ASSESSMENT REPORT

JD Claim Group

Greenwood Mining Division British Columbia, Canada NTS BCGS 082E 007/008 Lat 49°5'0" Long 118°36'2"

Trenching and Geochemical Report

Prepared for

Gold City Industries

Suite 550 - 580 Hornby Street Vancouver, British Columbia V6C 3B6

Prepared By

Paul S. Cowley, P.Geo. 207-270 West 1st Street North Vancouver, British Columbia V7M 1B4

March 1st, 2005

TABLE OF CONTENTS

1	SUN	MMARY	1
2	PRO	OPERTY DESCRIPTION AND LOCATION	1
3 PH		CESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND)GRAPHY	6
4	HIS	STORY	6
	4.1 4.2	JD PROPERTY Golden Crown Property	
5	200	4 WORK PROGRAM	11
6	GE	OLOGICAL SETTING	11
	5.1 5.2	REGIONAL GEOLOGY Property Geology	
(5.3	MINERALIZATION	14
	6.3. 6.3.	2 Hangingwall Shear	16
	6.3 6.3.		
7	CO	NCLUSIONS AND RECOMMENDATIONS	21
8	REI	FERENCES	22

List of Figures

Figure 1: Location Map	
Figure 2: Claim Map	4
Figure 3: Trench Location Map and General Geology	
Figure 4: Main Zone Geology Map	.(see map pocket)
Figure 5: Main Zone Sample Location Map	(see map pocket)
Figure 6: Hole in the Wall Zone Geology Map	19
Figure 7: Hole in the wall Zone Sample Location Map	20

List of Tables

Table 1: Claim Status	5
Table 2: Historic Main Shear Intercepts.	7
Table 3: Historic Footwall Shear Intercepts	
Table 4: Historic Hangingwall Shear Intercepts	
Table 5: Generalized Stratigraphic Column.	
Table 6: Massive Pyrite Zone Chip Sample Results	15
Table 7: Massive Magnetite Zone Chip Sample Results.	
Table 8: Northwest Trench Chip Sample Results	.15
Table 9: Hangingwall Shear Chip Sample Results	.16
Table 10: Hole in the Wall Zone Chip Sample Results	.16

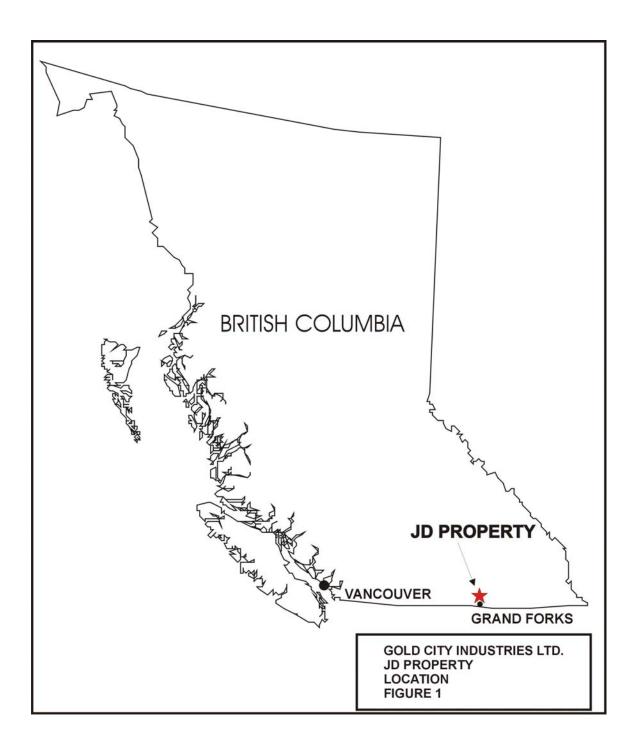
List of Appendices

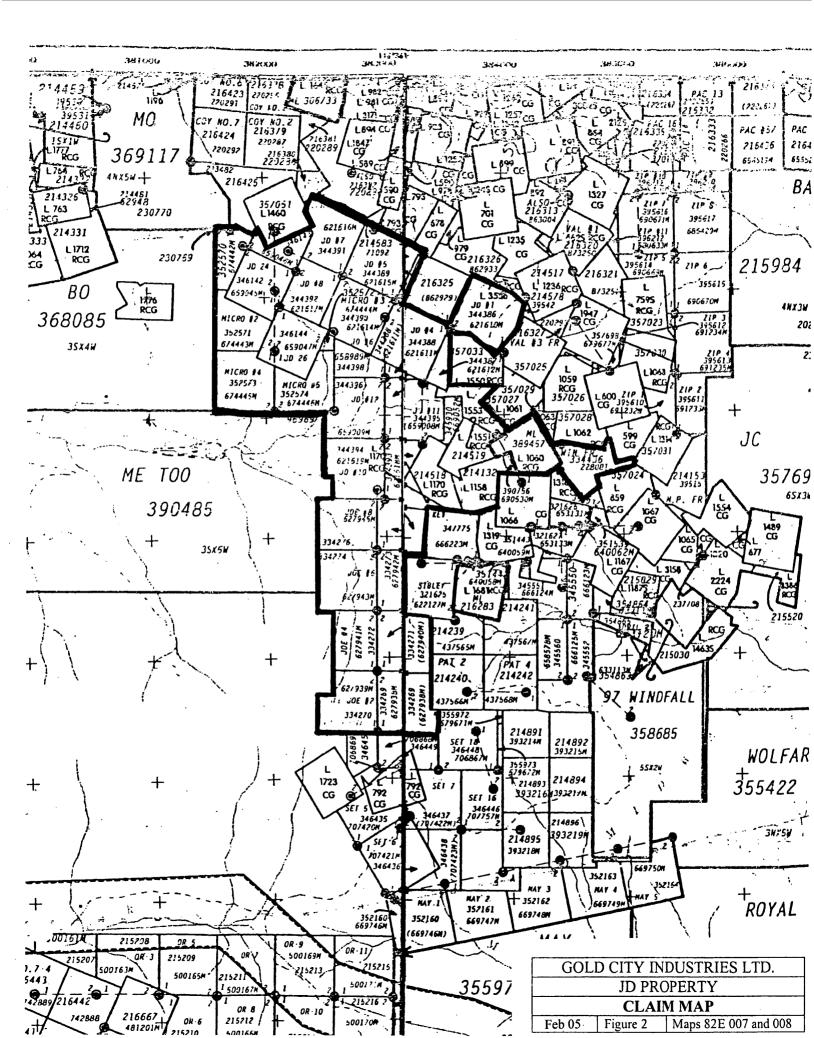
Appendix I: Geochemical Results Appendix II: Analytical Procedures Appendix III: Statement of Costs Appendix IV: Statement of Qualifications

1 Summary

The JD claim group is comprised of 37 contiguous mineral claims totaling 577.83 hectares located within the Greenwood Mining Division in south central British Columbia, Canada (fig 1). The claims are 5 kilometres east of Greenwood and 2 kilometres south of the old Phoenix Mine. Good access is provided by a series of gravel and dirt roads from Highway 3 onto and across the property. For the duration of the project Gold City Industries Ltd. (the Company) had an option agreement to acquire 100% interest in the JD mineral property, subject to a 2.5% net smelter return ("NSR") royalty. On December 23 2004 Merit Mining Corp (formerly Jantri Resources Inc.) exercised its option to acquire a 100% interest in Gold City Industries Ltd.

The Company conducted a trenching program focused on the Main/Hangingwall Shears and the Hole-in-the-Wall Zone in 2004 on the JD claims. The purpose of the program was to better determine zone behavior, dimensions and gold grade continuity of previously exposed zones and to find new zones. The trenching program unearthed high-grade gold results from massive pyrite and massive magnetite mineralization within an area of 375 metres long by 80 metres wide. Highlighted chip samples include: 36.3 g/t gold across 1.5 metres, 58.28 g/t gold across 1.25 metres, 14.21 g/t gold across 3.51 metres, and 10.15 g/t gold across 3.53 metres, indicating near surface high-grade sections within a gold enriched shear system.


The magnitude and orientation of the trench results support the interpretation that the JD property is the northwest extension of the Golden Crown gold system. Gold City's (now Merit's) JD and adjoining Golden Crown properties cover a 4 kilometre gold/copper system defined by drill hole intercepts, trenches, gold soil geochemical anomalies and geophysical (VLF) anomalies. The results also establish excellent potential for the discovery of gold mineralization within the untested 2.5 kilometres between the JD and Golden Crown mineralization. The Golden Crown system is strikingly similar to Rossland, BC's second largest gold camp, which produced over 2.7 million ounces of gold.


Based on the results, it is recommended to initiate a drilling and trenching program on the JD claims. Work should include a 500 metres diamond drill program (@ 15 metre centres) to test the Main and Hangingwall Shears for down dip continuity of 3 apparent high grade shoots defined by the 2004 trench program. Trenching should attempt to penetrate the ferrocrete sections in the Northwest trenches to properly sample likely mineralization below. Contingent on these results tight spaced trenching may better define a promising zone in the Northwest Trenches. Trenching should continue within the 1,000 metre long gold soil anomaly and the numerous anomalies over the 2.5 kilometres between the JD trenches and the Golden Crown massive sulfide/gold vein system.

2 Property Description and Location

The JD claim group is comprised of 37 contiguous mineral claims totaling 577.83 hectares (see Figures 1 and 2 and Table 1). The claims are located within the Greenwood Mining Division in south central British Columbia, Canada. The claims, on NTS map sheet 82E/02E are centered on 49° 05' N and 118° 36' W. The claims at an average elevation of 1300 metres are 5 kilometres east of Greenwood and 2 kilometres south of the old Phoenix Mine.

The JD claim group is owned by partners John Kemp, Don Hairsine and George Nakade. Gold City Industries Ltd. had an option agreement to acquire 100% interest in the JD mineral property, subject to a 2.5% net smelter return ("NSR") royalty. Under the terms of the option agreement, Gold City would make cash payments totaling \$97,500, deliver 300,000 shares, and conduct \$250,000 in exploration expenditures on the property over a four year period. The Vendors would retain a 2.5% NSR royalty capped at \$2,500,000. Gold City would have the right, at anytime in the five year period after it had exercised the option to acquire the property, to purchase the 2.5% NSR royalty for \$1,500,000, in increments of 0.5%, at \$300,000 per increment. On December 23, 2004 Merit Mining Corp. acquired all of Gold City's mineral interests within British Columbia including the JD claims and will assume the future obligations of the original option agreement.

Tenur Numbe		Map Number	Expiry Date*	Units	Hectares	Owner
334269	JOE#1	082E007	20121202	1	22	Kemp
334270	JOE#2	082E007	20121202	1	22	Kemp
334271	JOE#3	082E007	20121202	1	25	Kemp
334272	JOE#4	082E007	20121202	1	18	Kemp
334273	JOE#5	082E007	20121202	1	12	Kemp
334274	JOE#6	082E007	20121202	1	25	Kemp
334275	JOE#7	082E007	20121202	1	12	Kemp
334276	JOE#8	082E007	20121202	1	20	Kemp
344386	JD#1	082E008	20121202	1	24	Kemp
344387	JD#2	082E008	20121202	1	7	Kemp
344388	JD#4	082E008	20121202	1	25	Kemp
344389	JD#5	082E007	20121202	1	25	Kemp
344390	JD#6	082E007	20121202	1	2	Kemp
344391	JD#7	082E007	20121202	1	21	Kemp
344392	JD#8	082E007	20121202	1	16	Kemp
344469	JD#3	082E008	20121202	1	2	Kemp
344393	JD#9	082E007	20121202	1	14	Kemp
344394	JD#10	082E007	20121202	1	18	Kemp
344395	JD#11	082E007	20121202	1	22	Kemp
344396	JD#12	082E007	20121202	1	18	Kemp
344397	JD#13	082E007	20121202	1	2	Kemp
344398	JD#14	082E007	20121202	1	8	Kemp
345930	JD 23	082E008	20121202	1	4	Kemp
346142	JD 24	082E007	20121202	1	25	Kemp
346143	JD 25	082E007	20121202	1	12	Kemp
346144	JD 26	082E007	20121202	1	12	Kemp
357051	NELLIE COTTON	082E007	20121202	1	20.9	Hairsine
352570	MICRO #1	082E007	20121202	1	10	Kemp
352570	MICRO #2	082E007	20121202	1	16	Kemp
	MICRO #2 MICRO #3	082E007 082E007		1	10	1
352572	MICRO #3 MICRO #4		20121202		1 24	Kemp Kemp
352573		082E007	20121202	1		1
352574	MICRO #5	082E007	20121202	1	20	Kemp
214518	WREN L.1170	082E008	20121202	1	15.6	Kemp
214519	LEGAL TENDER L.1551	082E008	20121202	1	22.26	Kemp
334436	WIN FR.	082E008	20121202	1	15	Kemp
214132	WINNER L.1158	082E008	20121202	1	13.07	Kemp
390756	BIT	082E008	20121202	1	1	Kemp
	dates assume acceptance of			37	577.83	

Table 1: Claim Status

l

* New expiry dates assume acceptance of this report.

3 Accessibility, Climate, Local Resources, Infrastructure and Physiography

The JD claim group is 5 kilometres east of Greenwood and 2 kilometres south of the old Phoenix Mine open pit. The claims are easily accessible by paved provincial highway (i.e. Crowsnest Highway No. 3). Mid way between Greenwood and Grand Fork, BC is the Phoenix Ski Hill gravel road which connects with the Lone Star Haul road. At Hartford Junction, a west trending dirt road and tertiary dirt roads provide direct access to and across the property. The nearest full-service airport is at Penticton.

The regional terrain is rolling and has an elevation range of approximately 300 to 2,000 metres. The claims occur at an average elevation of about 1300 metres. In the area, generally the higher elevations are forest covered while the lower elevations are grass ranch land. The forest cover is second growth Ponderosa Pine, Douglas Fir and Larch with minimal underbrush. The area in encompassed in the Kettle Provincial Forest Department and lies between Boundary, Eholt and July Creeks. The largest drainage basin in the district is the Kettle River basin 16 kilometres southwest of the claims.

The climate is quite dry, with hot summers accompanied by little rainfall. Snowfall is generally less than 1 metre. Work could be carried out year round with minimal road ploughing to access during winter months as much of the access route is ploughed and maintained year round.

The area has exceptional infrastructure available in the immediate area to support mining. Two power lines cross the claims. There is a large, skilled workforce of trades and technical professionals as well as equipment suppliers available throughout the region. Most services can be obtained from Grand Forks, Osoyoos and Penticton.

4 History

4.1 JD Property

The JD claim group covers a number of old crown granted claims about which little is known. In the late 1960's Meridian Exploration Syndicate conducted a geochemical and geophysical survey and diamond drilling program on the property. They report a 21 metre intercept of 0.2% copper although the location of this work is uncertain.

In 1970 Granby conducted an IP survey over the property but the details of this work are not known.

In the mid-1980's Consolidated Boundary Exploration, during its work on the adjacent Golden Crown property, also completed 5 drill holes on JD at that time, reporting an 8.6 g/t Au intercept across 3.6 metres.

Noranda conducted significant work on the northwestern part of the JD claim group during 1986-1988. Work included grid establishment, soil sampling, geophysics, 26 trenches, 8 diamond drill holes totaling 672m and 10 reverse circulation drill holes totaling 1078m. Results were encouraging. A 1 km long elevated gold soil anomaly was identified. Trenching over a 90m strikelength of the 1km long anomaly identified sub-parallel mineralized shear zones. Highlights of the trenching and drilling were:

Site	Grade	Width
Trench 86-1	1.6 g/t Au	12.0m
Trench 86-2	14.2 g/t Au	5.0m
Trench 86-4	18.2 g/t Au	3.0m
Trench 86-12	1.8 g/t Au	7.0m
DDH 86-4	7.2 g/t Au	3.4m
DDH-86-5	1.1 g/t Au	25.9m

Follow-up work recommended by Noranda was never completed. Noranda allowed the claims to lapse in 1995.

The area was re-staked as the JD claim group by the current owners in 1995. Pender Gold Corp. optioned the property in 1997, established a new grid, conducted mapping, ground magnetics and VLF and completed 5 diamond drill holes in the area of the Noranda drilling. Pender dropped the option in 1999.

Gold City Industries Ltd. optioned the JD claim group in 2002 and conducted its 2003 and 2004 work program described in this report, concentrating on the Main Zone area located in the north-western end of the property.

The Main Zone area had been tested by 8 trenches and 11 drill holes over a 100m strikelength prior to the 2003 and 2004 Gold City trenching programs. Examples of trench and drill hole intercepts of the Main Zone prior to the Gold City program are:

rable 2. mistorie Main Shear mercepts						
Site	Grade (g/t Au)	Intercept from	Intercept			
		and to (m)	Thickness (m)			
DDH 86-4	7.2	10.28-13.65	3.4			
DDH 87-8	1.0	70.3 - 76.18	6.0			
DDH 97-3	3.8	28.3 - 30.1	1.8			
DDH 97-5	20.3	78.3 - 78.5	0.2			
DDH 97-5	1.1	80.2 - 82.2	2.0			
RC hole 87-4	5.0	28.96 - 32.01	3.0			
RC hole 87-4	1.6	39.63 - 44.21	4.6			
Trench 86-1	1.6		12.2			
Trench 86-2	14.2		5			
Trench 86-4	18.9		3			

Table 2: Historic Main Shear Intercepts

Previous interpretations highlighted a **footwall shear** structure (exposed in JD-04-3) located 10-15 metres south of the primary massive pyrite lenses in trench JD-04-2.

Site	Grade (g/t Au)	Intercept from and to (m)	Intercept Thickness (m)
DDH 86-3	3.36	13.41 - 14.87	1.5
DDH 86-3	4.05	22.74 - 23.05	0.3
DDH 86-4	4.8	18.15 - 18.6	0.45
DDH 86-4	1.1	24.26 - 27.4	3.1
DDH 97-3	3.1	40.2 - 42.8	2.6

Table 3: Historic Footwall Shear Intercepts

Trenching in 2003 and 2004 exposed the Hangingwall Shear for 200 metres strikelength and has been historically drill tested for a 100 metre strikelength. Historic **Hangingwall Shear** intercepts are listed in Table 4.

Site	Grade (g/t Au)	Intercept from	Intercept
		and to (m)	Thickness (m)
DDH 87-8	1.1	23.95 - 28.3	4.4
DDH 97-1	12.7	14.9 - 15.4	0.5
Trench 86-12	1.8		7.0
Trench 86-17	9.0		1.9

Table 4: Historic Hangingwall Shear Intercepts

4.2 Golden Crown Property

The JD claim group covers the northwestern extension of the Golden Crown property. The adjacent Golden Crown Property has a long history of exploration and development. The Winnipeg and Golden Crown claims were originally staked in 1894 and subsequently crown granted in 1896, however, owned and worked independently.

During 1900 and 1901 the owners of the Golden Crown sunk a 322 foot deep two compartment shaft on the Golden Crown vein and conducted a series of cross-cuts, raises and drifts totaling an additional approximately 2,500 feet on the 100, 150 and 300 foot levels. Production of 2,743 tons averaging 0.45 oz/t Au and 1.5% Cu occurred at this time. Production was reported from three stopes on the 100 foot level reaching 55 metres either side of the shaft. Stope backs exceeded 20 metres on a vein averaging 1.5 metres thick steeply dipping to the south. A 100 metre long exploration/access adit was later driven on the Golden Crown claim however the adit reached its target.

In 1899, the owners of the Winnipeg claim sunk a 300 foot deep shaft on one of two veins reported separated by 80-100 feet. Approximately 275 feet of drifting was done along the 100 foot level, however, by 1902 a total of 1,000 feet of sinking and raises and 3,000 feet of crosscuts and drifts were completed. In May 1902 a disastrous fire and financial difficulties resulted in a suspension of operations. The 1903 Minister of Mines Annual Report stated that "It is a pity that such a promising property as the Winnipeg should be so heavily handicapped." Although some production was reported from 1900-1903, the majority of the production was completed for the period 1910-1912. The property lay dormant until 1940, when a very minor production occurred. The total production from the Winnipeg claim stands at 58,771 tons averaging 0.2 oz/t Au and 0.16% Cu.

Following these production episodes no work was reported on the two claims until 1965-68 when Sabina Mines and Scurry Rainbow conducted a diamond drilling and geophysical program targeting the serpentinite for hosting nickel and chromite. Sixteen BQ holes in 1650 metres were done. Only data for 10 of these holes is available (Kim, 1987c).

Grand Forks Syndicate completed a 5 hole drill program in 1976 totaling approximately 200 metres. This was followed by a 12 hole drill program when Con Am Resources optioned the claims during the period 1977-1978.

Boundary Exploration Ltd. (later Consolidated Boundary Exploration) acquired the Winnipeg/Golden Crown claims in 1979 and completed a 4 hole 300 metre drill program.

The claims were optioned in 1980 to Mundee Mines. Drill holes were resurveyed. The Golden Crown shaft was de-watered to the 100 foot level allowing for the surveying, mapping and chip sampling (56 samples). Mundee drilled 16 additional holes totaling 1500 metres and conducted a surface mapping program.

In 1983, Grand Forks Mines Ltd. optioned 50% interest in the claims. Between 1983 and 1990 a total of 137 surface and 53 underground diamond drill holes were conducted on the claims and their adjacent claims culminating in the discovery of nine mineralized zones. At this point the Winnipeg and Golden Crown claims were explored as part of a larger property, the Golden Crown Project, which included eleven additional adjoining reverted crown grants.

All available data was entered into a digital database in 1987 which allowed the preparation of a preliminary resource that was encouraging enough to recommend a \$1.3 million surface drilling and underground program. A program of 750 metres of drifting and cross-cuts was carried out to provide for underground drilling access, future haulage access and a 150lb bulk sample from the King vein. In addition, the Golden Crown workings were de-watered to the 150 level and a vent raise connected the exploration adit to the old 100 foot level. The Golden Crown workings are still accessible via the shaft, although some ladders may require improvements. Ten surface drill holes were also completed in this phase.

In 1988, a \$1 million Phase II program was conducted consisting of 48 underground drill holes, 12 surface drill holes, and 365 metres of additional drifting and cross-cutting. The trackless exploration drift length now is 1070 metres long with dimensions of 9'x 12'. Drilling discovered the main shoot on the King vein below drift level and defined a southwest rake.

Grand Forks Mines underwent a name change and share consolidation in 1989 to Attwood Gold Corporation and earned the remaining 50% interest in the claims. A minimal (5 holes) underground drilling program was completed in 1989.

Geologist R. Seraphim made a resource estimate in 1989. The "drill indicated reserve" of 62,270 tons averaged 0.455 oz/t Au, 0.52 oz/t Ag and 0.7% Cu, and included a 25% dilution, 10 metre area of influence and a 0.25 oz/t Au cut-off for 1 metre true thickness. Mr. Seraphim indicated the potential to expand that number. This is not a declared resource on the property and should not be relied upon but remains a historic figure. The writer has not prepared nor confirmed this resource estimation and as it pre-dates National Instrument 43-101, it does not comply with NI 43-101 requirements for mineral resource estimation. Based on current CIM standards on mineral

resources and reserves, the reported mineral inventory would be classified as an Inferred Mineral Resource.

A \$1.9 million program was recommended to better define the shoots by drifts and raises and driving a decline 100 feet below the adit level, however, the program was not initiated.

Attwood completed 34 surface drill holes in 1990, in addition to a soil geochemistry and geophysical survey on the claims and the adjoining claims. Re-surveying of all locatable drill holes was also accomplished. The digital database was thoroughly reviewed and updated by a new exploration team who identified errors in the original database used by Seraphim.

In 1990 G. Ford, P.Eng. performed an independent resource estimate for Attwood Gold Corporation of 37,100 tons grading 0.999 opt gold (uncut), 0.536 opt gold (cut) and 1.12% copper on the Winnipeg-Golden Crown and Calumet claims. Ford's calculation assumed a lower cut-off of 0.25 opt Au over 1 metre true width, a 3.51 specific gravity, maximum area of influence of 10 metres, and dilution to 1 metre true width. This is also not a declared resource on the property and should not be relied upon but remains a historic figure. The writer has not prepared nor confirmed this resource estimation and as it pre-dates National Instrument 43-101, it does not comply with NI 43-101 requirements for mineral resource estimation. Based on current CIM standards on mineral resource until such times as a current resource estimate from an independent qualified person is made. The resource on its own does not currently demonstrate economic viability.

In 1990, a dispute arose between Attwood Gold and Consolidated Boundary over the perceived reduction in resource base. The issue was later settled in 1991, however, a change in management in Attwood resulted in the property going dormant.

