

2004 GEOCHEMICAL, PROSPECTING AND PHYSICAL WORK REPORT SAM PROPERTY (SAM 1-10 Claim Group)
 Kamloops Mining Division
 Lytton-Spences Bridge Area, British Columbia
 NTS: 92l/5, 6; BCGS: 0921033
 Latitud $50^{\circ} 22^{\prime} \mathrm{N}^{\prime}$ Longitude $121^{\circ} 30^{\prime} \mathrm{W}$
 UTM Zone 10: 607000E, 5580000N (NAD 27)

(BC 2004 ASSESSMENT)
CROLOGICAL SURVEY BRANCT assesement riport

Almaden Minerals Ltd.
1103-750 West Pender St.
Vancouver, B.C. V6C 2 T8

TABLE OF CONTENTS

Page
1.0 SUMMARY AND CONCLUSIONS 1
2.0 RECOMMENDATIONS 2
3.0 INTRODUCTION 3
3.1 Location, Access, Physiography \& Climate 3
3.2 Claim Data 3
3.3 History 4
3.42004 Exploration Program 5
4.0 GEOLOGIC SETTING 6
4.1 Regional Geology \& Mineral Deposits 6
4.2 Property Geology, Alteration \& Mineralization 7
5.0 GEOCHEMISTRY 9
5.1 Introduction 9
5.2 Sampling \& Analytical Procedures 9
5.2.1 Quality Control Measures 10
5.3 Soil and Stream Sediment Geochemical Results 10
5.3.1 Soils 10
5.3.2 Stream Sediments 11
5.4 Prospecting \& Reconnaissance Rock Geochemical Results 12
6.0 PHYSICAL WORK 13
6.1 Road Clearing \& Repair 13
6.2 Hand Trenching 13
6.2.1 Pit SMT 04-1 Results 14
6.2.2 Trench SMT 04-2 Results 14
6.2.3 Trench SMT 04-3 Results 14
7.0 PERSONNEL AND CONTRACTORS 15
8.0 STATEMENT OF COSTS 16
9.0 STATEMENT OF QUALIFICATIONS 17
10.0 REFERENCES 18
TABLES
Table 1: Mineral Claim Summary - as at JAN 1, 2005 5
Table 2: SAM 2004 Test Pit \& Trench Summary 13
FIGURES
Following page
Fig. 1: Property Location and Regional Geology Map 2
Fig. 2 : Claim Locations and Work Distribution 5
Fig. 3 : Soil Sample Histograms-Au, As, Sb, Hg 12
Fig. 4: Recon Rock Sample Scatter Plots 12
Fig. 5: JJ Showing SMT 04-2 Trench Plan 14
Fig. 6: Discovery Showing SMT 04-3 Trench Plan 14

APPENDICES

Appendix A: SAM Area 2003 Recon Geochemical Sample Summary
Acme Analytical 2003 Geochemical Certificates
Appendix B: SAM Area 2004 Recon Geochemical Sample Summary
Acme Analytical 2004Geochemical \& Assay Certificates

PLATES

(in pockets)

Plate 1:	Soil and Stream Sediment Sample Location Map	1:15,000
Plate 2:	Soil and Stream Sediment Sample Gold Results	1:15,000
Plate 3:	Soil and Stream Sediment Sample Arsenic Results	1:15,000
Plate 4:	Soil and Stream Sediment Sample Antimony Results	1:15,000
Plate 5:	Soil and Stream Sediment Sample Mercury Results	1:15,000
Plate 6:	Rock Sample Location Map	1:15,000
Plate 7:	Rock Sample Gold Results	1:15,000

1.0 SUMMARY AND CONCLUSIONS

The SAM Property covers a significant new epithermal gold vein discovery located in the Kamloops Mining Division of southern British Columbia, NTS $921 / 5 \& 6$. This prospect is readily accessible by road, 25 kilometers northeast from the village of Lytton on the Trans-Canada Highway. It is situated just 35 kilometers west-southwest of the world-class porphyry copper producing Highland Valley district. The initial SAM 1-10 claims comprising 43 units (1,075 hectares) were acquired by staking in November 2003. Work on this claim group and its periphery is the subject of this assessment report. Following the assessment work period, the SAM 11-16 claims comprising 97 units (2,425 hectares) were added by staking during November 2004. All of the claims are 100% owned by Almaden Minerals Ltd.

Physiography in the property area is dominantly forested moderate to locally rugged upland terrain of the Scarped Range between the Fraser Plateau and northern Cascade Mountains. The claims are located on upper Skoonka Creek, a tributary to the Thompson River. The area is underlain by a northwest-southeast trending shallowly dipping sequence of intermediate and mafic volcanic rocks of the Cretaceous Spences Bridge Group. Sill-like bodies of feldspar porphyry are also present, and felsic dyke (?) rubble has been noted in a few localities. The ages and relationships of these rocks to the main volcanic assemblage are presently unknown.

Pre-acquisition work during 2003 consisted of prospecting and recon geochemical sampling based on follow-up of a government (BC-RGS) regional gold stream sediment anomaly. This program generated 22 rock, 41 silt, and 14 soil samples. The 2004 assessment work program included minor access road improvements, further prospecting and recon sampling (25 rocks, 8 silts), approximately 21 line-km of roadcut soil sampling (417 soils), and limited hand trenching at three sites (16 rock chip samples). All of the samples collected to date have been tested for 36 elements.

The rock sample results identify variable grade gold and lesser silver mineralization in a number of widely scattered quartz float occurrences, and in two major insitu vein showings named Discovery and JJ. All of these occurrences exhibit compositions and textures typical of low sulphidation epithermal veins and breccias. The averaged gold grade from 38 float samples is $624 \mathrm{ppb}(0.62 \mathrm{~g} / \mathrm{t} \mathrm{Au})$, with values ranging from <5 to $8678 \mathrm{ppb}(\sim 8.7 \mathrm{~g} / \mathrm{Au})$.

The (2003) Discovery Showing represents a large but low grade vein breccia zone having an approximate 4 m true width over which the 2004 channel sampling returned a weighted average gold analysis of $380 \mathrm{ppb}(0.38 \mathrm{~g} / \mathrm{t} \mathrm{Au})$, with negligible silver. This zone trends ENE and is subvertical. Better grade rubble ($1214-2160 \mathrm{ppb} \mathrm{Au}$) occurs $\sim 250 \mathrm{~m}$ along strike.

The newly discovered high grade JJ Showing is situated nearly three kilometers to the southwest of the Discovery Vein, on a subparallel ENE structural trend. It consists of a moderately dipping zone containing two closely spaced veins (Jan \& Jodi Veins) and intensely altered andesite wallrock having an estimated combined 2 m true width. Channel sampling of the JJ exposure has yielded impressive gold assays of 12.79 to $53.38 \mathrm{~g} / \mathrm{t}$ from vein material and 4.49 to $9.15 \mathrm{~g} / \mathrm{t}$ from the selvages. Corresponding sample silver assays range from 13 to $36 \mathrm{~g} / \mathrm{t}$ (in vein) and 4 to $7 \mathrm{~g} / \mathrm{t}$ (in the selvages).

The current soil and stream sediment sampling results have outlined two broad areas of gold-arsenic-antimony \pm mercury enrichment which include and encompass the Discovery and JJ Areas. Several strong gold-in-silt anomalies remain to be explained, and their positions indicate good potential for locating strike extensions of the Discovery and JJ mineral zones.

The limited 2004 exploration program conducted on the SAM 1-10 claims has generated highly positive overall results for such an early stage project. Continued, more aggressive exploration is definitely warranted and is strongly recommended for the entire expanded property area.

2.0 RECOMMENDATIONS

The following exploration program is recommended for the expanded (SAM 1-16) claim group:

- Further prospecting and recon rock, silt geochemical sampling.
- Property-wide geological mapping at 1:10,000 scale, and at 1:5000 or larger scale in high priority areas.
- Coarse grid ($200 \mathrm{~m} \times 50 \mathrm{~m}$) soil geochemical sampling, covering a $3.5 \mathrm{~km} \times 3.4 \mathrm{~km}$ area which includes the SAM 1-10 claims and north half of the SAM 14 claim. This would involve establishing 63 line-km of grid control, and collecting 1278 soil samples for $36-$ element ICP-MS analysis. Subsequent infill sampling at $50 \mathrm{~m} \times 25 \mathrm{~m}$ grid spacing should be conducted around all anomalous gold stations.
- Detailed grid ($50 \mathrm{~m} \times 25 \mathrm{~m}$) soil sampling outwards from the Discovery and JJ Showings, for at least 300 m in both strike directions and over 200 m -widths across the mineral zone trends. (Two areas of $600 \mathrm{~m} \times 200 \mathrm{~m} ; 5.2$ line-km of grid control; 234 soil samples for multi-element analysis as per above).
- Mechanized trenching, employing a track-mounted excavator, to test for continuity of structure and mineralization along projected trends of both the Discovery and JJ zones. At least 500 m of trenching should be carried out, comprising ten 50 m -long trenches (six in the JJ Area; four in Discovery Area) at 50 m to 100 m step-outs from the showings. This program can be accomplished from existing road access in the clear-cut (logged) blocks at these sites. All trenches that reach bedrock should be cleaned, mapped and channel sampled where alteration/mineralization is present. All samples yielding $>1000 \mathrm{ppb} \mathrm{Au}$ should be fire assayed for gold and silver.
- Detailed mineralogic, geochemical and fluid inclusion studies should be conducted on vein material from the JJ Showing in order to better understand the nature of this high grade mineralization.

Respectfully submitted

E. A. Batoon',"P', Geo.

February 28, 2005

3.0 INTRODUCTION

This report describes the results of the 2004 exploration work conducted on the SAM 1-10 claim group and documents the related expenditures applied for assessment credits.

3.1 Location, Access, Physiography and Climate (Figures 1 \& 2)

The SAM property is centered between the communities of Lytton and Spences Bridge in southcentral British Columbia, at latitude $50^{\circ} 22^{\prime} \mathrm{N}$ and longitude $121^{\circ} 30^{\prime} \mathrm{W}$ (UTM Zone 10 : $607000 \mathrm{E} / 5580000 \mathrm{~N}$) on the boundary of NTS map areas $92 / / 5 \& 6$. Good ground access is afforded via the partly hard-surfaced Botanie Lake Road from Lytton, 20 km northerly, thence three to five kilometers easterly via a forestry gravel road system which passes through the southeast corner of Bootahnie Indian Reserve \#15 and continues along the south side of Skoonka Creek valley. From the main trunk of this Skoonka Forestry Road, a number of old but partly serviceable logging spurs branch off southerly onto the claim group. For ease of reference relative to the property area, these subsidiary trails are named Northwest (NW), Central, East and West Spur Roads (see Figure 2).

The SAM claims are situated on the Scarped Range between the Fraser Plateau and the northern Cascade Mountains, within the western margin of the Intermontane physiographic region consisting of rolling upland to rugged mountainous terrain. Topography is moderate to locally steep, with elevations ranging from a low point of 1000 meters (3300 ft) on the northern property boundary to over 1780 meters (5800 ft) in the southeastern claim area. The principal drainage is northward along a major branch of Skoonka Creek, which in turn flows eastward into the Thompson River. This branch is called Gold Creek (Fig. 2). Soil and glacial till cover is extensive and generally shallow, but includes local deep mounds (to $>5 \mathrm{~m}$ thickness) particularly at the lower elevations in the northern property area. Overall bedrock exposure is moderate to locally abundant in road cuts and in some of the stream gullies, as well as on steep upper slopes and ridge tops. The local ice-flow direction, determined from glacial striae in outcrop along the West Spur Road, is to the east-southeast (azimuth $110^{\circ} \pm 5^{\circ}$).

The climate is semi-arid, with hot dry summers having temperatures commonly in the $30^{\circ} \mathrm{C}$ to above $40^{\circ} \mathrm{C}$ range at Lytton. All areas of the property are generally free of snow from late May or early June through October. Vegetation consists mainly of widely spaced lodgepole pine and Douglas fir grading to more dense balsam fir and spruce along creek valleys. Dense brush consisting of alder and willow is common along most of the stream gullies and road cuts. Approximately 40% of the SAM 1-10 claim area has been clear-cut logged during the 1980 s to mid-1990s.

3.2 Claim Data

The property consists of 16 contiguous mineral claims totaling 140 legacy units (3500 hectares) in the Kamloops Mining Division, BCGS map area 092l033. The initial 43 units comprising the SAM $1-10$ claims described in this report were located by Almaden Minerals Ltd. in early November 2003. Five 2-post claims (SAM 11-15/5 units) were added onto the southwest corner of this block on October $1^{\text {st }}$ 2004, but they were later cancelled by Applications for Inclusion within overlapping 4-post claims (BC Mineral Titles Event Nos. 3220474, 76, 78, 80, 82).

Six 4-post claims (SAM 11-16) consisting of 97 units were added during mid-November 2004, after the first anniversary dates and work filing deadline for the SAM 1-10 group. During January 2005, following implementation of the new BC Mineral Titles Online (MTO) system, 13 adjacent SAMS (Sam South) claims comprising 300 BCGS grid cells were acquired electronically. However, any further discussion of these new cell tenures is beyond the scope of this report.

Locations of the SAM 1-16 legacy claims are shown on Figure 2 and respective claim data are summarized in Table 1. The expiry dates listed for SAM 1-10 are subject to filing and approval of this report. All of the claims are 100% owned by Almaden.

Table 1 Mineral Claim Summary - as at JAN 01/05

Claim Name	Type	\# Units	Tenure No.	Expiry Date
SAM 1	4 Post	20	406564	05 Nov 08
SAM 2	4 Post	15	406565	05 Nov 08
SAM 3	2 Post	1	406566	05 Nov 08
SAM 4	2 Post	1	406567	05 Nov 08
SAM 5	2 Post	1	406568	05 Nov 08
SAM 6	2 Post	1	406569	05 Nov 08
SAM 7	2 Post	1	406570	05 Nov 08
SAM 8	2 Post	1	406571	05 Nov 08
SAM 9	2 Post	1	406572	05 Nov 08
SAM 10	2 Post	1	406573	05 Nov 08
SAM 11	4 Post	12	415615	13 Nov 05
SAM 12	4 Post	18	415616	13 Nov 05
SAM 13	4 Post	15	415617	12 Nov 05
SAM 14	4 Post	12	415618	13 Nov 05
SAM 15	4 Post	20	415619	13 Nov 05
SAM 16	4 Post	20	415620	13 Nov 05

3.3 History

There are no published records of any prior mineral exploration work in the area covered by the SAM claims, and there are no documented mineral occurrences for this locality in the BC Minfile database. No old claim posts, nor any other ground evidence of previous exploration activity, have been found to date on the property.

During the Gold Rush era of the mid $-19^{\text {th }}$ to early $20^{\text {th }}$ centuries, placer gold was mined from gravel bars on the Fraser and Thompson Rivers and on most of their major tributary streams in the Ashcroft-Lytton-Lillooet district. Production records from this time period and region are not detailed, and there is no mention of Skoonka Creek in the published literature (BCMEMPR Bulletin 28, GSC Map 1010A notes, GSC Memoir 262). However, it is interesting to note that the discovery of coarse placer gold in 1857 on the Thompson, near Nicoamen River, actually initiated the Gold Rush into interior British Columbia. This Nicoamen River site is only 12 km downstream from the mouth of Skoonka Creek. A present-day tourist stop along the Trans-Canada Highway, called Goldpan Provincial Park, is also located on the Thompson River just 2.5 km downstream from Skoonka Creek.

