NTS 92 B/12 W LAT.- 48° 31' 00 N LONG.- 123° 55' 00 W

GEOLOGICAL AND GEOCHEMICAL & DIAMOND DRILLING REPORT on the VALENTINE CLAIM GROUP, VALENTINE MTN, SOOKE, B.C. FOR: BEAUPRE EXPLORATIONS LTD., Unit 6- 625 Burdett Ave., Victoria, BC V8W 1B3 BY: ANDRIS KIKAUKA, P.GEO. 406-4901 EAST SOOKE KOAD, SOOKE, B.C. V0S 1N0

APRIL 2, 2005

TITLES DIVISION, MINERAL TITLES VICTORIA, BC					
APR - 4 2005					
FILE NO					
LOG IN NO.					

TABLE OF CONTENTS AND LIST OF FIGURES

		PAGE NO.
1.0	INTRODUCTION	1
2.0	LOCATION, ACCESS AND PHYSIOGRAPHY	1
3.0	PROPERTY STATUS	1
4.00	AREA HISTORY	1
4.01	PROPERTY HISTORY AND GEOLOGY	2
5.0	PROPERTY GEOLOGY	16
6.0	2004 FIELD PROGRAM	17
6.1	METHODS AND PROCEDURES	17
6.2	DIAMOND BIT CORE DRILLING	17
8.0	DISCUSSION OF RESULTS	25
9.0	CONCLUSION AND RECOMMENDATION	25
10.0	REFERENCES	26
	STATEMENT OF QUALIFICATIONS	

ITEMIZED COST STATEMENT

LIST OF FIGURES

- FIGURE 1 LOCATION MAP AND GENERAL GEOLOGY
- FIGURE 2 CLAIM MAP
- FIGURE 3 2004 DDH 1-5 LOCATION & GEOLOGY
- FIGURE 3B PREVIOUS DRILLING SHOWING 2004 DDH 1-5 LOCATION
- FIGURE 4 GEOLOGICAL COMPILATION DISCOVERY ZONE
- FIGURE 5 CROSS SECTION 2004 DDH 1, 2, & 3
- FIGURE 6 CROSS SECTION 2004 DDH 3 & 4
- FIGURE 7 CROSS SECTION 2004 DDH 3 & 5
- APPENDIX A RECORD OF CLAIMS HELD BY BEAUPRE EXPL., LTD.
- APPENDIX B GEOCHEMICAL ANALYSIS AND ASSAY CERTIFICATES
- APPENDIX C LONGITUDINAL SECTION OF 'C' VEIN SHOWING PIERCE POINTS OF 2004 DDH 1-5 RELATIVE TO PREVIOUS DRILLING

1.0 INTRODUCTION

This report was prepared at the request of Beaupre Explorations Ltd and consists of a compilation of geological, diamond drilling, and geochemical fieldwork carried out between Nov. 11, 2004 and Dec. 22, 2004 on the Valentine Mountain property. The report is intended to accompany a Statement of Work filed as a fulfillment of assessment work required to keep the claims in good standing. The purpose of this report is to summarize and correlate current and past fieldwork in order to evaluate the economic mineral potential of the Valentine Gold Project.

2.0 LOCATION, ACCESS & PHYSIOGRAPHY

The property is located 42 km. WNW of Victoria, and 19 km. N of Sooke on SW Vancouver Island (Fig.1 & 2). A network of logging roads (most of which require 4WD) give access to most of the property. The main logging road access has weekday travel restrictions during the period 07:00 to 17:00 hours. Other access problems include heavy rain washouts, fire closures and snow at higher elevations. Relatively mild coastal climate allows year round fieldwork to be carried out. Snowfall accumulations occur from December to February which generally affect the higher elevation portions of the claim group (i.e. above 600 meters in elevation).

The property is part of the Insular Mountains which formed as a result of crustal thickening and subsequent mature dissection of a Tertiary erosion surface of relatively low relief, now expressed as fault controlled valleys and fault-line scarps forming monadnock-like plateaus (Grove, E.W., 1990). Quaternary ice advances from the north and west has deposited a 1-5 meter depth of till throughout the region.

3.0 PROPERTY STATUS

A revised list of current individual claims which comprise the Valentine Mountain property are listed in Appendix A. The claims have been converted to cells using the new map grid system found on the web site <u>www.MTonline.com</u>. Fig. 2 shows claim location.

4.00 AREA HISTORY

Placer gold was discovered in the 1860's in sand and gravel alluvium along the San Juan, Leech, Jordan, Sombrio and Loss Creek drainage basins. Leech River was hydraulic mined intermittently until 1941. Nuggets up to 1 ounce and a total production of 10,000-20,000 ounces were sluiced from gravel/bedrock contacts along riverside bars.

Base and precious metal lode deposits in Southern Vancouver Island consist of massive sulphides, skarns, quartz veins and shears. Cu-Pb-Zn-Ag-Au massive sulphides occur near Mt. Sicker. Past producers in tis area include Lenora, Tyee, Richard III, and Lara (which has published reserves of 529,000 tonnes grading 1.11% Cu, 1.22% Pb, 5.87% Zn, 4.73 g/t Au and 100.1 g/t Ag). Magnetite-chalcopyrite skarns in the Cowichan Lake area have produced in excess of 15 million pounds of copper and 75,000 ounces of silver. Shear zone copper deposits occur near the mouth of the Jordan R. where then Sunloch-Gabbro property is located. Past production includes several million pounds of Cu as well as minor silver and gold. The adjacent prospect known as the Sunro shear contains probable reserves of 1.47 million tonnes @ 1.43% Cu.

4.01 VALENTINE MOUNTAIN PROPERTY HISTORY

4.1 1966

While logging the east slope of Valentine Mountain, Ted Shaw and Fred Zorelli detected native gold in quartz float.

4.2 1976

Detailed prospecting by Robert Beaupre and Alex Low led to the discovery of native gold in the "A" vein located on the eastern end of the area presently known as "Discovery Zone". Subsequent staking of Valentine Mountain and surrounding areas was carried out over several years.

4.3 1979

L.H. Fairchild completed a structural and metamorphic analysis of the Leech River Group in partial fulfillment of the requirements for a Masters degree at the University of Washington. Most of his work focused on the Valentine Mountain area. A point form summary of his study is listed below:

- Leech River Group consist of greenschist to amphibolite facies gneiss and schist metamorphic rocks Their protolith rock types listed in order of abundance are: a-pelite (shale), b-sandstone, c-volcanic, d-chert, e-conglomerate.
- 2) Two Eocene deformational events, separated by a static period of unknown duration, consisted of fragmentation, rotation and regional shortening resulted in axial-plane cleavage, linear structures and coaxial mesoscopic parasitic folds about east-plunging fold axes.
- 3) Amphibolite facies metamorphism resulted in biotite-garnet and staurolite-andalusite successively introduced by continuous reaction, which extended from the end of the first phase of deformation into the second phase (Appendix D).
- 4) Greenschist facies metamorphism results in muscovite-chlorite-quartz assemblages (Appendix D).
- 5) San Juan, Clapp Ck. And Leech R. faults are E-W trending, steeply dipping, relatively straight zones of regional sub-parallel fault traces. The Leech R. fault is interpreted to be a left-lateral strike-slip fault zone active during the Eocene-Oligocene-Miocene.
- 6) In the Jordan R. valley southwest of Valentine Mountain, 10-50 m. wide coarse-grained biotite orthogneiss to grandioritic sills and related pegmatite dykes are concordant with regional schistosity.
- 7) In both mesoscopic and macroscopic folds throughout the Leech R. Group, metasandstone and metavolcanic units behave competently and pelitic rocks, which typically filled-in between competent bodies, behaved in a more ductile fashion. This competency contrast indicates that buckling, rather than homogenous flattening or slip-folding, was the dominant mechanism of folding.
- 8) Isoclinal F1 structures are refolded by F2 resulting in cylindrical folds which are generally asymmetric-open in the north study area, and progressively symmetric-closed to the south.
- 9) Dominant foliation in the study area is steeply dipping, F2 axial planar.

4.4 1980

Property examinations and reports by T.E. Lisle, P.Eng. and G.A. Noel, P.Eng. were completed on behalf of Beau Pre Explorations Ltd. Lisle took 42 soil samples in the vicinity of the "Discovery Zone" which returned 5-40 ppb Au. Channel samples from the "A" trench returned values ranging from .003 to .014 opt Au across widths of .23 to 1.83 m. Three select vein samples assayed .572, .005 and .075 opt Au. Their reports recommended detailed geochemistry and geological mapping.

Rio Canex geologists examined the property and took several rock chip samples which assayed less than .1 g/t Au .

Low Minerals processed a 775 pound (351.5 kg.) sample in Tacoma, Washington taken from the "A" trench which returned a grade of .270 opt Au and .210 opt Ag.

4.5 1981

A program of geological mapping, geochemistry (96 rock chips, 378 stream sediment samples) was performed by Beau Pre Explorations Ltd., under the supervision of Dr. E.W.Grove, P.Eng. Calculated background and threshold values for stream sediment sample values are listed as follows:

ELEMENT	RANGE	BACKGROUND	THRESHOLD
Au	5-85 ppb	5 ppb	40 ppb
As	2-350 ppm	6 ppm	50 ppm
Cu	3-191 ppm	36 ppm	100 ppm
Zn	7-168 ppm	57 ppm	100 ppm
Ni	3-191 ppm	26 ppm	79 ppm

The highest value (85 ppb Au) was obtained from a south flowing tributary of Valentine Creek located near the boundary of claims Blaze 3 & 4. Second ranking sample (60 ppb Au) came from the northeast edge of the "Discovery Zone", and there are numerous above average Au values in this area. The third highest value (55 ppb Au) is located on the Walker-Jordan Main (logging road) about 300 m. east of Fred Creek. Clusters of above average Au values are located: a) "BN" & "Braiteach" drainages, b) Walker Ck., c) Walker-Jordan Main bridge across Jordan R. (near massive orthogneiss intrusive sill) d) Tripp Ck. The "BN", "Braiteach", and Valentine Ck. tributary areas exhibit relatively stronger Au-As geochemical association. Overall, the statistical presentation of anomalous values shows Au-As correlation, and no apparent correlation between Cu-Pb-Zn-Ni-Co-Ag-W-Mo. Out of 96 total rock chip samples taken from the "Discovery" and "Fred Creek" areas, the highest values range up to 0.840 to 1.440 opt Au respectively. These two high grade samples taken from the "Discovery Zone" contained visible native gold in quartz.

4.6 1982-83

Property work directed by Robert Beau Pre, Tony Bruce and Malcolm Hurd consisted of trenching a strike length of 350 ft. (107 m.) on the "36" vein and 140 ft. (43 m.) along sub-parallel veins within the "Discovery Zone". A total of 9 diamond drill holes were collared 5-50 m. from the "36" trench and 3 holes were located 30-100 m. from the "A" trench. The significant results of this mapping, trenching & drill program are listed below (for a list of significant core drilling results see Appendix B)

Gold bearing quartz is hosted in mixed schist/gneiss (i.e. metapelites/metasandstones). Amphibolite
units are key stratigraphic horizons and outline major structures, and host gold bearing quartz in the
area of the "Discovery Zone". A weakly altered, E-W trending, steeply dipping, laterally continuous,
50-200 m. thick amphibolite unit is in close proximity (about 5-50 m.) to the main series of gold-quartz
veins. A total of 3 gold-quartz veins were defined by drill intercepts as follows:

"C" vein zone: Located parallel and 10-15 m. south of the "36" (aka "B" vein), the "C" vein consists of white to grey quartz, trace amounts of pyrrhotite, marcasite and native gold hosted in mixed gneiss and schist. DDH 82-6 intersected the "C" vein at 36.0-36.5 m. depth and returned 7.550 opt Au across 0.5 m. Several other holes drilled nearby (i.e. 82-3,7,7A,5,5A,6A) intersected the "C" vein with assay values up to 0.174 opt Au across 0.3 m.

"D" vein zone: Parallel and 50 m. north of the "C" vein is the "D" vein, which is localized along a fault zone along an amphibolite/gneiss contact. This vein was intersected by DDH 82-6A, 6, 5, & 21 with values up to 0.063 opt Au across 1.3 m., which was recorded in the drill hole furthest west, and appears that the vein improves westward along strike. "A" vein zone: The depth continuity of the "A" vein was tested by DDH 82-15. At 150.4-151.3 m. (0.9 m. wide) and at 154.6-155.1 m. (0.5 m. wide), two veins were intersected that returned 0.042 and 0.098 opt Au respectively.

2) The "36" gold-quartz vein trench gave the following values:						
DISTANCE	LOCATION	WIDTH	OPT Ag	OPT Au		
2 m.	footwall	.46 m.	.07	.41		
2 m.	vein	.17 m.	3.85	34.950		
2 m.	hangingwall	.61 m.	.16	.852		
10 m.	footwall	.36 m.	.56	.005		
10 m.	vein	.03 m.	2.27	33.200		
10 m.	hangingwall	.37 m.	.79	3.845		
20 m.	footwall	.46 m.	.10	.142		
20 m.	vein	.03 m.	.03	.003		
20 m.	hangingwall	.50 m.	.02	.090		
30 m.	footwall	.48 m.	.01	.010		
30 m.	vein	.13 m.	.12	.328		
30 m.	hangingwall	.37 m.	.10	.003		

3) Only 1 out of 13 drill holes (DDH #82-6) gave results (7.550 opt Au over 1.6 ft. or 0.5 m.) which compared to the multi-ounce assays returned from the high grade section of the "36" vein trench.

4) The main reason for erratic results appears to be structural, i.e. free gold occurs in scattered pockets in the quartz veins, and in fractures and on shear planes in the adjacent wall rocks (Grove, 1984).

5) A bulk sample was shipped to	Trail, B.C. giving the following	ng results:
ANALYZED FOR:	SAMPLE # 1 (223 lbs.)	SAMPLE # 2 (296 lbs.)
	FINES from 5 tons sluiced	GOLD-QUARTZ grab vein & wall rock
GOLD	4.82 OPT	18.44 OPT
SILVER	0.60 OPT	1.25 OPT
SILICA	66.9%	89.4%
	SAMPLE #3 (4.159 lbs.)	SAMPLE #4 (3.287 lbs.)
	FINES from trench bottom	VEIN & WALL ROCK (3 X 15 ft. area)
GOLD	0.210	0.348
SILVER	2.25	18.60
SILICA	73.7%	84.5%
SILICA GOLD SILVER	66.9% SAMPLE #3 (4,159 lbs.) FINES from trench bottom 0.210 2.25	89.4% SAMPLE #4 (3,287 lbs.) VEIN & WALL ROCK (3 X 15 ft. area) 0.348 18.60

6) Gold bearing quartz mineralogy includes crystalline arsenopyrite, marcasite, rare chalcopyrite, sphalerite, galena and ilmenite.

7) Alteration within the 50-200 m. thick amphibolite unit adjacent to the "Discovery Zone" consists of : extensive quartz, calcite and gypsum veining, spotty to vein-like K-spar zoning, tourmalinization, epidotization, biotitization of hornblende, and magnetite development (Grove, 1984).

- 8) Spatial relation of gold-quartz and extensive alteration suggest that the amphibolite unit is significant in the localization of gold ore.
- 9) Drill results reflect structure and give a "hit and miss" account of gold grades due to its scattered distribution as streaks, pockets and fracture infillings.

4.7 1984

Western Geophysical Aero Data Ltd. Flew a regional magnetometer and VLF-EM survey which totaled 2,400 line kms. on 300 m. spaced N-S lines. Significant results of this survey are listed as follows:

- 1) The "Discovery Zone" is parallel to and along the north edge of a regional mag low trend which extends in excess of 7 km. Over the entire claim group.
- 2) Mag lows are interpreted as areas of increased alteration associate with major fault systems and secondary cross faulting.
- 3) Mag highs are interpreted as intrusives cutting metasediments and metavolcanics. Mag highs occur in close proximity to VLF-EM conductor axes in four specific locations: a) 3 km. WNW of Bear Ck. Reservoir Dam. b) 1.3 km. NNW of Bear Ck. Reservoir Dam. c) 1.8 km. N of east end of Bear Ck.

Reservoir. d) 2.8 km. NNW of the east end of Bear Ck. Reservoir. In all of these area of interest, none have known gold occurrences, and none have been explored in detail.

Gay A. Wingert completed a B.Sc. thesis for U.B.C. entitled Structure and Metamorphism of the Valentine Mountain Area, SW Vancouver Island, B.C. Her study is summarized as follows:

- The Leech R. Fm. underwent 2 stages of deformation and metamorphism which correlates with 2 stages of intrusion. Evidence for polymetamorphism is defined by distribution of staurolite and andalusite, indicating there was a primary metamorphic event which reached temperatures high enough to produce andalusite and a secondary metamorphic event of lower grade which only produced staurolite.
- 2) The second stage of metamorphism began prior to the second stage of deformation.
- 3) The final stages of igneous activity (presumed to have occurred in Late Eocene to Early Oligocene) coincide with dextral strike-slip movement along the Leech R. Fault. Retrograde alteration consists of staurolite & andalusite partially replaced by sericite-chlorite-quartz, garnets are crushed and altered to chlorite, and biotite and hornblende appears kinked and boudinaged. Late stage retrograde alteration is associated with late stage faulting and intrusive activity which produced dykes & sills, and gold-bearing quartz (Appendix D).
- 4) The axial trace of a regional E-W trending anticline fold axis is centered on Valentine Mountain.
- 5) Walker Creek is an axis for an E-W trending anticline fold axis
- 6) F1 penetrative features are rarely evident east of Jordan R., having been transposed to F2 structures
- 7) Parasitic mesoscopic folds, boudins, crenulation cleavages and transposed fragmental ptygmatic quartz veins are features of the second deformation

Noranda, Placer, Goldfields and Welcome North sent company geologists to investigate trenches and drill core on the "Discovery Zone". Some samples were taken, but they are poorly documented.

4.8 1985

Falconbridge Ltd. optioned the property and excavated two 50 m. long, N-S trending trenches (known as #1 and #2) situated at the east end of the E-W trending "36" trench. They also mapped and sampled the "36" & "A" trenches. Width of vein sampling averaged approximately 0.1 m. Highlights of their sampling program are listed below:

TRENCH	FROM (m.)	TO (m.)	ТҮРЕ	Au opt
"A"	0	1	vein	.415
"A"	1	2	vein	.962
"A"	2	3	vein	.195
"A"	3	4	vein	.451
"A"	4	5	vein	18.370
"A"	5	6	vein	.219
"A"	6	7	vein	.112
"A"	7	8	vein	.080
"A"	8	9	vein	5.903
"A"	9	10	vein	.162
"A"	10	11	vein	.062
"A"	11	12	vein	2.184
"1" east wall	8.2	8.5	vein	.619
"1" east wall	8.5	8.7	vein	1.001
"1" east wall	48	49	vein & wall rock	.104
"1" east wall	49	50	vein & wall rock	.084
"1" east wall	50	51	vein & wall rock	.110
TRENCH	FROM (m.)	TO (m.)	TYPE	Au opt
"1" west wall	4	5	vein & wall rock	.099
"1" west wall	5	6	vein & wall rock	.114
"1" west wall	6	7	vein & wall rock	.126

"1" west wall	7	8	vein & wall rock	.083
"1" west wall	8	9	vein & wall rock	.086
"1" west wall	9	10	vein & wall rock	.056
"1" west wall	10	11	vein & wall rock	.083
"1" west wall	11	12	vein & wall rock	.733
"36"	2	3	vein	.016
"36"	9	10	vein	.010
"36"	15	16	vein	.571
"36"	19	20	vein	.110
"36"	20	21	vein	.489
"36"	21	22	vein	.164
"36"	33	34	vein	.029
"36"	34	35	vein	.023
"2" east wall	2	3	wall rock	.034

The weighted averages taken from all the Falconbridge trenching is listed as follows:

DESCRIPTION	LENGTH (m.)	WIDTH (m.)	Au opt
"A" trench north vein	11.0	0.02	1.951
"A" trench north vein and wall rock	11.0	0.16	0.226
"A" trench south vein	9.0	0.04	0.525
"A" trench south vein and wall rock	9.0	0.20	0.136
"A" trench south vein and north splays	12.0	0.04	0.484
"A" trench south vein & north splays & wall rock	12.0	0.20	0.118
"A" trench south vein and south splays	12.0	0.04	0.484
"A" trench south vein & south splays & wall rock	12.0	0.17	0.125
"36" trench west vein	15.0	0.05	0.004
"36" trench middle vein	7.0	0.06	0.153
"36" trench east vein	12.7	0.08	0.008
"36" trench west vein and wall rock	15.0	0.15	0.007
"36" trench middle vein and wall rock	7.0	0.16	0.078
"36" trench east vein and wall rock	12.7	0.17	0.007

The Falconbridge mapping and trenching program identified the following geological features present in the "Discovery Zone":

- 1) The "36" and "A" vein gold-quartz systems trend at azimuth 068 degrees, dipping 70 degrees south.
- 2) There are numerous 090 trending, steep S dipping dextral strike-slip faults, offset by later dextral and sinstral strike slip micro-faults (several cm. displacement). Gold-quartz veins appear to have emplaced in between the macro and micro faulting events.
- 3) Gold grades of the main quartz vein and adjacent wall rock increase where there are zones of increased cross and/or diagonal faulting and fracturing
- 4) Calculation of weighted averages of vein and wall rock from the "A" trench returned a value of 0.094 opt Au over 1.38 m. along a strike length of 11.0 m.
- 5) Arithmetic averages of quartz vein from the "A" trench gave 0.959 opt Au and wall rock assays averaged 0.028 opt Au.
- 6) Biotite gneiss (metasandstone) is the dominant host lithology for gold-quartz veins in the "Discovery Zone". Carbonaceous andalusite-staurolite-garnet-biotite schist (metapelite) forms about 15% of the host lithology for the gold-quartz veins and occurs as narrow, .1-5.0 m. wide, E-W trending bands within the more massive biotite gneiss.
- 7) Samples identified as carrying visible gold returned assays of 0.001-0.013 opt Au. These samples included severe dilution from non-mineralized wall rock which would partially explain the low values. The other explanation is that the assay lab did not effectively metallic screen the entire sample to recover the observed native gold.