In 1997 the Winnipeg and Golden Crown claims were acquired by Century Gold. The surrounding 11 reverted crown grants were also acquired by Century Gold, maintained under the title of Golden Crown Property. Century Gold conducted a database review and corrected additional errors in the database and conducted a mapping and trenching program on the Golden Crown Property in 1998 and 1999. Only a small portion of this trenching program was conducted on the Winnipeg and Golden Crown claims, specifically on the Golden Crown, Samaritan and Princess veins. The work provided an improvement to structural and geological controls, including drawing similarities to mineralization at Rossland, B.C. In 1998, the main exploration adit accessing the vein system on Winnipeg and Golden Crown was rehabilitated for mapping. Century Gold did not fulfill their obligations, thus returned to Dynasty Motor Car Corporation in 2002.

In 2002 Gold City acquired the property and in 2003 conducted diamond drilling of 47 holes on the Winnipeg-Golden Crown claims.

5 2004 Work Program

Gold City Industries Ltd. conducted its Phase 2 trenching program in May 2004 on the JD property to follow up its 2003 program. A Hitachi 300 Excavator and operator were supplied by Lime Creek Contracting Ltd. of Grand Forks. A geologist laid out the trench locations. Two assistants and excavator operator worked as a team to dig and clean the trenches to bedrock. Geologists and field assistants directed by a geologist sampled the trenches. The trenches were mapped by contract geologists for Gold City. The 2004 exploration program was staffed by geologists Bruce Laird, Paul Cowley, Parviz Rajaei, Ed Frey, and Marcela Lind, prospector Alan Raven and local assistants provided by Rainbow Exploration of Grand Forks (see Figures 3-7).

The 2004 trenching program laterally expanded the previously tested area from 265 metres to 375 metres of the 1,000 metre long soil anomaly in the area of the Main Shear. The program focused on exposing the Hangingwall Shear and Main Shear zones with 4 strike-parallel trenches spaced 15 to 45 metres apart and 4 cross-cutting trenches spaced 25-40 metres apart delineating the open-ended north-west extension of the Main Shear zone.

Two separate trenches (JD-04-17 and JD-04-18) spaced 105 metres apart were excavated in the Hole-in-the-wall Anomaly a further 240 metres south of the Main Shear zone.

The Main Shear was exposed along-strike with three trenches over 155 metres (trenches JD-04-2, JD-04-3 exposing *massive pyrite* lenses, and JD-04-4 exposing *massive magnetite* lenses). The Main Shear was further delineated to the northwest with 4 cross-cutting trenches (JD-04-13 to JD-04-16) resulting in an overall strike-length of 375 metres. The sub-parallel Hangingwall zone, 50 metres to the north, was further exposed with one strike-parallel trench over a distance of 87 metres and combined with 2003 trenching results gave an overall strike length of 200 metres. Both zones are composed of semi-massive to massive sulfides within northwest trending, shallow-dipping shear zones cross-cutting in chert and variably altered intermediate to mafic volcanics. The Hangingwall and Main Shear zones are open to the northwest. The eastern extensions, which are offset by faulting, are interpreted to continue to the south-east.

A total of 412 samples were taken from 10 trenches that totaled an aggregate length of 554 metres. Samples were generally horizontal chip samples with some wall samples. Sample ID's were assigned from 13851-14077, 24601-24850 and J-04RR001 - J-04RR022.

The rock samples were shipped to Ecotech Laboratories in Kamloops for preparation and analysis. Samples were analyzed using the Au Geochem method and Multi-element ICP analysis method. Of the 412 samples, 259 were re-analyzed using the Metallic Au fire-assay method giving a total of 671 results. See Appendix II for analytical procedures.

6 Geological Setting

6.1 Regional Geology

Fyles (1990) has performed the most recent mapping of the Greenwood district, previously mapped by Little (1983) and Church (1986). As the distribution of rocks in the area are controlled by a series of faults, both Jurassic-aged thrust faults and Tertiary-aged extensional and detachment faults, an understanding of the regional and local structure is essential in understanding the geology (Table 1: General Stratigraphic Column). Many of the important mineral deposits in the area are directly related to the major tectonic and structural features.

Fyles has Paleozoic and Mesozoic rocks lying in a series of thrust slices above a high grade metamorphic basement developed from the Okanagan gneiss domes with a general northward dip of lithologies. The two high grade metamorphic suites in the region are the Grand Forks Gneissic Complex and the Tenas Mary Creek Complex. The Grand Forks Complex is a fault-bounded, uplifted block of cratonic crust lying east of a north-trending normal fault five kilometers south of the property. The Tenas Mary Creek complex is an uplifted domal succession that lies 4 kilometers southwest of the Lexington – Lone Star property.

Unconformably overlying Okanagan gneiss domes are firstly rocks of the late Paleozoic-aged Knob Hill Group which has a volcanic affinity, composed principally of chert, greenstone and related intrusives and serpentinite. Serpentinite bodies often marking thrusts represent part of a disrupted ophiolite sequence from the late Paleozoic-aged Knob Hill Group. The serpentinite as lenticular bodies to continuous sheets often exhibit Fe-carbonate alteration likely associated with the thrusting episode. Clasts of serpentinite in Middle Triassic conglomerate indicates a probable Permian age for the serpentinite. Knob Hill rocks are intruded by the Old Diorite, a hornblende diorite of variable texture that is cut by many veins and dated as Late Permian or older. The late Paleozoic Attwood Group unconformably overlies the Knob Hill Group. The Attwood Group is composed of sediments and volcanics, chiefly argillite, siltstone, limestone and andesite. Triassic-aged Brooklyn Formation unconformably overlies the older units and consists of limestone, clastic sediments and pyroclastics. The copper-gold skarns in the area such as Phoenix, Oro Denoro and Mother Lode-Greyhound are hosted in Brooklyn rocks.

A major compressional tectonic event in the Mesozoic resulted in the development of the five thrust faults in the region generally trending west or west-northwest and dip low to moderately to the north (Fyles, 1990). The lowest thrust sheet overlies the Tenas Mary Creek Core Complex along the White Mountain Fault 4 kilometers southwest of the Lexington – Lone Star property. The hangingwall of this thrust sheet is confined by the No. 7 Fault. The thrust sheet is composed of Attwood Group metasediments and Brooklyn greenstone. The No. 7 Fault also forms the footwall of the next thrust sheet, with the Wright Mountain Fault forming the hangingwall. Lithological units in this second thrust sheet are Knob Hill and subordinate Brooklyn Formation. All of the significant mineralization and deposits on the Lexington-Lone Star property are spatially and genetically associated with the No. 7 Fault. About 2 kilometres north of the Wright Mountain Fault is the Attwood Fault and a further 3 kilometres north lies the Lind Creek Fault. Knob Hill units namely serpentinite, Old Diorite, greenstone and sediments, outcrop on the thrust wedge related to the Lind Creek Fault. Two Mesozoic intrusive episodes are recognized in the area and cut the above units, the Jurassic-aged Lexington Porphyry and Cretaceous-aged Nelson intrusions that form satellites from major batholiths.

Two Tertiary extensional events created two sets of important extensional faults. A series of steep northerly-trending normal faults offset all rock units and includes many major faults, forming graben and horst boundaries. The Republic Graben is bounded to the west by the Bacon Creek Fault. The Beacon Creek Fault seems to terminate just south of the Lone Star Mine. It is speculated that the northern extension of the Beacon Creek Fault may lie in the No. 7 Fault which could have reactivated in Tertiary time. The second Tertiary event is shown in steeply dipping northeasterly trending faults with dextral and west side down movement. Commonly in the vicinity of principal Tertiary faults are accompanying lesser faults with smaller sympathetic offsetting. Tertiary-aged volcanics and sediments unconformably overly older rock units,

essentially controlled by the Tertiary-aged faulting. Eocene-aged Scatter Creek diorite dykes and pulaskite Coryell stocks and dykes also intrude older rocks.

Table 5: Generalized Stratigraphic Colun	nn after Fyles (1990)
--	-----------------------

AGE	NAME	MAP SYMBOL	LITHOLOGY
Eocene	Penticton	Epi	Dykes, sills and irregular plutons of pulaskite syenite, monzonite and diorite. (Coryell intrusions)
	I entición	Eps	Stratiform units, arkosic, volcaniclastic sediments(Kettle River Formation), flows of andesite, trachyte and phonolite (Marron Formation)
		Unc	onformity
Cretaceous	Nelson	Qd	Mainly granodiorite and quartz diorite, minor diorite (d) and gabbro (g)
Jurassic	Lexington	Qfp	Quartz feldspar porphyry
		TRb	
Triassic	Brooklyn	TRBv	Fragmental greenstone and related diorite
		TRbl	Limestone, calcareous sandstone, siltstone and conglomerate and skarn
		TRbs	Green and maroon tuffaceous sandstone, siltstone and hornfels
		TRba	Dark gray to black siltstone and argillite
		TRbbx	Chert breccia or sharpstone conglomerate and minor tuff, tuffaceous siltstone, sandstone & breccia & maroon & green limestone-cobble conglomerate
		Unc	onformity
	Attwood	Pa	
Carboniferous or	Group	Paa	Black cherty siltstone and argillite
Permian		Pal	Grey to white limestone, cherty limestone and minor dolomite
		Pav	Andesitic volcanics
		•	Fault contacts
	Knob Hill	Pkc	Chert, grey argillite, siliceous greenstone and minor limestone
		Pkv	Greenstone, pillow lava and breccia, amphibolite and minor limestone
		Pkx	Fine chert breccia and conglomerate
		Pkm	Grey and green schist and phyllite, buff to white quartzite, minor crystalline limestone, white dolomite, fine grained calcsilicate gneiss, quartz biotite gneiss and amphibolite
	Serpentinite	sp	Serpentinite and listwanite
	Old diorite	od	Coarse and fine grained hornblende diorite

6.2 Property Geology

The major east-west striking, north dipping Jurassic-aged Lind Creek Fault lies on the southern boundary of the claim group. The Lind Creek Fault has a significant spatial association with gold and copper mineralization in the Greenwood Camp. Below the fault are rocks of Permian-aged Attwood Group. Rocks in the hangingwall of the fault derive from Permian-aged Knob Hill Group rocks comprising a mixed sequence of sediments, volcanics and intrusives, Triassic-aged Brooklyn Formation and possibly Jurassic-aged Rossland Group. Serpentinite is commonly found along faults in the region, including along the Lind Creek Fault. The package of hangingwall rocks to the Lind Creek Fault is subsequently cut by the Snowshoe Fault.

The Tertiary-aged Snowshoe Fault is a moderately north dipping detachment fault composed of multiple sub-parallel shears.

6.3 Mineralization

Work to date has concentrated on an area of mineralization within the northwestern end of the JD claim group (see figure 3). This area is known as the **Main Zone** and occurs within the 1km long elevated gold soil anomaly identified by Noranda grid work.

The Main Zone is part of the multiple sub-parallel shear/fracture zones of the north dipping Snowshoe Fault that cut Triassic and Permian-aged sediments and volcanics. Locally the shear/fracture zones are mineralized with disseminated to massive pyrite +/- magnetite/base metals cut by later stage spatially-rare narrow quartz veins +/- trace chalcopyrite and molybdenum. The shear/fracture zones generally trend 300-320° and dip at moderate angles (35-55°) to the north. The 300-320° trend is consistent with the King vein system on the Golden Crown property 3 kilometres to the southeast.

Two sub-parallel mineralized shear/fracture zones have been identified within the **Main Zone**; the **Main Shear** and **Hangingwall Shear** (see figure 4). The **Main Shear** is defined by two separate zones of mineralization: the *massive pyrite zone* and the *massive magnetite zone*. The two zones of mineralization within the Main Shear visually align along the same trend (300-320°), however, they are mineralogically different. Within the Main Zone, the mineralized lenses are interpreted to be structural splays off the Snowshoe Fault.

The **Hangingwall Shear**, located approximately 50 metres north of the Main Shear structure, trends sub-parallel to the Main Shear zone $(300-310^{\circ})$ and is locally dipping between $30-55^{\circ}$ to the north. Mineralization was further exposed in 2004 with an 87 metre strike-parallel trench (JD-04-1), which combined with 2003 trenching, gives an overall strike length of 200 metres.

6.3.1 Main Shear

Within the Main Shear structure, two distinct zones of mineralization were exposed. The first zone consists of lenses of *massive to disseminated pyrite* and extends discontinuously along strike 55 metres and dips at 45° towards the north. Mineralisation is hosted within a silicified intermediate-mafic volcanic flow +/- localized silicified cherty volcanics with a distinct increase in silicification occurring to the north. The massive sulfide lenses exposed by trenches JD-04-2 and JD-04-3 trend parallel to sub-parallel to the structural foliation and vary between 1 to 1.5 metres in width. Sulfides are coarse euhedral pyrite in a silica matrix capped by a thick layer of ferrocrete at the rock interface. Trace amounts of molybdenite and chalcopyrite occur in narrow, <1cm, white quartz veins cutting the pyrite. Three main massive pyrite lenses were defined within the zone based on mineralogy and grade continuity. Significant sample results from the Massive Pyrite Zone are listed in Table 6 and sample locations in figure 5.

I	Same la #	W/: J4h ()	Grada (alt)	Come los eth (m)	Comp Au	Dam
Lense #	Sample #	Width (m)	Grade (g/t)	Comp length (m)	(g/t)	Row
1	13970	1.5	36.3	1.5	36.3	E-F
1	14020	0.75	14.9	0.75	14.9	Н
2	J-04 RR01	0.8	10.4	0.8	10.4	Α
3	13856	1.0	19.4	1.0	19.4	Α

Table 6. Massive Pyrite Zone

(Refer to figure 5 for sample locations)

Located in trench JD-04-4 directly along strike to the southeast of the *massive pyrite zone* is the second type of mineralization within the Main Shear. Mineralization consists of two massive magnetite lenses, up to 0.5 metres wide, with disseminated pyrite +/- chalcopyrite and arsenopyrite hosted within silicified intermediate to mafic volcanic flows and minor silicifed cherty volcanics. The northern most lense extends 45 metres continuously along strike and the southern most vein extends 12 metres continuously along strike and terminates at the western end of the trench where it is cut and dragged to the north by a north-south trending fault.

Lense #	Sample #	Width (m)	Grade (g/t)	Comp length (m)	Comp Au (g/t)	Row
1	24618	1.1	18.4	1.1	18.4	
1	13918 - 13921	0.7, 0.4 ,0.1 ,1.0	9.61,1.99, 34.9, 2.76	2.2	6.26	
1	24621	0.9	21.9	0.9	21.9	
1	24638 - 24639	1.0, 0.25	17.0, 17.2	1.25	17.04	
1	24640 - 24641	1.0, 0.25	35.1, 151	1.25	58.28	
1	24623	1.0	18.7	1.0	18.7	
2	13877 - 13878	0.65, 0.45	6.01, 7.4	1.1	6.58	
2	24617	1.5	5.8	1.5	5.8	

Table 7. Massive Magnetite Zone

(Note: Rows were not assigned for sampling within the Massive Magnetite Zone and samples, widths and grades are respective of each other for composited intervals. Refer to figure 5 for sample locations)

Trenching across strike of the Main Shear was continued at approximately 25-40 metre intervals for 70 metres to the northwest. The Main Shear was traceable as massive pyrite or locally in some trenches as massive ferrocrete which the excavator was unable to penetrate.

Table 8. Northwest Trenches

Trench #	Sample #	Width (m)	Grade (g/t)	Comp length (m)	Comp Au (g/t)	Row
JDT-04-15	13937 - 13939	0.5, 0.5, 0.95	14.5, 19, 7.31	1.95	12.15	
JDT-04-15	13942	0.8	8.43	0.8	8.43	
JDT-04-16	24686	1.3	5.92	1.3	5.92	

(Note: Rows were not assigned for sampling within the Northwest Trenches and samples, widths and grades are respective of each other for composited intervals)

6.3.2 Hangingwall Shear

Approximately 50 metres north of the Main Shear, along the fault contact between underlying variably altered volcanic flows and the overlying Sharpstone Conglomerate, is the **Hangingwall Shear** (see figure 4). Mineralisation within the Hangingwall shear is massive to disseminated lenses of coarse euhedral pyrite sub-parallel to the Main Shear and dipping between 30–55° to the north. Later stage, spatially-rare, quartz veins with trace chalcopyrite, molybdenum cut the massive pyrite. The host rock units vary from silicified intermediate to mafic flows, cherty volcanics and feldspar-crystal tuffs with between 3-5% disseminated pyrite and ghost plagioclase phenocrysts at the western end of the trench, to a finer-grained lapilli unit towards the eastern end.

Within the Hangingwall structure the mineralization is found in 3 lenses that vary between 0.5 - 3 metres in width, striking sub-parallel and along an east-west trending and moderately northward dipping fault interpreted to be the Tertiary Snowshoe Fault. Above the fault, Sharpstone Conglomerate is evident at the eastern end of the trench. The conglomerate is a silicified pebble unit with 1-3% disseminated pyrite.

Significant intersections from the 2004 trenching of the Hangingwall Shear are listed in Table 9 below and sample locations san be seen in figure 5.

				Comp length	Comp	
Lense #	Sample #	Width (m)	Grade (g/t)	(m)	Au (g/t)	Row
3	13985	1.2	35.8	1.2	35.8	Μ
3	14040 - 14043	0.8, 0.8, 0.65, 1.26	45.2, 2.25, 7.36, 5.67	3.51	14.21	Α
3	14051	0.5	49.3	0.5	49.30	В
3	14069 - 14070	0.93, 1.15	10.9, 3.2	2.08	6.64	D
4	24655 - 24657	0.8, 0.35, 2.38	2.56, 89.8, 0.99	3.53	10.15	G

 Table 9. Hangingwall Shear

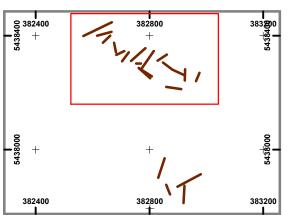
6.3.3 Hole in the Wall Zone

The Hole in the Wall Zone is located 400 metres south of the Main Shear. Information on this zone is scarce. The area is defined by a strong soil anomaly. Trenching has occurred there but historic results are not documented. Five 1985 drill holes in the target returned 8.6 g/t Au across 3.6 metres (DDH 85-2) and 11.0 g/t Au across 1.2 metres (DDH 85-4). Noranda drilling in 1986 produced a 1.06 g/t Au intercept across 25.9 metres from a quartz-epidote alteration within and around a diorite dyke. RC drilling in 1987 (RC 87-8) reported a 4.2 g/t Au intercept across 1.5 metres. Significant sample results from the 2004 trenching of the Hole in the Wall Zone are listed in Table 10 below:

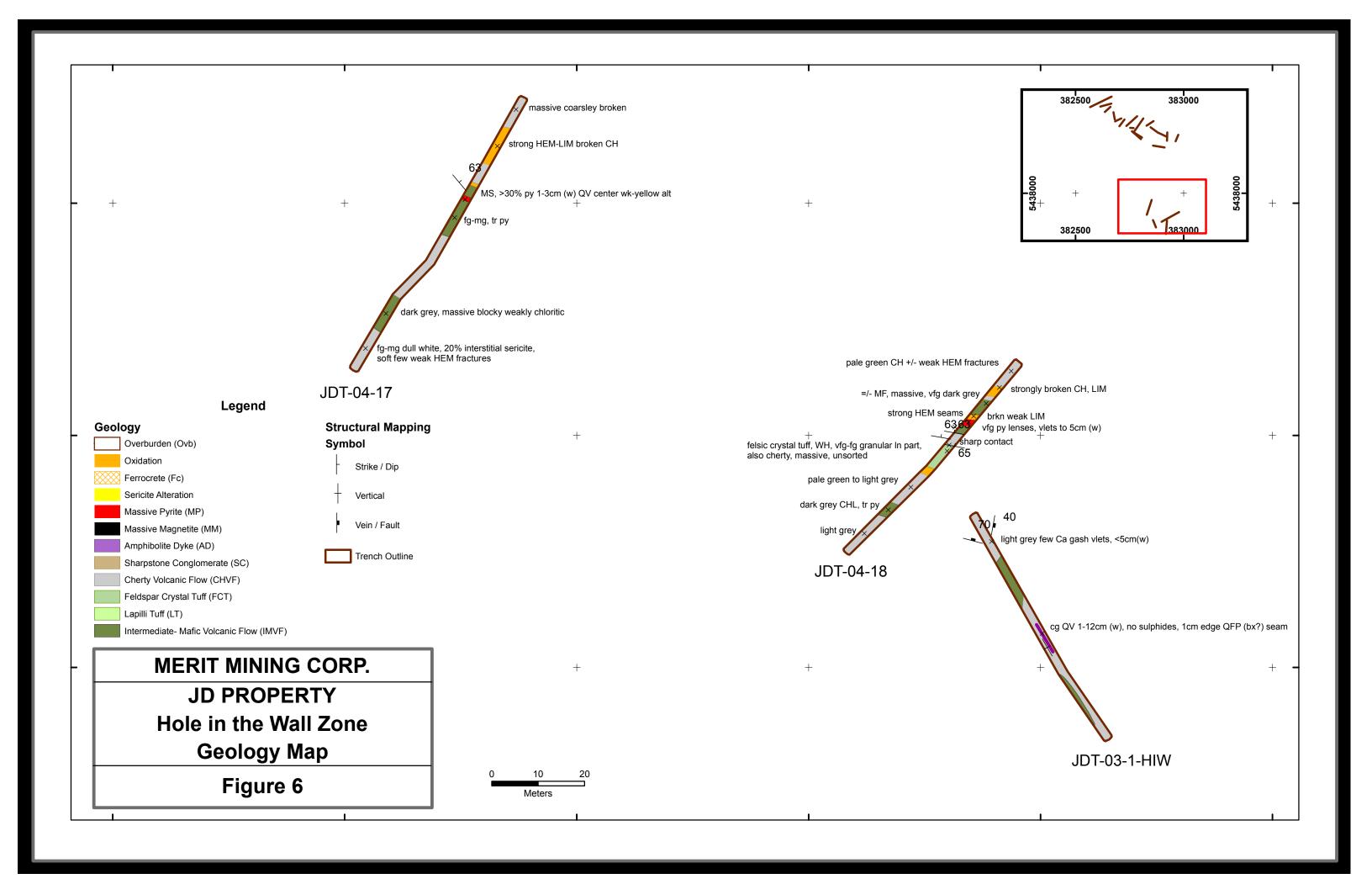
Trench #	Sample #	Width (m)	Grade (g/t)	Comp length (m)	Comp Au (g/t)	Row
JDT-04-17	24702 - 24703	0.5, 1.3	2.24, 7.88	1.8	6.31	
JDT-04-17	24713 - 24714	0.5, 0.4	1.42, 7.78	0.9	4.25	
JDT-04-18	24718	2	1.89	2	1.89	

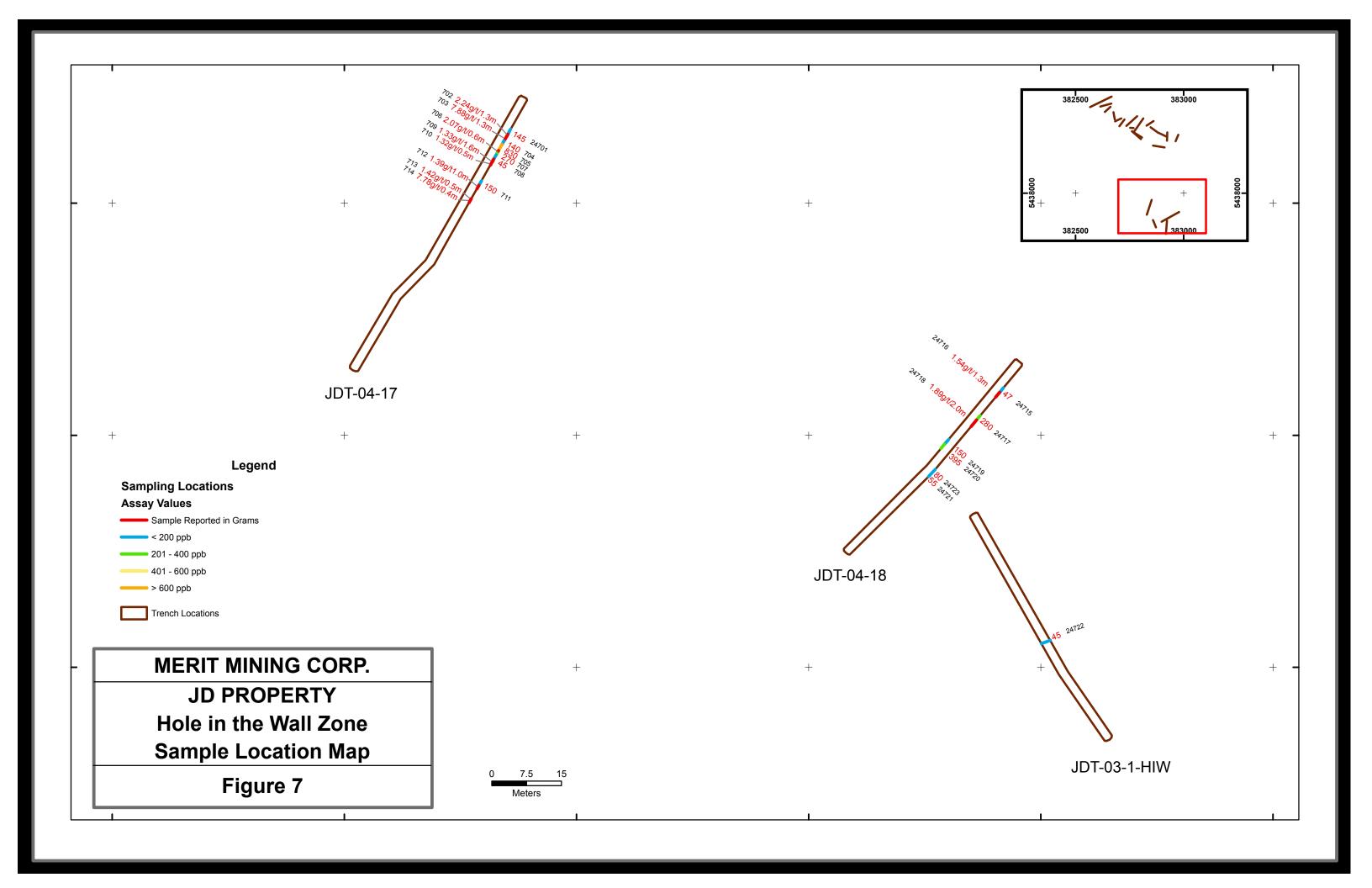
Table 10: Hole in the Wall Zone

(Note: Rows were not assigned for sampling within the Hole in the Wall Zone and samples, widths and grades are respective of each other for composited intervals)


6.3.4 Other Zones

The Nellie Cotton target is located 1 km northwest of the Main Shear area as a possible northwest extension of the Main Shear where a Noranda trench (87-25) reported 8.8 g/t Au across 2.9 metres from a rusty shear.


