

[ARIS11A]

Geological Survey Branch Assessment Report Indexing System

ARIS Summary Report

Regional Geologist,	Kamloops			Date Approv	ed: 2005.	07.12		Off Confic	ential:	2005.11.05
ASSESSMENT REP	PORT: 27672			Mining Divis	ion(s): K	amloops				
Property Name: Location:	Sam NAD 27 NAD 83 NTS: BCGS:	Latitude: Latitude: 092103W 0921033	50 22 00 50 22 00	Longitude: Longitude:	121 30 00 121 30 05	UTM: UTM:	10 10	5580256 5580473	606682 606580	
Camp:										
Claim(s):	Sam 1-10									
Operator(s): Author(s):	Almaden M Balon, Edw		ted							
Report Year:	2005									
No. of Pages:	67 Pages									
Commodities Searched For:	Gold, Silver									
General Work Categories:	GEOL, PHY	YS, GEOC								
Work Done:	SILT Elemen SOIL Elemen Geological GEOL Physical ROAD	Rock its Analyzec Silt (8 its Analyzec	I For : Mul sample(s);) I For : Mul 2 sample(s); I For : Mul (10.0 ha access	tielement	s : 2 ; Scale(s) s : 5 ; Scale(s)					
Keywords:	Cretaceous	, Spences E	Bridge Group,	Andesites, Basa	alts, Pyrite, Sp	ecular hema	atite			
Statement Nos.:	3219733									
MINFILE Nos.:	092ISW104	, 092ISW10)5							
Related Reports:										

2004 GEOCHEMICAL, PROSPECTING AND PHYSICAL WORK REPORT SAM PROPERTY (SAM 1 – 10 Claim Group)

Kamloops Mining Division Lytton-Spences Bridge Area, British Columbia NTS: 92I/5, 6; BCGS: 092I033 Latitud 50°22'N' Longitude 121°30'W UTM Zone 10: 607000E, 5580000N (NAD 27)

February, 2005

(BC 2004 ASSESSMENT) CEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

E.A. Balon, P.Geo

Almaden Minerals Ltd. 1103 – 750 West Pender St. Vancouver, B.C. V6C 2T8

Report Preparation: Original + 4 copies

TABLE OF CONTENTS

1.0	SUMMARY AND CONCLUSIONS	1
2.0	RECOMMENDATIONS	2
3.0	INTRODUCTION 3.1 Location, Access, Physiography & Climate 3.2 Claim Data 3.3 History 3.4 2004 Exploration Program	3 3 4 5
4.0	GEOLOGIC SETTING 4.1 Regional Geology & Mineral Deposits 4.2 Property Geology, Alteration & Mineralization	6 6 7
5.0	 GEOCHEMISTRY 5.1 Introduction 5.2 Sampling & Analytical Procedures 5.2.1 Quality Control Measures 5.3 Soil and Stream Sediment Geochemical Results 5.3.1 Soils 5.3.2 Stream Sediments 5.4 Prospecting & Reconnaissance Rock Geochemical Results 	9 9 10 10 10 11 12
6.0	PHYSICAL WORK 6.1 Road Clearing & Repair 6.2 Hand Trenching 6.2.1 Pit SMT 04-1 Results 6.2.2 Trench SMT 04-2 Results 6.2.3 Trench SMT 04-3 Results	13 13 13 14 14 14
7.0	PERSONNEL AND CONTRACTORS	15
8.0	STATEMENT OF COSTS	16
9.0	STATEMENT OF QUALIFICATIONS	17
10.0	REFERENCES	18
	TABLES	
<u>Table 1</u> : <u>Table 2</u> :	Mineral Claim Summary – as at JAN 1, 2005 SAM 2004 Test Pit & Trench Summary	5 13
	FIGURES Follow	ina n
Fig. 1: Fig. 2: Fig. 3: Fig. 4: Fig. 5: Fig. 6:	Property Location and Regional Geology Map Claim Locations and Work Distribution Soil Sample Histograms-Au, As, Sb, Hg Recon Rock Sample Scatter Plots JJ Showing SMT 04-2 Trench Plan Discovery Showing SMT 04-3 Trench Plan	12 12 12 14 14

age

Page

APPENDICES

Appendix A:	SAM Area 2003 Recon Geochemical Sample Summary
	Acme Analytical 2003 Geochemical Certificates
Appendix B:	SAM Area 2004 Recon Geochemical Sample Summary
	Acme Analytical 2004Geochemical & Assay Certificates

PLATES (in pockets)

Plate 1:	Soil and Stream Sediment Sample Location Map	1:15,000
Plate 2:	Soil and Stream Sediment Sample Gold Results	1:15,000
Plate 3:	Soil and Stream Sediment Sample Arsenic Results	1:15,000
Plate 4:		1:15,000
Plate 5:	Soil and Stream Sediment Sample Mercury Results	1:15,000
Plate 6:	Rock Sample Location Map	1:15,000
Plate 7:	Rock Sample Gold Results	1:15,000

1.0 SUMMARY AND CONCLUSIONS

The SAM Property covers a significant new epithermal gold vein discovery located in the Kamloops Mining Division of southern British Columbia, NTS 92I/5 & 6. This prospect is readily accessible by road, 25 kilometers northeast from the village of Lytton on the Trans-Canada Highway. It is situated just 35 kilometers west-southwest of the world-class porphyry copper producing Highland Valley district. The initial SAM 1-10 claims comprising 43 units (1,075 hectares) were acquired by staking in November 2003. Work on this claim group and its periphery is the subject of this assessment report. Following the assessment work period, the SAM 11-16 claims comprising 97 units (2,425 hectares) were added by staking during November 2004. All of the claims are 100% owned by Almaden Minerals Ltd.

Physiography in the property area is dominantly forested moderate to locally rugged upland terrain of the Scarped Range between the Fraser Plateau and northern Cascade Mountains. The claims are located on upper Skoonka Creek, a tributary to the Thompson River. The area is underlain by a northwest-southeast trending shallowly dipping sequence of intermediate and mafic volcanic rocks of the Cretaceous Spences Bridge Group. Sill-like bodies of feldspar porphyry are also present, and felsic dyke (?) rubble has been noted in a few localities. The ages and relationships of these rocks to the main volcanic assemblage are presently unknown.

Pre-acquisition work during 2003 consisted of prospecting and recon geochemical sampling based on follow-up of a government (BC-RGS) regional gold stream sediment anomaly. This program generated 22 rock, 41 silt, and 14 soil samples. The 2004 assessment work program included minor access road improvements, further prospecting and recon sampling (25 rocks, 8 silts), approximately 21 line-km of roadcut soil sampling (417 soils), and limited hand trenching at three sites (16 rock chip samples). All of the samples collected to date have been tested for 36 elements.

The rock sample results identify variable grade gold and lesser silver mineralization in a number of widely scattered quartz float occurrences, and in two major insitu vein showings named Discovery and JJ. All of these occurrences exhibit compositions and textures typical of low sulphidation epithermal veins and breccias. The averaged gold grade from 38 float samples is 624 ppb (0.62 g/t Au), with values ranging from <5 to 8678 ppb (~8.7 g/t Au).

The (2003) Discovery Showing represents a large but low grade vein breccia zone having an approximate 4m true width over which the 2004 channel sampling returned a weighted average gold analysis of 380 ppb (0.38 g/t Au), with negligible silver. This zone trends ENE and is subvertical. Better grade rubble (1214-2160 ppb Au) occurs ~250m along strike.

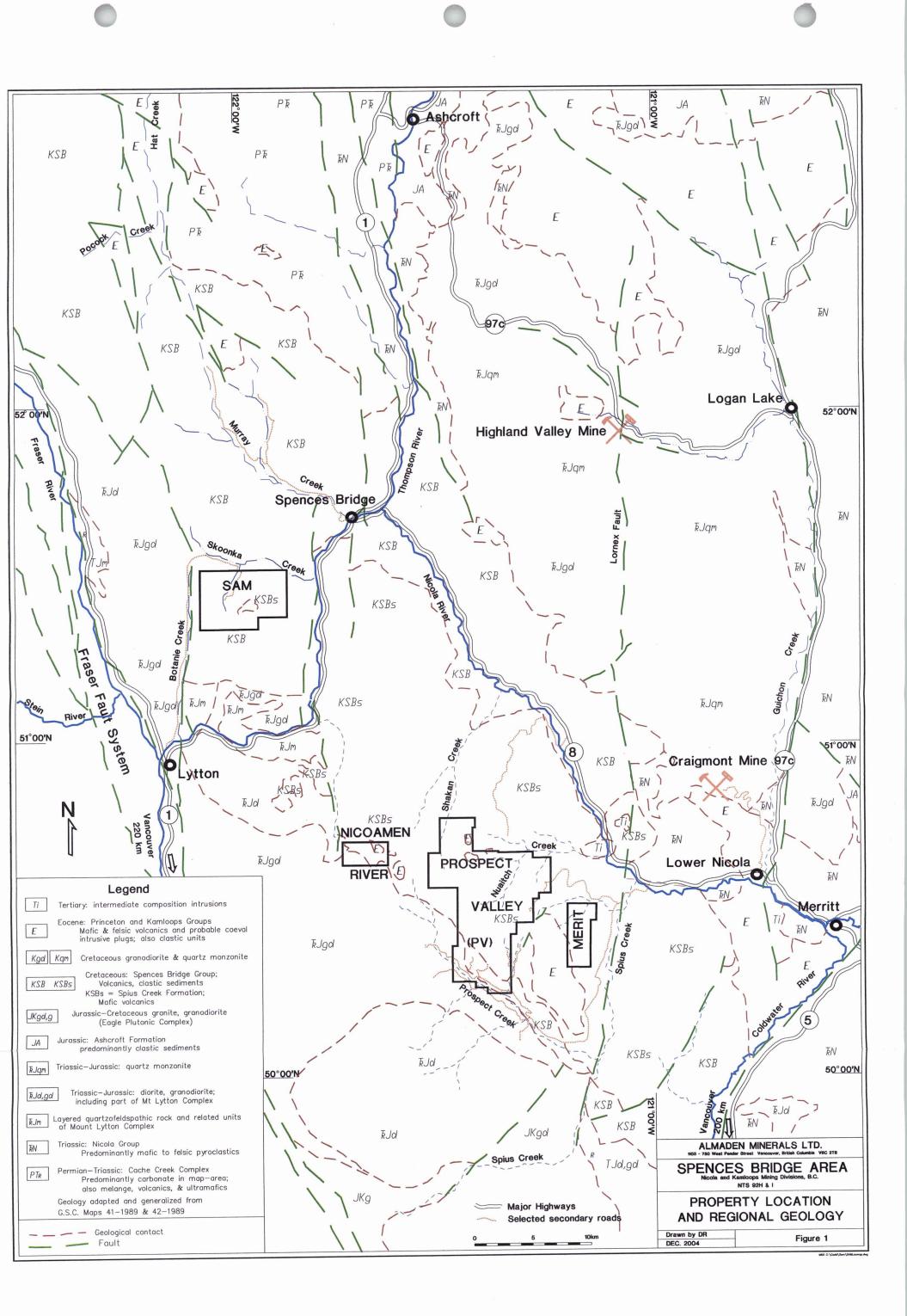
The newly discovered high grade JJ Showing is situated nearly three kilometers to the southwest of the Discovery Vein, on a subparallel ENE structural trend. It consists of a moderately dipping zone containing two closely spaced veins (Jan & Jodi Veins) and intensely altered andesite wallrock having an estimated combined 2m true width. Channel sampling of the JJ exposure has yielded impressive gold assays of 12.79 to 53.38 g/t from vein material and 4.49 to 9.15 g/t from the selvages. Corresponding sample silver assays range from 13 to 36 g/t (in vein) and 4 to 7 g/t (in the selvages).

The current soil and stream sediment sampling results have outlined two broad areas of goldarsenic-antimony ± mercury enrichment which include and encompass the Discovery and JJ Areas. Several strong gold-in-silt anomalies remain to be explained, and their positions indicate good potential for locating strike extensions of the Discovery and JJ mineral zones.

The limited 2004 exploration program conducted on the SAM 1-10 claims has generated highly positive overall results for such an early stage project. Continued, more aggressive exploration is definitely warranted and is strongly recommended for the entire expanded property area.

2.0 RECOMMENDATIONS

The following exploration program is recommended for the expanded (SAM 1-16) claim group:


- Further prospecting and recon rock, silt geochemical sampling.
- Property-wide geological mapping at 1:10,000 scale, and at 1:5000 or larger scale in high priority areas.
- Coarse grid (200m x 50m) soil geochemical sampling, covering a 3.5 km x 3.4 km area which includes the SAM 1-10 claims and north half of the SAM 14 claim. This would involve establishing 63 line-km of grid control, and collecting 1278 soil samples for 36element ICP-MS analysis. Subsequent infill sampling at 50m x 25m grid spacing should be conducted around all anomalous gold stations.
- Detailed grid (50m x 25m) soil sampling outwards from the Discovery and JJ Showings, for at least 300m in both strike directions and over 200m-widths across the mineral zone trends. (Two areas of 600m x 200m; 5.2 line-km of grid control; 234 soil samples for multi-element analysis as per above).
- Mechanized trenching, employing a track-mounted excavator, to test for continuity of structure and mineralization along projected trends of both the Discovery and JJ zones. At least 500m of trenching should be carried out, comprising ten 50m-long trenches (six in the JJ Area; four in Discovery Area) at 50m to 100m step-outs from the showings. This program can be accomplished from existing road access in the clear-cut (logged) blocks at these sites. All trenches that reach bedrock should be cleaned, mapped and channel sampled where alteration/mineralization is present. All samples yielding > 1000 ppb Au should be fire assayed for gold and silver.
- Detailed mineralogic, geochemical and fluid inclusion studies should be conducted on vein material from the JJ Showing in order to better understand the nature of this high grade mineralization.

Respectfully submitted

ALMADEN MINERALS LTD.

E. A. Baton, P. Geo.

February 28, 2005

3.0 INTRODUCTION

This report describes the results of the 2004 exploration work conducted on the SAM 1-10 claim group and documents the related expenditures applied for assessment credits.

3.1 Location, Access, Physiography and Climate (Figures 1 & 2)

The SAM property is centered between the communities of Lytton and Spences Bridge in southcentral British Columbia, at latitude 50°22'N and longitude 121°30' W (UTM Zone 10: 607000E/5580000N) on the boundary of NTS map areas 92I/5&6. Good ground access is afforded via the partly hard-surfaced Botanie Lake Road from Lytton, 20 km northerly, thence three to five kilometers easterly via a forestry gravel road system which passes through the southeast corner of Bootahnie Indian Reserve #15 and continues along the south side of Skoonka Creek valley. From the main trunk of this Skoonka Forestry Road, a number of old but partly serviceable logging spurs branch off southerly onto the claim group. For ease of reference relative to the property area, these subsidiary trails are named Northwest (NW), Central, East and West Spur Roads (see Figure 2).

The SAM claims are situated on the Scarped Range between the Fraser Plateau and the northern Cascade Mountains, within the western margin of the Intermontane physiographic region consisting of rolling upland to rugged mountainous terrain. Topography is moderate to locally steep, with elevations ranging from a low point of 1000 meters (3300 ft) on the northern property boundary to over 1780 meters (5800 ft) in the southeastern claim area. The principal drainage is northward along a major branch of Skoonka Creek, which in turn flows eastward into the Thompson River. This branch is called Gold Creek (Fig. 2). Soil and glacial till cover is extensive and generally shallow, but includes local deep mounds (to >5m thickness) particularly at the lower elevations in the northern property area. Overall bedrock exposure is moderate to locally abundant in road cuts and in some of the stream gullies, as well as on steep upper slopes and ridge tops. The local ice-flow direction, determined from glacial striae in outcrop along the West Spur Road, is to the east-southeast (azimuth $110^{\circ} \pm 5^{\circ}$).

The climate is semi-arid, with hot dry summers having temperatures commonly in the 30^oC to above 40^oC range at Lytton. All areas of the property are generally free of snow from late May or early June through October. Vegetation consists mainly of widely spaced lodgepole pine and Douglas fir grading to more dense balsam fir and spruce along creek valleys. Dense brush consisting of alder and willow is common along most of the stream gullies and road cuts. Approximately 40% of the SAM 1-10 claim area has been clear-cut logged during the 1980s to mid-1990s.

3.2 Claim Data

The property consists of 16 contiguous mineral claims totaling 140 legacy units (3500 hectares) in the Kamloops Mining Division, BCGS map area 092I033. The initial 43 units comprising the SAM 1-10 claims described in this report were located by Almaden Minerals Ltd. in early November 2003. Five 2-post claims (SAM 11-15/5 units) were added onto the southwest corner of this block on October 1st 2004, but they were later cancelled by Applications for Inclusion within overlapping 4-post claims (BC Mineral Titles Event Nos. 3220474, 76, 78, 80, 82).

Six 4-post claims (SAM 11-16) consisting of 97 units were added during mid-November 2004, after the first anniversary dates and work filing deadline for the SAM 1-10 group. During January 2005, following implementation of the new BC Mineral Titles Online (MTO) system, 13 adjacent SAMS (Sam South) claims comprising 300 BCGS grid cells were acquired electronically. However, any further discussion of these new *cell tenures* is beyond the scope of this report.

Locations of the SAM 1-16 legacy claims are shown on Figure 2 and respective claim data are summarized in Table 1. The expiry dates listed for SAM 1-10 are subject to filing and approval of this report. All of the claims are 100% owned by Almaden.

Claim Name	Type	<u># Units</u>	Tenure No.	Expiry Date
SAM 1	4 Post	20	406564	05 Nov 08
SAM 2	4 Post	15	406565	05 Nov 08
SAM 3	2 Post	1	406566	05 Nov 08
SAM 4	2 Post	1	406567	05 Nov 08
SAM 5	2 Post	1	406568	05 Nov 08
SAM 6	2 Post	1	406569	05 Nov 08
SAM 7	2 Post	1	406570	05 Nov 08
SAM 8	2 Post	· 1	406571	05 Nov 08
SAM 9	2 Post	1	406572	05 Nov 08
SAM 10	2 Post	1	406573	05 Nov 08
SAM 11	4 Post	12	415615	13 Nov 05
SAM 12	4 Post	18	415616	13 Nov 05
SAM 13	4 Post	15	415617	12 Nov 05
SAM 14	4 Post	12	415618	13 Nov 05
SAM 15	4 Post	20	415619	13 Nov 05
<u>SAM 16</u>	4 Post	20	415620	13 Nov 05

Table 1Mineral Claim Summary - as at JAN 01/05

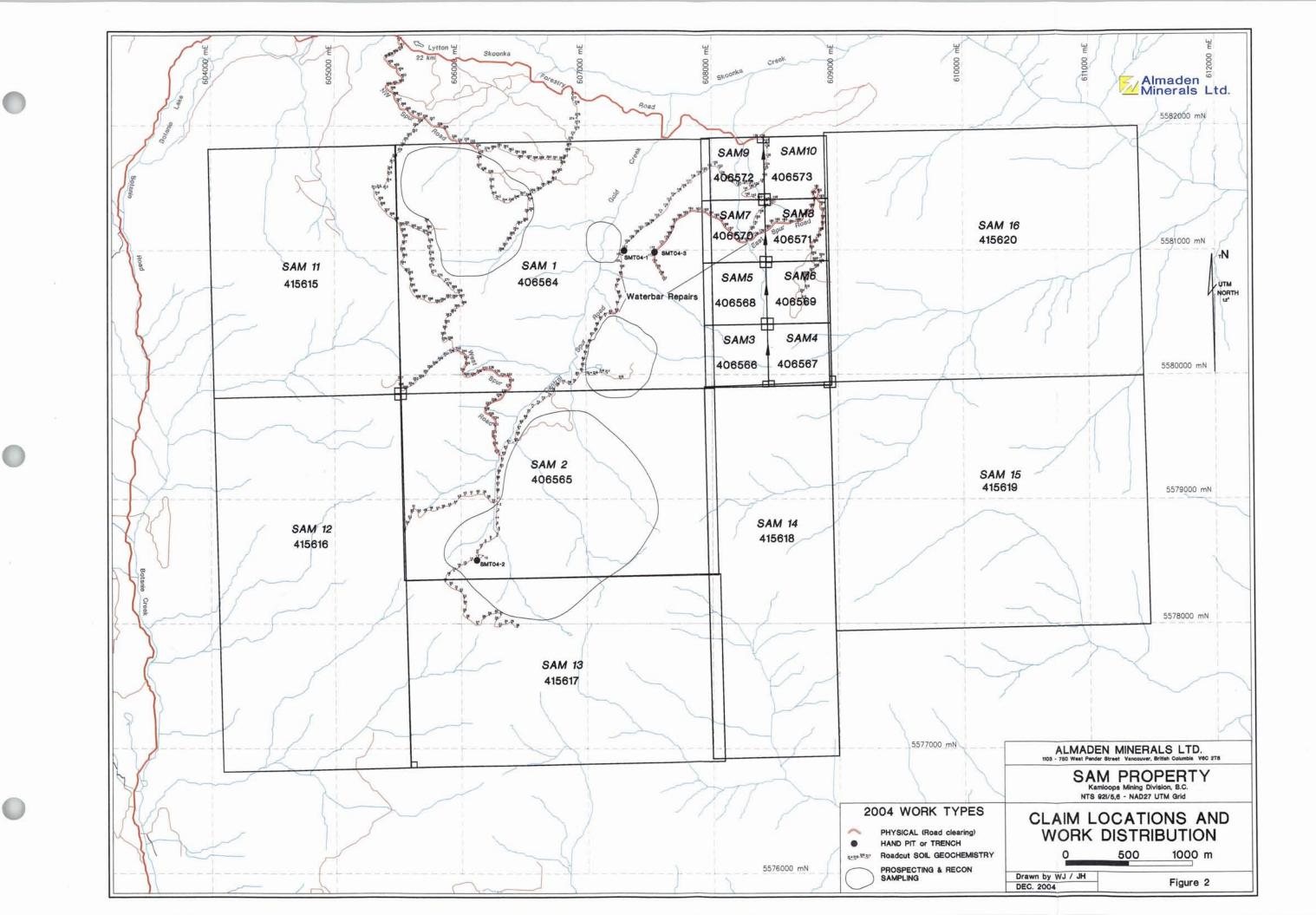
3.3 History

There are no published records of any prior mineral exploration work in the area covered by the SAM claims, and there are no documented mineral occurrences for this locality in the BC Minfile database. No old claim posts, nor any other ground evidence of previous exploration activity, have been found to date on the property.

During the Gold Rush era of the mid – 19th to early 20th centuries, placer gold was mined from gravel bars on the Fraser and Thompson Rivers and on most of their major tributary streams in the Ashcroft-Lytton-Lillooet district. Production records from this time period and region are not detailed, and there is no mention of Skoonka Creek in the published literature (BCMEMPR Bulletin 28, GSC Map 1010A notes, GSC Memoir 262). However, it is interesting to note that the discovery of coarse placer gold in 1857 on the Thompson, near Nicoamen River, actually initiated the Gold Rush into interior British Columbia. This Nicoamen River site is only 12 km downstream from the mouth of Skoonka Creek. A present-day tourist stop along the Trans-Canada Highway, called Goldpan Provincial Park, is also located on the Thompson River just 2.5 km downstream from Skoonka Creek.

In 1981 a federal-provincial government Regional Geochemical Survey was carried out over the entire Ashcroft (NTS 92I) map area. The initial results of this survey were published in 1982 as BC RGS 8/GSC Open File 866. Years later, in 1994, the sample pulps were re-analyzed by improved techniques and for additional elements including gold. The new data were published as BC RGS 40/GSC Open File 2666 which identified a number of strong gold-in-silt anomalies including two located in the Skoonka Creek drainage, represented by Sample Numbers 815058 (21ppb Au/rerun 23ppb Au) and 815059 (19ppb Au).

During a 2003 regional gold exploration program, Almaden Minerals Ltd. conducted two brief stages of prospecting and reconnaissance geochemical sampling in the upper part of Skoonka Creek drainage above the RGS sample site 815058. Results of the initial examination (by Balon, Harwood) in August confirmed and enhanced the gold silt anomaly in this tributary, later named


Gold Creek. Furthermore, a composite sample of chalcedonic quartz vein rubble found along an adjacent road cut returned a significant gold analysis of 1300 ppb (1.3 g/t Au). Follow-up work (by Balon, Ritcey) in October revealed several other mineralized quartz float occurrences, some of which yielded better gold grades up to 8678 ppb (~8.7 g/t Au). An in-situ large quartz breccia vein (the Discovery Vein) carrying anomalous gold values was also found near one of the mineralized float occurrences. This latter discovery prompted staking of the SAM 1-10 claims.

The 2003 work program on an around the SAM property area generated totals of 22 rock, 41 stream sediment, and 14 soil samples which were all analyzed for 36 elements. Fluid inclusion studies were conducted on two specimens of quartz vein material. All of the 2003 sample locations, descriptions and analytical data are incorporated in this report.

3.4 2004 Exploration Program

Field work in 2004 consisted of access road clearing and minor repairs, a road cut soil geochemical survey, further prospecting with reconnaissance rock/silt sampling, and limited hand trenching with related bedrock mapping/sampling. Totals of 41 rock, 8 silt, and 417 soil samples were collected and delivered to Acme Analytical Laboratories Ltd. in Vancouver, BC, for 36-element geochemical analysis plus a few selected assays. Work was conducted on the SAM 1, 2, 6-10 claims and immediate periphery during one day in August and during the period between September 19th to October 5th, by one Company employee and two contract field assistants. The crew was based at the Totem Motel in Lytton. All UTM grid locations were recorded in NAD 27 using Garmin 12XL handheld GPS receiver units. The work types and distributions are shown on Figure 2.

Property expansion after the assessment work period was carried out (NOV/04) by a three-man contract staking crew commuting by helicopter from Merritt, BC.

4.0 GEOLOGIC SETTING

4.1 Regional Geology & Mineral Deposits (Figure 1)

The subject region lies within the Southern Intermontane (tectonic) Belt of the Canadian Cordillera. Regional bedrock geology is shown on Figure 1, which has been compiled and condensed from parts of GSC Maps 41-1989 (Hope, by J.W.H. Monger, 1989) and 42-1989 (Ashcroft, by J.W.H. Monger and W.J. McMillan, 1989).

Lithologies within the Figure 1 map-area include successions of Mesozoic to Tertiary volcanic and sedimentary rocks which have been intruded by plutons of various compositions and ages from Late Triassic and/or Jurassic to Miocene (?). Locally thick deposits of Pleistocene and Recent glacial drift and alluvium are prevalent in all of the major creek or river valleys. Much of the region was overridden during the last Pleistocene glaciation by ice moving southeastward across the SAM area (Fraser Plateau; Ryder, 1975).

The dominant rock assemblage underlying the SAM property and adjacent areas is the Cretaceous Spences Bridge Group (KSB / KSBS) comprising a broad northwest-southeast trending thick sequence of gently folded volcanics with lesser sediments, dipping generally shallowly in various directions. These rocks include intermediate, locally felsic and mafic flows and pyroclastics with some sandstone, shale and conglomerate (KSB), as well as a younger basaltic unit differentiated as the Spius Creek Formation (KSBS). This quite homogeneous conformable upper division was formerly called Kingsvale Group by early government geologists (Rice - 1947, Duffell and McTaggart - 1952, and others prior to Thorkelson - 1985).

The Spences Bridge Group is in fault contact with older plutonic and related metamorphic rocks of the Triassic-Jurassic Mount Lytton Complex (TrJgd, TrJm) to the south and west of the property area. This underlying Mount Lytton assemblage is host to a number of old known copper showings within a 10-15 km radius of the SAM claims (BC Minfile 092ISW030, 035, 039, 040, 057-062).

To the northwest (20-25 km) and southeast (25-40 km) of the property, the Spences Bridge Group is overlain by Tertiary (Eocene) mafic to felsic volcanics of the Kamloops and Princeton Groups (Ek, Ep). These younger volcanic units are cut by small (Miocene?) intrusions of intermediate composition (Ti), which may be part of a feeder system to them.

The major structural features in the region are steeply dipping normal faults, parallel and subparallel with those of its western bounding Fraser (River) fault system. The faults have two dominant trends, one at 140° - 150° azimuth and the other due north-south. One such latter feature is the prominent Spius Creek - Lornex Fault which passes through the Highland Valley copper mine area, 35 kilometers east-northeast of SAM. Two other parallel north-south faults occur on either side of the property, along Botanie Creek and the Thompson River. Rocks of the Spences Bridge Group are believed to have formed as a chain of stratovolcanoes associated with subsiding, fault-bounded basins (Souther, 1991 and Thorkelson, 1985).

Major mineral deposits in the region include those of the world-class porphyry copper producing Highland Valley district, where five major orebodies containing initial aggregate reserves of approximately 1.5 billion tonnes grading 0.4% Cu were developed in Upper Triassic intrusive rocks of the Guichon Creek Batholith. The former Craigmont Mine (45 km ESE of SAM) exploited an important copper-iron skarn deposit that contained about 33 million tonnes grading 1.3% Cu hosted by Triassic Nicola Group volcanics.

The Blackdome Mine, situated about 125 kilometers northwest of SAM (off Fig. 1), has exploited a bonanza-style low sulphidation epithermal vein deposit hosted in Eocene volcanics. Between 1986-91 the operation produced about 336,000 tonnes of ore at an average recovered grade of 21.6 g/t Au and 76.5 g/t Ag. There is a remaining (inferred) underground resource of approximately 124,000 tonnes grading 12.8 g/t Au and 33.7 g/t Ag (Ref. BCMEM Open File 2000-2).

Low sulphidation type epithermal gold-silver mineralization is hosted by quartz veins and breccia in Spences Bridge Group volcanics at the Nicoamen River (ZAK), Prospect Valley (PV-NIC) and Merit properties located 20 to 40 kilometers southeast of the SAM claims. These prospects are all new grassroots discoveries made by Almaden during 2001-04.

4.2 **Property Geology, Alteration & Mineralization**

No systematic property scale geological mapping has been conducted on the SAM claims, however local outcrop data have been noted during the course of other work. Very limited (areal) detailed bedrock mapping was carried out at two hand trench sites described under Section 6.3.

The Spences Bridge Group lower (KSB) division underlying most of the property area comprises a thick accumulation of subaerial, dominantly intermediate volcaniclastics and flows. Dips are generally low, and in many places are close to horizontal. The most common and widespread rock type is a massive, fine grained, dark grey to locally red-brown basaltic (pyroxene) andesite lava. Locally intercalated pyroclastic units include various tuffs, ignimbrite, lahar and breccia. Dark green coarse pyroclastics have been observed in outcrop at one location in the northwestern property area. In the upper part of the KSB assemblage, pale olive green to light grey crowded-feldspar porphyry sills and flows are common; several sections of this rock type are exposed in cuts along the Central Spur Road.

The Spius Creek Formation or upper (KSBS) division of mafic volcanics is a younger continuum of the Spences Bridge Group which has been mapped by Government geologists (Monger & McMillan, 1989) over a small area that is now within the southeastern SAM claims. This area was not visited during the 2004 season, however similar dark brown to maroon basalts were noted along segments of the West Spur and upper Central Spur roads. These rocks are generally aphanitic but locally vesicular and/or amygdaloidal. The amygdules commonly consist of opaque white to translucent light blue-grey and clear banded chalcedony (agate), and/or calcite.

Intrusive rocks consisting of both mafic and felsic (rhyolite) dykes cutting the Spences Bridge Group are reported in the published literature on the western Ashcroft map area (Monger, 1981; Souther, 1991). To date, such intrusions have not been found in place on the property. However, stream float and angular rubble of rhyolitic composition and texture have been located in lower Gold Creek and in cut banks along the Central and East Spur roads (Discovery Area, on Plates 1-7). This rock type is rusty-orange weathered, very siliceous, weakly pyritic, and commonly carries drusy quartz stringers, suggesting a spatial association with adjacent vein mineralization.

The most prominent structural feature in the local area is the Botanie Creek fault scarp, which is marked by a several-km long north-south line of steep bluffs along the western expanded property boundary (W. side of SAM 11 & 12 claims – Fig. 2). Another, much shorter, NNE-SSW line of bluffs forms the canyon of Gold Creek on the SAM 1 claim; this feature has not been closely examined in the field, but it represents an apparent subparallel fault or lineament. A couple of vague east to ENE-trending lineaments are discernible in the central property area, as interpreted from aerial photographs, topographic maps and limited field observations. These easterly striking features are each about 2-km in length, spaced 1.5 - 2.0 km apart, and are roughly parallel with the main geochemical trends and mineral showings identified to date.

Thus far, only a few small areas of significant alteration have been noted. The zones are marked by dark gossanous soil and strongly altered or decomposed volcanic bedrock exposed in various road cuts (Central, East & West Spurs), and on an old logging landing near the western common corner (LCP) of the SAM 1 & 2 claims. Alteration types at these sites consist of strong Fe/Mn oxide, intense argillic (associated with local shears), bleaching, and varying degrees of silicic ± Fe carbonate. The two most prominent zones are both located adjacent to quartz vein showings, within approximately 50m - wide envelopes (Discovery and JJ Areas, Plates 1-7). Elsewhere on and around the property, strongly to intensely quartz-flooded and/or carbonatized float cobbles and boulders have been found in several stream gullies and in till banks.

Significant quartz hosted gold and lesser silver mineralization has been identified in a number of widely scattered float occurrences, and in two major vein showings, located on the SAM 1 and SAM 2 claims. All of these occurrences exhibit compositions and classic textures typical of low sulphidation epithermal veins and breccias. The styles of mineralization include massive multiphase vein, multistage breccia, stockwork veinlet, and pyritic silica-carbonate replacement of hostrock. Disseminated pyrite and specular hematite also occur in both guartz matrix and hostrock clasts at the Discovery Showing. This showing is an approximate 4m-wide, ENE (075⁰)-striking, steeply dipping, low grade gold bearing quartz breccia vein. Fluid inclusion studies of two vein rubble samples from the discovery area have reported formation temperatures in the range of <200°C to 210°C, indicating minimal erosion of the epithermal system at this site (Reynolds, 2004). The other major vein showing, called JJ, is a subparallel (ENE-trending) structure situated nearly three kilometers to the southwest of the Discovery Vein. It consists of a 2m-wide, moderately dipping zone containing high grade gold-quartz vein(s) and strongly altered hostrock material from which channel samples have returned assays ranging from 4.49 The property-wide mineralized float occurrences, and the above-noted to 53.38 g/t Au. showings, are discussed in greater detail under Sections 5.4 and 6.2 respectively.

5.0 GEOCHEMISTRY

5.1 Introduction

Geochemical work on and surrounding the SAM claim area during 2003 and 2004 involved various phases of sampling which accounted for collection of the following sample types and numbers (n):

2003 (prior acquisition); 41 stream sediments (AC–n series), 14 roadcut soils (AC–Sn series), 22 reconnaissance rocks (AC-Rn series).

2004 (post acquisition); 8 stream sediments (AC-n series), 417 roadcut soils (SJ-n & SB-n series), 25 reconnaissance rocks (SAM-Rn series) and 16 trench rocks (continuous chip/channel type, SAM-Rn series).

All of the 49 silt, 431 soil, and 63 rock samples were analyzed for 36 elements. Complete results for the samples are listed on the Acme Analytical Laboratories Ltd. Geochemical Analysis Certificates contained in Appendix A (2003) and in appendix B (2004). Tables in these Appendices also give the UTM grid locations, brief descriptions and selected analytical results for all but the trench rock samples which are described in Section 6.2. Stream Sediment and soil sample locations and numbers are plotted on Plate 1; rocks sample locations and numbers are shown on Plate 6.

5.2 Sampling & Analytical Procedures

Sample locations were marked in the field with labeled blue and orange flagging for the 50mspaced soil stations, and with pink flagging plus labeled weatherproof (Tyvek) tags for the stream sediment, recon rock, and closer-spaced soil sites.

A UTM grid location was recorded for every site by handheld GPS unit using the NAD 27 datum. All of the samples were shipped to Acme Analytical Laboratories Ltd. in Vancouver, BC, for 36element analysis by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS).

Soil samples were collected by mattrock or rock hammer, mainly at 50m intervals, along the original cut banks of logging spur roads and skidder trails. In most cases the B horizon was sampled, but in a few rocky localities the combined B/C or C horizon was taken. Stream sediment samples were collected from the finest silt/sand material available in the active channel, with little or no organic matter. Individual soil and stream sediment sample weights were approximately 0.5 kilogram. Both types of samples were shipped to the laboratory in labeled standard 4"x6" Kraft paper bags. Sample preparation there involved drying at up to 60° C and sieving (up to) 100 grams from each to -80 mesh. Contingent upon the amount of -80 mesh material available, a 7.5, 15 - or 30- gram subsample was cut and then leached with 180 ml of 2-2-2 HCL-HNO₃-H₂O at 95^oC for one hour, followed by dilution to 600ml and ICP-MS analysis.

Rock sample individual weights ranged from <1-3 kilograms for float samples and 2.5-10 kilograms for bedrock (continuous chip or channel) samples. The float samples were composed of chips from either a single large quartz vein/altered hostrock fragment or, in some cases, multiple smaller pieces of such material collected over a few tens of meters. At the laboratory, rock sample preparation consisted of crushing each to – 10 mesh (70%) followed by pulverizing a 250-gram split to 95% passing 150 mesh. A 30-gram subsample was then subjected to the same acid digestion and analytical procedure as that employed for the soil and silt samples.

5.2.1 Quality Control Measures

All of the soil sampling was conducted by very experienced samplers, with spot field checks for quality by the author. All of the stream sediment and most of the rock samples were collected by or under the direct supervision of the author. All samples were accounted for, packaged with due diligence, and personally delivered to the laboratory by the author.

At two locations in the Discovery Area, some rock samples collected during 2004 were nearduplicates of those taken in 2003 (i.e. 2004 sample SAM-R1 vs. 2003 sample AC-R7 and 2004 samples SAM-R21-R26 vs. 2003 samples AC-R17-R19). In both of these cases, the corresponding sample results for the elements of interest compare very closely. At the high grade JJ Showing, initial gold and silver geochemical analyses were later checked by metallics fire assays with good duplication of results from eight of nine samples. (See table of results on Fig. 5 in Section 6.2).

Acme Analytical Laboratories runs standards and provides resamples at varying intervals for each sample shipment received. A resample consists of analyzing a second cut (subsample) from the same sample pulp (or occasionally reject portion), and is reported as a rerun (RE) or reject rerun (RRE) on the analysis certificate. In most cases there is good reproducibility of results between the original subsamples and resamples, with the exception of gold in stream sediments and in some of the soils (particularly at the lower end of the detection range).

5.3 Soil and Stream Sediment Geochemical Results (Plates 2-5)

The merged 2003 and 2004 soil and stream sediment sample results for the four select elements gold (Au), arsenic (As), antimony (Sb) and mercury (Hg) are provided in Plates 2 to 5 respectively. These elements were chosen for plotting because they collectively represent the best pathfinder suite for epithermal mineralization. Two other, less definitive, local mineralization pathfinders are silver (Ag) and molybdenum (Mo).

5.3.1 Soils

Lognormalized frequency distributions for Au, As, Sb, Hg were constructed from the raw soil analytical data using results from 426 of the 431 (combined 2003 – 04) samples. The histograms are shown in Figure 3. Element concentration ranges used for statistical categories are based on the 50th, 70th, 90th and 95th percentiles.

The overall soil geochemical response is quite weak, with generally scattered to patchy distributions of anomalous values and only a few local concentrations of high values. The weak response in some areas may be partly or wholly due to the presence of local deep clay-rich till banks. The highest (Au, As, Sb, Hg plus Ag, Mo) values from the survey are tightly clustered near both the Discovery and JJ mineralized vein showings, where minor closely spaced sampling was conducted. The current (non-grid) sampling pattern and resultant low sample density on the property do not permit delineation of distinct geochemical trends. A brief discussion follows, on the anomaly clusters and some vague trends for each of the four elements plotted.

Gold (Plate 2)

• The main gold anomaly is located in the Discovery Area, trends ENE, and is about 1100m long by 500 to 150m wide from west to east. The highest soil value here is 322.7 ppb Au, at the Discovery Showing. This anomaly is open to the west, and the positions of four strong gold-in-silt values (40.1-82.7 ppb) in an adjacent drainage branch indicate potential for a 1000 to 1250m long westward extension.

- A second, stronger but much more confined, gold soil anomaly is situated in the JJ Area and contains the highest value (2094 ppb) obtained from the 2004 sampling program. This sample was collected in shallow overburden directly above the high grade JJ vein showing prior to its exposure by hand trenching. The primary zone of gold enrichment here is marked by five other very strong values (175.7 527.6 ppb) that were generated by infill sampling along a prominent roadcut gossan, between two earlier 50m-spaced stations (37.9 and 187.3 ppb Au). The immediate locales to the south and north, for about 500m in each direction, contain nine more stations with moderate values ranging from 11.3 to 49.5 ppb. The overall anomaly in this area has a north-south orientation, but its suspected trend is ENE as inferred from the JJ vein zone (070°-075°) strike and from the position of a strong silt anomaly (28 ppb Au) located ~ 850m to the east.
- A third, diffuse group of moderate soil values (9.0 20.2 ppb Au) straddles the northwest corner of the claim group over an area of ~1600 x 800m, with a possible ENE trend.

