APPENDIX I DIAMOND DRILL LOGS VOLUME 1 TCU04094 to TCU04100

Geological, Geochemical and Diamond Drilling Report on the Tulsequah Chief Property

N

n

and the second se

Sec. 19

1

Gold Commissioner's Office VANCOUVER, B.C.

Tulsequah River Area Northwestern BC NTS 104K/12

Atlin Mining Division

58°43'N 133°35'W

Owner & Operator: Redfern Resources Ltd. 760 - 777 Hornby Street Vancouver, BC

GEOTOR CELEVAL

P

an or a

Station and

CONTRACTOR OF

Hole-ID: TCU04093

Page: 1

Redfern Resources Ltd. Diamond Drill Log

			Collar C	Coordinates			
North (m):	15374.00	Azimuth (degrees):	160.03	Started:	12/04/2004	Date Logged:	14/04/2004
East (m)	10663.00	Dip (degrees):	-45.64	Completed:	20/04/2004	Logged By:	MA.
Elevation (m):	114.00	Length (m):	386.79			Report Printed:	17/12/2004

Down Hole Survey Tests

Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	n Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	n Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip
0.00	160.03	-45.64	83.31	162.01	-45.41	166.62	162.55	-46.15	249.93	162.54	-46.94	333.25	162.79	-47.43			
3.20	160.30	-44.89	86.51	162.06	-45.43	169.83	162.54	-46.21	253.14	162.61	-46.94	336.45	162.75	-47.47			
6.40	160.38	-44.84	89.72	162.15	-45.44	173.03	162.57	-46.28	256.34	162.68	-46.92	339.66	162.69	-47.54			
9.61	160.35	-44.82	92.92	162.21	-45.46	176.23	162.59	-46.34	259.55	162.73	-46.93	342.86	162.65	-47.62			
12.81	160.39	-44.86	96.13	162.19	-45.48	179.44	162.62	-46.38	262.75	162.71	-46.94	346.06	162.62	-47.67			
16.02	160.43	-44.90	99.33	162.23	-45.48	182.64	162.65	-46.45	265.96	162.69	-46.95	349.27	162.63	-47.74			
19.22	160.45	-44.87	102.53	162.28	-45.48	185.85	162.72	-46.49	269.16	162.69	-46.98	352.47	162.57	-47.80			
22.43	160.48	-44.87	105.74	162.30	-45.51	189.05	162.77	-46.53	272.36	162.69	-47.00	355.68	162.58	-47.84			
25.63	160.54	-44.90	108.94	162.30	-45.53	192.26	162.78	-46.58	275.57	162.71	-47.02	358.88	162.51	-47.87			
28.83	160.62	-44.94	112.15	162.37	-45.55	195.46	162.78	-46.63	278.77	162.74	-47.04	362.09	162.47	-47.90			
32.04	160.71	-44.93	115.35	162.39	-45.56	198.66	162.82	-46.68	281.98	162.73	-47.11	365.29	162.45	-47.93			
35.24	160.85	-44.91	118.56	162.36	-45.60	201.87	162.83	-46.73	285.18	162.75	-47.14	368.49	162.49	-47.97			
38.45	160.94	-44.97	121.76	162.37	-45.61	205.07	162.84	-46.78	288.39	162.76	-47.21	371.70	162.42	-47.98			
41.65	161.06	-44.97	124.96	162.38	-45.64	208.28	162.89	-46.82	291.59	162.74	-47.24	374.90	162.36	-47.95			
44.86	161.12	-44.99	128.17	162.44	-45.68	211.48	162.94	-46.83	294.79	162.74	-47.27						
48.06	161.16	-45.02	131.37	162.47	-45.70	214.69	162.94	-46.86	298.00	162.78	-47.29						
51.26	161.26	-45.05	134.58	162.53	-45.73	217.89	162.93	-46.88	301.20	162.80	-47.31						
54.47	161.31	-45.11	137.78	162.57	-45.77	221.09	162.86	-46.88	304.41	162.72	-47.34						
57.67	161.37	-45.13	140.99	162.56	-45.78	224.30	162.83	-46.83	307.61	162.74	-47.34						
60.88	161.50	-45.18	144.19	162.55	-45.81	227.50	162.81	-46.79	310.82	162.80	-47.34						
64.08	161.57	-45.21	147.39	162.53	-45.86	230.71	162.72	-46.74	314.02	162.85	-47.31						
67.29	161.61	-45.23	150.60	162.49	-45.92	233.91	162.67	-46.77	317.22	162.86	-47.28						
70.49	161.74	-45.26	153.80	162.49	-45.98	237.12	162.67	-46.78	320.43	162.83	-47.33						
73.69	161.78	-45.29	157.01	162.52	-46.01	240.32	162.64	-46.82	323.63	162.81	-47.34						
76.90	161.83	-45.33	160.21	162.52	-46.06	243.52	162.60	-46.87	326.84	162.77	-47.37						
80.10	161.94	-45.36	163.42	162.52	-46.09	246.73	162.52	-46.92	330.04	162.81	-47.40						

/F			Redfern Resources Ltd.							Hole-	ID: TC	U040
l (A			Diamond Drill Log									Faye
			Lithology Description									
Interval	(m)	Description	· ·	Sample	From	To	Interval	Au	Ag	Cu	Pb	Zn
From	To			INO.	(m)	(m)	(m)	g/t	g/t		70	70
0.00	10.75	Rhyolite Flow Breccia:										
		Grey to light purple, abundant feldspar crystals. Minor	chl/epidote/qtz fractures, rare jasper.									
		Broken to 1.14 m, blast shatter? No casing. Lower co	ntact marked by fault. Immediately below									
		fault rare lapilli present.										
		2.15 2.75 Rhyolite Flow Breccia: Jasper; Broken Ja	sper 10 degreesTCA									
		10.25 10.75 Fault: Carb, chl, pyro on fractures surface	ces, sub parallel TCA									
10.75	32.30	Rhvolite Debris Flow: Jasper										
		Mottled rhyolite. Dark green with pale clasts. Lapilli v	ary from 0.5 to 10cm. Calcite on rare									
		fractures, minor chl. Jaspery intervals. Lower contac	t sharp.									
		14.62 18.10 Fault: Broken ground and minor gouge,	carbonate on fractues									
		18.10 20.55 Rhyolite Debris Flow: Abundant lapilli, 2	-3 cm along long axis									
		20.55 21.03 Rhyolite Debris Flow: Well developed be	edding, 35 degrees TCA									
		24.80 32.30 Rhyolite Debris Flow: Bleached; Bleach	ed zone, obscures lapilli, -possible hidden									
		contact? End of bleached zone is sharp at 3	2.3									
32.30	72.85	Rhyolite Flow:										
		Abundant white feldspars in a massive grey to purple	groundmass. Lower contact obscure, lost in									
		increase in chl alt'n?										
		32.30 35.05 Rhyolite Flow: Epidote stockwork, flow t	op?									
		39.40 39.75 Rhyolite Flow: Basalt Dyke										
		42.25 43.00 Rhyolite Flow: Bleached; Bleached zone	e, possible mega clast									
		44.47 45.72 Basalt Intrusive: Basalt dyke, main HW	contact sharp, 45 degrees TCA, minor									
		58 01 61 40 Basalt Intrusive: Basalt Dyke, HW 16 de	agrees TCA wayy FW sharp 70 degrees TCA									
		71 85 72 85 Basalt Intrusive: Basalt dyke with rhyoli	e venoliths HW sharp planar 25 degrees									
		TCA, LC obscure grades with alt'n.										
70 95	0E 00	Revelite Flow Process: Chlorite										
12.00	00.20	Rhyolite Flow Dieccia. Chiofite										

F		Redfern Resources Ltd.							Hole-	ID: TC	U04093
14		Diamond Drill Log									Page: 3
		Lithology Description									
Interva	al (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		82.82 83.80 Fault Zone: Broken fault zone, carb and chl of fractures, fit 25 degrees TCA									
85.20	167.90	Feldspar-phyric Basalt Intrusive: Chlorite; Magnetite									
		Gabbro. Massive fine to med grained mafic intrusive. Interlocking crystals noted locally.									
		Magnetic, Rare qtz vein. Lower contact sharp, 15 degress TCA with sub parallel fracturing.									
		109.37 112.62 Fault Zone: Flt zone, minor healed gouge, flt plane defined by carb and hem shears									
		5-30 degrees TCA, rake appear to be 2 degrees TCA, sense of motion uphole, right lateral									÷
		131.00 131.30 Fault Zone: Fit zone, minor gouge and carb, 25 degrees TCA									
		140.60 141.21 Fault Zone: Bleached: Carbonate: Magnetite: carb and magnetite. 25 degrees TCA									
		150.74 167.34 Broken Core: Carbonate; Chlorite; Broken ground, fractures 0-45 degrees TCA, no well									
		developed gouge									
		165.47 165.75 Feldspar-phyric Basalt Intrusive: Carbonate Breccia									
67.90	168.62	Quartz-Feldspar Porphyry Dyke: Pyrite; Carbonate									
		Minor rounded qtz eyes, 1-2 mm with dark feldspar laths in a chl matix. Locally pyritic with 0.5									
		to 3mm cubes, minor carbonate, lower contact sharp, 50 degrees TCA									
68.62	207.94	Feldspar-phyric Basalt Intrusive: Chlorite									
		Similar to above, minor white qtz, carb veins 2-50 mm wide 30-90 degrees TCA. 50 cm alt'n halo at									
		LC, lower contact sharp, 40 degrees TCA									
		177.40 177.60 Fault: v. thin carb and chl gouge, 15 degrees TCA									
207.94	209.35	Sloko Rhyolite Dyke:									
		Grey to pale green dyke, well developed flow banding at hanging wall 35 degrees TCA, glassy. Lower									
		contact sharp, 55 degrees TCA									
09.35	219.00	Feldspar-phyric Basalt Intrusive: Magnetite									
		Gabbro, similar to above with abundant magnetite at HW. Locally broken with carb in fractures.									
		Lower contact faulted, 40 degrees TCA									
19.00	235.50	Fault Zone: Carbonate; Chlorite									

		-			~
	- 4				
	- THE -	. series	in in i	÷	
· · /	· · ·				
			1000		
- 61		1.13			
					÷.
- 2		100		- C	
- 126	100				
	- 22		- i -		

Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04093 Page: 4

Interva	al (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From	To		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		Dominately carb and chl altered rhyolite with slivers of gabbro included. Main fit plane appears						·			
		to be 0-10 degrees TCA. Lower contact gradational as breakage decreases									
235.50	237.18	Rhyolite Debris Flow: Bleached									
		Bleached grey rhyolite with faint clasts/lapilli. Clasts are heterolithic, rhyolite and jasper, broken locally.									
237.18	241.00	Feldspar-phyric Basalt Intrusive: Chlorite; Magnetite; Carbonate									
	- 1	Chl altered Fine grained gabbro with carb and chl stingers along core axis. Lower contact is									
		gradational, possible 30cm zone of chl darkened rhyolite at FW of gabbro									
241.00	282.62	Rhyolite Debris Flow: Chlorite									
		Chl altered RDF, clasts and lapilli generally 2-20 cm with rare mega-block. Chl alt'n strongest at	3501	281.62	282.6	2 1.00	0.03	0.00	0.00	0.00	0.00
		HW contact, pervassive, decreasing with depth. Minor chl stringers noted 0-90 degrees TCA. Larger									
		clasts are bleached or unaltered. Lower contact sharp, marked by change from Chl to Ser alt'n, 30 degrees TCA									
		278.20 280.07 Rhyolite Debris Flow: Mega clast? White rhyolite with v coarse qtz eyes, minor resorbing and margins									
282 62	285.98	Zinc Facies Massive Sulphide									
202.02	200.00	Qtz-ser-by zone. Abundant fine to coarse by with cby. Sulphides may be clasts. ~15% by	3502	282.62	283.6	2 1.00	1.83	50.00	0.57	0.50	3.50
		throughout. Local atz and pumice clasts, flattened. Lower contact sharp, marked by increase in	3503	283.62	284.6	2 1.00	0.99	22.00	0.33	0.49	3.50
		sulphides	3504	284.62	285.2	5 0.63	4.53	296.00	1.11	0.26	2.41
		282.62 282.85 Rhyolite Lapilli Tuff: str ser with minor cord, foliation 25 degrees TCA	3505	285.25	285.9	8 0.73	0.92	21.70	0.45	0.18	1.29
		282.85 283.84 Rhyolite Lapilli Tuff: sulphide rich debris qtz, py, cpy, arg clasts							·		
		283.84 284.07 Rhyolite Lapilli Tuff: qtz lapilli rich zone, with squashed pumice clasts									
		284.07 286.02 Rhyolite Lapilli Tuff: Sericite; ser alt'n with dissem py and cpy									
285.98	288.10	Zinc Facies Massive Sulphide:									
		Semi massive to massive sulphide. Py and sphal in bands- primary. Cpy as minor clots. Gangue	3506	285.98	286.4	8 0.50	2.16	70.00	0.51	1.29	9.22
		minerals include sericite and barite. Py 0.5-3 mm, sphal vfg, cpy clotty.	3507	286.48	286.9	8 0.50	2.75	98.00	0.90	1.65	13.10
		287.14 287.37 Zinc Facies Massive Sulphide: Possible fold nose, axis 30 degrees TCA, may be a	3508	286.98	287.4	8 0.50	7.21	82.00	0.57	1.92	20.00

P

Contract of the

Redfern Resources Ltd. Diamond Drill Log Lithology Description

Address of the second se

Hole-ID: TCU04093 Page: 5 ALC: NO.

Interva	al (m)	Description	Sample	From	To In	terval	Au	Ag	Cu	Pb	Zn
From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		sedimentary structure.	3509	287.48	288.10	0.62	3.62	126.00	1.14	1.84	9.22
288.10	291.30	Rhyolite Lapilli Tuff:									
		Rounded qtz clasts welded with ser and py. Local flattened dark masses interpretted to be	3510	288.10	289.10	1.00	0.12	9.10	0.03	0.72	1.20
		flattened pumice clasts. 2-3% total sulphides, py 1-2%, 0.5-1% sphal, tr-0.5% gal. Gradual	3511	289.10	290.10	1.00	0.08	0.00	0.00	0.00	0.00
		decrease in QSP alt'n with depth.	3513	290.10	291.30	1.20	0.03	0.00	0.00	0.00	0.00
		290.50 290.65 Basalt Intrusive: Basalt dyke, clotty py noted, upper contact 50 degrees TCA, lower contact sharp, smooth 45 degrees TCA									
291.30	294.00	Feldspar-phyric Rhyolite Flow: Chlorite									
		Light purple glassy rhyolite with abundant white feldspars. Wk chl alt'n along fractures, with	3514	291.30	292.30	1.00	0.07	0.00	0.00	0.00	0.00
		trace py. Lower contact subtle, marked by first definative clast.	3515	292.30	293.30	1.00	0.76	0.00	0.00	0.00	0.00
			3516	293.30	294.00	0.70	0.03	0.00	0.00	0.00	0.00
294.00	295.30	Rhyolite Debris Flow: Sericite									
		Sulphide bearing RDF. 2-5% py dissem and as clasts. Heterolithic debris, rhyolite, py clasts	3517	294.00	294.55	0.55	0.03	0.00	0.00	0.00	0.00
		noted. 0.5% sphal, tr cpy, wk patch ser alt'n. Lower contact marked by increased sulphides, noticably a 5 cm py clast	3519	294.55	295.30	0.75	0.45	6.70	0.22	0.20	1.03
295.30	297.50	Copper Facies:									
		Copper Facies MSSX. Fine grained banded/bedded py and cpy. 80% sulphides throughout interval.	3520	295.30	295.80	0.50	2.81	62.00	2.42	0.28	5.00
		8-10% cpy. Banding 55 degrees TCA with some soft sediment deformation noted. Lower contact	3521	295.80	296.30	0.50	4.71	100.00	2.72	1.68	13.90
		mechanically broken.	3522	296.30	296.80	0.50	2.20	96.00	2.64	3.64	16.00
		295.30 295.60 Copper Facies: debris facies py and qtz clast to 5 cm. Py is noticably coarser close to HW	3523	296.80	297.50	0.70	1.63	52.00	1.44	1.12	21.10
297.50	302.86	Stockwork: Sericite									
		Rhyolite Stockwork zone. Py in stringers and fractures with local ser alt'n, py generally fine	3525	297.50	298.50	1.00	0.08	0.00	0.00	0.00	0.00
		grained, <2mm. Possible fold at 298.45m, axis 30 degrees TCA. Lower contact marked by decreased alt'n	3526	298.50	299.90	1.40	0.25	0.00	0.00	0.00	0.00
		298.45 298.45 Stockwork: possible fold 30 degrees TCA									
		299 35 299 55 Quartz Vein: atz-chl barite vein HW irregular 65 degrees TCA. FW sharp intrusive									

1		Redfern Resources Ltd. Diamond Drill Log							Hole-I	ID: TCI	J04093 Page: 6
From	i (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		50 degrees TCA 299.55 299.89 Basalt Intrusive: Chlorite; Basalt dyke, chl att'd. LC 50 degrees TCA									
02.86	303.55	Basalt Hyaloclastite: Leucoxene									
		Basalt Hyaloclastite. Ghostly cuspate clasts in dark grey matrixTim's EA? Clasts are highly									
		siliceous. Minor Leucoxene and dissem py. Lower contact marked by end of txt at the edge of a									
		large rhyolite clast									
03.55	315.10	Stockwork: Leucoxene									
		Rhyolite Stockwork. RDF, local large clasts noted. Sulphide minerals noted, red to blonde sphal,									
		minor gai, and py. Local ser and leuc alth. Pale to dark grey throughout. Lower contact									
		mechanically broken									
		avneum on fit plane									
		313 83 314 20 Chert: Banded chert Exhalite? Bands 60 degrees TCA minor by and sphal									
		orocoorrazo onone. Banada onone. Exhance, Banad oo dogrood rox minor py ana ophar									
315.10	318.00	Quartz-Sericite-Pyrite Alteration: Leucoxene									
		QSP, almost complete replacement by dark brownish green waxy sericite. Mod dissem py, 2%, trace									
		red sphal and leucoxene, rare unaltered clasts noted.									
		315.15 316.26 Broken Core: Rubbly, fractures along fol, 15 degrees TCA									
		316.69 317.09 Quartz-Sericite-Pyrite Alteration: Bleached; Bleached zone? unaltered clast? pale									
		creamy beige zone appears to be partially altered, py cubes to 5 mm noted at core of									
		zone									
318.00	352.94	Stockwork: Sericite; Silica									
		Str silc'd pale grey to dark grey rhyolite. Local sericite altered patches. Ghostly lapilli noted									
		locally, hetrolithic, rhyolite and arg (?) shards with possible basalt clasts. Stockwork sulphides									
		dominantly vfg py with minor red sphal. Lower contact marked by first definative amygudules									
		342.30 342.70 Broken Core: Mechanical rubble									
		343.38 350.25 Quartz Vein: Veined zone, 1-30 cm qtz-chl veins, locally with py, sphal and gal.									
		Wormy, generally >70 degrees TCA, rarely 45 degrees TCA									

r	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-	ID: TC	U04093 Page: 7
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
352.94 386.79	Feldspar-phyric Basalt Flow: Silica Str Silc'd Basalt Footwall. Dark grey. rare qtz and py filled amygdules noted locally, generally <10mm and somwhat flattened. Interval is part of the stockwork zone. Pyrite is the dominant sulphide with minor red sphal.									

357.36 358.30 Basalt Intrusive: Chlorite; Broken chl alt'd basalt dyke. HW 50 degrees TCA, FW 60 degrees TCA, coarse py cubes and minor qtz veins noted locally.

369.02 369.02 Feldspar-phyric Basalt Flow: Rhyolite clast?

384.75 386.79 Basalt Intrusive: Chlorite; Chl alt's basalt dyke, pyritic chill margin at HW

contact approx 50 cm thick. HW 15 degrees TCA.

386.79 386.79 End of Hole:

÷.,		1.1			
1	T	10	i i i i	W.	.
ſ	1			5	7
Į					

Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04093 Page: 8A

Assays

And Control of State

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	AI %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3501	281.62	282.62	1.00	0.03	0.00	0.00	0.00	0.00	0.00	29	30	182	0	0.3	5	1.52	690	5	0.54	1	6
3502	282.62	283.62	1.00	1.83	50.00	0.57	0.50	3.50	3.61	5560	4989	10000	0	30.0	25	0.65	15	5	0.35	114	7
3503	283.62	284.62	1.00	0.99	22.00	0.33	0.49	3.50	2.93	3256	4872	10000	0	20.7	110	0.43	10	5	0.41	120	7
3504	284.62	285.25	0.63	4.53	296.00	1.11	0.26	2.41	2.72	10000	2674	10000	0	30.0	2355	0.56	30	5	0.59	62	5
3505	285.25	285.98	0.73	0.92	21.70	0.45	0.18	1.29	2.68	4337	1830	10000	0	21.4	100	1.63	30	5	0.93	63	13
3506	285.98	286.48	0.50	2.16	70.00	0.51	1.29	9.22	2.98	4897	10000	10000	0	30.0	890	0.25	5	5	0.25	359	9
3507	286.48	286.98	0.50	2.75	98.00	0.90	1.65	13.10	3.10	8569	10000	10000	· 0	30.0	860	0.24	5	5	0.19	528	8
3508	286.98	287.48	0.50	7.21	82.00	0.57	1.92	20.00	3.42	5695	10000	10000	0	30.0	865	0.13	20	5	0.09	893	12
3509	287.48	288.10	0.62	3.62	126.00	1.14	1.84	9.22	3.30	10000	10000	10000	0	30.0	2500	0.34	30	5	0.18	394	11
3510	288.10	289.10	1.00	0.12	9.10	0.03	0.72	1.20	2.61	305	7789	10000	0	8.9	75	0.21	35	5	0.08	114	3
3511	289.10	290.10	1.00	0.08	0.00	0.00	0.00	0.00	0.00	46	458	1089	0	1.2	35	0.48	110	5	0.17	4	3
3513	290.10	291.30	1.20	0.03	0.00	0.00	0.00	0.00	0.00	98	96	382	0	0.8	20	1.44	215	5	0.34	1	10
3514	291.30	292.30	1.00	0.07	0.00	0.00	0.00	0.00	0.00	26	24	98	0	0.7	10	0.35	90	5	0.26	1	4
3515	292.30	293.30	1.00	0.76	0.00	0.00	0.00	0.00	0.00	17	20	54	0	0.4	15	0.23	60	5	0.34	1	4
3516	293.30	294.00	0.70	0.03	0.00	0.00	0.00	0.00	0.00	18	20	54	0	0.3	10	0.18	60	5	0.19	1	5
3517	294.00	294.55	0.55	0.03	0.00	0.00	0.00	0.00	0.00	20	30	99	0	0.5	10	0.64	60	5	0.37	23	5
3519	294.55	295.30	0.75	0.45	6.70	0.22	0.20	1.03	2.65	2120	2031	10000	0	6.9	25	0.82	15	5	0.22	43	7
3520	295.30	295.80	0.50	2.81	62.00	2.42	0.28	5.00	3.47	10000	2642	10000	0	30.0	1370	0.79	20	5	0.20	154	11
3521	295.80	296.30	0.50	4.71	100.00	2.72	1.68	13.90	3.86	10000	10000	10000	0	30.0	2130	0.34	15	5	0.26	639	9
3522	296.30	296.80	0.50	2.20	96.00	2.64	3.64	16.00	3.80	10000	10000	10000	0	30.0	1495	0.13	45	5	0.16	946	9
3523	296.80	297.50	0.70	1.63	52.00	1.44	1.12	21.10	3.94	10000	10000	10000	0	30.0	780	0.07	5	5	0.04	1000	2
3525	297.50	298.50	1.00	0.08	0.00	0.00	0.00	0.00	0.00	65	66	1420	0	0.5	60	0.21	25	5	0.10	6	4
3526	298,50	299.90	1.40	0.25	0.00	0.00	0.00	0.00	0.00	80	52	193	0	0.8	135	1.86	30	5	2.62	1	17

P

.

Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04093 Page: 8B

Λ		
neean	e r(ntiniioa
A33av	3	JIIIIIUEU

Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm	
3501	281.62	282.62	2 1.00	49	1.54	10	1.16	352		0.06		230	5	20	129	0.04	10	- 1	10	4	
3502	282.62	283.62	2 1.00	53	4.99	10	0.56	80	1	0.02	1	340	5	20	49	0.01	10	1	10	3	
3503	283.62	284.62	2 1.00	48	4.50	10	0.33	23	1	0.01	1	290	45	20	52	0.01	10	1	10	3	
3504	284.62	285.25	5 0.63	33	2.95	10	0.37	48	1	0.02	2	400	1820	20	34	0.01	10	1	10	3	
3505	285.25	285.98	3 0.73	107	3.84	10	1.09	208	1	0.08	40	860	75	20	69	0.06	10	13	10	5	
3506	285.98	286.48	3 0.50	80	8.66	20	0.18	1	1	0.01	1	410	415	20	26	0.01	10	1	10	5	
3507	286.48	286.98	3 0.50	69	8.21	10	0.17	1	1	0.01	1	590	255	20	1	0.01	10	1	10	2	
3508	286.98	287.48	3 0.50	93	10.00	20	0.18	1	1	0.01	1	360	165	20	26	0.01	10	2	10	7	
3509	287.48	288.10	0.62	84	10.00	20	0.34	1	1	0.01	1	690	260	20	42	0.01	10	2	10	5	
3510	288. 10	289.10	0 1.00	79	1.22	10	0.09	22	1	0.01	8	50	10	20	10	0.01	10	1	10	3	
3511	289.10	290.10	0 1.00	63	0.93	10	0.26	59	9	0.03	4	110	5	20	16	0.01	10	1	10	3	
3513	290.10	291.30) 1.20	78	1.89	10	1.27	333	3	0.06	13	260	5	20	24	0.04	10	35	10	4	
3514	291.30	292.30) 1.00	89	1.35	10	0.19	99	3	0.04	4	120	5	20	9	0.01	10	2	10	2	
3515	292.30	293.30) 1.00	91	1.35	10	0.19	116	3	0.05	5	160	5	20	10	0.02	10	1	10	4	
3516	293.30	294.00	0.70	94	1.40	10	0.13	88	3	0.05	4	150	5	20	8	0.02	10	1	10	4	
3517	294.00	294.55	5 0.55	65	1.52	10	0.44	170	2	0.06	9	200	5	20	19	0.02	10	1	10	5	
3519	294.55	295.30	0.75	62	4.27	10	0.59	110	1	0.05	1	260	5	20	18	0.01	10	1	10	3	
3520	295.30	295.80	0.50	99	10.00	40	1.02	1	1	0.03	1	730	70	20	17	0.01	10	3	10	4	
3521	295.80	296.30	0.50	64	10.00	20	0.51	1	1	0.01	1	1000	160	20	31	0.01	10	2	10	3	
3522	296.30	296.80	0.50	64	10.00	10	0,13	1	1	0.01	1	1590	100	20	57	0.01	10	1	10	5	
3523	296.80	297.50	0.70	48	6.42	10	0.08	1	1	0.01	1	520	320	20	37	0.01	10	6	10	1	
3525	297.50	298.50	0 1.00	40	1.97	10	0.05	1	2	0.01	2	60	5	20	8	0.01	10	1	10	2	
3526	298.50	299.90	0 1.40	290	4.39	10	1.59	159	2	0.04	112	460	15	20	250	0.04	10	31	10	4	

(Redfo Di	ern Re amon	esourc d Drill	es Lt Log	d.					Hole-ID	Page:
					•			С	ollar C	oordina	ates				· · · · · · · · · · · · · · · · · · ·			· · · ·
Norti East Eleva	n (m (m) atior): (m) :		15374.00 10663.00 114.00	4 [zimuth (d Dip (degre .ength (m)	legrees): es):):	16 -68 432	7.83 3.37 2.52	Started Compl	d: leted:		21/04/20 29/04/20	004 004	Date Log Logged B Report Pi	ged: ly: rinted:	2 1 	29/04/2004 MA./ RGC. 17/12/2004
								Dow	n Hole	Survey	y Test	S						
Dep (n	oth 1)	Azimuth	n Dip	Depth (m)	Azimuti	n Dip	Depth (m)	Azimut	h Dip	Depth (m)	Azimuth	n Dip	Depth (m)	Azimuth	n Dip	Depth (m)	Azimuti	h Dip
0.	00	167.83	-68.37	77.04	170.16	-68.73	154.08	173.32	-68.42	231.11	175.85	-69.01	308.15	176.96	-69.37	385.19	176.81	-69.49
2.	96	167.77	-68.37	80.00	170.21	-68.75	157.04	173.55	-68.50	234.08	175.91	-69.03	311.12	177.01	-69.38	388.15	176.80	-69.51
5.	93	167.82	-68.40	82.96	170.31	-68.73	160.00	173.84	-68.48	237.04	175.99	-69.03	314.08	177.07	-69.38	391.12	176.77	-69.52
8.	89	167.96	-68.45	85.93	170.35	-68.75	162.97	174.17	-68.46	240.00	176.05	-69.04	317.04	177.16	-69.35	394.08	176.77	-69.54
11.	85	167.90	-68.46	88.89	170.57	-68.73	165.93	174.40	-68.44	242.97	176.11	-69.05	320.00	177.24	-69.36	397.04	176.77	-69.53
14.	82	167.82	-68.52	91.85	170.84	-68.70	168.89	174.59	-68.43	245.93	176.11	-69.06	322.97	177.21	-69.40	400.01	176.76	-69.52
17.	78	167.73	-68.58	94.82	171.07	-68.68	171.85	174.68	-68.49	248.89	176.18	-69.09	325.93	177.22	-69.40	402.97	176.81	-69.52
20.	74	167.51	-68.66	97.78	171.18	-68.67	174.82	174.78	-68.52	251.86	176.26	-69.09	328.89	177.26	-69.38	405.93	176.86	-69.51
23.	70	167.45	-68.71	100.74	171.32	-68.61	177.78	174.69	-68.58	254.82	176.31	-69.13	331.86	177.23	-69.41	408.89	176.76	-69.54
26.	67	167.40	-68.75	103.71	171.45	-68.58	180.74	174.63	-68.60	257.78	176.31	-69.14	334.82	177.15	-69.42	411.86	176.62	-69.60
29.	63	167.49	-68.76	106.67	171.51	-68.57	183.71	174.56	-68.62	260.74	176.34	-69.14	337.78	177.19	-69.41	414.82	176.59	-69.65
32.	59	167.68	-68.77	109.63	171.53	-68.54	186.67	174.67	-68.64	263.71	176.50	-69.16	340.75	177.24	-69.45	417.78	176.50	-69.66
35.	56	167.73	-68.77	112.59	171.61	-68.53	189.63	174.73	-68.65	266.67	176.53	-69.20	343.71	177.26	-69.47	420.75	176.41	-69.69
38.	52	167.80	-68.75	115.56	1/1.58	-68.52	192.60	1/4./9	-68.68	269.63	176,55	-69.21	346.67	177.19	-09.00	423.71	170.02	-09.73
41.	48	168.09	-68.74	118.52	171.79	-68.45	195.56	174.93	-68.70	272.60	1/6.65	-69.18	349.63	177.19	-69.55			
44.	45	168.33	-68.73	121.48	171.91	-68.41	198.52	175.05	-08.07	275.56	176.72	-69.17	352.60	177.10	-09.00			
47.	41	168.72	-68.73	124.45	172.01	-68.38	201.48	175.14	-08.07	278.52	170.70	-09.21	300.00	177.05	-09.00			
50.	37	169.08	-68.69	127.41	172.13	-08.30	204.40	175.31	-00.09	201.49	176.03	-09.21	300.02	177 10	-09.52			
53.	33	169.37	-08.04	130.37	172.27	-00.33	207.41	175.40	-00.71	204.40	176.04	-09.21	264.45	177.07	-03.30			
50.	3U 26	109.37	-00.04	130.34	172.31	-00.31	210.37	175.56	-00.70	207.41	177.05	-09.21	367 /1	176.91	-69.50			
59. 62	20 วว	109.70	-00.00	130.30	172.40	-00.30	213.34	175.00	-00.00	200.01	176.95	-69.19	370 38	176.85	-69.52			
02. 65	40	109.90	-00.07	142.20	172.00	-00.40	210.30	175.00	-00.00	200.04	176.07	-69.20	373 34	176.80	-69.51			
00. 60	19 15	170.00	-00.08	142.22	172.09	-00.40	218.20	175.60	-00.09	200.00	177.02	-69.25	376 30	176.82	-69.57			
71	11	170.10	-68 74	140.19	172.00	-68.45	222.23	175 72	-68 98	302.20	177 01	-69.30	379.26	176 79	-69.51			
71.		170.00	69.75	151 14	172.00	60.44	000 45	475 70	00.00	205 10	176.02	60.30	292.20	176 79	60.49			

.

1		Redfern Resources Ltd Diamond Drill Log Lithology Description	•						Hole-	ID: TC	U04094 Page: 2
Interva From	al (m) To	Description	Sampl No.	e From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00	13.25	 Rhyolite Flow Breccia: Jasper Light purplish jaspery rhyolite flow breccia. Wk ep alt'n around fractrures with accessory chl. Trace dissem py. Jasper as clasts and chips, possibly as fracture infill. Local qtz-chl veining noted. 2 generations of veins, white qtz-chl, 45-80 degrees TCA, 0.5-5 cm. Grey qveins. Lower contact sharp, 65 degrees TCA .00 1.32 Rhyolite Flow Breccia: Broken ground, blast shatter 2.84 3.75 Fault Zone: rubble with bleaching, minor carb, chl and py noted. Wk gouge developed 35 degrees TCA 									
13.25	78.20	 Rhyolite Debris Flow: Chlorite Chlorite altered feldspar-rich rhyolite debris flow. Abundant chlorite fractures (autobreccia) to 16.9 m. Abundant feldspar crystals in a green to grey matrix. Clasts give the core a mottled appearance. Clasts between 1 and 30 cm. Flow banding in underlying rhyolite is parallel to lower contact at 25 to 35 degrees. LC is sharp and conformable. 16.95 22.26 Fault Zone: Salmon colored carbonate plus ep and chi on fractures. 0-10 degrees TCA. 15 cm broken gouge noted 55 degrees TCA. Abundant cherty clasts noted through fault zone 			·						
		 28.20 29.70 Basalt Intrusive: Highly magnetic basalt dyke. HW 15 degrees TCA, FW irregular 60 degrees TCA with coarse py at FW 42.37 51.08 Rhyolite Debris Flow: Increased grain size of feldspars. Up to 3mm 51.51 51.51 Rhyolite Debris Flow: Bleached fractures 67.54 69.40 Basalt Intrusive: Chlorite; EP; Qtz-chl veined, chl-ep altered basalt dyke. HW 40 degrees TCA, FW 20 degrees TCA 71.73 72.63 Basalt Intrusive: Chlorite; EP; Porphyritic BIN dyke. Black amphiboles(?) 2-3 mm HW sharp, 50 degrees TCA, FW sharp 40 degrees TCA. Wk chl and ep alt'n at HW 74.75 75.52 Basalt Intrusive: Chlorite; EP; Qtz-veined basalt dyke, chl and ep alt'n with veins, HW 60 degrees TCA 									
78.20	101.30	Feldspar-phyric Rhyolite Flow: Feldspar; Magnetite Massive, homogeneous, feldspar-phyric rhyolite flow. Epidote with chlorite along minor fractures. Overall light purple colour, locally greenish-grey. Noticeably massive compared to overlying									

digita de la

interval. Trace red jasper chips and magnetite clots.

(1		Redfern Resources Ltd. Diamond Drill Log Lithology Description								Hole-	ID: TC	U0409 Page:
Interva From	il (m) To	Description	5	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		 84.65 85.75 Rhyolite Flow: Silica; silc'd zone 88.59 90.30 Broken Core: Chlorite; Carbonate; Broken ground, chl, carb and marchesite coated fractures 0-50 degrees TCA. Lower contact shattered 99.50 100.00 Quartz Vein: 1 cm qtz vein 5 degrees TCA 	1. P.								-	
01.30	113.00	 Rhyolite Flow Breccia: Feldspar Feldspar phyric rhyolite flow breccia. Abundant quartz, chlorite and calcite fracturing. This interval is badly broken. Locally very silicified overprinting or obscuring feldspars. Lower contact is sharp and intrusive at about 50 degrees. 101.30 105.75 Broken Core: Carbonate; SILC; Broken ground fracturing along late carb filled fractures 										
13.00	294.60	 Basalt Intrusive: Chlorite Very massive and homogeneous section of fine-grained mafic intrusive. Locally strongly magnetic. 124.20 124.25 Fault: Well developed gouge 40 degrees TCA 162.00 168.90 FLTZN: Fault Zone. Carbonate and mag veins throughout. Local gouge -carb rich. 20 degrees TCA Minor Mechanical rubble. 186.10 189.10 Basalt Intrusive: Calcite Vein; Zone of narrow (1-2mm) white calcite stringers. Only a few noted, but distinctive in this otherwise monotonous primary interval. 194.10 194.50 Fault Zone: Broken core and minor fault gouge mark a small fault zone. 208.25 210.50 Fault Zone: Calcite Vein; Very minor fault zone marked by 1-5mm drusy calcite stringers and a bit of gouge. Veinlets dip about 10 degrees to core axis. 214.70 217.65 Fault Zone: Calcite Vein; As with the last nested interval, a very minor fault zone with drusy calcite veinlets dipping about 10 degrees. 										
94.60	320.90	Rhyolite Flow Breccia: Chlorite; Feldspar A Medium to dark green section of mottled and chloritic rhyolite flow breccia. This section contains a few scattered fragments of quartz and feldspar phyric rhyolite similar to those seen in the debris flow. Breccia textures are subtle and fragments are same composition as matrix. Pervasive chlorite gives the section a distinct green-grey colour. White feldspar crystals(1-3mm; < 1%) are speckled through out, but are unevenly distributed. Lower contact is gradational, marked by a change to a clearly fragmental unit. A few chlorite + epidote + magnetite veinlets are noted.										

			14 a.c.			•
- 1 - 1 Mar				• .		
		-	-	-		
A					2.11	
		P				
	1 C 1		100			122
		<u>-</u>				14
		1.45			1.1	•
		A				
	6 - J			20	÷	
			_			
			1.1			
- ME - 20						
			· ·			
			· ·			
	* 🔤					

Redfern Resources Ltd. Diamond Drill Log Lithology Description

-15

tel Congress Konsultation

> Hole-ID: TCU04094 Page: 4

inter-

Interva From	al (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		315.33 315.50 Slickensides on a fracture plan dipping at 20 degrees.									
320.90	323.40	Rhyolite Debris Flow: Disseminated Pyrite; Disseminated Sphalerite									
		Distinctive fragmental section with rounded fragments of QFP rhyolite ranging from 1 to 10cm.	3527	320.95	322.	45 1.50	0.11	0.00	0.04	0.05	0.26
		Fragments sit in a relatively sulphide rich matrix, with disseminated pyrite at about 1-2% and	3528	322.45	323.	70 1.25	0.06	0.00	0.01	0.02	0.13
		scattered clots of orange brown resinous sphalerite(upto about 0.5cm). One possible massive pyrite									
		fragment is noted at 321.75m (~4cm). Contacts are fairly sharp but irregular. Possible distal									
		equivalent of I zone?									
323.40	345.77	Rhyolite Flow Breccia: Chlorite; Feldspar									
		Same as 294.60 - 320.95.									
		341.80 344.76 Fault: Gouge; Calcite Vein; A narrow (1-2cm) fault is sub-parallel to the core axis.									
		Filled with calcite vein and fault gouge. Wall rocks bleached for 10cm.									
345.77	365.60	Rhyolite Debris Flow: Feldspar, Quartz									
		This section contains distinct fragments of QFP rhylotite. These range in size from 0.5 to 10cm,	3529	364.60	365.	60 1.00	0.15	0.00	0.02	0.02	0.11
		and possibly upto 1.5m if core sections of QFP rhyolite are fragments. Fragments are moderately									
		rounded and unsorted. Within the fragments feldspar crystal phenocrysts are (1-2 mm, 1-5%), and									
		quartz phenocrysts are (<1mm, 1-2%), fragments average ~40%. Matrix is fine grained, mottled and									
		dark grey, contains similar amount and size of feldspar phenocrysts as fragments. Locally contains									
		abundant (2-5%) quartz eyes, typically < 1mm (eg. 353.5 to 355.7m). Lower contact is broken, but									
		looks sharp and conformable.									
		356.24 357.04 Rhyolite Debris Flow: Disseminated Pyrite; DSP; This section is the same as the main									
		interval, but has noticable disseminated and clotty pyrite(5%) and sphalerite(<1%) in									
		the matrix. Upper contact is fairly sharp and conformable at 45deg., lower contact									
		is more gradational.									
365.60	367.29	Zinc Facies Massive Sulphide: Banded Sphalerite; Sericite; Banded Pyrite									
		Moderatly well banded section of mixed sericite and sulphides. Banding dips 45 deg. @ 368.8m; 20	3530	365.60	366.	60 1.00	4.20	56.30	0.72	1.81	6.21
		deg.@371.5m; 20-40 deg.@ 390m; 30 deg.@ 372.5m. Sulphides consist of beige sphaletrite, pyrite and	3531	366.60	367.	29 0.69	1.27	76.50	0.45	1.30	3.52
		galena, mixed together in massive bands up to ~50cm. These larger bands are internally banded on a									
		1-2cm scale and alternate with bands of intenense sericite alteration, in places massive sericite.									
		1-2cm scale and alternate with bands of intenense sericite alteration, in places massive sericite.									

÷			
÷.	ø.	Jan Street Stree	
	6		7
	١.		

Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04094 Page: 5 1994 A

Interva	al (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
-		The upper 2m of the interval is possibly fragmental. Gangue in massive sulphide section is largely barite. Blebby chalcopyrite stringers are sporadic. The interval is cut by a 1.2m sloko dyke as			·						
		noted in the nested table, however there is no indication of faulting. Lower contact is sharp and conformable at 60deg.									
367.29	368.48	Sloko Rhyolite Dyke:									
		Sloko rhyolite dyke. Both contacts are sharp and intrusive. Upper contact @ 40deg.; lower contact @ 40deg. Flow banding at 45deg. Contains a few(<<1%) scattered FX phenocrysts ~ 1mm.	3545	367.29	368.4	8 1.19	0.17	0.50	0.01	0.01	0.04
368.48	373.30	Zinc Facies Massive Sulphide: Banded Sphalerite; Sericite; Banded Pyrite									
		Continuation of 365.6 to 367.29 meters.	3532	368.48	369.5	0 1.02	4.40	74.30	0.82	0.37	2.09
			3533	369.50	370.5	0 1.00	2.08	80.60	0.78	1.28	6.27
			3534	370.50	371.5	0 1.00	1.94	84.20	0.85	3.67	7.82
			3535	371.50	372.5	0 1.00	2.26	88.70	2.96	1.97	10.10
			3536	372.50	373.3	0 0.80	1.74	46.40	1.77	0.71	4.41
373.30	378.00	Zinc Facies Massive Sulphide: Banded Sphalerite; Banded Pyrite; Banded Chalcopyrite									
		This section is true massive sulphides, with total sulphide content ~95% in a gangue of sercite and	3537	373.30	374.3	0 1.00	1.90	130.00	0.75	5.00	14.10
		barite. The interval is distinctly banded, banding dips 30deg. @373.9m; 35deg. @374.6m; 20deg.	3539	374.30	375.3	0 1.00	3.67	86.10	2.71	1.29	8.28
		@376.3m; 35deg.@377.4m. Lower contact is sharp and conformable at 35deg. < Photo>.	3540	375.30	376.3	0 1.00	1.70	84.20	0.78	2.59	22.00
			3541	376.30	377.3	0 1.00	1.93	99.70	3.29	1.74	15.10
			3543	377.30	378.0	0 0.70	1.16	54.30	1.95	1.20	23.10
378.00	386.85	Rhyolite Lapilli Tuff: Magnetite; Chlorite; Jasper									
		Dark grey mottled section of rhyolite(?) lapilli tuff. Magnetite is abundant (5-10%), both	3544	378.00	379.0	0 1.00	1.42	6.00	0.55	0.06	0.76
		pervasive and within very distinct light red patches of jasper which look like they are fragments.									
		These patches are upto ~6cm and are a very distinctive feature of this lithology. Very weak									
		folation at 35deg. Other fragments are pale grey and siliceous. A couple of possible sulphides									
		fragments are noted at 384.37m. The lower contact is gradational and indistinct(over ~1.5m),									
		marked primarly by a colour change to medium gray and the absence of magnetite.									
		380.94 383.59 Basalt Dyke: Fine grained, dark green balsalt dyke with clear sharp intrusive									

contacts. Upper contacts is irregular, lower contact dips ~ 60 deg.

		de la		N.	
	ø	17			•
2	4		A	2	2
		4	2. j	97	
		ġ.			

and the second s

Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04094 Page: 6 STRON (28.12

Interva	al (m)	Description	Samp	le From	То	Interval	Au	Ag	Cu	Pb	Zn
From	То		No.	. (m)	(m)	(m)	g/t	g/t	%	%	%
						-					
386.85	395.30	Rhyolite Flow Breccia: Stringer Pyrite; Sericite									
		Pale beige to grey hetrogeneous section of altered and stockwork breccia. Breccia grades from angular interlocking and fragment supported to rounded and matrix supported towards lower contact. Section is cut by stockwork of thin pyrite stringers (1-5mm; 5%). Lower contact is fairly sharp, marked by loss of breccia into more massive and homogeneous unit. Also colour change to darker slightly brownish grey.									
395.30	400.30	Basalt Flow: Disseminated Pyrite; Sericite Massive, medium to fine grained homogeneous section tentatively identified as a basalt flow. A few possible, but unlikely amygdales noted. Disseminated pyrite is 5%; pale green sericite is 10-15%. Faint brownish tinge possible due to fine grained biotite. Lower contact is gradational over ~1.5m.									
400.30	432.51	Stockwork: Pyrite Vein; Silica Very distinctive pale grey stockwork alteration of an amygdaloidal basalt (andesite?) protolith. Pyrite veins and veinlets range from 1mm to 50mm and form a well developed stockwork. Total pyrite content is 5-15%. Amygdales are locally abundant over 10cm to 3m intervals and range from 1mm to 10mm. Stringers of red sphalerite +/- galena are a rare but dinstincitive feature of this section. Pyrite stockwork seems to decrease towards lower contact and breccia texture becomes more dinstinct.				• •					
432.51	432.51	End of Hole:									

1		7
.		

Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04094 Page: 7A

Assays

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	AI %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
03527	320.95	322.45	1.50	0.11	0.00	0.04	0.05	0.26	2.59	434	460	2362	0	2.0	35	1.29	60	. 5	0.79	12	7
03528	322.45	323.70	1.25	0.06	0.00	0.01	0.02	0.13	2.51	152	218	1323	0	1.2	15	1.26	65	5	0.96	6	6
03529	364.60	365.60	1.00	0.15	0.00	0.02	0.02	0.11	2.64	216	152	1106	0	2.2	10	1.79	100	5	0.41	4	- 7
03530	365.60	366.60	1.00	4.20	56.30	0.72	1.81	6.21	3.11	7048	10000	10000	0	30.0	10	0.53	15	5	0.15	278	5
03531	366.60	367.29	0.69	1.27	76.50	0.45	1.30	3.52	2.77	4332	10000	10000	0	30.0	40	0.56	10	5	0.32	169	6
03532	368.48	369.50	1.02	4.40	74.30	0.82	0.37	2.09	2.91	8015	3518	10000	0	30.0	405	0.39	10	5	0.20	85	7
03533	369.50	370.50	1.00	2.08	80.60	0.78	1.28	6.27	2.94	7792	10000	10000	0	30.0	915	0.41	10	5	0.18	266	7
03534	370.50	371.50	1.00	1.94	84.20	0.85	3.67	7.82	3.24	8326	10000	10000	0	30.0	595	0.52	10	5	0.22	362	8
03535	371.50	372.50	1.00	2.26	88.70	2.96	1.97	10.10	3.53	10000	10000	10000	0	30.0	430	0.38	15	5	0.13	485	11
03536	372.50	373.30	0.80	1.74	46.40	1.77	0.71	4.41	3.26	10000	6888	10000	0	30.0	310	0.56	10	5	0.19	202	10
03537	373.30	374.30	1.00	1.90	130.00	0.75	5.00	14.10	3.54	7461	10000	10000	0	30.0	455	0.40	5	5	0.11	688	11
03539	374.30	375.30	1.00	3.67	86.10	2.71	1.29	8.28	3.47	10000	10000	10000	0	30.0	720	1.09	15	5	0.19	415	12
03540	375.30	376.30	1.00	1.70	84.20	0.78	2.59	22.00	4.09	7569	10000	10000	0	30.0	325	0.20	10	5	0.05	1000	11
03541	376.30	377.30	1.00	1.93	99.70	3.29	1.74	15.10	4.03	10000	10000	10000	0	30.0	690	0.16	20	5	0.19	798	14
03543	377.30	378.00	0.70	1.16	54.30	1.95	1.20	23.10	3.94	10000	10000	10000	0	30.0	265	0.12	15	5	0.37	1000	10
03544	378.00	379.00	1.00	1.42	6.00	0.55	0.06	0.76	2.69	5260	614	7861	0	6.7	40	1.35	25	5	1.00	35	9
03545	367.29	368.48	1.19	0.17	0.50	0.01	0.01	0.04	2.76	72	114	426	0	0.5	5	0.29	190	5	0.14	1	2

P

Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04094 Page: 7B

Assays	con	tinued
--------	-----	--------

Sample No.	From (m)	To l (m)	nterval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm
03527	320.95	322.45	1.50	55	1.72	10	0.44	143	3	0.15	6	210	45	20	65	0.04	10	1	10	5
03528	322.45	323.70	1.25	62	1.40	10	0.32	155	7	0.11	7	190	5	20	63	0.04	10	1	10	5
03529	364.60	365.60	1.00	48	2.12	10	1.41	467	1	0.06	7	220	5	20	38	0.09	10	1	10	4
03530	365.60	366.60	1.00	39	2.25	10	0.53	122	1	0.01	1	280	5	20	63	0.02	10	1	10	2
03531	366.60	367.29	0.69	43	2.43	10	0.47	124	1	0.02	1	250	20	20	53	0.01	10	1	10	2
03532	368.48	369.50	1.02	51	5.78	20	0.41	12	1	0.01	1	220	175	20	25	0.01	10	1	10	2
03533	369.50	370.50	1.00	44	5.68	20	0.46	8	1	0.01	1	330	210	20	26	0.01	10	1	10	2
03534	370.50	371.50	1.00	64	7.29	20	0.65	20	1.	0.01	1	390	80	20	29	0.01	10	1	10	3
03535	371.50	372.50	1.00	71	10.00	30	0.57	1	1	0.01	1	730	70	20	34	0.02	10	· 1	10	4
03536	372.50	373.30	0.80	88	10.00	30	0.70	1	1	0.01	1	460	65	20	19	0.02	10	1	10	1
03537	373.30	374.30	1.00	72	10.00	30	0.62	76	1	0.01	1	300	70	20	21	0.01	10	2	10	4
03539	374.30	375.30	1.00	78	10.00	40	1.55	343	1	0.01	1	670	105	20	24	0.02	10	8	10	1
03540	375.30	376.30	1.00	61	10.00	30	0.41	97	1	0.01	1	170	5	20	50	0.01	10	5	10	2
03541	376.30	377.30	1.00	89	10.00	50	0.29	. 1	1	0.01	1	680	195	20	30	0.02	10	1	10	4
03543	377.30	378.00	0.70	79	10.00	50	0.24	1	1	0.01	1	370	60	20	28	0.01	10	2	10	1
03544	378.00	379.00	1.00	37	4.00	10	0.53	307	1	0.04	4	510	5	20	52	0.07	10	1	10	6
03545	367.29	368.48	1.19	101	0.88	10	0.12	359	5	0.04	5	60	5	20	8	0.01	10	1	10	4

r					Redfe Dia	rn Re mon	esourc d Drill	es Lt Log	d.					Hole-ID:	TCUC Pa
					Co	llar C	oordina	ates							
North (m): East (m) Elevation (m):	15374.00 10663.00 114.00	Azi Diş Lei	imuth (degi o (degrees) ngth (m):	rees): :	170.0 -74.0 495.9	37 55 91	Started Compl	l: eted:		30/04/20 11/05/20	104 105	Date Logg Logged By Report Pri	ed: /: nted:	0	5/05/2 B 7/12/2
					Dowr	Hole	Survey	/ Tests	5						
Depth Azimuth Dip (m)	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	n Dip	Depth (m)	Azimuth	ı Dip
0.00 170.87 -74.65							• • • • • • •								
33.22 169.90 -75.00															
63.70 167.90 -75.00															
94.18 167.00 -75.10															
124.66 168.20 -74.60															
155.14 167.60 -74.30															
185.62 167.00 -75.00															
216.10 166.90 -74.20															
246.58 167.00 -75.20															
277.06 169.60 -75.40															
307.54 165.90 -75.20															
368 50 166 30 .75 40															
398 98 160 10 -75.40															
429 /6 155 90 .75 20															
459 94 157 70 -75 50															
100.04 101.10 910.00															

Contraction of the local division of the loc

- Ø	1.		Redfern Resources Ltd.							Hole-	ID: ICU	J04095
	14	57	Diamond Drill Log								ŀ	Page: 2
			Lithology Description									
	Interva	l (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
	From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
	0.00	20.40	Rhyolite Flow: Magnetite; Hematite									
			A massive fine grained rhyolite flow. From viterous pale mouve grey to a less viterous gray towards									
			ending at about 12m. Quartz veinlets(2-20mm) are common at about 1 per m. sometimes beamitite									
			rich. Minor chlorite - epidote vinlets and clots (1-3mm). Scattered ghost feldspar phenocrysts									
			are mainly in top of the section(3%) but are still vissible in the bottom (<1%). Quartz									
			phenocrysts are scattered through out(<1%). Distinct flow banding is visible at 7.90m, dipping at									
			30deg. <photo 7m="">. Lower contact is broken.</photo>									
	20.40	21.40	Fault Zone:									
			A interval of broken and crushed core and gouge marks a minor fault zone, fault dips at 50deg.									
			Lithology is the same as the lower rhyolite lappili tuff.									
	21.40	75.55	Rhyolite Lapilli Tuff: Magnetite									
			Light grey, pale purple rhyolite lappli tuff with well rounded fragments (0.2-10mm) that are most									
			likely QFP rhyolite flow. The section is unsorted but fragments > 1cm are less than 1% in the top									
			of the section, below 69m many larger fragments occur at 3-4 per m with one large 25cm fragment at									
			1-10mm) A weak fabric is visible at 42 5m dipping at 30deg to the core axis. Calcite veins are									
			vissible at 31.5 and 32.5m, dipping at 50deg, slip plane? unlikley.									
			65.67 65.67 Two 2mm calcite fracture planes 1 cm apart dipping at 8deg.									
			65.77 68.68 Feldspar-phyric Rhyolite Flow: Feldspar phyric rhyolite flow, light gray - faint									
			green. Distinct lower contact at 25deg. <photo>. Upper contact is noted by the</photo>									
			absence of lapilli tuff clasts. Feldspar phenocrysts are 1-2mm and 10-15%. Distinct									
			quartz crystals <1mm are visible.									
			74.85 74.95 Basait Dyke: I nin basait dyke, distinct contacts, upper at 30deg. and lower at 40deg.									
	75.55	85.95	Rhyolite Flow Breccia: Magnetite; Sericite									
			Die 1916 die steue die Aussie die 1916 On Neuersen beseit die beite die besteue effektiene of the mostere									

