

Γ

l

I

ASSESSMENT REPORT

SOIL AND STREAM SEDIMENT GEOCHEMICAL SURVEYS GROUND GEOPHYSICAL ORIENTATION SURVEYS JASPER PROPERTY, VICTORIA M.D.

NTS: 092C 088

LAT: 48°52' LONG: 124°36'

Report for Owner GEOLOCICANSURPEY BRANCH INSPIRATION MENT REPORT Report by: Arne Birkeland, P. Eng. ARNEX RESOURCES 17.

Date:

February 16, 2005

1. Summary	5
2. Introduction	6
2.1. General	6
2.2. Property Tenure	7
2.3. Location and Access	7
3. History	7
4. Geology	12
4.1. Regional Geology	12
4.2. Local Geology	14
4.3. Structure and Alteration	16
4.4. Mineralization	16
5. 2004 Geochemistry Program	19
5.1. Soil Sampling Results	19
5.1.1. Methodology	19
5.1.2. Jas Pan Grid Area	54
5.1.3. North Pan Grid Area	59
5.1.4. South Pan Grid Area	60
5.2. Rock Sampling Results	61
5.2.1. Methodology	61
5.2.2. Known MINFILE Occurrences	02 70
5.2.4 Other Areas	76
5.2.4. Oulei Aleas	10
6. Ground Geophysical Orientation Surveys	77
6.1. Ground Magnetometer Survey	77
6.1.1. Ground Magnetometer Survey – Jas-Pan Grid Area	77
6.1.2. Ground Magnetometer Survey – Pan Grid Area	77
6.2. Ground VLF-EM Survey	80
7. Conclusions and Recommendations	00
7.1. 2004 Soil Geochemical Program	80
7.2. 2004 Rock Geochemical Program	82
7.2.1. Known MINFILE Occurrences:	82
7.3. 2004 Ground Geophysical Orientation Surveys	83
8. General Recommendations	83
9. Certificate of Qualification and Consent	84
10. Bibliography, Selected References	85

TABLE OF CONTENTS

Γ

Γ

ſ

ſ

1

i.

ł

LIST OF FIGURES

Γ

Γ

Γ

Γ

Γ

i

Figure 1: Property Location Map (1:2,000,000)
Figure 2: Claim Location Map (Original 1:20,000) 10
Figure 3: BCGS Geology Map (1:800,000)
Figure 4: Local Geology - Jasper Area (1:500,000) 15
Figure 5: Minfile - Lakes, Rivers, Roads
Figure 6: Index Map
Figure 7: Rock Sample Location Map - Jas Pan Grid
Figure 7b: Stream Sediment and Soil Sample Location Map - Jas Pan Grid
Figure 8: Geochemical Map - Copper ppm - Jas Pan Grid
Figure 9: Geochemical Map - Zinc ppm - Jas Pan Grid
Figure 10: Geochemical Map - Lead ppm - Jas Pan Grid
Figure 11: Geochemical Map - Silver ppm - Jas Pan Grid
Figure 12: Geochemical Map - Gold ppb - Jas Pan Grid
Figure 13: Rock Sample Location Map - North Pan Grid
Figure 13b: Stream Sediment and Soil Sample Location Map - North Pan Grid
Figure 14: Geochemical Map - Copper ppm - North Pan Grid
Figure 15: Geochemical Map - Zinc ppm – North Pan Grid
Figure 16: Geochemical Map - Lead ppm – North Pan Grid
Figure 17: Geochemical Map - Silver ppm – North Pan Grid
Figure 18: Geochemical Map - Gold ppb – North Pan Grid
Figure 19: Rock Sample Location Map - South Pan Grid
Figure 19b: Stream Sediment and Soil Sample Location Map - South Pan Grid

Figure 20: Geochemical Map - Copper ppm – South Pan Grid 4	3
Figure 21: Geochemical Map - Zinc ppm – South Pan Grid 4	4
Figure 22: Geochemical Map - Lead ppm – South Pan Grid 4	5
Figure 23: Geochemical Map - Silver ppm – South Pan Grid 4	6
Figure 24: Geochemical Map - Gold ppb – South Pan Grid 4	7
Figure 25: Sample Location Map – Jas Grid48	3
Figure 26: Geochemical Map – Copper ppm in Soils and Rocks – Jas Grid4	9
Figure 27: Geochemical Map – Zinc ppm in Soils and Rocks – Jas Grid50	0
Figure 28: Geochemical Map – Lead ppm in Soils and Rocks – Jas Grid5	1
Figure 29: Geochemical Map – Silver ppm in Soils and Rocks – Jas Grid	2
Figure 30: Geochemical Map - Gold ppb in Soils and Rocks – Jas Grid53	3
Figure 31: Magnetometer Map – Jas Pan Grid Survey	8
Figure 32: Magnetometer Map – Pan Grid Survey	9

ſ

I

E

I

LIST OF TABLES

Table 1:	Mineral Titles Search - Mineral Tenure by Owner
Table 2:	Soil and Stream Sediment Analytical Results - Selected Elements20-25
Table 3:	Rock Chip Analytical Results – Selected Elements

APPENDICIES

APPENDIX A: Statement of Expenditures – Statement of Work

APPENDIX B: Geochemical Analysis Certificates - Acme Analytical Laboratories

APPENDIX C: Geochemical Data Sheets – Soil, Stream Sediment and Rock Chip Samples

JASPER PROPERTY, VICTORIA MINING DIVISION

1. SUMMARY

[

Į

Arnex Resources Ltd. conducted a field exploration program for Inspiration Mining Corp. on the Jasper Property during the period June 5 to August 7, 2004 by a six to seven person crew. An 18.5 line km grid was established and surveyed by GPS. A soil geochemical survey was conducted over 10 line km. Four hundred and forty five soil samples were taken. In addition, 24 stream sediment samples were taken in high priority areas. In addition, prospecting was done and 123 rock chip samples were taken. Limited Magnetometer and EM16 VLF-EM geophysical orientation surveys were conducted in selected areas. A total expenditure of \$ 286,083.72 was incurred as per APPENDIX A, Statement of Expenditures.

The Jasper Claim group consists of the Jas 1 to 3 and Jasmin 1and 2 Mineral claims that total 82 units. The common expiry date of the claims is 2010-10-30. The property is 100% owned by Inspiration Mining Corp., Client Number 138196.

The Jasper Property is located in BCGS Map Sheet 092C 088 (NTS 92C/15). The Jasper Property lies within close proximity to tidewater on west central Vancouver Island. An extensive logging road network provides cheap access to the area.

A +four km long northward striking extensive intense alteration zone in present within rocks mapped by the BCGS as lower Jurassic Bonanza group volcanics that underlie the property. Poly-metallic massive sulphide showings and soil/stream sediment anomalies are present within the alteration zone.

Junior and Major Mining Companies have conducted a number of exploration programs on the Jasper, Tam and Pan Showing Areas since 1970. All prospects were consolidated under one ownership in 1994 and acquired by Inspiration Mining in 1995. Arnex conducted several exploration programs on the Property for Inspiration during the period 1995 to 2003. The results of the programs were encouraging and justified the significant program conducted in 2004.

By the conclusion of the 2004 field exploration program, 23 soil anomaly target areas have been defined. Seven of these anomnalies are attributed to be related to known mineralized showings. Sixteen of the soil anomalies warrant follow up work. Grid extension and additional soil sampling is recommended to "close off" the established geochemical anomalies.

Prospecting and rock chip sampling identified nine new showings in addition to the known three Minfile occurrences. Follow up hand or mechanized trenching coupled with detained mapping and rock chip sampling are recommended prior to drilling.

An airborne magnetic and electromagnetic survey is recommended to establish the orientation of mineralized trends and to identify additional targets for follow up exploration. A follow up surface program at an approximate cost of \$200,000 is warranted.

A diamond drill program consisting of approximately 30 holes totaling 3,000 to 5,000 m at a cost of \$500,000 is recommended to test the three Minfile occurrences and new showings found by the 2004 program and proposed pre-drill 2005 program.

2. INTRODUCTION

2.1. General

Arnex Resources Ltd. conducted a 353.7 person-day field exploration program for Inspiration Mining Corp. on the Jas 1-3 and Jasmin 1-2 Mineral Claims. The fieldwork was conducted during the period June 7 to August 7, 2004 by a six to seven person crew consisting of one Project Engineer/Supervisor, one Geologist, three Geologist/Technicians, one Prospector and one Cook/First Aid Attendant. The work was conducted utilizing a self contained trailer, camper and tent camp located at the Caycuse Main logging road crossing at 4-Mile Creek.

An 18.5 line km grid was established and surveyed by GPS. A soil geochemical survey was conducted over 10 line km. Four hundred and forty five soil samples were taken. In addition, 24 stream sediment samples were taken in high priority areas. Representative rock chip sampling (123 samples) was completed on previously know Minfile occurrences and on 11 newly discovered showings. Samples were dried and transported from the field by Arnex personnel. The samples were either hand delivered or shipped to Acme Laboratories Ltd in Vancouver for processing and analysis (APPENDIX B, Geochemical Analysis Certificates).

Limited Magnetometer and EM16 VLF-EM geophysical orientation surveys were conducted in selected areas.

All data was compiled and appropriate maps produced using MapInfo as a GIS software tool.

A total expenditure of \$ 286,083.72 was incurred as per APPENDIX A, Statement of Expenditures. A Statement of Work, Event Number 3219547, was filed at the Vancouver Sub-Recorders office dated November 1, 2004 and is included in APPENDIX A. The work was not conducted under an Annual Work Approval Number as no surface

disturbance was caused. The Jasper Claim group consists of the Jas 1 to 3 and Jasmin 1 and 2 Mineral claims that total 82 units (Table 1, Mineral Tenure by Owner, and Figure 2, Claim Location Map). The common expiry date of the claims is 2010-10-30. The property is 100% owned by Inspiration Mining Corp., Client Number 138196.

2.2. Property Tenure

A Same

The Jasper Claim group consists of the Jas 1 to 3 and Jasmin 1 and 2 Mineral claims that total 82 units (Table 1, Mineral Tenure by Owner, and Figure 2, Claim Location Map). The common expiry date of the claims is 2010-10-30. The property is 100% owned by Inspiration Mining Corp., Client Number 138196.

2.3. Location and Access

The Jasper Property is located in BCGS Map Sheet 092C 088 (NTS 92C/15, Figures 1 and 2). The Jasper property lies along Four Mile Creek and extends over the height of land to the tributaries of Jasper Creek. Logging road access is via Port Alberni or Cowichan Lake. J Branch road accesses the northern portion of the property and Caycuse Main the southern portion. Access roads are plotted on Figure 5, Minfile – Lakes, Rivers and Roads.

Steep incised drainages with rugged relief to approximately 300 meters (m) characterize the physiography of the area. Much of the region has been logged in recent years and young second growth forest is present over most of the claims. Climatic conditions are temperate.

3. HISTORY

The Jasper Property consists of three former Minfile occurrences known from north to south as the Jasper 1 (092C 080), Tam 16 (092C 081) and Pan-Easy (092C 088) prospects.

The Tam and Easy properties were previously staked by Hudson Bay Mining and Smelting who conducted geological mapping, soil and rock chip geochemistry and an IP geophysical survey in 1970 and 1971. Also in 1971, Marshall Creek Copper conducted an extensive soil sampling program on the Pan, Easy and Tam properties. It is reported that Noranda conducted a regional magnetic survey during this era, but no information regarding the results were filed as a matter of public record.

The next period of exploration activity occurred in 1980 and 1981 when Malibar Mines conducted soil sampling on the Jasper Property. Also in 1980, Umex Corporation

DATA last updated on February 14, 2005

E Motobao	Critorio	Owner Number	Tenure Status
5 Matches	Gillena	138196	Good Standing

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division
328705	JAS 1	138196 100%	092C088	2010.10.30	Good Standing 2010.10.30	24 VICTORIA
331922	JAS 2	138196 100%	092C088	2010.10.30	Good Standing 2010.10.30	24 VICTORIA
342740	JAS 3	138196 100%	092C088	2010.10.30	Good Standing 2010.10.30	24 VICTORIA
342741	JASMIN-1	138196 100%	092C087	2010.10.30	Good Standing 2010.10.30	24 VICTORIA
342742	JASMIN 2	138196 100%	092C088	2010.10.30	Good Standing 2010.10.30	24 VICTORIA

To download this information to a comma delimited text file click here.

Your use of this site is subject to this disclaimer.

[

Shortcuts: Main Menu Free Miner Search Tenure Search Lot Search

• Top • Copyright • Disclaimer • Privacy

• Feedback

L

conducted a grid geochemical soil sampling program on the Easy prospect. Claims covering the Jasper prospect were eventually forfeited.

Same and

l

L

Same of

In 1984, a prospecting program was carried out by Ron Bilquest on the Jasper prospect and the J-Branch Main Zone massive sulphide showing was found in recently constructed road cuts. The claims were restaked and optioned to Falconbridge Limited who conducted geological mapping, soil and rock geochemistry and a VLF-EM program. It is reported that Falconbridge did additional work during 1985 including packsack diamond drilling, but no Assessment Report was filed. Asamara Inc. then conducted a brief geology, soil sampling and VLF-EM program in 1987. The Jasper claims eventually lapsed following a negative recommendation by Asamara's consultant and a general lack of exploration interest in BC at the time.

The Jasper claims were relocated by Arne O. Birkeland in the summer and fall of 1994, who also staked claims covering the Tam, Easy and Pan prospects when existing claims were allowed to forfeit. This was the first time all the prospects were consolidated under one ownership. A detailed geologic mapping and sapling program was carried out in August, 1994 on the J Branch Main Showing.

The Property was optioned in 1995 to Consolidated Taywin Resources Ltd., (now Inspiration Mining Corp.) who acquired the Property outright by way of a Bill of Sale, Event Number 3086088 dated May 9, 1996. A geological, geochemical and geophysical program was carried out between December, 1995 and June 1996 by Arnex Resources Ltd, as operator for Inspiration Mining Inc in the vicinity of the Jasper Main Showing area. Diamond drill targets were identified and additional work was recommended.

A rock and grid soil geochemical program was carried out in the vicinity of the Pan Road Showing by Arnex Resources Ltd for Inspiration Mining Corp during December, 1998. A poly-metallic soil anomaly was discovered trending northerly off the soil grid. Four outcrop showings were sampled that returned values ranging from 2%-4.9% Cu, 4.5%-17% Pb, 18%-32% Zn with up to 76.8 ppm Ag and 315 ppb Au over widths between 0.36 metre to 2.1 metre.

In 2000, and again in 2001, grid soil sampling extended the 1998 grid to the north and south. Numerous poly-metallic soil geochemical anomalies were identified. Orange colored gossanous soils associated with the alteration zone are present in the anomalous areas. Anomalous values were established over a 1.6 kilometre strike length within the grid area by extensive soil anomalies greater than the 99th percentile that are open upslope to the east.

In 2002, a total of 69 reconnaissance style soil and stream sediment (moss mat) samples were taken during a ten person-day geochemical program conducted by Arnex during October, 2002. Caycuse Main logging road was used as access. Orthophoto mosaic and Orthophoto topographic maps were used as survey control. Seven Cu, six Zn, two Pb, and eleven Ag values greater than the 99th percentile were detected from the soil sampling

to the north. Samples taken directly north of the Pan North Grid were moderately anomalous and values ranged between 108 to 126 ppm Cu with Zn ranging from 205 to 268 ppm. Soil samples approximately 200 to 550 m north of the Pan North Grid become more anomalous going to the north. The most northerly samples are still strongly anomalous in Cu and Zn indicating the anomaly is still open to the north. Soil samples were also taken from road-cuts of Caycuse Main logging road going south from the Pan South Grid. Base metal values are not anomalous from soil samples taken for the first approximately 650 metres to the south from the Pan South Grid. Over the next 225 metres, four soil and talus fine samples were strongly anomalous and ranged between 250 – 771 ppm Cu, 103 – 853 ppm Zn and up to 1.2 ppm Ag. Soils and fines were variably altered and gossanous in this area. Sampling continued for a distance of approximately one kilometre to the south. Numerous samples returned anomalous values for base metals. Eight samples were greater than the 99th percentile and three samples ranged between 499 to 605 ppm Cu. Four samples exceed the 99th percentile for Zn with the highest value being 343 ppm Zn.

In 2003, a grid soil geochemical survey was conducted in the Pan Grid area. The soil grid was extended to the north, and some grid lines were also extended upslope to the east. One hundred and twenty soil samples and four rock chip samples were taken.

The soil geochemical program conducted in 2003 again established anomalies on the expanded grid. Polymetallic soil anomalies appear to be clustered in generally two areas. In the North Pan Grid area, high soil values are present clustered between 2300 N and 2450 N within the drainage area of Camp Creek. High soil values are also clustered in the central portion of the Pan South Grid. Soil anomalies occur over a 2.8 kilometre distance on the combined Pan grids.

Additional grid soil geochemistry was recommended at the Pan Grid area as part of a phased program. Bedrock and surficial geology mapping were recommended to be completed to interpret the source for the geochemical anomalies. Appropriate grid geophysical orientation surveys were recommended to be conducted on high priority target areas. Prospecting and hand and/or mechanized trenching and sampling were recommended to be carried out to identify drill targets.

4. GEOLOGY

Γ

E

Γ

4.1. Regional Geology

Vancouver Island lies within the Canadian Cordillera within terrain classified as Wrangellia. Central and western Vancouver Island is predominantly underlain by Paleozoic and Mesozoic strata intruded by Jurassic and Tertiary Intrusions (Figure 3, BCGS Geology Map – Southwester Vancouver Island).

BCGS Geology Map - Southwestern Vancouver Island

Compiled By: Arnex Resources Ltd

Date: Jan 20, 2004 Compiled For: Inspiration Mining Corp

Figure 3

The Jasper property is hosted in a belt of rocks mapped as lower Jurassic Bonanza group which trends southeasterly from Nitinat Lake through Gordon River, south of Cowichan Lake.

The Bonanza Group in this vicinity consists of a variety of maroon to grey-green, feldspar phyric basalt and andesite flows, dacite and felsic lapilli tuff containing various minor gabbro, andesite and dacite dykes. There is a lack of lithologic continuity and distinct marker beds are absent. In the basal part of the sequence, sedimentary rocks are found interbedded with lapilli and crystal tuffs and a sub-aqueous environment is indicated.

Several granodiorite Island Intrusion stocks occur in the area. The coeval stocks are regular to elongate in shape with steep sides. The major lithology is granodiorite to quartz-diorite and most of the stocks are rich in mafic inclusions, particularly in marginal zones where magmatic intrusive breccias are developed. Stocks are rounded in outcrop shape. Numerous RGS anomalies and Minfile occurrences (Figure 5, Minfile, Lakes, Rivers and Roads) are present in the general Nitinat - Cowichan area and both porphyry and VMS style mineralization has been reported by BCGS geologists. Porphyry style Cu-Mo occurrences are commonly associated with high level sub-volcanic dykes and sills. The Debbie - Lizard - Thistle VMS belt occurs in the northern portion of the region hosted in rocks mapped as Sicker Group. Massey and Friday note VMS stratigraphic mineral potential where reported "sulfidic argillites are found interbedded with tuffs" in the basal part of the Bonanza sequence in the Alberni - Cowichan area.

The potential for finding undiscovered metallic mineral deposits for the tract underlying the Jasper Property is classified as being Highest by the BCGS Mineral Potential Program ranking system.

4.2. Local Geology

The Jasper property is underlain by mafic to felsic volcanic rocks that have been previously mapped as Bonanza group (Figure 4, Local Geology, Jasper Area). The central part of the property is underlain by a north-south trending sequence of intermediate flows and flow breccias that are flanked to the east by mafic flows. A wedge shaped body of felsic flows overlies the mafic rocks to the east. Felsite dykes intrude the intermediate and mafic volcanics and are likely feeders to the younger felsic flows. Often the intermediate and mafic flows and flow breccias are massive and bedding orientation is impossible to determine. Local foliation is oriented north-south.

Other than dykes and sills feeding the volcanic pile, and possible Tertiary "Catface" dykes and sills, no major intrusive bodies are know to occur on the Property.

Local Geology - Jasper Area

Compiled By: Arnex Resources Ltd

Compiled For: Inspiration Mining Corp

Figure 4

Date: Jan 20, 2004

4.3. Structure and Alteration

A late major fault suture cuts Vancouver Island from the mouth of the Carmanah River on the West Coast to Qualicum Beach on the East Coast. The Pan and Tam occurrences along Four Mile Creek and the J Branch Main Showing on Jasper Ridge occur along this major fault structure. A north trending gossanous alteration zone with a strike length greater than 4 kilometers underlies the Jasper Property along the fault from the Caycuse Creek drainage in the south to the Nitinat Valley in the north. The alteration zone is characterized by moderate to intense argillization and silicification accompanied by ubiquitous pyrite flooding. The alteration zone is generally concordant with the foliation and stratigraphy throughout its strike length. Based on the huge volume of intensely altered rock present, a very major period of hydrothermal activity has taken place along the strike length of the system. The Jasper and Pan Grid areas are partially underlain by the intense alteration zone. On the Pan Grid area and along the logging road to the north, gossanous ferrocrete (and till) commonly overlie the alteration zone and have the effect of "masking" residual soil anomalies. Steeply dipping, cross cutting, north trending fractures, shears and fault gouge zones are prevalent within the alteration zone and form the recessive valley containing Four Mile Creek. Coincident narrow fault and fracture zones often emanate as a conjugate set at right angles to the main north trending fault system and control second order drainages that are the side creeks of the main Four Mile Creek drainage system.

Offsets of all structures are not known as units have not been mapped across structures. Local brittle faulting commonly causes minor offsets to massive sulphide lenses in outcrop.

4.4. Mineralization

Numerous Minfile occurrences are present in the vicinity of the Jasper Property (Figure 5).

On the Property itself, six high-grade Cu, Zn +/- Pb sulphide showing areas have been sampled by the Arnex-Inspiration programs carried out during previous years.

The two showings of principle interest are the Jasper J-Branch Main Showing and Pan Road Showing.

At the J-Branch Showing, semi-massive to massive pyrite, chalcopyrite, sphalerite and minor galena outcrops in logging road-cuts on Jasper Ridge. Two massive sulphide bands of true width between 0.4 and 1.3 metres separated by 5 metres of chloritic mafic volcanics outcrop over a strike length of 44 metres.

--, ---

Twelve channel samples were taken during the 1994 program from the massive sulphide lenses that returned a weighted average grade of 2.1% Cu, 3.2% Zn and 304 ppb Au over an average true width of 0.8 metres.

The mineralization consists of 70% to 90% pyrite, 5% to 20% sphalerite, 1% to 5% chalcopyrite and minor amounts of galena. The sulphides are medium to coarse grained and commonly display crude banding imparted by compositional and textural variations. In places, large crudely banded massive sulphide fragments and volcanic wallrock fragments are contained within a finer grained massive sulphide matrix.

The mineralization is hosted in feldspar phyric mafic flows. The massive sulphide bands are generally concordant to jointing, and to the contact between intermediate and mafic volcanic units.

Although the massive sulphide bands are commonly offset by north and northeast trending fractures and small displacement faults, there is good continuity to the mineralization over its exposed 44 metre strike length. The southeastern strike extension of the mineralization is covered by till which contains blocks of semi-massive to massive sulphides. The northwest strike extension is covered by colluvium and trends down the slope towards Zinc Creek.

Two showings outcrop in Caycuse Main road-cuts at the Pan Road Showing.

At the northern showing, massive stringer style mineralization is present in a crosscutting sheared alteration zone. The up-slope trend of the zone is covered by ferrocrete and gossanous till that returned highly anomalous soil geochemical results and the down-slope trend is covered by the roadbed.

A composite weighted interval across the stringer zone returned the following values of 4.6% Cu, 17.4% Zn and 152 ppb Au over a true width of 2.0 metres.

Of geological significance is a massive sulphide layer emanating from the stringer zone that is exposed in the road-cut over a strike length of approximately 30 metres. The massive sulphide band consists of coarse "black-jack" sphalerite containing lesser amounts of galena. The sulphide layer is hosted in, and is concordant to, argillically altered intermediate flows and tuffs. The sulphide band is faulted off to the south by a second crosscutting stringer zone containing anomalous base metal values. A channel sample across the sphalerite layer assayed 16.2% Zn and 2.7% Pb over 0.25 metres.

At the southern Pan Road Showing, a massive sulphide lens outcrops in the logging roadcut and roadbed. Massive sphalerite and galena occur in highly argillically altered and pyritized mafic (?) flows. The up-slope eastern extension of the lens is faulted off. The massive sulphides outcrop in the roadbed and then are covered by road-fill on the western down-slope trend of the zone.

The massive sulphides occur as massive sphalerite and galena containing up to 5% chalcopyrite. The sulphides are capped by a thin 0.25 metre thick calcite (barite?-chert) exhalite horizon. A 2.0 metre massive sulphide boulder on the west side of the road also has a calcite (barite?) exhalite cap preserved intact. A representative channel sample across the sulphide lens assayed as follows22.3% Zn, 17.2% Pb and 2.1% Cu over 1.9 metres.

Semi-massive sulphide boulders containing up to 1.5% Cu are present at location 1350N, 975E.

Two narrow massive pyrite - chalcopyrite lenses occur at the 465 m elevation level on the spur road 100 m east of the Pan Road Showing and probably represent the strike extension of the Pan zone.

5. 2004 GEOCHEMISTRY PROGRAM

Soil and Stream Sediment Analytical Results for Selected Elements are compiled in Table 2. Rock Chip Analytical Results for Selected Elements are compiled in Table 3. Geochemical Analysis Certificates for all samples are contained in APPENDIX B. Sample descriptions for Soil and Stream Sediment Samples are documented in APPENDIX C, Geochemical Data Sheets. Rock descriptions, assay results and weighted assay intervals for rock chip samples are also documented in APPENDIX C. Sample Locations and results for selected elements are plotted on Geochemical Maps, Figures 7 to 30. An Index Map showing the locations of the four grid areas is contained in Figure 6.

5.1. Soil Sampling Results

5.1.1. Methodology

Between June 5 and August 3, 2004, four hundred and forty three (443) soil samples were taken from the Jasper Property by the field crew members employed by Arnex Resources Ltd. Most of the soil samples were taken by crew members concurrent with reestablishment and expansion of the existing field grid on the property, and positioning of the grid using a Garmin Etrex non-differential Global Position System (G.P.S.).

Grid line intervals were generally 50 meters with sample intervals of 25 meters along the lines. In a few areas, grid line intervals were 100 meters with soil sample intervals of 50 meters along the grid lines. At each sample site, B soil horizon soils were sampled where

ſ

Ľ

E

Γ

Γ

ſ

ſ

ſ

l

Ĩ

-

-

ł i

ľ -

÷

1

Sample ID	Grid North	Grid East	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb
105401	5409851	383207	55.8	12.7	52.0	0.3	1.8
105402	5409647	383359	56.7	13.8	49.0	0.2	4.7
105403	5409633	383391	48.8	8.1	37.0	0.2	1.5
105404	2750	383372	42.8	8 8.0	47.0	0.3	1./
105458	2750	975	110		100	0.5	14.0
105459	2750	925	110	13	133	0.4	8.4
105460	2750	900	121	17	154	0.2	6.0
105461	2750	875	41	15	46	0.2	1.1
105462	2750	850	67	56	140	0.2	1.3
105463	2750	825	8.	10	126	0.2	16.9
105465	2650	975	170	30	185	0.5	83
105466	2650	950	55	22	60	0.4	0.9
105467	2650	925	37	13	140	0.2	2.9
105468	2650	900	82	2 20	175	0.3	2.2
105469	2650	8/5	40	11	72	0.2	0.9
105470	2650	825	40	30	100	0.3	0.5
105472	2650	800	24		46	0.2	<5
105473	5410680	383380	141.7	15.0	255.0	0.2	11.4
105475	2850	975	102	11	103	0.3	6.9
105476	2850	950	197	8	49	0.6	4.4
105477	2850	925	63	13	48	0.3	4.2
105479	2850	875	28	14	45	0.3	0.5
105480	2850	850	87	12	94	0.2	0.8
105481	2850	825	121	15	77	0.4	1.9
105482	2850	800	116	31	144	0.2	16.7
105484	5410890	383500	227.8	17.6	406.0	0.2	63.1
105486	2950	975	200.3	10.3	485.0	0.2	8.3
105487	2950	950	316	16	194	0.3	2.7
105488	2950	925	94	29	131	0.2	3.6
105489	2950	900	93	16	141	0.2	1.0
105490	2950	875	121	11	100	0.3	1.1
105491	2950	825	163	11	106	0.2	4.9
105493	2950	800	61	10	63	0.2	21
105494	5410970	383400	184.2	16.6	281.0	0.2	10.1
105495	4300	4550	47	12	82	0.9	3.1
105496	4300	4500	60	19	113	0.1	7.2
105497	4300	4450	32	12	77	0.1	5.6
128551	5410624	383361	109.1	11.8	23	0.2	4.8
128553	5410570	383360	133.3	21.9	69.0	0.1	15.8
128555	4150	4500	1231	19	123	0.9	17.5
128556	4150	4550	142	14	391	0.1	3.1
128557	4150	4600	74	10	61	0.1	4.0
128559	4150	4050	234	14	69	0.2	4.1
128560	4250	4450	99	18	83	0.2	5.4
128561	4250	4500	110	10	88	0.3	2.8
128562	4250	4550	19	9	32	0.1	4.3
128563	4250	4600	32	12	55	0.2	1.1
128565	4250	4000	309	1/	105	0.2	20.2
128566	4250	4750	311	27	106	0.0	14.5
128567	4150	4750	390	36	285	0.5	10.8
128568	4150	4800	530	26	167	0.5	14.7
128569	4150	4837.5	318	9	61	0.5	18.4
128570	4150	4900	181	11	58	0.2	6.7
128572	4250	4350	10/	18	16/	0.1	14.3
128573	4250	4300	44	0	80	0.1	5.0
128574	2250	1125	46	8	32	0.2	1.8
128575	2250	1225	57	15	44	0.2	4.5
128576	2250	1250	143	67	77	0.6	72.6
128577	2250	12/5	44	7	74	0.1	1.6
128579	2250	1325	55	7	103	0.4	0.5
128580	2350	1175	43	12	110	0.1	1.5
128581	2350	1200	83	14	149	0.3	30
128582	2350	1225	48	10	165	0.1	3.2
128583	5410440	383680	41.0	7.4	94.0	0.1	2.8
128584	2350	1275	48	19	121	0.1	0.8
120303	2350	1300	50	12	135	0.1	1.1
	2000	1323	51	11	109	0.2	27

Γ

ſ

ſ

Γ

Γ

ſ

Γ

Γ

> Particular Sector

۲

Sample ID	Grid North	Grid East	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb
128587	2350	1350	50	17	96	0.2	21
128588	2350	1375	71	33	178	0.2	3.7
128851	4400	4500	45	25	121	0.3	1.3
148501	2900	1025	56	13	52	0.3	1.8
148503	2900	1050	5/	14	49	0.2	4./
148504	2900	1100	43	8	47	0.2	1.3
148505	2900	1125	39	11	45	0.2	1.0
148506	2900	1150	19	7	31	0.1	6.3
148507	2900	1175	42	9	70	0.2	2.7
148509	2900	1225	88	16	150	0.1	2.0
148510	2900	1250	123	18	150	0.2	3.6
148511	2900	1275	155	31	205	0.4	10.3
148513	2900	1325	102	20	150	0.2	2.8
148514	2900	1350	202	14	112	0.3	2.9
148515	2900	1375	146	16	55	0.8	19.8
148516	2900	1400	140	20	157	0.2	2.5
148518	2900	1425	155	12	129	0.9	7.3
148519	2800	1050	41	7	74	0.3	3.3
148520	2800	1075	57	9	119	0.5	5.4
148521	2800	1100	130	18	180	0.4	3.4
148523	2750	1025	113	32	138	0.5	10.0
148524	2750	1050	62	8	<u>99</u> 77	0.5	6.9
148525	2750	1075	65	8	92	1.0	11.0
148526	2750	1100	60	10	102	0.3	4.2
148528	2750	1150	59		14	0.1	< .5
148529	2750	1175	22	9	90	0.2	1.9
148530	2750	1200	78	15	80	0.6	10.9
148531	2750	1225	40	16	52	0.4	1.9
148533	2750	1275	29		51	0.5	1.9
148534	2750	1300	75	19	99	0.3	5.1
148535	2750	1325	120	46	285	0.4	9.2
148536	2600	1350	216	75	262	0.4	93.1
148538	2600	1150	49	22		0.2	9.0
148539	2600	1200	128	28	382	0.2	9.2
148540	2600	1225	66	14	76	0.2	7.2
140041	2600	1250	2/	13	37	0.2	2.3
148544	4200	4850	85		37	0.2	5.9
148545	4200	4900	130	38	114	0.3	4.2
148546	4200	4950	26	31	119	0.1	7.4
148548	4000	4850	31	16	181	0.2	1.4
148549	4000	4900	37	17	53	0.1	5.2
148550	4000	4950	68	17	42	0.3	1.7
148551	4200	4450	325	47	367	0.2	6.6
148553	4200	4550	49	9	66	0.1	3.8
148554	4200	4600	56	9	49	0.3	2.0
48555	4200	4650	87	17	141	0.2	4.1
48557	4200	4/00	65	22	55	0.2	2.2
148558	4200	4800	247	10	38	0.4	5.1
148559	3700	5000	26	7	78	0.3	1.2
48560	3700	5050	20		55	0.1	1.2
48562	3700	5150	16	7	36	0.1	0.6
48563	1600	1150	57	15	49	0.1	0.7
48564	1600	1175	67	28	215	0.2	2.2
48565	1600	1200	85	64	231	0.3	8.1
48567	1600	1225	86	57	165	0.3	4.5
48568	1600	1275	73		93	0.4	2.7
48569	1900	1175	203	23	315	0.2	4.3
48570	1900	1200	169	27	177	0.2	3.6
48572	1900	1225	77	25	141	0.2	2.5
48576	2050	1175	/5	14	137	0.3	1.9
48577	2050	1200	319	23	275	0.2	1.9
48578	2050	1225	258	20	155	0.2	2.8
485/9	2050	1250	150	23	184	0.2	3.6

1

ſ

ŗ

> ŗ

_

r

Sample ID	Grid North	Grid East	Си ррт	Pb ppm	Zn ppm	Ag ppm	Au ppb
148580	2050	1275	355	26	170	0.3	
148581	2100	1150	30	10	51	0.3	0.5
148582	2100	1175	78	3 14	165	0.2	2.3
148583	2100	1200	25	5 10	63	0.2	0.7
148584	2100	1225	64	15	112	0.2	10.4
148586	2100	1275	148	23	194	0.2	3.0
148587	2100	1300	122	21	162	0.2	13.3
148588	2100	1325	83	3 30	84	0.2	77.8
148589	2100	1350	77	14	109	0.2	1.6
148591	1800	1150	104	2	119	0.4	48.3
148592	1800	1175	144	22	145	0.3	6.6
148593	1800	1200	778	231	123	0.5	25.9
148594	1800	1225	31	9	42	0.4	3.0
148596	1800	1275	50	13	5/	0.2	0.9
148597	1850	1200	89	111	95	0.2	34.7
148598	1850	1225	87	11	49	0.4	3.9
148599	1850	1250	92	17	120	0.3	2.0
148600	2950	12/5	116	12	63	0.2	1.5
148602	2950	1050	83	10	105	0.2	3.7
148603	2950	1075	88	9	100	0.3	3.6
148604	2950	1100	108	12	81	0.3	3.0
148606	2950	1125	175	11	107	0.2	20.9
148607	2950	1175	24	12	70	0.3	4.9
148608	2950	1200	98	12	85	0.4	5.1
148609	2950	1225	58	13	98	0.3	2.7
148610	2950	1250	153	21	230	0.2	8.0
148612	2950	1300	131	18	42	0.2	1.2
148613	2950	1325	59	17	56	0.2	2.8
148614	2950	1350	59	12	31	0.2	4.1
148615	2950	1375	163	22	135	0.1	13.5
148617	2950	1425	100	18	118	0.2	5.4
148618	2950	1450	99	15	59	0.9	4.3
148619	2950	1475	59	11	58	0.3	2.4
148620	2950	1500	96	12	77	0.3	8.9
148622	2950	1250	237	22	185	0.3	12.5
148623	2800	1275	72	64	49	0.4	0.5
148624	2800	1300	123	14	32	0.3	4.0
148625	2800	1325	27	15	64	0.4	4.5
148627	2800	1350	43	23	85	0.3	9.4
148628	2800	1400	234	36	250	0.2	16.6
148629	2800	1425	53	15	57	0.4	9.9
148630	2800	1450	120	28	152	0.3	21.1
148632	2850	1275	191	50	348	0.7	12.0
148633	2850	1300	61		59	0.3	4.2
148634	2850	1325	58	14	57	0.2	25.4
148635	2850	1350	200	28	125	0.2	12.0
148637	2850	1400	136	16	91	0.2	7.5
148638	2850	1425	120	38	139	0.3	29.4
148639	5411315	383828	132.3	12.4	201.0	0.1	3.1
148640	5411315	383828	113.4	10.8	267.0	0.1	2.7
148642	4000	4400	469.7	12.9	1207.0	0.2	6.8
148643	4000	4450	272	18	201	0.2	4.4
148644	4000	4500	174	17	500	0.2	21.0
148645	5411092	383431	181.1	18.2	510.0	0.2	5.6
148647	4000	4600	74	9	70	0.3	3.2
148648	4000	4650	134	14	108	0.4	4.7
148649	5411092	383449	973.2	8.7	272.0	0.6	3.4
48650	4000	4700	108	16	57	0.5	3.8
48652	2550	1150	33	14	55	0.1	2.6
148653	2550	1200	28	20	51	0.2	8.2
148654	2550	1225	39	12	42	0.1	4.5
48655	2550	1250	74	15	104	0.5	17.1
48657	2550	12/5	120	21	439	0.1	2.3
40007		1300	116	27	359	0.2	2.0

Table 2 Jasper Property Year 2004 Program Soil and Stream Sediment Analytical Results - Selected Elements

Sample ID	Grid North	Grid East	Cu ppm	Pb ppn	n Zn ppm	Ag ppm	Au ppb
149659	2550	1005					
148659	2550	1325	- 81	2	1 380	0.2	2 2.6
148660	2550	1375	- 54	2	6 256	0.2	2.0
148661	2550	1400	59	3	2 24	0.1	2.2
148662	2850	1450	142	2 1	1 128	0.1	4.8
148701	2700	1025	100	1	3 73	3 0.8	17.9
148702	2700	1050	85	5	9 71	0.3	9.2
148703	2700	1075	58	3	9 6	0.4	5.2
148705	2700	1100	151	1	0 81	0.8	22.2
148706	2700	1150	- 09	2	2 50	0.4	6.9
148707	2700	1175	75	2	0 50	0.5	12.3
148708	2700	1200	40		8 83	11	3.6
148709	2700	1225	34		9 42	0.5	3.1
148710	2700	1250	79	1	1 54	0.4	5.7
148/11	2700	1275	33	1:	3 50	0.6	1.3
1407 12	2700	1300	24	1:	3 40	0.2	1.0
148714	2700	1350	330	4	2 225	0.6	35.3
148715	2700	1375	155	107	7 300	0.4	3.4
148717	2650	1100	103	28	66	0.6	4.0
148718	2650	1125	50	20	66	0.3	2.8
148719	2650	1150	88	30	129	1.0	12.8
148720	2650	1175	70	1	99	0.5	8.0
148722	2650	1200	72	19	215	0.2	2.8
148723	2650	1250	51	10	47	0.7	23.3
148724	2650	1275	109	116	439	0.1	1.1
148725	2650	1300	72	42	240	0.2	2.2
148726	2650	1325	84	17	203	0.2	34.5
148/2/	2650	1350	101	29	165	0.1	2.5
140720	4300	13/5	107	15	180	0.1	2.6
148730	4300	4650	112	20	251	0.6	5.7
148731	4300	4700	79	10	2/	0.1	1.4
148732	4300	4750	42	13	43	0.3	7.0
148733	4300	4800	81	17	84	0.5	10.5
148734	4300	4850	124	8	86	0.1	3.9
148/35	4300	4900	29	14	47	0.1	2.1
148737	4300	4950	36		53	0.1	3.5
148738	4100	4950	24 61	21	58	0.2	11.4
148739	4100	5000	76	10	00	0.3	3.6
148740	4100	5050	33	9	19	0.3	3.9
148741	4100	5100	89	8	14	0.2	1.0
148742	4100	5150	8	5	21	0.1	0.5
140743	4100	5200	19	11	57	0.1	1.2
148745	5411170	384120	3/	12	95	0.1	1.2
148746	4100	5250	42	4.3	64.0	0.1	2.1
148748	4100	5300	19	6	34	0.1	3.2
148749	3700	4900	74	49	160	0.2	3.4
148750	3700	4950	154	19	64	0.1	5.4
140/01	5411320	383830	42.6	9.2	94.0	0.1	8.7
148753	5411430	383620	45.0	8.5	97.0	0.1	13.8
148754	5411110	383770	159.6	13.4	543.0	0.2	6.0
148801	4000	4750	74	11	197.0	0.5	<u>8.4</u>
148802	4000	4800	40	17	45	0.3	8.3
148803	4000	4850	127	19	81	0.2	5.5
148806	4100	4400	108	22	144	0.4	5.6
148807	4100	4450	475	23	275	0.4	6.3
148808	4100	4550	/1		51	0.1	3.2
148809	4100	4600	30	10	36	0.2	4.1
148811	5411176	383513	287.8	16.3	47.0	0.2	3.4
148812	4100	4650	85	9	37	0.7	1.4
148813	4100	4700	129	13	87	0.4	4.8
148814	4100	4750	32	12	33	0.3	2.3
48818	4100	4800	84	8	49	0.6	2.6
48819	4100	4000	171	68	76	0.8	36.4
48820	1150	1125	21/	28	70	0.3	10.4
48821 1	1150	1150	127	13	149	0.1	6.1
48822 1	1150	1175	46		1/	0.2	1.1
48823 1	1150	1200	19	13	192	0.4	0.0
48824 1	1150	1225	13	19	64	0.2	0.5
40020 1	150	1250	4	9	34	0.1	0.5

Γ

ſ

C

ſ

Γ

ſ

l

l

[

Į

1

5

i.

-

Sample ID	Grid North	Grid East	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb
148826	1150	1275	· · · · · · · · · · · · · · · · · · ·	6	101	0.1	1.0
148827	1150	1300	4	4	18	0.1	4.2
148828	1750	1200	40	11	60	0.1	4.2
148829	1750	1225	40	7	43	0.1	1.2
148830	4900	1250 400W	44	14	20	0.3	0.9
148832	4900	450W	18	11	50	0.1	5.2
148833	4900	500W	17	7	23	0.1	1.4
148834	4900	350W	47	9	58	0.4	2.6
148839	2600	950	80	11	114	0.2	7.4
148841	2600	900	68	19	90	1.3	13.5
148842	2600	875	40	13	66	0.6	3.2
148843	2600	850	73	53	93	0.2	4.2
148844	2600	812.5	43	14	59	0.2	5.6
148846	2600	1250	134	9	190	0.2	3.8
148847	2450	1275	80	24	190	0.0	3.4
148848	2450	1300	224	16	524	0.4	1.3
148849	2450	1325	521	59	391	0.4	13.9
148850	2450	1350	495	112	405	0.6	10.9
148851	2450	1375	43			0.1	0.6
148852	4000	5050	13	5	13	0.1	1.5
148852	2450	1400	46	9	97	0.1	13.8
148853	4000	5100	8	5	17	0.1	0.8
146053	2450	1420	147	13	543	0.2	6.0
148855	4000	5150	43	12	36	0.4	5.4
148856	4000	5200	17	7	46	0.1	3.3
148857	4000	5250	10	6	27	0.1	1.6
148858	4200	5050	7	6	17	0.1	0.7
148860	4200	5150	3	3	18	0.1	1.5
148861	4200	5200	21	9	46	0.1	2.6
148862	4200	5250	42	7	52	0.1	3.0
148863	4200	5203	28	7	52	0.1	2.6
148871	4300	5100	20	7	30	0.4	2.6
148872	4300	5150	29	5	61	0.1	1.0
148873	4300	5200	5	7	27	0.1	1.2
148874	4300	5250	20	7	57	0.1	1.5
148875	4400	5250	27	7	54	0.2	1.5
148877	4400	5250	10		40	0.2	1.7
148878	4400	5200	42	30	64	0.1	2.3
148879	4400	5150	25	8	61	0.2	2.3
148880	3800	4900		18	42	0.6	43.7
148882	3800	4950 5000	1040	5	22	0.1	0.5
148883	3800	5050	144	6	22	0.2	17
148884	3800	5100	32	4	55	0.2	1.4
148885	3800	5150	145	97	666	0.3	5.0
148889	1700	5200 1225	46	11	106	0.1	1.2
148890	1700	1250	94	43	201	0.2	85.1
148951	3500	5000	27	8	65	0.3	1.1
148952	3500	5050	25	9	48	0.1	1.5
140953	3500	5100	26	11	78	0.1	1.7
148955	3500	5200	27	0	213	0.2	3.2
148956	3600	5200	54	8	104	0.1	4.5
148957	3600	5150	4	5	49	0.1	0.7
148958	3600	5100	147	14	154	0.2	2.0
148960	3600	5000	19	7	37	0.2	1.7
148962	3900	4900	20	30	40	0.5	21 0
148963	3900	4950	47	6	21	0.7	
148964	3900	5000	255	8	94	0.9	2.0
140900	3900	5050	123	19	39	0.3	4.4
148970	1550	1275	14		17		1.4
148971	1550	1300	85	12	25 63	0.1	0.5
148972	1550	1325	40	12	33	0.3	1.0
148973	1550	1350	29	25	146	0.5	0.9
148975	1550	13/5	49	48	844	0.4	1.0
148976	1550	1425	25	/6	301	0.6	0.5
		· · · · · · · · · · · · · · · · · · ·			162	0.9	7.9

Table 2 Jasper Property Year 2004 Program Soil and Stream Sediment Analytical Results - Selected Elements

Γ

Γ

ſ

Γ

Γ

ſ

ſ

ŗ

Sample ID	Grid North	Grid East	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb
149077	1250	1225					
148078	1250	1325	4	5	22	0.1	0.5
148979	1250	1275		10	111	0.1	27.5
148980	1250	1250	12	13	214	0.1	0.5
148981	1250	1225	33	10	214	- 0.1	0.5
148982	1450	1175	77	20	200	0.1	10.9
148983	1450	1200	246	151	155	0.4	10.0
148984	1450	1225		6	42	0.7	203.7
148986	1900	1200	268	12	110	0.1	25.3
148987	1450	1250	90	23	68	0.0	13.5
148991	2000	1100	48	16	161	0.2	1.4
148992	2000	1125	50	14	120	0.1	0.5
148993	2000	1150	68	14	188	0.1	1.0
148994	2000	1175	81	16	195	0.2	1.1
148995	2000	1200	101	24	197	0.1	7.1
148996	2000	1225	104	48	61	0.2	1.7
148997	2000	1250	311	20	97	0.2	9.4
148998	2000	1275	577	27	262	0.5	13.2
183601	2150	1175	38	15	69	0.1	0.5
183602	2150	1200	78	126	141	0.5	2014.9
183603	2150	1225	475	20	266	0.2	9.7
183604	2150	1250	43	10	94	0.2	1.2
183605	2150	1275	79	26	157	0.2	7.7
183606	2700	925	90	17	127	0.1	1.7
183607	2700	875	81	25	112	0.1	2.7
183608	2700	850	42	27	64	0.3	1.0
183009	2700	800	66	11	99	0.4	2.9
103014	2800	975	81	15	71	0.3	4.1
183616	2800	950	34	49	64	0.3	50.1
183617	2800	925		13	103	0.2	1.1
183624	2000	075	170	17	203	0.3	14.3
183625	2900	975	1/4	13	98	0.7	3.0
183626	2900	925	210	10	88	0.2	2.9
183627	2900	900		5	55	0.2	0.5
183628	2900	875		10	65	0.5	0.5
183629	2900	850		10	97	0.2	3.1
183630	2900	825	252	12	00	0.2	4.8
183631	2900	800	82	11	127	0.3	1.6
183633	4200	4475	53	14	93	0.2	4.1
183634	4200	4450	184	15	145	0.3	4.1
183635	4200	4425	102	23	130	0.2	
83636	4200	4400	184	189	183	0.3	9.8
83638	4400	5000	27	9	43	0.4	5.0
83639	4400	4950	23	8	38	0.0	1.0
83641	5411580	383850	615.3	13.4	1436.0	0.1	10
83642	4400	4900	106	9	72	0.5	2.9
83643	5411480	383820	510.6	14.0	1035.0	0.1	1.4
183644	4400	4850	19	6	46	0.1	0.8
83645	4400	4800	15	32	59	0.3	1.4
83646	4400	4750	223	26	285	0.4	4.3
83647	4400	4700	35	37	54	1.3	1.7
83648	4400	4650	283	8	57	0.3	10.6
83649	4400	4600	76	13	109	0.2	9.2
83650	4400	4550	25	19	56	0.1	6.9
84624	2800	875	201	13	206	0.1	20.9
94622	2800	850	68	10	67	0.1	3.9
84622	2000	825	171	12	98	0.5	28.6
04023	2000	1800	213	14	91	0.5	3.5

possible and placed in kraft paper sample bags, and the site and sample described and recorded in detail. Occasionally, C and/or A horizon samples were taken, and duly noted. G.P.S. readings were taken at 100 meter intervals where possible. In addition to the soil samples, twenty four (24) stream sediment samples, consisting of twenty two (22) moss mats and two (2) active stream sediment samples were taken by the field crews when lines traversed streams. All soil and stream sediment samples were sun-dried for several days at the Jasper camp prior to being sent for analyses.

ſ

Four hundred and forty three (443) soil samples and twenty four (24) stream sediment samples were sent to Acme Analytical Laboratories Ltd.'s Vancouver facility and all were analyzed using their ICM-MS 1DX package. Secure sample custody was maintained at all times with Arnex personnel either delivering the samples directly to the laboratory, or sending the samples via Greyhound Bus Parcel Express from Nanaimo to the laboratory. Eighteen (18) of the soil samples which either failed to arrive intact to the laboratory, or the sample numbers on the bags were not legible by the laboratory personnel at the time of receipt, are considered lost samples. The remaining four hundred and twenty five (425) samples constitute the soil geochemistry data base. The twenty four (24) stream sediment samples are considered a separate data base as they are insufficient in number to be considered statistically significant.

The soil sample geochemistry data was treated statistically to create mean plus multiple standard deviation threshold values for each selected element, and plotted on four sets of 1:500 scale maps covering the portion of the Jasper property explored during the 2004 field program. The mean plus 2 standard deviation threshold values (2nd highest value shown) for each element were considered as the anomaly threshold values. Soil geochemistry results for selected elements are presented in Table 2, and described below grouped by location. The stream sediment geochemistry results were also treated statistically, and are presented in Table 2.

5.1.2. Jas Pan Grid Area

5.1.2.1. Line 4400C Anomaly UTM 5411483N 383364E

The Line 4400C anomaly is located along the steep east bank of Trail Creek, approximately 50 meters south and down slope from the significant Trail Creek Showing. The soil anomaly appears as a single point in only silver (Ag) of 1.3 ppm (183647), and is explained by the presence of the Trail Creek Showing.

5.1.2.2. Line 4250C Anomaly UTM 5411314N 383746E

The Line 4250C anomaly is located just south of the confluence of the small westflowing creek and 4 Mile Creek, 50 meters due north of and more or less down-slope of the East 4 Mile Creek Showing, and 100 meters west and down-slope of the 4 Mile Creek Road. The anomaly consists of a single point, single element anomaly in lead (Pb) of 78.8 ppm (128565), which is probably too far west to be the result of contamination in part by road building material. The anomaly may be explained by the East 4 Mile Creek showing. Prospecting during the 2004 field program along the nearby road cut identified sulphide mineralization, but no significant metal values.

ſ

5.1.2.3. Line 4200W Anomaly UTM 5411286N 383400E

The Line 4200W anomaly is located immediately up-hill and northwest of the 4 Mile Creek Road, and consists of two single point anomalies 50-75 meters apart east and west of an incised channel containing a small, south-east flowing tributary of 4 Mile Creek. The eastern anomaly site appears as a two-element anomaly in copper (Cu) of 325 ppm and zinc (Zn) of 367 ppm, respectively (148551). The western anomaly site appears as a single element anomaly in lead (Pb) only of 188.7 ppm (183636). The anomaly may have a single source uphill and to the northwest, but prospecting in the area during the 2004 program was not successful in locating such a source, and it remains unexplained.

5.1.2.4. Line 4150W Anomaly UTM 5411212N 383632E

The Line 4150W anomaly is located 50-100 meters due south of, and may actually have the same source as, the Line 4200W anomaly; it is also immediately south-east of and down-hill of the 4 Mile Creek Road, and therefore may be contaminated in part by road building material. The Line 4150W anomaly consists of three (3) sample sites over an area of 50 meters by 50 meters, of which one (128555) appears as a two-element anomaly in copper (Cu) of 1231.1 ppm and silver (Ag) of 0.9 ppm, and is the furthest up-slope. Two other sample sites down-slope and to the southeast each display single element anomalies in copper (Cu) of 475.2 ppm (148806), and in zinc of 391 ppm (128556), respectively. Sample 148806 also contains at least some C horizon, propyllitic-altered intermediate volcanics. The anomaly remains unexplained, like the 4200W anomaly, and may be open up-hill to the east.

5.1.2.5. Line 4150C Anomaly UTM 5411208N 383658E

The Line 4150C anomaly is located 200 meters east of the Line 4150W anomaly, and 50-150 meters due west, along strike and down-slope of the Upper 4 Mile Creek Log Sort Showing. The anomaly is a three point, single element anomaly in copper (Cu) dispersed over an area of 50 meters by 100 meters. The highest copper (Cu) value is from the sample site furthest east and topographically highest, of 501.1 ppm (128568), with other sites yielding 389.9 ppm (128567) 50 meters west, and 334.4 ppm (128559) 100 meters west, respectively. The anomaly is explained by the presence of the Upper 4 Mile Creek Log Sort Showing.

5.1.2.6. Line 4100E Anomaly UTM 5411189N 383785 E

The Line 4100E anomaly is located 200 meters west and down-slope from the Line 4100 East Showing, and immediately east and up-slope from the 4 Mile Creek Road. The anomaly is a single point (148818), three (3) element anomaly with values in lead (Pb) of 67.5 ppm, silver (Ag) of 0.8 ppm and gold (Au) of 36.4 ppb. The anomaly is explained by the presence of the Line 4100 East Showing.

5.1.2.7. Line 4000W Anomaly UTM 5411092N 383374E

The Line 4000W anomaly is located approximately 100 meters due south of the Line 4150W anomaly, straddling the 4 Mile Creek Road. It consists of two (2) sample sites 100 meters apart along line 4000, each with a single element anomaly, each for a different element. The eastern anomaly site has a zinc (Zn) value of 500 ppm (148644), and the western anomaly site has a copper (Cu) value of 363 ppm (148642). The anomaly remains unexplained, like the 4200W and 4150W anomalies, but also may be open uphill to the east.

5.1.2.8. Line 4000C Anomaly UTM 5411061N 383574E

The Line 4000C anomaly is located approximately 200 meters due east of the Line 4000W anomaly, in an area of wide line spacing (100 meters) roughly in the middle of the grid. It consists of a single point, single element anomaly in silver (Ag) of 0.7 ppm (183647), which is value of the mean plus 2 standard deviation anomaly threshold for silver. The anomaly is unexplained, and there are no known showings in the immediate area, which has not been prospected.

5.1.2.9. Line 3900E Anomaly UTM 5410980N 383978E

The Line 3900E anomaly is located along a 125 meter east-west section where two (2) lines from two grids converge: line 3900E from the Jas grid to the east, and line 2900E from the Pan grid to the west. The anomaly occurs primarily up-hill and east of the 4 Mile Creek Road straddling both sides of small, west-flowing creek. The anomaly consists of five (5) sites which are all anomalous in silver (Ag) only, two samples of which contain some C horizon material. The silver (Ag) values from anomalous sample sites consist of 0.8 ppm, 0.8 ppm, 0.9 ppm, 0.7 ppm, and 0.9 ppm (148515, 148962, 148517, 148963, and 148964) respectively. Prospecting in the area during the 2004 field program was not successful in finding the source of this anomaly, which remains unexplained.

5.1.2.10. Line 3800E Anomaly UTM 5410885N 384080E

The Line 3800E anomaly is located at higher elevations along the east side of the Jas grid. This is a single point, two (2) element anomaly which may be related to, and possibly along strike of, the Line 3900E anomaly. It consists of values in lead (Pb) of 96.7 ppm and zinc (Zn) of 666 ppm (148885), and is in an area of very widely spaced (200-300 meter) grid lines. The area has not been adequately prospected, and the anomaly is unexplained.

5.1.2.11. Line 2900W Anomaly UTM 5410924N 383795E

The Line 2900W anomaly is located approximately 75 meters northeast and up-hill from of the South 4 Mile Creek Showing, and 25 meters west of the 4 Mile Creek Road. The anomaly consists of single point, single element anomaly in silver (Ag) of 0.7 ppm (183624), which is value of the mean plus 2 standard deviation anomaly threshold for silver. The anomaly may be explained by the possible eastward strike projection of the South 4 Mile Creek Showing, but the immediate area of the anomaly may not been adequately prospected.

5.1.2.12. Line 2850C Anomaly UTM 5410866N 383620E

The Line 2850C anomaly is located approximately 250 meters east of the South 4 Mile Creek showing and near the middle of the Pan grid. The anomaly consists of two sites on adjacent lines 50 meters apart, the northernmost and up-slope sample displaying a single element anomaly in lead (Pb) of 158.3 ppm (148622), but described as a poor sample including C horizon material in part. The southernmost and down-slope sample site (148631) displays a two-element anomaly in zinc (Zn) of 348 ppm and silver (Ag) of 0.7 ppm. The area has not been adequately prospected, and the anomaly is unexplained.

5.1.2.13. Line 2800W Anomaly UTM 5410824N 383932E

The Line 2800W anomaly is located 100 meters east of the South 4 Mile Creek Showing, east and up-slope from 4 Mile Creek itself and west and down-slope from the 4 Mile Creek Road. The anomaly consists of a single point, single element anomaly in gold (Au) of 50.1 ppb (183615). The anomaly may be explained by the presence of the South 4 Mile Creek Showing, which has been adequately prospected but lacks good outcrop exposure. However, the anomaly may also be caused by other sources such as the Upper 4 Mile Creek Showing or by the 4 Mile Creek Road.

5.1.2.14. Line 2750E Anomaly UTM 5410844N 383807E

The Line 2750E anomaly is straddles the Upper 4 Mile Creek Road and the Jas and Pan grids, and is 50-250 meters south of the Line 3900E Anomaly, and 200 meters west and down-hill from the Line 3800E Anomaly. The Line 2750E anomaly is a four (4) element anomaly sporadically dispersed over seven (7) sites in a 200 meter by 200 meter area, and consists of the following samples, listed from north to south:

148634 – 25.4 ppb gold (Au)

148638 – 29.4 ppb gold (Au)

148882 - 1039.6 ppm copper (Cu) which is the furthest east and up-slope

148880 – 43.7 ppb gold (Au)

148536 – 75.4 ppm lead (Pb) and 93.1 ppb gold (Au)

148715 – 106.9 ppm lead (Pb) and 309 ppm zinc (Zn)

148713 – 337.7 ppm copper (Cu) and 35.3 ppb gold (Au)

This anomaly may be related to either or both the Line 3900E and Line 3800E anomalies, has not been adequately prospected, and like them remains unexplained. The site of sample 148882 contains green chert pebbles.

5.1.2.15. Line 2700W Anomaly UTM 5410133N 383248E

The Line 2750W anomaly is located 100 to 150 meters west and up-slope from the South 4 Mile Creek Showing, along the west side of the Pan grid. The anomaly consists of five (5) sites along two converging linear trends, with the central site (105471) displaying anomalous values in silver (Ag) of 1.4 ppm and gold (Au) of 53.8 ppb. The other two sites along a northeast linear trend display values of lead (Pb) of 173.4 ppm and gold (Au) of 139.7 ppb (105464) and 28.6 ppb (184622), respectively. The other site along a southeast linear trend displays a value of silver (Ag) of 1.3 ppm. No prospecting has been done in the area, and the anomaly may be open up-slope to the west. The Line 2700W anomaly may be related to the South 4 Mile Creek Showing, but is situated both stratigraphically and topographically higher. The anomaly is unexplained.

5.1.2.16. Line 2650C Anomaly UTM 5410706N 383712E

The Line 2650C Anomaly is located 250 meters northwest of the Camp View Showing near the middle of the Pan grid, straddling the small, south-flowing tributary of Camp Creek. The Line 2650C anomaly is a four (4) element anomaly (but primarily silver and zinc) sporadically dispersed over fourteen (14) sites over a 250 meter by 150 meter area, and consists of the following samples, listed from north to south:

148525 - 1.0 ppm silver (Ag)

148708 – 1.1 ppm silver (Ag)

148707 – 0.7 ppm silver (Ag)

148704 – 0.8 ppm silver (Ag)

148701 – 0.8 ppm silver (Ag)

148726 – 34.5 ppb gold (Au)

148724 – 115.5 ppm lead (Pb) and 671 ppm zinc (Zn)

148723 – 439 ppm zinc (Zn) 148722 – 0.7 ppm silver (Ag) 148719 – 1.0 ppm silver (Ag) 148539 – 382 ppm zinc (Zn) 148658 – 380 ppm zinc (Zn) 148657 – 359 ppm zinc (Zn) 148656 - 439 ppm zinc (Zn) The Line 2650C anomaly may be t

The Line 2650C anomaly may be related to the Line 2750C anomaly located 100-250 meters to the north. The area has not been well prospected and the anomaly is unexplained. In particular, the small tributary should be prospected.

5.1.3. North Pan Grid Area

5.1.3.1. Line 2450C Anomaly UTM 5410541N 383831E

The Line 2450C anomaly is located immediately around the Camp View Showing, and was followed up during the 2004 field program to discover that showing. It consists of five (5) sites along a 150 meter portion of Line 2450, samples from which display anomalous values in up to three (3) elements. The only sample site (148850) with a three (3) element anomaly is 25 meters west and immediately down-slope from the Camp View Showing, displaying 495.3 ppm copper (Cu), 111.6 ppm lead (Pb) and 405 ppm zinc (Zn). The other four (4) surrounding sites (148854; 148853; 148849; and 148848) respectively displayed 90.5 ppm lead (Pb) and 501 ppm zinc (Zn); 543 ppm zinc (Zn); 520.6 ppm copper (Cu) and 391 ppm zinc (Zn); and 524 ppm zinc (Zn). The anomaly has been explained and does not require follow-up prospecting.

5.1.3.2. Line 2150C Anomaly UTM 5410170N 383724E

The Line 2150C anomaly is located in the vicinity of the South Camp Creek Road Showing, near the middle of the Pan grid. It consists of seven (7) sites dispersed over an area of 200 meters by 100 meters, straddling the area of double switch-backs in the South Camp Creek Road. The only 2 element anomaly site (183602) located along the ridge crest north of the road displayed 2,014.9 ppb gold (Au) and 125.8 ppm lead (Pb), and the only anomaly site down-slope is 100 meters to the north (126576) displayed 72.6 ppb gold (Au) and a marginally sub-anomalous 67 ppm lead (Pb). This northern portion of the Line 2150C anomaly area has not been adequately prospected and is unexplained. To the south, four (4) anomaly sample sites (148590, 148588, 148580, and 148998) each displayed single element anomalies of 48.3 ppb gold (Au), 77.8 ppb gold (Au), 355.4 ppm copper (Cu), and 577.4 ppm copper (Cu). This southern portion of the Line 2150C anomaly is explained by the presence of the South Camp Creek Road Showing.

5.1.4. South Pan Grid Area

5.1.4.1. Line 1800C Anomaly UTM 5409843N 383754E

The Line 1800C anomaly is located 200 meters south of the South Camp Creek Road Showing in the middle of the Pan grid. It consists of four (4) sample sites along a 200 meter long northwest linear trend. The only multi-element anomaly site (148593) displayed 777.5 ppm copper (Cu), 230.8 ppm lead (Pb) and 25.9 ppb gold (Au). To the northwest sample site 148569 displayed 315 ppm zinc (Zn), and sample site 148597 displayed 111.4 ppm lead (Pb). To the southeast, sample site 148890 displayed 85.1 ppb gold (Au). Prospecting completed during the 2004 field program in the area discovered the Line 1850 outcrop area, which yielded somewhat anomalous copper and zinc values in bedrock. However, this may not explain the multi-element anomaly 50 meters south, and does not explain the gold soil anomaly up-slope 100 meters to the southeast.

5.1.4.2. Line 1600C Anomaly UTM 5409640N 383650E

The Line 1600C anomaly is located 300 meters northeast of the Upper Pan and Pan South Road Showings in the middle of the Pan grid. It consists of a single point, single element anomaly of 77.4 ppm lead (Pb) from sample 148568. Prospecting in the area during the 2004 field program was not successful, and the anomaly is unexplained. However, the anomaly may be related to the possible northeast projection of the Upper Pan Showing. Line 1550E Anomaly UTM 5409684N 384022E

The Line 1550E anomaly is located 250 meters east of the Line 1600C anomaly, and 500 meters northeast of the Pan Showings. It straddles the decommissioned logging road along the eastern side of the Pan grid, and consists of three (3) adjacent, single element anomaly sites within 100 meters at the east end of Line 1550, and one (1) single element anomaly site at the eastern end of converging Line 1250. The easternmost up-slope site (148976) displayed 0.9 ppm silver (Ag), the middle site (148975) displayed 76.2 ppm lead (Pb) and the westernmost down-slope site (148974) displayed 844 ppm zinc (Zn). The other site approximately 25 meters to the south (148978) displayed 27.5 ppb gold (Au). The area of the Line 1550E anomaly has not been prospected, and the anomaly is unexplained and may be open as no other lines exist to the north or south.

5.1.4.3. Line 1450C Anomaly UTM 5409541N 383822E

The Line 1450C anomaly is located only 100 meters south of the Line 1600C anomaly, and 200 meters northeast of the Pan showings, and could be related to projections of either or both. The anomaly is a single site (148983) multi-element anomaly which

displayed 150.7 ppm lead (Pb), 0.7 ppm silver (Ag) and 203.7 ppb gold (Au). Prospecting in the area during the 2004 field program was not successful, and the anomaly is unexplained.

5.1.4.4. Line 1150C Anomaly UTM 5409422N 383967E

The Line 1150C anomaly is located 200 meters southeast of the Line 1450C anomaly, and 250 meters due east of the Pan showings. The anomaly is a single site (148822) two (2) element anomaly displaying 412 ppm zinc (Zn) and 1.4 ppm silver (Ag). The anomaly needs to be placed in context with previous soil geochemistry surveys as the line straddles the junction area of pre-2004 and 2004 surveys. Prospecting in the area during the 2004 field program was not successful and the anomaly is unexplained.

5.2. Rock Sampling Results

5.2.1. Methodology

Between June 8 and August 6, 2004 one hundred twenty four (124) rock samples were taken from the Jasper Property by the field crew members employed by Arnex Resources Ltd. Some of the select grab samples were taken by the line-cutting / soil sampling crews during the 2004 program. Most of the rock samples, however, particularly the representative chip samples, were taken by geologists Arne Birkeland and Jacques Houle while prospecting, following up on discoveries made by the line-cutting / soil sampling crews, or following up soil geochemical anomalies for which results were available during the time of the field program. Reference samples were kept for all samples, which were cut using a rock saw and described by geologist Jacques Houle in the field camp using a microscope.

The rock samples consisted primarily of bedrock samples (114), but included some float (or boulder) samples (10) where bedrock exposures did not exist, or where the float or boulder contained significantly more mineralization than did the nearby bedrock. Ten (10) of the select outcrop grab samples were not sent for analyses, since they were either completely un-mineralized, or were superseded by superior representative outcrop chip samples. The 124 rock samples are classified as follows:

- Fifty six (56) representative outcrop chip samples (continuous or singular)
- Fifty five (55) select outcrop grab samples, ten (10) not analyzed
- Seven (7) float (or boulder) representative chip samples
- Six (6) float (or boulder) select grab samples

One hundred and fourteen (114) rock samples were sent to Acme Analytical Laboratories Ltd.'s Vancouver facility and most were analyzed using their ICM-MS 1DX package. Samples containing significant base metals were re-analyzed using Acme's 7AR package, and some also using Acme's 3B package for gold re-analyses. Secure sample custody was maintained at all times with Arnex personnel either delivering the samples directly to the laboratory, or sending the samples via Greyhound Bus Parcel Express from Nanaimo to the laboratory.

The rock sample geochemistry data was treated statistically to create mean plus multiple standard deviation threshold values for each selected element, and plotted on four sets of 1:500 scale maps covering the portion of the Jasper property explored during the 2004 field program. Results for selected elements are presented in Table 3, and described below grouped by location. Sample descriptions and weighted assay intervals for rock chip sampling are contained in APPENDIX C, Geochemical Data Sheets.

5.2.2. Known MINFILE Occurrences

Only one of the three known MINFILE occurrences (Jasper J-Branch Main Showing – MINFILE 092C 080) located on the Jasper Property was sampled during the 2004 program. Another known MINFILE occurrence (Tam Showing – MINFILE 092C081) may have been relocated and was sampled and mapped as the Upper 4 Mile Creek Showing. Exploration work was completed in 2004 near the other known MINFILE occurrence (Pan South Road Showing – MINFILE 092C088) but as it had been previously sampled by the author, no further sampling was done. Results of sampling at the two (2) known MINFILE occurrences are documented as follows:

5.2.2.1.Jasper Showing (MINFILE 092C 080) UTM 5412093N 383922 E

Two (2) select float grab samples (148674, 148675) were taken from the road cut through the Jasper J-Branch Main showing as reference specimens of chloritic, gossanous massive (65%) sulphide mineralization. Only one of the two samples was sent for analyses, and yielded the following results:

7.83% Cu, 0.003% Pb, 0.120% Zn, 37.0 g/t Ag, 0.037 g/t Ag (148675)

5.2.2.2.Upper 4 Mile Creek (Tam) (MINFILE 092C081) UTM 5411200N 383500E

Twelve (12) select outcrop grab samples and thirteen (13) representative outcrop chip samples were taken along the semi-continuous outcrop exposed over 125 meters apparent strike along 4 Mile Creek. This showing was re-discovered by prospector Alan Francis and geologist Caroline Gilson while line-cutting and soil sampling along on Line 4100E, and probably represents the site of the Tam Showing MINFILE 092C081. Silicified and locally brecciated, chloritic or sericitic felsic to intermediate volcanics containing 2-15%

Table 3 Jasper Property Year 2004 Program

Rock Chip Analytical Results - Selected Elements

Sample ID	Location	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Cu %	Pb %	Zn %	Ag g/t	Au g/t
						_					
105405	4 Mile Creek South	2645	20	154	5.9	197.1	0.3	0.0	0.0	5.9	0.2
105406	4 Mile Creek South	167	2	113	0.3	3.9	0.0	0.0	0.0	0.3	0.0
105407	4 Mile Creek South	10000	30	422	3.9	30.5	1.8	0.0	0.0	4.0	0.0
105408	4 Mile Creek South	590	8	66	0.7	25.0	0.1	0.0	0.0	0.7	0.0
105409	4 Mile Creek South	132	7	118	0.9	9.9	0.0	0.0	0.0	0.9	0.0
	Upper Zinc Creek										
105410	Roadcut	25	261	1908	0.3	6.3	0.0	0.0	0.2	0.3	0.0
	Upper Zinc Creek										
105411	Roadcut	34	11	109	0.1	1.2	0.0	0.0	0.0	0.1	0.0
105412	Camp View Showing	10000	11	557	3.3	15.8	1.4	0.0	0.1	4.0	0.0
105413	Camp View Showing	10000	21	584	1.9	21.7	1.1	0.0	0.1	1.9	0.0
105414	South Camp Creek Road	609	163	308	6.9	83.8	0.1	0.0	0.0	6.9	0.1
105415	Lower 4 Mile Creek Road	56	14	59	0.7	18.1	0.0	0.0	0.0	0.7	0.0
105416	South Camp Creek Road	173	89	344	0.8	67.9	0.0	0.0	0.0	0.8	0.1
	Confluence of 2 creeks at										
105417	East. 4 Mile Creek.	20	6	31	0.1	4.3	0.0	0.0	0.0	<.1	0.0
105419	Upper Pan Area	1708	6	107	2.8	22.6	0.2	0.0	0.0	2.8	0.0
105474	4 Mile Creek South	75	23	114	0.2	2.9	0.0	0.0	0.0	2.9	0.0
105483	4 Mile Creek South	165	5	91	0.2	3.5	0.0	0.0	0.0	3.5	0.0
128552	4 Mile Creek South	11	4	61	0.1	1.7	0.0	0.0	0.0	1.7	0.0
128553	4 Mile Creek South										
128554	4 Mile Creek South	21	9	35	0.2	5.7	0.0	0.0	0.0	5.7	0.0
148663	South Camp Creek Road	15	6	139	0.1	2.9					
148664	South Camp Creek Road	16	8	151	0.2	3.0					
148665	South Camp Creek Road	23	9	155	0.2	12.6	0.0	0.0	0.0	0.2	0.0

-

Sample ID	Location	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Cu %	Pb %	Zn %	Ag g/t	Au g/t
148666	South Camp Creek Road	40	9	159	0.2	9.1	ļ		13.4	meters	
148667	South Camp Creek Road	174	7	164	0.2	11.3	-				
148668	South Camp Creek Road	54	10	71	0.8	21.4					
148669	South Camp Creek Road	538	25	247	1.9	61.7	0.1	0.0	0.0	1.9	0.1
148670	South Camp Creek Road	5120	38	2330	1.9	20.2	0.5	0.0	0.2	1.9	0.0
148671	Pan South Area	91	327	116	0.4	19.2	0.0	0.0	0.0	0.4	0.0
148672	Line 4100 East Showing	1189	49	29	3.9	47.8	0.1	0.0	0.0	3.9	0.0
148673	South Camp Creek Road	10000	30	117	10.3	0.5	4.7	0.0	0.0	10.3	0.0
148674	Jasper J-Branch Main Showing	10000	34	991	36.7	37.0					
148675	Jasper J-Branch Main Showing						7.8	0.0	0.1	37.0	0.0
148676	Upper 4 Mile Ck. Roadcut	47	6	130	0.1	18.0					
148677	Upper 4 Mile Ck. Roadcut	57	5	150	0.1	28.7	0.0	0.0	0.0	0.4	0.0
148678	Upper 4 Mile Ck. Roadcut	60	14	153	0.1	11.1			2.3	meters	
148679	Upper 4 Mile Ck. Roadcut	45	14	135	0.1	6.2					
148680	Upper 4 Mile Ck. Roadcut	97	133	153	0.3	22.7					
148681	Upper 4 Mile Ck. Roadcut	562	382	2684	1.0	35.0					

----**}**

Sample ID	Location	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Cu %	Pb %	Zn %	Ag g/t	Au g/t
148682	Upper 4 Mile Ck. Roadcut	191	338	397	1.2	46.4					
148683	Upper 4 Mile Ck. Roadcut	94	276	180	0.6	24.7					
148689	Upper 4 Mile Creek Road Log Sort Showing	3004	4	148	1.4	37.8					
148690	Upper 4 Mile Creek Road Log Sort Showing	6923	14	138	5.1	109.1	0.6	0.0	0.0	2.8	0.1
148691	Upper 4 Mile Creek Road Log Sort Showing	4266	5	148	2.0	45.2			3.0	meters	
148692	Upper 4 Mile Ck. Road Log Sort Boulders	31	16	100	2.6	94.8					
148693	Upper 4 Mile Ck. Road Log Sort Boulders	33	15	110	3.5	107.4	0.0	0.0	0.0	2.9	0.1
148694	Upper 4 Mile Ck. Road Log Sort Boulders	43	27	147	2.8				3.2	meters	
148695	Line 4100 East Showing	55	7	37	0.1		0.0	0.0	0.0	0.1	0.0
148696	South Camp Creek Road	4940	17	89	3.5	33.0	0.2	0.0	0.1	1.5	0.0
148697	South Camp Creek Road	114	11	124	0.5	11.2			2.7	meters	
148698	South Camp Creek Road	97	12	68	0.3	5.4	0.1	0.0	0.0	2.3	0.0
148699	South Camp Creek Road	2486	30	141	4.1	40.1			2.9	meters	
148700	Line 1150 East Outcrop	15	3	49	0.1	0.9	0.0	0.0	0.0	0.1	0.0
148804	Upper 4 Mile Creek Road	56	12	4	1.1	4.9	0.0	0.0	0.0	1.1	0.0
148810	Line 4100 West Showing	25	261	1908	0.3	6.3					

65

-

Table 3 Jasper Property Year 2004 Program

Rock Chip Analytical Results - Selected Elements

Sample ID	Location	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Cu %	Pb %	Zn %	Ag g/t	Au g/t
	Upper 4 Mile Creek Road										
148816	Log Sort Showing	10000	12	149	22.6	151.2	2.4	0.0	0.0	22.6	0.2
	Upper 4 Mile Creek Road										
148817	Log Sort Showing	10000	12	277	3.0	35.4	2.1	0.0	0.0	3.0	0.1
148887	South Camp Creek Road	240	70	184	0.6	9.6	0.0	0.0	0.0	0.6	0.0
148888	South Camp Creek Road	19	10	52	0.1	2.6	0.0	0.0	0.0	0.1	0.0
	Upper 4 Mile Creek										
148901	Showing	10000	17	158	5.6	27.5	1.9	0.0	0.0	5.6	0.0
	Upper 4 Mile Creek										
148902	Showing	357	13	8	0.4	9.8					
	Upper 4 Mile Creek										
148903	Showing	122	10	108	0.2	9.6	0.0	0.0	0.0	0.3	0.0
	Upper 4 Mile Creek										
148904	Showing	83	5	37	0.2	6.0			3.0	meters	
148905	Upper Camp Creek Road	10000	19	101	34.0	29.3	6.9	0.0	0.0	35.0	0.0
148906	Upper Camp Creek Road	4167	4	199	0.6	9.8	0.4	0.0	0.0	0.6	0.0
148907	Trail Creek Showing	1932		1345	1.9	9.1					
148908	Trail Creek Showing	6262	10	507	3.9	10.1					
148909	Trail Creek Showing	2543	12	924	2.1	13.6	0.4	0.0	0.1	3.1	0.0
148910	Trail Creek Showing	7046	40	731	5.7	18.4			4.5	meters	
148911	Trail Creek Showing	4751	374	3624	4.2	25.6					
148912	Trail Creek Showing	1941	315	3984	1.7	15.3					
148913	Camp View Showing	4770	51	10000	2.0	55.8	0.5	0.0	5.4	2.0	0.1
148914	Camp View Showing	824	9	2150	0.4	23.9	0.1	0.0	0.1	0.6	0.0
148915	Camp View Showing	197	66	352	0.8	16.5			2.3	meters	
	Boulders below Upper				· · · · · · · · · · · · · · · · · · ·						· ·
183526	Pan Showing	7446	626	5039	5.8	2.0	0.7	0.1	0.5	6.0	<2

66

1

<u>٦</u>

Sample ID	Location	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Cu %	Pb %	Zn %	Ag g/t	Au g/t
	Boulders below Upper										_
183527	Pan Showing	10000	153	289	7.3	58.5	2.0	0.0	0.0	7.0	0.1
	Boulders below Upper										
183528	Pan Showing	10000	64	483	7.6	18.3	2.1	0.0	0.0	7.0	0.1
	Boulders below Upper										
183529	Pan Showing	8252	540	1947	7.4	241.3	0.7	0.1	0.2	6.9	0.2
	Boulders below Upper			_							
183530	Pan Showing	5446	608	1095	4.8	102.9			1.6	meters	
	Boulders below Upper										
183531	Pan Showing	9981	547	3145	5.7	197.8	1.0	0.1	0.3	7.0	0.2
	Boulders below Upper										
183532	Pan Showing	10000	361	2929	5.5	200.1	1.4	0.1	0.3	6.0	0.2
183533	Upper Pan Showing	123	385	195	0.2	13.0					
183534	Upper Pan Showing	87	133	188	0.4	11.7	0.4	0.0	0.0	2.2	0.1
183535	Upper Pan Showing	7666	188	264	2.5	55.5			5.0	meters	
183536	Upper Pan Showing	8258	373	810	5.0	98.2	0.8	0.0	0.0	3.7	0.1
183537	Upper Pan Showing	5360	192	259	2.9	97.6			3.0	meters	
	Upper 4 Mile Creek										
183538	Roadcut	82	14	8	4.1	0.0	0.0	0.0	0.0	4.1	0.1
	Upper 4 Mile Creek										
183539	Roadcut	209	33	24	2.3	0.0	0.0	0.0	0.0	2.3	0.1
	Upper 4 Mile Creek										
183540	Roadcut	29	52	60	1.5	0.0	0.0	0.0	0.0	1.5	0.1
	Upper 4 Mile Creek										
183541	Showing	76	5	194	0.3	11.8	0.0	0.0	0.0	0.3	0.0
	Upper 4 Mile Creek	1						·	•		
183542	Showing	64	6	65	0.5	6.8					
	Upper 4 Mile Creek										
183543	Showing	78	11	55	1.1	12.5	0.1	0.0	0.0	1.3	0.0
	Upper 4 Mile Creek										
183544	Showing	5678	14	90	2.9	42.9			2.6	meters	

s.

7

·····)

····1

Sample ID	Location	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Cu %	Pb %	Zn %	Ag g/t	Au g/t
	Upper 4 Mile Creek		_							0.1	0.0
183545	Showing	42	5	89	0.1	4.1	0.0	0.0	0.0	0.1	0.0
	Upper 4 Mile Creek										
183546	Showing	51	3	130	0.2	4.1					
	Upper 4 Mile Creek										
183547	Showing	104	3	114	0.1	1.1	0.0	0.0	0.0	0.2	0.0
	Upper 4 Mile Creek										
183548	Showing	15	5	84	0.2	8.1			2.8	meters	
	Upper 4 Mile Creek										
183549	Showing	13	2	47	0.1	0.9	0.0	0.0	0.0	0.1	0.0
	Upper 4 Mile Creek										
183550	Showing	15	4	33	0.7	9.7	0.0	0.0	0.0	0.7	0.0
	Upper 4 Mile Creek										
183551	Showing	10000	63	326	21.6	0.0	5.6	0.0	0.0	21.6	0.1
	Upper 4 Mile Creek										
183552	Showing	193	7	90	0.1	0.0	0.0	0.0	0.0	0.1	0.0
	Upper 4 Mile Creek										
183553	Showing	2487	4	165	0.7	0.0	0.3	0.0	0.0	0.7	0.0
	Upper 4 Mile Creek										
185554	Showing	3558	36	130	1.8	0.0	0.4	0.0	0.0	1.8	0.0
	Upper 4 Mile Creek										
183555	Showing	1919	19	800	1.3	0.0	0.2	0.0	0.1	1.3	0.0
	Upper 4 Mile Creek										
183556	Showing	204	10	73	0.1	0.0	0.0	0.0	0.0	0.1	0.0
183557	Line 4100 East Showing	8378	49	14	18.2	346.7	0.8	0.0	0.0	18.2	0.3
183558		390	48	537	0.4	4.0	0.0	0.0	0.1	0.4	0.0
183559	Line 1850 Outcrop	478	4	136	0.3	2.1	0.0	0.0	0.0	0.3	0.0
183560	Line 1850 Outcrop	34	11	220	0.1	4.2	0.0	0.0	0.0	0.1	0.0
183561	Camp Creek Outcrop	36	11	434	0.2	15.1	0.0	0.0	0.0	0.2	0.0
183562	South Camp Creek Road	41	9	139	0.4	19.1	0.0	0.0	0.0	0.4	0.0

68

Sample ID	Location	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Au ppb	Cu %	Pb %	Zn %	Ag g/t	Au g/t
	East 4 Mile Creek										
183563	Showing	193	4	57	0.1	1.6	0.0	0.0	0.0	0.1	0.0
	East 4 Mile Creek										
183564	Showing	9991	10	10	6.1	174.9	1.0	0.0	0.0	6.1	0.2
183618	4 Mile Creek South	10000	27	95	2.1	26.0	1.2	0.0	0.0	2.1	0.0
183632	4 Mile Creek South	226	397	863	0.9	63.8	0.0	0.0	0.1	0.9	0.0
183637	Trail Creek Showing	558	6	54	0.7	13.5	0.1	0.0	0.0	0.7	0.0
183640	Trail Creek Showing	3339	59	5232	2.8	445.0	0.3	0.0	0.5	2.8	0.0

69

Π.

disseminated, clustered and veinlet sulphides were sampled over true widths of 1-3 meters. The sulphidic alteration zone dips gently to the northwest.

The initial five (5) select outcrop grab samples were not analyzed (148684-148688 inclusive), but the remaining seven (7) select outcrop grab samples yielded the following results:

5.65% Cu, 0.006% Pb, 0.033% Zn, 21.6 g/t Ag, 0.14 g/t Au over 0.3 meters (183551), and

0.254% Cu, 0.000% Pb, 0.017% Zn, 0.7 g/t Ag, 0.01g/t Au over 1.5 meters (183553), and 0.372% Cu, 0.004% Pb, 0.013% Zn, 1.8 g/t Ag, 0.04 g/t Au (183554), and 0.206% Cu, 0.002% Pb, 0.080% Zn, 1.3 g/t Ag, 0.04 g/t Au (183555), and Low metal values from three (3) other samples (183549, 183552, 183556)

The thirteen (13) representative outcrop chip samples yielded the following results: 1.95% Cu, 0.002% Pb, 0.016% Zn, 5.6 g/t Ag, 0.03 g/t Au over 0.9 meters (148901), and 0.144% Cu, 0.001% Pb, 0.007% Zn, 1.3 g/t Ag, 0.02 g/t Au over 2.6 meters (183542-183544 inclusive) including:

0.601% Cu, 0.001% Pb, 0.009% Zn, 2.0 g/t Ag, 0.060 g/t Au over 0.6 meters (183544), and

Low metal values from 8 other samples (148902-148904 inclusive, 183541, 183545-183548 inclusive)

5.2.3. New Occurrences

During the 2004 field program nine (9) other new or previously undocumented occurrences of copper and/or zinc and/or silver were discovered (or re-discovered), mapped, sampled and documented by Arnex personnel. These occurrences are listed generally from north to south as follows:

5.2.3.1. Upper Zinc Creek Road-cut Showing UTM 5411900N 383650E

Two (2) select outcrop grab samples were taken from two apparently converging, steeplydipping zones exposed in a road-cut and a nearby outcrop, located approximately 400 meters southwest of the Jasper J-Branch Main Showing. These undocumented zones were discovered in previous work programs by Arnex crews, but were re-discovered by geologist Jacques Houle while prospecting up-hill from soil geochemical anomalies in the Zinc Creek areas generated by Arnex crews during previous work programs. The showings consist of two very different but apparently converging mineralized geological features located about 50 meters apart. Sample 105410 was taken from a 100 meter long, steeply dipping, northeast-striking outcrop of massive felsic volcanics, interpreted to represent a rhyolite dome, containing hematite-altered breccia fragments, limonitic box work textures along fractures, and 2% fine grained disseminated sulphides. This one (1) select outcrop grab sample yielded the following results:

0.003% Cu, 0.026% Pb, 0.191% Zn, 0.3 g/t Ag, 0.01 g/t Au over 5 meters

Sample 105411 was taken from a small road-cut located 50 meters due north of sample 105410, and consists of a steeply-dipping, north-south striking zone of silicified intermediate volcanics with chloritic amygdules partially replaced by 10% disseminated and blebby sulphides. The one (1) select outcrop grab sample yielded the following results:

Low values over 1 meter

5.2.3.2. Trail Creek Showing UTM 5411530N 383650E

Two (2) select outcrop grab samples and six (6) continuous representative outcrop chip samples were taken from this gently northeast dipping exposed in a small waterfall in the stream bed of a south-flowing creek located just west of the trail between the Upper 4 Mile Creek Road and the Jasper North Road. The showing was discovered by prospector Rob Hutton while line-cutting and soil sampling along line 4400. The zone consists of chloritic, epidote-altered and locally brecciated intermediate to mafic volcanics containing 2-20% fine to coarse grained sulphides exposed over an apparent width of 4.5 meters.

Two (2) select outcrop grab samples yielded the following results: 0.056% Cu, 0.001% Pb, 0.005% Zn, 0.7 g/t Ag, 0.01 g/t Au (183637), and 0.334% Cu, 0.006% Pb, 0.523% Zn, 2.8 g/t Ag, 0.45 g/t Au (183640)

Six (6) continuous representative outcrop chip samples yielded the following results: 0.411% Cu, 0.008% Pb, 0.117% Zn, 3.1 g/t Ag, 0.01 g/t Au over 4.5 meters (148907-148912 inclusive)

5.2.3.3. Line 4200 East Showing UTM 5411264N 383722E

One (1) select outcrop grab sample was taken by prospectors Alan Francis and Rob Hutton while cutting line and soil sampling along line 4200 from an outcrop located approximately 200 meters east of the Upper 4 Mile Creek (Tam) showing. The outcrop consists of gossanous and silicified felsic volcanics with banding oriented at 070/75, and containing 3% fine-course grained sulphides. No representative chip sampling was done on this showing.

The one (1) select outcrop grab samples yielded the following results:

0.999% Cu, 0.001% Pb, 0.001% Zn, 6.1 g/t Ag and 0.18 g/t Au over 2 meters (183564)

5.2.3.4. Upper 4 Mile Creek Road Log Sort Showing UTM 5411201N 383715E

The main logging road heading initially north from the Jasper Camp has been informally referred to as the 4 Mile Creek Road. One (1) select outcrop grab sample, one (1) select float sample and three (3) representative outcrop chip samples were taken from the area of a small outcrop exposure located immediately south of an overgrown log sort area built up from transported blast rock. The outcrop showing was discovered by prospector Alan Francis and geologist Caroline Gilson while soil sampling along Line 4100 East. Three (3) representative float chip samples were taken from large semi-massive sulphide boulders of transported blast rock located near the southwest corner of the old log area. Although situated only 25 meters northwest of the outcrop exposure, the boulders are clearly not from this outcrop source. The Upper 4 Mile Creek Log Sort Showing is located approximately 200 meters east of the Upper 4 Mile Creek (Tam) Showing. The showing consists of silicified, sericitic chloritic and locally brecciated felsic to intermediate volcanics containing 5-10% fine grained disseminated sulphides, dipping gently north. The outcrop exposure has a 3 meter apparent length and a1 meter apparent width.

The one (1) select outcrop grab samples yielded the following results: 2.42% Cu, 0.001% Pb, 0.015% Zn, 22.6 g/t Ag, 0.22 g/t Au (148816)

The one (1) select float grab sample taken about 10 meters east of the outcrop yielded the following results: 2.09% Cu, 0.001% Pb, 0.028% Zn, 3.0 g/t Ag, 0.05 g/t Au (148817)

The three (3) continuous representative chip samples (148689, 148690, 148691) from the outcrop exposure yielded the following averaged results: 0.572% Cu, 0.001% Pb, 0.020% Zn, 2.8 g/t Ag, 0.12 g/t Au over 1 meter

Three (3) representative float chip samples (148692, 148693, 148694) were taken one each from three separate boulders ranging in size from 1-1.2 meters in diameter. The boulders consisted of silicified, and chloritic and/or sericitic felsic volcanics containing brecciated, recrystallized semi-massive sulphides in bands making up 8 to 50% of the boulders. The three samples yielded low values in base metals, but averaged 2.9 g/t Ag and 0.10 g/t Au.

5.2.3.5. Line 4100 East Showing UTM 5411146N 383960E

Two (2) select outcrop grab samples and one (1) representative outcrop chip sample were taken from a gently east-dipping zone situated at the north edge of a west-facing rock
bluff, located along Line 4100 E approximately 400 meters east of the Upper 4 Mile Creek (Tam) Showing. This showing was discovered by prospector Alan Francis while soil sampling along Line 4100 East. The outcrop exposure consists of silicified and locally brecciated, chloritic and hematitic felsic to intermediate volcanics containing 5-10% disseminated, blebby and stockwork sulphides over a width of 0.25 meters.

The two (2) select outcrop grab samples yielded the following results: 0.840% Cu, 0.005% Pb, 0.001% Zn, 18.2 g/t Ag, 0.35 g/t Au (183557), and Low values over 1 meter from an outcrop 100 meters to the west and down slope along Line 4100 East (148695)

The one (1) representative outcrop chip sample yielded the following results: 0.119% Cu, 0.005% Pb, 0.003% Zn, 3.9 g/t Ag, 0.05 g/t Au over 0.25 meters (148672)

5.2.3.6. South 4 Mile Creek Showing UTM 5410882N 383355E

Eleven (11) select outcrop grab samples and one (1) select stream bed float grab sample were taken along this flat-lying exposure within the stream bed of 4 Mile Creek, located approximately 400 meters southwest of the Upper 4 Mile Creek (Tam Showing). This showing was discovered by the geologist Jacques Houle while prospecting upstream along 4 Mile Creek north from the Jasper Camp. The showing consists of semi-massive sulphides, sulphidic felsic to intermediate volcanics and sulphidic breccia veins containing 2-25% sulphides exposed over widths of 0.1-0.2 meters. One sample (148553) was taken from a weakly mineralized felsic intrusive dike, and was not analyzed.

Due to the poor exposure, representative chip samples could not be taken from the showing, but select outcrop and stream bed float grab samples yielded the following results:

1.770% Cu, 0.001% Pb, 0.042% Zn, 4.0 g/t Ag, 0.03 g/t Au over 0.1 meters (105407), and

1.192% Cu, 0.003% Pb, 0.010% Zn, 2.1 g/t Ag, nil Au (183618), and Low values from eight (8) other samples (105406, 105408, 105409, 105474, 105483, 128552, 128554, 183632), and

Select grab sampling from stream bed float yielded the following results: 0.265% Cu, 0.002% Pb, 0.015% Zn, 5.9 g/t Ag, 0.20 g/t Au (105405)

5.2.3.7. Camp View Showing UTM 5410554N 383863E

Two (2) select outcrop grab samples and three (3) representative outcrop chip samples were taken from a gently east-dipping zone located along a moderately steep, west-facing

bluff located 750 meters southeast of the South 4 Mile Creek (Tam) showing. This showing was discovered by geologists Arne Birkeland and Jacques Houle while prospecting to follow up multi-line soil geochemistry anomalies generated in 2004 in the Upper 4 Mile Creek Road area. The showing consists of two adjacent outcrop exposures of silicified, chloritic, sericitic and limonitic felsic to intermediate volcanics containing 0.5-25% disseminated to blebby sulphides over widths of 0.2-2.5 meters.