In 1981 a federal-provincial government Regional Geochemical Survey was carried out over the entire Ashcroft (NTS 921) map area. The initial results of this survey were published in 1982 as BC RGS 8/GSC Open File 866. Years later, in 1994, the sample pulps were re-analyzed by improved techniques and for additional elements including gold. The new data were published as BC RGS 40/GSC Open File 2666 which identified a number of strong gold-in-silt anomalies including two located in the Skoonka Creek drainage, represented by Sample Numbers 815058 (21 ppb Au/rerun 23ppb Au) and 815059 (19ppb Au).

During a 2003 regional gold exploration program, Almaden Minerals Ltd. conducted two brief stages of prospecting and reconnaissance geochemical sampling in the upper part of Skoonka Creek drainage above the RGS sample site 815058. Results of the initial examination (by Balon, Harwood) in August confirmed and enhanced the gold silt anomaly in this tributary, later named

Gold Creek. Furthermore, a composite sample of chalcedonic quartz vein rubble found along an adjacent road cut returned a significant gold analysis of $1300 \mathrm{ppb}(1.3 \mathrm{~g} / \mathrm{t} \mathrm{Au})$. Follow-up work (by Balon, Ritcey) in October revealed several other mineralized quartz float occurrences, some of which yielded better gold grades up to $8678 \mathrm{ppb}(\sim 8.7 \mathrm{~g} / \mathrm{t} \mathrm{Au})$. An in-situ large quartz breccia vein (the Discovery Vein) carrying anomalous gold values was also found near one of the mineralized float occurrences. This latter discovery prompted staking of the SAM 1-10 claims.

The 2003 work program on an around the SAM property area generated totals of 22 rock, 41 stream sediment, and 14 soil samples which were all analyzed for 36 elements. Fluid inclusion studies were conducted on two specimens of quartz vein material. All of the 2003 sample locations, descriptions and analytical data are incorporated in this report.

3.4 2004 Exploration Program

Field work in 2004 consisted of access road clearing and minor repairs, a road cut soil geochemical survey, further prospecting with reconnaissance rock/silt sampling, and limited hand trenching with related bedrock mapping/sampling. Totals of 41 rock, 8 silt, and 417 soil samples were collected and delivered to Acme Analytical Laboratories Ltd. in Vancouver, BC, for 36element geochemical analysis plus a few selected assays. Work was conducted on the SAM 1 , 2, 6-10 claims and immediate periphery during one day in August and during the period between September $19^{\text {th }}$ to October $5^{\text {th }}$, by one Company employee and two contract field assistants. The crew was based at the Totem Motel in Lytton. All UTM grid locations were recorded in NAD 27 using Garmin 12XL handheld GPS receiver units. The work types and distributions are shown on Figure 2.

Property expansion after the assessment work period was carried out (NOV/04) by a three-man contract staking crew commuting by helicopter from Merritt, BC.

GEOLOGIC SETTING

4.1 Regional Geology \& Mineral Deposits (Figure 1)

The subject region lies within the Southern Intermontane (tectonic) Belt of the Canadian Cordillera. Regional bedrock geology is shown on Figure 1, which has been compiled and condensed from parts of GSC Maps 41-1989 (Hope, by J.W.H. Monger, 1989) and 42-1989 (Ashcroft, by J.W.H. Monger and W.J. McMillan, 1989).

Lithologies within the Figure 1 map-area include successions of Mesozoic to Tertiary volcanic and sedimentary rocks which have been intruded by plutons of various compositions and ages from Late Triassic and/or Jurassic to Miocene (?). Locally thick deposits of Pleistocene and Recent glacial drift and alluvium are prevalent in all of the major creek or river valleys. Much of the region was overridden during the last Pleistocene glaciation by ice moving southeastward across the SAM area (Fraser Plateau; Ryder, 1975).

The dominant rock assemblage underlying the SAM property and adjacent areas is the Cretaceous Spences Bridge Group (KSB / KSBS) comprising a broad northwest-southeast trending thick sequence of gently folded volcanics with lesser sediments, dipping generally shallowly in various directions. These rocks include intermediate, locally felsic and mafic flows and pyroclastics with some sandstone, shale and conglomerate (KSB), as well as a younger basaltic unit differentiated as the Spius Creek Formation (KSBS). This quite homogeneous conformable upper division was formerly called Kingsvale Group by early government geologists (Rice - 1947, Duffell and McTaggart - 1952, and others prior to Thorkelson-1985).

The Spences Bridge Group is in fault contact with older plutonic and related metamorphic rocks of the Triassic-Jurassic Mount Lytton Complex (TrJgd, TrJm) to the south and west of the property area. This underlying Mount Lytton assemblage is host to a number of old known copper showings within a $10-15 \mathrm{~km}$ radius of the SAM claims (BC Minfile 092ISW030, 035, 039, 040, 057-062).

To the northwest $(20-25 \mathrm{~km})$ and southeast $(25-40 \mathrm{~km})$ of the property, the Spences Bridge Group is overlain by Tertiary (Eocene) mafic to felsic volcanics of the Kamloops and Princeton Groups (Ek, Ep). These younger volcanic units are cut by small (Miocene?) intrusions of intermediate composition (Ti), which may be part of a feeder system to them.

The major structural features in the region are steeply dipping normal faults, parallel and subparallel with those of its western bounding Fraser (River) fault system. The faults have two dominant trends, one at $140^{\circ}-150^{\circ}$ azimuth and the other due north-south. One such latter feature is the prominent Spius Creek - Lornex Fault which passes through the Highland Valley copper mine area, 35 kilometers east-northeast of SAM. Two other parallel north-south faults occur on either side of the property, along Botanie Creek and the Thompson River. Rocks of the Spences Bridge Group are believed to have formed as a chain of stratovolcanoes associated with subsiding, fault-bounded basins (Souther, 1991 and Thorkelson, 1985).

Major mineral deposits in the region include those of the world-class porphyry copper producing Highland Valley district, where five major orebodies containing initial aggregate reserves of approximately 1.5 billion tonnes grading $0.4 \% \mathrm{Cu}$ were developed in Upper Triassic intrusive rocks of the Guichon Creek Batholith. The former Craigmont Mine (45 km ESE of SAM) exploited an important copper-iron skarn deposit that contained about 33 million tonnes grading $1.3 \% \mathrm{Cu}$ hosted by Triassic Nicola Group volcanics.

The Blackdome Mine, situated about 125 kilometers northwest of SAM (off Fig. 1), has exploited a bonanza-style low sulphidation epithermal vein deposit hosted in Eocene volcanics. Between 1986-91 the operation produced about 336,000 tonnes of ore at an average recovered grade of $21.6 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $76.5 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$. There is a remaining (inferred) underground resource of approximately 124,000 tonnes grading $12.8 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $33.7 \mathrm{~g} / \mathrm{t} \mathrm{Ag}$ (Ref. BCMEM Open File 20002).

Low sulphidation type epithermal gold-silver mineralization is hosted by quartz veins and breccia in Spences Bridge Group volcanics at the Nicoamen River (ZAK), Prospect Valley (PV-NIC) and Merit properties located 20 to 40 kilometers southeast of the SAM claims. These prospects are all new grassroots discoveries made by Almaden during 2001-04.

4.2 Property Geology, Alteration \& Mineralization

No systematic property scale geological mapping has been conducted on the SAM claims, however local outcrop data have been noted during the course of other work. Very limited (areal) detailed bedrock mapping was carried out at two hand trench sites described under Section 6.3.

The Spences Bridge Group lower (KSB) division underlying most of the property area comprises a thick accumulation of subaerial, dominantly intermediate volcaniclastics and flows. Dips are generally low, and in many places are close to horizontal. The most common and widespread rock type is a massive, fine grained, dark grey to locally red-brown basaltic (pyroxene) andesite lava. Locally intercalated pyroclastic units include various tuffs, ignimbrite, lahar and breccia. Dark green coarse pyroclastics have been observed in outcrop at one location in the northwestern property area. In the upper part of the KSB assemblage, pale olive green to light grey crowded-feldspar porphyry sills and flows are common; several sections of this rock type are exposed in cuts along the Central Spur Road.

The Spius Creek Formation or upper (KSBS) division of mafic volcanics is a younger continuum of the Spences Bridge Group which has been mapped by Government geologists (Monger \& McMillan, 1989) over a small area that is now within the southeastern SAM claims. This area was not visited during the 2004 season, however similar dark brown to maroon basalts were noted along segments of the West Spur and upper Central Spur roads. These rocks are generally aphanitic but locally vesicular and/or amygdaloidal. The amygdules commonly consist of opaque white to translucent light blue-grey and clear banded chalcedony (agate), and/or calcite.

Intrusive rocks consisting of both mafic and felsic (rhyolite) dykes cutting the Spences Bridge Group are reported in the published literature on the western Ashcroft map area (Monger, 1981; Souther, 1991). To date, such intrusions have not been found in place on the property. However, stream float and angular rubble of rhyolitic composition and texture have been located in lower Gold Creek and in cut banks along the Central and East Spur roads (Discovery Area, on Plates $1-7$). This rock type is rusty-orange weathered, very siliceous, weakly pyritic, and commonly carries drusy quartz stringers, suggesting a spatial association with adjacent vein mineralization.

The most prominent structural feature in the local area is the Botanie Creek fault scarp, which is marked by a several-km long north-south line of steep bluffs along the western expanded property boundary (W. side of SAM 11 \& 12 claims - Fig. 2). Another, much shorter, NNE-SSW line of bluffs forms the canyon of Gold Creek on the SAM 1 claim; this feature has not been closely examined in the field, but it represents an apparent subparallel fault or lineament. A couple of vague east to ENE-trending lineaments are discernible in the central property area, as interpreted from aerial photographs, topographic maps and limited field observations. These easterly striking features are each about $2-\mathrm{km}$ in length, spaced $1.5-2.0 \mathrm{~km}$ apart, and are roughly parallel with the main geochemical trends and mineral showings identified to date.

Thus far, only a few small areas of significant alteration have been noted. The zones are marked by dark gossanous soil and strongly altered or decomposed volcanic bedrock exposed in various road cuts (Central, East \& West Spurs), and on an old logging landing near the western common corner (LCP) of the SAM $1 \& 2$ claims. Alteration types at these sites consist of strong Fe/Mn oxide, intense argillic (associated with local shears), bleaching, and varying degrees of silicic $\pm \mathrm{Fe}$ carbonate. The two most prominent zones are both located adjacent to quartz vein showings, within approximately 50 m - wide envelopes (Discovery and JJ Areas, Plates 1-7). Elsewhere on and around the property, strongly to intensely quartz-flooded and/or carbonatized float cobbles and boulders have been found in several stream gullies and in till banks.

Significant quartz hosted gold and lesser silver mineralization has been identified in a number of widely scattered float occurrences, and in two major vein showings, located on the SAM 1 and SAM 2 claims. All of these occurrences exhibit compositions and classic textures typical of low sulphidation epithermal veins and breccias. The styles of mineralization include massive multiphase vein, multistage breccia, stockwork veinlet, and pyritic silica-carbonate replacement of hostrock. Disseminated pyrite and specular hematite also occur in both quartz matrix and hostrock clasts at the Discovery Showing. This showing is an approximate 4 m -wide, ENE $\left(075^{\circ}\right)$-striking, steeply dipping, low grade gold bearing quartz breccia vein. Fluid inclusion studies of two vein rubble samples from the discovery area have reported formation temperatures in the range of $<200^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$, indicating minimal erosion of the epithermal system at this site (Reynolds, 2004). The other major vein showing, called JJ, is a subparallel (ENE-trending) structure situated nearly three kilometers to the southwest of the Discovery Vein. It consists of a $\mathbf{2 m}$-wide, moderately dipping zone containing high grade gold-quartz vein(s) and strongly altered hostrock material from which channel samples have returned assays ranging from 4.49 to $53.38 \mathrm{~g} / \mathrm{t}$ Au. The property-wide mineralized float occurrences, and the above-noted showings, are discussed in greater detail under Sections 5.4 and 6.2 respectively.

5.0 GEOCHEMISTRY

5.1 Introduction

Geochemical work on and surrounding the SAM claim area during 2003 and 2004 involved various phases of sampling which accounted for collection of the following sample types and numbers (n):

2003 (prior acquisition); 41 stream sediments (AC-n series), 14 roadcut soils (AC-Sn series), 22 reconnaissance rocks (AC-Rn series).

2004 (post acquisition); 8 stream sediments (AC-n series), 417 roadcut soils (SJ-n \& SB-n series), 25 reconnaissance rocks (SAM-Rn series) and 16 trench rocks (continuous chip/channel type, SAM-Rn series).

All of the 49 silt, 431 soil, and 63 rock samples were analyzed for 36 elements. Complete results for the samples are listed on the Acme Analytical Laboratories Ltd. Geochemical Analysis Certificates contained in Appendix A (2003) and in appendix B (2004). Tables in these Appendices also give the UTM grid locations, brief descriptions and selected analytical results for all but the trench rock samples which are described in Section 6.2. Stream Sediment and soil sample locations and numbers are plotted on Plate 1; rocks sample locations and numbers are shown on Plate 6.

5.2 Sampling \& Analytical Procedures

Sample locations were marked in the field with labeled blue and orange flagging for the 50 m spaced soil stations, and with pink flagging plus labeled weatherproof (Tyvek) tags for the stream sediment, recon rock, and closer-spaced soil sites.

A UTM grid location was recorded for every site by handheld GPS unit using the NAD 27 datum. All of the samples were shipped to Acme Analytical Laboratories Ltd. in Vancouver, BC, for 36element analysis by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS).

Soil samples were collected by mattrock or rock hammer, mainly at 50 m intervals, along the original cut banks of logging spur roads and skidder trails. In most cases the B horizon was sampled, but in a few rocky localities the combined B/C or C horizon was taken. Stream sediment samples were collected from the finest silt/sand material available in the active channel, with little or no organic matter. Individual soil and stream sediment sample weights were approximately 0.5 kilogram. Both types of samples were shipped to the laboratory in labeled standard $4^{\prime \prime} \times 6^{\prime \prime}$ Kraft paper bags. Sample preparation there involved drying at up to $60^{\circ} \mathrm{C}$ and sieving (up to) 100 grams from each to -80 mesh. Contingent upon the amount of -80 mesh material available, a $7.5,15$ - or 30 - gram subsample was cut and then leached with 180 ml of 2-$2-2 \mathrm{HCL}^{2}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}$ for one hour, followed by dilution to 600 ml and ICP-MS analysis.

Rock sample individual weights ranged from <1-3 kilograms for float samples and 2.5-10 kilograms for bedrock (continuous chip or channel) samples. The float samples were composed of chips from either a single large quartz vein/altered hostrock fragment or, in some cases, multiple smaller pieces of such material collected over a few tens of meters. At the laboratory, rock sample preparation consisted of crushing each to - 10 mesh (70%) followed by pulverizing a 250 -gram split to 95% passing 150 mesh. A 30 -gram subsample was then subjected to the same acid digestion and analytical procedure as that employed for the soil and silt samples.

5.2.1 Quality Control Measures

All of the soil sampling was conducted by very experienced samplers, with spot field checks for quality by the author. All of the stream sediment and most of the rock samples were collected by or under the direct supervision of the author. All samples were accounted for, packaged with due diligence, and personally delivered to the laboratory by the author.