Arsenic (Plate 3)

There are two well defined clusters of anomalous arsenic soil values, which have very good correlation with gold. In the Discovery Area, the arsenic signature is somewhat broader to the north (than that of gold), and is more elongate in a NE rather than ENE direction, with a size of about 700m wide by 1600m long. In the JJ Area, the arsenic anomaly is highly coincident with that of gold in terms of relative strength as well as size and configuration. The few scattered elevated arsenic values in the northwestern claim area show an overall spatial relation to gold, but have generally poor station-to-station coincidence with gold.

Antimony (Plate 4)

Two discrete clusters of anomalous antimony soil values, also located in the Discovery and JJ Areas, show good correlation to both gold and arsenic but are somewhat lesser in magnitude. A small local antimony anomaly occurs along a short spur trail east of central Gold Creek, roughly between the Discovery and JJ zones. This minor (size) anomaly has good coincidence with gold, but not with arsenic. There is no significant antimony signature in the northwestern sample area.

Mercury (Plate 5)

The mercury in soils plot shows a widespread pattern of elevated to strongly anomalous values over the entire western half of the claim group. This signature is difficult to interpret because of poor contrast in the range of values. The only discrete high-order anomaly is in the JJ Area, coincident with gold-arsenic-antimony. A broad ENE trend is indicated by the positions of several spatially related strong mercury silt anomalies.

5.3.2 Stream Sediments

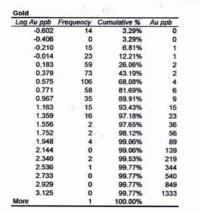
Separate statistics were not calculated for the stream sediment analyses because of the small sample population. The same element concentration ranges used to discriminate among background, threshold and anomalous values in the soils were applied to the silt results, and are symbolized similarly on the respective Au, As, Sb, Hg plots (Plates 2-5). These applications are quite valid based on local field experience and reference to the published government RGS data for NTS 921.

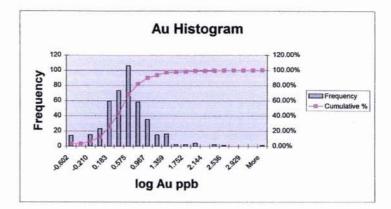
The current sediment sampling on and northwest of the SAM 1-10 claim group has greatly expanded and enhanced the initial gold anomaly at the mouth of Gold Creek. Twenty other sites of elevated to strongly anomalous gold have been identified, with values ranging from 4.1 to 82.7 ppb. Four of the five strongest values (40.1 - 82.7 ppb Au) occur in a short side branch of Gold Creek, to the west of the Discovery Area soil anomaly. The fifth strongest value (30.8 ppb Au) is in a minor tributary of Skoonka Creek which drains the northwest corner of the claim area. Six

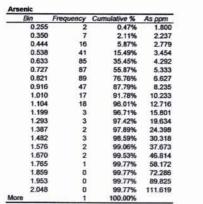
sites with moderate to strong values (10.4 – 24.9 ppb Au) are located in other branches of Gold Creek to the north and east of the JJ Area soil anomaly.

The gold-in-silt anomalies have moderate coincidence with arsenic (9 of 20 sites), good coincidence with antimony (15 of 20 sites), and very good coincidence with mercury (17 of 20 sites). A prominent mercury-in-silt anomaly cluster, defined by nine samples with values from 0.08 to 0.17 ppm Hg, is situated immediately north and northeast of the JJ Area soil anomaly.

The overall multiple element stream geochemical anomaly signatures indicate probable extensions of the presently known mineral trends, westward from the Discovery Area and ENE from the JJ Area.

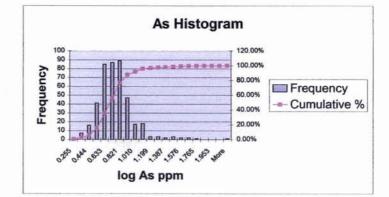

5.4 **Prospecting & Reconnaissance Rock Geochemical Results** (Figure 2 and Plates 6, 7)

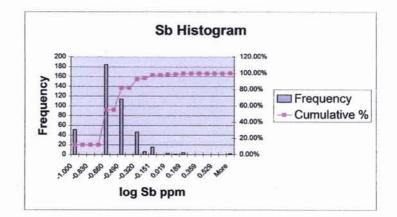

Prospecting of gold stream sediment anomalies was carried out in the drainage areas noted on Figure 2. This work included the collection of additional silt and rock geochemical samples to those taken in 2003. All of the recon rock sample locations and numbers are shown on Plate 6, and the respective gold results are posted on Plate 7. Sample descriptions, UTM grid coordinates and select results are included in Appendices A (2003) and B (2004) with the analysis certificates.

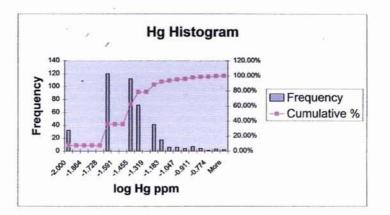

The total of 47 recon rock samples collected to date comprise 38 from float and seven (7) from bedrock or local rubble. All were composed of quartz vein/breccia material and/or altered volcanic or felsic dyke (?) hostrock. Many of the float samples contained angular to subangular fragments indicating a local provenance, but the sources remain to be found. The largest single float fragment encountered is a subrounded quartz breccia boulder measuring ~ 45 cm in diameter (2003 sample AC-R14 (553.7 ppb Au). Gold analyses from the 38 float samples range from 1.1 ppb to 8678.1 ppb, with an average of 624 ppb (0.62 g/t Au). Gold values show weak positive correlations with Ag, As, Mo and poor or negative correlations with Sb, Hg, Ba as shown in the scatter plots on Figure 4.

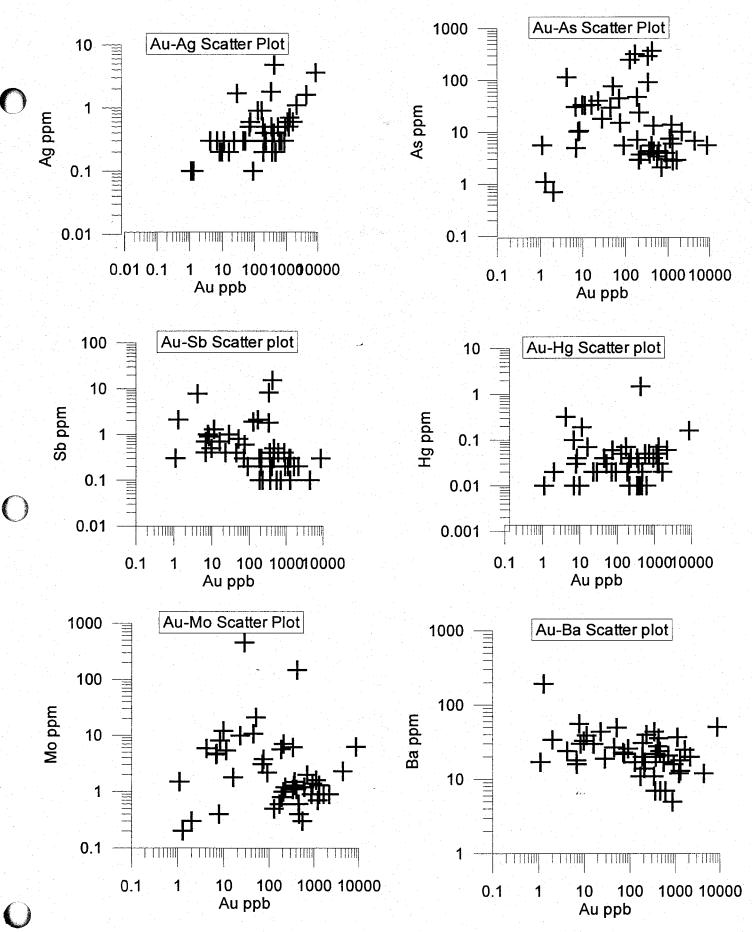
A 500m long east-west mineral trend is evident in the Discovery Area, as defined by the locations of five mineralized float samples (455.2 – 2159.7 ppb Au) and three bedrock samples (128.3 – 338.3 ppb Au) which are detailed as an inset on Plates 6 & 7. This trend coincides with the local anomalous soil geochemistry and with the measured strike (075⁰) of the Discovery Vein zone. Eleven mineralized float occurrences, with gold values of 190 to 8678 ppb, are dispersed over a 1500m long by 500m wide arcuate belt to the northeast of the JJ Showing area; some of these occurrences coincide with the local anomalous stream sediment geochemistry, but only vague easterly or ENE trends are presently discernible. Four other, lower tenor float occurrences (187 – 425 ppb Au) situated in the northwestern corner of the claim group do not form any trend. The **highest grade recon bedrock sample (4397.6 ppb Au)** was collected from a quartz vein or lens (?) within a wide alteration band about 40m northeast of the JJ Showing. This occurrence requires further examination for determination of its size, trend and relation to the JJ zone.

SAM Soil Sample Histograms








Log Sb ppm	Frequency	Cumulative %	Sb ppm
-1.000	51	11.97%	0.100
-0.915	0	11.97%	0,122
-0.830	0	11.97%	0.148
-0.745	0	11.97%	0.180
-0.660	184	55.16%	0.219
-0.575	0	55.16%	0.266
-0.490	114	81.92%	0.323
-0.405	0	81.92%	0.393
-0.320	46	92.72%	0.478
-0.235	6	94,13%	0.581
-0.151	15	97.65%	0.707
-0.066	0	97.65%	0.860
0.019	3	98.36%	1.046
0.104	1	98.59%	1.272
0.189	4	99.53%	1.546
0.274	0	99.53%	1.880
0.359	0	99.53%	2.287
0.444	0	99,53%	2.781
0.529	0	99.53%	3.381
0.614	0	99.53%	4.112
More	2	100.00%	

Log Hg ppm	Frequency	Cumulative %	Hg ppb
-2.000	32	7.51%	0.010
-1.932	0	7.51%	0.012
-1.864	0	7.51%	0.014
-1.796	0	7.51%	0.016
-1.728	0	7.51%	0.019
-1.660	120	35.68%	0.022
-1.591	0	35.68%	0.026
-1.523	0	35.68%	0.030
-1.455	112	61.97%	0.035
-1.387	71	78.64%	0.041
-1.319	0	78.64%	0.048
-1.251	41	88.26%	0.056
-1.183	17	92.25%	0.066
-1.115	6	93.66%	0.077
-1.047	6	95.07%	0.090
-0.979	4	96.01%	0.105
-0.911	7	97.65%	0.123
-0.843	4	98.59%	0.144
-0,774	1	98.83%	0,168
-0.706	3	99.53%	0,197
More	2	100.00%	

6.0 PHYSICAL WORK

Physical work in 2004 consisted of manual road clearing and repair, and manual trenching at three locations. The work types and distributions are illustrated on Figure 2.

6.1 Road Clearing and Repair (Figure 2)

Road clearing involved mainly the cutting of alders, willows and other shrubbery along the sides and in the medians of several partly overgrown logging spurs, as well as the lopping of trees and cutting up of deadfall or blowdown. This work was carried out to facilitate truck access during the exploration program. Only hand tools (axe, machete, chainsaw) were employed. Within the boundaries of the SAM 1 – 10 claim group, sections of the East and West Spur Roads totaling 4.0 km in length were partially cleared. The widths of clearing, including both roadsides and median, varied from two to four meters depending upon the vegetation density. Intermittent segments required little or no clearing. The aggregate area of brush cutting is estimated at approximately 4000 square meters (0.4 hectares). The cut brush was stacked in small piles and/or scattered in the forest along the roadsides.

Waterbar repairs were conducted at two stream crossings on the Central Spur Road and at one on the East Spur Road. This pick-and-shovel work included partial backfilling of deep washouts and the removal of sharp or large boulders. An old log bridge at the East Spur site was improved by adding more sound timbers, and its approaches were refilled.

Total time expended for the (on-property) road clearing and repair was seven person-days.

6.2 Hand Trenching (Figure 2)

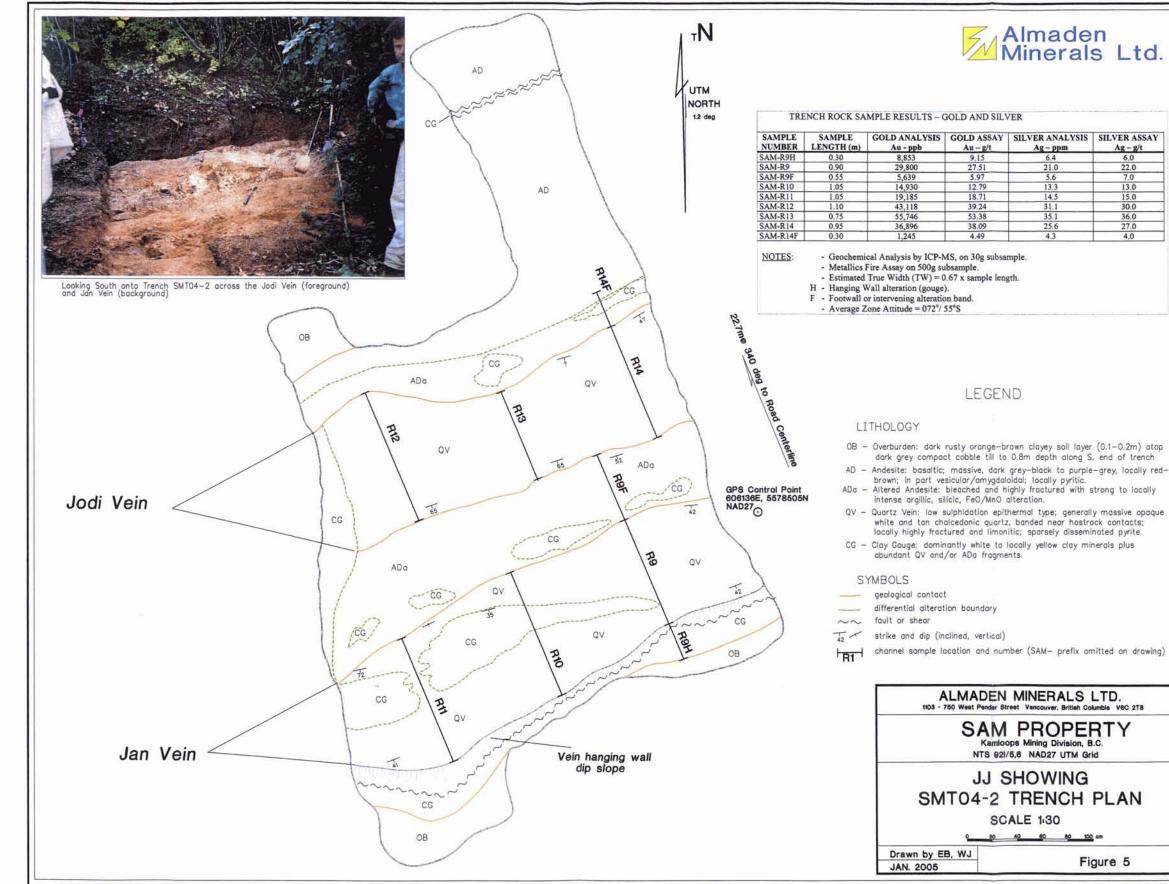
One test pit and two trenches were hand dug at the locations shown on Figure 2 and on Plates 1, 6 & 7. Where bedrock was achieved, excavation was followed by thorough cleaning, mapping and continuous chip/channel type rock sampling. This sampling was effected by hammer and chisel; the resultant channels averaged about 4cm wide by 4cm deep, and individual sample weights varied from 2.5 kg to over 10 kg. The trenches were surveyed by chain and compass from UTM grid control points established with a Garmin 12XL GPS receiver unit set to average for at least one hour. A summary of the excavations is provided in Table 2 below.

PIT OR TRENCH No.	LENGTH (m)	AVG WIDTH (m)	AVG DEPTH (m)	VOLUME (m ³)	# ROCK SAMPLES
SMT04-1	4.0	0.4	0.35	0.56	1
SMT04-1	2.0	0.4	0.90	0.72	
SMT04-2	3.5	3.2	0.40	4.48	9
SMT04-2	2.0	0.9	0.15	0.27	
SMT04-3	11.2	1.4	0.30	4.70	7
SMT04-3	1.5	0.5	0.30	0.22	
(Pathway)					
TOTAL	24.2			10.95	16

Table 2: SAM 2004 TEST PIT AND TRENCH SUMMARY

6.2.1 PIT SMT04 – 1 Results

The test pit SMT04-1 was dug roughly at mid-section on a ~3m-high roadcut bank slope, nearly directly above the initial mineralized float occurrence found in 2003 (AC-R7, 1300 ppb Au & subsequent samples AC-R15, R16: 2160 and 1214 ppb Au). There is also a weak soil color anomaly at this site, with anomalous gold values (11.3 to 57.1 ppb) in four of nine soil samples taken in 2003 (AC•S2-S10 @ 10m spacing). Bedrock was not achieved; the pit was abandoned at a maximum depth of 1.0m in very compact clay-rich pebble/cobble till. Sparse, subangular quartz vein fragments were encountered; a composite sample of this material SAM-R1 was collected, which returned a gold analysis of 1627.5 ppb.


6.2.2 Trench SMT04-2 Results (Figure 5)

This trench was dug on a quartz rubble occurrence noted during the 2004 roadcut soil sampling program (soil sample station SJ-13, 2094 ppb Au). Bedrock was easily achieved beneath shallow overburden, resulting in a new discovery of high grade gold-quartz vein mineralization called the JJ Showing. The exposure reveals an ENE trending zone containing two closely spaced moderately dipping veins, named the Jan and Jodi Veins, together with intervening and bordering intensely altered andesite hostrock. The veins and selvages have an estimated combined true width of 2.0 meters. Nine large-sized channel samples were collected on a staggered pattern across the zone, as shown on the map in Figure 5. These samples yielded impressive (initial) gold analyses ranging from 14,930 to 55,746 ppb (14.93-55.75 g/t Au) in vein material, and from 1245 to 8853 ppb (1.25 – 8.85 g/t Au) in altered hostrock. These values were later confirmed by metallics fire assays which returned 12.79 to 53.38 g/t Au from vein material and 4.49 to 9.15 g/t Au from altered hostrock. The corresponding sample silver assays are 13 to 36 g/t (in vein) and 4 to 7 g/t (in selvages). Individual sample gold and silver analyses and assays are listed in table form on figure 5. Select weighted average gold assays across the veins and vein zone are as follows:

- 1. Three samples (R9-R11) across the Jan Vein:
 - 19.28 g/t Au over 1.0m length (0.67m true width)
- 2. Three samples (R12-R14) across the Jodi Vein:
 - 42.64 g/t Au over 0.93m length (0.62m true width)
- 3. Sample string R9H-R9-R9F and 0.5m-offset string R14, R14F: 22.77 g/t Au over 3.0m length (2.0m true width)
- Sample string R9H-R9-R9F and 0.5m-offset sample R13: 28.33 g/t Au over 2.5m length (1.67m true width)

6.2.3 Trench SMT04-3 Results (Figure 6)

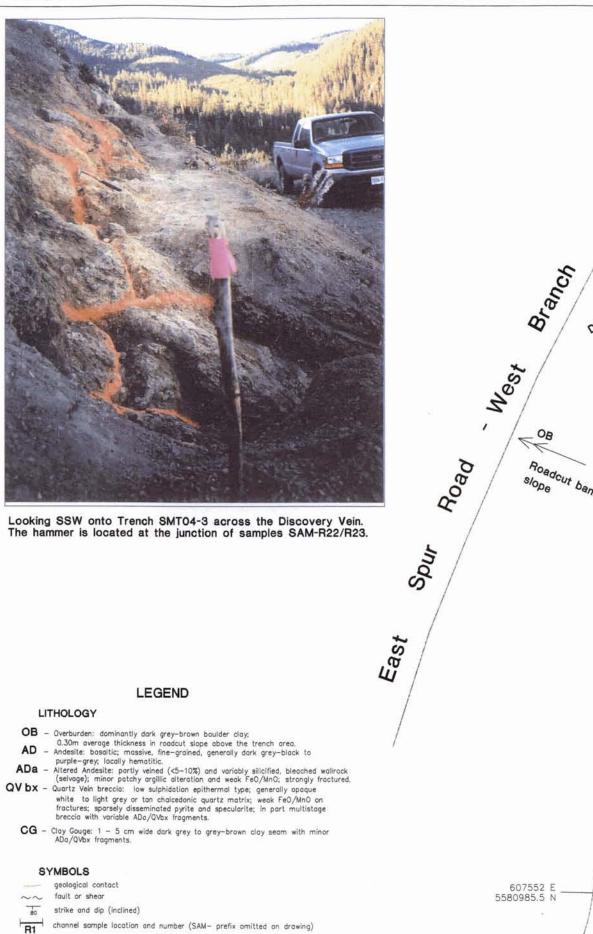
This trench was dug on the lower section of a ~4m-high roadcut bank slope at the 2003 Discovery Vein rubble site. In October 2003 initial discontinuous chip/grab sampling of this angular quartz rubble suspended in overburden generated an average gold grade of 467 ppb, over a rough 6m width (Samples AC•R17-R19). Two local soil samples (AC-S11, S12) returned strong gold results of 323 ppb and 159 ppb. The 2004 trenching was successful in exposing bedrock, below an average 30cm overburden thickness on the slope. The exposure shows a subvertical, ENE trending, robust quartz vein breccia zone which has an estimated true width of 3.5m to 4.2m (incl. selvages). Six large-sized channel samples collected across the zone yielded a weighted average gold value of 380 ppb (0.38 g/t Au), and negligible silver results. A composite chip/grab sample (SAM-R20) from rubble located ~4.5m south of the vein zone returned an analysis of 872.4 ppb Au. Bedrock geology, sample locations and descriptions, and individual sample gold analyses are given in Figure 6.

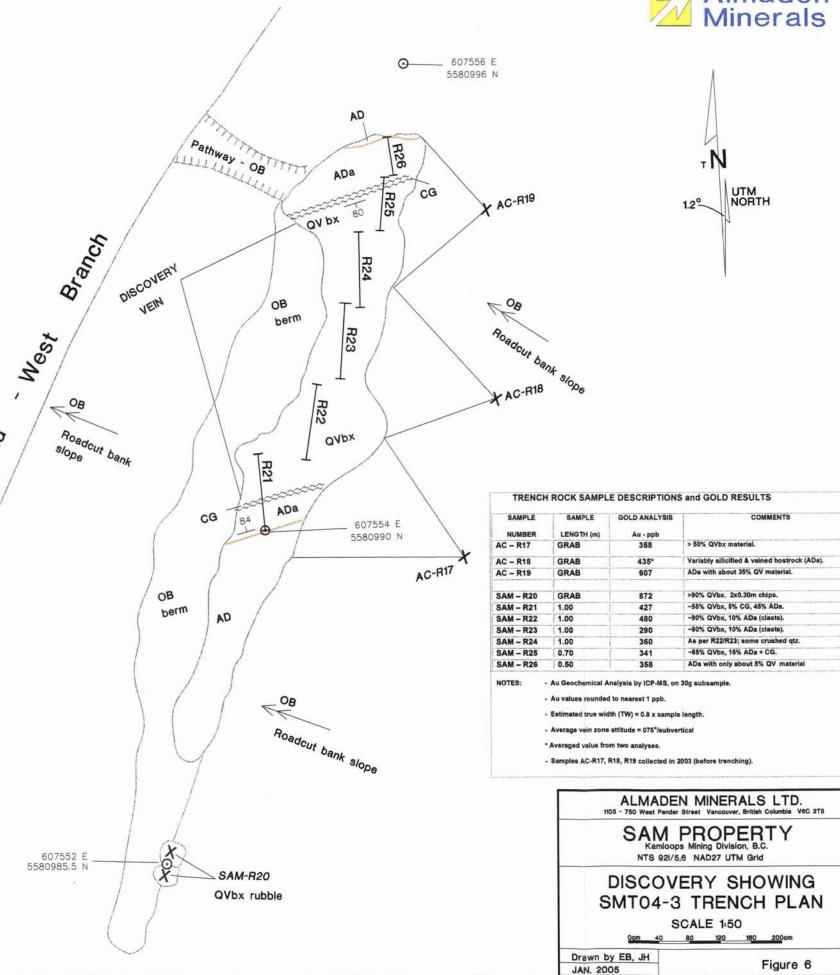
Almaden Minerals Ltd.

D ASSAY	SILVER ANALYSIS Ag - ppm	SILVER ASSAY Ag - g/t				
9.15	6.4	6.0				
27.51	21.0	22.0				
5.97	5.6	7.0				
12.79	13.3	13.0				
18.71	14.5	15.0				
39.24	31.1	30.0				
53.38	35.1	36.0				
38.09	25.6	27.0				
4.40	4.2	4.0				

LEGEND

OB - Overburden: dark rusty orange-brown clayey soil layer (0.1-0.2m) atop dark grey compact cobble till to 0.8m depth along S. end of trench AD - Andesite: basaltic; massive, dark grey-black to purple-grey, locally red-

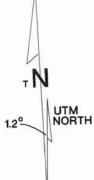

QV - Quartz Vein: low sulphidation epithermal type; generally massive opaque white and tan chalcedonic quartz, banded near hostrock contacts; locally highly fractured and limonitic; sparsely disseminated pyrite.


ALMADEN MINERALS LTD. 1103 - 750 West Pender Street Vancouver, British Columbia V6C 2T8 SAM PROPERTY Kamloops Mining Division, B.C. NTS 921/5,6 NAD27 UTM Grid

JJ SHOWING SMT04-2 TRENCH PLAN

SCALE 1:30

Figure 5



- composite grab or chip sample from rubble (full sample number posted on map) х
- \odot GPS control point; NAD27 UTM grid co-ordinates posted on map.

0

SAMPLE LENGTH (m)	GOLD ANALYSIS	COMMENTS
GRAB	358	> 50% QVbx material.
GRAB	435*	Variably silicified & veined hostrock (ADa)
GRAB	607	ADa with about 35% QV material.
GRAB	872	>90% QVbx. 2x0.30m chips.
1.00	427	~55% QVbx, 5% CG, 45% ADa.
1.00	480	~90% QVbx, 10% ADa (clasts).
1.00	290	~90% QVbx, 10% ADa (clasts).
1.00	360	As per R22/R23; some crushed qtz.
0.70	341	~85% QVbx, 15% ADa + CG.
0.50	358	ADa with only about 5% QV material

7.0 PERSONNEL & CONTRACTORS

Company Personnel		
	Position	<u>Work Time</u> (incl. Mob/Demob)
E. A. Balon	Prospector & Project Mgr.	17 days

Contract Personnel

	Position	Work Time	Field Period
B. W. Sullivan (Bare West Enterprises Inc.) Vancouver, BC	Prospector & Gen. Field Assistant	12.5 days	AUG. 23, 2004 & SEP 19 - SEP 30, 2004

Jan Tindle Whistler, BC Soil Sampler, Gen. Field Assistant 15 days

SEP 19 - OCT 05, 2004

Field Period

AUG 23, 2004 & SEP 19 - OCT 05, 2004

8.0 STATEMENT OF COSTS (All items rounded to nearest dollar; Expenditures prorated for on-property work)

SALARY & BENEFITS (E.A. Balon)	\$ 4,250
CONTRACT FIELD SERVICES	\$ 6,575
GEOCHEMICAL ANALYSIS & FREIGHT	\$ 5,739
TRUCK RENTALS, FUEL & MISCELLANEOUS TRAVEL EXPENSES	\$ 1,394
ACCOMMODATION & FOOD	\$ 3,046
COMMUNICATION	\$ 102
GENERAL FIELD SUPPLIES	\$ 276
MAPS, PHOTOS, REPRODUCTIONS	\$ 118

9.0 STATEMENT OF QUALIFICATIONS

I, Edward A. Balon, of North Vancouver, British Columbia hereby certify that:

- 1. I am a prospector and geological/mining technician residing at 501-250 West First Street, North Vancouver and am employed by Almaden Minerals Ltd. of 1103 750 West Pender Street, Vancouver, British Columbia, V6C 2T8.
- 2. I am a graduate of Northern College Haileybury School of Mines, Ontario (1970), with a diploma in Mining Engineering Technology (integrated Geology, Mining and Metallurgy).
- 3. I have attended numerous Continuing Education Courses in Geoscience since 1970, including Exploration Geochemistry at the University of British Columbia, Vancouver, B.C. in 1984/1985.
- 4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), license number 20265, since 1993.
- 5. I have worked continuously in mineral exploration for thirty-five years in British Columbia, Yukon, Northwest Territories, USA and Mexico.
- 6. I am the author of this report and the supervisor of the field work performed on the SAM1 to 10 mineral claims during the period August 23, 2004 to October 05, 2004.

ALMADEN MUNERALS LTD.

Edward A: Balon, P. Geo

10.0 REFERENCES

BALON, E.A

2004: 2003 Geochemical and Geophysical Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27425).

BALON, E.A. AND JAKUBOWSKI, W.J.

2003 : 2002 Geochemical and Trenching Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27048).

DUFFELL, S. AND MCTAGGART, K. C.

- 1952: Ashcroft Map-Area, British Columbia (BC); Geological Survey of Canada (GSC) Memoir 262, p. 52-58, (Spences Bridge Group and Kingsvale Group)
 1954
- 1951: GSC map 1010A; Ashcroft, BC; scale 1:253,440.

HOLLAND, S.S.

1950: Placer Gold Production of British Columbia; BCMEMPR Bulletin 28, reprinted 1980.

JACKAMAN, W. AND MATYSEK, P. F.

1994: British Columbia Regional Geochemical Survey, NTS 92I - Ashcroft, (BC RGS 40/GSC OF 2666), Stream Sediment and Water Geochemical Maps & Data.

MONGER, J. W. H. AND MCMILLAN, W. J.

1989: Geology, Ashcroft BC; GSC Map 42-1989, sheet 1, scale 1:250,000.

MONGER, J. W. H.

- 1989: Geology, Hope, BC; GSC Map 41-1989, sheet 1, scale 1;250,000.
- 1985: Structural Evolution of the Southwestern Intermontane Belt, Ashcroft and Hope Map Areas, BC, <u>in</u> Current Research, Part A, GSC Paper 85-1A, p. 349-358.
 1981: Geology of Parts of Western Ashcroft Map Area, southwestern BC; <u>in</u> Current
 - Research, Part A, GSC Paper 81-1A, p.185-189.

REYNOLDS, J.

2004: Private email Comm (to M. J. Poliquin/Almaden Min. Ltd.) giving the Results of Fluid Inclusion Analyses from SAM Property Quartz Samples.

RICE, H. M. A.

1947: Geology and Mineral Deposits of the Princeton Map-Area, BC; GSC Memoir 243.

RYDER, J. M.

1975: Quaternary Geology - Terrain Inventory, Lytton Map-Area, BC (92I/SW); in Current Research, Part A, GSC Paper 75-1A.

SCHROETER, T. G. AND PINSENT, R. H.

2001: Gold Production and Resources in British Columbia (1858-1998); unedited updated "Information Package" on BCMEM Open File 2000-2.

SOUTHER, J. G.; GABRIELSE, H. AND YORATH, C.J. (ed.)

1991: Volcanic Regimes, Chapter 14 in Geology of the Cordilleran Orogen in Canada, Geology of Canada, no.4, p. 457-490 (also Geological Society of America, The Geology of North America, v. G-2).

THORKELSON, D. J.

1985: Geology of the Mid-Cretaceous Volcanic Units near Kingsvale, southwestern BC; in Current Research, Part B, GSC Paper 85-1B, p. 333-339.

APPENDIX A SAM AREA 2003 RECON GEOCHEMICAL SAMPLE SUMMARY ACME ANALYTICAL 2003 GEOCHEMICAL CERTIFICATES

		SAM AREA	2003 REC	CON GEO	CHEMICAL		SUMMARY	,	i			1		
Sample			120001120	5011 020			COMMITTER I					Assav		
Number	Fasting	Northing	Mo nom	Ph nom	Zn nom	Ag nom	As nom	Sb ppm	Bannm	Ha pom	Au nnh	Au ppb	Rock Type	Note
Rock San					1	1	ee	CE				1 10 000		
AC-R17		5580989	1.3	1.7	10	0.2	4.3	0.4	. 7	0.01	357.9	. <u>.</u>	QV & volc wallrock.	Intermittent grabs across southern 2m of o/c & subcrop; >50% vein.
AC-R10		5580248	1.6	2.5						0.05	1119.6		QV/bx; drusy veins to 15 mm w/ altd volc frags/inclusions.	Composite: All or part of 6 pcs (subang-subround) up to 6x8x9 cm- within
AC-R11		5579122	6.3	1.3						0.16	8678.1		QV: hematitic epithermal style drusy gz.	Tabular subrd 4.5x6x7cm.
AC-R12		5579488	0.8	3.1					31	0.02	190		QV/BX; gz-flooded & veined orng-pink volc.	Tabular subrded 5.5x8x11cm.
AC-R13		5580950	1.1	3.1						0.02	338.3		Qz veinlets in pyritic andesite & lapilli tuff.	Select grabs w/ veins to 1.5 cm.
AC-R14		5580816	0.3	2.1					17	0.05	553.7		QV/bx; gz-flooded & veined volc host.	Chips across several faces of subrnd boulder ~45 cm in all dimensions.
AC-R15		5580930	0.9	4						0.06	2159.7		Alt'd & veined orange volc.	Composite; largest ang-subang pcs 11x11x15 & 7x8x8cm + 4 smaller (4-6
AC-R16		5580947	0.7	1.8						0.03	1213.7		Alt'd & veined orange volc.	2 ang pcs: 8x9x17cm silicified tan volc & 4x5x7cm stockwork thru rusty orr
AC-R18		5580991	0.4	1.0					7	0.03	464.6		Qz veined it gry volc.	
AC-R18		5580994	1.2	1.2					7	0.02	607.1			Intermittent grabs across middle 2m of o/c & subcrop area.
AC-R19		5580984	0.6	0.8						0.01	455.2		Qz veined & silicified hostrock; 30-40% vein mat'l.	Intermittent grabs across northern 2m of o/c & subcrop area.
AC-R20		5580000	5.4	5.5						0.01			QV/BX; qz-flooded & veined It gry volc.	Ang-subang 16x23x23cm; several other 20-35 cm pieces in vicinity.
			146.7	<u> </u>							11.3		Veined rusty orng volc (PVite).	2 pcs: subang-subrnd 4.5x7x12cm PVite w/stgrs; Subrnd 6.5x8x15cm volc
AC-R22		5581770							36	1.48	425		QV/BX.	Irreg/subrnd 8x10x13cm. Loc'ly 10% fg py dissem and fract fill.
AC-R23		5581802	10.8	2.8						0.04	45.1		Qv/bx: vuggy/drusy qtz cuts It gry-grn andesite & cements str alt	
AC-R24		5581797	453.1	18.7					19	0.02	28.6		Qbx: It tan-yellow volc w/ x-cutting comb-texture qz veinlets.	Tabular w/ rnded edges 9x11x17cm.
AC-R25		5580161	4.8	0.7					16	0.01	6.9		QV/BX	Triangular pyramidal bldr (rounded edges) 2x1.5x1.5m; scant chips across
AC-R26		5581365	5.9	2.8					24	0.32	4.2		Silicified & veined/brecciated It tan - red-brn volc.	Ang 6x7x9cm; vague qz stgrs in brecciated volc.
AC-R4		5581850	1.5	5					17	0.01	1.1		Carb altd lapilli tuff- purple-gy to maroon.	Single tabular pc 8X10X18cm.
AC-R5		5581815	8.1	10.7					30	0.04	8.3		Rusty weath it gy rhyolite- very qtz-rich.	Rnded fgmnt 7X9X15cm.
AC-R6		5581220	2.2	6.8						0.02	91		Qtz-mtx voic bx- rusty red & orng fgmnts.	Single subang pc 6X9X15cm. Upstream from AC-42 sed site.
AC-R7		5580977	0.9	3						0.03	1299.6		QV/bx- tan rhyolitic volc w/ Chalced stringers.	Composite of numerous ang/subang pcs (up to 4X5X7cm) over 15m.
AC-R9	606542	5581272	4.6	4	10	0.3	30.5	0.4	18	0.1	6.8		Silicified volc (?) w/ QZ veins to 1 cm.	Tabular subangular 4.5x7x7cm.
Soil Samp														
AC-S10		5581000	0.4	4.2	66					0.03	2.4		Abund FP cobbles in till.	+80m @ 020; Lt gy-brn clay soil.
AC-S11		5580982	0.5	3.9						0.03	322.7		QV zone covered by AC-R17 to R19	Grabs across ~6m vein subcrop zone; rusty orng in part.
AC-S12		5581013	0.8	3.3						0.02	159.4		Rusty weathering Andesite (& possible felsic dyke).	Grabs across 10m; rusty orng-bm in part.
AC-S13		5580700	0.5	3.5					51	0.04	-0.5		Mafic volcs.	Rusty orng soil. Multiple grabs over ~15m along rd cut.
AC-S13A		5580755	0.5	3.7					82	0.05	1		Mafic volcs.	Rusty orng soil. Multiple grabs over ~12m along rd cut.
AC-S14		5579820	0.6	4.3						0.11	4.9		Shattered / sheared Andesite.	Dk rusty orng-yellow-white clay-rich soil; 7 grabs over ~50m along rd cut &
AC-S2		5580925	0.7	5					93	0.03	17.6		Rusty orng felsic float w/ qtz stgrs.	Start of recce soil line; Dk brn clay-rich soil.
AC-S3		5580934	0.5	4.7					82	0.02	2.9		Qtz chips.	+10m @ 020; Dk brn clay-rich soil.
AC-S4		5580943	0.6	5					87	0.03	57.1		some felsic float & vein rubble	+20m @ 020; Dk brn clay-rich soil.
AC-S5		5580952	0.5						87	0.03	11.3		Abund felsic float & vein rubble	+30m @ 020; Dk brn clay-rich soil.
AC-S6		5580962	0.6						82	0.02	4.2			+40m @ 020; Dk brn clay-rich soil.
AC-S7		5580971	0.5	6						0.02	20.2		Abund mineralized fragments.	+50m @ 020; grabs over 2m; Orng-brn clay soil.
AC-S8		5580980	0.6	4.2						0.01	3.9			+60m @ 020; Dull dk brn clay soil.
AC-S9	607311	5580990	0.5	4.3	58	0.1	4.8	0.2	81	0.02	3			+70m @ 020; Dull red-brn clay soil.
													· · · · · · · · · · · · · · · · · · ·	
	ediment Sar							1.1.1						
AC-29		5582759	0.5	4.3						0.06	4.5		Dom mafic volc 1pc pyroc.	Br from WSW. Sand/grvl base-chnl <.5m wide-dry.
AC-30		5582334	0.8	8.9						0.11	10.6		Dom mafic some diorite intrusives.	Br from WSW. Sand/grvl base-chnl < 5m wide-gentle flow.
AC30-1		5581775	1	5.7						0.04	30.8		Many different cobbles; mafic voic o/c on SE bank just u/s.	Dry disturbed (cat track) 0.5-1.0 m chnl w/sand-grv! base.
AC-31		5581880	0.5	4.1					69	0.02	19		Dom mafic some silicified pyritic rhyolite cobbles.	Br from WSW. Sand/grvl base- bldry chnl-chnl 2-3m wide-moderate flow.
AC-32	608220	5581478	0.5			0.1	4,1	0.4	84	0.02	4.1		Dom mafic volcs & intrusives (diorite & feldspar porphry).	Br from S. Sand/grvI base some mechanical disturbance-chnl .5-1m wide-t
AC32-1	608530	5581357	0.6	4.6	49	0.1	4.6	0.3	109	0.03	2.7	1.1	Few rnd'd mafic volcs cobbles & bldrs.	E br joins below -32; Dry vague chnl <0.5m wide doesn't cut org mat; loc'l
AC32-2	608294	5581051	0.6	4.4	41	0.2	5.5	0.5	101	0.05	17.5		Dom dk gry & red/brn mafic volcs.	Rocky chnl 0.3-0.5m w/ sand & gravel atop org mat.
AC-33	607313	5580776	0.4	4.8	52	0.2	5.3	0.4	88	0.04	3.5		Dom mafic volcs.	Br from E. Coarse sand/grvl base-chnl .5m wide-dry.
AC-34		5580462	0.3	4	47	0.2	4.2	0.3	79	0.05	4.7		FP- some mafic volcs & rhyolite.	Br from SE.Rocky base-chni .5m wide- gentle flow-some orgs in sample.
AC-35		5578720	0.6	5.3		0.1				0.16	2.6		Mafic voic pebbles.	Main ck. GrvI base on top of org mat-chnI .5m wide- trickler.
AC-36		5579208	0.5	4.5					111	0.04	2.5		Mafic volc pebbles.	Main ck. Sand/grvl base- chnl .58m wide- weak flow.
AC-37		5579237	0.5							0.05	24.9		Dom mafic pebbles	Side, Sand/grvl on org mat, chnl <0.5m wide, trickle.
AC37-1		5579003	0.4							0.04	1.2		Red-brn mafic volc pebbles.	S (left) Br; sand/grvl base; trickle in 0.5m chan.
AC37-2		5579090	0.4							0.04	1.1		Basaltic pebbles.	N (right) Br; Dry 0.5m chan only loc'ly cuts org mat; local dirty gryl/sand bas
AC-38		5579442	0.4							0.05	3.1		Mafic volc some rhvolite.	Br from SE. Sand/grvl some cobbles- chnl .75-1.5m wide- gentle flow.
	000-00	0010442	0.0	4.1				J.2	140	0.00		1		or nom oc. canargin come cobbies- enin ne- nom mac- gentie now.