(7

Redfern Resources Ltd. Diamond Drill Log Lithology Description

6 - F

Hole-ID: TCU04095 Page: 3

Interva	al (m) 	Description	Sample	From	To (m)	Interval	Au a/t	Ag	Cu %	Pb %	Zn %
From	To		NO.	(11)	(11)	(11)	y/t	y/t	70	70	70
		(1-2mm) are visible with the most intense magnetite adjacent to the contacts with basalt dykes and									
		dyklets. Calcite slip plane noted sub-parrallel to the core axis. The lower contact is distinct.									
		76.47 78.00 Basalt Dyke: Magnetite; Sericite; Basalt dyke, motled dark grey to dark gray pale									
		green in colour with the darker areas having dissemated magnetite and clots (1-5mm).									
		The upper contact is irregular containing brecciated rhyotlie debris fragments(mostly									
		altered to epidote) and quartz veins for the the top 2/3rd's of the section. the									
		lower contact is regular and 20deg. the contacts have chlorite - epidote and									
		magnetite veins adjacent, very strongly magnetic.									
		80.60 80.76 Basalt Dyke: Magnetite; Massive basalt dyke, similar to above. Contacts, upper -									
		regular 45deg. lower - regular 45deg.									
		80.98 82.20 Basalt Dyke: Magnetite: Massive basalt dyke, similar to above. Contacts, upper -									
		regular 50deg, lower - regular 35deg.									
		82.91 83.83 Basalt Dyke: Magnetite: Massive basalt dyke, similar to above. Contacts, upper -									
		regular 35deg, lower - regular 50deg.									
	~~~~~										
85.95	92.38	Feldspar-phylic Rhyolite Flow: Magnetite									
		Feldspar phyric rhyolite flow, light gray in colour with sometimes faint purple gray to motied pale									
		bleached gray. The feldspar phenocrysts slowly grade in and out through the section being most									
		concentrated in the middle at about 5%, both the top and bottom 1m sections contain < 1% feldspar									
		phenocrysts. Very fine magnetite is associated with epidote - chlorite veinlets (0.1-1mm, mostly									
		0.3mm) through out the section. Lower contact is marked by the start of a broken fault zone,									
		20deg. plane angle. Adjacent to this contact is an area of localised epidote alteration 20cm									
		thick.									
92.38	98.68	Fault Zone:									
		A 6m fault zone is noted by broken and fractured core, gauge and fault preccia. A fault plane									
		assocatied with 1-3cm thick calcite gauge and breccia dips from 20deg, to sub-parrallel to the core									
		avis. Most of core is cleanly broken into numerous 5-10cm peices, all fractured at 50deg. (joint									
		surface?) The lower contact is noted below the fault dauge.									
98.68	108.07	Rhyolite Lapilli Tuff:									
		Rhyolite lappili tuff, gray faint green in colour. Locally heavily influnced by									

1.1.1	ci cini ci	distant.		
A		منعنية	÷.	
æ	£P			<u> </u>
	<b>W</b> .	100		97
		14.5		
	168			
13				
	. 📾			

2.03

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Marrie Scott

1000000-1000

Hole-ID: TCU04095 Page: 4

From	il (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		brecciation(101.8m) and alteration(104.6, sub parrellel calcite vein with epidote alteration).									
		Large fragments (5-25cm) only present in the top of the section, the bottom consists of all fine									
		fragments <1-2mm with a dominant fabric at 30deg. The top contact gradually becomes less bleached									
		and altered in the 1st m of section. Minor magnetite veinlets and some dissemated magnetite is									
		also present. Lower contact is sharp at 65deg.									
		104.75 107.07 Rhyolite Flow: Magnetite rich rhyolite flow, light purple gray in colour. Upper									
		contact is broad and disrupted by calcite vein alteration over 30cm. Lower contact is conformable at 75deg.									
08.07	131.55	Rhyolite Flow: Magnetite									
		Rhyolite flow alternating between feldspar phyric sections for up to 2m. Magnetite is both									
		disseminated and in veinlets and clots upto 2-3mm associated with chlorite and epidote. The lower									
		contact is irregular with the rhyolite becoming brecciated, bleached and altered with chlorite.									
131.55	313.10	Basalt Intrusive:									
		A massive dark gray green mafic intrusic. The upper contact is distinct but spread out with the									
		upper 4m alterating between homogenous mafic intrusive(5-40cm) and rhyolite fragments(5-40cm)									
		Several large rhyolite xenoliths are also present. Several large magnetite veins upto 1cm dipping									
		at 0-20deg., some with pyrite and pyrrohtite(169.80m and 290.06m) are noted, perhaps sills within									
		the gabbro. This section also contains several minor fault zones indicated by broken and fractured									
		core, dipping at 40deg, 10deg, and 0deg. Lower contact is clear but spread out over 10cm within									
		the locally brecciated top of the rhyolite unit.									
		131.55 135.55 Rhyolite Undifferentiated: Brecciated contact with 5-40cm fragments of rhyolite									
		alternating with 5-40cm sections of homogenous intrusive.									
		139.00 139.50 Fault Zone: Minor fault zone indicated by broken and fractured core, 40deg.									
		142.00 146.50 Rhyolite Undifferentiated: Rhyolite xenoliths intersperced with intrusion, 5-40cm in size.									
		147.00 148.50 Fault Zone: Minor fault zone indicated by broken and fractured core, 10deg, some pyrite minerialisation on fault surfaces.									
		161.80 163.00 Fault Zone: Minor fault zone indictaed by broken and fractured core, sub parallel to									
		180 30 181 40 Fault Zano: Brakan and fractured cara indicate fault zone, fault plane is sub									

	<u> </u>	Redfern Resources Ltd.							Hole-II	): TCU P	)40 age
1 am		Diamond Drill Log									Ū
		Lithology Description									
Interval (r	n)	Description	Sample	From	To	Interval	Au	Ag	Cu	Pb	Zn
From	То		NO.	(m)	(m)	(m)	g/t	gл	%	%	%
		parallel to core axis, slicken slides visible, 10deg.									
		195.81 197.77 Basalt Dyke: Chlorite; Area of patchy 5-10cm pale green - white clots of chlorite									
		atleration <photo>. Sometimes 1-2mm chlorite clots appear almost clast like, but not.</photo>									
		209.87 211.50 Fault Zone: Two parallell faults 60cm apart, each indicated by a 1cm width of fault									
		gougue and no related tractuling between them. The upper fault is sub parallel to the									
		<photo 212m="">.</photo>									
		237.96 238.55 Fault Zone: Minor fault zone, minor broken core and 0.5cm fault gouge, dips 10deg.									
		Small magnetite - chlorite veinlets are adjacent to the bottom of the fault and a									
		20cm magnetite chlorite clot.									
313.10 3	23.80	Rhyolite Flow Breccia: Magnetite									
		A varable hetrogenous rhyolite interval, the top 1m is almost a felsic rhyolite flow but quickly									
		becomes breciated in places with obvious fragments. The bottom is dominated by a blue - grey flow									
		breccia with 30% light grey 2-20cm sub angular lesist magments, the outline of the magment is									
		magnetite and chlorite - magnetite veinlets and clots, 1-10mm. Several basalt dykes cut the bottom									
		of this unit. The lower contact is sharp into a basalt dyke or another part of the gabbro									
		intrusive with locally intense chlorite alteration.									
		314.90 315.15 Basalt Dyke: Basalt dyke, upper contact on a 3mm slip plane of gauge and lower 30deg and irregular.									
		321.22 321.28 Basalt Dyke: Small basalt dyke with both contact regular at 60deg.									
323.80 3	27.37	Basalt Dyke:									
		Massive gabbro intrusive with several 10-20cm rhyolite fragments visible in this section. typical	3546	326.62	327.	37 0.75	0.05	0.00	0.00	0.00	0.0
		gabbro with 2-3mm magnetite veinlets. Lower contact is distinct at 45deg.									
327.37 3	28.13	Zinc Facies Massive Sulphide: Sphalerite									_
		This massive sulfide section is within a debris flow, yellow - green, almost massive resineous	3547	327.37	328.	13 0.76	1.23	0.00	0.00	0.00	0.0
		sphalerite banding is dominant between the rhyolite fragments <photo 327m="">. The bands are at</photo>									
		the solution of the second devices of the solution of the postion. The slopey group									

: .:			
A	1000	Ċ,	•
	Ζ.		
	A	F	
1	int in These		

A CONTRACTOR OF

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

0.000

Hole-ID: TCU04095 Page: 6

Interva	l (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		alteration. Trace chalcopyrite and galena are also present with disseminated pyrite changing from									
		about 5% at the top to 3% fine grained at the bottom. The lower contact is marked by the presence									
		of only trace amounts of sphalerite.									
28.13	328.78	Rhyolite Flow Breccia: Basalt Dyke									
		This is a irregular mixed section with the basalt intrusive contact almost paralleling the section,	3548	328.13	328.	.88 0.75	0.08	0.00	0.00	0.00	0.00
		interweaving and mixing with the rhyolite. The weakly chlorite altered rhyolite fragments are									
		siliceous, and similar to those in the above section.									
328.78	334.93	Rhyolite Flow Breccia: Chlorite									
		A hetrogeonous section changing from strong dark green - gray chlorite alteration sections to light									
		gray breciated felsic fragment sections and weakly flow banded sections. Minor sericite alteration									
		, wispy in places is present with disemianted pyrite (0.5-3mm), leucoxene(1mm) and rare									
		sphalerite. Several minor basalt dykes cut this section. Lower contact is sharp at 60 deg. into									
		basalt with several chlorite - magnetite veinlets.									
		333.60 333.70 Basalt Dyke: Minor basalt dyke, top contact irregular, bottom 30deg.									
		334.65 334.75 Basalt Dyke: Minor basalt dyke, top contact 40 deg. bottom contact 30 deg.									
334.88	349.87	Basalt Dyke: Epidote									
		The top of the basalt dyke has typical character with moderate magnetic character and weak chlorite									
		alteration. The bottom of the section has distinct 4-10cm epidote patches, generally dispersing									
		away from quartz veins, quite pervasive in places.									
349.87	376.42	Rhyolite Flow Breccia: Magnetite									
		Variable rhyolite sequence varing from almost flow dominated with minor fragments to breaciated	3549	375.42	376	.42 1.00	0.03	0.00	0.00	0.00	0.00
		dominated nows. The myolite magnetics are generally 2-room. The colour of the nows in the									
		section changes from weak service sincous pare blue - gray to pare mouve- light green nom									
		here it dukes continue to gut this unit. Chlorite, magnetite veinlete. Lower contact is									
		basalt dykes continue to cut this unit. Chiome - magnetice venilets "Lower conduction									
		355.00.358.10 Resalt Dyke: Minor basalt dyke, for contact irregular, bottom contact 15deg									
		369 10 369 45 Basalt Dyke: Minor basalt dyke, top contact 15 deg, bottom contact 60 deg, irregular									

Ø	199	23.
ſ		/

A CONTRACTOR OF

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04095 Page: 7

Interve	al (m)	Description	Comela	Ero pr	— Та	Intonici	A		<u></u>		
From	To		Sample No.	(m)	10 (m)	(m)	g/t	Ag g/t	%	РD %	∠n %
		369.87 370.04 Basalt Dyke: Minor basalt dyke, irregular.									
376.42	382.48	Zinc Facies Massive Sulphide: Banded Sphalerite									
		Massive banded sphalerite with pyrite, minor chalcopyrite and rare galena <photo 380m="">. Top</photo>	3550	376.42	377.4	2 1.00	0.24	0.00	0.00	0.00	0.00
		contact is conformable with above flow but contains almost no minerialiation until about 20cm into	3551	377.42	378.4	2 1.00	1.30	68.90	0.66	0.85	5.61
		this flow unit where it begins quite intensely with an obvious increase in sericite alteration and	3553	378.42	379.4	2 1.00	1.10	86.2 <b>0</b>	0.62	0.51	3.52
		silicious sub angular fragments 0.5 - 3cm. The sulfide minerialisation dominates this section	3554	379.42	380.4	2 1.00	1.94	64.30	0.69	0.83	3.46
		except for 376.84 - 377.30m where quartz slicification and sericite alteration are dominant.	3555	380.42	381.4	2 1.00	1.21	36.70	0.51	0.67	2.87
		380.20 382.48 Rhyolite Lapilli Tuff: Almost flow breccia with sub rounded 2-20cm siliceous	3556	381.42	382.4	8 1.06	1.64	52.30	1.12	0.83	4.47
		fragments in a coase grained light green chlorite matrix. Many of the fragments are									
		sericite altered with internal sericite and pyrite veinlets. The bottom of the flow									
		is defined by a fine grained sub unit.									
382.48	462.71	Rhyolite Lapilli Tuff: Magnetite; Chlorite									
		A large varable section of rhyolite lapilli tuff with many discrete localized sub sections. Mainly	3557	382.48	383.4	8 1.00	0.03	0.00	0.00	0.00	0.00
		the section is a sequence of lappilli tuff flows/generations generally changing every several									
		metres from fine ash crystal dominated sequences to larger almost brecciated fragment dominated									
		sequences. Intensity of silicification, chlorite and sericite alteration also varies.									
		Disseminated magnetite and chlorite - magnetite veins and clots are persavisive throughout. The									
		local variations in this sequence are described in the nested comments. The lower contact is									
		gradational over 1-2m with the matrix slowly changing and the haloclastic clast becoming obvious.									
		382.48 382.48 Rhyolite Lapilli Tuff: Fine grained gray - green to moltled pale - medium gray									
		lapilli tuff with 3-5% disseminated pyrite. Obvious foliation is present at 50deg.									
		Bottom contact changing into a coaser grained chlorite dominated flow has slicken									
		slides at 50deg.									
		393.05 405.68 Rhyolite Lapilli Tuff: Predominately blue - gray fine grained rhyolite section with									
		medium sericite alteration. Minor hematite spots. Weak folation at 40-50deg.									
		401.55 401.75 Fault Zone: Minor tectonic area with sericite alteration and fractured quartz									
		veinlets, fabric at roughly 45 deg.									
		405.68 407.49 Basalt Dyke: Magnetite; Chlorite; Basalt dyke with dominant chlorite alteration the									
		top of section and locally very intense 10cm wide sericite alteriton near the bottom									
		contact, 40 deg									

#### Redfern Resources Ltd. **Diamond Drill Log** Lithology Description

1 Constantial

Contraction of the

r	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-	D: TC	U04095 Page: 8
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	<ul> <li>407.49 423.24 Rhyolite Lapilli Tuff: Blue gray rhyolite lapilli tuff with mostly angular 2-5mm fragments in a minor chloritic matrix. Felsic fragments dominate the bottom of the section with some local epidote, gradually changing into a finer grained flow.</li> <li>419.90 420.15 Basalt Dyke: Minor basalt dyke.</li> <li>421.50 421.75 Basalt Dyke: Minor basalt dyke.</li> <li>423.24 426.80 Rhyolite Lapilli Tuff: Fine grained dark green - gray chlorite rich rhyolite lapilli tuff with weak foliation at 35-45deg. Rare large pyrite cubes, 3 visible. Sequence grades into a more fragment dominated unit.</li> <li>426.80 435.99 Rhyolite Lapilli Tuff: Dark gray- blue rhyolite lapilli tuff with mainly small 0.5-4cm fragments in a medium grained matrix. Minor epidote veinlets and small garnet alteration spots. Fragments are slightly altered by chlorite. Weak foliation at 45deg. Bottom of seqence grades into matrix dominated sub unit.</li> <li>435.99 438.08 Rhyolite Lapilli Tuff: Blue - gray medium grained rhyolite lapilli tuff foliation/bedding at 50deg. Several fine 0.2-0.5 chlorite - epidote veinlets with trace garnet. The bottom of this sub unit grades in a fragmental sub unit.</li> <li>438.08 445.05 Rhyolite Lapilli Tuff: Pale blue - green weakly chlorite altered large fragment(&lt;1cm) dominated Rhyolite lapilli tuff. The matrix is fine grained light mouve - dark gray. Distinct pink - pale 3-5cm red garnet clots and thin veinlets 2-4mm are present.</li> <li>440.25 440.40 Basalt Dyke: Distinctly irregular contact<photo>, both at 25deg.</photo></li> <li>448.88 449.12 Rhyolite Lapilli Tuff: Possible chill margins so this is either a crystal dominant rhyolite lapilli tuff. Oristint if. Distinct 15-40mm pale gray rounded lapilli tuff fragments, some weakly chlorite - epidote altered in a pale green - dark gray matrix.</li> <li>456.30 462.71 Rhyolite Lapilli Tuff: Pale mauve gray to meduim gray matrix dominant(95%) rhyolite</li> </ul>									
462.71 485.09	Basalt Hyaloclastite: Sericite; Disseminated Sphalerite Basalt/Andesite?, most likley andesite haloclastic flow. the top mouve - gray section is fine grained with 2-3mmx0.5mm brown grey crystal fragments in a pale bule matrix with occasional small sub rounded lithic fragments(3-10mm). The middle section has classic haolclastic texutures <photo< td=""><td>3558</td><td>484.09</td><td>485</td><td>.09 1.00</td><td>0.54</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></photo<>	3558	484.09	485	.09 1.00	0.54	0.00	0.00	0.00	0.00

# P

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04095 Page: 9 And South Street

Interva	l (m)	Description	Sample	From	To Ir	nterval	Au	Ag	Cu	Pb	Zn
From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		476m>. The 10-30cm cream blue - gray angular haloclastic fragments are sericite altered and have									
		1% pyrite internally, the matrix is fine grained with 30 deg. banding visible in places, 1-2%									
		diseminated pyrite also present. Massive sulfide subrounded 1-5cm fragments are predominatly in									
		the middle of the section and are mainly massive pyrite, but some are massive sphalerite with minor									
		chalcopyritre. A sphalerite vein is present at 477.45m <photo 477m="">. The bottom contact is a</photo>									
		fault(most likley 5300 splay), 30cm of fault gauge. Related adjacent serite alteration and									
		bleaching extend 2m into the haloclastic flow, making 25 deg. pyrite banding and clots(1-5%)									
		apparent.									
85.09	485.41	Fault Zone: Sericite									
		5300 splay fault? 30cm of sericite altered fault gouge, some pyrite layers ar visible but no fault	3559	485.09	485.41	0.32	2.26	70.60	0.28	0.16	0.58
		orientaion is visible due the grading nature of the fault gauge.									
85.41	486.51	Zinc Facies Massive Sulphide: Banded Sphalerite; Galena; Chalcopyrite									
		Almost massive banded(~60deg.) sphalerite in places, particually near the top contact, sphalerite	3560	485.41	486.51	1.10	3.06	68.70	0.28	1.03	3.13
		40%, galena 5% <photo 485m="">. Sercite is more dominant in the bottom of the section with 10% pyrite,</photo>									
		5% sphalerite, 3% chalcopyrite, and trace galena. This section is sandwiched within the 5300 fault									
		with the bottom contact being 3cm of minor clay fault gauge with strongly bleached gabbro on the									
		other side.									
			3561	486.51	487.51	1.00	0.93	0.00	0.00	0.00	0.00
86.54	495.91	Basalt Intrusive: Sericite; Chlorite; Magnetite									
		Basalt intrusion, pervasive bleaching within the top 2m and fracturing in the top 0.5m, fault									
		contact. The basalt is mid green - gray with mottled pale green - gray sericite patches and									
		veinlets. Minor 2-3mm chalcopyrite clots are commly associated with chlorite - epidote veinlets.									
		No amvodales are present.									

495.91 495.91 End of Hole:

End of hole, 11th May 2004.



Redfern Resources Ltd. Diamond Drill Log Hole-ID: TCU04095 Page: 10A 

## Assays

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	AI %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3546	326.62	327.37	0.75	0.05	0.00	0.00	0.00	0.00	0.00	29	72	121	0	0.2	5	3.62	485	10	1.63	1	19
3547	327.37	328.13	0.76	1.23	0.00	0.00	0.00	0.00	0.00	484	1362	10000	0	8.6	50	1.88	45	5	0.73	206	27
3548	328.13	328.88	0.75	0.08	0.00	0.00	0.00	0.00	0.00	504	106	287	0	0.5	5	5.24	315	5	3.37	2	15
3549	375.42	376.42	1.00	0.03	0.00	0.00	0.00	0.00	0.00	24	12	63	0	0.2	5	0.82	465	5	1.13	. 1	4
3550	376.42	377.42	1.00	0.24	0.00	0.00	0.00	0.00	0.00	1086	1258	4658	0	8.0	70	0.59	30	5	0.52	22	7
3551	377.42	378.42	1.00	1.30	68.90	0.66	0.85	5.61	2.87	6354	8474	10000	0	30.0	215	0.42	25	5	0.79	278	6
3553	378.42	379.42	1.00	1.10	86.20	0.62	0.51	3.52	2.90	5784	4898	10000	0	30.0	325	0.44	20	5	0.41	206	6
3554	379.42	380.42	1.00	1.94	64.30	0.69	0.83	3.46	2.93	6663	8124	10000	0	30.0	165	0.43	15	5	0.38	175	7
3555	380.42	381.42	1.00	1.21	36.70	0.51	0.67	2.87	3.14	4781	6547	10000	0	28.2	40	0.56	25	5	0.38	142	8
3556	381.42	382.48	1.06	1.64	52.30	1.12	0.83	4.47	2.00	10000	8112	10000	· 0	30.0	70	0.54	60	5	0.73	211	7
3557	382.48	383.48	1.00	0.03	0.00	0.00	0.00	0.00	0.00	103	84	425	0	1.8	30	0.26	25	5	0.93	1	5
3558	484.09	485.09	1.00	0.54	0.00	0.00	0.00	0.00	0.00	178	780	1274	0	16.1	60	0.38	15	5	0.48	6	9
3559	485.09	485.41	0.32	2.26	70.60	0.28	0.16	0.58	2.76	2693	1602	5742	0	30.0	55	1.61	10	5	3.88	36	14
3560	485.41	486.51	1.10	3.06	68.70	0.28	1.03	3.13	2.91	2765	10000	10000	0	30.0	35	0.68	10	5	2.12	192	10
3561	486.51	487.51	1.00	0.93	0.00	0.00	0.00	0.00	0.00	642	370	2897	0	28.8	15	1.13	45	5	2.86	23	12

1.1.1	·		1.1	1. T	
1.1	s.	1	ia.	a de la come	<b>.</b>
4	Γ.	42			
	4	7	1		
	187				
		4	111		
	· 🖀 -		S Y	:	
			1	:	
	1 <b>R</b>		1.5	1	
				:	

## Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04095 Page: 10B COLUMN THE OWNER

## Assays ...continued

Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm
3546	326.62	327.37	0.75	201	2.72	10	1.86	214	3	0.35	75	510	5	20	106	0.12	10	68	10	5
3547	327.37	328.13	0.76	75	3.36	10	0.80	127	1	0.16	13	170	5	20	34	0.03	10	25	10	2
3548	328.13	328.88	0.75	158	1.77	. 10	1.11	144	2	0.47	71	910	5	20	180	0.08	10	66	10	4
3549	375.42	376.42	2 1.00	67	1.26	10	0.62	315	1	0.04	7	200	5	20	31	0.01	10	4	10	6
3550	376.42	377.42	2 1.00	49	3.42	10	0.48	115	1	0.01	2	230	10	20	11	0.01	10	1	10	3
3551	377.42	378.42	1.00	96	5.40	10	0.32	33	-1	0.01	1	300	185	20	21	0.01	10	1	10	2
3553	378.42	379.42	1.00	67	4.97	10	0.38	39	¹ 1 .	0.01	1	290	210	20	27	0.01	10	1	10	3
3554	379.42	380.42	1.00	78	6.52	10	0.37	18	1	0.01	1	420	125	20	18	0.01	10	1	10	3
3555	380.42	381.42	2 1.00	61	7.03	20	0.46	13	1	0.01	1	350	35	20	22	0.01	10	1	10	3
3556	381.42	382.48	3 1.06	68	7.49	10	0.47	23	1	0.01	1	530	50	20	20	0.01	10	1	10	3
3557	382.48	383.48	3 1.00	75	1.83	10	0.13	74	3	0.04	6	120	5	20	44	0.03	10	1	10	8
3558	484.09	485.09	€ 1.00	65	3.46	10	0.16	102	5	0.01	7	320	45	20	12	0.01	10	3	10	4
3559	485.09	485.41	0.32	66	9.84	20	0.41	327	11	0.02	23	330	120	20	18	0.03	10	1	10	8
3560	485.41	486.51	1.10	65	6.80	10	0.59	343	1	0.01	2	420	195	20	23	0.02	10	4	10	6
3561	486.51	487.51	1.00	78	3.74	10	0.81	591	1	0.03	18	770	70	20	53	0.04	10	1	10	17

North (m):         15545.00         Azimuth (degrees):         172.94         Started:         10/05/2004         Date L           East (m)         10596.00         Dip (degrees):         -74.65         Completed:         20/05/2004         Logged           Elevation (m):         114.00         Length (m):         665.68         Report           Down Hole Survey Tests           Depth         Azimuth         Dip         Depth         Azimuth         Dip         Main the ma	
North (m):         15545.00         Azimuth (degrees):         172.94         Started:         10/05/2004         Date Lest           East (m)         10596.00         Dip (degrees):         -74.65         Completed:         20/05/2004         Logged           Elevation (m):         114.00         Length (m):         665.68         Completed:         20/05/2004         Report           Depth         Azimuth         Dip         Depth         Azimuth         Dip         Depth         Azimuth         Dip         Depth         Azimuth         Dip         Main the pip         Depth         Azimuth         Dip         Depth         Azimuth         Dip         Depth         Azimuth         Dip         Depth         Azimuth         Dip         Main the pip         Depth         Azimuth         Dip         Dip         Main the pip         Main the pip         Dip         Main the pip         Main the pip         Main	
Depth (m)       Azimuth       Dip       Dip <th< th=""><th>ogged: 10/05/20 d By: NC t Printed: 17/12/20</th></th<>	ogged: 10/05/20 d By: NC t Printed: 17/12/20
Depth (m)         Azimuth (m)         Dip (m)         Depth Azimuth         Dip (m)         <	
0.00       172.94       -74.65         66.75       172.00       -74.80         91.14       171.10       -74.80         127.71       173.70       -75.00         152.10       173.00       -74.50         188.67       172.90       -75.00         213.06       171.30       -75.00         243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.70         341.08       174.60       -75.70	Depth Azimuth Dip (m)
66.75       172.00       -74.80         91.14       171.10       -74.80         127.71       173.70       -75.00         152.10       173.00       -74.50         188.67       172.90       -75.00         213.06       171.30       -75.00         243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.70         341.08       174.60       -75.70	· _ · _ · _ ·
91.14       171.10       -74.80         127.71       173.70       -75.00         152.10       173.00       -74.50         188.67       172.90       -75.00         213.06       171.30       -75.00         243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.70         341.08       174.60       -75.70	
127.71       173.70       -75.00         152.10       173.00       -74.50         188.67       172.90       -75.00         213.06       171.30       -75.00         243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.70         341.08       174.60       -75.70	
152.10       173.00       -74.50         188.67       172.90       -75.00         213.06       171.30       -75.00         243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.70         341.08       174.60       -75.70	
188.67       172.90       -75.00         213.06       171.30       -75.00         243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.70         365.46       174.40       -75.70	
213.06       171.30       -75.00         243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.60         341.08       174.60       -75.70         365.46       174.40       -75.70	
243.54       171.70       -75.10         279.50       171.10       -75.60         304.50       174.60       -75.60         341.08       174.60       -75.70         365.46       174.40       -75.70	
279.50 171.10 -75.60 304.50 174.60 -75.60 341.08 174.60 -75.70	
304.50 174.60 -75.60 341.08 174.60 -75.70 365.46 174.40 -75.70	
341.08 174.60 -75.70 365.46 174.40 -75.70	
303.40 174.40 -73.70	
402.04 174.60 -75.30	
487.38 178.20 -76.10	
517.86 178.40 -76.20	
548.34 177.70 -76.30	
578.82 177.40 -76.10	

<ul> <li>terval (m) Description</li> <li>To</li> <li>1.09 Casing: Lost</li> <li>.00 1.09 Casing: Lost</li> <li>.09 35.07 Basalt Flow: Chlorite; Magnetite; Epidote Basalt lava flow, broken core in sections. Altered sections, probably related to faulting showing bleacheed xenoliths or possibly bleached basalt. interlayers/lenses of basalt tuff. Also sections indicating porphyry/macro breccia lower part of this interval. indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz. Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides. Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break 22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in course the bit ponde of this ponding.</li> </ul>	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn
<ul> <li>1.09 Casing: Lost</li> <li>35.07 Basalt Flow: Chlorite; Magnetite; Epidote Basalt lava flow, broken core in sections. Altered sections, probably related to faulting showing bleacheed xenoliths or possibly bleached basalt. interlayers/lenses of basalt tuff. Also sections indicating porphyry/macro breccia lower part of this interval. indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz. Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides. Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break 22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in course of beth ende of the postering.</li> </ul>									70
<ul> <li>1.09 Casing: Lost</li> <li>35.07 Basalt Flow: Chlorite; Magnetite; Epidote Basalt lava flow, broken core in sections. Altered sections, probably related to faulting showing bleacheed xenoliths or possibly bleached basalt. interlayers/lenses of basalt tuff. Also sections indicating porphyry/macro breccia lower part of this interval. indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz. Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides. Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break 22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in cause at both ande of this section.</li> </ul>									
<ul> <li>35.07 Basalt Flow: Chlorite; Magnetite; Epidote Basalt lava flow, broken core in sections. Altered sections, probably related to faulting showing bleacheed xenoliths or possibly bleached basalt. interlayers/lenses of basalt tuff. Also sections indicating porphyry/macro breccia lower part of this interval. indication of paragenesis.This paragenesis suggests older to younger: chlorite-Magnetite-quartz. Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides. Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break 22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in acute of both ando of this section.</li> </ul>									
<ul> <li>35.07 Basalt Flow: Chlorite; Magnetite; Epidote</li> <li>Basalt lava flow, broken core in sections. Altered sections, probably related to faulting showing bleacheed xenoliths or possibly bleached basalt.</li> <li>interlayers/lenses of basalt tuff. Also sections indicating porphyry/macro breccia lower part of this interval.</li> <li>indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz.</li> <li>Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides.</li> <li>Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break</li> <li>22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in</li> </ul>									
<ul> <li>Basalt lava flow, broken core in sections. Altered sections, probably related to faulting showing bleacheed xenoliths or possibly bleached basalt.</li> <li>interlayers/lenses of basalt tuff. Also sections indicating porphyry/macro breccia lower part of this interval.</li> <li>indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz.</li> <li>Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides.</li> <li>Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break</li> <li>22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in</li> </ul>									
<ul> <li>bleacheed xenoliths or possibly bleached basalt.</li> <li>interlayers/lenses of basalt tuff. Also sections indicating porphyry/macro breccia lower part of this interval.</li> <li>indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz.</li> <li>Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides.</li> <li>Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break</li> <li>22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in</li> </ul>									
<ul> <li>Internayers/lenses of basalt turr. Also sections indicating porphytymacro breccia lower part of this interval.</li> <li>indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz.</li> <li>Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides.</li> <li>Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break</li> <li>22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in gauge at both and of this spatial.</li> </ul>									
<ul> <li>indication of paragenesis. This paragenesis suggests older to younger: chlorite-Magnetite-quartz.</li> <li>Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides.</li> <li>Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA.</li> <li>Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break</li> <li>22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in</li> </ul>									
<ul> <li>Larger slips show fill 2mm-5mm movement. Open fractures show minor slickensides.</li> <li>Rare trace pyrite in blebs. Trace pyrrhotite.</li> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break</li> <li>22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in</li> </ul>									
Rare trace pyrite in blebs. Trace pyrrhotite. 7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly. 17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break 22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in									
<ul> <li>7.91 13.19 Basalt Ash Tuff: Basalt ash tuff. Battle ship grey. Bedding laminated at 30 deg TCA. Bedding warped slightly.</li> <li>17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break</li> <li>22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in</li> </ul>									
Bedding warped slightly. 17.96 22.03 Broken Core: Basalt Flow; Broken core, becoming more broken towards fault break 22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in									
22.03 22.03 Bloken Core: Basalt Flow; Bloken Core; Becoming more bloken towards radit break 22.03 22.43 Fault Zone: Basalt Flow; Quartz; Magnetite; Fault break zone. Quartz-Magnetite in									
zeros at bath and a of this spatian									
douge at both ends of this section.									
22.43 28.32 Basalt Flow: Broken Core; Broken core. Footwall of above fault zone.									
32.41 32.43 Fault: Basalt Flow; Chlorite; Magnetite; Bleached basalt/xenolith within fault									
fracture. Magnetite+ chloirite. Fracture at 45 deg TCA									
33.92 34.62 Fault: Basalt Flow; Bleached basalt as minor xenoliths inclusions within BLF									
07 35.82 Fault Zone: Chlorite									
Pale white xenoliths of bleached basalt. Broken-up and re-welded, mixed together with basalt lava									
flow.Multiple contacts between bleached rock and BLF. Multiple fractures infilled with chloritic									
gouge. Sericitic textures on fracture planes with gouge.									
.82 43.28 Basalt Flow: Receit Lave flow, dark grow with bleached basalt/xenoliths. Outer limits of fault zone									
Basait Lava now, dark grey, with bleached basait kendiths. Odter innits of fault zone.									
.28 43.68 Fault Zone:									
Bleached basalt/xenolith. Contaminated basalt. Texture is pale white mottled in places. Upper									
contact is gradational, lower contact is gradational irreggular.	•								

P	Redfern Resources Ltd. Diamond Drill Log							Hole-	ID: TC	U0409 Page:∷
	Entrology Description									
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
13 69 51 36	Popolt Flowr									
43.06 31.20	Basalt Flow. Basalt poryhyry. Diopside phenocrysts? Rock grey colour to black-grey, with interlayers of black-grey basalt ash tuff. Towards lower end section contact metasomatic process seems to occur. Contacts not clear.									
51.26 82.59	Basalt Flow Breccia: Basalt Ash Tuff Basalt breccia flow , dark grey to black, with interlayers of basalt tuff. Very subtal and unclear, except for interlayers of basalt ash tuff. Towards lower end of this section contact metasomatic reaction seem to occur. Generally the lithology is very unclear in this section, except for the basalt ash tuff (BAT) lithology, and the fact this section is a basalt. Also upper and lower contacts of this section are not well defined.									
82.59 128.26	Feldspar-phyric Basalt Intrusive: Initially fine grained gabbro, possibly chilled, grading towards medium coarse crystalline gabbro. Distinctively crystalline rock, with medium grained amphibole crystaline textures. Rock dark grey-black colour with trace of dull green. Upper contact is not clear. Occasional fine grained disseminated pyrite. Generally homogenous, but trace psuedo banding between 91.77m to 92.27m									
28.26 129.00	Fault Zone: Calcite; Pyrite Fault Zone. Filled with cream coloured calcite. Pyrite dissemind in upper fault wall. Angle of fault assumed to be 20 deg.									
129.00 136.74	Feldspar-phyric Basalt Intrusive: Chlorite; Epidote; Quartz Subtle textures, but probably gabbro. Dark grey to black, hint of dull green. Crystalline textures medium grained but not as defined as above section. Regular fractures infilled with qtz and epidote. Mag. not significant. Lower contact irregular @ 10 deg TCA but sharp. Associated with epidote.									
136.74 350.65	Basalt Flow: Basalt Hyaloclastite; Basalt Ash Tuff Basalt Java flow, dull grey to grey black This section exhibits, textures variable and year subtle									

1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

arumon al

a second

ranging from non-descriptive basalt lava flow to macro pumice breccia fragments within flow, also

P
---

a la contrata de la c

107 Y 30

-----

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Sector sectors

Sector Con

राजसार लागवा

at restriction and restriction and the second s

Hole-ID: TCU04096

Page: 4

Interval (	(m)	Description		Sample	From	To	Interval	Au	Ag	Cu	Pb	Zn
From	То		ż	No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		subtle inlayers of bedded basalt ash tuff. Pumice fragments could also represent hyaloclastite										
		textures on macro-scale.										
		with no definite contacts. Some magnetite present.										
		and subtle in this unit, with decreasing basalt breccia flow, and pumice fragments or hyaloclastite										
		fragments.										
		amphibole textures as depth increases in unit										
		amygdules present										
		147.41 148.90 Broken Core: Basalt Flow; Broken core. Basalt lave flow										
		192.94 193.04 Basalt Flow: Chalcopyrite; Trace chalco in qtz @30 deg to TCA										
		224.80 225.03 Fault: Re-welded fault zone, brecciated. Relatively fault sharp contacts at 30 TCA										
		245.65 245.77 Basalt Dyke: Gabbroic sill, (assumed). More leucocratic than seen in this hitherto.										
		Contacts at 90 deg TCA, sharp.										
		245.92 246.20 Basalt Dyke: As above										
		246.40 247.21 Basalt Dyke: Group of gabbric sills, (assumed to be sills) more leucocratic than										
		seen before 245.65 m. Contacts irregular but relatively sharp.										
		247.93 259.68 Basalt Flow: Broken Core; Brokren core. Basalt lava flow										
		261.52 263.07 Basalt Flow: Quartz; Section with three quartz veins.										
		264.47 264.57 Fault: Calcite; Re-welded fault, totally infilled with white calcite										
		267.74 269.20 Basalt Flow: Quartz; Qtz veinlet following axis of core, brecciated										
		269.14 269.32 Basalt Flow: Calcite; Magnetite; Two calcite veinlets. Highly magnetic within basalt										
		lava flow.										
		283.66 287.00 Basalt Flow: Quartz; Magnetite; Basalt Lava flow with uncrowded stockworks of										
		calcite stringers and un-related quartz veins. Magnetite present in at least one										
		fracture zone.										
		289.25 293.22 Basalt Flow: Broken Core; Basalt Lava flow. Broken core.										
		294.05 296.29 Basalt Flow: Quartz Vein; Basalt lava flow. Zone of uncrowded quartz veins averaging										
		45 TCA										
		297.59 297.79 Basalt Flow: Broken Core; Basalt Lava flow. Broken Core										
		299.82 300.57 Basalt Flow: Quartz; Quartz veinlet following axis of core										
		303.60 303.87 Fault: Recemented fault break										
		306.90 308.02 Basalt Flow: Quartz Vein; Zone of quartz veining in basalt lava flow										
		320.24 320.83 Basalt Flow: Broken Core: Basalt lavsa flow. broken core										

P	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-	ID: TC	U04096 Page: {
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	<ul> <li>320.83 328.35 Basalt Ash Tuff: Basalt Flow Breccia; Banded ash flow, banded at 20 deg-30 deg to core axis, associated with basalt breccia flow. Includes some broken core in this section.</li> <li>328.35 336.65 Basalt Flow Breccia: Basalt Flow Breccia. Grading to Andesitic phyric textures. Contacts gradational.</li> <li>336.65 350.65 Andesite Dyke: Andesite Feldspar Porphyry sill/dyke. Phenocrysts uncrowded in matrix. Amygdaloidal vesicles filled with quartz, also no defined contacts, so sill/dyke is only assumed due to coherant textures.</li> </ul>									
350.65 370.05	<ul> <li>Rhyolite Lapilli Ash Tuff: Basalt Ash Tuff; Rhyolite Flow Breccia; Jasper</li> <li>Rhyolite bedded lapilli tuff, well foliated in places with distinctive planes at 30-45 deg TCA.</li> <li>Fragments could flattened pumice? These are parallel to to planes. Range from grey-white fragments to red jasper fragments, with size ranging up to 10 cms. Plate like. Black ejecta also present, sometimes angular and sharp looking similar to hyaloclastite glassy textures. Upper and lower contacts gradational.</li> <li>366.76 366.96 Basalt Ash Tuff: Bedded Basalt ash tuff, with bedding/banding @ 20 deg TCA</li> <li>367.70 368.10 Basalt Ash Tuff: Volcanic Sediment; Bedded basalt ash tuff, but could also pass as banded fine grained sediment due to grey aphanitic texture. Bedding/ban 20 deg. TCA.</li> <li>368.60 370.50 Volcanic Sediment: Banded fine grained volcanic sediment? Banding at 45 deg TCA. Light grey siliceous.</li> </ul>									
370.05 373.85	Rhyolite Flow Breccia: Jasper; Epidote; Quartz Fine to coarse irregular fragments, black colour and red colour, in this unit considered to make up rhyolite flow breccia. This section is not foliated or bedded. Upper and lower contacts abrupt but not sharp.									
373. <b>85</b> 375.00	Basalt Flow: Fine grained massive basalt with sharp contact breaks at lower and upper ends, 20 deg TCA.									
375.00 391.42	Rhyolite Lapilli Ash Tuff: Rhyolite Lapilli Tuff; Epidote Rhyolite bedded rhyolite ash tuff, foliated, with inter-mixing of of rhyolite like tuff. Lower									

-

call the second

miniar

P	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-II	D: TCl F	J04096 ^{&gt;} age: 6
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	contact sharp at 80 deg TCA.									
91.42 475.9	Basalt Flow: Amphobile; Chlorite Initially at upper section of this unit is a fine grained homogenous massive basalt, dark grey colour, becoming increasingly crowded with amphibole crystals in a mafic rock as section deepens. Phenocrysts possibly actinolite-chlorite. xenoliths of rhyolitic composition fragments. Slighly magnetic. Quartz veinlets, sometimes associated with epidote occur in some sections more than others. Occasional quartz veinlet stock-works. sections occasionally partly bleached. In at least one section contacts with bleaching section is sharp, suggesting bleached are to be an xenolith.									
75.97 490.0	Feldspar-phyric Basalt Intrusive: Chlorite; Chlorite; Pyrite Fine grained gabbro, dark grey to black grey, finely crystalline, with re-welded fractures with chlorite in-fill. Red mineral in at least one fracture identified as red garnet. Occassional trace disseminated pyrite-chalcopyrite.									
90.02 498.2	Basalt Flow: Epidote; Quartz; Magnetite Fine grained lava flow of andesitic composition, speckled with crowded feldspar phenocrysts 2 mm length, dark grey in colour. slightly magnetic. Quartz veinlets allowing for stockwork. Lower contact sharp at 45 deg TCA									
98.24 542.9	Feldspar-phyric Basalt Intrusive: Quartz; Epidote; Magnetite Fine grained gabbro sill with sharp lower contact at 45 Deg TCA. Rock is black grey to black, fine grained and crystalline, homogeeous. Mag. with quartz and actinolite in vein fill. Red garnet with quartz vein with chalco pyrite and mag. in 2 cm vein at 30 deg. TCA 533.86 533.93 Quartz: Magnetite; Epidote; Quartz, Magnetite vein with epidote, 90 deg TCA 534.84 534.89 Basalt Dyke: Quartz; Magnetite; CHALCO; Basalt dyke, with chalco-mag along upper contact. Contacts sharp.									