Two (2) select outcrop grab samples yielded the following results:

1.098% Cu, 0.002% Pb, 0.058% Zn, 1.9 g/t Ag, 0.02 g/t Au over 0.6 meters (105413), and

0.487% Cu, 0.005% Pb, 5.380% Zn, 2.0 g/t Ag, 0.06 g/t Au over 0.2 meters (148913)

The (3) representative outcrop chip samples yielded the following results: 1.361% Cu, 0.001% Pb, 0.056% Zn, 4.0 g/t Ag, 0.02 g/t Au over 0.6 meters (105412), and

0.056% Cu, 0.003% Pb, 0.139% Zn, 0.6 g/t Ag, 0.02 g/t Au over 2.25 meters (continuous samples148914 over 1.3 meters and 149915 over 0.95 meters)

5.2.3.8. South Camp Creek Road Showings 5410000N 383750E

The overgrown switchback logging road situated immediately south of Camp Creek has been informally referred to as the South Camp Creek Road, and roadcuts along the road have exposed several sulphide-mineralized zones in outcrop and in a float boulder situated down-slope below the road, probably originated from nearby outcrops or roadcuts. Eighteen (18) samples in total, consisting of three (3) select outcrop grab samples, thirteen (13) representative outcrop chip samples and two (2) representative boulder chip samples were taken from five (5) separate areas along a 300 meter stretch along the road. This area was identified and previously sampled by Arnex field crews in prior years, but not documented in MINFILE. It is located approximately 200 meters north of the Pan South Road Showing (MINFILE 092C 088), and was sampled in 2004 by geologists Arne Birkeland, Jacques Houle and prospector Natasha Augustine.

The three (3) select outcrop grab samples (105414, 105416, 183562) were each taken from different locations each about 50 meters apart along the road, and consisted of variably sulphide mineralized, brecciated and/or quartz-veined felsic to intermediate volcanics. All three samples yielded generally low values, but sample 105414 taken from a fractured quartz-calcite breccia near the south end of the road did yield significant results in silver only, as follows:

0.061% Cu, 0.016% Pb, 0.031% Zn, 6.9 g/t Ag, 0.08 g/t Au

The thirteen (13) representative outcrop chip samples were taken from five (5) different locations along the road-cut, which exposed variably mineralized felsic volcanics. Only four (4) of the samples yielded significant results, the best of which (148905) was taken

from the sharp switchback near the middle of the mineralized section along the road. This sample was taken from a 1.3 meter wide silicified and banded, cherty exhalite zone containing massive (75%) recrystallized sulphides, and yielded the following results: 6.864% Cu, 0.002% Pb, 0.010% Zn, 35.0 g/t Ag, 0.03 g/t Au over 1.3 meters (148905)

Other significant values were obtained from road-cut exposures in two (2) locations 50 meters northwest (148906) and 50 meters southeast (148696 to 148699) of sample 148905. Sample 148906 was taken from a steeply-dipping, east-west striking quartz-calcite stockwork vein containing minor chalcopyrite and malachite, and yielded the following results:

0.417% Cu, nil Pb, 0.020% Zn, 0.6 g/t Ag, 0.01 g/t Au over 0.7 meters

Samples 148696 to 148699 represent two sets of two continuous representative chip samples taken approximately 20 meters apart from chloritic and sericitic intermediate volcanics (148696 and 148697), and silicified felsic volcanics (148698 and 148699). Both zones are sheared and brecciated, contain up to 5% sulphides in blebs and yielded results as follows:

0.177% Cu, 0.001% Pb, 0.011% Zn, 1.5 g/t Ag, 0.02 g/t Au over 2.7 meters, including: 0.507% Cu, 0.001% Pb, 0.009% Zn, 4.0 g/t Ag, 0.02 g/t Au over 0.9 meters (148696) 0.141% Cu, 0.002% Pb, 0.011% Zn, 2.3 g/t Ag, 0.02 g/t Au over 2.9 meters, including: 0.265% Cu, 0.003% Pb, 0.014% Zn, 5.0 g/t Ag, 0.05 g/t Au over 1.5 meters (148699)

The seven (7) representative chips samples which yielded low values were taken from a single area along the mineralized section of the road, and consisted of six (6) continuous representative chip samples (148663 to 148668 inclusive) and a separate (1) representative chip sample (148669).

The two (2) representative boulder chip sample were taken from two separate, large (~1 meter) float boulders about twenty five meters apart less than 10 meters down-slope from the site of chip sample 148905. The boulders consisted of heavily to massive sulphide mineralized (15-65%) felsic volcanics, and yielded the following results: 4.697% Cu, 0.003% Pb, 0.012% Zn, 10.3 g/t Ag, 0.001 g/t Au over 0.25 meters (148673), and

0.532% Cu, 0.004% Pb, 0.230% Zn, 1.9 g/t Ag, 0.02 g/t Au over 1.4 meters (148670)

5.2.3.9. Upper Pan Showing UTM 5409408N 383751E

The Upper Pan showing was re-discovered early during the 2004 field program by geologist Jacques Houle while prospecting up-hill from a significant soil geochemistry anomaly and sulphidic boulders found in and around the roots of an overturned tree established in prior programs by Arnex field crews. The Upper Pan showing is located approximately 100 meters north of the Pan South Road Showing (MINFILE 092C 088), and exhibits evidence of blasting and trenching activity. Two (2) select outcrop grab samples and five (5) representative outcrop chip samples were taken from the showing,

which consists of sericitic, chloritic and argillic intermediate to mafic volcanics dipping gently to the east and containing 1-20% sulphides exposed over 3-5 meters width. Several large (0.2-1.0 meter) boulders similar in style to the Upper Pan showing were discovered lying atop old fallen trees 60 meters west and down-slope from showing. Two (2) continuous representative boulder chip samples were taken from one of these boulders, which are thought to have been blasted downhill from the showing. Three (3) select boulder grab sample were taken from smaller (0.15-0.3 meter) but similarly mineralized boulders in the area of the overturned tree located 40 meters west and downslope from the larger boulders, and 100 meters west and down-slope from the Upper Pan Showing.

The two (2) select outcrop grab samples from the Pan South Showing yielded the following results:

1.015% Cu, 0.080% Pb, 0.300% Zn, 7.0 g/t Ag, 0.21 g/t Au over 0.2 meters (183531), and

1.378% Cu, 0.050% Pb, 0.290% Zn, 6.0 g/t Ag, 0.22 g/t Au over 0.5 meters (183532)

The five (5) representative outcrop chip samples from the Pan South Showing consisted of two continuous representative chip sample sets of three (3) and two (2) samples respectively, and yielded the following results:

0.430% Cu, 0.030% Pb, 0.032% Zn, 2.2 g/t Ag, 0.06 g/t Au over 5.0 meters (183533 to 183535 inclusive), containing:

0.781% Cu, 0.030% Pb, 0.020% Zn, 3.0 g/t Ag, 0.06 g/t Au over 1.0 meters (183535) And,

0.810% Cu, 0.025% Pb, 0.044% Zn, 3.7 g/t Ag, 0.09 g/t Au over 3.0 meters (183536 and 183537)

The two (2) continuous representative chip samples taken from the boulder directly below the Upper Pan Showing yielded the following results:

0.720% Cu, 0.060% Pb, 0.154% Zn, 6.9 g/t Ag, 0.18 g/t Au over 1.6 meters (183529 and 183530)

The three (3) select boulder grab samples taken from the smaller boulders near the overturned tree yielded the following results:

0.711% Cu, 0.060% Pb, 0.450% Zn, 6.0 g/t Ag, <0.01 g/t Au over 0.15 meters (183526), and

1.972% Cu, 0.030% Pb, 0.030% Zn, 7.0 g/t Ag, 0.12 g/t Au over 0.3 meters (183527), and

2.134% Cu, 0.030% Pb, 0.040% Zn, 7.0 g/t Ag, 0.07 g/t Au over 0.3 meters (183528)

5.2.4. Other Areas

Several other locations within the grid area were sampled, but none yielded any significant geochemical results. These other six (6) samples (105419, 148671, 148700,

148804, 183559, 183560) are plotted on the sample location maps, and have been assigned location names describing their locations by grid location or nearby roads in Appendix C, Geochemical Data Sheets.

6. GROUND GEOPHYSICAL ORIENTATION SURVEYS

A limited grid based magnetometer orientation survey (approximately 1.4 line km) was conducted in the Jas-Pan and Pan Grid areas. Data was collected using two Scintrex ENVI Magnetometer units. One unit was used as a recording base station and the other used as a roving field unit. Data was corrected for magnetic diurnal drift using the readings recorded by the base station unit. Total Field Magnetics were compiled using MapInfo and output as Magnetometer Maps, Figures 31 and 32.

A very limited EM16 orientation survey was attempted in the Pan Road Showing area using a Geonics VLF-EM unit.

6.1. Ground Magnetometer Survey

6.1.1. Ground Magnetometer Survey – Jas-Pan Grid Area

Figure 30 showing Total Field Magnetics in the Jas-Pan Grid area shows minor spot highs. The high values in the south central portion of the Magnetometer Map may correlate with mineralized zones at the East 4 Mile Creek and Upper 4 Mile Creek Road Log Sort Showings. Spot highs in the central and northern portion of the Magnetometer Map may also be associated with local Cu mineralization as illustrated by the Rock Chip Sample results plotted on the appropriate Geochemical Maps.

The Jas-Pan orientation magnetometer survey was conducted over a very limited area (3 grid lines). Results for this orientation survey were inconclusive.

6.1.2. Ground Magnetometer Survey – Pan Grid Area

A more extensive grid magnetometer survey was conducted in the main Pan Grid area between lines 1150N to 2150N. Total Field Magnetics are plotted on Figure 32.

Considerable magnetic contrasts are present within the orientation survey area. There is a magnetic high in the northeastern portion of the survey area which lies in the vicinity, and uphill, from the Upper Camp Creek Road Showing The high occurs over and area up to approximately 100 m east-west and 200 m north-south. The high is centered between the

upper and lower switchback in the logging road. Soil grid lines 2000N and 2050N end downhill of the magnetic anomaly.

Two additional multi-line anomalies occur on the northwestern portion of the orientation survey area. Both features are located in areas where multi-element soil anomalies have been identified by earlier soil geochemical surveys.

Three spot highs are located between the northwest and northeast magnetic high areas. These are considered to be of interest as they correlate closely to areas where mineralization has been found in float and outcrop.

Two magnetic highs are also present on line 1650N. Both highs occur multi-element soil geochemical anomalies have been identified by previous geochemical surveys.

A high magnetic background was established on the southernmost line at 1150N. This high background is interpreted to be due to either a magnetic diurnal variation or a data processing feature.

Magnetic susceptibility features in the orientation survey area appear to be oriented in an east-west direction. This orientation correlates with east-west structures often containing "stringer style" or "feeder zone" type mineralization observed in logging roadcuts.

6.2. Ground VLF-EM Survey

A very limited EM16 orientation survey was conducted in the altered mineralized Pan Road Showing area. An attempt was made at using both Seattle and Hawaii transmitter stations but neither station produced conclusive results. Some one-line weak crossovers were present in areas containing soil and rock chip anomalies but reproducibility of results was problematical.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1. 2004 Soil Geochemical Program

The 2004 soil geochemical program identified twenty three (23) soil geochemical anomaly target areas. These can be classified as either worthy of follow-up work or not, based primarily on whether or not they can be explained by known showings exposed in outcrop, and to a lesser extent whether or not they are of sufficient multi-element intensity and size to represent dispersion from a showing of potentially significance.

Seven (7) of the anomaly target areas are not worthy of follow-up work, many of which can be explained by known showings as follows:

- Line 4400C Anomaly down-slope of Trail Creek Showing
- Line 4250C Anomaly single point / single element anomaly near East 4 Mile Creek Showing
- Line 4150C Anomaly down-slope of Upper 4 Mile Creek Log Sort Showing
- Line 4100E Anomaly down-slope of Line 4100 East Showing
- Line 2900W Anomaly single point / single element anomaly near South 4 Mile Creek Showing
- Line 2800W Anomaly single point / single element anomaly near South 4 Mile Creek Showing
- Line 2450C Anomaly down-slope of Camp View Showing

Sixteen (16) of the anomaly target areas are worthy of follow-up work, generally requiring grid extension plus soil sampling and / or prospecting, as follows:

- Line 4200W Anomaly possibly open up-slope to the northwest extend grid line 4250 west to station 750 and prospect same area
- Line 4150W Anomaly open up-slope to the west extend grid lines 4200 and 4150 west to station 750 west and prospect same area
- Line 4000W Anomaly open up-slope to the west extend grid lines 4100, 4050 (new), 4000 and 3950 (new) west to station 750 and prospect
- Line 4000C Anomaly single point / single element anomaly with open ground around prospect initially and possibly fill in grid lines 4050, 3950
- Line 3900E Anomaly possibly open up-slope to the east extend grid and fill in lines 3950 (new), 3900, 3850 (new) to station 5250 and prospect
- Line 3800E Anomaly possibly open up-slope to the southeast extend grid line 3750 (new) to station 5250 and prospect same area
- Line 2850C Anomaly focused anomaly needs to be prospected
- Line 2750E Anomaly possibly open up-slope to the east extend and fill in grid line 3700 to station 5250 and prospect same area
- Line 2700W Anomaly possibly open up-slope to the west extend grid lines 2850, 2800, 2750, 2700, 2650 to station 600 and prospect
- Line 2650C Anomaly focused anomaly needs to be prospected
- Line 2150C Anomaly northern portion of anomaly focused and needs prospecting
- Line 1800C Anomaly possibly open up-slope to the southeast extend and fill in grid lines 1750, 1700, 1650 to station 1500E and prospect area
- Line 1600C Anomaly possibly open up-slope to the east extend line 1600 to station 1500E and prospect area
- Line 1550E Anomaly possibly open up-slope to the east extend lines 1600, 1550 and 1500 to station 1650E and prospect area
- Line 1450C Anomaly need to merge pre-2004 and 2004 soil geochemistry data, then prospect area and possibly increase soil grid
- Line 1150C Anomaly need to merge pre-2004 and 2004 soil geochemistry data, then prospect area and possibly increase soil grid

The 2004 rock geochemical program identified, mapped and sampled nine (9) new or previously undocumented mineral showings on the Jasper property, and re-established, mapped and sampled one (Tam MINFILE 092C 081) of the three (3) other previously known MINFILE occurrences on the property.

7.2.1. Known MINFILE Occurrences:

Subject to the completion and compilation of a multi-parameter airborne geophysical program over the entire Jasper property, and establishment of access trails, all three (3) known MINFILE occurrences are more or less ready for initial exploration diamond drill testing, and are listed as follows:

- Jasper Showing (MINFILE 092C 080) needs 750 meter exploration trail access established or helicopter access for drill testing by 3-5 holes totaling 500-1000 meters
- Upper 4 Mile Creek (Tam) Showing (MINFILE 092C 081) can be drill tested from existing 4 Mile Creek Road by 3-5 holes totaling 500-1000 meters
- Pan South Road Showing (MINFILE 092C 088) needs 250 meter access road re-habilitated plus 100 meter exploration access trail constructed for drill testing by 3-5 holes totaling 500-1000 meters

Subject to the completion and compilation of a multi-parameter airborne geophysical program over the entire Jasper property, all nine (9) new occurrences are worthy of further exploration work required to prepare them for diamond drill testing, generally consisting of manual and/or mechanical trenching, followed by detailed mapping and sampling, and are listed as follows:

- Upper Zinc Creek Road-cut Showing needs 750 meter exploration trail access established or helicopter access (same access as for Jasper Showing) for mechanical trenching between two converging zones, followed by detailed mapping and sampling
- **Trail Creek Showing** needs 500 meter exploration trail access established (portion of same access as for Jasper Showing) for mechanical trenching of the mineralized showing on either side of the creek, followed by detailed mapping and sampling
- Line 4200 East Showing needs additional prospecting and manual trenching to extend the zone, followed by detailed mapping and sampling
- Upper 4 Mile Creek Log Sort Showing needs 50 meter access road rehabilitated and 100 meter exploration trail access established for mechanical trenching at and along strike of the zone, followed by detailed mapping and sampling

- Line 4100 East Outcrop Showing needs additional prospecting and manual trenching to extend the zone, followed by detailed mapping and sampling
- South 4 Mile Creek Showing needs 300 meter exploration access trail established for mechanical trenching, followed by detailed mapping and sampling
- **Camp View Showing** needs 100 meter exploration trail access established for mechanical trenching, followed by detailed mapping and sampling
- South Camp Creek Road Showings needs 900 meter access road rehabilitation, followed by up to 100 meter exploration trail access established for mechanical trenching, followed by detailed mapping and sampling

7.3. 2004 Ground Geophysical Orientation Surveys

The ground geophysical orientation surveys served to establish that ground geophysics is a difficult procedure for the Jasper property due to the steep terrain and dense vegetation. The magnetometer survey identified magnetic contrasts which may reflect mineralized areas or structure. The VLF-EM survey data was unreliable. It is concluded that it would be more effective to undertake an airborne geophysical survey.

8. GENERAL RECOMMENDATIONS

A helicopter supported airborne combined magnetic and EM survey is recommended to be conducted over the Property. Magnetics would be useful as a mapping tool to assist in mapping geology, structure and alteration. The EM survey should define conductors associated with mineralization. The all-in cost of the airborne survey is estimated to be approximately \$75,000.

The airborne survey should accomplish the following:

- Provide new target areas for additional surface work aimed at discovering new mineralized zones,
- Possibly connect some of the mineralized zones found to date along mineralized trends,
- Provide information regarding the orientation of mineralized areas providing drill target information.

Once the results and interpretation of the airborne survey are completed, an additional phase of surface exploration work consisting of grid extension, soil sampling, prospecting, trenching, mapping and rock sampling is recommended. The work should be conducted to evaluate airborne geophysical anomalies and to follow up results of the 2004 program. Depending on the number of airborne anomalies to be followed up and the amount of mechanical trenching required, the next phase of surface work could cost up to \$200,000.

Diamond drilling should be conducted on the highest priority targets. Conceptually, approximately 27 to 35 holes totaling 3,000 to 5,000 m at an estimated cost of \$500,000 is warranted as follows:

- Three to six holes should be allocated to each of the three Minfile occurrences,
- Two to four holes should be drilled on each "new" showing area established by the airborne survey and pre-drill surface program,
- Two stratigraphic holes totaling 1,000 to 1,500 m should be drilled in the vicinity of the Jas J Main and 4 Mile Creek showing areas.

9. CERTIFICATE OF QUALIFICATION AND CONSENT

I, Arne O. Birkeland, do hereby certify that:

- 1. I am a Geological Engineer in the employ of Arnex Resources Ltd. with offices at 2069 Westview Drive, North Vancouver, British Columbia.
- 2. I am a 1972 graduate of the Colorado School of Mines with a Bachelor of Science Degree in Geological Engineering.
- 3. I have been a registered Professional Engineer with the Association of Professional Engineers and Geoscientists of British Columbia since 1975, Registration Number 9870. My primary employment since 1966 has been in the field of mineral exploration and development, namely as a Geological Engineer. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures.
- 4. I have supervised the field exploration work as reported on the subject property. I have authored this report that is based on observations and sample results obtained during the Year 2004 exploration program. Jacques Houle, P.Eng. and Caroline Gilson, B.Sc. have assisted the author in the preparation of this report.
- 5. The author holds no interest in the Jasper Property that is the subject of this report. The author does not own any equity shares of have any options in Inspiration Mining Corp. ("Inspiration") and is acting as an Independent Qualified Person as geological consultant for Inspiration.
- 6. I consent for Inspiration to use this technical report to file as an assessment report and also for use as required by regulatory authorities.

Dated at North Vancouver, British Columbia,

16 41 day of Fil. This 2005 ELSIC AVINC O. BIRKELAND Arne O. Birkeland, P. Eng. GAN VIS H President. Arnex Resources Ltd.

10. BIBLIOGRAPHY, SELECTED REFERENCES

Birkeland, A.O. (1995): Geological and Geochemical Report, Jas 1 Mineral Claim, Victoria M.D.

Birkeland, A.O. (1996): Geological and Geochemical Report, Jasper Property, Victoria M.D.

Birkeland, A.O. (1999): Rock and Soil Geochemistry Program, Jasper Property, Victoria M.D.

Birkeland, A.O. (2002): Soil and Rock Geochemistry Program, North and South Extension – Pan Grids, Jasper Property, Victoria M.D.

Birkeland, A.O. (2003): Soil and Stream Sediment Geochemical Program, North and South Extension – Pan Grid Area, Jasper Property, Victoria M.D.

Birkeland, A.O. (2004): Soil and Stream Sediment Geochemical Survey, Grid Extensions – Pan Grid Area, Jasper Property, Victoria M.D.

Fyles, James T. (1955): Geology of the Cowichan Lake Area, Vancouver Island, British Columbia, BCDM Bulletin No. 37.

Gravel, J.L. and Matysek, P.F. (1989): 1988 Regional Geochemical Survey, MEMPR Paper 1981-1.

Massey, N.W.D. and Friday, S.J. (1987): Geology of the Chemainus River-Duncan Area, Vancouver Island, 92C/16; 92B/13.

Massey, N.W.D., Friday, S.J., Tercier, P.E., Rublee, V.J. and Potter, T.E. (1986-87): Geology of the Cowichan Lake Area, NTS 092C/16, Geoscience Map 1991-2.

Massey, N.W.D., Friday, S.J., Tercier, P.E., and Potter, T.E. (1987): Geology of the Duncan Area, NTS 092B/13, Geoscience Map 1991-3.

Massey, S.J., Friday, J.M., Riddell and S.E. Dumais (1988): Geology of the Port Alberni - Nanaimo Lakes Area, NTS 92F/1W, 2E and Part of 92F/7E, Geoscience Map 1991-1.

Matysek, P.F., Gravel, J.L., and Jackaman, W. (1990): Victoria/Cape Flattery - NTS 92B, 92C, RGS 24, GSC O.F. 2182.

Matysek, P.F., Gravel, J.L., and Jackaman, W. (1990): Alberni - NTS 92F, RGS 25, GSC O.F. 2183.

MEMPR Map Place

MEMPR Mineral Titles

MEMPR Minfile

ſ

Muller, J.E. (1977): Geology of Vancouver Island, GSC O.F. 463.

Muller, J.E. and Carson, D.J.T. (1969): Geology and Mineral Possibilities of Vancouver Island, Canadian Mining Journal (May).

Muller, J.E. and Carson, D.J.T. (1969): Geology and Mineral Deposits of Alberni Map-Area British Columbia (92F), Geological Survey of Canada, Paper 68-50.

Northcote, K.E., (1972): The Geology of the Nitinat Triangle. Sutherland Brown, A. (1989): Mineral Inventory of the Alberni Region Vancouver Island, British Columbia (092C, 092F).

Wheeler, J.O. and McFeely, P. (1991): Tectonic Assemblage Map of the Canadian Cordillera and Adjacent Parts of the United States of America; Geological Survey of Canada, Map 1712A, Scale 1:2,000,000.

Wilton, P. (1980): Sicker Group Workshop and Personal Communication, B.S.G.S.

Wilton, H. Paul (1989): Geology and Metallogeny, Southern Vancouver Island and Adjacent Mainland.

APPENDIX A

Statement of Expenditures 2004 Jasper Field Program

Statement	By:
Statement	For:

Arnex Resources Ltd. Inspiration Mining Inc

Reconciliation Date:

16-Feb-05

Description		Amount
Sanicas	Soat	¢160.296.00
Rentals	Rent	\$109,200.00
GST - Services, Rentals	GST	\$14,657.28
Expenses	Exp	\$43,511.11
Analytical	Analy	\$10,433.79
Admin Fee (Expenses @15%)	Admin	\$8,091.73
TOTAL		\$286,083.72

APPENDIX B

ſ

ł

L

Į

Į.

í

Geochemical Analysis Certificates Acme Analytical Laboratories Ltd.

ACME ANALYTICAL (ISO 9002 A	LAI	BORA	TOF ed	Co.	LT)	D .	F	85	2 E GE(. н. ЭСН	ast EM	ING ING	s s L	T. ANI	VANC	ouv IS	ER CE	ьс RT:	V6A EFIC	IR6 ATE	7	l	ÎONE	1 (60	4)2!	53-:	3158	FAX		1) 25	3-1716 A A	
SAMPLE#	Мо	Cu	Pb	Zn	c/ Ag	o Ar Ni	<u>In</u> nex Co	spi Resou Mn	ra Irces Fe	Lio Ltd As	<u>n]</u> -//	Mir Nort Au	nin h Va Th	g (ncou Sr	Cd Cd	улм Sb	Fi 381 Bi	le s	# A ubmitt Ca	402) ed by: P	340 Arne	e Bir Cr	kela Mg	nd Ba	Ti	B	Al	Na	<u>к</u>	W	4 1	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	
SI B 183526 STANDARD DS5/AU-R	<1 173 13	<1 7446 144	4 626 25	2 5039 136	<.3 5.8 <.3	<1 4 26	<1 42 12	2 674 759	<.01 8.03 3.02	<2 165 20	<8 <8 <8	<2 <2 <2	<2 <2 3	1 8 47	<.5 87.9 5.7	<3 <3 4	<3 3 6	<1 11 62	.07 2.05 .75	<.001 .006 .093	<1 6 12	<1 10 189	<.01 .24 .70	2 6 139	<.01 .03 .11	<3 <3 16	<.01 .39 2.02	.33 <.01 .04	<.01 .06 .15	<2 <2 5	6 300 478	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Data FA ____ DATE RECEIVED: JUN 15 2004 DATE REPORT MAILED:

	c	/o Arnex Resources	Ltd.,, North Vanc	couver BC V7M 3B1	Submitted by: Arne Birk	eland	L.
SAMPLE#	Mo Cu Pb % % %	Zn Ag Nî (%gm/mt %	CoMnFeAs %%%%	s \$r Cd \$b B % % % %	i Ca P Cr % % % %	Mg Al Na K W % % % % %	Hg %
SI <. B 183526 . STANDARD R-2a .	.001<.001 <.01 .016 .711 .06 .050 .558 1.57	<.01 <2<.001<.00 .45 6<.001.00 4.23 154 .378 .04	01 <.01 .04 <.0 03 .06 8.46 .0 44 .20 22.82 .2	1<.001<.001 .001 <.0 1 .002 .008<.001 <.0 5 .169 .030 .130 <.0	11 .12 <.001 <.001 <. 11 1.98 .010 .001 . 11 2.38 .079 .072 1.	01 .01 .38 .03 <.001 22 .43 <.01 .16 <.001 69 1.27 .19 .54 .067	<.001 <.001 .177
GROUF - SAN	P 7AR - 1.000 G MPLE TYPE: ROCK	M SAMPLE, AQUA - RI (R150 60C	EGIA (HCL-HNO3-H2	O) DIGESTION TO 100	ML, ANALYSED BY ICP-ES.		
ata 📙 FA 🔜 D	ATE RECEIV	ED: JUN 15 2004	DATE REPORT	MAILED:	430/0.4	JUNEA OTO	CERTIFIC
				U			

ACME ANALYTICAL (ISO 9002 A	LAI	BOR# edit	TOI	CO.	LT)	D.		852	E. Geo	HA CHI	STI SMI	NGS CA	S ST L A	. V. NAI	ANC	ouv. IS	er Ce	BC RT:	V6A EFIC	1R6 ATE		Pl	IONE	(60	4) 2!	33-3	3158	FAX	(604)25	3-171 A	6 A
					c/	o Ari	<u>In</u> nex F	spi: esour	rat ces	<u>io</u> Ltd.	1 M ,, N	(in orth	ing Vanc	Cc ouve	r BC	• V7M	Fi 381	le s	A # A ubmitt	.402 ed by:	840 Arne	s Bir	•kela	nd								Ľ
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe % p	As opm p	prn p	Au pm p	Th s prom pr	Sr Sm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm p	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	w/ ppm	\u** ppb	
SI B 183526 Standard DS5/AU-R	<1 173 13	<1 7446 144	4 626 25	2 5039 136	<.3 5.8 <.3	<1 4 26	<1 42 12	2 < 674 8 759 3	.01 .03 .02	<2 165 20	<8 <8 <8	<2 <2 <2	<2 <2 3	1 8 8 7	<.5 37.9 5.7	<3 <3 4	<3 3 6	<1 11 62	.07 2.05 .75	<.001 .006 .093	<1 6 12	<1 10 189	<.01 .24 .70	2 6 139	<.01 .03 .11	<3 <3 16	<.01 .39 2.02	.33 <.01 .04	<.01 .06 .15	<2 <2 5	6 300 478	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Data FA ____ DATE RECEIVED: JUN 15 2004 DATE REPORT MAILED: JUN 30 04.

ACME ANALYTICAL LAB (ISO 9002 Accre	ORATC dited	RIE 1 Co	s 12 .)	rD.	<u> </u>	52 1	e. 1	LAST:	ings Assa	ST. Y (. VAN CERT	NCOU PIFI	ver Caj	BC FE	V6A	1R6	1	PHONE	(604) 253	-31	58 F.	AX (60	4) 253 -	1716 A A	
			c	/o Arr	<u>Inst</u> Nex Res	oira	atio s Lt	on 1 d.,, 1	<u>Mini</u> North	ng Vanco	CO1 ouver	тр. вс v7	Fj M 381	lle I Su	# A bmitte	4028 d by:	40 Arne B	irkela	nd							N
SAMPLE#	Mo %	Ըս %	Pb %	Zn % g	Ag gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %			
SI B 183526 Standard R-2a	<.001< .016 .050	.001 .711 .558	<.01 .06 1.57	<.01 .45 4.23	<2< 6< 154	.001< .001 .378	.001 .003 .044	<.01 .06 .20	.04 8.46 22.82	<.01 .01 .25	<.001 .002 .169	<.001 .008< .030	.001 .001 .130	<.01 <.01 <.01	.12 1.98 2.38	<.001 .010 .079	<.001 .001 .072	<.01 .22 1.69	.01 .43 1.27	.38 <.01 .19	.03 .16 .54	<.001 <.001 .067	<.001 <.001 .177			

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. - SAMPLE TYPE: ROCK R150 60C

DATE RECEIVED: JUN 15 2004 DATE REPORT MAILED: Data / FA

ACMA	ACM: ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Arnex Resources Ltd. File # A403017 2069 Westview Drive North Vancouver BC V7M 3B1															53-1	716																	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U A	u Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	A1	Na	К	W	Hg Si	c Tl	S	Ga S	Se
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm pp	m pp	b ppm	ppm	ppm	ppm	ppm	ppm	%	% f	ppm	ppm	%	ppm	%	ppm	%	%	%гр	Ipm	ppm ppi	m ppm	%	opm pp	Sm
B183527	34.6	>10000	152.9	289	7.3	3.9	45.4	1228	10.11	29.8 .	1 58.	5 .1	2	1.9	.7	1.3	40	.05	.031	2	10.0 1	1.17	12	021	2 1	. 48	.005	.10 1	.4	.11 3.	0 <.1	6.80	5 16.	1
B183528	9.8	>10000	63.5	483	7.6	2.4	173.3	1133	26.70	18.8 <.	1 18.	3 .1	1	2.4	.3	2.4	36	.03	.017	<1	6.2 1	1.11	3	013	1 1	. 23	.004	.02	.1	.25 2.	2 .1	>10	5 45.	.6
B183529	237.4	8252.4	539.8	1947	7.4	4.6	62.0	973	10.60	98.4 <.	1 241.	3 <.1	3	15.8	1.7	2.5	36	.04	.020	1	11.6	.93	7	036	<1 1	. 18	.001	.09 1	.8	.53 2.	7 .2	7.67	5 14.	.1
B183530	84.0	5446.2	608.1	1095	4.8	3.1	35.2	435	7.35	41.0 <.	1 102.	9 <.1	1	16.2	1.2	1.1	20	.14	.017	1	10.5	.35	20	030	1	. 60	.003	.11	.2	.62 1.	4 .1	3.92	2 9.	.7
B183531	141.6	9980.7	546.5	3145	5.7	3.7	28.5	665	7.08	92.7 <.	1 197.	8 <.1	10	73.8	1.9	1.6	13	1.93	.009	6	12.6	.26	8	023	<1	. 43	.001	.07 2	.2	.77 1.	1 .1	5.93	2 10.	.2
B183532	169.9	>10000	360.8	2929	5.5	4.3	23.8	190	9.29	128.0 <.	1 200.	1 <.1	2	28.9	1.9	2.2	11	.02	.010	1	11.4	.15	6	.019	2	. 33	.001	.10	.1 1	.77 .	8 .1	7.09	2 23.	.4
B183533	4.9	123.0	384.7	195	.2	8.3	8.8	1966	5.24	8.4 .	2 13.	0 .6	25	.6	.2	.5	79	.35	.081	7	19.7 2	2.06	138	.108	4 2	. 47	.011	.22	.3	.07 6.	8 .1	.48	7 .	.7
B183534	5.4	87.4	132.8	188	.4	9.8	14.3	2123	6.40	9.5 .	1 11.	7 .6	10	.3	.1	.8	76	.23	.081	8	17.2 2	2.37	62	.099	2 2	. 63	.011	.24	.2	.10 6.	1 .1	1.90	7 .	.9
B183535	13.8	7666.0	188.1	264	2.5	9.2	32.3	2363	9.69	30.8 .	1 55.	5 .5	3	.6	.4	1.1	76	.18	.068	5	15.4 2	2.44	15	.084	1 2	. 53	.005	.22	.5	.16 5.	5 .1	4.92	7 9.	.8
B183536	82.8	8258.0	373.3	810	5.0	5.2	65.8	1753	11.86	41.3 .	1 98.	2 .2	3	6.0	1.4	1.5	54	.09	.039	2	9.8 1	1.60	9	.044	2 2	. 03	.002	.12	.1	.67 3.	7 .1	6.52	7 13.	.3
B183537 RE B18353 RRE B18353 B183538 B183539	39.4 7 38.5 37 44.7 10.9 35.3	5359.9 5239.2 5612.3 81.5 209.2	191.9 187.1 180.5 13.6 33.1	259 250 250 8 24	2.9 2.9 3.0 4.1 2.3	4.2 4.0 4.1 5.3 4.4	52.5 52.9 55.2 18.5 46.9	1314 1281 1247 84 149	12.40 12.10 12.38 13.07 8.54	66.9 . 65.7 . 75.7 <. 8.0 <. 3.7 <.	1 97. 1 88. 1 105. 1 145. 1 118.	6 .2 4 .2 4 .1 8 <.1 7 .1	2 2 5 5	.6 .8 .9 <.1 <.1	.5 .5 .7 .1 .2	1.2 1.2 1.2 3.7 2.1	51 50 50 13 14	.05 .05 .05 .04 .07	.032 .030 .031 .015 .034	3 3 4 1 2	8.1 1 8.0 1 8.6 1 3.9 7.1	1.29 1.25 1.21 .11 .25	9 9 3 6	.019 .021 .022 .005 .006	1 1 1 1 1 1 1 2	.72 .69 .64 .42 .59	.002 .002 .002 .008 .008	.10 1 .11 1 .11 .25 .30 <	2 2 .1 .7 1	.15 3. .13 3. .14 3. .14 1. .22 1.	0 <.1 0 .1 0 .1 3 .1 5 .1	6.78 7.09 7.57 >10 8.44	6 12. 6 11. 6 12. 1 9. 2 10.	2 .6 .9 .0
B183540 B183551 B183552 B183553 B183554	15.4 75.8 2.3 4.7 3.2	28.9 >10000 193.0 2486.9 3558.1	52.3 62.9 7.3 4.0 36.2	60 326 90 165 130	1.5 21.6 .1 .7 1.8	3.3 7.0 13.0 12.7 3.8	43.0 35.4 25.0 19.5 14.9	325 834 853 1854 756	11.52 24.05 6.16 5.90 6.04	3.3 <. 43.6 <. 23.2 . 2.1 . 2.9 <.	1 61. 1 144. 1 7. 1 6. 1 35.	2 <.1 1 <.1 8 .1 1 .1 0 <.1	3 61 23 62 23	.2 1.9 .1 .1 .7	.2 .1 .2 .1 .1	2.1 20.2 .7 .8 1.0	17 34 100 120 29	. 43 . 41 . 67 . 79 . 48	.027 .028 .093 .098 .017	2 1 1 1 1	7.5 6.7 11.6 12.0 10.5	.31 .49 1.23 1.70 .41	6 2 15 153 10	.019 .083 .202 .186 .027	<1 <1 <1 1 1 2 <1	.61 .80 .64 .83 .65	.002 .002 .039 .030 .008	.24 1 .13 .28 .26 .09 1	5 .2 .8 .2	.14 2. .35 1. .04 5. .02 6. .06 1.	0 <.1 7 .1 7 <.1 2 .1 5 <.1	>10 >10 4.57 .83 5.36	2 8. 3 21. 5 4. 8 . 2 4.	.0 .3 .6 .8 .5
B183555	4.7	1919.4	19.1	800	1.3	8.5	21.2	1346	9.05	10.7 <.	1 35.	0 <.1	24	3.5	.1	1.8	79	1.06	.063	1	10.4 :	1.06	7	.089	1 1	.37	.017	.22	.1	.59 5.	4 <.1	8.07	4 5.	.2
B183556	2.7	203.8	9.8	73	.1	16.0	30.5	532	8.30	36.7 <.	1 5.	7 <.1	12	.1	.2	.9	56	.30	.042	1	11.7	.86	7	.096	1 1	.01	.023	.18 1	7	.06 3.	2 <.1	7.72	3 3.	.7
STANDARD	DS5 12.4	142.3	25.3	141	.3	23.7	11.7	746	3.01	18.0 6.	3 43.	8 2.8	46	5.6	4.0	6.4	60	.75	.088	11 1	180.4	.68	134	.091	17 1	.99	.034	.13 4	.9	.20 3.	4 1.1	<.05	7 4.	.9

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data ____ FA ____ DATE RECEIVED: JUN 25 2004 DATE REPORT MAILED:

nly 14/04

ACMA ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

AA

ASSAY CERTIFICATE

Arnex Resources Ltd. File # A403017 2069 Westview Drive, North Vancouver BC V7M 3B1															ΈŤΕ										
SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %	Au** gm/mt	
B183527	003	1 972	03	03	7<	001	004	11	11 13	< 01<	001<	001<	001	< 01	06	024	< 001	1 07	1 58	.01	14	< 001	< 001	12	
B183528	.001	2.134	.03	.04	7<	.001	.016	.09	25.73	<.01<	.001<	.001<	001	<.01	.03	.013	.001	.87	1.22	.01	.05	<.001	<.001	.07	
B183529	.024	.810	.06	.18	8<	.001	.005	.08	11.29	.01	.001	.001<	001	<.01	.03	.019	<.001	.83	1.20	<.01	.13	<.001	<.001	.21	
B183530	.010	.571	.06	.11	5<	.001	.004	.04	8.27	<.01<	.001	.002<	.001	<.01	.13	.016	<.001	.36	.69	.01	.18	<.001	<.001	.12	
B183531	.015	1.015	.08	.30	7	.001	.003	.06	7.85	.01	.002	.007<	.001	<.01	1.88	.007	<.001	.25	.48	.01	.12	<.001	<.001	.21	
B183532	.019	1.378	.05	.29	6<	.001	.002	.02	10.60	.01<	.001	.003	.001	<.01	.03	.010	<.001	.15	.40	.01	.17	<.001	<.001	.22	
B183533	.001	.011	.04	.02	<2	.001	.001	.18	5.76	<.01	.003<	.001<	.001	<.01	.42	.076	<.001	2.12	2.59	.03	.38	<.001	<.001	.01	
B183534	₹.001	.009	.02	.02	<2	.001	.001	.20	6.95	<.01	.001<	.001<	.001	<.01	.24	.079	<.001	2.47	2.78	.02	.41	<.001	<.001	.02	
B183535	.001	.781	.03	.02	3	.001	.003	.20	10.16	<.01<	.001<	.001	.001	<.01	. 15	.065	<.001	2.28	2.59	.01	.34	<.001	<.001	.06	
B183536	.009	.824	.04	.08	5	.001	.006	.15	12.70	<.01	.001<	.001	.001	<.01	.09	.035	<.001	1.47	2.03	.01	.17	<.001	<.001	.09	
B183537	.004	.523	.02	.02	3<	.001	.005	.11	13.08	.01<	.001<	.001	.001	<.01	.06	.027	<.001	1.13	1.74	.01	.16	<.001	<.001	.11	
RE B183537	.004	.532	.02	.02	3	.001	.005	.12	13.29	.01<	.001<	.001<	.001	<.01	.06	.030	<.001	1.14	1.76	.01	.17	<.001	<.001	.10	
RRE B183537	.005	.576	.02	.02	3<	.001	.006	.12	13.99	.01<	.001<	.001	.001	<.01	.06	.030	<.001	1.14	1.78	<.01	.18	<.001	<.001	.11	
B183538	.001	.007	<.01	<.01	5	.001	.002	.01	14.99	<.01	.001<	.001<	.001	<.01	.04	.014	<.001	.11	.62	.01	.38	<.001	<.001	.16	
B183539	.003	.021	<.01	<.01	3<	.001	.005	.02	9.37	<.01	.001<	.001<	.001	<.01	.07	.030	<.001	.25	.74	.01	-41	<.001	<.001	.09	
B183540	.001	.003	<.01	<.01	<2<	.001	.004	.03	12.81	<.01<	.001<	.001<	.001	<.01	.42	.024	<.001	.30	.75	.01	.36	<.001	<.001	.07	
B183551	.008	5.648	.01	.03	22	.001	.003	.08	25.99	<.01	.008<	.001	.001	<.01	.55	.019	.002	.44	1.13	.01	.29	<.001	<.001	.11	
B183552	₹. 001	.012	<.01	<.01	<2	.001	.002	.08	6.68	<.01	.004<	.001<	.001	<.01	.85	.088	<.001	1.22	1.88	.08	.48	<.001	<.001	.04	
B183553	₹.001	.254	<.01	.01	<2	.001	.002	.17	6.40	<.01	.009<	.001	.001	<.01	1.20	.088	<.001	1.66	3.11	.07	.49	<.001	<.001	.04	
B183554	.001	.372	<.01	.01	2	.001	.002	.07	6.63	<.01	.004<	.001<	.001	<.01	.54	.015	<.001	.40	.76	.02	.15	<.001	<.001	.01	
B183555	.001	.206	<.01	.08	<2	.001	.002	.13	10.39	<.01	.004<	.001<	.001	<.01	1.22	.057	<.001	1.04	1.65	.03	.37	<.001	<.001	.04	
B183556	4.001	.022	<.01	<.01	<2	.002	.003	.05	9.43	<.01	.002<	.001<	.001	<.01	.36	.041	<.001	.85	1.18	.03	.28	<.001	<.001	.01	
STANDARD R-2a/AU-1	.052	.558	1.50	4.10	156	.353	- 044	. 20	23.03	24	168	028	128	< 01	2 35	070	071	1 62	1 31	10	50	061	173	3 43	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK R150 60C

Data FA

ly 14/04 DATE RECEIVED: JUN 25 2004 DATE REPORT MAILED:

ACME AN	TALYT	ICAL	LABO	RATO	ORIE	¦s l	TD.	1	852	E.	HAS) BTING	35 S	r. 1	ANC	י 2007	ER) BC	V6.) A 1	R6	1	PHO)NE (604)	253	-31	58 1	AX (604	1)253	-171	.6
(ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE															Δ																	
AA	Arnex Resources Ltd. File # A403017																															
	LL L 2069 Westview Drive, North Vancouver BC V7M 3B1 LL L SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sh Bi V Ca P La Cr Mn Ba Ti B Al Na K W Hn Sc Ti S Ca S															L																
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th S	• C	d Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B A	1 1	Na N	< W	Hg Sc	TI	S Ga	Se
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm p	pm	ppb p	opm ppm	при	n ppm	ppm	ppm	*	*	ppm	ppm	×	ppm	%	pm	%	* *	5 ppm	ppm ppm	op n i	% ppm	ppm
B183527	34.6	>10000	152.9	289	7.3	3.9	45.4	1228	10.11	29.8	.1	58.5	.1	2 1.9	.7	1.3	40	.05	.031	2	10.0	1.17	12	021	2 1.4	8.0	05.10	1.4	.11 3.0	<.1 6.8	0 5	16.1
8183528 8183529	9.8 237 4	>10000	63.5 539.8	483 1947	7.6 7 4	2.4	173.3	1133 973	26.70	18.8	<.1 < 1 2	18.3 241 3 4	.1 .	15	1.3 3.17	2.4	36 36	.03	.017	<1 1	6.2	1.11	3	013	1 1.2	3.00 8:00	04.02 01.00	2.1	.25 2.2	.1 >1	.05 .75	45.6
8183530	84.0	5446.2	608.1	1095	4.8	3.1	35.2	435	7.35	41.0	<.1 1	102.9	<.1	16.3	2 1.2	1.1	20	.14	.017	î	10.5	.35	20	030	1 .6	0.0	03 .11	1.0	.62 1.4	.1 3.9	2 2	9.7
B183531	141.6	9980.7	546.5	3145	5.7	3.7	28.5	665	7.08	92.7 -	<.1]	197.8 -	<.1 10) 73.	3 1.9	1.6	13	1.93	. 009	6	12.6	. 26	8	023	<1.4	3.0	01 .07	7 2.2	.77 1.1	.1 5.9	3 2	10.2
8183532	169.9	>10000	360.8	2929	5.5	4.3	23.8	190	9.29	128.0	<.1 2	200.1 -	<.1	2 28.9	9 1.9	2.2	11	.02	. 010	1	11.4	.15	6	019	2.3	3.0	01.10	0.1	1.77 .8	.1 7.0	9 2	23.4
8183533	4.9	123.0	384.7	. 195	.2	8.3	8.8	1966	5.24	8.4	.2	13.0	.6 2	5.6	5.2	.5	79 76	.35	.081	7	19.7	2.06	138	108	4 2.4	7.0	11.22	2.3	.07 6.8	.1 .4	8 7	.7
8183535	13.8	7666.0	188.1	264	2.5	9.0	32.3	2363	9,69	30.8	.1	55.5	.5 .5	3.0	5.4	1.1	76	.18	.068	5	15.4	2.44	15	084	1 2.5	3.0	05.22	2.5	.16 5.5	.1 4.9	027	9.8
8183536	82.8	8258.0	373.3	810	5.0	5.2	65.8	1753	11.86	41.3	.1	98.2	.2	6.) 1.4	1.5	54	. 09	. 039	2	9.8	1.60	9	.044	2 2.0	3.0	02.12	2.1	.67 3.7	.1 6.5	2 7	13.3
B183537	39.4	5359.9	191.9	259	2.9	4.2	52.5	1314	12.40	66.9	.1	97.6	.2	2.	5.5	1.2	51	. 05	.032	3	8.1	1.29	9	019	1 1.7	2.0	02.10	0 1.2	.15 3.0	<.1 6.7	8 6	12.2
RE 8183537	38.5	5239.2	187.1	250 250	2.9	4.0	52.9	1281	12.10	65.7 75.7	.1 < 1 1	88.4	.2	2.1	3.5 37	1.2	50 50	.05	.030	3 ⊿	8.0	1.25	9	.021	11.6	9.0	02.1	1 1.2	.13 3.0	.1 7.0	196 176	11.6 12.9
8183538	10.9	81.5	13.6	8	4.1	5.3	18.5	84	13.07	8.0	<.1	145.8	<.1	5 <.	í .1	3.7	13	.04	.015	i	3.9	.11	3	005	1 .4	2.0	08 .2	5.7	.14 1.3	.1 >1	0 1	9.0
8183539	35.3	209.2	33.1	24	2.3	4.4	46.9	149	8.54	3.7 •	<.1 1	118.7	.1	5 <.	1.2	2.1	14	.07	. 034	2	7.1	. 25	6	.006	2.5	9.0	06.30) <.1	.22 1.5	.1 8.4	4 2	10.8
8183540	15.4	28.9	52.3	60	1.5	3.3	43.0	325	11.52	3.3 -	<.1	61.2	<.1	3.	2.2	2.1	17	.43	. 027	2	7.5	.31	6	019	<1 .6	.0	02.24	4 1.5	.14 2.0	<.1 >1	.0 2	8.0
8183551	75.8	>10000	62.9	326	21.6	7.0	35.4	834	24.05	43.6	<.1.1	144.1	<.1 6		$\overline{\theta}$.1	20.2	34	.41	.028	1	6.7	.49	15	.083	<1.8	0.0	02.1	3.2	.35 1.7	.1 >]	.03	21.3
B183552 B183553	4.7	2486.9	4.0	165	.7	12.7	19.5	1854	5.90	23.2	.1	6.1	.1 6	2 .	L.2 L.1	.8	120	.79	.093	i	12.0	1.70	153	186	1 2.8	3.0	39.20	5.2	.04 5.7	.1 .6	3 8	4.0
B183554	3.2	3558.1	36.2	130	1.8	3.8	14.9	756	6.04	2.9	<.1	35.0	<.1 2	3.	7.1	1.0	29	.48	. 017	1	10.5	.41	10	.027	<1 .6	5.0	08 .09	9 1.8	.06 1.5	<.1 5.3	86 2	4.5
B183555	4.7	1919.4	19.1	800	1.3	8.5	21.2	1346	9.05	10.7	<.1	35.0	<.1 2	3.	5.1	1.8	79	1.06	. 063	1	10.4	1.06	7	.089	1 1.3	.0	17.2	2.1	.59 5.4	<.1 8.0	07 4	5.2
8183556 STANDARD DS5	2.7 12 4	203.8	9.8 25.3	73 141	.1	16.0 23.7	30.5	532 746	8.30	36.7	<.1 6.3	5.7 ·	<.1 1 2.8 4	5 5	L.2	.9 6.4	56 60	.30	.042	1	11.7	.86	7 134	.096	1 1.0	0. 1	23.10	B 1.7 3 4 9	.06 3.2	<.1 7.7 1.1 < 0	23	3.7
317110/1/0 033	12.4	142.0	20.0	141		20.7	11./	/40	0.01	10.0	0.0	10.0 1			, 4.0	0.4		.,,,					104		-/			5 4.5	.20 0.4			4.5

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data FA

DATE RECEIVED: JUN 25 2004 DATE REPORT MAILED:

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

ASSAY CERTIFICATE Arnex Resources Ltd. File # A403017 2069 Westview Drive, North Vancouver BC V7M 3B1 SAMPLE# Мо Cu Pb Ni Co Sb Hg Au** Zn Ag Mn Fe As Sr Cd Bi Ca Ρ Cr Mg Αl Na ĸ % % % % % % % gm/mt % % % % % % % % % % % % % % % gm/mt B183527 .003 1.972 .03 .03 7<.001 .004 .11 11.13 <.01<.001<.001<.001 <.01 .024 <.001 .06 1.07 1.58 .01 .14 <.001 <.001 .12 B183528 .03 .04 .001 2.134 7<.001 .016 .09 25.73 <.01<.001<.001 <.01 .03 .013 .001 .87 1.22 .01 .05 <.001 <.001 .07 B183529 .024 .810 .06 .18 8<.001 .005 .08 11.29 .01 .001 .001 <.001 <.01 .03 .019 <.001 .83 1.20 <.01 .13 <.001 <.001 .21 B183530 .010 .571 .06 .11 5<.001 .004 .04 8.27 <.01<.001 .002<.001 <.01 .13 .016 <.001 .36 .69 .01 .18 <.001 <.001 .12 .015 1.015 .08 .30 .01 .002 .007<.001 <.01 1.88 B183531 7.001.003 .06 7.85 .007 <.001 .25 .48 .01 .12 <.001 <.001 .21 B183532 .019 1.378 .05 .29 6<.001 .002 .02 10.60 .01<.001 .003 .001 <.01 .03 .010 <.001 .15 .40 .01 .17 <.001 <.001 .22 B183533 .011 .04 .02 <2 .001 .001 .18 5.76 <.01 .003<.001<.001 <.01 .001 .42 .076 <.001 2.12 2.59 .03 .38 <.001 <.001 .01 B183534 .009 .02 .02 <2.001.001 .20 6.95 <.01 .001<.001<.001 <.01 .001 .24 .079 <.001 2.47 2.78 .02 .41 <.001 <.001 .02 3 .001 .003 .01 B183535 .001 .781 .03 .02 .20 10.16 <.01<.001 <.01 <.01 .15 .065 <.001 2.28 2.59 .34 <.001 <.001 .06 B183536 .009 .824 .04 .08 5 .001 .006 .15 12.70 <.01 .001<.001 .001 <.01 .09 .035 <.001 1.47 2.03 .01 .17 <.001 <.001 .09 B183537 .004 .523 .02 .02 3<.001 .005 .11 13.08 .01<.001<.001 .001 <.01 .06 .027 <.001 1.13 1.74 .01 .16 <.001 <.001 .11 RE B183537 .004 .532 .02 .02 3.001.005 .12 13.29 .01<.001<.001<.001 <.01 .06 .030 <.001 1.14 1.76 .01 .17 <.001 <.001 .10 RRE B183537 .005 .576 .02 .02 .12 13.99 .01<.001<.001 .001 <.01 .18 <.001 <.001 3<.001 .006 .06 .030 <.001 1.14 1.78 <.01 .11 .007 <.01 <.01 5 .001 .002 .01 14.99 <.01 .001<.001<.001 <.01 B183538 .001 .014 <.001 .62 .01 .38 <.001 <.001 .04 .11 .16 .02 9.37 <.01 .001<.001<.001 <.01 B183539 .003 .021 <.01 <.01 3<.001 .005 .07 .030 <.001 .25 .74 .01 .41 <.001 <.001 .09 B183540 .001 .003 <.01 <.01 .03 12.81 <.01<.001<.001<.001 <.01 <2<.001 .004 .42 .024 <.001 .30 .75 .01 .36 <.001 <.001 .07 B183551 .008 5.648 .01 .03 .08 25.99 <.01 .008<.001 .001 <.01 22 .001 .003 .55 .019 .002 .44 1.13 .01 .29 <.001 <.001 .11

.08 6.68 <.01 .004<.001<.001 <.01

.05 9.43 <.01 .002<.001<.001 <.01

.13 10.39 <.01 .004<.001<.001 <.01 1.22

.20 23.03 .24 .168 .028 .128 <.01 2.35

<2 .001 .002 .17 6.40 <.01 .009<.001 .001 <.01 1.20</pre>

2 .001 .002 .07 6.63 <.01 .004<.001<.001 <.01

V6A 1R6

.088 <.001

.088 <.001

.015 <.001

.057 <.001

.36 .041 <.001

.079

.85

.54

1.22 1.88

1.04 1.65

.071 1.62 1.31 .19

.40

1.66 3.11 .07

.85 1.18 .03

.08

.03

852 E. HASTINGS ST. VANCOUVER BC

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA

B183552

B183553

B183554

B183555

B183556

STANDARD R-2a/AU-1

.001 .012 <.01 <.01

.254 <.01 .01

.372 <.01 .01

.206 <.01 .08

.022 <.01 <.01

.558 1.50 4.10

.001

.001

.001

.001

.052

DATE RECEIVED: JUN 25 2004 DATE REPORT MAILED: July 14 ...

<2.001.002

<2 .001 .002

<2.002.003

156 .353 .044

.48 <.001 <.001

.49 <.001 <.001

.37 <.001 <.001

.28 <.001 <.001

.50 .061 .173 3.43

.76 .02 .15 <.001 <.001

.04

.04

.01

.04

.01

PHONE(604)253-3158 FAX(604)253-1716

17	۵	1	<u>.</u>	łч	E	n			7	÷	ъ	л		ł.	Ŧ	7	Γ.	7	2	3	E	₹	2	17	Δ	1	E	2			Ŧ	4	z	۰.	т	2	ſ	ъ	I	7	7	х.			т	т	Т	7	-1	R	н	P.	S	Ζ.	20	0	Т			2	1		Ŀ.	Ċ,	ŝ
÷	x.	0	•	μ.	÷.		0			л	÷		۰.	÷	e.	1	ų,		÷	1		2	÷	4	1	H	٠	۰.		ंग	÷	÷	R.	-			3	,	÷	34	÷	7				Υ.	-	γ.	ж	÷	Α.	÷.	۰.	e	÷		٠	н	.,	s	٠	v.	0	۰.	
							200	λ.	14	4		ù.		2		4	2	ŝ4	х.	۰.	×.	1	2			÷,	4										8	-	2	ċ	1		×			÷.			1	2			н,		4		×	ŝ.	20	9	23	×	85		
							÷.,	Ŀ	1	•	c	2	ſ	ł		s	÷	4	Ŧ	ſ	ъ	Ζ.	2			5	D.	0	e	•	1	٠	2	٠	4	4	2	н	٠	1		•	1	5	2	ч.	93	2	r	7		5			1	9		3		0	8	20			
22			96		- 6			v	2	÷	г.		×	2				- 5	Ζ.		Ζ.		4	95		1	1		۰.			2			15		۰.		2	÷		-		-			1		•	н.	٠.									÷,		10			

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

PHONE (604) 253-3158 FAX (604) 253-1716

Arnex Resources Ltd. File # A403016 2069 Westview Drive, North Vancouver BC V7M 3B1 Page 1

SAMPLE#	Mo ppm	p	Cu pm	Pb ppm	Zn ppr	Ag Ppr) 1	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm (Sb ppm	Bi ppm (V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	К % р	W pm p	Hg pm	Sc ppm f	T1 mqc	S Ga % ppm	Se S ppm	Sample gm	
G-1 148501 148502 148503 148504	2.4 1.8 1.2 .9 1.0	3 55 56 48 42	.3 .8 .7 .8 .8	3.0 12.7 13.8 8.1 8.0	42 52 49 37 47	<.]	1 4 3 2 2 3 3 3	1.9 2.2 3.4 3.6 3.5	3.8 4.3 6.2 6.8 6.0	559 228 289 177 309	2.01 7.09 8.66 6.62 5.37	<.5 9.1 7.3 5.5 8.1	2.4 .2 .3 .2 .2	<.5 1.8 4.7 1.5 1.7	4.7 .7 1.0 .5 .5	83 5 7 10 17	<.1 · .1 .1 .1 .2	<.1 .3 .2 .2 .2	.1 .3 .2 .3 .3	39 207 189 191 149	.62 .04 .08 .08 .17	.074 .045 .062 .048 .058	9 2 2 2 2	21.0 12.1 13.0 10.3 10.0	. 53 . 33 . 49 . 29 . 49	213 31 31 30 31	.122 .035 .116 .060 .139	1 13 13 <12 11	.99 3.18 3.80 2.25 L.75	.137 .007 .010 .009 .010	.49 4 .02 .03 .02 < .03	.4<. .1 . .1 . .1 . .2 .	01 34 24 19 18	2.1 3.3 6.0 < 2.9 • 3.1 •	.3<.0 .1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	5 5 5 15 15 14 15 12 15 9	<.5 1.9 1.8 .9 1.3	15.0 15.0 15.0 15.0 15.0 15.0	
148505 148506 148507 148508 148509	1.2 1.5 .9 1.3 1.3	39 19 42 132 88	.0 .1 .4 .2 .3	10.5 7.3 8.9 16.2 16.1	45 31 70 162 150		2 4 1 1 2 5 1 8 1 7	1.9 1.9 5.0 8.2 7.0	9.3 4.0 9.2 32.2 26.5	299 139 687 2739 2281	7.38 4.66 5.33 5.20 4.98	4.9 8.2 6.0 8.8 8.4	.1 .1 .3 .3 .3	1.0 6.3 2.7 2.8 2.1	.3 .3 .4 .3 .4	12 8 17 20 18	.1 .1 .2 .4 .4	.3 .4 .3 .3 .3	.4 .2 .1 .1 .1	209 175 144 122 116	.09 .12 .17 .37 .31	.052 .038 .034 .082 .103	1 2 5 8 7	10.3 8.8 12.3 15.4 15.1	.55 .20 1.18 1.89 1.67	27 19 120 198 140	.175 .117 .080 .074 .079	<1 2 1 1 1 2 1 3 2 3	2.01 L.14 2.82 3.09 3.06	.008 .006 .010 .010 .011	.02 .03 < .06 .08 .07	.1 . .1 . .1 . .1 .	21 09 09 21 19	2.9 < 1.8 < 6.4 7.6 6.9	<.1<.0 <.1<.0 .1<.0 .1<.0 .1<.0	5 13 5 13 5 11 5 11 5 9 5 9	1.0 .5 .9 1.1 1.2	15.0 15.0 15.0 15.0 15.0	
148510 148511 148512 148513 148514	1.3 2.7 1.2 1.4 1.6	123 155 101 100 201	.3 .3 .7 .9 .8	17.6 30.9 20.0 20.3 13.9	150 205 150 121 112		2 8 4 7 2 7 1 6 3 6	3.0 7.2 7.6 6.2 6.0	31.4 30.0 31.5 22.6 25.4	2557 2450 3726 3037 1737	4.61 5.17 5.17 4.21 4.29	8.5 21.0 10.8 18.2 8.6	.3 .4 .3 .3	3.6 10.3 2.8 1.2 2.9	.3 .5 .2 .8	21 22 23 16 14	.4 1.0 .5 .5 .5	.3 .4 .3 .3 .4	.1 .2 .2 .2 .2	113 97 121 92 88	. 41 . 46 . 46 . 36 . 18	.105 .131 .138 .128 .091	8 8 7 5 7	14.0 12.9 15.6 11.7 11.3	1.79 1.19 1.85 1.37 1.31	190 158 149 127 114	.086 .069 .085 .041 .055	2 2 2 3 2 2 2 2 2 2	2.98 3.30 2.96 2.41 3.74	.013 .010 .013 .010 .010	.08 .09 .08 .06 .06	.1 . .1 . .1 . .1 . .2 .	28 27 24 23 37	7.2 7.0 7.2 4.0 6.8	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	18 8 16 7 18 9 18 7 15 6	1.2 1.9 1.4 1.2 1.4	15.0 15.0 7.5 1.0 7.5	
148515 RE 148522 148516 148517 148518	4.7 1.8 1.5 2.9 2.3	145 111 140 155 90	.5 .9 .2 .2 .2	15.5 31.3 19.6 12.2 13.4	- 55 134 157 129 102		B 2 5 2 9 1 5	2.9 2.8 6.5 7.6 4.3	20.2 9.8 28.1 74.9 12.1	1478 1265 4004 4321 745	4.92 6.25 5.14 9.13 6.40	9.9 9.5 15.0 61.6 14.4	.4 .3 .4 .7 .4	19.8 9.0 2.5 7.3 6.2	.2 .4 .2 1.1 .6	19 18 17 3 13	.2 .4 .5 .1 .3	.3 .2 .3 .8 .2	.3 .1 .1 .1 .2	54 90 111 96 145	.31 .14 .33 .03 .11	.349 .174 .160 .157 .105	5 4 8 13 6	6.3 6.3 15.1 15.6 11.6	.44 .35 1.44 .92 .53	85 51 135 80 39	.040 .065 .055 .044 .105	1 4 1 4 2 3 1 4 1 4	4.23 4.54 3.40 4.63 4.41	.008 .007 .010 .004 .008	.07 .06 .09 .10 .03	.1 . .1 . .1 . .1 . .1 .	53 30 32 45 36	4.0 7.5 6.3 9.1 6.7	.1 .1 .1 .0 .2 .0 .8 .1 .1 .0	.0 5 16 7 17 9 13 11 16 10	3.7 2.5 1.5 2.4 3.7	15.0 15.0 7.5 15.0 15.0	
148519 148520 148521 148522 148523	2.5 1.2 1.4 1.8 1.6	41 56 129 113 91	.1 .8 .6 .2 .8	7.2 8.5 18.1 31.7 15.1	74 119 180 138 99	.4 .1 .4 .1	4 2 5 3 4 9 5 4	2.9 3.6 5.5 2.7 4.9	7.9 4.7 18.9 10.0 13.5	1095 513 1005 1320 1164	5.26 5.42 6.56 6.39 6.27	8.5 10.4 6.1 9.3 11.4	.2 .3 .4 .3 .4	3.3 5.4 3.4 10.0 5.8	.2 .4 .5 .4 .7	17 8 11 17 15	.3 .3 .5 .2	.1 .2 .2 .2 .2	.1 .4 .3 .1 .2	116 138 129 91 147	.12 .08 .09 .14 .15	.092 .116 .113 .171 .171	3 4 7 4 6	6.2 9.8 12.2 6.5 13.8	. 49 . 49 . 50 . 34 . 57	33 44 56 53 38	.067 .081 .053 .062 .093	$ \begin{array}{c} 1 & 3 \\ 1 & 5 \\ 1 & 3 \\ 1 & 4 \\ 1 & 4 \\ 1 & 4 \end{array} $	3.67 5.17 3.87 4.59 4.99	.009 .010 .008 .007 .009	.03 < .03 < .03 .06 .04		28 37 25 31 30	5.2 7.7 6.1 7.5 8.8	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	15 10 15 9 15 10 15 7 10 17 10	2.9 3.8 2.6 2.7 2.8	15.0 15.0 15.0 15.0 15.0	
148524 148525 148526 148527 148528	1.6 1.4 1.3 .2 1.4	61 64 60 10 59	.9 .6 .2 .3 .1	7.8 7.5 10.1 3.5 24.5	77 92 102 14 88		3 3 0 4 3 4 1 2 4	3.6 4.6 4.1 .9 4.1	7.4 7.5 11.7 .6 17.0	494 792 926 81 1644	7.59 6.83 8.09 .35 5.35	13.5 10.1 9.6 1.0	.5 .5 .4 <.1	6.9 11.0 4.2 <.5 2.6	.5 .6 .5 <.1 .1	16 10 13 10 15	.2 .2 .1 .6	.2 .2 .2 <.1 .2	.3 .2 .3 <.1 .2	152 119 155 8 107	.13 .08 .11 .21 .21	.107 .154 .132 .042 .190	6 6 5 2 5	13.0 12.3 11.6 2.3 9.0	. 48 . 72 . 64 . 07 . 39	26 29 34 11 64	.100 .116 .092 .011 .063	1 4 2 6 1 3 2 2	4.98 5.69 3.50 .23 2.46	.008 .008 .007 .013 .009	.02 .03 .04 .03 < .06	.1 . .1 . .1 . .1 . .1 .	37 58 1 34 08 28	8.0 .0.2 5.9 .4 2.7	.1 .0 .1 .0 .1<.0 <.1<.0 <.1<.0	17 12 16 8 15 11 15 <1 15 <1 18 7	3.6 4.0 2.6 .6 2.1	15.0 15.0 15.0 7.5 15.0	
148529 148530 148531 148532 148533	.5 1.5 1.4 1.6 1.2	21 78 40 55 29	.6 .0 .0 .7 .2	9.0 15.0 16.4 28.2 15.2	90 80 52 66 51		2 3 4 5 5 5 6 5	1.5 3.6 3.8 3.2 2.6	1.9 6.1 5.2 3.2 2.8	362 499 625 471 310	9.57 6.21 8.02 6.58 6.38	4.4 10.2 10.3 10.4 8.2	.1 .4 .2 .2	1.9 10.9 1.9 1.9 1.7	.2 .7 .3 .2	3 8 14 16 7	.1 .1 .5 .1	.3 .2 .3 .2	.1 .2 .2 .2 .2	58 109 208 164 193	.02 .08 .11 .19 .07	.065 .168 .119 .139 .086	1 4 2 1 3	5.6 13.9 26.2 22.8 11.2	. 17 . 35 . 35 . 37 . 38	20 46 39 48 35	.038 .037 .108 .075 .038	1 2 6 <1 2 1 2 1 2	1.53 5.03 2.66 2.18 3.79	.004 .008 .006 .009 .008	.03 .05 .03 < .06 < .02 <	$ \begin{array}{c} .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\$	10 28 17 18 23	2.6 9.0 4.9 4.6 4.6	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	15 4 15 7 15 11 16 8 15 11	1.3 2.6 1.1 1.3 1.2	15.0 15.0 15.0 15.0 15.0	
STANDARD DS5	12.9	136	.1	25.6	132	2 .	3 2	4.6	11.7	801	3.01	18.9	6.1	46.4	2.7	43	5.7	3.8	6.3	62	. 73	.089	12	186.2	.67	140	.090	16 :	1.92	.035	.14 5	5.0.	17	3.3	1.1<.0)5 6	4.9	15.0	
GROUP 1DX - (>) CONCENT - SAMPLE TY	15.0 RATIO PE: SO	GM NEX DIL	SAN CEE SS8	MPLE EDS 30 6	LE UPP 0C	ACHI ER I	ED LIM <u>Sa</u>	WITI ITS mpl	190 . Si es b	ML 2 DME N eginn	2-2-2 NINER	HCL ALS 'RE'	-HNO MAY are	3-H20 BE P/ Reru	DAT ARTI/	95 ALLY and	DEG. ATT <u>'RRE</u>	C ACKI	FOR ED. re R	ONE REF ejec	HOU FRAC	R, D TORY erun:	ILUT AND <u>S.</u>	ED TO GRAP	300 HITI	ML, C SA	ANAI MPLE	LYSED S CAN) BY LIM	ICP- MIT A	MS. U SOI	UBI			ABIA	5	6	CERII	
DataF	A			Ι	DAT	El	RE	CEI	:VEI):	JUN	25 2	004	DA	TE	RE	POR	TI	IAI	LEI	(J.v.	ly	.!?	/00	<i></i>	•							う ま-				<u> </u>	K L
All results	are co	onsi	der	red	the	cor	nf i	den	tial	prop	perty	of	the	clier	nt. A	Acme	ass	ume	s th	e li	iabi	litie	es f	/ or ac	tual	cos	t of	the	anal	ysis	only		_	Ŵ				ing in	?

Page 2

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi N	Ca	P ¥	La	Cr	Mg ¥	Ba	Ti ¥	B	A1 ¥	Na ¥	K ¥ r	W H	g :	Sc 1	TI S	Ga S	Se Sa	mple
	ppin	ppin	ppin	ppin	ppin	ppin	ppin	PPin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PPin	Ppin	phn	ppin	ppin	PPIII	- Phil	phii phi		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ppii	PPin	~~~~~~	ppiii		ppin			~ F	ipin pp		on pr		phi h		giii
148534	1.7	75.0	19.1	99	.3	3.9	6.6	636	7.79	17.9	.3	5.1	.4	17	.4	.3	.2 192	2.11	.124	2	11.8	. 59	49	.089	13.	67.	008	.03 <	.1.1	96	.1.	.1<.05	11 1	.6	15.0
148535	4.5	216 1	45.9	262	.4	9.8	19.6	1691	6.21	18.9	.5 .5	93.1	.0	8	. 5 . 8	.2	.2 13	· .13	.100	8	14.4	1.60	82 89	.062	14.	.40 . .38 .	.007	.05	.1 .2	1 D 5 6	.s .5	.1<.05	10 1	.2	15.0
148537	2.6	99.8	12.2	53	.2	2.4	3.8	215	8.27	9.0	.6	9.0	1.0	6	.1	.2	.2 15	.05	.095	7	13.9	.22	21	.065	<1 6.	76.	006	.02	.1 .3	0 11	.5.	.1 .08	11 4	.3	15.0
148538	1.3	48.5	22.4	72	.5	3.3	3.8	440	7.05	6.5	.3	6.0	.6	11	.2	.1	.3 16	10	.087	3	13.5	.51	64	. 048	<1 4.	89.	.006	.05 <	:.1 .1	96	.7.	.1<.05	12 1	. 5	15.0
148539	2.3	127.8	28.1	382	.2	7.4	28.0	1827	5.61	8.9	.3	9.2	. 5	32	1.8	.2	.2 12	.50	.115	7	12.4	.85	162	.053	14.	59.	.008	.06	.1 .1	85	.5.	.1<.05	91	.9	15.0
148540	1.6	65.7	13.6	76	.2	2.8	5.3	433	6.98	10.2	.4	7.2	.8	25	.1	.3	.2 15	.30	.090	3	15.3	.53	32	.091	15.	27 .	.007	.03	.1 .1	4 6	.9.	.1<.05	13 1	.4	15.0
148541	1.2	26.5	13.0	3/	.2	1.9	2.8	305	6.54 7.52	6.1 8.6	.3	2.3	.6	10	.1	.2	.2 180	> .10	.066	3	12.5	.30	30 71	.068	13.	27.	.005	.04 <	≤.⊥.⊥ ×1.1	1 4	.6.	.1<.05 1 07	12 1	.1	15.0 15.0
148551	3.6	325.0	47.4	367	.2	11.8	20.2	853	8.69	7.3	.4	6.6	.9	14	.3	.2	.5 192	2.18	.060	4	15.7	1.23	193	.062	1 6.	.50 .	.007	.04	.1 .1	68	.0 .	.2<.05	11 2	.0	15.0
1.0550	0.0	10.0	• •	~~	,	<u> </u>	- 0	405	C 00	c 7	0	<u> </u>	2	14	,	2	0.00	, 14	0.00	2	11 0	41		140	1 0	25	005	00	. 1 1	4 0	0.4	1 - 00	10	0	10.0
148552	2.2	49.3	91	55	.1	3.3	5.7	405 207	7.71	5.7 3.7	.2	2.0	. 5	12	.1	.3	.2 20) .14	.035	3	16.3	.41	21	. 146	12. 13.	57	.005	.02 <	. 1 . 1 . 1 . 1	43 74	.0 \.	.1<.05	13	.9	15.0
148554	1.1	56.2	9.2	49	.3	3.6	7.2	295	7.56	7.9	.2	2.1	.5	14	.3	.2	.2 20	.16	.075	3	17.8	.35	19	.135	13.	96	.007	.02	.1.3	1 4	.8 <	.1<.05	12 2	.5	15.0
148555	2.6	86.5	16.9	141	.2	4.3	17.1	1115	6.23	6.3	.5	4.1	.3	13	.6	.2	.2 12	3.12	. 113	5	15.0	. 62	58	.069	24.	. 09 .	.007	.04	.1.4	6 4	.8	.1 .07	92	.7	15.0
148556	2.1	65.3	21.0	55	.2	2.9	4.0	234	6./1	7.4	. 5	2.2	. 5	12	.3	.2	.2 15	, .11	.0/5	5	10.5	.31	25	.0/9	13.	.09.	.006	.03	.1 .:	03	.5	.1 .06	13 2	. 4	15.0
148557	4.3	49.5	15.6	38	.4	2.8	7.1	332	8.00	10.5	.3	5.1	.6	9	.1	.2	.3 20	2.05	.118	3	10.8	. 38	34	.073	13.	52 .	.006	.02	.1 .3	2 5	. 8	.1<.05	13 2	. 8	15.0
148558	.9	246.5	10.2	14	.3	3.2	1.9	79 1101	.49	.7	.2	6.7	<.1	21	.6	.1	.1 2) .04	.333	15	5.0	.12	75	.006	12.	.73.	.006	.03 <	<.1.2	1 0 5	.6 <	.1 .63	23	.6	15.0
148602	1.3	83.3	10.1	137	.2	5.3	9.6	430	7.77	9.3	.2	6.3	1.1	10	.1	.3	.2 19	1 .10	.100	6	9.5	.61	53	. 224	1 4	.98	.004	.03	.1.2	957 157	.9	.1<.05	14 2	.0	15.0
RE 148602	1.3	81.6	10.2	138	.2	5.5	9.3	443	8.13	9.2	.6	3.2	1.2	9	.3	.3	.2 19	2.09	.100	6	20.0	.60	53	.126	24.	.83	.007	.04	.1 .2	5 7	.9	.1<.05	14 2	.9	15.0
149602	1 1	99 /	0 /	100	2	62	8.0	204	6 72	6.2	6	36	1 /	٥	2	2	2 12	7 0.9	085	4	21 2	66	26	001	1 /	40	006	02	1 3	2 E	1	1 06	0.2	6	15.0
148604	.9	107.7	11.6	81	.3	4.5	7.5	375	10.27	8.8	.3	3.0	.8	30	.3	.2	.4 27) .19	.123	3	22.0	. 55	24	.241	<1 3.	.77	.006	.02	.1 .4	6 5	.2 <	.1<.05	16 1	.8	15.0
148605	2.0	174.6	10.8	107	.2	6.5	9.6	629	7.25	11.0	.7	20.9	1.6	17	.2	.2	.3 12	3.11	.163	6	19.4	.93	29	.186	27.	. 97 .	.006	.03	.2.2	9 18	.4 <	.1 .12	74	. 9	15.0
148606	1.6	99.6	11.6	70	.3	4.5	9.1	496	7.96	6.6	.4	4.9	.6	26	.2	.2	.4 19	$\frac{3}{12}$.084	3	13.4	.71	29	.128	14.	.10.	.007	.02	.1.4	06	.5	.1<.05	13 2	.7 c	15.0
140007	.9	23.5	9.2	. 30	.1	1.5	5.0	170	5.41	0.9	. 2	5.0	.4	11	. 2	.5	.2 23	.12	.040	3	11.1	.20	10	.1//	11.	. 10	.005	.04 •	·.1 .(03	. 2	.1<.05	15	. 5	15.0
148608	1.0	98.0	12.0	85	.4	3.0	6.1	442	6.39	10.8	.7	5.1	1.3	7	.3	.3	.1 11	2.07	. 131	5	17.5	.54	38	.117	28.	. 29	.006	.03	.2.3	5 9	.9	.1 .10	83	.4	15.0
148609	1.0	57.6	13.1	98	.3	4.1	6.9	2504	6.52	10./	.6	2.7	1.4	8	.2	.3	.1 12	7.08	. 096	11	19.4	.59	63	.127	27.	.85 .	.005	.03	.1.2	88	.3	.1<.05	10 2	.7	15.0
148610	2.0	28 0	20.7	230	.2	2.9	5.5	2004	3.36	4.6	.5	1.2	.0	13	.0	.4	.2 12	9.41 5.13	.090	5	10.9	.64	85	. 120	23.	.92 . .99	.010	.08	.1.2	1 4	2	.1 .00 1< 05	10 1	.8 5	75
148612	2.9	130.6	18.1	64	.2	3.9	8.6	727	5.44	10.2	.7	18.5	1.2	11	.3	.2	.2 7	.13	.202	7	13.4	.65	31	.125	27.	. 25	.006	.03	.2 .5	51 9	.4	.1 .07	63	.9	15.0
149612	1 0	E0 E	17 /	56	1	20	٩n	610	6 60	71	c	2 9	2	16	2	2	2 12	1 16	115	٨	g 7	52	72	070	1 2	na	007	05	1 1	۲ د	2	1~ 05	11 1	2	15.0
148614	1.0	58.8	11.6	31	.2	1.5	2.6	174	4.37	4.1	.3	4.1	.5	10	.1	.2	.2 10	9.10	.068	4	7.8	. 33	37	.059	1 2	.63	.006	.03 <	.1.2	93	.3	.1<.05	10 1	.0	15.0
148615	1.6	163.2	22.0	135	.1	7.9	14.6	1002	5.81	10.2	. 4	13.5	.9	15	.2	.3	.2 11	.19	.106	7	15.5	1.39	42	.133	23.	.14	.006	.06	.1 3	6 5	.9 <	1<.05	8 1	.7	15.0
148616	1.2	100.1	18.2	118	.2	6.2	12.0	1060	6.34	6.4	.4	5.4	.8	15	.4	.2	.3 14	3.19	. 119	6	23.1	.71	114	.114	23.	. 45 .	.016	.17 <	<.1 .1	2 6	.2	.1<.05	12 1	. 2	15.0
STANDARD DS5	12.7	141.4	24.2	135	. 3	22.9	11.8	//2	3.05	18.1	6.4	41.0	2.8	4/	5.5	3.8	6.0 6	3./3	.105	13	188.1	./1	143	.113	1/ 2.	.0/ .	.033	.14 4	1.6 .]	83	.51	.2<.05	74	.1	15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data LFA

ACME ANALYTICAL

Arnex Resources Ltd. FILE # A403016

Page 3

Data 🖌 FA

SAMPLE#	Mo Cu ppm ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe لا	As ppm	U ppm	Au ppb	Th ppm p	Sr opm	Cd ppm p	Sb opm p	Bi V opm ppm	Ca %	P ۶ p	La opm	Cr ppm	Mg %	Ba ppm	Ti % p	BA1 opm %	Na %	K W %rppmrp	Hg pm p	Sc opm p	TI S pm %	Ga Se ppm ppm	Sample gm
148617 148618 148619 148620 148621	2.8 114.1 1.6 98.9 1.8 58.8 1.2 95.8 2.6 153.6	17.4 15.0 11.0 11.7 21.6	56 59 58 77 185	.5 .9 .3 .3	2.4 2.8 2.1 3.5 3.7	5.8 7.4 3.0 5.1 8.1	396 317 291 570 839	9.04 11.31 6.39 4.92 6.32	25.0 12.1 9.1 9.1 12.2	.2 .5 .3 .4 .4	21.8 4.3 2.4 8.9 12.5	.3 .4 .3 .3 .4	18 5 8 9 11	.2 .5 .5 .4 .3	.3 .3 .2 .1 .2	.5 240 .2 99 .6 155 .1 66 .3 134	.16 .07 .10 .07 .13	.084 .204 .102 .145 .109	2 14 4 3 4	6.3 7.3 10.2 8.5 12.4	.35 .25 .31 .39 .31	56 . 31 . 41 . 50 . 63 .	. 058 . 054 . 068 . 038 . 037	1 2.70 1 4.65 1 3.28 1 5.91 1 4.21	.007 .006 .007 .007 .007	.03 .1 . .02 .1 . .03 .1 . .03 .1 . .03 .1 .	28 6 37 9 30 6 38 4 39 6	5.9 9.9 5.0 4.6 5.2	.1 .08 .1 .16 .1 .07 .1 .07 .1<.05	12 3.5 5 9.3 12 2.8 6 3.5 10 3.2	7.5 7.5 15.0 15.0 15.0
148622 148623 148624 148625 148626	1.7 236.9 1.4 71.7 2.1 122.5 .9 27.1 1.6 42.7	158.3 64.0 13.9 14.8 22.6	263 49 32 64 85	.4 .3 .4 .3	6.8 1.9 1.5 5.4 4.1	81.4 3.1 2.2 7.4 4.9	2711 796 170 572 990	7.27 7.43 7.84 7.95 6.88	8.8 6.8 8.5 8.3 8.1	.4 .2 .2 .2 .4	6.5 7.5 4.0 4.5 9.4	.4 .3 .2 .4 .7	10 8 6 18 10	.9 .3 .1 .2 .2	.2 .2 .2 .2 .3	.2 119 .3 125 .4 128 .2 225 .2 129	.11 .08 .07 .12 .09	.109 .192 .110 .069 .193	14 2 3 4	13.8 8.8 8.9 22.1 15.4	.57 .21 .11 .53 .48	75 50 58 37 80	.041 .022 .033 .098 .042	1 3.92 1 2.57 1 1.90 <1 3.28 1 5.01	.008 .008 .005 .006 .010	.05 .1 . .12 <.1 . .05 <.1 . .02 <.1 . .05 <.1 .	28 4 13 3 12 2 15 5 31 6	4.8 3.5 2.4 5.7 6.9	.2 .09 .1<.05 .1<.05 .1<.05 .1<.05	9 2.6 8 1.7 8 1.6 14 1.3 9 2.6	7.5 7.5 1.0 15.0 7.5
148627 148628 148629 RE 148630 148630	1.7 33.1 3.2 234.1 2.3 52.5 19.0 122.1 18.0 120.0	22.3 36.4 14.7 27.1 28.1	56 250 57 146 152	.2 .2 .4 .3 .3	3.1 4.6 2.1 3.6 3.6	2.9 9.5 3.0 31.7 31.7	247 1186 557 1885 1903	6.43 5.68 8.48 9.29 9.41	7.9 15.9 10.5 17.9 18.4	.5 .3 .5 .7 .7	5.9 16.6 9.9 20.0 21.1	1.0 .6 .5 1.0 1.0	5 21 5 18 17	.1 .8 .1 .1 .2	.2 .3 .5 .6	.2 109 .4 85 .2 85 .5 95 .5 95	.04 .29 .06 .18 .19	.131 .116 .151 .192 .190	4 7 5 8 8	15.3 8.8 10.4 13.2 13.6	.42 1.04 .39 .85 .82	69 283 66 97 94	.029 .074 .071 .156 .157	1 6.31 1 2.40 1 1.49 1 2.59 1 2.42	.007 .007 .006 .003 .003	.04 <.1 . .08 .1 . .05 .1 . .09 <.1 . .09 <.1 .	17 8 23 7 21 6 22 9 22 9	8.4 7.4 6.1 9.2 9.2	.1 .06 .1 .19 .1 .22 .1 .19 .1 .19	5 9 2.9 5 7 1.9 2 7 3.0 9 8 3.5 9 8 3.5	15.0 7.5 7.5 7.5 7.5
148631 148632 148633 148634 148635	1.6 191.4 1.3 93.0 1.3 60.8 1.5 58.3 2.3 199.6	49.8 39.1 28.5 14.4 27.6	348 136 59 57 125	.7 1 .3 .4 .2 .2	12.3 7.7 4.8 3.0 3.7	24.7 13.1 4.0 3.9 6.0	2271 1813 539 228 625	6.97 8.16 7.27 5.43 4.04	11.4 12.6 15.0 7.4 10.0	.2 .2 .5 .3	12.0 4.2 7.8 25.4 12.0	.3 .3 .2 .9 .2	26 21 13 5 8	.7 .6 .1 .2 .4	.3 .2 .4 .2 .3	.3 138 .4 163 .4 121 .2 94 .2 68	.20 .20 .09 .05 .09	.127 .146 .135 .134 .119	3 2 2 4 9	34.6 33.4 30.4 14.6 8.7	.92 .63 .54 .33 .74	111 100 154 29 41	.046 .052 .082 .045 .038	1 4.07 1 3.43 1 1.59 2 5.38 1 2.61	.009 .007 .009 .007 .007	.06 .1 . .11 <.1 . .08 .1 . .02 .1 . .07 .1 .	26 (17) 28) 33) 30 4	6.1 5.6 5.0 < 5.5 4.3	.1 .07 .1<.09 .1 .19 .1 .09 .1 .09	9 2.1 5 10 1.4 5 6 1.9 9 8 3.8 9 6 1.5	7.5 15.0 7.5 15.0 7.5
148636 148637 148638 148639 148640	1.4 136.3 3.3 135.2 4.8 120.0 .9 132.3 1.2 113.4	8 16.1 2 32.1 38.1 3 12.4 4 10.8	91 182 139 201 267	.2 .3 .4 .1 .1	3.2 4.9 5.5 4.3 4.0	10.0 20.0 18.1 19.0 14.6	671 1802 1537 2546 1923	3.22 5.58 8.12 1.32 1.50	6.9 15.8 18.8 2.0 3.2	.2 .4 .5 .2 .2	7.5 19.1 29.4 3.1 2.7	.1 .6 .6 <.1 <.1	8 15 11 59 64	.6 .6 .4 1.3 1.9	.2 .4 .4 .1 .2	.1 36 .2 83 .2 117 .1 33 .1 34	.11 .24 .14 1.30 1.44	.085 .120 .143 .106 .104	8 7 9 7	5.2 10.6 12.8 7.3 6.6	.29 1.15 .87 .30 .49	43 68 70 291 282	.027 .075 .061 .019 .024	1 1.62 1 2.85 1 2.74 6 2.04 5 1.99	.012 .006 .005 .013 .012	.03 .1 . .07 .1 . .06 .1 . .07 .1 . .20 .1 .	24 19 20 29 30	2.7 6.0 6.6 1.5 1.6	.1 .11 .1 .10 .1 .10 .1 .10 .1 .12	1 3 1.3 0 7 1.7 5 10 1.9 7 2 3.4 3 3 2.9	1.0 15.0 15.0 7.5 15.0
148641 148651 148652 148653 148654	1.4 469.7 1.8 32.6 1.5 27.9 1.6 68.2 2.2 39.1	2 12.9 5 14.0 9 19.6 2 15.5 12.0	1207 55 51 53 42	.2 .1 .2 .1 .3	7.9 2.0 2.6 2.3 1.9	132.5 2.0 3.2 3.8 3.0	10324 263 405 335 269	1.85 6.46 8.24 7.61 8.17	2.6 8.7 8.1 9.8 14.1	.2 .2 .2 .2 .4	6.8 2.6 8.2 4.5 16.4	.1 .5 .3 .6	31 6 9 8 18	14.7 .1 .1 .1 <.1	.1 .1 .2 .3 .3	.1 23 .5 141 .6 195 .2 153 .4 81	.57 .06 .11 .06 .30	.123 .070 .078 .066 .175	10 2 2 3 3	5.6 9.4 13.4 10.8 5.7	.18 .69 .78 .59 .46	189 65 31 36 45	.018 .039 .065 .046 .167	4 4.81 <1 4.29 1 3.53 1 2.75 1 2.27	.012 .009 .009 .008 .007	.11 .1 . .04 <.1 . .04 <.1 . .03 .1 . .05 .1 .	33 14 16 20 25	1.8 5.7 5.7 4.1 9.4	.1 .19 .2<.09 .1<.09 .1<.09 .1<.09	9 2 5.8 5 12 3.4 5 13 1.4 5 13 1.4 5 13 1.4 5 8 6.3	15.0 7.5 7.5 15.0 15.0
148655 148656 148657 148658 STANDARD DS5	1.9 73.8 2.2 120.4 1.3 116.4 1.0 80.9 12.6 144.3	3 15.1 4 21.0 4 27.3 9 20.6 3 24.6	104 439 359 380 138	.5 .1 .2 .2 .3	2.0 5.0 5.6 7.6 24.7	5.0 12.7 15.3 24.3 11.9	554 1118 1680 3961 800	10.76 7.14 6.10 5.65 3.10	14.8 6.1 3.8 3.2 18.8	.3 .3 .2 6.3	17.1 2.3 2.0 2.6 45.7	.4 .5 .4 .3 2.8	23 23 27 33 46	.2 .5 .8 1.4 6.4	.2 .2 .2 .2 4.0	.5 162 .3 151 .2 140 .2 140 6.4 63	.38 .22 .26 .44 .77	.103 .069 .071 .105 .094	2 3 6 13	10.5 11.6 9.7 15.5 192.1	.63 .90 1.06 1.34 .68	96 227 142 296 151	.158 .038 .037 .085 .099	1 3.53 <1 3.64 1 3.31 1 3.17 16 1.98	.012 .009 .009 .017 .035	.07 <.1 . .04 .1 . .05 .1 . .11 .1 . .14 4.8 .	27 1 16 10 18 19	6.7 5.8 5.7 8.1 3.5 1	.1 .20 .1<.09 .1<.09 .1<.09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.0 7.5 7.5 1.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 4

ACTE ANALTTICAL																																				
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm p	Sb opm p	Bi opm p	V	Ca %	P ۲	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W I ppm p	Hg pm j	Sc ppm p	T1 pm	S Ga K ppm p	Se Sa pm	ample gm
148659 148660 148661 148662 148701	.2 1.6 2.7 2.4 1.8	18.8 54.2 58.6 141.9 99.9	6.0 26.2 31.9 10.7 12.8	69 256 247 128 73	.2 .1 .1 <.1 .8	1.5 4.0 4.4 5.8 4.4	5.4 28.3 15.3 44.4 7.4	618 2325 1016 2880 542	.93 3.51 5.60 4.75 5.81	1.1 3.8 4.0 5.7 14.6	.1 .3 .5 .4	2.0 2.2 2.0 4.8 17.9	<.1 .1 .4 1.0 .7	14 29 19 20 12	.5 1.3 .7 .2 .2	.1 .2 .2 .4 .2	.2 .2 .2 1 .2 .2 1	22 . 88 . 40 . 47 . 31 .	23 . 52 . 25 . 39 . 09 .	051 103 071 104 100	1 5 5 11 4	3.6 8.7 9.5 4.4 14.0	.28 .69 .79 1.17 .57	57 163 160 513 37	.018 .041 .036 .180 .092	1 2 2 2 3 2 2 2 4	.59 .31 .11 .43 .78	.011 .010 .009 .005 .009	.03 .06 .04 .13 .03	.1 . .1 . .1 . .1 . .2 .	13 13 09 07 45	1.1 < 3.5 4.5 7.9 8.1	<pre><.1 .0 .1 .0 .1<.0 .1<.0 .1<.0 .1<.0 .1<.0</pre>	3 2 7 6 1 5 11 1 5 6 5 8 3	.6 .1 .0 .8 .3	1.0 1.0 7.5 15.0 15.0
148702 148703 148704 148705 148706	1.3 1.5 2.1 2.5 1.8	84.5 58.1 150.5 68.9 80.5	9.1 8.7 9.9 22.2 17.1	77 61 81 56 81	.3 .4 .8 .4 .5	4.7 3.2 5.1 3.9 3.9	7.9 6.9 10.7 11.9 5.1	720 604 1228 1426 797	7.32 7.26 7.47 6.35 5.98	9.4 9.4 11.1 8.3 7.7	.4 .3 .7 .2 .4	9.2 5.2 22.2 6.9 12.3	.7 .4 .8 .2 .5	15 18 13 14 10	.2 .1 .2 .2	.2 .2 .2 .3 .2	.3 1 .3 2 .3 1 .5 1 .2 1	.78 . 218 . .34 . .19 . .29 .	12 . 11 . 11 . 13 . 07 .	131 075 154 109 133	4 3 6 4 3	15.7 11.2 15.4 8.9 11.0	.65 .56 .82 .49 .41	38 32 50 150 35	.089 .080 .123 .043 .059	2 4 1 3 1 4 <1 2 2 4	.80 .16 .70 .61 .50	.009 .008 .007 .008 .007	.03 .02 .05 .05 .03	.2 . .1 . .1 . .1 . .1 .	30 1 19 44 13 31	0.3 5.9 < 9.6 3.4 6.8	.1<.0 <.1<.0 .1<.0 .1<.0 .1<.0	5 10 2 5 13 2 5 9 2 7 9 2 5 8 2	.9 .0 .8 .2 .5	15.0 15.0 7.5 15.0
148707 148708 148709 148710 148711	1.7 1.1 1.1 1.9 .9	74.5 39.5 34.0 78.9 33.3	19.6 8.4 8.5 11.0 12.7	59 83 42 54 50	.7 1.1 .5 .4 .6	2.1 2.3 2.2 3.2 3.1	3.7 4.0 4.0 7.8 3.1	415 668 550 510 310	5.65 5.36 6.10 5.72 6.39	6.4 6.1 5.4 7.3 5.1	.4 .3 .2 .2 .3	8.7 3.6 3.1 5.7 1.3	.5 .3 .2 .5	9 12 17 21 9	.2 .2 .1 .3 .3	.2 .1 .1 .1 .2	.2 1 .2 1 .2 1 .2 1 .2 1 .2 1	.06 . .06 . .24 . .29 . .86 .	08 12 15 18 08	145 146 105 117 060	5 3 3 3 3 3	10.2 6.3 3.4 5.9 17.3	.27 .30 .39 .39 .34	36 44 53 84 58	.036 .050 .062 .049 .034	1 5 1 5 <1 3 1 2 <1 3	.07 .66 .28 .79 .03	.009 .010 .011 .011 .010 .007	.02 .03 .04 .04 .04	.1 .1 .1 . <.1 . <.1 . <.1 .	36 35 18 18 18	8.4 4.2 4.4 4.1 4.7	.1<.0 .1 .0 .1<.0 .1<.0 .1 .0	5 73 7102 5121 7101 514	.7 .9 .4 .3 .9	15.0 7.5 15.0 15.0 7.5
148712 148713 148714 148715 148716	1.3 4.3 2.8 4.2 5.2	24.0 337.7 195.4 154.2 203.9	13.4 41.6 40.2 106.9 113.3	40 225 138 309 249	.2 .6 .4 .4 .3	4.1 5.2 3.1 4.0 7.4	3.7 10.5 8.2 8.2 31.1	313 788 880 663 3627	7.37 6.58 6.91 6.92 5.52	8.0 9.9 8.0 8.9 12.6	.2 .5 .4 .5 .4	1.0 35.3 3.4 10.1 21.0	.4 1.0 .6 .8 .5	10 8 15 7 15	.2 .4 .6 .6 1.7	.5 .3 .2 .2 .2	.2 2 .4 1 .3 1 .2 1 .2	282 . .01 . .38 . .21 . .77 .	12 09 18 09 26	051 122 094 113 165	3 6 5 4 9	14.0 14.1 11.1 13.5 11.6	.31 .71 .47 .47 1.24	64 112 157 72 143	.162 .039 .040 .013 .032	<1 2 2 5 <1 3 2 4 1 3	.62 .37 .75 .27 .04	.007 .008 .011 .008 .005	.03 .05 .05 .03 .10	<.1 . .1 . .1 . .1 . .1 .	08 35 21 29 11	4.5 < 6.9 5.0 4.8 4.9	<.1<.0 .1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 18 5 9 3 5 12 1 5 11 2 5 8 1	.8 .4 .4 .4	15.0 15.0 15.0 15.0 15.0
RE 148716 148717 148718 148719 148720	5.4 2.0 1.4 1.2 1.2	201.8 102.5 49.8 87.6 69.8	115.0 28.3 19.8 29.5 7.2	237 66 66 129 99	.3 .6 .3 1.0 .5	6.9 4.0 3.7 5.6 4.4	29.9 7.2 4.7 5.5 8.2	3600 350 447 663 697	5.51 5.85 7.57 6.63 8.29	12.5 9.2 7.4 8.2 8.6	.4 .3 .4 .2	21.7 4.0 2.8 12.8 8.0	.5 .3 .7 .8	16 11 14 16 40	1.6 .4 .1 .1 .1	.2 .2 .2 .2 .2	.2 .3 1 .2 1 .2 1 .2 2	77 . 45 . 90 . 48 . 224 .	26 08 10 10 17	163 098 087 099 066	9 5 4 2	11.9 10.0 13.7 18.2 18.7	1.21 .41 .46 .69 .76	146 41 51 77 41	.039 .039 .067 .061 .148	1 3 1 3 1 4 2 5 1 5	.09 .54 .19 .27 .18	.005 .007 .008 .008 .008	.11 .03 .03 .04 .02	.1 . <.1 . .1 . .1 . <.1 .	13 27 13 23 1 22	4.9 4.2 6.5 0.7 8.6	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 8 1 5 10 3 5 12 1 5 9 2 5 12 2	4 9 6 2.1	15.0 15.0 15.0 15.0 15.0
148721 148722 148723 148724 148725	1.7 1.4 1.9 2.2 1.5	71.7 50.6 98.4 108.8 71.9	18.8 10.2 23.6 115.5 41.5	215 47 439 671 240	.2 .7 .1 .2 .2	5.3 2.3 4.6 7.5 7.4	13.5 3.3 31.7 50.5 33.5	915 210 2062 3914 3133	4.87 6.02 5.24 5.56 5.72	6.4 6.7 7.6 5.4 4.7	.2 .3 .3 .4 .3	2.8 23.3 1.1 2.2 2.3	.3 .8 .2 .2	21 6 38 36 20	1.4 .1 1.4 1.8 .6	.2 .4 .2 .2 .2	.2 1 .2 1 .2 1 .3 1 .1	138 . 195 . 110 . 115 . 95 .	26 05 58 50 29	057 051 082 103 202	5 4 7 8 3	10.2 12.8 8.8 12.0 10.1	.46 .30 .73 1.07 .93	251 27 318 276 203	.053 .071 .073 .079 .066	1 2 1 3 2 3 1 3 2 3	.50 .44 .13 .96 .09	.007 .006 .009 .009 .011	.04 .02 .06 .05 .09	<.1 . <.1 . .1 . .1 . <.1 .	12 22 14 29 22	4.2 5.8 4.6 5.0 4.3	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 9 1 5 13 1 5 9 2 5 9 1 5 9 1	1 6 1 8 3	15.0 15.0 15.0 15.0 1.0
148726 148727 148728 148729 STANDARD DS5	1.9 2.9 2.1 3.8 13.2	83.9 101.4 106.6 112.4 142.3	16.6 29.0 15.1 20.2 25.5	203 165 180 251 139	.2 .1 .6 .3	4.9 4.7 7.0 7.6 25.3	73.3 21.7 44.2 13.8 11.9	3118 1814 1610 660 785	6.56 4.69 5.03 6.94 3.12	5.3 7.2 7.0 10.2 19.3	.4 .4 .5 .4 6.3	34.5 2.5 2.6 5.7 41.0	.2 1.0 .8 .7 2.7	20 34 28 14 50	.7 .3 .4 .6 5.6	.2 .3 .2 4.0	.1 1 .2 .1 .2 1 6.1	82 . 82 . 84 . 138 . 62 .	31 55 55 12 73	156 116 101 080 091	4 8 11 3 13	8.8 8.5 11.6 23.8 190.5	.72 1.30 1.14 .72 .69	182 102 155 55 146	.062 .059 .059 .134 .104	2 3 2 3 2 4 1 8 18 1	.30 .80 .17 .22 .92	.007 .007 .009 .009 .035	.05 .07 .07 .02 .14	.1 . .1 . .1 . .2 . 5.0 .	21 14 24 21 1 18	3.9 6.3 6.6 1.0 3.3	.1<.0 .1 .0 .1<.0 .1 .0 1.1<.0	5 11 1 6 8 1 5 9 1 9 8 3 5 6 9	3 1 4 3.9 5.0	7.5 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 5