		SAM ARE/	A 2003 RECO	N GEOCH	EMICAL	SAMPLE	SUMMARY	(-					
Sample											ŀ	Assay		
Number	Easting	Northing	Mo ppm Pb	ppm Z	n ppm	Ag ppm	As ppm	Sb ppm	Ba ppm	Hg ppm Au	uppb A	Au ppb	Rock Type	Note
AC-39	606770	5579982	0.6	4.8	84	0.1	5.4	0.3	3 96	0.04	2.9		Mafic volc some rhyolite & FP (porph volc?).	Main ck. Sand/grvl some cobbles- chnl 1-2m wide- gentle flow.
AC-40	606771	5580006	0.3	4.3	57	0.2	3.4	0.2	2 76	0.05	78.2		Mafic volc some rhyolite.	Br from W. Sand/grvl bldry chnl- chnl .5-1m wide- trickler.
AC40-1	606333	5580113	0.4	4.9	48	0.2	4.3	0.2	2 94	0.06	-0.5		Dk volc cobbles.	S br; Dry braided chnls <0.5m; choked by cobbles & veg; silt-sand-grvi ator
AC40-2	606338	5580163	0.3	4.5	55	0.2	3.4	0.2	88	0.06	4.5		Dk volc cobbles.	N (right) Br; Dry 0.6m chan; pebbly grvl base / local fine deposits.
AC-41	606877	5579915	0.4	5	60	0.1	5.5	0.3	8 84	0.03	17.1		Mafic volc sm pc rhyolite w/Qz strs.	Br from SSE. Sand/grvl base- chnl .5-1m wide- trickler.
AC41-1	606960	5579449	0.3	5.3	49	0.1	5.9	0.4	81	0.05	10.4		Angular dk volc cobbles & bldrs (contrast w/ rnd till cobbles dnstr	
AC-42	607189	5581202	0.3	4.5	63	0.1	4.9	0.3	3 84	0.03	65.7		Mafic volc some rhyolite.	Main ck. Sand/grvl base- chnl 3-4m wide- gentle flow.
AC-43	607172	5581260	0.6	4.6	58	0.1	7.1	0.4	63	0.03	40.1	1.1	Mafic volc sm pc QzBx & 1pc pyroc.	Br from W. Sand/grvl base sm cobbles- chnl .75-1.25m wide- gentle flow.
AC43-1	606298	5580909	0.5	4.7	63	0.1	4.6	0.2	2 69	0.03	1.6		Abund mafic volc ang cobbles; o/c slightly u/s.	E Br; local grvl base; trickle in stony cobbly chnl 0.5m wide.
AC43-2	606264	5580931	0.6	5.2	54	0.1	6.5	0.2	2 63	0.05	82.7		Blocky mafic volc talus; o/c immed u/s.	W Br; grvl base; trickle in rocky chnl 0.5-1m wide; partial moss-mat.
AC43-3	606565	5581195	0.6	5.4	55	0.2	8	0.3	3 58	0.05	49.1		Dom mafic volc float	Main; sand/grvl/cobble base; mod flow in 1-1.5m chan.
AC-45	606211	5578786	0.3	4.7	48	0.2	16	0.7	127	0.17	4.5		Dom mafic volc- incl maroon Ba cobbles.	Trickle in chnl <0.5-0.75m wide; some silt-sand-gravl atop org mat; mod org
AC-46	606254	5579312	0.5	4.8	42	0.2	4.8	0.2	2 84	0.09	-0.5		Mafic volc cobbles.	Dry chnl 0.3-0.5m wide; silt-sand-gravl mixed w/ orgs; Essentially an A-hori
AC-47	606429	5579664	0.6	4.2	62	0.1	3.9	0.2	2 68	0.04	11.6		Mafic volc cobbles.	Dry chnl 0.5-0.8m wide; sand-gravl-cobble base; Good quality clean silt.
AC-48	606953	5580428	0.4	4.9	68	0.1	5.7	0.3	3 86	0.04	1.7		Subang mafic voic bidrs & cobbles.	Main; mod-sl flow in 3m chan w/ gravel-cobble base; abund bars & jams w/
AC-49	606946	5580471	0.7	6.6	53	0.2	5.6	0.4	4 73	0.09	1.1		Subang mafic volc cobbles.	Side; dry gully w/ 0.3m chan loc'ly cut thru org mat; minimal transptd seds -
AC-50	607110	5580827	0.4	5.1	59	0.1	5	0.3	3 78	0.03	4.7		Dom mafic volcs- but some rusty-orng (rhyolite) float.	Main; bouldery 3m chan; good clean silt/sand from multiple bars.
AC-51	607049	5580905	0.6	4.1	48	0.2	4.8	0.6	66 66	0.07	3.6		Dom mafic volc cobbles.	Side; dry veg-choked chnl; silt-sand w/ organics.
AC-52	605010	5581235	0.7	5.1	61	0.1	7.8	0.4	100	0.06	6.8		Rnd'd till cobbles & subang dk volc; chloritic mafic pyroc o/c.	Main; sl/mod flow in 0.5m chan w/ grvl-cobble base; minor disturbance in cl
AC-53	604912	5581355		4.5	50					0.16	1.4		Mostly mafic volc float.	Side br not on map; sl flow in 0.4m brushy chan w/ loc'ly good gravelly base
AC-54	604500	5581650	0.5	4.7	52	0.1	6.8	0.2	2 145	0.04	8.7		Mostly mafic volc pebbles & cobbles- incl brick-red.	Side br S of IR; trickle in 1m chan w/ sand-gravel base.
AC-55		5579550		5.4	55	0.2		0.3		0.05	1.8		Dk gry Ba-Ad o/c on banks.	Rocky 1-1.25m chan; silt/ sand w/ inor organics from banks.
AC-56a		5579870		4.8	53	0.1	3.5		2 100	0.03	1.2		Dom mafic volc float; some greenish Ad & brick-red Ba.	Bouldery 1.5m chan /w mod flow; sand/grvl base.
AC-56b		5579870		5.1	57	0.1				0.03	2		Dom mafic volc float; some greenish Ad & brick-red Ba.	Bouldery 1.5m chan /w mod flow; sand/grvl base.
AC-57	603745	5580480	0.2	4.5	45	0.1	12.8	0.1	1 109	0.02	0.8		Mafic volc & FP pebbles.	Trickle in <0.5-0.8m chan; sand/grvl atop It brn clayey B-horiz soil; clean fin

	E ANA (ISO	00	CAL	LA	BOR	ATOI ted	RIES CO.	8 LT:)	D .		852	E.	HAS	TIN	GS	ST.	T	Jou	VER	BC	V6	A 1R	6	F	мон	TE (6	04)	253	-31	58	FAX	(604	0	3-1'	716	
A	<u>A</u>										al	a Fi	td.	PF	OJI	ECT	BC	R03	<u>8 - 4</u>	F:	ile	CATI # j ted by	430			P	age	8 1						4	4	L t
SAMPLE#	Mo ppm		Pb ppm			Ni ppm																Cr ppm				B ppm							T1 ppm		Ga ppm	
G-1	2.8	3.3	2.9	43	<.1	4.9	4.2	589	2.03	<.5	1.8	<.5	4.2	102	<.1	<.1	.4	43	. 68	.079	12	20.3	.59	265	. 148	<1	1.15	. 133	. 53	5.3	.01	2.8	.3	<.05	5	< . 5

AC-29 .5 .5 44.9 4.3 55 .3 41.5 13.4 645 3.20 3.3 .7 4.5 1.2 98 .2 78 1.10 .044 14 46.5 .92 95.168 2 3.14 .032 .2 .1 .07 .1 . 06 9.8 < 1 < 05 8 AC-30 .8 61.2 8.9 110 .2 63.0 25.2 1848 5.63 8.6 1.0 10.6 1.7 237 2.60 .107 19 71.2 1.78 128 .391 7 4.10 .084 .1 <.05 13 .7 <.1 .5 .1 177 .13 .1 .11 12.0 AC-31 .5 31.7 4.1 .1 30.4 13.4 551 3.13 4.9 .6 19.0 1.1 143 .1 .92 69.245 1 2.37 .049 . 07 7 56 .3 .1 95 1.45 .071 11 36.3 .1 .02 6.4 <.1 <.05 . 5 AC-32 52 .5 28.8 4.5 .1 22.5 11.7 560 2.99 4.1 .4 4.1 .9 93 .1 10 30.6 .77 84 .218 2 1.89 .028 .06 .1 .02 <.5 .4 .1 88 1.04 .057 5.5 <.1 <.05 6 52 .1 AC-33 45.6 4.8 .2 27.6 13.3 647 3.12 5.3 .4 .7 3.5 1.0 102 .4 .1 83 1.44 .063 14 35.3 .97 88.200 2 2.56 .033 .07 .1 .04 6.8 <.1 <.05 7 <.5 STANDARD DS5 12.3 145.3 23.5 130 .3 24.9 12.3 762 2.95 17.5 5.7 42.0 2.7 51 5.5 3.7 6.0 59 .76 .092 13 181.2 .68 134 .104 16 2.11 .036 .14 5.0 .18 3.6 1.0 <.05 7 4.9 GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: STREAM SED. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. 19 22/03 DATE RECEIVED: AUG 5 2003 DATE REPORT MAILED: SIGNED BY. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. FA Daťa

ACME ANALYTICAL		(
-----------------	--	---

Almaden Minerals Ltd. PROJECT BCR03-4 FILE # A303133

Data

Page 2

SAMPLE#	Mo ppm	Cu	Pb	Zn		Ni ppm	Co ppm		Fe %	As ppm	U maa	Au ppb			Cd mag		Bi com i	V	Ca %	-	La ppm	r) ppm	Mg %	Ba ppm	Ti %t	B A	Na K X			•	Sc ppm p			Ga Se pm ppm
								1.1		P.P.		<u> </u>	1-1								<u>, , , , , , , , , , , , , , , , , , , </u>	- FF		FF					P.P	FF	<u> </u>	- 1		FF
G-1	2.4	4.1	2.8	47	<.1	5.4	4.8	630	2.23	.6	2.1	.5	4.3	102	<.1	.1	.4	40	.72	.086	12	22.9	.61	269	.153	1 1.2	2.134	.56	5.6<	.01	3.1	.3 <.	ეე	6 <.5
AC-34	.3	33.7	4.0	47	.2	27.0	11.1	629	2.51	4.2	.6	4.7	.7	105	.2	.3	.2	62	1.62	.051	10	34.1	.81	79	.157	3 2.2	5.034	.05	.1	.05	5.6	<.1 <.)5	7.6
AC-35	.6	30.7	5.3	61	.1	41.8	15.1	1192	2.74	5.4	.8	2.6	.5	253	.2	.2	.1	75	2.06	.087	10	34.3	1.15	113	.196	4 2.5	.064	.06	.1	.16	5.7 -	<.1 <.0	JS	7 2.0
AC-36	.5	27.6	4.5	106	.1	35.9	14.8	833	3.17	7.2	.6	2.5	1.0	178	.1	.3	.1	85	1.42	.084	12	40.0	.94	111	.230	2 2.6	.052	.06	.1	.04	6.8	<.1 <.0	35	7.6
AC-37	.5	33.0	4.8	61	.2	43.0	14.9	544	3.22	8.2	.8	24.9	.8	155	.1	.3	.1	88	1.54	.080	13	44.1	1.04	111	.205	2 2.9	3.058	.07	- 1	.05	7.9	<.1 <.	J 5 .	8 <.5
	_														-										1.1				-					
AC-38		34.5				40.7				5.1	.9	3.1			1	.2				.069	13	41.3	1.08	140	.229	3 3.0			•••			< .1 <.0		8.7
AC-39		31.2			.1	35.2	14.3		3.36	5.4	.6	2.9	1.0	169	-1	.3	.1	97	1.41	.081	12	44.9	.98	96	.220	1 2.5	5.052	.07	.1	.04	6.7	<.1 <.1	JS	7.9
AC-40	.3	.37.8	4.3	57	.2	40.9	15.0	502	3.22	3.4	.8	78.2	.9	116	.1	.2	.1	90	1.19	.051	10	47.0	1.04	76	.202	3 2.9	.052	.06	.1	.05	7.4	<.1 <.0	JS 👘	8.5
AC-41	.4	34.4	5.0	60	.1	30.4	14.6	639	3.29	5.5	.9	17.1	1.0	130	.1	.3	.1	95	1.52	.076	13	37.5	.94	84	.249	2 2.7	.041	.07	.1	.03	6.9	<.1 <.0)5	8 <.5
RE AC-41	.5	35.2	5.1	61	.1	33.9	14.8	670	3.42	5.6	.8	8.0	1.0	135	.1	.2	.1	100	1.61	.078	13	38.5	.97	89	.265	3 2.7	.045	.07	.1	.04	7.1 •	< <u>,</u> 1 <.()5	8.5
AC-42	.3	33.5	4.5	63	.1	31.7	14.9	626	3.30	4.9	.6	65.7	1.2	152	.1	.3	.1	96	1.46	.073	12	39.3	.96	84	.257	5 2.6	5.047	.07	.1	.03	6.9 4	<.1 <.0	05	8.5
AC-43		32.6	4.6	58			13.7		3.21	7.1	• -	40.1		124	.1	.4				.061	10	41.3	.91		. 195	4 2.0			1		5.9			7 7
STANDARD	1	137.5				23.1			2.86				-		5.4			58		.091	• •	179.9	• • • •		.105	17 2.0			4.9			1.1. <.		7 5.0
	••••						· · · · · ·													÷							1				·····	*. *********		

Standard is STANDARD DS5. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

A	CME ANI								rD.		85							J							P	HON	E ((504)	253	-31	58	FAX (604	3 ³⁻	1716 A A	
Î	Mo Cu Pb Zn Almaden Minerals Ltd. PROJECT BCRO3 - 4 File # A303135 Mage Magee Magee Magee Magee Magee Mag																																			
SAI	1PLE#		Cu ppm	Pb ppm	Zn ppm	Ag ppm				Fe %															Ti %	B ppm	A1 %	Na %	К % [1.1						
51		.5	3.3	1.0	17	<.1	1.8	.2	4	. 07	1.3	<.1	<,5	<.1	2	.1	.2 <.1	<	1.0	7<.00	1 <1	3.1	. 02	3	.002	1	.01	. 358<	<.01	.1.()1	.1 <.1	. 07	<1 < 5	e <u>e</u> Politica	
AC	- R4	1.5	32.9	5.0	65	.1	11.2	13.4	844	3.54	5.6	.3	1.1	1.3	53	.1	.3 <.]	94	4 3.4	2.12	3 17	17.6	.41	17	.017	3	. 68	.033	.04	.2 .(01 10	0.9 <.1	. 16	3 <.5	1100	
AC AC		2.2 .9	6.2 6.6	6.8 3.0	9 7	.1 .7	3.5 2.9	1.3 1.3	68 77	.55 .45	5.5 2.8	.1 .1	91.0 1299.6	.5 .3	6 < 4 <	<.1 <.1	.2 .1 .3 <.1		5.0 3.0	5.00 2.00	57 54	10.5 8.9	.03 .02	26 13	.004	1 1	.24 .15	.007 .006	.13 1 .07	1.1 .(.8 .(02 03	.3 <.1 .3 <.1	. 06 06	1 <.5 1 <.5	1400	
	· · · · · · · · · · · · · · · · · · ·	Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th S Ca P La Ca Ca P La <t< td=""><td></td></t<>																																		

	1110 E 0007	T> > (1) [1]	DEDODE	363 77 7373 .	
DATE RECEIVED:		DATE	REPORT	MALLEDI	

Aug 23/03 SIGNED BY C: L. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

	ACME A			lal 1						D.		852	E	. H	ASTI	ING	s s	T.	Í.	LOUN	'ER	BC	V6A	. 1R	6		PHC	NE	(604) 2	53-	315	8 F	'AX (604		3-171	.6
		:so -	9002	Acc	red	lite	d (Co.)				 /	าตบ	T'M'I	- ~ >	T	7 NT7	TV	010	ПЪ	ייזיסי	IFIC	• • •	7													A
				•									ЭЦ	Л	CILI 7	- • -	11	27.172	7717	979	СĿ	1 R I .	r c 7 c															Δ
1								Al	mad	len	. Mi	ne	ra:	Ls.	Ltc	1.	PR	OJI	CT	BCI	R03	-7	Fi	1e	#	A3	051	.88									//P\/	
																							ıbmitt															
1	SAMPLE#		Мо	Cu	Db	Zn	<u>^</u>	Ni	<u>~~~</u> ~~~	Mn	Fe	As	<u> </u>	٨٠٠	Th	C n	Cd.	CP 1	4	V Ca	D	La	Cr	Ma		Ti	D	A1	Na	 V	LI	Цa	<u></u>	т1	<u>د</u> م		Come le	
ł .	SAMPLE#		טויז זוסס			DDM				ppm	re %		-									ppm	ppm		ppm -		ррт ррт	AT. %		۲ ۲								
<u> </u>			ppi	- ppii		ppin	ppiii	ppii		- ppii	A U	phin	PPII	ppp	hhii P			Pin Pł			~~~~~	Phil	- Phin	70	ppm	~	Phil	~~~			Phin P	yhui h	pin p	FAX (604 3 + 1716 AAA T1 S Ga Se Sample pm % ppm ppm gm <.1<.05 8 .7 30.0 <.1<.13 6 1.9 15.0 <.1<.05 8 .7 30.0 <.1<.05 8 .7 30.0 <.1<.05 8 .7 30.0 <.1<.05 8 .6 15.0 <.1<.05 8 .6 15.0 <.1<.05 7 .5 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .9 15.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 7 .5 30.0 <.1<.05 6 5.0 30.0				
	AC32-1		.6	33.1	4.6	49	.1	27.1	12.7	636	2.89	4.6	.4	2.7	1.1 1	103	.1	.3 .	1 7	1 1.35	.076	12	31.6	.93	109	.177	22	.13	.025	. 09	.1.	03 5	5.3 <	.1<.0	58	3.7	30.0	
1	AC32-2		.6	37.0	4.4	41	.2	24.5	9.8	388	2.25	5.5	1.0	17.5	.4	94	.1	.5 .	1 6	3 1.92	.064	11	31.9	.87	101	.142	41	. 64	.019	.03	.1 .	05 4	1.6 <	.1.1	3 6	5 1.9	15.0	
1	AC37-1		. 4	31.3	4.3	56	.2	45.0	14.6	924	2.95	4.4	.9	1.2	.91	.33							39.4				<1 2	.35	.049	.05	.1.	04 6	5.9 <	.1 .0	7 7	′.6	15.0	
1	AC37-2			31.0							3.22		.8	1.1	.91	.75	.1	.2 .	1 9	5 1.44	.061	11	41.9	1.21	120	. 223	42	. 68	.048	.07	,1.	04 6	5.7 <	.1<.0	58	3 <.5	30.0	
	AC40-1		. 4	36.0	4.9	48	.2	40.2	13.6	671	2.97	4.3	.8	<.5	1.0 1	13	.2	.2	1 8	5 1.42	. 057	13	41.2	1.11	94	.146	2 2	.65	.042	.06	.1 .	06 8	3.0 <	.1<.0	5 8	3.6	15.0	
	AC40-2		3	33.8	45	55	2	44 2	13.8	577	2 99	34	1.0	4 5	8 1	20	2	2	1 8	1 1 32	059	12	42 8	1 14	88	163	<1 2	59	048	.06	< 1	06.7	15 <	1 0	6 7	1 < 5	15.0	
	AC41-1			33.1							2.94			10.4	.9 1		.2			1 1.67			29.5			.182										3.6		
l	AC43-1			41.8							3.69			1.6									43.4		69											8.8		
· .	AC43-2		.6	36.3	5.2	54	.1	35.0	14.1	688	3.10	6.5	.6	82.7			.1	.2	1 9	1 1.56	.072	13	38.7	1.01	63	.171	3 1	.99	.042	.06	<.1.	05 6	5.4 <	.1<.0	5.7	.8	15.0	
	AC43-3			37.7		-																	33.5													1.0		
	RE AC43	2	6	37.4	с. /	E.2		25 1	1 <i>1</i> c	704	2 05	0 0	6	12 1	0 1	22	1	2	1 0	1 1 40	074	14	33.8	1 10	E.4	110	E D	02	040	07	- 1	00 0	. 7 -	1- 0	c 7	, .	15.0	
	AC-45	-0		37.4			. –																26.5													, 5 7 5		
	AC-45 AC-46			34.3																1 1.41			35.4	.88												7 6		
	AC-40 AC-47			32.0											1.1 1								41.3		68				.056							••		
	AC-48			31.9							3.41												36.6		86													
				01.5			• •	00.7	10.0	0.0	0.11	0.7	•••	±.,,			••		1 .	1.02		10	00.0	1.05	00	. 200						••••	• •		0 0		00.0	
	AC-49		.7	61.2	6.6	53	.2	38.6	14.7	697	3.35	5.6	1.0	1.1	1.2 1	60	.2	.4 <.	1 84	4 2.34	.068	19	40.3	1.10	73 ,	143	8 2	.94	.041	.08	.1 .	09 7	'.8 <	.1.0	69	8. (7.5	
1	AC-50		.4	28.5	5.1	59	.1	32.0	14.2	605	3.35	5.0	.6	4.7	1.2 1	48	.1	.3 .	1 90	5 1.40	.072	12	35.1	1.04	78	.256	1 2	.40	.039	.07	<.1 .	03 6	5.5 <	.1<.0	5 7	<.5	30.0	
	AC-51		.6	54.3	4.1	48	.2	25.4	11.7	599	2.75	4.8	1.0	3.6	.71	.31	.1	.6	1 73	3 1.71	.056	12	30.4	.90	66	149	82	.27	.037	.06	<.1 .	07 5	5.7 <	.1 .0	6 7	1.2	15.0	
}	STANDAR	D DS5	12.5	136.3	25.5	131	.3	24.2	11.9	789	3.01	19.2	5.8	43.0	2.6	47 5	5.3-3	.8 6	0 5	9.72	.088	12	181.7	.65	137	. 097	16 2	.00	.032	.13	5.0.	18 3	3.3 1	.1<.0	56	5 5.0	30.0	
									-												_						1											

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: STREAM SED. <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Repuns.</u>

28/03 T.T. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: SIGNED BY OCT 23 2003 DATE REPORT MAILED:

Data AFA

ACME ANA	Ta	AL I	ABO	<u> </u>	ORT	RS	T.TD			852	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																				
	9002				d C	!0.)		<u>en</u>	Mi	G <u>ner</u>	E00 al:	CHE) s L	MIC	AL A	NALY	SI; B(5 CE <u>CR03</u>	RT:	CFIC. Fi	ATE le	# A	305:		,				- (- (<u>_</u>	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p		Ni ppm	Co ppm į		Fe %								Ca %					Ti E % ppr	3 A1 1 %	Na %	К %р		-				
SI AC-R9 AC-R10 AC-R11 AC-R12	.1 4.6 1.6 6.3 .8	.6 4.4 5.0 1.4 2.2	.3 4.0 2.5 1.3 3.1	10 4 5 3		.3 1.8 1.2 1.6 .9	.5	91 31 41	.09 .73 .36 .30 .44		.2 .2 1 .1 8	6.8 119.6 678.1	.6 .7 < <i>.</i> 1	10 <.1 20 <.1 3 <.1	.4 <.1 .2 .2 .3 <.1	12 3 2	.05 .0 .08 .0 .03 .0	26 27 03	9 12.4 7 13.1 2 16.5	.08 .02 .01	18 . 37<. 51 .	003 1 001 3 002 2	.24 .18 .10	.016 .014 .002	.08 .08 .07 1	.9 .10 .2 .09 .5 .10) .7 <. 5 .2 <. 5 .2 <.	1<.05 1<.05 1<.05	5 1 <.5 5 <1 <.5 5 <1 <.5	1700 500	
AC-R13 AC-R14 AC-R15 AC-R16 AC-R17	1.1 .3 .9 .7 1.3	19.5 3.5 5.4 7.4 22.0	3.1 2.1 4.0 1.8 1.7	6 16 1 4	.5 I.1 .5	1.0 2.2 2.4	.3 1.4	22 138 84	.36 .70		.1 .2 2 <.1 1	553.7 2159.7 .213.7	.4 .7 .1	4 <.1 6 <.1 8 <.1	.1 <.1 .2 .1 .3 .2	2 11 10	.02 .0 .04 .0 .05 .0	04 12 1 08	6 13.6 3 10.5 4 15.9	.01 .04 .03	17 . 20 . 12 .	001 2 004 1 001 2	? .15 .32 ? .19	.003 .018 .004	.09 .13 .08	.2 .05 .5 .00 .2 .00	5 .2 <. 5 .5 <. 3 .5 <.	1<.05 1<.05 1<.05	<pre><1 <.5 1 <.5 1 <.5 1 <.5</pre>	1700 1500 1700	
AC-R18 RE AC-R18 AC-R19 AC-R20 STANDARD DS5	.3 1.2 .6	14.3 13.8 20.0 8.4 145.3	1.1 1.0 .8	10 10 12	.2 .3 .2	2.4 3.7 3.4	3.3 3.4 2.9 2.9 12.6	126 101 232	.79 .78 .73 .76 .92	3.8 4.3 13.3	.1 .1 .1	406.1 607.1 455.2	.4 .3 .2	13 <.1 12 <.1 5 .1	.5 .2 .4 .2 .3 <.1	13 17 8	.30 .0 .25 .0 .12 .0	38 51 22	4 9.3 3 15.9 4 13.4	.10 .10 .15	7 . 7 . 24 .	006 2 009 1 002 2	2 .63 .48 .39	.017 .011 .002	.11 .10 .10	.2 .02 .9 .02 .2 .02	2 1.3 . L 1.4 <. L .6 <.	1<.05 1<.05 1<.05	1 <.5 2 <.5 1 <.5	2400	

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject_Reruns.

DATE RECEIVED: OCT 23 2003 DATE REPORT MAILED: Oct 28/03

Data V F

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 (ISO 9002 Accredited Co.)

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT SAM File # A305189R 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 Submitted by: Ed Balon

SAMPLE#	Ag** Au** gm/mt gm/mt	
SI AC-R10 AC-R11 AC-R15 AC-R16	$\begin{array}{cccc} <2 & .01 \\ <2 & 1.60 \\ 4.2 & 8.45 \\ <2 & 2.24 \\ <2 & .98 \end{array}$	
AC-R19 AC-R22 STANDARD GC-2/AU-1	<pre><2 .73 5.2 .48 1064.0 3.38</pre>	

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: ROCK REJ.

)ec 9/03

SIGNED BY

DATE RECEIVED: DEC 4 2003 DATE REPORT MAILED:

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

PHONE (604) 253-3158 FAX (604) 253-1716

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

																		<u></u>	·.																
ACME									•	8	52 I	Е. Н	AST	ING	S S	т.	V	Jou	VER	BC	V6	A 15	6]	PHON	IE (6	04):	253-	315	8 F	AX (604	3	-17	16
	(ISO	900	2 Ac	cre	dit	:ed	Co.)				ar.	inat	T T 11 F	T 77	۱ т	-			1 (1)	avw.	* *														
											Gr	iUCI	iem	TC	. ۲۰	AN	Χ بلک	STS	5 C.	ERT.	T F. T	CAT	E.											A	A
	N						Alı	nad	en l	Min	era	. ls	Lt	d.	PR	OJI	ECT	BC	CRO	3 - 8	F	'ile	#	A3()52'	75								T	Apr -
									11	03 +	750 I	√. Pe	nder	St.	, Va	ncour	ver B	BC V6	C 218	3 SI	ubmit	ted b	y: Ed	Bal	on										
SAMPLE#	Mo	Cu	Pb	Zn	Aq	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ća	D	La	Cr	Mg	Ba	7;	R	Al	Na	K	V	Hg	Sc	T1	S G	a Se
SAM LLW	mag	mag	ppm					ppm	. %		ppm						ppm	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		ppm	ppm		ppm	%	ppm	.%	8			•	ppm p			m ppm
												1-1		1.1				I I I I I								F F				<u> </u>					
G-1	1.5	3.1	2.3	- 48	<.1	5.1	4.5	571	2.05	<.5	2.0	<.5	4.8	88	<.1	<.1	.1	44	.62	.074	10	15.8	.57	234	.143	: 1	.93	.095	.50	2.3<	.01 7	2.5	.3<.0	5 !	5 <.5
AC30-1	1.0	39.0	5.7	64	.1	35.3	17.1	880	3.42	6.5	.6	30.8	1.3	90	.1	.3	.1	97	1.17	.070	16	41.9	1.02	87	. 196	2	2.36	.028	.09	.1	.04 8	3.1 <	< .1<. 0	5 1	8 <.5
AC-32d	.4	37.4	4.4	52	.2	23.4	11.6	523	2.59	4.5	.6	3.8	.7	91	.1	.4	<.1	76	1.66	.066	11	30.7	.89	93	.177	- 4	1.87	.024	.06	.1	.04 /	4.5 <	<.1 .0	8 (6 1.0
AC-52	.7	40.0	5.1	61	.1	36.8	17.1	877	3.49	7.8	.7	6.8	1.3	147	.1	.4	.1	105	1.46	.098	16	39.6	1.20	100	.195	3	2.52	.044	.08	.1	.06 8	3.1 <	<.1<.0	.5 f	8 < 5
AC-53	.5	50.4	4.5	50	.1	33.1	14.2	1561	2.88	6.6	.6	1.4	.8	126	.2	.5	.1	83	1.61	.067	14	34.6	.95	242	. 141	6	1.96	.036	.05	.1	.16 €	5.0 <	<.1<.0	5 (6.8
AC-54	5	33.2	1.7	52	1	11 2	1/ 8	626	2 08	6 8	7	87	1 1	115	1	.2	1	81	1 10	.065	15	43.9	02	1/5	137	2	2 00	078	06	- 1	0/. /	452	.1<.0	с ·	7 <.5
AC-55		40.8					13.4		2.43							.3	.1			.056	11	62.9			.111			.055					.1<.0		5.5
AC-55 AC-56a		37.2					15.5								.1	.2	.1	69		.055	10	70.2				-		.055					.1<.0		5.5
AC-56b		40.3							-							.2	• •	78		.057	10					-									
	4														.1		• •	70 58			10	74.9											<.1<.0		5.5
RE AC-57	.2	22.7	4.8	47		20.1	10.2	400	1.62	12.2	1.1	•1	1.2	81	.1	.2	• 1	20	. 20	.025	<u>с</u> ,	30.4	.50	113	.001	. 2	1.20	.049	.00	<.1	.02 3	». (.1<.0	5 4	4 <.5
AC-57	.2	21.6	4.5	45	.1	19.0	9.4	448	1.50	12.8	1.0	.8	1.0	73	<.1	.1	.1	52	.54	.025	6	28.3	.45	109	.053	1	1.12	.045	.06	<.1	.02 3	3.7	.1<.0	5,	4 <.5
AC-58	.3	48.9	4.7	54	.3	54.2	14.5	509	2.40	6.7	1.9	1.4	1.1	107	.1	.2	.1	71	.93	.048	15	73.3	1.08	97	.088	3	1.99	.055	.07	<.1	.05 7	7.5 <	.1<.0	5 '	5.5
STANDARD	12.4	146.5	24.8	139	.3	24.1	12.6	771	2.85	17.6	6.2	43.6	2.7	45	5.7	3.8	6.4	61	.75	.089	13	191.2	.69	131	.095								.1<.0		6 4.6
																													<u> </u>	<u> </u>					

Standard is STANDARD DS5.

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: STREAM SED. <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: OCT 27 2003 DATE REPORT MAILED: NOV 6/03

Data 🗸 📢

44							<u>A1</u>	mac				als										ile				76								4	4
										1103	• 750	W. P	ender	r St.	, Va	ncouv	er B(C V6C	278	SL	bmit	ted by	/: Ed	l Bal	on									. La	
AMPLE#	Mo ppm	Cu ppm	. –	Zn ppm	Ag ppm	Ni ppn		Mn ppm	-	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %		La ppm	Cr ppm		Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W ppm	Hg ppm	Sc ppm	T1 ppm		Ga opm
-1 C-S2	1.5	2.8	2.4 5.0	44 56			4.2 12.9				1.9	1.1 17.6	4.6 1.3		<.1 .1	<.1 .4	.1			.078 .076	10 13	14.5 34.2	.53		.134 .245				.46 .10	2.9 .1			.3 <. <.1 <.		5 · 8
C-S3 C-S4	.5 .6	31.3 42.5	4.7 5.0	60 59	.1 .1	25.1 29.3	11.6 3 15.7	458 753	3.12 3.49	5.5 8.3	.5 .5	2.9 57.1	$1.3 \\ 1.4$	91 124	.1 .1	.3 .4	.1 .1	82 86 1	.89 1.30	.068 .088	11 14	29.7 33.6	.78 1.07	82 87	.216 .221	12	2.36 2.99	.020 .038	.09 .08	.1 .1	.02 .03	6.6 7.7	<.1 <. <.1 <.	.05 .05	7 9
2-\$5	.5	36.5	5.0	64	.1	29.4	14.5	742	3.19	7.5	.5	11.3	1.4	108	.1	.4	.1	83 1	1.20	.083	14	34.8	.96	87	.228	2 2	2.94	.026	.09	.1	.03	7.7	<.1 <.	05	8. ·
C-S6 C-S7 C-S8	.5	38.4 41.6 51.5	6.0	58 62 58	.1	27.2) 15.0 2 15.6 16.8	817	3.34	10.2	.6	4.2 20.2 3.9	1.5	87	.1 .1 .1	.3 .4	.1 .1 <.1	80	.90	.082 .074 .084	15	35.8 31.2 41.8	.93	79	.248 .198 .277	<1 2	2.60	.016	.10 .11	.1	.02	7.0	<.1 <. <.1 <. <.1 <.	05	9 · 8 · 10 ·
2-50 2-59 2-510	.5	51.5 54.1 22.2	4.3	58 66	1	49.5	5 18.8 5 9.0	674	3.94	4.8	.,7	3.0	1.7	143 154 49	.1	.2 .2	.1	93 1	1.65	.084 .043	16	44.5	1.38	81	.323	<1 3	3.85	.025	.12	.1	.02	12.1	<.1 <. <.1 <. <.1 <.	05	10 11 6
-S11 -S12		59.5 74.2		51 72			15.2					322.7 159.4		81 172	.1 .1	.9 .3	.4 .1			.082		22.3 32.6			.101 .234			.058 .023	.17	.1			.1 <. .1 <		8 10
AC-S12 -S13 -S13A	.5	77.2 55.1 47.5	3.5	74 72 65	.1	70.2	21.1 27.6 26.8	1266	4.61	7.0	.6	40.3 <.5 1.0	1.0		.1 .1 .1	.3 <.1	.1 <.1 <.1	93 1	1.04	.099 .110 .114	20	32.8 60.3 62.5	.73	51	.234 .118 .034	13	3.29 2.55	.023		<.1		14.3	.1 <. .1 <. .1 <.	05	11 6 · 9 ·
- \$14	.6	60.8	4.3	53	<.1	66.9	20.7	930	4.54	37.9	.9	4.9	1.6	163	.1	.2	<.1	78	.74	.113	18	54.8	.62	150	.009	<1 2	2.40	.030	.05	<.1	.11	12.3	.1 <.	.05	6
ANDARD DS5	12.6	137.1	24.1	135	.3	24.6	5-11.8	769	2.98	18.8	5.8	43.7	2.6	50	5.3	3.9	5.9	58	.71	. 089	12	181.7	. 68	142	.096	16 2	2.10	.032	.13	4.8	.17	3.4	1.0 <.	05	7
) L	IPPER	LIMI	TS -	AG,		HG, V	v = 1	00 PF	M; M	D, CO	, CD,	SB,	BI,	TΗ, L	J & B	= 2,	,000	PPM;	CU,	IOUR, PB, Z	N, N												
			SAMP		175:	501					:		1	1	1					- (21	: Beru													
DATE	RECI	IVE	D:	ост а	27, 20	003	DA	CE R	EPC	RT I	IIAN	ED:	Λ	¢€	7/	oζ	5	SIGN	ED	BY.	∽	<u>\</u>	•••	7.	TOYE,	C.LE	ONG,	J. 1	JANG;	CER	TIFIE	DB.	C. ASS	AYERS	S
																								1											

Data<u>V</u> FA

A	E AN (IS							Co.)				GI	SOCI	IEM:	ICA	L 2	ANA	LYS	IS	CE:	RTI	FIC	A 1R(CATE]				X 4	JJ	272	0 51	ΑΛ (Ι	,04)	253	A	
L	L							<u>AT</u>	made														le ed by				7								Ľ	T
AMPLE#	р	Mo Om	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A] %	Na %	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S X	Ga ppm
-R21 -R22 -R23 -R24	146	.7 2 .8 1	1.3 46.2 20.3 15.8 6.7	2.8	1 12 10 13 7	<.1 .3 4.8 .3 1.7	.2 1.8 1.8 7.4 1.6	<.1 1.0 3.4 5.1 .7	94 1 29 1	.89 3 .05	.8 32.6 370.0 29.7 18.0	4.9 .1	<.5 11.3 425.0 45.1 28.6	<.1 .5 .7 .2 .1	15 31 15	<.1 .2 <.1	1.3	<.1 <.1 <.1 .1 .1	<1 17 10 1 5	.05 .77 .19	.001 .024 .363 .025 .016		<1 13.1 9.4 16.0 8.8	<.01 .13 .02 .11 .04	6<. 39 . 36<. 27<. 19<.	004 001 001	1 <1 1	.36 . .24 .	009 002	.01 .12 .14 .08 .10	.9	<.01 .19 1.48 .04 .02		<.1 < <.1 1.5 1 .1 .1 <	.12 .22 .23	<1 2 1 <1 1
-R25 -R26 ANDARD DS	5	.9 - 1		.7 2.8 25.4	10 14 141	<.1 .3 .3	3.9 3.0 24.7	.3 2.1 11.9	27 112 1 738 2			1.2 .1 5.8	6.9 4.2 44.0	.4 .3 2.6	2 6 49	<.1 .1 5.6		–	12 14 58		.017 .021 .088	4	39.3 12.0 174.1	<.01 .10 .65	16 24<. 136 .	001	<1	.02 . .24 . .98 .	002	.08	3.5 .1 4.7	.01 .32 .18	.5	<.1 < .1 1.0	.05 .08 .06	<1 2 7

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 KCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C