The Winner, Ranger and Win Fr. area hosts a number of elevated gold soil anomalies that require follow-up trenching. The Ranger vein reports grab samples up to 41 g/t Au.


Numerous untested elevated gold soil anomalies are present on the property that require prospecting and trench follow-up.

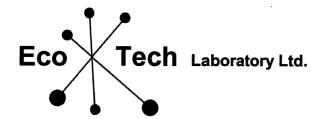
JDT-03-09

7 Conclusions and Recommendations

Gold City Industries Ltd. conducted a trenching program focused on the Main/Hangingwall Shears and the Hole-in-the-Wall Zone in 2004 on the JD claims. The purpose of the program was to better determine zone behavior, dimensions and gold grade continuity of previously exposed zones and to find new zones. The trenching program unearthed high-grade gold results from massive pyrite and massive magnetite mineralization within an area of 375 metres long by 80 metres wide. Highlighted chip samples include: 36.3 g/t gold across 1.5 metres, 58.28 g/t gold across 1.25 metres, 14.21 g/t gold across 3.51 metres, and 10.15 g/t gold across 3.53 metres, indicating near surface high-grade sections within a gold enriched shear system.

The magnitude and orientation of the trench results support the interpretation that the JD property is the northwest extension of the Golden Crown gold system. Gold City's (now Merit's) JD and adjoining Golden Crown properties cover a 4 kilometre gold/copper system defined by drill hole intercepts, trenches, gold soil geochemical anomalies and geophysical (VLF) anomalies. The results also establish excellent potential for the discovery of gold mineralization within the untested 2.5 kilometres between the JD and Golden Crown mineralization. The Golden Crown system is strikingly similar to Rossland, BC's second largest gold camp, which produced over 2.7 million ounces of gold.

Based on the results, it is recommended to initiate a drilling and trenching program on the JD claims. Work should include a 500 metres diamond drill program (@ 15 metre centers) to test the Main and Hangingwall Shears for down dip continuity of 3 apparent high grade shoots defined by the 2004 trench program. Trenching should attempt to penetrate the ferrocrete sections in the Northwest trenches to properly sample likely mineralization below. Contingent on these results tight spaced trenching may better define a promising zone in the Northwest Trenches. Trenching should continue within the 1,000 metre long gold soil anomaly and the numerous anomalies over the 2.5 kilometres between the JD trenches and the Golden Crown massive sulfide/gold vein system.


8 References

- Beattie, M., 1990. Metallurgical Test work on Samples from the Golden Crown Deposit, for Attwood Gold Corp, October 1, 1990, by Bacon Donaldson and Associates Ltd.
- Broughton, L 1988. Metallurgical Scoping Test work Report #1, Golden Crown Project for Inlet Metals and Machining Co. Ltd., May 30, 1988, by Coastech Research Inc.
- Church, B.N., 1995. Mineral Potential of the Okanagan Similkameen Boundary Area (82E, 82L/SE, SW, 92 H/SE, NE, In Geological Fieldwork 1994, British Columbia Geological Survey Branch, Paper 1995-1.
- Church, B.N., 1996. Geological Setting and Mineralization in the Mount Attwood-Phoenix area of the Greenwood Mining Camp, BCDM Paper 1986-2.
- Church, B.N., 1997. Metallogeny of the Greenwood Mining Camp, for CIM presentation, Vancouver, Spring 1997.
- Caron, L., 1999. Summary Technical Report and Recommended 1999 Work Program, Golden Crown Property, for Century Gold Corporation, March 22.
- Caron, L., 1999. June-July 1999 Trenching Program Summary, Golden Crown Property, for Century Gold Corporation.
- Cowley, P.S., -2002. Geological Report, Winnipeg-Golden Crown Property, September 17
- Cowley, P.S., -2004. Report of Activities on the JD Claim Group, Company Report to Gold City Industries Ltd., May 6
- Ford, G., 1990. Golden Crown Project: Mineral Reserve Estimate, for Attwood Gold Corporation, October 9.
- Fyles, J.T., 1990. Geology of the Greenwood Grand Forks Area, British Columbia, NTS 82E/1,2, British Columbia Geological Survey Branch, Paper 1990-25.
- Kim, H., 1988a. Progress Report on Golden Crown Exploration Program, for Period Ending April 21, 1988, for Consolidated Boundary Exploration Ltd. and Grand Forks Mines Ltd., April 22.
- Kim, H., 1988b. Results of Phase I Exploration & Recommended Phase II Exploration Program, Golden Crown Project, for Consolidated Boundary Exploration Ltd. and Grand Forks Mines Ltd., April 30.
- Kim, H., 1988c. Final Progress Report on Phase I Underground Drilling, Golden Crown Project, for Consolidated Boundary Exploration Ltd. and Grand Forks Mines Ltd., June 23.
- Kim, H., 1988d. Results of Phase I Underground Drilling, Golden Crown Project, for Consolidated Boundary Exploration Ltd. and Grand Forks Mines Ltd., July 7.
- Kim, H., 1988e. Exploration Results of Underground Drilling, Phase I, Golden Crown Project, for Consolidated Boundary Exploration Ltd. and Grand Forks Mines Ltd., July 27.
- Kim, H., 1989a. Interim Progress Report, Golden Crown Project Phase II Exploration Program, January 5.

- Kim, H., 1989b. Results of Phase I & Phase II Exploration Programs and Recommended Phase III Exploration Program, Golden Crown Project, for Attwood Gold Corporation., June 12.
- Kim, H., 1998. Assessment and Recommended Program Winner & JD Claim Group, March.
- Little, H.W., 1983. Geology of the Greenwood Map area, British Columbia, GSC Paper 79-29.
- Makepeace, D., 2001. Geological Report, Boundary Project, for Gold City Industries Ltd., April.
- Miller, R.E., 1994. Phoenix Gold Resources Ltd. Summary Report on Phoenix Gold Claims, for Sookochoff Consultants Inc., August 31.
- MINFILE, 2001. B.C. Mineral Property Database, Geological Survey Branch Mineral Resources Division, Ministry of Energy, Mines and Petroleum Resources.
- Peatfield, G.R., 1978. Geological History and Metallogeny of the 'Boundary District', Southern British Columbia and Northern Washington, PhD Thesis, Queen's University, June.
- Robb, W., 1990. Assessment Report of the 1990 Diamond Drill Program on the Golden Crown Group, for Attwood Gold Corp., October 29, 1990. Assessment Report 20,431.
- Seraphim, R.H., 1989. Golden Crown Project, for Attwood Gold Corp., May 17.
- Sookochoff, L., 1980. 1980 Assessment Report Diamond Drilling, Crown Group, for Consolidated Boundary Exploration Ltd., November 12, 1980. Assessment Report 8482.
- Sookochoff, L., 1984a. 1983 Assessment Report Diamond Drilling, Crown Group, for Consolidated Boundary Exploration Ltd., March 27, 1984. Assessment Report 12,131.
- Sookochoff, L., 1984b. 1983 Assessment Report Geological, Geochemical and Physical, for Consolidated Boundary Exploration Ltd., April 10, 1984. Assessment Report 12,373.
- Sookochoff, L., 1986. 1985 Diamond Drill and Compilation Report, for Consolidated Boundary Exploration Ltd., January 9, 1986. Assessment Report 14,641.
- Wares, R., 1985. Report on the Golden Crown and Winnipeg Property, for Grand Forks Mines Ltd., September 15.
- Wright, F., 2004. Process Research Associates Ltd. for Gold City Industries Ltd., April 2004.

APPENDIX I

GEOCHEMICAL RESULTS

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-540

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

29-Jun-04

ATTENTION: Paul Cowley

No. of samples received: 22 Sample type: Rock **Project #: JD Shipment #: 1** Samples submitted by: A. Raven

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
1	J-04RR 01	10.4	0.303			
5	J-04RR 05	2.33	0.068			
6	J-04RR 06	2.43	0.071			
8	J-04RR 08	8.15	0.238			
9	J-04RR 09	1.62	0.047			
11	J-04RR 11	4.24	0.124			
12	J-04RR 12	3.46	0.101			
13	J-04RR 13	1.14	0.033			
19	J-04RR 19	4.13	0.12	40.8	1.19	
20	J-04RR 20	1.08	0.03			
QC DATA:	<u>.</u>					
Repeat:	=					
6	J-04RR 06	2.43	0.07			
19	J-04RR 19			40.6	1.18	
Standard:						
SP17		18.9	0.551			

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk XLS/04

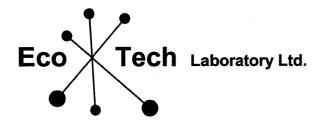
ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6

3

ATTENTION: Paul Cowley


No. of samples received: 22 Sample type: Rock **Project #: JD Shipment #: 1** Samples submitted by: A. Raven

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	V	w	Y	Zn
1	J-04RR 01	>1000	7.2	0.38	535	<5	5	0.08	<1	226	110	212	>10	30	0.47	<1	13 < 0.01	89	350	318	20	<20	1 <0.01	<10	13	<10	2	212
2	J-04RR 02	280	0.7	2.17	105	30	<5	0.64	4	137	120	826	7.31	30	2.20	396	2 0.05	115	720	98	<5	<20	7 0.36	<10		<10	20	1519
3	J-04RR 03	250	0.4	2.35	25	20	<5	1.16	8	49	134	528	4.59	20	2.83	376	<1 0.05	62	1290	16	<5	<20	20 0.04	<10	131	<10	12	456
4	J-04RR 04	145	0.3	2.38	65	15	<5	2.59	<1	84	201	418	6.75	20	3.17	433	2 0.06	156	1080	14	-	<20	29 0.22	<10		<10	8	90
5	J-04RR 05	>1000	2.3	0.61	275	<5	5	0.15	<1	229	124	56	>10	30	0.77	<1	70 <0.01	125	610	88	<5	<20	<1 <0.01	<10	34	<10	2	304
6	J-04RR 06	>1000	3.7	2.83	285	30	<5	4.38	20	59	199	178	7. 4 7	20	2.86	1764	<1 0.01	133	1130	92		<20	27 0.03	<10		<10	5	980
7	J-04RR 07	40	<0.2	4.51	35	30	<5	4.33	<1	58	270	139	8.46	20	5.79	1438	<1 0.03	359	1400	26	-	<20	59 0.06	<10		<10	7	167
8	J-04RR 08	>1000	3.2	1.12	430	5	<5	1.39	<1	390	143	238	>10	30	1.39	73	125 0.01	135	600	214	-	<20	18 <0.01	<10		<10	3	186
9	J-04RR 09	>1000	1.2	2.12	155	25	<5	2.13	<1	125	179	481	8.95	30	2.23	412	190 0.01	123	1090	22		<20	21 <0.01	<10		<10	5	106
10	J-04RR 10	55	<0.2	2.78	20	30	<5	2.34	<1	68	199	195	4.54	20	2.93	762	<1 0.07	74	1220	20	<5	<20	70 0.03	<10	157	<10	10	66
11	J-04RR 11	>1000	1.3	0.90	440	<5	<5	0.51	<1	428	165	141	>10	90	0.98	<1	16 <0.01	94	1180	22	<5	<20	3 0.02	<10	53	<10	6	52
12	J-04RR 12	>1000	2.4	2.43	170	15	<5	4.11	<1	63	168	3149	7.56	20	2.18	1274	<1 0.01	162	630	40	<5	<20	44 <0.01	<10	99	<10	5	138
13	J-04RR 13	>1000	0.8	1.24	450	20	<5	3.64	12	83	100	63	9.03	20	1.30	1096	<1 <0.01	96	470	182	<5	<20	99 <0.01	<10	33	<10	6	652
14	J-04RR 14	305	0.9	0.75	210	20	<5	0.11	<1	188	88	1269	6.63	10	0.69	<1	27 0.03	65	460	2	<5	<20	3 < 0.01	<10	42	<10	3	25
15	J-04RR 15	995	3.6	0.58	590	<5	<5	0.05	<1	574	139	887	>10	30	0.58	<1	138 0.02	117	680	4	<5	<20	9 0.02	<10	48	<10	4	28
16	J-04RR 16	90	0.2	1.86	25	30	<5	0.92	<1	123	39	777	5.18	30	1.95	581	<1 0.04	27	3080	36	<5	<20	1 0.12	<10	53	<10	14	113
17	J-04RR 17	355	1.1	2.11	35	35	<5	1.49	<1	145	54	2960	5.24	40	2.13	786	7 0.03	37	2640	30	<5	<20	6 0.10	<10		<10	16	156
18	J-04RR 18	395	1.5	1.88	50	30	<5	0.87	<1	44	141	707	4.07	30	1.64	516	2 0.03	36	680	100	5	<20	16 <0.01	<10	73	<10	5	284
19	J-04RR 19	>1000	>30	2.76	440	15	<5	0.66	<1	92	161	2369	>10	50	2.88	369	23 0.02	148	1600	1504	30	<20	7 0.10	<10	66	<10	10	509
20	J-04RR 20	>1000	1.4	2.23	90	40	<5	1.35	<1	73	160	169	5.35	30	2.27	528	6 0.04	82	1380	216	<5	<20	36 0.04	<10	79	<10	11	106
21	J-04RR 21	195	0.6	1.25	75	40	<5	0.39	<1	75	98	475	4.48	20	1.13	171	4 0.02	47	950	14	<5	<20	10 0.01	<10	56	<10	5	37
22	J-04RR 22	110	<0.2	1.60	35	45	<5	0.96	<1	31	138	160	3.73	30	1.65	331	1 0.04	64	1080	16	<5	<20	26 0.04	<10	68	<10	8	36
<u>QC DAT</u> Resplit:	<u>A:</u>																											
1	J-04RR 01	>1000	7.2	0.38	500	<5	<5	0.08	<1	235	102	181	>10	30	0.45	<1	9 <0.01	93	300	308	10	<20	2 <0.01	<10	13	<10	2	212
Repeat:																												
1	J-04RR 01	>1000	7.2	0.39	515	<5	10	0.08	<1	230	112	204	>10	30	0.46	<1	14 <0.01	90	350	328	15	<20	<1 <0.01	<10	13	<10	2	217
4	J-04RR 04	160	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	·	-	-	-	-	-
10	J-04RR 10	60	<0.2	2.82	15	30	<5	2.44	<1	69	206	198	4.70	20	2.96	783	<1 0.07	75	1290	24	<5	<20	70 0.03	<10	159	<10	11	70
Standard GEO '04	d:	145	1. 4	1.65	50	145	<5	1.61	<1	19	61	87	3.48	10	0.92	608	<1 0.03	32	640	20	<5	<20	46 0.11	<10	61	<10	9	76

JJ/jm df/541 XLS/04

ECO TECH DABORATORY LTD. Jutta Jealeuse B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

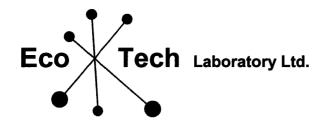
CERTIFICATE OF ASSAY AK 2004-541 R

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

13-Sep-04

ECO TECH LABORATORY LTD.

Jutta Jealouse


B.C. Certified Assayer

ATTENTION: Paul Cowley

No. of samples received: 33 Sample type: Rock **Project #: JD Shipment #: 1** Samples submitted by: A. Raven

		Au	Au	Cu	Ag	Ag	Pb	•
<u> </u>	Tag #	<u>(g/t)</u>	(oz/t)	(%)	(g/ť)	(oz/t)	(%)	
1	13856	19.4	0.566					
7	13868	6.43	0.188		70.0		4.00	
8 9	13869	28.1	0.819	·	70.6	2.06	1.38	
9	13870	7.16	0.209	1.14				
11	13875	16.1	0.470	1.20	46.5	1.36		
13	13877	6.01	0.175					
14	13878	7.40	0.216					
17	13904	3.14	0.092					
19	13906	1.21	0.035					
20	13907	7.01	0.204					
21	13908	1.32	0.038					
22	13915	1.91	0.056					
24	13918	9.61	0.280					
25	13919	1.99	0.058					
26	13920	34.9	1.018	7.31	58.7	1.71		
27	13921	2.76	0.080					
29	13923	3.33	0.097					
32	13932	1.27	0.037					
QC DATA:								
Repeat:								
25	13919	2.05	0.060					
Standard:		.	0.045					
SN16		8.40	0.245				-	
CU106				1.44		and I	$\langle \rangle$	
					St. St.	h h		
					ſ	$\backslash A I $	7	

JJ/kk/jm XLS/04

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-541

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

۰.

~

29-Jun-04

ATTENTION: Paul Cowley

No. of samples received: 33 Sample type: Rock **Project #: JD Shipment #: 1** Samples submitted by: A. Raven J

Samples Suc	cont c	120 we						
ET #.	Tag #	e [.] M ^{ML} Au (g/t)	Au (oz/t)	Cu (%)	Ag (g/t)	Ag (oz/t)	Pb (%)	
<u> </u>	13868	19.4	0.566	(70)	(3)	(0=0/		_
7	13868	6.43	0.188					
8	13869	28.1	0.819		70.6	2.06	1.38	
8 9	13870	7.16	0.209	1.14				
11	13875	16.1	0.470	1.20	46.5	1.36		
13	13877	6.01	0.175					
14	13878	7.40	0.216					
17	13904	3.14	0.092					
19	13906	1.21	0.035					
20	13907	7.01	0.204					
21	13908	1.32	0.038					
22	13915	1.91	0.056					
24	13918	9.61	0.280					
25	13919	1.99	0.058					
26	13920	34.9	1.018	7.31	58.7	1.71		
27	13921	2.76	0.080					
29	13923	3.33	0.097					
32	13932	1.27	0.037					
QC DATA:								
Repeat:								
25	13919	2.05	0.060					
Standard:								
SN16		8.40	0.245					
CU106		0.10	0.2.0	1.44		\frown	\frown	
00,00								
					/	A		
					1	AND	-1	

JJ/kk/jm XLS/04 ECØT

Jutta Jealouse

B.C. Certified Assaver

ABORATORY LTD.

29-Jun-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6

3

.

ATTENTION: Paul Cowley

No. of samples received: 33 Sample type: Rock **Project #: JD Shipment #: 1** Samples submitted by: A. Raven

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	<u>Sr Ti%</u>	U	V	w	Y Z	Zn
1	13856	>1000	2.0	0.04	55	<5	<5	0.02	<1	220	97	13	>10	30	0.18	<1	<1	< 0.01	45	30	<2	<5	<20	1 <0.01	<10	2	<10	1 '	10
2	13857	445	0.4	0.14	30	25	<5	0.03	<1	35	119	167	1.61	50	0.04	<1	16	0.06	26	40	2	<5	<20	4 <0.01	<10	<1	<10	2	9
3	13858	305	0.5	0.21	50	20	<5	0.05	2	89	109	19	3.90	10	0.08	<1	20	0.02	52	20	44	5	<20	2 0.01	<10	5	<10	3 '	14
4	13859	655	1.1	0.09	85	<5	<5	0.03	<1	525	127	25	>10	20	0.20	<1	<1	<0.01	114	50	<2	<5	<20	<1 <0.01	<10	<1	<10	1 1	16
5	13860	175	0.4	0.65	110	10	<5	0.11	<1	361	88	46	>10	20	0.71	117	11	0.02	69	120	<2	<5	<20	8 <0.01	<10	22	<10	2 (57
6	13861	40	<0.2	1.38	10	50	<5	0.12	<1	22	118	66	2.75	20		247	-	0.03		150	14	-	<20	8 0.02			<10		48
7	13868	>1000	9.1	1.70	4765	<5	<5	0.68	<1	240	164	2599	>10	50	1.79	<1	495	<0.01	289	2870	166	30	<20	1 0.05	<10	107	<10	6 37	73
8	13869	>1000	>30	1.18	>10000	<5	<5	0.33	<1	174	172	7528	>10	30	1.22	<1	2043	<0.01	166	2310	>10000	85	<20	1 <0.01	<10	106	<10	<1 350	ງ3
9	13870	>1000	13.7	1.03	290	<5	<5	0.76	<1	171	129	>10000	>10	70	1.35	<1	2821	0.01	252	4260	30	<5	<20	<1 0.01	<10	99	<10	4 22	27
10	13872	235	0.9	1.89	30	15	<5	7.90	<1	14	146	505	4.15	20	2.11	1017	58	<0.01	68	1010	46	<5	<20	194 <0.01	<10	92	<10	14	72
11	13875	>1000	>30	2.01	1655	5	<5	0.77	<1	146	160	>10000	>10	80	1.89	119	181	<0.01	127	3510	1176	45	<20	3 <0.01	<10	99	<10	15 69	95
12	13876	930	1.4	3.21	90	15	<5	0.40	<1	72	255	1219	8.62	30	3.38	291	2	<0.01	99	1500	102	<5	<20	<1 0.02	<10	141	<10	6 22	20
13	13877	>1000	4.9	1.99	395	5	<5	0.11	<1	362	217	2386	>10	50	2.08	116	146	<0.01	194	360	80	5	<20	2 0.01	<10	133	<10	8 26	30
14	13878	>1000	17.1	1.08	285	<5	<5	0.04	<1	643	128	8284	>10	50	1.36	<1	29	<0.01	597	380	8	5	<20	<1 <0.01	<10	97	<10	4 1:	39
15	13879	910	4.7	2.19	225	<5	<5	0.07	<1	383	126	3081	>10	20	2.23	199	17	<0.01	189	330	36	<5	<20	<1 <0.01	<10	108	<10	4 14	42
16	13903	65	0.2	1.93	10	35	<5	1.81	<1	25	157	146	3.23	10	2.48	378	3	0.09	92	1360	20	<5	<20	26 0.23	<10	20	<10		33
17	13904	>1000	2.1	3.15	115	25	<5	0.78	<1	107	237	1254	>10	30	4.34	481	11	0.02	89	1940	22	<5	<20	10 0.13	<10	106	<10	12 1	70
18	13905	210	0.3	2.41	75	25	<5	3.14	<1	54	121	261	5.02	20	3.23	557	<1	0.06	78	1780	20	<5	<20	29 0.19	<10	49	<10		58
19	13906	>1000	0.7	2.89	150	15	<5	0.59	1	158	149	423	>10	30	3.43	1095	26	<0.01	101	1640	68	10	<20	5 0.01	<10	149	<10	930	J7
20	13907	>1000	19.3	1.36	480	<5	<5	0.62	<1	302	165	683	>10	40	1.58	127	64	<0.01	108	1200	192	45	<20	3 0.01	<10	61	<10	5 48	82
21	13908	>1000	2.6	1.78	55	20	<5	0.39	1	88	126	1261	6.37			273		0.02		690	26		<20	7 <0.01			<10		57
22	13915	>1000	0.5	1.21	490	5	<5	1.59	<1	401	169	117	>10	130	1.50	101	74	<0.01	98	570	12	10	<20	13 <0.01	<10	69	<10	8	70
23	13916	240	0.2	2.59	110	10	<5	2.50	<1	264	172	107	>10	20	3.11	506	4	0.02	151	650	24	<5	<20	47 <0.01	<10	107	<10	6 (69
24	13918	>1000	14.1	2.27	415	<5	<5	0.50	<1	117	135	8320	>10	80	2.15	<1	6	<0.01	179	2000	18	<5	<20	9 0.02	<10	118	<10	9 1	58
25	13919	>1000	3.5	0.18	85	<5	<5	0.42	<1	43	122	3045	>10	70	0.54	<1	358	0.02	56	2010	<2	10	<20	<1 0.02	<10	32	<10	<1 :	39
26	13920	>1000	>30	0.64	4625	15	<5	0.26	<1	167		>10000	>10	40		<1	•			>10000	70		<20	5 <0.01				<1 1	
27	13921	>1000	3.0	2.06	2480	30	<5	0.43	6	30	114	4083	6.15	40		343	3	0.02		1150	338	10	<20	3 0.02	<10	55	<10	980	
28	13922	160	0.8	2.33	60	30	<5	0.76	<1	46	50	1679	6.17	40	1.88	421	<1	0.03	18	3030	48	<5	<20	6 0.02	<10	98	<10	10 14	45
29	13923	>1000	3.2	2.30	335	20	<5	0.63	<1	60	50	1757	8.09	40	1.55	445	7	0.03	25	2780	486	<5	<20	5 0.02	<10	80	<10	930	00
30	13924	200	<0.2	2.45	40	35	<5	2.13	<1	24	46	61	8.36	40	1.82	251	<1	0.06	16	2860	24	10	<20	38 0.05	<10	119	<10	13 (64
31	13925	650	0.4	2.19	30	45	<5	1.36	<1	32	52	671	8.48	50		229	<1			2610	18		<20	22 0.07					97
32	13932	>1000	2.6	0.35	75	15	<5	0.18	<1	129	72	145	6.15	10	0.29	<1	4	0.05			88		<20	8 <0.01					42
33	13933	880	0.4	2.42	235	30	<5	0.15	<1	99	46	387	5.37	20	2.21	632	<1	0.03	28	490	44	<5	<20	3 0.02	<10	33	<10	8 14	48

ICP CERTIFICATE OF ANALYSIS AK 2004-451

ECO TECH LABORATORY LTD.