At two locations in the Discovery Area, some rock samples collected during 2004 were nearduplicates of those taken in 2003 (i.e. 2004 sample SAM-R1 vs. 2003 sample AC-R7 and 2004 samples SAM-R21-R26 vs. 2003 samples AC-R17-R19). In both of these cases, the corresponding sample results for the elements of interest compare very closely. At the high grade JJ Showing, initial gold and silver geochemical analyses were later checked by metallics fire assays with good duplication of results from eight of nine samples. (See table of results on Fig. 5 in Section 6.2).

Acme Analytical Laboratories runs standards and provides resamples at varying intervals for each sample shipment received. A resample consists of analyzing a second cut (subsample) from the same sample pulp (or occasionally reject portion), and is reported as a rerun (RE) or reject rerun (RRE) on the analysis certificate. In most cases there is good reproducibility of results between the original subsamples and resamples, with the exception of gold in stream sediments and in some of the soils (particularly at the lower end of the detection range).

5.3 Soil and Stream Sediment Geochemical Results (Plates 2-5)

The merged 2003 and 2004 soil and stream sediment sample results for the four select elements gold (Au), arsenic (As), antimony (Sb) and mercury (Hg) are provided in Plates 2 to 5 respectively. These elements were chosen for plotting because they collectively represent the best pathfinder suite for epithermal mineralization. Two other, less definitive, local mineralization pathfinders are silver (Ag) and molybdenum (Mo).

5.3.1 Soils

Lognormalized frequency distributions for $\mathrm{Au}, \mathrm{As}, \mathrm{Sb}, \mathrm{Hg}$ were constructed from the raw soil analytical data using results from 426 of the 431 (combined 2003-04) samples. The histograms are shown in Figure 3. Element concentration ranges used for statistical categories are based on the $50^{\text {th }}, 70^{\text {th }}, 90^{\text {th }}$ and $95^{\text {th }}$ percentiles.

The overall soil geochemical response is quite weak, with generally scattered to patchy distributions of anomalous values and only a few local concentrations of high values. The weak response in some areas may be partly or wholly due to the presence of local deep clay-rich till banks. The highest ($\mathrm{Au}, \mathrm{As}, \mathrm{Sb}, \mathrm{Hg}$ plus Ag, Mo) values from the survey are tightly clustered near both the Discovery and JJ mineralized vein showings, where minor closely spaced sampling was conducted. The current (non-grid) sampling pattern and resultant low sample density on the property do not permit delineation of distinct geochemical trends. A brief discussion follows, on the anomaly clusters and some vague trends for each of the four elements plotted.

Gold (Plate 2)

- The main gold anomaly is located in the Discovery Area, trends ENE, and is about 1100 m long by 500 to 150 m wide from west to east. The highest soil value here is 322.7 ppb Au , at the Discovery Showing. This anomaly is open to the west, and the positions of four strong gold-in-silt values ($40.1-82.7 \mathrm{ppb}$) in an adjacent drainage branch indicate potential for a 1000 to 1250 m long westward extension.
- A second, stronger but much more confined, gold soil anomaly is situated in the JJ Area and contains the highest value (2094 ppb) obtained from the 2004 sampling program. This sample was collected in shallow overburden directly above the high grade JJ vein showing prior to its exposure by hand trenching. The primary zone of gold enrichment here is marked by five other very strong values (175.7-527.6 ppb) that were generated by infill sampling along a prominent roadcut gossan, between two earlier 50 m -spaced stations (37.9 and 187.3 ppb Au). The immediate locales to the south and north, for about 500 m in each direction, contain nine more stations with moderate values ranging from 11.3 to 49.5 ppb . The overall anomaly in this area has a north-south orientation, but its suspected trend is ENE as inferred from the JJ vein zone $\left(070^{\circ}-075^{\circ}\right.$) strike and from the position of a strong silt anomaly (28 ppb Au) located $\sim 850 \mathrm{~m}$ to the east.
- A third, diffuse group of moderate soil values ($9.0-20.2 \mathrm{ppb} \mathrm{Au}$) straddles the northwest corner of the claim group over an area of $\sim 1600 \times 800 \mathrm{~m}$, with a possible ENE trend.

Arsenic (Plate 3)

There are two well defined clusters of anomalous arsenic soil values, which have very good correlation with gold. In the Discovery Area, the arsenic signature is somewhat broader to the north (than that of gold), and is more elongate in a NE rather than ENE direction, with a size of about 700 m wide by 1600 m long. In the JJ Area, the arsenic anomaly is highly coincident with that of gold in terms of relative strength as well as size and configuration. The few scattered elevated arsenic values in the northwestern claim area show an overall spatial relation to gold, but have generally poor station-to-station coincidence with gold.

Antimony (Plate 4)

Two discrete clusters of anomalous antimony soil values, also located in the Discovery and JJ Areas, show good correlation to both gold and arsenic but are somewhat lesser in magnitude. A small local antimony anomaly occurs along a short spur trail east of central Gold Creek, roughly between the Discovery and $J J$ zones. This minor (size) anomaly has good coincidence with gold, but not with arsenic. There is no significant antimony signature in the northwestern sample area.

Mercury (Plate 5)

The mercury in soils plot shows a widespread pattern of elevated to strongly anomalous values over the entire western half of the claim group. This signature is difficult to interpret because of poor contrast in the range of values. The only discrete high-order anomaly is in the JJ Area, coincident with gold-arsenic-antimony. A broad ENE trend is indicated by the positions of several spatially related strong mercury silt anomalies.

5.3.2 Stream Sediments

Separate statistics were not calculated for the stream sediment analyses because of the small sample population. The same element concentration ranges used to discriminate among background, threshold and anomalous values in the soils were applied to the silt results, and are symbolized similarly on the respective $\mathrm{Au}, \mathrm{As}, \mathrm{Sb}, \mathrm{Hg}$ plots (Plates 2-5). These applications are quite valid based on local field experience and reference to the published government RGS data for NTS 921 .

The current sediment sampling on and northwest of the SAM 1-10 claim group has greatly expanded and enhanced the initial gold anomaly at the mouth of Gold Creek. Twenty other sites of elevated to strongly anomalous gold have been identified, with values ranging from 4.1 to 82.7 ppb . Four of the five strongest values ($40.1-82.7 \mathrm{ppb} \mathrm{Au}$) occur in a short side branch of Gold Creek, to the west of the Discovery Area soil anomaly. The fifth strongest value (30.8 ppb Au) is in a minor tributary of Skoonka Creek which drains the northwest corner of the claim area. Six
sites with moderate to strong values (10.4-24.9 ppb Au) are located in other branches of Gold Creek to the north and east of the JJ Area soil anomaly.

The gold-in-silt anomalies have moderate coincidence with arsenic (9 of 20 sites), good coincidence with antimony (15 of 20 sites), and very good coincidence with mercury (17 of 20 sites). A prominent mercury-in-silt anomaly cluster, defined by nine samples with values from 0.08 to 0.17 ppm Hg , is situated immediately north and northeast of the JJ Area soil anomaly.

The overall multiple element stream geochemical anomaly signatures indicate probable extensions of the presently known mineral trends, westward from the Discovery Area and ENE from the JJ Area.

5.4 Prospecting \& Reconnaissance Rock Geochemical Results (Figure 2 and Plates 6, 7)

Prospecting of gold stream sediment anomalies was carried out in the drainage areas noted on Figure 2. This work included the collection of additional silt and rock geochemical samples to those taken in 2003. All of the recon rock sample locations and numbers are shown on Plate 6 , and the respective gold results are posted on Plate 7. Sample descriptions, UTM grid coordinates and select results are included in Appendices A (2003) and B (2004) with the analysis certificates.

The total of 47 recon rock samples collected to date comprise 38 from float and seven (7) from bedrock or local rubble. All were composed of quartz vein/breccia material and/or altered volcanic or felsic dyke (?) hostrock. Many of the float samples contained angular to subangular fragments indicating a local provenance, but the sources remain to be found. The largest single float fragment encountered is a subrounded quartz breccia boulder measuring $\sim 45 \mathrm{~cm}$ in diameter (2003 sample AC-R14 (553.7 ppb Au). Gold analyses from the 38 float samples range from 1.1 ppb to 8678.1 ppb , with an average of $624 \mathrm{ppb}(0.62 \mathrm{~g} / \mathrm{t} \mathrm{Au})$. Gold values show weak positive correlations with Ag , As , Mo and poor or negative correlations with $\mathrm{Sb}, \mathrm{Hg}, \mathrm{Ba}$ as shown in the scatter plots on Figure 4.

A 500 m long east-west mineral trend is evident in the Discovery Area, as defined by the locations of five mineralized float samples ($455.2-2159.7 \mathrm{ppb} \mathrm{Au}$) and three bedrock samples (128.3 338.3 ppb Au) which are detailed as an inset on Plates 6 \& 7 . This trend coincides with the local anomalous soil geochemistry and with the measured strike $\left(075^{\circ}\right)$ of the Discovery Vein zone. Eleven mineralized float occurrences, with gold values of 190 to 8678 ppb , are dispersed over a 1500 m long by 500 m wide arcuate belt to the northeast of the JJ Showing area; some of these occurrences coincide with the local anomalous stream sediment geochemistry, but only vague easterly or ENE trends are presently discernible. Four other, lower tenor float occurrences (187425 ppb Au) situated in the northwestern corner of the claim group do not form any trend. The highest grade recon bedrock sample (4397.6 ppb Au) was collected from a quartz vein or lens (?) within a wide alteration band about 40 m northeast of the JJ Showing. This occurrence requires further examination for determination of its size, trend and relation to the JJ zone.

Gold			
Log Au ppb	Frequency	Curnulative \%	Au ppb
-0.602	14	3.29%	0
-0.406	0	3.29%	0
-0.210	15	6.81%	1
-0.014	23	12.21%	1
0.183	59	26.06%	2
0.379	73	43.19%	2
0.575	106	68.08%	4
0.771	58	81.69%	6
0.967	35	89.91%	9
1.163	15	93.43%	15
1.359	16	97.18%	23
1.556	2	97.65%	36
1.752	2	98.12%	56
1.948	4	99.06%	89
2.144	0	99.06%	139
2.340	2	99.53%	219
2.536	1	99.77%	344
2.733	0	99.77%	540
2.929	0	99.77%	849
3.125	0	99.77%	1333
More	1	100.00%	

Arsenic				
Bin	Frequency	Cumulative \%	As ppm	
0.255	2	0.47%	1.800	
0.350	7	2.11%	2.237	
0.444	16	5.87%	2.779	
0.538	41	15.49%	3.454	
0.633	85	35.45%	4.292	
0.727	87	55.87%	5.333	
0.821	89	76.76%	6.627	
0.916	47	87.79%	8.235	
1.010	17	91.78%	10.233	
1.104	18	96.01%	12.716	
1.199	3	96.71%	15.801	
1.293	3	97.42%	19.634	
1.387	2	97.89%	24.398	
1.482	3	98.59%	30.318	
1.576	2	99.06%	37.673	
1.670	2	99.53%	46.814	
1.785	1	99.77%	58.172	
1.859	0	99.77%	72.286	
1.953	0	99.77%	89.825	
2.048	0	99.77%	111.619	
		1	100.00%	

\log As ppm

Antimony			
Log Sb ppm	Frequency	Cumulative \%	Sb ppm
-1.000	51	11.97%	0.100
-0.915	0	11.97%	0.122
-0.830	0	11.97%	0.148
-0.745	0	11.97%	0.180
-0.660	184	55.16%	0.219
-0.575	0	55.16%	0.266
-0.490	114	81.92%	0.323
-0.405	0	81.92%	0.393
-0.320	46	92.72%	0.478
-0.235	6	94.13%	0.581
-0.151	15	97.65%	0.707
-0.066	0	97.65%	0.860
0.019	3	98.36%	1.046
0.104	1	98.59%	1.272
0.189	4	99.53%	1.546
0.274	0	99.53%	1.880
0.359	0	99.53%	2.287
0.444	0	99.53%	2.781
0.529	0	99.53%	3.381
0.614	0	99.53%	4.112
	2	100.00%	

Mercury			
Log Hg ppm	Frequency	Cumulative \%	Hgppb
-2.000	32	7.51\%	0.010
-1.932	0	7.51\%	0.012
-1.864	0	7.51\%	0.014
-1.796	0	7.51\%	0.016
-1.728	0	7.51\%	0.019
-1.660	120	35.68\%	0.022
-1.591	0	35.68\%	0.026
-1.523	0	35.68\%	0.030
-1.455	112	61.97\%	0.035
-1.387	71	78.64\%	0.041
-1.319	0	78.64\%	0.048
-1.251	41	88.26\%	0.056
-1.183	17	92.25\%	0.066
-1.115	6	93.66\%	0.077
-1.047	6	95.07\%	0.090
-0.979	4	96.01\%	0.105
-0.911	7	97.65\%	0.123
-0.843	4	98.59\%	0.144
-0.774	1	98.83\%	0.168
-0.706	3	99.53\%	0.197
More	2	100.00\%	

Figure 3: Soil Sample histograms - Au, As, Sb, Hg

Figure 4: Recon Rock Sample Scatter Plots

6.0 PHYSICAL WORK

Physical work in 2004 consisted of manual road clearing and repair, and manual trenching at three locations. The work types and distributions are illustrated on Figure 2.

6.1 Road Clearing and Repair (Figure 2)

Road clearing involved mainly the cutting of alders, willows and other shrubbery along the sides and in the medians of several partly overgrown logging spurs, as well as the lopping of trees and cutting up of deadfall or blowdown. This work was carried out to facilitate truck access during the exploration program. Only hand tools (axe, machete, chainsaw) were employed. Within the boundaries of the SAM 1 - 10 claim group, sections of the East and West Spur Roads totaling 4.0 km in length were partially cleared. The widths of clearing, including both roadsides and median, varied from two to four meters depending upon the vegetation density. Intermittent segments required little or no clearing. The aggregate area of brush cutting is estimated at approximately 4000 square meters (0.4 hectares). The cut brush was stacked in small piles and/or scattered in the forest along the roadsides.

Waterbar repairs were conducted at two stream crossings on the Central Spur Road and at one on the East Spur Road. This pick-and-shovel work included partial backfilling of deep washouts and the removal of sharp or large boulders. An old log bridge at the East Spur site was improved by adding more sound timbers, and its approaches were refilled.

Total time expended for the (on-property) road clearing and repair was seven person-days.

6.2 Hand Trenching (Figure 2)

One test pit and two trenches were hand dug at the locations shown on Figure 2 and on Plates 1, $6 \& 7$. Where bedrock was achieved, excavation was followed by thorough cleaning, mapping and continuous chip/channel type rock sampling. This sampling was effected by hammer and chisel; the resultant channels averaged about 4 cm wide by 4 cm deep, and individual sample weights varied from 2.5 kg to over 10 kg . The trenches were surveyed by chain and compass from UTM grid control points established with a Garmin 12XL GPS receiver unit set to average for at least one hour. A summary of the excavations is provided in Table 2 below.

