
04JADH-1	50.26	51.26	1.00	175614			1					1	1				2	2	1	po-cpy-cb-qtz	2
04JADH-1	52.79	54.79	2.00	175615			1						0.2	-			1			po-cpy-cb-qtz	1
04JADH-1	59.52	60.50	0.98	175616								0.1	0.2	1.0		1	1			po -p,	•
04JADH-1	63.28	64.28	1.00	175617								3	1				2	1		py-qtz-cb-chl	
04JADH-1	64.28	65.28	1.00	175618								3	1				3	2		py-qtz-cb-chl	
04JADH-1	67.72	68.72	1.00	175619								3	1				2	2		, , , , , , , , , , , , , , , , , , ,	
04JADH-1	68.72	69.72	1.00	175620		ł .						3	1			1	2	~	1		
04JADH-1	71.04	72.04	1.00	175621								3	•			·	2	1.	. 1 :		
04JADH-1	83.50	84,50	1.00	175622								1		2					3	(Fe-cb)sphal-g∈	3
04JADH-1	101.00	102.00	1.00	175623		ľ.						2					2		2	py-cu-chl	2
																			- -		

			Geology	
			Emgold Mining Corporation	
Property: Meterage		Stewart - Jazz	04JADH-1	
From	То	LITHOLOGY	ALTERATION	MINERALIZATION
3.66	11.13	Grey, fine grained, weakly bedded (laminated),	Weak chloritization and pervasive and FF calcite	occasional late cb \pm chl FF and veinlets (67° to ca)
		andesite ash tuff		10.34m: py-qtz-cb-chl veinlet coloured yellowish by trace cpd
				(28° + ca) cut by above veinlets
11.13	12.46	Previous section grades into med. grained,	Same as above	
		weakly feldspar phyric, crystal ash tuff		
12.46	17.54	Ashen grey med grained amphibole-augite-	Same as above	12.60 - 12.78 Dry qtz-cb-chl veinlets x 3 at bed interface between
		feldspar phyric crystal tuff in ash matrix. =		fine grained and cse grained I.V.
		andesite (Subvolcanic Intrusion?)		14 - 16.7 Trace to minor Ds + FF po>py with cb ± qtz ± chl
17.54	28.06	Grey to greenish grey lapilli ± bomb andesite	Overall weak chi-cb aft.	Disseminated Po replaces matic phenocrysts (Low-mod: intensity)
		30% lithic pyroclasts of fine-grained feldspar	19.45 - 20.0 Moderate to strong Si-K alt with minor	19.45 - 20.0 Common fracture controlled po-cb-qtz ± chl veinlets +
		phyric intrusive (Similar texture to previous)	alb alt (Broadly Fracture Controlled)	blebs with Si-K alteration haloes.
				21.21 - 22.21 .5% Ds + FF po (blebby)
28.06	37.47	Grey, amphibole, feldspar phyric, packed	Weak pervasive Si-K alt assoc with Ds po.	Weak Ds po
		crystal ash tuff andesite.	Common cb-qtz FF	28.06 - 28.50 Intense pervasive Si ± K alt
				Including 3cm blue qtz vein with Ds py and marginal py-cpy-
				cb and 6cm band of py-cpy-cb-qtz
37.47	40.21	Greenish grey cse lapilli tuff in fine dk green		Minor FF po and Ds po replacing mafics in cse lapilli clasts.
		ash mafix		36.5 - 37.2 abundant po FF associated with elevated Si ± brown biote
				alteration, cut by barren cb-qtz veinlets (78° to ca)
40.21	41.50	Calcite phyric fine mafic dyke	Mod pervasive cb	Minor py FF @ contact. LithoCode = MD
	· · · · · · · · · · · · · · · · · · ·			
41.50	42.50	Lapilli tuff as above		1% Ds + FF po especially replacing mafics
42.50	50.90	Amphibde with lesser feldspar and trace augite	42.50 - 48 good textual preservation weak to mod	Trace Ds po and occasional FF
		diorite. Packed crystal tuff?	sericitic alteration associated with cb-qtz ±	
			chi FF	

Geological Log Hole - ID 04JADH-2 Computer Log: V 04-1

PAGE 1 of 1 DATE: Oct. 3, 2004

	Coordinates	TRACE MINERALIZATION	ALTERATION INTENSITY
Easting		0 NONE	0 NONE
Northing		1 TRACE	1 WEAK
Elevation		2 0.1% TO 1%	2 MODERATE
Orientation		3 >1%	3 STRONG
Bedrock (m)			
Casing (m)		LOGGED BY:	SPLIT BY:

										ALIZA ⁻	ΓION		·								
								TRA	CE				IOR		1	ALTE	RATIO	N			
										Fe	eO 👘	% Fe	Sulph								
DDH	FROM	то	WIDTH	SAMPLE #	lith	Au	Сру	Мо	T.	Mt	Hm	%PY	%PO	Epd	Chl	Bte	K +Si	Ser	Сь	Veining	#V's/ section
4JADH-2	2.80	3.80	1.00	175624								0.5	0.5		****		··· .				
4JADH-2	6.80	7.80	1.00	175625		1 ^{1 .} .	1	1				0.5	1	1	1			1	1	po-py-cpy-mo-cb	3
4JADH-2	7.80	9.80	2.00	175626									1	1	1			<u>_1</u> _	1		
4JADH-2	9.80	11.80	2.00	175627								0.5	0.5	1	1			1	1		
4JADH-2	11.80	12.80	1.00	175628								0.5	0.5	1	1			. 1	1		
4JADH-2	12.80	13.80	1.00	175629			- 1					1	2	1	1			1	1	po-py-cpy-si-cb	2
4JADH-2	16.02	17.02	1.00	175630								1	2	1	1			1	1		
4JADH-2	18.24	20.24	2.00	175631								1	1.5	2	1			1	1		
4JADH-2	20.24	22.24	2.00	175632								1	0.5	1	1			1	1		
IJADH-2	25.22	25.72	0.50	175633								0.5		1	1			1	2		
						1.1.1															
												· .									
												1									
					1. A.										•						
				. A. B																	

Meterage rom To

32.61

Property:

From 2.13

	Geology	
	Emgold Mining Corporation	
Stewart - Jazz	04JADH-2	Page 1 of
LITHOLOGY	ALTERATION	MINERALIZATION
Massive greenish grey, Spar -augite-phyric, andesite	2.13 - 23.60 Common FF of texturally destructive, light greenish	Centre of fractures and veinlets are comprised of po±py with occasional trace cpy.
to basalt. Phenocrysts commonly replaced by cb or	grey wash of ser±K-cb-epd.	Po varies from strongly magnetic (fresh) to weakly magnetic (dull)
Fe-cb.		6.80 - 7.0 Several veinlets + veins of massive po with lesser py with trace cpy
		near margins and trace mo along vein merging within ser±K-cb-epd
		alteration Selvage. (60 - 80° to ca)
		12.95 Scan vein with diffuse margins of massive po with trace cpy in matrix of
		polycrystalline white qtz.
		18.60 - 19.2 Common FF of above. (30 - 60° to ca)
		25.22 - 25.72 Common low angle rusty cb-qtz FF.

DDH LOG 04JADH-2 Summary Log

Emgold Minin	g Corporation		PROJECT:	Stewart/Ja	AZZ	SUMA		G DATE:	8-Oc	t-04			
Easting:							Elevatio	on:	1				
Northing:							Orienta	tion: -45	5/135				
		*****			**********								
Interval	Assay (g/t)						Notes	••••••••••••••••••••••••••••••••••••••		e e e e e e e e e e e e e e e e e e e	An and Advantage of Concern		
				*****			See log shee	ts 1 0f 1					
		· · · · · · · · · · · · · · · · · · · ·					bee log slice		· · · · ·				
													ی
Significant	6.8 - 20 Veins + v	veinlets wit	h central pc	etpy±trace c	py with g	tz-cb ma	rgins (diffuse	e) occasiona	lly with mo (Ds) along	a margin	IS	
Mineralization	assoc with cb-qtz					· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
	Hole was oriented	to interse	ct po rich re	placement (on 220/7	2) in 3X3	X3m shaft.	See samples	3 OR2-1, 2.	It was an	iticipate	d that the	3
Comments	80 cm wide struct												
	density distributed						<u> </u>						
								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				<u></u>

Geological Log Hole - ID 04JADH-3 Computer Log: V 04-1

PAGE 1 of 1 DATE: Oct. 6, 2004

	Coordinates	TRACE MINERALIZATION	ALTERATION INTENSITY	
Easting Northing Elevation Orientation		0 NONE 1 TRACE 2 0.1% TO 1%	0 NONE 1 WEAK 2 MODERATE	
Bedrock (m) Casing (m)		3 >1%	3 STRONG	

										ALIZA	TION										
								TRA	CE				VOR		, A	ALTE	RATIO	ON			
****										F	eO	% Fe	-Sulph								
DDH	FROM	то	WIDTH	SAMPLE #	lith	Au	Сру	Мо	Ť	Mt	Hm	%PY	%PO	Epd	Chl	Bte	K +Si	Ser	СЬ	Veining	#V's/ section
4JADH-3	10.20	11.20	1.00	175634								1.5	1.5		2		1	2	1	po-py-cb	4
I4JADH-3	13.87	14.87	1.00	175635							1	2			2		1	1	2	py-chl-cb	
4JADH-3	14.87	15.87	1.00	175636							2	1		1	2		1	1	1	chl-cb-py	
4JADH-3	18.17	19.17	1.00	175637								1	1		2		1	1	1.1	chl-cb-po-py	
4JADH-3	21.98	23.50	1.52	175638								0.5							2	cb-chl-py	
4JADH-3	24.60	25.26	0.66	175639								1	1		2		1	1	2	po-py-chl-cb	4
04JADH-3	25.47	26.47	1.00	175640								0.5	0.5		2		1	1	1		
04JADH-3	27.74	28.74	1.00	175641	ľ							2		1	1	1	2			si-k-py	
04JADH-3	29.03	30.03	1.00	175642								1	0.5		2		1	1	1		
04JADH-3	30.03	31.03	1.00	175643								1	0.5		2		- 1	1	1		
04JADH-3	31.03	32.03	1.00	175644								1	5		2		1	1	1		
														[-			•	•.		
]															
														·						1	
												l.									
						I									5 C						
						ľ															
					l .																
					di da ta																
					1.01							ng sa bina									