Data KFA

 SAMPLE#	Mo ppm	Cu ppm	P pp	b Zn m ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm p	U opm	Au ppb	Th ppm p	Sr opm p	Cd ppm p	Sb opm p	Bi V opm ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	к % рр	W Hg om ppm	Sc Tl ppm ppm	S %	Ga Se ppm ppm	Sample gm	
148730 148731 148732 148733 148733	.9 1.9 1.4 1.2 1.2	21.4 78.7 42.2 80.8 123.8	8. 10. 12. 16. 8.	0 27 1 106 5 43 9 84 4 86	.1 .3 .2 .5 .1	2.3 6.8 3.0 4.2 6.9	4.0 8.9 4.5 5.3 11.0	141 496 324 309 367	4.67 6.76 6.26 6.11 6.80	2.9 9.3 7.3 6.4 6.1	.2 .6 .3 .4 .7	1.4 7.6 2.6 10.5 3.9	.4 1.6 .7 1.1 1.6	13 8 9 7 4	.2 .2 .1 .1 .1	.3 .2 .2 .1 .1	.2 184 .2 136 .2 159 .3 113 .1 111	.12 .07 .08 .06 .06	.023 .106 .103 .110 .072	2 5 3 5 3	9.1 21.7 12.8 15.8 21.3	.13 .74 .43 .41 .65	39 33 25 54 30	.120 .079 .032 .018 .136	1 1. 2 6. <1 3. 1 5. 1 8.	56 . 00 . 65 . 45 . 95 .	008 . 006 . 007 . 008 . 006 .	01 < 02 02 02 02 02	.1 .06 .1 .36 .1 .18 .1 .27 .1 .15	2.3 <.1 9.0 .1 4.9 <.1 6.8 .1 12.2 <.1	<.05 .08 .08 .07 .30	11 <.5 10 3.2 12 1.7 10 2.5 7 2.3	15.0 15.0 15.0 15.0 15.0	
148735 148736 RE 148736 148737 148751	1.3 2.3 2.0 2.5 .4	28.5 35.7 35.9 23.8 42.6	13. 17. 17. 21. 9.	9 47 7 53 0 56 2 58 2 94	.1 .1 .2 .1	4.7 4.4 4.3 3.0 9.3	32.2 6.3 6.1 3.4 15.5	1344 357 331 232 951	3.14 4.87 4.63 6.56 5.09	3.0 7.0 6.9 11.0 5.9	.3.5.5.3	2.1 3.5 5.2 11.4 8.7	.1 1.0 1.0 1.0 .7	29 7 7 3 18	.6 .4 .1 .3	.2 .2 .2 .3 .2	.1 80 .1 105 .1 103 .2 129 .1 137	. 51 . 08 . 07 . 03 . 53	.066 .054 .055 .061 .074	11 5 6 5 8	12.5 16.5 16.5 18.0 18.1	.43 .35 .35 .43 1.46	136 48 49 24 68	.030 .072 .075 .028 .130	3 2 2 4 2 4 <1 4 3 1	45 . 45 . 37 . 74 . 72 .	012 . 009 . 010 . 007 . 014 .	04 04 04 03 05	.1 .20 .1 .16 .1 .17 .1 .29 .1 .17	2.6 .1 5.3 .1 5.5 .1 4.1 .1 7.2 <.1	.12 .08 .10 .06 .13	7 2.0 10 1.6 10 1.5 15 2.3 7 .8	7.5 15.0 15.0 15.0 15.0	
148752 148753 STANDARD DS5	.4 1.5 12.4	45.6 147.3 137.0	8. 13. 25.	5 97 4 543 4 135	.1 .2 .3	9.3 9.1 24.7	16.0 57.5 11.6	929 1566 789	5.50 3.05 3.08	5.3 5.8 18.9	.3 .2 6.2	13.8 6.0 42.1	.7 .1 2.7	17 41 50	.2 4.6 5.6 3	.2 .2 3.9	.1 166 .1 53 6.3 62	. 53 . 77 . 70	.071 .106 .096	8 11 12	22.0 7.7 189.2	1.57 .59 .69	63 250 139	.140 .039 .095	4 1 3 2 17 1	88 . 77 . 97 .	014 . 011 . 034 .	.05 .07 .14 5	.1 .05 .1 .20 .0 .16	7.5 <.1 3.5 .1 3.4 1.0	.18 .14 <.05	7 <.5 5 4.0 7 5.1	15.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACTE ANALA	2 7 7 <i>0</i>	AT.	10.41	(AP)	/ 5.T <i>C</i>	P T	RG) STOUTOT	\$	•	852	1	42) 9717	NG	2 d] T	172	NCO	77777) 10	3763	<u>।</u> ाक		<u> </u>	, העת	у хтр (604	OR) - 1886 - 12	50	1 12 N V	160	1	3 1 7	1 6
	002	Ac	cre	di	ted	i c	o.)					ZEO	 (111	PMT	~2	, T.	а . Латт	у.=1 1.т.3			0 57	 Этт			 T		- 110		UU 1 .		J-J.		5 70		Ŧ/25	,	A 0
AA									Ar	nex	R		U		т.	+a		F	1e	. . . #	 בע	103	016	***	 P;	ade	1									/A .	A
												2()69 k	estv	lew	Dri	ve,	Nor	th V	anco	ouver	BC	V7M 3	681		-9-	-										
SAMPLE#	Mo ppm	Сі ррг	ı l n pp	vb Z xm pp	2n xmp	Ag pm	Ni ppm	Co ppm	Mn ppm	Fe ۲	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	8i opmi	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	8a ppm	Ti %	8 ppm	A1 %	Na %	K % pp	W Hg xm ppm	So So	: T1 nppm	S X	Ga Se opm ppm	Sampl	e m
G-1 148501 148502 148503 148504	2.4 1.8 1.2 .9 1.0	3.3 55.8 56.7 48.8 42.8	3 3 3 12 7 13 8 8 8 8	0 4 7 5 8 4 1 3	42 < 52 19 37 47	.1 .3 .2 .2 .3	4.9 2.2 3.4 3.6 3.5	3.8 4.3 6.2 6.8 6.0	559 228 289 177 309	2.01 7.09 8.66 6.62 5.37	<.5 9.1 7.3 5.5 8.1	2.4 .2 .3 .2 .2	<.5 1.8 4.7 1.5 1.7	4.7 .7 1.0 .5 .5	83 · 5 7 10 17	<.1 · .1 .1 .1 .2	<.1 .3 .2 .2 .2	.1 .3 .2 .3 .3	39 . 207 . 189 . 191 . 149 .	. 62 . 04 . 08 . 08 . 17	074 045 062 048 058	9 2 2 2 2	21.0 12.1 13.0 10.3 10.0	.53 .33 .49 .29 .49	213 31 31 30 31	.122 .035 .116 .060 .139	1 13 13 <12 11	.99 . .18 . .80 . .25 . .75 .	137 . 007 . 010 . 009 . 010 .	49 4. 02 03 02 < 03	4<.01 1.34 1.24 1.19 2.18	2.1 3.3 6.0 2.9 3.1	l .3 3 .1 3 <.1) <.1 9 <.1 1 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 15 1.9 14 1.8 12 .9 9 1.3	15 15 15 15 15	0 0 0 0 0
148505 148506 148507 148508 148509	1.2 1.5 .9 1.3 1.3	39.0 19.1 42.4 132.2 88.3) 10 1 7 4 8 2 16 3 16	.5 4 .3 3 .9 7 .2 16 .1 15	45 31 70 52 50	.2 .1 .2 .1 .1	4.9 1.9 5.0 8.2 7.0	9.3 4.0 9.2 32.2 26.5	299 139 687 2739 2281	7.38 4.66 5.33 5.20 4.98	4.9 8.2 6.0 8.8 8.4	.1 .1 .3 .3 .3	1.0 6.3 2.7 2.8 2.1	.3 .3 .4 .3 .4	12 8 17 20 18	.1 .1 .2 .4 .4	.3 .4 .3 .3 .3	.4 .2 .1 .1 .1	209 . 175 . 144 . 122 . 116 .	. 09 . 12 . 17 . 37 . 31	052 038 034 082 103	1 2 5 8 7	10.3 8.8 12.3 15.4 15.1	.55 .20 1.18 1.89 1.67	27 19 120 198 140	.175 .117 .080 .074 .079	<1 2 1 1 1 2 1 3 2 3	.01 . .14 . .82 . .09 . .06 .	008 . 006 . 010 . 010 . 011 .	02 - 03 < 06 - 08 - 07 -	1 .21 1 .09 1 .09 1 .21 1 .19	2.9 1.8 6.4 7.0) <.1 } <.1 ; .1 ; .1 ; .1 ; .1 ; .1	<.05 <.05 <.05 <.05 <.05	13 1.0 13 .5 11 .9 9 1.1 9 1.2	15 15 15 15 15	0 0 0 0
148510 148511 148512 148513 148514	1.3 2.7 1.2 1.4 1.6	123.3 155.3 101.7 100.9 201.8	3 17 3 30 7 20 9 20 3 13	.6 15 .9 20 .0 15 .3 12 .9 11	50 05 50 21 12	.2 .4 .2 .1 .3	8.0 7.2 7.6 6.2 6.0	31.4 30.0 31.5 22.6 25.4	2557 2450 3726 3037 1737	4.61 5.17 5.17 4.21 4.29	8.5 21.0 10.8 18.2 8.6	.3 .4 .3 .5	3.6 10.3 2.8 1.2 2.9	.3 .5 .2 .8	21 22 23 16 14	.4 1.0 .5 .5 .5	.3 .4 .3 .3 .4	.1 .2 .2 .2 .2	113 . 97 . 121 . 92 . 88 .	41 46 46 36 18	105 131 138 128 091	8 8 7 5 7	14.0 12.9 15.6 11.7 11.3	1.79 1.19 1.85 1.37 1.31	190 158 149 127 114	.086 .069 .085 .041 .055	22 23 32 22 23	.98 . .30 . .96 . .41 . .74 .	013 . 010 . 013 . 010 . 010 .	08 09 08 06 06	1.28 1.27 1.24 1.23 2.37	7.2 7.0 7.2 4.0	$\begin{array}{cccc} 2 & .1 \\ 0 & .1 \\ 2 & .1 \\ 0 & .1 \\ 3 & .1 \\ \end{array}$.08 .06 .08 .08 .05	8 1.2 7 1.9 9 1.4 7 1.2 6 1.4	15 15 7 1	0 0 5 0 5
148515 RE 148522 148516 148517 148518	4.7 1.8 1.5 2.9 2.3	145.8 111.9 140.2 155.2 90.2	5 15 9 31 2 19 2 12 2 13	5 9 3 13 6 19 2 12 4 10	55 34 57 29 02	.8 .5 .2 .9	2.9 2.8 6.5 7.6 4.3	20.2 9.8 28.1 74.9 12.1	1478 1265 4004 4321 745	4.92 6.25 5.14 9.13 6.40	9.9 9.5 15.0 61.6 14.4	.4 .3 .4 .7 .4	19.8 9.0 2.5 7.3 6.2	.2 .4 .2 1.1 .6	19 18 17 3 13	.2 .4 .5 .1 .3	.3 .2 .3 .8 .2	.3 .1 .1 .1 .2	54 90 111 96 145	. 31 . 14 . 33 . 03 . 11	349 174 160 157 105	5 4 8 13 6	6.3 6.3 15.1 15.6 11.6	.44 .35 1.44 .92 .53	85 51 135 80 39	.040 .065 .055 .044 .105	14 14 23 14 14	.23 . .54 . .40 . .63 . .41 .	008 . 007 . 010 . 004 . 008 .	07 06 09 10 03	.1 .53 .1 .30 .1 .32 .1 .45 .1 .36	4.(7.) 6.) 9.) 6.)) .1 5 .1 3 .2 1 .8 7 .1	.10 .06 .07 .13 .06	5 3.7 7 2.5 9 1.5 11 2.4 10 3.7	15 15 7 15 15	0 0 5 0 0
148519 148520 148521 148522 148523	2.5 1.2 1.4 1.8 1.6	41.1 56.8 129.6 113.2 91.8	1 7 3 8 5 18 2 31 3 15	.2 7 .5 11 .1 18 .7 13 .1 9	74 19 30 38 99	.4 .5 .4 .5	2.9 3.6 5.5 2.7 4.9	7.9 4.7 18.9 10.0 13.5	1095 513 1005 1320 1164	5.26 5.42 6.56 6.39 6.27	8.5 10.4 6.1 9.3 11.4	.2 .3 .4 .3 .4	3.3 5.4 3.4 10.0 5.8	.2 .4 .5 .4 .7	17 8 11 17 15	.3 .3 .5 .5 .2	.1 .2 .2 .2 .2	.1 .4 .3 .1 .2	116 . 138 . 129 . 91 . 147 .	.12 .08 .09 .14 .15	092 116 113 171 171	3 4 7 4 6	6.2 9.8 12.2 6.5 13.8	.49 .49 .50 .34 .57	33 44 56 53 38	.067 .081 .053 .062 .093	13 15 13 14 14	.67 . .17 . .87 . .59 .	009 . 010 . 008 . 007 . 009 .	03 < 03 < 03 06 04	.1 .28 .1 .37 .1 .25 .1 .31 .1 .30	5. 7. 6. 7.	2 .1 7 .1 1 .1 5 .1 3 .1	<.05 <.05 <.05 <.05 <.05	10 2.9 9 3.8 10 2.6 7 2.7 10 2.8	15 15 15 15 15	0 0 0 0 0
148524 148525 148526 148527 148528	1.6 1.4 1.3 .2 1.4	61.9 64.0 60.2 10.3 59.1	97 57 210 33 124	.8 7 .5 9 .1 10 .5 1 .5 8	77 92 1 02 14 38	.3 .0 .3 .1 .2	3.6 4.6 4.1 .9 4.1	7.4 7.5 11.7 .6 17.0	494 792 926 81 1644	7.59 6.83 8.09 .35 5.35	13.5 10.1 9.6 1.0 10.0	.5 .5 .4 <.1 .2	6.9 11.0 4.2 <.5 2.6	.5 .6 .5 <.1 .1	16 10 13 10 15	.2 .2 .1 .6	.2 .2 .2 .1 - .2	.3 .2 .3 <.1 .2	152 . 119 . 155 . 8 . 107 .	.13 .08 .11 .21 .21	107 154 132 042 190	6 6 5 2 5	13.0 12.3 11.6 2.3 9.0	.48 .72 .64 .07 .39	26 29 34 11 64	.100 .116 .092 .011 .063	14 26 13 2 22	.98 . .69 . .50 . .23 . .46 .	008 . 008 . 007 . 013 . 009 .	02 03 04 03 < 06	.1 .37 .1 .58 .1 .34 .1 .08 .1 .28	8.0 10.1 5.9) .1 2 .1 9 .1 4 <.1 7 .1	.07 .06 .05 .05 .08	12 3.6 8 4.0 11 2.6 <1 .6 7 2.1	15 15 15 7 15	0 0 5 0
148529 148530 148531 148532 148533	.5 1.5 1.4 1.6 1.2	21.0 78.0 40.0 55.7 29.7	5 9 0 15 0 16 7 28 2 15	.0 8 .0 8 .4 9 .2 9	90 30 52 56 51	.2 .6 .4 .5 .6	1.5 3.6 3.8 3.2 2.6	1.9 6.1 5.2 3.2 2.8	362 499 625 471 310	9.57 6.21 8.02 6.58 6.38	4.4 10.2 10.3 10.4 8.2	.1 .4 .2 .2	1.9 10.9 1.9 1.9 1.7	.2 .7 .2 .5	3 8 14 16 7	.1 .1 .5 .1	.3 .2 .2 .3 .2	.1 .2 .2 .2 .2	58 / 109 / 208 / 164 / 193 /	.02 .08 .11 .19 .07	065 168 119 139 086	1 4 2 1 3	5.6 13.9 26.2 22.8 11.2	.17 .35 .35 .37 .38	20 46 39 48 35	.038 .037 .108 .075 .038	1 1 2 6 <1 2 1 2 1 3	.53 . .03 . .66 . .18 . .79 .	004 . 008 . 006 . 009 . 008 .	03 05 03 < 06 < 02 <	.1 .10 .1 .28 .1 .17 .1 .18 .1 .23	2.0 9.0 4.9 4.0 4.0	5 .1 9 .1 9 .1 5 .1	<.05 <.05 <.05 .06 <.05	4 1.3 7 2.6 11 1.1 8 1.3 11 1.2	15 15 15 15	0 0 0 0 0
GROUP 1DX - (>) CONCENTR - SAMPLE TYP DataF2	12.9 15.0 ATION PE: SC	GM S EXC I EXC IL S	AMPI EEDS	.6 1: E L S UP 60C DA	BAC PER	HED LIN Sa RE	WIT MITS ampl CE:	11.7 H 90 Ses b	801 ML 2 OME M eginr D:	3.01 2-2-2 AINER hing JUN	18.9 HCL ALS 'RE' 25 2	6.1 -HNO: MAY 1 are 004	46.4 3-H2C 3E PA <u>Reru</u> DA	2.7 AT ARTIA	43 95 I ALLY and REI	5.7 DEG. ATT YRRE	3.8 (C F ACKE <u>' ar</u> T M	5.3 OR D. Ce R	62 ONE REF ejec	HOUF	.089 R, DI TORY Pruns 7.04		ED TO GRAPH	.67 300 11110 /04	ML, SAI	.090 ANAL MPLES	16 1 YSED CAN	BY I	035 . ICP-M IT AU	14 5. S. SOL	.0 .17	3.2 TY CO HS	3 1.1-			eong	

Page 2

ACHE ANALTTICAL																																	CHE ANALYTICAL
SAMPLE#	Mo DDM	Cu DDM	Pb	Zn	Ag Dom	Ni DDM	Co	Min DDmi	Fe %	As	U Dom	Au ppb	Th DDm 1	Sr Dom D	Cd S	Sb Dm D	Bi V xom Dom	Ca %	P %	La DDM	Cr	Mg X	Ba pom	Ti %	B	A1 X	Na %	K X DD	wi Hg niddan	Sc ppm p	TI S om %	Ga Se DDm DDm	Sample om
148534 148535 148536 148537 148538	1.7 7.8 4.5 2.6 1.3	75.0 120.3 216.1 99.8 48.5	19.1 45.9 75.4 12.2 22.4	99 285 262 53 72	.3 .4 .4 .2 .5	3.9 4.0 9.8 2.4 3.3	6.6 18.4 19.6 3.8 3.8	636 1242 1691 215 440	7.79 6.34 6.21 8.27 7.05	17.9 7.1 18.9 9.0 6.5	.3 .5 .5 .6 .3	5.1 9.2 93.1 9.0 6.0	.4 .8 1.0 1.0 .6	17 10 8 6 11	.4 .5 .8 .1 .2	.3 .2 .3 .2 .1	.2 192 .2 137 .2 107 .2 154 .3 161	.11 .13 .12 .05 .10	.124 .100 .125 .095 .087	2 6 8 7 3	11.8 14.4 14.6 13.9 13.5	.59 .63 1.60 .22 .51	49 82 89 21 64	.089 .062 .031 .065 .048	1 3. 1 4. 1 4. <1 6. <1 4.	67 .0 40 .0 38 .0 76 .0 89 .0)08 .)07 .)06 .)06 .	03 <. 05 . 09 . 02 . 05 <.	1 .19 1 .21 1 .15 1 .30 1 .19	6.1 5.3 6.5 11.5 6.7	.1<.05 .1<.05 .1<.05 .1<.08 .1.08	11 1.6 11 1.7 10 1.2 11 4.3 12 1.5	15.0 15.0 15.0 15.0 15.0 15.0
148539 148540 148541 148542 148551	2.3 1.6 1.2 1.6 3.6	127.8 65.7 26.5 35.3 325.0	28.1 13.6 13.0 18.2 47.4	382 76 37 74 367	.2 .2 .2 .2 .2	7.4 2.8 1.9 3.1 11.8	28.0 5.3 2.8 3.3 20.2	1827 433 305 353 853	5.61 6.98 6.54 7.52 8.69	8.9 10.2 6.1 8.6 7.3	.3 .4 .3 .4 .4	9.2 7.2 2.3 3.9 6.6	.5 .8 .6 1.0 .9	32 1 25 10 8 14	8 .1 .1 .1 .3	.2 .3 .2 .2 .2	.2 120 .2 159 .2 186 .3 182 .5 192	.50 .30 .10 .07 .18	.115 .090 .066 .085 .060	7 3 3 4 4	12.4 15.3 12.5 18.5 15.7	.85 .53 .30 .63 1.23	162 32 30 71 193	.053 .091 .068 .061 .062	14. 15. 13. 16. 16.	59 .0 27 .0 27 .0 50 .0 59 .0)08 .)07 .)05 .)07 .	06 . 03 . 04 <. 04 <. 04 .	1 .18 1 .14 1 .11 1 .11 1 .16	5.5 6.9 4.6 7.1 8.0	.1<.05 .1<.05 .1<.05 .1 .07 .2<.05	9 1.9 13 1.4 12 1.1 14 2.0 11 2.0	15.0 15.0 15.0 15.0 15.0
148552 148553 148554 148555 148555 148556	2.2 1.1 1.1 2.6 2.1	49.3 59.1 56.2 86.5 65.3	8.8 9.1 9.2 16.9 21.6	66 55 49 141 55	.1 .3 .2 .2	3.3 2.9 3.6 4.3 2.9	7.9 5.7 7.2 17.1 4.6	485 207 295 1115 234	6.08 7.71 7.56 6.23 6.71	5.7 3.7 7.9 6.3 7.4	.2 .3 .2 .5	3.8 2.0 2.1 4.1 2.2	.3 .6 .5 .3 .5	14 12 14 13 12	.1 .2 .3 .6 .3	.3 .2 .2 .2 .2	.2 207 .2 210 .2 204 .2 128 .2 150	.14 .13 .16 .12 .11	.035 .068 .075 .113 .075	3 3 5 5	11.3 16.3 17.8 15.0 16.5	.41 .24 .35 .62 .31	77 21 19 58 25	.146 .091 .135 .069 .079	1 2. 1 3. 1 3. 2 4. 1 3.	35 .0 57 .0 96 .0 09 .0 09 .0)05 .)06 .)07 .)07 .)07 .	02 <. 03 <. 02 . 04 . 03 .	1 .14 1 .17 1 .31 1 .46 1 .30	3.8 < 4.1 4.8 < 4.8 3.5	.1<.05 .1<.05 .1<.05 .1<.07 .1 .06	13 .9 13 .9 12 2.5 9 2.7 13 2.4	15.0 15.0 15.0 15.0 15.0
148557 148558 148601 148602 RE 148602	4.3 .9 1.3 1.2 1.3	49.5 246.5 85.7 83.3 81.6	15.6 10.2 7.5 10.1 10.2	38 14 105 137 138	.4 .3 .2 .2 .2	2.8 3.2 6.9 5.3 5.5	7.1 1.9 13.5 9.6 9.3	332 79 1181 430 443	8.00 .49 9.80 7.77 8.13	10.5 .7 8.6 9.3 9.2	.3 .2 .5 .6	5.1 6.7 3.7 6.3 3.2	.6 <.1 .3 1.1 1.2	9 3 21 10 9	.1 .6 .1 .3 .3	.2 .1 .3 .3 .3	.3 207 .1 20 .5 216 .2 194 .2 192	.05 .04 .16 .10 .09	.118 .333 .093 .100 .100	3 15 1 6 6	10.8 5.0 9.5 19.1 20.0	.38 .12 1.26 .61 .60	34 75 68 53 53	.073 .006 .224 .144 .126	1 3. 1 2. 1 3. 1 4. 2 4.	52 .0 73 .0 71 .0 98 .0 83 .0)06 .)06 .)04 .)08 .)07 .	02 . 03 <. 03 . 04 . 04 .	1 .32 1 .21 1 .19 1 .25 1 .25	5.8 .6 < 5.3 7.9 7.9	.1<.05 .1 .63 .1<.05 .1<.05 .1<.05	13 2.8 2 3.6 13 1.6 14 2.9 14 2.9	15.0 15.0 7.5 15.0 15.0
148603 148604 148605 148606 148607	1.1 .9 2.0 1.6 .9	88.4 107.7 174.6 99.6 23.5	9.4 11.6 10.8 11.6 9.2	100 81 107 70 30	.3 .3 .2 .3 .1	6.2 4.5 6.5 4.5 1.5	8.0 7.5 9.6 9.1 3.6	304 375 629 496 178	6.72 10.27 7.25 7.96 5.41	6.2 8.8 11.0 6.6 8.9	.6 .3 .7 .4 .2	3.6 3.0 20.9 4.9 3.8	1.4 .8 1.6 .6 .4	9 30 17 26 11	.2 .3 .2 .2 .2	.2 .3 .2 .2 .5	.2 127 .4 270 .3 123 .4 193 .2 230	.08 .19 .11 .16 .12	.085 .123 .163 .084 .046	4 3 6 3 3	24.2 22.0 19.4 13.4 11.1	.55 .55 .93 .71 .26	26 24 29 29 18	.091 .241 .186 .128 .177	1 4. <1 3. 2 7. 1 4. 1 1.	40 .0 77 .0 97 .0 10 .0 51 .0)06 .)06 .)06 .)07 .)07 .	02 . 01 . 03 . 02 . 04 <.	1 .33 1 .46 2 .29 1 .40 1 .08	5.4 5.2 < 18.4 < 6.5 3.2	.1 .06 .1<.05 .1 .12 .1<.05 .1<.05	9 2.5 16 1.8 7 4.9 13 2.7 15 .5	15.0 15.0 15.0 15.0 15.0
148608 148609 148610 148611 148612	1.0 1.0 2.0 .7 2.9	98.0 57.6 152.6 28.0 130.6	12.0 13.1 20.7 7.3 18.1	.85 98 230 42 64	.4 .3 .2 .2 .2	3.0 4.1 8.4 2.9 3.9	6.1 6.9 38.0 5.5 8.6	442 479 2584 369 727	6.39 6.52 5.38 3.36 5.44	10.8 10.7 12.2 4.6 10.2	.7 .6 .5 .2 .7	5.1 2.7 8.0 1.2 18.5	1.3 1.4 .6 .2 1.2	7 8 23 13 11	.3 .2 .8 .1 .3	.3 .3 .4 .3 .2	.1 112 .1 127 .2 129 .1 126 .2 77	.07 .08 .41 .13 .13	.131 .096 .098 .042 .202	5 6 11 5 7	17.5 19.4 16.9 10.3 13.4	.54 .59 1.76 .64 .65	38 63 171 85 31	.117 .127 .126 .088 .125	28. 27. 23. 11. 27.	29 .(85 .(92 .(99 .(25 .()06 .)05 .)10 .)08 .)06 .	03 . 03 . 08 . 06 . 03 .	2 .35 1 .28 1 .21 1 .11 2 .51	9.9 8.3 9.7 4.2 9.4	.1 .10 .1<.05 .1 .06 .1<.05 .1<.07	8 3.4 10 2.7 10 1.8 10 .5 6 3.9	15.0 15.0 15.0 7.5 15.0
148613 148614 148615 148616 STANDARD DS5	1.3 1.0 1.6 1.2 12.7	58.5 58.8 163.2 100.1 141.4	17.4 11.6 22.0 18.2 24.2	56 31 135 118 135	.1 .2 .1 .2 .3	2.8 1.5 7.9 6.2 22.9	8.0 2.6 14.6 12.0 11.8	610 174 1002 1060 772	6.60 4.37 5.81 6.34 3.05	7.1 4.1 10.2 6.4 18.1	.3 .3 .4 .4 6.4	2.8 4.1 13.5 5.4 41.0	.3 .5 .9 .8 2.8	16 10 15 15 47 5	.2 .1 .2 .4 5.5 3	.2 .2 .3 .2 .8 6	.2 134 .2 109 .2 110 .3 148 5.0 63	.15 .10 .19 .19 .73	.115 .068 .106 .119 .105	4 4 7 6 13	8.7 7.8 15.5 23.1 188.1	.53 .21 1.39 .71 .71	73 37 42 114 143	.079 .059 .133 .114 .113	1 3. 1 2. 2 3. 2 3. 17 2.	09 .0 63 .0 14 .0 45 .0 07 .0)07 .)06 .)06 .)16 .)33 .	05 . 03 <. 06 . 17 <. 14 4.	1 .16 1 .29 1 .36 1 .12 6 .18	4.3 3.3 5.9 < 6.2 3.5 1	.1<.05 .1<.05 .1<.05 .1<.05 .2<.05	11 1.2 10 1.0 8 1.7 12 1.2 7 4.7	15.0 15.0 15.0 15.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

ACME ANALYTICAL							A	rne	x R	esc	our	ces	3 L	td	•	FII	'nE	# A	.40	3010	5							Pa	ge	3	ACM	AA E ANALYTICAL
SAMPLE#	Mo C ppm pp	u P m pp	b Zn m ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm (Sr ppm	Cd ppm p	Sb opmin	Bi V opmippm	Ca %	Р %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	A1 %	Na X	К % р	W Hg pm ppm	Sc ppm	T1 S	Ga Se Sppn ppn	Sample gm
148617 148618 148619 148620 148621	2.8 114. 1.6 98. 1.8 58. 1.2 95. 2.6 153.	1 17. 9 15. 8 11. 8 11. 6 21.	4 56 0 59 0 58 7 77 6 185	.5 .9 .3 .3	2.4 2.8 2.1 3.5 3.7	5.8 7.4 3.0 5.1 8.1	396 317 291 570 839	9.04 11.31 6.39 4.92 6.32	25.0 12.1 9.1 9.1 12.2	.2 .5 .3 .4 .4	21.8 4.3 2.4 8.9 12.5	.3 .4 .3 .3 .4	18 5 8 9 11	.2 .5 .5 .4 .3	.3 .3 .2 .1 .2	.5 240 .2 99 .6 155 .1 66 .3 134	.16 .07 .10 .07 .13	.084 .204 .102 .145 .109	2 14 4 3 4	6.3 7.3 10.2 8.5 12.4	.35 .25 .31 .39 .31	56 31 41 50 63	.058 .054 .068 .038 .037	1 2 1 4 1 3 1 5 1 4	.70 .65 .28 .91 .21	.007 .006 .007 .007 .007	.03 .02 .03 .03 .03	.1 .28 .1 .37 .1 .30 .1 .38 .1 .39	6.9 9.9 6.0 4.6 6.2	.1 .08 .1 .16 .1 .07 .1 .07 .1<.09	12 3.5 5 5 9.3 12 2.8 6 3.5 10 3.2	7.5 7.5 15.0 15.0 15.0
148622 148623 148624 148625 148625 148626	1.7 236. 1.4 71. 2.1 122. .9 27. 1.6 42.	9 158. 7 64. 5 13. 1 14. 7 22.	3 263 0 49 9 32 8 64 6 85	.4 .3 .4 .3	6.8 1.9 1.5 5.4 4.1	81.4 3.1 2.2 7.4 4.9	2711 796 170 572 990	7.27 7.43 7.84 7.95 6.88	8.8 6.8 8.5 8.3 8.1	.4 .2 .2 .2	6.5 7.5 4.0 4.5 9.4	.4 .3 .2 .4 .7	10 8 6 18 10	.9 .3 .1 .2 .2	.2 .2 .2 .2 .3	.2 119 .3 125 .4 128 .2 225 .2 129	.11 .08 .07 .12 .09	.109 .192 .110 .069 .193	14 2 2 3 4	13.8 8.8 8.9 22.1 15.4	.57 .21 .11 .53 .48	75 50 58 37 80	.041 .022 .033 .098 .042	13 12 11 <13 15	.92 .57 .90 .28 .01	.008 .008 .005 .006 .010	.05 .12 < .05 < .02 < .05 <	.1 .28 .1 .13 .1 .12 .1 .15 .1 .31	4.8 3.5 2.4 5.7 6.9	.2 .09 .1<.09 .1<.09 .1<.09 .1<.09	9 2.6 8 1.7 8 1.6 14 1.3 9 2.6	7.5 7.5 1.0 15.0 7.5
148627 148628 148629 RE 148630 148630	1.7 33 3.2 234 2.3 52 19.0 122 18.0 120	1 22. 1 36. 5 14. 1 27. 0 28.	3 56 4 250 7 57 1 146 1 152	.2 .2 .4 .3 .3	3.1 4.6 2.1 3.6 3.6	2.9 9.5 3.0 31.7 31.7	247 1186 557 1885 1903	6.43 5.68 8.48 9.29 9.41	7.9 15.9 10.5 17.9 18.4	.5 .3 .5 .7 .7	5.9 16.6 9.9 20.0 21.1	1.0 .6 .5 1.0 1.0	5 21 5 18 17	.1 .8 .1 .1 .2	.2 .3 .5 .6	.2 109 .4 85 .2 85 .5 95 .5 95	.04 .29 .06 .18 .19	.131 .116 .151 .192 .190	4 7 5 8	15.3 8.8 10.4 13.2 13.6	.42 1.04 .39 .85 .82	69 283 66 97 94	.029 .074 .071 .156 .157	1 6 1 2 1 1 1 2 1 2	. 31 . 40 . 49 . 59 . 42	.007 .007 .006 .003 .003	.04 < .08 .05 .09 < .09 <	.1 .17 .1 .23 .1 .21 .1 .22 .1 .22	8.4 7.4 6.1 9.2 9.2	.1 .00 .1 .19 .1 .22 .1 .19 .1 .19	5 9 2.9 5 7 1.9 2 7 3.0 9 8 3.5 9 8 3.5	15.0 7.5 7.5 7.5 7.5
148631 148632 148633 148634 148634 148635	1.6 191. 1.3 93. 1.3 60. 1.5 58. 2.3 199.	4 49. 0 39. 8 28. 3 14. 6 27.	8 348 1 136 5 59 4 57 6 125	.7 .3 .4 .2 .2	12.3 7.7 4.8 3.0 3.7	24.7 13.1 4.0 3.9 6.0	2271 1813 539 228 625	6.97 8.16 7.27 5.43 4.04	11.4 12.6 15.0 7.4 10.0	.2 .2 .5 .3	12.0 4.2 7.8 25.4 12.0	.3 .3 .2 .9 .2	26 21 13 5 8	.7 .6 .1 .2 .4	.3 .2 .4 .2 .3	.3 138 .4 163 .4 121 .2 94 .2 68	.20 .20 .09 .05 .09	.127 .146 .135 .134 .119	3 2 4 9	34.6 33.4 30.4 14.6 8.7	.92 .63 .54 .33 .74	111 100 154 29 41	.046 .052 .082 .045 .038	1 4 1 3 1 1 2 5 1 2	.07 .43 .59 .38 .61	.009 .007 .009 .007 .007	.06 .11 < .08 .02 .07	.1 .26 .1 .17 .1 .28 .1 .33 .1 .30	6.1 5.6 5.0 5.5 4.3	.1 .0 .1<.0 <.1 .1 .1 .0 .1 .0	9 2.1 5 10 1.4 5 6 1.9 9 8 3.8 9 6 1.5	7.5 15.0 7.5 15.0 7.5
148636 148637 148638 148639 148640	1.4 136. 3.3 135. 4.8 120. .9 132. 1.2 113.	3 16. 2 32. 0 38. 3 12. 4 10.	1 91 1 182 1 139 4 201 8 267	.2 .3 .4 .1 .1	3.2 4.9 5.5 4.3 4.0	10.0 20.0 18.1 19.0 14.6	671 1802 1537 2546 1923	3.22 5.58 8.12 1.32 1.50	6.9 15.8 18.8 2.0 3.2	.2 .4 .5 .2	7.5 19.1 29.4 3.1 2.7	.1 .6 .6 <.1 <.1	8 15 11 59 64	.6 .6 .4 1.3 1.9	.2 .4 .1 .2	.1 36 .2 83 .2 117 .1 33 .1 34	.11 .24 .14 1.30 1.44	.085 .120 .143 .106 .104	8 7 7 9 7	5.2 10.6 12.8 7.3 6.6	.29 1.15 .87 .30 .49	43 68 70 291 282	.027 .075 .061 .019 .024	1 1 1 2 1 2 6 2 5 1	.62 .85 .74 .04 .99	.012 .006 .005 .013 .012	.03 .07 .06 .07 .20	.1 .24 .1 .19 .1 .20 .1 .29 .1 .30	2.7 6.0 6.6 1.5 1.6	.1 $.1.1$ $.10.1$ $.10.1$ $.10.1$ $.10.1$ $.20$	3 1.3 7 1.7 10 1.9 2 3.4 3 2.9	1.0 15.0 15.0 7.5 15.0
148641 148651 148652 148653 148654	1.4 469 1.8 32 1.5 27 1.6 68 2.2 39	7 12. 6 14. 9 19. 2 15. 1 12.	9 1207 0 55 6 51 5 53 0 42	.2 .1 .2 .1 .3	7.9 2.0 2.6 2.3 1.9	132.5 2.0 3.2 3.8 3.0	10324 263 405 335 269	1.85 6.46 8.24 7.61 8.17	2.6 8.7 8.1 9.8 14.1	.2 .2 .2 .2 .4	6.8 2.6 8.2 4.5 16.4	.1 .5 .3 .6 .6	31 1 6 9 8 18	.4.7 .1 .1 .1 <.1	.1 .1 .2 .3 .3	.1 23 .5 141 .6 195 .2 153 .4 81	.57 .06 .11 .06 .30	.123 .070 .078 .066 .175	10 2 2 3 3	5.6 9.4 13.4 10.8 5.7	. 18 . 69 . 78 . 59 . 46	189 65 31 36 45	.018 .039 .065 .046 .167	4 4 <1 4 1 3 1 2 1 2	.81 .29 .53 .75 .27	.012 .009 .009 .008 .008	.11 .04 < .04 < .03 .05	.1 .33 .1 .14 .1 .16 .1 .20 .1 .25	1.8 5.7 5.7 4.1 9.4	.1 .19 .2<.09 .1<.09 .1<.09 .1	2 5.8 5 12 3.4 5 13 1.4 5 13 1.4 6 13 1.4 8 8 6.3	15.0 7.5 7.5 15.0 15.0
148655 148656 148657 148658 STANDARD DS5	1.9 73. 2.2 120. 1.3 116. 1.0 80. 12.6 144.	8 15. 4 21. 4 27. 9 20. 3 24.	1 104 0 439 3 359 6 380 6 138	.5 .1 .2 .2 .3	2.0 5.0 5.6 7.6 24.7	5.0 12.7 15.3 24.3 11.9	554 1118 1680 3961 800	10.76 7.14 6.10 5.65 3.10	14.8 6.1 3.8 3.2 18.8	.3 .3 .2 .2 6.3	17.1 2.3 2.0 2.6 45.7	.4 .5 .4 .3 2.8	23 23 27 33 46	.2 .5 .8 1.4 6.4 4	.2 .2 .2 .2 .2	.5 162 .3 151 .2 140 .2 140 5.4 63	.38 .22 .26 .44 .77	.103 .069 .071 .105 .094	2 3 3 6 13	10.5 11.6 9.7 15.5 192.1	.63 .90 1.06 1.34 .68	96 227 142 296 151	.158 .038 .037 .085 .099	1 3 <1 3 1 3 1 3 1 3 16 1	.53 .64 .31 .17 .98	.012 .009 .009 .017 .035	.07 < .04 .05 .11 .14 4	.1 .27 .1 .16 .1 .10 .1 .18 .8 .19	16.7 5.8 5.7 8.1 3.5	.1 .20 .1<.09 .1<.09 .1 .00	12 6.4 11 1.4 10 1.1 9 1.4 6 5.3	15.0 7.5 7.5 1.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

						· •	Ar	nez	ĸR	esc	our	ce	s 1	Lto	1.		FI	LE	#	A4	030	16						Pa	age	4		,
Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Р	La	Cr	Mg	Ba	Ti	B Al	Na	K	W Hg	Sc	TI S	S Ga Se	e
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ррт	ppb	ppm	ppm	ppm	ppm	ppm	ppm	*	*	ppm	ppm	*	ppm	*	ppm %	*	*	ppm ppm	ppm	ppm	% ppm ppm	n
.2	18.8	6.0	69	.2	1.5	5.4	618	. 93	1.1	.1	2.0	<.1	14	.5	.1	.2	22	.23	. 051	1	3.6	. 28	57	.018	1.59	.011	.03	.1 .13	1.1	<.1.0	82.6	6
1.6	54.2	26.2	256	.1	4.0	28.3	2325	3.51	3.8	.3	2.2	.1	29	1.3	.2	.2	88	. 52	.103	5	8.7	. 69	163	.041	2 2.31	010	.06	.1 .13	3.5	.1.0	7 61.1	1
2.7	58.6	31.9	247	.1	4.4	15.3	1016	5.60	4.0	.3	2.0	.4	19	.7	.2	.2	140	. 25	.071	5	9.5	.79	160	.036	2 3.11	. 009	.04	.1 .09	4.5	.1<.0	5 11 1.0	0
2.4	141.9	10.7	128	<.1	5.8	44.4	2880	4.75	5.7	.5	4.8	1.0	20	.2	.4	.2	47	. 39	.104	11	4.4	1.17	513	.180	2 2.43	.005	.13	.1 .07	7.9	.1<.0	56.8	8
1.8	99.9	12.8	73	.8	4.4	7.4	542	5.81	14.6	.4	17.9	.7	12	.2	.2	.2	131	. 09	.100	4	14.0	.57	37	.092	2 4.78	.009	.03	.2.45	8.1	.1<.0	5 8 3.3	3
1.3	84.5	9.1	77	.3	4.7	7.9	720	7.32	9.4	.4	9.2	.7	15	.2	.2	.3	178	. 12	. 131	4	15.7	.65	38	. 089	2 4.80	.009	.03	.2.30	10.3	.1<.0	5 10 2.9	9
1.5	58.1	8.7	61	.4	3.2	6.9	604	7.26	9.4	.3	5.2	. 4	18	.1	.2	.3	218	.11	.075	3	11.2	.56	32	.080	1 3.16	6.008	.02	.1 .19	5.9	<.1<.0	5 13 2.0	0
2.1	150.5	9.9	81	.8	5.1	10.7	1228	7.47	11.1	.7	22.2	.8	13	.2	.2	.3	134	.11	.154	6	15.4	.82	50	.123	1 4.70	.007	.05	.1.44	9.6	.1<.0	5 9 2.8	8
2.5	68.9	22.2	56	.4	3.9	11.9	1426	6.35	8.3	.2	6.9	.2	14	.2	.3	.5	119	.13	.109	4	8.9	.49	150	.043	<1 2.61	.008	.05	.1 .13	3.4	.1.0	7 9 2.3	2
1.8	80.5	17.1	81	.5	3.9	5.1	797	5.98	7.7	.4	12.3	.5	10	.2	.2	.2	129	.07	.133	3	11.0	.41	35	. 059	2 4.50	.007	.03	.1 .31	6.8	.1<.0	5 8 2.	5

1.7 74.5 19.6 59 .7 2.1 3.7 415 5.65 6.4 .4 8.7 .5 9 .2 .2 .2 106 .08 .145 5 10.2 .27 36 .036 1 5.07 .009 .02 .1 .36 8.4 .1<.05 7 3.7 15.0 148707 .30 44 .050 1 5.66 .010 .03 .1 .35 4.2 .1 .07 10 2.9 7.5 1.1 39.5 8.4 83 1.1 2.3 4.0 668 5.36 6.1 .3 3.6 .3 12 .2 .1 .2 106 .12 .146 3 6.3 148708 148709 1.1 34.0 8.5 42 .5 2.2 4.0 550 6.10 5.4 .2 3.1 .3 17 .1 .1 .2 124 .15 .105 3 3.4 . 39 53 .062 <1 3.28 .011 .04 <.1 .18 4.4 .1<.05 12 1.4 15.0 1.9 78.9 11.0 54 .4 3.2 7.8 510 5.72 7.3 .2 5.7 .2 21 .3 .1 .2 129 .18 .117 3 5.9 . 39 84 .049 1 2.79 .010 .04 <.1 .18 4.1 .1 .07 10 1.3 15.0 148710 .9 33.3 12.7 50 .6 3.1 3.1 310 6.39 5.1 .3 1.3 .5 9 .3 .2 .2 186 .08 .060 3 17.3 .34 58 .034 <1 3.03 .007 .03 <.1 .17 4.7 .1<.05 14 .9 7.5 148711

1.3 24.0 13.4 40 .2 4.1 3.7 313 7.37 8.0 .2 1.0 .4 10 .2 .5 .2 282 .12 .051 3 14.0 .31 64 .162 <1 2.62 .007 .03 <.1 .08 4.5 <.1<.05 18 .8 15.0 148712 4.3 337.7 41.6 225 .6 5.2 10.5 788 6.58 9.9 .5 35.3 1.0 8 .4 .3 .4 101 .09 .122 148713 6 14.1 .71 112 .039 2 5.37 .008 .05 .1 .35 6.9 .1<.05 9 3.4 15.0 2.8 195.4 40.2 138 .4 3.1 8.2 880 6.91 8.0 .4 3.4 .6 15 .6 .2 .3 138 .18 .094 5 11.1 .47 157 .040 <1 3.75 .011 .05 .1 .21 5.0 .1<.05 12 1.4 15.0 148714 4.2 154.2 106.9 309 .4 4.0 8.2 663 6.92 8.9 .5 10.1 .8 7 .6 .2 .2 121 .09 .113 4 13.5 .47 72 .013 2 4.27 .008 .03 .1 .29 4.8 .1<.05 11 2.4 15.0 148715 5.2 203.9 113.3 249 .3 7.4 31.1 3627 5.52 12.6 .4 21.0 .5 15 1.7 .2 .2 77 .26 .165 148716 9 11.6 1.24 143 .032 1 3.04 .005 .10 .1 .11 4.9 .1<.05 8 1.5 15.0 5.4 201.8 115.0 237 .3 6.9 29.9 3600 5.51 12.5 .4 21.7 .5 16 1.6 .2 .2 77 .26 .163 9 11.9 1.21 146 .039 1 3.09 .005 .11 .1 .13 4.9 .1<.05 8 1.4 15.0 RE 148716 2.0 102.5 28.3 66 .6 4.0 7.2 350 5.85 9.2 .3 4.0 .3 11 .4 .2 .3 145 .08 .098 5 10.0 .41 41 .039 1 3.54 .007 .03 <.1 .27 4.2 .1<.05 10 3.0 15.0 148717 1.4 49.8 19.8 66 .3 3.7 4.7 447 7.57 7.4 .3 2.8 .7 14 .1 .2 .2 190 .10 .087 4 13.7 .46 51 .067 1 4.19 .008 .03 .1 .13 6.5 .1<.05 12 1.9 15.0 148718 1.2 87.6 29.5 129 1.0 5.6 5.5 663 6.63 8.2 .4 12.8 .8 16 .1 .2 .2 148 .10 .099 4 18.2 .69 77 .061 2 5.27 .008 .04 .1 .23 10.7 .1<.05 9 2.6 148719 15.0 1.2 69.8 7.2 99 .5 4.4 8.2 697 8.29 8.6 .2 8.0 .5 40 .1 .2 .2 224 .17 .066 2 18.7 .76 41 .148 1 5.18 .007 .02 <.1 .22 8.6 .1<.05 12 2.1 15.0 148720 148721 1.7 71.7 18.8 215 .2 5.3 13.5 915 4.87 6.4 .2 2.8 .3 21 1.4 .2 .2 138 .26 .057 5 10.2 .46 251 .053 1 2.50 .007 .04 <.1 .12 4.2 .1<.05 9 1.1 15.0 1.4 50.6 10.2 47 .7 2.3 3.3 210 6.02 6.7 .3 23.3 .8 6 .1 .4 .2 195 .05 .051 4 12.8 .30 27 .071 1 3.44 .006 .02 < 1 .22 5.8 .1<.05 13 1.6 15.0 148722 1.9 98.4 23.6 439 .1 4.6 31.7 2062 5.24 7.6 .3 1.1 .2 38 1.4 .2 .2 110 .58 .082 7 8.8 .73 318 .073 2 3.13 .009 .06 .1 .14 4.6 .1<.05 9 2.1 15.0 148723 2.2 108.8 115.5 671 .2 7.5 50.5 3914 5.56 5.4 .4 2.2 .2 36 1.8 .2 .3 115 .50 .103 8 12.0 1.07 276 .079 1 3.96 .009 .05 .1 .29 5.0 .1<.05 91.8 15.0 148724 1.5 71.9 41.5 240 .2 7.4 33.5 3133 5.72 4.7 .3 2.3 .2 20 .6 .2 .1 95 .29 .202 3 10.1 .93 203 .066 2 3.09 .011 .09 <.1 .22 4.3 .1<.05 91.3 1.0 148725 1.9 83.9 16.6 203 .2 4.9 73.3 3118 6.56 5.3 .4 34.5 .2 20 .7 .2 .1 127 .31 .156 4 8.8 .72 182 .062 2 3.30 .007 .05 .1 .21 3.9 .1<.05 11 1.3 7.5 148726 2.9 101.4 29.0 165 .1 4.7 21.7 1814 4.69 7.2 .4 2.5 1.0 34 .3 .3 .2 82 .55 .116 8 8.5 1.30 102 .059 2 3.80 .007 .07 .1 .14 6.3 .1 .06 8 1.1 15.0 148727 2.1 106.6 15.1 180 .1 7.0 44.2 1610 5.03 7.0 .5 2.6 .8 28 .4 .3 .1 84 .55 .101 11 11.6 1.14 155 .059 2 4.17 .009 .07 .1 .24 6.6 .1<0.5 9 1.4 15.0 148728 3.8 112.4 20.2 251 .6 7.6 13.8 660 6.94 10.2 .4 5.7 .7 14 .6 .2 .2 138 .12 .080 3 23.8 .72 55 .134 1 8.22 .009 .02 .2 .21 11.0 .1 .09 8 3.9 15.0 148729

STANDARD DS5 13.2 142.3 25.5 139 .3 25.3 11.9 785 3.12 19.3 6.3 41.0 2.7 50 5.6 4.0 6.1 62 .73 .091 13 190.5 .69 146 .104 18 1.92 .035 .14 5.0 .18 3.3 1.1<0.5 6 5.0 15.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL

SAMPLE#

148659

148660

148661

148662

148701

148702

148703

148704

148705

148706

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌

ACHE ANALYTICAL

am

1.0

1.0

7.5

15.0

15.0

15.0

15.0 9 2.8 15.0

7.5

15.0

Ga Se Sample

Page 5

ACHE ANALTTICAL																																	A	CHE ANALYTI	ICAL
SAMPLE#	Мо	Cu	Pl	o Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi \	Ca	P	La	Cr	Mg	Ba	Ti	В	A1	Na	K	W Hg	Sc	T1	S G	Ga Se S	ample	
	ppm	ррп	i ppr	n ppm	ppm	ppm	ppm	ppm	<u>5</u>	ppm	ppm	ppo	ppm	ppm	ppm i	pbu t	opm ppn	1 8	<u> </u>	ppm	ppm	*	ppm	X	ppm	Z	2	хp	pm ppm	ррт	ppm	% pp	m ppm	gm	
148730 148731 148732 148733 148733 148734	.9 1.9 1.4 1.2 1.2	21.4 78.7 42.2 80.8 123.8	8.0 10.1 12.9 16.9	0 27 1 106 5 43 9 84 4 86	.1 .3 .2 .5 .1	2.3 6.8 3.0 4.2 6.9	4.0 8.9 4.5 5.3 11.0	141 496 324 309 367	4.67 6.76 6.26 6.11 6.80	2.9 9.3 7.3 6.4 6.1	.2 .6 .3 .4 .7	1.4 7.6 2.6 10.5 3.9	.4 1.6 .7 1.1 1.6	13 8 9 7 4	.2 .2 .1 .1 .1	.3 .2 .2 .1 .1	.2 184 .2 136 .2 159 .3 113 .1 111	.12 .07 .08 .06 .06	.023 .106 .103 .110 .072	2 5 3 5 3	9.1 21.7 12.8 15.8 21.3	.13 .74 .43 .41 .65	39 33 25 54 30	.120 .079 .032 .018 .136	1 1 2 6 <1 3 1 5 1 8	. 56 . 00 . 65 . 45 . 95	.008 .006 .007 .008 .008	.01 < .02 .02 .02 .02	.1 .06 .1 .36 .1 .18 .1 .27 .1 .15	2.3 9.0 4.9 6.8 12.2	<.1<. .1 . <.1 . .1 . <.1 .	05 1 08 1 08 1 07 1 30	11 <.5 10 3.2 12 1.7 10 2.5 7 2.3	15.0 15.0 15.0 15.0 15.0 15.0	ŗ
148735 148736 RE 148736 148737 148751	1.3 2.3 2.0 2.5 .4	28.5 35.7 35.9 23.8 42.6	13.9 17.1 17.0 21.2	9 47 7 53 0 56 2 58 2 94	.1 .1 .2 .1	4.7 4.4 4.3 3.0 9.3	32.2 6.3 6.1 3.4 15.5	1344 357 331 232 951	3.14 4.87 4.63 6.56 5.09	3.0 7.0 6.9 11.0 5.9	.3 .5 .5 .3	2.1 3.5 5.2 11.4 8.7	.1 1.0 1.0 1.0 .7	29 7 7 3 18	.6 .4 .4 .1 .3	.2 .2 .2 .3 .2	.1 80 .1 105 .1 103 .2 129 .1 137) .51 5 .08 3 .07 9 .03 7 .53	.066 .054 .055 .061 .074	11 5 6 5 8	12.5 16.5 16.5 18.0 18.1	.43 .35 .35 .43 1.46	136 48 49 24 68	.030 .072 .075 .028 .130	32 24 24 <14 31	.45 .45 .37 .74 .72	.012 .009 .010 .007 .014	.04 .04 .04 .03 .05	.1 .20 .1 .16 .1 .17 .1 .29 .1 .17	2.6 5.3 5.5 4.1 7.2	.1 . .1 . .1 . .1 . .1 .	12 08 10 10 13	7 2.0 10 1.6 10 1.5 15 2.3 7 .8	7.5 15.0 15.0 15.0 15.0 15.0	
148752 148753 STANDARD DS5	.4 1.5 12.4	45.6 147.3 137.0	8. 13. 25.	5 97 4 543 4 135	.1 .2 .3	9.3 9.1 24.7	16.0 57.5 11.6	929 1566 789	5.50 3.05 3.08	5.3 5.8 18.9	.3 .2 6.2	13.8 6.0 42.1	.7 .1 2.7	17 41 50	.2 4.6 5.6 (.2 .2 3.9 (.1 166 .1 53 5.3 62	5.53 3.77 2.70	.071 .106 .096	8 11 12	22.0 7.7 189.2	1.57 .59 .69	63 250 139	.140 .039 .095	4 1 3 2 17 1	. 88 . 77 . 97	.014 .011 .034	.05 .07 .14 5	.1 .05 .1 .20 .0 .16	7.5 3.5 3.4	<.1 . .1 . 1.0<.	18 14 05	7 <.5 5 4.0 7 5.1	15.0 15.0 15.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACM	E ANA	L LYTI	CAL I	ABO	RAT	ORI	BS (LTD.	 ا	85	2 1	. B	AST:	ING	5 S) T.	VAN	L ICOU	IVEF	R BC	: v	6Â	1R6	<u> </u>) P	HON	E (60) <u>4)</u>	1 253.	.315	3 8 I	PAX (604	253	-171	.6
Δ		900)2 ACC	.reu	Tre	1 (5.)				GE	OCI	IEM	CA	L.	ANA	ГЛ	SIS	s c	'ER'	rif	IC	ATE												A.	Δ
<u>ר</u>						<u>I</u> 1	nst	oira	atio	on l	<u>4in</u> c/o	inc Arne	t Co x Res	sourc	es l	PRC)JE ,, N	<u>CT</u> orth	JA Vano	(SP)	<u>ER</u> er BC	F: V7M	ile 1 3 B1	#	A4	031	64								T	
SAMPLE	;#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppn	Co 1 ppm	Mn ppm	Fe %	As ppr	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca ړ	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K % pp	W om p	Hg S pm pp	c Tl m ppm	S %	Ga ppm	Se ppm
SI 148676 148677 148678 148679	3	<.1 .4 .5 1.9 1.1	.4 46.6 57.3 59.6 44.8	.3 6.3 5.3 13.6 14.0	<1 130 150 153 135	<.1 <.1 .1 .1	<.1 4.6 5.0 4.4 4.9	 <.1 17.9 14.6 15.5 15.6 	<1 1934 2064 2169 2059	.03 5.30 5.36 5.10 5.74	11.5 13.1 13.6 14.7 11.3	<.1 .1 .1 .1	30.6 18.0 28.7 11.1 6.2	<.1 .1 .2 .1	1 26 19 11 29	<.1 .1 <.1 .1 .2	<.1 .2 .1 .3 .2	<.1 .1 .1 .1	<1 110 107 92 109	.07< .47 .41 .29 .44	.001 .087 .081 .065 .085	<1 1 2 2 1	<1 4.2 4.7 5.0 3.9	<.01 1.75 1.73 1.46 1.69	2< 54 36 48 100	.001 .191 .175 .163 .233	<1 32 22 11 12	.01 . .14 . .01 . .91 . .26 .	366< 025 025 025 017 020	01 < 17 13 16 16	.1 . .1 . .1 . .1 .	01 <. 14 7. 19 7. 26 6. 16 7.	1 <.1 4 <.1 0 <.1 2 <.1 4 <.1	<.05 1.95 1.92 1.56 1.07	<1 6 6 6	<.5 1.5 1.7 1.0 1.2
148680 148681 148682 148683 148683	2	5.5 5.7 15.3 1.9 6.0	96.8 562.0 191.1 93.5 3004.3	132.5 381.9 337.6 275.6 4.2	153 2684 397 180 148	.3 1.0 1.2 .6 1.4	4.2 4.8 3.5 4.9 5.4	2 14.4 3 18.0 5 12.4 9 20.1 4 17.1	1719 2378 1790 2739 1624	5.53 5.80 5.92 6.63 6.93	19.9 21.6 17.1 16.3 9.9) .1 5 .1 1 8 .1 9 <.1	22.7 35.0 46.4 24.7 37.8	.1 .1 .2 .1 .3	13 14 20 14 3	1.2 65.1 3.2 .3 .1	.3 .3 .2 .1	.2 .7 1.4 .4 1.7	74 77 81 95 69	.26 .31 .24 .33 .06	.071 .073 .086 .081 .049	2 2 3 2	4.4 4.3 4.0 4.0 9.8	1.13 1.42 1.30 1.74 1.77	30 27 57 36 47	.183 .144 .195 .180 .009	2 1 2 1 1 1 2 2 1 2	.63 .90 .94 .32 .13	.008 .010 .008 .010 .002	.18 .17 .19 .18 .12 <	.1 . .1 5. .1 3. .1 .	59 6. 43 5. 03 6. 20 6. 21 4.	0 <.1 3 <.1 4 <.1 7 <.1 0 <.1	1.99 2.29 1.09 1.75 1.99	5 5 7 7	1.5 7.5 3.1 1.7 5.2
148690 148692 148692 148693 RE 148) 2 3 3693	13.6 4.1 12.1 13.9 14.0	6923.4 4265.7 31.2 33.2 35.2	13.7 4.9 16.0 15.1 16.7	138 148 100 110 118	5.1 2.0 2.6 3.5 3.7	3.7 5.6 7.3 3.1 3.5	7 18.4 5 23.9 3 52.6 1 35.3 5 36.7	1201 1585 939 524 540	8.88 8.09 19.56 30.32 30.12	16.0 9.5 9.4 10.6 10.3) <.1 5 <.1 5 <.1 5 <.1 8 <.1	109.1 45.2 94.8 107.4 83.6	.2 .3 <.1 <.1 <.1	8 4 5 3 3	.4 .1 .3 .8 1.0	.2 .2 .1 .1 .1	10.6 2.2 2.6 3.5 3.7	55 58 40 16 17	.06 .06 1.20 .78 .81	.042 .036 .027 .009 .010	2 1 2 1 1	7.6 9.8 7.4 4.2 4.1	1.15 1.57 1.01 .46 .48	14 16 7 4 5	.016 .010 .003 .002 .002	1 1 1 1 <1 1 <1 <1 <1 <1	.57 .97 .30 .58 .64	.002 .001 .001 .001 .001	.12 .10 < .12 < .07 < .07 <	.1 . .1 . .1 . .1 .	54 3. 31 3. 36 3. 50 1. 53 1.	1 <.1 5 <.1 4 <.1 6 <.1 7 <.1	4.25 4.20 >10 >10 >10	5 6 4 1 2 2 2 1	8.5 6.3 5.9 0.6 9.9
148694 148695 148804 148816 148817	1 5 1 5 7	13.7 .4 1.6 19.2 4.3	43.2 54.5 55.6 >10000 >10000	27.2 7.1 12.3 12.4 11.5	147 37 4 149 277	2.8 .1 1.1 22.6 3.0	10.7 10.5 5.3 1.0	7 47.5 2 1.9 5 21.3 3 21.1 0 22.7	961 540 8 48 1325 1655	10.90 1.75 7.44 11.91 19.51	6.5 1.9 11.2 15.4 9.7	<pre>> <.1 > .2 2 .1 <<.1 <<.1 <<.1 </pre>	104.9 7.0 4.9 151.2 35.4	.1 1.0 .2 .2 <.1	5 15 8 5 1	.5 <.1 .1 .2 2.7	.1 .1 .2 .2 .2	2.2 .1 1.1 36.8 1.7	41 3 8 51 35	.97 .24 .05 .06 .01	.042 .055 .024 .032 .004	2 10 4 2 1	8.8 1.8 1.6 8.3 1.3	1.27 .58 .06 1.26 1.22	17 73 5 7 2	.002 .044 .001 .008 .002	1 1 <1 1 1 1 <1 1	.64 .94 .37 .54 .45	.002 .023 .011 .003 .001	.15 < .17 .21 < .10 < .04 <	.1 . .1 . .1 . .1 .	31 3. 04 . 13 1. 39 3. 54 .	2 <.1 9 <.1 6 .1 1 <.1 8 <.1	8.94 .24 6.98 8.32 >10	4 1 3 1 1 5 5 4	1.1 <.5 1.6 9.3 8.8
148901 148902 148903 148904 B18354	L 2 3 4 41	7.6 5.7 9.4 2.7 4.4	>10000 357.3 121.5 82.7 76.0	16.6 12.6 10.1 5.4 5.3	158 8 108 37 194	5.6 .4 .2 .3	7.9 6.2 8.2 7.6 5.2	9 19.9 1 17.5 1 17.1 5 10.3 2 16.7	9 1132 5 79 998 3 346 7 1299	8.95 3.37 5.02 3.54 4.88	13.2 17.9 26.6 8.9 16.9	2 .1 3 <.1 5 <.1 5 <.1 9 .1	27.5 9.8 9.6 6.0 11.8	.1 .1 .1 .2	11 4 5 9 8	.8 <.1 .4 .1 .5	.2 .1 .2 .1 .1	5.0 .7 .4 .3 .7	39 8 40 26 75	.18 .05 .14 .16 .31	.047 .028 .056 .048 .076	2 1 1 1 1	6.1 5.1 6.5 6.6 6.3	.83 .04 .73 .39 1.27	6 30 21 24 51	.124 .072 .102 .095 .141	<1 1 <1 <1 1 <1 <1 1 <1 1	.03 .20 .05 .59 .61	.003 .003 .005 .006 .028	. 13 . 14 . 18 . 17 . 18	.2 . .2 . .3 . .2 . .2 .	23 2 09 14 2 07 2 16 5	6 <.1 8 <.1 9 <.1 1 <.1 5 <.1	6.40 2.25 2.62 2.31 2.14	3 1 3 2 5	5.6 3.3 3.8 2.0 2.4
B18354 B18354 B18354 B18354 B18354	42 43 44 45 46	1.9 7.7 12.5 1.0 .6	64.3 78.3 5677.7 41.6 51.4	6.0 10.6 14.4 4.8 2.5	65 55 90 89 130	.5 1.1 2.9 .1 .2	7.8 9.9 8.0 10.3	3 17.7 5 21.6 5 24.5 3 17.1 1 18.5	689 6684 6970 856 51819	5.25 7.07 6.84 4.81 4.98	18.8 37.8 30.3 37.7 2.9	5 .1 8 <.1 8 <.1 7 .1 9 <.1	6.8 12.5 42.9 4.1 4.1	.1 .1 .2 .1	10 9 13 22 21	<.1 <.1 .2 <.1 <.1	.1 .2 .4 .1 .1	.8 1.9 3.2 .6 .1	44 45 60 91 96	.38 .31 .42 .53 .56	.081 .063 .069 .085 .093	1 1 1 2	6.1 5.9 6.6 9.0 11.0	.65 .61 .77 .94 1.96	17 10 10 32 75	. 149 . 133 . 146 . 231 . 163	<1 <1 <1 1 <1 1 <1 2	.98 .87 .07 .48 .33	.012 .010 .011 .023 .015	.22 .19 .19 .21 .15	.3 . .2 . .2 . .3 . .2 .	13 2 13 2 06 3 03 5 04 5	7 <.1 7 <.1 1 <.1 0 <.1 5 <.1	4.25 5.72 5.37 2.31 1.16	3 3 5 6	2.4 5.2 5.5 3.0 .8
818354 818354 818355 818355 818355 818355	47 48 49 50 57	.7 .4 .5 3.6 21.7	104.0 14.7 13.1 15.1 8378.3	2.8 4.6 2.1 4.1 48.9	114 84 47 33 14	.1 .2 .1 .7 18.2	8.4 10.0 13.0 1.0	4 24.8 6 26.4 0 23.8 8 8.4 5 9.4	3 1607 4 1075 3 659 4 421 4 179	5.15 5.83 5.69 2.57 5.37	4. 6. 2.9 4. 88.	4 .1 4 <.1 9 <.1 1 <.1 7 .1	1.1 8.1 .9 9.7 346.7	.1 .1 <.1 <.1	22 14 13 40 4	<.1 <.1 <.1 <.1	.1 .1 .1 .1 2.0	<.1 .2 .1 .4 .7	100 77 113 17 5	.61 .50 .80 .18 .02	.094 .086 .091 .028 .017	2 1 1 4	12.3 11.5 11.9 4.0 3.9	1.96 1.55 1.21 .32 .37	68 37 27 39 46	.178 .116 .157 .030 .023	<1 2 <1 1 <1 1 <1 <1 <1	.30 .87 .43 .49 .59	.022 .010 .038 .002 .002	.15 .21 .11 .16 .11 <	.2 .3 .1 .2 .1	03 5 13 4 03 5 02 1 36	1 <.1 4 <.1 8 <.1 7 <.1 4 <.1	1.53 3.78 5.24 1.48 2.00	6 5 1 2 5	.9 2.4 3.0 1.9 60.4
GR (>	OUP 1DX OUP 1DX) CONCE SAMPLE	12.0 - 30 NTRAT TYPE:	.0 GM S ION EXC ROCK R	25.4 AMPLE EEDS 150 6	134 LEAC UPPER	.3 CHED R LIM <u>Sa</u>	24. WITH NITS.	7 11.9 1 180 . SO	ML 2 ME MI ginni	2.97 -2-2 NERAL ng 'R	HCL-I SMA E'a	8 6.0 HNO3- Y BE re Re	44.4 H2O A PARTI runs	2.7 T 95 ALLY and	43 DEC ATT	5.7 ACKE	FOR D. e Re	6.1 ONE REFR	60 HOUR ACTO	.72 R, DI DRY A	.086 LUTE	11 D TO RAPH	189.7 600 ITIC	.65 ML, J SAMPI	137 ANAL LES	.100 YSED CAN L	16 2 BY IO	CP-M AU	.031 S. SOLUE	.14 4	.9	18 3	4 1.0 2 - 7	<.05		5.0
Dat	a_f	FA		I	DATE	RE	CEI	VED	: J	UN 30	200	4 I	ATE	RE	POR	тм	AII	ED	.J	ŗļ	<u>.</u>	6/0	94.	••						1		CI	arenc	e Leo	ng	
All	result	s are	consid	ered	the c	onfi	dent	ial	prope	rty o	f the	e cli	ent.	Acme	ass	umes	the	elia	bili	ties	for	acti	ualo	ost d	of t	ne ar	alysi	is o	nly.					5		

				J)				_)			1		Ŋ		J					1		<u>}</u>	<u> </u>	3	<u> </u>		Ę		ļ	\square			2	_					
ACME A	NADYT	ICAL	LABO	RAT	ORII A Ca	(s , 1	JTD.		85	52 I	5. H	ast	ING	3 S	T.	VAN	COU	IVER	BC	: V	'6A	1R6		P	HON	e (6))4)2	53	-31	58	FAX	604) 253	-17	L6						
AA										GE	OCI	iem:	ICA	L.	AN2	LY	sis	3 C	ER:	rif	IC7	\TE												A	A						
					Ţī	lsp	ira	<u>atic</u>	on l	Mir	inc	t Co	orp		PRO)JE	<u>CT</u>	JA	SPI	ER.	Fj	Lle	#	A4	031	64								É							
	Na	<u> </u>	<u></u>	7-	<u></u>		<u> </u>			<u> </u>				+E9		<u>, nu</u>	4) 141 D4	v.ai iu			V10		<u></u>	<u> </u>		<u> </u>	<u></u>	<u></u>		<u></u>											
SAMPLE#	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppm	re %	AS PPR	ippm	Au ppb	ppm	or ppm	ppm	5D mqq	ррт ррт	v ppm	دم لا	Р Х	Lа ррп	ppm	Mg X	ва ppm	11 %	ррт	81 %	Na X	к % р	w pm i	нд з opm pp	√C II xπ.ppm	5 %	Ga ppm	se ppm						
SI	<.1	.4	.3	<1	<.1	<.1	<.1	<1	.03	11.5	5 <.1	30.6	<.1	1	<.1	<.1	<.1	<1	.07<	.001	<1	<1	<.01	2<	.001	<1	.01 .	366<	.01 <	.1	.01 <.	1 <.1	<.05	<1	<.5						
148676 148677	.4 .5	46.6 57.3	6.3 5.3	130 150	<.1 .1	4.6 5.0	17.9 14.6	1934 2064	5.30 5.36	13.1 13.6	.1	18.0 28.7	.1 .1	26 19	.1 <.1	.2 .1	.1 .1	110 107	.47 .41	.087 .081	1 2	4.2 4.7	1.75 1.73	54 36	.191 .175	32 22	.14 . .01 .	025 025	.17 .13	.1 .1	.14 7. .19 7.	4 <.1 0 <.1	1.95 1.92	6 6	1.5 1.7						
148678 148679	1.9 1.1	59.6 44.8	13.6 14.0	153 135	.1 .1	4.4 4.9	15.5 15.6	2169 2059	5.10 5.74	14.7 11.3	/ .1 8 .1	11.1 6.2	.2 .1	11 29	.1 .2	.3 .2	.1 .1	92 109	. 29 . 44	.065 .085	2 1	5.0 3.9	1.46 1.69	48 100	.163 .233	11 12	.91 . .26 .	017 020	.16 .16	.1 .1	.26 6. .16 7.	2 <.1 4 <.1	1.56	6 6	1.0 1.2						
148680	5.5	96.8	132.5	153	.3	4.2	14.4	1719	5.53	19.9	.1	22.7	.1	13	1.2	.3	.2	74	.26	.071	2	4.4	1.13	30	. 183	21	.63.	008	. 18	.1	.59 6.	.0 <.1	1.99	5	1.5						
148681	5.7	562.0	381.9	2684	1.0	4.8	18.0	2378	5.80	21.6	5.1 1	35.0	.1	14 20	65.1	.3	.7 1 4	77 81	.31	.073	2	4.3	1.42	27	.144	21	.90.	010	.17	.15	.43 5	3 <.1	2.29	5	7.5						
148683	1.9	93.5	275.6	180	.6	4.9	20.1	2739	6.63	16.3	3.1	24.7	.1	14	.3	.2	.4	95	.33	.081	3	4.0	1.74	36	. 180	22	.32.	010	. 18	.1	.20 6.	7 < 1	1.75	7	1.7						
140003	12 6	6022 4	۲.۲ ۲ ۲۵	120	1.4 5 1	2.4	10 4	1024	0.93	9.5 16 (· ~.1	100 1	. J 1	ى 0	۲. م	۲. د	10 C	55	.00	042	2	7.0 7 4	1 15	4/	.009	1 2	. 13 .	002	. 12 <	1	. ZI 4.	v >.1	1.33	/ E	0.Z						
148690	4.1	4265.7	4.9	138	2.0	5.6	23.9	1585	8.09	9.5	5 <.1	45.2	.2	4	.1	.2	2.2	58	.06	.042	1	9.8	1.15	16	.010	11	.97.	002	.12	.1	.31 3	5 <.1	4.25	6	6.3						
148692 148693	12.1	31.2	15.1	110	2.6	7.3	52.6 35.3	939 524	30.32	10.6	<.1	94.8	<.1 <.1	5	. 3	.1 .1	2.6	40 J 16	. 20	.027	1	7.4 4.2	.46	4	.003	<1 1 <1	.30. .58.	001	.12 <	.1 .1	.36 3.	4 <.1	>10 >10	4	20.6						
RE 148693	14.0	35.2	16.7	118	3.7	3.5	36.7	540	30.12	10.3	3 <.1	83.6	<.1	3	1.0	.1	3.7	17	.81	.010	1	4.1	.48	5	.002	<1	.64 .	001	.07 <	.1	.53 1	7 <.1	>10	2 :	19.9						
148694 148695	13.7 .4	43.2 54.5	27.2 7.1	147 37	2.8 .1	10.7 .2	47.5 1.9	961 540	10.90	6.5	5 <.1) .2	104.9	.1 1.0	5 15	.5 2.>	.1 .1	2.2 .1	41 3	.97 .24	.042 .055	2 10	8.8 1.8	1.27 .58	17 73	.002	11 <1	.64 . .94 .	002 023	.15 < .17	.1 .1	.31 3. .04	2 <.1 9 <.1	8.94 24.	4 : 3	l1.1 <.5						
148804 148816	1.6 19.2	55.6 >10000	12.3 12.4	4 149	1.1 22.6	10.5	21.3 21.1	48 1325	7.44	11.2	2.1 <.1	4.9	.2 .2	8 5	.1 .2	.2	1.1	8 51	.05 .06	.024 .032	4 2	1.6 8.3	.06	5< 7	.001	1	.37.	011 003	.21 < .10 <	.1	.13 1 .39 3	6 .1 1 <.1	6.98 8.32	1 5	11.6 9.3						
148817	4.3	>10000	11.5	277	3.0	1.0	22.7	1655	19.51	9.7	<.1	35.4	<.1	1	2.7	.2	1.7	35	.01	.004	1	1.3	1.22	2	.002	<1 1	.45 .	001	.04 <	.1	. 54	8 <.1	>10	5 /	48.8						
148901 148902	7.6	>10000	16.6 12.6	158 8	5.6	7.9 6.1	19.9 17.5	1132 79	8.95	13.2	2.1	27.5	.1	11 4	.8 <.1	.2 .1	5.0	39 8	.18	.047	2 1	6.1 5.1	.83	6 30	.124	<11 <1	.03.	003 003	. 13	.2	.23 2	6 <.1	6.40	3 1	5.6 3.3						
148903	9.4	121.5	10.1	108	.2	8.1	17.1	998 346	5.02	26.6	5 <.1	9.6	.1	5	.4	.2	.4	40 26	.14	.056	1	6.5	.73	21 24	.102	<11	.05 .	005	.18	.3	.14 2	9 < 1	2.62	3	3.8						
B183541	4.4	76.0	5.3	194	.3	5.2	16.7	1299	4.88	16.9	.1	11.8	.2	8	.5	.1	.7	75	. 31	.076	i	6.3	1.27	51	. 141	<1 1	.61 .	028	. 18	.2	.16 5	5 <.1	2.14	5	2.4						
B183542	1.9	64.3	6.0	65	.5	7.8	17.7	689	5.25	18.5	5.1	6.8	.1	10	<.1	.1	.8	44	. 38	.081	1	6.1	.65	17	.149	<1	.98.	012	.22	.3	.13 2	7 <.1	4.25	3	2.4						
B183543 B183544	12.5	78.3	10.6	55 90	2.9	9.5	21.0	970	6.84	30.3	3 <.1	42.9	.1	13	<.1 .2	.2	3.2	45 60	. 42	.063	1	5.9 6.6	.01	10	.133	<1 1	.87 .	010	. 19 . 19	.2 .2	.13 2	.1 <.1	5.72 5.37	3	5.2 5.5						
B183545 B183546	1.0 .6	41.6 51.4	4.8 2.5	89 130	.1 .2	10.3 8.1	17.1 18.5	856 1819	4.81 4.98	37.7	/ .1 9 <.1	4.1 4.1	.2 .1	22 21	<.1 <.1	.1 .1	.6 .1	91 96	.53 .56	.085 .093	1 2	9.0 11.0	.94 1.96	32 75	.231 .163	<1 1 <1 2	.48 . .33 .	023 015	.21 .15	.3 .2	.03 5 .04 5	0 <.1 5 <.1	2.31 1.16	5 6	3.0 .8						
B183547	.7	104.0	2.8	114	.1	8.4	24.8	1607	5.15	4.4	↓ .1	1.1	.1	22	<.1	.1	<.1	100	.61	. 094	2	12.3	1.96	68	. 178	<1 2	.30.	022	.15	.2	.03 5	.1 <.1	1.53	6	.9						
B183548 B183549	.4 .5	14.7 13.1	4.6 2.1	84 47	.2 .1	10.6 13.0	26.4 23.8	1075 659	5.83 5.69	6.4	<.1 <.1 <.1	8.1 .9	.1 .1	14 13	<.1 .1	.1 .1	.2 .1	77 113	.50 .80	.086 .091	1 1	11.5 11.9	1.55 1.21	37 27	.116 .157	<11 <11	.87 . .43 .	010 038	.21 .11	.3 .1	.13 4 .03 5	4 <.1 .8 <.1	3.78 5.24	5 5	2.4 ´ 3.0						
B183550 B183557	3.6 21.7	15.1 8378.3	4.1 48.9	33 14	.7 18.2	1.8	8.4 9.4	421 179	2.57	4.1	l <.1	9.7 346.7	<.1 .3	40 4	<.1	.1 2.0	.4	17 5	.18	.028	1 4	4.0 3.9	.32	39 46	.030	<1 <1	.49.	002 002	.16 11 <	.2	.02 1	7 <.1 4 < 1	1.48	1	1.9						
STANDARD D	S5 12.0	144.2	25.4	134	.3	24.7	11.9	765	2.97	18.8	3 6.0	44.4	2.7	43	5.7	3.6	6.1	60	.72	.086	11 1	189.7	.65	137	.100	16 2	.08 .	031	. 14 4	.9	.18 3	4 1.0	<.05	6	5.0						
									,							<u> </u>															<u></u>	77		$\overline{\mathbf{x}}$							
GROUP	1DX - 30 NCENTRAT	.0 GM S	AMPLE			WITH	180 so⊮	ML 2-	2-2 I	HCL-I	1NO3-	H2O A	T 95	DEG	ACKE	FOR	ONE REEP	HOUR	, DI			600 I	ML, A Sampi	NAL)	SED	BY I	CP-MS			Ś	Re la		<u>u</u> /	-E							
- SAMP	LE TYPE:	ROCK R	150 6	00	Sa	mple	s beg	innir	ng 'RI	E' ai	re Re	runs	and	<u>'RRE</u>	'ar	e Re	ject		uns.				970'IF L	(arun L		AG 3	5200		3	[1_1	0		B						
Data_	L FA		D	DATE	RE	CEIV	VED	: Jl	JN 30	200	4 I	ATE	RE	POR	TM	AII	ED :	Ģ	r fr	<u>]</u>	60	Ч.	••						ĺ	E)		arenc	e Leo	ng							
All rest	ults are	consid	ered	the c	onfi	denti	ial p	roper	ty of	f the	e cli	ent.	Acme	ass	umes	the	lia	bili	ties	for	actu	al c	ost o	f th	e an	alys	s on	ly.					5	2							
						_										-			-	_	_	_				_	_	_	_	_											
ACME ANALY	(TIC)	AL Ac) L4 :C1	BO red	RA1 ite	ror ed	E C	(S (.)) LTI	<u>.</u>	,	8	52	} B.	HJ	ST	¦ IN(GS	SI) '. '	VAN	4CO	ועט	SR I	1 3C	¥62) A 11	R6)	PH	ONE	<u>}</u> (60	4)2	<u>]</u> 53 -	31	58) Fa:	x (6)	1)4)2	53-	1716
---	---------------------------------	-----------------------------------	--------------------------------------	--------------------------------------	-------------------------------	-----------------------------	--	---------------------------------	------------------------------------	-------------------------------	--------------------------------------	------------------------------	----------------------------------	-----------------------------	----------------------------------	-------------------------------	---	-------------------------------------	-------------------------	----------------------------	--	---------------------------------	---------------------------------	--------------------------------------	-----------------------	--------------------------------------	--------------------------------------	---------------------------------------	--------------------------------------	--	--------------------------------------	--------------------------------------	--	-------------------------------	---------------------------------	---------------------------------	------------------------------------	--------------------------------------	--	---------------------------------	--
44		•			<u>In</u>	sp	<u>, i</u> 1	<u>:a</u>	tic	m	Mi	<u>ni</u>	nc c		CH OT rne	EM. D. (Re	LC P sou	AL RO	A JE s L	NA <u>CT</u> td.,	<u>, и</u> , тл	SI IAS	.S BPE h Va	CEI IR incou	Fi Ver	.FI le BC V	CA'1 # 7M 3	:Е А4 в1	031	.65		Pa	ge	1						l	
SAMPLE#	Mo ppm	C PP	Cu Sm	Pb ppm	Zn ppm	Ag ppr) n p	Ni pm	Co ppm	Mi ppi	n n	Fe %	As ppm	U ppm	Au ppb	Th ppm	Si ppi	r C m pp	d : m pi	Sb (pm pj	Bi pm p	V opm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 لا	Na %	K %	W ppm	Hg ppm	Sc ppm	T1 ppm	S % (Ga Se opm ppr	e San m	nple gm
G-1 148544 148545 148546 148547	2.0 1.7 4.2 1.4 2.9	3. 84. 129. 25. 30.	.3 .8 .5 3 .9 3 .6 1	2.6 8.5 38.2 30.5 15.8	47 37 114 119 181	<.1 .2 .3 .1 .2	L 4 2 3 3 5 L 4 2 7	.6 .8 .9 .9	4.2 6.6 64.2 11.5 10.6	58 56 314 98 43	4 1. 2 9. 0 5. 3 4. 9 6.	95 10 47 78 96	.5 5.0 5.9 5.6 6.7	2.0 .8 .6 .3 .6	<.5 5.2 4.2 7.4 1.4	4.4 1.3 .9 .6 1.3	7	7 <. 9 . 7 . 1 . 7 .	1 < 1 3 3 3	.1 .2 .2 .4 .3	.1 .3 1 .2 1 .2 1 .2 1	42 193 122 125 181	.57 .07 .08 .12 .07	.075 .095 .056 .033 .049	8 4 7 5 6	18.4 20.8 18.0 19.0 22.6	.56 .25 .50 .96	234 26 73 53 50	.136 .077 .049 .052 .116	<1 <1 1 1 <1	.98 4.09 4.10 2.58 5.11	.087 .006 .007 .007 .008	.49 .02 .04 .04 .03	.9< .1 .1 .1 .1	.01 .29 .27 .11 .30	2.1 6.4 5.2 4.0 7.4	.4< <.1< .1< .1< .1<	<.05 <.05 <.05 <.05 <.05	5 <.8 15 3.2 11 2.3 10 . 16 2.4	5 3 2 3 3 3 7 3 5 1	30.0 30.0 30.0 30.0 30.0 15.0
148548 148549 148550 148642 148643	1.2 .9 1.8 1.0 3.5	93. 36. 67. 363. 271.	.8 2 .6 1 .8 1 .0 1 .5 1	22.2 17.1 16.8 14.7 17.6	56 53 42 153 201	.1	1 3 4 3 3 2 2 10 3 12	8.4 8.1 2.9 0.4 2.4	7.5 4.5 29.9 22.8 40.8	60 17 139 112 210	4 4. 9 5. 6 2. 8 6. 3 8.	80 21 49 86 78 1	7.1 4.6 1.9 6.1 6.2	.2 .3 .8 .5 .3	6.2 5.2 1.7 4.4 7.5	.5 .4 .1 .8	1 2 5	4. 8. 7. 5. 0.	1 2 8 2 7	.2 .2 .2 .2 .2	.2 .2 1 .1 .3 1 .5 1	94 138 46 174 156	.17 .06 .07 .18 .83	.090 .048 .158 .059 .112	4 3 8 5 7	10.6 12.8 7.6 15.9 13.0	.60 .22 .21 .96 1.69	97 36 74 107 217	.079 .038 .025 .134 .113	<1 <1 <1 <1	2.31 1.84 4.71 4.27 3.87	.005 .007 .008 .007 .008	.05 .02 .04 .04 .07	.1 .1 .1 .2	.16 .25 .42 .19 .30	4.4 2.7 1.8 9.7 9.2	.1< <.1< .1< .1< .1	<.05 <.05 <.05 <.05 <.05	7 1.4 11 1.0 5 4.3 11 2.3 10 5.3	4 3 0 3 3 1 3 1 3 3	30.0 30.0 15.0 15.0 30.0
148644 148646 148647 148648 RE 148648	2.0 1.1 1.4 .9 .9	174 73 95 133 134	.2 1 .9 .4 1 .5 1	17.0 8.8 14.4 12.7 12.8	500 70 88 108 109	.2	2 9 3 4 4 4 7 5 7 5).2 1.5 1.5 5.3	37.5 7.4 6.4 10.2 10.3	224 75 35 65 65	75. 87. 27. 45. 15.	07 44 61 78 70	9.5 6.5 6.3 6.5 6.6	.2 .3 .5 .3 .3	21.0 3.2 4.7 6.8 5.5	.3 .7 1.6 .6	2 3 1 2	82. 0. 7. 9. 2.	8 4 2 3 3	.2 .2 .2 .2	.4 .4 1 .3 1 .3 1 .3 1	93 192 108 136 138	.58 .21 .07 .15 .16	.071 .072 .093 .064 .064	5 3 6 3 3	10.9 11.0 16.2 12.4 12.4	.94 .59 .31 .70 .71	134 57 91 32 33	.083 .123 .011 .049 .056	1 <1 <1 1	2.70 3.79 4.01 2.83 2.91	.008 .007 .005 .006 .006	.06 .03 .04 .02 .02	.1 .1 .1 .1	.20 .28 .18 .29 .28	5.8 6.7 6.3 4.6 4.8	.1< .1< .1< .1<	<.05 <.05 <.05 <.05 <.05	6 2.2 12 3. 8 2. 8 1. 8 1.	2 3 1 1 7 1 7 1 7 1	30.0 15.0 15.0 15.0 15.0
148650 148738 148739 148740 148741	1.2 .9 2.0 3.4 3.4	108 60 76 33 89	.0 1 .8 .3 1 .3 .2	15.7 9.7 16.4 8.9 8.1	57 50 86 19 14		5 4 3 4 3 3 2 1 2	1.1 1.9 3.3 1.7 .7	6.9 7.2 5.6 2.5 1.3	35 49 48 14 21	6 6. 3 4. 1 5. 3 2. 0 1.	13 65 15 75 29	6.5 6.8 8.0 2.8 1.8	.4 .3 .2 .1	3.8 3.6 3.9 6.5	.9 .6 .5	1	1 . 9 . 8 . 4 <. 3 .	2 3 2 1	.2 .2 .2 .3 .2	.3 1 .1 .2 1 .2 .1	155 83 115 52 19	.08 .11 .08 .04 .03	.059 .136 .092 .036 .032	3 5 3 5 5	15.4 14.3 11.9 6.3 2.2	. 45 . 62 . 40 . 22 . 21	5 28 2 32 31 2 41 1 132	.051 .080 .030 .007 .007	<1 2 <1 <1 1	3.69 3.14 2.34 1.94 1.60	.006 .006 .005 .004 .005	.02 .03 .02 .03 .03	.1 .2 .1 .1 .1	.42 .29 .32 .09 .16	5.8 3.4 2.7 1.9 1.2	<.1< .1< .1< .1< <.1	<.05 <.05 <.05 <.05 <.05	11 3.3 8 2.1 10 1. 7 . 6 1.	3 1 1 3 5 1 2 3	15.0 7.5 30.0 15.0 15.0
148742 148743 148744 148746 148748	1.0 .4 1.8 1.0 .8	8 19 36 41 19	.1 .2 .6 .9 .3	4.9 10.9 11.7 6.5 6.2	21 57 95 56 34	. 1 . 1 . 1 . 1	$ \begin{bmatrix} 1 & 4 \\ 1 & 3 \\ 1 & 8 \\ 1 & 3 \end{bmatrix} $.8 4.8 3.6 3.4 3.4	1.2 13.2 69.2 11.9 6.8	19 60 200 46 31	7 1. 0 4. 0 3. 2 6. 4 7.	63 50 93 58 78	5.9 3.3 2.2 4.9 1.9	.2 .3 .6 .8	1.2 1.2 3.2 1.8	.2 .3 .3 1.5 .9	2 2 2 1	3. 5. 0. 7. 3.	1 1 8 1	.4 .2 .2 .2 .2	.2 .1 1 .1 .1 1 .2 2	23 167 95 168 220	.04 .42 .12 .07 .09	.037 .068 .073 .050 .051	6 4 5 4 5	2.1 27.7 12.3 23.6 13.4	. 18 1.42 . 28 . 95 . 35	8 61 2 56 3 94 5 37 5 34	.012 .171 .057 .134 .173	<1 1 2 1	1.40 2.49 2.98 5.40 2.38	.006 .012 .008 .006 .007	.04 .03 .03 .02 .02	<.1 .1 .1 .1 <.1	.08 .25 .58 .19 .08	1.0 6.2 3.7 7.1 4.8	. 1 <. 1 < 1 <. 1 <. 1	<.05 <.05 <.05 <.05 <.05	6 <.! 13 1. 9 2. 12 2. 18 .	5 3 0 3 7 0 3 7	30.0 30.0 7.5 30.0 30.0
148801 148802 148803 148805 148805	1.7 3.8 1.3 1.6 1.8	74 39 127 108 475	.3 .7 .4 .2	10.8 16.6 18.6 21.8 23.1	50 45 81 144 275	.4	4 3 3 2 2 5 4 8 4 11	3.4 2.3 5.4 3.3 1.0	7.0 4.6 9.2 13.2 22.0	49 29 58 68 142	07. 96. 65. 28. 15.	72 23 64 14 14	11.6 7.5 7.8 6.4 5.6	.5 .3 .4 .5	5.1 8.3 5.9 6.3	8 .4 .8 .8 1.0	3 1 4 1 3 9 1 4 2	3. 2. 9. 5. 4.1.	222	.2 .3 .2 .2 .3	.5 1 .2 1 .3 1 .3 1 .2 1	183 164 117 177 133	.10 .11 .10 .19 .48	.089 .063 .090 .059 .063	4 3 5 4 8	12.5 8.5 13.9 14.4 15.8	.40 .29 .78 .87 1.10) 42) 34 3 41 7 77) 202	.055 .053 .054 .097 .077		3.79 3.43 3.22 5.30 3.55	.006 .005 .006 .007 .008	.02 .02 .04 .03 .05	.1 .1 .2 .1	.40 .21 .27 .24 .22	5.0 5.1 5.1 8.8 9.9	. 1 . 1 . 1 . 1 . 1	<.05 <.05 <.05 <.05 <.05	13 3. 11 2. 10 2. 10 2. 9 1.	3 2 1 8 9	30.0 15.0 30.0 30.0 30.0
148807 148808 148809 148812 148813	1.5 1.1 1.0 1.3 1.6	71 35 18 84 129	.0 .4 .2 .8 .0	9.0 9.6 10.0 9.3 12.7	51 36 23 37 87		1 2 2 2 2 1 3 2 4 4	2.9 2.5 1.6 2.2 1.6	6.2 5.2 2.7 4.8 7.2	20 22 13 16 40	76. 74. 73. 73.	85 85 72 63 10	4.3 5.1 5.7 3.3 7.8	.2 .2 .1 .3	3.2 4.1 3.4 1.2 4.8	2 .5 .4 .3 2 .3	$ \begin{bmatrix} 5 & 1 \\ 4 & 1 \\ 3 & 1 \\ 3 & 1 \\ 1 & 1 \end{bmatrix} $	4 . .3 . .5 . .3 . .2 .	.1 .1 .3 .2	.2 .3 .2 .3	.3 .2 .3 .2 .2 .2 .2	208 149 189 111 138	.13 .13 .14 .14 .14	.027 .044 .027 .037 .128	2 2 1 4 5	10.3 8.7 7.9 8.2 18.2	. 20 . 21 . 14 . 12 . 38	0 31 1 32 4 28 2 77 3 33	.075 .089 .132 .074 .072	<pre>< <] < <]</pre>	2.31 1.72 1.50 1.53 5.26	.006 .005 .005 .007	.01 .02 .02 .02 .02 .02	<.1 <.1 <.1 .1 .1	.11 .15 .09 .24 .41	3.5 2.8 2.9 2.3 9.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	15 . 9 . 10 . 8 1. 9 3.	7 9 6 9 4	30.0 15.0 15.0 15.0 30.0
STANDARD DS5	12.4	141	.1	25.2	139		3 24	4.7	11.8	79	22.	95	18.7	6.2	43.0	2.8	3 4	35.	.54	.0 6	.4	61	.69	.086	11	187.5	. 64	4 136	. 093	16	1.87	. 030	.13	5.0	.20	3.3	1.0	<.05	64.	8	30.0
GROUP 1DX - (>) CONCENTI - SAMPLE TYP	30.00 RATION PE: S0) GM N EX DIL	SA CEE	AMPL EDS 30 6	e li Uppi Oc	EACI ER I	HED LIM <u>Sa</u> i	WI ITS mpl	TH 1 . S es b	80 I OME egi	ML 2 MIN	2-2- IERA	2 H LS I RE <u>'</u>	CL-H MAY are	NO3- BE F Rer	H2O ARTI	AT I ALI and	95 LYA d'R		G. C ACKE	FOI D. e R(R ON REF ejec	NE H FRAC ct R	OUR, TORY	DIL AND S.	UTED	ТО (РНІТІ	500 N IC S/	AMPLE	NAL S C	YSED An Li	BY I Mit	CP-M AU S	S. OLUB	ILI		UM		<u>ک</u> ۲	à	CER
Data [F	A			I	DAT	El	RE	CEI	IVE	D:	JL	JN 3	0 2	004	D	ATE	R	EP	ORI	см	AI	LEI	()ļ	ļ	ŋ.!	4/e	94								HEHE		Cla		Lec	ong
All results a	are co	onsi	der	ed	the	cor	nfi	den	tial	pro	oper	ty	of 1	the	clie	nt.	Acr	ne a	issu	mes	the	e li	iabi	liti	es f	or ac	tual	cos	st of	the	ana	lysi	s on	ly.				\checkmark	1	. 7	فقر

