

Geological Survey Branch Assessment Report Indexing System

1

Report on

Trenching, Drilling and Metallurgical Testing

on the

1

0

()

0

0

0

 Ω

D

0

D

U

Canada

N.T.S.: 092 J/15W

UTM co-ord.: 514,230 m E, 5,637,790 m N NAD 27, Zone 10

Owner/Operator:

Levon Resources Ltd. Suite 400 – 455 Granville Street Vancouver, B.C. V6C 1T1

Author: David St. Clair Duni, P. Geo. 1154 Marine Drive Gibsons B.C. VON 1V1 GEO Februar, 15, 2005

Table of Contents

Introduction	1
2004 Trenching and Drilling Programs	3
2004 Metallurgical Testing	5
Interpretation and Conclusions	6
References	7

List of Figures

Following Page

Page

Figure 1: General Location Map	1
Figure 2: Claim Location Map	2
Figure 3: Regional Geology	3
Figure 4: Property Geology	In Pocket
Figure 5: Howard Zone Longitudinal Section	In Pocket
Figure 6: Cross Section Ddh C-04-01, C-05-04	4
Figure 7: Cross Section Ddh C-04-02, C-04-03	4

List of Tables

Table 1: List of Mineral Claims1Table 2: List of Mineralized Diamond Drill Hole Intersections4

List of Appendices

Appendix A: Statement of Costs

Π

Ω

Contraction of the local division of the loc

(

And a contract of the second se

Harris

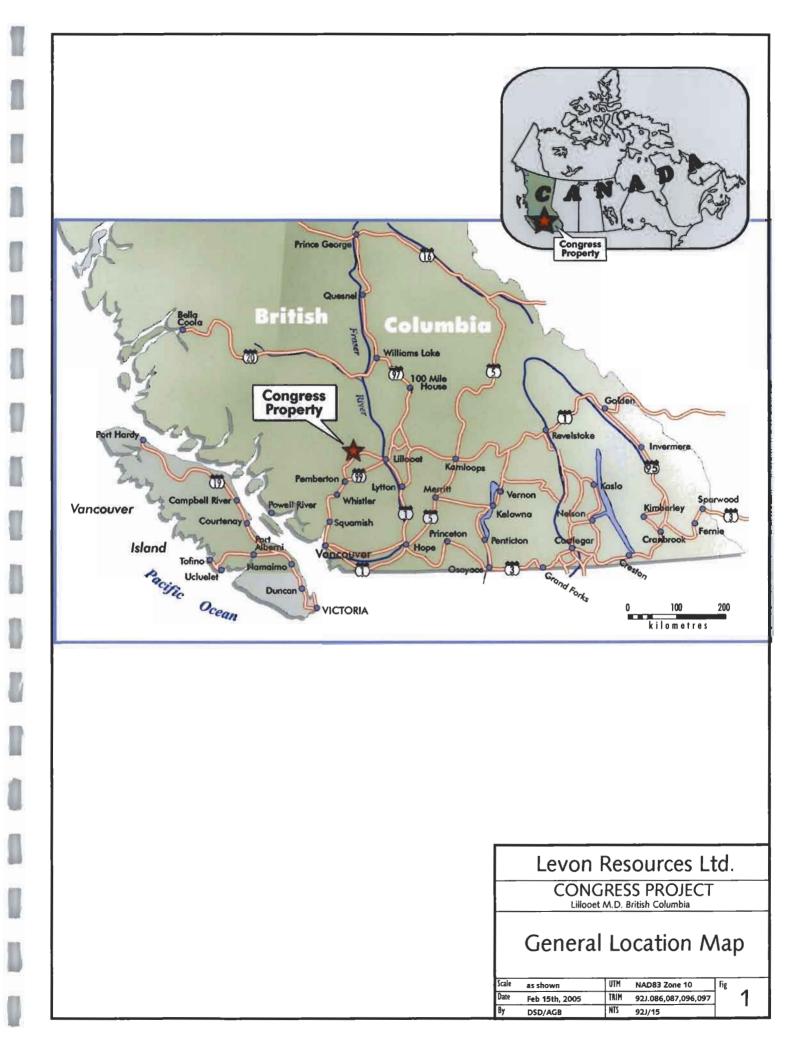
Ŋ

Appendix B: Diamond Drill Logs

Appendix C: Assay Results and Assay Procedure

Appendix D: Metallurgical Test Results

Appendix E: Author's Statements of Qualifications


Introduction

The Congress Property ("the property") is located on the north side of Carpenter Lake, 90 kilometers west of the town of Lillooet (Fig. 1 & 2). The property can be accessed from Lillooet by taking Highway 40 ninety-six kilometers west from Lillooet to the property.

The property consists of 8 crown granted mineral claims, 32 reverted crown grants and fractions of crown grants, 10 mineral claims and fractions of mineral claims and three mineral leases totaling approximately 2075 hectares (Fig. 2, Table 1) located on the north side of Carpenter Lake four kilometers northeast of Goldbridge in the Lillooet Mining Division, NTS 092J15W. The property is owned by Levon Resources Ltd. ("the company"). The property is easily accessible by the Goldbridge to Lillooet Highway, which crosses the southern part of the property, the Slim Creek forest access road, which turns off the highway on the property and crosses the property in a northwesterly direction and numerous access trails and roads built on the property during previous exploration programs (Fig. 4). Claims are listed below:

Claim Name	Tenure	No. of	Expiry Date
	Number	Units	
Nap 5	228359	6	25/12/12
Nap 6	228360	1	"
Nap No. 7	228376	4	"
Nap No. 8	228378	4	"
Lac 2 Fr.	228643	1	"
Lac 4 Fr.	228645	1	"
Ace No. 22	229453	1	"
Ace No. 23	229454	1	"
Ace No. 24	229455	1	"
Ace No. 25 Fr.	229456	1	"
Ace No. 26 Fr.	229457	1	"
Ace No. 27 Fr.	229458	1	"
Ace No. 28	229459	1	"
Argon	351055	1	"
Radium	351056	1	"
Helium	351057	1	"
Queen City Fr.	351058	1	"
Rodeo	351059	1	٤٢
Commodore Fr.	351060	1	٤٤

Table 1: List of Mineral Claims

Table 1: List of Mineral Claims (cont.)