			Geology	
			Emgold Mining Corporation	
roperty:	and the second se	Stewart - Jazz	04JADH-3	Page 1 of
Mete				
From	То	LITHOLOGY	ALTERATION	MINERALIZATION
2.13	10.26	Yellowish grey hard ceramic rhyolite. Pyrolucite? -	Moderately fractured	
		phenocrysts? Weakly bedded (3-10° to ca)		
		 A state of the sta		
10.26	13.08	Greenish-grey fine crystal ash tuff andesite	Moderate to abundant fracture controlled bleaching comprised	Common FF + veinlets of po-py-cb-chl
<u> </u>			of hard to moderately hard cb-ser±K±si with core of	
		· · · · · · · · · · · · · · · · · · ·	po-py-cb-chi	
<u> </u>			-	
13.08	13.36	Fractured + altered feldspar porphyry		
	40.07			
13.36	13.87	Banded rhyolite as above		
13.87	15.58			
13.01	10.06	Grey to mauve grey feldspar porphyry	Moderately hard to hard, mod pervasive ser-hm alt.	Common FF of chl-cb-py
15.58	32.03	Greenish-grey, fine crystal ash tuff andesite	15.50.00 the death and death, of freeting controlled	
10.00		Greenish-grey, line Gyster ash tun anuesite	15.58 - 26 abundant to mod density of fracture controlled bleaching comprised of cb-ser±K±Si with core of po-py-cb-chi	Common FF of po-py-cb-chl 28.3 - 28.45 Milky white, bluish-grey and green vein of qtz±K + minor-Ds py +
	· · · · · · · · · · · · · · · · · · ·		Deaching comprised or co-serences with core or po-py-co-on,	biebs of chl.
32.03	39.66	Mod grey coarsly feldspar phyric crystal ash tuff dacite.	Very low alteration + mineralization (leaverite). Minor cb±epd	
		Feldspars (15%) are white, to 2cm in length, Subhodrel,	FF.	
		with esorbed margins. Also 5% fine mafics: rounded +		
		blocky bte-alter-augite to 4mm.		
39.66	40.54	Fine - mod crystal ash tuff andesite.	Minor cb FF.	
	·			
	<u></u>			
		a filing have been a start of the	전철, 중요한 지난 동안에 가지만 한 것이 같아요. 이렇게 이 집에서 지난 것이 가지 않는 것이 같아요. 이렇게 하는 것이 같아요.	ainte piete de la companya de la com
				rand zahazimen direkan dielekan die erand direke der de zich ander de die beiten bevertend. Die der her besteb Brenz Katelen ander die eine die eine die direkter die erange in die her die die die die die die die eine de ge

EMGOLD MINING CORPORATION: Stewart/Jazz

<u>DDH</u>	04JAUH	-0			Maria Maria		
	FROM	ТО	WIDTH	REC. (M)	REC. %	RQD (M)	RQD # of (%) Breaks
	2.13	5.18	3.05	1.74		0.72	
	5.18	8.23	3.05	2.50	0.82	1.29	
	8.23	11.28	3.05	2.65	0.87	0.91	
	11.28	14.33	3.05	2.99	0.98	2.67	
	14.33	17.37	3.04	3.00	0.99	2.75	
	17.37	20.42	3.05	3.01	0.99	2.27	
	20.42	23.47	3.05	3.03	0.99	2.63	
	23.47	26.52	3.05	2.88	0.94	2.09	
	26.52	29.57	3.05	3.06	1.00	3.01	
	29.57	32.61	3.04	3.00	0.99	2.89	
	32.61	35.66	3.05	3.01	0.99	3.01	
	35.66	38.71	3.05	3.04	1.00	1.90	
	38.71	40.54	1.83	2.17	1.19	1.81	

Geological Log Hole - ID 04JADH-4 Computer Log: V 04-1

PAGE 1 of 2 DATE: Oct. 6, 2004

	Coordinates	TRACE MINERALIZATION	ALTERATION INTENSITY	
Easting		0 NONE	0 NONE	1
Northing		1 TRACE	1 WEAK	
Elevation		2 0.1% TO 1%	2 MODERATE	
Orientation		3 >1%	3 STRONG	
Bedrock (m) Casing (m)				
Casing (m)		LOGGED BY:	SPLIT BY:	**************************************

		·.				Γ		MI	NER/	ALIZA	TION			Γ			******				
								TRA	CE			MIN	IOR			ALTE	RATIO	N		1.1.1	
	ورواري مراجع الله فالمتكافية									F	eO	% Fe	Sulph	1							
DDH	FROM	то	WIDTH	SAMPLE #	lith	Au	.Сру	Мо	Т., Т	Mt	Hm	%PY	%PO	Epd	Chl	Bte	K +Si	Ser	Cb	Veining	#V's/ section
04JADH-4	6.90	8.07	1.17	175645	IV							0.5			2		in the second				
04JADH-4	9.00	10.66	1.66	175646	ťV							0.2			1						
04JADH-4	10,66	12,14	1.48	175647								0.2	0.2	1	1						
04JADH-4	12.14	13.14	1.00	175648										1	1		2	1		py-chl	
04JADH-4	15.38	16.38	1.00	175649								0.5			1		2	1			
04JADH-4	16.38	18.38	2.00	175650							·	0.5	0.5	2	1		· 1	1		epd-cb-py-po	
04JADH-4	20.80	21.30	0.50	175651										2	2		1	1		py-chl	
04JADH-4	22.84	23.84	1.00	175652			1								2		2	2	2		
04JADH-4	38.69	39.69	1.00	175653								0.2		1 1	2				2	po-py-cb-chl	
04JADH-4	42.18	43.18	1.00	175654								0.2		1	2		1		2	py-qtz-cb	
04JADH-4	47.80	48.80	1.00	175655		· · ·		4				0.5			[.] 1		1		2		
04JADH-4	48.80	49.80	1.00	175656				1				0.5			:1		1	2	1	and the second	
04JADH-4	49.80	50.90	1.10	175657								1		1 A	2		2	2	1		
04JADH-4	50.90	52.90	2.00	175658		1		1				2			2		2	1	1	py-qtz-cb-chl	
04JADH-4	52.90	54.90	2.00	175659								. 1	1		2		2		1		
04JADH-4	54.90	56.65	1.75	175660								1	2		1		3		1	-	
04JADH-4	56.65	58.65	2.00	175661								2	1		1		2				
04JADH-4	58.65	60.65	2.00	175662								2	1		1		2				
04JADH-4	60.65	62.65	2.00	175663								2	1		1		1				
04JADH-4	62.65	65.05	2.40	175664		1 a 1						1	0.5	Į.	1		1				
04JADH-4	68.18	69.42	1.24	175665		.						1					1	2	2	i sana ang	
04JADH-4	70.89	72.42	1.53	175666								1.	1				2	2	2		
04JADH-4	72.42	74.42	2.00	175667								0.5			1		1	1	- 7		
04JADH-4	74.42	75.42	1.00	175668								2	2		2		2	2			
04JADH-4	75.42	77.50	2.08	175669				· · · · 1					1		1		2	2	2	#10 · 23 문제	
04JADH-4	77.50	78.50	1.00	175670								1	0.5	1	1		1	1			
04JADH-4	84.72	87.00		175671								1			1		1	1	1		

Geological Log Hole - ID 04JADH-4 Computer Log: V 04-1

PAGE 2 of 2 DATE: Oct.18, 2004

	Coordinates	TRACE MINERALIZATION		ALTERATION INTENSITY	
Easting		0 NONE		0 NONE	
Northing		1 TRACE	1	1 WEAK	
Elevation		2 0.1% TO 1%		2 MODERATE	
Orientation		3 >1%		3 STRONG	
Bedrock (m)				<u> </u>	
Casing (m)		LOGGED BY:		SPLIT BY:	************

				******				N	AINE	RALIZ	ATION			Ι.	· · · · ·						
								TR	ACE				NOR]		ALTE	RATIO	ΟN			
					-						FeO	% Fe	-Sulph								
DDH	FROM	то	WIDTH	SAMPLE #	lith	Au	Сру	Мс	т	М	t Hm	%PY	%PO	Epd	Chi	Bte	K +Si	Ser	Cb	Veining	#V's/ section
04JADH-4	87.00	88.00	1.00	175672	Γ							2	2	1	2		1				
04JADH-4	88.00	90.72	2.72	175673								0.5									
04JADH-4	90.72	92.22	1.50	175674								1	1		2		1				
04JADH-4	92.22	93.80	1.58	175675								·· . 1 ··	1		- 1		. 1	2	2	(Fe-cb)-gal-sphal	2
04JADH-4	93.80	95.80	2.00	175676								1			2					11 - 11 - 1	
04JADH-4	95.80	97.36	1.56	175677								2			2				1	py-cb-qtz-chl	3
04JADH-4	97.86	98.86	1.00	175678			1					2			2				1	py-cb-qtz-chl	1
																				Alter and a second	
												1									
				× .																	
					•																
														ŀ							
												. ·		1							
														1.1							
												1									
												a na la									
L				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																	

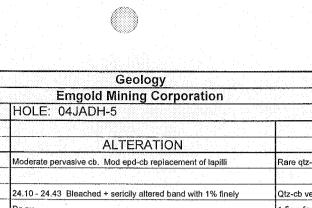
	******		Geology	
			Emgold Mining Corporation	
Property:		Stewart - Jazz	04JADH-4	Page 1 of 2
Mete	erage			
From	То	LITHOLOGY	ALTERATION	MINERALIZATION
0.61	6.90	Feldspar crystal and lithic aclfcll tuff with fine grained	Low - minor pervasive + FF Cb.	None
		augite crystals	6.8 - 11.8 Rubbly with mod limonite on FF	
6.90	24.70	Grey to greenish grey Feldspar porphry dacite to	Minor to moderate pervasive + FF epd-cb±py and po-Si±K	Occassional py-chl veinlets. Especially 12.14 - 13.14 (45° to ca)
		andacite. (Bordering on diorite)	Elevated epd 13.14 →	
				23.55 - 23.80 Bleached and silicified with brecciated core with Si-cb matrix and
				disseminated py+cpy. (30° to ca)
24.70	28.48	Lithic lapilli andesite	Minor pervasive chl-epd-cb-Si Epd-cb Rich pods contain	
			elevated po-py Felsic clasts appear to be partially replaced	
			with Si±alb	
28.48	32.20	Grey cb-after-feldspar? Phyric fine crystal ash tuff with	Weak to moderate pervasive chl. Strong pervasive cb.	.5% Ds py with minor po assoc. with K±Si alt.
		minor veins (beds) of very fine light grey ash tuff.		
		(44° to ca)		
32.20	36.80	Grey, fine-grained-lithic-lapilli feldspar-crystal tuff.	Weak to mod pervasive + FF controlled chl + K±Si alt.	0.5 - 1% Ds py assoc w K±Si alt.
36.80	37.18	Dark grey, bte - phyric mafic dyke with chilled margins @	Strong pervasive cb. Relatively unaltered.	None. LITHO CODE: MD
·····		(30° to ca). Non magnetic		
37.18	47.63	Lapilli - crystal tuff as above	Mod K±Si alt (pervasive) with minor to moderate FF chl±epd alt.	Occasional fracture controlled po-py-cb-qtz veinlets + FF with chl marging
			Strong pervasive cb alt.	(~30% to ca) eg @ 39m.
47.63	56.65	Light grey, fine. Ash-tuff dacite.	Mod to intense K±Si common chl FF and weak pervasive cb.	48.80 - 54.20 Common FF + veinlets of py-chl ± (cb-qtz). Plus occasional cream-
				(Fe-cb)-qtz±mo veinlets (30° to ca).
				56.0 - 56.65 3-5% Ds po.
50.07				
56.65	65.05	Mauve-grey Feldspar porphyry diorite	Mod. Perv. K±Si alt + pervasive fine grained hematite.	Low intensity minerlization as above. 3% Ds po. LITHO CODE: JSK
65.05	71.11	Grey, fine crystal ash tuff (minor augite + Feldspar)	Bands of pervasive and FF bleaching alteration of (Fe-cb) - Ser	Assoc. with vuggy py-cb±Si ey 68.2 → 69.3 + 70.7 → 71.2
		andesite		