Page 2

Data_

FA

SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm p	Ag opm	Ni ppm	Co ppm	Mn ppm	Fe لا	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm p	V ppm	Ca %	P % (La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B A ppm	l N K	a K %%	W Sppm p	Hg opm	Sc ppm p	TI S pm S	S Ga Kippmip	Se Sa Sm	imple gm	
G-1 148814 148815 148818 148819	1.5 1.6 2.0 7.8 2.2	3.3 32.2 83.6 170.7 216.7	2.1 11.8 8.4 67.5 28.3	48 < 33 49 76 70	<.1 .3 .6 .8 .3	4.8 3.2 3.3 4.4 2.7	4.3 4.7 6.1 8.6 18.1	586 239 333 577 1335	1.93 7.09 6.40 5.88 5.56	<.5 6.2 3.0 6.8 9.5	1.8 .2 .3 .1 .3	.6 2.3 2.6 36.4 10.4	4.2 .4 .5 .3 .4	69 9 11 6 45	<.1 .2 .1 .1 .2	<.1 .3 .4 .3	.1 .5 2 .5 1 1.0 .4	40 211 150 54 77	.50 .09 .09 .06 .78	079 063 063 100 130	7 3 2 7 5	24.3 12.6 14.3 7.8 6.6	. 58 . 22 . 31 . 68 . 82	255 28 29 84 304	.129 .075 .019 .019 .081	1 .9 1 1.7 1 2.8 1 1.1 1 3.3	L .07 5 .00 7 .00 7 .00 0 .00	7.50 5.02 4.01 5.08 5.06) 1.2<. 2 .1 . 2 . 3 .1 . 5 .2 .	01 08 15 52 32	2.2 2.9 < 3.2 4.8 < 5.0	.3<.0 .1<.0 .1<.0 .1<.0 .1.3 .1.3	5 5 < 5 14 5 11 1 0 4 4 7 8 2	.5 .9 .1 .4 .0	30.0 30.0 30.0 30.0 30.0 30.0	
148851 148852 148853 148855 148856	.6 .7 .7 1.4 .6	9.8 12.8 7.8 42.8 17.2	3.1 5.2 4.7 12.2 7.4	11 13 17 36 46	.1 .1 .1 .1 .1	.8 1.3 1.5 4.1 4.8	.7 1.5 2.3 5.8 8.2	52 73 107 248 352	1.48 2.62 2.96 8.53 4.98	.9 1.2 3.2 5.2 2.7	.1 .2 .1 1.2 .3	.6 1.5 .8 4.3 3.3	.4 .5 2.4 .6	3 5 5 5 14	.1 <.1 <.1 .1 .1	.1 .2 .2 .2 .2	.1 .1 .2 .1 .1	27 86 95 185 163	.02 .04 .05 .05 .16	017 021 038 097 043	4 5 5 4	2.5 6.9 6.6 20.0 13.5	.09 .12 .16 .48 .66	40 29 16 15 39	.009 .034 .029 .213 .140	1 1.4 1 1.2 1 1.3 1 7.2 1 2.2	5.00 1.00 7.00 5.00 5.00	6 .02 6 .01 5 .02 6 .01 9 .03	$2 \cdot .1 \cdot .1 \cdot .1 \cdot .2 < .1 \cdot .1$	10 05 05 42 11	1.1 < 1.7 < 1.8 10.3 < 4.4 <	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 6 5 9 < 5 9 < 7 19 4 5 11	.5 .5 .3 .7	30.0 30.0 30.0 30.0 30.0 30.0	
148857 148858 148859 148860 148861	.5 .4 .6 .1 .7	10.3 6.6 19.2 3.3 21.0	6.4 5.8 7.7 3.0 8.9	27 17 50 18 < 46	.1 .1 .1 <.1 .1	3.6 1.8 5.3 1.5 4.7	4.6 2.2 25.8 .4 6.9	261 88 635 20 296	4.43 3.05 4.56 .05 6.49	2.0 .9 1.7 .9 3.8	.3 .2 .4 <.1 .3	1.6 .7 1.5 <.5 2.6	.5 .3 .5 <.1 .8	16 13 12 15 7	.1 .1 .1 .1 .1	.2 .2 .1 .3	.1 .1 .1 .1 .1	163 160 135 <1 193	.18 .12 .14 .10 .07	034 014 046 031 061	5 3 5 <1 4	10.9 8.9 15.5 3.7 14.5	.22 .10 .65 .11 .55	42 25 78 27 25	.108 .128 .098 .002 .150	<1 1.6 1 .8 2 2.9 1 .0 1 3.3	4 .00 9 .00 3 .00 3 .02 0 .00	8 .02 7 .01 8 .04 1 .02 9 .03	2 < .1 < .1 < .1 2 < .1 3 < .1	.09 .05 .21 .11 .16	3.4 < 2.5 < 5.0 .3 < 5.3 <	. 1<. 0 . 1<. 0 . 1<. 0 . 1<. 0 . 1<. 0	5 12 5 9 < 5 11 1 0 <1 1 5 15 1	.9 .5 .0 .1	30.0 30.0 30.0 15.0 30.0	
148862 148863 148870 RE 148870 148871	.8 1.1 1.1 1.0 .9	42.1 27.9 20.2 21.3 21.7	7.0 7.0 7.7 8.1 6.9	52 52 35 35 74	.1 .1 .4 .4 .1	6.6 5.0 4.0 4.5 5.3	10.9 6.6 5.3 5.6 15.4	572 180 181 188 2405	5.47 8.11 7.91 8.21 5.19	4.0 4.3 4.3 4.2 1.8	.5 .7 .4 .4 .4	3.0 2.6 2.6 1.7 1.0	.9 1.5 .9 .9 .4	10 7 5 5 16	.1 .1 .1 .1 .2	.3 .2 .2 .2 .2	.1 .1 .1 .1 .1	168 209 257 256 158	.15 .06 .05 .05 .23	067 093 041 042 048	5 5 4 7	15.9 19.5 29.2 30.6 13.8	. 89 . 48 . 29 . 30 . 66	55 40 27 26 126	.136 .197 .109 .095 .107	2 3.3 1 5.1 1 3.4 1 3.4 1 2.7	5 .00 0 .01 3 .00 5 .00 2 .00	7 .04 1 .04 7 .02 7 .02 9 .04	1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	10 22 19 21	7.2 < 7.0 5.5 < 5.3 < 5.0	. 1<. 0 . 1<. 0 . 1<. 0 . 1<. 0 . 1<. 0	5 12 1 5 18 2 5 19 2 5 19 2 5 19 2 5 12 1	.6 .1 .0 .0	30.0 30.0 30.0 30.0 30.0 30.0	
148872 148873 148874 148875 148876	1.6 .4 1.2 1.2 2.7	28.8 5.1 20.0 26.5 17.5	4.7 6.8 7.2 7.2 8.1	61 27 57 54 48	.2 .1 .1 .2 .2	5.0 1.3 4.7 4.8 3.3	11.5 3.6 10.5 13.5 9.2	403 212 570 322 216	5.62 3.90 8.77 5.42 3.97	3.0 1.1 4.1 4.1 3.1	.5 .2 .7 .6 .7	1.2 1.2 1.5 1.5 1.7	1.1 .4 1.0 1.3 .9	6 17 7 6 8	.1 .1 .1 .1 .1	.2 .2 .2 .2 .2	.1 .1 .2 .2 .1	171 166 246 168 159	.07 .15 .06 .06 .08	041 034 083 057 064	6 4 6 7	14.3 8.3 12.5 14.7 14.0	. 68 . 30 . 64 . 50 . 25	33 36 30 22 24	.117 .111 .248 .109 .073	3 4.6 1 1.2 2 3.0 2 3.9 2 5.4	2 .00 2 .00 3 .00 2 .00 5 .00	9.03 6.04 8.03 6.03 7.02	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$. 23 . 08 . 17 . 28 . 28	7.4 < 5.3 < 7.0 5.2 6.3 <	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 11 2 5 9 < 5 21 1 5 12 2 5 10 4	.6 .5 .6 .7 .1	30.0 30.0 30.0 30.0 30.0 30.0	
148877 148878 148879 148880 148881	1.1 1.1 1.3 1.2 .2	11.3 41.5 25.1 32.8 27.6	7.1 29.5 7.6 17.6 4.7	30 64 61 42 22	.1 .2 .6 .1	3.2 4.5 6.3 2.4 2.2	4.4 5.8 9.6 3.2 5.5	276 272 495 328 596	5.19 5.94 6.75 5.65 2.47	2.5 3.2 6.6 6.1 3.1	.3 .5 .3 .4 .3	1.6 2.3 2.3 43.7 <.5	.6 1.2 .8 .5 .3	7 6 6 10 6	.1 .2 .2 .1	.2 .2 .2 .4 .2	.1 .1 .1 .2 .1	190 162 184 163 87	.06 .06 .07 .12 .10	035 068 058 059 045	4 6 4 2	18.0 26.7 21.9 10.1 5.7	.27 .38 .63 .29 .26	25 20 46 52 49	.085 .058 .058 .069 .033	1 1.9 1 5.0 1 3.8 1 1.8 1 1.7	5.00 7.00 2.00 7.00 5.00	6 .03 6 .02 8 .03 6 .04 4 .07	8 <.1 2 .1 8 .1 4 <.1	.09 .42 .15 .10 .07	3.5 < 7.6 < 6.9 3.7 3.7	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 13 5 13 3 5 15 1 5 13 1 5 8 <	.7 .1 .3 .0 .5	30.0 30.0 30.0 30.0 30.0 30.0	
148882 148883 148884 148951 148952	1.2 .6 .8 .8 .7	1039.6 143.5 31.6 26.9 24.6	5.8 6.0 4.3 8.1 9.1	70 22 55 65 48	.2 .2 .2 .3 .1	4.5 1.5 4.8 6.6	11.8 2.6 8.7 7.4 15.0	764 443 500 369 1086	5.22 2.93 5.26 7.82 5.67	11.9 5.3 3.2 4.8 2.1	.6 .4 .6 .3 .3	6.0 1.7 1.4 1.1 1.5	1.2 .3 .8 .5 .4	5 5 7 8 23	<.1 .2 .1 .1 .1	.3 .4 .2 .2 .2	.3 .2 .1 .1 .1 .1	83 76 142 240 224	.06 .06 .06 .08 .25	095 066 114 054 072	7 6 3 4	11.2 4.9 17.5 46.2 46.4	.68 .23 .53 .62 .58	99 88 27 37 48	.007 .017 .087 .112 .157	1 5.1 1 2.0 1 4.8 1 2.9 1 2.0	0 .00 3 .00 2 .00 7 .00 1 .00	5.08 7.05 7.02 7.02 9.02	8 <.1 5 <.1 2 .1 2 .1 2 <.1	. 19 . 09 . 28 . 20 . 12	5.7 1.9 7.0 < 5.8 < 6.3 <	.3<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 12 1 5 11 1 5 10 3 5 17 1 5 13	.8 .1 .3 .8 .5	30.0 30.0 30.0 30.0 30.0	
STANDARD DS5	12.7	144.0	25.4	139	.3 2	25.6	12.2	804	3.00	17.4	6.3	42.3	2.8	46	5.5	4.0	6.2	63	.71	.090	12 1	187.3	.66	137	.099	15 1.9	3.03	2.14	5.1	. 17	3.4 1	.1<.0	5 6 5	.1	30.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm p	U pm (Au ppb p	Th pm p	Sr (pm pp	d s om pp	Sb E om pp	3i V mippm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B / ppm	41 N %	la K %%	W ppm	Hg ppm	Sc ppm p	T1 ppm	SG %pp	a SeS mppm	ample gm	
G-1 148953 148954 148955 148956	2.3 .7 .9 .5 .7	3.9 25.9 30.1 26.6 54.3	3.3 11.2 6.4 7.6 8.1	42 78 89 213 104	<.1 .1 .2 .1 .1	5.2 12.0 6.5 4.9 10.7	4.2 13.9 19.0 15.0 19.1	574 2 716 7 695 6 2044 5 805 6	2.04 7.70 5.12 5.01 5.39	<.5 2 2.1 1.7 .8 3.1	.6 .3 .5 .3 .5	1.0 4 1.7 3.2 1.4 4.5	.7 .6 .9 .5 .9	88 < 10 6 17 9	1 < 1 1 6 2	.1 .2 .2 .2	2 42 1 268 1 173 1 162 1 180	.66 .10 .07 .15 .11	.072 .048 .075 .102 .074	10 4 5 6	20.9 62.8 21.2 18.9 20.3	.54 .96 .91 .96 1.52	240 49 51 95 55	.123 .165 .085 .044 .151	1 1.1 1 3.6 2 5.0 1 3.2 2 4.9	15 .09 58 .00 00 .00 25 .01 54 .00	01 .48 09 .03 09 .03 .1 .07 08 .03	.7< .1 .1 .1 .1	<.01 .12 .36 .13 .21	3.1 7.3 < 8.1 7.8 9.3	.3 <. <.1 <. .1 <. .1 <. .1 <.	05 05 1 05 1 05 1 05 1 05 1	5 <.5 7 .9 2 2.3 3 .6 2 1.2	30.0 30.0 30.0 30.0 30.0 30.0	
148957 148958 148959 148960 STANDARD DS5	.3 .4 .4 .7 12.2	4.3 7.3 90.2 38.3 144.6	5.2 5.6 23.0 15.1 25.0	49 42 68 69 133	.1 .1 .2 .1 .3	5.1 4.1 12.2 4.4 25.0	10.2 6.9 23.1 28.6 11.6	637 4 322 5 3197 4 4179 3 759 2	.82 .71 .34 .97 2.98	1.0 2.1 23.5 2.3 17.9 6	.2 .2 .3 1 .3	.7 .7 3.5 <.5 2.0 2	.4 .6 .1 .3	22 < 9 < 18 27 44 5	1 .1 .4 .2 .7 3	.3 .2 .3 .3 .8 6	1 164 1 198 1 129 2 88 4 61	.13 .07 .37 .32 .69	.045 .038 .138 .136 .084	3 4 6 3 11	27.8 19.1 42.1 10.6 180.1	1.11 .67 1.04 .49 .64	53 28 180 99 135	.167 .104 .040 .075 .088	1 2.3 1 2.3 2 2.4 1 1.8 17 1.9	37 .00 34 .00 48 .00 36 .00	09.03 07.03 09.06 07.03 09.13	.1 <.1 .1 .1 5.0	.13 .06 .25 .26 .18	7.7 < 5.6 < 7.0 3.2 < 3.2 1	<.1 <. <.1 <. .1 <. <.1 <. <.1 <. 1.0 <.	05 1 05 1 05 05 05	2.7 3.5 9.8 8.9 64.9	30.0 30.0 15.0 30.0 30.0	

Sample type: SOIL SS80 60C.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

DOME ANALY	 /#ŦC		AR	072	TOP	TRS	L.	.		852		-	977 T	NGS	(iiii)		17AN		171212	} BC		63	106		ן דים	ONTR	\ (602	110		218-36	<u>]</u>	V (6)	1412		
(ISO S	0002	Acc	re	dit	ed	c ō.)			с с	 :E0	СНІ	тмт	 ('A'	F	4 N Z	.т. у	STS	. C	ERI	י. ידדי	тса	TE		* **	U ••••		• ,				• • •			~
A A				Tm	s n		++		Min	inc.		~~~		יייי	а. А.Т.			ACT	שים ל	 T	14 T	a 4		1027	1 C E		Dec	~~	7						
						<u></u> c				<u></u> C	/o A	rnex	Res	ourc	es l	.td.	,, N	orth	Vanc	ouve	r BC	V7M	381	:022	L U U		ray	9=	Ŧ						
SAMPLE#	Mo ppm	Cu ppm	Pl ppr	b Zn m ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe ۲	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd opm_p	Sb opm p	Bi opm p	V C pm	a X	P La %rppn	i (Cr I Sm	Mg Ba %tppr	a Ti n %	B Sppm	A1 %	Na %	К % р	W Sprn p	Hg S pm pp	c Tl m ppm	S % (Ga Se opmippr	e Sampl n g	ė N
G-1 148544 148545 148546 148547	2.0 1.7 4.2 1.4 2.9	3.3 84.8 129.5 25.9 30.6	2.0 8.9 38.2 30.9 15.1	6 47 5 37 2 114 5 119 8 181	<.1 .2 .3 .1 .2	4.6 3.8 5.9 4.9 7.6	4.2 6.6 64.2 11.5 10.6	584 562 3140 983 439	1.95 9.10 5.47 4.78 6.96	.5 5.0 5.9 5.6 6.7	2.0 .8 .6 .3 .6	<.5 5.2 4.2 7.4 1.4	4.4 1.3 .9 .6 1.3	77 < 9 7 11 7	<.1 .1 .3 .3 .3	<.1 .2 .2 .4 .3	.1 .3 1 .2 1 .2 1 .2 1 .2 1	42 .5 93 .0 22 .0 25 .1 81 .0	7 .07 7 .09 8 .09 2 .03 7 .04	75 8 15 4 16 7 13 5 19 6	18 20 18 19 22	.4 . .8 . .0 . .0 . .6 .	56 234 25 20 50 7: 96 5: 73 50	4 .136 5 .077 3 .049 3 .052 0 .116	i <1 <1 1 1 2 1 i <1	.98 4.09 4.10 2.58 5.11	.087 .006 .007 .007 .008	.49 .02 .04 .04 .03	.9<. .1 . .1 . .1 . .1 .	01 2. 29 6. 27 5. 11 4. 30 7.	1 .4 4 <.1 2 .1 0 .1 4 .1	<.05 <.05 <.05 <.05 <.05	5 <.! 15 3.2 11 2.3 10 .7 16 2.!	5 30. 2 30. 3 30. 7 30. 5 15.	D D D D D
148548 148549 148550 148642 148643	1.2 .9 1.8 1.0 3.5	93.8 36.6 67.8 363.0 271.5	22.2 17. 16.0 14. 17.0	2 56 1 53 8 42 7 153 6 201	.1 .4 .3 .2 .3	3.4 3.1 2.9 10.4 12.4	7.5 4.5 29.9 22.8 40.8	604 179 1396 1128 2103	4.80 5.21 2.49 6.86 8.78	7.1 4.6 1.9 6.1 16.2	.2 .3 .8 .5 .3	6.2 5.2 1.7 4.4 7.5	.5 .4 .1 .8 .6	14 8 7 25 50	.1 .2 .8 .2 .7	.2 .2 .2 .2 .2	.2 .2 1 .1 .3 1 .5 1	94 .1 38 .0 46 .0 74 .1 56 .8	7 .09 6 .04 7 .15 8 .05 3 .11	00 4 18 3 18 8 19 5 12 7	10 12 7 15 13	.6 .0 .8 .7 .6 .7 .9 .9	50 97 22 30 21 74 96 107 59 217	7 .079 5 .038 4 .025 7 .134 7 .113	<pre><1 <1 <1 <1 <2 <1 <1</pre>	2.31 1.84 4.71 4.27 3.87	.005 .007 .008 .007 .008	.05 .02 .04 .04 .04	.1 . .1 . .1 . .1 . .2 .	16 4. 25 2. 42 1. 19 9. 30 9.	4 .1. 7 <.1. 8 .1. 7 .1. 2 .1	<.05 <.05 <.05 <.05 <.05	7 1.4 11 1.0 5 4.3 11 2.3 10 5.3	4 30. 0 30. 3 15. 3 15. 3 15. 3 30.	0 0 0 0
148644 148646 148647 148648 RE 148648	2.0 1.1 1.4 .9 .9	174.2 73.9 95.4 133.5 134.5	17. 8. 14. 12. 12.	0 500 8 70 4 88 7 108 8 109	.2 .3 .4 .7 .7	9.2 4.5 4.5 5.3 5.3	37.5 7.4 6.4 10.2 10.3	2247 758 352 654 651	5.07 7.44 7.61 5.78 5.70	9.5 6.5 6.3 6.5 6.6	.2 .3 .5 .3 .3	21.0 3.2 4.7 6.8 5.5	.3 .7 1.6 .6 .6	28 2 30 7 19 22	2.8 .4 .2 .3 .3	.2 .2 .2 .2 .2	.4 .4 1 .3 1 .3 1 .3 1	93 .5 92 .2 08 .0 36 .1 38 .1	8 .07 1 .07 7 .09 5 .06 6 .06	1 5 2 3 3 6 54 3 54 3	10 11 16 12 12	.9 .9 .0 .! .2 .: .4 .:	94 134 59 53 31 93 70 32 71 33	4 .083 7 .123 1 .011 2 .049 3 .056	1 1 1 1 1 1 1	2.70 3.79 4.01 2.83 2.91	.008 .007 .005 .006 .006	.06 .03 .04 .02 .02	.1 . .1 . .1 . .1 . .1 . .1 .	20 5. 28 6. 18 6. 29 4. 28 4.	8 .1. 7 .1. 3 .1. 6 .1. 8 .1.	<.05 <.05 <.05 <.05 <.05	6 2.3 12 3.3 8 2.3 8 1.3 8 1.3	2 30. l 15. 7 15. 7 15. 7 15.	0 0 0 0
148650 148738 148739 148740 148741	1.2 .9 2.0 3.4 3.4	108.0 60.8 76.3 33.3 89.2	15. 9. 16. 8.9 8.1	7 57 7 50 4 86 9 19 1 14	.5 .3 .3 .2 .2	4.1 4.9 3.3 1.7 .7	6.9 7.2 5.6 2.5 1.3	356 493 481 143 210	6.13 4.65 5.15 2.75 1.29	6.5 6.8 8.0 2.8 1.8	.4 .3 .2 .1	3.8 3.6 3.9 6.5 1.0	.9 .6 .6 .5 .4	11 9 8 4 3	.2 .3 .2 <.1 .1	.2 .2 .2 .3 .2	.3 1 .1 .2 1 .2 .1	55 .0 83 .1 15 .0 52 .0 19 .0	8 .05 1 .13 8 .09 4 .03 3 .03	59 3 56 5 52 3 56 3 52 5	15 14 11 6 2	.4 .4 .3 .0 .9 .4 .3 .1 .2 .1	45 28 62 33 40 33 22 43 21 13	3 .051 2 .080 1 .030 1 .007 2 .007	<pre><1 2 </pre>	3.69 3.14 2.34 1.94 1.60	.006 .006 .005 .004 .005	.02 .03 .02 .03 .02	.1 . .2 . .1 . .1 . .1 .	42 5. 29 3. 32 2. 09 1. 16 1.	8 <.1 4 .1 7 .1 9 .1 2 <.1	<.05 <.05 <.05 <.05 <.05	11 3.3 8 2.3 10 1.3 7 .9 6 1.3	3 15. I 7. I 30. 5 15. 2 15.	0 5 0 0 0
148742 148743 148744 148746 148748	1.0 .4 1.8 1.0 .8	8.1 19.2 36.6 41.9 19.3	4. 10. 11. 6. 6.	9 21 9 57 7 95 5 56 2 34	.1 .1 .1 .1	.8 4.8 3.6 8.4 3.4	1.2 13.2 69.2 11.9 6.8	197 600 2000 462 314	1.63 4.50 3.93 6.58 7.78	5.9 3.3 2.2 4.9 1.9	.2 .3 .6 .8	.5 1.2 1.2 3.2 1.8	.2 .3 .3 1.5 .9	3 25 10 7 13	.1 .1 .8 .1 .1	.4 .2 .2 .2 .2	.2 .1 1 .1 .1 1 .2 2	23 .0 67 .4 95 .1 68 .0 20 .0	4 .03 2 .06 2 .07 7 .05 9 .05	87 6 58 4 73 5 50 4 51 5	5 2 27 5 12 23 5 13	.1 .1 .7 1.4 .3 .1 .6 .9 .4 .3	18 6: 42 5: 28 9: 95 3: 35 3:	l .012 5 .171 4 .057 7 .134 4 .173	2 <1 1 2 2 1 1 3 1	1.40 2.49 2.98 5.40 2.38	.006 .012 .008 .006 .007	.04 < .03 .03 .02 .02 <	<.1 . .1 . .1 . .1 . .1 .	08 1. 25 6. 58 3. 19 7. 08 4.	0 .1 2 <.1 7 .1 1 <.1 8 <.1	<.05 <.05 <.05 <.05 <.05	6 <.! 13 1.0 9 2.1 12 2.0 18 .1	5 30. 0 30. 7 7. 0 30. 7 30.	0 0 5 0 0
148801 148802 148803 148805 148806	1.7 3.8 1.3 1.6 1.8	74.3 39.7 127.4 108.2 475.2	10. 16. 18. 21. 23.	8 50 6 45 6 81 8 144 1 275	.4 .3 .2 .4	3.4 2.3 5.4 8.3 11.0	7.0 4.6 9.2 13.2 22.0	490 299 586 682 1421	7.72 6.23 5.64 8.14 5.14	11.6 7.5 7.8 6.4 5.6	.5 .3 .4 .5	5.1 8.3 5.5 5.6 6.3	.8 .4 .8 1.0 .4	13 12 9 15 24	.2 .2 .2 .2 1.4	.2 .3 .2 .2 .3	.5 1 .2 1 .3 1 .3 1 .2 1	83 .1 64 .1 17 .1 77 .1 33 .4	0 .08 1 .06 0 .09 9 .08 8 .06	39 4 53 3 90 5 59 4 53 8	12 8 8 5 13 14 15	.5 .4 .5 .1 .9 .1 .4 .1	40 42 29 34 78 4 87 7 10 20	2 .055 4 .053 1 .054 7 .097 2 .077	5 1 8 1 4 1 7 1	3.79 3.43 3.22 5.30 3.55	.006 .005 .006 .007 .008	.02 .02 .04 .03 .05	.1 . .1 . .1 . .2 , .1 .	40 5. 21 5. 27 5. 24 8. 22 9.	0 .1 1 .1 1 .1 8 .1 9 .1	<.05 <.05 <.05 <.05 <.05	13 3.: 11 2.: 10 2.: 10 2.: 9 1.:	3 30. 2 15. 1 30. 3 30. 9 30.	0 0 0 0
148807 148808 148809 148812 148813	1.5 1.1 1.0 1.3 1.6	71.0 35.4 18.2 84.8 129.0	9. 9. 10. 9. 12.	0 51 6 36 0 23 3 37 7 87	.1 .2 .2 .3 .4	2.9 2.5 1.6 2.2 4.6	6.2 5.2 2.7 4.8 7.2	207 227 137 167 405	6.85 4.85 3.72 3.63 6.10	4.3 5.1 5.7 3.3 7.8	.2 .2 .1 .3 .6	3.2 4.1 3.4 1.2 4.8	.5 .4 .3 .3 1.1	14 13 15 13 12	.1 .1 .3 .2	.2 .3 .2 .3	.3 2 .2 1 .3 1 .2 1 .2 1 .2 1	08 .1 49 .1 89 .1 11 .1 38 .1	3 .02 3 .04 4 .02 4 .03 0 .12	27 2 14 2 27 1 37 4 28 5	2 10 2 8 7 8 8 1 7 8 8 18	.3 . .7 . .9 . .2 .	20 3 21 3 14 20 12 7 38 3	1 .075 2 .089 3 .132 7 .074 3 .072	5 <1 2 <1 2 <1 4 <1 2 1	2.31 1.72 1.50 1.53 5.26	.006 .005 .005 .007 .007	.01 < .02 < .02 < .02 < .02	<.1 . <.1 . <.1 . .1 . .1 .	11 3. 15 2. 09 2. 24 2. 41 9.	5 <.1 8 <.1 9 <.1 3 <.1 8 .1	<.05 <.05 <.05 <.05 <.05	15 . 9 . 10 . 8 1. 9 3.	7 30. 9 15. 5 15. 9 15. 9 15. 4 30.	0 0 0 0
STANDARD DS5	12.4	141.1	25.	2 139	.3	24.7	11.8	792	2.95	18.7	6.2	43.0	2.8	43 !	5.5 4	4.0 6	5.4	61.6	9.08	86 13	. 187	.5 .0	64 13	5.093	3 16	1.87	.030	.13 5	5.0.	203.	3 1.0	<.05	64.	3 30.	0
GROUP 1DX - (>) Concentr - Sample typ	30.00 ATION PE: SC	GM S Exci IL S	SAMPI EEDS S80	LE LI UPPI 60C	EACH ER L	ED W: IMIT: Samp	ITH 1 S. S les b	80 ML OME N egint	2-2 AINER	-2 HC ALS N 'RE'	L-H IAY E are	103-H BE PA <u>Reru</u>	20 A RTIA Ins a	ILLY	5 DE ATT. 7RRE	G. C ACKE <u>′ar</u>	FOR D. e Re	ONE REFR	HOUI ACTO <u>Rer</u>	R, DI RY AN <u>uns.</u>	LUTE D GR	D TO APHI	600 TIC S	ML, A Ample	NALY S CA	SED E N LIN	BY IC MIT A	P-MS V Soi	LUBI		SUM	C	OI L	à/s	
Data FI	A		•	DAT	ER	ECE	IVE	D:	JUN	30 20	004	DA	TE	REF	POR	тм	AII	ED:	Ψ,	//r.Ç	<u>.</u>	!4/	04	•						7		Clai	ence	Leong	
All results a	ire co	nside	ered	the	con	fider	ntial	prop	perty	of t	he c	lien	t.A	сте	ass	umes	the	lia	bili	ties	for	/ actua	al co	st of	the	anal	ysis	only	<u>y.</u>		X	レ	1	F	BEA

A A	

.

Inspiration Mining Corp. PROJECT JASPER FILE # A403165

Page 2

Data FA

	Mo	<u></u>	Ph	7n	Δa	Ni		Mn	Fe	Δc		Δ11	Th	Sr	Cd	Sh	Ri	v	Ca	P	La	Cr	Ma	Ba	Tí	 B	Δ1	Na	ĸ	ш	На			S 63	, , , , , , , , , , , , , , , , , , ,	ample	
3/N'IΓ L L.¶	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	8	ppm p	pm	ppb	ppm	ppm	ppm p	opm	ppm	ppm	*	x	ppm	ppm	x	ppm	*	ppm	x	8	x	ppm	ppm	ppm	ppm	% ppm	ppm	gna	
G-1 148814 148815 148818 148819	1.5 1.6 2.0 7.8 2.2	3.3 32.2 83.6 170.7 216.7	2.1 11.8 8.4 67.5 28.3	48 33 49 76 70	<.1 .3 .6 .8 .3	4.8 3.2 3.3 4.4 2.7	4.3 4.7 6.1 8.6 18.1	586 239 333 577 1335	1.93 7.09 6.40 5.88 5.56	<.5 1 6.2 3.0 6.8 9.5	8 .2 .3 .1 3 .3 1	.6 2.3 2.6 36.4 10.4	4.2 .4 .5 .3 .4	69 9 11 6 45	<.1 < .2 .1 .1 .2	<.1 .3 .4 .3	.1 .5 .5 1.0 .4	40 211 150 54 77	. 50 . 09 . 09 . 06 . 78	.079 .063 .063 .100 .130	7 3 2 7 5	24.3 12.6 14.3 7.8 6.6	.58 .22 .31 .68 .82	255 28 29 84 304	.129 .075 .019 .019 .081	1 1 1 1 2 1 1 1 3	.91 .76 .87 .10 .30	.077 .005 .004 .005 .005	.50 .02 .01 .08 .06	1.2< .1 .2 .1 .2	.01 .08 .15 .52 .32	2.2 2.9 3.2 4.8 5.0	.3<. <.1<. .1<. <.1 .1	05 5 05 14 05 11 30 4 07 8	<.5 .9 1.1 4.4 2.0	30.0 30.0 30.0 30.0 30.0 30.0	
148851 148852 148853 148855 148855	.6 .7 .7 1.4 .6	9.8 12.8 7.8 42.8 17.2	3.1 5.2 4.7 12.2 7.4	11 13 17 36 46	.1 .1 .1 .1	.8 1.3 1.5 4.1 4.8	.7 1.5 2.3 5.8 8.2	52 73 107 248 352	1.48 2.62 2.96 8.53 4.98	.9 1.2 3.2 5.2 1 2.7	.1 .2 .1 .2 .3	.6 1.5 .8 4.3 3.3	.4 .4 .5 2.4 .6	3 5 5 14	.1 <.1 <.1 .1 .1	.1 .2 .2 .2	.1 .1 .2 .1 .1	27 86 95 185 163	.02 .04 .05 .05 .16	.017 .021 .038 .097 .043	4 4 5 5 4	2.5 6.9 6.6 20.0 13.5	. 09 . 12 . 16 . 48 . 66	40 29 16 15 39	.009 .034 .029 .213 .140	1 1 1 1 1 1 1 7 1 2	. 45 . 21 . 37 . 20 . 25	.006 .006 .005 .006 .009	.02 .01 .02 .01 .03	.1 <.1 <.1 .1 .1	.10 .05 .05 .42 .11	1.1 1.7 1.8 10.3 4.4	<.1<. <.1<. <.1 . <.1 .	05 6 05 9 05 9 07 19 05 11	.5 <.5 <.5 4.3 .7	30.0 30.0 30.0 30.0 30.0	
148857 148858 148859 148860 148861	.5 .4 .6 .1 .7	10.3 6.6 19.2 3.3 21.0	6.4 5.8 7.7 3.0 8.9	27 17 50 18 46	.1 .1 .1 <.1 .1	3.6 1.8 5.3 1.5 4.7	4.6 2.2 25.8 .4 6.9	261 88 635 20 296	4.43 3.05 4.56 .05 6.49	2.0 .9 1.7 .9 3.8	.3 .2 .4 .3	1.6 .7 1.5 <.5 2.6	.5 .3 .5 <.1 .8	16 13 12 15 7	.1 .1 .1 .1	.2 .2 .1 .3	.1 .1 .1 .1 .1	163 160 135 <1 193	.18 .12 .14 .10 .07	.034 .014 .046 .031 .061	5 3 5 <1 4	10.9 8.9 15.5 3.7 14.5	.22 .10 .65 .11 .55	42 25 78 27 25	.108 .128 .098 .002 .150	<1 1 1 2 2 1 1 3	64 .89 .93 .08 .30	. 008 . 007 . 008 . 021 . 009	.02 .01 .04 .02 .03	<.1 <.1 <.1 <.1	.09 .05 .21 .11 .16	3.4 2.5 5.0 .3 5.3	<.1<. <.1<. .1<. <.1 . <.1<.	05 12 05 9 05 11 10 <1 05 15	.9 <.5 1.0 1.0 1.1	30.0 30.0 30.0 15.0 30.0	
148862 148863 148870 RE 148870 148871	.8 1.1 1.1 1.0 .9	42.1 27.9 20.2 21.3 21.7	7.0 7.0 7.7 8.1 6.9	52 52 35 35 74	.1 .4 .4 .1	6.6 5.0 4.0 4.5 5.3	10.9 6.6 5.3 5.6 15.4	572 180 181 188 2405	5.47 8.11 7.91 8.21 5.19	4.0 4.3 4.3 4.2 1.8	.5 .7 .4 .4	3.0 2.6 2.6 1.7 1.0	.9 1.5 .9 .9 .4	10 7 5 5 16	.1 .1 .1 .1 .2	.3 .2 .2 .2 .2	.1 .1 .1 .1 .1	168 209 257 256 158	.15 .06 .05 .05 .23	.067 .093 .041 .042 .048	5 5 4 7	15.9 19.5 29.2 30.6 13.8	. 89 . 48 . 29 . 30 . 66	55 40 27 26 126	.136 .197 .109 .095 .107	2 3 1 5 1 3 1 3 1 2	.35 .10 .48 .45 .72	.007 .011 .007 .007 .009	.04 .04 .02 .02 .04	.1 <.1 <.1 <.1 <.1	. 10 . 22 . 19 . 21 . 10	7.2 7.0 5.5 5.3 5.0	<.l<. .l<. <.l<. <.l<. .l<.	05 12 05 18 05 19 05 19 05 19 05 12	1.6 2.1 2.0 2.0 1.4	30.0 30.0 30.0 30.0 30.0 30.0	
148872 148873 148874 148875 148875	1.6 .4 1.2 1.2 2.7	28.8 5.1 20.0 26.5 17.5	4.7 6.8 7.2 7.2 8.1	61 27 57 54 48	.2 .1 .1 .2 .2	5.0 1.3 4.7 4.8 3.3	11.5 3.6 10.5 13.5 9.2	403 212 570 322 216	5.62 3.90 8.77 5.42 3.97	3.0 1.1 4.1 4.1 3.1	.5 .2 .7 .6 .7	1.2 1.2 1.5 1.5 1.7	1.1 .4 1.0 1.3 .9	6 17 7 6 8	.1 .1 .1 .1	.2 .2 .2 .2	.1 .1 .2 .2 .1	171 166 246 168 159	.07 .15 .06 .06 .08	.041 .034 .083 .057 .064	6 4 6 7	14.3 8.3 12.5 14.7 14.0	.68 .30 .64 .50 .25	33 36 30 22 24	.117 .111 .248 .109 .073	3 4 1 1 2 3 2 3 2 5	.62 .22 .08 .92 .46	.009 .006 .008 .006 .007	.03 .04 .03 .03 .02	.1 <.1 .1 .1 .1	. 23 . 08 . 17 . 28 . 28	7.4 5.3 7.0 5.2 6.3	<.l<. <.l<. .l<. .l<. <.l<.	05 11 05 9 05 21 05 12 05 10	2.6 <.5 1.6 2.7 4.1	30.0 30.0 30.0 30.0 30.0 30.0	
148877 148878 148879 148880 148881	1.1 1.1 1.3 1.2 .2	11.3 41.5 25.1 32.8 27.6	7.1 29.5 7.6 17.6 4.7	30 64 61 42 22	.1 .2 .6 .1	3.2 4.5 6.3 2.4 2.2	4.4 5.8 9.6 3.2 5.5	276 272 495 328 596	5.19 5.94 6.75 5.65 2.47	2.5 3.2 6.6 6.1 3.1	.3 .5 .3 .4 .3	1.6 2.3 2.3 43.7 <.5	.6 1.2 .8 .5 .3	7 6 6 10 6	.1 .2 .1 .1	.2 .2 .2 .4 .2	.1 .1 .2 .1	190 162 184 163 87	.06 .06 .07 .12 .10	.035 .068 .058 .059 .045	4 6 4 2	18.0 26.7 21.9 10.1 5.7	.27 .38 .63 .29 .26	25 20 46 52 49	.085 .058 .058 .058 .069 .033	$ \begin{array}{c} 1 & 1 \\ 1 & 5 \\ 1 & 3 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	95 .07 .82 87 75	.006 .006 .008 .006 .004	.03 .02 .03 .04 .07	<.1 .1 <.1 <.1	.09 .42 .15 .10 .07	3.5 7.6 6.9 3.7 3.7	<.1<. <.1<. .1<. .1<. .1<. .1<.	05 13 05 13 05 15 05 13 05 8	.7 3.1 1.3 1.0 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
148882 148883 148884 148951 148952	1.2 .6 .8 .8 .7	1039.6 143.5 31.6 26.9 24.6	5.8 6.0 4.3 8.1 9.1	70 22 55 65 43	.2 .2 .3 .1	4.5 1.5 4.8 6.6 10.1	11.8 2.6 8.7 7.4 15.0	764 443 500 369 1086	5.22 2.93 5.26 7.82 5.67	11.9 5.3 3.2 4.8 2.1	.6 .4 .6 .3 .3	6.0 1.7 1.4 1.1 1.5	1.2 .3 .8 .5 .4	5 5 7 8 23	<.1 .2 .1 .1 .1	.3 .4 .2 .2	.3 .2 .1 .1 .1	83 76 142 240 224	.06 .06 .06 .08 .25	.095 .066 .114 .054 .072	7 6 3 4	11.2 4.9 17.5 46.2 46.4	.68 .23 .53 .62 .58	99 88 27 37 48	.007 .017 .087 .112 .157	1 5 1 2 1 4 1 2 1 2	5.10 2.03 .82 2.97 2.01	.005 .007 .007 .007 .007	.08 .05 .02 .02 .02	<.1 <.1 .1 .1 <.1	. 19 . 09 . 28 . 20 . 12	5.7 1.9 7.0 5.8 6.3	.3<. .1<. <.1<. <.1<. <.1<.	05 12 05 11 05 10 05 17 05 13	1.8 1.1 3.3 1.8 .5	30.0 30.0 30.0 30.0 30.0 30.0	
STANDARD DS	5 12.7	144.0	25.4	139	.3	25.6	12.2	804	3.00	17.4 6	5.3 4	42.3	2.8	46	5.5	4.0	6.2	63	.71	.090	12	187.3	.66	137	. 099	15 1	. 93	.032	.14	5.1	.17	3.4	1.1<.	05 6	5.1	30.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME						Inf	∎pi	rat	ior	ı M	ini	Ing	Co	orp	•.	PRO	JJI	ECT	J	ASF	ER		FIL	E	# 2	A40	31	65				Pa	ge	3		A	AAA CHE ANALYTICAL	
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	۶e ۲	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm p	Sb pom p	Bi Dom Do) V лп	Ca %	PL %pp	_a om	Cr ppm	Mg %	Ba	Ti %	B ppm	A1 %	Na %	K X	W H DDM DD	ig S Mon	c T1 moom	S X	Ga DDm t	Se Sa	ample com	
<u> </u>																					FF		FF -				FF -					- PF	··· PP···		PP F	P		
	G-1	2.3	3.9	3.3	42	<.1	5.2	4.2	574	2.04	<.5	2.6	1.0	4.7	88	<.1 <	<.1	.2 4	12 .(66 .0	72 1	LO	20.9	.54	240	.123	1	1.15	.091	.48	.7<.(01 3.	1.3	<.05	5 <	.5	30.0	
	148953	.7	25.9	11.2	78	.1	12.0	13.9	716	7.70	2.1	.3	1.7	.6	10	.1	.2	.1 26	58 .:	10 .0	48	4	62.8	.96	49	. 165	1	3.68	.009	.03	.1 .1	27.	3 <.1	<.05	17	.9	30.0	
	148954	.9	30.1	6.4	89	.2	6.5	19.0	695	6.12	1.7	.5	3.2	.9	6	.1	.2	.1 17	3.0	07.0	75	4	21.2	.91	51	.085	2	5.00	.009	.03	.1 .3	36 8.	1.1	<.05	12 2	.3	30.0	
	148955	.5	26.6	7.6	213	.1	4.9	15.0	2044	5.01	.8	.3	1.4	.5	17	.6	.2	.1 16	52 .:	15.1	02	5	18.9	.96	95	.044	1	3.25	.011	. 07	.1.1	13 7.	8.1	<.05	13	.6	30.0	
	148956	.7	54.3	8.1	104	.1	10.7	19.1	805	6.39	3.1	.5	4.5	.9	9	.2	.2	.1 18	30 .:	11 .0	74	6	20.3 1	L.52	55	. 151	2	4.54	.008	.03	.1.2	219.	3.1	<.05	12 1	.2	30.0	
	148057	2	13	52	40	1	51	10.2	637	1 92	1 0	2	7	1	22	e 1	2	1 16	54 ·	13 0	45	2	27 8 1	1 11	53	167	1	2 37	000	03	1 1	27	7 ~ 1	< 05	12	7	20.0	
	14090/	.5	4.5	5.2	47	.1	9.1 A 1	2.01	222	4.0Z	2 1	.2	.',	. 4	22	~ 1	.5	1 10		10.0	40 20	1	10 1	67	20	10/	1	2.3/	.005	.03	.1.1		$\frac{1}{5}$	>.00	12	./	30.0	
	140900	.4	7.3	2.0	42	. 1	4.1	0.9	2107	4 04	2.1	. 2	12 5	.0	10	`.1	.2	.1 12	10.0	0/.U 1 70	20	4	17.1 40 1 1	.07	100	. 104	1	2.34	.007	.03	·.1.(JO D. JC 7	0 ~.1	>.UO	13	.5	30.0	
	148959	.4	90.2	23.0	00	.2	12.2	23.1	3197	4.34	23.5	.3	13.5	.1	10	.4	.3	.1 12	.9	3/ .1	30	0	42.1 1 10 C	1.04	180	.040	2	2.40	.009	.00		25 /.	0.1	<.05	9	.8	15.0	
	148960	./	38.3	15.1	69	1.	4.4	28.0	41/9	3.9/	2.3	.3	<.5	.3	21	.2	.3	.2 8	58 .	32.1	30	3	10.6	.49	.99	.0/5	1	1.86	.007	.03	. L . à	26 3.	2 <.1	<.05	8	.9	30.0	
	standard DS5	12.2	144.6	25.0	133	.3	25.0	11.6	759	2.98	17.9	6.2	42.0	2.7	44	5.7 3	3.8 6	5.4 E). Ic	69.0	84 1	111	80.1	.64	135	.088	17	1.96	.030	.13	5.0.1	18 3.	2 1.0	<.05	64	.9	30.0	

Sample type: SOIL SS80 60C.

1	ACME ANALY (ISO 9	TIC2	AL I Acc	ABO red	RA'	rori ed (IES Co.) [ns]	LTD pir	ati	on	52 Gl <u>Mi</u> 1 c/	E. EOC nir o Ar	HAS CHE 1g nex	MI CO: Reso	IGS CAL CP.	ST Al Pl Lto	NALS	NCO (SI ECT lorth	UVE) S (J7 1 Van	R BC	TIF ER er B(76A FICA Fi : v7m	IRE TE .le 3B1	\$ 1 2 #	1 	PHONE (604) 25	3-3:	58	FAX	(60)	1) 253	1716 A A	
<u></u>	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd S pm pp	Sb 8i pm ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8а ррт	Ti %	8 A1 ppm %	Na %	K %	W H ppm pp	lg So In ppi	c Tl n ppm	S % p	Ga Se pm ppm	Sample gm	
	G-1 148645 148649 148745 148754	2.4 1.6 1.5 .7 2.3	3.5 181.1 973.2 29.1 159.6	2.7 18.2 8.7 4.3 21.8	47 510 272 64 197	<.1 .2 .6 .1 .5	5.1 9.5 8.4 4.6 7.8	4.3 35.3 79.8 18.6 33.2	663 2539 4193 1214 1862	2.22 4.22 2.05 .67 5.35	<.5 6.4 1.6 1.7 9.0	2.7 .2 .2 .6 .2	.7 5.6 3.4 2.1 8.4	4.9 .3 <.1 <.1 .2	84 < 33 4 35 3 56 18	.1 < .0 .8 .9 .9	.1 .1 .2 .2 .4 .2 .3 <.1 .3 .3	46 84 45 27 84	.67 1.15 .92 1.31 .31	.080 .073 .126 .122 .093	10 6 17 8 9	23.0 9.5 7.2 11.5 12.3	.62 .76 .34 .21 .87	247 171 233 157 59	.154 .055 .030 .016 .082	2 1.13 3 2.53 6 2.85 10 2.47 3 2.63	.150 .011 .020 .024 .012	.57 .07 .22 .36 .22	4.5<.(.1 .2 .1 .2 <.1 .2 .1 .2	01 2. 20 5. 27 2. 5 1. 23 5.	3 .4< 0 .1 5 .1 0 <.1 4 <.1	.05 .17 .17 .15 .47	6 <.5 5 3.1 3 8.4 2 5.5 5 3.5	15.0 7.5 7.5 5.0 15.0	
	148811 STANDARD DS5	1.0 12.8	287.8 144.6	16.3 25.3	47 137	.7 .3	3.2 24.8	235.0 11.7	6547 788	1.60 3.04	.9 18.4	.1 6.0	1.4 43.7	<.1 2.6	4 46 5	.3 .8 3	.2 .1 .9 6.1	22 62	.08 .71	.093 .090	16 13	7.0 188.4	. 07 . 68 [.]	28 139	.016 .100	3 3.28 17 1.98	.010 .034	.84 .14	<.1 .2 4.8 .2	242. 93.	2 .1 3 1.1<	.23 .05	1 5.3 6 5.1	7.5 15.0	

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS MAT SS80 6

DATE RECEIVED: JUN 30 2004 DATE REPORT MAILED: 20/04 FA Data

		1		1				}		J			1		}		})		1]		· 1		1		. I	Ŷ	3	1	1	
ACME ANAL	YTIC/ 9002	AL 1 AC	LABC	RAT 1te	OR	IES Co.)	LTD	•	8	52	e.	'HAS'	CIN	gs	ST.	VA	NCO	UVEI	R BO	: 1	76A	1R6		PHO	NE (604) 25	3-31	.58	FAX ((604) 253	-1716	;
										Gl	EOC	CHEN	IIC	AL	AN	JAL Y	(SI	s c	'ER'	FIF	FIC F	TE											A/	
						<u>Ins</u>	<u>pir</u>	<u>ati</u>	on	<u>Mi</u> c/	<u>lir</u> Ə Ar	nex R	<u>lor</u> esol	P . Irces	PF Ltc	<u>20JI</u> 1.,, 1	<u>ECT</u> Iorti	<u>'</u> JA h Van	<u>SP</u>	<u>ER</u> er B(Fi : v7m	.le 381	# 7	403	166	5							1	
SAMPLE#	Мо	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	<u> </u>	Au	Th	Sr C	d S	ib Bi	<u>۷</u>	Ca	P	La	Cr	Ma E	a T	i B	A1	Na	ĸ	W H	a Sc	T1	5 (a Se	Samole	
	ppm	ppn	ppm	ppm	ppm	ppm	ppm	ppm	x	ppm	ppm	ppb p	pm p	pm pp	m pp	m ppm	ppm	8	*	ppm	ppm	% pp	m	% ppm	*	8	% p	opm pp	m ppm	ppm	% pp	om ppm	gm	
G-1	2.4	3.5	2.7	47	<.1	5.1	4.3	663	2.22	<.5	2.7	.74	.9	84 <.	1 <.	1.1	46	.67	. 080	10	23.0	.62 24	7.15	4 2 3	.13	.150	.57 4	.5<.0	1 2.3	.4<.	05	6 <.5	15.0	
148645	1.6	181.1	18.2	510	.2	9.5	35.3	2539	4.22	6.4	.2	5.6	.3	334.	0.	2.2	84	1.15	.073	6	9.5	.76 17	1.05	5 3 2	2.53	.011	. 07	.1.2	0 5.0	.1 .	17	5 3.1	7.5	
148649	1.5	973.2	8.7	272	.6	8.4	79.8	4193	2.05	1.6	.2	3.4 <	.1	353.	8.	4.2	45	.92	.126	17	7.2	.34 23	3 .03	0 6 2	2.85	.020	.22	.1.2	7 2.5	.1 .	17	38.4	7.5	
148745	.7	29.1	4.3	64	.1	4.6	18.6	1214	.67	1.7	.6	2.1 <	.1	56.	9.	3 <.1	27	1.31	.122	8	11.5	.21 15	7.01	6 10 2	2.47	.024	.36 <	:.1 .1	5 1.0	<.1 .	15	2 5.5	5.0	
148754	2.3	159.6	21.8	197	.5	7.8	33.2	1862	5.35	9.0	.2	8.4	.2	18.	9.	3.3	84	. 31	. 093	9	12.3	.87 5	9.08	2 3 2	2.63	.012	.22	.1.2	3 5.4	<.1 .	47	5 3.5	15.0	
148811	1.0	287.8	16.3	47	.7	3.2	235.0	6547	1.60	.9	.1	1.4 <	:.1	4.	3.	2.1	22	.08	. 093	16	7.0	.07 2	8.01	633	3.28	.010	.84 <	:.1 .2	4 2.2	.1 ·.	23	1 5.3	7.5	
STANDARD DS5	12.8	144.6	25.3	137	.3	24.8	11.7	788	3.04	18.4	6.0	43.7 2	.6	46 5.	83.	96.1	62	.71	. 090	13	188.4	.68 13	9.10	017	. 98	. 034	.14 4	.8.1	93.3	1.1<.	05	65.1	15.0	

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS MAT SS80 6

Data | 1

FA ____ DATE RECEIVED: JUN 30 2004 DATE REPORT MAILED:

ACME ANALYTICA	L LAB	ORA	TOF	TE:	3 <u>1</u>	TD.	S	85	2 E	. H	AST	[ING	5 5 5	<u>}</u> T.	VAI	NCO.	UVEI	B	<u>}</u> v	6A	1 <u></u> 1R6	-] PH	ONE	(604) 25	<u> </u> 3-3	158	FA	<u> </u>	4)25	3-1	716	
	Accre	dit	.ed	Co	.)				GE	осн	EM:	ICA	L.	AN?	/LY	SI	s c	'ER'	FIF	ICA	TE											/	A A	
TT		II	ısp	<u>ir</u>	at:	Lon	<u>M:</u>	Lnij	<u>pr</u> c/o	<u>Cor</u> Arne	p. x Re	PR	OJ ces	EC'	<u>[] J</u>		PEF	ouvi	Fil er BC	e ⋕ v7м	A4	033	352		Paç	ge i	1					4		۱ •
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd ppm p	Sb opm p	Bi pm pp	V Ca n %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B opm	A1 %	Na %	К И % ррп	I Hg 1 ppm	Sc ppm	דו : ppm %	S Ga K ppm	Se ppm	
G-1 148559 148560 148561 148562	2.2 .7 2 .5 2 .3 1 .4	3.7 26.0 20.1 15.5 7.6	3.3 7.4 7.5 7.2 5.9	44 78 55 36 49	<.1 .3 .1 .1 .1	4.5 15.3 5.7 8.9 3.5	4.0 30.3 7.9 7.7 7.9	572 13253 366 1086 1957	2.02 5.95 6.93 3.84 4.00	.7 1.8 3.2 1.4 1.1	2.5 .4 .4 .4 .6	.5 1.2 1.2 .6 .7	5.0 .2 .7 .3 .4	88 - 14 7 16 - 6	<.1 < .2 .1 <.1 .1	<.1 .1 .1 .1 .1	.2 3 .1 17 .1 20 .1 11 .1 8	9 .75 2 .23 4 .06 4 .11 4 .11	.086 .180 .072 .085 .093	11 5 4 5 5	20.0 47.9 18.1 14.1 7.4	.61 1.23 .73 .41 .80	235 183 37 84 97	.152 .103 .105 .094 .104	1 1. 1 3. 1 3. 1 1. 1 4.	13 .1 99 .0 74 .0 92 .0 09 .0	54 .5 11 .0 09 .0 09 .0 09 .0	56 5.0)9 <.1)3 .1)4 .1 10 .1	<pre>><.0120171811</pre>	2.3 9.3 6.4 4.2 4.8	.3<.05 .2<.05 <.1<.05 .1<.05 .1<.05	5 5 5 14 5 15 5 11 5 12	<.5 1.6 1.5 .9 1.0	
148563 148564 148565 148566 148567	2.5 5 1.6 6 1.7 8 1.5 8 .8 6	56.8 56.5 35.0 36.1 53.2	15.3 27.8 64.0 57.3 46.8	108 215 231 165 93	.2 .2 .3 .3 .4	4.8 6.0 6.7 6.3 4.0	12.2 23.7 31.9 28.1 19.4	2033 3987 3716 4527 3420	4.88 4.21 4.56 3.61 1.74	8.1 11.1 11.6 8.8 3.3	.5 .3 .4 .3 .3	2.2 2.9 8.1 4.5 2.7	.2 .2 .3 .1 <.1	14 14 20 16 48	.5 .6 .6 1.0	.2 .3 .3 .3 .4	.1 9 .1 8 .1 9 .1 7 .1 3	7 .23 4 .30 3 .43 0 .28 4 .99	.135 .191 .191 .206 .204	8 9 10 8 8	11.1 9.3 10.3 10.4 5.0	.50 1.32 1.42 .99 .38	122 177 275 240 362	.037 .014 .014 .012 .007	1 3. 2 3. 1 3. 1 2. 1 1.	44 .0 08 .0 02 .0 37 .0 27 .0	08 .0 07 .1 06 .1 08 .1 08 .1)5 .1 1 .1 4 <.1 3 <.1)9 <.1	27 23 19 20 38	3.7 3.4 4.3 2.1 .7	.1<.05 .1<.05 .2 .06 .1 .13 .1 .18	5 10 5 8 5 9 3 7 3 3	1.6 1.4 1.4 1.5 1.6	
148568 148569 148570 148571 148572	1.3 7 2.3 20 4.1 16 2.4 7 1.9 7	73.0 02.8 58.7 77.4 75.3	77.4 23.3 27.4 25.1 14.0	160 315 177 141 137	.2 .2 .2 .2 .3	5.3 6.4 5.0 4.2 3.8	25.5 16.8 13.4 8.4 6.4	5868 2390 1131 835 562	4.97 4.13 5.45 5.19 5.06	7.6 5.1 5.9 6.9 9.0	.5 .5 .3 .2	2.4 4.3 3.6 2.5 1.9	.3 .5 .9 .5	25 17 13 8 9	.5 .7 .3 .2 .2	.1 .2 .1 .1 .1	.1 10 .2 7 .2 12 .2 12 .2 12 .2 12	3 .40 9 .26 5 .17 5 .11 1 .12	.280 .116 .093 .080 .070	8 11 6 4 4	8.0 13.3 17.0 17.0 12.2	1.32 .84 .74 .68 .66	242 121 78 62 61	.016 .057 .060 .029 .037	<1 3. 1 4. 1 4. 1 4. 1 4. <1 3.	73 .0 20 .0 10 .0 46 .0 38 .0	07 .1 08 .0 07 .0 06 .0 05 .0	13 .1)6 .1)5 .1)5 <.1)5 <.1	19 22 15 19 14	4.4 4.4 6.5 6.1 4.8	.2 .09 .1<.09 .1<.09 .1<.09 .1<.09	 10 7 11 12 11 12 11 	1.4 2.0 1.7 1.2 1.1	
148573(NOT RECEIVED) 148576 148577 148578 RE 148578	1.0 4 4.4 31 1.6 29 1.8 29	- 48.9 19.4 58.2 59.0	16.1 23.1 19.6 19.1	121 275 155 158	.2 .2 .2 .2	- 4.0 7.9 4.5 4.5	6.6 14.2 10.1 10.5	- 566 777 991 1039	6.18 6.19 3.75 3.90	4.1 5.5 7.7 7.9	.4 .5 .3 .3	1.9 4.6 2.8 1.8	.9 1.1 .4 .4	12 9 11 11	- .3 .3 .3	.1 .1 .3 .3	.2 14 .1 11 .1 8 .1 9	14 9 .11 7 .13 1 .13	.092 .097 .102 .109	- 4 7 5 5	14.9 15.5 10.6 11.4	.51 .74 .38 .41	46 77 73 73	.089 .048 .035 .034	<13. 15. 12. 12.	89 .0 38 .0 72 .0 80 .0	- 07 .0 07 .0 06 .0 06 .0)4 <.1)6 .1)6 .1	. 14 . 28 . 26 . 26	5.2 7.8 3.5 3.8	.1<.05 .2<.05 .1<.05 .1	5 13 5 10 5 7 6 8	- 1.4 1.8 1.8 1.7	
148579 148580 148581 148582 148583	1.4 15 4.2 39 .7 3 1.2 7 1.0 2	50.3 55.4 30.0 77.9 25 <i>.</i> 0	23.4 26.1 9.9 13.5 10.1	184 170 51 165 63	.2 .3 .2 .2 .2	6.0 7.4 2.7 4.7 2.7	12.6 16.5 4.7 7.8 4.5	1897 1175 430 462 236	5.82 6.10 3.02 5.56 4.51	8.0 13.4 3.5 5.3 3.6	.5 .4 .3 .5 .3	3.6 13.1 <.5 2.3 .7	.8 1.0 .3 .9 .5	11 16 20 11 11	.5 .2 .1 .2 .2	.2 .3 .2 .1 .1	.1 12 .3 12 .1 7 .1 13 .1 14	2 .19 3 .24 6 .25 2 .12 0 .14	.139 .078 .056 .056 .095 .044	6 9 5 5 4	15.3 17.0 9.6 14.9 10.8	.66 1.42 .42 .51 .26	66 59 59 45 41	.066 .117 .051 .086 .067	2 4. 1 3. <1 1. <1 4. 1 2.	29 .0 44 .0 87 .0 56 .0 27 .0	07 .0 07 .0 06 .0 07 .0 07 .0)7 .)9 .)3 .)4 .)4 <.	L .21 L .14 L .15 L .20 L .18	6.0 8.8 3.0 6.9 4.3	.1<.09 .1<.09 <.1<.09 .1<.09 .1<.09	5 10 5 10 5 8 5 11 5 11	2.0 2.3 .9 2.3 1.0	
148584 148585 148586 148587 148588	1.2 6 2.6 27 1.1 14 1.5 12 6.9 8	54.0 73 <i>.</i> 1 48.4 21.9 32 <i>.</i> 7	14.5 24.8 27.3 20.8 29.5	112 155 194 162 84	.2 .2 .2 .2 .2	3.7 5.7 6.1 5.7 4.4	7.9 16.2 10.1 10.0 12.8	633 1309 693 982 2024	5.58 6.55 5.41 8.46 5.05	5.4 11.4 8.3 14.1 9.5	.3 .4 .5 .8	10.4 3.0 3.3 13.3 77.8	.6 .8 1.1 1.6 .8	11 12 9 7 6	.2 .7 .2 .2 .2	.1 .2 .2 .3 .4	.1 14 .2 14 .1 12 .1 16 .2 6	0.14 8.15 1.10 6.09 1.11	.077 .118 .092 .186 .186	5 7 7 8 11	13.1 15.8 14.9 22.4 10.5	.35 .89 .84 .77 .99	64 71 35 28 74	.032 .048 .076 .110 .012	<1 3 1 4 <1 3 1 6 <1 3	67 .0 12 .0 92 .0 07 .0 26 .0	06 .0 06 .0 05 .0 06 .0 05 .0)4 <.:)7 <.:)5 .:)4 .:)9 <.:	1 .15 1 .17 1 .11 1 .29 1 .13	5.4 6.4 6.7 11.5 4.1	.1<.09 .1<.09 .1<.09 .1 .11 .1 .07	5 11 5 12 5 10 1 12 7 11	1.4 1.8 1.7 3.9 1.3	
148589 148590 148749 148750 148820	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76.5 54.1 74.3 53.9 26.6	14.1 25.2 49.2 18.5 12.5	109 119 160 64 149	.2 .4 .2 .1 .1	4.8 6.8 4.6 2.8 3.2	9.2 13.8 45.1 4.0 8.1	909 1586 4422 488 711	5.49 5.72 4.29 5.95 5.25	6.0 54.5 4.6 8.0 7.7	.4 .3 .5 .3	1.6 48.3 3.4 5.4 6.1	.7 .5 .2 .5	11 14 38 9 11	2. .4 1.1 .2 .1	.2 .9 .2 .3 .1	.2 14 .4 9 .2 7 .2 11 .1 11	4 .19 4 .27 9 .97 6 .13 8 .13	5 .108 .121 .171 .174 .063	5 8 11 6 8	15.7 13.5 10.3 9.5 9.3	.63 1.30 .55 .63 .68	47 92 428 44 94	.072 .085 .033 .039 .051	<1 3 1 2 1 3 <1 3 <1 3	24 .0 01 .0 44 .0 25 .0 93 .0	07 .0 06 .1 13 .0 05 .0 10 .0	05 <.: 12 .: 06 .: 06 <.: 05 .:	L .30 L .14 L .25 L .14 L .08	5.5 6.4 4.2 3.6 5.5	.1<.09 .1 .12 .1 .10 .1<.09 .1<.09	5 12 2 7 3 8 5 13 5 13	1.6 1.2 2.9 1.3 .8	
STANDARD DS5	12.4 14	42.2	25.6	138	.3	25.3	12.0	769	3.03	18.2	6.2	40.0	2.9	46	5.6 3	3.3 6	5.3 6	0.75	5.090	12	190.9	. 68	136	.102	16 1.	98.0	33 .:	16 4.3	7.17	3.4	1.1<.0	5 7	4.8	
GROUP 1DX - 0.50 ((>) CONCENTRATION - SAMPLE TYPE: SOI	GM SAMPL EXCEEDS IL SS80	LE LE S UPF 60C	EACHE PER L	ED WI LIMIT <u>Sam</u> p	ITH S. DIes	3 ML SOM beg	2-2- E MIN innir	2 HCI IERALS	-HNO S MAY E <u>/ ar</u>	3-H20 BE F <u>e Re</u> r	OAT PARTI Suns	95 D ALLY and	EG. ATT 'RRE	C FC ACKE	DR OI	NE H REF ejec	OUR, RACTO <u>t Rer</u>	DILU RY A	TED T ND GR	0 10 APHI	ML, TIC S	ANAL) AMPLE	(SED Es ca	BY I An Li	CP-MS MIT A	U SOL	.UB I L	. YT I.	JIMP	A	<u>ठाट</u> 1		ERII	
Data FA	nsiderec	I d the	DATI	E R	ECE entia	IVE al p	D: roper	JUL	8 20 f the	04 clie	DAT	E R	EPC ass	ORT	MA the	ILE e li	abili	ties	for	actu	al cos	st of	the	e ana	lysis	only	<u>. </u>						I I I	

Page 2

																					·										
SAMPLE#	Mo ppm	Cu ppm	Pb ppm p	Zn Ag pm ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm p	U opm	Au ppb pj	Th om p	Sr Cd pm ppm	Sb ppm	Bi ppm	V ppm	Ca %	P % j	La ppm	Cr ppm	Mg % p	3a om	Ti %p	B Al om %	Na %	К %грр	∦ Hg n ppm	Sc ppm j	TI S opm %	Ga S ppm pp	Se om
G-1 148821 148822 148823 148824	2.1 .8 8.6 4 2.6 1 6.8 1	3.7 5.8 15.8 19.4 13.1	3.2 3.7 22.0 4 13.1 1 18.8	43 <.1 17 .2 12 1.4 92 .4 64 .2	4.8 .7 2.2 2.2 2.2 .9	4.2 1.2 5.1 4.5 1.1	530 64 468 453 283	1.85 1.89 4.73 3.88 5.02	<.5 2 4.8 56.6 11.4 11.5	2.5 .1 .9 .4 .2	.74 1.1 6.02 .51 .7	.2 .3 .0 .0	81 <.1 3 <.1 4 .2 3 .1 3 <.1	<.1 .1 .4 .1 .7	.1 .1 .2 .1 .2	40 52 46 52 40	.62 .03 .06 .03 .02	.067 .016 .150 .064 .071	10 8 27 19 21	17.8 3.0 6.9 6.1 2.8	.52 2 .12 .39 .36 .20	16 .1 29 .0 57 .0 47 .0 48 .0	132 018 016 012 015	1 1.01 <1 1.28 1 6.43 <1 3.37 <1 1.60	.125 .006 .007 .006 .005	.43 4.: .02 <. .05 . .03 <. .04 <.	5<.01 L .07 L .67 L .14 L .10	2.2 1.6 4.2 2.9 1.5	.3<.05 .1<.05 .3<.05 .1<.05 .1<.05	5 <. 9 <. 12 2. 12 . 11 .	5 5 6 5 5
148825 148826 148827 148828 148829	.6 1.1 .3 .9 4 .8 3	4.0 6.5 3.5 40.1 39.9	8.7 6.4 1 3.5 10.5 7.1	34 .1 01 <.1 18 .1 60 .1 43 .1	1.1 1.7 1.1 3.3 2.8	.8 1.9 1.3 11.9 5.6	212 106 82 897 269	.76 2.59 1.37 3.73 3.44	3.3 6.0 .9 3.0 4.2	.2 .2 .1 .3 .1	<.5 < 1.0 4.2 4.2 1.2	.1 .5 .3 .4 .3	6 .2 5 .1 3 <.1 41 .1 5 <.1	.3 .2 .1 .1	.1 .1 .1 .1	15 74 52 116 111	.09 .05 .04 .40 .06	.064 .025 .013 .036 .028	12 15 7 8 6	3.0 5.0 4.9 7.0 5.3	.07 .17 .11 .67 .51	57 .0 46 .0 33 .0 70 .0 60 .0	009 038 029 020 010	1 .59 <1 1.38 <1 .87 <1 2.90 <1 2.02	.008 .006 .007 .004 .004	.06 . .03 <. .03 <. .04 <. .05 <.	1 .14 1 .05 1 .04 1 .06 1 .04	.6 2.0 1.9 5.2 3.8	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	4 <. 10 <. 6 <. 11 <. 9 <.	5 5 5 5 5
148830 148885 148886 148889 148890	1.5 .6 .6 2.4 3.3	43.6 18.6 19.8 11.9 94.0	14.3 7.2 7.3 22.1 1 43.0 2	86 .3 37 .2 46 .5 40 .2 01 .5	3.0 3.7 3.9 2 5.1 5 7.2	6.0 7.9 7.8 13.4 47.7	238 656 644 1022 3737	3.58 5.99 5.33 5.42 5.34	4.8 3.0 2.9 11.6 28.4	.2 .4 .2 .6	.9 1.7 .9 8.6 85.1	.4 .5 .4 .4	10 .2 8 .1 5 .1 13 .2 18 .7	.1 .1 .1 .3	.1 .1 .1 .1	118 191 186 125 115	.13 .10 .05 .10 .19	.031 .062 .081 .045 .118	5 5 4 7 12	8.9 15.5 13.0 9.4 11.3	.32 .54 .47 1.18 .98 1	46 .(31 .: 24 .: 91 .(49 .(051 126 133 007 015	1 2.09 2 2.36 1 2.97 1 4.11 2 3.97	.005 .009 .008 .005 .005	.03 <. .04 <. .03 <. .08 <. .06 .	1 .10 1 .25 1 .28 1 .09 1 .25	3.7 5.4 5.4 6.7 6.2	.1<.05 <.1<.05 <.1<.05 .2<.05 .2<.05	10 13 11 1 11 10 1	.6 .9 .3 .7 .7
RE 148890 148962 148963 148964 148965	3.4 3.8 1.2 2.8 8.9 12	93.4 23.2 46.7 54.6 23.3	43.2 2 30.3 6.4 7.7 18.9	01 .4 99 .8 21 .7 94 .9 39 .3	1 7.4 3 5.0 7 1.6 9 5.4 3 2.4	48.2 42.7 2.2 13.5 4.4	3699 3462 214 776 277	5.36 10.79 3.51 4.62 6.72	28.0 114.3 12.7 9.6 39.4	.5 .9 .2 .7 .7	5.6 21.9 1.5 2.0 1 4.4 1	.6 .9 .1 .1 .8	18 .6 4 .1 5 .1 6 .2 4 .1	.3 .4 .2 .5	.1 .5 .1 .8	114 162 150 114 103	. 19 . 06 . 07 . 06 . 04	.122 .206 .063 .131 .097	12 5 6 7 9	11.1 19.6 6.6 14.9 10.7	.96 1 .77 .19 .55 .43	51 .0 53 .0 70 .0 42 .0 92 .0	016 042 013 080 039	2 3.86 1 4.50 1 1.99 2 6.82 1 5.27	.005 .003 .003 .006 .004	.06 <. .06 . .06 <. .03 . .04 .	1 .26 1 .36 1 .17 1 .44 1 .56	6.1 8.0 3.6 7.8 4.8	.2<.05 .4 .22 .2<.05 .1<.05 .2<.05	10 1 15 2 12 9 2 11 2	.5 .2 .7 .5
148969 148970 148971 148972 148973	.5 .4 .8 1.2 3.8	13.9 18.0 85.3 40.3 28.5	8.1 12.1 17.3 11.B 25.2 1	17 .1 25 .1 63 .3 33 .3 46 .5	1.8 2.1 34.7 31.2 51.7	2.3 2.4 27.7 21.0 4.0	164 99 6957 357 1802	1.73 1.30 3.46 1.36 4.20	2.3 3.5 5.3 3.3 10.2	.2 .1 .4 .1 .4	1.4 .5 1.0 1.0 .9	.1 .1 .3 .1 .5	12 < .1 9 .1 13 .4 14 .3 4 .4	.1 .2 .1 .3 .4	.1 .1 .1 .2	1 70 1 39 1 74 1 17 2 41	.13 .05 .13 .29 .05	.041 .086 .169 .090 .149	4 3 12 2 13	4.5 4.1 6.6 3.8 4.2	.18 .16 1 .41 2 .12 .47	49 . 00 . 39 . 65 . 95 .	012 004 006 002 010	<pre><1 1.67 2 .94 1 2.77 2 .60 1 3.51</pre>	.005 .009 .005 .008 .005	.03 <. .04 . .06 <. .05 <. .06 .	1 .10 1 .20 1 .40 1 .23 1 .39	2.7 2.1 3.3 1.1 1.8	.1<.05 <.1 .07 .1<.05 <.1 .08 .1<.05	9 < 4 9 1 2 11 1	.5 .6 .3 .6
148974 148975 148976 148977 148978	3.6 1.6 4.6 .4 1.8	49.4 25.4 00.7 4.2 7.5	47.8 8 76.2 3 52.9 1 4.6 13.6 1	44 .4 01 .6 62 .9 22 .1 11 .1	4 5.4 5 2.8 9 4.€ 1 1.1 1 1.€	15.5 10.0 40.9 1.3 5 2.4	728 738 1647 73 179	5.57 3.61 4.78 1.66 2.94	15.7 7.0 16.7 1.5 2.7	.4 .3 .7 .1 .2	1.0 <.5 7.9 <.5 27.5	.6 .4 .7 .4 .5	7 .6 5 .2 5 .3 4 <.1 7 .1	.2 .1 .2 .1	.1 .1 .2 .1 .1	122 100 141 68 83	. 08 . 06 . 09 . 04 . 07	.148 .052 .122 .009 .028	8 10 11 6 11	12.6 10.2 14.9 5.5 6.1	.93 .63 1 .76 .09 .22	91 . 05 . 74 . 30 . 41 .	022 042 078 051 037	1 4.38 1 2.87 2 5.88 1 .76 1 1.39	.004 .006 .007 .007 .006	.05 . .03 <. .06 . .02 <. .04 <.	1 .27 1 .26 1 .34 1 .03 1 .05	5.3 4.9 12.1 1.7 2.3	.3<.05 .2<.05 .3<.05 .1<.05 .1<.05	13 1 11 1 11 2 6 < 6 < 9 <	.8 .3 .7 .5
148979 148980 148981 148982 148983	1.3 2.9 1.7 4.2 2.4 2	6.9 12.2 32.5 77.2 45.9	9.5 1 12.5 2 19.0 2 28.8 150.7 1	36 .1 14 .1 88 .1 36 .4 55 .7	l 1.5 l 1.7 l 3.7 4 2.2 7 4.7	2.3 2.6 6.4 7.4 19.0	221 406 813 609 2321	2.60 3.13 4.33 3.98 3.89	3.3 7.6 6.2 6.4 4.5	.1 .2 .3 .2 .3	<.5 <.5 1.1 10.8 203.7	.5 .7 .9 .3	5 .1 4 .1 6 .1 5 <.1 10 .2	.1 .2 .1 .<.1 1	.1 .2 .1 .4	L 52 2 50 L 81 4 76 2 79	. 05 . 04 . 07 . 07 . 09	.030 .037 .068 .064 .074	13 21 10 4 10	4.8 4.7 7.8 7.8 11.1	.27 .40 .72 .23 1 .46 1	42 . 39 . 80 . 31 . 80 .	025 020 034 003 007	1 1.56 <1 2.31 1 3.34 <1 2.27 1 3.30	.006 .006 .006 .005 .007	.03 <. .03 <. .05 <. .07 <. .05 <.	1 .05 1 .07 1 .15 1 .10 1 .18	2.0 2.3 3.6 4.1 5.4	. 1<.05 . 1<.05 . 1<.05 . 1<.05 . 1<.05	5 9 < 5 12 < 5 12 5 10 5 9 1	.5 .5 .9 .3
STANDARD DS5	12.6 14	40.0	24.1 1	.37 .3	3 25.0) 12.5	745	3.01	18.0	5.8	41.0 2	.6	45 5.3	3.5	5.8	3 63	.71	.091	12	175.1	.65 1	36 .	101	18 1.92	.034	.13 4.	6 .17	3.4	1.1<.05	64	.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

	AA
A	CME ANALYTICAL

Page 3

Data

																																		ACHE AN	ACTICA	·
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cđ ppm	Sb ppm	Bi ppm	V ppm	Ca ሄ	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 لا	Na %	K %	W ppm	Hg ppm	Sc ppm	T1 ppm	S %	Ga ppm	Se ppm
G-1	2.3	3.5	3.3	47	< 1	48	4.1	604	2.10	6	2.4	< .5	4.8	91	< 1	< 1	.2	42	.71	078	11	20.7	59	236	153	<1	1 13	130	53	4.6	< 01	2.5	3.	< 05	5	< 5
148984	1.9 7	77 9 '	125.8	141	5	3.9	17.2	2845	3.96	5.3	4	2014.9	5	9	1	1	.1	94	.11	106	10	9 1	56	129	015	<1	3 30	005	08	1	17	5.3	. 2 .	< 05	11	1 2
148986	2.2.26	58.4	12.4	119	.3	4 2	7.9	484	5.66	5.4	.3	25.3	.5	10	1	1	2	133	11	079	5	15.0	.57	52	044	<1	3 52	004	.03	1	19	4 7	1.	< 05	12	1 3
148987	2.9.47	74.8	20.0	266	.2	10.3	14.9	1007	6.61	7.5	.6	9.7	1.0	13	.2	.2	.2	145	.14	.083	7	20.4	1.37	87	.137	<1	4.65	.005	.05	1	20	7 4	1.	< 05	12	1 7
148991	1.1 4	47.8	16.0	161	.1	5.5	19.8	3096	4.09	3.4	.3	1.4	.2	14	.3	.1	.1	112	.22	.073	7	13.5	.47	148	.068	1	2.12	.007	.04	<.1	.22	3.5	.1 •	<.05	9	.8
148992	1.3 4	49.7	13.5	120	.1	5.6	23.4	1631	4.78	2.9	.4	<.5	.5	22	.4	.1	.1	117	.22	.077	5	17.1	.59	109	.061	<1	3.11	.006	.05	<.1	.19	5.3	.1	<.05	11	.8
148993	1.1 6	58.1	14.1	188	. 1	6.0	9.9	623	5.27	4.4	.5	1.0	1.0	11	.3	. 1	.1	124	.12	.089	5	15.4	.64	50	.063	<1	4.65	.005	.03	<.1	.16	5.6	.1 ·	<.05	11	1.3
148994	1.5 8	31.2	15.9	195	.2	5.8	11.1	934	4.93	4.4	.4	1.1	.7	10	.3	. 1	.1	127	.11	.078	6	12.3	. 65	60	.062	1	3.69	.005	.03	.1	. 19	5.0	.1 •	<.05	10	1.3
148995	1.5 10	01.4	24.1	197	.1	7.7	12.6	903	5.25	6.7	.6	7.1	1.4	9	.2	.1	.1	104	.12	.099	7	14.4	.93	38	. 082	<1	5.84	.005	.05	.1	.24	8.1	.1 ·	<.05	7	1.8
148996	1.7 10	04.3	47.6	61	.2	3.5	8.4	696	5.75	9.0	.3	1.7	.5	14	.1	.2	.2	168	. 18	.080	5	11.7	.35	55	.078	<1	2.24	.005	.03	<.1	.12	4.2	.1 ·	<.05	14	.7
148997	3.0 31	11.4	20.0	97	.2	3.9	10.1	711	4.34	6.3	.2	9.4	.4	12	.2	.3	.2	115	.15	.085	5	10.2	.46	76	. 056	<1	2.10	.005	.05	.1	.17	3.8	.1 -	<.05	9	1.1
148998	-7.2 57	77.4	27.2	262	.5	7.7	18.9	1301	8.23	14.6	.6	13.2	.9	12	.3	.3	.5	149	. 15	. 090	8	17.2	1.41	137	. 095	<1	3.59	.005	.06	. 1	. 23	6.8	.1	. 14	12	4.2
183601	1.0 4	43.3	10.1	94	.2	2.9	20.7	1093	4.57	4.5	. 4	1.2	. 8	7	.1	.1	.2	135	.07	.069	6	12.1	. 25	45	.037	<1	3.48	.005	.04	<.1	. 19	5.9	.1 ·	<.05	13	1.0
RE 183601	1.1 4	45.0	10.8	98	.2	3.1	21.9	1117	4.80	4.9	. 4	2.1	.9	7	.2	.1	.2	141	.07	.073	6	12.8	.26	46	. 036	<1	3.64	.005	.04	<.1	. 20	6.2	.1 ·	<.05	14	1.0
183602	1.1 7	78.7	25.9	157	.2	5.1	9.1	921	5.86	5.0	.5	7.7	1.1	11	.3	.1	.2	148	.12	. 155	5	17. 1	. 58	36	.073	1	4.48	.005	.04	<.1	. 26	5.4	.1 ·	<.05	12	2.0
183603	1.2 8	89.7	17.3	127	.1	5.0	7.3	593	6.00	7.2	.5	1.7	1.2	10	.1	.1	.2	170	.10	.086	6	17.2	. 61	41	.067	<1	4.13	.005	.03	<.1	. 22	6.6	.1 .	<.05	14	1.5
183604	1.7 8	31.0	25.4	112	.1	5.1	8.1	874	5.73	6.4	.5	2.7	1.0	10	.2	. 1	.2	160	.10	.101	5	15.8	.72	44	.072	<1	3.87	.005	. 04	<.1	.19	6.1	.1 .	<.05	13	1.3
183605	1.6 4	42.2	26.7	64	.3	3.2	5.7	871	5.62	4.2	. 4	1.0	.6	11	.3	.1	.2	166	.16	.073	4	13.5	. 38	30	.069	<1	2.84	.005	.03	<.1	. 37	4.2	.1 -	<.05	13	1.2
STANDARD DS5	12.3 14	47.0	24.6	140	. 3	25.2	11.8	771	3.01	17.9	6.1	44.0	2.7	46	5.6	3.4	6.0	60	.72	.094	12	190.2	. 69	137	.102	16	1.99	.033	.15	4.4	.18	3.5	1.1	<.05	7	4.9

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

<u> </u>)	***	.) 		}		<u> </u>		1	888889999	}			}		}	000000000000000000000000000000000000000)	00000000000] [)		٦		7		
ISO 9002	Acci Acci	edi	ted.	CO CO	вц .)	τυ.		83	2 B () D	· Hu Douu	rst.	LNG	5 5 T	Т. Л.Т.	VAI NT V	VCO VET	JVER	BC	V(1778-	5A .	LR6		PH	ONE	(604)	253•	315	8 FA	X(6()4)25	3-17	16
AA		-					7 44	- 4 -	GE	осн Пот	em.		ц. От	AN/	п т Т	»т ат	8 C	T T T	. 1 F.							. 4						A
		-H	.118	0111	<u>al</u> .	LOL			c/0	Arne:	C Res	e pressioner de la companya de la co	ses	Ltd.	<u> </u>	<u>AB</u> orth	Vanc	r ouve	r BC	= # V7M	381 381	:03.	302		Page	5 Т					L	L
SAMPLE#	Mo ppm	Cı ppr	i Pi n ppr	o Zn nppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm (Cd opm p	Sb opm p	Bi V prnpprr	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti % p	BA1 opm %	Na %	К % р	W Hg om ppm	Sc ppm	T) S ppm S	Ga ppm p	Se om
G-1 148559 148560 148561 148562	2.2 .7 .5 .3 .4	3.7 26.0 20.1 15.9 7.6	7 3.3) 7.4 L 7.9 5 7.3 5 5.9	3 44 4 78 5 55 2 36 9 49	<.1 .3 .1 .1 .1	4.5 15.3 5.7 8.9 3.5	4.0 30.3 7.9 7.7 7.9	572 13253 366 1086 1957	2.02 5.95 6.93 3.84 4.00	.7 1.8 3.2 1.4 1.1	2.5 .4 .4 .4 .6	.5 1.2 1.2 .6 .7	5.0 .2 .7 .3 .4	88 · 14 7 16 · 6	<.1 < .2 .1 <.1 .1	<.1 .1 .1 .1 .1	.2 39 1 172 1 204 .1 114 .1 84	.75 .23 .06 .11 .11	. 086 . 180 . 072 . 085 . 093	11 5 4 5 5	20.0 47.9 18.1 14.1 7.4	.61 1.23 .73 .41 .80	235 183 37 84 97	. 152 . 103 . 105 . 094 . 104	1 1.13 1 3.99 1 3.74 1 1.92 1 4.09	.154 .011 .009 .009 .008	.56 5 .09 < .03 .04 .10	.0<.01 .1 .20 .1 .17 .1 .18 .1 .11	2.3 9.3 6.4 4.2 4.8	.3<.05 .2<.05 <.1<.05 .1<.05 .1<.05	5 < 14 1 15 1 11 12 1	.5 .6 .5 .9 .0
148563 148564 148565 148566 148567	2.5 1.6 1.7 1.5 .8	56.8 66.9 85.0 86.1 63.2	3 15.3 5 27.8 0 64.9 1 57.3 2 46.8	3 108 3 215 0 231 3 165 3 93	.2 .2 .3 .3 .4	4.8 6.0 6.7 6.3 4.0	12.2 23.7 31.9 28.1 19.4	2033 3987 3716 4527 3420	4.88 4.21 4.56 3.61 1.74	8.1 11.1 11.6 8.8 3.3	.5 .3 .4 .3 .3	2.2 2.9 8.1 4.5 2.7	.2 .2 .3 .1 <.1	14 14 20 16 48	.5 .6 .6 1.0 1.2	.2 .3 .3 .3 .4	.1 97 .1 84 .1 93 .1 70 .1 34	. 23 . 30 . 43 . 28 . 99	.135 .191 .191 .206 .204	8 9 10 8 8	11.1 9.3 10.3 10.4 5.0	.50 1.32 1.42 .99 .38	122 177 275 240 362	.037 .014 .014 .012 .007	1 3.44 2 3.08 1 3.02 1 2.37 1 1.27	.008 .007 .006 .008 .007	.05 .11 .14 < .13 < .09 <	.1 .27 .1 .23 .1 .19 .1 .20 .1 .38	3.7 3.4 4.3 2.1 .7	.1<.09 .1<.09 .2 .00 .1 .13 .1 .18	10 1 8 1 9 1 7 1 3 1	.6 .4 .5 .6
148568 148569 148570 148571 148572	1.3 2.3 4.1 2.4 1.9	73.0 202.8 168.7 77.4 75.3) 77.4 3 23.3 7 27.4 4 25.3 3 14.0	4 160 3 315 4 177 L 141 0 137	.2 .2 .2 .2 .3	5.3 6.4 5.0 4.2 3.8	25.5 16.8 13.4 8.4 6.4	5868 2390 1131 835 562	4.97 4.13 5.45 5.19 5.06	7.6 5.1 5.9 6.9 9.0	.5 .5 .3 .2	2.4 4.3 3.6 2.5 1.9	.3 .5 .9 .6	25 17 13 8 9	.5 .7 .3 .2 .2	.1 .2 .1 .1 .1	.1 103 .2 79 .2 125 .2 125 .2 125 .2 121	. 40 . 26 . 17 . 11 . 12	.280 .116 .093 .080 .070	8 11 6 4 4	8.0 13.3 17.0 17.0 12.2	1.32 .84 .74 .68 .66	242 121 78 62 61	.016 .057 .060 .029 .037	<1 3.73 1 4.20 1 4.10 1 4.46 <1 3.38	.007 .008 .007 .006 .005	.13 .06 .05 .05 < .04 <	.1 .19 .1 .22 .1 .15 .1 .19 .1 .14	4.4 4.4 6.5 6.1 4.8	.2 .09 .1<.09 .1<.09 .1<.09 .1<.09	10 1 7 2 11 1 12 1 11 1	.4 .0 .7 .2 .1
148573(NOT RECEIVED) 148576 148577 148578 RE 148578	1.0 4.4 1.6 1.8	48.9 319.4 258.2 259.0) 16. 23. 2 19. 0 19.	121 121 275 5155 158	.2 .2 .2 .2	4.0 7.9 4.5 4.5	6.6 14.2 10.1 10.5	- 566 777 991 1039	6.18 6.19 3.75 3.90	4.1 5.5 7.7 7.9	.4 .5 .3 .3	1.9 4.6 2.8 1.8	.9 1.1 .4 .4	12 9 11 11	.3 .3 .3 .3	.1 .1 .3 .3	.2 146 .1 119 .1 87 .1 91	.14 .11 .13 .13	. 092 . 097 . 102 . 109	- 4 7 5 5	14.9 15.5 10.6 11.4	.51 .74 .38 .41	46 77 73 73	. 089 . 048 . 035 . 034	<pre><1 3.89 1 5.38 1 2.72 1 2.80</pre>	.007 .007 .006 .006	.04 < .06 .06 .06	.1 .14 .1 .28 .1 .26 .1 .26	5.2 7.8 3.5 3.8	.1<.09 .2<.09 .1<.09 .1	13 1 10 1 7 1 8 1	- .4 .8 .8 .7
148579 148580 148581 148582 148583	1.4 4.2 .7 1.2 1.0	150.3 355.4 30.0 77.9 25.0	3 23.4 4 26.1 9 9.9 9 13.1 9 10.1	4 184 1 170 9 51 5 165 1 63	.2 .3 .2 .2	6.0 7.4 2.7 4.7 2.7	12.6 16.5 4.7 7.8 4.5	1897 1175 430 462 236	5.82 6.10 3.02 5.56 4.51	8.0 13.4 3.5 5.3 3.6	.5 .4 .3 .5 .3	3.6 13.1 <.5 2.3 .7	.8 1.0 .3 .9 .5	11 16 20 11 11	.5 .2 .1 .2 .2	.2 .3 .2 .1 .1	.1 122 .3 123 .1 76 .1 132 .1 140	. 19 . 24 . 25 . 12 . 14	.139 .078 .056 .095 .044	6 9 5 5 4	15.3 17.0 9.6 14.9 10.8	.66 1.42 .42 .51 .26	66 59 59 45 41	.066 .117 .051 .086 .067	2 4.29 1 3.44 <1 1.87 <1 4.56 1 2.27	.007 .007 .006 .007 .007	.07 .09 .03 .04 .04 <	.1 .21 .1 .14 .1 .15 .1 .20 .1 .18	6.0 8.8 3.0 6.9 4.3	.1<.09 .1<.09 <.1<.09 .1<.09 .1<.09	i 10 2 i 10 2 i 8 i 11 2 i 11 1	.0 .3 .9 .3 .0
148584 148585 148586 148587 148588	1.2 2.6 1.1 1.5 6.9	64.0 273.1 148.4 121.9 82.7) 14. 24. 27. 20. 7 29.	5 112 3 155 3 194 3 162 5 84	.2 .2 .2 .2	3.7 5.7 6.1 5.7 4.4	7.9 16.2 10.1 10.0 12.8	633 1309 693 982 2024	5.58 6.55 5.41 8.46 5.05	5.4 11.4 8.3 14.1 9.5	.3 .4 .5 .8 .5	10.4 3.0 3.3 13.3 77.8	.6 .8 1.1 1.6 .8	11 12 9 7 6	.2 .7 .2 .2	.1 .2 .3 .4	.1 140 .2 148 .1 121 .1 166 .2 61	.14 .15 .10 .09 .11	.077 .118 .092 .186 .171	5 7 7 8 11	13.1 15.8 14.9 22.4 10.5	. 35 . 89 . 84 . 77 . 99	64 71 35 28 74	. 032 . 048 . 076 . 110 . 012	<1 3.67 1 4.12 <1 3.92 1 6.07 <1 3.26	.006 .006 .005 .006 .005	.04 < .07 < .05 .04 .09 <	.1 .15 .1 .17 .1 .11 .1 .29 .1 .13	5.4 6.4 6.7 11.5 4.1	.1< 0 .1< 0 .1< 0 .1 .1 .1 .0	5 11 1 5 12 1 5 10 1 12 3 7 11 1	.4 .8 .7 .9 .3
148589 148590 148749 148750 148820	1.0 5.8 1.0 1.4 3.6	76.9 154.1 74.3 153.9 126.0	5 14. 25. 3 49. 9 18. 5 12.	1 109 2 119 2 160 5 64 5 149	.2 .4 .2 .1	4.8 6.8 4.6 2.8 3.2	9.2 13.8 45.1 4.0 8.1	909 1586 4422 488 711	5.49 5.72 4.29 5.95 5.25	6.0 54.5 4.6 8.0 7.7	.4 .3 .5 .3 .3	1.6 48.3 3.4 5.4 6.1	.7 .5 .2 .5 .8	11 14 38 9 11	.2 .4 1.1 .2 .1	.2 .9 .2 .3 .1	.2 144 .4 94 .2 79 .2 116 .1 118	.15 .27 .97 .13 .13	. 108 . 121 . 171 . 124 . 063	5 8 11 6 8	15.7 13.5 10.3 9.5 9.3	.63 1.30 .55 .63 .68	47 92 428 44 94	.072 .085 .033 .039 .051	<1 3.24 1 2.01 1 3.44 <1 3.25 <1 3.93	.007 .006 .013 .005 .010	.05 < .12 .06 .06 < .05	.1 .30 .1 .14 .1 .25 .1 .14 .1 .08	5.5 6.4 4.2 3.6 5.5	.1<.09 .1 .12 .1 .10 .1<.09 .1<.09	i 12 1 7 1 8 2 13 1 13	.6 .2 .9 .3 .8
STANDARD DS5	12.4	142.2	2 25.	5 138	.3	25.3	12.0	769	3.03	18.2	6.2	40.0	2.9	46 !	5.6 3	8.3 6	.3 60	.75	. 090	12	190.9	. 68	136	. 102	16 1.98	. 033	.16 4	.7 .17	3.4	1.1<.0	574	.8
GROUP 1DX - 0.50 C (>) CONCENTRATION - SAMPLE TYPE: SOI	EXCEE	IPLE IDS U 30 60	LEACI PPER C	IED W LIMI <u>Sam</u>	ITH TS. ples	3 ML SOM beg	2-2- E MIN innin	2 HCL ERALS Ig 'RE	-HNO MAY / are	S-H2O BE P e Rer	AT ARTI uns	95 D ALLY and	EG. ATT <u>'RRE</u>	C FC ACKE	DR ON D. <u>e R</u> e	IE HO REFI	DUR, D RACTOR t <u>Reru</u>	ILUT YAN <u>Ins.</u>	ED TO	0 10 APHI1	ML, Tic s /	ANALY Ample	'SED S CA	BY I(N LIN	CP-MS. MIT AU	SOLUB	ILITY	UM	A	ðTč	70	
Data FA			DAI	'E R	ECE	IVE	D:	JUL	8 20	04	DAT	ER	EPC	RT	MA	ILE	D:)h	ly:	20/	64	•••							Clar	.h-	eong	IJ
All results are con	nsider	ed tl	ne co	onfid	enti	alp	oper	ty of	the	clie	nt.	Acme	ass	umes	the	e lie	abilit	ies	for a	actua	al co	st of	the	ana	ysis o	nly.		V	Z		Y	