Data / FA

APPENDIX B SAM AREA 2004 RECON GEOCHEMICAL SAMPLE SUMMARY ACME ANALYTICAL 2004GEOCHEMICAL & ASSAY CERTIFICATES

	SA	AREA 2	2004 RE	CON GEOCHEMIC	AL SAMPLE	E SUMMAR	RY .	1		1		· · · · · · · · · · · · · · · · · · ·				·
Sample							-			Ass			1			
	casang No diment Sample		vio ppm	Pb ppm Zn ppn	n Ag ppm	As ppm	So ppm	Ba ppm	Hg ppm	Auppb Aup	Db Rock Type	Note	÷		Sample Typ. P	Project Ship
AC34-1	607489 55		0.3		40 0.1			64	0.04	18.1	Ad/Ba float pebbles.	0.4m chnl. Intermit gentle flow. 1-2cm active seds atop org mat.			Strm Sed SA	M SAM
AC35-1	606439 55		0.4	5.3	56 0.3	2 6.6	8 0.3			3.2	Dom Ad/Ba float w/some porph volcs & mafic p	yror irreg chni <0.3-0.75m. Sand/grvl base. Stagnant pools/trickle.			Strm Sed SA	M SAM
AC35-2	606450 55 606665 55		0.5		57 0.1 55 0.1					2.3	Dom Ad/Ba float w/some porph voics & mafic p	yro: Avg chnl width 0.6m sand/grvl atop org mat. Trickle. Fine silt grabs over	5m		Strm Sed SA	
AC38-1 AC38-2	606945 55		0.6		55 0.1 52 0.1					28	Dom dk gm Ad/Ba float. Some marcon Ba. Dull gy-bik & minor red-brn voic float.	1.0m chnl grvl/cobble base. Weak flow. Coarse seds w/some orgs.	d		Strm Sed SA	
AC38-3	607018 55		0.3		51 0.1		4 0.2			3.3	Dull gy-bik & minor red-brn voic float.	0.75m chnl sand/grvl atop org mat base. Weak flow. Coarse seds w/mixe 0.70m chnl sand/grvl base. Trickle. Good clean fine seds.	a orgs.		Strm Sed SA Strm Sed SA	
AC38-4	606995 55	78564	0.4	5.3	50 0.3	3 4.	2, 0.4	221	0.12	2.4	Dk volc float pebbles.	Rt br irreg boggy chnl <0.5-1.0m. Intermit weak flow. Coarse seds atop o	a mat.		Strm Sed SA	
AC41-2	607320 55	79108	0.4	5 5	55 0.3	3 8.	6 0.3	3 105	0.1	1.8	Dk gy basaltic andasite.	Trickle 0.6m chnl.Coarse dk bm silt/sand atop cobbly org mat.			Strm Sed SA	
Peck Sam	nine .				-	+		1	·							
Rock Sam SAM-R1		80976	0.9	3.2	11 0.0	6 2.	9 0.2	25	0.02	1627.5	Silic bleached Ad/Ba hostrock w/OV/it stockwor	k. 8 pcs ang rubble. Lrgst 8*8*13cm & 6*7*11cm.		·····	Grab SA	M SAM
SAM-R15			5.7		22 0.	5 47.	5 0.3		0.02	187	Rusty-orng volc w/irregular Qtz vns-stringers-vu	igs. 4 pcs over 100m of strm bed. Largest 7*8*11cm- rnded.	1	· · · · · · · · · · · · · · · · · · ·	Grab SA	
SAM-R16			7.1		9 0.4				0.01	211	QV w/some intergrown altd volc hostrock.	Single pc-tabular-subang- 5*6*7cm.			Grab SA	M SAM
SAM-R17			3.1 8.2		32 0.4 31 0.5				0.02	71	Grn-gy porphyritic volc.	FeO on trac stcs."			Grab SA	
SAM-R18 SAM-R19			3.8		31 0.5 11 0.6					341 75	QV/bx. Silic rusty orng volc- in part bx- w/QVns 0.5-3cr	1 subang pc 2*3*4.5cm. 1 subrnd pc 5*6.5*7cm. hematitic staining."			Grab SA Grab SA	
SAM-R2	607281 55		0.4		10 -0.					7.8	Msv It & dk gy/brn & clear multistage chalcedor				Grab SA Grab SA	
SAM-R20			0.9	1	10 0.	3	4 0.4	. 5	-0.01	872.4	Epithermal QV mtrl (90-95%) w/some Ad/Ba in	clus 30cm cont chips across 2 bldrs- Discovery Showing Tr.area			Grab SA	M SAM
SAM-R27	607045 55		1.2		10 0.3					228.9	Qtz-flooded it gy voic bx.	1mm-1cm."			Grab SA	
SAM-R28 SAM-R29	607356 55 607364 55		0.3	3.2	39 -0. 5 D.					703.7	Dk.gm.subvolc(?) w/network of QVns-stringers. Qtz-flooded rusty orng volc.				Grab SA	
SAM-R3		79682	1.8		15 0.2					16.1	Tan & rusty-orng silica flooded voic.	also it gy chalcedony."			Grab SA Grab SA	
SAM-R30	607361 55	80090	1	1	4 0.3	3 2.9	9 0.2	14	0.03	207.1	Chalcedonic QV/bx.	mainly opaque white			Grab SA	
SAM-R31	607400 55		1.3		6 0.					369	Chalcedonic QV/bx.	It gy to semi-clr. "			Grab SA	
SAM-R32 SAM-R33	607147 55 607147 55		0.5		67 0.1 63 0.1					128.3	Rusty frac silic med-dk grn Ad incl narrow shea	r. Location is 15-70cm N.of 2003 Sample AC-R13 (Au-338 ppb).			0.55m Chi SAI	
SAM-R34	606662 55		1.1		7 0.					408	Chalcedonic QV/bx.	30/9 Contiguous to S of R32, Incl altn zn sampled as AC-R13. Single quite mded pc 13*20*22cm.		•	0.50m Chi SA Grab SA	
SAM-R35		81610	12.1	3.2	40 0.1					9.8	Lt gy gtz-flooded volc(?).	Single tabular pc 7*8.5*15cm. Rnded one side.			Grab SA	
SAM-R36	605930 55		10	7.2	15 0.3					23	Qtz-flooded red bm volc.	Single mded igmnt 4.5*8*10.5cm.			Grab SA	M SAM
SAM-R37 SAM-R38	604263 55 604071 55		0.7	3.9 3.7	18 0. ⁻ 19 0				-0.01	-0.5		m. Vn attitude 020/90, A.Molnar sample / SAM 11 claim.			Grab SA	
SAM-R30	606583 55		21.1		18 0.1				0.03	51.4	Rusty-orng weath silic felsic dyke(?)rock.	h. Vn attitude 070/90, A.Molnar sample / SAM 11 claim. sparse glassy qtz & chalcedony vits."			Grab SA Grab SA	
SAM-R5	606990 55		1.4	1.2	3 0.	5	3 0.2			928.7	Opaque white to it tan msv chalcedonic qtz.	1 tabular subang pc 4*7*8cm. 1 mded pc 4*7.5*8.5cm.			Grab SA	
SAM-R6	607169 55		1.5		7 0.3					368.7	Qtz-flooded voic w/dense stockwork QVns-strin	ger: 1 tabular pc 9*18*19cm-mded edges. 1 angular 5.5*6*7.5cm			Grab SA	M SAM
SAM-R7 SAM-R8	607326 55 606163 55		1.3	1.2	4 0.				0.07	1284.8	White to It tan & gy chalcedonic qtz w/tiny druse				Grab SA	
SHWI-RO	000103 55	/0004	2.5	0.5	4 1.1	0.0,1	0.1	<u> </u>	-0.01	4387.0	Qtz vns/stringers hosted in dk gy-bik Ad/Ba.	Composite chips over 2m-length on rdbed between J&J Showing and SJ	12 504 520.		Grab SA	M SAM
Soil Samp																
SB-1 SB-2	606175 55 606146 55		3.5 0.7		38 0.1 41 0.1					527.6 175.7	Altd basaltic Ad hosting nearby QVns. Altd basaltic Ad hosting nearby QVns.	On roadbed very near SJ-12 soil stn. J&J Showing area.			Rdbed Soi SA	
SB-3	606141 55		0.9		42 0.					469	Aitd basaltic Ad hosting nearby QVns.	Dk rusty cut between SJ-11/12 sites. J&J Showing area. Dk rusty cut between SJ-11/12 sites. J&J Showing area.			Rdcut Soil SAI Rdcut Soil SAI	
SB-4	666136 55		0.8	10.6	50 0.	5 495	3 3			317.5	Altd basaltic Ad hosting nearby QVns.	Dk rusty cut between SJ-11/12 sites. J&J Showing area.			Rdcut Soil SA	
SB-5	606131 55		9		39 0.1					299.3	Altd basaltic Ad hosting nearby QVns.	Dk rusty cut between SJ-11/12 sites. J&J Showing area.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Rdcut Soil SA	
SJ-1	606292 55		0.4		48 0. 59 -0.							Road Soils				
SJ-2 SJ-3	606295 55 605286 55		0.6		59 -0. 54 ⁴⁴ 0.							Road Soils		·		
SJ-4	606281 55		0.4		49 -0.1							Road Soils				
SJ-5	606283 55	78799	0.4	5.3	48 0.	1 3,1	8 0.2	2 88	0.02	11.3		Road Soils				
SJ-6	606304 55		0.4		55 0.							Road Soils				
SJ-7 SJ-8	606286 55 606236 55		0.8		49 0. 51 -0.				0.05			Road Soils				
SJ-8 SJ-9	606195 55		0.4		51 -0. 51 -0.							Road Soils	++			
SJ-10	606159 55		0.4	4.7	55 0.	1 7.	2 0.4					Road Soils				
SJ-11	608132 55	78571	0.7	4.7	56 0.0	6 50,	5 0.7	99	0.18	37.9		Road Soils				
SJ-12	606178 55		1.2		51 0.4							Road Soils				
SJ-13 SJ-14	606129 55 606082 55	78525	1.5 0.4		44 1. 50 0.							Road Soils	<u> </u>			
SJ-14	606030 55		0.4		56 0.							Road Soils	+			
SJ-16	605983 55	78457	0.3	4.8	49 -0.	1 28.	9 0.6	165	0.12	20.3		Road Soils				
SJ-17	605943 55		0.6		59 0.							Road Soils				
SJ-18 SJ-19	605901 55 605872 55		0.4		50 0. 39 0.							Road Soils				
SJ-19 SJ-20	605916:55		0.2		39 0. 57 -0.							Road Soils			·····	
SJ-21	605961 55		0.4		59 -0.			1 174	0.1			Road Soils	+			
SJ-22	605997 55	78256	0.9	5.3	55 0.	1 8.	3 0.3	3 67	0.07	-0.5		Road Soils				
SJ-23	606024 55		0.4		56 -0.1							Road Soils			1	
SJ-24 SJ-25	60/6028 55 60/6024 55		0.4		51 0. 39 0.							Road Soils				
SJ-25 SJ-26	606049 55		0.4		53 0.							Road Soils				
	896127 55		0.8		66 0.							Road Soils		·····	i	
SJ-27																
SJ-27 SJ-28	606178 55		0.7		74 0.		7 0.3					Road Soils				-

 \bigcirc

Sample Image Sample Image Assay Assay Assay Sample Typ		CAM ADE	2004 RECON GEOCHEMICA	SAMPLE	SUMMARY				1 1				· · · · · · · · · · · · · · · · · · ·					
	Sample						_						tion			Sample 1	Vn Project	t Shin No
C3 A. B.	Number Eas	sting Northing	Mo ppm Pb ppm Zn ppm	Ag ppm	As ppm	Sb ppm	Ba ppm B0	Hg ppm 0 0f	Au ppo	AU ODD	Rock Type	Road Soils	Note			Gampic	7p 110j00	. Chap the
			0.9 5 69	0.	1 7.3			0.0	5 6		· · · · · · · · · · · · · · · · · · ·					T		<u> </u>
																+		+
Dat Dat <td></td> <th>Road Soils</th> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>												Road Soils				1		
Solu Solu <th< td=""><td>SJ-34 : 60</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td><td></td><td></td><td>1</td><td></td><td></td></th<>	SJ-34 : 60															1		
											· · · · · · · · · · · · · · · · · · ·							
					1 8.2	0.6	94	0.0	5 3.9	-	· · · · · · · · · · · · · · · · · · ·					· · ·		
											· · · · · · · · · · · · · · · · · · ·							
	SJ-41 60	06084 5579042									<u></u>					·		
											· · · · · · · · · · · · · · · · · · ·							
Biol Biol <th< td=""><td>SJ-44 60</td><td>05954 5578966</td><td>0.5 4.9 54</td><td>4 0.</td><td>1 9.6</td><td>0.2</td><td>119</td><td>0.0</td><td>2 1.9</td><td>·</td><td></td><th></th><td></td><td></td><td></td><td> </td><td></td><td></td></th<>	SJ-44 60	05954 5578966	0.5 4.9 54	4 0.	1 9.6	0.2	119	0.0	2 1.9	·								
Surger Surger<											· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				1	
Sing Open Control of Single Control of Singl						0.2	102	0.0	3 7.8			Road Soils						
Same Constant Constant <th< td=""><td>SJ-48 60</td><td>05761 5578917</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td><td></td><td>+</td><td></td><td>1</td><td>+</td></th<>	SJ-48 60	05761 5578917													+		1	+
GAT GOUD GAT GAT GAT GAT <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><th>Road Soils</th><td></td><td></td><td></td><td>1</td><td></td><td></td></th<>											· · · · · · · · · · · · · · · · · · ·	Road Soils				1		
Single George Grades George Grads George Grades George G	SJ-51 60	05623 5578930	0.6 4.6 5	5 -0.	1 4.6	0.2	99	0.0	5 1.5									_ <u></u>
Sinter Color Sinter Proof Sinter Proof Sinter Proof Sinter Sinter											- "wa		1					
Bits Bits Rote Sola Rote Sol						0.2	90	0.0	3 0.9		· · · · · · · · · · · · · · · · · · ·	Road Soils		jj				
Constra Constra <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td></t<>																		
Sing GX335 GX355											· · · · · · · · · · · · · · · · · · ·	Road Soils						
Bit	SJ-58 60	06295 5579163	0.4 5 5		1 4.6	0.3						Road Soils				<u> </u>		-
Diract Obsize Opsize Opsize<						0.3									· · · · · · · · · · · · · · · · · · ·			
SiAB OBSS/T SiYAB O.G. S. S. A. Med Sola Med Sola Med Sola Med Sola SiAB OSSIT SiYAB O.S. SiYAB SiYAB SiYAB SiYAB			0.6 4.1 5	3 0.	2 8.4	0.3	118	5 0.0	6 1						· · · · · · · · · · · · · · · · · · ·	· · · · ·		
Sin Jack Object System																		
Sine Operator Operator <th< th=""><th></th><th></th><th></th><th></th><th></th><th>0.2</th><th></th><th></th><th>1 4.3</th><th></th><th></th><th>Road Soils</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>						0.2			1 4.3			Road Soils						
Sky Dodd 4 Stype Dodd 4 Stype Dodd 5 Read Solis Read Sol																		
Sk-80 000442 557961 0.7 5.1 591 0.1 5.6 0.001 1.5 0.0 1.7 0.03 2.8 Read Solis																		
S2.70 EXPS EXPS <t< th=""><th>SJ-68 6</th><th>06482 5579610</th><th>0.7 5.1 5</th><th>9 -0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	SJ-68 6	06482 5579610	0.7 5.1 5	9 -0														
Si/7 60637 507970 11 6.6 97 0.1 6.0 0.1 Read Sola Image: Control of Sola Sola Sola Sola Sola Sola Sola Sola											·······							-
51/76 CODESS EXPROD C/ C/ <thc <="" th=""> C/ C/</thc>			1.1 5.6 5	7 -0	.1 6	0.4	13	5 0.0	1 6.4									<u> </u>
Eyr74 CODPYOP Eyr74 Eyr74 Eyr74 <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																		
51.76 00737 5579807 0.7 5 60 0.1 4.8 0.3 117 Image: Constraint of the constraint of									5 6.5			Road Soils						
Darrow Description Description <thdescription< th=""> <thdescription< th=""> <thd< td=""><td>SJ-75 6</td><td>6579867</td><td>0.7 5 6</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td><td></td><td></td><td></td><td></td><td></td></thd<></thdescription<></thdescription<>	SJ-75 6	6579867	0.7 5 6															
1/78 609883 697802 0.7 4.8 55 0.1 6.6 0.3 86 0.02 2.5 8.190 609935 5578907 0.4 3.8 51 0.1 3.8 0.2 62 2.3 Road Soits															2 C			-
Si 60 600927 557697 0.4 3.8 61 0.1 3.8 0.2 622 0.02 2.3 Road Solis Image: Constraint of the solid	SJ-78 6	06863 5579925	0.7 4.8 5	i5 O	.1 5.6	0.3	8	6 0.0	2 2.5									<u> </u>
Si-81 Bossed Sessor Col 4.6 68 0.1 4.6 0.2 107 0.02 3.2 Read Solis Image: Colored Solis																		-
Si,42 606971 656070 0.5 4.7 61 0.1 6.7 0.3 17 0.4 4.1 Read Solis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.1 3 1 0.0 1 1 0.2 6 Read Solis 1								7 0.0	2 3.2			Road Soils						
Construction Construction<	SJ-82 6	506971 5580070																-
Si 45 607071 5880215 0.3 5.1 59 0.1 3.7 0.3 74 0.44 7.2 Read Solis 1 Si 46 607026 5880259 0.4 4.7 52 0.1 5.3 0.4 64 0.05 8.7 Road Solis							8	3 0.0	3 2.7			Road Soils						
Si-37 607043 5580313 0.5 5 57 0.1 5.6 0.3 76 0.02 5.2 Read Solis Image: Solis <	SJ-85 6	507007 5580215	0.3 5.1 5	9 0	.1 3.7	0.3	7.											
SJ-88 607056 5680385 0.5 4.5 56 0.1 4.6 0.2 75 0.03 3.9 Read Solis Image: Control of the solid sol																		-
Si 49 607086 560385 0.7 4.6 53 -0.1 4.9 0.4 118 0.03 6.3 Read Solis Si 396 60712 556044 0.6 4.4 67 0.1 3.4 0.2 132 0.02 4.9 Read Solis Read Solis <th< td=""><td>SJ-88 6</td><td>507075 5580350</td><td>0.5 4.5 5</td><td>6 -0</td><td>.1 4.6</td><td>0.2</td><td>7</td><td>5 0.0</td><td>3 3.9</td><td></td><td></td><th>Road Soils</th><td></td><td></td><td></td><td></td><td></td><td><u> </u></td></th<>	SJ-88 6	507075 5580350	0.5 4.5 5	6 -0	.1 4.6	0.2	7	5 0.0	3 3.9			Road Soils						<u> </u>
SJ-30 GOT 112 SGL 30 Cot Cot< Cot< Cot<	SJ-89 6	507086 5580395	0.7 4.6												1			
SJ-92 607183 558044 0.4 49 56 0.1 4.2 0.3 67 0.03 4.9 Read Solis SJ-93 607240 5680507 0.7 4.7 54 0.1 8.1 0.3 67 0.04 3.9 Road Solis Ro						0.2	9	3 0.0	2 5.8			Road Soils						
Si-Je4 607248 560056 0.6 6.8 61 0.1 5.9 0.2 83 0.03 2.1 Road Soils Road Soils Si-Je5 607268 5600561 0.6 6.1 0.3 96 0.03 2.1 Road Soils Road	SJ-92 6	607193 5580494	0.4 4.9 5	58 0	.1 4.2	0.3	9								<u> </u>			
Si-35 607287 S580614 0.5 4.1 56 0.1 6.1 0.3 99 0.03 21.8 Road Solis Si-466 607287 S580610 0.5 4.2 4.5 0.1 5.4 Road Solis																		
SJ-96 607257 5580650 0.8 4.2 45 0.1 5.4 0.0 0.3 5.4 Road Solis SJ-97 607243 5580704 0.5 4.1 47 0.1 5.9 0.4 80 0.03 5.4 Road Solis			0.6 4.1 5	6 0	6.1	0.3	9	6 0.0	3 21.8			Road Soils						
SJ-99 60/252 55806/4 0.5 4.5 40 1 6.6 0.4 67 0.02 12.8 Road Soils SJ-99 60/252 5580804 0.5 4.5 48 0.1 7.8 0.4 76 0.01 6.3 Road Soils 0.1 0.1 7.8 0.4 76 0.01 6.3 Road Soils 0.1 0.1 0.1 7.8 0.01 6.3 Road Soils 0.1 <td>SJ-96 6</td> <td>607257 5580650</td> <td>0.6 4.2 4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SJ-96 6	607257 5580650	0.6 4.2 4															
SJ99 607274 5580804 0.5 4.5 48 0.1 7.8 0.4 78 0.01 6.3 Road Solis							6	7 0.0	12.6			Road Soils						
SJ-100 607285 5580855 0.6 4.2 44 0.1 5.9 0.3 68 0.02 4.5 irroad Solis	SJ-99 6	607274 558080-	0.5 4.5 4	48 C	0.1 7.8	0.4	7	6 0.0										
	SJ-100 6	607285 558085	0.6 4.2	-0	.i 6.9	0.3	5	<u>a: 0.0</u>	4.5	<u></u>		11080 30115	· · · · · · · · · · · · · · · · · · ·					

	SAM	AREA 2004	RECON GE	OCHEMICA	L SAMPLE SUMMAR	RY	1	i				1	· · · ·			1	· · · · ·			
Sample	Factor No.		Dhara			01	Deser	He is a second	A	Assay	Deale Trans		*1-i						Destant	Obje No.
Number SJ-101	Easting Nor 607278 558			n Znppm .7 8	Ag ppm As ppm 0 0.1 4.1		Ba ppm 77	Hg ppm 0.02	Au ppo 18.1		Rock Type	Road Soils	Note	<u> </u>			Sa	imple Typ	Project	Ship No
SJ-107	607290 558			1 5			73	0.02	15.3			Road Soils								ii
SJ-103	607307 558			.3 5			98	0.02	4		· · · · · · · · · · · · · · · · · · ·	Road Soils		1			t			
SJ-104	607327 558		0.5	4 5			B3;	0.03	2.7		the second se	Road Soils		1	1.	1		1		
SJ-105	807362 558			.6 4			58	0.03	3.7	'i	T.,	Road Soils				1				
SJ-106	607401 558			5 4	9 0.1 3.1		66	0.02	4			Road Soils	· · · · · · · · · · · · · · · · · · ·							1
SJ-107	607435 556			.8 6:			72	0.02	27			Road Soils			· .					<u> </u>
SJ-108	607484 558			.8 4			58	0.02	2.4			Road Soils								<u> </u>
SJ-109 SJ-110	607520 558			.7 4		5 0.3	53 57	0.01	1.8			Road Soils Road Soils	· · · · · · · · · · · · · · · · · · ·							
SJ-111	607594 558			.7 6			51	0.01	8.3			Road Soils								
SJ-112	607631 558			4 6			72	0.04	3.7			Road Soils								
SJ-113	607660 558	1392	0.9 5	.1 5	4 0.1 11.4	8 0.5	88	0.04	12.8			Road Soils								
SJ-114	607692 558		0.6 3	.9 5			71	0.02	0.7			Road Soils								· ·
SJ-115	807739 558		1	6 6			117	0.03	. 3			Road Soils								
SJ-116	607778 558			.5 5			74	0.01	4			Road Soils			· · ·	1.1.1.1				
SJ-117	607813 558			5.2 11			113	0.03	1.1			Road Soils			-					
SJ-118	607851 558 607896 558			5 4			70	0.01	1.3			Road Soils	·····	· · · · ·						\mapsto
SJ-119 SJ-120	607942 558			2 3			72	0.01	2.9		+	Road Soils Road Soils								
SJ-120	607986 558			5.6 8			107	0.02	-0.5			Road Soils	anti, a succession and a s	+ · · · · · · · ·		+		1		
SJ-122	608028 558		0.7	6 8			170	0.01	2		1	Road Soils								1
SJ-123	608067 558	1857	0.8 7	.1 6	7 0.1 3.8	8 0.2	97	0.03	0.9	l	1	Road Soils						· · · · · · · · · · · · · · · · · · ·		
SJ-124	608083 558	1607	0.5 5	5.3 5	8 0.1 4.3	.3 0.3	64	0.02	3.2			Road Soils								
SJ-125	608125 558			4 5			88	0.02	1.9			Road Soils							i	
SJ-126	608167 558			1.4 5			71		1.9			Road Soils								f
SJ-127	608213 558			.4 5			86 87	0.03	3			Road Soils								<u> </u>
SJ-128 SJ-129	608263 558 608309 558			1.8 4	3 -0.1 6.0 1 0.1 3.0		106	0.02	5.4			Road Soils Road Soils	and the second							
SJ-129	608357 556			.9 5			95	0.04	2.8			Road Soils								
SJ-130	608406 558		1.1	6 6			109	0.03	1.9		· · · · · · · · · · · · · · · · · · ·	Road Soils								
SJ-132	608422 556			.4 5			102	0.03	2.1			Road Soils				1				
SJ-133	608431 558			1.9 5			129	0.02	1			Road Soils	and the second			1				
SJ-134	608442 558			.7 5			168	0.02	1			Road Soils		1. A			ſ			
SJ-135	608451 558			5.8 6			97	0.05	2.9			Road Soils					1			<u> </u>
SJ-136	608443 556			5.8 6			105	0.04	5.4		· · · · · · · · · · · · · · · · · · ·	Road Soils								<u> </u>
SJ-137	608436 558			1.8 5 5.6 5			92	0.04	4.6			Road Soils				1.				<u> </u>
SJ-138 SJ-139	608405 558 608350 558			5.8 10			76 176	0.02	2.4			Road Soils Road Soils				1	<u></u>			
SJ-139	608315 558			3.9 4			87	0.02	2.8			Road Soils								
SJ-141	608271 558				0 -0.1 5.1		86	0.03	2.1			Road Soils				+				
SJ-142	608283 55				2 0.1 6.0		88		4.2			Road Soils						· · · · · · · · · · · · · · · · · · ·		
SJ-143	608333 55	1426	0.6 4	4.2 4		4 0.3	89		8.2	1		Road Soils								
SJ-144	608382 55				2 0.1 4.				3.3			Road Soils						1		
SJ-145	608440 55			4.4 4		5 0.2	91	0.03	1.8			Road Soils		· ·						<u> </u>
SJ-146	608507 55				7 0.1 5.		90	0.03	3.4			Road Soils	····· >			_				
SJ-147	608481 55			5.1 6 5 5			128	0.01	2.2			Road Soils								+
SJ-148	608431 550		0.6		4 0.1 7. 3 0.3 7.		116	0.02				Road Soils					·			<u> </u>
SJ-149 SJ-150	608392 550 608365 550				3 0.3 7. 5 0.1 2.		121	-0.05	3.8			Road Soils Road Soils		+						
SJ-150 SJ-151	608349 55				7 0.1 5.			0.03				Road Soils	······	+						[]
SJ-151	608321 55				1 0.1 5.			0.03	2.8		1 -	Road Soils				1				<u> </u>
SJ-153	608300 55				3 0.1 5.		90		9.2		······································	Road Soils	······	1		1				
SJ-154	608278 55	1074	0.6	4.4 4	7 0.1 9.	.5 0.6	157	0.04	8.9		· · · · · · · · · · · · · · · · · · ·	Road Soils								
SJ-155	608222 55	1075			7 0.1 1	11 0.7			7.6		· · · · · · · · · · · · · · · · · · ·	Road Soils								
SJ-156	608184 55				3 0.1 17.		72		9.9			Road Soils								<u> </u>
SJ-157	608151 55		0.4		0 0.1 23.4				7.2			Road Soils		· · ·						<u> </u>
SJ-158	608111 55				5 0.2 9.			0.03	15.2			Road Soils								<u> </u>
SJ-159	608086 55				9 0.1 8.		69	0.01	4		·	Road Soils					• •			
SJ-160	608040 55 607997 55				4 0.2 7. 2 0.1 6.		43	0.04	4.6	¦		Road Soils Road Soils					<u> </u>			<u></u>
SJ-161 SJ-162	607953 55				2 0.1 6. 9 0.1 4.			0.02	0.6			Road Soils		+ · · · · · +			<u> </u>	· · ·		
SJ-162	607891 55				7 -0.1 7.			0.02	1.9		· · · · · · · · · · · · · · · · · · ·	Road Soils				+	t			(
SJ-164	607830 55				8 0.1 5.			0.02	1.7			Road Soils					· · · ·			(
SJ-165	607787 55				6 0.1 7.		69	0.02	2.4			Road Soils								
SJ-166	607740 55	1263			6 0.1 5.	.5 0.6		0.01	15.7		· · · · · · · · · · · · · · · · · · ·	Road Soils								
SJ-167	607701 55				9 0.1 4.			0.03	1.9			Road Soils					-			L
SJ-168	607680 55				1 0.1 3.				1.6			Road Soils								<u> </u>
SJ-169	607659 55				5 0.1 5.			0.01	3.3			Road Soils	· · · · · · · · · · · · · · · · · · ·	1			<u> </u>			1
SJ-170	607637 55		0.7			7 0.4	91	0.02	6.6			Road Soils								
SJ-171	807600 55				8 0.2 11.		106	0.02	8.4			Road Soils								
SJ-172	607557 55	1004	0.7	3.3 6	8 0.7 14.	.3 0.4	50	0.03	73.2	1)	1	Road Soils		4						<u> </u>

											1.1.1.1								
:		SAM ARE	A 2004 REC	CON GEOC	HEMICAL	SAMPLE	SUMMARY	/				1	1	1	······································	1	 	i	T
nole		1		1			1					Assay	· · · · · · · · · · · · · · · · · · ·				 	1	t
nber	Easting	Northing	Mo ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Sb ppm	Ba ppm	Hg ppm	Au ppb	Au ppb	Rock Type		Note		 	1	t
73	607541	5580955	0.7	4.1	60	0.4	12.1	0.6	85	0.04	58.2			Road Soils					ì
74	607543	5580901	0.6	4.5	57	0.2	12.4	0.6	83	0.04	67.9			Road Soils				7	Т
75	607569	5580855	0.7	4	61	0.1	7.4	0.4	93	0.01	3.2			Road Soils	- 11.		 1	1	1
76	607596	5580804	0.5	4.5	52	0.2	6.8	0.3	153	0.04	17		entre de la companya	Road Soils			 -	1	T
77	607618	5580758	0.6	4.8	44	. 0.1	7.9	0.4	95		9.2			Road Soils			 	1	Ĩ
78	608351	5581117	0.5	4.2	52	. 0.1	5.2	0.3	71		2.8			Road Soils					Ŧ
79	608396		0.5	4.8	55	0.1	4.3	0.2			2.4		·	Road Soils					Τ
80		5581176	0.4	4.5	52		4.8	0.3		0.01	3.4			Road Soils			 1		1
81		5581217		4.4	49	0.1	3.9	0.2	161	0.01	1.9		1	Road Soils	· .	1.1.1			
82		5581230	0.5		49	0.1	6.4	0.2	82	0.02	3.7			Road Soits				1	T
83		5581229	0,6	5.7	62		4	0.2	143	0.02	2.3			Road Soils					
84	608629		0.5	4.4	53	0.2		0.3	191		2.4			Road Soils		1.00			_
85	608687		0.8	5.7	52		5.8	0.3	83		2.7			Road Soils					
86	608728		. 1	5.3	47	0.1	5.4	0.2			2.5		1 Alexandre de la companya de	Road Soits		1			Ĺ
87	608754		0.6	5.4	50		. 5.7	0.2	.82		5.7			Road Soils		(1
88		5681345	0.6	5,1	55	0.1	5.9	0.3	84		4.3	1	1	Road Soils					T
89		\$581398	0.7	4.8	56		4	0.2	118	0.02	1.2			Road Soils					1
90	608809	5581447	0.5	4.7	55	0.1	3	0.1	77	0.02	1.9			Road Soils					Ŀ

	REA 2004 RECON GEOCHEMI	CAL SAMPLE	SUMMARY		·									
Sample Number Easting North	ing Mo ppm Pb ppm Zn pp	A DOM	As norm Sh n	om Bariom	Hanna Au	Assay Rock Type	Note					Sample Typ	Project	Shin No.
SJ-173 607541 5580	955 0.7 4.1	60 0.4	12.1	0.6 85	0.04	8.2	Road Soils							
SJ-174 607543 5580		57 0.2		0.6 83		7.9	Road Soils							
SJ-175 607569 5580 SJ-176 607596 5580		61 0.1 52 0.2		0.4 93		3.2 17	Road Soils					-		
SJ-177 607618 5580		44 0.1		0.4 95		9.2	Road Soils						<u> </u>	+
SJ-178 608351 5581	117 0.5 4.2	52 0.1	1 5.2	0.3 71	0.02	2.8	Road Soils						1	1
SJ-179 608396 5581		55 0.1		0.2 84		2.4	Road Soils			1				,
SJ-180 608446 5581 SJ-181 608478 5581		52 0.1 49 0.1		0.3 74		3.4	Road Soils Road Soils						~ ~	+
SJ-182 608522 5581		49 0.1		0.2 82		3.7	Road Soils							
SJ-183 608579 5581	229 0.6 5.7	62 0.1	1 4	0.2 143		2.3	Road Soils							1
SJ-184 608629 5581		53 0.2 52 0.1		0.3 191		2.4	Road Soils							
SJ-185 608687 5581 SJ-186 608728 5581		52 0.1 47 0.1		0.3 63		2.5	Road Soils							
SJ-187 608754 5581		50 0.1		0.2 .82		5.7	Road Soils							
SJ-188 608792 5681		55 0.1		0.3 84		4.3	Road Soils							
SJ-169 608815 5581		56 0.1		0.2 118		1.2	Road Soils						<u> </u>	
SJ-190 608809 5581 SJ-191 608834 5581		55 0.1 57 -0.1		0.1 77		1.9	Road Soils		· · · · ·	<u> </u>			·	+
SJ-192 608853 5581		47 0.1	3.7	0.2 71	0.03	2.5	Road Soils							1
SJ-193 608872: 5581		66 0.1		0.2 76		2.4	Road Soils							
SJ-194 608877 5581 SJ-195 608889 5581		53 0.1 50 0.1		0.2 87		2.9	Road Soils	·····					+	+
SJ-195 608889 5581 SJ-196 608886 5581		55 0.1		0.3 77		8.6	Road Soils			· · · · · ·				+
SJ-197 608884 5581	204 0.5 6.1	59 0.1	1 6	0.3 106	0.03	3.5	Road Soils						· ·	1
SJ-198 608867 5581		62 0.1		0.3 154		0.5	Road Soils			-				
SJ-199 608849 5581 SJ-200 608821 5581		55 0.2 82 0.1		0.4 381		1.9	Road Soils			· · · ·			<u> </u>	
SJ-201 608794 5581		44 0.1		0.3 87		-0.5	Road Soils			:			1	
SJ-202 608806 5580	962 0.5 5.4	49 0.3	3 4.1	0.2 72		1.9	Road Soils							
SJ-203 608818 5580		46 0.1		0.3 112		2.7	Road Soils					<u> </u>	<u> </u>	
SJ-204 608871 5580 SJ-205 608870 5580		57 0.1 49 0.1		0.2 150		1.3	Road Soils Road Soils							+
SJ-206 608828 5580	862 0.4 4.9	45 -0.1	1 4.6	0.3 146	0.02	3.6	Road Soils			(<u>-</u>			<u> </u>	
SJ-207 608792 5580		41 0.1		0.3 128		1.4	Road Soils						·	
SJ-208 608746 5580 SJ-209 608742 5580		73 0.1 69 0.1		0.3 181		3.6	Road Soils							+
SJ-210 608754 5580		74 0.1		0.2 188		5.4	Road Soils						-	
SJ-211 608717 5580	661 0.7 6	75 0.1	1 3.7	0.2 176		1.6	Road Soils			ĺ				
SJ-212 608727 5580		73 0.3		0.2 141		3	Road Soils						<u> </u>	
SJ-213 608747 5580 SJ-214 607022 5580		86 0.3 54 0.1		0.2 83		3.5	Road Soils							
SJ-215 607068 5580		44 -0.1		0.4 86		8.4	Road Soils							
SJ-216 607120 5580		39 -0.1		0.5 73		8.5	Road Soils						· .	
SJ-217 607166 5580 SJ-218 607273 5579		39 0.1 50 0.1		0.4 82		32.8 15.6	Road Soils			· · · · ·	· · ·			+
SJ-218 607273 5579 SJ-219 606286 5579		59 0.1		0.6 93		2.7	Road Soils							
SJ-220 606272 5579		51 0.1	1 8.8	0.3 110	0.07	3.6	Road Soils					1		
SJ-221 606266 5579		58 0.1		0.2 115		0.9	Road Soils						L	-
SJ-222 606264 557 SJ-223 606276 557		61 0.1 60 0.1		0.2 82		1.4 2.2	Road Soils						<u> </u>	+
SJ-223 606278 557		52 0.1		0.1 64		1	Road Soils						1.	
SJ-225 606240 557	672 0.5 4.7	63 0.1	1 4.2	0.2 107	0.03	0.9	Road Soils				•			
SJ-226 606206 557		52 0.1		0.2 100		2.3	Road Soils			·			<u> </u>	
SJ-227 606217 5579 SJ-228 606263 5579		45 0.1 58 0.1		0.3 74		3.6	Road Soils				i			+
SJ-229 606303 557		57 0.1		0.2 78		4.6	Road Soils							-
SJ-230 606344 557	856 0.4 4	60 0.1	1 2.9	0.2 77	0.03	2.1	Road Soils							
SJ-231 606379 557		69 -0.1		0.2 113		0.8	Road Soils					··· · · · ·	<u> </u>	
SJ-232 606402 557 SJ-233 606385 557		55 -0.1 64 0.1		0.3 89		4.2	Road Soils							
SJ-234 606335 557		63 0.1		0.2 120		-0.5	Road Soils						1	-
SJ-235 606291 558	013 0.5 4.8	56 0.1	1 4.7	0.2 167	7 0.03	3.9	Road Soils							_
SJ-236 606242 558		57 -0.1		0.2 137		2.7	Road Soils						+	
SJ-237 606193 558 SJ-238 606145 558		53 0.1 54 -0.1		0.3 91	0.07	2	Road Soils						<u> </u>	+
SJ-239 606096 557		54 0.1		0.2 95		2.7	Road Soils			1			1	1
SJ-240 608047 557	9990 0.6 4.3	51 0.1	1 5.6	0.3 81		2	Road Soils						1	_
SJ-241 606015 558		47 0.1		0.2 77		3.8	Road Soils					<u>`</u>	<u> </u>	
SJ-242 606052 558 SJ-243 606044 558		69 0.1 52 -0.1		0.1 91		2.1	Road Soils							+
SJ-243 606044 558		58 -0.1		0.2 149		3.3	Road Soils			+			1	1
						and a second a second make a second				~				