			Geology	
			Emgold Mining Corporation	
Property:	the second s	Stewart - Jazz	04JADH-4	Page 2 of
	rage			
From	То	LITHOLOGY	ALTERATION	MINERALIZATION
71.11	88.00	Mixed assemblege of interbedded Feldspar porphyry,	71 - 79 Mod to intense K±Si±Ser alteration assoc with Ds po.	74.4 - 75.4 Abundant po-py-chl-cb-qtz FF (40° to ca)
		lapilli tuff, and ash tuff andesite to dacite.		76.02 gtz-cb-py±po veinlet (50° to ca) crosscut and displaced left - intervally by
	·····			a low angle Fe-cb fracture.
88.00	90.72	Fine grained Feldspar porphyry andesite/diorite.	Fine pervasive Ds mt.	Rare py-chl FF.
90.72	97.36	Feldspar - crystal ± lapilli tuff	90.72 - 91.30 Mod pervasive + FF chl with po + py.	
			92.20 - 93.50 Abundant fracture controlled Fe-cb with chl	Minor galena-sphalerite
97.36	97.86	Dark grey, magnetic, biotite - phyric, mafic dyke.		96.44, 96.98, 97.10, 98.39
				3 - 6cm wide veins of semimassive bands of py in cb-qtz-chl. (25° to ca)
97.86	100.96	Same as 90.72 - 97.36		
		·		
			· · · · · · · · · · · · · · · · · · ·	
	<u> </u>			
			201 <u>월 22일 - 대한 동네 등 일</u> 을 가지 않는 것을 하는 것이 가격을 통했다.	<u> 2011년 - 전 1912년 1월 1912년</u> 2월 2월 2월 2월 2012년 1월 2

•

Page 1 of 1

DDH 04JADH-4


04JADN-4	-	·						
FROM T	0	WIDTH	REC.	REC.	RQD	RQD	# of	
	<u> </u>	VVIDITI	(M)	%	(M)	(%)	Breaks	· · · · · ·
0.61	2.13	1.52	1.01		0.45		99	
2.13	5.18	3.05	2.82	0.92	2.40			Hole abandoned
0.61	2.13	1.52	1.02	0.67	0.10		99	New hole
2.13	5.18	3.05	3.14	1.03	2.99		13	
5.18	8.23	3.05	2.75	0.90	1.57		50	
8.23	11.28	3.05	2.55	0.84	0.70		99	
11.28	14.33	3.05	2.96	0.97	2.59		19	
14.33	17.37	3.04	3.02	0.99	2.90		9	
17.37	20.42	3.05	3.05	1.00	2.05		6	
20.42	23.47	3.05	3.08	1.01	3.08		4	
23.47	26.52	3.05	3.01	0.99	2.98		5	
26.52	29.57	3.05	3.06	1.00	2.93		8	
29.57	32.61	3.04	3.01	0.99	2.86		11	
32.61	35.66	3.05	3.02	0.99	2.98		5	
35.66 3	38.71	3.05	3.05	1.00	2.98		8	
38.71	41.76	3.05	3.04	1.00	3.04		4	
41.76	14.81	3.05	3.03	0.99	2.81		6	
44.81	17.85	3.04	3.10	1.02	2.85		9	
47.85	50.90	3.05	3.01	0.99	2.27		12	
50.90	53.95	3.05	3.04	1.00	2.90		8	
53.95	57.00	3.05	3.07	1.01	2.73		9	
57.00	60.05	3.05	2.99	0.98	2.87		8	
60.05 6	53.09	3.04	3.08	1.01	3.04		5	
63.09 6	6.14	3.05	2.92	0.96	2.80		9	
66.14 6	59.19	3.05	3.11	1.02	2.48		16	
69.19 7	2.24	3.05	3.07	1.01	2.92		10	
72.24 7	75.29	3.05	3.10	1.02	2.95		11	
75.29 7	78.33	3.04	2.97	0.98	2.90		7	
78.33 8	81.38	3.05	3.10	1.02	3.09		6	
81.38 8	34.43	3.05	2.97	0.97	2.84		8	
84.43 8	37.48	3.05	3.05	1.00	2.94		8	
87.48 9	90.53	3.05	2.87	0.94	2.73		7	
90.53 9	3.57	3.04	3.05	1.00	2.88		9	
93.57 9	96.62	3.05	2.97	0.97	2.97		3	,
96.62 9	9.67	3.05	3.08	1.01	3.01		4	· · · · ·

Geological Log Hole - ID 04JADH-5 Computer Log: V 04-1

PAGE 1 of 1 DATE: Oct.19, 2004

(Coordinates	RACE MINERALIZATION	ALTERATION INTENSITY	
Easting	0	NONE	0 NONE	
Northing	1	TRACE	1 WEAK	
Elevation	2	0.1% TO 1%	2 MODERATE	
Orientation	3	>1%	3 STRONG	
Bedrock (m)				
Casing (m)	LOG	GED BY: JB	SPLIT BY: JD	****

								MI	NER/	ALIZA	TION						(6)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)		i initia in a product j		
								TRA	CE			MIN	IOR		2	ALTE	RATIO	N			
									·	F	eO	% Fe	-Sulph	-							
DDH	FROM	то	WIDTH	SAMPLE #	lith	Au	Сру	Мо	Т	Mt	Hm	%PY	%PO	Epd	Chl	Alb	K +Si	Ser	СЬ	Veining	#V's sectic
04JADH-5	7.85	8.64	0.79	175679		Ι							0.2	1	1				2	cb-qtz-chl-po	
04JADH-5	9.46	10.81	1.35	175680								0.2	0.2	2	1	1	1	1	2		
4JADH-5	22.93	23.93	1.00	175681		ŀ	1					1			1					py-cb-qtz-chl-cpy	1
4JADH-5	23.93	24.45	0.52	175682		· .						0.5			1		2	2	2		
4JADH-5	25.32	25.82	0.50	175683								0.5			.1	1	2	2	1	py-chl-cb	
4JADH-5	25.82	27.82	2.00	175684								0.5		1			1	1	1	py-cb-Fe-cb	
4JADH-5	41.00	42.00	1.00	175685	JSK?							0.2			1		1	1	.1	py-cb-Fe-cb	
4JADH-5	46.54	47.59	1.05	175686		l .						0.2					1	1	1		
4JADH-5	49.21	50.64	1.43	175687								0.5		2	2			-			
JADH-5	56.40	58.90	2.50	175688							1	0.2		1				2	2		
JADH-5	64.10	65.10	1.00	175689								0.2		2	2			_	- T-		
4JADH-5	84.57	85.57	1.00	175690	(0.5	1	1				1	po-cb-chi	
JADH-5	95.82	97.02	1.20	175691								0.2		1	1		1	2	1		
														•	•		•		•		
												Į .		-							
					[ľ															
						e															
						1						18 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -								and the second sec	
					1.11																
													1. 								
- HI				5 - E									1.1.1								

Property:		Stewart - Jazz	HOLE: 04JADH-5	Page 1 of
Mete	erage			
From	То	LITHOLOGY	ALTERATION	MINERALIZATION
2.13	24.10	Greenish-grey, feldspar-phyric, lithic lapilli tuff andesite.	Moderate pervasive cb. Mod epd-cb replacement of lapilli	Rare qtz-cb-chl-po±py low angle structures. eg 8.00m
24.10	25.82	Very fine, light-greenish grey, ash tuff.	24.10 - 24.43 Bleached + sericily altered band with 1% finely	Qtz-cb veinlet on upper margin 40° to ca.
			Ds py.	1.5cm fault gauge @ lower margin 40° to ca.
				24.4 - 24.6 5% Ds po ass w K-Si alt.
-				
25.82	30.78	Mauve grey (bte-altered) feldspar porphyry.	Bte-altered (Pervasive)	1% Ds po (LITHO CODE: JSK?)
30.78	32.20	Feldspar + lapilli tuff	Mod epd replacement of lapilli	Trace Ds py assoc with epd.
32.20	36.09	Dark greenish-grey rounded cb-phyric, massive augite	Pervasive cb±epd	None. (LITHO CODE: MD)
		mafic intrusive		
36.09	50.64	Brownish-grey feldspar phyric porphyry abdesite-dacite	Weak pervasive bte-alteration. Feldspar-weakly gausseritized.	Trace Ds py
		with minor lapilli.	41 42 and 46.59 - 47.6 Textural destruction (hard) assoc with	Rare cb-qtz-py±chl veinlets 35° to ca.
			Fe-cb-qtz veinlets (65° to ca)	
50.64	56.90	Dark grey, rounded cb-phyric, mafic dyke.	None	None (LITHO CODE: MD)
56.90	61.60	Feldspar porphyry with minor lapilli as per 36 - 50.64.	Moderate epd-cb alteration replacing lapilli.	57.5 - 59.5 Abundant cb FF and rare py-chl-cb FF.
61.60	63.80	Grey fine ash tuff	Minor cb+Fe-cb FF.	
63.80	65.09	Mafic lapilli tuff	Moderate epd-cb replacing lapilli.	64.80 cb-chl-hm vein ± spalerite? 22° to ca.
65.09	72.40	Light olive green, to grey rounded feldspar±cb phyric	None	None
		tuff or fine intrusive		
	<u>in an an</u>			
72.40	77.60	Grey to mauve grey, angular feldspar porphyry andesite.	Minor epd-cb replacement of feldspar (gausseritized).	Rare po-cb-epd FF.
77.60	84.57	Lapilli-feldspar andesite tuff.	Moderate epd-cb replacement of lapilli with bleached halo	Trace finely Ds po.
64 57	00 56			
84.57	89.50	Bedded, light grey, ash tuff dacite.	None	None
	00.00			
89.50	99.36	Lapilli ± feldspar andesite tuff.	Minor cb-epd	
			96.86 - 97.02 Bleached fractured band of ser-chi alt	with trace of Ds py.

