

[ARIS11A]

Geological Survey Branch Assessment Report Indexing System

ARIS Summary Report

Regional Geologist,	Regional Geologist, Kamloops				oved: 2005.08.08			Off Confidential:		2005.12.17
ASSESSMENT RE	PORT: 27697			Mining Divisi	ion(s):	Similkan	neen			
Property Name:	Elk									
Location: Camp: 012	NAD 27 NAD 83 NTS: BCGS: Nicola Belt	Latitude: Latitude: 092H16W 092H089	49 50 00 49 50 00	Longitude: Longitude:	120 18 120 19	3 56 UTI) 00 UTI	Л: 10 Л: 10	5523338 5523554	693045 692959	
Claim(s):	Elk 21, Siw	ash North M	ineral Lease	Э						
Operator(s): Author(s):	Almaden M Jakubowsk	linerals Limit i, W.J.	ed							
Report Year:	2005									
No. of Pages:	561 Pages									
Commodities Searched For:										
General Work Categories:	DRIL, GEC	P, GEOL, G	EOC, PHYS	6						
Work Done:	Drilling DIAD 1:2000 Geochemic SAMP Elemer Geological PETR Geophysica MAGG Physical TREN	Diamond so cal Sampling/a hts Analyzed Petrograph al Magnetic, g	urface ssaying For : Go ic (2 : ground	(44 hole(s);NQ) (987 sample(s);) Id, Multielement sample(s);) (15.8 km;)	(10265.0) m) No. (of maps : 2 [.]	l ; Scale(s) :	1:500, 1:1	1500,
Keywords:	Triassic, O	sprey Lake E	atholith, Nic	cola Group, Otter	Intrusion	s, Andesites,	Granodiori	tes, Quartz r	nonzonite	s
MINFILE Nos.:	3222001		44 0001111	064 0000000000						
Related Reports:	092FINE09	6, 092HNE0 44, 18511, 1	9489, 1983	5, 21443, 22368,	24374, 2	6194, 26416	27150, 27	397		

2004 DIAMOND DRILLING and GEOPHYSICS REPORT SIWASH GOLD MINE AREA ELK PROPERTY

Similkameen Mining Division Siwash Lake Area, British Columbia NTS: 92H/16W; Lat. 49⁰50'N, Long. 120⁰19'W

VOLUME I : TEXT, TABLES, FIGURES & APPENDICES

This report consists of three volumes: Volume I: Text, Tables, Figures & Appendices Volume II: Plates 1 to 21 Volume II: Plates 1 to 21 By W.J. Jakubowski, P.Geo Almaden Minerals Ltd. 1103 – 750 West Pender St. Vancouver, B.C. V6C 2T8

Report Preparation: Original + 4 copies

TABLE OF CONTENTS

<u>Page</u>

<u>VOLUME I</u>

1.0	SUMMARY AND CONCLUSIONS	****	1
2.0	RECOMMENDATIONS		2
3.0	INTRODUCTION		5
	3.1 Location and Access		5
	3.2 Claim Data	••••••	5
	3.3 History		7
	3.4 2004 Exploration Program		10
4.0	GEOLOGY		11
	4.1 Regional Geology	·····	11
	4.2 Property Geology	******	[*] 11
	4.3 Structural Geology	•••••	12
	4.4 Mineralization		12
	4.4.1 Alteration		13
	4.4.2 Genetic Considerations	••••••	14
			• •
5.0	DIAMOND DRILLING		15
	5.1 Introduction		15
	5.2 Drilling Operations	*******	16
	5.3 Drilling Results		16
6.0	GEOCHEMISTRY		19
	6.1 Introduction		19
	6.2 Rock Geochemistry	•••••	19
	6.3 Methods of Average Grade Calculation		20
	6.4 Quality Control Measures		21
7.0	TRENCHING		26
	7.1 Introduction	••••••	26
	7.2 Trench Results	•••••	26
8.0	GEOPHYSICS		28
	8.1 Introduction		28
	8.2 Geophysical Survey Results	••••••	28
۹n	LIST OF DEDRONNEL AND CONTRACTOR	、	
3.0	LIST OF PERSONNEL AND CONTRACTORS)	29
10.0	STATEMENT OF QUALIFICATIONS		30
11.0	STATEMENT OF COSTS		31
12.0	REFERENCES		20
			32

TABLES

Table 1: Measured Indicated and Inferred Resource	1
Table 2: Mineral Claims as at Dec 1, 2004	²⁰ - 46
Table 3: Elk Property 2004 Drill Summary	15
Table 4: 2004 Drill Intersection Summary	17
Table 5: Re-Assayed Sample Summary	20
Table 6: Drill Duplicate Sample Summary	21
Table 7: Drill Blank Sample Summary	22
Table 8: Drill Sample Rerun Summary	23
Table 9: Drill Sample Standard Summary	24
Table 10: Drill Check Sample Summary	25

Page

FIGURES

Fig. 1: Property Location and Regional Geology Map		3
Fig. 2: Claim and Area Location Map		4
Fig. 3: Siwash East Area Trench SE04-6	******	27

APPENDICES

<u>Appendix "A"</u>: PetraScience Consultants Inc. Petrographic Report <u>Appendix "B"</u>: SJ Geophysics - Magnetometer Survey on the Elk Property <u>Appendix "C"</u>: Assay and Analytical Results from Core Samples

VOLUME II

Appendix "D": Diamond Drill Hole Logs

<u>VOLUME III</u>

PLATES (in pockets)

<u>Scale</u>

Plate 1:	Siwash North Mine Site Plan and Surface Drill
	Hole Locations 1:2000
Plate 2:	WD Vein Longitudinal Section 1:1500
Plate 3:	B Vein Longitudinal Section 1:1500
Plate 4:	Drill Section 2090E Zone B 1:250
Plate 5:	Drill Section 2120E Zone B1:500
Plate 6:	Drill Section 2160E Zone WD1:500
Plate 7:	Drill Section 2210E Zone WD 1:500
Plate 8:	Drill Section 2210E Zone B 1:500
Plate 9:	Drill Section 2260E Zone WD1:500
<u>Plate 10</u> :	Drill Section 2310E Zone WD 1:500
Plate 11:	Drill Section 2320E Zone BC 1:500
Plate 12:	Drill Section 2420E Zone BC1:500
Plate 13:	Drill Section 2370E Zone WD1:500
Plate 14:	Drill Section 2420E Zone WD1:500
Plate 15:	- Drill Section 2520E Zone B1:500
Plate 16:	- Drill Section 2540E Zone B1:500
Plate 17:	- Drill Section 2670E Zone WD 1:500
Plate 18:	- Drill Section 2720E Zone WD 1:500
Plate 19:	- Drill Section 2770E Zone WD1:500
Plate 20:	- Drill Section 2820E Zone WD1:500
Plate 21:	- Drill Section 2870E Zone WD1:500

SUMMARY AND CONCLUSIONS

The Elk property consists of 83 contiguous mineral claims comprising 492 units located 40 kilometres west of Peachland, B.C., in the Similkameen Mining Division (NTS: 92H-16W). Initial staking was undertaken in November 1986 (160 units) with additions in 1987 (60 units), 1988 (32 units) and 1989 (199 units). A block comprising 72 units was optioned from Mr. Donald Agur of Summerland, B.C. in October, 1988. Claim acquisition and subsequent work were conducted by Cordilleran Engineering Ltd. for Fairfield Minerals Ltd. until April 1995 when Fairfield assumed operations. Placer Dome Inc. entered into an option agreement on the property in March 1988 and withdrew in March 1991. Fairfield Minerals merged with Almaden Resources Corporation in February 2002 and the claims were transferred to the amalgamated company Almaden Minerals Ltd. Almaden retains 100% interest.

The Elk claims cover forested, gently rolling hills with fair to poor bedrock exposure. The property is accessible by paved highway, 50 km from Westbank, B.C., or 50 km. from Merritt, B.C.

Work conducted on the property from 1986 to 1991 consisted of geological mapping, prospecting, linecutting, soil sampling, geophysics, excavator trenching, diamond drilling and road construction. During the 1992 to 1994 field seasons open pit and underground mining extracted 1,600,406 grams (51,460 ounces) of gold from the Siwash North vein system. Reverse circulation drilling, underground diamond drilling, reclamation, road construction, water sampling and aerial photography were also undertaken during this period. Surface and underground diamond drilling programs were carried out in the Siwash Mine area from 1994 to 1996 to define the resource. Exploration surface drilling was also carried out during the 1995 and 1996 field seasons to test vein targets between the Siwash mine site and the South Showing area 2.5 kilometres to the south. Limited prospecting and environmental monitoring were undertaken from 1997 to 1999. Surface diamond drilling totaling 1413.96m in 12 holes was completed on the Siwash Mining lease during 2000 testing the B, WD and Gold Creek West (GCW) zones. A trenching program was carried out in 2001 in the Siwash East Area consisting of six trenches totaling 202 meters. A 26 hole surface diamond drill program was undertaken in 2002 for a total of 4995.67m testing the B, WD, GCW and Bullion Creek zones. During the 2003 field season a 6570 meter, 30 hole, diamond drill program was carried out in the Siwash North area testing the WD zone.

The property is underlain by the Triassic Nicola Group volcano-sedimentary assemblage on the west and by granitic rocks of the Jurassic Osprey Lake Batholith on the east. Feldspar porphyry stocks of the Upper Cretaceous Otter Intrusions cut both of these groups. Andesite dykes intrude all of the above units and are interpreted to be of Tertiary Age.

Gold-silver mineralization on the Elk property is hosted by pyritiferous quartz veins and pyritiferous altered granite. The mineralized features generally trend northeasterly and are thought to be Late Cretaceous or Tertiary in age. To date, mineralization has been located in eight areas of the Elk property: Siwash North, Siwash East, South Showing, Discovery Showing, Lake Zone, End Zone, Great Wall Zone and Elusive Creek.

Table 1	Measur	ed and Indica	ted Resource		Inferred Resource				
Area	Gold Cut off Grade	Tonnes	Gold Grade (g/t)	Contained Ounces Gold	Tonnes	Gold Grade (g/t)	Contained Ounces Gold		
B Flat Vein	7 g/t	19,100	26.70	16,400	500	7.74	100		
B Steep Vein	7 g/t	39,700	54.50	69,600	53,300	19.93	34,200		
B East Vein	7 g/t	2,800	19.43	1,700	25,800	14.98	12,400		
WD Vein	7 g/t	42,600	29.82	40,800	98,700	14.69	46,600		
1.0 cut off open pit	1.0 g/t	564,100	4.361	79,100	1,138,900	3.126	114,500		
Total		668,300	9.66	207,600	1,317,200	4.91	207,800		

1

A new resource calculation was completed by Giroux Consultants Ltd. in May of 2004 as follows:

1.0

During the 2004 field season a 10,265 meter, 44 hole, diamond drill program was carried out in the Siwash North area testing the WD, B and BC zones. A differential GPS survey of claim posts was undertaken to accurately locate the claims in preparation for MTO, the computer based claim acquisition system initiated in January 2005. A ground magnetometer survey was carried out over the Siwash East area immediately to the east of the mine site and drill grid. A 40m section of road cut in the Siwash East area was mapped and sampled as a trench.

The results of exploration on the Elk Property are extremely encouraging. Potential for the definition of additional gold reserves in the immediate mine area remains strong in the B, WD vein and Bullion Creek structures. Promising vein structures are present in the Siwash East area and Siwash Lake area, and geophysical and geochemical anomalies in the Elk South area with similar signatures have yet to be tested. Excellent access to services is provided by the Okanagan Connector highway which passes two km north of the Siwash mine. Continued aggressive exploration is warranted to fully define the extent of this gold resource.

RECOMMENDATIONS

The following exploration program is recommended:

2.0

- Drill five holes in the WD zone to the south and west of the existing grid to expand the present inferred resource.
- Drill nineteen holes in the WD zone to fill in the grid to 25m sections to confirm the existing resource.
- Drill four deep holes to the west of the the existing DeepB grid to test the continuity and grade at depth.
- Drill four holes in the Siwash East area to test the continuity of mineralized quartz veins exposed by trenching.
- Drill two holes in the Bullion Creek structure to the east of the existing holes to determine the orientation and extent of the known mineralization.
- Drill four holes in the Siwash Lake zone to test for continuity of structure and grade to the east of the present drilling.
- Drill four holes in the Elusive Creek zone to test for porphyry style mineralization.

Respectfully submitted ALMADEN MINERALS LTD. Wojtek Jakubowski, B.Sc., P.Geo. Geologist

INTRODUCTION

This report describes the results of a diamond drill program conducted on the Elk property during the period June 7 to October 30, 2004. The work was managed by personnel of Almaden Minerals Ltd. with the intent to test the continuity and gold grade in the WD, B and Bullion Creek vein system.

3.1 LOCATION AND ACCESS (Figure 1)

The Elk property is located 40 kilometres west of Okanagan Lake in southern British Columbia approximately midway between Merritt and Summerland, at latitude 49°50'N and longitude 120°19'W (Figure 1). The claims cover heavily forested rolling terrain of the Trepanege Plateau highlands. Elevations range from 1300 to 1750 metres above sea level. Access to the property is excellent, with the Okanagan Connector highway passing through the northern claims. Merritt and Kelowna are within one hour driving time from the mine location. Field operations in 2004 were based out of a lodge located on the property.

3.2 CLAIM DATA (Figure 2)

3.0

The Elk property consists of 48 two post claims, 26 four post claims, eight fractional claims and one mining lease comprising 492 units (Table 2). Expiry dates listed are subject to acceptance of costs and the program summarized in this report. Initial staking was undertaken in November 1986 (160 units) with additions in 1987 (60 units), 1988 (32 units) and 1989 (199 units). A block comprising 72 units was optioned from Mr. Donald Agur of Summerland, B.C. in October, 1988. Claim acquisition and subsequent work were conducted by Cordilleran Engineering Ltd. for Fairfield Minerals Ltd. until April 1995 when Fairfield assumed operations. Placer Dome Inc. entered into an option agreement on the property in March 1988 and withdrew in March 1991. Fairfield Minerals merged with Almaden Resources Corporation in February 2002 and the claims were transferred to the amalgamated company Almaden Minerals Ltd. The claims are 100% owned by Almaden Minerals Ltd. with the exception of the Agur Option block (72 units) on the south side of the property, which is subject to 1% NSR from production. The Elk41 and Elk42 claims were allowed to lapse in 2000. In preparation for the transition to a grid – cell computer staking system implemented in January 2005 in British Columbia, a program of relocating and re-establishing claim posts was initiated in 2003 and completed in 2004. A differential GPS Report" submitted in December 2004.

Table 2		MINERAL CLAIMS AS AT DEC 1, 2004							
Claim	Claim	No.	Record	Expiry	Claim	Claim	No.	Record	Expiry
Name	Туре	Units	Number	Date	Name	Туре	Units	Number	Date
ELK 1	4post	20	249145	12/01/2014	ELK 48	2post	1	249513	12/01/2014
ELK 10	2post	1	249159	12/01/2014	ELK 49	2post	1	249514	12/01/2014
ELK 11	2post	1	249160	12/01/2014	ELK 5	2post	1	249154	12/01/2014
ELK 12	2post	1	249161	12/01/2014	ELK 50	2post	1	249515	12/01/2014
ELK 13	2post	1	249162	12/01/2014	ELK 51	2post	1	249516	12/01/2014
ELK 14	2post	1	249163	12/01/2014	ELK 52	2post	1	249517	12/01/2014
ELK 15	2post	1	249164	12/01/2014	ELK 53	2post	1	249518	12/01/2014
ELK 16	2post	1	249165	12/01/2014	ELK 54	2post	1	414121	12/09/2014
ELK 17	2post	1	249166	12/01/2014	ELK 55	2post	1	249547	12/01/2014
ELK 18	2post	- 1	249167	12/01/2014	ELK 56	2post	1	249548	12/01/2014
ELK 19	4post	20	249147	12/01/2014	ELK 57	2post	1	249549	12/01/2014
ELK 2	4post	20	249146	12/01/2014	ELK 58	2post	1	249550	12/01/2014
ELK 20	4post	20	307936	12/01/2014	ELK 59	2post	1	249551	12/01/2014
ELK 21	4post	20	307937	12/01/2014	ELK 6	2post	1	249155	12/01/2014
ELK 22	2post	1	249168	12/01/2014	ELK 60	2post	1	249552	12/01/2014
ELK 23	2post	1	249169	12/01/2014	ELK 61	2post	1	249553	12/01/2014
ELK 24	2post	1	249170	12/01/2014	ELK 62	2post	1	249554	12/01/2014
ELK 25	2post	1	249171	12/01/2014	ELK 63	2post	1	249555	12/01/2014
ELK 26	4post	20	249150	12/01/2014	ELK 64	2post	1	249556	12/01/2014
ELK 27	4post	20	249151	12/01/2014	ELK 65	FR	1	249557	12/01/2014
ELK 28	4post	20	249254	12/01/2014	ELK 66	2post	1	249558	12/01/2014
ELK 29	4post	20	249255	12/01/2014	ELK 67	FR	1	249559	12/01/2014
ELK 3	2post	1	249152	12/01/2014	ELK 68	FR	1	249560	12/01/2014
ELK 30	4post	20	249256	12/01/2014	ELK 69	2post	1	249561	12/01/2014
ELK 31	2post	1	249330	12/01/2014	ELK7	2post	1	249156	12/01/2014
ELK 32	2post	1	249331	12/01/2014	ELK 70	FR	1	249562	12/01/2014
ELK 33	FR	1	249363	12/01/2014	ELK 71	2post	1	249563	12/01/2014
ELK 34	2post	1	249367	12/01/2014	ELK 72	FR	1	249564	12/01/2014
ELK 35	2post	1	249366	12/01/2014	ELK 73	FR	1	249885	12/01/2014
ELK 36	4post	12	249395	12/01/2014	ELK 8	2post	1	249157	12/01/2014
ELK 37	4post	15	249396	12/01/2014	ELK 9	2post	1	249158	12/01/2014
ELK 38	4post	16	249469	12/01/2014	FERGITO ALLENDO1	4post	20	248739	12/01/2014
ELK 39	4post	16	249470	12/01/2014	FERGITO ALLENDO2	4post	18	248740	12/01/2015
ELK4	2post	1	249153	12/01/2014	GAVIN 1	2post	1	249659	12/01/2014
ELK 40	4post	12	249471	12/01/2014	GAVIN 2	2post	1	249660	12/01/2014
ELK 43	4post	16	249472	12/01/2014	GAVIN 5	2post	1	249663	12/01/2014
ELK 44	4post	20	249509	12/01/2014	NANCI P2	4post	10	248732	12/01/2014
ELK 45	4post	20	249510	12/01/2014	SWASH #50	4post	2	248927	12/01/2014
ELK 46	4post	16	369415	12/01/2014	SIWASH NORTH	lease	1	308695	14/09/2005
ELK 47	4post	20	249512	12/01/2014	TEEPEE	4post	2	248735	12/01/2014
GAVIN 3	2post	1	249661	12/01/2014	GAVIN4	2post	1	249662	12/01/2014

3.3 HISTORY

During the first half of the 20th century the El Paso adit was driven into volcanic rocks in the area currently covered by the Elk 31 claim. Quartz vein-hosted lead-zinc-silver-gold mineralization was encountered. No production of ore was achieved.

Over the last forty years Don Agur of Summerland, B.C. prospected and trenched the north and west parts of the present Elk property area, as well as to the south along Siwash Creek.

Phelps Dodge Corporation of Canada Ltd. carried out copper exploration during 1972 which included mapping and soil geochemistry in the area of the present Elk 19, 28, 31, 32, 34, 35, Siwash 50 and Arp claims.

Utah Mines Ltd. conducted mapping, geochemistry, IP geophysics and trenching to evaluate copper mineralization on their Siwash claim group which, in part, covered the present Siwash 50 and Elk 28 claims.

Brenda Mines Ltd. worked on the Siwash claim group, which included the area now comprising the southern part of the Elk property. A rigorous copper exploration program including mapping, soil geochemistry, geophysics, trenching and diamond drilling was undertaken between 1979 and 1981. Work was done on the area currently covered by the Elk 19, 28, 31 to 37, Arp, Fergito Allendo I, II, Nanci P2 and Tepee claims.

Exploration for molybdenum was undertaken by Cominco Ltd. during 1980 on what is now the Elk 26, 27, 29, 43 to 45, 71 and 72 claims. Work included geological mapping and soil geochemistry.

No significant discoveries resulted from any of the above programs.

The Elk 1 to 27 claims were staked in November 1986 by Cordilleran Engineering Ltd. for Fairfield Minerals Ltd. to cover new showings of gold-silver mineralization hosted in pyritic quartz veins cutting a granite batholith and andesite dykes. Preliminary hand trenching and soil sampling were conducted.

During 1987, widespread and detailed grid soil sampling programs were undertaken to define areas anomalous in gold. Nine trenches, totaling 1528m, were excavated in two areas (Discovery and South Showings) to test soil geochemical targets, and exposed quartz veins and altered breccias hosted in granite. IP, magnetometer and VLF-EM geophysical surveys were carried out over the trenched areas. The Elk 28 to 30 claims were staked in September 1987 to acquire ground along projections of favourable geochemical trends.

The 1988 program included collection of 2246 soil samples on the claims acquired in 1987 and trenching in Siwash North and Elusive Creek areas. Four kilometres of road was constructed for access and eleven trenches totaling 2884 metres which exposed quartz vein-hosted gold mineralization were mapped and sampled. The Elk 31 to 37 claims were staked to cover adjacent favourable areas.

During the 1989 field season, the Elk 38 to 73 claims were staked to cover projections of anomalous soil geochemical trends. Fifty line-km of VLF-EM and magnetometer surveys were carried out in the Siwash Lake and Siwash North areas and 4865 soil samples were collected on the new claims. A total of 56.25 km of baseline was cut to provide control for soil sampling and geophysical surveys. In the South Showing, Siwash North and Siwash Lake areas 2223 linear metres of bedrock were exposed in 25 trenches. The high grade gold bearing quartz vein system in the Siwash North area was further delineated over a strike length of 750m. Twelve diamond drill holes (752m) tested the down dip continuity of this system. The drill core was logged, split sampled and photographed. Samples were shipped to Acme Analytical Labs for assay and analysis. All core has been stored on site.

During 1990 5168.34m of HQ diamond drilling in 58 holes was carried out in the Siwash North area on a 50m grid spacing. Quartz vein hosted gold mineralization in the Siwash North area was further exposed by seven trenches and three stripped areas totaling 544 linear metres. Diamond drilling in the Siwash Lake area

consisted of 259.08m of HQ core in four drill holes (SLD90-56 to 59). Six trenches and one stripped area totaling 607 linear metres of bedrock exposure were excavated in the Siwash Lake area. Soil sampling on the northern Elk claims was concentrated in the Siwash Lake area where 250 fill-in samples were collected around anomalous coarse grid stations. One thousand two hundred and fifty-four grid soil samples were collected on southern Elk claims. Magnetometer and VLF-EM surveys (50 line km) were carried out on the Agur Option area on flagged lines 100m apart.

Exploration on the Elk claims during the 1991 field season consisted of diamond drilling, trenching and aerial photography. Thirty seven new holes were drilled and two were deepened for a total of 6608.38m in the Siwash North area to test down dip and on-strike continuity of quartz vein-hosted gold mineralization discovered by previous work. The drill core was logged at 1:50 and 1:100 scales, photographed and sampled. Five hundred and ninety eight samples were taken and sent to Acme Analytical Labs for gold assay and analysis.

One trench was dug in the End Zone, 200m southwest of Siwash Lake, to further expose a quartz vein discovered by trenching in 1990. The vein is continuous across the entire length of the 45m trench. Thirty two rock chip samples were collected and sent to Acme for gold assay and analysis.

An area four by eight kilometres centered over the Siwash North area was aerially photographed in colour and black and white, at 1:8,000 and 1:15,000 scales.

During 1992, a bulk sample was extracted from an open pit on the Siwash vein in the Siwash North area. It totalled 2,040 tonnes (2240 tons) and avearged 137.7 gm/t (4.016 oz/t) gold. A small crushing/sampling plant was installed for grade control.

The bulk sample was shipped to Noranda's Horne smelter in Rouyn-Noranda, PQ for metallurgical testing and smelting.

A total of 79 reverse-circulation holes were drilled in September and October to test for further open pitable reserves. A total of 223 reverse circulation chip samples were shipped to Acme Analytical Labs for assay and analysis.

In 1993 open pit mining continued with the extraction of 3,387 tonnes (3733 tons) of bulk sample material grading 105.6 gm/t (3.080 oz/t) Au. Eleven reverse-circulation drill holes totaling 942 metres tested the vein to the south and east of the open pit. The material was crushed on site to minus 6 inches and then shipped to ASARCO's smelter in Helena, Montana.

A portal was collared on June 28 and 480 metres of decline was driven at -15 percent to access high-grade shoots. Two vein drifts were developed for test mining, the 1570 level on the steeply dipping limb of the vein, and the 1611 level immediately downdip from the central core of the open pit on the flat dipping limb. Drifting on the 1570 level produced about 140 tonnes (154 tons) of ore grading 38 gm/t (1.108oz/t), whereupon the drift was abandoned and refilled due to poor ground conditions. Three raises at 5 metre centres, totaling 36 metres in length, were driven up dip from the 1611 level drift. Following development of the raises, the quartz vein was stoped from the pillars producing about 315 tonnes (347 tons) of ore grading approximately 70 gm/t (2.042 oz/t) Au.

In 1994 the Company received a small mine permit, the open pit was expanded and 9,180 tonnes (10,119 tons) of ore grading 91.5 gm/t (2.669 oz/t) were extracted. Underground, the 1611 level drift was extended to the west. Five raises were added and the existing ones lengthened to the 1620m elevation. Approximately 1,200 tonnes (1323 tons) of quartz vein material grading about 78 gm/ton (2.275 oz/t) Au was extracted. An underground diamond drilling program was carried out between April 7 and May 31, with 5,011m of core drilled in 84 holes from the existing decline to define ore reserves. A total of 448 core samples were collected.

Further underground development was undertaken on completion of the open pit, with the main decline being extended 330 metres. A second decline branched east from the main ramp, for a length of 185 metres. Test mining was carried out on two levels. A longhole stoping test on the 1584 level produced 95 tonnes (105 tons) at 16.5 gm/t (0.481oz/t) from drifting on the ore. Longhole blasting produced excessive dilution and most of the material remains in the stope. On the 1589 level, a shrinkage stope test was undertaken. Stoping proceeded about 6 metres up dip along the 30 metre length of the drift. About 105 tonnes (116 tons) at 15 gm/t (0.438 oz/t) Au were hauled to surface. However, much of the material remains in the stope.

Exploration on the Elk claims in 1995 consisted almost entirely of diamond drilling. Two hundred and seventeen underground diamond drill holes (7,612 m) were drilled from the decline ramp in the vein footwall, between April 13 and August 12, to test grade and continuity of the mineralized zone. A total of 918 core samples were collected from underground holes and sent to Acme Analytical Laboratories for gold assay and analysis.

Surface diamond drilling was undertaken between June 21 and September 22. In the Siwash North area, 70 holes were drilled (4,645 metres). In the Lake Zone area, 7 holes (477m) were completed. Two holes (102m) were drilled on the Great Wall Zone, and four holes on the End Zone (187m). Six holes were drilled on Discovery Showing and nine holes on the South Showing areas (397m and 481m respectively). In all, 6289 metres were drilled in 98 surface holes. A total of 581 core samples were collected and sent to Acme Analytical Labs for assay and analysis.

A small trench measuring about 10m along strike and 4m wide was dug at the Great Wall Zone to test the grade of a quartz vein encountered during road construction. A ten centimetre vein trending 55 degrees and dipping 60 degrees to the south was exposed. Two 0.5m square panel samples were taken across the vein and returned grades of 0.51gm/t (0.015 oz/t)and 0.99 gm/t (0.029 oz/t) Au.

A total of 38 soil geochemical samples were taken to the east of the clear-cut in the Siwash North area. Prospecting in areas of anomalous samples uncovered quartz vein float which assayed 47.35 gm/t (1.381 oz/t) Au.

Two test pits were dug in the southern South Showing area.

The 1996 program consisted of 6,946.34m of NQ diamond drilling in 88 holes. Five holes were drilled in the Siwash North Deep B area (1120.14m). The mineralized structure was intersected in all holes. The proposed Phase 5.5 open pit, east of the existing pit, was detail drilled with 1997.02m of NQ core in 38 holes. This allowed the definition of an indicated resource of 503,000gm Au (16,200 oz) for the area of the proposed pit. The WD zone, located 200m north of the Siwash B zone structure, was tested with 25 holes in 2308.84m resulting in an inferred resource block of 569,000 gm Au (18,290 oz). The source of the anomalous soil geochemistry in the East Slope area was evaluated with 9 holes (564.39m) with poor results. Four holes (399.08m) were drilled to test the source of the anomalous soil geochemistry and VLF conductor in the Gold Creek East area. Numerous small veins with poor to moderate values were intersected. The source of the anomalous soil geochemistry in the Gold Creek West area was evaluated with 7 NQ holes (556.87m). A mineralized quartz vein was intersected with 11.8 gm/t (0.381 oz) over a true width of 0.5m. A total of 1161 core samples were sent to Acme Analytical Laboratories for gold analysis.

The area immediately to the south and east of the drill grid was detail soil sampled at 25 X 50m spacing for a total of 367samples.

Reclamation and site cleanup was undertaken during 1997. The overburden cover was completed on the East waste dump and much of the mine equipment was transported to Savona, B.C. for storage or sale. Limited prospecting, sampling and environmental monitoring were carried out between 1997 and 1999 on the Elk property.

During 2000 twelve NQ diamond drill holes (1414m) tested the WD, B Zone and Gold Creek vein systems. Four holes were drilled into the WD zone to expand the then current 18,000 oz inferred resource block. The WD veins were intersected in all holes close to the projected depths with grades up to 41.03 gm/t Au over a true width of 0.50m. The area of the proposed Phase 5.5 open pit located about 200m to the east of the existing pit had been drilled extensively to establish a resource estimate for pit planning purposes. Three holes were drilled on the east side of the proposed pit to increase the sample density. The Gold Creek West vein, located approximately 450m southwest of the existing open pit, was first drilled in 1996. Five holes were drilled to test the vein continuity at 50m intervals between sections 1700E and 1890E. The vein was intersected at the projected location with grades up to 16.55gm/t Au over a true width of 0.50m. The vein

steepens from about -30^o on sections 1750E and 1700E to -60^o on section 1840E and east. The exploration field camp located on Camp Creek that was used from 1987 to 1996 was completely disassembled.

A trenching program was carried out in the Siwash East area during October of 2001. A total of six trenches with a cumulative length of 202 meters located the source of mineralized quartz float discovered by

prospecting. The trenches exposed narrow quartz veins adjacent to an east-west trending andesite dyke with grades of up to 21.7 gm/t Au from a 0.5 by 0.5 meter panel sample.

During the 2002 field season twenty six NQ diamond drill holes (4496m) tested the WD, B Zone, Gold Creek West and Bullion Creek vein systems. Seven holes were drilled into the WD zone to determine the extent of the known shoot. The WD veins were intersected in all holes close to the projected depths with grades up to 91.22 gm/t Au over a true width of 0.50m. Eleven holes were drilled into the DeepB shoot located immediately below the existing underground development to fill-in the drill spacing to less than 25 meters and to define the perimeter of the known mineralization. Two holes were drilled on the west side of the existing open pit to help determine the feasibility of a pit expansion to the west. The Gold Creek West vein located approximately 450m southwest of the existing open pit was tested with four holes in two 50 meter step-outs to the west of the existing grid. Two holes were drilled into the Bullion Creek structure located 700 meters to the north of the open pit to test a geochemical anomaly.

In 2003, a total of 6570 meters of NQ diamond drilling in 30 holes was carried out in the Siwash North area to further test the WD zone. A subparallel vein, the WD2 vein, was intersected about 30m below the WD vein on the west side of the grid and found to contain significant gold grades.

In preparation for the transition to a computer based staking system (MTO), claim posts for the southern claims were located with a GPS and replaced where they had been destroyed by logging operations.

3.4 2004 EXPLORATION PROGRAM

The 2004 exploration program on the Elk claims consisted of diamond drilling, core logging, sampling, a claim post differential GPS survey, a magnetometer survey and trenching.

A total of 10265 meters of NQ diamond drilling in 44 holes was carried out in the Siwash North area to further test the WD, B and Bullion Creek zones. In preparation for the transition to a computer based staking system (MTO), selected claim posts were located with a differential GPS. The data was reported in "2004 Claim Post Differential GPS Report" submitted in December 2004. A road cut to a proposed drill site in the Siwash East area exposed bedrock and was mapped and sampled over a length of approximately 40 metres. A ground magnetometer survey was carried out over the Siwash East area for a total of 15.8 line kilometers

Gangue mineralogy consists primarily of quartz and altered wall-rock fragments. Ankerite is commonly present, with lesser amounts of calcite. Minor barite is also present. Fluorite was noted in one vein as very small (<1mm) zoned purple cubes scattered in the quartz.

In the Siwash Lake area (Fig. 2), mineralization occurs mainly in quartz stringers and veins up to 35cm thick, hosted by strongly argillic- to phyllic-altered granitic rocks, closely associated with an andesite dyke. The zone trends easterly and dips about 60^o to the south. At surface and in drill core, the gold is associated with pyrite, chalcopyrite, and locally high concentrations of galena and sphalerite. Tetrahedrite and maldonite(?) are also locally present. Silver values are much higher than in Siwash North, probably associated with the greater galena content of the veins. The gangue mineralogy is similar to Siwash North.

Mineralization in the End Zone area is similar to that in the north, but trends approximately northeast dipping about 70° to the south. The quartz veins are 1 to 20cm in thickness and are hosted in strongly to moderately altered quartz monzonite (as seen in trenches). The dominant sulphide minerals noted in the quartz veins were pyrite, galena, sphalerite, chalcopyrite, tetrahedrite and arsenopyrite. Silver to gold ratios were also elevated, similar to the Lake Zone.

In the Discovery Showing area (previously called the North Showing), pyritic quartz veining occurs within a package of altered quartz monzonite, intruded by numerous feldspar, quartz-feldspar porphyry and andesite dykes, with local diatreme breccia bodies.

In the South Showing area, mineralization occurs mainly in quartz stringers in altered granitic rocks, in association with breccia or with intensely argillized andesite dykes. Gold is rarely visible, and is associated with pyrite and base-metal sulfides. The highest grade sample is from a zone of quartz stringers paralleling the breccia, accompanied by weak sericitic alteration.

4.4.1 <u>Alteration</u>

On the Elk property, higher grade gold mineralization generally accompanies stronger alteration.

Seven main types of alteration were recognized throughout the property: Propylitic, argillic, sericitic, K-spar stable phyllic, phyllic, advanced argillic and silicic. Locally, potassic alteration, skarnification, and silicification were noted, but were relatively minor and did not appear to be related to mineralization. The following descriptions refer to granitic rocks except as noted:

propylitic:

Generally light green, with biotite and hornblende altered to chlorite and saussuritization of plagioclase. In volcanics, colour is generally olive-green, and rock is soft.

argillic:

Rock is bleached, with plagioclase white and clay-altered; K-spar is slightly altered. Volcanics are bleached to light green or grey.

sericitic:

phyllic:

Typically pale green with a micaceous sheen, with plagioclase altered to sericite; trace disseminated pyrite may be present. Often associated with quartz veins, and appears to be the lowest grade alteration associated with gold mineralization. Not recognized in volcanics.

K-spar stable phyllic:

Light pink, green, or yellowish with K-spar fresh, pink and blocky. Plagioclase and mafic minerals are altered to fine-grained quartz-sericite-pyrite. Often occurs with veins and associated with gold mineralization. Not recognized in volcanics.

Generally grey, fine-grained quartz-sericite-pyrite alteration. Usually associated with veins often gradational to quartz and often auriferous.

advanced argillic:

Most or all of feldspar is destroyed, quartz is "free-floating"; rock is often sheared and white in colour. Volcanics are white or blue coloured. Often associated with quartz veins.

silicic:

Quartz veining or replacement. Hard with moderate conchoidal fracture. Textures may be blurred.

There is a strong symmetrical zoning of alteration around the quartz veins:

VEIN - ADVANCED - PHYLLIC - K-SPAR STABLE - ARGILLIC - PROPYLITIC ARGILLIC PHYLLIC

Secondary bands and zones of alteration may be present, and any of the alterations may be missing.

At surface, the alteration may produce a striking "rainbow" effect with the rock colour grading from white (vein) through grey, yellow, orange, rust, brown, and green (propylitic). In drill core, the effect is less striking and extensive, but the general pattern is still present.

Two samples of drill core (SND372@241 and SND386@10.3) that displayed a light grayish alteration were submitted to PetraScience Consultants Inc. for petrographic analysis. The alteration was found to be a carbonate-quartz-Fe oxide replacement of quartz and feldspar with local muscovite-sericite replacement of feldspar. The report is include as Appendix "C".

4.4.2 Genetic Considerations

Gold mineralization on the Elk property appears to be related to Tertiary tectonic and intrusive events as inferred from crosscutting relationships.

At various locations on the property, quartz veins have been mapped cutting Tertiary(?) andesite dykes which intruded Tertiary Otter intrusions, Jurassic Osprey Lake Batholith and Triassic Nicola volcanics. In the Siwash North area one quartz vein was found crosscut by an andesite dyke. Cataclastic textures in the quartz veins mapped in the Siwash North and Discovery Showing areas suggest reactivation of the structures hosting the veins. Late stage Otter intrusive activity may have acted as the "heat pump" for the mineralizing fluids. Petrographic analyses indicate that the deposition of gold mineralization was a late-stage event in the hydrothermal system, with native gold and associated sulphide minerals filling fractures in pyrite.

During the mineralizing events, hydrothermal fluids permeated fractures in the host rock, depositing quartz and sulphides in the fractures and causing alteration of the wall rocks. These fluids probably had temperatures of about 300^o C during the initial stages of mineralization as indicated by sulphide and alteration mineralogy (Panteleyev, 1986).

Briefly, the genetic model for the deposits is thought to be as follows:

- 1) Deposition of the Nicola volcanics.
- 2) Emplacement of the Osprey Lake Batholith.
- 3) Emplacement of the Otter syenitic intrusions.
- 4) Fracturing possibly during the Osprey Lake and/or Otter intrusive events.
- 5) Intrusion of andesite dykes.
- 6) Precipitation of quartz veins with pyrite, base metal sulphides and late stage gold mineralization, with associated hydrothermal alteration.
- 7) Erosion to present level.

DIAMOND DRILLING

5.1 INTRODUCTION

Surface diamond drilling was carried out on the Siwash North Mining Lease between June 7 and Ocober 30, 2004. A total of 10,265m of drilling in 44 NQ holes tested the WD Zone between 2110E and 2820E and to a depth of 390m below surface. The B zone was tested to a depth of 340m and the Bullion Creek (BC) zone was tested over a strike length of 100m to a depth of 115m. All holes were drilled on sections 50 or 20m apart. Drilling was performed by Leclerc Drilling Ltd. of Cranbrook, B.C. using skid-mounted Longyear 38 and Boyles Brothers 56 drills. Drill hole locations and depths are summarized in Table 3.

Table 3		ELK PROPER	FY 2004 DRII		ARY		
	DATE	DATE		COLLAR	COLLAR	COLLAR	
HOLE NO	START	FINISH ZON	E SECTION	NORTH	EAST	ELEV	DEPTH
SND04366	09-Jun-04	11-Jun-04 WD	2260E	3431.53	2256.44	1632.17	213.06
SND04367	11-Jun-04	15-Jun-04 WD	2260E	3407.51	2258.67	1632.14	242.93
SND04368	16-Jun-04	18-Jun-04 WD	2210E	3435.23	2210.48	1635.46	182.88
SND04369	19-Jun-04	21-Jun-04 WD	2210E	3434.80	2210.45	1635.26	220.07
SND04370	21-Jun-04	25-Jun-04 WD	2310E	3471.74	2309.82	1630.14	174.35
SND04371	25-Jun-04	29-Jun-04 WD	2310E	3431.82	2310.64	1630.76	250.55
SND04372	29-Jun-04	08-Jul-04 WD	2310E	3409.35	2309.87	1628.90	271.88
SND04373	08-Jul-04	13-Jul-04 WD	2310E	3353.14	2309.88	1640.22	331.32
SND04374	15-Jul-04	21-Jul-04 WD	2310E	3317.41	2364.27	1637.72	372.77
SND04375	21-Jul-04	26-Jul-04 WD	2410E	3381.75	2420.43	1630.00	328.27
SND04376	26-Jul-04	28-Jul-04 BC	2320E	4071.99	2319.18	1585.31	107.29
SND04377	28-Jul-04	29-Jul-04 BC	2320E	4071.84	2319.21	1585.37	46.33
SND04378	29-Jul-04	31-Jul-04 BC	2420E	4113.83	2418.38	1582.18	90.22
SND04379	31-Jul-04	04-Aug-04 BC	2420E	4112.28	2418.33	1582.38	150.80
SND04380	04-Aug-04	14-Aug-04 Dee	oB 2120E	3213.77	2120.08	1656.17	271.88
SND04381	15-Aug-04	21-Aug-04 Dee	oB 2120E	3168.80	2135.02	1651.82	340.46
SND04382	21-Aug-04	27-Aug-04 Dee	pB 2090E	3156.16	2088.89	1650.32	300.84
SND04383	27-Aug-04	29-Aug-04 WD	2720E	3567.22	2723.43	1634.31	153.01
SND04384	29-Aug-04	01-Sep-04 WD	2720E	3526.50	2719.77	1641.88	201.78
SND04385	02-Sep-04	11-Sep-04 WD	2720E	3410.21	2719.51	1650.29	352.66
SND04386	11-Sep-04	17-Sep-04 WD	2720E	3486.60	2720.45	1643.24	241.71
SND04387	14-Sep-04	19-Sep-04 WD	2670E	3320.98	2668.90	1647.43	384.96
SND04388	18-Sep-04	21-Sep-04 WD	2720E	3449.04	2719.71	1648.11	279.50
SND04389	19-Sep-04	24-Sep-04 WD	2720E	3365.99	2719.34	1648.78	373.99
SND04390	22-Sep-04	23-Sep-04 B	2540E	3390.02	2539.39	1647.27	89.00
SND04391	23-Sep-04	24-Sep-04 B	2520E	3383.20	2519.99	1645.98	92.05
SND04392	25-Sep-04	28-Sep-04 WD	2770E	3386.81	2769.33	1647.99	334.37
SND04393	25-Sep-04	27-Sep-04 WD	2770E	3523.87	2769.64	1632.97	194.68
SND04394	28-Sep-04	29-Sep-04 WD	2770E	3571.24	2769.25	1622.77	121.92
SND04395	28-Sep-04	02-Oct-04 WD	2770E	3386.63	2769.33	1647.98	367.89
SND04396	29-Sep-04	01-Oct-04 WD	2770E	3479.82	2769.28	1635.65	213.66
SND04397	02-Oct-04	04-Oct-04 WD	2770E	3479.76	2769.41	1635.64	258.17
SND04398	02-Oct-04	04-Oct-04 WD	2370E	3512.81	2377.19	1629.05	264.26
SND04399	04-Oct-04	06-Oct-04 WD	2820E	3526.94	2819.90	1615.32	79.86
SND04400	04-Oct-04	12-Oct-04 Dee	pB 2090E	3155.70	2089.93	1650.31	334.36
SND04401	06-Oct-04	11-Oct-04 WD	2820E	3526.94	2819.90	1615.32	160.63
SND04402	11-Oct-04	14-Oct-04 WD	2820E	3526.94	2819.90	1615.32	197.21

5.0

						TOTAL:	10264.92
SND04409	26-Oct-04	29-Oct-04 DeepB	2210E	3153.76	2210.67	1649.74	258.17
SND04408	24-Oct-04	26-Oct-04 DeepB	2210E	3154.23	2210.68	1649.60	224.33
SND04407	21-Oct-04	24-Oct-04 WD	2160E	3430.45	2162.62	1644.29	199.03
SND04406	19-Oct-04	21-Oct-04 WD	2210E	3415.86	2207.72	1639.81	233.78
SND04405	16-Oct-04	19-Oct-04 WD	2260E	3375.23	2263.37	1640.75	296.88
SND04404	14-Oct-04	16-Oct-04 WD	2870E	3483.35	2869.80	1609.42	71.94
SND04403	12-Oct-04	16-Oct-04 DeepB	2090E	3094.08	2081.80	1643.26	389.23

5.2 DRILLING OPERATIONS

All holes in the 2004 drill program were drilled to the north on sections 50 meter apart except for sections 2520E and 2540E which were fill-in fences 20m apart set to confirm grade and structural continuity of the B zone in the proposed open pit area. All holes with the exception of SND04-399 and -402 were drilled to completion and intersected their targets. Hole SND04-399 was terminated when the casing broke loose and SND04-404 was unable to penetrate a clay altered andesite dyke.

Drill sites were leveled and prepared using a Caterpillar 325LC excavator contracted from Elkhart Lodge and a Komatsu PC250LC excavator contracted from Jaeden Resources. Sumps were dug to contain cuttings. The drill was moved between sites using a D5 tractor. Water was pumped to the drill from the open pit. A reclaimed road was rebuilt to provide drill sites for the eastern WD holes and a new road was logged and built to the south of the mine area clearcut to provide sites for the Deep B holes.

Upon receipt, the core was washed, footage blocks converted to metres, and the recovery, RQD (rock quality determination), hardness, and degree of breakage were measured. All the core was photographed at four core boxes to the frame, and selected intervals were photographed at five frames per core box. The geology, geotechnical information, and sample intervals were logged onto hand-held HP200LX palm-top computers, and were later down-loaded onto a desktop computer. All samples were split and every twentieth sample was quartered for duplicate analysis as part of the quality control process. Gold standard pulps provided by CDN Resource Laboratories Ltd. were inserted into the sample stream as a check of lab procedures. Samples were shipped to Acme Analytical Laboratories Ltd. in Vancouver, B.C. and assayed or analyzed for gold. Thirty element ICP analysis was also performed on samples containing quartz vein material. Specific gravity measurements using a scale were made on selected mineralized zones at the site.

Drill hole orientations were measured at surface with a Brunton compass, and down-hole with an Icefield MI-3 multishot inclinometer/deviation tool. On completion of the hole, the casing was removed and replaced with a section of 2.5 inch diameter PVC pipe. The hole locations were surveyed relative to pre-established survey control points using a Sokia SET5W theodolite equipped with an EDM.

5.3 DRILLING RESULTS

Surface drill hole collar locations are shown on Plate 1 and are listed above in Table 3. Summary drill logs, including geology and assay information for all 2004 drill holes, are included in Volume II, Appendix D. Subsurface geology, sample locations and selected assays are plotted on drill sections included in Plates 4 to 20. Averaged assay results with zone intercept coordinates are listed below in Table 4.

Twelve holes were drilled into the WD vein system to the west of the north-northwest trending RB fault located roughly between 2340E and 2400E. The WDa, WDb, WD2 and WD3 veins were intersected in both the quartz monzonite and granodiorite in the holes between sections 2160E and 2370E. A summary of the drill core sample results from all zones intersected in 2004 is listed below in Table 4. The WD zones strike roughly east west and dip steeply to the south. Continuity of the vein structures is variable but good potential exists to extend them to the west and to depth as shown on section 2160E with the 0.604 oz/t Au intersection

in hole 407. Potassic alteration was more intense and pervasive than noted in other parts of the Siwash North area

Nineteen holes were drilled into the WD system to the east of the RB fault between 2370E and 2820E to extend the known resource. The WD zone(s) were intersected in all holes with the exception of holes SND04-399 and 404, which were terminated before the projected intercept depth due to poorly set casing and bad ground conditions. An attempt was made to deepen hole SND96–241 to test the WD2 zone but the drill was unable to penetrate a strongly clay altered andesite dyke. The WD vein system was traced to 2820E and to a depth of 390m below surface though the grade decreased to the east of section 2720E.

lable 4			2004 DI	ALL IN	IERS	ECTION 3	UW	MARY				
Hole Num	From	То	Int -	TW	Zone	Au oz/t	Ag	oz/t	SG	North	East	Elevation
SND04366	176.05	177.71	1.66	0.50	WD2	0.580)	0.394	2.70	3491.88	2266.68	1466.70
SND04366	192.49	193.20	0.71	0.50	WD3	0.374		0.298	2.72	3497.56	2267.92	1451.24
SND04367	214.59	215.34	0.75	0.60	WD2	0.598	5	0.424	2.72	3467.44	2262.77	1425.74
SND04367	222.00	222.74	0.74	0.50	WD3	0.925	;	0.913	2.75	3469.58	2263.05	1418.46
SND04367	217.33	222.83	5.50	4.60	WD3	0.173	5	0.121	2.71	3469.58	2263.05	1418.46
SND04368	157.76	158.32	0.56	0.50	WD2	0.910)	0.960	2.74	3489.51	2216.27	1487.10
SND04368	123.53	124.37	0.84	0.78	WDa	0.209)	0.764	2.73	3477.51	2214.35	1519.24
SND04368	142.05	142.58	0.53	0.50	WDb	0.245	;	0.266	2.74	3483.95	2215.36	1501.97
SND04369	160.55	161.20	0.65	0.50	WD	0.722	2	1.290	2.74	3445.93	2209.80	1474.75
SND04369	198.71	199.40	0.69	0.50	WD2	0.249)	0.228	2.72	3448.61	2209.49	1436.60
SND04372	233.00	235.60	2.60	2.22	WD2	0.140)	0.220	2.86	3497.27	2315.56	1411.20
SND04372	233.00	233.84	0.84	0.65	WD3	0.345	;	0.731	2.95	3496.96	2315.44	1412.45
SND04373	309.90	310.80	0.90	0.50	WD3	0.237	,	0.589	2.68	3450.33	2320.13	1345.84
SND04374	50.10	53.61	3.51	3.42	Bb	0.248	3	0.956	2.72	3336.49	2365.05	1588.21
SND04375	31.05	31.61	0.56	0.50	Bb	0.418	3	0.159	2.76	3389.69	2421.04	1599.56
SND04375	14.87	36.40	21.53	20.43	Bb	0.020)	0.004	2.70	3389.69	2421.04	1599.56
SND04377	33.01	35.46	2.45	1.52	BC	0.080)	0.087	2.74	4071.78	2318.67	1552.21
SND04377	33.01	35.50	2.49	1.54	BC	0.080)	0.087	2.74	4070.95	2318.61	1552.35
SND04380	189.69	190.24	0.55	0.50	PC	0.477	P	0.000	2.70	3235.69	2122.80	1467.61
SND04381	282.61	283.98	1.37	0.50	Ba	0.282	2	0.568	2.70	3209.36	2129.36	1371.15
SND04382	201.72	202.30	0.58	0.50	PC	0.238	}	0.000	2.75	3207.37	2091.49	1455.02
SND04384	155.70	156.88	1.18	1.00	WDa	1.803	3	2.911	2.78	3566.54	2722.10	1490.92
SND04385	292.78	293.49	0.71	0.50	WD	0.252	2	1.040	2.66	3481.27	2724.89	1366.17
SND04386	198.50	199.21	0.71	0.50	WDa	0.631		0.760	2.67	3537.03	2721.01	1450.95
SND04388	95.79	96.30	0.51	0.50	D	0.278	3	0.451	2.67	3473.07	2719.99	1555.02
SND04388	247.38	248.10	0.72	0.55	WDb	0.231		0,527	2.63	3510.30	2721.73	1408.04
SND04389	72.44	73.05	0.61	0.60	в	0.315	5	1.512	2.98	3385.04	2718.63	1578.56
SND04390	55.15	55.65	0.50	0.50	В	1.516	5	3.167	2.74	3397.46	2539.76	1592.38
SND04390	55.05	55.65	0.60	0.60	В	1.266	5	2.645	2.73	3397.46	2539.76	1592.38
SND04390	55.15	68.39	13.24	13.15	В	0.091		0.137	2.70	3397.46	2539.76	1592.38
SND04390	43.00	68.39	25.39	24.01	В	0.05		0.075	2.70	3397.46	2539.76	1592.38
SND04390	67.39	68.41	1.02	1.00	С	0.401		0.201	2.70	3399.23	2539.77	1580.02
SND04390	67.39	68.41	1.02	1.00	С	0.401		0.201	2.70	3399.23	2539.77	1580.02
SND04391	55.23	55.74	0.51	0.50	В.	2.182	2	3.478	2.77	3393.81	2519.99	1591.41
SND04394	96.45	97.06	0.61	0.50	WDb	0.275	5	1.026	2.67	3599.21	2768.45	1530.21
SND04398	186.97	187.72	0.75	0.50	WD2	0.424	ŀ	0.977	2.78	3521.33	2373.72	1442.08
SND04400	297.29	297.80	0.51	0.50	В	1.403	3	0.792	2.99	3179.12	2089.32	1353.82
SND04400	216.87	217.55	0.68	0.60	PC	0.213	3	0.383	2.98	3174.70	2089.30	1433.90
SND04403	337.80	338.34	0.54	0.50	B	0.591	l	0.281	2.79	3137.33	2090.05	1308.23
SND04405	255.25	255.90	0.65	0.50	WD2	0.279) -	0.174	2.67	3437.54	2257.20	1393.02
SND04406	202.23	203.42	1.19	0.50	WD	0.66	5	0.951	2.70	3412.10	2207.76	1437.24
SND04407	10.72	11.22	0.50	0.50	С	0.243	3	0.311	2.65	3432.19	2162.64	1633.36
SND04407	179.37	179.90	0.53	0.50	WD2	0.604	ŀ	1.553	2.78	3457.88	2163.13	1466.65

SND04408 192.00 192.58 0.58 0.50 B 0.646 0.369 2.71 3252.91 2215.95 1484.81

Four holes were drilled into the Bullion Creek vein to test the continuity of the structure along strike from the 2003 intercepts. Two hole fences were drilled 50 meters east and west of section 2370E. Moderately altered fine grained granodiorite with narrow low grade quartz veins was intersected in both fences at approximately the projected locations.

The DeepB area below the existing mine workings was tested with seven drill holes between 2090E and 2210E. All holes intersected the B vein at the projected depths though the vein does appear to be shifting to a slightly shallower dip at depth. Good to moderate grades were returned from all 2004 holes in the Deep B area.

Two holes were drilled to confirm the continuity and grade of mineralization in the proposed open pit area on sections 2520E and 2540E. The A, B and C zones were intersected at the projected depths with the expected high grades.

GEOCHEMISTRY

6.1 INTRODUCTION

6.0

A total of 863 drill core samples were collected from 44 holes on the Elk claims during the 2004 field season. Also analyzed/assayed were 41 standards, 41 blanks and 42 duplicates. Core samples were assayed or analyzed for gold depending on visual estimation of potential gold grade.

6.2 ROCK GEOCHEMISTRY

Drill core samples were shipped to Acme Analytical Laboratories in Vancouver for gold analysis. Sample preparation and analysis methods varied based on material sampled. All samples were split and every twentieth sample was quartered to produce a duplicate for quality control purposes.

Samples that were expected to have significant gold content were split and half the core was submitted to the lab for metallics assay. Typically, this material consisted of quartz vein with or without wall rock, at least 10 to 15cm thick with a minimum of 10% sulfide (or traces of visible gold). These samples were crushed in their entirety to -3/16" and coarse pulverized to -1/16". Two kg of the -1/16" material was split out and pulverized to 99% finer than -150 mesh and sieved on a 150 mesh screen. One Assay Ton (1 AT) of the -150 mesh fraction was assayed for gold and silver, and was combined with the weighted result of gold and silver fire assays of the entire coarse fraction, to give total gold and silver values. ICP analysis for 35 elements was also carried out on a 0.50gm sample of -100 mesh material. Selected high grade intercepts were checked by resampling from the reject and assaying for gold by the same method.

Samples which were expected to be of lower grade were split and shipped to the lab for fire assay. This material usually consisted of quartz vein material less than 10cm thick with less than 10% sulfide. At the lab the entire sample was crushed to -3/16", then 2kg were split out and coarse pulverized to -1/16". A 250gm split was taken and pulverized to -100 mesh. A one-assay ton (1 AT) sample was fire assayed for gold and silver. Thirty-five element ICP analysis was usually carried out. Higher grade intercepts were reassayed using the metallics method described above.

Samples that were not expected to carry high gold values, typically stringers, strongly altered wallrock or blank samples flanking well mineralized samples, were split and analyzed for gold using a wet goechemical method. At the lab the entire sample was crushed to -3/16", 250 gm of sample split out and pulverized to -100 mesh. A 20 gm sample of the -100 mesh material was analyzed for Au by ICP-MS using acid extraction.

Samples that returned higher than expected values were assayed using the next higher confidence sampling procedure. These assays generally returned values lower than the originals. This may be due to larger sample size reducing the nugget effect. The results of the upgraded assays are listed below in Table 5.

Table 5

ReAssayed Sample Summary

Hole		Sample	Au Wet	Au Fire	Au	Geochem/Assay	Assay/Metallics
Number	From (m)	To (m) Number	Geochem	Assay	Metallics	% Variability	% Variability
SND04372	233.00	233.40 SND04372-28	13539.7	0,471	0.442	-19.35%	6.22%
SND04372	233.40	233.80 SND04372-29	8726.6	0.292	0.277	-14.82%	5.22%
SND04373	309.90	310.50 SND04373-54	¥ 21777	0.619	0.487	2.60%	21.28%
SND04382	106.45	107.29 SND04382-10) 17164.9	0.516		-3.07%	
SND04383	105.49	105.85 SND04383-9	10108.6	0.297		-0.80%	
SND04385	60.60	61.30 SND04385-5	8878.6	0.117		54.82%	
SND04387	118.30	118.60 SND04387-12	2 12734.5	0.227		38.75%	
SND04388	44.70	45.00 SND04388-9	12298.6	0.376		-4.81%	
SND04390	67.39	68.39 SND04390-1	3 12316.3	0.407		-13.18%	
SND04391	53.00	53.30 SND04391-2	18640.3	0.360		33.80%	
SND04366	181.00	181.31 SND04366-12	2 30802.3		0.864		
SND04367	217.33	217.66 SND04367-1	3 33464		0.955		
SND04368	157.90	158.32 SND04368-1	7 42475.5		1.243		
SND04372	233.00	233.40 SND04372-2	3 13539.7	0.471	0.442	-19.35%	6.22%
SND04372	233.40	233.80 SND04372-2	8726.6	0.292	0.277	-14.82%	5.22%
SND04373	309.90	310.50 SND04373-5	4 21777	0.619	0.487	2.60%	21.28%
SND04374	50.10	50.48 SND04374-1	7 39261.2		0.591		
SND04375	31.31	31.61 SND04375-1	3 23704.4		0.689		
SND04367	222.42	222.74 SND04367-2	1 .	1.678	2.553		-52.18%
SND04368	123.95	124.37 SND04368-9		0.976	0.124		87.29%
SND04369	160.60	161.20 SND04369-9		0.981	0.778		20.69%
SND04372	233.00	233.40 SND04372-2	3 13539.7	0.471	0.442	-19.35%	, 6.22%
SND04372	233.40	233.80 SND04372-2	9 8726.6	0.292	0.277	-14.82%	5.22%
SND04373	309.90	310.50 SND04373-5	4 21777	0.619	0.487	2.60%	21.28%
SND04374	52.89	53.24 SND04374-2	1	0.600	0.960		-59.93%
SND04385	59.16	60.05 SND04385-4		0.083	0.128		-54.22%
SND04385	292.78	293.15 SND04385-3	С	0.437	0.486		-11.21%
SND04385	292.78	293.15 SND04385-3	1	0.533	0.524		1.69%
SND04387	390.99	391.34 SND04387-3	כ	0.052	0.037		28.33%
SND04389	72.49	73.05 SND04389-4		0.399	0.340		14.72%
SND04389	131.60	132.70 SND04389-1	1	0.017	0.014		18.64%
SND04389	342.30	342.80 SND04389-1	5	0.010	0.005		51.02%
SND04391	67.79	68.32 SND04391-1	3	1.159	0.850		26.67%
SND04397	225.70	226.20 SND04397-6		0.042	0.047		-12.50%
						0.67%	7 14%

Raw assay data is presented in Appendix A.

6.3 METHODS OF AVERAGE GRADE CALCULATION

True widths of the sampled intervals were determined from core angles and from zone orientations determined by contouring the zone intercepts. Specific gravities were assumed to be 2.75 for sulfide ore, 2.5 for oxide ore, or were calculated from the Fe, Pb, Cu, Zn contents of the samples when these element analyses were available. The specific gravities of well-mineralized samples were measured at the exploration site with a scale using weights in air and water.

Average grades were weighted for true width and specific gravity over an interval of 0.50m or the vein thickness if greater than 0.50m. Averaged intervals, their zone designations, and true widths are included in Table 4.

6.4 **QUALITY CONTROL MEASURES**

All drill core samples were split in order to leave part of the sample for future check sampling or inspection. Every twentieth sample was duplicated by taking a quarter split and assigning it the next sequential sample number. Table 6 shows the results of the duplicate analyses. The variability of the 2004 sample values ranges from 0% to 83% with an average of 25% indicating a significant nugget effect.

Table 6	DRILL DUPLICATE SAMPLE SUMMARY												
		Geochemis	trv		· ·	Assav							
DUPLICATES		Sample	Duplicate			Sample	Duplicate						
Orig	Dupl	Auppb	Au pob	Average	% Variablilty	Au am/t	Au am/t						
Flk 2004			<u></u>			3	3						
SND04366-19	SND04366-20	1		6.9	6.0%	6 45	7.28						
SND04367-11	SND04367-12	596.4	715 7	656 1	9.1%								
SND04368-10	SND04368-11	17.5	111 1	64.3	72.8%								
SND04369-10	SND04369-11	21.6	42	12.9	67.4%								
SND04371-7	SND04371-8	0.9	9.8	5.4	83.2%								
SND04371-26	SND04371-27	193.5	168.6	181.1	6.9%								
SND04373-15	SND04373-16	267.6	207.4	237.5	12.7%								
SND04373-36	SND04373-37	76.9	42.1	59.5	29.2%								
SND04374-10	SND04374-11	104.0	149.2	126.6	17.9%								
SND04375-14	SND04375-15	15.8	8.4	12.1	30.6%								
SND04375-34	SND04375-35	67.2	63.9	65.6	2.5%								
SND04375-54	SND04375-55	622.5	491.0	556.8	11.8%								
SND04377-2	SND04377-3	411.0	387.8	399.4	2.9%								
SND04379-7	SND04379-8	4.1.0	2.0	32	37.5%								
SND04380-1	SND04380-2	7.8	3.0	5.4	44.4%								
SND04380-21	SND04380-22	63.8	141 4	102.6	37.8%								
SND04381-10	SND04381-9	67	17 3	12.0	44.2%								
SND04381-29	SND04381-30	115 7	40.8	78 3	47.2%								
SND04382-11	SND04382-12	129.2	58.4	93.8	37.7%		· • · · · · · · · · · · · · · · · · · ·						
SND04382-31	SND04382-32	28.6	85.8	57.2	50.0%								
SND04383-10	SND04383-11	7 9	13.1	10.5	24.8%		·						
SND04384-11	SND04384-12	64.6	57.5	61.1	5.8%								
SND04385-10	SND04385-11	5.0	A A	A 7	6.0%								
SND04385-30	SND04385-31	0.0		16.6	Q Q%	14 98	18.2						
SND04386-5	SND04386-6	27.8	176	22.7	22.5%	1-7.30	10.2						
SND04387-19	SND04387-20	142.4	33.5	88.0	61.0%								
SND04388-1	SND04388-2	133.0	01.8	112.0	18 7%								
SND04388-21	SND04388-22	63.4	24.0	112.3	10.170								
SND04389-5	SND04389-6	3.2	5.0	-10.1 A 1	22.0%		······						
SND04390-7	SND04390-8	2776 3	4130.0	3453.2	10.6%		<u>-</u> _						
SND04391-7	SND04391-8	226 7	163.5	195.1	16.0%								
SND04392-10	SND04392-9	12.2	16.7	14.5	15.6%								
SND04393-13	SND04393-14	28.2	20.0	24.1	17.0%								
SND04396-7	SND04396-8	188.3	177.8	183.1	2 9%								
SND04398-12	SND04398-13	16.8	19.6	18.2	7.7%								
SND04402-3	SND04402-4	86 7	96.1	91 4	5 1%								
SND04403-6	SND04403-7	1		3.8	19.2%	4 56	3.00						
SND04405-11	SND04405-12	<u> </u>		0.2	16 1%	0.18	0.0						
SND04405-31	SND04405-32			7 0	22 2%	9.10	6 1						
SND04408-2	SND04408-3	łł		1 1	26.0%	<u> </u>	0.84						
SND04409-6	SND04409-7	93.2	97.5	95.4	2.3%	1.40	0.0						
	1			Average:	25.4%								

DRILL DUPLICATE SAMPLE SUMMARY

Blank samples were submitted to the lab at the same frequency as the duplicates. The blanks were taken from unaltered granodiorite or quartz monzanite core that contained no quartz veining. The purpose of including blanks in the sample stream was to confirm that no contamination occurred in the sampling or

analysis procedures. Except for a single spike of 416 ppb from the 2003 sampling, the blanks indicate that contamination is not an issue. The results received since 2000 are shown in Table 7.

Table 7	Drill Blank Sample Summary									
	Samp#	Au ppb	Samp#	Au ppb	Samp#	Au ppb A	u gm/t			
	SND02310-21	5.3	SND03337-28	9.8	SND04369-12	0.5				
	SND02311-27	3.8	SND03337-7	9.6	SND04371-28	4.5				
	SND02311-47	3.3	SND03338-29	1	SND04371-9	<0.5				
	SND02312-12	12.0	SND03338-9	75	SND04373-17	0.7				
	SND02313-18	6.2	SND03339-20	3.8	SND04373-38	8.1				
	SND02315-7	5.2	SND03339-41	0.5	SND04375-16	4.5				
	SND02317-4	14.0	SND03339-60	5.2	SND04375-36	<0.5				
	SND02318-4	7.1	SND03341-5	-0.2	SND04375-56	3.8				
	SND02319-5	1.6	SND03342-24	2.2	SND04377-4	2.6				
	SND02321-4	0.2	SND03342-4	35	SND04379-9	0.5				
	SND02323-7	1.4	SND03343-16	3.9	SND04380-23	0.6				
	SND02325-5	7.7	SND03345-5	5.4	SND04380-3	<0.5				
	SND02325-27	0.1	SND03346-10	416.2	SND04381-11	<0.5				
	SND02326-7	4.9	SND03347-12	11.7	SND04381-31	1.2				
	SND02327-11	5.6	SND03349-11	5	SND04382-13	11.0				
	SND02329-7	1.3	SND03349-31	1.9	SND04382-33	1.3				
	SND02330-5	4.6	SND03351-16	2.3	SND04383-12	1.2				
	SND02331-14	1.3	SND03351-36	9.7	SND04384-13	1.0				
	SND02332-7	3.4	SND03352-4	0.7	SND04385-12	0.9				
	SND02332-27	15.9	SND03354-15	.1.5	SND04385-32		0.07			
	SND02334-6	1.0	SND03354-35	3	SND04386-7	<0.5				
	SND02334-26	3.6	SND03355-13	7	SND04387-21	0.8				
	SND02335-5	12.0	SND03355-33	0.3	SND04388-23	0.8				
	SND02335-25	1.6	SND03356-20	10.5	SND04388-3	4.0				
	SND00298-21	0.8	SND03358-11	62.3	SND04389-7	2.3				
	SND00298-41	4.4	SND03358-31	16.1	SND04390-9	9.0				
	SND00299-20	0.9	SND03359-8	2	SND04391-9	3.0				
	SND00299-40	2.9	SND03361-4	17.9	SND04392-11	<0.5				
	SND00300-7	3.7	SND03362-7	14.7	SND04393-15	2.0				
	SND00301-8	8.9	SND03364-9	5.6	SND04395-19	2.2				
	SND00302-6	. 36.6	SND03365-9	17.7	SND04396-9	19.6				
	SND00303-11	0.5			SND04398-14	<0.5				
	SND00304-6	9.8	SND04366-21	9.2	SND04402-5	3.6				
	SND00308-5	0.4	SND04367-13	4.0	SND04403-8	7.5				
	SND00309-18	0.3	SND04368-12	18.2	SND04405-13	1.8				
					SND04405-33		<0.01			
					SND04408-4	2.1				
					SND04409-8	1.4				

Acme Analytical Labs provides re-samples as part of their analytical procedure. The results are listed below in Table 8. The original analyses/assays are listed in the "Sample Au ppb" column. Reanalyses/assays with sample cuts taken from the pulp are listed in the "RE Au ppb" column and those with

cuts taken from the reject are listed in the "RRE" column. The variability is calculated by taking the difference between the minimum and maximum values and dividing this by the mean of the sample results. The difference between results is due to the nugget effect typical of high grade gold systems.

Table 8	Wet Geochem				Fire Assay					
	Sample	RE	RRE			Sample	RE	RRE		
SAMPLE#	Au ppb	Au ppb	Au ppb	Average	% Variablilty	Au gm/t	Au gm/t	Au gm/t	Average	% Variablilty
SND04367-4						1.77	0.15	5 1.37	71.10	0 86.0%
SND04366-24	239.1	467.6	232.1	312.9	49.4%					×
SND04368-5	1060.6	2074.7	783.3	1306.2	58.8%					
SND04370-3	185.9	255.7	129.5	190.4	34.3%		·			
SND04371-4	565.1	605.6	565.4	578.7	4.6%					
SND04372-12	125.3	108.2	96.1	109.9	14.0%					
SND04373-10	5.3	3.8	5.6	4.9	22.4%					
SND04373-40	88.7	1.16	90.5	60.1	98.1%					
SND04374-17	23227.9	28232	39261	30240.4	29.8%					
SND04374-51	25.9	28.4	35.5	29.9	18.6%					
SND04375-15	33.9	16.1	8.4	19.5	74.1%					
SND04375-51	13.1	17	27.1	19.1	42.1%					
SND04378-1	14.6	16.9	14.9	15.5	9.3%					
SND04380-5	140.8	206.7	163.6	170.4	21.3%					
SND04380-25	2.06	227.5	159.9	129.8	98.4%					
SND04381-15	3.9	1.2	1.9	2.3	67.1%					
SND04382-17	1605.2	2269.7	4434.7	2769.9	60.1%					
SND04382-36	10.6	11.4	4.6	8.9	48.1%					
SND04383-19	21	16.7	14.1	17.3	[•] 21.6%					
SND04385-16	4849.7	5425.8	3722.4	4666.0	20.2%					
SND40385-42	146.3	257.1	121.8	175.1	46.9%					
SND04387-30						0.97	7 1.14	1 1.77	1.2	9 36.9%
SND04386-15	18.1	15.6	13.6	15.8	14.8%					
SND04387-15	12:3	11.3	11.9	11.8	4.5%					
SND04389-3	5.8	8.9	6.9	7.2	23.6%					
SND04390-17	230.7	191.7	227.5	216.6	11.5%					
SND04393-11	703.4	704.3	299.6	569.1	47.4%					
SND04395-12	46.5	40.8	57.1	48.1	18.6%					
SND04402-7						0.17	0.18	3 0.12	0.1	6 23.4%
SND04400-6						53.86	5	56.73	55.3	0 2.6%
SND04398-11	0.8	1.4	2.9	1.7	70.6%					
SND04403-2	1.7	0.25	1.9	1.3	80.5%					
SND04405-27					ļ	0.02	2 0.01	0.01	0.0	1 50.0%
SND04406-8	1.7	1.4	9.8	4.3	127.9%			<u> </u>		
Avera				Average:	42.7%				Average:	39.8%

Standard pulp samples were included in the sample stream to check the consistency of the assay lab procedures. Two standards (9.9 g/t Au and 33.5 gm/t Au) were purchased from CDN Resource Laboratories Ltd. of Delta BC, and 10 gram samples were sent to Acme Analytical Labs at a frequency of about one per twenty drill core samples. Table 9 below lists the results of the standard assays and analyses.

Table 9	Drill Sam	ple Standa						
							Sample	Report
Sample#	Au ppb	Deviation	Au gm/t	Deviation	Assay/Analysis	Au Standard	Ship #	Number
SND04366-22	9509.8	0.00%			Wet Geochem	9.9+5 gm/t	ELK04-1	A402943
SND04367-14	35661.0	6.45%			Wet Geochem	33.5+-1.7gm/t	ELK04-1	A402943
SND04368-13			33.46	-0.35%	Fire Assay	33.5+-1.7gm/t	ELK04-1	A402941
SND04369-13	9588.2	0.00%			Wet Geochem	9.9+5 gm/t	ELK04-2	A403224
SND04371-29	10345.4	4.50%			Wet Geochem	9.9+5 gm/t	ELK04-2	A403224
SND04373-18			9.37	-0.32%	Fire Assay	9.9+5 gm/t	ELK04-3	A403633
SND04373-39	34041.0	0.00%			Fire Assay	33.5+-1.7gm/t	ELK04-3	A403634
SND04375-17	34187.0	0.00%			Wet Geochem	33.5+-1.7gm/t	ELK04-5	A404152
SND04375-37			10.24	0.00%	Wet Geochem	9.9+5 gm/t	ELK04-5	A404153
SND04375-57			34.16	0.00%	Wet Geochem	33.5+-1.7gm/t	ELK04-5	A404153
SND04377-5	9884.4	0.00%			Wet Geochem	9.9+5 gm/t	ELK04-6	A404685
SND04379-10	30512.6	-4.05%			Wet Geochem	33.5+-1.7gm/t	ELK04-6	A404685
SND04380-24	34983.1	0.00%			Wet Geochem	33.5+-1.7gm/t	ELK04-6	A404685
SND04380-4	8586.7	-8.65%			Wet Geochem	9.9+-,5 gm/t	ELK04-6	A404685
SND04381-12	9216.4	-1.95%			Wet Geochem	9.9+5 gm/t	ELK04-7	A405148
SND04381-32	31940.9	0.00%			Wet Geochem	33.5+-1.7gm/t	ELK04-7	A405148
SND04382-14	9617.6	-2.85%			Wet Geochem	9.9+5 gm/t	ELK04-7	A405148
SND04382-34	31972.0	0.00%			Wet Geochem	33.5+-1.7gm/t	ELK04-7	A405148
SND04383-13	9293.4	-1.13%			Wet Geochem	9.9+5 gm/t	ELK04-8	A405564
SND04384-14	34791.4	0.00%			Wet Geochem	33.5+-1.7gm/t	ELK04-8	A405564
SND04385-13	9607.5	-2.95%			Wet Geochem	9.9+5 gm/t	ELK04-8	A405564
SND04385-33			29.63	-6.82%	Fire Assay	33.5+-1.7gm/t	ELK04-8	A405662
SND04386-8	10397.0	0.00%			Wet Geochem	9.9+5 gm/t	ELK04-9	A406010
SND04387-22			33.68	0.00%	Fire Assay	33.5+-1.7gm/t	ELK04-9	A406008
SND04388-24	36102.1	2.56%			Wet Geochem	33.5+-1.7gm/t	ELK04-9	A406010
SND04388-4	9161.2	-2.54%			Wet Geochem	9.9+5 gm/t	ELK04-9	A406010
SND04389-8	10177.9	2.81%			Wet Geochem	9.9+5 gm/t	ELK04-9	A406010
SND04390-10	34558.3	0.00%			Wet Geochem	33.5+-1.7am/t	ELK04-9	A406010
SND04391-10	9930.7	0.00%			Wet Geochem	9.9+5 gm/t	ELK04-9	A406010
SND04392-12	33713.9	0.00%			Wet Geochem	33.5+-1.7gm/t	ELK04-10	A406100
SND04393-16	9430.7	0.00%			Wet Geochem	9.9+5 am/t	ELK04-10	A406100
SND04395-20	10177.4	2.80%			Wet Geochem	9.9+5 am/t	ELK04-10	A406100
SND04396-10			34.46	0.00%	Fire Assav	33.5+-1.7am/t	ELK04-10	A406098
SND04398-15	9963.0	0.64%			Wet Geochem	9.9+5 gm/t	ELK04-11	A406556
SND04402-6	10885.2	0.47%			Wet Geochem	9.9+5 gm/t	ELK04-11	A406556
SND04403-9	11067.0	0.64%			Wet Geochem	9.9+5 am/t	ELK04-11	A406556
SND04405-14	33933.9	0.00%			Wet Geochem	33.5+-1.7gm/t	ELK04-12	A406853
SND04405-34			9.94	0.00%	Fire Assay	9.9+5 qm/t	ELK04-12	A406851
SND04408-5	33612.5	0.34%			Wet Geochem	33.5+-1.7gm/t	ELK04-12	A406853
SND04409-9	10630.2	0.22%		······	Wet Geochem	9.9+5 am/t	ELK04-12	A406853
Average	-*	-0.08%		-0.94%	······	- <u> </u>		<u> </u>

Note: Deviation from standards are calculated as follows: 1) If the result falls within the standard value plus or minus the error (31.8-34.2 gm/t or 9.4-10.4 gm/t) a zero deviation is assigned. The percentage deviation above the upper error limit or below the lower limit is calculated.

Standards provided by: CDN Resource Laboratories Ltd. 10945b River Road, Delta, B.C.

A series of samples were selected for check assay at ALS Chemex Labs in Vancouver. The pulps were sent from Acme to Chemex and assayed for gold. The samples were then re-numbered and returned to Acme for re-assay. Corellation between assays is very good as shown below in Table 10.

		Fire A	ssay				
	Acme	Chemex	Acme Blind			Avg Au gm/t x % Var	
SAMPLE #	Au gm/t	Au gm/t	Rerun Aug m/t	Average	% Variablility		
SND04368-15	13.37	12.75	12.09	12.74	5.1%	0.65	
SND04386-25	23.59	23.80	24.24	23.88	1.5%	0.36	
SND04390-12	38.37	36.60	38.23	37.73	3.0%	1.13	
SND04374-67	6.99	7.61	8.05	7.55	6.6%	0.50	
SND04384-16	68.47	61.90	59.37	63.25	6.1%	3.88	
SND04391-5	79.44	80.70	82.25	80.80	1.8%	1.45	
SND04373-18	9.36	10.15		9.76	4.0%	0.39	
SND04403-17	24.51	26.90	27.54	26.32	4.6%	1.22	
SND04367-16	21.12	22.00	23.09	22.07	4.6%	1.02	
SND04369-14	12.00	12.30	12.09	12.13	1.4%	0.17	
SND04382-28	5.97	6.17	5.83	5.99	3.0%	0.18	
SND04366-27	18.82	19.25	18.55	18.87	2.0%	0.38	
SND04406-9	29.38	31.50	31.30	30.73	2.5%	0.77	
SND04396-10	34.46	35.70		35.08	1.8%	0.62	
SND04385-30	14.64	15.35	16.19	15.39	5.2%	0.80	
SND04408-9	36.51	40.10	38.84	38.48	4.2%	1.62	
SND04387-22	33.67	33.50		33.58	0.3%	0.08	
SND04375-37	10.25	10.40		10.33	0.7%	0.07	
SND04400-6	53.86	56.50	56.94	55.77	2.1%	1.17	
SND04372-29	10.01	10.25	10.19	10.15	1.0%	0.10	
Average:	27.24	27.67			3.08%		

Table 10

DRILLCHECK SAMPLE SUMMARY

TRENCHING

7.1 INTRODUCTION

7.0

Bedrock was exposed during road construction to provide access to drill sites in the Siwash East area (Figure 2). A total of 40m was mapped and sampled. Five rock grab, chip and panel samples and nine basal soil samples were collected. The exposure remains open and will be reclaimed on completion of the proposed drilling. A map of the trench is shown on Figure 3.

7.2 TRENCH RESULTS

Trench SE04-6 exposed quartz monzonite cut by an east-southeast trending andesite dyke. The quartz monzonite is weakly argillically altered throughout the trench and strongly altered near the contact with the dyke. The dyke is moderately to strongly argillically altered and is cut by faults running roughly parallel to the contacts. A series of narrow quartz veins cuts the quartz monzonite parallel to the dyke contact one to two metres to the north of the dyke. The veins vary from one to seven centimeters in thickness, dip steeply to the south and display 1 to 10% pyritic boxworks. The veins correlate well with the veins mapped in trench SE01-4, 20 metres to the east.

GEOPHYSICS

8.1 INTRODUCTION

8.0

A ground magnetometer survey was carried out over the area covering the Siwash East immediately to the east of the Siwash North area. A total of 15.8 line kilometres was surveyed on lines 1500m long spaced at 100 metres. The work was carried out by SJ Geophysics of Delta BC on September 26, 2004, with report preparation completed in January of 2005.

8.2 GEOPHYSICAL SURVEY RESULTS

The goal of the survey was to determine the continuity of andesite dykes associated with gold bearing quartz veins between the Siwash North and Siwash East areas. A linear magnetic low coincides with the southeast trending andesite dyke mapped in the Siwash east area that is associated with mineralized quartz veins. A week magnetic low trend suggests that the dyke projects through to the Siwash North area in the vicinity of an andesite dyke that crosses the B vein at about 100m east of the East Waste Dump. The SJ Geophysics report is attached in Appendix "D".

LIST OF PERSONNEL & CONTRATORS

PERSONNEL: C. Chung Burnaby, B.C.

R. Harwood New Denver, B.C.

J. Hylands West Vancouver, B.C. Position Core Logger Field Dates Worked June 7 – Sept.2, 2004

Core Handler

Core Logger

Geologist

Sept. 20 - Oct. 30, 2004

June 7 – Oct. 30, 2004

June 7 – Oct. 30, 2004

W. Jakubowski Vancouver, B.C.

CONTRACTORS Leclerc Diamond Drilling Ltd Cranbrook, B.C.

Elkhart Lodge Limited Merritt, B.C.

Jaeden Resources Ltd. Merritt, B.C. Position Diamond Drilling

Drill Site Prep, Reclamation Logging and Road Construction Caterpillar 325 Excavator w Processor Head

Drill Site Prep Komatsu PC250LC Excavator Dates Worked 8 men: June. 6 – Nov 1, 2004

1 man: Sept. 24– 30, 2004

1 man: July 2-20, 2004

10.0 STATEMENT OF QUALIFICATIONS

I, Wojtek Jakubowski, of Vancouver, British Columbia, hereby certify that:

- I am a professional geoscientist residing at #303 639 West 14th Avenue and employed by Almaden Minerals Ltd. of 1103 - 750 West Pender Street, Vancouver, B.C., V6C 2T8.
- 2. I received a B.Sc. degree in Geological Sciences from McGill University, Montreal, Quebec in 1979.
- 3. I have practiced my profession for 27 years in Quebec, Northwest Territories, Yukon Territory, British Columbia and Mexico.
- 4. I am a member of the Association of Professional Engineers and Geoscientists of the province of British Columbia, registration number 19563.
- 5. I am the author of this report and the supervisor of the field work conducted on the ELK mineral claims by Almaden Minerals Ltd. during the period June 3, 2004 to October 30, 2004.

ALMADEN MINERALS LTD. Wojtek Jakubowski, B.Sc., P. Geo

STATEMENT OF COSTS

Elk Property 2004 Diamond Drill Program Cost Summary

DIAMOND DRILLING Mob Demob Logging, Site Prep Diamond Drill Holes 365-409 Downhole and Surface Survey Equip	89 hr@ 10265 m@ 4.3 mo@	Rate \$ \$110.00 \$62.24 \$1,774.95	Total \$4,000 \$9,778 \$638,850 \$7,632	\$660,260
SAMPLE ASSAY AND ANALYSIS Drill Core Au, Ag Metallics 500gm(6) Drill Core Au, Ag FA1AT(8) Drill Core 35 el ICP(1DX) Drill Core Au 15gm (3A) Sample Prep	62 smp@ 118 smp@ 165 smp@ 828 smp@ 987 smp@	Rate \$ \$22.40 \$13.20 \$8.93 \$7.23 \$4.46	Total \$1,389 \$1,558 \$1,473 \$5,986 \$4,402	\$14,808
PERSONNEL Geologist Geologist - Core logger June - Sept Geologist - Core logger Sept - Oct Field Assistant - Core handler	120 days@ 78 days@ 37 days@ 120 days@	Rate \$ \$300.00 \$207.44 \$300.00 \$235.00	Total \$36,000 \$16,180 \$11,100 \$28,200	\$91,480
GENERAL EXPENSES Equipment and supplies Accomodation & Food Truck rental Fuel Freight Reclamation Office supplies and printing Recording fees Telephone and postage Travel	203 days@ 90 days@	Rate \$ \$65.00 \$90.00	Total \$4,565 \$27,925 \$9,472 \$2,402 \$909 \$330 \$1,400 \$1,500 \$2,374 \$960	\$51,837
			÷0	

TOTAL \$818,386

REFERENCES

MONGER, J.W.H.:

12.0

1989: Geology, Hope, British Columbia; Geological Survey of Canada, Map 41-1989, sheet 1, scale 1:250,000

PANTLELEYEV, A .:

1986: Ore Deposits #10. A Canadian Cordilleran Model for Epithermal Gold Silver Deposits; Geoscience Canada, Vol. 13, No. 12, pp. 101-111.

RICE, H.M.A.:

1947: Geology and Mineral Deposits of the Princeton Map Area, British Columbia; G.S.C., Memoir 243.

Appendix "A"

PetraScience Consultants Inc. Petrographic Report
PETROGRAPHIC REPORT

9 February 2005

Prepared For: Wojtek Jakubowski Almaden Minerals Ltd. Suite 1103-750 West Pender St. Vancouver, B.C. V6C 2T8

PetraScience Consultants Inc.

700 – 700 West Pender Street Vancouver, B.C. V6C 1G8 Canada phone: 604.684.5857 fax: 604.222.4642

info@petrascience.com www.petrascience.com

Background

Two samples were received from Wojtek Jakubowski of Almaden Minerals Ltd. The samples were prepared as polished thin sections for petrographic analysis. No detailed geologic or spatial information was. The petrographic work included basic transmitted and reflected light observations, covering description of lithologies (where possible), alteration and mineralization. Anne Thompson and Alexandra Mauler carried out the analysis at the PetraScience office, Vancouver, B.C. The observations are summarized below and descriptions follow. All percentages in the descriptions are approximate.

Summary

The two samples both represent felsic igneous rocks with mineralogy consistent with alkali granite compositions (see photo of chips below). Sample SND 372 @ 241 is fine grained, with K-feldspar grains less than 1mm across. Sporadic grains of larger plagioclase occur throughout. The sample appears to contain slightly more plagioclase than in sample SND 386 @ 10.3. The second sample is coarse grained and also exhibits perthitic textures. Accessory minerals in both include rutile and apatite.

Both samples are altered by carbonate (typically pale brown, no fizz reaction) and fine sericite. Sulfides are minor, with pyrite dominating over chalcopyrite.

Sample 372 @ 241 (left) and SND 386 @ 10.3 (right), showing distribution of K-feldpsar (yellow stain) and variation in grain size. Chips are approximately 2.6 by 4.6 cm in size.

Sample: SND 386 @10.3

LITHOLOGY: Alkali-granite

ALTERATION TYPE: Muscovite-carbonate

Hand Sample Description:

Leucocratic coarse-grained rock (5-10mm) mainly containing vitrous quartz and K-feldspar, as shown by yellow cobaltinitrite stain. Traces of sulfides are disseminated throughout. Not magnetic and no reaction to HCl.

MAJOR MINERALS

Mineral	%	Distribution & Characteristics	Optical
Quartz	35	Large anhedral grains, locally fine-grained associated with carbonate	
K-feldspar	35	Large anhedral grains, typically zoned and locally exhibiting perthitic textures	
Muscovite (sericite)	15	Fine laths, locally as fan-like aggregates, or very fine-grained sericite aggregates replacing feldspars ; also replaces likely biotite with rutile and carbonate	

MINOR MINERALS

Mineral	%	Distribution & Characteristics	Optical
Carbonate	05	Very-fine grained anhedral patches typically associated with	pale brn
		fine-grained quartz and Fe-oxides as replacement of feldspar;	
		also lining irregular fracture zone and rimming pyrite	
Plagioclase	05?	Subhedral interstitial grains	twins
Pyrite	01	Fine rounded to angular crystals; disseminated, commonly	
		rimmed by and associated with Fe-oxides; also interstitial	
Fe-oxides	tr	Rims around pyrite, fine laths associated with carbonate	
		aggregates in feldspars	
Rutile	tr	as replacement of biotite; also in clusters of fine needles	
		(rutilated quartz)	
Apatite	tr	fine grains and needles throughout	
Chalcopyrite	tr	rare fine grains	

Thin Section Description:

The sample is a subhedral granular alkali granite, mostly composed of coarse-grained quartz and alkali feldspars with minor plagioclase and pyrite. Alteration is marked by the presence of very-fine carbonate-quartz-Fe oxides aggregates developing within igneous quartz and feldspars and by the bleb-like intergrowth of muscovite laths and sericite aggregates within feldspar cores. Carbonate and mica alteration occur with rutile as replacement of probable biotite grains.

SND 386 @10.3: A) Large altered K-feldspar grains with pyrite in centre. Fine dark material in irregular zones is carbonate. PPL; B) Circular zone of alteration in plagioclase grain contains quartz, rutile, carbonate and fine mica.. XPL, FOV = 6mm.

Sample: SND 372 @241

LITHOLOGY: Alkali Granite

ALTERATION TYPE: Sericite, carbonate; ?clay

Hand Sample Description:

Fine-grained grey to white rock containing numerous K-feldspars crystals (<1mm) as indicated by yellow cobaltinitrite stain. Traces of sulfides are visible. Not magnetic and no reaction to HCl.

MAJOR MINERALS

Mineral	%	Distribution & Characteristics	Optical
K-feldspar	35	Fine anhedral grains, typically zoned and/or twinned	
Quartz	30	Fine anhedral grains; minor recrystallization textures	
Plagioclase	10	Fine anhedral grains typically zoned and/or twinned	twins

MINOR MINERALS

Mineral	%	Distribution & Characteristics	Optical
Phlogopite/Mica	05	Fine and flaky, rimmed by clay, carbonate, rutile along	r.
		borders and cleavage planes	
Sericite/illite	05	Very fine-grained laths replacing feldspar cores	
Carbonate	05	Very fine-grained masses locally replacing feldspars	
Clay	05	Aphanitic brown masses partially replacing original	
		muscovite?	
Pyrite	01	Disseminated fine anhedral masses, commonly rimmed by	
		and associated with Fe-oxides	
Fe-oxides (hematite)	01	Rims around pyrite, fine laths associated with carbonate	
		aggregates in feldspars	
Chlorite	tr	minor flakes, grains associated with mica and sulfide	
Chalcopyrite	tr	aggregates, fine grains, with pyrite	
Apatite	tr	disseminated tabular fine grains	
Zircon	tr	one grain	

Thin Section Description:

The mineralogical composition of the sample is similar to the one of the previous sample, mainly consisting of quartz, K-feldspar and minor plagioclase. A major difference between the samples lies in the grain size, this sample being dominantly fine-grained. Feldspars (plagioclase) grains occur throughout that are larger than the groundmass. Alteration is characterized by the presence of carbonate and sericite, however the sericite is also partly altered to clay along cleavages and grain boundaries. Fe-oxides (typically hematite) occur as replacement of pyrite. Both the clay and Fe-oxide features suggest a stronger weathering in this sample than the previous one.

SND 372 @241: Representative views showing fine-grained subhedral granular quartz, K-feldspar and plagioclase. A large plagioclase phenocryst is present on the right side of photo B. A) PPL, B) XPL, FOV = 6 mm.

Appendix "B"

SJ Geophysics Magnetometer Survey on the Elk Property

GEOPHYSICAL REPORT

MAGNETOMETER SURVEY

<u>ON THE</u>

ELK PROPERTY

<u>FOR</u>

ALMADEN MINERALS LTD.

ELK PROJECT 2004 5525705N 694471E - NAD83 ZONE10 (APPROX. CENTRE OF GRID)

Location: 45km southeast of Merrit in Southern British Columbia NTS Sheet: 92H/16W Mining Zone: SIMILKAMEEN Mining Division

> SURVEY CONDUCTED BY SJ GEOPHYSICS LTD. SEPTEMBER 2004

REPORT WRITTEN BY Shawn Rastad/Brian Chen S.J.V. Consultants Ltd. January 2005

TABLE OF CONTENTS

1.	Introduction	.1
2.	Location and Line Information	1
3.	Field Work and Instrumentation	2
4.	Geophysical Techniques	5
	4.1. Magnetic Survey Method	. 5
5.	Interpretation and Discussion	.6
6./	Appendix 1 – Statement of Qualifications	.8
	6.1. Shawn Rastad	. 8
7.	Appendix 4 – Instrument Specifications	.9
	7.1. EDA OMNI-PLUS MAGNETOMETER	9

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

i

ILLUSTRATIONS

	Figure 1: Grid map of Magnetic Survey	. 2
	Figure 2: Magnetic variation at base station	.3
	Figure 3: False Colour Contour Plan Map - Total Field Magnetic Intensity	.4
	Figure 4: False Colour Contour Plan Map - Total Field Magnetic Intensity (Annotated with	L
Γr	end Identifiers)	. 7

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Almaden - Elk Property 2004

1

1. INTRODUCTION

This report describes the ground geophysical exploration project that was undertaken for Almaden Minerals Ltd. on its Elk Property. A magnetometer survey was conducted by SJ Geophysics Ltd. on September 26th, 2004. The region has been extensively explored and is the site of the Siwash Gold Mine. The magnetic data was gathered to provide additional information in confirming results from previous exploration work and hopefully be able to accurately locate and map these pyritic quartz veins. This report describes the field methodology, the post processing done on the magnetic data and a brief discussion of the result. This report does not cover items such as discussion of the background geology, costs associated with the survey or provide a detailed geological interpretation.

2. LOCATION AND LINE INFORMATION

The property is located 45km southeast of Merrit in southern British Columbia. The geophysical crew were provided accommodation by Almaden Minerals Ltd. The grid was situated just outside the Siwash Gold Mine site.

The project consisted of a single grid consisting of 10 lines. The lines consisted of 100m separation and were labeled 3100E through to line 4000E. The lines extended 1500m (3000N - 4500N) in length with pickets placed every 25m along the line. An 11th line (3950E) was included between lines 3900E and 4000E and extended approximately 800m. The total linear kilometers for the entire was approximately 15800 meters. Figure 1 shows a simple grid map of the magnetic survey.

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sigeophysics.com</u>

Figure 1: Grid map of Magnetic Survey

3. FIELD WORK AND INSTRUMENTATION

The SJ Geophysics Ltd. crew consisted of two SJ Geophysics Ltd. employees: Dominic Kot and Tony Cade. The crew mobilized from Crand forks on the 25th of September and met with the client representative on site that evening. The entire magnetic data set was collected on September 26th at 12.5m intervals. Location data (GPS) was provided to the crew by Almaden Minerals Ltd.

The magnetic survey was conducted using three EDA Omni-Plus magnetometers. Two mobile units were used to gather the data, while a third magnetometer was used as a base station.

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sigeophysics.com</u>

Almaden - Elk Property 2004

The diurnal corrections were applied back in the offices of SJ Geophysics Ltd. and performed by Cameron Wallace. Figure 2 shows the daily variation of approximately 25nT during the 9 hours of recording time as recorded by the base station.

During the processing of the data, it was determined that 500m of line 4000E had poor quality data and as a result it was decided to remove this from the data set. The final data is represented as a false colour contour plan map and is shown as Figure 3.

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

Figure 3: False Colour Contour Plan Map - Total Field Magnetic Intensity

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sigeophysics.com</u>

Almaden - Elk Property 2004

5

4. **GEOPHYSICAL TECHNIQUES**

4.1. Magnetic Survey Method

Magnetic intensity measurements are taken along survey traverses (normally on a regular grid) and are used to identify mineralization that is related to magnetic materials (normally magnetite and/or pyrrhotite). Magnetic data are also used as a mapping tool to distinguish rock types, identify faults, bedding, structure and alteration zones. Line and station intervals are usually determined by the size and depth of the exploration targets.

The magnetic field has both an amplitude and a direction and instrumentation is available to measure both components. The most common technique used in mineral exploration (which was used on this project) is to measure just the amplitude component using a proton precession magnetometer. The instrument digitally records the survey line, station, total magnetic field and time of day at each station. This information is typically downloaded to a computer at the end of each day for archiving and further processing.

The earth's magnetic field is continually changing (diurnal variations) and field measurements must be adjusted for these variations. The most accurate technique is to establish a stationary base station magnetometer that continually monitors and records the magnetic field for the duration of the survey. The base station and field magnetometers are synchronized on the basis of time and computer software is used to correct the field data for the diurnal variations.

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

5. INTERPRETATION AND DISCUSSION

The magnetic data for the grid varies mildly, with total field magnetic intensity amplitude varying approximately 400nT. The magnetic distribution of this grid is characterized by high values in the east portion of the grid and low value in the west portion of the grid. Both the high and low value areas show some pattern of fragmentation.

A north-south striking linear magnetic contact appears to separate the high and low value in the middle of the grid. This linear contact runs through the entire length of the grid. Please refer to Figure 4 for details. It's denoted by a white dashed line AA' in the figure. This may suggest either the rock unit changes from the east to west portion of the grid or the same rock unit dips westward and is overlaid by a layer of overburden with low magnetic susceptibility material.

The high value area is interveined by low value structures in the east part while in the west portion of the grid high value features scatter in the low value background area. Some of the ridges of the high value in the grid illustrate near parallel linear extension pattern. Please refer to Figure 4 for details. The yellow dashed lines which are the connections of high value peaks show that one group of NE-SW trending sub-parallel linear features is cut by another SE-NW trending near parallel linear features. The light cyan line demonstrates one of the noticeable linear extensions of low values. This may suggest some geological reason.

Because of lacking geological information and topographic data in this grid. It's difficult to associate the magnetic anomalies with geological units or target. The magnetic survey result should be correlated with existing geological, geochemical and other geophysical data in order to provide a better interpretation.

Respectfully submitted, Per S.J.V. Consultants Ltd.

Shawn Rastad Geophysicist

Brian Chen

Geophysicist

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sigeophysics.com</u>

Figure 4: False Colour Contour Plan Map - Total Field Magnetic Intensity (Annotated with Trend Identifiers)

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

8

6. Appendix 1 - Statement of Qualifications

6.1. Shawn Rastad

I, Shawn Rastad, of the city of Coquitlam, Province of British Columbia, hereby certify that:

- 1. I graduated from the University of British Columbia 1996 with a Bachelor of Science degree majoring in geophysics.
- 2. I have been working in mineral and oil exploration since 1997.
- 3. I have no interest in Almaden Minerals Ltd., or in any property within the scope of this report, nor do I expect to receive any.

Signed by:

Shawn Rastad, B.Sc. Geophysics

Date:

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydy@sigeophysics.com</u>

Almaden - Elk Property 2004

9

6.2. Brian Chen

I, Brian Chen, of the city of Delta, Province of British Columbia, hereby certify that:

- I graduated from the University of Science and Technology of China in 1989 with a Bachelor of Science degree in geophysics and from South China Sea Institute Of Oceanology, CAS in 1992 with a Master of Science degree in Mathematical geology.
- 2. I have been working in geophysics since 1992.
- 3. I have no interest in Almaden Mineral Ltd., or in any property within the scope of this report, nor do I expect to receive any.

Signed by:

Brian Chen Geophysicist

Date:

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u>

7. Appendix 4 – Instrument Specifications

7.1. EDA OMNI-PLUS MAGNETOMETER

Operating modes	
Operating temperature	
Sensor	
Dynamic range	
Tuning	

Total field, base, tie-line -45 to +50 deg. C. Proton precession 18,000 – 110,000 gammas Automatic over entire range

Microprocessor controlled

+/- 15% relative to ambient field of last

+/- 1 gamma at 50,000 gammas at 23

deg. C +/- 2 gammas over total

Polarizing cycle Processing sensitivity Resolution Absolute accuracy

Statistical error reject threshold Statistical error resolution Memory Field Tie-line points Base station

0.01 gammas

0.2 gammas

temperature range

stored total field

+/- 0.02 gammas

0.1 gammas

1300 readings 100 readings 5500 readings

Input voltage:

120V / 60 Hz or 240V / 50Hz (optional)

Output power: Output voltage: Output current: Time domain:

Operating temp. range Display Dimensions (h w d): Weight: 1.4 kW maximum. 150 to 2000 Volts 5 ma to 10Amperes Transmission cycle is 2 seconds ON, 2 seconds OFF -40° to +65° C Digital LCD read to 0.001A 34 x 21 x 39 cm 20kg.

SJ Geophysics Ltd. / S.J.V. Consultants Ltd. 11762-94th Ave., Delta, BC Canada Tel: (604) 582-1100 Fax: (604) 589-7466 E-mail: <u>sydv@sjgeophysics.com</u> Appendix "C"

Assay and Analytical Results from Core Samples

ACME ANI ICAL LABORATORIES LTD. (ISO J02 Accredited Co.) 852 E. HASTINGS ST. OUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (60

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK File # A402941 1103 - 750 W. Pender St., Vancouver BC V6C 278

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co Ma	n Fe	As	U	Au	Th	Sr	Cđ	Sb Bi	٧	Ca	P La	Cr	Mg	Ba T	i B	Á1	Na	K	W Hg	Sc	T1	S Ga	Se	Ag** Au**	
 	ppm	ppm	ppm	ppm p	pm	ppn p	рт рр	n %	ppm	ррл	ppb	рря	ppm p	ipm p	ypm pps	ppm	8	% ppm	ppm	¥	ppm	% ppm	ž	ž	% pp	on ppr	ppm	ppm	% ppm	ppm g	m∕mt g¤∕mt	
c 1	. 1					C 1			~	. 1		. 1	0			.1	10 - 04		.1		0.00						. 1				-0 01	
SI SVO DCC A	<.1	0.0	.3	1 4	4.1 	0.1	./ 5		.0	1.2	<.5	<.1 6 7	2 4	.1 *	·. · · · ·	<1	.10<.00	11 <1	1>	<.01	3<.00	1 <1	.01	.504 <.	.01 <.	.1 <.01	. <.1	<.1 <.1	15 <1	<.5 -	<z .ui<="" td=""><td></td></z>	
SND 366-4	3.6	190.0	259.3	239 8	3,4	7.9 14	./ 83	25.45	101.6	13.1	4223.0	6./	5 1	/	.3 4.1	8	.18 .05	53 16	3.8	. 11	28.00	1 2	.29	.010 .	30 .	.5 .01	1.4	.14	13 1	.5	10 4.22	
SND 366-10	2.2	242.8	9.4	51 1	.4	4.9 5	.6 .60	5 4.42	81.6	8.1	402.7	7.8	6	.3	.2 .6	13	.18 .04	48 9	3.5	. 15	38 .01	31	.40	.017 .	30	.1 <.01	2.1	.1 2.8	35 1	<.5	<2.67	
SND 366-15	2.8	316.2	6.9	61 3	3.3	3.8 7	.3 98	5 5.84	55.5	3.3	3534.3	6.8	3	.4	.1 1.6	5	.19 .03	39 7	3.7	.17	28 .00	2 <1	.41	.007 .	32 .	.6 <.01	1.0	.1 3.3	31 1	<.5	3 3.35	
SND 366-19	2.1 2	864.2	5.3	125 4	.7	2.5 4	.8 83	16.16	23.6	3.3	3436.2	7.8	5 2	2.2	.2 4.3	9	.19 .04	42 7	2.8	.21	31 .00	2 1	.38	.013 .	28 .	.2 <.01	2.0	.1 3.4	14 1	.7	6 6.45	
SND 366-20	2.2	790.8	6.5	76 4	1.9	3.1 4	.0 89	3 4.46	19.4	3.7	2574.8	8.3	5	.8	.1 4.6	8	.19.04	43 8	3.6	. 22	31 .00	2 1	.38	.011 .	26	.5 <.01	2.1	.1.1.0	59 1	<.5	3 7.28	
SND 366-27	2.4	405.2	121.2	83 17	7.4	2.9 6	5.6 77	9 4.41	933.4	5.6	21000.0	7.6	6 1	.1 3	.0 8.2	11	.21 .04	42 8	2.9	. 17	37 .00	61	. 38	.015 .	27	.1 <.01	2.4	.1 2.3	28 1	<.5	15 18.84	
SND 367-4	10.3	181.9	194.4	267 3	8.8	2.6 24	.7 88	6 4.47	121.5	12.6	1799.0	5.7	13 2	2.1	.6 1.0	10	.27 .0	59 18	2.7	.24	38.00	1 1	. 28	.017 .	17	.6 <.01	2.0	.1 2.6	33 1	<.5	3 1.77	
RE SND 367-4	10.3	181.5	193.7	269 4	1.2	2.7 24	.0 89	3 4.52	119.8	12.6	1660.0	5.2	12 2	2.2	.6 1.0	10	.26 .0	58 16	2.7	. 25	38 .00	1 2	. 28	.017	18	.5 .01	2.1	.1 2.	75 1	<.5	4 1.54	
RRE SND 367-4	10.9	179.7	208.1	292 3	3.8	2.3 29	.2 87	4.94	142.0	14.1	1458.0	5.1	12 1	.9	.7 1.2	11	.27 .04	48 16	1.5	. 24	38 .00	1 1	. 33	.017	19	.1 .01	2.0	.1 3.	4 1	<.5	3 1.37	
SND 367-6	5.5	177.8	102.9	91 1	1.9	2.1 5	5.4 93	5 3.91	86.2	34.9	501.4	10.1	15 2	2.3	.1 .3	5	.22 .0	57 19	2.8	. 17	39.00	1 1	.34	.008	27	.5 <.01	1.3	.1 2.3	30 1	<.5	<2 .15	
SND 357-8	2.3	319.9	341.0	151 4	1.1	3.6 6	5.5 106	48.59	198.9	9.1	705.9	8.2	5 3	.3	.2 2.0	6	.21 .04	43 10	1.9	. 14	15 .00	1 1	. 37	. 008	.34	.2 <.01	1.7	.1 6.9	93 1	.6	4 1.47	
SND 367-16	1.2	572.7	95.8	93 17	7.7	2.0 4	1.2 62	04.19	27.5	4.4	23000.0	7.8	2 2	2.5	<.1 19.8	1	.11 .0	15 5	3.8	.07	22 .00	1 <1	.23	.004	20	.8 <.01	6	.1 2.	64 1	<.5	15 21.11	
SND 367-21	1.6	697.7	194.9 2	2880 82	2.3	4.3 8	8.5 46	97.09	2211.8	5.4	46550.0	4.1	2 66	5.7	1.9 72.4	3	.08 .0	19 2	5.2	.06	17 .00	1 <1	. 20	.004	19	.4 .03	.8	.16.	13 1	.5	94 57.52	-
SND 368-9	3.6	163.2	135.7	641 5	5.5	1.9 5	5.1 63	3.06	63.3	11.1	2155.0	9.2	12 20	0.0	.4 2.0	8	.19 .04	46 16	2.6	. 16	55 .00	1 1	. 32	.010	21	.3 .06	1.7	.1 1.	76 1	<.5	6 3.12	
SND 368-13 PULP	22.2	57.0	439.8	36 4	1.9 139	90.3 31	.4 41	4 2.34	49.4	.5	34000.0	3.2	18	.2	.5 4.9	33	.48 .0	31 13	1742.2	.61	150 .04	85	.99	.049	32 14	.4 .03	2.2	.1 <.	35 3	<.5	4 33.46	
STANDARD DS5/R-2a/AU-1	12.3	137.4	23.8	140	.3 2	25.6 11	.9 78	2 2.99	22.7	6.2	42.0	2.5	45 3	5.5 3	3.4 6.4	62	.76 .0	89 11	186.1	.68	137 .10	9 19	2.08	.034	14 4	.9.18	3.5	1.1 <.)5 7	5.0	157 3.28	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data Whe FA

DATE RECEIVED: JUN 22 2004 DATE REPORT MAILED:

ACME AN ICAL LABORATORIES LTD. (ISO J02 Accredited Co.)	852 E. HASTINGS	S ST. OUVER	BC V6A 1R6	PHONE (604) 253-3158	FAX (60 3-171	6
ΑΑ	ASS.	AY CERTIFICAT	E		ΔΙ	Δ
TT <u>Almaden</u>	<u>Minerals Ltd.</u> 1103 - 750 W.	PROJECT ELK Pender St., Vancouver	File # A4029 BC V6C 2T8	941R	T	
	SAMPLE#	S.Wt NAu gm mg gm	-Au TotAu /mt gm/mt			
	SI SND 368-9	<1 <.01 471 .63 2	.01 <.01 .92 4.26	· · ·		

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

OUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60 3-1716 ACME AN. ICAL LABORATORIES LTD. 852 E. HASTINGS ST. (ISO y002 Accredited Co.) ASSAY CERTIFICATE Almaden Minerals Ltd. PROJECT ELK File # A402941R 1103 - 750 W. Pender St., Vancouver BC V6C 218 NAg -Ag TotAg mg gm/mt gm/mt SAMPLE# S.Wt NAq qm <2 <2 <2 6 <2 8 SI SND 368-9 <1 471

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data____ FA _______ DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED:

ACME A TICAL LABORATORIES LTD. 852 E. HASTINGS ST. COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (6C 53-1716 ASSAY CERTIFICATE Almaden Minerals Ltd. PROJECT ELK File # A402941R2 1103 - 750 W. Pender St., Vancouver BC V6C 218 SAMPLE# S.Wt NAu -Au TotAu					
(ISC 9002 Accredited Co.) ASSAY CERTIFICATE <u>Almaden Minerals Ltd. PROJECT ELK</u> File # A402941R2 1103 - 750 W. Pender St., Vancouver BC V6C 278 SAMPLE# S.Wt NAu -Au TotAu	ACME A TICAL LABORATORIES LTD.	852 E. HASTINGS ST.	COUVER BC V6A 1R6	PHONE (604) 253-3158 FAX (60 5	3-1716
ASSAY CERTIFICATE <u>Almaden Minerals Ltd. PROJECT ELK</u> File # A402941R2 1103 - 750 W. Pender St., Vancouver BC V6C 278 SAMPLE# S.Wt NAu -Au TotAu	(ISU-9002 Accredited Co.)				
Almaden Minerals Ltd. PROJECT ELK 1103 - 750 W. Pender St., Vancouver BC V6C 278 SAMPLE# S.Wt NAu -Au TotAu		ASSAY CERT	IFICATE		AA
Almaden Minerals Ltd. PROJECT ELK 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 File # A402941R2 TC SAMPLE# S.Wt NAu -Au TotAu	ΔΔ				
La La 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 La La SAMPLE# S.Wt NAu -Au TotAu	Almaden J	Ainerals Ltd. PROJEC	<u>"T ELK</u> File	941R2	
SAMPLE# S.Wt NAu -Au TotAu		1103 - 750 W. Pender St.,	Vancouver BC V6C 2T8		
SAMPLE# S.Wt NAu -Au TOÇAU					
	· · · · · · · · · · · · · · · · · · ·	SAMPLE# S.Wt	NAU -AU TOĻAU		
gm mg gm/mt gm/mt		gm	mg gm/mt gm/mt		
$SND_{367-21} = 444 15.25 53.18 87.53$		SND 367-21 444	15.25 53.18 87.53		
STANDARD AU-1 <1 <.01 3.35 3.35		STANDARD AU-1 <1	<.UL 3.35 3.35		

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data____FA

DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: MM. 18/2005

76 1025 SILVER, TOTAL	L SAMPLE FIR	E ASSAY.		
SILVER, TOTAL	DOS	E ASSAY.		
8/2	005			
			÷	
			• .	
ei				
			WEA STO	TEER
		6	Y AN	
	•			NUMBER OIL

ACME AN 'ICAL LA (ISC)002 Accr	ABORATORIES LTD. redited Co.)	852 E. HASTINGS ST. OUVER BC V6A 1R6 PH	IONE(604)253-3158 FAX(60 \$3-1716
		GEOCHEMICAL ANALYSIS CERTIFICATE	\mathbf{A}
LL	Almaden	1103 - 750 W. Pender St., Vancouver BC V6C 2T8	²
SAMPLE# No Cu ppm ppm	Pb Zn Ag Ni Co Mn ppm ppm ppm ppm ppm ppm	Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba % ppm ppm ppb ppm ppm ppm ppm ppm % % ppm ppm % ppm	Ti B Al Na K W Hg Sc Tl S Ga Se % ppm -% % % ppm ppm ppm ppm % ppm ppm
SI .1 3.8 SND 366-8 2.9 1107.1 22 SND 368-8 6 0 1449 1 38	.7 2 <.1 .7 .1 <1 20.6 267 26.2 6.8 8.5 963 4 33 9 31 44 5 7 3 22 3 85 20	.01 <.5 <.1 <.5 <.1 3 <.1 <.1 <.1 <1 .13<.001 <1 8.1<.01 3< 4.01 52.3 7.8 24079.2 5.4 3 1.7 .3 15.8 4 .11 .020 6 217.7 .10 40 0 37 373 5 5 3 12774 8 4 4 5 2 3 1 1 9 9 1 07 022 3 1 0 04 2	.001 2 .01 .683<.01 .01 .1 .11 .11 <1 <.5 .001 3 .38 .011 .29 .4<.01 1.0 .1 3.17 1 <.5 .001 1 .24 .006 17 2 .5 5 1 >10 1 6
SND 368-15 4.5 100.0 15 STANDARD DS5 12.5 144.2 2	52.7 162 14.7 5.9 11.3 1005 5 52.9 140 .3 24.7 11.8 783 3	5.28 62.7 11.7 14439.4 10.8 9 .8 .3 3.3 14 .22 .052 24 147.4 .17 36 3.04 18.5 6.2 44.1 2.8 45 5.6 3.6 6.4 58 .76 .093 11 191.2 .68 136	.002 3 .48 .025 .26 .1 .01 3.3 .2 4.31 1 <.5 .102 18 2.06 .034 .13 4.7 .16 3.4 1.2 <.05 7 4.9

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C

DATE RECEIVED: JUN 22 2004 DATE REPORT MAILED: JUN 22 2004 Data WE FA

ACME AN ICAL LABORATORIES (ISO 9002 Accredited Co	S LTD. 852 E. HASTINGS .) ASS7 <u>Almaden Minerals Ltd.</u> 1103 - 750 W. 1	ST. CUVER BC V6A 1R6 AY CERTIFICATE PROJECT ELK File # A40 Pender St., Vancouver BC V6C 218	PHONE (604) 253-3158 FAX (60 2942
	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt	
	SI SND 366-8 SND 368-8 SND 368-15	<pre><1 <.01 .01 .01 1031 10.74 30.79 41.21 992 .16 10.39 10.55 730 .99 13.37 14.73</pre>	
-AU : -150 AU BY FIRE ASSAY FRO - SAMPLE TYPE: CORE R150 60C Data MC FA DATE REC	OM 1 A.T. SAMPLE. DUPAU: AU DUPLICAT EIVED: JUN 22 2004 DATE REP	ed from -150 mesh. NAU - NATIVE GOLD, TOT ORT MAILED:	AL SAMPLE FIRE ASSAY.

Clarence Leong

ACME AN ICAL LABORATORIES LTD. (ISC 002 Accredited Co.)

OUVER BC V6A 1R6 PHONE(604)253-3158 FAX(60 53-1716 852 E. HASTINGS ST.

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK File # A402942 1103 - 750 W. Pender St., Vancouver BC V6C 2T8

SAMPLE#	S.Wt	NAg	-Ag	TotAg
	gm	mg	gm/mt	gm/mt
SI	<1	<.06	<2	<2
SND 366-8	1031	3.15	30	33
SND 368-8	992	.71	46	47
SND 368-15	730	.35	16	16

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data We FA

DATE RECEIVED: JUN 22 2004 DATE REPORT MAILED: A. J. B. 0.4.

ACME AN FICAL LABORATORIES LT. (ISC >002 Accredited Co.)	0. 852 E. HASTIN AS aden Minerals Ltd 1103 - 750 k	IGS ST. COUVER BC V6A 1R6 PHONE(604)253-3158 FAX(60 SSAY CERTIFICATE 1. PROJECT ELK File # A402942R W. Pender St., Vancouver BC V6C 2T8
	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt
	SI SND 366-8	<1 <.01 .01 <.01 728 19.29 29.43 55.93
-AU : -150 AU BY FIRE ASSAY FROM 1 A - SAMPLE TYPE: CORE REJ. Data FA DATE RECET	.T. SAMPLE. DUPAU: AU DUPLIC	REPORT MAILED: Oct 20/04.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.

ACLE AN ICAL LABORATORIES LTD. (ISC J02 Accredited Co.)

852 E. HASTINGS ST. OUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60

3-1716

AA

GEOCHEMICAL ANALYSIS CERTIFICATE

SAMP_Left Aut SIND 366-1 1875.1 SIND 366-2 141.4 SIND 366-5 68.9 SIND 366-6 591.2 SIND 366-6 591.2 SIND 366-1 3002.3 SIND 366-1 3002.3 SIND 366-1 3002.3 SIND 366-12 30002.3 SIND 366-14 2012.9 SIND 366-15 2012.9 SIND 366-16 2012.9 SIND 366-17 3002.3 SIND 366-18 1763.2 SIND 366-24 429.1 SIND 366-27 101.6 SIND 366-24 101.6 SIND 366-27 101.6 SIND 366-24 101.6 SIND 366-27 101.6 SIND 366-27 101.6 SIND 366-17 132.5 SIND 366-18 1765.7 SIND 366-17 132.5 SIND 366-17 132.5 SIND 367-1 132.5 SIND 367-1 132.5 SIND 367-1 132.5		<u>Almaden Miner</u>	als Ltd. PROJECT ELK 1103 - 750 W. Pender St., Vanc	File # A40294 ouver BC V6C 2T8	3 Page 1
ST SND 366-1 SND 366-2 SND 366-3 SND 366-5 SND 366-6 SND 366-6 SND 366-6 SND 366-12 SND 366-12 SND 366-14 SND 366-12 SND 366-14 SND 366-14 SND 366-14 SND 366-14 SND 366-14 SND 366-14 SND 366-24 SND 367-10 SND 36		·	SAMPLE#	Au* ppb	
$\begin{array}{c} & SND 366-6 \\ SND 366-7 \\ SND 366-9 \\ SND 366-12 \\ SND 366-17 \\ SND 366-17 \\ SND 366-22 \\ SND 366-22 \\ SND 366-24 \\ SND 366-26 \\ TO0.3 \\ SND 366-26 \\ TO0.3 \\ SND 367-7 \\ SND 367-10 \\ SND 367-11 \\ SND 367-10 \\ SND 367-11 \\ SND 367-10 \\ SND 367-11 \\ SND 367-12 \\ SND$			SI SND 366-1 SND 366-2 SND 366-3 SND 366-5	<.5 1879.1 141.8 341.7 68.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• • • • •		SND 366-6 SND 366-7 SND 366-9 SND 366-11 SND 366-12	591.2 6.9 10.8 101.8 30802.3	
$\begin{array}{c} \begin{array}{c} & SND \ 366 - 21 \ SND \ 366 - 22 \ PULP \ SND \ 366 - 24 \ SND \ 367 - 1 \ SND \ 367 - 1 \ SND \ 367 - 7 \ SND \ 367 - 11 \ SND \ 367 - 1 \ SND \ 367 -$			SND 366-13 SND 366-14 SND 366-16 SND 366-17 SND 366-18	110.0 2012.9 376.4 3717.7 1763.2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SND 366-21 SND 366-22 PULP SND 366-23 SND 366-24 RE SND 366-24	9.2 9509.8 379.5 239.1 467.6	
SND 367-2 SND 367-3 SND 367-5 SND 367-7 SND 367-7 SND 367-7 SND 367-7 SND 367-10 SND 367-10 SND 367-10 SND 367-12 SND 367-12 SND 367-12 SND 367-12 SND 367-12 SND 367-14 SND 367-14 SND 367-14 SND 367-14 PULP 35661.0 STANDARD AU-R 468.0 AU* IGNITED, ACID LEACHED, ANALYSED BY ICP-MS. (30 gm) - SAMPLE TYPE: CORE RISO 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Data W FA DATE RECEIVED: JUN 22 2004 DATE REPORT MAILED: July 5/04 All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.			RRE SND 366-24 SND 366-25 SND 366-26 SND 366-28 SND 366-28 SND 367-1	232.1 1016.0 700.3 1026.2 717.5	TO LAND
SND 367-10 SND 367-11 SND 367-12 SND 367-12 SND 367-13 SND 367-14 SND 367-14 SND 367-14 SND 367-14 SND 367-14 SND 367-14 SND 367-14 SND 3661.0 35661.0 AU* IGNITED, ACID LEACHED, ANALYSED BY ICP-MS. (30 gm) - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reject Reruns. Samples beginning 'RE' are Report MAILED: Jun 22 2004 DATE REPORT MAILED: Jun 5/04 Ill results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.			SND 367-2 SND 367-3 SND 367-5 SND 367-7 SND 367-7 SND 367-9	613.6 2263.9 12.8 19.8 1010.7	Clarence Leong
STANDARD AU-R 468.0 AU* IGNITED, ACID LEACHED, ANALYSED BY ICP-MS. (30 gm) AU* IGNITED, ACID LEACHED, ANALYSED BY ICP-MS. (30 gm) SAMPLE TYPE: CORE R150 60C Bamples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Aut > 1000 pp b Data We FA DATE RECEIVED: JUN 22 2004 DATE REPORT MAILED: July 5/04 All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.			SND 367-10 SND 367-11 SND 367-12 SND 367-13 SND 367-14 PULP	1322.5596.4715.74.035661.0	
AU* IGNITED, ACID LEACHED, ANALYSED BY ICP-MS. (30 gm) - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. Data W_FA DATE RECEIVED: JUN 22 2004 DATE REPORT MAILED: Jun 5/04 All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.		· · · · · · · · · · · · · · · · · · ·	STANDARD AU-R	468.0	
Data W_FA DATE RECEIVED: JUN 22 2004 DATE REPORT MAILED: Jun 5/04 All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.		AU* IGNITED, - SAMPLE TYP Samples begi	ACID LEACHED, ANALYSED BY ICP-MS E: CORE R150 60C nning 'RE' are Reruns and 'RRE' a	. (30 gm) re Reject Reruns.	Assay recommend for
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.	Data Mg FA	DATE RECEIVED: JUN 22 2	2004 DATE REPORT MAILED:	Joly 5/04	An > 1000 pp =
	All results are conside	red the confidential property of	the client. Acme assumes the liab	/ / ilities for actual cost o	of the analysis only.