Ŋ

1

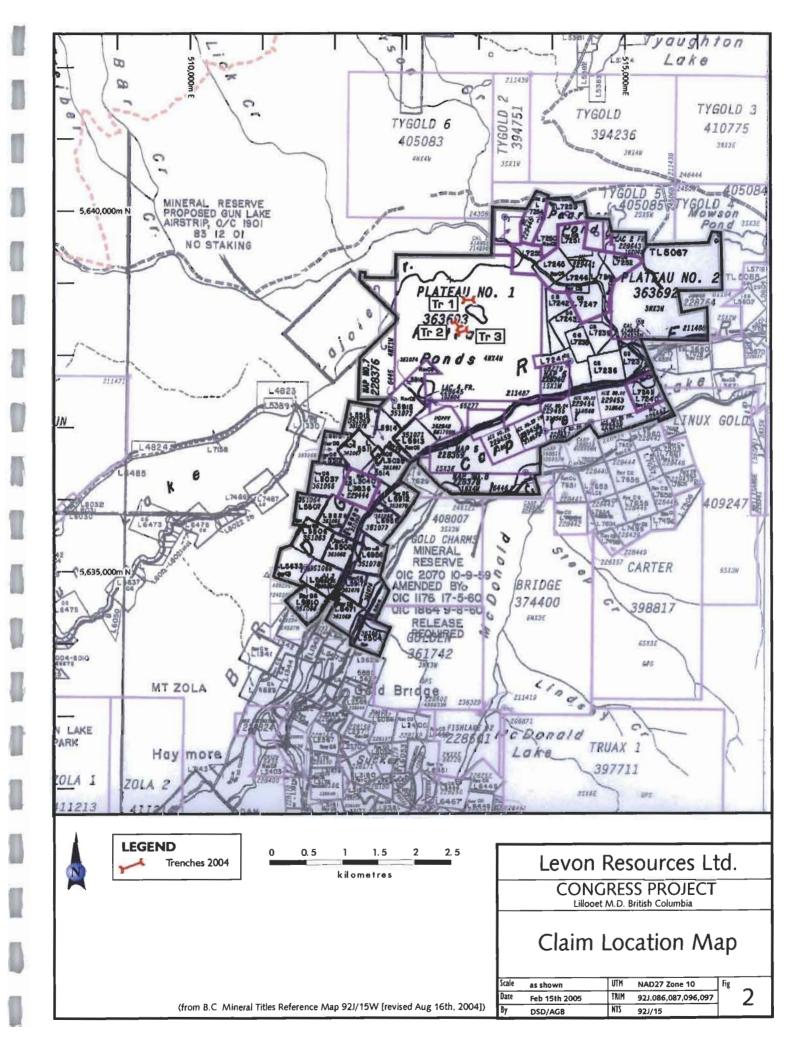
0

D

D

C

Ŋ


Ŋ

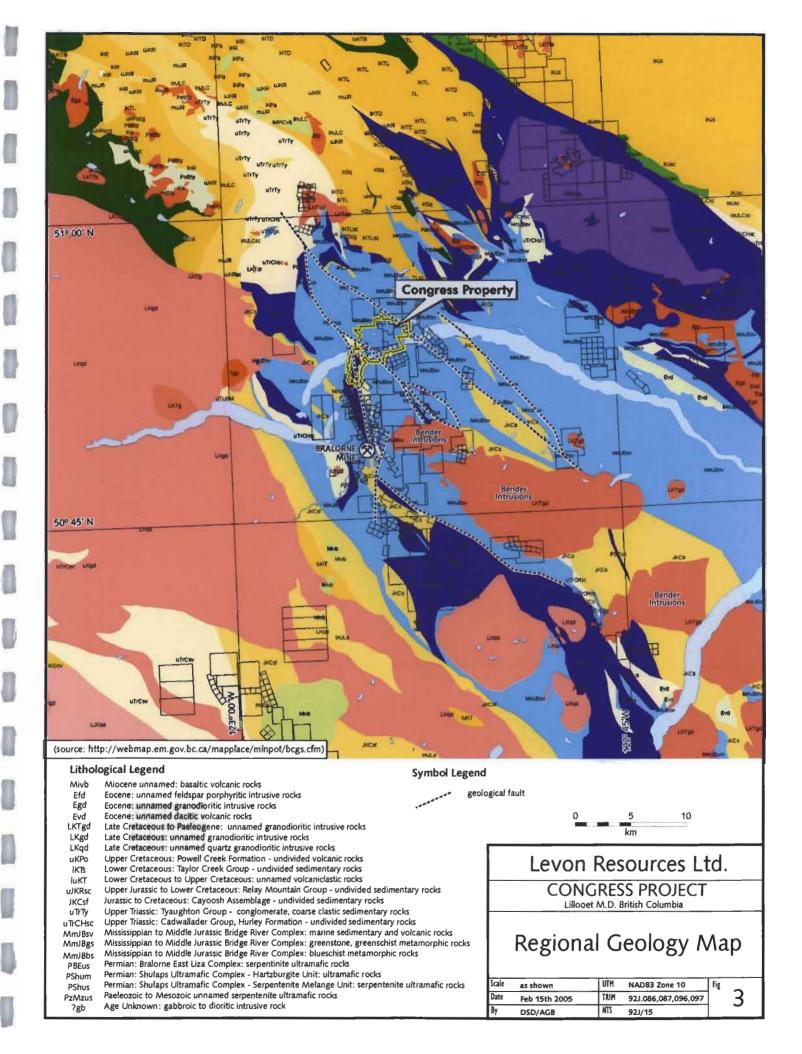
Q

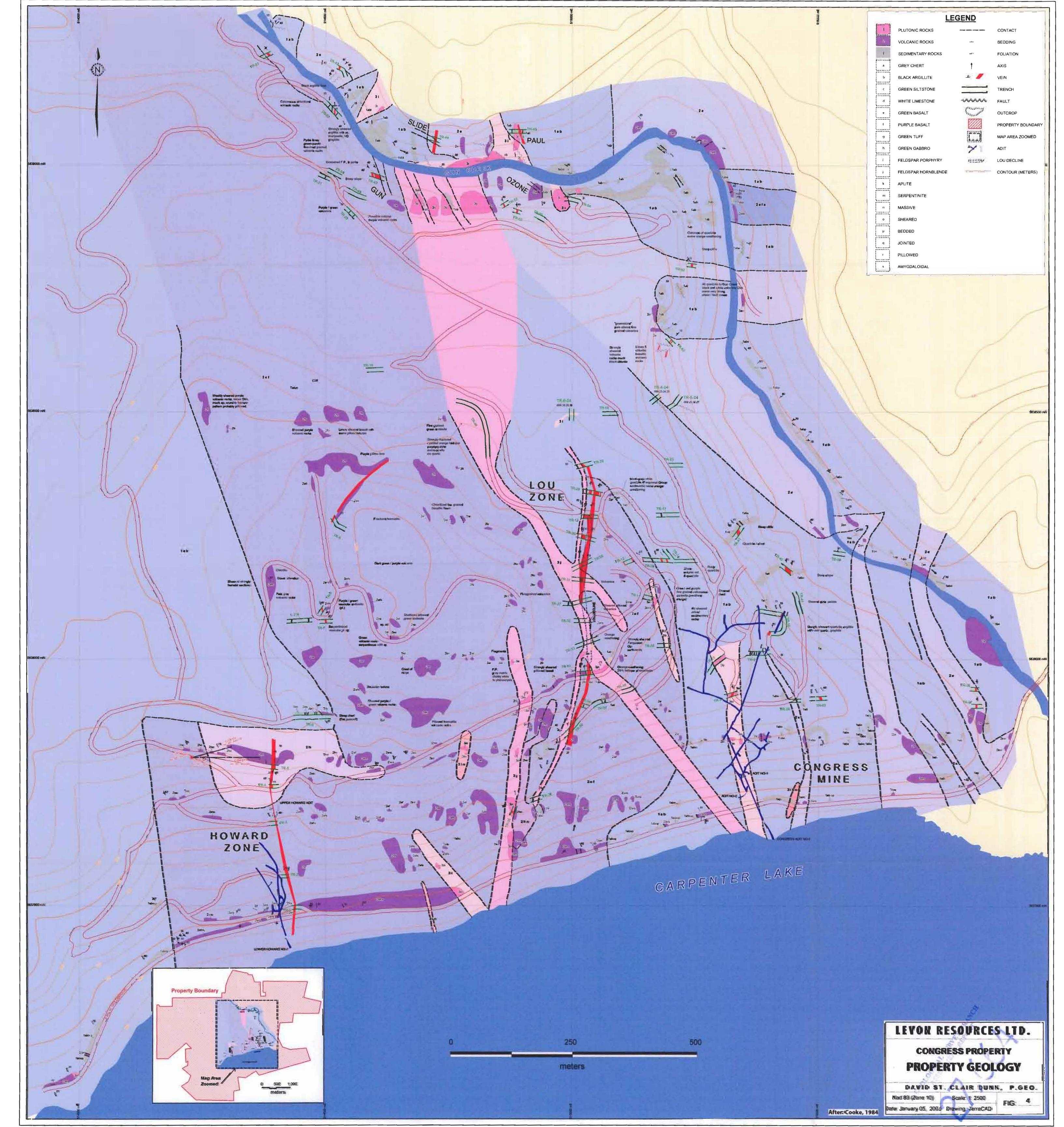
D

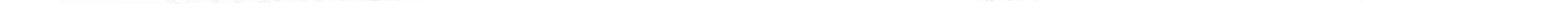
Û

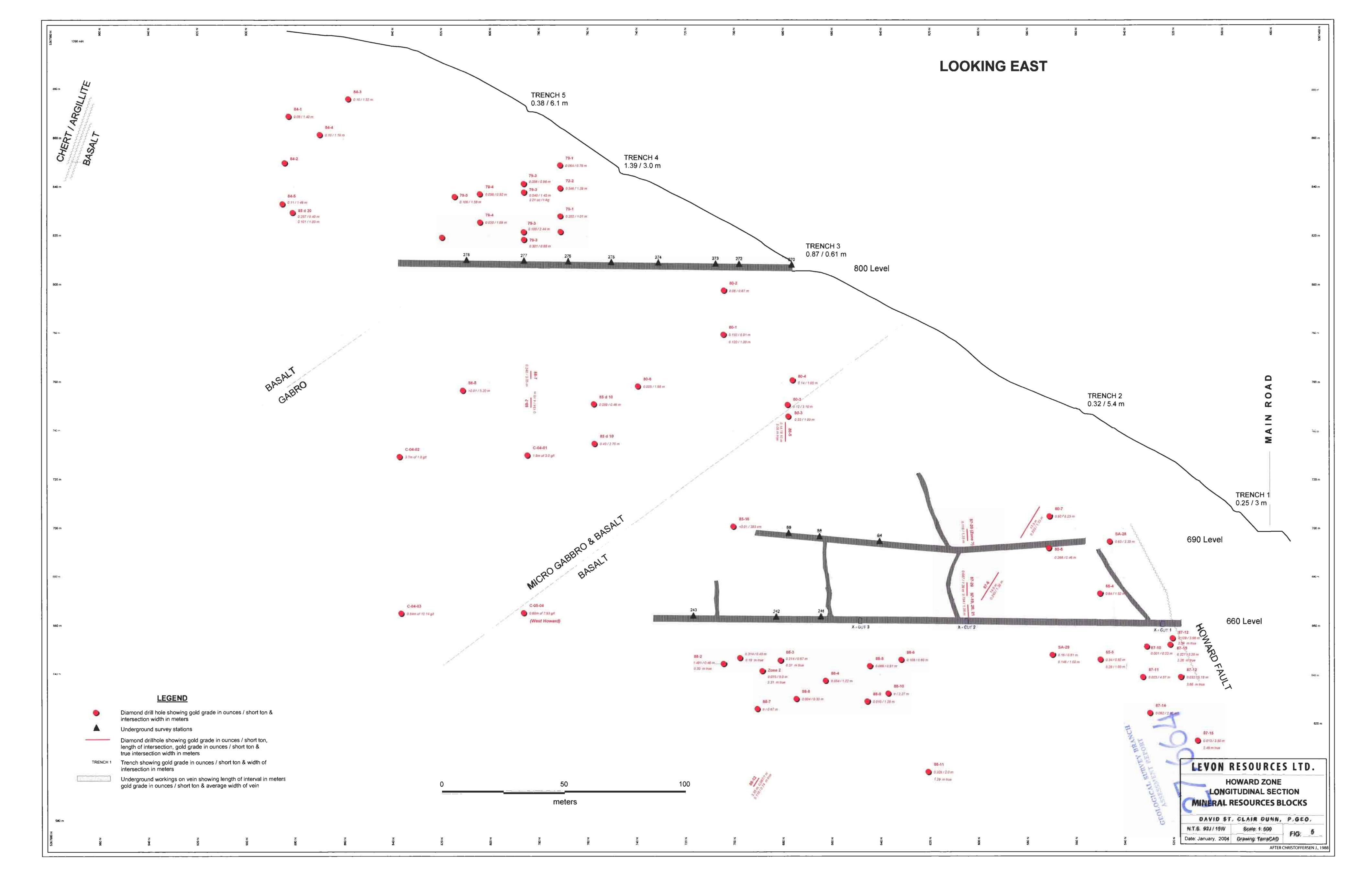
Claim Name	Tenure	No. of	Expiry
	Number	Units	Date
Lodge	351061	1	25/12/12
Alpha	351062	1	"
Beta	351063	1	"
Gamma	351064	1	"
Cabinet	351065	1	"
Counsel	351066	1	"
Newport	351067	1	"
Camp Denison	351068	1	"
Sun	351069	1	"
City No. 1	351070	1	"
Spring A	351071	1	"
Spring Fr.	351072	1	"
Spring B	351073	1	"
Spring C	351074	1	"
Lodge B	351075	1	"
Rodeo Fr.	351076	1	"
Wayside No. 2	351077	1	8/12/13
Lodge No. 2 Fr.	351078	1	25/12/12
Рорру	351849	1	"
Plateau No. 2	363692	9	"
Plateau No. 1	363693	16	"
Cal 1	414855	1	13/10/12
Cal 2	414856	1	"
Mineral Lease	229441	5	Taxes
Mineral Lease	229442	1	"
Mineral Lease	229445	1	"
Stibnite No. 1 (CG)	7236	1	"
Stibnite No. 2 (CG)	7237	1	"
Stibnite No. 3 (CG)	7238	1	"
Stibnite No. 4 (CG)	7239	1	"
Doris	7240	1	"
David Fr.	7241	1	"
Robert Fr.	7242	1	
Snowflake Fr.	7243	1	"