EMGOLD MINING CORPORATION

PROJECT: Stewart/Jazz

Page 1 of 1

DDH	04JADH	-5						
	FROM	то	WIDTH	REC.	REC.	RQD	RQD	# of
	FROM	10		(M)	%	(M)	(%)	Breaks
	2.13	4.57	2.44	1.18		0.39		99
	4.57	5.18	0.61	0.66	1.08	0.25		15
	5.18	8.23	3.05	2.56	0.84	1.11		56
	8.23	11.28	3.05	2.90	0.95	1.54		34
	11.28	14.33	3.05	3.02	0.99	2.91		9
	14.33	17.37	3.04	3.01	0.99	2.92		. 12
	17.37	20.42	3.05	3.04	1.00	3.00		8
	20.42	23.47	3.05	3.04	1.00	2.85		. 8
	23.47	26.52	3.05	3.03	0.99	2.64		6
	26.52	29.57	3.05	3.05	1,00	2.97		6
	29.57	32.61	3.04	3.09	1.02	3.04		5
	32.61	35.66	3.05	3.03	0.99	2.93		6
	35.66	38.71	3.05	3.06	1.00	2.99		. 9
	38.71	41.76	3.05	3.03	0.99	3.00		5
	41.76	44.81	3.05	3.03	0.99	2.91		4
	44.81	47.85	3.04	3.04	1.00	3.04		3
	47.85	50.90	3.05	3.04	1.00	2.90		6
	50.90	53.95	3.05	3.13	1.03	3.02		4
	53.95	57.00	3.05	3.06	1.00	2.82		12
	57.00	60.05	3.05	3.00	0.98	2.82		10
	60.05	63.09	3.04	3.11	1.02	3.01		5
	63.09	66,14	3.05	3.05	1.00	3.01		. 3
	66.14	69.19	3.05	3.03	0.99	3.03		2
	69.19	72.24	3.05	3.05	1.00	3.05		3
	72.24	75.29	3.05	3.02	0.99	2.38		11
	75.29	78.33	3.04	3.09	1.02	2.87		16
	78.33	81.38	3.05	3.07	1.01	2.77		11
	81.38	84.43	3.05	2.95	0.97	2.90		5
	84.43	87.48	3.05	3.08	1.01	3.00		6
	87.48	90.53	3.05	2.97	0.97	2.90		4
	90.53	93.57	3.04	3.05	1.00	2.91		8
	93.57	96.62	3.05	3.05	1.00	2.88		. 12
	96.62	99.36	2.74	2.72	0.99	2.50		12

Geological Log Hole - ID 04JADH-7 Computer Log: V 04-1

PAGE 1 of 1 DATE: Oct.20, 2004

	Coordinates	TRAC	E MINERALIZATION	ALT	ERATION INTENSITY	
Easting		0	NONE	0	NONE	
Northing		1	TRACE	1	WEAK	
Elevation		2	0.1% TO 1%	2	MODERATE	
Orientation		3	>1%	3	STRONG	
Bedrock (m)		(· · · · · · · · · · · · · · · · · · ·	 مەنۋاسىيە ئىيىنى بارىسى ر		
Casing (m)		LOGGED	BY: JB	 SPLIT	BY: JD	

								MIN	VER/	ALIZA	TION			I.				.,,			
								TRA	CE			MI	NOR]	i k	ALTE	RATIC	N			
										- F	eO	% Fe	-Sulph]							
DDH	FROM	то	WIDTH	SAMPLE #	lith	Au	Сру	Мо	T	Mt	Hm	%PY	%PO	Epd	Chl	Alb	K +Si	Ser	Cb	Veining	#V's/ section
04JADH-7	5.45	6.45	1.00	175692									0.5				1	. ·	1		
04JADH-7	6.45	8.20	1.75	175693									0.5		1				1	po-chl-cb	1
04JADH-7	8.20	9.20	1.00	175694									0.5				2				
04JADH-7	11.54	12.80	1.26	175695		[0.5			1	1			t service a service servic	
04JADH-7	23.22	24.22	1.00	175696			1					0.5	0.5		1					qtz-cpy-py	1
04JADH-7	24.22	25.35	1.13	175697	 -								0.5	1				1	1	po-cb	1
04JADH-7	41.95	42.95	1.00	175698								0.2	0.2	1	1			1	1		
04JADH-7	54.09	54.59	0.50	175699								0.5					1	1			
04JADH-7	59.80	60.30	0.50	175700								0.5								qtz-cb-py	1
4JADH-7	66.52	67.02	0.50	175701								1							1 -	py-cb-chl	1
4JADH-7	71.24	73.06	1.82	175702								0.2		2	1				2		
04JADH-7	76.11	77.43	1.32	175703								0.5		1	1				1	epd-cb-py	
04JADH-7	86.96	88.04	1.08	175704								0.2		1	1				1		
04JADH-7	88.51	89.60	1.09	175705								0.2		1	2				1		
04JADH-7	93.00	94.00	1.00	175706								0.5		1	1		1	1	1		1. A.
04JADH-7	97.41	97.71	0.30	175707								10	1		2		1	2		py-chl-cb	2-Jan
											1			· ·							
				:																	
												11 A.									
												n in the									
				n in the second s							. 6. 1										
	a - Anadria											lan d									
					만을 할																

			Geology	
			Emgold Mining Corporation	
Property:		Stewart - Jazz	HOLE: 04JADH-7	Page 1 of 2
Mete	rage			
From	То	LITHOLOGY	ALTERATION	MINERALIZATION
2.13	5.00	Grey, rounded feldspar ± cb - phyric ash tuff, andesite	Weak FF - oxidation	Weak to mod Ds po replacing phenocrysts.
		to dacite		
		-		
5.00	8.20	Grey to greenish grey, equigranule augite - bearing,	Minor pervasive bte.	Minor FF blebby po±py. (50 - 75° to ca)
	(N-star-1	massive tuff.		
8.20	12.07	Light - red grey amphibole - augite phyric tuff (intrusive)	Mod to strong pervasive K - alt.	
		with hard vitreous v, fine grained matrix	Mou to strong pervasive K - alt.	associated with 0.5% Ds po partially replacing amphibole phenocrysts.
12.07	22.67	Massive to weakly fragmented fine-feldspar-phyric	Very weak K - alt.	Rare cb-chl-po veinlets
		andesite flow.		
22.67	23.22	Dark grey bte-phyric mafic dyke	None	None
23,22	25.92	Fine feldspar phyric andesite as previous		
25.00				
25.92	32.37	Rounded and fabular feldspar - amphibole porphyry	Hard glossy matrix - K±Si alt.	0.3% Ds po.
		intrusive		
32.37	40,84	Fragmental fine, feldspar - phyric andesite flow.		
		r ruginental internetuspal - priyric altuesite now.	····	
40.84	73,06	Fine-grained augite crystal tuff with minor lapilli. Andesite	Very minor epd-cb replacement of lapilli	Very low. Occasional dry qtz-cb±chl veinlets (65° to ca).
		to basalt. Minor brecciation. Flow?		Rare py-chl veinlets eg 41.98
		41.55 - 41.96 Very fine grained black mafic dyke.		(LITHO CODE: MD)
			54.30 Bleached 3cm band of Si±K±Ser alt	Assoc. w. blebs of py
			71.3 - 72.2 Abundant epd-cb±py	60.05 py-qtz-cb-chl vein (65° to ca)
73.06	77.43	Light to med grey feldspar-amphibole diorite (fine intrusive)	Minor chl fracturing	Trace Ds py
		with minor augiliite clasts. (Similar to mineralized zone in		76.11 - 77.0 Elevated epd-cb-py FF.
		JADH-1)		
	<u>2002, 100</u>			

	1.		Geology	
			Emgold Mining Corporation	
Property:		Stewart - Jazz	HOLE: 04JADH-7	Page 2 of 2
Mete	erage			
From	То	LITHOLOGY	ALTERATION	MINERALIZATION
77.43	81.36	Fine grained, salt and pepper, cb-phyric gabbro dyke	Weak pervasive chl-cb	Trace Ds py
81.36	88.04	Feldspar-amphibole diorite as previous	Minor FF epd-cb±[y	87.7 qtz-cb-chi-py veinlet (30° to ca)
			88.8 - 89.1 Soft bleching assoc with cb and qtz Fe-cb FF.	89.30 Semimassive py veinlet in matric of cb-chl±qtz. (65° to ca)
88.04	88.51	Fine black mafic dyke	Trace chl±py	
88.51	98.76	Med-dark brownish-grey mafic lapilli tuff.	Mod epd-cb replacement and silicification of lapilli. Minor to	Rock is dry except for significant mineralized structure @ 97.45 - 97.63: Bands of
		Diorite lapilli to 3x4cm.	moderate pervasive chl.	semimassive py, may include minor tourmaline, in cb-chl matrix with broad alteration
				of mod massive pink K±Si±Ser alteration.
	-			
	· ·			
<u>.</u>				

EMGOLD MINING CORPORATIONPROJECT: Stewart/JazzDDH04JADH-7

Page 1 of 1

DDH	04JADH-	-1		<u></u>				
	FROM	TO	WIDTH	REC.	REC.	RQD	RQD	# of
- ⁻	FRUM	TO	мили	(M)	%	(M)	(%)	Breaks
	2.13	3.96	1.83	1.23	0.67	0.61	0.33	50
	3.96	5.18	1.22	2.08	1.70	1.08	0.89	19
	5.18	8.23	3.05	2.84	0.93	2.04	0.67	22
	8.23	11.28	3.05	2.96	0.97	1.77	0.58	22
	11.28	14.32	3.04	3.16	1.04	1.70	0.56	20
	14.32	17.37	3.05	3.08	1.01	2.58	0.85	12
	17.37	20.42	3.05	2.90	0.95	1.82	0.60	14
	20.42	23.47	3.05	2.96	0.97	1.60	0.52	13
	23.47	26.57	3.10	3.11	1.00	2.81	0.91	9
	26.57	29.57	3.00	2.90	0.97	2.60	0.87	9
	29.57	32.61	3.04	3.10	1.02	3.03	1.00	4
	32.61	35.66	3.05	3.05	1.00	2.50	0.82	13
	35.66	38.71	3.05	3.10	1.02	2.99	0.98	10
	38.71	41.76	3.05	2.97	0.97	2.57	0.84	8
	41.76	44.81	3.05	3.10	1.02	2.82	0.92	10
	44.81	47.85	3.04	3.10	1.02	2.95	0.97	g
	47.85	50.90	3.05	3.03	0.99	2.99	0.98	7
	50.90	53.95	3.05	3.00	0.98	3.00	0.98	- · · . 4
	53.95	57.00	3.05	2.95	0.97	2.90	0.95	7
	57.00	60.05	3.05	3.12	1.02	0.67	0.22	49
	60.05	63.09	3.04	3.07	1.01	2.41	0.79	18
	63.09	66.14	3.05	2.96	0.97	2.43	0.80	11
	66.14	69.19	3.05	2.85	0.93	2.53	0.83	13
	69.19	72.24	3.05	2.98	0.98	2.88	0.94	10
	72.24	75.29	3.05	2.97	0.97	2.65	0.87	24
	75.29	78.33	3.04	3.08	1.01	2.83	0.93	12
	78.33	81.38	3.05	2.95	0.97	2.78	0.91	9
	81.38	84.43	3.05	3.00	0.98	2.77	0.91	13
	84.43	87.48	3.05	3.04	1.00	2.96	0.97	5
	87.48	90.53	3.05	3.06	1.00	2.98	0.98	6
	90.53	93.57	3.04	3.08	1.01	2.72	0.89	16
	93.57	96.62	3.05	3.00	0.98	2.88	0.94	12
	96.62	98.76	2.14	2.20	1.03	2.07	0.97	6