Almaden Minerals Ltd. PROJECT ELK FILE # A402943

Page 2

Data We FA

SAMPLE#	Au* ppb	
SND 367-15 SND 367-17 SND 367-18 SND 367-19 SND 367-20	1120.163.033464.0480.83833.9	
SND 367-22 SND 368-1 SND 368-2 SND 368-3 SND 368-4	$ \begin{array}{r} 131.5\\ 4.0\\ 11.3\\ 19.2\\ 57.1 \end{array} $	
SND 368-5 RE SND 368-5 RRE SND 368-5 SND 368-6 SND 368-7	1060.6 2074.7 783.3 55.0 102.1	
SND 368-10 SND 368-11 SND 368-12 SND 368-14 SND 368-16	17.5 111.1 18.2 <.5 7.2	
SND 368-17 SND 368-18 SND 368-19 STANDARD AU-R	42475.5 363.5 106.2 460.0	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACII	AN		AL L ACC	ABOI	RATO	RIE	S L	TD.		852	Ε.	HAST	INGS	ST	•	COU	VER	BC	V6A	1R6		PHO	ONE (604)	253	-31	58 F	AX (6	र्	53-1	716
4 4	 						Alr	nade	<u>en M</u>	G ine	EOC <u>ral</u> 110	HEM <u>.s L</u> 3 - 79	ICAI td. 50 W.	Al <u>PR(</u> Pende	NALY DJEC r St.,	SIS TE Vanc	CE <u>LK</u> ouve	RTI Fi BCV	FIC le 6C 2T	ATE # A4 8	102	9431	ર							4	
SAMP	LE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm j	Mn F opm	Fe %∦p	As l pm ppr	U n p	Au T opb pp	h Sr m ppm	Cd S ppm ppi	b Bi m ppn	V 1 ppm	Ca %	PLa %ppm	Cr ppm	Mg %p	Ba opm	Гі В %гррm	A1 %	Na %	К % р	W Hg Ipm ppm	Sc ppm p	T1 pm	S Ga % ppm p	Se opm
SI SND SND SND STAN	366-12 367-18 368-17 DARD DS5	<.1 2.9 1.7 1.7 12.1	.8 616.1 817.3 176.3 146.4	.5 101.0 15.2 76.1 25.5	1 72 3 73 148 4 140	<.1 32.4 7.3 44.6 .3	.2 3.0 2.7 2.0 24.8	<.1 5.6 1 4.4 4.2 12.1	<1 .(003 4.1 536 4.6 287 4.8 783 2.9)4 < L0 271 55 55 36 137 97 17	.5 <.1 .6 7.9 .5 5.1 .9 4.1 .8 6.0	1 3 9 19701 1 16385 1 26622 0 42	3.5 <. 1.3 10. 5.4 8. 2.2 5. 2.0 2.	1 4 4 7 6 3 1 2 6 45	<.1 <. .8 1.4 2.7 5.2 3.	1 <.1 5 13.7 2 17.7 3 8.9 3 5.9	<pre><1 </pre> 10 3 1 62	.17<.0 .21 .0 .16 .0 .06 .0 .73 .0	01 <1 41 11 48 6 20 6 95 12	1.2 1.5 1.3 1.5 190.9	<.01 .16 .08 .03 .67 1	4<.00 41.00 33.00 22<.00)1 <1)5 <1)1 <1)1 <1 98 17	.01 .40 .30 .21 1.98	.690 .015 .006 .006 .032	.01 < .28 .28 .18 .14 4	.1<.01 .1 .01 .2<.01 .1 .02 .7 .17	.2 < 2.3 1.0 .5 3.3 1	.1 <.0 .1 1.6 .1 3.4 .1 3.4 .0 <.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<.5 <.5 .5 1.9
GROL (>) - S/	IP 1DX - CONCENTR MPLE TYP	0.50 ATION PE: CO	GM SA Exce Re Re	MPLE EDS U J.	LEACH	IED LIMI	ITH I TS.	3 ML 2 SOME	2-2-2 I MINER	HCL-H ALS M	NO3-H Ay be	20 AT PARTI	95 DE	G.C ATTAC	FOR ON KED.	E HOU REFRA		ILUTED AND	TO 1 GRAPH	^{0 ML} , ITIC's	ANAL) AMPLE	(SED E S CAN	Y ICP LIMI	Y-MS. T AU	SOLUB	3ILIT	Y.				
Data	L F1			Dr	AIC	, KEC		ED:	AUG	23 20	104	DAIE	. KEF	OKI	MALL	. נומו	• • • •		,				(ALCO EL		L L			E AS		
																								V	Z	<u>.</u>	F	- BER			
		·																													
All	esults a	are co	nside	red t	he co	onfic	lentia	al pro	perty	of t	he cl	ient.	Acme	assun	es the	liab	ilit	ies fo	r act	ual co	st of	the	analy	sis c	only.						

ACME ANA /ICAL LAB	ORATORIES LTD. 852 E. HASTINGS S	T. OUVER BC V6A 3	1R6 PHONE (604) 253-3158	FAX(60)3-1716
(ISO 9002 Accre	dited Co.)	CERTIFICATE		A A
ΔΔ	100111	CERTIFICATE		AA
	Almaden Minerals Ltd. Pl	ROJECT ELK File #	A402943R	
Elter Iter	1105 - 750 W. Pen	der St., vancouver BC VBC 218		
	SAMPLE#	S.Wt NAu -Au T	'otAu	
	and a state of the	gin ing gin/inc g		
	SI	<1 <.01 .01	<.01	
	SND 366-12 SND 367 18	426 5.27 17.26 2	9.63	
	SND 368-17		2.62	
	STANDARD AU-1	<1 .09 3.32	3.32	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data____FA____ DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED: Sept./04

Almado	<u>en Minerals Ltd.</u> 1103 - 750 W. F	<u>PROJEC'</u> ender St.,	<u> </u>	File BC V6C 2	# A40 18	2943R			Ê
-	SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	TotAg gm/mt	[
	SI SND 366-12 SND 367-18 SND 368-17 STANDARD R-2a	<1 426 448 501 <1	<2 3 <2 <2 <2 <2	<2 25 10 43 157	<2 32 11 45 157				
-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. - SAMPLE TYPE: CORE REJ.	SAMPLE. DUPAG: AG DUPLICATED	FROM -150	MESH. NAG	G - NATIVE	SILVER,	TOTAL SAMP	LE FIRE ASSAY.		
Data FA DATE RECEIVED:	AUG 23 2004 DATE REPO	ORT MAIL	ed:	ept 1	/o 4			Without	
ł				V			STOP LETE	TERRA	
							C.L		. •
							Clarence	Leono si	
								and the second	· ·
м. м.									
	• •								

002 Accredi	.tec	1 C	5.) <u>7</u>	<u>\ln</u>	<u>iaċ</u>	<u>len</u>	M	GE ine	OC 110	HE 15	MI(<u>Lt</u> 750	:AI :d w.	A Pend	NA PRC er S	LY: JE(SIS CT Vand	C EL	ER] <u>K</u> er B(FIF Fi 8 V60	IC le	ATE # 8	A4(032	23									A 4	
SAMPLE#	Mo ppm	Cu ppm	Pb ppa	Zn ppm	Ag ppm j	Ni C xpm pp	io Mr na ppa	Fe %	As ppm	U pprs	Au ppb	Th ppm	Sr ppm p	Cd : pm p;	Sb Bi om ppm	V ngq	Ca %	P Lá X ppr	Cr ppa	Mg ž	Ba T ppm	i B ≋ppm	A1 ž	Na Z	K žpj	W H xm pp	lg Sc wa ppm	T1 מקק ו	S ¥	Ga ppm p	Se A pom gm	.g** Au** I/mt gm/mt		
SI SND369-14 SND369-9 SND370-7	<.1 2.9 1 4.3 10.5	.4 .084.6 357.7 89.6	.1 39.7 168.5 507.6	1 136 1 70 5 1294	<.1 2.0 1.5 2.7	.2 <. 2.5 7. 3.5 19. 1.8 4.	1 1 8 585 0 678 4 140	.03 4.60 8.33 2.20	<.5 44.0 156.0 164.6	<.1 8.2 4.6 2 5.8	<.5 7073.2 9595.0 361.6	<.1 7.6 6.9 2.0	4 < 8 2 12 1 5 23	<.1 < 2.7 1.3 3.2	.1 <.1 .2 4.9 .6 14.0 .7 1.0	3 13 7 3	.17<.0 .23 .0 .16 .0 .05 .0	01 <1 47 12 29 14 20 3	<pre><1 </pre> < 3.7 2.8 3 7.9	<.01 .15 .18 .02	4<.00 20 .01 17<.00 28<.00	1 2 1 3 1 1 1 1	.01 . .34 . .31 . .14 .	665 <. 017 . 011 . 003 .	01 < 26 19 12	.1 <.0 .2 .0 .1 .0 .1 .0)1 .1)1 1.9)4 1.3	<.1 .1 .1 .1	<.05 3.37 7.04 1.64	<1 < 1 < 1 < <1	<.5 <.5 <.5	<2 .01 11 12.00 52 33.63 4 .44		
SND371-10 N.S. SND371-2 SND371-24 SND371-6 STANDARD DS5/R-2a/AU-1	8.1 60.8 3.9 11.8	85.6 232.3 294.7 145.4	271.7 97.5 419.5 24.0	- 217 88 1 459 136	2.9 4.6 6.7	- 2.7 10. 1.9 3. 2.4 10. 3.1 11.	- · · · · · · · · · · · · · · · · · · ·	- 6.72 4.33 4.83 2.99	- 142.2 119.1 102.5 18.8	- 3.6 6.1 19.1 5.7	- 523.3 1820.7 2834.5 41.8	- 6.9 5.7 7.7 2.5	- 7 1 3 1 25 1 50 5	- 1.4 1.2 1.7 5.6 3	.7 .1 .2 1.9 .3 2.2 .5 6.3	- 3 1 7 60	- .16 .0 .14 .0 .24 .0	- 12 (49 12 (30 5 (63 12 (86 13	2 3.0 5 3.2 7 1.6 8 176.9	.09 .09 .19 .68	22<.00 24<.00 43 .00 135 .09	 1 1 1 <1 1 <1 6 16	.24 . .25 . .37 . 2.00 .	005 004 009 033	20 23 24 15 4	- .1 .0 .2 <.0 .1 .0 .4 .1)1 .8)1 .9)1 1.5 .8 3.6	.1 .1 .1	- 4.85 2.54 2.84 <.05	- 1 < 1 < 7 4	- <.5 <.5 <.5	3 .61 5 1.45 6 2.86 157 3.42		

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: CORE R150 60C

Data 🗸 FA

DATE RECEIVED: JUL 2 2004 DATE REPORT MAILED: Aly 22/04

								<u></u>
ACME AN /ICAL LABORATORIES LTD. (ISO J002 Accredited Co.)	852 E. HASTINGS ASSA	ST. Y CER	OUVE TIFIC	R BC V ATE	6A 1R6	PHONE (604) 2	53-3158 FAX (60)3-1716 A A
Almade Almade	en Minerals Ltd. 1103 - 750 W. P	<u>PROJE</u> ender St	<u>CT EL</u> ., Vancou	<u>K</u> Fil ver BC V6C	e # A40 218	3223R		TT
	SAMPLE#	S.Wt gm	NAg mg g	-Ag gm/mt	TotAg gm/mt			
	SI SND369-9	<1 488	<2 <2	<2 48	<2 48			
						1		

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data____ FA _____ DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED:

ACME ANA ICAL LABORATORIES LTD. 852 E. HASTING:	S ST. OUVER BC V6A 1R6 PHONE(604)253-3158 F	'AX (60 3-1716
A A A	AY CERTIFICATE	ΔΔ
Almaden Minerals Ltd. 1103 - 750 W.	<u>PROJECT ELK</u> File # A403223R Pender St., Vancouver BC V6C 2T8	TT
SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt	
SI SND369-9	<1 <.01 .01 <.01 488 <.01 26.69 26.69	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

SAMPLE#	Au* ppb	
SI SND369-1 SND369-10 SND369-11 SND369-12	<.5 17.4 21.6 4.2 .5	
SND369-13(PULP) SND369-2 SND369-3 SND369-4 SND369-5	9588.2 865.6 15.7 44.8 18.9	
SND369-6 SND369-7 SND369-8 SND370-1 SND370-10	10.2 981.4 2192.9 1315.4 6.0	•
SND370-2 SND370-3 RE SND370-3 RRE SND370-3 SND370-4	17.8 185.9 255.7 129.5 1.8	
SND370-5 SND370-6 SND370-8 SND370-9 SND371-1	2.44140.6108.214.742.5	
SND371-11 SND371-12 SND371-13 SND371-14 SND371-15	47.3 48.8 138.8 17.6 2019.4	
SND371-16 SND371-17 SND371-18 SND371-19 SND371-20	188.8 12.0 24.3 56.8 68.6	
STANDARD AU-R	480.1	

AAA

Almaden Minerals Ltd. PROJECT ELK FILE # A403224

Page 2

Data KFA

SAMPLE#	Au* ppb	
SND371-21 SND371-22 SND371-23 SND371-25 SND371-26	2695.9 384.3 500.2 345.4 193.5	
SND371-27 SND371-28 SND371-29(PULP) SND371-3 SND371-30	$ \begin{array}{r} 168.6 \\ 4.5 \\ 10345.4 \\ 3.0 \\ 430.8 \end{array} $	
SND371-4 RE SND371-4 RRE SND371-4 SND371-5 SND371-7	565.1 605.6 565.4 3.3 .9	
SND371-8 SND371-9 STANDARD AU-R	9.8 <.5 460.0	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	SAMPLE#	Au** gm/mt	
	SND369-13 H SND371-29 H STANDARD AU	ULP 9.72 ULP N.S -1 3.40	
GROUP - SAMP	6 - PRECIOUS METALS BY FIRE ASSAY FROM 1/ LE TYPE: CORE PULP	A.T. SAMPLE, ANALYSIS BY ICP-ES.	
ita FA DATE REC	EIVED: JUL 21 2004 DATE REPORT	MAILED. J.M. 28/04	STAL OTO COM
		O HE	Clarence Leong
			C Ear

	· · · · · · · · · · · · · · · · · · ·		
ACME ANA ICAL L	ABORATORIES LTD. 852	E. HASTINGS ST. \ OUVER BC V6A 1R6	PHONE (604) 253-3158 FAX (60 3-1716
(ISO -002 Acc:	redited Co.)		
		GEOCHEMICAL ANALYSIS CERTIFICATE	A A
	<u>Almaden Miner</u>	rals Ltd. PROJECT ELK04-3 File #	A403633
le i la la	1103 - 750 W	. Pender St., Vancouver BC V6C 2T8 Submitted by: W. Ja	kubowski
SAMPLE#	Mo Cụ Pb Zn Ag Ni Co Mn	Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti	B A1 Na K W Hg Sc TI S Ga Se Ag** Au**
	kied mide mide wide sed mide mide	% pom pom pom pom pom pom pom pom % % pom % p	π % % χρητιρρή ρρή το
. c1	1 1 2 8 2 < 1 2 1 13	07 < 5 < 1 < 5 < 1 12 < 1 < 1 < 1 2 30 001 <1 <1 01 8 001	6 03 963 .02 .2 < 01 2 < 1 .09 <1 <.5 <2 <.01
- SND373- 1		16 37 9 40 5 49 5 10 9 12 9 1 0 3 1 06 009 19 6.1 03 39<.001	8 .25 .011 .20 1.0 .01 .6 .1 .90 1 <.5 2 .10
SN0373-18 PI# P	13 6 282 5 329 3 341 4 9 149 8 20 2 497 3	42 207 9 3 1 9746 1 2 4 50 2 8 16 0 4 6 43 1 19 044 6 264 6 48 50 034	10 .99 .032 .33 5.5 .39 4.5 .6 1.19 4 1.4 6 9.37
SND373-45	1 7 358 5 83 3 70 4 1 1.5 12.3 470 5	91 98.9 8.5 768.6 28.2 3 10.7 .5 1.0 1 .06 .008 33 6.0 .06 10<.001	5 .23 .013 .23 .2 <.01 .8 .1 4.53 1 <.5 5 1.12
SND373-50	2.1 727.5 149.9 104 22.7 1.2 1.9 290 3.	80 77.4 4.7 10243.8 9.0 6 1.4 .2 13.2 1 .05 .009 11 7.4 .08 18<.001	6 .32 .006 .30 1.5 .01 .5 .1 2.76 1 <.5 38 12.72
0.000000	····		•
SND373-55	1.3 1611.7 305.1 331 14.2 1.0 1.7 322 3.	32 122.1 6.0 3558.2 9.1 2.7.6 .2 3.7 <1 .07 .023 11 5.5 .06 26 .001	6 .35 .006 .34 .2 .02 .6 .1 2.53 1 <.5 12 2.17
STANDARD DS5/R-2	la/AU-1 12.3 138.5 25.6 141 .3 24.8 11.7 756 2.	99 17.9 6.4 41.2 2.6 52 5.6 3.5 6.2 62 .74 .097 13 184.0 .67 136 .105	.7 1.98 .034 .14 4.6 .17 3.4 1.0 <.05 6 4.6 154 3.41

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: CORE R150 60C

Data 📈 FA

ACME	ANI	ICA	L LABC	RATOR	RIES I
) <u>a s</u> a (ISO	002	Accred	lited	Co.)

ORIES LTD.

OUVER BC V6A 1R6 852 E. HASTINGS ST.

PHONE (604) 253-3158 FAX (60

3-1716

AA

GEOCHEMICAL ANALYSIS CERTIFICATE

TT	Almaden Mineral 1103 - 750	s Ltd. PROJECT E W. Pender St., Vancouver BC	<u>LK04-3</u> F: V6C 2T8 Submi	ile # A40 tted by: W. Jak	3634 Page 1 Kubowski	Ϋ́C.
	•	SAMPLE#	Au* S ppb	Sample kg		
		SI SND372-1 SND372-2 SND372-3 SND372-4	<.5 4.2 301.5 129.3 45.7	.66 .77 .81 .73		
		SND372-5 SND372-6 SND372-7 SND372-8 SND372-9	193.2 109.4 4391.3 2126.2 97.5	.69 1.10 1.16 .83 .89		
		SND372-10 SND372-11 SND372-12 RE SND372-12 RRELSND372-12	$\begin{array}{r} 47.8 \\ 1173.8 \\ 125.3 \\ 108.2 \\ 96.1 \end{array}$.74 .71 .58 -		
		SND372-13 SND372-14 SND372-15 SND372-16 SND372-17	193.4 38.8 8.9 4.1 5.2	.54 .49 .68 2.33 1.71		
	•	SND372-18 SND372-19 PULP SND372-20 SND372-21 SND372-22	$\begin{array}{c} 2.7\\ 9935.3\\ 1847.6\\ 3.6\\ 546.7\end{array}$.74 1.13 2.20 .75		
		SND372-23 SND372-24 SND372-25 SND372-26 SND372-27	$ \begin{array}{r} 141.6 \\ 1380.8 \\ 74.3 \\ 37.9 \\ 365.4 \\ \end{array} $.64 .91 .83 2.32 1.11		
		SND372-28 SND372-29 SND372-30 SND372-31 SND372-32	13539.7 8726.6 2365.0 1188.2 252.9	1.06 1.04 .72 .78 .89		
	·	STANDARD AU-R	475.5		· · · · · · · · · · · · · · · · · · ·	
	AU* IGNITED - SAMPLE TY <u>Samples be</u> g	, ACID LEACHED, ANALYSED BY PE: CORE R150 60C inning 'RE' are Reruns and '	ICP-MS. (15 gm) / <u>RRE' are Reject</u>	Reruns.		C.T.
Data FA DA	TE RECEIVED: JUL 15	2004 DATE REPORT MAI	LED: 1	5/04 or actual cost	of the analysis only.	Clarence Leong

Almaden Minerals Ltd. PROJECT ELK04-3 FILE # A403634

Page 2

Data A FA

SAMPLE#	Au* ppb	Sample kg			· · ·	
SND372-33 SND372-34 SND372-35 SND372-36 SND372-37	$ \begin{array}{r} 31.7\\ 4801.0\\ 1584.0\\ 30.3\\ 11.8 \end{array} $.61 .76 1.34 1.94 1.01				
SND372-38 SND372-39 PULP SND372-40 SND373-2 SND373-3	2.134572.01368.014.4199.5	.87 .99 .73 .68				
SND373-4 SND373-5 SND373-6 SND373-7 SND373-7 SND373-8	65.8 62.1 89.6 389.5 131.8	.74 .92 .55 1.13 2.90		•	,	•
SND373-9 SND373-10 RE SND373-10 RRE SND373-10 SND373-11	6.6 5.3 3.8 5.6 1960.0	1.89 1.56 _ 1.10	·			
SND373-12 SND373-13 SND373-14 SND373-15 SND373-16	25.0 29.5 301.7 267.6 207.4	1.27 1.53 1.33 1.47 .93				
SND373-17 SND373-19 SND373-20 SND373-21 SND373-22	.7 35.0 39.8 339.8 6.3	1.20 .75 .68 .78 1.18				
SND373-23 SND373-24 SND373-25 SND373-26 STANDARD AU-R	47.8 85.8 1501.0 117.2 480.9	.56 1.86 .81 .73				

Almaden Minerals Ltd. PROJECT ELK04-3 FILE # A403634

Page 3

	SAMPLE#	Au* ppb	Sample kg	
	SND373-27 SND373-28 SND373-29 SND373-30 SND373-31	$13.0 \\ 7.3 \\ 10.3 \\ 880.1 \\ 145.5$.68 .77 2.14 .58 .72	4
	SND373-32 SND373-33 SND373-34 SND373-35 SND373-36	99.8 56.6 8.0 77.6 76.9	2.40 1.08 .69 .58 .70	
	SND373-37 SND373-38 SND373-39 PULP SND373-40 RE SND373-40	$\begin{array}{r} 42.1\\ 8.1\\ 34041.0\\ 88.7\\ 116.0\end{array}$.44 .68 .88	
	RRE SND373-40 SND373-41 SND373-42 SND373-43 SND373-44	90.5 143.6 16.8 98.4 127.5	.95 2.07 1.00 1.52	
	SND373-46 SND373-47 SND373-48 SND373-49 SND373-51	$1424.0 \\ 127.0 \\ 16.8 \\ 419.0 \\ 1056.0$.70 1.85 2.16 1.96 1.23	
	SND373-52 SND373-53 SND373-54 SND373-56 SND373-57	1235.0 1299.0 21777.0 1189.0 843.6	1.07 .96 1.48 1.18 .66	
	SND373-58 SND373-59 PULP SND373-60 SND373-61 STANDARD AU-R	5.0 9578.0 101.6 814.0 475.2	.68 1.15 1.24	
Sample type: CORE R150 60C.	Samples beginning	g 'RE' ar	ce Reruns	and 'RRE' are Reject Reruns.

Almaden Minerals Ltd. PROJECT ELK04-3 FILE # A403634

Page 4

ACME ANALYTICAL

Data NFA

SAMPLE#	Au* ppb	Sample kg	
SND373-62 SND373-63 SND373-64 SND373-65 SND373-66	$561.5 \\ 14.7 \\ 1045.8 \\ 6512.2 \\ 16.8$	1.33 1.19 1.22 1.17 1.99	
STANDARD AU-R	488.4		

Sample type: CORE R150 60C.

ACME AN/ ICAL LABORATORIES LTD. (ISO 2002 Accredited Co.) OUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60 3-1716

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-3 File # A403634R 1103 - 750 W. Pender St., Vancouver BC V6C 218 Submitted by: W. Jakubowski

SAMPLE#	Au** gm/mt
SND372-28	16.16
SND372-29	10.02
SND373-54	21.21
STANDARD AU-1	3.38

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE PULP

Data WC FA

DATE RECEIVED: AUG 9 2004 DATE REPORT MAILED: A. M. 13/04.

852 E. HASTINGS ST.

 	<u></u>														<u> </u>														»		
 ACME AN	TC	AL 1	LABO	RAT	ORIE	IS L	TD.		852	Ε.	HAST	INGS	ST.		ੋਹਹ	VER E	SC 1	V6A	1R6		PH	ONE (604) 25:	3-31	.58 F	'AX (60	53-	1716	
(ISO :	1002	Aco	red	ite	1 Cc	>.)												-										N62	y National	20. ··· 20.	
A A										FROC	HEMI	.CA	L AI	لىAV	(STS	6 CEF	CLTF	TCI	ЛĘ				na an a						1	M M	
					A]	lma	den	Miı	ıer	als	Ltd.	P	ROJI	TCT	ELK	04-7	म १	ri]e	× #	Α4	036	34R	2						<u> </u>	71/7 2	
ᆸᆸ							11	03 - `	750 W	. Pend	er St.	, Var	ncouve	r BC	V6C 21	8 Su	bmitt	ed by	·: W.	Jaku	oowsk	i									
	<u>9499020</u>		<u>ka 2008-1985</u>																			<u>86650 818</u>							<u>0022.03</u>		<u> </u>
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As l) F	∖u Tl	n Sr	Çd SI	b Bi	V Ca	a P	La	Cr	Mg I	Ba T	i B	Al	Na	K	W Hg	Sc	TI	S Ga	Se	
 	ppm	ppr	ppn	ppm	ppm	ppm	ppm p	opm	%	ppm ppr	<u>1 pr</u>	ob ppr	n ppm p	pm pp	n ppm	ppm %	<u>۶</u>	ppm	ppm	* pj	m	% ppm	×.	*	%р	pm ppm	ppm p	pm	% ppm	ppm	
I2	1	6	2	1	< 1	1	1	<1	11	< 5 < 1	<	5 <	1 2 <	:1<	1 < 1	1 10	< 001	<1	15<	01	3< 00	1 <1	01	445	01	1< 01	< 1 <	: 1	14 <1	< 5	
SND372-28	10.0	280.8	343.4	84	27.5	2.0	18.6 2	250 10	90 13	1.1 4.9	16979	6 5.2	2 2	.4 .:	3 13.5	<1.10	.033	7	2.6	.04	19.00		.28	.008	.25	.9<.01	.5	.1 >	10 1	.9	
SND372-29	3.8	691.2	428.5	256	24.5	2.0	14.8 2	231 8.	.77 23	7.1 2.4	6978.	5 5.0	527	.4 .	2 10.1	<1.09	031	4	3.9	.05	19.00)1 1	.28	.005	.23 1	.2 .01	.4	.1 8.	09 1	.6	
SND373-54	2.4	678.0	366.9	208	25.6	1.8	2.2.6	501 3.	.34 65	1.0 6.8	3 7243.	8 9.3	322	2.5 .0	6 9.4	<1.06	5 .014	13	3.9	.05	38<.00)1 1	.34	.007	.33 1	.2 .01	.4	.1 2.	60 1	<.5	
STANDARD DS5	12.1	146.4	25.5	140	.3	24.8	12.1 7	/83 2.	.97 1	7.8 6.0	42.	0 2.0	5 45 5	5.2 3.3	3 5.9	_ 62 .73	3.095	12 1	.90.9	.67 13	33 .09	98 17	1.98	.032	.14 4	.7 .17	3.3 1	0 <.	05 6	4.9	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE REJ.

Data / FA ____ DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED: H. ...

ACME AN ICAL LABORATORIES LTD. 852 (ISO J02 Accredited Co.)	E. HASTINGS S ASSAY	ST. [CERT])OUVER I	SC V6A	1R6	PHONE (604)253-3158	FAX (60	3-1716 A A
Almaden Mineral 1103 - 750 W.	ls Ltd. PRC Pender St., Vancou)JECT E uver BC V6	<u>ELK04-2</u> c 218 si	3 File bmitted by	∋ # A4(∕:₩.Jakub)3634R2 owski			
Si	AMPLE# S	S.Wt N gm	NAg mg gm,	Ag Tot mt gm	tAg /mt		• •		
S SI SI SI SI	I ND372-28 ND372-29 ND373-54 1	<1 737 745 153	<2 <2 <2 6	<2 26 22 27	<2 28 25 32				

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data___ FA _____

ACME ANI ICAL LABORATORIES LTD. (ISO 002 Accredited Co.) ACMA Almaden Mi 1103 -	852 E. HASTINGS ASS nerals Ltd. P 750 W. Pender St., Var	S ST. OUVER BC AY CERTIFICATE ROJECT ELK04-3 noouver BC V6C 218 Submit	V6A 1R6 PH File # A4036 ted by: W. Jakubowsk	DNE(604)253-3158 FAX(6 34R2	⁰ 3-1716 ÅÅ
	SAMPLE#	S.Wt NAu -Au gm mg gm/mt	ı TotAu gm/mt		
	SI SND372-28 SND372-29 SND373-54	<pre><1 <.01 <.01 737 .48 14.52 745 .39 8.97 1153 7.21 10.45</pre>	<.01 15.17 9.49 16.70		
-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMF - SAMPLE TYPE: CORE REJ. Data FA DATE RECEIVED: AU	PLE. DUPAU: AU DUPLICAT G 23 2004 DATE REP	TED FROM -150 MESH. NAU - N	NATIVE GOLD, TOTAL SAM	APLE FIRE ASSAY.	
1		Ý		Clarence Leong	
				V. Es	
			· · · ·		
All results are considered the confidential proper	ty of the client. Acme	assumes the liabilities fo	or actual cost of the	analysis only.	

<i>I</i> <u>(</u>)			<u>È</u>							Ģ	\$EO	CH	EMI	CA	L.	AN	IAI	ıYS	IS	CE	IRT:	[F]	ECA	TE													A
T ^A					<u> </u>	ma	de	n 1	Mir	ier	al	s	Ltc	L.	PR	200	JEC	'T	ELI	۲04	-4	1	7il	e	# P	40	38	83									1
											11	03	- 75() W.	Per	nde	r St	۰, ۱	anco	uvei	BC	V6C	278														L
	SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb E	i V	Ca	Р	L.a	Cr M	lg Ba	Ti	Β,	A1 1	a I	K W	Hg	Sc	TI	S Ga	Se	Ag**	Au** 5	ample	
		ppm	ppm	ppm	ppm	ppm	рра	ppa	ppm	¥	ppm	ppm	ppb	ppm p	opm p	pm p	opa pp	m ppm	z	ξţ	pm p	iyoni	% ppm	X	ppm	8	X S	€ ppm	ppm	bbw t	pm	% ppm	ppm	ga∕nt	gm/mt	kg	
	SI	<.1	.7	.8	2	<.1	<.]	<.1	2	.06	<.5	<.1	2.1	<.1	5 <	.1 <	<.1 <.	1 4	. 28<.	001	<1	<1 <.0	1 7.	<.001	<1 .	01 1.00	1.0	1 <.1	<.01	.1 <	.1 <:0	5 <1	<.5	<2	<.01	-	
	SND374-13(PULP)	23.5	57.7	396.4	34	4.5	1106.6	29.7	408 2	.31	57.3	.5 31	373.7	3.6	19	.1	.5 4.	9 37	.51	033	13 1359	.3 .6	2 148	.046	51.	04 .04	7.2	7 13.5	.01	2.5	.1 <.0	53	<.5	6	32.78	~	
	SND374-19	1.6	479.7	116.3	99	3.8	.4	2.0	388 3	.03 1	87.9	4.6 1	624.7 1	0.0	21	.4	.4 5.	07	.06 .	018	7 7	.9 .0	2 23	.001	1.3	26 .00	5.2	5.2	.01	.3	.1 2.2	7 1	<.5	5	4.16	1.36	
	SND374-21	1.3 1	.154.7	141.3	104	14.0	.2	6.3	520 5	.50 19	01.6	4.7 12	184.7	7.7	42	.0 3	3.2 36.	1 7	.05 .	016	5 3	.6 .0	3 19-	<.001	2.	17 .00	9.1	4.1	.02	.4	.1 4.8	1 1	<,5	17	20.58	.89	
	CTANDADD DCC (D. 0- (AU. 1	12.7	136.3	24.9	132	ંગ	24 0	11 5	740.2	84	18.0	6.2	10 0	27	45 5	3 3	16 5	7 59	72	089	11 176	7 6	4 129	098	15 1 0	98 A1	4 1	3 5 0	18	23	9 < 0	5 6	4.6	167	2 41		

(>) CONCENTRATION EXCEEDS OFFER LIMITOR SOLL AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: CORE R150 60C

Data 🖉 FA

DATE RECEIVED: JUL 23 2004 DATE REPORT MAILED: Any 10/04

	<u>}_</u>																													
ACME ANI (ISO	9002	AL L Acc	ABOR redi	ATO	RIE Co	S L1 .)	CD.		852	? E.	HA	STINGS	ST.		OUVE	R I	3C '	76A	1R6		PHON	IE (6()4)2	253-	315	8 FA	X(60	UI:	-1716	5
A A			283							GEO	CHI	EMICAL	ANA	L YS	IS	CEI	RLIF	'ICI	ATE) de la					
TT					<u>A</u>	<u>lma</u>	lder	<u>1 M</u>	ine	<u>ral</u> 1'	<u>s</u> I 103 -	<u>td.</u> P 750 W. P	ROJE ender	ECT St., V	ELK Vancou	<u>04</u> - ver	- <u>4</u> BC V6	Fi] c 218	Le #	A4	0388	34							T 1	<u>Ľ</u>
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au T ppb pp	h Sr mppmp	Cd Sb opm ppm	o Bi n ppm	V ppm	Ca %	P La % ppn	a Cr n ppm	Mg I %pj	Ba T pm	i B ≵ppm	A1 %	Na %	K %pp	W Hg pm ppm	Sc 1 ppm pp	ີ 1 S ທາ %	Ga Se ppm ppm	
SI SND374-22 SND374-49 SND374-67 STANDARD DS5	.1 2.1 2.2 2.1 12 7	.4 1417.5 85.9 185.8 136.3	.5 761.8 194.2 418.1 24 9	1 173 1439 149 132	<.1 18.5 2.0 14.9	.3 1.5 3.0 7.4 24.0	<.1 3.8 8.4 6.6 11 5	4 80 2039 274 740	.03 3.39 6 4.01 4.60 1 2 84	<.5 514.3 17.3 156.9 18.0	<.1 12.0 2.1 11.1 6 2	<.5 <. 18217.8 7. 762.3 8. 8345.7 1. 42 9 2	1 3 < 0 2 5 5 20 3 6 4 2 7 45 5	< .1 < .1 5.1 3.7 3.4 .1 2.5 .6 5 3 3 6	<pre><.1 / 19.6 / 1.1 / 8.6 / 5.7</pre>	<1 1 16 6 59	.15<.0 .04 .0 .45 .0 .09 .0 72 0	01 <1 14 3 92 21 31 3 89 11	L 1.0< 3 3.5 L 3.3 3 7.0 L 176 7	.01 .01 .45 24 .08 .64 1	4<.00 18<.00 47 .00 16 .00 29 .09	1 < 1 1 1 1 3 1 2 3 15	.01 .17 .38 .18	.614 .008 .028 .005 .034	.01 < .17 .23 .16 .13 5	.1<.01 .2 .05 .1<.01 .8 .03	.1 <. .2 . 4.2 . 1.0 .	1 <.05 1 3.14 1 .39 1 4.09 9 < 05	<1 <.5 1 <.5 1 <.5 <1 <.5 6 4 5	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C

Data FA

DATE RECEIVED: JUL 23 2004 DATE REPORT MAILED:

ACME ANZ ICAL LABORATORIES LTD. (ISO J02 Accredited Co.)	852 E. HASTINGS S ASSAY	T. VOUVER BC V6A 1R6 CERTIFICATE	PHONE (604) 253-3158 FAX (60 3-1716
Almaden 1	Minerals Ltd. PR(1103 – 750 W. Pen	<u>OJECT ELK04-4</u> File # der St., Vancouver BC V6C 2T8	A403884	ŤŤ
	SAMPLE#	S.Wt NAg -Ag TotAd gm mg gm/mt gm/mi	2	
	SI SND374-22 SND374-49 SND374-67 STANDARD R-2a	$\begin{array}{c ccccc} <1 < .06 & <2 & <1\\ 1140 < .06 & 23 & 2\\ 1130 & 2.04 & 2 & \\ 720 & 1.59 & 18 & 1\\ <1 < .06 & 161 & 16 \end{array}$	2 3 4 8 1	
-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMF - SAMPLE TYPE: CORE R150 60C	PLE. DUPAG: AG DUPLICATED F	ROM -150 MESH. NAG - NATIVE SILVER,	TOTAL SAMPLE FIRE ASSAY.	
Data FA DATE RECEIVED: J	UL 23 2004 DATE REPOR	T MAILED: H.Y. 1/04	10 5To 200	
		V	C I	
			Clarence Leong	A.
			X. Eda	
	: •			
				N

		6							
ACME ANA ICAL LABORATORIES LTD.	852 E. HASTINGS	ST. 1	OUVE	ER BC	76A 1R6	PHONE (604) 253	-3158 FAX(6	0 3-1	.716
(ISO >002 Accredited Co.)	ASSI	Y CER	TIFIC	ATE					A A
TT <u>Almaden</u>	<u>Minerals Ltd. PI</u> 1103 - 750 W.	<u>ROJECT</u> Pender St	ELKO	<u>4-4</u> F iver BC V6	'ile # A c 2T8	403883R		1	ĽT
	SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	TotAg gm/mt	· · · · · · · · · · · · · · · · · · ·			
	SI SND374-21	<1 619	<2 4	<2 20	<2 26				

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data____ FA

Vin

DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED: Sept 1/04

ACME ANA ICAL LABORATORIES LTD. (ISO >002 Accredited Co.)

PHONE (604) 253-3158 FAX (604 OUVER BC V6A 1R6 852 E. HASTINGS ST. ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-4 File # A403883R

1103 - 750 W. Pender St., Vancouver BC V6C 2T8

SAMPLE#	S.Wt gm	NAu mg	-Au gm/mt	TotAu gm/mt	
SI SND374-21	<1 619	<.01 12.67	$\begin{array}{r} 02\\12.44\end{array}$	<.01 32.91	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

FA NIL Data

Sept 1/04 DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED:.

3-1716

AA	ISO y002 Accredited	Co.) <u>Almaden M</u>	ASSA <u>inerals Ltd. P</u> 1103 - 750 W. P	Y CERTII ROJECT I ender St., V	FICATE ELK04-4 ancouver BC V6	File # A4 218	03884			
		·	SAMPLE#	S.Wt gm	NAu -A mg gm/m	u TotAu nt gm/mt	· · · · · · · · · · · · · · · · · · ·			
			SI SND374-22 SND374-49 SND374-67 STANDARD AU-1	<pre> <1 < 1140 1130 720 <1 </pre>	<.01 <.0 <.01 19.0 2.73 1.8 1.19 6.9 <.01 3.4	1 <.01 3 19.03 8 4.30 9 8.64 1 3.41				
Data	-AU : -150 AU BY FIRE ASS/ - SAMPLE TYPE: CORE R150 &	Y FROM 1 A.T. SAMP OC RECEIVED: JUI	23 2004 DATE REPC	D FROM -150 RT MAILEI	mesh. nau - na D: Ay 11	TIVE GOLD, TOTA	L SAMPLE FIRE A	SSAY.		
2404 <u>-</u>					J			C.C	CIRILIE	
							HELL	Clarence Leo		
										÷

~

ACME AN ICAL LABORATORIES LTD. 852 E. HASTINGS ST. (ISC J02 Accredited Co.) OUVER BC V6A 1R6 PHONE (6

PHONE (604) 253-3158 FAX (60

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-4 File # A403885 Page 1

A A							
A A			1	翻	Ú.		24
留	66	2		84	Δ.	. /	23
۳î	Q4.		÷1	67	Α.	1	1
			: R	<u></u>	ю.	1	100
	Υ.	-80	· #/	12.5	A.,	24	
	ge -	C	5.75	- 22		1.1	
i i i i i i i i i i i i i i i i i i i			3.4	- 84	्रम		1
	97	3.	28	18	-		

3-1716

	SAMPLE#	Au* ppb	Sample kg				<u></u>
	SI SND374-1 SND374-2 SND374-3 SND374-4	<.5 88.9 76.3 8.4 22.7	.67 .49 .74 1.72	· · · · · · · · · · · · · · · · · · ·			
	SND374-5 SND374-6 SND374-7 SND374-8 SND374-9	141.5 500.6 11.0 31.0 15.8	.95 1.17 1.30 1.89 1.12				
	SND374-10 SND374-11 SND374-12 SND374-14 SND374-15	104.0 149.2 15.6 16.6 5.9	.85 .46 1.05 .56 1.48				
	SND374-16 SND374-17 RE SND374-17 RRE SND374-17 SND374-18	2097.0 23227.9 28232.2 39261.2 333.6	1.26 .88 				
	SND374-20 SND374-23 SND374-24 SND374-25 SND374-25 SND374-26	93.9 83.0 118.5 174.0 275.9	2.27 2.31 2.35 .70 1.60			`	
	SND374-27 SND374-28 SND374-29 SND374-30 SND374-31	$ \begin{array}{r} 10.9 \\ 507.3 \\ 14.8 \\ 10.9 \\ 11.2 \end{array} $	1.87 2.00 .72 .71 .83				
	SND374-32 SND374-33 (PULP) SND374-34 SND374-35 SND374-36	$\begin{array}{r} 2.2\\8940.7\\5.0\\116.5\\12.1\end{array}$	1.18 .81 .76 .80				
	STANDARD AU-R	475.1	-			and the second	
GROUP 3A - 30 GM SAMPLE LEACHED WITH 180 ML 2-2- UPPER LIMITS - AU* = 100 PPM. - SAMPLE TYPE: CORE R150 60C <u>Samples beginni</u> Data 0 FA DATE RECEIVED: JUL 23	2 HCL-HNO3-H2O AT 95 DEG. C FO ng 'RE' are Reruns and 'RRE' a 2004 DATE REPORT MAIL:	DR ONE HOUR, DI are Reject Reru ED:	1LUTED TO 600 <u>uns.</u> 12/04	ML, ANALYSED BY ICP-MS	ANTI CO	C.L. Clarence Leon	A STATE

Almaden Minerals Ltd. PROJECT ELK04-4 FILE # A403885

Page 2

Data 🔐 FA

MAALTIICAL				• 4 · · ·	ACHE ANALTTICAL
	SAMPLE#	Au* ppb	Sample kg		
	SND374-37 SND374-38 SND374-39 SND374-40 SND374-41	859.7 29.9 220.2 850.2 55.1	.95 1.08 .97 .62 .95		、
	SND374-42 SND374-43 SND374-44 SND374-44 SND374-45 SND374-46	171.8 33.6 27.7 9.3 10.1	.81 .83 .76 .81 1.45		
	SND374-47 SND374-48 SND374-50 SND374-51 RE SND374-51	5.0 9.3 28.9 25.9 28.4	1.15 1.09 1.21 1.00		
	RRE SND374-51 SND374-52 SND374-53 (PULP) SND374-54 SND374-55	35.5 4.8 33643.1 5.6 193.6	.77 .64 .68		
	SND374-56 SND374-57 SND374-58 SND374-59 SND374-60	1085.8 839.1 306.8 1026.8 31.5	.72 .69 .84 .87 2.25		
	SND374-61 SND374-62 SND374-63 SND374-64 SND374-64	380.6 128.2 38.4 54.1 1.9	.71 1.22 1.40 1.03 .95		
	SND374-66 SND374-68 SND374-69 SND374-70 STANDARD AU-R	510.8 20.4 116.8 220.5 482.2	2.21 2.11 1.51 .76		
Sample type: CORE R150	60C. Samples beginning	'RE' are	Reruns	and 'RRE' are Reject	Reruns.

		·	·
ACME ANI ICAL LABORATORIES LTD. 852 E. HA	ASTINGS ST. \ OUVER BC V6A	1R6 PHONE (604) 253-315	8 FAX (604 3-1716
(ISO J02 Accredited Co.)			
	ASSAY CERTIFICATE	민준홍홍 도시로 만난 홍가 옷이 이렇게 다니는 것이	
<u>Almaden Minerals L</u>	<u>td. PROJECT ELK04-4</u> File	e # A403885R	
La La 1103	- 750 W. Pender St., Vancouver BC V6C 2T8		
		7	
SAMPLE#	S.Wt NAU -AU	OLAU	
	gm mg gm/mt g	jm/mc	
OT.	-1 - 01 - 01	- 01	
	17 411 101 1500		
	1/ 411 1.01 10.00 2		
5 IANDAR	D AU-1 <1 <.01 3.35	3.33	

-AU : -150 AU BY FIRE ASSAY FROM TOTAL SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data FA

DATE RECEIVED: AUG 16 2004 DATE REPORT MAILED: H.M. 23 ...

ACME AN ICAL LABORATO (ISO 7002 Accredited	DRIES LTD. 852 E. HASTINGS 1 Co.) ASSA	ST. Y CERTI	OUVER FICAI	BC V6A	A 1R6	PHONE (604)253-315	58 FAX(60(3-1716
	Almaden Minerals Ltd. PR 1103 - 750 W. F	<u>OJECT E</u> Pender St., N	<u>LK04 -</u> /ancouver	<u>4</u> Fil BC V6C 2	le # A4 18	03885R2	2		役
	SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	TotAg gm/mt		· · · · · · · · · · · · · · · · · · ·		
	SI SND374-17 STANDARD R-2a	<1 411 <1	<2 <2 <2	<2 31 157	<2 31 257				

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data____FA

VIA (DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED: Sept 3/04

SAMPLE#	Au* ppb	·
SI SND 375-1 SND 375-2 SND 375-3 SND 375-4	<.5 2.0 124.7 5068.1 4526.8	
SND 375-5 SND 375-6 SND 375-7 SND 375-7 SND 375-8 SND 375-9	93.9 272.2 27.4 192.1 1165.1	
SND 375-10 SND 375-11 SND 375-12 SND 375-13 SND 375-14	256.1 380.1 946.4 23704.4 15.8	
SND 375-15 RE SND 375-15 RRE SND 375-15 SND 375-16 SND 375-17(PULP)	33.9 16.1 8.4 4.5 34187.0	
SND 375-18 SND 375-19 SND 375-19 SND 375-20 SND 375-21	4153.0 584.7 617.7 28.0 195.3	
SND 375-22 SND 375-23 SND 375-24 SND 375-25 SND 375-26	81.9141.392.3425.253.0	
SND 375-27 SND 375-28 SND 375-29 SND 375-30 SND 375-31	1614.3 12.1 45.6 99.7 342.5	
SND 375-32 STANDARD AU-R	210.8 490.0	A XTX

ACME ANALYTICAL

Almaden Minerals Ltd. PROJECT ELK04-5 FILE # A404152

Page 2

Data AFA

					ACME ANALYTICAL
	SAMPLE#	Au* ppb		· ·	· · · ·
	SND 375-33 SND 375-34 SND 375-35 SND 375-36 SND 375-38	40.1 67.2 63.9 <.5 9.5			
	SND 375-39 SND 375-40 SND 375-41 SND 375-42 SND 375-43	$\begin{array}{c} 47.7 \\ 8.7 \\ 51.3 \\ 2.2 \\ .6 \end{array}$			
	SND 375-44 SND 375-45 SND 375-46 SND 375-47 SND 375-48	$ \begin{array}{r} 1491.5 \\ 702.8 \\ 12.1 \\ 24.3 \\ 49.7 \end{array} $			
	SND 375-49 SND 375-50 SND 375-51 RE SND 375-51 RRE SND 375-51 RRE SND 375-51	24.773.313.117.027.1			
لا	SND 375-52 SND 375-53 SND 375-54 SND 375-55 SND 375-56	5.9 3027.2 622.5 491.0 3.8			
	SND 375-58 SND 375-59 SND 375-60 SND 375-61 SND 375-62	3923.4 1351.0 261.5 855.6 3.8			
	SND 375-63 SND 375-64 SND 375-65 SND 375-66 STANDARD AU-R	562.6 1986.3 989.8 466.4 482.4			
Sample type, CORE R150 60C S	amples beginning (F	E' are Re	rung and (P	PF' are Reject	Perung
bampie eype. com nibo obe. bi	ampres begrinning i			<u>KE die Keject</u>	<u>Neruns.</u>

ACME ANA	CAL LZ 2 Acci	ABORATORI redited C	ES LTD. o.)	852 E.	HASTING	S ST. V	OUVER BO	C V6A :	1R6	PHONE (6	04)253	-3158 F	AX (604)	53-1716 M M
A A		Ъ	lmaden	GEC	Ltd. P	L ANALL	515 CER ELK04-5	File	ыв • # А40	4152R				- AA
				1	103 - 750 W.	Pender St.,	Vancouver B	SC V6C 218						
SAMPLE#	Mo (ppm pp	Cu Pb Zn om ppm ppm p	Ag Ni Co pm ppm ppm	Mn Fe As ppm % ppm p	U Au T ppm ppb pp	h Sr Cd Sb m ppm ppm ppm	BiV Ca ppm.ppm %	PLa %tppm	Cr Mg Ba ppm % ppr	a Ti B n %ppm	A1 Na % %	K W Hg % ppm ppm	Sc Tl ppm ppm	S Ga Se % ppm ppm
SI SND 375-13 STANDARD DS5	.1 2 1.2 1161 12.1 146	.3 .6 1 < .5 213.7 87 8 .4 25.5 140	.1 .1 <.1 .0 1.4 4.5 .3 24.8 12.1	<pre><1 .05 1.8 < 581 5.86 76.9 7 783 2.97 17.8 6</pre>	9.3 <.	1 2 <.1 <.1 6 3 2.1 1.8 6 45 5.2 3.3	.1 <1 .08 65.1 1 .07 5.9 62 .73	<.001 <1 .025 6 .095 12 19	1.1<.01 1.1 .04 23 90.9 .67 133	2<.001 <1 3 .001 <1 3 .098 17 1	.01 .373 .16 .008 .98 .032	.01 .1<.01 .17 1.4 .02 .14 4.7 .17	<.1 <.1 <.0 .4 .1 4.9 3.3 1.0 <.0	05 <1 <.5 94 <1 <.5 05 6 4.9
GROUP 1DX - 0. (>) CONCENTRAT	50 GM SAM ION EXCEE	IPLE LEACHED	WITH 3 ML 2 NITS. SOME	2-2-2 HCL-HNO3 MINERALS MAY	-H2O AT 95 DI BE PARTIALLY	EG. C FOR ON ATTACKED.	E HOUR, DILL REFRACTORY A	JTED TO 10	ML, ANALY TIC SAMPLE	SED BY ICP- S CAN LIMII	MS. AU SOLL	BILITY.		
- SAMPLE TYPE:	CORE REJ	J.					0	- 1a						
Data / FA		DATE RE	CEIVED:	AUG 23 2004	DATE REI	PORT MAIL	ED:	Ţ.://	4					
							, v				MEA		SER.	
		· · · · ·								le le	3 (nf	F	
										ļ	र्डे त	arence Leo	ing &	
											E.	/J.	Bab	
		•										Contraction of the owner owner owner owner own		
							×							
							•							

		.																																
ACME	ANA	ļ	CAL	LAB	OR	ATOR	LES	LT.	D.		852	Е. Н	AST	ING	5 S.	r. v		DUV	ER	BC	V6A	1R6	5		PHONE	C(60	4)2	53-3	3158	8 FA	X(60	14 3	-171	6
	(ISO)	<u>່</u> ອປ0	2 Ac	cre	dit	ted (] o.)) _{1. 15}	e e e e e e e e e e e e e e e e e e e			~ ~ ~ ~ ~								-											а. 1960 г.		276 B	
A A									in de la compañía de			GEOCH	LEM	TCA	և ք	INAL	JYS	TS	CE.	K.I. 1	l F.TC	A.I.F		1									A A	A I
	K.						ΓA	mad	len	Mi	ne	rals	T.+-	a.	PRO). TTC	יידיי	न, राज	04	- 5	Fi	1e	#	Δ4	0415	3							綱私	
												1103	- 7	50 W.	Pend	der St	., v	'anco	uver	BC	V6C 2T	8				.								
					<u></u>				g vittad												<u>. 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998</u>					<u></u>	<u>1997)</u>			<u> </u>				لينتقص
SAMPLE#	Mo	Си	Pb	Zn	Ag	Ni	. Co	Mn	Fe	As	U	Au	Th	Sr C	d S	b Bi	۷	Ca	Р	La	Cr	Mg	Ba	Ti	B A	Na	K	W	Hg	Sc T	I S	Ga Se	Ag**	Au**
	ppm	ppm	ppm	ppm p	pm	ppm	ррт	ppm	%	ppm	ppm	ppb	ppm p	opm ppi	n pp	m ppm	ppm	%	%	ppm	ppm	¥р	pm	8	ppm 5	\$ %	.%	ppm	ppm p	opm ppr	n %	ppm ppm	gm/mt	gm/mt
SND 375-37	15.5.3	305 8	318_1	378 5	1	168.9	22 6	554	3 40	197 4	3.0	11767 9	24	47 2	6 16	045	52	1 23	044	6	294 0	53	96	036	3 1.05	5 0.30	37	6.1	39 4	1.5 .6	5 1 19	4 1.6	5	10.24
SND 375-57	19.3	53.0	389.2	34 4	.5 1	074.1	27.3	407	2.17	57.4	.5	31810.9	3.2	17 .	1.	5 4.5	31	.48	.033	13	1318.7	.62 1	43 .	043	7 .99	.040	.28	12.6	.01 2	2.2 .1	1 <.05	3 < 5	5	34.16
STANDARD D	12.2	145.3	25.4	140	.3	24.2	11.9	788	3.04	17.8	6.2	43.0	2.9	45 5.	73.	4 6.0	59	.76	.104	12	190.0	.68 1	33 .	102	16 2.02	2.035	.15	4.7	.17 3	3.4 1.0) <.05	6 5.1	159	3.45

Standard is STANDARD DS5/R-2a/AU-1.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1/2 A.T. SAMPLE.

- SAMPLE TYPE: CORE PULP

Data . FA

DATE RECEIVED: AUG 3 2004 DATE REPORT MAILED: Hy 18/04....

	·6																<u></u>																		
ACME	ANZ	Ĩ	ICAL	LAB	ORA	TOR	IES	LTD	•	8	52	E. HAS	rin	GS S	T.	۲	0	UVE	RE	3C	V6A	1R	٤6		PHO	NE (604) 25	53-3	3158	FAX	60) ک	$\langle \cdot \rangle$	3-17:	16
وروية فالمراجع	(ISO	-201	02 Ac	cre	dit	ed (Co.) , "n nn" .			- 54	r fela a s					1															1. T.			14 - A - A - A - A - A - A - A - A - A -
			a de la secta d			e, ŝe					G	EOCHEN	IIC	AL	AN	ALY	SI	S	CEI	SLI	FIC	AT:	E												A
				ovid (n in the second Standard			i de la come								
							Al	mad	en	Mir	ier	als Lt	:d.	PR	OJ]	$\underline{\text{ECI}}$	<u>'</u> E	LK	<u>04</u> -	<u>- 6</u>	Fì	⊥e	#	A4	046	83								ി	
												1103 - 1	'50 k	I. Per	nder	St.,	Vai	ncou	iver	BC V	5C 2T	8							à					<u> </u>	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au Th	Sr	Cd	l Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Hg S	c T1	S	Ga Se	Ag**	Au**
	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	L	ppm	ррт	ppb ppr	ı ppm	ppr	ı ppm	ppm	ppm	X	%	ppm	ppm	X	ppm	%	ppm	*	%	. %	opm p	pm pp	m ppm	% F	pm ppm	gm/mt	gm/mt
ST	1	3.6	1.8	3	< 1	1 1	4	15	15	< 5	< 1	6 < 1	A	< 1	< 1	< 1	<1	19	002	~1	1 3	01	4<	001	1	01	665	01 .	< 1<	01	1 < 1	06	<1 < 5	<2	< 01
SND 377-8	288	60 1.	2026 1	4819	14 8	3.2	15.3	1614	7 94	131 1	3.4	14419 4 7 4		126.2	73	7 8	3	15	035	5	<1	08	15	001	2	29	006	26	2	05 1.	6 5	6 43	1 8	14	13.66
SND 377-9	3.0.2	99.6	1289.9	3228	6.5	3.7	13.3	1875	5.02	134.2	4.0	8721.9 8.9	12	64.0	3.0	3.5	8	.23	.044	10	2.4	.12	63	.001	4	.39	.010	.26	.2.	07 2.	5.3	2.83	1.5	7	5.50
SN 380-29	1.4 2	44.7	148.0	339	3.4	2.5	5.9	825	2.26	285.7	5.3	74.7 8.4	7	5.9	.4	.3	7	.23	.069	19	1.1	.10	44	.005	<1	.43	.013	.31	.1<.	01 1.	8.2	1.06	1 <.5	4	.20
SN 380-30	.3	62.1	169.2	343	3.8	1.8	2.4	85	2.19	293.5	.6	1777.9 .7	1	9.1	4	1.3	1	.02	.006	1	10.7	.01	6	.001	<1	.09	.002	.07	.4 .	01 .	2 <.1	1.63	<1 <.5	3	1.93
STANDARD	12.3 1	45.6	25.7	139	.3	25.2	11.8	797	3.03	18.0	6.1	42.0 2.1	49	5.6	53.4	6.4	60	.72	.086	12	183.3	.67	137	.105	17 2	.01	. 032	.13	5.1 .	173.	5 1.1	<.05	7 4.8	160	3.42

Standard is STANDARD DS5/R-2a/AU-1.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE R150 60C

Data FA ____ DATE RECEIVED: AUG 17 2004 DATE REPORT MAILED: Sept. 3/0.4...

	<u></u>													<u> </u>													<u></u>		
ACME ANZ	ICA	L LA Accr	BOR edi	ATO ted	RIE Co	S L').)	TD.		85	2 E. H	IASTING	S SI	C. (νο	/ER	BC	V6A	1R6		PHON	E(60	4)25	53-3	158	FAX	(60	्रि	-1716	
A A										GEOCI	HEMICA	۴ بلا	MAL	ASTR	CF	K.T.T	FIC	ALF			d Ra	전송						A A	A di I
TT					Ĩ	lma	ade:	n M	line	erals 1103	<u>Ltd.</u> - 750 W	PRC Penc)JEC der St	<u>T EL</u> , Vanc	<u>K04</u> ouver	<u>-6</u> • вс v	Fi 6C 2T8	le #	A4	0468	4							Ĩ	
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As l	J Au	Th S	ir Cd	Sb Bi	٧	Ca	P La	Cr	Mg B	a Ti	В	A1 [A	la I	< W	Hg S	ic T1	S I	Ga Se	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	z	ppm ppr	n ppb	opm pp	m ppm	opm ppm	ppm	%	% ppm	ppm	% ppi	n %	ppm	Х.	%	t ppm p	pm pp	m ppm	%р	pm ppm	
SI SND 380-30 STANDARD DS5	<.1 2.4 1 12.4	73.8 328.5 144.5	.9 21.7 25.3	2 94 2 133	<.1 25.8 .3	.4 5.3 24.0	.2 13.6 1 12.4	3 1524 785	.06 11.08 2.93	<.5 <.1 109.1 3.0 17.0 5.9	L <.5 5 19675.5 9 37.4	<.1 3.6 2.6 4	3 <.1 · 5 1.8 5 5.4 :	<.1 <.1 .3 10.6 3.5 5.9	1 5 58	.14<.0 .30 .0 .73 .0	01 <1 58 9 80 12	1.6< 1.0 177.7	.01 3 .19 20 .67 13	3<.001 3 .001) .107	<1 . 1 . 17 1.	01 .52 33 .00 98 .03	27 .01 08 .20 32 .11	1 <.1<. 5 .2 . 3 4.9 .	01 . 01 1. 15 3.	1 <.1 5 .7 4 1.0	.06 7.17 <.05	<1 <.5 1 <.5 7 4.7	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C

Data FA

DATE RECEIVED: AUG 17 2004 DATE REPORT MAILED: Sept. 9/04

ACME ANA CAL LABORATORIES LTD. 852 E. HASTI	NGS ST. V)UVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604 3-1716
A A	SSAY CERTIFICATE
Almaden Minerals Ltd 1103 - 750	<u>. PROJECT ELK04-6</u> File # A404684 W. Pender St., Vancouver BC V6C 2T8
SAMPLE#	S.Wt NAg -Ag TotAg gm mg gm/mt gm/mt
SI SND 380-30 STANDARD R	<pre></pre>
SIANDARD R	

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data FA

DATE RECEIVED: AUG 17 2004 DATE REPORT MAILED:

ACME ANA (ISO)	,002	L LA Accr	BORAT	FORII ed Co	ES L D.) Alma	TD. adei	<u>ı Mi</u>	852 G ner	E.HZ EOCH als 1103	ASTING EMICA Ltd.	S ST L A <u>PRO</u> Pend	NALY	OUV SIS ELH Vance	ER F CEI CO4 -	вС RTII - <u>6</u> вс va	V6A FICA Fil 50 218	1R6 ATE .e #	 A4	рно м 0468	т Е (60 34	4)25	3-3	158	FAX (<u>50</u>) 3-	1716 A A	
SAMPLE#	Mo ppm	Cu ppm	Pb Zi ppm ppr	n Ag n ppm	Ni ppm	Co ppm	Mn opm	Fe %	As U ppm ppm	Au ppb p	Th Sr opm ppr	r Cd Sl nipprnippr	o Bi n ppm	V (ppm	Ca %	P La % ppm	Cr ppm	Mg B %pp	a Ti m %	B ppm	A1 N	aK %%	W ppm p	Hg Sc pm ppm	T] ppm	S Ga % ppm	Se ppm	
SI SND 380-20 STANDARD DS5	<.1 2.4 1 12.4	73.8 328.5 144.5	.9 21.7 94 25.3 133	2 <.1 4 25.8 3 .3	.4 5.3 24.0	.2 13.6 1 12.4	3 524 11 785 2	.06 .08 10 .93 1	<.5 <.1 9.1 3.6 7.0 5.9	<pre><.5 < 19675.5 3 37.4 2</pre>	4.1 (8.6 (8.6 45	3 <.1 <. 5 1.8 . 5 5.4 3.	L <.1 3 10.6 5 5.9	1 . 5 .3 58 .7	14<.00 30 .05 73 .08	1 <1 8 9 0 12	1.6< 1.0 177.7	.01 .19 2 .67 13	3<.001 8 .001 0 .107	<1 1. 171.	01 .52 33 .00 98 .03	7 .01 8 .26 2 .13	<.1<. .2 . 4.9 .	01 .1 01 1.5 15 3.4	<.1 .7 7 1.0 <	.06 <1 .17 1 .05 7	<.5 <.5 4.7	· .
GROUP 1DX - (>) CONCENTR - SAMPLE TYP Data F	0.50 G ATION 'E: COR	M SAMI EXCEEL E R150	PLE LEA DS UPPE 0 60C DATI	CHED R LIM	WITH ITS. CEIV	3 ML 2 SOME	-2-2 MINER AUG	HCL-H XALS M 17 20	NO3-H2O AY BE P 04 D2	AT 95 D ARTIALLY ATE RE	EG. C ATTA PORT	FOR ON CKED.	E HOUR REFRAC	t, DIL TORY	UTED AND C	то 10 гарні 24	мL, / тіс s/	ANALYS AMPLES	ED BY Can I	ICP-M IMIT	S. AU SOL	UBIL	иту. \δ7	GZ	CEA CEA			

REVISED COPY sample name

L Almad	ASSA len Minerals Ltd. F 1103 - 750 W. F	ROJECT ELK04-6 File # A404684 ender st., Vancouver BC V6C 218	Æ
	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt	
	SI SND 380-20 STANDARD AU-1	<pre><1 <.01 <.01 <.01 862 4.62 20.40 25.76 <1 .10 3.46 3.46</pre>	
-AU : -150 AU BY FIRE ASSAY FROM 1 A. - SAMPLE TYPE: CORE R150 60C	T. SAMPLE. DUPAU: AU DUPLICATE	D FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY.	
ata FA DATE RECEIVED	: AUG 17 2004 DATE REP	DRT MAILED: Sept 24/04	
		WEAL OTO LEEP	
NT 1 1 1 A 15 10 A 40 10 1 1		S CT	Ø
EVISEU GUPY		Clarence Leong	
sample name		COL 1930	¢
	•		
•			

.

2	J	C	γ	ίE	́ ₽	
		. :			17	

AN TCAL LABORATORIES LTD. (ISC J02 Accredited Co.)

852 E. HASTINGS ST.

OUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (60 53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

AA		GEOCHEMICAL ANALYSIS Almaden Minerals Ltd. PROJECT ELK04 1103 - 750 W. Pender St., Vand	S CERTIFICATE <u>1-6</u> File # A40468 couver BC V6C 218	5 Page 1
		SAMPLE#	Au* ppb	
		SI SND 376-1 SND 376-2 SND 376-3 SND 376-4	<.5 3.3 1244.1 5.4 986.7	
		SND 376-5 SND 376-6 SND 377-1 SND 377-2 SND 377-3	2753.9 20.6 4.8 411.0 387.8	
		SND 377-4 SND 377-5(PULP) SND 377-6 SND 377-7 SND 378-1	2.69884.42.05.014.6	
		RE SND 378-1 RRE SND 378-1 SND 378-2 SND 378-3 SND 378-4	16.9 14.9 40.5 27.8 41.9	
		SND 378-5 SND 378-6 SND 379-1 SND 379-2 SND 379-3	89.0 72.8 6.7 10.2 8.3	
		SND 379-4 SND 379-5 SND 379-6 SND 379-7 SND 379-8	$ \begin{array}{r} 3.8 \\ 101.1 \\ 4.0 \\ 4.4 \\ 2.0 \end{array} $	
		SND 379-9 SND 379-10(PULP) SND 379-11 SND 379-12 SND 379-13	.5 30512.6 8.0 22.0 1361.2	
	·	STANDARD AU-R	482.9	- human
	ан Алтанан (тара) Алтанан (тара)	AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' a	S. (30 gm) are Reject Reruns.	SUMPA 010 CT
Data	FA DA	TE RECEIVED: AUG 17 2004 DATE REPORT MAILED:	Sept 2/04	Clarence Leong
All result	s are considered th	e confidential property of the client. Acme assumes the liab	bilities for actual cost of th	ne analysis only.

Almaden Minerals Ltd. PROJECT ELK04-6 FILE # A404685

Page 2

	SAMPLE#	Au* ppb	
	SND 379-14 SND 379-15 SND 379-16 SND 379-17 SND 379-18	29.0 471.7 2725.3 43.1 9.3	
	SND 379-19 SND 379-20 SND 379-21 SND 379-22 SND 379-23	57.4 16.5 1305.4 225.1 20.1	
	SND 379-24 SND 379-25 SND 379-26 SND 380-1 SND 380-2	892.9 35.9 88.1 7.8 3.0	
	SND 380-3 SND 380-4 (PULP) SND 380-5 RE SND 380-5 RRE SND 380-5	<.5 8586.7 140.8 206.7 163.6	
	SND 380-6 SND 380-7 SND 380-8 SND 380-9 SND 380-10	27.4 86.3 775.4 819.2 36.5	
	SND 380-11 SND 380-12 SND 380-13 SND 380-14 SND 380-15	3.3 2.4 21.9 129.2 10.2	
	SND 380-16 SND 380-17 SND 380-18 SND 380-19 STANDARD AU-R	$ \begin{array}{r} 3.8 \\ 583.3 \\ 27.0 \\ 2.9 \\ 487.2 \end{array} $	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Almaden Minerals Ltd. PROJECT ELK04-6 FILE # A404685

Page 3

SAMPLE#	Au* ppb	
SND 380-21 SND 380-22 SND 380-23 SND 380-24 (PULP) SND 380-25	63.8 141.4 .6 34983.1 206.0	
RE SND 380-25 RRE SND 380-25 SND 380-26 SND 380-27 SND 380-28	227.5 159.9 96.9 28.0 33.3	
SND 380-31 SND 380-32 STANDARD AU-R	230.5 2.1 487.8	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (FA
ACM	E AN (IS	12	JC2	AL L Acc	ABO red	RATO	ORII d Co	ES I o.)	JTD.		8	52 E.	ΗA	STI	NGS	ST.	V	्रि	UVEI	8 B(c v	6A 1	.R6		PHO	ONE ((604) 2!	53-1	3158	3 F2	X (6	0	3 -	171	6
A/	A				133 1313			7. ⁻ 1			vi - -	GEC	CH:	EMI r + J	CAL	AN PO1		YSI	S C	'ER	TIF 7		TE	7 4	0 5						an Martina Martina					A
	L							Атш	aue	;11 1	MTT.		. S 103	- 750	• P W. P	ender	St.	」 巴 ,Vai		4- er B	<u>/</u> c v6c	F 1 1 2T8	е п	A4	.05.	144										L
SAMPLE#	Mo ppm	Cu ppm	P ppi	b Zn nippmi	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm p	U mqc	Au ppb p	Th opm p	Sr C pm ppi	d Sb n ppm	Bi ppm	V ppm	Ca %	Р %р	_a cm	Cr ppm	Mg Ba % ppm	Ti %	B ppm	A1 %	Na %	K %p	W I	Hg S Sm pp	ic T1 m ppm	S %	Ga ppm p	Se A pnogm	g** A /mt gm	u** S Wmt	ample kg
SI SE6-3P SE6-4 STANDARD	<.1 4.3 6.0 12.3	.6 21.7 24.4 143.3	115. 414. 24.	5 <1 6 58 7 81 1 134	<.1 4.2 34.4 .3	1.1 7.0 8.0 25.0	.1 2.3 2.1 11.7	<1 140 188 783	.03 2.59 3.63 3.00	<.5 < 15.1 4 29.9 4 18.1 5	<.1 4.7 4.8 1 5.7	<.5 < 892.3 (.3407.5 4 42.0 2	<.1 5.7 4.9 2.7	3 <. 44 . 36 . 47 5.	l <.1 3 8.0 7 18.3 5 3.5	<.1 1.9 10.9 5.7	<1 8 5 62	.12<. .03 . .03 . .76 .	001 062 086 091	<1 25 1 11 13 18	2.4<. 15.8 . 9.2 . 86.7 .	01 3 04 267 03 425 68 138	<.001 .003 .002 .104	5 2 2 18 2	.01 .39 .26 2.00	.557 .011 .009 .033	.01 .29 1 .22 1 .15 4	.3<.0 .4 .0 .9 . .5	01 . 02 1. 11 . 18 3.	1 <.1 2 .1 7 .1 6 1.1	<.05 .15 .31 <.05	<1 < 2 1 < 7 5	.5 .5 .5	<2 5 1 38 23 156 3	.04 .05 .95 .38	- 12.17 1.30

Standard is STANDARD DS5/R-2a/AU-1.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AU** & AG** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: ROCK R150 60C

Data 🔨 FA

DATE RECEIVED: AUG 31 2004 DATE REPORT MAILED: Sept 21/04

ACME A	NZ SO	ICA J02	L LA Accr	BOR edi	ATOR ted	IES Co.)	LTI). Ian	85: Mine	2 E. GEO	HAS CHE	STIN MIC	igs :Al	ST. AN	IALY	OU SIS	JVER S CI	BC ERT 4 - 7	V62 IFI(F	A 1F CAT	.6 E ⊮	P:	HONI	E (6)	04):	253-	-31	58 F.	AX (6	50)3-1 /	716 A	•
L. L. Sample#	Mo ppm	Cu ppm	Pb ppm p	Zn Aq pm ppr	g Ni n ppm	Co ppm	Mn ppm	Fe ړ	As ppm pp	11 U n p	03 - Au Th pb ppr	750 750 1 Sr 1 ppm	W.P Cd ppm	Sb ppm p	St. Bi V pm ppn	Van Van Ca 1 %	P %	er BC	V6C 2 Cr N ppm	T8 1g Ba % ppn	Ti	B ppm	A1 %	Na %	K % pp	W Hg xm ppn	g Sc n ppm	T1 ppm	S (% pi	Ga Se pm ppm	Ag** gm/mt (Au**	
SI SND381-20 STANDARD	.1 8.2 12.3	2.7 460.0 140.0	.3 30.0 24.0 1	1 <.1 82 5.0 38 .1	1 .2 6 4.0 3 24.7	.1 6.5 12.0	9 1382 739	.05 6.83 2.97	<.5 <. 102.4 4. 17.8 6.	1 < 2 7944 4 41	.5 <.2 .8 3.6 .8 2.5	L 2 5 6 7 50	<.1 1.2 5.7	<.1 < .2 1 3.4 5	.1 <1 .7 4 .9 58	07 .28 .75	.001 .060 .093	<1 8 13 1	1.0<.0 4.5 .1 87.7 .6)1 9 12 31 55 137	<.001 .001 .098	<1 <1 15 2	.01 . .38 . .00 .	317 . 009 . 034 .	01 . 35 1. 15 4.	2<.01 2 .01 7 .19	<pre><.1 1.3 3.4</pre>	<.1 < .1 4 1.1 <	:.05 1.64 :.05	<1 <.5 1 <.5 7 4.6	<2 4 156	.01 2.77 3.45	

Standard is STANDARD DS5/R-2a/AU-1.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: CORE R150 60C

- SAMPLE TIPE: LORE RIJU DOC

Data | FA

DATE RECEIVED: AUG 31 2004 DATE REPORT MAILED: Sept 21/04

Clarence Leono

		<u>}</u>								·												
a fai	ACME ANA	ICAI	LAI	BORAT	ORI	ES L	FD.	85	2 E. H	ASTINGS	ST.	(<u>)</u> 01	VER B	C V6.	A 1R6	P	HONE (604)25	3-3158	FAX (60	3-171	.6
	्र (ISO ७(02 I	Accre	adite	ed C	0.)			~ ~ ~ ~ ~				~ ~								N2098	
	M M			i lejestri					GEOCH	EMICAL	I ANA	LIZZT	S CER	.T.T.E.T.	CALE						A A	A I
1						× 1		N#		ア ト オ) 「	יד ^מי			ים ליי	: 1	1 7 4 0 1	- 1 A C					
						ATII	idell	MTTIC			2 ROUE		<u> UN04-</u>	$\frac{1}{10}$ V/C T	116 1	F A40:	5140					
									1105	- (DU W.	Pender	st., var	icouver i	SU VOL 2	18							
	SAMPLE#	Мо	Cu	Pb	Zn -	Aq N	i Co I	1n Fe	As U	Au Th	Sr Cd	Sb Bi	V Ca	P La	Cr	Mg Ba '	Ti B	Al Na	K W H	a Sc Tl	S Ga Se	
		ppm	ppm	ppm p	opm p	pm pp	n ppm pj	om %	ppm ppm	ppb ppm	ppm ppm	ppm ppm	ppm %	% ppm	ppm	% ppm	% ppm	* *	% ppm ppi	n ppm ppm	% ppm ppm	
		1	0 0		0	1	. 1	1 07			1 . 1	. 1 . 1	1 07 -	0.0.1 .1	1.0.	01 0.0	01 1	01 071	01 1.0	1 . 1 . 1	00 -1 - 5	
	21	.1	2.3		2 <	.1 .	· . ·	1 .0/	1.> 6.>	<.5 <.1	1 <.1	<.1 <.1	1.05<	.001 <1	1.0<.	01 3<.0	JI I	.01 .2/1	.01 .1<.0	1 < .1 < .1	.06 <1 <.5	
	SND381-23	3.5	417.6	1//./	43 12	.0 2.) 10./ /	6 6.16	142.8 3.4	5016.7 5.2	5.8	.3 6.2	5.23	.044 8	4.9.	11 27.0	02 1	.42 .009	.28 1.3 .0	1.8.15	.18 1 <.5	
	SND382-28	2.2	319.9	36.2	37 19	.0 2.	3 4.6 76	57 4.42	307.4 2.2	3723.5 2.4	2.6	1.5 1.2	4 .10	.017 3	8.1 .	07 19 .0	01 1	.24 .004	.19 1.3 .0	1.4.12	.72 1 <.5	
-	STANDARD DS5	12.5	143.4	25.4	L40	.3 24.	5 11.9 79	93 2.95	18.0 6.2	39.2 2.7	46 5.7	3.3 6.3	62.74	.092 12	187.7 .	68 142 .1	02 17 2	.00 .032	.14 5.0 .1	8 3.3 1.1 <	.05 7 5.0	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C

DATE RECEIVED: AUG 31 2004 DATE REPORT MAILED: Sept 21/04... FA Data

(IDO JUGZ ACCIEUIDEU CO.)	ASSAY	CERTIFICATI	3		A 1
Almaden	Minerals Ltd. PR	OJECT_ELK04.	-7 File # A40)5146	<i>ί</i> ¶Λ <i>ί</i>
	1103 - 750 W. Per	der St., Vancouver	BC V6C 2T8		L
	SAMPLE#	S.Wt NAg	-Ag TotAg		
		giii ing g		· · · · · · · · · · · · · · · · · · ·	
	SI SND381-23	528 5.09	13 23		
	SND382-28 STANDARD R-2a	523 4.73	17 26 157 157		
-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAM	PLE. DUPAG: AG DUPLICATED F	ROM -150 MESH. NAG	- NATIVE SILVER, TOTA	L SAMPLE FIRE ASSAY.	
- SAMPLE TYPE: CORE R150 60C		0	, ,		
			st 21/04	· · · · · · · · · · · · · · · · · · ·	
ataFADATE RECEIVED: /	NG 51 2004 DATE REPOR	I MAIDED	• • • • • • • • • • • • • • •	STOLDIAN STOLD	
				\mathcal{O} \mathcal{O} \mathcal{I}	131
				EL Clarence Leon	
				V.B.P.	The second s
			· •		

ACME ANZ ICAL LABORATORIES LTD. (ISO J02 Accredited Co.)	852 E. HASTINGS ST.	V OUVER BC V6A 1R6 PHONE ((604)253-3158 FAX(60 3-1716
ΔΔ	ASSAY (ERTIFICATE	ΔΔ
TT <u>Almaden N</u>	finerals Ltd. PROC 1103 - 750 W. Pende	<pre>IECT ELK04-7 File # A405146 St., Vancouver BC V6C 2T8</pre>	ʹϹʹϹ
	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt	
	SI SND381-23	<pre><1 <.01 <.01 <.01 528 1.85 6.35 9.85</pre>	
	STANDARD AU-1	<pre>>23 .05 5.41 7.04 <1 .01 3.45 3.45</pre>	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

FA Data

DATE RECEIVED: AUG 31 2004 DATE REPORT MAILED: Sept. 21/04.

ANI ICAL LABORATORIES LTD. (ISO - 002 Accredited Co.) ACME ANI

OUVER BC V6A 1R6 3-1716 PHONE (604) 253-3158 FAX (60

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-7 File # A405146R 1103 - 750 W. Pender St., Vancouver BC V6C 2T8

SAMPLE#	S.Wt gm	NAu mg	-Au gm/mt	TotAu gm/mt	·
SI	<1	<.01	<.01	<.01	
SND381-23	622	3.02	8.13	12.99	
SND382-28	190	.16	5.96	6.80	
STANDARD AU-1	<1	.01	3.47	3.47	

852 E. HASTINGS ST.

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data FA

DATE RECEIVED: OCT 6 2004 DATE REPORT MAILED:

		<u></u>			
ACME ANI ICAL LABORATORIES LTD. 852 F (ISO 9002 Accredited Co.) GE Almaden Minera	AASTINGS ST. OCHEMICAL ANALY <u>1s Ltd. PROJECT</u> 1103 - 750 W. Pender St.,	OUVER BC V SIS CERTIF <u>ELK04-7</u> Vancouver BC V60	V6A 1R6 I FICATE File # A40 c 218	PHONE (604) 253-3156 5147	3 FAX (60 3-1716 ÅÅ
	SAMPLE#	Au* Sam ppb	nple kg		
	SI SE6-1 SE6-2 SE6-5 STANDARD AU-R	$\begin{array}{r} .7\\ 14.0\\ 14.9\\ 12.6\\ 508.3 \end{array}$	2.15 1.11 3.37		
GROUP 3A - 30 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HC UPPER LIMITS - AU* = 100 PPM. - SAMPLE TYPE: ROCK R150 60C Data FA DATE RECEIVED: AUG 31 2004	L-HNO3-H2O AT 95 DEG. C FA DATE REPORT MAIL	DR ONE HOUR, DILL ED:	UTED TO 600 ML, A	NALYSED BY ICP-MS.	

Clarence

AA LL <u>Almaden Miner</u>	als Ltd. PROJECT ELK04 1103 - 750 W. Pender St., Vanc	<u>-7</u> File # A4 ouver BC V6C 218	405148 Page 1	A A
	SAMPLE#	Au* ppb		
	SI SND381-1 SND381-2 SND381-3 SND381-4	<.5 145.1 3123.5 111.7 739.2		
	SND381-5 SND381-6 SND381-7 SND381-8 SND381-9	$2.3 \\ 149.1 \\ 27.1 \\ 2805.5 \\ 17.3$		
	SND381-10 SND381-11 SND381-12(PULP) SND381-13 SND381-14	6.7 <.5 9216.4 35.2 50.6		
	SND381-15 RE SND381-15 RRE SND381-15 SND381-16 SND381-17	3.9 1.2 1.9 31.4 239.1		
	SND381-18 SND381-19 SND381-21 SND381-22 SND381-24	97.5 2.3 3.4 41.5 1.5		
	SND381-25 SND381-26 SND381-27 SND381-28 SND381-29	17.1 7.5 73.3 72.5 115.7		
	SND381-30 SND381-31 SND381-32(PULP) SND381-33 SND381-34	$\begin{array}{r} 40.8\\ 1.2\\ 31940.9\\ 5223.2\\ 6244.8\end{array}$		
	STANDARD AU-R	508.3		

Data / FA

DATE RECEIVED: AUG 31 2004 DATE REPORT MAILED:

Clarence Leong

Almaden Minerals Ltd. PROJECT ELK04-7 FILE # A405148

Page 2

CAL				ACME ANALYTICAL
	SAMPLE#	Au* ppb		
	SND381-35 SND381-36 SND381-37 SND381-38 SND382-1	179.4 57.5 201.4 416.7 44.4		
	SND382-2 SND382-3 SND382-4 SND382-5 SND382-6	58.3 86.6 216.7 123.5 202.1		
	SND382-7 SND382-8 SND382-9 SND382-10 SND382-11 SND382-11	$ \begin{array}{r} 6.0 \\ 13.4 \\ 2.6 \\ 17164.9 \\ 129.2 \end{array} $		
	SND382-12 SND382-13 SND382-14 (PULP) SND382-15 SND382-16	58.4 11.0 9617.6 103.6 7.2		
	SND382-17 RE SND382-17 RRE SND382-17 SND382-18 SND382-19	$ \begin{array}{r} 1605.2\\ 2269.7\\ 4434.7\\ 13.4\\ 41.0 \end{array} $		
	SND382-20 SND382-21 SND382-22 SND382-23 SND382-23 SND382-24	32.28546.76.028.494.4		
	SND382-25 SND382-26 SND382-27 SND382-29 STANDARD AU-R	324.7 127.7 23.6 6.7 482.3		
Sample type: CORE R150 60C. Sam	ples beginning 'R	E' are Reruns an	<u>ıd 'RRE' are Reject</u>	Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

ACME ANALYTICAL

Almaden Minerals Ltd. PROJECT ELK04-7 FILE # A405148

Page 3

Data

SAMPLE#	Au* ppb	
SND382-30 SND382-31 SND382-32 SND382-33 SND382-34 (PULP)	1.2 28.6 85.8 1.3 31972.0	
SND382-35 SND382-36 RE SND382-36 RRE SND382-36 SND382-37	5.010.611.44.617.4	
SND382-38 SND382-39 SND382-40 SND382-41 STANDARD AU-R	101.0 12.0 63.3 806.4 479.8	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME AN ICAL LABORATORIES LTD. (ISO 2002 Accredited Co.) 852 E. HASTINGS ST. OUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (60

)³⁻¹⁷¹⁶

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-7 File # A405148R 1103 - 750 W. Pender St., Vancouver BC V6C 278

SAMPLE#	Au** gm/mt	
SND382-10 STANDARD AU-1	17.69 3.37	

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE PULP

Data / FA

A A					Alm	ad	len 1	line	era	ils	Lt	d.	PR	OJ	ECT	'EI	JK04	L – 8	F.	ile	_ # 7	\ 40	556	1							A
							1103 •	750	W. F	Pende	er St	., V	anco	иvег	BC V	/6C 2	r8	Submi	tted	by: h	. Jak	Jbow	ski								L
PLE#	Mo ppm	Cu ppm	Pb Z ppm pp	n ก	Ag N ppm pp	li m	Co Mr ppm ppn	า Fe า %	As ppr	s U nippm	Aı ppt	u Th ppm	∣ Sr ∣ppm	Cd ppm	Sb ppm	Bi ppm p	V Ca pm %	1 P 5 %	La ppm	°Cr ppm	Mg B % ppi	a T n	⊺i B %ippmi	A٦ %	Na %	K N %ppr	W Н mpp	g Sc m ppm	T1 ppm	S Ga %ppm p	Se Ag≯ pm gm/n
14-R1 IDARD DS5/R-2a/AU-1	.2 3.2 11.9	8.1 41.6 144.5	.5 589.9 89 25.4 13	2 4 1 8	<.1 1. 4.8 1. .3 24.	43 341	6.5 17 5.3 216 1.8 775	.09 5 2.99 5 2.99	48.3 45.2 17.8	3 <.1 2 .7 3 6.2	<.5 158.4 39.4	5 <.1 1 2.6 1 2.8	3 4 45	<.1 18.1 5.2	<.1 1.4 3.3	<.1 2.5 5.9	<1 .12 1 .03 59 .72	2 .003 3 .031 2 .094	<1 7 11 J	<1 1.9 184.7	.01 .01 6 .68 13	3 .00 3 .00 5 .09)8 <1)2 2)2 16	.03 .19 2.11	.378 .011 .033	.01 <. .14 <. .14 4.	1 .0 1 .1 5 .1	1 .2 8 .3 7 3.4	<.1<.0 .1 .3 1.1<.0)5 <1 < 31 1 <)5 7 5	.5 < .5 1 .0 15
GROUP 1DX - ((>) CONCENTRA AG** & AU** E - SAMPLE TYPE	0.50 G TION I BY FIRI	M SAMP EXCEED E ASSA C R150	LE LEAC S UPPER Y FROM 60C	HED LI 1 A	WITH MITS. .T. SA	3 M SC MPL	IL 2-2- Me Min .e.	2 HCL IERALS	-HNC 5 MAY	03-Н2 / ВЕ	O AT PART	95 I IALL'	DEG. Y AT	C FO	DR ON ED.	E HOU REFR	JR, D ACTOR	ILUTE Y AND	D TO GRAP	10 ML HITIC	, ANA Sampi	LYSEI LES (D BY I CAN LI	CP-MS MIT #	s. NU SO	LUBILI	ITY.	• .			
Data (FA		_	DATE	RI	ECEIV	ΈI	: SE	EP 15	2004	4 E	DATE	RE	POF	RT 1	AIL	ED:	0.	t.	6/0	.4	• • •			هر	TELE	Tă	R	12	25		
																								ß	Aller (P		Ŷ		
																								HSI	$\overline{\diamond}$			Leong			
																									- Contractor	<u> </u>			and the second second		
										•.																					
										÷																					
										2													* -								

PHONE (604) 253-3158 FAX (60 COUVER BC V6A 1R6 \$3-1716 ACME AN 'ICAL LABORATORIES LTD. 852 E. HASTINGS ST. (ISO)002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Almaden Minerals Ltd. PROJECT ELK04-8 File # A405562 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 Submitted by: W. Jakubowski Al Na K W Ho Sc Th S Ga Se 40** 40** SAMPLE# Мо Cu. Pb Zn Ag Ni Со Mn Fe As U Au Th Sr Cd Sb Bi V Ca P 1a Cr Ma Ba Τi 8 ndd wyd mod wdd mad mad dda % ppm mcg % mcg % mcg 2 maa maa maa maa % % ppm ppm gm/mt gm/mt ppm ppm ppm ≵ ppm ppm x SI .1 2.2 2.4 1 <1 .5 .1 7 .03 <.5 <.1 <.5 <.1 2 <.1 <.1 <1 .07<.001 <1 <1<.01 <.01 <1.01 ..331 <.01 <.1 .01 <.1 <.1 <.5 <.5 <2 <.01 1.7 76.3 203.1 43 81.8 1.6 8.6 452 2.93 117.1 3.8 2058.2 8.1 4 .4 .4 68.4 1 .06 .020 9 1.7 .02 35 .002 3 .29 .019 .24 .2 .01 .5 .1 2.46 1 <.5 72 2.84 SND385-4 3.6 89.1 625.6 349 61.2 3.3 10.9 368 2.16 30.4 16.3 11513.9 12.2 20 3.5 1.8 50.3 <1 .04 .008 8 2.7 .02 39<.001 4 .26 .011 .21 .1 .12 .5 .1 1.73 1 <.5 60 14.99 SND385-30 6.5 72.0 799.0 431 70.5 3.6 10.9 619 3.37 39.8 8.9 14579.1 7.6 17 3.7 1.8 71.5 <1 .04 .008 6 2.9 .02 21<.001 4 .23 .015 .18 .1 .09 .5 .1 2.94 1 <.5 71 18.27 SND385-31 1.4 2.6 8.5 37 .3 1.6 2.0 419 1.23 1.5 3.4 46.0 10.5 9 < 1 .1 .4 16 .19 .027 25 2.0 .19 79 .074 1 .37 .073 .25 .3 < 01 1.1 .1 < 05 3 < 5 <2 06 SND385-32 18.0 57.2 432.9 39 4.5 917.3 25.1 368 2.21 61.4 .5 31139.3 3.4 19 .1 .5 4.6 31 .47 .034 13 1188.9 .61 150 .043 5 1.01 .047 .29 12.0 .01 2.4 .1 < 0.5 4 < .5 5 29.63 SN0385-33 PULP STANDARD US5/R-2a/AU-1 11.9 144.5 25.4 138 .3 24.4 11.8 775 2.99 17.8 6.2 39.4 2.8 45 5.2 3.3 5.9 59 .72 .094 11 184.7 .68 135 .092 16 2.11 .033 .14 4.5 .17 3.4 1.1 < 05 7 5.0 156 3.44

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. - SAMPLE TYPE: CORE R150 60C

Data FA

Oct 7/04 DATE RECEIVED: SEP 15 2004 DATE REPORT MAILED:

	SAMPLE#	S.Wt NAu gm mg g	-Au TotAu m/mt gm/mt		
	SND385-4 SND385-30 SND385-31 STANDARD AU-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.71 4.38 6.68 16.68 7.77 17.97 3.39 3.39		
-AU : -150 AU BY FIRE ASSAY FROM 1 - SAMPLE TYPE: CORE REJ. Data FA DATE RECEIV	I A.T. SAMPLE. DUPAU: AU DUPLICA ZED: DEC 17 2004 DATE RE	TED FROM -150 MESH. NAU	- NATIVE GOLD, TOTAL SAMPLI \mathcal{M}	E FIRE ASSAY.	
1					
	• • • • • • • • • • • • • • • • • • •				
				NU	STO/CEN
				OUT	
				0	

ACME AL TICAL LABORATORIES LTD.	852 E. HASTINGS S	T. COUVER	BC V6A 1R6	PHONE (604) 253-3158 F2	AX (60 53-1716
(150-9002 Accredited Co.)	ASSAY	CERTIFICAT	ľe		A A
		THOM HT KOA	o		AA
Almaden M 1103	- 750 W. Pender St., Vancou	<u>UECI ELKU4-</u> Iver BC V6C 2T8	<u>-8</u> Flle # A4 Submitted by:W. Jak	USS62R Joowski	
	SAMPLE#	am mo	am/mt am/mt		
		<u> </u>	<u> </u>		
	SND385-4 SND385-30	1139 9.70	117 125 69 69		
	SND385-31	99 <.06	77 77		
	STANDARD GC-2a	<1 <.06	1023 1023		· · · · · · · · · · · · · · · · · · ·
-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAM	PLE. DUPAG: AG DUPLICATED F	ROM -150 MESH. NA	G - NATIVE SILVER, T	DTAL SAMPLE FIRE ASSAY.	
- SAMPLE TYPE: COKE REJ.					
			IAM 181	2005	
DACA TA JING DATE RECEIVED:	C 1/ 2004 DATE REPOR	I MALLED:	· <i>v</i> .·· · · · · · · · · · · · · /.	-	
			·		
					and the second
				IN CAL	ADTOLOR
				UNC	
				(2)	/ MADONE
					1004 B
					Jacky Wang
				No. Contraction of the second se	Y 1 1 330

ACME AN (ISC AA	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AL LI Acci	ABORATO redited	RIES Co.) <u>Al</u> 1	LTI mad). len M 1103 -	85: ine 750 h	2 E. HI GEOCH rals I. Pender	ASTINGS EMICAL Ltd. PI St., Vanco	ST. (ANAI ROJE(Duver Bi	<u></u>	DUVE IS (ELK) 218	R BC CERT 04-8 Subm	V6A IFIC Fi itted b	1R6 ATE le # y: W. Jak	PHO A4055 (ubowski	NE (6)	04)2	53-3	158 F2	<u>18 (60</u>	53-171¢	5
SAMPLE#	Mo ppm	Cu ppm	Pb Zn ppm ppm	Ag ppm	Ni ppm	Co Mn ppm ppm	Fe %	As U ppm ppm	Au Th ppb ppm	Sr Cd ppm ppm	Sb ppm	Bi ppm	V Ca ppm %	PL %pp	a Crl m ppm	Mg Ba %ppm	Ti B %ppm	A1 .%	Na %	K W Hg % ppm ppn) Sc T1 ppm ppm	S Ga Se %ppmppm	
SI SND384-16 STANDARD DS	.1 4.3 4 5 12.4	2.9 1956.3 142.5	.5 1 1332.0 260 25.0 136	<.1 >100 .3 2	.1 1.2 4.3 1	<.1 11 9.7 65 1.8 783	.04 7.37 3 3.03	.5 <.1 379.0 3.1 18.5 6.3	<.5 <.1 60642.9 .5 44.0 2.6	3 <.1 3 7.9 48 5.4	<.1 26.5 3.6	<.1 38.0 6.0	<1 .12 <1<.01 59 .75	<.001 < .001 .089 1	1 <1<. 1 1.1<. 2 181.2 .	01 4<.0 01 11<.0 68 134 .1	01 <1 01 <1 01 18	.01 . .03 . 1.98 .	592 .0 003 .0 034 .1	01 <.1<.01 03 .2 .41 .4 4.8 .16	<.1 <.1 <.1 .2 3.4 1.0	<.05 <1 <.5 8.22 <1 <.5 <.05 6 5.3	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE M150 60C

Data 🖌 FA

DATE RECEIVED: SEP 15 2004 DATE REPORT MAILED: Oct q/oq

	<u>Almade</u> 11	<u>n Minerals Ltd. PR</u> 03 - 750 W. Pender St., Vancou	<u>OJECT ELK04-8</u> .ver BC V6C 2T8 Submitte	File # A405563 d by: W. Jakubowski	T
		SAMPLE#	S.Wt NAu -Au gm mg gm/m	u TotAu t gm/mt	
	· · · · · · · · · · · · · · · · · · ·	SI SND384-16 STANDARD AU-1	<pre></pre>	1 <.01 6 74.25 7 3.37	
-AU : -150 AU BY - SAMPLE TYPE: CO	FIRE ASSAY FROM 1 A.T. RE M150 60C	SAMPLE. DUPAU: AU DUPLICATED	FROM -150 MESH. NAU - NAT	IVE GOLD, TOTAL SAMPLE FIRE ASS	AY.
Data FA	DATE RECEIVED:	SEP 15 2004 DATE REPOR	AT MAILED: Oct !	1/04	15 ATA 700
				ls ls	
					Clarence Leong
					THE FAILS
				•	

ACME AN ICAL LABORATORIES LTD. 852 E. HASTINGS (ISC 002 Accredited Co.) ASSF	ST. COUVER BC V	6A 1R6 PHONE(60	4)253-3158 FAX(60 53-1716
<u>Almaden Minerals Ltd.</u>	PROJECT ELK04-8	File # A405563	
1103 - 750 W. Pender St., Van	couver BC V6C 2T8 Submitte	d by: W. Jakubowski	
SAMPLE#	S.Wt NAg - gm mg gm/1	Ag TotAg mt gm/mt	
SI	<pre> <1 <.06 <.</pre>	01 <2	
SND384-16	1030 10.00 110.	07 120	
STANDARD R-2a	<1 <.06 156.	14 156	

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE M150 60C

Data FA

DATE RECEIVED: SEP 15 2004 DATE REPORT MAILED: O. A. 9/04

ACME	AN I	CAL	LABOR	ATORI
and the set		2 40	credi	ted C

ABORATORIES LTD. 8 redited Co.)

852 E. HASTINGS ST. OUVER BC V6A 1R6

PHONE(604)253-3158 FAX(60 53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-8 File # A405564 Page 1 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 Submitted by: W. Jakubowski

	SAMPLE#	Au* ppb		
	SI. SND383-1 SND383-2 SND383-3 SND383-4	<.5 97.8 26.0 35.8 43.9		
	SND383-5 SND383-6 SND383-7 SND383-8 SND383-9	24.7 73.0 1.7 370.4 10108.6		and we are determined and a second second second second
	SND383-10 SND383-11 SND383-12 SND383-13 PULP SND383-14	7.9 13.1 1.2 9293.4 18.0		
	SND383-15 SND383-16 SND383-17 SND383-18 SND383-19	24.8 5.9 36.7 23.0 21.0		
	RE SND383-19 RRE SND383-19 SND384-1 SND384-2 SND384-3	$ \begin{array}{r} 16.7 \\ 14.1 \\ 7.5 \\ 6.9 \\ 48.2 \end{array} $		
	SND384-4 SND384-5 SND384-6 SND384-7 SND384-8	$ \begin{array}{r} 104.0 \\ 344.6 \\ 74.0 \\ 6.7 \\ 2.3 \end{array} $		
	SND384-9 SND384-10 SND384-11 SND384-12 SND384-13	492.9 3.8 64.6 57.5 1.0		
•	STANDARD AU-R	486.0		
AU* IGNITED, ACID - SAMPLE TYPE: CO Samples beginning	LEACHED, ANALYSED BY ICP-MS. RE R150 60C 'RE' are Reruns and 'RRE' ar	(15 gm) <u>re Reject Reruns.</u>	C.C.S.	
Data FA DATE RECEIVED: SEP 15 2004	DATE REPORT MAILED:.	U.t. 2/04	Clarence Leong	
All results are considered the confidential property of the c	lient. Acme assumes the liabi	lities for actual cost of the a	analysis only.	

ACME ANALYTICAL

Almaden Minerals Ltd. PROJECT ELK04-8 FILE # A405564

Page 2

· · · ·	SAMPLE#	Au* ppb		
	SND384-14 PULP SND384-15 SND384-17 SND384-18 SND384-19	34791.4 33.5 224.8 1534.1 145.7		
	SND384-20 SND384-21 SND385-1 SND385-2 SND385-3	734.9 342.1 118.8 299.4 429.6		
	SND385-5 SND385-6 SND385-7 SND385-8 SND385-9	8878.6 29.2 61.5 109.4 485.6		
S****	SND385-10 SND385-11 SND385-12 SND385-13 PULP SND385-14	5.0 4.4 .9 9607.5 133.3		
	SND385-15 SND385-16 RE SND385-16 RRE SND385-16 SND385-17	38.6 4849.7 5425.8 3722.4 20.8		
•	SND385-18 SND385-19 SND385-20 SND385-21 SND385-22	69.9 61.1 163.1 130.6 134.4		
	SND385-23 SND385-24 SND385-25 SND385-26 STANDARD AU-R	332.8 64.2 599.9 36.5 470.1		
Sample type: CORE R150 60C. Samp	oles beginning 'R	E' are Reruns	and 'RRE' are Reject	Reruns.

Almaden Minerals Ltd. PROJECT ELK04-8 FILE # A405564

Page 3

ACME ANALYTICA

SAMPLE#	Au* ppb		5	
SND385-27 SND385-28 SND385-29 SND385-34 SND385-35	54.4 114.4 7.0 28.6 25.5			
SND385-36 SND385-37 SND385-38 SND385-39 SND385-40	10.8 18.8 101.8 6.8 197.6			
SND385-41 SND385-42 RE SND385-42 RRE SND385-42 SND385-43	14.5146.3257.1121.814.9			
SND385-44 SND385-45 STANDARD AU-R	24.9 48.2 483.0			

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

ACME AN ICAL LABORATORIES LTD. 852 E. HASTINGS ST. COUV (ISC 002 Accredited Co.) ASSAY CERTIFIC	ER BC V6A 1R6 PHONE (604) 253-3158 FAX (60 53-1716 CATE A
LL AIMAGEII MINERALS LCG. PROSECT EISK 1103 - 750 W. Pender St., Vancouver BC V6C 278 SAMPLE#	J4-8 File # A405364K Submitted by: W. Jakubowski L Au** gm/mt
SND383-9 SND385-5 STANDARD AU-1	10.19 4.01 3.43

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE PULP

Data ([|] FA

DATE RECEIVED: OCT 6 2004 DATE REPORT MAILED: Oct 12/04.

ACME AN ICAL LABORATORIES LTD. (ISO J002 Accredited Co.)

852 E. HASTINGS ST. COUVER BC V6A 1R6

PHONE(604)253-3158 FAX(60

53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK-04-9 File # A406008

SAMPLE#	Мо	Cu	. Pt	n Zn	Ag	Ni	Co M	h F	e A	s U	Au	i Th	Sr	Cđ	Sb I	∃i V	Ca	Р	La	Cr	Mg	Ва	Ti	B A	1 Na	к	W	Hg !	Sc T	I S	Ga	Se A	g** Au**	
	ppm	ppm	ppr	n bbw	ppm	ppm	ppm pp	TC .	≹рр	n ppa	ppt	ppm	ррт	ppm ;	opm pj	oa ppa	ž	X	ppm	ppm	ž	ppm	¥ pp	m	¥ ¥	X	ppa j	opm p	pra ppr	n X	ppm	ppm gm	/mt ga/mt	
51	1	17	7	1	< 1	4	1	4 0	7 6	5 < 1	2 2	1	2	< 1		1 1	00	001	-1	1.0	01	2 0	101	.1 0	1 410	01	~ 1	01	1				-0 01	
SN0386-2	17	105.3	62.5		۰.1 ۵	2.2	11 /1	4 .0 9 9 3	/ <u>.</u>	5 7.1 8 7 7	108 9	2 8 2	2	20	2	·1 ·1 3 1	.00	.001	10	1.0 5 9	.01	44 0	102 ·	0. I- N I	1 .419 0 .115	.01	`. L	01		1.00 1.150	~t 0	<.5 ~ c	~2 .01	
 SND386-23	2.5	420 4	499.7	518	19	1.2	3 6 110	5 2 0	4 45	5 8 C	340.0	, 0.2 , 8.4	13	2.0 4.6 19	. <u>.</u> 2 0 1	2 1	.05	.012	12	.0.0	.03	75 - 0	202	2 2	7 012	.43	.2 ~	01		L 1.55	1	<.5	A EQ	
SND386-26	2.4	188.6	469.5	342	5.8	1.2	1 6 42	3 1 4	4 27	773	1774 2	2 2 2 1	4 4	6.6	3 2	6 <1	.07	020	14	3.2	.05 .03	54 0	01	2.2 2.2	7 012		.1	04	.э л ⁻	1 .50 1 60	1	~ 5	9 2 61	
SND387-6	9.4	1224.7	584.0	3804	15.1	1.3	1.6 16	5 1.1	B 126.	9 16.3	4878.9	5.8	10 7	6.4 46	1.0 8	.0 1	.04	.013	6	5.3	.02	63 .0)01	2.3	2.006	.27	.1 1	27	.3 .3	1.99	1	<.5	15 5.67	
SN0387~8	2.3	173.0	51.4	80	1.0	2.1	1.7 72	9 2.5	51.	1 6.1	71.5	8.9	8	1.1 !	5.7	.7 2	.07	.020	13	4.9	.04	40.0	001	3.4	4 .015	. 34	.2	05	.6 .3	1.48	1	<.5	2.13	
SND387-22(PULP)	19.0	52.5	413.0	32	4.6	1058:0	26.9 37	2 2.1	2 57.	4.5	33037.6	3.5	18	.2	.3 4	.5 29	.46	.037	13 12	45.7	.58	139 .0	043	4.9	7.047	. 28	13.4	01 · 2	.3 .1	1 <.05	3	<.5	6 33.68	
SND387-27	2.8	192.1	171.8	280	3.6	1.3	3.2 29	1 1.8	8 26.	5 3.6	3037.1	6.7	2	1.5	.6 4	.6 <1	.04	.013	6	2.7	.03	24<.0	001	1.2	2.006	. 22	.1	03	.3 .1	1.37	1	<.5	6 6.90	
SND387-30	2.6	129.8	323.8	529	6.5	3.2	6.0 10	2 2.1	4 29.	4 10.0	672.6	i 7.0	10	9.1	.6 88	.9 1	.05	.009	11	5.4	.02	52.0	01	2.4	0.009	. 29	.3	07	.3 .3	1 1.56	1	<.5	9.97	
RE SND387~30	3.0	127.6	306.5	512	6.1	3.9	6.0 10	0 2.2	0 29.	5 10.5	718.2	7.0	10 1	0.4	.6 91	.3 <1	.05	.011	12	6.2	.03	54<.C	001	3.3	7 .010	. 29	.5	08	.4 .3	1 1.61	1	<.5	9 1.14	
RRE SND387-30	3.6	111.7	274.2	285	6.5	1.8	5.7 8	5 1.7	4 28.	6 9.9	1044.7	6.8	9	3.2	.6 86	.1 <1	.05	.010	10	7.2	.02	45<.0)01	3.2	7.007	.23	.2	03	.3 .1	1.56	1	<.5	9 1.77	
SND388-16	3.2	301.4	556.0	89	23.2	2.0	7.7 64	6 2.8	3 196.3	3 6.3	12474.7	9.1	8	2.3 2	2.6 23	.4 2	.05	.014	15	5.7	.03	41.0	002	1.3	4 .019	. 25	.3	22	.5 .2	2.13	1	<.5	26 16.02	
SND388-20	3.4	86.1	83.8	93	21.4	2.1	2.6 46	0 2.1	9 33.	4 6.0	13558.6	8.4	5	.5 4	1.4 9	.6 1	.04	.013	10	4.4	.02	34 .0	001	2.4	1.033	. 29	.1	05	.4 .1	1.07	1	<.5	20 8.76	
SND389-4	6.1	767.7	1128.4	68	56.7	4.4	19.0 54	7 11.6	4 187.	1 6.1	9841.3	6.1	4	6.1	5.7 61	.0 <1	.04	.012	3	2.1	.02	13<.0	001	1.2	1.004	. 19	1.1	04	.2 3.5	5 >10	1	.6	65 13.67	
SN0389-11	2.0	177.4	135.7	98	16.3	2.0	5.8 52	8 3.9	9 368.	3 4.1	347.1	9.6	6	1.0	.4 43	.4 3	.08	.020	13	3.8	.04	32 .0	005	1.3	1 .036	.22	.1 <	01	.7 .4	1 3.40	1	<.5	11 .59	
SND389-16	2.9	77.9	74.7	69	.7	.7	1.0 46	6 1.3	0 25.	9 3.3	96.1	. 9,9	5	.7	.8 1	.1 1	.06	.016	11	3.6	.03	34 .0)01	1.2	5.023	.22	.2	01	.4 .]	.71	1	<.5	<2.35	
SND391-13	1.7	565.6	61.5	35	18.9	1.9	3.1 20	9 4.1	0 27.	5 2.6	21822.8	7.6	2	.9	.1 40	.8 <1	.05	.019	6	2.2	.02	24 .0	001	2.3	9.010	.36	.2	05	.3 .3	4.09	1	<.5	32 39,74	
STANDARD DS5/R-2a/AU-1	12.3	143.1	25.9	141	.3	25.2	12.0 78	1 2.9	9 17.	9 6.2	43.0	2.6	44	5.6 3	3.4 6	.2 61	.73	.101	12 1	79.1	. 68	136 .0	197 1	7 2.0	8.034	.15	4.9	21 3	4 1.3	<.05	6	4.9	158 3.42	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

- SAMPLE TYPE: CORE R150 60C

Data

Dit 25/04 DATE RECEIVED: SEP 28 2004 DATE REPORT MAILED FA

ACME AI TICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) 852 E. HASTINGS ST. COUVER BC

COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK-04-9 File # A406008

1103 - 750 W. Pender St., Vancouver BC V6C 2T8 SAMPLE# Cu Pb Zn Ag Ni Co Mo Fe As U Au Th Sr Cd Sh Bi V Ca Pita Cr Mor Ba Ti Sc T3 5 Ga 50 An** Au** Mo B 01 Na На and and and do 0000 0000 000 2 \$ DDT ppm ROG \$ ROG \$ x * com com am/mt cm/mt DDM DDM non non non DDM DOF ĩ 100 mag mag mag <2 01 ST 1 17 7 1 < 1 <2 32 SND386-2 1 7 105 3 62 5 99 . 9 2.2 1.1 412 2.30 381.8 3.3 198.8 8.2 3 2.0 2 3 1 .05 .019 10 5.8 .03 44 .002 1 48 015 43 2 < 01 .5 .1 1.53 2 <.5 2.5 420.4 499.7 518 1.9 1.2 3.6 1105 2.04 45.5 8.0 340.3 8.4 13 4.6 18.9 1.2 1 .07 .012 12 4.2 .03 75<.001 2 .27 .012 .22 .1 .09 .9 .1 .90 1 < 5 4 59 SND386-23 SND386-26 2.4 188.6 469.5 342 5.8 1.7 1.6 423 1.44 27.7 7.3 1774.2 11.0 9 6.6 1.3 2.6 <1 .06 .020 14 3.2 .03 54 .001 3 .37 .029 .31 .1 .04 .4 .1 .69 1 < 5 9 2.61 9 4 1224 7 584 0 3804 15 1 1.3 1.6 165 1.18 126.9 16.3 4878.9 5.8 10 76.4 467.0 8.0 1 04 013 6 5 3 02 63 001 2 .32 .006 .27 .1 1.27 .3 .1 .99 1 < 5 15 5 67 SND387-6 SND387-8 2.3 173.0 51.4 80 1.0 2.1 1.7 729 2.50 51.1 6.1 71.5 8.9 8 1.1 5.7 .7 2 .07 .020 13 4.9 .04 40 .001 3 .44 .015 .34 .2 .05 .6 .1 1.48 2 13 19.0 52.5 413.0 32 4.6 1058.0 26.9 372 2.12 57.4 .5 33037.6 3.5 18 .2 .3 4.5 29 .46 .037 13 1245.7 .58 139 .043 4 .97 .047 .28 13.4 .01 2.3 .1 <.05 3 <.5 6 33 68 SND387+22(PULP) 2.8 192.1 171.8 280 3.6 1.3 3.2 291 1.88 26.5 3.6 3037.1 6.7 2 1.5 .6 4.6 <1 .04 .013 2.7 .03 24<.001 1 .22 .006 .22 .1 .03 .3 .1 1.37 1 < 5 6 6 90 SND387-27 6 2.6 129.8 323.8 529 6.5 3.2 6.0 102 2.14 29.4 10.0 672.6 7.0 10 9.1 .6 88.9 11 5 4 02 52 001 2 40 .009 .29 .3 .07 .3 .1 1.56 1 <.5 9 97 580387-30 1 05 009 3.0 127.6 306.5 512 6.1 3.9 6.0 100 2.20 29.5 10.5 718.2 7.0 10 10.4 .6 91.3 <1 .05 .011 12 6.2 .03 54<.001 3 .37 .010 .29 .5 .08 .4 .1 1.61 9 1 14 1 < 5 RE SND387-30 9 1 77 RRE_SND387-30 3 6 111 7 274 2 285 6.5 1,8 5,7 85 1,74 28,6 9,9 1044,7 6,8 9 3,2 ,6 86,1 <1 ,05 ,010 10 7,2 ,02 45<,001 3 .27 .007 .23 .2 .03 .3 .1 1.56 1 <.5 3.2 301.4 556.0 89 23.2 2.0 7.7 646 2.83 196.3 6.3 12474.7 9.1 8 2.3 2.6 23.4 2 .05 .014 15 5.7 .03 41 .002 1 .34 .019 .25 .3 .22 .5 .2 2.13 26 16 02 SND388-16 1 < 5 2.1 2.6 460 2.19 33.4 6.0 13558.6 8.4 5 .5 4.4 9.6 1 .04 .013 10 4.4 .02 34 .001 2 .41 .033 .29 .1 .05 .4 .1 1.07 1 < 5 20 8.76 SND388-20 3.4 86.1 83.8 93 21.4 4.4 19.0 547 11.64 187.1 6.1 9841.3 6.1 4 6.1 5.7 61.0 <1 .04 .012 3 2.1 .02 13<.001 1 .21 .004 .19 .1 .04 .2 3.5 >10 1 6 65 13.67 SND389-4 6 1 767.7 1128.4 68 56.7 SND389-11 2.0 177.4 135.7 98 16.3 2.0 5.8 528 3.99 368.3 4.1 347.1 9.6 6 1.0 .4 43.4 3 .08 .020 13 3.8 04 32 005 1 31 036 22 1 < 01 7 4 3 40 11 59 SND391-16 1.7 565.6 61.5 35.18.9 1.9 3.1 209 4.10 27.5 2.6 21822.8 7.6 2 .9 .1 40.8 <1 .05 .019 6 2.2 .02 24 .001 2 .39 .010 .36 .2 .05 .3 .1 4.09 1 <.5 32 39.74 7 1.0 466 1.30 25.9 3.3 96.1 9.9 5 .7 .8 1.1 1 .06 .016 11 3.6 .03 34 .001 1 .25 .023 .22 .2 .01 .4 .1 .71 1 <.5 <2 .35 29 77 9 74 7 69 7 SND389-13

STANDARD D55/R-2a/AU-1 12.3 143.1 25.9 141 .3 25.2 12.0 781 2.99 17.9 6.2 43.0 2.6 44 5.6 3.4 6.2 61 .73 .101 12 179.1 .68 136 .097 17 2.08 .034 .15 4.9 .21 3.4 1.1 <.05 6 4.9 158 3.42

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data (FA

DATE RECEIVED: SEP 28 2004 DATE REPORT MAILED: AM 18/05

\$3-1716

REVISED COPY Correction for SND 391-16 3 SND 389-13

ACME AN TICAL LABORATORIES LTT (ISO 9002 Accredited Co.)	D. 852 E. HASTINGS ASSA <u>en Minerals Ltd. PR(</u> 1103 - 750 W. Pe	ST. COUVER BC V6A 1R6 PHONE(604)253-31 CERTIFICATE DJECT ELK-04-9 File # A406008R inder St., Vancouver BC V6C 218	58 FAX (60 3-1716
	SAMPLE#	S.Wt NAU -AU TOTAU gm mg gm/mt gm/mt	
	SND387-30 SND389-4 SND389-11 SND391-13 STANDARD AU-1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
-AU : -150 AU BY FIRE ASSAY FROM 1 A - SAMPLE TYPE: CORE REJ.	.T. SAMPLE. DUPAU: AU DUPLICATED	FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY.	

Data____ FA VILS DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: 1.8.1.8.1.8.1.8.

	SAMPLE#	S.Wt NAg gm mg	-Ag TotAg gm/mt gm/m	Į		
	SND387-30 SND389-4 SND389-11 SND391-13 STANDARD GC-2a	395 .33 998 <.06 1059 2.19 773 <.06 <1 <.06	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B 6 1 2 9		
-AG : -150 AG BY FIRE ASSAY FROM 1 A. - SAMPLE TYPE: CORE REJ.	T. SAMPLE. DUPAG: AG DUPLICATED F	ROM -150 MESH. NA	G - NATIVE SILVER,	TOTAL SAMPLE FIRE ASSAY.		
Data FA	D: DEC 17 2004 DATE REPOR	T MAILED:	an 18/05			
(`		\mathcal{O}	/	UMBA O	C / CERTA	
				S. C.I	ED A	
			v	Clarence	e Leong	
						× .
				· · · · · · · · · · · · · · · · · · ·		
				· ·		

TICAL LABORATORIES LTD. ACME AN 852 E. HASTINGS ST. COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60 3-1716 (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Almaden Minerals Ltd. PROJECT ELK-04-9 File # A406008R2 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 SAMPLE# IAu -Au TotAu mg gm/mt gm/mt S.Wt NAu gm SND389-16 STANDARD AU-1 937 13.99 14.30 29.23 - .09 3.32 3.32

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: A.M. 14 FA VIN Data

ACME AN /TICAL LABORATORIES LTD.	852 E. HASTINGS S	T. COUVER	BC V62	A 1R6	PHONE (604) 25	3-3158 FAX(60 3-1716
(ISO 9002 Accredited Co.)		GUDWTWYGA	1001 0001			
\mathbf{A}	ASSAI	CERITFICA	15			Δ Λ
Almaden M	inerals Ltd. PRO	JECT ELK-C	4-9 F:	ile # 2	A406008R2	
	1103 - 750 W. Pen	der St., Vancouv	er BC V6C 2	18		
	SVWDI E#	S WH NAC	- ⁷ C	Totag		
		am mo	am/mt	am/mt		
					· · · · · · · · · · · · · · · · · · ·	
	SND389-16	937 3.83	13	17		
	STANDARD GC-2a	<.06	T00T	TOPT		

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: Data____FA____

	<u></u>													<u></u>											. <u></u>		
ACME ANI (ISO		CAL I 2 Acc	ABO	RAT ite	ORIE d Cc	IS L 5.)	TD.		852 1	E. H	ASTING	s si	· · ·	्र	UVER	BC V	6A 1	R6	I	PHONE (604)2	53-3	158 FAX	(60	3-1	716	
- AA					7	lm	adei	n Mi	Gr nera	lls	Ltd.	PRC	JUE	T E T	LKO	5KIIF 4-9	File	다. 2 # 2	44 C	6009					A	1A	•
										1103	- 750 W	. Penc	ler St	t., Va	ncouve	r BC V60	278								Ľ	- L	
SAMPLE#	Mo	Cu	Pb mag	Zn	Ag	Ni maa	Co D mag	Mn Fe ກຸກສູ	As DDM	U maa	Au a daa	Th Sr	Cd mag	Sb maa	Bi Dom	V Ca	P La % por	a Cr n ppm	Mg %	Ba Ti ppm %	B AT	Na %	K W Hg % ppm ppm	Sc T1	S (% pr	Ga Se Smi ppm	
	< 1	Q	1	1	< 1	 	1	10 04	< 5	< 1	< 5 <	1 3	< 1	< 1	< 1	1 11<	001 <	<1	01	3 003	<1 01	484<	01 < 1< 01	1<1<	. 05	<1 < 5	
SND386-25	1.9	470.5	313.2	79	27.0	1.2	6.6 2	215 3.40	44.5	3.8	23845.4 5	.2 2	1.6	.8	36.3	1 .02 .	006	4 2.0	.02	23<.001	2 .15	.004	.17 .6 .36	.2 .1 3	.62 <	<1 <.5	
SND388-18 SND389-13	8.0	194.6 57.2	905.5	431 73	18.2	1.8 24	4.5 3.9	48 1.97	52.7 25.7	10.2	2900.7 3	1.3 13 13 6	7.5	101.9	10.4 52.0	1 .02 . 1 04	003 1	5 2.3	.01	45<.001 60<.001	<1 .11	003	.09 .1 .17	.2 .1 1	90 < 13 ·	<1 <.5 <1 <.5	
SND390-12	4.4	600.9	104.1	144	87.4	1.4	6.4 3	397 4.56	146.5	9.4	42787.4 7	.1 6	3.3	257.7	16.7	1 .04 .	014	7 1.4	.02	21 .001	1 .17	.006	.12 .1 .61	.4 .1 4	.41 <	<1 <.5	
SND391-5	1.0	7926.1	650.2	344	>100	1.0	3.3 2	284 9.31	722.4	1.8	78969.2 4	.2 1	14.0	3.8	113.1	<1 .02 .	010	3 1.0	.01	11<.001	<1.12	2 .002	.12 .1 .13	.1 .2 8	.78 <	<1 <.5	
STANDARD DS5	11.5	141.0	25.6	140	.3	25.1	11.4 7	736 2.95	17.5	5.9	42.0 2	2.6 43	5.2	3.4	5.5	58.73.	096 12	2 181.7	.68	135 .098	16 1.96	5.035	.13 4.7 .16	3.4 1.0 <	.05	6 4.8	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C

DATE RECEIVED: SEP 28 2004 DATE REPORT MAILED: O. A. 30/04 Data FA

ACME AN ICAL LABORATORIES LTD. (ISC 002 Accredited Co.)	852 E. HASTINGS ASSAN <u>Minerals Ltd. PH</u> 1103 - 750 W. Pe	ST. Y CERI ROJECI	CUVER IFICAI ELK04 Vancouver	BC V6A 'E -9 Fi BC V6C 2	1R6 1e # A 18	PHONE (604) 25: 406009	3-3158 FAX(60	-1716 AA
	SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	TotAg gm/mt			
	SI SND386-25 SND388-18 SND389-13 SND390-12	<1 1032 1090 1027 920	<.06 1.07 .66 1.25 5.95	<2 28 20 21 102	<2 29 21 22 109			
	STANDARD R-2a	<1	<.06	159	259			

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data FA

DATE RECEIVED: SEP 28 2004 DATE REPORT MAILED:

ACME ANI ICAL LABORATORIES LTD. (ISO JU02 Accredited Co.)	852 E. HASTINGS ASSA	ST. 🔇 Y CERI	OUVER	BC V62 CE	A 1R6	PHONE (604) 2	53-3158	FAX (60 3-1716
<u>Almaden</u>	Minerals Ltd. P	ROUECI		$\frac{1-9}{1-9}$ F	LLE # A4	06009		
	1105 - 750 W. P		, vancouve		10			
	SAMPLE#	S.Wt gm	NAu mg	-Au gm/mt	TotAu gm/mt			-
	SI SND386-25 SND388-18 SND389-13 SND390-12	<1 1032 1090 1027 920	<.01 1.35 .05 .39 12.71	.01 23.60 3.28 3.79 38.35	<.01 24.91 3.33 4.17 52.17			
	SND391-5 STANDARD AU-1	688 <1	29.74 .09	79.45 3.32	$122.68 \\ 3.32$		·	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data FA VIA

DATE RECEIVED: SEP 28 2004 DATE REPORT MAILED: Out 30/04

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST.

Almaden Minerals Ltd. PROJECT ELK04-9 File # A406010 Page 1 1103 - 750 W. Pender St., Vancouver BC V6C 2T8

SAMPLE#	Au* pb	
SI SND386-1 SND386-3 SND386-4 SND386-5	<pre><:5 62.7 955.7 587.2 27.8</pre>	
SND386-6 SND386-7 SND386-8 (PULP) SND386-9 SND386-10	17.6 <.5 10397.0 5549.0 75.0	
SND386-11 SND386-12 SND386-13 SND386-14 SND386-15	639.0 217.9 435.9 86.1 18.1	
RE SND386-15 RRE SND386-15 SND386-16 SND386-17 SND386-18	15.613.621.9150.951.7	
SND386-19 SND386-20 SND386-21 SND386-22 SND386-22 SND386-24	$245.4 \\ 168.3 \\ 431.3 \\ 115.5 \\ 16.0$	
SND386-27 SND386-28 SND386-29 SND386-30 SND386-31	27.8 34.6 84.0 24.0 278.6	
SND386-32 SND386-33 SND386-34 SND387-1 SND387-2	12.0 85.3 17.0 281.1 23.0	
STANDARD AUR	490.6	

GROUP 3A - 30 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AU* = 100 PPM.

- SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

104 DATE RECEIVED: SEP 28 2004 DATE REPORT MAILED: Data 🖉 FA

Almaden Minerals Ltd. PROJECT ELK04-9 FILE # A406010

Page 2

· · · · · · · · · · · · · · · · · · ·		ALME ANALYTTLAL
SAMPLE#	Au* ppb	
SND387-3 SND387-4 SND387-5 SND387-7 SND387-9	$ \begin{array}{r} 6.1 \\ 54.1 \\ 4.3 \\ 9.5 \\ 6.0 \\ \end{array} $	
SND387-10 SND387-11 SND387-12 SND387-13 SND387-14	252.01093.312734.5110.963.8	
SND387-15 RE SND387-15 RRE SND387-15 SND387-16 SND387-17	$12.3 \\ 11.3 \\ 11.9 \\ 18.5 \\ 44.9$	
SND387-18 SND387-19 SND387-20 SND387-21 SND387-23	$ \begin{array}{r} 430.3\\ 142.4\\ 33.5\\ 32.2 \end{array} $	
SND387-24 SND387-25 SND387-26 SND387-28 SND387-28 SND387-29	318.5 132.8 248.8 244.3 4.5	
SND387-31 SND387-32 SND387-33 SND387-34 SND388-1	$11.0 \\ 52.4 \\ 5191.5 \\ 9.6 \\ 133.9$	
SND388-2 SND388-3 SND388-4(PULP) SND388-5 STANDARD AUR	91.8 4.0 9161.2 76.0 492.1	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_____FA

Almaden Minerals Ltd. PROJECT ELK04-9 FILE # A406010

Page 3

		ACHE, ANALTTICAL
SAMPLE#	Au* ppb	······································
SND388-6 SND388-7 SND388-8 SND388-9 SND388-10	$717.0 \\ 30.8 \\ 174.6 \\ 12298.6 \\ 130.5$	
SND388-11 SND388-12 SND388-13 SND388-14 SND388-15	2892.1 1051.2 80.2 17.6 10.3	
SND388-17 SND388-19 SND388-21 SND388-22 SND388-23	34.9 69.2 63.4 24.0 .8	
SND388-24 (PULP) SND388-25 SND389-1 SND389-2 SND389-3	36102.1 6.5 75.4 112.6 5.8	
RE SND389-3 RRE SND389-3 SND389-5 SND389-6 SND389-7	8.9 6.9 3.2 5.0 2.3	
SND389-8(PULP) SND389-9 SND389-10 SND389-12 SND389-14	10177.9 92.0 967.6 2.5 6.0	
SND389-15 SND390-1 SND390-2 SND390-3 STANDARD AUR	$ \begin{array}{r} 1.0\\ 378.2\\ 6.0\\ 7.0\\ 490.4 \end{array} $	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

殺殺

Page 4

Data / FA

				ACME ANALYTICAL
	SAMPLE#	Au* ppb		
	SND390-4 SND390-5 SND390-6 SND390-7 SND390-8	736.44237.420.02776.34130.0		
	SND390-9 SND390-10(PULP) SND390-11 SND390-13 SND390-14	9.0 34558.3 116.4 135.6 60.0		
	SND390-15 SND390-16 SND390-17 RE SND390-17 RRE SND390-17 RRE SND390-17	1756.6 481.8 230.7 191.7 227.5		
	SND390-18 SND390-19 SND390-20 SND391-1 SND391-2	12316.380.6189.024.018640.3		
	SND391-3 SND391-4 SND391-6 SND391-7 SND391-8	21.0474.570.0226.7163.5		
	SND391-9 SND391-10(PULP) SND391-11 SND391-12 SND391-14	$\begin{array}{c} 3.0\\9930.7\\50.0\\635.4\\137.6\end{array}$		
	STANDARD AUR	507.5	· · · · · · · · · · · · · · · · · · ·	
Sample type: CORE R150 60C. Sample type: CORE R150 60C.	amples beginning 'R	E' are Reruns	and 'RRE' are Rejec	t Reruns.

ACME AN ICAL LABORATORIES LTD. (ISO >002 Accredited Co.)

852 E. HASTINGS ST.

OUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (60 3-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-9 File # A406011

1103 - 750 W. Pender St., Vancouver BC V6C 2T8

SAMPLE#	Au* ppb	
ELK-04-S1 SE6-S-1 SE6-S-2 SE6-S-3 SE6-S-4	16.8 72.4 36.7 853.2 9.8	
SE6-S-5 RE SE6-S-5 SE6-S-6 SE6-S-7 SE6-S-8	8.2 11.6 44.3 30.4 14.7	
SE6-S-9 STANDARD DS5	29.4 45.3	

AU* BY ACID LEACHED, ANALYZED BY ICP-MS. (30 gm) - SAMPLE TYPE: SOIL SS80 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data P FA

DATE RECEIVED:

20/04 N SEP 28 2004 DATE REPORT MAILED:

PHONE (604) 253-3158 FAX (60 COUVER BC V6A 1R6 3-1716 ACME AN FICAL LABORATORIES LTD. 852 E. HASTINGS ST. (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Almaden Minerals Ltd. PROJECT ELK04-11 File # A406554R 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 SAMPLE# S.Wt NAu -Au TotAu mg gm/mt gm/mt qm SND397-6 STANDARD AU-1 920 <.01 1.62 3.32 $1.62 \\ 3.32$

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

FA YIN Data

DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: S.M. 14/2005

				SAMPLE#			τ <u>– δα Ψ</u> α	tδα		
			,			gm mà	j gm/mt gm	i/mt		
				SND397-6 STANDARD	GC-2a	920 2.34 - 29.20	1 36 3 1032 1	39 .032		
-AG	: -150 AG BY FI	RE ASSAY FR	OM 1 A.T. SAM	PLE. DUPAG: AG DL	IPLICATED FROM	4 -150 MESH. NA	.G - NATIVE SILVE	R, TOTAL SAMPLE FI	RE ASSAY.	
- 5A	MPLE TTPE: CORE	KEJ.				<u></u>	Inn 16	1 honr		
Data	FA - HA	DATE RE(CEIVED: D	EC 17 2004 DAI	'E REPORT	MAILED: See	. W. Le			
				•						
									NEA JOID C	
										X
									Hacky Wang	1)
										16
								•		

ACME AI	TICAL LABORATORIES LTD. 3002 Accredited Co.)	852 E. HASTINGS ST.	VER BC V6A 1R6	PHONE (604) 253-3158 FAX (60	53-1716
42	1103	ASSAY CERTIFI Almaden Minerals Ltd. F - 750 W. Pender St., Vancouver BC V6C 218	CATE ile # A500683 Submitted by: Wojtek Jak	cubowski	A A
		SAMPLE#	Au** gm/mt		
		12431 12432 12433 12434 12435	12.09 24.24 38.23 8.05 59.37		
		12436 12437 empty bag 12438 12439 12440	82.25 27.54 23.09 12.09		
		RE 12440 12441 12442 12443 12444 empty bag	10.12 5.83 18.55 31.30		
		12445 12446 12447 empty bag 12448 empty bag 12449	16.19 38.84 56.94		
		12450 STANDARD AU-1	10.19 3.43		
Data I	GROUP 6 - PRECI - SAMPLE TYPE: Samples beginni FA DATE RECEIVED:	OUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPL Rock Pulp ng 'RE' are Reruns and 'RRE' are Reject Re FEB 24 2005 DATE REPORT MAILED:	e, ANALYSIS BY ICP-ES. Truns. Manch 2/05	Clarence Leong	
				Le L'ar	

· · · · · · · · · · · · · · · · · · ·			
ACME A /TICAL LABORATORIES LTD. (ISU 9002 Accredited Co.)	852 E. HASTINGS ST. (COUV)	ER BC V6A 1R6 PHONE (604) 253-	3158 FAX (60 53-1716
ΔΔ	ASSAY CERTIFIC	ATE	A A
1102	Almaden Minerals Ltd. Fi 3 - 750 W. Pender St., Vancouver BC V6C 218	le # A500683 Submitted by: Wojtek Jakubowski	ŤŤ
	SAMPLE#	Au** gm/mt	
	12431 12432 12433 12434 12435	12.09 24.24 38.23 8.05 59.37	
	12436 12437 empty bag 12438 12439 12440	82.25 27.54 23.09 12.09	
	RE 12440 12441 12442 12443 12443 12444 empty bag	10.12 5.83 18.55 31.30	
	12445 12446 12447 empty bag 12448 empty bag 12449	16.19 38.84 	
	12450 STANDARD AU-1	10.19 3.43	
GROUP 6 - PREC - SAMPLE TYPE: Samples beginn	IOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, Rock Pulp ing 'RE' are Reruns and 'RRE' are Reject Reru	ANALYSIS BY ICP-ES.	ATA A

Data FA

DATE RECEIVED:

FEB 24 2005 DATE REPORT MAILED: March 2/05

ACME AN FICAL LABORATORI (ISO 9002 Accredited C	LES LTD. 852 E. HASTINGS S Co.)	T. COUVER BC V6A 1R6 PHO	DNE(604)253-3158 FAX(60 3-1716
ΔΔ	ASSAY	CERTIFICATE	ΔΔ
	Almaden Minerals Ltd. PRO 1103 - 750 W. Pen	<u>JECT ELK04-9</u> File # A40600 der St., Vancouver BC V6C 2T8)9R
	SAMPLE#	S.Wt NAu -Au TotAu gm mg gm/mt gm/mt	
	SND389-13 STANDARD AU-1	398 .06 3.21 3.36 <1 <.01 3.35 3.35	
	· · · ·		

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data____ FA

AA <u>Almader</u>	ASSAY <u>n Minerals Ltd. PRC</u> 1103 · 750 W. Pe	CERTIFICATE <u>DJECT ELK04-9</u> File # A406009R ender St., Vancouver BC V6C 2T8
	SAMPLE#	S.Wt NAg -Ag TotAg gm mg gm/mt gm/mt
	SND389-13 STANDARD GC-2a	398 <.06 23 23 <1 <.06 1025 1025
Data FA DATE RECEIVED:	DEC 17 2004 DATE REPO	RT MAILED: (.)an. 1.8/2005
- SAMPLE TYPE: CORE REJ. Data FA $\frac{1}{100}$ DATE RECEIVED:	DEC 17 2004 DATE REPOI	RT MAILED:
- SAMPLE TYPE: CORE REJ.	: DEC 17 2004 DATE REPOI	RT MAILED:
- SAMPLE TYPE: CORE REJ.	EC 17 2004 DATE REPO	RT MAILED:

			<u></u>										·				<u> </u>															<u> </u>			
	ACME	AN	rı	AL	LAB	ORAT	ORI	ES L	TD.		852	2 E.	HAS	rinc	IS S	ST. (b	vuo:	ZER 1	3C 1	76A	1R6	5	P	HON	E (6	04)2	53-	315	8 FA	X (60	ļ	3-17	16	
	(ISC	900:	Ac	cre	dite	dC	0.)	1. A ¹³				(****	<u>.</u>			-										di. Ala					
	AA	e Alexandre de la composición de la com La composición de la c	an 14.		n da la	a Correcto Antire de Correcto	a kan		3119			GEOC	HEN	11 C <i>i</i>	ч т	ANA	ЧΥЗ	TR	CE.	χı.Τ Ρ	TC.	ATE													
	471 471	agri e sa Still					Α	lmad	len	M:	iner	als	Ltd	1. 1	PRC	DEC	тЕ	тк	04 -	9 F	'i1	e #	A	106	010	R							/]		
8.83		14.5										110	3 - 7	'50 W	. Pei	nder S	St., \	/anci	ouver	BC V6	218	3											L	L	
		<u> </u>			<u>icies</u> ,	<u>adrigiani.</u>	<u></u>	<u></u>		<u></u>																	<u>a</u>	<u></u>		_					لنتعج
	SAMPLE#	М	o (iu I	Pb Z	in Ag	Ni	Co N	n	Fe	As U	Al	l Th	Sr	Cd S	Sb Bi	V	Ca	ΡL	a Cr	Mg	Ba	Τi	В	A]	Na	K I	√ Hg	Sc	T1	S Ga	Se	4g** A	\u**	
		pp	n pp	m pp	om pp	m ppm	ррт	ppm pj		% p	opm ppm	ppi	o ppm	ppm p	pm p	om ppm	ppm	*	% pp	n ppn	1 %	ppm	2	ppm	*	z	% ppi	n ppm	ppm	opm	% ppm	opm gi	n/mt gn	1/Mt	
	SND387-1	2 2	3 193	3 96	1 6	246	1 1	313	18 2	58.36	5792	2943	789	4	62	137	1	08	026 1	0 2 2	03	32	001	1	31	014	28	2 03	4	122	28 1	< 5	5 7	7.80	
	SND388-9	3.	5 49	6 135	.1 3	37 5.8	2.9	4.8 2	52 1.	74 46	5.8 8.2	12562.3	3 9.2	8	.9	.5 1.6	2.	08.	015 1	7 10.6	.02	36	.001	2	.24 .	031 .	18 1.	9 .02	5	.1 1.7	74 1	<.5	8 12	2.89	
	SND390-1	B 2.	544	3 125	.3 6	6.0	1.0	1.6 5	33-2.	36 25	5.7 4.0	8050.7	7 8.3	41	.1	.4 4.3	2.	07.	021 1	2 3.8	.03	35	.001	1	.29 .	019 .	22 .	1.01	.6	.1 1.8	32 1	<.5	7 13	8.94	
	SND391-2	2.	1 264	5 99.	.1 4	1 8.3	1.2	5.5 3	75 3.	08 76	5.8 9.2	5262.3	9.2	31	.41	.77.9	1.	05 .	021	8 2.0	.03	26<	.001	2	.28 .	008.	26 .:	2.03	.3	.1 2.8	35 1	<.5	9 12	2.34	
	STANDARD	12.	1 127	0 31	.6 14	7.3	24.7	11.1 7	19 2.	88 21	.8 6.8	. 47.0) 3.1	41 6	.23	.3 5.1	58.	87.	085 1	5 186.2	. 59	171	.087	16 1	.93 .	076	16 3.	3.25	3.2	1.7 .()6 6	4.5	1029 3	3.44	

Standard is STANDARD DS6/GC-2a/AU-1.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE PULP

DataWLFA

DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED:

																	·																						
ACME /	ANÍ ICAL LABO ISO 2002 Accred	RATO ited	RII Co	ES 1 5.)	LTD	•		852	E	. н	AST	INC	IS	ST	•		ου	VEF	2 B	2	V6A	. 1	.R6	•	Pł	ION	E ((504) 2!	53-	31	58	FA	•X (60	्र)3	-171	.6	
AA								(GE(OCH	EM:	IC	AL	A	NAI	-75	SIS	¦ C	ER	TII	?IC	'A'	ΓE						ni Ana								A		
			<u>A.</u>	lma	ldei	n M	in	era	<u>al</u>	<u>s I</u> 1103	td - 75	<u>.</u>] 0 W	$\frac{PR}{PR}$	OJ ende	EC' er S	Г Е :	<u>ELK</u> Vano	CO 4	<u>-1</u> er B	<u>0</u> c ve	Fi c 21	10 8	e #	A4	106	509	8										Ľ	L	
		*****			<u></u>										<u></u>						<u> 1997-c</u>			****					<u></u>				<u></u>			<u></u>			:
	SAMPLE#	Мо	Çu.	Pb	Zn Ag) Ni	Co) Min	Fe	As	U	Au	Th	Sr	Cđ S	b Bi	v	Ca	Р	La	Cr	-'g	Ba Ti	В	Al	Na	К	W Hç	i Sc	71	S	Ga	Se	Ag**	Au**				
		ppm p	pm	ppm p	ipm ppe	n ppr	рря	i ppm	ž	ppm p	pm	pop I	opm g	opm p	pm pp	m ppm	n ppm	X	χļ	pm	ppm	ž	% mqc	ppm	ž	ž	≹ pp	a ppa	ppm	ppa	ž	ppm	ррв	gm∕mt	gm/mt				
	SI	<.1	.5	.3	1 <.:	L .1	<,]	10	.03	.6 <	.1	.8	<.1	1 <	.1 <.	1 <.1	. <1	.05<.	001	<1	<] <.	01	2<.001	1	.01 ::	268 <.(1.	1 <.01	1	<.1	.06	<1	<.5	<2	<.01				
	SND392-1	24.9 103	.9	93.0 2	. 65	3.7	1.2	217 1	14 1	94,9 5	.2 8	9.8	5.8	7 7	.5 .	6.9	1	. 08 .	024	13	1.6 .	03	26 .002	2	. 21 .)19 .1	б.	2 <.01	. 6	.1	.98	1	<.5	<2	. 16				
	SND392-13	2.4 210).3 9	36.5 9	31 5.6	5 1.1	2.6	1141 1	82	49.9 11	.7 19	4.7	7.2	17 8	.3 12.	8 4.9	1	.16	016	8	3.3 .	J5	46<.001	2	.22 .1	008 .2	0.	2 .09	.5	. 1	1.11	1	<.5	8	.45				
	SND395-22	1.5 80).1 6	17.4 5	68 5.6	5 1.0	2.3	631 1	53	31.4 7	.2 226	6.7	7.7	94	.5 .	6 3.7	<1	.05	011	12	1.6 .	03	77<.001	1	. 20 . (011 .1	9.	2 .05	.4	.1	1.07	1	<.5	7	3.16				
	SND396-2	2.7 168	3.4 <u>3</u>	25.0 1	.74 1.2	2.9	1.5	5391	.63	44.4 4	.9 5	6.0	7.1	61	.2 2.	7.4	1	.07	022	11	3.1 .)4	81 .001	1	.20.)19 . 1	7.	2 <.01	. 6	. 1	1.01	1	<.5	<2	. 09				
	SND396-3	2.4 220).7 10 [.]	96.3 6	60 3.2	2 1.0	1.3	409 2	2.14	83.8 30	.8 54	6.9	5.7	49	.8 3.	2 1.3	<1	.05	018	8	1.8 .	04	44<.001	2	.21 .)08 .1	9.	4.04	.4	.1	1.78	1	<.5	4	.87				
	SND396-6	2.2 294	.8 12	70.9 20	14 3.9	9 1.5	1.9	1004 2	2.30	64.0 20	.3 13	6.0	7.1	11 52	.1 18.	7 2.4	<1	.07	016	9	5.0 .	03	32<.001	1	. 20 . 1	315 .3	5.	3 .17	.7	.1	1.48	1	<.5	5	.22				
	SND395-10(PULP)	19.2 57	.1 3	90.4	34 4.3	3 1026.8	27.4	376 2	2.19	60.6	.5 3483	5.6	3.2	18 <	.1 .	5 4.7	29	.47	.033	13 127	4.1 .	60	156 .043	5	.98 .1)46 .2	7 13.	1.02	2.4	.1	.06	3	<.5	5	34.46				
	STANDARD DS5/R-2a/AU-1	12.1 143	3.3	25.7 1	.33 .3	3 24.4	11.8	745 2	2.92	18.1 6	.0 4	3.0 3	2.0	45 5	.6 3.	4 5.9	58	.73	.090	11 18	7.8.	67	138 .092	14 1	.99 .	. 134	3 4	7.18	3.4	1.0	<.05	б	5.0	157	3.39				

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE R150 60C

Data FA

Nov 1/04 DATE RECEIVED: OCT 6 2004 DATE REPORT MAILED:

	6	<u></u>						-															-						<u></u>		
	ACME ANA	IC	CAL L	ABOR	ATO	RIE	5 LT	D.		852 1	с. н	ASTI	IGS	ST.	٦	c	UVE	RE	3C	V6A	1R6		PHONE	2(60	4)2	53-31	58 FA	X (60	Ĵ.	3-1716	
	(30`	9002	Acc	redi	ted	Co	•;) ·			~~~								~ ~ ~		1701										878 870	
ě,	M M									GF	OCH	(EMT (:AL	AN	IAL	xs-	ເຮ	LEF	ст. Т 1	LTC ⁴	7.T.F:									A A	ja e
						A]1	mad	en	Min	eral	s T	tđ.	PR	чт.С	CT	िन्दा	KO	4 - 1	0	۲i٦	le #	ΑZ	10609	9	e, i Altrud						
	LL										1103	- 750	W. P	ender	• St	., V:	ancou	ver	BC VE	C 2T8	II I				1997) 26 10 1				2017년 11 1947년 11 1947년 11		
<u>991-6</u>						30.93 S 93	<u></u>	<u></u>	<u>. 997 (1886</u>	<u>. </u>		•							-		-				<u> 19. 19. 19</u>						
	SAMPLE#	Mo	Cu	PD	Zn	Ag	N1 DOM	CO	Mn F	e As	0	Au	In	Sr	Cd	SD	Bl	V	Ca	4 La	i Cr	Mg	Ba II	B	Al	Na K	W HG	SC 11	, S	Ga Se	
			phii	ррп	ppiii	phu	ррш	phii l		% ppi	i ppii		phu 1		ррш	ppin	ppin	рμя	/0	% hhi	n hhu	×0	ррні м	- ppm		/0 /0	hhii hhi	ррш ррш	1 /0	phu phu	
	SI	<.1	1.0	1.0	2	<.1	.4	.1	13 .0	3 <.	.1	<.5	<.1	2 ·	<.1	<.1	<.1	<1	.09<.0	01 <1	<1	<.01	6<.001	<1	.01	.354<.01	.1<.01	<.1 <.1	<.05	<1 <.5	
	SND392-6	1.5	98.6	284.7	296	3.0	. 9	2.5 4	426 1.5	1 23.4	6.4	195.9	6.8	5	1.8	2.2	12.9	1.	.04 .0	09 6	5 3.7	.01	45<.001	1	.16	.007 .16	.7 .03	.3 <.1	91	<1 <.5	
	SND393-3	2.3	1517.8	561.6	161	16.6	1.3	10.6 4	495 5.0	4 140.3	6.8	5964.9	6.0	6	2.5]	10.7	29.7	1.	.04 .0	10 5	5 2.0	.02	11<.001	1	. 18	.004 .18	.3 .09	.4 .1	4.12	1 <.5	
	SND393-5	2.8	347.4	1783.9	986	6.3	1.6	5.4 2	209 3.9	6 171	9.4	1717.4	7.1	8 1	6.8	3.7	5.1	<1.	.03 .0	07 6	2.3	.01	20<.001	1	.18	.003 .18	.3 .26	.3.1	. 3.64	<1 <.5	
	SND394-4	2.0	1357.0	1153.2	110	14.9	1.4	4.54	400 3.4	8 142.0	18.0	7824.9	7.2	12	2.2	1.1	6.8	1.	.05 .0	13 /	1.3	.02	18<.001	2	.20	.003 .18	.3 .19	.32	2.89	1 <.5	
	SND394-7	8 1	200 0	1500 9	334	36.7	18	523	221 2 8	8 144 8	10 5	8621 6	55	20-1	69	27	25.2	1	04 0	09 c	9 1 4	02	16< 001	2	18	003 13	1 27	3 2	2 34	<1 < 5	
	SND395-17	1.9	99.5	92.5	197	3.4	.8	1.3 4	418 1.3	8 26.9	4.2	220.5	5.9	1	1.0		4.9	1	.03 .0	09 E	5 1.9	.01	29<.001	1	.15	.003 .15	.3 .01	.2 <.1	. 69	<1 <.5	
	SND395-18	1.3	82.3	92.4	225	1.6	.9	1.7 4	435 1.4	9 23.8	4.2	119.1	5.5	2	1.0	.8	7.0	1.	.03 .0	08 5	5 3.3	.01	30<.001	1	.16	.003 .14	.2<.01	.2 <.1	.69	<1 <.5	
	SND395-24	1.5	37.2	187.5	369	.3	.6	1.6 !	594 1.1	4 23.4	4.5	58.0	9.8	4	2.8	.4	.4	1.	.06 .0	15 10) 1.3	.02	32<.001	1	.15	.011 .14	.2 .02	.4 .1	35	<1 <.5	
	SND396-5	1.8	221.4	429.6	319	3.1	1.1	2.5 8	812 2.9	3 48.	5 11.7	925.9	7.9	6	2.0	9.7	1.8	1.	.07 .0	17 7	7 1.9	.03	41<.001	1	.19	.007 .17	.4 .01	.5 .1	1.76	1 <.5	
				05.0	105			10 0 -					0 F			0 5	c o	50	70 0	00 11	176 7	60	100 000	17 1	00	001 10	4 7 10	0 4 1 6		6 4 0	
	STANDARD DS5	12.5	141./	25.3	135	.3	23.8	12.0	/3/ 2.9	19 I/	5.9	44.0	2.5	44	5.5	3.5	6.0	58.	.73.0	90 11	L 1/5./	.69	138 .099	1/ 1		.034 ,16	4.7.16	3.4 1.0	<.05	<u></u> 64.8	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C

Data FA

DATE RECEIVED: OCT 6 2004 DATE REPORT MAILED: OUT 30/04

RIES LTD. 852 E. HASTINGS ST.

OUVER BC V6A 1R6

PHONE(604)253-3158 FAX(60

3-1716

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-10 File # A406099 1103 - 750 W. Pender St., Vancouver BC V6C 218

SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	TotAc gm/mt
SI SND392-6 SND393-3 SND393-5 SND394-4	<1 1024 986 1005 1007	<.06 .09 .50 .13 .25	<2 3 15 9 17	<2 1 1
SND394-7 SND395-17 SND395-18 SND395-24 SND396-5	$1015 \\ 874 \\ 475 \\ 605 \\ 1062$	<.06 .38 .23 <.06 .25	43 3 <2 4	4
STANDARD R-2a	<1	<.06	154	154

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data

ACME	ANI	LABORATORIES	LTD.	852 E. H
<u>13.5 - 19</u>	(ISO 002 Ac	credited Co.)))	중말신간중하는

ASTINGS ST. OUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (60 33-1716

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-10 File # A406099 1103 - 750 W. Pender St., Vancouver BC V6C 218

SAMPLE#	S.Wt	NAu	-Au	TotAu
	gm	mg	gm/mt	gm/mt
SI	<1	<.01	.01	.01
SND392-6	1024	<.01	.35	.35
SND393-3	986	.16	6.24	6.40
SND393-5	1005	.05	2.63	2.68
SND394-4	1007	.39	8.77	9.16
SND394-7	$1015 \\ 874 \\ 475 \\ 605 \\ 1062$.03	11.49	11.52
SND395-17		.03	.66	.69
SND395-18		.01	.19	.21
SND395-24		<.01	.15	.15
SND396-5		<.01	.71	.71
STANDARD AU-1	<1	<.01	3.30	3.30

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data___ FA

DATE RECEIVED: OCT 6 2004 DATE REPORT MAILED: O.t. 30/04

ACME AN *TICAL LABORATORIES LTD.* 852 E. HASTINGS ST. COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60 3-1716 (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Almaden Minerals Ltd. PROJECT ELK04-10 File # A406099R 1103 - 750 W. Pender St., Vancouver BC V6C 2T8 SAMPLE# S.Wt NAu -Au TotAu mg gm/mt gm/mt gm 7.14 8.59 3.35 SND393-3 SND394-7 .19 .01 761 7.39 174 8.65 STANDARD AU-1 <.01 3.35 _

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ.

Data FA

DATE RECEIVED: DEC 17 2004

4 DATE REPORT MAILED: AM 18.05

ID3 - 750 U. Pender St.; Vancouver BC V6C 275 SAMPLE# SIND393-3 STAND393-3 STANDARD GC-2a 174 - <.06 1076 STANDARD GC-2a - <.06 1074 SIND394-3 STANDARD GC-2a - <.06 1076 STANDARD GC-2a - <.06 1076 STANDARD GC-2a - <.06 1076 STANDARD GC-2a - <.06 STANDARD GC-2a - <.06 1076 STANDARD GC-2a - <.06 STANDARD GC-2a - <.06 STANDARD GC-2a - <.06 STANDARD GC-2a - - - STANDARD CC-2a - - - STANDARD RECEIVED: Det 17 2004 DATE RECEIVED:	CME N FICAL LAB (ISU J002 Accre	ORATORIES LTD. dited Co.) Almaden	852 E. HASTINGS S ASSAY Minerals Ltd. PRC	ST. CERTI DJECT I	COUVER FICAT	вс V6. ГЕ -10 F	A 1R6 ile # <i>A</i>	PHONE (604)	253-3158 FAX(60 3-171 A
SAWLDER S. NE NAGNAGIOLAGIOLAG			1103 - 750 W. Pe	nder St.,	Vancouve	r BC V6C 2	278			
SND393-3 STANDARD GC-2a 714 .06 136 136			SAMPLE#	gm	mg	-Ag gm/mt	gm/mt	-		
-AG : -150 AG EV FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESN. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE REJ. ata _ FA _ MA _ DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: Jan 10/05 Clarence Leong			SND393-3 SND394-7 STANDARD GC-2a	761 174 -	<.06 <.06 <.06	19 36 1076	19 36 1076			
ata_ FA MA DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: J.M. 18/25	-AG : -150 AG BY FIR - SAMPLE TYPE: CORE	E ASSAY FROM 1 A.T. REJ.	SAMPLE. DUPAG: AG DUPLICATED	FROM -150	MESH. NA	G - NATIVE	SILVER, TO	TAL SAMPLE FIRE	ASSAY.	
ALA_ FA A DATE RECEIVED: DEC 17 2004 DATE REPORT MAILED: 4177777477777					a	An 18	100			
Clarence Leong	ataFA	DATE RECEIVED:	DEC 17 2004 DATE REPOR	RT MAILI	ED:				1000	
Clarence Leoing					V			WEIA	OLO CER	
Clarence Leave								A B	P TE	
								Eg Cla	rence Leong	
							1 N	NO AND	ALE J.	
								-56		
										1 A.
			· ·							
								•		

ACME AN2 ICAL LABORATORIES LTD. (ISO .02 Accredited Co.) 852 E. HASTINGS ST. YOUVER BC V6A 1R6

PHONE(604)253-3158 FAX(60 3-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-10 File # A406100 Page 1 1103 - 750 W. Pender St., Vancouver BC V6C 218

	SAMPLE#	Au*	Sample				
	SI SND392-2 SND392-3 SND392-4 SND392-5	<pre></pre>	30 30 30 30 30 30				
	SND392-7 SND392-8 SND392-9 SND392-10 SND392-11	43.0 3.9 16.7 12.2 <.5	30 30 30 30 30 30				
	SND392-12 (PULP) SND393-1 SND393-2 SND393-4 SND393-6	33713.9 280.0 4.3 34.6 10.8	15 30 30 30 30				
	SND393-7 SND393-8 SND393-9 SND393-10 SND393-11	2238.4 32.2 48.2 13.5 703.4	30 30 30 30 30				
	RE SND393-11 RRE SND393-11 SND393-12 SND393-13 SND393-14	704.3 299.6 85.6 28.2 20.0	30 30 30 30 30 30				
	SND393-15 SND393-16(PULP) SND394-1 SND394-2 SND394-3	2.0 9430.7 553.1 286.5 226.3	30 15 30 30 30				
	SND394-5 SND394-6 SND394-8 SND394-9 SND394-10	4.5 20.5 51.8 223.4 142.6	30 30 30 30 30 30				
· · · · · · · · · · · · · · · · · · ·	STANDARD AU-R	509.9	30				
Data (FA DATE RECEIV	AU* IGNITED, ACID LEACHED, ANALYSED BY IC - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RR /ED: OCT 6 2004 DATE REPORT MAI	EP-MS. (30 gm) <u>E' are Reject</u> LED:	<u>Reruns.</u> t 29/04	••	CUMBA TELC	arence Leong	

Almaden Minerals Ltd. PROJECT ELK04-10 FILE # A406100

Page 2

ACME ANALYTICAL

	SAMPLE#	Au* ppb	Sample gm		· ·			
	SND395-1 SND395-2 SND395-3 SND395-4 SND395-5	90.4 19.1 35.7 33.9 57.2	30 30 30 30 30	•				
	SND395-6 SND395-7 SND395-8 SND395-9 SND395-10	18.3 42.3 29.8 294.3 50.5	30 30 30 30 30					•
	SND395-11 SND395-12 RE SND395-12 RRE SND395-12 SND395-13	12.1 46.5 40.8 57.1 7.6	30 30 30 30 30					
	SND395-14 SND395-15 SND395-16 SND395-19 SND395-20 (PULP)	$ \begin{array}{r} 1.4 \\ 99.0 \\ 14.6 \\ 2.2 \\ 10177.4 \end{array} $	30 30 30 30					
	SND395-21 SND395-23 SND395-25 SND395-26 SND395-1	$30.0 \\ 17.2 \\ 13.6 \\ 17.4 \\ 254.4$	30 30 30 30 30					
	SND396-4 SND396-7 SND396-8 SND396-9 SND396-11	94.4 188.3 177.8 19.6 20.5	30 30 30 30 30					
	STANDARD AU-R	496.1	30					
Sample type: CORE R150 60C.	Samples beginning	'RE' are	e Reruns	and 'RR	E' are R	leject R	Reruns.	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

		<u> </u>																ò	_									_								
ACME A	NÍ SO)IC	AI, L Acc	ABO red	RAT(ited	DRIE 1 Co	IS L).)	TD.		852	2 E	. HA	STI	NGS	5 SI			ου	VER	BC	v	6a 1	LR6		P	HONI	E (6	04)2	253	-31	58 F	'AX	(60	3-	1716	
			e Sector Sector				in the state				GE	OCHE	MI	CA	LA	NA	LYS	SIS	S CI	GRT	'IF		TE				-				•	•, •				
						<u>A.</u>	ma	<u>den</u>	<u>_M:</u>	<u>iner</u>	<u>a</u> ⊥ 	<u>в</u> Lt 1103 -	. <u>d</u> . 750	₽ ₩.	Pend	EC er (<u>'l'</u> St.,	<u> S L K</u> Vanc	<u>(04</u> - couve	<u>-11</u> r BC	V6C	F'⊥⊥ 2⊺8	e i	‡ A	.406	555	4								L 1	
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe %	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P %	La	Cr	Mg	Ba	Ti %,	B	A1	Na	K	W Ĥ	g Sc	T]	S v	Ga Se	Ag**	Au**
								PPm	~	PPm I	Jpin	ppp	phu F	-pin	Phu 1		ppiii	рры		~~~~	ppin	PPm		ppin	~~ ł	урли	10	<i>1</i> 0 ·		pin pp	n ppn	ppin	<i>A</i> 0	ppin ppin	ym/mc	gin/ inc
SI SND397-4	.6 3.4	1.7 41.6	.6 479.4	6 1135	<.1 .9	1.0 1.8	.2 2.3	9 1049	.23 1.18	4.4 × 29.0 §	<.1 5.7	<.5 108.5	<.1 6.0	5 5	.1 · 17.6 2	<.1 2.2	<.1 1.1	<1 <1	.24<. .06	001 012	<1 14	2.3 4.0	.01 .02	.>6 .>338	001 001	1 4	.01 . .23 .	953 . 005 .	01 < 25]	<.1 .0 .4 .1	1 .1 4 .3	<.1 .1	<.05 .45	<1 <.5 1 <.5	<2 2	<.01 .28
SND397-6 SND397-7 SND398-10	3.5 4.0 2.2	21.0 104 0	207.4	370 499 622	17.9 .9	3.2 1.5	3./ 2.1	520 3 258 2333 4	3.80 .87 6.76	63.1 8 21.4 9	3.8 5.6 4 4	1361.2 731.8	6.2 5.5 4 2	2 4 12	1.8 3	3.8 3 5.1 7	35.4 .6	<1 <1 20	.05 .	.015	5 11 15	6.3 4.2	.03	22<. 218<.	001 001	<1 .	.25 . .21 .	009 . 009 . 017	26 19 1 20	.2.0	2.2 9.2	.1	3.59	1 <.5 1 <.5	25 <2	1.44 .87
240230-10	2.2	134.3	211.5	022	.5	4.2	9.0	2000 1	0.70	200.4 4	4.4	13.2	4.2	13	2.1	./	.ა	20	.40 .	.120	15	4.8	. 30	95.	003	1.	.85 .	017 .	39	.1<.0	1 4.3	. 2	1.96	2 <.5	<2	.02
SND400-1 SND400-4 SND401-2 SND401-4	1.8 3.9 2.1 2.5	42.4 45.3 171.1	22.2 11.0 247.9	49 52 116 177	.6 1.9 1.1	18.4 2.5 1.6	15.6 6.3 2.2	793 1208 372 389	1.97 2.99 1.59	22.8 4 14.2 4 25.6 2	4.3 4.0 2.7	80.7 1708.2 235.5	3.2 6.7 7.4	41 15 5	.6 .2 .5	.7 .3 .8	.4 2.5 1.8	10 1 26 1	1.27 . .58 . .06 .	107 071 019	13 18 9	11.4 5.6 4.5	.19 .38 .03	119 . 165 . 149 .	002 079 001	3 2 <1	.68 . .76 . .26 .	009 . 049 . 013 .	34 52 23 1	.4<.0 .1<.0 1.6<.0	1 3.2 1 3.8 1 .4	.1 .3 .1	.81 .34 1.10	2 <.5 4 <.5 1 <.5	<2 2 <2	.13 3.17 .30
SND401-4 SND402-7	1.9	82.8	205.4	289	1.1	1.6	3.0	650	1.68	28.2 9	5.3	167.6	6.6	5	1.1	.3	1.2	1	.08.	.017	0 12	4.2 5.3	.03	//<. 174<.	001	1.	.26 .	008 . 017 .	26 22 1	.1.0	1 .3 1 .5	.1	1.82	1 < .5 1 < .5	6 2	.17
RE SND402-7 RRE SND402-7 SND403-1 SND403-4 SND403-5	2.0 2.9 1.4 1.4 1.5	81.8 82.8 221.0 14.2 29.2	206.1 206.4 8.6 27.7 30.3	289 309 18 28 190	1.0 1.4 1.7 .4 .5	1.4 1.8 1.5 1.0 1.4	3.0 2.6 1.5 2.4 2.0	648 707 448 771 419	1.67 1.90 1.21 1.06 1.09	27.8 24.4 25.1 35.9 28.1	5.2 5.1 5.0 2.6 3.7	146.1 156.1 33.9 39.6 142.3	6.7 7.8 7.3 7.0 8.5	5 6 4 17 3	1.1 1.2 .2 .5 4.8	.3 .4 .1 .1 .2	1.1 1.4 .1 .1 <.1	-1 1 4 <1 2	.08 . .08 . .13 . .73 . .08 .	.017 .020 .017 .019 .020	12 15 15 10 16	5.3 7.9 4.8 5.5 4.2	.04 .05 .08 .07 .06	174<. 219<. 94 . 31<. 293 .	001 001 004 001 003	1 3 2 1 1	.25 .32 .29 .25 .25	017 . 025 . 021 . 013 . 019 .	23 1 26 20 1 22 19 1	.1<.0 .2<.0 .4<.0 .1<.0 2<.0	$ \begin{array}{cccc} 1 & .5 \\ 1 & .6 \\ 1 & .6 \\ 1 & .5 \\ 1 & .5 \\ \end{array} $.1 .1 .1 .1	.84 .67 .46 .60 .57	1 <.5 1 <.5 1 <.5 1 <.5 1 <.5 1 <.5	<2 <2 3 <2 <2	.18 .12 .10 .10 .74
SND403-6 SND403-7 STANDARD DS5	2.1 1.8 11.7	90.9 98.0 142.6	6.1 6.2 26.3	36 34 130	3.3 2.5 .3	2.1 2.5 25.8	8.0 7.8 11.0	1188 1148 768	3.16 2.93 2.93	18.3 4 14.7 4 17.7 (4.7 4.1 5.6	4759.7 2208.7 41.2	5.7 5.7 2.7	13 14 43	.2 .1 5.2 3	.1 .2 3.6	3.0 3.1 6.0	14 13 59	.29 . .29 . .70 .	.064 .064 .090	15 15 12 1	3.7 3.6 76.1	.25 .25 .68	91 . 96 . 131 .	004 005 090	2 2 17 1	.52 . .49 . .97 .	022 . 020 . 033 .	27 24 1 15 4	.1 .0 .4 .0 .9 .1	1 2.7 4 2.6 6 3.4	.1 .1 1.1	.97 .83 <.05	2 <.5 2 <.5 7 4.9	4 3 156	4.56 3.09 3.31

Standard is STANDARD DS5/R-2a/AU-1.

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data _____ FA

DATE RECEIVED: OCT 21 2004 DATE REPORT MAILED:

NOV 9/04

												·																		<u></u>		
ACME AN (IS	17 IC 30 JU02	AL AC	LABO cred	RAT ite	ORI d C	ES o.)	LTD	•	8	52 E GE	. н осн	ASTING: EMICA	s st L Al	/ · · IAV	ys:	DUVE IS	R I CEI	BC RTI:	V6A FIC	1R ATI	6 3]	PHONE	(60	4)2	53-3	158	FA	₹(60√	3	-1716	
<u> </u>					<u>A</u>	lma	lde	n M	ine	ral	s L 1103	td. P - 750 W.	ROJ] Pende	<u>3C'</u> r St	El ., Vi	uK0 ancou	<u>4 – :</u> ver	<u>11</u> BC Va	Fi 5C 2T	le 8	#.	A4()6555	5							<u> </u>	1. 2
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag. ppm	Ni ppm	Co ppm	Mn ppm	Fe لا	As ppm	U ppm	Au ppb p	Th Sr om ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P ۶p	La opm	Cr ppm	Mg %p	Ba Ti pm %	B ppm	A1 .%	Na %	К %р	W Hg mgq mg	Sc T ppm pp	1 9 m (Ga Se ¢ppm ppm	1
SI SND398-4 SND398-5 SND398-16 SND400-2	<.1 3.1 10 2.3 20 1.2 148 2.2 217	2.1 1.2 15 2.4 1 6.7 10 9.7	.5 527.3 123.5 150.9 21.0	1 1364 309 602 103	<.1 2.9 6.5 38.7 15.6	.2 3.1 3.7 3.0 3.3	<.1 6.5 14.0 15.0 13.7	8 1538 1245 73 864	.03 3.80 4.74 6.02 10.66	<.5 302.3 91.1 652.0 47.3	<.1 3.7 7.2 21.1 2.6	1.6 < 1089.2 6 2197.9 5 15485.2 6572.0 3	.1 2 .4 45 .4 36 .8 6 .6 5	<.1 18.5 6.9 9.4 2.7	<.1 .2 .2 1.6 .4	<.1 .4 2.3 7.3 9.3	<1 10 8 3 5	.11< 2.55 1.45 .07 .21	001 076 055 026 055	<1 13 10 3 6	<1< 1.7 1.2 3.8 3.7	.01 .40 .38 .02 .12	2<.001 60 .001 24 .001 9 .001 19 .002	<1 <1 <1 <1 <1	.01 .41 .46 .18 .34	.398< .017 .016 .004 .007	01 < 28 23 13 27	.1 .01 .1 .11 .1 .03 .1 .02 .4 .01	< 1 <. 1.9 . 1.9 . .7 . 1.3 .	1 <.05 1 1.85 1 2.71 1 5.90 1 8.40	5 <1 <.5 5 1 <.5 1 <.5 3 1 <.6 9 1 .6	
SND400-6 RE SND400-6 RRE SND400-6 SND401-5 SND402-2	22.2 187 22.4 188 20.8 186 3.4 116 5.1 29	9.9 5.3 7.8 7.3 8 7.9 3	42.7 42.8 42.9 313.8 315.3	127 128 133 212 327	37.7 39.7 37.3 12.0 39.2	6.2 5.9 5.7 1.4 1.5	19.0 18.5 17.8 12.3 10.8	1430 1439 1377 443 67	11.94 11.93 11.25 4.21 4.15	155.4 154.3 158.1 121.5 82.3	13.7 13.1 13.1 4.0 2.2	56612.6 2 64317.1 2 68644.2 3 2413.6 8 7079.6 4	.3 7 .5 7 .2 7 .6 16 .4 2	1.7 1.9 2.1 2.0 9.6	3.0 2.9 3.0 .9 .7	32.3 32.8 31.5 6.8 24.9	4 3 <1 <1	.25 .25 .24 .05 .03	034 035 035 017 011	6 9 7 4	2.4 2.6 2.3 2.7 4.3	. 21 . 21 . 20 . 03 . 01	22 .001 20 .001 23 .001 17<.001 22<.001	<1 <1 <1 <1 <1	.35 .35 .31 .23 .17	.007 .007 .006 .006 .006	.24 .23 .21 .21 .17	.3 .04 .2 .03 .2 .04 .1 .03 .1 .02	1.3 . 1.4 . 1.2 . .4 . .3 <.	7 9.20 7 9.00 7 8.54 1 3.70 1 3.9	1 1.2 1 .9 1 .9 1 .8 1 .8 7 <1 <.8	, , ,
SND403-12 SND403-14 SND403-17 STANDARD DS5	1.2 14 2.1 134 21.5 23 12.3 14	7.8 3.0 2.8 1 4.6	31.9 67.0 166.5 25.3	66 114 447 138	5.5 7.3 12.3 .3	3.5 3.2 5.1 23.2	11.4 6.7 29.1 11.7	1873 912 1936 781	6.03 9.20 13.41 2.94	159.2 67.4 306.0 17.9	5.1 6.6 12.6 6.2	2542.0 7 1878.4 4 16807.3 3 44.0 2	.0 7 .8 9 .0 12 .9 45	.7 2.6 5.0 5.4	.3 .4 1.0 3.5	1.1 2.1 28.9 6.0	7 6 17 58	.30 .20 .38 .72	066 055 081 088	10 9 15 12 17	2.1 3.0 2.2 78.1	.19 .11 .25 .68 1	35 .003 23 .001 24 .002 36 .104	1 <1 1 17	.42 .33 .37 2.00	.012 .009 .022 .033	.27 .24 .16 .14 4	.2 .01 .3<.01 .1 .01 .7 .16	2.3 . 1.8 . 3.9 . 3.5 1.	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$. 1 <.5 ? 1 .6) 2 .8 5 6 5.1	

Alov 17/04

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data (FA

DATE RECEIVED: OCT 21 2004 DATE REPORT MAILED:

ICAL LABORATORIES LTD. ACME ANI (ISO J02 Accredited Co.)

852 E. HASTINGS ST.

V6A 1R6 OUVER BC

PHONE (604) 253-3158 FAX (60 3-1716

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-11 File # A406555 1103 - 750 W. Pender St., Vancouver BC V6C 218

SAMPLE#	S.Wt gm	NAu mg	-Au gm/mt	TotAu gm/mt	
SI SND398-4 SND398-5 SND398-16 SND400-2	<1 881 976 822 1037	<.01 .01 <.01 3.68 .51	<.01 1.05 3.33 15.41 7.85	<.01 1.06 3.33 19.89 8.34	
SND400-6 RRE SND400-6 SND401-5 SND402-2 SND403-12	444 468 1033 619 1055	4.62 3.32 .01 .14 .11	53.86 56.73 2.82 6.36 2.04	64.27 63.82 2.83 6.59 2.14	
SND403-14 SND403-17 STANDARD AU-1	995 897 <1	.26 11.94 .01	$2.48 \\ 24.52 \\ 3.26$	2.74 37.83 3.26	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data FA

DATE RECEIVED: OCT 21 2004 DATE REPORT MAILED: N.O.V.1.7/0.4...

ACME ANA ICAL LABORATORIES LTD.	852 E. HASTING	S ST.	र्∕्र	JVER BC	V6A 1R	6 PHC	DNE(604)253-3158 FAX(60	.716
	AS	SAY CI	ERTIF:	ICATE				
Almaden	<u>Minerals Ltd.</u> 1103 - 750 w	PROJE(• Pender	<u>CT EL</u> St., Van	<u>KO4-11</u> icouver BC	File V6C 2T8	# A4065	555	
	SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	DupAg gm/mt	TotAg gm/mt		
	SI SND398-4 SND398-5 SND398-16 SND400-2	<1 881 976 822 1037	<.06 .36 .70 3.70 .78	<2 3 9 41 15	-	<2 4 10 46 15		
	SND400-6 RRE SND400-6 SND401-5 SND402-2 SND403-12	444 468 1033 619 1055	1.12 <.06 1.83 <.06 .31	36 36 13 45 7	37 - - -	39 36 15 45 8		
	SND403-14 SND403-17 STANDARD R-2a	995 897 <1	.20 3.09 <.06	8 15 158		8 18 158		

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data FA

DATE RECEIVED: OCT 21 2004 DATE REPORT MAILED: N.0.1.17/0.4

ACME ANA ICAL LABORATORIES LTD. (ISO 02 Accredited Co.) 852 E. HASTINGS ST. V OUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604

3-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-11 File # A406556 Page 1

1103 - 750 W. Pender St., Vancouver BC V6C 2T8

· · ·	SAMPLE#	Au* ppb		
	SI SND397-1 SND397-2 SND397-3 SND397-5	<.5 4182.2 592.5 8.7 10.3	· · · · · · · · · · · · · · · · · · ·	
	SND398-1 SND398-2 SND398-3 SND398-6 SND398-7	24.439.25.41.11000.0		
	SND398-8 SND398-9 SND398-11 RE SND398-11 RRE SND398-11 RRE SND398-11	$473.9 \\ 1279.1 \\ .8 \\ 1.4 \\ 2.9$		
	SND398-12 SND398-13 SND398-14 SND398-15(PULP) SND398-17	16.8 19.6 <.5 9963.0 138.6		
	SND398-18 SND398-19 SND398-20 SND400-3 SND400-5	17.2 4.5 68.1 78.4 2.5		
	SND400-7 SND401-1 SND401-3 SND401-6 SND402-1	$ \begin{array}{r} 6.3 \\ 1.7 \\ 15.7 \\ 14.2 \\ 237.3 \\ \end{array} $		
	SND402-3 SND402-4 SND402-5 SND402-6(PULP) STANDARD AU-R2	86.7 96.1 3.6 10885.2 556.8		
AU* IGNITED, ACI - SAMPLE TYPE: CO Samples beginning Date FA DATE RECEIVED: Oct 21 2004	D LEACHED, ANALYSED BY ICP-MS. DRE R150 60C g 'RE' are Reruns and 'RRE' ar DATE REPORT MAILED.	(30 gm) <u>re Reject Reruns.</u> $N_{0}\sqrt{9/04}$	C.L.	

ACME ANA ICAL LABORATORIES LTD. (ISO >002 Accredited Co.)

OUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60

3-1716

Clarence Leor

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST. V

Τ́Γ		<u>Alr</u>	nade	<u>en M</u>	<u>ine</u> :	ral:	s I	<u>td.</u> 1103	PR - 750	OJE W.I	CT Pende	EI er St	<u>KO</u>) <u>4</u> – Vanc	<u>12</u> ouver	F: BC	il∈ v6c	∋ ‡ 2т8	‡ A4	06	85	L	Pa	ge	1					Ĉ	
	SAMPLE#	Мо	Cu. Pb	Zn Ag	Ni	Co Mn	Fe	As	IJ	Au Th	Sr	Cd S	b Bi	v	Ca P	La	Cr	Mg	Ba Ti	В	A1	Na I	. W	Hg S	с т1	S	Ga S	e Ág**	Au**		
		ppm p	pm ppm	рріп ррл	ppm p	nqq nq	ž	ppm p	рла р	pb ppm	pp#	opm pp	m ppm	pps	ž ž	ppm	ppm	ž	ppm ≵	ppm	ž	ž	opm p	em .pp	n ppa	ξį	ppm pp	a go∕mt	.gm/mt		
,	51	< 1 2	1 2	1 - 1	1.0	1 1	02		1.	E < 1	2		1 < 1	-1	06 - 001	-1	-1	01	2+ 001	, ,		70 - 0			1 . 1	. or			- 01		
	51 SND405-2	21 33	2.573	45 5	1.2 	.1 1	.03	35.0 /	.1 ~ 2 102	1.7 C.	2	.2 ~.	1 ~.1 6 }	~1	.005.001	10	12.1	.01 05	24.001	2	19 . 19 . 2	78 <.U. 09 - 3	. 5.15. : 26	01 .	1 <.1 4 1	<.05 20	<1 <.	5 <u>-</u> 52 6 - 20	. <.UI 19		
	SN0405-3	1 1 512	2 99 6	66.24	311	4 596	2 26	71 2 3	9 614	9 8 7	3	.0	0.8	<1	02 .004	7	121 1 Q	.05	41< 001	1	24 0	00 .1	1 2.5 .	01 . 01	ייי. רויי	1.68	1 2	5 4	1 /0		
	SND405-4	5 0 872	9 319 7	110 8 1	7 0 10	1 9 712	10 31	143 8 13	0 11997	7 4 5	2	11 4	0.0 876	<1	02 005	5	9.4	.03	14< 001	2	17 0	0.0		01 .	1 13 7	6.88		5 9	7.95		
	SND405-7	7 200	.2 36.8	50 1.8	2.0 2	2.8 950	2.99	1652.6 3	.2 919	.4 10.0	5	.4 1.	9.9	6	.09 .030	25	5.2	.08	44 .008	2	.27 .0	14 .2	.2 <.	01 .	9.1	1.86	1 <.	5 · <2	1.26		
	SND405-9	2.2 74	.7 102.5	242 5.9	3.7 7	0 1307	3.98	263.1 3	.0 5175	.0 8.0	7 -	4.5 .	6 2.3	11	.18 .050	34	8.9	.11	57 .012	3	.33 .0	16 .2.	2 1.8	01 1.	3.1	2.00	1 <.	5 10	4.56		
	SND405-11	1.1 22	.7 172.3	268 .5	2.7 8	3.0 1487	3.03	476.9 3	.4 120	.9 5.3	13	L.7 1.	1 <.1	21	.33 .081	13	4.3	. 26	555 .038	2	.54 .0	26 .3	.1 <	01 4.	1.2	. 24	2 <.	5 <2	. 18		
	SND405-12	2.0 16	.5 150.5	303 .5	4.1 8	3.4 1472	2.96	642.3 3	.1 90	.3 5.7	14 3	2.4 1.	4.1	22	.32 .077	13	7.3	. 24	719 .031	3	.54 .0	27 .3	2 .7 <	01 4.	1.2	.21	2 <.	5 <2	.13		
	SND405-15	1.3 37	.8 12.7	52 .9	2.1 6	5.3 677	2.75	11.9 2	.0 247	.3 5.5	14	.3.	1.4	27	.38 .063	14	3.8	.37	175 .075	2	.65 .0	34 .3	3 .1 <	01 3.	0.2	. 49	3 <.	5 <2	.27		
	SND405-16	2.2 26	.2 58.7	175 .6	2.6 7	.3 1364	2.63	7.0 3	.0 217	.2 6.4	32 -	1.0 .	1.3	22	1.64 .081	21	6.0	.31	74 .006	2	.61 .0	25 . 2.	2.3<	01 3.	9.1	.21	3 <.	5 <2	.36		
	SND405-17	2.9 13	.1 192.9	76 1.3	1.8 9	9.3 1209	2.75	263.9 3	.2 462	.8 4.2	26	.9	7.2	24	1.44 .072	11	4.5	. 39	124 .065	1	.65 .0	39 .3) 1<	01 3.	7.1	. 66	3 <	5 <2	80		
	SND405-23	3.4 125	.8 13.4	33 1.2	2.8 6	5.6 586	3.36	86.6 3	.0 104	.4 6.5	24	.2 .	2.4	4	.82 .056	10	7.7	.38	72 .001	2	.47 .0	13 .4	2.2	01 1.	0 1	2.60	1 <	5 <2	30		
	SND405-25	3.9 231	.3 32.0	42 2.3	2.0 6	5.1 834	4.21	99.1 11	.5 436	.0 7.1	8	.5	2.9	3	.22 .057	- 11	2.7	.19	53 .001	5	49 .0	11 .3	2 <	03 3.	2 .1.	.2.74	1 <	5 2	47		
	SND405-26	2.1 43	.7 10.2	43 1.0	3.7 4	.5 998	2.48	15.8 4	.4 305	.6 4.8	10	.2 .	1.5	8	.26 .052	16	7.6	.19	77 .003	3	.48 .0	25 .3	1.4 <	03 2	4 2	50	2 <	 5 <2	69		
	SND405-27	1.5 14	.7 10.0	53 .3	3.2 4	1.3 1360	2.23	14.1 3	.7 10	.7 6.4	5	.2 .	1 .1	3	.24 .053	13	3.1	. 16	50 .001	3	.44 .0	06.4) .3 <	01 1.	6.1	.32	1 <.	5 <2	.02		
	RE SND405-27	1.5 14	.2 9.1	44 .3	3.2 4	1.2 1379	2.27	13.4 5	.0 8	.6 6.5	5	.3.	1.1	2	.25 .051	12	3.6	. 16	49 .001	2	.43 .0	06.4	.3 <	01 1.	4.1	.33	1 <.	5 <2	.01		
	RRE_SN0405-27	2.2 16	.6 9.6	46 .3	4.6 4	1.2 1409	2.28	14.3 4	.0 6	.7 6.4	5	.2 .	1.1	2	.25 .053	11	8.8	.16	47 .001	1	.41 .0	06.3	2.1 <	01 1.	4.1	. 35	1 <.	5 <2	.01		
	SND405-28	3.2 63	.6 169.9	296 4.0	1.7 5	5.6.1029	2.95	64.1 7	.3 689	.1 8.6	9	1.4 .	7 2.3	8	.24 .046	5 27	2.1	.20	54 .002	2	.42 .0	23 .2	.2 <	01 2.	7.3	1.02	1 <.	5 5	.86		
	SND405-29	1.8 89	.1 49.6	153 1.9	3.7 6	5.5 1415	3.51	63.8 2	.7 978	.4 4.8	7	.7 .	3.5	5	.35 .031	12	6.4	. 18	51 .001	2	.38 .0	19.2	1.2 <	01 1.	8.3	1.56	1 <.	5 <u>3</u>	1.36		
	SND405-30	3.1 135	.1 10.3	58 1.1	2.4 5	5.1 711	2.99	50.7 3	.8 178	.3 8.9	12	.4 .	3.1	21	.25 .065	13	4.2	.24	100 .041	3	.59 .0	29.4	1 <	01 3.	4.2	1.47	2 <.	5 <2	.22		
	SND405.23	2 0 553	0 29 2	E2 / 0	10.0	: 2 600	2 10	າເວັທ	7 2025	2 7 7	0	7	2 5 1	10	26 041	10	0 1	01	96 034	2	FF 0		. 0	01 0	c 1	1 50		r (0.62		
	SND405-32	2 8 285	1 17 7	48 1 7	1.5	1 7 674	2 70	20.0 4	0 1265	1 9 1	10	./ . E	2 3.1	10	22 0.45	12	5 O	.21	00 .014	1	.00 .0	20.0 20.2		01 2. 01 2	9.1 9.1	1.00	2 ~.	5 (5 /2	5.02		
	SND403-32	2.0 200	7 46	40 1.7	1.0 4	1.7 J74	1 12	1 2 2	.0 1205	.4 0.1	10	.5 .	1 1.2	19	22 .045	1.0 1.07	5.9	17	90 .031	1	. 20 . 0	30 .3 47 1	, 14×.	01 3.	2.1	1.22	2 5.	5 ~2 5 ~2	0.12		
	SH0405-34(D)E D)	14 0 206	1 200 1	240 4 7	161 0 22	2.0 300	2 41	212 0 2	.0 J	0 2 1	10	. L 0710	1 ~.1	11	1 17 041	21 2	11.0 070 c	. 17	114 024	4 1	.20 .0	47 .1. 20 2) 1.4 - .	01 I. 44 4	0.1 c c	N.05	1 .	3 <u>2</u> 7 6	0.01		
	SND405-34(FULF)	3 2 408	5 23 0	40 20	101.0 24	2.3 505	5.41	213.0 J	,2 0000 0 600	.9 2.1	4/ .	2.7 10. A	1 4.2 2 0	444 7	25 060	. 0.	2/3.0	. 50	114 .034	41	UO .U	50 .50 10 /) 5.9 .) 5.7	44 4.	0.0 0.1	1.44	4 I. 1 2	/ C	9.94		
	200-00-00	J.Z 400	.5 2.5.0	42 2.3	2.0 /	.2 //5	5.07	107.4 4	.9 000	.5 0.5	,		0 in	'	.2.5 .000	, ,	0.4	.22	43 .001	3	.57.0	10 .4		01 1.	9.1	4.04	1 .	0 4	.70		
	SND405-36	2.6 104	.1 46.8	75 5.6	2.8 5	5.3 672	4.28	49.7 7	.2 3830	.3 6.9	4	.5	2 3.6	3	.14 .026	10	6.3	.14	39 001	2	36 0	09 2	15<	01 1	2 1	3 12	1 <	5 8	4 04		
	SND406-2	.7 239	.9 15 7	53 2 4	308	3 1 1143	4 06	158 7 2	6 208	4 4 6	7	5	4 2	12	27 080	13	3.0	17	77 014	2	64 0	13 3	1.5	01 2	6 1	2 60	2 <	5 2	11		
	SND406-4	1 4 45	1 98 8	202 4	416	5 0 1544	3 49	35.8.2	2 100	6 6 8	13	9	2 3	18	33 074	20	7.5	18	128 007	2	64 0	28 3		03 4	5 I	1 15	2 <	5 <2	14		
	SND406-7	1 3 112	7 199 9	429 1 9	10.1.10	1 4 1365	2 94	2626 4 1	1 483	1 3 6	4.8	, , , , , , , , , , , , , , , , , , ,		50	2 64 115	29	11.6	77	138 086	21	.07 .0	20.0		лз 6.	9.1 9.2	54	2 <	5 -2 5 -2	53		
	SND407-3	3 2 114	9 40 5	46 3 9	324	5.6 537	3 691	3773	0 2510	2 8 1	19	1	3 R	22	70 053	14	7 5	31	64 010	3	72 0	20 20 -2	, .0. 1 8 e	01 0. 01 3	2 1	2 72	3 6	5 ~ C	213		
		J.C 1,17			0.2 (0.07	01.1 0	.0 2010	0.1	17	· L ·	00	20	.70 .000	. 14	7.5	.51	04 .010	5	.12.10			UL J.	د .I	L. / L	5 .	5 /	2.10		
	SND407-4	2 5 177	1 69	37 7	19	7 637	3 43	31.7 6	3 286	6 8 0	7	2	2 a	7	23 0/18	11	23	12	47 002	2	52 A	10 3	1300 <	01 1	R 1	2 65	1 <	5 20	36		
	SND408-1	1.9 32	.6 50 5	37 6 9	314	1.3 562	1 97	33.9 4	2 2307	4 8 9	, 3	5	1 3.8	, २	08 020	20	79	03	27 002	3	26 0	15 1:	1 1 6 <	01 1. 01	6.1	1.38	1 <	5 10	8.76		
	SND408-2	.8 77	.1 43.0	58 1 3	1.2	3 2 1188	3 12	35.1.2	9 795	6 8 4	5		то. 1 Б	11	15 040	23	3.7	13	76 019	2	39 0	22 2	2 2 2	ai i	0.1 2.1	1.65	2 e	- 15 5 -20	1 43		
	SND408-3	1.8 138	.4 54 4	58 8	223	2.9 1134	3.72	54.9 3	.3 411	.6 9 9	6	1.0		11	.17 0.42	28	9.3	.13	78 023	<1	.39 0	24 2	1.9 2	01 1	21	2 64	2 <	5 <2	84		
	STANDARD DS5/R-2a/AU-1	12.5 146	.9 24.8	139 3	24 8 13	2 0 749	3 00	18 2 6	0 41	0 2 9	47	504	4 0 6 1	. 58	74 093	14	187.8	67	144 100	17.9			4.7	17 2	1 7 1 1	< 05	7 5		3.24		
	57 more 50 507/1 107/10-1				- EH.U 10		0.00	10.2. 0			-17	ч.	- 0.1	. JU		. 1.4	101.0	.97		27 2			· ¬./ .		, 1,1		, J.	r 103	- 0.0H		_

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AG** & AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data |

- FA
- DATE RECEIVED: NOV 1 2004 DATE REPORT MAILED:

ACME ANALYTICAL)			Aln	nade	en l	Min	era	ls	Ltċ	L.]	PRC	JE	CT	EL) KO	4-1	2	FIL	E	# P	406	85:	1			Pa	ge	2		ACME	
SAMPLE#	Mo	Cu	Pb	Zn Ag	n Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb (Bi	V Ca	a P	La	Cr	Mg	Ba	Ti	B /	A] Na	K	W	Hg S	TT C	S	Ga Se	Ag**	Au**
	ppm	ppm	ppm	ppm ppn	Ni ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm p	opm p	pm p	Dm pp	m %	76 %	ppm	ppm	%	ppm	% pi	xm	% %	%	DDM	aa maa	maa n	%	pom pom	am/mt	am/mt
SND408-7 SND408-12 SND408-13 SND409-1 SND409-5	2.8 3.2 2.0 13.4 15.6	48.1 18.0 24.9 11.7 60.2	8.2 11.5 4.2 38.1 113.0	85 .2 61 .1 54 1.9 96 .2 172 .5	2.2 3.3 2.0 2.7 2.1	7.7 8.6 8.6 3.1 6.0	2239 1526 1502 898 1952	3.62 3.04 3.25 1.25 2.07	29.3 6.0 8.8 2.5 21.5	6.5 3.3 5.3 13.7 5.4	23.5 9.2 267.8 <.5 31.5	6.4 5.9 7.8 10.9 6.5	8 11 12 11 7 2	.4 .5 .2 .6 2.7	.1 .1 < .2 < .3	.1 1 .1 2 .1 2 .1	8 .33 0 .39 1 .36 1 .12 6 .20	3 .077 5 .095 6 .091 2 .022 0 .055	17 21 21 35 15	5.0 7.4 3.5 12.6 2.9	.25 .31 .26 .07 .11	199 . 564 . 188 . 33<. 504 .	.038 .050 .043 .001 .002	1 1 1 2 1	58 .024 55 .033 58 .035 26 .022 55 .011	.38 .37 .35 .12 .31	.1< .4< <.1 1.3 .1	.01 4. .01 3. .03 4. .02 . .01 2.	2 .2 9 .2 5 .2 7 .4 3 .5	.73 .27 .54 <.05 .22	3 <.5 3 <.5 3 <.5 1 <.5 1 <.5	<2 <2 <2 <2 <2 <2 <2	.13 .03 .12 <.01 .06
SND409-12	2.5	283.2	5.9	50 .5	3.8	5.7	1151	4.35	9.0	3.3	72.6	5.4	8	.3	.8	4 1	5.31	1 .079	15	7.5	. 30	109 .	.035	5 .	71 .020	.42	.9<	.01 3.) .3	1.58	2 <.5	<2	.10
SND409-13	2.6	88.8	3.3	76 .1	4.4	7.9	1068	3.12	7.4	6.8	334.2	5.8	11	.2	.3	1 2	4.43	3 .079	19	4.1	. 35	168 .	.076	1 .	71 .030	.43	.1<	.01 3.	5 .8	.63	3 <.5	<2	.07
STANDARD	11.4	121.4	30.5	138 .3	23.2	10.4	685	2.73	20.7	6.6	45.2	2.9	39 6	5.2 3	.5 5	0 5	5.82	2 .077	15	182.5	. 58	162 .	.079	7 1.8	34 .073	.15	3.5	.23 3.	2 1.7	<.05	6 4.4	154	3.41

Standard is STANDARD DS6/R-2a/AU-1.

 ACME AN	TIC	CAL	LABC)RA'	rori ad (ES	LTD	•	8	52 E	. H	ASTINGS	ST	• (CO	UVE	R BC	C V	6A 1	R6	1	PHO	NE (604)	253-	315	8 FA	X (6	0	53-	1716	
 AA		2 A(CLEC		=u (<u>A</u>	<u>.lm</u>	ade	<u>n M</u>	<u>line</u>	GEC rals	DCH 3 L 103	EMICA td. Pl - 750 W.	L AI ROJI Pende	NAL ECT r St	ÝSI <u>EI</u> ., Va	S (<u>K04</u> ncouv	'ER' - <u>1</u> er B	FIF 2] c v6c	ICAT File 218	re § #	A4	068	52								AA	
SAMPLE#	Mo	Cu. maa	Pb maa	Zn maa	Ag inag	Ni	Co mag	Mn	Fe %	As	U DDM	Au T	Th Sr เกิดกา	Cd	Sb	Bi	V	Ca %	P La	a Cr	Mg	Ba	Ti %	B /	41 N %	a k % %	(W)	Hg S	C TI	S %	Ga Se	
SI SND405-19 SND406-5 SND406-9 SND406-10	<.1 2.7 84 3.8 55 2.7 12 3.5 17	.6 19.2 53.6 21.0 78.5	.3 159.5 653.1 216.6 60.0	1 83 347 710 901	<.1 6.4 10.4 39.9 10.5	.2 2.6 14.2 2.2 5.9	<.1 9.0 14.7 9.1 8.7	1 1227 571 281 534	.03 5.08 10.19 3.90 3.59	<.5 112.1 438.0 110.2 66.1	<.1 18.0 1.8 7.8 9.1	2.1 <. 2968.7 5. 2494.0 2. 29812.7 4. 4777.9 7.	1 2 5 45 2 6 3 13 4 22	<.1 2.0 8.3 21.3 35.5	<.1 .7 1.2 .6 .5	<.1 .8 3.3 16.0 2.0	<1 8 2 8 2 5	.08<.0 2.24 .0 .19 .0 .31 .0 .68 .0)01 <1)54 8)41 2)23 5)46 7	1 <1 3 1.6 2 8.7 5 2.2 7 4.1	<pre><.01 5 .47 7 .20 2 .16 2 .30</pre>	2< 41 14 32 44	.001 .001 .001 .001 .001	4 <.1 2 .2 2 .2 2 .3	01 .34 39 .01 35 .00 22 .00 36 .01	1<.01 6 .25 9 .14 7 .17 1 .27	<pre>< .1<. 5 .2 . 4 .1 . 7 .1 . 7 .1 .</pre>	01 . 01 1. 02 1. 06 . 05 1.	1 <.1 5 .1 1 <.1 9 <.1 2 .1	.08 3.30 8.18 2.89 2.58	<pre><1 <.5 1 <.5</pre>	
SND407-1 SND407-2 SND407-5 RE SND407-5 SND408-6	2.3 15 4.4 4 3.0 87 2.2 87 1.5 3	52.8 41.1 77.6 73.2 30.6	128.3 31.9 203.5 200.3 698.2	211 3 97 62 8 58 9 174	16.9 .8 86.3 93.8 1.4	9.7 1.5 3.4 2.7 2.0	12.0 5.5 8.6 8.5 5.3	199 848 908 887 2494	1.90 1.84 7.27 7.13 3.21	117.3 16.0 150.3 151.6 24.9	7.1 9.5 5.7 5.7 9.1	15881.2 2. 320.0 7. 34263.1 5. 45710.2 5. 224.2 4.	5 58 9 47 7 6 7 6 2 14	4.6 1.3 .9 .8 3.0	45.2 .4 1.3 1.2 .6	6.1 .3 30.6 30.1 1.0	6 7 2 5 10	.17 .0 .43 .0 .24 .0 .21 .0 .20 .0)55 11)45 18)27 7)27 7)27 7	1 6.8 3 <1 7 2.7 7 2.2 3 <1	3 .03 .24 7 .11 2 .10 .10	45 251< 14 14 175	.002 .001 .001 .001 .001	5 6 .4 <1 2 1	33 .01 45 .01 27 .00 27 .00 27 .00 20 .00	0 .19 7 .18 9 .19 8 .19 7 .12	5 .1 . 3 <.1 . 9 .2 . 9 .1 . 2 .1 .	07 1. 01 1. 01 1. 02 1. 01 1.	3 .1 6 .1 4 .1 4 .1 2 .9	1.39 .17 5.21 5.15 .55	1 <.5 1 <.5 1 <.5 1 <.5 1 <.5	
SND408-9 SND409-2 SND409-4 SND409-11 SND409-18	2.5 86 1.6 4 1.5 4 2.1 34 1.2 10	57.4 46.0 3 47.3 48.8 01.9	331.8 3361.5 372.5 197.9 53.4	644 2 299 63 157 123	20.8 .9 .8 2.2 1.1	1.9 3.7 2.6 2.7 3.2	5.0 7.0 7.0 6.4 3.8	156 678 159 1287 1268	4.22 1.88 .75 4.01 3.33	1429.0 919.0 98.1 59.7 1375.0	13.0 16.2 6.6 8.7 5.3	33786.3 2. 337.2 7. 101.7 7. 5800.9 6. 256.6 3.	1 7 0 17 2 10 3 7 5 4	15.9 13.4 2.1 2.0 1.6	13.8 4.6 .7 1.4 1.8	19.3 .1 .2 5.8 .1	2 7 4 11 6	.07 .0 .19 .0 .25 .0 .28 .0 .23 .0)17 4)55 13)70 17)70 13)54 6	4 4.4 3 1.1 7 3.7 3 1.0 5 3.9	1 .02 .06 .05 .14 .11	28< 134 50 30 20	.001 .001 .001 .002 .001	1 3 2 1 1	15 .00 44 .00 37 .01 45 .01 30 .00	3 .10 9 .22 5 .23 0 .24 5 .22) .2 . 2 .1 . 3 .1<. 4 .2 . 2 .2<.	08 . 02 1. 01 . 02 2. 01 1.	5 .2 2 5.4 5 1.3 5 .2 8 .1	3.66 .92 .27 1.60 1.08	<1 <.5 1 <.5 1 <.5 1 <.5 1 <.5	
STANDARD DS6	11.3 11	19.7	29.7	144	.3	24.3	10.4	689	2.73	19.8	6.7	44.1 3.	1 37	6.0	3.5	5.0	55	.83 .0	070 14	4 177.9	.55	161	.077	15 1.8	85 .06	6.14	13.5.	23 3.	2 1.7	<.05	64.3	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

Dec 7/04 DATE RECEIVED: NOV 1 2004 DATE REPORT MAILED:

ACME AL

TICAL LABORATORIES LTD. (IS J002 Accredited Co.)

852 E. HASTINGS ST.

COUVER BC V6A 1R6

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-12 File # A406852

1103 - 750 W. Pender St., Vancouver BC V6C 2T8

SAMPLE#	S.Wt gm	NAg mg	-Ag gm/mt	DupAg gm/mt	TotAg gm/mt		
SI SND405-19 SND406-5 SND406-9 SND406-10	- 1100 1037 1183 1076	<.06 <.06 <.06 <.06 <.06	<2 9 11 43 13	- - - -	<2 9 11 43 13		
SND407-1 SND407-2 SND407-5 SND408-6 SND408-9	507 1091 570 1115 844	<.06 .52 <.06 .49 <.06	18 <2 95 <2 22	100	18 <2 95 22		
SND409-2 SND409-4 SND409-11 SND409-18 STANDARD R-2a	1029 623 1095 778	.22 .31 <.06 .31 <.06	<2 <2 2 <2 155		<2 <2 22 <2 155		

-AG : -150 AG BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAG: AG DUPLICATED FROM -150 MESH. NAG - NATIVE SILVER, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data_ FA 1115

DATE RECEIVED: NOV 1 2004 DATE REPORT MAILED: Dec 7/04

ACME AN

FICAL LABORATORIES LTD. (ISC J002 Accredited Co.)

852 E. HASTINGS ST.

COUVER BC V6A 1R6

3-1716

ASSAY CERTIFICATE

Almaden Minerals Ltd. PROJECT ELK04-12 File # A406852 1103 - 750 W. Pender St., Vancouver BC V6C 2T8

Alleventer (de la primer de la complete de la primer)	and a subsection of the					
SAMPLE#	S.Wt gm	NAu mg	-Au gm/mt	DupAu gm/mt	TotAu gm/mt	
SI SND405-19 SND406-5 SND406-9 SND406-10	- 1100 1037 1183 1076	<.01 <.01 .03 1.22 .27	<.01 3.86 2.03 29.38 5.91	-	<.01 3.86 2.06 30.41 6.16	
SND407-1 SND407-2 SND407-5 SND408-6 SND408-9	507 1091 570 1115 844	.01 <.01 1.59 .01 1.73	14.05 .33 33.85 .31 36.50	36.40	14.07 .33 36.64 .32 38.55	
SND409-2 SND409-4 SND409-11 SND409-18 STANDARD AU-1	1029 623 1095 778	.01 <.01 .63 .20 <.01	.42 .13 2.66 .39 3.43		.43 .13 3.24 .65 3.43	

-AU : -150 AU BY FIRE ASSAY FROM 1 A.T. SAMPLE. DUPAU: AU DUPLICATED FROM -150 MESH. NAU - NATIVE GOLD, TOTAL SAMPLE FIRE ASSAY. - SAMPLE TYPE: CORE R150 60C

Data____ FA

Dec 7/04 DATE RECEIVED: NOV 1 2004 DATE REPORT MAILED:

Æ.	AN/ I	CAL	LABORATORIES	L
<u>(</u> *	(TCC)	2 3.	aredited (Co.)	

ATORIES LTD. 852 E. HASTINGS ST.

T. 1 OUVER BC V6A 1R6

Au* ppb PHONE (604) 253-3158 FAX (60 3-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ACP

Almaden Minerals Ltd. PROJECT ELK04-12 File # A406853 Page 1 1103 - 750 W. Pender St., Vancouver BC V6C 218

SAMPLE#

SI SND405-1 SND405-5 SND405-6 SND405-8	.2 4550.8 606.6 246.1 101.4	
SND405-10 SND405-13 SND405-14 (PULP) SND405-18 SND405-20	209.8 1.8 33933.9 9.4 4.3	
SND405-21 SND405-22 SND405-24 SND406-1 SND406-3	29.2 2.2 4.1 45.0 117.9	
SND406-6 SND406-8 RE SND406-8 RRE SND406-8 SND406-11	2132.4 1.7 1.4 9.8 1.3	
SND408-4 SND408-5(PULP) SND408-8 SND408-10 SND408-11	2.1 33612.5 12.3 25.6 30.8	
SND409-3 SND409-6 SND409-7 SND409-8 SND409-9(PULP)	3.6 93.2 97.5 1.4 10630.2	
SND409-10 SND409-14 SND409-15 SND409-16 STANDARD AU-R2	335.3 947.5 7.6 180.7 566.2	

AU* IGNITED, ACID LEACHED, ANALYSIS BY ICP-MS. (30 gm) - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data______FA ____

Almaden Minerals Ltd. PROJECT ELK04-12 FILE # A406853

Page 2

 ACME ANALYTICAL
 AQME ANALYTICAL

 SAMPLE#
 Au*

 SND409-17
 150.9

 SND409-19
 2.6

 STANDARD AU-R2
 559.0

Sample type: CORE R150 60C.

ALS Chemex

CERTIFICATE VA05011537

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

ALMADEN MINERALS LTD. 1103-750 W PENDER ST VANCOUVER BC V6C 2T8

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
WEI-21	Received Sample Weight				
LOG-24	Pulp Login - Rcd w/o Barcode				
	ANALYTICAL PROCEDU	RES			
ALS CODE	DESCRIPTION	INSTRUMENT			
ALL CRADD		WCT CIM			

Project: Elk 2004

P.O. No.:

This report is for 20 Pulp samples submitted to our lab in Vancouver, BC, Canada on 18-FEB-2005.

The following have access to data associated with this certificate:

WOJTEK JAKUBOWSKI

To: ALMADEN MINERALS LTD. ATTN: WOJTEK JAKUBOWSKI 1103-750 W PENDER ST VANCOUVER BC V6C 2T8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Reserve