	SAM AREA 200	4 RECON GEOCHEMIC	AL SAMPLE SU	MMARY		1				· · · · · · · · · · · · · · · · · · ·		1	1	1				1
Sample			1					Assay						· · · ·				1.
	Easting Northing Mo.							Au ppb	Rock Type	Note						Sample Typ	Project	Ship No
SJ-245	605979 5580197		-0.1	4.4		0.03				Road Soils				1				<u> </u>
SJ-246 SJ-247	605927 5580179 605881 5580152		51 -0.1 59 0.1			39 0.03 24 0.04	2.9 0.8			Road Soils			1					
SJ-247	605836 5580117		51 0.1	4.1		26 0.03	3.1			Road Soils		· · · · · · · · · · · · · · · · · · ·	1					+
SJ-249	605793 5580083		19 0.1			32 0.05	2.4			Road Soils			1					+
SJ-250	605752 5580051		53 0.1	4.1		0.03	2.1			Road Soils			1	1				1
SJ-251	605720 5580013		53 -0.1	3	0.1	33 0.03	1.6			Road Soils				· · ·		[
SJ-252	605683 5579975		58 0.1	4.6		74 0.03	1.6			Road Soils								
SJ-253	605637 5579954		43 -0.1	5.8		36 0.03	3.6			Road Soils		1	1			ļ		
SJ-254	605603 5579916		47 -0.1 52 0.1	4.2		30 0.02 42 0.03	2.5			Road Soils						i		
SJ-255 SJ-256	605556 5679887 605522 5579911		52 0.1 49 0.1	5.9		11 0.02	7.7		······································	Road Soils Road Soils								
SJ-257	605517 5579963		54 -0.1	2.4		39 0.02	2.2			Road Solls								
SJ-258	605915 5580281		18 0.1	3.1		51 0.02	0.7			Road Soils				· · · ·		· · · ·		
SJ-259	605868 5580276		52 0.1	5.6	0.2 1	95 0.05	3.9		· · · · · · · · · · · · · · · · · · ·	Road Soils			1.1	1.11		· · ·		
SJ-260	605860 5580317		48 -0.1	3.3		74 0.04	2.4			Road Soils					e			
SJ-261	605876 5580368		51 0.2	3.8		70 0.07	5.4			Road Soils								· · · · · ·
SJ-262	605890 5580413		48 0.1 30 0.2	4.2		24 0.05 50 0.04	3.8			Road Soils								
SJ-263 SJ-264	605902 5580468 605941 5580499		70 0.1	5.3 5.5		58 0.04	1.3			Road Soils Road Soils		· · · · · ·						
SJ-265	605970 5560539		30 0.1	2.5		0.04	1.4			Road Solls		+	· ·····	• <u> </u> . •• • • •				
SJ-266	606026 5580566		32 0.1	2.8		34 0.04	1.7			Road Solls			1	1	· .			1
SJ-267	606010 5580620	0.5 3.8 4	49 0.1	4	0.1; 1;	37 0.03	5.2			Road Soils				1				
SJ-268	605992 5580660		70 0.1	4.1		21 0.05	0.5			Road Soils		1	L					1
SJ-269	605949 5580691		75 0.1		0.1	72 0.04	0.5			Road Soils	· · · · ·	· · ·				l : .		+
SJ-270 SJ-271	605906 5580718 605873 5580749		53 0.1 37 -0.1	2.7		83 0.03 89 0.04	1.8 0.5			Road Soils	· · · · · · · · · · · · · · · · · · ·	+					ļ	+
SJ-271	605835 5580784		57 0.1	2.6		11 0.05	-0.5			Road Soils								
SJ-272	605785 5680817		0.1	1.9		57 0.03	0.6		the second s	Road Solis			1					
SJ-274	605767 5580866		59 0.1	4.7		97 0.04	2			Road Soils				1.				
SJ-275	605770 5580915		34 0.1	6		26 0.03	2.5			Road Soils								
SJ-276	605766 5580966		70 0.1	4.5		32 0.02	2.2			Road Soils		1.1						4
SJ-277	605753 5581014		70 0.1	12.5		18 0.04 13 0.04	1.5			Road Soils								
SJ-278 SJ-279	605760 5581067 605747 5581124		53 -0.1 54 0.2	6.3		13 0.04 31 0.03	0.5			Road Soils	· · · · ·		-	<u>d</u>				-
SJ-280	605749 5581174		34 0.2	4.4		31 0.05	0.5		······································	Road Soils		+						1
SJ-281	605734 5581229		75 0.3	24.2		24 0.04	1.1	1		Road Soils		1.	1.					1
SJ-282	605952 5580617		57 0.1	1.9	0.1 1:	25 0.02	0.7		· · · · · · · · · · · · · · · · · · ·	Road Soils								
SJ-283	605903 5580620		75 0.1	1.8		73 0.03	0.6			Road Soils								1
SJ-284	605853 5580591		58 0.1	3.3		97 0.04	1.3			Road Soils								-
SJ-285	605815 5580578		56 0.1 57 0.1	4.7		36 0.04 95 0.04	1.5 -0.5			Road Soils			·					
SJ-286 SJ-287	605759 5580596 605712 5560615		68 0.1	1.9		84 0.03			·	Road Soils								+
SJ-288	605660 5580614		54 -0.1	3.7		65 0.03	0.6			Road Soils			+					
SJ-289	605635 5580662		59 0.1	5.1		30 0.02				Road Soils		1 .						1
SJ-290	605614 5580708		72 0.1	3.1		24 0.03				Road Soils								
SJ-291	605609 5580755	0.4 6.9	75 0.1	2.9		90 0.12				Road Soils						· · .		
SJ-292	605598 5580808		70 0.1	4.7	0.2 1	12 0.04	0.9			Road Soils			1	1				
SJ-293 SJ-294	605571 5580831 605541 5580891		68 0.1 60 0.1	3.9 5.8	0.2 1	32 0.03 55 0.02	1.4			Road Soils			+	-			 · · · .	+
SJ-294 SJ-295	605553 5580948		80 0.1	4.5		00 0.02				Road Soils								+
SJ-296	605538 5580999		61 0.1	5.4		94 0.04				Road Soils		1.1	1					1
SJ-297	605550 5581054		60 0.1	5.2		45 0.06		i		Road Soils			1.1					I
SJ-298	805556 5581106	1 4.7 (69 0.2	6.3		29 0.23				Road Soils				1				
SJ-299	605540 5581154		53 0.1	5.7		45 0.04				Road Soils				-				
SJ-300	605529 5581201		50 0.1	4.3		86 0.04				Road Soils	_ <u></u>		1					+
SJ-301 SJ-302	605574 5581207 605624 5581183		54 0.1 63 0.1	5.7 4.1		90 0.06 07 0.04				Road Soils		·	+	ļ				
SJ-302 SJ-303	605624 5581183		63 0.1 63 0.1	7.8		0/ 0.04				Road Solls		+		+				+
SJ-303	605715 5581142		80 0.1	5.2		16 0.03				Road Soils		·····		÷				1
SJ-305	605487 5581242		54 -0.1	3.6		93 0.05				Road Soils		1	1	1				1
SJ-306	605452 5581281	1.2 6.4 6	63 0.1	3.4	0.2 1	09 0.05	0.8		· · · · · · · · · · · · · · · · · · ·	Road Soils								
SJ-307	605412 5581313		68 0.1	3.7		80 0.05				Road Soils	_							1
SJ-308	605377 5681365		61 0.1	4.4		23 0.05				Road Soils							ļ	
SJ-309	605362 5581407		80 0.1	4.3		95 0.05			· · · · · · · · · · · · · · · · · · ·	Road Soils				<u> </u>			ľ	+
SJ-310 SJ-311	605336 5581450 605311 5581498		63 0.1 70 0.1	3.1 4.9		63 0.05 01 0.05				Road Soils			+	+			2	+
SJ-311 SJ-312	605350 5581503		58 0.2	4.9		03 0.05				Road Solls		+	+	+				+
SJ-312	605403 5581497		57 0.1	5.4		23 0.06			· · · · · · · · · · · · · · · · · · ·	Road Soils		1	1	1				1
SJ-314	605429 5581555		55 0.1	2.6		79 0.03				Road Soils	· · · ·							
SJ-315	605434, 5581610		62 0.1	2.7		72 0.03				Road Soils								1
SJ-316	605437 5581651	0.2 4.1	63 0,1	2.2	0.1	79 0.02	1.3			Road Soils		1		i				1

		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		1.11		- 1	
					 		1.
	Assay Au ppb	Rock Type		Note	 		-
2	Auppo		Road Soils				1
l		<u> </u>	Road Soils				1
2			Road Soils Road Soils				1
)			Road Soils				1
,			Road Soils Road Soils		 		
3			Road Soils				
5			Road Soils Road Soils				+

	1	SAM ARE	A 2004 RECON GEOCHEN	IICAL SAMPL	E SUMMAR	RY								
Sample										Assay			Comple Top C	Design Chie No.
Number			Mo ppm Pb ppm Zn	63 Ag ppn 63 0			Ba ppm 110		Au ppb	Au ppb	Rock Type	Road Soils	Sample Typ P	Project Ship No
SJ-317 SJ-318		55 5581704 76 5581749		58 0			110		7.4			Road Soils		
SJ-310		03 5581743		50 0			71		3			Road Soils		,
SJ-320		35 5581781	0.5 3.6	76 0			125		1.2			Road Soils		
SJ-321		77 5581889	0.9 5.3	471 0		5 0.3	64		5.9			Road Soils	1. 1	
SJ-322		90 5581915	0.6 4.9	66 0			103		1.1			Road Soils		
SJ-323		34 5581947	0.5 5	68 0			105		2.2			Road Soils		
SJ-324		43 5581995	0.6 5.2	69 0			99					Road Soils		
SJ-325	6056	79 5582025	0.8 5.1	60 0	1 6.	5 0.3	90	0.03				Road Soils		
SJ-326	6057	18 5582061	0.6 4.4	40 0			95		3.5			Road Soils		
SJ-327		74 5582042	1.5 6.1	56 0			103		7.1			Road Soils		
SJ-328		35 5581998		44 0			210		5.7			Road Soils		
SJ-329		83 5581973		43 0			94		3.7			Road Soils	· · · · · · · · · · · · · · · · · · ·	
SJ-330		51 5581898		98 0			151		0.6			Road Soils		
SJ-331		98. 5581868		44 0			81		7.5			Road Soils		
SJ-332 SJ-333		50 5581875		44 0 63 0			185		1.3			Road Soils		
SJ-333 SJ-334		98 5581858 44 5581824			2 3.		104		3.1			Road Soils		
SJ-335		63 5581771	0.5 4.8		3 2.9		112		2.1			Road Soils		
SJ-336		51 5581733		47 0			81		2.7			Road Soils		
SJ-337		50 5581667		74 0			80		1.4			Road Soils		
SJ-338		87 5581639		54 0			81		2.7			Road Soils		
SJ-339		41 5581816		46 0	1 3.4	4 0.2	92	2 0.02	2.7			Road Soils		
SJ-340		49 5581552		70 0			70		1.9			Road Soils	<u> </u>	
SJ-341		5581496		92 0			86		10			Road Soils		
SJ-342		268 5581446		72 0			69		5.5			Road Soils		<u> </u>
SJ-343		5581414		57 0			78		1.1			Road Soils		
SJ-344		5581390			1 3.9		56					Road Solis Road Solis		
SJ-345 SJ-346		105 5581392 148 5681415			1 2.						· · · · · · · · · · · · · · · · · · ·	Road Solis		
SJ-346		96 5581444		76 0								Road Soils		
SJ-348		539 5581432		87 0								Road Soils		
SJ-349		56 558139			1 3	1 02			1.8			Road Soils		
SJ-350		65 5581317			1 2	7 0.3			1.7			Road Solls		
SJ-351		531 5581304		62 0	.1 4.1	2 0.2						Road Soils		
SJ-352		517: 558123		47 0								Road Soils		
SJ-353		69 558120		64 0								Road Soils		
SJ-354		440 558115		73 0			61					Road Soils		
SJ-355		12 558112			.1 2.		4					Road Soils		
SJ-356		387 558108		55 0					3.2			Road Soils		
SJ-357 SJ-358		356 558103 325 558099			.1 3.		56					Road Soils		
SJ-358		575 558146			.1 5.	2 0.2						Road Soils		
SJ-360		525 558148			.1 3.							Road Soils		
SJ-361		562 558151			.1 3.							Road Soils		10 A
SJ-362		707 558153			.1 3.							Road Soils		
SJ-363		744: 558156			1 2.							Road Soils		·
SJ-364		747 558161			.1 4.	9 0.2	10;	2 0.02	1.2	2		Road Soils		
SJ-365	606	788 558163	0.5, 4.4	51 0	.2 3.	8 0.3	6	7 0.03				Road Soils		
SJ-366		B15 558169			.1 3.						1	Road Soils		
SJ-367		835 558173			.1 2.							Road Soils		
SJ-368		853 558179			.1 3.							Road Soils		
SJ-369		863 558183			1 2							Road Soils		
SJ-370		877 558188			.2 3.							Road Soils		
SJ-371		898 558192			.1 4.							Road Soils		
SJ-372		927 558196 931 558201			.1 5.						· · · · · · · · · · · · · · · · · · ·	Road Soils		
SJ-373 SJ-374		931 558201 927 558205			.2 3.	4 0.2				-		Road Soils		
SJ-3/4 SJ-375		933 558205			.1 3.							Road Soils		
SJ-375		928 558217			1 3.							Road Soils		
SJ-376		902 558220			.1	7 0.2						Road Soils		
SJ-378		901 558224			.1 5.							Road Solis		
SJ-379		214 558180			.1 3.							Road Soils		
SJ-380		263 558181		84 0		2 0.2						Road Soils		
SJ-381		314 558182	8 0.6 4.8	76 0	.2 4.	2 0.1	13	7 0.02				Road Soils		
SJ-382	606	363 558181	7 1 5.3		.1 10.							Road Soits		
SJ-383		405 558179			.2 4.	1 0.2						Road Solis		
SJ-384		455 558177			.1 3.	.7 0.1					· · · · · · · · · · · · · · · · · · ·	Road Soils		
SJ-385		477 558173			1 2	.9 0.1						Road Soils		
SJ-386		504 558177			.2 2							Road Soils		
SJ-387		547 558173				7 0.3						Road Soils		
SJ-388	006	596: 558172	8 0.4 4.9	100 (.2 3.	./: 0.1	13	0.04	1.0					

SAM AREA 2004 RECON GEOCHEMICAL SAMPLE SUMMARY

		SAM ARE	A 2004 REC	CON GEOC	HEMICAL	SAMPLE	SUMMAR	7					· ·····							······	1	 		· · · · · · · · · · · · · · · · · · ·
Sample			· · · · · · · · · · · · · · · · · · ·	Ī			(Assav						· · · · ·		 			<u>'</u>	<u>+−−−</u> {
Number	Easting	Northing	Mo ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Sb ppm	Ba ppm	Hg ppm	Au ppb	Au ppb	Rock Type	i		Note						Sample Typ	Project	Shin No
SJ-389	606646	5581728	0.6	4.8	97	0.1	6.8	0.2	160	0.02	2.1			Road Soils	2.14							 		
SJ-390	606704	5561732	0.4	6.3	59	0.1	4.9	0.2	105	0.01	1.2			Road Soils								 		
SJ-391	606756	5581729	0.5	5.5	100	0.1	3.6	0.2	131	0.02	1.9			Road Soils						 		 	·	
SJ-392	606805	5581725	0.7	5.9	92	0.1	5.4	0.3	125	0.03	4.7			Road Soils										1
SJ-393	605671	5582078	0.9	5.1	47	0.1	5.6	0.3	70	0.02	20.2			Road Soils						 				
SJ-394	605627	5582096	1.1	5.3	45	0.1	7	0.3	82	0.05	. 7			Road Soils						 				
SJ-395	605582	5582124	0.5	4.8	54	0.1	6.1	0.3	97	0.07	2.6			Road Soils				j						
SJ-396	605545	5582161	0.5	4,5	50	0,1	3.9	0.3	125	0.06	1.5			Road Soils				÷		 	·····			
SJ-397		5582196	0.6	4.9	71	0.1	3.8	0.2	125	0.05	0.5			Road Soils										
SJ-398	605482	5582247	0.5	4.9	44	0:1	5.2	0.4	96	0.09	2.9			Road Soils	1997 B. B.							 		
SJ-399	605461		0.5	5.6	52	0.1	5.2	0.2	85	0.02	0.9			Road Soils			· ·					 		-
SJ-400	605428		0.6	5.6	52	-0.1	6.9	0.2	97	0.09	3.8			Road Soils									-	
SJ-401	605481		0.6	4.9	48	-0.1	5.4	0.2	90	0.07	3			Road Soils			· · · · ·		1.1		·			
SJ-402	605529		0.7	5.1	52	0.1	6.6	0.3	78	0.03	1.7			Road Soils				·			1			
SJ-403	605547		0.4	5.2	68	0.1	4	0.1	47	0.01	11.8			Road Soils										
SJ-404	605524		0.4		50	-0.1	4.6	0.2	70	0.06	2.2			Road Soils			10 A. A.			1.1				
SJ-405	605491		0.7		70	0.1	5.7	0.2	111	0.04	1.2			Road Soils	1					 ·				
SJ-406	605443		0.4	5.3	45	0.1	3.9	0.2	63	0.05	0.9			Road Soils										
SJ-407	605414		0.5		56	. 0.2		0.2	84	0.06	1.4			Road Soils							1.1			
SJ-408	605441		0.5		59	0.1	5.5	0.2	109	0.05	2.2			Road Soils										
SJ-409	605482		0.4	5.1	68				95	0.05	0.8			Road Soils										
SJ-410	605523		0.5		60	0.1	4.5		103	0.03	1.2			Road Soils										
SJ-411	605538		0.5		50	0.1	5.5	0.3	106	0.03	2.5			Road Soils		1								
SJ-412	605515	5582686	0.6	4.8		0.2	4.4	0.2	121	0.04	1.3			Road Soils										(

ACME ANA (ISO	L'IC	AL J	LABC	RA	ror	IES	, LTI).		852	E.	HAS	TIN	igs	ST.		Łou	VER	BC	V6A	1R(5	I	PHON	IE (6	504)	253	-31	58	FAX (604	3	-1716
	9002	ACO	crec	11 C 6	30		,				EO	CHEI	MIC	'AL	AN	ALY	SIS	S CE	RTI	FIC	ATE	1											A A
ŤŤ						<u>A1</u>	mac												<u>- 1</u> Sut						50								
SAMPLE#	Mo ppm	Cu ppm		Zn ppm į		Ni ppm	Co ppm j		<u>.</u>	As ppm pj		Au ppb p							P La % ppm	Cr ppm		Ba ppm	Ti % j	B ppm	۲۹ ۲	Na X		gH W nqqmc	·		S (% pr	la Se m ppm	Sample kg
SI SAM-R1 SAM-R2 STANDARD DS5	.2 .9 .4 13 1 1	3.1 4.4	3.2 .7	11 10 •	.6 <.1	2.1 7.6	.7 1 1.5 1	158 159	.64 .50 1	0.2	2 162 5	7.5 7.8	.5 .3 1	6 <.1 7 .1	.2 1.0	.1 <.1	9 70 2.	04 .01 44 .08		6.0 10.0	.04 1.16	25 . 56 .	002 002	1 3	.29 . .11 .	025 012	.11 .05 <	.5 .02 .1 .03	.3 .4	<.1 < <.1 <	.05 .05 <	1 <.5 1 <.5	1.65 1.40

Sept. 13/04

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C

Data

DATE RECEIVED: AUG 25 2004 DATE REPORT MAILED: .

SAMPLE#	Мо		Pb		-			Mn	Fe	As	U		Th	Sr C	d Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti									
	mqq		ppm							ppm				ppm ppi				× .	•					% pp		- · ·					· · · ·		•
SI SAM-R3 SAM-R4 SAM-R5 SAM-R6	1.8 21.1 1.4	1.4 5.0 12.4 5.6 4.0	5.1 9.1 1.2	15 18 3	.2 .3 .5	1.8	1.4 1.8 .4	210 40 42	.87 1.68 .44	33.4 76.5 3.0	.6 .3 .1	16.1	.5 .8 .2	11 . 25 <. 4 <.	l.7 l.8 l.2	.3 .1 .1	12 14 2	.36 . .11 . .02 .	044 060 002	10 17 3	9.0 8.1 18.2	.10 .02 .01	30 50. 16.	006 003 001 <	1 .38 1 .49 1 .15	037 077 005	.08 .20 .09	.1 .0 .1 .0 2.1 .0	071. 032. 04.	3 <. 5 <. 3 <.	1<.05 1 .45 1<.05	2 < 1 <	.5 .5 .5
SAM-R7 SAM-R8 SAM-R9 SAM-R9F SAM-R9H	2.3 4.3 3.5	8.9 15.5 24.3	.5 1.2 3.1	4 9 : 34	1.6 21.0 5.6	4.1 11.6 25.6	1.7 4.1 4.6	87 43 150	.79 1.97 3.85	6.8 196.2 164.8	<.1 .2 .3	1284.8 4397.6 29800.2 5639.1 8853.2	<.1 .1 .6	6 < 7 < 18 <	l.1 l.6 l.4	<.1 <.1 <.1	5 14 44	.13 . .10 . .32 .	007 029 079	1 2 7	17.7 14.7 50.4	.10 .10 .85	12 . 14 . 47 .	005 < 002 001 <	1 .36 1 .40 1 1.66	5.004 .005 5.010	.08 .09 .19	.1<.(1.0.(1.1.>	01. 09. 12.3.	7 <. 9 <. 2 .	1<.05 1<.05 2.07	1 5	.5 .6 .7
SAM-R10 SAM-R11 SAM-R12 SAM-R13 SAM-R14	2.7 3.3 5.2	28.2 33.5	.9 1.3 2.2	7 13 16	14.5 31.1 35.1	4.9 11.8 14.9	1.6 2.1 2.4	40 42 36	1.18 1.65 2.39	116.6 121.5 182.5	.1 .1 .2	14929.7 19184.8 43118.2 55745.9 36896.1	.1 .2 .2	7 <. 8 <. 11 <.	1.6 1.6 1.8	<.1 <.1 <.1	10 16 19	.08 . .24 . .21 .	018 022 040	1 1 2	15.6 16.8 16.3	.08 .17 .16	13 . 14 . 22 .	001 < 001 001 001 001	2.34 1.73 1.80	.006 .006 .008	.10 .13 .15	1.0 .0 <.1 . .7 .	06. 101. 161.	7 . 5 . 4 .	1<.05 1<.05 1<.05	1 1 < 1	.7 .5 .6
SAM-R14F SAM-R15 SAM-R16 SAM-R17 RE SAM-R17	5.7 7.1 3.1	11.3 7.6	4.6 4.0 3.0	22 9 32	.5 .4 .5	2.7 3.1 12.6	1.9 .7 6.9	223 42 347	1.25 .71 2.05	47.5 23.9 45.0	.1 .1 .2	1244.6 187.0 211.0 71.0 65.7	.5 .3 .2	7 . 4 . 10 <	L.3 L.3 L.3	.1 <.1 <.1	8 _6 33	.12 . .04 . .17 .	034 013 049	7 4 7	8.0 14.9 23.1	.05 .03 .47	20 . 17 . 23 .	004 002	2.30 2.24 1.88	.018 .007 .028	.12 .13 .07	<.1 .(1.2 .(<.1 .(02 1. 01 . 02 1.	0 <.1 6 <.1 8 <.1	l<.05 l<.05 l<.05	1 < 1 < 4	.5 .5 .9
SAM-R18 SAM-R19 SAM-R20 SAM-R21 SAM-R22	3.8 .9 .8	15.2 8.3 17.9 27.0 17.3	3.5 1.0 1.8	11 10 32	.6 .3 .2	3.2 3.2	1.8 2.9 8.5	148 102 212	.86 .69 2.44	15.1 4.0 6.9	.1 .1 .2	341.0 75.0 872.4 427.0 480.0	.4 .2 .7	9 <.: 10 <.: 18 .:	L.6 L.4 L.3	<.1 .2 .4	11 11 27	.05 . .31 . .44 .	019 044 081	6 3 9	15.0 14.1 11.1 10.4 10.4	.10 .05 .26	22 . 5 . 18 .	002 004 018	2 .29 2 .49 2 1.07	.009 .014	.10 .11 .30	<pre>.1 .1</pre> .1 .01.1.1	06 . D1 1. D2 2.	9 <.1 1 <.1 01	l<.05 l<.05 l<.05	2 < 1 < 1 < 3 1 <	.5 .5 .6
SAM-R23 SAM-R24 SAM-R25 SAM-R26 SAM-R27	.8 1.1 .5	19.3 20.2 25.5 49.3 4.0	1.2 1.5 1.9	13 19 34	.2 .2 .3	6.0 8.8	3.7 6.3 9.8	199 201 305	1.03 1.30 2.39	5.3 6.4	.1 .3 .4	289.9 360.1 341.0 357.6 228.9	.4 .6 1.2	14 18 <	L.5 L.4 L.2	.1 .2 .1	23 47 121	.43. .64.	034 065 088	5 8 9		.11 .23 .70	13 . 18 . 23 .	009 015 049	3 .92 2 1.19 2 1.87	028 044 060	.15 .21 .44	.9.0 .1.0.1.2.4.0	01 1. 01 2. 01 4.	7 .1 2 .1 7 .2	L<.05 L<.05 2<.05		.5 .5 .5
SAM-R28 SAM-R29 SAM-R30 SAM-R31 SAM-R32	2.0 1.0 1.3	28.4 3.7 4.7 3.7 29.3	1.4 1.0 2.2	5 4 6	.3 .3 .3	1.1 2.3 1.8	.5 .6 .7	51 48 63	.52 .39 .45	2.9 4.2	.1 .1 .1	703.7 207.1	.5 .3 .3	4 < 6 <	l.1 l.2 l.1	<.1 <.1 .2	3 2 2	.03 . .04 . .03 .	004 003 004	7 3 6	9.4 16.8 12.1	.02 .03 .03	21 . 14 . 22 .	001 002 002	2.24 2.16 3.22	.011 .005 .005	.11 .07 .10	<.1 .(1.3 .(<.1 .()5.)3)3	5 <.1 4 <.1 4 <.1	L<.05 L<.05 L<.05	1 <. <1 <. <1 <.	.5 .5 .5
	12 1	142.5	25.4	138	.3	25.9	11.6	764	3.03	17.9	6.4	42.0	2.6	46 5.	5 3.6	5.9	60	.74 .	090	12 1	.94.4	.64	135 .	095 1	B 2.01	.033	.15	5.1.1	L7 3.	3 1 4)- <u>.05</u>	6.4.	8

	_
ÆÆ	
ACME ANALYTICAL	

	ICAL																																	ALME AN	ALTICAL	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U		Th		Cd			٧	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	ĸ	W	Hg	Sc	τl	S	Ga Se	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ррп	ppm	. %	ppm	%	ppm	%	%	%	ppm p	pm	ppm	ppm	%р	pm ppm	
SAM-R33	.6	16.7	3.4	63	.9	37.9	22.0	644	4.74	320.6	.5	169.9	.7	21	.1	2.1	.1	89	1.08	. 154	8	70.9	1.81	11	.427	3	2.06	.022	.11	.9.	07 9	9.9	.1 .	46	10 1.5	
SAM-R34	1.1	4.9	1.7	7	.4	3.2	.9	116	.54	5.5	.1	408.0	.2	5	<.1	.2	<.1	7	.04	.005	4	18.1	.05	28	.006	2	.27	.005	.14	1.7 .	01	.4	<.1<.	05	1 <.5	
SAM-R35	12.1	9.9	3.2	40	.2	5.3	2.8	226	1.41	33.4	.2	9.8	.6	6	<.1	.5	<.1	17	.09	.043	11	13.1	.26	33	.005	1	.69	.007	.18	<.1 .	01 1	1.0	.1<.	05	2.5	
SAM-R36	10.0	8.1	7.2	15	.3	3.0	1.3	106	1.09	40.4	.2	23.0	.6	11	<.1	.4	.2	11	.06	.030	12	9.5	.07	44	.001	3	.42	.021	.21	.8.	02	.7	.1<.	05	1 <.5	
STANDARD	12.2	142.0	25.7	137	.3	25.4	11.6	735	2.98	17.4	6.4	45.7	2.6	49	5.3	3.3	5.9	62	.75	.095	13	189.5	.65	135	.094	19	1.99	.032	.15	4.8 .	19 3	3.3 '	1.1<.	05	74.8	
											1.1																			· .						

Standard is STANDARD DS5.

											B									
											-									

ASSAY CERTIFICATE

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

Almaden Minerals Ltd. PROJECT SAM04-2 File # A406176R 1103 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: Ed Balon

SAMPLE#	S.Wt NAu -Au DupAu TotAu gm mg gm/mt gm/mt gm/mt
SI SAM-R9 SAM-R9F SAM-R9H SAM-R10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
SAM-R11 SAM-R12 SAM-R13 SAM-R14 SAM-R14F	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
STANDARD AU-1	<1 <.01 3.39 - 3.39

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: ROCK REJ.

Data

DATE RECEIVED: NOV 8 2004 DATE REPORT MAILED: Der 2/04

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9002 Acer	Af n <u>Minerals Ltd.</u> 1103 - 750 W. Pender St		<u>M04-2</u> F			6R	£ f
	SAMPLE#	S.Wt NA gm m	g -Ag ig gm/mt	DupAg gm/mt	TotAg gm/mt		
	SI SAM-R9 SAM-R9F SAM-R9H SAM-R10	<pre> <1 <.0 539 .3 544 .2 553 <.0 561 .3</pre>	$\begin{array}{ccc} 4 & 21 \\ 0 & 6 \\ 6 & 6 \end{array}$		<2 22 7 6 13		
	SAM-R11 SAM-R12 SAM-R13 SAM-R14	523 .5 533 <.0 578 .5 542 .1 554 .0	6 30 3 35 8 27	- - - 4	15 30 36 27		

er 2/04

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: ROCK REJ.

Data___ FA ____

DATE RECEIVED: NOV 8 2004 DATE REPORT MAILED:

) <u> </u>	02	Acc	red	ite	ed (20.)														V6A IFIC					•				Fai			₿-17 ለ	A
							<u>A1</u>	mac											<u>SA</u> SC V6C			Fi ubmitte	le ; d by:				,							Ť	Ű.
SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb I ppm pj	Bi om pp	VCa m%	P %	La ppm	Cr ppm	Mg B % ppr		ʻiB %rppmr	A1 لا	Na %	K % [Hg So pm ppn		S %	Ga Se ppm ppm	Samp1e gr	
G-1		1.1	2.6	2.2	40	<.1	3.7	3.6	477	1.66	.5	2.1	<.5	4.3	61	<.1	<.1	.1 3	6.49	.082	6	11.7	.49 16	3.10	6 1	.76	.070	.34	1.2<.	01 1.7	7.3<	<.05	4 <.5	30)
AC34-1			26.6		40	• -		11.4			5.6		18.1	.8	96	.1	.4	1 7		.042		35.3	.83 64			1.91		.04			4 <.1<				
AC35-1		• •	34.9	5.3	56		00.0	13.3		2100	6.6		3.2		200	.2	.3		21.62		10	42.0 1				2.55		.05			4 <.1<		/ -	30	
AC35-2 AC38-1		••	50.9 48.1	5.0	57 55			13.3 13.4			7.4		2.3	.9	158	.2	.3		9 1.67 3 1:91			41.2 1			-	2.87	.043				9 <.1< 0 <.1			30	
HC30-1		.0	40.1	.0.0	55	. 2	30.0	10.4	501	2.01	5.5	1.1	3.1	.9	109	.2		1 0	5 1.91	.007	14	41.2 1		1.10	9 5	2.0/	.045	.07		10 0.1) <.1	.00	8 1.6	30	,
AC38-2		.4	40.0	5.5	52	.2	32.0	12.6	557	2.79	4.3	.8	28.0	.9	179	.2	.3 <	1 7	9 1.69	.082	13	37.8 1	.07 15	9.16	7.4	2.55	.041	.07	.1	09 7.6	0 <.1<	. 05	7 1.0	30)
AC38-3		.3	38.8	5.1	51	.2	39.1	15.2	805	3.02	5.4	1.1	3.3	1.1	203	.1	.2 <	1 9	1 1.77	.073	15	42.6 1	.18 11	3.20	3 3	2.91	.050	.07			2 <.1<			30	
AC38-4		.4	46.9	5.3	50	.3	29.2	11.7	583	2.49	4.2	.9	2.4	.4	173	.2	.4 <	1 6	9 2.07	. 099	15	32.3 1	.02 22	.11	2 4	2.37	.041	.06	.1 .:	12 5.9	€ <.1	.10	6 1.3	30	J .
AC41-2		.4	48.1	5.0	55	.3		12.1	771	2.72	8.6	1.5	1.8		125	.1	.3	1 8	7 1.82	.093	15	33.9	.94 10			3.26	.041	.07	.1 .	10 8.8	8 <.1<	.05	9.5	15	
STANDARD D	S5 1	2.5	145.6	25.3	140	.3	25.9	12.7	792	2.93	17.7	6.1	45.1	2.9	45	5.4	3.5 6.	06	3.76	.092	12	187.8	.69 130	5.10	3 18	1.98	.034	.14 9	5.1 .:	17 3.¢	5 1.1<	.05	7 5.0	30	1

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: S.SED.SS80

FA Data

									110	3 •	750						<u>FS</u> ouver					mitte				on		Pag									٤
AMPLE#	Mo ppm		Pb ppm		-	Ni ppm			Fe %	As ppm							b Bi nippmi		Ca %		La ppm	Cr ppm					A1 %		K X						Ga Se prapro	eSamplo 1 gr	
i-1 B-1 B-2 B-3 B-4	3.5 .7 .9	2.7 36.6 16.8 55.7 82.3	7.4 12.0 10.1	38 41 42	.82 .31 .71	1.4 1.3 5.5	9.9 2.3 14.5	286 346 440	5.53 3.43 5.26	221.8 104.5 648.6	.9 .2 .6	527 175 469	61. 7. 01.	19 56 38	3 <.1 1 <.1 0 .1	l 1.4 l 1.4 l 2.3	5 <.1 4 <.1 3 <.1	63 20 40	.64 .63 .73	.125 .069 .149	16 8 16	23.4 15.4 20.3	.74 .91 .95	151 36 40	.068 .001 .001	<1 1 1	1.38 1.98 2.13	.022 .008 .011	.11 .09 .09	.1 <.1 .1	.07 .12 .23	6.2 3.3 6.8	<.1 . <.1 .	.14 .14 .13	5 .7 5 <.8	30 19 30) 5)
B-5 J-1 J-2 J-3 J-4	.4 .6 .5	46.1 24.3 41.1 28.9 28.1	4.6 4.7 5.1	48 59 54	.1 2 1 4 .1 3	7.0 3.7 5.6	10.8 17.2 11.6	471 876 494	3.01 3.53 3.30	4.6 9.1 5.7	.6 .7 .7	1 4 3	4 1. 6 1. 1 1.	2 13 6 16 3 16	6 .1 7 .1 1 .1	L .: L .: L .:	3.1 3.1 4.1	104 98 101	1.02 1.44 .95	.065 .093 .072	11 14 11	22.4 34.2 39.0 40.0 40.3	.84 1.21 .93	79 74 108	.283 .259 .279	1 2 <1	2.31 2.99 2.76	.034 .052 .035	.06 .07 .07	.1 .1 .1	.02 .03 .03	5.9 8.7 6.5	<.1<. <.1<. <.1<.	.05 .05 .05	6 <.5 9 <.5 8 <.5	30 15 30) 5)
J-5 J-6 J-7 E SJ-7 J-8	.4 .8 .7	20.5 20.0 21.5 21.5 39.2	5.1 6.0 5.8	55 49 45	.1 2 .1 3 .1 3	9.6 5.3 6.8	10.4 11.3 11.3	412 304 301	2.86 3.34 3.07	4.1 8.3 7.3	.6 .5 .5	1 3 4	51. 11. 01.	2 10 1 11 1 10	7.1 2.1 5.1	L .: L .: L .:	$\begin{array}{ccc} 3 & .1 \\ 2 & .1 \\ 3 & .1 \end{array}$	92 80 80	.92 .65 .57	.053 .070 .068	9 7 7	31.5 35.0 34.9 34.0 43.1	.76 .77 .73	90 120 118	.239 .162 .149	1 1 1	2.30 3.24 3.09	.035 .030 .028	.05 .04 .04	.1 <.1 <.1 .	.02 .05 .04	5.6 4.4 4.2	<.1< <.1< <.1<	.05 .05 .05	7 <.5 7 <.5 9 <.5 9 <.5 8 <.5	30 19 19) 5 5
,J-9 ,J-10 ,J-11 ,J-12 ,J-13	.4 .7 1.2	25.2 19.4 59.1 36.4 25.5	4.7 4.7 4.7	55 56 51	.1 2 .6 3 .4 3	5.1 4.7 6.6	10.4 12.1 18.9	227 869 737	2.75 2.87 3.75	7.2 50.5 45.3	.3 1.5 .6	< 37 187	5. 9. 31.	3 4 5 16 2 16	3.1 5.2 9.1	L .4 2 .1 1 1.3	4 .1 7 .1 3 .1	64 63 77	.69 1.24 1.30	.087 .113 .095	4 24 15	34.4	.80 .81 1.22	84 99 141	.011 .039 .083	<1 <1 <1	2.35 3.11 2.83	.009 .044 .040	.06 .06 .08	<.1 <.1 .1	.03 .18 .10	2.8 8.7 8.0	<.1<. <.1<. .1<.	.05 .05 .05		19 19 19	5.
5J-14 5J-15 5J-16 5J-17 5J-18	.4 .3 .6	25.0 36.7 33.3 29.7 37.2	4.8 4.8 5.7	56 49 59	.1 4 4 .1 3 .1 4	4.5 9.3 2.9	16.0 16.0 14.1	551 790 552	3.68 3.54 3.58	32.3 28.9 29.0	.6 .7 .6	12 20 19	51. 31. 91.	2 18 4 27 4 20	7.1 7.1	L. L. L.	5.5 5<.1 7.1	94 96 89	1.08 1.11 .97	.131 .070 .112	11 16 13	37.5	1.36 1.29 1.17	150 165 146	.103 .186 .148	<1 <1 <1	3.79 3.70 3.30	.038 .048 .037	.08 .06 .07	.1 .1 .1	.11 .12 .15	6.6 8.2 7.2	.>1. .>1. .>1.>	.05 .05 .05		19	5
5J-19 5J-20 5J-21 5J-22 5J-23	.4 .4 .9	18.7 36.6 39.1 27.2 31.6	4.2 4.8 5.3	57 59 55	<.1 5 <.1 5 .1 3	3.2 0.2 7.1	17.8 16.8 12.3	672 570 392	3.81 3.70 3.08	10.5 13.2 8.3	.9 .7 .5	3 5 <	11. 91. 51.	533 824 47	5.1 2.1 3.1	L .: L .:	3 <.1 4 .1 3 .1	91 91 75	1.22 .99 .43	.057 .097 .115	14 14 6	25.4 39.2 42.3 33.3 37.7	1.55 1.41 .91	170 174 67	.243 .193 .132	<1 1 1	4.41 4.32 3.71	.042 .035 .015	.09 .07 .06	<.1 .1 .1	.08 1 .10 .07	1.0 9.6 4.7	<.1< <.1< <.1<	.05 .05 .05	10 <.5 9 <.5 9 <.5	19 19 30	5 5)
5J-24 5J-25 5J-26 5J-27 5J-28	.4 .5 .8	26.5 14.9 42.4 24.9 34.4	6.8 5.0 7.1	39 53 66	.2 1 .1 5 .1 4	3.9 1.9 1.4	5.5 16.7 13.1	143 670 627	2.00 3.68 3.08	4.8 16.1 6.3	.4 .9 .5	13 3	51. 61. 41.	0 2 9 18 4 13	3.1 1.1	l . L . L .	1 .1 4 <.1 2 .1	49 114 76	.20 .75 .46	.103 .113 .119	6 15 7	21.5	.32 1.41 1.00	65 161 127	.084 .216 .189	<1 <1 1	2.56 5.03 3.98	.016 .028 .024	.03 .10 .08	<.1 .1 .1	.03 .13 .05	3.5 7.8 4.5	<.1<. <.1<. .1<.	05 05 05	9 <.5 10 <.5 10 <.5	30 30 30))
STANDARD DS5	12.4	139.3	25.5	136	.3 2	6.1	10.7	831	3.04	18.0	6.7	42	.1 2.	6 4	9 5.4	1 3.	3 6.4	63	.73	.091	12	191.4	. 69	133	. 093	19	2.10	.032	.13	5.2	. 16	3.2	1.1<.	05	6 6 1 5 1 7	30)
GROUP 1DX (>) CONCEN - SAMPLE T	TRATI	ON EX	CEEDS	S UPF	ER L	IMI	s.	SOM	E MIN	ERALS	S MAY	Y BE	PART	IAL	LY A'	TTAC	C F KED. are 1	RE	FRACI	ORY	AND	TED T GRAPH	0 60 ITIC	O ML SAM	, AN/ PLES	ALYS CAN	ED BY LIMI	ICP	-MS. SOL	UBIL	.179	8	NB1		11	1	