Bondar-Clegg treated a 42.1 kg. (92.8 lbs.) sample from the trench and obtained 8.74 grams Au and 0.46 grams Ag. The grade of this sample is 13.362 opt Au and 0.70 opt Ag.

4.9 1986

Garratt Geoservices Ltd. were contracted to review property geological data on behalf of Valentine Gold Ltd. A review of Garret's report is summarized below:

- 1) Determination of average grade is problematic, but data suggests 0.2-0.5 opt Au range across 1 m. wide
- 2) Tonnage potential of 500,000-900,000 tons assuming two ore shoots 1.8 X 152 X 304 m. dimension
- 3) Large samples (in the order of 10-100 kg.) across minimum widths to represent underground mining widths (about 1.5 m.) are required to be the most representative type of sample taken for determining a grade estimation. The large sample would remove sampling bias. Also, a certain amount of gold is liberated as fines created from blasting, which indicates a need to obtain all material when bulk sampling freshly trenched zones.
- 4) In many cases, visible gold samples have been re-assayed with up to 5 fold variation in results, e.g. the following table lists core drill intercepts with values in opt Au:

DDH	from m.	to m.	int. m.	pulp #1	pulp #2	pulp #3	rej. #1	rej. #2	rej. #3
82-6A	55.47	55.7 8	0.31	0.024	0.025		0.042	0.032	0.039
82-6A	9.14	9.45	0.31	0.111	0.157	0.177	0.436	0.604	0.597
82-6A	13.10	13.41	0.31	0.034	0.041		0.048	0.046	0.173

- 5) The phenomenon of reject sub-samples assaying higher than pulps of the original sample is partly explained by the random distribution of gold.
- 6) Attempting to determine average grade of core drilling intercepts is very risky. Bulk sampling, whereby the gold is recovered from the entire sample, would be the most reliable approach.
- 7) Recommendation that further drilling comprise 65% reverse circulation and 35% core drilling in order to attain larger diameter sample.

G.R. Peatfield of Minequest Exploration Associates Ltd. issued a report entitled, Geology and Geochemistry of Valentine Mountain. Highlights from this report are summarized as follows:

- 1) Fieldwork consisted of 107 soil from either side of Bear Creek Reservoir, and 27 silt & 27 heavy mineral samples covering drainages from a 3 X 8 km. area east of the Jordan R.
- 2) Soil samples identified spot high values up to 400 ppb Au. There werellout of 107 samples that gave values greater than 10 ppb Au. Most samples with relatively higher Au values returned very low As values. There is a tendency for samples with higher As to have detectable amounts of Au.
- 3) Silt samples range from 1-74 ppb Au.
- 4) 10 kg. Wet sieved -20 mesh silt samples were taken for heavy mineral separation. This sampling method outlined several areas of interest: a) south face of Valentine Mtn., including Tripp, Fred and Valentine Creeks, also including the first main tributary of the west side of Jordan R. (aka Braiteach Zone). b) the first main tributary of Valentine Creek from the northeast. c) a drainage on the south side of Bear Creek Reservoir directly across from Alex Creek.

4.10 1987-88

Valentine Gold Corp. optioned the property from Beau Pre Explorations and drilled 43 core holes (28 in the Discovery and 15 in Jordan R. Zones). Additional work by Valentine Gold included; bulk sampling pilot plant, metallurgical testing, and rock chip sampling of the "Discovery Zone", as well as property wide soil & silt sampling, prospecting & rock chip sampling, Mag/VLF-EM/Max-Min/IP geophysics, and petrographic analysis. A complete review of this work is given below:

The distribution of diamond drill holes is as follows: # OF DIAMOND DRILL HOLES

OF DIAMOND DRILL HOLES	LOCATION
	East portion of Discovery Zone
	Middle portion of Discovery Zone
	West portion of Discovery Zone
	Jordan River Zone
	Braiteach Zone west of Jordan River

A detailed summary of each of these drill holes is listed in Appendix B. Significant intersections of goldquartz vein systems are summarized as follows:

"C" Vein zone:

Depth extension of the "C" vein (located 10-15 m. south of and parallel to the "36" vein), defined by a total of 10 drill intercepts are projected on longitudinal section by Gord Allen (Appendix C) outlined an ore reserve calculation of 33,795 tons of 0.429 opt Au (based on a 1.2 m. width) from the "C" vein. The "C" vein is located parallel to and 25-35 m. south of a 100 m. thick, steep south dipping altered amphibolite unit.

"D" vein zone:

The "D" vein is located along the south contact of the altered amphibolite unit. This vein has an inferred strike length of over 500 meters, but no ore reserves have been calculated due to grades which average less than 0.100 opt Au across 1.0 m. in the drill intercepts. The main feature of the "D" vein is a) amphibolite contact and b) fault-bound affinity. The "D" vein fault has led to poor recovery and consequent loss of fines as core drills cut this zone.

"E" vein zone:

The "E" vein was discovered by drilling towards a well defined Au soil anomaly 100 m. north of the "C" vein and 70 m. north of the "D" vein. The "E" vein is hosted by altered amphibolite, and is in close proximity to the gneiss/schist contact (10-40 m. to the north) and to a 2 m. wide, cross-cutting, (unit 5) quartz diorite dyke. DDH 87-14 recorded 0.226 opt Au across a 0.3 m. wide fault zone (@ 49.1-49.4 m.) and 0.033 opt Au across 1.0 m. (@ 78.0-79.0 m.), suggesting the presence of two parallel vein zones.

"A" vein zone:

The "A" vein was intercepted by DDH 87-3 returning 0.046 opt Au across 0.6 m. in a fault zone (@28.5-29.1 m.). The "A" vein is located 20 m. south of the altered amphibolite contact, thus there is some speculation that it is the continuation of the "D" vein because if we follow the zone west to 87-4,5 (0.136 opt Au over 1.0 m. and 0.031 opt Au across 0.9 m. respectively), these intercepts align with a fault zone adjacent to the altered amphibolite, characteristic of the "D" vein.

The results from drilling in the "Discovery Zone" resulted in an ore reserve calculation on the "C" vein zone:

CELL #	HOLE #	AREA m2	TONNAGE (21.2 m. opt Au 1.2 m.wide	Ozs. Au
1	87-11	1054	3630	1.580	5735
2	88-16	996	3430	0.087	298
3	88-18	1550	5338	0.001	5
4	88-17	1454	5008	0.041	205
5	82-3	748	2576	0.019	49
6	82-6A	530	1825	0.149	272
7	82-6	530	1825	3.080	7393
8	87-22	980	3375	0.033	111
9	88-14	1185	4081	0.031	127
10	88-15	619	2132	0.145	309
	Total tonnage= 33,795		Total ounces Au= 14,504		
		Calculated grade		(see Appendix C)	-

JORDAN RIVER DRILLING:

A total of 15 NQ DDH's (87-23,24, 88-1 to 13) totaling 2,243.3 m. (7,358 ft.) was drilled in the "Braiteach" zone immediately west of the Jordan River. Drill results are summarized in Appendix B which

show elevated Au values in wide zones of gneiss (metasandstone), associate with disseminated arsenopyrite. Notable intercepts include 88-12 which cut 3.0 m. of 0.133 opt Au hosted in amphibolite, and 88-4 with 1.0 m. of 0.082 opt Au adjacent to a fault in massive gneiss (metasandstone). The style of mineralization is different from the "Discovery Zone" as wide zones of arsenopyrite are present in massive metasandstone. The intercept in DDH 88-12 is hosted by amphibolite and could be very significant because IP and EM geophysics show a positive response which roughly aligns with this drill intersection located east between the Jordan River and the "BN" zone. It is likely that increased sulphides associated with the amphibolite unit account for a positive IP and EM response east of Jordan River and on strike with DDH 88-12 intercept.

BULK SAMPLING:

Bacon, Donaldson and Associates were contracted to perform metallurgical testing, design, construction and operation of a 20 tpd bulk sampling plant. Initially, two 45 gallon drums were filled with vein and wall rock from Falconbridge trench #1 and one 45 gallon drum from the "A" trench which gave the following results:

BARREL/	SAMPLE	JIG REC. %	TABLE REC.	TOTAL	CALC.
TRENCH	WEIGHT	OF OVERALL	% OVERALL	RECOVERY	GRADE opt
"A"	372 lbs.	58.25	16.43	74.67	0.391
FL1/#1	365 lbs.	23.67	20.05	43.72	0.382
FL2/#1	403 lbs.	17.65	27.04	44.69	0.144

The 20 tpd plant started in June 1987 and ran until Feb., 1988 with a recorded through-put of 653.1 tons giving the following results:

LOCATION	TONS	GRADE opt Au	RECOVERY
#1 TRENCH D-14	247.1	0.015	?
"36" VEIN EAST	184.0	0.106	?
"36" VEIN WEST	222.0	0.027	?

Bulk trench excavation (i.e. several tons) of vein and wall rock usually was accompanied by excessive dilution of barren wall rock, i.e. the impression that open pit rather than lode vein mining was taking place (Grove, 1990). Additional "mini-bulk" sampling (in the order of several hundred pounds), returned the following much more impressive results:

TRENCH "A"	WEIGHT 300 lbs.	WIDExLONG 1 X 50 feet	GRADE opt 5.557	PROCESSOR Nesmont
"36" east	100 lbs.	1 X 4 feet	4.800	Nesmont
"36" west	347 lbs.	6 X 30 feet	7.688	Nesmont

SOIL SAMPLING:

A total of 5,900 soil samples were analyzed for Au and 30 element ICP. The most prominent Au soil geochemical clusters are located in the following areas:

- 1) "BN" zone which has a strong coincident As signature. High values up to 354 ppb Au with a dominant large cluster of greater than 50 ppb Au.
- "Braiteach" zone which also has coincident As anomaly. High values up to 450 ppb Au with two main E-W trending anomalous zones greater than 50 ppb Au. These two zones are 200 m. apart with the southernmost zone adjacent to the main creek.
- 3) "Discovery" west which is coincident with the altered amphibolite trend. High values of 2,250 ppb Au along a 900 m. strike length with a 200 m. long by 75 m. wide clearly defined Au soil cluster (followed up by Noranda's DDH 89-22,23,24).
- "Discovery" zone, the main area of trenching has high values up to 45 ppb Au and there does not appear to be direct Au-As correlations.

SILT SAMPLING

A total of 490 pan concentrate samples were taken from creekbeds within the property. A list of above average Au values are listed as follows:

SAMPLE # 87-25-DOS	LOCATION Tributary of west Leech R. (resample)	PPB Au 105,000
87-34-HM		19,000
87-L1-HM	cc cc cc	11,900
87-210-HM	Creek north of Jordan R.	8,750
87-223-HM	" east " "	1,680
87-392-HM	"north" "	1,300
87-159-HM	"Braiteach Zone"	1,550
87-5-HM	Lower Fred Ck.	8,340
87-10-HM	North shore of Bear Ck. Reservoir	1,350

GEOPHYSICS:

M.W.H. Geophysics Ltd. performed several line km. of Max-Min on the "BN" and "Braiteach" zones with 25, 50, 100, & 200 m. coil separation. A moderate strength conductor axis and a sub-parallel weak conductor axis were located between "BN" and DDH 88-12 located 200-300 m. east of the Jordan R.

Pacific Geophysics Ltd. performed IP on the "Braiteach" and "Discovery" zones, initially using 20, 30,50, **&** 70 m. dipole spacing, the final survey utilized 30 m. spacing since this gave good resolution for vein/shear targets (as IP is generally used for porphyry targets). Filtered contour presentation of data on the "Braiteach" shows a weak apparent chargeability increase (10-15%), along the west extension of DDH 88-12 gold bearing fault zone. There is also a subtle chargeability increase 350 m. to the north along the axis of a 075 trending creek. This zone corresponds to DDH 88-4 which intersected gold-quartz veins associated with widespread arsenopyrite mineralization. Filtered contour presentation of apparent resistivity shows an unresolved NNW trending low which is parallel and 150 west of the Jordan River. The lack of clear definition by the IP survey suggests a relatively low abundance of sulphide mineralization.

Ground VLF-EM was run on the "Discovery" and "Fred Ck." grids. Approximately 10 E-W trending conductor axes were identified with strike lengths up to 3 km. The location of the conductors suggests they correlate with faulting and shearing near or along lithologic contacts. Several anomalies correspond directly to known gold-quartz vein systems in the "Discovery Zone".

Dighem Surveys & Processing Inc. performed 402 line km. of EM/resistivity/magnetic/VLF-EM. Based on interpretation of data this survey outlined the following high priority targets:

- ANOMALIES 10200A, 10210A & B: Located 2.7-3.0 km. NNE of the mouth of Walker Ck. these are classed as weak strength, well defined, narrow conductive source within bedrock, E-W trending resistivity low and EM conductive zones associated with a very weak mag high. Since this target is associated with the regional E-W trending fault system which aligns with most of the known gold mineralization on Valentine Mountain area, this target is a high priority follow up.
- 2) ANOMALIES 10351 to 10401: Located 1.7-2.1 km. NE of the mouth of Walker Ck., this prominent mag high is associated with a 40-60 m. wide, magnetite enriched, intrusive granodiorite/orthogneiss sill/dyke.
- 3) ANOMALY 10481: Located at the east end of the "BN Zone" Au soil anomaly (700 m. east of Jordan R.) is a convergent E-W and NW-SE magnetic break interpreted as a cross fault along the main E-W trending Au zone. The close proximity of this feature to strong Au soil geochem makes this area very important as a follow up target.
- 4) ANOMALIES 10590 to 10610: Located 1 km. north of the mill ("Discovery Zone"), this target is a very weak positive EM response, coincident with a well defined ENE-WSW trending mag axis as well as a 1,000 ohm-m resistivity gradient, suggesting a contact with a more conductive unit to the northeast and a more resistive unit to the southwest.

5) ANOMALIES 10720 to 10760: Located in the NE corner of the survey and within south trending tributaries of Valentine Ck. (which contain anomalous Au values in stream sediments), are 3 subparallel, ENE-WSW trending moderate strength EM conductors.

Valentine Gold geologists took 890 rock chip samples as part of a property wide survey and identified the following zones of interest:

- 1) "BN Zone": Samples up to 0.160 opt Au.
- 2) "Braiteach Zone": Samples up to 0.530 opt Au with 11 samples in excess of 0.006 opt Au.
- "Fred Ck. Zone": Samples up to 0.180 opt across width of 1.0 m. located about 150 m. west of DDH #FC-1.
- 4) "Metchosin Volcanics": Samples up to 0.420 opt Au located 550 m. south of the east end of the Bear Creek Reservoir.

PETROGRAPHIC ANALYSIS:

Vancouver Petrographics Ltd. (Dr. John Payne, Dr Jeff Harris, & Wendy Sisson) prepared detailed reports on core and trench samples. A summary of their work is listed below:

- The main rock types which host ore in the vicinity of the "Discovery Zone" trenches are a) metasandstone, b) metasiltstone, c) metamudstone. Less abundant host rocks include garnet-bearing schist and a mafic volcanic rock altered to chlorite-carbonate-epidote-actinolite. Several 1-3 m. wide granodiorite/quartz diorite dykes/sills cut the above sequence.
- 2) Regional deformation resulted in a series of SE trending folds with steeply dipping axial planes and moderately ESE plunging fold axes. Strongly folded, finely banded argillitic schist is crosscut at a high angle by quartz veins up to 10 cm. across. These veins are folded moderately to tightly about axes which may be coaxial to those which had already deformed the schist host rock. This suggests that two pulses of deformation occurred in the same stress field, and were separated by a tensional event during which quartz veins were introduced.
- 3) Rocks from the "Braiteach Zone" are less deformed, and contain less interbedded argillaceous siltstone/mudstone than the "Discovery Zone".
- 4) Early quartz veins are distended and smeared out, being locally obliterated in part. Less deformed quartz veins may represent later veins which represent tensional dilation that crosscuts the regional trend of foliation at a small angle.
- 5) The "Discovery Zone" gold bearing veins contain quartz which has deformed and partly recrystallized to much finer aggregates, with inclusions of quartz with abundant fine grained pyrite and/or pyrrhotite along grain boundaries. Native gold occurs in later, discontinuous veinlets and replacement patches, whose emplacement is moderately controlled by grain borders of deformed quartz. Locally, native gold (and pyrrhotite) occurs in tiny tiny inclusions in coarse grained arsenopyrite.
- 6) Paragenetic assemblages suggest that during metamorphism, native gold and arsenopyrite were concentrated into shears zones (preferentially in fold closures), and in part into quartz veins formed during early stages of deformation. The presence of K-spar envelopes and euhedral tourmaline suggests a component of hydrothermal contribution to Au-As bearing mineralization. At a later stage, further quartz veins formed, and gold migrated into some of these, possibly near the end of the deformational event.

Pincock, Allen & Holt Inc. (Dr. George Armbrust) prepared a paper entitled A Review of the Valentine Mountain Property Vancouver Island, B.C. This report is summarized as follows:

- 1) Visible gold occurred in 9 of 10 drill holes, however due to the erratic wide range in gold values for the quartz vein intervals, confidence in the calculated grade is not sufficient to categorize this resource as a reserve. The main problem is the coarse grained nature of the gold.
- 2) PAH Inc. recommends systematic bulk sampling of trenches on veins in the "Discovery Zone" as well as further exploration on previously identified high priority targets (approximate budget of \$400,000).

- 3) A second phase recommended by PAH Inc. would involve underground testing on the veins in the "Discovery Zone" to a depth of 40 meters by driving a decline on the veins (approximate budget of \$6,000,000)
- 4) There is a reasonable possibility for the discovery of a deposit containing 500,000 to 1,000,000 tonnes
 (a) 10-15 g/t Au (0.3-0.5 opt Au).

Gord Allen, P.Eng. reviewed the data and recommended the following work program:

- 1) Trace known mineralized structures to depth and to the west in order to outline new ore reserves.
- 2) Excavate "C", "B", & "D" vein systems 120 m. strike length starting near cross trench #1 and working west towards the mill. Core drilling along this strike length to intercept vein systems at shallow, medium and deep depths (approximately 30, 60 & 90 m.).
- 3) Detailed surveying to tie in all drilling, trenching and grids.
- 4) Underground exploration of "Discovery Zone" @ estimated cost of \$1,575,000 (Chamberlain, 88).
- 5) A 120 m. deep drill hole to test the horizon 25 m. east of Au intersection (0.136 across 3.0 m.) in DDH 88-12 located on banks of Jordan R.
- 6) Property wide prospecting, mapping and sampling anomalous Au in soil and silt sampling.

Dr. J.A.Chamberlain, P.Eng. of Dolmage Campbell Ltd. prepared a development proposal for the "Discovery Zone" which is summarized below:

- 1) The Valentine property presents a classic example of dealing with the nugget effect when attempting to obtain a representative sample. Gold is erratically distributed along planar features over widths of a few cm. and exhibits sharp cutoff grades in adjacent wall rock.
- The veins are narrow with little alteration of wall rocks, however they are continuous planar features for hundreds of meters along strike and down dip extensions are confirmed by drilling to at least 200 m.
- 3) Out of 39 drill holes in the "Discovery Zone" there were 10 intersections greater than 0.1 opt Au (across widths of 0.3-1.0 m.) and 2 of these intersections were greater than 7.0 opt Au. The drill program appears to be useful at confirming vein location at depth, but not very good in terms of establishing ore reserves.
- 4) Surface trenching of gold-quartz veins in the "Discovery Zone" has met with limited success not only because of overbreak is hard to control, but also because free gold tends to work its way downward into available openings during excavation.
- 5) Channel sampling across veins at surface has been less than satisfactory due to the erratic distribution of gold.
- 6) Present knowledge about the "C" & "B" vein systems in the "Discovery Zone" indicates they have an aggregate strike length of at least 800 m. and a down-dip extension of 200 m. Using these dimensions across a stoping width of 1.5 m. and S.G. of 2.65 results in the total of 636,000 tonnes (800X200X1.5 X2.65) of which approximately 44,500 tonnes could be expected to contain 89,000 troy ounces of gold (@ 2.0 opt Au).
- 7) Assuming a crosscut and drift was located 40 m. below surface (760 m. elevation), the total vein material above this level would be about 130,000 tonnes of which 9,000 tonnes (across 1.5 m. width) could be expected to contain 18,000 troy ounces of gold.
- 8) The statistics used for grade and tonnage calculations are weak because of the limited amount of samples. True reserves could be lower or higher than stated, however the virtual two-dimensional nature of the target, locally poor recovery and other related sampling factors suggest that reserve estimates are understated rather than overstated.
- 9) A 270 m. crosscut adit with portal at 760 m. elevation, 150 m. of drifting and 50 m. of raising are recommended as a first phase of underground exploration for the purpose of establishing proven reserves (approximate budget of \$760,000)
- 10) A second phase of underground exploration would include: a) extend drift 270 m. to north portal b) extend crosscut 45 m. c) subdrift 100 m. d) raising 80 m. (approximate budget \$815,000).
- 11) If the Valentine vein system is explored and developed with close geological control and mined carefully so as to keep dilution to a minimum, it could be a small but lucrative producer for many years.