ME ANALYTICAL																. :															ACI	E ANALYTICA
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb (Th pom	Sr C ppm pp	d Sb nppm	Bi ppm	V ppm	Ca %	P %≭p∣	La pm	Cr ppm	Mg %tp	Ba 1 pmr	`i B %rppnn	A1 %	Na %	K X pr	W Hg xm ppm	Sc ppm	T1 ppm	S Ga %rppnrn	Se ppm
G-1 148821 148822 148823 148824	2.1 .8 8.6 2.6 6.8	3.7 5.8 45.8 19.4 13.1	3.2 3.7 22.0 13.1 18.8	43 17 412 192 64	<.1 .2 1.4 .4 .2	4.8 .7 2.2 2.2 .9	4.2 1.2 5.1 4.5 1.1	530 64 468 453 283	1.85 1.89 4.73 3.88 5.02	<.5 4.8 56.6 11.4 11.5	2.5 .1 .9 .4 .2	.7 1.1 6.0 .5 .7	4.2 .3 2.0 1.0 .6	81 <. 3 <. 4 . 3 <. 3 <.	1 <.1 1 .1 2 .4 1 .1 1 .7	.1 .1 .2 .1 .2	40 52 46 52 40	. 62 . 03 . 06 . 03 . 02	.067 .016 .150 .064 .071	10 1 8 27 19 21	17.8 3.0 6.9 6.1 2.8	.52 2 .12 .39 .36 .20	16 .13 29 .01 57 .01 47 .01 48 .01	2 1 .8 <1 .6 1 .2 <1 .5 <1	1.01 1.28 6.43 3.37 1.60	. 125 . 006 . 007 . 006 . 005	.43 4 .02 < .05 . .03 < .04 <	.5<.01 .1 .07 .1 .67 .1 .14 .1 .10	2.2 1.6 4.2 2.9 1.5	.3<.0 .1<.0 .3<.0 .1<.0 .1<.0	5 5 5 9 5 12 5 12 5 12 5 11	<.5 <.5 2.6 .6 .5
148825 148826 148827 148828 148829	.6 1.1 .3 .9 .8	4.0 6.5 3.5 40.1 39.9	8.7 6.4 3.5 10.5 7.1	34 101 18 60 43	.1 <.1 .1 .1 .1	1.1 1.7 1.1 3.3 2.8	.8 1.9 1.3 11.9 5.6	212 106 82 897 269	.76 2.59 1.37 3.73 3.44	3.3 6.0 .9 3.0 4.2	.2 .1 .3	<.5 1.0 4.2 4.2 1.2	<.1 .5 .3 .4 .3	6 . 5 . 3 <. 41 . 5 <.	2 .3 1 .2 1 .1 1 .1 1 .1	.1 .1 .1 .1	15 74 52 116 111	.09 .05 .04 .40 .06	.064 .025 .013 .036 .028	12 15 7 8 6	3.0 5.0 4.9 7.0 5.3	.07 .17 .11 .67 .51	57 .00 46 .03 33 .02 70 .02 60 .01	9 1 88 <1 29 <1 20 <1 .0 <1	.59 1.38 .87 2.90 2.02	.008 .006 .007 .004 .004	.06 .03 < .03 < .04 < .05 <	1 .14 1 .05 1 .04 1 .06 1 .04	.6 2.0 1.9 5.2 3.8	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 4 5 10 5 6 5 11 5 9	<.5 <.5 <.5 <.5 <.5
148830 148885 148886 148889 148890	1.5 .6 2.4 3.3	43.6 18.6 19.8 111.9 94.0	14.3 7.2 7.3 22.1 43.0	86 37 46 140 201	.3 .2 .5 .2	3.0 3.7 3.9 5.1 7.2	6.0 7.9 7.8 13.4 47.7	238 656 644 1022 3737	3.58 5.99 5.33 5.42 5.34	4.8 3.0 2.9 11.6 28.4	.2 .4 .2 .6	.9 1.7 .9 8.6 85.1	.4 .5 .4 .4	10 . 8 . 5 . 13 . 18 .	2 .1 1 .1 1 .1 2 .1 7 .3	.1 .1 .1 .1	118 191 186 125 115	.13 .10 .05 .10 .19	.031 .062 .081 .045 .118	5 51 41 7 121	8.9 15.5 13.0 9.4 1 11.3	.32 .54 .47 L.18 .98 1	46 .05 31 .12 24 .13 91 .00 49 .01	51 1 26 2 33 1 97 1 15 2	2.09 2.36 2.97 4.11 3.97	.005 .009 .008 .005 .005	.03 < .04 < .03 < .08 < .06	.1 .10 .1 .25 .1 .28 .1 .09 .1 .25	3.7 5.4 5.4 6.7 6.2	.1<.0 <.1<.0 <.1<.0 .2<.0 .2<.0	5 10 5 13 5 11 5 11 5 11 5 10	.6 .9 1.3 .7 1.7
RE 148890 148962 148963 148964 148965	3.4 3.8 1.2 2.8 8.9	93.4 223.2 46.7 254.6 123.3	43.2 30.3 6.4 7.7 18.9	201 99 21 94 39	.4 .8 .7 .9 .3	7.4 5.0 1.6 5.4 2.4	48.2 42.7 2.2 13.5 4.4	3699 3462 214 776 277	5.36 10.79 3.51 4.62 6.72	28.0 114.3 12.7 9.6 39.4	.5 .9 .2 .7 .7	5.6 21.9 1.5 2.0 4.4	.6 .9 .1 1.1 1.8	18 . 4 . 5 . 6 . 4 .	6.3 1.4 1.2 2.2 1.5	.1 .5 .1 .8	114 162 150 114 103	.19 .06 .07 .06 .04	.122 .206 .063 .131 .097	12 1 5 1 6 7 1 9 1	11.1 19.6 6.6 14.9 10.7	.96 1 .77 .19 .55 .43	51 .01 53 .04 70 .01 42 .08 92 .03	16 2 12 1 13 1 13 2 13 1 13 1 13 1 13 1 13	3.86 4.50 1.99 6.82 5.27	.005 .003 .003 .006 .004	.06 < .06 < .06 < .03 .04	1 .26 1 .36 1 .17 1 .44 1 .56	6.1 8.0 3.6 7.8 4.8	.2<.0 .4 .2 .2<.0 .1<.0 .2<.0	5 10 2 15 5 12 5 9 5 11	1.5 2.2 .7 2.5 2.5
148969 148970 148971 148972 148973	.5 .4 .8 1.2 3.8	13.9 18.0 85.3 40.3 28.5	8.1 12.1 17.3 11.8 25.2	17 25 63 33 146	.1 .1 .3 .5	1.8 2.1 4.7 1.2 1.7	2.3 2.4 27.7 1.0 4.0	164 99 6957 357 1802	1.73 1.30 3.46 1.36 4.20	2.3 3.5 5.3 3.3 10.2	.2 .1 .4 .1 .4	1.4 .5 1.0 1.0 .9	.1 .1 .3 .1 .5	12 <. 9 . 13 . 14 . 4 .	1 .1 1 .2 4 .1 3 .3 4 .4	.1 .1 <.1 <.2	70 39 74 17 41	.13 .05 .13 .29 .05	.041 .086 .169 .090 .149	4 3 12 2 13	4.5 4.1 6.6 3.8 4.2	.18 .16 1 .41 2 .12 .47	49 .01 00 .00 39 .00 65 .00 95 .01	12 <1 04 2 06 1 02 2 10 1	1.67 .94 2.77 .60 3.51	.005 .009 .005 .008 .005	.03 < .04 .06 < .05 < .06	.1 .10 .1 .20 .1 .40 .1 .23 .1 .39	2.7 2.1 3.3 1.1 1.8	.1<.0 <.1 .0 .1<.0 <.1 .0 .1<.0	5 9 7 4 5 9 8 2 5 11	<.5 .6 1.3 .6 1.6
148974 148975 148976 148977 148978	3.6 1.6 4.6 .4 1.8	49.4 25.4 100.7 4.2 7.5	47.8 76.2 52.9 4.6 13.6	844 301 162 22 111	.4 .6 .9 .1 .1	5.4 2.8 4.6 1.1 1.6	15.5 10.0 40.9 1.3 2.4	728 738 1647 73 179	5.57 3.61 4.78 1.66 2.94	15.7 7.0 16.7 1.5 2.7	.4 .3 .7 .1 .2	1.0 <.5 7.9 <.5 27.5	.6 .4 .7 .4 .5	7. 5. 5. 4. 7.	6 .2 2 .1 3 .2 1 .1 1 .1	.1 .1 .2 .1 .1	122 100 141 68 83	.08 .06 .09 .04 .07	. 148 . 052 . 122 . 009 . 028	8 1 10 1 11 1 6 11	12.6 10.2 14.9 5.5 6.1	.93 .63 1 .76 .09 .22	91 .02 05 .04 74 .07 30 .05 41 .03	22 1 12 1 18 2 51 1 37 1	4.38 2.87 5.88 .76 1.39	.004 .006 .007 .007 .007	.05 .03 < .06 .02 < .04 <	.1 .27 .1 .26 .1 .34 .1 .03 .1 .05	5.3 4.9 12.1 1.7 2.3	.3<.0 .2<.0 .3<.0 .1<.0	5 13 5 11 5 11 5 6 5 9	1.8 1.3 2.7 <.5 <.5
148979 148980 148981 148982 148983	1.3 2.9 1.7 4.2 2.4	6.9 12.2 32.5 77.2 245.9	9.5 12.5 19.0 28.8 150.7	136 214 288 36 155	.1 .1 .4 .7	1.5 1.7 3.7 2.2 4.7	2.3 2.6 6.4 7.4 19.0	221 406 813 609 2321	2.60 3.13 4.33 3.98 3.89	3.3 7.6 6.2 6.4 4.5	.1 .2 .3 .2 .3	<.5 <.5 1.1 10.8 203.7	.5 .7 .9 .3	5. 4. 6. 5<. 10.	1 .1 1 .2 1 .1 1 <.1 2 <.1	.1 .2 .1 .4	52 50 81 76 79	.05 .04 .07 .07 .09	.030 .037 .068 .064 .074	13 21 10 4 10 1	4.8 4.7 7.8 7.8 11.1	.27 .40 .72 .23 1 .46 1	42 .02 39 .02 80 .03 31 .00 80 .00	25 1 20 <1 34 1 33 <1 37 1	1.56 2.31 3.34 2.27 3.30	.006 .006 .006 .005 .007	.03 < .03 < .05 < .07 < .05 <	.1 .05 .1 .07 .1 .15 .1 .10 .1 .18	2.0 2.3 3.6 4.1 5.4	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 9 5 12 5 12 5 10 5 9	<.5 <.5 .9 1.3
standard DS5	12.6	140.0	24.1	137	.3	25.0	12.5	745	3.01	18.0	5.8	41.0	2.6	45 5.	3 3 5	5.8	63	.71	091	12 17	75.1	65 1	36 10	1 18	1.92	034	13 4	6 17	3.4	1 1< (5 6	4 5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 2

Page 3

Data FA

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P %	La	Cr	Mg	Ba	Ti	B	A1 ¥	Na X	K	W	Hg	Sc	TI	S X D	Ga	Se
	Phil	- Phil	Phil	Ppin	Ppin		Phil	- Phil	~ ~ ~	P	PPin		PPii	PP'''	Ppin	2011	2211	25.0	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PPin	200	~~~	P.P	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PP		~		PP'''	25.0	22	PP'''	~ P	- Pill	P P
G-1	2.3	3.5	3.3	47	<.1	4.8	4.1	604	2.10	.6	2.4	<.5	4.B	91	<.1	<.1	.2	42	.71	.078	11	20.7	.59	236	.153	<1	1.13	.130	.53	4.6	<.01	2.5	.3 <.	05	5	<.5
148984	1.9	77.9	125.8	141	.5	3.9	17.2	2845	3.96	5.3	.4	2014.9	.5	9	.1	.1	.1	94	. 11	.106	10	9.1	. 56	129	.015	<1	3.30	.005	.08	.1	. 17	5.3	.2 <.	05	11	1.2
148986	2.2	268.4	12.4	119	.3	4.2	7.9	484	5.66	5.4	.3	25.3	.5	10	.1	.1	.2	133	.11	.079	5	15.0	.57	52	.044	<1	3.52	.004	.03	.1	. 19	4.7	.1 <.	05	12	1.3
148987	2.9	474.8	20.0	266	.2	10.3	14.9	1007	6.61	7.5	.6	9.7	1.0	13	.2	.2	.2	145	. 14	.083	7	20.4	1.37	87	. 137	<1	4.65	.005	.05	.1	.20	7.4	.1 <.	05	12	1.7
148991	1.1	47.8	16.0	161	.1	5.5	19.8	3096	4.09	3.4	.3	1.4	.2	14	.3	.1	.1	112	.22	.073	7	13.5	. 47	148	. 068	1	2.12	. 007	.04	<.1	.22	3.5	.1 <.	05	9	.8
148992	1.3	49.7	13.5	120	.1	5.6	23.4	1631	4.78	2.9	.4	<.5	.5	22	.4	.1	.1	117	.22	.077	5	17.1	. 59	109	.061	<1	3.11	.006	.05	<.1	. 19	5.3	.1 <.	05	11	.8
148993	1.1	68.1	14.1	188	.1	6.0	9.9	623	5.27	4.4	.5	1.0	1.0	11	.3	.1	.1	124	.12	.089	5	15.4	.64	50	.063	<1	4.65	.005	.03	<.1	. 16	5.6	.1 <.	05	11	1.3
148994	1.5	81.2	15.9	195	.2	5.8	11.1	934	4.93	4.4	.4	1.1	.7	10	.3	.1	.1	127	.11	.078	6	12.3	.65	60	.062	1	3.69	.005	.03	.1	.19	5.0	.1 <.	05	10	1.3
148995	1.5	101.4	24.1	197	.1	7.7	12.6	903	5.25	6.7	.6	7.1	1.4	9	.2	.1	.1	104	.12	.099	7	14.4	.93	38	.082	<1	5.84	.005	.05	.1	. 24	8.1	.1 <.	05	7	1.8
148996	1.7	104.3	47.6	61	.2	3.5	8.4	696	5.75	9.0	.3	1.7	.5	14	.1	.2	.2	168	.18	.080	5	11.7	.35	55	.078	<1	2.24	.005	.03	<.1	.12	4.2	.1 <.	05	14	.7
148997	3.0	311.4	20.0	97	.2	3.9	10.1	711	4.34	6.3	.2	9.4	.4	12	.2	.3	.2	115	.15	.085	5	10.2	.46	76	. 056	<1	2.10	. 005	. 05	.1	.17	3.8	.1 <.	05	9	1.1
148998	7.2	577.4	27.2	262	.5	7.7	18.9	1301	8.23	14.6	.6	13.2	.9	12	.3	.3	.5	149	.15	.090	8	17.2	1.41	137	.095	<1	3.59	.005	.06	.1	. 23	6.8	.1 .	14	12	4.2
183601	1.0	43.3	10.1	94	.2	2.9	20.7	1093	4.57	4.5	.4	1.2	.8	7	.1	.1	.2	135	.07	.069	6	12.1	.25	45	.037	<1	3.48	.005	. 04	<.1	. 19	5.9	.1 <.	05	13	1.0
RE 183601	1.1	45.0	10.8	98	.2	3.1	21.9	1117	4.80	4.9	.4	2.1	.9	7	.2	.1	.2	141	.07	.073	6	12.8	.26	46	.036	<1	3.64	.005	. 04	<.1	.20	6.2	.1 <.	05	14	1.0
183602	1.1	78.7	25.9	157	.2	5.1	9.1	921	5.86	5.0	.5	7.7	1.1	11	.3	.1	.2	148	.12	. 155	5	17.1	.58	36	.073	1	4.48	.005	.04	<.1	.26	5.4	.1 <.	05	12	2.0
183603	1.2	89.7	17.3	127	.1	5.0	7.3	593	6.00	7.2	.5	1.7	1.2	10	· .1	.1	.2	170	.10	.086	6	17.2	.61	41	.067	<1	4.13	.005	.03	<.1	.22	6.6	.1 <.	05	14	1.5
183604	1.7	81.0	25.4	112	.1	5.1	8.1	874	5.73	6.4	.5	2.7	1.0	10	.2	.1	.2	160	.10	.101	5	15.8	.72	44	.072	<1	3.87	.005	.04	<.1	. 19	6.1	.1 <.	05	13	1.3
183605	1.6	42.2	26.7	64	.3	3.2	5.7	871	5.62	4.2	.4	1.0	.6	11	.3	.1	.2	166	.16	.073	4	13.5	.38	30	.069	<1	2.84	.005	.03	<.1	.37	4.2	.1 <.	05	13	1.2
STANDARD DS5	12.3	147.0	24.6	140	.3	25.2	11.8	771	3.01	17.9	6.1	44.0	2.7	46	5.6	3.4	6.0	60	.72	.094	12	190.2	.69	137	.102	16	1.99	.033	.15	4.4	. 18	3.5	1.1 <.	05	7	4.9

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Inspiration Mining Corp. PROJECT JASPER File # A403353 c/o Arnex Resources Ltd.,, North Vancouver BC V7M 381 Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Αl Na K W Hg Sc Tl S Ga Se SAMPLE# Cu Pb Zn Ag Ni Mo % ppm ppm ppb ppm ppm ppm ppm ppm % % % % ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm % ppm ppm % ppm % ppm ppm ppm ppm 2.3 3.2 2.9 47 <.1 4.8 4.6 576 2.01 .5 2.3 .8 4.0 86 <.1 <.1 .1 41 .67 .067 10 20.7 .58 238 .146 1 1.10 .123 .52 4.4<.01 2.5 .3<.05 5 <.5 G-1 2.0 390.3 47.6 537 .4 10.1 146.5 12775 1.89 4.1 .4 4.0 .2 27 3.1 .3 .1 36 .51 .138 18 9.7 .45 221 .027 4 4.57 .009 .06 .1 .26 3.3 .2 .08 3 4.3 183558 12.2 137.9 24.0 137 .2 23.2 11.6 721 2.83 17.3 6.1 42.0 2.6 44 5.2 3.5 5.9 58 .71 .085 11 176.5 .66 131 .095 19 1.91 .033 .14 4.4 .17 3.4 1.0<.05 6 4.8 STANDARD Standard is STANDARD DS5. GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS MAT SS80 6 DATE RECEIVED: JUL 8 2004 DATE REPORT MAILED: 22/04 Data // FA Clarence Leor All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Inspiration Mining Corp. PROJECT JASPER File # A403353 c/o Arnex Resources Ltd.,, North Vancouver BC V7M 381 SAMPLE# As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti K W Hg Sc Tl Cu Pb Zn Ag Ni Со Mn Fe в AL Na S Ga Se Mo ppm ppm ppb ppm ppm ppm ppm ppm % % ppm ppm % ppm % ppm % ppm % % % % ppm ppm ppm ppm 576 2.01 .5 2.3 .8 4.0 86 <.1 <.1 .1 41 .67 .067 10 20.7 .58 238 .146 1 1.10 .123 .52 4.4<.01 2.5 .3<.05 5 <.5 G-1 2.3 3.2 2.9 47 <.1 4.8 4.6 2.0 390.3 47.6 537 .4 10.1 146.5 12775 1.89 4.1 .4 4.0 .2 27 3.1 .3 .1 36 .51 .138 18 9.7 .45 221 .027 4 4.57 .009 .06 .1 .26 3.3 .2 .08 3 4.3 183558 12.2 137.9 24.0 137 .2 23.2 11.6 721 2.83 17.3 6.1 42.0 2.6 44 5.2 3.5 5.9 58 .71 .085 11 176.5 .66 131 .095 19 1.91 .033 .14 4.4 .17 3.4 1.0<.05 6 4.8 STANDARD Standard is STANDARD DS5. GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS MAT SS80 6 DATE REPORT MAILED: 22/04 DATE RECEIVED: JUL 8 2004 FA Clarence Leo All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AC] ME A (I	NAL SO	YTIC/ 9002	L L Acc:	ABO	RATO	RIE Co	S LI .)		_]	852 G] B. EO(HA: CHE	STI MI(NGS CAI	ST	 '. V NA	ANC	ן סטע IS	ER CE	BC	ve CFI		R6 TE		PH	ONE	<u> </u> (60	4)2	<u> </u>	315	8		504)	253	-171	6
£	£						In	spi	rat	ion:	<u>Mi</u> c,	nii 'o Ar	ng nex	Co: Resc	rp. purce	. P es Li	<u>RO</u> . td.,	JEC Nor	<u>Τι</u> th V	<u>JAS</u> anco	<u>PEI</u> uver	<u>२</u> вс	Fi] V7M 3	.е в1	# 1	440	335	51									Ê
SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zr ppn	n Ag n ppm	Ni ppm	Со ррп	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W ppm p	Hg pm p	Sc Tl pm ppm	S X	Ga ppm	Se ppm	Sample kç
SI 148663 148664 148665 148666		.1 .8 .5 5.9 2.8	3.1 14.6 15.8 22.5 39.9	.5 5.7 7.7 8.7 8.6	139 139 151 155 159	. <.1 .1 .2 .2 .2 .2	.1 9.3 9.5 8.0 8.5	.1 15.5 16.9 12.3 16.1	3 2468 2350 2778 2597	.04 5.07 4.92 4.86 5.64	1.5 16.9 37.7 53.1 79.6	<.1 .2 .2 .2	.9 2.9 3.0 12.6 9.1	<.1 .5 .4 .4	2 8 7 4 4	<.1 <.1 <.1 <.1	.1 .3 1.1 .4 .4	<.1 .1 .2 .1 .1	1 92 98 118 94	. 09 . 59 . 37 . 22 . 29	.001 .062 .069 .069 .069	<1 9 6 6	<1 12.6 14.4 13.1 11.4	<.01 3.16 3.12 3.60 2.91	2< 39 118 66 59	.001 .006 .010 .010 .010	<1 2 3 1 3 1 3 1 2	.01 3.06 3.01 3.05 2.63	.404 .003 .003 .004 .003	.01 .14 .15 .10 .13	.1<. <.1 . .1 . .1 . .1 .	01 10 8 11 8 14 8 10 6	.1 < .1 .5 .1 .5 .1 .2 .1 .1 .1	.10 1.44 1.19 1.67 2.66	<1 10 10 11 11 10	<.5 <.5 <.5 <.5	1.59 1.67 2.25 1.66
148667 148668 148669 148670 148671		1.7 58.2 29.5 3.4 12.0	174.3 53.8 538.2 5120.3 90.6	6.8 10.0 25.4 38.1 326.5	164 71 247 2330 116	4 .2 L .8 7 1.9) 1.9 5 .4	7.0 4.7 5.0 1.4 3.2	12.1 17.8 23.8 15.8 9.4	2046 1025 2676 132 302	4.04 4.12 7.72 4.24 7.22	40.3 106.3 25.7 6.4 14.1	.1 .1 <.1 .1	11.3 21.4 61.7 20.2 19.2	.4 .3 <.1 .3	10 8 10 1 11	.1 .1 .3 11.2 .8	.3 .6 .1 .5	.1 1.1 1.0 .6 .1	65 41 93 9 28	.16 .12 .15 .02 .05	.040 .033 .041 .001 .048	9 13 3 2 4	10.8 18.3 8.2 16.2 6.5	2.59 1.29 3.45 .17 .34	76 54 59 9 34	.006 .009 .005 .001 .049	2 2 1 2 1 2 1 2 <1 1	2.29 1.39 3.52 .20 .64	.003 .002 .002 .002 .002 .007	.14 .11 .09 .03 .15	<.1 . .7 . <.1 . 1.6 . .1 .	16 5 10 3 03 6 51 24 2	.4 .1 .1 .1 .1 <.1 .3 <.1 .7 <.1	1.60 1.95 2.52 3.90 2.56	7 4 2 12 1 3 3	<.5 1.7 3.3 10.6 4.7	2.16 1.41 2.42 1.61 1.08
148672 148673 148675 RE 14867 148696	5	14.2 1.2 2.2 2.0 2.9	1189.0 >10000 >10000 >10000 4940.0	49.0 30.0 34.0 31.3 16.6	29 117 991 966 89	9 3.9 7 10.3 1 36.7 5 35.7 9 3.5	.6 2.7 1.1 .7 6.2	5.8 158.1 34.0 34.7 23.7	390 333 660 649 1504	4.02 36.37 37.48 35.98 6.15	20.7 17.4 8.0 7.2 4.6	.2 <.1 <.1 <.1 .1	47.8 .5 37.0 25.7 33.0	.6 <.1 <.1 <.1 .3	4 1 1 2	<.1 .7 8.0 7.0 2.3	.8 2.0 .5 .3 .2	.4 10.7 7.3 6.5 .3	5 17 19 18 50	.03 .02 .01 .01 .12	. 024 . 002 . 002 . 002 . 002 . 043	4 1 <1 <1 5	5.7 1.1 2.7 1.7 8.5	.94 .42 .60 .59 1.76	212 2 6 5 64	.025 .001 .009 .007 .002	1 2 <1 <1 <1 2 2	1.14 .44 .67 .65 2.30	.006 .002 .001< .001< .001	.15 .01 <.01 <.01 <.13	.7 . .3 . 1.1 . 1.0 . <.1 .	20 .47 .37 .34 .03 3	.6 <.1 .4 .1 .8 <.1 .6 <.1 .3 <.1	.45 >10 >10 >10 1.89	4 3 5 4 6	16.3 >100 42.0 37.0 9.4	2.17 3.08 .86 1.35
148697 148698 148699 148700 148887		1.9 1.0 19.3 1.4 2.7	113.6 97.0 2486.0 14.6 240.4	11.4 11.5 29.9 2.9 69.5	124 68 141 49 184	4 .5 3 .3 1 4.1 9 .1 4 .6	10.6 8.7 5.7 .3 2.3	18.8 14.6 20.5 1.1 12.2	2243 933 1182 634 1975	5.01 4.06 4.91 2.09 4.71	22.5 9.8 11.7 1.3 37.3	.1 .2 .1 .1 .2	11.2 5.4 40.1 .9 9.6	.4 .6 .3 .9	4 10 3 5	.1 <.1 .6 <.1 .3	.4 .4 .3 .4	.4 <.1 .9 <.1 .2	69 49 55 6 74	.16 .50 .25 .08 .23	.069 .058 .046 .055 .093	8 20 5 12 9	14.8 9.7 9.7 2.1 2.0	2.71 1.73 1.82 .35 1.63	137 58 51 47 168	.003 .002 .016 .002 .038	2 2 2 2 2 2 <1 2 2	2.83 1.79 2.04 .75 2.21	.005 .009 .003 .035 .008	.14 .22 .14 .22 .25	.2 . <.1 . .4 . <.1 .	.12 6 .12 5 .07 3 .01 1 .03 5	.3 .1 .3 .1 .6 .1 .2 <.1 .1 <.1	.97 2.42 1.92 .57 .32	9 2 5 6 5 6 5 6	.6 <.5 4.2 .7 .6	1.07 1.32 1.31 1.02 1.30
148888 148905 148906 183559 STANDARD	DS5	.9 1.4 7.2 1.0 12.5	19.0 >10000 4166.5 478.0 144.0	10.4 18.8 4.4 4.2 25.4	52 102 199 136 139	2 .1 1 34.0 9 .6 5 .3 9 .3	1.6 3.1 2.9 2.8 23.1	7.0 106.0 7.8 12.0 11.6	887 495 1244 1885 743	4.33 26.78 2.55 4.61 3.00	5.9 19.5 11.3 3.9 19.0	.3 <.1 <.1 .3 5.9	2.6 29.3 9.8 2.1 42.0	1.0 <.1 .2 .4 2.6	29 1 7 9 44	<.1 .5 .2 <.1 5.5	.3 2.2 .2 .1 3.6	<.1 2.9 .2 <.1 6.0	47 22 32 67 59	.35 .01 .86 .46 .72	.083 .002 .018 .091 .089	4 2 8 3 11	2.0 2.7 9.3 2.4 183.4	1.09 .65 1.32 1.84 .68	53 5 33 78 135	.178 .002 .023 .229 .095	1 <1 2 1 1 16	1.50 .83 1.32 2.25 1.98	.022 .001 .002 .023 .032	.17 .03 .10 .14 .13	.1 1.0 .1 .4 4.8	.07 4 .21 .04 2 .01 4 .16 3	.5 .1 .5 .1 .7 <.1 .8 <.1 .6 1.0	1.65 >10 .66 1.61 <.05	5 5 4 5 4 6 6	<.5 >100 3.3 1.2 4.8	3.22 1.45 1.65 1.87
(ROUP 1 >) CON SAMPI	1DX - NCENT LE TY	0.50 RATION PE: RO	GM SAI Excei CK 15	MPLE EDS I	LEAC UPPER C	HED W LIMI Samp	ITH 3 TS.	ML 2 SOME	2-2-2 MINER	HCL-H ALS M RE' a	NO3- AY B re R	H2O E PAI erun:	AT 9 RTIA s an	5 DE LLY d_'R	G. C ATTA RE'	FOR CKED are	ONE . RI Reje	HOUF EFRAG	R, DI CTORY	LUTE	D TO GRA	0 10 M	ML, A IC SA		SED	BY II N. LII	CP-MS MIT /	S. AU SC	DLUB	ILIT	Υ.					
I	ata_	k	FA			DA:	re r	ECE:	IVED	lt :	UL 8	2004	D	ATE	R	CPOI	RT 1	AI I	LED :) //	lŋ	24	0.	4						Ś	MELA	10	Γĉ,	70		
															Í					V		/									5) E) 	laren	v ce Le	ong		
																															Ň	Ľ	\sum			30	
				naida	od -	the c	onfid	lentia		Perty	of t	h o o	lion	÷ A.				tha I	lichi		inc f	0.0	etual		+	: tha	202	lucio									

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Inspiration Mining Corp. PROJECT JASPER File # A403351 c/o Arnex Resources Ltd.,, North Vancouver BC V7M 3B1

SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %	Au** gm/mt	
SI	4.001	<.001	<.01	<.01	<2<	.001<	.001	<.01	.03	<.01<	.001<	.001<	.001	<.01	.14	<.001	<.001	<.01	<.01	.52	<.01	<.001	.001	<.01	
148663	\$.001	<.001	<.01	.01	<2	.001	.001	.24	5.21	<.01	.001<	.001	.002	<.01	.61	.072	.001	3.46	3.04	<.01	.33	<.001	<.001	<.01	
148664	\$.001	<.001	<.01	.01	<2	.001	.001	.23	5.08	.01	.001<	.001<	.001	<.01	.39	.078	.001	3.43	2.98	<.01	.32	<.001	<.001	.01	
148665	\$.001	<.001	<.01	.01	<2	.001	.001	.27	4.98	<.01<	.001<	.001<	.001	<.01	.23	.079	.001	4.06	3.00	.01	.22	<.001	<.001	.01	
148666	4.001	.001	<.01	.01	<2<	.001	.001	.25	5.88	.01<	.001<	.001	.001	<.01	.29	.080	.001	3.13	2.63	<.01	.30	<.001	<.001	.01	
148667	4.001	.015	<.01	.01	<2<	.001	.001	.20	4.15	<.01	.002<	.001<	.001	<.01	.21	.043	.001	2.83	2.43	<.01	.32	<.001	<.001	.01	
148668	.006	.003	<.01	<.01	<2<	.001	.002	.11	4.43	.01	.001<	.001	.003	<.01	.16	.033	.001	1.36	1.52	<.01	.23	<.001	<.001	.02	
148669	1.002	.051	<.01	.02	<2<	.001	.002	.26	8.29	<.01	.001<	.001<	.001	<.01	. 19	.046	.001	3.69	3.44	<.01	.16	<.001	<.001	.05	
148670	4.001	.532	<.01	.23	<2<	.001	.001	.01	4.58	<.01<	.001	.001<	.001	<.01	.02	.001	.002	.18	.21	.03	.03	<.001	.001	.03	
148671	4.001	.006	.03	<.01	<2<	.001<	.001	.03	7.75	<.01	.003<	.001	.001	<.01	.07	.054	.001	.33	.77	.01	.35	<.001	.001	.02	
148672	.001	.120	<.01	<.01	5<	.001<	.001	.04	4.38	<.01<	.001<	.001	.001	<.01	.04	.025	.001	.94	1.24	.01	.28	<.001	<.001	.06	
148673	₹.001	4.697	<.01	.01	10<	.001	.018	.04	44.19	<.01<	.001<	.001	.002	<.01	.04	<.001	<.001	.42	.46	.02	.03	.001	<.001	.04	
148675	↓.001	7.832	<.01	.12	37<	.001	.004	.07	44.11	<.01<	.001	.001	.003	<.01	.01	<.001	<.001	.59	.66	.02	.04	.001	<.001	.09	
RE 148675	₹.001	7.708	<.01	.11	37<	.001	.004	.06	43.17	<.01<	.001	.001	.001	.01	.02	<.001	<.001	.58	.66	.05	.02	.001	.001	.10	
148696	4.001	.507	<.01	<.01	4<	.001	.002	. 14	6.66	<.01<	.001<	.001	.001	<.01	.11	.049	.001	1.78	2.38	.04	.30	<.001	<.001	.02	
148697	4.001	.010	<.01	<.01	<2	.001	.001	.21	5.26	<.01	.001<	.001	.002	<.01	.15	.073	.001	2.92	2.86	<.01	.31	<.001	<.001	.01	
148698	k.001	.009	<.01	<.01	<2<	.001	.001	.09	4.41	<.01	.001<	.001	.001	<.01	.53	.060	.001	1.85	1.96	.01	.41	<.001	<.001	<.01	
148699	.002	.265	<.01	.01	5	.001	.002	.12	5.72	<.01<	.001<	.001<	.001	<.01	.27	.055	.001	2.06	2.29	.03	.35	<.001	<.001	.05	
148700	₹.001	.001	<.01	<.01	<2<	.001<	.001	.06	2.31	<.01<	.001<	.001	.001	<.01	.08	.059	<.001	.38	.93	.07	.38	<.001	<.001	<.01	
148887	4.001	.023	<.01	.02	<2	.001	.001	.20	5.33	<.01	.001<	.001	.001	<.01	.25	.108	<.001	1.77	2.52	.04	.52	<.001	<.001	.01	
148888	4.001	<.001	<.01	<.01	<2<	.001<	.001	.09	4.75	<.01	.004<	.001	.002	<.01	.54	.092	<.001	1.11	1.83	.07	.35	<.001	<.001	.01	
148905	\$.001	6.864	<.01	.01	35<	.001	.011	.04	29.15	<.01	.001<	.001	.001	<.01	.01	<.001	<.001	.58	.81	<.01	.11	.001	<.001	.03	
148906	₹.001	.418	<.01	.02	<2<	.001	.001	.12	2.79	<.01	.001<	.001<	:.001	<.01	2.01	.024	.001	1.40	1.44	.02	.24	<.001	<.001	.01	
183559	₹.001	.051	<.01	.01	<2	.001	.001	.19	5.34	<.01	.001<	.001<	< . 001	<.01	.61	.109	<.001	2.06	2.60	.07	.34	<.001	<.001	.01	
STANDARD R-2a/AU-1	.048	.569	1.51	4.37	157	.386	.045	.21	23.50	.24	.166	.031	.128	<.01	2.45	.083	.071	1.71	1,33	.21	.55	.064	.182	3.36	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: ROCK 150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUL 8 2004

Data FA

DATE REPORT MAILED:

<u>AC1</u>	MR AT	TAT.	VTTCI	<u>)</u>	ABO	<u> </u> אמיר	TR	B T			852]	H 3	רידים מיזים	NGS)		TANC		110		376	7	DE	<u></u>	7	ONTR	<u>}</u>	110	<u>]</u>	21]	
A		so	9002	Acc:	red	ited	i Co				G	EO	CHI	EMI	CA	LA	NA	LYS	IS	CE	IRT:	LF1	CA'	ce		FN	ONE		-/4	- 20	9 T :		(AA (004	/ 200	-1/.	LO A
	T						Ir	18p	Irai	lion	<u>Mi</u> c	<u>ni</u> /o A	ng	Cc Res		• P	ROI	JEC	<u>Tι</u>	JAS anco		R BC	F1. V7M 3	Le 181	# 2	440	33!	51								Ĥ	Ê
SAMPLE#		Mo	Cu	Pb	Zn	Ag	Ni	Co	o Mn	Fe	As	U	l Au	u Th	Sr	Cd	Sb	Bi	V	Ca	P ¥	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W	Hg	Sc T	1	S Ga	Se	Sample
SI 148663 148664 148665 148666		.1 .8 .5 5.9 2.8	3.1 14.6 15.8 22.5 39.9	.5 5.7 7.7 8.7 8.6	1 139 151 155 159	<.1 .1 .2 .2	.1 9.3 9.5 8.0 8.5	15.9 16.9 12.3 16.1	1 3 5 2468 9 2350 3 2778 1 2597	.04 5.07 4.92 4.86 5.64	1.5 16.9 37.7 53.1 79.6	<.1 .2 .2 .2	2.9 2.9 2.3.0 12.6 9.1	9 <.1 9 .5 0 .5 6 .4 1 .4	2 5 8 5 7 4 4	<.1 <.1 <.1 <.1 <.1	.1 .3 1.1 .4 .4	<.1 .1 .2 .1 .1	1 92 98 118 94	.09 .59 .37 .22 .29	.001 .062 .069 .069 .070	<1 9 9 6 6	<1 12.6 14.4 13.1 11.4	<.01 3.16 3.12 3.60 2.91	2< 39 118 66 59	.001 .006 .010 .010 .010	<1 2 1 1 1	.01 3.06 3.01 3.05 2.63	.404 .003 .003 .004 .003	.01 .14 .15 .10 .13	.1< <.1 .1 .1 .1	.01 .10 8 .11 8 .14 8 .10 6	.1 <. .5 . .2 . .1 .	1 .1 1 1.4 1 1.1 1 1.6 1 2.6	0 <1 4 10 9 10 57 11 56 10	<.5 <.5 <.5 <.5 <.5	1.59 1.67 2.25 1.66
148667 148668 148669 148670 148671	50 29	1.7 8.2 9.5 3.4 2.0	174.3 53.8 538.2 5120.3 90.6	6.8 10.0 25.4 38.1 326.5	164 71 247 2330 116	.2 .8 1.9 1.9 .4	7.0 4.7 5.0 1.4 3.2	12.1 17.8 23.8 15.8 9.4	1 2046 3 1025 3 2676 8 132 4 302	4.04 4.12 7.72 4.24 7.22	40.3 106.3 25.7 6.4 14.1	.1 .1 <.1 .1	11.3 21.4 61.7 20.2 19.2	3 .4 4 .3 7 .3 2 <.1 2 .3	10 10 10 10 11	.1 .1 .3 11.2 .8	.3 .6 .1 .5	.1 1.1 1.0 .6 .1	65 41 93 9 28	.16 .12 .15 .02 .05	.040 .033 .041 .001 .048	9 13 3 2 4	10.8 18.3 8.2 16.2 6.5	2.59 1.29 3.45 .17 .34	76 54 59 9 34	.006 .009 .005 .001 .049	2 1 1 <1 1	2.29 1.39 3.52 .20 .64	.003 .002 .002 .002 .002 .007	.14 .11 .09 .03 .15	<.1 .7 <.1 1.6 .1	.16 5 .10 3 .03 6 .51 .24 2	5.4 . 5.1 <. .3 <. 2.7 <.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50 7 55 4 52 12 50 1 56 3	<.5 1.7 3.3 10.6 4.7	2.16 1.41 2.42 1.61 1.08
148672 148673 148675 RE 148675 148696	1	4.2 1.2 2.2 2.0 2.9	1189.0 >10000 >10000 >10000 4940.0	49.0 30.0 34.0 31.3 16.6	29 117 991 966 89	3.9 10.3 36.7 35.7 3.5	.6 2.7 1.1 .7 6.2	5.8 158.1 34.0 34.1 23.1	3 390 1 333 0 660 7 649 7 1504	4.02 36.37 37.48 35.98 6.15	20.7 17.4 8.0 7.2 4.6	.2 <.1 <.1 <.1	2 47.8 37.0 25.7 33.0	8 .6 5 <.1 0 <.1 7 <.1 0 .3	5 4 1 1 1 1 8 2	<.1 .7 8.0 7.0 2.3	.8 2.0 .5 .3 .2	.4 10.7 7.3 6.5 .3	5 17 19 18 50	.03 .02 .01 .01 .12	.024 .002 .002 .002 .002 .043	4 1 <1 <1 5	5.7 1.1 2.7 1.7 8.5	.94 .42 .60 .59 1.76	212 2 6 5 64	.025 .001 .009 .007 .002	1 <1 <1 <1 2	1.14 .44 .67 .65 2.30	.006 .002 .001< .001< .001<	.15 .01 <.01 <.01 <.01 .13	.7 .3 1.1 1.0 <.1	.20 .47 .37 .34 .03 3	.6 <. .4 . .8 <. .6 <. 3.3 <.	1 .4 1 >] 1 >] 1 >] 1 1.8	15 4 10 3 10 5 10 5 10 4 39 6	16.3 >100 42.0 37.0 9.4	2.17 3.08 .86 1.35
148697 148698 148699 148700 148887	1	1.9 1.0 9.3 1.4 2.7	113.6 97.0 2486.0 14.6 240.4	11.4 11.5 29.9 2.9 69.5	124 68 141 49 184	.5 .3 4.1 .1	10.6 8.7 5.7 .3 2.3	18.8 14.0 20.9 1.1 12.2	3 2243 5 933 5 1182 1 634 2 1975	5.01 4.06 4.91 2.09 4.71	22.5 9.8 11.7 1.3 37.3	.1 .2 .1 .1	11.2 5.4 40.1 .9.6	2 .4 4 .6 1 .3 9 .9 6 .6	4 5 10 3 3 3 3 5 5	.1 <.1 .6 <.1 .3	.4 .4 .3 .4	.4 <.1 .9 <.1 .2	69 49 55 6 74	.16 .50 .25 .08 .23	.069 .058 .046 .055 .093	8 20 5 12 9	14.8 9.7 9.7 2.1 2.0	2.71 1.73 1.82 .35 1.63	137 58 51 47 168	.003 .002 .016 .002 .038	2 2 <1 2	2.83 1.79 2.04 .75 2.21	.005 .009 .003 .035 .008	.14 .22 .14 .22 .25	.2 <.1 .4 <.1 .2	.12 6 .12 5 .07 3 .01 1 .03 5	5.3 .3 .6 .2 <. 5.1 <.	$ \begin{array}{cccc} 1 & .9 \\ 1 & 2.4 \\ 1 & 1.9 \\ 1 & .9 \\ 1 & .3 \\ \end{array} $	17 9 12 5 12 6 57 5 32 6	.6 <.5 4.2 .7	1.07 1.32 1.31 1.02 1.30
148888 148905 148906 183559 STANDARD	DS5 1	.9 1.4 7.2 1.0 2.5	19.0 >10000 4166.5 478.0 144.0	10.4 18.8 4.4 4.2 25.4	52 101 199 136 139	.1 34.0 .6 .3 .3	1.6 3.1 2.9 2.8 23.1	7.0 106.0 7.8 12.0 11.0) 887) 495 3 1244 0 1885 6 743	4.33 26.78 2.55 4.61 3.00	5.9 19.5 11.3 3.9 19.0	.3 <.1 <.1 .3 5.9	29.3 9.8 9.8 2.1 42.0	6 1.0 3 <.1 8 .2 1 .4 0 2.6	29 1 2 7 9 5 44	<.1 .5 .2 <.1 5.5	.3 2.2 .2 .1 3.6	<.1 2.9 .2 <.1 6.0	47 22 32 67 59	.35 .01 .86 .46 .72	.083 .002 .018 .091 .089	4 2 8 3 11	2.0 2.7 9.3 2.4 183.4	1.09 .65 1.32 1.84 .68	53 5 33 78 135	.178 .002 .023 .229 .095	1 <1 2 1 16	1.50 .83 1.32 2.25 1.98	.022 .001 .002 .023 .032	.17 .03 .10 .14 .13	.1 1.0 .1 .4 4.8	.07 4 .21 .04 2 .01 4 .16 3	.5 . .5 . .7 <. .8 <. 3.6 1.	1 1.6 1 >1 1 .6 1 1.6 0 <.0	555 104 564 516 156	 <.5 >100 3.3 1.2 4.8 	3.22 1.45 1.65 1.87
` GR (> -	ROUP 10) CON(SAMPLE	DX ~ Centi E ty	0.50 RATION PE: RO	GM SAN Excen CK 150	IPLE EDS L D 600	LEACI IPPER	HED W LIMI <u>Samp</u>	ITH 3 TS. bles b	5 ML 2 SOME Degin	2-2-2 MINER ning /	HCL-H ALS M <u>RE' a</u>	NO3 AY E re F	-H2O BE PA Rerun	AT 9 ARTI/	95 DE ALLY nd <u>'</u> R	G. C ATTA RRE'	FOR CKED are	ONE Rejec	HOUF EFRAC	TORY	LUTE	D TO GRA) 10 Phit:	ML, A IC SA	ANALY Ample	SED S CA	BY I N LI	CP-M Mit	S. AU SC	DLUB	LIT	Y.					
De	ata_	k	FA			DAT	re r	ECE	IVEC	L 1(UL 8	2004	. [DATI	e ri (epoi	RT 1	MAII	ED		hu	ly	.2 <u>4</u>		Ψ.						Contraction of the second						

	<u> </u>]]]]]		1		7			7		<u> </u>			7			
ACME ANALYTICAL (ISO 9002 Ac	LABORA' credit	FORII ed Co	88 L 5.)	TD.	8	52	s. H	last:	ings	ST.	VAN	ICOU	VER	BC	V6A	1R6	I	PHONE	(604) 25:	1-31	58 FJ	AX (60	4) 253	-1716
									Assa	Y C	ERT:	IFI	CAT	'E											AA
TTT I		I	nsp:	irat	ion	Mir	iind	<u>t Co</u>	orp.	PF	OJE	CT	JAS	PER	F	Lle	# A4	033	51						A AA
						c/(> Arn	ex Re	source	s Ltc	l.,, N	orth '	Vanco	ouver l	BC V7M	381									
SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag am/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %	Au** gm/mt	
		. 001	. 01	< 01		001	001	< 01	07	< 01	. 001.	001	001	< 01	1/	< 001	< 001	< 01	< 01	50	< 01	< 001	001	< 01	
SI 1/8663		< . 001	<.01	<.UI 01	<2<,	001<	001	24	5 21	< 01	>1001> 001<	001<	001	<.01	. 14	<.001 072	001	3.46	3 04	. 01	<.01	< 001	< 001	< 01	
148664	2.001	<.001	<.01	.01	<2	.001	.001	.23	5.08	.01	.001<	.001<	.001	<.01	.39	.078	.001	3.43	2.98	<.01	.32	<.001	<.001	.01	
148665	₹.001	<.001	<.01	.01	<2	001	.001	.27	4.98	<.01	<.001<	.001<	.001	<.01	.23	.079	.001	4.06	3.00	.01	.22	<.001	<.001	.01	
148666	4.00 1	.001	<.01	.01	<2<,	.001	.001	.25	5.88	.01	<.001<	.001	.001	<.01	.29	.080	.001	3.13	2.63	<.01	.30	<.001	<.001	.01	
148667	₹.001	.015	<.01	.01	<2<	.001	.001	.20	4.15	<.01	.002<	.001<	.001	<.01	.21	.043	.001	2.83	2.43	<.01	.32	<.001	<.001	.01	
148668	.006	.003	<.01	<.01	<2<	.001	.002	.11	4.43	.01	.001<	.001	.003	<.01	.16	.033	.001	1.36	1.52	<.01	.23	<.001	<.001	.02	
148669	.002	.051	<.01	.02	<2<	.001	.002	.26	8.29	<.01	.001<	.001<	.001	<.01	. 19	.046	.001	3.69	3.44	<.01	.16	<.001	<.001	.05	
148670	4.001	.532	<.01	.23	<2<	.001	.001	.01	4.58	<.01	<.001	.001<	.001	<.01	.02	.001	.002	.18	.21	.03	.03	<.001	.001	.03	
148671	4.001	.006	.03	<.01	<2<	.001<	.001	.03	7.75	<.01	.003<	.001	.001	<.01	.07	.054	.001	.33	.77	.01	.35	<.001	.001	.02	
148672	.001	. 120	<.01	<.01	5<	.001<	.001	.04	4.38	<.01	<.001<	.001	.001	<.01	.04	.025	.001	.94	1.24	.01	.28	<.001	<.001	.06	
148673	₹.001	4.697	<.01	.01	10<	.001	.018	.04	44.19	<.01	<.001<	.001	.002	<.01	.04	<.001	<.001	.42	.46	.02	.03	.001	<.001	.04	
148675	↓.001	7.832	<.01	.12	37<	.001	.004	.07	44.11	<.01	<.001	.001	.003	<.01	.01	<.001	<.001	.59	.66	.02	.04	.001	<.001	.09	
RE 148675	4.001	7.708	<.01	.11	37<	.001	.004	.06	43.17	<.01	<.001	.001	.001	.01	.02	<.001	<.001	.58	.66	.05	.02	.001	.001	.10	
148696	4.001	.507	<.01	<.01	4<	.001	.002	.14	6.66	<.01	<.001<	.001	.001	<.01	.11	.049	.001	1.78	2.38	.04	.30	<.001	<.001	.02	
148697	4.001	.010	<.01	<.01	<2	.001	.001	.21	5.26	<.01	.001<	.001	.002	<.01	.15	.073	.001	2.92	2.86	<.01	.31	<.001	<.001	.01	
148698	₹.001	.009	<.01	<.01	<2<	.001	.001	.09	4.41	<.01	.001<	.001	.001	<.01	.53	.060	.001	1.85	1.96	.01	.41	<.001	<.001	<.01	
148699	.002	.265	<.01	.01	5	.001	.002	.12	5.72	<.01	<.001<	•.001<	.001	<.01	.27	.055	.001	2.06	2.29	.03	.35	<.001	<.001	.05	
148700	4.001	.001	<.01	<.01	<2<	.001<	.001	.06	2.31	<.01	<.001<	.001	.001	<.01	.08	.059	<.001	.38	.93	.07	.38	<.001	<.001	<.01	
148887	4.001	.023	<.01	.02	<2	.001	.001	.20	5.33	<.01	.001<	.001	.001	<.01	.25	.108	<.001	1.77	2.52	.04	.52	<.001	<.001	.01	
148888	₹.001	<.001	<.01	<.01	<2<	.001<	.001	.09	4.75	<.01	.004<	.001	.002	<.01	.54	.092	<.001	1.11	1.83	.07	.35	<.001	<.001	.01	
148905	₹.001	6.864	<.01	.01	35<	.001	.011	.04	29.15	<.01	<.001<	:.001	.001	<.01	.01	<.001	<.001	.58	.81	<.01	.11	.001	<.001	.03	
148906	4.001	.418	<.01	.02	<2<	.001	.001	.12	2.79	<.01	.001<	<.001<	.001	<.01	2.01	.024	.001	1.40	1.44	.02	.24	<.001	<.001	.01	
183559	4.001	.051	<.01	.01	<2	.001	.001	.19	5.34	<.01	.001	<.001<	:.001	<.01	.61	- 109	<.001	2.06	2.60	.07	.34	<.001	<.001	.01	
STANDARD R-28/AU	1 .048	.569	1.51	4.5/	157	. 380	.045	.21	23.50	.24	. 100	.051	128	<.01	2,45	.085	.0/1	1.71	1,33	.21	• 22	.004	. 102	3.30	

hely 24/04

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: ROCK 150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data / FA ____ DATE RECEIVED: JUL 8 2004 DATE REPORT MAILED:

 ACME ANAL (ISO	YTIC 9002	CAL 1 2 Acc	LABC	ORA] lite	COR:	IES Co.) Ins	LTI) pir	ati	on	352 G <u>Mi</u> c/	E. EO(nii	HA CHE	STI MI CO Res	NGS CAI ID.	S 1 , 7 , 1 :s L	C. ANP PRC td.	VAN	COL SI: CT orth	JVE S (J7 Var	R B CER ASP	C TI ER	V6A FICI F: 3C V7M	IR(ATE ile 3B1	5] • #	L 1 A4	рно 103	ve (604)	25	3-31	58	FAX	604	1)25	3-17 A	16 A	
 SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe گ	As ppm	U opm	Au ppb	Th ppm p	Sr opm p	Cd pm p	Sb pm p	8i ppm pp	V mc	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	A1 %	Na %	К % (W H Ng mga	g So nippr	רד c m ppm	S %	Ga S ppm pp	e Samp m	ole gm	
105401 105402 105403 105404 148755	.9 1.0 2.8 3.8 1.0	288.3 144.5 232.6 265.8 65.3	26.2 17.1 32.7 270.9 23.3	302 223 203 345 196	.1 .2 .2 .4 .2	11.8 11.3 8.3 7.6 7.5	27.6 30.0 33.2 26.5 22.6	1815 1311 1784 1543 3128	5.49 7.13 4.83 6.81 3.56	5.6 12.2 10.2 13.4 5.0	.3 .3 .3 .3 .3 .3	3.9 7.2 8.9 0.5 8.1	.5 .6 .5 .5 .1	24 17 22 13 1 35	.9 .8 .9 .5 .7	.2 .3 .3 .4 .3	.1 13 .2 10 .2 7 .2 8 .1 8	34 . 07 . 79 . 31 . 30 1.	. 39 . 46 . 46 . 22 . 68	070 067 089 093 084	6 6 9 6 7	15.7 13.3 9.8 9.7 9.8	1.29 1.22 1.23 1.01 .60	124 89 153 70 187	141 152 072 108 049	1 3 2 2 <1 3 1 2 3 2	.61 .39 .05 .73 .64	.007 .007 .007 .007 .007 .007	.06 .09 .07 .08 .05	.1 .0 .1 .1 .1 .1 .1 .2 .1 .2	97.9 77.9 05.9 06.9 14.4	9 .1 5 <.1 9 .1 9 .1 4 .1	.06 1.48 .29 .69 .11	8 1. 6 3. 6 1. 6 3. 5 4.	4 30 0 30 8 30 0 30 2 15).0).0).0).0 5.0	
148756 183601 STANDARD DS5	1.2 1.4 12.4	114.7 210.1 145.7	13.6 77.0 25.2	175 187 139	.2 .2 .3	7.5 10.0 23.9	15.0 45.0 11.8	1992 2249 786	2.61 3.74 3.05	3.9 5.5 17.6	.2 .3 6.2 4	5.2 2.1 3.7	.1 .5 2.6	33 1 40 47 5	.2 .7 .4 3	.3 .2 .9 6	.1 5 .1 7 5.3 6	571. 71. 51.	. 80 . 98 . 72	088 109 087	7 11 11	10.9 13.5 190.4	.56 1.08 .68	205 . 74 . 130 .	026 125 093	5 1 1 4 16 2	.95 .15 .09	.010 .006 .031	.09 .07 .14	.1 .1 .1 .1	73. 37. 93.	0.1 5.1 31.0	.17 .09 <.05	35. 62. 65.	1 7 2 30 1 30	7.5).0).0	

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS MAT SS80 6

Data We FA ____ DATE RECEIVED: JUL 14 2004 DATE REPORT MAILED: My 23/04

A		LYTI (900:	ZAL 1 2 AC	LABO cred	RAI 1te	OR:	IES Co. Ins	LTI))))). :atj	<u>.01</u>	852 (<u>Mj</u>	B. BEC ni	HA CH <u>nq</u>	EMI CC Res	NGS CA	I S' L I es l	I. ANZ PRC .td.	VAN ALY OJE	NCO SI SCT	UVE S J. h Vai	R I CEI <u>ASI</u> ncou	BC RTI PER Ver	V6A FIC F BC V7	1R AT 110 138	6 6 2 9 # 1	 A4	PHO 103	<u>1</u> 722 (50:	604 1) 25	3-31	.58	FAX	(60	4) 25	<u>1</u> 3-17 A	16 A
S/	MPLE#	Mo DDM	Cu DDM	Pb opm	Zn	Ag	Ni DDM	Co DDM	Mn DDm	Fe %	As DDM	U Maa	Au opb	Th DDM	Sr DDM (Cd Dom o	Sb	B1 Dom D	V	Ca %	P %	La DDM	Cr DDM	Mg %	Ba DDM	Ti %	B	A1 %	Na %	K %	W H domico	g Si m DDi	:T1 maan	S %	Ga S DDM DD	e Samp n	ile om
10 10 10 10	05401 05402 05403 05404 48755	.9 1.0 2.8 3.8 1.0	288.3 144.5 232.6 265.8 65.3	26.2 17.1 32.7 270.9 23.3	302 223 203 345 196	.1 .2 .2 .4 .2	11.8 11.3 8.3 7.6 7.5	27.6 30.0 33.2 26.5 22.6	1815 1311 1784 1543 3128	5.49 7.13 4.83 6.81 3.56	5.6 12.2 10.2 13.4 5.0	.3 .3 .3 .3 .3	3.9 7.2 8.9 10.5 8.1	.5 .6 .5 .5 .1	24 17 22 13 35	.9 .8 .9 .5 .7	.2 .3 .3 .4 .3	.1 1 .2 1 .2 .2 .1	.34 107 79 81 80 1	. 39 . 46 . 46 . 22 1. 68	.070 .067 .089 .093 .084	6 6 9 6 7	15.7 13.3 9.8 9.7 9.8	1.29 1.22 1.23 1.01 .60	124 89 153 70 187	.141 .152 .072 .108 .049	1 3 2 2 <1 3 1 2 3 2	.61 .39 .05 .73 .64	.007 .007 .007 .007 .007 .007	.06 .09 .07 .08 .05	.1 .0 .1 .1 .1 .1 .1 .2 .1 .2	97. 77. 05. 06. 14.	9 .1 5 <.1 9 .1 9 .1 4 .1	.06 1.48 .29 .69 .11	8 1.4 6 3.1 6 1.4 6 3.1 5 4.1	4 30 0 30 3 30 0 30 2 15	0.0 0.0 0.0 0.0 0.0
14 10 5	48756 33601 Fandard DS	1.2 1.4 5 12.4	114.7 210.1 145.7	13.6 77.0 25.2	175 187 139	.2 .2 .3	7.5 10.0 23.9	15.0 45.0 11.8	1992 2249 786	2.61 3.74 3.05	3.9 5.5 17.6	.2 .3 6.2	5.2 2.1 43.7	.1 .5 2.6	33 1 40 47 5	1.2 .7 5.4 (.3 .2 3.9 6	.1 .1 5.3	57 1 71 61	1.80 .98 .72	.088 .109 .087	7 11 11	10.9 13.5 190.4	.56 1.08 .68	205 74 130	.026 .125 .093	5 1 1 4 16 2	.95 .15 .09	.010 .006 .031	.09 .07 .14	.1 .1 .1 .1 4.7 .1	73. 37. 93.	0.1 5.1 31.0	.17 .09 <.05	35. 62. 65.	L 7 2 30 L 30	.5 .0 .0

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS MAT SS80 6

Data We FA ____ DATE RECEIVED: JUL 14 2004 DATE REPORT MAILED:

ACME ANALY	TICAL LABORA	CORIES LTD.	852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(604)	253-1716
AA		Inspiratio	GEOCHEMICAL ANALYSIS CERTIFICATE <u>Mining Corp. PROJECT JASPER</u> File # A403502 c/o Arnex Resources Ltd.,, North Vancouver BC V7M 3B1	44
SAMPLE#	Mo Cu Pb Zn ppm ppm ppm ppm	Ag Ni Co Mn ppm ppm ppm ppm	e As U Au Th Sr Cd Sb Bi V Ca. P La. Cr Mg Ba Ti B Al Na K W Hg Sc Tl S Ga 8 ppm ppm ppm ppm ppm ppm ppm ppm % % ppm % ppm % ppm % % % %	Se Sample ppm gm
G-1 105451 105452 105453 105454	2.0 3.4 2.8 42 2.3 116.8 32.6 155 .9 103.8 18.7 104 .8 54.9 14.6 94 2.2 169.7 7.8 105	<pre><.1 5.0 3.7 527 1. .3 4.7 22.5 2736 5. .2 7.1 16.2 1466 4. .2 5.4 9.5 684 6. .2 6.6 14.1 867 5.</pre>	4 <.5 2.3 .7 4.1 82 <.1 <.1 .2 39 .62 .072 9 19.2 .54 226 .127 1 .95 .120 .46 4.4<.01 2.6 .3<<.05 5 0 9.1 .5 5.1 .4 14 .7 .3 .2 100 .24 .155 14 9.4 .74 187 .018 <1 3.54 .007 .06 .1 .24 4.2 .1 .05 9 0 8.0 .3 5.6 .6 13 .3 .2 .1 104 .20 .129 6 10.7 .98 112 .019 <1 3.42 .006 .05 .1 .19 5.2 .1 .07 9 4 5.7 .4 3.8 .9 8 .2 .2 .1 130 .08 .088 7 14.4 .57 .69 .012 1 4.07 .005 .03 .1 .19 .69 .1<<.05 12	<.5 30.0 1.8 15.0 1.4 30.0 2.2 30.0 1.6 30.0
105455 148891 148892 148893 148894	.6 35.2 16.2 58 3.1 361.3 18.4 74 1.1 32.6 10.9 71 1.8 18.8 23.5 72 2.8 33.6 19.4 126	.1 4.5 22.9 3148 3. .2 3.1 8.7 1111 4. .1 2.9 5.7 482 3. .2 2.3 8.2 674 4. .2 4.2 5.1 347 5.	9 4.6 .3 1.8 .2 24 .2 .1 89 .41 .120 8 10.2 .75 425 .019 <1	1.1 15.0 2.0 30.0 1.6 30.0 1.6 30.0 1.3 30.0
148895 148896 148897 RE 148897 148898	4.B 28.4 25.3 154 .9 53.9 9.9 60 1.5 97.7 13.5 124 1.4 90.7 14.0 113 4.4 142.8 32.5 177	.1 5.0 5.7 500 6. .1 4.2 10.4 1997 3. .1 6.3 15.0 2459 4. .1 6.0 14.5 2470 4. .5 9.6 61.3 4128 7.	9 10.4 .4 .9 1.4 5 .1 .7 .3 108 .05 .119 14 12.6 .78 49 .032 1 4.13 .006 .04 .1 .15 3.9 .1 .15 3.9 .1 .05 13 5 5.0 .3 4.1 .4 7 .1 .2 .1 90 .12 .125 4 10.8 .48 94 .019 1 2.90 .006 .08 .1 .16 4.8 .1 .05 10 7 3.3 .5 6.1 .7 23 .1 .2 .2 106 .17 .103 8 23.5 .59 154 .016 1 3.73 .006 .06 .1 .14 7.5 .2< .05 11 4 3.2 .4 7.5 .7 20 .1 .2 .108 .14 .101 8 22.8 .58 149 .013 <1 3.68 .005 .05 .1 .	1.2 30.0 1.0 30.0 1.1 15.0 1.2 15.0 2.3 30.0
148899 148900 STANDARD_DS5	2.5 130.8 15.2 123 3.7 213.2 26.3 148 12.4 140.5 24.0 140	.2 4.8 12.7 1372 5. .4 6.7 18.3 1444 4. .3 24.8 11.7 759 3.	7 8.0 .5 6.0 .8 8 .2 .1 121 .11 .154 10 11.8 .55 58 .028 1 4.82 .006 .04 .1 .27 6.3 .1 .05 11 9 9.8 .6 6.7 .8 9 .3 .1 98 .11 .119 13 12.5 .78 105 .024 <1	2.3 30.0 2.1 15.0 4.9 -

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data Wh FA ____ DATE RECEIVED: JUL 14 2004 DATE REPORT MAILED:

1 1					1 1		
ACME ANAL	TICAL LABORA	CORIES LTD.	852 E. HAST	INGS ST. VANCOU	VER BC V6A 1R6	PHONE (604) 253-315	8 FAX(604)253-1716
(ISO :	9002 Accredit	ad Co.)	GEOCHEN.	TONT ANALVETS	CEDUTETCATE		
			Geocham.	TOUT VUUTIOID	CONTINCOTO		
		Inspirati	<u>on Mining Co</u>	orp. PROJECT	<u>JASPER</u> File #	A403502	
			c/o Arnex Re	sources Ltd.,, North	Vancouver BC V7M 381		
SAMPLE#	Mo Cu Pb Zn	Ag N1 Co Mn	Fe As U Au Th	n Sr Cd Sb 8i V Ca	n P La Cr Mg Ba ⊺	fi 8 A1 Na K W Hg	Sc Tl S Ga Se Sample
	ppm ppm ppm ppm	ррт ррт ррт	% ppm ppm ppb ppm	прртротротротрот 🗴	≾хррт ррт х°ррт	۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	n pom % pom pom gm
G-1	2.0 3.4 2.8 42	<.1 5.0 3.7 527 1	1.94 <.5 2.3 .7 4.1	1 82 <.1 <.1 .2 39 .62	2 .072 9 19.2 .54 226 .12	27 1 .95 .120 .46 4.4<.01 2	2.6 .3<.05 5 <.5 30.0
105451	2.3 116.8 32.6 155	.3 4.7 22.5 2736 5	5.10 9.1 .5 5.1 .4	4 14 .7 .3 .2 100 .24	4 .155 14 9.4 .74 187 .01	8 <1 3.54 .007 .06 .1 .24	4.2 .1<.05 9 1.8 15.0
105452	.9 103.8 18.7 104	.2 7.1 16.2 1466 4	4.80 8.0 .3 5.6 .6	5 13 .3 .2 .1 104 .20).129 6 10.7 .98 112 .01	9 <1 3.42 .006 .05 .1 .19	5.2 .1 .07 9 1.4 30.0
105453	.8 54.9 14.6 94	.2 5.4 9.5 684 6	6.14 5.7 .4 3.8 .9	9 8 .2 .2 .1 130 .08	3.088 7 14.4 .57 69.01	1 4.07 .005 .03 .1 .19	5.9 .1<.05 11 2.2 30.0
105454	2.2 169.7 7.8 105	.2 6.6 14.1 867 5	5.36 4.4 .5 2.0 .7	7 13 .2 .2 .1 125 .11	1.064 8 12.6 .94 135 .00	09 1 4.35 .006 .05 .2 .15	5.4 .1<.05 12 1.6 30.0
105455	.6 35.2 16.2 58	.1 4.5 22.9 3148 3	3.29 4.6 .3 1.8 .2	2 24 .2 .2 .1 89 .41	1.120 8 10.2 .75 425 .01	9 <1 2.15 .005 .12 .1 .17	4.1 .1 .09 7 1.1 15.0
148891	3.1 361.3 18.4 74	.2 3.1 8.7 1111 4	4.78 5.8 .4 5.6 .6	5 13 .1 .3 .2 117 .13	3.077 7 8.5 .63 50 .00	04 <1 3.81 .004 .04 .1 .12	4.9 .1<.05 11 2.0 30.0
148892	1.1 32.6 10.9 71	.1 2.9 5.7 482 3	3.94 3.8 .4 1.2 .8	8 6 .1 .2 .1 87 .06	5.089 8 8.6 .41 33.00	07 <1 3.49 .005 .03 <.1 .27 3	3.7 .1<.05 10 1.6 30.0
148893	1.8 18.8 23.5 72	.2 2.3 8.2 674 4	4.62 6.5 .4 1.6 .8	8 4 .1 .3 .1 66 .05	5.081 9 7.5 .30 37 .03	13 <1 2.93 .005 .03 .1 .27	2.4 .1<.05 10 1.6 30.0
148894	2.8 33.6 19.4 126	.2 4.2 5.1 347 5	5.26 7.0 .4 4.3 1.1	1 5 .1 .4 .2 91 .05	5 .087 10 10.7 .55 45 .02	23 <1 3.68 .006 .03 .1 .19	3.6 .1<.05 12 1.3 30.0
148895	4.8 28.4 25.3 154	.1 5.0 5.7 500 6	6.69 10.4 .4 .9 1.4	4 5 .1 .7 .3 108 .05	5.119 14 12.6 .78 49 .03	32 1 4.13 .006 .04 .1 .15	3.9 .1<.05 13 1.2 30.0
148896	.9 53.9 9.9 60	.1 4.2 10.4 1997 3	3.66 5.0 .3 4.1 .4	4 7 .1 .2 .1 90 .12	2 .125 4 10.8 .48 94 .03	19 1 2.90 .006 .08 .1 .16	4.8 .1<.05 10 1.0 30.0
148897	1.5 97.7 13.5 124	.1 6.3 15.0 2459 4	4.67 3.3 .5 6.1 .7	7 23 .1 .2 .2 106 .17	7.103 8 23.5 .59 154 .03	16 1 3.73 .006 .06 .1 .14	7.5 .2<.05 11 1.1 15.0
RE 148897	1.4 90.7 14.0 113	.1 6.0 14.5 2470 4	4.54 3.2 .4 7.5 .7	7 20 .1 .2 .2 108 .14	4 .101 8 22.8 .58 149 .03	13 <1 3.68 .005 .05 .1 .15	6.8 .2<.05 11 1.2 15.0
148898	4.4 142.8 32.5 177	.5 9.6 61.3 4128 7	7.89 35.4 .8 45.5 1.3	3 24 .4 .7 .1 165 .18	3 .124 16 16.3 1.50 139 .03	15 1 5.41 .005 .08 .1 .24 1	0.7 .3<.05 13 2.3 30.0
148899	2.5 130.8 15.2 123	.2 4.8 12.7 1372 5	5.87 8.0 .5 6.0 .8	8 8 .2 .2 .1 121 .11	1.154 10 11.8 .55 58 .02	28 1 4.82 .006 .04 .1 .27	6.3 .1<.05 11 2.3 30.0
148900	3.7 213.2 26.3 148	.4 6.7 18.3 1444 4	4.99 9.8 .6 6.7 .8	8 9 .3 .3 .1 98 .11	1 .119 13 12.5 .78 105 .02	24 <1 5.13 .006 .06 .1 .29	6.5 .2<.05 9 2.1 15.0
STANDARD DS5	12.4 140.5 24.0 140	.3 24.8 11.7 759 3	3.05 17.8 6.1 43.8 2.7	7 47 5.5 3.8 6.0 61 .72	2 .094 12 191.1 .69 131 .09	99 16 1.98 .032 .14 5.0 .17	3.2 1.0<.05 6 4.9 -

ly 33/04

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data WL FA DATE RECEIVED: JUL 14 2004 DATE REPORT MAILED:

		AND	1.747	CAT] T. 35	IOPA	 TOF	TRO] T.T	n	1	852	R	HAST	TNC	IS S	 T. '	VAN		7ER	BC	V6	 A 18	6	,	PHON) E (604)25	- 31	58 1	ZAY	604	125	3-17	16	
	(A	(ISO	900	2 A	ccre	dit	ed	Co.)			 G	EOC	HEM	IC	AL J	ANA	LYS	SIS	CE	RTI	FI	CAT	E				.,					,	A	A	
4	\ A	۱				Ir	ısp	ira	ıti	on	Min	ing	Co	rp.	PI	ROJ	ECI	JI	ASP	<u>ER</u>	Fi	le	#	- A40	414	19	Pag	ge 1						A	4	
l	╸╙	I										¢	/o Ari	nex Re	esour	ces	.td.,	, No	rth \	/anco	uver	BC V	7M 3B	1												
SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppr	і Со п рря	n Ma n ppr	n Fo	e As %rppnn	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca لا	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B A ppm	1 Na % %	K X	W ppm	Hg ppm	Sc ppm	וד ppm	S %	Ga ppm p	Se ppm
G-1		1.9	3.2	2.4	49	<.1	5.6	5 4.7	60	5 2.0	9 <.5	1.9	.6	4.6	78	<.1	<.1	.1	44	.61	.088	7	35.6	.61	284	.136	1 1.0	6 .102	.53	2.7	<.01	2.3	.4	<.05	5	<.5
105457		4.5 5.8	132.3	17.8	105	.5	4.5 5.5	5 30.5 5 18.5	641 67	55.4 5.3 571	7 19.8 7 9.6	.5	9.6 9.4	.0 1.0	11	.0	.2	.3	02 115 173	.12	.086	8	9.0 13.1 12.5	.53	47 40 55	.089	2 5.9	007 03.006	.00	.2	. 30	9.0 7.5 6.7	.1	<.05	7 4	4.0 3.8
105459 105460		3.4 1.8	121.0	17.1	153	.2	8.0) 15.6	5 82	3 6.2	7 6.4	.3	6.0	.5	17	.3	.2	.2	147	.18	.057	3	13.3	1.12	64	.049	1 3.8	8 .006	.03	.2	.17	6.2	.1	<.05	9	1.7
105461 105462		.8 .9	40.8 67.1	15.3 55.5	3 46 5 140	.2	3.9 8.1	9 5.8 1 14.1	3 28 93	58.5 46.3	5 4.3 4 3.5	.4 .3	1.1 1.3	.9 .6	15 23	.1 .2	.3 .2	.1 .1	243 205	.14 .32	.067 .058	2 3	17.0 13.3	.33 1.06	31 90	.156 .108	2 3.1 1 3.6	.8 .006 57 .008	.02	.1	. 18 . 25	4.3 6.7	<.1 < <.1 ·	<.05 <.05	15 11	1.6 .9
105463 105464		.4 1.4	82.9 74.7	15.5 173.4	5 126 206	.2 .3	14.2 3.3	2 23.3 3 11.6	3 142 5 89	65.3 24.0	9 4.9 1 21.8	.3 .3	16.9 139.7	.7 .4	39 11	.4 .8	.2 .4	.1 .1	163 75	.76 .16	.090 .064	6 4	19.8 4.7	1.76 .57	139 107	.194 .024	1 3.2 2 3.4	23 .013 16 .006	.06 .06	.1 .2	.11 .84	9.3 4.4	<.1 · .2 ·	<.05 <.05	9 7	.6 .7
105465		1.9	169.8	30.3	3 185	.5	11.(69.1	247	B 5.7	6 10.0	.6	8.3	.9	24	.7	.3	.1	107	. 52	. 131	9	11.0	1.10	94	. 159	2 4.3	37 .006	.07	.1	. 35	9.2	.1 •	<.05	8	1.9
105466		1.0	55.0 36.9	22.0) 60 3 140	.4	3.6	6.8 8.6	3 33 5 38	86.5 45.3	8 5.9 6 4.2	.3	.9 2.9	.4	15 16 12	.2	.3	.2	178	. 18	.058	2	11.2	.40 .64	32 73 67	.120	<1 5.2	26 .008	.02		.30 .21 28	4.0 7.6 7.8	<.1 · .1 ·	<.05 <.05	11 15	2.0 1.9 2.3
105468 105469 RF 10546	Q	2.1 .9 7	39.6 40.8	10.7	7 72	.2	5.0 5.0		1 72 74 74	4 0.8 1 6.1 0 6.1	1 5.5 9 4.0 7 4.2	.0 .3	.9	.5	12 19 21	.3	.2	.1	196 200	.24	.061	4	14.8	.60	63 65	.100	1 3.1	10 .000 19 .008 23 .008	.04	.1	.19	4.8 5.2	<.1	<.05 <.05 <.05	10 11 11	1.3 1.3
105470	5	1.0	48.2	34.9) 106	.3	6.4	4 19.1	L 314	9 5.0	5 3.6	.4	.5	.3	29	.5	.2	.1	120	. 45	.116	9	10.8	.44	293	.144	2 3.0	9.009	.05	.1	. 20	5.1	.1	<.05	9	1.8
105471 105472		1.1 .6	112.7 23.6	44.6 8.2	5 134 2 46	1.4 .2	12.9 3.9	522.0 8.4) 107 4 54	26.0 54.3	0 11.6 2 3.0	.7 .2	53.8 <.5	.7 .2	28 19	.2 .1	.2 .2	.1 .1	123 126	.36 .21	.134 .068	7 2	14.2 8.0	1.44	95 55	.198 .091	3 5.5	51 .007 L4 .008	.05	.2	.38 .23	11.2 3.0	.1 · <.1 ·	<.05 <.05	8	2.3 .8
105475 105476		1.9 10.0	102.1 196.8	10.6 8.0	5 103) 49	.3 .6	6.: 3.9	1 10.3 9 6.4	3 54 1 47	07.5 57.6	9 9.0 2 7.1	.4 .3	6.9 4.4	1.2 .5	16 30	.1 .1	.3 .3	.2 .9	204 166	.16 .20	.075 .071	3 2	16.2 10.2	.64 .83	46 166	.125 .117	2 4.9 1 3.4	53 .006 13 .004	.03 .03	.1	.26 .20	8.8 5.8	.1 .	<.05 <.05	12 11	2.4 3.4
105477		3.1	63.1 27 5	13.2	2 48	.3	4.	5 9.8 9 6.6	3 30 5 14	17.2	0 6.3	.3	4.2 <.5	.5	17 17	.2	.3	.4	217 182	. 16	.049	3	13.4 12.2	.36	46 51	.100	1 2.8 <1 1.5	32.005 59.007	5.02 .02	.1	.25	3.9 2.4	<.1 ·	<.05	14 13	1.7
105479 105480		2.3	231.2 86.9	18.2	2 226	.2	11.4	4 35.1 7 15.2	1 176 2 102	1 5.8 8 5.3	0 8.5 6 2.9	.2	8.5 .8	.3	43 35	.9	.2	.3	119 152	.75	.097	5 4	12.1 11.0	1.34	127 289	.095	2 3.4	43 .009 16 .007	0.05	5 .1 .1	.24	7.3	.1 .	<.05 <.05	8 10	2.2 1.2
105481		1.3	121.1	15.2	2 77	.4	6.0	9.7	7 58	77.4	5 6.3	.4	1.9	.7	12	.2	.2	.2	198	. 14	.070	2	16.4	.57	53	.056	1 4.1	13 .006	.04	.1	. 24	5.0	.1	<.05	13	2.4
105482 105486		3.1 1.5	115.7 84.7	30.7 24.9	7 144 9 87	.2	7. 6.	5 13.7 4 9.7	7 59 7 47	47.4 37.5	1 5.8 8 5.8	.5 .5	16.7 3.7	$1.1 \\ 1.1$	11 14	.2 .2	.2 .3	.1 .2	167 234	.11	.070	3	18.9 16.8	.61 .50	74 31	.061 .118	<1 4.8	38 .006 50 .006	5 .02 5 .03	2.1	.21 .22	5.9 7.9	<.1	<.05 <.05	11 14	2.3
105487		2.8	315.9 93.9	15.9 29.3	9 194 3 131	2	9. 6.	7 28.0 2 17.9	0 109 9 150	67.4 74.5	9 6.1	.4	2.7	.8 .4	23 26	.6 .4	.3	.3	189 107	.35	.066	5	13.5 9.2	.90	225 442	.091	<1 4.3	37 .008 26 .008	3.04 3.04		.12	7.3	.1	<.05 <.05	13 8	1.9 1.2
105489		1.4	93.2	15.8	3 141 4 100	2 1 3	8.: 8	9 19 5 18 3	3 111 2 127	10./ 577	34./ 34.1	.4	1.0	.7	21	.3	.2	.2	232	.23	.078	4	15.7	.94	66	. 107	24.0	37 .000 30 .008	3 .04 8 .04	· .2	. 20	6.0	.1	< 05	11	2.2
105491		.8	163.3	11.4	4 106 4 106 0 71	.2	8. 5.	0 20.0	0 107 5 152	96.2 74.8	7 5.4 6 2.6	.4	4.9 1.9	.9 .4	15 15	.3	.2	.2	177 130	.13	.094	4 4	15.3 11.1	.76	36 52	.092	<1 4.7	75 .007 02 .007	, 03 , 03 , 03	3.1 3.1	.26	8.9 4.2	.1	<.05	10 10 8	2.5
105493 105495		.6 1.4	61.2 47.4	10.2 12.0	2 63 0 82	3.2 2.9	6. 3.	712. 97.	0 55 6 38	9 6.0 6 6.0	7 3.3 5 5.6	.3	2.1 3.1	.7 .5	19 9	.1 .2	.2 .1	.1 .2	196 166	.20 .11	.059 .061	3 2	12.8 13.0	.66 .41	55 41	.072 .051	1 3.2 2 2.9	20.009 90.006) .02 5 .03	2 .1 3 .1	.16 .17	5.3 4.0	<.1 .1	<.05 <.05	11 12	.9 1.5
STANDAR) DS5	12.9	141.4	24.	7 136	i.3	24.	6 11.9	9 76	0 2.9	3 17.5	6.1	43.0	2.7	44	5.5	3.8	4.8	60	.75	.095	11	184.4	.64	138	.096	16 2.0	01 .031	13	3 5.2	.17	3.4	1.1	<.05	7	5.1
	CROW		. 7 .	50 64	SAMO				ты /	5 MI	2-2-3		1007-	H20 A	T 05	DEC	C E				דוווז		n 150	мі		YSED	BY ICD.	MS			STA	10	Ĩõ,			
	(>) (- SAM		NTRAT	ION E SOIL	SAMP XCEED SS80	S UPF	PER	LIMIT Same	S.	SOME beai	MINE	ALS I	AY BE are R	PART	IALL and	Y ATI	ACKE	D. I e Re	REFRA iect	CTOR Reru	Y AND	GRA	PHITI	C SAM	IPLES	CAN		U SOL	UBILI	18			, ,	×		\
	.	٨						<u></u>												4	Fr.	R	0/00	4						UH-	(<u>`</u> .h	~	_1	AS)
	Data	a_(`	FA			I	DAT	E RI	CE	IVEI	0: /	NUG 3	2004	DA	TE	REPO	ORT	MAI	LED	: /.)	··Y.		1	!	••						CI	arenc	æ Le	ong		
A	ll re	esult	s are	cons	idere	d the	e co	nfide	ntia	l pro	operty	of t	he cl	ient.	Acm	e ass	umes	the	liab	ilit	ies f	or a	ctual	cost	of	the a	nalysis	only	•			"		2		

	<u>}</u>	<u> </u>	<u> </u>										····	1			1								1		<u>_/</u>		<u> </u>	•••••					7	
ACT	AA ME ANALYTIC	L AL					Ins	pir	ati	on	Min	ing	g Co	orp	•]	PRC	JE	СТ	JA	SP	ER	FI	LE :	# A	404	149)			Pa	ge	2		АСМ	AAA IE ANALYT	TICAL
SAMPL	£#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	к % г	w pmp	Hg pm	Sc ppm p	TLS אסקית	Ga 6 ppm	Se ppm
G-1 10549 10549 10549 12885	96 97 98 51	2.1 1.0 .9 .9 4.0	3.3 59.6 32.0 51.5 45.2	2.4 18.7 11.6 6.3 25.4	45 113 77 25 121	<.1 .1 .2 .3	4.9 6.0 3.7 1.7 4.7	4.4 10.1 8.0 2.6 53.1	588 552 482 160 1039	1.97 6.95 5.63 4.13 3.73	.7 6.7 3.9 2.2 2.8	1.8 .4 .2 1.1 .6	.5 7.2 5.6 4.8 1.3	4.0 .9 .5 1.2 .8	75 8 13 4 6	<.1 .2 .2 .3 .4	<.1 .2 .1 .2	.2 .2 .1 .1 .1	41 157 192 75 62	.61 .10 .16 .05 .10	.079 .084 .048 .098 .096	8 3 2 6 14	18.9 15.6 10.6 15.4 12.0	.57 .65 .43 .15 .21	263 38 41 14 50	.134 .053 .077 .082 .052	1 1 <1 3 <1 2 <1 8 <1 6	.02 .89 2.63 3.24 5.45	.133 .007 .006 .006 .006	.51 4 .03 .03 .01 .02	.4<. .1 . .1 . .1 .	01 10 07 54 1 33	2.3 7.0 4.2 3.4 8.6	.4<.05 .1<.05 <.1<.05 <.1<.05 .1<.05 .1<.05	5 11 11 11 5 5 5	<.5 1.5 .9 5.6 3.6
14859 14859 14859 14859 14859	91 92 93 94 95	5.0 3.6 10.1 .5 .7	109.4 143.7 777.5 31.3 30.7	35.2 21.7 230.8 8.9 7.7	143 105 123 42 57	.3 .4 .5 .4 .2	2.1 3.3 6.3 2.2 3.3	11.1 8.3 46.9 2.7 6.8	902 576 3605 169 574	4.67 5.12 4.83 1.52 3.15	5.0 4.7 8.6 2.1 2.2	.2 .2 .3 .1 .2	1.5 6.6 25.9 3.0 .9	.4 .4 .5 .1 .4	6 7 13 15 9	.2 .2 .6 .3 .1	.2 .2 .3 .2 .2	.1 .2 .4 .1 .1	94 102 70 38 103	.10 .08 .27 .28 .10	.074 .065 .135 .080 .027	4 4 7 2 4	5.9 10.7 11.4 4.3 5.8	.44 .56 1.01 .25 .79	133 121 189 120 74	.007 .004 .003 .007 .003	<1 2 <1 3 <1 2 1 1 2	2.89 3.25 2.96 .96 2.40	.007 .006 .006 .009 .006	.04 .04 .07 .04 .04	•.1 . .1 . .1 . .1 . .1 .	13 14 48 26 06	3.5 4.1 4.8 1.5 4.3	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	i 10 i 11 i 8 i 8 i 8 i 10	.6 .9 2.4 1.1 <.5
14859 14859 14859 14859 14859 14860	96 97 98 99 99	.8 4.4 3.5 1.1 1.5	49.8 88.7 86.8 92.4 116.0	12.7 111.4 10.6 17.2 12.0	92 95 49 120 63	.2 .2 .4 .3 .2	3.8 2.7 1.8 4.9 3.3	9.6 5.5 3.5 13.2 9.8	753 712 192 1313 750	3.79 6.17 4.19 4.05 4.04	2.5 7.5 5.6 2.2 3.9	.2 .2 .1 .3 .2	2.1 34.7 3.9 2.0 1.5	.5 .5 .5 .4	8 6 12 10	.1 .1 .1 .1 <.1	.3 .3 .2 .3	.1 .2 .1 .1	110 146 104 103 110	.12 .12 .07 .16 .10	.031 .099 .041 .071 .052	3 4 3 4 5	6.1 12.0 6.0 7.5 6.5	1.09 .36 .27 1.47 .63	102 69 53 104 62	.003 .030 .008 .002 .006	<1 3 1 2 <1 1 1 3 <1 2	3.30 2.25 1.95 3.54 2.97	.006 .006 .005 .007 .006	.05 .03 .04 .05 .04	<.1 . <.1 . <.1 . .1 . .1 .	07 12 13 11 10	4.7 3.6 3.5 5.7 4.5	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 10 5 12 5 10 5 11 5 11	<.5 .8 .6 .7 .7
14883 14883 14883 14883 RE 14	31 32 33 34 48834	.8 1.0 .6 1.1 1.1	20.7 18.0 17.3 46.8 47.2	9.0 10.6 7.2 9.3 9.6	29 50 23 58 58	.1 .1 .4 .5	3.1 5.0 3.2 4.1 4.3	3.9 7.7 3.6 8.3 8.6	133 835 114 601 613	5.04 6.14 3.79 5.86 5.88	3.2 4.3 2.8 4.6 4.9	.3 .3 .2 .5	.6 5.2 1.4 2.6 5.7	.6 .4 .3 .7 .8	7 14 8 9	.2 .3 .2 .2	.2 .2 .2 .2 .2	.2 .2 .1 .2 .2	161 205 150 147 151	.07 .23 .12 .09 .09	.064 .067 .055 .078 .078	2 3 2 3 4	14.5 16.5 11.8 15.5 15.4	. 18 . 38 . 13 . 35 . 35	17 61 18 30 30	.055 .086 .090 .042 .046	<1 2 2 2 1 1 1 3 <1 3	2.53 2.05 1.24 3.52 3.58	.007 .008 .006 .007 .007	.03 .04 .03 .02 .02	.1. .1. .1. .1. .1.	22 08 13 34 35	3.0 3.6 2.2 4.8 5.1	<.1<.05 .1<.05 <.1<.05 .1<.05 .1<.05 .1<.05	i 12 i 14 i 9 i 11 i 12	1.6 .8 1.0 2.4 2.5
1488 1488 1488 1488 1488	35 36 37 38 39	1.8 2.3 .6 1.5 .8	281.9 144.7 46.2 146.6 79.9	90.5 96.7 11.2 13.7 11.3	501 666 106 154 114	.4 .3 .1 .2 .2	5.5 4.1 3.6 5.2 8.5	27.1 41.5 6.9 10.8 14.0	2414 1592 586 572 842	6.48 7.10 4.24 4.64 5.22	6.1 4.9 2.7 9.3 8.0	.4 .4 .1 .3 .4	5.4 5.0 1.2 2.0 7.4	.6 .8 .4 .5 .8	16 11 12 14 11	1.3 .6 .1 .3 .2	.2 .2 .2 .2 .2	.3 .3 .1 .1 .1	125 127 107 161 127	.19 .13 .13 .20 .13	.108 .095 .033 .028 .081	5 4 3 5 4	10.5 9.4 7.9 26.6 15.3	1.03 .49 .58 .99 1.11	142 110 75 105 38	.043 .028 .028 .026 .115	1 4 <1 4 <1 2 1 3 1 3	.23 .55 2.42 3.12 3.53	.008 .007 .007 .009 .008	.04 .04 .05 .04 .03	.1. <.1. <.1. .1. .1.	28 17 07 14 17	7.0 5.8 4.1 5.6 8.6	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 10 5 12 5 9 5 11 5 7	1.7 1.7 <.5 1.1 1.5
14884 14884 14884 14884 14884	40 41 42 43 44	3.3 1.8 .9 .8 .8	221.9 67.7 39.8 73.4 42.6	30.6 18.5 13.0 52.6 13.7	189 90 66 93 59	1.3 .3 .6 .2 .2	11.4 4.7 4.7 4.3 3.9	83.8 14.1 10.2 10.0 10.1	2837 775 646 619 670	3.81 5.78 6.90 6.79 7.01	12.4 6.3 4.1 6.4 4.7	.7 .4 .7 .6 .4	13.5 4.9 3.2 4.2 5.6	.8 .5 .8 .5	13 11 11 16 15	1.4 .2 .2 .2	.3 .2 .2 .2 .2	.2 .3 .1 .1 .1	69 125 181 142 206	.27 .11 .09 .10 .11	.233 .066 .071 .119 .192	15 7 4 3	11.7 10.9 14.3 12.5 10.4	.75 .49 .51 .51 .42	32 141 31 35 72	.087 .049 .094 .106 .077	3 7 <1 2 1 3 2 5 <1 3	2.25 2.56 3.99 5.21 5.91	.007 .007 .007 .007 .007	.03 .04 .01 .02 .04	.1 . .2 . .1 . .1 . .1 .	60 2 45 45 48 19	1.4 4.9 7.3 8.5 6.8	.1<.05 .1<.05 <.1<.05 .1<.05 .1<.05	5 5 5 11 5 9 5 12	4.2 2.1 3.3 2.7 1.2
14884 14884 14884	45 46 47	1.1 3.1 1.6	63.2 133.7 79.6	8.6 14.4 23.6	64 190 181	.2 .6 .4	3.4 2.3 1.8	11.6 4.3 6.6	669 369 542	6.44 6.17 5.54	4.4 7.3 6.1	.5 .3 .2	3.8 6.6 3.4	.6 .7 .4	9 10 10	.1 .8 .4	.2 .2 .2	.1 .2 .3	126 150 146	.08 .11 .11	.132 .065 .069	4 4 3	8.2 9.4 7.5	.36 .40 .38	52 68 102	.044 .038 .031	15 13 <12	5.07 5.68 2.73	.007 .008 .009	.02 .02 .05	.1. .1.	40 37 14	8.0 4.7 4.8	.1<.05 .1<.05 .1<.05	; 9 ; 11 ; 11	2.8 3.5 1.4

12.3 143.6 24.1 134 .3 23.7 11.8 771 2.92 17.4 5.9 40.4 2.7 43 5.6 3.6 5.6 58 .73 .095 11 179.9 .64 136 .089 17 1.92 .032 .13 4.9 .17 3.6 1.1<.05

Standard is STANDARD DS5. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

1.2 223.6 15.5 524 .4 2.7 38.0 2350 4.18 3.8 .3 1.3 .3 12 1.7 .2 .2 99 .15 .087

1.7 520.6 58.8 391 .4 5.3 9.4 1215 5.68 9.2 .5 13.9 1.0 11 .8 .2 .2 93 .10 .106

148848

148849

STANDARD

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

9 2.1

7 2.0

6 5.2

4 6.7 .49 258 .014 <1 2.92 .008 .04 <.1 .17 3.4 .2<.05

4 11.4 1.22 80 .042 2 4.20 .006 .05 .1 .31 6.2 .1<.05

<u> </u>		1				1		1		<u>}</u>		1		1		1	•	1		1		1	,	1	***		**	1	*				<u> </u>		١	
	CAL					In	spi	rat	ion	. Mi	lniı	ng	Cor	p.	PR	OJE	СТ	JA	SPE	R	FI	LE i	# A	404	149	9			P	age	: 3					CAL
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	۷ ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	₩ ppm	Hg ppm	Sc ppm	T1 ppm	S %	Ga ppm	Se ppm
G-1 148850 183606 183607 183608	2.5 1.9 .9 1.3 .6	3.7 495.3 66.3 80.6 33.5	2.4 111.6 11.3 14.7 48.7	46 405 99 71 64	<.1 .6 .4 .3 .3	4.9 4.8 8.5 6.3 2.1	4.5 12.0 12.3 8.1 5.1	620 1317 613 398 233	2.14 7.95 6.80 6.13 6.28	.6 7.3 5.7 5.6 6.6	1.8 .4 .5 .6 .2	<.5 10.9 2.9 4.1 50.1	4.2 .9 1.4 1.5 .3	65 7 11 7 7	<.1 .7 .2 .3 .4	<.1 .3 .2 .2 .4	.1 .4 .1 .1 .1	45 129 220 151 210	. 58 . 08 . 07 . 06 . 08	.082 .131 .043 .101 .051	8 4 3 5 3	21.1 12.4 18.4 16.9 10.4	.60 .73 1.01 .59 .21	264 69 41 36 30	.147 .035 .129 .128 .027	35 <1 <1 <1 <1	1.07 5.30 4.89 5.72 2.67	.141 .006 .006 .006 .005	.59 .03 .01 .01 .01	4.4 .1 .2 .3 .1	<.01 .33 .23 .40 .76	2.4 5.3 8.9 7.2 2.9	.4 .1 <.1 .1 <.1	<.05 <.05 <.05 <.05 <.05	5 11 13 8 15	<.5 2.8 2.3 2.7 1.4
183609 183614 183615 183616 183617	.8 4.2 6.4 1.9 1.8	77.8 169.6 201.3 67.8 171.0	13.1 16.8 13.0 9.6 12.0	103 203 206 67 98	.2 .3 .1 .5	5.9 9.3 12.1 3.8 5.6	13.5 61.1 53.8 13.3 9.3	551 3735 2124 459 430	6.44 7.05 7.66 6.16 6.17	5.6 25.1 21.8 7.0 9.4	.5 .3 .1 .6	1.0 14.3 20.9 3.9 28.6	.8 .6 .7 .4 1.9	12 15 22 11 5	.2 .7 .6 .2 .3	.2 .2 .3 .5 .2	.1 .3 .3 .2	181 102 115 293 124	. 08 . 35 . 39 . 18 . 06	.067 .114 .094 .044 .120	5 8 6 2 4	13.6 10.7 11.5 9.2 21.3	.60 .78 1.21 .42 .60	68 134 82 36 26	.086 .123 .122 .254 .159	<1 1 3 1 <1	4.75 4.62 3.53 1.60 8.35	.007 .006 .006 .004 .005	.02 .06 .04 .03 .02	.2 .1 .2 <.1 .2	.19 .35 .56 .14 .72	10.8 10.4 8.2 2.8 15.1	.1 .1 <.1 <.1 <.1	<.05 .09 <.05 <.05 <.05	11 6 7 15 7	2.3 3.1 2.7 .8 4.1
183620 183621 183622 183623 183624	2.7 1.6 1.8 .5 1.0	213.1 174.0 215.7 34.4 59.4	14.4 12.9 10.4 5.4 10.3	91 98 88 55 65	.5 .7 .2 .5	6.6 6.9 6.4 4.1 6.0	12.1 11.4 13.8 7.1 11.5	551 582 681 357 393	10.53 9.27 7.48 6.51 7.07	5.1 3.5 4.8 3.4 4.5	.6 .4 .3 .3	3.5 3.0 2.9 <.5 <.5	1.3 1.0 .9 .6 .5	6 14 16 19 13	.3 .2 .1 .3	.2 .1 .2 .3 .3	.2 .2 .3 .1 .2	244 211 197 230 222	.06 .12 .12 .15 .13	.092 .072 .045 .057 .048	4 3 1 2	16.1 15.0 14.5 12.8 11.7	.68 .70 .90 .51 .52	49 62 49 16 56	.072 .090 .084 .302 .075	<1 2 1 1 1	6.00 5.65 4.44 3.12 3.14	.005 .006 .005 .007 .006	.01 .02 .01 .01 .02	.2 .2 .1 .1	. 33 . 33 . 20 . 14 . 27	7.9 6.7 7.2 4.6 4.4	.1 .1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	14 14 13 12 13	4.0 3.0 2.1 1.3 1.9
183625 183626 RE 183623 183627 183628	1.4 1.0 .7 1.7 .7	94.1 76.3 34.6 252.3 82.0	15.3 14.6 5.5 11.5 11.3	97 65 57 127 93	.2 .2 .3 .2	8.0 5.5 4.2 8.5 7.2	11.4 9.9 7.3 50.3 11.4	509 364 360 2491 574	8.34 8.16 6.52 5.53 6.92	6.0 5.1 3.5 3.3 5.8	.4 .3 .4 .5	3.1 4.8 <.5 1.6 4.1	1.2 .8 .6 .3 1.0	13 9 20 18 12	.2 .1 <.1 .5 .1	.2 .3 .4 .2	.2 .2 .1 .1 .1	246 279 236 159 193	. 10 . 08 . 15 . 51 . 10	.088 .049 .057 .081 .101	3 2 9 4	17.8 14.5 13.0 14.7 17.6	. 77 . 54 . 52 . 52 . 66	36 25 17 185 37	.129 .130 .302 .073 .148	<1 1 <1 1 1	5.26 4.25 3.17 3.49 5.17	.006 .005 .007 .009 .014	.02 .01 .01 .02 .02	.2 .1 <.1 .1 .1	.20 .20 .15 .20 .28	8.2 7.7 4.9 6.1 10.3	<.1 <.1 <.1 .1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	14 16 13 11 11	2.3 2.2 1.4 2.3 3.5
183629 183630 183631 183633 183633	.8 .9 1.4 2.9 .7	52.8 184.4 102.0 184.4 26.5	14.1 14.8 22.6 188.7 9.0	78 145 130 183 43	.3 .2 .3 .4 .6	5.7 11.3 6.6 6.9 3.8	11.2 20.2 16.6 16.7 6.2	461 930 707 989 238	7.29 5.93 5.96 8.42 5.56	5.1 6.5 2.7 6.4 2.4	.5 .5 .2 .2	4.1 7.9 1.0 9.8 1.6	.9 1.0 .4 .3	13 20 18 5 12	.2 .3 .4 .1	.2 .2 .2 .2 .2	.1 .1 1.4 .1	215 141 163 137 218	. 10 . 18 . 25 . 09 . 14	.085 .089 .055 .082 .041	3 8 4 1 2	17.1 16.8 11.2 7.7 13.2	.47 .99 .66 1.05 .36	29 83 169 125 27	.134 .157 .073 .018 .120	<1 1 1 2 1	4.39 5.47 3.64 3.43 2.43	.007 .007 .007 .004 .006	.01 .03 .03 .04 .02	.1 .2 .1 .1 <.1	.28 .37 .18 .23 .17	6.7 12.5 5.0 4.6 3.8	<.1 .1 .1 .1 <.1	<.05 <.05 <.05 <.05 <.05	13 8 11 8 14	2.8 2.5 1.9 2.2 .8
183635 183636 183638 183639 183642	.7 .9 1.9 1.3 6.2	23.4 106.3 19.1 15.4 222.8	7.5 8.5 6.2 31.6 26.4	38 72 46 59 285	.2 .5 .1 .3 .4	3.6 5.6 4.8 4.1 7.8	5.5 9.6 7.8 36.6 31.1	255 516 404 4405 973	4.83 6.07 5.96 4.82 7.08	2.3 3.7 5.3 4.4 6.6	.2 .5 .3 .4 .7	1.0 2.9 .8 1.4 4.3	.4 1.3 .4 .3 1.6	9 8 6 11 8	<.1 .2 .1 .2 .4	.2 .2 .3 .2 .2	.1 .1 .1 .3	180 152 183 160 144	.16 .13 .13 .12 .10	.046 .421 .047 .102 .070	2 4 4 8	12.3 16.9 14.9 12.5 22.0	. 29 . 43 . 48 . 39 . 64	23 33 45 76 88	.116 .111 .104 .063 .097	1 2 <1 2	1.80 5.66 2.78 2.65 6.29	.009 .008 .012 .008 .007	.03 .03 .03 .05 .04	<.1 .2 .2 <.1 .2	.15 .42 .20 .21 .37	3.4 8.2 5.0 4.4 9.7	<.1 .1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	11 9 14 15 12	.6 2.5 .8 1.5 3.3
183644 183645 183646 183647 183648	1.3 6.2 2.9 2.0 1.5	34.6 283.3 75.8 24.7 82.0	37.0 7.7 12.7 18.5 15.7	54 57 109 56 98	1.3 .3 .2 .1 .2	1.8 2.4 3.6 2.9 4.8	2.2 9.1 4.9 3.0 8.3	287 353 282 260 526	5.40 5.18 5.95 5.90 6.36	12.3 9.2 6.0 6.2 6.7	.3 .2 .3 .2	1.7 10.6 9.2 6.9 5.0	.6 .6 .9 .6	6 4 7 6 11	.1 .2 .1 .1	.2 .3 .2 .2	.2 .3 .2 .2 .1	103 91 137 124 154	. 06 . 06 . 08 . 07 . 10	.123 .083 .073 .075 .063	4 3 5 3 3	5.1 4.8 12.6 11.9 12.0	. 37 . 29 . 34 . 34 . 71	67 49 34 49 35	.035 .007 .034 .030 .070	1 <1 <1 <1 <1	5.72 3.29 3.91 3.12 4.00	.008 .005 .005 .007 .007	.03 .04 .02 .04 .02	.1 .1 <.1 .1	.37 .17 1.10 .16 .21	6.0 3.6 4.4 3.8 7.3	.1 .1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	12 8 12 11 12	2.4 1.4 2.1 1.8 1.6
STANDARD DS5 <u>Samp1</u>	12.7 e type	143.6 :_SOIL	24.7 . SS80	138 60C.	.3 Samp	24.1	12.1 begin	780 ning	2.95 'RE'ai	17.6 re Rer	6.1 Tuns a	42.8	2.7 RE'a	38 re Re	6.1 ject	3.8 Rerun	5.0 <u>s.</u>	60	.72	. 093	12	188.2	. 64	133	.091	23	1.96	.032	.14	4.9	. 18	3.5	1.2	<.05	6	5.3

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

)									J					<u> </u>												
ACME ANALYTICAL					Iı	nsp	ira	tic	on M	(in:	Lng	Co	rp	. P	ROJ	JEC	T,	JAS	SPE	R	FII	'E #	A	404	149)			Pa	ge	4		AC	AAA ME ANALY	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	к	W	Hg S	Sc T	l	S Ga	se
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	opm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	% р	opmip	pm pp	Sm pp	m	% ppm	Se
G-1	2.3	4.2	2.5	50	<.1	5.5	4.6	627	2.20	1.2	1.8	1.2	4.2	87	<.1	<.1	.1	44	.66	.088	9	21.7	.62	294	.143	<1	1.19	.157	.60 4	.9<.	01 2.	.7 .	4 <.0	5 6	5 <.5
183649	1.0	32.2	8.5	55	.2	3.0	5.3	251	4.94	6.4	.2	3.7	.6	10	.1	.2	.1	147	.12	.056	3	8.8	.29	26	.085	<1	3.14	.007	.02 <	.1 .	20 4.	.3 .	1 <.0	5 11	1.2
183650	2.4	44.4	13.4	60	.2	3.0	6.4	365	6.29	8.9	.2	5.7	.4	10	.1	.2	.5	136	.11	.078	2	10.5	.31	47	.033	<1	2.73	.007	.03	.1 .	12 3.	.9 .	1 <.0	5 10	1.3
Standard DS5	12.4	144.1	23.9	132	.3	24.3	11.9	760	2.95	17.6	5.9	42.0	2.6	44	5.7	3.5	5.7	58	.74	.093	11	183.2	.63	137	.088	16	1.92	.032	.13 5	5.1 .	17 3.	.4 1.	1 <.0	5 7	5.0

Sample type: SOIL SS80 60C.

	}		!)		1]			<u>)</u>]		1		<u>}</u>				1				1		.)				}		1000	<u> </u>		7	
A	IME	ANZ	LYT	IC.	A.L	LAB	ORA	TO	R I I	SS.	<u>L'IN</u>).		852	E.	hast	EIN	3 5 S	т.	VAN	COU	/BR	BC	V6	A 11	26		Phon	te (6 ()4)	253	-31	58 I	'AX (604) 25	·3-1'	716	
		(13(, 90	UZ.	AC	CIE	d1C	ea	UC CC) .)				G	EOC	HEN	IIC.	AL	AN/	ALY	SIS	Cl	SRT.	EFI	CAT	E													
	80000 k						ΤŦ	iai	51 1	ca.	ti c	m	Min	inc	Cc	TD.	P	ROJ	EC'	га	ASP	ER	म	1@	#	A4 ()41	49	₹⊈	۱de	1							₩ 4 	
														c	O Ari	tex R	esou	rces	Ltd.	,, N	orth	Vanci	ouver	BC	(7M [°] 3E	1		- - -		*3~	4								
SAMPLE#		Mo ppm	Ci ppr	l I	Pb ppm	Zn ppm	Ag ppm	N PP	i m p	Co opm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S X	Ga ppm	Se ppm
G-1 105457 105458 105459 105460		1.9 4.5 5.8 3.4 1.8	3.2 132.3 110.3 110.0 121.0	2 3 1 3 1 0 1 0 1	2.4 .7.8 .3.8 .3.3 .7.1	49 105 121 133 154	<.1 .5 .6 .2	5. 4. 5. 5.	6 4 5 30 5 18 7 15 0 15	1.7).5 3.5 5.6 5.6	605 956 640 673 828	2.09 5.47 5.37 7.19 6.27	<.5 19.8 9.6 10.4 6.4	1.9 .3 .5 .4 .3	.6 14.6 9.6 8.4 6.0	4.6 .6 1.0 .8 .5	78 21 11 18 17	<.1 .6 .5 .3	<.1 .2 .3 .2	.1 .3 .2 .3	44 82 115 173 147	.61 .51 .12 .22 .18	.088 .148 .086 .068 .057	7 7 8 5 3	35.6 9.0 13.1 12.5 13.3	.61 .53 .54 .66 1.12	284 47 40 55 64	.136 .089 .074 .061 .049	1 1 1 6 2 5 <1 4 1 3	.06 .67 .93 .31 .88	. 102 . 007 . 006 . 007 . 006	.53 .06 .03 .03 .03	2.7 .2 .2 .2 .2	<.01 .36 .41 .34 .17	2.3 9.0 7.5 6.7 6.2	.4 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	5 6 7 11 9	<.5 4.2 4.0 3.8 1.7
105461 105462 105463 105464 105465		.8 .9 .4 1.4 1.9	40.8 67. 82.9 74. 169.8	8 1 1 5 9 1 7 17 8 3	.5.3 .5.5 .5.5 .3.4 .0.3	46 140 126 206 185	.2 .2 .3 .5	3. 8. 14. 3. 11.	9 5 1 14 2 23 3 11 0 69	5.8 4.1 3.3 1.6 9.1	285 934 1426 892 2478	8.55 6.34 5.39 4.01 5.76	4.3 3.5 4.9 21.8 10.0	.4 .3 .3 .6	1.1 1.3 16.9 139.7 8.3	.9 .6 .7 .4 .9	15 23 39 11 24	.1 .2 .4 .8 .7	.3 .2 .2 .4 .3	.1 .1 .1 .1	243 205 163 75 107	. 14 . 32 . 76 . 16 . 52	.067 .058 .090 .064 .131	2 3 6 4 9	17.0 13.3 19.8 4.7 11.0	.33 1.06 1.76 .57 1.10	31 90 139 107 94	.156 .108 .194 .024 .159	2 3 1 3 1 3 2 3 2 4	.18 .67 .23 .46 .37	006 008 013 006 006	.02 .04 .06 .06 .07	.1 .1 .2 .1	. 18 . 25 . 11 . 84 . 35	4.3 6.7 9.3 4.4 9.2	<.1 <.1 <.1 .2 .1	<.05 <.05 <.05 <.05 <.05	15 11 9 7 8	1.6 .9 .6 .7 1.9
105466 105467 105468 105469 RE 10546	9	1.0 1.3 2.1 .9 .7	55.0 36.9 81.3 39.0 40.0	02 91 51 61 81	2.0 3.3 9.9 0.7 0.9	60 140 175 72 73	.4 .2 .3 .2 .2	3. 5. 5. 6. 5.	6 6 9 8 5 14 0 11 9 11	5.8 3.6 4.0 1.1 1.2	338 384 494 721 740	6.58 5.36 6.81 6.19 6.17	5.9 4.2 5.5 4.0 4.2	.3 .6 .3 .3	9. 2.9 2.2 .9 .8	.4 .9 1.0 .5 .4	15 16 12 19 21	.2 .4 .9 .3	.3 .2 .2 .2	.2 .1 .2 .1	178 188 184 196 200	. 18 . 15 . 16 . 24 . 26	.067 .058 .080 .061 .063	2 4 6 4	11.2 15.0 15.0 14.8 14.5	.40 .64 .46 .60 .61	32 73 67 63 65	.079 .120 .085 .100 .110	2 2 <1 5 1 5 1 3 1 3	.99 . .26 . .10 . .19 . .23 .	. 006 . 008 . 008 . 008 . 008	.02 .02 .03 .04 .04	.1 .1 .1 .1	.30 .21 .28 .19 .20	4.0 7.6 7.8 4.8 5.2	<.1 .1 <.1 .1	<.05 <.05 <.05 <.05 <.05	11 15 10 11 11	2.0 1.9 2.3 1.3 1.3
105470 105471 105472 105475 105476		1.0 1.1 .6 1.9 10.0	48.1 112. 23.0 102. 196.1	2 3 7 4 6 1 1 8	84.9 8.2 0.6 8.0	106 134 46 103 49	.3 1.4 .2 .3 .6	6. 12. 3. 6. 3.	4 19 5 22 9 8 1 10 9 6	9.1 2.0 3.4 0.3 5.4	3149 1072 545 540 475	5.05 6.00 4.32 7.59 7.62	3.6 11.6 3.0 9.0 7.1	.4 .7 .2 .4 .3	.5 53.8 <.5 6.9 4.4	.3 .7 .2 1.2 .5	29 28 19 16 30	.5 .2 .1 .1	.2 .2 .3 .3	.1 .1 .2 .9	120 123 126 204 166	.45 .36 .21 .16 .20	.116 .134 .068 .075 .071	9 7 2 3 2	10.8 14.2 8.0 16.2 10.2	.44 1.44 .39 .64 .83	293 95 55 46 166	.144 .198 .091 .125 .117	2 3 3 5 1 2 2 4 1 3	.09 .51 .14 .53 .43	. 009 . 007 . 008 . 006 . 004	.05 .05 .03 .03 .03	.1 .2 .1 .1 <.1	. 20 . 38 . 23 . 26 . 20	5.1 11.2 3.0 8.8 5.8	.1 .1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	9 8 8 12 11	1.8 2.3 .8 2.4 3.4
105477 105478 105479 105480 105481		3.1 .9 2.3 1.1 1.3	63. 27. 231. 86. 121.	1 1 5 1 2 1 9 1 1 1	3.2 3.8 8.2 1.8 5.2	48 45 226 94 77	.3 .3 .2 .4	4. 3. 11. 6. 6.	5 9 9 6 4 35 7 15 0 9	9.8 5.6 5.1 5.2 9.7	301 146 1761 1028 587	7.20 5.61 5.80 5.36 7.45	6.3 1.2 8.5 2.9 6.3	.3 .1 .2 .2 .4	4.2 <.5 8.5 .8 1.9	.5 .4 .3 .4 .7	17 17 43 35 12	.2 .2 .9 .2	.3 .2 .2 .2	.4 .2 .3 .2 .2	217 182 119 152 198	. 16 . 21 . 75 . 62 . 14	.049 .043 .097 .052 .070	3 2 5 4 2	13.4 12.2 12.1 11.0 16.4	.36 .16 1.34 .67 .57	46 51 127 289 53	.100 .108 .095 .080 .056	1 2 <1 1 2 3 1 3 1 4	.82 .59 .43 .16 .13	. 005 . 007 . 009 . 007 . 006	.02 .02 .05 .04 .04	.1 <.1 .1 .1 .1	.25 .14 .24 .12 .24	3.9 2.4 7.3 4.5 5.0	<.1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	14 13 8 10 13	1.7 .5 2.2 1.2 2.4
105482 105486 105487 105488 105489		3.1 1.5 2.8 1.6 1.4	115. 84. 315. 93. 93.	7 3 7 2 9 1 9 2 2 1	30.7 24.9 15.9 29.3 15.8	144 87 194 131 141	.2 .3 .2 .2	7. 6. 9. 8.	5 13 4 9 7 28 2 17 9 19	3.7 9.7 3.0 7.9 9.3	594 473 1096 1507 1111	7.41 7.58 7.49 4.52 6.73	5.8 5.8 6.1 3.0 4.7	.5 .5 .4 .3 .4	16.7 3.7 2.7 3.6 1.0	1.1 1.1 .8 .4 .7	11 14 23 26 21	.2 .2 .6 .3	.2 .3 .1 .2	.1 .2 .3 .2 .2	167 234 189 107 179	.11 .12 .35 .75 .23	.070 .072 .066 .063 .078	3 3 7 5 4	18.9 16.8 13.5 9.2 15.7	.61 .50 .90 .62 .94	74 31 225 442 118	.061 .118 .091 .029 .107	<1 4 2 4 <1 4 2 3 1 4	.88 .60 .37 .26 .07	. 006 . 006 . 008 . 008 . 008	.02 .03 .04 .04 .04	.1 .1 .1 .2	.21 .22 .12 .13 .20	5.9 7.9 7.3 3.8 6.0	.1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	11 14 13 8 11	2.3 2.6 1.9 1.2 1.6
105490 105491 105492 105493 105495		2.0 .8 1.1 .6	120. 163. 200. 61. 47.	6 1 3 1 5 1 2 1 4 1	1.4 1.4 8.0 0.2 2.0	100 106 71 63 82	.3 .2 .2 .9	8. 8. 5. 6. 3.	5 18 0 20 1 40 7 12 9 7	3.2 0.0 0.5 2.0 7.6	1275 1079 1527 559 386	7.73 6.27 4.86 6.07 6.05	4.1 5.4 2.6 3.3 5.6	.4 .4 .3 .2	1.1 4.9 1.9 2.1 3.1	.7 .9 .4 .7 .5	24 15 15 19 9	.2 .3 .1 .1 .2	.2 .2 .2 .2 .1	.3 .2 .1 .1 .2	232 177 130 196 166	.23 .13 .20 .20 .11	.078 .094 .108 .059 .061	3 4 3 2	14.8 15.3 11.1 12.8 13.0	.91 .76 .42 .66 .41	66 36 52 55 41	.116 .092 .072 .072 .072	2 4 <1 4 1 4 1 3 2 2	.30 .75 .02 .20 .90	. 008 . 007 . 007 . 009 . 006	.04 .03 .03 .02 .03	.1 .1 .1 .1 .1	.30 .26 .33 .16 .17	6.8 8.9 4.2 5.3 4.0	<.1 .1 <.1 .1	<.05 <.05 <.05 <.05 <.05	13 10 8 11 12	2.2 2.5 2.1 .9 1.5
STANDARD	DS5	12.9	141.	4 2	24.7	136	.3	24.	6 11	1.9	760	2.93	17.5	6.1	43.0	2.7	44	5.5	3.8	4.8	60	.75	. 095	11	184.4	.64	138	. 096	16 2	.01	. 031	.13	5.2	. 17	3.4	1.1	<.05	7	5.1
	GROU (>) - SA	P 1D) Conce Mple	- 7. NTRA1 TYPE:	.50 [10] : SC	GM S I EXC DIL S	SAMPL CEEDS SS80	E LE UPP 60C	ACH	ED I LIM <u>Sa</u> t	WITI ITS Mplo	H 45 . Si es b	ML 2 DME I egint	2-2-2 HINER	HCL- Als M 'RE'	HNO3- AY BE are R	H2O A PART eruns	T 95 TALL	DEG Y ATI Y RRI	. C I Iacke Z' ai	OR O D. Te Re	NE HC REFRA ject	UR, CTOR Reru	DILUT Y AND	ED T GRA	0 150 PHITI	ML, C SAN	ANAL	YSED CAN	BY ICF LIMIT	-MS. AU 1	SOLUE		S (Ιà	79	R. I.	
	Dat	.a_(_ FA	۱		-	D	AT	E I	REC	EI	ED:	: A	UG 3	2004	DA	TE	REP	ORT	MAJ	LED	. <i>F</i>	tnj	8)/ov	!	••					4				ze Le	and		3
A	ll r	esult	s are	e co	onsic	lered	the	со	nfi	dent	tial	prop	perty	of t	he cl	ient.	Acm	e ass	sumes	the	liab	ilit	ies f	or a	ctual	cost	of	the e	nalysi	s or	nly.			\leq	"				

ACME ANALYTI	CAL							- <u></u>																									AC	HE ANALYT	TICAL
SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	W	Ha	Sc	τι	S Ga	Se
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm p	pm	ppm	ppm	% ppm	ppm
G-1	2.1	3.3	2.4	45	< . 1	4.9	4.4	588	1.97	.7	1.8	.5	4.0	75	<.1	<.1	.2	41	.61	.079	8	18.9	.57	263	.134	1	1.02	.133	.51	4.4<.	01	2.3	.4<.0	55	<.5
105496	1.0	59.6	18.7	113	.1	6.0	10.1	552	6.95	6.7	.4	7.2	.9	8	.2	.2	.2	157	.10	.084	3	15.6	.65	38	.053	<1	3.89	.007	.03	-1 -	10	7.0	.1<.0	5 11	1.5
105497	.9	32.0	11.6	77	.1	3.7	8.0	482	5.63	3.9	.2	5.6	.5	13	.2	.2	.1	192	.16	.048	2	10.6	.43	41	.077	<1	2.63	.006	.03	-1 -	07	4.2	<.1<.0	5 11	9
105498	.9	51.5	6.3	25	.2	1.7	2.6	160	4.13	2.2	1.1	4.8	1.2	4	.3	.1	.1	75	.05	.098	6	15.4	.15	14	.082	<1	8.24	.006	.01	-1-	54 1	13.4	<.1<.0	56	5.6
128851	4.0	45.2	25.4	121	.3	4.7	53.1	1039	3.73	2.8	.6	1.3	.8	6	.4	.2	.1	62	.10	.096	14	12.0	.21	50	.052	<1	6.45	.006	.02	.1.	33	8.6	.1<.0	55	3.6
148591	5.0	109.4	35.2	143	.3	2.1	11.1	902	4.67	5.0	.2	1.5	.4	6	.2	.2	.1	94	.10	.074	4	5.9	.44	133	.007	<1	2.89	.007	.04	<.1.	13	3.5	.1<.0	5 10	.6
148592	3.6	143.7	21.7	105	.4	3.3	8.3	576	5.12	4.7	.2	6.6	.4	7	.2	.2	.2	102	.08	.065	4	10.7	.56	121	.004	<1	3.25	.006	.04	.1.	14	4.1	.1<.0	5 11	.9
148593	10.1	777.5	230.8	123	.5	6.3	46.9	3605	4.83	8.6	.3	25.9	.5	13	.6	.3	.4	70	.27	.135	7	11.4	1.01	189	.003	<1	2.96	.006	.07	.1.	48	4.8	.1<.0	58	2.4
148594	.5	31.3	8.9	42	.4	2.2	2.7	169	1.52	2.1	.1	3.0	.1	15	.3	.2	.1	38	.28	.080	2	4.3	.25	120	.007	1	.96	.009	.04	-1 -	26	1.5	<.1 .0	9 3	1.1
148595	.7	30.7	7.7	57	.2	3.3	6.8	574	3.15	2.2	.2	.9	.4	9	.1	.2	.1	103	.10	.027	4	5.8	.79	74	.003	1	2.40	.006	.04	.1.	06	4.3	.1<.0	5 10	<.5
148596	.8	49.8	12.7	92	.2	3.8	9.6	753	3.79	2.5	.2	2.1	.5	8	.1	.3	.1	110	.12	.031	3	6.1	1.09	102	.003	<1	3.30	.006	.05	<.1 .	07	4.7	.1<.0	5 10	<.5
148597	4.4	88.7	111.4	95	.2	2.7	5.5	712	6.17	7.5	.2	34.7	.5	8	.1	.3	.2	146	.12	.099	4	12.0	.36	69	.030	1	2.25	.006	.03	<.1.	12	3.6	.1<.0	5 12	8
148598	3.5	86.8	10.6	49	.4	1.8	3.5	192	4.19	5.6	-1	3.9	.5	6	.1	.3	.2	104	.07	.041	3	6.0	.27	53	.008	<1	1.95	.005	.04	<.1 .	13	3.5	.1<.0	5 10	.6
148599	1.1	92.4	17.2	120	.3	4.9	13.2	1313	4.05	2.2	.3	2.0	.5	12	.1	.2	.1	103	.16	.071	4	7.5	1.47	104	.002	1	3.54	.007	.05	.1.	11	5.7	.1<.0	5 11	.7
148600	1.5	116.0	12.0	63	.2	3.3	9.8	750	4.04	3.9	.2	1.5	.4	10	<.1	.3	.1	110	.10	.052	5	6.5	.63	62	.006	<1	2.97	.006	.04	.1.	10	4.5	.1<.0	5 11	.7
148831	.8	20.7	9.0	29	.1	3.1	3.9	133	5.04	3.2	.3	.6	.6	7	.2	.2	.2	161	.07	.064	2	14.5	.18	17	.055	<1	2.53	.007	.03	.1.	22	3.0	<.1<.0	5 12	1.6
148832	1.0	18.0	10.6	50	.1	5.0	7.7	835	6.14	4.3	.3	5.2	.4	14	.3	.2	.2	205	.23	.067	3	16.5	.38	61	.086	2	2.05	.008	.04	.1.	80	3.6	.1<.0	5 14	.8
148833	.6	17.3	7.2	23	.1	3.2	3.6	114	3.79	2.8	.2	1.4	.3	8	.2	.2	.1	150	.12	.055	2	11.8	. 13	18	.090	1	1.24	.006	.03	<.1 .	13	2.2	<.1<.0	5 9	1.0
148834	1.1	46.8	9.3	58	.4	4.1	8.3	601	5.86	4.6	.5	2.6	.7	8	.2	.2	.2	147	.09	.078	3	15.5	.35	30	.042	1	3.52	.007	.02	.1.	34	4.8	.1<.0	5 11	2.4
RE 148834	1.1	47.2	9.6	58	.5	4.3	8.6	613	5.88	4.9	.5	5.7	.8	9	.2	.2	.2	151	.09	.078	4	15.4	.35	30	.046	<1	3.58	.007	.02	.1.	35	5.1	.1<.0	5 12	2.5
148835	1.8	281.9	90.5	501	.4	5.5	27.1	2414	6.48	6.1	.4	5.4	.6	16	1.3	.2	.3	125	. 19	.108	5	10.5	1.03	142	.043	1	4.23	.008	.04	-1.	28	7.0	.1<.0	5 10	1.7
148836	2.3	144.7	96.7	666	.3	4.1	41.5	1592	7.10	4.9	.4	5.0	-8	11	.6	.2	.3	127	.13	.095	4	9.4	.49	110	.028	<1	4.55	.007	.04	<.1.	17	5.8	.1<.0	5 12	1.7
148837	.6	46.2	11.2	106	.1	3.6	6.9	586	4.24	2.(.1	1.2	-4	12	•1	.2	.1	107	.13	.033	- 3	(.9	.58	75	.028	<1	2.42	.007	.05	<.1.	07	4.1	.1<.0	5 9	<.5
148838	1.5	146.6	13.7	154	.2	5.2	10.8	572	4.64	9.5	.5	2.0	.5	14	.5	.2	.1	161	.20	.028	2	20.0	.99	105	.026	1	3.12	.009	.04	.] .	14	5.6	.1<.0	5 11	1.1
148839	.8	(9.9	11.5	114	.2	8.5	14.0	842	5.22	8.0	-4	7.4	.0	11	.2	.2	• !	127	.15	.081	4	12.3	1.11	20	. 115	1	3.23	.008	.05	•1 •	17	0.0	. 1<.0	יכ	1.5
148840	3.3	221.9	30.6	189	1.3	11.4	83.8	2837	3.81	12.4	.7	13.5	.8	13	1.4	.3	.2	69	.27	.233	15	11.7	. 75	32	.087	3	7.25	.007	.03	.1.	60 2	21.4	.1<.0	55	4.2
148841	1.8	67.7	18.5	90	.3	4.7	14.1	775	5.78	6.3	.4	4.9	.5	11	.2	.2	.3	125	.11	.066	7	10.9	.49	141	.049	<1	2.56	.007	.04	.2.	45	4.9	.1<.0	58	2.1
148842	.9	39.8	13.0	66	.6	4.7	10.2	646	6.90	4.1	.7	3.2	.5	11	.2	.2	.1	181	.09	.071	4	14.3	.51	31	.094	1	3.99	.007	.01	.1.	45	7.3	<.1<.0	5 11	3.3
148843	.8	73.4	52.6	93	.2	4.3	10.0	619	6.79	6.4	.6	4.2	.8	16	.2	.2	.1	142	.10	.119	4	12.5	.51	35	.106	2	5.21	.007	.02	-1 -	48	8.5	.1<.0	59	2.7
148844	.8	42.6	13.7	59	.2	3.9	10.1	670	7.01	4.7	.4	5.6	.5	15	.2	.2	.1	206	.11	.192	3	10.4	.42	72	.077	<1	3.91	.007	.04	-1 -	19	6.8	.1<.0	5 12	1.2
148845	1.1	63.2	8.6	64	.2	3.4	11.6	669	6.44	4.4	.5	3.8	.6	9	.1	.2	.1	126	- 08	.132	4	8.2	.36	52	. 044	1	5.07	.007	. 02	.1	40	8.0	.1<.0	5 0	2.8
148846	3.1	133.7	14.4	190	.6	2.3	4.3	369	6.17	7.3	.3	6.6	.7	10	.8	.2	2	150	.11	.065	Ä	9.4	.40	68	.038	1	3.68	.008	.02	.1	37	4.7	.1<.0	5 11	3.5
148847	1.6	79.6	23.6	181	.4	1.8	6.6	542	5.54	6.1	.2	3.4	.4	10	.4	.2	.3	146	.11	.069	3	7.5	.38	102	.031	<1	2.73	.009	.05	< 1	14	4.8	.1<.0	5 11	1.4
148848	1.2	223.6	15.5	524	.4	2.7	38.0	2350	4.18	3.8	.3	1.3	,3	12	1.7	.2	.2	99	.15	.087	4	6.7	.49	258	.014	<1	2.92	.008	.04	<.1	17	3.4	.2<.0	5 0	2.1
148849	1.7	520.6	58.8	391	.4	5.3	9.4	1215	5.68	9.2	.5	13.9	1.0	11	.8	.2	.2	93	.10	106	4	11.4	1.22	80	.042	2	4.20	.006	.05	.1.	31	6.2	.1<.0	5 7	2.0
STANDARD	12.3	143.6	24.1	134	.3	23.7	11.8	771	2.92	17.4	5.9	40.4	2.7	43	5.6	3.6	5.6	58	.73	. 095	11	179.9	.64	136	.089	17	1.92	.032	.13	4.9	17	3.6	1.1<.0	5 6	5.2
											/	141-7													/						<u></u>				<u> </u>

Standard is STANDARD DS5. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 2

ALME ANALTITU	чL.																																	AURE /	WALLING.	<u>.</u>
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	A1 %	Na X	K %	W ppm	Hg ppm	Sc ppm	T1 ppm	S %	Ga ppm	Se ppm
G-1 148850 183606 183607 183608	2.5 1.9 .9 1.3 .6	3.7 495.3 66.3 80.6 33.5	2.4 111.6 11.3 14.7 48.7	46 405 99 71 64	<.1 .6 .4 .3	4.9 4.8 8.5 6.3 2.1	4.5 12.0 12.3 8.1 5.1	620 1317 613 398 233	2.14 7.95 6.80 6.13 6.28	.6 7.3 5.7 5.6 6.6	1.8 .4 .5 .6	<.5 10.9 2.9 4.1 50.1	4.2 .9 1.4 1.5 .3	65 7 11 7 7	<.1 .7 .2 .3 .4	<.1 .3 .2 .2 .4	.1 .4 .1 .1	45 129 220 151 210	.58 .08 .07 .06 .08	.082 .131 .043 .101 .051	8 4 3 5 3	21.1 12.4 18.4 16.9 10.4	.60 .73 1.01 .59 .21	264 69 41 36 30	.147 .035 .129 .128 .027	35 1 <1 5 <1 4 <1 5 <1 2	L.07 5.30 4.89 5.72 2.67	.141 .006 .006 .006 .005	.59 .03 .01 .01 .01	4.4 .1 .2 .3 .1	<.01 .33 .23 .40 .76	2.4 5.3 8.9 7.2 2.9	.4 · .1 · <.1 · .1 · <.1 ·	<.05 <.05 <.05 <.05 <.05	5 11 13 8 15	<.5 2.8 2.3 2.7 1.4
183609 183614 183615 183616 183617	.8 4.2 6.4 1.9 1.8	77.8 169.6 201.3 67.8 171.0	13.1 16.8 13.0 9.6 12.0	103 203 206 67 98	.2 .3 .1 .5	5.9 9.3 12.1 3.8 5.6	13.5 61.1 53.8 13.3 9.3	551 3735 2124 459 430	6.44 7.05 7.66 6.16 6.17	5.6 25.1 21.8 7.0 9.4	.5 .3 .1 .6	1.0 14.3 20.9 3.9 28.6	.8 .6 .7 .4 1.9	12 15 22 11 5	.2 .7 .6 .2 .3	.2 .2 .3 .5	.1 .3 .3 .2	181 102 115 293 124	.08 .35 .39 .18 .06	.067 .114 .094 .044 .120	5 8 6 2 4	13.6 10.7 11.5 9.2 21.3	.60 .78 1.21 .42 .60	68 134 82 36 26	.086 .123 .122 .254 .159	<1 4 1 4 3 5 1 1 <1 8	4.75 4.62 3.53 1.60 3.35	.007 .006 .006 .004 .005	.02 .06 .04 .03 .02	.2 .1 .2 <.1 .2	.19 .35 .56 .14 .72	10.8 10.4 8.2 2.8 15.1	.1 .1 <.1 <.1 <.1	<.05 .09 <.05 <.05 <.05	11 6 7 15 7	2.3 3.1 2.7 .8 4.1
183620 183621 183622 183623 183623 183624	2.7 1.6 1.8 .5 1.0	213.1 174.0 215.7 34.4 59.4	14.4 12.9 10.4 5.4 10.3	91 98 88 55 65	.5 .7 .2 .5	6.6 6.9 6.4 4.1 6.0	12.1 11.4 13.8 7.1 11.5	551 582 681 357 393	10.53 9.27 7.48 6.51 7.07	5.1 3.5 4.8 3.4 4.5	.6 .4 .3 .3	3.5 3.0 2.9 <.5 <.5	1.3 1.0 .9 .6 .5	6 14 16 19 13	.3 .2 .1 .3	.2 .1 .2 .3 .3	.2 .2 .3 .1 .2	244 211 197 230 222	.06 .12 .12 .15 .13	.092 .072 .045 .057 .048	4 3 1 2	16.1 15.0 14.5 12.8 11.7	.68 .70 .90 .51 .52	49 62 49 16 56	.072 .090 .084 .302 .075	<1 (2 (1 4 1 (1 (5.00 5.65 4.44 3.12 3.14	.005 .006 .005 .007 .006	.01 .02 .01 .01 .02	.2 .1 .1 .1	.33 .33 .20 .14 .27	7.9 6.7 7.2 4.6 4.4	.1 .1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	14 14 13 12 13	4.0 3.0 2.1 1.3 1.9
183625 183626 RE 183623 183627 183628	1.4 1.0 .7 1.7 .7	94.1 76.3 34.6 252.3 82.0	15.3 14.6 5.5 11.5 11.3	97 65 57 127 93	.2 .2 .3 .2	8.0 5.5 4.2 8.5 7.2	11.4 9.9 7.3 50.3 11.4	509 364 360 2491 574	8.34 8.16 6.52 5.53 6.92	6.0 5.1 3.5 3.3 5.8	.4 .3 .4 .5	3.1 4.8 <.5 1.6 4.1	1.2 .8 .6 .3 1.0	13 9 20 18 12	.2 .1 <.1 .5 .1	.2 .3 .4 .2 .2	.2 .2 .1 .1	246 279 236 159 193	.10 .08 .15 .51 .10	.088 .049 .057 .081 .101	3 2 9 4	17.8 14.5 13.0 14.7 17.6	.77 .54 .52 .52 .66	36 25 17 185 37	.129 .130 .302 .073 .148	<1 4 1 4 <1 3 1 5 1 5	5.26 4.25 3.17 3.49 5.17	.006 .005 .007 .009 .014	.02 .01 .01 .02 .02	.2 .1 <.1 .1 .1	.20 .20 .15 .20 .28	8.2 7.7 4.9 6.1 10.3	<.1 <.1 <.1 .1 <.1	<.05 <.05 <.05 <.05 <.05	14 16 13 11 11	2.3 2.2 1.4 2.3 3.5
183629 183630 183631 183633 183633 183634	.8 .9 1.4 2.9 .7	52.8 184.4 102.0 184.4 26.5	14.1 14.8 22.6 188.7 9.0	78 145 130 183 43	.3 .2 .3 .4	5.7 11.3 6.6 6.9 3.8	11.2 20.2 16.6 16.7 6.2	461 930 707 989 238	7.29 5.93 5.96 8.42 5.56	5.1 6.5 2.7 6.4 2.4	.5 .5 .2 .2	4.1 7.9 1.0 9.8 1.6	.9 1.0 .4 .3	13 20 18 5 12	.2 .3 .4 .1	.2 .2 .2 .2	.1 .1 1.4 .1	215 141 163 137 218	.10 .18 .25 .09 .14	.085 .089 .055 .082 .041	3 8 4 1 2	17.1 16.8 11.2 7.7 13.2	.47 .99 .66 1.05 .36	29 83 169 125 27	.134 .157 .073 .018 .120	<1 4 1 5 1 5 2 5 1 5	4.39 5.47 3.64 3.43 2.43	.007 .007 .007 .004 .006	.01 .03 .03 .04 .02	.1 .2 .1 .1 <.1	.28 .37 .18 .23 .17	6.7 12.5 5.0 4.6 3.8	<.1 .1 .1 .1 <.1	<.05 <.05 <.05 <.05 <.05	13 8 11 8 14	2.8 2.5 1.9 2.2 .8
183635 183636 183638 183639 183639 183642	.7 .9 1.9 1.3 6.2	23.4 106.3 19.1 15.4 222.8	7.5 8.5 6.2 31.6 26.4	38 72 46 59 285	.2 .5 .1 .3	3.6 5.6 4.8 4.1 7.8	5.5 9.6 7.8 36.6 31.1	255 516 404 4405 973	4.83 6.07 5.96 4.82 7.08	2.3 3.7 5.3 4.4 6.6	.2 .5 .3 .4 .7	1.0 2.9 .8 1.4 4.3	.4 1.3 .4 .3 1.6	9 8 6 11 8	<.1 .2 .1 .2	.2 .2 .3 .2	.1 .1 .1 .3	180 152 183 160 144	.16 .13 .13 .12 .10	.046 .421 .047 .102 .070	2 4 4 8	12.3 16.9 14.9 12.5 22.0	.29 .43 .48 .39 .64	23 33 45 76 88	.116 .111 .104 .063 .097	1 1 1 2 2 2 <1 2 2 0	1.80 5.66 2.78 2.65 6.29	.009 .008 .012 .008 .007	.03 .03 .03 .05 .04	<.1 .2 .2 <.1 .2	.15 .42 .20 .21 .37	3.4 8.2 5.0 4.4 9.7	<.1 .1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	11 9 14 15 12	.6 2.5 .8 1.5 3.3
183644 183645 183646 183647 183648	1.3 6.2 2.9 2.0 1.5	34.6 283.3 75.8 24.7 82.0	37.0 7.7 12.7 18.5 15.7	54 57 109 56 98	1.3 .3 .2 .1 .2	1.8 2.4 3.6 2.9 4.8	2.2 9.1 4.9 3.0 8.3	287 353 282 260 526	5.40 5.18 5.95 5.90 6.36	12.3 9.2 6.0 6.2 6.7	.3 .2 .3 .3 .2	1.7 10.6 9.2 6.9 5.0	.6 .6 .9 .6	6 4 7 6 11	.1 .1 .2 .1 .1	.2 .3 .2 .2	.2 .3 .2 .1	103 91 137 124 154	.06 .06 .08 .07 .10	.123 .083 .073 .075 .063	4 3 5 3 3	5.1 4.8 12.6 11.9 12.0	.37 .29 .34 .34 .71	67 49 34 49 35	.035 .007 .034 .030 .070	1 <1 <1 <1 <1 <1 <1 <1	5.72 3.29 3.91 3.12 4.00	.008 .005 .005 .007 .007	.03 .04 .02 .04 .02	.1 .1 <.1 .1	.37 .17 1.10 .16 .21	6.0 3.6 4.4 3.8 7.3	.1 .1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	12 8 12 11 12	2.4 1.4 2.1 1.8 1.6
standard DS5	12.7	143.6	24.7	138	.3	24.1	12.1	780	2.95	17.6	6.1	42.8	2.7	38	6.1	3.8	5.0	60	.72	. 093	12	188.2	. 64	133	.091	23	1.96	. 032	.14	4.9	. 18	3.5	1.2	<.05	6	5.3

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖡 FA

Page 3

)	1		}		1		1				<u> </u>		1)		1]]				1		1	<u> </u>	1		1			
					IJ	nspi	ira	tic	on M	ſini	.ng	Coi	cp.	PR	OJE	CT	JAS	SPE	R	FIL	.Е #	A4	041	.49				Pa	ge 4			ACME A	A	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb p	Th opm (Sr (opmipp	Cd Si pm ppr	o Bi n∕pprn	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %p	Ba pm	ті % р	B pm	Al %	Na %	к % р	W Hg pm ppn	sc pom	тl ppm	s % p	Ga So pom ppo	e m
G-1 183649 183650 STANDARD DS5	2.3 1.0 2.4 12.4	4.2 32.2 44.4 144.1	2.5 8.5 13.4 23.9	50 55 60 132	<.1 .2 .2 .3	5.5 3.0 3.0 24.3	4.6 5.3 6.4 11.9	627 251 365 760	2.20 4.94 6.29 2.95	1.2 6.4 8.9 17.6	1.8 .2 .2 5.9	1.2 3.7 5.7 42.0	4.2 .6 .4 2.6	87 < 10 10 44 5	.1 <. .1 . .1 . .7 3.	1 .1 2 .1 2 .5 5 5.7	44 147 136 58	.66 .12 .11 .74	.088 .056 .078 .093	9 3 2 11 1	21.7 8.8 10.5 83.2	.62 2 .29 .31 .63 1	94 - 26 - 47 - 37 -	143 085 033 088	<1 1 <1 3 <1 2 16 1	. 19 . 14 . 73 . 92	.157 .007 .007 .032	.60 4 .02 < .03 .13 5	.9<.01 .1 .20 .1 .12 .1 .17	2.7 4.3 3.9 3.4	.4 .1 .1 1.1	<.05 <.05 <.05 <.05	6 <.! 11 1. 10 1. 7 5.	5 2 3 0

Sample type: SOIL SS80 60C.

ACME ANA (ISO AA	LYTICAL LABOR	TORIES LTD. ted Co.)	852 E. HAS GEOCHEN ion Mining (c/o Arnex F	TINGS ST. VANCO TICAL ANALYS Corp. PROJECT esources Ltd.,, Nort	DUVER BC V6A 1R6 IS CERTIFICATE <u>I JASPER</u> File # th Vancouver BC V7M 3B1	PHONE (604) 253-315 A404150	18 FAX (604) 253-1716
SAMPLE#	Mo Cu Pb Zr ppm ppm ppm ppm	n Ag Ni Co Mr n ppm ppm ppm ppm	n Fe As U Au n % ppm ppm ppb j	Th Sr Cd Sb Bi opm ppm ppm ppm ppm pp	V Ca P La Cr Mg Ba m % % ppm ppm % ppm	Ti B Al Na K W H % ppm % % % ppm pp	łg Sc Tl S Ga Se Sample mrppmr %rppmrppmr gmr
105473 105484 105485 105494 128551	1.6 141.7 15.0 255 2.2 227.8 17.6 406 2.2 208.5 16.3 485 2.5 184.2 16.6 281 1.0 109.1 11.8 226	5 .2 12.7 34.6 1661 5 .2 11.4 54.5 2586 5 .2 13.5 51.6 2780 1 .2 12.2 41.2 2048 5 .1 13.0 31.8 1598	1 6.26 9.7 .2 11.4 3 5.65 15.3 .2 63.1 0 5.64 8.0 .2 8.3 3 6.05 8.7 .2 10.1 8 5.28 6.6 .3 13.7	.5 40 1.1 .3 .3 15 .5 29 1.6 .3 .3 9 .4 49 3.2 .2 .3 11 .4 43 1.4 .2 .4 12 .5 39 1.0 .2 .1 14	33 .63 .076 5 20.9 1.45 112 88 .50 .085 6 11.8 1.25 139 6 .89 .087 6 11.9 1.37 155 21 .71 .080 4 12.9 1.52 118 40 .66 .069 5 17.7 1.48 123	.151 2 2.61 .007 .06 .1 .1 .118 2 2.79 .006 .09 .1 .3 .110 2 3.21 .010 .06 .1 .1 .112 1 2.98 .006 .06 .1 .1 .157 2 2.45 .007 .06 .1 .1	97.6 < .1 $.32$ 72.2 30 56.4 1.30 62.6 15 77.1 1.19 72.7 30 $157.2 < .1$ 2372.4 30 $127.7 < .1$ $.1081.3$ 30
128553 183641 183643 STANDARD DS5	1.1 133.3 21.9 69 1.9 615.3 13.4 1436 1.6 510.6 14.0 1039 12.2 141.0 25.0 138	9 .1 4.8 20.2 914 5 .1 7.8 242.6 19495 5 .1 6.9 208.3 14455 3 .3 24.8 12.5 782	4 3.85 7.4 .2 15.8 5 2.36 1.8 .2 1.0 5 2.22 2.3 .2 1.4 2 2.88 18.6 6.3 41.0	.2 64 .4 .2 .1 7 .1 30 21.2 .1 .1 3 .2 20 12.4 .1 .1 3 2.8 45 5.7 3.9 6.0 6	2 2.02 .067 3 4.6 .68 154 0 .58 .125 8 5.1 .19 209 2 .38 .121 7 5.7 .22 154 .2 .73 .094 12 186.6 .70 137	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26 5.5 .1 .34 6 3.1 15 22 1.9 .1 .12 3 4.2 15 23 2.3 .1 .12 4 3.4 15 15 3.6 1.0 .05 6 5.0 30

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSSMAT SS80 60

Data _____ DATE RECEIVED: AUG 3 2004 DATE REPORT MAILED: AUG 3 2004

ACME ANA (ISO	LYTI(900:	ZAL 2 Ac	LAB Cre	ORA dit	ror ed	IES Co. Ins	LTD) upir	ati	8 on	52 G <u>Mi</u> c/	E. EOC nir	HAS THE IG nex	MIC CO Reso	IGS CAI CD . Urce	ST A A P Is Lt	. V NAJ <u>RO</u> (d.,,	ANC JYS JEC Nor	20U SIS <u>T</u>	VER CI JAS Vanco	BC SRT	V TF: IR r BC	6A ICA Fi V7M	LR6 TE le 381	#	PH A40	10NE	(60 0	4) 2	:53.	•31!	58	Fax	:(6)	04)	25	3 - 1' 4	716 AA	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe ۲	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm p	V	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K % p	W pm p	Hg pm p	Sc pm p	[] m	S % p	Ga : pm p	Se Sa Sm	mple gm	
105473 105484 105485 105494 128551	1.6 2.2 2.2 2.5 1.0	141.7 227.8 208.5 184.2 109.1	15.0 17.6 16.3 16.6 11.8	255 406 485 281 226	.2 .2 .2 .2 .1	12.7 11.4 13.5 12.2 13.0	34.6 54.5 51.6 41.2 31.8	1661 2588 2780 2048 1598	6.26 5.65 5.64 6.05 5.28	9.7 15.3 8.0 8.7 6.6	.2 .2 .2 .2 .3	11.4 63.1 8.3 10.1 13.7	.5 .5 .4 .5	40 29 49 43 39	1.1 1.6 3.2 1.4 1.0	.3 .3 .2 .2 .2	.3 1 .3 .3 1 .4 1 .1 1	153 98 116 121 140	.63 .50 .89 .71 .66	076 085 087 080 069	5 6 4 5	20.9 11.8 11.9 12.9 17.7	1.45 1.25 1.37 1.52 1.48	112 139 155 118 123	.151 .118 .110 .112 .157	2 2. 2 2. 2 3. 1 2. 2 2.	61 . 79 . 21 . 98 . 45 .	007 006 010 006 007	.06 .09 .06 .06 .06	.1 . .1 . .1 . .1 . .1 .	19 7 35 6 17 7 15 7 12 7	.6 < .4 .1 .2 < .7 <	$ \begin{array}{c} 1 & .3 \\ 1 & .3 \\ 1 & .1 \\ 1 & .2 \\ 1 & .1 \\ \end{array} $	32 30 19 23 10	72 62 72 72 81	.2 .6 .7 .4 .3	30 15 30 30 30	
128553 183641 183643 STANDARD DS5	1.1 1.9 1.6 12.2	133.3 515.3 510.6 141.0	21.9 13.4 14.0 25.0	69 1436 1035 138	.1 .1 .1 .3	4.8 7.8 6.9 24.8	20.2 242.6 208.3 12.5	914 19495 14455 782	3.85 2.36 2.22 2.88	7.4 1.8 2.3 18.6	.2 .2 .2 6.3	15.8 1.0 1.4 41.0	.2 .1 .2 2.8	64 30 2 20 2 45	.4 21.2 12.4 5.7	.2 .1 .1 3.9	.1 .1 .1 5.0	72 30 32 62	2.02 .58 .38 .73	067 125 121 094	3 8 7 12	4.6 5.1 5.7 186.6	.68 .19 .22 .70	154 209 154 137	.130 .020 .023 .099	32. 34. 25. 161.	75 . 16 . 10 . 96 .	009 014 007 035	.10 .33 < .06 < .14 5	.1 . .1 . .1 .	26 5 22 1 23 2 15 3	.5 .9 .3 .6 1	1 .3 1 .1 1 .1	34 12 12 05	63 34 43 65	.1 .2 .4 .0	15 15 15 30	

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSSMAT SS80 60

Data / FA ____ DATE RECEIVED: AUG 3 2004 DATE REPORT MAILED: AUG 3 2004

191 -

	ASSAY CERT Arnex Resources Ltd. 2069 Westview Drive, Nort	TFICATE File # A401662R th Vancouver BC V7M 3B1	신
	SAMPLE#	Cu	
	183524 STANDARD R-	2.886 2a .564	
GROUP 7AR - 1.000 GM SA - SAMPLE TYPE: ROCK PUL	MPLE, AQUA - REGIA (HCL-HNO3-H2O) DIGE	ESTION TO 100 ML, ANALYSED BY ICP-ES Λ	5.
Data WE FA DATE RECEIVED:	AUG 25 2004 DATE REPORT MAIL	LED: 1.1. 30/04	Clarence Leong

ACME ANALYTICAL (ISO 9002 7	. LABORATORIES LTD. ccredited Co.)	852 E. HASTINGS ST. V. ASSAY CER Arnex Resources Ltd. 2069 Westview Drive, No	ANCOUVER BC V6A 1R6 RTIFICATE File # A401662R orth Vancouver BC V7M 3B1	PHONE (604) 253-3158 FAX (604) 253-17																																
		SAMPLE#	Cu %																																	
		183524 STANDARD F	2.886 -2a .564																																	
	GROUP 7AR - 1.000 GM SAMPI - Sample Type: Rock Pulp	.E, AQUA - REGIA (HCL-HNO3-H2O) DI	GESTION TO 100 ML, ANALYSED BY	ICP-ES.																																
Data We FA	DATE RECEIVED:	AUG 25 2004 D ATE REPORT MA	ILED. 17.19.30/04	Clarence Leong																																
				The trans																																
ACME	ANAL (ISO	YTIC 9002	L L/ Acci	BOR	ATO ted	RIE Co) s l .)	TD.	<u>I</u>	85	2 E	. на	STI	NG	s st	l . v	ANC		TER	BC	V6	A 1	R6	1	PH) ONE (604)2:	<u> </u> ;3-31	58	FAX (604) 25:	3-1	716	
---	----------------------------------	---	--	---------------------------------------	--------------------------------	----------------------------------	--------------------------------------	--------------------------------------	---	-----------------------------------	---	--------------------------------------	------------------------------	-----------------------------	-------------------------------------	------------------------------	--------------------------------	-----------------------------	--------------------------------------	--------------------------------------	------------------------	------------------------------------	--------------------------------------	----------------------------	--------------------------------------	--	---	-----------------------------------	--	-----------------------------------	---	--------------------------------------	-------------------------------------	-----------------------------------	---------------------------------	--------------------------------------
						In	.sp:	lra	<u>tio</u>	n N	GE([in: c/o	ing Arnex		OTP ourc	ы А . Р :es Lt	NA) <u>RO</u> (JEC Nor	15 <u>T</u>	JAS /anco	BPEI uver	BC , BC ,	.CA1 Fi] V7M 3	:њ .е : в1	# 7	404	4148	3							Ą		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppr	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca لا	P X	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K W %ppm	Hg ppm	Sc ppm p	F1 om	S (% pi	Ga pm p	Se Sa opm	ample kg
SI 105405 105406 105407 105408	<.1 18.3 .3 24.7 4.4	4.9 2645.1 167.2 >10000 590.4	.2 19.9 2.3 29.5 8.0	1 154 113 422 66	<.1 5.9 .3 3.9 .7	.8 2.0 20.9 7.6 4.4	5.1 13.3 30.4 16.7 19.4	<1 1072 1186 127 681	.03 6.81 4.26 9.40 3.67	.8 6.5 3.5 2.3 61.6	<.1 .1 .2 .1 .1	.5 197.1 3.9 30.5 25.0	<.1 .2 .5 .2 .2	3 17 157 11 16	<.1 .3 .2 2.5 .2	<.1 .2 .6 .3 .4	<.1 26.4 .2 1.1 .5	<1 32 134 13 16	.12< .18 2.36 .33 4.38	.001 .027 .074 .030 .031	<1 3 4 2 5	<1 1.7 21.7 1.9 2.1	<.01 .80 2.44 .07 .39	3< 11 37 11 35	.001 .029 .232 .085 .056	<1 . 1 1. 2 2. 1 . 1 .	01 .9 14 .0 40 .0 29 .0 60 .0	511< 006 029< 003 004	.01 <.1 .12 .1 .01 .4 .21 .1 .18 1.4	<.01 .46 .03 .55 .08	.1 < 1.6 < 8.6 < 1.7 2.4	.1 < .1 5 .1 .1 .1 2	.05 .63 .69 >10 2.78	<1 < 3 3 8 1 1 10 2 3	.5 .6 .2 .6 .5	1.04 2.34 1.27 .90
105409 105410 105411 105412 105413	4.0 15.7 .5 1.8 1.0	132.4 25.0 33.7 >10000 >10000	7.1 260.6 10.5 11.3 20.5	118 1908 109 557 584	.9 .3 .1 3.3 1.9	11.5 1.3 5.5 1.5 2.5	44.7 .7 23.5 42.2 48.7	1830 87 1327 489 1134	7.08 .69 5.85 10.80 15.17	9.9 2.7 17.6 .5 4.7	.1 <.1 .1 <.1 <.1	9.9 6.3 1.2 15.8 21.7	.2 <.1 .1 <.1 .1	144 2 11 7 9	.2 31.2 .2 2.8 2.5	.2 .3 .1 .2 .1	.7 .1 .7 1.6 2.2	101 3 123 19 43	3.03 .02 .40 .06 .10	.072 .009 .093 .011 .015	5 <1 2 1 1	4.2 2.8 7.7 1.5 1.7	2.10 .01 1.66 .39 1.07	26 18 14 6 3	.091 .014 .195 .018 .042	2 2. <1 . 1 1. <1 . <1 1.	78 .(07 .(73 .(45 .(20 .(010 002 054 001 002	.19 .1 .04 .8 .11 .1 .01 1.3 .02 .4	.39 3.20 .17 .04 .04	5.3 < .3 < 7.2 < .7 < 1.8 <	.1 3 .1 .1 4 .1 7 .1	2.70 .21 .10 .43 >10	7 5 <1 1 7 3 29 6 15	.9 .5 .9 .6	1.50 1.35 2.10 2.07 1.76
105414 105415 105474 105483 C128552	35.3 4.0 .7 1.1 .7	609.4 55.7 75.4 165.0 10.7	163.1 13.5 23.3 5.0 3.6	308 59 114 91 61	6.9 .7 .2 .2 .1	3.6 7.4 11.6 9.7 5.7	12.4 11.8 16.3 15.1 16.3	1201 1052 853 952 923	3.39 3.80 5.37 6.02 5.02	29.9 91.9 4.9 8.2 3.0	<.1 .1 .1 .1 .1 .1	83.8 18.1 2.9 3.5 1.7	.1 .5 .3 .2 .1	3 4 5 25 12	1.3 .1 .1 .1 <.1	1.0 1.1 .2 .1 .1	.1 .1 .2 .5 1.1	54 67 65 109 62	. 05 . 12 . 36 . 44 . 64	.014 .072 .085 .052 .121	4 8 3 1 5	3.6 10.0 7.4 7.9 4.3	1.69 1.22 1.30 1.95 1.46	53 38 27 26 24	.003 .020 .197 .230 .122	1 1. 1 1. 2 1. 2 2. 1 1.	47 .(19 .(29 .(47 .(59 .(001 004 015 009 026	.03 .4 .15 <.1 .24 .2 .14 .1 .18 .2	.08 .32 .06 .51 .42	2.8 5.1 4.6 6.1 < 4.8 <	.1 1 .1 2 .1 3 .1 2 .1 3	48 2.51 3.59 2.05 3.08	5 2 6 5 1 7 3 5 4	.9 .5 .1 .7 .1	1.44 .62 2.93 1.91 2.25
RE C128552 C128554 148907 148908 148909	.8 4.7 .2 1.5 1.0	10.6 21.3 1931.8 6261.5 2542.7	4.1 9.2 11.0 9.5 12.0	58 35 1345 507 924	.2 .2 1.9 3.9 2.1	5.3 5.4 2.2 2.2 1.8	16.1 20.6 9.8 10.5 10.3	935 355 3043 3002 2935	5.08 4.72 5.77 7.99 12.77	3.4 13.2 3.6 5.9 7.2	<.1 .2 .1 .2 .2	2.4 5.7 9.1 10.1 13.6	.1 .1 .4 .3	12 121 12 10 13	<.1 .1 10.1 2.8 6.3	.1 .1 .2 .1	1.1 .2 .4 .7 1.1	60 73 55 53 48	.65 4.38 .33 .32 .26	.125 .057 .070 .063 .055	6 1 3 3 3	4.1 2.6 3.4 3.7 2.7	1.48 .65 1.52 1.52 1.51	24 46 29 13 5	.125 .192 .138 .120 .107	<1 1. 2 5. 1 2. <1 2. <1 2. <1 2.	62 .0 47 .0 04 .0 03 .0 00 .0	027 008 011 015 014	.18 .3 .12 .1 .14 .3 .13 .1 .10 .3	.43 .60 .73 .22 .36	5.0 < 5.9 4.2 < 3.9 < 3.2 <	.1 3 .1 3 .1 2 .1 4 .1	8.10 8.86 2.65 9.92 >10	5 4 8 5 7 1 7 2 7 4	.6 .7 4 2.1	2.09 1.08 1.78 2.74
148910 148911 148912 148913 148914	.4 .8 1.3 6.9 .5	7046.3 4751.4 1940.7 4769.5 823.9	40.0 373.8 314.6 51.2> 8.9	731 3624 3984 >10000 2150	5.7 4.2 1.7 2.0 .4	1.5 1.8 2.2 3.5 2.7	8.9 10.5 12.0 22.0 7.5	2913 2775 3198 1981 2406	16.04 10.67 9.40 12.38 7.80	7.0 5.5 5.7 9.8 4.1	$ \begin{array}{ccc} .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\$	18.4 25.6 15.3 55.8 23.9	.2 .3 .4 .2 .2	10 9 9 19 6	4.9 49.4 57.9 302.5 7.8	.1 .2 .2 .2 .1	1.7 1.7 1.2 3.1 .8	44 50 58 47 71	.17 .16 .23 .19 .09	.036 .052 .060 .019 .042	3 2 3 3 1	2.2 3.2 3.5 3.1 3.8	1.44 1.42 1.73 1.59 1.82	3 8 12 4 32	.077 .102 .100 .059 .072	1 1. <1 1. 1 2. 1 1. <1 2.	94 .(96 .(31 .(78 .(11 .(007 011 015 002 003	.07 .1 .11 .4 .13 .1 .06 .9 .06 .3	.51 2.31 2.28 .37 .08	2.4 < 3.4 < 4.1 < 4.0 < 4.1 <	.1 .1 7 .1 5 .1 .1 2	>10 2.47 5.63 >10 2.77	8 6 8 3 8 2 8 3 9 2	5.7 3.8 2.6 3.6 2.4	2.81 2.59 3.05 2.22 2.55
148915 B183560 B183561 B183562 B183618	.7 .7 5.6 1.5 2.3	197.1 33.7 35.5 41.4 >10000	65.6 11.1 10.9 8.5 26.7	352 220 434 139 95	.8 .1 .2 .4 2.1	2.6 9.9 11.3 6.3 5.1	10.1 10.9 16.9 7.6 48.0	1954 3310 1435 1802 679	6.49 4.52 3.92 3.99 9.64	3.7 5.1 13.8 75.3 4.4	1 2 .2 .2 .2 .2	16.5 4.2 15.1 19.1 26.0	.3 .5 .8 .4 <.1	31 9 42 4 34	.7 .1 2.2 .1 1.0	.1 .2 .2 .4 .4	1.1 <.1 .2 <.1 1.0	66 81 45 82 24	.34 .35 .53 .10 1.41	.060 .081 .073 .076 .018	3 8 7 6 1	4.3 22.6 13.0 10.9 2.8	1.91 2.28 1.72 2.51 .49	41 144 81 96 5	.084 .020 .152 .020 .003	1 2. 1 2. 2 1. 2 2. 2 .	21 .(55 .(98 .(26 .(75 .(004 013 007 006 002	.05 .3 .12 .1 .21 .3 .16 <.1 .14 .4	.02 .04 .13 .04 .24	4.5 < 6.4 < 5.0 < 5.5 < 1.8 <	.1 1 .1 .1 1 .1 1 .1 9	10 .46 25 19 9.45	8 2 8 < 5 2 8 < 2 10	2.6 2.5 2.2 2.5 1.8	1.91 3.06 1.26 .32 2.23
B183632 B183637 B183640 STANDARD DS5	23.6 .8 .6 5 12.3	226.0 557.8 3339.1 141.3	396.5 6.4 59.4 26.4	863 54 5232 139	.9 .7 2.8 .3	9.3 8.4 2.7 23.4	35.7 17.3 12.7 12.0	1443 664 3218 782	5.39 3.42 10.99 2.99	12.4 2.0 7.8 18.7	.1 <.1 .1 .1 6.2	63.8 13.5 445.0 42.0	.3 .1 .3 2.7	12 9 9 48	9.2 .1 38.6 5.4	.1 .1 .2 3.8	1.0 .6 1.4 6.4	57 29 67 60	1.35 .31 .22 .76	.074 .047 .046 .090	3 2 2 12	3.3 4.4 4.7 185.8	1.36 .85 1.88 .68	22 38 8 135	.050 .064 .091 .104	2 1. 1 1. 1 2. 17 2.	74 .0 04 .0 27 .0 12 .0	004 002 011 035	.23 .1 .13 .4 .10 .1 .15 5.1	.42 .06 3.19 .17	4.3 2.8 < 4.0 < 3.5 1	.1 3 .1 1 .1 9 .0 <	8.12 61 9.04 5.05	4 4 2 3 8 4 7 4	.0 8.8 .6 .8	1.63 2.24 3.01
GROU (>) - SA	P 1DX - Concent Mple ty	30.00 RATION	GM SA Excee CK R15	MPLE DS UP	LEAC PER	HED LIMI <u>Sam</u>	WITH TS. ples	180 SOME begi	ML 2- MINE nning	2-2 RALS <u>'RE</u>	HCL-I MAY / are	INO3-I BE P/ e Reru	H2O / ARTI/	AT 9 ALLY and	5 DEG ATTA <u>'RRE'</u>	. C CKED are	FOR (. RI <u>Rej</u> e	ONE EFRA ect	HOUR CTOR Rerui	, DIL Y AND <u>ns.</u>	UTED GRA) TO 6 PHITI	500 M 10 SA	L, A MPLE	NALY: S CAI	SED BI N LIMI	'ICF TAU	P-MS J SO	LUBILI	τ¥.	EA	ð	٦ò	70	P	
Dat	a_[FA		:	DAT	ER	ECE	IVEI	D:	AUG	3 200	04 I	DATI	E R	epof	T b	(AII	LED		lng.	18	/00	f	••					ł	6) 51-	<u>C</u>	.h				A CI
All re	esults	are co	nsider	ed th	e co	nfid	enti	al pr	opert	y of	the	clier	nt. A	\cme	assu	nes	the I	liab	iliti	ies f	or a	ctual	cos	t of	the	analy	sis	onl	۷.	Ŵ		renco t		ong	all'	1

1		. <u>)</u>		}	· · · · · · · · · · · · · · · ·	j		.)		7))))		-	1	, ·	7		7	-	<u> </u>					1		1		7	
A	IME /	ANAL ISO	YTIC# 9002	L LA Acci	BOR edi	ATO ted	rie Co	s l .)	TD.		85	2 E	. HA	STI	NGS	ST.	. V.	ANC	ouv	'ER	BC	76	A 1	R6		PHO)ne (604)	25	3-31	.58	Faj	:(60	4) 2!	53-:	1716	
	A.						ΤĦ	an	Ira	t 1 oi	n M	GEG 'in:	ing	smt Co	CA. TD	ц А . РІ	NAL ROJ	IIS IEC	тр.	LL TAS	PEF	5 5 1 1	cai Fil	.е	# 1	404	414	3									
												c/0	Arnex	Res	ourc	es Lt	d.,,	Nor	th V	anco	uver	BC 1	/7M 3	B1	<u> </u>												
SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm (Sr ppm	Cd ppm	Sb ppm	B1 ppm	V ppm	Ca %	P لا ا	La ppm	Cr ppm	Mg %	Ba ppm	T1 %	B ppm	A1 %	Na %	К W %.ррп	ppr	g Sc m ppm	T1 ppm	S %	Ga. ppm	Se S ppm	ample kg
SI 105405 105406 105407 105408		<.1 18.3 .3 24.7 4.4	4.9 2645.1 167.2 >10000 590.4	.2 19.9 2.3 29.5 8.0	1 154 113 422 66	<.1 5.9 .3 3.9 .7	.8 2.0 20.9 7.6 4.4	5.1 13.3 30.4 16.7 19.4	<1 1072 1186 127 681	.03 6.81 4.26 9.40 3.67	.8 6.5 3.5 2.3 61.6	<.1 .1 .2 .1 .1	.5 197.1 3.9 30.5 25.0	<.1 .2 .5 .2 .2	3 17 157 11 16	<.1 · .3 .2 2.5 .2	<.1 .2 2 .6 .3 .4	<.1 26.4 .2 1.1 .5	<1 32 134 13 16	.12< .18 2.36 .33 4.38	.001 .027 .074 .030 .031	<1 3 4 2 5	<1 1.7 21.7 1.9 2.1	<.01 .80 2.44 .07 .39	3< 11 37 11 35	.001 .029 .232 .085 .056	<1 . 1 1. 2 2. 1 . 1 .	01 .5 14 .0 40 .0 29 .0 60 .0	11<. 06 . 29<. 03 . 04 .	01 <.1 12 .1 01 .4 21 .1 18 1.4	<.0 .4 .0 .5	1 .1 6 1.6 3 8.6 5 1.7 8 2.4	<.1 <.1 <.1 .1	<.05 5.63 .69 >10 2.78	<1 3 8 1 2	<.5 3.6 1.2 0.6 3.5	1.04 2.34 1.27 .90
105409 105410 105411 105412 105413		4.0 15.7 .5 1.8 1.0	132.4 25.0 33.7 >10000 >10000	7.1 260.6 10.5 11.3 20.5	118 1908 109 557 584	.9 .3 .1 3.3 1.9	11.5 1.3 5.5 1.5 2.5	44.7 .7 23.5 42.2 48.7	1830 87 1327 489 1134	7.08 .69 5.85 10.80 15.17	9.9 2.7 17.6 .5 4.7	.1 <.1 <.1 <.1 <.1	9.9 6.3 1.2 15.8 21.7	.2 <.1 .1 <.1 .1	144 2 11 7 9	.2 31.2 .2 2.8 2.5	.2 .3 .1 .2 .1	.7 .1 .7 1.6 2.2	101 3 123 19 43	3.03 .02 .40 .06 .10	.072 .009 .093 .011 .015	5 <1 2 1 1	4.2 2.8 7.7 1.5 1.7	2.10 .01 1.66 .39 1.07	26 18 14 6 3	.091 .014 .195 .018 .042	2 2. <1 . 1 1. <1 . <1 1.	78 .0 07 .0 73 .0 45 .0 20 .0	10 . 02 . 54 . 01 . 02 .	19 .1 04 .8 11 .1 01 1.3 02 .4	.3 3.2 .1 .0	95.3 0.3 77.2 4.7 41.8	<.1 <.1 <.1 <.1	3.70 .21 4.10 7.43 >10	7 <1 7 3 2 6 1	5.9 1.5 .9 29.6 15.9	1.50 1.35 2.10 2.07 1.76
105414 105415 105474 105483 C128552		35.3 4.0 .7 1.1 .7	609.4 55.7 75.4 165.0 10.7	163.1 13.5 23.3 5.0 3.6	308 59 114 91 61	6.9 .7 .2 .1	3.6 7.4 11.6 9.7 5.7	12.4 11.8 16.3 15.1 16.3	1201 1052 853 952 923	3.39 3.80 5.37 6.02 5.02	29.9 91.9 4.9 8.2 3.0	<.1 .1 .1 <.1	83.8 18.1 2.9 3.5 1.7	.1 .5 .3 .2 .1	3 4 5 25 12	1.3 .1 .1 .1 <.1	1.0 1.1 .2 .1 .1	.1 .1 .2 .5 1.1	54 67 65 109 62	.05 .12 .36 .44 .64	.014 .072 .085 .052 .121	4 8 3 1 5	3.6 10.0 7.4 7.9 4.3	1.69 1.22 1.30 1.95 1.46	53 38 27 26 24	.003 .020 .197 .230 .122	1 1. 1 1. 2 1. 2 2. 1 1.	47 .0 19 .0 29 .0 47 .0 59 .0	01 . 04 . 15 . 09 . 26 .	03 .4 15 <.1 24 .2 14 .1 18 .2	.0 .3 .0 .5 .4	8 2.8 2 5.1 6 4.6 1 6.1 2 4.8	.1 .1 .1 <.1 <.1	1.48 2.51 3.59 2.05 3.08	5 6 7 5	2.9 .5 1.1 3.7 4.1	1.44 .62 2.93 1.91 2.25
RE C128 C128554 148907 148908 148909	552	.8 4.7 .2 1.5 1.0	10.6 21.3 1931.8 6261.5 2542.7	4.1 9.2 11.0 9.5 12.0	58 35 1345 507 924	.2 .2 1.9 3.9 2.1	5.3 5.4 2.2 2.2 1.8	16.1 20.6 9.8 10.5 10.3	935 355 3043 3002 2935	5.08 4.72 5.77 7.99 12.77	3.4 13.2 3.6 5.9 7.2	<.1 .2 .1 .2 .1	2.4 5.7 9.1 10.1 13.6	.1 .1 .4 .4 .3	12 121 12 10 13	<.1 .1 10.1 2.8 6.3	.1 .1 .2 .1	1.1 .2 .4 .7 1.1	60 73 55 53 48	.65 4.38 .33 .32 .26	.125 .057 .070 .063 .055	6 1 3 3 3	4.1 2.6 3.4 3.7 2.7	1.48 .65 1.52 1.52 1.51	24 46 29 13 5	.125 .192 .138 .120 .107	<1 1. 2 5. 1 2. <1 2. <1 2.	62 .0 47 .0 04 .0 03 .0 00 .0	27 . 08 . 11 . 15 . 14 .	18 .3 12 .1 14 .3 13 .1 10 .3	.4 .6 .7 .2	3 5.0 0 5.9 3 4.2 2 3.9 6 3.2	<.1 .1 <.1 <.1 <.1	3.10 3.86 2.65 4.92 >10	5 8 7 7 7	4.6 5.7 1.4 2.1 4.6	2.09 1.08 1.78 2.74
148910 148911 148912 148913 148914		.4 .8 1.3 6.9 .5	7046.3 4751.4 1940.7 4769.5 823.9	40.0 373.8 314.6 51.2> 8.9	731 3624 3984 10000 2150	5.7 4.2 1.7 2.0 .4	1.5 1.8 2.2 3.5 2.7	8.9 10.5 12.0 22.0 7.5	2913 2775 3198 1981 2406	16.04 10.67 9.40 12.38 7.80	7.0 5.5 5.7 9.8 4.1	.1 .1 .1 .1	18.4 25.6 15.3 55.8 23.9	.2 .3 .4 .2 .2	10 9 9 19 6	4.9 49.4 57.9 302.5 7.8	.1 .2 .2 .1	1.7 1.7 1.2 3.1 .8	44 50 58 47 71	.17 .16 .23 .19 .09	.036 .052 .060 .019 .042	3 2 3 3 1	2.2 3.2 3.5 3.1 3.8	1.44 1.42 1.73 1.59 1.82	3 8 12 4 32	.077 .102 .100 .059 .072	1 1. <1 1. 1 2. 1 1. <1 2.	94 .0 96 .0 31 .0 78 .0 11 .0	07 . 11 . 15 . 02 . 03 .	07 .1 11 .4 13 .1 06 .9 06 .3	.5 2.3 2.2 .3	1 2.4 1 3.4 8 4.1 7 4.0 8 4.1	<.1 <.1 <.1 <.1 <.1	>10 7.47 5.63 >10 2.77	8 8 8 9	6.7 3.8 2.6 3.6 2.4	2.81 2.59 3.05 2.22 2.55
148915 B183560 B183561 B183562 B183618		.7 .7 5.6 1.5 2.3	197.1 33.7 35.5 41.4 >10000	65.6 11.1 10.9 8.5 26.7	352 220 434 139 95	.8 .1 .2 .4 2.1	2.6 9.9 11.3 6.3 5.1	10.1 10.9 16.9 7.6 48.0	1954 3310 1435 1802 679	6.49 4.52 3.92 3.99 9.64	3.7 5.1 13.8 75.3 4.4	.1 .2 .2 .2 <.1	16.5 4.2 15.1 19.1 26.0	.3 .5 .8 .4 <.1	31 9 42 4 34	.7 .1 2.2 .1 1.0	.1 .2 .2 .4 .4	1.1 <.1 .2 <.1 1.0	66 81 45 82 24	.34 .35 .53 .10 1.41	.060 .081 .073 .076 .018	3 8 7 6 1	4.3 22.6 13.0 10.9 2.8	1.91 2.28 1.72 2.51 .49	41 144 81 96 5	.084 .020 .152 .020 .003	1 2. 1 2. 2 1. 2 2. 2 .	21 .0 55 .0 98 .0 26 .0 75 .0	04 . 13 . 07 . 06 . 02 .	05 .3 12 .1 21 .3 16 <.1 14 .4	3 .0 .0 3 .1 .0 .2	2 4.5 4 6.4 3 5.0 4 5.5 4 1.8	<.1 <.1 <.1 <.1 <.1	1.10 .46 1.25 1.19 9.45	8 8 5 8 2	2.6 <.5 2.2 <.5 10.8	1.91 3.06 1.26 .32 2.23
B183632 B183637 B183640 STANDAR	D DS5	23.6 .8 .6 12.3	226.0 557.8 3339.1 141.3	396.5 6.4 59.4 26.4	863 54 5232 139	.9 .7 2.8 .3	9.3 8.4 2.7 23.4	35.7 17.3 12.7 12.0	1443 664 3218 782	5.39 3.42 10.99 2.99	12.4 2.0 7.8 18.7	.1 <.1 .1 6.2	63.8 13.5 445.0 42.0	.3 .1 .3 2.7	12 9 9 48	9.2 .1 38.6 5.4	.1 .1 .2 3.8	1.0 .6 1.4 6.4	57 29 67 60	1.35 .31 .22 .76	.074 .047 .046 .090	3 2 2 12	3.3 4.4 4.7 185.8	1.36 .85 1.88 .68	22 38 8 135	.050 .064 .091 .104	2 1. 1 1. 1 2. 17 2.	74 .0 04 .0 27 .0 12 .0	04 . 02 . 11 . 35 .	23 .1 13 .4 10 .1 15 5.1	4 .0 .3.1 .1	2 4.3 6 2.8 9 4.0 7 3.5	.1 <.1 <.1 1.0	3.12 1.61 9.04 <.05	4 2 8 7	4.0 3.8 4.6 4.8	1.63 2.24 3.01
	GROUP (>) CO - SAMP Data	1DX - DNCENT PLE TY	30.00 IRATION (PE: RO FA	GM SA Excee CK R15	MPLE DS UF 0 600	LEAC PER C	HED LIMI <u>Sam</u> 'E R	WITH TS. ples	180 SOME begi	ML 2- MINE nning D:	2-2 RALS 'RE	HCL-I MAY <u>' ar</u> 3 200	INO3-1 BE PA <u>e Reru</u> D4 I	120 A ARTIA Uns a DATE	AT 9 ALLY and E R	5 DEG. ATTAC <u>'RRE'</u> EPOR	C I KED are	OR C RE Reje	DNE I FRAG Ct I		, DIL r AND <u>ns.</u>	UTED GRA		500 M IC SA	NL, A	NALY: S CAI	SED B' N LIM	(ICP IT AU	-MS SOI	UBILI		MEL	Z3 2.1	ÓTà	73	ERIT	A
A	ll res	<u>`</u>	are co	nsider	red ti	ne co	onfid	enti	al pr	opert	y of	the	clier	nt. A	cme	assun	nes 1	the l	liab	iliti	U ies f	or a	ctual	l cos	t of	the	analy	sis	only		H			ice L	eong		E)

ACME ANALYTICAL LAB (ISO 9002 ACCTE	ORAT	ORIES d Co. In:	s LT	D. rat:	8:	52 E <u>Min</u> :	. H2	ASTIN AS Cor	GS S SAY	ST. CI	VANO ERTJ) COUVI EFIC CT J	ER I	BC N E PER IVer B(76A 1 Fi	.R6] P] A4(IONE ((604) 8R	253	-315	8 FA	x (604) 253-1716 AA
SAMPLE#	Mo	Cu	Pb %	Zn %	Ag cm/mt	Ni	Co	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W	Hg	
	70	/6	/6		gin/ inc					<i>/</i> 6														
105407	.002	1.770	<.01	.04	4	.001	.002	.01 1	0.72	<.01	.001<	<.001<	.001	<.01	.32	.030 <	.001	.07	.40	<.01	.33	<.001	<.001	
105412	4.001	1.361	<.01	.06	4<	001	004	10 1	2.02 ° 7 08 °	<.01	.002<	< 001<	001	< 01	.07	.014 <	< 001	. JO 70	.40	< 01	< 01	< 001	< 001	
1/8008	1.001	.675	< 01	.06	4<	.001	.001	.31	9.38	<.01	.002<	<_001<	.001	<.01	.37	.067 <	.001	1.58	2.32	.05	.25	<.001	<.001	
148910	1.001	.742	<.01	.08	5<	.001<	.001	.27 1	8.38	<.01	.002<	.001<	.001	<.01	.18	.034 <	.001	1.30	1.86	.04	.13	<.001	<.001	
148911	₹.001	.494	.04	.36	5<	.001	.001	.27 1	2.26	<.01	.001	.004<	.001	<.01	.18	.046 <	.001	1.36	2.01	.05	.18	.001	<.001	
148913	4.001	.487	<.01	5.38	<2<	.001	.002	.18 1	3.87	<.01	.002	.026<	.001	<.01	.20	.013 <	.001	1.40	1.69	.01	.07	.001	<.001	
B 183618	₹.001	1.192	<.01	.01	<2	.001	.005	.06 1	0.59	<.01	.009<	<.001<	.001	<.01	1.36	.016 <	.001	.43	.79	.01	.25	<.001	<.001	
STANDARD R-2a	.048	.552	1.48	4.13	155	.355	.044	.20 2	2.15	.22	.156	.027	.124	<.01	2.32	.079	.070	1.63	1.28	.15	.50	.070	.173	

Data / FA ____ DATE RECEIVED: SEP 3 2004 DATE REPORT MAILED: Sep 7. 8/04

ACME ANALYTICAL LAB (ISO 9002 Accre	ORAT(dite	ORIES d Co. <u>Inf</u>	LT) spi:	D. rati	85 .on 1	52 E Min c/o	. HJ ing Arne	ASTII A CO: (Resc	NGS SSA) ED. Durces	ST. Cl PR(Ltd.	VANC ERTI DJEC	OUVI FIC TJ	ER I ATI ASI Incou	3C 1 E PER ver Bi	V6A 1 F1 : V7M 3	. R6 le # 581	21 Pl A4(HONE (604) 8R	253	-315	8 FA	X (604) 253+1716 ÅÅ
SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %	
105407 105412 105413 148908 148910 148911 148913 B 183618 STANDARD R-2a	.002 <.001 <.001 <.001 <.001 <.001 <.001 <.001 .048	1.770 1.361 1.098 .675 .742 .494 .487 1.192 .552	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	.04 .06 .06 .08 .36 5.38 .01 4.13	4 4<, 2<, 5<, 5<, 22 155	.001 .001 .001 .001< .001< .001 .001 .355	.002 .004 .005 .001 .001 .001 .002 .005 .044	.01 .05 .10 .31 .27 .27 .18 .06 .20	10.72 12.62 17.08 9.38 18.38 12.26 13.87 10.59 22.15	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	.001< .002< .002< .002< .002< .001 .002 .009< .156	.001< .001< .001< .001< .001< .004< .026< .001< .027	.001 .001 .001 .001 .001 .001 .001 .001	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	.32 .07 .11 .37 .18 .18 .20 1.36 2.32	.030 .014 .016 .067 .034 .034 .046 .013 .016 .079	<.001 <.001 <.001 <.001 <.001 <.001 <.001 .070	.07 .36 .93 1.58 1.30 1.36 1.40 .43 1.63	.40 .48 1.14 2.32 1.86 2.01 1.69 .79 1.28	<.01 <.01 <.01 .05 .04 .05 .01 .01 .15	.33 <.01 <.01 .25 .13 .18 .07 .25 .50	<.001 <.001 <.001 <.001 .001 .001 <.001 <.001	<.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 .173	

Data / FA ____ DATE RECEIVED: SEP 3 2004 DATE REPORT MAILED: Sept. 8/04

ACME ANALYTICAL LAB	ORAT	ORIES	5 LT	D.	8	52)	E. H	ASTI	NGS	ST.	VAN	COUV	ER	BC .	V6A :	R6	P	HONE	(604)	253 1	-315	8 FA	x (604) 253-1	716	
(ISO 9002 Accre	dite	d Co.	.)					2	SSA	C CI	ERT]	FIC	CAT	E										٨	A	
Ť Ť		In	spi c/	<u>rat</u> o Arr	ion hex Reso	<u>Mir</u> ource	ning es Ltd	<u>Cc</u>	orp. North V	PR(ancou	OJE(Iver B	CT C V7M	JAS 381	PER Sub	Fi mitted	le ‡ by: A	A4(rne Bi	0439 rkelan	6R					1	Ť.	
SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %			
B 183564 STANDARD R-2a	.002 .048	1.024	<.01 1.48	<.01 4.13	8< 156	.001	<.001 .044	.01 .20	4.41 22.15	<.01 .22	.001< .156	.001< .027	.001	<.01 <.01	.01 2.32	.012 .079	<.001 .070	.03 1.63	.31 1.28	<.01 .15	.33	<.001 .070	<.001 .173			

Data 🕢 FA ____

DATE RECEIVED: SEP 3 2004 DATE REPORT MAILED: Sept. 8/04

ACME ANALYTICAL LAB (ISO 9002 Accred	ORATC dited	RIES Co.	5 LTI .)	5.	8!	52 Ē	. HI	ASTI A	NGS SSA	ST. Y C	VANO ERTJ	COUV	ER I	9C ' 9	V6A :	LR6	<u>[4</u>	IONE	604)	253-	315	8 FA	X (604	()253-1716 A A
TT		In	spi: c/c	c <u>at</u> Arn	ion ex Rest	<u>Min</u> purces	ing Ltd	Co .,, N	orp.	PR /anco	OJEC Iver B	21 <u>1 (</u> C V7M	<u>IAS</u> 1 381	PER Sub	Fi mitted	le ‡ by: A	A4()439 •kelan	6R					ŤŤ
SAMPLE#	Mo %	Cu %	Pb %	Zn %	Ag gm/mt	Ni %	Co %	Mn %	Fe %	As %	Sr %	Cd %	sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %	Hg %	
	000	1 02/	- 01	- 01	8.	001~	001	01	L L1	< 01	001	001~	001	< 01	01	012	< 001	03	71	< 01	77	< 001	< 001	

Data 📈 FA

DATE RECEIVED: SEP 3 2004 DATE REPORT MAILED:

ACME ANA (ISO	LYTIC 9002	I IA AC	LABC	ora lit] TOR ed	IES Co. Ins	DIT	D. rat	ior hex R	852 (1 esour	E. BEC	HAS CHE	STI MI <u>Co</u>	NGS : CAL TD.	AN PR	VAN ALY OJE	ICOI SI CT BC V	UVE S (R E CER ASE 381	NC RTI PER Sub	V6A FIC2 Fic2 mitte	IR6 ATE	# : Ar	A4 ne B	PHO 04 irke	NE (396 Land	604)	25	<u>}</u> :	L58	FAX) 25:	3-171 A /	6 2
SAMPLE#	Мо	Си	Pb	Zn	Ag	Ni	Co	Мn	Fe	As	U	Au	Th	Sr Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	A1	Na	K	W H	lg S	c Tl	S	Ga Se	e Sampl	9
	ррт	ррт	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm j	ppm	ppb	ppm	ppm ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%p	ppm pp	om pp	m ppm	%	opm ppr	n k	9
SI 105416 105417 105419 B 183563	<.1 15.7 1 .5 44.4 17 .8 1	1.2 173.0 19.8 708.1 193.2	.4 89.1 5.7 6.3 3.7	2 344 31 107 57	<.1 .8 <.1 2.8 .1	.2 6.0 5.3 8.5 5.4	.1 30.5 17.5 32.3 22.2	1 1867 316 1453 465	.06 9.15 5.91 6.60 5.82	<.5 38.9 4.7 9.9 8.6	<.1 .1 .1 .1 .1	<.5 67.9 4.3 22.6 1.6	<.1 .2 .1 .3 .2	4 <.1 2 1.0 7 <.1 1 <.1 31 <.1	<.1 .4 .1 .2 .1	<.1 .7 .1 1.2 .2	1 61 79 49 150	.18 .13 .40 .02 .62	.001 .050 .088 .036 .112	<1 8 2 1 4	1.0 < 6.0 1 3.9 22.4 1 3.7 1	<.01 .72 .87 L.64 L.34	5 25 23 64 24	.001 .010 .253 .005 .181	<1 1 1 3 1 <1 2 1 1	.01 L.72 L.49 2.62 L.64	.796 .002 .030 .002 .055	.01 < .10 < .25 .17 < .04	<.1<.0 <.1 .3 .3 .1 <.1 .1 .1 .0	01 . 38 3. 18 6. 11 3. 04 9.	1 <.1 1 .1 6 <.1 7 .1 4 <.1	.08 5.50 3.93 1.14 2.73	<1 <. 6 2. 4 4. 7 4. 7 1.	5 5 4 2.0 2.1 5 1.9	- 4 1 3 2
B 183564	17.4 99	990.8	9.5	10	6.1	.8	1.3	83	4.35	<.5	.1	174.9	.4	3 .1	.1	10.3	3	.02	.012	2	1.6	.03	23	.012	1	.24	.003	.20	.1 .2	20 .	4 <.1	3.27	12.	3.6	B
STANDARD DS5	13.2 1	145.0	25.6	139	.3	25.0	13.1	791	3.04	19.1	6.0	42.0	2.9	46 5.5	3.6	5.8	63	.76	.091	12 1	195.3	.69	134	.106	17 2	2.13	.034	.15 4	.8 .1	19 3.	6 1.1	<.05	75.		-

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C

					_			}				1)			1.		J					· · · ·			τ. 	1] '		1 1	
ACME	ANA (ISO	5 YTI 900	CAL 1 2 Acc	LABO)RA 11t	TOR	IES Co.	LT)	D .		852	: E	. HA	STI	ngs	ST.	. VA	NCO	UVI	SR B	9C	V6A	1R	5		PHC	ne (604) 25	3-3	158	FA	K (60	4)25	3-1	716	
										_	(GE(CHI	emi	CAL	Al	VAL'	ysi	S	CEF	YTI	FIC	ATE	C													
							Ins	pi c/	rat 'o Arr	<u>ior</u> nex R	<u>1 M.</u> escul	<u>in:</u> rces	Ltd.	<u>Co</u> ,, N	<u>rp.</u> orth	Pl Vance	<u>ROJ</u>	EC1 BC	<u>: J</u> V7M	<u>ASI</u> 381	PER Sul	F	il∈ ed by	≥ # /: Ar	A4 ne B	104 irke	:39 eland	5								LT	
SAMPLE	ŧ	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr (d St	o Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W	Hg S	Sc T1	S	Ga	Se Sa	mple	
		ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	ppm	ppb	ppm	pbw bb	m ppr	u bbu	ppm	*	*	ppm	ppm	*	ppm	*	ppm	*	*	*	opm p	pm pp	om ppm	*	ppm p	m	kg	
SI		<.1	1.2	.4	2	<.1	.2	.1	1	.06	<.5	<.1	<.5	<.1	4 <.	1 <.1	<.1	1	. 18	.001	<1	1.0	<.01	5	.001	<1	.01	.796	.01	<.1<.	01	.1 <.1	.08	<1 <	.5	-	
105416		15.7	1/3.0	5 7	344	.8	6.0	30.5	186/	9.15	38.9	.1	6/.9	.2	21.	0.4	· ./	61	.13	.050	8	6.0	1.72	25	.010	1	1.72	.002	.10 .	<.1.	38 3	.1.1	5.50	62	.5	1.44	
105417		44.4	1708.1	6.3	107	2.8	8.5	32.3	1453	6.60	9.9	.1	22.6	.1	1 <	1 .1	2 1.2	49	.40	.000	1	22.4	.0/	23 64	.253	د <1	2 62	.030	.25	.3. < 1	11 3	.0 <.1	1 14	44	.4 .	2.01	
B 18356	53	.8	193.2	3.7	57	.1	5.4	22.2	465	5.82	8.6	.1	1.6	.2	31 <	î .1	.2	150	.62	.112	â	3.7	1.34	24	.181	1	1.64	.055	.04	.1 .	04 9	.4 <.1	2.73	71	.5	1.92	
B 18356	54	17.4	9990.8	9.5	10	6.1	.8	1.3	83	4.35	<.5	.1	174.9	.4	3.	1.1	10.3	3	.02	.012	2	1.6	.03	23	.012	1	. 24	.003	. 20	.1 .	20	.4 <.1	3.27	12	.3	.68	
STANDA	RD DS5	13.2	145.0	25.6	139	.3 2	25.0	13.1	791	3.04	19.1	6.0	42.0	2.9	46 5.	53.6	5 5.8	63	.76	.091	12	195.3	. 69	134	. 106	17	2.13	. 034	.15	4.8 .	19 3	.6 1.1	<.05	75	.2	-	