	ANALYTI																															· · · · ·						ACME ANALYI	
	Sampl	E#		Mo ppm		Pb ppm				Cc ppr			As ppm									Ca %	Р % р		Cr ppm		Bà ppm		B	A1 %			W Hg				Ga Se pm ppm	Sample gm	
	SJ-29 SJ-30 SJ-31 SJ-32 SJ-33			.9 .7 .6	31.0 34.8 41.2	5.0 6.1 4.1	69 56 60	.1 .1 .1	42.2 47.9 46.8	14.4 15.1 13.7	346 616 443	2.91 3.62 3.51 3.67	5.2 7.3 8.7 12.2	.4 .6 .7 .9	3.0 6.0 2.9 15.6	1.0 1.7 1.7 1.8	45 105 404 156	.1 .1 .2 .1	.2 .2 .2 .3	.1 6 .1 7 .1 8 .1 8	i3 . 13 . 11 .	40 . 97 . 74 .	203 169 126 108	5 7 10 12	34.2 35.3 44.4	1.16 1.37 1.33	107 110 120	.181 .227 .148	2 4 3 4 4 4	1.63 1.73 1.30	.015 .013 .052 .027	.08 .11 .09 .08	.1 .06 .1 .05 .1 .12 .1 .06	3.2 5.0 8.0 7.8	<.1 <.1< <.1< <.1<	.05 .05 .05	10 .5 11 .5 11 <.5 11 .6 13 <.5	30 30 30 30 30 30	
	SJ-34 SJ-35 SJ-36 SJ-37 SJ-38			.9 .8 .8	29.6 47.9 41.5	5.1 6.7 4.7	60 62 56	.1 .1 .1	32.0 49.2 42.4	11.1 17.3 16.3	318 514 832	3.09 4.09 3.76	6.8 10.2 8.2	.7 .8 .7	2.6 2.6 3.9	1.8 1.9 1.4	74 219 197	.1 .2 .1	.3 .3 .6 <	.1 7 .1 9 .1 10	0. 7. 11.	26 . 76 . 74 .	088 093 103	9 12 15	31.8 46.7 41.3	1.00 1.49 1.28	89 121 94	.152 .218 .271	1 4 2 4 3 2	.17 .92 .97	.013 .029 .061	.06 .08 .13	.1 .07	5.8 6.8 8.4	.1< <.1< <.1<	.05 .05 .05	13 <.5 9 .6 12 .5 8 <.5 8 <.5	30 30 30 30 30	
	SJ-39 SJ-40 SJ-41 SJ-42 SJ-43			.5 .6 .5	31.4 38.5	5.0 5.4 4.9	56 63 53	.1 .1 .1	36.2 40.7 43.2	12.5 13.6 14.4	327 359 443	3.49 3.54 3.85	6.8 5.7 7 <i>.</i> 6	.5 .5 .6	2.6 3.7 2.7	1.2 1.6 1.5	99 96 133	.1 .1 <.1	.3 .2 .3	.1 8 .1 8 .1 10	9. 9. 1.	54 . 49 . 66 .	070 100 066	8 9 11	46.5 56.6	.91 1.06 1.20	127 134 144	.180 .184 .201	<13 24 24	.45 .02 .30	.020 .021 .022	.06 .08 < .09 <	.1 .11 .1 .04 .1 .03 .1 .04 .1 .04	4.9 5.7 6.8	<.l< .l< .l<	.05 .05 .05	9 .5 8 <.5 9 .5 9 <.5 9 <.5	30 30 30 30 15	
	RE SJ SJ-44 SJ-45 SJ-46 SJ-47			.5 .4 .5	30.3	4.9 4.4 4.8	54 63 55	.1 .2 .1	39.8 59.4 38.9	13.7 17.9 13.5	511 697 456	3.44 3.56 3.50		1.0 .8 .6	1.9 2.5 1.8	1.3 1.4 1.5	119 254 164	.1 .1 .1	.2 .1 .2	.1 10 .1 8 .1 8	1 . 71. 2 .	98 . 18 . 74 .	072 086 099	15 10 11	46.8 46.8 42.8	1.10 1.81 1.14	119 155 123	.177 .218 .181	23	.72	.037 .047 .031	.05 < .14 < .08	.1 .03 .1 .02 .1 .05 .1 .04 .1 .03	5.8 8.1 6.5	<.1< <.1< <.1<	.05 .05 .05	9 <.5 8 .6 11 <.5 9 <.5 8 <.5	15 30 30 30 30	
	SJ-48 SJ-49 SJ-50 SJ-51 SJ-52			.6 .6 .6	32.1 35.9 45.7	5.7 4.7 4.6	57 51 55	.1 .1 <.1	38.3 43.1 57.8	13.8 14.8 18.0	490 733 931	3.40 3.91 4.23	5.8 4.6	.6 .7 .7	<.5 6.2 1.5	1.2 1.5 1.4	126 201 215	.1 .1 .1	.2 .3 < .2 <	.1 8 .1 11 .1 10	1 . 2 1. 2 1.	65 .0 08 .0 43 .0	084 086 092	11 15 15	42.6 53.8 55.7	1.09 1.22 1.68	123 119 99	.154 .247 .208	<1 4 2 3 1 3	.29 .20 .14	.025 .055 .074	.07 < .10 < .08 <	.1 .03 .1 .04 .1 .04 .1 .05 .1 .03	5.5 8.8 9.4	.1<. <.1<. <.1<.	.05 .05 .05	11 <.5 8 <.5 9 <.5	15 30 30 15 15	
	SJ-53 SJ-54 SJ-55 SJ-56 SJ-57			.3 .2 .6	24.0 42.5	4.3 6.1 5.2	49 61 59	.1 .1 <.1	32.2 28.0 39.5	10.0 9.5 17.3	324 330 833	2.78 2.75 4.05	4.0 6.8	.5 .8 .6	.9 <.5 3.5	1.3 1.6 1.6	97 71 205	.1 .1 .2	.2 .2 .4	.1 7 .1 8 .1 11	4 4 21.	78 .(63 .(62 .	030 016 103	9 9 16	39.1 46.6	.94 85. 1.26	90 68 93	.177 .143 .285	1 2 1 2 1 3	.67 .81 .04	.035 .034 .059	.05 < .03 < .10 <	.1 .04 .1 .03 .1 .03 .1 .04 .1 .04	5.4 5.8 7.9	.1< <.1< <.1<	.05 .05 .05	7 <.5 8 <.5	30 30 30 15 30	
	SJ-58 SJ-59 SJ-60 SJ-61 STAND		\$5	.4 .5 .6	31.1 27.4 41.7	5.4 4.8 4.1	64 55 53	.1 .1 .2	34.4 46.6 44.2	11.6 12.7 14.7	417 371 446	3.13 3.31 3.65	4.2 8.4	.5 .5 .7	<.5 2.3 1.0	1.3 1.2 1.8	112 160 156	.1 .1 .1	.3 .3 .3 <	.1 8 .1 8 .1 9	6. 6.	79 .(90 .(87 .	060 041 165	10 8 13	44.2 46.7 50.7	.97 1.21 1.17	92 134 115	.196 .213 .161	23 23 14	.18 .24 .88	.032 .037 .031	06 < 07 < 11	.1 .02 .1 .05 .1 .03 .1 .06 .9 .18	6.0 5.6 6.9	.1<. <.1<. <.1<.	.05 .05 .05	9 <.5 8 <.5 11 <.5	30 30 30 15 30	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA

ACME ANALYTICAL SAMPLE# Cu Pb Zn Ag Ni Fe As U Au Th Sr Cd Sb Bi V P La Mo Co Mn Ca Cr Mg Ba Ti B Al S Ga Se Sample Na K W Hoj Sc Ti mag mag mag mag mag mag mag % ppm ppm ppb ppm ppm ppm ppm ppm ppm * % ppm ppm ppm % ppm % ppm 2 * * ppm ppm ppm ppm % ppm ppm qm SJ-62 .6 27.4 5.6 57 <.1 31.8 10.7 343 3.18 4.6 .6 3.1 1.4 135 .1 .4 .1 92 .94 .050 9 41.0 .92 109 .212 1 2.09 .034 .06 <.1 .03 6.6 .1 <.05 7 <.5 30.0 SJ-63 .6 39.6 5.0 55 <.1 44.2 14.5 520 3.57 5.5 .8 3.6 1.7 148 .1 .3 .1 99 1.41 .078 14 48.3 1.30 125 .245 1 3.30 .032 .10 <.1 .06 9.1 <.1 <.05 10 <.5 15.0 SJ-64 .6 52.9 5.2 66 <.1 53.2 19.5 755 3.89 4.3 .6 4.3 1.6 167 .1 .2 .1 101 2.25 .095 13 42.7 1.60 100 .223 1 3.94 .047 .08 <.1 .11 9.7 <.1 <.05 12 <.5 15.0 SJ-65 .8 31.7 5.5 55 .1 36.1 13.2 465 3.13 5.6 .6 2.9 1.4 107 .1 .3 .1 76 .91 .165 9 36.6 .96 108 .181 2 3.42 .028 .07 .1 .06 6.2 < 1 < .05 10 < .5 30.0 SJ-66 .6 26.4 5.9 56 .1 29.7 11.8 601 2.50 4.2 .6 .7 1.0 84 .1 .2 .1 69 .72 .102 7 34.8 .85 107 .135 1 2.59 .021 .07 .1 .03 5.1 < .1 < .05 8 .5 7.5 SJ-67 1.2 22.5 5.9 76 .1 35.7 12.2 248 2.91 6.3 .5 3.2 1.5 30 .1 .2 .1 69 .29 .200 5 36.0 .51 103 .122 1 3.36 .018 .06 .1 .03 4.2 .1 < .05 9 < .5 30.0 .7 36.8 5.1 59 <.1 44.8 13.9 523 3.41 5.6 .7 1.5 1.8 156 .1 .3 .1 92 1.19 .104 12 46.3 1.18 208 .193 2 3.24 .039 .10 <.1 .04 7.5 <.1 <.05 8 <.5 SJ-68 15.0 SJ-69 .4 31.8 4.9 49 <.1 36.2 11.1 376 3.15 5.0 .7 2.8 1.7 153 .1 .3 .1 89 1.42 .084 12 45.3 1.09 117 .280 1 2.72 .048 .08 <.1 .03 8.6 <.1 <.05 8 <.5 15.0 .3 17.7 5.2 50 .1 23.1 7.1 205 2.16 1.8 .4 1.4 1.0 47 .1 .2 .1 57 .49 .024 7 31.2 .64 67 .138 2 1.92 .020 .05 < .1 .01 4.9 < .1 < .05 6 < .5 SJ-70 30.0 SJ-71 1.1 32.8 5.6 57 <.1 36.8 12.3 390 3.48 6.0 .7 6.4 1.8 115 .1 .4 .1 96 .99 .059 14 43.2 1.12 135 .235 2 2.57 .028 .08 <.1 .01 7.3 <.1 <.05 7 <.5 30.0 SJ-72 .7 38.2 5.1 53 .1 37.4 13.9 517 3.14 5.6 .7 6.9 1.3 125 .1 .4 .1 81 .95 .083 11 39.9 1.03 100 .162 2 2.57 .033 .07 .1 .05 7.8 < 1 < .05 7 < 5 15.0 SJ-73 .7 39.6 4.9 58 <.1 43.9 15.4 536 3.67 6.7 .7 6.1 1.7 158 .1 .4 .1 98 1.16 .082 14 49.3 1.20 133 .217 <1 3.13 .034 .08 .1 .04 8.8 <.1 <.05 9 <.5 15.0 SJ-74 .6 48.1 4.8 59 <.1 49.1 19.3 720 3.84 6.7 .7 6.5 1.7 212 .1 .3 .1 102 1.71 .101 14 47.3 1.47 98 .277 1 3.35 .055 .11 .1 .05 9.1 <.1 <.05 10 <.5 30.0 SJ-75 .7 38.7 5.0 60 .1 42.9 14.4 460 3.61 4.8 .7 11.7 1.7 192 .1 .3 .1 90 .95 .060 13 47.9 1.13 143 .195 1 3.57 .034 .09 <.1 .03 9.4 .1 <.05 9 <.5 30.0 SJ-76 .6 44.4 4.8 56 .1 36.0 12.0 386 3.12 4.9 .7 2.3 1.6 101 .1 .3 .1 86 .84 .043 9 42.1 1.08 77 .187 1 2.78 .024 .06 < 1 .02 7.2 .1 < .05 8 < .5 30.0 SJ-77 .5 40.9 4.9 58 .1 45.1 16.4 526 3.42 6.1 .7 2.8 1.6 170 .1 .2 .1 96 1.24 .081 11 41.4 1.45 89 .250 1 3.80 .035 .10 <.1 .03 8.8 <.1 <.05 10 <.5 30.0 SJ-78 .7 36.2 4.8 55 .1 35.7 15.1 582 3.38 5.6 .7 2.5 1.4 147 .1 .3 .1 94 1.44 .089 13 38.1 1.21 86 .235 2 2.73 .049 .08 .1 .02 7.9 <.1 <.05 9 .5 30.0 SJ-79 .5 37.9 4.8 54 <.1 38.5 17.0 742 3.47 4.9 .6 3.8 1.6 141 .1 .2 .1 90 1.62 .108 14 38.4 1.25 79 :236 <1 2.81 .047 .08 .1 .02 7.3 <.1 <.05 9 <.5 15.0 SJ-80 .4 35.6 3.8 51 < .1 35.7 16.3 670 2.91 3.8 .5 2.3 1.2 145 .1 .2 < .1 65 1.50 .094 11 30.1 1.23 62 .135 1 2.39 .044 .06 .1 .02 6.3 < .1 < .05 8 < .5 15.0 SJ-81 .6 26.9 4.8 68 .1 34.8 12.8 382 3.21 4.5 .5 3.2 1.5 70 .1 .2 .1 79 .62 .127 8 41.2 .81 107 .208 2 2.81 .023 .09 .1 .02 6.0 < 1 < .05 8 < .5 15.0 RE SJ-81 .5 26.9 4.8 66 .1 34.0 12.5 366 3.12 4.5 .6 .8 1.4 71 .1 .2 .1 78 .63 .124 8 39.6 .78 107 .208 2 2.78 .022 .08 .1 .02 6.0 < .1 < .05 8 < .5 15.0 SJ-82 .5 45.8 4.7 51 <.1 42.8 16.7 1216 3.49 5.7 1.0 4.1 1.8 164 .1 .3 .1 90 1.86 .080 13 44.9 1.17 117 .256 1 3.74 .058 .08 .1 .04 10.1 <.1 <.05 10 <.5 7.5 SJ-83 .6 34.8 5.3 50 .1 29.6 14.9 541 3.06 4.9 .8 6.0 1.5 127 .1 .3 <.1 88 1.57 .094 13 33.1 1.06 71 .245 2 2.54 .032 .07 .1 .02 7.7 <.1 <.05 8 <.5 30.0 SJ-84 .3 24.9 4.4 55 .1 34.3 13.8 701 2.96 7.4 .8 2.7 1.3 106 .1 .2 .1 65 1.07 .061 9 41.3 1.07 83 .163 2 2.36 .035 .07 .1 .03 7.7 < 1 < .05 7 < .5 15.0 SJ-85 .3 29.0 5.1 59 .1 32.5 12.3 580 2.76 3.7 .8 7.2 1.2 115 .1 .3 .1 78 1.16 .070 11 33.9 .97 74 .234 1 2.33 .027 .09 .1 .04 6.7 < 1 < .05 7 < .5 30.0 SJ-86 .4 42.7 4.7 52 .1 32.1 14.0 885 2.70 5.3 1.1 8.7 1.5 139 .2 .4 < 1 78 1.44 .085 13 39.5 1.06 84 .254 2 2.46 .038 .10 .1 .05 7.9 < 1 < .05 8 < .5 15.0 .5 42.9 5.0 57 .1 34.5 16.9 671 3.59 5.6 .7 5.2 1.4 148 .1 .3 <.1 91 1.52 .076 13 36.6 1.29 76 .258 <1 2.86 .034 .09 .1 .02 8.4 <.1 <.05 9 <.5 SJ-87 15.0 SJ-88 .5 38.7 4.5 56 <.1 29.3 14.9 608 3.41 4.6 .6 3.9 1.3 162 .1 .2 .1 89 1.46 .086 12 38.2 1.14 75 .228 1 3.21 .052 .09 .1 .03 8.0 <.1 <.05 9 <.5 30.0 .7 40.6 4.6 53 <.1 30.3 12.8 423 3.49 4.9 .7 6.3 1.6 160 <.1 .4 .1 89 1.41 .063 16 38.7 1.09 118 .210 <1 3.22 .038 .11 <.1 .03 8.9 <.1 <.05 10 <.5 SJ-89 30.0 \$1-90 .6 34.8 4.4 67 .1 36.2 12.7 346 3.22 3.4 .6 4.9 1.7 85 .1 .2 .1 73 .71 .067 10 43.0 .89 132 .186 2 3.34 .019 .14 <.1 .02 7.6 .1 <.05 9 <.5 30.0 .5 39.0 4.8 51 <.1 42.3 16.2 484 3.78 5.5 .8 5.8 1.6 160 .1 .2 .1 92 1.57 .069 14 44.1 1.19 93 .311 2 3.27 .037 .15 .1 .02 9.8 <.1 < .05 9 <.5 SJ-91 30.0 SJ-92 .4 35.5 4.9 58 .1 31.8 11.7 461 3.06 4.2 .9 4.9 1.6 101 .1 .3 .1 83 .95 .048 16 39.4 .86 97 .207 1 2.84 .034 .08 < 1.03 8.1 < 1.1 < 0.5 8 < 5 15.0 SJ-93 .7 46.1 4.7 54 .1 34.4 16.4 730 3.45 8.1 .6 3.9 1.3 133 .1 .3 .1 83 1.36 .099 14 40.0 1.28 87 .186 <1 2.65 .034 .09 .1 .04 7.1 < 1 < .05 9 < .5 7.5 .6 24.7 6.8 61 .1 21.2 12.2 789 2.71 5.9 .4 2.1 .8 135 .1 .2 .1 72 1.31 .080 8 26.9 .76 83 .149 <1 3.16 .025 .13 <.1 .03 4.7 <.1 <.05 9 <.5 30.0 SJ-94 STANDARD DS5 12.4 139.1 26.0 130 .3 24.4 11.5 739 3.01 18.4 6.1 41.1 2.9 50 5.3 3.9 6.1 63 .79 .097 12 186.8 .71 139 .101 17 2.06 .035 .16 5.0 .18 3.4 1.0 < 0.05 7 5.1 30.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA

ppm ppm <th>.5 30 .5 15 .6 15 .5 15 .5 15 .5 15</th>	.5 30 .5 15 .6 15 .5 15 .5 15 .5 15
SJ-95 .6 32.4 4.1 56 .1 26.0 12.7 495 3.23 6.1 .6 21.8 1.8 1.3 .1 91 .99 .081 14 39.0 .79 96 .180 1 2.46 .029 .08 .1 .03 7.5 <.1	.5 30 .5 15 .5 15 .5 15 .5 15 .5 15 .5 15
SJ-101 .7 22.9 4.7 60 .1 20.6 9.5 403 2.66 4.5 .4 18.1 1.2 73 .1 .3 .1 80 .50 .049 6 30.2 .69 77 .178 <1 1.78 .017 .12 .1 .02 4.5 <.1 .60 5 .5 .5 .5 .5 .5 .5 .5 .5 .6 .6 .5 .5 .5 .1 .6 .6 .6 .6 .6 .1 .7 .29 .6 .6 .6 .6 .1 .7 .29 .6 .6 .6 .6 .1 .7 .29 .6 .6 .6 .1 .1 .1 .1 .3 .1 .92 1.30 .090 14 36.8 .91 .73 .21 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.5 15 .5 15
$ \begin{array}{c} \text{SJ-105} \\ \text{SJ-106} \\ \text{SJ-106} \\ \text{SJ-106} \\ \text{SJ-107} \\ \text{SJ-108} \\ \text{SJ-108} \\ \text{SJ-109} \end{array} , \begin{array}{c} 5 & 32.7 & 3.6 & 46 & .1 & 21.7 & 10.2 & 380 & 2.95 & 5.4 & .5 & 3.7 & 1.3 & 114 < .1 & .3 < .1 & 81 & .97 & .064 & 13 & 33.2 & .80 & 58 & .180 & 1 & 2.09 & .034 & .07 & .1 & .03 & 6.3 < .1 < .05 & 6 & .15 \\ \text{SJ-106} & .5 & 20.5 & 4.5 & 49 & .1 & 17.8 & 8.5 & 366 & 2.50 & 3.7 & .4 & 4.0 & 1.0 & 84 & .1 & .2 & .1 & 74 & .61 & .062 & 7 & 28.7 & .63 & 66 & .165 & <1 & 2.04 & .017 & .07 & <1 & .02 & 4.4 < .1 < .05 & 6 \\ \text{SJ-107} & .4 & 23.7 & 3.8 & 62 & .1 & 19.9 & 8.7 & 362 & 2.43 & 3.7 & .4 & 27.0 & 1.1 & 82 & .1 & .2 & .1 & 64 & .66 & .067 & 7 & 28.0 & .67 & 72 & .139 & 1 & 1.94 & .025 & .06 & <1 & .02 & 4.4 < .1 < .05 & 6 \\ \text{SJ-108} & .5 & 24.4 & 3.8 & 47 & .1 & 19.1 & 9.9 & 394 & 2.53 & 5.5 & .5 & 2.4 & 1.0 & 97 < .1 & .4 & .1 & 72 & .90 & .060 & 11 & 26.2 & .76 & 58 & .185 & <1 & 2.00 & .021 & .07 & <1 & .02 & 5.0 & <1 < .05 & 6 \\ \text{SJ-109} & .4 & 42.8 & 3.7 & 46 & .1 & 22.4 & 14.3 & 389 & 3.21 & 5.0 & .4 & 1.8 & .9 & 222 & .1 & .3 & .1 & 95 & 1.26 & .077 & 11 & 30.1 & 1.03 & 53 & .221 & <1 & 2.59 & .076 & .06 & .1 & .01 & 5.0 & <1 < .05 & 7 \\ \end{array}$.5 30 .5 30 .5 30
SJ-110 .3 23.0 4.1 70 .1 23.4 13.4 440 3.06 6.9 .4 3.6 1.0 87 1 .9 .1 82 .84 .064 7 40.0 .95 57 .270 1 2.61 .021 .07 .1 .01 6.5 <.1	.5 15 .5 30 .5 15
SJ-114 .6 30.8 3.9 57 .1 24.3 11.3 356 2.94 5.4 .4 .7 1.2 92<<.1 .3 .1 83 .65 .062 8 35.0 .82 71 .164 <1 2.32 .020 .08 .1 .02 5.1 <.1 .05 .062 8 35.0 .82 71 .164 <1 2.32 .020 .08 .1 .02 5.1 <.1 .05 .06 .01 .01 .01 .01 .01 .03 .04 .03 .04 .03 .04 .03 .04 .1 .05 .08 .1 .01 .04 .1 .03 .04 .03 .04 .1 .05 .092 13 .26 .98 .74 .190 1 2.56 .057 .07 .1 .01 .04 .1 .03 .04 .1 .12 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 <td< th=""><th>.5 15 .5 15 .5 30</th></td<>	.5 15 .5 15 .5 30
SJ-119 1.0 36.4 4.5 45 1 19.5 9.6 419 2.78 6.1 .5 2.9 1.1 173 .1 .3 .1 75 1.18 .073 15 35.4 .77 66 .137 1 2.36 .055 .04 <1 .01 5.5 <.1 .05 8 SJ-120 .7 31.9 4.2 39 <1 12.0 7.6 29.4 <1 .4 1.2 1.0 234 <1 .2 1 69 1.46 .065 12 21.4 .61 72 .117 <1 2.92 .059 .08 <1.02 3.8 <1 .05 8 .1 .10 3.4 .1 .1 .1 .40 .098 6 25.2 .57 107 .092 2 .75 .019 .07 <1.01 3.1 .1 .15 .40 .098 6 25.2 .57 107 .092 2 .75 .019 .07 .1 .01 .1 .1	.5 30 .5 30 .5 30
SJ-124 .5 29.8 5.3 58 .1 17.0 10.2 429 2.73 4.3 .5 3.2 1.1 150 .1 .3 .1 90 1.06 .072 10 29.6 .72 64 .166 1 2.60 .041 .08 <1 .02 5.3 <.1< .05 8 SJ-125 .6 26.5 4.0 50 .1 19.2 9.6 305 2.51 4.8 4 1.9 1.0 109 <1 .2 1 69 .75 .053 8 27.7 .64 88 .143 <1 .250 .023 .14 <1 .02 4.3 .1 .02 4.3 .1 .02 4.3 .1 .03 .1 74 .76 .047 6 29.6 .74 71 .180 1 2.17 .019 .11 .1 .02 4.3 .1 .02 4.3 .1 .02 4.3 .1 .02 4.3 .1 .02 .04 .03 <	.5 30 .5 30 .5 15

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA

ACHE ANALYTICAL															·	<u> </u>																			ACME AN	ALYTICAL
SAMPLE#	Mo		Pb ppm			Ni ppm		Mn ppm		As ppm									Ca %			Cr ppm		Ba ppm		B ppm					Hg So Spm ppm			Ga Se ppm ppm	Sample gm	
SJ-128 SJ-129 SJ-130 SJ-131 SJ-132	.5 .9 1.1	29.7 37.4 45.3	4.6 4.9 6.0	41 52 65	.1 2 .1 2 .1 3	2.5 28.2 31.2	11.0 15.1 16.0	465 3 849 3 853 3	3.77 3.02 3.33 3.62	6.6 3.6 6.7 7.5	.5 .5 .5 .5	5.4 5.1 2.8 1.9	1.2 1.2 1.1 1.4	109 102 126 164	.1 .1 <.1 .1	.4 .3 .3 .3	.1 .1 .1 .1	105 85 80 82	.92 1.24 1.91	.022 .104 .105	13 16 13	32.4 40.7 42.9	.83 1.16 1.27	106 95 109	.204 .169 .157	1 2. <1 2. <1 2.	01 . 38 . 73 .	.032 .036 .052	.07 .09 .09	.1 . .1 . .1 .	.04 6.0 .03 6.0 .03 5.8	<.1< <.1< <.1<	.05 .05 .05	7 <.5 6 <.5 7 <.5 8 <.5 7 <.5	30.0 30.0 15.0 15.0 15.0	
SJ-133 SJ-134 SJ-135 SJ-136 SJ-137	.9 2.4 2.5	31.4 43.5 44.1	4.7 5.8 5.8	52 60 64	.2 2 .1 3 .1 3	2.8 0.3 5.2	10.5 14.1 15.7	438 2 647 3 718 3	2.88 3.52 3.72	5.3 10.4 11.3	.5 .4 .5	1.0 2.9 5.4	1.3 1.0 1.2	75 106 109	.1 .1 .1	.3 .4 .4	.1 .1 .1	68 74 77	.94 .89 1.13	.043 .081 .103	16 13 14	33.2 46.2 51.8	.78 1.15 1.45	168 97 105	.130 .164 .157	1 2. <1 2. <1 3.	18 . 73 . 15 .	.025 .021 .034	.09 .10 .09	.1 . .1 . .1 .	.02 5.0 .02 5.3 .05 5.1 .04 6.4 .04 6.2	<.l< <.l< <.l<	.05 .05 .05	6 <.5 6 <.5 8 <.5 9 <.5 8 <.5	30.0 15.0 15.0 15.0 30.0	
SJ-138 SJ-139 SJ-140 SJ-141 SJ-142	1.7 .5 .6	26.2 36.8 27.5	5.8 3.9 3.9	105 44 40	2 2. 1 2. 2 1.>	23.9 26.0 21.0	10.8 11.0 10.2	978 2 480 3 453 2	2.54 3.01 2.72	5.4 4.5 5.9	.3 .6 .5	.5 2.8 2.1	.9 1.3 1.2	67 103 121	.4 .1 <.1	.2 .3 .4	.1 <.1 <.1	54 72 72	.64 1.09 1.20	.120 .053 .087	7 22 14	31.1 32.3 28.6	.66 .94 .83	176 87 86	.118 .167 .184	12. 12. <12.	19 19 14	.014 .029 .032	.19 < .08 .07	<.1 . .1 . .1 .	.02 4.9 .02 3.5 .03 6.2 .03 4.9 .03 5.4	<.1< <.1< <.1<	.05 .05 .05	7 <.5 6 <.5 7 <.5 6 <.5 6 <.5	30.0 30.0 15.0 30.0 30.0	
SJ-143 SJ-144 SJ-145 SJ-146 SJ-147	.5 .6 .7	25.2 27.6 34.5	3.8 4.4 4.4	42 47 47	.1 2 .1,2 .1 2	20.7	10.6 11.0 12.9	384 2 416 2 438 3	2.71 2.92 3.31	4.1 5.0 5.9	.5 .7 .5	3.3 1.8 3.4	1.0 1.4 1.3	81 78 88	.1 <.1 <.1	.3 .2 .3	.1 .1 .1	74 78 88	.69 .68 .84	.058 .044 .047	10 11 13	31.3 37.5 38.7	.89 .79 .94	76 91 90	,188 .148 .200	<1 1. <1 2. 2 2.	85 . 30 . 33 .	.021 .023 .032	.07 .07 < .08	.1. .1. .1.	.01 4.6 .03 5.1 .03 5.6	<.1< <.1< <.1<	.05 .05 .05	6 <.5 6 <.5 7 .6 7 <.5 8 <.5	15.0 30.0 30.0 30.0 30.0	
SJ-148 SJ-149 RE SJ-150 SJ-150 SJ-151	.5 .4 .3	50.0	4.8 4.8 4.6	53 47 45	.33 .12 .12	87.6 25.1 24.7	12.6 10.1 10.2	453 3 321 2 325 2	3.57 2.56 2.55	7.1 2.7 2.7	1.1 .5 .5	3.8 <.5 8.3	1.9 1.3 1.3	91 65 64	.1 .1 .1	.3 .2 .2	.1 .1 .1	82 72 73	.93 .58 .58	.035 .016 .016	23 9 9	45.6 32.7 34.0	1.13 .75 .76	121 93 94	.162 .211 .206	23. 12. 32.	22 . 13 . 18 .	.029 .023 .023	.10 < .08 < .08 <	<.1 . <.1 . <.1<.	.05 8.1 .01 4.8 .01 4.4	<.1< <.1< .1<	:.05 :.05 :.05	9 <.5 9 .5 7 <.5 7 .5 8 <.5	15.0 7.5 15.0 15.0 30.0	
SJ-152 SJ-153 SJ-154 SJ-155 SJ-156	.5 .6 .5	42.2 31.8 31.0 38.5 43.5	4.3 4.4 4.4	53 47 47	.1 2	26.9 26.9 24.0	12.5 13.1 13.0	446 3 583 3 559 3	3.09 3.04 3.31	5.8 9.5 11.0	.6 .6 .6	9.2 8.9 7.6	1.4 1.4 1.4	96 124 131	.1 .1 .1	.3 .6 .7	.1 .1 .1	83 93 98	.91 1.27 1.09	.067 .101 .067	14 17 15	35.8 36.7 34.4	.98 1.05 .98	90 157 105	.245 .228 .229	2 2. 2 2. 1 2.	36 05 17	.025 .036 .034	.07 .06 .06	.1 .1 .1	.03 6.8 .02 6.6 .04 6.0 .02 7.8 .01 8.6	; <.1< ; <.1< ; <.1<	:.05 :.05 :.05	8 <.5 8 <.5 7 <.5 7 <.5 8 <.5	15.0 30.0 30.0 30.0 30.0	
SJ-157 SJ-158 SJ-159 SJ-160 STANDARD DS5	.6 .3 .3	34.7 41.4 32.6 47.2 145.2	4.7 4.9 5.2	55 49 54	.23 .13	31.7 37.4 19.5	12.9 13.3 17.7	483 3 433 3 690 3	3.06 3.32 3.30	9.3 8.2 7.1	.8 1.0 1.1	15.2 4.0 4.6	1.3 1.8 1.7	85 127 85	.1 <.1 .1	.5 .7 .3	.1 .1 <.1	96 113 79	1.18 1.88 2.10	.079 .041 .071	12 23 17	42.3 53.0 62.9	1.23 1.47 1.83	69 69 43	.238 .338 .234	23. 13. 24.	00 69 03	.018 .033 .017	.11 .07 .07	.1 .1 .2	.03 6.3 .01 8.9 .04 8.2	<.1< <.1< ! <.1<	.05 .05 .05	8 <.5 9 <.5 10 <.5 12 <.5 7 5.0	30.0 30.0 30.0 7.5 30.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 📕 FA

ACME ANALYTICAL SAMPLE# Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Hor Sc Tl S Ga Se Sample Мо * % % % ppm ppm ppm ppm % ppm ppm % % ppm ppm % ppm % ppm DDM .5 21.1 4.4 42 .1 21.2 8.6 331 2.64 6.1 .6 5.0 1.0 108 <.1 .4 .1 85 .88 .045 7 30.4 .80 91 .191 1 2.43 .027 .06 <.1 .02 5.1 <.1 .11 8 <.5 30 SJ-161 .4 23.6 4.7 39 .1 10.8 6.8 274 2.28 4.7 .3 .6 .9 168 <.1 .2 <.1 64 1.36 .042 9 15.3 .64 99 .095 <1 2.77 .034 .15 <.1 .01 3.8 <.1 .08 9 <.5 30 SJ-162 .5 33.2 4.4 47 <.1 17.3 9.3 438 3.03 7.9 ,6 1.9 1.1 151 .1 .5 .1 93 1.37 .121 13 27.3 .86 73 .203 <1 2.31 .049 .05 .1 .02 6.3 <.1<.05 8 <.5 .30 SJ-163 30 SJ-164 .4 27.3 5.6 78 .1 14.1 7.4 347 1.97 5.4 .3 1.7 .7 118 .1 .2 .1 49 .87 .084 6 16.5 .63 90 .081 1 3.05 .032 .10 .1 .02 3.1 < .1< .05 10 < .5 .6 22.5 5.9 56 .1 15.6 9.4 529 2.49 7.3 .7 2.4 1.4 86 .1 .4 .1 70 .75 .058 9 23.8 .77 69 .195 1 2.21 .021 .10 < .1 .02 5.1 < .1 < .05 8 < .5 30 SJ-165 .5 38.2 4.1 66 .1 22.7 12.6 595 2.90 5.5 .6 15.7 1.0 112 .1 .6 .1 85 1.20 .061 11 31.5 1.06 68 .259 2 2.88 .021 .09 .1 .01 7.6 < .1<.05 9 < .5 30 SJ-166 .7 42.6 6.2 69 .1 25.9 20.5 366 3.30 4.8 .5 1.9 .9 121 .1 .3 .1 85 .62 .096 SJ-167 7 27.7 1.05 78 .191 1 3.85 .025 .09 < 1 .03 3.8 < 1<.05 10 .8 30 30 SJ-168 .4 39.3 3.4 41 .1 24.4 11.2 277 2.97 3.8 .5 1.6 1.3 105 .1 .2 .1 97 .82 .042 9 32.4 .81 95 .204 1 2.38 .053 .08 < 1 .01 4.2 < .1 .05 7 < .5 .6 42.0 4.2 55 .1 22.1 12.5 449 3.15 5.6 .4 3.3 .9 323 .1 .2 <.1 100 .98 .091 10 32.3 1.00 98 .214 1 3.14 .045 .15 <.1 .01 5.0 <.1<.05 8 .5 30 SJ-169 .7 33.3 5.0 56 .1 28.5 11.4 337 2.92 7.0 .7 6.6 1.3 104 <.1 .4 .1 87 .77 .035 8 37.1 .96 91 .193 <1 2.49 .018 .14 <.1 .02 6.2 <.1<.05 8 <.5 .30 SJ-170 .5 50.0 4.3 68 .2 21.4 14.5 645 3.44 11.7 .5 8.4 1.4 172 <.1 .2 .1 64 1.18 .091 12 31.2 1.30 106 .210 1 3.19 .040 .36 .1 .02 6.6 .1<.05 10 <.5 30 SJ-171 .7 58.1 3.3 68 .7 20.0 15.7 536 3.98 14.3 .4 73.2 1.0 139 .1 .4 .1 53 1.41 .068 9 33.1 1.08 50 .231 <1 2.89 .028 .20 .3 .03 7.8 .1<.05 30 SJ-172 9...7 .7 49.0 4.1 60 .4 30.4 14.2 377 3.56 12.1 .6 58.2 1.3 106 .1 .6 .1 103 .96 .068 11 47.1 1.18 85 .266 <1 2.73 .039 .11 .1 .04 7.8 .1<.05 SJ-173 9 <.5 30 15 SJ-174 .6 47.2 4.5 57 .2 30.3 14.3 441 3.88 12.4 .7 67.9 1.6 124 .1 .6 .1 106 1.01 .083 13 44.2 1.21 83 .240 1 3.14 .027 .11 .1 .04 8.7 < .1<.05 9 <.5 15 SJ-175 .7 26.0 4.0 61 .1 26.0 10.3 403 2.79 7.4 .6 3.2 1.4 64 .1 .4 .1 78 .62 .061 9 35.0 .83 93 .176 1 2.25 .016 .13 <.1 .01 6.2 <.1<.05 7 < 5 15 RE SJ-175 .6 25.7 4.3 61 .1 27.0 9.9 374 2.75 7.1 .5 5.1 1.5 61 .1 .4 .1 74 .56 .062 9 34.2 .82 90 .177 <1 2.21 .016 .12 <.1 .01 5.9 .1<.05 6 < .5 .5 37.2 4.5 52 .2 24.7 10.4 379 3.19 6.8 .5 17.0 1.7 71 .1 .3 .1 77 .91 .030 13 35.7 .89 153 .187 2 2.77 .028 .11 .1 .04 7.7 <.1<.05 8 <.5 30 SJ-176 15 .6 34.6 4.8 44 .1 19.0 10.1 528 2.87 7.9 .6 9.2 1.3 113 .1 .4 .1 74 1.13 .066 18 29.5 .93 95 .133 <1 2.45 .039 .09 .1 .04 6.2 < .1<.05 7 < .5 SJ-177 .5 35.4 4.2 52 .1 27.5 13.1 576 3.07 5.2 .7 2.8 1.2 91 .1 .3 <.1 88 1.10 .080 10 30.6 1.20 71 .264 <1 2.72 .018 .07 .1 .02 6.4 <.1 <.05 8 <.5 30 SJ-178 .5 25.6 4.8 55 .1 24.8 11.0 561 2.73 4.3 .6 2.4 1.0 75 .1 .2 .1 73 .70 .088 8 28.3 .96 84 .211 1 2.14 .016 .07 .1 .03 5.1 < .1 < .05 7 < .5 30 SJ-179 4 38.2 4.5 52 .1 29.0 13.5 515 3.19 4.8 .8 3.4 1.3 105 .1 .3 <.1 91 1.19 .074 14 31.8 1.22 74 .270 1 2.69 .017 .08 .1 .01 6.9 <.1 <.05 8 <.5 30 SJ-180 30 .4 33.8 4.4 49 .1 20.9 11.1 469 2.57 3.9 .7 1.9 1.2 292 .1 .2 <.1 77 .93 .040 9 26.3 .82 161 .156 <1 2.69 .022 .10 <.1 .01 6.7 <.1<.05 7 < 5 SJ-181 30 SJ-182 .5 30.2 3.6 49 .1 30.3 13.0 455 2.99 6.4 .7 3.7 1.1 271 .1 .2 .1 97 1.36 .057 9 40.4 1.24 82 .263 1 3.47 .032 .08 .1 .02 5.5 < .1<.05 8.5 .6 24.2 5.7 62 .1 24.2 9.1 365 2.53 4.0 .7 2.3 1.5 59 .1 .2 .1 68 .49 .059 12 30.7 .75 143 .158 1 2.20 .019 .06 <.1 .02 4.9 .1<05 30 7 <.5 SJ-183 .5 42.7 4.4 53 .2 34.2 15.6 681 3.39 3.9 1.0 2.4 1.5 119 .1 .3 <.1 74 1.46 .067 19 40.4 1.44 191 .168 3 2.91 .029 .09 .1 .04 7.0 <.1 <.05 9 <.5 15 SJ-184 .8 44.5 5.7 52 .1 30.8 15.9 724 3.61 5.8 .7 2.7 1.3 127 .1 .3 <.1 82 1.27 .086 15 34.7 1.27 83 .198 <1 2.78 .029 .08 <.1 .02 6.8 <.1 <.05 15 8 < 5 SJ-185 1.0 38.1 5.3 47 .1 32.5 15.1 580 3.52 5.4 .7 2.5 1.4 97 .1 .2 <.1 90 1.00 .025 21 41.1 1.25 106 .215 1 2.67 .031 .06 .1 .03 6.9 <.1<0.05 8.6 15 SJ-186 .6 40.3 5.4 50 .1 31.9 14.0 629 3.14 5.7 .4 5.7 1.0 124 .1 .2 .1 71 1.29 .096 13 38.1 1.28 82 .130 1 2.79 .038 .06 <.1 .02 5.6 <.1 <.05 8 <.5 15 SJ-187 .6 36.8 5.1 55 .1 27.6 12.7 662 3.19 5.9 .6 4.3 1.3 95 .1 .3 .1 74 1.34 .068 13 36.6 1.16 84 .204 1 2.71 .039 .08 .1 .03 6.5 < .1 < .05 8 .5 15 SJ-188 .7 27.0 4.8 56 .1 26.6 12.6 607 3.17 4.0 .6 1.2 1.2 114 .1 .2 <.1 78 .93 .094 13 33.9 1.11 116 .229 2 2.55 .024 .12 <.1 .02 5.7 <.1<.05 7 <.5 30 SJ-189 .5 30.7 4.7 55 .1 28.5 13.1 499 2.99 3.0 .6 1.9 1.1 145 .1 .1 <.1 87 1.09 .040 10 36.3 1.09 77 .239 3 2.65 .039 .10 .1 .02 6.0 <.1 <.05 7 <.5 30 SJ-190 .6 22.1 5.3 57 <.1 25.1 10.5 437 2.64 2.9 .4 2.6 1.4 75 .2 .2 .1 70 .45 .048 6 33.9 .81 113 .145 1 2.95 .015 .07 <.1 .02 4.2 <.1 .05 8 <.5 30 SJ-191 .4 35.3 4.4 47 .1 25.5 9.8 349 2.72 3.7 .6 2.5 1.7 60 .1 .2 .1 76 .76 .031 10 37.7 .87 71 .129 <1 2.69 .031 .07 <.1 .03 5.3 <.1<.05 6 <.5 30 SJ-192 4 37.3 4.4 66 .1 38.8 14.4 688 3.16 3.7 .8 2.4 1.4 296 .2 .2 .1 90 1.18 .051 9 65.1 1.39 76 .236 <1 3.48 .053 .07 .1 .01 6.8 < .1 < .05 10 < .5 30 SJ-193 STANDARD DS5 12.9 145.2 25.0 135 .3 24.1 11.6 812 3.03 18.8 6.6 43.3 2.6 50 5.4 3.8 5.8 63 .73 .093 12 199.4 .72 139 .099 17 1.92 .034 .14 4.9 .19 3.3 1.0<.05 6 4.7 30