4.11 1989

Noranda Exploration Ltd. optioned the property to explore for Kolar, India and/or Bendigo, Australia type auriferous quartz systems. The detailed exploration program focused on the "Discovery Zone" (west extension), "Braiteach:" & "BN", and Walker Ck. areas and consisted of 17.8 line km. of IP, 51.6 km. of magnetometer surveys, geological mapping (81.4 km. grid lines), 1,355 soil samples, 1,121 rock chip samples, & 727.2 m. of diamond drilling in five holes. Expenditures for this program were about \$500,000 and are summarized as follows:

- Unit 2 gneiss (metasandstone) is divided into 2 sub-units: 2a) meta-greywacke has a better developed schistosity and higher % of lithic fragments than 2b and is generally darker coloured, 2b) massive metasandstone light to dark grey colour with minor schistosity with 5% disseminated biotite. Unit 2b is very hard to break because it has been partially recrystallized.
- 2) Unit 1 schist (metapelite) is divided into 5 sub-units: 1a) phyllite, extremely fine grained and fissile, with abundant sericite and minor biotite on cleavage surfaces as a result of retrograde metamorphism related to movement along proximal faults. 1b) biotite schist, medium grey to black colour, quartz and biotite form light and dark bands 1-3 mm wide, garnet and/or andalusite/staurolite porphyroblasts are often observed within the biotite schist. 1c) Biotite-garnet schist, similar to 2b with the addition of 1-10 cm. reddish brown, euhedral garnet crystals. 1d) Biotite-garnet-staurolite schist, similar to 1c with the addition of euhedral staurolite commonly cruxiform. 1e) Biotite-garnet-staurolite-andalusite schist, similar to 1d with addition of 1-8 cm., pink andalusite porphyroblasts.
- Cataclastic textures observed in unit 1 schist consist of angular quartz fragments that have been deformed and flattened in the direction paralleling schistosity as a result of mechanical forces caused by proximal faults and/or overthrusts.
- 4) Unit 5 Eocene intrusives consist of quartz diorite which occurs as a 2.8 km. long X 0.1-0.6 km. wide sill feature that widens out in Walker Creek. This quartz diorite has numerous 1-3 m. wide aplite sills with localized 1-3 mm wide orange-red colour, euhedral garnets.
- 5) Unit 6 pegmatite is leucocratic with calcic feldspar, sericite, quartz and localized tourmaline crystals up to 10 cm. in length. Pegmatite dykes and sills range from 0.1-1.5 m. width and occur in the Walker Creek area.
- 6) 1-5 cm. wide parasitic "S" and "Z" folds were observed in schist layers and quartz veinlets, which serve as a guide to direction of fold hinges and indicate a major E-W trending, gentle east plunging anticline along the axis of Valentine Mountain Ridge.
- 7) Quartz veins occur throughout all rock units mapped and vary from 0.05 to 2.0 m. width. They are generally milky white "bull" quartz with occasional subhedral crystals. Limonite is frequently observed, minor fine grained pyrite and lesser pyrrhotite occurs as fracture coatings in quartz. Arsenopyrite crystals were observed in quartz veins and wall rock. There appears to be an association of arsenopyrite and gold bearing quartz veins.
- 8) Gold bearing zones within the amphibolite are associated with pyrrhotite aggregates (forming 3% of total volume), however not all pyrrhotite zones contain gold mineralization.
- 9) Quartz veins hosted in schist (metapelite) generally parallel well developed schistosity. In gneiss (metasandstone), quartz veins 0.05-0.1 m. wide cut sandstone beds at angles of 30-45 degrees, and bedding is at low angles to foliation.
- 10) Variation in quartz veining between various lithologic units reflects the units themselves, i.e. quartz vein material is of metamorphic origin with relatively minor influence of hydrothermal activity. Phyllites contain the least quartz and metasiltsones contain the most quartz, with amphibolite and metasandstone containing relatively medium amounts of quartz.
- 11) Gold bearing quartz veins are predominantly hosted by metasandstone. The "B" quartz veins are translucent to transparent and commonly light orange in colour and the "C" vein is generally grey black in colour. Gold mineralization occurs within the vein material as well as the adjacent wall rock.
- 12) Magnetometer data shows a strong, narrow, 120 trending dipolar (high and low) feature east of L 18100 E. In the area of the "Discovery Zone" this feature appears as a broad mag high over the amphibolite unit (probably caused by increased magnetite and/or pyrrhotite) and an adjacent mag low to the north which may reflect massive metasandstone. West of L 17600 E, a similar, narrow magnetic response has a more subtle character. The pronounced background and source shift hints at a possible fold axis occurring on L 17600 E at stn. 20750 N (also observed by IP data).

- 13) IP data from the west "Discovery Zone" indicates a chargeability/resistivity high and coincident Au soil geochem anomaly between L 20600 E/20087 N and L 19600 E/20137 N. Core drilling this target between L 19800 E and L 19900 E proved to be successful in identifying two gold bearing zones localized along the contact of mixed metapelite/metasandstone and altered amphibolite. DDH 89-24 intersected 2.301 opt Au across 0.3 m. @ 59.1-59.5 m.
- 14) IP data from "BN" and "Braiteach" zones identified a similar IP chargeability/resistivity high and coincident Au soil geochem anomaly between L 17150 E to L 18000 E located parallel and 50-125 m. north of the baseline.
- 15) "Braiteach Zone" DDH 89-20 and 89-21 were collared on the west projection of Au intercept 0.136 opt Au across 3.0 m. in DDH 88-12. DDH 89-20 cut 17.8 m. overburden, the following 99.1 m. cored through amphibolite with 5-7% quartz as stringers and veinlets with no significant Au values. Increased quartz, with 3-4% pyrite, pyrrhotite and chalcopyrite occur at 62.8-63.8 m. Fault breccia and gouge with 2-3% pyrite and pyrrhotite was cut at 76.5-77.8 m. An increase in biotite rich layers occurs at 77.8-84.4 m. with up to 4% disseminated pyrite, pyrrhotite and chalcopyrite. DDH 89-21 had 25 m. of overburden, followed by 86.1 m. of amphibolite. An increase in biotite rich layers with 4% disseminated pyrite, pyrrhotite and chalcopyrite occurs at 75.1-82.6 m. Fault gouge and shearing with 2-3% pyrite occurs at 93.5-94.7 m. and 103.3-109.0 m.
- 16) "Discovery West" DDH 89-22,23,24 were drilled to intersect an IP target of high chargeability and resistivity which coincides with anomalous Au geochem and is interpreted as being the west extension of the "C" and "D" vein systems. DDH 89-22 cut 3 quartz veins, the largest being 20 cm., with mineralization consisting of 10% pyrite and 1% pyrrhotite. The "D" vein system located 4 m. above the metasandstone/amphibolite contact returned 740 ppb Au over 1.5 m. Within the amphibolite at 148.3-149.3 m. there is a 1.0 m. interval with visible gold that returned 0.027 opt Au. DDH 89-23 cut two quartz veins, the largest being 0.35 m. wide with 1-2% pyrite and 1% pyrrhotite which are interpreted as the "C" vein system was intersected at 56.9-58.4 m. returning 0.040 opt Au across 1.5 m. width and the "D" vein at 106.5-108.0 m. assaying 0.028 opt Au across 1.5 m. DDH 89-24 cut 4 quartz veins, the largest being 0.41 m. wide, with 1-2% pyrite and less than 1% pyrrhotite. DDH 89-24 intersected 2.301 opt Au across 0.4 m. @ 59.1-59.5 m. depth. This intersection is situated 2.2 m. above the metasandstone/amphibolite contact and is interpreted as the "D" vein system. At 69.0-70.0 m. depth, DDH 89-24 cut a biotite rich layer with 0.5% euhedral garnet porphyryblasts, 1-2% pyrite and 1% pyrrhotite which returned assay values of 0.087 opt Au across 1.0 m. At a depth of 129 m., DDH 89-24 intersected a 5 m. wide band of 2-3% pyrrhotite blebs (with assay values up to 0.013 opt Au across 0.4 m.), and the projected IP chargeability high correlates with this mineral zone.
- 17) Detailed mapping of the "BN Zone" shows the gold-bearing quartz vein systems are predominantly hosted by gneiss (metasandstone, unit 2), typically with 10-20% biotite and exhibiting "woodgrain texture". There is some interbedded biotite-garnet-staurolite schist (unit 1) at L 17600 E/20935 N where there are 5-25 m. wide quartz vein swarms along the contacts of unit 1 & 2. At the southern edge of the Au soil anomaly is a massive, chlorite altered amphibolite (unit 3). A total of 41 rock chip samples were taken with the following highlights:

SAMPLE #	Au ppb	As ppm	WIDTH m.
59655	5950	2219	0.03
58559	5530	3	0.05
59662	3960	1730	0.02
59660	3850	573	0.02

18) "Braiteach Zone" trench sampling is summarized as follows: a) Zone #1outcrops in a road cut on J-6 logging road where specks of visible gold were found in limonitic, vuggy quartz hosted in a hydrothermal alteration zone within metasandstone. Out of 5 channel, 3 panel and 1 grab sample, the highest geochemical value returned was 390 ppb Au and 538 ppm As. b) Zone #2 is located 55 m. north of the baseline on L 16800 E where a 0.08 m. wide E-W trending quartz vein was channel sampled in 11 locations along the outcrop, returning a high value of 740 ppb Au, and 875 ppm As. c) Zone #3 is 80 m. WNW of zone #2 and consists of a main E-W trending, steep north dipping quartz vein with 10-20% quartz stringers 1 m. from the vein, which decrease with distance from the main vein. Results produced a high value of 150 ppb Au and 1063 ppm As. d) 8 chip samples from Zones #4-6 returned values up to 159 ppb Au and 25 ppm As.

- 19) Rock chip sampling on the Peg and Bo Claim Groups (Walker Creek area), returned 0.67% Cu across 0.2 m. and 0.28% Cu across 0.1 m.
- 20) Recommendations for further work include exploration and development of low tonnage, high grade ores shoots along the 7 km. strike length which is known to host gold-bearing quartz vein systems.

4.12 1990

Dr.E.W.Grove, P.Eng. submitted a Summary Geological Review of the Valentine Mountain Gold Project. This comprehensive text with figures highlights most of the data presented in this 1997 review and was used as a reference for data compilation. A summary of Dr. Grove's recommendations is listed below:

- 1) "C" vein stage 1- Stripping and trenching along vein @ 25 m. intervals, 2,300 m (7,544 ft.) core drilling, geological support, assays (approximate budget \$387,000, see Appendix J).
- "C" vein stage 2- Mining 20 X 50 X 1 m. block, geological support, assays (approximate budget \$206,500, see Appendix J).
- 3) "BN & Braiteach Zones"- 1,000 m. (3,280 ft.) core drilling, geological support, assays (approximate budget \$158,300, see Appendix J).

The total budget recommended for the three programs of exploration and development listed above is approximately \$752,600 (Appendix J).

4.13 1992

Beau Pre Explorations Ltd. shipped 2.196 tons of crushed ore from the "C" vein system to Nesmont Precious Metals Corp. which gave the following results:

SAMPLE ID	Au opt	Ag opt	WEIGHT lbs.	WEIGHT OF DORE BAR
Concentrate	812.5	303.5	9.124	5.448 troy ounces
Middlings	11.82	29.23	12.613	not smelted
Tails	0.111	0.04	4370.263	not smelted

A 0.5 kg. control sample of the above bulk sample was sent to Bondar-Clegg for a check assay, and it returned 1.551 opt Au and 0.20 opt Ag.

4.14 1994

Fairbank Engineering Ltd. performed detailed mapping and channel sampling of the "C" vein across widths of 0.1-1.2 m., at 5 m. intervals, along a total strike length of 35 m. A summary of his work is as follows:

		<u> </u>	55 m. A summary o	1 IIIS WOLK 13 d5 10110WS.
GRID #	SAMPLE #	WIDTH m.	Au opt	Description
0 W	1	0.15	0.714	vein
0 W	2	0.20	0.095	vein
5 W	3	0.07	0.309	vein
5 W	4	0.40	0.009	wall rock
5 W	5	0.65	0.001	wall rock
15 W	6	0.07	0.880	vein
15 W	7	1.10	0.006	wall rock
20 W	8	0.11	0.075	vein
20 W	9	0.10	0.001	wall rock
25 W	10	0.09	0.487	vein
25 W	11	1.00	0.004	wall rock
25 W	12	0.13	0.001	wall rock
30 W	13	0.90	0.011	wall rock
30 W	14	0.30	0.036	wall rock & vein
33 W	15 Simon vein	grab	0.071	vein

Proton Engineering and Construction Ltd. revised the plant process flow sheet for a 50 ton per day pilot mill. There processing recommendations include screening and crushing mine ore, whereby fine ore is fed

to the ball mill and then jigged and gravity tabled to produce table concentrate, the reject is recycled through a 6" cyclone classifier and then through a rougher and 2 cleaners to produce a final concentrate and tailings.

This plant, as described above (with minor modifications, see Appendix I), is presently on site 100 m. west of the "C" trench, which is being used for mine ore.

The B.C. Geological Survey Branch and the G.S.C. prepared a paper titled Andalusite in British Columbia-New Exploration Targets (Dr. G. Simandl, et.al.). There was a chapter of this paper devoted to the Leech River Area with specific mention of possible economic deposits within the subject property. A point form summary of this paper is given below:

- 1) Typical grades of primary "hard rock" and alusite ores vary from 7 to 20%. Typical production capacities of individual mines vary from 25,000 to 65,000 tonnes per year.
- 2) The coarser the crystals, the easier it is to upgrade the ore. Garnet and staurolite typically coexist with andalusite and where grades and textures permit, they are recovered as byproducts.
- 3) Most of the area east of Valentine Mountain contains and alusite strongly retrograded to either mica and staurolite or mica and chlorite. The retrograde alteration appears to be strongest in the "Discovery Zone"
- 4) The degree of retrograde alteration diminishes westward where an E-W trend formed by occurrences mapped by sample reference # LR 114,13,32,35 & 37 is especially interesting and may host zones of economic andalusite-garnet-staurolite.

The government geologists are most cooperative with respect to detailed information regarding the showings and are willing to make property visits to give us a better insight into this relatively new exploration target (Dr.G. Simandl, personal communication).

5.0 PROPERTY GEOLOGY

The following legend is used to described rock types of the Leech River Group and younger intrusive rocks which underlie the Valentine and West Leech Claim Groups:

EOCENE AND YOUNGER? INTRUSIVE ROCKS

- 6 Pegmatite, Leucocratic dykes and sills
- 5 Quartz diorite, minor granodiorite, granite
- 5a Aplitic dykes and sills (leucocratic, fine grained)

TRIASSIC TO CRETACEOUS? LEECH R. GROUP METAMORPHIC ROCKS

- 4 Phyllite (finer grained and better cleaved than schist)
- 3 Amphibolite (metavolcanic)
- 3a Tuff
- 3b Flow
- 3c Pervasive chlorite alteration
- 2 Gneiss (metasandstone)
- 2a "Dirty"- greywacke
- 2b "Clean"- metaquartzite
- 1 Schist (metapelite)
- 1a Biotite schist
- 1b Biotite-garnet schist

- 1c Biotite-garnet-staurolite schist
- 1d Biotite-garnet-staurolite-andalusite schist

Refer to chapter 4 for detailed summary of property rock types and their correlation with various types of alteration, mineralization, and mode of occurrence.

6.0 2004 FIELDWORK6.1 METHODS AND PROCEDURES

The diamond drilling was carried out with a Longyear 28 core drill using BQTW (1 and 5/8 inch diameter) drill rods. A total of 5 drill holes were collared (all from the same spot using dips variable from -45 to vertical and azimuths variable from 330 to 030 degrees), on an existing road located 46 meters south of the east tip of the 'C' trench. A summary of core drill is listed as follows:

Diamond Drill	Final	Azimuth	Dip	Split Core Sample Number	Total Split
Hole Number	Depth			Interval	Core Samples
	_			(From –To)	-
2004-DDH-1	89.92 m	000	-60	From 101 To 129	29
2004-DDH-2	67.06 m	000	-45	From 151 To 173	23
2004-DDH-3	112.78 m	vertical	-90	From 201 To 225	25
2004-DDH-4	76.2 m	330	-60	From 251 To 268	18
2004-DDH-5	76.2 m	030	-60	From 301 To 320	20

The diamond drilling was carried out by contract (Neill's Mining, Langford, BC). The total core drilled from 5 holes is 422.16 m. The samples were logged and photographed by the writer shortly after the drilling was completed. Core was split in widths ranging from 0.46 m to 2.77 m using a core splitting vise. One half of the split core was placed in the core box in the same direction it was removed. The other half of the core was placed in marked sample bags and shipped to ALS Chemex Labs in North Vancouver, BC for 30 element 1CP and 50 gram Au analysis.

6.2 DIAMOND DRILLING

A summary of data from 5 diamond drill holes is given in the following descriptions and adjoining tables

BEAUPRE EXPLORATIONS LTD- VALENTINE Au PROJECT DIAMOND DRILL HOLE LOGS (distance measured in feet & converted to metric) 2004-DDH-1 (DISCOVERY ZONE)

Collar elevation: 825 m (2,706.7 ft) Claim: Blaze 2

NTS 92 G/12 W, Victoria M.D., Northing: 5374204, Easting: 434532 (NAD 83) Azimuth: 000 degrees, Dip: -60, Objective: To intersect similar section as 1983-DDH-6 (hole was planned to be a twin hole, but is approximately 8 m north of original 1983-DDH-6 due to access problems), Site Location: 42 m @ bearing 180 degrees from east tip of '36' trench ('C' Vein), Driller: Neil's Mining Ltd., Langford, B.C. Date start: Nov. 21, 04. Date complete: Nov. 23, 04 NOTE- All subscript numbers are meters Final Depth: 295.0 89.92 Logged by: Andris Kikauka, Nov. 24, 2004 **LEGEND 5-** EOCENE Catface Intrusive Complex, quartz diorite, aplitic sill/dykes 0.5-2% disseminated and fracture filling pyrite, local muscovite alteration TRIASSIC-CRETACEOUS Leech R Fm. (Greenscist Facies metamorphism) 3 Amphibolite, banded with alternating layers of actinolite, chlorite, biotite, quartz, carbonate, light to dark green, minor garnet, epidote, pyrite, pyrrhotite (AKA meta-volcanic) Biotite-Garnet-Staurolite-Andalusite Schist, banded, layers of biotite, 2 3% quartz (trace hematite) as metamorphic quartz sweats (AKA meta-sandstone) 1 Biotite Phyllite, Biotite Schist, Biotite-Garnet Schist, Biotite-Garnet-

I Biotite Phyllite, Biotite Schist, Biotite-Garnet Schist, Biotite-Garne Staurolite Schist (AKA meta-pelite, i.e. shale)

FROM TO Description 2004 DDH 1

0.0 6.5 1.98 Casing

6.5 1.98 240.3 73.24 2 (minor intercalations of Unit 1)- Mostly meta-sandstone, minor meta-pelite at 16.4-26.2 $_{5.0-8.0}$ and at 170.9-230.3 $_{52.1-70.2}$ 2-4% quartz as 0.1-11.5 cm wide veins @ 50-70 degrees to core axis, increased to 12% quartz as veining @ 50-70 degrees to core axis at 172.5-177.5 $_{52.58-54.10}$ and at 187.5-197.5 $_{57.15-60.20}$ trace-2% pyrite as disseminations and fracture fillings, trace-0.2% pyrrhotite, increased chlorite near zones of quartz veining & sulphide mineralization, weak fault zone (1% clay, slickensides in graphitic partings in meta-sandstone) at 202.0-208.0 $_{61.57-63.40}$ no hematite observed in quartz veins (which is common at Discovery West Zone).

Sample No.	From	То	Width	As ppm	Au g/t
101	36.3 11.06	37.8 11.52	1.5 0.46	17	0.002
102	56.4 17.19	58.0 17.68	1.6 0.49	3	0.001
103	58.0 17.68	65.0 19.81	7.0 2.13	2	0.001
104	65.0 19.81	72.0 21.95	7.0 2.13	2	0.001
105	72.0 21.95	80.0 24.38	8.0 2.44	2	0.001
106	92.5 28.19	100.5 30.63	8.0 2.44	2	0.001
107	100.5 30.63	109.0 33.22	8.5 2.59	6	0.002
108	109.0 33.22	117.5 35.81	8.5 2.59	69	0.003
109	137.5 41.91	142.5 43.43	5.0 1.52	10	0.001
110	142.5 43.43	147.5 44.96	5.0 1.52	353	0.658
111	147.5 44.96	152.5 46.48	5.0 1.52	953	0.068
112	152.5 46.48	157.5 48.01	5.0 1.52	13	0.008
113	157.5 48.01	162.5 49.53	5.0 1.52	8	0.018
114	162.5 49.53	167.5 51.05	5.0 1.52	11	0.001
115	167.5 51.05	172.5 52.58	5.0 1.52	16	0.005
116	172.5 52.58	177.5 54.10	5.0 1.52	7	0.003
117	177.5 54.10	182.5 55.63	5.0 1.52	10	0.002
118	182.5 55.63	187.5 57.15	5.0 1.52	5	0.008
119	187.5 57.15	192.5 58.68	5.0 1.52	14	0.003
120	192.5 58.68	197.5 60.20	5.0 1.52	10	0.001
121	197.5 60.20	202.5 61.72	5.0 1.52	8	0.001
122	202.5 61.72	207.5 63.24	5.0 1.52	90	0.011
123	207.5 63.24	212.5 64.77	5.0 1.52	6	0.002
124	212.5 64.77	217.5 66.29	5.0 1.52	6	0.002
125	217.5 66.29	222.5 67.82	5.0 1.52	4	0.001
126	222.5 67.82	227.5 69.34	5.0 1.52	10	0.001
127	227.5 69.34	232.5 70.87	5.0 1.52	8	0.001
128	232.5 70.87	237.5 72.39	5.0 1.52	4	0.003
129	237.5 72.39	242.5 73.91	5.0 1.52	4	0.001

240.3 73.24 295.0 89.92 **3-** Amphibolite with 20% actinolite, 3% garnet, 2% chlorite, 1% tourmaline as fine grain clots, sub-hedral and anhedral grains, 15% mica occurring mostly as biotite with minor, late (cross-cutting) reddish-brown phlogopite (increased pyrite-pyrrhotite with coarse-grained mica), gradational contact with biotite schist (meta-sandstone/meta-pelite).

Sample No.	From	То	Width	As ppm	Au g/t
130	242.5 61.72	247.5 63.24	5.0 1.52	5	0.022
131	247.5 63.24	252.5 64.77	5.0 1.52	3	0.016
132	252.5 64.77	257.5 66.29	5.0 1.52	122	0.019
133	257.5 66.29	262.5 67.82	5.0 1.52	22	0.010
134	262.5 67.82	267.5 69.34	5.0 1.52	23	0.015
135	267.5 69.34	272.5 70.87	5.0 1.52	34	0.009

136	272.5 70.87	277.5 72.39	5.0 1.52	12	0.030
137	277.5 72.39	282.5 73.91	5.0 1.52	15	0.012
138	282.5 70.87	287.5 72.39	5.0 1.52	2	0.003
139	287.5 72.39	293.0 73.91	5.5 1.68	2	0.004

295.0 89.92 EOH - Hole stopped in amphibolite

BEAUPRE EXPLORATIONS LTD- VALENTINE Au PROJECT DIAMOND DRILL HOLE LOGS (distance measured in feet & converted to metric) 2004-DDH-2 (DISCOVERY ZONE)

Collar elevation: 825 m (2,706.7 ft) Claim: Blaze 2

NTS 92 G/12 W, Victoria M.D., Northing: 5374204, Easting: 434532 (NAD 83) Azimuth: 000 degrees, Dip: -45, Objective: To intersect similar section as 1983-DDH-6A Site Location: 42 m @ bearing 180 degrees from east tip of '36' trench ('C' Vein), Driller: Neil's Mining Ltd., Langford, B.C. Date start: Nov. 23, 04. Date complete: Nov. 27, 04 NOTE- All subscript numbers are meters

Final Depth: 220.0 67.06 Logged by: Andris Kikauka, Nov. 28, 2004

LEGEND 5- EOCENE Catface Intrusive Complex, quartz diorite, aplitic sill/dykes 0.5-2% disseminated and fracture filling pyrite, local muscovite alteration

TRIASSIC-CRETACEOUS Leech R Fm. (Greenscist Facies metamorphism)

- 4 Amphibolite, banded with alternating layers of actinolite, chlorite, biotite, quartz, carbonate, light to dark green, minor garnet, epidote, pyrite, pyrrhotite (AKA meta-volcanic)
- Biotite-Garnet-Staurolite-Andalusite Schist, banded, layers of biotite,
 3% quartz (trace hematite) as metamorphic quartz sweats (AKA meta-sandstone)
- 1 Biotite Phyllite, Biotite Schist, Biotite-Garnet Schist, Biotite-Garnet-Staurolite Schist (AKA meta-pelite, i.e. shale)

FROM TO Description 2004 DDH 2

0.0 7.0 2.13 Casing

7.0 2.13 207.7 63.31 2 (minor intercalations of Unit 1)- Mostly meta-sandstone, minor meta-pelite, 2-4% quartz as 0.1-5.5 cm wide veins @ 50-70 degrees to core axis, quartz as veining @ 50-70 degrees to core axis, trace-2% pyrite as disseminations and fracture fillings, trace-0.2% pyrrhotite, increased chlorite near zones of quartz veining & sulphide mineralization. Fault zone at 150.0-150.6 45.72-45.90 and 160.0-165.0 48.77-50.29 and 168.0-170.0 51.21-51.82 and 177.0-177.6 53.95-54.13 (1% clay, minor trace graphite as carbonaceous micro-layers, minor slickensides)

Sample No.	From	То	Width	As ppm	Au g/t
151	19.0 5.79	20.7 6.31	1.5 0.46	7	0.011
152	20.7 6.31	32.5 9.91	11.8 3.60	9	0.002
153	67.0 20.42	73.2 22.31	6.2 1.89	2	0.001
154	73.2 22.31	76.5 23.32	3.3 1.01	3	0.001
155	76.5 23.32	81.5 24.84	5.0 1.52	2	0.001
156	81.5 24.84	86.5 26.37	5.0 1.52	2	0.001
157	86.5 26.37	91.5 27.89	5.0 1.52	5	0.002
158	91.5 27.89	96.5 29.41	5.0 1.52	33	0.002
159	103.1 29.41	107.1 32.64	4.0 1.22	4	0.001
160	120.6 36.76	126.6 38.59	6.0 1.83	75	0.024
161	126.6 38.59	132.6 40.42	6.0 1.83	86	0.024
162	132.6 40.42	137.6 41.94	5.0 1.52	457	0.024
163	143.8 43.83	150.0 45.72	6.2 1.89	11	0.002
164	150.0 45.72	155.0 47.24	5.0 1.52	8	0.005
165	155.0 47.24	160.0 48.77	5.0 1.52	2	0.001
166	160.0 48.77	165.0 50.29	5.0 1.52	19	0.001

167	165.0 50.29	170.0 51.82	5.0 1.52	8	0.008
168	170.0 51.82	175.0 53.34	5.0 1.52	6	0.005
169	175.0 53.34	180.0 54.86	5.0 1.52	2	0.002
170	180.0 54.86	185.0 56.39	5.0 1.52	5	0.005
171	185.0 56.39	190.5 58.06	5.5 1.68	3	0.003
172	198.7 60.56	204.7 61.72	6.0 1.83	6	0.003

207.7 63.31 220.0 67.06 **3**- Amphibolite with 20% actinolite, 3% garnet, 2% chlorite, 1% tourmaline as fine grain clots, sub-hedral and anhedral grains, 15% biotite, gradational contact with biotite schist (meta-sandstone/meta-pelite).

Sample No.	From	То	Width	Ag g/t	Au g/t
173	204.7.5 61.72	210.7 64.22	6.0 _{1.83}	2	0.012

220.0 67.06 EOH - Hole stopped in amphibolite? (gradational contact)

BEAUPRE EXPLORATIONS LTD- VALENTINE Au PROJECT DIAMOND DRILL HOLE LOGS (distance measured in feet & converted to metric) 2004-DDH-3 (DISCOVERY ZONE)

Collar elevation: 825 m (2,706.7 ft) Claim: Blaze 2

NTS 92 G/12 W, Victoria M.D., Northing: 5374204, Easting: 434532 (NAD 83) Azimuth: Does Not Apply to Vertical Hole Dip: -90, Objective: To intersect similar section as 1983-DDH-6 (at an elevation 20-30 m below the 1983 DDH-6 'C' Vein intersection). Site Location: 42 m @ bearing 180 degrees from east tip of '36' trench ('C' Vein), Driller: Neil's Mining Ltd., Langford, B.C. Date start: Nov. 28, 04.

Date complete: Dec. 1, 04 NOTE- All subscript numbers are meters

Final Depth: 370.0 112.78 Logged by: Andris Kikauka, Dec. 3, 2004

LEGEND 5- EOCENE Catface Intrusive Complex, quartz diorite, aplitic sill/dykes 0.5-2% disseminated and fracture filling pyrite, local muscovite alteration TRASEC OPETACEOUS Local D For (Comparing Fractional Comparing Comparing

TRIASSIC-CRETACEOUS Leech R Fm. (Greenscist Facies metamorphism)

- 5 Amphibolite, banded with alternating layers of actinolite, chlorite, biotite, quartz, carbonate, light to dark green, minor garnet, epidote, pyrite, pyrrhotite (AKA meta-volcanic)
- Biotite-Garnet-Staurolite-Andalusite Schist, banded, layers of biotite,
 3% quartz (trace hematite) as metamorphic quartz sweats (AKA meta-sandstone)
- 1 Biotite Phyllite, Biotite Schist, Biotite-Garnet Schist, Biotite-Garnet-Staurolite Schist (AKA meta-pelite, i.e. shale)

FROM TO Description 2004 DDH 3

0.0 7.0 2.13 Casing

7.0 2.13 347.5 105.92 2 (minor intercalations of Unit 1)- Mostly meta-sandstone, minor meta-pelite at 75.0-137.0 $_{22.86-41.76}$ and at 265.8-294.0 $_{81.02-89.61}$ 2-4% quartz as 0.1-11.5 cm wide veins @ 30-60 degrees to core axis, increased to 15% quartz as veining @ 30-50 degrees to core axis at 75.0-78.8 $_{22.86-24.02}$ and at 178.7-180.7 $_{54.47-55.08}$ and at 308.4-310.4 $_{94.00-94.61}$ quartz veining contains 0.3-2.0% pyrite as disseminations and fracture fillings, trace-0.2% pyrhotite, increased chlorite near zones of quartz veining & sulphide mineralization, fault zone with 1% clay (slickensides in graphitic partings) at 328.0-328.8 $_{99.97-100.22}$, fault also at 330.6-332.9 $_{100.77-101.47}$, fault also at 335.8-337.2 $_{102.35-102.78}$ and fault also at 347.2-348.6 $_{105.82-106.25}$ no hematite observed in quartz veins (which is common at Discovery West Zone).

347.5 105.92 348.6 106.25 5 diorite sill- Sharp lower contact with biotite schist, upper contact has 1-2% clay in a fault zone (across 15 cm).

Sample No.	From	То	Width	As ppm	Au g/t
201	75.0 22.86	78.8 24.02	3.8 1.16	87	0.003
202	95.0 28.96	100.0 30.48	5.0 1.52	5	0.005
203	100.0 30.48	105.0 32.00	5.0 1.52	4	0.003
204	105.0 32.00	110.0 33.53	5.0 1.52	9	0.009
205	110.0 33.53	115.0 35.05	5.0 1.52	2	0.002
206	115.0 35.05	120.0 36.58	5.0 1.52	2	0.009
207	120.0 36.58	125.0 38.10	5.0 1.52	5	0.001
208	125.0 38.10	130.0 39.62	5.0 1.52	2	0.001
209	130.0 39.62	135.0 41.15	5.0 1.52	5	0.002
210	135.0 41.15	140.0 42.67	5.0 1.52	2	0.001
211	140.0 42.67	145.0 44.20	5.0 1.52	3	0.001
212	145.0 44.20	150.0 45.72	5.0 1.52	2	0.001
213	150.0 45.72	155.0 47.24	5.0 1.52	2	0.001
214	155.0 47.24	160.0 48.77	5.0 1.52	2	0.001
215	178.7 54.47	180.7 55.08	2.0 0.61	2	0.001
216	212.8 64.86	217.2 66.20	4.4 1.34	2	0.001
217	264.7 80.68	270.0 82.30	5.3 1.62	1375	2.470
218	270.0 82.30	275.0 83.82	5.0 1.52	7	0.008
219	275.0 83.82	280.0 85.34	5.0 1.52	2	0.023
220	280.0 85.34	285.0 86.87	5.0 1.52	5	0.014
221	285.0 86.87	290.0 88.39	5.0 1.52	3	0.002
222	290.0 88.39	295.0 89.92	5.0 1.52	8	0.002
223	308.4 94.00	310.4 94.61	2.0 0.61	33	0.003
224	331.2 100.95	338.4 103.14	7.2 2.19	13	0.014
225	338.4 103.14	345.4 105.28	7.0 2.13	2	0.001

The following table lists center split (50-50) diamond drill hole core samples for 2004-DDH-3:

370.0 112.78 EOH - Hole stopped in biotite schist (meta-sandstone, minor meta pelite)

BEAUPRE EXPLORATIONS LTD- VALENTINE Au PROJECT DIAMOND DRILL HOLE LOGS (distance measured in feet & converted to metric) 2004-DDH-4 (DISCOVERY ZONE)

Collar elevation: 825 m (2,706.7 ft) Claim: Blaze 2

NTS 92 G/12 W, Victoria M.D., Northing: 5374204, Easting: 434532 (NAD 83)

Azimuth: 330 Dip: -60, Objective: To intersect similar section as 1983-DDH-6 (at a position about 20-30 m east of the 1983 DDH-6 'C' Vein intersection).

Site Location: 42 m @ bearing 180 degrees from east tip of '36' trench ('C' Vein), Driller: Neil's Mining Ltd., Langford, B.C. Date start: Dec. 1, 04.

Date complete: Dec. 3, 04 NOTE- All subscript numbers are meters

Final Depth: 250.0 76.2 Logged by: Andris Kikauka, Dec. 4, 2004

LEGEND 5- EOCENE Catface Intrusive Complex, quartz diorite, aplitic sill/dykes 0.5-2% disseminated and fracture filling pyrite, local muscovite alteration

TRIASSIC-CRETACEOUS Leech R Fm. (Greenscist Facies metamorphism)

- 6 Amphibolite, banded with alternating layers of actinolite, chlorite, biotite, quartz, carbonate, light to dark green, minor garnet, epidote, pyrite, pyrrhotite (AKA meta-volcanic)
- 5 Biotite-Garnet-Staurolite-Andalusite Schist, banded, layers of biotite, 3% quartz (trace hematite) as metamorphic quartz sweats (AKA meta-sandstone)
- 1 Biotite Phyllite, Biotite Schist, Biotite-Garnet Schist, Biotite-Garnet-Staurolite Schist (AKA meta-pelite, i.e. shale)

FROM TO Description 2004 DDH 4

0.0 9.0 2.74 Casing

9.0 2.74 250.0 76.2 2 (minor intercalations of Unit 1)- Mostly meta-sandstone, minor meta-pelite at $64.0-83.0_{19.51-25.30}$ and at $150.0-163.0_{45.72-49.68}$ 2-4% quartz as 0.1-11.5 cm wide veins @ 30-60 degrees to core axis, increased to 5-8% quartz as veining @ 35-70 degrees to core axis at $64.0-108.2_{19.51-32.98}$ and at $100.0-108.2_{30.48-32.98}$ and at $149.4-186.5_{45.54-56.85}$ and at $222.1-249.0_{67.70-75.90}$ increased to 10-12% quartz as veining @ 45-70 degrees to core axis at $208.5-211.5_{63.55-64.47}$ quartz veining contains 0.3-2.0% pyrite as disseminations and fracture fillings, trace-0.2% pyrrhotite, increased chlorite near zones of quartz veining & sulphide mineralization, fault zone with 1% clay (slickensides in graphitic partings) at 124.7-125.1_{38.00-38.13}, fault also at 237.8-238.5_{72.48-72.69}, no hematite observed in quartz veins (which is common at Discovery West Zone).

The following table lists center split (50-50) diamond drill hole core samples for 2004-DDH-4:

Sample No.	From	То	Width	As ppm	Au g/t
251	64.0 19.51	69.0 21.03	5.0 1.52	5	0.002
252	69.0 21.03	75.0 22.86	6.0 1.83	5	0.002
253	75.0 22.86	80.0 24.38	5.0 1.52	4	0.002
254	80.0 24.38	85.0 21.91	5.0 1.52	6	0.001
255	85.0 21.91	90.0 27.42	5.0 1.52	2	0.001
256	90.0 27.42	95.0 28.96	5.0 1.52	2	0.001
257	95.0 28.96	100.0 30.48	5.0 1.52	2	0.001
258	100.0 28.96	108.2 32.98	8.2 2.50	2	0.001
259	149.4 45.54	153.8 46.88	4.4 1.34	7	0.003
260	153.8 46.88	159.0 48.46	5.2 1.58	14	0.006
261	159.0 48.46	164.1 50.02	5.1 1.55	1025	3.770
262	164.1 50.02	172.5 52.58	8.4 2.56	5	0.095
263	172.5 52.58	180.2 54.92	7.7 2.35	4	0.012
264	180.2 54.92	186.5 56.85	6.3 1.92	17	0.002
265	208.5 63.55	211.5 64.47	3.0 0.91	7	0.017
266	222.1 67.70	230.9 70.38	8.8 2.68	9	0.002
267	230.9 70.38	240.0 73.15	9.1 2.77	23	0.005
268	240.0 73.15	249.0 75.90	9.0 2.74	12	0.001

250.0 _{76.20} EOH - Hole stopped in biotite schist (meta-sandstone).

BEAUPRE EXPLORATIONS LTD- VALENTINE Au PROJECT DIAMOND DRILL HOLE LOGS (distance measured in feet & converted to metric) 2004-DDH-5 (DISCOVERY ZONE)

Collar elevation: 825 m (2,706.7 ft) Claim: Blaze 2

NTS 92 G/12 W, Victoria M.D., Northing: 5374204, Easting: 434532 (NAD 83)

Azimuth: 030 Dip: -60, Objective: To intersect similar section as 1983-DDH-6 (at a position about 50-80 m east of the 1983 DDH-6 'C' Vein intersection).

Site Location: 42 m @ bearing 180 degrees from east tip of '36' trench ('C' Vein), Driller: Neil's Mining Ltd., Langford, B.C. Date start: Dec. 4, 04.

Date complete: Dec. 8, 04 NOTE- All subscript numbers are meters

Final Depth: 250.0 76.2 Logged by: Andris Kikauka, Dec. 22, 2004

LEGEND 5- EOCENE Catface Intrusive Complex, quartz diorite, aplitic sill/dykes 0.5-2% disseminated and fracture filling pyrite, local muscovite alteration

- TRIASSIC-CRETACEOUS Leech R Fm. (Greenscist Facies metamorphism)
- 7 Amphibolite, banded with alternating layers of actinolite, chlorite, biotite, quartz, carbonate, light to dark green, minor garnet, epidote, pyrite, pyrrhotite (AKA meta-volcanic)
- Biotite-Garnet-Staurolite-Andalusite Schist, banded, layers of biotite,
 3% quartz (trace hematite) as metamorphic quartz sweats (AKA meta-sandstone)

1 Biotite Phyllite, Biotite Schist, Biotite-Garnet Schist, Biotite-Garnet-Staurolite Schist (AKA meta-pelite, i.e. shale)

FROM TO Description 2004 DDH 5

7

7.0 2.13 Casing

0.0

7.0 2.13 250.0 76.2 2 (minor intercalations of Unit 1)- Biotite-Garnet-Staurolite-Andalusite Schist, banded, layers of biotite,

Mostly meta-sandstone (granular texture), minor meta-pelite (metamorphosed shale) occurring as intercalated alternating 1-3 cm wide biotite/muscovite rich bands at 170.0-211.0 $_{51.81-64.31}$ and at 235.0-250.0 $_{71.63-76.20}$ 2-4% quartz as 0.1-15 cm wide veins @ 30-80 degrees to core axis, increased to 8-15% quartz as veining (as 1-18 cm wide veins cutting @ 35-75 degrees to core axis, mostly @ 55-70 degrees to core axis which is parallel to foliation of biotite schist) at 22.5 6.86 to 26.3 8.02 and 50.1 15.27 to 57.4 $_{17.50}$ and 84.1 25.63 to 87.5 26.67 and 104.7 31.91 to 107.5 32.77 and 137.6 41.94 to 142.1 43.31 and 148.7 45.32 to 152.7 46.54 and 167.0 50.90 to 213.0 64.92 and 223.0 67.97 to 250.0 76.20 quartz veining contains 0.3-2.0% pyrite as disseminations and fracture fillings, trace-0.2% pyrrhotite, increased chlorite near zones of quartz veining & sulphide mineralization, fault zone with 1% clay (slickensides in graphitic partings) at 170.0-170.3 $_{51.82-51.91}$, fault also at 167.0-169.0 $_{50.90-51.51}$, fault also at 181.0-186.5 $_{55.17-56.85}$ fault also at 187.5-188.2 $_{57.15-57.36}$ no hematite observed in quartz veins (which is common at Discovery West Zone).

The following table lists center split (50-50) diamond drill hole core samples for 2004-DDH-5:

Sample No.	From	То	Width	As ppm	Au g/t
301	22.5 6.86	26.3 8.02	3.8 1.16	7	0.004
302	50.1 15.27	57.4 17.50	7.3 2.23	>2	0.003
303	84.1 25.63	87.5 26.67	3.4 1.04	>2	0.013
304	104.7 31.91	107.5 32.77	2.8 0.85	7	0.002
305	137.6 41.94	142.1 43.31	4.5 1.37	482	0.768
306	148.7 45.32	152.7 46.54	4.0 1.22	8	0.006
307	167.0 50.90	172.0 52.43	5.0 1.52	9	0.004
308	172.0 52.43	177.0 53.95	5.0 1.52	9	0.003
309	177.0 53.95	182.5 55.63	5.5 1.68	18	0.001
310	182.5 55.63	188.0 57.30	5.5 1.68	6	0.002
311	188.0 57.30	193.0 58.83	5.0 1.52	11	0.001
312	193.0 58.83	197.0 60.05	5.0 1.52	30	0.001
313	197.0 60.05	203.0 61.87	5.0 1.52	11	0.003
314	203.0 61.87	208.0 63.40	5.0 1.52	10	0.002
315	208.0 63.40	213.0 64.92	5.0 1.52	18	0.005
316	223.0 67.97	231.3 70.50	8.3 2.53	3	0.014
317	231.3 70.50	233.9 71.29	2.6 0.79	9	0.003
318	233.9 71.29	238.6 72.73	4.7 1.43	8	0.010
319	238.6 72.73	244.0 74.37	5.4 1.65	11	0.018
320	244.0 74.37	250.0 76.20	6.0 1.83	14	0.014

250.0 76.20 EOH - Hole stopped in biotite schist (meta-sandstone).

The best Au (and coincident As) geochemical analysis values were obtained from the "C" Vein which was cut by DDH-3 (a vertical hole) as well as DDH-4 (a -60 dip directed at an azimuth of 330 degrees). Both diamond drill holes (No. 3 & 4) cut strongly mineralized containing coarse grained pyrite and fine grained arsenopyrite in quartz vein and in schistose wall rock. The depth and attitude of the intersections suggest that the known zone of gold bearing mineralization under the "C" Vein trench is traceable best in a vertical rake following the overall -60 to -70 south dip.

BEAUPRE EXPLORATIONS LTD- VALENTINE AU PROJECT DIAMOND DRILL HOLE AU HIGHLIGHTS

(distance measured in feet & converted to metric)

NOTE- All subscript numbers are in meters

Summary of significant Au/As values in four drill holes collared 42 meters south of the "Discovery Zone" trench.

2004-DDH-1 (DISCOVERY ZONE) Azimuth 000 Dip -60

Sample No.	From	То	Width	As ppm	Au g/t
110	142.5 43.43	147.5 44.96	5.0 1.52	353	0.658
111	147.5 44.96	152.5 46.48	5.0 1.52	953	0.068

2004 DDH 2 (DISCOVERY ZONE) Azimuth 000 Dip -45

Sample No.	From	То	Width	As ppm	Au g/t
160	120.6 36.76	126.6 38.59	6.0 1.83	75	0.024
161	126.6 38.59	132.6 40.42	6.0 1.83	86	0.024
162	132.6 40.42	137.6 41.94	5.0 1.52	457	0.024

2004-DDH-3 (DISCOVERY ZONE) Azimuth 000 Dip -90

Sample No.	From	То	Width	As ppm	Au g/t
217	264.7 80.68	270.0 82.30	5.3 1.62	1375	2.470

2004-DDH-4 (DISCOVERY ZONE) Azimuth 330 Dip -60

Sample No.	From	То	Width	As ppm	Au g/t
261	159.0 48.46	164.1 50.02	5.1 1.55	1025	3.770

The intersections from the last 2 drill holes (DDH 3 & 4), were accompanied by noticeably coarse pyrite and increased arsenopyrite in quartz veining hosted in biotite-staurolite schist

2004-DDH-5 (DISCOVERY ZONE) Azimuth 030 Dip -60

Sample No.	From	То	Width	As ppm	Au g/t
305	137.6 41.94	142.1 43.31	4.5 1.37	482	0.768

Geochemical analysis of split drill core from 2004 DDH 1-5 indicates that the 'C' Vein structure has an anomalous arsenic signature which correlates directly with gold bearing zones. The cross-sections of the drill holes indicate the 'C' Vein strikes 085 to 095 and dips -60 to -65 south (Fig. 5, 6, & 7). The tabular (sheet-like) nature of the 'C' Vein is well demonstrated in previous drill holes as well. Visually, the best indicator for the 'C' Vein is the fine to medium grained arsenopyrite and/or heavy sulphides (i.e. increased pyrite & pyrrhotite) as well as 1-25 cm wide ribbon-quartz veining. It is the interstitial grey-black matter with clots of small grains of sulphide mineralization which are collecting zones for variable amounts of native gold.

7.0 DISCUSSION OF RESULTS

The gold-quartz veins found on the Valentine and West Leech Claim Groups are hosted in a variety of metasedimentary rocks confined to sharply defined, ENE to SSE trending late fractures localized near or at the contacts of altered amphibolite units which also host gold-quartz veins and auriferous sulphide lenses. The importance of the amphibolite units as a gold source because most of the gold bearing quartz-sulphide veins are within as well as 0 to 75 meters from the amphibolite lithological unit.

The Valentine gold deposit was emplaced at a much younger age (Tertiary-Eocene?), and relative simplicity of vein mineral assemblages and alteration of the Valentine Mountain deposit suggest singlepass conditions along narrow channelways (Grove, 1990). These channelways reflect deeply sourced metamorphic fluids (enriched in quartz, tourmaline, pyrite, pyrrhotite, and/or arsenopyrite) which have moved into a higher brittle environment and late-stage magmatic fluids (enriched in quartz, tourmaline, pyrite, pyrrhotite, and/or arsenopyrite) which have interacted and ascended into a brittle fracture environment prepared by magmatic wedging (Grove, 1984). Zoning of mineral assemblages suggests gold-bearing pyrite may be encountered between the Jordan River and "Discovery Zone" where prospecting has been minimal, in part because of lack of roads (Grove, 1990).

The presence of coarse grain andalusite-garnet-staurolite in the northwest corner of the claim group indicates that an evaluation of grade, texture, and impurity content related to the economic marketability of this product will be necessary. Metallurgical studies are being carried out on a staurolite bearing schist in Ontario. Should that deposit prove to be viable, then the Leech River area should be re-examined in that context (G. Simandl, 1994).

8.0 CONCLUSION & RECOMMENDATION

Core drilling and trenching have identified narrow, high grade gold hosted in quartz veins in the "Discovery Zone" which have sufficient grade and tonnage to be considered economically viable (pending a feasibility study prior to production). Based on Gordon Allen's 1988 cell longitudinal section compilation, the "C" vein system contains an estimated 33,975 tons @ 0.429 opt Au across a mining width of 1.2 m. for an estimated resource of 14,504 troy ounces of gold (Appendix C).

A program of approximately 2,562 meters (8,400 feet) of core drilling, 400 cubic meters of trenching and detailed geological mapping and surveying of the "Discovery Zone" (east and west of the of the mill site) and "Tripp Creek-Log Dam Zones" would have potential to expand the known ore reserve. A proposal to carry out approximately 1,098 m. (3,600 ft.) of core drilling in the "Discovery Zone" east of the mill, 549 m.(1,800 ft) in the "Discovery Zone" west of the mill (near Noranda DDH's 89-22,23,24), and 915 m. (3,000 ft.) in the "Tripp Creek-Log Dam Zones". Most of the drilling would be targeting trench sites where the presence of gold bearing mineralization has been confirmed, as trenching would be ongoing with the drill program. The budget for this program would total approximately \$546,100. Note- This estimate only serves as a guide and is not intended to be a formal recommendation for regulatory approval.

The objective of the program is to outline extensions and discover new high grade auriferous ore shoots in order to substantially increase the ore reserves, (keeping in mind that core drilling will serve to outline depth extension of gold mineralization, i.e. structure, and trenching to access representative sample material will serve as an indicator of Au grade). A common phrase used in gold exploration is "drill for structure, drift for grade" (and countless times mentioned, using more eloquent phrases, in the numerous reports that were reviewed involving the subject property). Thus, a second phase of development work is recommended that would closely resemble the proposal outlined by Dr.J.A.Chamberlain of Dolmage-Campbell Ltd. which describes a 2 phase program including 965 m. of underground advance at a proposed total budget of \$1,575,000.

A small portion of the geological mapping budget should be devoted to exploration and follow up sampling of andalusite-garnet-staurolite schist units that exhibit economic potential as andalusite-bearing industrial mineral deposits within and adjacent to the claim area.

REFERNCES

Allen, G. (1989): Valentine Mountain Property "C" Vein Ore Reserves, Beau Pre Exploration Ltd.

Armburst, G.A. (1989): Review of Valentine Mountain Property, Vancouver Island, B.C., Pincock, Allen, & Holt Inc.

Boyle, R.W. (1979): The Geochemistry of Gold and its Deposits, G.S.C. Bull.# 280

Chamberlain, J.A. (1988): Review of Valentine Mountain Gold Project, Dolmage Campbell & Assoc. Ltd.

Chandler, T. (1985, 1986): Internal memos, Letters, Maps, Reports, Falconbridge Ltd.

Colvine, A.C. (1988): An Empirical Model for Archean Gold Deposits, Econ. Geol. Mon. #6, Geol. of Gold.

Fairchild, L.H. (1979): The Leech River Unit and Leech River Fault, Southern Vancouver Island, B.C.; M.Sc. Thesis, University of Washington.

Fairchild, L.H. (1982): Structure, Petrology, and Tectonic History of the Leech River Complex, NW of Victoria, Vancouver Island; Can. Journal of Earth Sciences, Vol. 19, pages 1817-1835.

Garratt, G.L. (1986): An Evaluation of the Valentine Mountain Property for Valentine Gold Corp.

Grove, E.W. (1981): Assessment Report, Blaze & BPEX Claims, for Beau Pre Explorations Ltd.

Grove, E.W. (1982): Geological Report and Work Proposal on the Valentine Mountain Property for Beau Pre Explorations Ltd.

Grove, E.W. (1984): Geological Report and Work Proposal on the Valentine Mountain Property for Beau Pre Explorations Ltd.

McCorquodale, J.E. (1989): Summary Report, Beau Pre-Valentine Project, Noranda Explorations Ltd.

Simandl. G.J., (1994): Andalusite in British Columbia-New Exploration Targets, B.C. Geological Survey Branch and G.S.C.

Valentine Gold Corp. (1988): Valentine Mountain Project Report.

Wingert, G.A. (1984): Structure and Metamorphism of the Valentine Mountain Area, SW Vancouver Island, B.C., B.Sc. Thesis, U.B.C.

I, Andris Kikauka, of Sooke, B.C., hereby certify that;

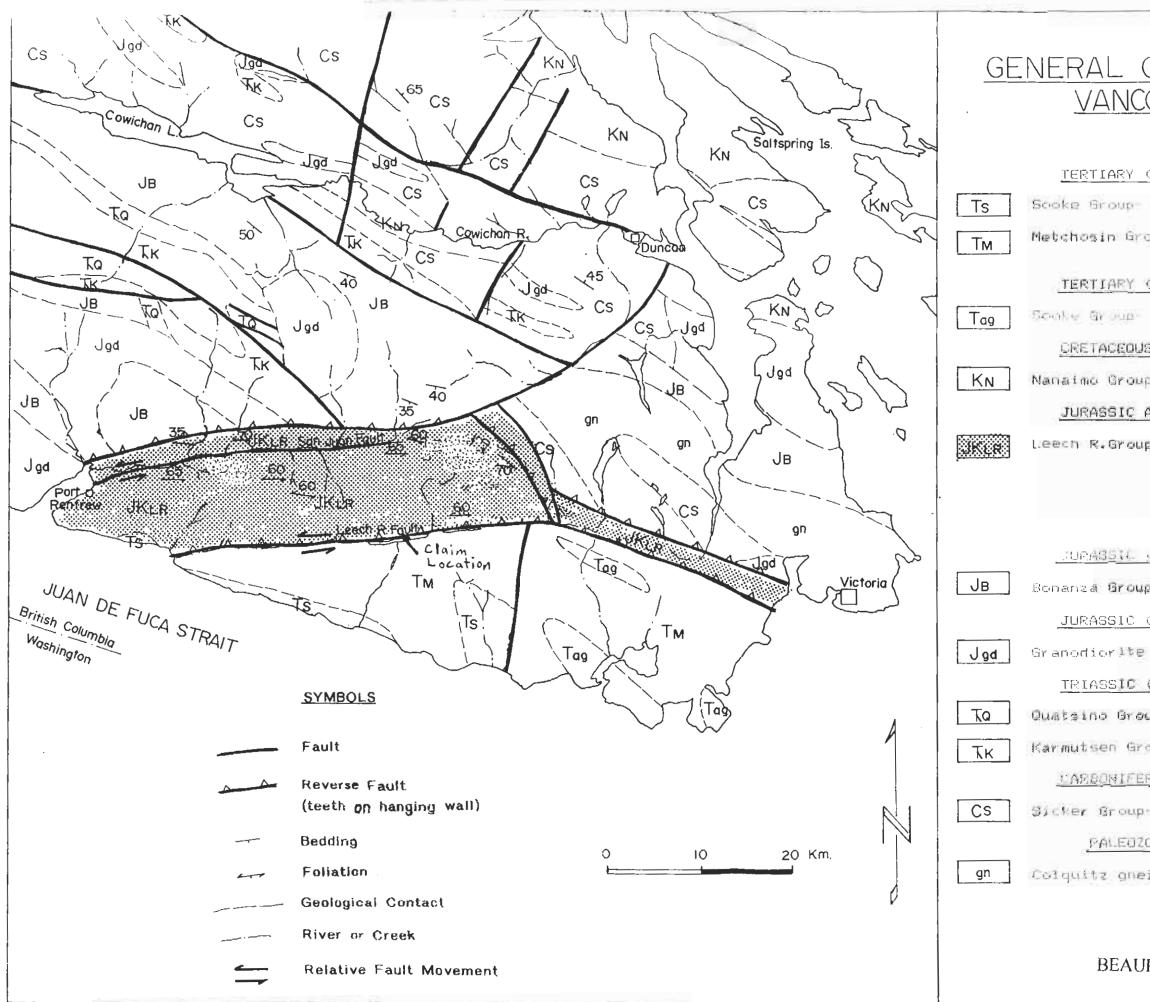
1. I am a graduate of Brock University, St. Catharines, Ont., with an Honours Bachelor of Science Degree in Geological Sciences, 1980.

2. I am a Fellow in good standing with the Geological Association of Canada.

3. I am registered in the Province of British Columbia as a Professional Geoscientist.

4. I have practiced my profession for eighteen years in precious and base metal exploration in the Cordillera of Western Canada, U.S.A., South America, and for three years in uranium exploration in the Canadian Shield.

5. The information, opinions, and recommendations in this report are based on fieldwork carried out in my presence on the subject property.


6. I have a direct interest in the subject claims and securities of Beaupre Explorations Ltd and this report is not intended for the purpose of statement of material facts and/or related public financing.

Andris Kikauka, P. Geo.,

A. Likala

April 2, 2005

ITEMIZED COST STATEMENT- VALENTINE (NOVEMBER 11, 2004 to DECEMBER 22, 2004	CLAIM GROUP,
VICTORIA MINING DIVISION, NTS 92 B 12/W	,
FIELD CREW:	
Andris Kikauka, Geologist 18 days	\$ 6,056.40
FIELD COSTS: Core Drilling and Site Preparation, Neill's Mining	
422.16 m of core drilling (BQTW)	37,048.75
115 rock samples, Au assay and 30 element ICP	4,648 .41
	Total= \$ 47,753.56

GENERAL GEOLOGY - SOUTHERN VANCOUVER ISLAND FIG. 1

LEGEND

TERTIARY (SEDIMENIS AND VOLCANICS)

Sooke Group- sandstone, shale, condiminate

Metchosin Group- pillow basalt. flows, tuff. buff breccia

TERTIARY (INTRUSIVES)

Soully Broup augure galabeau

CRETACEOUS (SEDIMENTS)

Nanaimo Group- sandstone, shale, conglomerata

JURASSIC AND CRETACEOUS (SEDIMENTS AND VOLCANICS.

Leech R.Group- phyllite, schist (metamorphosed pelitic, arenaceous, volcanic rocks, and chert) minor quartzfeldepar-biotite gneiss sills and quartz-feldspar-muscovite dykes

JURASSIL VOLLANICS

Bonanza Group- andesite, dacite, rhyolite

JURASSIC (INTRUSIVES)

TRIASSIC (SEDIMENTS AND VOLCANICS)

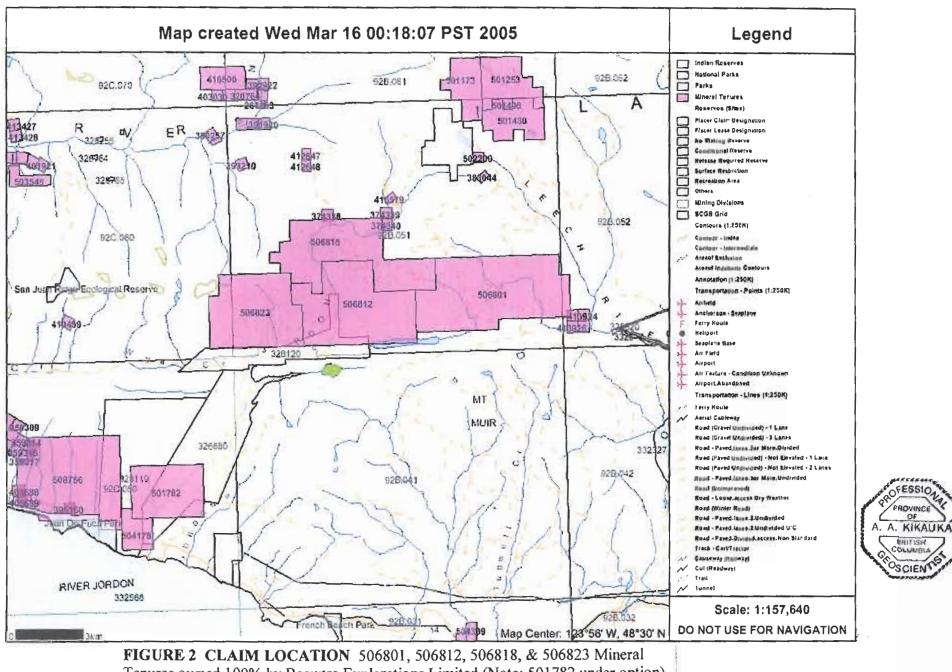
Quatsino Group- Limestone, siltstone. argillite

Karmutsen Group- basait, pillow lava

CARBONIFEROUS (VOLCANICS)

Sicker Broup- meta-andesite, dacite

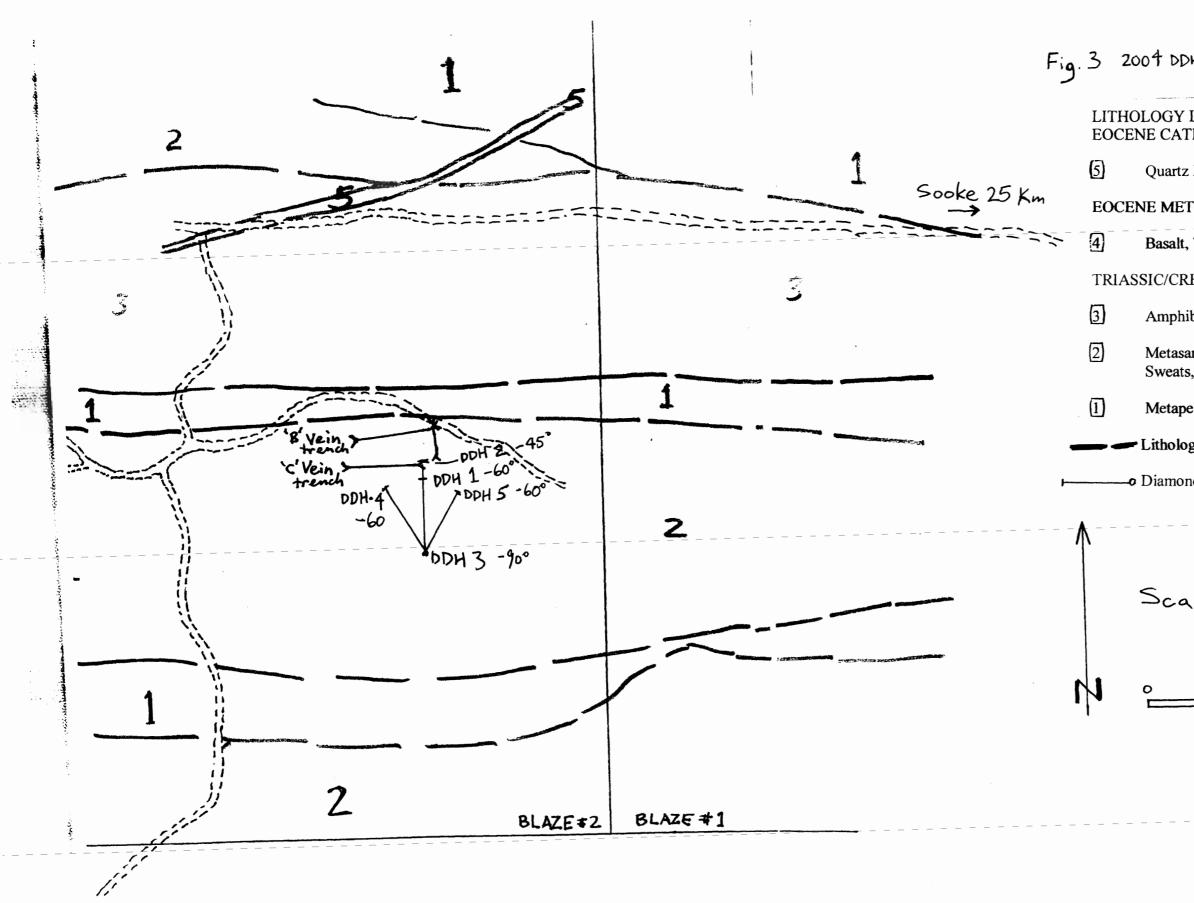
PALEDZOIC (INTRUSIVES)


Colquitz gneiss diorite

after J.E.Muller, 1980-82

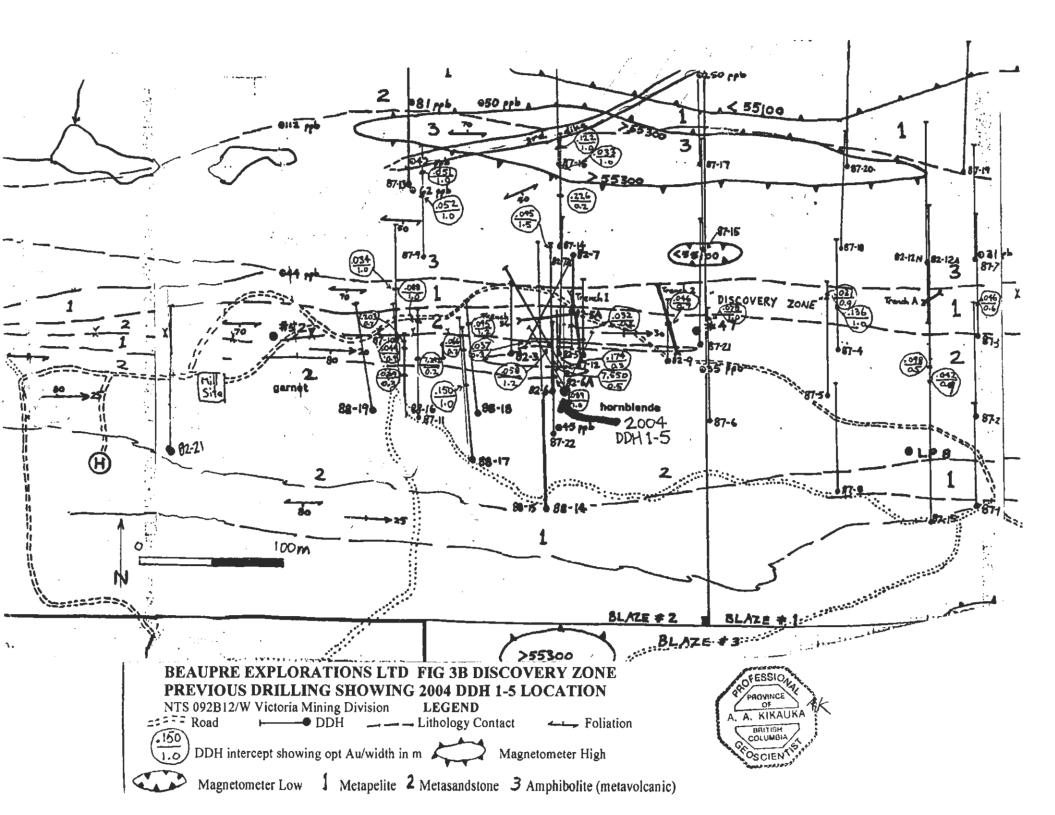
BEAUPRE EXPLORATIONS LTD.

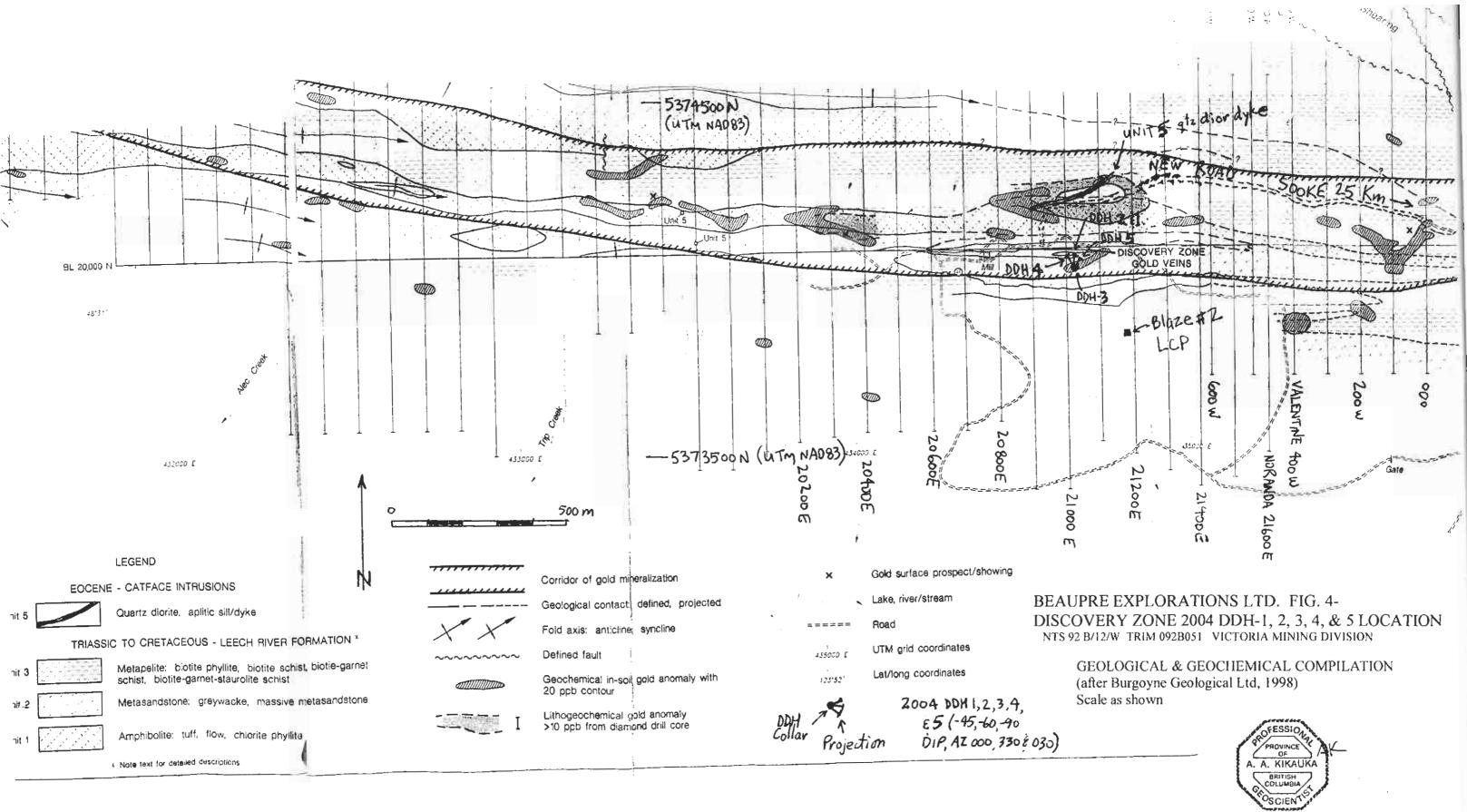
FIG. 3

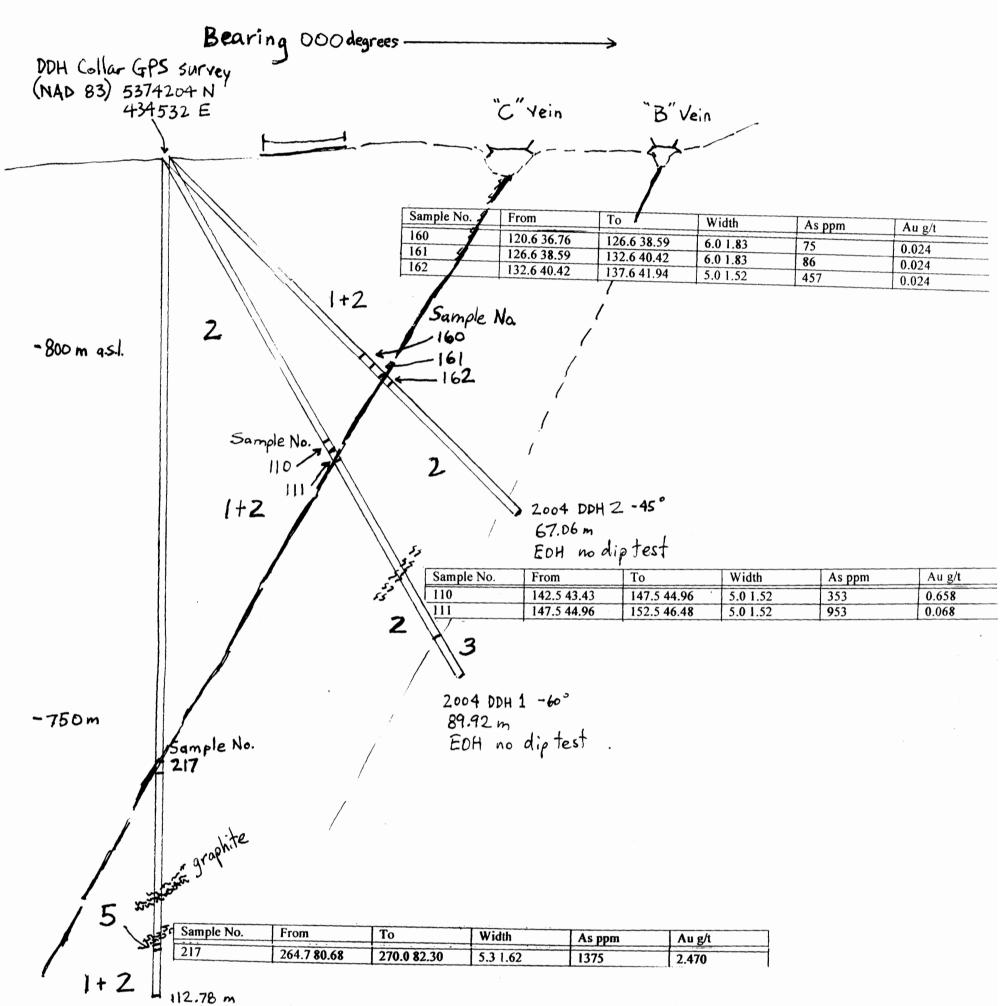


ROVINCE

OF


BRITISH


Tenures owned 100% by Beaupre Explorations Limited (Note: 501782 under option)



.

NH 1-5 LOCATION & GEOLOGY	r R
LEGEND TFACE INTRUSIONS	
z Diorite Dyke/Sill	
TCHOSIN VOLCANICS	
, Tuff, Agglomerate	
RETACEOUS LEECH RIVER FM.	2 2 2
ibolite, Chloritic, 3-5% Quartz-Carbonate	South
andstone, 1% Quartz as Metamorphic s, Metamorphic Segregation Banding	
elite, Biotite Schist, 1-3% Garnet	
ogy Contact ===== Road	-
nd Drill Hole ———— Claim Line	·
Dec., 2.004	
Ale 1:2,000	relation - Landard Constraints
50 100 m	

2004 DDH3 -90° EOH no dip test

-700 m

BEAUPRE EXPLORATIONS LTD. FIG. 5- LOOKING WEST DISCOVERY ZONE 2004 DDH-1, 2, & 3 CROSS SECTION NTS 92 B/12/W TRIM 092B051 VICTORIA MINING DIVISION SCALE 1:500

LITHOLOGY LEGEND EOCENE CATFACE INTRUSIONS 5 Quartz Diorite Dyke/Sill EOCENE METCHOSIN VOLCANICS 4 Basalt, Tuff, Agglomerate TRIASSIC/CRETACEOUS LEECH RIVER FM.

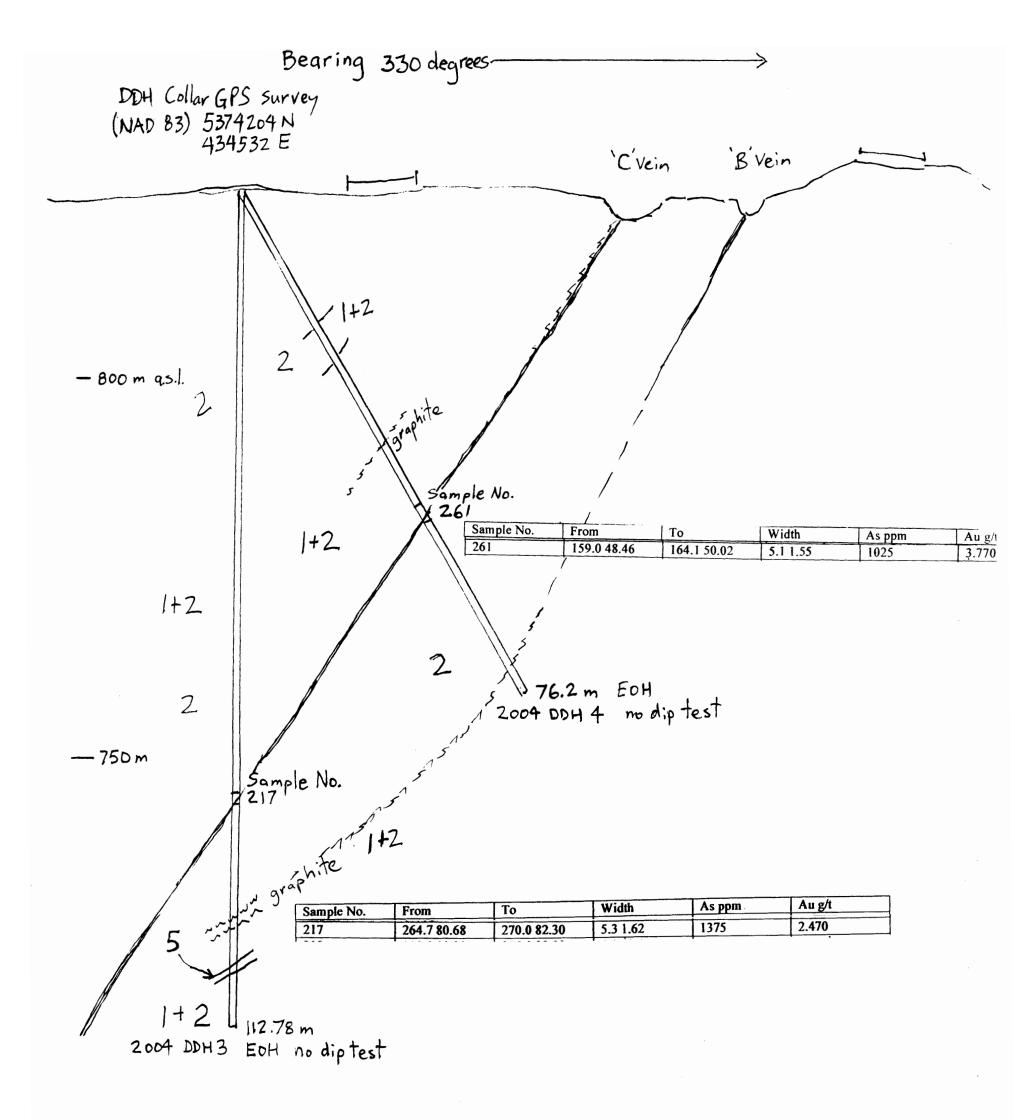
3 Amphibolite, Chloritic, 3-5% Quartz-Carbonate

- Metasandstone, 1% Quartz as Metamorphic Sweats, Metamorphic Segregation Banding
 Metapelite, Biotite Schist, 1-3% Garnet
- Lithology ContactDiamond Drill Hole

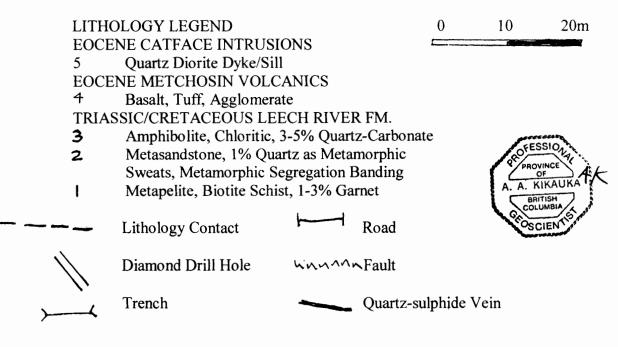
Road

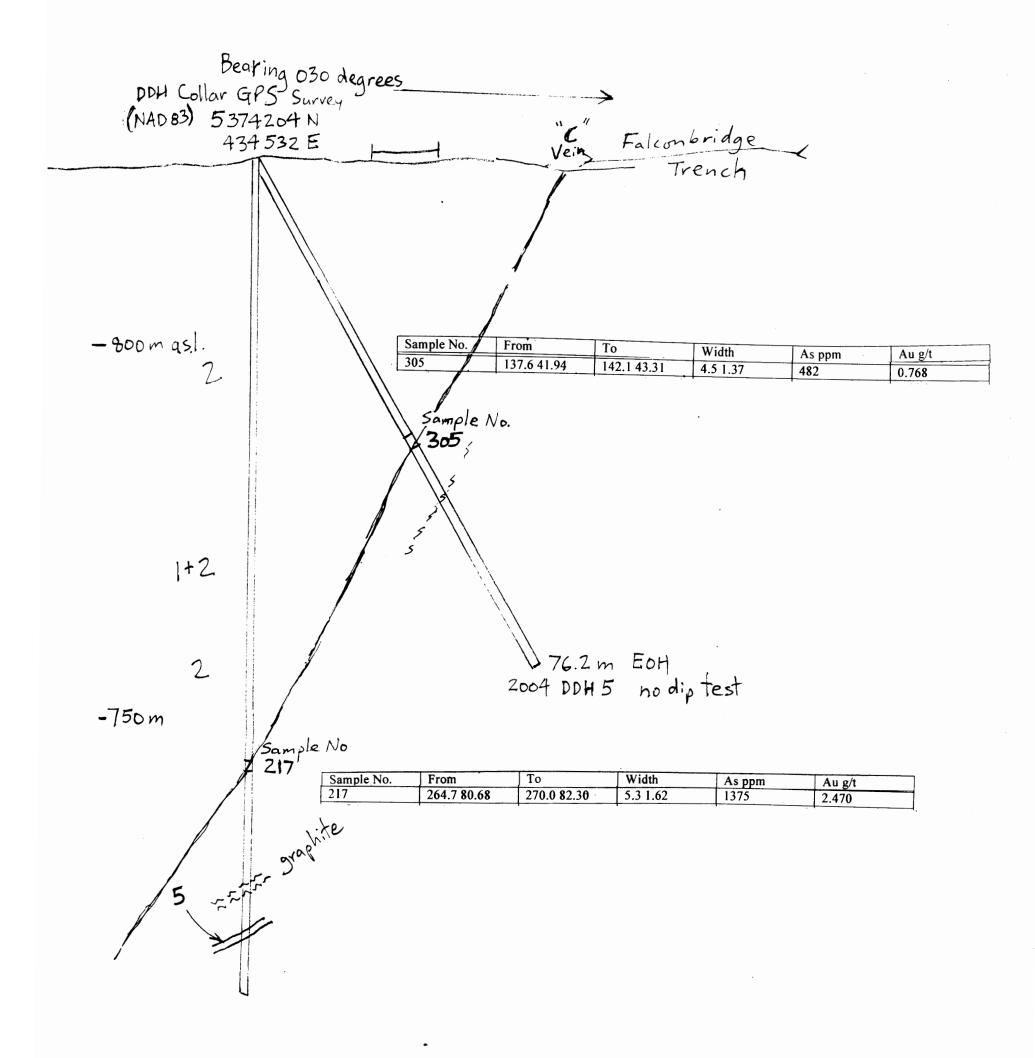
~~~~Fault

Trench


- Quartzsulphide Vein

0


10


20m

BEAUPRE EXPL. LTD. FIG. 6- LOOKING WEST-SOUTHWEST DISCOVERY ZONE 2004 DDH-3 & 4 CROSS SECTION

NTS 92 B/12/W TRIM 092B051 VICTORIA MINING DIVISION SCALE 1:500

BEAUPRE EXPL. LTD. FIG. 7- LOOKING WEST-NORTHWEST DISCOVERY ZONE 2004 DDH-3 & 5 CROSS SECTION NTS 92 B/12/W TRIM 092B051 VICTORIA MINING DIVISION SCALE 1:500

-700 m

LITHOLOGY LEGEND

0 10 20m

EOCENE CATFACE INTRUSIONS

5 Quartz Diorite Dyke/Sill EOCENE METCHOSIN VOLCANICS

4 Basalt, Tuff, Agglomerate TRIASSIC/CRETACEOUS LEECH RIVER FM.

- **3** Amphibolite, Chloritic, 3-5% Quartz-Carbonate
- Metasandstone, 1% Quartz as Metamorphic Sweats, Metamorphic Segregation Banding
- *I* Metapelite, Biotite Schist, 1-3% Garnet

Lithology Contact	Road	
Diamond Drill Hole	いへへへへ Fault	

rench

Quartz-sulphide Vein

Tenure Number ID	506818
Termination Type	
Title Type	МСХ
Tenure Sub Type	С
Tenure Type	м
Mining Division	
Good To Date	2006/FEB/14
Issue Date	2005/FEB/11
Termination Comments	
Termination Date	
Tag Number	
Claim Name	
Old Tenure Code	
Area In Hectares	1390.107

Map Numbers:

092B

Owners:

101792 BEAU PRE EXPLORATIONS LTD. 100.0%

Agents:

137830 JACQUES R. HOULE CONV (4017387)

Tenure Number ID	506823
Termination Type	
Title Type	MCX
Tenure Sub ⊤ype	С
Tenure Type	м
Mining Division	
Good To Date	2006/FEB/14
Issue Date	2005/FEB/11
Termination Comments	
Termination Date	
Tag Number	
Claim Name	
Old Tenure Code	
Area In Hectares	1240.915

Map Numbers:

092B 092C

Owners:

101792 BEAU PRE EXPLORATIONS LTD. 100.0%

Agents:

137830 JACQUES R. HOULE CONV (4017394)

Tenure Number ID	506812
Termination Type	
Title Type	MCX
Tenure Sub Type	С
Tenure Type	М
Mining Division	
Good To Date	2006/FEB/14
Issue Date	2005/FEB/11
Termination Comments	
Termination Date	
Tag Number	
Claim Name	
Old Tenure Code	
Area In Hectares	1561.852

Map Numbers:

092B

Owners:

101792 BEAU PRE EXPLORATIONS LTD. 100.0%

Agents:

137830 JACQUES R. HOULE CONV (4017377)

Tenure Number ID	506801
Termination Type	
Title Type	MCX
Tenure Sub Type	С
Tenure Type	м
Mining Division	
Good To Date	2006/FEB/14
Issue Date	2005/FEB/11
Termination Comments	
Termination Date	
Tag Number	
Claim Name	
Old Tenure Code	
Area In Hectares	1925.35

Map Numbers:

092B

Owners:

1

101792 BEAU PRE EXPLORATIONS LTD. 100.0%

Agents:

137830 JACQUES R. HOULE CONV (4017350)

Contact Us .

Mineral Titles Online Viewer

Search criteria:

Click here to go back to the tenure search page.

Search results:

Tenure Number	<u>Claim Name</u>	Owner	<u>Map</u> Number	Good To Date	Status	Mining Division	Area
260251	BLAZE #1	<u>101792</u> 100%	092B	2006/FE B /14	CONV 2005/FEB/11	VICTORIA	25.0
260253	BLAZE #2	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	50.0
260263	BLAZE 3	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	300.(
260296	BO #6	<u>101792</u> 100%	092B_	1999/SEP/17	FORF 1999/SEP/17	VICTORIA	25.0
260306	BLAZE #4	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	75.0
260324	BPEX #1	<u>101792</u> 100%	092B	2006/FE B /14	CONV 2005/FEB/11	VICTORIA	500.0
260325	BPEX #2	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	450.(
260326	BPEX #3	<u>101792</u> 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
260333	BPEX #4	<u>101792</u> 100%	<u>092B</u>	2006/FE B/14	CONV 2005/FEB/11	VICTORIA	75.0
260334	BPEX #5	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
260335	BPEX #6	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
260337	BPEX #11	<u>101792</u> 100%	092B	1995/APR/02	FORF 1995/APR/02	VICTORIA	200.0
260338	BPEX #12	<u>101792</u> 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	350.(
260354	BPEX #7	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	200.0
260381	BPEX 9	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	400.0
260414	JORDAN GOLD 5	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	450.0
260415	LUSTER #2	101792 100%	<u>092B</u>	2006/FE B/1 4	CONV 2005/FEB/11	VICTORIA	450.
260418	LUSTER #1	101792_100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	50.0
260435	P.C. #1	<u>101792</u> 100%	<u>092B</u>	1993/APR/07	FORF 1993/APR/07	VICTORIA	200.(
260436	P.C. #4	101792 100%	092B	1993/APR/07	FORF 1993/APR/07	VICTORIA	450.(
261022	DORAN 1	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	50.0
261023	DORAN 2 FR	101792 100%	092B	2002/FEB/14	FORF 2002/FEB/14	VICTORIA	25.0
261042	DORAN 5 FR	101792_100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
269465		101848 100%	092B	2001/DEC/31	DEMI 2001/DEC/31	VICTORIA	50 .0

http://www.mtonline.gov.bc.ca/mtov/searchTenures.do?agent=101792&agentFlag=agent... 16/03/2005

269466		101848 100%	092B	2001/DEC/31	DEMI 2001/DEC/31	VICTORIA	50.0
269467		101848 100%	092B	2001/DEC/31	DEMI 2001/DEC/31	VICTORIA	50.0
269528		101848 100%	092B	1997/DEC/15	FORF 1997/DEC/15	VICTORIA	50.0
320947	EDEN	101792 100%	092C060	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336403	RB-1	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336404	RB-2	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336405	RB-5	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336406	RB-6	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336407	RB-3	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336408	RB-4	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336409	RB-7	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336410	RB-8	101792 100%	0 92B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336411	RB-9	101792 100%	092В	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336412	RB-10	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336413	RB-11	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336414	RB-12	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336415	RB-13	101792 100%	<u>0</u> 92B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336416	RB-14	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336417	RB-15	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336418	RB-16	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336419	RB-17	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336420	RB-18	<u>101792</u> 100%	<u>0</u> 92B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336421	RB-19	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
336422	RB-20	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>336423</u>	RB-21	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>355196</u>	GS 1	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>355197</u>	GS 2	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>355198</u>	GS 3	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>355610</u>	A1	<u>101792</u> 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>355611</u>	A2	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>355612</u>	A3	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
<u>355613</u>	A4	<u>101792</u> 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355614	A5	<u>101792</u> 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355615	A6	<u>101792</u> 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355616	A7	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355617	A8	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355618	A9	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355619	A10	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355620	A11	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355621	A12	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
355622	A13	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362862	WALKER 1	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	500.0

http://www.mtonline.gov.bc.ca/mtov/searchTenures.do?agent=101792&agentFlag=agent... 16/03/2005

362863	LUSTER 3	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	500.
362864	B24	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362865	B23	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362866	B22	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362867	B21	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362868	В20	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362869	B19	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362870	B18	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362871	B17	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25:0
362872	B16	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362873	B15	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362874	B14	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362875	B13	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362876	B6	101792_100%	092B_	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362877	В5	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362878	B4	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362879	В3	<u>101792</u> 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362880	B2	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
362881	B1	101792 100%	<u>092B</u>	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	25.0
365460	WALKER 2	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	450.0
365461	WALKER 3	101792 100%	092B	2006/FEB/14	CONV 2005/FEB/11	VICTORIA	150.0

Click here to go back to the tenure search page.

COPYRIGHT DISCLAIMER PRIVACY A

o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

Page: 1 Finalized Date: 16-DEC-2004 This copy reported on 5-JAN-2005 Account: MDV

ICP-AES

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

APPENDIX B

CERTIFICATE VA04086898		SAMPLE PREPARATION						
	ALS CODE	DESCRIPTION						
Project: Valentine P.O. No.: This report is for 105 Pulp samples submitted to our lab in Vancouver, BC, Canada on 9-DEC-2004. The following have access to data associated with this certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um						
ROBERT BEAU PRE ANDRIS KIKAUKA		ANALYTICAL PROCEDUR	ES					
	ALS CODE	DESCRIPTION	INSTRUMENT					
	ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES					

Au-ICP22

To: BEAU PRE EXPLORATIONS LTD. ATTN: ROBERT BEAU PRE 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Au 50g FA ICP-AES finish

Signature: Place Com

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

Sample Description	Method Analyte Units LOR	WE1-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
101		1.10	0.002	<0.2	2.24	17	<10	480	<0.5	<2	0.54	<0.5	13	102	23	3.35
102		0.96	0.001	<0.2	2.32	3	<10	450	<0.5	<2	0.57	<0.5	11	85	16	3.14
103		3.18	0.001	<0.2	2.37	<2	<10	450	<0.5	<2	0.58	<0.5	11	65	22	3.06
104		4.12	0.001	<0.2	2.48	<2	< 1 0	330	<0.5	<2	0.49	<0.5	13	81	39	3.43
105		4.64	0.001	0.2	3.06	2	<10	370	<0.5	<2	0.44	<0.5	18	112	53	4.36
106		3.56	0.001	<0.2	2.04	<2	<10	350	<0.5	<2	0.68	<0.5	13	65	32	3.17
107		3.92	0.002	<0.2	2.28	6	<10	380	<0.5	<2	0.69	<0.5	12	77	28	3.33
108		3.92	0.003	<0.2	2.28	69	<10	380	<0.5	<2	1.03	<0.5	12	68	26	3.21
109		2.28	0.001	<0.2	2.24	10	<10	460	<0.5	<2	0.55	<0.5	11	74	21	3.21
110		2.68	0.658	<0.2	2.04	353	<10	330	<0.5	2	0.86	<0.5	12	71	29	3.16
111		2.60	0.068	0.2	2.17	953	<10	340	<0.5	<2	0.58	<0.5	10	72	24	2.85
112		2.92	0.008	0.2	2.61	13	<10	290	<0.5	<2	0.28	<0.5	16	71	49	4.29
113		2.56	0.018	0.2	2.23	8	<10	300	<0.5	<2	0.63	<0.5	13	67	37	3.54
114		2.68	0.001	<0.2	1.72	11	<10	380	<0.5	<2	0.66	<0.5	10	72	19	2.63
115		2.36	0.005	0.2	1.88	16	<10	380	<0.5	<2	0.52	<0.5	10	74	20	2.65
116		1.98	0.003	<0.2	1.84	7	<10	250	<0.5	<2	1.51	<0.5	11	71	26	2.90
117		2.32	0.002	<0.2	2.25	10	<10	300	<0.5	<2	0.44	<0.5	11	60	26	3.06
118		2.40	0.008	<0.2	2.10	5	<10	370	<0.5	<2	0.50	<0.5	10	66	18	2.73
119		2.68	0.003	<0.2	2.04	14	<10	270	<0.5	2	1.18	<0.5	9	65	21	2.75
120		2.74	0.001	<0.2	2.17	10	<10	410	<0.5	2	0.55	<0.5	11	82	22	2.87
121		2.78	0.001	<0.2	2.13	8	<10	360	<0.5	2	0.61	< 0.5	12	73	26	3.10
122		2.10	0.011	0.2	2.48	90	<10	280	<0.5	<2	1.32	<0.5	14	71	33	3.42
123		2.46	0.002	<0.2	2.01	6	<10	320	<0.5	<2	0.76	<0.5	12	78	26	2.98
124		2.26	0.002	<0.2	2.34	6	<10	420	<0.5	<2	0.77	<0.5	12 1 1	69 84	26 24	2.93 2.99
125		2.30	0.001	<0.2	2.48	4	<10	410	<0.5	<2	1.06	<0.5				
126		2.96	0.002	<0.2	3.12	10	<10	390	<0.5	2	1.72	<0.5	11	68	26	2.91
127		2.72	<0.001	<0.2	2.38	8	<10	360	<0.5	<2	0.79	<0.5	11	69	23	2.81
128		2.46	0.003	<0.2	2.55	4	<10	390	<0.5	<2	0.78	<0.5	12	88	29	3.17
129		2.66	0.001	<0.2	2.47	4	<10	350	<0.5	<2	0.76	<0.5	11	83	29 48	3.17 4.06
130		2.50	0.022	0.3	2.54	5	<10	260	<0.5	<2	0.68	<0.5	12	88		
131		2.90	0.016	0.2	2.41	3	<10	320	<0.5	<2	0.48	<0.5	13	83	37	3.72
132		2.92	0.019	0.3	3.23	122	<10	480	<0.5	<2	0.29	<0.5	19	132	56	4.55
133		2.40	0.010	0.3	2.86	22	<10	320	<0.5	<2	0.28	<0.5	17	108	62	4.36
134		3.04	0.015	0.2	2.92	23	<10	370	<0.5	<2	0.38	<0.5	18	124	57 44	4.47 4.07
135		3.00	0.009	<0.2	2.99	34	<10	410	<0.5	<2	0.39	<0.5	17	146		
136		2.64	0.030	0.2	2.99	12	<10	410	<0.5	3	0.55	<0.5	18	125	59	4.40
137		2.78	0.012	0.3	2.96	15	<10	380	<0.5	2	0.60	<0.5	15	106	54	4.01
138		2.62	0.003	0.3	2.77	2	<10	390	< 0.5	2	0.36	<0.5	16	118	49	4.20
139		2.44	0.004	0.3	2.55	<2	<10	350	<0.5	<2	0.29	<0.5	16	85	41	3.97
151		0.88	0.011	<0.2	2.29	7	<10	410	<0.5	<2	1.74	<0.5	14	88	31	3.35

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 D: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
101		10	1	1.32	10	1.29	477	1	0.10	26	910	2	0.32	2	8	24
102		10	<1	1.50	<10	1.18	483	<1	0.11	22	620	2	0.17	<2	8	30
103		10	1	1.36	<10	1.20	435	<1	0.15	23	640	<2	0.22	<2	8	42
104		10	<1	1.30	10	1.30	381	1	0.11	36	650	<2	0.24	2	9	35
105		10	<1	1.62	10	1.64	415	1	0.10	59	790	<2	0.29	<2	12	26
106		10	1	1.14	<10	1.14	440	2	0.12	26	580	<2	0.61	<2	6	36
107		10	<1	1.30	<10	1.26	487	1	0.13	25	600	<2	0.53	<2	8	40
108		10	1	1.30	<10	1.24	510	<1	0.12	24	590	<2	0.27	<2	9	38
109		10	<1	1.38	<10	1.36	442	<1	0.11	23	590	<2	0.11	<2	10	18
110		10	1	1.22	<10	1.17	462	1	0.10	26	580	<2	0.41	2	8	33
111		10	<1	1.18	10	1.02	462	1	0.16	23	450	3	0.22	<2	8	37
112		10	<1	1.30	10	1.52	422	1	0.08	38	670	3	0.45	<2	10	17
113		10	<1	1.24	10	1.30	402	1	0.09	32	1660	<2	0.36	<2	8	20
114		10	<1	1.01	10	1.08	397	1	0.09	20	570	2	0.22	<2	8	14
115		10	<1	1.12	<10	1.04	385	1	0.11	24	530	<2	0.21	<2	7	25
116		10	<1	1.04	<10	1.18	528	1	0.09	24	610	3	0.62	<2	7	60
117		10	<1	1.31	10	1.12	425	1	0.10	25	560	<2	0.25	<2	6	27
118		10	1	1.24	10	1.04	421	<1	0.11	18	500	<2	0.11	<2	7	30
119		10	<1	0.97	10	0.91	445	1	0.11	20	470	3	0.25	<2	6	57
120		10	<1	1.14	<10	1.15	382	1	0.14	22	550	<2	0.17	<2	8	33
121		10	1	1.12	10	1.20	371	1	0.11	26	570	<2	0.18	<2	8	27
122		10	<1	1.00	10	1.03	498	2	0.11	29	600	4	0.49	<2	6	65
123		10	<1	1.06	10	1.11	439	2	0.10	25	520	3	0.39	<2	7	3 5
124		10	<1	1.22	<10	1.14	447	<1	0.14	23	550	<2	0.24	<2	8	68
125		10	<1	1.20	<10	1.17	506	1	0.19	22	580	<2	0.41	<2	8	51
126		10	<1	1.09	<10	1.06	496	<1	0.29	24	590	2	0.46	2	8	85
127		10	1	1.00	<10	1.19	366	<1	0.19	23	570	2	0.20	<2	8	35
128		10	<1	1. 1 8	<10	1.27	354	1	0.17	28	600	<2	0.42	<2	8	54
129		10	<1	1.06	10	1.22	416	1	0.17	26	580	3	0.32	<2	8	48
130		10	<1	1.13	10	1.40	460	1	0.06	40	620	3	0.28	<2	7	28
131		10	<1	1.26	10	1.34	420	1	0.06	34	750	2	0.28	<2	7	17
132		10	<1	1.80	10	1.78	509	1	0.09	70	650	<2	0.20	<2	14	16
133		10	<1	1.60	10	1.60	408	<1	0.06	59	790	3	0.28	<2	11	12
134		10	<1	1.52	10	1.62	482	1	0.07	65	780	2	0.29	<2	11	15
135		10	<1	1.46	10	1.60	440	<1	0.10	69	700	3	0.19	<2	11	22
136		10	<1	1.30	10	1.62	449	<1	0.09	61	920	2	0.30	<2	11	21
137		10	<1	1.31	10	1.50	420	<1	0.09	51	770	2	0.24	<2	10	44
138		10	<1	1.48	10	1.50	433	1	0.08	55	780	<2	0.32	<2	10	15
139		10	<1	1.54	10	1.33	444	1	0.06	42	750	<2	0.44	<2	7	11
151		10	<1	1.31	<10	1.35	561	1	0.06	25	680	2	0.19	<2	9	50

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
101		0.22	<10	<10	87	<10	70	
102		0.27	<10	<10	83	<10	68	
103		0.24	<10	<10	84	<10	66	
104		0.19	<10	<10	95	<10	59	
105		0.22	<10	<10	127	<10	69	
106		0.20	<10	<10	81	<10	67	
107		0.25	<10	<10	88	<10	70	
108		0.26	<10	<10	96	<10	67	
109		0.24	<10	<10	97	<10	63	
110		0.23	<10	<10	89	<10	72	
111		0.21	<10	<10	82	10	64	
112		0.19	<10	<10	114	<10	73	
113		0.19	<10	<10	94	<10	69	
114		0.18	<10	<10	78	<10	55	
115		0.20	<10	<10	73	<10	57	
116		0.18	<10	<10	78	<10	61	
117		0.20	<10	<10	69	<10	72	
118		0.22	<10	<10	68	<10	60	
119		0.17	<10	<10	60	<10	61	
120		0.20	<10	<10	86	<10	61	
121		0.18	<10	<10	83	<10	67	
122		0.17	<10	<10	76	<10	73	
123		0.18	<10	<10	72	<10	68	
124		0.22	<10	<10	86	<10	66	
125		0.22	<10	<10	85	<10	66	
26		0.21	<10	<10	80	<10	65	
127		0.19	<10	<10	86	<10	62	
128		0.19	<10	<10	90	<10	69	
129		0.18	<10	<10	87	<10	68	
130		0.15	<10	<10	95	<10	84	
131		0.17	<10	<10	95	<10	63	
132		0.23	<10	<10	141	<10	34	
133		0.20	<10	<10	126	<10	38	
134		0.21	<10	<10	138	<10	43	
135		0.19	<10	<10	128	<10	41	
136		0.18	<10	<10	133	<10	57	
137		0.19	<10	<10	120	<10	41	
138		0.20	<10	<10	123	<10	57	
139		0.21	<10	<10	88	<10	100	
151		0.27	<10	<10	102	<10	71	

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
152		5.96	0.002	<0.2	2.21	9	<10	420	<0.5	<2	0.91	<0.5	12	69	28	3.04
153		2.90	0.001	0.2	2.52	<2	<10	360	<0.5	2	0.47	<0.5	14	102	38	3.55
154		1.90	<0.001	<0.2	2.32	3	<10	440	<0.5	<2	0.40	<0.5	12	102	29	3.17
155		2.80	0.001	0.2	2.23	<2	<10	360	<0.5	<2	0.42	<0.5	12	95	31	3.23
156		2.64	<0.001	<0.2	2.19	<2	<10	390	<0.5	<2	0.72	<0.5	12	92	28	2.96
157		2.40	0.002	0.2	2.14	5	<10	420	<0.5	<2	0.92	<0.5	13	84	29	3.18
158		2.06	0.002	<0.2	2.16	33	<10	450	<0.5	<2	0.57	<0.5	13	70	27	3.30
159		2.30	0.001	<0.2	2.18	4	<10	410	<0.5	<2	0.51	<0.5	14	86	27	3.21
160		3.32	0.024	<0.2	2.00	75	< 1 0	420	<0.5	<2	0.88	<0.5	12	99	21	2.96
161		2.40	0.240	0.2	2.25	86	<10	370	<0.5	<2	0.70	<0.5	13	70	32	3.38
162		3.18	0.024	<0.2	3.13	457	<10	410	<0.5	<2	0.55	<0.5	24	99	57	4.99
163		3.38	0.002	<0.2	2.19	11	< 1 0	360	<0.5	<2	1.08	<0.5	13	78	33	3.43
164		2.78	0.005	<0.2	2.27	8	<10	360	<0.5	<2	0.51	<0.5	13	84	28	3.25
165		2.58	0.001	<0.2	1.98	2	<10	360	<0.5	<2	0.57	<0.5	10	67	18	2.75
166		2.26	0.001	<0.2	2.08	19	<10	300	<0.5	<2	0.53	<0.5	12	91	23	3.02
167		2.66	0.008	<0.2	2.22	8	<10	400	<0.5	<2	0.44	<0.5	13	83	29	3.53
168		2.72	0.005	<0.2	2.03	6	<10	380	<0.5	<2	0.78	<0.5	12	83	21	2.88
169		2.28	0.002	<0.2	1.89	<2	<10	270	<0.5	2	0.60	<0.5	11	80	22	2.84
170		2.44	0.005	<0.2	2.32	5	<10	410	<0.5	<2	0.53	<0.5	12	76	25	3.14
171		2.90	0.003	<0.2	2.49	3	<10	460	<0.5	<2	0.98	<0.5	13	114	26	3.13
172		3.12	0.003	<0.2	2.46	6	<10	430	<0.5	<2	0.50	<0.5	15	79	25	3.55
173		3.26	0.012	<0.2	2.35	<2	<10	440	<0.5	<2	0.57	<0.5	13	110	29	3.36
201		2.22	0.003	<0.2	2.27	87	<10	460	<0.5	<2	2.02	<0.5	13	104	24	3.29
202		2.66	0.005	<0.2	2.03	5	<10	380	<0.5	<2	0.62	<0.5	13	98	29	3.42
203		2.50	0.002	<0.2	2.03	4	<10	390	<0.5	<2	0.80	<0.5	11	82	17	2.91
204		2.60	0.009	<0.2	2.36	9	<10	310	<0.5	<2	0.44	<0.5	14	89	37	3.78
205		2.38	0.002	<0.2	2.57	2	<10	300	<0.5	<2	0.33	<0.5	13	85	43	3.98
206		2.80	0.002	0.2	2.97	<2	<10	360	<0.5	<2	0.43	<0.5	16	142	48	4.19
207		2.60	0.001	<0.2	2.78	5	<10	360	<0.5	<2	0.33	<0.5	16	114	55	4.18
208		2.54	<0.001	0.2	3.08	<2	<10	410	<0.5	<2	0.25	<0.5	17	150	51	4.48
209		2.66	0.002	<0.2	2.52	5	<10	360	<0.5	<2	0.26	<0.5	16	104	50	3.97
210		2.84	<0.001	<0.2	1.98	<2	<10	330	<0.5	<2	0.43	<0.5	11	104	23	2.77
211		2.50	<0.001	<0.2	2.12	3	<10	390	<0.5	<2	0.30	<0.5	12	84	25	3.11
212		2.50	<0.001	<0.2	2.24	<2	<10	380	<0.5	<2	0.94	<0.5	13	99	32	3.14
213		2.40	<0.001	<0.2	2.20	<2	<10	470	<0.5	<2	0.35	<0.5	14	80	29	3.29
214		2.78	0.001	0.2	2.56	<2	< 1 0	410	<0.5	<2	1.00	<0.5	11	108	23	2.96
215		1.16	0.001	<0.2	2.19	2	<10	440	<0.5	<2	0.67	<0.5	13	97	25	3.10
216		2.46	0.001	<0.2	1.61	2	<10	230	<0.5	<2	1.12	<0.5	9	102	29	1.98
217		2.76	2.47	0.3	1.91	1375	<10	240	<0.5	<2	1.58	<0.5	10	79	19	2.91
218		2.68	0.008	0.2	2.41	7	<10	370	<0.5	<2	0.47	<0.5	13	110	29	3.69

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

CERTIFICATE OF ANALYSIS	VA04086898
-------------------------	------------

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
152		10	<1	1.18	<10	1.20	469	1	0.12	21	690	<2	0.24	<2	8	77
153		10	<1	1.27	10	1.37	407	1	0.08	36	650	<2	0.25	<2	10	27
154		10	<1	1.28	10	1.30	380	2	0.07	26	630	<2	0.16	<2	9	29
155		10	1	1.27	10	1.19	394	1	0.09	29	580	2	0.31	<2	8	30
156		10	<1	1.21	<10	1.12	454	1	0.14	23	540	<2	0.38	<2	8	41
157		10	<1	1.31	<10	1.26	491	1	0.09	25	600	2	0.50	<2	9	48
158		10	<1	1.40	<10	1.27	463	1	0.08	24	560	<2	0.46	<2	8	24
159		10	<1	1.13	<10	1.31	439	1	0.08	26	630	<2	0.19	<2	8	29
160		10	<1	1.18	<10	1.19	443	1	0.09	23	550	2	0.19	<2	9	32
161		10	1	1.32	10	1.19	477	2	0.06	28	590	<2	0.25	<2	8	37
162		10	<1	1.70	10	1.73	549	2	0.08	45	1220	3	0.60	<2	13	24
163		10	<1	1.17	10	1.17	515	1	0.08	27	610	2	0.51	<2	7	63
164		10	1	1.30	10	1.17	504	1	0.08	26	530	<2	0.23	<2	7	25
165		10	<1	1.13	10	1.04	446	1	0.09	20	470	3	0.16	<2	7	32
166		10	<1	0.89	10	1.01	399	2	0.09	23	510	4	0.31	<2	6	33
167		10	1	1.24	10	1.22	446	4	0.06	29	570	<2	0.33	<2	8	18
168		10	<1	0.95	10	1.15	396	<1	0.12	23	580	<2	0.09	2	8	34
169		10	<1	1.00	10	1.07	408	1	0.06	21	450	<2	0.32	<2	5 8	26
170		10	<1 <1	1.27	10 <10	1.19	474 482	1 1	0.11 0.14	25 26	500 580	2 <2	0.21 0.30	<2 <2	o 9	28 60
171		10		1.25		1.21									-	
172		10	<1	1.51	<10	1.50	459	1	0.09	26	630	<2	0.37	<2	8	29
173		10	<1	1.30	<10	1.22	471	1	0.09	28	590	<2	0.23	<2	9	46
201		10	<1	1.17	<10	1.37	545	<1	0.07	23	610	<2 2	0.05	<2 <2	9 7	49 25
202		10	<1	1.28	<10	1.16	484 500	1	0.06	25 20	580 530	2 <2	0.31 0.20	<2 <2	7	25 30
203		10	<1	1.15	<10	1.10		<1	0.09							
204		10	<1	1.28	10	1.35	460	<1	0.05	32	630	3	0.18	<2	8	17
205		10	<1	1.44	10	1.46	405	1	0.05	39	830	2	0.29	<2	9	15
206		10	1	1.64	10	1.50	452	1	0.10	53	790	3	0.31	<2	11 11	22
207 208		10	<1 <1	1.58 1.74	10 10	1.48 1.72	403 499	1 2	0.08 0.06	47 69	720 820	2 5	0.35 0.18	<2 <2	11	22 10
		ļ														
209		10	<1	1.46	10	1.43	367	1	0.07	52	860	2	0.42	<2	10	16
210		10	<1	0.89	10	1.16	315	<1	0.10	22	620	2	0.14	<2 <2	9 9	18
211		10	1	1.14	<10	1.34	330	<1	0.07	25 27	590 740	<2 <2	0.17 0.26	<2 <2	9 8	23 196
212		10 10	<1 <1	1.16 1.34	<10 <10	1.26 1.28	379 421	1 <1	0.08 0.07	27 26	600	<2 3	0.26	<2 <2	о 8	75
213																
214		10	<1	1.24	<10	1.24	446	<1	0.16	22	600	2	0.30	<2	8	100
215		10	<1	1.25	<10	1.30	423	1	0.13	23	600	<2	0.43	<2	8	50 52
216		10	<1	0.56	<10	0.85	216	<1	0.14	19	730	2	0.10	<2	3	53
217		10	<1	0.84	<10	1.04	543	1	0.08	20	510	4	0.32	<2	6 9	45
218		10	1	1.29	<10	1.34	408	1	0.07	28	550	2	0.34	<2	9	20

т

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2
150							
152		0.24	<10	<10	90	<10	62
153		0.20	<10	<10	104	<10	57
154		0.19	<10	<10	93	<10	70
155		0.20	<10	<10	87	<10	71
156		0.22	<10	<10	85	<10	65
157		0.24	<10	<10	93	<10	68
158		0.27	<10	<10	93	<10	71
159		0.22	<10	<10	93	<10	67
160		0.22	<10	<10	86	<10	61
161		0.21	<10	<10	87	<10	78
162		0.23	<10	<10	131	<10	121
163		0.21	<10	<10	84	<10	75
164		0.22	<10	<10	81	<10	76
165		0.21	<10	<10	68	<10	63
166		0.21	<10	<10	62	<10	67
167		0.21	<10	<10	82	<10	73
168		0.17	<10	<10	86	<10	59
169		0.16	<10	<10	54	<10	66
170		0.22	<10	<10	77	<10	72
171		0.22	<10	<10	89	<10	68
172		0.24	<10	<10	90	<10	81
173		0.22	<10	<10	92	<10	75
201		0.21	<10	<10	98	<10	65
202		0.26	<10	<10	84	<10	73
203		0.23	<10	<10	76	<10	63
204		0.18	<10	<10	99	<10	86
205		0.19	<10	<10	104	<10	68
206		0.21	<10	<10	114	<10	75
207		0.21	<10	<10	127	<10	55
208		0.23	<10	<10	126	<10	52
209		0.20	<10	<10	108	<10	29
210		0.15	<10	<10	91	<10	56
211		0.17	<10	<10	100	<10	66
212		0.18	<10	<10	93	<10	65
213		0.21	<10	<10	95	<10	71
214		0.22	<10	<10	89	<10	61
215		0.21	<10	<10	99	<10	64
216		0.13	<10	<10	62	<10	39
217		0.14	<10	<10	68	<10	65
218		0.19	<10	<10	101	<10	79

268

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

5.16

0.001

<0.2

2.11

12

212 Brooksbank Avenue North Vancouver BC V7J 2C1 D: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

20

122

3.00

CERTIFICATE OF ANALYSIS VA04086898

<0.5

11

Project: Valentine

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-ICP22 Au ppm 0.001	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm <u>1</u>	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
219		2.44	0.023	0.2	2.82	<2	<10	290	<0.5	<2	0.44	<0.5	17	89	55	4.72
220		2.80	0.014	<0.2	2.65	5	<10	280	<0.5	<2	0.43	<0.5	17	97	59	4.42
221		2.60	0.002	<0.2	2.20	3	<10	390	<0.5	<2	0.26	<0.5	13	83	27	3.36
222		2.88	0.002	<0.2	2.13	8	<10	370	<0.5	<2	0.28	<0.5	13	100	30	3.33
223		1.06	0.003	<0.2	2.72	33	<10	420	<0.5	<2	0.95	<0.5	15	86	35	3.66
224		3.16	0.014	<0.2	2.14	13	<10	330	<0.5	<2	0.86	<0.5	12	94	24	3.10
225		3.04	0.001	<0.2	2.22	<2	<10	420	<0.5	<2	1.06	<0.5	12	90	27	3.03
251		3.28	0.002	<0.2	2.27	5	<10	370	<0.5	<2	0.87	<0.5	10	126	26	3.00
252		3.12	0.002	<0.2	2.06	5	<10	380	<0.5	<2	0.36	<0.5	12	97	28	3.10
253		2.62	0.002	<0.2	2.53	4	<10	330	<0.5	<2	0.33	<0.5	15	118	36	3.76
254		2.54	0.001	<0.2	3.38	6	<10	350	<0.5	<2	0.82	<0.5	18	144	57	4.18
255		2.56	<0.001	<0.2	2.37	<2	<10	360	<0.5	<2	0.47	<0.5	12	88	31	3.29
256		2.32	<0.001	<0.2	2.21	2	<10	380	<0.5	<2	0.46	<0.5	12	86	29	3.15
257		2.88	<0.001	<0.2	2.23	2	<10	400	<0.5	<2	0.53	<0.5	13	94	26	3.03
258		3.94	<0.001	<0.2	2.41	<2	<10	390	<0.5	<2	1.05	<0.5	12	95	28	3.07
259		2.80	0.003	<0.2	2.46	7	<10	450	<0.5	<2	0.66	<0.5	13	106	40	3.71
260		2.68	0.006	0.2	2.27	14	<10	360	<0.5	<2	0.57	<0.5	14	93	38	3.64
261		2.72	3.77	0.2	2.02	1025	<10	370	<0.5	<2	0.66	<0.5	10	132	18	2.73
262		3.84	0.095	<0.2	2.35	5	<10	310	<0.5	<2	0.45	<0.5	13	108	35	3.48
263		6.10	0.012	<0.2	2.26	4	<10	350	<0.5	<2	0.60	<0.5	13	106	33	3.38
264		3.46	0.002	<0.2	1.94	17	<10	480	<0.5	<2	0.56	<0.5	10	94	19	2.84
265		1.42	0.017	0.2	2.25	7	<10	330	<0.5	<2	0.52	<0.5	12	90	34	3.55
266		4.50	0.002	<0.2	2.08	9	<10	420	<0.5	<2	0.56	<0.5	11	92	24	2.99
267		3.98	0.005	<0.2	2.21	23	<10	350	<0.5	<2	0.76	<0.5	11	93	27	3.25

<10

350

<0.5

<2

1.10

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 D: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

Meth Analy Unit Sample Description Loi	te ³ I	-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
219		10	1	1.56	<10	1.54	450	1	0.05	44	960	3	0.54	<2	10	12
220		10	2	1.40	<10	1.50	446	1	0.05	44	970	<2	0.51	<2	9	11
221		10	1	1.40	10	1.25	362	1	0.07	27	610	2	0.28	<2	8	13
222		10	<1	1.39	10	1.26	358	<1	0.06	27	580	<2	0.37	<2	8	12
223		10	<1	1.32	<10	1.32	441	1	0.12	31	630	2	0.61	<2	8	52
224		10	1	1.27	<10	1.10	454	<1	0.07	23	550	4	0.42	<2	6	40
225		10	1	1.24	<10	1.24	419	<1	0.10	24	630	<2	0.25	<2	8	73
251		10	<1	1.30	< 1 0	1.12	445	<1	0.10	21	590	2	0.28	<2	7	52
252		10	<1	1.20	<10	1.20	362	1	0.07	25	610	2	0.24	<2	8	16
253		10	<1	1.45	10	1.42	393	1	0.06	40	730	2	0.24	<2	9	14
254		10	<1	1.56	10	1.48	460	2	0.12	63	840	3	0.37	<2	10	49
255		10	1	1.09	10	1.30	371	1	0.11	29	650	3	0.32	<2	9	30
256		10	<1	1.20	<10	1.25	382	1	0.10	28	660	<2	0.25	<2	8	24
257		10	<1	1.24	<10	1.26	384	<1	0.13	24	590	<2	0.23	<2	8	73
258		10	<1	1.14	<10	1.18	476	1	0.16	24	600	4	0.36	<2	7	63
259		10	1	1.50	<10	1.24	498	2	0.10	30	620	3	0.52	<2	8	29
260		10	<1	1.26	<10	1.02	517	4	0.12	28	520	4	0.76	<2	7	32
261		10	<1	1.01	<10	1.00	414	1	0.14	21	530	3	0.25	<2	7	37
262		10	1	1.19	10	1.30	379	1	0.11	29	630	<2	0.40	<2	9	24
263		10	1	1.22	10	1.32	410	1	0.11	28	740	3	0.36	<2	9	25
264		10	1	1.26	10	1.08	427	1	0.10	20	520	<2	0.23	<2	8	19
265	1	10	<1	1.33	<10	1.18	470	1	0.08	26	520	2	0.70	<2	6	29
266		10	<1	1.29	10	1.13	408	<1	0.10	21	530	2	0.28	<2	7	37
267		10	1	1.12	10	1.15	388	3	0.10	29	620	2	0.32	<2	7	32
268		10	<1	1.11	10	1.20	471	1	0.10	23	570	3	0.13	<2	8	37

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada 1 td.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 16-DEC-2004 Account: MDV

Project: Valentine

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	
219		0.20	<10	<10	113	<10	95	
220		0.19	<10	<10	108	<10	64	
221		0.20	<10	<10	92	<10	73	
222		0.21	<10	<10	88	<10	71	
223		0.21	<10	<10	99	<10	76	
224		0.23	<10	<10	77	<10	68	
225		0.23	<10	<10	95 70	<10	64	
251		0.22	<10	<10	76	<10	62 68 `	
252 253		0.18 0.19	<10 <10	<10 <10	89 102	<10 <10	53	
254		0.21	<10	<10	108	<10 <10	54 66	
255		0.17 0.19	<10 <10	<10 <10	100 96	<10 <10	66 70	
256 257		0.19	<10 <10	<10 <10	96 97	<10	64	
258		0.21	<10	<10	88	<10	65	
		0.27	<10	<10	94	<10	76	
259 260		0.27	<10 <10	<10 <10	94 86	<10 <10	76 71	
261		0.25	<10 <10	<10 <10	78	<10 <10	63	
262		0.17	<10	<10 <10	99	<10	72	
263		0.19	<10	<10	96	<10	65	
264		0.23	<10	<10	83	<10	59	
265		0.23	<10	<10	72	<10	74	
266		0.23	<10	<10	83	<10	66	
267		0.19	<10	<10	82	<10	69	
268		0.20	<10	<10	83	<10	59	
		1						

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

O: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

Page: 1 Finalized Date: 13-JAN-2005 This copy reported on 3-MAR-2005 Account: MDV

ICP-AES

ICP-AES

CERTIFICATE VA05000155		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: Valentine P.O. No.: This report is for 20 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 29-DEC-2004. The following have access to data associated with this certificate: ROBERT BEAU PRE ANDRIS KIKAUKA	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31 DRY-21	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um High Temperature Drying	
		ANALYTICAL PROCEDURES	
	ALS CODE	DESCRIPTION	NSTRUMENT

ME-ICP41

Au-ICP22

To:	BEAU PRE EXPLORATIONS LTD. ATTN: ROBERT BEAU PRE
	110-850 BLANSHARD ST
	VICTORIA BC V8W 2H2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

34 Element Aqua Regia ICP-AES

Au 50g FA ICP-AES finish

Signature:

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 0: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 13-JAN-2005 Account: MDV

Project: Valentine

Metho Analy Unit: ample Description Lor	e Recvd V		ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP4 Fe % 0.01
301	2.32	0.004	<0.2	1.90	7	<10	460	<0.5	<2	0.63	<0.5	12	69	65	3.02
302	3.68	0.003	<0.2	2.25	<2	<10	410	<0.5	<2	0.85	<0.5	11	71	51	2.97
303	1.54	0.013	0.2	2.23	<2	<10	480	<0.5	<2	0.85	<0.5	12	78	30	2.94
304	1.28	0.002	<0.2	2.19	7	<10	450	<0.5	<2	0.76	<0.5	12	87	21	3.10
305	2.52	0.768	0.2	1.92	482	<10	340	<0.5	<2	0.81	<0.5	12	64	26	3.10
306	1.96	0.006	<0.2	2.53	8	<10	250	<0.5	<2	0.61	<0.5	15	70	47	3.86
807	2.86	0.004	<0.2	2.63	9	<10	340	<0.5	<2	1.01	<0.5	14	63	36	3.59
08	2.40	0.003	<0.2	2.39	9	<10	290	<0.5	<2	0.69	<0.5	12	54	31	3.13
09	2.50	<0.001	<0.2	2.24	18	<10	340	<0.5	<2	0.55	<0.5	10	53	17	2.59
10	2.06	0.002	<0.2	2.11	6	<10	300	<0.5	<2	0.39	<0.5	9	53	18	2.62
11	2.52	0.001	<0.2	2.63	11	<10	400	<0.5	<2	0.98	<0.5	10	58	28	2.89
12	3.06	0.001	<0.2	2.60	30	<10	390	<0.5	<2	0.78	<0.5	13	59	34	3.59
13	2.78	0.003	<0.2	2.54	11	<10	360	<0.5	<2	0.86	<0.5	13	60	28	3.47
14	2.90	0.002	<0.2	2.35	10	<10	330	<0.5	<2	0.93	<0.5	9	62	22	2.81
15	2.92	0.005	<0.2	2.17	18	<10	340	<0.5	<2	1.12	<0.5	11	56	22	2.86
16	4.28	0.014	0.2	2.70	3	<10	360	<0.5	<2	0.86	<0.5	17	61	45	4.24
17	1.52	0.003	<0.2	2.63	9	<10	410	<0.5	<2	0.71	<0.5	12	74	21	3.10
18	2.24	0.010	<0.2	2.23	8	<10	320	<0.5	<2	0.50	<0.5	12	63	31	3.29
19	3.14	0.018	<0.2	2.71	11	<10	290	<0.5	<2	0.49	<0.5	15	73	48	3.88
20	3.38	0.014	<0.2	2.42	14	<10	360	<0.5	<2	0.46	<0.5	13	69	28	3.25

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218

o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 13-JAN-2005 Account: MDV

Project: Valentine

CERTIFICATE OF ANALYSIS VA05000155

Method Analyte Units Cample Description LOR		ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP4 Sr ppm 1
301	10	<1	1.16	<10	1.08	454	1	0.06	20	570	9	0.27	<2	7	21
302	10	<1	1.26	<10	1.12	420	1	0.10	21	550	3	0.20	<2	8	65
303	10	<1	1.24	<10	1.18	417	1	0.12	20	530	3	0.28	2	8	42
304	10	<1	1.29	<10	1.20	511	<1	0.08	20	550	2	0.13	3	8	32
305	10	<1	1.24	<10	1.10	491	1	0.06	23	600	7	0.26	<2	8	22
306	10	<1	1,18	10	1.26	397	1	0.05	35	750	4	0.45	2	8	32
307	10	<1	1.21	<10	1.28	561	1	0.12	27	600	4	0.51	<2	8	47
308	10	1	1.22	10	1.14	456	<1	0.07	27	550	3	0.33	<2	6	44
309	10	<1	1.16	<10	1.05	422	<1	0.10	18	490	2	0.14	<2	7	64
310	10	1	0.94	10	1.00	376	<1	0.08	19	470	3	0.13	<2	6	81
311	10	<1	1.17	<10	1.16	456	<1	0.13	21	550	2	0.19	<2	7	104
312	10	<1	1.44	10	1.32	435	<1	0.08	30	620	<2	0.26	<2	7	44
313	10	1	1.34	10	1.24	463	<1	0.07	28	660	3	0.24	<2	8	36
314	10	<1	1.13	10	1.10	469	<1	0.12	21	480	11	0.24	<2	6	4 9
315	10	<1	1.10	<10	1.20	456	<1	0.09	20	520	3	0.27	<2	7	41
316	10	<1	1.44	<10	1.42	460	3	0.10	37	660	5	1.09	3	6	43
317	10	<1	1.18	<10	1.22	422	1	0.12	23	630	3	0.36	<2	8	38
318	10	<1	1.12	10	1.33	383	<1	0.06	28	590	2	0.34	<2	8	19
319	10	1	1.28	10	1.46	370	1	0.05	41	630	3	0.25	2	8	26
320	10	<1	1.22	10	1.30	397	<1	0.08	29	670	2	0.17	<2	9	22

.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 o: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2 Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 13-JAN-2005 Account: MDV

Project: Valentine

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2
301		0.22	<10	<10	81	<10	128
302		0.20	<10	<10	87	<10	81
303		0.22	<10	<10	93	<10	69
304		0.25	<10	<10	87	<10	64
305		0.22	<10	<10	87	<10	69
306		0.16	<10	<10	94	<10	54
307		0.21	<10	<10	93	<10	76
308	i	0.20	<10	<10	77	<10	74
309		0.20	<10	<10	69	<10	60
310		0.20	<10	<10	70	<10	61
311		0.20	<10	<10	81	<10	61
312		0.22	<10	<10	89	<10	78
313		0.21	<10	<10	86	<10	77
314		0.19	<10	<10	66	<10	128
315		0.20	<10	<10	77	<10	60
316		0.21	<10	<10	89	<10	92
317		0.21	<10	<10	87	<10	66
318		0.19	<10	<10	92	<10	72
319		0.19	<10	<10	105	<10	53
320		0.18	<10	<10	95	30	61
· <u>·····</u> ·····		-		· · · · · · · · · · · · · · · · · · ·			
		1					
		1					
		1					
		1					

Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 To: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

Page: 1 Finalized Date: 1-FEB-2005 This copy reported on 3-MAR-2005 Account: MDV

CE	RTIFICATE VA0500	5677		SA
			ALS CODE	DESCRIP
Project: Valentine			FND-03	Find Reje
P.O. No.:			BAG-01	Bulk Mas
	amples submitted to our lab i	n Vancouver, BC, Canada on	SPL-21	Split sam
25-JAN-2005.	samples submitted to our lab l	n vancouver, BC, Canada on	PUL-32	Pulverize
			SCR-21	Screen to
The following have access	to data associated with this	s certificate:	i I	
ROBERT BEAU PRE				ANAL
			ALS CODE	DESCRI

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
FND-03	Find Reject for Addn Analysis	
BAG-01	Bulk Master for Storage	
SPL-21	Split sample - riffle splitter	
PUL-32	Pulverize 1000g to 85% < 75 um	
SCR-21	Screen to -100 um	

	ANALYTICAL PROCEDURI	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au-SCR24	Au Screen FA Double Minus -50g	WST-SIM
Au-AA26	Ore Grade Au 50g FA AA finish	AAS
Au-AA26D	Ore Grade Au 50g FA AA Dup	AAS

To: BEAU PRE EXPLORATIONS LTD. ATTN: ROBERT BEAU PRE 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

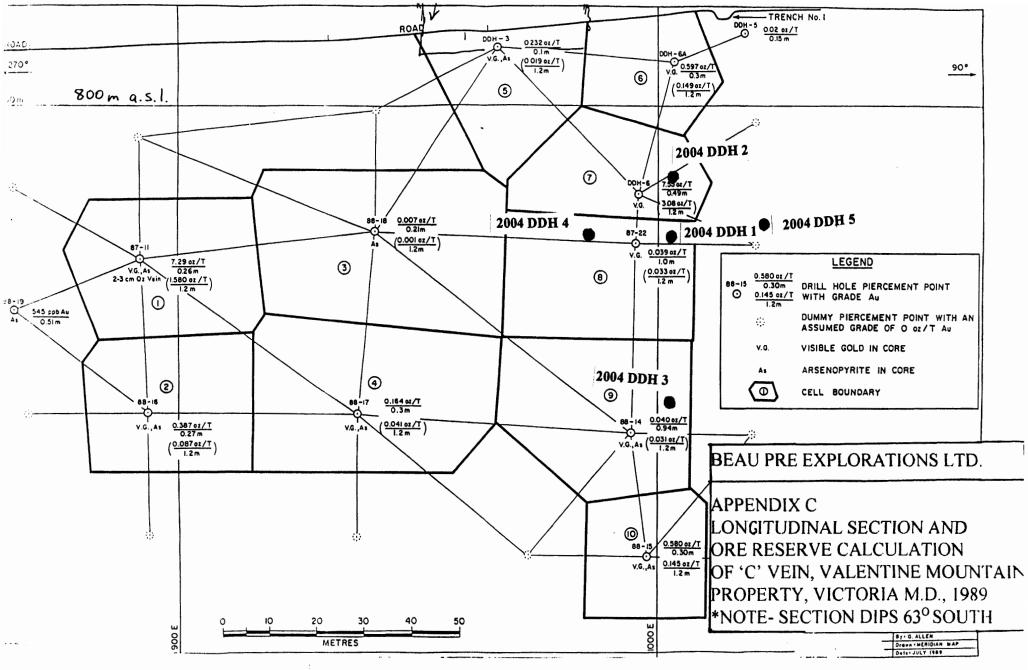
Signature: Phiere

ALS Chemex

The second second commence of

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218


To: BEAU PRE EXPLORATIONS LTD. 110-850 BLANSHARD ST VICTORIA BC V8W 2H2

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 1-FEB-2005 Account: MDV

Project: Valentine

أراب بمصفقه فتماسه فتماصل بمناجر منافر المراجر المراجر المراجر المراجر

	Method	Au-SCR24	Au-SCR24	Au-SCR24	Au-SCR24	Au-SCR24	Au-SCR24	Au-AA26	Au-AA26D
	Analyte	Au Total	Au (+) F	Au (-) F	Au (+) m	WT. + Fr	WT Fr	Au	Au
	Units	ppm	ppm	ppm	mg	9	9	ppm	ppm
Sample Description	LOR	0.05	0.05	0.05	0.001	0.01	0.1	0.01	0.01
110		1.35	50.9	0.60	0.734	14.41	949.2	0.59	0.61
111		0.12	3.21	0.08	0.042	13.10	1008.0	0.08	0.08
160		<0.05	<0.05	<0.05	<0.001	16.32	1026.0	0.02	0.03
161		0.22	<0.05	0.23	<0.001	26.84	1086.5	0.23	0.23
162		<0.05	<0.05	<0.05	<0.001	30.80	969.7	0.02	0.02
217		2.28	42.5	2.02	0.274	6.44	995.1	2.17	1.86
261		3.59	113.0	1.92	1.758	15.54	1013.0	1.78	2.05
		1							

2004 DDH 1-5 PIERCE POINTS (IN RELATION TO PREVIOUS DRILLING)