APPENDIX IV

DRILL CORE SAMPLE RESULTS

CERTIFICATES OF ANALYSES

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

ACME AN' VTICAL LABORATORIES LTD. 002 Accredited Co.) (IS

852 E. HASTINGS ST. ' NCOUVER BC V6A 1R6 GEOCHEMICAL ANALYSIS CERTIFICATE

Emgold Mining Corp. PROJECT JAZZ File # A406496
1400 - 570 Granville St., Vancouver BC V6C 3P1 Submitted by: Linda Dandy

SI <1	TIBALNAKWAU** %ppm%%%%ppmgm/mt		P La Cr % ppm ppm	BiVCa ppm.ppm %	Cd Sb ppm ppm (U Au Th Sr opm ppm ppm ppm		Zn Ag Ni Co ppm ppm ppm ppm	Mo Cu Pb ppm ppm ppm	SAMPLE#
A 175603 5 13 33 43 133 34 122 51 11 24 25 43 23 31 123 34 11 22 51 11 22 55 43 33 11 22 55 47 22 207 63 31 11 22 55 47 22 207 63 31 11 22 51 33 17 22 41 11 71 20 206 A 175605 13 350 72 23 344 53 342 22 75 53 63 210 111 71 20 226 111 1100 110 1100		/ 01 2/	< 001 <1 <1	7 1 07	15 12	<u> </u>	5 04 22	-1 - 3 1 -1	11 1 12	C1
A 175604 7 267 36 10 24 55 24 55 51 133 12 47 2 266 A 175605 13 350 7 29 3 14 31 388 4.32 13 62 22 73 <5 34 85 2.29 208 411 71 24 14 3 33 10 2 1.37 340 82 16 3 .93 .00 7 11 2 .144 3 338 4.32 13 $<<<<<<<<<<<>< 2 2 75 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<$										- 1 T.T. (2011) 10000
A 175605 13 350 7 29 \cdot 3 4 3 338 4.32 13 4.8 2 2 73 < 5 3 65 2.29 2.08 4 11 .71 24 .14 3 .93 .07 .10 2 .11 A 175606 1 1 160 7 25 <.3 28 17 5 3 6 4 1.37 3 40 .82 16 < 2 .11 2 .14 3 .93 .07 .10 2 .11 2 .14 3 .07 .10 2 .11 2 .14 3 .07 .10 2 .11 2 .14 3 .93 .07 .10 2 .11 2 .14 3 .03 .07 .10 2 .11 2 .14 3 .33 .10 .11 2 .11 2 .11 2 .20 .21 .20 .20 .21 .21	- Martine - Martine - NAT - Martine - Mar				 N. 7 CAMP CONTRACT 	ana Pasara. Tha chandron and a c			(a) A Market Million (A)	
A 175606 1 160 7 25 3 20 5 8 22 26 5 3 3 40 .82 16 .15 <3 1.10 .07 .11 2 .14 A 175607 5 119 <3	off The sea The sea Tell Tell Tell Tell South Control (1997) and the second second second second second second									
A 175608 1 945 10 40 17 30 325 4.12 10 42 2 98 1.3 3 3 65 3.98 2.08 4 9 .50 17 .13 3 .61 .09 .18 <2 .02 A 175609 13 239 11 28 3 50 24 50 17 .33 3 .61 .09 .18 <2 .02 .56 3 88 4.09 .107 3 74 1.11 59 .14 61 1.41 1.10 .71 <2 .15 .51 77 .33 .33 .61 .09 .18 <2 .02 .107 37 .117 4 22 .010 .11 .42 .0111 .011	(3) C. Martin, The second state of particular states and states								- 17 - 57 S. 17 -	
A 175608 1 945 10 40 17 30 325 4.12 10 42 2 98 1.3 3 3 65 3.98 2.08 4 9 .50 17 .13 3 .61 .09 .18 <2 .02 A 175609 13 239 11 28 3 50 24 50 17 .33 3 .61 .09 .18 <2 .02 .56 3 88 4.09 .107 3 74 1.11 59 .14 61 1.41 1.10 .71 <2 .15 .51 77 .33 .33 .61 .09 .18 <2 .02 .107 37 .117 4 22 .010 .11 .42 .0111 .011	16 <3 .91 .08 .16 <2 .21	53 10	128 3 26	6 64 1 37	< 5 < 3	<u><8</u> <2 <2 75	2/8 2 87 5	18 2 3 21 21	5 110 -3	8 175607
A 175600 13 230 11 28 3 50 24 655 4.67 293 $\cdot \cdot $										
A 175610 5 5 5 17 3 11 8 521 3.62 5 8 < 2 2 198 < 5 < 3 < 78 3.03 $.119$ 4 32 $.70$ 23 $.16$ 3 1.06 $.11$ $.14$ < 2 $.03$ A 175612 12 285 6 27 < 3 10 20 389 4.47 < 2 < 8 < 2 < 29 $< .5$ < 3 < 30 1.175 $.211$ 4 7 $.69$ $43 .16 5 .93 .11 .19 < 2 .01 A 175613 5 394 .621 2.88 2.629 < 2.221 15.3 3.347 3.18 .215 5 9 1.42 22 .06 9 .15 .05 .15 < 2.03 A 175615 12 159 5 21<<<3$				그는 품상 수 있는 것 수 있는 것 같이 많이 했다.		이 가는 것 같은 것 같다.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
A 1756118 263 518 <.3 3724 3154.30158 $< 8 < < 2$ 268 $< .5 < 3 < 3$ 601.45 $.117$ 442.6120.15 < 3 .89.08.21 < 2 .03A 17561212285627 <.3									- TT TTOO	
A 175613 5 394 621 2435 1.9 10 28 646 4.95 101 8 $< 2 < 221 15.3 3 < 3147 3.18 .215 5 9 1.42 22 .06 9 1.15 .05 .15 < 2 .01$										
A 1756135 394 621 2435 1.91028 646 4.95101 $< 8 < 2 < 2 221$ 15.33 < 3 1473.18.215591.4222.0691.15.05.15<2.01A 1756141053471452.328306395.99448<2	16 5 .93 .11 .19 <2 .01	.69 43	.211 4 7	<3 90 1.75	<.5 <3	<8 <2 <2 91	389 4.47 <2	27 <.3 10 20	12 285 6	A 175612
A 175614105 347 14 $52 < .3$ 28 30 639 5.99 4 <8 <2 <2 156 $<.5$ <3 4 166 5.06 $.143$ 6 23 1.24 17 11 10 1.15 $.05$ $.13$ <2 $.03$ A 17561512159 5 $21 < .3$ 28 190 2.63 3 <8 <2 <2 79 $<.5$ <3 <3 52 1.15 $.121$ 3 26 $.47$ 19 $.14$ <3 $.91$ $.08$ $.20$ <2 $.01$ A 17561613 416 6 24 4 16 28 346 4.12 11 <8 <2 <2 <2 <3 <3 85 2.11 <3 $:26:4719:14<3.91.08:20<2.02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<02<$							VE 12/2 C A A A A A A A A A A A A A A A A A A			A 175613
A 175615 12 15 5 21 \cdot 3 28 19 190 2.63 3 \cdot 8 \cdot 2 \cdot 7 \cdot 5 \cdot 3 \cdot 3 \cdot 5 \cdot 15 \cdot 121 3 26 \cdot 47 19 \cdot 14 \cdot 3 \cdot 91 \cdot 08 \cdot 20 \cdot 2 \cdot 01 A 175616 6 214 6 20 \cdot 3 28 22 108 \cdot 5 \cdot 3 \cdot 3 85 1.91 .131 4 23 .84 32 .16 \cdot 3 1.11 .10 .28 \cdot 2 .02 A 175617 13 416 6 24 4 16 28 346 4.12 11 \cdot 8 \cdot 2 2 62 \cdot 5 \cdot 3 \cdot 3 31 6.35 1.11 10 .28 \cdot 2 .06 .06 .29 .03 A 175618 25 423 12 30 5 24 32 55 13 40 \cdot 8 \cdot 2 2117 \cdot 5 \cdot 3 3112	11 10 1.15 .05 .13 <2 .03	1.24 17			<.5 <3	<8 <2 <2 156	639 5.99 4	52 <.3 28 30	105 347 14	A 175614
A 175616 6 214 6 20 <.3 28 25 311 3.94 3 <8 <2 <2 108 <.5 <3 <3 85 1.91 .131 4 23 .84 32 .16 <3 1.11 .10 .28 <2 .02 A 175617 13 416 6 24 .4 16 28 346 4.12 11 <8 <2 <2 62 <.5 <3 <3 99 2.05 .197 4 9 .82 33 .15 4 .85 .08 .29 <2 .03 A 175618 26 428 16 32 .3 23 33 559 5.06 40 <8 <2 <2 114 <.5 <3 <3 113 6.35 .135 2 36 1.02 12 .14 19 .96 .06 .54 <2 .06 RE A 175618 25 423 12 30 .5 24 32 551 4.97 40 <8 <2 <2 116 <.5 3 3 113 6.72 .135 3 41 1.04 13 .14 1897 .06 .56 <2 .06 RE A 175618 30 415 25 31 .3 24 33 578 5.13 40 <8 <2 <2 117 <.5 <3 <3 104 3.54 .130 4 45 1.08 20 .13 7 1.02 .07 .37 <2 .03 A 175620 11 526 <3 29 .3 29 39 451 5.04 23 <8 <2 <2 150 <.5 <3 <3 104 2.75 .113 4 54 1.11 21 .13 <3 1.08 .08 .42 <2 .05 A 175621 8 620 7 31 .4 25 54 454 6.60 21 8 $<2 <2 167 .9 <3 3 160 5.22 .134 4 65 2.60 129 .10 10 2.48 .03 .92 <2 .03 A 175622 14 228 265 177 .4 31 24 1021 6.27 122 <8 <2 <167 .9 <3 3 160 5.22 .134 4 65 2.60 129 .10 10 2.48 .03 .92 <2 .03 A 175623 14 228 265 177 .4 31 24 1021 6.27 122 <8 <2 <167 .9 <3 3 160 5.22 .134 4 65 2.60 129 .10 10 2.48 .03 .92 <2 .03 $	14 <3 .91 .08 .20 <2 .01			<3 52 1.15	<.5 <3	<8 <2 <2 79	190 2.63 3	21 <.3 28 19	12 159 5	A 175615
A 175618 26 428 16 32 3 359 5.06 40 $< 8 < 2 < 2$ 114 $< 5 < 3 < 3$ 135 2 36 1.02 12 14 19 .96 .06 .54 <2 .06 RE A 175618 25 423 12 30 .5 24 32 551 4.97 40 <8	16 <3 1.11 .10 .28 <2 .02	.84 32 .		<3 85 1.91	<.5 <3	<8 <2 <2 108	311 3.94 3	20 <.3 28 25	6 214 6	A 175616
RE A 175618 25 423 12 30 5 24 32 551 4.97 40 5 3 3 112 6.29 .134 3 38 .99 14 .14 25 .95 .06 .54 <2 .06 RRE A 175618 30 415 25 31 .3 24 33 578 5.13 40 <8	15 4 .85 .08 .29 <2 .03	.82 33 .	.197 4 9	<3 99 2.05	<.5 <3	<8 <2 <2 62	346 4.12 11	24 .4 16 28	13 416 6	A 175617
RE A 175618 25 423 12 30 5 24 32 551 4.97 40 5 3 3 112 6.29 .134 3 38 .99 14 .14 25 .95 .06 .54 <2 .06 RRE A 175618 30 415 25 31 .3 24 33 578 5.13 40 <8	14 19 .96 .06 .54 <2 .06	1.02 12 .	.135 2 36	<3 113 6.35	<.5 <3	<8 <2 <2 114	559 5.06 40	32 .3 23 33	26 428 16	A 175618
A 175619 19 441 8 29 .5 25 30 458 4.30 21 <8 <2 <2 149 <.5 <3 <3 104 3.54 .130 4 45 1.08 20 .13 7 1.02 .07 .37 <2 .03 A 175620 11 526 3 29 39 451 5.04 23 <8	14 25 .95 .06 .54 <2 .06	.99 14		3 112 6.29	<.5 3	<8 <2 <2 116	551 4.97 40	30 .5 24 32	25 423 12	RE A 175618
A 175620 11 526 <3 29 .3 29 39 451 5.04 23 <8 <2 <2 150 <.5 <3 <3 104 2.75 .113 4 54 1.11 21 .13 <3 1.08 .08 .42 <2 .05	14 18 .97 .06 .56 <2 .06	1.04 13	.135 3 41	<3 113 6.72	<.5 <3	<8 <2 <2 117	578 5.13 40	31 .3 24 33	30 415 25	RRE A 175618
A 175621 8 620 7 31 .4 25 54 454 6.60 21 8 <2 <2	13 7 1.02 .07 .37 <2 .03	1.08 20 .	.130 4 45	<3 104 3.54	<.5 <3	<8 <2 <2 149	458 4.30 21	29 .5 25 30	19 441 8	A 175619
A 175622 14 228 265 177 .4 31 24 1021 6.27 122 <8 <2 <2 167 .9 <3 3 160 5.22 .134 4 65 2.60 129 .10 10 2.48 .03 .92 <2 .03 A 175623 142 1406 13 86 2.8 12 23 811 4.53 22 <8 <2 <2 151 1.0 <3 3 182 5.98 .114 5 21 1.66 64 .13 8 1.79 .05 1.48 <2 .12	13 <3 1.08 .08 .42 <2 .05	1.11 21	.113 4 54	<3 104 2.75	<.5 <3	<8 <2 <2 150	451 5.04 23	29 .3 29 39	11 526 <3	A 175620
A 175623 142 1406 13 86 2.8 12 23 811 4.53 22 <8 <2 <2 151 1.0 <3 3 182 5.98 .114 5 21 1.66 64 .13 8 1.79 .05 1.48 <2 .12	16 9 1.26 .06 .41 <2 .14	1.34 40	.216 4 36	6 125 2.80	<.5 <3	8 <2 <2 120	454 6.60 21	31 .4 25 54	8 620 7	A 175621
	10 10 2.48 .03 .92 <2 .03	2.60 129	.134 4 65	3 160 5.22	.9 <3	<8 <2 <2 167	1021 6.27 122	177 .4 31 24	14 228 265	A 175622
	13 8 1.79 .05 1.48 <2 .12	1.66 64 .	.114 5 21	3 182 5.98	1.0 <3	<8 <2 <2 151	811 4.53 22	86 2.8 12 23	142 1406 13	A 175623
STANDARD DS5/AU-1 12 141 25 154 .5 23 10 768 2.84 16 <8 <2 5 48 4.9 4 7 58 .89 .091 11 178 .61 156 .09 16 1.94 .04 .15 4 5.40	09 16 1.94 .04 .15 4 3.40	.61 136 .	.091 11 178	7 58 .69	4.9 4	<8 <2 3 48	768 2.84 16	134 .3 23 10	12 141 25	STANDARD DS5/AU-1