The property covers rocks of the Pioneer Formation and Bridge River Terrane, mainly submarine basalt and andesite with minor chert and mafic intrusives (Fig. 3). These rocks are cut by northwest trending regional scale structures, in most cases with contained feldspar porphyry dacite dykes, sub-parallel to the Ferguson and Cadwallader Structures. The structures on the property are roughly the same distance from the Upper Cretaceous-Tertiary granitic Bendor Intrusions as the Bralorne/Pioneer mines. The Bendor Intrusions are a postulated source for the gold mineralization at the Bralorne mine.

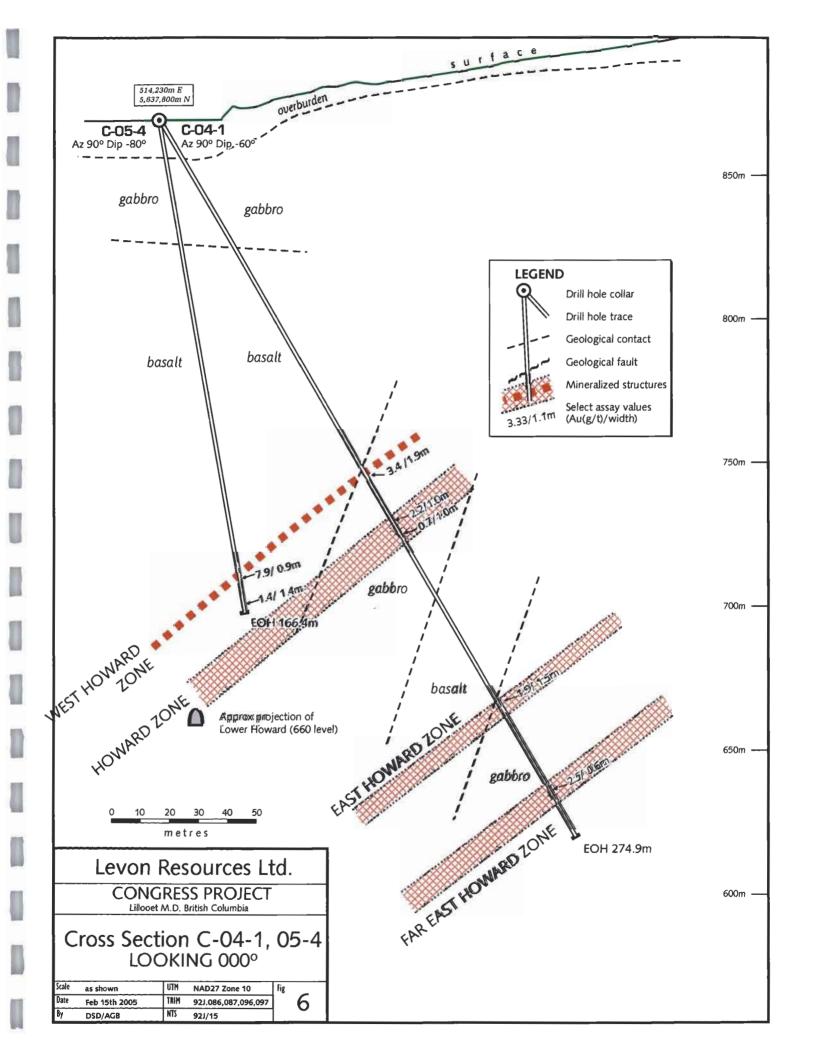

The structures on the property are mineralized with gold and silver in quartzcarbonate veins and in altered vein selvages for up to five metres from the veins. These veins have received considerable past work, including at least five adits with more than 2,235 metres of underground workings (Fig. 4 & 5). The following resources have been developed:

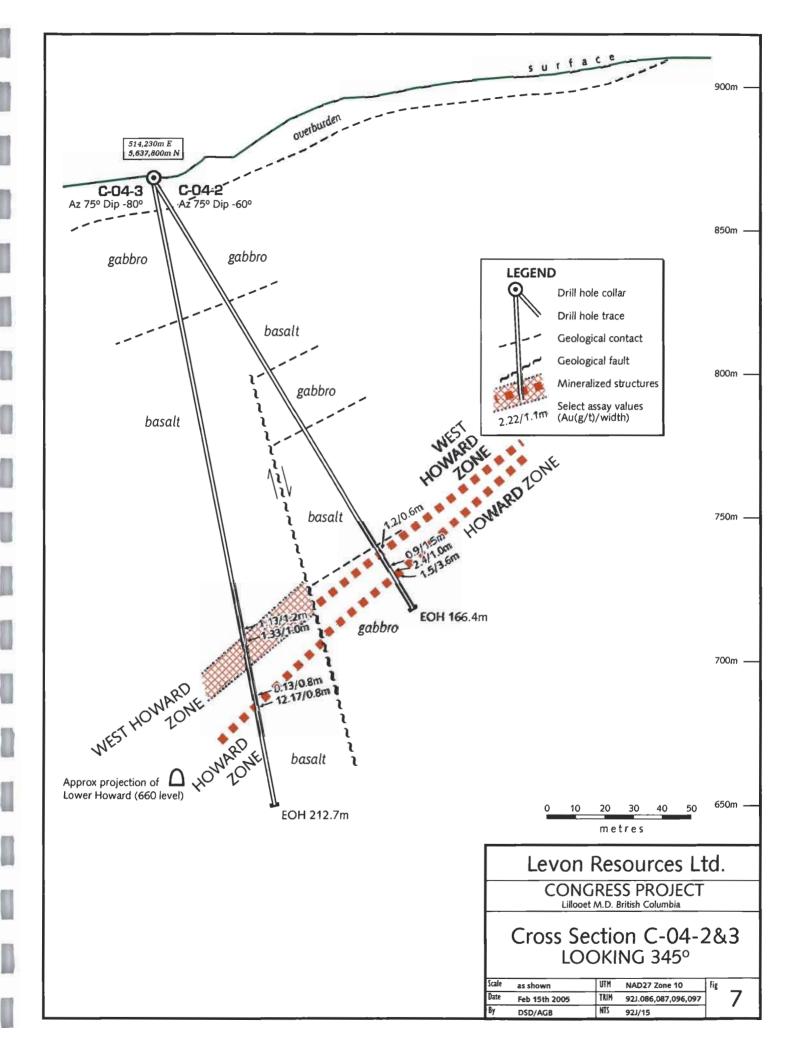

	Tons	oz/ton	g/tonne	Mineral resource category
Congress	106,678	0.238	8.22	indicated
Howard	218,540	0.304	10.50	inferred
Howard	25,909	0.367	12.68	indicated
Howard	40,192	0.280	9.68	measured
Paul	92,000	0.280	9.68	inferred
Lou u/g	105,673	0.301	10.40	inferred
Lou o/p	137,000	0.070	2.42	inferred


These resources were outlined in the 1930's, 1950's, 1960's and 1980's but were not mined because of the refractory nature of the mineralization. Most of the gold is contained in fine grained arsenopyrite, which is intimately associated with quartzankerite gangue. The best recovery by cyanide with a very fine grind has been just over 20%. Flotation has been more successful, with the results from the 2004 testing being 91% gold recovered in 52.5% of feed (Appendix D). Metallurgical testing was carried out by Process Research Associates Ltd. Oxidizing the sulphides using a bio-leaching or pressure leaching system was recommended as the best approach to maximize gold recovery.