.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	źn
<u>QC DATA:</u> Resplit:																						•								
1	13856	>1000	2.0	0.04	60	<5	5	0.02	<1	220	102	13	>10	30	0.18	<1	<1 ·	<0.01	44	20	<2	<5	<20	1	<0.01	<10	1	<10	<1	14
Repeat:																														
1	13856	>1000	2.0	0.04	55	<5	<5	0.02	<1	233	103	14	>10	30	0.20	<1	<1 ·	<0.01	46	20	<2	<5	<20	2	<0.01	<10	2	<10	<1	10
10	13872	260	0.9	1.87	35	15	<5	7.94	<1	14	147	517	4.19	10	2.08	1017	58 ·	<0.01	66	1040	44	<5	<20	192	<0.01	<10	92	<10	14	73
19	13906	>1000	0.7	2.91	140	20	<5	0.60	<1	160	152	424	>10	40	3.45	1113	29 ·	<0.01	98	1640	76	10	<20	5	0.01	<10	151	<10	10	314
Standard:																														
GEO '04		135	1.6	1.48	60	150	<5	1.62	<1	19	58	85	3.47	10	0.88	614	<1	0.02	32	690	52	<5	<20	36	0.05	<10	48	<10	8	78

ECO TECH CABORATORY LTD. Jutta Jeanouse B.C. Oprtified Assayer

JJ/kk ^{df/541} XLS/04

Page 2

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-574

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

r

12-Jul-04

ATTENTION: Paul Cowley

No. of samples received: 53 Sample type: Rock **Project #: JD Shipment #: 2** Samples submitted by: B. Laird

		Metallic A	Assay	
		Au	Au	
Et #	Tag #	(g/t)	(oz/t)	
2	13852	36.30	1.059	
11	13867	23.66	0.690	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm XLS/04

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-574

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

,

7-Jul-04

ATTENTION: Paul Cowley

No. of samples received: 53 Sample type: Rock **Project #: JD Shipment #: 2** Samples submitted by: B. Laird

		Au	Au	Ag	Ag	
Et #.	Tag #	(g/t)	(oz/t)	<u>(g/t)</u>	(oz/t)	
2	13852	38.6	1.126	35.7	1.04	
4	13854	14.3	0.417			
6 7	13862	1.11	0.032			
	13863	1.33	0.039			
11	13867	28.0	0.817			
13	13873	6.76	0.197			
16	13881	6.59	0.192			
27	13892	2.84	0.083			
28	13893	3.20	0.093			
32	13897	1.09	0.032			
34	13899	2.96	0.086			
36	13901	1.53	0.045			
38	13909	1.07	0.031			
40	13911	1.21	0.035			
46	13927	15.2	0.443			
<u>QC DATA:</u> Repeat:	·					
13	13873	6.89	0.201			
Standard:						
SN16		8.60	0.251			
SP17		18.3	0.534			

JJ/jm XLS/04

ECO TECHI LABORATORY LTD. B/C. Certified Assayer

7-Jul-04

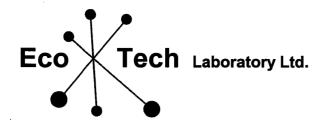
ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 53 Sample type: Rock **Project #: JD Shipment #: 2** Samples submitted by: B. Laird

Values in ppm unless otherwise reported


Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	V W	Y	Zn
1	13851	585	1.6	2.38	85	10	<5	5.78	12	59	137	171	4.59	<10	2.86	955	3 0.03	126	1060	454	<5	<20	164 < 0.01	<10	103 <10	10	819
2	13852	>1000	>30	0.29	2005	<5	35	0.16	<1	105	86	369	>10	10	0.41	<1	357 <0.01	41	2360	1298	90	<20	25 <0.01	<10	33 <10	4	724
3	13853	910	1.5	0.84	160	<5	<5	0.42	3	26	34	148	3.78	<10	0.69	190	48 <0.01	36	1310	84	5	<20	2 <0.01	<10	22 <10	5	358
4	13854	>1000	10.3	0.09	340	<5	<5	0.03	<1	284	81	161	>10	30	0.21	<1	52 < 0.01	115	270	74	10	<20	2 <0.01	<10	5 <10	3	233
5	13855	225	0.8	2.80	25	5	<5	3.13	9	79	108	514	6.16	20	3.50	770	1 0.04	81	1060	34	<5	<20	41 0.10	<10	144 <10	12	533
6	13862	>1000	1.2	0.36	135	<5	<5	0.58	<1	186	95	31	>10	20	0.51	<1	208 <0.01	139	770	2	<5	<20	<1 <0.01	<10	14 <10	5	23
7	13863	>1000	1.2	0.56	235	<5	<5	0.19	<1	535	123	303	>10	20	0.74	<1	5 < 0.01		610	18	-	<20	2 < 0.01	<10	30 <10	4	47
8	13864	180	0.6	1.42	55	<5	<5	0.65	<1	204	151	433	9.21	20	1.83	717	6 0.02		480	6	-	<20	7 0.02	<10	77 <10	9	116
9	13865	10	0.4	1.24	15	10	<5	0.70	-1	61	78	89	3.46	20	1.40	472	3 0.02		180	10	-	<20	<1 <0.01	<10	41 <10	8	83
10	13866	120	0.8	1.73	55	35	<5	0.26	<1	21	108	176	3.75	20	1.70	259	2 0.03		520	20	<5	<20	8 0.03	<10	68 <10	6	84
11	13867	>1000	27.1	0.86	1905	<5	<5	0.32	<1	407	145	3392	>10	80	1.31	<1	136 <0.01	230	1150	70	20	<20	14 0.02	<10	83 10	15	396
12	13871	360	3.2	3.14	160	15	<5	5.31	<1	64	143	1776	7.81	20	3.16	687	35 < 0.01			38		<20	240 < 0.01	<10	142 <10	19	73
13	13873	>1000	17.6	1.99	590	<5	<5	0.17	<1	511	212	9858	>10	40	2.26	18	69 < 0.01			112	<5	<20	3 0.01	<10	113 10	8	203
14	13874	575	1.1	1.69	70	50	<5	0.36	<1	202	110	1031	3.39	20	1.83	2999	26 < 0.01			140	<5	<20	2 < 0.01	<10	68 <10	7	134
15	13880	700	1.3	2.99	95	35	<5	0.47	<1	175	294	145	9.91	20	3.52	3057	<1 <0.01	210	1240	86	<5	<20	13 <0.01	<10	137 <10	13	259
16	13881	>1000	3.5	0.62	300	<5	10	0.29	<1	313	137	55	>10	30	0.76	<1	115 <0.01	130	1330	156	-	<20	2 <0.01	<10	29 <10	7	61
17	13882	715	1.9	0.37	215	95	25	0.14	<1	112	129	54	>10	70	0.47	<1	65 0.05	5 27	3140	130	<5	<20	220 <0.01	<10	68 <10	2	29
18	13883	185	1.2	3.49	80	25	<5	0.41	<1	290	265	619	>10	70	3.56	970	3 0.01			26	-	<20	9 <0.01	<10	176 <10	15	121
19	13884	205	0.7	2.74	135	35	<5	0.59	<1	113	185	1116	>10	30	3.05	766	8 0.03			20	-	<20	18 0.07	<10	142 <10	16	284
20	13885	505	1.6	1.73	275	<5	<5	0.46	1	212	133	676	>10	60	2.25	274	60 <0.01	66	1040	4	10	<20	19 0.02	<10	138 <10	19	325
21	13886	570	0.6	2.59	20	15	<5	0.94	<1	80	139	271	6.45	30	2.85	604	<1 0.06	6 48	1200	22	<5	<20	21 0.12	<10	130 <10	12	87
22	13887	350	1.5	0.22	580	145	35	0.13	1	28	71	134	>10	30	0.20	<1	195 0.01	21	1420	134	20	<20	32 0.11	<10	26 10	5	205
23	13888	70	0.3	2.59	40	20	10	2.79	<1	60	231	34	5.30	20	3.68	665	<1 0.05	5 168	1070	26	<5	<20	34 0.09	<10	99 <10	5	55
24	13889	285	0.9	2.00	65	20	5	0.48	<1	197	137	286	>10	50	2.37	633	10 0.02	2 78	640	18	<5	<20	16 0.09	<10	84 <10	10	221
25	13890	240	0.8	2.36	95	5	<5	5.62	<1	118	146	541	7.19	20	2.67	841	3 0.01	125	600	22	<5	<20	58 <0.01	<10	84 <10	8	85
26	13891	120	0.7	2.30	55	15	5	1.96	<1	153	121	215	7.44	40	2.60	489	<1 0.04	113	1350	20	<5	<20	12 <0.01	<10	133 <10	11	99
27	13892	>1000	1.7	0.08	150	20	15	0.03	<1	384	97	22	>10	60	0.21	<1	8 < 0.01	33	80	<2	<5	<20	3 <0.01	<10	2 <10	<1	25
28	13893	>1000	1.7	0.09	130	90	15	0.02	<1	372	89	23	>10	160	0.23	<1	14 <0.01	37	50	<2	20	<20	2 <0.01	<10	2 <10	1	21
29	13894	120	2.1	0.32	50	120	<5	0.09	1	16	111	38	2.38	40	0.07	<1	48 0.01	7	80	228	15	<20	3 <0.01	<10	4 <10	3	71
30	13895	80	0.9	2.38	25	45	<5	0.54	4	156	62	478	8.38	100	2.12	524	12 0.04	l 39	1240	32	5	<20	<1 <0.01	<10	97 20	30	425
31	13896	75	0.3	1.31	15	30	<5	0.10	<1	33	114	363	3.38	20	1.06	154	9 0.07	24	270	20	10	<20	4 <0.01	<10	42 <10	5	46
32	13897	>1000	6.9	0.49	755	<5	<5	0.20	<1	562	126	6513	>10	40	0.59	<1	50 < 0.01			<2		<20	3 < 0.01	<10	29 <10	2	24
33	13898	200	0.8	1.48	145	15	<5	0.05	<1	135	125	1097	8.01	50	1.27	58	16 0.03	3 42	240	12	10	<20	2 <0.01	<10	75 20	4	34
34	13899	>1000	6.1	0.10	910	5	<5	0.03	<1	647	170	695	>10	50	0.21	<1	24 < 0.0 ⁻		120	<2	<5	<20	3 0.01	<10	5 <10	3	12
35	13900	280	3.0	0.31	250	20	<5	0.04	<1	104	64	159	4.41	20	0.15	<1	26 0.03	3 39	340	6	<5	<20	6 0.03	<10	13 <10	5	8

.

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	<u>`Zn</u>
36	13901	>1000	3.7	0.13	335	<5	<5	0.03	<1	483	127	2254	>10	20	0.21	<1	96	< 0.01	75	290	2	<5	<20	5	0.01	<10	8	<10	5	14
37	13902	75	0.3	3.29	15	20	<5	3.19	<1	52	235	260	5.74	10	3.35	807	<1	0.13	92	1350	28	<5	<20	80	0.09	<10	149	<10	11	52
38	13909	990	0.9	2.25	55	<5	<5	2.09	<1	34	177	537	5.13	30	2.00	602	7	0.04	95	380	26	<5	<20	21	<0.01	<10	79	<10	6	123
39	13910	345	0.5	2.14	115	10	<5	3.87	<1	45	168	30	5.93	<10	1.75	1147	<1	0.02	111	430	48	<5	<20	30	<0.01	<10	67	<10	7	251
40	13911	>1000	1.3	1.89	595	<5	5	2.82	18	157	154	103	>10	20		1407	5	<0.01	116	690	212	<5	<20	58	< 0.01	<10	54	<10	12	1077
41	13912	120	0.6	1.14	30	25	<5	0.39	<1	21	88	171	2.52	<10	1.17	183	5	0.02	37	300	40	5	<20		<0.01	<10	24	<10	4	60
42	13913	10	0.3	2.24	10	40	<5	0.43	<1	39	205	101	4.71	20	2.59	367	3	0.04	67	570	22	<5	<20	14	0.01	<10	78	<10	5	57
43	13914	30	0.3	3.14	15	35	<5	3.77	<1	26	297	112	4.26	20	4.12	589	<1	0.05	90	1470	30	<5	<20	95	0.08	<10	122	<10	15	47
44	13917	870	1.3	1.86	90	10	<5	0.71	<1	65	69	669	5.91	30	2.15	373	7	0.03	31	2380	20	<5	<20	2	0.08	<10	70	<10	14	71
45	13926	155	0.7	1.04	15	20	<5	0.22	<1	73	82	242	4.32	<10	0.97	214	4	0.05	13	520	12	<5	<20	6	<0.01	<10	27	<10	4	40
	10020	Ve,																												
46	13927	>1000	3.0	0.97	110	<5	<5	0.12	<1	311	96	307	>10	30	0.74	107	12	0.06	70	410	50	<5	<20	13	<0.01	<10	33	<10	6	43
47	13928	50	0.5	2.06	30	55	<5	0.97	<1	34	58	119	3.86	10	2.35	225	5	0.07	17	560	32	<5	<20	16	0.04	<10	29	<10	6	35
48	13929	155	0.5	2.29	40	35	10	2.79	<1	37	62	35	4.29	30	2.51	405	6	0.05	23	2570	24	<5	<20	50	0.07	<10	63	<10	14	47
49	13930	60	0.5	2.34	10	30	<5	0.73	<1	24	155	84	4.41	30	2.37	431	1	0.03	75	1450	26	<5	<20	13	0.02	<10	71	<10	9	41
50	13931	240	0.9	1.52	30	10	<5	0.34	<1	128	111	112	6.61	20	1.66	367	3	0.03	68	1100	26	<5	<20	5	0.01	<10	64	<10	13	61
51	13934	50	0.5	3.72	10	95	<5	1.46	<1	42	312	320	5.53	<10	4.44	602	<1	0.07	203	1320	34	<5	<20	24	0.11	<10	126	<10	7	57
52	13935	865	1.1	1.20	235	<5	<5	0.07	<1	253	221	355	>10	10	1.38	<1	63	0.02	141	820	6	<5	<20	11	0.03	<10	83	<10	8	42
53	E05982	160	0.8	4.52	20	30	10	3.08	<1	65	232	108	8.68	10	5.67	1502	<1	0.03	257	1530	50	<5	<20	37	0.06	<10	137	<10	8	119
QC DATA: Resplit:																														
1 1	13851	495	1.6	2.35	75	20	<5	6.36	10	68	135	172	4.75	30	2.93	964	3	0.02	134	1240	472	<5	<20	175	<0.01	<10	101	<10	12	734
36	13901	>1000	3.9	0.15	355	<5	<5	0.04	<1	521	157	2318	>10	30	0.24	-304 <1	-	< 0.02	84	320	4/2	-5	<20	3	0.01	<10		<10	6	15
50	10001	-1000	0.5	0.15	555	-0	-0	0.04	~1	521	157	2010	-10	30	0.24		/4	-0.01	04	320	-	5	~20	3	0.01	10	0	10	0	15
Repeat:																														
1	13851	495	1.6	2.39	80	<5	<5	5.86	11	61	138	171	4.62	<10	2.86	958	2	0.02	127	1090	460	<5	<20	161	<0.01	<10	103	10	11	822
3	13853	960	-		-	-	-	-		-	-		-	-	-	-	-	-				-		-		-	-	-		
10	13866	130	0.7	1.67	45	35	<5	0.25	<1	21	105	169	3.65	20	1.67	248	2	0.03	59	530	22	<5	<20	7	0.03	<10	64	<10	7	82
14	13874	490	-	-	-	-	-	-	-			-	-		-		_	-	-	-		-			-	-	-	-	-	-
19	13884	200	0.7	2.77	105	85	<5	0.62	2	120	188	1149	>10	30	3.21	739	8	0.03	103	1530	32	10	<20	16	0.08	<10	135	<10	17	281
21	13886	620	-			-	-	-	-					-	-			0.00			-		-20		0.00	-		-		
36	13901	>1000	3.7	0.13	350	<5	<5	0.03	<1	505	130	2321	>10	20	0.22	<1	94	<0.01	79	320	4	<5	<20	3	0.01	<10	8	<10	5	14
44	13917	820	-	-	-	-		5.00		-			- 10	20	J.22			-0.01			- -	-0	-20	-	0.01	- 10	5		-	
52	13935	860	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
52	10000	000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard:																														
GEO '04		140	1.6	1.44	60	145	<5	1.57	<1	19	54	85	3.28	10	0.91	603	<1	0.02	29	720	22	<5	<20	54	0.07	<10	55	<10	8	71
GEO '04 GEO '04		145	1.6	1.47	65	145	<5	1.59	<1	19	55	85	3.33	10	0.91	613	<1	0.02	29	750	20	-	<20	47	0.07	<10		<10	8	73
010 04		140	1.0	1.77	00	140	-0	1.00		10		00	0.00	10	0.32	010	-	0.02	23	750	20	-0	~20	4/	0.07	~10	00	-10	0	13

ECO TEOF LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm _{df/574} XLS/04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-749

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 52 Sample type: Rock/Core **Project #:JD Shipment #: 3** Samples submitted by: B. Laird

	-	Au	Au	Ag	Ag	Cu	Pb	
Et #	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
1	13937	14.5	0.423					
2	13938	19.0	0.554	32.8	1.0			
2 3	13939	7.31	0.213					
4	13940	0.34	0.010					
5	13941	0.83	0.024					
6	13942	8.43	0.246					
7	13948	0.13	0.004					
8	13950	0.12	0.003					
9	13952	1.08	0.031					
10	13953	3.52	0.103					
11	13956	3.34	0.097					
12	13957	0.11	0.003					
13	13960	0.84	0.024					
14	13961	< 0.03	<0.001					
15	13963	3.88	0.113					
16	13964	2.07	0.060					
17	13965	0.03	0.001					
18	13969	2.25	0.066					
19	13970	35.2	1.027	42.6	1.2			
20	13976	0.05	0.001					

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

26-Jul-04

•

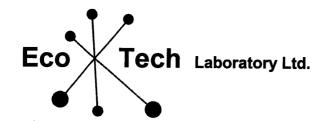
,

26-Jul-04

•

Et #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	Pb (%)	
21	13978	0.65	0.019	<u>(9'')</u>	(02/1)	(/0)	(78)	
22	13981	0.03	0.003					
23	13983	25.8	0.752	332	9.7		1.69	
23	13985	34.7	1.012	272	9.7 7.9		3.62	
25	13986	10.5	0.306	212	1.5		5.02	
26	13987	7.89	0.230					
27	13988	34.0	0.992	48.7	1.4			
28	13989	0.04	0.001	-10.1	1.4			
29	13990	23.1	0.674					
30	13992	0.25	0.007					
31	13995	8.67	0.253					
32	14008	1.07	0.031					
33	14009	0.10	0.003					
34	14010	0.14	0.004					
35	14012	0.11	0.003					
36	14013	0.26	0.008					
37	14014	13.3	0.388					
38	14022	5.86	0.171					
39	14023	0.04	0.001					
40	14026	0.12	0.003					
41	14027	9.59	0.280					
42	14032	3.53	0.103					
43	14034	0.16	0.005					
44	14042	7.36	0.215	32.5	0.9	2.22		
45	14051	49.3	1.438	88.9	2.6		1.64	
46	14056	0.18	0.005					
47	14060	5.06	0.148					
48	14062	7.06	0.206	96.4	2.8			
49	14064	0.15	0.004					
50	14066	0.18	0.005					
51	14075	16.1	0.470					
52	24602	0.12	0.003					
<u>QC DATA:</u> Resplit:								
1	13937	14.1	0.411					
36	14013	0.21	0.006					

.


26-Jul-04

Et #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	Cu (%)	Pb (%)	
Repeat:		(3' '/		(9,4)	(02/0)	(70)	(70)	
- 1	13937	13.9	0.405					
3	13939	7.31	0.213					
6	13942	8.39	0.245					
10	13953	3.46	0.101					
19	13970	37.5	1.094					
23	13983	24.8	0.723					
24	13985	39.0	1.137					
25	13986	10.3	0.300					
26	13987	8.21	0.239					
36	14013	0.21	0.006					
37	14014	13.7	0.400					
38	14022	5.95	0.174					
41	14027	9.46	0.276					
47	14060	4.85	0.141					
Standard:								
Cu106				136	4.0	1.43	0.53	
OX123		1.86	0.054	100	-1.0	1.40	0.00	
OX123		1.90	0.055					

JJ/jm XLS/04

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Eco Tech LABORATORY LTD. Page 3

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-749

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 52 Sample type: Rock/Core **Project #:JD Shipment #: 3** Samples submitted by: B. Laird

		Au	Au	
Et #.	Tag #	(g/t)	(oz/t)	
19	13970	36.3	1.059	
23	13983	24.2	0.706	
24	13985	35.8	1.045	
27	13988	36.0	1.050	
29	13990	22.3	0.650	
45	14051	38.7	1.130	
51	14075	14.3	0.417	

QC DATA:

Standard:

OX123

1.92 0.056

ECØ TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Page 1

26-Jul-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-749

GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6 .

.

•

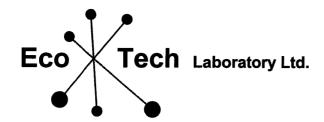
.