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data M FA

DATE RECEIVED: OCT 18 2004 DATE REPORT MAILED:

Nov 5/04

PHONE(604)253-3158 FAX(60/ 253-1716

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

		dito]	<u>Emg</u>	<u>ol</u>	<u>1 M</u> 14	<u>ini</u> 00•	nq	Co	rp.	P	ROI	JE(Ч.	JAZ	1Z	F	SUDM	# A4	406	606			ge 3	1						A A
SAMPLE#	Mo Cu ppm ppr						Mri ppm		As ppm									Ca %	ana ann 2 na	La ppm			Ba ppm	Ti %	B ppm	Al %	Na %	1.0000000		Au** gm/mt	Sample kg
SI A 175624 A 175625 A 175626 A 175627	<1 <1 5 200 246 355 81 284 64 368	<3 <3 <3	20 42 26	<.3 <.3 <.3	34 74 53	22 47 37	496 592 438	2.84 5.28 3.83	4 <2 2	<8 <8 <8	<2 <2 <2	<2 <2 <2	66 47 42	<.5 <.5 <.5	<3 <3 <3	ও ও ও	70 110 79	1.84	.129 .138 .162	4 3 3	54	.53 1.15 .64	8 13 12	.11 .15 .13	<3 6 3	<.01 1.29 1.53 1.07 1.11	.13 .09 .09	.08	<2 <2 <2	.01 <.01 .01	1.89 2.07 4.39 3.18
A 175628 A 175629 A 175630 A 175631 A 175632	108 263 11 333 512 383 112 283 42 17	<3 7 <3	19 44 58	<.3 <.3 <.3	71 41 58	36 56 47	373 509 664	4.81 5.75 5.16	3 <2 2	<8 <8 <8	<2 <2 <2	<2 <2 <2	68 37 52	<.5 <.5 <.5	<3 3 <3	3 3 4	58 82 115	1.92 1.21 1.32	.141 .130 .126 .149 .136	2 2 3	48 72	1.08 .48 .94 1.54 .61	14 25	.12 .13 .17	5 5 4	1.43 .82 1.06 1.63 1.02	.07 .08 .10		<2 2 <2	<.01 <.01 <.01 .01 <.01	2.01 1.99 1.83 4.83 4.04
A 175633 A 175634 A 175635 A 175636 A 175636 A 175637	13 25: 37 44 21 26 3 23 4 13	7 14 39 7 7	78 73 39	<.3 <.3 <.3	73 6 8	46 25 18	782	5.28 3.61 3.81	13 14 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	76 81 49	<.5	<3 3 <3	ও ও ও	117 102 119	1.82 2.52 3.17 1.70 2.57	.089 .129 .141	3 5 4	7 16	.60 1.46 .85 1.22 2.18	18 33 36	.14 .08 .14	4 <3 4	1.04 1.59 1.16 1.29 1.78		.10 .15 .16 .18 .21	<2	.01 .01 .01 .01 <.01	1.07 2.02 2.01 1.86 2.04
A 175638 A 175639 A 175640 A 175641 A 175642	6 14 36 26 14 17 6 13 9 21	<pre>3 <3 5 <3 5 <3 5 3</pre>	51 44 32	.3 <.3 <.3	45 34 29	38 21 25	535 465 391	4.47 3.25 2.87	11 5 8	<8 <8 <8	<2 <2 <2	<2 <2 <2	40 54 63	<.5 <.5 <.5		4 <3 <3	98 90 74	2.18 1.55 1.95 1.71 1.53	.167 .162 .138	5 4 3	40 30 27	1.63 1.43 1.17 .99 1.35	20 23 22	.14 .15 .14	<3 <3 <3		.06 .07 .08 .06 .08	.10 .11 .10	<2 <2 2	.01 .01 <.01 <.01 <.01	3.10 1.29 2.04 1.88 2.10
A 175643 A 175644 RE A 175644 RRE A 175644 A 175645	6 20 10 27 10 26 9 27 1 14) 10 5 11 3 15	89 93 108	<.3 .3 .3	39 40 41	33 33 34		4.02 4.01 4.09	12 10 13	<8 <8 <8	\$ \$ \$ \$	<2 <2 <2	49 48 52	.9 .8	<3 <3 3	<3 <3 <3	98 98 101	1.62 1.58 1.58 1.64 .61	.162	4 5 5	35 36 34		39 40 46	.14 .14 .14	ও ও ও	1.91 1.64 1.66 1.71 2.01	.08 .07 .07 .08 .07	.10	<2 <2	.01 .01 <.01 <.01 .01	1.99 1.97 - 1.85
A 175646 A 175647 A 175648 A 175649 A 175650	1 14 1 19 <1 11 2 9 2 10	8 8 6 0 <3	29 35	.6 .3	9 8 8	13 13 15 20 20	986 895 839	5.59 5.71 5.14 4.68 4.40	14 15 13	<8 <8 <8	<2	<2 <2 <2	62 125 98	<.5 <.5	4 4 5	<3 <3 <3	110 111 111	.93 1.38 2.82 2.55 2.37	.141 .136 .136	4 4 5	7 7 7	1.43 1.40 1.55 1.53 1.35	56 61 68	.14 .13 .16	3 4 3	- T. T. S. C.	.09 .04 .06 .05 .06	.64	<2 <2	.04 .04 .02 .03 .04	2.47 2.26 1.94 2.04 3.82
A 175651 A 175652 A 175653 A 175654 STANDARD DS5/AU-1	2 12 1 28 <1 13 <1 19 12 14	37 373 1<3	48 36	.3 <.3 .4	7 12 12	26 26 28	1073 1015	5.02 6.29 6.59	52 24 46	<8 <8 <8	<2 <2 <2	<2 <2 <2	276 182 184	<.5 <.5 .5	3 <3 5	<3 <3 6	112 132	2.96 4.30 3.99 4.01 .73	.130 .116 .122	5 4 3	5 10 9	1.91	22 45 74	.05 .11 .15	3 6 5	1.67	.05 .04 .05	.26 .44 .78	2 <2 <2	.04	
GROUP 1D - 0.50 G (>) CONCENTRATION AU** BY FIRE ASSA ASSAY RECOMMENDED - SAMPLE TYPE: CO Data FA	EXCEED	S UPP 1 A.T CK AN	ER L . SA D CO	IMIT: MPLE RE S/ <u>Samp</u>	S. : AMPLI Les	SOME ES IF <u>pegir</u>	MINE CUI CUI	ALS PBZN <u>'Re'</u>	MAY E AS > <u>are</u>	BE P/ 1%, <u>Reru</u>	ARTIA , AG <u>uns a</u>	LLY > 3(ATT) PP <u>'RRE</u>	ACKED 4 & A <u>′ are</u>	. R U> <u>Rej</u>	EFRA 1000 iect	CTOR PPE <u>Reru</u>	RY AND	GRAPH	ITIC	ANAL SAMF	YSED YLES C	BY I AN L	CP-ES. Imit /	AU S(DLUBILI		JIMBI	C C		79