2004 Trenching and Drilling Program

The 2004 surface exploration program consisted of approximately 120 metres of mechanized trenching in six trenches and four NQ diamond drill holes totaling 820.5 metres. The trenches were targeted at new mineral occurrences uncovered by logging activity in the central part of the property and on historic soil geochemical anomalies on strike with the projected northern extensions of the Lou and Congress zones (Fig. 4). Drilling was targeted at better defining the Howard Zone north of the face of the Lower Howard drift (Fig. 5).




Trenches 1, 2 and 3 (Fig. 2) in the central part of the property did not return any values of economic interest. Trenches 4 and 5 (Fig. 4) were dug at the break in slope west of Gun Creek on historic high gold and arsenic soil geochemical anomalies. They cut a massive stibnite vein, probably the northern extension of the Congress Zone, more than 250 metres north of the most northerly mapped outcrop of the Congress Zone. Trench 6 (Fig. 4) was a western extension to 1988 Trench 18 and exposed the northern extension of the Lou Zone, a further 175 metres north of its most northerly known exposure.

The four drill holes totaling 820.5 metres, C-04-01, 02, 03 and C-05-04, were drilled from the same set-up, two at -60° and two at -80° (Figs. 4, 5, 6 and 7). All four holes intersected at least one of the Howard Zones over wide intervals. The intersections most mineralized in gold are shown below:

Drill Hole	Intersection	Estimated	Grade	Zone
	(metres)	True width	Gold g/t	
C-04-01 (-60°)	135.2-137.2	1.85m	3.4	West Howard
	153.2-154.2	0.93m	2.2	Howard
	154.2-155.2	0.93m	3.7	Howard
	155.2-156.7	1.39m	0.9	Howard
	224.0-225.5	1.39m	1.9	East Howard
	225.5-227.0	1.39m	0.3	East Howard
	227.0-228.5	1.39m	0.9	East Howard
	228.5-229.5	0.93m	Trace	East Howard
	229.5-231.0	1.39m	0.6	East Howard
	255.4-256.0	0.56m	2.5	Far East Howard
C-04-02 (-60°)	141.8-142.4	0.56m	1.2	West Howard
	154.0-155.5	1.39m	1.2	Howard
	155.5-157.0	1.39m	2.4	Howard
	157.0-158.5	1.39m	0.9	Howard
	158.5-159.5	0.93m	2.4	Howard
	159.5-160.7	1.11m	0.3	Howard
	160.7-162.1	1.30m	1.5	Howard
	162.1-164.3	2.04m	1.5	Howard
C-04-03 (-80°)	149.4-150.3	0.60m	0.2	West Howard
2	150.3-151.5	0.80m	1.13	West Howard
	151.5-153.0	1.00m	0.03	West Howard
	153.0-154.1	0.74m	0.37	West Howard
	154.1-154.7	0.40m	0.10	West Howard
	154.7-155.5	0.54m	1.33	West Howard
-	155.5-156.8	0.87m	0.30	West Howard

Table 2: List of Mineralized Diamond Drill Hole Intersections

Drill Hole	Intersection (metres)	Estimated True width	Grade Gold g/tonne	Zone
C-04-03 (-80°)	166.7-167.3	0.40m	1.13	West Howard
	176.0-176.4	0.27m	0.07	Howard
	176.4-177.2	0.54m	0.13	Howard
	177.2-178.0	0.54m	12.14	Howard
C-05-04 (-80°)	152.1-153.0	0.60m	7.93	West Howard
· · · · · ·	153.0-154.5	1.00m	0.30	West Howard
	154.5-156.0	1.00m	0.60	West Howard
	156.0-156.8	0.54m	0.40	West Howard
	156.8-158.3	1.00m	0.30	West Howard
	158.3-159.0	0.47m	0.03	West Howard
	159.0-160.2	0.80m	0.30	West Howard
· · ·	160.2-161.6	0.97m	1.37	West Howard

These drill holes show that there are four Howard Zones, en echelon, designated here West Howard, Howard, East Howard and Far East Howard. Bralorne Mines Ltd. initially developed the East Howard and Far East Howard in 1959. Levon's development in the 1980's was largely on the Howard. The West Howard is a blind vein discovered by this program. These zones strike north-south and are 20 to 30 metres apart in an east-west direction. The more mineralized sections of the zones are further to the north in each more westerly zone. The zones exceed 10 metres true width in the most mineralized areas.

2004 Metallurgical Testing

Approximately 20 kilograms of vein material was collected in the Lower Howard adit from the East Howard zone in the first cross-cut to the west, approximately 60 metres in from the portal. This material was sent to Process Research Associates Ltd. for metallurgical testing (Appendix D). Samples from this material assayed 12.3 g/tonne or 0.36 ounces/ton gold. This grade is representative of the better mineralized areas in the Howard zones. The sample was taken from an area relatively close to the surface in a drift developed in 1959, so was partly oxidized. This probably accounts for the relatively high (for the Congress Property) gravity recovery of 23.1% of gold content. A relatively complex, four stage flotation process was able to recover a further 67.8% of gold for a total recovery of 90.9% of gold. Gold in the flotation concentrate was contained in 52.3% of the feed. The concentrate produced would grade roughly 0.5 ounces per ton or 15.5 g/tonne, not high enough to bear the cost of shipping offsite. Process Research Associates Ltd. recommended bio-leaching the concentrate on site and then using cyanide to recover the gold from the residue.

Interpretation and Conclusions

10-14-14

Trenching on the property succeeded in extending the strike extent of the Congress Zone 250 metres to the north and the Lou Zone 175 metres to the north. The better mineralized areas in the Congress Zone, including the new trenches, are massive stibnite veins, 1.25 to 1.5 metres wide, grading six to eight grams gold per tonne. The 2004 trenching shows that more of this material could be developed. Previous metallurgical work shows that this material could produce a high value flotation concentrate (Personal communication, F. Wright, 2005). The feasibility of mining the resources developed in the Congress Mine and trucking it to the Bralorne mill should be evaluated by a mining engineer to establish mining, milling and trucking costs. Further work on the Congress Zone should be based on this preliminary scoping study.

Mineralized areas in the Lou Zone are stockwork quartz carbonate stringers and silicified zones on the flank of a feldspar porphyry dyke. Mineralized zones are 1.5 to 2.5 metres wide and grade five to 11 grams gold/tonne. The Lou Zone has been oxidized for five to 10 metres below surface near the decline where the open pit resource is located. The milling characteristics of fresh Lou Zone material should be tested. Further drilling should be carried out to expand and better define this resource.

Mineralization in the Howard Zones consists of quartz-carbonate veins or stringer zones one to 1.5 metres wide, with altered, mineralized selvages up to 10 metres total width. The Howard Zone contains the largest and highest grade resource on the property, with over 100,000 ounces of gold contained in all resource categories. These resources are refractory and would require a relatively complex recovery system, including bioleaching or pressure leaching. A substantially larger resource will need to be developed to justify the capital cost of either type of leaching system.

The most effective method of increasing the mineral resources in the Howard Zone is to advance the drift on the Lower Howard level. The drift should hit the down plunge extension of the mineralized shoot developed on the Upper Howard level in approximately 100 metres. A crosscut should be driven to the west for 30 metres at 50 metres from the present face to test the West Howard Zone. The results of this work should be evaluated and an updated mineral resource calculated. Further work should be planned based on this evaluation.

DUNN SCIEN

References

Triff (V V

the second s

Ash, C. 2001: Ophiolite Related Gold Quartz Veins in the North American Cordillera, British Columbia Geological Survey Branch, Bulletin 108.

Ash, C. and Alldrick, D., 1996: Au-Quartz Veins; in Selected British Columbia Mineral Deposit Profiles, Volume 2, D.V. Lefebure and T. Hoy, Editors, British Columbia Ministry of Energy, Mines and Petroleum Resources, pages 53-56.

Chapman, Wood and Griswold Ltd., 1965: Memorandum Reports Nos. 1, 2, and 3 Ace Mining Co. Ltd.

Church, B.N., 1996: Bridge River mining camp, geology and mineral deposits; British Columbia Geological Survey Branch, Paper 1995-3, 159 p.

CIM, 1976: Special Volume 15; Porphyry Deposits of the Canadian Cordillera, A. Sutherland Brown, Editor.

Christofferson, J.E., 1987: Status Report on the Congress Property.

Christofferson, J.E., 1988; Report on Gold Ore Reserves, Congress Property.

CIM, 1995: Special Volume 46; Porphyry Deposits of the Northwestern Cordillera of North America, T. G. Schroeter, Editor.

- Dolmage, Mason and Stewart Ltd, 1964: Report on Examination of the Ace Mining Property.
- Dolmage, Mason and Stewart Ltd., 1965: Ace Mining Company Limited N.P.L., Final Report.

Emmons, W. E., 1937: Gold Deposits Of The World, pages 99-100.