Table 2: SAM 2004 TEST PIT AND TRENCH SUMMARY

$\begin{gathered} \text { PIT OR } \\ \text { TRENCH No. } \end{gathered}$	LENGTH (m)	$\begin{gathered} \text { AVG } \\ \text { WIDTH (m) } \end{gathered}$	$\begin{aligned} & \text { AVG } \\ & \text { DEPTH }(\mathrm{m}) \end{aligned}$	VOLUME (m^{3})	$\begin{gathered} \text { \# ROCK } \\ \text { SAMPLES } \end{gathered}$
SMT04-1	4.0	0.4	0.35	0.56	1
SMT04-1	2.0	0.4	0.90	0.72	
SMT04-2	3.5	3.2	0.40	4.48	9
SMT04-2	2.0	0.9	0.15	0.27	
SMT04-3	11.2	1.4	0.30	4.70	7
SMT04-3	1.5	0.5	0.30	0.22	
(Pathway)					
TOTAL	24.2			10.95	16

6.2.1 PIT SMTO4-1 Results

The test pit SMT04-1 was dug roughly at mid-section on a $\sim 3 \mathrm{~m}$-high roadcut bank slope, nearly directly above the initial mineralized float occurrence found in 2003 (AC-R7, 1300 ppb Au \& subsequent samples AC-R15, R16: 2160 and 1214 ppb Au). There is also a weak soil color anomaly at this site, with anomalous gold values (11.3 to 57.1 ppb) in four of nine soil samples taken in 2003 (AC•S2-S10 @ 10m spacing). Bedrock was not achieved; the pit was abandoned at a maximum depth of 1.0 m in very compact clay-rich pebble/cobble till. Sparse, subangular quartz vein fragments were encountered; a composite sample of this material SAM-R1 was collected, which returned a gold analysis of 1627.5 ppb .

6.2.2 Trench SMT04-2 Results (Figure 5)

This trench was dug on a quartz rubble occurrence noted during the 2004 roadcut soil sampling program (soil sample station SJ-13, 2094 ppb Au). Bedrock was easily achieved beneath shallow overburden, resulting in a new discovery of high grade gold-quartz vein mineralization called the JJ Showing. The exposure reveals an ENE trending zone containing two closely spaced moderately dipping veins, named the Jan and Jodi Veins, together with intervening and bordering intensely altered andesite hostrock. The veins and selvages have an estimated combined true width of 2.0 meters. Nine large-sized channel samples were collected on a staggered pattern across the zone, as shown on the map in Figure 5. These samples yielded impressive (initial) gold analyses ranging from 14,930 to $55,746 \mathrm{ppb}$ (14.93-55.75 $\mathrm{g} / \mathrm{t} \mathrm{Au}$) in vein material, and from 1245 to $8853 \mathrm{ppb}(1.25-8.85 \mathrm{~g} / \mathrm{t} \mathrm{Au})$ in altered hostrock. These values were later confirmed by metallics fire assays which returned 12.79 to $53.38 \mathrm{~g} / \mathrm{A} \mathbf{A u}$ from vein material and 4.49 to $9.15 \mathrm{~g} / \mathrm{t}$ Au from altered hostrock. The corresponding sample silver assays are 13 to $36 \mathrm{~g} / \mathrm{t}$ (in vein) and 4 to $7 \mathrm{~g} / \mathrm{t}$ (in selvages). Individual sample gold and silver analyses and assays are listed in table form on figure 5. Select weighted average gold assays across the veins and vein zone are as follows:

1. Three samples (R9-R11) across the Jan Vein:
$19.28 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ over 1.0 m length (0.67 m true width)
2. Three samples (R12-R14) across the Jodi Vein:
$42.64 \mathrm{~g} / \mathrm{t}$ Au over 0.93 m length ($\mathbf{0 . 6 2 \mathrm { m }}$ true width)
3. Sample string R9H-R9-R9F and 0.5 m-offset string R14, R14F:
$22.77 \mathrm{~g} / \mathrm{t}$ Au over 3.0 m length ($\mathbf{2 . 0 \mathrm { m } \text { true width) }) ~}$
4. Sample string R9H-R9-R9F and 0.5 m -offset sample R13:
$\mathbf{2 8 . 3 3} \mathbf{~ g} / \mathrm{t}$ Au over 2.5 m length ($\mathbf{1 . 6 7 \mathrm { m }}$ true width)

6.2.3 Trench SMT04-3 Results (Figure 6)

This trench was dug on the lower section of a $\sim 4 \mathrm{~m}$-high roadcut bank slope at the 2003 Discovery Vein rubble site. In October 2003 initial discontinuous chip/grab sampling of this angular quartz rubble suspended in overburden generated an average gold grade of 467 ppb , over a rough 6 m width (Samples AC•R17-R19). Two local soil samples (AC-S11, S12) returned strong gold results of 323 ppb and 159 ppb . The 2004 trenching was successful in exposing bedrock, below an average 30 cm overburden thickness on the slope. The exposure shows a subvertical, ENE trending, robust quartz vein breccia zone which has an estimated true width of 3.5 m to 4.2 m (incl. selvages). Six large-sized channel samples collected across the zone yielded a weighted average gold value of $380 \mathrm{ppb}(0.38 \mathrm{~g} / \mathrm{t} \mathrm{Au}$), and negligible silver results. A composite chip/grab sample (SAM-R20) from rubble located $\sim 4.5 \mathrm{~m}$ south of the vein zone returned an analysis of 872.4 ppb Au. Bedrock geology, sample locations and descriptions, and individual sample gold analyses are given in Figure 6.

LEGEND
Lithology
OB OVerobrden: doominontily dark grey-bromn bouider cloy

QVbx

Q breccio when verobie ADo/vax frogments

$$
\begin{aligned}
& \text { symbols } \\
& \begin{array}{l}
\text { geologicol contoct } \\
\text { fout or shear }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { R1 }}{ } \text { chonnel somple locetion ond number (SAM- prefix onitted on drowing) } \\
& \text { X composite grab or chip somple from nubble (ful somple number posted on mop) } \\
& \text { GPS control point: NAO27 UTM grid co-ordinotes posted on mop. }
\end{aligned}
$$

7.0 PERSONNEL \& CONTRACTORS

Company Personnel

	Position	Work Time (incl. Mob/Demob)	Field Period
E. A. Balon	Prospector \& Project Mgr.	17 days	
			SEP 19-OCT 05, 2004

Contract Personnel

	Position	Work Time	Field Period
B. W. Sullivan (Bare West Enterprises Inc.) Gancouver, BC	12.5 days		
			SEP 19-SEP 30, 2004

8.0 STATEMENT OF COSTS

(All items rounded to nearest dollar; Expenditures prorated for on-property work)
SALARY \& BENEFITS \$ 4,250(E.A. Balon)
CONTRACT FIELD SERVICES \$ 6,575
(B. W. Sullivan \& J. Tindle)
GEOCHEMICAL ANALYSIS \& FREIGHT. \$ 5,739
TRUCK RENTALS, FUEL \& MISCELLANEOUS
TRAVEL EXPENSES \$ 1,394
ACCOMMODATION \& FOOD \$ 3,046
COMMUNICATION \$ 102
(Telephone \& Courier)
GENERAL FIELD SUPPLIES \$ 276
MAPS, PHOTOS, REPRODUCTIONS \$ 118
TOTAL EXPENDITURES \$21,500
(Exclusive of Report Compilation)

9.0 STATEMENT OF QUALIFICATIONS

I, Edward A. Balon, of North Vancouver, British Columbia hereby certify that:

1. I am a prospector and geological/mining technician residing at 501-250 West First Street, North Vancouver and am employed by Almaden Minerals Ltd. of 1103-750 West Pender Street, Vancouver, British Columbia, V6C 2 T8.
2. I am a graduate of Northern College - Haileybury School of Mines, Ontario (1970), with a diploma in Mining Engineering Technology (integrated Geology, Mining and Metallurgy).
3. I have attended numerous Continuing Education Courses in Geoscience since 1970, including Exploration Geochemistry at the University of British Columbia, Vancouver, B.C. in 1984/1985.
4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), license number 20265, since 1993.
5. I have worked continuously in mineral exploration for thirty-five years in British Columbia, Yukon, Northwest Territories, USA and Mexico.
6. I am the author of this report and the supervisor of the field work performed on the SAM1 to 10 mineral claims during the period August 23, 2004 to October 05, 2004.

ALMADEAMONERALS LTD.

Edward À:-Balon?

10.0 REFERENCES

Balon, E.A

2004: 2003 Geochemical and Geophysical Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27425).

Balon, E.A. and Jakubowski, W.J.
2003: 2002 Geochemical and Trenching Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27048).

Duffell, S. and McTaggart, K. C.
1952: Ashcroft Map-Area, British Columbia (BC); Geological Survey of Canada (GSC) Memoir 262, p. 52-58, (Spences Bridge Group and Kingsvale Group)
1951: GSC map 1010A; Ashcroft, BC; scale 1:253,440.
Holland, S.S.
1950: Placer Gold Production of British Columbia; BCMEMPR Bulletin 28, reprinted 1980.

Jackaman, W. and Matysek, P. F.

1994: British Columbia Regional Geochemical Survey, NTS 921 - Ashcroft, (BC RGS 40/GSC OF 2666), Stream Sediment and Water Geochemical Maps \& Data.

Monger, J. W. H. and McMillan, W. J.

1989: Geology, Ashcroft BC; GSC Map 42-1989, sheet 1, scale 1:250,000.
Monger, J. W. H.
1989: Geology, Hope, BC; GSC Map 41-1989, sheet 1, scale 1;250,000.
1985: Structural Evolution of the Southwestern Intermontane Belt, Ashcroft and Hope Map Areas, BC, in Current Research, Part A, GSC Paper 85-1A, p. 349-358.
1981: Geology of Parts of Western Ashcroft Map Area, southwestern BC; in Current Research, Part A, GSC Paper 81-1A, p.185-189.

Reynolds, J.

2004: Private email Comm (to M. J. Poliquin/Almaden Min. Ltd.) giving the Results of Fluid Inclusion Analyses from SAM Property Quartz Samples.

Rice, H. M. A.
1947: Geology and Mineral Deposits of the Princeton Map-Area, BC; GSC Memoir 243.

Ryder, J. M.

1975: Quaternary Geology - Terrain Inventory, Lytton Map-Area, BC (92I/SW); in Current Research, Part A, GSC Paper 75-1A.

Schroeter, T. G. and Pinsent, R. H.
2001: Gold Production and Resources in British Columbia (1858-1998); unedited updated "Information Package" on BCMEM Open File 2000-2.

Souther, J. G.; Gabrielse, H. and Yorath, C.J. (ed.)
1991: Volcanic Regimes, Chapter 14 in Geology of the Cordilleran Orogen in Canada, Geology of Canada, no.4, p. 457-490 (also Geological Society of America, The Geology of North America, v. G-2).

Thorkelson, D. J.
1985: Geology of the Mid-Cretaceous Volcanic Units near Kingsvale, southwestern BC; in Current Research, Part B, GSC Paper 85-1B, p. 333-339.

		SAM AREA 2003 RECON GEOCHEMICAL SAMPLE SUMMARY												
Sample												Assay		
Number	Easting	Northing	Mo ppm	Pbppm	Zn ppm	Ag ppm	As ppm	Sb ppm	Bappm	Hg pom A	Au ppb	Auppb	RRock Type	Note
AC-39	606770	5579982	0.6	4.8	84	0.1	5.4	0.3	96	0.04	2.9		Mafic volc some rhyolite \& FP (porph volc?).	Main ck. Sand/grvi some cobbles- chni 1-2m wide-gentle flow.
AC-40	606771	5580006	0.3	4.3	57	0.2	3.4	0.2	76	0.05	78.2		Mafic volc some thyolite.	Br from W. Sand/grvl bldry chni-chni. $5-1 \mathrm{~m}$ wide-trickler.
AC40-1	606333 \|	5580113	0.4	4.9	48	0.2	4.3	0.2	94.	0.06	-0.5		DK volc cobbles.	S bri Dry braided chnis <0.5m; choked by cobbles \& veg; silt-sand-givi ator
AC40-2	606338	5580163;	0.3	4.5	55	0.2	3.4	0.2	88	0.06	4.5		Dk volc cobbles.	N (right) Br; Dry 0.6 m chan; pebbly grve base / local fine deposits.
AC-41	606877	5579915	0.4	4.5	60	0.1	5.5	0.3	84	0.03	17.1		Mafic volc sm pe rhyolite w/Qz strs.	i Br from SSE. Sand/grvl base-chnl $.5-1 \mathrm{~m}$ wide-trickler.
AC41-1	606960	5579449	0.3	3.3	49	0.1	5.9	0.4	81	0.05	10.4		Angular dk volc cobbles \& bldrs (contrast w/ md till cobbles	e Trickle in rocky 1 m chan; sand-silt only in local traps.
AC-42	607189	5581202	0.3	3. $\quad 4.5$	63	0.1	4.9	0.3	84	0.03	65.7		Mafic voic some rhyolite.	Main ck. Sand/grvl base-chnl 3-4m wide-gentle flow.
AC-43	607172	5581260	0.6	. 4.6	58	0.1	7.1	0.4	63	0.03	40.1		Mafic volc sm pc QzBx \& 1 pc pyroc.	Br from W. Sand/grvi base sm cobbles-chni . $75-1.25 \mathrm{~m}$ wide- gentle flow.
AC43-1	606298	5580909	0.5	; $\quad 4.7$	63	0.1	4.6	0.2	69	0.03	1.6		Abund mafic volc ang cobbles; olc slighty u/s.	E Br, local grvl base; trickle in stony cobbly chnl 0.5 m wide.
AC43-2	606264	5580931	0.6	3. 5.2	54	0.1	6.5	0.2	63	0.05	82.7		Blocky mafic volc talus; olc immed u/s.	W Bri grul base; trickle in rocky chni $0.5-1 \mathrm{~m}$ wide; partial moss-mat.
AC43-3	606565	5581195	0.6	- 5.4	55	0.2	8	0.3	58	0.05	49.1		Dom mafic volc float.	Main; sand/grv/cobble base; mod flow in 1-1.5m chan.
AC-45	606211	5578786	0.3	3.7	48	0.2	16	0.7	127	0.17	4.5		Dom mafic volc-incl maroon Ba cobbles.	Trickle in chnl <0.5-0.75m wide; some silt-sand-gravl atop org mat; mod org
AC-46	606254	5579312	0.5	$5 \quad 4.8$	42	0.2	4.8	0.2	84	0.09	-0.5		Mafic volc cobbles.	Dry chni 0.3-0.5m wide; silt-sand-gravl mixed w/ orgs; Essentially an A-hori
AC-47	606429	5579664	0.6	4.2	62	0.1	3.9	0.2	68	0.04	11.6		Mafic volc cobbles.	Dry chnl 0.5-0.8m wide; sand-gravl-cobble base: Good quality clean sitt.
AC-48	606953	5580428	0.4	4.4 .9	68	0.1	5.7	0.3	86	0.04	1.7		Subang mafic volc bidrs \& cobbles.	Main; mod-si flow in 3 m chan $\mathrm{w} / \mathrm{gravel-cobble} \mathrm{base;} \mathrm{abund} \mathrm{bars} \mathrm{\&} \mathrm{jams} \mathrm{wh}$
AC-49	606946	5580471	0.7	$7 \quad 6.6$	53	0.2	5.6	0.4	73	0.09	1.1		Subang mafic volc cobbles.	Side; dry gully w/ 0.3 m chan loc'ly cut thru org mat; minimal transptd seds
AC-50	607110	5580827	0.4	4. $\quad 5.1$	$1 \quad 59$	0.1	5	0.3	78.	0.03	4.7		Dom mafic volcs-but some rusty-orng (rhyolite) float.	Main; bouldery 3 m chan; good clean silts sand from multiple bars.
AC-51	607049	5580905	0.6	4.1	48	0.2	4.8	0.6	66 :	0.07	3.6		Dom mafic volc cobbles.	Side; dry veg-choked chnt; silt-sand w/ organics.
AC-52	605010	5581235	0.7	7-5.1	61	0.1	7.8	0.4	100	0.06	6.8		\|Rnd'd till cobbles \& subang dk volc; chloritic mafic pyroc olc.	Main; s//mod flow in 0.5 m chan w/ grvl-cobble base; minor disturbance in c:
AC-53	604912	5581355	0.5	5.4 .5	50	0.1	- 6.6	0.5	242	0.16	1.4		Mostly mafic volc float:	Side br not on map; sf flow in 0.4 m brushy chan w/ loc'ly good gravely base
AC-54	604500	5581650	0.5	5 - 4.7	52	0.1	6.8	0.2	145	0.04	8.7		Mostly mafic volc pebbles \& cobbles- incl brick-red.	Side br S of $1 R$; trickle in 1 m chan $\mathrm{w} /$ sand-gravel base.
AC-55	603900	5579550	0.4	4.5 .4	55	0.2	5	0.3	93	0.05	1.8		Dk gry Ba-Ad olc on banks.	Rocky 1-1.25m chan; sitt sand w/ inor organics from banks.
AC-56a	603920	5579870	0.3	3.4 .8	53	0.1	3.5	0.2	100	0.03	1.2		Dom mafic volc float, some greenish Ad \& brick-red Ba.	Bouldery 1.5 m chan/w mod flow, sand/griv base.
AC-56b	603920	5579870;	0.3	3.1	57	0.1	3.7	0.2	104	0.03	2		Dom mafic volc float; some greenish Ad \& brick-red Ba.	Bouldery 1.5 m chan $/ \mathrm{w}$ mod flow, sand/gril base.
AC-57	603745	5580480:	0.2	24.5	5 45	0.1	12.8	0.1]	- 109	0.02	0.8		Mafic volc \& FP pebbles.	Trickle in $<0.5-0.8 \mathrm{~m}$ chan; sand/grv atop lit ben clayey B-horiz soil; clean fin

UPPER LIMITS - AG, AU, HG, $H=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM} ; \mathrm{CU}, \mathrm{PB}, \mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: STREAM SED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 52003 DATE REPORT MAILED:

D. TOY

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Standard is STANDARD DS5. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP-MS.
UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; MO, $C O, C D, S B, B I, T H, U \& B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: ROCK R150 60C

DATE RECEIVED: AUG 52003 DATE REPORT MAILED: An $3 / 0$ \% mem on

GROUP DX - 30.0 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, $\mathrm{HG}, \mathrm{W}=100 \mathrm{PPM}$; MO, $C O, C D, S B, B I, T H, U \& B=2,000 \mathrm{PPM} ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$. - SAMPLE TYPE: STREAM SED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Repuns.

DATE RECEIVED: OCT 232003 DATE REPORT MAILED: 0404
SIGNED BY...... TOY, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, $A U, H G, W=100 \mathrm{PPM}$; MO, $C O, C D, S B, B I, T H, U \& B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: ROCK R150 60C Samples beginning' 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 232003 DATE REPORT MAILED: $(28 / 03$
SIGNED B c

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: ROCK RES.

DATE RECEIVED: DEC 42003 DATE REPORT MAILED: 100 SIGNED by \bigodot^{ℓ}

			$\frac{C A L}{2 A}$			ATORI ted	IES Co.) $A 1 n$	LTD mad	$\frac{e n, 1}{11}$		852 GE nera 750	E. HAST EOCHEM als. Lt W. Pender	TING IICA d. St.		ST. AN2			UVER S. C CRO 6 C 2 T	$\begin{gathered} \mathrm{BC} \\ \mathrm{ERT} \\ \frac{3}{8}, 8 \\ \hline \end{gathered}$		6A 1R CATH File	R6 E gy: Ed	431	PHON 0527 on	$\mathrm{NE}(6$	$604)$	$53-$	315		PAX	504			
SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Co} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$		$\begin{aligned} & \text { s. } u \\ & \text { m ppm } \end{aligned}$	Au Th ppb ppm	$\begin{gathered} \text { Sr } \\ \text { n ppm } \end{gathered}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{sb} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{V} \\ \mathrm{n} \text { ppm } \end{array}$	$\begin{aligned} & \mathrm{Ca} \\ & \% \end{aligned}$		La ppm	$\begin{array}{r} \mathrm{Cr} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	Ba pprm		$\begin{array}{r} \mathrm{B} \\ \mathrm{ppm} \end{array}$	$\begin{aligned} & \mathrm{Al} \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$		$\begin{array}{r} W \\ \mathrm{ppm} \end{array}$	$\underset{\substack{\mathrm{Hg} \\ \mathrm{Hg} \\ \hline}}{ }$			ppm	Se ppm
G-1	1.5	3.1	2.3	48	<. 1	5.1	4.5	571	2.05	<. 5	52.0	- $<.54 .8$	88	<. 1	<. 1	.1	44	. 62	. 074	10	15.8	. 57	234	. 143	: 1	. 93	. 095	. 50	2.3	. 01	2.5	. $3<.05$		< 5
AC30-1	1.0	39.0	5.7	64	. 1	35.3	17.1	880	3.42	6.5	5.6	630.81 .3	90	. 1	. 3	. 1	97	1.17	. 070	16	41.9	1.02	87	. 196	2	2.36	. 028	. 09	. 1	. 04	8.1	<.1<. 05		< 5
AC-32d	. 4	37.4	4.4	52	. 2	23.4	11.6	523	2.59	4.5	5.6	63.8	91	. 1	. 4	<. 1	76	1.66	. 066	11	30.7	. 89	93	. 177	4	1.87	. 024	. 06	. 1	. 04	4.5	<.1 . 08		1.0
AC-52	. 7	40.0	5.1	61	. 1	36.8	17.1	877	3.49	7.8	8 . 7	$7 \quad 6.81 .3$	147	. 1	. 4	. 1	105	1.46	. 098	16	39.6	1.20	100	. 195	3	2.52	. 044	. 08	. 1	. 06	8.1	<.1<. 05		<. 5
AC-53	. 5	50.4	4.5	50	. 1	33.1	14.2	1561	2.88	6.6	6.6	61.4 . 8	126	. 2	. 5	.1	83	1.61	. 067	14	34.6	. 95	242	. 141	6	1.96	. 036	. 05	. 1	. 16	6.0	<.1<. 05		
AC-54	. 5	33.2	4.7	52		41.2	14.8	626	2.98	6.8	8.7	78.71 .1	115	. 1	. 2	. 1	81	1.10	. 065	15	43.9	. 92	145	. 137		2.09	. 038	. 06	<. 1			<.1<.05		<. 5
AC-55	. 4	40.8	5.4	55	. 2	49.8	13.4	430	2.43	5.0	02.0	1.81 .1	117	. 1	. 3	. 1	75	1.17	. 056	11	62.9	1.13	93	. 111	5	1.56	. 055	. 08	. 1	. 05		<.1<. 05		
AC-56a	. 3	37.2	4.8	53	. 1	53.7	15.5	476	2.46	3.5	5.6	$\begin{array}{llll}6 & 1.2 & 1.3\end{array}$	106	. 1	. 2	. 1	69	. 93	. 055	10	70.2	1.45	100	. 095	4	1.61	. 055	. 09	<. 1	. 03		<. $1<.05$		
AC-56b	. 3	40.3	5.1	57	. 1	62.5	18.1	596	2.73	3.7	7,.6	22.01 .4	108	. 1	. 2	. 1	78	. 99	. 057	10	74.9	1.47	104	. 099	4	1.64	. 057	. 11	<. 1	. 03	5.4	<.1<. 05		. 5
RE AC-57	. 2	22.7	4.8	47	. 1	20.1	10.2	486	1.62	13.5	51.1	1.71 .2	-81	.1	. 2	.1	58	. 56	. 025	7	30.4	. 50	113	. 061	3	1.28	. 049	. 06	<. 1	. 02	3.7	. $1<.05$		<. 5
AC-57	. 2	21.6	4.5	45		19.0	9.4	448	1.50	12.8	81.0	- 81.0	73	<. 1	.1	. 1	52	. 54	. 025	6	28.3	. 45	109	. 053		1.12	. 045	. 06	<. 1	. 02	3.7	. $1<.05$		<. 5
AC-58	. 3	48.9	4.7	54		54.2	14.5	509	2.40	6.7	71.9	1.41 .1	107	. 1	. 2	. 1	71	. 93	. 048	15	73.3	1.08	97	. 088	3	1.99	. 055	. 07	<. 1	. 05	7.5	<.1<.05		
STANDARD	12.4	146.5	24.8	139	. 3	24.1	12.6	771	2.85	17.6	66.2	243.62 .7	45	5.7	3.8	6.4	61	. 75	. 089	13	191.2	. 69	131	. 095	17	2.03	. 034	. 14	4.9	. 18	3.5	1.1<.05		4.6

Standard is STANDARD DS5.
GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - AG, AU, HG, $W=100$ PPM; MO, $C O, C D, S B, B I, T H, U \& B=2,000 P P M ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 ~ P P M$.

- SAMPLE TYPE: STREAM SED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reryns.

DATE RECEIVED: OCT 272003 DATE REPORT MAILED: NOV $6 / 03$
SIGNED BY... T...... TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

	SO	$\begin{aligned} & C C \\ & 02 \end{aligned}$	$\begin{aligned} & \mathrm{CAL} \\ & 2 \mathrm{~A} \end{aligned}$	$\begin{gathered} \mathrm{LAB} \\ \mathrm{Cre} \end{gathered}$	RA!	ATORIES ed Co.)	LITD	D.		852 ner -750			ING		T			VER	$B C$		A. 1 R CAT	6 E \# $y: E d$		PHO	$\sqrt{\mathrm{E}}(6$	$604)$	53			AX	604				
SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{ppm} \end{array}$	$\begin{array}{cc} \mathrm{Ni} & \mathrm{Co} \\ \mathrm{ppm} & \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{array}{lr} \mathrm{e} & \mathrm{AS} \\ \text { * } & \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{U} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Au} \\ \mathrm{n} \\ \mathrm{n} p \mathrm{~b} \\ \hline \end{array}$	$\begin{array}{r} \text { Th } \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{array}{r} \mathrm{Sb} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Bi} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{V} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\%$	$\begin{array}{r} \text { La } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { ppm } \end{array}$	$\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{B} \\ \mathrm{ppm} \end{array}$	$\begin{array}{ll} 3 & \mathrm{Al} \\ \mathrm{n} & \% \end{array}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & K \\ & \chi \end{aligned}$	ppm	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{SC} \\ \mathrm{ppm} \end{array}$	11 ppm	S		$\begin{gathered} \mathrm{Se} \\ \mathrm{ppm} \end{gathered}$
G-1	1.5	2.8	2.4	44	$<.1$	4.94 .2	561	2.00	- . 5	1.9	1.1	4.6	88	<. 1	<.1	. 1	39	. 58	. 078	10	14.5	. 53	234	. 134		1.01	. 092	. 46	2.9	<. 01	2.5		<. 05	5	<. 5
AC-S2	. 7	32.5	5.0	56		25.412 .9	558	3.36	6.5	. 6	17.6	1.3	107	. 1	. 4	. 1	89	1.04	. 076	13	34.2	. 88	93	. 245		2.72	. 022	. 10	. 1	. 03	7.7		< 05	8	
AC-S3	. 5	31.3	4.7	60		25.111 .6	458	3.12	5.5	. 5	2.9	1.3	91	. 1	. 3	. 1	82	. 89	. 068	11	29.7	. 78	82	. 216		2.36	. 020	. 09	. 1	. 02	6.6	<. 1	< 05	,	<. 5
AC-54	. 6	42.5	5.0	59		29.315 .7	753	3.49	8.3	. 5	57.1	1.4	124	. 1	. 4	. 1		1.30	. 088	14	33.6	1.07	87	. 221		2.99	. 038	. 08	. 1	. 03	7.7		<. 05		< 5
AC-S5	. 5	36.5	5.0	64		29.414 .5	742	3.19	7.5	. 5	11.3	1.4	108	. 1	. 4	. 1		1.20	. 083	14	34.8	. 96	87	. 228		2.94	. 026	. 09	. 1	. 03	7.7	<. 1	<. 05	8	<. 5
AC-S6	. 6	38.4	4.5	58		30.915 .0	658	3.39	9.8	5	4.2	1.4	115	. 1	. 3	. 1		1.24	. 082	14	35.8	. 98	82	. 248		2.85	. 024	. 10	.	. 02	7.8		<. 05	9	$<.5$
AC-S7	. 5	41.6	6.0	62		27.215 .6	817	3.34	10.2	. 6	20.2	1.5	87	. 1	4	. 1	80	. 90	. 074	15	31.2	93	79	. 198		2.60	. 016	. 11	1	. 02	7.0		<. 05	8	<. 5
AC-S8	. 6	51.5	4.2	58		36.116 .8	682	3.59	6.0	. 6	3.9	1.6	143	. 1	. 3	<. 1	90	1.54	. 084	15	41.8	1.13	82	. 277		3.55	. 027	. 10	<. 1	. 01	10.6		<. 05	10	< 5
AC-S9	. 5	54.1	4.3	58		49.518 .8	674	3.94	4.8	. 7	3.0	1.7	154	. 1	2	. 1	93	1.65	. 084	16	44.5	1.38	81	. 323		3.85	. 025	. 12	. 1	02	12.1		< 05	11	$<.5$
AC-S10	. 4	22.2	4.2	66		23.89 .0	312	2.33	3.1	4	2.4	1.2	49.	. 1	. 2	.1	57	. 41	. 043	7	28.6	. 64	73	. 140		1.91	. 017	. 08	$<.1$. 03	4.1	$<.1$	<. 05	6	<. 5
AC-S11	. 5	59.5	3.9	51		19.015 .2	414	3.35	11.0	4	322.7	1.0	81	. 1	. 9	. 4		1.22	. 082	11	22.3	. 81	38	. 101		3.04	. 058	. 17	. 1	. 03	5.8		<. 05	8	. 6
AC-S12	. 8	74.2	3.3	72		27.019 .9	526	4.06	10.2	3	159.4	. 9	172	1	. 3	. 1	73	. 85	. 094	.	32.6	1.00	83	. 234		3.24	. 023	. 20	. 1	. 02	6.9		< 05	10	. 8
RE AC-S12	. 8	77.2	3.4	74		28.121 .1	545	4.27	10.7	3	40.3	. 9	176	1	. 3	. 1	74	. 85	. 099	10	32.8	1.01	84	. 234		3.29	. 023	. 19	. 1	. 02	6.9		<. 05	11	. 9
AC-S13	. 5	55.1	3.5	72		70.227 .6	1266	4.61	7.0	. 6	<. 5	1.0	190	. 1	< 1	$<.1$	93	1.04	. 110	20	60.3	. 73	51	. 118		2.55	. 039	. 04	< 1	. 04	14.3		<. 05	6	<. 5
AC-S13A	. 5	47.5	3.7	65		60.426 .8	869	4.31	5.5	. 3	1.0	1.3	189	. 1	. 1	<.1		1.49	. 114	16	62.5	1.40	82	. 034		4.20	. 058	. 08	<. 1	. 05	11.8		<. 05	9	<. 5
AC-S14	6	60.8	4.3	53	$<.1$	66.920 .7	930	4.54	37.9	9	4.9	1.6	163	1	. 2	<. 1	78	. 74	. 113	18	54.8	. 62.	150	. 009		2.40	030	. 05	<. 1	11	12.3		<. 05	6	< 5
STANDARD DS5	12.6	137.1	24.1	135	. 3	24.611 .8	769	2.98	18.8	5.8	43.7	2.6	50	5.3	3.9	5.9	58	. 71	. 089		181.7	. 68	142	. 096		2.10	. 032	. 13	4.8	. 17	3.4	1.0	<. 05	7	5.0

> GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH $90 \mathrm{ML} 2-2-2$ HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML , ANALYSED BY ICP-MS.
> UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM}$; $M O, C O, C D, S B, B I, T H, U \& B=2,000 \mathrm{PPM} ; C U, P B, Z N, N I, M N, A S, V, L A, C R=10,000 P P M$.

- SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject feruns.

SIGNED BY........... TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS
\qquad

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH $180 \mathrm{ML} 2-2-2$ HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS.
UPPER LIMITS - AG, AU, HG, $W=100 \mathrm{PPM} ; \mathrm{MO}, \mathrm{CO}, \mathrm{CD}, \mathrm{SB}, \mathrm{BI}, \mathrm{TH}, \mathrm{U} \& \mathrm{~B}=2,000 \mathrm{PPM}$; CU, PB, $\mathrm{ZN}, \mathrm{NI}, \mathrm{MN}, \mathrm{AS}, \mathrm{V}, \mathrm{LA}, \mathrm{CR}=10,000 \mathrm{PPM}$.

- SAMPLE TYPE: ROCK R150 60C

APPENDIX B

SAM AREA 2004 RECON GEOCHEMICAL SAMPLE SUMMARY ACME ANALYTICAL 2004GEOCHEMICAL \& ASSAY CERTIFICATES

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML , ANALYSED BY ICP-MS. ($>$) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C

Data \mathcal{L} FA DATE RECEIVED: AUG 252004 DATE REPORT MAILED:. 2 .

Standard is STANDARD DS5.

-AU : - 150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM - 150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY.

- SAMPLE TYPE: ROCK RE

Data \qquad ${ }^{\mathrm{n}} 7$ DATE RECEIVED: NOV 82004 DATE REPORT MAILED: $1 . \mathrm{CL} 2 / 04$.

-AG : - 150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM - 150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY.

- SAMPLE TYPE: ROCK REJ

Data \qquad in y DATE RECEIVED: NOV 82004 DATE REPORT MAILED:. 1 Rec. $2 / 04$.....

group 1dx - 30.00 GM Sample leached with $180 \mathrm{ML} 2-2-2$ hCL-hno3-h2o at 95 deg. C for one hour, diluted to 600 ML , analysed by icp-ms.
($>$) CONCENTRATION EXCEEDS UPPER Limits. some minerals may be partially attacked. refractory and graphitic samples can limit au solubility.

- SAMPLE TYPE: S.SED.SSBO

Data 1 FA \qquad DATE RECEIVED: OCT 52004 DATE REPORT MAILED:

Nor 4.12004

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Mo
ppm

SJ-29	1.0	18.9	6.0	68		26.31	10.5522	2.91	5.2	. 4	3.0	01.0	45	. 1	. 2	2.1	63	. 35	. 203	5	26.7		80	. 128		3.33	. 015	08	.	06	$3.2<.1 .07$	10	30
SJ-30	. 9	31.0	5.0	69		42.21	14.4346	3.62	7.3	. 6	6.0	01.7	105	. 1	. 2	2.1	73	. 40	. 169	7	34.2	1.16	107	. 181		4.63	. 013	11	. 1	. 05	$5.0<.1<.05$	11.5	30
SJ-31	. 7	34.8	6.1	56		47.91	15.1616	3.51	8.7	. 7	2.9	91.7	404	. 2	. 2	2.1	81	. 97	126	10	35.3	1.37	110	. 227		4.73	. 052	09	. 1	. 12	$8.0<.1<.05$	$11<.5$	30
SJ-32	. 6	41.2	4.1	60	. 1	46.81	13.7443	3.67	12.2	. 9	15.6	61.8	156	. 1	. 3	3.1	86	. 74	108	12	44.4	1.33	120	. 148		4.30	. 027	08	1		$7.8<.1<.05$	11.6	30
SJ-33	. 5	56.8	5.7	55	. 1	51.31	16.5688	3.76	11.7	. 8	4.2	22.0	201	. 1	. 2	2.1	. 93	1.59	. 117	17	54.5	1.62	116	. 222		5.95	. 025	. 14	. 1	. 08	8.8 . $1<.05$	$13<.5$	30
SJ-34	. 7	46.9	5.5	55		48.81	17.0640	3.90	13.2	1.1		71.8	235	. 1	. 3	3.1	97	. 80	150	18	39.8	. 57	122	. 232		6.05	032	08	1	13	$8.1<.1<.05$	$13<.5$	30
SJ-35	. 9	29.6	5.1	60	. 1	32.01	11.1318	3.09	6.8	. 7		61.8	74	. 1	. 3	3.1	70	. 26	. 088	9	31.8	1.00	89	. 152		4.17	. 013	. 06	. 1	. 07	5.8 . $1<.05$	9.6	30
SJJ-36	. 8	47.9	6.7	62		49.21	17.3514	4.09	10.2	. 8		61.9	219	. 2	. 3	3.1	97	. 76	. 093	12	46.7	1.49	121	. 218		4.92	. 029	08	. 1	. 06	$6.8<.1<.05$	12.5	30
SJ-37	. 8	41.5	4.7	56	. 1	42.41	16.3832	3.76	8.2	. 7		91.4	197	. 1	. 6	$6<.1$	101	1.74	103	15	41.3	1.28	94	. 271		2.97	. 061	13	. 1	. 05	$8.4<.1<.05$	$8<.5$	30
SJ-38	. 4	42.6	4.0	47.		38.21	15.1625	4.22	12.1	. 6	49.5	51.4	274	. 1	1.3	$3<.1$	97	1.49	. 087	13	44.4	1.19	107	. 121		3.13	. 053	. 07	1		$9.6<.1<.05$	8<.5	30
SJ-39	. 5	44.6	5.1	52	<. 1	42.81	17.3828	4.05	7.7	. 9		31.7	222	. 1	. 4	4.1	100	1.34	110	18	49.0	1.40	109	. 220		3.43	. 050	. 08	1	11	$10.1<.1<.05$	9 . 5	30
SJ-40	. 5	28.5	5.0	56	. 1	36.21	12.5327	3.49	6.8	. 5		61.2	99	. 1	. 3	3.1	89	. 54	070	8	43.8	. 91	127	180		3.45	. 020	. 06	. 1	. 04	$4.9<.1<.05$	$8<.5$	30
SJ-41	. 6	31.4	5.4	63	. 1	40.71	13.6359	3.54	5.7	. 5		71.6	96	. 1	. 2	2.1	89	. 49	100	9	46.5	1.06	134	184		4.02	. 021	. 08	<1	. 03	5.7 . $1<.05$	9.5	30
SJ-42	. 5	38.5	4.9	53	. 1	43.21	14.4443	3.85	7.6	. 6	2.7	71.5	133	<, 1	. 3	3.1	101	. 66	. 066	11	56.6	1.20	144	. 201		4.30	. 022	. 09	<. 1	. 04	6.8 . $1<.05$	$9<.5$	30
SJ-43	. 5	35.5	4.6	50		43.61	13.6427	3.72	4.8	. 6		21.6	140	. 1	. 3	$3<.1$	94	. 83	. 055	10	51.0	1.23	127	. 179		3.62	. 034	. 06			$7.9<.1<.05$	$9<.5$	15
RE SJ-43	. 4	34.8	4.3	49		43.11	14.1422	3.53	4.8	. 6		11.6	144	. 1	. 2	$2<.1$	92	. 79	. 051	10	51.6		127	. 181		3.66	. 035	. 06		. 03	8.0 . $1<.05$	$9<.5$	15
SJ-44	. 5	37.0	4.9	54		39.8	13.7511	3.44	9.6	1.0	1.9	91.3	119	. 1	. 2	2.1	101	. 98	. 072	15	46.8	1.10	119	. 177		3.72	. 037	. 05	<. 1	. 02	$5.8<.1<.05$	8.6	30
S.J-45	. 4	34.0	4.4	63		59.41	17.9697	3.56	5.5	. 8		51.4	254	. 1	. 1	1.1	87	1.18	. 086	10	46.8	1.81	155	. 218		4.65	. 047	. 14	<. 1	. 05	$8.1<.1<.05$	$11<.5$	30
SJJ-46	. 5	30.3	4.8	55		38.91	13.5456	3.50	5.9	. 6	1.8	81.5	164	. 1	. 2	2.1	82	. 74	. 099	11	42.8	1.14	123	181		3.82	. 031	. 08	. 1	. 04	$6.5<.1<.05$	$9<.5$	30
SJ-47	. 7	41.9	4.8	51	<. 14	45.31	16.1895	4.02	6.0	. 9	7.8	81.5	203	. 1	. 2	$2<.1$	109	1.26	. 090	15	52.5	1.36	102	. 230		3.02	. 057	. 09	< 1	. 03	$9.5<.1<.05$	$8<.5$	30
SJ-48	. 7	38.9	4.8		<. 14	48.2	18.1844	4.22	5.5	. 7		71.5		. 1	. 2	$2<.1$	102	1.27	. 092	16	55.7	1.55	112	. 217		3.21	. 061	. 10	$<.1$. 03	$10.3<.1<.05$	$9<.5$	15
SJ-49	. 6	32.1	5.7	57		38.31	13.8490	3.40	4.4	. 6		51.2	126	. 1	. 2	2.1	81	. 65	. 084	11	42.6	1.09	123	154		4.29	. 025	. 07	<.1	. 04	5.5 . $1<.05$	$11<.5$	30
SJ-50	. 6	35.9	4.7	51		43.11	14.8733	3.91	5.8	. 7	6.2	21.5	201	. 1	. 3	$3<.1$	112	1.08	. 086	15	53.8	1.22	119	. 247		3.20	. 055	. 10	< 1	. 04	$8.8<.1<.05$	$8<.5$	30
SJ-51	. 6	45.7	4.6	55	<.1	57.81	18.0931	4.23	4.6	. 7		51.4	215	. 1	. 2	$2<.1$	102	1.43	. 092	15	55.7	1.68	99	. 208		3.14	. 074	. 08	<. 1	. 05	$9.4<.1<.05$	$9<.5$	15
SJ-52	. 5	45.8	4.9	58		40.21	16.1642	4.07	4.6	. 7	2.8	81.5	197	. 1	. 3	3.1	98	1.43	. 060	12	54.4	1.28	116	. 293		3.39	. 052	. 08		. 03	$12.0<.1<.05$	$10<.5$	15
SJ-53	. 4	33.2	4.6	55		34.71	14.4500	3.67	4.6	1.1		61.5	196	<. 1	. 3	3.1		1.21	. 047	13	47.0	1.19	114	. 259		3.22	. 054	. 05			$10.2<.1<.05$	$8<.5$	30
SJ-54	. 3	25.5	4.3	49	. 13	32.21	10.0324	2.78	3.8	. 5		91.3	97	. 1	. 2	2.1	74	. 78	. 030	,	44.7	. 94	90	. 177		2.67	. 035	. 05	<. 1	. 03	$5.4 .1<.05$	$7<.5$	30
SJ-55	. 2	24.0	6.1	61	. 12	28.0	9.5330	2.75	4.0	. 8		51.6	71	. 1	. 2	2.1	84	. 63	. 016	9	39.1	. 85	68	. 143		2.81	. 034	. 03	<. 1	. 03	$5.8<.1<.05$	$8<.5$	30
SJ-56	. 6	42.5	5.2	59	<. 13	39.51	17.3833	4.05	6.8	. 6	3.5	51.6	205	. 2	. 4	4 . 1	112	1.62	. 103	16	46.6	1.26	93	. 285		3.04	. 059	. 10	<. 1	. 04	$7.9<.1<.05$	$9<.5$	15
SJ-57	. 5	32.7	5.5	55	<. 13	33.61	13.6609	3.94	6.9	. 7	3.9	91.4	184	. 1	. 4	4.1	109	1.21	. 090	14	48.7	1.13	103	. 290		2.94	. 036	. 09		. 04	$7.7<.1<.05$	$8<.5$	30
SJ-58	4	27.3	5.0	56		32.11	11.5405	3.28	4.6	. 6	3.0	01.3	114	. 1	. 3	3.1	95	. 81	. 062	11	45.5	. 93	95	. 229		2.67	. 029	. 07		. 02	$4.9<.1<.05$	$7<.5$	30
SJ-59	. 4	31.1	5.4	64		34.41	11.6417	3.13	9.0	. 5	<. 5	51.3	112	1	. 3	3 . 1	86	. 79	. 060	10	44.2	. 97	92	196		3.18	. 032	. 06	<. 1	. 05	6.0 . $1<.05$	$9<.5$	30
SJ-60	. 5	27.4	4.8	55		46.61	12.7371	3.31	4.2	. 5	2.3	31.2	160	. 1	. 3	3 . 1	86	. 90	. 041	8	46.7	1.21	134	213		3.24	. 037	. 07	<. 1	. 03	$5.6<.1<.05$	$8<.5$	30
SJ-61	. 6	41.7	4.1	53		44.21	14.7446	3.65	8.4	. 7	1.0	01.8	156	. 1	. 3	$3<.1$	90	. 87	. 165	13	50.7	1.17	115	. 161		4.88	. 031	. 11	. 1	. 06	$6.9<.1<.05$	$11<.5$	15
STANDARD DS5	12.9	141.3	25.4	137		23.91	11.2762	3.02	18.1	6.0	39.9	93.0	57	5.6	4.0	05.6	65	. 78	. 089	14	177.1	. 70	142	. 096	17	1.98	. 034	. 15	4.9	. 18	$3.61 .0<.05$	74.8	30

[^0]

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SAMPLE\#	$\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$		$\begin{aligned} & \mathrm{Zn} \\ & \mathrm{ppm} \end{aligned}$		$\begin{array}{cc} \hline \mathrm{g} & \mathrm{Ni} \\ \mathrm{~m} & \mathrm{ppm} \end{array}$	Co ppm	$\begin{aligned} & 0 \text { Mn } \\ & \text { mi ppm } \end{aligned}$	$\begin{array}{cc} n & \mathrm{Fe} \\ \mathrm{~m} & \% \end{array}$	As ppm		Au ppb	Th ppm	Sr ppm	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppm} \end{gathered}$		$\begin{array}{ll} \mathrm{b} & \mathrm{Bi} \\ \mathrm{n} \mathrm{ppm} \end{array}$	$\begin{aligned} & 3 i \quad v \\ & m \mathrm{mpm} \end{aligned}$	$\begin{array}{cc} \text { v } & C a \\ , m & \% \end{array}$		La \% ppm	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$		Ba	$\begin{array}{r} \mathrm{Ti} \\ \% \end{array}$	$\begin{array}{r} \mathrm{B} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Na} \\ \% \end{array}$		$\begin{aligned} & K \cdot W \\ & * \mathrm{ppm} \end{aligned}$	$\begin{gathered} \mathrm{Hg} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Sc} \\ \mathrm{ppm} \end{gathered}$	Tl S ppm $\%$		a Se ppm	mple gm
SJ-95	. 6	32.4	4.1	56		126.0	12.7	7495	3.23	6.1	. 6	21.8	1.8	118	. 1	. 3	3.1	191	1.99	. 081	14	39.0	. 79	96	. 180		2.46	. 029	. 08	88.1		7.5	< <1.08		$7<.5$	30
SJ-96	. 6	30.3	4.2	45	. 1	124.4	111.3	3443	2.90	5.4	. 6	5.4	1.8	113	. 1	. 4	4 . 1	179	9 . 99	. 063	14	37.2	. 78	100	. 169		2.06	. 032	08	88.1	. 03	7.4	\ll $1<.05$		$6<.5$	15
SJ-97	. 5	36.0	4.1	47		122.8	11.7	776	2.87	5.9	. 5	5.4	1.3	116	. 1	. 4	. 1	183	1.22	. 062	14	33.1	. 92	80	. 187		2.18	. 037	. 07	07.1	. 03	6.8	<.1<. 05		$7<5$	15
SJ. 98	. 6	31.8	4.0	47	. 1	120.5	10.1	454	2.93	6.6	. 6	12.6	1.4	101	. 1	. 4	1	182	21.01	. 068	13	27.6	. 79	67	. 182		1.95	. 030		7<.1	. 02	6.2	<.1<.05		$6<.5$	15
SJ-99	. 5	34.9	4.5	48	. 1	122.2	11.3	3574	3.04	7.8	. 6	6.3	1.3	120	. 1	. 4	. 1	185	51.27	. 087	. 13	31.9	. 96	76	. 188		2.34	. 035		< $<.1$		6.9	<.1<. 05		$7<.5$	15
SJ-100	. 6	30.0	4.2	44	<.1	19.2	9.5	435	2.71	6.9	. 5	4.5	1.2	122	<.1	. 3	<.1	177	71.31	. 086	11	27.4	. 77	68	. 195		2.12	. 034	. 07	7 . 1	. 02	6.0	< $<.1<.05$		$7<.5$	15
SJ-101	. 7	22.9	4.7	60		120.6	9.5	403	2.66	4.5	. 4	18.1	1.2	73	. 1	. 3	. 1	180	0 . 50	. 049	6	30.2	. 69	77	. 178		1.78	. 017	. 12	2 < 1	. 02	4.5	<.1<. 05		$5<.5$	30
SJ-102	. 5	36.4	4.1	52		124.8	13.4	610	2.93	6.7	. 5	15.3	1.4	130	. 1	. 3	. 1	192	21.30	. 090	14	36.8	. 91	73	. 216		2.63	. 029	. 09	. 1	. 02	7.1	<.1<. 05		$8<.5$	15
SJ-103	. 6	37.7	4.3	53	. 1	24.2	11.7	441	3.28	6.6	. 6	4.0	1.7	129	. 1	. 3	. 1	195	5 . 99	. 087	13	37.7	. 95	98	. 182		2.62	. 035	. 09	9 < 1	. 02	7.3	<.1<.05		$8<.5$	15
SJ-104	. 5	39.1	4.0	50	. 1	28.7	13.7	706	3.39	7.5	. 6	2.7	1.4	136	. 1	. 4	<.1	190	01.42	. 094	14	40.6	1.15	83	. 216		3.06	. 031	. 08	88.1	. 03	7.1	<.1<. 05		8 $<.5$	15
SJ-105	. 5	32.7	3.6	46		21.7	10.2	380	2.95	5.4	. 5	3.7	1.3	114	<. 1	. 3	<. 1	181	1.97	. 064	13	33.2	. 80	58	. 180		2.09	. 034	. 07	7 . 1	. 03	6.3	< $<1<.05$		$6<.5$	30
SJ-106	. 5	20.5	4.5	49		17.8	8.5	366	2.50	3.7	. 4	4.0	1.0	84	. 1	. 2	. 1	174	4.61	. 062	7	28.7	. 63	66	. 165		2.04	. 017		7 <. 1	. 02	4.4	<.1<. 05		$6<.5$	30
SJ-107	. 4	23.7	3.8	62		19.9	8.7	362	2.43	3.7	. 4	27.0	1.1	82	. 1	. 2	. 1	164	4.66	. 067	7	28.0	. 67	72	. 139		1.94	. 025	. 06	< <1	. 02	4.4	<.1<. 05		$6<.5$	30
SJ-108	. 5	24.4	3.8	47		19.1	9.9	394	2.53	5.5	. 5	2.4	1.0		<. 1	. 4	1	172	2.90	. 060	11	26.2	. 76	58	. 185		2.00	. 021		\ll 1	. 02	5.0	<.1<. 05		$6<.5$	30
SJ-109	. 4	42.8	3.7	46	. 1		14.3	389	3.21	5.0	. 4	1.8	. 9	222	. 1	. 3	1	195	51.26	. 077	11	30.1	1.03	53	. 221		2.59	. 076	. 06	6.1	. 01	5.0	<. $1<.05$		$7<.5$	30
SJ-110	. 3	23.0	4.1	70		23.4	13.4	440	3.06	6.9	. 4	3.6	1.0	87	. 1	. 9		182	2.84	. 064		40.0	. 95	57	. 270		2.61	. 021	. 07		. 01	6.5	<.1<. 05		8<. 5	15
RE SJ-110	. 4	21.7	4.1	67		22.5	12.6	404	3.01	6.5	. 4	2.4	. 9	87	. 1	. 8	1	177	7.81	. 061	6	37.1	. 90	56	. 254		2.42	. 019	. 07	7.1	. 01	6.5	<.1<.05		$7<.5$	15
SJ-111	. 5	63.8	4.7	63		129.6	18.4	455	3.96	12.6	. 5	8.3	1.0	192	. 1	1.1		2123	31.66	. 085	-9	43.1	1.25	51	: 340		3.63	. 039	. 10	0 . 1	. 02	10.1	<.1<. 05		$1<.5$	30
SJ-112	1.0	47.6	5.4	62		127.4	15.2	567	3.63	11.6	. 7	3.7	1.6	124	<. 1	. 5	. 2	299	91.38	. 083	17	41.2	1.10	72	. 205		3.11	. 026	. 08	$8<.1$. 04	8.9	<. $1<.05$		9 < 5	15
SJ-113	. 9	45.1	5.1	54	. 1	124.2	12.7	553	3.43	11.8	. 5	12.8	1.3	132	. 1	. 5	. 1	191	11.39	. 090	16	37.7	1.05	88	. 185		2.88	. 033	. 07	$7<.1$. 04	7.4	<.1<. 05		$8<.5$	15
SJ-114	. 6	30.8	3.9	57		24.3	11.3	356	2.94	5.4	. 4		1.2		<. 1	. 3	. 1	183	3.65	. 062	8	35.0	. 82	71	. 164		2.32	. 020	. 08	8 . 1	. 02	5.1	<.1<. 05		$6<.5$	30
SJ-115	1.0	38.8	6.0	63		126.7	15.0	757	3.47	7.7	. 5	3.0		143	. 1	. 4	. 1	177	71.27	. 118	16	36.5	1.20	117	. 175		2.91	. 040	. 08	8.1	. 03	6.4	<.1<. 05		8 < 5	15
SJ-116	. 5	35.8	4.5	53		121.3	12.3	545	3.13	6.9	. 4	4.0	1.2	162	. 1	. 4	. 1	181	11.50	. 092	13	32.6	. 98	74	. 190		2.56	. 057	. 07	7.1	. 01	6.4	<.1<.05		8. 5	15
SJ-117	. 5	17.8	6.2	115		19.5	7.4	4672	2.10	3.7	. 5	1.1	1.0	74	. 1	. 2	. 1	149	9.66	. 102	7	24.7	. 57	113	. 103		2.65	. 018	. 12	2.1	. 03	3.5	<.1<. 05		8 <. 5	30
SJ-118	. 8	21.1	5.1	46	. 1	15.2	8.6	286	2.46	4.5	. 4	1.3	. 9	102	<. 1	. 2	. 1	179	9.69	. 035	6	26.9	. 60	70	. 183		1.70	. 019	. 08	8 <.1	. 01	4.2	<.1<. 05		6<.5	30
SJ-119	1.0	36.4	4.5	45		19.5	9.6	6419	2.78	6.1	. 5	2.9		173	. 1	. 3	1	175	51.18	. 073	15	35.4	. 77	66	. 137		2.36	. 055		$4<.1$. 01	5.5	<.1<. 05		$7<.5$	15
SJ-120	. 7	31.9	4.2	39	<. 1	12.0	7.6	6298	2.24	4.1	. 4	1.2	1.0	234	<. 1	. 2	. 1	169	91.46	. 065	12	21.4	. 61	72	. 117		2.92	. 059	. 08	8 <.1	. 02	3.8	<.1<. 05		$8<.5$	30
SJ-121	. 6	21.3	5.6	84		19.9	8.7	440	2.26	3.4	. 3	<. 5	1.1	58	. 1	. 1	. 1	154	4.40	. 098	6	25.2	. 57	107	. 092		2.75	. 019	. 07	$7<.1$. 01	3.0	. $1<.05$		$8<.5$	30
SJ-122	. 7	21.6	6.0	87		22.3	9.3	291	2.35	3.1	. 3	2.0	1.4	40	. 1	. 1	. 1	154	4.28	. 110	5	28.2	. 55	170	. 110		3.41	. 014	. 07	7.1	. 01	3.1	. $1<.05$		$8<.5$	30
SJ-123	. 8	35.4	7.1	67		123.9	10.0	357	2.51	3.8	. 4	. 9	1.4	90	. 1	. 2	. 1	172	2.57	. 077	6	33.1	. 70	97	. 108		3.31	. 027	. 08	$8<.1$. 03	3.4	<.1<.05		$9<.5$	30
SJ-124	. 5	29.8	5.3	58		17.0	10.2	429	2.73	4.3	. 5	3.2	1.1	150	. 1	. 3	. 1	1.90	1.06	. 072	10	29.6	. 72	64	. 166		2.60	. 041		$8<.1$. 02	5.3	< $1<.05$		8 $<.5$	30
SJ-125	. 6	26.5	4.0	50		19.2	9.6	305	2.51	4.8	. 4	1.9	1.0		<. 1	. 2	. 1	169	9.75	. 053	8	27.7	. 64	88	. 143		2.50	. 023		$4<.1$. 02	4.9	<.1<.05		$7<.5$	30
SJ. 126	. 6	21.9	4.4	50		19.8	9.8	339	2.60	4.0	. 4	1.9	1.0	91	. 1	. 3	. 1	174	$4 \quad .76$. 047	6	29.6	. 74	71	180		2.17	. 019	. 11	$1<.1$. 02	4.3	<.1<.05		6 < 5	30
SJ-127	. 6	41.0	4.4	55		28.3	15.3	676	3.15	5.8	. 4	3.0	1.2	150	. 1	. 3	. 1	185	1.72	. 100	13	36.0	1.19	86	. 193		2.67	. 040	. 07	7 . 1	. 03	6.0	<.1<.05		<. 5	15
STANDARD DS5	12.6	143.6	24.3	135	. 3	32.1	12.1	791	2.98	18.8	6.1	43.7	2.8	505	5.9	3.7	6.3	363	3.76	. 097	12	196.5	. 66	131	. 096		2.04	. 034	. 14	44.9	. 18	3.4	$1.0<.05$		64.6	30

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^1]

[^2]| SAMPLE\# | $\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$ | $\begin{array}{r} \mathrm{Cu} \\ \mathrm{ppm} \end{array}$ | $\begin{array}{r} \mathrm{Pb} \\ \mathrm{ppm} \end{array}$ | Zn
 ppm | $\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \\ \hline \end{gathered}$ | Ni ppm | Co
 ppm | $\begin{gathered} \mathrm{Mn} \\ \mathrm{~m} \mathrm{ppm} \end{gathered}$ | $\begin{array}{cc} \hline n & F e \\ m & \% \end{array}$ | $\begin{array}{rr} \hline e & \text { As } \\ \text { \% } & \text { ppm } \end{array}$ | $\begin{gathered} \mathrm{s} \quad \mathrm{U} \\ \mathrm{~m} \text { ppm } \end{gathered}$ | $\begin{array}{lll} \mathrm{U} & \mathrm{Au} \\ \mathrm{~m} & \mathrm{ppb} \end{array}$ | Au Th pb ppm | $\begin{aligned} & \text { h } \mathrm{Sr} \\ & \text { min } \end{aligned}$ | $\begin{gathered} \mathrm{Cd} \\ \mathrm{ppm} \end{gathered}$ | $\begin{gathered} \mathrm{Sb} \\ \mathrm{ncpm} \end{gathered}$ | Bi
 ppm | $\begin{array}{r} v \\ \mathrm{ppm} \end{array}$ | $\begin{gathered} \text { Ca } \\ \% \end{gathered}$ | | $\begin{array}{ll} \hline P \quad \text { La } \\ \% & \text { ppm } \end{array}$ | | | $\begin{array}{ll} \hline \mathrm{g} & \mathrm{Ba} \\ \text { \% } \end{array}$ | $\begin{gathered} \mathrm{Ti} \\ \% \end{gathered}$ | $\begin{array}{lr} \mathbf{i} \quad \mathrm{B} \\ \% & \mathrm{ppm} \end{array}$ | $\begin{array}{cc} \mathrm{B} & \mathrm{Al} \\ \text { om } & \% \\ \hline \end{array}$ | $\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$ | $\begin{aligned} & K \\ & \% \end{aligned}$ | $\begin{array}{lr} K & W \\ \% & \mathrm{ppm} \end{array}$ | | | $\begin{array}{lll} \hline \mathrm{C} & \mathrm{Tl} & \mathrm{~S} \\ \mathrm{n} \mathrm{ppm} & & \end{array}$ | Ga | $\begin{array}{r} \mathrm{Se} \\ \mathrm{n} \text { ppm } \end{array}$ | Sample gm |
| :---: |
| SJ-194 | . 5 | 27.7 | 4.2 | 53 | | 125.3 | 10.9 | 9412 | 2.80 | 4.3 | 3.5 | $5 \quad 2.9$ | . 91.2 | 298 | . 1 | . 2 | . 1 | 79 | . 79 | . 078 | 11 | 34.9 | . 90 | 87 | . 193 | | 12.11 | 021 | . 09 | < 1 | . 02 | 5.2 | \ll 1.06 | | <. 5 | 30.0 |
| SJ-195 | . 5 | 33.8 | 4.0 | 50 | | 129.0 | 12.9 | 9463 | 2.98 | 5.9 | 9.7 | 72.0 | . 01.5 | 5127 | . 1 | . 3 | . 1 | 791 | 1.01 | . 046 | 11 | 40.6 | . 98 | 77 | . 198 | | 12.47 | . 033 | . 06 | <. 1 | . 02 | 6.2 | <.1<. 05 | | <. 5 | 30.0 |
| SJ-196 | . 5 | 20.7 | 7.5 | 55 | . 1 | 118.2 | 8.6 | 6633 | 2.26 | 3.6 | 6.7 | 78.6 | . 61.1 | 1111 | . 1 | . 2 | . 1 | 55 | . 94 | . 084 | 13 | 22.3 | . 73 | 91 | . 169 | | 12.53 | . 024 | . 10 | 0.1 | . 02 | 4.1 | <.1<.05 | - | | 30.0 |
| SJ-197 | . 5 | 38.0 | 6.1 | 59 | | 130.0 | 14.0 | 0703 | 3.24 | 46 | . 8 | 3.5 | . 51.4 | 4137 | . 1 | . 3 | . 1 | 821 | 1.32 | . 093 | 16 | 36.0 | 1.28 | 106 | . 211 | | 22.90 | 042 | . 07 | 7.1 | . 03 | | <.1<. 05 | - 9 | . 5 | 15.0 |
| SJ-198 | . 3 | 19.6 | 7.1 | 62 | | 115.7 | 8.5 | 552 | 2.14 | 4.4 | 41.1 | | . 51.2 | 2128 | . 1 | . 3 | . 1 | 54 | 1.26 | . 090 | 11 | 17.9 | . 60 | 154 | . 181 | | 12.99 | 032 | . 13 | 3.1 | . 02 | 3.8 | <.1<. 05 | 8 | | 30.0 |
| SJ-199 | . 2 | 46.9 | 4.3 | 55 | | 230.2 | 17.6 | 6807 | 3.23 | 8.8 | 1.0 | | . 91.5 | 5105 | . 1 | . 4 | <. 1 | 631 | 1.51 | . 059 | 17 | 29.3 | 1.24 | 381 | . 213 | | 12.93 | . 024 | . 09 | 9.1 | . 03 | 6.6 | <.1<. 05 | | <. 5 | 7.5 |
| SJ-200 | . 5 | 19.3 | 5.3 | 82 | | 127.3 | 10.1 | | 2.29 | 3.7 | 7.5 | 1.1 | .11.1 | 142 | . 1 | . 2 | . 1 | 62 | . 42 | . 101 | 6 | 29.4 | . 75 | 148 | . 156 | | 22.59 | . 013 | . 08 | . 1 | . 02 | 3.7 | . $1<.05$ | | < 5 | 30.0 |
| SJ-201 | . 4 | 26.1 | 8.2 | 44 | | 114.1 | 6.0 | 0675 | 1.98 | 2.8 | . 5 | < 5 | <. 51.9 | 42 | . 1 | . 3 | . 1 | 47 | . 52 | . 052 | 27 | 19.9 | . 47 | 87 | . 061 | | 11.39 | . 009 | . 07 | 7.1 | . 02 | 3.5 | < $<.1<.05$ | | <. 5 | 30.0 |
| SJ-202 | . 5 | 20.6 | 5.4 | 49 | | 319.6 | 8.1 | 1342 | 21.99 | 4.1 | 13.6 | | 1.9 . 8 | 86 | . 1 | . 2 | . 1 | 51 | . 90 | . 039 | 18 | 26.7 | . 57 | 72 | . 106 | | 32.12 | . 026 | 04 | < 1 | . 04 | | <. $1<.05$ | | <. 5 | 15.0 |
| SJ-203 | . 4 | 31.2 | 4.3 | 46 | | 126.6 | 12.0 | 0547 | 3.11 | 15.8 | . 8 | 2.7 | 2.71 .3 | 121 | . 1 | . 3 | <. 1 | 891 | 1.32 | . 099 | 15 | 32.0 | 1.15 | 112 | . 270 | | 22.49 | . 027 | 07 | 7.1 | . 02 | 6.3 | <.1<. 05 | | <. 5 | 30.0 |
| SJ-204 | . 5 | 21.8 | 5.3 | 57 | | 122.3 | 9.1 | 1306 | 2.48 | 3.6 | . 5 | 51.3 | 1.31 .6 | 666 | . 1 | . 2 | . 1 | 68 | . 42 | . 049 | و | 32.7 | . 62 | 150 | . 132 | | 12.01 | . 013 | . 07 | $7<.1$ | . 02 | 4.0 | . $1<.05$ | | <. 5 | 30.0 |
| SJ-205 | . 4 | 24.7 | 5.3 | 49 | | 124.0 | 9.9 | 9470 | 2.64 | 3.7 | 7.6 | 62.3 | .31.2 | 291 | . 1 | . 3 | . 1 | 83 | . 89 | . 057 | 8 | 31.7 | . 83 | 108 | . 260 | | 22.42 | . 013 | . 07 | 7.1 | . 01 | 5.5 | <.1<. 05 | | <. 5 | 30.0 |
| SJ-206 | . 4 | 23.0 | 4.9 | 45 | | 121.0 | 8.7 | 7299 | 2.63 | 34.6 | . 5 | 3.6 | .61.5 | 56 | . 1 | . 3 | . 1 | 72 | . 60 | . 041 | 11 | 29.0 | . 71 | 146 | . 155 | | 11.79 | . 013 | . 07 | <.1 | . 02 | 4.8 | <.1<. 05 | | < 5 | 15.0 |
| RE SJ-206 | . 5 | 22.7 | 4.7 | 48 | | 120.9 | 8.8 | 8293 | 2.56 | 4.7 | . 6 | 61.8 | 1.81 .4 | 465 | <.1 | . 2 | . 1 | 74 | . 57 | . 041 | 11 | 31.1 | . 69 | 151 | . 160 | | 21.82 | . 013 | . 07 | $7<.1$ | . 01 | 4.8 | <.1<. 05 | | <. 5 | 15.0 |
| SJ-207 | . 4 | 20.0 | 4.7 | 41 | | 120.5 | 9.4 | 4332 | 2.50 | - 3.5 | . 5 | 1.4 | . 41.1 | 177 | . 1 | . 3 | . 1 | 68 | . 58 | . 029 | -8 | 27.2 | . 73 | 128 | . 147 | | 11.93 | . 012 | . 06 | 6.1 | . 02 | | <.1<.05 | | <. 5 | 30.0 |
| SJ-208 | . 5 | 38.2 | 5.2 | 73 | | 126.4 | 12.6 | 6702 | 2.90 | 5.7 | 7.6 | 3.6 | .61.3 | 141 | . 1 | . 3 | . 1 | 78 | . 64 | . 079 | 7 | 33.0 | . 93 | 181 | . 177 | | 13.56 | . 014 | . 07 | 7.1 | . 04 | | <. $1<.05$ | | <. 5 | 30.0 |
| SJ-209 | . 6 | 28.9 | 5.6 | 69 | | 126.9 | 11.8 | 8763 | 2.76 | 764.6 | . 4 | 48.1 | . 11.0 | 114 | . 1 | . 2 | . 1 | 76 | . 87 | . 084 | - 7 | 31.2 | . 83 | 165 | . 150 | | 33.53 | . 012 | . 12 | <.1 | . 02 | 4.8 | . $1<.05$ | | <. 5 | 30.0 |
| SJ-210 | . 5 | 22.2 | 6.2 | 74 | | 124.3 | 10.6 | 6652 | 2.50 | - 4.0 | . 4 | 4.4 | 5.41 .2 | 22 | . 1 | . 2 | . 1 | 65 | . 51 | . 079 | 5 | 29.1 | . 73 | 188 | . 121 | | 23.17 | . 012 | . 09 | <.1 | . 03 | 3.9 | .1<. 05 | | < 5 | 30.0 |
| SJ-211 | . 7 | 28.8 | 6.0 | 75 | | 1'29.3 | 11.8 | 8519 | 2.71 | 13.7 | 7.5 | 1.6 | . 61.6 | 59 | . 1 | . 2 | . 1 | 71 | . 36 | . 078 | 8 | 35.6 | . 68 | 176 | . 108 | | 13.49 | . 012 | . 07 | <.1 | . 04 | 3.8 | . $1<.05$ | | < 5 | 30.0 |
| SJ-212 | . 8 | 29.2 | 6.4 | 73 | | 324.6 | 10.8 | 8463 | 3.63 | 3 5.4 | 4.6 | 63.0 | .01.4 | 4.43 | . 2 | -2 | .1 | 71 | . 37 | 125 | . 7 | 30.3 | . 77 | 141 | . 152 | | 13.41 | . 014 | . 06 | 6.1 | . 05 | 4.7 | . $1<.05$ | | < 5 | 30.0 |
| SJ-213 | . 6 | 14.5 | 5.3 | 86 | | 320.8 | 9.0 | 0.904 | 42.09 | 3.1 | 1.4 | 413.7 | .71.1 | 126 | . 1 | . 2 | . 1 | 54 | . 41 | . 123 | 7 | 24.6 | . 47 | 83 | . 110 | | 22.15 | . 016 | . 08 | 8.1 | . 02 | 3.6 | . $1<.05$ | | <. 5 | 30.0 |
| SJ-214 | . 6 | 28.9 | 4.7 | 54 | | 131.8 | 12.5 | 5406 | 3.22 | 4.9 | . 8 | 3.5 | .51.8 | 103 | . 1 | . 3 | . 1 | 98 | . 89 | . 104 | 12 | 40.8 | . 90 | 118 | . 237 | | 12.74 | . 026 | . 07 | 7.1 | . 02 | 7.2 | <.1<. 05 | | <. 5 | 30.0 |
| SJ-215 | . 3 | 24.3 | 4.3 | 44 | <. 1 | 128.0 | 10.6 | 6325 | 2.89 | 5.3 | . 7 | 8.4 | . 41.4 | 4121 | . 1 | . 4 | . 1 | 931 | 1.00 | . 067 | 11 | 38.2 | . 85 | 86 | . 251 | | 22.09 | . 023 | . 07 | 7.1 | . 02 | | <.1<. 05 | | <. 5 | 30.0 |
| SJ-216 | . 3 | 21.4 | 4.1 | 39 | <. 1 | 124.2 | 10.4 | 4366 | 2.90 | 5.1 | . 8 | 8.5 | . 51.4 | 4146 | <.1 | . 5 | . 1 | 981 | 1.13 | . 055 | 13 | 36.5 | . 88 | 73 | . 308 | | 12.07 | . 021 | . 09 | . 1 | . 02 | 7.5 | <.1<. 05 | | <. 5 | 30.0 |
| SJ-217 | . 3 | 23.1 | 4.4 | 39 | | 121.6 | 9.6 | 6380 | 2.48 | 4.4 | 4.9 | 32.8 | . 11.4 | 4.120 | . 1 | . 4 | . 1 | 921 | 1.00 | . 042 | 13 | 33.3 | . 78 | 82 | . 286 | | 21.78 | . 031 | . 05 | . 1 | . 03 | | <.1<. 05 | | < 5 | 30.0 |
| SJ-218 | . 8 | 31.3 | 5.6 | 50 | | 127.8 | 12.8 | 8856 | 63.15 | 8.9 | | | .5 1.8 | 116 | . 2 | . 6 | . 1 | | 1.21 | . 091 | 14 | 38.6 | . 80 | 93 | . 193 | | 21.83 | . 030 | . 06 | . 1 | . 04 | | <.1<. 05 | | < 5 | 30.0 |
| SJ-219 | . 6 | 29.8 | 4.7 | 59 | | 139.9 | 14.2 | 2509 | 3.32 | 5.4 | . 6 | 62.7 | 2.71 .5 | 128 | . 1 | . 2 | . 1 | 91 | . 80 | . 066 | 11 | 46.1 | 1.03 | 119 | . 210 | | 22.86 | . 026 | . 08 | <. 1 | . 03 | | <.1<. 05 | | < 5 | 30.0 |
| SJ-220 | . 7 | 41.7 | 4.8 | 51 | | 149.0 | 16.8 | 8809 | 3.69 | 8.8 | . 8 | | 3.61 .9 | 188 | . 1 | . 3 | <.1 | 1071 | 1.29 | . 090 | 15 | 55.1 | 1.33 | 110 | . 209 | | 23.36 | . 041 | . 08 | <. 1 | . 07 | | <.1<. 05 | | < 5 | 15.0 |
| SJ-221 | . 7 | 30.4 | 4.5 | 58 | | 139.3 | 13.3 | 3526 | 63.16 | 164 | . 6 | | . 91.7 | 139 | . 1 | . 2 | . 1 | 86 | . 89 | . 087 | 11 | 46.3 | 1.17 | 115 | . 181 | | 13.39 | . 021 | . 08 | . 1 | . 06 | | <.1<. 05 | | < 5 | 30.0 |
| SJ-222 | . 6 | 29.4 | 4.3 | 61 | . 1 | 136.4 | 13.3 | 3517 | 73.16 | 3.8 | - 8 | | . 41.8 | 150 | . 1 | . 2 | . 1 | 91 | . 90 | . 080 | 12 | 40.2 | 1.08 | 82 | . 199 | | 23.29 | . 024 | . 10 | . 1 | . 08 | | <.1<.05 | | < 5 | 30.0 |
| SJ-223 | . 6 | 33.2 | 5.2 | 60 | | 129.4 | 14.1 | 1555 | 52.97 | - 3.0 | . 8 | | .2 1.8 | 8110 | . 2 | . 1 | . 1 | 861 | 1.23 | . 068 | 11 | 30.4 | . 98 | 94 | . 219 | | 23.98 | . 027 | 09 | <.1 | . 08 | 7.5 | <.1<. 05 | | < 5 | 30.0 |
| SJ-224 | . 4 | 28.8 | 4.3 | 52 | | 130.2 | 12.3 | 3714 | 42.44 | 4.4 | 4 . 5 | | . 01.0 | 119 | . 1 | . 1 | . 1 | 62 | 2.11 | . 071 | 9 | 26.3 | . 87 | 64 | . 105 | | 14.91 | . 026 | 15 | <.1 | . 04 | | <.1<. 05 | | < 5 | 30.0 |
| SJ-225 | . 5 | 28.1 | 4.7 | 63 | . 1 | 140.0 | 13.2 | 2461 | 12.95 | 54.2 | . 5 | | . 91.3 | 398 | . 1 | . 2 | . 1 | 77 | . 58 | . 099 | 8 | 40.0 | 1.08 | 107 | . 142 | | 23.33 | . 022 | . 07 | <.1 | . 03 | 5.1 | <.1<.05 | | <. 5 | 30.0 |
| SJ-226 | . 5 | 34.3 | 4.1 | 52 | . 1 | 144.3 | 16.3 | 3787 | 3.35 | 4.6 | . 9 | | 2.31 .5 | 143 | . 1 | | <. 1 | 951 | 1.16 | . 066 | 13 | 50.9 | 1.24 | 100 | . 165 | | 12.65 | . 046 | . 07 | <. 1 | . 05 | 9.3 | <.1<. 05 | | <. 5 | 7.5 |
| STANDARD DS5 | 12.4 | 140.1 | 24.4 | 142 | . 3 | 324.0 | 12.2 | 2836 | 3.07 | 18.7 | 76.4 | 42.6 | .63.0 | . 515 | 5.9 | 3.9 | 6.5 | 64 | . 77 | . 095 | - 13 | 194.7 | . 72 | 146 | . 101 | 19 | 2.05 | . 034 | . 15 | 4.8 | . 18 | 3.6 | $1.0<.05$ | 7 | 5.1 | 30.0 |

[^3]

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^4]

[^5]

[^6]

Sample type: SOIL $\$ \$ 80060 C$. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Standard is STANDARD DS6.
GROUP DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS.
(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: ROCK R150 60C

DATE RECEIVED: DEC 3200

[^0]: Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^1]: Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]: Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^3]: Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^4]: Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^5]: Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^6]: Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