42.92 551.7	Feldspar-phyric Rhyolite Flow: Quartz; Sericite; Bleached									

Redfern Resources Ltd. Hole- Diamond Drill Log Lithology Description										ile-ID: TCU04096 Page: 7			
Interv From	al (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %		
		along fracture planes. Grey colour, but with trace maroon colour, siliceous looking rock. Quartz eye crystals up to 2 mm in length but generally less, angular in shape. Well developed flow-banding at 45 deg TCA. Quartz veins @ 40-45 deg. TCA. Lower contact sharp and conformable at 45 degrees.						<u> </u>					
551.75	565.41	Rhyolite Debris Flow: Rhyolite Lapilli Tuff Rhyolite debris flow, charcoal grey, with lighter coloured siliceous QFP rhyolite fragments to 20 cm. Section generally non-magnetic. <rgc> Includes large (to 20 cm) Flow-banded QFP rhyolite fragments. These are generally not bleached and silicified here. Lower contact sharp and conformable.<litho -="" 562.8m="" a,="" geochem="" rhyolite=""> 556.88 561.53 Rhyolite Crystal Lapilli Tuff: Rhyolite lappil tuff, trace banding in four intervals. Banding and foliation at 50 deg TCA</litho></rgc>	3801 3802	563.88 565.38	565.3 566.5	8 1.50 8 1.20	0.04 2.05	0.00 18.30	0.00 0.37	0.00 0.42	0.00 2.20		
565.41	569.57	Zinc Facies Massive Sulphide: Pyrite; Sphalerite; Galena Zinc facies massive sulphide, Banding at 50 deg. Foliation also present at 50 deg. Distinct massive sulphide and siliceous rhyolite (?) or cherty fragments in a bedded massive barite and sulphide matrix.	3803 3804 3805	566.58 568.05 569.39	568.0 569.3 569.8	5 1.47 9 1.34 3 0.44	3.32 4.63 2.91	104.00 154.00 52.30	0.73 0.60 0.46	1.72 1.44 0.91	6.50 9.10 7.32		
569.57	570.70	Pyrite Facies Massive Sulphide: Copper Facies; Rhyolite Lapilli Tuff Pyrite facies with associated chalcopyrite, latter not dominant. Zone is foliated. Lower contact abrupt, but not sharp. 569.69 569.89 Silica: Silicied basalt, lightly present.	<b>3806</b> 3807	569.83 570.26	570.2 570.7	6 0.43 6 0.50	0.91 3.40	58.70 98.10	0.33 0.61	0.39 1.91	2.41 8.31		
570.00	575.00	Quartz-Sericite-Pyrite Alteration: Rhyolite debris flow, weakly altered and silicified to light grey rock. Original textures well-preserved, including one QFP rhyolite fragment. Sulphides essentially absent. Lower contact abrupt at 50 deg.	3807 3808 3809 3810 3811	570.26 570.76 572.24 573.66 574.53	570.7 572.2 573.6 574.5 575.8	6 0.50 4 1.48 6 1.42 3 0.87 2 1.29	3.40 0.80 0.03 0.06 0.58	98.10 2.60 0.30 1.40 10.90	0.61 0.00 0.00 0.01 0.06	1.91 0.02 0.00 0.05 0.44	8.31 0.02 0.01 0.45 2.42		
575.00	576.64	Pyrite Facies Massive Sulphide: Copper Facies; Galena; Zinc Facies Massive Sulphide Semi-massive pyrite facies, olive green to blackish in colour, with Cu-Pb-Zn with sericite alteration. Foliated at 10 deg TCA.	3813 3814	575.82 576.16	576.1 576.5	6 0.34 6 0.40	0.35 0.29	6.10 3.80	0.08 0.04	0.03	0.04 0.05		
r	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-II	D: TCL F	J04096 'age: 8			
-------------------------	------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------	------------------	------------------	------------------	--------------	----------------	--------------	--------------	-------------------			
Interval (m) From To	Description	Sample No.	From (m)	To lı (m)	nterval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %			
- <u></u>		3815	576.56	576.90	0.34	0.42	6.80	0.19	0.01	0.19			
576.64 578.5	7 Pyrite Facies Massive Sulphide: Copper Facies; Galena; Zinc Facies Massive Sulphide Semi-massive pyrite facies to massive pyrite facies, associated chalcopyrite-galena-sphalerite.	3816	576.90	577.47	0.57	1.69	23.20	0.35	0.04	0.14			
	Quartz and assumed sericite. More siliceous than above section. Foliated at 40 deg. Lower contact abrupt, but in detail gradtional over 5 cm approx. <rgc> Below 577.4 is ZNF, with a fairly abrupt contact.</rgc>	3817 3819	577.47 578.55	578.55 579.82	5 1.08 2 1.27	1.51 0.58	90,30 12.80	1.03 0.04	1.35 0.04	8.80 0.06			
578.57 590.1	Quartz-Sericite-Pyrite Altered Evolved Andesite: Silica; Stringer Pyrite; Sericite												
	Pale, yellowish-grey section of silicified rhyolite with weakly developed stockwork of	3820	579.82	580.50	0.68	0.42	20.40	0.02	0.13	0.18			
	quartz+pyrite +/- sphalerite stringers to 5 cm. Section is quite massive and has a spotted texture	3821	580.50	581.95	5 1.45	0.54	15.50	0.00	0.09	0.23			
	due to 5% disseminated pyrite. Bottom contact is approximate defined by litho geochem. <litho< td=""><td>3822</td><td>581.95</td><td>583.39</td><td>1.44</td><td>1.53</td><td>24.80</td><td>0.02</td><td>0.29</td><td>2.56</td></litho<>	3822	581.95	583.39	1.44	1.53	24.80	0.02	0.29	2.56			
	Geochem, Evolved Andesite - 580.0m>.	3823	583.39	583.57	0.18	1.70	36.30	0.03	1.00	3.92			
		3825	583.57	584.64	1.07	0.27	0.00	0.00	0.00	0.00			
		3826	584.64	585.74	1.10	0.13	0.00	0.00	0,00	0.00			
		3827	585.74	587.25	0 1.51	0.24	0.00	0.00	0.00	0.00			
		3828 3829	587.25 588.63	588.63 590.14	1.38	0.43	0.00	0.00	0.00	0.00			
590.14 594.0	7 Quartz-Sericite-Pyrite Alteration: Rhyolite Undifferentiated												
	Unit defined by litho geochem, description same as above. Lower contact is a gradational	3830	590.14	592.07	' 1.93	0.57	54.70	0.01	0.13	0.32			
	alteration contact over about 2 meters. <litho -="" 592.4="" c="" geochem,="" rhyolite=""></litho>	3831	592.07	593.54	1.47	0.20	52.10	0.01	0.06	0.10			
		3832	593.54	594.06	6 0.52	0.03	0.00	0.00	0.00	0.00			
594.07 617.2	Rhyolite Undifferentiated: Magnetite Greve green greve mostly ashy sections alternate with white mottled lanilli bearing sections												
	Foliation @ approx 25 deg to CA. Variably magnetic (non magnetic - moderately magnetic - lower												
	contact: Increasingly broken core, increasing veining, increasing propylitic alteration, no plane.												

615.0m>

598.15 598.45 Silica: As above

Charcoal grey rhyolite C. Homogeneous granular texture, probably tuffaceous but uncertain. Scattered tiny, dark red jasper chips. <Litho Geochem, Rhyolite C 595.8m, Rhyolite B/C 607.0m &

1			Redfern Resources Ltd. Diamond Drill Log Lithology Description								Hole-I	D: TC	U04096 Page: 9
Interva	al (m)	Description		Sar	nple	From (m)	To (m)	Interval (m)	Au a/t	Ag	Cu %	Pb %	Zn %
From	10	615.42 622.00 Basalt Flow Breccia: Chlorite; Basalt with chlorite distinctively present	preccia flow, fragemented, re-welded breccia		•	,		(,	<b>.</b>	<b>.</b>			
617.20	620.00	Fault Zone: Dark green grey - green grey, dirty mottled appearance fragmental textures (hyaloclastites? tectonic breccia? mineral assembly, @ with variable orietation, most co to CA. Lower contact: Gradational, no plane.	e, locally with fragmental and/ or pseudo ) Patchy - planar veining with propylitic Inspicuously @ shallow angle to CA and @ 30 deg										
620.00	630.00	Basalt Flow: Chlorite; Epidote Dark green grey - grey, fine grained, moderately mag possibly a basalt flow or a sub volcanic rock with basa possible interbedded ash tuff layers. Bottom contact boundry. <litho 620.<="" cr-ni="" fw="" geochem,="" low="" mafic="" td=""><td>netic, dense, massive, featureless, mafic rock, altic composition. Local banded sections approximate, indicated by lithogeochem 8m&gt;.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></litho>	netic, dense, massive, featureless, mafic rock, altic composition. Local banded sections approximate, indicated by lithogeochem 8m>.										
630.00	665.68	Basalt Intrusive: Chlorite; Epidote Description same as above, Dark green grey - grey, f massive, featureless, mafic rock. <lithogeochem, m<br="">Mg-Cr-Ni mafic 658.0m&gt; 634.20 638.56 BLF: Broken Core; Basalt lava flow-b</lithogeochem,>	ine grained, moderately magnetic, dense, lod. Mg-Cr-Ni Mafic (K - alt) 635.1m; Mod roken core.										
665.68	665.68	End of Hole:											



Redfern Resources Ltd. Diamond Drill Log Hole-ID: TCU04096 Page: 10A States -

### Assays

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	Al %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3801	563.88	565.38	1.50	0.04	0.00	0.00	0.00	0.00	0.00	61	32	293	0	0.4	5	1.81	485	5	0.89	1	5
3802	565.38	566.58	1.20	2.05	18.30	0.37	0.42	2.20	3.00	3766	4374	10000	0	17.1	30	0.47	10	5	0.37	89	7
3803	566.58	568.05	1.47	3.32	104.00	0.73	1.72	6.50	3.13	7614	10000	10000	0	30.0	220	0.45	5	5	0.55	236	5
3804	568.05	569.39	1.34	4.63	154.00	0.60	1.44	9.10	3.39	5890	10000	10000	0	30.0	440	0.31	5	5	0.27	379	7
3805	569.39	569.83	0.44	2.91	52.30	0.46	0.91	7.32	3.24	4360	9196	10000	0	30.0	35	0.35	30	5	0.14	257	6
3806	569.83	570.26	0.43	0.91	58.70	0.33	0.39	2.41	3.40	3279	3748	10000	0	30.0	55	0.32	10	5	0.15	86	9
3807	570.26	570.76	0.50	3.40	98.10	0.61	1.91	8.31	3.21	5975	10000	10000	0	30.0	70	0.34	5	5	0.14	303	6
3808	570.76	572.24	1.48	0.80	2.60	0.00	0.02	0.02	2.90	37	154	225	0	2.6	10	0.37	165	5	0.29	1	4
3809	572.24	573.66	1.42	0.03	0.30	0.00	0.00	0.01	3.00	17	26	72	0	0.3	5	0.95	375	5	0.54	1	5
3810	573.66	574.53	0.87	0.06	1.40	0.01	0.05	0.45	3.50	111	528	4506	0	1.4	30	1.44	100	5	0.62	19	6
3811	574.53	575.82	1.29	0.58	10.90	0.06	0.44	2.42	4.42	556	4167	10000	0	11.5	35	0.38	5	5	0.13	78	13
3813	575.82	576.16	0.34	0.35	6.10	0.08	0.03	0.04	3.29	775	280	434	0	6.1	45	0.64	5	5	0.21	1	10
3814	576.16	576.56	0.40	0.29	3.80	0.04	0.02	0.05	3.00	430	244	535	0	3.8	100	2.32	15	5	0.24	1	6
3815	576.5 <b>6</b>	576.90	0.34	0.42	6.80	0.19	0.01	0.19	3.00	1858	120	1875	0	6.8	130	0.51	5	5	0.17	6	12
3816	576.90	577.47	0.57	1.69	23.20	0.35	0.04	0.14	3.00	3535	380	1411	0	23.2	285	0.24	5	5	0.25	2	10
3817	577.47	578.55	1.08	1.51	90.30	1.03	1.35	8.80	3.63	10000	10000	10000	0	30.0	665	0,31	5	5	0.22	338	10
3819	578.55	579.82	1.27	0.58	12.80	0.04	0.04	0.06	2.69	351	430	613	0	12.8	250	0.50	15	5	0.48	1	5
3820	579.82	580.50	0.68	0.42	20.40	0.02	0.13	0.18	0.00	175	1342	1773	0	20.4	160	0.68	20	5	0.56	3	5
3821	580.50	581.95	1.45	0.54	15.50	0.00	0.09	0.23	0.00	46	926	2304	0	15.5	170	0.39	15	5	0.31	6	6
3822	581.95	583.39	1.44	1.53	24.80	0.02	0.29	2.56	0.00	239	2687	10000	0	20.6	250	0.74	5	5	0.57	74	13
3823	583.39	583.57	0.18	1.70	36.30	0.03	1.00	3.92	3.31	282	10000	10000	0	29.2	550	0.45	5	5	0.32	137	11
3825	583.57	584.64	1.07	0.27	0.00	0.00	0.00	0.00	0.00	208	468	2073	0	2.8	160	0.65	15	5	0.49	7	14
3826	584.64	585.74	1.10	0.13	0.00	0.00	0.00	0.00	0.00	17	58	80	0	0.6	130	1.20	15	5	0.81	1	6
3827	585.74	587.25	1.51	0.24	0.00	0.00	0.00	0.00	0.00	29	198	47	0	1.6	105	0.74	30	5	0.50	1	4
3828	587.25	588.63	1,38	0.43	0.00	0.00	0.00	0.00	0.00	62	180	1401	0	4.0	140	0.43	15	5	0.38	3	5
3829	588.63	590,14	1.51	0.40	0.00	0.00	0.00	0.00	0.00	137	1754	4182	0	8.2	145	0.54	15	5	0.64	13	5
3830	590.14	592.07	1.93	0.57	54.70	0.01	0.13	0.32	2.84	65	1258	2830	0	30.0	50	0.59	10	5	0.36	7	5
3831	592.07	593.54	1.47	0.20	52.10	0.01	0.06	0.10	2.75	43	568	960	0	30.0	15	0.68	15	5	0.33	1	6
3832	593.54	594.06	0.52	0.03	0.00	0.00	0.00	0.00	3.08	46	44	108	0	3.4	35	0.85	135	5	0.45	1	9

		7	
1			

## Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04096 Page: 10B

	Assays continued																				
Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm	
3801	563.88	565.38	3 1.50	57	1.75	10	1.23	340	1	0.09	8	220	10	20	41	0.05	10	. 1	10	7	
3802	565.38	566.58	3 1.20	52	3.88	10	0.42	31	1	0.01	1	280	35	20	25	0.01	10	1	10	3	
3803	566.58	568.05	5 1.47	43	4.63	10	0,38	26	1	0.01	. 1	400	485	20	49	0.01	10	1	10	2	
3804	568.05	569.39	1.34	60	8.19	20	0.28	1	1	0.01	1	220	585	20	18	0.01	10	1	10	2	
3805	569.39	569.83	0.44	34	5.68	10	0.24	1	1	0.01	· 1	130	20	20	23	0.01	10	1	10	2	
3806	569.83	570.26	0.43	100	10.00	30	0.36	1	1	0.01	1	150	55	20	14	0.01	10	2	10	2	
3807	570.26	570.76	0.50	49	4.79	10	0.24	21	1	0.01	1	270	105	20	44	0.01	10	1	10	3	
3808	570.76	572.24	1.48	76	0.60	10	0.25	98	2	0,01	5	150	10	20	53	0.01	10	- 1	10	4	
3809	572.24	573.66	5 1.42	73	0.99	10	0.63	273	3	0.04	6	180	5	20	21	0.03	10	1	10	6	
3810	573.66	574.53	8 0.87	54	1.35	10	0.72	255	1	0.10	3	210	5	20	26	0.04	10	1	10	5	
3811	574.53	575.82	2 1.29	126	10.00	30	0.45	1	1	0.01	9	70	15	20	17	0.01	10	1	10	3	
3813	575.82	576.16	6 0.34	107	10.00	30	0.69	1	2	0.01	11	90	30	20	13	0.01	10	2	10	4	
3814	576.16	576.56	0.40	64	8.73	20	2.74	461	4	0.01	14	30	40	20	15	0.06	10	3	10	3	
3815	576.56	576.90	0,34	67	10.00	30	0.63	1	6	0.01	10	100	45	20	12	0.01	10	2	10	1	
3816	576.90	577.47	0.57	87	10.00	30	0.38	1	1	0.01	4	160	145	20	14	0.01	10	3	10	1	
3817	577.47	578.55	5 1.08	101	10.00	20	0.37	1	1	0.01	1	440	265	20	19	0.01	10	1	10	3	
3819	578.55	579.82	2 1.27	87	2.41	10	0.07	45	2	0.01	8	240	35	20	39	0.01	10	1	10	2	
3820	579.82	580.50	0.68	75	2.98	10	0.10	36	2	0.01	6	380	25	20	44	0.01	10	2	10	3	
3821	580.50	581.95	5 1.45	68	4.11	10	0.08	7	2	0.01	5	350	20	20	34	0.01	10	1	10	3	
3822	581.95	583.39	9 1.44	51	5.67	10	0.12	7	2	0.01	4	451	140	20	66	0.01	10	1	10	3	
3823	583.39	583.57	7 0.18	110	10.00	20	0.19	1	1	0.01	1	310	155	20	54	0.01	10	1	10	2	
3825	583.57	584.64	1.07	71	4.27	10	0.15	37	1	0.01	5	330	15	20	39	0.01	10	1	10	3	
3826	584.64	585.74	1.10	64	5.05	10	0.27	111	1	0.01	6	360	5	20	16	0.03	10	1	10	3	
3827	585.74	587.25	5 1.51	53	2.53	10	0.16	68	1	0.01	5	340	40	20	26	0.02	10	1	10	3	
3828	587.25	588.63	3 1.38	56	3.37	10	0.09	6	7	0.01	3	350	25	20	47	0.01	10	1	10	2	
3829	588.63	590.14	1.51	48	3.45	10	0.13	19	1	0.01	2	330	40	20	55	0.01	10	1	10	3	
3830	590.14	592.07	7 1.93	48	3.23	10	0.21	35	1	0.03	3	340	30	20	42	0.01	10	1	10	3	
3831	592.07	593.54	1.47	48	3.36	10	0.29	65	1	0.04	3	370	20	20	30	0.02	10	1	10	4	
3832	593.54	594.06	0.52	45	1.55	10	0.41	117	1	0.05	9	370	10	20	26	0.03	10	1	10	6	

P						Redfe Dia	ern Re amon	esourc d Drill	es Li Log	td.					Hole-ID	. TCU0409 Page:
<u> </u>		·····				С	ollar C	oordina	ates		 			i		
North (m):		15525.00	. Α	zimuth (de	arees):	182	2.25	Starte	d:		11/05/20	04	Date Loo	ned:	2	1/05/2004
East (m)		10601.00		Dip (degree	s):	-71	1.88	Compl	eted:		21/05/20	04	Logaed B	iv:	_	MA.
Elevation (m):		114.00	L	ength (m):		649	9.83	•		·	-		Report Pr	rinted:	1	7/12/2004
						Dow	n Hole	Survey	/ Test	s						
Depth Azimuth (m)	Dip	Depth (m)	Azimutł	n Dip	Depth (m)	Azimuti	h Dip	Depth (m)	Azimuth	n Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	ו Dip
0.00 182.25	-71.88	79.25	180.53	-71.97	158,50	180.03	-72.28	237.74	181.99	-72.56	 316.99	176.89	-71.65	396.24	173.90	-71.02
3.05 182.24	-71.80	82.30	180.54	-72.00	161.54	180.13	-72.31	240.79	181.67	-72.46	320.04	176.73	-71.63	399.29	173.68	-71.01
6.10 182.12	-71.77	85.34	180.51	-72.04	164.59	180.23	-72.32	243.84	181.06	-72.34	323.09	176.46	-71.63	402.34	173,40	-71.02
9.14 181.79	-71.75	88.39	180.53	-72.07	167.64	180.35	-72.39	246.89	180.43	-72.18	326.14	176.14	-71.59	405.38	173.09	-71.02
12.19 181.54	-71.71	91.44	180.53	-72.06	170.69	180.45	-72.44	249.94	179.97	-72.03	329.18	175.80	-71.52	408.43	172.83	-71.00
15.24 181.48	-71.70	94.49	180.46	-72.08	173.74	180.53	-72.46	252.98	179.64	-71.91	332.23	175.56	-71.41	411.48	172.63	-71.02
18.29 181.41	-71.72	97.54	180.32	-72.13	176.78	180.57	-72.50	256.03	179.41	-71.81	335.28	175.33	-71.32	414.53	172.45	-71.06
21.34 181.40	-71.74	100.58	180.24	-72.18	179.83	180.63	-72.54	259.08	179.26	-71.74	338.33	175.04	-71.30	417.58	172.29	-71.09
24.38 181.23	-71.78	103.63	180.24	-72.20	182.88	180.70	-72.55	262.13	179.12	-71.73	341.38	174.92	-71.27	420.62	172.14	-71.13
27.43 181.07	-71.80	106.68	180.27	-72.23	185.93	180.79	-72.58	265.18	179.07	-71.80	344.42	175.00	-71.20	423.67	172.06	-71.15
30.48 180.95	-71.81	109.73	180.40	-72.21	188.98	180.79	-72.57	268.22	179.13	-71.86	347.47	175.23	-71.12	426.72	172.08	-71.18
33.53 180.91	-71.81	112.78	180.39	-72.19	192.02	180.85	-72.58	271.27	178.89	-71.84	350.52	175.47	-71.07	429.77	172.11	-71.21
36.58 180.85	-71.84	115.82	180.27	-72.19	195.07	180.95	-72.55	274.32	178.56	-71.80	353.57	175.53	-71.04	432.82	172.18	-71.25
39.62 180.84	-71.83	118.87	180.14	-72.19	198.12	181.01	-72.53	277.37	178.33	-71.75	356.62	175.34	-71.03	435.86	172.23	-71.27
42.67 180.82	-71.81	121.92	179.95	-72.22	201.17	181.11	-72.51	280.42	178.23	-71.72	359.66	175.00	-70.99	438.91	172.21	-71.25
45.72 180.83	-71.85	124.97	179.81	-72.24	204.22	181.14	-72.52	283.46	178.13	-71.74	362.71	174.78	-70.91	441.96	172.14	-71.26
48.77 180.79	-71.89	128.02	179.77	-72.24	207.26	181.15	-72.53	286.51	177.98	-71.77	365.76	174.75	-70.87	445.01	172.12	-71.27
51.82 180.71	-71.90	131.06	179.76	-72.24	210.31	181.15	-72.52	289.56	177.84	-71.75	368.81	174.88	-70.86	448.06	172.07	-71.26
54.86 180.60	-71.89	134.11	179.79	-72.25	213.36	181.05	-72.53	292.61	177.71	-71.69	371.86	174.96	-70.85	451.10	172.05	-71.28
57.91 180.51	-71.89	137.16	179.83	-72.26	216.41	181.01	-72.53	295.66	177.62	-71.69	374.90	174.94	-70.81	454.15	172.08	-71.31
60.96 180.43	-71.87	140.21	179.89	-72.24	219.46	180.99	-72.53	298.70	177.62	-71.73	377.95	174.79	-70.80	457.20	172.15	-71.32
64.01 180.45	-71.89	143.26	179.82	-72.26	222.50	181.12	-72.56	301.75	177.59	-71.77	381.00	174.58	-70.80	460.25	172.22	-71.35

304.80 177.42 -71.72

307.85 177.22 -71.70

310.90 177.09 -71.69

313.94 177.03 -71.69

384.05 174.48 -70.85

387.10 174.40 -70.92

390.14 174.28 -70.95

393.19 174.11 -70.99

463.30 172.23 -71.33

466.34 172.32 -71.32

469.39 172.41 -71.30

472.44 172.52 -71.30

225.55 181.56 -72.60

228.60 182.11 -72.62

231.65 182.25 -72.65

234.70 182.12 -72.64

1

and the second second

67.06 180.46 -71.89

70.10 180.45 -71.90

73.15 180.51 -71.95

76.20 180.52 -71.97

146.30 179.92 -72.27

149.35 179.89 -72.28

152.40 179.93 -72.29

155.45 179.96 -72.26

1F=	,					Redfe	ern Re	sources l	_td.						Hole-ID:	TCU04097
IC						Dia	amon	d Drill Log	J							Page: 2
				5		C	ollar C	oordinates	<u> </u>					· 	,	
North (m):		15525.00	Δ	zimuth (deo	rees):	182	2.25	Started:			11/05/20	04	Date Logo	ed:	21	1/05/2004
East (m)		10601.00		Dip (degrees	s):	-71	.88	Completed:			21/05/20	04	Logged By	/:		MA.
Elevation (m):		114.00	L	ength (m):	,-	649	9.83	·					Report Pri	nted:	17	7/12/2004
				arak 1		Dow	n Hole	Survey Tes	ete							
Depth Azim (m)	uth Dip	Depth (m)	Azimuth	n Dip	Depth (m)	Azimuth	n Dip	Depth Azimu (m)	uth Dij	0	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip
475.49 172.5	5 -71.31	554.74	170.96	-71.63	633.98	170.06	-72.03						adar na st-skada na da sa da sa sa			
478.54 172.6	1 -71.30	557.78	170.98	-71.63	637.03	169.95	-71.99									
481.58 172.7	-71.29	560.83	170.90	-71.63	640.08	169.81	-71.93									
484.63 172.8	2 -71.25	563.88	170.92	-71.62	646.18	169.60	-71.87									
487.68 172.9	-71.20	566.93	170.92	-71.62												
490.73 173.0	0 -71.18	569.98	170.95	-71.63												
493.78 173.0	5 -71.15	5 573.02	171.04	-71.61												
496.82 172.9	2 -71.16	576.07	171.12	-71.62												
499.87 172.7	4 -71.19	579.12	171.22	-71.60												
502.92 172.6	1 -71.23	582.17	171.30	-71.59												
505.97 172.5	5 -71.24	585.22	171.34	-71.63												
509.02 172.4	7 -71.30	588.26	171.35	-71.66												
512.06 172.3	3 -71.35	5 591.31	171.27	-71.66												
515.11 172.3	4 -71.37	594.36	171.26	-71.63												
518.16 172.2	5 -71.39	597.41	171.27	-71.59												
521.21 172.1	5 -71.41	600.46	171.26	-71.61												
524.26 171.9	5 -71.49	603.50	171.27	-71.61												
527.30 171.6	7 -71.56	606.55	171.20	-/1.59												
530.35 171.3	/ -/1.58	609.60	171.04	-/1.62												
533.40 171.1	4 -/1.01	612.00	170.78	-/1.09												
530.45 171.0	J -/ 1.62	CIO.7U	170.00	71 92												
542 54 470 7	5 -71.03	010.74 2 20170	170.47	-71.02												
545 50 170.7	9 -/1.03	621.79 634.94	170.34	-71.00												
549.59 170.8	J -71.01 5 74 50	024.84	170.20	-11.92												
J40.04 1/U.C	J -/1.05	, 021.09	170,19	-11.30												

-

r	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-I	D: TCl F	J0409 [⊃] age:
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
0.00 0.61	Casing: NW					·				
0.61 24.94	<ul> <li>Feldspar-phyric Basalt Flow: Chlorite; Epidote</li> <li>Fine grained dark green basalt flows. Local dark grains of resorbed (?) material. Chl, carb and ep as bands with minor py. These bands may represent pillow selvages. trace cpy noted in selvages. Locally jaspery, posible as infill. Lower contact sharp, intrusive, marked by a increase in grain size, and chl. Magnetite seam at contact 40 degrees TCA.</li> <li>16.00 21.00 Feldspar-phyric Basalt Flow: Bleached; Bleached and broken zone, py breccia. possibly a flow top. py banded locally, banding x-cuts local chl stringers (pillow margin?) This makes py secondary, part of the brecciation event. calcite on late fractrue.</li> <li>17.03 17.53 Semi-Massive Sulphide: Semi massive py breccia. poly-lithic fragments noted in py matrix. Possibly a distant expression of a Massive sulphide unit?</li> <li>18.60 18.65 Fault: 0.5 cm black-sulphide rich? gouge 40 degrees TCA</li> <li>21.50 24.94 Feldspar-phyric Basalt Flow: Transitional zone -mixed mafic extrusices and intrusivesChl fractures noted. Possible bedding planes noted at 24.30 60 degrees TCA</li> </ul>	3562 3563 3564 3565	15.00 16.00 17.00 18.00	16. 17. 18. 19.	00 1.00 00 1.00 00 1.00 00 1.00	0.03 0.03 0.03	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
24.94 249.14	<ul> <li>Feldspar-phyric Basalt Intrusive: Chlorite</li> <li>Moderately crystaline basalt intrusive (gabbro?) Pale feldspar laths noted in a dark green matics.</li> <li>Feldspars to 3 mm. Minor chl veining/fracturing with trace epidote. Lower contact marked by cherty fragments.</li> <li>31.42 33.45 Fault Zone: Carbonate healed Fit zone, abundant broken ground. Fit plane defined by 2-3 cm carb and lithic fragment vein 15 degrees TCA. Aprrox 50 cm of core lost through this interval.</li> <li>33.45 42.00 Feldspar-phyric Basalt Intrusive: Broken ground, rough irregular fracures, with very minor calcite coatings. Fractures are irregular, probably some mechanical fractures through the interval. trace marchesite.</li> <li>42.00 44.50 Feldspar-phyric Basalt Intrusive: Bleached; Bleached FLZN. Increased carb veining. LC sharp 35 degrees TCA. Slickenlines noted at 43.89 m. Fracture surface is 32 degrees TCA, slicks rake 62 degrees TCA in fracture face, sense of motion is left</li> </ul>									

17

Sector Sector

and the second se

and an or state

Stational

### Redfern Resources Ltd. Diamond Drill Log Lithology Description

0.0

1245

Hole-ID: TCU04097 Page: 4

1100

Interval (m) From To	Description		Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
**************************************	lateral				· .	,					
	44.35 44.50 Feldspar-phyric Basalt Intrusive: Pyrite; Pyri shear planes	ritic shears. 45 degrees TCA. Chl on									
	67.35 69.54 Feldspar-phyric Basalt Intrusive: Rubble zor fractures.	ne, rough irregular calcite coated									
	73.20 73.22 Feldspar-phyric Basalt Intrusive: Epidote; 2	cm intense epidote alteration									
	111.50 126.10 Feldspar-phyric Basalt Intrusive: Well deve	eloped intrusive TXT's possible local talc									
	(?) Suggests a possible ultramafic intrusiveper interval marked by decreased grain size	ridotite? Lower contact of this									
	126.45 127.10 Feldspar-phyric Basalt Intrusive: Broken gr	round. rough irregular fractures,									
	134.08 135.00 Feldspar-phyric Basalt Intrusive: Chlorite; (	Chl rich rubble/ FLZN. Flt 40 degrees									
	174.53 174.67 Feldspar-phyric Basalt Intrusive: Rubble, p x-tails noted.	possible cave, large well formed calcite									
	182.22 187.17 Feldspar-phyric Basalt Intrusive: Increased	d veining, qtz-chl-mag +/- ep +/- carb.									
	5-50 degrees TCA, 0.5 -60 cm. Through vein zor	ne variable txt's noted in mafic.									
	varies from fine grained aphanititc to well develop	ped intrusive txts with									
	interlocking x-talls to 3 mm										
	187.17 210.35 Feldspar-phyric Basalt Intrusive: Well deve	eloped intrusive txts -gabbroic									
	210.30 210.30 Feldspar-phyric Basalt Intrusive: 1 cm qtz-	-chl-py vein, 30 degrees TCA									
	210.35 211.10 Feldspar-phyric Basalt Intrusive: Ankerite (	(?) breccia with minor py									
	211.10 211.50 Feldspar-phyric Basalt Intrusive: Magnetite	; Highly magnetic cherty zone, somewhat									
	brecciated with Chl stringers. Flow top? Xenolith	h?									
	219.96 230.02 Feldspar-phyric Basalt Intrusive: Broken g fractures, coated with 0-2 mm hard calcite. tr her	ground. rough irregular, variable m									
	230.02 235.75 Feldspar-phyric Basalt Intrusive: Healed cr	rackle breccia 1-2 mm qtz-carb									
	stringers/stockwork through competent core.										
	238.50 242.93 Feldspar-phyric Basalt Intrusive: broken gr	round. rough fractures along calcite veins									
49.14 287.00	Basalt Ash Tuff: Calcite										
	Fine grained basalt ash tuffs to lapilli tuffs. Moderate to w	vell bedded volc seds, rarely									

(	P	

### Redfern Resources Ltd. **Diamond Drill Log** Lithology Description

Hole-ID: TCU04097 Page: 5 and a

Interva	al (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		heterolithic (fine 3-5 mm rhyolite clasts). bedded py noted locally. Dominately chl alt'd with							-		
		local ank/carb altered zones. Lower contact sharp, broken 60 degrees TCA.									
		249.14 261.70 Basalt Ash Tuff: ash tuff dominant, bedding 50 degrees TCA									
		261.70 268.40 Basalt Ash Tuff: Ankeritic lapilli basalt tuff. Bedding 25-30 degrees TCA, ank									
		alteration pervaissive and within veins that run parallel to bedding planes. Wavy									
		lower contact sub // TCA									
		268.40 281.30 Basalt Ash Tuff: Fine grained/ aphanitic basalt (flow??) locally autobrecciated.									
		Rare qtz-chl vein. with trace py, 5-30 degrees TCA									
		275.50 281.30 Basalt Ash Tuff: Shattered core. fracture surfaces generally clean and rough. Rare									
		calcite and chl coated fractures. coatings to 2 mm									
		281.30 287.00 Basalt Ash Tuff. Bedded ash tuff. beds 20 degrees TCA very fine grained, no									
		significant sorting noted.									
287.00	289.00	Rhyolite Flow Breccia:									
		Rhyolite Flow Breccia. Pale creamy rhyolite with chloritic specks. Cut by creamy carbonate									
		(ankerite) veins and chl fractures. Trace py noted. Local hematite. Lower contact marked my muddy									
		fit plane 15 degrees TCA.									
289.00	289.72	Fault Zone:									
		Healed Fit BX. Angular broken ank vein fragments in a chi matrix. clasts of rhyolite noted.									
		trace med grained py, 3-5 mm cubes. Lower contact gradational.									
289.72	295.85	Rhyolite Lapilli Ash Tuff:									
		Alternating light and dark rhyolite bands. Light bands are interpreted to be rhyolite lapilli,									
		locally rotation is noted. Dark bands are thought to be squashed pumice clasts, possibly of mafic									
		origin. Ser and chl alt'n noted, rarely speckled with leucoxene. Minor ankerite. Possible fold									
		at 294.85, axis 70 degrees TCA.									
		295.00 295.85 Rhyolite Lapilli Ash Tuff: rubbley, contact is within this zone, broken									
295.85	310.18	Rhyolite Flow Breccia: Chlorite; Carbonate									
		Chi and carb altered rhyolite Flow Breccia, somewhat mottled. (Debris flow?) but dominately									

smaller chl fractures indicating flow breccia. Late qtz-carb +/- fuchsite (?)-chl veins noted

12	<b>)</b>	Redfern Resources Ltd. Diamond Drill Log							Hole-I	ID: TCI	J04097 Page: 6
		Lithology Description									
Interva	ıl (m)	Description	Sample	From	To	Interval	Au	Ag	Cu	Pb	Zn
From	То		INO.	(11)		(11)	y/i	g/t	-70	70	70
		likely related to faulting. Veins 10-15 degrees TCA, up to 15 cm wide with entrained wall rock. Lower contact sharp, marked by 30 cm healed fit breccia, small muddy fit running 20 degrees TCA 300.50 300.50 Fault: muddy fit plane noted at HW of 15 cm vein containing fuch altered wallrock clasts. Elt 15 degrees TCA									
		309.30 309.30 Calcite Vein: 2-3 cm wormy ank vein with open space filled txts, 10 degrees TCA									
310.18	333.85	Basalt Undifferentiated: Fine grained basalt flow (?) Apanitic. Locally cut by chl stringers. Trace py blebs. Broken throughout, bare fractures dominate with minor chl, hem and carb coatings. Lower contact sharp.									
		at 333.85, defined by fit plane 35 degrees TCA. 316.69 317.75 Bleached: Bleached zone surrounding 4 cm qtz-chl ank vein. Vein, 30 degrees TCA	*								
		329.50 333.85 Basalt Undifferentiated: pseudo rhyolite txt's noted, possible very strongly altered flow.									
		333.50 353.60 Dieacheu. Dieacheu zone									
333.85	341.96	Rhyolite Lapilli Ash Tuff: Chlorite									
		Rhyolite lapilli ash tuff. Bedded rhyolite, moderate chl alteration. Local jasper bands. Lapilli									
		to 5 cm. Clasts noted to 20 cm -debris flow may be present by "clasts" appear to be small bleached									
		zones. Bedding noted 15 degrees TCA. Lower contact gradual, mark by increase in clast size.									
341.96	369 29	Rhyolite Debris Flow: Chlorite									
	200.20	Blue grey chi altered RDF. Abundant rounded clasts, welded by chi. Clast to 1m noted, dominantly									
		in the 5-20 cm range. Minor jasper, mostly as infil. Lower contact sharp, chl and carbonate									
		altered, broken 70 degrees TCA.									
		344.10 344.65 Basalt Intrusive: Chlorite; BIN, chl atered, contacts 55 degrees TCA									
		344.75 345.04 Basalt Intrusive: Chlorite; BIN dyke, qtz-veined, similar to above, chl altered.									
		Veins 1 cm, 35-90 degrees TCA. HW sharp, 55 degrees TCA, FW broken, 15 degrees TCA 353.22 356.19 Rhyolite Debris Flow: Decrease in clast size to a max of 3 cm, angular and									
		hetrolithic									

T			Redfern Resources Ltd.							Hole-II	D: TCU	10409
114	9		Diamond Drill Log								P	'age:
			Lithology Description									
Interva	al (m)	Description		Sample	From	To I	nterval	Au	Ag	Cu	Pb	Zn
From	То			No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		Massive basalt intrusive. ghostly feldspars locally	Intrusive txt's noted throughout. Rare									
		bleached intervals, rare qtz-chl veins. Moderately	magnetic. Lower contact defined by first									
		rhyolite. Abundant BIN dyking bellow contact.										
		369.39 370.16 Feldspar-phyric Basalt Intrusive: Cl	nlorite; Mod chl alteration									
		402 44 402 55 Quartz Vein: irregular atz-chl vein	J degrees TCA. 40 degrees TCA appears to be micro-faulted ∼									
		1cm right lateral offset										
		426.42 426.43 Quartz-Calcite Vein: 1 cm open sp	ace filled calcite vein, with 5 cm bleach halo, 50									
		degrees TCA										
		442.93 443.10 Quartz Vein: Chlorite; Qtz-chl vein	, layered, suggests extensional environment, 70									
		degrees TCA.										
		453.80 453.93 Bleached: Bleached Zone	voin 15 degrade TCA									
		460.00 460.62 Quartz Vein: Chlorite: 2 cm dtz-ch	vein 12 degrees TCA									
		475.15 475.55 Bleached: Bleached: Bleached Bleached	ches. CHL-EP alt'n <10cm 50-70 degrees TCA									
		483.15 494.75 Feldspar-phyric Basalt Intrusive: Q size and frequency with depth. 1-10 cm,	uartz Vein; Qtz-vein zone. Veins increase in 30-70 degrees TCA									
494.75	513.80	Rhvolite Debris Flow: Chlorite										
		RDF, CHL and MAG altered. Dark green mottled creamy to light grey, clasts generally not chl altered	RDF. Clasts and lapilli noted, generally, pale d. Matrix material heavily chloritized.	4051	512.80	513.80	0 1.00	0.03	0.00	0.00	0.00	0.00
		Clasts and lapilli from 2-25 cm sub rounded to rare	ely angular. Clasts rarely cut by chl stringers,									
		(possibly primary) Rare CHL-EP-QTZ veins. Trac	ce coarse py. Rare BIN dyke noted, dominately at									
		HW. Gradual lower contact marked by increased	SER and PY. <litho 498.="" b="" geochem,="" m;<="" rhyolite="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></litho>									
		495.89 496.96 Basalt Dyke: Chlorite; Chl altered	pasalt dyke. Contacts razor sharp, 60-65 degrees									
		499.23 500.03 Quartz-Feldspar Porphyry Dyke: C	hlorite; HW 25 degrees TCA, FW 55 degrees TCA,									
513.80	516.50	Quartz-Sericite-Pyrite Alteration: Sericite: Pyrite										
			wand to fine continued as 2000 may Delict highly	1050	E12 00	E440	1 1 01	0.00	10.10	0 12	0.26	1.00

	the second s		
	·		
	1	-	NTO-
	1.00		
	(1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		
	1 A A A A A A A A A A A A A A A A A A A		
	1 12 2 2 2		
199			

Redfern Resources Ltd. Diamond Drill Log Lithology Description

Corean Sector

> Hole-ID: TCU04097 Page: 8

Lines and

ıl (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
		4055	515.81	516.8	0 0.69	0.71	0.00	0.00	0.00	0.00
517.38	Zinc Facies Massive Sulphide: Barite									
	Zinc Facies Semi Massive Sulphide. Well developed bedding/banding, 50 degrees TCA. Ore minerals noted: sphal, pale brown, banded, + dissem, 10-15%, Cpy, rare clot or stringer 5%, Galena, str dissem, 8-10%. Gangue minerals, ser, py, qtz, barite to 30%. LC marked by increased sulphde	4056	516.50	517.3	8 0.88	4.29	184.00	0.54	7.30	11.10
	content at massive sphalerite band, 35 degrees TCA.									
522.38	Zinc Facles Massive Sulphide: Clatty to well bended massive to comi massive sulphide. Abundant sphalerite in bands, 55 degrees	4057	517 38	517 3	4 0 36	3 79	170.00	0.52	6 50	39.00
	TCA and clots. Cry is clothy to bleby dissem. Shal 20% of interval cny, 2-3% galena 3-4%	4057	517.74	518.7	4 1.00	5.18	166.00	1.44	0.83	5.50
	Ganque minerals: ser, barite, pv. gtz.	4059	518.74	519.7	4 1.00	4.06	202.00	1.02	0.60	9.10
	517.38 517.74 Zinc Facies Massive Sulphide: Massive Sphalerite plus dissme galena. 70% pale brown	4060	519.74	520.1	4 1.00	2.62	134.00	1.57	0.95	4.10
	sphal	4061	520.74	521.7	4 1.00	2.70	128.00	1.34	0.57	3.80
		4062	521.74	522.3	88 0.64	1.12	62.50	0.65	1.41	4.62
530.56	Copper Facies: Zinc Facies Massive Sulphide									
	Interval is 80% sulphide. Massive fine grained cpy and sphal with minor gal. Main gaugue mineral	4063	522.38	523.3	38 1.00	4.35	166.00	1.72	3.30	11.70
	is py, minor ser and barite. Rare clots or veins of coarse cpy, sphal pale brown, fine grained.	4064	523,38	524.3	8 1.00	3.66	212.00	1.76	3.80	11.50
	Local wk-moderate bedding. Sharp lower contact 50 degrees TCA	4065	524.38	525.3	8 1.00	3.40	104.00	1.64	0.18	1.02
	525.70 525.99 Str ser and leuc alt'd zone	4066	525.38	526.3	38 1.00	1.85	76.50	1.54	0.29	3.60
	528.85 528.85 Fault: Thin gouge, 0.5 cm. 40 degrees TCA	4068	526.38	527.3	88 1.00	1.99	70.40	1.32	0.94	5.30
	529.95 530.56 Well developed bedding 35 degrees TCA	4069	527.38	528.3	38 1.00	3.04	76.30	1.08	0.50	2.72
		4071	528.38	529.3	38 1.00	1.17	40.80	1.79	0.28	3.23
		4072	529.38	530.	6 1.18	2.69	84.10	1.29	0.94	11.20
534.92	Stockwork: Rhyolite Undifferentiated									
	Chl and ser altered. Somewhat bleached stockwork zone. Sulphide as veins/stringers or disseminated. Stringers are small, less than 3 mm and random. Sphal, cpy, and py noted. Rubbley throughout. Fractures are coated with green to black chl and calcite. Decreasing bleaching with	4073	530.56	531.	56 1.00	0.04	0.00	0.00	0.00	0.00
	depth, transitional lower contact. First recogizeable clast marks lower contact. <litho geochem,<br="">Rhyolite C 531.4m&gt;</litho>									
	11 (m) To 517.38 522.38 530.56 530.56	<ul> <li>II (m) Description To</li> <li>517.38 Zinc Facies Massive Sulphide: Barite Zinc Facies Semi Massive Sulphide. Well developed bedding/banding, 50 degrees TCA. Ore minerals noted: sphal, pale brown, banded, + dissem, 10-15%, Cpy, rare clot or stringer 5%, Galena, str dissem, 8-10%. Gangue minerals, ser, py, qtz, barite to 30%. LC marked by increased sulphde content at massive sphalerite band, 35 degrees TCA.</li> <li>522.38 Zinc Facies Massive Sulphide: Clotty to well banded massive to semi massive sulphide. Abundant sphalerite in bands 55 degrees TCA and clots. Cpy is clotty to bleby dissem. Sphal 20% of interval, cpy, 2-3%, galena 3-4%. Gangue minerals: ser, barite, py, qtz.</li> <li>517.38 517.74 Zinc Facies Massive Sulphide: Massive Sphalerite plus dissme galena. 70% pale brown sphal</li> <li>530.56 Copper Facies: Zinc Facies Massive Sulphide Interval is 80% sulphide. Massive fine grained cpy and sphai with minor gal. Main gaugue mineral is py, minor ser and barite. Rare clots or veins of coarse cpy, sphal pale brown, fine grained. Local wk-moderate bedding. Sharp lower contact 50 degrees TCA 525.70 525.99 Str ser and leuc alt/d zone 528.85 528.85 Fault: Thin gouge, 0.5 cm. 40 degrees TCA 529.95 530.56 Well developed bedding 35 degrees TCA</li> <li>534.92 Stockwork: Rhyolite Undifferentiated Chi and ser altered. Somewhat bleached stockwork zone. Sulphide as veins/stringers or disseminated. Stringers are small, less than 3 mm and random. Sphal, cpy, and py noted. Rubbley throughout. Fractures are coated with green to black chi and calcite. Decreasing bleaching with depth, transitional lower contact. First recogizeable clast marks lower contact. <lith geochem,<br="">Rhyolite C 531.4m&gt;</lith></li> </ul>	II (m)       Description       Sample         To       No.         4055         517.38       Zinc Facies Massive Sulphide: Well developed bedding/banding, 50 degrees TCA. Ore minerals noted: sphal, pale brown, banded, + dissem, 10-15%, Cpy, rare clot or stringer 5%, Galena, str dissem, 8-10%. Cangue minerals, ser, py, qtz, barite to 30%. LC marked by increased sulphde content at massive sphalerite band, 35 degrees TCA.       4056         522.38       Zinc Facies Massive Sulphide:       Clotty to well banded massive to semi massive sulphide. Abundant sphalerite in bands 55 degrees TCA.       4057         522.38       Zinc Facies Massive Sulphide:       Agge and the set of the	<ul> <li>I (m) Description No. (m)</li> <li>To No. (m)</li> <li>Sample From No. (m)</li> <li>Sin T,38 Zinc Facies Massive Sulphide: Barite Zinc Facies Semi Massive Sulphide. Well developed bedding/banding, 50 degrees TCA. Ore minerals noted: sphal, pale brown, banded, + dissen, 10-15%, Cpy, rare clot or stringer 5%, Galena, str dissem, 8-10%. Gangue minerals, ser, py, qtz, barite to 30%. LC marked by increased sulphde content at massive sphalerite band, 35 degrees TCA.</li> <li>Sin Facies Massive Sulphide: Clotty to well banded massive to semi massive sulphide. Abundant sphalerite in bands 55 degrees 4057 517.38 TCA and clots. Cpy is clotty to bleby dissem. Sphal 20% of interval, cpy, 2-3%, galena 3-4%.</li> <li>Gangue minerals: ser, barite, py, qtz.</li> <li>Sin 7, 42 Zinc Facies Massive Sulphide: Massive Sphalerite plus dissme galena. 70% pale brown sphal</li> <li>Sin 7, 42 Zinc Facies Massive Sulphide Interval is 80% sulphide. Massive Shalerite plus dissme galena. 70% pale brown sphal</li> <li>Sin 7, 525, 93 Exercise and barite. Rare clots or velns of coarse cpy, sphal pale brown, fine grained.</li> <li>Local wk-moderate bedding. Sharp lower contact 50 degrees TCA</li> <li>Sin 7, 525, 93 Exercise and low and the organical does 522.38 528.85 Fault: Thin gouge, 0.5 cm. 40 degrees TCA</li> <li>Sin 7, 525, 93 Exercise and low and the organical strained strained.</li> <li>Sin 7, 525, 93 Exercise Massive Sulphide as velne/stringers or disseminated. Stringers are small, less than 3 mm and random. Sphal, cpy, and py noted. Rubbley throughout. Fractures are coated with green to black chi and calcite. Decreasing bleachimg with depth, transitional lower contact. First recogize</li></ul>	<ul> <li>I (m) Description</li> <li>To</li> <li>Sample From To</li> <li>No. (m) (m)</li> <li>No. (m) (m)</li> <li>Vo. (m)</li></ul>	If (m)       Description       Sample       From       To       Inc.       (m)       (m) </td <td>I (m)         Description         Sample No.         From (m)         To (m)         Interval (m)         Au           517.38         Zinc Facies Massive Sulphide: Bartle Zinc Facies Massive Sulphide: Well developed bedding/banding, 50 degrees TCA. Ore minerals noted: sphal, pale brown, banded, + dissem, 10-15%, Cpy, rare clot or stringer 5%, Galena, str dissem, 8-10%, Gangue minerals, ser, py, qtz, bartle to 30%. LC marked by increased sulphde content at massive subhide: Clotty to well banded massive to semi massive sulphide. Abundant sphalerite in bands 55 degrees TCAand clots. Cpy is dotty to beby dissem: Sphalerite plus dissme galena. 70% pale brown sphal         4057         517.38         517.74         0.36         3.79           517.38 517.74         Zinc Facies Massive Sulphide: Massive Sphalerite plus dissme galena. 70% pale brown sphal         4056         517.38         517.74         0.36         3.79           530.56         Copper Facies: Zinc Facies Massive Sulphide Interval is 80% sulphide. Massive fine grained cpy and sphal with minor gal. Main gaugue mineral is py, minor ser and barte. Rare clos or veins of coarse cpy, sphal pale brown, fine grained. Local wk-moderate bedding, Sharp lower contact 50 degrees TCA         4066         522.38         523.83         1.00         4.35           534.92         Stockwork: Rhyolite Undifferentiated Ch and ser attered. Somewhat bleached stockwork zone. Stop 550,56 Well de</td> <td>If (m)       Description       Sample From To Interval Au Ag g         To       No. (m)       &lt;</td> <td>If (m)         Description         Sample         From         To         To         No.         (m)         (m)</td> <td>Uf (m)         Description         To         To</td>	I (m)         Description         Sample No.         From (m)         To (m)         Interval (m)         Au           517.38         Zinc Facies Massive Sulphide: Bartle Zinc Facies Massive Sulphide: Well developed bedding/banding, 50 degrees TCA. Ore minerals noted: sphal, pale brown, banded, + dissem, 10-15%, Cpy, rare clot or stringer 5%, Galena, str dissem, 8-10%, Gangue minerals, ser, py, qtz, bartle to 30%. LC marked by increased sulphde content at massive subhide: Clotty to well banded massive to semi massive sulphide. Abundant sphalerite in bands 55 degrees TCAand clots. Cpy is dotty to beby dissem: Sphalerite plus dissme galena. 70% pale brown sphal         4057         517.38         517.74         0.36         3.79           517.38 517.74         Zinc Facies Massive Sulphide: Massive Sphalerite plus dissme galena. 70% pale brown sphal         4056         517.38         517.74         0.36         3.79           530.56         Copper Facies: Zinc Facies Massive Sulphide Interval is 80% sulphide. Massive fine grained cpy and sphal with minor gal. Main gaugue mineral is py, minor ser and barte. Rare clos or veins of coarse cpy, sphal pale brown, fine grained. Local wk-moderate bedding, Sharp lower contact 50 degrees TCA         4066         522.38         523.83         1.00         4.35           534.92         Stockwork: Rhyolite Undifferentiated Ch and ser attered. Somewhat bleached stockwork zone. Stop 550,56 Well de	If (m)       Description       Sample From To Interval Au Ag g         To       No. (m)       <	If (m)         Description         Sample         From         To         To         No.         (m)         (m)	Uf (m)         Description         To         To

1	<b>)</b>	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-	ID: TC	U0409) Page: 9
Interva From	il (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
534.92	600.00	Rhyolite Debris Flow: Chlorite									
		RDF, locally very intense CHL alteration obscures small clasts. Minor dissem py. Moderately									
		magnetic. Local pale (alt'd) feldspar phenocryst noted. Bottom contact approximate, indicated by									
		Itthogeochem change. <litho -="" 535.="" 561.9m,="" 571.="" 591.9m="" and="" c="" geochem,="" m="" m,="" rhyolite="">.</litho>									
		544.00 544.90 Breccia IXI's noted, myonice clasis in a chi altered myonice matrix									
		500.01 509.02 Rubble 2016, rate calcile vein marking FLTS, 55 degrees TCA									
		581 30 589 85 Trace issuer chine noted 2.5 mm									
		583.07 583 54 Mechanical rubble									
		599,60 600.24 Marchesite and Mag on fracture surfaces									
300.00	620.00	Evolved Andesite:									
		Unit identified by lithogeochem, contacts approximate. <litho (mod-v,<="" andesite="" evolved="" geochem,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></litho>									
		low-P) - 612.5m>.									
		608.40 637.33 Rubble, abundant low angle fractures, rare banding noted -Flow bands? Mag rich, 10									
		degrees TCA. Fractures angular, chl and mag coated, +/- marchesite, rough									
20.00	649.83	Basalt Flow:									
		Unit identified by Lithogeo chem, top contact approximate. <litho -<="" cr-ni="" fw="" geochem,="" low="" mafic="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></litho>									
		630m, and 646.7m>									
		647.40 649.83 Rubble chl and carb coated fractures, 5-10 degrees TCA									
349.83	649.83	End of Hole:									

Colorado Sectores 

		1.1	100							
		. 6						Ξ.		
		£2.			100				÷	
	1	۰.	P	1	1.1	in m	m		in ne	
- 2	4		· ` .a	۰.	<b>.</b>	- No. 1				
	£., 1	÷.,			Ε.	1.2			12.5	
- 1	88	1.4	4 H.		1.1	100				
	22	- 4			1.16				- C	
		- 1			10.				P	
	- 6	- 8		14	199		2.0		· . ·	
			-	i						
		. 3		- 6						
		- 2		- 21						
			-	1						
	- T									
				2			£1 -			
			- T.	- 11						
				- 6						
							·			

# Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04097 Page: 10A

Assays

Street Street

0.00

Sample No	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	AI %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3562	15.00	16.00	1.00	0.03	0.00	0.00	0.00	0.00	0.00	32	32	102	0	0.2	10	2.65	145	5	1.13	1	13
3563	16.00	17.00	1.00	0.03	0.00	0.00	0.00	0.00	0.00	80	28	59	0	0.2	35	1.58	45	5	1.51	1	20
3564	17.00	18.00	1.00	0.03	0.00	0.00	0.00	0.00	0.00	152	42	91	0	0.3	30	2.17	45	5	1.66	1	17
3565	18.00	19.00	1.00	0.03	0.00	0.00	0.00	0.00	0.00	124	86	211	0	0.4	45	1.72	65	5	3.42	3	19
4051	512.80	513.80	1.00	0.03	0.00	0.00	0.00	0.00	0.00	37	56	333	0	0.3	5	2.01	390	5	0.97	1	4
4053	513.80	514.81	1.01	0.29	19.10	0.13	0.26	1.00	2.71	1226	2530	9926	0	18.1	20	1.10	25	5	0.71	69	9
4054	514.81	515.81	1.00	0.30	0.00	0.00	0.00	0.00	0.00	1867	1440	5179	0	11.7	20	1.57	35	5	0.61	41	9
4055	515.81	516.50	0.69	0.71	0.00	0.00	0.00	0.00	0.00	2333	1254	7015	0	8.6	40	1.27	25	5	0.56	34	5
4056	516.50	517.38	0.88	4.29	184.00	0.54	7.30	11.10	4.03	5318	10000	10000	0	30.0	735	0.28	10	5	0.13	467	3
4057	517.38	517.74	0.36	3.79	170.00	0.52	6.50	39.00	3.92	5039	10000	10000	0	30.0	340	0.11	5	5	0.12	1000	5
4058	517.74	518.74	1.00	5.18	166.00	1.44	0.83	5.50	4.07	10000	7984	10000	0	30.0	1240	0.16	5	5	0.15	221	9
4059	518.74	519.74	1.00	4.06	202.00	1.02	0.60	9.10	3.58	10000	10000	10000	0	30.0	1200	0.29	5	5	0.32	322	7
4060	519.74	520.74	1.00	2.62	134.00	1.57	0.95	4.10	3.44	10000	9530	10000	0	30.0	730	0.24	5	5	0.22	143	12
4061	520.74	521.74	1.00	2.70	128.00	1.34	0.57	3.80	3.94	10000	5432	10000	0	30.0	520	0.23	5	5	0.25	143	11
4062	521.74	522.38	0.64	1.12	62.50	0.65	1.41	4.62	3.35	6486	10000	10000	0	30.0	180	0.25	20	5	0.27	152	10
4063	522.38	523.38	1.00	4.35	166.00	1.72	3.30	11.70	4.35	10000	10000	10000	0	30.0	995	0.10	5	5	0.23	332	10
4064	523.38	524.38	1.00	3.66	212.00	1.76	3.80	11.50	4.20	10000	10000	10000	0	30.0	1185	0.15	385	5	0.31	400	11
4065	524.38	525.38	1.00	3.40	104.00	1.64	0.18	1.02	3.80	10000	1752	9443	0	30.0	760	0.18	5	5	0.15	39	10
4066	525.38	526.38	1.00	1.85	76.50	1.54	0.29	3.60	3.59	10000	2854	10000	0	30.0	490	0.58	5	5	0.34	131	11
4068	526.38	527.38	1.00	1.99	70.40	1.32	0,94	5.30	3.80	10000	9072	10000	0	30.0	375	0.19	5	5	0.15	198	11
4069	527.38	528.38	1.00	3.04	76.30	1.08	0.50	2.72	3.90	10000	4688	10000	. 0	30.0	635	0.15	5	5	0.13	94	10
4071	528.38	529.38	1.00	1.17	40.80	1.79	0.28	3.23	3.93	10000	2732	10000	· 0	30.0	225	0.20	5	5	0.13	135	9
4072	529.38	530,56	1.18	2.69	84.10	1.29	0.94	11.20	3.78	10000	9086	10000	0	30.0	765	0.32	240	5	0.13	372	9
4073	530.56	531.56	1.00	0.04	0.00	0.00	0.00	0.00	0.00	1477	88	1106	0	2.6	45	0.77	5	5	0.60	4	7

(7								Re	dfern Diam	n Res nond	sourc Drill	ces L Log	.td.						Hol	e-ID: TCU04097 Page: 10E
								A	ssays	sco	ontinu	ed								
Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm
3562	15.00	16.00	1.00	55	3.08	10	1.17	449	1	0.20	12	530	5	20	102	0.10	10	9	10	9
3563	16.00	17.00	1.00	98	2.91	10	0.74	433	2	0.13	14	400	5	20	45	0.05	10	7	10	8
3564	17.00	18.00	1.00	59	4.19	10	1.09	567	- 1	0.14	21	450	5	20	40	0.05	10	21	10	10
3565	18.00	19.00	1.00	61	3.74	10	0.96	769	1	0.03	23	410	20	20	46	0.01	10	19	10	11
4051	512.80	513.8	0 1.00	68	1.46	10	0.76	181	1	0.17	8	170	5	20	64	0.04	10	1	10	3
4053	513.80	514.8	1 1.01	64	2.54	10	0.51	154	1	0.09	2	190	10	20	31	0.02	10	4	10	3
4054	514.81	515.8	1 1.00	71	2.60	10	0.86	184	. 1	0.11	4	280	5	20	49	0.04	10	16	10	4
1055	515.8 <b>1</b>	516.5	0 0.69	43	2.33	10	0.84	158	1	0.08	2	270	20	20	26	0.03	10	. 6	10	3
1056	516.50	517.3	8 0.88	28	3.08	10	0.37	58	1	0.01	1	140	305	20	36	0.01	10	10	10	1
1057	517.38	517.7	4 0.36	23	3.70	10	0.08	92	1	0.01	1	70	60	20	14	0.01	10	- 1	10	1
1058	517.74	518.7	4 1.00	96	10,00	40	0.26	1	1	0.01	1	430	485	20	12	0.01	10	1	10	1
1059	518.74	519.7	4 1.00	77	9.74	20	0.28	1	1	0.01	1	330	670	20	18	0.01	10	1	10	1
1060	519.74	520.7	4 1.00	102	10.00	20	0.29	1	1	0.01	1	690	285	20	14	0.01	10	2	10	2
1061	520.74	521.7	4 1.00	121	10.00	40	0.33	1	1	0.01	1	420	165	20	10	0.01	10	1	10	1
062	521.74	522.3	8 0.64	91	10.00	30	0.26	1	1	0.01	. 1	570	40	20	12	0.01	10	2	10	2
4063	522.38	523.3	8 1.00	80	10.00	30	0.19	1	1	0.01	1	480	125	20	8	0.01	10	1	10	2
1064	523.38	524.3	8 1.00	92	10.00	40	0.21	37	1	0.01	1	520	75	20	22	0.01	10	1	10	2
4065	524.38	525.3	8 1.00	131	10.00	40	0.28	1	1	0.01	3	530	140	20	6	0.01	10	1	10	2
1066	525.38	526.3	8 1.00	93	10.00	40	0.82	1	. 1	0.01	1	500	80	20	10	0.01	10	1	10	1
1068	526.38	527.3	8 1.00	132	10.00	40	0.30	1	1	0.01	1	410	65	20	10	0.01	10	1	10	1
1069	527.38	528.3	8 1.00	105	10.00	40	0.28	1	1	0.01	1	320	120	20	9	0.01	10	1	10	2
071	528.38	529.3	8 1.00	106	10.00	40	0.33	1	1	0.01	1	630	25	20	10	0.01	10	1	10	1
1072	529.38	530.5	6 1.18	99	10.00	30	0.45	1	1	0.01	1	290	200	20	23	0.01	10	2	10	1
4073	530,56	531.5	6 1.00	77	5.14	10	0.60	132	1	0.04	6	270	5	20	17	0.01	10	7	10	5

r			Redfern Re Diamon	esources Ltd. d Drill Log			Hole-ID: TCU0409 Page:
			Collar C	oordinates			<u></u>
North (m):	15374.00	Azimuth (degrees):	175.50	Started:	13/05/2004	Date Logged:	22/05/2004
East (m)	10663.00	Dip (degrees):	-57.33	Completed:	20/05/2004	Logged By:	BDA.
Elevation (m):	114.00	Length (m):	474.88			Report Printed:	17/12/2004
	Denth		Down Hole	Survey Tests			
(m)	(m)	Azimuth Dip Dept. (m)	n Azimutn Dip	(m)	Depth Azimu (m)	ith Dip Depth (m)	n Azimuth Dip
(m) 0.00 175.50 -57.33	Deptn (m)	Azimutn Dip Dept. (m)	n Azimutn Dip	(m)	Depth Azimu (m)	th Dip Depth (m)	Azimuth Dip
Depth         Azimuth         Dip           0.00         175.50         -57.33           32.92         177.60         -56.60	(m)	Azımutn Dip Dept (m)	n Azimutn Dip	(m)	Depth Azimu (m)	th Dip Depth (m)	Azimuth Dip
Depth         Azimuth         Dip           0.00         175.50         -57.33           32.92         177.60         -56.60           124.36         176.00         -56.30	Deptn (m)	Azımutn Dip Depr (m)	n Azımutn Dip	(m)	Depth Azimu (m)	th Dip Depth (m)	Azimuth Dip
Depth         Azimuth         Dip           0.00         175.50         -57.33           32.92         177.60         -56.60           124.36         176.00         -56.30           185.32         180.70         -55.90           126.40         122.50         65.10	Ueptn (m)	Azımutn Dip Dept (m)	n Azımutn Dip	(m)	Depth Azimu (m)	th Dip Depth (m)	Azimuth Dip
Depth         Azimuth         Dip           0.00         175.50         -57.33           32.92         177.60         -56.60           124.36         176.00         -56.30           185.32         180.70         -55.90           216.10         182.50         -56.10           276.76         182.30         -56.50	Ueptn (m)	Azımutn Dip Depr (m)	n Azımutn Dip	Depth Azimuth Dip (m)	Depth Azimu (m)	th Dip Depth (m)	Azimuth Dip
Depth         Azimuth         Dip           0.00         175.50         -57.33           32.92         177.60         -56.60           124.36         176.00         -56.30           185.32         180.70         -55.90           216.10         182.50         -56.10           276.76         182.30         -56.50           307.24         183.60         -55.80	Ueptn (m)	Azımutn Dip Depr (m)	n Azımutn Dip	Uepth Azimuth Dip (m)	Depth Azimu (m)	th Dip Depth (m)	n Azımuth Dip
Depth         Azimuth         Dip           0.00         175.50         -57.33           32.92         177.60         -56.60           124.36         176.00         -56.30           185.32         180.70         -55.90           216.10         182.50         -56.10           276.76         182.30         -56.50           307.24         183.60         -55.80           337.72         183.80         -55.90	Ueptn (m)	Azımutn Dip Depr (m)	n Azımutn Dip	Uepth Azimuth Dip (m)	Depth Azimu (m)	th Dip Depth (m)	Azimuth Dip
Depth         Azimuth         Dip           0.00         175.50         -57.33           32.92         177.60         -56.60           124.36         176.00         -56.30           185.32         180.70         -55.90           216.10         182.50         -56.10           276.76         182.30         -56.50           307.24         183.60         -55.80           337.72         183.80         -55.90           368.20         184.00         -56.00	Ueptn (m)	Azımutn Dip Depr (m)	n Azımutn Dip	Uepth Azimuth Dip (m)	Depth Azimu (m)	th Dip Depth (m)	Azimuth Dip

r	<b>)</b>	Redfern Resources Ltd. Diamond Drill Log Lithology Description	•							Hole-	ID: TC	۲ ۲
Interval From	(m) To	Description	·····	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	
1.07	13.22	Feldspar-phyric Rhyolite Flow: Hematite; Magnetite Rhyolite lava flow, massive glassy light purple to light green - gray in colour with 2-25% partially reabsorbed 1-2mm ghosted felsic phenocrysts, locally dominant over 2-3m sections. Several 1-2mm thin irregular wavy dark red chert bands with whisps extending 1cm are noted at 1.1m (~50deg) and 7.0m(~10deg.), these are possibly local breciation infilling?. Pervasively magnetic with magentite rarely visible - only several fine grains observed with pale blue green chlorite in a hematite rich section. Common 0.5mm epidote veinlets, with extending clots upto 20mm. Several 10mm quartz veins. Lower contact is conformable at 45deg. with chert fragments and lapilli becoming visible.										
13.22	89.60	Rhyolite Crystal Lapilli Tuff: Magnetite; Chlorite; Jasper Rhyolite crystal lappili tuff, with variable alteration and clasts and lapilli intensity. From glassy light purple almost flow like to dark green - gray with numerous lapilli and chert fragments. See nested for local compostion descriptions. Lower contact is irregular at 40deg. 13.22 15.35 Rhyolite Crystal Lapilli Tuff: Magnetite; Chlorite; Glassy green - gray, fine grained RLT. Chlorite dominant matrix with <15% 1-3mm lithic fragments and occasional chert fragments. Rare small pyrrhotite fragments, 3mm including one rimed										
		<ul> <li>with chert at 14.75m <photo 14="">.</photo></li> <li>15.35 18.70 Rhyolite Crystal Lapilli Tuff: Magnetite; Chlorite; Pale grey - green RLT with 2-6mm mainly felsic fragments and 2-5mm chert clasts. 1-3mm chlorite - magnetite rich veinlets dominate the middle ~30deg. Several 5mm pyrrhotite crystals <photo 17="">. Bottom is a fault contact with 3mm calcite and 1mm chlorite veinlets extending 1m into the RLT changing to a pale/cream green colour.</photo></li> <li>18.70 19.20 Fault Zone: Calcite; Chlorite; Fault zone, mainly broken core with minor gauge, also some breciation with calcite recementing the broken fragments. No consistant fault</li> </ul>										
		<ul> <li>plane, 30-50deg.</li> <li>19.20 30.20 Rhyolite Crystal Lapilli Tuff: Magnetite; Chlorite; Pale green-grey changing to blue-grey with hematite increasing in the middle of this variable section. Fragments are mainly 20% 3-6mm felsics and 15% 2-3mm angular lithic chert, but large sub rounded 10-15cm rhyolite fragments are present in the top. Large 3cm chlorite-magnetite vein is present at 27.45m with some minor epidote. Two large pyrrhotite fragments rimed in chlorite are present at 29.65m</li> </ul>										

6	Redfern Resources Lt Diamond Drill Log Lithology Description	d.							Hole-	ID: TC	U04098 Page: 3	5
Interval (m) From To	Description	S	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	-
	contact is irregular with basalt dyke at 30deg. with local epidote alteration			х								-
	extending 15cm into RLT.											
	30.20 34.46 Basalt Dyke: Magnetite; Chlorite; Massive dark green-gray fine grained basalt dyke, very magnetic with very fine dissemintated magnetite and numerous 2-6mm											
	chlorite-magnetite veinlets. Lower contact is irregular at 75deg.											
	34.46 54.30 Rhyolite Crystal Lapilli Tuff: Chlorite; Dark green-gray, light purple rhyolite											
	crystal lapilli tuff. Fragments are mostly 2-3mm felsic lapilli - sometimes											
	elongated and 10mm lithic chert fragments, some larger 15-25cm felsic rhyolite											
	chlorite-epidote veinlets are common in some sections. Lower contact is sharp with											
	54 30, 55 44 Basalt Dyke: Magnetite: Chlorite: Enidote: Basalt dyke alternating from dark green											
	to light green-grav every 10cm with changing chlorite and enidote alteration. Few											
	magnetite veinlets but still strongly magnetic several 1cm guartz vein 0deg, and 70											
	deg. Lower contact is sharp at 60deg.											
	55.44, 57.10 Rhvolite Crystal Lapilli Tuff: Magnetite: Chlorite: Green - gray, felsic speckled											
	RLT, similar to above. Lower contact with basalt dvke at 55deg, with localized											
	bleaching extending 20cm into RLT											
	57.10 58.38 Basalt Dyke: Dark green to green varing chlorite and strongy magnetic, similar to											
	above.											
	58.38 59.70 Rhyolite Crystal Lapilli Tuff. Pale purple - grey hematitic rhyolite lapilli tuff,											
	bottom contact on 2cm chlorite vein at 50deg.											
	59.70 60.50 Basalt Dyke: Magnetite; Chlorite; Biotite; Dark green - to gray mafic dyke as above											
	sections but with extensive brown biotite interconecting in 3mm clumps producing a											
	brown- dark green speckled look <photo 59="">. Bottom contact is a 3mm calcite veinlet</photo>											
	with minor epidote at 15 deg.											
	60.50 65.22 Rhyolite Crystal Lapilli Tuff: Pale green grading to medium gray rhyolite lapilli											
	tuff. Top contact strongy chlorite altered for 20cm. 15% 2-3mm felsic lapilli.											
	Several 2mm chlorite - epidote veinlets.											
	65.22 65.73 Basalt Dyke: Pale yellow-green chlorite - sericite altered basalt dyke. Top contact											
	at 50deg. bottom at 60deg. Soft black viterous 1mm crystals stand out near bottom											
	contact.											

# P

### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04098 Page: 4

			······································									
Interval (n	1)	Description		Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From	То			No.	(m)	(m)	(m)	g/t	g/t	%	%	%

- 65.73 73.70 Rhyolite Crystal Lapilli Tuff: Blue grey rhyolite crystal lapilli tuff with small 2mm lapilli. only weakly magnetic with minor hematite with lapilli. 40cm silicified light grey green section in middle.
- 73.70 89.60 Rhyolite Crystal Lapilli Tuff: Magnetite; Chlorite; Purple-grey crystal rhyolite lapilli tuff. 1-2mm hematitic bands with wispy 10mm clots. 2-10mm chlorite veinlets, some with minor epidote. Mid section is relatively unaltered green-dark brown gray with 15% 1-2mm felsic crystals showing little reabsoration in a mostly chloritic matrix with minor hematite at 82.3-84.4m. Lower contact is irregular over 5mm and ~40deg., very magnetic with adjacent 1-2cm quartz veining upto 10cm away(weakly mag).

#### 89.60 122.97 Basalt Intrusive: Magnetite; Chlorite

Massive dark green to very dark green-gray basalt intrusive. The drill hole line is likely located near the edge of and parallelling the gabbro dyke body with the hole in and out of rhyolite several times over the I30m length of the intrusive body. Occasional 1cm chlorite magnetite veins, 110.55m @ 30deg.

- 90.90 91.55 Rhyolite Lapilli Tuff: Magnetite; Chlorite; Purple-dark grey rhyolite lapilli tuff. Strongly magnetic in places with disseminated magnetite and rare pyrrhotite. Some small dark green strongly chlorite alterated areas. Contacts are sharp and strongly magnetic, top 40 deg, bottom 40deg. and irregular.
- 92.00 93.67 Rhyolite Lapilli Tuff: Basalt Intrusive; Chlorite; Mixed section with hole parallelling edge of gabbro. Alternating segments of rhyolite and gabbro every 20cm, with several 1-5cm quartz-calcite veins, non to only weakly magnetic. the upper contact is regular at 40deg. with most of the internal contacts irregular. The bottom contact is irregular at 35deg. and locally quite fractured with associated minor chlorite fault gouge extending 20cm into the mixed uint.
- 118.68 119.12 Fault Zone: Minor fault zone, consisting mainly of broken core less than 4cm. Some minor calcite veins with hematite spots and veinlets. 0.5mm chlorite slickenslides are visible dipping 45deg, accross the main fracture plane, 20deg. TCA

#### 122.97 129.10 Rhyolite Lapilli Tuff: Magnetite; Chlorite

Rhyolite Lapilli tuff? many textures have be absorbed by the alteration. Pale blue-grey silicious

# r

an said

### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Sector Cold

Hole-ID: TCU04098 Page: 5 AND THE REAL

From	n) Tra	Description	Sample	From	To (m)	Interval	Au a/t	Ag	Cu	Pb	Zn
FIOII				(11)	(11)	(iii) 	y/t	y/i	-70	70	70
		rhyolite mainly altered quartz with thin 1-2mm magnetite - chlorite veinlets and 1-3mm magnetite									
		clots distubited through out with minor pyrrhotite. Top contact is irregular at 10deg. with 1cm									
		thick chlorite - magnetite vein. Bottom contact is with calcite vein at start of fault zone,									
		chlorite-calcite with minor hematite extends 20cm into rhyolite.									
		128.80 129.10 Fault Zone: Chlorite; Minor fault zone with local tectonic breciation and a little									
		gouge. 1 cm calcite veins and infilling with calcite and chlorite.									
29.10 14	18.05	Basalt Intrusive: Magnetite; Chlorite									
		Massive dark green - grey basalt intrusive. Occassional 1 cm magnetite chlorite veinlets and some									
		motled green chlorite rich sections, 141.60m. Bottom contact is sharp at 65deg. into rhyolite									
		<photo 148=""> with the gabbro becoming very fine black green over the last 2m.</photo>									
48.05 16	69.03	Rhyolite Lapilli Tuff: Magnetite									
		Pale green - gray silicified rhyolite, lappili tuff? Chlorite veins cross cut this section giving									
		it a pesudo brecciated texture. Magentite is present in 1-2mm grains and veinlets. Hematite									
		staining and 10-15% partially reabsorbed 1mm feldspars dominate the middle of the section, with									
		trace pyrrhotite. The bottom of the section is relatively unaltered with some pale cream blue									
		sericite alteration near the contact with the basalt intrusive, sharp at 60deg. < Photo 169>.									
		150.05 153.04 Basalt Dyke: Chlorite; Mainly massive basalt intrusive with minor chlorite veinlets.									
		Top contact with rhyolite is very irregular over 50cm with very fine epidote and									
		hematite veinlets. Bottom contact is irregular at 30 deg. with no magnetite but a									
		change to a weak foliation texture.									
		161.60 169.03 Rhyolite Lapilli Tuff: Unaltered dark green-gray rhyolite lapilli tuff within the									
		slicified unit. Molted with hematite fragments and pale grey reabsorbed feldspars in									
		a chlorite dominant matrix are weakly foliated at 45deg.									
69.03 21	0.45	Basalt Intrusive: Magnetite; Chlorite									
		Basalt intrusuive similar to above; dark green - gray, regular 2-5mm calcite epidote veinlets, 1cm									
		chlorite - magnetite veinlets, trace pyrrhotite, very fine grained in top 1.5m with some localised									
		brown biotite at contact. This section is cut by a major fault at 210-212m with several adjacent									
		localized fault sections over 8m with broken core, gouge and several slickenslides. The bottom									
		contact with rhvolite is sharp and irregular at 45deg.									
		······································									

	differences.
a se	
曹嬰	
电器	
	and the second se

Gir do Maler

S.

### Redfern Resources Ltd. Diamond Drill Log Lithology Description

10

Hole-ID: TCU04098 Page: 6 Sector Property in the sector of the sector

From	(m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		178 38 179 22 Fault Zone: Minor fault zone, broken and fractured core									
		181.85 183.25 Fault Zone: Breciated fault zone with numerous fractures and extensive calcite									
		veins, most sub parrallel to the core axis. 1cm of gouge is at the bottom of the fault									
		192.70 193.40 Fault Zone: Minor fault zone, 1cm thick chlorite dominated dry crumbly gouge sub parallel to the core axis.									
		194.46 194.90 Fault Zone: Minor fault zone, minor chlorite, core mainly fractured near 1cm sub parallel calcite vein into 2-3cm pieces.									
		205.20 205.40 Fault Zone: Minor fault zone, 2 parallel 0.5cm clayey chlorite gouge zones at 10deg.									
		207.43 208.04 Fault Zone: Quite fractured core, mostly less than 3cm size pieces, several gouge									
		plains at 20deg.									
210.45	212.40	Fault Zone:									
		Most intense of the fault zones with over 2m of wet clayey fine cholrite gouge and completely									
		broken core into less than 3cm size peices. Several of the gouge surfaces are sub parallel to the									
		core axis and the fault propper is closely allined with the drill hole are there are several									
		associated splays. In the adjacent minor faults the core shatters eaisly because the gougy veins									
		are parallel to the core axis giving little support the the outside surface.									
212.40	220.65	Basalt Intrusive: Magnetite; Chlorite									
		Same as above									
		213.90 214.75 Fault Zone: Mainly 0.5cm wide wet chlorite gouge sub parallel to the core axis.									
		215.75 217.38 Fault Zone: Crumbly chlorite gouge in 0.5cm veinlets sub parallel to the core axis.									
		218.35 218.85 Fault Zone: Mainly broken and fractured core with little gouge. Slickenslides are									
		noted on a 40deg angle accross the main 20deg fracture plane surface.									
220.65	231.40	Feldspar-phyric Rhyolite Flow Breccia: Chlorite									
		Rhyolite Flow Breccia with fractured light mouve-gray to light green-gray siliceous rhyolite with									
		abundant 1-5mm chlorite veinlets and locally intense 1-2mm spots. Common magnetite clots. Some									
		20cm localised silica bleaching. Bottom 4m of section is less breciated and more massive, possible									
		flow. Lower contact is roughly at 30deg with lapilli textures adjacent to flow.									

(D			Redfern Resources Ltd.							Hole-	ID: TCI	U0409 Page:
			Lithology Description									
Interva From	al (m) To	Description		Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
231.40	245.60	Rhyolite Lapilli Tuff: Chlorite Varabile Rhyolite Lapilli Tuff mainly chlorite dominant of pale green-grey slicified sections. 1-2mm flattened fel- green chlorite rich matrix with minor hematite, weak 60 preserved and sharp at 45deg. with a wavy conformation contact into rhyolite lava flow <photo>.</photo>	lark green-light purple with some minor sic lapilli with 5-10cm fragments in a ideg. fabric. Lower contact is well ble surface, chlorite extends for 2-3 cm past									
245.60	250.63	Rhyolite Flow: Feldspar; Quartz Pale, faintly purpleish-grey rhyolite flow ranging from m phyric towards bottom contact. Thin 0.3mm chlorite ve tiny (<1mm) quartz phenocrysts are noted. Lower com supported breccia.	nassive fine grained glassy to feldspar einlets and 2mm magnetite clots. A very few tact is gradational into fragmental(<1mm)									
250.63	259.72	Rhyolite Flow Breccia: Magnetite; Chlorite Blue-gray rhyolite flow breccia with pale gray breccia a interlocking grains getting gradually coarser over 1m to fragments are just matrix supported in the top with mat exclusive sections. Brecation dominates in the bottom infiling the fractures. The lower contact is a dinstinct o lapilli visible.	nd felsic fragments. Top grades with fine 5mm <photo 251="">. Sub angular 2-15cm rix increasing to several 30cm matrix half with mostly chlorite and some chert hange into RLT with flow banding and</photo>									
259.72	300.02	Rhyolite Debris Flow: Chlorite Rhyolite debris flow, dark green-blue gray with lighter p The top is very debris poor and almost lapilli tuff like be are distubited randomly with about 1 large fragment pe lapilli, and 1mm chert. Fragments are primarily Quartz abundant(1-5%) Quartz phenocrysts. One large 1.5m foliations/beds at 40deg. locally there is a fineing of gr vary from having with traces of hematite to complete s places with only the fragments being slightly magnetic basalt dyke with adjacent green-brown, molted brown a	pale white gray felsic debris fragments. It after 1m 2-25cm sub angular fragments r metre with numerious small fragments,1-2mm Feldspar Porphry Rhyolite with QFP fragment noted at 295m with obvious internal ains around the larger fragments, which ericite alteration. Only weakly magnetic in Top contact is 40cm above an intrusive sericite - biotite alteration extending from									

1.1.4			<b>.</b> .	
P	1		,	
14	7	Â		7
	4			1
	-			

### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04098 Page: 8

	:	Lithology Description									
Interva From	al (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		is sharp at 40deg. with intrusive sloko rhyolite dyke.									
		260.12 262.67 Basalt Dyke: Magnetite; Chlorite; Dark gray to green-gray basalt dyke with some									
		minor chlorite alteration with 1mm chlorite - magnetite veinlets. Some 1cm quartz									
		veins 90deg, and several thin 0.5mm fracture veinlets filled with brown biotite.									
300.02	306.52	Sloko Rhyolite Dyke:									
		Flow banded Sloko Rhyolite Dyke. Very fine grained predominately very pale green-light gray bands									
		alternating with some darker 0.5-5cm green-gray bands <photo 300="">. The bands are straight and</photo>									
		parallel at 40deg, and dinstinctly speckled with <1% tiny(<1mm) white felsic phenocrysts. 1-5%									
		green clots of epidote(chlorite?) (<1 to 4mm) and tiny black laths' (1-4mm long), tourmaline. A									
		couple of small mining america also noted. Trace disseminated pyrite. Top contact has form chini									
		maight, Lower contact is sharp.									
306.52	308.55	Semi-Massive Sulphide: Pyrite; Chlorite; Sphalerite									
		Semi massive sulfides, brown-green gray debris flow with with mostly 5-10mm rhyolite fragments	3566	306.52	306.7	5 0.23	0.06	0.00	0.00	0.00	0.00
		present through out. Sphalerite, ~5% is present as orange - brown clumps and whispy yellow brown	3568	306.75	307.9	0 1.15	0.91	33.60	0.41	0.48	3.39
		finer grained thin sphalerite bands, two sphalerite fragments are at 307.8m <photo 307="">. Some of</photo>	3569	307.90	308.5	5 0.65	0.90	0.00	0.00	0.00	0.00
		the rhyolite fragments are silica altered. Top 20cm is barren with the section dominated by									
		pyrite, especially top metre of section ~25%, mainly 0.5-2mm grains clumped togeather with also									
		some overprinting of felsic debris. 1-2mm chalcopyrite grains in clusters ~3% and as 0.5mm									
		stringers within the chlorite veinlets near the bottom contact. The bottom contact is gradational									
		over 0.5m with the loss of sulfides and increase in thick chlorite veinlets.									
308.55	312.17	Rhyolite Lapilli Tuff: Chlorite									
		Blue - gray rhyolite lapilli tuff with 5-20cm felsic fragments. Top contact is where 15cm	3571	308.55	309.2	0 0.65	0.03	0.00	0.00	0.00	0.00
		fragments contact chalcopyrite chlorite vein. Fragments are pale blue-green gray with chlorite	3572	309.20	311.1	7 1.97	0.03	0.00	0.00	0.00	0.00
		alteration, criss crossed by 2-4mm chlorite veinlets, some with trace chalcopyrite. A few	3573	311.17	312.1	7 1.00	0.03	0.00	0.00	0.00	0.00
		fragments are brown-gray with sercite alteration and a few 1cm unaltered quartz fragments are also									
		present. Lower contact is gradational over 5cm with matirx becoming more brown with disseminated									

pyrite and subtle sericite alteration starting to take over with leucoxene vissible accross a slip

fracture plane.

1		Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-I	D: TCU F	104098 'age: S
Interva From	l (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
312.17	314.42	Quartz-Sericite-Pyrite Alteration: Sericite; Disseminated Sphalerite; Leucoxene									
		Quartz Sericte Pyrite alteration with pale green-pale brown matrix with whispy sercite dominant.	3574	312.17	313.3	0 1.13	0.18	0.00	0.00	0.00	0.00
		Many 1-2cm sub rounded unaltered quartz fragments. Locally a few areas of large 1mm granoblastic	3575	313.30	314.4	2 1.12	0.17	0.00	0.00	0.00	0.00
		pyrite crystals within fragments. 2-4% Sphalerite is distrubited in very fine whisps within the									
		matrix through out and trace 1-2mm chalcopyrite grains. 0.2mm Leucoxene is regularly scattered									
		throughout (1%). Several dark brown almost black 1-3mm biotite rich veinlets cut this section									
		giving a stripy apperaence, increasing towards the bottom. several quartz veins including a 10cm									
		vein just above the bottom contact with a 1.5cm centre of light mauve gypsum. Bottom contact is									
		gradational over 10cm with increasing sphalerite.									
314.42	316.06	Semi-Massive Sulphide: Sphalerite; Sericite; Rhyolite Undifferentiated									
		Semi massive sufides, green-brown, very fine grained diseminated pyrite with some irregular darker	3576	314.42	316.0	6 1.64	1.19	24.80	0.42	0.60	3.97
		sercite bands. Yellow brown sphalerite is diseminated 10-15% mostly within the matrix. Fine									
		grained 3%chalcopyrite and < 1% galena. One massive 5cm sphalerite clumps is at 315m <photo 315="">.</photo>									
		Several quartz veins towards bottom of section with bottom contact at irregular quartz vein at end									
		of sphalerite minerialisation. <litho 313.4m="" b="" geochem,="" rhyolite=""></litho>									
316.06	336.29	Quartz-Sericite-Pyrite Alteration: Silica; Sericite; Pyrite									
		Quartz Sericite Pyrite altered with irregualr whispy bands. 1-15cm heavly silicifieds sections	3577	316.06	317.0	6 1.00	0.14	0.00	0.00	0.00	0.00
		with both sericite and chlorite rich banding <photo 320="">. Glassy irregular pale yellow-green 1-5cm</photo>	3578	317.06	318.5	6 1.50	0.09	0.00	0.00	0.00	0.00
		sericite bands with 3-40% pyrite as very fine disseminations or 0.5-2cm massive pyrite clots. The	3579	318.56	320.0	6 1.50	0.06	0.00	0.00	0.00	0.00
		richer pyrite sections are adjacent to the more slicified areas. 0.3-3cm Chlorite bands at roughly	3580	320.06	321.5	6 1.50	0.05	0.00	0.00	0.00	0.00
		60deg. are more common in the top of section, but do extend through out slowly becoming thicker and	3581	321.56	323.0	6 1.50	0.06	0.00	0.00	0.00	0.00
		more sericite rich(brown-green) through the section. 0.5mm leucoxene is common through out.	3582	323.06	324.5	6 1.50	0.03	0.00	0.00	0.00	0.00
		Several 2-5mm grouping of orange brown sphalerite between 324-326.5m < Photo 325>, mainly isolated	3583	324.56	326.0	6 1.50	0.04	0.00	0.00	0.00	0.00
		as fracture fillings in massive sericite rich sections. No visible yellow brown sphalerite. Trace	3584	326.06	327.5	6 1.50	0.07	0.00	0.00	0.00	0.00
		fine chalcopyrite, 60 deg fracture filled surface at 335.1m <photo 335m="">. Possible ash tuff</photo>	3585	327.56	329.0	6 1.50	0.04	0.00	0.00	0.00	0.00
		protolith with rough 45deg. ash tuff biotite banding textures ending near bottom contact with	3586	329.06	330.5	6 1.50	0.09	0.00	0.00	0.00	0.00
		increasing sericite, which is gradational into to siliceous banded chert.	3587	330.56	332.0	6 1.50	0.09	0.00	0.00	0.00	0.00
			3588	332.06	333.0	6 1.00	0.06	0.00	0.00	0.00	0.00
'			3589	333.06	334.6	4 1.58	0.04	0.00	0.00	0.00	0.00
			3590	334.67	336.2	9 1.62	0.06	0.00	0.00	0.00	0.00

.

Provide Name         State of the sector										
Interval (m)         Description           Term         To         Sample         From         To         Interval (m)         Sample         From         From         To         Interval (m)         Sample         From         To         Interval (m)         Sample         From         To         Interval (m)         Sample         From         From<	6	Redfern Resources Ltd. Diamond Drill Log						Hole-I[	D: TCU( Pag	)4098 ge: 10
Interval (m)         Description         Sample         From         To         No.         (m)										
345.16       Chert Faciles: Pyrite: Sericite: Rhyolite Undifferentiated Irregularly banded Chert on a 3-10cm repetive wavey cycle with alternating 3-5mm biotite, whispy sericite bands and 0.5-4cm siliceous cream white-gray bands at 50-60deg. Pyhoto 338 The gray all cleous bands are slightly coaser and have 2-10% 1-4mm pyrite. Excellent bands are visible at 338-340m with symmetry of 1-2mm chalcopyrite and orange brown sphalentle within the bands through the core cychoto 339 Non-banded sections are about 60 % of this interval with 0-40m sections of 15% fine disseminated pyrite with localised boite. Some stringers of pyrite do cross cut the main bands in the lower section, blending into the main pyrite bands. Lower contact is graduational over 40cm into semi massive black banded pyriteLitho Geochem 'Rhyolite C7 340.9m>       345.22       346.18       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00	Interval (m) From To	Description	Sample No	From (m)	To Interval (m) (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
<ul> <li>Sec.16 Order Name Frigurate Lange Frigure Values (1) Non-Control Name Print P</li></ul>	36 29 345 16	Chert Facies: Purite: Sericite: Physite Undifferentiated								
<ul> <li>sericite bands and 0.5-4cm silicous cream while-gray bands at 50-60deg. Photo 338 The gray allocus bands are slightly coaser and have 2-10% 1-4mm pyrite. Excellent bands are visible at 338-340m with symmetry of 1-2mm chalcopyrite and orange brown sphalerie while thin the bands through 3595 330.22 340.72 1.50 0.10 0.00 0.00 0.00 0.00 0.00 10% fine disseminated pyrite with localised biolite. Some stringers of pyrite do cross cut the main byrite bands banded pyrite with localised biolite. Some stringers of pyrite do cross cut the main byrite bands. Low conclust is gradational over 40cm into semi massive black banded pyrite. <litho 'rhyolite="" 340.9m="" c7'="" geochem=""></litho></li> <li>45.16 348.45 Semi-Massive Sulphide: Pyrite, Sericite Semi massive black banded pyrite. <litho 'rhyolite="" 340.9m="" c7'="" geochem=""></litho></li> <li>45.46 355.30 Basalt Lapilli Tuff. Cordierite; Pyrite Bersh and the tratic with motied white green purce lapilli with 10-20% from contact is at 4cm 50de guartz vein with orang brown conderite is at 4cm 50de guartz vein with inclusions of biolite and sericite, pyrite is decreasing and first noted corderite present.</li> <li>48.45 355.30 Basalt Lapilli Tuff. Cordierite; Pyrite Bersh proven biolite matrix with motied white green purce lapilli with 10-20% from contact is at 4cm 50de guartz vein with orang brown conderite is at 40m 50de guartz vein with orange brown conderite is at 40m 50de guartz vein with orange brown conderite is at 40m 50de guartz vein with orang brown conderite is at 40m 50de guartz vein with notied white green purce lapilli with 10-20% from contact is at 4cm 50de guartz vein with notied white green purce lapilli with 10-20% from contact is at a down subangular feldspar fragments, with corange brown conderite at at 505.30 .3-4cm subangular feldspar fragments, with corange brown contact is at 30deg, at an obvious bedded surface against breeided textures. <a down.down.down.down.down.down.down.down.<="" down.org="" href="https://down.org/line" line"="" td=""><td>50.25 545.10</td><td>Irregularly banded Chert on a 3-10cm repetive wavey cycle with alternating 3-5mm biotite, whispy</td><td>3592</td><td>336.29</td><td>337.72 1.43</td><td>0.08</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></a></li></ul>	50.25 545.10	Irregularly banded Chert on a 3-10cm repetive wavey cycle with alternating 3-5mm biotite, whispy	3592	336.29	337.72 1.43	0.08	0.00	0.00	0.00	0.00
<ul> <li>sillceous bands are slightly coaser and have 2:10% 1.4mm pyrite. Exectient bands are visible at 339.22 340.72 1.50 0.14 0.00 0.00 0.00 0.00 0.00 15% fine disseminated pyrite with localised biotite. Some stringers of pyrite do cross cut the main bands in the lower section, biending into the main pyrite bands. Lower contact is gradational over 40cm into semi massive black banded pyrite. <lith 'rhyolite="" 340.9m="" c?="" geochem=""></lith></li> <li>45.18 348.45 Semi-Massive Sulphide: Pyrite; Sericite Semi massive piract darger-green. 1-2cm whispy 10deg. pyrite sericite rich bands(40-50% 0.5mm pyrite). This is the AB1 horizion. Minor slip plane with 0.5mm gouge is parallel with banding. Dom long. 10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.</li></ul>		sericite bands and 0.5-4cm siliceous cream white-gray bands at 50-60deg <photo 336="">. The gray</photo>	3593	337.72	339.22 1.50	0.10	0.00	0.00	0.00	0.00
<ul> <li>333-340m with symmetry of 1-2mm chalcopyrite and orange brown sphalerite within the bands through the core sphoto 339 Non-banded sections are about 60 % of this interval with 10-400m sections of 15% fine disseminated pyrite with localised bottles. Some etitingers of pyrite do cross cut the main bands in the lower section, blending into the main pyrite bands. Lower contact is gradational over 40cm into semi massive black banded pyrite. <litho 'rhyolite="" 340.9m="" c?="" geochem=""></litho></li> <li>45.18 348.45 Semi-Massive Sulphide: Pyrite; Sericite Semi massive pyrite, very fine grained dark grey-green. 1-2cm whispy 10deg, pyrite sericite rich bands(40-60% 0.5mm pyrite). This is the EAH I bhotzion. Minor slip plane with 0.5mm gouge is parallel with banding, 20cm long at 10deg. Bottom contact is at 4 cm 500deg quartz vein with inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.</li> <li>48.45 355.30 Basalt Lapilli Tuff: Cordierite; Pyrite Basalt lapilli seth tuff or debris flow? Dark green brown biotite matrix with motied white green purice lapilli with 10-20% From orgite Froho 33.3-4cm subangular chordine replaced fragments. 3-10cm subangular sliccous fragments present over 1.5m at 354m with orange brown corderite prophyblasts. Coesional subangular fieldspar fragments. Bottom contact is at 30deg, at an obvious bedded surface against breciated textures. &lt; Litho Geochem, VU Geo, VI Have Stelle VM 408 BP.</li> <li>355.00 386.00 Quartz-Sericite-Pyrite harder Evolved Andesite: Sericite YM and Stell Simo and Stell Simo A 3603 358.00 358.85 0.85 0.00 0.00 0.00 0.00 0.00</li> </ul>		siliceous bands are slightly coaser and have 2-10% 1-4mm pyrite. Execlient bands are visible at	3595	339.22	340.72 1.50	0.14	0.00	0.00	0.00	0.00
<ul> <li>the core sphoto 339:. Non-banded sections are about 60 % of this interval with 10-40cm sections of 15% fine disseminated pyrite with localised biotite. Some stringers of pyrite do cross cut the main bands in the lower section, blending into the main pyrite bands. Lower contact is gradational over 40cm into semi massive black banded pyrite. <ul> <li>45.16</li> <li>348.45</li> <li>349.46</li> <li>1.01</li> <li>0.03</li> <li>0.00</li> <li>0.00<td></td><td>338-340m with symmetry of 1-2mm chalcopyrite and orange brown sphalerite within the bands through</td><td>3596</td><td>340.72</td><td>342.22 1.50</td><td>0.22</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></li></ul></li></ul>		338-340m with symmetry of 1-2mm chalcopyrite and orange brown sphalerite within the bands through	3596	340.72	342.22 1.50	0.22	0.00	0.00	0.00	0.00
<ul> <li>15% fine disseminated pyrite with localised biotite. Some stringers of pyrite do cross cut the main bands in the lower section, blending into the main pyrite bands. Lower contact is gradational over 40cm into semi massive black banded pyrite. <litho 'rhyolite="" 340.9m="" c7="" geochem=""></litho></li> <li>45.16 348.45 Semi-Massive Sulphide: Pyrite; Sericite Semicuted dark grey-green. 1-2cm whispy 10deg, pyrite sericite rich bands(40-50% 0.5mm pyrite). This is the AB1 horizion. Minor slip plane with 0.5mm gouge is parallel with banding, 20cm long at 10deg. Bottom contact is at a 4cm 50deg quartz vein with inclusions of biotite and sericite, pyrite is decreasing and first noted cordenite present.</li> <li>48.45 355.30 Basalt Lapilli Tuff: Cordierite; Pyrite Basalt Lapilli Tuff: Cordierite; Pyrite Basalt Lapilli Tuff: Cordierite; Pyrite Basalt Lapilli of debris flow? Dark green brown biotite matrix with motiled while green purpose lapilli with 10-20% i cm orange-brown corderite porphyblasts. Ccasional subangular fieldspar fragments. Bottom contact is at 3060.31.4cm subangular fieldspar fragments. Bottom contact is at 3050.3.4cm subangular fieldspar fragments. Bottom contact is at 3050.3.4cm subangular fieldspar fragments. Bottom contact is at 3050.3.4cm subangular fieldspar fragments. Bottom contact is at 3060 guartz vein finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite green brown with 70% massive fine grained pyrite; Norder to With QSP.</li> <li>5.30 386.00 Quartz-Sericle-Pyrite Altered Evolved Andesite: Sericle Variable Curve section, characterised by medium gray silica alteration molted with</li> <li>360 386.00 358.65 0.65 0.03 0.00 0.00 0.00 0.00</li> </ul>		the core <photo 339="">. Non-banded sections are about 60 % of this interval with 10-40cm sections of</photo>	3597	342.22	343.72 1.50	0.29	0.00	0.00	0.00	0.00
<ul> <li>main bands in the lower section, blending into the main pyrite bands. Lower contact is gradational over 40cm into semi massive black banded pyrite. <litho 'rhyolite="" 340.9m="" c?'="" geochem=""></litho></li> <li>45.16 348.45 Semi-Massive Sulphide: Pyrite; Sericite Semi massive pyrite, very fine grained dark grey-green. 1-2cm whispy 10deg, pyrite sericite rich bands(40-50% 0.5mm pyrite). This is the AB1 horizion. Minor slip plane with 0.5mm gouge is parallel with banding, 20cm long at 10deg. Bottom contact is at 4 acm Sodeg quartz vein with inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.</li> <li>355.30 Basalt Lapilii Tuff: Cordierite; Pyrite Basalt lapilii ash tuff or debris flow? Dark green brown biotite matrix with motied white green pumice lapilii with 10-20% 1cm orange-brown corderite porphylaets. Coasional subangular fidepart fragments, with a 1-2cm inegular pumice rich layer over 1.2 a metre at 350.3. 3-4cm subangular fidepart fragments. With a 1-2cm isoubonuded pyrite fragments. Bottom contact is at a 40m of us at 30deg. at an obvious bedded surface against breclated throughout with cossional 1-2cm subrounded pyrite is an obvious bedded surface against breclated textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""> 355.02 355.30 Agilitie: Pyrite Altered Evolved Andeslie: Sericite yaribe locart with QSP.</litho></li> <li>35.00 386.00 Quartz-Sericite Pyrite Altered Evolved Andeslie: Sericite Yaribe Quartz Sericite Pyrite Altered Evolved Andeslie: Sericite Yaribe Quartz Sericite Pyrite Altered Evolved Andeslie: Sericite Yaribe Quartz Sericite Pyrite action, characterized by medium gray silica alteration molted with</li> </ul>		15% fine disseminated pyrite with localised biotite. Some stringers of pyrite do cross cut the	3598	343,72	345.22 1.50	0.11	0.00	0.00	0.00	0.00
over 40cm into semi massive black banded pyrite. <litho 'rhyolite="" 340.9m="" c?'="" geochem="">         45.16       348.45       Semi-Massive Sulphide: Pyrite; Sericite Semi massive pyrite, very fine grained dark grey-green. 1-2cm whispy 10deg, pyrite sericite rich bands(40-50% 0.5mm pyrite). This is the AB1 horizion. Minor slip plane with 0.5mm gouge is parallel with banding, 20cm long at 10deg. Bottom contact is at a 4cm 50deg quartz vein with inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.       3593       345.22       346.18       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00</litho>		main bands in the lower section, blending into the main pyrite bands. Lower contact is gradational								
<ul> <li>45.16 348.45 Semi-Massive Sulphide: Pyrite; Sericite Semi massive pyrite, very fine grained dark grey-green. 1-2cm whispy 10deg. pyrite sericite rich bands(40-50% 0.5mm pyrite). This is the AB1 horizion. Minor slip plane with 0.5mm gouge is parallel with banding, 20cm long at 10deg. Bottom contact is at a 4cm 50deg quartz vein with inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.</li> <li>48.45 355.30 Basalt Lapilli Tuff cordierite; Pyrite Basalt lapilli with 10-20% 1cm orange-brown corderite prophyblasts. Occasional subangular feldspar fragments, with a 1-2cm irregular pumice rich layer over 1/2 a metre at 350.3. 3-4cm subangular chlorite replaced fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated throughout with coasional 1-2cm subrounde pyrite fragments. Bottom of unit is very fine with no textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""> 355.02 355.00 Aguillite: Pyrite, Pyrite Arguillar periode grine brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg.</litho></photo></li> <li>386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite Altered Evolved Andesite: Sericite</li> </ul>		over 40cm into semi massive black banded pyrite. <litho 'rhyolite="" 340.9m="" c?'="" geochem=""></litho>								
<ul> <li>Semi massive pyrite, very fine grained dark grey-green. 1-2cm whispy 10deg. pyrite sericite rich 359 345.22 346.18 0.96 0.0 0.00 0.00 0.00 0.00 0.00 0.00</li></ul>	45.16 348.45	Semi-Massive Sulphide: Pyrite; Sericite								
<ul> <li>bands(40-50% 0.5mm pyrite). This is the AB1 horizion. Minor slip plane with 0.5mm gouge is parallel with banding, 20cm long at 10deg. Bottom contact is at a 4cm 50deg quartz vein with inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.</li> <li>48.45 355.30 Basalt Lapilli Tuff: Cordierite; Pyrite Basalt lapilli ash tuff or debris flow? Dark green brown biotite matrix with motied white green pumice lapilli with 10-20% 1cm orange-brown corderite porphyblasts. Coasional subangular feldspar fragments, with a 1-2cm irregular pumice rich layer over 1/2 a metre at 350.3. 3-4cm subangular feldspar fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafilic=""> 355.02 355.30 Argillite: Pyrite Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg. bottom contact with QSP.</litho></photo></li> <li>35.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite Altered Evolved Andesite: Sericite</li> <li>362 386.00 Series 0.35 0.85 0.85 0.03 0.00 0.00 0.00 0.00</li> </ul>		Semi massive pyrite, very fine grained dark grey-green. 1-2cm whispy 10deg. pyrite sericite rich	3599	345.22	346.18 0.96	0.10	0.00	0.00	0.00	0.00
<ul> <li>parallel with banding, 20cm long at 10deg. Bottom contact is at a 4cm 50deg quartz vein with inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.</li> <li>48.45 355.30 Basalt Lapilli Tuff: Cordierite; Pyrite Basalt lapilli sh tuff or debris flow? Dark green brown biotite matrix with motied white green pumice lapilli with 10-20% 1cm orange-brown corderite porphyblasts. Ocasional subangular fieldspar fragments, with a 1-2cm irregular pumice rich layer over 1/2 a metre at 350.3. 3-4cm subangular chlorite replaced fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""> 355.02 355.30 Argillite: Pyrite; Pyrite Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg. bottom contact with QSP.</litho></photo></li> <li>386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with</li> <li>3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00</li> </ul>		bands(40-50% 0.5mm pyrite). This is the AB1 horizion. Minor slip plane with 0.5mm gouge is	3600	346.18	347.32 1.14	0.34	0.00	0.00	0.00	0.00
<ul> <li>inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.</li> <li>48.45 355.30 Basalt Lapilli Tuff: Cordierite; Pyrite Basalt lapilli ash tuff or debris flow? Dark green brown biotite matrix with motled white green pumice lapilli with 10-20% from orange-brown corderite porphyblasts. Ocasional subangular feldspar fragments, with a 1-2cm irregular pumice rich layer over 1/2 a metre at 350.3. 3-4cm subangular chlorite replaced fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""> 355.02 355.30 Arglilite: Pyrite; Pyritic Arglilite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg. bottom contact with QSP.</litho></photo></li> <li>360.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite esetion, characterised by medium gray silica alteration molted with</li> <li>3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00</li> </ul>		parallel with banding, 20cm long at 10deg. Bottom contact is at a 4cm 50deg quartz vein with	3601	347.32	348.45 1.13	0.11	0.00	0.00	0.00	0.00
<ul> <li>48.45 355.30 Basalt Lapilli Tuff: Cordierite; Pyrite Basalt lapilli ash tuff or debris flow? Dark green brown biotite matrix with motied white green pumice lapilli with 10-20% 1cm orange-brown corderite porphyblasts. Ocasional subangular feldspar fragments, with a 1-2cm irregular pumice rich layer over 1/2 a metre at 350.3. 3-4cm subangular chlorite replaced fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""> 355.02 355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg. bottom contact with QSP.</litho></photo></li> <li>360.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with</li> <li>360.3 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00 0.00</li> </ul>		inclusions of biotite and sericite, pyrite is decreasing and first noted corderite present.								
Basalt lapilli ash tuff or debris flow? Dark green brown biotite matrix with motled white green       3602       348.45       349.46       1.01       0.03       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00       0.00	48.45 355.30	Basalt Lapilli Tuff: Cordierite; Pyrite								
<ul> <li>fragments, with a 1-2cm irregular pumice rich layer over 1/2 a metre at 350.3. 3-4cm subangular</li> <li>chlorite replaced fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with</li> <li>orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated</photo></li> <li>throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no</li> <li>textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated</li> <li>textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""></litho></li> <li>355.02 355.30 Argiillite: Pyrite; Pyritic Argiilite, metallic green brown with 70% massive fine</li> <li>grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg.</li> <li>bottom contact with QSP.</li> </ul> 35.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00		Basalt lapilli ash tuff or debris flow? Dark green brown biotite matrix with motled white green pumice lapilli with 10-20% 1cm orange-brown corderite porphyblasts. Ocasional subangular feldspar	3602	348.45	349.46 1.01	0.03	0.00	0.00	0.00	0.00
<ul> <li>chlorite replaced fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""></litho></photo></li> <li>355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg. bottom contact with QSP.</li> <li>360.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with</li> </ul>		fragments, with a 1-2cm irregular pumice rich layer over 1/2 a metre at 350.3. 3-4cm subangular								
<ul> <li>orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""></litho></photo></li> <li>355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg. bottom contact with QSP.</li> <li>386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00</li> </ul>		chlorite replaced fragments. 3-10cm subangular sliceous fragments present over 1.5m at 354m with								
<ul> <li>throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""></litho></li> <li>355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg. bottom contact with QSP.</li> <li>386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00</li> </ul>		orange brown corderite infilling of fractures <photo 354="">. Pyrite is very finely diseminated</photo>								
<ul> <li>textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated</li> <li>textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""></litho></li> <li>355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine</li> <li>grained pyrite in sericite matrix, 20deg irregular beds. Obvious irregular 30deg.</li> <li>bottom contact with QSP.</li> <li>355.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite</li> <li>Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with</li> <li>3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00</li> </ul>		throughout with ocasional 1-2cm subrounded pyrite fragments. Bottom of unit is very fine with no								
textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""> 355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds . Obvious irregular 30deg. bottom contact with QSP. 55.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00</litho>		textures or fragments. Bottom contact is at 30deg. at an obvious bedded surface against breciated								
355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine grained pyrite in sericite matrix, 20deg irregular beds . Obvious irregular 30deg. bottom contact with QSP. 55.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00		textures. <litho 349.8m="" cr-ni="" fw="" geochem,="" low="" mafic=""></litho>								
grained pyrite in sericite matrix, 20deg irregular beds . Obvious irregular 30deg. bottom contact with QSP. 55.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00		355.02 355.30 Argillite: Pyrite; Pyritic Argillite, metallic green brown with 70% massive fine								
bottom contact with QSP. 35.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00		grained pyrite in sericite matrix, 20deg irregular beds . Obvious irregular 30deg.								
55.30 386.00 Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00		bottom contact with QSP.								
Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with 3603 358.00 358.85 0.85 0.03 0.00 0.00 0.00 0.00	55.30 386.00	Quartz-Sericite-Pyrite Altered Evolved Andesite: Sericite								
		Variable Quartz Sericite Pyrite section, characterised by medium gray silica alteration molted with	3603	358.00	358.85 0.85	0.03	0.00	0.00	0.00	0.00

# P

### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04098 Page: 11

interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	green to dark olive-green sericite patches and bands with granoblastic and disseminated pyrite.	3604	358.85	359.	.70 0.85	0.21	0.00	0.00	0.00	0.00
	Sericite is 10-60%, almost massive in places. Possible rough bedding with some areas of very fine	3605	359.70	360.	55 0,85	0.03	0.00	0.00	0.00	0.00
	grained sericite and biotite at 20-25deg. A series of irregular 0.5-2cm alternating bands with									
	variations of green-brown chlorite/sericite to black-dark green biotite, to white-grey siliceous(									
	tiger stripe like). Some basalt debris flow and lapilli tuff protlith textures are partially									
	visible is parts of the section, Pyrite is generally very fine grained disseminated 10-20% with									
	some concentrated 1cm banded layers. Minor 0.5mm leucoxene. Trace chalcopyrite on fracture									
	planes. Bottom contact is approximate, defined by change in litho gemchem. <litho evolved<="" geochem,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></litho>									
	Andesite (mod-V) 381m>.									
	358.85 359.70 Quartz-Sericite-Pyrite Alteration: Pyrite; A very pyrite rich section with mostly									
	clumped 2-10mm granoblastic pyrite, almost massive pyrite in places. Pyrite is about									
	40% in a siliceous ground mass with 5% sericite.									
	360.55 362.80 Quartz-Sericite-Pyrite Alteration: Sericite; Pyrite; Almost entirely massive									
	sericite with very fine grained dusty pyrite, becoming granoblastic towards bottom.									
	Martix is very fine, perhaps argillite with one 10cm rhyolite fragment noted. Bottom									
	contact is gradational with sercite decreasing and silica increasing.									
	370.80 371.25 Fault Zone: 3mm of chlorite fault gouge at 10deg, and 1mm of gouge 10cm away on adiacent fracture.									
	374.14 376.80 Quartz-Sericite-Pvrite Alteration: Feldspar: Sericite: Leucoxene: Small debris									
	flow(rhyolite or basalt?) with 50% 1-8cm sub rounded fragments in a QSP altered									
	mainly sericite matrix with 3-5% leucoxene. Fragments are mostly pale grey siliceous									
	except for top metre where they are pale green-brown, sericite-chlorite altered. The									
	fragments are more subangular towards bottom, jigsaw fit auto breccia. Bottom									
	contact gradational into 1mm irregular siliceous bands.									
	384.00 384.20 Fault Zone: Minor fault zone, 20deg, fractures with broken core and small amounts of									
	granular gouge.									
386.00 399.00	Quartz-Sericite-Pyrite Alteration: Rhyolite Undifferentiated									
	Unit defined by lithogeochem with description same as above but with numerous 2-25cm subangular									
	grey siliceous fragments supported in a blue-grey matrix, (roughly layered). Contacts approximate. <li>Litho Geochem, Rhyolite C 397.4m&gt;.</li>									
	290.00 205.00 Eault Zapa: Madium fault/fracture zone with a small amout of gours and numerous									

1			Redfern Resources Ltd. Diamond Drill Log							Hole-I	D: TCl Pa	J0409 age: 1
			Lithology Description									
Interva	ıl (m)	Description		Sample	From	To	Interval	Au	Ag	Cu	Pb	Zn
From	То			NO.	(m)	(m)	(m)	g/t	g/t	70	70	70
		greasy surfaces, some with slic	kenslides parallel to 40deg. beding fracture surfaces.									
99.00	404.15	Quartz-Sericite-Pyrite Altered Evolved A	ndesite:									
		Description is as above QSP Andesite.	Bottom contact is gradational over 20cm with a dramatic	3606	400.85	401.	95 1.10	0.03	0.00	0.00	0.00	0.0
		decrease in alteration and disseminated	pyrite. <litho -="" 403m="" andesite="" evolved="" geochem,="">.</litho>	3607	401.95	403.	05 1.10	0.03	0.00	0.00	0.00	0.0
				3608	403.05	404.	15 1.10	0.05	0.00	0.00	0.00	0.0
04.15	437.18	Evolved Andesite: Amygdaloidal Basalt										
		Amygdaloidal Basalt flow, with a few 1-5	mm elongated quartz amydales slowly grading into unit									
		getting larger and more frequent 3-10mm	with variable elongation directions but commonly 35deg.									
		Generally fined grained flow, dark grey to	light green with several lighter locally siliceous									
		sericite altered sections. Fine grained py	rite throughout 2-5%, trace chalcopyrite. Trace									
		hematite in quartz veinlets. Lower conta	ect is gradational with a change from a massive flow to a									
		lapilli or flow breccia texture, corderite al	so is starting to appear. <litho evolved<="" geochem,="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></litho>									
		Andesite 408.2m, 423.9m, 436.5m.>										
		406.70 407.35 Stockwork: Pyrite; Sericite	e; Stock work with 30-40% 1-3mm granoblastic pyrite in 2cm									
		thick quartz veins, sub parallel t	o core axis. Matrix is very fine grained sercite									
		pyrite. Contacts are gradationa	l with increasing pyrite over 1-2cm.									
		408.63 410.03 Basalt Dyke: Fine graine	d black basalt dyke with inclusion of basalt lava flow.									
		414.85 417.53 Stockwork: Pyrite; Stock	work with 40-60%pyrite 0.5-1mm granoblastic pyrite in quartz									
		stringers in a green-brown seric	ite diseminated pyrite ground mass. Several light									
		gray siliceous fragments 2-10cr	n with minor sericite. Several irregular 0.5mm red									
		brown sphalerite blebs within st	ringer veinlets at 415.1m. The stringers become less									
		dominant towards bottom with 3	-10mm amygdales present. Both contacts are gradational									
		over 2-3cm with increasing pyrit	e.									
		431.05 431.70 Basalt Flow Breccia: Sho	rt breciated fragmental section with 30% 2-5cm angular,									
		elongated cuspate dark green s	ericite rich fragments in a light gray siliceous									
		groundmass inbetween regular	sections of basalt flow. Possible pillow top or flow									
		boundry. Contact are sharp and axis <photo 331=""></photo>	l irregular, roughly parallel and 30deg to core									
		435.20 437.18 Basalt Flow Breccia: Mor	e subbreccia texture than previous with 2-10cm sub angular									
		ciliaique te ecricitio fragmente in	a grov groon ellipious ground mans. Soveral									

r	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-I	D: TCI P	J0409 age: 1
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	definative fragments more implied by the texture.									
37.18 453.70	Evolved Andesite: Basalt Lapilli Tuff; Sericite; Cordierite Basalt lapilli tuff, mauve dark grey-brown with pumiceaous light brown 1-5cm fragments, particularly concentrated at 448.5m. Fragments are elongated at 20deg. Also some 1-5cm subrounded lithic silicified fragments with chlorite alteration. Matrix is dark waxy brown, almost 100% fine grained sericite with 5-10% pyrite throughout as disseminated and granoblastic concentrated in stringer bands up to 15%. 0.5-1.5cm cordorite porphybalsts. The bottom contact is locally brecciated, possible flow bottom, and end of corderite. <litho evolved<br="" geochem,="">Andesite (mod-V) 447.3m&gt; 437.90 440.30 Fault Zone: Wide fault zone with 5-10deg. fractures planes and two 30-50cm areas of broken core &lt;3cm.</litho>									
53.70 474.88	Evolved Andesite: Basalt Hyaloclastite Basalt haloclastic flow breccia, with a finely brecciated texture. 1-2mm dark subangular fragments in a pale mauve gray matrix, but several 0.5-1m sections with larger 1-2cm angular fragments and jigsaw fit. Few small amygdales, mostly visible in middle of section, 1-5mm elongated. Bottom contact is at 20deg accross 2cm biotite rich zone into basalt flow. <litho Geochem, Evolved Andesite 466.5m&gt; 459.75 461.10 Basalt Dyke: Dark gray basalt intrusive with fine grained pyrite, top contacts at 40deg and bottom at 20deg.</litho 									
73.10 474.88	Evolved Andesite: Amygdaloidal Basalt Amygdaloidal basalt lava flow. Light grey siliceous flow with 1-2cm elongated amydales, commonly at 30deg to core axis, with minor pyrite and trace chlorite. <litho 474.2m="" andesite="" evolved="" geochem,=""></litho>									
74.88 474.88	End of Hole: End of Hole, 23rd of May 2004									

"		
٩		

SLADE DE

and the second se

A PARTY OF

10.1.21

ALC: NO.

## Redfern Resources Ltd. Diamond Drill Log

Contraction of Contraction

Hole-ID: TCU04098 Page: 14A and the second second

# Assays

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	Al %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3566	306.52	306.75	0.23	0.06	0.00	0.00	0.00	0.00	0.00	118	202	1307	0	1.7	25	1.23	125	5	0.55	7	6
3568	306.75	307.90	1.15	0.91	33.60	0.41	0.48	3.39	2.64	4095	4706	10000	0	30.0	35	0.86	30	5	0.56	156	7
3569	307.90	308.55	0.65	0.90	0.00	0.00	0.00	0.00	0.00	4687	326	3432	0	17.9	35	2.90	90	5	2.29	17	3
3571	308.55	309.20	0.65	0.03	0.00	0.00	0.00	0.00	0.00	90	68	131	0	0.5	20	2.17	230	5	1.14	1	4
3572	309.20	311.17	1.97	0.03	0.00	0.00	0.00	0.00	0.00	48	46	161	0	0.6	45	1.60	250	5	0.67	1	6
3573	311.17	312.17	1.00	0.03	0.00	0.00	0.00	0.00	0.00	19	58	389	0	0.4	10	2.60	530	5	0.45	1	6
3574	312.17	313.30	1.13	0.18	0.00	0,00	0.00	0.00	0.00	577	904	5108	0	4.8	30	1.08	30	5	0.33	24	7
3575	313.30	314.42	1.12	0.17	0.00	0.00	0.00	0.00	0.00	108	182	1166	0	1.7	30	1.09	115	5	0.45	6	6
3576	314.42	316.06	1.64	1.19	24.80	0.42	0.60	3.97	2.95	4140	6100	10000	0	24.3	60	0.90	20	5	0.51	158	6
3577	316.06	317.06	1.00	0.14	0.00	0.00	0.00	0.00	0.00	90	64	189	0	1.0	90	1.08	60	-5	0.29	1	5
3578	317.06	318.56	1.50	0.09	0.00	0.00	0.00	0.00	0.00	202	72	1145	0	1.0	50	1.24	65	5	0.13	4	4
3579	318.56	320.06	1.50	0.06	0.00	0.00	0.00	0.00	0.00	248	50	179	0	1.0	70	1.63	45	5	0.24	1	4
3580	320.06	321.56	1.50	0.05	0.00	0.00	0.00	0.00	0.00	47	66	175	0	0.5	30	1.72	50	5	0.20	1	4
3581	321.56	323.06	1.50	0.06	0.00	0.00	0.00	0.00	0.00	33	92	214	. 0	0.4	25	1.85	45	5	0.23	1	4
3582	323.06	324.56	1.50	0.03	0.00	0.00	0.00	0.00	0.00	127	36	245	0	0.6	30	1.29	35	5	0.21	1	4
3583	324.56	326.06	1.50	0.04	0.00	0.00	0.00	0.00	0.00	77	10	901	0	0.6	50	0.31	10	5	0.11	3	6
3584	326.06	327.56	1.50	0.07	0.00	0.00	0.00	0.00	0.00	81	18	729	0	0.5	35	1.36	15	5	0.15	2	6
3585	327.56	329.06	1.50	0.04	0.00	0.00	0.00	0.00	0.00	22	30	222	0	0.6	30	1.75	20	5	0.09	1	6
3586	329.06	330.56	1.50	0.09	0.00	0.00	0.00	0.00	0.00	20	24	78	0	0.8	30	0.91	25	5	0.12	1	5
3587	330.56	332.06	1.50	0.09	0.00	0.00	0.00	0.00	0.00	13	28	72	0	0.6	20	0.96	25	5	0.18	1	5
3588	332.06	333.06	1.00	0.06	0.00	0.00	0.00	0.00	0.00	129	32	137	0	0.9	55	1.19	10	5	0.33	1	9
3589	333.06	334.64	1.58	0.04	0.00	0.00	0.00	0.00	0.00	19	16	13	0	0.6	25	0.29	20	5	0.09	1	6
3590	334.67	336.29	1.62	0.06	0.00	0.00	0.00	0.00	0.00	871	20	40	0	1.4	20	0.35	10	5	0.12	1	11
3592	336.29	337.72	1.43	0.08	0.00	0.00	0.00	0.00	0.00	115	28	57	0	1.3	55	0.27	10	5	0.13	1	12
3593	337.72	339.22	1.50	0.10	0.00	0.00	0.00	0.00	3.90	1215	36	1122	0	7.1	50	0.25	15	5	0.18	5	13
3595	339.22	340.72	1.50	0.14	0.00	0.00	0.00	0.00	0.00	763	20	230	0	1.3	35	0.22	15	5	0.11	1	11
3596	340.72	342.22	1.50	0.22	0.00	0.00	0.00	0.00	0.00	306	32	51	0	1.0	55	0.23	15	5	0.07	1	8
3597	342.22	343.72	1.50	0.29	0.00	0.00	0.00	0.00	0.00	298	32	60	0	0.8	75	0.16	15	5	0.05	1	6
3598	343.72	345.22	1.50	0.11	0.00	0.00	0.00	0.00	0.00	871	32	434	0	1.5	45	0.20	10	5	0.07	1	16
3599	345.22	346.18	0.96	0.10	0.00	0.00	0.00	0.00	0,00	87	28	141	0	1.4	60	0.23	5	5	0.09	1	31
3600	346.18	347.32	1.14	0.34	0.00	0.00	0.00	0.00	0.00	1822	78	123	0	6.1	90	0.40	5	5	0.18	1	78
3601	347.32	348.45	1.13	0.11	0.00	0.00	0.00	0.00	0,00	94	20	29	0	1.9	80	0.54	10	5	0.18	1	58
3602	348.45	349.46	1.01	0.03	0.00	0.00	0.00	0.00	0.00	31	28	92	0	0.3	25	2.70	20	5	0.35	1	42

ſŗ								Re	dfern	Res	sourc	ces L	.td.						Hol	e-ID: TCU04098
114									Diam	ond	Drill	Log								Page: 14B
								A	ssays	sco	ontinu	led								
Sample No.	From (m)	To Inf (m)	terval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm
3566	306.52	306.75	0.23	65	1.47	10	0.53	318	4	0.09	8	330	5	20	58	0.02	10	1	10	2
3568	306.75	307.90	1.15	73	6.06	10	0.42	141	1	0.07	1	270	5	20	118	0.01	10	4	10	1
3569	307.90	308.55	0.65	80	1.82	10	0.77	286	4	0.23	11	360	10	20	491	0.02	10	1	10	2
3571	308.55	309.20	0.65	72	1.22	10	0.70	268	3	0.20	9	180	5	20	137	0.04	10	1	10	3
3572	309.20	311.17	1.97	81	1.48	10	0.83	348	4	0.11	8	180	5	20	88	0.04	10	1	10	3
3573	311.17	312.17	1.00	53	2.09	10	2.01	788	2	0.09	10	240	5	20	86	0.04	10	1	10	3
3574	312.17	313.30	1.13	52	2.82	10	0.81	268	1	0.05	3	260	5	20	57	0.01	10	1	10	3
3575	313.30	314.42	1.12	51	1.34	10	0.48	274	3	0.07	6	310	10	20	49	0.02	10	1	10	3
3576	314.42	316.06	1.64	55	4.89	10	0.42	91	1	0.04	1	300	25	20	22	0.01	10	3	10	2
3577	316.06	317.06	1.00	68	1.64	10	0.79	270	1	0.04	7	280	5	20	24	0.01	10	1	10	2
3578	317.06	318.56	1.50	56	1.52	10	1.25	479	. 1	0.02	7	180	5	20	12	0.01	10	1	10	1
3579	318.56	320.06	1.50	56	2.12	10	1.53	585	. 1	0.04	8	210	5	20	18	0.01	10	1	10	2
3580	320.06	321.56	1.50	50	2.13	10	1.86	695	1	0.03	5	250	5	20	14	0.02	10	1	10	2
3581	321.56	323.06	1.50	55	2.36	10	1.90	724	1	0.03	8	300	5	20	17	0.02	10	1	10	1
3582	323.06	324.56	1.50	65	2.71	10	1.18	436	3	0.03	8	230	5	20	20	0.01	10	1	10	1
3583	324.56	326.06	1.50	69	4.77	10	0.15	1	5	0.01	2	180	5	20	5	0.01	10	. 1	10	1
3584	326.06	327.56	1.50	67	5.08	10	1.38	351	2	0.01	5	350	5	20	9	0.01	10	1	10	2
3585	327.56	329.06	1.50	77	4.44	10	1.97	635	1	0.01	9	160	.5	20	7	0.02	10	1	10	3
3586	329.06	330.56	1.50	108	2.91	10	0.88	317	4	0.01	. 8	170	5	20	5	0.01	10	1	10	3
3587	330.56	332.06	1.50	145	3.34	10	0.79	280	6	0.01	7	180	5	20	6	0.01	10	2	10	5
3588	332.06	333.06	1.00	104	6 27	10	0.91	259	3	0.04	8	320	5	20	16	0.01	10	4	10	3
3589	333.06	334 64	1.58	127	2.84	10	0.11		10	0.01	6	130	5	20	4	0.01	10	3	10	-
3590	334.67	336.29	1.62	115	4 50	10	0.15	, 1	12	0.01	9	270	5	20	4	0.01	10	4	10	2
3592	336.20	337 72	1 43	118	540	10	0.15	1	24	0.01	6	290	5	20	3	0.01	10	5	10	2
3503	337 70	330.72	1.50	86	5.22	10	0.13	1	<del>ہ</del> ے م	0.01	0 6	650	5	20	2	0.01	10	्र	10	- 3
3505	330 22	340 72	1.50	20	3 70	10	0.14	1	6 6	0.01	6	300	5	20	2	0.01	10	2	10	2
3506	340 72	340.72	1.50	09	3.10	10	0.09	1	5	0.01	7	230	. 5	20	2	0.01	10	2	10	<u>د</u> 1
3580	340.72	342.22	1.00	00	0.94 0.07	10	0.11	1		0.01	í e	170	. J E	20	2	0.01	10	3 2	10	1
3091 2500	342.22	343.72	1.50	81	3.3/	10	0.07	1	0	0.01	0 E	170	ວ =	20	2	0.01	10	∠ ۳	10	1
3098	343.72	345.22	0.00	84	0.22	10	0.12	1	8	0.01	5	230	Э	20	3	0.01	10	5	10	4
3099	345.22	346.18	0.96	80	10.00	30	0.21	1	5	0.01	10	310	5	20	3	0.01	10	0	10	1
3600	346.18	347.32	1.14	75	10.00	30	0.38	1	17	0.01	39	760	5	20	2	0.01	10	10	10	2
3601	347.32	348.45	1.13	63	7.85	20	0.42	1	17	0.01	30	590	10	20	2	0.01	10	9	10	3

3602 348.45 349.46 1.01 95 5.69 10 2.34 402 1 0.03 27 1090

5 20

9 0.08 10 190 10

4

	(		9	7
		e.		

and the second

Redfern Resources Ltd. Diamond Drill Log Hole-ID: TCU04098 Page: 15A and the second

Assays

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	A1 %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3603	358.00	358.85	0.85	0.03	0.00	0.00	0.00	0.00	0.00	13	12	22	0	0.6	40	0.70	20	5	0.09	1	8
3604	358.85	359.70	0.85	0.21	0.00	0.00	0.00	0.00	0.00	69	18	31	0	6.8	160	0.56	5	40	0.11	1	28
3605	359.70	360.55	0.85	0.03	0.00	0.00	0.00	0.00	0.00	23	8	23	0	1.2	35	0.61	10	10	0.12	1	23
3606	400.85	401.95	1.10	0.03	0.00	0.00	0.00	0.00	0.00	246	2	233	0	0.7	30	0.36	15	5	0.25	1	9
3607	401.95	403.05	1.10	0.03	0.00	0.00	0.00	0.00	0.00	67	8	174	0	0.6	60	0.44	10	5	0.38	1	14
3608	403.05	404.15	1.10	0.05	0.00	0.00	0.00	0.00	0.00	71	38	206	0	0.6	175	0.43	5	5	0.29	1	10
3608	403.05	404.15	1.10	0.05	0.00	0.00	0.00	0.00	0.00	71	38	206	0	0.6	175	0.43	5	5	0.29	1	

1								Re	dfern Diam ssays	Res ond	souro Drill	ces L   Log  ed	.td.				
Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm
3603	358.00	358.85	5 0.85	71	2.77	10	0.60	120	6	0.01	8	220	5	20	3	0.01	10
3604	358.85	359.70	0.85	86	10.00	40	0.63	1	4	0.01	13	270	5	20	3	0.01	10
3605	359,70	360.55	5 0.85	106	8.52	20	0.59	9	18	0.01	16	210	5	20	4	0.01	10

0.01

0.01

0.01

0.01

0.01

0.01

359.70 360.55 0.85

400.85 401.95 1.10

401.95 403.05 1.10

403.05 404.15 1.10

8.52

7.78

10.00

10.00

0.23

0.31

0.30

Hole-ID: TCU04098 Page: 15B

W Y

ppm ppm

v

ppm

1	•						Redfe Dia	rn Res mond	sourc Drill	es Lte Log	d.					Hole-ID: 1	CU04099 Page:
							Co	llar Co	ordina	ites		u	*******				
North (n Fast (m)	n): N		15374.00		Azimuth (c	legrees):	187.1	15 16	Started	l: eted:		20/05/20	004	Date Logg	ged:	22	05/2004 BDA
Elevatio	, n (m):		114.00		Length (m)	):	614.1	17	Comp			51/05/20		Report Pr	inted:	17,	12/2004
							Down	Hole	Survey	/ Tests							
Depth (m)	Azimut	n Dip	Depth (m)	Azimı	uth Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip
0.00	187.15	-73.16									···						** ··* · · · · · · · · · · · · · · · ·
36.27	187.80	-73.70															
60.66	184.50	-73.60															
91.14	187.70	-73.50															
121.62	189.00	-/3.40															
152.00	179.40	-/3.50															
213.06	184.85	-73.50															
246.58	184 60	-73.50															
274.02	184.20	-73.60															
307.54	189.50	-73.10															
334.98	188.90	-73.70															
368.50	188.10	-73.90															
395.94	186.10	-74.60															
429.46	187.50	-74.80															
459.94	186.70	-74.80															
487.38	189.70	-74.90															
523.95	190.80	-74.80															

Description       Sample       From       To       Interval       Au       Ag       Cu       Pb       Zn         70       No.       (m)       To       Interval       Au       Ag       Cu       Pb       Zn         70       No.       (m)				Redfern Resources Ltd.							Hole-	ID: TC	U04099 Page: 2
<ul> <li>m) Description To</li> <li>Sample From To Interval Au Ag Du Pb Zn No. (m) (m) git gd X % % %</li> <li>24.35 Rhyolite Flow. Hematite; Magnetile</li> <li>Rhyolite Lava flow light mauve-grey molited with 10-20cm spots of localized bleaching adjacent to calcite fracture volutes. Locally foldsparphylo 1-2mm 1-3%, some partially reabsorbed and not present in the top of section. Moderately magnetic with fine disemated magnetize and minor 0.5-2mm epidote-magnetite velnets. Several 3-5cm quarts velne, usually at 80-90deg. Several 1cm red hematitic both tands with minor hematite alteration extends 20cm into Rhyolite lay gouge, selficitation and bleaching with minor hematite alteration extends 20cm into Rhyolite lay gouge, selficitation and bleaching with minor hematite alteration extends 20cm into Rhyolite lay gouge, selficitation and bleaching with minor hematite alteration extends 20cm into Rhyolite lay gouge, selficitation and bleaching with minor hematite alteration extends 20cm into Rhyolite lay greate surfaces but most are cleanly broken. Some larger consolidated sections between 34.5m.</li> <li>24.00 22 Si Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg, to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite lay finaments. The bottom of the section has more larger, 1-2cm man dseveral larger chlorite-magnetite veintets with minor epidote. Only a few 2-3mm hematite pink stained calcite siti planes. Bottom contact is degraduational over a metre representing a change in to a langillit uff with nuced dragments. 24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg, and several 1mm hematite rich pink calcite veine, mostly crumbly with little day.</li> <li>24.65 Rhyolite Lapilli Tuff. Hematite Rhyolite Lapilli Tuff. Hematite Rhyolite Lapilli Tuff. Hematite Rhyolite Lapilli Tuff. Hematite dohore alteration with enore 2-3cm hematite tragments. Rate large 20-30cm fragments at 56.9 and 85m, some heav</li></ul>		<del></del>		Lithology Description									
To       No.       (m)       (m	Interval	(m)	Description		Sample	From	То	Interval	Au	Aa	Cu	Ph	Zn
<ul> <li>24.35 Rhyolite Flow. Hematite; Magnetite</li> <li>Rhyolite Lava flow light marve-grey molited with 10-20cm spots of localized bleaching adjacent to calcite fracture veinels. Locally feldsparphylo; 1-2mm ~1-3%, some partially reabsorbed and not present in the top of section. Moderately magnetic with fine disemated magnetite and minor 0.5-2mm epidote-magnetite veinels. Several 3-5cm quarz veins, usually at 80-804eg. Several 1cm red</li> <li>hematitic chert bands with extending whisps. One anomolous hematite fragment at 12.7m, probably texture highlighted by bleaching. Bottom contact is 45deg fault with 20cm of chiorite clay gouge, silification and bleaching with minor hematite alteration extends 20cm into Rhylolite lava flow.</li> <li>.00 1.22 Casing: Not recovered.</li> <li>1.22 6.00 Broken Core: Mostly broken core with most pleces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Interscion with previous diamond drill hole, lenticular grout infilling casting, 5 deg, to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chiorite; Hematite Rhyolite forw Breccia: Chiorite; Hematite matrix. Numerous small fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger 1-2mm and several larger chiorite regiments than the top, all are suported in a chiorite-hematite matrix. Numerous small 1-2mm and several larger chiorite-matter distlom order at graduational vor a metre representing a change in to a lapilii tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with some darker purple sections. The top of section is 10-15% 1-2mm fields lapili in hematite dominant matrix with chioriteRagmetis are montly 3-100m files (roughed with some darker purple sections. The top of section is 10-15% 1-2mm fields lapili in the matte dominant matrix with chiorite. Fargments are montly 3-100m files (roughed with some darker purple sections. The top of section is 10-15% 1-2mm</li></ul>	From	То			No.	(m)	(m)	(m)	g/t	g/t	%	%	%
<ul> <li>Rhyolite Lava flow light mauve-gray motited with 10-20cm spots of localized bleaching adjacent to calcite fracture veinites. Locally feldeparphry: 1-2mm ~1-3%, some partially reabsorbed and not present in the top of section. Moderately meanter with find elieemated magnetite and finding 0.5-2mm epidole-magnetite veinites. Several 3-5cm quartz veins, usually at 80-906eg. Several 1cm red hemattite toeht bands with elietheding whites. One anomolous hematite fagment at 12.7m, probably texture highlighted by bleaching. Bottom contact is 45dog, fault with 20cm of choirte clay gouge, allification and bleaching with minor hematite alteration extends 20cm into Rhyfolite lava flow.</li> <li>.00 1.22 Calaing: Not recovered.</li> <li>1.22 Calaing: Not recovered.</li> <li>1.22 Calaing: Not recovered.</li> <li>24.00 25.25 Interection with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>24.00 25.26 interction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite fagments. The bottom of the section has more larger, 1-2cm fragments with 1-3cm subangular fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger choirte-magnetite veinites with minor epidote. Only a few 2-3mm hematite pilk stained cacle elip phase. Bottom contact is gradiational over a metre representing a change in to a lapilli tuff with rounded fragments. The bottom of the section. The folg. and several larger choirte-magnetite with choirte-calcite fault gouge at 45 deg. and several larger choirte-magnetite with choirte-calcite fault gouge at 45 deg. and several larger lapines. The bottom or a metre representing a change in to a lapilli tuff with rounded fragments. The combine darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with choirte. Frag</li></ul>	0.00	24.35	Rhyolite Flow: Hematite; Magnetite										
<ul> <li>calcite fracture veinets. Locally feldsparphrylo 1-2mm ~1-3%, some partially reabsorbed and not present in the top of section. Moderately magnetic with fine disemated magnetite and minor 0.5-2mm epidote-magnetite withes. Several 3-6cm quartz veine, usually at 30-006g. Several 1 cm red hemattic chert bands with extending whisps. One anomolous hematite fragment at 12.7m, probably texture highlighted by bleaching. Bottom contact is 45deg. fault with 20cm of chiorite clay gouge, silification and bleaching with minor hematite alteration extends 20cm tinto Rhyloite lava flow.</li> <li>.00 1.22 Casing: Not recovered.</li> <li>1.22 6.00 Broken Core: Mestly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 2.52 bit firstcolino with previous diamond drill hole, lenticular grout infiling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite lava flow subangular fragments. The bottom of the section has more larger, 1-2cm fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are supported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetits with dinor epidote. Only a few 2-3mm hematite pike stained caclote sip planes. Bottom contact is gradational over a metre representing a change in to a lappill tuff with rounded fragments.</li> <li>24.43 2.445 Fault Exam Him contact is gradational over a metre representing a change in to a several 1mm hematite indix land several larger chlorite-magnetits. With group exists with some darker purple sections. The top of section is 10-15% 1-2mm fields lapill in firmatite dominant matrix with chlorite. Fragments are monetly 3-10cm fields mytile with allow of sections. The top of section is 10-15% 1-2mm fields lapill him allow darker purple sections. The top of section is 10-15% 1-2mm fields lapill him din divised</li></ul>			Rhyolite Lava flow light mauve-grey moltled with 1	0-20cm spots of localized bleaching adjacent to									
<ul> <li>present in the top of ection. Moderately magnetic with fine disemated magnetic and minor 0.5-2mm epidote-magnetic veinies. Several 3-5cm quartz veins, usually at 80-8004eg. Several 1-tem red hematitic to-teh tands with extending whites. One anomolous hematite fragment at 12.7m, probably texture highlighted by bleaching. Bottom contact is 45deg. fault with 20cm of choirte clay gouge, eilification and bleaching with minor hematite alteration extends 20cm into Rhylolite lava flow.</li> <li>.00 1.22 Casing: Not recovered.</li> <li>1.22 6.00 Broken Core: Mostly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous moltled green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green fielic subangular fragments with 1-5cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetits veinite with rain or epidote. Only a few 2-3mm hematite pikk stained cable slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.65 Fault Zone: Minor fault Zone: With chlorite-celcite fault gouge at 45 deg, and several 10mr flow topild with mostly crumbly with little clay.</li> <li>24.54 Shyolite Lapilli Tuff. Hematite Rhyolite dominant matrix with chlorite. Fragments are metty 3-10cm fiels chlorite with externating with some 4 afser, purple sections. The top of section is 10-15% 1-2mm felsic lapilli with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapill with some dafsen, some eavel have with a lack of fragments at 56</li></ul>			calcite fracture veinlets. Locally feldsparphryic 1-2	mm ~1-3%, some partially reabsorbed and not									
<ul> <li>epidote-magnetite velniets. Several 3-Scm quartz veins, usually at 60-30deg. Several 1cm red hematitic othert bands with extending whisps. One anomolous hematite fragment at 12.7m, probably texture highlighted by bleaching. Bottom contact is 45deg, fault with 2Cm of chiorte clay gouge, silification and bleaching with minor hematite atteration extends 20cm into Rhytolite lava flow.</li> <li>.00 1.22 Casing: Not recovered.</li> <li>1.22 6.00 Broken Core: Mostly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Intersction with previous diamond drill hole, lenticular grout infiling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow Breccia: Chlorite; Hematite green - purple section with chlorite rich matrix and felsic fragments. Brecciate fragments are 3-100m purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments with 1-3cm subangular hematitic matrix. Numerous small 1-2mm and several larger chlorite-magnetits weinkels with minor epidote. Only a few 2-3mm hematite pink testined calcits slip planes. Bottom contact is gradational over a metre representing a change in to a lapili tuff with rounded fragments.</li> <li>24.45 C46 SPaul Zonz: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite inch plik calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilii Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% in 2rm miles lapili with some 2-3cm hematite first fragments are mostly 3-10cm falsic rhyolite with nostly fold. Some heavily silicified. Some small 1m sections appear flow like with a lack of fragments. 659 and 95m, some heavily billified. Some small 1m section appear flow like with a lack of fragments at 56.9 and 95m with a rough banding/foli</li></ul>			present in the top of section. Moderately magnetic	with fine disemated magnetite and minor 0.5-2mm									
<ul> <li>hematitic chert bands with extending witsps. One anomolous hematite fragment at 12.7m, probably texture highlighted by bleaching. Bottom contact is 45deg, fault with 20cm of chlorite clay gouge, sillification and bleaching with minor hematite alteration extends 20cm into Rhyfolite lava flow.</li> <li>00 1.22 Gaing: Not recovered.</li> <li>1.22 6.00 Broken Core: Mostly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are clearly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite green - purple section with chlorite rich matrix and felsic fragments. Brecclated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section semil 1-2mm and several larger chlorite-meantite matrix. Numerous semil 1-2mm and several larger chlorite-meantite matrix. Numerous semil 1-2mm and several larger chlorite-mattite are struct. Action and several larger chlorite-chlorite matrix. Numerous semil 1-2mm made several larger their with minor epidote. Only a few 2-3mm hematite pink stalined calcite slip planes. Bottom contact is greadinal over a meter representing a change in to a lapilit turf with rounded fragments.</li> <li>24.35 24.85 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly orrumbly with little clay.</li> <li>22.45 Rhyolite Lapilii Turf. Hematite Rhyolite lapilit purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilit in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsis rhyolite with anode y mostly and 98m with a rough banding/foliation</li> </ul>			epidote-magnetite veinlets. Several 3-5cm quartz	veins, usually at 80-90deg. Several 1cm red									
<ul> <li>stuture highlighted by bleaching. Bottom contact is 45deg, fault with 20cm of chiorite clay gouge,</li> <li>silification and bleaching with minor hematite alteration extends 20cm into Rhylolite lava flow.</li> <li>1.22 Casing: Not recovered.</li> <li>1.22 G.00 Broken Core: Mostly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Interaction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hernattle Rhyolite flow breccia, hetrogenous molted green - purple-section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite velicles with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is greatational over a metre representing a change in to a lapilit tuff. With rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>24.35 Rhyolite Lapilli Tuff. Hematite Rhyolite Lapilli Tuff. Hematite Arb proje-blue gray with some darker purple sections. The top of sections is 10-1564. J-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with most stat 56.9 and 95m, some heavily silicified. Some small 1/m sections appear flow like with a lack of fragments, 69m and 99m with a rough banding/foliation</li> </ul>			hematitic chert bands with extending whisps. One	anomolous hematite fragment at 12.7m, probably									