Geological Survey of Canada, 1995: Geology of Canada, no. 8; Geology of Canadian Mineral Deposit Types, pages 324, 328, 351-357, 360, 363. O.R. Eckstrand, W.D. Sinclair, and R.I. Thorpe, Editors.

Martin, W., 1961: Ore Potentialities Bralorne Pioneer Mines Limited, Unpublished Report.

Miller-Tait, J., and Sampson, C., 1995: Exploration and Development Programmes, October 1993-July 1995, Bralorne-Pioneer Property, Bralorne, British Columbia, Lillooet Mining Division, Bridge river Area, NTS 92-j/15, Latitude 50° 46'N, Longitude 122° 48' W.

Miller-Tait, J., Morris, A., and Hawthorn, G., 1996: Bralorne Pioneer Gold Mines Ltd., Plan and Production Schedule for: 150 Ton per Day Mining Operation, Bralorne Gold Mine, Bralorne, B.C. Unpublished Corporate Report.

Mindat Consultants, 1984; Progress Report on the Congress Property.

Process Research Associates Ltd., 2003. Project 0304003, 0304006, 0403504. Unpublished company reports.

Sawyer Consultants Inc., 1979; Report on the Howard Property.

Seraphim, R.H., 1981; Progress Report Bridge River Claims of New Congress Resources Ltd.

Schiarrizza, P., Gaba, R.G., Glover, J.K., Garver, J.I., and Umhoefer, P.J., 1996: Geology and Mineral Occurences of the Taseko-Bridge River Area; Geological Survey of British Columbia, Bulletin 100.

Appendix A

and a second second

Û

A STATE OF STATE

Second Second

Ŋ

and a statement

Q

Statement of Costs

Appendix A: Statement of Costs

Metallurgical Testing:

March 1994

and the same

Ŋ

Ŋ

and other

and a subscription

 \int

No. of Concession, Name

Û

and the second se

Process Research Associates Ltd.	\$6,437.55
F. R. Wright	613.35
D. Dunn	400.00
Trenching:	

Excavator Rental (1 month): (Riverside Equipment Co.)	10,212.50
Expenses:	1,489.72
Operator's wages: (G. Polischuck)	3,870.00
Assay's: Acme Analytical	186.61
Geological Supervision: (D. Dunn) 5 days @ \$400/day	2,000.00
Expenses:	751.23

Diamond Drilling:

Drilling: Beaupre Drilling Ltd. 820.5 metres @ 83.51/m	68,522.57
Water Truck: Gallant Trucking Ltd. 14 days @ \$825/day + \$2,000 M/DM	13,550.00
Assays: Bralorne Mines Lab 53 @ \$20/sample	1,060.00
Geological Supervision: D. Dunn 22.5 days @ \$400/day	9,000.00
Expenses: Room and Board, fuel, vehicle etc.	2,277.17

Total: Metallurgical, Trenching and Drilling

Appendix B

-

Diamond Drill Logs

Diamond Drill Record

Statistics and

Property Congress

Hole Number C-04-01

	Dip Tes				
	Ar	ngle	UTM: 514,228E, 5,637,800N	Total Depti 274.93m	Date Begun 05/12/2004
Depth	Reading	Corrected	Azimuth: 90°	Grid Location	Date Finished 18/12/2004
724.93	60°		Inclination -60°	Cross Section C-1,4	Date Logged 16-18/12/04
			Elevation870m	Core Size NQ	Logged By DD

De from	pth to	Approx. width	Description	sample number	from	to	approx. width	rec.	Au g/t	Cu (%)	Ag (ppm)	Zn (%)
			Overhunden 40 5 42 0 headt	number			Wideli					· · · · · · · · · · · · · · · · · · ·
0	14.5		Overburden. 12.5-13.0 basalt									· · · · · · · · · · · · · · · · · · ·
			boulder w/ Ca, Cypy str. To 3mm								· · · ·	
14.5	49.1		Dark green speckled gabbro.		· · · · · · · · · · · · · · · · · · ·			100%				
			RQD 50%. Med. Grained. Modera	ite								
	· ·		propylitic alt. Fractures sub//, 45°						:			
			to CA. Very minor qtz str to 1 cm								2	
49.1	134.9		Basalt/Andesite. Dark green. 5%									
			erratic qtz calcite blebs and str.					90%				
-			Broken. RQD 20%. Minor maroon	basalt		-					-	
			w/ vesicules infilled w/ ca to 40 %	•								
WEST	HOWARD		Upper Contact 60° to CA LC 70°									
134.9	137.1		Tan altered basalt. 20% qtz str.	68832	135.2	137.1	1.9	100%	3.4			
-			Argillic Alt. RQD 90%. Sulphides									
			up to 20%. Py, minor aspy.									
137.1	151.6		Gabbro. RQD 95%. Dk gr sp.		-							
HOWARD	ZONE		Fr. @ 70° + 45° to CA w/ qtz-ca					100%				
151.6	154.2		Bleached Gabbro. ++mariposite	68834	151.6	153.2	1.6	100%	0.3			
			Qtz str to 2 cm @ 70° to CA	68838	153.2	154.2	1		2.2			
154.2	155.2		Qtz Vein. Dark grey. 0.5 cm py	68835	154.2	155.2	1		3.7			
			blebs. 70° to CA.	68836	155.2	156.7	1.5		0.9			

and the second second

And of the local division of the local divis

penter competence

anosana tida

Sheet # ...

Relation of the

A Barrage Alexandre

Binamara alla

1

a de la companya de l

155.2	157.8	Bleached Gabbro. ++mariposite	68837	156.7	157.8	1.2	100%	trace		<u> </u>	
		Str 70° to CA.									
157.8	165.3	Dark green Gabbro. Strong prop.					100%				
		alt. 10% ca str to 3 mm at 50° +									
		70° to CA. RQD 90% Non mag.					· ·				
165.3	183.1	Speckled Gabbro. Moderate prop.					100%				
		alt. RQD 50% LC 10° to CA.		-							
183.1	220.5	Dark green + maroon vesicular Ba	salt				90%				
		Vesicules filled w/ ca. 1-2 mm									
		RQD 40% Non mag. Minor erratic									<u> </u>
AST	HOWARD	Ca Str.									
220.5	252.2	Speckled Gabbro. Minor py.	68839	224	225.5	1.5	100%	1.9			
		V broken 224-228.1Qtz ca str 209	68840	225.5	227	1.5		0.3			
		228.1-232 1-2% py. LC 40° to CA	68841	227	228.5	1.5		0.9			
252.2	261.7	Maroon Basalt. V broken. 254-	68842	228.5	229.5	1		trace			
		265.5. Ca/qtz str255.4-258.5	68843	229.5	231	1.5		0.6			
261.7	274.93	Speckled Gabbro. Strong prop.	68844	231	232	1		trace			
AR EAST	HOWARD	alt.	68845	254.8	255.4	0.6	85%	0.6		1	
			68846	255.4	256	0.6		2.5			
			68847	256	257	1		0.3			
			68848	257	258.5	1.5		trace			
		EOH									
							· · · ·			1.	
						÷					
											1
			-				······				
											1
				· · · ·			- <u></u>				
											<u>†</u>
							-				<u> </u>
	L L		_					L			

(2)

and some the second

Diamond Drill Record

and the second secon

Bifer is claim

Sector Contractor

Property Congress

Hole Number C-04-02

and the second s	Dip Test				
	Ar	gle	UTM: 514,228E, 5,637,800N	Total Deptih 166.42m	Date Begun 19/12/2004
Depth	Reading	Corrected	Azimuth: 75°	Grid Location	Date Finished 21/12/2004
166.42	63°		Inclination -60°	Cross Section C-2,3	Date Logged 19-21/12/04
			Elevation870m	Core Size NQ	Logged By DD

De	pth to	Approx. width	Description	sample number	from	to	approx. width	rec.	Au g/t	Cu (%)	Ag (ppm)	Zn (%)
0		main	Overburden.	number								
13.1	49.1		Dark green speckled gabbro.					100%				
			Med to crse grained(.5 cm)				S					
			RQD 50%. Fr @ 55° + 20° to CA		1							
			LC 35° to CA. Minor qtz ca str.		-							
			1cm 40° to CA.									
49.1	74.9		Maroon and dark green Basalt.					90%				
			erratic qtz calcite blebs and str.									
			Broken. RQD 40%.10 cm. ca str									
			45° to CA 59 m + 1-2 cm str.									
			Serpentinized 65-68.5. Fr sub// +									
			45° to CA. 90.1 3cm qtz vein 10°		-				-			
-			to CA. LC 70° to CA.									
74.9	99.1		Speckled dk gr Gabbro. RQD 40%	6				100%				
			Non Mag. Fr. @ 80° + 60° to CA.									
99.1	141.8		Maroon + dk gr Basalt. Vesicular					100%				
			w/ amygdules w/ca. RQD 50%							-		
WEST	HOWARD		5% erratic ca. str. Non mag.									
141.8	152		Speckled dk gr Gabbro. RQD 809	68849	141.8	142.4	0.6	100%	1.2	-		
			Non Mag. Fr. @ 45° + 70° to CA.									