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C

CME ANALY	TICA	L LZ	Ъ	RAI	OR	IES	Ĺ	TD.		8	52	Ë.	HAS	TI	NGS	SI	. 1	VAN	couv	ER	BC	V62	lR	6	_	PHOI	1E ((504)	25	3-31	58 1	FAX	(604) 253	-1716
	002	ACCI	rea	lte	ו הי	. co	,				G	EOC	THE	MI	Cai	l A	NA	LYS	BIS	CE	RTI	FIC	'AT	E											A A
						Ins	3P.	<u>ira</u> :/o/	ti (rne)	on Res	<u>Mi</u> ourc	nir es L	1 <u>q</u> td.,	<u>Co</u>	rp orth	<u>. E</u> Van	RO	JE(rer B	CTC	<u>JAS</u> 381	PER Su	. E bmitt	ril(ed b	∋ # y:Ar	A4 ne E	104 lirke	397 land	1						1	TL 1
SAMPLE#	Mo ppm	Cu ppm	PI ppr	o Zr n ppn	n Ag n ppn	3 N n pp	√i ∑m	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	Bi ppm p	V Ca pm %	 	P La ≵ppm	Cr ppm	Mg 1 %	Ba ppm	Ti %	B ppm	A1 X	Na %	K % p	W H opm pp	g So n ppn	: Tl n ppm	S % p	Ga Se opm ppm	Sample gm
G-1 C 128555 C 128556 C 128557 C 128558	1.8 4.0 6.6 1.6 1.1	1.7 231.1 142.3 74.2 58.0	2.9 19.0 13.0 10.1 13.0	5 44 0 123 3 391 1 61 8 69	4 <.1 3 .9 1 .1 1 .1	1 4. 9 7. 1 6. 1 3. 2 5.	.7 .63 .52 .2	4.2 5.2 5.6 7.2 7.0	541 972 917 307 351	1.85 6.79 6.34 7.09 6.67	<.5 7.0 6.3 7.1 8.2	1.7 .8 .2 .3 .3	.6 17.5 3.1 4.0 4.1	3.8 .8 .4 .8 .8	92 12 18 14 16	<.1 .7 .5 .1 .2	<.1 .2 .3 .3	.1 .5 1 .3 1 .3 2 .2 2	45 .58 10 .23 54 .33 12 .12 16 .14	.082 .101 .056 .047	2 8 1 17 6 5 7 3 3 3	51.9 16.4 14.8 17.9 23.7	.62 .42 .68 .42 .52	253 125 117 31 21	.140 .074 .081 .105 .133	1 1 1 7 2 3 1 4 1 3	.00 .32 .32 .33 .85	. 123 . 007 . 009 . 007 . 005	.56 .02 .04 .02 .02	.6<.0 .1 .2 .1 .1 .1 .1 .1 .1	1 3.2 5 12.6 4 4.9 2 8.4 1 6.5	2 .4 5 .1 9 .1 4 .1 5 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 8 3.4 11 1.3 12 2.1 13 2.2	30.0 30.0 15.0 30.0 30.0
C 128559 C 128560 C 128561 C 128562 C 128563	3.9 1.3 1.9 1.1 1.5	334.4 98.5 110.1 18.7 31.6	16. 17. 9. 8. 11.	4 234 9 83 8 88 9 32 9 55	4 .2 3 .1 3 .3 2 .1 5 .2	2 10. 1 4. 3 3. 1 3. 2 3.	.43 .61 .9 .0	9.5 2 0.7 7.6 4.6 6.7	2301 507 513 153 222	6.10 6.90 7.38 5.28 6.19	10.2 7.2 8.9 3.7 2.8	.5 .3 .4 .2 .2	6.4 5.0 2.8 4.3 1.1	.9 .8 .7 .5 .4	16 18 16 7 14	.6 .1 .2 .2 .3	.2 .2 .3 .3 .2	.3 1 .2 1 .3 1 .2 1 .5 2	25 .16 85 .18 83 .16 98 .08 03 .21	099 082 082 082 082 082 082 082 082 082	9 9 2 3 9 4 3 3 5 3	20.3 15.8 15.7 16.3 11.2	1.00 54 54 .54 .23 2.25	54 29 36 32 24	.153 .126 .121 .114 .077	1 4 1 4 1 4 1 1 <1 2	.65 .12 .47 .90 .60	.006 .007 .006 .006 .008	.04 .03 .04 .02 <	.1 .2 .1 .1 .1 .1 .1 .1 <.1 .1	3 8.3 3 7.4 9 8.0 1 3.6 4 3.8	3 .1 4 .1 0 .1 6 <.1 8 <.1	<.05 <.05 <.05 <.05 <.05	9 3.4 13 1.6 12 2.7 15 .8 16 .9	15.0 15.0 30.0 30.0 15.0
C 128564 C 128565 C 128566 C 128567 C 128568	5.4 8.0 3.9 4.7 9.5	308.6 60.0 310.7 389.9 530.1	16. 78. 26. 35. 25.	6 105 8 59 5 106 9 285 8 167		2 3. 6 3. 2 7. 5 9. 5 6.	.72 .2 .91 .75 .54	0.0 8.3 7.9 8.0 1 7.7 2	961 918 951 1672 2115	7.49 6.73 6.48 5.35 5.37	21.6 5.1 9.2 7.0 5.4	.5 .3 .5 .6	20.2 14.5 6.9 10.8 14.7	.7 .3 1.0 1.2 .8	35 10 28 11 16	.3 .2 .3 .9 .5	.3 .3 .2 .2 .2	.2 1 .6 1 .3 1 .3 1 .8	54 .25 51 .09 31 .53 02 .13 93 .15	5 .150 .099 3 .080 3 .120 5 .099	0 5 5 4 8 7 3 9 9 7	10.6 13.6 18.5 20.6 16.8	5 .53 5 .45 5 1.15 5 .68 8 .67	42 91 116 55 54	.166 .018 .132 .121 .021	1 4 2 3 2 5 2 6 2 5	.24 .21 .05 .61	.006 .006 .007 .007 .005	.03 .06 .07 .04 .04	.2 .5 .1 .9 .1 .3 .1 .4 .2 .5	3 8.6 2 5.1 2 10.1 9 8.5 5 6.4	$ \begin{array}{c} 6 & .1 \\ 1 & .1 \\ 1 & .1 \\ 5 & .1 \\ 4 & .1 \\ \end{array} $	<.05 <.05 .07 .10 <.05	9 2.9 11 2.3 9 2.1 9 3.1 8 4.2	15.0 15.0 15.0 15.0 15.0
C 128569 C 128570 RE C 128570 C 128571 C 128572	6.6 2.8 2.5 1.9 3.0	317.8 180.7 173.9 106.6 109.8	9. 11. 9. 18. 17.	4 61 0 58 6 59 0 167 6 161	1 .5 3 .2 5 .1 7 .1	5 3. 2 4. 1 3. 1 7. 1 5.	.21 .5 .9 .21 .51	0.4 7.7 7.4 2.9 1.1	515 472 469 858 393	7.65 8.18 8.27 6.40 6.21	7.2 8.9 7.7 9.9 4.5	.2 .5 .5 .4 .3	18.4 6.7 6.7 14.3 5.6	.3 1.0 1.0 .9 .8	10 10 8 13 13	<.1 .2 .1 .2 .4	.4 .2 .2 .2 .2	6.2 1 .7 1 .6 1 .2 1 .1 1	43 .08 78 .09 69 .09 47 .18 82 .16	8 .09 9 .09 9 .09 9 .09 8 .05 5 .03	5 2 9 6 1 5 2 6 3 4	9.5 15.9 16.5 17.4 16.4	5 .54 9 .55 5 .51 1.02 1.54	29 44 39 75 71	.014 .079 .058 .085 .070	1 3 1 4 <1 4 1 4 1 4	.17 .86 .45 .35 .05	.003 .006 .006 .007 .007	.03 .04 .04 .06 .02	.1 .2 .1 .3 .1 .2 .1 .1 .1 .1	1 5.2 1 8.3 7 7.9 8 9.6 7 7.1	2 .1 3 .1 9 .1 6 .1 1 .1	<.05 <.05 .07 <.05 <.05	10 1.5 14 2.6 13 2.4 8 1.7 11 1.8	15.0 7.5 7.5 15.0 30.0
C 128573 C 128574 C 128575 C 128576 C 128577	.9 .9 2.3 3.4 .4	43.7 46.2 56.8 142.8 44.1	8. 7. 14. 67. 7.	5 80 7 32 7 44 0 77 1 74	0 .3 2 .2 4 .2 7 .6 4 .1	3 4 2 1 2 2 6 2 1 5	.6 .9 .3 1 .6 3 .0	8.2 4.1 4.0 6.1 7.3	365 676 1704 7148 523	7.59 3.43 5.09 6.96 3.74	3.8 2.3 8.9 9.6 3.3	.3 .2 .5 .9	7.9 1.8 4.5 72.6 1.6	.6 .4 .1 .7 .3	12 7 6 5 8	.2 .1 .2 .5 .1	.2 .2 .3 .3 .1	.2 2 .2 1 .2 1 .2 1 .2 1 .1 1	03 .12 19 .07 22 .09 24 .07 00 .08	2 .05 7 .07 5 .13 7 .19 8 .05	9 3 7 6 3 8 8 10 8 5	16.0 8.9 8.3 15.0 13.7) .42) .27 3 .31) .28 7 .63	37 38 61 46 35	.075 .016 .007 .011 .077	<1 4 <1 2 1 2 1 4 1 2	2.22 2.06 1.11 2.75	.006 .005 .005 .005 .005	.02 .04 .05 .04 .04 .03	.1 .2 <.1 .1 <.1 .3 <.1 .6 .1 .2	9 5.2 7 3.6 2 1.9 0 4.0 3 4.7	2 <.1 6 .1 9 .1 0 .3 7 .1	<.05 <.05 <.05 <.05 <.05	12 2.2 12 .5 11 1.0 14 2.6 8 .8	15.0 15.0 15.0 15.0 15.0
C 128578 C 128579 C 128580 C 128581 C 128582	.8 .4 .8 1.6 .9	54.7 55.4 43.1 82.7 48.1	7. 11. 14. 13. 10.	2 103 7 110 9 90 7 149 4 169	3 .4 0 .1 0 .2 9 .2	4 5 1 9 3 4 2 6 1 9	.13 .41 .0 .8 .31	8.4 5 5.1 6.5 9.9 8.7	5949 762 503 498 1359	1.65 5.43 4.94 6.51 4.00	1.5 5.4 4.2 6.4 4.4	.3 .3 .4 .6 .4	<.5 1.5 1.2 3.9 3.2	<.1 .7 .4 1.1 .4	7 14 11 8 14	1.6 .3 .3 .2 .5	.3 .2 .3 .2 .2	.1 .1 1 .1 1 .2 1 .1	44 .09 56 .18 34 .10 55 .08 94 .19	9 .14 3 .03 9 .06 3 .07 5 .06	8 13 9 6 2 10 3 8 5 9	8.2 19.9 12.0 20.3 14.4	2 .33 9 1.64 9 .61 3 .76 4 .81	56 102 51 51 121	.035 .164 .083 .078 .116	4 4 2 3 1 2 1 5 3 3	12 2.82 2.82 5.66 3.08	.009 .010 .008 .007 .014	.04 .06 .04 .05 .04	.1 .4 .1 .2 .1 .2 .1 .2 .1 .2 <.1 .2	0 2.4 0 8.9 4 4.4 3 11.3 2 5.2	4 .2 9 .1 4 .1 3 .1 2 .1	.10 <.05 <.05 <.05 <.05	4 4.8 10 .7 11 1.2 11 2.5 8 1.7	15.0 15.0 15.0 30.0 15.0
C 128584 C 128585 C 128586 C 128586 C 128587 C 128588	.8 3.0 1.9 .7 1.0	48.0 50.3 51.2 49.9 70.8	19. 12. 11. 17. 32.	2 121 3 139 3 109 0 96 6 178	1 .1 5 .1 9 .2 6 .2	1 4 1 6 2 5 2 4 2 7	.8 1 .1 1 .7 1 .6 .5 1	2.0 5.0 3.1 9.0 5.2	1661 1184 649 1082 1592	3.11 5.61 6.94 2.75 4.68	3.9 6.4 5.9 3.9 4.7	.2 .5 .2 .4	.8 1.1 2.7 2.1 3.7	.1 .8 .7 .1 .4	35 13 12 35 21	1.4 .4 .3 2.6 2.4	.2 .2 .2 .2 .2	.1 .1 1 .1 1 .1 .1	83 .80 52 .13 92 .09 74 .99 33 .44) .09 3 .11 9 .07 9 .08 4 .06	9 9 1 10 0 6 9 11 9 11	11.4 18.7 17.0 10.8 17.2	4 .86 7 1.05 0 1.02 8 .83 2 1.07	5 171 5 80 2 61 8 175 7 162	.043 .159 .143 .062 .095	2 2 3 4 1 4 3 2 1 4	2.39 4.97 4.38 2.51 4.08	.010 .007 .007 .012 .012	.03 .04 .04 .04 .04	<pre><.1 .2 .1 .2 .1 .2 .1 .2 .1 .1 .1 .1 <.1 .1</pre>	2 4.0 6 9.0 5 9.1 8 4.0 7 7.1	0 .1 6 .1 5 .1 0 .1 7 .1	.07 <.05 <.05 .08 <.05	6 1.1 10 1.6 13 1.7 5 2.0 9 1.5	7.5 15.0 15.0 7.5 15.0
STANDARD DS5	12.6	141.2	25.	7 134	4.3	3 24	.31	2.1	759	2.91	18.3	6.0	44.0	2.8	48	5.4	4.0	6.0	58.73	3.09	9 13	179.8	369	140	.099	15 2	2.03	. 035	.13	5.2.1	93.4	4 1.1	<.05	6 5.3	30.0
GROUP 1DX - (>) CONCENTR - SAMPLE TYP	30.00 ATION E: SO	GM SA EXCEE IL SS8	AMPL EDS 306	E LE UPPE OC	ACHI R L	ED W IMIT Samp	ITH S. bles	180 SOM beg	ML E MI inni	2-2-2 NERAI	2 HCI LS M/ RE' a	L-HN AY Bi are i	D3-H E PA Reru	20 A RTIA ns_a	T 95 LLY nd /	5 DEC ATTA RRE	G. C ACKEI are	FOR D. F e Re	ONE REFRAC	IOUR , TORY Rerur	, DILL (AND <u>DS.</u>	JTED GRAP	TO 60 HITIC	DO ML Sam	, AN Ples	ALYSE CAN	D BY	ICP T AU	-MS. SOL	UBILI	тч. К	SUM	ELA (ÓT 1	1
Data 🖡 H	FA			D	ATE	RI	SCE	IVE	D:	AU	G 9 2	2004	D	ATE	R	EPO	RT	MAI	LED	<u>م</u> ر .	>eq	М.	!/!	4	•						6		Cla	rence	Leong
All results a	re co	nsider	red	the	con	fide	nti	alp	горе	rty d	of th	ne c	lien	t. A	cme	assu	mes	the	liabi	liti	es fo	ог ас	tual	cost	of	the a	naly	sis	only	•		X	\heartsuit		Y

ACME ANAL	YTTC	AL L	ABOI	247	ORT	RS	T.TD			152	<u> </u>	HAS) 377.71	NGS	S7	1	VAN		TVE	R B]	V6A] 1 P	6	<u> </u>	DHO	NTR (604	125	2-21	5.8	PAY	(604	1 252	1714	
(ISO	9002	Acc	red:	ite	4 C	ō.)				ي م	 E0(שור	MT	נמיח	. 2	MA	т. У	ST	я. (786	Т.Т.	FTC	יייי	с 2		- 119			,		<i></i>		1004	., 233	- 1 / 10	
AA					I	nsı	oir	ati	.on	Mi	nir	זמ	Co	rp	. E	RC	JE	CT	_ J7	ASF	PER	 F	ile	- e #	· A4	104	39'	7								
La La							c/o	Arne	x Re	soura	es l	td.,	, Na	orth	Van	COUN	/er	BC V	7M Z	881	Su	omitt	ed b	/: Ai	nne B	irke	land									
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N1 ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg %	Ba ppm	۲۱ ۲	B ppm	A1 %	Na %	К % Г	W He propriori) Sc n ppm	T1 ppm	S X I	Ga Se opm ppm	Sample gm	
G-1 C 128555 C 128556 C 128557 C 128558	1.8 4.0 6.6 1.6 1.1	1.7 1231.1 142.3 74.2 58.0	2.5 19.0 13.8 10.1 13.8	44 123 391 61 69	<.1 .9 .1 .1 .2	4.7 7.6 6.5 3.2 5.0	4.2 35.2 25.6 7.2 7.0	541 972 917 307 351	1.85 6.79 6.34 7.09 6.67	<.5 7.0 6.3 7.1 8.2	1.7 .8 .2 .3 .3	.6 17.5 3.1 4.0 4.1	3.8 .8 .4 .8 .8	92 12 18 14 16	<.1 .7 .5 .1 .2	<.1 .2 .3 .3	.1 .5 .3 .3 .2	45 110 154 212 216	.58 .23 .33 .12 .14	. 082 . 101 . 056 . 047 . 053	8 17 5 3 3	51.9 16.4 14.8 17.9 23.7	. 62 . 42 . 68 . 42 . 52	253 125 117 31 21	.140 .074 .081 .105 .133	1 1 2 1 1	1.00 7.32 3.32 4.33 3.85	.123 .007 .009 .007 .005	. 56 . 02 . 04 . 02 . 02	.6<.0 .1 .20 .1 .14 .1 .12 .1 .2	1 3.2 5 12.6 4 4.9 2 8.4 1 6.5	.4 .1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	5 <.5 8 3.4 11 1.3 12 2.1 13 2.2	30.0 30.0 15.0 30.0 30.0	-
C 128559 C 128560 C 128561 C 128562 C 128563	3.9 1.3 1.9 1.1 1.5	334.4 98.5 110.1 18.7 31.6	16.4 17.9 9.8 8.9 11.9	234 83 88 32 55	.2 .1 .3 .1 .2	10.4 4.6 3.9 3.0 3.4	39.5 10.7 7.6 4.6 6.7	2301 507 513 153 222	6.10 6.90 7.38 5.28 6.19	10.2 7.2 8.9 3.7 2.8	.5 .3 .4 .2	6.4 5.0 2.8 4.3 1.1	.9 .8 .7 .5 .4	16 18 16 7 14	.6 .1 .2 .2 .3	.2 .2 .3 .3 .2	.3 .2 .3 .2 .5	125 185 183 198 203	.16 .18 .16 .08 .21	. 099 . 082 . 089 . 033 . 045	9 3 4 3 3	20.3 15.8 15.7 16.3 11.2	1.00 .54 .54 .23 .25	54 29 36 32 24	.153 .126 .121 .114 .077	1 1 1 1 <1	4.65 4.12 4.47 1.90 2.60	.006 .007 .006 .006 .008	.04 .03 .04 .02 <	$ \begin{array}{c} .1 .2\\ .1 .1\\ .1 .1\\ .1 .1\\ .1 .1\\ .1 .1\\ .1 .1\\ .1 .1 \end{array} $	3 8.3 3 7.4 9 8.0 1 3.6 1 3.8	.1 .1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	9 3.4 13 1.6 12 2.7 15 .8 16 .9	15.0 15.0 30.0 30.0 15.0	
C 128564 C 128565 C 128566 C 128567 C 128567 C 128568	5.4 8.0 3.9 4.7 9.5	308.6 60.0 310.7 389.9 530.1	16.6 78.8 26.5 35.9 25.8	105 59 106 285 167	.2 .6 .2 .5	3.7 3.2 7.9 9.7 6.5	20.0 8.3 17.9 58.0 47.7	961 918 951 1672 2115	7.49 6.73 6.48 5.35 5.37	21.6 5.1 9.2 7.0 5.4	.5 .3 .5 .6	20.2 14.5 6.9 10.8 14.7	.7 .3 1.0 1.2 .8	35 10 28 11 16	.3 .2 .3 .9	.3 .2 .2 .2	.2 .6 .3 .3 .8	154 151 131 102 93	.25 .09 .53 .13 .15	. 150 . 095 . 088 . 123 . 099	5 4 7 9 7	10.6 13.6 18.5 20.6 16.8	.53 .45 1.15 .68 .67	42 91 116 55 54	. 166 . 018 . 132 . 121 . 021	1 2 2 2 2	4.24 3.21 5.05 6.61 5.06	.006 .006 .007 .007 .005	.03 .06 .07 .04 .04	.2 .53 .1 .92 .1 .33 .1 .49 .2 .55	8 8.6 2 5.1 2 10.1 9 8.5 5 6.4	1 1 1	<.05 <.05 .07 .10 <.05	9 2.9 11 2.3 9 2.1 9 3.1 8 4.2	15.0 15.0 15.0 15.0 15.0	
C 128569 C 128570 RE C 128570 C 128571 C 128572	6.6 2.8 2.5 1.9 3.0	317.8 180.7 173.9 106.6 109.8	9.4 11.0 9.6 18.0 17.6	61 58 55 167 161	.5 .2 .1 .1 .1	3.2 4.5 3.9 7.2 5.5	10.4 7.7 7.4 12.9 11.1	515 472 469 858 393	7.65 8.18 8.27 6.40 6.21	7.2 8.9 7.7 9.9 4.5	.2 .5 .4 .3	18.4 6.7 6.7 14.3 5.6	.3 1.0 1.0 .9 .8	10 10 8 13 13	<.1 .2 .1 .2 .4	.4 .2 .2 .2	6.2 .7 .6 .2 .1	143 178 169 147 182	.08 .09 .09 .18 .16	. 095 . 099 . 091 . 052 . 033	2 6 5 6 4	9.5 15.9 16.5 17.4 16.4	.54 .55 .51 1.02 .54	29 44 39 75 71	.014 .079 .058 .085 .070	1 1 <1 1 1	3.17 4.86 4.45 4.35 4.05	.003 .006 .006 .007 .007	.03 .04 .04 .06 .02	.1 .2 .1 .3 .1 .2 .1 .1 .1 .1	L 5.2 L 8.3 7 7.9 8 9.6 7 7.1	.1 .1 .1 .1	<.05 <.05 .07 <.05 <.05	10 1.5 14 2.6 13 2.4 8 1.7 11 1.8	15.0 7.5 7.5 15.0 30.0	
C 128573 C 128574 C 128575 C 128576 C 128577	.9 .9 2.3 3.4 .4	43.7 46.2 56.8 142.8 44.1	8.5 7.7 14.7 67.0 7.1	80 32 44 77 74	.3 .2 .6 .1	4.6 1.9 2.3 2.6 5.0	8.2 4.1 14.0 36.1 7.3	365 676 1704 7148 523	7.59 3.43 5.09 6.96 3.74	3.8 2.3 8.9 9.6 3.3	.3 .2 .5 .9 .3	7.9 1.8 4.5 72.6 1.6	.6 .4 .1 .7 .3	12 7 6 5 8	.2 .1 .2 .5 .1	.2 .2 .3 .1	.2 .2 .2 .2 .1	203 119 122 124 100	.12 .07 .05 .07 .08	. 059 . 077 . 133 . 198 . 058	3 6 8 10 5	16.0 8.9 8.3 15.0 13.7	.42 .27 .31 .28 .63	37 38 61 46 35	.075 .016 .007 .011 .077	<1 <1 1 1	4.10 2.22 2.06 4.11 2.75	.006 .005 .005 .005 .005 .007	.02 .04 < .05 < .04 < .03	.1 .29 .1 .1 .1 .33 .1 .60 .1 .23) 5.2 7 3.6 2 1.9) 4.0 3 4.7	<pre><.1 .1 .1 .3 .3 .1</pre>	<.05 <.05 <.05 <.05 <.05	12 2.2 12 .5 11 1.0 14 2.6 8 .8	15.0 15.0 15.0 15.0 15.0	
C 128578 C 128579 C 128580 C 128581 C 128582	.8 .4 .8 1.6 .9	54.7 55.4 43.1 82.7 48.1	7.2 11.7 14.9 13.7 10.4	103 110 90 149 165	.4 .1 .3 .2 .1	5.1 9.4 4.0 6.8 9.3	38.4 15.1 6.5 9.9 18.7	5949 762 503 498 1359	1.65 5.43 4.94 6.51 4.00	1.5 5.4 4.2 6.4 4.4	.3 .3 .4 .6 .4	<.5 1.5 1.2 3.9 3.2	<.1 .7 .4 1.1 .4	7 14 11 8 14	1.6 .3 .3 .2 .5	.3 .2 .3 .2 .2	.1 .1 .2 .1	44 156 134 155 94	.09 .18 .10 .08 .15	. 148 . 039 . 062 . 073 . 065	13 6 10 8 9	8.2 19.9 12.0 20.3 14.4	.33 1.64 .61 .76 .81	56 102 51 51 121	.035 .164 .083 .078 .116	4 2 1 1 3	4.12 3.29 2.82 5.66 3.08	.009 .010 .008 .007 .014	.04 .06 .04 < .05 .04 <	.1 .40 .1 .20 .1 .24 .1 .24 .1 .23) 2.4) 8.9 4 4.4 3 11.3 2 5.2	.2 .1 .1 .1	 .10 .05 .05 .05 .05 .05 	4 4.8 10 .7 11 1.2 11 2.5 8 1.7	15.0 15.0 15.0 30.0 15.0	
C 128584 C 128585 C 128586 C 128587 C 128587 C 128588	.8 3.0 1.9 .7 1.0	48.0 50.3 51.2 49.9 70.8	19.2 12.3 11.3 17.0 32.6	121 135 109 96 178	.1 .2 .2 .2	4.8 6.1 5.7 4.6 7.5	12.0 15.0 13.1 9.0 15.2	1661 1184 649 1082 1592	3.11 5.61 6.94 2.75 4.68	3.9 6.4 5.9 3.9 4.7	.2 .5 .2 .4	.8 1.1 2.7 2.1 3.7	.1 .8 .7 .1 .4	35 13 12 35 21	1.4 .4 .3 2.6 2.4	.2 .2 .2 .2 .2	.1 .1 .1 .1	83 152 192 74 133	. 80 . 13 . 09 . 99 . 44	.099 .111 .070 .089 .069	9 10 6 11 11	11.4 18.7 17.0 10.8 17.2	.86 1.05 1.02 .83 1.07	171 80 61 175 162	.043 .159 .143 .062 .095	2 3 1 3 1	2.39 4.97 4.38 2.51 4.08	.010 .007 .007 .012 .012	.03 < .04 .04 .04 .05 <	(1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)	2 4.0 5 9.6 5 9.5 8 4.0 7.7	.1 .1 .1 .1	.07 <.05 <.05 .08 05	6 1.1 10 1.6 13 1.7 5 2.0 9 1.5	7.5 15.0 15.0 7.5 15.0	
STANDARD DS5	12.6	141.2	25.7	134	.3	24.3	12.1	759	2.91	18.3	6.0	44.0	2.8	48	5.4	4.0	6.0	58	.73	. 099	13	179.8	. 69	140	. 099	15	2.03	.035	.13 5	5.2 .19	3.4	1.1	<.05	6 5.3	30.0	
GROUP 1DX - (>) CONCENTI - SAMPLE TY	30.00 RATION PE: SO	GM S/ EXCEE IL SS	AMPLE EDS U BO 60		CHED LIM <u>Sa</u>	WIT	H 18 SOI	0 ML ME MI ginni	2-2- INERA	2 HCI LS M/ <u>RE' (</u>	L-HNG AY BE are F	03-H2 E PAF Rerur	20 A RTIAI	T 95 LLY nd /	DEG ATTA RRE	CKEL	FOR	ONE REFR ject	HOU ACTO Rei	UR, I ORY J runs	DILU AND • •	TED T GRAPH		0 ML SAMI	, ANA Ples	CAN	ED BY	T ICP	-MS. SOL	JBILI.	Y. 00		C	ál.	79	A LEAD
	FA		- ad +		- 5	dent	امت.	101	AU	u y 4	1004	ient	. A.			mee	the	1:-	ы.	• • • • •		. .	/	•/• •	•	the s	mel	eie	onla		Ý		Cla	rençe	Leong	
		aruer				dent	at 1		ii cy			Terre	AC	-ine	4550		cne			- crea	3 10			cost				315	onty					1	1	

TT					Ir	nspi c	<u>.rat</u> /o Ar	<u>ior</u> nex R	<u>n M</u> i esour	Lnir ces L	ng (td.,,	North	h Vand	ROJ ouver	ECT BC V7	<u>JAS</u> M 381	PER Subr	Fi itted	le by:	# A4 Arne B	043 irkela	98 nd							
PLE#	Mo ppm p	Cu pm	Pb Z ppm pp	n Ag m.ppm	N PPr	i Co n ppr	Mn n ppm	Fe %	As ppm	U ppm	Au ppb p	Th S opm pp	r Cd m ppm	sb ppm p	Bi v opm.ppr	/ Ca n %	Р % Р	.a om p	Cr	Mg Ba %ррп	Ti n %	B ppm	Al %	Na %	К % рр	w Hg m ppr	g Sc nppmp	TL S pom 5	6 Ga S % ppm pp
28583 NDARD DS5 1	.4 41 2.4 138	.0 3.0 2	7.4 9 5.4 13	4.1 1.3	8.7 23.4	1 14.7 4 11.5	926 739	4.40 2.96	3.6 17.6	.2 5.94	2.8 5.0 2	.6 1 2.7 4	7.3 65.6	.2 3.9 (.1 11 6.0 6	4.55 1.72	.069 .092	8 15 12 177	5.1 1 7.6	.51 56 .67 131	.145	31 191	.80 . .93 .	.015 . .035 .	07 . 15 4.	1 .05 8 .18	5 7.6 • 8 3.6 1	<.1 .13 .0<.05	8 6 <. 5 6 4.
GROUP 1D) (>) CONCE - SAMPLE Data (- 30.0 NTRATIC TYPE: M FA	00 GM ON EX 1055	SAMPL CEEDS MAT SS	E LEA UPPER 80 DAJ	CHED LIMI	WITH ITS. RECE:	180 ME SOME	IL 2-2 MINER	2-2 HI RALS I AUG 9	CL-HNC MAY BE 2004	D3-H20 PAR1 DA) AT 9 TALLY TE R	5 DEG ATTA	. C FO CKED.	OR ONE REFR		DILUT AND G	ED TO RAPHIT	600 FIC S	ML, ANA AMPLES	LYSED CAN LI	BY IC MIT A	CP-MS. AU SOL	UBILI	ITY.				
_			-														U	,					ET COL		.L			AND AS	
																							X				SE SE	*	

											.1]		<u>{</u>			1		1		. 1		_1		3			Sec. 14	<u> </u>	•				
ACME A	NALY	TICAL	, LA	BOR	ATO	RIE	3 _, LT	D.		852	B.	HA	STI	NGS	ST.	. vz	ANCO	ouv.	ER	BC	V6A	. 1R6		P	HONI	e (6 C	4)2	53-3	158	FA	X (6	04);	253-	1716	;
					Ceu		.,			G	JEO	CHE	MI	Cal	1 A	NAL	YS:	IS	ĊE	RTI	FIC	'ATE													
						<u>In</u>	spi	rat	ion	Mi	ni	ng	Co	cp.	PI	ROJ	EC'	Г. c	IAS	PER	. F	lile	#	A 4	043	98									
							¢/	0 AFI	nex R	esour	ces	.td.,	, No	rth	Vanco	ouve	r BC	V7M	381	Su	bmitt	ed by	: Arr	ne Bi	rkela	ind									
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Hg	Sc	TL :	S Ga	Se
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	~	ppm	ppm	~ %	ppm	%	ppm	%	%	%	p p m p	buu t	opm p	pm 2	% ppm	ppm
C 128583	.4	41.0	7.4	94	.1	8.1	14.7	926	4.40	3.6	.2	2.8	.6	17	.3	2	.1	114	.55	.069	8	15.1	1.51	56	.145	3	1.80	.015	.07	.1 .	.05	7.6 <	.1 .1	36	<.5
STANDARD DS5	12.4	138.0	25.4	131	.3	25.4	11.5	759	2.96	17.6	5.9	45.0	2.7	46	5.6	5.9	6.0	61	.72	.092	12 '	177.6	.67	131	.100	19	1.93	.035	.15 4	4.8.	.18 3	5.6 1	.0<.0	56	4.9

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: MOSS MAT SS80

FA Data

DATE RECEIVED: AUG 9 2004 DATE REPORT MAILED: Sept. 1/04.

APPENDIX C

Γ

1

Geochemical Data Sheets Soil, Stream Sediment and Rock Chip Samples

• ,

I

NTS: 092C/080

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
105451	1650	1075	5409645.8	383724.52	2	В	dk.br	silt-sand	low	steep	angular JBVa
105 150	1050										JBVa quartzeyes, minor
105452	1650	1100	5409670.42	383749.14	2	В	dk.br	clay-silt	low	steep	boxworking, mainly unaltered
105453	1650	1125	5409695.04	383773.76	0	В	Or.Br	silt-sand	low	steep	altered JBVa
105454	1650	1150	5409719.66	383798.38	0	В	lt.br	silt-sand	low	steep	angular JBVa
105455	1650	1175	5409724	383823	0	В	dk.br	silt-sand	mod-high	steep	altered JBVa
105457	2750	975	5410775	383458	2	в	med.br.	silt-sand	high	mod	rounded to subrounded pebbles of gossanous JBVa
100400	2/50	950	5410770.66	383433.38	3	В	lt.or.br	silt-sand, loam	high	mod	gossanous JBVa pebbles
105459	2750	925	5410766.32	383408.76	2	в	lt.br	silty	high	v.steep	gossanous JBVa pebbles with boxwork
105460	2750	900	5410761.98	383384.14	0	в	lt.br	clay-silt	high	gentle	gossanous with jericite, Mn staining
105461	2750	875	5410757.64	383359.52	3	в	med.or.br.	silt	mod	gentle	rounded JBVa and JBVr pebbles some gossan
105462	2750	850	5410753.3	383334.9	1	в	lt.br	silt	mod	gentle	JBVa gossanous with jericite
105463	2750	825	5410748.96	383310.28	2	в	dk.br	clay-silt	mod-high	gentle	unaltered JBVa with Mn staining
105464	2750	800	5410744.62	383285.66	0	в	med.br.	clay-silt	mod	steep	subangular pebbles, green CG JBVa
105465	2650	975	5410159.38	383395.34	4	в	lt.br	silt-sand	mod	v.steep	unaltered subangular JBVa pebbles
105466	2650	950	5410155.04	383370.72	4	В	lt.or.br	clay-silt	high	steep	highly gossanous subangular JBVa
105467	2650	925	5410150.7	383346.1	2	В	lt.or.br	silt	mod	gentle	JBVa of variable composition. Qtz. Eyes and e[idote
105468	2650	900	5410146.36	383321.48	2	В	lt.or.br	clay-silt	mod	mod	unaltered JBVa
105469	2650	875	5410142.02	383296.86	2	В	dk.br	clay-silt	mod	steep	rounded JBVa with epidote
105470	2650	850	5410137.68	383272.24	2	В	v.dk.br	clay-silt	mod	mod	JBVa with qtz. Eyes
105471	2650	825	5410133.34	383247.62	2	В	med.br.	clay-silt	mod	v.gentle	unaltered JBVa
105472	2650	800	54 <u>1012</u> 9	383223	2	В	dk.br	silt-sand	mod	steep	subrounded JBVa with qtz.eyes

NTS: 092C/080

ę. **1**.

•

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
128567	4150	4750	5411188	383616	10	в	br.ta	clay- silt	low	gentle	Rx. Are altered JBVa with minor sulfides and Propylitic alteration. Sulfides are VFG and disseminated.
128568	4150	4800	5411208	383658	5	в	ta.or	clay-silt	low	mod	Rx. Are mafic JBVa the is very slightly altered and contains VFG disseminated sulfides and Prop. Alteration
128569	4150	4837.5	5411214	383706	5	в	or.ta	sandy silt	low	mod	rx. Are commonly mineralized JBVa and JBVr that is gossanous with boxworks and disseminated VFG - CG sulfides (2%).
128570	4150	4900	5411203	383744	5	в	or.ta	sandy silt	low	gentle	slightly altered JBVa with VFG disseminated sulfides (2% Py) and has propylitic alteration and boxworking and Jericite.
128571	4250	4400	5411319	383422	5	в	lt.ta.or	sandy silt	low	gentle	slightly mineralized Prop. JBVa with VFG disseminated sulfides and boxworks
128572	4250	4350	5411297	383358	7	в	br ta	sandy silt	low	steen	RX. Are VFG disseminated
128573	4250	4300	5411310	383307	10	B	or.br	sandy silt	low	mod	Near a Prop. JBVa o.c. with some Plag. Porphyry.
128574	2250	1125	5410247	383660	15	в	ta.br	silt - c. sand	mod	mod	Rx. Are unaltered JBVa at the base of the o.c.
128575	2250	1225	5410268	383739	10	AB	Dk.Br	clay - silt	high	steep	JBVa
128576	2250	1250	5410272.34	383763.6231	10	В	dk.Br.Or	clay - silt	mod	Imod	JBVb
128577	2250	1275	5410276.68	383788.2462	20	в	Med.Br	clay - c.sand	mod	mod	unaltered gossanous Prop. JBVa
128578	2250	1300	5410281.02	383812.8693	25	AB	Dk.Br	clay - silt	mod	mod	unaltered gossanous Prop. JBVa

.....

NTS: 092C/080

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
							lt				
128579	2250	1325	5410285.36	383837.4924	30	В	med.br.	silt - sands	mod	mod	JBVa
1		1									Rx are gossanous
							1				mineralized JBVa with VFG
					ļ			clay-course			sulfides (1%). Bo. And Prop.
128580	2350	1175	5410336	383701	15	В	Br,Tan	sand	high	mod	Some rx. Are more rhyolitic
128581	2350	1200	5410319	383729	20	В	Or,ta	clay-silt	low	mod	JBVa - JBVr
128582	2350	1225	5410345	383759	35	В	Med.Br.Or	silt-course sand	high	steep	unaltered JBVb - JBVa
								clay-course			JBVr with qtz. Eyes. Poor
128584	2350	1275	5410353.68	383808.24	40	AB	Dk.Br	sand	high	mod	sample in marshy area
128585	2350	1300	5410357.66	383834.38	40	В	br.or	silty clay	mod	steep	JBVa - JBVr
128586	2350	1325	5410362	383859	45	В	Or,Br	silt - f. sand	low	steep	subangular JBVa
											V. poor sample from old
128587	2350	1350	5410372	383889	20	AB	gr,br	silty sand	v.high	mod	creek bed
	ļ										By Are upply and IB\/a
						ł					(Prop.) Sample is located
											(Frop.). Sample is located
											just below a large o.c., which
		1				1]		for 100m. The end is of
										ł	
128588	2250	1075	E410275	202010	15		4	alles and			Deen And Deenburg
149501	2350	1025	5410375	303910	15	B	ta,br	Isility sand	Imoa	moa	Prop. And Porpnyry.
140501	2900	1025	5410910	383495	10	B	y.br.		low	gentie	north side of creek
140502	2900	1050	5410935	383490	20	BC	ly.br.	Slit	moa	gentie	South side of creek
140505	2900	11075	5410939.34	383520.62	5	В	Dr.	ISIIT	Imoa	gentie	2nd growth
148505	2900	1125	5410943.00	202560.06	20		ak.br	sandy	Inign	gentie	
148505	2900	1125	5410946.02	303509.00	20		l.pr	Isandy silt	nign	gentie	poor soil env.
140500	2900	1150	5410952.36	383594.48	30	BC	I.Dr	ciay till	moa	gentie	poor soil env.
140507	2900	1175	5410956.7	383619.1	5	BC	med.br.	sandy	low	gentie	
148508	2900	1200	5410961.04	383643.72	25	BC	gr.br	sandy	mod	mod	edge of bank, poor soil
4 49599	0000						1.		l	l	appears to be colluvium,
148509	2900	1225	5410965.38	383668.34	10	вс	gr.br	sandy	low	mod-steep	tallus, poor soil
1.10510	0000										appears to be colluvium,
148510	2900	1250	5410969.72	383692.96	20	BC	gr.br	silty	low	mod-steep	tallus, poor soil
148511	2900	1275	5410974.06	383717.58	40	BC	dk.br	sandy	low	mod	tallus scarp on S of creek

_

......

1

NTS: 092C/080

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
											tallus scarp on N of creek,
148512	2900	1300	5410978.4	383742.2	10	BC	dk.br	sandy	low	mod	poor soil
148513	2900	1325	5410982.74	383766.82	15	BC	gr.br	sandy	low	mod	poor soil env.
148514	2900	1350	5410987.08	383791.44	25	BC	br	sandy	low	mod	
											north side of creek JBv,
148515	2900	1375	5410991.42	383816.06	2	BC	Or.Br	sandy	mod	mod	weakly gossanous
148516	2900	1400	5410995.76	383840.68	20	вс	dk.br	sandy	low	mod-steep	poor soil env.
											tailus and o.c. of feldspar
148517	2900	1425	5411000.1	383865.3	20	BC	Or.Br	sandy	llow	mod-steep	
148518	2800	1025	5410824.66	383477.38	5	В	Or.Br	silty	low	gentle	2nd growth
148519	2800	1050	5410829	383502	5	В	med.br.	silty	low	gentle	2nd growth
148520	2800	1075	5410852.66	383560.38	5	В	red.br	silty	low	gentle	very small trees
148521	2800	1100	5410857	383585	5	В	med.br.	silty	low	flat	2nd growth
148523	2750	1025	5410781.66	383497.38	2	В	med.br.	silty	low	mod-steep	change in slope, open forest
										1	sample from exposed slope
148524	2750	1050	5410786	383522	5	В	med.br.	silty	low	mod	at base of stump
148525	2750	1075	5410790.34	383546.62	2	В	Or.Br	silty	low	mod	
148526	2750	1100	5410801	383561	2	В	med.br.	silty	low	gentle	
148527	2750	1125	5410805.34	383585.62	1	BC	Or.Br	silty	low	flat	soil Is wet
148528	2750	1150	5410809.68	383610.24	2	BC	red.br	silty	low	gentle	tallus
148529	2750	1175	5410814 02	383634 86	2	BC	dk br	eilty	low	modesteen	
			0410014.02	000004.00		<u> </u>		Sity	10 44	Intou-steep	
148530	2750	1200	5410818.36	383659.48	4	вс	dk.br	silty	mod	mod-steep	
148531	2750	1225	5410822.7	383684.1	3	В	Or.Br	silty	high	steep	
148532	2750	1250	5410827.04	383708.72	5	В	Or.Br	silty	mod	steep	JBv o.c.
						T			1		
148533	2750	1275	5410831.38	383733.34	5	в	med.br.	silty	low	mod-steep	
148534	2750	1300	5410835.72	383757.96	0	В	red.br	silty	low	mod	JBv o.c.
148535	2750	1325	5410840.06	383782.58	4	В	med.br.	silty	low	mod	
	1						1				
148536	2750	1350	5410844.4	383807.2	5	в	l.br	silty	low	mod-steep	
148537	2600	1150	5410635	383591	2	В	Or.Br	silty	low	mod	poor soil env.
148538	2600	1150	5410635	383591	4	В	l.br	silty	low	mod	
148539	2600	1200	5410673	383660	3	BC	med.br.	silty	mod	gentle	

1

.

1

• • • • •

1

NTS: 092C/080

-

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
148540	2600	1225	5410677 34	383684 62	2		mod br	cilty	high	med stoop	
148541	2600	1250	5410681 68	383709 24	2		Or Br	silty	liow	niou-steep	
148542	2600	1275	5410686.02	383733 86	5	B	Or Br	silty	low	Identie	
148544	4200	4850	5411288	383800	17	B	Or Br	silty	llow	Igentie	
148545	4200	4900	5411288	383850	3	B	med br	silty	low	gentle	
148546	4200	4950	5411284	383910	2	B	med br	silty	mod	mod	······································
148547	4200	5000	5411284	383960	5	B	br.or	silty	low	mod	
148548	4000	4850	5411074	383799	15	B	med.br.	silt-sand	mod	mod	angular andesite
148549	4000	4900	5411074	383849	30	B	dk.br	silty	mod	mod	mafic angular And
148550	4000	4950	5411074	383878	24	BA	dk.br	silt-sand	high	steep	mafic angular And.
148551	4200	4450	5411286	383400	25	в	or.ta	silt-cobble	low	gentle	roadcut bank upslope, And JBy
148552	4200	4500	5411286	383450	10	В	or.ta	silt-cobble	mod	mod	below roadcut, no OC, talus
148553	4200	4550	5411286	383500	10	В	or.br	silt-cobble	mod	aentle	
148554	4200	4600	5411286	383550	25	В	or.br	silt-cobble	low	mod	
148555	4200	4650	5411286	383600	20	В	br	silt-cobble	low	low	
148556	4200	4700	5411286	383650	35	В	or.br	silt-cobble	mod	mod	
148557	4200	4750	5411286	383700	25	В	or.br	silt-cobble	mod	low	
148558	4200	4800	5411286	383750	28	в	or.br	silt-cobble	mod	mod-steep	And. OC
148559	3700	5000	5410780	383307	30	в	med dk.br.	silt-sand	mod	steep	At base of basalt oc
148560	3700	5050	5410780	383357	15	в	br	silt-sand	low	mod-steep	good sample
148561	3700	5100	5410780	383407	23	В	dk.br	silt-sand	low	steep	angular frag Jbva
148562	3700	5150	5410780	383457	20	В	dk.br	silt-sand	low	steep	
148563	1600	1150	5409618.64	383726.52	20	в	dk.br	silt-sand	low	mod-steep	good sample. Angular rhyolite
148564	1600	1175	5409622.98	383751.14	15	В	dk.br	silt-sand	low	mod	rhyolite sulfides
148565	1600	1200	5409627.32	383775.76	22	В	dk.br	silt-sand	low	mod	Rhyolite, andesite, sulfides
148566	1600	1225	5409631.66	383800.38	20	в	dk.br	silt-sand	low	mod-steep	rhvolite
148567	1600	1250	5409636	383825	23	В	dk.br	silt-sand	low	steep	andesite angular
148568	1600	1275	5409640.34	383849.62	23	В	dk.br	silt-sand	mod	v.steep	andesite Jbva
148569	1900	1175	5409936	383645	20	в	dk.br	silt	low	mod-steep	angular JBv w/sulfides

....

-

7

.....

NTS: 092C/080

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
			•								
							med				Angular JBVr with minor
148570	1900	1200	5409935	383677	8	В	dk.br.	silt	low	steep	sulfides
							T				2 large gossanous boulders
148571	1900	1225	5409933	383709	12	В	br.or.	silt	low	steep	in viscinity
148572	1900	1250	5409937.34	383733.62	14	В	br.or.	silt	low	steep	JBVr mafic Angular
148576	2050	1175	5410081.98	383631.14	20	В	or.br	silt	low	mod-steep	JBVr mafic Angular
148577	2050	1200	5410086.32	383655.76	14	В	or.br	silt	low	mod	altered JBVr angular
148578	2050	1225	5410090.66	383680.38	11	В	dk.br	silt	mod	v.steep	JBVa
148579	2050	1250	5410095	383705	12	В	or.br	silt-sand	mod	steep	
							med				
148580	2050	1275	5410099	383722	12	В	dk.br.	silt-sand	low	gentle	JBVr Angular
											angular v.slightly altered
148581	2100	1150	5410116	383577	25	В	Br,Or	silt-cobble	mod	gentle	Jbva (minor sulfides)
148582	2100	1175	5410120.34	383601.62	15	B	Med.Br	silt-clay	low	gentle	JBVa
148583	2100	1200	5410105	383617	15	В	br.ta	silt-pebble	low	gentle	Jbva CG
											Altered mafic Jbva
			1								mineralized w/Py, Cpy, Black
148584	2100	1225	5410113	383663	15	В	br.or	silt-pebble	low	gentie	Jack Spal?
148585	2100	1250	5410117.34	383687.62	20	В	br.or	silt-pebble	low	mod	Jbva int. gossanous float
					1						
ĺ						ļ					at sampled rx. Site with Cpy.
				ł	1						And Py and Malachite in
148586	2100	1275	5410107	383703	20	В	br.ta	silt-clay	low	mod	quartz vein and gossan
148587	2100	1300	5410114	383724	15	В	Or,Br	silty-sand	low	mod	slightly altered Jbva
					1						Altered Jbva w/Py. Cpy.
148588	2100	1325	5410139	383776	6	В	br,or	silty-sand	high	mod	Jericite
											Rx are angular JBVa with
148589	2100	1350	5410143.34	383800.62	8	В	Dk.Br	silty-sand	low	mod	minor sulfides
148590	2100	1375	5410137	383810	10	В	Dk.Br	silty-sand	mod	mod	Jbva alterd w/minor sulfides
											angular JBVa. sulfides,
148591	1800	1150	5409833.98	383705.14	22	В	Med.br	silt-cobble	low	mod	epidote, sphalerites
148592	1800	1175	5409838.32	383729.76	14	В	med.br-or.	silt	low	mod	Angular JBVa
148593	1800	1200	5409842.66	383754.38	19	В	lt.br	silt-sand	mod	steep	Angular JBVa , near o.c.
148594	1800	1225	5409847	383779	15	В	lt.br	silt	mod	steep	JBva
148595	1800	1250	5409857	383796	12	В	lt.br	silt-sand	mod	steep	JBVa
148596	1800	1275	5409861	383831	14	В	lt.br	silt	low	mod	Prop. JBVa

SxGCDSAppC.xls

1

NTS: 092C/080

.....

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
							med.br				Altered JBVa with
148597	1850	1200	5409890	383697	14	В	or.	silt-sand	low	mod	plagioclaise porph.
							1				Angular JBVr, some
148598	1850	1225	5409890	383733	10	в	or.br	silt-cobble	low	mod-steep	mineralization. Gossanous
		1			1				1		
148599	1850	1250	5409920	383766	10	В	lt.br	silt-cobble	low	mod-steep	altered JBVa gossanous
											JBVa Prop. Beside o.c.
148600	1850	1275	5409924.34	383790.62	10	В	lt.br	silt-cobble	low	steep	Minor sulfides
148601	2950	1025	5410985.98	383443.14	20	В	Br,Or	silt-cobble	low	mod	Angular rx. As tallus
148602	2950	1050	5410990.32	383467.76	5	В	Br,Or	silt-cobble	low	mod	fewer large clasts
148603	2950	1075	5410994.66	383492.38	25	В	Br,Or	silt-pebble	low	low	deeper B (few rx)
148604	2950	1100	5410999	383517	30	В	Br,Or	silt-pebble	low	mod	
148605	2950	1125	5410981	383557	30	B	Br,Or	silt-pebble	low	high	slightly lighter colour
148606	2950	1150	5410989	383576	5	B	Br,Or	silty	low	steep	
148607	2950	1175	5411002.66	383597.38	35	В	Br	silt-cobble	mod	steep	browner than previous soils
148608	2950	1200	5411007	383622	15	В	Br,Red	silt-c.sand	mod	steep	red color
148609	2950	1225	5411006.62	383631.66	35	B	Br,Red	silt+cobble	low	mod	red color
											possibly a till - in situ with
148610	2950	1250	5411010.96	383656.28	5	В	Br	silty	mod	mod	chert o.c.?
148611	2950	1275	5411015.3	383680.9	15	В	Br,Gr	silt,clay	mod	low	englacial till
		1									clast supported with angular
148612	2950	1300	5411019.64	383705.52	7	В	Br,Red	silt-cobble	low	mod	rx + fines aggregate
148613	2950	1325	5411023.98	383730.14	20	В	Br,Red	silty	mod-high	steep	A lot of Fe in clasts
148614	2950	1350	5411028.32	383754.76	10	В	Br	silt-c.sand	mod	steep	
148615	2950	1375	5411032.66	383779.38	10	В	Br	silt-c.sand	low	steep	
148616	2950	1400	5411037	383804	5	В	Br	silt-c.sand	mod	steep	
148617	2950	1425	5140873	383517	30	В	Br,Red	silt-c.sand	mod	steep	
148618	2950	1450	5140877.34	383541.62	30	В	Br,Or	silt-c.sand	mod	steep	
148619	2950	1475	5140881.68	383566.24	5	В	Br,Red	silt-pebble	mod	gentle	
148620	2950	1500	5140886.02	383590.86	25	В	Br	silt-c.sand	mod	mod	
148621	2950	1525	5140890.36	383615.48	10	В	Br	silt-c.sand	mod	gentle	North side of small gully
148622	2800	1250	5410866	383620	5	BC	br	clay-silt	low	gentle	poor sample
148623	2800	1275	5410870.34	383644.62	2	BC	med.br	clay-silt	mod	mod-steep	a lot of rx, possibly till
148624	2800	1300	5410874.68	383669.24	10	BC	med.br	clay-silt	low	mod-steep	till

from the second second

NTS: 092C/080

Sample ID	Grid North	Grid East	UTM North	UTM East	Depth (cm)	Horizon	Colour	Particle Size	Org %	Gradient	Comments
										T	
						T					
148625	2800	1325	5410879.02	383693.86	15	В	or.br	clay-silt	low	mod-steep	
148626	2800	1350	5410883.36	383718.48	20	В	red.br	silt	mod	mod	
148627	2800	1375	5410887.7	383743.1	5	В	or.br	silty	low	low	
148628	2800	1400	5410892.04	383767.72	15	BC	gr.br.	silty	low	low	likely disturbed JBv
148629	2800	1425	5410896.38	383792.34	5	ABC	dk.br.	silty	low	low	
148630	2800	1450	5410900.72	383816.96	2	в	med.br	silty	low	steep	near clearing, JBv with no notable sulfides
148631	2850	1250	5410900	383650	8	в	br	silty	low	mod-steep	
148632	2850	1275	5410904.34	383674.62	10	В	br	silt+sand	low	mod-steep	gossanous JBv on east side of road
148633	2850	1300	5410908.68	383699.24	15	BC	br	silt+sand	low	mod-steep	flatter area, better soil
148634	2850	1325	5410913.02	383723.86	8	В	or.br	silt	low	mod	possibly A on C
148635	2850	1350	5410917.36	383748.48	3	ABC	dk.br.	clay-silt	high	gentle	large fallout logs
148636	2850	1375	5410921.7	383773.1	10	AB	br	clay-silt	high	mod	side of logsort
148637	2850	1400	5410926.04	383797.72	5	в	br	clay-silt	high	low	east side of road from rock cutt
148638	2850	1425	5410930.38	383822.34	0	AB	br	sand	mod	mod	gossanous JBv at east of cut
148642	4000	4400	5411092	383324	15	В	Br,Or	silt	low	gentle	42m from road. Rx. Are Prop.Mafic, JBv
148643	4000	4450	5411092	383374	30	В	Br	silt	low	mod	angular clasts of It.gr. And.
148644	4000	4500	5411092	383424	20	В	Br	clay-50%f.sand	high	gentle	No rx.
148646	4000	4550	5411087	383474	15	В	Br,Or	clay-course sand	mod	gentle	Rx. Are int-mafic And.
148647	4000	4600	5411087	383524	15	В	Br,Or	silt-sand	low	gentle	Mn & Prop. In int-mafic And.
148648	4000	4650	5411061	383574	20	В	Br,Tan	silt/clay	low	gentle	V.CG. Andesite, quite silicious (Ryholite?)
148650	4000	4700	5411061	383624	15	В	Br,Or	silt/clay	low	mod	And.
148651	2550	1150	5410650	383632	15	В	Med.br	silt	mod	gentle	near tree root
148652	2550	1175	5410654.34	383656.62	20	в	Med.br	clay-silt	mod	mod	JBv - sample upslope and less steep

~~~···

1

----7

NTS: 092C/080

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon  | Colour    | Particle Size | Org % | Gradient   | Comments                       |
|-----------|------------|-----------|------------|-----------|------------|----------|-----------|---------------|-------|------------|--------------------------------|
|           |            |           |            |           |            |          |           |               |       |            |                                |
|           |            |           |            |           |            |          |           |               |       |            |                                |
|           |            |           |            |           |            |          |           |               |       | Í          | colluvium rock face o.c. north |
|           |            |           | <b>.</b>   |           |            |          |           |               |       |            | of creek JBv Gossanous -no     |
| 148653    | 2550       | 1200      | 5410661    | 383656    | 15         | В        | Med.br    | silt-sand     | low   | mod-steep  | notable sulfides               |
| 148654    | 2550       | 1225      | 5410665.34 | 383680.62 | 5          | ABC      | dk.br     | silt-sand     | high  | high       | Below tree root on cliff       |
|           |            |           |            |           |            |          |           |               |       |            |                                |
|           |            | 1         |            |           |            |          |           |               |       |            | colluvium beneath ferrocreet   |
| 148655    | 2550       | 1250      | 5410650    | 383704    | 15         | ABC      | Med.br    | silt-sand     | mod   | high       | (soil oxidization bound)       |
| 148656    | 2550       | 1275      | 5410654.34 | 383728.62 | 20         | В        | Med.br    | silt-sand     | low   | mod        | tree root area                 |
| 148657    | 2550       | 1300      | 5410658.68 | 383753.24 | 8          | В        | Med.br    | silt          | low   | mod        | 2nd growth clearing            |
|           |            | 1         |            |           |            |          |           |               |       |            |                                |
| 148658    | 2550       | 1325      | 5410663.02 | 383777.86 | 20         | AC       | dk.br     | clay-silt     | low   | high       | talus with organics poor soil  |
|           |            |           |            |           |            |          |           |               |       |            | 2nd growth - some Jbv o.c.     |
| 148659    | 2550       | 1350      | 5410667.36 | 383802.48 | 20         | AB       | Br        | clay-silt     | low   | low        | gossonous                      |
| 148660    | 2550       | 1375      | 5410671.7  | 383827.1  | 5          | AB       | Br        | clay-silt     | high  | mod-high   | disturbed soil                 |
|           |            |           |            |           |            |          |           |               |       |            | gossanous o.c. JBv int-        |
| 148661    | 2550       | 1400      | 5410676.04 | 383851.72 | 7          | В        | Med.br    | silt-sand     | high  | steep      | maffic                         |
| 1 49000   | 0050       | 1.150     |            |           |            |          |           |               |       |            |                                |
| 140002    | 2850       | 1450      | 5410665    | 383864    | 5          | IBC      | gr.br.    | sand          | null  | v.steep    | gossanous JBv at east of cut   |
| 140701    | 2700       | 1025      | 5410743    | 383493    | 30         | В        | lt.br     | silt-pebble   | low   | mod        |                                |
| 140/02    | 2700       | 1050      | 5410754    | 383516    | 5          | В        | dk.br     | silt-pebble   | low   | mod        |                                |
| 148703    | 2700       | 11075     | 5410758.34 | 383540.62 | 20         | B        | or.ta     | silt-pebble   | low   | gentle     |                                |
| 148705    | 2700       | 1100      | 5410744    | 383563    | 10         | 8        | or.ta     | silt-pebble   | low   | gentle     |                                |
| 140703    | 2700       | 1125      | 5410/48.34 | 383587.62 | -[10       | В        | lt.or.br. | silt-pebble   | low   | mod        |                                |
| 148706    | 2700       | 1150      | 5410752 69 | 202612.04 | 15         |          |           | allt a shihla | 1     |            |                                |
| 140700    | 2700       | 1150      | 5410752.00 | 303012.24 | 15         | P        | or.br     | slit-pebble   | IOW   | mod-steep  |                                |
| 148707    | 2700       | 1175      | 5410757 02 | 383636 96 | 15         | 6        |           | ailt aabbla   |       |            |                                |
| 140/07    | 2700       | 11/3      | 5410757.02 | 303030.00 | 1.5        | P        | Ur.ta     | Sill-CODDIE   | low   | mod-steep  |                                |
| 148708    | 2700       | 1200      | 5410761 36 | 383661 48 | 10         | R        | orta      | sand-pebble   | low   | mod stoon  |                                |
|           | 2/00       | 1200      | 0410701.00 | 000001.40 | 10         | <u> </u> | 01,04     | Salid-people  | 100   | Inou-steep |                                |
| 148709    | 2700       | 1225      | 5410776    | 383669    | 12         | в        | or br     | sand-pebble   | low   | mod-steen  |                                |
|           |            |           |            |           | <u> ·-</u> |          | 101121    | Jound possio  |       |            |                                |
| 148710    | 2700       | 1250      | 5410770    | 383686    | 10         | в        | or.br     | sand-pebble   | low   | mod-steep  |                                |
| 148711    | 2700       | 1275      | 5410785    | 383722    | 15         | В        | br.or     | sand-pebble   | low   | gentle     |                                |
| 148712    | 2700       | 1300      | 5409933    | 383739.76 | 5          | В        | or.br     | sand-pebble   | low   | gentle     |                                |
|           |            |           |            |           |            |          |           |               |       |            |                                |
| 148713    | 2700       | 1325      | 5410077.64 | 383764.38 | 5          | В        | or.br     | sand-pebble   | low   | mod-steep  |                                |

SxGCDSAppC.xls

NTS: 092C/080

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon | Colour   | Particle Size | Org %    | Gradient  | Comments                       |
|-----------|------------|-----------|------------|-----------|------------|---------|----------|---------------|----------|-----------|--------------------------------|
|           |            |           |            |           |            |         |          |               |          |           |                                |
| 148714    | 2700       | 1350      | 5410794    | 383789    | 20         | В       | gr.br    | sand-pebble   | low      | steep     |                                |
| 148715    | 2700       | 1375      | 5410796    | 383817    | 20         | В       | rd.br/gr | sand-pebble   | low      | steep     |                                |
| 148717    | 2650       | 1100      | 5410691    | 383586    | 10         | В       | br.ta    | sand-cobble   | low      | mod       | no o.c.                        |
| 148718    | 2650       | 1125      | 5410695.34 | 383610.62 | 5          | В       | or.ta    | sand-cobble   | low      | mod       | andesite                       |
| 148719    | 2650       | 1150      | 5410693    | 383609    | 2          | В       | or.ta    | sand-cobble   | low      | mod       | andesite                       |
|           | 1          | T         |            |           |            |         |          |               | 1        | T         |                                |
| 148720    | 2650       | 1175      | 5410690.98 | 383630.14 | 2          | в       | or.ta    | sand-cobble   | low      | mod-steep |                                |
| 148721    | 2650       | 1200      | 5410695.32 | 383654.76 | 5          | В       | br.ta    | sand-cobble   | low      | mod       | JBv                            |
| 148722    | 2650       | 1225      | 5410699.66 | 383679.38 | 5          | В       | or.ta    | sand-cobble   | low      | mod       | no o.c.                        |
| 148723    | 2650       | 1250      | 5410704    | 383704    | 10         | В       | br.ta    | sand-cobble   | low      | steep     | andesite                       |
| 148724    | 2650       | 1275      | 5410705.64 | 383711.52 | 5          | B       | or.ta    | sand-cobble   | low      | steep     | angular fragments              |
| 148725    | 2650       | 1300      | 5410709.98 | 383736.14 | 10         | В       | gr.br    | sand-cobble   | low      | steep     | very poor sample               |
| 148726    | 2650       | 1325      | 5410714.32 | 383760.76 | 5          | В       | gr.br    | sand-cobble   | low      | steep     | JBv                            |
| 148727    | 2650       | 1350      | 5410718.66 | 383785.38 | 5          | В       | dk.br    | sand-cobble   | low      | steep     | poor sample                    |
| 148728    | 2650       | 1375      | 5410723    | 383810    | 5          | В       | lt.br    | sand-cobble   | low      | steep     | andesite                       |
| 148729    | 4300       | 4600      | 5411392    | 383533    | 20         | В       | Or,Br    | silt-clay     | low      | steep     | On rock cut N of road          |
| 148730    | 4300       | 4650      | 5411392    | 383583    | 15         | В       | Med.Br   | silt-cobble   | low      | steep     | Next to a culvert              |
| 148731    | 4300       | 4700      | 5411378    | 383640    | 5          | В       | or.ta    | silt-pebble   | low      | mod       |                                |
| 148732    | 4300       | 4750      | 5411378    | 383690    | 5          | В       | or.ta    | silt-pebble   | low      | low       |                                |
|           |            |           |            |           |            |         | 1        |               |          |           | ferricrete on slope north side |
| 148733    | 4300       | 4800      | 5411396    | 383750    | 35         | в       | or.ta    | silt-c.sand   | low      | mod       | of road                        |
| 148734    | 4300       | 4850      | 5411396    | 383800    | 40         | В       | or.ta    | silt-c.sand   | low      | steep     | Prop. And. JBv                 |
| 148735    | 4300       | 4900      | 5411396    | 383837    | 35         | AC      | dk.br    | clay-silt     | low      | steep     |                                |
| 148736    | 4300       | 4950      | 5411396    | 383912    | 40         | ABC     | dk.br    | fines-pebbles | mod      | v.steep   |                                |
| 148737    | 4300       | 5000      | 5411396    | 383962    | 30         | В       | rd.ta    | fine          | low      | v.steep   |                                |
|           |            |           |            |           |            |         |          |               |          |           | good sample, very few rocks    |
| 148738    | 4100       | 4950      | 5411196    | 383912    | 35         | В       | br.or.   | silt          | low      | mod       | ang. Andesite                  |
|           |            |           |            |           |            |         |          |               |          |           | fine to v. large rocks, mostly |
| 148739    | 4100       | 5000      | 5411196    | 383962    | 20         | В       | br.or.   | silt-sand     | very low | gentle    | chert?                         |
| 148740    | 4100       | 5050      | 5411196    | 384012    | 18         | В       | br.      | silt          | low      | mod       | anglular JBva                  |
|           |            |           |            |           |            |         |          |               |          |           | angular JBvr (chert?), 3 m.    |
| 148741    | 4100       | 5100      | 5411196    | 384062    | 28         | В       | l.dk.br. | silt          | mod      | mod       | from outcrop                   |
| 148742    | 4100       | 5150      | 5411196    | 384112    | 14         | В       | l.dk.br. | silt-sand     | low      | gentle    | anglular JBvr outcrop          |
| 148743    | 4100       | 5200      | 5411196    | 384162    | 8          | В       | dk.br.   | silt-sand     | mod      | mod       | north side of creek            |
| 148744    | 4100       | 5200      | 5411196    | 384212    | 29         | В       | l.br.    | silt-sand     | low      | mod       | south side of creek            |
| 148746    | 4100       | 5250      | 5411196    | 384262    | 24         | В       | br.or.   | silt-sand     | low      | mod       | green to red JBvr?             |
|           |            |           |            |           |            |         | med      |               |          |           |                                |
| 148748    | 4100       | 5300      | 5411196    | 384312    | 10         | В       | dk.br.   | silt-sand     | very low | mod       | angular frag Jbva?             |

. ....

1

NTS: 092C/080

| Sample ID | Grid North | Grid East | UTM North  | UTM East | Depth (cm) | Horizon  | Colour            | Particle Size         | Org % | Gradient    | Comments                      |
|-----------|------------|-----------|------------|----------|------------|----------|-------------------|-----------------------|-------|-------------|-------------------------------|
|           |            |           |            |          |            |          |                   |                       |       |             |                               |
|           |            |           |            |          |            |          |                   |                       |       |             | andesite frags and good       |
| 148749    | 3700       | 4900      | 5410796    | 383862   | 25         | В        | dk.br             | silt-sand             | mod   | steep       | sample                        |
| 440750    | 0700       |           |            |          |            |          |                   |                       |       |             |                               |
| 148/50    | 3700       | 4950      | 5410796    | 383912   | 12         | В        | or.br             | silt-sand             | low   | mod-steep   | giid sample, angular And.     |
|           |            | 1         |            |          |            |          |                   |                       |       |             | Prop.And. w/boxwork and       |
| 148801    | 4000       | 4750      | 5411080    | 383653   | 20         | В        | Or,Br             | silt/clay             | low   | mod         | minor sulfides                |
| 148802    | 4000       | 4800      | 5411080    | 383703   | 15         | В        | Or,Br             | silt/clay             | low   | mod         | Angular rx.                   |
| 148803    | 4000       | 4850      | 5411080    | 383766   | 15         | В        | Br                | silt-sand             | low   | mod         | rounded rx.                   |
| 148805    | 4100       | 4400      | 5411189    | 383335   | 30         | В        | Or,Br             | silty-clay            | low   | gentle      | subangular rx.                |
| 148806    | 4100       | 4450      | 5411189    | 383385   | 24         | BC       | Br                | clay-sand             | low   | mod         | JBv Angular Prop.And.         |
| 148807    | 4100       | 4500      | 5411189    | 383435   | 15         | В        | Or,Br             | clay                  | low   | mod         | subangular rx.                |
| 148808    | 4100       | 4550      | 5411189    | 383485   | 15         | В        | Br                | clay                  | mod   | mod         | angular rx. JBV And           |
|           |            |           |            |          |            |          | 1                 | 1                     |       |             | And, w/boxwork v.weathered    |
| 148809    | 4100       | 4600      | 5411189    | 383535   | 15         | в        | Br                | clay                  | mod   | mod         | Prop.And                      |
|           |            |           |            |          |            |          |                   |                       |       |             | CG. Andesite, quite silicious |
| 148812    | 4100       | 4650      | 5411189    | 383585   | 30         | в        | Dk.Br             | clav                  | mod   | gentle      | (Ryholite?)                   |
| 148813    | 4100       | 4700      | 5411189    | 383635   | 24         | В        | Or.Br             | clav                  | mod   | mod         | And /Basalt int-mafic         |
| 148814    | 4100       | 4750      | 5411189    | 383685   | 15         | В        | Or.Br             | clav                  | low   | gentle      | And JBy                       |
| 148815    | 4100       | 4800      | 5411189    | 383735   | 25         | В        | Or.Br             | clav                  | mod   | mod         | And JBy Prop                  |
|           |            |           |            |          |            | [        |                   |                       |       |             | Gossan topped by Rhyolite?    |
| 148818    | 4100       | 4850      | 5411189    | 383785   | 15         | в        | Br                | silt-sand             | low   | mod         |                               |
|           |            | 1         |            |          | - <u>-</u> | 1        | 1 <sup>21</sup>   |                       |       |             | Colluvium on south stone      |
| 148819    | 4100       | 4900      | 5411189    | 383835   | 10         |          | Tan               | sandy                 | low   | steen       | near road                     |
| 148820    | 1150       | 1125      | 5409406.85 | 383690   | 5          | B        | lit hr            | Isand                 | low   | mod         | good sample JBV/a             |
| 148821    | 1150       | 1150      | 5409426    | 383941   | 10         | B        | tan               | silt+sand             | low   | mod         | IBvr Trace Pv                 |
| 148822    | 1150       | 1175      | 5409421.85 | 383967   | 1          | B        | br or             | silt                  | low   | mod         | IByr Trace Py + snal          |
|           |            |           |            |          | <u> </u>   | <u> </u> | 51.01.            |                       | 1011  |             | IBvr 1% EG Dess Sulfides      |
| 148823    | 1150       | 1200      | 5409441    | 383983   | 10         | Íв       | br or             | silty sand            | low   | mod-steen   | Gossanous                     |
|           |            |           |            |          | - <u>-</u> | <u> </u> |                   |                       |       | Inter steep | 0033811043                    |
| 148824    | 1150       | 1225      | 5409460 15 | 383999   | 10         | B        | br or             | silty sand            | mod   | mod stoop   | IByr Troco By                 |
| 148825    | 1150       | 1250      | 5409479 3  | 384015   | 15         |          | lar               | silty sand            | mod   | mou-steep   | DVI Hace Fy.                  |
|           | 1100       | 1200      | 546547 5.5 | 504015   | 13         |          | 191.              | Silly Saliu           |       | v.sieep     | on JBVI O.C.                  |
|           |            |           |            |          |            | 1        |                   |                       |       |             | besizes IDva trace sulfides   |
| 148826    | 1150       | 1275      | 5400408 45 | 384031   | 25         | L.       | madhe             | ailt                  | law   |             | norizon. JBvr trace suitides  |
| 148827    | 1150       | 1300      | 5409517 6  | 383048   | 125        |          | lor               | Sill                  | low   | v.steep     |                               |
|           | +          |           | 0-03017.0  | 000040   |            |          | 19 <sup>1</sup> . | Sallu<br>Jolov course | IOW   | Inou        | JUVA                          |
| 148828    | 1750       | 1200      | 5400817    | 393700   | 20         | 0        | Or Pr             | ciay-course           | law   | ta a .      |                               |
| 140020    | 11/00      | 1200      | 0-03017    | 202/33   | 20         |          | U,Br              | sano                  | liow  | v.steep     | IKX are angular JBVa Prop.    |

SxGCDSAppC.xls

. .

# APPENDIX C

SOIL GEOCHEMICAL DATA SHEET - Year 2004 PROJECT: JAS

NTS: 092C/080

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon  | Colour    | Particle Size | Org %    | Gradient  | Comments                     |
|-----------|------------|-----------|------------|-----------|------------|----------|-----------|---------------|----------|-----------|------------------------------|
|           |            |           |            |           |            |          |           |               |          |           |                              |
|           |            |           |            |           |            |          |           |               |          |           | Rx are subrounded JBV        |
| 148829    | 1750       | 1225      | 5409819    | 383830    | 10         | B        | Or,Br     | clay          | low      | steep     | basalt Prop (Amygdaloidal)   |
| 1         |            | 1         | 1          | 1         |            |          |           |               | 1        |           | Boulder lag at base of W     |
|           |            | 1         | 1          | 1         |            |          |           | 1             |          |           | side of road. Anthropogenic  |
|           |            |           |            |           |            | 1        |           |               |          |           | influence apparent. Rx are   |
|           |            | 1         | 1          |           |            |          |           |               |          |           | variable: some are           |
|           |            |           | ]          |           |            | )        | 1         |               | 1        | 1         | gossanous with Jericite,     |
|           |            | 1         | ľ          | ]         |            |          |           |               |          |           | others include JBVa, and     |
| 148830    | 1750       | 1250      | 5409820    | 383959    | 25         | В        | Tan, Or   | clay-sand     | mod      | steep     | JBvr.                        |
|           |            |           |            |           |            |          |           | T             | _        |           | 25% rx. Mafic JBVa with v.   |
| 148831    | 4900       | 400W      | 5411988    | 383543    | 10         | В        | or.br     | clay-silt     | low      | mod       | minor sulfides               |
|           |            |           |            |           |            |          | med.br    | _             |          |           | feldspar porph. Basalt.      |
| 148832    | 4900       | 450W      | 5411988    | 383493    | 10         | В        | or.       | clay-sand     | low      | mod       | Sample at oc                 |
| 140000    | 1000       | 500144    |            |           |            | _        | L         |               |          |           |                              |
| 140033    | 4900       | 150000    | 5411988    | 383443    | 10         | B        | dk.br     | clay/silt     | mod      | mod       | feldspar porph. Basalt. JBVb |
| 140034    | 4900       | 35000     | 5411988    | 383493    | 15         | В        | or.br     | silt-loam     | mod      | gentle    | feldspar porph.              |
|           |            |           |            |           |            |          |           |               |          |           | Rx. Are subangular to        |
| 1 40000   | 0000       | 0.50      |            |           |            | L        |           |               | 1        |           | subrounded JBVb with minor   |
| 140039    | 2600       | 1950      | 5410641.04 | 383378.48 | 8          | IB       | Or,Br     | clay-silt     | mod      | mod       | VFG sulfides                 |
| 140040    | 2600       | 925       | 5410636.7  | 383353.86 | 6          | В        | Med.Br    | silty-sand    | mod      | mod       | subangular JBVa              |
| 148841    | 2600       | 900       | 5410632.36 | 383329.24 | 8          | В        | Or,Br     | silt-clay     | mod      | mod       | angular JBVa, clumpy soil    |
| 149940    | 2000       | 975       | 5440000 00 | 000004.00 |            |          | L         |               | I.       |           |                              |
| 140042    | 2000       | 0/5       | 5410628.02 | 383304.62 | 10         | в        | lt.or.br  | silt-sand     | low      | mod-steep | subangular JBVa              |
| 149943    | 2000       | 050       | E440000 00 | 202200    | 10         |          |           | 114 - 1 -     | 1.       | 1.        | subangular weathered         |
| 140043    | 2000       | 000       | 5410623.68 | 383280    | 10         | В        | Or        | silt-clay     | low      | mod       | JBVa? JBVr                   |
| 140044    | 2000       | 010 5     | 5440045    |           |            |          |           |               | I.       | 1.        | Sample site at west side of  |
| 140044    | 2000       | 012.5     | 5410615    | 383231    | 10         | <u>в</u> | Or        | Isilt-clay    | low      | steep     | road ==> 812.5               |
| 148845    | 2600       | 800       | 5410007    | 202204    | 10         |          |           |               | .        |           | JBVa altered with minor      |
| 140045    | 2000       | 1000      | 5410607    | 383224    | 10         | В        | Or,Br     | silt-clay     | mod      | mod-steep | sulfides                     |
| 140040    | 2450       | 1250      | 5410514    | 383709    | 15         | R        | or.br     | Silt          | low      | mod       | Angular JBVa with sulfides   |
| 140047    | 12450      | 1275      | 5410519    | 383752    | 111        | в        | med.or.br | Silt          | low      | Imod      | Angular ferricreet float     |
| 148848    | 2450       | 1300      | 5410527    | 202705    | 12         |          |           |               |          |           | JBVa above ferricreet o.c.   |
| 148849    | 2450       | 1325      | 5410557    | 363765    | 13         | D        | med.or.br | SIIL          | Imoa     | Igentie   | aprox. 12m                   |
| 148850    | 2450       | 1350      | 5410541    | 393931    | 14         | D        |           | Silt          | llow     | Igentie   | Tairicreet float in sx hole  |
| 148851    | 4000       | 6000      | 5411072    | 383010    | 14         | D        | Or.       | SIL           |          | Imod      | JBVr                         |
| 148852    | 4000       | 5050      | 5411079    | 383082    |            | D        | dk br     | Sill          | linu med | Isteep    | on outcrop                   |
| 148853    | 4000       | 6100      | 5411073    | 394026    | 10         | D        | lak.br.   | sand-sit      | liow-mod | steep     | near top of nill             |
|           | 14000      | 10100     | 3411073    | 304030    |            | D        | Dm.       | SIL           | low      | Igentie   | niii crest                   |

1

NTS: 092C/080

.....

• • •

the first the second second

| Sample ID | Grid North | Grid East | UTM North | UTM East | Depth (cm) | Horizon | Colour     | Particle Size | Org %    | Gradient | Comments                       |
|-----------|------------|-----------|-----------|----------|------------|---------|------------|---------------|----------|----------|--------------------------------|
|           |            |           |           |          |            |         |            |               |          |          |                                |
|           |            |           |           |          |            |         |            |               |          |          |                                |
| 148855    | 4000       | 5150      | 5411070   | 384091   | 20         | В       | Or.Br      | sand-silt     | low      | mod      | gossanous soil n. of outcrop   |
| 148856    | 4000       | 5200      | 5411080   | 384127   | 15         | В       | med.br.    | sand-silt     | low      | mod      | hematitic, quartz eyes?        |
| 148857    | 4000       | 5250      | 5411074   | 384177   | 25         | В       | brn.       | silt          | low      | mod      |                                |
|           |            |           |           |          |            |         |            |               |          |          |                                |
| 148858    | 4200       | 5050      | 5411303   | 384001   | 50         | В       | l.br       | silt-clay     | low      | mod      | angular basalt, poor sample    |
|           |            |           |           |          |            |         |            |               |          | 1        | large o/c JBvb, epidote;       |
| 148859    | 4200       | 5100      | 5411268   | 384036   | 50         | В       | l.br       | clay-silt     | high     | gentle   | subangular basalt              |
| 148860    | 4200       | 5150      | 5411280   | 384097   | 40         | Α       | dk.red.br. | org.          | v.high   | gentle   | o/c JBvb                       |
| 148861    | 4200       | 5200      | 5411269   | 384140   | 2          | В       | l.br       | silt          | mod      | mod      | o/c JBvb                       |
|           |            |           |           |          | 1          |         |            |               |          |          | angular basalt, tuff? Porphyry |
| 148862    | 4200       | 5250      | 5411268   | 384196   | 0          | В       | v.l.br.    | sand-silt     | v.low    | gentle   | w/sulphides                    |
|           |            |           |           |          |            |         |            |               |          |          | subangular mafic; tree root    |
| 148863    | 4200       | 5203      | 5411242   | 384198   | <u> </u>   | В       | red.or.    | clay          | low      | mod      | sample                         |
| 148870    | 4300       | 5050      | 5411368   | 383976   | 3          | В       | Or.Br      | clay-silt     | mod      | mod      |                                |
| 148871    | 4300       | 5100      | 5411366   | 384037   | 2          | В       | l.br       | sand-silt     | mod      | gentle   | o/c JBvb                       |
| 148872    | 4300       | 5150      | 5411385   | 384084   | 0          | В       | l.or.br.   | clay-silt     | low      | steep    | o/c JBvb                       |
| 148873    | 4300       | 5200      | 5411371   | 384131   | 0          | В       | l.br.      | silt          | high     | steep    | poor sample                    |
|           |            |           |           |          |            |         |            |               |          | 1        | JBvb has epidote, quartz       |
| 148874    | 4300       | 5250      | 5411369   | 384186   | 50         | В       | Or.Br      | clay-silt     | mod-high | mod      | eyes                           |
|           |            |           |           |          |            |         |            | 1             |          |          | JBvb o/c; green chert frags in |
| 148875    | 4400       | 5250      | 5411485   | 384170   | 0          | В       | Or.Br      | clay-silt     | low      | mod      | soil                           |
| 148876    | 4400       | 5200      | 5411487   | 384112   | 0          | В       | Or.Br      | clay-silt     | mod      | steep    |                                |
| 148877    | 4400       | 5250      | 5411484   | 384057   | 0          | В       | l.or.br.   | silt          | v.high   | steep    | JBvb                           |
|           |            |           |           |          |            |         |            |               |          | 1        |                                |
| 148878    | 4400       | 5200      | 5411462   | 383998   | 0          | В       | med.or.br. | silt-clay     | low      | steep    |                                |
| 148879    | 4400       | 5150      | 5411481   | 383952   | 0          | В       | l.or.br.   | clay-silt     | mod-high | steep    | slightly altered JBvb          |
|           |            |           |           |          |            |         |            |               |          | 1        | subangular to angular          |
| 148880    | 3800       | 4900      | 5410850   | 383830   | 0          | в       | med.or.br. | silt          | mod      | steep    | porphyritic Hbva (Prop.)       |
|           |            |           |           |          | l          |         | 1          |               |          | 1        | Jbva Prop. Gossanous, and      |
| 148881    | 3800       | 4950      | 5410850   | 383880   | 0          | В       | lt.br      | clayt-silt    | mod      | v.steep  | subangular                     |
|           |            |           |           |          |            |         |            |               |          | 1        | subangular; green chert        |
| 148882    | 3800       | 5000      | 5410850   | 383930   | 0          | В       | lt.or.br   | silt          | low      | steep    | pebbles-cobbles                |
|           |            |           |           |          |            |         |            |               |          |          | brownish maroon chert.         |
|           |            |           |           |          |            |         |            |               |          |          | Subangular. Directly N is      |
| 148883    | 3800       | 5050      | 5410850   | 383980   | 0          | В       | lt.br      | sandy-silt    | high     | steep    | gossanous o.c.                 |
|           |            | 1         |           |          |            |         | med.red    |               |          | T        | Rounded, Jbva. In log fall     |
| 148884    | 3800       | 5100      | 5410850   | 384030   | 0          | В       | br.        | clay          | mod      | mod      | area                           |

-----

----

.

NTS: 092C/080

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon | Colour    | Particle Size | Org %  | Gradient  | Comments                                                         |
|-----------|------------|-----------|------------|-----------|------------|---------|-----------|---------------|--------|-----------|------------------------------------------------------------------|
|           |            |           |            |           |            |         |           |               |        |           |                                                                  |
| 148889    | 1700       | 1225      | 5409763.66 | 383844.38 | 0          | в       | lt br     | sand          | low    | v steen   | angular rx. Some gossanous<br>dominated by Jbva with Mn<br>stain |
|           |            | <u> </u>  |            |           | 1          |         |           |               |        | 11.5000   | angular pebbles Jbva, Poor                                       |
| 148890    | 1700       | 1250      | 5409768    | 383869    | 0          | АВ      | med.br.   | sandy-silt    | v.high | v.steep   | sample                                                           |
| 148891    | 1500       | 1225      | 5409577    | 383881    | 0          | R       | lt or br  | sandy         | low    | u stoop   | pebbles to cobbles of JBVa -<br>epidote, some gossanous,         |
| 148892    | 1500       | 1250      | 5409574    | 383930    | 0          | BC      | med br    | clav_silt     | mod    | v.steep   | rio visible milleralization, CG                                  |
|           | +          | 1200      | 0400074    | 000000    | <u> </u>   | 100     | inied.br. | Ciay-Sill     | Inou   | v.steep   | gosanous JBva                                                    |
| 148893    | 1500       | 1275      | 5409583    | 383940    | 0          | В       | med-dk.br | sand-silt     | low    | v.steep   | sub-angular JBVr                                                 |
|           |            |           |            |           |            |         |           |               |        |           | JBVa angular outcrop near                                        |
| 148894    | 1500       | 1300      | 5409550.98 | 383785.14 | 2          | в       | Or.Br     | sand-silt     | low    | v.steep   | station                                                          |
| 148895    | 1500       | 1325      | 5409555.32 | 383809.76 | 2          | В       | Ör.Br     | sand-silt     | low    | v.steep   | v.angular Jbva                                                   |
| 148896    | 1500       | 1175      | 5409559.66 | 383834.38 | 8          | в       | dk.br     | sand-silt     | low    | v steep   | JBVa subangular to subrounded                                    |
| 148897    | 1500       | 1200      | 5409564    | 383859    | 0          | В       | lt.br     | sandy         | low    | steep     | unaltered JBVa                                                   |
| 148898    | 1700       | 1250      | 5409778    | 383805    | 0          | В       | med.br.   | clay-silt     | high   | v.steep   | JBVb Jasper? Hematite?                                           |
| 148899    | 1650       | 1025      | 5409637.12 | 383675.28 | 2          | В       | med.br.   | silt-sand     | low    | steep     | angular JBVa                                                     |
| 148900    | 1650       | 1050      | 5409641.46 | 383699.9  | 2          | В       | med.br.   | silt-sand     | low    | steep     | angular JBVa                                                     |
| 148951    | 3500       | 5000      | 5410584    | 383945    | 20         | в       | or.br     | silt-cobble   | low    | mod-steep | pillow basalt                                                    |
| 148952    | 3500       | 5050      | 5410583    | 383981    | 20         | в       | or.br     | silt-cobble   | low    | mod-steep | green-hnblend                                                    |
| 148953    | 3500       | 5100      | 5410583    | 384031    | 20         | в       | lt.or.br. | silt-cobble   | low    | mod-steep | pyrox                                                            |
| 148954    | 3500       | 5150      | 5410583    | 384081    | 35         | в       | or.br     | silt-cobble   | low    | mod-steep | blue-gr. Breccia                                                 |
| 148955    | 3500       | 5200      | 5410583    | 384131    | 35         | В       | or.gr     | silt-cobble   | low    | mod-steep | blue-gr. Agglomerate                                             |
| 148956    | 3600       | 5200      | 5410683    | 384181    | 20         | В       | or.ta     | silt-cobble   | low    | mod-steep | blue-gr. Agglomerate                                             |
| 148957    | 3600       | 5150      | 5410683    | 384231    | 18         | В       | gr.br     | silt-cobble   | low    | mod-steep | blue-gr. Agglomerate                                             |
| 148962    | 3900       | 4900      | 5410980    | 383828    | 20         | в       | or.br     | silt-cobble   | low    | gentle    | side of road cutt.o.c. =<br>rhyolite                             |
| 148963    | 3900       | 4950      | 5410980    | 383878    | 20         | В       | or.br     | silt-cobble   | low    | mod       | rhyolite fragments ang.                                          |

-

the time time the time the time time

NTS: 092C/080

1

-

-----

1

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon | Colour | Particle Size | Org % | Gradient  | Comments                      |
|-----------|------------|-----------|------------|-----------|------------|---------|--------|---------------|-------|-----------|-------------------------------|
|           |            |           |            |           |            |         |        |               |       |           |                               |
| 148964    | 3900       | 5000      | 5410980    | 383928    | 10         | В       | or.br  | silt-cobble   | low   | mod       | int. volcanics                |
| 148965    | 3900       | 5050      | 5410980    | 383978    |            | В       | or.br  | silt-cobble   | low   | mod       | 200/30                        |
| 148966    | 3900       | 5100      | 5410980    | 384028    |            | В       | or.br  | silt-cobble   | low   | mod       | 120/90                        |
| 148967    | 3900       | 5150      | 5410980    | 384078    |            | В       | or.br  | silt-cobble   | low   | v.steep   | joints: 220/30 and 040/30     |
| 148968    | 3900       | 5200      | 5410980    | 384128    |            | В       | or.br  | silt-cobble   | low   | v.steep   | 330/80                        |
|           |            |           |            |           |            |         |        |               |       |           | o.c = rhyolite forming bluffs |
| 148969    | 1550       | 1250      | 5409655    | 383838    | 20         | В       | or.br  | silt-cobble   | low   | v.steep   | along slope                   |
| 148970    | 1550       | 1275      | 5409659.34 | 383862.62 | 15         | В       | or.br  | silt-cobble   | low   | v.steep   |                               |
| 148971    | 1550       | 1300      | 5409645    | 383912    | 15         | В       | or.br  | silt-cobble   | low   | v.steep   |                               |
| 148972    | 1550       | 1325      | 5409686.32 | 383934.36 | 10         | В       | or.br  | silt-cobble   | low   | v.steep   |                               |
| 148973    | 1550       | 1350      | 5409690.66 | 383958.68 | 10         | В       | or.br  | silt-cobble   | low   | v.steep   |                               |
| 148974    | 1550       | 1375      | 5409695    | 383983    | 15         | В       | gr.br  | silt-pebble   | low   | v.steep   |                               |
| 148975    | 1550       | 1400      | 5409684    | 384022    | 20         | В       | or.br  | silt-pebble   | low   | v.steep   |                               |
|           |            |           |            |           |            |         |        |               |       |           |                               |
| 148976    | 1550       | 1425      | 5409688.34 | 384046.62 | 15         | В       | or.br  | silt-cobble   | low   | v.steep   | mafic volcanics east of road  |
| 148977    | 1250       | 1325      | 5409587    | 384021    | 15         | В       | gr.br  | silt-cobble   | low   | v.steep   | rhyolite fragments ang.       |
| 4 40070   |            |           |            |           |            |         | 1      |               |       |           | various breccias of intrusive |
| 148978    | 1250       | 1300      | 5409607    | 384012    | 15         | В       | gr.br  | silt-cobble   | low   | v.steep   | volc. Mafic                   |
| 148979    | 1250       | 1275      | 5409585.15 | 384028    | 10         | В       | gr.br  | silt-cobble   | low   | v.steep   | silicic minor dess. Sulph.    |
| 148980    | 1250       | 1250      | 5409566    | 383964    | 5          | В       | gr.br  | silt-cobble   | low   | v.steep   | bluffs on right               |
| 148981    | 1250       | 1225      | 5409546.85 | 383948    | 15         | В       | gr.br  | silt-cobble   | low   | v.steep   | bedding surface               |
| 148982    | 1450       | 1175      | 5409537    | 383786    | 20         | В       | Tan.or | silt-cobble   | low   | mod       | o.c rhyolite w/silicification |
| 148983    | 1450       | 1200      | 5409541    | 383822    | 30         | B       | br     | clay-cobble   | low   | mod       | rhyolite fragments ang.       |
| 148986    | 1900       | 1200      | 5410005    | 383679    | 20         | В       | br.or  | clay-silt     | low   | mod       | int. volcanics oc.            |
| 148991    | 2000       | 1100      | 5410019    | 383564    | 15         | В       | br     | silt-cobble   | low   | mod       | int. mafic. Volcanics         |
| 148992    | 2000       | 1125      | 5410016.98 | 383586.14 | 15         | в       | br     | silt-cobble   | low   | mod-steep | int, mafic, Volcanics         |
|           |            |           |            |           |            |         |        |               |       |           |                               |
| 148993    | 2000       | 1150      | 5410021.32 | 383610.76 | 15         | В       | br     | silt-cobble   | low   | mod-steep | int. mafic. Volcanics         |
| 148994    | 2000       | 1175      | 5410025 66 | 393635 39 | 15         | D       | hr or  | oilt ochbio   | 1     |           |                               |
| 110001    | 2000       | 1175      | 5410025.00 | 303035.30 | 15         | D       | DI.OF  | SIIT-CODDIE   | low   | mod-steep | JBVa                          |
| 148995    | 2000       | 1200      | 5410030    | 383660    | 15         | в       | br     | silt-cobble   | low   | mod-steep | JBVa                          |
|           |            |           |            |           |            |         |        |               |       |           |                               |
| 148996    | 2000       | 1225      | 5410040    | 383683    | 15         | В       | or.br  | silt-cobble   | low   | mod-steep | JBVa                          |
| 148997    | 2000       | 1250      | 5410040    | 383719    | 15         | в       | br     | silt-cobble   | low   | mod-steen | rhvolite bluffs               |

......

-----

----

-

e~- · · · ·

\* ~\*\*\*\*

NTS: 092C/080

\*\*\*

\*\*\*\*

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon  | Colour   | Particle Size   | Org % | Gradient  | Comments                        |
|-----------|------------|-----------|------------|-----------|------------|----------|----------|-----------------|-------|-----------|---------------------------------|
|           |            |           |            |           |            |          |          |                 |       |           |                                 |
|           |            |           |            |           |            |          |          |                 |       |           |                                 |
| 148998    | 2000       | 1275      | 5410040    | 383733    | 15         | В        | br       | silt-cobble     | low   | mod-steep | fg-mg grey-green                |
|           |            |           | 1          |           |            |          |          |                 |       |           | feldspar porphyry               |
| 100555    | 4450       | 4500      |            |           |            |          | 1.       |                 |       |           | amygdaloidal JBVa. West of      |
| 128555    | 4150       | 4500      | 5411212    | 383362    | 30         | В        | or.ta    | sandy silt      | low   | mod       | road on colluvial slope         |
|           | 1          |           |            |           |            |          |          |                 |       |           | rx. Are JBVr with small qtz.    |
| 100550    |            |           |            |           |            |          |          |                 |       |           | Eyes, sillicification and       |
| 128556    | 4150       | 4550      | 5411212    | 383412    | 15         | В        | or.br    | sandy silt      | mod   | steep     | amygdoles                       |
|           |            |           |            |           |            |          |          |                 |       |           | on east cliff at side of 4 Mile |
| 128557    | 4150       | 4600      | 5411212    | 383462    | 10         | В        | or       | clay-silt       | low   | steep     | Creek                           |
| 128558    | 4150       | 4650      | 5411245    | 383520    | 10         | В        | or.br    | clay-silt       | low   | gentle    | unaltered JBVr                  |
| 108550    | 1150       | 1700      | 5444000    | 000504    |            |          | <b>.</b> |                 |       |           |                                 |
| 120559    | 4150       | 4700      | 5411222    | 383581    | 1          | <u>в</u> | It.ta.or | sandy           | low   | gentle    | <1% sulfides in Prop. JBVa      |
| 128560    | 1250       | 1450      | 5444040    | 000400    | 1          |          |          |                 | 1.    | 1.        | JBVa at o.c. on west side of    |
| 120500    | 4250       | 4450      | 5411313    | 383483    | 5          | В        | or.ta    | sandy           | low   | steep     | road cut                        |
|           |            |           | [          |           |            |          |          |                 |       |           |                                 |
| 129561    | 4250       | 4500      | 5414242    | 000500    | -          |          |          |                 |       |           | JBVr with qtz. Eyes and         |
| 120501    | 4250       | 4500      | 5411313    | 383533    | 5          | В        | br.or    | Silty           | low   | mod       | Prop. JBVr with VFG sulfides    |
| 120302    | 4250       | 4550      | 5411316    | 383596    | 5          | В        | med.br   | sandy-silt      | mod   | mod       | highly weathered JBVr           |
| 129562    | 4250       | 4000      | 5444949    | 000004    |            |          |          |                 | 1     |           | on o.c. face of unaltered       |
| 120505    | 4250       | 4600      | 5411319    | 383634    |            | В        | br.or    | sandy-silt      | nign  | v.steep   | JBVa                            |
|           |            |           |            |           |            |          |          |                 |       |           | on slope of gossanous,          |
|           |            |           |            |           |            |          |          |                 |       |           | mineralized JBVr. Py and        |
|           | 1          |           |            |           |            |          |          |                 |       | 1         | Cpy ~2% and Bo. Prop. O.c.      |
|           |            |           | 1          |           |            |          |          |                 |       |           | also rich with a much less      |
| 129564    | 4250       | 4650      | 5444244    | 202000    | 6          |          |          | -1              | 1     |           | altered JBVr with bdg.          |
| 128565    | 4250       | 4050      | 5411314    | 383696    | 5          | В        | br       | clay-silt       | high  | steep     | Orientation 130/20              |
| 120305    | 4250       | 4700      | 5411314    | 383746    | 10         | В        | br       | clay-slit       | Inign | mod       | Prop. JBVa and JBVr             |
| 128566    | 4250       | 4750      | 5411010    | 202702    | -          |          |          |                 | 1.    |           | On tallus slope west of road    |
| 120500    | 4250       | 4750      | 5411313    | 383/92    | /          | В        | or.ta    | sandy clay-silt | low   | steep     | (JBVa, JBVr).                   |
| 105475    | 2950       | 075       | E410800    | 202450    | 2          | L.       | 4        |                 |       |           | rounded JBVa, qtz. Eyes,        |
| 103473    | 2050       | 1975      | 5410660    | 383456    | 3          | в        | it.or.pr | sandy-silt      | moa   | gentie    | minor gossan                    |
|           |            |           |            |           |            |          |          |                 |       | 1         | just above ck. Subangular       |
| 105476    | 2850       | 950       | 5410872    | 392424    | 12         | Б        | lt or br |                 | -     | a a a bia | by a with minor gossan and      |
| 1004/0    | 2000       | 1950      | 0410072    | 303421    |            | P        | ILOF.DF  | sandy-siit      | Imoa  | gentie    |                                 |
| 105477    | 2850       | 025       | 5410967 66 | 202206.20 | 2          | ь        | Harbe    |                 |       | and a     | rounded JBVa: gossañ,           |
| 1004/1    | 2000       | 925       | 5410807.66 | 202220.28 | 4          | D        | It.or.Dr | ciay-siit       | moa   | mod       | DOXWORKS                        |

.

-

1

NTS: 092C/080

| Sample ID | Grid North | Grid East | UTM North  | UTM East    | Depth (cm) | Horizon | Colour     | Particle Size | Org %    | Gradient  | Comments                     |
|-----------|------------|-----------|------------|-------------|------------|---------|------------|---------------|----------|-----------|------------------------------|
|           |            |           |            |             |            |         |            |               |          |           |                              |
|           |            | 1         |            |             |            |         |            | 1             |          | 1         |                              |
|           |            |           |            | 1           |            |         | 1          |               |          | 1         | subangular JBVa gossanous,   |
| 105478    | 2850       | 900       | 5410857    | 383384      | 60         | AB      | med.or.br. | clay-silt     | mod-high | gentle    | boxworks, sulphides          |
| 105479    | 2850       | 875       | 5410864    | 383340      | 2          | В       | med.br.    | silt          | mod      | mod       | angular JBVa pebbles         |
|           |            |           |            | T           |            | T       |            |               |          |           | subangular JBVa with Mn      |
| 105480    | 2850       | 850       | 5410859.66 | 383315.38   | 5          | В       | lt.br      | clay          | low      | mod-steep | staining                     |
| ]         |            |           |            |             |            |         |            |               |          |           |                              |
|           |            |           |            |             |            |         |            | 1             | 1        |           | JBVa gossanous w/boxwork.    |
| 105481    | 2850       | 825       | 5410831    | 383296      | 1          | В       | lt.or      | clay-silt     | low      | gentle    | No visible mineralization    |
|           |            |           |            |             |            |         |            |               |          |           | subrounded JBVa with         |
| 405.00    |            |           |            |             |            |         |            |               |          | }         | gossan and boxworks and      |
| 105482    | 2850       | 800       | 5410826.66 | 383271.38   | 3          | В       | lt.or.br   | silt          | mod      | gentle    | mineralized                  |
| 105486    | 2950       | 975       | 5410962.68 | 383344.7742 | 0          | В       | lt.br      | sandy-silt    | mod      | steep     | JBVa w/ boxwork              |
|           |            |           |            |             |            | ĺ .     | med.red    |               |          |           | Angular JBVa pebbles. Soil   |
| 105487    | 2950       | 950       | 5410958.34 | 383344.3871 | 0          | В       | br.        | sandy-silt    | mod      | steep     | overlies o.c                 |
| 105488    | 2950       | 925       | 5410954    | 383344      | 10         | В       | dk.br      | clay          | high     | mod       | gossanous JBVa               |
| 105.000   |            |           |            |             |            |         |            |               |          |           |                              |
| 105489    | 2950       | 900       | 5410930    | 383312      | 2          | В       | med.br.    | sandy-silt    | low      | mod       | subrounded JBVa, goss, Mn    |
| 105490    | 2950       | 875       | 5410902    | 383271      | 14         | В       | med.br.    | clay-silt     | mod      | mod       | angular JBVa, goss           |
| 105491    | 2950       | 850       | 5410939.68 | 383266.24   | 10         | AB      | lt.br      | silt          | high     | mod       | angular JBVa                 |
| 105100    | 0050       |           |            |             |            |         |            |               |          |           | angular pebbles of JBVa.     |
| 105492    | 2950       | 825       | 5410935.34 | 383241.62   | 3          | AB      | lt.br      | silt          | high     | mod       | Sample from atop o.c.        |
| 105.000   |            |           |            |             | _          |         |            |               |          |           | subrounded JBVa w/           |
| 105493    | 2950       | 1800      | 5410931    | 383217      | 5          | В       | med.br.    | sandy-silt    | mod      | mod       | boxworks and Mn staining     |
| 105495    | 4300       | 4550      | 5411381    | 383486      | 2          | В       | med.br.    | clay-silt     | mod      | mod       | subang. JBVa, gossan         |
| 105496    | 4300       | 4500      | 5411381    | 383434      | 2          | В       | lt.br      | sand-silt     | high     | gentle    | subang. JBVa, gossan         |
| 105497    | 4300       | 4450      | 5411387    | 383389      | 0          | В       | lt.br      | silt          | mod      | mod       | ang. Unaltered JBVa          |
| 105/00    | 4000       |           |            |             |            | _       |            |               |          |           | station position adjusted to |
| 105498    | 4300       | 4400      | 5411387    | 383339      | 0          | В       | br.or      | clay-silt     | low      | v.steep   | compensate for lack of soil  |
| 128851    | 4400       | 4500      | 5411283    | 383434      |            |         |            |               |          |           |                              |
| 148522    | 2800       | 2025      | 5410998.26 | 384462.18   |            |         |            |               |          |           |                              |
| 148851    | 2450       | 1375      | 5410532    | 383850      | 22         | В       | or.br      | silt          | low      | mod       | Sulfides in JBVr and JBVa    |
| 148852    | 2450       | 1400      | 5410548    | 383874      | 12         | В       | or.br      | silt          | low      | mod       | Andesite                     |
| 148853    | 2450       | 1425      | 5410549    | 383894      | 14         | В       | or.br      | silt          | low      | mod       | JBVa                         |
| 148854    | 2450       | 1450      | 5410553.34 | 383918.62   | 12         | В       | med.br     | silt          | low      | mod       | JBVa                         |
|           |            |           |            |             |            |         |            |               |          |           | angular JBVb, gossanous,     |
| 148885    | 3800       | 5150      | 5410885    | 384080      | 1          | В       | lt.br      | silty-clay    | high     | mod       | Prop.                        |

- ----

سين فيمين

---- 7

-----

· · · ·

NTS: 092C/080

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon | Colour    | Particle Size | Org % | Gradient  | Comments                         |
|-----------|------------|-----------|------------|-----------|------------|---------|-----------|---------------|-------|-----------|----------------------------------|
|           |            |           |            |           |            |         |           |               |       |           |                                  |
|           |            |           |            |           |            |         |           |               |       |           | rounded JBVb, unaltered          |
| 148886    | 3800       | 5200      | 5410885    | 384130    | 2          | В       | dk.br     | silt          | mod   | mod       | pebbles and Prop.                |
| 148958    | 3600       | 5100      | 5410685    | 384180    |            |         |           |               |       |           |                                  |
| 148959    | 3600       | 5050      | 5410685    | 384230    |            |         |           |               |       |           |                                  |
| 148960    | 3600       | 5000      | 5410685    | 384280    |            |         |           |               |       |           |                                  |
|           |            |           |            |           |            |         |           |               |       |           | pyroclastic breccia and          |
| 148984    | 1450       | 1225      | 5409545.34 | 383846.62 |            |         | lt.ta.gr. |               |       |           | poorly defined bdg. 140/40       |
|           |            |           |            |           |            |         |           |               |       |           | bluffs of rhyolite to int. volc. |
| 148987    | 1450       | 1250      | 5409549.68 | 383871.24 |            |         |           |               |       | mod       | Massive                          |
| 183601    | 2150       | 1175      | 54110167   | 383670    | 30         | В       | lt.or.br. | clay-cobble   | low   | mod       | int. mafic. Volcanics            |
| 183602    | 2150       | 1200      | 5410170    | 383724    | 20         | В       | lt.or.br. | clay-cobble   | low   | mod       |                                  |
|           |            |           |            |           |            |         |           |               |       |           | vocanic bluffs: rhyolite,        |
| 183603    | 2150       | 1225      | 5410174.34 | 383748.62 | 10         | В       | lt.or.br. | clay-cobble   | low   | mod       | andesite                         |
| 183604    | 2150       | 1250      | 5410178.68 | 383773.24 | 8          | В       | lt.or.br. | clay-cobble   | low   | mod       |                                  |
| 183605    | 2150       | 1275      | 5410183.02 | 383797.86 | 20         | В       | or.br     | clay-cobble   | low   | mod       |                                  |
| 183606    | 2700       | 925       | 5410719.68 | 383807.74 |            |         |           |               |       |           |                                  |
| 183607    | 2700       | 875       | 5410715.34 | 383783.12 |            |         |           |               |       |           |                                  |
| 183608    | 2700       | 850       | 5410711    | 383758.5  |            |         |           |               |       |           |                                  |
| 183609    | 2700       | 800       | 5410706.66 | 383733.88 |            |         |           |               |       |           |                                  |
| 183614    | 2800       | 975       | 5410828.36 | 383956.98 | 20         | В       | or.br     | clay-cobble   | low   | steep     | below road                       |
| 183615    | 2800       | 950       | 5410824.02 | 383932.36 | 40         | В       | br.or     | clay-cobble   | low   | steep     | over cut bank of stream          |
|           |            |           |            |           |            |         |           |               |       |           | w. side small tributary of 4     |
| 183616    | 2800       | 925       | 5410819.68 | 383907.74 | 30         | В       | br        | clay-cobble   | mod   | gentle    | Mile Ck.                         |
| 183617    | 2800       | 900       | 5410815.34 | 383883.12 | 40         | В       | or.br     | clay-cobble   | mod   | mod       | E. side of 4 Mile Ck.            |
| 184620    | 2800       | 875       | 5410811    | 383858.5  | 40         | В       | or.br     | clay-cobble   | low   | steep     | W. side of 4 Mile Ck.            |
|           |            |           |            |           |            |         |           |               |       |           | Just below road cut. No          |
|           |            |           |            |           |            |         |           |               |       |           | GPS; see field notes for         |
| 184621    | 2800       | 850       | 5410806.66 | 383833.88 | 30         | В       | or.br     | clay-cobble   | mod   | mod-steep | distances                        |
|           |            |           |            |           |            |         |           |               |       |           |                                  |
| 184622    | 2800       | 825       | 5410802.32 | 383809.26 | 20         | В       | or.br     | clay-cobble   | mod   | mod-steep |                                  |
|           |            |           |            |           |            |         |           |               |       |           |                                  |
| 184623    | 2800       | 800       | 5410797.98 | 383784.64 | 15         | В       | or.br     | clay-cobble   | mod   | mod-steep | east bank of 4mile ck.           |
| 183624    | 2900       | 975       | 5410924    | 383424    | 30         | В       | or.br     | clay-cobble   | mod   | steep     |                                  |
| 183625    | 2900       | 950       | 5410919.66 | 383399.38 | 25         | В       | lt.or.br. | clay-cobble   | mod   | gentle    |                                  |
| 183626    | 2900       | 925       | 5410915.32 | 383374.76 | 30         | В       | or.br     | clay-cobble   | mod   | mod       |                                  |
| 183627    | 2900       | 900       | 5410910.98 | 383350.14 | 20         | В       | dk.br     | clay-pebble   | mod   | mod       |                                  |
| 183628    | 2900       | 875       | 5410906.64 | 383325.52 | 20         | В       | or.br     | clay-pebble   | mod   | gentle    |                                  |
| 183629    | 2900       | 850       | 5410902.3  | 383300.9  | 20         | В       | or.br     | clay-cobble   | mod   | steep     |                                  |

-----

NTS: 092C/080

.....

٦

**\_\_\_\_** 

| Sample ID | Grid North | Grid East | UTM North  | UTM East  | Depth (cm) | Horizon | Colour    | Particle Size | Org % | Gradient | Comments                                                                             |
|-----------|------------|-----------|------------|-----------|------------|---------|-----------|---------------|-------|----------|--------------------------------------------------------------------------------------|
|           |            |           |            |           |            |         |           |               |       |          |                                                                                      |
| 183630    | 2900       | 825       | 5410897.96 | 383276.28 | 20         | В       | or.br     | clay-cobble   | mod   | gentle   |                                                                                      |
| 183631    | 2900       | 800       | 5410893.62 | 383251.66 | 25         | В       | or.br     | clay-cobble   | mod   | mod      |                                                                                      |
| 183633    | 4200       | 4475      | 5411283    | 383409    | 10         | в       | br.or     | clay-pebble   | mod   | mod      | west of road and small ck.<br>Detrital clastics: int. volcanics<br>and dis. Sulfides |
| 183634    | 4200       | 4450      | 5411283    | 383384    | 15         | в       | br.or     | clay-pebble   | mod   | gentle   | 4440E: sulphate/rhyolite o.c.<br>w/ dis. Sulfides 4450E:<br>vesicular andestie o.c.  |
| 183635    | 4200       | 4425      | 5411283    | 383359    | 20         | AB      | br.or     | silt-cobble   | mod   | gentle   | minor andesite float                                                                 |
| 183636    | 4200       | 4400      | 5411283    | 383334    | 15         | В       | or.br     | silt-cobble   | mod   | gentle   | NO 0.C.                                                                              |
| 183638    | 4400       | 5000      | 5411483    | 383934    | 40         | В       | or.br     | silty         | mod   | steep    | rhyolite bluffs and minor<br>sulfides                                                |
| 183639    | 4400       | 4950      | 5411483    | 383884    | 30         | AB      | br        | silty         | mod   | steep    | o.c.rhyolite bluffs. Poor<br>sample                                                  |
| 183642    | 4400       | 4900      | 5411483    | 383834    | 20         | В       | br.or     | silty         | mod   | mod      |                                                                                      |
| 183644    | 4400       | 4850      | 5411483    | 383784    | 25         | В       | lt.ta.br. | silty         | mod   | mod      |                                                                                      |
| 183645    | 4400       | 4800      | 5411483    | 383734    | 20         | в       | tan.br    | clay-pebble   | mod   | steep    | 2 stations west of 4mile ck.<br>Andesite                                             |
| 183646    | 4400       | 4750      | 5411483    | 383684    | 20         | В       | or.ta     | clay-pebble   | mod   | steep    | minor sulphate rhyolite dyke.<br>Diss. Sulphides                                     |
| 183647    | 4400       | 4700      | 5411483    | 383634    | 15         | в       | Tan.or    | clay-pebble   | high  | steep    | East bank of creek. Andesite                                                         |
| 183648    | 4400       | 4650      | 5411483    | 383584    | 20         | В       | or.ta     | clay-pebble   | high  | steep    | Prop. Altered Int. JBVa                                                              |
| 183649    | 4400       | 4600      | 5411483    | 383534    | 20         | В       | Tan.or    | silt-cobble   | high  | steep    | Prop. Altered Int. JBVa                                                              |
| 183650    | 4400       | 4550      | 5411483    | 383484    | 20         | В       | tan.br    | clay-pebble   | mod   | steep    | andesite                                                                             |

-----

-

# APPENDIX C STREAM SEDIMENT GEOCHEMICAL DATA SHEET - Year 2004 PROJECT: JAS NTS: 092C/080

• • •

\*\*

1

| Sample |           |          |       |       | 1              |                |           |                          |               |
|--------|-----------|----------|-------|-------|----------------|----------------|-----------|--------------------------|---------------|
| ID     | UTM North | UTM East | Width | Depth | Gradient       | Type of Sample | Colour    | Texture                  | Org %         |
|        |           |          |       |       |                |                |           |                          |               |
| 105401 | 5409851   | 383207   | 0.1   | 0.02  | steep          | MM             | med br.   | sand-silt                | 20            |
| 105402 | 5409647   | 383359   | dry   | dry   | steep          | MM             | grey      | sand-silt                | 60            |
| 105403 | 5409633   | 383391   | dry   | dry   | mod-steep      | MM             | dk. Br.   | sand                     | 60            |
|        |           |          |       |       |                |                | tan-      |                          |               |
| 105404 | 5409511   | 383372   | 0.5   | 0.02  | steep          | MM             | lt.brown  | fine sand                | 75            |
| 105473 | 5410680   | 383380   | 1.5   | 0.5   | gentle         | MM             | Br        | Sandy                    | V.high        |
| 128551 | 5410624   | 383361   | 2     | 0.25  | gentle         | MM             | Br        | silts-sands              | Mod           |
| 128553 | 5410570   | 383360   | 2     | 0.1   | Steep          | MM             | Br        | silts-sands              | High          |
| 128583 | 5410440   | 383680   | 10    | 3     | gentle         | мм             | Br        | silt - c.sand            | High          |
| 148639 | 5411315   | 383828   | 2     | 0.1   | Steep          | мм             | Dk Gr     | Silt                     | Mod -<br>High |
| 148640 | 5411315   | 383828   | 2     | 0.1   | Mod - Flat     | ASS            | Gr + Br   | Silt                     | Low - Mod     |
| 148641 | 5411414   | 383785   | 1     | 0.3   | Mod -<br>Steep | мм             | Gr- Bl    | Silt                     | Mod           |
| 148645 | 5411092   | 383431   | 1.25  | 0.2   | gentle         | ASS            | Br        | Clay-silt                | Mod           |
| 148649 | 5411092   | 383449   | 1     | 0.3   | gentle         | MM             | Br        | Clay-silt                | High          |
| 148745 | 5411170   | 384120   |       |       |                |                |           |                          |               |
| 148751 | 5411320   | 383830   | 3     | 0.5   | mod            | MM             | med gr    | sandy silt               | v.low         |
| 148752 | 5411410   | 383800   | 3     | 0.5   | mod            | мм             | lt.med.gr | very course<br>sand-silt | v.low         |
| 148753 | 5411430   | 383620   | 0.7   | 0.2   | mod-steep      | мм             | dk.gr     | very fine<br>sand-silt   | mod           |
| 148754 | 5411110   | 383770   | 0.5   | 0.3   | mod            | MM             | dk.gr     | Silt                     | mod           |
| 148811 | 5411176   | 383513   | 0.5   | 0.05  | gentle         | MM             | Br        | Clay-silt                | Mod           |
| 105484 | 5410890   | 383500   | 1     | 0.5   | gentle         | MM             | Br        |                          |               |
| 105485 | 5410845   | 383342   | 3     | 0.5   | gentle         | MM             | Br        |                          |               |
| 105494 | 5410970   | 383400   |       |       |                | MM             |           |                          |               |
| 183641 | 5411580   | 383850   |       |       |                | MM             |           |                          |               |
| 183643 | 5411480   | 383820   |       |       |                | MM             |           |                          |               |

··· •••• · •

+ 10.000

#### APPENDIX C ROCK CHIP GEOCHEMICAL DATA SHEET - Year 2004 PROJECT: JAS NTS: 092C/080

| Sample ID | Location                                      | Grid N             | Grid E   | Northing | Easting | Rock Type                     | Sample Type                               | Width   | Alteration                        | Freshness                                              | Mineralization                                                 |
|-----------|-----------------------------------------------|--------------------|----------|----------|---------|-------------------------------|-------------------------------------------|---------|-----------------------------------|--------------------------------------------------------|----------------------------------------------------------------|
| 105405    | 4 Mile Creek South                            |                    |          | 5410686  | 383377  | alt. Jbva.                    | Select Float Grab                         |         | silica, chlorite, epidote         | gossanous on exterior<br>surface                       | Py - 10%, Cpy - 2%, Bo - 1%, Sph - tr                          |
| 105406    | 4 Mile Creek South                            |                    |          | 5410804  | 383427  | att. JBvr? Or Jbva?           | Select outcrop grab                       | 0.2     | silica, chlorite, epidote         | fresh, only weakly<br>gossanous                        | Py - 5%. Cpy - 0.5%, Bo - 0.5%                                 |
| 105407    | 4 Mile Creek South                            |                    |          | 5410882  | 383355  | semi-massive sulphide         | Select outcrop grab                       | 0.1     | silica, chlorite, epidote         | gossanous                                              | Py - 30%, Cpy - 5%, Bo - tr, Sph - tr                          |
| 105408    | 4 Mile Creek South                            |                    |          | 5410882  | 383355  | limestone/barite<br>sulphides | Select outcrop grab                       | 0.1     | silica, calcite                   | weakly gossanous                                       | Py - 5%, Cpy - tr, Sph - tr                                    |
| 105409    | 4 Mile Creek South                            |                    |          | 5410964  | 383394  | JBva pyritic                  | Select outcrop grab                       | 0.2     | silica, chlorite                  | weakly dossanous                                       | Py - 25%                                                       |
| 105410    | Upper Zinc Creek                              |                    |          | 6414004  | 202051  | banding and patchy            | Select outprop grab                       | 5       |                                   | Generative on Freedures                                | Pu_tr                                                          |
| 105410    | Upper Zinc Creek                              |                    |          | 5471901  | 383051  | Des attend and autobidie      | Select outcrop grab                       |         | eblesite                          | Gossanous with some                                    | Py - 10%, Bo - 3%, Sph - 2%, Cp - 1%,                          |
| 105411    | Roadcut                                       |                    | <u> </u> | 5411950  | 383650  | USVr anered and supriced      | Select outcrop grab                       |         |                                   | Gossanous on weathered                                 |                                                                |
| 105412    | Camp View Showing                             |                    |          | 5410554  | 383863  | JBvr sulphidic and altered    | Select outcrop grab                       | 0.8     | shica, chionte                    | Gossenous with boxwork                                 | Py - 25%, Cpy - 2%, 80 - tr                                    |
| 105413    | Camp View Showing                             |                    |          | 5410554  | 383863  |                               | Representative Outcrop Chip               | 0.6     | silica, chlorite                  | on weathered surface                                   | Py - 25%, Cpy - 2%, Bo - tr                                    |
| 105414    | South Camp Creek Road                         | 1800               | 1275     | 5409527  | 383875  | Qtz-Cal breccia               | Select outcrop grab                       |         | silicification, chlorite          | Gossanous on fractures                                 | 5% Py, 1% Cpy, Trace Bo.                                       |
| 105415    | Lower 4 Mile Creek Road                       | 1700               | 760      | 5409660  | 383360  | Mineralized JBVr              | Select outcrop grab                       |         | silicification, epidote           | Gossanous on fractures                                 | 10% Py, 2% Cpy, Trace Bo. And Sphal.                           |
| 105416    | South Camp Creek Road                         | 2150               | 1175     | 5410145  | 383665  | sulphitic JBVa                | Select outcrop grab                       | 0.2     | Chlorite, Silca (qtz. Veins)      | boxworking                                             | Py 30%, Trace Cpy. and Sph.                                    |
| 105417    | Confluence of 2 creeks at East. 4 Mile Creek. |                    |          | 5411350  | 383750  | JBVr or silicified JBVa       | Select outcrop grab                       | 0.3     | Silica, sericite                  | Goesanous on fractures<br>and meathered sulfides       | Py 15%, trace Cpy.                                             |
| 105419    | Upper Pan Area                                | 10m SE<br>of 1450N | 1200E    | 5409541  | 383863  | JBVa                          | Select outcrop grab                       | ?       | Silica, Chlorite                  | Gossanous, hydro-zincite                               | Py 2%, Trace: Cpy, Bo, Shpal.                                  |
| 105474    | 4 Mile Creek South                            | 2650               | 937.5    | 5410690  | 383410  | Goesanous mineralized<br>JBVa | Select outcrop grab                       | 10      | gossanous with jericite           | weathered                                              | VFG Py and Cpy. 2%, Bo?, Jericite                              |
| 105483    | 4 Mile Creek South                            | 2850               |          | 5410890  | 383490  | Altered JBVr                  | Select outcrop grab                       |         | silica porphyritic                | fractured and gossanous                                | 15% Py                                                         |
| 128552    | 4 Mile Creek South                            | 2600               | 812.5    | 5410882  | 383355  | Mineralized JBVr              | Select outcrop grab                       |         | silica, chlorite, calcite         | fresh                                                  | 2% Py, 2% Cpy, 1% Bo.                                          |
| 128553    | 4 Mile Creek South                            |                    |          | 5410570  | 383380  | altered JBVa                  | Select outcrop grab                       | 7m      |                                   | fresh                                                  | VFG Py. Cpy.                                                   |
| 128554    | 4 Mile Creek South                            |                    |          | 5410882  | 383355  | Mineralized JBVr              | Select outcrop grab                       |         | silica porphyritic                | boxworks, v. gossanous                                 | 15% Py                                                         |
| 148663    | South Camp Creek Road                         |                    |          | 5410008  | 383836  | rdVL                          | Continuous Representative<br>Outcrop Chip | 2/2.5   | Silicified, Calcite               | Gossenous variable                                     | 10% v.f.g. sulphides incl. 7% Py, 2%<br>Sph. 1% Cpv+Bo         |
| 148664    | South Camp Creek Road                         |                    |          | 5410006  | 383836  | IVbr                          | Continuous Representative                 | 203     | Silicified, Calcite,<br>Manganese | Weakly gossanous                                       | 10% v.f.g. dissem. sulphides incl. 5% Py,<br>4% Sph. 1% Cov+Bo |
| 148665    | South Camp Creek Road                         |                    |          | 5410004  | 383836  | Whr                           | Continuous Representative                 | 2012    | Silicified, Calcite,              | Highly gossanous and<br>iarositic esp. near fault zone | 10% v.f.g. aulphides incl. 7% Py, 2%<br>Sob. 1% CovtBo         |
| 148666    | South Camp Creek Road                         |                    |          | 5410002  | 383836  | N/br                          | Continuous Representative                 | 203     | Silcification                     | Highly gossanous and                                   | 10% v.f.g. sulphides incl. 7% Py, 2%                           |
| 148687    | South Camp Creek Road                         |                    |          | 5410000  | 282828  | Nbr                           | Continuous Representative                 | 200     | Silicification                    | Gossepous and impetitio                                | 10% v.f.g. sulphides incl. 5% Py, 4%                           |
| 149660    | South Camp Creek Road                         |                    |          | 5410000  | 202020  | B/b-                          | Continuous Representative                 | 2/1 4   | Silcifontion                      |                                                        | 10% v.f.g. sulphides incl. 5% Sph, 3%                          |
| 140000    | South Camp Creek Road                         |                    |          | 5409996  | 383836  | JVDr                          |                                           | <u></u> | Silicincation                     | Gossanous locally                                      | 10% sulphides incl. 4% Py, 4% Sph, 1%                          |
| 140009    | South Camp Creek Road                         |                    |          | 5410005  | 383831  | JVbr                          | Representative Outcrop Chip               | 0.41    | Silica, Chlorite, Quartz          | Gossanous, Jarositic, very                             | disseminations incl. 5% Sph, 8% Py, 2%                         |
| 148670    | South Camp Creek Road                         |                    | <u> </u> | 5410002  | 383712  | JVbr                          | Representative Boulder Chip               | ?/1.4   | Eyes                              | weathered                                              | Сру+Во                                                         |
| 148671    | Pan South Area                                | 1160               | 950      | 5409257  | 383873  | alt. JBvr.                    | Select outcrop grab                       |         | gossanous                         | weathered                                              | desseminated sulfides Py., Cpy.                                |
| 148672    | Line 4100 East Showing                        | 4100               | 5110     | 5411148  | 383960  | alt. JBvr.                    | Representative Outcrop Chip               | /.25m   | silicification                    | gossanous                                              | pyrite                                                         |
| 148873    | South Camp Creek Road                         |                    |          | 5410017  | 383707  | Massive Sulphide              | Representative Float Chip                 | 0.25    | recrystallized                    | gossanous                                              | 15% Cpy - 10%, Bo - 5%, Chlorite                               |
| 148674    | Jasper J-Branch Main<br>Showing               |                    |          | 5412093  | 383922  | Massive Sulphide              | Select Float Grab                         |         | chlorite                          | gossanous                                              | Cpy - 35%, Py - 35%, Sph - 5%                                  |
| 148675    | Jasper J-Branch Main<br>Showing               |                    |          | 5412093  | 383922  | Massive Sulphide              | Select Float Grab                         |         | chlorite                          | gossanous                                              |                                                                |
| 148676    | Upper 4 Mile Ck.<br>Roadcut                   |                    |          | 5411110  | 383770  | JBVa                          | Representative Outcrop Chip               | 0.25    | Chloritic silicified              | Oxidized Fractures                                     | 3% VFG Sulphides                                               |

1.1

#### APPENDIX ROCK CHII PROJECT:

١

| Sample ID | Comments                                                                                                                                                                  | Lithology                                                      | Weathering                                            | Alteration                                                                                                      | Mineralization                                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                           |                                                                |                                                       |                                                                                                                 |                                                                                                                          |
| 105405    | Disseminated and blebby sulphides with Cpy and Bo mainly in blebs; outcrop nearby alt. JBvs with epidote and shearing/foilation (2) 100/90                                | Volcanic Breccia - mainly felsic                               | minor boxwork on weathered surfaces                   | Silicification, minor chloritization                                                                            | 7.5% suffice blebs in or near sticeous fragments - 4% Py., 2%<br>Cpy., 1% Tet.?, 0.5 % Bo                                |
| 105406    | for disseminated Pu with for Naha of Cov and Bo together                                                                                                                  | Intermediate to Felsic Volcanic -                              | none                                                  | Silicification (atz eves) chloritized amvadoles sericite endate                                                 | 1% F.G., disseminated sulphides (all Py.) associated with chloritic<br>anycololes and fragments                          |
| 105407    | 0.10 m, thick lense of s.m.s. truncated to the west at the creek; capped by 0.10 m, thick limestone/bailte cap with                                                       | Pressinte d felsie velassint                                   | minor boxwork on weathered                            | Charles Endetrates Carletizates                                                                                 | 15% sulfide stockwork in breccis matrix and rimming fragments -                                                          |
| 105407    | Don units becade by 030/205,100(war all Jova with moch epidore and disseminated Py                                                                                        |                                                                | sonaces and nacidies                                  | Silicification, carbonate, barite? (quartz-calcite-barite? veining),                                            | 10% F.G., dimeminated and blebby sulphides mainly in and                                                                 |
| 105408    |                                                                                                                                                                           | Brecciated intermediate volcanics                              | none                                                  | minor epidote and sencte                                                                                        | Infiniting Chapter inaginants - 5% Py. 2% CPy.                                                                           |
| 105409    | f.g. disseminated Py in slicified, chloritic rock with 2-tone black or buff colour                                                                                        | Pyritic intermediate volcanics                                 | weakly gossanous                                      | Silicification, chloritization                                                                                  | 25% F.G. disseminated pyrite                                                                                             |
| 105410    | Upper? SE contact @ 070/60SE & Lower? NE contact @ 070/60NE suggesting thickening of the dome to depth;<br>extensive quartz stockwork throughout footwail? Unit to the NE | Massive Rhyolite with 5% altered<br>breccia fragments          | limonite and boxwork along<br>fractures and fragments | Fe-carbonate? hematite alteration of fragments                                                                  | 2% F.G. disseminated sulphides - 1.5% Py., 0.5%<br>Cpy+Sph+Gal+native Ag                                                 |
| 105411    | Disseminated and blebby sulphides throughout vague zone in roadcut with apparent foliation @ 170/90                                                                       | Altered intermediate volcanics                                 | fractures and rimming<br>fragments                    | Pervasive silicification incl. qtz eyes; Fe-carbonate? And hematite<br>altered fragments; chloritized amygdoles | 10% disseminated and blebby sulphides often replacing chloritic<br>amygdoles - 8% Py., 2% Cpy., tr. Sph., Bo             |
|           | Small outcrop 2.5 x 1.5 m. exposes 0.6 m. thick slicified rhyoite horizon @ 115/30NW containing up to 50% semi-                                                           | Altered intermediate to felsic                                 | imonite along fractures and                           |                                                                                                                 | 20% M.G., to F.G., sulphides - 15% Py., 4% Cpy., 1% Bo, tr.                                                              |
| 105412    | massive sulphides, mainly pyrite                                                                                                                                          | volcanics<br>Altered intermediate to felsic                    | gossanous with boxwork on                             | Silicification, Sericitization                                                                                  | Spy, Gal                                                                                                                 |
| 105413    | as above                                                                                                                                                                  | volcanics                                                      | weathered surfaces                                    | Silicification, chloritization                                                                                  | 25% Py, 2% Cpy, trace Bo                                                                                                 |
| 105414    | Sulphide blebs and dissemination in fractures. On South Camp Creek Rd.                                                                                                    | Rhyolite breccia intruded by<br>feldspar porphyty              | imonitic fractures and breccia                        | pervasive chloritization and sericitized phenocrysts in porphyry                                                | 5% disseminated sulphides in clusters primarily in chloritized<br>porphyry - 3% Py., 2% Cpy.                             |
| 105415    | Big o.c, 15m east of 225E. Located on South Camp Creek Rd.                                                                                                                | Silicified intermediate to felsic<br>volcanic                  | limonitic fractures and minor<br>boxwork              | Pervasive silicification incl. qtz eyes; some sericitized<br>phenocrysts;minor chloritization                   | 10% V.F.G disseminated and wispy sulfide blebs; 8% Py., 2% Cpy.                                                          |
| 105416    | Banded semi-massive sulphides 0.2m thick @ 070/20 in 0.5m thick fault block @ 070/70 with thin sulfide bands in<br>chloritic JBVs. Intrusive volc.                        | Sulphidic intermediate volcanic                                | Gossanous with minor<br>boxwork                       | Chloritization, Silicification including Qtz stockwork veins                                                    | Py 30%, Cpy. tr, Sph tr                                                                                                  |
| 105417    | 0.3 m thick zone of disseminated MG pyritic felsic volcanics @ 120/20 in gossanous Prop. Int. Volcanics striking<br>100/90                                                | Felsic volcanic                                                | Gossanous on fractures and weathered surfaces         | Silicification, sericitization                                                                                  | Py 15%, Cpy tr                                                                                                           |
|           |                                                                                                                                                                           |                                                                |                                                       |                                                                                                                 |                                                                                                                          |
| 105419    | Quartz vein stock and silicification @ 270/40 in altered JBVa with VFG sulfides (Py +/- Sphal)                                                                            | Intermediate volcanic                                          | Gossanous, Hydro-zincite                              | Chloritization, silicification                                                                                  | Py. 2%, Trace: Cpy., Bo. 1% Sphalerite                                                                                   |
| 105474    | oc. about 10m wide and 6m high_BDG2 040/38                                                                                                                                | Silicified intermediate volcanic                               | imonitic fractures and<br>weathered surfaces          | Silicification                                                                                                  | 15% V.F.G deseminated and stonger suphides - 10% Py., 5%<br>Cov.                                                         |
| 105483    | o c on line 2850N                                                                                                                                                         | Sulphidic mafic to intermediate                                | imonitic fractures and weathered surfaces             | ittle or none                                                                                                   | 15% M.G., clustered disseminated Sulphides - mainly Py. with<br>0.5% Cov. rimming occasional Py. grains in some clusters |
|           |                                                                                                                                                                           | Sulphidic mafic to intermediate                                |                                                       |                                                                                                                 |                                                                                                                          |
| 128552    | Patchy disseminated sulphides. 4 Mile Creek south                                                                                                                         | volcanics                                                      | none                                                  | Silicification, some chloritization                                                                             | 1% F.G., disseminated sulphides - 0.5% Py., 0.5% Cpy.                                                                    |
| 128553    | attered JBVa (felaic rhyolite? Dyke in int. volc. Altered and mineralized JBVa) fault orientation is apparently 010/60                                                    |                                                                |                                                       |                                                                                                                 |                                                                                                                          |
| 128554    | VFG disseminated Py. And other sulphides. On 4 Mile Creek south.                                                                                                          | Sheared felsic volcanics                                       | limonitic along abundant<br>fractures                 | Silicification                                                                                                  | 15% V.F.G., disseminated sulphides - mainly Py.                                                                          |
| 148663    | North fault contact @ 065/90                                                                                                                                              | Sulphitic feldspar porphyry                                    | limonitic fractures and weathered surfaces            | Silicification including quartz eye, sericitization, minor chloritization                                       | 5% F.G., disseminated sulphides - all Py.                                                                                |
| 148884    |                                                                                                                                                                           | Sulphitic feldener porchypy                                    |                                                       | Silicification saticitization minor chloritization                                                              | 5% E.G., disseminated subhides - mainly Pv. tr. Cov.                                                                     |
| 140004    |                                                                                                                                                                           | Sulphilic feldepar porphyry                                    | imonitic fractures and                                |                                                                                                                 | 7 5%% F.G., disseminated auphides and M.G., clusters - 7%                                                                |
| 148665    | South fault @ 050/90                                                                                                                                                      | intruding felsic volcanic                                      | weathered surfaces                                    | Silicification, sericitization, minor chloritization                                                            | Ру., 0.5% Сру.                                                                                                           |
| 148666    | Site of old sample #                                                                                                                                                      | Sulphitic feldspar porphyry and<br>felsic volcanics            | imonitic fractures and<br>weathered surfaces          | Silicification, sericitization, minor chloritization                                                            | 10% F.G., disseminated sulfide clusters - mainly Py, tr Cpy.                                                             |
| 148667    | North fault @ 130/70NE; South fault @120/90                                                                                                                               | Sulphitic feidspar porphyry                                    | amonitic fractures and weathered surfaces             | S#icification, sericitization, minor chloritization                                                             | 5% F.G., disseminated sulphides - all Py.                                                                                |
|           |                                                                                                                                                                           | Silicified and brecciated felsic                               | Imonitic fractures and                                |                                                                                                                 |                                                                                                                          |
| 148668    | Open to south; outcrop covered by overburden                                                                                                                              | volcanic in feldspar porphyry                                  | weathered surfaces                                    | Silicification, sericitization, minor chloritization                                                            | 5% F.G., disseminated sulphides - ai Fy.                                                                                 |
| 148669    | South end of outcrop, north sheared contact of 153/60, south contact of 170/35, suphides localized in chlomic frage<br>& seams                                            | chloritic intermediate volcanic                                | weathered surfaces                                    | Silicification, chloritization, minor sericitization                                                            | Bo and Tet?                                                                                                              |
| 148670    | Boulder 3m. Below road and 50 m. east of 148669                                                                                                                           | Brecciated felsic volcanic with<br>possible imestone fragments | weathered surfaces; trace                             | Silicification, atz-calcite veining                                                                             | 5% F.G., to M.G., clustered suprides along fractures and<br>fragment edges - 2% Py., 1% Cpy., 1% Sph.                    |
| 148671    | massive w/ structure of 140/033                                                                                                                                           | Silicified felsic to intermediata                              | very gossenous with 0.5 cm                            | silicification minor chlorite                                                                                   | 2% clustered F.G., sutchides - mainly Py., tr Cov.,                                                                      |
| 148672    | mineralization in clumps of cu-sulfides. Possibly remobilized and recrystalized. Appears on strike with JAS minfile                                                       | Bracciated silicified Rhynlite                                 | weathered surfaces, minor                             | Silicification minor amethyst                                                                                   | 10% blebby and stockwork sulphides, including 5% Py., 4%                                                                 |
|           |                                                                                                                                                                           | Contraction, enclosed religions                                | Emonitic on weathered                                 |                                                                                                                 | C.G., recrystalized Py, with clustered, F.G., infiling base metal                                                        |
| 148673    | 1.5x1x0,25m. Boulder 10m. S. of ewitchback in road; probable origin from roadcut above                                                                                    | Massive Sulphides                                              | surraces                                              | Inone                                                                                                           | supprides - 10% Cpy., 1% Bo, 1% Tet.                                                                                     |
| 148674    | Select Cpy-rich float grab from J-Branch Main Showing Roadcut                                                                                                             | Massive sulphides                                              | chloritic                                             | gossanous                                                                                                       | 35% Cpy, 25% Py, 5% Sph                                                                                                  |
| 148675    | Select Sph-rich float grab from J-Branch Main Showing Roadcut                                                                                                             | Massive sulphides                                              | chloritic                                             | gossanous                                                                                                       | 35% Cpy, 15% Py, 15% Sph                                                                                                 |
|           |                                                                                                                                                                           |                                                                | limonitic fractures and                               |                                                                                                                 | 24 VE O dimensional Dr                                                                                                   |

-----

\_

•••

----

.

\*\*\*\*

.

1

-----

1

-

-

1000

7

| Sample ID | Location                                    | Grid N | Grid E | Northing  | Easting | Rock Type                                  | Sample Type                               | Width      | Alteration                                      | Freshness                   | Mineralization                            |
|-----------|---------------------------------------------|--------|--------|-----------|---------|--------------------------------------------|-------------------------------------------|------------|-------------------------------------------------|-----------------------------|-------------------------------------------|
| 148677    | Upper 4 Mile Ck.<br>Roadcut                 |        |        | 5411110   | 383770  | JBVa                                       | Continuous Representative<br>Outcrop Chip | 0.25       | Chloritic silicified                            | Oxidized Fractures          | 6% blobby Sulphides                       |
| 148678    | Upper 4 Mile Ck.<br>Roadcut                 |        |        | 5411110   | 383770  | JBVa                                       | Continuous Representative                 | 0.25       | Chloritic slicified                             | Oxidized Fractures          | 8% F.G. Sulphides                         |
| 148679    | Upper 4 Mile Ck.<br>Roadcut                 |        |        | 5411114   | 383771  | JBVa                                       | Continuous Representative<br>Outcrop Chip | 0.5        | Chloritic silicified                            | Oxidized Fractures          | 2% VFG Sulphides                          |
| 148680    | Upper 4 Mile Ck.<br>Roadcut                 |        |        | 5411114   | 383771  | JBVa                                       | Continuous Representative<br>Outcrop Chip | 0.25       | Chloritic silicified                            | Oxidized Fractures          | 8% F.G. Sulphides                         |
| 148681    | Upper 4 Mile Ck.                            |        |        | 5411114   | 282774  | IR)/a                                      | Continuous Representative                 | 0.25       | Citofed                                         | Ovidined Etrachurse         | 15% E Q Sulabidae                         |
| 148682    | Upper 4 Mile Ck.<br>Roadcut                 |        |        | 5411114   | 383771  | JBVa                                       | Continuous Representative<br>Outcrop Chip | 0.25       | Chloritic slicified                             | Oxidized Fractures Mn       | 1% VEG Sulphides                          |
| 148683    | Upper 4 Mile Ck.<br>Roadcut                 |        |        | 5411122   | 383772  | IRVa                                       | Continuous Representative                 | 0.25       | Chloritic silicified                            | Ovidized Erectures Mo       | 7% hobby Sulphidee                        |
|           | Upper 4 Mile Ck.                            |        |        |           |         |                                            |                                           | 0.20       |                                                 |                             |                                           |
| 148684    | Showing<br>Upper 4 Mile Ck                  |        |        | 5411200   | 383435  | JBvr, JBVa                                 | Select outcrop grab                       | 14         | Argilic and silicified                          | Gossanous                   | 20% Py                                    |
| 148685    | Showing                                     |        |        | 5411224   | 383467  | JBvr, JBVa                                 | Select outcrop grab                       | /12        | Prop. Argilic and Silicified                    | Gossanous, Jarositic        | 20%Py. Tr.Cpy.?, Sphal?, Tet?             |
| 148686    | Upper 4 Mile Ck.<br>Showing                 |        |        | 5411227   | 383485  | JBvr, JBVa                                 | Select outcrop grab                       | n          | silicification, Argillic end<br>Pyritization    | Gossanous, Jarositic        | 20%Py                                     |
| 148687    | Upper 4 Mile Ck.<br>Showing                 |        |        | 5411256   | 383501  | IBV: and SMS                               | Salact outcrop grab                       |            | silicification, Argillic and                    | Gossenous                   | 35% Du Tr Cour? Sobal? Tat?               |
|           | Upper 4 Mile Ck.                            |        |        | 0.4112.00 | 000001  |                                            |                                           | , <u>,</u> | i jinganon                                      |                             |                                           |
| 148688    | Showing<br>Upper 4 Mile Creek Road          |        |        | 5411240   | 383540  | JBVa                                       | Select outcrop grab                       |            | Slicification                                   | Gossanous                   | 25% Py., 5%Cpy, 1%Bo, Sph?, Tet?          |
| 148689    | Log Sort Showing                            | 4100   | 4834   | 5411181   | 383698  | JBva                                       | Representative Outcrop Chip               | 1/0.2+     | Silicification, locallyArgillic                 | Gossanous on Fractures      | 15% Py, 1% Cpy                            |
| 148690    | Log Sort Showing                            | 4100   | 4835   | 5411181   | 383698  | JBva                                       | Representative Outcrop Chip               | 1/0.6+     | Silicified with Argillic footwall               | Gossanous on Fractures      | 10% Py, 20% Cpy                           |
| 148691    | Upper 4 Mile Creek Road<br>Log Sort Showing | 4100   | 4836   | 5411181   | 383698  | JBva                                       | Representative Outcrop Chip               | 1/0.4+     | Silicified                                      | Gossanous on Fractures      | 5% Pv. 25% Cov                            |
| 148692    | Upper 4 Mile Ck. Road<br>Log Sort Boulders  |        |        | 5411201   | 383702  | JBvr                                       | Representative Float Chip                 | /1.2       | Silicified, Argillic                            | Fresh (Blasted Rock)        | 25% Py, 10% Cpy, 10% Bo                   |
| 148693    | Upper 4 Mile Ck. Road                       |        |        | 5411200   | 383715  | Pyritic JBv Andesite,<br>Semi-Mess Subbide | Representative Float Chip                 | /1 0 AW    | Intense dk chi sil sro                          | Event                       | By 15-20% Cm; Bo                          |
|           | Upper 4 Mile Ck. Road                       |        |        |           |         |                                            |                                           | /1.0       | Intense advnce arg,                             | 110011                      | VCG Euhedral to subhedral Py Frags-       |
| 148694    | Log Soft Boulders                           |        |        | 5411200   | 383715  | Massive Sulphide                           | Representative Float Chip                 | /1.0 AW    | Limonite, Jarosite<br>silicification, chlorite. | Weathered                   | Xies in FG Py mtx                         |
| 148695    | Line 4100 East Showing                      | 4100   | 5010   | 5411163   | 383857  | JBvr                                       | Select outcrop grab                       | ?          | malachite, epidote                              | fairly fresh                | 2% Py, trace Cpy                          |
| 148696    | South Camp Creek Road                       |        |        | 5409914   | 383852  | Vein                                       | Outcrop Chip                              | 0.9        | Silica, Chlorite                                | Gossanous, Hydrozincite     | Py 5%, Cpy 2%, Bo 1%, Sph Tr              |
| 148697    | South Camp Creek Road                       |        |        | 5409914   | 383852  | zone in FW of breccia in<br>JBva           | Continuous Representative<br>Outcrop Chip | 1.8        | Chloritic                                       | Gossanous, Hydrozindta      | Pyrite 5%                                 |
| 148698    | South Camp Creek Road                       |        |        | 5400920   | 282825  | Sheared, banded JBVr                       | Continuous Representative                 |            | Sting                                           |                             | v.f.g. disseminated sulphides 5% incl. Py |
|           | obuil outporter road                        |        |        | 3408820   | 303035  | Sheared, banded JBVr                       | Continuous Representative                 |            | Silva                                           | Gossanous, Hydrozincite,    | v.f.g. disseminated sulphides 5% incl. Py |
| 148699    | South Camp Creek Road                       |        |        | 5409920   | 383835  | frags in fault zone                        | Outcrop Chip                              | 1.5        | Silica                                          | pale pink secondary mineral | Cpy, Bo, Sph?                             |
| 148700    | Line 1150 East Outcrop                      | 1150   | 1230   | 5409573   | 384000  | JBvr alt.                                  | Select outcrop grab                       |            | weakly gossanous                                | weathered                   | Sphal                                     |
| 148701    | Line 1150 East Outcrop                      | 2700   | 1025   | 5410743   | 383493  | JBvr                                       | Select outcrop grab                       |            |                                                 |                             |                                           |
| 148747    |                                             | 4100   | 5250   | 5411196   | 384262  | JBvr                                       | Select outcrop grab                       |            |                                                 |                             |                                           |
| 148804    | Upper 4 Mile Creek Road                     | 4000   | 4875   | 5411069   | 383791  | VMS                                        | Select outcrop grab                       |            |                                                 | weathered                   | Py.Cpy.                                   |
| 148810    | Line 4100 West Showing                      | 4100   | 4800   | 5411180   | 383501  | v.highly sitered Prop.                     | Salad autorop grab                        |            | Bros                                            | upathorad                   | Enidate                                   |
| 140010    | Upper 4 Mile Creek Road                     | -100   | 4000   | 3411109   | 363301  | And.                                       | Select outcrop gras                       |            | Prop.                                           | weathered                   |                                           |
| 148816    | Log Sort Showing<br>Upper 4 Mile Creek Road | 4100   | 4835   | 5411178   | 383711  | Gossanous And. Or VMS                      | Select outcrop grab                       |            |                                                 | weathered                   | Py. Boxwork, Jericke                      |
| 148817    | Log Sort Showing                            | 4100   | 4850   | 5411191   | 383724  | Gossanous And. Or VMS                      | Select outcrop grab                       |            |                                                 | weathered                   |                                           |
| 148854    | Line 4000 Outcrop                           | 4000   | 5150   | 5411070   | 384071  | JBvb?                                      | Select outcrop grab                       |            | hematite, epidote, qtz<br>eyes                  | boxwork                     | pinhead blue-green?                       |
| 148887    |                                             |        |        |           |         |                                            |                                           |            |                                                 |                             |                                           |
|           | South Camp Creek Road                       | 1350   | 1185   | 5409576   | 383793  | altered Jova                               | Select outcrop grab                       | 2.6        | gossanous silicification                        | boxwork, highly weathered   | FG-CG Py and Cpy 2-5%, Bo?, Jericite      |

.

-

APPENDIX C ROCK CHIP GEOCHEMICAL DATA SHEET - Year 2004 PROJECT: JAS NTS: 092C/080
## APPENDIX ROCK CHII PROJECT:

| Sample ID | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lithology                                         | Weathering                                    | Alteration                                                      | Mineralization                                                                                                |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | limonitic fractures and                       |                                                                 |                                                                                                               |
| 148677    | Py.Cpy? Tet? Bo?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Altered intermediate volcanics                    | weathered surfaces                            | chloritization, minor sericitization                            | 3% V.F.G., disseminated Py.                                                                                   |
| 148678    | Py.Cpy? Tet? Bo?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Altered intermediate volcanics                    | weathered surfaces                            | chloritization, minor sericitization                            | 3% V.F.G., disseminated Py.                                                                                   |
| 148679    | Ру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Altered intermediate volcanics                    | limonitic fractures and<br>weathered surfaces | chloritization, epidotization, minor sericitization             | 2% V.F.G., disseminated Py,                                                                                   |
| 148680    | Py Covy Tet? Bo?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Altered intermediate volcanics                    | imonitic fractures and weathered surfaces     | chloritization, epidotization, minor sericitization             | 3% V.F.G., disseminated Py,                                                                                   |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Altered intermediate to felsic                    | limonitic fractures and                       |                                                                 | 5% V.F.C. disseminated subbides mainly Pu                                                                     |
| 148681    | Pysphrup/Ter/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | voicanics                                         | imonitic fractures and                        |                                                                 | Silve V.R. G., Gesenminated Scipinoso, many C.                                                                |
| 148682    | Ργ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Altered intermediate volcanics                    | imonitic fractures and                        | chloritization, epidotization, minor sencitization              | 2% V.F.G. disseminated Py                                                                                     |
| 148683    | Py.Cpy? Tet? Bo?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Attered intermediate volcanics                    | weathered surfaces                            | chloritization, epidotization, minor sericitization             | 3% V.F.G. disseminated Py.<br>15% V.F.G. dustaned sulphides mainly Py. plus tr Sph/Tet along                  |
| 148684    | Completely successful device and the success | Silicified felsic volcanics                       | weathered surfaces                            | pervasive silicification and fracture-controlled sericitization | fractures                                                                                                     |
| 148685    | Silicified JBv rhyolite? 2m above fault contact. At 030/035 NW. Blebby Py. w/ Cp. Anastamosing argilic. Fractures<br>are subparallel to contact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silicified amygdoloidal<br>intermediate? Volcanic | imonitic fractures and<br>weathered surfaces  | Silicification, Epidotization, Sericitization                   | 5% clustered F.G., sulphides - mainly in amygdoles - 3% Py.,<br>traces Cpy., 1% Bo, 1% Tet?                   |
| 148686    | Silvified IRv Rhunite 2m shous mask hese 2014 disamination Ru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Silicified and brecciated felsic                  | amonitic on weathered                         | Pervasive silicification, brecciption and re-silicification     | 15% F.G., disseminated and clustered sulphides - mainly Py.                                                   |
| 140000    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silicified and sericitized felsic                 | Imonitic on weathered                         |                                                                 | 15% blebby recrystalized sulphides - 12% Py., 1% Cpy., 2%                                                     |
| 148687    | Silicified JBv Rhyolite. In creek base south side, Py. Cpy?.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | volcanic                                          | limonitic on weathered                        | Pervasive sacrication and sencitization                         | 5% F.G., recrystalized sulphides in clusters around chloritic                                                 |
| 148688    | Along North side of creek. Silicious JBv with clumps of FG Sulphides, mainly Py, with clusters of v.f.g Cpy, Bo,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Silicified intermediate volcanic                  | surfaces                                      | Pervasive including qtz eyes; sericitization and chloritization | patches - mainly Py.                                                                                          |
| 148689    | Sulphides as blebs, disseminations, clusters; H.W. eroded; zone at 090/30S exposed along dipslope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | intermediate volcanic                             | weathered surfaces                            | Silicification, Sericitization, chloritization                  | 5% sulphides in F.G. clusters and veinlets - 4% Py., 1% Cpy.                                                  |
| 148690    | H.W. eroded: zone at 090/30S exposed along disalope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Silicified intermediate volcanic                  | limonitic fractures and<br>weathered surfaces | Silicification, chloritization                                  | 15% sulphides in clusters - 12% Py., 3% Cpy. mainly rimming<br>Py., tr. Tet.?                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | limonitic fractures and                       | All lasta all charter                                           | 15% aulphides in clustera and veinlets - 12% Py., 3% Cpy.                                                     |
| 148691    | Sulphides as folded stingers and clusters, H.W. eroded; zone at 090/305;exposed along dipslope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Semi-massive sulphides in                         | limonitic fractures and                       | Silicincation, chloridzation                                    | 40% sulphides in bracciated, re-crystallized bands - mainly Py.                                               |
| 148692    | Man-made talus presumably from road blasting nearby; largest of 3 boulders samples, ranging from 0.5-1cu.m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | intermediate volcanic                             | weathered surfaces                            | Silicification, Sericitization, chloritization                  | with tr. Cpy. and Bo rimming Py.                                                                              |
| 148693    | 3 - 1m boulders in 7m area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | intermediate volcanic                             | weathered surfaces                            | Silicification                                                  | 50% sulphides in preccisted, re-crystalized bands - mainly Py.                                                |
| 148694    | 3 - 1m boulders in 7m area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Silicified Andesite, Semi-massive<br>Sulphides    | gossanous, hydrozincite,                      | Silicification, chloritization                                  | Sheared planar breccia zone with parallel quartz veining and<br>sutphide blebs - Py 5%, Cpy 2%, Bo 1%, Sph Tr |
| 148695    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Silicified intermediate volcanic                  | limonitic fractures and weathered surfaces    | Silicification, chloritization                                  | 0.5% M.G., re-crystallized disseminated Py.                                                                   |
| 149806    | Shannad planar brancia zona a 110/60N with suishida blaha and at usina navallal to zona                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Silicified Intermediate volcanic                  | Emonitic weathered surfaces                   | Sticification chloritization minor expetitization               | 5% F.G., sulphides in stringers and blebs - 3% Py., 1% Cpy., 1%                                               |
| 140050    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Satured antermediate volcarite                    | imonitic fractures and                        |                                                                 |                                                                                                               |
| 148697    | f.g. disseminated pyrite locally<br>Shaarad, planar fault zone NW side down (normal) @ 110/85N with Divolite fragments and diss. Sulphidas in fault                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sticified Intermediate volcanic                   | weathered surfaces                            | Silicification, chloritization, minor sericitization            | 5% F.G., sulphides in large aggregates - 4% Py., 1% Cpy.                                                      |
| 148698    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fragments in fault zone                           | gossanous, hydrozincite,                      | Silicification                                                  | 5% v.f.g. disseminated sulphides including Py, Cpy, Bo, Sph                                                   |
| 148699    | 3 x 0.25 m. Rhyolite bed sub-parallel to fault zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Silicified and brecclated felsic<br>volcanics     | imonitic fractures and<br>weathered surfaces  | Silicification                                                  | 5% sulphides in blebs and veinlets - 4% Py., 1% Cpy.                                                          |
| 148700    | o.c. in rhyoite. Weakly gossanous in fractures w/ fract. At 045/070 and 095/090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Felsic volcanic                                   | limonitic fractures and<br>weathered surfaces | Very thin, ptygmatic gtz-sulfide veinlets; minor chloritization | 1% F.G., sulfide veinlets, mainly Py, with tr. Cpy.                                                           |
| 148701    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Felsic volcanic                                   | 005580018                                     | wasthered                                                       | massive: trace disseminated sulphides; Py, Cpy                                                                |
| 140707    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hematitic sub-areal tuffaceous                    |                                               | completely hematized throughout matrix; locally epidote and     | trace 5.G. discerningted By in phenocrysts                                                                    |
| 140/4/    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | voicanic                                          |                                               | speculate in prenociyeta                                        |                                                                                                               |
| 148804    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attered, brecciated intermediate                  | Propywoc aneration                            | epidore, saicincation,                                          |                                                                                                               |
| 148810    | o.c is 15m exposed length and 10m exposed height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | to mafic volcanic                                 | minor limonite                                | pervesive epidotization                                         | none                                                                                                          |
| 148816    | Gossanous o.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Altered intermediate volcanics                    | boxwork                                       | Silicification, Sericitization, chloritization                  | Tet.                                                                                                          |
| 148817    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Altered intermediate volcanics                    | limonite fractures and<br>weathered surfaces  | Silicification, Sericitization, chloritization                  | 20% F.G., disseminated sulphides - Py 10%, Cpy 5%, tr. Bo,<br>Tet.                                            |
| 148854    | vía, hiah s.a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Mafic volcanics                                   | gossanous on weathered<br>surfaces, boxwork   | ecidotization, silicification, chloritization, hematization     | minor v.f.g. sulphides                                                                                        |
| 149997    | auffiden in frankura vona ABBRA. Suididen ara etranski onnanskehed in frank Zana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Altered Intermediate union                        | limonite fractures and                        | Signification Satisfization chloditration                       | 10% F.G., disseminated sulphides - mainly Py., tr. Cpy., Tet.?,<br>Snh 2                                      |
| 43007     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preside intermediate Pricames                     | limonite fractures and                        |                                                                 | 3% V.F.G., disseminated sulphides - mainly Py., tr. Cpy., Sph.,                                               |
| 148888    | stratigraphically comparable to that of previous sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Altered intermediate volcanics                    | weathered surfaces                            | Silcincation, Sericitization, chloritization                    | l et.                                                                                                         |

-----

----

----

----

----

i a construction of the second se

1

-

٦

.

٦

٦

-

٦

- 7

| APPENDIX C                                   |               |
|----------------------------------------------|---------------|
| ROCK CHIP GEOCHEMICAL DATA SHEET - Year 2004 |               |
| PROJECT: JAS                                 | NTS: 092C/080 |

•\*\*

----

| Sample ID | Location                            | Grid N           | Grid E   | Northing | Easting | Rock Type                                   | Sample Type                                   | Width    | Alteration                                                       | Freshness                                        | Mineralization                                                                      |
|-----------|-------------------------------------|------------------|----------|----------|---------|---------------------------------------------|-----------------------------------------------|----------|------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------|
| 148901    | Upper 4 Mile Creek<br>Showing       |                  |          | 5411278  | 383515  | Sil. Rhyodacite                             | Representative Outcrop Chip                   | 0.9m     | Sil, Lim, Jarocite                                               | Very weathered                                   | Py. 10-15%, Cpy. Bo. ≠ 5%                                                           |
| 148902    | Upper 4 Mile Creek<br>Showing       |                  |          | 5411278  | 383515  | Alt. Rhyodacite                             | Representative Outcrop Chip                   | 1m       | Arg. Sulfale Sil                                                 | Weathered                                        | Py <1%                                                                              |
| 148903    | Upper 4 Mile Creek<br>Showing       |                  |          | 5411278  | 383515  | Alt. Rhyodacite                             | Representative Outcrop Chip                   | 1m       | Sil, Fine dk. Chl.                                               | Weathered                                        | Ру 20% +/- Сру, Во                                                                  |
| 148904    | Upper 4 Mile Creek<br>Showing       |                  |          | 5411278  | 383515  | Alt. Rhyodacite                             | Representative Outcrop Chip                   | 1m       | Sil. Py. Prop. Veins                                             | Mod. Weathered                                   | Py 20-25%                                                                           |
| 148905    | Upper Camp Creek Road               |                  | ļ        | 5410017  | 383744  | Massive Su;(hide                            | Representative Outcrop Chip                   | AW 1.3m  | BI, Dk Green Chi                                                 | Weathered, Boxworks                              | Ру 80%, Сру 5%                                                                      |
| 148906    | Upper Camp Creek Road               |                  |          | 5410109  | 383700  | Bx Qtz Calcite Vein                         | Representative Outcrop Chip                   | AW 0.7m  | BI, Dk Green Chi                                                 | Mod. Weathered                                   | Cpy locally 1%, Malachite staining                                                  |
| 148907    | Trail Creek Showing                 |                  | ļ        | 5411530  | 383650  | Silicious Andesite                          | Continuous Representative<br>Outcrop Chip     | 0.5      |                                                                  |                                                  |                                                                                     |
| 148908    | Trail Creek Showing                 |                  |          | 5411530  | 383650  | Sulphitic Mafic Volcanic                    | Outcrop Chip                                  | 1        | chloritization, sericitization                                   | surfaces                                         | crystals                                                                            |
| 148909    | Trail Creek Showing                 |                  | ļ        | 5411530  | 383650  | Sulphitic Andesite                          | Continuous Representative<br>Outcrop Chip     | 1        |                                                                  |                                                  |                                                                                     |
| 148910    | Trail Creek Showing                 |                  |          | 5411530  | 383650  | Sulphitic Mafic Volcanic                    | Continuous Representative<br>Outcrop Chip     | 1        | pervasive chloritization,<br>local epidotization                 | limonitic on weathered<br>surfaces               | interstitial Cpy stringers and occasional<br>v.f.g. Bo                              |
| 148911    | Trail Creek Showing                 |                  | <u> </u> | 5411530  | 383650  | Sulphitic Dacite                            | Continuous Representative<br>Outcrop Chip     | 1        | Silicification, chloritization, epidotization                    | limonitic on weathered<br>surfaces and fractures | recrystallized Py stringers, 2% blebs and<br>stringers of Cpy, 3% Tet, tr. Bo, Gal? |
| 148912    | Trail Creek Showing                 |                  |          | 5411530  | 383650  | Chloritic Mafic Volcanic                    | Continuous Representative<br>Outcrop Chip     | 1        | Silicification, chloritization,<br>epidotization, sericitization | imonite on weathered<br>surfaces and fractures   | recrystalized Py in veinlets and<br>disseminations, 1% f.g. interstitial Cpy        |
| 148913    | Camp View Showing                   |                  | <u> </u> | 5410555  | 383863  | Pyritic Felsic Volcanic                     | Select Outcrop Grab                           | 0.2      |                                                                  |                                                  |                                                                                     |
| 148914    | Camp View Showing                   |                  |          | 5410555  | 383863  | Mafic Volcanic                              | Continuous Representative<br>Outcrop Chip     | 1.3      | Sericitization of fragments<br>locally rimming gtz veins         | limonite on weathered<br>surfaces and fractures  | sulphides - 4% Py, 0.5% Cpy as rims,<br>0.5% Tet replacing sericitized fragments    |
| 148915    | Camp View Showing                   |                  |          | 5410555  | 383863  | Silicified Dacite                           | Continuous Representative<br>Outcrop Chip     | 0.95     | Silicification, Sericitization,<br>chloritization                | heavily limonitic 2 cm. rind<br>and fractures    | 0.5% f.g. disseminated Py                                                           |
| 183526    | Boulders below Upper<br>Pan Showing | 1311N            | 988E     | 5409390  | 383655  | Semi-mass Sulphide                          | Select float grab                             | 15 cm AW | Sil, Manganese                                                   | Fresh                                            | Py 5-10%, Cpy 1%                                                                    |
| 183527    | Boulders below Upper<br>Pan Showing | 210447<br>210449 |          | 5409399  | 383671  | JBVa Semi-masa<br>Sulphide                  | Select float grab                             | 30 cm    | quartz veining and stockwork                                     | Mod Fresh some<br>weathering                     | Mass cpy layer 2 cm, Cpy 5%, Des Py<br>10%_                                         |
| 183528    | Boulders below Upper<br>Pan Showing | As<br>183527     |          | 5409399  | 383671  | Massive Sulphide                            | Select float grab                             | 30 cm    | Manganese                                                        | Mod Fresh, boxworks                              | FG dees Cpy,sub-suhedral Py 80%, Cpy<br><5%                                         |
| 183529    | Boulders below Upper<br>Pan Showing |                  | 1175     | 5409400  | 383592  | Semi massive sulphide                       | Continuous Representative<br>Boulder "A" Chip | 1.0m AW  | Man, Arg, Clay, Calcite                                          | Mod Fresh                                        | Des Course Py 20-30%, Cpy, Sph                                                      |
| 183530    | Boulders below Upper<br>Pan Showing |                  |          | 5409400  | 383692  | Semi massive sulphide                       | Continuous Representativa<br>Boulder "A" Chip | 60 cm    | Prop, Cal                                                        | Mod Fresh                                        | Des Course Py 20-30% Cpy, Sph                                                       |
| 183531    | Boulders below Upper<br>Pan Showing |                  |          | 5409400  | 383692  | Semi Massive sulphide                       | Select Outcrop Grab                           | 20 cm    | Prop, Sil, Man, Limonite,<br>Cal                                 | Mod poor, boxworks                               | Des fg py C.G.Euhedral - subhedral Py                                               |
| 183532    | Boulders below Upper<br>Pan Showing |                  |          | 5409400  | 383692  | Semi Massive sulphide                       | Select Outcrop Grab                           | 50 cm    | Prop, lim, Sil                                                   | Weathered                                        | Des Py. 5-20%, course subhedral des<br>Cpy to 5%                                    |
| 183533    | Upper Pan Showing                   |                  |          | 5409408  | 383751  | Altered Int. And.                           | Representative Outcrop Chip                   | 1m       | Prop. Arg. Si                                                    | Mod-poor                                         | Py 1-2%                                                                             |
| 183534    | Upper Pan Showing                   |                  |          | 5409408  | 383751  | Alt. And. Sil Rhyolite                      | Representative Outcrop Chip                   | 1m       | Sericite, Arg, Sil                                               | Mod-good                                         | Py 2-5%                                                                             |
| 183535    | Upper Pan Showing                   |                  |          | 5409408  | 383751  | Mixed mafic and felsic                      | Representative Outcrop Chip                   | 1m       | Prop. Ser, Si                                                    | Mod-good                                         | Py, Cpy 5-10%, Bo                                                                   |
| 183538    | Upper Pan Showing                   |                  |          | 5409408  | 383751  | Altered And. Felsic<br>Volcanic             | Representative Outcrop Chip                   | 1m       | Prop, Arg and Sil., Wod.<br>Quartz stockworks                    | Mod                                              | 2-5% sulphides. Locally VCG aubhedral<br>Py and Cpy. Mal stain                      |
| 183537    | Upper Pan Showing                   |                  | ļ        | 5409408  | 383751  | And. & mafic                                | Representative Outcrop Chip                   | 1m       | Man, Blf.g.chl. Pvap                                             | Mod                                              | Local C.G. Py Cpy. Qtz vein                                                         |
| 183538    | Upper 4 Mile Creek<br>Roadcut       |                  |          | 5411254  | 383762  | Intensely altered JBVa                      | Representative Outcrop Chip                   | 1m       | Acid Sulphate. Advanced<br>Arg Sil                               | Mod                                              | Med- C.G. subhedral VFG aphanitic                                                   |
| 183539    | Upper 4 Mile Creek<br>Roadcut       |                  |          | 5411254  | 383762  | Intenesley altered JBVa                     | Representative Outcrop Chip                   | 1.3m     | Acid Sulphsts. Limonite,<br>Jarosite                             | Mod                                              | Med. GrainedSubhedral Py = 20%, VFG<br>aphanitic Py and sulphate = 20%              |
| 183540    | Upper 4 Mile Creek<br>Roadcut       |                  |          | 5411288  | 383782  | и                                           | Representative Outcrop Chip                   | 1.3m     | Acid Sulphate Arg.<br>Jarosite                                   | Mod                                              | Mod. C.G.subhedral Py = 30-40%                                                      |
| 183541    | Upper 4 Mile Creek<br>Showing       |                  |          | 5411261  | 383551  | Alt. Py. JBy And.                           | Representative Outcrop Chip                   | 1.5m     | Sil.Arg. Minor chl.                                              | limonite local jerocita<br>weathered             | fm g. subhedral to anhedral Py = 10-<br>20%                                         |
| 183542    | Upper 4 Mile Creek<br>Showing       |                  |          | 5411261  | 383551  | Alt. Dacite-And.                            | Representative Outcrop Chip                   | 1m       | Prop. Chl. +/- Sil                                               | mod fresh limonite on fract.                     | VFG Py=5-10%, C\py = 1-3%                                                           |
| 183543    | Upper 4 Mile Creek<br>Showing       |                  |          | 5411261  | 383551  | Porphyntic Amygdaloidal<br>Alt. Mafic Volc. | Representative Outcrop Chip                   | 1m       | Prop. Chl. Arg. Sil.                                             | Highly fract., weathered                         | FG Py. Mtx, Mod, Py. Clots Py = 10-20%                                              |

۰.

.

-

.....

## APPENDIX ROCK CHII PROJECT:

1

1

j

· · · · · ·

----

| Sample ID | Comments                                                              | Lithology                                            | Weathering                                                | Alteration                                                                         | Mineralization                                                                                                                |
|-----------|-----------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                       |                                                      |                                                           |                                                                                    |                                                                                                                               |
| 148901    |                                                                       | Silicified felsic volcanics                          | imonite fractures and<br>weathered surfaces               | Silicification, minor sericitization locally                                       | 15% M.G., sulphides in veinlets - Py 10%, Cpy 5% rimming<br>Py., tr. Sph., Tet.                                               |
| 148902    |                                                                       | Silicified fetsic volcanics                          | limonite fractures and weathered surfaces                 | Silicification including qtz eyes                                                  | 2% F.G., disseminated and clustered sulphides - mainly Py.                                                                    |
| 148903    |                                                                       | Silicified felsic volcanics                          | imonite fractures and<br>weathered surfaces               | Silicification, chloritization                                                     | 2% F.G., disseminated and clustered sulphides - mainly Py., rare<br>C.G., blebs Cpy.                                          |
| 148904    |                                                                       | Silicified felsic volcanics                          | limonite fractures and                                    | Silicification chloritization                                                      | 2% F.G., disseminated and clustered sulphides - mainly Py., rare C.G., blebs Cpy.                                             |
| 140004    | │                                                                     | Massive Sulphides: banded epith.                     | imonite on weathered                                      |                                                                                    |                                                                                                                               |
| 148905    | Min ass with thin banded chert-calcite exhaite contact with voic.     | vein specimen?                                       | surfaces and around boxwork                               | Chloritized silicates; silicification in vein specimen                             | 75% recrystalized sulphides incl. 65% Py., 9% Cpy., 1% Bo                                                                     |
| 148906    | Vein 080/-80N. Coarse and mafic voic frags in gtz-calcite vein mtx    | Qtz vein with v. thin calcite<br>stockwork stringers | imonite fractures and<br>weathered surfaces               | none                                                                               | 1% C.G., Cpy., tr. Tet.?                                                                                                      |
| 148907    |                                                                       | Altered intermediate volcanic                        | limonitic on weathered<br>surfaces                        | Silicification, chloritization, epidotization, minor green chlorite                | 5-10% Py                                                                                                                      |
|           |                                                                       |                                                      | fractures and on weathered                                | Pervasive secification with quartz eyes, hematization,                             | 5% V.F.G., disseminated sulphides (Py. and Cpy.) and 1% M.G.                                                                  |
| 148908    | Altered intermediate volcanic                                         | Altered intermediate volcanic                        | surfaces                                                  | chloritization, sericitization                                                     | Cpy. blebs in chlorite crystals                                                                                               |
| 148909    |                                                                       | Attered mafic volcanic                               | surfaces                                                  | local intense blue chloritization, minor silicification                            | 10-30% Py, blebs of 100% c.g. Cpy to 10 cm                                                                                    |
| 148910    | Semi-massive subblides in chloritized mafic-intermediate volcanics    | chloritized mafic-intermediate                       | limonitic on waathered<br>surfaces                        | pervasive chloritization, local epidotization                                      | 50% C.G., re-crystallized Py, with 2% F.G., interstitial Cpy.<br>stringers and occasional V.F.G., Bo                          |
|           |                                                                       | Brecciated, sulphitic felsic                         | limonitic on weathered                                    |                                                                                    | 25% sulphides incl. 20% C.G., recrystalized Py, stringers, 2%                                                                 |
| 148911    | Brecciated, sulphidic felsic volcanic                                 | volcanic                                             | surfaces and fractures                                    | Silicification, chloritzation, epidotzation                                        | 10% subblides incl. 9% E.G., M.G. reconstalized Py in vehillets                                                               |
| 148912    | Silicified vesicular intermediate volcanic                            | volcanic                                             | surfaces and fractures                                    | Silicification, chloritization, epidotization, sericitization                      | and disseminations, 1% F.G., interstitial Cpy, and Bo                                                                         |
| 148913    |                                                                       | Pyritic felsic volcanic                              | limonite along fractures and<br>weathered surfaces        | Silicification, sericitization                                                     | 20% m.g. to f.g sulphides - 15% Py, 4% Cpy, 1% Bo, trace Sph<br>and Gal                                                       |
| 148914    | Attered and dtz veined intermediate volcanic                          | Altered and qtz veined<br>intermediate volcanic      | imonite on weathered<br>surfaces and fractures            | Chloritization, Sericitization of fragments locally rimming gtz veins              | 5% F.G., to M.G., disseminated and blebby suiphides - 4% Py.,<br>0.5% Cpy. as rims, 0.5% Tet. replacing sericitized fragments |
| 148915    | Altered felsic to intermediate volcanics                              | Altered felsic to intermediate<br>volcanics          | heavily limonitic 2 cm. rind<br>and fractures             | Silicification, Sericitization, chloritization                                     | 0.5% F.G., disseminated Py.                                                                                                   |
| 183526    | And first numerous frame                                              | Semi-materive sulphide                               | Calcite and Barite? Exhalite?                             | Silicification Mandahese                                                           | 5-10% Pv. 1% Cov. 1% Sph. Az. Mai, Bo.                                                                                        |
| 183527    | Ano 30-50 cm boudens in tree roots. Cov rich                          | Sulfide veined and brecciated                        | Emonitic weathered surfaces<br>and fractures              | Chloritization, skicification                                                      | 10% suffice veinlets and disseminations - 5% strained and<br>fractured Cpy, rimming and cutting 5% disseminated Py.           |
|           |                                                                       | Semi-massive sulphides in                            | imonita on fractures and                                  |                                                                                    | 40% sulphides - 35% C.G., recrystalized Py, with 5% M.G.                                                                      |
| 183528    | Remob and realized massive sulphide                                   | silicified volcanic                                  | weathered surfaces                                        | Chloritization, silicification                                                     | interstitial or free Cpy.                                                                                                     |
| 183529    | Boulder A: Flat surface, along foliation?                             | Silicified felsic or intermediate                    | imonite on fractures and<br>weathered surfaces            | Chloritization, silicification                                                     | 15% disseminated and blebby sulphides - 12% Py., 3% Cpy.                                                                      |
| 183530    | Channel, across foliation, Late stage qtz vein. Mottled quartz "eyes" | Semi-massive sulphide                                | moderately fresh                                          | Propyllitic and calcitic                                                           | 15% disseminated and blebby sulphides - 12% Py., 3% Cpy.                                                                      |
| 183531    | Select stab of Courish annular FI                                     | Silicified felsic or intermediate                    | limonite on fractures and weathered surfaces              | Chloritization silicification                                                      | 20% F.G., disseminated to C.G., aggregates of sulphides - 15%<br>Pv., 3% Cov., 2% partly weathered Tet.?                      |
| 100501    |                                                                       |                                                      | limonite on weathered                                     | Draw dilla and all all all all and                                                 | 5-20% Discominated Ry or subhadral discominated Cry to 5%                                                                     |
| 103532    |                                                                       | Semi-maseive sulphice                                | sumeces                                                   |                                                                                    | J-20 A Disseminated P.Y. C.Y. Sobredran disseminated opproving                                                                |
| 183533    | mineralized "wallrock"                                                | Altered intermediate volcanic                        | moderately poor                                           | Propylitic, Argilic, and Silicification                                            | 1-2% Py                                                                                                                       |
| 183534    | Mineralized felsic Volcanics                                          | Altered felsic to intermediate<br>volcanics          | moderately fresh                                          | Sericitization, Argillic, Silicification                                           | 2-5% Py                                                                                                                       |
| 183535    | Locally sub conc. At maffic/felsic                                    | Mixed felsic and mafic volcanic                      | moderately fresh                                          | Propyllitic, Sericitization, and Silicification                                    | 5-10% Py and Cpy, Bo                                                                                                          |
| 183536    |                                                                       | Silicified, brecciated and sulphitic<br>volcanic     | imonitic surfaces, fractures<br>and minor boxwork         | Silicification, chloritization                                                     | 20% F.G., disseminated to C.G., aggregates of sulphides -<br>17.5% Py., 2.5% Cpy.                                             |
| 183537    | o.c. min to cover                                                     | Intermediate to mafic volcanic                       | Manganese staining and<br>quartz veining                  | Propylitic alteration and blue f.g. chloritization                                 | C.G. Py and Cpy                                                                                                               |
| 183539    | 50. 004egraat Due 20.40% Du And wijshele = 20.20%                     | Intensely altered intermediate                       | Acid sulphate                                             | Arkanced gratic atteration and alloifostion                                        | Med-CG. Subhedral Py 30-40%, v.f.g. aphanitic Py and sulphata                                                                 |
| 103538    | 30 - 300egrees. Fy = 30-4076, Fy. And supnate = 20-3076               | voicanic                                             | surfaces and sericite along                               |                                                                                    |                                                                                                                               |
| 183539    | Relict feld phyrric altered o.c in drainage path                      | Brecciated Intermediate volcanic                     | fractures                                                 | Chloritization, sericitization                                                     | 5% F.G. to M.G. disseminated to blebby Py.                                                                                    |
| 183540    | Min. zone attitude 305/090                                            | Silicified intermediate volcanic                     | surfaces                                                  | Silicification, chloritization, sericitization                                     | discontinuous wispy bands                                                                                                     |
| 183541    | N. end of Min zone                                                    | Altered intermediate volcanic                        | Limonite, local jarosite                                  | Silicification, Chloritization, Argilic                                            | F.G. to M.G.subhedral to anhedral Py. = 10-20%                                                                                |
| 183542    |                                                                       | Altered felsic to intermediate<br>volcanics          | Moderately fresh, limonite on<br>fractures                | Silicification, Chloritization, and Propylitic                                     | V.F.G. Py., 1-3% Cpy. 5-10%                                                                                                   |
| 183543    |                                                                       | Silicified porphyry with 20%<br>fragments            | Limonitic along fractures,<br>yugs and weathered surfaces | Silicification including qtz eyas, chloritized fragments with<br>sericitized cores | 10% sulphides primarily in chloritized/sericitized fragments - 9% Py., 1% Cpy.                                                |
|           |                                                                       |                                                      |                                                           |                                                                                    |                                                                                                                               |

•

-----

٦

\_\_\_\_

.

## APPENDIX C ROCK CHIP GEOCHEMICAL DATA SHEET - Year 2004 PROJECT: JAS NTS: 092C/080

-----

-

-----

e . . . . . .

3

1

| Sample ID | Location                      | Grid N            | Grid E | Northing | Easting | Rock Type                             | Sample Type                 | Width | Alteration                              | Freshness                             | Mineralization                                                             |
|-----------|-------------------------------|-------------------|--------|----------|---------|---------------------------------------|-----------------------------|-------|-----------------------------------------|---------------------------------------|----------------------------------------------------------------------------|
| 183544    | Upper 4 Mile Creek            |                   |        | 5411261  | 383551  | Porphyritic Amygdaloidal              | Representative Outcrop Chip | 0.6m  | Intense Prop. Chl in<br>amvod. Arg. Sil | Massive Mod Fresh                     | Py +/- Bo, Chi, Epidote - replacing                                        |
| 183545    | Upper 4 Mile Creek<br>Showing |                   |        | 5411261  | 383551  | FG-MG Rhvodacite                      | Representative Outcrop Chip | 1m    | Arg. Intense Sil.                       | Mod. limonite on fract.               | FG Py. And Cpy SHI-03; 183545 MCG<br>Py. And chi. Replacing amyodules      |
| 183546    | Upper 4 Mile Creek<br>Showing |                   |        | 5411234  | 383494  | Alt. Py. JBv And.                     | Representative Outcrop Chip | 1m    | Arg. Prop. Sil. Chl.                    | Mod. Fresh                            | FG Dess Py.+ Cpy. CG subhed Py +<br>Cpy +Bo. Ass with black chlorite clots |
| 183547    | Upper 4 Mile Creek<br>Showing |                   |        | 5411234  | 383494  | Py. JBv And                           | Representative Outcrop Chip | 1m    | Arg. Prop. Chl. As clots                | Mod. Fresh                            | course subhedral Py + Cpy ass w/ black<br>chi. On fractures and as clotts  |
| 183548    | Upper 4 Mile Creek<br>Showing |                   |        | 5411234  | 383494  | Py. JBv And                           | Representative Outcrop Chip | 0.8m  | Intense Sit. Arg. Chl. In<br>mtx        | Avg.Fresh                             | Course Dess. + Fract. Euhedral +VFG<br>foliated Py = 40-50%                |
| 183549    | Upper 4 Mile Creek<br>Showing |                   | L      | 5411199  | 383448  | Py. Rhyodacite                        | Select outcrop grab         | 0.4m  | Intense Sil                             | Weathered, Boxworks,<br>Voids in Vugs | VCG Subhedral Py in Vugs. Voids in Py<br>5-10%, +/- Cpy., Bo.?             |
| 183550    | Upper 4 Mile Creek<br>Showing | waterfall<br>pool | L      | 5411191  | 383433  | Alt. Rhyodacite                       | Representative Outcrop Chip | 1.4m  | Intense Arg., It.green Chl.             | Mod. Lim. And Jaro. In<br>Fract.      | VFG Dess. Py. = 10-20%. Minor Cpy.                                         |
| 183551    | Upper 4 Mile Creek<br>Showing | SH-1<br>location  | ļ      | 5411240  | 383541  | Sulphide stringers                    | Select outcrop grab         | 0,3   |                                         |                                       |                                                                            |
| 183552    | Upper 4 Mile Creek<br>Showing | SH-2<br>location  |        | 5411240  | 383541  | Rhyolite                              | Select outcrop grab         | 1.5   |                                         |                                       |                                                                            |
| 183553    | Upper 4 Mile Creek<br>Showing | SH-3<br>location  | ļ      | 5411240  | 383541  | Andesite                              | Select outcrop grab         | 1.5   |                                         |                                       |                                                                            |
| 185554    | Upper 4 Mile Creek<br>Showing | SH-4<br>location  | L      | 5411215  | 383530  | Vein                                  | Select outcrop grab         | ?     |                                         |                                       |                                                                            |
| 183555    | Upper 4 Mile Creek<br>Showing | SH-5<br>location  |        | 5411215  | 383530  | Vein                                  | Select outcrop grab         | ?     |                                         |                                       |                                                                            |
| 183556    | Upper 4 Mile Creek<br>Showing | SH-6<br>location  |        | 5411240  | 383541  | Sulphide stringers                    | Select outcrop grab         | ?     |                                         |                                       |                                                                            |
| 183557    | Line 4100 East Showing        | 4100              | 5125   | 5411160  | 383970  | JBvr                                  | Select outcrop grab         | ?     | silicification, epidote                 | very gossanous                        | 1-5% Cpy                                                                   |
| 183558    |                               |                   |        |          |         |                                       |                             |       |                                         |                                       |                                                                            |
| 183559    | Line 1850 Outcrop             |                   |        | 5409921  | 383607  | Schist - f.g. sulphides               | Select outcrop grab         | ?     |                                         |                                       |                                                                            |
| 183560    | Line 1850 Outcrop             | 1850              | 1200   | 5409925  | 383700  | Mineralized Schist                    | Select outcrop grab         | ?     |                                         |                                       | f.g. sulphides                                                             |
| 183561    | Camp Creek Outcrop            |                   |        | 5410515  | 383607  | Ferricrete                            | Select outcrop grab         | ?     |                                         | very weathered and gossanous          | sulphidic                                                                  |
| 183562    | South Camp Creek Road         | Creek<br>Road     |        | 5410005  | 383737  | Altered JBVr                          | Select outcrop grab         |       | silica, chlorite                        | weatered                              | 5% Py, Trace Bo. And Cpy.                                                  |
| 183563    | East 4 Mile Creek<br>Showing  | 4250              | 4650   | 5411348  | 383712  | Altered JBVa                          | Select outcrop grab         | 5     | Prop., Gossanous                        | weathered and gossanous               | 1% Py, 1% Cpy., Trace Bo., epidote                                         |
| 183564    | East 4 Mile Creek<br>Showing  | 4200              | 4762   | 5411284  | 383722  | Altered JBVr                          | Select outcrop grab         | 2     | Gossanous, silicification               | weatehered and gossanous              | 2% Py, 1% Cpy.                                                             |
| 183618    | 4 Mile Creek South            | 2800              | 887.5  | 5410800  | 383330  | Sulphitic JBVr (Qtz-<br>Calcite Vein) | Select outcrop grab         |       | silicification, chlorite, calcite       | fresh to weakly gossanous             | 15% Py, 3% Cpy, 1% Bo, Trace Sphal                                         |
| 183632    | 4 Mile Creek South            | 2900              | 912    | 5410910  | 383360  | Hydro-thermal Breccia<br>Vein         | Select outcrop grab         | ?     |                                         |                                       |                                                                            |
| 183637    | Trail Creek Showing           | Creek<br>Showing  |        | 5411530  | 383650  | Sulphitic Rhyolite                    | Select outcrop grab         | ?     |                                         |                                       |                                                                            |
| 183640    | Trail Creek Showing           | Creek<br>Showing  |        | 5411530  | 383650  | Sulphitic Rhyolite                    | Select outcrop grab         | ?     |                                         |                                       |                                                                            |

.....

-

.

.

-

1

.

  APPENDIX ROCK CHII PROJECT:

1

٦

•--

| Sample ID | Comments                                                                                                                                                     | Lithology                                        | Weathering                                            | Alteration                                                                    | Mineralization                                                                              |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|           |                                                                                                                                                              |                                                  |                                                       |                                                                               |                                                                                             |
| 183544    |                                                                                                                                                              | contact with quartz feldspar<br>porphyry         | minor Imonite on weathered<br>surface                 | Silicification, Sericitization, chloritization, hematization (in<br>porphyry) | 10% F.G Py. aggregates mainly in or around chlorite specs; 8%<br>Py., 2% Cp (mainly in QFP) |
| 183545    |                                                                                                                                                              | Rhyodacite F.G. to M.G.                          | moderate limonite on<br>fractures                     | Argillic, intense silicification                                              | F.G. Py, Cpy, and C.G. Py. + Chl. Replacing amygdules                                       |
| 183546    |                                                                                                                                                              | Altered intermediate volcanic                    | Moderately fresh                                      | Argillic, Propylitic, Silicification, and Chloritization                      | F.G. disseminated Py. Cpy. And C.G. Subhedral Py. + Cpy. +<br>Bo. Black chlorite clots      |
| 183547    |                                                                                                                                                              | Altered intermediate volcanic                    | fresh                                                 | Silicification, Sericitization, chloritization                                | 1% F.G., Py. aggregates mainly in or around chlorite specs                                  |
| 183548    |                                                                                                                                                              | Altered intermediate volcanic                    | fresh                                                 | Silicification, Sericitization, chloritization                                | 1% F.G., Py, aggregates mainly in or around chlorite specs                                  |
| 183549    |                                                                                                                                                              | Sillcified porphyry with 20%<br>fragments        | vugs and weathered surfaces<br>with minor boxwork     | Silicification including qtz eyes, chloritized fragments with sulphitic cores | 10% sulphides primarily in chloritized/sericitized fragments -<br>mainly Py.                |
| 183550    | brecciatad zone along fault                                                                                                                                  | Altered felsic to intermediate<br>volcanics      | weathered surfaces with<br>minor boxwork              | Silicification, chloritization, hematization                                  | 3% V.F.G., disseminated sulphides - incl. tarnished Py. or Cpy.                             |
| 183551    |                                                                                                                                                              | Sulphide Stringers                               |                                                       |                                                                               |                                                                                             |
| 183552    |                                                                                                                                                              | Rhyolite                                         |                                                       |                                                                               |                                                                                             |
| 183553    |                                                                                                                                                              | Andesite                                         |                                                       |                                                                               |                                                                                             |
| 185554    |                                                                                                                                                              | Vein                                             |                                                       |                                                                               |                                                                                             |
| 183555    |                                                                                                                                                              | Vein                                             |                                                       |                                                                               |                                                                                             |
| 183556    |                                                                                                                                                              | Sulphide Stringers                               |                                                       |                                                                               |                                                                                             |
| 183557    |                                                                                                                                                              | Silicified felsic to intermediate<br>volcanics   | Limonitic rind on weathered<br>surface 10mm           | Silicification, chloritization, minor sericitization                          | 5% F.G., disseminated sulphides - 3% Py., 2% V.F.G.,<br>intergrown Cpy, and Bo              |
| 183558    |                                                                                                                                                              |                                                  |                                                       |                                                                               |                                                                                             |
| 183559    |                                                                                                                                                              |                                                  |                                                       |                                                                               |                                                                                             |
| 183560    |                                                                                                                                                              | Altered intermediate volcanic                    | Limonite on weathered<br>surfaces                     | Silicification, sericitization, epidotization                                 | 2% V.F.G., disseminated sulphides - 1% Cpy., 1% Tet.?                                       |
| 183561    |                                                                                                                                                              | Altered intermediate volcanic                    | limonite on weathered<br>surfaces and fractures       | Silicification, sericitization, epidotization                                 | 5% F.G., clustered sulphides - 3% Py, rimmed by 1% Cpy, + Bo;<br>1% Tet, wispe?             |
| 183562    | Along roadcut at South Camp Creek Rd.                                                                                                                        | Altered Rhyolite                                 | weathered and gossanous                               | ferricrete, allicification                                                    | sulphides                                                                                   |
| 183563    | Disseminated sulphides in fractures. Blebs of sulphides VFG-CG. Cleavage orientation 240/20. Apparent sub-<br>horizontal Bdg. Veins of Cpy.                  | Altered intermediate volcanic                    | weathered and gossanous                               | epidote, silicification,                                                      | 1% Py. <1%Cpy, trace Bo                                                                     |
| 183564    | Disseminated sulphides appear to be bedded/foliated. Sulphides are concentrated in the foliations. VFG-CG<br>sulphides. Banding is at orientation of 070/75. | Altered felsic volcanic                          | weathered and gossanous                               | silicification                                                                | 2% Py., 1% Cpy.                                                                             |
| 183618    | Cpy and Bo in blebs. Located at 4 Mile Creek south.                                                                                                          | Stringer sulphides in felsic<br>volcanic         | imonitic weathered surfaces                           | Silicification, minor chloritization                                          | 15% sulphides as V.F.G., stringers or M.G., clusters - 10% Py.,<br>3% Cpy., 2% Bo           |
| 183632    |                                                                                                                                                              | Qtz vein with sulphitic chloritized<br>fragments | fresh                                                 | Silicification, chloritization                                                | 5% sulphides mainly in chloritic or rhyolite? fragments - 4% Py.,<br>1% Cpy+Bo              |
| 183637    |                                                                                                                                                              | Altered and sulphitic felsic<br>volcanic         | throughout esp. along<br>fractures                    | Silicification, chloritization, minor malachite                               | 5% sulfide blebs and aggregates - 3% Cpy., 1% Py., 1% B0                                    |
| 183640    |                                                                                                                                                              | Altered and sulphitic felsic volcanic            | limonite along fractures and<br>on weathered surfaces | Silicification, chloritization                                                | 10% suffice stringers - 7.5% fractured Py. cores rimmed by 3%<br>Cpy. and 0.5% Bo           |

----

----

.

1