<ul> <li>silfication and bleaching with minor hematite alteration extends 20cm into Rhytolite lava flow.</li> <li>.00 1.22 Casing: Not recovered.</li> <li>1.22 6.00 Broken Core: Mostly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous molited green - purple section with chlorite rich matrix and felsio fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematite fragments. The bottom of the section same are alwa with minor peldote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapili tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite vering with some darker purple sections. The top of section is 10-15% 1-2mm felse lapili in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm filts through through disc provide with some darker purple sections. The top of section is 10-15% 1-2mm fields laping and 35m, some heavily silicified. Some small 1m section sappear flow like with a lack of fragments, and 98m with a rough bandling/foliation</li> </ul>			texture highlighted by bleaching. Bottom contact i	s 45deg. fault with 20cm of chlorite clay gouge,									
<ul> <li>.00 1.22 Casing: Not recovered.</li> <li>1.22 6.00 Broken Core: Mostly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg, to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous molitied green - purple section with chlorite rich matrix and felsic fragments. Exerciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.43 24.55 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg, and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilli Tuff. Hematite</li> <li>Rhyolite Lapilli Tuff. Hematite</li> <li>Rhyolite Lapilli Tuff. Hematite</li> <li>Rhyolite Lapilli Tuff. Hematite fiels lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 50.9 and 85m, some heavily silic/field.</li> </ul>			silification and bleaching with minor hematite alter	ation extends 20cm into Rhylolite lava flow.									
<ul> <li>1.22 6:00 Broken Core: Mostly broken core with most pieces less than 5cm, there are a few greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25:25 Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous molited green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3-cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained caclite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilit furff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilii Tuff. Hematite</li> <li>Rhyolite Lapilii Tuff. Hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments are mostly 3-10cm felsic chyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 99m with a rough banding/foliation</li> </ul>			.00 1.22 Casing: Not recovered.										
<ul> <li>greasy surfaces but most are cleanly broken. Some larger consolidated sections between 3-4.5m.</li> <li>24.00 25.25 Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous molited green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2cm magnetis degree and the section larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3cm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.45 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1 mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilli Tuff. Hematite Rhyolite Lapilli Tuff. Hematite fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments, 69m and 98m with a rough banding/foliation</li> </ul>			1.22 6.00 Broken Core: Mostly broken core with	n most pieces less than 5cm, there are a few					3				
<ul> <li>between 3-4.5m.</li> <li>24.00 25.25 Intersction with previous diamond drill hole, lenticular grout infilling casting, 5 deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous moltied green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3-cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilit uff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilii Tuff: Hematite Rhyolite Lapilii Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilii in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments, 69m and 98m with a rough banding/foliation</li> </ul>			greasy surfaces but most are cleanly bro	ken. Some larger consolidated sections									
<ul> <li>24.00 25.25 Intersection with previous diamond drill hole, lenticular grout infilling casting, 5 deg, to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite Flow Breccia: hetrogenous moltled green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 5.6.9 and 98m with a rough banding/foliation</li> </ul>			between 3-4.5m.										
<ul> <li>deg. to core axis.</li> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous moltied green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments. 24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilli Tuff. Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-acm hematite fragments. Rare large 20-30cm fragments, 69m and 98m with a rough banding/foliation</li> </ul>			24.00 25.25 Intersction with previous diamond dr	ill hole, lenticular grout infilling casting, 5									
<ul> <li>33.07 Rhyolite Flow Breccia: Chlorite; Hematite Rhyolite flow breccia, hetrogenous moltied green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilli Tuff. Hematite Rhyolite Lapilli Tuff. Hematite</li> <li>Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation</li> </ul>			deg. to core axis.										
<ul> <li>Rhyolite flow breccia, hetrogenous moltled green - purple section with chlorite rich matrix and felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>22.45 Rhyolite Lapilli Tuff: Hematite matrix by the some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite usith mostly mild chlorite at 86.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation</li> </ul>	24.35	33.07	Rhyolite Flow Breccia: Chlorite; Hematite										
<ul> <li>felsic fragments. Brecciated fragments are 3-10cm purple-green felsic subangular fragments with 1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> </ul> 02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff: Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments, ad 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation			Rhyolite flow breccia, hetrogenous moltled green	<ul> <li>purple section with chlorite rich matrix and</li> </ul>									
<ul> <li>1-3cm subangular hematitic fragments. The bottom of the section has more larger, 1-2cm fragments than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation</li> </ul>			felsic fragments. Brecciated fragments are 3-10	om purple-green felsic subangular fragments with									
<ul> <li>than the top, all are suported in a chlorite-hematite matrix. Numerous small 1-2mm and several larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff: Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 98m with a rough banding/foliation</li> </ul>			1-3cm subangular hematitic fragments. The botto	m of the section has more larger, 1-2cm fragments									
<ul> <li>larger chlorite-magnetite veinlets with minor epidote. Only a few 2-3mm hematite pink stained calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff: Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation</li> </ul>			than the top, all are suported in a chlorite-hematite	matrix. Numerous small 1-2mm and several									
<ul> <li>calcite slip planes. Bottom contact is gradational over a metre representing a change in to a lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 98m with a rough banding/foliation</li> </ul>			larger chlorite-magnetite veinlets with minor epido	e. Only a few 2-3mm hematite pink stained									
<ul> <li>lapilli tuff with rounded fragments.</li> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation</li> </ul>			calcite slip planes. Bottom contact is gradational of	over a metre representing a change in to a									
<ul> <li>24.35 24.65 Fault Zone: Minor fault zone with chlorite-calcite fault gouge at 45 deg. and several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation</li> </ul>			lapilli tuff with rounded fragments.										
<ul> <li>several 1mm hematite rich pink calcite veins, mostly crumbly with little clay.</li> <li>02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation</li></ul>			24.35 24.65 Fault Zone: Minor fault zone with ch	lorite-calcite fault gouge at 45 deg. and									
02.45 Rhyolite Lapilli Tuff: Hematite Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation			several 1mm hematite rich pink calcite ve	ins, mostly crumbly with little clay.									
Rhyolite Lapilli Tuff. Mostly light purple-blue gray with some darker purple sections. The top of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation	33.07	102.45	Rhyolite Lapilli Tuff: Hematite										
of section is 10-15% 1-2mm felsic lapilli in hematite dominant matrix with chlorite. Fragments are mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation			Rhyolite Lapilli Tuff. Mostly light purple-blue gray	with some darker purple sections. The top									
mostly 3-10cm felsic rhyolite with mostly mild chlorite alteration with some 2-3cm hematite fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation			of section is 10-15% 1-2mm felsic lapilli in hematit	e dominant matrix with chlorite. Fragments are									
fragments. Rare large 20-30cm fragments at 56.9 and 85m, some heavily silicified. Some small 1m sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation			mostly 3-10cm felsic rhyolite with mostly mild chlo	rite alteration with some 2-3cm hematite									
sections appear flow like with a lack of fragments, 69m and 98m with a rough banding/foliation			fragments. Rare large 20-30cm fragments at 56.9	and 85m, some heavily silicified. Some small 1m									
			fragments. Rare large 20-30cm fragments at 56.9 sections appear flow like with a lack of fragments,	and 85m, some heavily silicified. Some small 1m 69m and 98m with a rough banding/foliation									

	Redfern Resources Ltd								Hole-	ID: TC	U04099	
(P	Diamond Drill Log										Page: 3	
	Lithology Description											
Interval (m) From To	Description		Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	
	lination at 5-20deg and 35-40deg but no real disernable contacts just gradational change in	·										
	fragments. Common epidote veinlets, a few with chlorite centres. Mostly non magnetic but with											
	some areas weakly magnetic. Several 2mm pyrrhotite grains partially replaced by magnetite. Lower	,										
	contact is irregular with a thick chlorite vein representing the intrusive boundry, a preciated											
	75.70 76.00 Fault Zone: Minor fault zone. 30deg, fracture plane, breciated with and calcite											
	chlorite infilling, mostly well consolidated, but still some crumbly spots.											
	77.05 77.45 Basalt Dyke: Basalt dyke, dark green with 80% fine grained chloritic matrix with											
	0.5mm granular white (felsic?) crystals, getting finer near contacts. Weakly to											
	moderately magnetic. Top contact at 45deg, bottom is in fault.											
	78.06 79.15 Basalt Dyke: Basalt dyke, same as above, top contact is at 45deg, bottom is 45deg.											
	82.08 82.88 Basalt Dyke: Basalt dyke, same as above, top contact is at 50deg, bottom is 45deg.											
	90.05 90.20 Basalt Dyke: Basalt dyke, chlorite rich green-gray, top contact 45 deg., bottom 45deg.											
	90.38 90.65 Basalt Dyke: Basalt dyke, chlorite rich green-gray with irregular 0.5-1mm crystal											
	black speckled texture, biotite? top contact 45 deg., bottom 45deg.											
	100.65 102.45 Basalt Dyke: Basalt dyke, dark brown-black to dark green with chlorite and epidote alteration, top contact at 45deg.											
02.45 349.65	Basalt Intrusive: Chlorite											
	Basalt intrusive, top contact roughly at 45deg with chlorite veins and epidote whisps. Fine grained											
	dark green quickly changing to dark black-gray in 3m. Within the top 10m there are several 5-20cm											
	inclusion of relatively unaltered rhyolite, the contacts are gradational with thick magnetite veins											
	or sometimes fine epidote whisps but not noted together. Within the massive intrusive body there											
	are a series of subtle textural changes. Beginning as very fine grained dark green-black and											
	changing at 124m to slightly coarser and medium green with a slightly lighter ground mass											
	nignlighting imm son black pyroxene. Back to dark green-gray line grained at 140m. A possible											
	staring to become obvious down section, locally at about 15-25% and gradually increasing in size											
	over the next 15m to 4mm. These changes continue throughout the section with additional local											
	biotite alteration. Common 1-10cm magnetite veinlets with minor chlorite and trace pyrite and											

P		Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-	ID: TC	U04099 Page: 4
Interval (m)	Description		Sample	From (m)	To (m)	Interval	Au	Ag a/t	Cu %	Pb %	Zn %
-rom 10					(11)	(11)	y, t		/0	70	<i>,</i> ,,
	chlorite alteration, more concentrated on boundar	ies but somtimes epidote also. Bottom contact is									
	sharp and irregular at 70 deg. into rhyolites. The	intrusive is very fine grained black 20cm above									
	the contact and again locally in places1-2m above	e within the regular light green-dark gray basalt									
	intrusive, perhaps spatially close to the edge of th	e intrusive and other contact margins.									
	153.40 154.20 Fault Zone: Minor fault zone with	proken and fractured core caused by a 5deg slip									
	plane. Chlorite, epidote and calcite alter	ation with a little gouge extends									
	intermitently for upto 1m above with 1mm	n 45deg. calcite fractures.									
	155.00 155.20 Fault Zone: 20cm crumbly gouge	zone with no clear fracture surface, one calcite									
	plane at 40deg. Locally Intense chlorite	alteration and bleaching extends for									
	200 65 200 90 What are initially thought to be per	udo rhyolite xepolithe with magnetite and									
	chlorite altered zones stonning sharply a	nainet the massive intrusive can easily be									
	seen as alteration spatially related to an	radiating out from a quartz vein <photo< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></photo<>									
	200)										
	207 90 208 10 Fault Zone: Two parallel fractures	10cm apart at 40 deg, one with 2cm of pale brown									
	wet crumbly clay gouge and the other wi	th a 2mm calcite vein.									
	225.00 225.20 Common 0.5-1mm white calcite cr	osscutting veinlets at 40 deg, with adjacent 1mm									
	calcite slips.	• • •									
	249.70 249.75 Possible intersection with old drill I	nole. 1 inch circular clay filled 3/4 partial									
	hole crossing current hole at 60 deg to the	ne core axis.									
	277.80 278.00 Chlorite; Biotite; Large 70deg. chl	orite magnetite vein with 5 cm of adjacent									
	transitional pale green-brown dominant t	viotite alteration from edge of chlorite into									
	intrusive, with extended whisps allined w	ith vein.									
49.65 377.90	Rhvolite Lapilli Tuff: Chlorite										
	Hetrogenous Rhyolite lapilli tuff. Dark arev-areen	to blue-gray matrix changing with chlorite.									
	Texture is consistently Rhyolite lapilli with Felsic 1	-2mm lapilli locally abundant, <1-10% and a									
	weak to strong foliation/ alignment of lapilli at 20-	30deg. Fragments are mostly rounded 2-5cm									

felsic but with some rare angular light brown 1-8cm chlorite altered mafic fragments at 364m <Photo 364>. Some localised silicification over 30-40cm with chlorite. Several quartz, calcite veins and epidote veinlets. several basalt dykes intrude section. Bottom contact is gradational noted by rounded debris flow fragments.
P	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-	ID: TC	U04099 Page: 5
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	360.35 361.30 Basalt Dyke: Basalt dyke, fine grained dark gray with minor epidote veins. Top									
	contact irregular-70deg, bottom regular-20 deg.									
	361.60 361.80 Basalt Dyke: Basalt dyke, fine grained dark gray. Top contact irregular-Odeg,									
	bottom very irregular-30 deg.									
	367.00 373.50 Bleached; Chlorite; Dominant blue-green chlorite alteration with bleaching. Matrix									
	is brown to green becoming almost granular with bleaching of softer biotite and									
	chlorite. Fragments are green gray felsic and pale grey siliceous from chlorite									
	alteration. Trace jasper.									
	and all 60-70 deg. to core avie									
	371 85 372 75 Fault Zone: Minor fault zone, sub parallel slip with greasy surfaces, 50% dry									
	fractured core less than 4cm.									
377.90 389.50	Rhyolite Debris Flow:									
	Series of debris flows with inter bedded lapilli tuff with possible broad sorting/grading of									
	fragments in places. Blue-grey to dark green-gray matrix with mainly rounded to sub rounded 2-15cm									
	white-gray to light mauve felsic rhyolite flow fragments. Fragments are broadly sorted starting									
	with self supporting fragments at the bottom grading to matrix supported with lagre gaps between									
	rounded fragments and locally almost lapilli tuff like with elongated 1-3cm fragments allined with									
	possible bedding at 45-50deg. 0.5-1mm Quartz eyes are common in the fragments, as is mild									
	epidote alteration. Rare angular 1-3cm mafic fragments. Trace 5mm pyrrhotite being replaced by									
	magnetite and chlorite. Bottom contact is at end of large siliceous rhyolite fragments with quartz									
	eyes with no obvious change in flow regimes.									
	378.85 378.13 Basalt Dyke: Thin basalt dyke, 50deg. bottom contact chlorite rich.									
	384.40 385.80 Rhyolite Flow Breccia: Almost flow breccia texture, especially at bottom. Dominant									
	epidote with minor chlorite between fragments. Possible flow bottom.									
	385.85 354.50 Basalt Dyke: Basalt dyke, fine grained dark gray with qartz veins. Top contact									
	regular-20deg, bottom regular-35 deg.									
	386.45 387.10 Fault Zone: Sub parallel greasy fracture slip surface with slickenslides 45deg.									
	accross fracture surface. Mostly 40cm of broken dry core <3cm.									

388.80 389.50 Rhyolite Debris Flow: Exellent debris flow 10-20cm rounded fragments nested together.

# P

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

0-95 10-14

> Hole-ID: TCU04099 Page: 6

Interv From	al (m) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
389.50	408.40	Rhvolite Crvstal Lapilli Tuff:	 								
		Predominantly Rhyolite crystal tuff but with some small distinct debris flows and one minerialised	3609	404.30	405.3	30 1.00	0.03	0.00	0.00	0.00	0.00
		ash laver - see nested. Mainly dark green-gray with some minor local mauve siliceous sections.	3610	405.30	405.	50 0.20	0.08	0.00	0.00	0.00	0.00
		Mostly 1-2mm elongated felsic lapilli with 5cm angular siliceous mouve fragments and 3-10cm pale	3611	405.50	406.9	95 1.45	0.03	0.00	0.00	0.00	0.00
		gray felsic fragments with irregular boundries and minor epidote and chlorite alteration. Minor	3613	406.95	408.4	40 1.45	0.03	0.00	0.00	0.00	0.00
		epidote and chlorite veinlets. Trace pyrrhotite cubes with altered boundries. Intense pyrite on									
		two 50deg fractures surfaces 20cm apart at 391.25m. Lower contact is gradational from felsic									
		lapilli rich into more lenticular lapilli in a finer matrix, might be a continuation of the same									
		unit with just sercite whisps and alteration exgerating the presence of a unit contact. <litho< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></litho<>									
		Geochem, Rhyolite A/B 390.1m; Rhyolite A 408.3m.>									
		396.20 396.84 Rhyolite Debris Flow: Small Debris flow with rounded pale grey-green silicious									
		fragments in a pale green sercite-chlorite very fine grained matrix. Grading is									
		present with with larger 5cm fragments at the botom of the section with more common									
		0.5-1cm fragments at the top. Several of the fragment have angular halfs									
		representing late final deposition fractures. Silification of the fragments has									
		obsqured the protolith. Pyrite is present in the top, disseminated and bands with									
		trace chalcopyrite and also one 2x8mm light brown sphalerite micro fracture. Rare 3cm									
		mafic fragments. Both contacts are gradational marked by the presence of rounded silicous fragments.									
		399 02 401 83 Rhyolite Dehris Flow, Rhyolite dehris flow, dark green to mauve-grev 2-10cm rhyolite									
		fragments. The fragments vary from nale pink-green Hematite to light green-vellow									
		enidote to grey-green chlorite altered. The fragments are unsorted in a 20% chlorite									
		matrix with 10-15% 2mm feldenar phenocrysts. Some locally intense chlorite-enidote									
		snots 2-3cm. Both contacts are gradational and defined by the presence of fragments									
		405 30 405 50 Rhyolite Lanilli Ash Tuff Pyrite. Very fine grained blue-dark green motied with									
		numerous blue-light grey chlorite altered lenticular lanilli i anilli are 0.5-1.5cm									
		in very fine grained quartz chlorite matrix. The bottom has very fine grained pyrite									
		1 m band with which sextending 5 m < Photo 405> A 2 cm pyrite debris fragment is the									
		top. Both contacts are obvious by the start and end of dominant lanilli top is									
		flow boundry at 60deg and the bottom is at 50deg									

#### 408.40 409.85 Rhyolite Lapilli Ash Tuff: Chlorite; Biotite

## P

Interval (m)

То

From

Description

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04099 Page: 7

Sample No.	From (m)	To Interval (m) (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
3614	408.40	409.85 1.45	0.03	0.00	0.00	0.00	0.00

409.85 420.90 Zinc Facies Massive Sulphide: Sphalerite; Sericite; Pyrite

biotite altered lapilli and start of pyrite clumps and sericite.

Banded Rhyolite lapilli ash tuff, pale brown-green biotite - sericite matrix with sphalerite. Sercite - sphalerite alteration pervails throughout except for minor unaltered sections at the top and in the middle of the interval where biotite pervails. Lapilli are 1-5cm pale grey silicious. Fine grained sphalerite with sericite starts as 1-2mm light brown clots within the sericite bands merging togeather to form matrix rich fine grained sphalerite up to 10-15% but averaging 1-2%. Two semi masive sphalerite bands are present in the bottom of the section - see nested. Trace chalcopyrite <1% as fine diseminations with sphalerite or 5-10mm clots. Rare Galena. Botom contact is a fault at 60deg. with banded ash tuff.

Gradational contact with Rhyolite ash tuff defined by a finer matrix and lenticular lapilli in semi regular bands at 50-60deg. Mainly dark gray-green motled with rich green chlorite lapilli in top and brown biotite altered lapilli towards the bottom. Rare sub rounded 1cm lithic fragments with quartz eyes. 2-5cm quartz veins at 80deg with minor epidote and chlorite. Trace 2-6mm jasper clasts within a 2cm layer near the top. Bottom contact is gradational and marked by the end of

409.85 410.95 Sericite: Biotite; Pyrite; Same unit as above Rhyolite lapilli ash tuff except with sericite alteration and minor pyrite. Light green-dark brown matrix from sericite and biotite. 1-5cm light grey siliceous lapilli with minor sericite or biotite alteration, several are completely speckled with pyrite. 2-5% pyrite is either in 0.5cm groups of 0.5mm crystals along 45deg. foliation or as small 1-2mm grains. Rare sphalerite clumps 2-5mm. The bottom of this sub interval is marked by a decrease in

biotite and a increase in both sericite and sphalerite( from a trace to 5%).

- 411.85 412.15 Fault Zone: Minor fault zone with little broken core. Some minor clay gouge and well developed waxy calcite slickenslides on two planes. At 10 and 60deg to the core axis, at 120 degrees apart they are just a continuation of the same movement with different axis exposed.
- 417.60 418.30 Rhyolite Lapilli Ash Tuff: Significant because of lack of alteration compared to surounding core. Mainly chlorite and biotite in matrix with 0.5-1cm elongated chlorite altered lapilli alined in rough banding at 45deg with sericite bands. Minor pyrite, diseminated and in clots within siliceous fragments. Trace sphalerite infiling a 1x2cm fractures with none diseminated. Gradational contacts returing to

3615 409.85 410.95 1.10 0.21 0.00 0.00 0.00 0.00 3616 410.95 412.28 1.33 10.60 0.09 0.11 1.55 0.35 70.60 0.58 0.48 3.28 3617 412.28 413.61 1.33 1.51 52.30 0.66 3619 413.61 414.94 1.33 1.36 0.79 3.85 3620 414.94 416.27 1.33 3.56 160.00 0.79 1.51 6.42 38.70 0.50 3621 416.27 417.60 1.33 1.47 0.59 3.89 3622 3.80 0.06 0.06 0.32 417.60 418.30 0.70 0.15 32.30 0.38 0.65 1.97 3623 418.30 419.52 1.22 1.16 3625 419.52 420.32 0.80 2.18 78.40 0.57 2.92 14.90 46.50 0.54 0.91 2.97 3626 420.32 420.90 0.58 1.23

r	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-I	D: TCl F	J0409 'age:
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	<ul> <li>main interval with biotite-sericite and +- sphalerite.</li> <li>419.52 420.32 Banded Sphalerite: Galena; Band of semi massive sphalerite <photo 419="">. 1-3cm mainly grey with a little brown massive sphalerite - galena and tetrahedrite band. Two seperate bands are through the core over 20 and 40cm - layer? bed?. Very fine trace chalcopyrite and magnetite within the bands, moderately magnetic. Mainly pyrite clumps, sericte and quartz inthe surounding core.</photo></li> <li>420.60 420.90 Fault Zone: Several fracture planes at 30 and 60deg with several mm of clayey calcite - sericite gouge with minor chlorite alteration.</li> </ul>						2			
420.90 421.45	Sloko Rhyolite Dyke: Homogenous very fine grained glassy banded ash tuff with regular 30deg bands <photo 421="">. The bands alternate between thin white siliceous and weakly chlorite pale grey, getting thicker through the short section. Very fine 0.25x1mm magnetite needles. The last few bands are quite black with lower contact sharp at 60deg</photo>	3627	420.90	421.4	45 0.55	0.03	0.40	0.00	0.01	0.0
421.45 426.70	Zinc Facies Massive Sulphide: Sericite; Pyrite; Sphalerite Rhyolite lapilli ash tuff. Grey very fine matrix with mostly sericite and some minor biotite. 1-8cm white-grey sub angular elongated siliceous lapilli are alligned with 40 deg. sericite bands. The top is more silicified and less banded than bottom, with mostly mild sericite alteration of lapilli. Pyrite, 3-5% is present throughout as diseminations, clumps and as massive bands. Sphalerite is only a trace at the top as 2-3mm fracture infillings but increasing to 1-2% down section, also several large 3-15cm orange brown sphalerite clumps. Chalcopyrite is also only a trace at the top as fracture infillings but increasing to 1% at bottom as diseminations and infillings. Bottom contact is sharp at 60deg. with start of massive pyrite. <litho geochem<br="">Rhyolite B 425m.&gt;</litho>	3628 3629 3630 3631	421.45 422.77 424.08 425.39	422. 424.0 425.3 426.3	77 1.32 08 1.31 39 1.31 70 1.31	1.32 2.06 2.41 1.12	34.10 140.00 74.30 50.60	0.47 0.61 0.77 0.84	0.43 1.96 1.01 0.82	2.58 5.36 4.32 5.17
426.70 427.10	Pyrite Facies Massive Sulphide: Pyrite Facies Massive Sulphide Massive pyrite facies with 40cm of 90% sulfides, almost exculsively pyrite. Several 0.5cm light grey-white barite altered fragments. Trace chalcopyrite near bottom contact, sharp at 60 degrees at start of ash tuff.	3632	426.70	427.1	10 0.40	0.63	17.50	0.27	0.06	0.20

AND DOLLARS

1996

200

427.10 431.90 Zinc Facies Massive Sulphide: Sericite; Pyrite; Chalcopyrite

all Signals of wide and the Construction



Contraction of Contract

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

and the second sec

10

Constant of

Hole-ID: TCU04099 Page: 9 SPICE OF

Interva From	ll (m) To	Description	Sample No.	From (m)	To l (m)	nterval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
·		Rhyolite lapilli ash tuff, similar to above unit but with less sphalerite. Grey-white foliated	3633	427.10	428.15	5 1.05	2.13	74.70	0.59	0.61	3.10
		matrix with sericite whisp bands at 45deg. 1-6cm silicified white to light green lapilli with	3634	428.15	428.55	0.40	0.24	7.10	0.09	0.08	0.69
		sericite alteration. Pyrite is present throughout with some massive areas at the top. Chalcopyrite	3635	428.55	429.67	1.12	2.46	62.70	0.92	0.83	3.51
		occurs throughout as 5- 20cm clots and 1-5mm veinlets, one large clot is at 430.45m and a rich	3636	429.67	430.78	1.11	2.93	56.30	1.89	0.86	3.96
		veinlet with galena in quartz at 431.35m. Only trace sphalerite can be found towards the bottom of	3637	430.78	431.90	1.12	1.97	68.70	1.13	0.81	4.42
		the section in 2-3mm clumps of red brown sphalerite within the matrix. The bottom contact signaled by end of sulfides and the start of dominant quartz sericite alteration.									
		428 15 428 55 Basalt Ash Tuff: Pyrite: 40 cm of very fine grained black ash tuff, basalt like with									
		mainly very fine disseminated pyrite and whisps with 3mm clots. One or two possible									
		fragments at top otherwise po Janilli A soft 3mm circular metamorphic dark green -									
		black mineral is common possibly chlorite but seams a little too dark? minerial									
		Lower contact is at 20deg, over 1-2cm with increasing service and pyrite of main									
		interval.									
31.90	432.35	Quartz-Sericite-Pyrite Alteration: Quartz; Sericite									
		Short interval with dominant silicification. Light green with minor sericite, leucoxene and	3639	431.90	432.35	0.45	0.36	6.70	0.11	0.10	0.35
		pyrite. Botom contact is at 60deg. with start of massive sphalerite.									
32.35	434.40	Zinc Facies Massive Sulphide: Sphalerite; Chalcopyrite									
		Zinc Facies massive sulfide. Dominant orange brown 2-10cm thick sphalerite bands highlighted by	3640	432.35	433.37	1.02	8.81	208.00	0.98	5.46	16.60
		5mm thin grey-white barite bands. Bottom metre is more regularlly banded at 40 deg. Chalcopyrite	3641	433.37	434.40	1.03	11.81	234.00	1.33	5.13	18.70
		wisps and 1cm bands can be found in the middle of section. Trace galena. The bottom 40cm is									
		mostly pyrite as 1mm grains and in fine bands within a very fine black groundmass, with no									
		sphalerite. Bottom contact is at 60deg, into sercite-pyrite rich slip plannes and quartz									
		silcification.									
		432.90 433.05 Two red brown epidote altered fragments, slightly siliceous with biotite									
		alteration? <photo 433="">. They are 5 and 10cm with regular sharp contacts.</photo>									
34.40	436.92	Quartz-Sericite-Pyrite Alteration: Silica; Sericite; Rhyolite Undifferentiated									
		Massive pale green quartz dominant with minor sercite and chlorite locally changing the colour of	3642	434.40	435.40	) 1.00	0.03	0.00	0.00	0.00	0.00
		the section from yellow-green to blue-green. Sericite is dominant in the top contact with pyrite									
		hands and present throught out. Chlorite is present as 0.5mm dots and 0.2mm veinlets becoming									

## Redfern Resources Ltd. **Diamond Drill Log**

Second Second

and the second se

r	Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-I	D: TCU Pa	J04099 age: 10
Interval (m) From To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	larger through section. Bottom contact is where original textures return, althought still some slification. <litho 435m.="" b="" geochem="" rhyolite=""></litho>									
436.92 440.10	<ul> <li>Basalt Intrusive: Chlorite; Basalt Hyaloclastite</li> <li>Basalt Intrusive, indicated from lithogeochem, but logged as: basalt undifferentiated with the original textures hard to define, possibly a flow or tuff or most likely a haloclastic flow, as below. Very homogenous massive very fine grained glassy black basalt flow. A dominant 60deg. foliation with elongated green granular chlorite in a biotite matrix. Bottom grades through local tectonic breciation into recognizable haloclastic features. Bottom contact approximate, lithogeochem boundry. <litho 438.1m="" geochem="" hi-mg-cr-ni="" mafic="">.</litho></li> <li>439.15 439.35 Fault: Minor fault with greasy calcite slip plane 15deg., with slickenslides almost perpendicular to fracture.</li> </ul>									
<b>440.10</b> 446.70	Rhyolite Undifferentiated: Rhyolite B/C indicated from litho geochem but logged as: Basalt haloclastic flow, with textures becoming more obvious into section. Black angular elongated 1-4cm fragments in a light gray mauve siliceous groundmass. Areas of red hematitic chert. Bottom becomes more siliceous with biotite rich light brown fragments and more abundant pyrite, 1-3mm euhedral crystals. Trace garnet on fracture surfaces. Bottom contact is gradational into silicified stockwork with increasing light green-gray bleaching and less obvious haloclastic textures with sericatization of fragments and finally silicification dominant over original textures. <litho -="" 441.4m.="" b="" c="" geochem,="" rhyolite=""></litho>	3769	445.20	446.7	70 1.50	0.03	0.00	0.00	0.00	0.00
46.70 501.67	Stockwork: Sphalerite; Rhyolite Undifferentiated; Evolved Andesite Silicification dominant quartz sericite pyrite alteration with sphalerite stockwork veins <photo 439&gt;. Granular to glassy light blue-grey mostly massive motled with light green gray sericite rich areas. Sercite highlights a possible haloclastic texture in the top of the section. Pyrite is absent at the top and present in small grains and bands further down. Several major stock work veins, mainly rust-brown sphalerite with pyrite and minor chalcopyrite and galena. The stockworks are an irregular web of 2-20mm veinlets and clots with extending whisps. The veinlets are consistently at 15-20deg to the core axis. Adjacent to the spalerite veins are 1-2mm sphalerite clots and smaller chalcopyrite and pyrite grains. Some quartz eyes are visible in glassy sections. Leucoxene is present in top. Several 1-10cm quartz veins. Bottom contact is gradational over</photo 	3771 3772 3773 3774 3775 3776 3777 3778 3779	446.70 448.20 449.70 451.20 452.70 455.80 455.80 457.30	448.2 449.7 451.2 452.7 454.1 455.8 457.3 457.5 458.2	20       1.50         70       1.50         20       1.50         20       1.50         30       1.50         30       1.50         30       1.50         30       1.50         30       1.50         30       1.50         35       0.25         35       0.70	0.08 0.05 0.07 0.04 0.17 0.12 0.58 0.14 0.13	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.18



Contraction of the local data

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

Hole-ID: TCU04099 Page: 11 CONTRACT, South

Interval (m)	Description	Sample	From	To In	terval	Au	Ag	Cu	Pb	Zn
From To		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
	10cm into biotite matrix dominant basalt flow, pyrite is locally abundant at contact. <litho< td=""><td>3780</td><td>458.25</td><td>458.45</td><td>0.20</td><td>0.03</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td></litho<>	3780	458.25	458.45	0.20	0.03	0.00	0.00	0.00	0.00
	Geochem Rhyolite B/C 450.7m; Evolved Andesite 459.8m, 477.6m, 496m.>	3781	458.45	459.95	1.50	0.30	0.10	0.05	0.60	2.83
	454.10 455.80 Basalt Dyke: Mostly dark green motled with biotite. Rough foliation at 30deg. with	3782	459.95	461.45	1.50	0.10	0.00	0.00	0.00	0.00
	allignment of chlorite and biotite, parallel with contacts. Top contact biotite rich	3783	461.45	462.95	1.50	0.15	4.10	0.07	0.49	1.19
	sharp glassy brown at 30deg. for 10cm, bottom 60deg.	3784	462.95	464.45	1.50	0.15	2.00	0.17	0.06	2.40
	455.50 457.15 Basalt Flow: Possible debris flow protolith for QSP with 5-10cm sub rounded	3785	464.45	465.95	1.50	0.10	0.10	0.08	0.05	2.60
	siliceous fragments in 1.5m. Much less altered than surrounding unit, sericite rich	3786	465.95	467.45	1.50	0.09	0.10	0.04	0.15	1.20
	with pyrite. Section sandwiched between two basalt dykes?	3787	467.45	468.95	1.50	0.08	0.00	0.00	0.00	0.00
	457.30 457.55 Basalt Dyke: Black brown basalt dyke, top contact at about 50deg, bottom lost in	3788	468.95	470.45	1.50	0.32	6.40	0.16	0.36	4.90
	mislatch.	3789	470.45	471.95	1.50	0.17	0.10	0.08	0.24	1.11
	458.25 458.45 Basalt Dyke: Small Basalt Dyke with contacts broken and all broken peices 3-5cm.	3790	471.95	473.45	1.50	0.13	0.00	0.00	0.00	0.00
		3792	473.45	474.95	1.50	0.17	0.00	0.00	0.00	0.00
		3793	474.95	476.45	1.50	0.12	0.00	0.00	0.00	0.00
		3795	476.45	477.95	1.50	0.11	0.00	0.00	0.00	0.00
		3796	477.95	479.45	1.50	0.14	0.00	0.00	0.00	0.00
		3797	479.45	480.95	1.50	0.11	0.00	0.00	0.00	0.00
		3798	480.95	482.45	1.50	0.17	0.00	0.00	0.00	0.00
		3799	482.45	483.95	1.50	0.06	0.00	0.00	0.00	0.00
		3800	483.95	485.45	1.50	0.09	0.00	0.00	0.00	0.00
		9801	485 45	486.95	1.50	0.10	0.00	0.00	0.00	0.00
		9802	486.95	488 45	1.50	0.09	0.00	0.00	0.00	0.00
		9803	488 45	489.95	1.50	0.07	0.00	0.00	0.00	0.00
		9804	489.95	491 45	1.50	0.07	0.00	0.00	0.00	0.00
		9805	101.00	107.95	1.50	0.00	0.00	0.00	0.00	0.00
		9806	401.40	492.95	1.50	0.00	16 10	0.00	1 36	2 16
		9807	492.95	405.05	1.50	0.02	0.00	0.00	0.00	0.00
		9007	494.45	493.93	1.50	0.00	0.00	0.00	0.00	0.00
		2000	490.90	497.40	1.50	0.05	0.00	0.00	0.00	0.00
		9009	497.45	490.90	1.50	0.14	0.00	0.00	0.00	0.00
		9810	498.95	500.45		0.06	0.00	0.00	0.00	0.00
		9811	500.45	501.67	1.22	0.03	0.00	0.00	0.00	0.00

501.67 502.10 Quartz-Feldspar Porphyry Dyke:

1.1.1	
81	T ALLEY
	ART
9	
1	

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

State of the second

Construction of the

1.4

14.00

101-104

Hole-ID: TCU04099 Page: 12 AND A DECK

Interva	l (m)	Description	Sample	From	To Interv	al Au	Ag	Cu	Pb	Zn
From	То		NO.	(m)	(m) (m)	g/t	g/t	%	%	%
		Basalt dyke with knife like contacts, 60deg. Green gray granular to very fine black at very well defined chill margins extending 4cm into dyke.	9813	501.67	502.10 0.4	3 0.03	0.00	0.00	0.00	0.00
502.10	510.95	Stockwork: Silica; Evolved Andesite								
		Continuation of 447 to 501.67 meters below QFP dyke. <litho 507.3m="" andesite="" evolved="" geochem=""></litho>	9814	502.10	503.60 1.5	0 0.05	0.00	0.00	0.00	0.00
			9815	503.60	505.10 1.5	0 0.06	0.00	0.00	0.00	0.00
			9816	505.10	506.60 1.5	0 0.12	0.00	0.00	0.00	0.00
			9817	506.60	508.10 1.5	0 0.12	0.00	0.00	0.00	0.00
			9819	508.10	509.60 1.5	0 0.23	0.00	0.00	0.00	0.00
			9820	509.60	510.95 1.3	5 0.32	0.00	0.00	0.00	0.00
510.95	534.90	Evolved Andesite: Basalt Flow								
		Basalt flow, homogenous light to dark gray. Minor pyrite as disseminations and veinlets. Minor quartz veinlets mostly 1-3mm but up to 3cm. Bottom contact is marked by the definate presence of quartz amygdales, which is also partially obsquired by local slification. <litho evolved<br="" geochem,="">Andesite 511.2m, 527.1m.&gt;</litho>	9821	510.95	512.45 1.5	0 0.21	0.00	0.00	0.00	0.00
534 90	571 90	Evolved Andesite: Amvadaloidal Basalt								
		Amygdaloidal basalt flow, generally homogenous light to dark grey with 3-10mm elongated quartz amygdales. Pyrite locally abundant in top as disseminations and clumps in rare 20cm stringers. Bottom contact is irregular and sharp at 70 deg with a 5mm quartz vein seperating the lithologys.								
		541.85 542.20 Fault Zone: Minor fault at 30deg. with dry crumbly calcite and several local related large fractures.								
571 90	581.00	Evolved Andesite: Basalt Hvaloclastite								
		Basalt haloclastic flow. Very fine grained 10-30% glassy black angular fragments in a light gray								
		almost light mauve matrix. Minor pyrite clots and stringers with quartz. Bottom contact is								
		approximate at litho geochemical foot wall boundry. <litho (mod-v)="" -="" 577m;="" andesite="" evolved="" geochem,=""></litho>								
581.00	600.10	Basalt Hyaloclastite:								
581.00	600.10	Basalt Hyaloclastite:								

#### Hole-ID: TCU04099 **Redfern Resources Ltd.** Page: 13 **Diamond Drill Log Lithology Description** Interval (m) Description Sample From То Interval Au Ag Cu Pb Zn % % No. (m) (m) (m) g/t g/t % То From Basalt Haloclastic flow Several 1-5cm white-gray siliceous fragmets in the bottom of section.

Bottom contact is at end of haloclatsic textures with a medium fault and local bleaching. <Litho Geochem, Low Cr-Ni mafic FW - 590.3m.>

600.10 614.17 Basalt Flow:

Basalt flow, brown-black biotite matrix with 20% 3mm elipitcial quartz locally allined in a rough foliation direction, not consistant throughout. <Litho Geochem Low Cr-Ni mafic FW 606.4m.> 600.10 601.10 Fault Zone: Medium fault zone with local tectonic breciation, no clear fault plane just several fracture planes at 30deg. and broken core with minor dry brittle crumbly texture. Local bleaching obsquring contact between haloclastite and flow.

614.17 614.17 End of Hole:

End of Hole 31st May 2004, 614.17m.

110	6	P	Ø	
			ſ	7

Redfern Resources Ltd. Diamond Drill Log Hole-ID: TCU04099 Page: 14A 

### Assays

1012.060

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	AI %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3609	404.30	405.30	1.00	0.03	0.00	0.00	0.00	0.00	0.00	67	104	370	0	0.2	15	1.42	350	5	0.80	1	5
3610	405.30	405.50	0.20	0.08	0.00	0.00	0.00	0.00	0.00	183	190	512	0	2.1	20	1.93	150	5	0.20	1	11
3611	405.50	406.95	1.45	0.03	0.00	0.00	0.00	0.00	0.00	103	100	606	0	0.6	20	1.68	285	5	0.67	2	5
3613	406.95	408.40	1.45	0.03	0.00	0.00	0.00	0.00	0.00	. 16	- 30	199	0	0.4	10	1.46	295	5	0.46	1	6
3614	408.40	409.85	1.45	0.03	0.00	0.00	0.00	0.00	0.00	65	40	203	0	0.3	5	2.01	660	5	0.70	1	6
3615	409.85	410.95	1.10	0.21	0.00	0.00	0.00	0.00	0.00	498	728	2854	0	3.8	10	1.24	40	5	0.23	13	8
3616	410.95	412.28	1.33	0.35	10.60	0.09	0.11	1.55	2.73	993	906	10000	0	9.2	30	0.70	10	5	0.28	89	7
3617	412.28	413.61	1.33	1.51	70.60	0.58	0.48	3.28	2.90	5221	4590	10000	0	30.0	590	1.08	30	5	0.32	146	7
3619	413.61	414.94	1.33	1.36	52.30	0.66	0.79	3.85	2.97	6425	7830	10000	0	30.0	210	0.52	15	5	0.23	169	6
3620	414.94	416.27	1.33	3.56	160.00	0.79	1.51	6.42	3.06	7758	10000	10000	0	30.0	1270	0.61	20	5	0.18	292	6
3621	416.27	417.60	1.33	1.47	38.70	0.50	0.59	3.89	2.93	4879	6072	10000	0	30.0	195	0.58	25	5	0.22	167	6
3622	417.60	418.30	0.70	0.15	3.80	0.06	0.06	0.32	0.00	553	568	3192	0	3.8	20	1.48	40	5	0.51	15	5
3623	418.30	419.52	1.22	1.16	32.30	0.38	0.65	1.97	2.90	3789	6386	10000	0	30.0	20	0.66	15	5	0.30	91	6
3625	419.52	420.32	0,80	2.18	78.40	0.57	2.92	14.90	3.12	5547	10000	10000	0	30.0	20	0.35	10	5	0.24	800	4
3626	420.32	420.90	0.58	1.23	46.50	0.54	0.91	2.97	2.80	5151	9056	10000	0	30.0	25	0.60	40	5	0.51	152	7
3627	420.90	421.45	0.55	0.03	0.40	0.00	0.01	0.01	0.00	25	90	74	0	0.4	5	0.27	105	5	0.21	1	1
3628	421.45	422.77	1.32	1.32	34.10	0.47	0.43	2.58	2.83	4573	4258	10000	0	30. <b>0</b>	25	0.65	15	5	0.34	120	9
3629	422.77	424.08	1.31	2.06	140.00	0.61	1.96	5.36	3.03	5875	10000	10000	0	30.0	140	0.84	15	5	0.26	235	9
3630	424.08	425.39	1.31	2.41	74.30	0.77	1.01	4.32	2.99	7583	10000	10000	0	30.0	240	0.52	15	5	0.37	204	8
3631	425.39	426.70	1.31	1.12	50.60	0.84	0.82	5.17	2.98	8544	8156	10000	0	30.0	325	0.48	5	5	0.38	232	7
3632	426.70	427.10	0.40	0.63	17.50	0.27	0.06	0.20	0.00	2731	646	2047	0	17.5	50	0.33	50	5	0.72	8	9
3633	427.10	428.15	1.05	2.13	74.70	0.59	0.61	3.10	3.24	5578	6158	10000	0	30.0	130	0.76	30	5	0.48	149	10
3634	428.15	428.55	0.40	0.24	7.10	0.09	0.08	0.69	0.00	881	816	6949	0	7.1	105	4.85	75	5	0.58	31	13
3635	428.55	429.67	1.12	2.46	62.70	0.92	0.83	3.51	2.98	9177	8456	10000	0	30.0	150	0.60	25	5	0.31	161	7
3636	429.67	430.78	1.11	2.93	56.30	1.89	0.86	3.96	2.95	10000	8578	10000	0	30.0	95	0.41	15	5	0.29	176	5
3637	430.78	431.90	1.12	1.97	68.70	1.13	0.81	4.42	2.89	10000	8147	10000	0	30.0	265	0.37	5	5	0.34	211	7
3639	431.90	432.35	0.45	0.36	6.70	0.11	0.10	0.35	0.00	1134	980	3487	0	6.7	60	0.38	20	5	0.34	18	4
3640	432.35	433.37	1.02	8.81	208.00	0.98	5.46	16.60	3.62	9784	10000	10000	0	30.0	635	0.56	35	5	0.34	796	6
3641	433.37	434.40	1.03	11.81	234.00	1.33	5.13	18.70	3.96	10000	10000	10000	0	30.0	1075	0.15	20	5	0.10	1000	6
3642	434.40	435.40	1.00	0.03	0.00	0.00	0.00	0.00	0.00	78	150	199	0	1.0	15	1.78	230	5	1.47	2	23
3769	445.20	446.70	1.50	0.03	0.00	0.00	0.00	0.00	0.00	21	14	65	0	0.9	20	2.14	60	5	1.10	1	6
3771	446.70	448.20	1.50	0.08	0.00	0.00	0,00	0.00	0.00	22	224	634	0	1.5	20	0.72	25	5	0.47	2	3
3772	448.20	449.70	1.50	0.05	0.00	0.00	0.00	0.00	0.00	22	252	376	0	1.4	15	0.84	60	5	0.59	1	3

	100			
1	<b>7</b> 4	9	a dan sa	њ.,
	Ø	Â		7
				1
- <b>R</b>		943) (	-	
	•	23.0		

Carlos Scenikalia

#### Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04099 Page: 14B in and the second

#### Assays ... continued

Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Tî %	U ppm	V ppm	W ppm	Y ppm	
3609	404.30	405.3	0 1.00	68	1.30	10	0.55	277	3	0.15	7	170	5	20	70	0.05	10	1	10	4	
3610	405.30	405.5	0 0.20	62	2.54	10	1.42	356	16	0.06	8	130	5	20	14	0.09	10	1	10	3	
3611	405.50	406.9	5 1.45	59	1.31	10	0.73	265	3	0.15	7	180	15	20	72	0.06	10	1	10	4	
3613	406.95	408.4	0 1.45	56	1.34	10	0.92	339	2	0.11	6	190	5	20	34	0.07	10	- 1	10	5	
3614	408.40	409.8	5 1.45	52	1.49	10	1.21	382	2	0.13	8	220	5	20	81	0.06	10	1	10	3	
3615	409.85	410.9	5 1.10	47	3.24	10	1.13	208	1	0.05	5	200	5	20	10	0.04	10	1	10	2	
3616	410.95	412.2	8 1.33	64	4.47	10	0.62	83	1	0.03	1	210	5	20	12	0.01	10	1	10	3	
3617	412.28	413.6	1 1.33	57	4.35	10	1.22	176	1	0.02	1	330	345	20	23	0.02	10	1	10	2	
3619	413.61	414.9	4 1.33	40	4.36	10	0.54	68	1	0.01	1	270	120	20	24	0.01	10	1	10	2	
3620	414 94	416.2	7 1.33	61	4.91	10	0.65	85	1	0.01	- 1	260	615	20	26	0.01	10	1	10	2	
3621	416.27	417.6	0 1.33	49	3.76	10	0.45	69	1	0.02	1	260	105	20	26	0.01	10	1	10	2	
3622	417.60	418.3	0 0.70	56	2.39	10	1.25	394	1	0.04	-5	200	10	20	30	0.05	10	1	10	4	
3623	418.30	419.5	2 1.22	56	3.89	10	0.57	152	1	0.02	1	310	10	20	25	0.02	10	1	10	2	
3625	419.52	420.3	2 0.80	40	2.72	10	0.29	203	1	0.01	1	270	5	20	44	0.01	10	1	10	4	
3626	420.32	420.9	0 0.58	64	5.05	10	0.44	224	1	0.02	1	350	5	20	23	0.02	10	1	10	5	
3627	420.90	421.4	5 0.55	71	0.70	20	0.05	295	3	0.05	3	80	5	20	6	0.01	10	1	10	4	
3628	421.45	422.7	7 1.32	55	4.97	10	0.42	104	1	0.02	1	350	20	20	37	0.01	10	1	10	3	
3629	422.77	424.0	8 1.31	51	7.13	10	0.89	209	1	0.01	1	350	255	20	43	0.02	10	1	10	3	
3630	424.08	425.3	9 1.31	53	6.67	10	0.41	76	1	0.01	1	410	290	20	41	0.01	10	1	10	3	
3631	425.39	426.7	0 1.31	46	5.81	10	0.36	95	1	0.01	1	440	250	20	37	0.01	10	1	10	2	
3632	426.70	427.1	0 0.40	85	10.00	30	0.27	1	1	0.01	3	180	40	20	16	0.01	10	1	10	1	
3633	427.10	428.1	5 1.05	74	10.00	20	0.62	169	1	0.03	1	360	225	20	24	0.02	10	1	10	3	
3634	428.15	428.5	5 0.40	40	5.88	10	4.31	2008	1	0.07	12	660	45	20	28	0.20	10	1	10	7	
3635	428.55	429.6	57 1.12	41	5.24	10	0.45	164	1	0.01	1	550	200	20	32	0.02	10	1	10	3	
3636	429.67	430.7	8 1.11	44	4.30	10	0.23	93	1	0.01	1	760	80	20	46	0.01	10	1	10	2	
3637	430.78	431.9	0 1.12	51	5.45	10	0.25	86	1	0.01	1	610	215	20	36	0.01	10	1	10	2	
3639	431.90	432.3	5 0.45	49	1.69	10	0.20	81	1	0.01	2	210	25	20	63	0.01	10	1	10	3	
3640	432.35	433.3	7 1.02	47	3.33	10	0.53	126	1	0.02	2	440	635	20	47	0.01	10	15	10	3	
3641	433.37	434.4	0 1.03	42	8.39	10	0.16	8	1	0.01	1	510	1605	20	51	0.01	10	2	10	1	
3642	434.40	435.4	0 1.00	75	3.26	10	1.07	317	3	0.19	33	890	10	20	84	0.12	10	44	10	5	
3769	445.20	446.7	0 1.50	62	3.44	10	0.93	1224	3	0.05	8	410	10	20	36	0.11	10	2	10	4	
3771	446.70	448.2	0 1.50	79	2.23	10	0.21	294	11	0.05	5	350	10	20	29	0.03	10	1	10	2	
3772	448.20	449.7	0 1.50	99	1.85	10	0.20	307	14	0.05	7	430	10	20	37	0.03	10	1	10	3	

P

Redfern Resources Ltd. Diamond Drill Log

Section of the sectio

A CONTRACTOR

Hole-ID: TCU04099 Page: 15A CONCERNES.

### Assays

Contraction of the

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	Al %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3773	449.70	451.20	1.50	0.07	0.00	0.00	0.00	0.00	0.00	30	640	946	0	3.0	20	1.26	25	5	1.31	3	4
3774	451.20	452.70	1.50	0.04	0.00	0.00	0.00	0.00	0.00	9	38	34	0	0.4	15	1.25	70	5	1.17	1	2
3775	452.70	454.10	1.40	0.17	0.00	0.00	0.00	0.00	0.00	77	810	1695	0	3.5	130	0.65	15	5	0.29	5	6
3776	454.10	455.80	1.70	0.12	0.00	0.00	0.00	0.00	0.00	116	40	127	0	0.4	30	5.29	180	5	3.08	1	40
3777	455.80	457.30	1.50	0.58	0.00	0.00	0.00	0.00	0.00	79	574	1551	0	10.4	120	1.25	15	5	0.92	4	20
3778	457.30	457.55	0.25	0.14	0.00	0.00	0.00	0.00	0.00	255	1042	2377	0	4.5	65	4.65	40	5	2.40	10	41
3779	457.55	458.25	0.70	0.13	0.10	0.09	0.02	1.18	2.81	919	194	10000	0	1.7	70	2.77	40	5	1.94	78	19
3780	458.25	458.45	0.20	0.03	0.00	0.00	0.00	0.00	0.00	416	38	201	0	0.3	35	4.18	65	5	3.13	1	46
3781	458.45	459.95	1.50	0.30	0.10	0.05	0.60	2.83	2.78	434	6366	10000	0	4.5	165	0.45	15	5	0.43	119	8
3782	459.95	461.45	1.50	0.10	0.00	0.00	0.00	0.00	0.00	279	2156	9500	0	2.1	. 180	0.63	25	5	0.56	40	11
3783	461.45	462.95	1.50	0.15	4.10	0.07	0.49	1.19	2.74	684	5118	10000	0	4.9	385	0.71	10	5	0.60	54	10
3784	462.95	464.45	1.50	0.15	2.00	0.17	0.06	2.40	2.81	1622	686	10000	0	3.6	360	0.55	10	5	0.54	98	10
3785	464.45	465.95	1.50	0.10	0.10	0.08	0.05	2.60	2.80	693	550	10000	0	1.4	165	0.65	20	5	0.61	109	8
3786	465.95	467.45	1.50	0.09	0.10	0.04	0.15	1.20	2.69	462	1586	10000	0	2.2	160	0.54	35	5	0.56	60	9
3787	467.45	468.95	1.50	0.08	0.00	0.00	0.00	0.00	0.00	99	496	1428	0	0.5	135	0.55	35	5	0.51	4	9
3788	468.95	470.45	1.50	0.32	6.40	0.16	0.36	4.90	2.73	1587	3616	10000	0	9.0	175	0.43	15	5	0.53	225	8
3789	470.45	471.95	1.50	0.17	0.10	0.08	0.24	1.11	2.65	848	2392	10000	0	3.4	115	0.32	25	5	0.48	48	8
3790	471.95	473.45	1.50	0.13	0.00	0.00	0.00	0.00	0.00	138	710	3892	0	1.4	135	0.49	45	5	0.57	14	10
3792	473.45	474.95	1.50	0.17	0.00	0.00	0.00	0.00	0.00	82	764	1487	0	1.4	145	0.57	25	5	0.65	3	12
3793	474.95	476.45	1.50	0.12	0.00	0.00	0.00	0.00	0.00	94	272	1633	0	0.4	115	0.47	20	5	0.54	5	10
3795	476.45	477.95	1.50	0.11	0.00	0.00	0.00	0.00	0.00	91	338	1636	0	0.5	145	0.49	45	5	0.57	5	10
3796	477.95	479.45	1.50	0.14	0.00	0.00	0.00	0.00	0.00	281	26	5858	0	2.0	180	0.39	20	5	0.50	20	10
3797	479.45	480.95	1.50	0.11	0.00	0.00	0.00	0.00	0.00	286	516	6112	0	1.4	125	0.41	15	5	0.51	23	9
3798	480.95	482.45	1.50	0.17	0.00	0.00	0.00	0.00	0.00	176	2048	3006	0	1.4	125	0.44	35	5	0.56	10	9
3799	482.45	483.95	1.50	0.06	0.00	0.00	0.00	0.00	0.00	119	1178	2209	. 0	0.8	115	0.43	30	5	0.57	7	10
3800	483.95	485.45	1.50	0.09	0.00	0.00	0.00	0.00	0.00	189	3242	4542	0	1.6	110	0.35	20	5	0.49	14	8
9801	485.45	486.95	1.50	0.10	0.00	0.00	0.00	0.00	0.00	139	1594	2595	0	1.5	105	0.35	35	5	0.51	7,	9
9802	486.95	488.45	1.50	0.09	0.00	0.00	0.00	0.00	0.00	135	1498	2718	0	1.7	110	0.44	35	5	0.60	8	9
9803	488.45	489.95	1.50	0.07	0.00	0.00	0.00	0.00	0.00	213	3086	4077	0	2.5	85	0.33	20	5	0.46	13	7
9804	489.95	491.45	1.50	0.03	0.00	0.00	0.00	0.00	0.00	145	926	2068	0	1.5	75	0.49	55	5	0.67	6	9
9805	491.45	492.95	1.50	0.08	0.00	0.00	0.00	0.00	0.00	425	3944	7790	0	4.1	85	0.33	40	5	0.51	25	9
9806	492.95	494.45	1.50	0.32	16.10	0.06	1.36	2.16	2.76	496	10000	10000	0	17.0	155	0.20	25	5	0.36	75	7
9807	494.45	495.95	1.50	0.05	0.00	0.00	0.00	0.00	0.00	63	1034	1495	0	1.2	80	0.21	55	5	0.45	4	8



#### Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04099 Page: 15B 100

#### Assays ...continued

Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm
3773	449.70	451.2	0 1.50	105	2.55	10	0.22	506	7	0.03	9	740	5	20	64	0.05	10	1	10	5
3774	451.20	452.7	0 1.50	83	1.49	10	0.12	298	10	0.06	5	290	5	20	77	0.03	10	1	10	4
3775	452.70	454.1	0 1.40	61	3.65	10	0.27	166	7	0.04	7	310	20	20	24	0.04	10	2	10	3
3776	454.10	455.8	0 1.70	470	4.25	10	3.08	580	1	0.07	233	1590	5	20	360	0.28	10	137	10	3
3777	455.80	457.3	0 1.50	104	5.61	10	0.54	137	5	0.07	48	1470	15	20	75	0.09	10	22	10	6
3778	457.30	457.5	5 0.25	412	5.83	10	2.78	704	1	0.11	150	1450	10	20	152	0.27	10	125	10	6
3779	457.55	458.2	5 0.70	111	5.50	10	0.96	174	1	0.05	35	1250	30	20	116	0.14	10	34	10	5
3780	458.25	458.4	5 0.20	312	4.79	10	1.57	411	3	0.05	118	1390	10	20	263	0.33	10	119	10	4
3781	458.45	459.9	5 1.50	78	4.04	10	0.18	256	1	0.03	3	1100	105	20	13	0.06	10	4	10	5
3782	459.95	461.4	5 1.50	87	4.02	10	0.13	214	18	0.04	13	1330	75	20	24	0.05	10	4	10	5
3783	461.45	462.9	5 1.50	72	4.09	10	0.16	239	2	0.02	5	1160	470	20	24	0.06	10	3	10	5
3784	462.95	464.4	5 1.50	71	4.99	10	0.14	220	1	0.01	2	1470	355	20	20	0.08	10	3	10	6
3785	464.45	465.9	5 1.50	71	3.10	10	0.13	302	1	0.02	3	1410	45	20	27	0.05	10	3	10	5
3786	465.95	467.4	5 1.50	72	3.05	10	0.12	236	2	0.02	2	1420	15	20	13	0.05	10	3	10	6
3787	467.45	468.9	5 1.50	72	3.18	10	0.14	142	3	0.04	4	1290	5	20	11	0.04	10	1	10	6
3788	468.95	470.4	5 1.50	84	3.84	10	0.12	2/1	1	0.03	1	1210	20	20	18	0.03	10	1	10	5
3789	4/0.45	4/1.9	5 1.50	87	3.53	10	0.10	156	1	0.01	1	1170	5 F	20	12	0.03	10	2	10	6
3790	471.95	473.4	5 1.50	76	3.51	10	0.11	161	4	0.01	2	1360	5	20	17	0.04	10	1	20	6
3/92	4/3.45	4/4.9	5 1.50	67	3.89	10	0.11	211	· 2	0.01	4	1000	30	20	10	0.07	10	· I	20	6
3793	4/4.95	4/6.4	5 1.50	73	3.44	10	0.10	151	5	0.01	3	1430	5 E	20	24 10	0.06	10	1	10	5
3795	4/6.45	4//.9	5 1.50	67	3.58	10	0.11	141	2	0.01	י ר	1450	10	20	10	0.00	10	- 1	10	5
3796	477.95	4/9.4	5 1.50	67 70	4.20	10	0.10	120	2	0.01	2	1400	10	20	9	0.02	10	י ר	10	5
3797	4/9.45	480.9	5 1 50	70	4.44	10	0.11	144	5	0.01	1	1300	20	20 20	9 12	0.03	10	2	10	6
3798	480.95	402.4	5 1.50	60 62	3.02	10	0.10	103	5	0.01	1	1420	20 15	20	12	0.00	10	1	10	6
3799	482.40	405.9	5 1.50	02	3.10	10	0.10	19	4	0.01	4	1420	15	20	15	0.03	10	1	10	5
0001	405.95	400.4	5 1.50	60	2.33	10	0.00	137	1	0.01	2	1300	15	20	14	0.04	10	1	10	6
9001	400.40	400.9	5 1.50	73	3.00	10	0.07	159	1	0.01	2	1490	40	20	17	0.00	10	1	10	7
9002	400.90	400.4	5 1 50	73	2 49	10	0.00	150	4	0.01	3	1560	130	20	15	0.00	10	1	10	5
0804	400.40	101 4	5 1 50	66	2.40	10	0.00	225	5	0.01	3	1440	25	20	17	0.07	10	1	10	7
0205	403.30	402.0	5 1.50	68	2.40	10	0.10	217	1	0.01	1	1360	30	20	6	0.04	10	1	10	7
9806	491.40	492.9	5 1 50	75	J.49 1 07	10	0.10	163	1	0.01	1	1180	95	20	3	0.03	10	1	10	6
9800	492.90 AQA AF	405 0	5 1 50	70	2 00	10	0.00	112	5	0.01	2	1410	30	20	5	0.02	10	, 1	10	6
9007	434.40	490,9	0.00	10	2.00	. 10	0.04	114	5	0.01	2	1410	00	20	5	0.02	10			, Ŭ

(	7	

anoversia Michaelanda

### Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04099 Page: 16A Sector State

Assays

Sample No.	From (m)	To (m)	interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	AI %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
9808	495.95	497.45	1.50	0.05	0.00	0.00	0.00	0.00	0.00	89	430	2273	0	1.4	100	0.59	40	5	0.55	8	9
9809	497.45	498.95	1.50	0.14	0.00	0.00	0.00	0.00	0.00	40	120	298	0	0.3	60	0.72	50	5	0.57	1	9
9810	498.95	500.45	1.50	0.06	0.00	0.00	0.00	0.00	0.00	76	100	487	0	0.7	65	0.69	45	5	0.55	1	8
9811	500.45	501.67	1.22	0.03	0.00	0.00	0.00	0.00	0.00	38	28	57	0	0.3	5	2.19	120	5	2.72	1	22
9813	501.67	502.10	0.43	0.03	0.00	0.00	0.00	0.00	0.00	140	326	1095	0	1.6	40	0.26	30	5	0.46	4	7
9814	502.10	503.60	1.50	0.05	0.00	0.00	0.00	0.00	0.00	107	286	1013	0	1.5	40	0.26	25	5	0.52	4	8
9815	503.60	505.10	1.50	0.06	0.00	0.00	0.00	0.00	0.00	40	160	361	0	0.9	50	0.37	45	5	0.56	1	9
9816	505.10	506.60	1.50	0.12	0.00	0.00	0.00	0.00	0.00	98	458	1728	0	3.4	110	0.27	20	5	0.43	6	8
9817	506.60	508.10	1.50	0.12	0.00	0.00	0.00	0.00	0.00	113	730	1895	0	3.1	135	0.21	15	5	0.46	5	9
9819	508.10	509.60	1.50	0.23	0.00	0.00	0.00	0.00	0.00	136	578	2957	0	4.1	90	0.42	65	5	0.58	9	8
9820	509.60	510.95	1.35	0.32	0.00	0.00	0,00	0.00	0.00	88	454	1430	0	2.1	120	0.71	45	5	0.57	3	11
9821	510.95	512.45	1.50	0.21	0.00	0.00	0.00	0.00	0.00	30	66	281	0	0.9	70	0.92	70	5	0.63	1	11

J J	
く問題	

an Con

---- 510999

#### Redfern Resources Ltd. Diamond Drill Log

Hole-ID: TCU04099 Page: 16B 

#### Assays ...continued

Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm
9808	495.95	497.45	5 1.50	76	2.73	10	0.07	164	6	0.01	2	1260	65	20	16	0.01	10	1	10	5
9809	497.45	498.95	5 1.50	55	2.25	10	0.14	279	3	0.01	3	1270	15	20	11	0.04	10	1	10	7
9810	498.95	500.45	5 1.50	71	2.44	10	0.12	165	4	0.01	3	1230	10	20	6	0.03	10	1	10	6
9811	500.45	501.67	7 1.22	100	3.51	20	1.43	471	3	0.26	34	800	5	20	169	0.16	10	54	10	11
9813	501.67	502.10	0.43	51	2.27	10	0.06	79	2	0.01	2	1010	10	20	3	0.01	10	3	10	5
9814	502.10	503.60	0 1.50	73	2.77	10	0.09	90	2	0.01	5	1010	10	20	3	0.01	10	4	10	5
9815	503.60	505.10	0 1.50	66	1.80	10	0.05	159	4	0.01	3	1290	15	20	3	0.01	10	1	10	6
9816	505.10	506.60	1.50	80	2.81	10	0.04	101	2	0.01	4	1040	35	20	3	0.01	10	1	10	5
9817	506.60	508.10	0 1.50	86	3.06	10	0.04	81	5	0.01	4	1260	30	20	1	0.01	10	1	10	5
9819	508.10	509.60	0 1.50	71	1.96	10	0.05	188	5	0.01	2	1230	40	20	6	0.03	10	1	10	6
9820	509.60	510.95	5 1.35	71	3.57	10	0.16	372	1	0.01	4	1320	25	20	9	0.06	10	[°] 1	10	7
9821	510.95	512.45	5 1.50	68	3.13	10	0.28	652	4	0.01	2	1410	15	20	11	0.09	10	1	10	8

1							Redfe Dia	rn Re monc	sourc I Drill	es Lto Log	.t.					Hole-ID:	FCU0410 Page:
							Co	llar Co	ordina	ates							
North (m East (m) Elevatior	): n (m):		15545.00 10596.00 114.00	Az Dij Le	imuth (de o (degree ngth (m):	egrees): s):	175.8 -78.0 646.7	50 50 79	Starte Compl	d: eted:		21/05/20 31/05/20	004	Date Logg Logged By Report Prir	ed: : nted:	21, 17,	/05/2004 NCA. /12/2004
							Down	Hole	Surve	/ Tests							
Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip	Depth (m)	, Azimuth	Dip	Depth (m)	Azimuth	Dip	Depth (m)	Azimuth	Dip
0.00	175.50	-78.00				<u></u>	-					(st		· · · · · · · · · · · · · · · · · · ·			
11.89	174.20	-78.40															
30.18	170.00	-78.30															
60.66	172.70	-78.50															
91.14	173.90	-78.50															
21.62	176.80	-78.50															
58.19	173.90	-78.60															
82.57	178.00	-78.40															
213.06	176.90	-77.90															
43.50	179.20	-/8./0															
274.00	177.40	-78.80															
225 00	180.10	-79.00															
865 50	180.10	-79.10															
95.50 195.90	183 40	-79.20															
126 40	184 80	-78 80															
0.40	181.50	-78.70				•											
156.90																	

ſ		Redfern Resources Lto Diamond Drill Log Lithology Description	J.							Hole-	ID: TC	U041( Page:
Interval (I	m)	Description		Sample	From	То	Interval	Au	Aq	Cu	Pb	Zn
From	То			No.	(m)	(m)	(m)	g/t	g/t	%	%	%
0.00	0.15	Casing: No Core										
0.15	13.58	Basalt Intrusive: Chlorite; Calcite; Magnetite Basalt intrusion, fine grained initially, grey green to black in colour massive becoming increasingly crystalline to medium grained, gabbroic composition and texture. One section broken. Lower contact sharp @ 15 deg TCA. Mild magnetic.										
13.58	30.20	Basalt Flow: Basalt Ash Tuff; Basalt Flow Breccia; Magnetite Basalt lava flow, black to black grey, trace of green. Sections of basalt ash tuff as inlayers, black to grey. Thread yein fractures recemented with thread size calcite in fill. Sections of										
		broken core. Traces of pyrrhotite. Basalt ash tuff bedding at 45 deg, but no graded bedding evident. Section includes basalt breccia flow. Some leaching/bleaching end of section, with gradational contact at 20 TCA 18.76 25.45 Basalt Flow: Broken Core; Magnetite; Broken core with traces of hematite along fracture planes.										
30.20	41.09	Basalt Flow Breccia: Bleached; Fault Zone; Magnetite Basalt breccia flow, bleached towards end of section, grading from a dull green black rock to an off-white dull green colour. Aphanitic texture. This section is a possible recemented fault zone? Lower contact is gradational. 40.34 42.37 Broken Core: Broken core										
¥1.09 ÷	55.90	Feldspar-phyric Basalt Flow: Magnetite Porphyritic basalt of probable andesitic composition,and credited as being extrusive but this is only an assumption based of texture. Feldspar phenocrysts up to 4 mm in diameter. Lower contact abrupt and at assumed location.										
55.90 8	86.76	Basalt Dyke: Magnetite Fine grained intrusive texture. Massive. Aphanic. Magnetic. Bottom contact sharp 63.58 86.76 Basalt Dyke: Magnetite; Bleached basalt intrusive, believed due to contact zone. Vey fine grained to aphanitic. Well fractured. Some fractures infilled with calcite.										

	Redfern Resources Ltd.								Hole-I	D: TC	U04100 Page: 3
	Diamond Drill Log										
	Lithology Description										
terval (m) om To	Description	Sa N	ample lo.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
	Due to this fracturing, core well broken up. Contact year gradational										
	70.15 86.76 Basalt Dyke: Broken Core; Magnetite; Bleached basalt intrusive. Broken core.										
.76 135.44	Amphibole-phyric Basalt Intrusive: Magnetite										
	Initially fine grained becoming medium grained, crystalline gabbro, equigranular with distinctive										
	mafic crystals faces. Grey charcoal in colour. Lower contact is sharp at 80 deg TCA.										
	86.76 87.80 Amphibole-phyric Basalt Intrusive: Fine grained gabbro-chilled zone?										
.44 237.77	Basalt Flow: Basalt Flow Breccia; Basalt Hyaloclastite; Volcanic Sediment										
	Basalt lava flow grading into basalt breccia flow. Black pumice ? fragements, jagged uncrowded										
	within fine grained matrix, variable dull grey black in colour, with hint of green. Black										
	fragments varying size up to 2.5 cm in length, platy with jagged ends, and could represent re-										
	deposited hyaloclasite fragments. Most of these fragments are less than 5 mm in length. They are										
	generally well lineated along 30 deg TCA with some anomalies. Some chlorite phenos have white										
	hairline outer reaction zones. At least one leached zone, grey colour, aphanitic, with fracturing										
	in central portion which could represent in-situ hyaloclastite. Uncrowded hairline fractures, with										
	hairline calcite fill. Magnetite is variable, some zones stronger magnetically than others.										
	Epidote "vein" in one 50 cm section										
	145.15 145.45 Amygdaloidal Basalt: Magnetite; Quartz; Basalt amydaloidal basalt of 30 cm, into breccia flow.										
	182.38 182.98 Basalt Flow: Basalt Hyaloclastite; Leached section of BFL. Sharp upper contact at 45										
	deg. TCA. Gradational lower contact. Central part of this section shows intense										
	in-sity fracturing. Perhap in-situ haloclastite textures?										
	186.72 187.25 Fault Zone: Epidote; Fault Zone?										
	226.60 230.43 Basalt Debris Flow: Basalt Flow Breccia; Basalt debris flow or basalt breccia flow.										
	Leached zones present and generally up to 7 cm long. Trace pyrite.										
.77 267.14	Amphibole-phyric Basalt Intrusive:										
	Basalt intrusion with phyric amphibole textures, very subtle and uncertain but also could be a										
	phyric textured extrusive lava flow. Contact sharp, with pyrrhotite, magnetite marking this sharp										
	contact.										
	050 40 000 47 Amerikala shuwa Basali Interativa Amerikabila Quarta. Basali shuwa amerikala										

	Redfern Resources Ltd.							Hole-	ID: TC	U0410
	Diamond Drill Log								I	Page:
	Lithology Description									
Interval (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From To		NO.	(m)	(m)	(m)	g/t	g/t	%	%	%
	textures, intrusive, with qtz veins cutting core from 90 deg to 45 deg. These veins up to 7 cm metre thick. Veins host basalt fragments. Trace pyrite.									
267.14 340.12	Basalt Intrusive: Epidote; Quartz; Garnet									
	Basalt intrusive-very fine grained and showing no phyric texture, massive homogeneous. Variable									
	quartz Veins scattered and uncrowded. Rock does not appear to be magnetic.									
	288.87 289.20 Fault Zone: Epidote; Garnet; Fault Zone									
	296.70 299.00 Basalt Intrusive: Broken Core; Basalt intrusion									
	307.34 307.54 Basalt Intrusive: Broken Core; As above									
340.12 347.97	Basalt Ash Tuff: Volcanic Sediment; Magnetite; Epidote									
	Basalt ash tuff, light grey to beige colour, subtle textural appearance. Basalt ash tuff has									
	banding @ 38 TCA. Uncrowded stock-work of narrow quartz veins criss-crossing core. Core invariably									
	magnetic. In section core ranges from aphanitic to fine granular, giving appearance of basalt ash									
	mixed with volcanic sediment. Quartz stringers and epidote sometimes accentuate ash/sediment									
	banding. Lower contact gradational and hypothetically put at 347.97m at 26 deg TCA.									
347.97 350.00	Basalt Lapilli Tuff: Silica									
	Basalt lapilli tuff-Silicified Basalt lapilli tuff mix @ 26 deg TCA, banding kinked, warped at 40									
	deg TCA. This rock grey due to basalt-silicifed basalt mix. Lapilli range from common 5 mm size to									
	rare 15cm size. Later are bleached/leached.									
350.00 358.50	Basalt Ash Tuff: Basalt Flow Breccia: Volcanic Sediment									
000.00 000.00	Basalt ash fuff, variable grey colour, grading to basalt breccia flow. Sections with minute									
	fragments of uncrowded pumice, giving macro hypoclastite sedimentary textures? Lower contact sharp									
	@ 27 deg TCA.									
358 50 387 79	Rasalt Lanilli Tuff: Basalt Ash Tuff: Basalt Debris Flow: Volcanic Sediment									
	Basalt labilit tuff, initially coarse, and then variable silicified basalt ash tuffs, banded and									

1	<b>)</b>		Redfern Resources Ltd. Diamond Drill Log Lithology Description							Hole-	ID: TC	U04100 Page: {
Interva From	l (m) To	Description		Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		grey. Lapilli fragments are crowded and compac	ot at the top of this section.	i			······································					
		359.73 361.99 Basalt Ash Tuff: Silica; Variable ash tuff,	siliceous.									
		362.04 362.56 Fault Zone: Fault Zone, Quartz filled. Par	tly brecciated.									
		376.68 377.78 Basalt Flow: Volcanic Sediment; Basalt la sediment.	ava flow. Grainy. May contain basalt									
397 70	205 25	Pagalt Flour Enidate: Quarta										
507.73	555.55	Basalt Flow, Epidole, Guariz	to black, out by this fractures with									
		epidote fill.	to black, cut by thin hactures with									
395.35	397.97	Rhyolite Lapilli Tuff: Basalt Lapilli Tuff; Jasper										
		Basalt lapilli tuff, silicified, mixed, dark grey to black, folia 45 deg. TCA	ted and bedding at same angle of									
		395.35 397.97 Basalt Lapilli Tuff: Silica: Jasper: Basalt I	apilli tuff, Silicified, Dark grey to									
		black. Foliated and bedding at same angle of 48	B deg.TCA									
397.97	399.90	Basalt Flow: Volcanic Sediment										
		Basalt lava flow, with macro hyaloclastie pumice fragmer	nts in some sections, flattened, jagged and									
		up to 2 mm in length.										
200.00	100.01	Beach Levilli Tuffi Olling										
399.90	402.21	Dasait Lapini Tuir. Sinca	intervals mars silisified then									
		othere. Ediction and handing along some planes @ 20 d	and Light grow enhanitie textured									
		silicification occurs along contact zone with narrow basal	t dyke.									
402.21	402.50	Basalt Dyke: Broken Core; Silica										
		Basalt dyke, black broken core. Lower contact sharp @ 2 zone.	26 deg. TCA. Quartz towards lower contact									
402.50	412.28	Rhyolite Crystal Tuff: Silica; Chlorite; Magnetite										
	_	Rhyolite crystal tuff, light grey colour, speckled, predomir	natly with scattered felds crystals, but									
		also chlorite after biotite. Magnetic, disseminated. Also b	lack-grey lenses of magnetite. Hairline									

r		Redfern Resources Ltd. Diamond Drill Log Lithology Description	·						Hole-I	D: TC	U0410 Page:
Interval (m From	n) To	Description	Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
		fractures, scattered, infilled with black calcite and or epidote. These hairline fractures criss-cross core. Banded @ 61 deg TCA. Lower contact gradational over 10 cm.									
412.28 41	7.20	Rhyolite Lapilli Tuff: Rhyolite Crystal Tuff Rhyolite lapilli tuff, with intervals of rhyolite crystal tuff, light to charcoal grey. Leached in places. Foliated/banded @ 44 deg. TCA.									
417.20 42	23.00	Rhyolite Lapilli Tuff: Jasper Foliated Rhyolite lapilli tuff without the rhyolite crystal tuff. Charcoal grey. Jasper and grey quartz lie along foliation/bedding planes. Foliation at 39 deg TCA. Lower contact zone bleached/leach to light grey. Lower contact irregular, but sharp at 60 deg. TCA									
423.00 45	55.72	Amphibole-phyric Basalt Intrusive: Magnetite; Quartz; Calcite Variable textured charcoal coloured phyric amphibole gabbro, ranging from fine grained massive to medium grained gabbro, with amphibole crystals reflecting crystals reflecting on core surface. Where not phyric, grainy textured rock.									
		<ul> <li>434.17 434.57 Basalt Dyke: Black basalt dyke, sharp upper and lower contacts.</li> <li>445.45 445.80 Amphibole-phyric Basalt Intrusive: Feldspar; More felsic than average Anphobile phyric Basalt Intrusive; probably due to cooling feature in basalt melt.</li> <li>446.78 449.14 Amphibole-phyric Basalt Intrusive: As above</li> <li>446.78 449.14 Amphibole-phyric Basalt Intrusive: As above</li> </ul>									
		lineated at 25 deg. TCA. Sharp multiple contacts suggest fault active over time.									
455.72 51	17.95	Basalt Intrusive: Magnetite; Epidote; Chlorite Basalt intrusion. Contact with BIN and BIN3 very difficult to see, so hypothetically put at fault zone 455.45-455.72m. Basalt intrusive rock very very non-decriptive. Dark charcoal grey to black rock, with very slight tinge of green where epidote occurs. At least two fault zones where rock changed to sand. Rare quartz fill fractures and veinlets. Epidote-chlorite filled slip zone.	х								
		changed to sand. Rare quartz fill fractures and veinlets. Epidote-chlorite flilled slip zone. Slight apple green colour. Lower contact abrupt at 90 TCA 465.09 465.29 Quartz: Quartz Vein 474.70 475.00 Fault Zone: Epidote; Fault Zone, re-welded. Epidote? 492.65 492.85 Fault Zone: Quartz; Fault one. Quartz in-fill.									

PI STAR

1		Redfern Resources Ltd. Page: Diamond Drill Log Lithology Description
Interva From	l (m) To	Description No. (m) (m) g/t g/t % % %
517.95	518.90	Fault: Mud-sand Fault zone.
518.90	<b>52</b> 3.95	Basalt Intrusive: Continued from above.
523.95	525.05	Fault: Mud-Sand Fault Zone.
525.05	569.81	Basalt Intrusive: Continued from above. 550.05 550.30 Broken Core: Broken Core 562.82 563.12 Broken Core: Broken Core
569.81	578.50	Basalt Flow: Rhyolite Lapilli Tuff; Chlorite; Silica Basalt Lave flow, siliceous with rholitic inlayers or inclusions of rhyolite lapilli tuffs. Minor speckle style textures, minor leaching. Rare breccia fragments. Possible hyaloclastite coarse grain textures, foliatiated at 44 deg. TCA. Colour is charcoal grey tinge of green. Lower contact is abrupt but not sharp. 569.81 570.51 Silica: Contact Zone. Quartz in-fill ovef 70 cm. irregualar. 577.75 577.90 Bleached: Bleached zone? BFL?
578.50	591.40	Rhyolite Lapilli Tuff: Rhyolite Debris Flow; Chlorite; Sericite Siliceous greyish charcoal colour with apple green leaching in sections, especially upper contact zone. Variable rhyolitic lapilli tuff with high concentration of basaltic composition visually, grading into rhyolitic debris flow with similar basaltic composition. Fragments, often grey to light grey and up to 7 cm long, irregular in places. Foliated.Slightly greasy after sericite?. Lower contact abrupt at 10 deg TCA. 578.50 581.10 Bleached: Rhyolite Lapilli Tuff; Contact Zone. Bleached? Leached? is intensive 585.70 587.98 Bleached: As above, less intensive

	1. · · ·	
ALC: N	A straining the second	
		5
	1000	
19 H		
	N626 1	
- <b>1</b>	1.11	

and the second

1000

Contraction (State

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

201

Hole-ID: TCU04100 Page: 8

Interv	al (m)	Description	Sample	From	То	Interval	Au	Ag	Cu	Pb	Zn
From	То		No.	(m)	(m)	(m)	g/t	g/t	%	%	%
			· · · · · · · · · · · · · · · · · · ·			·			•		
591.40	597.78	Rhyolite Lapilli Tuff: Rhyolite Crystal Tuff; Silica; Quartz-Sericite-Pyrite Alteration									
		Siliceous Rhyolite lapilli tuff, becoming increasingly sericitized down hole. Charcoal grey to	3833	594.06	595.5	0 1.44	0.07	0.00	0.00	0.00	0.00
		light grey to charcoal grey, partly foliated at 62.deg TCA. Fragments still distinct in original	3834	595.50	597.0	0 1.50	0.17	0.00	0.00	0.00	0.00
		proto-lith. Lower contact sharp @ 20 deg. TCA. Trace diss. pyrite blebs. Trace sphalerite, looks	3835	597.00	597.7	8 0.78	0.38	0.00	0.00	0.00	0.00
		like light cream coloured powder.									
597.78	598,40	Pyrite Facies Massive Sulphide: Sericite; Silica									
		Pyrite facies, massive, coarse granular, siliceous, QSP. Lower contact abrupt along foliation, at	3836	597.78	598.4	0 0.62	0.29	0.00	0.00	0.00	0.00
		70 deg. TCA.									
598.40	599.34	Zinc Facies Massive Sulphide: Copper Facies; Galena; Pyrite Facies Massive Sulphide									
		Weak sphalerite, chalcopyrite, galena, pyrite, in QSP, Siliceous.Sphalerite brown red as irregular	3837	598.40	598.9	0 0.50	3.38	46.70	1.40	0.82	2.31
		lenses as whisps along foliation.	3839	598.90	599.0	8 0.18	7.31	320.00	2.96	8.76	16.90
			3840	599.08	599.3	3 0.25	1.65	66.40	0.21	1.64	3.94
			3841	599.33	600.1	5 0.82	2.26	136.00	1.79	1.32	5.26
599.34	601.85	Zinc Facies Massive Sulphide: Pyrite Facies Massive Sulphide; Quartz-Sericite-Pyrite Alteration; GAL									
		Semi-massive sphalerite, pyrite, galena, chalcopyrite in very fine grained disseminated mode,	3843	600.15	600.8	1 0.66	5.12	122.00	2.34	1.16	5.85
		distinctly foliated at 18 deg. TCA. Sphalerite ranges from light kharki to red brown, latter occurs	3844	600.81	601.0	1 0.20	1.87	86.50	0.96	1.20	2.08
		as whispy lenses within pyrite zones. Contact at 28 deg. TCA	3845	601.01	601.8	5 0.84	1.94	216.00	1.63	3.24	15.80
		600.81 601.95 Quartz-Sericite-Pyrite Alteration: Pyrite; Quartz-sericite-pyrite. Beige colour. Waste zone within ZNF									
601.85	601.95	Quartz-Sericite-Pyrite Alteration: Pyrite; Cordierite									
		Dark grey to black basaltic protolith, altered by QSP, diss. pyrite. cordierite. Lower coantact	3846	601.85	601.9	5 0.10	2.94	120.00	1.28	2.06	12.90
		sharp at 90 deg. TCA									
601.95	602.28	Copper Facies: Pyrite Facies Massive Sulphide									
		Chalcopyrite facies with pyrite, in Semi-massive to massive mode. Chalcopyrite also in hairline	3847	601.95	602.1	8 0.23	3.23	146.00	7.49	0.22	1.86
		fractures. Foliation at 35 deg. TCA. Lower contact abrupt and ireggular.	3848	602.18	602.9	4 0.76	0.48	17.00	0.31	0.08	0.11

	:					
	Æ	1	1		÷.	h
4		Ð	÷.,	-		
T	.4	Γ.	Å			7
		- 1		10		<u>.</u>
		12		1		
縄.						
				÷.		
				Ε.		

all should be

#### Redfern Resources Ltd. Diamond Drill Log Lithology Description

an constant and constant 1000

and a state of the state

and the second second

3

Hole-ID: TCU04100 Page: 9

A PLACE AND A

Interva	al (m)	Description	Sample	From	To	nterval	Au	Ag	Cu	Pb	Zn
From	То		NU.	(111)	(11)	(11)	g/t	g/t	70	70	70
602.28	602.91	Basalt Lapilli Tuff: Chlorite; Quartz; Chalcopyrite									
		Basalt lapilli tuff. Dark green grey. Some diss. pyrite with possible trace chalcopyrite, latter									
		very weak. Also some diss. Pyrite.Lower contact abrupt at 55 deg TCA.									
602.91	603.40	Quartz-Sericite-Pyrite Alteration: Galena; Pyrite Facies Massive Sulphide; Zinc Facies Massive									
		Sil. QSP. Pale grey. Quartz venlets at 45 deg. TCA. Trace galena. Lower contact abrupt and	3849	602.94	603.1	4 0.20	5.92	280.00	0.25	1.09	1.53
		irregular.	3850	603.14	603.9	2 0.78	3.46	856.00	0.25	14.90	29.90
603.40	605.07	Zinc Facies Massive Sulphide: Galena; Quartz; Silica									
		Semi-massive sphalerite with strong galena, fine grained kharki brown colour content. Foliated at	3851	603.92	605.7	0 1.78	7.21	456.00	0.33	9.98	25.90
		45 deg. TCA. Heavy. siliceous. Lower contact sharp at 54 deg. TCA.									
605.67	609.51	Zinc Facies Massive Sulphide: Quartz-Sericite-Pyrite Alteration; Basalt Ash Tuff;									
		Intermittant ZNF associated as inlayers within basaltic QSP and BAT, together with traces and	3853	605.70	605.8	0.10	0.03	3.80	0.01	0.09	0.66
		whisps of galena and lenses of pyrite. sulphides are foliated and show distinct sedimentary	3854	605.80	605,9	0 0.10	3.89	140.00	0.14	2.51	26.50
		depositional features in low energy environment. Lower contact irregular and abrupt at 45 deg. TCA.	3855	605.90	605.9	7 0.07	1.62	44.60	0.08	0.82	4.56
		Trace Pyrite.	3856	605.97	606.2	7 0.30	16.20	280.00	0.31	4.36	25.90
		605.67 605.95 Chert Facies: Chert. Foliated light grey. Trace Pyrite	3857	606.27	606.5	2 0.25	12.80	101.00	0.22	0.75	3.16
		606.30 606.90 Chert Facies: As above, but not distinctly foliated at 25 deg.	3858	606.52	606.6	7 0.15	3.75	124.00	0.26	2.28	16.60
		606.85 607.31 Basalt Dyke: Basalt Flow, phyric. Also Cordierite? Trace diss. Pyrite. Distinct	3859	606.67	606.8	0.13	1.04	8.60	0.05	0.08	1.33
		Lineations at 8 deg. TCA. Lower contact abrupt at 20 deg. TCA Contains	3860	606.80	606.8	7 0.07	6.43	132.00	1.12	2.77	32.60
		quartz-sulphide-sulphosalt veins.	3861	606.87	607.4	2 0.55	59.90	428.00	0.29	0.69	0.43
		607.45 608.02 Amygdaloidal Basalt: As above	3862	607.42	608.2	5 0.83	3.39	38.70	0.02	0.10	0.04
			3863	608.25	608.4	5 0.20	0.18	1.10	0.06	0.02	0.13
			3864	608.45	608.5	7 0.12	1.06	76.90	0.41	3.71	15.40
			3865	608.57	609.0	5 0.48	0.16	0.90	0.03	0.03	0.05
			3866	609.05	609.5	5 0.50	2.86	76.40	0.34	1.49	13.30
609.51	610.90	Quartz-Sericite-Pyrite Alteration: Zinc Facies Massive Sulphide; Pyrite Facies Massive Sulphide;									
		QSP, Sil. Associated with trace sphalerite and trace pyrite. Becoming brecciated towards base.	3868	609.55	610.8	5 1.30	0.15	0.00	0.00	0.00	0.00
		Abrupt irregular content. Light colour becoming darker with depth.	3869	610.85	611.3	1 0.46	0.10	0.00	0.00	0.00	0.00

12		Redfern Resources Ltd. Diamond Drill Log							Hole-II	D: TCL Pa	104100 age: 10
		Lithology Description									
Interva From	ll (m) To	Description	Sample No.	From (m)	To I (m)	nterval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %
610.90	611.38	Basalt Flow Breccia: Epidote; Magnetite; Chlorite									
		Charcoal coloured basalt phyric lava flow. White phenocrysts: Minute, platty and lineated At 25 deg TCA. Lower contact assumed, and difficult to locate. Possible slip fault contact at low angle to	3871	611.31	612.81	1.50	0.03	0.00	0.00	0.00	0.00
611.38	621.55	Basalt Undifferentiated: Chlorite; Magnetite									
		Dark green, massive, homogeneous mafic section, could be intrusive or extrusive, upper contact suggests former. Cut by numerous (5 per meter) epidote - quartz - garnet veinlets from 1 to 30 mm.	3872	612.81	614.31	1.50	0.03	0.00	0.00	0.00	0.00
		Lower contact is fairly sharp, irregular and quite subtle. 620.16 621.73 Basalt Flow: Cordierite; Dark greenishe-black section with 5-10% distinct purplish cordierite spots from 2-4 mm.									
621.55	639.32	Rhyolite Debris Flow: Chlorite; Magnetite									
		Dark greenish-grey massive rhyolite characterized by the occurrence of scattered large (2 to 20 cm) maroon feldspar-phyric rhyolite clasts. These are very similar to the fragments seen in the									
		rhyolite debris flow above the ore zone. Matrix is chloritic and weakly magnetic, quite massive and homogeneous, with very scarce mafic fragments and a locally brecciated appearance. Rhyolite									
		is typical tuffaceous rhyolite 'C', large clasts are somewhat unusual, though.									
639.32	646.79	Basalt Undifferentiated: Magnetite; Chlorite									
		Fine-grained, massive homogeneous mafic rock tentatively interpreted as intrusive based on upper contact and general appearance (ie. similar to hangingwall gabbro sill). Cut by a few		•							
		quartz-epidote-garnet veins. One 10 cm section of banded magnetite and pyrite noted at 645.26									
		meters. This banded section could be a bedded ash layer - possible footwall basalt section? 640 68 640 98 Fault Zone: Quartz: Epidote: Garnet: Fault Zone, w/ quartz and garnet in fractures.									
		645.26 645.76 Volcanic Sediment: Volcanic sediment basalt, with flaming sedimentary despositional									

	Allenantes
a start	
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
N. 8	

### Redfern Resources Ltd. Diamond Drill Log

.

Hole-ID: TCU04100 Page: 11A

1

CONTRACTOR OF

Assays

Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	AI %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3833	594.06	595.50	1.44	0.07	0.00	0.00	0.00	0.00	0.00	120	124	384	0	3.1	10	1.14	165	5	0.26	6	4
3834	595.50	597.00	1.50	0.17	0.00	0.00	0.00	0.00	0.00	92	48	293	0	3.6	5	1.17	80	5	0.21	5	6
3835	597.00	597.78	0.78	0.38	0.00	0.00	0.00	0.00	0.00	70	356	1247	0	4.0	15	0.54	35	5	0.35	10	6
3836	597.78	598.40	0.62	0.29	0.00	0.00	0.00	0.00	0.00	208	274	322	0	3.7	15	0.24	5	5	0.06	1	9
3837	598.40	598.90	0.50	3.38	46.70	1.40	0.82	2.31	2.86	10000	8057	10000	0	30.0	105	0.40	35	5	0.52	114	4
3839 .	598.90	599.08	0.18	7.31	320.00	2.96	8.76	16.90	3.67	10000	10000	10000	0	30.0	825	0.14	35	5	0.65	1000	7
3840	599.08	599.33	0.25	1.65	66.40	0.21	1.64	3.94	0.00	1985	10000	10000	0	30.0	515	0.26	15	5	0.26	173	4
3841	599.33	600.15	0.82	2.26	136.00	1.79	1.32	5.26	3.58	10000	10000	10000	0	30.0	770	0.71	25	5	0.12	241	11
3843	600.15	600.81	0.66	5.12	122.00	2.34	1.16	5.85	3.46	10000	10000	10000	• 0	30.0	245	1.39	40	5	0.18	248	13
3844	600.81	601.01	0.20	1.87	86.50	0.96	1.20	2.08	2.84	9587	10000	10000	0	30.0	95	3.17	35	5	0.26	95	26
3845	601.01	601.85	0.84	1.94	216.00	1.63	3.24	15.80	4.10	10000	10000	10000	0	30.0	25	1.09	65	5	0.10	711	11
3846	601.85	601.95	0.10	2.94	120.00	1.28	2.06	12.90	3.32	10000	10000	10000	0	30.0	25	1.60	35	5	0.31	665	9
3847	601.95	602.18	0.23	3.23	146.00	7.49	0.22	1.86	3.39	10000	2132	10000	0	30.0	30	1.37	55	5	0.31	93	19
3848	602.18	602.94	0.76	0.48	17.00	0.31	0.08	0.11	0.00	3058	828	1089	0	17.0	30	2.94	100	5	1.19	4	25
3849	602.94	603.14	0.20	5.92	280.00	0.25	1.09	1.53	2.85	2513	10000	10000	0	30.0	345	0.38	10	5	0.15	48	14
3850	603.14	603.92	0.78	3.46	856.00	0.25	14.90	29.90	3.67	2487	10000	10000	0	30.0	145	0.01	25	-5	0.01	1000	4
3851	603.92	605.70	1.78	7.21	456.00	0.33	9.98	25.90	3.51	3058	10000	10000	0	30.0	670	0.03	30	5	0.02	1000	4
3853	605.70	605.80	0.10	0.03	3.80	0.01	0.09	0.66	0.00	80	932	65/4	0	3.8	20	0.16	60	5	0.04	29	4
3854	605.80	605.90	0.10	3.89	140.00	0.14	2.51	26.50	0.00	940	10000	10000	0	30.0	155	0.02	10	5	0.04	1000	4
3855	605.90	605.97	0.07	1.62	44.60	80.0	0.82	4.56	0.00	798	8147	10000	0	30.0	185	0.09	5	5	0.03	194	2
3856	605.97	606.27	0.30	16.20	280.00	0.31	4.36	25.90	3.23	2879	10000	10000	0	30.0	485	0.02	5	5	0.02	1000	4
3857	606.27	606.52	0.25	12.80	101.00	0.22	0.75	3.16	2.69	2241	/444	10000	0	30.0	410	0.04	20	5	0.02	140	1
3858	606.52	606.67	0.15	3.75	124.00	0.26	2.28	16.60	2.98	2458	10000	10000	0	30.0	190	0.09	15	5	0.07	/39	4
3859	606.67	606.80	0.13	1.04	8.60	0.05	0.08	1.33	0.00	509	564	10000	0	4.8	40	3.02	30	5	0.40	66	23
3860	606.80	606.87	0.07	6.43	132.00	1.12	2.77	32.60	0.00	10000	10000	10000	0	30.0	10	0.35	35	5	0.36	1000	9
3861	605.87	607.42	0.90	29.90	428.00	0.29	0.69	0.43	2.12	28/9	6789	4247	. 0	30.0	495	0.83 5.70	200	5	2.98	30	27
3002	607.4Z	608.25	0.05	3.39	30.70	0.02	0.10	0.04	2.00	203	040	444	0	30.0	105	5.70	730	5 F	2.30	1	27
3863	608.25	608.45	0.20	1.00	1.10	0.06	0.02	0.13	0.00	604	206	1274	0	1.1	40	5.77	230	5 E	2.81	3	20
3004	608.40 609.57	600.05	0.12	1.00	76.90	0.41	3.71	15.40	3.07	4400	240	10000	U O	30.0	130	0.04	20	5 E	1.90	0/4	14
2000	600.07	009.00	0.40	0.10	76.40	0.03	1.03	12 20	0.00	320	.31∠ 10000	4000	0	20.0	40	0.13	90 E	ວ ຮ	0.00	0 527	32
2000	009.00 600 FF	610 95	1.20	2.00	/0.40	0.34	1.49	13.30	J.04	33/0 110E	2029	10000	0	50.0	25	1.24	) 55	ວ ຮ	1.29	53/ 60	14
3960	610 95	611 24	0.46	0.15	0.00	0.00	0.00	0.00	0.00	E03	2030	2259	0	5.4	30	1.24	210	5 E	1.23	20	40
2009	010.00	011.31	0.40	0.10	0.00	0.00	0.00	0.00	0.00	293	000	3208	U	2.5	40	3.37	210	5	2.00	20	10



#### Redfern Resources Ltd. Diamond Drill Log

STORE STORE

**New York Control of Control** 

Hole-ID: TCU04100 Page: 11B

								А	ssays	sco	ntinu	led									
Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm	
3833	594.06	595.50	1.44	40	1.17	10	0.89	231	3	0.04	6	30	10	20	90	0.04	10	1	10	2	
3834	595.50	597.00	1.50	37	1.44	10	0.94	234	1	0.04	5	40	5	20	103	0.05	10	3	10	2	
3835	597.00	597.78	0.78	25	1.36	10	0.36	72	3	0.02	4	20	15	20	99	0.01	10	1	10	1	
3836	597.78	598.40	0.62	82	10.00	30	0.33	_1	1	0.01	1	60	5	20	16	0.01	10	1	10	1	
3837	598.40	598.90	0.50	64	3.72	10	0.20	17	1	0.02	1	550	55	20	58	0.01	10	1	10	1	
3839	598.90	599.08	0.18	43	6.45	10	0,11	77	1	0.01	1	1490	695	20	54	0.01	10	1	10	2	
3840	599.08	599.33	0.25	34	2.73	10	0.10	1	1	0.01	1	310	235	20	40	0.01	10	1	10	2	
3841	599.33	600.15	0.82	87	10.00	30	0.87	1	1	0.02	1	780	215	20	17	0.02	10	3	10	1	
3843	600.15	600.81	0.66	78	10.00	30	1.52	1	1	0.03	1	880	100	20	20	0.02	10	7	10	2	
3844	600.81	601.01	0.20	173	4.57	10	3.99	583	1	0.05	78	880	60	20	5	0.10	10	40	10	3	
3845	601.01	601.85	0.84	72	10.00	20	1.43	109	1	0.02	1	650	15	20	24	0.02	10	10	10	2	
3846	601.85	601.95	i 0.10	49	8.47	10	1.74	395	1	0.03	1	940	25	20	33	0.05	10	37	10	3	
3847	601.95	602.18	0.23	76	10.00	30	1.39	235	1	0.04	5	10000	20	20	31	0.01	10	40	10	2	
3848	602.18	602.94	0.76	41	5.63	10	2.49	1007	1	0.11	14	1350	25	20	22	0.09	10	120	10	8	
3849	602.94	603.14	0.20	45	3.18	10	0.22	47	1	0.02	1	200	1065	20	36	0.01	10	16	10	2	
3850	603.14	603.92	0.78	27	1.99	10	0.01	50	1	0.01	1	20	1645	20	27	0.01	10	1	10	1	
3851	603.92	605.70	1.78	42	2.71	10	0.03	57	. 1	0.01	1	60	1350	20	57	0.01	10	2	10	2	
3853	605.7 <b>0</b>	605.80	0.10	36	0.93	10	0.03	2	1	0.01	1	10	15	20	5	0.01	10	1	10	1	
3854	605.80	605.90	0.10	43	2.14	10	0.02	50	1	0.01	1	10	165	20	17	0.01	10	1	10	1	
3855	605.90	605.97	0.07	83	2.94	10	0.04	1	1	0.01	1	30	175	20	35	0.01	10	5	10	1	
3856	605.97	606.27	0.30	53	2.64	10	0.02	61	1	0.01	1	70	650	20	31	0.01	10	1	10	1	
3857	606.27	606.52	0.25	83	1.42	10	0.02	12	1	0.01	1	80	520	20	54	0.01	10	3	10	1	
3858	606.52	606.67	0.15	73	3.10	10	0.09	104	1	0.01	1	110	220	20	47	0.01	10	2	10	2	
3859	606.67	606.80	0.13	41	6.96	10	2.25	1000	1	0.06	9	1200	20	20	13	0.18	10	56	10	7	
3860	606.80	606.87	0.07	38	6.52	10	0.20	984	1	0.02	1	400	180	20	88	0.02	10	5	10	2	
3861	606.87	607.42	0.55	45	6.00	10	2.79	1320	1	0.30	23	1320	1325	20	149	0.20	10	90	10	7	
3862	607.42	608.25	0.83	45	5.35	10	2.70	1560	1	0.25	20	1220	130	20	173	0.19	10	83	10	9	
3863	608.25	608.45	0.20	56	4.78	10	2.31	1387	1	0.31	19	1030	5	20	237	0.19	10	67	10	7	
3864	608.45	608.57	0.12	68	10.00	30	0.40	257	1	0.03	. 1	310	45	20	64	0.02	10	5	10	2	
3865	608.57	609.05	0.48	42	5.85	10	2.36	1189	2	0.17	18	1220	15	20	239	0.25	10	21	10	8	
3866	609.05	609.55	0.50	72	10.00	30	0.32	24	1	0.01	1	290	35	20	46	0.01	10	3	10	2	
3868	609.55	610.85	1.30	45	2.70	10	0.24	155	1	0.07	5	570	5	20	152	0.03	10	2	10	4	
3869	610.85	611.31	0.46	94	4.50	10	1.01	782	1	0.05	17	830	5	20	190	0.11	10	24	10	9	

1								Redf Di	ern F iamo As	Reso nd D ssays	urce: rill L	s Ltd og	•						Hole-ID	: TCU04 Page:	4100 12A
Sample No.	From (m)	To (m)	Interval (m)	Au g/t	Ag g/t	Cu %	Pb %	Zn %	SG	Cu ppm	Pb ppm	Zn ppm	Au ppb	Ag ppm	As ppm	Al %	Ba ppm	Bi ppm	Ca %	Cd ppm	Co ppm
3871	611.31	612.81	1.50	0.03	0.00	0.00	0.00	0.00	0.00	66	106	211	0	0.3	15	6.59	270	10	2.72	1	28
3872	612.81	614.31	1.50	0.03	0.00	0.00	0.00	0.00	0.00	51	114	157	0	0.2	15	7.21	445	15	2.86	1	27

1								Re	dfern Diam ssavs	Res	ouro Drill	ces L Log	td.						Hol	e-ID: TCU04100 Page: 12B
Sample No.	From (m)	To (m)	Interval (m)	Cr ppm	Fe %	La ppm	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P	Sb ppm	Sn ppm	Sr ppm	Ti %	U ppm	V ppm	W ppm	Y ppm
3871	611.31	612.81	1.50	53	5.66	10	2.82	1546	2	0.15	22	1300	5	20	238	0.30	10	21	10	13
3872	612.81	614.31	1.50	57	5.50	10	2.96	1545	3	0.23	23	1230	5	20	374	0.25	10	49	10	11