and the second second

and the second second

nin fishin

1

And the state

HOWARD	ZONE	141.8-142.4 Alt str zone(ca)									
152	164.3	Tan alt. Gabbro. Ca str w/ ++	68850	152	153	1	100%	0.3			
		mariposite. Qtz vn 158.5 - 159.5	69901	153	154	1		0.3	-		
		alt. 10% ca str to 3 mm at 50° +	69902	154	155.5	1.5		1.2			
		70° to CA. RQD 90% Non mag.	69903	155.5	157	1.5	su	2.4			
			69904	157	158.5	1.5	su blebs	0.9			
			69905	158.5	159.5	1	qtz vn	2.4	-		
			69906	159.5	160.7	1.2	2% su + m	0.3			
			69907	160.7	162.1	1.4	mar	1.5			
			69908	162.1	164.3	2.2	mar	1.5			
164.3	166.42	Speckled dk gr Gabbro					-				
					-			-			
		EOH									
					-						
						-		-			
											1
						· · · · · · · · · · · · · · · · · · ·					
						·				1	
						<u>.</u>					
-											
			-								
										1	
· · · ·											1
									-		
						<u></u>		-			
											-
	·						l		l	1	

Diamond Drill Record

FACTOR HILLING

-

Property Congress

Hole Number C-04-03

	Dip Test											
	Ar	gle	UTM: 514,228E, 5,637,800N		Total Dept	h 212.75m	n .		Date Begu	n	. 02/01/2005	
Depth	Reading	Corrected	Azimuth: 75°		Grid Locat	ion			Date Finish	ned	05/01/2005	
209.4	80°		Inclination -80°		Cross Sec	tion	C-2,3		Date Logg	əd	4-5/1/2005	
			Elevation 870m		Core Size	•••••	NQ		Logged By		DD	
De from	epth to	Approx. width	Description	sample number	from	to	approx. width	rec.	Au g/t	Cu (%)	Ag (ppm)	Zn (%)
0	12		Overburden.									
12	47.2		Dark green speckled gabbro.					100%				
			Non mag. Minor str 70-80° to CA					(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,				
			RQD 50%. Fr @ 10° + 20° to CA									
			LC 30° to CA.									
47.2	149.4		Dark green and maroon Basalt					95%				
			Ves to 5mm w/ca. RQD 20%									
			Non mag. 5% ca str @ 45° + 70°									
WEST	HOWARD		to CA.									
149.4	167.3		Shear Zone. Light grey to green.	69909	149.4	150.3	0.9	95%	0.2			
			Bleached + chlorite. Qtz str zones	69910	150.3	151.5	1.2		1.13			
			153.9-154.1, 154.6-158.1, 165.8-	69911	151.5	153	1.5		0.03			
			167.1. 50° to CA	69912	153	154.1	1.1		0.37			
			50° to CA	66913	154.1	154.7	0.6		0.1			
		-	50°+ 80° to CA	66914	154.7	155.5	1	su qtz str	1.33			
			70° to CA	66915	155.5	156.8	1.3	su qtz str	0.3			
			50° to CA	66916	156.8	158.1		1% py str	0.03			
				66917	158.1	160.4	2.3	chl	0.03			
				66918	160.4	162.1	1.7	chl	0.03			
			70° + 80° to CA	66919	162.1	163	0.9	bleached	0.03			

1

Sheet # ...

1

Section 1

			50° to CA	66920	165.9	166.7	0.8	bleached	0.03		
			50° to CA	66921	166.7	167.3	0.6	qtz vn	1.13		
167.3	167.6		Felspar pophyry dyke. 50° to CA								
167.6	176		Dk gr + mar Basalt. Erratic ca str.								
HOWARD	ZONE										
176	178		Qtz str zone w/ 2% su.40-60toCA	69922	176	176.4	0.4	msu 50%q	0.07		
				69923	176.4	177.2	0.8	chl	0.13		
			50° to CA	66924	177.2	178	0.8	qtz str su	12.17	 	
178	212.75		Dk gr to mar Basalt. Mod mag.								
			Erratic ca str. RQD 50%.							 	
			Fr @ 60° + 40° to CA								
			ЕОН								
		<u></u>									
		· · · · · · · · · · · · · · · · · · ·									T
					·						
		<u>,</u>	· · · · · · · · · · · · · · · · · · ·				·····				
						· .					
				·							
			·						4		
										 	1
											1
									·		1
									· · · · ·	1	1
								1		 	1

 $\overline{\mathcal{Z}}$

erin anna Sin aire

Diamond Drill Record

A PROPERTY AND

STREET,

Property Congress

Hole Number C-05-04

	Dip Test	le constantes			
	Ar	gle	UTM: 514,228E, 5,637,800N	Total Deptih 166.42m	Date Begun 06/01/2005
Depth	Reading	Corrected	Azimuth: 90°	Grid Location	Date Finished 08/01/2005
162.68	80°		Inclination -80°	Cross Section C-1,4	Date Logged 7-8/1/2005
· · · ·			Elevation870m	Core Size NQ	Logged By DD

De from	pth to	Approx. width	Description	sample number	from	to	approx. width	rec.	Au g/t	Cu (%)	Ag (ppm)	Zn (%)
0			Overburden.								,	
12.3	40.5		Dark green speckled gabbro.					100%				
			Non mag.									
			RQD 40%. Fr @ 60° to CA									
				<u>.</u>								
40.5	151.1		Dark green and maroon Basalt					95%				
· · · · · · · · · · · · · · · · · · ·			Ves to 5mm w/ca. RQD 60%									
			Non mag.minor ca str @ 60°toCA		·							
			Qtz vn 10cm 74.6-74.7 45° to CA									
			Str zn 30cm 75.3-75.6 chl, ca, qtz		ж. Т					· · ·		
			40° to CA. Qtz vns: 5cm 84.4-84.5	5								
			10° to CA. 5cm 86.6-86.7 30° to									
			CA. 10cm 84.7-84.8 60° to CA		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							
			125.1-125.2 40° to CA	69925	125.1	125.3	0.2		0.03			
WEST	HOWARD				1		······					
151.1	162		Calcite str zone. Tan to dk gr	69926	151.1	152.1	1	chl, ca	0.03			
			from chi. Py, aspy, mariposite.	69927	152.1	153	0.9	aspy qtz∨n	7.93			
			UC 60° to CA. LC 45° to CA.	69928	153	154.5	1.5	ca str	0.3			
			Str. @ 30° to CA	69929	154.5	156	1.5	chl	0.6			
				69930	156	156.8	0.8	Tan qtz str	0.4			

Sheet # ...

A CONTRACTOR OF THE OWNER OF THE

and a second s

and the second second

ang Kalipanang Salahan Kalisi seta panjakan No. of Concession, Name

A STATISTICS

1.

								·			· ·	·
			45° to CA	69931	156.8	158.3	1.5	Ca str	0.3		ļ.	
			45° to CA	69932	158.3	159	0.7	qtz vn	0.03		10	
			45° to CA	69933	159	160.2	1.2	ca str zn	0.3			
			50° to CA	69934	160.2	161.6	1.4	qtz str 2%	1.37			
162	166.42		Dk gr + maroon Basalt									
·			· · · · · · · · · · · · · · · · · · ·									
	-		ЕОН									
· 1			· ·									
	- -											
						· · · · · · · · · · · · · · · · · · ·	· · · ·					
							· ·					
												[·
			· · · · · · · · · · · · · · · · · · ·									
												<u> </u>
					: :		·			···		
			·····			÷						
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·									
		· · · · · · · · · · · · · · · · · · ·										
			· · · · · · · · · · · · · · · · · · ·							·····		
	· · · ·											

Sec. 2

Appendix C

Î

Ŋ

Û

0

Ω

Ω

Ŋ

Û

Assay Results and Assay Procedure

1

and a second second

Π

Ŋ

Ŋ

Contraction of the second

Ú

BRALORNE PIONEER GOLD MINE Ltd.

Assay Report

Date:	24-Sep-04				
	Congress				
Sample #	Description	Location	Au oz/t	Chk	Ag oz
68822			0.21		T
68823			0.07		
68824			0.04		
68825			0.08		
68826			0.07		
68827			0.04		T
68828			0.05		
68829			0.02		T
68830			0.02		
68831			0.02		
	Rejects Saved				+
·····				·	+
· · · · · · · · · · · · · · · · · · ·					<u> </u>
					+
· · · · · · · · · · · · · · · · · · ·					
			· · · · · · · · · · · · · · · · · · ·		
·					
					+
······					
					+

ABSAYER: Elen Vato

p.1

Ŋ

[]

0

ſ

Ŋ

Concernant of the second

Ŋ

and a strength

Û

BRALORNE PIONEER GOLD MINE Ltd.

Assay Report

Date: 29-Dec-04 Drill Core Congress Levon

Sample #	Description	Location	Au oz/t	Chk	
68832			0.11		
68833			0.04		KNJSP
68834			0.01		
68835			0.12	· .	
68836	· ·		0.03		
68837			t		
68838			0.07	·	
68839			0.06		
68840			0.01		
68841			0.03	0.03	
68842			tr		
68843			0.02		
68844			tr	·	
68845	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩		0.02		
68846			0.08	·	-
68847			0.01		
68848			tr	1	
66849			0.04		
68850			0.01		

				· .	
		-			
	· · · ·				
				Ŧ	

ASSAYER:

Blan Neto

BRALORNE PIONEER GOLD MINE Ltd.

ate:	29-Dec-04				
· · ·	Drill Core Congress Levon				
Sample #	Description	Location	Au ozłt	Chk	بيكت
69901			0.01		
69902			0.04		
69903			0.08		
69904			0.03	·	
69905			0.08	0.08	
69906			0.01		
69907			0.05		
69908			0.05		_
				<u> </u>	
		·····		<u></u> } 	
					_
				 	
	An			<u> </u>	
		+		+-+	
				<u>↓ </u>	
					-
			NUMERICAN DE COMPANYER PERMIT (2012) DE MERITINO.		