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

[· · ·	÷.,	.:							1.						
	AA					А	lme	ade	n l	lin	era	ls	Ŀt	d.	PJ	ROJ	JECT	SF) MO	4-2		FILE	E #	A4	106	178	-			P	age 7	,		Å 4	
A	CME ANALYTICAL				-																													ACME ANALYT	TICAL
	SAMPLE#	Mo ppr		u Pb m ppm													Sb Bi ppm ppm		Ca %		La ppm	-		Ba ppm		BA1 ppm %					Sc T1 ppm ppm			Sample gm	<u>.</u>
	SJ-194 SJ-195 SJ-196 SJ-197 SJ-198	!. !. !.	5 33. 5 20. 5 38.	8 4.0 7 7.5 0 6.1	0 50 5 55 1 59	$\begin{array}{c} 0 & .1 \\ 5 & .1 \\ 0 & .1 \end{array}$	29.0 18.2 30.0) 12.9 2 8.0) 14.0	9 463 6 633 0 703	2.98 2.26 3.24	5.9 3.6 6.0	.7 .7 .8	2.0 8.6 3.5	1.5 1.1 1.4	127 111 137	.1 .1 .1	.3 .1 .2 .1 .3 .1	. 79 . 55 . 82	1.01 .94 1.32	.046 .084 .093	11 13 16	34.9 40.6 22.3 36.0 17.9	.98 .73 1.28	77 91 106	.198 .169 .211	1 2.47 1 2.53 2 2.90	.033 .024 .042	.06 .10 .07	<.1 . .1 . .1 .	.02 .02 .03	5.2 <.1 6.2 <.1< 4.1 <.1< 5.9 <.1< 3.8 <.1<	.05 .05 .05	7 <.5 8 <.5 8 .5 9 .5 8 .5	30.0 30.0 30.0 15.0 30.0	
	SJ-199 SJ-200 SJ-201 SJ-202 SJ-203	!. !	5 19. 26. 5 20.	1 8.2 6 5.4	3 82 2 44 4 49	? .1 .1 .3	27.3 14.1 19.6	3 10. 6.0 5 8.	1 749 0 675 1 342	2.29 1.98 1.99	3.7 2.8 4.1	.5 .5 3.6	1.1 <.5 1.9	1.1 1.9 .8	42 42 86	.1 .1 .1	.2 .1 .3 .1 .2 .1	62 47 51	.42 .52 .90	.101 .052 .039	6 27 18	29.3 29.4 19.9 26.7 32.0	.75 .47 .57	148 87 72	.156 .061 .106	3 2.12	.013 .009 .026	.08 .07 .04	.1 . .1 . <.1 .	.02 .02 .04	6.6 <.1< 3.7 .1< 3.5 <.1< 3.4 <.1< 6.3 <.1<	.05 .05 .05	8 <.5 8 <.5 4 <.5 7 <.5 7 <.5	7.5 30.0 30.0 15.0 30.0	
	SJ-204 SJ-205 SJ-206 RE SJ-206 SJ-207	، ، !	24. 23. 22.	7 4.7	3 49 9 45 7 48) .1 5 <.1 1 <.1	24.0 21.0 20.9	9.9 8.1 8.8	9 470 7 299 8 293	2.64 2.63 2.56	4.6 4.7	.6 .5 .6	2.3 3.6 1.8	1.2 1.5 1.4	91 66 65	.1 .1 <.1	.3 .1 .2 .1	83 72 74	.89 .60 .57	.057 .041 .041	8 11 11	32.7 31.7 29.0 31.1 27.2	.83 .71 .69	108 146 151	.260 .155 .160	2 2.42 1 1.79 2 1.82	.013 .013 .013	.07 .07 .07	.1 . <.1 . <.1 .	.01 .02 .01	4.0 .1< 5.5 <.1< 4.8 <.1< 4.8 <.1< 4.1 <.1<	.05 .05 .05	6 <.5 7 <.5 6 <.5 6 <.5 6 <.5	30.0 30.0 15.0 15.0 30.0	
	SJ-208 SJ-209 SJ-210 SJ-211 SJ-212). !.	5 28. 5 22. 7 28.	9 5.6 2 6.2 8 6.0	5 69 2 74 0 75	$1 \\ .1 \\ .1 \\ .1 \\ .1$	26.9 24.3 29.3) 11.8 3 10.6 3 11.8	8 763 6 652 8 519	2.76 2.50 2.71	4.6	.4 .4 .5	8.1 5.4 1.6	1.0 1.2 1.6	114 52 59	.1 .1 .1	.2 .1 .2 .1 .2 .1	. 76 . 65 . 71	.87 .51 .36	.084 .079 .078	- 7 5 8	33.0 31.2 29.1 35.6 30.3	.83 .73 .68	165 188 176	.150 .121 .108	3 3.53 2 3.17 1 3.49	.012 .012 .012	.12 .09 .07	<.1 . <.1 . <.1 .	.02 .03 .04	5.4 <.1< 4.8 .1< 3.9 .1< 3.8 .1< 4.7 .1<	.05 1 .05 .05		30.0 30.0 30.0 30.0 30.0 30.0	
	SJ-213 SJ-214 SJ-215 SJ-216 SJ-217		5 28. 3 24. 3 21.	9 4.7 3 4.3 4 4.1	7 54 3 44 1 39	.1 <.1 <.1	31.8 28.0 24.2	8 12.9 9 10.0 2 10.4	5 406 6 325 4 366	3.22 2.89 2.90	4.9	.8 .7 .8	3.5 8.4 8.5	1.8 1.4 1.4	103 121 146	.1 .1 <.1	.3 .1 .4 .1	98 93 98	.89 1.00 1.13	.104 .067 .055	12 11 13	36.5		118 86 73	.237 .251 .308	1 2.74	.026 .023 .021	.07 .07 .09	.1 . .1 . .1 .	02 02 02	3.6 .1< 7.2 <.1< 6.4 <.1< 7.5 <.1< 7.3 <.1<	.05 .05 .05	7 <.5 7 <.5 6 <.5 6 <.5 6 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
	SJ-218 SJ-219 SJ-220 SJ-221 SJ-222	.0	5 29. 41. 30.	8 4.7 7 4.8 4 4.5	7 59 3 51 5 58	.1 .1 .1	39.9 49.0 39.3	14.2 16.8 13.3	2 509 8 809 3 526	3.32 3.69 3.16	5.4 8.8 4.9	.6 .8 .6	2.7 3.6 .9	1.5 1.9 1.7	128 188 139	.1 .1 .1	.2 .1 .3 <.1 .2 .1	91 107 86	.80 1.29 .89	.066 .090 .087	11 15 11	38.6 46.1 55.1 46.3 40.2	1.03 1.33 1.17	119 110 115	.210 .209 .181	2 2.86 2 3.36 1 3.39	.026 .041 .021	.08 .08 .08	<.1 . <.1 . .1 .	03 07 1 06	8.0 <.1< 7.2 <.1< 12.1 <.1< 7.0 <.1< 7.1 <.1<	.05 .05 .05	6 <.5 8 <.5 9 <.5 9 <.5 9 <.5	30.0 30.0 15.0 30.0 30.0	
	SJ-223 SJ-224 SJ-225 SJ-226 STANDARD D	، ! !	28. 28. 34.	1 4.7 3 4.1	3 52 7 63 1 52	? .1 .1 ? .1	30.2 40.0 44.3	2 12.3) 13.2 3 16.3	3 714 2 461 3 787	2.44 2.95 3.35	4.6	.5 .5 .9	1.0 .9 2.3	1.0 1.3 1.5	119 98 143	.1 .1 .1	.1 .1 .2 .1 .2 <.1	62 77 95	2.11 .58 1.16	.071 .099 .066	9 8 13	26.3 40.0 50.9	.87 1.08 1.24	64 107 100	.105 .142 .165	1 4.91 2 3.33 1 2.65	.026 .022 .046	.15 .07 .07	<.1 . <.1 . <.1 .	.04 .03 .05	7.5 <.1< 6.1 <.1< 5.1 <.1< 9.3 <.1< 3.6 1.0<	.05 1 .05 .05		30.0 30.0 30.0 7.5 30.0	
1																																			

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA

ACHE ANALYTICAL

Almaden Minerals Ltd. PROJECT SAM04-2 FILE # A406178

Page 8

Data

AC	ME ANALYTICAL									<u> </u>																		2						A	CME ANALYT	
	SAMPLE#	Mo ppr		ı Pb n ppm					Mn ppm		As ppm												Cr ppm				BA ppm \$					Sc T1 ppm ppm		Ga Se S ppm ppm	Sample gm	
	SJ-227 SJ-228 SJ-229 SJ-230 SJ-231	. 4 . 2 . 4	34.9 33.7 39.6) 3.9 / 4.5 5 4.0	58 57 60	.1 .1 .1	55.1 47.6 49.1	14.8 13.2 14.4	405 3 471 3 576 3	8.39 8.11 8.37	3.3 2.7 2.9	.7 9. 1.0	2.6 4.6 2.1	1.9 2.0 2.0	158 181 216	.1 .1 .1	.2 .2 < .2	.11 .1 .11	00 1. 94 1. 03 1.	.19 . .73 . .35 .	049 058 045	12 14 13	69.9 59.8 66.5	1.20 1.31 1.32	<u>91</u> 78 77	.239 .275 .294	2 3.5 1 3.30 2 3.02	2.046 052 057	.10 .13 .07	<.1 .(<.1 .(<.1 .(04 1 03 1 03 1	7.5 <.1< 0.8 <.1 1.3 <.1< 0.5 <.1< 4.0 <.1<	.06 .05 .05	6 <.5 9 <.5 9 <.5 9 <.5 6 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
	SJ-232 SJ-233 SJ-234 SJ-235 SJ-236	8. 9. 9.	33.5 29.1 34.6	5 5.7 4.8 5 4.8	64 63 56	.1 .1 .1	43.5 42.4 42.1	13.3 13.9 14.3	559 3 480 3 395 3	8,15 8,19 8,38	5.8 4.1 4.7	.8 .6 .6	1.3 <.5 3.9	2.1 1.3 1.6	78 106 138	.1 .1 .1	.2 .2 .2	.1 (.1 (.1 (88 94 97	.45 . .72 . .74 .	105 080 054	9 9 10	46.7 46.9 46.2	1.00 1.16 1.20	125 120 167	.193 .186 .166	2 3.80 <1 3.10 <1 3.67	5.019 5.025 7.027	.07 .07 .07	.1 .(<.1 .(<.1 .(05 02 03	0.9 <.1< 6.6 <.1< 6.0 <.1< 6.4 <.1< 6.5 <.1<	.05 .05 .05	8 <.5 11 <.5 8 <.5 9 <.5 9 <.5	30.0 30.0 30.0 30.0 30.0	
	SJ-237 SJ-238 SJ-239 SJ-240 SJ-241	. (. 2 . (i 32.6 33.5 i 43.3	5 4.4 5 4.3 8 4.3	54 54 51	<.1 .1 .1	47.4 48.0 51.1	15.6 15.5 15.9	576 3 571 3 661 3	3.63 3.54 3.57	3.8 3.1 5.6	.6 .8 2.0	2.0 2.7 2.0	1.4 1.3 1.5	168 152 155	<.1 .1 .1	.2 < .2 .3 <	$.1 \ 10$ $.1 \ 1$ $.1 \ 1$	00 1. 11 1. 13 1.	.14 . .18 . .41 .	069 051 089	14 14 18	45.0 49.1 48.6	1.33 1.40 1.54	125 95 81	.232 .255 .217	1 3.19 1 2.68 1 2.69	037 050 074	.06 .05 .07	<.1 .0 <.1 .0 <.1 .0	05 03 04 1	1.5 <.1< 7.1 <.1< 8.8 <.1< 0.1 <.1< 9.4 <.1<	.05 .05 .05	8 <.5 8 <.5 7 <.5	7.5 30.0 30.0 7.5 30.0	
	SJ-242 SJ-243 SJ-244 SJ-245 SJ-246	.4	30.2 34.6 32.9	2 4.5 6.1 4.5	52 58 52	<.1 <.1 <.1	40.9 45.8 43.0	14.1 14.6 15.1	508 3 540 3 656 3	3.42 3.66 3.42	3.6 5.2 4.4	.7 .9 .7	4.0 3.3 2.8	1.6 2.2 1.7	L71 L56 L66	.1 .1 .1	.2 .2 .2 <	$ \begin{array}{c} .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ 9 \end{array} $	01 . 04 . 93 1.	.96 . .84 . .04 .	067 074 071	14 19 15	51.0 52.4 47.3	1.27 1.29 1.20	107 149` 94	.246 .227 .222	1 3.08 <1 4.24 1 2.91	.035 .030 .039	.07 .07 .07	<.1 .0 .1 .0 <.1 .0)4)4)3	9.4 <.1< 9.4 <.1< 9.7 <.1< 9.5 <.1< 4.8 <,1<	.05 .05 .05	8 <.5 11 <.5 8 <.5	30.0 30.0 30.0 15.0 30.0	
	SJ-247 SJ-248 SJ-249 SJ-250 RE SJ-250	. e . 7 . 4	23.1 31.1 23.2 24.6 25.6	5.0 5.2 5.2 5.6	51 49 53	.1 .1 .1	37.0 31.5 36.1	13.1 9.7 11.8	413 3 257 2 449 2	3.40 2.84 2.84	4.1 6.9 4.1	.6 .6 .5	3.1 2.4 2.1	1.4 1.3 1.1	162 47 97	.1 .1 .1	.2 < .2 .2	.1 9 .1 1 .1 1	95. 78. 85.	.73 . .40 . .81 .	061 055 051	15 10 10	43.4 35.6 41.9	.73 1.13	126 82 100	.213 .118 .169	1 3.52 2 2.92 2 2.45	.026 .019 .035	.06 .05 .06	<.1 .0 .1 .0 <.1 .0)3)5)3	4.2 .1< 6.7 <.1< 5.0 .1< 5.7 <.1< 5.5 <.1<	.05 .05 .05	9 <.5 8 <.5 7 <.5	30.0 30.0 30.0 15.0 15.0	
	SJ-251 SJ-252 SJ-253 SJ-254 SJ-255		29.7 28.3	4.5 4.1 3.6	58 43 47	.1 <.1 <.1	39.1 35.5 37.7	10.9 11.6 12.5	493 2 432 3 341 3	2.71 3.07 3.19	4.6 5.8 4.2	.7 .7 .5	1.6 3.6 2.5	1.2 2.0 1.4	103 166 132 •	.1 .1 <.1	.1 .2 .1 <	.1 10 .1 9 .1 8	06 . 91 . 85 .	.88 . .82 . .69 .	060 057 054	9 13 11	43.2 48.0 51.9	1.09 .83 .99	74 136 160	.177 .204 .148	2 2.06 1 2.51 1 2.90	.050 .038 .035	.05 .06 .06	<.1 .0 <.1 .0 <.1 .0)3)3)2	8.9 <.1< 8.1 <.1< 9.7 <.1< 7.6 <.1< 5.1 <.1<	.05 .05 .05	6 <.5 6 <.5 7 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
	SJ-256 SJ-257 SJ-258 SJ-259 STANDARD [. (36.1 21.5 40.9	2.6 5.3 4.6	54 48 52	<.1 .1 .1	80.6 27.3 50.0	22.6 8.1 16.6	486 3 230 2 774 3	3.87 2.26 3.80	2.4 3.1 5.6	.5 .7 .8	2.2 .7 3.9	1.3 2 1.1 1.6 2	204 56 164	.1 .1 .1	.1 < .1 .2 <	.1 $.1$ $.1$ $.1$ $.1$ $.1$ $.1$ $.1$	77 . 68 . 03 1.	.82 . .46 . .24 .	079 029 077	15 7 15	65.1 33.2 50.4	2.15 .62 1.44	139 61 95	.104 .133 .220	1 3.52 2 2.13 2 2.72	.035 .029 .056	.05 .03 .07	<.1 .(<.1 .(.1 .()2 1)2 -)5 -	8.0 <.1< 0.5 <.1< 4.1 <.1< 9.7 <.1< 3.2 1.1<	.05 .05 .05	7 <.5 7 <.5 8 <.5	15.0 30.0 30.0 15.0 30.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME AN	ALYTICAL		1				1.																											•			·	WALYTICAL	
S	MPLE#	÷.,		Mo pm	Cu ppm	• ~		Ag ppm			Mn ppm		As ppm									Ca %		La ppm	Cr ppm	Mg %			B ppm								Ga Se ppm ppm	ple gm	-
S. S. S.	1-260 1-261 1-262 1-263 1-264	-		.3 .4 .6	45.7 36.3 29.1	3.7 4.1 4.2	51 48 60	.2 .1 .2	39.5 38.8 40.9	13.7 14.1 13.5	441 461 465 316 361	3.07 3.21 3.13	3.8 4.2 5.3	1.0 .9 .6	5.4 3.8 1.3	1.6 1.7 1.3	127 175 68	<.1 <.1 <.1	.2 .2 .2	.1 <.1 .1	90 110 79	1.68 .95 .53	.044 .058 .132	10 12 7	50.3 48.1 40.6	1.21 1.16 .95	70 124 150	.195 .238 .165	13. 13. 14.	72 .0 29 .0 26 .0)52)44)25	.08 < .05 < .07 <	1 .07 1 .05 1 .04	12.6 7.8 5.4	<.l< <.l< <.l<	.05 .05 .05	7 <.5 10 <.5 8 <.5 10 .6 9 .5	30 15 30 30 30	
S. S.	1-265 1-266 1-267 1-268 1-269			.6 .5 .7	37.2 30.9 23.0	6.2 3.8 5.9	82 49 70	.1 .1 .1	64.5 42.7 33.5	19.5 15.6 12.3	508 1080 496 649 797	3.45 3.35 2.81	2.8 4.0 4.1	.4 .6 .5	1.7 5.2 .5	1.0 1.4 1.3	52 149 80	.2 <.1 :1	.2 .1 .2	.1 .1 .1	82 86 69	.60 .76 .48	.146 .083 .130	6 9 8	29.8 46.8	1.50 1.52 .99	84 137 121	. 184 . 163 . 128	13. 14. 13.	37 .0 20 .0 44 .0)21)27)17	07 . 07 .	1 .04 1 .03 1 .05	5.7 7.0 4.5	<.1< <.1< <.1<	.05 .05 .05	9 <.5 11 <.5 9 <.5 9 <.5 10 <.5	30 30 30 30 30 30	
SU SU SU	1-270 1-271 1-272 1-273 1-274			.4 .7 .4	63.8 71.9 42.0	1.9 2.7 4.3	87 57 66	<.1 .1 .1	88.2 65.6 46.3	38.6 32.3 17.5	649	5.87 5.23 3.05	2.5 2.6 1.9	.2 .4 .7	.5 <.5 .6	1.0 .9 1.7	186 161 120	.2 · .1 .1	<.1 · .1 · .1 ·	<.1 <.1 <.1	98 79 76	1.30 .84 1.65	.092 .080 .146	13 8 11	66.8 35.6 48.5	2.98 3.18 1.72	69 111 57	.044 .097 .249	1 3. <1 4.	16 .0 89 .0 70 .0)56)29)39	12 <	L .04 L .05 L .03	18.0 6.4 9.3	.1< <.1< <.1<	.05 .05 .05	7 <.5 7 .5 10 <.5 11 <.5 8 <.5	30 30 30 30 30 30	
SU SU SU	1-275 1-276 1-277 1-278 1-279			.6 .7 .3	27.4 35.6 41.3	4.7 5.0 4.7	70 70 53	.1 .1 <.1	35.6 42.9 51.4	13.8 16.0 18.1	823 525 567 697 268	3.35 3.51 3.84	4.5 12.5 4.7	.4 .6 .6	2.2 1.5 2.0	1.2 1.6 2.0	98 76 179	.1 .1 .1	.2 .2 .2	.1 .1 .1	80 82 72	.66 .52 1.01	.076 .145 .057	9 8 19	38.3 39.6 40.7	.99 1.07 1.38	132 118 113	.132 .134 .058	13. 13. 13.	43 .0 94 .0 00 .0)26 .)16 .)35 .	07 <.1 16 <.1	L .02 L .04 L .04	6.3 6.3 10.5	<.1< .1< .1<	.05 .05 .05	11 <.5 9 .5 9 <.5 7 <.5 9 <.5	30 30 30 15 15	
S. S.	SJ-279 J-280 J-281 J-282 J-283	9		.6 .5 .5	29.0 24.1	6.4 6.6 4.0	64 75 67	.2 .3 .1	31.7 34.9 48.9	12.5 11.0 15.7	264 484 635 552 705	2.83 2.82 3.31	4.4 24.2 1.9	.5 .5 .4	.7 1.1 .7	1.1 1.5 1.0	76 42 188	.1 .1 .1	.2 .2 .1	.1 .1 .1	71 76 91	.56	.124 .126 .094	7 5 9	34.5 32.5 36.0 44.7 42.0	.83 .63 1.33	131 124 125	.157 .111 .218	13.	46 .0 65 .0 49 .0	18 . 21 . 32 .		.05 .04 .02	4.6 4.9 5.8	<.1< .1< <.1<	.05 .05 .05	9 <.5	15 30 30 15 30	
S. S.)-284)-285)-286)-287)-288			.7 .7 .3	39.3	4.9 4.3 6.6	66 57 68	.1 .1 .1	40.5 40.8 67.8	13.7 13.7 23.4	1231 437 341 1083 420	3.23 3.16 3.49	4.7 3.1 1.9	.4 .4 .8	1.5 <.5 <.5	1.3 1.4 1.4	63 107 166	.1 .1 .1	.2 .1 .1	.1 .1 .1	82 75 107 1	.38 .38 1.27	.107 .082 .099	6 6 13	40.0 48.9	.96 1.01 1.77	136 95 64	.170 .172 .354	1 3. <1 4. 1 3.	B6 .0 03 .0 09 .0	14 . 18 . 41 .	08 <.1	.04 .04 .03	4.7 4.9 10.3	<.1< <.1< <.1	.05 .05 .06	9 <.5 10 <.5 10 <.5 9 <.5 9 .5	30 30 30 30 30 30	
Su Su Su]-289]-290]-291]-292 [ANDARD	DS5		.4 .4 .9	22.9	4.3 6.9 5.3	72 75 70	.1 .1 .1	32.3 56.0 47.3	13.2 21.5 14.4	411 583 1552 672 758	2.99 3.45 3.20	3.1 2.9 4.7	.4 .5 .7	.8 .5 .9	1.8	64 44 74	.2 .2 .1	.2 .2 .2	.1 .1 .1	71 58 83	.43 .80 .30	.077 .091 .127	7 14 6		.77 1.27 1.27	124 90 112	. 151 . 307 . 212	1 3. 1 2. <1 4.	29 .0 50 .0 82 .0	17 . 22 . 21 .	07 <.1	.03 .12 .04	6.4 11.8 6.1	.1< <.1 .1<	.05 .08 .05	9 <.5 8 <.5 9 <.5 11 .6 7 4.8	30 30 30 30 30 30	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🔓 FA

ACME ANALYTICAL

Almaden Minerals Ltd. PROJECT SAM04-2 FILE # A406178 Page 10 ACHE ANALYTICAL SAMPLE# Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Mo Cu Ca P La Cr Mg Ba Ti B A] Na K W Hg Sc Tl S Ga Se Sample ppm ppm ppm ppm ppm ppm % ppm ppm ppb ppm ppm ppm ppm ppm ppm 8 % ppm ppm % ppm % ppm X % % ppm ppm ppm ppm % ppm ppm DDW am SJ-293 1.1 18.7 5.7 68 .1 32.1 11.5 262 3.34 3.9 .3 1.4 1.2 27 .1 .2 .1 72 .19 .044 4 38.7 .70 132 .106 2 2.93 .014 .04 .1 .03 3.2 < .1 .08 10 < .5 30.0 SJ-294 .6 25.8 5.3 60 .1 33.7 13.3 368 3.34 5.8 .6 1.2 1.9 101 .1 .3 .1 87 .50 .071 8 46.3 .84 155 .158 2 3.79 .020 .08 <.1 .02 5.3 .1<.05 10 <.5 30.0 SJ-295 .5 41.0 7.1 80 .1 41.9 17.3 737 3.84 4.5 .4 <.5 1.1 158 .2 .2 .2 64 .80 .091 7 39.7 1.13 100 .253 2 2.88 .036 .07 <.1 .03 6.3 <.1<.05 9 <.5 30.0 SJ-296 1.0 27.0 6.3 61 .1 34.9 12.4 449 3.46 5.4 .5 1.0 1.6 58 .1 .2 .1 84 .33 .129 6 30.6 .87 94 .218 2 4.10 .021 .06 .1 .04 5.2 < 1<.05 11 .6 30.0 SJ-297 .6 34.6 5.6 60 .1 33.4 15.0 413 3.76 5.2 .8 1.3 1.9 77 .1 .2 .1 77 .86 .077 15 34.4 1.10 145 .180 1 4.93 .022 .14 <.1 .06 8.7 .1<.05 11 <.5 30.0 SJ-298 1.0 50.2 4.7 69 .2 58.8 15.6 513 4.08 6.3 .7 1.0 2.1 91 .1 .2 .1 89 .75 .096 10 39.2 1.27 129 .309 1 4.63 .017 .09 .1 .23 6.7 <.1<.05 13 <.5 30.0 SJ-299 .7 26.3 5.2 53 .1 32.6 12.6 361 3.51 5.7 .6 .9 1.4 91 .1 .3 .1 94 .51 .081 9 40.4 .96 145 .173 1 3.78 .020 .06 < .1 .04 5.8 < .1 < .05 9 < .5 30.0 SJ-300 .6 26.4 4.8 50 .1 37.0 13.5 426 3.28 4.3 .9 .7 2.5 166 .1 .2 .1 81 .85 .084 14 42.0 1.10 186 .202 1 4.26 .030 .07 .1 .04 7.7 <.1<0.5 11 <.5 30.0 1.2 26.2 4.6 54 .1 33.0 11.4 389 3.15 5.7 .7 .8 1.8 62 .1 .2 .1 80 .50 .158 6 35.3 .85 90 .199 1 4.33 .016 .06 .2 .06 4.7 <.1<.05 10 .6 SJ-301 30.0 SJ-302 1.3 20.5 5.7 63 .1 30.7 10.4 508 2.92 4.1 .5 1.0 1.4 34 .1 .2 .1 67 .23 .131 6 34.7 .71 107 .152 2 3.24 .014 .06 .1 .04 4.4 .1<.05 9 <.5 30.0 SJ-303 .8 29.6 5.4 63 .1 37.2 14.4 421 3.54 7.8 .7 1.0 1.6 110 .1 .2 .1 91 .64 .107 9 47.8 1.06 204 .198 1 4.59 .026 .05 < .1 .05 6.4 < .1 < .05 11 < .5 30.0 SJ-304 1.2 17.4 6.0 80 .1 26.4 10.7 320 3.00 5.2 .5 1.1 1.1 37 .1 .2 .1 67 .35 .078 6 33.0 .63 116 .105 2 3.36 .016 .05 .1 .03 3.7 <.1<.05 9 <.5 30:0 SJ-305 .6 24.3 5.7 54 <.1 37.5 13.8 379 3.29 3.6 .6 6.6 1.8 88 .1 .2 .1 81 .55 .083 6 36.5 .95 193 .171 1 4.45 .016 .11 .1 .05 5.8 <.1< .05 11 <.5 30.0 SJ-306 1.2 31.1 6.4 63 .1 28.0 11.1 382 3.16 3.4 .6 .8 1.2 49 .1 .2 .1 83 .36 .116 7 30.9 .73 109 .191 2 3.51 .018 .08 .1 .05 5.1 < 1< .05 10 .5 15.0 RE SJ-306 1.2 30.9 6.0 63 .1 26.2 10.3 379 3.18 3.5 .6 1.0 1.2 50 .1 .2 .1 79 .35 .121 7 29.1 .72 102 .193 1 3.62 .017 .07 .1 .07 5.1 .1<05 10 <.5 15.0 SJ-307 30.0 SJ-308 .9 20.1 6.3 61 .1 28.1 11.4 388 3.09 4.4 .5 1.8 1.5 52 .1 .2 .1 74 .29 .087 6 30.6 .80 123 .160 1 3.56 .016 .08 .1 .05 4.0 .1<0.5 9 .5 30.0 .8 26.4 5.8 80 .1 32.2 14.6 722 3.46 4.3 .7 2.3 1.4 42 .2 .2 .1 97 .65 .114 9 31.7 1.01 95 214 3 4.15 .021 .07 .1 .05 5.6 <.1<.05 12 <.5 30.0 SJ-309 SJ-310 .6 30.6 5.0 63 .1 25.1 10.8 447 2.80 3.1 .6 1.6 1.2 56 <.1 .1 .1 78 1.05 .116 9 24.6 .91 63 .181 2 4.41 .019 .08 .1 .05 6.5 <.1<0.05 14 .6 30.0 SJ-311 .7 27.1 4.9 70 .1 33.6 11.5 567 3.04 4.9 .5 17.3 1.3 47 .1 .2 .1 76 .40 .127 6 35.2 .90 101 .156 3 3.10 .016 .07 .1 .05 4.7 < .1<05 10 < .5 30.0 SJ-312 .5 24.0 8.8 58 .2 24.9 10.3 406 2.93 4.8 .6 2.0 1.6 97 .1 .3 .1 71 .73 .061 12 31.7 .91 103 .164 1 3.75 .029 .09 .1 .06 5.6 < .1<05 10 < .5 30.0 SJ-313 .5 34,7 4,8 57 .1 37,8 13,1 464 3,45 5,4 .8 1.0 1.9 158 .1 .3 .1 102 .84 .084 15 44.2 1.16 123 .269 2 3.79 .033 .08 .1 .06 7.5 < .1<0.05 10 .6 30.0 SJ-314 .5 33.8 4.0 55 .1 28.1 14.4 467 3.31 2.6 .9 1.3 2.3 129 .1 .2 .1 89 1.04 .050 13 29.3 1.10 79 .221 2 3.72 .044 .08 < 1.03 9.2 < 1<05 10 < 5 30.0 SJ-315 .3 31.5 4.7 62 .1 35.5 15.4 549 3.41 2.7 .9 1.7 2.1 126 .1 .1 .1 100 1.14 .059 14 29.2 1.27 72 .272 2 4.15 .036 .08 <.1 .03 9.3 <.1 <.05 12 .5 30.0 SJ-316 2 32.8 4.1 63 .1 54.7 18.0 628 3.68 2.2 1.0 1.3 1.9 149 .1 .1 103 1.17 .043 17 42.0 1.61 79 .374 1 3.60 .042 .09 < 1 .02 11.1 < .1< .05 11 < .5 30.0 .5 27.0 4.3 63 .1 41.0 13.2 498 2.91 3.5 .6 2.0 1.4 184 .1 .1 .1 71 .77 .076 9 34.4 1.17 110 .221 2 3.53 .031 .08 .1 .04 5.6 < .1 < .05 10 .5 SJ-317 30.0 SJ-318 .5 28.8 4.3 58 .1 54.1 15.5 491 3.40 3.6 .9 7.4 2.2 278 .1 .2 .1 92 .80 .079 12 48.3 1.60 139 .277 1 4.12 .034 .07 <.1 .05 7.8 <.1<.05 11 .6 30.0 SJ-319 7 37.9 5.1 50 .2 41.0 14.0 747 3.11 6.8 1.0 3.0 1.4 98 .1 .2 .1 105 1.04 .050 17 48.2 1.19 71 .169 1 2.57 .034 .05 < .1 .06 10.4 < .1 < .05 8 < .5 7.5 .5 37.9 3.6 76 .1 61.8 18.0 679 3.59 4.4 .5 1.2 1.4 174 .1 .1 .1 75 .90 .130 12 57.8 1.41 125 .177 2 3.90 .031 .07 .1 .05 9.4 <.1<.05 11 <.5 30.0 SJ-320 .9 19.6 5.3 47 .1 21.7 10.4 414 3.00 5.0 .5 5.9 1.2 57 .1 .3 .1 92 .65 .022 9 37.9 .65 64 .205 2 1.53 .023 .06 < 1 .02 5.3 < .1 < .05 6 < .5 30.0 SJ-321 .6 14.4 4.9 66 .2 26.9 10.8 462 2.64 3.1 .4 1.1 .9 60 .1 .2 .1 66 .47 .130 5 27.8 .62 103 .173 2 2.54 .018 .10 .1 .04 4.9 <.1<.05 30.0 8 < 5 SJ-322 .5 26.1 5.0 68 .1 24.6 12.1 481 3.31 4.9 .7 2.2 1.3 117 .1 .3 .1 103 .76 .102 11 32.0 1.00 105 .258 2 2.62 .022 .12 .1 .04 7.7 <.1<.05 8 <.5 30.0 SJ-323 .6 18.9 5.2 69 .2 23.8 9.2 450 2.47 4.7 .5 1.3 1.1 56 .1 .2 .1 70 .51 .107 8 28.4 .62 99 .145 2 2.38 .018 .08 < 1 .03 4.5 < .1 < .05 7 < .5 30.0 SJ-324 .8 21.1 5.1 60 .1 28.6 10.9 454 2.96 6.5 .6 4.8 1.2 89 .1 .3 .1 81 .68 .078 11 35.9 .80 90 .205 2 2.41 .022 .08 .1 .03 5.6 < .1 < .05 7 .5 30.0 SJ-325 STANDARD DS5 12.6 138.1 24.1 136 .3 22.9 11.3 768 2.96 17.8 6.3 41.4 2.8 48 5.6 4.0 6.1 62 .69 .090 12 182.2 .68 136 .093 16 1.93 .033 .14 4.8 .18 3.4 1.1<0.5 6 5.0 30.0

Data \

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi ۷ Ca ΡLa Cr Mg Ba Ti B Al Na K W Hg Sc T1 S Ga Se Sample mad wad wad wad wad wad wad % pom pom pob pom pom pom pom pom pom maa 2 % ppm ppm % ppm % ppm .% % % pom pom pom pom % pom pom am SJ-326 .6 24.4 4.4 40 .1 26.5 10.0 346 2.91 4.7 .5 3.5 1.1 100 .1 .2 .1 93 .67 .046 7 31.3 .67 95 .231 <1 2.13 .025 .08 <.1 .03 4.7 <.1 .06 7 <.5 30 SJ-327 1.5 42.2 6.1 56 .1 37.1 15.9 893 3.50 9.2 .5 7.1 1.4 102 .1 .4 .1 79 1.44 .097 17 35.8 1.16 103 .138 2 2.33 .040 .09 .1 .04 6.9 < 1 < .05 8 < .5 30 SJ-328 .6 69.1 4.5 44 .1 51.2 17.2 706 4.06 8.0 .8 5.7 1.6 321 .1 .6 <.1 99 1.62 .066 22 43.4 1.09 210 .185 1 3.37 .073 .09 <.1 .14 11.0 <.1 <.05 9 .5 30 SJ-329 .7 24.5 5.1 43 .1 28.0 9.3 325 2.91 5.2 .5 3.7 1.1 98 .1 .3 .1 90 .61 .034 8 35.2 .70 94 .253 1 2.43 .024 .11 < 1 .03 5.0 < 1 < .05 7 < .5 30 SJ-330 .6 11.5 5.5 98 .1 19.3 6.5 621 1.77 3.3 .3 .6 1.3 48 .2 .1 .1 42 .49 .326 6 25.1 .35 151 .103 1 1.94 .020 .08 .1 .03 3.9 < .1 < .05 7 < .5 30 SJ-331 .9 27.2 5.4 44 .1 26.2 10.8 509 2.98 6.9 .5 7.5 1.1 89 <.1 .3 .1 88 .81 .075 11 35.0 .78 81 .203 1 2.23 .023 .09 <.1 .02 6.4 <.1 < .05 7 <.5 30 SJ-332 .9 33.7 4.7 44 .1 31.6 12.5 445 3.29 6.2 .6 16.0 1.4 108 .1 .3 .1 99 1.10 .039 14 40.3 .96 108 .214 1 2.98 .032 .06 < 1 .03 8.0 < .1 < .05 9 < .5 30 SJ-333 .7 41.4 4.2 63 .1 47.5 16.4 607 3.26 3.0 .5 1.3 1.4 295 .1 .1 .1 69 .71 .114 9 39.8 1.31 185 .168 1 4.43 .020 .12 < 1 .02 6.4 < .1 < .05 10 < .5 30 SJ-334 .6 24.8 5.3 86 .2 30.6 9.6 576 2.45 3.7 .4 3.1 1.1 65 .1 .2 .1 63 .51 .133 6 30.1 .60 104 .150 2 2.43 .017 .10 < 1 .02 4.3 < .1 < .05 7 < .5 30 SJ-335 .5 19.7 4.8 89 .3 33.6 10.9 492 2.40 2.9 .3 2.1 1.1 39 .1 .2 .1 55 .34 .145 5 29.3 .58 112 .108 2 2.67 .016 .10 < 1 .02 3.8 < 1<.05 8 < 5 30 SJ-336 .6 30.0 4.5 47 .1 33.2 10.2 371 2.94 4.1 .7 2.7 1.5 100 .1 .2 .1 91 .70 .037 16 38.4 .81 81 .271 <1 2.50 .029 .08 < 1 .02 7.8 < 1<0.5 7 < 5 30 SJ-337 .6 20.8 4.6 74 .2 32.7 11.3 510 2.82 4.1 .5 1.4 1.0 53 .1 .2 .1 72 .57 .182 7 33.7 .67 80 .208 2 2.30 .021 .10 .1 .03 4.6 < .1< .05 7 < .5 30 .5 30.8 4.5 54 .1 36.3 12.4 431 3.04 4.5 .5 2.7 1.0 99 .1 .2 .1 88 .82 .076 SJ-338 7 38.9 .95 81 .230 3 2.65 .025 .14 < 1 .02 5.7 < 1<.05 8 .6 30 SJ-339 .5 17.5 5.2 46 .1 26.7 8.6 391 2.71 3.4 .5 2.7 .9 65 .1 .2 .1 85 .72 .024 7 36.0 .63 92 .231 3 2.09 .034 .06 <.1 .02 4.9 <.1<.05 6 <.5 30 SJ-340 .6 24.7 5.0 70 .1 30.0 10.5 487 3.06 3.3 .6 1.9 1.2 62 .1 .2 .1 85 .72 .051 8 35.5 .81 70 .255 1 1.95 .027 .08 <.1 .02 6.2 <.1<.05 7 <.5 30 SJ-341 .4 22.4 4.9 92 .2 35.4 9.2 429 2.43 2.8 .4 10.0 1.2 41 .1 .2 .1 59 .43 .119 5 30.8 .58 86 .141 1 2.31 .021 .09 .1 .02 3.8 < .1 < .05 8 < .5 30 SJ-342 .6 28.0 5.3 72 .1 34.1 12.1 513 3.01 3.2 .6 5.5 1.2 65 .1 .2 .1 77 .69 .070 10 33.4 .91 69 .256 1 2.28 .025 .13 < 1 .02 6.3 < 1 < .05 8 < .5 30 SJ-343 .5 43.7 4.2 57 .2 42.0 13.4 432 3.35 3.8 .6 1.1 1.3 109 .1 .2 .1 91 1.09 .070 9 35.7 1.21 78 .247 1 3.55 .028 .09 < 1 .02 7.1 < .1 < .05 11 < .5 15 RE SJ-343 .5 42.7 4.5 60 .2 41.4 13.8 442 3.29 3.6 .7 1.5 1.4 111 .1 .2 .1 96 1.13 .071 8 36.0 1.25 72 .258 2 3.70 .029 .08 .1 .01 7.5 < .1< .05 11 < .5 15 SJ-344 .3 30.7 3.6 61 .1 43.9 10.3 435 2.43 3.9 .5 1.1 1.1 68 .2 .1 .1 59 .89 .165 11 35.1 .87 58 .164 2 2.46 .022 .07 < 1 .04 7.7 < 1<.05 8 < 5 30 SJ-345 .5 41.1 6.6 72 .2 51.2 14.7 770 3.04 3.5 .6 11.5 1.1 125 .1 .2 .1 76 1.12 .112 10 38.8 1.30 87 .247 2 3.38 .024 .10 <.1 .04 7.3 <.1 < .05 10 .5 30 SJ-346 .4 21.2 5.5 59 .1 36.6 10.1 461 2.59 2.3 .4 4.2 .9 110 .1 .2 .1 69 .97 .051 6 32.7 .90 75 .232 1 2.69 .033 .05 .1 .02 4.8 <.1<.05 8 <.5 30 SJ-347 .5 23.6 4.7 76 .1 46.7 13.4 464 3.12 3.5 .5 1.5 1.2 111 .1 .2 .1 71 .59 .070 7 39.8 1.12 141 .163 1 3.59 .024 .04 <.1 .03 5.0 <.1<.05 9 <.5 30 SJ-348 .6 30.8 4.4 87 .2 41.0 11.1 420 2.57 3.1 .4 1.5 1.1 52 .2 .2 .1 64 .43 .077 6 37.6 .85 131 .150 2 2.62 .023 .09 <.1 .03 3.9 <.1 <.05 30 8 <.5 SJ-349 .6 21.1 4.7 64 .1 26.5 9.0 360 2.84 3.1 .4 1.8 1.0 60 .1 .2 .1 78 .51 .051 6 32.5 .67 93 .217 1 2.10 .023 .12 <.1 .01 5.2 <.1<.05 7 < .5 30 .6 19.0 5.6 51 .1 29.2 10.2 362 3.02 2.7 .5 1.7 .9 81 .1 .3 .1 85 .60 .038 SJ-350 6 34.6 .73 87 .280 1 2.10 .019 .14 < 1 .01 4.5 < .1<.05 6 < .5 30 .5 31.6 4.8 62 .1 43.5 13.2 370 3.35 4.2 .6 1.6 1.4 84 .2 .2 .1 85 .66 .075 SJ-351 8 42.6 .98 81 .226 1 2.88 .024 .12 <.1 .02 7.0 <.1<.05 9 <.5 30 SJ-352 .5 41.7 4.2 47 .1 39.5 11.7 397 3.36 3.5 .6 3.8 1.5 132 .1 .2 .1 99 1.28 .072 12 43.0 1.05 66 .290 1 2.89 .054 .07 < 1 .04 10.5 < .1 < .05 8 < .5 30 SJ-353 .3 44.2 3.3 64 .1 72.3 18.7 495 3.71 4.1 .7 1.5 1.6 119 .1 .1 <.1 94 1.65 .057 10 58.3 1.58 40 .269 3 4.18 .037 .11 <.1 .02 11.4 <.1<.05 11 <.5 30 SJ-354 .3 45.5 3.6 73 .1 69.8 18.4 787 3.80 2.9 .7 .9 1.4 172 .1 .1 <.1 102 1.26 .047 11 60.8 1.79 61 .316 2 3.43 .034 .12 <.1 .01 11.6 <.1 < .05 11 <.5 30 30 SJ-355 .3 45.6 3.8 71 .1 54.8 17.3 510 3.47 2.6 .8 2.5 2.0 125 .2 .1 <.1 85 2.17 .087 11 32.3 1.44 41 .265 3 3.94 .027 .13 <.1 .02 8.9 <.1 <.05 13 <.5 SJ-356 1.1 46.0 5.8 55 .1 32.7 13.4 706 3.36 5.4 .7 3.2 1.8 129 .1 .3 .1 92 1.30 .087 15 36.6 1.01 76 .246 1 2.80 .038 .11 .1 .04 8.9 < .1< .05 8 < .5 30 SJ-357 .4 35.5 6.0 94 .1 26.8 10.8 614 2.57 3.6 .5 .9 1.8 104 .2 .1 .1 63 .82 .248 8 25.6 .76 56 .159 4 2.94 .025 .14 .1 .03 6.6 < .1< .05 9 < .5 30 .6 39.5 4.7 50 .1 28.9 12.4 590 3.16 5.3 .5 3.4 1.4 123 .1 .3 .1 91 1.15 .085 12 34.8 .99 58 .209 2 2.58 .044 .07 < .1 .03 8.4 < .1 < .05 7 < .5 30 SJ-358 STANDARD DS5 12.9 141.2 25.3 128 .3 24.3 10.9 776 2.87 17.5 5.9 43.7 2.6 47 5.5 3.8 5.8 57 .74 .100 12 177.7 .65 137 .092 17 2.00 .033 .14 4.8 .17 3.4 1.0<.05 7 4.9 30

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (F

ACHE ANALYTICAL

Almaden Minerals Ltd. PROJECT SAM04-2 FILE # A406178

ACME ANALYTICAL SAMPLE# Мо Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al K W Hq Sc T1 S Ga Se Sample Na DDM ppm ppm ppm ppm ppm ppm % ppm ppm ppb ppm ppm ppm ppm ppm ppm X % ppm ppm °% ppm % ppm - % % % ppm ppm ppm ppm % ppm ppm am SJ-359 .4 16.1 4.7 58 .1 25.7 8.9 391 2.42 2.0 .3 .6 1.0 56 .1 .2 .1 67 .46 .027 5 36.3 .70 84 .152 <1 1.88 .015 .05 < 1 .02 3.7 < 1 .06 6 < 5 30 SJ-360 .4 16.7 4.6 100 .1 25.7 8.8 477 2.16 3.2 .3 1.6 .9 37 .1 .3 .1 53 .41 .092 4 25.8 .66 113 .131 1 2.09 .013 .08 <.1 .02 3.4 <.1<.05 7 <.5 30 SJ-361 .4 25.0 4.5 50 .1 21.3 9.0 261 2.57 3.3 .4 2.3 1.1 76 <.1 .2 .1 68 .57 .047 7 29.5 .67 101 .124 <1 2.19 .021 .05 <.1 .02 3.9 <.1<.05 7 <.5 30 SJ-362 .5 18.3 5.4 104 .1 24.2 9.2 657 2.24 3.1 .3 2.5 1.2 43 .1 .2 .1 57 .31 .063 5 30.3 .61 146 .104 1 2.81 .016 .06 <.1 .02 3.4 .1<.05 8 <.5 30 SJ-363 9 18.6 .50 99 .030 <1 2.21 .031 .03 <.1 .02 4.4 <.1<.05 .1 22.0 3.0 44 .1 13.7 7.6 211 2.19 2.7 .3 1.6 .8 112 <.1 .2 .1 53 .81 .040 30 7 <.5 SJ-364 .5 27.1 4.6 63 .1 20.2 9.1 305 2.66 4.9 .4 1.2 1.0 67 .1 .2 .1 66 .47 .080 7 27.8 .66 102 .118 1 2.47 .017 .05 < 1 .02 4.2 < .1 < .05 8 < .5 30 SJ-365 .5 39.9 4.4 51 .2 26.2 10.5 322 2.77 3.8 .5 13.3 1.0 68 .1 .3 .1 74 .58 .024 8 35.4 .76 67 .146 1 1.98 .022 .04 <.1 .03 4.4 <.1<.05 6 <.5 30 .5 22.4 5.3 125 .1 29.2 9.2 424 2.28 3.9 .4 2.0 1.3 29 .1 .2 .1 50 .34 .167 6 27.7 .62 107 .115 2 2.25 .017 .12 <.1 .02 3.8 <.1<.05 7 <.5 30 SJ-366 SJ-367 .2 19.3 4.5 74 .1 21.6 8.3 260 2.16 2.9 .4 2.0 1.2 43 .1 .2 .1 58 .34 .054 6 27.7 .59 140 .135 <1 2.19 .019 .07 <1 .02 4.2 <.1 <.05 6 <.5 30 SJ-368 .4 17.3 4.5 115 .1 25.4 8.3 415 2.01 3.5 .3 1.4 1.1 31 .2 .1 .1 48 .34 .186 4 24.0 .56 106 .096 2 1.91 .014 .10 .1 .03 3.3 <.1<.05 6 <.5 30 15 SJ-369 .4 15.1 4.4 62 .1 16.2 7.7 323 2.04 2.3 .3 9.0 .8 40 <.1 .2 .1 56 .38 .047 4 21.7 .52 71 .137 1 1.58 .016 .05 <.1 .01 3.1 <.1 < .05 5 <.5 SJ-370 .3 26.8 4.1 55 .2 25.0 9.4 346 2.30 3.8 .6 2.6 1.2 47 .1 .2 .1 65 .54 .024 9 31.6 .75 64 .145 1 2.17 .025 .06 < 1 .06 5.6 < .1 < .05 6 < .5 15 SJ-371 .7 23.5 4.7 53 .1 23.1 10.3 482 2.72 4.7 .5 3.7 1.2 71 .1 .3 .1 80 .70 .052 11 29.7 .73 81 .213 1 1.96 .021 .07 <.1 .03 6.4 <.1<.05 15 6 <.5 SJ-372 .4 36.8 4.2 52 .1 20.4 12.2 344 3.48 5.7 .7 4.0 1.4 78 .1 .3 <.1 112 1.01 .052 11 24.7 .84 52 .391 3 2.48 .023 .09 .1 .02 9.7 <.1<.05 9 <.5 30 .6 28.5 4.3 72 .2 22.4 9.3 403 2.33 3.8 .3 2.0 .7 60 .1 .1 .1 54 .50 .135 5 23.0 .74 83 .100 1 2.63 .016 .09 .1 .03 4.2 < .1< .05 15 SJ-373 7.5 RE SJ-373 .5 29.0 4.2 73 .2 22.8 10.0 413 2.38 3.8 .4 1.7 .7 59 .1 .2 .1 58 .50 .129 5 25.7 .74 83 .101 1 2.45 .014 .09 .1 .03 4.1 <.1<.05 7 <.5 15 15 .5 26.0 4.6 62 .1 28.0 10.5 316 2.59 4.0 .7 1.3 1.3 56 .1 .2 .1 56 .50 .101 7 30.6 .79 98 .134 2 2.65 .020 .10 .1 .03 5.0 .1<0.5 7 <.5 SJ-374 .4 21.7 4.6 90 .1 24.1 9.7 511 2.53 3.7 .3 1.1 1.0 55 .1 .1 .1 57 .41 .083 5 27.0 .74 103 .119 2 2.26 .014 .09 .1 .02 4.6 < .1<.05 7 < .5 30 SJ-375 30 SJ-376 .4 26.0 3.6 69 .1 26.2 8.7 318 2.29 3.6 .4 2.3 1.1 51 .1 .1 .1 55 .43 .078 5 28.0 .72 77 .105 2 2.11 .018 .07 <.1 .02 4.5 <.1<.05 6 <.5 .7 58.8 3.8 85 .1 25.9 12.9 569 3.43 7.0 .5 7.4 1.0 95 .1 .2 .1 103 .77 .037 9 39.8 1.26 93 .129 2 2.27 .030 .05 < 1 .04 11.0 < .1<.05 7 < .5 30 SJ-377 5 28.4 3.4 74 .1 28.9 10.4 372 2.67 5.7 .3 5.9 1.0 55 .1 .2 .1 67 .47 .066 5 34.1 .81 88 .120 1 2.25 .015 .11 < 1 .02 4.7 < 1 < .05 7 < .5 30 SJ-378 6 28.1 .68 124 .165 3 2.12 .017 .11 <.1 .02 4.0 <.1<.05 7 <.5 30 SJ-379 .4 16.9 4.2 78 .1 27.3 10.1 413 2.29 3.1 .4 3.6 1.0 49 .1 .1 .1 53 .54 .185 .5 22.3 5.4 84 .2 30.7 10.0 504 2.28 4.2 .4 1.9 .9 59 .2 .2 .1 60 .63 .106 6 28.7 .68 127 .147 3 2.31 .020 .10 <.1 .03 4.0 <.1 <.05 15 SJ-380 7 <.5 .6 27.0 4.8 76 .2 33.6 9.6 353 2.48 4.2 .5 1.8 1.6 33 .1 .1 .1 58 .31 .098 7 33.5 .67 137 .132 2 3.06 .018 .08 .1 .02 4.2 <.1<.05 30 8 <.5 SJ-381 1.0 40.9 5.3 53 .1 33.3 13.0 626 3.38 10.5 .6 10.4 1.4 107 .1 .3 .1 80 1.02 .086 18 41.7 1.07 101 .160 1 2.39 .022 .11 < 1 .03 9.4 < 1<.05 8 < 5 30 SJ-382 .6 19.3 3.9 61 .2 24.3 8.0 270 2.56 4.1 .4 3.1 .8 59 .1 .2 .1 71 .47 .051 6 28.3 .56 91 .185 2 1.80 .020 .07 < .1 .02 4.1 < .1<.05 6 < .5 30 SJ-383 30 .5 17.1 4.7 79 .1 26.4 8.5 415 2.26 3.7 .3 2.5 .9 40 < .1 .1 .1 55 .34 .153 4 27.8 .53 117 .128 1 2.26 .018 .06 .1 .02 3.7 < .1<.05 7 < .5 SJ-384 .3 20.8 4.2 41 .1 28.9 12.0 285 2.59 2.9 .5 2.4 1.0 102 .1 .1 .1 77 .73 .031 6 35.7 .90 90 .238 1 2.19 .030 .06 <.1 .01 5.3 <.1<.05 7 <.5 30 SJ-385 .5 25.7 4.3 119 .2 35.0 10.2 365 2.23 2.6 .4 2.3 1.4 33 .1 .2 .1 50 .37 .070 5 32.8 .69 171 .111 2 2.44 .018 .11 < .1 .02 4.1 .1<05 30 SJ-386 7 <.5 .7 24.3 5.0 60 .1 26.4 10.0 431 2.72 4.7 .5 3.3 1.2 91 .1 .3 .1 71 .77 .063 11 34.8 .81 91 .169 2 2.10 .021 .12 < 1 .04 6.5 < .1<.05 6 < .5 15 SJ-387 30 SJ-388 .4 21.1 4.9 106 .2 27.3 9.1 689 2.29 3.7 .6 1.8 1.2 34 .1 .1 .1 48 .32 .160 8 34.7 .71 133 .092 2 2.59 .017 .07 < 1 .02 4.2 .1<05 8 < .5 .6 21.1 4.8 97 .1 28.7 9.8 509 2.30 6.8 .4 2.1 1.1 38 .2 .2 .1 51 .43 .248 6 30.3 .54 160 .104 3 2.20 .016 .09 < 1 .02 4.6 < .1 < .05 7 < .5 30 SJ-389 .4 18.9 6.3 59 .1 22.3 8.2 583 1.94 4.9 .5 1.2 .8 68 .1 .2 .1 46 .69 .090 6 25.4 .52 105 .096 3 2.00 .023 .10 <.1 .01 3.1 <.1 <.05 6 <.5 30 SJ-390 .5 21.0 5.5 100 .1 26.0 10.2 736 2.22 3.6 .4 1.9 1.1 56 .1 .2 .1 57 .48 .152 6 28.6 .67 131 .129 2 2.52 .017 .08 < 1 .02 4.1 < .1 < .05 7 < .5 30 SJ-391 30 STANDARD DS5 12.5 138.2 25.1 141 .3 23.0 11.9 802 2.91 17.2 6.3 41.4 2.6 45 5.2 3.9 6.4 63 .75 .093 12 190.0 .70 135 .097 17 2.06 .033 .13 4.7 .18 3.5 1.1<.05 6 5.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

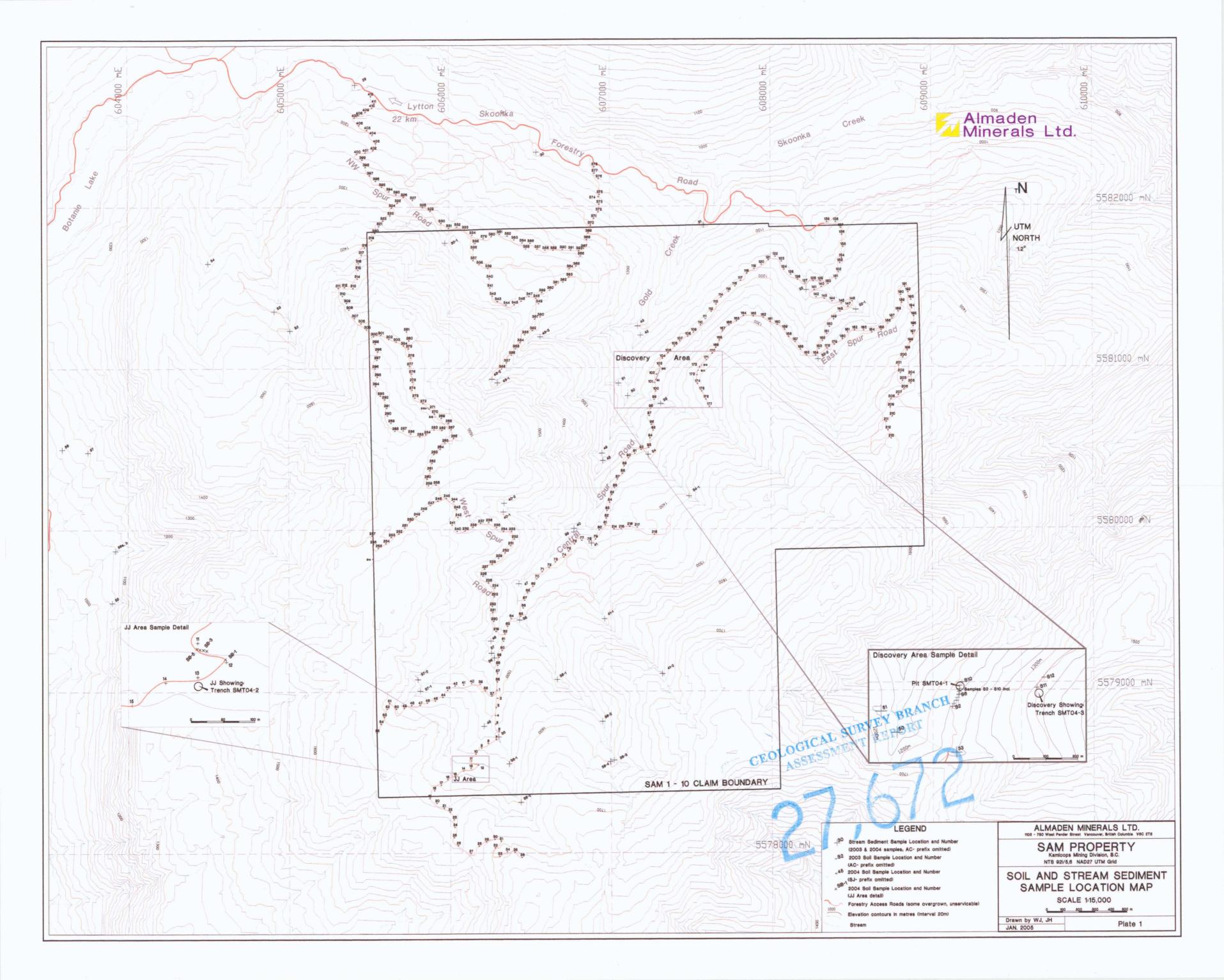
ACME ANALYTICAL

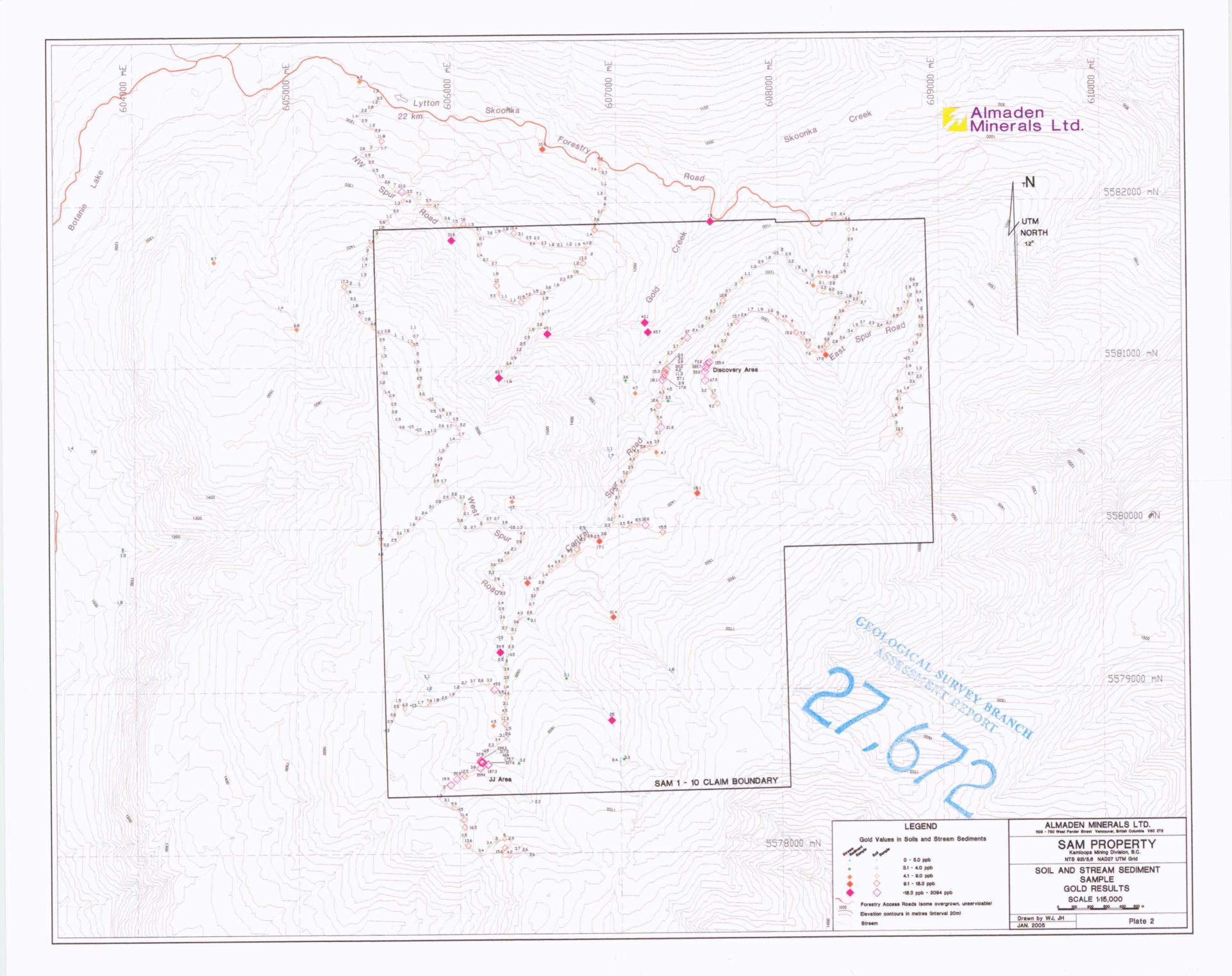
Almaden Minerals Ltd. PROJECT SAM04-2 FILE # A406178

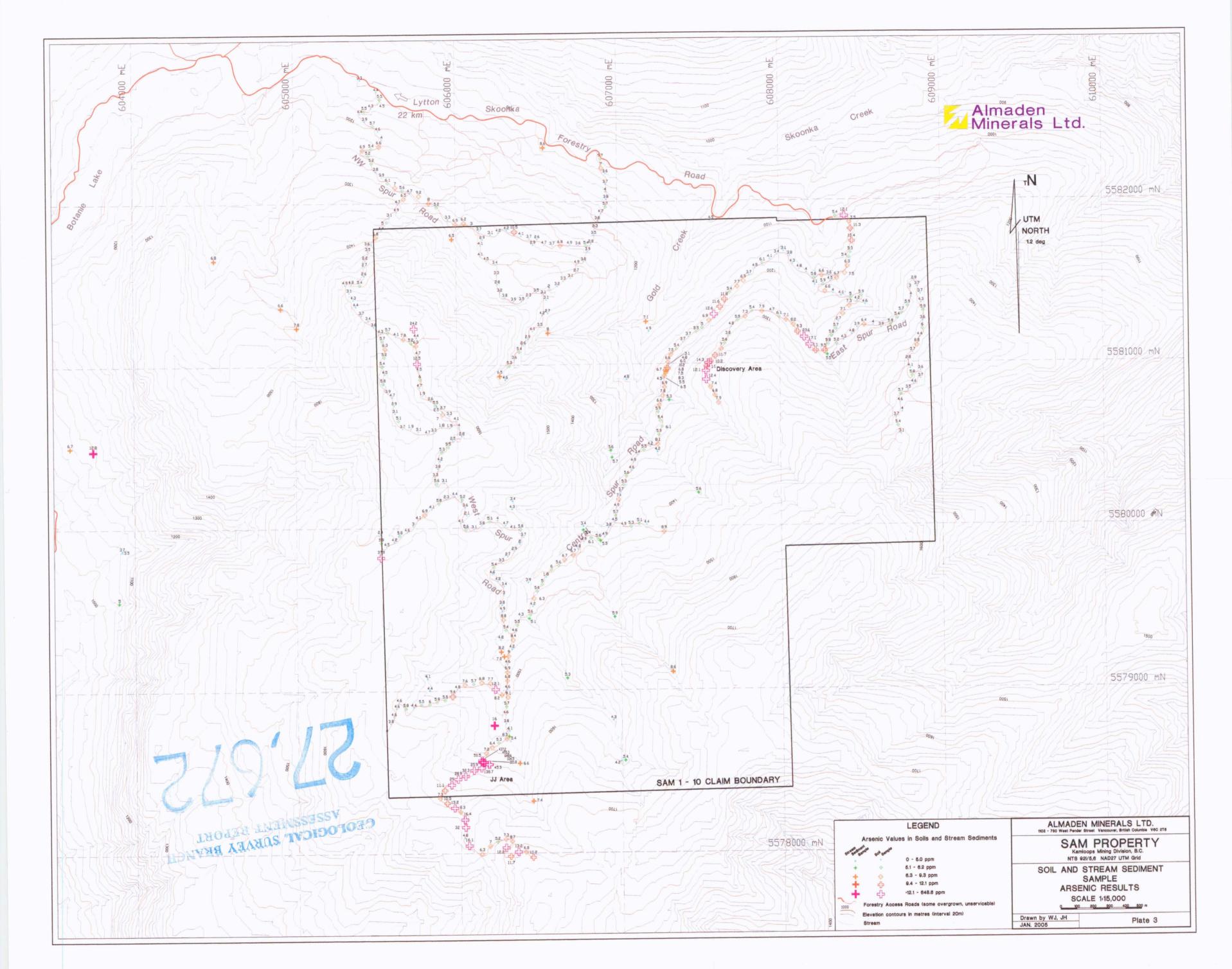
ACME ANALYTICAL SAMPLE# Mo Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V P La Cr Cu Ca Mg Ba Ti B Al Na K W Hg Sc Tl S Ga Se Sample % ppm ppm ppb ppm ppm ppm ppm ppm ppm % DDM mod mod mod mod mod mod % ppm ppm % ppm % ppm 8 mqq mqq % mqq mqq mqq % % qm SJ-392 .7 24.6 5.9 92 .1 25.1 10.2 804 2.45 5.4 .4 4.7 1.2 48 .1 .3 .1 58 .44 .142 5 27.7 .66 125 .114 2 2.56 .012 .08 < .1 .03 3.5 .1 .06 30 SJ-393 .9 23.5 5.1 47 .1 25.8 10.3 404 2.84 5.6 .6 20.2 1.1 103 .1 .3 <.1 89 .76 .052 10 34.1 .79 70 .229 2 1.81 .021 .07 .1 .02 5.3 <.1 .07 6 <.5 30 1.1 32.4 5.3 45 .1 28.0 11.8 541 2.94 7.0 .7 7.0 1.3 93 .1 .3 <.1 88 .83 .049 21 35.7 .89 82 .173 1 2.02 .020 .09 .1 .05 6.8 <.1<.05 SJ-394 6 <.5 15 SJ-395 .5 37.2 4.8 54 .1 41.6 14.6 519 3.14 6.1 .7 2.6 1.5 168 .1 .3 .1 97 1.37 .071 13 43.1 1.10 97 .205 1 2.94 .044 .06 .1 .07 7.3 < 1<.05 8 < 5 30 SJ-396 .5 39.2 4.5 50 .1 50.5 15.0 533 3.17 3.9 .5 1.5 1.1 289 .1 .3 <.1 98 1.20 .082 12 50.7 1.12 125 .224 1 3.52 .043 .08 .1 .06 7.0 <.1<.05 8.5 30 .6 33.9 4.9 71 .1 50.6 13.7 549 2.88 3.8 .5 .5 1.1 180 .1 .2 .1 78 .78 .125 8 54.8 1.05 125 .146 1 3.04 .031 .06 .1 .05 5.4 < .1 < .05 8 < .5 SJ-397 30 SJ-398 .5 28.0 4.9 44 .1 26.4 10.7 403 3.00 5.2 .9 2.9 1.5 135 .1 .4 .1 111 1.11 .042 11 38.7 .81 96 .279 2 2.40 .046 .05 .1 .09 7.3 < 1< .05 7 <.5 15 SJ-399 .5 33.0 5.6 52 .1 26.1 11.1 424 3.03 5.2 .8 .9 1.9 105 .1 .2 < 1 95 .94 .069 13 32.1 .88 85 .270 1 3.06 .025 .06 .1 .02 6.3 < .1 .05 9 .5 30 SJ-400 .6 37.4 5.6 52 <.1 25.9 10.5 456 3.11 6.9 1.0 3.8 2.1 149 .1 .2 .1 96 1.36 .066 17 32.9 .87 97 .278 1 3.55 .027 .08 .1 .09 8.5 <.1<05 10 .5 30 SJ-401 .6 37.5 4.9 48 <.1 31.7 11.5 484 3.31 5.4 .9 3.0 1.9 135 <.1 .2 <.1 98 1.22 .070 20 44.0 1.09 90 .250 1 3.36 .024 .08 .1 .07 8.8 <.1 <.05 9 <.5 15 RE SJ-401 .5 38.0 5.1 51 .1 30.4 12.0 516 3.48 6.0 .9 28.8 1.9 133 .1 .2 <.1 100 1.26 .072 20 45.5 1.11 91 .259 1 3.43 .024 .08 <.1 .07 9.3 <.1 <.05 10 <.5 15 SJ-402 .7 36.6 5.1 52 .1 24.4 11.6 404 3.18 6.6 .8 1.7 1.7 104 .1 .3 .1 96 .88 .043 15 32.4 .88 78 .242 <1 2.70 .025 .05 .1 .03 7.7 <.1<.05 8 <.5 30 .4 29.3 5.2 68 .1 24.8 9.0 268 2.47 4.0 .4 11.8 1.0 37 .1 .1 .1 74 .37 .019 7 36.3 .74 47 .110 1 2.15 .020 .04 < 1 .01 3.5 < .1< .05 6 < .5 SJ-403 30 SJ-404 .4 34.1 4.8 50 <.1 35.5 13.0 481 3.03 4.6 .8 2.2 1.8 129 .1 .2 <.1 88 1.49 .073 15 36.3 1.00 70 .257 1 3.03 .034 .06 .1 .06 8.0 <.1 .05 9 <.5 30 \$1-405 .7 30.1 5.6 70 .1 29.3 11.8 601 2.93 5.7 .6 1.2 1.4 71 .1 .2 .1 73 .70 .126 10 29.6 .95 111 .206 2 3.71 .019 .06 .1 .04 5.2 < .1< .05 11 <.5 30 SJ-406 .4 30.0 5.3 45 .1 24.4 9.8 370 2.89 3.9 .9 .9 1.7 114 .1 .2 <.1 81 1.11 .037 16 29.9 .77 63 .271 2 2.61 .036 .05 .1 .05 7.8 <.1 <.05 8 <.5 30 .5 35.0 5.0 56 .2 26.6 11.3 410 3.01 4.4 1.0 1.4 1.7 95 .1 .2 .1 86 .84 .029 13 34.3 1.02 84 .203 1 3.10 .025 .04 < 1 .06 7.8 < 1<.05 9 < .5 SJ-407 30 SJ-408 .5 43.9 4.5 59 .1 32.6 13.3 437 3.46 5.5 .7 2.2 1.7 132 .1 .2 .1 106 1.11 .038 16 43.3 1.08 109 .167 1 3.64 .039 .05 .1 .05 9.3 < .1<.05 9 .6 30 .4 29.6 5.1 68 .2 27.2 9.5 406 2.64 4.3 .7 .8 1.2 74 .1 .2 .1 80 .76 .036 8 33.4 .76 95 .172 1 2.61 .025 .04 .1 .05 6.0 < .1<.05 30 SJ-409 7 <.5 SJ-410 .5 32.8 4.6 60 .1 27.1 11.9 385 3.00 4.5 .6 1.2 1.4 114 .1 .2 .1 90 .85 .046 10 33.7 .90 103 .205 1 3.14 .020 .08 <.1 .03 6.0 <.1 <.05 9 <.5 30 .5 33.2 4.5 50 .1 27.8 11.8 479 3.40 5.5 .7 2.5 1.4 202 <.1 .3 .1 98 1.04 .047 14 36.5 .97 106 .229 1 3.06 .022 .08 <.1 .03 7.9 <.1<.05 8.5 30 SJ-411 SJ-412 .6 26.6 4.8 90 .2 30.2 10.7 477 2.47 4.4 .4 1.3 1.3 43 .1 .2 .1 58 .38 .140 6 31.0 .66 121 .110 2 2.51 .015 .06 <.1 .04 3.6 <.1 <.05 7 <.5 30 STANDARD DS5 12.6 141.0 25.4 131 .3 22.6 10.9 751 2.88 18.1 6.6 44.8 2.9 48 5.4 4.1 5.8 59 .75 .093 12 172.6 .72 134 .095 16 1.93 .033 .13 5.0 .17 3.3 1.0 < .05 6 4.9 30

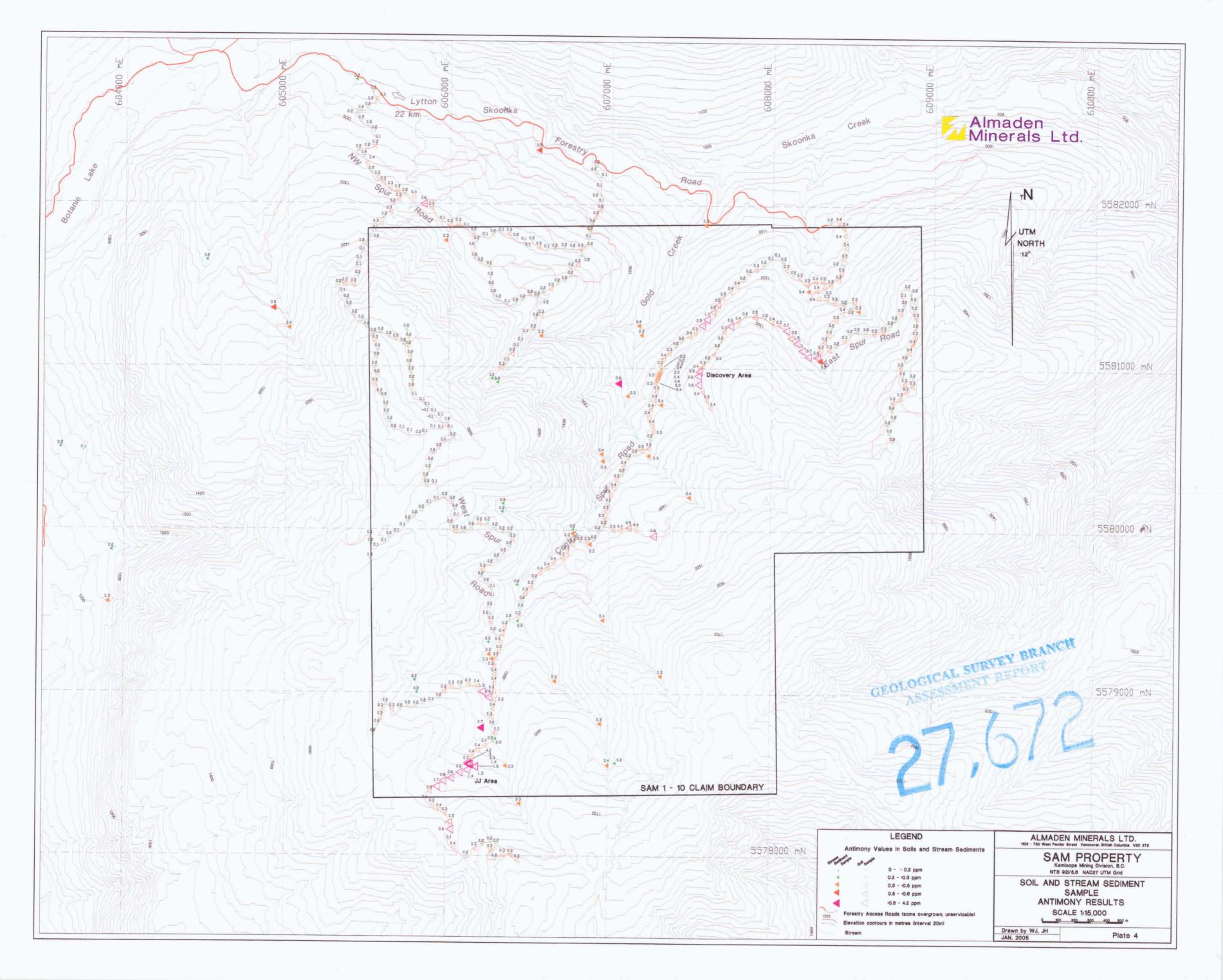
Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

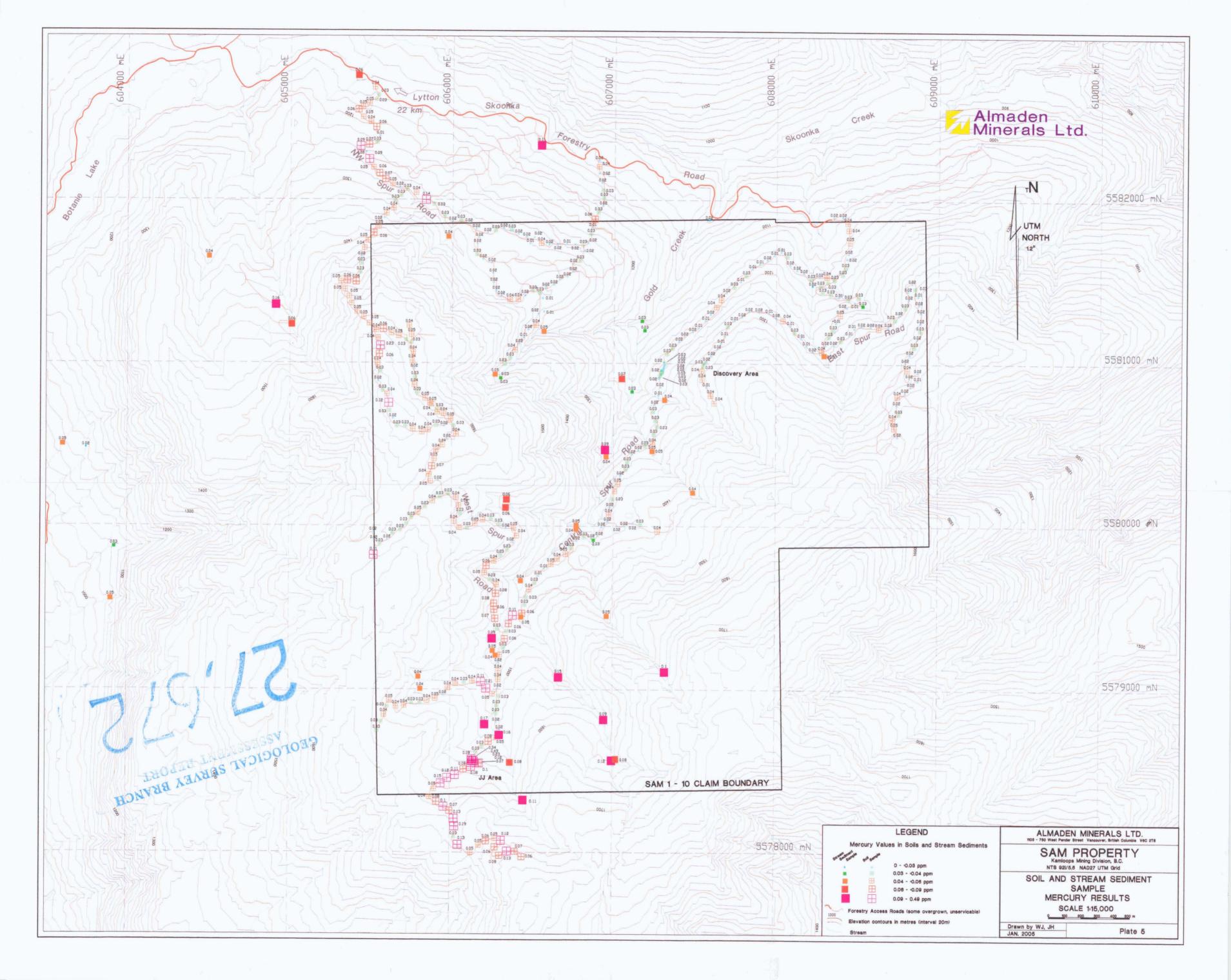
Data F/


ACME	ANN (ISO									8								DUVER			GA 1 ICAT		1	рно	NE (604) 253	3-3:	158	Fay	(6)) 4	83-	171 A /	5 A
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni		mad Mn		03 +		W. Pen	der	st.,	Vanco	ouver	BC	<u>3AM0</u> V6C 2T Ca	8 9		tted	by: E	d Bal		73 B	Al	Na	<u>к</u>	W	Ha	Sc	τι	s	Ga	L Se
· · ·	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ррт	ppb p	om pp	m pp	пррп	ı ppm	ppm	%	%	ppm	ppm	%	pm	% r	pm	%	%	%	ppm	ppm	ppm	ppm	%	ppm p	pm
SI	.1	.7		-		.2												.11<			<1<		2<.0				.488<							<1 <	.5
SAM-R37 SAM-R38		9.7 15.0				5.4 3.3						<.5 1 1.3 1						3.01		53	17.5						.083							2 <	
STANDARD	11.5	124.6	30.7	145	.3	24.3	10.4	721	2.87	20.8	6.74	9.4 3	.24	1 6.	3.5	4.9	56	.88	.075	15	185.7	.59 1	67.0	87			.076		•••					64	


Standard is STANDARD DS6.


GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C


Data (FA


acky Wang