Emgold Mining Corp. PROJECT JAZZ FILE # A406606

Page 2

ACTIC AIRECTTICAL				<u>ف د د د ک</u>									et al di				1.1.1.1				1. J.		1. A.				1.1	110.00	e de la composition	an a'	racal	ALME ANALYII	CAL
SAMPLE#	Mo (ppm p;									As ppm									Ca %			Cr ppm		Ba ppm		B ppm	Al %				Au** gm/mt	Sample kg	
A 175655 A 175656 A 175657 A 175658	<1 6 <1 8	65 82	37 24	100 88	.4 .4	8 11	20 21	905 928		52 1282	<8 <8	<2 <2	<2 <2	356 426	.6 .6	<3 7	⊲ ⊲	30 30	4.10 5.09 7.00 4.78	.122 .122	4 5	<1 7	1.52 1.26 1.22 1.49	36 37	<.01	7 8	1.84 .79 .79 1.67	.05 .03 .02 .04	.25 .29	<2 <2	.03 .01 .02 .02	1.90 2.08	
A 175659																			3.99						.01		1.66		.14		.03	3.96	
A 175660 A 175661 A 175662 A 175663 A 175664	1 8 2 10 2 11 2 11 1 11	02 15 18	7 6 7	66 47 55	<.3	9 13 8	14 18 15	759 843 693	3.76 4.65 5.27 4.30 4.34	56 145 185	<8 <8 <8	<2 <2 <2	<2 <2 <2	250 210 140	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	73 105 68	4.54 3.07 3.18 3.08 3.06	.154 .150 .127	5 5 4	10 20 12		53 54 96	.01 .04	<3 6 <3	.52 1.09 1.51 1.51 1.44	.05 .04 .05	.28 .24 .47 .70 .81	<2 <2 2	.02 .02 .02 .03 .02	3.51 3.50 3.80	
A 175665 A 175666 A 175667 A 175668 A 175669	3 15 <1 14	56 46 57	17 13 92	68 50 263	.5 .3 .8	8 8 7	18 20 22	785 806 888	5.77 4.83 4.81 5.18 4.61	56	<8 <8 <8	<2 <2 <2	<2 <2 <2	297 140 194	.5 <.5 1.5	6 <3 <3	<3 <3 <3	38 71 61	4.21 3.81 3.19 3.81 3.91	.132 .136 .137	5 4 5	5 5 6	2.59 1.20 1.30 1.27 1.34	44 74 38	.03 .12 .03	10 6 <3	1.69 .79 1.54 1.46 1.16	.04	.40 .71 .20	<2 <2 <2	.02 .06 .08 .02 .06	3.02 3.65	
A 175670 A 175671 A 175672 A 175673 A 175674	2 10	533 781 58	508 110 11	801 294 45	1.5 1.1	8 8 9	18 19 19	1083 1089 717	4.79 4.57 5.18 3.83 4.90	201 23	9 <8 <8	<2 <2 <2	<2 <2 <2	144 249 114	4.3 1.7 <.5	5 4 4	থ্য থ্য থ্য	90 74 79	2.99 3.11 4.39 2.17 3.34		5 5 4	6 5 4	1.48 1.55 1.41 1.49 1.45	71 56 75	.10 .04 .16	6 4 3	1.77 1.66 1.35 1.80 1.38	.05 .04 .06		< 2 2 2 2 2	.03 .01 .01 .02 .03	4.27 1.94	
A 175675 A 175676 RE A 175676 RRE A 175676 A 175677	2 12 <1 17 1 10 <1 10 1 19	74 57 54	10 7 11	52 49 47	<.3 .5 <.3	8 8 8	25 24 24	1014 980 996	5.68 5.45 5.50	21 22	<8 <8 <8	<2 <2 <2	<2 <2 <2	115 111 116	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	84 82 84	4.05 3.41 3.32 3.34 3.81	. 132		7 6 4	1.55 1.57 1.52 1.55 1.53	61 58 63	.08 .07 .08	3 5 3	1.00 1.64 1.59 1.64 1.84	.05 .05 .06	.35 .50 .48 .51 .75	<2 <2 <2	.03 .01 .01 .02 .12	3.63	
A 175678 A 175679 A 175680 A 175681 A 175682		03 95 81	<3 3 <3	37 35 44	<.3 .4 <.3	7 7 10	19 24 21	851 966 1038	5.43 4.40 4.64 4.91 5.09	9 17 9	<8 10 <8	<2 <2 <2	<2 <2 <2	69 101 213	<.5 <.5 <.5	<3 <3 <3	<3 3 <3	90 92 92	4.07 2.61 3.69 5.33 4.68	.128 .137 .115	4 3 4	4 2 12	1.29 1.52 1.37	65 101 101	.19 .10	4 <3 3	1.98 1.75 2.03 1.87 1.55	.05 .06 .04	.76	<2 2 <2	.09 .03 .35 .04 .04	1.56 2.57	
A 175683 A 175684 A 175685 STANDARD DS5/AU-1	2 9 1 9 2 15 12 14	95 54	15	53 92	.6 <.3 <.3 .3	8 8	17 18	856 850	5.42 5.16 4.78 2.94	14 21	<8	<2	<2 <2	153 213	.5 .7	<3	4 <3	106 103	3.80 3.10 3.80 .75	.137	5 7	6 7	1.51	84 64	. 13	5 8	1.21 1.96 1.78 1.99	.04	.72 .67	<2 <2	.03 .02 .06 3.37	3.71	

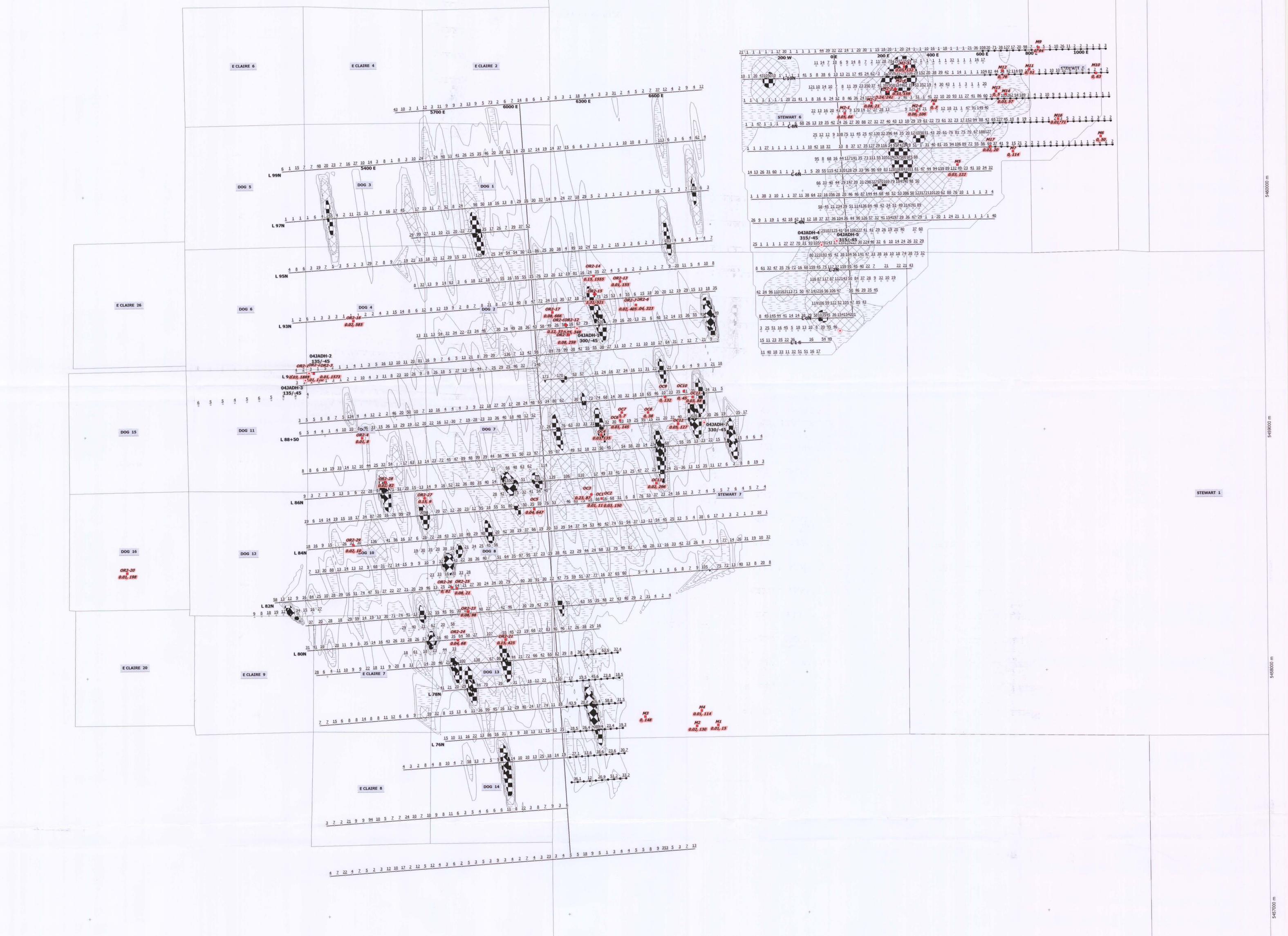
Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

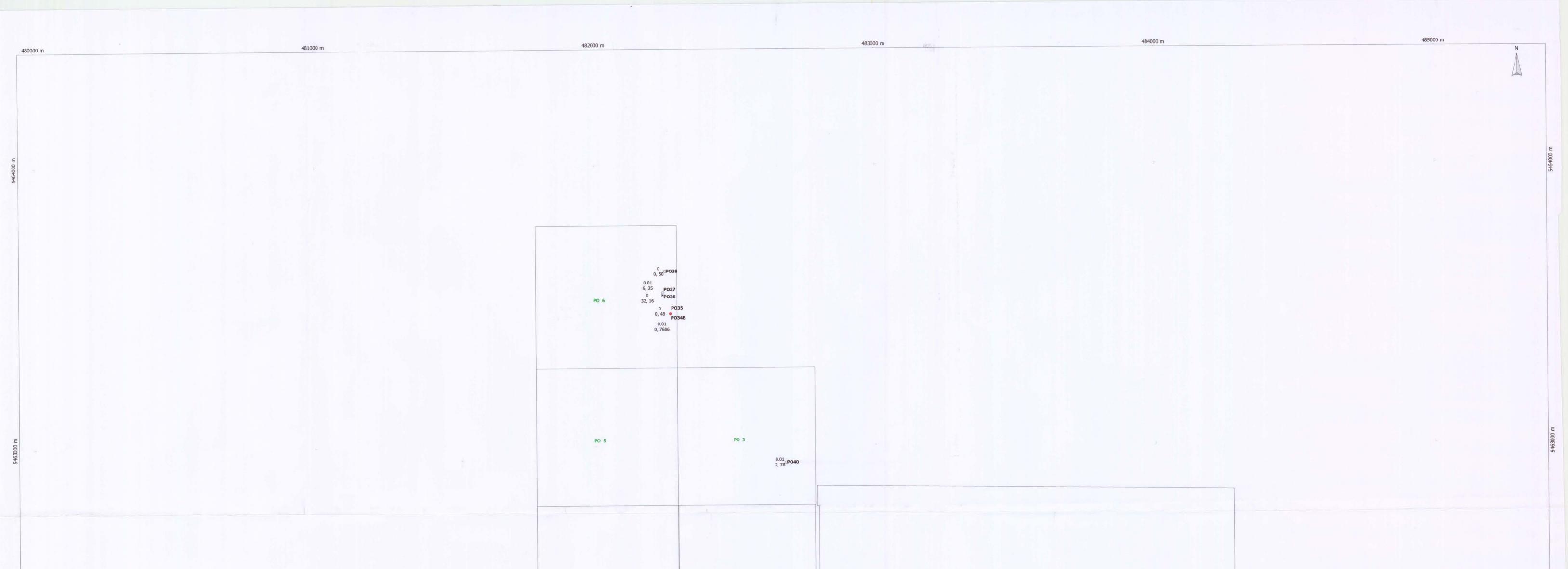
Emgold Mining Corp. PROJECT JAZZ FILE # A406606

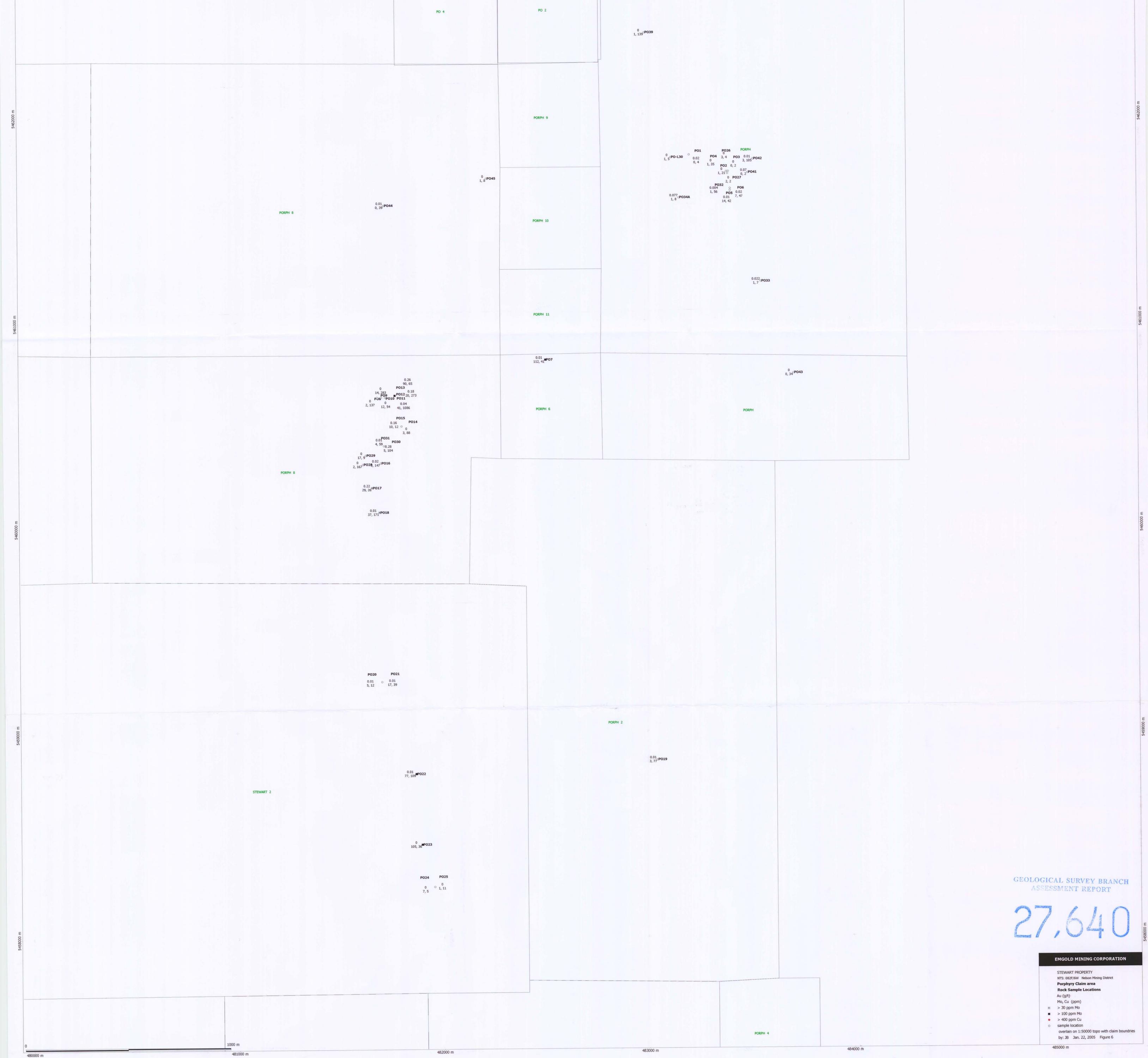
ACME ANALYTICAL


Data____ FA

SAMPLE#	1.1.1 Sec.		Pb ppm		12111-03			Mn ppm				Au ppm			 C. C. TOTA 1 		Bi ppm j		Ca %		La ppm	1.1		Ba ppm	ті %	B opm	Al %	Na %	K %		Au** gm/mt	Sample kg
A 175686	2	159	15	60	1 0	9	22	882	5.38	30	-9	<2	~	154	2.5	٤٦	<7	114	3.15	136	6	8	1.61	53	11	5	1.92	.06	.77	<2	.32	1.89
A 175687	1	144				1 1 2 5	 -	965			00000770	<2	100 a d a a da		<.5		<3		3.42		7	6	1.52		.10		2.18	.07	.81		.07	2.82
A 175688			11	- 10 DOM -	000 - 1 - 1	11. H OT			4.96			~2	00	220	<.5				3.90		1		1.93		.08		2.12	.06	.63		.03	3.73
A 175689	£	122	8		.3					18		<2	112 N. 770 A		<.5				3.46		5		1.42		.11		2.10	.09	.67		.02	1.88
175690		104						1146				<2							3.65		6		1.64		.06		2.17		.32		.12	1.93
175691	4	208	9	48	.8	8	19	1019	5.08	20	<8	<2	<2	190	<.5	5	<3	87	2.96	.139	5	6	1.84	100	.12	6	2.16	.06	.76	<2	.05	2.3
175692	<1	110	<3	34	<.3	16	21	513	5.11	3	<8	<2	<2	86	<.5	<3	<3	107	1.81	.153	2	11	1.25	72	.22	5	1.51	.09	.78	<2	.43	2.2
175693	1	115	<3		1.0.777	18	· · · · · · · · · · · · · · · · · · ·	461	5.28			<2	<2	81	<.5		<3	100	1.56	.132	2	14	1.14	66	.23	<3	1.40	.10	.60	2	.09	2.9
175694	2	125	T			11			5.35					83	<.5	3	<3	104	2.24	.177	5	27	1.39	34	.11	6	1.41	.07	.55	<2	.06	1.8
175695		132				16		554			<8			77					2.07	.143	2		1.69			10	1.77	.09	1.10	<2	.05	2.4
175696	1	190	5	72	<.3	8	21	785	5.41	4	<8	<2	<2	108	.5	<3	<3	113	2.61	.136	3	7	1.52	125	. 15		1.87		1.19		.01	1.6
E A 175696	3	189	3	73	: 3	8	21	794	5.47	7	<8	<2	<2	108	.6	3	<3	114	2.64	. 137	3	7	1.54	125	. 15	5	1.91	.07	1.20	<2	.01	
RE A 175696	2	198	3	79	<.3	8	22	810	5.59	7	<8	<2	<2	111	.9	<3	<3	114	2.75	.135	3	7	1.53	124	. 15	3	1.89	.07	1.17	<2	.01	
175697	2	232	55	114	.3	19	29	931	7.76	9	<8	<2	<2	77	2.4	3	6	178	2.59	.126	2	23	2.51	236	.27	10	2.78	.07	1.95	<2	.01	2.2
175698	1	164	<3	36	<.3	19	26	595	4,75	15	<8	<2	<2	80	<.5	<3	<3	122	1.80	.122	2	21	1.59	116	.25	<3	1.80	.06	.92	<2	.04	1.8
175699	8	119	7	43	.4	18	17	666	6.87	32	<8	<2	<2	51					1.78	.132			2.31	191	.22	10. Ci in	2.24		1.44			1.0
175700	3	162	<3	52	<.3	5 22	34	905	6.37	7	<8	<2	<2	75	<.5	<3	<3	204	2.19	.124	2	24	2.44	188	.30	7	2.26	.06	1.93	<2	.02	.9
175701	10	511	8	30	.5	34	33	866	5.16	39	<8	<2	<2	70	<.5	<3	<3	133	3.16	.120	3	32	1.62	141	.21	99	1.74	.08	.96	2	. 15	.5
175702	4	249	<3	63	5	10	23	725	4.87	11	<8	<2	<2	65	.6	<3	<3	120	1.63	.128	3	10	1.67	197	.22	32	2.03	.07	1.36	<2	.09	3.5
175703	7	176	10	51	<,3	5 23	31	598	4.35	15	<8	<2	<2	105	<.5	<3	<3	107	1.98	.155	4	30	1.29	68	. 19	<3	1.53	.11	.41	<2	.02	2.3
175704	4	107						701		-				112	<.5				2.47				1.45				1.71				.02	
175705	5	173	6	58	4	41	31	885	6.01	25	<8	::.<2	<2	94	.8	4	<3	141	2.78	.140	. 4	86	2.11	155			2.09	.05		202010-7-1	1 - J. C. States	1.8
175706	4	77	7	46	4	50	32	1113	5.66	25	<8	<2	<2	145	<.5	5	<3	108	3.38	.113	3	95	2.44	159	. 15	<3	2.04	.05	1.06	<2	.02	1.5
175707	15	233	409	836	1.5	29	114	1183	12.74	67	<8>	<2	<2	343	5.3	4	<3	153	4.11	.093	3	67	2.00	125	. 10	15	2.06	.04	.74	<2	. 10	.6
175708	3	148	11	84	<.2	6	20	639	5.06	8	<8	<2	<2	95	.6	<3	<3	133	2.33	.144	3	5	1.60	112	. 16	<3	1.98	.08	1.30	<2	.02	3.1
TANDARD DS5/AU-1	12	137	24	131	7	5 23	ç	733	2.84	18	<8	<2	3	45	5.1	4	6	58	73	.089	41	170	61	134	00	15	1.97	.04	.14	3	3.37	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.


All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.



STEWART 8