Assay Report

ASSAYER:

Ala Vintos

Ő

p.3

p.2

BRALORNE PIONEER GOLD MINE Ltd.

Assay Re	port
----------	------

13-Jan-05

Date:

Ŋ

0

D

Ŋ

0

0

0

Ŋ

 $\left[\right]$

 \square

0

0

0

Drill Core Levon

Sample #	Description	Location	Au G/T	Chk	
69909			0.20		
69910			1.13		
69911			0.03		
69912			0.37		
69913			0.10		
69914			1.33	1.43	
69915			0.30		
69916			0.03		
69917			0.03		
69918			0.03		
69919			0.03		
69920			0.03		
69921			1.13		
69922			0.07		
69923			0,13		
	ala na pangang kapana manakan pangang na pan				

ASSAYER: Alen Vento

BRALORNE PIONEER GOLD MINE Ltd.

Jate:	13-Jan-u	/3		
	Drill Core Levon		(5.1018)	
Sample #	Description	Location	Au G/T	Chk
69924			12,17	
69925			0.03	
69926			0.03	
69927			7.93	
69928			0.30	
69929			0.60	
69930			0.40	0.30
69931			0.30	
69932			0.03	
69933			0.30	
69934			1.37	
				
0				
að að sínd se far fræði skild sen fræði sen sem s				
1				
				L

Assay Report

13-Jan-05

Date:

Û

 $\left[\right]$

0

All Products

 $\left(\right)$

 \int

D

 \square

ASSAYER: She there

400-455 GRANVILLE STREET, VANCOUVER B.C. V6C 1T1 * PHONE: (604) 682-3701 * FAX: (604) 682-3600

BRALORNE • PIONEER GOLD MINES LTD

Assay Procedure for the Avino Drill Core

Samples submitted were dried, then crushed using a Jaw Crusher followed by a Cone Crusher. The samples were reduced using a Jones Riffle. The reject was saved. A ring and puck pulverizer was used to reduce the particles to the size suitable for assay.

1 assay ton(29.17 g) was weighed and Fire Assayed using a standard Class 1 Flux.

After parting and annealing, the Gold beads were finished gravimetrically using a Cahn C30 Microbalance, which weighs from .001 milligrams.

Derek Blundell

No.

and a second

Blundell Derele

Certified Assayer; Province of British Columbia.

Appendix D

and a set

Ŋ

in the second second

<u>n</u>

And a second

Metallurgical Test Results

IVISIN HOLMAII -

From :	Frank Wright <fwright@telus.net></fwright@telus.net>
Sent :	May 20, 2004 10:42:23 PM
To :	"Jasman Yee" <jasman_yee@hotmail.com></jasman_yee@hotmail.com>
Subject :	FW: Levon - Lower Howard Zone

Ittachment : F1(LowerHoward).xls (0.13 MB), CyanidationC1(F1tailing).xls (0.12 MB)

Resending per your request. Let me know if you got it

-----Original Message-----From: Frank Wright [mailto:fwright@telus.net] Sent: Friday, May 14, 2004 2:06 PM To: 'Jasman Yee' Cc: 'Lou Wolfin' Subject: Levon - Lower Howard Zone

Attached are the initial results from the Lower Howard Zone sample you recently supplied. While no cleaning was performed a high mass pull in roughing was required to get the flotation recoveries up over 85%. The results more or less confirm early work that suggests it will be difficult to produce a flotation concentrate with an acceptable grade and recovery to justify shipping product offsite for treatment.

1 ago 1 01 2

Printed: May 21, 2004 7:03:42 AM

Per our discussions the flotation tailing were cyanided and were shown to have low recovery so we are proceeding with a diagnostic leach. I am sure this will show the gold is refractory in sulfides (i.e. arsenopyrite).

This sample recovered about 23% of the gold to a gravity concentrate grading of 835 g/t Au. Therefore we can try flotation upgrading with a coarser primary grind and regrinding the rougher before cleaning and then blend with the gravity product. This may give a final grade that supports shipping but the recoveries may be disappointing. However, I think this is our best option to test for producing a concentrate grade suitable for sale.

Treatment on site for the Lower Howard material would require pre-treatment (i.e. pressure or bioleaching) of the concentrate followed by recombining with flotation tailing for neutralizing capability and then cyanidation (or an equivalent dissolution step for gold) of both the treated concentrate and flotation tailing together. While this would provide the best overall recovery it is the most intensive capital cost wise and there are permitting issues if cyanide is used.

http://by19fd.bay19.hotmail.msn.com/cgi-bin/getmsg?curmbox=F000000001&a=0d75aee227... 5/21/04

Ŋ

Ŋ

0

Ω

Û

Alternatively Levon can look at the Congress zone which does upgrade better, or the Lou Zone which we haven't tested yet. Let me know on how you wish to proceed.

Best Regards

Frank Wright, P.Eng.

604 802-4449

http://by19fd.bay19.hotmail.msn.com/cgi-bin/getmsg?curmbox=F000000001&a=0d75aee227... 5/21/04

PRA

0

Ń

D

Ŋ

Ŋ

Ŋ

Ω

 $\mathbf{0}$

Û

D

0

0

0

Ŋ

G

Û

Û

Metallic Au and Ag Assay Report

Client: Sample:	Date: Project:	27-Apr-04 0403504				
Sample	Ag					
	Tyler Mesh	g	g/t	mg	g/t	mg
Lower Howard Comp. 1	+150	15.8	67.8	1.07	4.50	0.07
·	-150	279	9.15	2.55	1.60	0.45
	Total	294	12.3	3.62	1.76	0.52

Head Assay Report

Client: Levon Resources Sample: Lower Howard Zone

Ŋ

and the second second

and the second se

Contract of the second s

 Ω

And straight

And a state of the state of the

Û

Date: 27-Apr-04 Project: 0403504

[Elements	Units	Lower Howard	Detection	Limits	Analytical
		Units	Comp. 1	Min.	Max.	Method
	Au	g/mt	8.0	0.01	5000	FA/AAS
	Ag	g/mt	1.8	0.3	9999	FAGrav
	Pt	g/mt	0.01	0.01	1000	FA/AAS
	Pd	g/mt	0.04	0.01	1000	FA/AAS
	As	%	0.34	0.001	100	Assay
	Fe	%	5.26	0.001	100	AsyMuA
	S(tot)	%	1.42	0.01	100	Leco
	S(-2)	%	1.39	0.01	100	AsyWet
	AI	ppm	43296	100	50000	ICPM
	Sb	ppm	89	5	2000	ICPM
	As	ppm	203	5	10000	ICPM
	Ba	ppm	55	2	10000	ICPM
	Bi	ppm	<2	2	2000	ICPM
	Cd	ppm	<0.2	0.2	2000	ICPM
	Ca	ppm	101667	100	100000	ICPM
	Cr	ppm	216	1	10000	ICPM
	Со	ppm	27	1	10000	ICPM
	Cu	ppm	48	1	20000	ICPM
	Fe	ppm	50859	100	50000	ICPM
	La	ppm	.5	2	10000	ICPM
	Pb	ppm	9	2	10000	ICPM
	Mg	ppm	45770	100	100000	ICPM
1	Mn	ppm	1006	1	10000	ICPM
	Hg	ppm	<3	3	10000	ICPM
	Mo	ppm	3	1	1000	ICPM
	Ni	ppm	91	1	10000	ICPM
	P	ppm	374	100	50000	ICPM
	к	ppm	12806	100	100000	ICPM
	Sc	ppm	15	1	10000	ICPM
	Ag	ppm	1.6	0.1	100	ICPM
	Na	ppm	1958	100	100000	ICPM
	Sr	ppm	313	. 1	10000	ICPM
	TI	ppm	<2	2	1000	ICPM
	Ti	ppm	4508	100	100000	ICPM
	W V	ppm	<5 120	5	1000 10000	ICPM ICPM
	Zn	ppm ppm	42	1	10000	ICPM
	Zr	ppm	51	. 1	10000	ICPM

SIZE ANALYSIS REPORT

Client: Levon Resources Test: F1

Negative State

and the second se

No.

No. of the local division of the local divis

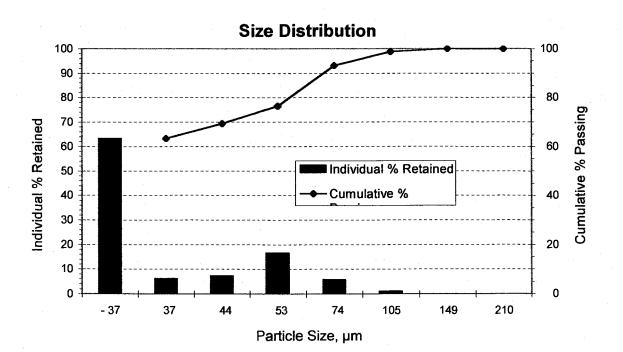
Statute State

and the second secon

National State

and the second

Date: 12-May-04 Project: 0403504


Sample: Lower Howard Zone

Grind: 2.0 kg for.31.5 minutes at 65% solids in stainless steel mill #1.