ATTENTION: Paul Cowley

No. of samples received: 52 Sample type: Rock/Core **Project #:JD Shipment #:3** Samples submitted by: B. Laird

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	Al %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr		Fe %		Mg %	Mn	<u>Mo Na</u>			Pb	Sb Sn		<u>Ti %</u>	U		W	Y	Zn
1	13937	21.7	0.44	2900	40	<5	0.20	<1	617	113	1074	>10	110	0.56	<1	128 <0.0		144 40		<5 <20	8	0.29	<10	19 <		:1	294
2	13938	>30	0.96	9920	45	<5	0.31	<1	97	129	3304	>10	100	0.60	319	305 <0.		78 108		25 <20	29	0.29	<10	54 <			648
3	13939	7.4	0.61	3960	145	<5	0.13	<1	96	101	609	>10	80	0.36	<1	402 0.		42 37		5 <20	11	0.20	<10			-	188
4	13940	0.8	0.28	365	45	<5	0.03	<1	39	57	50	4.06	20	0.08	<1	37 <0.		34 23		<5 <20	15	0.04	<10			:1	20
5	13941	0.8	2.87	685	30	<5	0.06	<1	134	244	1120	8.78	40	2.00	195	9 <0.	.01	190 127	0 50	<5 <20	28	0.13	<10	104	10 <	:1	100
Ŭ																											
6	13942	3.7	0.41	910	45	<5	0.08	<1	180	154	903	>10	130	0.66	<1	52 0.	.03	34 59	0 166	<5 <20	25	0.33	<10			<1	42
7	13948	0.2	2.21	60	45	<5	0.07	<1	22	90	189	4.93	30	1.89	201	<1 0.	.02	52 22	0 20	<5 <20	7	0.07	<10	74 <		2	47
8	13950	0.4	2.46	450	45	<5	0.16	<1	83	176	826	>10	60	2.63	97	50.	.03	105 87	0 26	<5 <20	7	0.18	<10	132 <			145
q	13952	1.0	3.48	140	45	<5	0.62	<1	106	221	191	9.72	50	4.18	1453	14 0.	.01	125 149	0 32	<5 <20	11	0.14	<10	144 <	10	-	271
10	13953	4.6	1.12	450	20	5	0.19	22	332	164	242	>10	80	1.56	<1	51 <0.	.01	129 77	0 254	<5 <20	<1	0.22	<10	56 <	10 <	<1 ´	1138
10	10000					-																					
11	13956	2.0	2.59	40	55	<5	0.59	5	95	157	2624	7.58	40	3.14	1929	60.	.04	72 111	0 4	<5 <20	8	0.41	<10	118 <	10 ⁻	12	217
12	13957	<0.2	1.79	15	25	<5	0.53	1	39	42	367	3.44	20	1.90	557	<1 0.	.07	25 111	0 4	<5 <20	10	0.13	<10	126 <	10	6	234
13	13960	0.7	1.30	65	20	<5	0.17	<1	123	131	1310	5.39	90	1.42	353	16 0.	.05	59 29	0 <2	<5 <20	5	0.10	<10	58 <	10	6	99
14	13961	0.2	4.86	15	75	<5	2.17	<1	56	466	52	7.74	40	7.61	1083	<1 0.	.03	286 69	0 32	<5 <20	25	0.70	<10	82 <	10 ⁻	12	201
15	13963	4.3	4.55	520	40	<5	1.91	<1	273	282	2300	>10	100	4.52	2008	<1 <0.	.01	234 78	0 130	<5 <20	18	0.34	<10	176 <	10 •	<1	617
15	10000	4.0	-1.00	020		•		-																			
16	13964	12.7	1.86	1065	55	<5	0.39	3	122	164	1114	7.84	40	1.17	1636	8 <0.	.01	151 147	0 228	20 <20	12	0.14	<10	62 <	10	6	803
17	13965	0.4	1.38	25	35	<5	0.07	<1	27	92	98	3.18	20	0.99	284	<1 0.	.02	34 16	0 4	<5 <20	5	0.04	<10	43 <	10	2	78
18	13969	2.6	4.47	480	65	<5	1.05	<1	129	350	2366	>10	80	6.44	1055	<1 0.	.02	197 60	0 44	<5 <20	34	0.25	<10	157 <	:10	5	241
19	13970	>30	1.65	830	55	<5	0.18	<1	125	203	1064	>10	90	1.72	266	444 <0.	.01	63 69	0 972	15 <20	17	0.22	<10	102 <	:10 ·	<1	667
20	13976	0.2	3.04	35	140	<5	0.95	<1	70	238	555	9.50	50	3.16	629	<1 0.	.10	122 92	0 12	<5 <20	56	0.36	<10	93 <	:10	8	98
20	10070	0.2	0.04	00		v		•																			
21	13978	1.1	2.51	340	110	<5	0.50	1	91	365	413	>10	120	2.77	463	51 <0.	.01	129 111	0 18	<5 <20	63	0.20	<10	127 <	:10	4	278
22	13981	0.2	2.26	35	90	<5	0.46	<1	48	144	116	5.88	50	2.09	345	50.	.04	67 123	0 8	<5 <20	11	0.17	<10	67 <	:10	9	54
22	13983	>30	2.16		65	<5	0.63	<1	225	251	2123	>10	200	2.26	38	139 < 0.	.01	122 103	0 >10000	290 <20	23	0.41	<10	102 <	10	17	1830
23	13985	>30	1.19		70	<5	0.48	<1	198	106	7065	>10	180	1.24	<1	218 < 0.			0 >10000	1455 <20	19	0.45	<10	36 <	:10 ·	<1	1249
24	13986	16.3		2905	100	<5	0.39	<1	473	146	480	>10	270	1.59	<1	221 < 0.		201 35	0 670	<5 <20	22	0.47	<10	59 <	:10 ·	<1	1300
20	13900	10.5	1.17	2000	100	-0	0.00																				
26	13987	8.2	0.87	2465	30	<5	0.24	<1	186	129	769	>10	120	0.94	<1	81 <0.	.01	87 26	0 1168	25 <20	10	0.22	<10	64 <	:10	15	1655
20	13988	>30	0.43		30	<5	0.23	<1	129	140	1246	>10	140	0.57	<1	49 <0.	.01	50 14	0 2774	40 <20	14	0.24	<10	43 <	:10	12 :	2129
28	13989	0.3	5.18	245	585	<5	0.48	10	728	281	3906	>10	120	5.89	7825	<1 <0.	.01	325 114	0 1198	<5 <20	18	0.36	<10	124 <	:10	10	4898
20	13990	4.3	0.74	265	55	<5	0.14	<1	56	108	312	>10	70	0.63	59	14 0.	.05	40 74	0 36	<5 <20	27	0.12	<10	59 <	:10	17	51
30	13992	0.4	1.84	35	40	<5	0.46	<1	34	146	191	4.39	40	1.80	426		.05	61 107	0 8	<5 <20	13	0.12	<10	65 <	:10	8	45
- 50	10002	0.4	1.04	00		-0	0.40																				
31	13995	3.6	0.78	275	65	<5	0.14	<1	43	113	178	>10	60	0.66	9	17 0	.02	23 9 1	0 326	<5 <20	9		<10	45 <		10	240
32	14008	1.6	1.23	350	65	<5	0.37	1	139	125	2299	>10	120	1.38	263	82 <0	.01	59 99	0 <2	<5 <20	20		<10	86 <		16	313
33	14009	<0.2	5.39	20	50	<5	3.04	2	73	353	261	9.91	60	6.58	1026	<1 0	.04	175 113	60 16	<5 <20	117	0.28	<10	207 <		7	341
34	14010	0.2	3.39	40	45	<5	0.41	<1	85	216	1123	9.03	60	4.20	566	<1 0	.04	76 99	0 6	<5 <20	14	0.16	<10	137 <		3	141
35	14012	0.9	4.37	20	75	<5	0.94	2	63	284	462	>10	70	4.83	705	<1 0	.05	105 111	0 10	<5 <20	31	0.48	<10	182 <	<10	4	162
		0.0						-	-																		


•

.

Et #.	Tag #	٨٩	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	la	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb Sn	Sr	Ti %	U	v	w	Y	Zn
the second se			3.86	30		<5	1.60	<1	58	162	305	>10	60	4.21	1059	<1	0.06	86	760	56	<5 <20	50	0.28	<10	167	<10	5	180
36	14013	0.3			85	<5 <5	0.56	<1	231	213	3391	>10	150	2.68	1369	-	<0.00	249		182	<5 <20	28	0.42	<10		<10	<1	276
37	14014	10.8	2.73	1385	90	<5 <5	0.56	<1	143	136	317	>10	140	0.90	155		<0.01		710	428	<5 <20	10	0.30	<10		<10	<1	390
38	14022	3.3	0.72	585	60	-	0.21	1	32	172	774	9.80	60	4.38	1923		<0.01		1500	20	<5 <20	20	0.17	<10		<10	7	236
39	14023	0.4	3.99	55	80	<5	0.62 3.76	•		168	394	9.00 8.04	50	4.40	846	<1	0.08		2150	42	<5 <20	78	0.29	<10		<10	6	152
40	14026	0.6	3.54	35	70	<5	3.70	<1	74	100	394	0.04	50	4.40	040	~ 1	0.00	91	2100	76	-0 -20	10	0.20				•	
41	14027	7.9	0.97	530	30	<5	0.32	23	. 372	119	2314	>10	90	1.12	<1		<0.01	109		696	<5 <20	2	0.25	<10		<10		1807
42	14032	4.2	2.50	470	60	<5	0.49	3	167	131	2389	>10	130	2.32	815	21	<0.01		1730	202	<5 <20	10	0.29	<10		<10	13	607
43	14034	0.6	1.92	15	45	<5	2.15	<1	37	189	173	7.37	40	2.08	463	<1	0.13	86	1340	10	<5 <20	65	0.53	<10		<10	11	90
44	14042	>30	3.27	495	95	<5	0.55	<1	392	137	>10000	>10	200	3.78	119	36	<0.01	162	700	276	<5 <20	27	1.16	<10		<10	4	520
45	14051	>30	1.91	2160	35	<5	1.77	63	333	250	2699	>10	110	2.22	287	<1	<0.01	124	670	>10000	<5 <20	50	0.32	<10	87	<10	<1	3904
46	14056	0.9	0.31	55	120	<5	0.02	<1	4	45	55	2.62	20	0.09	<1	13	0.05	<1	210	36	<5 <20	12	0.03	<10	8	<10	2	12
40	14060	5.0	1.36	835	105	<5	0.11	<1	121	114	1853	>10	150	1.12	<1	524	0.03	33	980	24	<5 <20	12	0.31	<10	106	<10	<1	95
48	14062	>30	2.38	470	55	<5	0.13	<1	106	171	4647	>10	90	2.13	125	36	0.02		1070	658	80 <20	8	0.30	<10	87	<10	<1	381
49	14064	0.6	2.53	25	50	<5	0.39	<1	98	162	69	6.14	60	2.81	687	<1	0.04		1740	16	<5 <20	9	0.16	<10	89	<10	5	102
49 50	14066	0.5	3.30	20	35	<5	0.55	<1	43	182	317	5.88	40	3.61	696	<1	0.04	114		10	<5 <20	11	0.12	<10	105	<10	5	57
51	14075	12.9	2.30	405	55	<5	0.23	<1	104	181	2982	>10	60	2.08	162	60	0.02		1620	156	<5 <20	10	0.22	<10	126	<10	3	140
52	24602	0.4	2.08	5	20	<5	0.69	1	97	161	251	3.60	40	2.47	492	<1	0.06		1260	8	<5 <20	15	0.09	<10	95	<10	11	144
<u>QC DA⁻ Resplit</u>																												
1	13937	20.1	0.39	2635	35	<5	0.18	<1	533	107	922	>10	90	0.48	<1	121	<0.01	128	410	2242	10 <20	5	0.23	<10	16	<10	<1	274
36	14013	0.4	4.19	35	100	<5	1.75	<1	59	185	277	>10	60	4.63	1205	<1	0.05	94	950	64	<5 <20	45	0.51	<10	194	<10	7	211
Repeat																												
1	13937	20.7	0.41	2845	30	<5	0.19	<1	629	114	1012	>10	100	0.54	<1	133	<0.01	145	410	2224	<5 <20	6	0.29	<10	18	<10	<1	297
10	13953	4.5	1.09	455	25	5	0.19	20	328	160	235	>10	80	1.53	<1	51	<0.01	128	790	238	<5 <20	<1	0.21	<10	54	<10	<1	1128
19	13970	>30	1.60	825	50	<5	0.18	<1	120	194	1070	>10	90	1.70	253	422	<0.01	61	660	950	30 <20	17	0.21	<10	98	<10	<1	650
36	14013	0.4	4.24	40	85	<5	1.77	<1	63	182	334	>10	70	4.63	1173	<1	0.06	94	840	66	<5 <20	53	0.40	<10	180	<10	6	198
Standa	rd:																											
GEO '0		1.4	1.77	65	150	<5	1.62	<1	20	63	87	3.66	<10	1.02	614	<1	0.03	33	670	24	<5 <20	56	0.09	<10	60	<10	6	72
GEO '0		1.6	1.91	70	165	<5	1.76	<1	22	69	84	3.93	<10	1.08	666	<1	0.03	35	740	22	<5 <20	60	0.08	<10	66	<10	7	73

ECO TECH LABORATORY LTD. Jutta Jealpuse B.C. Certified Assayer

JJ/jm df/749 XLS/04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-750

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 102 Sample type: Rock or Core **Project #:JD Shipment #:3** Samples submitted by: B. Laird

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	13936	0.65	0.019	
2 3	13943	0.10	0.003	
3	13944	<0.03	<0.001	
	13945	6.16	0.180	
4 5 6 7	13946	1.43	0.042	
6	13947	<0.03	<0.001	
	13949	0.59	0.017	
8	13951	<0.03	<0.001	
9	13954	2.13	0.062	
10	13955	1.04	0.030	
11	13958	<0.03	<0.001	
12	13959	0.09	0.003	
13	13962	1.34	0.039	
. 14	13966	0.32	0.009	
15	13967	19.2	0.560	
16	13968	0.04	0.001	
17	13971	3.25	0.095	
18	13972	0.14	0.004	
19	13973	0.35	0.010	
20	13974	0.07	0.002	
21	13975	0.12	0.003	
22	13977	<0.03	<0.001	
23	13979	0.04	0.001	
24	13980	4.41	0.129	
25	13982	0.18	0.005	\frown \frown
26	13984	0.80	0.023	
27	13991	0.25	0.007	() , b ()
28	13993	0.06	0.002	All et
				ECO TECH LABORATORY LTD.

23-Jul-04

Jutta Jealouse B.C. Certified Assaye

23-Jul-04

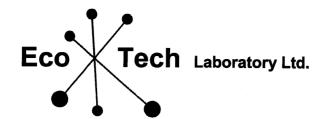
		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	· · · · · · · · · · · · · · · · · · ·
29	13994	<0.03	<0.001	
30	13996	4.61	0.134	
31	13997	<0.03	<0.001	
32	13998	0.04	0.001	
33	13999	0.49	0.014	
34	14000	6.42	0.187	
35	14001	0.05	0.001	
36	14002	<0.03	<0.001	
37	14003	<0.03	<0.001	
38	14004	0.29	0.008	
39	14005	0.17	0.005	
40	14006	<0.03	<0.001	
41	14007	<0.03	<0.001	
42	14011	<0.03	<0.001	
43	14015	<0.03	<0.001	
44	14016	0.21	0.006	
45	14017	0.11	0.003	
46	14018	0.24	0.007	
47	14019	1.39	0.041	
48	14020	14.9	0.435	
49	14021	0.15	0.004	
50	14024	0.19	0.006	
51	14025	1.08	0.031	
52	14028	0.05	0.001	
53	14029	0.29	0.008	
54	14030	0.58	0.017	
55	14031	1.51	0.044	
56	14033	1.16	0.034	
57	14035	3.77	0.110	
58	14036	0.06	0.002	
59	14037	0.18	0.005	
60	14038	< 0.03	<0.001	
61	14039	0.65	0.019	
62	14040	45.2	1.318	
63	14041	2.25	0.066	
64	14043	5.67	0.165	
65	14044	<0.03	<0.001	
66	14045	0.06	0.002	
67	14046	0.59	0.017	
68	14047	0.41	0.012	
69	14048	< 0.03	<0.001	
70	14049	1.34	0.039	
71	14050	0.03	0.001	
72	14052	< 0.03	< 0.001	
73	14053	5.20	0.152	\sim \sim
74	14054	<0.03	< 0.001	
75	14055	<0.03	<0.001	All e
				ECØ TECH LABORATORY LTD.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assaver

Eco Tech LABORATORY LTD. B.C. Certified Assayer

23-Jul-04

		Au	Au	
Et #.	Tag #	(g/t)	(oz/t)	
76	14057	<0.03	<0.001	
77	14058	<0.03	<0.001	
78	14059	0.03	0.001	
79	14061	0.14	0.004	
80	14063	<0.03	<0.001	
81	14065	3.14	0.092	
82	14067	0.29	0.008	
83	14068	<0.03	<0.001	
84	14069	10.9	0.318	
85	14070	3.26	0.095	
86	14071	0.23	0.007	
87	14072	19.1	0.557	
88	14073	0.07	0.002	
89	14074	0.08	0.002	
90	14076	0.04	0.001	
91	14077	0.15	0.004	
92	24601	0.04	0.001	
93	24603	<0.03	<0.001	
94	24604	<0.03	<0.001	
95	24605	0.06	0.002	
96	24606	0.07	0.002	
97	24607	0.92	0.027	
98	24608	1.51	0.044	
99	24609	0.04	0.001	
100	24610	0.10	0.003	
101	24611	0.10	0.003	
102	24612	<0.03	<0.001	· · ·
<u>QC DATA:</u> Resplit:				
1	13936	0.69	0.020	
36	14002	<0.03	< 0.001	
71	14050	0.09	0.003	
Repeat:				
1	13936	0.65	0.019	
6	13947	< 0.03	< 0.001	
10	13955	1.01	0.029	
15	13967	19.6	0.572	
17	13971	3.00	0.087	
19	13973	0.35	0.010	
24	13980	5.87	0.171	


ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Eco Tech LABORATORY LTD. Page 3

23-Jul-04

	Au	Au
Tag #	(g/t)	(oz/t)
13996	A 99	0.146
		0.178
		<0.001
		0.003
		0.000
		0.443
		0.443
		0.016
		0.010
		0.110
		0.171
		0.038
		0.001
		0.146
		0.152
		0.001
		0.115
		0.318
		0.094
		0.589
		0.003
24608	1.49	0.043
	1.86	0.054
		0.054
		0.054
	Tag # 13996 14000 14002 14017 14019 14020 14020 14020 14030 14035 14043 14043 14043 14043 14043 14053 14063 14065 14069 14070 14072 14074 24608	Tag #(g/t) 13996 4.99 14000 6.10 14002 <0.03 14017 0.10 14019 1.38 14020 15.2 14020 16.5 14030 0.56 14035 4.04 14043 5.86 14043 5.59 14049 1.31 14050 0.04 14053 5.02 14063 0.04 14065 3.93 14069 10.9 14070 3.22 14074 0.09

Eco Tech LABORATORY LTD. Jutta Jealouse Eco Tech LABORATORY LTD. B.C. Certified Assayer Page 4

26-Jul-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-750

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 102 Sample type: Rock or Core **Project #:JD Shipment #:3** Samples submitted by: B. Laird

		Metallic As	say	
F 4 #	To a #	Au (m/t)	Au (a=/t)	
<u> </u>	Tag #	(g/t)	(oz/t)	
62	14040	41.04	1.197	
<u>QC DATA:</u> Standard: OX123		1.92	0.056	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm XLS/04 26-Jul-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-750

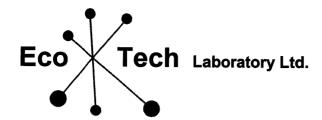
GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6 .

ATTENTION: Paul Cowley

No. of samples received: 102 Sample type: Rock or Core **Project #:JD Shipment #:3** Samples submitted by: B. Laird

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %_	As	Ва	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %		Mg %	Mn	Мо	<u>Na %</u>	Ni	P	Pb		Sn		Ti %	U	<u>v v</u>		Zn
1	13936	7.8	2.22	600	40	<5	0.45	<1	117	203	4378	9.34	70	1.55	1457	18	0.01	197	1560	244		<20	30	0.21	<10	86 <10		444
2	13943	0.4	4.45	100	80	<5	0.45	4	100	325	950	8.33	50	5.29	1035	<1	0.03		1250	36		<20	12	0.37	<10	154 <10		359
3	13944	<0.2	5.71	90	65	<5	0.67	3	80	514	272	>10	70	6.46	1083	<1	0.02	363	1280	42	-	<20	27	0.17	<10	210 <10		481
4	13945	4.2	0.32	1055	35	<5	0.06	<1	145	152	337	>10	100	0.47	<1	127	0.03	38	770	58		<20	16	0.21	<10	58 <1		135
5	13946	1.5	2.36	735	30	<5	0.44	<1	243	172	1022	>10	70	2.39	190	<1	0.05	118	570	22	<5	<20	18	0.37	<10	74 <1) <1	155
6	13947	<0.2	4.89	55	110	<5	0.51	2	99	345	1154	9.44	60	5.31	1010	<1	0.03	246	1460	14		<20	20	0.22	<10	176 <1		321
7	13949	0.2	3.45	75	85	<5	0.22	<1	36	195	609	7.79	50	3.57	280	<1	0.03	110	640	16		<20	9	0.23	<10	130 <1		104
8	13951	<0.2	4.04	<5	130	<5	3.06	<1	56	257	301	8.54	50		1187	<1	0.08	136	1830	16		<20	75	0.65	<10	142 <1		87
9	13954	0.8	2.10	55	30	<5	1.40	<1	98	242	1040	5.93	30	2.82	479	12	0.07	130	1320	10		<20	21	0.61	<10	66 <1		125
10	13955	<0.2	2.96	<5	35	<5	1. 4 3	<1	52	302	741	5.00	30	4.06	592	13	0.05	65	930	12	<5	<20	21	0.92	<10	79 <1) 14	92
11	13958	<0.2	1.51	30	50	<5	0.45	2	33	129	130	3.45	30	1.59	279	3	0.05	51	370	4		<20	19	0.08	<10	55 <1		63
12	13959	0.2	1.07	15	15	<5	0.75	1	53	138	273	2.86	20	1.12	241	16	0.05	38	440	2		<20	12	0.07	<10	51 <1		64
13	13962	7.0	7.91	455	55	<5	2.80	<1	117	834	1354	>10	90	>10	4136	<1	<0.01	444	1190	254	-	<20	47	0.34	<10	290 <1		599
14	13966	1.3	1.89	30	25	<5	0.55	<1	49	82	435	4.54	30	1.71	430	<1	0.05	41	750	8		<20	11	0.07	<10	98 <1		98
15	13967	4.2	2.21	90	50	<5	0.48	<1	16 1	49	3623	>10	60	2.44	650	28	0.02	56	1560	8	<5	<20	13	0.20	<10	108 <1	0 5	127
16	13968	<0.2	3.87	10	90	<5	2.08	<1	88	358	292	7.56	40	5.27	1208	<1	0.10	272	1440	16		<20	71	0.62	<10	96 <1		123
17	13971	4.3	2.72	1770	105	<5	0.27	<1	70	390	1125	>10	120	3.68	511	345	0.01	76	1880	74		<20	10	0.37	<10	179 <1	- ·	414
18	13972	1.6	5.09	115	50	<5	0.35	<1	50	509	1059	>10	90	6.12	432	<1	0.01	221	1120	16		<20	9	0.24	<10	184 <1		466
19	13973	0.8	1.12	20	35	<5	0.06	<1	26	82	397	2.34	20	0.93	212	7	0.02	26	130	10		<20	5	0.04	<10	26 <1		82
20	13974	0.5	1.06	10	30	<5	0.06	<1	18	98	323	2.35	20	0.84	222	6	0.02	26	160	2	<5	<20	4	0.04	<10	34 <1	0 2	52
21	13975	0.3	1.68	10	115	<5	0.52	<1	29	93	452	3.96	20	1.58	262	8	0.07	24	690	4	<5	<20	56	0.24	<10	79 <1	05	56
22	13977	<0.2	3.50	10	45	<5	2.44	<1	59	213	175	7.14	40	4.13	699	5	0.15	111	1440	18	<5	<20	80	0.76	<10	106 <1	08	76
23	13979	0.2	4.43	25	195	<5	1.18	<1	39	65	124	>10	90	3.78	517	<1	0.06	18	3610	14	<5	<20	29	0.51	<10	107 <1	0 11	131
24	13980	1.1	2.43	110	60	<5	0.86	<1	79	45	232	7.57	80	2.50	471	7	0.04	22	3150	14	<5	<20	15	0.25	<10	94 <1	0 18	79
25	13982	0.4		30	60	<5	0.39	<1	81	176	184	5.22	70	2.84	599	<1	0.02	108	1350	22	<5	<20	5	0.13	<10	95 <1	05	160
26	13984	4.2	3.01	150	55	<5	0.39	<1	98	181	869	7.44	90	3.35	755	<1	0.01	149	1260	1090	<5	<20	5	0.13	<10	129 <1	0 7	878
27	13991	0.3	1.14	105	15	<5	0.26	<1	103	115	69	5.77	50	1.06	604	<1	0.02	59	920	8	<5	<20	5	0.08	<10	57 <1	0 16	57
28	13993	0.2	1.59	15	35	<5	0.23	<1	30	132	202	4.04	30	1.63	262	<1	0.04	49	930	10	<5	<20	8	0.08	<10	61 <1	09	44
29	13994	0.2	1.36	25	20	<5	0.60	1	33	100	64	3.24	30	1.33	500	<1	0.02	60	1030	18	<5	<20	4	0.05	<10	47 <1	08	107
30	13996	8.6	1.14	20	35	<5	0.06	<1	25	80	409	2.28	20	0.95	202	5	0.03	26	140	10	<5	<20	6	<0.01	<10	27 <1	0 2	77
31	13997	0.2	1.61	15	30	<5	0.88	1	49	138	118	3.74	30	1.71	289	<1	0.04	59	1100	8	<5	<20	21	0.06	<10	69 <1		80
32	13998	0.2	1.88	50	30	<5	0.34	<1	55	132	114	5.16	40	2.03	369	<1	0.03	69	1140	2	<5	<20	6	0.08	<10	75 <1	05	58
33	13999	0.9	1.42	100	40	<5	0.27	2	170	114	99	5.51	60	1.06	905	7	0.02	68	1140	152	<5	<20	3	0.08	<10	56 <1	0 13	276
34	14000	6.0	1.01	670	115	<5	0.16	<1	68	118	86	>10	60	1.11	97	439	0.04	29	1430	570	10	<20	37	0.12	<10	68 <1	0 3	163
35	14001	0.2	3.05	25	45	<5	1.20	<1	40	89	153	8.44	70	2.39	471	13	0.05	31	3190	14	10	<20	33	0.51	<10	100 <1	0 13	53


Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb Sn		<u>Ti %</u>	<u> </u>	v	w	Y	Zn
36	14002	<0.2	2.83	<5	110	<5	1.08	<1	22	112	137	6.50	50	1.97	410	<1	0.10	61	890	10	<5 <20		0.06 0.02	<10 <10		<10 <10	10 13	45 107
37	14003	<0.2	2.58	30	75	<5	1.29	<1	73	61	242 514	9.10 7.89	60 60	1.42 1.04	483 353	13 <1	0.05 0.06	35 23	3580 3880	10 6	<5 <20 <5 <20		0.02	<10		10	12	87
38	14004	0.4	1.61	45 50	65 85	<5 <5	0.90 0.68	<1 <1	97 27	59 43	404	7.09 8.37	70	0.95	353	<1	0.00	19	3700	<2	<5 <20		0.02	<10		10	10	100
39 40	14005 14006	0.6 0.2	1.22 4.09	50 10	00 45	<5	0.00	4	118	230	300	7.86	40	4.83	1530	<1	0.00	196	700	14	<5 <20		0.01	<10	137 <		1	132
40	14000	0.2	4.00	10	40	-0	0.10			200						-												
41	14007	0.2	4.49	25	130	<5	0.55	6	327	252	522	9.82	50	5.21	5901	<1	0.02		1100	12	<5 <20		0.03	<10	172 <		2 14	179 72
42	14011	0.3	2.20	140	<5	<5	1.86	19	80	212	318	8.09	20	2.21	902	56	0.01	192	340	<2 22	250 <20 <5 <20		0.01 0.04	<10 <10		<10 <10	14 4	111
43	14015	0.2	4.89	25	90	5	2.61	<1 <1	48 91	232 222	71 986	9.19 >10	50 60	5.31 4.47	1228 1274	<1 <1	0.04 0.03	127 145	1580 1500	22 24	<5 <20		0.04	<10		<10	3	115
44 45	14016 14017	0.5 0.3	4.59 3.56	85 50	90 50	<5 <5	1.83 1.83	<1	62	196	256	9.06	50	3.44	1470	<1	0.02		1210	18	<5 <20		0.01	<10		<10	6	186
	14017	0.0	0.00			•																						
46	14018	0.4	2.63	75	40	<5	0.52	2	129	129	94	8.23	40	2.93	1431	<1	0.01	120	520	26	<5 <20	17 <		<10	75 <		4 <1	159 1188
47	14019	0.6	1.09	1100	35	<5	4.39	20	525	128	37	>10	80	1.83	2432		< 0.01	170	200	142	<5 <20 <5 <20		:0.01 0.04	<10 10	•••	<10 <10	<1 41	790
48	14020	4.7	5.36	460	85	<5	0.31	16 <1	803	147	571 422	>10 4.27	110 20	1.59 1.34	9175 472	242 6	0.01 0.03	393 63	490 170	414 50	<5 <20	÷ ·	0.04	<10	22 <		3	56
49 50	14021 14024	0.8 0.5	1.23 4.45	25 50	25 50	<5 <5	1.66 0.64	4	63 270	107 270	333	7.51	40	5.95	2454	<1	0.03	185	1980	28	<5 <20		0.01	<10		<10	6	181
50	14024	0.5	4.40	50	50	-0	0.04	т	210	210	000	1.01		0.00	2.0.	•	0.0-											
51	14025	1.4	3.59	475	75	<5	0.74	<1	126	204	1579	>10	180	3.72	75	140	0.01		2130	6	<5 <20		0.02	<10	133 <		<1	203
52	14028	0.6	2.41	35	30	<5	0.97	3	110	159	697	8.96	40	2.48	473	<1	0.02	128	730	22	<5 <20		0.01	<10		<10 <10	4	292 293
53	14029	0.6	3.34	65	45	<5	0.82	4	103	149	601	>10	60	4.01	958	<1	0.03	95 71	1680	18 84	<5 <20 <5 <20		0.03 0.01	<10 <10		<10	9	293 376
54	14030	1.3	1.56	205	50 45	<5	0.61 0.45	4 <1	206 105	89 176	1718 2079	7.69 >10	30 60	1.17 1.80	1630 300	5 8	<0.01 0.02	71 82	2300 1430	04 60	<5 <20		0.01	<10		<10	2	251
55	14031	3.2	1.93	185	45	<5	0.40	~1	105	170	2079	-10	00	1.00	300	0	0.02	02	1400	00	-0 -20	Ŭ	0.02		••		-	
56	14033	0.9	3.25	1110	65	<5	1.61	<1	89	223	117	>10	60	2.98	4187					114	<5 <20		0.02	<10	126 <		17	384
57	14035	1.4	0.77	275	100	<5	0.44	<1	95	62	201	>10	50	0.75	63	75	0.04	27	1870	32	<5 <20		0.02	<10		<10 <10	16 17	60 146
58	14036	0.4	3.15	40	80	<5	1.34	<1	60	64	126	>10	60	2.75	307	<1	0.04	21 24	2800 2890	28 18	<5 <20 <5 <20		0.18 0.03	<10 <10		<10	8	101
59	14037	0.6	1.65	195 25	90 110	<5 <5	0.66 0.52	<1 <1	89 77	54 210	114 175	>10 >10	60 50	1.60 2.77	246 433	14 <1	0.04 0.02	134	1360	20	<5 <20		0.03	<10		<10	6	120
60	14038	0.3	3.40	20	110	~ 0	0.52			210	175	-10	50	2.11	400		0.02	104	1000	20			0.02				-	
61	14039	0.8	1.90	70	65	<5	0.30	<1	63	114	406	6.04	50	1.98	506	<1	0.03	65	500	14	<5 <20		0.03	<10	73 •		7	103
62	14040	5.4	3.16	340	50	<5	0.55	<1	97	130	2283	>10	80	3.61	621	6	0.01	84	640	96	<5 <20		0.05	<10		<10	14	287
63	14041	5.3	2.53	80	65	<5	0.20	<1	56	132	7366	8.60	50	2.66	334	<1	0.02	48	370	34	<5 <20 270 <20		0.03 0.06	<10 <10		<10 <10	8 3	366 642
64	14043	>30	1.79	1295	60 70	<5	0.56 0.57	<1 <1	200 112	195 664	5287 4009	>10 >10	100 90	2.10 9.59	<1 814	111 <1	0.02 <0.01	96 413	1260 1190	7718 956	<5 <20		0.00	<10		<10	6	665
65	14044	2.4	7.91	135	70	<5	0.57	~1	112	004	4009	-10	90	9.09	014		-0.01	415	1100	000	-0 -20	•••	0.00				•	
66	14045	1.0	4.80	45	65	<5	0.78	1	98	458	1117	>10	50	6.66	829	<1	0.02	302	1120	202	<5 <20		0.03	<10	153 ·		3	278
67	14046	0.6	0.55	20	30	<5	0.26	<1	103	60	30	6.29	20	0.43	38	3	0.04	21	520	12	<5 <20	-	< 0.01	<10		<10	1	35
68	14047	0.7	2.31	65	65	<5	0.37	<1	144	52	221	5.69	30	2.37	618	1	0.06	37	490	78	<5 <20 <5 <20		0.02 0.02	<10 <10	35 · 46 ·	<10 <10	9 10	82 58
69	14048	0.4	2.42	60 155	70 35	<5 <5	0.45 0.75	<1 <1	60 237	53 59	126 2800	6.12 >10	30 50	2.68 2.21	373 188	<1 94	0.05 0.01	28 60	730 2810	12 24	<5 <20		0.02	<10		<10	10	76
70	14049	2.1	2.06	100	30	~ 5	0.75	~1	231	09	2000	-10	50	2.21	100	34	0.01	00	2010	24	-0 -20	Ū	0.00	10		10		
71	14050	1.7	4.10	45	40	<5	1.03	4	97	377	605	8.51	230	4.47	1300	<1		176	980	160	<5 <20		0.02	<10	123		10	798
72	14052	0.9	3.92	5	45	<5	3.69	4	39	103	546	6.29	30	5.02		<1		110		90	<5 <20		0.34	<10		<10	19	446
73	14053	8.2	1.76	135	35	<5	0.40	<1	230	124	1971	8.34	50	1.88	493	4		100	1380 1500	14	<5 <20 <5 <20	-	0.01 0.03	<10 <10		<10 <10	9 8	65 48
74 75	14054	<0.2		<5 40	65 90	<5 <5	0.52 0.40	<1 <1	36 32	158 141	203 131	6.17 6.20	30 40	2.64 2.71	486 265	<1 <1	0.03 0.02	95 79		14 10	<5 <20		0.03	<10		<10	0 4	40 80
75	14055	0.2	2.60	40	90	~0	0.40	~1	52	141	101	0.20	-+0	2.11	200	-1	0.02	13	.000	10	-0 -20		5.51		51			
76	14057	0.5		65	80	<5	0.04	<1	14	68	83	4.84	10		<1	<1		3	380	4	<5 <20		<0.01	<10	11		<1	11
77	14058	0.2		10	35	<5	0.11	<1	40	58	34	3.38	10		105	3		7		4	<5 <20		< 0.01	<10 <10		<10 <10	<1 2	13 15
78	14059	0.2		20	35	<5	0.14	<1	51	64 67	55	5.10	20	0.30	55 552	9 21	0.04 0.03	11 41	460 460	2 26	<5 <20 <5 <20	-	<0.01 0.01	<10		<10 <10	2 6	137
79 80	14061	0.4		35 45	40 85	<5 <5	0.40 1.48	<1 3	108 148	67 761	784 1826	6.11 >10	30 70	2.36 8.41		<1 <1				132	<5 <20			<10	160		24	472
80	14063	0.6	5.97	40	00	~0	1.40	3	140	701	1020	-10	70	0.41	14.14	-1	0.02	201	1000	102	-0 -20		5.00					

•

									_		_	÷							_			0		.,	147	v	7
<u> </u>	Tag #		AI %	As	Ba		Ca %	Cd	Co	Cr		Fe %		Mg %	Mn		<u>Na %</u>	Ni	P	Pb	Sb Sn	<u>Sr Ti %</u>	<u>U</u>	<u> </u>	<u>W</u> <10	Y 3	<u>Zn</u> 52
81	14065	1.8	0.90	435	105	<5	0.15	<1	78	130	134	>10	50	0.99	60	1	0.03	34 74	1120	16 18	<5 <20 <5 <20	23 0.01 5 <0.01	<10 <10		<10	7	76
82	14067	0.9	1.12	35	30	<5	0.17	<1	160	94	78	>10	40	1.10	184	<1	0.02		690	10 8	<5 <20 <5 <20	5 <0.01 4 <0.01	<10		<10	8	68
83	14068	0.3	1.14	15	35	<5	0.28	<1	109	107	84	4.00	30	1.12	568	2	0.02	54	820 690	o 296	<5 <20	20 < 0.01	<10		<10	1	103
84	14069	17.8	0.25	485	75	<5	0.03	<1	34	91	310	>10	40	0.23	<1	79	0.04	9		290 96		20 <0.01	<10		<10	3	91
85	14070	6.6	0.36	155	35	<5	0.26	<1	78	74	424	8.50	20	0.28	<1	26	0.04	16	540	90	<5 <20	12 \0.01	-10	20	~10	5	51
86	14071	0.4	1.50	<5	20	<5	0.43	<1	37	137	56	3.49	30	1.71	366	<1	0.04		1190	10	<5 <20	4 <0.01	<10		<10	7	48
87	14072	2.4	0.74	185	15	<5	0.12	<1	107	121	98	>10	70	0.67	<1	17	<0.01	38	370	16	<5 <20	7 <0.01	<10		<10	1	53
88	14073	0.3	1.44	15	20	<5	0.41	<1	57	141	53	4.10	30	1.46	436	<1	0.03	62	960	4	<5 <20	4 < 0.01	<10		<10	5	63
89	14074	0.6	1.63	30	35	<5	0.42	<1	136	164	118	6.05	40	1.89	605	12	0.02		1490	18	<5 <20	3 0.01	<10		<10	16 10	100 85
90	14076	0.3	3.16	65	55	<5	1.04	<1	69	201	366	8.15	50	3.23	456	<1	0.04	127	1550	20	<5 <20	25 0.03	<10	107	<10	10	60
91	14077	0.3	3.26	25	65	<5	1.00	<1	32	178	554	7.56	40	3.04	411	<1	0.09	103	1610	20	<5 <20	31 0.11	<10		<10	9	57
92	24601	0.4	1.83	10	25	<5	0.37	1	94	149	178	3.79	30	2.05	550	<1	0.03	55	1150	16	<5 <20	3 0.01	<10		<10	8	143
93	24603	<0.2	1.70	5	15	<5	1.74	3	30	148	92	4.22	80	1.95	413	<1	0.04		1060	10	<5 <20	28 0.01	<10		<10	9	154
94	24604	0.2	2.21	20	80	<5	0.65	<1	24	157	61	4.96	30	2.11	327	<1	0.07		1170	12	<5 <20	20 0.06	<10	75		6	40
95	24605	0.4	1.86	60	40	<5	0.40	<1	45	142	172	6.50	40	1.71	321	2	0.02	65	1090	10	<5 <20	8 0.01	<10	71	<10	9	42
96	24606	0.4	1.66	105	20	<5	0.26	5	92	75	215	6.00	30	1.44	432	17	0.03	40	730	12	<5 <20	6 <0.01	<10	76	<10	9	213
97	24607	0.3	1.71	20	25	<5	0.51	<1	44	55	148	4.50	20	1.55	340	<1	0.05	29	1000	12	<5 <20	10 <0.01	<10	127	<10	5	78
98	24608	0.4	1.93	30	30	<5	0.34	<1	54	56	193	6.42	20	1.74	414	<1	0.04	36	1060	12	<5 <20	5 <0.01	<10	133	<10	4	64
99	24609	0.4	1.84	40	30	<5	0.39	<1	74	53	455	8.11	30	1.51	301	<1	0.03	34	1010	12	<5 <20	10 <0.01	<10	115	<10	8	115
100	24610	0.6	2.23	215	40	<5	0.42	<1	126	72	594	>10	50	1.70	473	<1	0.03	41	970	14	<5 <20	10 <0.01	<10		<10	9	272
101	24611	1.1	1.30	135	20	<5	0.27	<1	71	97	534	7.23	30	0.94	307	3	0.01	68	840	10	<5 <20	4 <0.01	<10		<10	5	125
102	24612	0.4	1.06	15	25	<5	0.10	<1	53	94	205	5.75	20	0.83	200	9	0.02	36	130	8	<5 <20	5 <0.01	<10	36	<10	4	69
QC DATA:																											
Resplit:																											
1	13936	7.2	2.13	565	40	<5	0.51	2	126	212	3941	9.47	70	1.52	1501	18	0.01	204	1540	250	20 <20	25 0.18	<10		<10	7	463
36	14002	0.2	2.60	<5	120	<5	1.07	<1	22	120	86	6.35	50	1.74	376	<1	0.11	55	780	14	<5 <20	40 0.07	<10		<10	11	44
71	14050	1.9	3.99	60	35	<5	1.13	4	104	371	602	8.62	170	4.34	1344	<1	0.02	182	1080	170	<5 <20	<1 0.01	<10	122	<10	8	822
Repeat:		•																									
1	13936	7.8	2.21	610	35	<5	0.47	<1	120	211	4286	9.59	70	1.55	1500	19	0.01	200	1600	250	<5 <20	27 0.20	<10	88	<10	9	461
10	13955	0.2	2.94	10	30	<5	1.46	<1	. 51	302	725	4.99	30	4.03	591	17	0.05	67	920	10	<5 <20	20 1.09	<10	76	<10	15	91
36	14002	<0.2	2.79	<5	105	<5	1.11	<1	22	114	132	6.58	50	1.95	405	<1	0.09	59	850	10	<5 <20	46 0.05	<10	75	<10	9	46
45	14017	0.4		40	50	<5	1.89	1	63	199	229	9.18	40	3.19	1498	<1	0.02	101	1200	26	<5 <20	31 0.01	<10	122	<10	7	191
54	14030	1.4		215	55	<5	0.64	4	217	94	1813	8.09	40	1.22	1714	5	<0.01	76	2350	86	<5 <20	7 0.01	<10		<10	10	393
71	14050	1.7	3.96	50	40	<5	1.05	4	97	380	574	8.53	220	4.32	1311	<1	0.02	175	1020	162	<5 <20	<1 0.01	<10		<10	10	809
80	14063	0.6	5.93	55	80	<5	1.48	3	147	764	1802	>10	70	8.33	1216	<1	0.02	274	1150	134	<5 <20	31 0.38	<10		<10	24	470
89	14074	0.6	1.60	35	40	<5	0.42	<1	134	162	114	6.00	30	1.84	601	14	0.02	73	1460	14	<5 <20	3 <0.01	<10	83	<10	17	98
Standard:																											
GEO '04		1.6	1.84	55	140	<5	1.75	1	22	60	87	3.90	20	1.07	661	<1	0.03	31	760	22	<5 <20	45 0.37	<10	69	<10	7	72
GEO '04		1.4	1.63	50	145	<5	1.75	<1	20	60	86	3.83	20	0.93	653	<1	0.03	32	630	26	<5 <20	43 0.07	<10	62	<10	8	73
GEO '04		1.4	1.62	65	150	<5	1.75	<1	20	60	84	3.80	20	0.91	650	<1	0.03	33	660	22	<5 <20	43 0.05	<10	68	<10	7	72
																					\sim						

ECO TECH LABORATORY LTD. Joutta Jealouse B.C. Certified Assayer

JJ/jm df/750/742z XLS/04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-764

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 34 **Project:** JD Shipmont #

Sn	рп	ieni	:#:	4	

			Au	Au	Ag	Ag	Cu	
<u> </u>	Tag #		(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	
1	24617		5.80	0.169	40.6	1.18	1.03	
2	24618		18.4	0.537				
3	24619		0.44	0.013				
4	24620		2.30	0.067				
5	24621		21.9	0.639				
6	24622		0.14	0.004				
7	24623		18.7	0.545	30.6	0.89	1.27	
8	24626		1.06	0.031		,		
9	24627		9.10	0.265				
10	24628		0.08	0.002				
11	24632		0.60	0.017				
12	24633		6.00	0.175				
13	24634		17.8	0.519				
14	24638		17.0	0.496				
15	24639		17.2	0.502				
16	24640	*	35.1	1.024				
17	24641	*	151	4.398				
18	24655		2.56	0.075				
19	24659		0.84	0.024				
20	24663		3.52	0.103				
21	24667		0.06	0.002				
22	24684		<0.03	<0.001				
23	24688		<0.03	<0.001			~	
24	24689		0.05	0.001		\sim ($\sum_{i=1}^{n}$	
25	24690		<0.03	<0.001				
					(
						XON &	×	
NOTE: * =	= Metallic Assay to Foll	ow					BORATORY LTD.	
					. .	itta Jealouse]	
					/ B.	C. Certified A	Assayer	

28-Jul-04

•

28-Jul-04

		Au	Au	Ag	Ag	Cu	
<u> </u>	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)	
26	24691	< 0.03	<0.001		-		
27	24694	<0.03	<0.001				
28	24695	12.0	0.350				
29	24806	0.03	0.001				
30	24817	0.03	0.001				
31	24825	4.36	0.127				
32	24837	0.06	0.002				
33	24843	0.43	0.013				
34	24844	0.28	0.008				
<u>QC DATA:</u>							
Resplit:							
1	24617	5.40	0.157				
Repeat:							
1	24617	5.79	0.169				
2	24618	14.0	0.408				
7	24623	20.5	0.598				
10	24628	0.07	0.002				
16	24640	33.8	0.986				
17	24641	139	4.045				
19	24659	0.83	0.024				
04							
Standard:		0.50	0.040				
SN16		8.53	0.249				
OX123		1.89	0.055	400	0.07	4 40	
CU106				136	3.97	1.43	

JJ/jm XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 27-Jul-04

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700 Fax : 250-573-4557

V2C 6T4

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2004-764

GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 34 **Project: JD Shipment #: 4**

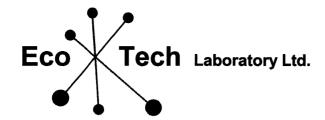
Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb		<u>Ti %</u>	U			Y Zn
1	24617	>30	3.65	535	20	<5	0.46	<1	231	170 :	>10000	>10	70	3.84	320	253 0.01	113	1600	176		<20 7	0.45	<10			14 293
2	24618	19.1	0.27	<5	<5	40	0.10	29	18	33	573	1.47	30 -	<0.01	63	54 <0.01	<1	110	318		<20 <1	0.10	<10			74 37
3	24619	0.6	1.39	<5	<5	110	0.49	6	140	45	229	>10	30	1.31	41	7 <0.01	29	770	60	-	<20 <1	0.36	<10		:10 1	
4	24620	9.8	3.12	1360	10	<5	0.38	<1	145	184	3287	>10	30	3.03	303	38 0.01	92	1860 2	2258	-	<20 7	0.09	<10			10 388
5	24621	14.6	3.33	185	10	<5	0.37	<1	64	126	3274	>10	40	2.77	65	93 <0.01	44	1680	8	<5	<20 8	0.10	<10	169 <	:10	11 131
6	24622	0.6	0.92	45	20	<5	0.14	<1	35	38	2398	1.84	30	0.49	258	2 <0.01	19	250	256	<5	<20 4	0.01	<10	17 <		7 497
7	24623	>30	2.80	640	10	<5	0.23	<1	91	274 :	>10000	>10	90	2.98	886	27 <0.01	115	1120 °	1762		<20 5	0.06	<10			38 739
8	24626	0.6	1.04	300	10	<5	0.41	<1	257	162	742	>10	40	1.34	62	25 0.03	68	840	<2		<20 19	0.40	<10			13 52
9	24627	1.4	2.50	75	<5	<5	0.21	<1	233	126	1483	>10	50	2.65	484	4 0.01	57	840	6		<20 6	0.22	<10			11 48
10	24628	1.0	0.91	100	50	<5	0.15	<1	13	43	75	7.30	30	0.21	73	19 <0.01	12	1370	14	<5	<20 52	<0.01	<10	44 <	<10	7 25
11	24632	0.2	0.72	270	5	5	0.17	<1	268	108	89	>10	30	0.74	197	26 0.02	49	420	<2		<20 7	0.02	<10		<10	7 73
12	24633	0.9	0.12	145	<5	15	0.04	<1	318	95	14	>10	30	0.24	<1	32 <0.01	29	160	<2	<5	<20 1	0.02	<10	-	<10	4 17
13	24634	2.2	0.88	270	5	15	0.19	<1	123	101	26	>10	80	0.83	154	177 0.02	27	440	<2	<5	<20 9	0.02	<10		<10	6 24
14	24638	3.4	1.76	75	15	<5	0.50	<1	79	88	1184	>10	50	1.78	25	9 0.02	40	1880	4	<5	<20 3	0.10	<10			11 65
15	24639	3.5	1.35	205	<5	<5	0.06	<1	116	114	2373	>10	70	1.12	<1	7 0.01	70	330	<2	<5	<20 7	0.08	<10	102 <	<10	9 36
16	24640	5.9	1.99	75	50	<5	0.47	<1	31	52	1283	8.11	30	1.87	170	18 0.04	24	2290	12	<5	<20 11	0.07	<10		<10	8 74
17	24641	21.4	0.16	135	<5	<5	0.06	<1	24	109	591	>10	90	0.59	<1	11 0.02	21	330	<2	<5	<20 3	0.06	<10			19 117
18	24655	1.6	0.90	160	50	<5	0.14	<1	83	122	100	7.07	30	0.61	249	19 0.02	29	840	38	<5	<20 5	0.02	<10			11 79
19	24659	0.8	0.90	120	50	<5	0.15	<1	56	110	65	5.52	30	0.76	275	21 0.02	23	750	94	<5	<20 8	0.01	<10		<10	8 108
20	24663	1.4	0.53	220	50	<5	0.09	<1	59	86	86	5.75	20	0.44	19	29 <0.01	20	480	30	<5	<20 10	0.01	<10	27 <	<10	5 37
21	24667	0.3	1.04	15	75	<5	0.31	<1	43	93	84	8.54	30	0.58	140	7 0.04	18	920	18		<20 23	0.19	<10		<10	9 57
22	24684	0.2	4.09	20	30	5	0.65	<1	61	68	82	8.21	20	3.60	728	<1 <0.01	65	1450	18	<5	<20 16	0.02	<10			14 69
23	24688	0.3	1.27	30	30	<5	0.61	<1	85	112	330	3.93	10	1.19	789	12 <0.01	60		14	<5	<20 10	0.01	<10			10 48
24	24689	0.5	1.86	70	20	<5	0.45	<1	36	70	298	6.88	20	1.75	293	14 <0.01		1740	18	<5	<20 7	0.01	<10		<10	9 39
25	24690	0.4	2.52	40	20	<5	0.31	<1	38	73	425	7.22	20	2.35	455	5 <0.01	50	1000	16	<5	<20 7	0.01	<10	60 <	<10	8 39
26	24691	0.4	3.24	25	25	<5	0.65	<1	82	106	265	8.51	30	2.93	654	<1 0.02	51		14	<5	<20 12	0.02	<10	76 <		17 53
27	24694	0.5	2.61	35	35	<5	0.82	<1	102	104	314	8.54	60	1.92	655	<1 0.01	67	2480	10	<5	<20 12	0.02	<10	60 <		20 44
28	24695	4.4	0.35	715	80	<5	0.09	<1	6	78	32	1.86	20	0.10	21	7 0.01	7	390	374	<5	<20 20	<0.01	<10		<10	3 49
29	24806	0.6	2.26	40	65	<5	0.41	<1	27	87	105	5.55	30	1.48	538	7 0.04	43		16	<5	<20 28	0.07	<10			12 39
30	24817	<0.2	2.60	60	30	<5	0.18	<1	38	67	88	5.82	40	1.64	549	<1 0.03	56	450	20	<5	<20 8	0.02	<10	34 <	<10	10 86
31	24825	0.8	1.68	70	<5	<5	0.11	<1	339	135	182	>10	60	1.30	~ 1	21 0.02	91	1250	<2	<5	<20 5	0.04	<10	84		14 31
32	24837	0.3	1.36	15	15	<5	0.18	<1	56	113	170	7.78	20	0.89	489	6 0.02	36	640	4	<5	<20 3	0.11	<10		<10	8 52
33	24843	0.9	1.33	105	<5	<5	0.64	<1	409	114	327	>10	70	1.39	<1	<1 0.01	78	2460	<2	<5	<20 10	0.11	<10			10 27
34	24844	<0.2	1.63	35	15	10	0.77	<1	184	109	108	>10	30	1.83	126	12 0.05	37	1640	4	<5	<20 6	0.57	<10	<1 ·	<10	15 30

GOLD CITY INDUSTRIES LTD

JJ/jm df/764 XLS/04

-


ICP CERTIFICATE OF ANALYSIS AK 2004-764

ECO TECH LABORATORY LTD.

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y Zr	1
QC DATA																													-
Resplit:	<u>.</u>																												
1	24617	>30	3.48	685	10	<5	0.47	<1	316	169	9740	>10	60	3.66	295	317	0.01	131	1590	196	25	<20	7	0.30	<10	129	<10	14 291	I
Repeat:																													
1	24617	>30	3.63	520	15	<5	0.45	<1	230	167	>10000	>10	70	3.82	316	242	0.01	112	1580	172	10	<20	6	0.23	<10	134	<10	14 292	2
10	24628	1.0	0.86	100	45	<5	0.15	<1	13	42	73	7.21	30	0.20	71	17	<0.01	11	1360	12	<5	<20	50	<0.01	<10	42	<10	7 25	;
19	24659	0.8	0.91	125	55	5	0.16	<1	57	111	67	5.64	30	0.77	283	21	0.02	24	780	96	<5	<20	9	0.01	<10	49	<10	9 109	1
Standard GEO '04	1:	1.5	1.58	50	130	<5	1.52	<1	20	55	87	3.36	<10	0.91	576	1	0.02	27	640	22	<5	<20	54	0.09	<10	60	<10	973	3

ECO/BECH LABORATORY LTD. Juita Jealouse B.C. Certified Assayer

Page 2

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-765

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 95 Project #: JD Shipment #: 4

Sinpinent #			Au	Au				
Et #.	Tag #		(g/t)	(oz/t)				
2	24614		1.03	0.030	August 1997			
4	24616		2.49	0.073				
5	24624		19.8	0.576				
8	24630		1.63	0.048				
10	24635		1.77	0.052				
15	24653		1.67	0.049				
17	24656		85.0	2.479				
17	24656	*	89.8	2.619				
18	24657		0.99	0.029				
21	24661		3.49	0.102				
43	24686		5.92	0.173				
48	24697		8.77	0.256				
51	24700		1.12	0.033				
58	24808		1.65	0.048				
<u>QC DATA:</u>								
Repeat:								
43	24686		5.45	0.159				
48	24697		8.02	0.234			*	
Standard:								
SH13			1.36	0.040				
SH13			1.35	0.039				
SH13								

NOTE: * = Metallic Assay

JJ/kk XLS/04

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

3-Aug-04

29-Jul-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6

.

.

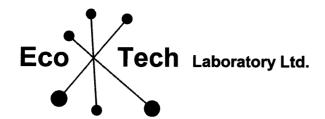
ATTENTION: Paul Cowley

No. of samples received: 95 Sample Type: Core Project #:JD Shipment #:4

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi (Ca %	Cd	Co	Cr		Fe %		Mg %	Mn		Na %	Ni	Р	Pb	Sb	Sn	Sr Ti		U	<u>v</u>	W	Y	Zn
1	24613	815	10.5	2.63	175	30	<5	0.39	1	214	81	712	>10	30	1.84	873	5	0.02	85	930	32	10	<20	8 <0.		<10	121	<10	14	330
2	24614	>1000		1.24	270	<5	5	0.47	<1	161	92	48	8.16	10	1.63	190	40	0.04	56	590	10	<5	<20	13 0.	-	<10	88	<10	5	30
3	24615	40	0.2	1.42	135	30	<5	0.13	<1	21	90	105	3.37	30	1.05	143	4	0.04	24	250	12	<5	<20	11 <0.		<10	47		4	29
4	24616	>1000	0.4	1.63	595	40		0.37	<1	73	164	106	>10	30	1.82	221	108	0.02	54	930	10	<5	<20	15 <0.		<10	123		9	68
4 5	24624	>1000	26.1	3.71	590	20		0.36	<1	89	362	1651	>10	30	4.13	911	70	<0.01	155	900	5666	10	<20	40.	02	<10	184	<10	10	888
5	24024	~1000	20.1	0.71	000	20		0.00					. 5	2.5		/														
6	24625	110	0.9	2.57	145	20		0.67	3	40	119	330	5.01	30	2.79	932	35	0.03	65	1780	28	50	<20	12 0. 22 0.		<10 <10	108 105		10 15	149 244
7	24629	15	0.2	3.88	25	45	<5	1.84	5	54	208	49	7.03	30	3.82	1103	<1		159	1170	76	<5	<20			<10	20		6	40
8	24630	>1000	1.5	0.55	540	<5	10	0.10	<1	473	119	74	>10	20	0.53	<1	86		124	200	<2	<5	<20	4 <0.					13	101
9	24631	20	0.2	3.13	35	45	<5	0.31	<1	220	178	176	8.71	20	3.38	1189	3	0.01	107	900	22	<5	<20	8 <0.		<10	121	<10	8	26
10	24635	>1000	0.6	1.13	310	<5	<5	0.11	<1	203	108	200	9.94	20	1.01	86	267	0.02	94	480	4	<5	<20	9 <0.	.01	<10	54	<10	o	20
	0.4000	50	0.4	0.45	30	10	<5	0.75	<1	43	48	516	6.66	30	1.99	209	2	0.04	17	2780	18	<5	<20	50.	.02	<10	84	<10	13	48
11	24636	50	0.4	2.15	20	<5	<5	0.75	<1	46	56	389	7.71	30	1.81	242	<1	0.04	14	2830	16	<5		5 0.	.02	<10	87	<10	12	43
12	24637	35	0.4	2.13	20 5	15	<5 <5	0.78	<1	20	131	51	3.11	30	2.09	353	2	0.03	49	850	16	<5		5 0.	.01	<10	99	<10	6	32
13	24651	85	0.3	1.72	с 80	75	<5	0.34	<1	20 46	125	123	7.28	30	1.50	344	6	0.04	60	1090	28	<5	<20			<10	29	<10	13	46
14	24652	380	0.6	1.84				0.47	<1	154	88	191	9.62	40	0.40	157	86		62		28	<5			.01	<10	54	<10	17	31
15	24653	>1000	1.2	0.71	185	25	<5	0.12	~1	104	00	191	5.02	70	0.40	101		0.02		000		•	_,		-					
16	24654	205	0.5	1.54	15	5	<5	0.28	<1	42	111	110	3.37	30	1.52	447	<1	0.03	50	910	16	<5		<1 <0.		<10	63		8	54
17	24656	>1000	8.9	1.09	195	<5	<5	0.17	<1	221	120	101	8.15	20	1.15	93	26		58		28	<5		4 <0.		<10	65		5	66
18	24657	>1000	1.4	1.37	140	50	<5	1.00	<1	40	118	104	3.35	30	1.48	269	18		46		54	<5		32 <0.		<10	65		8	52
19	24658	40	0.3	1.67	10	10	<5	0.35	<1	36	126	44	3.40	40	1.95	427	1	0.03	50			<5		3 <0.		<10	77		8	48
20	24660	45	0.4	1.69	10	25	<5	0.37	<1	49	135	142	2.88	20	1.94	457	2	0.02	43	1040	24	<5	<20	2 0.	.01	<10	75	<10	7	131
04	24661	>1000	2.1	0.47	175	5	<5	0.10	<1	52	130	98	6.56	20	0.40	140	22	<0.01	17	470	458	<5	<20	4 <0.	.01	<10	29	<10	5	232
21	24662	125	0.8	1.42	25	45	<5	0.26	<1	71	117	186	3.57	20	1.40	391			34			<5	<20	5 <0	.01	<10	64	<10	5	180
22			0.0 1.2	0.95	25 35	45 85	<5	0.20	<1	21	113	144	4.61	40	0.88	96	2		19			<5	<20	14 <0	.01	<10	69	<10	3	49
23	24664	110		1.42	10	55	<5	0.21	<1	34	136	136	3.25	30	1.63	244	1		33			<5	<20	5 0	.01	<10	68	<10	6	- 35
24	24665	45 20	0.3 0.2	1.42	10	30 30	<5	0.30	<1	34	130	96	3.11	30	2.16	373	<1		55			<5				<10	82	<10	8	57
25	24666	20	0.2	1.00	10	30	-0	0.04	*1	50		50	0.11	00	2.10	5.5													-	
26	24668	80	0.2	1.63	30	20	<5	0.25	<1	32	94	282	4.04	20	1.66	163	<1		52			<5				<10	86		6	28
27	24669	110	0.3	2.75	70	5	<5	1.19	<1	43	71	411	8.63	20	2.55	239	<1		71			<5				<10	95		11	57
28	24670	75	0.2	2.67	190	25	<5	0.21	<1	34	116	228	6.31	20	2.40	216	<1		74			<5				<10	77		6	109
29	24671	30	0.3	2.65	265	20	<5	0.35	<1	105	149 [,]	227	7.27	20	2.68	634	<1		93			<5				<10	100		7	74
30	24672	45	0.7	4.68	240	15	<5	0.68	<1	72	375	332	9.94	20	5.89	751	<1	0.02	328	1140	52	<5	<20	18 0	.03	<10	169	<10	8	108
24	24672	125	0.5	2.53	75	30	<5	0.59	<1	69	63	134	6.41	30	2.25	744	<1	0.02	48	2010	18	<5	<20	. 9 0	.01	<10	125	i <10	9	44
31	24673	125	0.5	2.55	75 45	35	~5 <5	0.55	<1	105	115	104	3.90	20	1.57	751	5		46			<5		5 <0	.01	<10	74	<10	9	53
32	24674		0.4	2.12	45 20	35 85	<5	1.02	<1	47	106	100	4.53	20	1.89	480	2		41			<5			.02	<10	113	s <10	13	39
33	24675	585	0.3	2.02	20 30	60	~5 <5	1.39	2	215	68	61	5.98	40	2.43		<1		79			<5			.02	<10	172	2 <10	25	98
34	24676	25					<5	0.14	<1	12	118	42		<10	0.52	98	5		19			<5		1 <0		<10	27	′ <10	2	23
35	24677	20	0.2	0.61	10	10	~ 0	U. 14	~1	12	110	42	2.20	-10	0.02	30	5	0.01				5								
36	24678	5	<0.2	1.42	25	35	<5	0.23	<1	63	128	69	3.46	10	1.43	556	3	<0.01	48	720) 14	<5		5 <0		<10	42		5	56
37	24679	15	<0.2	2.89	125	50	<5	0.32	<1	160	141	117	9.00	20	2.08	1277	1	<0.01	99	1010		<5				<10	113		9	160
38	24680	5	0.2	0.95	60	15	<5	0.16	<1	25	106	77	2.89	<10	0.78	168	7	′ <0.01	24			<5				<10	46		3	3
39	24681	150	<0.2	2.97	160	35	<5	0.76	<1	43	158	200	8.23	20		367	<1	0.03	72			<5			0.05	<10	158		10	14
40	24682	100	<0.2	2.00	250	20	<5	0.47	<1	39	107	269	9.34	20	1.51	151	7	0.03	53	1390) 12	<5	<20	12 0).04	<10	127	7 <10	8	13
				-									9.34 P	age																

•

									_	_		-						N = 67		_	Dh	er.	6 m	e-	Ті %	U	v	w	Y	Zn
Et #.	Tag #	Au (ppb)		AI %	As	Ba		Ca %	Cd	Co	Cr		Fe %	<u>La</u> 20	<u>Mg %</u>	<u>Mn</u> 947	<u></u> <1	Na % 0.03	<u>Ni</u> 66	P 1430	9b 30	<u>Sb</u> <5	<u>Sn</u> <20	<u></u> 17	0.01	<10	213		12	90
41	24683	65	< 0.2	4.29	45	30		0.70	<1	65	76 168	85 281	9.21 5.74	20	4.14 2.79	947 569	<1	0.03	94	790	20	<5			0.10	<10		<10	11	48
42	24685	55	< 0.2	2.66	35 1755	25 80		1.03 0.12	<1 <1	46 72	92	201	>10	40	0.37	229	26	0.02	48	480	116	15			<0.01	<10	48	<10	10	188
43	24686	>1000	3.6		1755 20	ou 35	-	0.12	<1	28	92 87	80	3.70	20	1.35	352		<0.01		3490	16	<5		12	<0.01	<10	39	<10	14	30
44	24687	35 30	0.2 0.5	1.46 1.94	20 70	30 30	-	0.69	<1	89	99	341	7.52	30	1.69	494	<1	0.02		2180	16	<5	<20	10	<0.01	<10	44	<10	17	41
45	24692	30	0.5	1.94	70	50	-0	0.05		00		•																		
46	24693	35	0.5	1.67	70	35	<5	0.75	<1	94	119	478	6.40	30	1.28	709	<1	0.02	49	2460	20	<5			<0.01	<10		<10	13	40
40	24696	30	<0.2	1.60	10	15	-	0.75	<1	23	42	138	2.68	<10	1.76	377	<1	0.06	15	960	16	<5			<0.01	<10		<10	6	62
48	24697	>1000	5.1	1.60	40	20	<5	0.52	<1	101	59	8040	8.81	20	1.91	340	<1	0.03		1260	6	<5			0.03	<10		<10	7 5	69 77
49	24698	40	0.2	1.78	10	10	<5	0.33	<1	70	39	302	3.25	30	2.06	568	<1	0.05		1040	24	<5		_	< 0.01	<10 <10		<10 <10	10	51
50	24699	475	0.2	3.64	90	5	<5	0.43	<1	135	156	128	>10	40	3.77	488	118	0.03	83	1260	18	<5	<20	0	0.02	<10	150	10	10	
51	24700	>1000	0.7	1.35	335	40	<5	0.19	<1	183	238	1803	>10	70	1.56	84	272	0.01	153	680	<2	<5			< 0.01	<10 <10		<10 <10	30 11	122 41
52	24801	5	<0.2	3.60	35	90	5	0.84	<1	27	130	59	4.58	30	1.93	731	<1	0.22	80	680	32	-	<20 <20		0.06 0.03	<10	48		9	37
53	24802	10	<0.2	2.37	30	35	-	0.44	<1	19	110	51	3.82	30	1.60	678	<1	0.09	57 61	510 640	22 14	-	<20		<0.03	<10		<10	6	31
54	24803	5	<0.2	1.44	35	20	-	0.19	<1	16	119	60	3.21	20	1.08	491 169	2	0.02 <0.01	21	670	6		<20		<0.01	<10		<10	4	18
55	24804	5	<0.2	0.56	35	40	<5	0.19	<1	11	112	59	1.92	<10	0.34	109	12	<0.01	21	070	Ū	-								
56	24805	<5	0.2	2.16	30	50	<5	0.44	<1	25	99	59	4.93	30	1.32	703	2	0.03	35	1520	18	-	<20		< 0.01	<10		<10	12	40 62
57	24807	5	0.5	3.61	120	110	10	0.72	<1	47	200	66	6.05	20	3.83	748	<1	0.07	152	790	34		<20	25	0.22	<10	56 65		12 12	119
58	24808	>1000	3.2	3.76	880	105	<5	0.85	3	41	233	159	6.25	20	4.14	661	<1	0.10	164	1000	684	-	<20	32 24	0.22 0.26	<10 <10			8	34
59	24809	55	0.2	3.01	55	70	10	0.83	<1	40	236	56	4.94		3.33	543	<1	0.08	167	1080	28	-	<20 <20	24 20	0.26	<10	<1		8	27
60	24810	5	<0.2	1.89	45	60	<5	0.76	<1	44	132	158	3.93	10	1.89	348	1	0.08	113	890	18	<5	~20	20	0.25	10		10	0	
61	24811	10	<0.2	3.42	75	90	15	0.69	<1	49	221	43	5.25	20	3.75	635	<1	0.08	224	950	30		<20	21	0.22	<10		<10	7	54
62	24812	15	0.3	3.41	90	95	5	0.64	<1	46	228	62	6.02	20	3.76	659	<1	0.05	172	1050	42	-	<20	16	0.26	<10	30		11	116
63	24813	5	<0.2	2.78	25	65	10	0.84	<1	36	196	50	4.74	20	3.20	561	<1	0.07	135	780	24		<20	20	0.22	<10	36		13	51
64	24814	10	0.5	3.49	45	15	<5	0.24	<1	68	345	254	6.07	20	4.77	734	1	0.02	246	810	30		<20	6	0.02	<10	146		9 10	59 21
65	24815	10	0.3	1.86	30	40	<5	0.55	<1	43	58	50	3.95	20	1.29	376	<1	0.02	61	590	18	<5	<20	17	<0.01	<10	38	<10	10	21
	0.4040	05	0.4	2.33	55	45	<5	0.48	<1	91	46	287	6.02	30	1.83	1084	<1	0.01	84	1220	22	<5	<20	11	<0.01	<10	46	<10	13	91
66 67	24816	35 15	0.4 0.3	2.33	40	45 25	<5	0.10	<1	23	77	120	2.04	10	0.72	203		<0.01	22	200	12	<5	<20	2	<0.01	<10	11		4	43
67 68	24818 24819	185	1.0		350	25	<5	0.23	<1	50	115	383	4.20	10	1.98	699	3	<0.01	58	440	18	<5	<20		<0.01	<10	46		8	71
69	24820	50	0.2	4.25	465	25	5	0.50	<1	52	247	88	8.33	30	4.66	1325		<0.01		1120	32	<5	<20		<0.01	<10	124		11	104
70	24821	130	0.7	1.50	65	30	<5	0.23	<1	82	48	331	4.72	20	1.35	672	3	<0.01	50	650	114	<5	<20	31	<0.01	<10	14	<10	10	146
	0.4000	FF	-0.0	1 76	30	45	<5	2.86	<1	25	39	68	3.00	20	1.54	787	<1	0.01	48	930	18	<5	<20	99	0.01	<10	23	<10	14	49
71	24822 24823	55 35	<0.2 0.4	1.76 1.95	50 65	40	<5	1.08	<1	49	45	108		20	1.41	539	<1	<0.01	58		14	<5	<20	32	0.01	<10	29	<10	9	90
72 73	24823	40	0.4		30	25	<5	0.38	<1	43	106	112		30	1.44	261	<1	0.03	51	1110	10	<5	<20	5	<0.01	<10	54		6	21
73	24826	65	0.4		25	35	<5	0.18	<1	89	118	43	6.88	20	1.33	108	8	0.03	41	1070	6	<5	<20	7		<10	68		5	27
75	24827	25	0.2		30	30	<5	0.35	<1	94	123	100	3.92	20	1.61	341	1	0.03	54	1040	10	<5	<20	5	0.02	<10	70) <10	6	28
			• •	4 00	05	50	-5	0.00	-1	64	100	259	5.15	20	1.35	199	6	0.02	36	990	10	<5	<20	8	0.07	<10	58	3 <10	7	32
76	24828	170	0.4		25	50 10	<5 <5	0.29 0.09	<1 <1	64 176	109 128	259 393		20		<1	101	0.02	47		66	<5	<20		<0.01	<10	46	6 <10	6	56
77	24829	960	2.0		170	10 30	<5 <5	0.09	<1	98	97	191	3.91	20		197	7	0.02	36		8	<5	<20	6	0.01	<10	50) <10	5	47
78	24830 24831	100 65	0.3 0.2		60 45	30 40	<5	0.10	<1	38	101	228		30		235	. 3		27		8	<5	<20	8		<10	45		7	24
79 80	24831	100			55	30	<5	0.97	<1	72	121	215		30		323	1		54	1020	8	<5	<20	17	0.02	<10	71	<10	7	27
81	24833	30	0.3	1.81	65	40	<5	0.48	<1	31	122	157	4.56	30	1.78	287	<1	0.03	65	1060	12	<5		9		<10		4 <10	6	35
82	24834	75			120	15	<5		<1	66	128	147	6.71	20			<1		76		10	<5	<20	5					5 17	34
83	24835	5			5	50	10		<1	58	92	89	5.63	20			15		52		12	<5		24					17 19	63 96
84	24836	5	<0.2	3.28	30	45	10		<1	70	95			20			11		52			<5		17		<10 <10	-		19	90 47
85	24838	10	<0.2	2.53	10	25	5	0.99	<1	51	98	139	6.47	20	1.46	638	25	0.14	37	970	14	<5	<20	36	0.76	×10	0	1 10	10	- 1


ECO TECH LABORATORY LTD.

,

÷

	T = = #	A. (mmb)	٨	A1 0/	٨٥	Ва	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	La I	/lg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
Et #.	Tag #	Au (ppb)		AI %	As			0.73		70	91	162	6.21		2.36	958	18	0.08	44	1160	14	<5	<20	22	0.74	<10	97	<10	20	65
86	24839	15	0.2	2.71	10	50			<1	45	97	817	6.92			1170	5	0.18	56	1720	22	<5	<20	54	0.28	<10	151	<10	15	71
87	24840	5	<0.2	3.35	70	30	-	1.81	<1		97 84	178	6.26		1.98	670	1	0.06	43	530	16	-	<20	11	0.06	<10	83	<10	11	61
88	24841	5	<0.2	2.42	40	30		0.22	<1	36		161	0.20 5.77	30	1.50	478	<1	0.02	51	280	18	-	<20	5	0.07	<10	62	<10	7	49
89	24842	5	<0.2	2.39	55	35		0.08	<1	32	80			10	1.13	317	7	0.02	23	540	6	-	<20	6	0.02	<10	48	<10	4	36
90	24845	30	0.3	1.15	15	50	<5	0.14	<1	30	125	240	3.41	10	1.13	317	'	0.01	20	540	Ū		-20	Ŭ	0.02					
		_			45	40	40		-1	38	57	14 1	5.89	30	3.00	825	8	0.05	45	2290	14	<5	<20	32	0.48	<10	88	<10	20	59
91	24846	5	< 0.2	2.84	15	40		1.41 0.17	<1 2	30 138	82	440	8.16	30	1.87	954	-	<0.00	45	1250	26		<20	3	0.02	<10	76	<10	14	710
92	24847	<5	0.2	2.25	45	15		0.17	<1	40	96	123	6.06	30	2.37	753	3	0.05	45	1180	14	<5	<20	21	0.07	<10	111	<10	13	61
93	24848	35	0.2	2.69	20	35 30		0.51	<1	40 56	90 115	270	5.55	20	2.19	506	8	0.04	38	1270	10	<5	<20	12	0.18	<10	171	<10	11	36
94	24849	370	0.2	1.95	20	5		0.45	<1	17	124	163	2.36	<10	0.33	93		<0.01	10	180	<2	<5	<20	<1	<0.01	<10	17	<10	1	14
95	24850	110	0.2	0.39	10	5	<0	0.05	~1	17	124	105	2.00	510	0.00	00		-0.01			_	-								
QC DATA:																														
Resplit:															4.05			0.00		1000	24	~5	<20	7	<0.01	<10	123	<10	15	339
1	24613	680	10.6	2.70	160	30	<5	0.43	1	225	81	727	>10	50	1.85	930	4	0.02	83	1080	34	<5	~20 <20		< 0.01	<10	40		5	57
36	24678	5	<0.2	1.37	25	35	<5	0.21	<1	67	129	76	3.42	10	1.40	576	6	<0.01	47	680	14	<5	~ 20	4	-0.01	10		-10	-	
71	24822	70	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Repeat:																					~ 4	40	-00	,	<0.01	<10	118	<10	14	327
1	24613	750	10.4	2.63	170	30	<5	0.38	2	210	80	703	>10	40	1.82	851	4	0.02	84	910	34	10	<20	-	< 0.01	<10	56		8	26
10	24635	>1000	0.6	1.17	310	<5	<5	0.11	<1	207	113	206	>10	20	1.04	93	277	0.02	97	500	6	<5	<20 <20		< 0.01	<10	78		8	49
19	24658	40	0.3	1.69	15	10	<5	0.35	<1	35	128	44	3.43	40	1.96	429	<1	0.03	51	1010	28	<5 <5			< 0.01	<10	42		5	58
36	24678	5	<0.2	1.43	20	35	<5	0.23	<1	63	126	71	3.48	10	1.45	576	-	< 0.01	47	730	12	<5		-	< 0.01	<10	43		17	40
45	24692	35	0.5	1.90	75	30	<5	0.68	<1	89	98	340	7.43	30	1.69	491	1	0.02	58	2170	16	-			<0.01	<10	59		7	32
54	24803	5	<0.2	1.47	35	20	<5	0.1 9	<1	17	124	61	3.29	20	1.11	506	2	0.02	62	690	16	<5		4 99		<10	23		14	49
71	24822	60	<0.2	1.75	30	45	<5	2.83	<1	25	38	65	2.99	20	1.53	782	<1	0.01	47	920	18	<5	<20 <20	99 15		<10		<10	7	27
80	24832	95	<0.2	1.50	50	30	<5	0.94	<1	70	117	213	4.13	30	1.69	311	<1	0.03	53	980	8	<5	<20	15	0.02	~10	10		ſ	21
Standard:	•						_					05	2.40	~10	0.06	E95	<1	0.03	20	640	20	<5	<20	42	0.10	<10	56	i <10	8	73
GEO '04		140	1.5	1.68	50	135	<5	1.59	<1	20	60	85	3.49	<10	0.96	585					20	~5 <5		49			57		9	74
GEO '04		145	1.6	1.65	55	135	<5	1.59	<1	20	60	83	3.47	10	0.96	591	<1	0.03	20	650 660	20	<5		41			55		10	73
GEO '04		140	1.5	1.65	50	135	<5	1.58	<1	21	57	84	3.50	<10	0.95	595	1	0.03	22	000	22	~ 5	~20	41	0.00	\$10	00	, 10	10	

ECO TECH LABORATORY LTD. Jutta Jeaouse B.C. Certified Assayer

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-848

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

ATTENTION: Paul Cowley

No. of samples received: 17 Sample Type: Core **Project #: JD** Samples submitted by: B. Laird

		Au	Au	
Et #.	Tag #	(g/t)	(oz/t)	
2	24702	2.24	0.065	
3	24703	7.88	0.230	
5	24706	2.07	0.060	
7	24710	1.32	0.038	
9	24712	1.39	0.041	
11	24716	1.54	0.045	
13	24718	1.89	0.055	
QC DATA Standard	-			
SH13		1.34	0.039	

JJ/jm XLS/04

ECQ TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

4-Aug-04

4-Aug-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

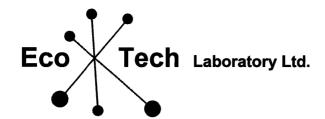
Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2004-848

GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6 •

.

ATTENTION: Paul Cowley


No. of samples received: 17 Sample Type: Core **Project #: JD** Samples submitted by: B. Laird

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr		Fe %	La	Mg %_	Mn	Mo Na%	Ni	P	Pb	Sb Sn	Sr Ti%	U	<u>v</u>	W	Y	Zn
1	24701	145	0.4	0.99	55	60	<5	0.13	<1	37	88	102	3.09	20	0.81	521	4 < 0.01	43	440	12	<5 <20	8 < 0.01	<10		<10	6	52
2	24702	>1000	3.5	0.87	50	55	<5	0.19	<1	86	104	678	5.51	20	1.21	429	12 <0.01	76	430	12	<5 <20	15 <0.01	<10		<10	7	84
3	24703	>1000	6.5	0.42	115	55	<5	0.20	1	114	146	1911	9.91	<10	2.33	106	37 <0.01	85	370	20	5 <20	28 <0.01	<10		<10	7	140
4	24704	140	0.5	0.75	30	35	<5	0.28	<1	44	113	208	1.91	10	1.00	367	7 <0.01	43	900	12	<5 <20	7 <0.01	<10		<10	6	44
5	24706	>1000	4.0	0.45	310	40	10	0.13	8	55	145	184	5.78	<10	0.78	662	9 <0.01	46	410	266	<5 <20	7 <0.01	<10	11	<10	6	302
6	24708	45	<0.2	0.89	20	40	<5	0.24	<1	25	61	83	1.41	20	0.83	176	2 <0.01	36	570	8	<5 <20	7 <0.01	<10	21	<10	5	55
0	24708	+5 >1000	0.5	1.62	25	175	<5	0.72	1	53	81	109	3.24	<10	2.24	563	17 < 0.01	73	950	12	<5 <20	26 < 0.01	<10		<10	5	149
8	24710	150	1.0	2.24	25 50	50	~5 <5	0.72	1	57	191	405	6.68	<10	2.07	1017	7 < 0.01	83	1870	92	5 <20	14 0.02	<10		<10	8	186
о 9	24711	>1000	2.6	3.33	110	55	~5 <5		2	119	249	652	9.02	20		1733	15 < 0.01	189	2270	84	5 <20	19 0.01	<10	160		13	232
9 10	24712	470	0.3	0.43	35	20	-	<0.01	<1	27	80	161	3.02	10	0.67	132	7 < 0.01	25	300	8	<5 <20	2 < 0.01	<10		<10	4	36
10	24715	470	0.5	0.43	35	20	~0	~0.01	~1	21	00	101	5.04	10	0.07	102	7 50.01	25	000	0	-0 -20	2 .0.01	10	20	10	•	00
11	24716	>1000	3.9	0.89	90	65	5	<0.01	<1	73	213	261	7.17	<10	1.22	147	7 <0.01	69	400	12	<5 <20	3 <0.01	<10	94	<10	3	34
12	24717	280	0.4	3.45	20	30	<5		<1	90	419	622	8.83	20		2158	3 < 0.01	231	2100	24	5 <20	8 0.01	<10	166	<10	19	119
13	24718	>1000	1.4	3.55	50	25	<5	0.43	<1	224	445	1479	8.42	20		1560	10 < 0.01	381	2070	30	<5 <20	11 0.01	<10	170	<10	16	127
14	24719	150	1.8	3.50	80	25	<5	0.30	1	113	403	2513	9.51	10			6 < 0.01	304	1660	30	5 <20	9 0.02	<10		<10	18	301
15	24720	395	1.4	3.76	130	20	<5	0.25	1	113	408	1964	9.11	<10	2.35	1939	7 < 0.01	231	1480	46	5 < 20	5 0.04	<10	144		13	200
15	24/20	333	1.4	0.70	100	20	-0	0.20	•	110	400	1004	0.11	-10	2.00	1000	7 0.01	201	1100		• =•	• • • • •		•••			
16	24721	55	<0.2	0.51	10	20	<5	0.10	<1	17	87	79	1.94	<10	0.57	188	3 <0.01	20	590	4	<5 <20	4 <0.01	<10	26	<10	3	18
17	24722	45	<0.2	1.76	10	45	<5	0.50	<1	21	95	64	3.86	30	1.40	488	2 < 0.01	57	2400	18	<5 <20	12 < 0.01	<10	61	<10	11	66
	64166	10	.0.2	1.10				0.00	•		•••	•••						•••									
		*																									
QC DATA	<u>.</u>																										
Resplit: 1	24701	125	0.3	0.92	50	60	<5	0.13	<1	42	104	108	2.91	10	0.80	516	5 <0.01	43	440	12	<5 <20	7 <0.01	<10	20	<10	6	51
1	24/01	125	0.5	0.92	50	00	~0	0.13	~1	42	104	100	2.91	10	0.00	510	5 -0.01	45	440	12	-5 -20	7 -0.01	-10	20	-10	Ŭ	01
Popost:																											
Repeat:	24701	120	0.4	0.93	50	60	<5	0.13	<1	40	93	101	2.98	10	0.81	523	4 <0.01	44	410	12	<5 <20	7 <0.01	<10	20	<10	6	52
10	24701	500	0.4	0.93	50	00	-0	0.15		40	55	101	2.30	10	0.01	525	4 \0.01		- 10	-		7 -0.01		20	-10	-	-
10	24/10	500	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-			-	-	-	-	-
Standard																											
GEO '04	•	140	1.6	1.55	50	145	<5	1.54	<1	16	60	83	3.39	<10	0.92	628	<1 <0.01	28	660	22	<5 <20	57 0.09	<10	67	<10	7	73
		140	1.0	1.00	50	1-10	-0	1.04		10	00	00	0.00	10	0.01	020		20	000	Les has		0.00	10	0.		•	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm ^{df/851a} XLS/04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-849

Gold City Industries Ltd. 550-580 Hornby Street Vancouver, BC V6C 3B6

4-Aug-04

ATTENTION: Paul Cowley

No. of samples received: 7 **Project #: JD Shipment #: Not indicated** Samples submitted by: B. Laird

Et #.	To a #	Au	Au	Ag	Ag	Pb	Zn	
	Tag #	<u>(g/t)</u>	(oz/t)	(g/t)	(oz/t)	(%)	(%)	
1	24705	0.83	0.024					
2 3	24707	0.27	0.008					
3	24709	1.33	0.039					
4	24713	1.42	0.041					
5 6	24714	7.78	0.227					
6	24723	0.08	0.002					
7	24724	8.77	0.256	69.1	2.02	1.67	2.40	
<u>QC DATA:</u>								
Resplit:								
1	24705	1.30	0.038					
Repeat:								
. 1	24705	1.07	0.031					
5	24714	7.69	0.224					
. 7	24724	7.76	0.226	69.1	2.02	1.67	2.39	
Standard:								
SH13		1.33	0.039					
PB106		1.55	0.039	58.6	1.71	0.53	0.8	
						\frown		
					ECØ TECH	ABORATO	RY LTD.	
JJ/jm				×.,	Jutta Jealous	e /		
XLS/04				/1	B.C. Certified	l Assayer		
				(Ű.		

3-Aug-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 GOLD CITY INDUSTRIES LTD 550-580 Hornby Street Vancouver, BC V6C 3B6 Ĵ,

:

ATTENTION: Paul Cowley

No. of samples received: 7 **Project #:JD** Samples submitted by: B.Laird

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr Ti%	<u> </u>	<u>v</u>	<u></u>	<u>Y</u>	Zn
1	24705	1.0	0.56	175	25	<5	0.27	5	41	87	275	3.35	<10	0.71	337	5 < 0.01	47	500	36	<5	<20	9 <0.01	<10	14	<10	5	241
2	24707	0.2	0.87	45	60	<5	0.28	<1	25	73	127	1.78	<10	0.76	215	3 <0.01	36	620	6	<5	<20	8 <0.01	<10	20	<10	5	83
3	24709	2.8	1.54	35	25	<5	0.40	2	93	133	1743	5.66	<10	2.09	516	16 <0.01	106	670	128	<5	<20	17 <0.01	<10	57	<10	6	218
4	24713	1.1	2.52	75	80	10	1.21	<1	48	87	226	7.76	30	1.88	1263	3 <0.01	47	4810	16	<5	<20	36 0.05	<10	118	<10	14	91
5	24714	5.5	1.00	325	15	35	0.49	1	125	193	346	>10	10	1.80	391	4 <0.01	89	3250	22	5	<20	28 0.02	<10	73	<10	6	30
6	24723	0.5	2.85	45	95	<5	0.25	2	90	184	1848	>10	30	2.38	895	4 <0.01	199	740	20	5	<20	14 <0.01	<10	67	<10	21	272
7	24724	>30	2.53	1445	5	<5	0.17	318	183	470	6883	>10	<10	3.13	706	24 <0.01	278	760	>10000	25	<20	14 0.01	<10	127	<10	<1 >	10000
<u>QC DATA</u> Resplit: 1	24705	1.0	0.62	185	30	<5	0.29	6	43	106	249	3.52	<10	0.76	368	6 <0.01	50	610	44	<5	<20	9 <0.01	<10	16	<10	6	280
Standard: GEO '04		1.4	1.46	55	135	<5	1.59	<1	17	70	86	3.48	<10	0.92	635	<1 <0.01	30	760	20	5	<20	55 0.09	<10	68	<10	7	70

ECO TECH ABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk df/847w XLS/04

APPENDIX II

ANALYTICAL PROCEDURES

Analytical Procedure

Metallic Gold Assay Method

Samples are catalogued and dried. Rock samples are two stage crushed to minus 10 mesh, then split to achieve a 250 gram (approximate) sub sample. The sample is pulverized to 95% -140 mesh. The sample is weighed, then rolled and homogenized and screened at 140 mesh.

The -140 mesh fraction is homogenized and 2 samples are fire assayed for Au. The +140 mesh material is assayed entirely. The resultant fire assay bead is digested with acid and after parting is analyzed on a Perkin Elmer atomic absorption machine using air-acetylene flame to .03 grams/t detection limit.

The entire set of samples is redone if the quality control standard is outside 2 standard deviations or if the blank is greater than .015 g/t.

The values are calculated back to the original sample weight providing a net gold value as well as 2-140 values and a single +140 mesh value.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and or mailed to the client.

Gold Assay Method

Samples are sorted and dried (if necessary). The samples are crushed through a jaw crusher and cone or rolls crusher to -10 mesh. The sample is split through a Jones riffle until a -250 gram sub sample is achieved. The sub sample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize.

A 30 g sample size is fire assayed using appropriate fluxes. The resultant dore bead is parted and then digested with aqua regia and then analyzed on a Perkin Elmer AA instrument.

Appropriate standards and repeat sample (Quality Control Components) accompany the samples on the data sheet.

Analytical Procedure

MULTI ELEMENT ICP ANALYSIS METHOD AND DETECTION LIMITS

A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCl:HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

	Detection Lin	nit		Detection Limit					
	Low	Upper		Low	Upper				
Ag	0.2ppm30.0pj	om	Fe	0.01%	10.00%				
Al	0.01%	10.0%	La	10ppm	10,000ppm				
As	5ppm	10,000ppm	Mg	0.01%	10.00%				
Ba	5ppm	10,000ppm	Mn	1ppm	10,000ppm				
Bi	5ppm	10,000ppm	Mo	1ppm	10,000ppm				
Ca	0.01%	10,00%	Na	0.01%	10.00%				
Cd	1ppm	10,000ppm	Ni	1ppm	10,000ppm				
Со	1ppm	10,000ppm	Р	10ppm	10,000ppm				
Cr	1ppm	10,000ppm	Pb	2ppm	10,000ppm				
Cu	1ppm	10,000ppm	Sb	5ppm	10,000ppm				
C	20	10.000							
Sn	20ppm	10,000ppm							
Sr	1ppm	10,000ppm							
Ti	0.01%	10.00%							
U	10ppm	10,000ppm							
V	1ppm	10,000ppm							
Y	1ppm	10,000ppm							

10,000ppm

Zn

1ppm

APPENDIX III

STATEMENT OF COSTS

COST STATEMENT

JD CLAIM GROUP 2004 EXPLORATION PROGRAM

FIELD PERSONNEL

A. Raven - Field Manager (High Range Explor. Ltd.)	22.8 days @ \$250/day	\$5,700.00
M. Moorman - prospector	1 day @ \$250/day	\$250.00
Rainbow Exploration	35 days	\$8,610.63
CONSULTANTS - GEOLOGICAL		
P. Rajaei, geologist	19 days @ \$250/day	\$ 4,750.00
B. Laird, P.Geo.	2 days @ \$350/day	\$725.00
E. Frey geologist	31 days@\$350/day	\$ 10,850.00
P. Cowley, P.Geo.	8 days @ \$350/day	\$2,800.00
M. Lind, geologist	2 days @ \$400/day	\$800.00
TRENCHING – Rainbow Exploration		\$53,507.34
MAPS AND REPRODUCTIONS –Black Mountain Mapping		\$1,272.65
FOOD, ACCOMMODATIONS AND TRAVEL		\$ 3,244.56
VEHICLE RENTAL		\$4,763.65
EQUIPMENT AND SUPPLIES		
Field Supplies		\$2,895.78
Fuel & Lubes		\$1,133.91
EQUIPMENT RENTAL		\$4,958.20
LABORATORY ANALYSIS – Ecotech Laboratories		\$24,543.98
FREIGHT		\$1,168.14
REPORT PREPARATION Drafting, copying		\$4,040.00
	TOTAL	\$ 136,013.81

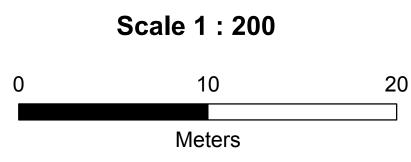
APPENDIX IV

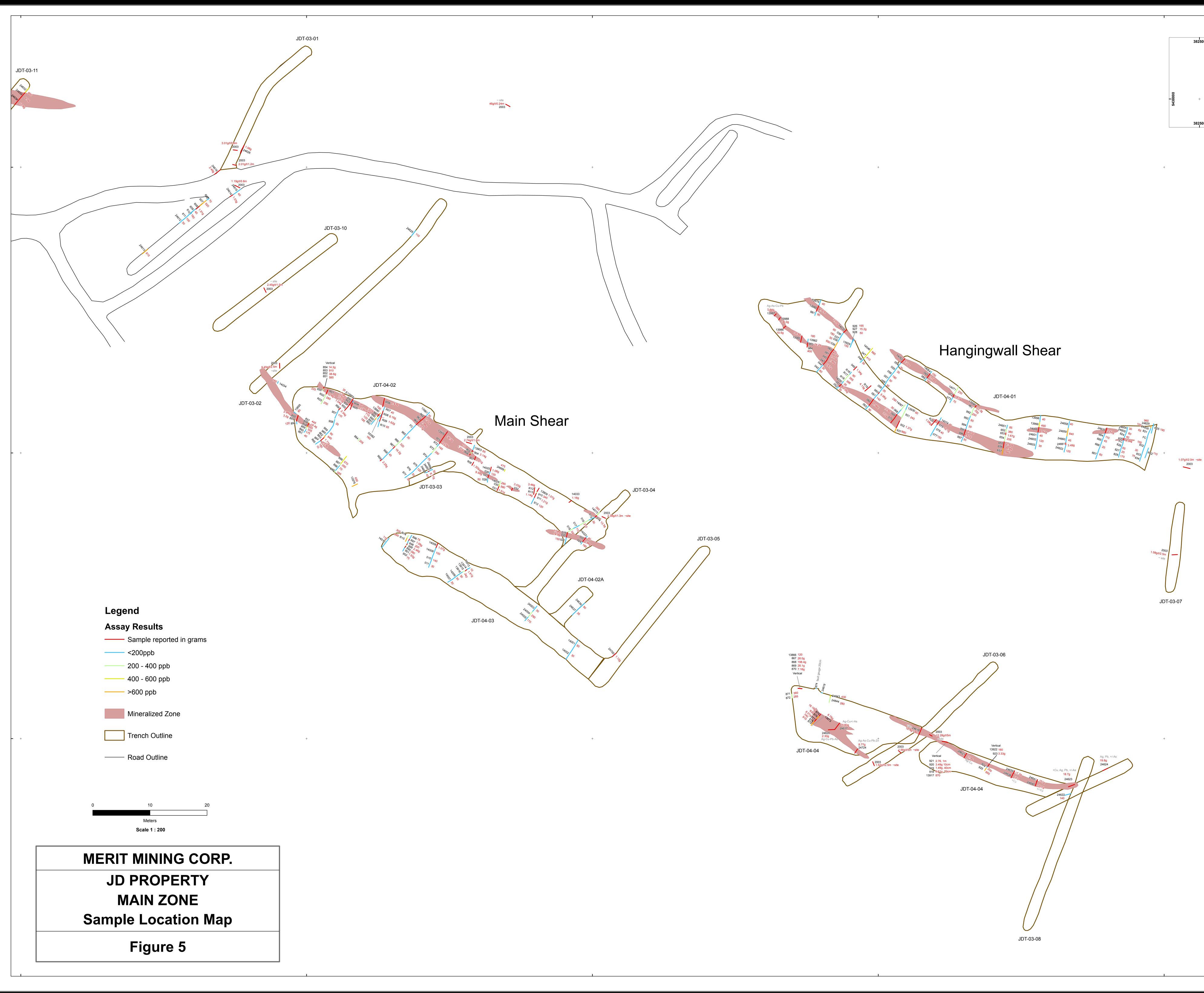
STATEMENT OF QUALIFICATIONS

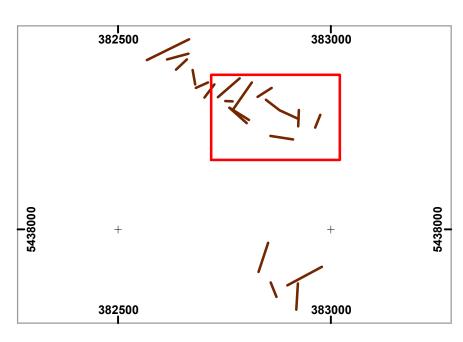
STATEMENT OF QUALIFICATIONS

I, Paul S. Cowley, P.Geo. do hereby certify that:

 I am currently employed as a Consultant by: Gold City Industries Ltd.
 Suite 550- 580 Hornby Street
 Vancouver, B.C. V6C 3B6
 Telephone: 604-682-7677 Email: www.gold-city.net


- 2. I graduated with Honours with a Bachelor of Science degree in Geology, from University of British Columbia, Canada, in 1979.
- 3. I am a registered Professional Geologist with the Northwest Territories Association of Professional Engineers, Geologists and Geophysicists, Registration Number L445, since October 5, 1989.
- 4. I am a registered Professional Geoscientist with the association of Professional Engineers and Geoscientists of the Province of British Columbia, Canada, Registration Number 24350, since June 1999.
- 5. I have worked as a geologist for a total of 26 years since my graduation from university.
- 6. I am responsible for the preparation of this report and supervised the program contained in this report.
- 7. I am not independent of the issuer applying all of the tests in section 1.5 of National Instrument 43-101. I am an Insider of Gold City Industries Ltd., being the Vice President of Exploration. I also hold common shares and options with Gold City Industries Ltd.


Dated at Vancouver, B.C. this 1st day of March, 2005.


Signature of Qualified Person Paul S. Cowley, Pigeo. SCIEN 207-270 West 1st Street

North Vancouver, B.C. V7M 1B4 Telephone: 604-983-2996 Email: cowleypgeo@hotmail.com