80 % Passing Size (µm) =

Siev	e Size	Individual	Cumulative
Tyler Mesh	Micrometers	% Retained	% Passing
65	210	0.0	100.0
100	149	0.1	99.9
150	105	1.1	98.8
200	74	5.7	93.1
270	53	16.6	76.6
325	44	7.3	69.3
400	37	6.1	63.2
Undersize	- 37	63.2	-
TOTAL:		100.0	

57

FLOTATION TEST METALLURGICAL BALANCE

Client: Levon Resources

Test: F1

Contraction of the local distance of the loc

Constant of the local division of the local

and the second s

and the second second

the second second

A to a local de la constant

South States

And the second second

Second Side

State of the state

Notest to be

Notes to

and the second se

F

Sample: Lower Howard Zone

Date: 12-May-04 Project: 0403504

Objective: Scoping rougher flotation test to evaluate gold recovery at a grind size of P80 = 57 um

Over all Balance (Gravity+Flotation)

Product	Wei	ight		As	say			Distributio	n
			Au	As	S ⁽²⁻⁾	S(T)	Au	As	S ⁽²⁻⁾
	(g)	(%)	(g/t)	(%)	(%)		(%)	(%)	(%)
Gravity Concentrate								-	
Pan Concentrate	4.8	0.2	845				23.1		
Flotation									
Rougher Concentrate 1	424.4	21.8	18.0	0.88	5.17		43.5	58.4	87.4
Rougher Concentrate 2	241.8	12.4	8.60	0.44	0.74		11.9	16.6	87.4
Rougher Concentrate 1+2	666.2	34.2	14.6	0.72	3.56		55.4	75.0	94.5
Rougher Concentrate 3	161.3	8.3	5.94	0.31	0.39		5.5	7.7	2.5
Rougher Concentrate 1+2+3	827.5	42.4	12.9	0.64	2.94		60.8	82.7	97.0
Rougher Concentrate 4	191.7	9,8	6.33	0.26	0.34		6.9	7.9	2.6
Total Flotation Concentrate	1019.2	52.3	11.6	0.57	2.45		67.8	90.7	99.6
Final Tails (+400 mesh)	521.3	26.7	2.06	0.06	<0.01	<0.01	6.1	5.1	0.2
Final Tails (-400 mesh)	404.9	20.8	1.29	0.07	<0.01	<0.01	3.0	4.3	0.2
Final Tails	926.3	47.5	1.72	0.06	0.01	-	9.1	9.3	0.4
Calculated Head	1950.2	100.0	8.98	0.33	1.29		100.0	100.0	100.0
Measured Head			8.00	0.34	1.39		1		

Flotation Balance

Product	Wei	ight		As	say			Distribution	n
			Au	As	S ⁽²⁻⁾	S(T)	Au	As	S ⁽²⁻⁾
	(g)	(%)	(g/t)	(%)	(%)		(%)	(%)	(%)
Flotation									
Rougher Concentrate 1	424.4	21.8	18.0	0.88	5.17		56.6	58.4	87.4
Rougher Concentrate 2	241.8	12.4	8.60	0.44	0.74		15.4	16.6	7.1
Rougher Concentrate 1+2	666.2	34.2	14.6	0.72	3.56		72.0	75.0	94.5
Rougher Concentrate 3	161.3	8.3	5.94	0.31	0.39		7.1	7.7	2.5
Rougher Concentrate 1+2+3	827.5	42.5	12.9	0.64	2.94		79.1	82.7	97.0
Rougher Concentrate 4	191.7	9.9	6.33	0.26	0.34		9.0	7.9	2.6
Total Flotation Concentrate	1019.2	52.4	11.6	0.57	2.45		88.1	90.7	99.6
Final Tails (+400 mesh)	521.3	26.8	2.06	0.06	<0.01	<0.01	8.0	5.1	0.2
Final Tails (-400 mesh)	404.9	20.8	1.29	0.07	< 0.01	<0.01	3.9	4.3	0.2
Final Tails	926.3	47.6	1.72	0.06	<0.01		11.9	9.3	0.4
Calculated Head	1945.4	100.0	6.92	0.33	1.29		100.0	100.0	100.0
Measured Head									

94,5% All the sulfides floated in come 1 = 2. only 55.4% An " " 1 = 2.

Non floating gold was retractory suggesting it locked gold in gangue rother than arsenopyrite.

Client: Levon Resources Test: CIL1 Sample: F1 Flotation Tails

Solids:

Solids:

Carbon:

Target pH:

Grind Size - P₈₀:

Target NaCN:

Test Duration:

Solution: 1,258 g

Date: 13-May-04 Project: 0403504

Objective: To determine Au extraction by CIL on flotation tails

839 g

40 %

n/a µm

20 g/L

5.0 g/L

Au

24 hours

11.0

TEST CONDITIONS

Contraction of the

and the second se

in the second second

TEST DESCRIPTION

CYANIDATION TEST REPORT

- sample was repulped to 40% solids
- added 20g/L activated carbon

- adjusted to, and maintained at, 5 g/L NaCN and pH 11

- test ended after 24 hours
- filtered and displacement washed with hot cyanide solution followed by two hot water displacement washes
- solution and solids fire assayed for Au content

HEAD GRADE

Calculated	i otal:	2.02	g/t
Measured	Total:	1.72	g/t

LEACH TEST DATA

Time	Na	CN	Lime	p	H	dO ₂	Slurry	Solution			
							Weight	Vol.	Assay Vol.	A	u
(hours)	(g/L)	(g)	(g)	before	after	(mg/L)	(g)	(mL)	(mL)	(mg/L)	(mg)
0	5.00	6.29	0.67	8.2	11.1		2,097				
3	4.26	0.93	0.11	10.9	11.1	6.5			5		
6	4.80	0.24	0.11	10.9	11.1				5		
24	3.80			1	10.9	6.0	2,129	1,308		0.05	0.065
		7.46	0.89								

SOLIDS

Time	R	esidue		(Carbon	
	Weight	Au		Weight		Au
(hours)	(g)	(g/t) (mg)		(g)	(g/t)	(mg)
24	821	1.73	1.42	28.28	7.52	0.21

CYANIDATION RESULTS

Time	Distribution	Reagent C	onsumption	Reducing Power	
	Au	NaCN	Ca(OH) ₂	0.1 N KMnO₄/L	
(hours)	(%)	(kg/t)	(kg/t)	(mL)	
24	3.9	2.97	1.06	20	
Carbon	12.5				
Residue	83.6				
Total	100.0				

FLOTATION TEST PROCEDURE

Client: Levon Resources Test: F1 Sample: Lower Howard Zone Date: 13-May-04 Project: 0403504

Objective: Scoping rougher flotation test to evaluate gold recovery at a grind size of P₈₀ = 57 um

STAGE	TIME	pН	ADDITION		COMMENTS
· · ·	(min)		Reagent	g/tonne	
Grind (2 kg) Perform 1 stage Falcon	31.5				target grind @ P80 53 microns
ROUGHER FLOTATION (on co	mbined Falcon	+ pan tailin	ig)		
			· · · .		
Condition 1 (Collector combo only)					natural pH
	1.0	9.1	PAX	50	
			A208	50	
Rougher Float 1	5.0	9.1	DF250	13	
Condition 2 (with CuSO4)	3.0	8.4	CuSO4	400	
	1.0		PAX	50	
			A208	50	
Rougher Float 2	5.0	8.6		н. Т	
		0.5		400	
Condition 3 (reduce pH)	3.0	6.5	H2SO4 PAX	460 25	reduce to pH 6.5
	1.0		A208	25	
Rougher Float 3	5.0	7.6	DF250	7	
Condition 4 (new collector + sulfidize	5	8.4	Na2S	100	use sulfidizing agent
	2	6.7	H2SO4	280	maintain pH 6.5 to 7
	2	6.9	PAX	25	
	_	0.0	A407	50	
Rougher Float 4	8	7.8	DF250	9	
screen tailing split for assay at 40	0 mesh, send b	oth fractions	for assay		

Appendix E

Ŋ

0

Û

Û

 $\left(\right)$

Û

Author's Statement of Qualifications

Ľ

Appendix E: Author's Statement of Qualifications

I, David St. Clair Dunn, Professional Geoscientist, with a business address of 1154 Marine Drive, Gibsons, B.C., Canada, certify that:

1. I am a graduate of the University of British Columbia, Vancouver, B.C. and hold a degree of Bachelor of Science in Geology.

2. I have practiced my profession as a prospector and geologist for 35 years.

3. I am registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of the Province of British Columbia (Reg. # 18,479). I am a Fellow of the Geological Association of Canada and a member of the Association of Exploration Geochemist's, the Canadian Institute of Mining, Metallurgy and Petroleum, the Honorary Advisory Board to the B.C. and Yukon Chamber of Mines, the Society of Economic Geologists and the Mining Exploration Group. I am the qualified persons for the purposes of National Instrument 43-101 in reference to this report.

4. I directly supervised the 2004/2005 trenching and diamond drilling program on the Congress Property.

5. I am the sole author of this report.

6. I am not aware of any material fact or material change from the information in this report that would make the report misleading.

7. I consent to the use of this report for the purpose of a private or public financing.

Signed: