

MAR - 9 2005

Gold Commissioner's Office VANCOUVER, B.C.

ASSESSMENT REPORT

including

Diamond Drilling

on the

WOODJAM PROPERTY

Woodjam 5 (367190) Claim Woodjam 6-12 (367883-89) Claims Woodjam 14 (412157) Claim (Claims owned by WILDROSE RESOURCES LTD.)

CARIBOO MINING DIVISION,
British Columbia
NTS: 93A/3, 93A/6 W
Latitude 52°16' N, Longitude 121°22' W

Prepared for Operator:

FJORDLAND EXPLORATION INC. 510-510 Burrard Street Vancouver, B.C., Çanada V6C 3A8

By:

L.J. PETERS, B.Sc., P.Geo. (B.C.)

> March 8, 2005 Vancouver, B.C.

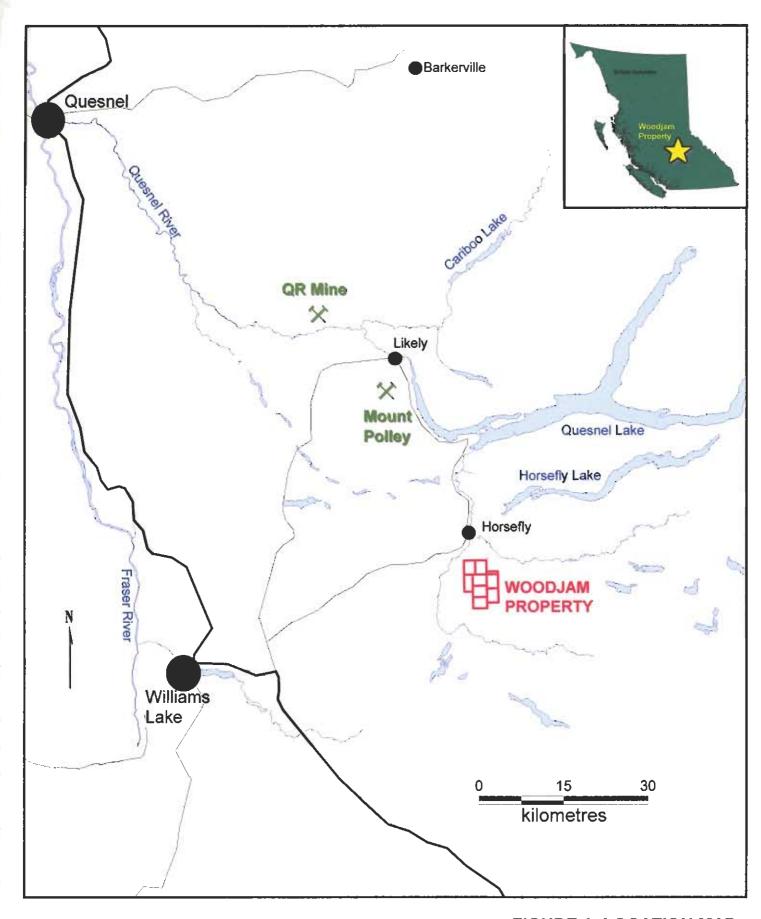
Table of Contents	page
 Summary Property Location, Access and Physiography History Geological Setting 2003 Exploration Program Interpretation and Conclusions Recommendations Statement of Expenditures References Authors Statement of Qualifications 	1 3 5 9 15 31 32 33 34
List of Tables	
 Claim Summary Historic Exploration Chronology Historic Drill Summary Sample Preparation and Analyses (Acme) Sample Preparation and Analyses (Global) Sample Preparation and Analyses (Chemex) 2004 Drill Grade Composites Sample Repeats Exploration Budget Statement of Expenditures 	3 5 17 20 20 21 21 29 33 33
List of Figures	
 Location Map Claim Map Historic IP Chargeability Compilation Historic Soil Geochemistry Compilation Property Geology Woodjam Mineralized Zones Drill Plan Map X-Section Line 200 S X-Section Line 150 S X-Section Line 50 S X-Section Line 50 N X-Section Line 50 W Repeatability of Lab Standards Repeatability of Lab Checks 	2 4 7 8 11 14 19 23 24 25 26 27 28 30 30 31
Appendices	
A. Drill Logs B. Analytical Certificates C. Petrographic Report	

1. SUMMARY

Located 50 kilometres east of Williams Lake, B.C. in the Cariboo Mining District, the Woodjam Property consists of 9 4-post claims totaling 162 units. Fjordland Exploration Inc optioned the property from Wildrose Resources Ltd in August 2001. The Woodjam claims cover several copper-gold, copper only and gold only occurrences hosted by subvolcanic alkalic intrusives.

Potentially economic gold grades have been intersected by diamond drilling over considerable widths in an area of the Property referred to as the Megabuck Zone. Between 1974 and 1999 a total of 23 holes totaling 2,437 metres were drilled into the Megabuck Zone by Exploram Minerals Ltd, Placer Development Company, and Phelps Dodge Corporation of Canada Limited focusing on potential mineralization extending to the south. Drilling in the mineralized monzonite porphyry and related volcaniclastic sediments have historically returned a number of drill intercepts in excess of 50 metres with grades exceeding 1.20 g/t gold associated with copper mineralization typically grading 0.1% to 0.2%. A confirmatory drill test completed by Phelps Dodge in 1999 returned a drill intercept of 144 metres grading 0.72 g/t gold and 0.12% copper including 34.0 metres grading 1.01 g/t gold and 0.14% copper.

In 2001, Fjordland completed a geophysical program, consisting of induced polarization (IP) chargeability and resistivity surveys and a ground magnetometer survey. The survey defined a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone. A second chargeability anomaly, located 300 metres to the northeast across a small lake, measures 700 x 500 metres (and extends off the grid area to the east). This survey corroborated historic IP surveys compiled by Noranda in 1992.


A diamond drilling program, consisting of 5 holes totaling 1,009.4 metres, was drilled by Fjordland in the Megabuck Zone in 2002. Drilling focused on possible extensions of gold mineralization as suggested by the 2001 IP Survey. Gold mineralized intervals were observed from all of the holes, however, analyzed intervals showed generally lower than historical reported intervals.

A follow-up diamond drilling program, consisting of 3 holes totaling 460.85 metres, was conducted on the property to the east of the Megabuck Zone in 2003. A breccia zone dominated by quartz-carbonate veining and semi-massive chalcopyrite mineralization grading 42.3 ppb Au and 0.9% Cu over 15.4 metres was intersected at approximately 43.5 metres downhole in DH-03-30.

The 2004 diamond drilling program, consisting of 11 holes totaling 3,967.6 metres, focused on systematically testing the Megabuck Zone to depth. The program was carried out in 3 phases, with the third phase holes drilled perpendicular to holes drilled in phase 1+2. Notable intersections included 0.81 g/t Au and 0.12% Cu over 378.0 metres (04-32) and 0.77 g/t Au and 0.13% Cu over 397.5 metres (04-37) from holes drilled perpendicular to each other.

The 2004 drilling program delineated a large, irregular and complex tabular-shaped gold-copper mineralized system trending northeast and dipping approximately 45° to the southeast. Mineralization has been delineated over a roughly 400 metre by 250 metre area to a depth of 300 metres. Mineralization is truncated by mineralized faults to the northeast at approximately line 50 mN and obliquely to the east by the "Feeder Creek Fault" to Deerhorn Lake. Although the complex geology and numerous fault offsets complicate the picture, the system remains open in all directions and to depth.

Additional diamond drilling is required to properly evaluate the gold-copper mineralization in the Megabuck Zone. Reconnaissance RC drilling will test the Takom Zone as well as soil geochemistry and IP anomalies located elsewhere on the property. The estimated cost of this program is \$1,000,000 and work will commence when financing is in place.

FIGURE 1: LOCATION MAP

2. PROPERTY LOCATION, ACCESS AND PHYSIOGRAPHY

The Woodjam Property, located in the Cariboo Mining Division of central British Columbia, lies approximately 50 kilometres east of the City of Williams Lake and 10 kilometres south of the village of Horsefly. The Property is located on NTS map sheet 93A/3 and 93A/6 at geographic coordinates; latitude 52°16' N, longitude 125°00' W.

The Woodjam property is composed of nine contiguous 4-post mineral claims totaling 162 units. The claims (Figure 2) are all located on government (crown) land and encompass approximately 4,050 hectares (10,000 acres). The claims were staked using compass and chain and have not been legally surveyed.

The claims are currently wholly owned by Wildrose Resources Ltd. (Wildrose) located at 110 -325 Howe Street, Vancouver, B.C.. On 1 August 2001 Fjordland Exploration Inc. (Fjordland) entered into an agreement to earn a 60% interest in the Woodjam Property.

Claim information is as follows:

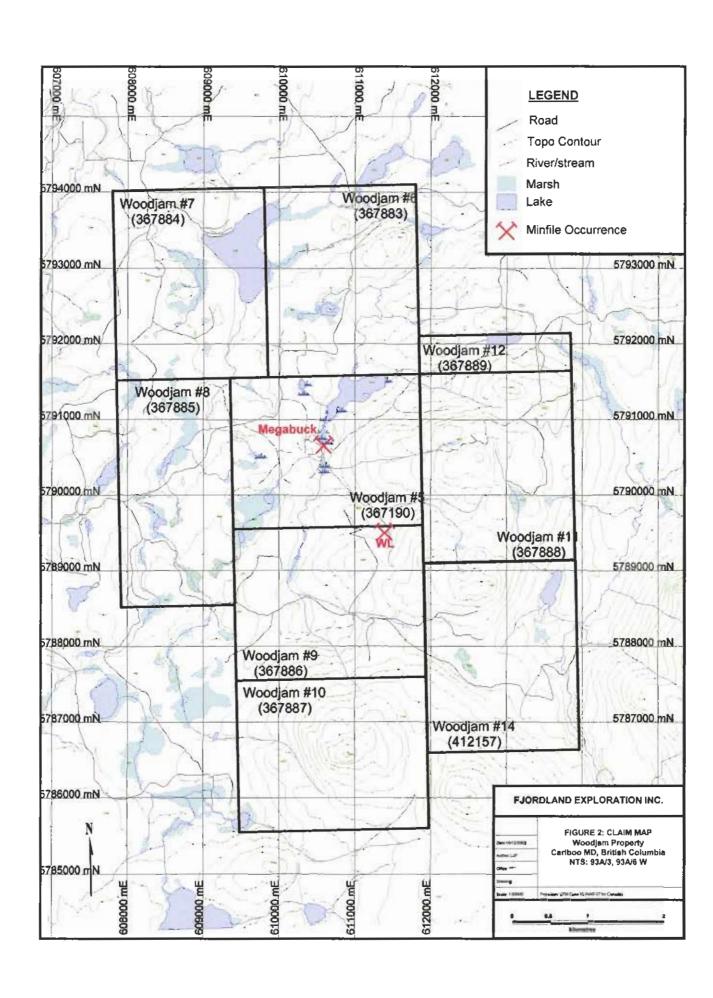

Claim Name	Tenure #	# units	Recording Date	Expiry Date
Woodjam 5	367190	20	23 November 1998	19 February 2007
Woodjam 6	367883	20	17 February 1999	19 February 2007
Woodjam 7	367884	20	19 February 1999	19 February 2007
Woodjam 8	367885	18	17 February 1999	19 February 2007
Woodjam 9	367886	20	18 February 1999	19 February 2007
Woodjam 10	367887	20	19 February 1999	19 February 2007
Woodjam 11	367888	20	19 February 1999	19 February 2007
Woodjam 12	367889	4	18 February 1999	19 February 2007
Woodjam 14	412157	20	6 July 2004	6 July 2005

Table 1: Claim Summary

Year round access by road via Horsefly is gained by travelling south on the Starlike Lake - Woodjam Creek logging road. Logging roads access most of the property and new logging access roads are currently being developed into the area to the east of the Megabuck Zone (an area which until recently has been difficult to access).

The property area is flat to moderately rolling with extensive overburden. It is largely vegetated by first and second growth fir/pine forests that have been partly clear-cut and selectively logged. The entire property lies below treeline. Elevations vary from low marshy areas at approximately 850 metres above sea level (asl) to rolling hills at 1240 metres asl. Numerous small lakes, many beaver dammed, dot the property and streams tend to be of low gradient and do not cut to bedrock. Exposure of bedrock is limited to steeper hillsides, ridgetops and roadcuts. Lower areas are usually covered by extensive glacial till and alluvium. The last glacial movement appears to have been toward the northwest.

Climatic conditions are typical of the central interior of British Columbia. Average minimum low temperatures for January are -18°C and average maximum highs for July are +24 °C. Frost free days last on average from mid-May to mid-August. Between May and September precipitation at a low-elevation station is about 400 millimetres, almost

twice that of Williams Lake 50 kilometres to the west. During April snow depths in the Quesnel Plateau (approx. 700 metres asl) are typically one to two metres.

3. HISTORY

A Chronology of exploration activities on the Woodjam Property is as follows:

Year	Owner	Survey Type	Quantity	Area Covered
1966-1967	Helicon Exploration Ltd & Magnum Consolidated Mining Company	Geology & I. P. surveys	Unknown	Megabuck
1973-1974	Exploram Minerals Ltd	I.P. Survey Magnetometer Soils Geochemistry	24.1line-km 34.3 line-km 228 samples	Megabuck/Takom
1974-1977	Exploram Minerals Ltd	Diamond Drilling	5 holes -1056 m	Megabuck/Takom
1983	Archer Cathro and Assoc's	Geology Mapping Soil Geochemistry	2,100 samples	Peripheral Claims
1983-1984	Placer Development Co Ltd	Diamond Drilling Soil Geochemistry Mag/VLF-EM Seismic	15 holes -1266 m 910 samples 53.6 line-km 6 locations	Megabuck
1984	Archer Cathro and Assoc's	Soil Geochemistry	3,644 Samples	Peripheral Claims
1986	Big Rock Gold Ltd	Trenching	692 m	Megabuck/Takom
1987	Archer Cathro and Assoc's	I.P., Mag, & VLF-EM	70 line-km	Megabuck
1990	Auspex Gold Ltd	Soil Geochemistry	58 samples	Takom
1991-1992	Noranda Exploration Co	Airborne Mag/EM Soil Geochemistry Test Pitting	222 km 22 samples 44 pits	Megabuck/Takom/ Spellbound
1999	Phelps Dodge Corporation	Diamond Drilling	4 holes -198 m	Megabuck
2001	Fjordland Exploration Inc	I.P. Survey	23 km IP	Megabuck
2002	Fjordland Exploration Inc	Diamond Drilling	5 holes - 1009 m	Megabuck
2003	Fjordland Exploration Inc	Diamond Drilling	3 holes - 461 m	Megabuck east

Table 2: Historic Exploration Chronology

The first gold found in the Cariboo was along the Horsefly River in 1859. A second gold rush period hit the Horsefly area in 1887. Placer gold operations were common throughout the Quesnel Belt during the early 1900's, however, records of activity in the property area are non-existent. The earliest recorded work in the area occurred in the 1960's prompted by the wave of exploration for porphyry copper deposits.

The history of the original discovery of the Megabuck Zone on the Woodjam claims is uncertain but presumably the area attracted initial attention due to a prospecting find. A small hand trench on the northern slope of the small knoll hosting the Megabuck Zone is the earliest testament to work in the area covered by the current claims. This work appears to predate the earliest documented work on the property that started in 1966.

From 1966 to 1967 Helicon Exploration Ltd & Magnum Consolidated Mining Company conducted geology and induced polarization surveys on the Megabuck Zone (B.C. MMAR 1967). No assessment reports were filed and the details of exploration are unknown.

In the period 1973 to 1977 Exploram Minerals Ltd (Exploram) completed induced polarization and magnetometer surveys, soil sampling, and 1,056 metres of diamond

drilling in parts of the current property referred to as the Megabuck and Takom zones.

In 1983, Placer Development Company (Placer) took an option on a claim covering the Megabuck Zone, the core area of the current property. After completing surface geological, geochemical and geophysical surveys, Placer drilled 1,266 metres in 15 holes (some of them very shallow and never reaching bedrock). Concurrently, Archer Cathro and Associates Ltd (AC&A) staked the Ravioli Claims, peripheral to claims covering the Megabuck and Takom Zones, and completed a program of soil sampling to the west and south of the Megabuck showing.

In 1984, following Placer's withdrawal from the project, AC&A optioned their Ravioli Claims to Rockridge Mining Corporation (Rockridge). Records are incomplete with respect to further endeavors by Rockridge, however Rockridge did retain AC&A to complete a soil and rock sampling program.

In 1986 Big Rock Gold Ltd (Big Rock) optioned the claims previously held by Rockridge as well as the ground in the Takom Zone with excluded ground in the vicinity of the southern portion of the Megabuck Zone. Big Rock contracted AC&A to excavate and sample 692 metres of overburden to bedrock in two trenches in the Megabuck Zone and 3 trenches in the Takom Zone. The two Megabuck trenches, situated approximately 50 metres apart, returning widths in excess of 57 metres of greater than 1.0 g/t gold mineralization. The three trenches in the Takom Zone returned one interval of 0.96 g/t gold over a two metre interval. No further work is known to have been done by Big Rock Gold.

In 1990 Auspex Gold Ltd completed a limited soil geochemistry program over the Takom Zone anomaly on their 2-claim property. The survey area duplicated previous soil sampling results and no new mineralization was discovered.

In 1991 Noranda Exploration Company Ltd. (Noranda) reassembled the claims via several option agreements. In 1992 Noranda completed an airborne geophysical survey, reconnaissance mapping and excavator test pitting in the area including and extending between the Megabuck and Takom zones. Later that year Noranda closed its BC office and the claim options were terminated.

In 1998 Wildrose Resources Ltd. (Wildrose) re-staked ground as the prior claims (originating in the 1970's and 1980's) began to expire. The final claim to complete the consolidation of the core area was staked in November 1998. In 1999 Wildrose optioned the now Woodjam claims to Phelps Dodge Corporation of Canada, Limited (Phelps Dodge). In February 1999 Phelps Dodge undertook additional staking to produce the current claim group and initiated a field program including reconnaissance mapping and prospecting and the drilling of 4 diamond drill holes totaling 198 metres. Despite significant gold mineralization (34 metres of 1.01 g/t gold) in their most northerly drill hole (DDH99-20), Phelps Dodge withdrew from the Woodjam project for corporate reasons (personal communication, R. Cameron, Phelps Dodge).

Fjordland completed a total of 23 line kilometres of IP and mag surveys on the Woodjam Property in 2001. The IP survey encompassed the area north, east and west of the Megabuck Zone. The survey defined a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone. Known areas of mineralization at the Megabuck Zone occur on the edge (gradient) of the anomaly southwest of the

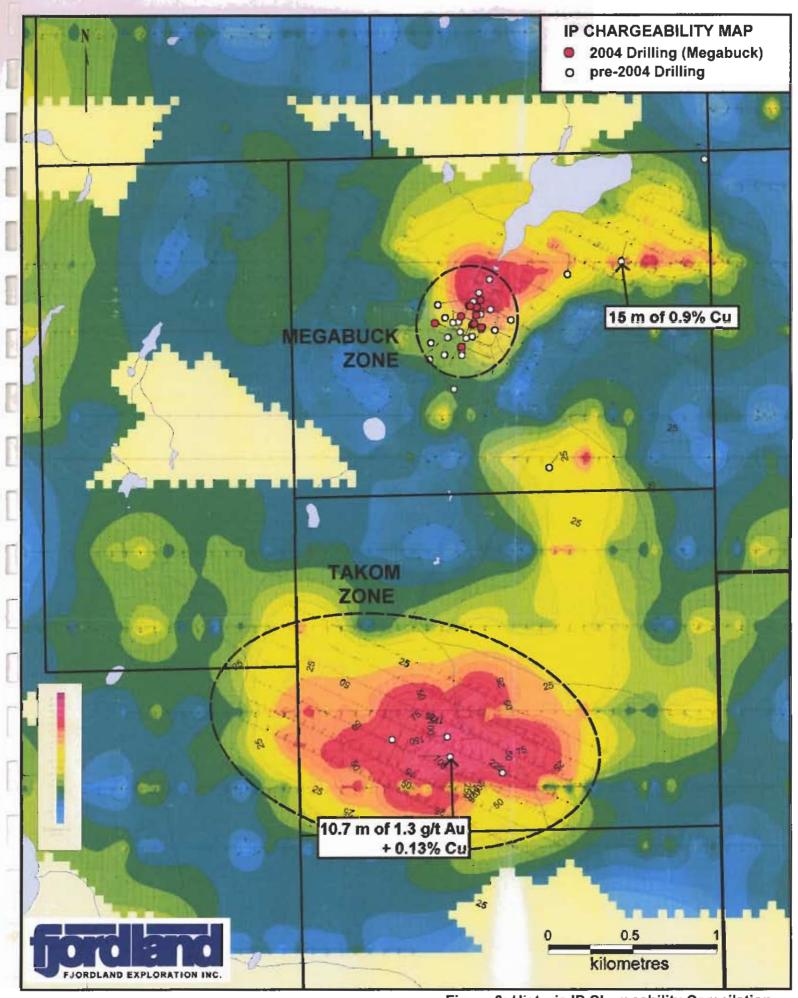


Figure 3: Historic IP Chargeability Compilation

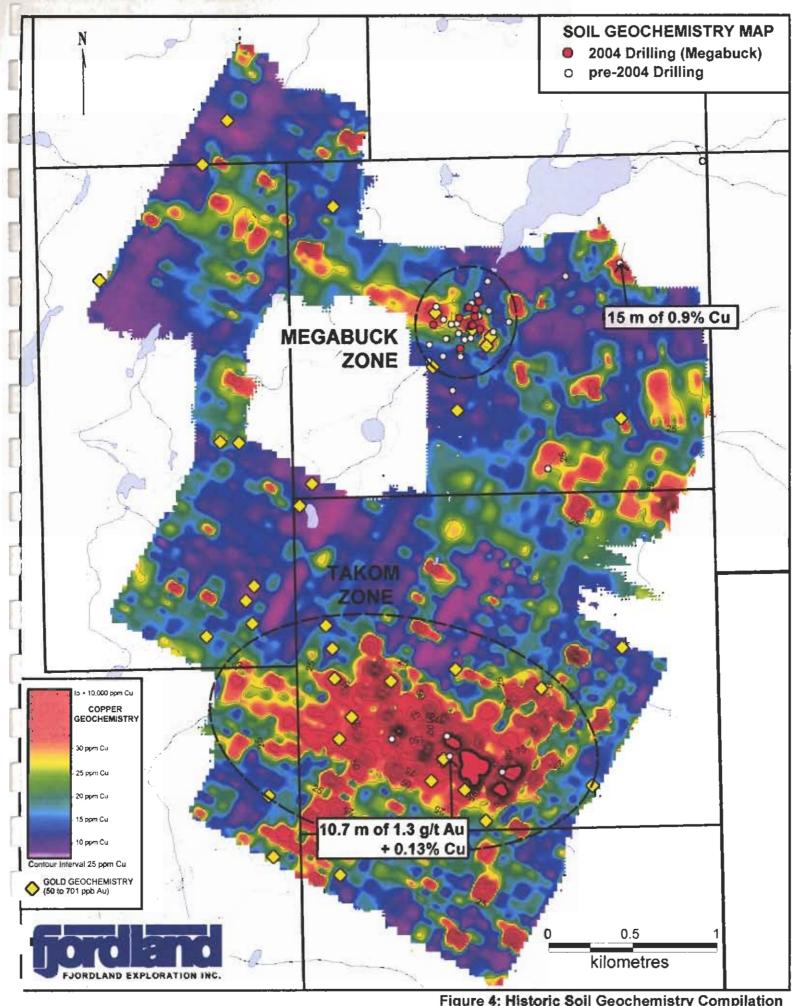


Figure 4: Historic Soil Geochemistry Compilation

chargeability high. The chargeability high corresponds with a moderate to low resistivity feature.

In 2002 Fjordland diamond drill tested possible extensions of gold-copper mineralization to the north, northeast and southwest of the Megabuck Zone. Fjordland drilled a total of 1,009.4 metres in 5 holes in the Megabuck Zone in August and October 2002. Gold-copper mineralized intervals were observed from all of the holes, however, analyzed intervals showed generally lower than historical reported intervals.

A follow-up diamond drilling program, consisting of 3 holes totaling 460.85 metres, was conducted on the property between 5th - 20th November 2003. The objective of the 2003 drilling program was to test the periphery of the IP anomaly defined by the 2001 exploration program as well as test a new "Discovery Zone" of mineralization, consisting of anomalous soil and rock samples taken in 2003. A breccia zone dominated by quartz-carbonate veining and semi-massive chalcopyrite mineralization grading 42.3 ppb Au and 0.9% Cu over 15.4 metres was intersected at approximately 43.5 metres downhole in DH-03-30.

4. GEOLOGICAL SETTING

The Quesnel Trough, a large regional depositional feature extending 2000 kilometres from the U.S. border in the south to the Stikine River in the north, forms a portion of the dominantly alkalic and sub-alkalic volcanic and sedimentary assemblage. The Quesnel Trough assemblage is made up of rocks of the Nicola (south), Takla (central) and Stuhini (north) Groups consisting of a series of volcanic islands characterized by generally alkalic to sub-alkalic basalts and andesites, related sub- volcanic intrusive rocks, and derived clastic and pyroclastic sedimentary rocks.

The basalts and andesites are subaqueous fissure eruptions associated with regional faults. At a late stage in the volcanic cycle large sub-aerial volcanic centres developed. These features consist largely of pyroclastic and epiclastic rocks, complex intrusive breccias, and small plutons or necks of diorite, monzonite and syenite. Commonly associated with the plutons is a late fumarolic or hydrothermal stage when large volumes of volcanic rocks were extensively altered to albite, K-feldspar, biotite, chlorite, epidote and various sulphides. The late metasomatic period involves introduction of volatiles and various metals in the vent areas and is a typical and important feature of the final stages of the volcanic cycle.

The Quesnel Trough assemblage hosts numerous deposits of porphyry gold-copper style mineralization generally related to dioritic or monzonitic sub-volcanic intrusive bodies (Barr, et al., 1976) including the Maud Lake, Mount Polley (Cariboo Bell), Kwun Lake, Lemon Lake and Quesnel River (QR) deposits.

The Quesnel Trough alkali-porphyry deposits occur in basalts and andesitic flows, fragmental rocks and alkalic intrusive complexes. They are generally gold-copper deposits consisting of chalcopyrite-pyrite and minor bornite sulphide mineralization. The sulphide zones are developed adjacent to concentrically-zoned alkaline plutons which are themselves seldom sulphide bearing.

The Woodjam property is underlain by a succession of Triassic-Jurassic Takla Group volcanic and related sedimentary rocks intruded by the Jurassic aged Takomkane Batholith to the south. The claims include the northern contact with the batholith, several monzonite to syenite plugs of unknown affinity and two granodiorite plugs possibly related to the Takomkane Batholith. Younger Miocene aged basalts overlap these older units on the western side of the property and as isolated islands further to the east (Wetherup, 2000).

The Takla Group is typified by its preponderance of basalt to trachy-andesitic infill and its co-magmatic alkalic centres. Detailed work by Archer Cathro (Carne, 1984) has shown the Takla rocks on the property to be a complex succession of maroon and green augite and feldspar porphyries, with related tuffs, pyroclastic breccias and related sedimentary rocks. Some altered and brecciated rocks interpreted as sub-volcanic intrusive complexes occur, especially in the Megabuck Zone.

The Takomkane Batholith, on the other hand, is a large predominantly calc-alkalic intrusive with a surface expression of approximately 40 by 50 kilometres. It comprises one of a series of at least six large coeval bodies including the Guichon Batholith (hosting the Highland Valley deposits) and Granite Mountain Batholith (hosting the Gibraltar deposit). In the region of the Woodjam property the Takomkane Batholith is typically an equigranular granite to quartz-monzonite. Regional magnetic trends (GSC Aeromagnetic Maps 7221 G, 5239G and Exploram ground magnetics) show a distinct northeasterly strike in the area of the Megabuck and Takom Zones as opposed to the northwesterly grain evident elsewhere in the Quesnel Trough. This apparently represents an edge effect of the Takomkane Batholith, the magnetic patterns suggesting that the Takomkane may underlie the Takla rocks at no great depth over much of the property (Peatfield, 1986).

Property Geology

The most recent geological interpretation of the Woodjam Property was made by Phelps Dodge Corporation of Canada, Limited (Wetherup, 2000) as follows (Figure 5):

"The east side of the Woodjam Properly is underlain by quartz monzonite to granite of the Takomkane Batholith. The remainder of the property contains exposures of andesitic tuff; tuffite, flows, greywacke, and minor conglomerate, which are intruded by small syenite, quartz monzonite, or monzodiorite bodies. Overlying all of these rocks are tertiary basalts that appear on the western and northern portions of the property. The Takomkane Batholith on the property is homogenous in both texture and composition. It is generally a medium to coarse grained, equigranular, white, quartz monzonite to granite, with 5 to 15% hornblende, and rare biotite. A number of border phases occur adjacent to the batholith. These include several diorite and monzodiorite plugs and dykes as well as a distinctive bladed feldspar granodiorite porphyry. The diorite and monzodiorite phases can grade into one another through a number of discrete transitional phases over a few hundred metres. Diorite and monzodiorite rocks are medium grained, and contain 10-20% homblende as the dominant mafic mineral. However, euhedral pyroxene phenocrysts are obscured locally, in the absence of homblende, and comprise 5-20% of the rock. Two bladed feldspar granodiorite bodies occur at the south end of the property, and are characterized by 10-25%, 5-10 mm long feldspar laths in a light grey fine grained matrix. Epidote alteration of the feldspars is common and specular hematite is also locally found within the feldspar grains.

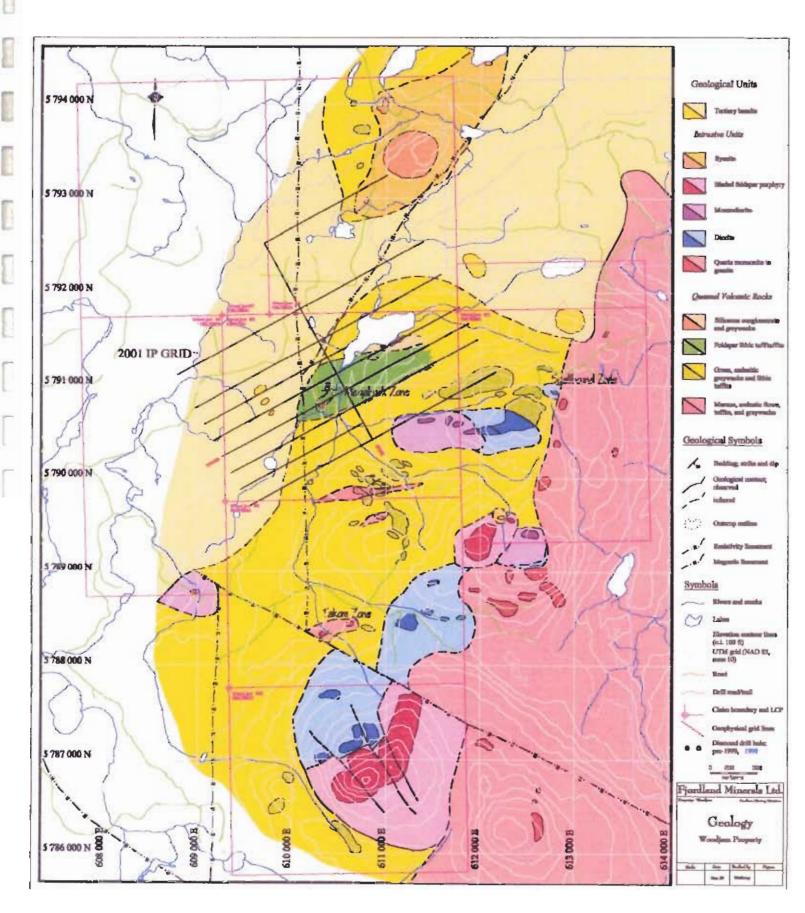


Figure 5: Property Geology (after Wetherup, 1999)

Volcanic units on the property are comprised mostly of monotonous fine grained, green, andesitic tuffite/tuff/greywacke. Mauve andesite flows and tuffite beds, as well as siliceous conglomerate layers occur but are rare. In the Megabuck area, the volcanic units are more variable and coarser grained often containing broken 3-4 mm feldspar crystals. Bedding measurements throughout the property trend west to west-southwest dipping moderately to the north. The crystal tuff/tuffite units appear to continue to the northeast of the Megabuck Zone and are overlain by a pyritic, siliceous conglomerate. Andesitic volcanic breccias are also seen in the drill core from the Megabuck Zone.

Homfels and epidote alteration is prevalent within the volcanic units and increases in intensity with proximity to the Takomkane Batholith and its satellite phases. Weak epidote alteration takes the form of epidote rich pods (1-3%) which occur predominantly along bedding planes. Moderate alteration is typified by numerous epidote pods (5% to 15% of the rock) and pervasive epidotization of the remainder of the rocks mass (5-15%). Finally, intensely altered volcanic rocks are highly magnetic and contain abundant epidote throughout (15-20%). Locally, magnetite-epidote alteration can grade into magnetite-biotite (potassic) alteration. East of the Takom Zone, podiform epidote alteration occurs along east-west oriented fractures within diorite and is associated with tourmaline veining and rare chalcopyrite. Tourmaline veining also occurs within homfelsed volcanic rocks in the Spellbound Zone. "

Mineralization

Two mineral occurrences located on the property are listed on the BC Ministry of Energy and Mines' Minfile database. Details of the occurrence, as stated by the database are as follows:

Name: Woodjam (Minfile #093A 078)

Status: Developed Prospect

Commodity: Au. Cu

Gold in the Woodjam Zone (now referred to as the Megabuck Zone) is associated with disseminated and micro-vein chalcopyrite in Eocene aged volcaniclastic rocks including partially propylitized hornblende-feldspar porphyry flows and flow breccias. The mineralized zone is intensely silicified and contains blebs and pods of epidote and thin stringer veins of quartz, magnetite and chalcopyrite.

Big Rock Gold Ltd quoted in their prospectus (Peatfield, G.R., 1986) a resource of 1,360,000 tonnes @ 0.70 g/t Au surrounding 725,000 tonnes @ 1.30 g/t Au and 0.15% Cu.

Name: WL (Minfile #093A 124)

Status: Showing Cu, Mo

Mineralization in the WL showing (now referred to as the Takom Zone), which consists of chalcopyrite, pyrite, magnetite and minor molybdenite, occurs as disseminations, in quartz stringers and along fractures in both granodiorite and Eocene aged andesitic and dacitic breccias.

Exploration by Exploram in the 1970's focused on two (Megabuck and Takom) zones of copper-gold mineralization on the Woodjam Property.

Gold-copper mineralization in the Megabuck Zone occurs in a complex pile of brecciated monzonite intrusives and potassic-sericitic altered volcanics and subvolcanics. Multiple phases of monzonite intrude highly altered, fractured and brecciated volcanics, containing numerous irregular monzonite lenses and fragments. Although gold and copper content of the volcanics is markedly less than that of the monzonite, it still contains up to 1.85 g/t gold. Alteration of the monzonite consists of potash feldspar, chlorite-carbonate with epidote, and magnetite (Cruz, 1974).

Alteration of the volcanic rocks consists of patchy silicification and chloritization, with local development of epidote, magnetite and pyrite, and rare chalcopyrite. Hornfelsing is prevalent within the volcanic units in increasing intensity towards the intrusives. Hornfels is manifested by disseminated and replacement concentrations of epidote and tourmaline.

Sulphide mineralization occurs as chalcopyrite and lesser bornite within quartz veinlets, fractures and as disseminations outside of quartz veinlets (Morton, 2001). Pyrite is relatively common as disseminations, especially peripheral to the zones of copper-gold mineralization and in apparently younger zones of argillic alteration (Main, 1986). Gold is believed to occur as tiny blebs within the chalcopyrite (Pryce, 1983). Magnetite is usually present in concentrations of 1-3% throughout the rock, and calcite veinlets are common.

In 1985 Archer Cathro & Assoc. (Wilson, 1985) compared gold and copper distribution from drilling results in probability and Cu-Au x-y plots. A bimodal distribution of gold became evident. Mode A, an earlier and more extensive variety; is associated with potassic flooding and with chalcopyrite that occurs as disseminations and in thin quartz veinlets. Mode B is related to an epithermal system that has introduced quartz veining, brecciation, bleaching, and silicification accompanied by sericitic and argillic alteration. These features are particularly intense in two or three intervals of drill core, indication that this system is probably localized along structural breaks or permeable channels." Mode B mineralization appears to have a higher gold content.

The Takom Zone is located 2.5 kilometres south of the Megabuck Zone. Outcrop in the Takom Zone is sparse aside from three trenches established by Archer Cathro and Associates in 1986 and recent road cuts resulting from logging. The zone occurs within partly brecciated augite and feldspar porphyry flows and volcaniclastics containing patchy chlorite and argillic alteration, cut by quartz-carbonate veins. Granodiorite, biotite-quartz diorite and monzodiorite here intrude Mesozoic aged volcanics. Volcanic units are invariably hornfelsed and in one location, southeast of the showings, tourmaline has locally replaced up to 75% of the rock.

Significant shearing is evidenced in the vicinity of known mineralization exposed by the 1986 trenches. A large coherent soil copper anomaly (~1000m x 2000m), with copper in soils exceeding 1% copper, has been outlined in surface till. A large coinciding induced polarization chargeability anomaly may indicate that a substantial pyritizing event has happened.

Analytical results from trenching resulted in a 2-metre interval grading 0.9 g/t Au. Four holes totaling 663 metres were drilled in the Takom Zone from 1973 to 1977. A 10.6

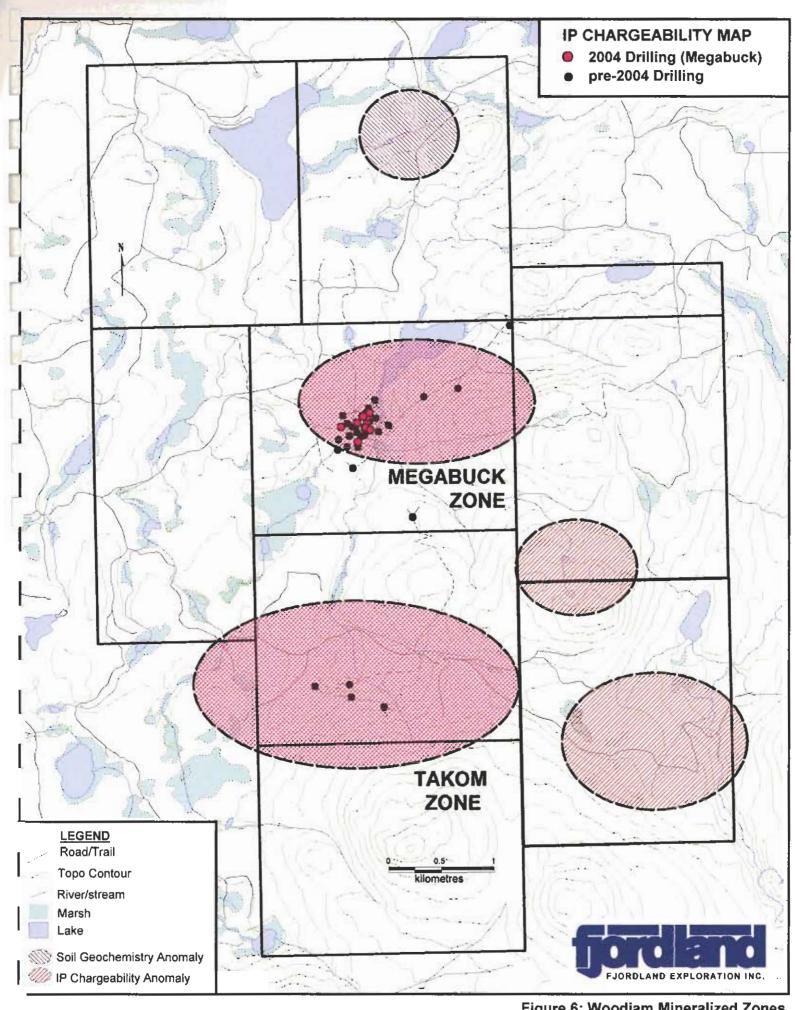


Figure 6: Woodjam Mineralized Zones

metre intercept grading 1.27 g/t gold and 0.13% copper was obtained from Exploram's hole 74-3 where granodiorite and hornblende quartz-diorite intrude the volcanics. Diamond drilling and trenching identified only narrow zones of mineralization and attempts to use the IP anomaly to target significant copper-gold mineralization proved to be unsuccessful in the past.

Of significance is that the high gold to copper ratio in mineralization delineated in the historic drilling in the Takom Zone was consistent with ratios of copper-gold mineralization found in the Megabuck Zone.

Several additional highly anomalous zones, defined by soil geochemistry ± IP chargeability surveys occur on the property. The Spellbound Zone is defined by a very small soil sampling program completed by Noranda in 1992 returning anomalous values to the edge of the survey, approximately 150 metres east of the road-cut, with the most easterly soil sample returning 803 ppm Cu. The true size of the Spellbound Zone remains unknown. Outcrop exposure along a road-cut consists of pervasive epidote and tourmaline replacement in hornfelsed volcanics adjacent to a quartz diorite intrusion. A weak quartz stockwork here contains minor quantities of chalcopyrite.

A new zone "Discovery Zone", located on the eastern portion of a large IP anomaly also encompassing the Megabuck Zone, was originally discovered in 2003 by Fjordland's prospecting and soil survey. Drilling intersected a zone of fractured, brecciated and altered volcanics dominated by quartz-carbonate veining and semi-massive chalcopyrite mineralization. Composite grades of 42.3 ppb Au and 0.90% Cu over 15.4 metres, including an interval of 340 ppb Au and 7.2% Cu over 1.14 metres, were encountered during drilling.

A moderate, heretofore untested, IP chargeability anomaly is located to the southeast portion of the property that requires follow-up exploration. To the northern extent of the property is located a 1 km x 750 m wide zone of anomalous copper-in-soils delineated by a soil sampling carried out by Archer Cathro in 1985.

5. 2004 EXPLORATION PROGRAM

Historic Compilation

A number of historic geophysical surveys, including magnetometer, I.P., VLF-EM, aerial magnetics, and seismic, have been conducted on the Woodjam property. A compilation of historic IP surveys, compiled by Noranda in 1992, is presented in Figure 3. The chargeability high, most prominently defined by the Megabuck and Takom Zones, forms a roughly circular pattern approximately 4 kilometres in diameter. Topographic features and drainage also forms a roughly circular pattern around the IP anomaly suggesting a collapsed caldera or possibly a "Jajay Ring". The name "Jajay" was derived from Dr. Ja Hak Kao and Dr Jay C Hodgson who first postulated, then recognized, (from the Loraine property in British Columbia) that a 10 kilometre diameter magnetic ring structure was related to a major buried alkalic intrusion, the effects of which are seen in large rift-related structures.

Historic soil geochemistry surveys were compiled by the author and copper distribution in soils is presented in Figure 4. The survey coverage encompassed and defined both

Megabuck and Takom mineralized areas as well as two additional previously untested zones.

Copper distribution in the Megabuck Zone appears relatively small (140 metre diameter) with an approximately 2 kilometre long linear anomaly trending to the west-northwest. Noranda Exploration Company identified a coincident surface glacial dispersion train, consisting of angular boulders (float) in 1992. A quotation from Noranda's last report (Walker, 1992) concerning the dispersion train reads as follows: "The strongest copper and gold responses from the rock samples came from the Megabuck float train where values of 0.1 -0.4% copper and 1-6 gpt (g/t) gold were recorded. This float train with this range of values is traceable for at least 2 kilometres west-north-west of the showing". The character of the soil anomaly suggests glacial "smearing" of the Megabuck mineralization to the west-northwest, however, the soil anomaly will still require subsurface testing.

Two separate coinciding soil geochemistry surveys in the Takom Zone, completed by Exploram (1974) and Archer Cathro (1983), delineated an anomalous copper-in-soils anomaly measuring 1 x 2 kilometres (Figure 4)coinciding with an IP chargeability high (Figure 3). Copper in soils was widespread with high values exceeding 10000 ppm copper. Of 4 holes drilled by Exploram in the 1970's, one hole (74-03) intersected 10.7 metres grading 1.3 g/t Au and 0.13% Cu.

Magnetometer surveys conducted in the 1980's by Archer Cathro concentrated on the peripheral areas north and south of the Megabuck Zone and the two IP surveys previously conducted were insufficient for targeting drill holes. As a result, in 2001 Fjordland initiated a program of geophysical surveys including IP and magnetometer on possible eastern extensions of mineralization. The survey defined a large, 1650 x 780 metre, chargeability anomaly extending northeast from the Megabuck Zone.

In 1986 Archer Cathro and Associates (on behalf of Big Rock Gold Ltd) excavated and sampled 2 trenches in Megabuck Zone. Situated approximately 50 metres apart, the trenches returned significant widths of gold mineralization greater than 1.0 g/t gold. From 1974 to 1999 a total of 23 diamond drill holes, totaling 2,437 metres and ranging in depth from 12 metres to 200 metres, were drilled in the Megabuck Zone by Exploram Minerals Ltd, Placer Development Company, and Phelps Dodge Corporation of Canada, Limited.

Fjordland's 2002 diamond drill program, consisting of 5 holes totaling 1,009.4 m, tested possible extensions of gold mineralization to the north, northeast and southwest of the Megabuck Zone. Gold-copper mineralization, related to disseminated chalcopyrite in quartz veinlets, cuts across a layered sequence of fine to coarse pyroclastic and volcano-sedimentary rocks. Faulting of the layered sequences restricts correlation between drill holes. Host rocks are propylitized exhibiting sericitic and potassic alteration near mineralized zones.

A follow-up diamond drilling program, consisting of 3 holes totaling 460.85 metres, was conducted on the property in 2003. The objective of the 2003 drilling program was to test the periphery of the IP anomaly defined by the 2001 IP survey as well as delineate potential extensions from known mineralization outlined by previous drilling in the Megabuck Zone. Drill holes were collared in the proximity to locations of soil and rock samples anomalous in gold and copper taken in 2003.

Zone	Ву	HOLE-ID	ELEV (m)	AZ	DIP	LENGTH (m)	O/B (m)	Au (g/t)	Cu (%)	From (m)	To (m)	interval (m)
	ğ,	74-01	996	360°	-46°	228.6	1.4	1.24	0.13	1.1	88.7	87.6
5	Explor	74-02	996	205°	-45°	175.3	2.7	0.77	0.08	4.8	149.4	144.6
		83-03	989	179°	-60°	175.6	4.8	0.54 0.39	0.13 0.05	30.0 147.0	36.0 165.0	6.0 18.0
		83-04	989	180°	-60°	152.0	3.7	1.30	0.16	3.7	51.0	47.3
		83-05	995	180°	-60°	65.8	29.9			*NSI		
결물		83-06	1000	360°	-50°	96.3	18.5	0.65	0.15	18.3	66.0	47.7
		83-07	1000	180°	-60°	68.0	21.3	0.47	0.08	21.3	68.0	46.7
		83-08	971	1°	-60°	84.1	19.4			NSI		
		83-09	980	203°	-50°	90.2	11.3			NSI		Marin
23.4	a	83-10	971	181°	-60°	70.1	9.4			NSI		
	Placer	83-11	972	0°	-90°	80.8	9.6			NSI		
	-	83-12		0°	-90°	30.5	11.6	0.23	0.04	11.6	30.0	18.4
충		83-13	996	0°	-90°	12.0	2.1	0.79	0.11	2.1	12.0	9.9
Megaburck		83-14		0°	-90°	19.8	19.8	-				
4		84-15	1002	0°	- 9 0°	71.3	33.8	NSI				
-		84-16	1010	0°	-90°	42.7	42.7			-		
		84-17	998	0°	-90°	69.2	34.8	0.14	0.02	36.0	66.0	30.0
		84-18	998	0°	-90°	72.2	33.8			NSI	•	
		84-19	1005	0°	-90°	65.8	30.8			NSI		
		99-20	996	0°	-90°	200.3	2.4	0.98	0.13	2.4	44.0	41.6
	28	99-21		125°	-72°	160.6	25.9			NSI		
	Phetps Dodge	99-22		305°	-72°	227.4	31.1			NSI		
		99-23		35°	-54°	178.6	19.5		-	NSI		
		02-24	923	130°	-45°	219.5	3.7	0.15	0.02	137.0	219.5	82.5
		02-25	910	300°	-43°	205.7	9.8	0.33	0.07	9.8	182.0	172.3
	-	02-26	939	80°	-45°	209.1	21.3	8.16	0.01	119.0	121.0	2.0
	Fjordland	02-27	923	305°	-45°	223.1	28.5	0.14	0.03	30.0	168.0	138.0
	ह	02-28	932	300°	-45°	152.0	30.5	0.02	0.01	30.5	153.1	122.6
	14.	03-29	5	-45	153.31	25.3	128.01	<u> </u>		NSI		
E E		03-30	15	-45	156.97	9.8	147.17	43.5	58.9	15.4	0.04	0.9
		03-31	330	-50	151.18	57.2	93.98			NSI		
	F	74-03	994	270°	-45°	230.0		1.30	0.13	108.2	118.9	10.7
Takom	P C	74-04	968	268°	-45°	152.4		NSI				
2	Exploram	74-05	1007	115°	-45°	116.7				NSI		
	144	77-01	970	140°	-45°	153.0		0.002	0.09	100.6	104.2	3.6

Table 3: Historic Drill Summary

(*NSI - No significant intersections)

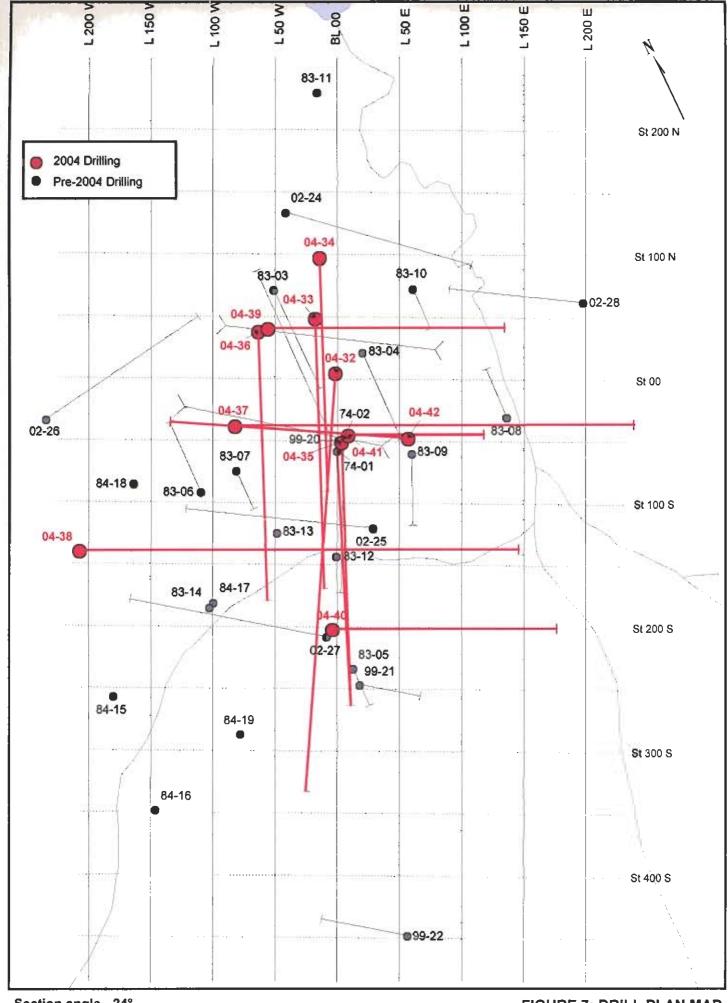
2004 DIAMOND DRILLING

Scope and Method

In 2004, Fjordland conducted a diamond drill program on the Megabuck Zone with the intent of testing the gold-copper mineralization at depth. The program consisted of 11 holes totaling 3,968 metres of NQ-sized core.

The 2004 diamond drilling program was conducted over 3 phases. The first phase, consisting of hole 04-32, was completed from 5-16 June 2004. Drilling was completed by Phil's Diamond Drilling Ltd of 100 Mile House, BC using a Longyear 37 diamond drill and pads and trails were excavated using a John Deere 450C dozer. The collar location was spotted relative to pre-existing holes and measured by GPS (Garmin 12). NQ-sized (47 mm) core was logged by the author and split onsite by the author and J. Gomez of New Westminster, BC.

The second phase of drilling consisting of an extension of hole 04-32 to hole 04-36, completed from 17 August - 11 September 2004, was contracted to and carried out under the supervision of Mincord Exploration of Vancouver, BC. Drilling was completed by LeClerk Drilling Ltd of Cranbrook, BC. A Longyear Super 56 diamond drill was used to drill NQ sized core and an International TD-15 Dozer was used to construct drill pads. Drill collar locations were measured by GPS on UTM Nad83 projection, Zone 10. Dip tests were taken using a conventional acid bottle and corrected to true dip. Core was logged by Bob Johnston of Vancouver, BC and split and sampled by J.P. Charbonneau of Williams Lake, BC.


The third phase of drilling, consisting of holes 04-37 to 04-42 and completed from 19 October - 3 December 2004, continued using the same contractors as in phase 2. Core was logged by Jay W. Page of Vernon and split and sampled by J.P. Charbonneau of Williams Lake, BC.

Property visits were conducted by the author for the first phase of drilling in June and 12-14 October 2004. All drill setups were visited and all core from the 2004 program to date was examined on-site.

Sample Handling and Preparation

Handling of core prior to sampling consisted of moving the core from the drill sites to a secure logging facility at Horsefly. All core handling was done by or under the supervision of L. Peters, B. Johnson, J. Page or J.P. Charbonneau. Care was taken to eliminate sampling biases that could impact the analytical results. All jewelry was removed prior to handling core, rocks or soils and the work area was kept clean during splitting and sampling.

All core derived from the 2004 drilling program was sampled. Except for phase 1 which was logged and split on site, all drill core was logged, split and sampled in a rented secure facility in Horsefly. A total of 1,924 intervals from the 3,967.58 metres of core obtained was split into halves using a manual core splitter, one half placed into plastic sample bags and closed using plastic tyvex closures. The remaining drill core half was left in labeled core boxes at the core logging facility. Samples were selected at approximately 2.0 metre downhole (dh) intervals or less depending on geology and

Section angle - 24°

FIGURE 7: DRILL PLAN MAP

mineralization. The intervals were deemed adequate given the broad extent of mineralization demonstrated from historic drilling. J. Page, B. Johnson, and J.P. Charbonneau were contracted by Mincord Exploration for this project. No sample preparation was conducted by an employee, officer, director or associate of Fjordland prior to delivery to the laboratory for analyses.

Core samples were shipped to either Acme Analytical Laboratories Ltd. (Acme) or Global Discovery Labs (Global) for analyses. Acme, fully accredited under ISO 9002, is located at 852 East Hastings St., Vancouver, BC. Preparation and analyses of samples at the lab consisted of the following:

Туре	Method Code	Procedure
Core prep	R150	crush (4 kg to -10 mesh (70%), split, pulverize 250 g to -150 mesh (95%).
30-element ICP	1D	50 g sample split leached with 3 ml aqua regia (2-2-2 HCl-HNO3-H2O) at 95°C for 1 hour, diluted to 10 ml, analyzed by ICP-ES for 35 element suite.
Fire Assay (Au)	3B	30 g sample analyzed by FA/ICP for Au.
Cu Analyses (> 10000 ppm)	7AR	1 g sample split leached with 2-2-2 HCI-HNO3-H2O, diluted to 100 ml, analyzed by ICP-ES for Au + Cu

Table 4: Sample Preparation and Analyses (Acme)

Global (a business unit of Teck Cominco Ltd), located at 1486 East Pender Street Vancouver, BC, routinely participates in and receives certification of proficiency in the CANMET administered Proficiency Testing Program for Mineral Analysis Laboratories (PTP - MAL). Preparation and analyses of samples at the lab consisted of the following:

Туре	Method Code	Procedure
Core prep		Sample dried, coarse crushed to -6 mm size, fine crushed to -2 mm size, split to 250 to 300 gram subsample, milled in "puck and ring" mill to 150 mesh.
28-element ICP	MQP(ICP3)	5 g sample digested in aqua regia on a sand bath at 95° C for 3 hours, diluted and mixed on vortex, then analyzed by ICP for 28 multi-element package
Fire Assay (Au)	AUL(Au4)	30 gram sample analyzed by FA/ AA finish (low level) 1 A.T.

Table 5: Sample Preparation and Analyses (Global)

A total of 12 sample pulps from each of Acme and Global, were sent as checks to ALS Canada Ltd (Chemex), located at 212 Brooksbank Ave, North Vancouver, BC. Chemex is fully accredited under ISO 9001:2000. Samples were analyzed for gold, copper and PGE's. Analyses of samples at Chemex consisted of the following:

Туре	Method Code	Procedure
Fire Assay (trace Au)	Au-AA23	30 gram sample analyzed by FA/AAS finish
Aqua Regia (trace Cu)	Cu-AA45	copper by aqua regia digestion and AAS finish
Cu Anal y ses (ore grade)	Cu-AA46	copper by aqua regia digestion, HCl leach with complexing agents, AAS or ICPAES finish
PGE's/Au Fire Assay	PGM-ICP23	30 gram sample, pt-pd-au analyzed by FA/ICPAES finish

Table 6: Sample Preparation and Analyses (Chemex)

Results

A plan map showing drill hole locations relative to previous drilling is presented on Figure 7. Cross sections of drilling showing Au-Cu grade distributions (presented as histograms) are presented on Figures 8-13. Logged descriptions of drilling and accompanying analytical results are presented in Appendix A. Analytical certificates are located in Appendix B. A summary of drilling including notable composite grades follows on Table 6.

Hole	Azimuth	Dip	Length (m)	From (m)	To (m)	interval (m)	Au (g/t)	Cu (%)
04-32	208.0	-50.0	542.85	3.96	382.0	378.0	0.81	0.12
04-33	202.0	-50.0	387.1	3.1	271.0	267.9	0.62	0.09
04-34	202.0	-50.0	373.7			NSI		
04-35	202.0	-50.0	370.6	3.1	297.0	293.9	0.45	0.07
04-36	202.0	-50.0	379.8	3.7	223.0	219.3	0.30	0.04
04-37	114.0	-45.0	452.6	9.3	406.8	397.5	0.77	0.13
04-38	114.0	-45.0	458.7	42.8	458.7	415.9	0.26	0.06
04-39	114.0	-50.0	261.5	3.7	44.7	41.0	0.30	0.03
04-39	114.0	-50.0	201.5	229.3	261.5	32.2	0.27	0.09
04-40	114.0	-60.0	337.1	204.5	292,5	88.0	0.26	0.04
04-41	114.0	-45.0	153.9	3.1	85.4	82.3	0.83	0.08
04-42	294.0	-45.0	249.6	9.9	220.3	210.4	0.51	0.08

Table 7: 2004 Drill Grade Composites

As the first diamond drill hole of Fjordland's 2004 exploration program, hole 04-32 focussed on testing the depth extent of gold-copper mineralization on the Megabuck Zone. Gold-copper mineralization occurred throughout the -50° inclined hole intersecting monzonite intrusives, feldspar porphyries, and volcanics. The drilling was stopped prematurely because of insufficient drill rods available at the time and the contractor's prior commitments to another project, however, casing was left in place in anticipation of reentering the hole. The hole intersected 361.2 metres grading 0.84 g/t gold and 0.12% copper from bedrock surface to the end of the hole at 365.2 metres, including 274.9 metres of 1.03 g/t gold and 0.14% copper.

A total of 1,689 metres of core drilling was completed on the Property's Megabuck Zone during the second phase of drilling. Drilling consisted of four angled holes (04-33 to 04-36) and one hole extension (04-32b) spaced at approximately 50-metre step-outs designed to extend gold-copper mineralization, and to better understand the geometry of the deposit.

Hole 04-32 was extended from 365.2 metres to a depth of 542.9 metres and significant mineralization was encountered to 382.0 metres, while elevated gold-copper values and encouraging potassic, silicic, and clay alteration in volcanic rocks extend to the bottom of the hole.

Hole 04-33 undercut hole 04-32, 50 metres to grid north. Significant continuous mineralization extended from surface to 271.0 metres grading 0.62 g/t gold and 0.09% copper over 268 metres; elevated gold and copper values in highly altered volcaniclastic rock were encountered to the bottom of the hole at 387.1 metres.

Hole 04-34 undercut 04-33, 50 metres to grid north; it is geochemically anomalous in gold and copper values throughout its 373.7 metre length in altered volcaniclastics. Although no potentially economic intervals were intersected, sporadic values up to 0.26 g/t gold and 0.04 % copper were encountered. The alteration and elevated metal values suggested a proximity to a potentially large mineralized system.

Hole 04-35, an overcut of 04-32, was collared 50 metres to grid south. Significant mineralization was encountered from surface to a depth of 297.0 metres grading 0.45 g/t gold and 0.07% copper over 294 metres, while elevated gold and copper values continued to the bottom of the hole at 370.6 metres. Geologically, the hole encountered a mixed sequence of silicic, potassic and clay altered volcanics, volcaniclastics and intrusives that were locally brecciated. The zone remains open to the south, east and west.

Hole 04-36 was collared on a line 50 metres to grid west of hole 04-34 and drilled parallel to it. Significant mineralization was encountered to a depth of 223.0 metres while elevated values of gold and copper extend to the bottom of the hole at 380.0 metres. This is the first hole drilled on this new section and the results confirm that the mineralized system remains wide open.

The third phase of drilling consisted of six angled holes totaling 1,914 metres. Drill holes 04-37 to 04-42 were drilled on a grid east-west orientation, perpendicular to the direction of holes 04-32 to 04-36 completed earlier in 2004. The holes spanned an east-west distance of approximately 450 metres, whereas the earlier holes spanned a north-south distance of 430 metres. All phase 3 drill holes encountered gold and copper over significant intersections.

Hole 04-37 was drilled to grid east at -45° dip intersecting 397.5 metres grading 0.77 g/t gold and 0.13% copper. A 16 metre-wide fault was encountered near the bottom of the hole. Mineralization in the fault was both brecciated primary and remobilized secondary. The potential for offset mineralization beyond the fault will be drill tested in 2005.

Hole 04-38 was drilled to grid east at -45° dip approximately 100 metres south of 04-37. Continuous low-grade mineralization occurred over 415 metres from bedrock surface to the end of the hole, leaving the potential for a higher grade system open.

Hole 04-39 was drilled at grid east at -50° dip approximately 100 metres north of 04-37. Intervals of mineralization were encountered at the top and bottom of the hole. A fault was intersected at the bottom of the hole and drilling was terminated as the rods were in danger of twisting off. The east side of the fault will be tested for mineralization in 2005.

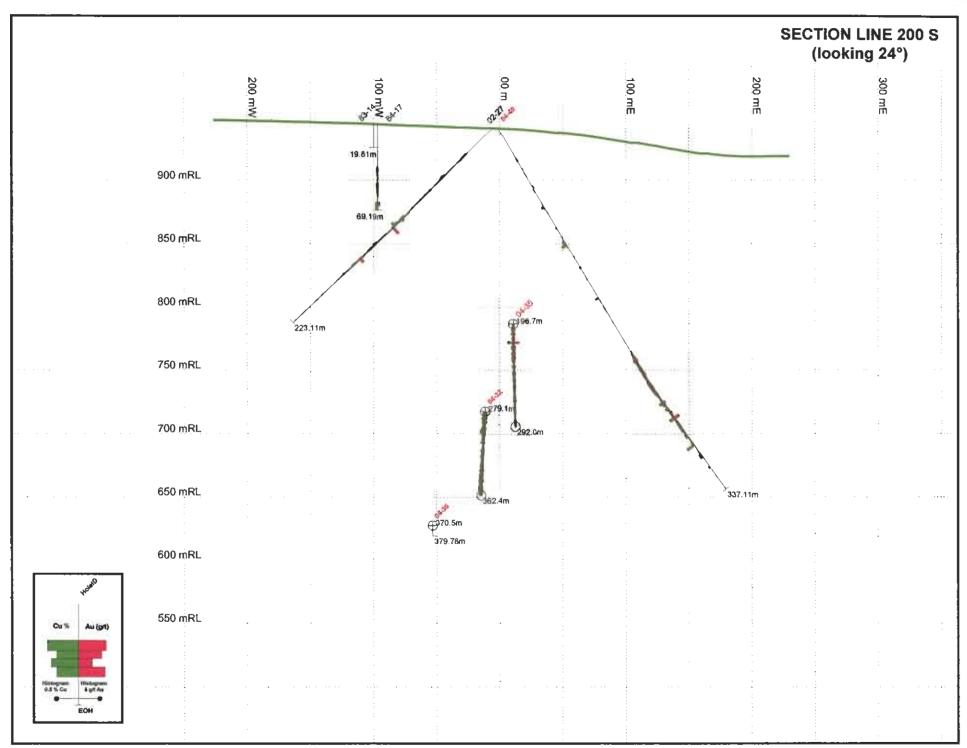


FIGURE 8: X-SECTION

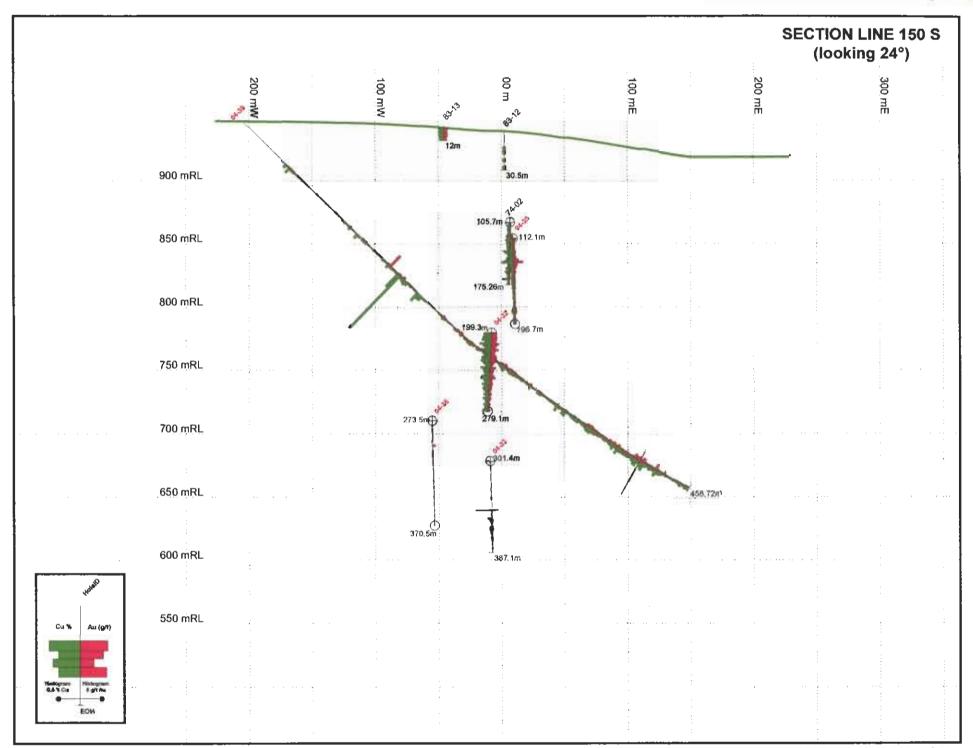
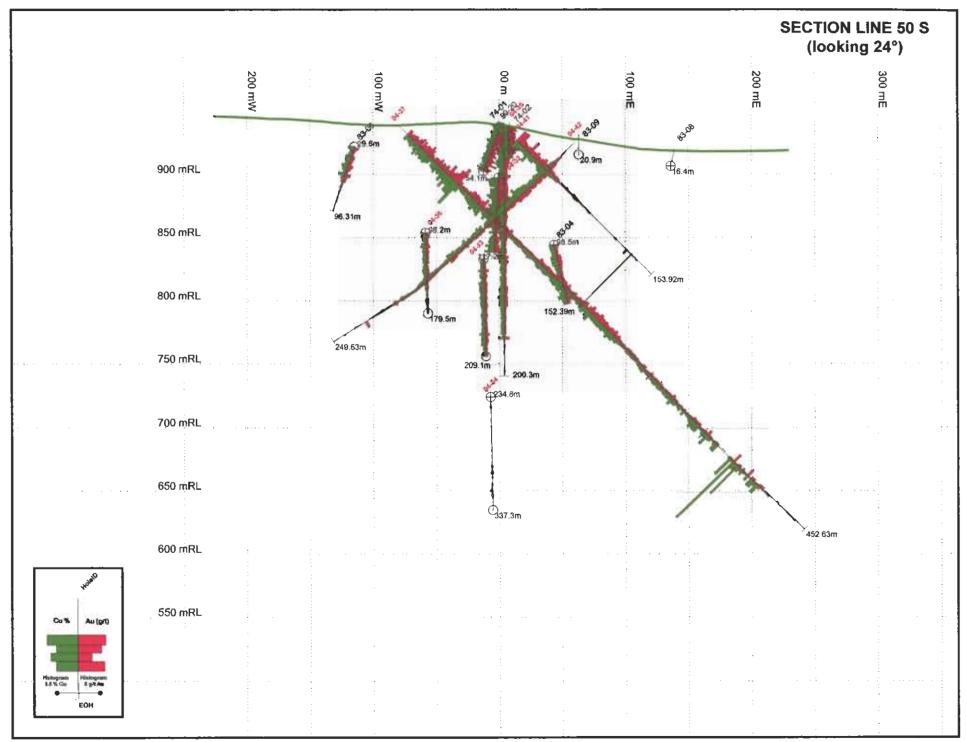



FIGURE 9: X-SECTION

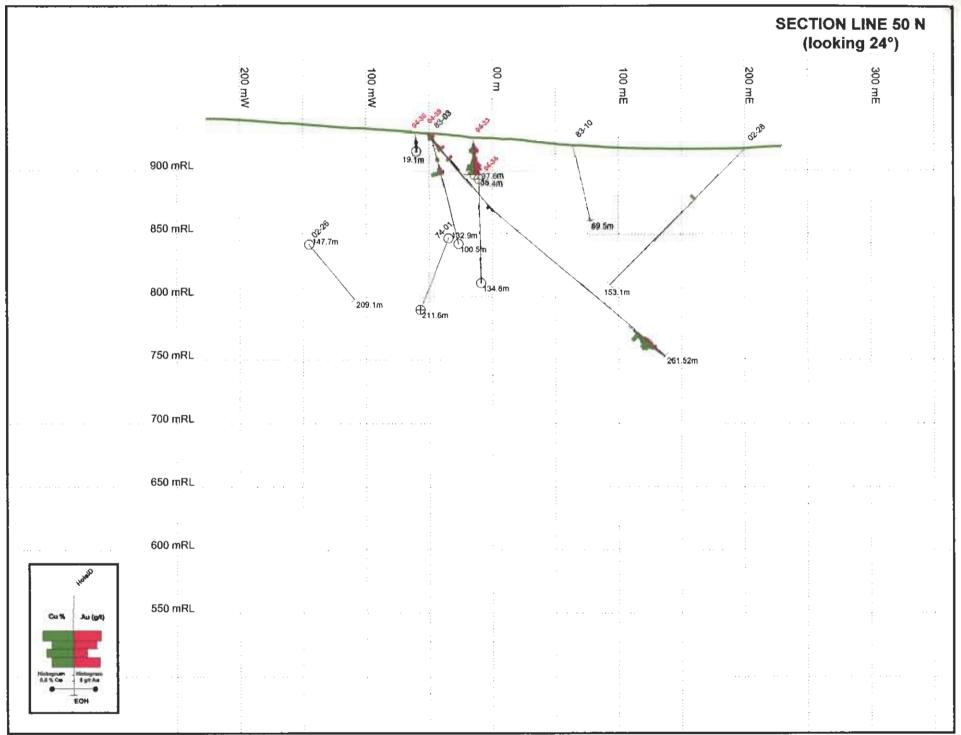
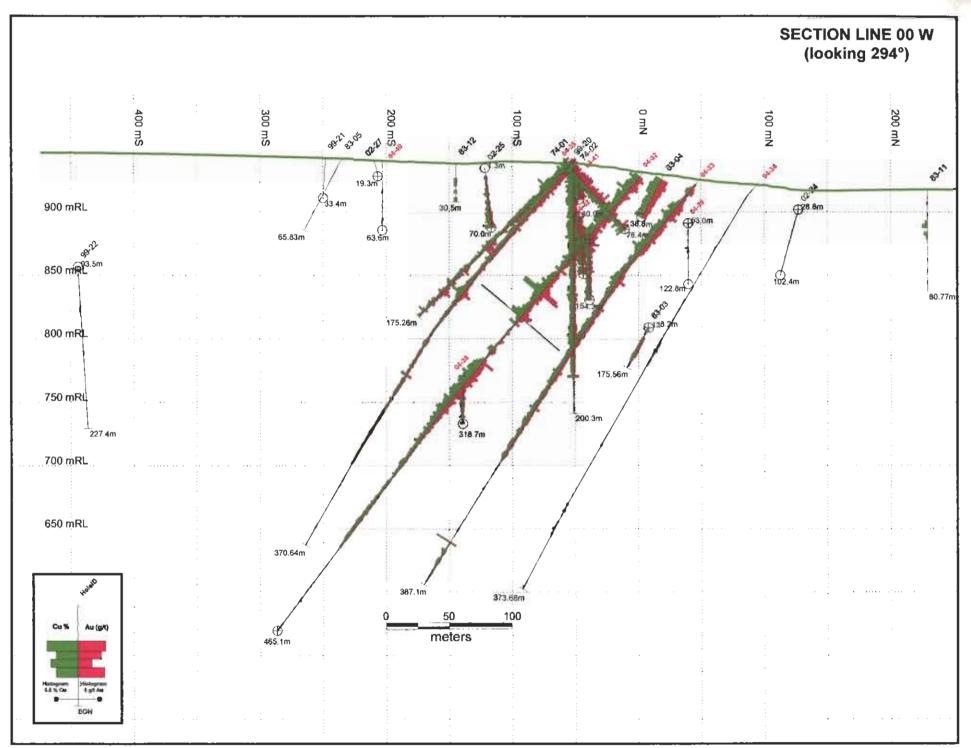



FIGURE 11: X-SECTION

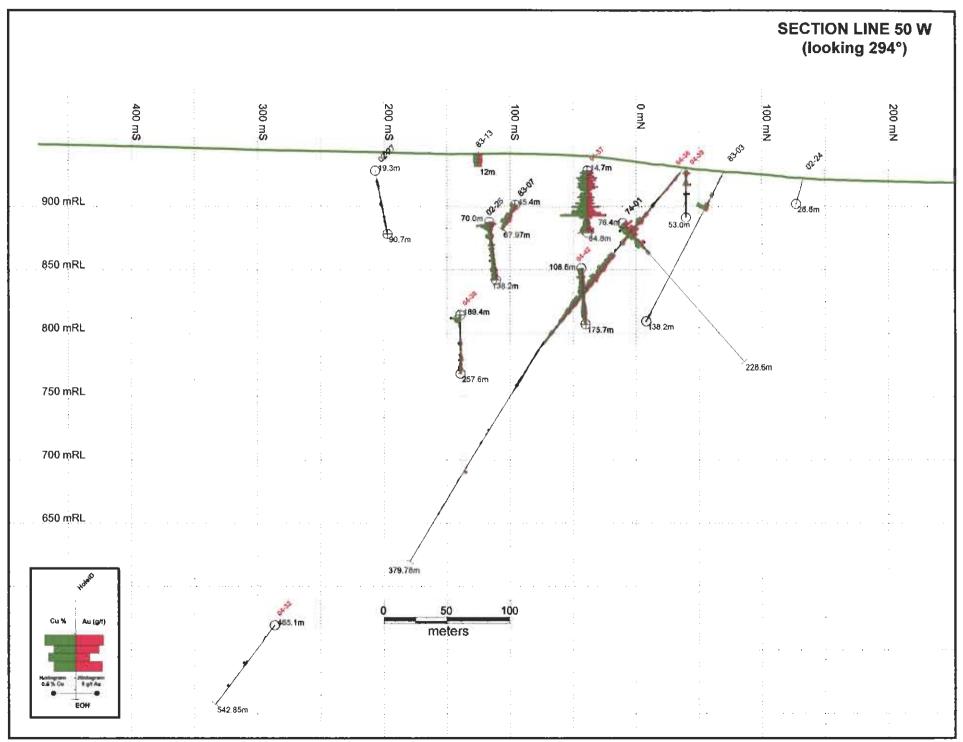


FIGURE 13: X-SECTION

Hole 04-40 was drilled to grid east at -60° dip approximately 50 metres south of hole 04-38. The wide zone of mineralization in hole 04-38 was not encountered in this hole, with the best interval being 88 metres of 0.26 g/t gold and 0.04% copper. This suggests an intervening fault has offset the southerly extent of the zone but leaves the potential open for a displaced extension of the mineralized zone.

Hole 04-41 was drilled to grid east at -45° dip approximately 80 metres east of 04-37. Mineralization of 0.83 g/t gold and 0.08% copper over 82.3 metres was intersected at the top of the hole before entering a fault contact into a different rock type devoid of mineralization. This also suggests displacement of mineralization leaving extensions laterally and to depth open.

Hole 04-42 was drilled to grid west at -45° dip scissoring holes 04-37 and 04-41. Significant mineralization was encountered over the first 210 metres (0.51 g/t gold and 0.08% copper) with anomalous geochemical values below, leaving the possibility of further mineralization open to the west.

QA/QC

Samples from the 2004 drilling program were sent to two labs during the program. Holes 04-32 to 04-37 were sent to Acme. During the season Acme became inundated with samples and the "turnaround time" for samples became unmanageable. As a result the remainder of the samples, from the bottom of hole 04-37 to 04-42 were sent to Global. The analytical labs perform routine check analyses during sample runs including in-house standards and duplicates. As well, Fjordland shipped standard pulps as regular checks with samples sent to the labs. A total of 12 samples from each of Acme and Global were sent to Chemex for duplication. The following table describes the frequency of sampling, checks and repeats:

Lab	Acme	Global	Chemex
Total # of Samples	1209	719	24
# Lab Standards (Au)	52	15	
Variance of Au standards	10.8	43.9	
# Lab Standards (Cu)	52	16	
Variance of Cu standards	18.7	31.3	
# Lab Repeats (Au)	138	65	,
Variance of Au repeats	11.1	1.6	
# Lab Repeats (Cu)	138	47	
Variance of Cu repeats	3.4	23.9	
# Lab Checks (to Chemex)	12	12	24
Variance of Au checks	192.5	1011.5	
Variance of Cu checks	37.4	42.7	

Table 8: Sample Repeats

X-Y plots were created comparing Acme's and Global's repeatability of their in-house lab standards (including Fjordland's standards) for gold and copper (Figure 14), repeatability of gold and copper for their sample repeats (Figure 15), and the repeatability of gold and copper when 24 check samples were sent to Chemex (Figure 16).

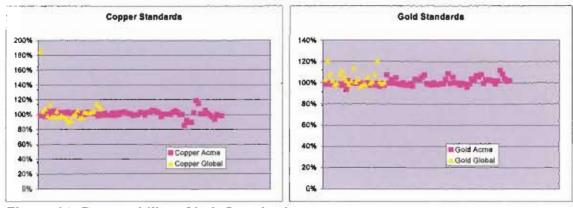


Figure 14: Repeatability of Lab Standards

As can be seen, Acme has excellent repeatability of their own lab standards in both gold and copper in comparison to Global. At one point near the end of the copper analyses, Acme's repeatability became scattered, coinciding with their busiest period when the decision was made to begin sending samples to Global. Global's repeatability of gold appears quite scattered.

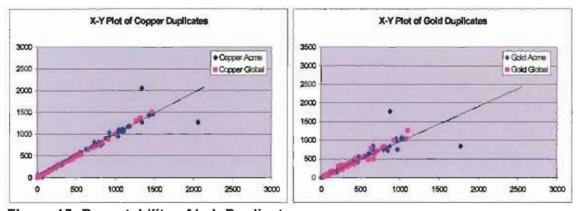
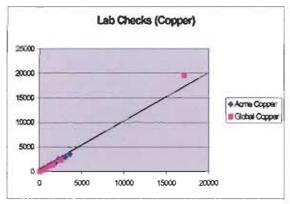



Figure 15: Repeatability of Lab Duplicates

The variance of the duplication of gold and copper results improved in both labs from the repeatability of standards. Global excelled over Acme during repeatability of gold grades, however, Acme appeared more adept at repeatability of copper grades. Overall, the variance for repeatability for both standards and sample duplicates were acceptable and it is the author's opinion that the analytical procedures were adequate for this stage of exploration.

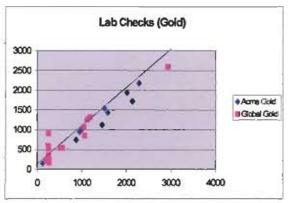


Figure 16: Repeatability of Lab Checks

Inter-lab repeatability of analytical grades from samples sent to Chemex resulted in a much higher dispersion rate and variance than from intra-lab repeatability. Copper checks were adequate at lower levels, however gold appeared erratic, due likely from differing analytical techniques as well as a nugget effect. Also, the number of samples was relatively low for an adequate comparison. There were no comparisons that were off by an order of magnitude and it is the author's conclusion that analytical results from all labs were adequate.

Petrographic Report

A total of 17 core samples were sent to Harris Exploration Services and 1 core sample was sent to PetraScience Consultants Ltd for petrographic analyses. Reports detailing petrographic descriptions are found in Appendix C. Generally, the reports state that the Megabuck Zone is generally comprised of quartz-poor/feldspar-rich igneous rocks (latite-andesite or monzonite-diorite range) with the intrusives classified as porphyritic monzonites.

6. INTERPRETATION AND CONCLUSIONS

The 2004 drilling program delineated a large, irregular and complex tabular-shaped gold-copper mineralized system trending northeast and dipping approximately 45° to the southeast. Mineralization extends over a roughly 400 metre by 250 metre area to a depth of 300 metres. Mineralization is truncated by mineralized faults to the northeast at approximately line 50 mN and obliquely to the east by the "Feeder Creek Fault" to Deerhorn Lake. Although the complex geology and numerous fault offsets complicate the picture, the system remains open in all directions and to depth.

Drilling crosscut layered sequences of mainly monzonite intrusives, crowded feldspar porphyries, volcanic breccia, andesite crystal tuffs and fine pyroclastic rocks and their reworked or sedimentary equivalents. Rock units encountered during drilling show various types and degrees of alteration. Significant bleaching of rock units occurs in and around fault zones. Propylitic, potassic, and sericitic alteration is most evident with feldspars and mafic minerals having been altered to epidote and chlorite.

Dark grey quartz ± carbonate stringers and veinlets are pervasive throughout the mineralized zones. Visible gold was not encountered in any of the drill core, however,

gold is believed to be associated with chalcopyrite. The best gold values show good correlation with sections of core containing numerous chalcopyrite-bearing quartz veinlets.

Shearing and faulting occur throughout the layered sequence. A major north-south trending fault system (Feeder Ck Fault), located in the proximity of the creek feeding Deerhorn Lake from the south, contains semi-massive chalcopyrite mineralization in fault breccia. The copper to gold ratio within this fault controlled mineralization, as well as the fault system intersected by 03-30 (completed last year) is distinctly higher than mineralization generally found in the Megabuck Zone (~ 0.16:1.0 %Cu:g/tAu). This is most likely due to epigenetic remobilization of the copper within the fault conduits.

7. RECOMMENDATIONS

The objective of the proposed exploration program outlined below is to allow a propertywide examination of the distribution of gold-copper mineralization. Areas of focus will include:

- 1 Megabuck Zone: additional drilling in peripheral areas to expand the zone of known mineralization.
- 2 Mineralization associated with a major fault system (Feeder Ck Fault) located immediately to the east of the Megabuck Zone as well as any mineralization located to the east of the fault zone.
- 3 Mineralized zone located 800 metres east of the Megabuck Zone discovered during the 2003 drill program (hole 03-30) that intersected 15.4 metres of mineralization grading 0.90% copper and 0.04g/t gold from surface to a down-hole depth of 43.5 metres.
- 4 Takom Zone: fence drilling across the large (2 x 1 kilometre) IP chargeability/copper-in-soils anomaly.
- 5 Anomalous IP chargeability and soil geochemical zones.

The following work is recommended:

- Check road construction associated with logging activity for new bedrock exposures.
- Conduct a program of surface soil geochemistry over IP anomalies and other prospective areas.
- Conduct reconnaissance RC drilling in areas 3-5.
- Additional diamond drilling in areas 1 and 2 as well deeper holes as defined by RC drilling and across geophysically and geochemically defined targets.
- Re-examine drill core from all previous holes for compilation
- Prospect the property

It is estimated that the next phase of exploration will cost approximately \$1,000,000.

Budget

ITEM	COST
Diamond Drilling (4000 m @ \$125/metre)	500,000
RC Drilling (5600 m @ \$65/metre)	364,000
Soil Sampling (450 samples @ \$70 ea)	31,500
Prospecting	8,600
Report Writing	5,000
Contingencies (@ 10%)	90,900
TOTAL	\$1,000,000

Table 9: Exploration Budget

8. STATEMENT OF EXPENDITURES

ltem .	Expenditure
Geological	99,725.00
Drilling Contractors	320,584.78
Equipment Rental	1,269.00
Vehicle Expense	9,988.94
Accommodation	11,453.95
Food	4,620.88
Analytical	46,801.44
Communication	318.93
Maps/Reproduction	458.54
Field Supplies	4,313.04
Shipping	3,945.13
Warehouse/Storage	1,100.00
Travel	1,857.23
TOTAL	\$506,436.86

Table 10: Statement of Expenditures

9. REFERENCES

- Barr, D.A., Fox, P.E., Northcote, K.E. and Preto, V.A. (1976): The Alkaline Suite Porphyry Deposits -A Summary; in Porphyry Deposits of the Canadian Cordillera, Sutherland Brown, A. Editor, Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 359-367.
- **Bull, 1997:** (BCDM) Geology and Mineral Deposits of the Quesnel River. Horsefly Area. **Campbell, S. and Pentland, W., 1983:** (Placer Development Ltd), A Diamond Drilling Report on HorseflyProperty. Assessment Report 12,522.
- Campbell, S., 1984: (Placer Development Ltd), A Diamond Drilling Report on Horsefly Property LS1, AB3 Mineral Claims. Assessment Report 12,301
- Cannon, R. and Pentland, W.S., 1983: Geological, Geophysical & Geochemical Report on the Horsefly Property.
- Carne, J.F., 1984: (Rockridge Mining Corporation), Geological and Geochemical Report on the Ravioli 85-1 to 3 Group. Assessment Report #13,741.
- **Cruz, E., 1975:** (Exploram Minerals Ltd), Geochemical Survey on the HS-D Mineral Claim Group. Assessment Report 5548.
- Cruz, E., 1977: (Exploram Minerals Ltd), Assessment Work #6315 on the WL Claims. Imperial Metals Corporation 2000 Annual Report
- Hallam Knight Piesold Ltd., 1993: Kemess South Gold-Copper Project, Application Report, Volume 1 Executive Summary.
- Lang, J.R., Stanley, C.R. and Thompson, H.F.H. (1993): A Subdivision of Alkalic Porphyry Cu- Au Deposits into Silica-saturated and Silica- undersaturated Subtypes; in Porphyry Copper-Gold Systems of British Columbia, Mineral Deposit Research Unit, University of British Columbia, Annual Technical Report Year 2, pages 3.2-3.14.
- M.E.G., 2001: Vancouver Mining Exploration Group (Short Course), Iron Oxide Copper-Gold Deposits.
- Main, C.A. and Came, J.F., 1984: (Archer, Cathro & Asoc.), Geological and Geochemical Report on the Rav 1-4 Group. Assessment Report 12,268.
- Main, C.A., 1986: (Rockridge Mining Corporation), Trenching Program on Megabuck Mineral Property by Archer Cathro & Assoc.
- Main, C.A., 1987: (Archer, Cathro & Asoc.), Geophysical Report on Megabucks Property, by Delta Geoscience Ltd.
- McMillan, W.J. (1991): Porphyry Deposits in the Canadian Cordillera; in Ore Deposits, Tectonics and Metallogeny in the Canadian Cordillera, B. C. Ministry of Energy, Mines and Petroleum Resources, Paper 1991-4, pages 253-276.
- McMillan, W.J. and Panteleyev, A. (1988): Porphyry Copper Deposits; in Ore Deposit Models, Roberts, R.G. and Sheahan, P.A, Editors, Geoscience Canada, Reprint Series 3, pages 45-58.
- **Morton, J.W., 2001:** (Wildrose Resources Ltd.), Summary Report on the Woodjam Property. In- house Report.
- Mutschler, F.E. and Mooney, T.C. (1993): Precious Metal Deposits Related to Alkaline Igneous Rocks -Provisional Classification, Grade-Tonnage Data, and Exploration Frontiers; IUGS/UNESCO Conference on Deposit Modeling, Ottawa, 1990, Proceedings Volume, Geological Association of Canada, Special Paper 40, pages 479-520.
- Panteleyev, A. 1995: Porphyry Cu-Au: Alkalic, in Selected British Columbia Mineral Deposit Profiles, Volume 1 -Metallics and Coal, Lefebure, D.V. and Ray, G.E., Editors, British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20, pages 83-86.

- **Peatfield, G.R., 1986:** (Big Rock Gold. Ltd), Megabuck Mineral Property, by MinQuest Exploration Associates Ltd. Inclusion in Prospectus.
- Pentland, W., 1983: (Placer Development Ltd), A Geochemical Report on the Horsefly Property. Rebagliati, C., 1983: (Rebagliati Geological Consulting Ltd.), MEGABUCK -A Synvolcanic Alkaline Intrusive Associated Gold Prospect. Summary Report.
- Peters, L., 2004: (Fjordland Exploration Inc) Diamond Drilling Report on the Woodjam Claims.
- Peters, L., 2003: (Fjordland Exploration Inc) Diamond Drilling Report on the Woodjam Claims.
- **Peters, L., 2001:** (Fjordland Exploration Inc) Summary Technical Report on the Woodiam Property: NI43-101 Report.
- Scott, A., 2001: (Fjordland Exploration Inc), Logistical Report -Induced Polarization and Magnetometer Surveys by Scott Geophysics Ltd,.
- **Stevenson, D., 1991:** (Auspex Gold Ltd.), Geology and Geochemical Report on the Takom 1-2 Claims. Assessment Report 21,221.
- Sutherland Brown, A., (1976): Porphyry Deposits of the Canadian Cordillera; Canadian Institute of Mining and Metallurgy, Special Volume 15, 510 pages.
- **Walker, T., 1992:** (Noranda Exploration Company Limited), Summary Report of 1992 Exploration Activities on the Megabuck Property.
- Watson, I.M., 1984: (Rockridge Mining Corporation), Report on the Starlike Property, Inclusion in prospectus.
- Wetherup, S. and Kulla, G. 2000: (Phelps Dodge Corporation of Canada, limited), Diamond Drilling Report on the Woodjam Property.
- White, G. and Cruz, E.D., 1974: (Exploram Minerals Ltd), Geophysical Report on Magnetometer and Induced Polarization Surveys. Assessment Report 5411.
- White, G. and Cruz, E.D., 1974: (Exploram Minerals Ltd), Geophysical Report on HS Mineral Claims. Assessment Report 5311.
- White, G. and Cruz, E.D., 1974: (Exploram Minerals Ltd), Geophysical Report on Magnetometer and Induced Polarization Surveys, Ray Mineral Claims. Assessment Report 5299.
- White, G. and Cruz, E.D., 1914: (Exploram Minerals Ltd), Geophysical Report on HS 1-46 Mineral Claims. Assessment Report 4766.
- Wilson, B, 1985: (Archer, Cathro & Assoc Ltd), Column Cyanide leaching of Megabuck Ore, Horsefly, B.C.. Unpublished Report.

10. AUTHOR'S STATEMENT OF QUALIFICATIONS - L. John Peters

- I, L. John Peters, P.Geo do hereby certify that:
- a. I am a consulting geologist with addresses at 6549 Portland Street, Burnaby, BC, Canada, V5E 1A1.
- I graduated with a Bachelor of Science degree (Geology) from the University of Western Ontario in 1984.
- c. I am a Professional Geoscientist (P.Geo.) in good standing with the Association of Professional Engineers and Geoscientists of British Columbia (#19010).
- **d.** I have worked as a geologist for a total of 20 years since my graduation from university.
- e. I am responsible for the preparation of all sections of the technical report titled "ASSESSMENT REPORT including Diamond Drilling on the WOODJAM PROPERTY" and dated 8 March 2005 relating to the Woodjam Property. I visited the Woodjam Property on numerous times since 2001.
- f. I was not involved in any of the historic work programs on the Woodjam Property, however, I have been involved in all aspects of Fjordland's exploration activities on the Property since 2001.
- g. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Dated this 8th day of March 2005.

"Lawrence John Peters"

APPENDIX A

DRILL LOGS

		D	IP TES	TS	
Property: Woodjam	Total Length: 365.15 m	Depth (m)	Dip Meas.	. Dip Cor.	Start Date: June 5, 2004
Hole ID: WJ-04-32	Core Size: NQ	154.80	58°	49.5°	Completion: June 16, 2004
Elevation: 992 m	Azimuth: 208°	331.60	61°	53.0°	Logged By: L. John Peters
Coordinates: L 0, St 0	Inclination: 50°				Date logged: June 11-16, 2004

NOTES: Hole drilled by Phil's Diamond Drilling Ltd of 100 Mile House using a Longyear 37. Pad was constructed using a John Deer 450C. Hole collared at UTM (Nad83) 610358,5790789.

Depth	(metres)	LITHOLOGICAL DESCRIPTION		SAM	IPLES		Anal	ytical
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	Cu (%)	Au (ppm)
0	3.96	CASING through overburden.						
3.96	5.49	VOLCANICLASTIC: dark grey, highly silicified, cpy to 1% (disseminated), trace py	202501	3.96	5.97	2.01	0.132	0.934
5.49	17.07	INTRUSIVE: Monzonite, rounded feldspar, variable light-dark grey groundmass, feldspar porphyry in	202502	5.97	7.98	2.01	0.225	1.667
	İ	dark groundmass, cpy in veinlets and disseminated ~1%, trace bornite, ~2% magnetite	202503	7.98	9.98	2.01	0.121	0.941
					11.99	2.01	0.147	0.949
	}		202505	11.99	14.00	2.01	0.187	1.460
			202506	14.00	16.00	2.01	0.171	1.884
17.07 20.12		POLYMICTIC ZONE: As above - (core mostly broken) highly altered pale buff coloured	202507	16.00	18.01	2.01	0.168	1.188
		Monzonite/Feldspar porphyry, minor fe-ox, irregular quartz-carbonate veinlets, magnetite ~1%, minor pale green epidote alt, some sericite, cpy <1%; locally in veinlets to 5%	202508	18.01	20.02	2.01	0.309	0.779
20.12	37.49	FAULT ZONE: very broken pale grey rock and gouge, textures obscurred, trace Sulphides.	202509	20.02	22.02	2.01	0.106	0.608
			202510	22.02	24.03	2.01	0.207	1.466
			202511	24.03	26.04	2.01	0.181	1.035
	1		202512	26.04	28.04	2.01	0.167	0.747
	1		202513	28.04	30.05	2.01	0.140	0.764
		30.8 - 8 centimetre magnetite vein @ 60°	202514	30.05	32.05	2.01	0.140	0.722
	1		202515	32.05	34.06	2.01	0.115	0.498
			202516	34.06	36.07	2.01	0.113	0.697
37.49	41.15	INTRUSIVE: pale green-orange monzonite breccia, large (4 cm) dark fragments, abundant quartz	202517	36.07	38.07	2.01	0.138	0.808
		veinlets with cpy ~2-3%	202518	38.07	40.08	2.01	0.239	1.691
			202519	40.08	42.09	2.01	0.174	1.176
41.15	69.49	FAULT ZONE: very broken pale green-grey volcanic/intrusive, lessor quartz veinlets <1% to trace,	202520	42.09	44.09	2.01	0.143	0.956
			202521	44.09	46.10	2.01	0.166	1.175
			202522	46.10	48.11	2.01	0.258	1.370
		gouge seams @ 45.7-47.5, 52.4-54.6, 66.4-66.8	202523	48.11	50.11	2.01	0.208	1.012
			202524	50.11	52.12	2.01	0.203	1.236
			202525	52.12	54.13	2.01	0.180	1.449
			202526	54.13	56.13	2.01	0.074	0.595

Depth ((metres)	LITHOLOGICAL DESCRIPTION		SAI	MPLES		Anai	ytical
From (m)	To (m)	ETHOLOGICAL DEGORIF HOR	Sample #	From (m)	To (m)	Metres	Cu (%)	Au (ppm)
			202527	56.13	58.14	2.01	0.164	1.521
			202528	58.14	60.15	2.01	0.159	0.970
			202529	60.15	62.15	2.01	0.162	1.028
			202530	62.15	64.16	2.01	0.238	1.639
			202531	64.16	66.17	2.01	0.192	1.065
			202532	66.17	68.17	2.01	0.125	0.672
69.49	83.52	VOLCANIC GRIT: finer grain, dark grey, variable quartz veinlets, cpy trace to 1% in veinlets	202533	68.17	70.18	2.01	0.107	0.616
			202534	70.18	72.19	2.01	0.113	0.585
		Fault: 72.8-73.5 - pale gren grey + abundant Quartz veinlets,	202536	74.19	76.20	2.01	0.155	1.081
		75.3-86.3 - pale green highly altered volcanics, minor gouge, low k-alt, abundant and variable quartz	202537	76.20	78.21	2.01	0.160	1.001
	:	veinlets	202538	78.21	80.21	2.01	0.220	1.524
			202539	80.21	82.22	2.01	0.097	0.791
			202540	82.22	84.23	2.01	0.182	1.196
83.52	108.51	INTRUSIVE: medium grained Monzonite?, low magnetite, minor dark grey quartz veinlets, trace	202541	84.23	86.23	2.01	0.115	0.831
		Sulphides to 5% locally in fractures.	202542	86.23	88.24	2.01	0.078	0.500
			202543	88.24	90.25	2.01	0.125	0.826
			202544	90.25	92.25	2.01	0.174	0.968
		FAULT ZONE from 83.52 - 108.5 subparallel to downhole, variable gouge	202545	92.25	94.26	2.01	0.082	0.446
			202546	94.26	96.27	2.01	0.115	0.783
			202547	96.27	98.27	2.01	0.080	0.621
	}		202548	98.27	100.28	2.01	0.061	0.430
			202549	100.28	102.29	2.01	0.138	1.614
	}		202550	102.29	104.29	2.01	0.044	0.349
			202551	104.29	106.30	2.01	0.085	0.611
			202552	106.30	108.31	2.01	0.116	0.930
108.51	118.57	VOLCANIC GRIT: tan to pale green, highly altered from fault zone, minor magnetite, minor quartz	202553	108.31	110.31	2.01	0.121	0.806
	<u> </u>	veinlets, Sulphides trace to 1%	202554	110.31	112.32	2.01	0.147	0.881
			202555	112.32	114.33	2.01	0.111	0.713
			202556	114.33	116.33	2.01	0.206	1.037
			202557	116.33	118.34	2.01	0.131	0.812
118.57	126.37	FELDSPAR PORPHYRY: dark grey, fine grained, moderate quartz veinlets, cpy >1%; disseminated and	202558	118.34	120.35	2.01	0.141	1.147
		in veinlets, minor epidote along veinlets.	202559	120.35	122.35	2.01	0.223	1.711
			202560	122.35	124.36	2.01	0.513	4.255
			202561	124.36	126.37	2.01	0.509	4.865
126.37	128.93	VOLCANICS: light tan, clay altered, abundant quartz veinlets, <1% Sulphides	202562	126.37	128.37	2.01	0.151	1.002
128.93	133.81	As above: low alteration, grading to fine grain dark grey-brown Intrusive, trace Sulphides, minor quartz	202563	128.37	130.38	2.01	0.148	1.151

Log04-32.xls Page 2

Depth (metres)	LITHOLOGICAL DESCRIPTION		SAI	MPLES		Anal	Analytical		
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	Cu (%)	Au (ppm)		
		veinlets.	202564	130.38	132.38	2.01	0.115	0.772		
133.81	139.29	FAULT ZONE: pale green to tan, highly altered volcanics, very high epidote, some breccia zones, trace	202565	132.38	134.39	2.01	0.121	1.181		
		Sulphides.	202566	134.39	136.40	2.01	0.080	0.505		
			202567	136.40	138.40	2.01	0.097	0.596		
139.29	148.74	QUARTZ-FELDSPAR PORPHYRY: orange k-alt, increasing alt to depth with epidote, feldspars clay	202568	138.40	140.41	2.01	0.106	0.673		
		altered, cpy ~1%	202569	140.41	142.42	2.01	0.142	0.850		
			202570	142.42	144.42	2.01	0.126	0.726		
			202571	144.42	146.43	2.01	0.202	1.232		
			202572	146.43	148.44	2.01	0.310	2.279		
148.74	156.06	FAULT ZONE: as above, high alteration (friable), some gouge, trace Sulphides	202573	148.44	150.27	1.83	0.283	1.985		
		150.3-150.6 cpy 25%	202574	150.27	150.67	0.41	7.075	62.720		
			202575	150.67	152.40	1.73	0.092	1.082		
			202576	152.40	153.70	1.30	0.085	0.808		
			202577	153.70	155.70	2.01	0.037	0.327		
			202578	155.70	157.71	2.01	0.163	1.043		
156.06	163.98	ALTERATION ZONE: as above, dark to light grey, textures obliterated, 3% Sulphides (mainly py)	202579	157.71	159.72	2.01	0.024	0.175		
			202580	159.72	161.72	2.01	0.018	0.115		
			202581	161.72	163.73	2.01	0.033	0.250		
163.98	167.64	CROWDED QUARTZ-FELDSPAR PORPHYRY: k-alt, variable quartz veinlets, cpy <1%	202582	163.73	165.74	2.01	0.042	0.138		
			202583	165.74	167.74	2.01	0.032	0.556		
167.64	170.38	as above: pale green, epidote rich, some breccia (quartz filled), cpy < 1% in veinlets	202584	167.74	169.75	2.01	0.023	0,120		
170.38	181.97	as above: orange quartz-feldspar porphyry, patches of crowded quartz-feldspar, some areas friable,	202585	169.75	171.75	2.01	0.029	0.192		
		trace sulphides, minor quartz veining	202586	171.75	173.76	2.01	0.032	0.109		
			202587	173.76	175.77	2.01	0.025	0.755		
			202588	175.77	177.77	2.01	0.030	0.391		
			202589	177.77	179.78	2.01	0.041	0.101		
			202590	179.78	181.97	2.18	0.040	0.105		
181.97	184.10	FAULT ZONE: dark grey, breccia/gouge, <1% Sulphides (mainly py)	202591	181.97	184.10	2.13	0.116	0.529		
184.10	193.85	QUARTZ-FELDSPAR PORPHYRY: orange k-alt (pervasive), minor quartz veinlets, trace Sulphides	202592	184.10	186.11	2.01	0.130	0.865		
			202593	186.11	188.11	2.01	0.054	0.628		
			202594	188.11	190.12	2.01	0.033	0.202		
			202595	190.12	192.02	1.91	0.025	0.121		
			202596	192.02	193.85	1.83	0.025	0.151		
193.85	199.64	as above - some breccia, abundant quartz veinlets, cpy ~1%	202597	193.85	195.86	2.01	0.071	0.558		
			202598	195.86	197.87	2.01	0.107	2.941		
			202599	197.87	199.64	1.78	0.151	0.929		

Log04-32.xls Page 3

Depth ((metres)	LITHOLOGICAL DESCRIPTION		SAI	MPLES		Anal	ytical
From (m)	To (m)	ETHOLOGICAL PLOCAL HOR	Sample #	From (m)	To (m)	Metres	Cu (%)	Au (ppm)
199.64	203.91	VOLCANIC GRIT: dark grey, variable quartz veinlets, trace Sulphides increasing with depth to 1%	202600	199.64	201.65	2.01	0.185	1.109
			202601	201.65	203.91	2.26	0.181	1.131
203.91	230.73	VOLCANIC BRECCIA ZONE: orange high k-alt, abundant mineralized quartz veinlets, explosive post	202602	203.91	205.92	2.01	0.207	1.245
		mineralized light grey quartz veining overprint, moderate epidote, minor gouge seams (core competent),	202603	205.92	207.92	2.01	0.212	1.192
		cpy 1-2%	202604	207.92	209.93	2.01	0.151	1.066
			202605	209.93	211.94	2.01	0.260	1.731
			202606	211.94	213.94	2.01	0.184	1.272
			202607	213.94	215.95	2.01	0.136	1.005
			202608	215.95	217.96	2.01	0.224	1.679
			202609	217.96	219.96	2.01	0.174	1.029
			202610	219.96	221.97	2.01	0.116	0.817
			202611	221.97	223.98	2.01	0.149	1.204
			202612	223.98	225.98	2.01	0.199	1.393
	ļ		202613	225.98	227.99	2.01	0.186	1.400
			202614	227.99	229.51	1.52	0.210	1.396
	1		202615	229.51	230.73	1.22	0.177	1.077
230.73	271.27	INTRUSIVE: fine grained, grey-orange-green, ~1% magnetite, variable quartz veinlets, cpy 1-2%, minor	202616	230.73	232.74	2.01	0.138	0.804
		epidote rimming quartz veinlets + retrograde, high potassic alteration (pervasive)	202617	232.74	234.75	2.01	0.093	0.531
			202618	234.75	236.75	2.01	0.209	1.320
			202619	236.75	238.76	2.01	0.156	0.929
			202620	238.76	240.77	2.01	0.139	0.827
			202621	240.77	242.77	2.01	0.116	0.620
			202622	242.77	244.78	2.01	0.170	1,004
			202623	244.78	246.79	2.01	0.196	1.342
			202624	246.79	248.79	2.01	0.130	0.684
			202625	248.79	250.80	2.01	0.101	0.588
			202626	250.80	252.81	2.01	0.154	0.830
			202627	252.81	254.81	2.01	0.108	0.618
			202628	254.81	256.82	2.01	0.141	0.671
			202629	256.82	258.83	2.01	0.109	0.553
			202630	258.83	260.83	2.01	0.078	0.370
			202631	260.83	262.84	2.01	0.111	0.678
			202632	262.84	264.85	2.01	0.065	0.394
			202633	264.85	266.85	2.01	0.120	0.642
			202634	266.85	268.86	2.01	0.073	0.455
			202635	268.86	270.87	2.01	0.064	0.248

Log04-32.xls Page 4

Depth (metres)	LITHOLOGICAL DESCRIPTION		SAI	MPLES		Analytical		
From (m)	To (m)	ETHOLOGICAL DECONIT TION	Sample #	From (m)	To (m)	Metres	Cu (%)	Au (ppm)	
271.27	302.06	INTRUSIVE: medium grained, dark grey, magnetite ~3%, generally fresh looking core with moderate	202636	270.87	272.87	2.01	0.104	0.452	
		localized alteration zones near veinlets, moderate quartz veinlets, minor breccia, minor epidote alteration	202637	272.87	274.88	2.01	0.070	0.263	
		near veinlets, Sulphides <1%, locally to 2% (mainly pyrite) decreasing with depth	202638	274.88	276.89	2.01	0.088	0.293	
			202639	276.89	278.89	2.01	0.125	0.452	
			202640	278.89	280.90	2.01	0.047	0.156	
			202641	280.90	282.91	2.01	0.061	0.288	
			202642	282.91	284.91	2.01	0.052	0.223	
			202643	284.91	286.92	2.01	0.072	0.326	
			202644	286.92	288.93	2.01	0.056	0.186	
			202645	288.93	290.93	2.01	0.066	0.358	
			202646	290.93	292.94	2.01	0.048	0.223	
			202647	292.94	294.94	2.01	0.053	0.235	
			202648	294.94	296.95	2.01	0.076	0.403	
			202649	296.95	298.96	2.01	0.097	0.267	
			202650	298.96	300.96	2.01	0.090	0.271	
			202651	300.96	302.97	2.01	0.056	0.286	
302.06	318.21	VOLCANICS: dark green-grey, fine-grained including porphyritic breccia clasts (10%) up to 1 m, multi-	202652	302.97	304.98	2.01	0.044	0.163	
		phase quartz veinlets; dark grey (mineralized) very thin and white to light grey (post mineralized) up to 1 cm wide. @ 306 m - 5 cm quartz filled fault breccia zone, other minor quart filled cracks. Trace to <1%	202653	304.98	306.98	2.01	0.052	0.162	
		sulphides (cpy/py=50/50) localized and variable.	202654	306.98	308.99	2.01	0.044	0.137	
		Sulphides (opyrpy-50/00) localized and variable.	202655	308.99	310.39	1.40	0.070	0.270	
			202656	310.39	312.39	2.01	0.029	0.110	
			202657	312.39	314.40	2.01	0.023	0.058	
			202658	314.40	316.41	2.01	0.036	0.141	
		·	202659	316.41	318.41	2.01	0.058	0.231	
318.21	326.90	as above: fine grained volcanics interspersed with medium grained quartz porphyry, very thin sulphide	202660	318.41	320.42	2.01	0.048	0.224	
		veinlets of py/cpy <<1%, very minor quartz veinlets. k-spar alteration rimming thin mineralized veinlets in	202661	320.42	322.43	2.01	0.048	0.205	
		porphyry, mainly pyrite veinlets in fresh unaltered volcanics	202662	322.43	324.43	2.01	0.058	0.138	
			202663	324.43	326.44	2.01	0.042	0.109	
326.90	327.96	FAULT ZONE: highly fractured and altered, quartz filled, minor gouge, ~ 2% sulphides (mainly py).	202664	326.44	328.45	2.01	0.040	0.158	
327.96	334.06	PORPHYRY/VOLCANICS: (70%:30%), as above, porphyry slightly altered, sulphides <1% (cpy/py)	202665	328.45	330.45	2.01	0.041	0.138	
			202666	330.45	332.46	2.01	0.054	0.236	
			202667	332.46	334.47	2.01	0.056	0.173	
334.06	348.08	VOLCANICS/PORPHYRY: (70%:30%), dark green-grey, fresh looking, minimal very thin quartz veining,	202668	334.47	336.47	2.01	0.043	0.247	
		trace Sulphides (py),	202669	336.47	338.48	2.01	0.089	0.325	
			202670	338.48	340.49	2.01	0.041	0.207	

Log04-32.xls Page 5

Depth ((metres)	LITHOLOGICAL DESCRIPTION		SAI	MPLES		Anal	ytical
From (m)	To (m)		Sample #	From (m)	To (m)	Metres	Cu (%)	Au (ppm)
			202671	340.49	342.49	2.01	0.064	0.299
	ļ		202672	342.49	344.50	2.01	0.063	0.279
		335.9-336.2: gouge seam	202673	344.50	346.51	2.01	0.055	0.260
			202674	346.51	348.51	2.01	0.068	0.447
348.08 351.74		FRACTURE ZONE: Volcanics/Porphyry (50%:50%), white-grey seam infilling (20%), <1% sulphides	202675	348.51	350.52	2.01	0.056	0.150
		(pyrite)	202676	350.52	352.20	1.68	0.049	0.214
351.74	353.87	VOLCANICS: fresh dark grey volcanics, minor verty thin quartz veinlets (<1 mm), trace sulph	202677	352.20	353.87	1.68	0.066	0.273
353.87	365.15	INTRUSIVES: medium grained, dark green-grey, feldspar+hornblende, magnetite 2%, minor zones of	202678	353.87	355.88	2.01	0.066	0.299
	ŀ	fine grained volcanics (5%), patchy alteration zones of feldspar to clay alteration, minor k-spar alteration	202679	355.88	357.89	2.01	0.074	0.318
		zones around mineralized fractures (increasing with depth), 1% sulphides (py/cpy), minor thin quartz veinlets (~1 mm).	202680	357.89	359.89	2.01	0.054	0.214
		venuers (~1 mm).	202681	359.89	361.80	1.91	0.059	0.268
				361.80	363.47	1.68	0.042	0.156
		ЕОН	202683	363.47	365.15	1.68	0.057	0.308

Hole # WJ-04-32b dip tests Property: Woodjam Total Length: 542.85 m depth dip az Grid Cord: 0+00W / 0+00N Core Size: NQ 426.72 -52 Elevation: 932 Azimuth: 208° 515.41 -53 Inclination: -50° Section:

Start Date: Aug 9/04 Completion: Aug 15/04 Logged By: Johnston Date logged: Aug 10-17/04

Depth ((metres)	LITHOLOGICAL DESCRIPTION	A	Iteration		Sulf	ides		SAN	MPLES .		Rec.	Analytical	
From	То	ETHOLOGICAL DECORA HOR	epidote	k-spar	carb	Py	ср	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
364.85	365.97	Feldspar Porphyry; 2-5 mm feld laths in bunches to 10 cm in fg grey matrix, mod ep + pink kspar alt in feldspathic matrix, <1% diss py, minor cpy, magnetic, calcareous, local grey chalcedonic qtz veins, abundant white qtz-cb veinlets	mod	mod	mod	1%	minor	146001	364.85	365.97	1.12	90	0.0417	0.236
365.97	366.8	Contact Zone; sharp 60° CA contact at top followed by black fg massive rock, biotite att?, calcareous, magnetic, local cb-ep stringers	stringers	tr	mod	minor	no	146002	365.97	368.00	2.03	95	0.0464	0.236
366.8	428.2	Volcanics; massive fg green volcanics, dark grey small local feldspar grains, calcareous, magnetic						146003	368.00	370.00	2.00	98	0.0618	0.273
								146004	370.00	372.00	2,00	98	0,0595	0.257
1		370.0-371.0 local quartz veins with kspar, py, epidote	stringers	stringers	mod	minor	по	146005	372.00	374.00	2.00	99	0.0551	0.274
		372.5-373.0 as above	stringers	stringers	mod	minor	no	146006	374.00	376.00	2.00	100	0.0331	0.189
		375.4 trace diss cpy around quartz-carb vnlts				minor	minor	146007	376.00	378.00	2.00	99	0.0283	0.108
		376.3-403.0 local 0.3-0.8 m zones of strong calcite veining, very broken, locally strong clay alteration,	tr	no	mod	minor	no	146008	376.00	380.00	2.00	100	0.0273	0.136
		local py in selveges, local red hematite with calcite	tr	no	mod	minor	no	146009	380.00	382.00	2.00	99	0.032	0.186
		376.6 30 cm clay alteration, calcite veining zone						146010	382.00	384.00	2.00	98	0.0083	0.076
		379.3 10° CA calcite veinlets, fg grey volcanics, white quartz-calcite veining with local py selveges	tr	no	mod	minor	no	146011	364.00	386.00	2.00	95	0.01	0.051
			tr	no	mod	minor	no	148012	388.00	386.00	2.00	100	0.0101	0.037
		384.2 red hematite with calcite in 10° CA quartz-carbonate vein	tr	no	mod			146013	386.00	390.00	2.00	100	0.005	0.039
		388.2 30° CA 1 cm qut-cc vein with massive py in broken zones around vein	tr	no	mod	minor	no	146014	390,00	392.00	2.00	100	0.0067	0.021
		390.5 30 cm broken day zone, cc-hematite fractures	tr	no	mod			148015	392.00	394.00	2.00	100	0.0105	0.054
		394.8 py in fractures around 10° CA white quartz-carbonate vein, minor diss py	tr	no	mod	ļ		146016	394.00	396.00	2.00	96	0.0032	0.018
		399.3 30° CA qut-cc vein with py, trace cpy in selvege	tr	no	mod	minor	t	148017	396.00	398.00	2.00	85	0.0072	0.055
		401.5 0.4 m clay broken zone	tr	no	mod	İ		146018	398.00	400.00	2.00	100	0.0087	0.07
		404.0 grey volcanic continues, white-brown qtz-cc fe-carb veinlets, 10-20/metre, calcareous, magnetic	tr	no	mod	1		146019	400.00	402.00	2.00	96	0.0107	0.08
				•				146020	402.00	404.00	2.00	100	0.008	0.031
			l	İ		l		146021	404.00	406.00	2.00	100	0.01	0.041
			l			1		148022	406.00	408.00	2.00	98	0.0084	0.025
						İ	İ	148023	406.00	410.00	2.00	96	0.0168	0.051
		412.5 abundant white qtz-cc fractures with py in wallrock bx zones (extends 1 cm from vein only)	tr	no	mod			148024	410.00	412.00	2.00	100	0.0094	0.04
			1	:				146025	412.00	414,00	2.00	97	0.0075	0.045
								146026	414.00	416.00	2.00	98	0.0081	0.035
						1	i	146027	416,00	418.00	2.00	99	0.0127	0.055
		418.5 trace cpy with local py in white qtz-cc veins	tr	no	mod	minor	tr	146028	418.00	420.00	2.00	96	0.0153	0.021
		420.7-421.3 broken day zone, local pink kspar	tr	minor	mod			146029	420.00	422.00	2.00	100	0.0161	0.112
		423 0.5 m zone of 60° CA white qtz-cc stringers, local py stringers	tr	no	mod	minor	no	148030	422.00	424.00	2.00	99	0.0164	0.018
			l			1		146031	424.00	426.00	2.00	97	0.0198	0.049
					L		<u> </u>	146032	426.00	428.00	2.00	96	0.0139	0.044
428.2	430.8	Feldspar Crystal Tuff?; green epidote altered, white feldspars to 3 mm, minor green laths, mod diss py	tr	no	mod	diss	no	146033	428.00	430.00	2.00	100	0.0116	0.035
			L				<u> </u>	146034	430.00	432.00	2.00	100	0.0102	0.051
430.8	449.0	fg green volcanic (as above), calcareous, magnetic, abundant white qtz-cc veins						148035	432.00	434.00	2.00	100	0.0237	0.058
		433.5 local py in selvege of qtz-cc vn	wk	no	mod			146036	434.00	436.00	2.00	99	0.0187	0.298
		435.4-441.5 qtz-cc veins with mass specular hematite + pym abundant epidote	mod	no		i	İ	146037	438.00	438.00	2.00	100	0.0157	0.058

Depth (metres)	LITHOLOGICAL DESCRIPTION	A	Iteration		Sulf	ides		SAN	IPLES		Rec.	Ana	lytical
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-spar	carb	РУ	ср	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
								146038	438.00	440.00	2.00	100	0.0041	0.059
		· ·						146039	440.00	442.00	2.00	99	0.0134	0.04
		442-451 very minor qtz-cc veins, only 3-4/m						146040	442.00	444.00	2.00	96	0.013	0.044
		445.5 local spctular hematite stringers	tr	no	mod	minor	tr	146041	444.00	446.00	2.00	99	0.0068	0.068
			1					146042	448.00	446.00	2.00	97	0.0097	0.02
						ĺ		146043	446.00	450.00	2.00	96	0.0096	0.03
449.0	458.0	green volcanics (as above); start of local kspar alteration in fractures, minor vfg diss py, local epidote	wk	wk	mod	minor		146044	450.00	452.00	2.00	92	0.013	0.045
		alteration	l				!	146045	452.00	454.00	2.00	100	0.0112	0.014
		449.5 cpy with minor diss py in volcanics	ŀ					146046	454.00	456.00	2.00	98	0.0107	0.019
		451-458 abundant white cc-qtz stringers, local wk epidote alteration, trace py, wk kspar	i i				İ	146047	456.00	458.00	2.00	100	0.0144	0.027
458.0	466.8	(as above); with interbeds up to 2 m of coarser voic units, local feldspar to 5mm, local dark green lithics	wk-mod	tr	mod	minor								
		(not obvious), calcareous magnetite, wk epidote alteration throughout coarser units, trace fg diss py, tr kspar, local black fg alteration of wallrock around fractures (biotite?)						148048	458.00	460.00	2.00	90	0.0244	0.12
		460.5 white X-twinned orthoclase	l				ł	146049	460.00	462.00	2.00	91	0.0098	0.059
		463 30 cm of strong epitote alt, minor kspar, tr py	1					148050	462.00	464.00	2.00	105	0.0206	0.082
		465.3-466.8 Feldspar Porphyry Dyke? 5% green epidote alt felds to 5 mm, local hornblende, calcareous, magnetic, kspar on fractures, also 30% of feldspars pink, minor fg diss py	mod	wk	mod	minor	tr	148051	464.00	486.00	2.00	100	0.0094	0.039
		485.4 cpy in 20°CA qtz-cc vein	1					146052	466.00	466.00	2.00	97	0.0073	0.04
466.8	502.5	fg grey volcancis (as above); trace epidote, no kspar, tr py	wk	no	mod	wk	~	148053	468.00	470.00	2.00	95	0.0038	0.01
		470.5-479 abundant white cc-qtz veinlets with minor brown fe-carb, local py with veins	l				[148054	470.00	472.00	2.00	100	0.0082	0.008
		477.3 cpy in qtz-cc vein	l			wk .	tr	148055	472.00	474.00	2.00	95	0.0146	0.013
		478.6 epidote altered for 2-3 cm from fractures	l			i	ĺ	146056	474.00	476.00	2.00	98	0.0049	0.005
		478.6-479.5 slightly bleached, 1% fg diss py	1			ł		146057	476.00	476.00	2.00	100	0.0277	0.01
l		473-482 epidote altered around qtz-cc veins	1				1	146058	478.00	480.00	2.00	85	0.0142	0.015
			l	ļ	1			148059	480.00	462.00	2.00	95	0.0066	0.025
			l			ĺ		146060	462.00	484.00	2.00	98	0.0031	0.007
			1				1	146061	484.00	488.00	2.00	99	0.0042	0.01
ĺ		486-490 strong white qtz-cc-clay fractures, local soft clay alt zones to 10 cm, wk epidote alteration, tr	l					146062	486.00	488.00	2.00	95	0.0001	0.01
		pink kspar, minor py around veins	1			minor		146063	488.00	490.00	2.00	95	0.0035	0.019
		490-495 mod epidote alteration, local kspar alteration around fractures	mod	wk	mod	minor	1	146064	490.00	492.00	2.00	96	0.0008	0.016
			ı	ł	l		l	146065	492.00	494.00	2.00	100	0.0049	0.012
			ļ	İ				146066	494.00	496.00	2.00	100	0.0043	0.005
		495-502.5 strong stockwork of white cc-qtz veins; trace py, trace epidote	tr	no	mod	wk		146087	498.00	498.00	2.00	99	0.0059	0.013
			1	l		ļ.		146068	498.00	500.00	2.00	100	0.006	0.014
		500.7-502.5 soft clay alteration around fractures, wk-mod epidote	mod	по	mod	wk	İ	146089	500.00	502.00	2.00	100	0.0358	0.02
502.5	512.15	grey fg volcanics with 0.5-3 m interbeds of coarser volcanics; 1-4 m feldspar, local lithic clasts visible,	mod	wk-mod	mod			148070	502.00	504.00	2.00	95	0.0778	0.123
		trace hornblende, calcareous, magnetic, coarser units with mod epidote alt'n in patches, also pervase	į .	İ				148071	504.00	506.00	2.00	100	0.0257	0.008
		pink kspar alt; py weak though locally around qtz-cc veins			ļ			146072	508.00	508.00	2.00	100	0.0026	0.026
Ì		502.8 30° CA cc veins with specular hematite	i			ļ	ľ	146073	508.00	510.00	2.00	99	0.0036	0.019
		509.18-511.7 strong epidote alt; strong kspar alt around fractures, tr py	strong	mod	mod			146074	510.00	512.00	2.00	98	0.0025	0.005
512.15	529.4	fg grey volcanics, minor coarse volc units; wk-mod epidote, local kspar alt'n, abundant quartz-carbonate-	wk	tr	mod	[148075	512.00	514.00	2.00	100	0.0132	0.024
		clay veinlets	1				ĺ	148076	514.00	516.00	2.00	99	0.0052	0.006
			l					148077	516.00	518.00	2.00	101	0.0116	0.011
			ŀ					146078	518.00	520.00	2.00	100	0.0086	0.006
		521.5 0.5 m coarser feld unit as above, mod epidote, wk kspar	mod	tr	mod			146079	520.00	522.00	2.00	90	0.0071	0.007
		524.3-529.4 strong white qtz-cc-clay veins/stockwork, local soft clay alt zones						146080	522.00	524.00	2.00	99	0.0061	0.019
			1					146061	524.00	526.00	2.00	99	0.057	0.017
		527.7 5 cm patch of strong epidote alt'n, minor py, no kspar						146062	526.00	528.00	2.00	98	0.0088	0.007

Depth	(metres)	LITHOLOGICAL DESCRIPTION	Alteration Sulfides SAMPLES		Alteration		Sulfides		SAMPLES				Rec.	Anai	ytical
From	То	EITHOESSIGNE DESSITE HOIT	epidote	k-sper	cento	РУ	8	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)	
								146083	528.00	530.00	2.00	98	0.0104	0.018	
529.4	1	coarse volcanic flows? (as above); local epidote alt'n, lessor kspar alt'n for 3 cm haloes around fractures,	mod	local	mod			146084	530.00	532.00	2.00	97	0.0085	0.013	
		whithe ∞-qtz-clay veins, tr py						146085	532.00	534.00	2.00	100	0.003	0.003	
								146088	534.00	536.00	2.00	100	0.0039	0.004	
					L			146087	536.00	536.00	2.00	99	0.0049	0	
538.0	542.85	fg grey voic (as above; abundant white cc-qtz-clay stringers with local epidote alt'n, tr py	local	t	mod	I		146088	538.00	540.00	2.00	97	0.0119	0.012	
								146089	540.00	542.00	2.00	95	0.0154	0.011	
		ЕОН						146090	542.00	542.85	0.85	100	0.0037	0.006	

Log04-32b.xls Page 3

Project: Woodjam Hole: WJ-04-32

Diamond Drill Recoveries Log

4.0 5.5 1.5 1.4 91.7% 5.5 8.5 3.0 2.5 80.8% broken 3.0 8.5 11.6 3.0 97.5% 3.0 11.6 14.6 2.8 91.7% broken 14.6 17.7 3.0 2.9 95.0% 17.7 20.7 3.0 2.9 95.0% broken 20.7 23.8 3.0 2.5 81.7% broken 23.8 26.8 3.0 2.8 93.3% broken 26.8 29.9 3.0 100.8% 3.1 29.9 32.9 3.0 3.1 101.7% 32.9 2.4 36.0 3.0 80.0% broken 39.0 36.0 3.0 3.0 100.0% broken 42.1 3.0 39.0 3.0 100.0% broken 45.1 3.0 42.1 2.4 80.0% 3.0 2.9 45.1 48.2 95.0% 48.2 51.2 3.0 3.1 101.7% 51.2 54.3 3.0 1.9 62.5% broken 57.3 54.3 3.0 1.0 33.3% broken 57.3 60.4 3.0 61.7% 1.9 broken 2.0 broken 60.4 63.4 3.0 66.7% 63.4 66.4 3.0 2.7 90.0% broken 2.9 3.0 66.4 69.5 95.0% broken 72.5 104.2% 69.5 3.0 3,2 72.5 75.6 3.0 2.9 95.8% 2.7 75.6 78.6 3.0 90.0% broken 78.6 81.7 3.0 2.0 65.0% broken 81.7 84.7 3.0 2.8 92.5% broken 84.7 87.8 3.0 2.8 93.3% broken 87.8 90.8 3.0 2.9 95.0% broken 2.7 3.0 90.0% 90.8 93.9 broken 93.9 96.9 3.0 2.7 90.0% broken 96.9 100.0 3.0 3.8 125.8% broken 103.0 100.0 3.0 3.1 103.3% broken 103.0 106.1 3.0 2.6 84.2% broken 106.1 109.1 3.0 2.8 92.5% broken 109.1 112.2 3.0 3.1 102.5% 112.2 115.2 3.0 3.0 100.0% broken 115.2 118.3 3.0 3.0 100.0% broken 118.3 121.3 3.0 3.1 100.8% 121.3 124.4 3.0 3.0 100.0% 127.4 124.4 3.0 2.8 93.3% 127.4 130.5 3.0 3.0 100.0% 133.5 130.5 3.0 3.0 98.3% 133.5 136.6 3.0 3.0 100.0% broken 136.6 139.6 3.0 100.0% 3.0 broken

Core Library

4.0	8.8	4.9	1
8.8	13.4	4.6	2
13.4	18.6	5.2	3
18.6	23.5	4.9	3 4
23.5	28.3	4.9	5
28.3	32.3	4.0	6
32.3	37.8	5.5	7
37.8	41.5	3.7	8
41.5	46.6	5.2	9
46.6	51.2	4.6	10
51.2	61.0	9.8	11
61.0	68.0	7.0	12
68.0	72.5	4.6	13
72.5	77.4	4.9	14
77.4	83.2	5.8	15
83.2	87.8	4.6	16
87.8	93.0	5.2	17
93.0	98.1	5.2	18
98.1	102.7	4.6	19
102.7	107.9	5.2	20
107.9	113.4	5.5	21
113.4	118.3	4.9	22
118.3	123.7	5.5	23
123.7	129.2	5.5	24
129.2	134.1	4.9	25
134.1	139.3	5.2	26
139.3	143.9	4.6	27
143.9	149.0	5.2	28
149.0	153.6	4.6	29
153.6	158.2	4.6	30
158.2	163.7	5.5	31
163.7	169.2	5.5	32
169.2	174.7	5.5	33
174.7	180.1	5.5	34
180.1	185.3	5.2	35
185.3	190.5	5.2	36
190.5	196.0	5.5	37
196.0	201.5	5.5	38
201.5	207.0	5.5	39
207.0	212.4	5.5	40
212.4	217.9	5.5	41
217.9	223.4	5.5	42
223.4	228.9	5.5	43
228.9	234.1	5.2	44
234.1	239.6	5.5	45

139.6	142.6	3.0	3.0	100.0%	
142.6	145.7	3.0	3.0	100.0%	
145.7	148.7	3.0	3.0	100.0%	
148.7	151.8	3.0	2.8	93.3%	broken
151.8	154.8	3.0	2.9	95.0%	broken
154.8	157.9	3.0	2.9	96.7%	broken
157.9	160.9	3.0	3.0	99.2%	
160.9	164.0	3.0	3.0	98.3%	
164.0	167.0	3.0	3.0	98.3%	
167.0	170.1	3.0	3.1	102.5%	
170.1	173.1	3.0	3.0	99.2%	
173.1	176.2	3.0	3.1	101.7%	
176.2	179.2	3.0	3.1	102.5%	
179.2	182.3	3.0	3.1	101.7%	
182.3	185.3	3.0	3.0	99.2%	
185.3	188.4	3.0	3.1	101.7%	
188.4	191.4	3.0	3.0	100.0%	
191.4	194.5	3.0	3.0	98.3%	
194.5	197.5	3.0	2.9	95.8%	
197.5	200.6	3.0	3.0	100.0%	
200.6	203.6	3.0	3.0	99.2%	
203.6	206.7	3.0	3.1	100.8%	
206.7	209.7	3.0	3.0	100.0%	
209.7	212.8	3.0	2.9	94.2%	
212.8	215.8	3.0	2.8	93.3%	
215.8	218.8	3.0	3.0	100.0%	· · · · · · · · · · · · · · · · · · ·
218.8	221.9	3.0	3.1	103.3%	
221.9	224.9	3.0	3.0	98.3%	
224.9	228.0	3.0	3.0	100.0%	
228.0	231.0	3.0	3.1	101.7%	
231.0	234.1	3.0	3.0	99.2%	
234.1	237.1	3.0	3.1	101.7%	
237.1	240.2	3.0	3.0	100.0%	
240.2	243.2	3.0	3.0	100.0%	
243.2	246.3	3.0	3.0	100.0%	
246.3	249.3	3.0	3.0	100.0%	
249.3	252.4	3.0	3.0	99.2%	
252.4	255.4	3.0	3.1	101.7%	
255.4	258.5	3.0	3.0	97.5%	
258.5	261.5	3.0	3.1	101.7%	
261.5	264.6	3.0	3.0	98.3%	
264.6	267.6	3.0	3.0	100.0%	·
267.6	270.7	3.0	3.1	103.3%	
270.7	273.7	3.0	3.0	100.0%	
273.7	276.8	3.0	3.0	100.0%	
276.8	279.8	3.0	3.0	99.2%	
279.8	282.9	3.0	3.1	100.8%	
282.9	285.9	3.0	3.0	98.3%	
285.9	289.0	3.0	2.9	95.0%	
289.0	292.0	3.0	3.1	100.8%	

Z Z Z Z Z			
Education of the Education			
239.6	245.1	5.5	46
245.1	251.2	6.1	47
251.2	256.6	5.5	48
256.6	262.4	5.8	49
262.4	268.2	5.8	50
268.2	273.4	5.2	51
273.4	278.9	5.5	52
278.9	284.1	5.2	53
284.1	290.2	6.1	54
290.2	295.4	5.2	55
295.4	301.1	5.8	56
301.1	306.6	5.5	57
306.6	312.1	5.5	58
312.1	317.9	5.8	59
317.9	323.4	5.5	60
323.4	328.9	5.5	61
328.9	334.4	5.5	62
334.4	340.2	5.8	63
340.2	345.6	5.5	64
345.6	351.4	5.8	65
351.4	356.0	4.6	66
356.0	361.8	5.8	67
361.8	365.2	3.4	68

292.0	295.0	3.0	3.0	98.3%
295.0	298.1	3.0	3.0	100.0%
298.1	301.1	3.0	3.1	101.7%
301.1	304.2	3.0	3.0	100.0%
304.2	307.2	3.0	3.0	98.3%
307.2	310.3	3.0	3.1	101.7%
310.3	313.3	3.0	3.1	100.8%
313.3	316.4	3.0	3.0	100.0%
316.4	319.4	3.0	3.0	98.3%
319.4	322.5	3.0	3.0	100.0%
322.5	325.5	3.0	3.0	100.0%
325.5	328.6	3.0	3.0	100.0%
328.6	331.6	3.0	3.0	100.0%
331.6	334.7	3.0	3.0	100.0%
334.7	337.7	3.0	3.0	98.3%
337.7	340.8	3.0	3.1	102.5%
340.8	343.8	3.0	3.0	97.5%
343.8	346.9	3.0	3.1	101.7%
346.9	349.9	3.0	2.8	93.3%
349.9	353.0	3.0	2.9	94.2%
353.0	356.0	3.0	2.9	96.7%
356.0	359.1	3.0	3.0	99.2%
359.1	362.1	3.0	3.0	98.3%
362.1	365.2	3.0	3.1	100.8%
			Avg	96.3%

Hole # WJ-04-33	
Property: Woodjam	Total Length: 387.10 m
Grid Cord: 0+06W / 0+48N	Core Size: NQ
Elevation: 925	Azimuth: 202°
Section:	Inclination: -50°

	dip tests	
depth	dip	82
182.88	-57	
387.10	-58	

Start Date: Aug 17/04 Completion: Aug 231/04 Logged By: Johnston Date logged: Aug 18-25/04

NOTES: drilled by	LeClerc Drilling
-------------------	------------------

Depth	(metres)	LITHIOLOGICAL DESCRIPTION	A	Iteration		Sulfides			SAN	APLES		Rec.	Ana	lytical		
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-spar	carb	РУ	ф	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)		
0	3.05	Casing														
3.05	32.2	massive volcanic flow/fuff; 2-3 mm round felds, local fg pink-grey lithics, 20% diss magnetite, calcite	wk-mod	wk-mod	mod	tr	minor	146091	3.05	5.00	1.95	81	0.024	0.180		
		veinlets, tr py, minor cpy in fractures, kspar as alt around fractures to 5 cm, tr epidote						146092	5.00	7.00	2.00	98	0.028	0.264		
						1		146093	7.00	9.00	2.00	97	0.062	0.645		
	İ					1		148094	9.00	11.00	2.00	96	0.104	1.012		
						ļ		148095	11.00	13.00	2.00	93	0.097	1.001		
		13.7-14.02 very broken				1		146096	13.00	15.00	2.00	95	0.037	0.431		
	ł	14.55-15.4 broken with strong clay alteration						146097	15.00	17.00	2.00	68	0.031	0.315		
						ļ		146096	17.00	19.00	2.00	100	0.032	0.678		
	1	20.2 cpy in chalcedonic vein 10° CA						146099	19.00	21.00	2.00	100	0.048	0.630		
		l "						146100	21.00	23.00	2.00	92	0.066	0.752		
		24.3-32.2 5-10 tg black veins/metre 10-30° CA (biotite?), with py + locally cpy	ŀ			ŀ		146101	23.00	25.00	2.00	105	0.081	1.115		
	l	25-32.2 minor diss cpy						146102	25.00	27.00	2.00	98	0.151	1.535		
		·				ŀ		146103	27.00	29.00	2.00	101	0.159	1.349		
	1	30.7-33.17 broken clay alt				ł		146104	29.00	31.00	2.00	100	0.179	1.648		
						i		146105	31.00	33.17	2.17	100	0.092	1.034		
32.2	33.17	broken strongly clay alt zone, abundant euhedral py, 10° CA fract	-					146106	33.00	35.00	1.83	100	0.143	1.191		
33.17	50,8	massive flow/tuff as above; locally v silicified, strong pink kspar alt, mod epidote, common grey	mod	mod	mod	minor	diss	146107	35,00	37.00	2.00	100	0.238	2.015		
		chalcedonic veins w cpy, diss cpy, py to 0.5%				ļ.		146108	37.00	39.00	2.00	100	0.117	1.149		
		38.5-40.0 10° CA epidote stringers	ŀ	[146109	39.00	41.00	2.00	100	0.078	0.558		
		38.7 volcanic ss bed 70° CA bedding	1			ŀ		146110	41.00	43.00	2.00	100	0.078	0.566		
		41.0-51.0 dark grey chacedonic stringers 10-30° CA, cpy						146111	43.00	45.00	2.00	100	0,146	1,170		
				1	1			146112	45.00	47.00	2.00	100	0.123	0.919		
								146113	47.00	49.00	2.00	100	0.142	1.197		
								146114	49.00	51.00	2.00	100	0.153	1.155		
50.8	65.0	vocanic ss; well bedded 70-90° CA, local coarser voic beds, magnetic, slightly calcareous, silicified, mod	tr	mod	wk	minor	diss +	146115	51,00	53.00	2.00	100	0.159	1.128		
00.0		kspar flooding, pink feldspar xtls, tr epidote, local grey chalcedonic veins w cpy 0-30° CA					vein	146116	53.00	55.00	2.00	100	0.146	0.969		
				1			İ	146117	55.00	57.00	2.00	100	0.142	0.943		
		57.0-57.5 stockwork of grey chalcedonic veins w cpy				ŀ		146118	57.00	59.00	2.00	100	0.137	0.880		
		59.0-61.0 clots of magnetite with cpy + py		1				146119	59.00	81.00	2.00	100	0.212	1,359		
		59.2-62.5 20-40° CA epidote stringers		ŀ				146121	61.00	63.00	2.00	100	0.108	0.724		
		to a special and general and g	l	l	Ì			146122	63.00	65.00	2.00	100	0.152	0.942		
65.0	72.4	agglomerate 0.5-5.0 cm, subrounded cobbles, magnetic, non calc, moddspar alt, local epidote, tr py, grey	minor	mod	wk	minor	mod	146123	85.00	67.00	2.00	100	0.140	0.964		
00.0		chalcedonic veins with cpy (10-20/m), cpy in veins + minor diss	1				1	146124	67.00	69.00	2.00	100	0.170	1.081		
		70.0 cpy in grey chacedonic veins + calcareous		i				146125	69.00	71.00	2.00	100	0.277	0.936		
		the state of all and and the same and and and and and and and and and and]	146126	71.00	73.00	2.00	100	0,163	1.014		
72.4	80.3	agglomerate (as above); with buff-brown clay alt zones to 2 m, wk k-alt, local epidote, non mangetic, wk	mod	wk-mod	no	minor	minor	148127	73.00	75.00	2.00	100	0.122	0.828		
, 2	30.0	calcite, minor diss py, local cpy diss in local grey chalcedonic veins						146128	75.00	77.00	2.00	100	0.080	0.489		
										146129	77.00	79.00	2.00	100	0.077	0.430
]		146130	79.00	81.00	2.00	100	0.118	0.487		
		I	L	L		<u> </u>		140100	10.00	U	2.00	1 .00	00	0.10.		

Depth (metres)	LITTLE COLON STANDING	A	Iteration		Suff	ides		SAL	APLES .		Rec.	Analytical	
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-spar	carb	py .	GD	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
80.3	112.4	volcanic ss (as above) with interbeds of agglomerate 70/30; local pink k-alt zones, epidote in minor	wk-mod	wk-mod	no	minor	minor	148131	81.00	83.00	2.00			
		veins/fractures, magnetite patches to 2 cm, py diss + veins, minor cpy diss + in grey chalcedonic veins			,,,,			146132	83.00	85.00	2.00	100	0.109	0.433
				1					85.00					0.406
				1				146133 146134	87.00	87.00	2.00	100	0.064	0.377
1			i	1						69.00	2.00	100	0.092	0.485
								146135	89.00	91.00	2.00	100	0.088	0.490
		94.0 increasing diss cpy						146136	91.00	93.00	2.00	100	0.094	0.619
		96.0 grey chalcedonic veins with cpy 5-10/m						146137	93.00	95.00	2.00	100	0.080	0.504
		96.0 grey dialoedonic verns with opy 5-10/m	l					146138	95.00	97,00	2.00	100	0.127	0.785
			İ					146139	97.00	99.00	2.00	100	0.143	0.907
								146140	99.00	101.00	2.00	100	0.146	0.859
		101.9 5 cm 40° CA bx zone; grey fg matrix with volcanic ss fragments	i .	i				146141	101.00	103.00	2.00	100	0.184	1.879
1								146142	103.00	105.00	2.00	100	0.116	0.685
i			ŀ					146143	105.00	107.00	2.00	100	0.141	0.755
			l					146144	107.00	109.00	2.00	100	0.081	0.461
								146145	109.00	111.00	2.00	100	0.107	0.668
								146146	111.00	113.00	2.00	100	0.109	0.597
112.4	119.2	massive fg-mg volcanic; minor bedded sections, very magnetic, weak pink k-alt around fractures, strong	mod	wk-mod	wk	tr	mod	148147	113.00	115.00	2.00	100	0.098	0.531
		epidot alt as fractures and flooded zones, cpy diss and in grey chall veins, tripy, locally silicified 116.5 8		1				146146	115.00	117.00	2.00	100	0.061	0.452
		mm grey fg chalcedony vein 90° CA		1			1	146149	117.00	119.00	2.00	100	0.080	0.324
119.2	155.0	interbedded fg well bedded voc ss + mg massive volcaniclastic (as above) 50:50 70-92° CA bedding, 5%	mod	local	wk	wk	wk-mod	146150	119.00	121.00	2.00	100	0.076	0.438
		diss magnetite in bedded sections, common white quartz-calcite veins to 5 mm, local epidote flooding,						146151	121.00	123.00	2.00	100	0.072	0.419
		minor k-alt around veins, local grey chalcedonic veins with cpy, variable diss cpy		1			1	146152	123.00	125.00	2.00	100	0.071	0.421
								146153	125.00	127.00	2.00	100	0.076	0.469
				1				146154	127.00	129.00	2.00	100	0.128	1.070
		129.0-134.5 40% epidote flooded, pink feldspars, k-alt fractures						146155	129.00	131.00	2.00	100	0.068	0.467
								146156	131.00	133.00	2.00	100	0.097	0.705
								148157	133.00	135.00	2.00	100	0.098	0.659
								146158	135.00	137.00	2.00	100	0.057	0.387
				i i				146159	137.00	139.00	2.00	100	0.037	0.459
								146160	139.00	141.00	2.00	100	0.126	0.727
		141.0-152.0 coarse cpy in grey chalcedonic veins					Ì	146160	141.00		<u> </u>			
1		143.6-144.5 clay aftered, broken								143.00	2.00	100	0.105	0.634
		143.0-144.5 day anered, blokeri						146162	143.00	145.00	2.00	100	0.111	0.605
								146163	145.00	147.00	2.00	100	0.113	0.598
								146184	147.00	149.00	2.00	100	0.101	0.618
								146185	149.00	151.00	2.00	100	0.080	0.467
								146166	151.00	153.00	2.00	100	0.098	0.563
455.	407.7					_1		146167	153.00	155.00	2.00	100	0.105	0.842
155.0	167.7	very broken mg massive volcanic; local strongly clay alt zones, green chlorite on fractures, no magnetite, no calcite, moderate epidote, wk-mod pink k-alt, local grey chalcedonic veins with cpy, strongest	wk-mod	wk-mod	no	minor	minor	146168	155.00	156.97	1.97	100	0.082	0.480
		fractures clay alt 157.5-160.0						146169	156.97	157.89	0.92	100	0.077	0.430
								146170	157.89	159.71	1.82	100	0.099	0.545
								146171	159.71	161.54	1.83	100	0.094	0.729
								146172	161.54	163.00	1.46	100	0.080	0.587
								146173	183.00	185.00	2.00	100	0.076	0.502
		165.3-167.7 pink k-alt, stong epidote alt, cpy diss + in chalcedonic veins						146174	185.00	167.00	2.00	100	0.058	0.428
167.7	196.5	fg-mg volcanic flow/tuff; local flow bx, agglomerate beds, local fg bedded sections, green-grey, weekly	wk-mod	no	wk	wk	no	146175	167.00	169.00	2.00	100	0.080	0.486
		calcitic, non magnetic, trace k-alt, minor-mod white quartz-cb stringers, trace chalcedonic veins, trace py,						146176	169.00	171.00	2.00	100	0.095	0.628
		no cpy, local epidote as flooded patches to 10 cm	1	1				146177	171.00	173.00	0.00	100	0.061	0.495
ı			1	1			1	140177	171.00	1/3.00	2.00	100	0.061	0.483

Log04-33.xls Page 2

Depth	metres)	LITHOLOGICAL DESCRIPTION				Sulf	ides		SAN	Rec.	Ana	lyticai		
From	To	LITHOLOGICAL DESCRIPTION	epidote	k-spar	carb	ру	СР	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppn
					_			146179	175.00	177.00	2.00	100	0.071	0.393
			1	ŀ				146180	177.00	179.00	2.00	100	0.083	0.393
			1											
			l		i .			146181	179.00	181.00	2.00	100	0.064	0.428
		400 400	l					146182	181.00	183.00	2.00	100	0.075	0.532
		183-188 minor diss + stringer cpy, minor chalcedonic veins	l					146183	183.00	185.00	2.00	100	0.077	0.515
								146184	185.00	187.00	2.00	100	0.082	0.512
			l					146185	187.00	189.00	2.00	100	0.129	0.936
			l					146186	189.00	191.00	2.00	100	0.081	0.52
								146187	191.00	193.00	2.00	100	0.095	0.52
		193-196.5 minor cpy in chalcedonic veins	l					146186	193.00	195.00	2.00	100	0.093	0.70
			i					146189	195.00	197.00	2.00	100	0.086	0.477
196.5	199.95	broken zone; wk-mod soft clay alt, gn chlorite on fractures, 45° CA cb-qtz veinlets to 1 cm	wk-mod	tr	wk	wk	no	146190	197,00	199.00	2.00	100	0,102	0.413
199.95	216.5	massive grey-green flow tuff, minor bedded sections as 167-196 above, mod epidote as flooding to 5 cm,	mod	wk-mod	wk	wk	local	146191	199.00	201.00	2.00	100	0.050	0.220
		minor k-alt around fractures, local but persistant grey chalcedonic veins w cpy, local diss cpy						146192	201.00	203.00	2.00	100	0.064	0.432
								146193	203.00	205.00	2.00	100	0.046	0.262
								146194				100	0.071	0.429
									205.00	207.00	2.00			
		207 increasing chalcedonic veins with cpy, weakly silicified			1			146195	207.00	209.00	2.00	100	0.085	0.519
		208-209.5 weak stockwork of chalcedonic veins with cpy						146196	209.00	211.00	2.00	100	0.071	0.472
								146197	211.00	213.00	2.00	100	0.066	0.40
					1			146196	213.00	215.00	2.00	100	0.058	0.27
								146199	215.00	217.00	2.00	100	0.078	0.31
216.5	222.5	buff-dark aftered massive volcanic; chlorite on fractures, minor diss py, trace cpy, trace epidote, trace k-	tr	tr	wk	minor	minor	146200	217.00	219.00	2.00	100	0,083	0.349
		alt; 220.5 cream qtz veins with wallrock fragments	1					146201	219.00	221.00	2.00	100	0.084	0.357
		222-223 very broken + soft						146202	221.00	223.00	2.00	100	0.139	1.120
222.5	229.0	dark grey silicified flow breccia trace k-alt, minor local epidote, local diss py, local chalcedonic veins with	wk-mod	tr	wk	local	local	148203	223.00	225.00	2.00	100	0.073	0.306
		сру						146204	225.00	227.00	2.00	100	0.066	0.353
		224-227 stockwork of chalcedonic veins with cpy, 226 0.6 m broken clay alt zone	1		1			146205	227.00	229.00	2.00	100	0.095	0.473
229.0	236.0	buff coloured silicified volcanics, non magnetic, no calcite, local k-alt, tr epidote, local chalcedonic veins	wk-mod	wk-mod	no	local	local	146206	229.00	231.00	2.00	100	0.072	0.33
229.0	230.0	with cpy	***	1	"~	1000	1000			 	 	ļ		
		min op)						146207	231.00	233.00	2.00	100	0.107	0.46
								146208	233.00	235.00	2.00	100	0.101	0.453
		236- EOH dies py to 1%						146209	235.00	237.00	2.00	100	0.066	0.527
236.0	244.0	grey volcanics with strong clay alt zones	tr	tr	no	wk	no	148210	237.00	239.00	2.00	100	0.058	0.249
		236.0-236.7 silicified, local chalcedonic-cpy veins						148211	239.00	241.00	2.00	100	0.040	0.188
		238-243 clay alt broken zones, chlorite on fracts, incl dark grey-black clay w euhedral py						146212	241.00	243.00	2.00	. 100	0.071	0.318
		237-244 chalcedonic veins with py only, dark grey-black clay fractures 45° CA	l		ł			146213	243.00	245.00	2.00	100	0.086	0.460
244.0	249.8	dark grey volcanics; no silicification, non calcitic, non magnetic, mod epidote alt, local k-alt around	wk-mod	wk-mod	no	wk	tr	146214	245.00	247.00	2.00	100	0.054	0.318
		fractures, diss py, tr cpy	1					146215	247.00	249.00	2.00	100	0.043	0.20
249.8	251.7	silicified volcanics; grey chalcedonic veins with cpy stringers, red hem + py stringers	wk-mod	wk-mod	no	wk	local	146216	249.00	251.00	2.00	100	0.046	0.241
251.7	256.5	buff b roken clay alt silicified volcanics; 0.5-1% diss py, black clay fractures with py 45° CA	wk-mod	wk-mod	no	diss	tr	146217	251.00	253.00	2.00	100	0.074	0.35
231.7	230.3	Town broken day an amontal volcanics, v.o-170 diss py, black day nactures with py 40 On	1				_	146218	253.00	255.00	2.00	100	0.075	0.38
			l	1										
						diss	no	146219	255.00	257.00	2.00	100	0.080	0.49
256.5	263.0	pink-grey mg volcanics; locally broken, diss py, mod epidote, wk k-aft	mod	wk-mod	no	urss	110	146220	257.00	259.00	2.00	100	0.077	0.41
			1					146221	259.00	261.00	2.00	100	0.051	0.29
			1					146222	261.00	263.00	2.00	100	0,040	0.26
263	277.4	as above; less broken	1					146223	263.00	265.00	2.00	100	0.068	0.48
		264.5 chalcedony stringer parallel to CA	1					146224	285.00	267.00	2.00	100	0.081	0.44
			l	1				146225	267.00	269.00	2.00	100	0.045	0.309
										•				

LITHOLOGICAL DESCRIPTION	^	Iteration	1	Sulf	ides	L	SAN	IPLE\$		Rec.	Ana	lytical
LITHOLOGICAL DESCRIPTION	epidote	k-spar	cerb	Py	ф	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
	1					146227	271.00	273.00	2.00	100	0.013	0.073
				1		146228	273.00	275.00	2.00	100	0.011	0.078
	1			1		146229	275.00	277.00	2.00	100	0.008	0.078
proken, local strong py, local soft black clay alt zones	┨			i		146230	277.00	279.00	2.00	100	0.019	0.076
, , , , , , , , , , , , , , , , , , , ,	1	l		İ	ŀ	146231	279.00	281.00	2.00	100	0.019	0.077
	1	İ	1			146232	281.00	283.00	2.00	100	0.009	
nics, slightly magnetic, 1-2% diss py, no k-alt, trace epidote	tr	no	wk	1-2%	no	146233	283.00	285.00	2.00	100	0.009	0.048
mos, enginy mognotor, i z it also py, no it and about opidoto	1	""				146235	285.00	287.00	2.00	100	0.018	0.067
	1	1		ł	l	146236	287.00	289.00	2.00	100	0.016	0.067
	1		1			146237						
	1	ł	1	•	1	146237	289.00 291.00	291.00 293.00	2.00	100	0.002	0.013
									2.00	-	0.015	0.057
non valennica with agalemente hade; non magnetic no calcite legal explaits with av	wk	tr	no	diss	RO	146239	293.00	295.00	2.00	100	0.009	0.013
een volcanics with agglomerate beds; non magnetic, no calcite, local sericite with py, ar, weak epidote, abundant 10° CA clay-bx veins, strong clay alt related to veining	· · · ·	, "	по	QHS-S	NO.	146240	295.00	297.00	2.00	100	0.016	0.070
ar, made options, abundant to orthogon training only artifacted to terming	1			1	1	146241	297.00	299.00	2.00	100	0.032	0.106
						146242	299.00	301.00	2.00	100	0.008	0.022
clay-bx zones	wk	tr	no	diss	no	146243	301.00	303.00	2.00	100	0.014	0.059
						146244	303,00	305.00	2.00	100	0.008	0.063
			1		i	146245	305.00	307.00	2.00	100	0.013	0.044
				i		146246	307.00	309.00	2.00	100	0.013	0.041
		l			1	146247	309.00	311.00	2.00	100	0.014	0.027
				1		146248	311.00	313.00	2.00	100	0.006	0.019
	1		1		ŀ	146249	313.00	315.00	2.00	100	0.010	0.013
	1		1			146250	315.00	317.00	2.00	100	0.010	0.017
	1		1			146251	317.00	319.00	2.00	100	0.014	0.005
	1	ļ	1		l	146252	319.00	321.00	2.00	100	0.010	0.008
	1		1		ł	146253	321.00	323.00	2.00	100	0,005	0.011
	1				ļ	146254	323,00	325,00	2.00	100	0,007	0.022
	1				l	146255	325.00	327.00	2.00	100	0.005	0.027
n local clay alt, green chloritic-calcite veins 10° CA	no	no	wk	diss	no	146256	327.00	329.00	2.00	100	0.019	0.017
	1	ŀ	1	l	Ì	146257	329.00	331.00	2.00	100	0.010	0.013
	1	ļ	1	l	l	146258	331.00	333.00	2.00	100	0.005	0.005
	1					146259	333.00	335.00	2.00	100	0.006	0.009
	1	ŀ	İ	ŀ	l	146260	335.00	337.59	2.59	100	0.023	0.088
y dyke. Fresh 2-5 mm white felspar + hnbld, contacts 60° CA	no	no	no	no	no	146261	337.59	339,80	2.21	100	0.001	0.000
, , , , , , , , , , , , , , , , , , , ,	1	İ	1	l		146262	339.80	342.00	2.20	100	0.002	0.002
	1	Į.		l		146263	342.00	344.20	2.20	100	0.002	0.000
	1	į	1			146265	344,20	346.77	2,57	100	0.001	0,003
k clay alt aggglomerate, k-alt, variable diss py, local silicification	- wk	?	no	diss	local	146268	346.77	348.00	1.23	100	0.360	1.505
le black clay seam 10° CA with coarse cpy			""		1	146267	348.00	350.00	2.00	100	0.015	0.162
zone, dark volcanics with white quartz-carb matrix	1	!	1			146268	350.00	352.00	2.00	100	0.020	0.057
black clay fracture with py 30-90° CA	1	ŀ				146269	352.00	354.00	2.00	100	0.020	0.068
ck clay bx zone						146270	352.00	356.00	2.00	100	0.017	0.008
ck clay bx zone k k-alt	1	1				146270	354.00	358.00	2.00	100	0.057	0.138
	1										0.057	0.278
tz on fracture	1	1				146272	358.00	360.00	2.00	100		
	1					146273	360.00	382.00	2.00	100	0.022	0.083
	1			l		146274	362.00	364.00	2.00	100	0.052	0.249
			ļ									0.326
nerate; 5% patches of brow	m hematite, mod clay alt locally, minor epidote, possible k-alt	m hematite, mod clay alt locally, minor epidote, possible k-alt minor	m hematite, mod clay alt locally, minor epidote, possible k-alt minor ?	m hematite, mod clay alt locally, minor epidote, possible k-alt minor ? no	m hematite, mod clay alt locally, minor epidote, possible k-alt minor ? no diss	m hematite, mod clay alt locally, minor epidote, possible k-alt minor ? no diss no	m hematite, mod clay alt locally, minor epidote, possible k-alt minor ? no diss no 146276					

Depth (metres)	LITHOLOGICAL DESCRIPTION	Alteration		Alteration Sulfides			SAN	IPLES		Rec.	Ana	lytical	
From	To	ZITHOLOGICAL DESCRIPTION	epidote	k-sper	carb	py	ср	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
		as pink volcanics, local silicification, vanable by to 0.5%						146277	368.00	370.00	2.00	100	0.038	0.130
								146278	370.00	371.86	1.86	100	0.021	0.082
								146279	371.86	374.00	2.14	100	0.032	0.146
								146280	374.00	376.00	2.00	100	0.024	0.238
								146281	378.00	378.00	2.00	100	0.014	0.139
								148282	378.00	380.00	2.00	100	0.019	0.079
								146283	380.00	382.00	2.00	100	0.011	0.038
382.56	387.10	fg grey massive volcanics; 70° CA beding contact, 1% diss py, non magnetic, wk calcitic	tr	no	wk	diss	no	146284	382.00	384.00	2.00	100	0.015	890.0
								146285	384.00	386.00	2.00	100	0.006	0.052
								146286	386.00	387.10	1.10	100	0.005	0.038

	-													
Hole #	WJ-04-	34							dip tests					
Property:	Woodjan	Total Length: 373.68 m						depth	dip	az	1	Start D	ate: Aug 25/	10.4
Grid Cord:	0+04E / 0+9	N Core Size: NQ						32.31m	-59		1			
Elevation:	925	Azimuth: 202°						233.47m	-60	 	1		tion: Aug 3	
Section:		Inclination: -50°						361.15m	-62	<u> </u>	1		By: Johnst	
								001110111			1	Date 10	gged: Sept	7-12/04
NOTES:								<u> </u>		L				
Depth	(metres)	LITHOLOGICAL DESCRIPTION		Iteration)	Sulf	ides		SAN	APLES		Rec.	Ana	lytical
From	То	LITROLOGICAL DESCRIPTION	epidote	k-spar	carb	Py	СФ	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
0	9.14	casing						****			•	•		
9.14	45.0	grey-green mg volcaniclastic; local volc clasts to 5 cm, 90° CA fabric, feld xtls to 5 mm, magnetic, slightly	/ tr	minor	wk	1%	no	146287	9.14	11.00	1.86	76	0.002	0.048
		calcareous; magnetite patches, local stringers at low CA's, tr ep, minor pk-k-alt felds;	l		1			146288	11.00	13.00	2.00	98	0.002	0.044
								146289	13.00	15.00	2.00	100	0.002	0.028
			1				Ì	146290	15.00	17.00	2.00	100	0.003	0.030
		10-12 m white-pink (K-alt?) tinge	1				1	146291	17.00	19.00	2.00	100	0.005	0.037
	ŀ		1			1	}	146292	19.00	21.00	2.00	100	0.005	0.033
	ŀ		1					146293	21.00	23.00	2.00	100	0.003	0.027
	ļ					1		146295	23.00	25.00	2.00	100	0.003	0.029
			1					146296	25.00	27.00	2.00	100	0.002	0.022
								146297	27.00	29.00	2.00	100	0.001	0.007
	ł		ı	1	l			146298	29.00	31.00	2.00	100	0.002	0.006
	}				1			146299	31.00	33.00	2.00	100	0.002	0.003
								146300	33.00	35.00	2.00	100	0.002	0.001
			ł	1				146301	35.00	37.00	2.00	100	0.002	0.001
					ļ			146302	37.00	39.00	2.00	100	0.001	0.000
1								146303	39.00	41.00	2.00	100	0.001	0.000
								146304	41.00	43.00	2.00	100	0.001	0.002
				l				146305	43.00	45.00	2.00	100	0.004	0.005
45.0	52.2	Volcaniclastic:as above, (coarser feldspar xtls), lithic tuff; minor fg, well bedded sections; 90° CA	tr	no	wk	0.5%	no	146306	45.00	47.00	2.00	100	0.004	0.013
1		bedding; diss py to 0.5%						146307	47.00	49.00	2.00	100	0.009	0.008
								146308	49.00	51.00	2.00	100	0.012	0.008
								146309	51.00	53.00	2.00	100	0.004	0.010
52.2	65.5	tuff, as above; increase fg bedded sections to 0.5 m; minor py	tr	no	wk	minor	no	146310	53.00	55.00	2.00	100	0.001	0.001
								146311	55.00	57.00	2.00	100	0.006	0.002
				1		j		146312	57.00	59.00	2.00	100	0.002	0.002
								146313	59.00	61.00	2.00	100	0.004	0.000
								146314	61,00	63.00	2.00	100	0.017	0.000
								146315	83.00	65.00	2.00	100	0.032	0.005
65.5	76.5	Agglomerate; feldspar xtl tuff, as above	tr	по	wk	minor	no	146316	85.00	67.00	2.00	100	0.025	0.003
				1				146317	87.00	69.00	2.00	100	0.012	0.003
								146318	69.00	71.00	2.00	100	0.014	0.002
l .	ı		1	i	1	1			1				$\overline{}$	

tr

mod

minor

mod minor no

grey-green tuff; generally mass but local 70-90° CA bedding; calcareous, magnetic, minor py, local

97.5 green chloritic coarse tuff - agglomerate; local fg bedded sections, minor bx, tr epidote, k-alt

whithe quartz-calcite-chlorite stringers, local minor k-alt, tr epidote

76.5

146319

146320

146321

146322

146323

146325

146326

146327

71.00

73.00

77.00

79.00

81.00

83.00

85.00

73.00

75.00

79.00

81.00

83.00

85.00

67.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

100

100

100

100

100

100

0.002

0.003

0.000

0.004

0.010

0.014

0.016

0.011

0.005

0.003

0.002

0.003

0.003

0.000

0.000

Depth ((metres)	LITUOLOGICAL PROCESSOR	A	Iteration	-	Sulf	ides		844	PLES		Rec.	A	lytical
From	To	LITHOLOGICAL DESCRIPTION	epidote	k-spar	carb	ру	Ср	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
			- op.com	Кория		Ρ)						-		
1								146328	87.00	89.00	2.00	100	0.017	0.085
								146329	89.00	91.00	2.00	100	0.001	0.008
]								146330	91.00	93.00	2.00	100	0.000	0.031
								146331	93.00	95.00	2.00	100	0.002	0.033
97.5	132.5	fg well bedded volcaniclastic (tuffaceous ss) 70-90° CA bedding; tr epidote, no k-alt, tr py	tr	no	wk	tr	no	146332 146333	95.00	97.00	2.00	100	0.001	0.059
		(146333	97.00 99,00	99.00	2.00	100	0.001	0.055
								146335	101.00	103.00	2.00	100	0.002	0.131
		•						146336	103.00	105.00	2.00	100	0.003	0.199
								146337	105.00	107.00	2.00	100	0.002	0.079
								146338	107.00	109.00	2.00	100	0.000	0.079
]								146339	109.00	111.00	2.00	100	0.001	0.049
								146340	111.00	113.00	2.00	100	0.024	0.124
								146341	113.00	115.00	2.00	100	0.020	0.055
								146342	115.00	117.00	2.00	100	0.015	0.051
								146343	117.00	119.00	2.00	100	0.007	0.089
								148344	119.00	121.00	2.00	100	0.012	0.120
								146345	121.00	123.00	2,00	100	0.010	0.120
1								146346	123.00	125.00	2.00	100	0.008	0.090
		126 m wk epidote						146347	125.00	127.00	2.00	100	0.009	0.071
		·						146348	127.00	129.00	2.00	100	0,004	0.086
								146349	129.00	131.00	2.00	100	0.013	0.133
								146350	131.00	133.00	2.00	100	0.005	0.126
132.5	198.0	green-grey chloritic fg volcaniclastic/flow; local fg well bedded interbeds; local diss py, local white quartz-	tr	tr	wk	minor	no	146351	133.00	135.00	2.00	100	0.007	0.110
1		carbonate veinlets						146352	135.00	137.00	2.00	100	0.003	0.130
								146353	137.00	139.00	2.00	100	0.008	0.135
i		133.5 wk pink k-att						146355	139,00	141.00	2.00	100	0.011	0,034
								146356	141.00	143.00	2.00	100	0.008	0.041
								146357	143.00	145.00	2.00	100	0.019	0.038
1	:							146358	145.00	147.00	2.00	100	0.007	0,037
i								146359	147.00	149.00	2.00	100	0.015	0.090
1								146360	149.00	151.00	2.00	100	0.028	0.095
1								146361	151.00	153.00	2.00	100	0.017	0.174
								146362	153.00	155.00	2.00	100	0.021	0.184
								146363	155.00	157.00	2.00	100	0.011	0.097
		157.3 3 cm mass of amethyst beside 6 m zone of massive grey alt						146364	157.00	159.00	2.00	100	0.038	0.417
		160.0 red hematite in quartz-carb stringers						146365	159.00	161.00	2.00	100	0.022	0.079
								146366	161.00	163.00	2.00	100	0.014	0,040
								146367	163.00	165.00	2.00	100	0.011	0.029
								146368	185.00	187.00	2.00	100	0.014	880.0
								146369	167.00	169.00	2.00	100	0.016	0.103
								146370	169.00	171.00	2.00	100	0.011	0.051
								146371	171.00	173.00	2.00	100	0.008	0.030
		175-198 locally broken zones						148372	173.00	175.00	2.00	100	0.009	0.047
		177.3 pink k-alt felds in cobble						146373	175.00	177.00	2.00	100	0.008	0.086
		177-176 wk local k-alt, local minor diss py						146374	177.00	179.00	2.00	100	0.005	0.039
								146375	179.00	161.00	2.00	100	0.009	0.043
1								146376	181.00	183.00	2.00	100	0.012	0,020

Log04-34.xls Page 2

Depth (metres)	LITHOLOGICAL DESCRIPTION	A	Iteration		Sulf	ides		SAN	APLES .		Rec.	Ana	ytical
From	To	LITHOLOGICAL DESCRIPTION	epidote	k-sper	carb	Py	ср	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
								146377	183.00	185.00	2.00	100	0,005	0.004
			ļ					146378	185.00	187.00	2.00	100	0.004	0.003
			1					146379	187.00	189.00	2.00	100	0.004	0.005
			l					146380	189.00	191.00	2.00	100	0.008	0.009
			1					-						
			1					146381	191.00	193.00	2.00	100	0.008	0.010
		196-198 0.5% diss py <0.1%						146382	193.00	195.00	2.00	100	0.008	0.010
		180-180 0.3 % disa py <0.1%	l					146383	195.00	197.00	2.00	100	0.007	0.007
198.0	214.56	well bedded fg tuffaceous ss; 80° CA bedding, local coarser interbeds, 1% diss py, local pink k-alt in 3-5		wk	wk	1%	no	146385	197.00	199.00	2.00	100	0.008	0.008
190.0	214.30	imm beds	1 °	WK	WK	170	INC	146386	199.00	201.00	2.00	100	0.008	0.010
			I					146387	201.00	203.00	2.00	100	0.005	0.013
		204.5 v broken zone, mod soft clay alt	l					146388	203.00	205.00	2.00	100	0.007	0.022
			1					146389	205.00	207.00	2.00	100	0.008	0.009
			l					146390	207.00	209.00	2.00	100	0.009	0.028
			1					146391	209.00	211.00	2.00	100	0.008	0.041
		211.3 1 cm 90° CA epidote vein						146392	211.00	213.00	2.00	100	0.005	0.010
			<u>. </u>					146393	213.00	215.00	2.00	100	0.004	0.019
214.56	222.0	mixed volcanics; fg mass gn chloritic volcanics with minor fg bedded interbeds & coarser	tr	local	mod	1%	no	148394	215.00	217.00	2.00	100	0.008	0.009
		tuff/agglomerate beds; calcareous, magnetic, pink kspar alt in fs ss (as above), k-alt clasts in coarser units, diss py to 1%						148395	217.00	219.00	2.00	100	0.007	0.005
		unite, diss by to 170	Į.					146396	219.00	221.00	2.00	100	0.004	0.007
								146397	221.00	223.00	2.00	100	0.007	0.006
222.0	233.0	fg massive green volcanics with local coarser beds, no k-alt, minor py	tr	tr	mod	wk	no	146398	223.00	225.00	2.00	100	0.006	0.004
								146399	225.00	227.00	2.00	100	0.008	0.004
								146400	227.00	229.00	2.00	100	0.009	0.008
							•	146401	229.00	231.00	2.00	100	0.008	0.016
								146402	231.00	233.00	2.00	100	0.007	0.066
233.0	246.5	tuffaceous breccia; (coarse volcanic sediments) - local finely bedded non-calcareous magnetic units;	tr	wk-mod	wj	1%	no	146403	233.00	235.00	2.00	100	0.008	0.029
		weak to moderate pink k-alt, trace epidote, diss py to 1%						146404	235.00	237.00	2.00	100	0.013	0.026
								146405	237.00	239.00	2.00	100	0,011	0.024
								146406	239.00	241.00	2.00	100	0.012	0.048
							ŀ	146407	241.00	243.00	2.00	100	0.017	0.049
								146408	243.00	245.00	2.00	100	0.017	0.182
		j						146409	245.00	247.00	2.00	100	0.004	0.061
246.5	286.5	light grey green clay-sericite alt coarse fragmental feldspar laths to 5 mm; non magnetic + cb; local	tr	wk-mod	no	1%	no	146410	247.00	249.00	2.00	100	6.005	0.038
		silicification, pink k-alt cobbles, trace epidote, diss py to 1%, local black clay veins/stringers						146411	249.00	251.00	2.00	100	0.003	0.038
								146412	251.00	253.00	2.00	100	0.003	0.017
										 				
					1			146413	253.00	255.00	2.00	100	0.005	0.030
								146415	255.00	257.00	2.00	100	0.010	0.029
								146416	257.00	259.00	2.00	100	0.008	0.028
								148417	259.00	261.00	2.00	100	0.004	0.018
		Landard Company of the Company of th						146418	281.00	263.00	2.00	100	0.011	0.044
		264.0-264.8 bx zone- white clay alt voic frags in matrix of black clay with fg euhedral py in clay						146419	263.00	285.00	2.00	100	0.007	0.021
								148420	265.00	267.00	2.00	100	0.006	0.025
		266.0-290.0 10-20° CA 5 mm black clay-py veins						146421	267.00	269.00	2.00	100	0.008	0.020
								148422	269.00	271.00	2.00	100	0.008	0.020
		İ						146423	271.00	273.00	2.00	100	0.007	0.027
		1						146424	273.00	275.00	2.00	100	0.006	0.035
								146425	275.00	277.00	2.00	100	0.008	0.034
			l				l	146426	277.00	279.00	2.00	100	0.005	0.030

Log04-34.xls Page 3

Depth (metres)	LITHOLOGICAL DESCRIPTION	<i>A</i>	Iteration		Sulf	ides		SAN	IPLES .		Rec.	Ana	lytical
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-spar	carb	Py	Сф	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
								146427	279.00	281.00	2.00	100	0.005	0.044
		280-286.5 soft clay alt around fractures						146428	281.00	283.00	2.00	100	0.005	0.035
		·				l	1	146429	283.00	285.00	2.00	100	0.010	0.049
			i	1		1	1	146430	285.00	287.00	2.00	100	0.003	0.017
286.5	306.0	as above; strong pink k-alt flooding, local silicification, local bright yellow clay patches (2-5 mm) with	tr	mod	no	0.0	TIO .	146431	287.00	289.00	2.00	100	0.008	0.037
		brown hematite patches diss throughout, trace epidote, 1% diss py					1	146432	289.00	291.00	2.00	100	0.012	0.062
			1					146433	291.00	293.00	2.00	100	0.001	0.022
				1		İ	ŀ	146434	293.00	295.00	2.00	100	0.004	0.031
			1	ł		İ		146435	295.00	297.00	2.00	100	0.006	0.032
			l				ļ	146436	297.00	299.00	2.00	100	0.028	0.215
								146437	299.00	301.00	2.00	100	0,012	0.089
							ļ	148438	301.00	303.00	2.00	100	0.020	0.142
			l			ĺ		146439	303.00	305.00	2.00	100	0,036	0.266
			ł				İ	146440	305.00	307.00	2.00	100	0,012	0.078
306.0	324.3	as above; light green-white day alt coarse fragmental with soft day alt zones to 3 m; no silicification, local	t	wk-mod	no	0.0	no	146441	307.00	309.00	2.00	100	0.012	0.075
555.0	024.0	pink k-alt flooding, 1% diss py, soft day zones - both black day and white buff day	`					146442	309.00	311.00	2.00	100	0.002	0.014
			1			1	1	146443	311.00	313.00	2.00	100	0.003	0.022
		313.5-315.8 strong pink k-alt flooding 2% diss py + local py stringers with black clay 45° CA						146445	313.00	315.00	2.00	100	0.024	0.092
		315.9-316.4 black clay bx zone	1			1		148448	315.00	317.00	2.00	100	0.023	0.051
		313.5-310.4 Diack day by Zone	•			1		148447	317.00	319.00	2.00	100	0.029	0.013
						1	1	146448	319.00	321.00	2.00	100	0.055	0.026
	1							148449	321.00	323.00	2.00	100	0.023	0.028
			ł	į .		l	į .	148450	323.00	325.00	2.00	100	0.032	0.157
324.3	358.9	grey-green chloritic massive mg volcaniclastic; local agglomerate beds, no epidote, local k-alt,	no	minor	wk	- wk	no	148451	325.00	327.00	2.00	100	0.032	0.111
324.3	336.9	silicification in various clasts only, minor py, whith quartz-carbonate stringers throughout	l '~	"""	""		"~	148452	325.00	329.00	2.00	100	0.002	0.008
		Simulation in the control of the con	l		1	1	1							
			I			i	1	146453	329.00	331.00	2.00	100	0.004	0.017
			i			l	1	148454	331.00	333.00	2.00	100		0.005
			i			1		146455	333.00	335.00	2.00	100	0.003	0.007
			1	1		1	1	146456	335.00	337.00	2.00	100	0.003	0.012
			l					148457	337.00	339.00	2.00	100	0.004	0.007
		l	l	1		1	ŀ	148458	339.00	341.00	2.00	100	0.003	0.018
		341.0 0.4 m soft clay alt	i	1		ļ	·	146459	341.00	343.00	2.00	100	0.004	0.024
						1		148460	343.00	345.00	2.00	100	0.007	0.031
		345-348 silicified cobbles with diss py		1				146461	345.00	347.00	2.00	100	0.001	0.009
			l	l		[1	148462	347.00	349.00	2.00	100	0.003	0.013
				1				148463	349.00	351.00	2.00	100	0.003	0.015
			ı				1	148484	351.00	353.00	2.00	100	0.005	0.008
			1				1	146465	353.00	355.00	2.00	100	0.004	0.016
			1					148468	355.00	357.00	2.00	100	0.003	0.009
		All In a 1 to 10 t	-	lal	<u></u>	2%		146467	357.00	359.00	2.00	100	0.003	0.009
358.9	373.68	coarse fragmental / agglomerate; as above with local silicification, pink k-alt over 50%, diss py to 2%,	no	local	no	470	no	146468	359.00	381.00	2.00	100	0.003	0.018
		locally very broken with strong clay alt	1	ì	1			146469	361.00	363.00	2.00	100	0.005	0.027
				1		1	1	146470	383.00	365.00	2.00	100	0.004	0.017
							1	146471	365.00	367.00	2.00	100	0.009	0.036
		367.0 45° CA black clay vein w py					1	148472	367.00	369.00	2.00	100	0.00€	0.038
	}	368.3 20° CA						146473	369.00	371.00	2.00	100	0.005	0.013
					1			146475	371.00	372.50	1.50	100	0.032	0.031
		ЕОН	L	l	I	l	1	148476	372.50	373,68	1.18	100	0.009	0.019

Log04-34.xls Page 4

	WJ-04-3									dip tests					
roperty: V		Total Length: 370.64 m							depth	dip	82			te: Aug 30	
	0+52S / 0+05								84.12	-49				tion: Sept 5	
levation: 9	940 m	Azimuth: 202°							135.92	-52		1		By: Johnst	
ection:		Inclination: -50							209.09	-58	<u> </u>	1	Date lo	ged: Sept	1-8/04
OTES: b	ala drillad e	subparallel to 74-02							346.25	-60	<u> </u>	L			
		Subparaties to 74-02		1 7	Iteration		6	ides							
Depth (LITHOLOG	ICAL DESCRIPTION	<u> </u>	T						APLES		Rec.		tytical
From	To 3.05	casing		epidote	k-spar	carb	ру	СР	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm
3.05		d gy silicified feld xtl tuff; wk ep, local pk ksp			local	l no	minor	0.002	146477	3.05	5.00	1.95	76	0.124	0.821
3.05	30.16	2-4mm wh-pk (ksp ait) locally broken felds; local	al lithia fraga, magazia, and ante	l "	l local	"	паког	0.002	146478	5.00	7.00	2.00	98	0.124	
		1 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	• • • • • • • • • • • • • • • • • • • •	1	ŀ	l			146478	7.00	9.00	2.00			1.025
		cp as diss, stringers and in 40CA chalcedonic s			ŀ			1	146480	9.00	11.00		100	0.1129	0.807
- 1		10.06-10.6m; 60CA fractures with gy qtz, strong 28.0m; 0.4m broken clay-chi alt core; milky and			l				146481	11.00	13.00	2.00	100	0.1997 0.1409	1.773
l		28.011, 0.4111 broken day-dir alt core, miky and	gy charcedonic quz						146482	13.00	15.00			0.1434	0.92
ı				1	İ	1			146483	15.00	17.00	2.00	100		<u> </u>
- 1				1	l				148484	17.00		2.00	100	0.1382	1.023
								}	146485		19.00	2.00	100	0.1221	0.946
				1					146486	19.00	21.00	2.00	100	0.1505	0,857
				1					146487	23.00	25.00	2.00	100	0.1296	
				1	ŀ				146488	25.00		2.00	100	0.2014	1.122
- 1		l						1	146488	25.00	27.00	2.00	100	0.1338	0.894
30.18	39	buff coloured and bushes interciple the ferror	an about least 2004 hadding	- wk	local		minor	0.001	146489	29.00	31.00	2.00	100	0.1225	0.715
30.18		buff coloured mod broken volcaniclastic; finer t		, wx	ЮСая	no	minor	0.001	146490	31.00		2.00			0.738
		low CA wh milky fg qtz vein's xcut by chalcedor	nc-cp nigh CA veins	ł	1				146491	33.00	33.00 35.00	2.00	79	0.1093	0.738
		minor ep, local pk ksp alt		1		1		}	146493	35.00	37.00	2.00	100	0.0931	0.689
1		cp cont as stringers, diss to 0.1%; minor but pe	rsistent	1	ļ				146494	37.00	39.00	2.00	86	0.0736	1.009
39	42.25	diss bn sec hem spots to 3mm v broken soft clay alt volcaniclastics as above		- wk	wk	mod	minor	minor	148495	39.00	41.00	2.00	100	0.1501	0.862
42.5		d gy fg volcaniclastics; 70-90CA bedding in loc	al eactions: mod calc. non-mag	strong	strong	mod	minor	0.005	148496	41.00	43.00	2.00	100	0.1866	1.122
72.5	05.50	strong pk ksp flooding, ep as veins, local floodi		all only	300119	""	Писка	0.000	148497	43.00	45.00	2.00	100	0.1092	0.656
- 1		mod silicification; both wh qtz-cc and gy chalce	•		ļ				146498	45.00	47.00	2.00	100	0.1084	0.594
l		co diss to 0.5%	conic cp vening	1		l			146499	47.00	49.00	2.00	100	0.1243	0.844
		51.5m; 2cm 45CA wh qtz-cc vein with coarse of	0	1					146500	49.00	51.00	2.00	95	0.1067	0.71
		ottom, zam 4500 mil qiz-ot veni with coalse c	Y						148501	51.00	53.00	2.00	100	0.0802	0.445
									146502	53.00	55.00	2.00	100	0.0793	0.462
									170002	33.00	30.00	2.00	1 100	0.0753	0.402
				1				1	146503	55.00	57.00	2.00	100	0.0931	0.396

strong

strong

strong

strong

mod

minor

0.005

65.56

67

71.4

71.4

pk-gy silicified mass intrusive?; indistinct felds, eu hb; no sx, poss big clast

local pk ksp, ep around fractures; tr cp; local gy chalcedonic-cp veins 87-91m

broken It gy fg volcaniclastics; 70-90CA; sl bleached; ser'd?

abund secondary fine bk-bn non-mag (hem) specks diss

d gy fg volcaniclastics as 42.5 - 65.56m

local clay alt'n; gn chl on broken surfaces

77 - 90m; v broken

59.00

61.00

63.00

65.00

67.00

69.00

73.00

75.00

77.00

79.00

61.00

63.00

65.00

67.00

69.00

71.00

73.00

75.00

77.00

79.00

81,00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

2.00

100

100

100

146506

146507

146508

146509

146510

146511

146512

146513

146514

148515

146516

0.0919

0.0894

0.0845

0.0506

0.1347

0.0821

0.0954

0.0981

0.0614

0.0679

0.0633

0.544

0.548

1.046

0.424

0.614

0.38

0.431

0.417

91 98 98 109.5 111.80 116.5 128 137.5 157	gradational contact to grey silicified volcaniclastics; magnetic mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces no sx; tr ksp, ep in veins, fractures	mod	k-sper	carb	py	Э	Sample # 148517 146518 146519 148520	From (m) 81.00 83.00 85.00 87.00	To (m) 83.00 85.00 87.00	2.00 2.00	% 95 100	Cu (%) 0.0596	Au (ppm)
98 109.5 109.5 111.80 111.80 116.5 116.5 128	gradational contact to grey silicified volcaniclastics; magnetic mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces		minor	no	t		146518 146519 146520	83.00 85.00	85.00	L			417
98 109.5 109.5 111.80 111.80 116.5 116.5 128	mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces		minor	no	tr		146519 146520	85.00		2.00	100		0.424
98 109.5 109.5 111.80 111.80 116.5 116.5 128	mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces		minor	no	tr		146520		87.00		100 }	0.0733	0.448
98 109.5 109.5 111.80 111.80 116.5 116.5 128	mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces		minor	no	tr			87.00		2.00	100	0.0741	0.535
98 109.5 109.5 111.80 111.80 116.5 116.5 128	mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces		minor	no	tr				89.00	2.00	90	0.0791	0.497
98 109.5 109.5 111.80 111.80 116.5 116.5 128	mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces		minor	no	tr		146521	89.00	91.00	2.00	99	0.0717	0.422
109.5 111.80 111.80 116.5 116.5 128	mod ep alt as veins and flooding; local pk ksp alt, tr cp, py local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces	minor		1 1		tr	146522	91.00	93.00	2.00	100	0.0655	0.46
109.5 111.80 111.80 116.5 116.5 128	local bk non-mag stringers, fractures 45CA, local stwk of wh qtz-cc stringers gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces	minor					146523	93.00	95.00	2.00	100	0.0752	0.475
109.5 111.80 111.80 116.5 116.5 128	gradational contact to it gy-buff coloured clay alt fine v/c local broken clay alt sections with gn chl, buff clay on surfaces	minor					146524	95.00	97.00	2.00	100	0.0743	0.494
109.5 111.80 111.80 116.5 116.5 128	local broken clay alt sections with gn chl, buff clay on surfaces		minor	wk	no	no	146525	97.00	99.00	2.00	100	0.0644	0.422
111.80 116.5 116.5 128 128 137.5				"			146526	99.00	101.00	2.00	100	0.0705	0.428
111.80 116.5 116.5 128 128 137.5							146527	101.00	103.00	2.00	99	0.1049	0.529
111.80 116.5 116.5 128 128 137.5		1		1			146528	103.00	105.00	2.00	95	0.0483	0.305
111.80 116.5 116.5 128 128 137.5		1		1 1			146529	105.00	107.00	2.00	100	0.0522	0.289
111.80 116.5 116.5 128 128 137.5		1	İ				146530	107.00	109.00	2.00	100	0.068	0.376
111.80 116.5 116.5 128 128 137.5	brecciated silicified zone; It gy-gn; wh qtz-cc veins, py diss and in local masses to 8mm;	wk	wk	mod	diss	tr	146531	109.00	111.00	2.00	100	0.0508	0.778
116.5 128 128 137.5	moderately calcareous	W.	 ** *	I IIIOG	uiss	ı u	140031	109.00	111.00	2.00	100	0.0506	0.778
116.5 128 128 137.5		minor	minor	wk	diss	minor	146532	111.00	113.00	2.00	98	0.0438	0.365
128 137.5	γγ	muor	пики	"	uiss	HRIKI	146533	113.00	115.00	2.00	100	0.046	0.503
128 137.5	local d gy magnetic silicified sections, local ep veins; tr ep						146535	115.00	117.00	2.00	100	0.0497	0.333
128 137.5	local chalcedonic-cp veins (2-3/metre); tr py				dian	minor	146536	117.00				0.0497	
	gy fg-mg volcaniclastics; local silicified sections to 0.5m (poss bx'd)	minor	minor	wk	diss	minor			119.00	2.00	100		0.356
	qtz-cc veins cont as above; up to 10cm qtz bx zones; bn alt'n in wallrocks locally	1					146537	119.00	121.00	2.00	100	0.0543	0.388
	ep, ksp in fractures						146538	121.00	123.00	2.00	100	0.0685	0.334
	minor diss py; chalcedonic-cp veins 2-4/m	1					146539	123.00	125.00	2.00	100	0.0815	0.454
	126.0m; bn alt wallrock around 45CA qtz-cc vein; include 10cm of fine chalcedonic-cp vein stwk						146540	125.00	127.00	2.00	100	0.0963	0.557
137.5 157	strongly silicified d gy-bk breccia (intrusive?)	mod	mod	no	diss	0.005	146541	127.00	129.00	2.00	100	0.074	0.416
137.5 157	cp diss to 0.5% and in abund (10-20/metre) chalcedonic-cp veins						146542	129.00	131.00	2.00	100	0.0911	0.537
137.5 157	local ep-ksp flooding						146543	131.00	133.00	2.00	100	0.1235	0.704
137.5 157		1					146544	133.00	135.00	2.00	100	0.1608	1.178
137.5 157		1		li			146545	135.00	137.00	2.00	100	0.2722	2.134
	bn-pk silicified fg-mg intrusive?; massive, non-aligned feld laths	local	strong	no	diss	0.005	146546	137.00	139.00	2.00	100	0.116	0.849
	strong ksp flooding, local ep; magnetic			1 1			146547	139.00	141.00	2.00	100	0.0985	0.717
	minor diss cp, but 5-10 chalcedonic-cp veins/metre	1					146548	141.00	143.00	2.00	100	0.0633	0.536
	152.2m; 40cm soft clay alt zone around qtz-cc vein						146549	143.00	145.00	2.00	100	0.0556	0.338
		1					146550	145.00	147.00	2.00	100	0.0721	0.541
							146551	147.00	149.00	2.00	100	0.0397	0.272
ŀ		1					148552	149.00	151.00	2.00	100	0.0475	0.309
I		1					146553	151.00	153.00	2.00	95	0.046	0.317
							146554	153.00	155.00	2.00	100	0.0521	0.341
							146555	155.00	157.00	2.00	100	0.0499	0.337
157 178	intrusive as above but with much weaker silicification; v broken; non-mag	minor	mod	no	diss	local	146556	157.00	159.00	2.00	88	0.054	0.329
	mod ksp, minor ep; tr py	ł					146557	159.00	161.00	2.00	99	0.0333	0.166
	cp as minor diss, and in local chalcedonic veins						146558	161.00	163.00	2.00	96	0.0504	0.336
	-r	1					146559	163.00	165.00	2.00	98	0.0316	0.199
	159m: 0.75m zone of int clasts in soft bn clay						146560	165.00	167.00	2.00	102	0.0351	0.219
	159m; 0.75m zone of int clasts in soft bn clay						146561	167.00	169.00	2.00	100	0.034	0.233
	159m; 0.75m zone of int clasts in soft bn clay 170-178; local zones to 0.5m of d gy magnetic silicification; diss cp						146562	169.00	171.00	2.00	100	0.0278	0.184
	l ·									1 2.00	.00	0.0276	0.104
	l ·						146563	171.00	173.00	2.00	100		0.24

Log04-35.xls Page 2

Depth ((metres)		A	Iteration		Sulf	ides	T	CAN	PLES		Rec.		halland .
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-spar	carb	Ру	ф	Sample #	From (m)	To (m)	Metres	жес. %	_	lytical
			ориссе	K-Spai	Carp	- 27		146566	175.00	177.00	2.00	100	Cu (%)	Au (ppm)
178	218.5	fine and coarse variably silicified volcaniclastics; coarser ones with felds and local hb	wk-mod	wk-mod	wk	diss	local	146567	177.00	179.00	2.00	100	0.0274	0.274
.,,	210.0	local 3-10cm ep flooded zones with diss py and local chalcedonic-cp veins	WK-1100	WK-11KG	- Th	uiss	l local	146568	177.00	181.00	2.00		0.0294	0.152
		local pk ksp flooded zones cont from above	1					146569				100	0.0322	0.193
		187.4-187.8m; strong 45CA qtz-cc veining with local wk ksp	l					146570	181.00 183.00	183.00	2.00	100	0.0485	0.417
		198-200m; bn buff clay alt zone around 30cm 50CA qtz-cc vein at 199m	1			1	l l	146570	185.00	185.00 187.00	2.00	100	0.0686	0.441
		1997220011, bit bull day all zone arbuild South Societ que-ce venit at 199111	l				Ì		187.00			100	0.0603	0.387
			l					146572 146573	189.00	189.00	2.00	100	0.0304	0.153
								146574	191.00	191.00	2.00	100	0.031	0.165
								146575	193.00	195.00	1	100	0.0448	0.303
								146576	195.00		2.00	100	0.0426	0.352
									L	197.00	2.00	100	0.0404	0.271
								146577	197.00	199.00	2.00	100	0.0247	0.185
						l		146578	199.00	201.00	2.00	100	0.0328	0.314
								146579	201.00	203.00	2.00	100	0.0451	0.394
								146580	203.00	205.00	2.00	100	0.0301	0.234
						1		146581	205.00	207.00	2.00	100	0.0536	0.437
								146582	207.00	209.00	2.00	100	0.0246	0.167
	ĺ		i			1		146583	209.00	211.00	2.00	100	0.0422	0.322
								146584	211.00	213.00	2.00	100	0.031	0.2
			l					146585	213.00	215.00	2.00	100	0.1341	1.241
								146586	215.00	217.00	2.00	100	0.0268	0.154
218.5	222.5	buff clay alt zones around wh qtz-cc veins/bx zones at 218.9-219.2, 221.4-222m	tr	tr	mod	tr	tr	146587	217.00	219.00	2.00	100	0.0571	0.418
								146588	219.00	221.00	2.00	100	0.0476	0.368
222.5	231	variably silicified d gy fg volcaniclastics	wk-mod	wk-mod	wk	diss	0.002	146589	221.00	223.00	2.00	100	0.0321	0.253
		pk ksp, ep alt around fractures	ł					146590	223.00	225.00	2.00	100	0.0528	0.371
		cp in fractures; up to 10/metre, also minor diss, and in local chalcedonic veins	i					146591	225.00	227.00	2.00	100	0.0452	0.283
		222.5m; 40cm of fine 30CA qc veins, 227m; cp in stringers	1					146592	227.00	229.00	2.00	100	0.0478	0.343
		230.5m; cp dec; py inc, 235.5m; diss py+cp=0.5%						146593	229.00	231.00	2.00	100	0.0509	0.28
231	261	gy mg mass sil'd int?; indistinct feld laths, local fine gy lithics; local hb	minor	minor	wk	diss	0.001	146595	231.00	233.00	2.00	100	0.0395	0.221
		minor local fine bedded volcaniclastic interbeds inc to bottom	i					146596	233.00	235.00	2.00	100	0.0137	0.07
		diss fine sec mgt; ksp around fractures, locally with ep	1					146597	235.00	237.00	2.00	100	0.0499	0.322
		diss cp, locally to 0.5%; tr chalcedonic-cp veins	ł					146598	237.00	239.00	2.00	100	0.0313	0.208
		232.9m; 10cm gn clay-cc 40Ca shear						146599	239.00	241.00	2.00	100	0.0286	0.138
		245.3m; 5cm wh cc bx zone at 20CA						146600	241.00	243.00	2.00	100	0.0426	0.284
		257-259m; local chalcedonic-cp veins						146601	243.00	245.00	2.00	100	0.0368	0.24
		262m; 50cm abund fine wh cc veins						146602	245.00	247.00	2.00	100	0.03	0.18
			1					146603	247.00	249.00	2.00	100	0.0382	0.239
			1					146604	249.00	251.00	2.00	100	0.0332	0.233
								148805	251.00	253.00	2.00	100	0.0296	0.178
								146606	253.00	255.00	2.00	100	0.0363	0.27
								146607	255.00	257.00	2.00	100	0.0308	0.202
								146608	257.00	259.00	2.00	100	0.0316	0.181
								148609	259.00	261.00	2.00	100	0.0231	0.147
261	292.8	mg silicified feld-hb int(?) with as above, with 30% interbeds(?) of fg volcaniclastics, as above	minor	minor	wk	diss	tr	146610	261.00	263.00	2.00	100	0.0257	0.134
		(some of the mg feld-hb sections may be coarse xtl tuff)						146611	263.00	265.00	2.00	100	0.0344	0.211
		local ep-ksp alt around fractures; magnetic throughout						146612	265.00	267.00	2.00	100	0.0366	0.232
		tr cp; pervasive diss py						146613	267.00	269.00	2.00	100	0.0406	0.301
		274-277m; ksp-ep alt clasts/fragments						146614	269.00	271.00	2.00	100	0.0208	0.125
			-											

Log04-35.xls Page 3

Depth ((metres)	LITHOLOGICAL DESCRIPTION	-	iteration		Sulf	fides	T	SAL	IPLES		Rec.	Ans	ivtical
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-sper	carb	Py	Ср	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
		281.3m; py on fractures						146615	271.00	273,00	2.00	100	0.0293	0.156
		278, 286.8, 291.2m; cp on fractures; last cp noted in hole	ı	-				146616	273.00	275.00	2.00	100	0.0239	0.156
İ		284-285; locally v broken core; chl. clay on surfaces with 30CA gtz-cc veins	l		•		,	148617	275.00	277.00	2.00	100	0.0198	0.125
ļ		, , , , , , , , , , , , , , , , , , , ,			1	1	1	146618	277.00	279.00	2.00	100	0.0269	0.188
				}			1	146619	279.00	281.00	2.00	100	0.03	0.164
							1	146620	281.00	283.00	2.00	100	0.016	0.104
				}			ľ	146621	283.00	285.00	2.00	100	0.0256	0.146
]		146622	285.00	287.00	2.00	100	0.0278	0.138
						1		146623	287.00	289.00	2.00	100	0.0266	0.137
			l l	ļ		l	ļ	146625	289.00	291.00	2.00	100	0.0237	0.174
			ı				1	148626	291.00	293,00	2.00	100	0.0208	0.139
292.8	305	fg mass gy volcaniclastics with round clasts to 20cm of ksp-ep alt mg feld porph	minor	clasts	wk	0.01	no	146627	293.00	295.00	2.00	100	0.025	0.168
		magnetic; weakly calc; variable cc veins throughout	İ				l	146628	295.00	297.00	2.00	100	0.0349	0.107
		diss and stringer py to 1%					1	146629	297.00	299.00	2.00	100	0.0088	0.021
		local strong ep alt around fractures				Į		148630	299.00	301.00	2.00	100	0.0085	0.029
		298m; 30CA ep veins to 5cm						146631	301.00	303.00	2.00	100	0.0065	0.038
			1	1	1	1	1	146632	303.00	305.00	2.00	100	0.0075	0.053
305	333	tuff bx?; fg gy mass matrix with abund subang-subround clasts to 10cm of mg voic's	clasts	clasts	wk	0.005	no	146633	305.00	307,00	2.00	100	0.0085	0.03
		most of clasts are ep-ksp ait		ł			i	146634	307.00	309.00	2.00	100	0.0111	0.063
		weakly magnetic; locally calc; diss py to 0.5%						146635	309.00	311.00	2.00	100	0.0128	0.094
		minor ep-ksp alt around fractures				1		146636	311.00	313.00	2.00	100	0.0146	0.13
		diss sec hem		1		l	1	146637	313.00	315.00	2.00	100	0.0065	0.047
		312-326m; abund whice veins to 3cm at various CA's; local spec hem	ł			1	l	146638	315.00	317.00	2.00	100	0.0119	0.164
		321.6m; 20cm fg pk clast with 2% bedded)?) py					1	146639	317.00	319.00	2.00	100	0.0095	0.079
		325-329m; strong silicification; v magnetic	1				1	148640	319.00	321.00	2.00	100	0.0073	0.055
		327-329m; low CA py stringers				1		146641	321.00	323.00	2.00	100	0.0078	0.05
			l	ŀ			ł	146642	323.00	325.00	2.00	100	0.0079	0.061
						ł		146643	325.00	327.00	2.00	100	0.0079	0.065
			l	Į.		l	[146644	327.00	329.00	2.00	100	0.0055	0.061
			Ì			ł	ļ	146645	329.00	331.00	2.00	100	0.0038	0.018
							J	146646	331.00	333.00	2.00	100	0.0045	0.016
333	342	tuff bx as above, but finer; clasts to 1cm only	clasts	clasts	wk	0.005	no	146647	333.00	335.00	2.00	100	0.0049	0.013
			1					146648	335.00	337.00	2.00	100	0.003	0.013
			l					146649	337.00	339.00	2.00	100	0.0092	0.034
				<u> </u>		<u> </u>		146650	339.00	341.00	2.00	100	0.0026	0.013
342	359.3	coarse tuff bx as 305-333m; frags to 30cm with same ksp-ep alt	clasts	clasts	wk	0.001	no	146651	341.00	343.00	2.00	100	0.0036	0.016
		weakly magnetic; minor diss py]				146652	343.00	345.00	2.00	100	0.0031	0.008
		local chalcedonic veins with py				1		146653	345.00	347.00	2.00	100	0.0031	0.025
		342.9m; 8cm 45CA clay-cc zone						146655	347.00	349.00	2.00	100	0.0042	0.063
		348, 352m; 30CA chalcedonic-py-qtz-cc vein in clay chl alt zone]		1		146656	349.00	351.00	2.00	100	0.0045	0.017
				1			1	148657	351.00	353.00	2.00	100	0.0101	0.08
			1	1	1	1	1	146658	353.00	355.00	2.00	100	0.016	0.126
			l	l		}	1	148659	355.00	357.00	2.00	100	0.0124	0.038
	L					<u> </u>	<u> </u>	146660	357.00	359.00	2.00	100	0.0055	0.026
359.3	370	gn fg-mg andesite tuff; local unaft volc clasts	no	tr	wk	diss	no	146661	359.00	361.00	2.00	100	0.0047	0.037
		wk-mod calc; variably magnetic; local diss py			İ	1	Į.	148662	361.00	363.00	2.00	100	0.0067	0.043
		common 45CA whice veins with it alt wallrock; local spec hem						146663	363.00	365.00	2.00	100	0.0036	0.009
	l	365.2-368.5m; fg gy-gn It zone with indistinct felds, wk ksp flooding; alt dyke?	1	1	I	Į.	1	146664	365.00	367.00	2.00	100	0.0026	0.057

Depth ((metres)	LITHOLOGICAL DESCRIPTION	A	Iteration		Sulf	ldes		SAN	PLES		Rec.	Ana	lytical
From	То	ETHOLOGICAL DESCRIPTION	epidote	k-spar	сель	ру	8	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
								146665	367.00	369.00	2.00	100	0.0026	0.036
1								146666	369.00	370.64	1.64	100	0.0068	0.139
					_			146856	368.00	370.00	2.00	100	0.0076	0.009
370	370.64	fg d gn chl'd andesite	no	no	wk	diss	no.	146857	370.00	372.00	2.00	100	0.0028	0.007
			1					146858	372.00	374.00	2.00	100	0.0027	0.009
								146859	374.00	376.00	2.00	100	0.0088	0.01
1 1	1							146860	376.00	378.00	2.00	100	0.0061	0.01
		ЕОН						146861	378.00	379.78	1.78	100	0.0025	0.006

Hole # WJ-04-36			dip tests	
Property: Woodjam	Total Length: 379.78 m	depth	dip	az
Grid Cord: 0+50W / 0+50N	Core Size: NQ	135.94	-52	
Elevation: 930	Azimuth: 202°	227.88	-58	
Section:	Inclination: -50°	331.01	-59	1
MOTES.				

Start Date: Sept 5/04 Completion: Sept 11/04 Logged By: Johnston Date logged: Sept 7-12/04

NOTES:

Depth	(metres)	LITHOLOGICAL DESCRIPTION		Iteration		Sul	fides		SAN	APLES		Rec.	Ana	ytical
From	То	ETHOLOGICAL DESCRIPTION	epidote	k-sper	carb	рy	Сф	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
0	3.66	casing	I											
3.66	42.5	mg intrusive?; massive; 2-3mm felds, lesser 1-2mm chl'd mafics?; 0.2-1cm chl'd lithic frags.	local	variable	wk	to 1%	minor	146667	3.66	5.00	1.34	86	0.0093	0.193
		diss secondary mgt clots to 3mm; weakly calcareous; local py to 1%, local cp	l		ł ·		1	146668	5.00	7.00	2.00	96	0.0124	0.186
		local strongly broken, clay alt zones; 5.15-5.4, 11.2-11.4, 12.95-13.1, 14.8-15, 16-17m	l		ł	1		146669	7.00	9.00	2.00	100	0.0201	0.238
		major broken zone 28.8-31.5 run subparallel to CA	l			t		146670	9,00	11.00	2.00	100	0.0213	0.409
		variable pk k-alt flooding; mod from 25-42.7m , with minor ep	•			ļ		148671	11.00	13.00	2.00	100	0.0113	0.207
		22-23.5; 5mm wh cc veins w/ py, cp run parallel CA	1	1		İ		146672	13.00	15.00	2.00	100	0.0166	0.254
	ĺ	36.3-42.7m; local strong silicified zones	l			1		146673	15.00	17.00	2.00	100	0.0092	0.286
	l		1		<u> </u>			146674	17.00	19.00	2.00	100	0.0126	0.156
	1		l	ŀ]	ľ		146675	19.00	21.00	2.00	100	0.01	0.37
			1		1	·		146676	21.00	23.00	2.00	100	0.0071	0.24
			l	į.			1	146677	23.00	25.00	2.00	100	0.0118	0.222
			l			l		146676	25.00	27.00	2.00	100	0.0091	0.155
	ŀ		l	ľ	1	İ		146679	27,00	29.00	2.00	100	0.0111	0.167
			i		1		1	148680	29.00	31.00	2.00	100	0.0113	0.159
			l			1	1	146681	31.00	33.00	2.00	100	0.013	0.122
			1		l	1	1	146682	33.00	35.00	2.00	100	0.0132	0.148
			1	1	ŀ	1	1	146683	35.00	37.00	2.00	99	0.0262	0.212
				1		1	}	146685	37.00	39.00	2.00	100	0.0333	0.331
			1		į .			146686	39.00	41.00	2.00	100	0.0191	0.135
42.5	47.0	mg intrusive as above with sections of well bedded (80 CA) fine tuffaceous siltstone, as	wk-mod	wk-mod	no	to 1%	minor	146687	41,00	43.00	2.00	100	0.0177	0.222
		wk-mod silicification, diss sec mgt throughout	1			l	1	146688	43.00	45.00	2.00	100	0.012	0.158
		wk-mod ep-ksp flooding	<u> </u>			<u> </u>		146689	45.00	47.00	2.00	100	0.0351	0.508
47	65.4	mg mass intrusive with both coarse and fine volcaniclastics sections; diss mgt	mod	mod	no	minor	to 0.5%	148690	47.00	49.00	2.00	100	0.0275	0.443
		local silicification, locally strong; mod ep-ksp alt, pink alt felds	i		ł		1	148691	49.00	51.00	2.00	100	0.0188	0.295
		cp as stringers, diss, to 0.5%; tr py			1	l		148692	51.00	53.00	2.00	100	0.07	0.654
		55-56m; abund 45CA cc veins to 2cm with crystalline open spaces	1	1			1	146693	53.00	55.00	2.00	100	0.0974	0.824
		59.5-63m; coarse tuff bx with ep-ksp alt clasts	ł					148694	55.00	57.00	2.00	100	0.0651	0.464
	1		1	1		1		146695	57.00	59.00	2.00	100	0.0259	0.216
	Į		1	1			1	146696	59.00	61.00	2.00	100	0.0291	0.204
	Ì		1		İ	1	1	148697	61.00	63.00	2,00	100	0.0293	0.241
	İ			İ		<u> </u>		146696	63.00	65.00	2.00	100	0.0201	0.126
65.4	87.05	fg gy-gn andesitic volcaniclastic' locally 70-90CA bedding; magnetic, weakly calc	wk	wk	wk	minor	tr	146699	6 5.00	67.00	2.00	100	0.0267	0.188
		1-2% rd-bn sec hem clots to 3mm; minor diss py, tr cp	I				1	148700	87.00	69.00	2.00	100	0.016	0.134
		local wh co-qtz veining with local spec	I				1	148701	69.00	71.00	2.00	100	0.0265	0.267
		coarser voic grit beds in last 6m	1					148702	71.00	73.00	2.00	100	0.0235	0.3
			l					146703	73.00	75.00	2.00	100	0.0382	0.389
		İ	l					148704	75.00	77,00	2.00	100	0.0442	0.62
	1					ł	1	146705	77.00	79.00	2.00	100	0.007	0.15
	1				1	ļ	1	148706	79.00	61.00	2.00	100	0.0049	0.104

Depth	(metres)	LITHOLOGICAL DESCRIPTION		Iteration		Sulf	ides		SAN	IPLES		Rec.	Ana	iytical
From	То	CITACLOGICAL DESCRIPTION	epidota	k-spar	cento	Py	ф	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
			1					146707	81.00	83.00	2.00	100	0.0058	0.032
		1	1	1				146708	83.00	85.00	2.00	100	0.0299	0.032
			ı					146709	85.00	87.00	2.00	100	0.0029	0.083
87.05	126.8	gn-bn fg-mg tuffaceous ss; mostly massive but local 80CA bedding; magnetic; wk-mod silic'n	strong	mod	no	minor	to 1%	146710	87.00	89.00	2.00	100	0.0627	0.614
		local coarser sections with broken felds				1		146711	89.00	91.00	2.00	100	0.0819	0.635
	1	mod ksp around fractures, local flooding; pervasive wk-strong ep flooding	1			1		146712	91.00	93.00	2.00	100	0.0618	0.423
	İ	diss cp, locally to 1%; local chalcedonic veins with cp at both high, low CA's	1			ļ	ŀ	146713	93.00	95.00	2.00	100	0.0691	0.534
	I	108-116m; strong ep flooding						146715	95.00	97.00	2.00	100	0.0696	0.391
	ł	Too Trong up hooding		1		1		146716	97.00	99.00	2.00	100	0.0683	0.527
						1		146717	99.00	101.00	2.00	100	0.075	0.847
	ŀ		1		1	1	ŀ	146718	101.00	103.00	2.00	100	0.1087	0.827
			1	1				146718	103.00	105.00	2.00	100	0.0801	0.553
	l	j	1				1	146719	105.00		2.00	100	0.0799	0.553
			1	1						107.00	 			
			1	1			i	146721	107.00	109.00	2.00	100	0.052	0.587
	l		l			Í	l	146722	109.00	111.00	2.00	100	0.1	0.678
			1		1	1		146723	111.00	113.00	2.00	100	0.1247	0.95
	1		i		İ	1	1	146724	113.00	115.00	2.00	100	0.0694	0.521
	l		ł		1	1	l	146725	115.00	117.00	2.00	100	0.0888	0.623
			l	ł		ł	l	146726	117.00	119.00	2.00	100	0.0783	0.648
				1		1		146727	119.00	121.00	2.00	100	0.0635	0.498
	1			1		1		146728	121.00	123.00	2.00	100	0.0774	0.602
			1			1	ł	146729	123.00	125.00	2.00	100	0.0617	0.477
	<u> </u>				į .	L	<u>L</u>	146730	125.00	127.00	2.00	100	0.0798	0.465
126.8	135	mg ep alt coarse volcaniclastics; widespread ep-ksp flooding;	strong	strong	no	minor	0.005	146731	127.00	129.00	2.00	100	0.084	0.598
		diss cp to 0.5%, cp also in chalcedonic veins; minor py	1			l		146732	129.00	131.00	2.00	100	0.0476	0.179
		local d gy strong silicification;	1			İ		146733	131.00	133.00	2.00	100	0.0855	0.447
			1	l		l		148734	133.00	135.00	2.00	100	0.0793	0.431
135	150	grey interbedded fine and coarse volcaniclastics; local 70CA bedding	strong	mod	no	minor	0.005	146735	135.00	137.00	2.00	100	0.0964	0.541
		ep-ksp ait as ait around fractures and local flooding	İ			ł		146736	137.00	139.00	2.00	100	0.0893	0.548
	l	cp as diss, stringers and in chalcedonic veins	l	ļ		i i	ŀ	146737	139.00	141.00	2.00	100	0.072	0.41
		sec mgt as fine disseminations				1	İ	146738	141.00	143.00	2.00	100	0.0575	0.303
	ŀ	135-150m; 8-10 chalcedonic veins / metre	1		l	1		146739	143.00	145.00	2.00	100	0.0769	0.474
	ļ		1	1	l	1	ŀ	146740	145.00	147.00	2.00	100	0.073	0.454
			1	1	ŀ	l	1	146741	147.00	149.00	2.00	100	0.0493	0.228
150	163	mg gn-bn mass tuff; 70CA bedding contact with unit above	strong	strong	no	minor	to 0.5%	146742	149.00	151.00	2.00	100	0.0572	0.288
	""	strong ep-ksp alt throughout; mottled texture			1	1		146743	151.00	153.00	2.00	100	0.0435	0.341
		diss sec mgt; minor py	1			ŀ		146745	153.00	155.00	2.00	100	0.0493	0.315
	1		ı		1	ŀ	l	146746	155.00	157.00	2.00	100	0.034	0.181
		diss cp to 0.5%, also in local chalcedonic veins	1			Ì		146747	155.00	157.00	2.00	100	0.034	0.128
			1			1						100	0.0176	0.128
								146748	159.00	161.00	2.00	 		
	400.6		wk-mod	wk-mod	no	local	local	146749	181.00	163.00	2.00	100	0.0259	0.141
163	196.6	mass gy bg tuff; diss mgt continues	WK-HIOO	WA-1100	"	, Local	~~	146750	163.00	165.00	2.00	100	0.027	0.178
		local ep-ksp alt around fractures with py, cp	1				1	146751	165.00	167.00	2.00	100	0.0538	0.33
		locally core v broken, with strong clay alt, cc veins	1					146752	167.00	169.00	2.00	100	0.0411	0.216
		minor local cp; diss and in chalcedonic veins	1					148753	169.00	171.00	2.00	100	0.0282	0.187
		local silicified sections						146754	171.00	173.00	2.00	100	0.0272	0.134
		164m; 0.3m broken clay-cc chi alt zone	1				j	146755	173.00	175.00	2.00	100	0.0266	0.175
		167.8m; 0.4m v broken zone; bx of clay, cc with tuff clasts	1	Ì	Į.		l	146756	175.00	177.00	2.00	100	0.027	0.188

Depth	(metres)	LITHOLOGICAL DESCRIPTION	A	Iteration)	Sulf	ides		SAL	PLES		Rec.	Ann	lytical
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-sper	cento	ру	ф	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
		185-190m; cc-ep-chl veins to 3cm at various CA's				- ''		148757	177.00	179.00	2.00	100	0.023	0.162
		193.5 -194; v broken, chloritic zone						146758	179.00	181.00	2.00	100	0.023	0.162
								148759	181.00	183.00	2.00	100	0.0138	0.135
			1		1			148780	183.00	185.00	2.00	100	0.0235	+
			1		ł			146761	185.00	187.00				0.147
			1				i	148762	187.00	189.00	2.00	100	0.0257	0.137
			1		1			146763	189.00	191.00	2.00	100	0.0252	0.156
					1			148764	191.00	193.00	2.00	100	0.0179	0.113
					ł			148765	193.00	195.00	2.00	100	0.0173	0.09
			1		1			148766	195.00	197.00	2.00	100		0.105
196.6	209.9	d gn chloritic fg andesitic volcaniclastic; local 80CA bedding	wk	wk	wk	to 0.5%	no	148767	197.00	199.00	2.00	100	0.0151	0.098
		minor diss mgt; weakly calc						146768	199.00			_	0.0162	0.081
		minor ep, tr pk ksp around fractures, with py						146769	201.00	201.00	2.00	100	0.0211	0.073
		diss py to 0.5%, no cp noted			1						2.00		0.0203	0.105
		203.7m; 0.4m broken clay att zone with 45CA cc veins	1		ŀ	ľ		148770	203.00	205.00	2.00	100	0.0249	0.115
		208.2m; 0.6m broken clay alt zone with 45CA cc veins	1		l			148771	205.00	207.00	2.00	100	0.018	0.116
209.9	220	broken clay alt andesitic volcaniclastics; strong clay alt	wk	local	minor	to 0.5%	no	146773	207.00	209.00	2.00	100	0.0242	0.182
200.0		abundant oc veining at all CA's	1 ""	, local	111111111111111111111111111111111111111	100.0%		146775	209.00	211.00	2.00	100	0.0272	0.17
		local bk clay seams (1-5mm veins of fg bk clay with fine eu py)	Į į					146776	211.00	213.00	2.00	100	0.0358	0.218
		local zones with faint pk ksp alt	1					146776	215.00	215.00	2.00	100	0.0285	0.146
		1-2% fine bn sec hem, minor mgt	1							217.00				0.275
		212m; chalcedonic veins but with py only	1		l			148778	217.00	219.00	2.00	100	0.0183	0.138
		219.5m; 3cm wide 10CA zone of fine bk clay seams	1		Į			148779	219.00	221.00	2.00	100	0.0153	0.087
220	226	competent buff-bn clay alt volcaniclastics (alt halo of broken alt (shear zone?) above)	no	no	wk	0.01	no	4.0700	****					
220	220	local diss py to 1%	"	11~	"	0.51	١~	148780	221.00	223.00	2.00	100	0.0118	0.054
		local diss by to 176	1		1			148781	223.00	225.00	2.00	100	0.0043	0.008
226	242.5	an forma and saids to the legally fine hadded	no	tr	wk	to 1%	no	146782	225.00	227.00	2.00	100	0.0089	0.011
220	242.5	gn fg-mg andesitic tuff; locally fine, bedded	'N	u	" "	10176	I IIO	148783	227.00	229.00	2.00	100	0.0054	0.016
		weak clay alt throughout, whice veins, dissipy to 1%	i					148784	229.00	231.00	2.00	100	0.0031	0.006
		231.5m; 20cm of wh, bk clay with fine py						146785	231.00	233.00	2.00	100	0.0047	0.008
		235m; whice veins to 2cm; running at 20CA	1					148786	233.00	235.00	2.00	100	0.0036	0.006
		237m; coarser sections look mass, poss intrusive?						146787	235.00	237.00	2.00	100	0.0033	0.003
								146788	237.00	239.00	2.00	100	0.0052	0.007
		[Ì			146789	239.00	241.00	2.00	100	0.0094	0.012
242.5	200							146790	241.00	243.00	2.00	100	0.0066	0.013
242.5	262	pk-buff intrusive?; local sections with non-aligned felds to 3mm	t	no	wk	minor	no	146791	243.00	245.00	2.00	100	0.0069	0.002
		coarse sections with pk-buff gm; white felds						148792	245.00	247.00	2,00	100	0.0021	0.007
		non-magnetic;	1					146793	247.00	249.00	2.00	100	0.0059	0,003
		local bx zones; fg pk-buff gm with angular pink int clasts (at 247, 261.5-263m)						146794	249.00	251.00	2.00	100	0.0044	0.007
		local bk clay veins/seams						148795	251.00	253.00	2,00	100	0.0025	<0.001
		257.8m; minor cp with py in chalcedonic vein	1					148796	253.00	255.00	2.00	100	0.0098	0.007
		262.7-262.7m; bx zone; gy-bk clay with clasts of pk intrusive, and sgl clast of wh-gy qtz with ga						148797	255.00	257.00	2.00	100	0.0043	0.012
		264.8m; v broken core with bk clay						146798	257.00	259.00	2.00	100	0.0338	0.016
								148799	259.00	261.00	2.00	100	0.0082	0.014
262	287	intrusive as above, but v broken; 0.5% diss py throughout	no	tr	wk	to 0.5%	no	146800	261.00	263.00	2.00	100	0.0193	0.021
		abundant bk clay as veins, bx zones						146801	263.00	265.00	2.00	100	0.0035	0.007
		269.3m 0.5m of 45CA bk clay-py veins						146802	265.00	267.00	2.00	96	0.003	0.005
		276-278.8m; v abund 45CA bk clay veins, bx zones						146803	267.00	269.00	2,00	100	0.0112	0.013
1		278.5-282.3m; Intrusive bx as at 247m						146805	269.00	271.00	2.00	100	0.0235	0.066

Log04-36.xls Page 3

Depth	Depth (metres) LITHOLOGICAL DESCRIPTION		1	Alteration			Sulfides		SAMPLES					Analytical	
From	То	LITHOLOGICAL DESCRIPTION	epidote	k-sper	carb	Py	ср	Sample #	From (m)	To (m)	Metres	Rec.	Cu (%)	Au (ppn	
		285.6, 286.7m; wh py stringers with 1cm of strong red (ksp?) wallrock ait				1 "		146806	271.00	273.00	2.00	100	0.01	0.048	
		}		1		1		148807	273.00	275.00	2.00	92	0.0052	0.008	
		1	- 1			1		146806	275.00	277.00	2.00	100	0.008	0.018	
	ŀ	•	- 1			1		146809	277.00	279.00	2.00	97	0.0094	0.012	
			ı			l		146810	279.00	281.00	2.00	100	0.0043	0.003	
			ı			ŀ		146811	281.00	283.00	2.00	100	0.0108	0.008	
			ı					146812	283.00	285.00	2.00	100	0.0075	0.003	
	l		1					146813	285.00	287.00	2.00	100	0.0057	0.007	
287	297.4	chloritic green intrusive; v broken core	no	no	wk-mod	to 0.5%	по	146814	287.00	289.00	2.00	100	0.0086	0.006	
		abund cc veins, gn chl flooding; diss py locally to 0.5%	- 1	İ				146815	289.00	291.00	2.00	99	0.0109	0.007	
		local bk clay veins	- 1					146816	291,00	293.00	2.00	100	0.0105	0.00	
			- 1					146817	293.00	295.00	2.00	100	0.0092	0.00	
297.4	311.5	soft crumbly clay alt gy-pk mg intrusive	no	wk	wk-mod	to 0.5%	no	146818	295.00	297.00	2.00	100	0.0092	0.626	
		as previous, with locally abund felds						146819	297.00	299.00	2.00	100	0.0124	0.012	
		variably calc, locally abund cc veins						146820	299.00	301.00	2.00	100	0.0031	0.012	
		local bk clay veins; diss wh py to 1%	1					146821	301.00	303.00	2.00	100	0.0112	0.012	
		local intrusive bx as at 247m						146822	303.00	305.00		100	0.0113		
		308.3m; 0.3m of bk clay-py	i					146823	305.00	307,00	2.00	100	0.0218	0.003	
	i	311.3m; 20cm of bk clay bx						146824	307.00	307.00	2.00	100	0.0203	-	
								146825	307.00					0.006	
311.5	322.7	pp coarse tuff bx?	no .	wk?	no	1-2%	no	146826	311.00	311.00 313.00	2.00	100	0.0104	0.01	
]	pp gm with subang-round clasts of pk intrusive to 30cm	"~	***	.~	1-2~	~	146827			2.00	100	0.0099	0.01	
		matrix supported, no alignment of clasts							313.00 315.00	315.00	2.00	100	0.0075	0.006	
		1-2% py in both matrix, groundmass	- 1					146826 146829	315.00	317.00	2.00	100	0.0087	0.009	
		319.25m; 5cm wide 30CA bk clay-py vein								319.00	2.00	100	0.0139	0.011	
		STOLESHI, SOIN WILL SOOK DR CIBY PY YOUR	1					146830	319.00	321.00	2.00	100	0.0042	0.018	
322.7	323.8	intrusive with gy qtz py stwk veins with gy alt for 1cm into wallrock (photo)	no	wk	no	0.02	no	146831	321.00 322.50	322.50	1.50	100	0.0089	0.012	
711	020.0	and do to man gy que py dank vointe man gy air to real into main och (prioto)	"~	***		0.02	~	146832 146833		324.00	1.50	100	0.0039	0.053	
323.8	338	pp coarse tuff bx? as 311-322	no	tr	mod	1-2%	no		324.00	326,00	2.00	100	0.0055	0.023	
	330	1-2% diss py; local cream coloured alt patches to 1cm	'~	•	"	1-2.70	""	146835	328.00	328.00	2.00	91	0.0154	0.047	
		328-329, 330-331, 336.5-337.5m; v broken, bx'd core with open spaces filled with cc, py	ı					146836	328.00	330.00	2.00	88	0.0189	0.052	
		335.8m; 60CA bedding in fine pp tuff	1					146837	330.00	332.00	2.00	90	0.0137	0.028	
		coo.om, cook bedding in time pp and	1					146838	332.00	334.00	2.00	91	0.0078	0.024	
			1	!				146839	334.00	336.00	2.00	95	0.0185	0.14	
338	345.1	for my old massive interesting (/ coope him plant)				0.04		146840	336.00	336.00	2.00	100	0.0046	0.005	
336	343.1	fg gy-pk massive intrusive? (poss big clast)	no	wk?	wk	0.01	no	146841	338.00	340.00	2.00	100	0.0079	0.007	
		no fabric, 1% diss py						146842	340.00	342.00	2.00	100	0.0091	0.004	
		local beds/bands to 10cm of pp tuff						146843	342.00	344.00	2.00	100	0.0079	0.007	
345.1	270.70	338m; for 30cm each side of this are cream coloured bx zones to 5cm with int, pp tuff clasts		ala -t-	- ;;	0.005		146844	344.00	346.00	2.00	100	0.0068	0.01	
345.1	379.78	pp coarse tuff bx as above	clasts	clasts	wk	0.005	no	146845	346.00	346.00	2.00	100	0.0087	0.008	
		local bk clay-py veins, bx zones; 0.5% diss py, locally to 2%						146846	348.00	350.00	2.00	100	0.0094	0.011	
		cc veins throughout, though not abund						146847	350.00	352.00	2.00	100	0.0099	0.013	
		352-359m; ksp-ep att clasts						146846	352.00	354.00	2.00	100	0.005	0.006	
		372m; cc-qtz veins with red hem?						146849	354.00	356.00	2.00	100	0.0041	0.008	
		368-379.78m; bleached						146850	356.00	358.00	2.00	100	0.0041	0.007	
								146851	358.00	360.00	2.00	100	0.0032	0.004	
								146852	360.00	362.00	2.00	100	0.0034	0.015	
								146853	362.00	364.00	2.00	100	0.0036	0.007	
	l							146854	364.00	366.00	2.00	100	0.007	0.007	

Log04-36.xls Page 4

Depth (metres)		LITHOLOGICAL DESCRIPTION	Alteration			Sulfides			PLES	Rec.	Analytical			
From	То		epidote	k-sper	carb	РУ	ср	Sample #	From (m)	To (m)	Metres	%	Cu (%)	Au (ppm)
								146855	366.00	368.00	2.00	100	0.0117	0.009
			1				146856	368.00	370.00	2.00	100	0.0078	0.009	
								146857	370.00	372.00	2.00	100	0.0028	0.007
								146856	372.00	374.00	2.00	100	0.0027	0.009
								146859	374.00	376.00	2.00	100	0.0088	0.01
								146860	378.00	378.00	2.00	100	0.0061	0.01
		ЕОН						148861	378.00	379.78	1.78	100	0.0025	0.006

WOODJAM Sample Coding – Lithology Codes

Intrusive Rocks (I)

- Im Monzonite, often occurs as a monzonite porphyry (Imp). Common subvarities include: Ghost Porphyry (Img) a feldspar porphyry with indistinct white feldspar phenocrysts in a dark-grey groundmass, and Potassium-rich Porphyry (Imk) a feldspar porphyry with a fine-grained, brown-coloured and potassium-rich, groundmass. Monzonite breccia (Imx) most commonly contains fragments of Ghost Porphyry or Potassium-rich Porphyry.
- Ia Altered Intrusive: pervasive alteration (largely carbonate) has destroyed pre-existing textures, so identification tentative, but is believed to be intrusive.
- Ix Intrusive Breccia: an intrusive breccia in which is poorly developed and often strongly altered, preventing the identification of a monzonite.
- Feldspar-Biotite Porphyry: feldspar-biotite porphyry intrusive that has distinctive 5 mm biotite phenocrysts. Occasional small quartz eyes suggest a monzonite composition. Observed only as a late dike in hole WJ04-37
- Id Microdiorite: a fine to medium grained rock that is very dark-grey to black in colour. Observed in the lower part of drill hole WJ04-39

Volcanic Rocks (V)

- VI Latite: a fine-grained equivalent of the monzonite, usually seen as dykes. Varieties include latite tuff (Vlt) which includes latite lapilli tuff.
- Va Andesite: a fine-grained equivalent of the diorite, usually seen as dykes. Varieties include andesite tuff (Vat).
- Vx Mixed Volcanics: undifferentiated volcanics and/or breccia.

Other Lith Codes

- Mx Mixed Volcanic and Intrusive: a unit with mixed characteristics of both vaolcanic and intrusive rocks, usually details are obscured by alteration.
- Transition: a sample interval, which includes elements of both the unit above and the unit below. Usually located at the beginning of a unit.
- X Unknown: unknown lithology due to intense alteration.

STRUCTURE CODES

- CT Contact
- FT Fault
- FZ Fault Zone
- FC Fault zone with clay gouge
- BZ Broken Zone
- BC Broken zone with clay seams
- QV Quartz vein
- CV Carbonate vein
- QC Quartz-carbonate vein

ALTERATION AND MINERALIZATION CODES

- d disseminated
- v veins
- f fracture/fault controlled
- r replacements
- b large blebs
- m massive
- e envelope
- s selvage
- p patches/breccia

OTHER CODES

TS Thin section

Page: 1 of 10

Property: Woodjam Interval: 0 to 452.63 DDH: WJ04-37 Core Size: NQ **Grid Cord:** 45S 84W Azimuth: 114° Section: **50S** Inclination: -45°

	ACID TESTS	3	1
Depth (m)	Dip Meas.	Dip Cor.	l
99.06	-51	-44	
324.16	-53	-46	
434.34	-51	-44	

Start Dates: Oct. 19, Nov. 23, 2004 Oct. 25, Nov. 27, 2004 Completion:

Logged By: Jay W. Page

Dates logged: Oct 20 - 31, Nov 26-28, 2004

NOTES: GPS collar location was 10U 610286 5790833 (NAD 83). Average recovery was 99.16%. Water line length was 100 feet. The diamond drill used was a skid-mounted Long Year 56 owned by LeClerc Drilling Ltd. First run was calculated by drillers to be 5 feet based on a 13 foot core barrel minus 8 feet from the ground surface to the top of the head in the down position, subsequent runs were numbered in "5's", conversion to metric was carried out by the geology crew. Recovery was measured between sample intervals. Hole was drilled to 370.33 metres (1215 feet) during the period Oct 19 - 25, 2004 and later extended to 452.63 metres (1485 feet) during the period Nov 22 - 27, 2004. Extensive reeming was required to re-enter the hole. Casing was removed upon completion of the hole. Core was logged prior to splitting. Samples #146901 to #147088 were analysed by Acme Analytical Laboratories Ltd. and samples #147313 to #147352 were analysed by TeckCominco Global Discovery Labs. Petrographic work consisting of 3 thin sections (98.25m, 249.05m and 450.80m) was carried out by Harns Exploration Services.

м	AJOR UNIT			STRUC					SAMPLES			LITH			A	LT CO	DE (1 =	trace,	5 = ve	ry stro	ng)			MIN	CODE		ANA	LYSIS
From (m)	To (m)	Notes		From (m)		° CA	Sample #	From (m)	To (m)	Interval	Rec	CODE	Ks	Bi	Еp	Ch	Са	Si	Су	Se	He	Li	Mg	Ру	Ср		Cu (%)	Au (g/
)	9.14	Overb	urden	(Casing (30')																							
9.14	9.29	Rubble	e, grou	ınd pebbl	es, no sa	ample.																						
9.29	88.62	most p lessor comm	orimary pyrite only in	textures, in numero the 10 - 3	but the ous 1-10 30* CA r	re are mm g ange.	osition. Me several inf grey quart Moderate ately 63.5	tervals of z veins, th e epidote a	relatively e mineral alteration	fresh n ization throug	nonzon is ofter hout. S	ite po 1 foun Secon	rphyr d as a dary s	y (var a linin silica	Gh gin	ost P the v ling i	orphy ein-ce n add	ry - I enter ition 1	mg). . Mo: to the	This st of	unit these ning a	s stron veins a	gly mine are at le to have	eraliz ss the	zed by an 45	y cha 5* CA	lcopyrite and are	and most
							146901	9.29	11.50	2.21	101%	lm	r1		r2		v3	v2	r2	r1	r1	f4			v2		0.135	1.32
							146902	11.50	13.55	2.05	102%	lm	r1		r2		v3		r2	r1	r1	f3			v2		0.089	0.85
							146903	13.55	16.00	2.45	103%	lm	r1		е3		v2	v3		r1		f2	d3		v3		0.121	1.08
							146904	16.00	18.00	2.00	98%	lm	r2	<u> </u>	е3		v2	v4					d3	v2	v5		0.163	1.34
`							146905	18.00	20.00	2.00	101%	lm	r2		гЗ		v2	v4			1		d4	v2	v4		0.111	0.97
					-4-1		146906	20.00	22.00	2.00	100%	lm			r3	1	v2	v4					d4	v2	v3		0.164	1.52
							146907	22.00	23.59	1.59	97%	lm	r2		r3	1	v1	v4	r1		f2		d3	v1	v3		0.244	2.11
			FC	23.59	24.50		146908	23.59	24.50	0.91	93%	Fz		ļ.		f1	v2	V2	r5					v1	1		0.100	0.58
			BZ	24.5	25.45		146909	24.50	26.00	1.50	103%	lm	T		r2		v2	v3	r1		1		d3		v2		0.207	1.88
							146910	26.00	28.00	2.00	95%	lm	r1		r3	1	v1	v4					d3	v2	v5		0.164	1.19
							146911	28.00	30.00	2.00	100%	lm			г3	f1	v1	v3	r1		1		d3		v3	\Box	0.216	1.63
							146912	30.00	32.00	2.00	101%	lm	r1		r2		v2	v3			1		d3	v1	v2		0.192	1.55
							146913	32.00	33.50	1.50	103%	lm	†		r3	r1	v2	v3			 		d3	v2	v3		0.226	2.40
					 -		146914	33.50	35.05	1.55	102%	lm			r3	r1	v2	v4	1	†			d3	v2	v3		0.186	1.65
							t interval o veins, with																	te m	ineral	izatio	n is dom	inantly
							146915	35.05	37.00	1.95	98%	Img			r1		v2	v3		r1	r1		d4	v1	v2		0.153	0.89
							146916	37.00	39.00	2.00	102%	Img			r1	v1	v2						d4		v3		0.077	0.51

	AJOR UNIT		1	STRUC				S	AMPLES			LITH			AL'	T COD	E (1 =	trace,	5 = vel	y stroi	ng)		- 1		MIN	CODE		ANAL	YSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec	CODE	Ks	Bi	Ep	Ch	Ca	Si	Су	Se	He	Li		Mg	Py	Ср		Cu (%)	Au (g/t)
							146917	39.00	41.00	2.00	103%	Img			r1		v2	v 3			r1			d4		v3		0.154	0.993
							146918	41.00	43.45	2.45	102%	Img	r1		r2		v 2	v3			r1			d2	v2	v3		0.174	1.051
							146919	43.45	44.90	1.45	97%	Img	r2		r2		v1	v4						d3	v1	v3		0.219	1.600
							146920	44.90	46.33	1.43	102%	lmg					v1	v3						d3		v3		0.134	0.877
1000		46.33	- 58.86	Tan col	oured into	rusive	. Pervasive	e weak to	moderate	carbo	nate re	place	ment	altera	ation	obsc	ures	textu	res.								L		
							146921	46.33	48.00	1.67	96%	lm	r1		r2		v2	v3			s2			d4	f1	v3		0.174	1.368
							146922	48.00	50.00	2.00	99%	lm	r2		r1		v2	v3			s1			d3	v2	v3		0.149	1.041
							146923	50.00	52.00	2.00	99%	lm	r2				v1	v4			f1			s3	v1	v3		0.268	1.591
							146924	52.00	54.00	2.00	101%	lm	r2		r4		v2	v5	r2	r1	s2				v2	v4	1	0.187	0.950
							146925	54.00	56.00	2.00	99%	la			r4		v2	v5			s3	d2			v2	v4		0.349	2.680
							146926	56.00	58.86	2.86	97%	la			r3		v3	v3	-		s3				v1	v4		0.222	1.343
							146927	58.86	61.00	2.14	99%	lmg			r1		v3	v4			s3			d5	v2	v4		0.347	1.811
						-	146928	61.00	63.53	2.53	99%	lmg			r1		v3	v4			s3		1	d5	v2	v5		0.355	3.026
		compr is indis	-	0 - 60% 0	of the cor	e. Th	is forms th	ne hanging	wall of a	fault l	oetweer	n 64.8	7 and	65.8	0 with	h a cl	lay s	eam l	betwe	en 6	35.20	and (65.45	. C	ontac	t with	h hang	ing wall	above
			IBC I	64 97	65.0		146020	62.52	65.90	2 27	099/	E-			-4	2	-2	E	-2		-1		1	-2		4	T	0.640	4.054
			ВС	64.87	65.8		146929 146930	63.53 65.80	65.80 68.36			-			\rightarrow		r3 v1		r3 r3		s1 s2			s2 s2	v1 v1	v4 v4		0.613 0.176	4.254 1.008
		68.36	- 71.57	7 Medium	-grained		146930	65.80 . Grey qua	68.36 artz vein d	2.56 lensity	95% has de	Fz crease	ed to		r2 al pe	f2 r me	v1	v3 ength	r3 of co		s2 Magn	etite		s2	v1	v4	commo	0.176	1.008
		68.36 hemat	- 71.57	7 Medium	-grained e blebs a		146930 monzonite nited to vei	65.80 . Grey qua	68.36	2.56 lensity	95% has de	Fz crease	ed to	sever	r2 al pe	f2	v1	v3 ength	r3		s2 Magn	etite	vein s	s2	v1	v4	commo	0.176	1.008
		68.36 hemat	- 71.57 tite. CI	7 Medium nalcopyrit 68.36	-grained e blebs a 68.37	ere lim 85	146930 monzonite nited to vei 146931 146932	65.80 . Grey quans. 68.36 70.00	68.36 artz vein c 70.00 71.57	2.56 lensity	95% has de 90%	Fz crease	ed to	sever	r2 al pe	f2 r me	v1	v3 ength v2	r3 of co		s2 Magn	etite	vein s	s2 elva	v1	v4 are c	commo	0.176 only alter	1.008 red to 0.442
		68.36 hemat	- 71.57 tite. CI	7 Medium nalcopyrit 68.36	-grained e blebs a 68.37	ere lim 85	146930 monzonite nited to vei 146931 146932	65.80 . Grey quans. 68.36	68.36 artz vein c 70.00 71.57	2.56 lensity 1.64	95% has de 90%	Fz crease	ed to	sever	r2 al pe	f2 r me	v1	v3 ength	r3 of co		s2 Magn	etite v	vein s	s2 elva s1	v1	v4 are c	commo	0.176 only alter	1.008 red to 0.442
		68.36 hemat	- 71.57 tite. CI	7 Medium nalcopyrit 68.36	-grained e blebs a 68.37	85 monz	146930 monzonite iited to vei 146931 146932 onite (lm)	65.80 . Grey quans. 68.36 70.00	68.36 artz vein c 70.00 71.57	2.56 lensity 1.64 1.57	95% has de 90%	Fz crease Im Im	ed to	sever	r2 al pe	f2 r me f2 f2	v1 tre le	v3 ength v2 v3	r3 of co		s2 Magn	etite	vein s	s2 elva s1	v1	v4 are c	commo	0.176 only alter	1.008 red to 0.442 0.543
		68.36 hemat	- 71.57 tite. Cl FC - 76.95	7 Medium nalcopyrit 68.36	-grained e blebs a 68.37	85 monz	146930 monzonite iited to vei 146931 146932 onite (lm)	65.80 . Grey quants. 68.36 70.00 described	68.36 artz vein c 70.00 71.57 above.	2.56 lensity 1.64 1.57	95% has de 90% 99%	Fz crease Im Im	ed to	sever	r2 ral pe	f2 r me f2 f2	v1 tre le	v3 ength v2 v3	r3 of co		s2 Magn s2 s2	etite v	vein s	s2 elva s1	v1	v4 are c	commo	0.176 only alter 0.070 0.089	1.008 red to 0.442 0.543
		68.36 hemat	- 71.57 tite. Cl FC - 76.95	7 Medium nalcopyrit 68.36	-grained e blebs a 68.37	85 monz	146930 monzonite nited to vei 146931 146932 onite (Im)	65.80 . Grey quans. 68.36 70.00 described	68.36 artz vein c 70.00 71.57 above. 73.00	2.56 lensity 1.64 1.57 1.43 2.00	95% has de 90% 99% 100% 98%	Fz crease Im Im	ed to	sever	r2 ral pe	f2 r me f2 f2	v1 tre le v3 v3	v3 ength v2 v3 v3	r3 of co r2 r1		s2 Magn s2 s2 s2	etite	vein s	s2 elva s1	v1	v4 are c v2 v2 v2	commo	0.176 only alter 0.070 0.089	1.008 red to 0.442 0.543 0.585 0.680
		68.36 hemat 71.57 76.95 intrusion	- 71.57 tite. CI FC - 76.95 FC	7 Medium nalcopyrit 68.36 5 Strongly 71.57	-grained e blebs a 68.37 v altered 71.58	monz 50 ponite, peen 7	146930 monzonite ited to vei 146931 146932 onite (Im) 146933 146934 146936 similiar to 6.95 and 6	65.80 . Grey quans. 68.36 70.00 described 71.57 73.00	70.00 71.57 above. 73.00 75.00 76.95 bed abov	2.56 lensity 1.64 1.57 1.43 2.00 1.95 /e but tobscu	95% has de 90% 99% 100% 98% 92% finer grared by s	Fz crease Im Im Ia Ia Ia ained,	espe	cially	r2 r1 r1 r2 r2 r2 betweening (f2 f2 f2 f2 een 8 (0* to	v1 tre le v3 v3 v3 82.42 45*	v3 v3 v3 v3 v3 v3 cA),	r3 of co r2 r1 r3 r3 r2 88.6 and l	2. A	s2 s2 s2 s3 s3 s6ws	short	vein s	s2 elva s1 s1	v1 ages	v4 are c v2 v2 v2 v2 v2 ar to	have i	0.176 Only alter 0.070 0.089 0.098 0.104 0.094 indistinct	1.008 red to 0.442 0.543 0.585 0.680 0.561
		68.36 hemat 71.57 76.95 intrusion	- 71.57 tite. CI FC - 76.95 FC	7 Medium nalcopyrit 68.36 5 Strongly 71.57	-grained e blebs a 68.37 v altered 71.58	monz 50 ponite, peen 7	146930 monzonite ited to vei 146931 146932 onite (Im) 146933 146934 146936 similiar to 6.95 and 6	65.80 . Grey quants. 68.36 70.00 described 71.57 73.00 75.00 that describeds.	70.00 71.57 above. 73.00 75.00 76.95 bed abov	2.56 Iensity 1.64 1.57 1.43 2.00 1.95 re but 1 obscupyrite.	95% has de 90% 99% 100% 98% 92% finer grared by s Cut by	Fz crease Im Im Ia Ia Ia Ia ined, strong	espe	cially tz veir	r2 r1 r2 r2 r2 betweening (titte (a	f2 fr me f2 f2 f2	v1 tre le v3 v3 v3 82.42 45*	v3 v3 v3 v3 v3 v3 cA),	r3 of co r2 r1 r3 r3 r2 88.6 and l	2. A	s2 s2 s2 s3 s3 s6ws	short	vein s	s2 elva s1 s1	v1 ages	v4 are c v2 v2 v2 v2 v2 ar to	have i	0.176 Only alter 0.070 0.089 0.098 0.104 0.094 indistinct	1.008 red to 0.442 0.543 0.585 0.680 0.561
		68.36 hemat 71.57 76.95 intrusion	- 71.57 tite. CI FC - 76.95 FC	7 Medium nalcopyrit 68.36 5 Strongly 71.57	-grained e blebs a 68.37 v altered 71.58	monz 50 ponite, peen 7	146930 monzonite ited to vei 146931 146932 onite (Im) 146933 146934 146936 similiar to 6.95 and 6	65.80 . Grey quants. 68.36 70.00 described 71.57 73.00 75.00 that descri 32.42), nowith blebs of	70.00 71.57 above. 73.00 75.00 76.95 bed abov w largely of chalco	2.56 density 1.64 1.57 1.43 2.00 1.95 de but to obscur pyrite. 2.05	95% has de 90% 99% 100% 98% 92% finer gra red by s Cut by s	Im Ia Ia Ia Ia Ia Ia Ia Ia Ia Ia Ia Ia Ia	espe quart	cially tz veir	r2 r1 r1 r1 r2 r2 r2 between ring (a r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3 r3	f2 f2 f2 eeen 8 f2 f2 f3 f3	v3 v3 v3 v3 45*	v3 ength v2 v3 v3 v3 v3 cA), netite	r3 of ccc r2 r1 r3 r3 r2 88.6 and t i) string	2. A	s2 Magn s2 s2 s3 s3 few s	short	vein s	s2 elva s1 s1	v1 ages	v4 are c v2 v2 v2 v2 v2 ar to	have i	0.176 Only alter 0.070 0.089 0.098 0.104 0.094 Indistinct * CA). G	1.008 red to 0.442 0.543 0.585 0.680 0.561
		68.36 hemat 71.57 76.95 intrusion	- 71.57 tite. CI FC - 76.95 FC	7 Medium nalcopyrit 68.36 5 Strongly 71.57	-grained e blebs a 68.37 v altered 71.58	monz 50 ponite, peen 7	146930 monzonite iited to vei 146931 146932 onite (Im) 146933 146934 146936 similiar to 6.95 and 6 neralized v	65.80 . Grey quans. 68.36 70.00 described 71.57 73.00 75.00 that described: 32.42), now with blebs of 76.95	70.00 71.57 above. 73.00 75.00 76.95 bed abov w largely of chalco 79.00	2.56 density 1.64 1.57 1.43 2.00 1.95 de but to obscur pyrite. 2.05	95% has de 90% 99% 100% 98% 92% finer gra red by s Cut by t 97% 101%	Fz crease Im Im Ia Ia Ia ined, strong numer Im	espec quart ous h	cially	r2 r1 r1 r2 r2 r2 betweening (arr4)	f2 f2 f2 f2 eeen t (0° to after r	v3 v3 v3 45* magritus	v3 v3 v3 v3 v3 v3 cAh, netite v4 v4	r3 of co	2. A py lov	s2 Magn s2 s2 s3 s3 few s w-ang	short	vein s	s2 elva s1 s1	v1 ages	v4 v2 v2 v2 v2 v2 v2 v2 v3 v3	have i	0.176 Only alter 0.070 0.089 0.098 0.104 0.094 indistinct * CA). G	1.008 red to 0.442 0.543 0.585 0.680 0.561 trey 0.863 1.474
		68.36 hemat 71.57 76.95 intrusion	- 71.57 tite. CI FC - 76.95 FC	7 Medium nalcopyrit 68.36 5 Strongly 71.57	-grained e blebs a 68.37 v altered 71.58	monz 50 ponite, peen 7	146930 monzonite ited to vei 146931 146932 onite (Im) 146933 146934 146936 similiar to 6.95 and 6 neralized w 146937 146938	65.80 . Grey quants. 68.36 70.00 described 71.57 73.00 75.00 that described 32.42), nowith blebs of 76.95 79.00	70.00 71.57 above. 73.00 75.00 76.95 bed abov w largely of chalco 79.00 81.00	2.56 lensity 1.64 1.57 1.43 2.00 1.95 /e but tobscurpyrite. 2.05 2.00	95% has de 90% 99% 100% 98% 92% finer grared by s Cut by 1 97% 101% 98%	Fz crease Im Im Ia Ia Ia ined, strong numer Im Im	espe quari ous i r2	cially	r2 r1 r1 r2 r2 r2 betweening (arr4)	f2 f2 f2 f2 een 8 0° to after r f3 f3 f4	v3 v3 v3 v3 45* magr v3 v3	v3 v3 v3 v3 v3 v3 cAh, netite v4 v4	r3 of co	2. A py lov	s2 s2 s2 s3 s3 few s w-ang s3 s3	short	intervo	s2 elva s1 s1	v1 ages	v4 are c v2 v2 v2 v2 v2 ar to g (5* v3 v3	have i	0.176 0.070 0.089 0.098 0.104 0.094 indistinct * CA). G 0.136 0.152	1.008 red to 0.442 0.543 0.585 0.680 0.561 8 Grey 0.863 1.474 1.229
		68.36 hemat 71.57 76.95 intrusion	- 71.57 tite. CI FC - 76.95 FC	7 Medium nalcopyrit 68.36 5 Strongly 71.57	-grained e blebs a 68.37 v altered 71.58	monz 50 ponite, peen 7	146930 monzonite itted to vei 146931 146932 onite (Im) 146933 146934 146936 similiar to 6.95 and 6 eralized v 146937 146938 146939	65.80 . Grey quants. 68.36 70.00 described 71.57 73.00 75.00 that described 76.95 79.00 81.00	70.00 71.57 above. 73.00 76.95 bed above largely of chalco 79.00 81.00 82.42	2.56 density 1.64 1.57 1.43 2.00 1.95 re but 1 obsculpyrite. 2.05 2.00 1.42	95% has de 90% 99% 100% 98% 92% finer grared by s Cut by 1 97% 101% 98%	Im In Im Im Im	espe quari ous i r2	cially	r2 r1 r1 r2 r2 r2 r2 r2 r2 r3 r4 r4 r4	f2 rme f2 f2 f2 f2 f2 f3 f3 f3	v3 v3 v3 v3 45* magr v3 v3 v3	v3 v3 v3 v3 v3 v3 v3 v4 CA), netite v4 v4	r3 of co	2. A py lov	s2 s2 s2 s3 s3 few s w-ang s3 s3	short	intervo	s2 elva s1 s1	v1 ages	v4 are c v2 v2 v2 v2 ar to gg (5* v3 v3 v2	have i	0.176 only alter 0.070 0.089 0.098 0.104 0.094 indistinct * CA). G 0.136 0.152 0.169	1.008 red to 0.442 0.543 0.585 0.680 0.561

N	AJOR UNIT			STRUC				s	AMPLES			LITH		A	LT CO	DE (1	= trace	, 5 = ve	ry stron	g)			MIN	CODE		ANAL	YSIS
From (m)	To (m)	Notes		From (m)	To (m)	° CA	Sample #													He		Mg		Ср			Au (g/t)
88.62	99.10	ì	-				n-grained,									_		_									
		1		ai hornble	ende and	pyro	xene. Cont	acts appe	ar intrusiv	e but a	are irreç	gular.	Mine	ralized by	chal	сору	rite in	grey	quart	z vei	ns. Incl	ludes a	mine	or amo	ount	of Im and	lx in
-		this in	BC	88.83	89.92		146943	88.62	91.00	2.38	00%	lmk	1-1	r2	T	v3	v3	f3			T	d2	v1	v3	Т	0.205	1.275
		-	ВС	00.03	09.92		146944	91.00				 -	r1	12	+	v2	v3	13				d2	v1	v3			
	<u> </u>								92.96		101%		r1	r2	f2	+	v3	-	-		-		V1	+		0.245	2.183
							146945	92.96	95.00		99%		1			v2	v3	+			-	d2	+	v3		0.080	0.584
	ļ						146946	95.00	97.00			 -	⊢	r2 2	f1	v2	+	+				d2	v2	v3		0.117	0.966
	040.50	TS			····· 4 - 4		146947	97.00	99.10		100%	1	r5	2		v2	v3					d1	v2	v3		0.190	1.342
99.10	246.52						rained. Da mary textu																				ıŧ
							Traces of b																				
							reccia (lx)							,									F,	, ,	3, -1		
							146948	99.10	101.00	1.90	104%	lm	e2	r2		v2	v4	T		s1		Ţ-		v2		0.112	0.830
		101.0	0 - 109	.03 Altere	ed intrusi	ve wil	th a bleach	ed appear	ance du	e to cla	y - cart	onate	alte	ration. Di	ssem	inate	d spe	ecks (of hen	natite	in the	followin	ng al	tered	secti	on form a	1
							in the Im int											_									
			BZ	102.11	103.00		146949	101.00	103.00	2.00	99%	Fz		r2		v2	v2	r3					v2	v1		0.085	0.41
			FC	103.10	103.35		146950	103.00	105.16	2.16	97%	la		r2		v3	v3	r4					v3	v1		0.104	0.664
							146951	105.16	107.00	1.84	97%	la		r4		v4	v2	r5					v3	v2		0.118	0.656
			FC	108.20	108.35		146952	107.00	109.03	2.03	100%	la		r4		v4	v1	r5					v1	v1		0.042	0.23
		109.0	3 - 186	6.06 Intrus	ive with	weak	er carbonal	te alteration	n than th	e abov	e core.											•					
	 	 					146953	109.03	111.00	1	97%	,	r1	r3	T	v3	v2	r4		s1			v1	v1		0.118	0.669
		<u> </u>					146954	111.00	113.00	2.00	95%	lm	e1	r2		v2	v2	r2					\top	v2		0.107	0.721
							146955	113.00	114.47	1.47	101%	lm	e1	e2	1	v2	v2	1				d1	T	v2		0.123	0.476
<u></u>	<u> </u>						146956	114.47	116.96	2.49	96%	lm	r2	r2		v3	v2	r1					v1	v2		0.088	0.598
		 					146957	116.96	119.00		100%	lm	r1	r2	+-	v3	v2	r1		s1		ď2	v1	v1		0.126	0.744
							146958	119.00	121.00	ł	99%	lm	e1	r2	v3	v2	r3			s1				v2	†	0.101	0.591
		-	ВС	122.42	122.60		146959	121.00	123.00	2.00	104%	lm	†	r3	-	v3	v2	r3					T-	v2		0.105	1.079
			-				146960	123.00	124.98	1.98	100%	lm	r2	r2	f1	v2	v1	r2				d1	†	v1		0.071	0.459
		<u> </u>	FC	126.50	126.75		146961	124.98	127.00		98%	-	<u> </u>	e2	f1	v3	v1	гЗ				d1	-	f1		0.064	0.364
			FC	128.50			146962	127.00	129.00	<u> </u>				12	f1	v3	v1	r4				d1	-			0.060	0.42
-			FC	129.00		-	146963	129.00	131.00					r3	f2	v2	v1	r4				_	-	v1		0.078	0.45
		 	 	123.00	123,32		146964	131.00	133.00		96%			v3	f2	v2	v2	v2				d1	-	v2		0.076	0.560
			BC	134.60	135.00		146965	133.00	135.00		99%		1	r3	f2	v3	v1	12				d1	-	v1		0.077	0.512
			BC	135.00			146966	135.00	137.00				+-	r3	12	v4	v1	v2				d2	+-	v1	-	0.056	0.33
	-		IBC	135.00	135.55		146967	137.00	138.00	 	102%	 		r4	r3	v3	+	12				d1	+	f1	-	0.055	0.36
L	-		ļ				-						 				,,d	+	-				14		-		0.30
				1			146968	138.00	140.00	2.00	97%	jimg	1	r4	r2	v3	v1	_r1				d3	v1	d2		0.075	0.43

M	JOR UNIT			STRUC	TURE				AMPLES			LITH	T		Δ	TCO	DE (1 :	s frace	5 = 140	ry stror	w)		7	M	IN CO	ne .	ANAL	VOIA
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec	CODE	Ks	Bi	_Ep	Ch	Ca	Si	Cy	Se	He	Ļi	M			Op Op	Cu (%)	. rsis Au (g/t)
							146969	140.00	142.00	2.00	101%	lm			r4	r2	v3	v1	r1				d2	2	fz	2	0.080	0.464
							146970	142.00	144.00	2.00	100%	lm	r2		r3	r2	v3	v1					d3	d d	2 d	2	0.087	0.441
							146971	144.00	145.59	1.59	98%	lm	r3		r3	r1	v3	v1					d3	3 d	2 v	2	0.118	0.553
							146972	145.59	147.83	2.24	98%	lm			r3	r2	v4	v1	r3				d2	2 v	1 v.	2	0.091	0.486
							146973	147.83	150.00	2.17	100%	lm	r2		r4	r1	v2						d3	3 d	2 d	3	0.073	0.402
			FC	150.52	150.88		146974	150.00	152.00	2.00	102%	Fz	r1		r3	r1	v4	v1	r4					d	1 d	2	0.066	0.337
			FC	152.95	153.20		146975	152.00	154.00	2.00	100%	Fz	r3		r3		v4		r4								0.079	0.488
							146976	154.00	156.00	2.00	96%	lm	r3		r3	r1	v3	v1					d1	d	2 d	2	0.120	1.132
							146977	156.00	158.00	2.00	101%	lm	r2		r3	r1	v3	v2	r1				d2	2 d	1 v	2	0.121	0.811
							146978	158.00	160.00	2.00	101%	lm	r3		r3	r2	v2				r1		d2	2	V	2	0.099	0.701
							146979	160.00	162.00	2.00	100%	lm	r4		r4	r2	v3	v2	r2						V	2	0.104	0.679
			FC	162.00	162.14		146981	162.00	164.00	2.00	99%	lm	r3		r3	r1	v2	v1	r1		r2		d2	2	V.	2	0.125	0.907
			BZ	165.08	162.14		146982	164.00	166.02	2.02	94%	lm	r4		r4	f1	v2	v2			r2			V.	2 V	2	0.112	0.813
							146983	166.02	168.00	1.98	104%	lm	r3		r4	r3	v4	v1	f4						V	1	0.089	0.667
							146984	168.00	170.00	2.00	100%	lm	r3		r3	r3	v3						d1				0.088	0.557
			FC	171.10	171.50	5	146985	170.00	171.95	1.95	101%	lm			r3	е3	v3	v1	f4						V	1	0.129	0.693
							146986	171.95	174.00	2.05	97%	lm	r4		r5	r2	v2	v1	r1						V	1	0.137	0.963
							146987	174.00	176.00	2.00	100%	lm	r3		r4	r3	v2	v1					d1	f1	V	1	0.155	1,128
							146988	176.00	178.00	2.00	98%	lm	r3		r4	r2	v2	v1					d2	? f1	V.	2	0.124	1.031
							146989	178.00	179.97	1.97	100%	lm	r2		r3	r3	v3	v2	r1				d1	d	1 v.	2	0.171	1.137
							146990	179.97	182.00	2.03	100%	lm	r2		r3	r3	v2	v1					d2	f2	f3	3	0.174	1.258
							146991	182.00	183.33	1.33	100%	lm	r2		r3	r2	v2	v1					d3	d	1 f3		0.110	0.900
							146992	183.33	184.57	1.24	98%	lm					v4	v1	f4		r2				d	2	0.123	0.784
							146993	184.57	186.06	1.49	106%	lm	r3		r4	r2	v3	v1					d2	d d	1 d	2	0.173	1.285
																					atite	in the	follow	ing a	ltere	d sec	tion form a	pattern
		similia	r to th	at of magi	netite in 1	he Im	intrusive a						ck m	ay be		usive	_	n-ma	Ť	C.								
							146994	186.06	188.00		99%		 		r2		v3	+	r1	<u> </u>					d	1	0.072	0.678
							146995	188.00	190.00		100%		_		_		v4	v1	r2	<u> </u>			_	-	-		0.057	0.436
			FC	191.24			146996	190.00	192.00		99%		r1		r2		v3	v1	f4	<u> </u>				-	_		0.087	0.672
		404.00	FC	192.82			L	192.00	194.00				<u></u>	riad i	r2		v2	v1	f4	oto I	nolus	lad in 1	thin int	V			0.087	0.939
		1		o.∠1 lan te orphyry aa	_	•		ur modera	ate chaic	opyrite	mmera	いとさいり	ııı car	HEU I	ıı yı e	y qu	ai LZ [HICIO	-veirii	CIS. I	HOIUC	eu in l	uns int	ei Vä	1 12 g	SI Idl	amount of	
							146998	194.00	195.42	1,42	99%	lm	r1		r2		v3	v1	r4			T		Т			0.065	0.393
	******				M		146999	195.42	197.50		100%		r2		r4	r3	v3	v2	†				d2		fZ		0.066	0.583
					******		147000	197.50	199.50	li			r2		r4	r3	v2	v2				_	d3		d		0.094	0.839
L			L				ssemineted: v			ــــــــــــــــــــــــــــــــــــــ				<u> </u>	· · · ·	1	1	٠	1	<u> </u>							1 5.55 7	

М	IAJOR UNIT			STRUC	TURE				AMPLES			LITH			A	LT CO	DE (1	= trace,	5 = ve	ry stror	ng)	,			MIN C	ODE	ANAL	LYSIS
rom (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec	CODE	Ks	Bi	Εp	Ch	Ca	Si	Су	Se	He	Li		Mg	Ру	Ср	Cu (%)	Au (g/t
							147001	199.50	201.50	2.00	97%	lm	r2		r4	r3	v2	v1						d3		d3	0.084	0.67
							147002	201.50	203.67	2.17	99%	lm	r1		r4	r3	v1	v1						d3		d3	0.116	0.89
							147003	203.67	206.21	2.54	101%	lm	r1		г2	r2	v3	v2						d2		v2	0.158	1.22
		206.2	- 210	.60 Stron	g clay - c	carbor	nate altered	d fault zor	ne. Conta	acts cut	core a	t 10*	CA															
			FC	206.21		10	147004	206.21	208.19	1.98	99%	Fz	r1				ν4	v2	f5					d1			0.100	0.44
			FC	210.60		10	147005	208.19	210.60	2.41	101%	Fz	гЗ		r2		v4	v2	f5					d1			0.170	1.07
		210.60	218	.95 Intrus	ive with r	micro-	veinlets ca	rrying cha	alcopyrite	, orrien	ted at 5	5* - 6	0* C/	4 . N	lon-n	nagn	etic.					-						
							147006	210.60	212.72	2.12	100%	Tr	e1		r1	r1	v4	v2	f3	T						v2	0.22	1.5
							147007	212.72	215.00	2.28	98%	lm	r3		г4	r2	v3	v2								v3	0.11	0.8
							147008	215.00	216.98	1.98	98%	lm	г3		г4	r2	v2	v3								v3	0.12	1.0
							147009	216.98	218.95	1.97	102%	lm	r3		г4	r2	v3	v2	r1							v3	0.12	1.0
		218.95	5 - 221	.54 Clay	- carbona	ate alt	ered intrus	ive, very b	oroken.	1				L.——	<u> </u>	-			-	<u> </u>	<u></u>	1						
			FC	219.25	219.95		147010	218.95	221.54	2.59	85%	Fz	r1		г4	v4	v1	f4								v1	0.127	1.56
		221.54	1 - 234	.40 Hard,	medium	n-grey	monzonite	with stro	ng epidot	e altera	tion. Q	uartz	micro	o-veir	nlets	cut c	оге а	it 0 -2	0* C	A	L		L					
		-					147011	221.54	224.03	2.49	110%	lm	r2		г4		ν4	v2							v2	v3	0.133	1.16
	<u> </u>						147012	224.03	226.00	1.97	100%	lm	r2		г4	r1	v3	v1								v1	0.115	1.01
	 						147013	226.00	227.98	1.98	89%	lm	r2		г4	r1	v3	v2		1						v2	0.135	1.17
		ļ	FC	229.22	229.95	30	147014	227.98	230.07	2.09	98%	lm	r2		г4	r1	v4	v1	f3							v1	0.096	0.78
	 		FC	230.07	230,61		147015	230.07	232.00	1.93	99%	lm	12		r3		v4	v2	f5			 				v2	0.109	0.81
		 					147016	232.00	234.40	2.40	93%	lm	r1		r4		v5	v2	f4	<u> </u>		1			v2	v2	0.169	1.12
		234.40	0 - 240	.50 Fault	and clay	-carb	onate alter	ation zon	e. Conta	ct with o	verlyin	g intr	usive	is at	15* -	20*	CA, v	ery b	roker	n and	cho	pped	up by	frac	tures	and c	arbonate ve	ining.
							ins 1 - 4 m							,	.,								,		,			
							147017	234.40	236.44	2.04	97%	la	r1		г4	r2	v4	v1	f4						ν1	v1	0.126	1.02
							147018	236.44	238.47	2.03	101%	la	г2		г5		v3	v2	r2							v2	0.138	1.32
			вс		239.73	1 1	147019	238.47	240.50	L			r2		г4	r1	v4		f4					d1		v2	0.088	
							strong epic e core at 6		ntion. This	interva	ıl is traı	nsitio	nal wit	th un	derly	ing i	ntrusi	ve br	eccia	. At 2	45.80) the	core	is cu	t by s	everal	1-2 cm thic	k fine-
							147020	240.50	242.50	2.00	94%	lm	p2		г3	r 1	v3	v2	r2					d2		v2	0.110	1.02
			FC	243.53	243.82		147021	242.50	244.40	1.90	116%	lm	p2		r2	f1	v3		r2					d2			0.072	0.58
	T	†				İ	147022	244.40	246.52	2.12	91%	Tr	r2		r3	f1	v3	v2	r1	T				d2		v2	0.058	0.45

Page: 6 of 10

M	AJOR UNIT			STRUC					SAMPLES			LITH			-	ALT CC	DE (1	= trace	, 5 = w	ery stro	ng)			MIN	CODE		ANAL	YSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec	CODE	Ks	Bi	Еp	Ch	Ċa	Si	Су	Se	He	Li	Mg	Py	Ср		Cu (%)	Au (a/t
246.52		1cm ti shows disser orrien	hick ca s perva minated ted at '	rbonate-f sive chlor d pyrite ar 10* and a	filled frac rite-epido nd chalco t 45* to 6	ture at te alte opyrite 60* CA	:Upper contraction. Brown Chalcop . Chalcop . Pervasiv ., epidote-	rriented at eccia frage yrite-mine re modera	t 10* CA. ments are eralized g ate potass	Brecc e rimm rey qua sic alte	ia cons ed by c artz vei ration is	ists of hiorite ns are s com	ang e-epie late mon	ular f dote a and throu	ragn altera cut b ighoi	nents ation. oth b ut the	of m Both recci	onzon the a frag cia u	nite p breco imen nit an	orphy cia fra t and d ove	/ry. B igmer matri erprint	reccia n its and r x. Grey s the ea	natrix natrix quart rlier e	is ma are v z veir pidot	ofic ar weakl nning e alte	nd ma y min is co eration	agnetite ri neralized v mmonly n. Feldsp	ich and with
		ļ. 	СТ	246.52		10		246.52	248.50						, -	r2	v3	T		r2	1			7				
		TS		240.52		10	147023	248.50				 	r2 r3	r1 r2	r4	12	v3	-	f2 r2	12	-		d2 d3	+	d2		0.049	0.42
		10	-				147024	250.50				-	r3	12	r4	12	v2	-	r1	r1			d2	+	d1		0.047	0.40
			-				147027	252.50				 	12	r1	r4	r1	v2			r1	-		d1	+	d2	 	0.041	0.55
		254.5	0 Brec	cia matrix	has grad	ded int	o a mediu	- -		L	L		1	1	117	1	100		L	1			Iu.		uz		0.000	0.55
		T					147028	254.51	256.50	1.99	94%	lmx	r2	r1	r3	f2	v2	v2		r1			d1		v2		0.070	0.62
							147029	256.50	258.50	2.00	95%	lmx	рЗ		r4	r1	v3	v1					d2		d2		0.058	0.417
							147030	258.50	260.50	2.00	101%	lmx	r3		r4	r1	v2	v3					d2		v3		0.073	0.539
			FC	261.84	262.00		147031	260.50	262.84	2.34	97%	lmx	r3		г4	r1	v3	v2					d1	v2	v1		0.066	0.50
							147032	262.84	264.00	1.16	97%	lmx	r3		r4	r1	v 2	v1			v1		d1	v1	v1		0.058	0.40
		<u> </u>					147033	264.00	266.00	2.00	104%	 	r3	<u> </u>	r3	r1	v3	v1					d1		d1		0.056	0.401
	_						147034	266.00	268.00	2.00	102%	lmx	r3	_	v3		v3	v2					d2		d3		0.073	0.41
			1				147035	268.00	270.00		90%	lmx	r3	<u> </u>	r4	r1	v2	v1	_	1			d2		v1		0.068	0.28
							147036	270.00	272.03		106%		r3	<u> </u>	r3	r1	v3	v2		_			d1		v 2		0.084	0.510
							147037	272.03	274.00	1.97	99%	lmx	рЗ	L_	r3	r1	v3	v1	r1	L	1		d1		d1		0.102	0.656
		<u> </u>					147038	274.00	276.02			lmx	r4	ļ	r3	f1	v3	v1	r1		r1		d1	d1	v1	_	0.057	0.218
		ļ					147039	276.02	278.00				r5		r3	v3	v1	-			r1		d1	d1	v1		0.061	0.384
		ļ					147040	278.00	279.55		103%	lmx	г4	_	r3	1_	v3	v1	r1		f2		d1	d1	v1		0.063	0.402
							147041	279.55	280.55				r3	ļ	r3		v2		<u> </u>	<u> </u>			d1	d1			0.127	0.752
			FC	279.82	279.88		147042	280.55	282.50			lmx	r4		г4	<u> </u>	v2	v1	ļ	<u> </u>	r1		d1	d1	d2		0.076	0.415
							147043	282.50	284.50		103%	+	p4	<u> </u>	r5	r1	v2	v1	ļ	<u> </u>			d2	d1	v 2		0.074	0.391
 			<u> </u>				147044	284.50	285.84	I	L	lmx	r4		г4	<u></u>	v2	v 2	<u> </u>	r1	<u> </u>		d1	d1	v3		0.103	0.580
		interva	al from	285.84 t	0 292.00	is non	-magnetic					· -		ass			1		/clay	zone	betw	een 288	.36 a	nd 28				
		-					147045	285.84	287.72			lmx	г4	-	r3	r1	v3	v1	-				-	-	v2		0.101	0.518
			FC	288.36	289.68		147046	287.72	289.68		107%	—	г4	-	r2	-	v4	-	f5				+-	-	1		0.084	0.46
		-					147047	289.68	292.00		100%	-	r3	-	r3		v4	v3					-	-	v3	-	0.105	0.590
ļ							147048	292.00	294.00		102%	┼	r4	-	r3	-	v3	v2			v4	-	d1	v1	v2		0.094	0.389
							147049	294.00	296.00	2.00	98%	lmx	r4		г4			v2					d2	v2	v3		0.076	0.296

Page: 7 of 10

М	AJOR UNIT			STRUC	TURE			9	SAMPLES			LITH			А	LT CO	DE (1	= trace	5 = ve	ry stror	ng)			M	N COE	Ε	ΔΝΔΙ	YSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec	CODE	Ks	Bi						Se	•	Li	N		y C	_	Cu (%)	Au (g/t)
							147050	296.00	298.00	2.00	102%	lmx	r5		г4		v3	v2					d2	V2	v3		0.093	
							147051	298.00	300.00	2.00	96%	lmx	г3		r3		v3	v2					d2	V2	v2		0.098	0.441
							147052	300.00	302.00	2.00	96%	lmx	r4		r3		v3	v2					d2	. v2	y3		0.101	0.494
				Ĭ			147053	302.00	304.00	2.00	105%	lmx	r4		r3	1	v3	v3					ď	d2	2 v3		0.087	0.409
		304.00	and :	310.00 Ti	nere is a	prono	unced cha	nge in the	breccia	matrix	during t	his in	terval	. The	feld	spar	porp	hyry r	natrix	has	died (out lea	ving a	fine-	grain	ed ar	nd chlorite	-rich
		intrusi	ve ma	trix betwe	en brecc	ia fraç	ments. Po					_	_	be st	ronge	T		7	than i	n the	brec	cia fra	gment	S.				
			ļ				147054	304.00	306.00		98%	 	г4		r3	f2	v3	v3	r1				d1	d1	v3		0.174	0.887
			FC	306.00	306.33		147055	306.00	308.00	2.00	108%	lx	r5		r4	r2	v3	v3	f3				d1	d1	ı v3	Ш.	0.104	0.465
			FC	309.47	309.90		147056	308.00	310.00	2.00	98%	lx	r4	L	r4	r2	v4	v2	f2				d2	f1	v3		0.102	0.479
							147057	310.00	312.00	2.00	92%	İx	r4		r3	r2	v3	v1	f2						ν1		0.054	0.197
							147058	312.00	314.00	2.00	105%	lx	г4		r 4	r2	v4		f2					ď	d1		0.067	0.285
							147059	314.00	316.00	2.00	104%	lx	r3		r2	r3	v4	v1	r1		f4			ď	V2		0.100	0.366
							147060	316.00	318.02	2.02	100%	lχ	г4		r2	r2	v4	v1	r1		f3				v1		0.040	0.216
			FZ	318.00	318.30		147061	318.02	320.02	2.00	99%	Ιχ	r4		r2	r2	v4	v2					d2	d1	v3		0.121	0.415
				_			147062	320.02	322.00	1.98	102%	lχ	r3		r2	r2	v3				f2		ď				0.042	0.159
							147063	322.00	324.81	2.81	102%	lx	r3		r2	r4	v3	v2			f3			f1	v2	!	0.061	0.246
		324.8	1 - 326	3.22 A sho	ort interva	al of ir	tense chlo	rite and c	lay altera	tion, giv	ing a b	lue-g	reen	colo	ur to 1	the c	ore. I	ault-	boun	ded b	y 10	cm of	clay g	ouge	cutti	ng the	e core at 5	0* CA.
			I		T							ı.			Τ.	T	Т-	1.	T					Τ.	т.		1	
ļ			FC	324.81	324.91	50	147064	324.81	326.22	1.41	94%	la			r4	v4	v2	г4	f5					d1	V2	<u>:</u>	0.073	0.347
		326.22	2 Mon	zonite por	rphyry br	eccia.				,		,	,					.,	·									
							147065	326.22	328.50		100%	lmx	r2		r3	r3	v3	v2	r1		d2		d2	! v1	d3	3	0.110	0.389
							147066	328.50	330.50	2.00	101%	lmx	r1		r2	r2	v4	v3	<u> </u>				d3		v4		0.196	0.735
							147067	330.50	332.30	1.80	99%	lmx	р3		r2	r2	v3	v3					d2	v1	v3		0.159	0.586
			FC	332.49	332.57		147068	332.30	334.45	2.15	97%	lmx	r4		r2	r2	v4	v3	f3		d2		v4		ν4		0.178	0.606
							147069	334.45	336.50	2.05	102%	lmx	r 4		r2	r2	v4	v2	r1		d2		d2	!	v2	!	0.174	0.650
							147071	336.50	338.50	2.00	100%	lmx	p4		r2	r2	v3	v1					d2	!	v1		0.046	0.138
							147072	338.50	340.16	1.66	101%	lmx	r4		r3	r1	v4										0.057	0.194
							147073	340.16	341.70	1.54	92%	lmx	r4		r3	r1	v2	v2					d1	\top	v2		0.103	0.353
							147074	341.70	342.53	0.83	92%	lmx	1			r1	v2	v3					d2	v2	v2		0.190	0.708
342.53	357.48						l, altered ir																					
1			•	agnetite ir to 2 cm.	n fracture	filling	s between	350.00 a	nd 352.5	0. Clay	-rich fr	acture	e zon	es be	etwee	en 35	4.80	and 3	354.8	5, and	d betv	veen 3	355.15	and	355.	37 co	ntain blebs	s of
			FC	342.53	342.61	45	147075	342.53	344.50	1.97	92%	la	r1		r2	r3	v4	v1					d1	1	v1		0.114	0.398
							147076	344.50	346.50					 	г3	r3	v3	v2	†	-		_	d3	v1	v3	1	0.276	1.278
	-				-		147077	346.50	348.46					-	r3	r3	v3	v1					d2	-	v1		0.098	0.420
<u></u>	1				ļ	J						<u> </u>	1	İ	1	1		1	1				144				1	

Page: 8 of 10

	AJOR UNIT			STRUC					AMPLES			LITH			ALT (ODE (1	= trace	, 5 = very	stron	g)			MIN	CODE		ANAL	YSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec	CODE	Ks	Bi I		h Ca		Су	Se		j	Mg	Ру	Ср		Cu (%)	Au (g/
							147078	348.46	350.50	2.04	99%	la	1	r	r3	v2	v1					f3		v1		0.079	0.31
							147079	350.50	352.50	2.00	98%	la		r3	г4	v3	v1	r1		f3		f1		v1		0.029	0.14
					-		147080	352.50	353.89	1.39	99%	la		r	r3	v3	v1			f2		d1		v1		0.073	0.27
			FC	354.80	354.85	35	147081	353.89	355.62	1.73	111%	la	1	r3	r3	v4	v3	r4		f4		d1	v2	v3		0.184	0.48
			FC	354.98	355.15	65									_			1 1			1	1					
							147082	355.62	357.48	1.86	93%	la	1	r	12	v3	v2	r3		f3	v3	v2	1	v2		0.190	0.36
357.48	369.19	Felds	par-Bi	otite Por	phyry D	yke (t	fb): A few o	quartz eye	es sugges	t a mo	nzonitio	com	positi	on. Fine	-grai	ned g	ound	mass i	oliv	e-tan o	olour	ed and	sho	WS OI	nly we	eak epido	te
		alterat	tion. T	his dyke i	s not mir	neraliz	ed.						·				-,						,				
							147083	357.48	360.00	2.52	100%	lfb	ļ	12				r3								0.005	0.01
		ļ					147084	360.00	362.00	2.00	91%			ra	V2			r3				<u>. </u>				0.001	0.00
							147085	362.00	364.00	2.00	95%	lfb		r2	V2	v2		r3				1				0.001	0.02
							147086	364.00	367.48	3.48	99%	lfb		ra	V2	v2		r3								0.001	0.00
							147087	367.48	369.19	1.71	99%	lfb		12	V2	v2		r3								0.001	0.00
		where	the gr	ey quartz	vein cut	s the	rmittently c core at 0* - arries pyrit	5* CA an e. This fa	d occupion	es abou	ıt 30-40 n zone	0% of	the c	ore by													
		where minera	the gr alized	ey quartz quartz vei	vein cut	s the often o	core at 0* - carries pyrit 147088	5* CA an e. This fa 369.19	d occupie uit and a 370.33	es abou Iteratio 1.14	ut 30-40 n zone 101%	0% of is no Fz	the c	ore by	olum	e. La	v1	r5	and	quartz	-carb	onate					
		where minera	the gr alized o	ey quartz quartz vei J04-37 e	vein cut ns and c xtended	s the often of	core at 0* - carries pyrit 147088 370.33 me	5* CA an e. This fa 369.19 etres (121	d occupie uit and a 370.33	es abou Iteratio 1.14 o 452.6	n zone 101% 3 metr	o% of is not is	the c	ore by	ring 1	v4 he pe	v1	r5	and	f2 22 - 27	-carb	onate	veini	v1		grey, 0.043	0.20
		where minera	the gralized of	ey quartz quartz vei J04-37 e 371.10	vein cut ins and c xtended 372.13	s the often of	200re at 0* - earries pyrit 147088 370.33 me	5* CA and e. This far 369.19 etres (121 370.33	d occupie ult and a 370.33 15 feet) to 372.38	1.14 2.05	n zone 101% 3 metr 92%	o% of is not is	the c	pre by pretic.	ring t	v4 he pe	v1 riod I	r5 Novem	and	f2 22 - 27 r2	-carb	onate	veini v1 v5	v1		0.043 0.496	0.20
		where minera	the gralized of	ey quartz quartz vei J04-37 e 371.10 372.78	xtended 372.13	s the often of	core at 0* - earries pyrit 147088 370.33 me 147313	5* CA and e. This fa 369.19 etres (12: 370.33 372.38	d occupie ult and a 370.33 15 feet) to 372.38 374.07	1.14 0 452.6 2.05	101% 101% 33 metr 92% 108%	o% of is no Fz res (1 Fz Fz Fz	the c	ore by	ring (v4 he pe	v1 riod I	r5 Novem	ber	f2 22 - 27 r2 r2	-carb	onate	v1 v5 v4	v1 v3 v5		0.043 0.496 0.049	0.20 0.38 0.26
		where minera	the gralized of the Walls of th	y quartz quartz vei J04-37 e 371.10 372.78 375.49	xtended 372.13 374.61 375.63	s the often of	200re at 0* - earries pyrit 147088 370.33 me	5* CA and e. This far 369.19 etres (121 370.33	d occupie ult and a 370.33 15 feet) to 372.38	1.14 2.05	n zone 101% 3 metr 92%	o% of is no Fz res (1 Fz Fz Fz	the c	pre by pretic.	ring t	v4 he pe	v1 riod I	r5 Novem	ber	f2 22 - 27 r2	-carb	onate	veini v1 v5	v1		0.043 0.496	0.20 0.38 0.26
		where minera	the gralized of the Williams BC BC BC BC	y quartz ver youartz ver youartz ver youartz ver 371.10 372.78 375.49 375.49	xtended 372.13 374.61 375.63	s the often o	core at 0° - earries pyrit 147088 370.33 me 147313 147314 147315	5* CA and e. This fa 369.19 etres (12: 370.33 372.38	d occupie ult and a 370.33 15 feet) to 372.38 374.07	1.14 0 452.6 2.05	101% 101% 33 metr 92% 108%	o% of is no Fz res (1 Fz Fz Fz	the c	pre by pretic.	ring (v4 he pe	v1 riod I	r5 Novem	ber	f2 22 - 27 r2 r2	-carb	onate	v1 v5 v4	v1 v3 v5		0.043 0.496 0.049	0.20 0.38 0.26
		where minera	the gradized of alized of	y quartz verification of the second state of t	xtended 372.13 374.61 375.63	s the coften coften coften coften coften coffee cof	core at 0° - arries pyrit 147088 370.33 me 147313 147314 147315	5* CA an e. This fa 369.19 etres (12* 370.33 372.38 374.07	d occupie uit and a 370.33 15 feet) to 372.38 374.07 375.81	1.14 2.05 1.69	ut 30-40 n zone 101% 33 metr 92% 108% 91%	o% of is no Fz res (1 Fz Fz Fz Fz	the con-mag	pre by present the	ring t	v4 he pe 2 v4 2 r5 2 v5	v1 riod I v4 V4 v5	r5 Novem r5 r5 f5	ber	f2	-carb	onate	v1 v5 v4 v5	v1 v3 v5 v5		0.043 0.496 0.049 1.805	0.20 0.38 0.26 2.20
		where minera	Hole W BC BC BC BC BC BC BC BC	y quartz verification of the second state of t	xtended 372.13 374.61 375.63 376.20	s the confirmation of the	core at 0° - earries pyrit 147088 370.33 me 147313 147314 147315	5* CA and e. This fa 369.19 etres (12: 370.33 372.38	d occupie ult and a 370.33 15 feet) to 372.38 374.07	1.14 2.05 1.69	101% 101% 33 metr 92% 108%	o% of is no Fz res (1 Fz Fz Fz Fz	the c	pre by pretic.	ring t	v4 he pe	v1 riod I	r5 Novem	ber	f2 22 - 27 r2 r2	-carb	onate	v1 v5 v4	v1 v3 v5		0.043 0.496 0.049	0.20 0.38 0.26 2.20
		where minera	Hole W BC BC BC FT BC BC BC	yquartz vei 371.10 372.78 375.49 375.49 375.81 376.80	xtended 372.13 374.61 375.63 376.20 377.30	s the often of from	core at 0° - arries pyrit 147088 370.33 me 147313 147314 147315	5* CA an e. This fa 369.19 etres (12* 370.33 372.38 374.07	d occupie uit and a 370.33 15 feet) to 372.38 374.07 375.81	1.14 2.05 1.69	ut 30-40 n zone 101% 33 metr 92% 108% 91%	o% of is no Fz res (1 Fz Fz Fz Fz	the con-mag	pre by present the	ring t	v4 he pe	v1 riod I v4 V4 v5	r5 Novem r5 r5 f5	ber	f2	-carb	onate	v1 v5 v4 v5	v1 v3 v5 v5		0.043 0.496 0.049 1.805	0.20 0.38 0.26 2.20
		where minera	Hole W BC BC BC BC BC BC BC BC BC BC BC BC BC	y quartz verification of the second of the s	xtended 372.13 374.61 375.63 376.20 377.30 378.40	s the often of from	core at 0° - arries pyrit 147088 370.33 me 147313 147314 147315	5* CA an e. This fa 369.19 etres (12* 370.33 372.38 374.07	d occupie uit and a 370.33 15 feet) to 372.38 374.07 375.81	2.05 1.74 2.05 2.05 2.81	101% 101% 101% 3 metr 92% 108% 91%	0% of is not is	the con-mag	pre by prefic.	pia pia	v4 he pe 2 v4 2 r5 2 v5	v1 riod I v4 V4 v5	r5 Novem r5 r5 f5	ber	f2	-carb	onate	v5 v4 v5 v5	v1 v3 v5 v5 v5		0.043 0.496 0.049 1.805	0.20 0.38 0.26 2.20 0.25
		where minera	Hole W BC BC BC BC BC BC BC BC BC BC BC BC BC	y quartz verification of the second state of t	xtended 372.13 374.61 375.63 375.63 376.20 377.30 378.40 378.86	from	core at 0° - arries pyrit 147088 370.33 me 147313 147314 147315	5* CA an e. This fa 369.19 etres (12* 370.33 372.38 374.07	d occupie uit and a 370.33 15 feet) to 372.38 374.07 375.81	2.05 1.74 2.05 2.05 2.81	ut 30-40 n zone 101% 33 metr 92% 108% 91%	0% of is not is	the con-mag	pre by present the	pia pia	v4 he pe 2 v4 2 r5 2 v5	v1 riod I v4 V4 v5	r5 Novem r5 r5 f5	ber	f2	-carb	onate	v1 v5 v4 v5	v1 v3 v5 v5		0.043 0.496 0.049 1.805	0.20 0.38 0.26 2.20
		where minera	Hole W BC BC BC BC BC BC BC BC BC BC BC BC BC	yquartz vei 371.10 372.78 375.49 375.49 375.81 376.80 378.20 378.69 379.24	xtended 372.13 374.61 375.63 375.63 375.63 377.30 378.40 378.86 379.48	s the often of from	200re at 0* - 20	5* CA an e. This fa 369.19 etres (12: 370.33 372.38 374.07 375.81	d occupie uit and a 370.33 I5 feet) to 372.38 374.07 375.81 378.62	2.05 1.74 2.81	98%	0% of is not is	the con-mag	ore by prefic.	pi	v4 he pe 2 v4 2 r5 2 v5 v5	v1 v4 v4 v5 v4 v4 v4	r5 Novem r5 r5 r5	ber	f2	-carb	onate	v5 v4 v5 v5 v5	v1 v3 v5 v5 v5		0.496 0.049 1.805 0.164	0.20 0.38 0.26 2.20 0.25
		where minera	BC BC BC BC BC BC BC BC BC BC BC BC BC B	y quartz verification of the second state of t	xtended 372.13 374.61 375.63 376.20 377.30 378.40 378.86 379.48 380.95	s the confirmation of the	core at 0° - arries pyrit 147088 370.33 me 147313 147314 147315	5* CA an e. This fa 369.19 etres (12* 370.33 372.38 374.07	d occupie uit and a 370.33 15 feet) to 372.38 374.07 375.81	2.05 1.74 2.81	101% 101% 101% 3 metr 92% 108% 91%	0% of is not is	the con-mag	pre by prefic.	pi	v4 he pe 2 v4 2 r5 2 v5 v5	v1 riod I v4 V4 v5	r5 Novem r5 r5 f5	ber	f2	-carb	onate	v5 v4 v5 v5	v1 v3 v5 v5 v5		0.043 0.496 0.049 1.805	0.20 0.38 0.26 2.20 0.25
		where minera	Hole W BC BC BC BC BC BC BC BC BC BC BC BC BC	y quartz verification of the second state of t	xtended 372.13 374.61 375.63 375.63 376.20 377.30 378.40 378.86 379.48 380.95 381.62	s the control of the	core at 0° - arries pyrit 147088 370.33 me 147313 147314 147315 147316	5* CA an e. This fa 369.19 etres (12 370.33 372.38 374.07 375.81 378.62 380.09	d occupie uit and a 370.33 I5 feet) to 372.38 374.07 375.81 378.62 380.09	2.05 1.74 2.81 1.47	98% 99%	0% of is not is	the con-mag	ri	pi pi r2	v4 he pe	v1 v4 v4 v5 v4 v4 v4 v4 v4	r5 Novem r5 r5 r5 f5	ber	f2	-carb	onate	v5 v4 v5 v5 v5 v5	v1 v3 v5 v5 v5 v5 v4		0.496 0.049 1.805 0.164 0.871	0.20 0.38 0.26 2.20 0.25 0.48
		where minera	BC BC BC BC BC BC BC BC BC BC BC BC BC B	y quartz verification of the second state of t	xtended 372.13 374.61 375.63 376.20 377.30 378.40 378.86 379.48 380.95	s the often of from	200re at 0* - 20	5* CA an e. This fa 369.19 etres (12: 370.33 372.38 374.07 375.81	d occupie uit and a 370.33 I5 feet) to 372.38 374.07 375.81 378.62	2.05 1.69 1.47 2.81	98%	O% of is no Fz res (1 Fz Fz Fz Fz Fz Fz Fz Fz Fz Fz Fz	the con-mag	ore by prefic.	ping t ping ping ping ping ping ping ping ping	v4 he pe 2	v1 v4 v4 v5 v4 v4 v4	r5 Novem r5 r5 r5	ber	f2	-carb	onate	v5 v4 v5 v5 v5	v1 v3 v5 v5 v5		0.496 0.049 1.805 0.164	0.20 0.38 0.26 2.20 0.25

M	AJOR UNIT			STRUC	TURE				SAMPLES			LITH			AL	T CO	DE (1 :	= trace.	.5 = ve	ry strong)		Ĭ	ŧ	MIN C	ODE		ANAL	Vele
From (m)	To (m)	Notes						From (m)						Bi	Ep	Ch	Ca	Si	Су	Se H			/ig	Ру	Ср	Cu	(%)	Au (g/t)
i								ropylitic-al							vals.	38	5.48	mark	s the	beginn	ng of r	nore co	npe	tant	core	. Pervas	sive,	
		mode	ate ca	rbonate r	eplacem	ent a		Core has a					391.54	4				·	т	,			-					
							147321	385.48	387.50		100%	-				r 4	v4	v3	f2	r2			V	/3	v3	0	.049	0.270
			FC	387.78	387.93	60	147322	387.50	389.52		100%	la	r3	r	3	r4	v4	v3	f5				V	/3	v2	0	.037	0.143
							147323	389.52	391.54	2.02	97%	la		r	3	r4	v4	v3	f2				V	/4	v4	0	.135	1.686
							147324	391.54	393.50	1.96	102%	la	r2	r	4	r4	v4	v2	f2			d	2 v	12	v2	0	.024	0.089
							147325	393.50	395.50	2.00	98%	la	<u> </u>	r	4	r4	v3	v2	f2			d	3 v	12	v 2	0	.188	0.574
			вс	395.80	396.67		147326	395.50	397.54	2.04	100%	la		г	4	r 4	v4	v5	f5	r1		d	3 v	/4	v4	0	.179	0.601
							147327	397.54	399.49	1.95	102%	la		г	3	r4	v4	v2	f3	r2		d	2 v	/3	v1	0	.084	0.107
							147328	399.49	402.08	2.59	97%	la		Г	3	r3	v5	v3	f4	r1		d	l v	/4	v5	0	.234	0.255
							147329	402.08	404.25	2.17	97%	la	1	r	3	r 4	v4	v2	f3	r2		d	2 v	/3	v1	0	.066	0.580
			вс	405.46	406.82		147330	404.25	406.82	2.57	100%	la	1	r	3	r 4	v5	v2	f5			d	2 v	/4	v3	0	.021	0.652
406.82	452.63	Mioro	diarita	(Id): Do	rk fina a	roino	d intrucius	showing p	oniocino	wook	orbono	to ro		nont o	ltoro	tion	and	otron	4	ti-ation	Cut b							
		MICLO	uiorite	(lu). Da	rk, fine-g	laine	a musive	Showing b	ervasive	weak c	arbona	ile re	piacer	nent a	ilera	uon	and	Stron	g pyri	uzauon	Cut b	y nairiine	car	DON	ate a	na zeoi	ite str	ingers.
							147331	406.82	409.06	2.24	102%	ld		r	2	r3	v4		f3			d	ŧ d	13		0	.017	0.051
							147332	409.06	411.00	1.94	100%	ld		r	3	r3	v2		f1			d	3 d	11		0	.016	0.047
			вс	411.19	411.36		147333	411.00	413.00	2	99%	ld	r3	г	3	r3	v3		f3			d	l d	11		0	.022	0.046
							147334	413.00	414.94	1.94	99%	ld		r	2	r3	v3		f3			d	3 v	/3		0	.035	0.069
			cv	415.55	415.69	45	147335	414.94	416.98	2.04	100%	ld	1	r	4	r3	v4					d	3 v	/3		0	.019	0.059
							147336	416.98	419.10	2.12	101%	ld		r	3	r2	v2			f2		d	1			0	.008	<.034
							147337	419.10	421.50	2.4	94%	ld		r	4	r2	v2					d	2			0	.005	<.034
							147338	421.50	424.05	2.55	102%	ld		r	3	r2	v2		1			d	3 d	14		0	.009	0.268
_							147340	424.05	426.49	2.44	100%	ld	†	r	3	r3	v2		1			d	2 d	15		0	.025	<.034
			cv	427.10	427.19	13	147341	426.49	428.07	1.58	101%	ld		r	3	r3	v4	-	1		-	d	2 d	15		0	.009	0.034
							147342	428,07	430.42	2.35	100%	ld	<u> </u>	r	2	r2	v2		1		1	d	3 d	15		0	.012	0.037
							147343	430.42	432.96		97%	ld	1		+	r2	v2		†—		-	d	2 d	14		0	.009	0.085
							147344	432.96	435.50		96%	ļ	r2		+	r2	v3		-		-	d		15			.027	0.060
							147345	435.50	437.96		104%	_	1-	$\vdash \rightarrow$		r2	v3	v1	f3		-	d			v1		.024	0.046
							147346	437.96	440.57	2.61	100%	ļ				r2	v3	 •	1.0			d	-	14		_	.021	0.049
							147347	440.57	443.04		92%		r1			r2	v3	v1	-		-	d	-		v1		.032	0.075
							147348	443.04	445.20			_	r3			r3	v2	v1			+-	d					.008	0.073
							147349	445.20	446.53	1.33	99%	 -	13	r		r4	r3	V 1		f2		d d	_	-		_	.004	<.034
							147350	446.53	448.69	2.16		-	13			r3	v2	v1		12	+-	+	-	11				
								 					 					VI				d:		11			.009	<.034
			Li				147351	448.69	450.25	1.56	97%	la		е	1	r2	v2		L			ď	: d	13		0	.007	<.034

Page: 10 of 10

M	AJOR UNIT			STRUC	TURE				LITH			Al	LT CO	DE (1 =	trace,	5 = ve/	y stror	ng)			MIN	ODE	ANAL	YSIS			
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	SAMPLES sple # From (m) To (m) Interval Rec					Ks	Bi	Еp	Ch	Ca	Si	Су	Se	He	Li	 Mg	Py	Ср	Cu (%)	Au (g/t)
		TS					147352	450.25	452.63	2.38	102%	ld			е3	r 2	v1						d3	d3		0.011	0.034
452.63		EOH																									

John

Page: 1 of 8

ACID TESTS Property: Woodjam Interval: 0 to 458.72 Depth (m) Dip Meas. Dip Cor. DDH: WJ04-38 Core Size: NQ 150.88 -51 -44 Grid Cord: 2+ 15W 1+50S Azimuth: 114° -35 345.99 -42 Section: 1+50S Inclination: -45° -36 458.72 -29

NOTES: GPS location of collar is 10U 610131 6790792 (NAD83). Average recovery was 99.14%. Water line length was 800 feet. Diamond Drill used was a skid-mounted Long Year 56 owned by LeClerc Drilling Ltd. First run was calculated by drillers to be 5 feet based on a 13 foot core barrel minus 8 feet from the ground surface to the top of the head in the down position, subsequent runs were numbered in "5's", conversion to metric was carried out by the geology crew. Recovery was measured between sample intervals. Casing was removed upon completion of the hole. Core was logged prior to splitting. Samples #147101 to #147193 were analysed by Acme Analytical Laboratories Ltd. and samples #147194 to #147312 were analysed by TeckCominco Global Discovery Labs. Petrographic work consisting of 2 thin sections (329.70m and 447.45m) was carried out by Harris Exploration Services.

M	MAJOR UNIT			STRU	CTURE		1		SAMPLES			LITH			A	LT CO	DE (1	= trace	, 5 = W	y stroi	ng)				MIN C	ODE	ANA	LYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA_	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Еp	Ch	Ca	Si	Су	Se	He	Lm	Mg	Ру	Ср	Cu (%)	Au (g/t
)	42.67	Overb	ourder	(Casing	(140')																							
42.67	42.83	Rubb	le, gro	und peb	bles																	-						
42.83	67.10	zone	from 4	13.83 to 5	2.93 has	clay g		nany fract	ture surfa	aces whi	ch are d					•			•								Surface to , less than	
			ВС	42.83	44.80		147101	42.83	44.80	1.97	102%	la				r3		2		r4			$\neg T$	-	d1		0.032	0.052
			ВС	44.80	46.96		147102	44.80	46.96	2.16	84%	la				r3		v3		r4					d1		0.013	0.091
			ВС	46.96	49.00		147103	46.96	49.00	2.04	91%	la				r4		v2		r3							0.085	0.10
			ВС	49.00	51.00		147104	49.00	51.00	2.00	99%	la				r4		v3		r3				,	v1		0.031	0.225
			ВС	51.00	52.76		147105	51.00	52.76	1.76	99%	la	r1			r3		v2		r3				,	v1		0.142	0.265
							147106	52.76	55.00	2.24	106%	la	r1			r3	r2	v1		r4							0.044	0.305
							147107	55.00	57.39	2.39	96%	la	r1			r3	r2	v3		r3							0.042	0.264
							147108	57.39	60.05	2.66	102%	la				r3	r3	v4	v3	r3		r1				v2	0.024	0.114
							147109	60.05	62.48	2.43	102%	la	r3			r3	r3	ν4	v3	f5						v2	0.025	0.133
							147110	62.48	64.50	2.02	97%	la				r2	r3	v4	v2	r3					d1		0.015	0.137
							147111	64.50	67.10	2.60	97%	la				r2	r1	v3		r3					d1		0.014	0.114
67.10	78.36	Monz	onite	Porphyr	y Brecci	a (lmx): Monzon	te porphy	ry brecc	ia fragm	ents are	more	strong	gly ep	oidote	e-chl	orite	alter	ed tha	an ma	atrix.	Breco	ia fra	gme	nts t	o 10 c	m in size.	
			FC	68.50	68.72	T	147112	67.10	68.72	1.62	102%	Tr				r4	r3	v3		r1		s1	- 10	d1	d3		0.028	0.152
							147113	68.72	71.00	2.28	97%				r4	r4	 	v3		r1			- 1	11	d2		0.025	0.116
	-						147114	71.00	73.03	2.03	100%				r4	r3		v3		r1		r2		11	d3		0.025	0.108
							147115	73.03	74.00	0.97	99%	t. —			r5	r3		v2					_	\rightarrow	d2		0.018	0.114
						†	147116	74.00	75.00	1.00	98%	lmx			r5	r3	<u> </u>	v2					7	11	d2		0.013	0.068
	<u> </u>						147117	75.00	76.76	1.76	105%				r5	r3		v3									0.012	0.077
						1	147118	76.76	78.36	1.60					r3	r2		v5		f4					13		0.010	0.061
78.36	85.17	Fault	Zone	with nun	nerous int	tervals	of clay go	uge.	1				٠			L							L					1
	1		FC	78.36	81.30	T	147119	78 36	81.30	2.94	102%	6-	[r2	f2	T	v5	Τ	f4			T	}		T	0.014	0.078

	AJOR UNIT			STRU	CTURE				SAMPLES			LITH		•	AL	T CO	DE (1 :	= trace	5 = ve	ry stro	ng)				MIN	CODE		ANAL	YSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)		Interval	Rec.	CODE	Ks	Bi		Еp	Ch	Ca	Si	Су	Se	He	Lm	Mg	Ру	Ср	0	Cu (%)	Au (g/
				81.30	83.28		147120	81.30	83.28	1.98	98%			ļ		f2		v5		f5								0.026	
				83.28	85.17	<u> </u>	147121	83.28	85.17	1.89	99%	Fz	r1	<u> </u>	r2	f2		v5		f5				<u>L_</u>				0.014	80.0
35.17	105.96	Monz	onite	(lm): Dai	k-grey m	onzon	ite.																						
							147122	85.17	87.22	2.05	102%	lm	r1			р3	f2	v2		r1				d2	d2			0.015	0.13
							147123	87.22	89.52	2.30	98%	lm	r2			p4	p1	v3						d2	d1	d1		0.016	0.14
							147124	89.52	91.50	1.98	98%	lm				p4	p2	v3	v1					d2	d1	v1		0.017	0.11
							147125	91.50	93.46	1.96	102%	lm	r1			p3	p1	v2						d2	d2	d1		0.027	0.16
							147126	93.46	95.50	2.04	99%	lm				p4	p1	v3						d2	d1		1	0.018	
							147127	95.50	97.49	1.99	101%	lm	r1			р3	r1	v3						d2	d1			0.019	0.13
							147128	97.49	99.50	2.01	103%	lm	r1			рЗ	r1	v4						d2	d2			0.010	0.07
							147129	99.50	101.50	2.00	98%	lm				рЗ	r2	v2						d1	d1	d1		0.016	0.11
							147130	101.50	104.00	2.50	99%	lm				p2	p2	v2						d2	d2	d2		0.029	0.21
							147131	104.00	105.96	1.96	96%	lm	r1			r2	r2	v2			1			d2	d2	d1		0.022	0.16
105.96	245.00	Intrus	sive B	reccia (l	x): Pale g	reenis	h-tan colo	ured intru	isive conf	aining m	any int	ervals d	f we	akly (devel	oped	brec	cia (kenol	iths?). Bre	ccia	fragi	ment	s are	com	mon u	p to 10	cm i
		size.	Sever	al interva	ils of bred	cia-fre	e, interme	ediate intr	usive are	identifie	d and ti	hey ma	y be	sepa	rate i	ntrus	ions/	dyke	s. Int	erval	show	в рег	vasi	ve m	oder	ate to	locally	y strong	g
	1	1													_ء اخت					2000	-4!				arali.	rad as	voont f	or min	_
		epido	te alte	ration ov	erprinted	by mo	derate to	strong ca	rbonate -	clay alte	eration.	This in	terva	ii is w	ntn ie	w ex	сери	ons, i	ion-n	nayn	etic, a	na po	ooriy	min	BIAII	ou e	xcebi ii	OI IIIIIII	or
					erprinted d chalcor	•	derate to	strong ca	rbonate -	clay alte	eration.	This in	terva	II IS W	nin ie	w ex	cepu	ons, i	ion-n	ııayıı	etic, a	na po	ooriy	min	eranz	.ou 6/			
**					•	•	147132	strong ca	108.00	2.04	eration. 104%		terva	II IS W	ntn ie	r3	cepu	v4	ion-n	r3	etic, a	na po	ooriy	min	v2	.eu e,		0.026	0.12
					•	•				· •		İx	terva	II IS W	nin ie		cepuo		ion-n	_	etic, a	na po	ooriy	min	,				0.12
			ints of	pyrite an	d chalcor	•	147132	105.96	108.00	2.04	104%	lx lx	terva	II IS W	nun re	r3	Сери	v4	ion-n	r3	etic, a	na po	ooriy	min	,			0.026	0.12
			nts of BC	pyrite an	d chalcor	•	147132 147133	105.96 108.00	108.00 110.00	2.04	104% 103%	lx lx lx	terva	II IS W	atn re	r3 r4	Ceptio	v4 v4	ion-n	r3 f5	etic, a	na po	ooriy	min	v2			0.026 0.022	0.12 0.13 0.12
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134	105.96 108.00 110.00	108.00 110.00 111.60	2.04 2.00 1.60	104% 103% 99%	lx lx lx	terva	II IS W	itth le	r3 r4 r3	ception	v4 v4 v5	ion-ri	r3 f5 f5	etic, a	na po	ooriy	min	v2			0.026 0.022 0.040	0.12 0.13 0.12 0.14
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134 147136	105.96 108.00 110.00 111.60	108.00 110.00 111.60 114.00	2.04 2.00 1.60 2.40 2.00	104% 103% 99% 100%	lx lx lx lx	terva	II IS W	ith le	r3 r4 r3 r4	cepud	v4 v4 v5 v4	1011-11	r3 f5 f5 r3	euc, a	na po	porty	min	v2 v2			0.026 0.022 0.040 0.044	0.12 0.13 0.12 0.14
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134 147136 147137	105.96 108.00 110.00 111.60 114.00	108.00 110.00 111.60 114.00 116.00	2.04 2.00 1.60 2.40	104% 103% 99% 100% 107%	lx lx lx lx lx lx	terva	II IS W	ith le	r3 r4 r3 r4 r3	Cepud	v4 v4 v5 v4 v3	ion-n	r3 f5 f5 r3 r3	euc, a	na po	porty	min	v2 v2			0.026 0.022 0.040 0.044 0.022	0.12 0.13 0.12 0.14 0.14
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134 147136 147137 147138	105.96 108.00 110.00 111.60 114.00 116.00	108.00 110.00 111.60 114.00 116.00 118.00	2.04 2.00 1.60 2.40 2.00 2.00 2.00	104% 103% 99% 100% 107% 98% 93%	lx lx lx lx lx lx lx lx lx	terva	II IS W	itin ie	r3 r4 r3 r4 r3 v3	Сери	v4 v4 v5 v4 v3 v2	ion-ri	r3 f5 f5 r3 r3	euc, a	na po	porty	min	v2 v2			0.026 0.022 0.040 0.044 0.022 0.030	0.12 0.13 0.12 0.14 0.14 0.15
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134 147136 147137 147138 147139	105.96 108.00 110.00 111.60 114.00 116.00 118.00 120.00	108.00 110.00 111.60 114.00 116.00 118.00 120.00	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00	104% 103% 99% 100% 107% 98% 93%	lx l	terva	II IS W	ith ie	r3 r4 r3 r4 r3 v3	Сери	v4 v4 v5 v4 v3 v2 v2	ion-ri	r3 f5 f5 r3 r3 r3	euc, a	na po	Dorly	min	v2 v2			0.026 0.022 0.040 0.044 0.022 0.030 0.066	0.12 0.13 0.12 0.14 0.14 0.15 0.30
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134 147136 147137 147138 147139 147140	105.96 108.00 110.00 111.60 114.00 116.00 118.00 120.00	108.00 110.00 111.60 114.00 116.00 118.00 120.00 122.00 124.00	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00	104% 103% 99% 100% 107% 98% 93% 99%	Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix I	terva	II IS W	ath te	r3 r4 r3 r4 r3 v3 v3 v3	Cepud	v4 v4 v5 v4 v3 v2 v2 v1	ion-ri	r3 f5 f5 r3 r3 r3 r3 r2	euc, a	na po	Dorly	min	v2 v2			0.026 0.022 0.040 0.044 0.022 0.030 0.066 0.022	0.12 0.13 0.12 0.14 0.14 0.15 0.30 0.11
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134 147136 147137 147138 147139 147140 147141	105.96 108.00 110.00 111.60 114.00 116.00 118.00 120.00 122.00 124.00	108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00	104% 103% 99% 100% 107% 98% 93% 99% 93%	Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix I	terva	III IS W	atn ie	r3 r4 r3 r4 r3 v3 v3 v3 r3 r3	Cepud	v4 v4 v5 v4 v3 v2 v2 v1 v3 v3	ion-ri	r3 f5 f5 r3 r3 r3 r3 r2 r2	euc, a	na po	DOTIY	min	v2 v2 f1			0.026 0.022 0.040 0.044 0.022 0.030 0.066 0.022 0.020	0.12 0.13 0.14 0.14 0.15 0.30 0.11 0.12
			nts of BC	pyrite an	d chalcor	•	147132 147133 147134 147136 147137 147138 147139 147140 147141 147142 147143	105.96 108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00	108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 128.00	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00 2.0	104% 103% 99% 100% 107% 98% 93% 93% 97% 101%	IX IX IX IX IX IX IX IX IX IX IX IX IX I	terva	II IS W	nu ie	r3 r4 r3 r4 r3 v3 v3 v3 r3 r3 r3		v4 v4 v5 v4 v3 v2 v2 v1 v3 v3 v5		r3 f5 f5 r3 r3 r3 r3 r2 r2 r2	euc, a	na po	Dorly	/ min	v2 v2 f1			0.026 0.022 0.040 0.044 0.022 0.030 0.066 0.022 0.020 0.022 0.022	0.12 0.13 0.14 0.14 0.15 0.30 0.11 0.12 0.07
		amou	BC BC	109.24 110.00	110.00 111.60	pyrite.	147132 147133 147134 147136 147137 147138 147139 147140 147141 147142 147143	105.96 108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 128.00	108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 130.25	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00 2.0	104% 103% 99% 100% 107% 98% 93% 99% 97% 101%	IX IX IX IX IX IX IX IX IX IX IX IX IX I				r3 r4 r3 r4 r3 v3 v3 v3 r3 r3 r3 r3	12	v4 v4 v5 v4 v3 v2 v2 v1 v3 v3 v3 v5 v3 v3 v3 v3		r3 f5 f5 r3 r3 r3 r3 r2 r2 r2 r2					v2 v2 f1 v1			0.026 0.022 0.040 0.044 0.022 0.030 0.066 0.022 0.020 0.022 0.112 0.045	0.12 0.13 0.14 0.14 0.15 0.30 0.11 0.12 0.07 0.09
		amou	BC BC	109.24 110.00	110.00 111.60	pyrite.	147132 147133 147134 147136 147137 147138 147139 147140 147141 147142 147143	105.96 108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 128.00	108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 130.25	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00 2.0	104% 103% 99% 100% 107% 98% 93% 99% 97% 101%	IX IX IX IX IX IX IX IX IX IX IX IX IX I				r3 r4 r3 r4 r3 v3 v3 v3 r3 r3 r3 r3	12	v4 v4 v5 v4 v3 v2 v2 v1 v3 v3 v3 v5 v3 v3 v3 v3 v3 v3		r3 f5 f5 r3 r3 r3 r3 r2 r2 r2 r2					v2 v2 f1 v1			0.026 0.022 0.040 0.044 0.022 0.030 0.066 0.022 0.020 0.022 0.112 0.045	0.12 0.13 0.14 0.14 0.15 0.30 0.11 0.12 0.07 0.09
		amou	BC BC	109.24 110.00	110.00 111.60	pyrite.	147132 147133 147134 147136 147137 147138 147139 147140 147141 147142 147143	105.96 108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 128.00	108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 130.25	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00 2.0	104% 103% 99% 100% 107% 98% 93% 99% 97% 101%					r3 r4 r3 r4 r3 v3 v3 v3 r3 r3 r3 r3	12	v4 v4 v5 v4 v3 v2 v2 v1 v3 v3 v3 v5 v3 v3 v3 v3 v3 v3		r3 f5 f5 r3 r3 r3 r3 r2 r2 r2 r2					v2 v2 f1 v1		138.00	0.026 0.022 0.040 0.022 0.030 0.066 0.022 0.020 0.022 0.112 0.045 0 to 14	0.12 0.13 0.14 0.14 0.15 0.30 0.11 0.12 0.07 0.09
		amou	BC BC	109.24 110.00	110.00 111.60	pyrite.	147132 147133 147134 147136 147137 147138 147140 147141 147142 147143 147144 nish-tan co	105.96 108.00 110.00 111.60 114.00 118.00 120.00 122.00 124.00 126.00 128.00 blour. Interpretation	108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 128.00 130.25	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00 2.0	104% 103% 99% 100% 107% 98% 93% 93% 97% 101% 92% cones to	Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix Ix I				r3 r4 r3 r4 r3 v3 v3 v3 r3 r3 r3 r3 r3	f2 te rep	v4 v4 v5 v4 v3 v2 v2 v1 v3 v3 v3 v5 v3 v5		r3 f5 f5 r3 r3 r3 r3 r2 r2 r2 r2 r3					v2 v2 f1 v1 v1 erval		138.00	0.026 0.022 0.040 0.022 0.030 0.066 0.022 0.020 0.022 0.112 0.045 0 to 14	0.12 0.13 0.14 0.14 0.15 0.30 0.11 0.12 0.07 0.09
		amou	BC BC	109.24 110.00	110.00 111.60	pyrite.	147132 147133 147134 147136 147137 147138 147139 147140 147141 147142 147143 147144 nish-tan co	105.96 108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 128.00 Diour. Interest	108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 126.00 128.00 130.25 ermittent	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00 2.25 broken z	104% 103% 99% 100% 107% 98% 93% 97% 101% 92% cones to	IX IX IX IX IX IX IX IX IX IX IX IX IX I				r3 r4 r3 r4 r3 v3 v3 v3 r3 r3 r3 r3 r3	f2 te rep	v4 v4 v5 v4 v3 v2 v2 v1 v3 v3 v5 v3 v5 v3	g ma	r3 f5 f5 r3 r3 r3 r3 r2 r2 r2 r2 r3				ne int	v2 v2 f1 v1 v1 erval	from	138.0	0.026 0.022 0.040 0.022 0.030 0.066 0.022 0.020 0.022 0.112 0.045 0 to 14	0.12 0.13 0.14 0.14 0.15 0.30 0.11 0.12 0.07 0.09 0.09
		amou	BC BC	109.24 110.00	110.00 111.60	pyrite.	147132 147133 147134 147136 147137 147138 147139 147140 147141 147142 147143 147144 nish-tan co	105.96 108.00 110.00 111.60 114.00 116.00 120.00 122.00 124.00 128.00 blour. Interest 130.25 131.77	108.00 110.00 111.60 114.00 118.00 120.00 122.00 124.00 126.00 128.00 130.25 ermittent	2.04 2.00 1.60 2.40 2.00 2.00 2.00 2.00 2.00 2.00 2.0	104% 103% 99% 100% 107% 98% 93% 93% 97% 101% 92% cones to					r3 r4 r3 r4 r3 v3 v3 v3 r3 r3 r3 r3 r3 r3 r3	f2 te rep	v4 v4 v5 v4 v3 v2 v2 v1 v3 v3 v5 v3 v5 v3 v2 v2 v2 v1 v3 v3 v4 v3 v5 v4 v4 v5 v6 v7 v7 v7 v7 v7 v7 v7 v7 v7 v7 v7 v7 v7	g ma	r3 f5 f5 r3 r3 r3 r3 r2 r2 r2 r2 r3				ne int	v2 v2 ff1 v1 v1 d1 d1	from	138.0	0.026 0.022 0.040 0.044 0.022 0.030 0.066 0.022 0.020 0.022 0.112 0.045 0 to 14 0.020 0.024	0.12 0.13 0.12 0.14 0.15 0.30 0.11 0.07 0.09 0.09 0.00 0.11 0.31

Page: 3 of 8

	•		STRU	CTURE				SAMPLES			LITH			ALT CO	DE (1	= trace	, 5 = W	ery stroi	ng)				AIN C	ODE		ANAL	YSIS
rom (m) To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi							He L	_m '	Mg _	Ру	Ср	c	u (%)	
						147150	140.00	142.00	2.00	98%	lx			r3		v2	v1	r1		r1	T					0.024	
						147151	142.00	144.00	2.00	102%	ix			r3		v3	v3			/1		V	2	v1	(0.016	0.07
						147152	144.00	146.00	2.00	98%	lm			r3		v3	v2	r1						ν1	(0.032	0.20
						147153	146.00	148.00	2.00	96%	lx			r3		v2	v2	r1		v 1		V	1		(0.016	0.07
						147154	148.00	149.98	1.98	93%	lx			r3	r2	v2	v1	r1		v 1				v1	(0.028	0.09
						147155	149.98	152.00	2.02	102%	lx			гЗ	r3	v2		r1			d	12			(0.019	0.1
	151.3	8 - 15	9.51 Seve	eral short	interv	als of feld	spar porp	hyry may	be cros	s-cuttin	g dykes	S.													 		
						147156	152.00	154.00	2.00	99%	lx			гЗ	r3	v2		r1			d	11			0	0.022	0.1
						147157	154.00	156.00	2.00	97%	lx			г3	f3	v3	r1				d	11			(0.051	0.1
						147158	156.00	158.00	2.00	101%	lx			г3	f2	v3					\neg				(0.033	0.2
						147159	158.00	160.02	2.02	100%	lx			r3		v2					d	11			0	0.027	0.1
	1			It Zone in	which	the drillho	ole appea	rs to para	ilel the i	fault. E	pidote	is dor	minar	t over cla	y alt	eratio	n be	tweer	160.0	2 and	168	3.62,	while	e cla	y is do	minan	t
		168.6		1404.00	·	1	1	T	,		T	T	1			1 .			T T								
	ļ	ВС	160.32	161.09		147160	160.02	162.00	1.98	100%		ļ	_	r3	r1	v3		r3	+	2	\perp					0.094	
	ļ					147161	162.00	164.00	2.00	102%				r3	r1	v4	v2	r4	 +	3	_			v2		0.057	
			\			147162	164.00	166.00	2.00	91%		1		r4	ļ	v3		r4	+	2		٧	2			0.052	
1				1		147163	166.00	168.62															- 1	1		へんなす!	A 1
			ļ	ļ		 	ļ		2.62	94%				r4	<u> </u>	v3	4	r3	+	12	4				\perp	0.037	
						147164	168.62	170.57	1.95	93%	Fz			v3		v3		r4		/2		L	1		C	0.044	0.10
						147164 of broken	168.62 , faulted i	170.57 ntrusive s	1.95 howing	93% pervasi	Fz ve clay			v3 e alteration		v3 ⁄loder		r4 o stro	ng 1-2	/2 cm g		uartz	vei		carries	0.044 s large	0.1 ble
						147164	168.62 , faulted i	170.57 ntrusive s	1.95 howing	93% pervasi	Fz ve clay			v3 e alteration		v3 ⁄loder		r4 o stro	ng 1-2	/2 cm g		uartz	vei		carries	0.044 s large	0.1 ble
						147164 of broken	168.62 , faulted i	170.57 ntrusive s of a half-	1.95 howing dozen is	93% pervasi arge qu	Fz ve clay artz vei			v3 e alteration		v3 ⁄loder	malle	r4 o stro	ng 1-2 lets a	cm gr		uartz ed ar	vei		carries ed at 4	0.044 s large	0.10 ble 0* C
						147164 of broken his interva	168.62 , faulted i l consists	170.57 ntrusive s of a half- 172.44	1.95 showing dozen is	93% pervasi arge qu 97%	Fz ve clay artz vei Fz			v3 e alteration equal nu		v3 Moder r of si	walle	r4 o stro	ng 1-2 lets a	cm gr I mine		uartz ed ar	vei nd o	rient	carries ed at 4	0.044 s large l0* - 50	0.10 blel 0* C/
						147164 of broken his interva	168.62 , faulted i l consists 170.57 172.44	170.57 ntrusive s of a half- 172.44 174.34	1.95 showing dozen la 1.87 1.90	93% pervasi arge qu 97% 94%	Fz ve clay artz vei Fz Fz			v3 e alteratio equal nu r3 r3		v3 Moder r of si v4 v4	v3 v4	r4 o stroi er vein r4 r4	ng 1-2 lets a	cm gr I mine 2		iuartz ed ar v	vei nd o	nent b3	carries ed at 4	0.044 s large 10* - 50	0.1 ble 0* C 0.2
						147164 of broken his interva 147165 147166	168.62 , faulted i l consists	170.57 ntrusive s of a half- 172.44 174.34 176.50	1.95 showing dozen is 1.87 1.90 2.16	93% pervasi arge qu 97% 94% 100%	Fz ve clay artz vei Fz Fz Fz			v3 e alteration equal nu		v3 Moder r of si	walle	r4 o stro or vein r4 r4 r5	ng 1-2 lets a	cm gr I mine 2 2 3		iuartz ed ar v v	vei nd o	b3 b4	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00	0.1 ble 0* C 0.2 0.3
						147164 of broken his interva 147165 147166 147167 147168	168.62 , faulted i consists 170.57 172.44 174.34 176.50	170.57 ntrusive s of a half- 172.44 174.34 176.50 178.50	1.95 howing dozen la 1.87 1.90 2.16 2.00	93% pervasi arge qu 97% 94% 100%	Fz ve clay artz vei Fz Fz Fz Fz Fz			v3 e alteration equal nu r3 r3 r3 r3		v3 Moder r of si v4 v4 v3 v4	v3 v4	r4 o stronger vein r4 r4 r5 r3	ng 1-2 lets a	cm gr I mine 2		quartz ed ar v v	vei nd o 3 3 2	b3 b4	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064	0.1 ble 0* C. 0.2 0.3 0.1
						147164 of broken his interva 147165 147166 147167 147168 147169	168.62 , faulted i l consists 170.57 172.44 174.34 176.50 178.50	170.57 ntrusive s of a half- 172.44 174.34 176.50 178.50 180.50	1.95 showing dozen is 1.87 1.90 2.16 2.00 2.00	93% pervasi arge qu 97% 94% 100% 95%	Fz ve clay- artz vei Fz Fz Fz Fz Ix			v3 e alteration equal nu r3 r3 r3 r3 r4		v3 Moder r of si v4 v4 v3 v4 v3	v3 v4	r4 o stro or vein r4 r4 r5 r3 r3	ng 1-2	cm gr I mine 2 2 3		ed ar	vei nd o 3 3 2	b3 b4	carries ed at 4	0.044 s large 40* - 50 0.400 >1.00 0.064 0.089	0.1 ble 0* C 0.2 0.3 0.1 0.5
	of cha	alcopy	rite to 3 c	m. Veini	ng in t	147164 of broken his interva 147165 147166 147167 147168 147169 147170	168.62 , faulted i l consists 170.57 172.44 174.34 176.50 178.50 180.50	170.57 ntrusive s of a half- 172.44 174.34 176.50 178.50 180.50 182.50	1.95 showing dozen late 1.87 1.90 2.16 2.00 2.00 2.00	93% pervasi arge qu 97% 94% 100%	Fz ve clay- artz vei Fz Fz Fz Fz Ix			v3 e alteration equal nu r3 r3 r3 r3	mber	v3 Moder r of si v4 v4 v3 v4	v3 v4 v1	r4 o stronger vein r4 r4 r5 r3	ng 1-2	cm gr I mine 2 2 3		ed ar	vei nd o 3 3 2 1	b3 b4 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089	0.1 ble 0* C 0.2 0.3 0.1 0.5
	of cha	alcopy	rite to 3 c	m. Veini	ng in t	147164 of broken his interva 147165 147166 147167 147168 147169 147170 ark, hard i	168.62 , faulted i consists 170.57 172.44 174.34 176.50 178.50 180.50 ntermedia	170.57 ntrusive s of a half- 172.44 174.34 176.50 178.50 180.50 182.50 ate intrusi	1.95 showing dozen is 1.87 1.90 2.16 2.00 2.00 ve.	93% pervasi arge qu 97% 94% 100% 95% 99%	Fz re clay- artz vei			v3 e alteratic equal nu r3 r3 r3 r3 r4 r4	r1	v3 Moder r of si v4 v4 v3 v4 v3 v3	v3 v4 v1	r4 o stronger veiner r4 r4 r5 r3 r3 r2	ng 1-2 lets a	cm gr I mine 2 2 73 72		ed ar	vei nd o 3 3 2	b3 b4 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089	0.1 ble 0* C 0.2 0.3 0.1 0.5 0.0
	of cha	alcopy	rite to 3 c	m. Veini	ng in t	147164 of broken his interva 147165 147166 147167 147169 147170 ark, hard i	168.62 , faulted i l consists 170.57 172.44 174.34 176.50 180.50 ntermedia	170.57 ntrusive s of a half- 172.44 174.34 176.50 178.50 180.50 182.50 ate intrusi	1.95 showing dozen late 1.87 1.90 2.16 2.00 2.00 ve.	93% pervasi arge qu 97% 94% 100% 95% 99%	Fz vei clay artz vei Fz Fz Fz Ix Ix	ns ar		v3 e alteratic equal nu r3 r3 r3 r3 r4 r4	mber	v3 Aoder r of si v4 v4 v3 v4 v3 v4 v3 v4 v3 v3	v3 v4 v1	r4 o stroer vein r4 r4 r5 r3 r3 r2	ng 1-2 lets a	cm gr I mine 2 2 3 2 3		uartz ed ar v	2 vei 3 3 3 2 1 1 1 1 1 1 1	b3 b4 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089 0.116 0.082	0.1 ble 0* C 0.2 0.3 0.1 0.5 0.0
	of cha	alcopy	rite to 3 c	m. Veini	ng in t	147164 of broken his interva 147165 147166 147167 147169 147170 ark, hard i 147171	168.62 , faulted i l consists 170.57 172.44 174.34 176.50 180.50 ntermedia 182.50 184.53	170.57 ntrusive s of a half- 172.44 174.34 176.50 180.50 182.50 ate intrusi 184.53 186.50	1.95 showing dozen late 1.87 1.90 2.16 2.00 2.00 2.00 ve. 2.03 1.97	93% pervasi arge qu 97% 94% 100% 95% 99% 105% 96%	Fz ve clay- artz vei Fz Fz Fz Fz Ix Im			v3 e alteration equal nu r3 r3 r3 r3 r4 r4 r5	r1	v3 Aoder r of sr v4 v4 v3 v4 v3 v4 v3 v4 v3 v4 v3 v4 v3	v3 v4 v1 v1	r4 o stro or vein r4 r4 r5 r3 r3 r2	ng 1-2 lets a	cm gi I mine 2 2 3 2 3		uartz ed ar v	2 vei 3 3 3 2 1 1 1 1 1 1 1	b3 b4 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089 0.116 0.082	0.1 ble 0° C. 0.2 0.3 0.1 0.5 0.0 0.1
	of cha	alcopy	rite to 3 c	m. Veini	ng in t	147164 of broken his interva 147165 147166 147167 147168 147170 ark, hard i 147171 147172 147173	168.62 , faulted i consists 170.57 172.44 174.34 176.50 180.50 ntermedia 182.50 184.53 186.50	170.57 ntrusive s of a half- 172.44 174.34 176.50 188.50 182.50 ate intrusi 184.53 186.50 188.50	1.95 showing dozen late 1.87 1.90 2.16 2.00 2.00 ve. 2.03 1.97 2.00	93% pervasi arge qu 97% 94% 100% 95% 99% 105% 99% 97%	Fz ve clay- artz vei Fz Fz Fz Ix Ix Im Im	ns ar		v3 e alteration equal nu r3 r3 r3 r3 r4 r4 r5 r5	r1	v3 //oder r of si v4 v4 v3 v4 v3 v4 v3 v4 v2 v2	v3 v4 v1 v1	r4 r4 r4 r5 r3 r2 r2 r2 r2	ng 1-2 lets a	72 cm gr I mine 72 cm 73 cm 73 cm 73 cm 71 cm 71 cm	raliz	uartzed ar	2 vei 3 3 3 2 1 1 1 1 1 1 1	b3 b4 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089 0.116 0.082 0.034 0.042 0.023	0.1 ble 0* C 0.2 0.3 0.1 0.5 0.0 0.1
	182.5	0 - 18	8.50 a sh	ort interv	ng in t	147164 of broken his interva 147165 147166 147167 147168 147170 ark, hard i 147171 147172 147173 147174	168.62 , faulted i consists 170.57 172.44 174.34 176.50 180.50 180.50 184.53 186.50 188.50	170.57 ntrusive s of a half- 172.44 174.34 176.50 188.50 182.50 ate intrusi 184.53 186.50 189.96	1.95 showing dozen late 1.87 1.90 2.16 2.00 2.00 ve. 2.03 1.97 2.00 1.46	93% pervasi arge qu 97% 94% 100% 95% 99% 105% 99% 98%	Fz ve clay- artz vei Fz Fz Fz Ix Im Im Im Ix	ns an	nd an	v3 e alteration equal nu r3 r3 r3 r3 r4 r4 r5 r5 r5	r1	v3 //oder r of si v4 v4 v3 v4 v3 v4 v3 v4 v2 v2 v2	v3 v4 v1 v1 v1 v1 v1	r4 o stroo o stroo o r vein r4 r4 r5 r3 r3 r2 r1 r2 r2 r3	ng 1-2 lets a	r2 cm gr I mine r2 r3 r3 r1 r1 r1 r1 r1 r1	raliz	uuartzed ar	2 vei 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b3 b4 v1 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089 0.116 0.082 0.034 0.042 0.023	0.1 ble 0* C 0.3 0.1 0.5 0.0 0.1
	182.5	0 - 18	8.50 a sh	ort interv	ng in t	147164 lof broken his interva 147165 147166 147167 147168 147170 ark, hard i 147171 147172 147173 147174 any quartz	168.62 , faulted i consists 170.57 172.44 174.34 176.50 180.50 180.50 184.53 186.50 188.50	170.57 ntrusive s of a half- 172.44 174.34 176.50 188.50 182.50 ate intrusi 184.53 186.50 189.96	1.95 showing dozen late 1.87 1.90 2.16 2.00 2.00 ve. 2.03 1.97 2.00 1.46	93% pervasi arge qu 97% 94% 100% 95% 99% 105% 99% 98%	Fz ve clay- artz vei Fz Fz Fz Ix Im Im Im Ix	ns an	nd an	v3 e alteration equal nu r3 r3 r3 r3 r4 r4 r5 r5 r5	r1	v3 //oder r of si v4 v4 v3 v4 v3 v4 v3 v4 v2 v2 v2	v3 v4 v1 v1 v1 v1 v1	r4 o stroo o stroo o r vein r4 r4 r5 r3 r3 r2 r1 r2 r2 r3	ng 1-2 lets a	r2 cm gr I mine r2 r3 r3 r1 r1 r1 r1 r1 r1	raliz	uuartzed ar	2 vei 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b3 b4 v1 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089 0.116 0.082 0.034 0.042 0.023	0.1 ble 0* C 0.3 0.1 0.5 0.0 0.1
	182.5	0 - 18	8.50 a sh	ort interv	ng in t	147164 lof broken his interva 147165 147166 147167 147168 147170 ark, hard i 147171 147172 147173 147174 any quartz	168.62 , faulted i consists 170.57 172.44 174.34 176.50 180.50 180.50 184.53 186.50 188.50	170.57 ntrusive s of a half- 172.44 174.34 176.50 188.50 182.50 ate intrusi 184.53 186.50 189.96	1.95 showing dozen late 1.87 1.90 2.16 2.00 2.00 ve. 2.03 1.97 2.00 1.46	93% pervasi arge qu 97% 94% 100% 95% 99% 105% 99% 98%	Fz ve clay artz vei Fz Fz Fz Ix Ix Im Im Im Ix	ns an	nd an	v3 e alteration equal nu r3 r3 r3 r3 r4 r4 r5 r5 r5	r1	v3 //oder r of si v4 v4 v3 v4 v3 v4 v3 v4 v2 v2 v2	v3 v4 v1 v1 v1 v1 v1	r4 o stroo o stroo o r vein r4 r4 r5 r3 r3 r2 r1 r2 r2 r3	ng 1-2 lets a	r2 cm gr I mine r2 r3 r3 r1 r1 r1 r1 r1 r1	raliz	uuartzed ar	2 vei 3 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	b3 b4 v1 v1	carries ed at 4	0.044 s large 10* - 50 0.400 >1.00 0.064 0.089 0.116 0.082 0.034 0.042 0.023	0.1 ble 0* C 0.2 0.3 0.1 0.5 0.0 0.1 0.2 0.2 0.1 0.1

М	AJOR UNIT			STRUC	CTURE				SAMPLES			LITH			Α	LTCO	DE /1 =	trace	5=14	ery stror	201				MIN	CODE		ANA	LYSIS
From (m)	To (m)	Notes	Code	From (m)		° CA	Sample #	From (m)		Interval	Rec.	CODE	Ks	Bi			Ch			Cy	-	He	Lm	Μα			lo		Ltsis Au(g/t
							147177	194.00	196.00	2.00	101%					г4		v3	v1	12					v2	V1			0.02
							147178	196.00	198.00	2.00	99%					г4		v2	v2	г2		v2			v2	v2		0.121	0.022
							147179	198.00	200.39	2.39						г4		v3		r2		v4		T	v2	v1		0.049	0.008
		202.3	9 - 22	2.30 Retu	ırn to soli	d core	, although	strongly	altered, a				ining	until	218	.50 F	ervas	sive (epido	te-ca	rbona	te-cl	ay al	terat	ion c	bscur	es all	textur	∃ S.
							lisseminat																						
							147181	200.39	202.50	2.11	96%	la				r3		v3		r3		12						0.043	0.060
							147182	202.50	204.60	2.10	101%	la				v3		v2		г3		r2						0.025	0.047
							147183	204.60	206.50	1.90	97%	la				r3		v1		r3		12						0.017	
							147184	206.50	208.55	2.05	95%	la				r3		v2		r3		r2						0.014	0.039
							147185	208.55	210.50	1.95	99%	la				r3		v2		r3		r2						0.023	0.04
							147186	210.50	212.50	2.00	98%	ia				r3		v 2		г3		r2			Ī			0.010	0.06
			FC	213.19	213.34		147187	212.50	214.50	2.00	100%	la				v3		v2		г3		r2						0.013	0.046
							147188	214.50	216.45	1.95	97%	la				v3		v2		r3		r2						0.016	0.082
							147189	216.45	218.50	2.05	95%	la				r3		v2		r3		r2						0.024	0.196
						1	147190	218.50	220.46	1.96	99%	la				r3		v2	v1	г3		r2			v1			0.028	0.18
						1	147191	220.46	222.30	1.84	99%					r3	r2	v2	v1	r2		p4		1	-	v1		0.061	0.449
		222.3	0 - 22	8.54 Fine	-grained	monz	onite (latite	dyke?) v	with a we		yritic ch	aracte	. Per	vasiv	е ер	idote	-carb	onat	e-cla	y alte	ation	obso	cures	text	ures				
							147192	222.30	224.50	2.20	100%	lm				г4	r3	v3	v1	r1		r2				v1	i E		0.28
							147193	224.50	226.50	2.00	98%	lm				г4	r3	v3	v1	r1		r2						0.017	0.12
							147194	226.50	228.54	2.04	103%	la				г4	12	v2	v1	v2						v1		0.027	0.182
		(ive Br	eccia with	large, rou	ınded mo	nzonite	porphy	y fragn	nents	. Per	vasiv	re epi	dote-	carb	onate	e-clay	alter	ation	obs	cures	text	ures.	Term	inated	in fau
		zone	at 234	1.55 - 235	.58		T	1	1	T		I			I	Τ.	Т.	_			T			T	т—				
				-		ļ	147195	228.54	231.20	2.66						r3	r1	v3	v1	r2		s1		-	 	-			0.199
							147196	231.20	233.40	2.20	99%	-				r3	ļ	v2	ļ	r2		s1		-	d1			0.010	0.13
					235.58			233.40	235.58	2.18	95%		<u> </u>			r3	<u></u>	v4	L	f4		s1	L		<u>L_</u>	Щ.		0.044	0.209
		235.5	8 - 24	5.00 Alte	red intrus	ive wit	th moderat			ate- cla				r—			_					Τ.							
					<u> </u>	ļ.,	147198	235.58	237.52	1.94	101%	la				r3		v1		r2	<u> </u>	r1	<u> </u>	L		-	+		0.42
			FC	237.93	238.00	60	147199	237.52	239.54	2.02	97%	la				r3	ļ	v3		f4	<u> </u>	r2	<u> </u>	_	ļ	—		0.013	0.37
							147200	239.54	242.00	2.46	97%	la			<u></u>	r3	<u> </u>	v5		r3		r3		<u> </u>	v3			0.048	0.56
							147201	242.00	244.00	2.00	102%					г4		v4		r2		r3			ļ	<u> </u>	1	0.015	0.210
									245.98	1.98	96%			L		r3		v3		r2	L	r2			v1				0.29
245.00	270.70	Monz	onite	Porphyr	y Breccia	a (lmx): Intrusive	breccia i	with mon	zonite p	orphyry	fragme	nts. N	dany	of th	nese l	brecc	ia fra	gme	nts ha	ave a	brow	/n-co	loure	ed gr	ound	mass a	and the	эу аге
							yry logged 35 - 270.70																dspa	r por	phyr	y brec	cia ter	minate	es in a
					Τ			1	248.00	2.02		1				r3	T	v3	T	r1				Γ	T	Τ		0.034	0.32
						†	147204	248.00	250.02	2.02		 				г4	r2	v3	1	r1		f3	-		1	-			0.34

Page: 5 of 8

M	AJOR UNIT			STRU	CTURE				SAMPLES			LITH			ΑL	T CO	DE (1 :	trace.	5 = ve	ry stroi	na)				MIN	CODE		ANAL	VSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)		Interval	Rec.	CODE	Ks	Bi			Ch		Si	•	Se	He	Lm	Mg		Ср	c	u (%)	
							147205	250.02	252.00	1.98	97%	lmx				٢4		v3	v1			f1				v3		0.062	0.449
							147206	252.00	254.51	2.51	98%	lmx				r3		v3	v1	r1		d1			v2	v1		0.046	0.350
							147207	254.51	256.77	2.26	100%	lmx				r4	r2	v5		r1								0.017	0.187
							147208	256.77	259.00	2.23	101%	lmx				r3		v3	v 2	r1		r1			v2	v1		0.057	0.276
							147209	259.00	261.00	2.00	100%	lmx				r4		v2	v1	r3		r1			v2				0.189
							147210	261.00	263.00	2.00	100%	lmx				r4		v5	v2	r1		r1			v2			0.014	0.260
							147211	263.00	265.00	2.00	95%	lmx				r4		v2	v2	r1		r1			v2			0.041	0.25
			FC	266.60	266.70		147212	265.00	267.00	2.00	97%	lmx				r3		v2	v2	r2		r1			v2			0.020	0.078
							147213	267.00	269.00	2.00	100%	lmx				r4		v4	v2	r1_		r2			v2			0.049	0.258
				269.00	L	30	147214	269.00	270.70	1.70							f3	v3	v1	r2					v2				0.116
270.70	355.27): Intrusive																						
		1	nore c / 316.0		than abo	ve. A	ppearance	of weak	dissemin	ated ma	gnetite	Brecc	ia tex	dure	is we	ak in	the ı	ıppeı	part	of th	is inte	rval.	Diss	emir	ated	pyrit	e is pe	rvasive	
							147215	270.70	272.80	2.10	100%	lmx				r2	f2	v2	v1					d1	v1	v1		0.048	0.210
							147216	272.80	275.00	2.20	102%	lmx				r3	f1	v4	v2	r2				d1	v3	v2		0.052	0.25
							147217	275.00	277.00	2.00	104%	lmx	-Smallis was			r3	r2	v3	v2	r1				d2	v2	v2		0.031	0.18
. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		277.0	0 Beg	inning of	potassic a	alterat	tion, appea	arance of	micro qu	artz vein	lets.															-			
							147218	277.00	279.00	2.00	93%	lmx	r1	r1		r3	r2	v3	v1					d2	v1	v1		0.036	0.18
							147219	279.00	281.00	2.00	102%	lmx	r2	r1		12	r1	v3	v2					d2	v2	v2		0.063	0.41
							147220	281.00	282.98	1.98	98%	lmx	r2	r 1		12	r1	v2	v2			r1		d2	v2	v2		0.084	0.50
							147221	282.98	284.99	2.01	104%	lmx	е3			е3	r1	v2	v3			s1		d2	v3	v3		0.115	0.683
							147222	284.99	287.00	2.01	102%	lmx	рЗ			р3		v3	v2			s1		d2	v 2	v2		0.057	0.33
				-			147223	287.00	288.30	1.30	107%	lmx	p2			р3		v3	v2			s2		d1	v2	v2		0.052	0.32
							147224	288.30	290.41	2.11	93%	lmx	p2			p4	v2	v3	v2			r1		d1	v2	v2		0.078	0.42
			FC	291.18	291.53	20	147226	290.41	291.55	1.14	101%	lx				r1		v4	v1	r2				v3	v1			0.066	0.39
							147227	291.55	293.55	2.00	94%	lx	p2			r2	r1	v4							v1			0.067	0.37
							147228	293.55	295.50	1.95	101%	lmx	p2			r3	r1	v3	v1					d1	v2	v1		0.055	0.34
							147229	295.50	297.55	2.05	106%	lmx	рЗ			r3	r1	v2	v2					d1	v2	v1		0.046	0.25
		T					147230	297.55	299.49	1.94	103%	lmx	рЗ			r3	f2	v 3	v1						v1	v1		0.039	0.22
							147231	299.49	302.00	2.51	100%	lmx	рЗ			r3	f1	v2	v1					d1	v1	v2		0.052	0.28
			FC	302.92	303.16		147232	302.00	303.95	1.95	97%	imx	p2			r3	r1	v3		f2				d1	f1	f1		0.029	0.12
							147233	303.95	306.00	2.05	97%	lmx	рЗ			r3	r1	v1										0.041	0.21
							147234	306.00	308.00	2.00	99%	lmx	рЗ			r3	r2	v2	v1						v1	v1		0.053	0.27
			BZ	308.50	309.30		147235	308.00	310.00	2.00	99%	lmx	рЗ			г3	r2	v3	v1	f1					v2			0.089	0.52
			1				147236	310.00	312.00	2.00	102%	lmx	рЗ			г3	r2	v2	v1					d2	v1			0.030	0.11
	1	1					17,200			2.00	10270	*****					. –	1	1			L							0.11

Page: 6 of 8

M	AJOR UNIT			STRU	CTURE				SAMPLES			LITH		_	ALTO	ODE (= frece	5240	ry strong)				MIN	CODE		VALYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)		Interval	Rec.	CODE	Кв	Bi						He	Lm	Ma		Cp		NALTSIS 6) Au(g
							147238	314.02	316.00	1.98	97%	lmx	p2		r4	г3	v4			T		d1				0.08
			BZ	317.64	318.30	1	147239	316.00	318.30	2.30	93%	lmx	r1		r3	г3	v2	v2				d1	d2			6 0.32
							147240	318.30	320.46	2.16	105%	lmx	p2		г3	r2	v2	v2		1		d1	v2	v1		3 0.28
							147241	320.46	322.50	2.04	100%	lmx	e2		r4	r3	v2					d1	d2	d1		0.14
							147242	322.50	324.50	2.00	101%	lmx	e3		r4	r3	v4	v1		s2		d1	d3	d1		33 0.12
							147243	324.50	326.50	2.00	99%	lmx	e3		г4	r2	v4	v1		s2		d1	d3	d1	0.0	32 0.11
							147244	326.50	328.47	1.97	103%	lmx	e2		r3	r 2	v2					d1	d3	d1		16 0.14
		TS					147245	328.47	330.50	2.03	100%	lmx	e2		r3	г3	v2	v1		s2		d2	d3	d2	0.04	16 0.16
							147246	330.50	332.00	1.50	107%	lmx	r1		r2	v2	v4	v2				d2	d4	d2		1 0.13
		332.0	0 - 35	2.50 A da	rk, relativ	vely ur	naltered m			(var. Gh	ost por	phyry) i	orecc	ia. A	latite dy	ke is	noted	betw	een 339.9	97 - 34	40.23	3.				
			BZ	332.00	332.10	25	147247	332.00	334.50	2.50	96%	lmx			r2	r2	v1	v2			<u> </u>	d1	d4	d2	0.0	0.15
www.							147248	334.50	336.50	2.00	101%	lmx			r1		v1					<u> </u>	d5	d2	0.14	19 0.21
	<u> </u>						147249	336.50	338.50	2.00	101%	lmx	<u>L</u> _				v1	ļ		ļ	<u> </u>	d1	d5	d2	0.06	0.07
						<u> </u>	147250	338.50	340.50	2.00	96%	lmx					v1	v1		-		d1	d5	d2	0.0	0.08
							147251	340.50	342.50	2.00	99%	lmx					v1					d2	d5	d2	0.12	22 0.18
							147252	342.50	344.50	2.00	100%	lmx			r2		v3	v1			<u> </u>	d1	d4	d1	0.13	38 0.27
							147253	344.50	346.50	2.00	100%	lmx			r1	f1	v2			-		f2	d4	d2	0.0	18 0.12
							147254	346.50	348.50	2.00	99%	lmx			r1	f1	v2				<u> </u>	f2	d4	d2	0.0	0.08
							147255	348.50	350.50	2.00	101%	imx			r1		v2					d1	d5	d3	0.0	71 0.15
				L			147256	350.50	352.50	2.00				<u> </u>		f1	v2					d1	d5	d2		79 0.27
355.27	360.42						c, hard, bri ontact abo						nterva	als (2)	0 - 30 cr	n) of	monz	onite	porphyry (unit al	bove.	. Co	ntact	s are	intrusive, a	ibrupt
							147257	352.50	355.27	2.77	101%	Tr			r2		v2					d1	d5	d2	0.00	36 0.15
			cv	355.65	356.58		147258	355.27	357.01	1.74	98%	Tr	r3		r2		v5	v2				d1	v 1		0.00	34 0.20
							147259	357.01	358.87	1.86	101%	VI			f1		v1					d2	d3	d1	0.0	0.09
							147260	358.87	360.42	1.55	99%		r1		f1		v1					d3	d2	d1		71 0.16
369.42	392.50	Short	interv	als (30 - 4	40 cm) of	f latite	t): Similar (dykes?) a n colour v	are comm	non, espe	cially fro	m 360. below 3	42 to 366.39	66.39	eakly Alt	eration i	s limit	ed to	textui	e and mu	ich sti ck with	ronge h the	pota	issic :	c and altera	tion over p	orinting
		ļ				-	147261	360.42	362.18	1.76		 	r2		f3		v2	-			<u> </u>	d2	f1	-	 	39 0.24
							147262	362.18	364.00	1.82	97%	lmx	r3	ļ	r3		v3			-	ļ	ļ	f2	f2		0.35
					<u> </u>	<u> </u>	147263	364.00	366.39	2.39	99%	lmx	r2		r3		ν1	-			<u> </u>		f2	f2	0.12	25 0.55
							147264	366.39	368.50	2.11	101%	lmx	p2	L	r3		v2			-		d2	f3	f3	+	30 0.70
						<u> </u>	147265	368.50	370.52	2.02	96%	lmx	рЗ	ļ	r4	-+-	ν1					d3	f3	d4	0.0	95 0.38
		<u> </u>					147266	370.52	372.50	1.98	99%	lmx	рЗ		r4		v1	v2		s1		d3	f3	v3	0.09	96 0.40
	·+							372.50										v2								

	AJOR UNIT			STRU	CTURE				SAMPLES			LITH				LTCO	DE (1 :	- 4	6						MIN	CODE	ANIA	LYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)		Interval	Rec.	CODE	Кв	Bi	Ab					ну зас Су		He	Lm	l Mg	Py			Au (g/ť
· · · · ·	T			· ·	T		147268	374.48	376.48	2.00	102%		рЗ			г3	f3	v3		f2				d3	d2	d2	0.072	
						1	147269	376.48	378.50	2.02	95%	lmx	рЗ			r3		v1	v2					d3	d2	v2	0.051	_
							147271	378.50	380.50	2.00	104%	lmx	р3			r3		v1	v1					d2	f2	v2	0.055	
							147272	380.50	382.52	2.02	101%	lmx	рЗ			p4		v1	v1			f1		d2	f2	v1	0.072	
							147273	382.52	384.50	1.98	101%	lmx	р3			p4		v1	v1					d2	d1	d2	0.047	
							147274	384.50	386.49	1.99	98%	lmx	рЗ			г4		v1	v2			s1		d2	v3	v3	0.078	0.530
							147275	386.49	388.47	1.98	102%	lmx	рЗ			г4	r 2	v3	v2			s1		d2	v3	v3	0.082	0.360
							147276	388.47	390.50	2.03	99%	lmx	рЗ			r3	r1	v1	v2			s1		d3	v3	v3	0.130	0.648
							147277	390.50	392.50	2.00	101%	lmx	рЗ	r1		r3	r1	v2	v3			s1		d3	v3	v3	0.066	0.347
392.50	396.50	1			y (lmk): L	Jncrov	wded felds	par porph	nyry with	a brown,	potass	ium felo	İspai	r-rich	gro	undm	ass.	Cont	act at	oove	is intr	usive	but a	abov	e it is	inter-	fingered be	tween
	<u> </u>	391.6	7 and	392.50		Τ"	1	7	Tag4 = 2	1		T		1		T.	T	T .	7 -	1		_	T	1	Τ_	1 - 1	T	т
						 	147278	392.50	394.50	2.00	101%		p3	<u> </u>	-	r3	f2	v2	v2	-		s1	<u> </u>	f3	v3	v2 v3	0.164	1
200 50	440.54	30		(J>- Do-			147279	394.50	396.50	2.00	101%		p3	k\ 00	obe	r3	r1	v1	v3	it of	didead	s1	nk in	d3	v3		0.093	0.360
396.50	410.54	Monz	onite	(IM): Doi	minantiy r	TIONZO	nite (lm) v	396.50	398.50				y (IIII p3	k) as	abc	r3	r1	v1	v3	IIC OI	dykes	s 01 11	IIK III	d2	v3	v3	0.004	0.444
·	 	+	FC	399.58	399.68	45	147281	398.50	400.51	2.00	99% 97%		р3		-	r3	f3	v2	v3	 		s1		d3	v3	v3 v2	0.081	-
·	<u> </u>	 		399.30	399.00	43	147282	400.51	400.51	1			р3 p2		\vdash	p2	f2	v2	v3	-	-	s1	-	d3	v3	v2 v3	0.085	1
		 i			 	+-	147283	402.54	404.48	2.03 1.94	101% 101%		p2	-		p2	12	v3	v3	<u> </u>		s2		d3	v2	v3	0.082	+
	ļ <u>.</u>					+-	147284	404.48	406.50			 	p2	-		p2	12	v2	v2	┼-		s2		d3	v2	v3	0.077	+
	 	 			ļ	+	 			2.02	99%		p3	ļ	-	p2		v1	v2		-	s1	-	d3	v3 v2	v3		
				ļ	 	 -	147285	406.50	408.50	2.00	94%		p2	-		p3	12	v2	v3	-	-	s1		s3	v2	v4	0.101	-
410.54	425.65	Altore	d Int	rueivo (la). Tan to	brown	147286	408.50	410.54	2.04	103%			e-cla	v alt					hures	This		is init		1		d, becoming	
+10.54	420.00			ained belo			iisii-gicy c	ioroured ii	iii usivo.	CIVASI	o opiac	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Milat	0 014	, u	or a we		Jour	O LOX	ui oo		· WITH		uny	ş	, ao.	2, 5000111111	,
						T	147287	410.54	412.10	1.56	100%	la	p2			рЗ	г3	v1	v3						v4	v2	0.167	0.754
							147288	412.10	413.53	1.43	102%	la	p1			p2	г4	v2	v3			v3		v3	v2	v3	0.082	0.904
			FC	413.67	414.15	15	147289	413.53	414.35	0.82	99%	la				r3	f5	v5		f5	f5				f4		0.899	2.476
							147290	414.35	415.70	1.35	96%	la					r5	v5	v2	r1	f2					v2	0.133	0.640
			FC	415.53	415.62		147291	415.70	417.95	2.25	98%	la	e1			е3	r2	v2	v4					d4	v2	v4	0.195	1.071
							147292	417.95	420.00	2.05	105%	la	e1			е3	r3	v2	v3					d3	v3	v3	0.088	0.468
							147293	420.00	421.97	1.97	96%	la	e1			е3	г3	v2	v3					d2	v2	v3	0.060	0.311
							147294	421.97	424.00	2.03	100%	la	e1			e2	r2	v2	v3					d3	v3	v3	0.096	0.404
							147295	424.00	425.65	1.65	102%		e1			e2	г3	v3	v3					d3	v3	v3	0.074	0.342
425.65	429.28	Mixed	Intr	sive and	l Volcani	c (Mx): Transitio	n betwee	n the abo	ove tan ir	ntrusive	and the	e Lati	te be	low.													
_							147296	425.65	427.24	1.59	100%	Mx	e1			e2	r2	v1	v2			s2		d3	v2	v3	0.072	0.331
				T	1		147297	427.24	429.28	2.04	98%	N.A.				е3	r2	v1	v3			s1		d3	v2	v4	0.162	1.127

Page: 8 of 8

M	AJOR UNIT				CTURE				SAMPLES			LITH			AL7	COD	E (1 =	trace,	5 = ve	ry strong)		1		MIN	CODE	ANA	LYSIS
From (m)	To (m)						Sample #													Cy Se						Cu (%)	
429.28	458.72	1		-				_		-			_													veinlets co	
			-	blebs of d betwee				ılar hema	tite. Pyri	te is perv	asively	dissem	ninate	d thro	ough t	his u	ınit. 🤄	Shor	t inter	vals of Im	intru	isive (dyke	es?) a	are no	ted betwee	n 43.0
							147298	429.28	431.29	2.01	103%	VI						v3	v3				d3	v2	v3	0.100	0.41
						<u> </u>	147299	431.29	433.48	2.19	100%	VI						v2	v3				d3	v2	v3	0.083	0.27
							147300	433.48	435.28	1.80	100%	VI						v3	v2		s2		d3	v2	v2	0.049	0.25
							147301	435.28	436.02	0.74	97%	VI			1	r4		v5			v5			d5	1	0.012	0.79
							147302	436.02	438.03	2.01	99%	VI						v3	v2				d3	v1	v2	0.045	0.24
							147303	438.03	440.44	2.41	100%	VI				p2		v3	v2		s2		d3	v2	v2	0.034	0.10
			FC	440.79	441.56		147304	440.44	442.00	1.56	99%	VI	L			f3		v5	v2		v5			d2	v2	0.037	0.09
					<u> </u>		147305	442.00	444.02	2.02	99%	VI	<u> </u>					v4	v3		v2		d2	v2	v2	0.040	0.10
							147306	444.02	446.00	1.98	98%	VI						v4	v1		v2		d2	v2	v1	0.044	0.11
		TS					147307	446.00	448.06	2.06	102%	VI						v3	v2		v2		d2	v1	v2	0.045	0.16
							147308	448.06	450.00	1.94	99%	VI	<u> </u>					v3	v1				d2	f1	f2	0.055	0.20
							147309	450.00	451.99	1.99	102%	VI	1						v2			├	d2	v2	v2	0.086	0.17
							147310	451.99	454.60	2.61	96%	VI					f3	v2					d2	f2	f1	0.050	0.12
							147311	454.60	456.40	1.80		+	L			e2	f3	v3	v1			+-+	d3	f2	v1	0.076	0.24
							147312	456.40	458.72	2.32	99%	VI				e2	f2	v2					d3	f2	f1	0.073	0.21
458 72		EOH										ĺ															-

Japa !

Page: 1 of 6

ACID TESTS Property: Woodjam interval: 0 to 261.52 Start Date: November 7, 2004 Depth (m) Dip Meas. Dip Cor. DDH: WJ04-39 Core Size: NQ 163.07 -40 -47.5 Completion: November 14, 2004 Grid Cord: 30N 66W Azimuth: 114° Jay W. Page Logged By: Section: 50N Inclination: -50° Date logged: November 10 - 15, 20094

NOTES: GPS collar location is 10U 610342 6790894 (NAD83). Average recovery was 99.36%. Water line length was 1000 feet. Diamond Drill used was a skid-mounted Long Year 56 owned by LeClerc Drilling Ltd. First run was calculated by drillers to be 5 feet based on a 13 foot core barrel minus 8 feet from the ground surface to the top of the head in the down position, subsequent runs were numbered in "5's", conversion to metric was carried out by the geology crew. Casing was removed upon completion of the hole. Core was logged prior to splitting. Samples #147401 to #147531 were analysed by TeckCominco Global Discovery Labs. Hole was lost due to squeezing in fault zone between 229.50 and 237.27 Petrographic work consisting of 2 thin sections (42.70m, 139.80m) was carried out by Harris Exploration Services.

M/	AJOR UNIT			STRU	CTURE				SAMPLES			LITH			ALT (ODE (1	= trace	9, 5 = W	ery stro	ing)				MIN	ODE	ANA	LYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab E	p Ch	Ca	Si	Су	Se	He	Lm	Mg	Ру	Ср	Mo Cu (%)	Au (g/t)
0	3.72	Over	burde	n (Casing	g (12')																						
3.72	42.60																								ar to	mainly Mon	zonite
		porpt	тугу р	orphyry (lmk), alor	g with	numerou	s 1 - 2 cm	fragmen	ts of a da	ark fine	graine	d intr	usive.	Magne	etite pr	esen	t as 1	-2 m	m diss	emir	nated	blet	S.			
			FC	5.57	5.65		147401	3.72	5.87	2.15	97%	lmx	r3		r5	r3	v1		f5			f3	d3		d1	0.035	0.449
							147402	5.87	7.82	1.95	93%	lmx	r2		r4	r3	v3	v1	f5				d3		v2	0.068	0.948
							147403	7.82	9.13	1.31	89%	lmx	r2		r4	r3	v1	T								0.028	0.461
		9.13	Begir	patchy	potassic a	lterati	on. The co	re is very	chlorite-r	ich betwe	en 13.	50 - 15	.52.	-												<u> </u>	
ŕ							147404	9.13	11.32	2.19	102%	lmx	p5		r3	r3	v2	v2					d2	v2	v2	0.021	0.234
12.							147405	11.32	13.50	2.18	100%	lmx	r4		r4	r3	v2	v1					d2	v1	v1	0.014	0.184
			FC	14.48	14.50		147406	13.50	15.52	2.02	100%	lmx	r2		г4	r5	v4	v1	r3				d2	v2	v1	0.027	0.299
			FC	15.67	15.70		147407	15.52	17.50	1.98	101%		г5		e3	г3	v2		f3		r1		d1		d2	0.047	0.386
			ļ				147408	17.50	19.50	2.00		-	r5		r3	r3	v1	+	_	1			d1			0.064	1.048
				<u> </u>			147409	19.50	21.50	2.00			r5	-	r3		v1	+	f2	1		_	d2		-	0.017	0.096
		-					147410	21.50	23.50		100%		r5		r3		v1	+	+	1		_	d1			0.018	0.147
			\vdash					23.50	25.29	1.79			r4	 	r3		v2	+	-	+			d1	 		0.007	0.088
	-	25.29	Bec	in darker	-areen co	loure	d core with		-				L	rk fra				nonzo	onite	porph	vrv fr	agm	L	1	1	<u> </u>	<u> </u>
			1	, addition	g. 00 00	1	147412		27.50	2.21	99%		p2	T	r3		v1		T		f1		d2	f1	Ţ	0.014	0.123
	 			-	 	 -		27.50	29.46		98%		PE	-	r3		v2	+	-				d2	ļ.,	d2	0.059	0.807
				-			147414	29.46	31.57	1.96		1	-	+-			+		+	-			 	1	d1	0.015	
	ļ	ļ		<u> </u>			147415	31.57	33.53	2.11	99%		\vdash		r3		v3	+	r1	+	f2 f2		d2 d2	f2 d3	d1	0.018	
					 	+		33.53		1.96	102%			-	-	-	v2				f2		d2		d1	0.020	
					-	-			35.49	1.96	98%		r1 	-	r3					+						0.020	
					ļ	-	147417	35.49	37.58	2.09	100%	1.	r2	-	r2		v2				f3	-	d2		d1	0.022	
						ļ		37.58	39.56	1.98	102%		r3		r3		v3		-	-			d2		d1		L
						1	147419	39.56	41.49	1.93	96%		r2		r3	г4	v4		r2				d2	d1		0.010	
							147420	41.49	42.60	1.11	102%	lmx	r2		r3	r4	v1		r1				d2		d1	0.014	0.094

Page: 2 of 6

M/	AJOR UNIT			STRU	CTURE				SAMPLES			LITH	Т		A	LT CO	DE (1	= trace.	5 ≖ very :	strona)			М	N CODE		ANAI	YSIS
From (m)		Notes	Code	From (m)	To (m)	° CA	Sample #	From (m) To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Ep	Ch	Ca	Si	Cy S	e He	Lm M	a F	v Cp	MolCu	(%)	An (
2.60	104.23	Monz	onite	Mega-b	reccia (in	nx): A	n intrusive	mega-b	reccia with	n fragmei	nts to 7	cm of	mor	nzoni	te po	rphyr	y, inc	luding	sub-v	arient	Ghost I	orphyr	y and	fragn	nents of	the ir	ntrus
		brecc	ia abo	ove (cont	aining Im	k fragr	nents). M	latrix to th	nis breccia	is tan-co	loured,	mudd	/ lool	king,	finer-	grain	ed a	nd cor	ntaining	medi	ium-gra	ined, su	ıbhe	dral fe	ldspar a	nd m	afics
		chalc	uppe	er the ma	inis interv atrix is not	aı tne miner	preccia ira	agments ntassic ai	have a we teration is	eak chior	ite reac	on nm	is an	a are a frac	wea	KIY M	inera	Ilized \ Ibito a	MTN dis Iteratio	semir n is la	nated a	nd fract	ure fi	llings (of pyrite	and i	mino
					derate ma			o tabbio a	toration is	idigety i	iiiica t	o tile bi	0001	ս ուսչ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10, 111	ille u	ibite a	nci auc	11 13 14	igely in	THICC IO	Subi	icuiai	reiuspa	5 111 1	.He
		тѕ				Ī	147421	42.60	44.67	2.07	000/	lmx	l _r 1	r2	r2	r3	r3	v2				ld3	d1	d2	0	018	0,1
					 	+	147422	44.67	46.49	1.82		 	r1	r2	r3	r3	r4	v1			r1	d2		- 42		014	0.0
					1	†	147423	46.49	48.50	2.01			12	r2	r3	r4	г4	v1	-		ļ.,	d1		+	-	015	0.0
						-	147424	48.50	50.65	2.15		1	r3	r2	r3	г4	г 4	v2		-	-	d1	-			009	0.0
	-					+	147425	50.65	52.00	1.35			r2	r2	-	r3	г 4	v1				d2				010	0.1
	 	1					147426	52.00	54.46	2.46			r2	r2	r2	r3	r4	 • • 		+-		d1				011	0.0
							147427	54.46	56.71	2.40		 	<u>'-</u>	-	-	r3	r4	v1			r3	d1		d1		800	0.0
	-		FC	56.71	57.06		147428	56.71	57.62	0.91			+-	 	-	r3	f5	v1	f		10	-	da			003	0,0
		57.62		L		its con			inated pyri				tass	ic alte	eratio		J				ation ha	s died		•			
]	T		57.62				,											d2		T 1	002	-0.0
		-				+	147429	59.62	59.62		100%		r3	r1	r1	r3	г4 г2	v1	r:		r3	d1	-			010	
			FC	63.31	63.35	ļ	147430	61.52	61.52	1.90		<u> </u>	r3	r1	r1		r2	v2 v2	r2		r3	d1				009	
	-	-	-	03.31	03.33		147431	63.55	63.55 65.53	2.03		 	r3	r1 r2	r2	r3	 	v2 v1	r		r2	d1			+	004	
		GE E2	77	CO Albito	altoratio	n in fo	1	1	eccia fragr	1.98			r4				r4	1									
									mes very								C alle	iauoii	is muc	ii Suc	niger in	iragine	1115.	Iowa	ia ine po	MOIII	011
							147433	65.53	67.50	<u>_</u> _			r4	r2	r3	г2	r3	v1				d1	d1		10	006	<0 (
****	ļ					+	147434	67.50		1.97			1	r2	r2	12	r3	v1		-	r1	d2				003	
						-	147434	69.50	69.50 71.51	2.00			r2	r1	r1	r2	12	v1			r2	d1	-			015	
	ļ	+				 		_		2.01	100%	1.	r1	11		r2				-		d2	-			002	
					-	 	147437	71.51	73.49	1.98	98%	 	r1	-4	-		12	v1			r1	d2				004	
		1			-	-	147438	73.49 75.10	75.10	1.61	104%	t	r1	r1		r2 r2	r2	v1	-		-	d2				014	
		77.60	0.5	EQ Interior			147439		77.68	2.58			<u></u>	hava	140		r2	v1			•			•			-0.0
		textur		os intrusi	ive with a	more	weakiy de	veloped	breccia te	xture (me	ga-bre	ccia) in	an a	bove	. 1010	uerau	e io s	strong	replac	emen	carbo	nate - c	ay a	terauc	n obscu	ies	
		, toxtur			T	T	147440	77.68	79.50	1.82	93%	lmx	T		T	r4	г4	r2			r2	d2			0.	074	0.0
					1	+	147441	79.50	81.50	2.00			+-	<u> </u>		r4	г4	r1	r2	2		d2		_	0.	024	0.0
					 	+	147442	81.50	83.55		101%		1-			г4	г4	v2	r3			d1			0.	034	0.
					-	+	147443	83.55	85.53	-1	100%	-	+-		-	г4	r4	v3	r		-	d2		-	0.	018	<0.0
		85.53		.23 Mea	⊥ a-breccia	with s			ration and				eplac	ceme	nt. N	1.	· ·	11			ar to be					i	
	 					T		85.53	87.50	1			T			r4	г4	r3	12			d2			0.	001	0.0
					-	+		87.50	89.55	1.97	100%	 	+	-	-	г 4	r4	r1	rí		-	d2		-	+	001	0.0

-	JOR UNIT			STRUC	TURE				SAMPLES			LITH		•	41	T.00	25 //		_					T					_
From (m)	To (m)	Notes	Code		To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Кв	Bi	Ab	.1 CO			o≖we Si	ry stron	Se	He	Lm	Ma	MiN C		Mo	Cu (%)	YSIS Au (g/t)
								89.55	91.50	1.95						r4	r4	v2	T	12				d2	<u> </u>	<u> </u>	1		0.034
							147447	91.50	93.51	2.01	99%	lmx				r3	r4	r2		r2				d2				0.001 <	0.034
							147448	93.51	95.50	1.99						r3	r4	r3		r2				d2				0.001 <	0.034
							147449	95.50	97.50	2.00	102%	lmx				r3	r4	r3		r2				d2				0.001 <	0.034
							147450	97.50	99.50	2.00	98%	lmx				r3	г4	г4		r1				d2				0.002 <	0.034
							147451	99.50	101.52	2.02	101%	lmx				r3	г4	г4						d2				0.001 <	0.034
							147452	101.52	104.23	2.71	82%	lmx				r3	г4	r3		r1								0.004 <	0.034
104.23	146.80						tuff. Loc				рреага	nce whi																	
		monz	zonite netic. N	porphyry, No chalco	many sh	owing neraliz	upper par strong, per ation was	ervasive p observed	yritization I in this int	. Pervas	sive, mo	derate			carbo	nate		y alte		n has					nary			Weak to	non-
			СТ	104.23		45	147453	104.23	106.50	2.27						r3	r1	r3		۲3				ļ	d5			0.007 <	
							147454	106.50	108.50	2.00						г3	r2	r3	-	r2				L_	d4				0.082
						-	147455	108.50	110.50	2.00						r3	r1	г4	ļ	r2				<u> </u>	d4	_		0.008 <	
						-	147456	110.50	112.50	2.00			<u> </u>			r3	r2	r3	<u></u>	г2				ļ	d4	<u> </u>		0.004 <	
							147457	112.50	114.47	1.97			_			r3	r2	r3		r2				_	d5			0.004 <	
						ļ	147458	114.47	116.45	1.98		$\overline{}$	<u></u>			г4	r2	r3	<u> </u>	г4				L	d4			0.003 <	
							147459	116.45	118.50	2.05				<u></u>		r3	r3	г4	ļ	r2				ļ	d5			0.006 <	
							147460	118.50	120.50	2.00		1	<u> </u>			r3	r2	г4		r3				L	d5		\perp	0.004 <	
						<u> </u>	147461	120.50	122.50	2.00						r3	r2	г4	<u> </u>	r3					d5			0.009 <	
							147462	122.50	124.50	2.00	+					r2	r2	г4	r2	r2				<u> </u>	d3	<u> </u>		0.002 <	
							147463	124.50	126.49	1.99						r2	r2	г4	r1	r1				d1	d4			0.002 <	
							147464	126.49	128.50	2.01	97%	VIt				r2	r2	r4		r1				ļ	d4			0.004 <	
							147465	128.50	130.50	2.00	102%	VIt				r2	r2	г4		r1				d1	d5			0.001 <	
							147466	130.50	132.50	2.00	100%	VIt				r2	r3	r3						d1	d4			0.003 <	
							147467	132.50	134.50	2.00	98%	VIt				r2	r3	r3						d1	d3			0.005 <	
							147468	134.50	136.52	2.02	101%	VIt				r2	r3	г3	r2					d1	d3			0.004 <	
							147469	136.52	138.50	1.98	101%	Vlt				r2	r3	г3		r 2				d1	d4			0.005 <	
							147470	138.50	140.50	2.00	100%	VIt				r2	r3	г4	r1	r1				ļ	d4			0.005 <	
		TS					147471	140.50	142.47	1.97	100%	Vlt				r2	r2	г3		r1					d4			0.005 <	
							147472	142.47	144.51	2.04	102%	VIt				r2	r2	r3							d5			0.004 <	
							147473	144.51	146.80	2.29	105%	VIt				r2	r3	r 4		r1					d5			0.005 <	0.034

Page: 4 of 6

	JOR UNIT			STRUC	TURE				SAMPLES			LITH		ALT CO	NOT (4					_			
From (m)	To (m)	Notes	Code	From (m)		° CA	Sample #	From (m)		Interval	Rec.		Ks Bi	ALI CC	1) 30. Ch	≖ <i>traice,</i> a ∖ Ca	5 ≃ <i>very stro</i> Si Cv	<i>ng)</i> Se He	Lm	Ma	MIN CODE Py Cp I	Mo Cu (%)	LYSIS
146.80	216.40				Intrusiv	e (Mx): A mixtu	re of latite	tuff and	dark gre	en intru	sive bre	ccia, bot	h showing	stro	ng prop	ylitic alte	ration. Br	eccia	fragi	ments consi	st of mon	zonite
		porph	ıyry (a	ınd in son	ne cases	monz	onite porp	hyry brec	cia) whicl	n shows i	pervasiv	e, stror	g pyritiza	ation (som	e fra	gments	are rimr	ned with p	pyrite)	and	moderate e	pidote alt	
																					t. Continuin		\ 4- -
																					fragments (tion. The co) or tuff
																					neralization		ved in
		this u				т		,		-								· · · · · · · · · · · · · · · · · · ·					
			СТ	146.80		70	147474	146.80	148.99	2.19	91%	Мх		r4	г4	r4					d4	0.007	<0.034
							147475	148.99	151.00	2.01	102%	Mx		г4	r4	г4					d5	0.003	<0.034
							147476	151.00	153.00	2.00	98%	Mx		г4	r4	r3					d5	0.006	<0.034
							147477	153.00	155.02	2.02	101%	Mx		г4	г4	г4					d5	0.006	<0.034
							147478	155.02	156.97	1.95	102%	Mx		r3	r3	r3		r2			d5	0.003	<0.034
							147479	156.97	159.00	2.03	99%	Mx		r2	r2	r3		r3			d5	0.582	0.556
							147481	159.00	161.04	2.04	100%	Мх		r2	г2	г4					d4	0.001	<0.034
							147482	161.04	163.02	1.98		1		r2	r2	г4					d4	0.002	<0.034
							147483	163.02	165.07	2.05				r3	r3	г4				d1	d4	0.000	<0.034
							147484	165.07	167.00	1.93				r3	r3	r4				d1	d4	0.001	<0.034
							147485	167.00	169.03	2.03				гЗ	г3	r4				d1	d4	0.002	0.038
						 	147486	169.03	171.05	2.02				гЗ	r3	г4				d1	d4	0.003	0.047
							147487	171.05	173.00	1.95				г3	г3	г4	r1	r2			d4	0.005	0.036
							147488	173.00	175.00	2.00				r3	r3	г4	r1	r1			d5	0.009	0.128
			FC	175.26	175.54	40	147489	175.00	177.00	2.00				r2	r2	r3	r1	r1			d5	0.011	0.131
						† · · · ·	147490	177.00	179.00	2.00				r3	r2	r3	r1	r1			d5	0.004	0.090
		<u> </u>					147491	179.00	181.00	2.00				r2	r2	г4	r2	r2	+		d5	0.007	0.096
							147492	181.00	183.05	2.05				r2	r2	г3	r1	r1	+		d5	0.005	0.072
		-					147493	183.05	184.95	1.90		-		r2	r2	г3		г1			d5	0.007	0.057
						 	147494	184.95	187.04	2.09	96%			r2	г3	r3		r3	+-1		d5	0.003	0.038
			FC	188.59	188.64		147495	187.04	189.02	1.98				r2	r2	r3	r1	r5	-		d5	0.003	0.050
						1	147496	189.02	190.98	1.96				r2	r2	г3	r2	г4			d5	0.004	0.042
		 					147497	190.98	193.00	2.02				12	r2	г4	r1	r2	-		d5	0.006	0.041
							147498	193.00	195.02	2.02		-		12	12	12		r5	-		d5	0.001	ļ
		 					147499	195.02	197.01	1.99				r2	12	r3		r5			d5	0.001	
		-				 	147500	197.01	199.04	2.03				12	r2	r4		r5			d5	0.003	
						-	147501	199.04	201.00					12	12	г4		r5	+		d5	0.003	
			FC	202.52	202.58	55	147501	201.00	201.00	1.96				r2	12	r5	-	r4	+		d5	0.004	
L				202.52	202.50	33	14/502	201.00	202.97	1.97	99%	LIVIX	L	12	12	13		14			uo	0.004	0.004

M	AJOR UNIT			STRU	CTURE				SAMPLES			LITH			ALT CO	DE (1	= trace	. 5 = ve	rv strono	1)			MIN C	ODE	_	ANALYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab Ep		Ca				Lm	Mg	Py		Mo Cu	
			FC	203.84	203.97	55	147503	202.97	205.01	2.04	98%	Мх			r2	r2	r4			r4			d5			0.1
							147504	205.01	206.99	1.98	98%	Mx			r 2	r2	r4			r5			d5		0.0	0.0
							147505	206.99	209.02	2.03	97%	Mx			r2	r2	r5			r5			d5		0.0	0.0
							147506	209.02	211.00	1.98	97%	Mx			r2	r2	r3			r5			d5		0.0	0.02
							147507	211.00	212.60	1.60	101%	Mx			r2	r2	v3			r5			d5		0.0	0.0
							147508	212.60	214.46	1.86	102%	Мх			r3	r3	v3			r5			d5		0.0	0.0
		214.4	6 - 21	6.60 Fau	lt zone w	ith ext	ensive cla	y gouge,	contains fi	ragment	s from (units ab	ove a	and be	low.		•					·L				
_							147509	214.46	216.40	1.94	104%	FZ			r3	r2	f4		f5	r3		Γ	d4		0.0	0.0
16.40	232.50	Voice	nic (\	Vx): This	interval h	as ma	ny charac	teristics o	f a volcan	ic tuff/bre	eccia (d	dominar	nt) bu	t also	include	min	or int	rusive	breco	ia The	perva	sive,	mode	erate t	o stron	1
		graine porph	ed car	bonate-a intervals	ltered ma may be d	itrix m ue to f	oted. Smal ay be an ii low-bandi e unit is we	ntrusive n	nega-brec ay possibl	cia or sir y be a cı	nply an rystal tu	intrusiv	re bo fine-(dy cut graine	by a dy d, dark-	ce sw	arm. red ir	The iterva	gradin s whic	g of felo ch cross	lspar -cut ti	cryst he po	al size	es fror itic int	n coars ervais a	e to fine
		10 00	iale u		cs. Over	an un			-magneut	aithoug	Jii spec	ulai IIEI	Hauk	s aile	magne	JIG 13		nion.	NO CI	асоруг	ile iiii	ilei ai	Zauo	II was	observ	ea. The
							147510	216.40	218.97	2.57	98%	Vx			r 2	r2	r4			r4			d5		0.0	0.0
							147511	218.97	220.98	2.01	99%	Vx			r2	r2	r5			r5			d5		0.0	01 < 0.0
							147512	220.98	223.00	2.02	96%	Vx			r2	r2	r4			r5			d5		0.0	01 < 0.0
							147513	223.00	224.81	1.81	102%	Vx			r2	r2	r4		r1	r2			d5		0.0	04 < 0.0
							147514	224.81	226.95	2.14	101%	Vx			r2	r2	r5		r4	r3			d4		0.0	0.0
			FC	228.16	229.00		147515	226.95	229.33	2.38	97%	Vx				r3	ν3		f5	f3´			d4		0.0	0.0
			CT	232.50		30	147516	229.33	232.50	3.17	116%	FZ				r3	v4		f5	f4					0.0	33 0.1
32.50	261.52						ined, dark		I intrusive Strongly												ed wi	th cha	alcop	yrite ir	grey	uartz
		venne	is. Ci	ay and ne	ematite til	eu IIa	otare are				ie repia	cemen	alte	rea. v	YEAR IO	111000	iaic								0.1	96 0.2
		venne	ets. Ci	ay and ne	ematite til	eu iia	,	232.50	235.33	2.83	96%	,	alte	rea. V	r2	r3	v5	v2	г4	f3		d1		b4	0.1	90 0.2
		veillie	ets. Ci	ay and ne	matite til	led IIa	,		·		96%	ld	alte	rea. V				т—		f3 f2		d1	v1	b4 v1	0.0	
		veime	ets. Ci	ay and ne	ematite fili	lou ii a	147517	232.50	235.33	2.83		ld FZ	alte	red. V			v5	v2 v1	г4			d1 d1				77 0.1
		Veillie	ets. Ci	ay and ne	ematite ill	eu IIa	147517 147518	232.50 235.33	235.33 237.27	2.83 1.94	96% 99%	ld FZ ld	alte	red. V	r2	r3	v5 v4	v2 v1 v2	г4 r5				v2	v1	0.0	77 0.1 85 0.1
		Veillie	ets. Ci	ay and ne	emaute III		147517 147518 147519	232.50 235.33 237.27	235.33 237.27 239.27	2.83 1.94 2.00	96% 99% 99%	ld FZ ld	alte	red. V	r2 r2	r3	v5 v4 v4	v2 v1 v2	r4 r5 r3	f2		d1 d1	v2 v2	v1 v1	0.0	77 0.1 85 0.1 20 0.4
		Veillie	RS. O	ay and ne	emaute III		147517 147518 147519 147520	232.50 235.33 237.27 239.27	235.33 237.27 239.27 241.40	2.83 1.94 2.00 2.13	96% 99% 99% 102%	ld FZ Id Id	alte	red. V	r2 r2 r2	r3 r3 r2	v5 v4 v4 v4	v2 v1 v2 v2 v2	r4 r5 r3	f2		d1 d1	v2 v2 v3	v1 v1 v2	0.0 0.0 0.1	77 0.1 85 0.1 20 0.4 87 0.5
		Veillie	RS. O	ay and ne	emaute III		147517 147518 147519 147520 147521	232.50 235.33 237.27 239.27 241.40	235.33 237.27 239.27 241.40 243.50	2.83 1.94 2.00 2.13 2.10	96% 99% 99% 102% 98%	ld FZ Id Id Id	alte	red. V	r2 r2 r2 r2	r3 r3 r2 r3	v5 v4 v4 v4 v4	v2 v1 v2 v2 v2 v2 v2	r4 r5 r3 f2	f2		d1 d1 d1	v2 v2 v3 v2	v1 v1 v2 v2	0.0 0.0 0.1	77 0.1 85 0.1 20 0.4 87 0.5 09 0.4
		Veillie	RS. O	ay and ne	emaute III		147517 147518 147519 147520 147521 147522 147523	232.50 235.33 237.27 239.27 241.40 243.50	235.33 237.27 239.27 241.40 243.50 245.50	2.83 1.94 2.00 2.13 2.10 2.00	96% 99% 99% 102% 98% 98%	Id FZ Id Id Id Id	alte	red. V	r2 r2 r2 r2 r2	r3 r3 r2 r3	v5 v4 v4 v4 v4 r5	v2 v1 v2 v2 v2 v2	r4 r5 r3 f2	f2		d1 d1 d1 d2	v2 v2 v3 v2 v3	v1 v1 v2 v2 v2 v2	0.0 0.0 0.1 0.1 0.2	77 0.1 85 0.1 20 0.4 87 0.5 09 0.4 64 0.5
					251.18	45	147517 147518 147519 147520 147521 147522 147523	232.50 235.33 237.27 239.27 241.40 243.50 245.50	235.33 237.27 239.27 241.40 243.50 245.50 247.50	2.83 1.94 2.00 2.13 2.10 2.00 2.00	96% 99% 99% 102% 98% 98% 93%	Id FZ Id Id Id Id Id Id Id	alte	red. V	r2 r2 r2 r2 r2 r2	r3 r3 r2 r3 r3	v5 v4 v4 v4 v4 r5 r5	v2 v1 v2 v2 v2 v2 v2 v2 v2 v2 v3	r4 r5 r3 f2	f2 r1		d1 d1 d1 d2 d2	v2 v3 v2 v3 v2 v3 v2	v1 v1 v2 v2 v2 v2 v2 v3	0.0 0.0 0.1 0.1 0.2 0.1	77 0.1 85 0.1 20 0.4 87 0.5 09 0.4 64 0.5 83 0.2
							147517 147518 147519 147520 147521 147522 147523 147524	232.50 235.33 237.27 239.27 241.40 243.50 245.50 247.50	235.33 237.27 239.27 241.40 243.50 245.50 247.50 249.50	2.83 1.94 2.00 2.13 2.10 2.00 2.00 2.00	96% 99% 99% 102% 98% 98% 93%	Id FZ Id Id Id Id Id Id Id Id Id Id	alte	red. V	72 72 72 72 72 72	r3 r2 r3 r3 r3 r3	v5 v4 v4 v4 v4 r5 r5	v2 v1 v2 v2 v2 v2 v2 v2 v2 v2 v3	r4 r5 r3 f2 f2 f1	f2 r1		d1 d1 d1 d2 d2 d3	v2 v2 v3 v2 v3 v2 v3 v2	v1 v1 v2 v2 v2 v3 v3	0.0 0.0 0.1 0.1 0.2 0.1	77 0.1 85 0.1 20 0.4 87 0.5 09 0.4 64 0.5 83 0.2 59 0.5

Mincord Exploration Consultants Ltd.

Page: 6 of 6

Diamond Drill Log

MA	JOR UNIT			STRU	CTURE			SAMPLES ple # From (m) To (m) Interval Rec. (Al	LT CO	DE (1 :	trace,	5 = ve	ry stroi	ng)				MIN C	ODE		ANA	YSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)_	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Ep	_Ch	Ca	Si	Су	Se	_He	Lm	Mg	Ру	Ср	Mo	Cu (%)	Au (g/t)
							147529	255.50	257.50	2.00	100%	ld				r2	r 4	r5	v1					d3		v1		0.031	0.172
							147530	257.50	259.52	2.02	94%	ld				r2	r3	r5						ď2		v1		0.018	0.136
			FC	260.70	260.84	22	147531	259.52	261.52	2.00	95%	ld				r2	г4	r5	v1			f2		d2	v1	v2		0.020	0.090
261.52		EOH																											

WJ04-40

Mincord Exploration Consultants Ltd. Diamond Drill Log

Page: 1 of 7

ACID TESTS Interval: 0 to 337,11 Property: Woodjam Dip Cor. WJ04-40 DDH: Core Size: NQ 129.89 -65 -59 **Grid Cord:** 206S 8W Azimuth: 114° 337.11 -61 -54 Section: 2+50 S Inclination: -60

Start Date: November 15, 2004

Completion: November 21, 2004

Logged By: Jay W. Page

Date logged: November 16 - 22, 2004

NOTES: GPS collar location is 10U 610291 5790651 (NAD83). Average recovery was 99.18%. Water line length was 1200 feet. Diamond Drill used was a skid-mounted Long Year 56 owned by LeClerc Drilling Ltd. First run was calculated by drillers to be 6 feet based on a 13 foot core barrel minus 7 feet from the ground surface to the top of the head in the down position, subsequent runs were numbered in "6's". Conversion to metric was carried out by the geology crew. Recovery was measured between sample intervals. Casing was removed upon completion of the hole. Core was logged prior to splitting. Samples numbered from 147601 to 147757 were analysed by TeckCominco Global Discovery Labs. Petrographic work consisting of 1 thin section (39.45m) was carried out by Harris Exploration Services.

MAJ	OR UNIT		ST	RUCTURE				SAMPLES			LITH			AL	T COL	DE (1 :	trace,	5 = ve	y stron	g)				MIN C	ODE	ANA	LYSIS
rom (m)			de From (° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Еp	Ch	Ca	Si	Су	Se	He	Lm	Mg	Ру	Ср	Cu (%)	Au (g/
0	24.99	Overbu	rden (Ca	sing (82')																							
24.99	25.30	Rubble	, ground	pebbles. N	lo sam	ple			,																		
25.30	48.30	1			•): Green-co tic and non			weakly	develop	ed brec	cia te	xture	. Per	vasiv	e str	ong c	arbor	nate r	eplac	eme	nt al	teratio	on ar	nd wea	k to mode	rate
		FC	27.07	27.21	45	147601	25.30	27.54	2.24	101%	Vax				r2	r2	r5		f4			f2				0.002	0.08
		ВС	28.85	30.00		147602	27.54	30.30	2.76	71%	Vax				r2	r2	r5		f5							0.018	0.17
		ВС	31.00	31.50		147603	30.30	32.31	2.01	97%	Vax				r2	г2	r5		f4							0.000	0.03
						147604	32.31	34.32	2.01	101%	Vax				r2	г2	r5		f2		r1			-		<.001	<0.03
		ВС	34.55	35.05	30	147605	34.32	36.30	1.98	98%	Vax				r2	r2	r5		f5							0.001	<0.03
		ВС	37.65	38.10		147606	36.30	38.40	2.10	97%	Vax				r3	r2	r5		f5							0.001	0.16
					1	147607	38.40	40.30	1.90	100%	Vax				r3	r2	r5		f4							0.001	<0.03
					+-	147608	40.30	42.30	2.00	100%	Vax				r3	r2	r5		f4							0.008	0.06
		тѕ				147609	42.30	44.30	2.00	99%	Vax				r3	r2	r5		f2							0.004	0.08
			_		_	147610	44.30	46.33	2.03	97%	Vax				r3	r2	r5		f2							0.001	<0.03
					+	147611	46.33	48.30		98%	Vax					 	r5		f2							0.000	<0.03
48.30	54.86	Andes	ite Tuff (Vat): Very	strong	carbonate	- chlorite -	epidote				pre-e	existir	ng tex	xture	s. C	ore ha	as a v	егу "	bleac	hed"	арр	earan	ce.	ll		L
					T -	147612	48.30	50.31	1	т	r						r5		f2							0.001	<0.03
		<u> </u>				147613	50.31	52.08	1.77	104%	Vat						r5		f3							0.001	<0.03
		52.08 -	54.86 Fa	ult Zone w	ith str	ong calcite	veining ma	arking bo	ttom of	zone. V	eining is	irreg	ular	and g	gene	rally	at low	ang	les.	L 1			L1		J		
			52.08		10	147614	52.08			т	т	ΙĬ					v5		f3							0.005	0.26
		54.86 -	63.01 da	rk-grey co	re with	weak to m	oderate ca	arbonate	- chlorit	e - epod	ite alte	ation.	We	akly	magı	netic		L		L			•				
					1	147615	54.86	57.00	2.14	100%	Vat				r3	г3	v5						d1			0.023	0.05
						147616	57.00	59.00		103%	 	 			г3	r4	v4						d2		 -	1	<0.03

Page: 2 of 7

MAJ	OR UNIT			STRU	CTURE				SAMPLES			LITH			A	LT CO	DE (1 :	trace,	, 5 = ve	yy stro	ng)				MIN (ODE		NALYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	O CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi					Si			He	Lm	Mg	Ру	Ср	Cu (
							147617	59.00	60.97	1.97	99%	Vat				r3	r4	r1		f1				d2			0.0	0.0>
							147618	60.97	63.01	2.04	100%	Vat				r3	r4	r2		f1				d2			<.0	0.0
63.01	73.90): Green-co					d brec	cia te	xture	. Bre	eccia	fragn	nents	are	monz	onite	porp	hyry.	Per	vasi	e we	ak to mo	derate
		carb	onate	e-chlorite-	epodite a	Iterati	ion. Weak			T	T				-	1	Γ.	T.	_	T		1				т.	T	
				ļ	-		147619	63.01	65.00							r3	r4	r1		-	ļ			d2		<u> </u>	0.0	
						ļ	147620	65.00	67.00							г3	г4	r2	ļ	-	ļ		-	d2	ļ	ļ	0.0	
							147621	67.00	69.00		1	L				r3	r2	r4		f2	<u></u>	<u> </u>		d1		<u> </u>	0.0	0.0
		69.0	0 - 7	3.90 Light	er green-	colou	red core a	nd the beg	inning of	noticab	le chalc	opyrite i	n gre	y qua	artz '	veins.	Nor	n-ma	gneti	C.	1	1	,				·	
			FC	69.33	69.98	30	147622	69.00	70.48	1.48	94%	Vax				г3	r2	r2	v1	f5	<u> </u>	v1			v1	v1	0.0	4 <0.0
			QV	71.85	72.52	5	147623	70.48	72.52	2.04	102%	Vax				г4	r3	r1	v2	f2		v3			v2	v3	0.0	9 <0.0
			FC	73.56	73.62	40	147624	72.52	73.90	L	1					r3	r2	г4	v1	r1		r2			v1		0.0	: -
73.90							Monzonite ong with st																	inclu	ding	ghos	t porphyr	y.
		MOG	erate	carbona	te anerau	on, an	147625	73.90	76.00	· · · · · ·			ppyrit	e mii	lerai	r4	r4	r1	ea. w	f1	mag	neuc		d1	Γ		0.0	0.0
				 					78.03							r4	r4	r2	-	11				d2	-		0.0	
							147626	76.00			<u> </u>			-				12	-	f1	ļ	-		d2 d1	-			
					ļ		147627	78.03	80.02	1.99	1					г4	r3	+	 	ļ.,	-						0.0	
							147628	80.02	82.00	1.98	 					г4	r3	r2	+	f1	ļ <u>.</u>			d2			0.0	
							147629	82.00	84.00	2.00	<u> </u>					r4	r3	r2	ļ			ļ	├	d3			0.0	
					ļ		147630	84.00	86.05	2.05						r4	r2	r3		ļ	-	-		d2		┼—	0.0	
				ļ		-	147631	86.05	88.00	1.95	+					r4	r2	r2		<u> </u>	ļ		ļ	d1			0.0	
							147632	88.00	90.00	2.00	100%	lmx				г4	r3	r3	<u> </u>		<u> </u>			d2			0.0	
						<u></u>	147633	90.00	92.00	2.00	98%	lmx				г4	r3	г4				r2		d1	<u> </u>	-	0.0	25 0.0
							147634	92.00	94.00	2.00	102%	lmx				۲4	۲3	r3						d1			0.0	0.0
							147636	94.00	96.04	2.04	100%	lmx				r3	г3	r2						d1			0.0	0.0
							147637	96.04	98.00	1.96	102%	lmx				г4	r3	r3						d1			0.0	0.0
							147638	98.00	100.08	2.08	99%	lmx				г4	r3	r4						d2			0.0	0.0
		100.	.08 -	105.03 Ve	ery strong	carbo	onate repla	cement a	teration o	bscure	s texture	s, along	with	stro	ng c	arbon	ate v	einin	g.									
							147639	100.08	102.51	2.43	99%	la				r4	r3	г4						ď2			0.0	0.0>
			FC	102.02	102.11	70	147640	102.51	105.03	2.52	100%	la			_	г4	г4	r4		f3		r2		d1	v2		0.0	12 0.0
		\vdash	CV	103.10	105.03	+	 	 			+	1		 	1	1		1	+	+-	+	1			1	1		

Page: 3 of 7

MAJ	OR UNIT			CTURE				SAMPLES	_		LITH			ALT C	ODE (1	= trace,	5 = very	strong)			MIN	CODE	ANA	ALYSIS
rom (m)	To (m)	Notes Co	le From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi						He Lr	n Mg	Ру	Ср	Cu (%)	
105.03	ĺ	interval	including	Intrusive t	reccia	carbonate a, volcanic magnetic.	tuff, and p																	
						147641	105.03	107.18	2.15	98%	х			r3	r3	r4				d1			0.112	0.0
		cv	107.76	108.03	30	147642	107.18	109.10	1.92	101%	х		-	r3	r3	r5				d2			0.001	<0.0
						147643	109.10	111.68	2.58	99%	х			r2	r2	r2				d3			0.000	<0.0
						147644	111.68	114.50	2.82	100%	Х			r2	r2	г4			f1	d1			0.000	<0.0
114.50		Pervasi	ve modera	te to stror	ng car	breccia de bonate veir 206.54 ex	ning and c	arbonate	replace	ment al	teration	along	y with	moder	ate ep	idote-	chlorite	e alterati	ion. Con					
		ВС	115.90	116.00		147645	114.50	116.50	2.00	98%	ix			r3	r2	г4				d2			0.001	<0.0
						147646	116.50	118.55	2.05	100%	lx			r2	r3	r4				d2			0.004	0.1
						147647	118.55	120.50	1.95	103%	lx			r2	r2	r3				d3			0.001	<0.
						147648	120.50	122.50	2.00	99%	lx			r3	r2	r4				d3			0.001	<0.
						147649	122.50	124.48	1.98	96%	lx			r3	r2	r3				d3			0.001	<0
						147650	124.48	126.50	2.02	102%	lx			r4	r2	r4				d3			0.001	<0.
						147651	126.50	128.52	2.02	99%	lx			r2	r2	г3				d2			0.024	0.
						147652	128.52	130.50	1.98	102%	lx			r2	r3	r4				d2			0.000	<0.
						147653	130.50	132.64	2.14	95%	lx			r2	r3	r3				d2			0.000	<0
						147654	132.64	134.78	2.14	100%	lx			r2	r2	r2				d2			0.001	<0.
						147655	134.78	136.96	2.18	98%	lx			r2	r2	r3			-	d3	d2		0.005	<0.
						147656	136.96	138.99		101%	lx			r3	r3	r2			ļ	d3	d3	1	0.017	<0.
						147657	138.99	141.02	 		 			r2	r2	r4			-	d3			<.001	
-						147658	141.02	142.96	1.94					r2	r2	r3				d2		1	0.001	
				<u> </u>	-	147659	142.96	145.08	 		 			r3	r2	r2			г1	d2	-	11-	0.000	
					ļ	147660	145.08	147.07		 	ļ			r3	r3	r2		_		d2	+-	-	0.001	-
		 		-		147661	147.07	149.06		-	 			r3	r3	r3				d2	+-		0.000	
		CV	+	149.70	5	147662	149.06	151.01	1.95		 			r2		r3				d1		+	0.004	
		CV	151.40	152.05	45	147663	151.01	153.15	·					r3		r3			+	d1	-		0.007	
						147664	153.15	154.75	1.60	99%	lx			r3	r3	r3	1 1		r2	d1			0.001	<0.0

MA	JOR UNIT	- 1		STRU	CTURE				SAMPLES			LITH			A	LT COL	DE (1 =	trace,	5 = ve	ery stroi	(פר				MIN	CODE	A	NALYSIS
om (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Еp	Ch	Ca	Si	Су	Se	He	Lm	Mg	Ру	Ср	Cu (%) Au(g
			FC	154.75	156.15	10	147665	154.75	156.15	1.40	93%	FZ				r3	г4	r2		f5					b2		0.08	3 <0.0
							147666	156.15	158.00	1.85	103%	ix				r3	r3	r5						d1			0.00	7 0.0
							147667	158.00	160.32	2.32	99%	lx				r3	г3	г4						d2			0.00	7 0.0
							147668	160.32	162.48	2.16	98%	lx				r3	г3	r4				r2		d3			0.00	0.0
							core which																					
							an the mate te to strong			te altera	ition of th	ne matri	ix is n	node	rate t	o be	gin w	ith ar	nd pr	ogres	sively	incre	eases	s with	n dep	th. F	Pervasive v	veak
		uisse	51 (III I C	ileu magi	Teute. IVIC	Juera	147669	162.48	164.52	2.04	102%	lx	p2	<u> </u>		r3	r3	r4						d2	T	Ţ	0.00	8 0.0
					ļ	 	147670	164.52	166.51	1.99		<u> </u>	p2			r3	r3	r4	v1	 				d2	v1	v1	0.01	+
							147671	166.51	168.48	1,97			p2	-		r4	r3	r3	+-					d2	-	 	0.00	
				<u> </u>			147672	168.48	170.50	<u> </u>		 	p3		-	-	r3	r3	-	-				d2	 	-	0.00	
					ļ	-	147673	170.50	172.52	 			p3	<u> </u>	-	r3	г3	r4	+	├			-	d2	-	+	0.00	
							147674	172.52	174.50	1.98			p3		-	r4	r3	r3	\vdash					d2		+	0.00	
						 	147675	174.50	176.53	2.03			p2	 		г4	r3	r3	+	-		r3			-	-	0.00	-
			FC	177.26	177.27	50	147676	176.53	178.50		 					r4	r3	r4	+	f2	-			d1	-	-	0.01	
				177.20		-	147677	178.50	180.50							r3	r3	r3		f4				d1			<.00	-
			ВС	180.75	181.71	 	147678	180.50	182.56	2.06						г3	r3	r3	-	-				d1	-	+-	0.00	
				100.70			147679	182.56	184.50			 	r1		<u> </u>	-	r3	r3	-	ļ				d1	-	-	0.00	
						 	147681	184.50	186.50	 				 		r2	r3	r2	\vdash	 			_	d2		-	0.00	
		186	50 - 2	20 48 Sn	nall speci	ks of a	disseminat			L		L	mod	derat	e to s	L	L	<u>ــــــــ</u> ـ	eining		L	L			<u> </u>	<u></u>	1 0.00	1 10
		1			inan opoor		147682	186.50	188.50		T	r	,			r2	г3	r2		, 		r2		d2	Γ	T	0.00	0 <0.0
							147683	188.50	190.50					-		 	r2	r3	-			r2		d2		+	0.00	
							147684	190.50	192.50				p2			r2	г4	г4	-			r2		d1		-	<.00	
			FC	194.18	194.24	50	147685	192.50	194.51	2.01	 		P-			r3	r3	г4	-	f3		12		d1		-	0.00	-
			FC	194.85	194.92	30	147686	194.51	196.50		 		p2			ļ	r3	г2	-	f3		r2		d3			0.00	
				104.00	104.02		147687	196.50	198.47	1.97		 	P-			12	г3	12	-			r3		d3	-	-	0.00	
						 	147688	198.47	200.48	2.01	 		р3			г3	r3	12	 	-		12		d2		-	0.00	
			FC	201.02	201.35	50	147689	200.48	202.50			-	р3 р3	-		r3	r3	r2	v1	f4		r3	-	d1	-		0.00	+-
		\vdash	FC	201.02	201.33	40	147690	202.50	204.47	1.97	 		r3			r3	r3	r4	v1	17		r2		d1		-	0.00	+
	-	├ ─┨	BC	204.24	204.20	40	147691	202.30	206.54			 -	13		ļ		13 13	r2	V 1	-		12		d1	-	-	0.00	
				L	chalcopyri		L	L		L	9970	<u></u>	ارا	L	L	ار	13	12			L			u i	L		0.00	9 0.1

LAM .	OR UNIT			STRU	CTURE				SAMPLES			LITH			Δ	LT CO	DE (1 :	: trace	, 5 = ve/	rv stron	n)				MIN	CODE	ANA	LYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #		To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Ep			Si		Se	He	Lm	Mg	Py	Ср	Cu (%)	Au (g/t)
							147692	206.54	208.48	1.94	101%	lx	р5			r3	r3	r2	v3			r2		d2	v2	v3	0.027	0.238
			L				147693	208.48	210.50	2.02	100%	lx	p5			p4	г3	r2	v2			r1		d2	v2	v2	0.026	0.273
							147694	210.50	212.50	2.00	99%	İx	p4			r4	r3	r3	v2			r1		d2	v 2	v3	0.037	0.421
							147695	212.50	214.45	1.95	103%	lx	r5			r4	r3	r2	v2			r2		d2	v3	v4	0.064	0.470
							147696	214.45	216.50	2.05	100%	ìx	r5			r4	r3	r3	v2			r1		d2	v3	v3	0.040	0.230
							147697	216.50	218.53	2.03	96%	lx	r4			r4	r2	v1	v2			r2		d2	v3	v3	0.029	0.188
							147698	218.53	220.48	1.95	100%	İx	r4			r4	r3	r3	v3			r1		d3	v2	v4	0.038	0.275
							147699	220.48	222.50	2.02	100%	lx	г4			r5	r3	г3	v3					d3	v2	v4	0.047	0.333
							147700	222.50	224.50	2.00	99%	lx	r3			г4	r2	r3	v2					d2	v1	v2	0.034	0.294
			ВС	225.42	225.52		147701	224.50	226.48	1.98	99%	lx	r4			г4	r2	r3	v 1					d2	v2	v2	0.034	0.426
			FC	228.38	228.40	30	147702	226.48	228.52	2.04	100%	lx	г5			r4	r2	r2	v1					d2	v3	v2	0.038	0.302
							147703	228.52	230.52	2.00	99%	lx	r3			r3	r2	г4						d2			0.024	0.221
							147704	230.52	232.50	1.98	97%	lx	r3			r3	r2	r3	v1					d2	v1	v1	0.026	0.256
							147705	232.50	234.50	2.00	98%	lx				r3	r2	г4	v1					d2	e2	v2	0.046	0.289
							147706	234.50	236.33	1.83	103%	lx				r3	r2	v3	v1					d1		v1	0.047	0.335
			FC	236.65	237.02	40	147707	236.33	237.35	1.02	100%	lx				r3	r4	f4				f4			d4		0.053	0.345
			,				147708	237.35	239.49	2.14	101%	İx				r2	r1	г4	v2			r2		d1	v2	v3	0.047	0.305
							147709	239.49	241.50	2.01	99%	lx	р3			р3	r1	r4	v2					d3	v2	v3	0.051	0.209
							147710	241.50	243.49	1.99	100%	lx	рЗ			рЗ	r1	r2	v1					d2	v1	v2	0.045	0.247
							147711	243.49	245.58	2.09	99%	lx	p4			рЗ	r1	r2	v1					d2	v1	v1	0.041	0.240
							147712	245.58	247.50	1.92	98%	lx	p5			р3	r1	r3	v1					d2	v1	v1	0.027	0.184
							147713	247.50	249.49	1.99	103%	lx	p5			р3	r1	r1	v1					d2	v1	v2	0.020	0.090
			FC	251.49	251.51	45	147714	249.49	251.51	2.02	100%	lx	p2			r3	r1	r1	v1			f3		d1	v2	v2	0.038	0.154
							147715	251.51	253.50	1.99	101%	lx	p4			p4	r2	r1	v2			r1		d3	v3	v4	0.103	0.521
		253	.50 - 2	266.21 T	he charac	ter of	the breco	ia become	s matrix	domina	nt with fe	wer fra	gme	nts ar	nd fre	eque	nt int	erval	s of fir	ne-gr	ained	mat	rix or	ıly.		i		<u> </u>
							147716	253.50	255.50	2.00	100%	lx	p 4			p4	r1	r3	v2					d3	v3	v3	0.052	0.245
							147717	255.50	257.50	2.00	99%	lx	p4			p5	r1	r1	v1					d2	v1	v1	0.017	0.106
							147718	257.50	259.50	2.00	101%	lx	p4			p4	r1	r1	v2					d1	v2	v2	0.061	0.247
							147719	259.50	261.50	2.00	95%	lx	r4			p5	r2	r3	v1			f2		d2	v1	v1	0.027	0.234
						!	147720	261.50	263.66	2.16	99%	lx	p4			p4	r3	r3	v1			f2		d2	v1	d1	0.030	0.351

Page: 6 of 7

MAJ	IOR UNIT			STRU	CTURE				SAMPLES			LITH			Al	LT CO	DE (1 :	= trace	, 5 = ve	ry stron	9)				MIN (ODE	ANA	LYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	CA	 	From (m)	To (m)	1	Rec.	CODE	Ks	Bi	Ab	Ep	Ch	Ca	Si	Су	Se		Lm	Mg	Ру	Ср	Cu (%)	Au (g/t)
				<u> </u>			147721	263.66	266.21	2.55	1	L	p4			p4	r3	r3	v1			f2	L	d2	v1	v1	0.032	
266.21	337.11																										lerate to str .50 except	
								s of chalco					ou py	ine ai	iu ci	iaico	pynic	, ,,,,,,,	CIANZ	auon	шор	5 011	ianiy	quic	KIY D	y 202.	.50 except	OI .
							147722	266.21	268.48	2.27	102%	id	r3			r4	г3	v2	v2			f1		d3	v3	v3	0.119	1.186
			QV	270.10	270.26	10	147723	268.48	270.44	1.96	97%	ld	r3			r4	r3	r1	v1			f1		d2	v1	v1	0.025	0.099
							147724	270.44	272.50	2.06	98%	ld	г3			r5	r4	r1	v1			f3		d4	v2	v2	0.033	0.240
							147726	272.50	274.44	1.94	103%	ld	r3			r4	r4	f2	v1			f1		d4	v1	v1	0.038	0.233
					<u> </u>		147727	274.44	276.46	2.02	100%	ld	r3			r3	r4	r2	v1			f2		d4	v1	v2	0.046	0.232
							147728	276.46	278.58	2.12	100%	ld				r3	r4	r5	v2			12		d1	v3	v1	0.040	0.172
			CV	177.19	177.22	40	147729	278.58	280.50	1.92	101%	ld				r3	r4	r5				r2		d4		d1	0.048	0.137
			FC	280.79	280.87	45	147730	280.50	282.50	2.00	100%	ld	ļ			r3	r4	r5	v1			r3		d2	v2		0.023	0.136
			QC	284.23	284.34	20	147731	282.50	284.63	2.13	96%	ld				r3	r4	r5	v2	f3		f2		d2	ь3	b3	0.047	0.070
			QC	285.65	285.68	45	147732	284.63	286.56	1.93	99%	ld				r3	r4	r4	v2	f2		f2		d2	b2	b3	0.050	0.049
							147733	286.56	288.57	2.01	101%	ld				r3	r3	r4		f3				d4			0.006	0.118
							147734	288.57	290.54	1.97	97%	ld				r3	r3	r5		f2				d3			0.011	0.112
							147735	290.54	292.53	1.99	98%	ld				r3	r3	r5		f2				d3			0.033	0.154
			FC	292.93	293.10		147736	292.53	294.52	1.99	103%	ld				r3	r3	r5		f3				d3	f4		0.188	0.042
							147737	294.52	296.53	2.01	100%	ld				r3	r3	r5		f3				d2			0.007	0.058
							147738	296.53	298.50	1.97	100%	id				r3	r3	r5		f2				d3			0.010	0.046
							147739	298.50	300.50	2.00	95%	ld				r3	r4	r5	v1	f3				d3		v1	0.017	<0.034
							147740	300.50	302.50	2.00	102%	ld				r3	r4	r4		f2		r3		d1	1		0.029	0.038
			CV	302.99	303.00	5	147741	302.50	304.50	2.00	100%	ld				r4	r4	r5		f2		f3		d1	v1	v1	0.057	0.034
					 		147742	304.50	306.44	1.94	100%	ld				r4	r4	r5		f2				d1			0.060	0.069
							147743	306.44	308.47	2.03	99%	ld				r3	r3	r3						d3			0.003	0.044
							147744	308.47	310.52	2.05	102%	ld		-		r3	r4	r4		f3				d3			0.003	<0.034
							147745	310.52	312.47	1.95	94%	ld				r3	r3	r3	v1	f3				d3			0.001	0.048
							147746	312.47	314.47	2.00	100%	ld				r3	r4	r2		f4				d4			0.005	<0.034
			вс	312.50	312.61		147747	314.47	316.50	2.03	100%	ld				r3	r4	r3		f4				d3			0.037	<0.034
			cv	318.00	318.10		147748	316.50	318.50	2.00	101%	ld				r3	г4	r2	f4					d3			0.006	<0.034
					-		147749	318.50	320.48	1.98	102%	ld				r3	r3	r4		f3				d2			0.005	<0.034

MAJ	MAJOR UNIT STRUCTURE								SAMPLES			LITH			AL	LT COI	DE (1 =	trace,	5 = ver	ry stror	ng)				MIN C	ODE	ANA	ALYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Еp	Ch	Ca	Si	Су	Se	He	Lm	Mg	Ру	Ср	Cu (%)	Au (g/t)
							147750	320.48	322.47	1.99	99%	ld				г3	г3	r2		f3				d2				<0.034
							147751	322.47	324.50	2.03	102%	ld				г3	г3	г4		f2				d3			0.008	<0.034
							147752	324.50	326.50	2.00	91%	ld				r3	г3	г3		f4				d1	v3		0.008	<0.034
			FC	325.51	325.54	45	147753	326.50	328.46	1.96	99%	ld				г3	г3	r3		f3				d2			0.002	<0.034
			FC	326.91	326.93	60																						
							147754	328.46	330.40	1.94	101%	ld				r 4	г3	r3		f1				d1			0.002	<0.034
			ВС	330.40	331.55		147755	330.40	332.49	2.09	100%	ld				г4	г3	r3		f3		f3			v2		0.001	<0.034
			ВС	334.00	334.17		147756	332.49	334.70	2.21	98%	ld				г3	г3	r3		f1							0.001	<0.034
			-				147757	334.70	337.11	2.41	98%	ld				г3	г3	12		f1							0.005	0.047
337.11	E	ЕОН																										

Seaff

Page: 1 of 3

ACID TESTS Interval: 0 to 153.92 Woodjam Property: Start Date: November 27, 2004 Dip Meas. Dip Cor. WJ04-41 DDH: Core Size: NQ 4.57 -52 -45 Completion: November 30 2004 50S 10E **Grid Cord:** Azimuth: 114° Logged By: Jay W. Page Section: **50S** Inclination: -45° Date logged: Nov. 28 - Dec. 1, 2004

NOTES: GPS collar location was 10U 610366 5790789 (NAD 83). Average recovery was 97.69%. Water line length was 600 feet. The diamond drill used was a skid-mounted Long Year 56 owned by LeClerc Drilling Ltd. First run was calculated by drillers to be 5 feet based on a 13 foot core barrel minus 8 feet from the ground surface to the top of the head in the down position, subsequent runs were numbered in "5's", conversion to metric was carried out by the geology crew. Recovery was measured between sample intervals. Casing was left in the hole. Core was logged prior to splitting. Samples numbered from 147801 to 147869 were analysed by TeckCominco Global Discovery Labs. Petrographic work consisting of 1 thin section (129.70m) was carried out by Harris Exploration Services.

MA	JOR UNIT			STRUC					BAMPLES			LITH			AL	T COI	DE (1 =	trace,	5 ≃ ve	ry stror	ng)				MIN	CODE		ANAI	YSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Еp	Ch	Ca	Si	Су	Se	He	Lm	Mg	Py	Ср	Мо	Cu (%)	Au (g/t)
0	3.05	Overt	ourden	(Casing (10')																								
3.05	30.35	1				•): Intrusive								•							_							nts
				~ ~			spar phen	•	•		-								_						_				
		1				•	cement at		loderately	/ magn	etic. Inv	aded	by nu	ımer	rous 1	- 4 n	nm g	rey q	uartz	veins	s whic	h car	ry ch	nalco	pyrite	e and	pyrite	and cu	t the
		core a	at gen	erally low	angles, a	verag	ging about					т. —							1	T						1			
							147801	3.05	6.50		67%	lmx	+			r4	r3	v2		f5			-	d2		d2		0.192	
							147802	6.50	8.55	2.05	93%	lmx	r3	_		r4	r3	v1		f2				d3	v2	v5		0.322	2.929
							147803	8.55	10.53	1.98	84%	imx	r4			r4	r3	v1	v5	f3			<u>r2</u>	d3	v2	v5		0.137	1.318
							147804	10.53	12.52	1.99	102%	lmx	r4			r4	r2	v2	v4	f1			f2	d2	v1	v4		0.114	1.084
							147805	12.52	14.56	2.04	99%	!mx	r4			r4	r3	v1	v 3	f1			f2	d2	v 2	v3		0.100	0.886
			FC	15.45	15.73	10	147806	14.56	16.50	1.94	107%	lmx	r3			r3	r2	v4	v4	f2				d3	v2	v4		0.127	1.173
		1					147807	16.50	18.52	2.02	98%	lmx	r3			r4	r2	cv1	v5				f2	d4	v2	v5		0.257	2.929
		†	 -				147808	18.52	20.50	1.98	101%	lmx	r3	1		r4	r2		v4				f2	d4	v2	v4		0.109	0.962
			\vdash			l	147809	20.50	22.49	1.99		 	r4			r4	r3	v1	v3				f2	d2	v1	v4		0.135	1.103
		 					147810	22.49	24.45	1.96	101%	lmx	r4	†		r5	r3	v2	v3					d4	d1	v4		0.136	1.549
		 				<u> </u>	147811	24.45	26.50				r4	-		r4	r2	v2	v2	1				d2	v1	v3		0.082	1.045
		 				 	147812	26.50	28.50	-			r3	1	-	r4	r3	v3	v3				f2	d3	v1	v4		0.079	0.907
		 -					147813	28.50	30.35			lmx	r4	 	-	r4	r4	v2	v3	<u> </u>	1			d3	v1	v4		0.124	1.269
30.35	42.45	1 -44	T#	()/H): Fina	arainad	ton	coloured v						1	and:	this ha			1	1	iman	v texti	ires h	1	<u></u>		1	ed/be		
30.35	43.45	anne	e i uii arance	(VIL). Fille a (at 50* - 1	-graineu 70* C∆\-	, laii-1	ests that it i	s most like	elv a tuff.	Variati	ons in r	orphy	vritic (chara	acter v	vith s	sharp	cont	acts i	mav t	oe due	e to c	ross-	-cutti	na fe	ldspa	ar port	ohvry dy	kes.
							as above.													,								.,,	
		,	lcv	31.75	31.93		147814	30.35	32.51				r3	T		r4	r3	v3	v2	f2		f1	1	d2	v2	v3		0.171	1.752
			ВС	33.48	33.98	+	147815	32.51	34.47	ļ			r2		+	r3	r1	v5		f3		f1		d1	v2	f3		0.112	1.085
				33.40	55.50	-	147816	34.47	36.57	2.10			r3	+	-	r3	r1	r4	v1					d2	f2	f3		0.079	0.774
			 				147817	36.57	38.43			1	r1	 	+	r4	 	v2	v2					d2	v2	v3		0.067	0.631
		1	\vdash			-	147818	38.43	40.50	<u> </u>	108%		1	-	+	r2	+	v1	v1	-			_	d2	v1	v1		0.083	0.704
		-	BC	14.45	40.00							_	+	-	-	12	+	v2	v1	-	-	f2	-	d2	v2	v2		0.072	
			BC	41.15	42.98	1	147819	40.50	43.45	2.95	99%	VIT	L	<u>i</u>		12		VZ	VI	l	l	12		u i	VZ	VZ		0.072	0.000

M	AJOR UNIT			STRU	CTURE				SAMPLES			LITH	}		A	LT CO	DE (1	= trace	, 5 = ve	erv stroi	na)				MIN	CODE		ΔΝΔ	LYSIS
From (m)	To (m)	Notes	Code	From (m)	To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Ęр	Ch				Se	He	Lm	Mg	_Py	Ср	Mo		Au (g/t)
							147889	45.50	47.50	2.00	100%	lmx	r2			r4	r3	v3	v3			f2		d3	v1	v5		0.115	
						<u></u>	147890	47.50	49.51	2.01	100%	lmx	r1			r4	r4	v3	v2					d2	v1	v3		0.108	0.789
							147891	49.51	51.55	2.04	100%	lmx	r2			r5	г4	v3	v2					d2		v3		0.094	0.627
							147892	51.55	53.50	1.95	99%	lmx	r2			r5	г5	v4	v2					d2		v2		0.129	0.927
							147893	53.50	55.50	2.00	102%	lmx				r4	r5	v4	v3			f3		d2	v3	v4		0.144	1.064
							147894	55.50	57.50	2.00	103%	lmx				r4	r4	v3	v2					d3	v1	v4		0.147	1.134
							147895	57.50	59.52	2.02	100%	lmx				r5	r3	v2	v3			f2		d3	d1	v4		0.169	0.957
							147896	59.52	62.16	2.64	101%	lmx				r5	r3	v2	v5			f1		d2	d2	v5		0.166	0.966
62.16	88.94						red intrusi				ny brol	cen and	d clay	-rich	zone	s. M	loder	rate t	o ver	stro	ng ca	rbona	ate-c	lay a	ltera	ion, n	node	rate epi	dote
		alter	ation.	Mineraliz	zed by cha	alcopy	rite in mod		T	T	2001	1.	Г			T -				T				T.a		Т.			1 404
		ļ			ļ		147897	62.16	64.04	1.88						r3	r5	v2	+	_				d3	-	v4			1.181
		├			-		147898	64.04	65.42	1.38		 	_	 		r4	r4	v2	v3					d1	-	v3		0.121	0.715
		ļ	BC	65.42	67.46	ļ	147899	65.42	67.46	2.04	97%	· -	r2			r3	r1	v3	v2	f5					f2	v2		0.116	-
L				68.78	69.50	 	147900	67.46	69.50	2.04	99%		-			r3	_	v2	v3	f5					f4	v3		0.164	
<u> </u>		+		69.50	70.05		147901	69.50	71.54	2.04	93%	la		-		12	r1	v4	v4	f4		-		ļ	f2	v4		0.173	0.887
		+	BZ	71.20	71.54	-					1000	 				<u> </u>		-	+_	<u> </u>		 			_	 -			
	 		BZ	71.54	72.85	-	147902	71.54	73.50	1.96						r4.		v2	v3	f2		-			v2	v2		0.139	
		+	ВС	73.73	74.08		147903	73.50	75.53	2.03	98%		ļ			r3		v3	v2	f3		f3				v2		0.125	
		-	ВС	75.83	77.16	-	147904	75.53	77.48	1.95	98%	la				12		v5	v3	f5		f2			v 2	v 2		0.118	0.638
	ļ	-	QV	75.82	75.83	50	ļ					ļ. —				<u> </u>	-	+_	<u> </u>			-			<u> </u>	-			
ļ		-	ВС	77.82	78.27	ļ	147906	77.48	79.49	2.01	100%		ļ			r3	-	v5	v3	f5				ļ	v3	v 2		0.131	0.692
		 	ВС	80.77	80.96	ļ	147907	79.49	81.58	2.09			r1			r3	r3	v3	v3	f2		v3		ļ	v2	v4		0.139	
	-				ļ		147908	81.58	83.55	1.97	99%		г3	-		r3	r3	v4	v3	f2		f3			V1	v4		0.098	
		ļ		ļ		-	147909	83.55	85.45	1.90			├—	-		r3	r1	V4	v3	f2		f2			v1	v4		0.129	
		ļ		<u> </u>		<u> </u>	147910	85.45	86.87	1.42			ļ			r3	f3	v4	v2	f2		f1			v1	v2		0.104	
00.04	00.70			86.87	88.94		147911 c): A hard,	86.87	88.94	2.07	97%		<u></u>	roby to		r3	f4	v4	V2	f5		f2			v1	v2		0.081	0.460
88.94	96.76						t): A nard, strong chal							pny	y ore	ccia	ırayı	пепа	s, ivic	uerai	e lo :	strong) poi	assic	anu	Stron	g epi	JOLE-CII	IOIILO
	-	aitor		88.94	modera	55	T	88.94	91.00	2.06			r2			r4	r4	v3	v3	T		f2	_	d3	1	v4		0 152	0.719
	 	 	<u> </u>	00.34		100	-	91.00	92.96	1.96	+	lmx	r2	-		r4	r4	v2	v5	+		<u>-</u> -		d1	-	v5			0.758
	+	TS					147914	92.96	95.07	2.11	107%		r3			r4	r4	v2	v5			-	_	d1	_	v5			0.598
		+			+	-		95.07	96.76	1.69			r5			r3	r1	v2	v4	f5		-		<u> </u>	-	v4			0.611
96.76	138.57	Mon	zonite	(lm): Do	minantly	monze	onite (Im)	i					L	nd les	SOF						his u	nit be	ains	with	an in	1	of st		
55.75	.55.57	carbo	onate netite.	altered b	reccia in a	a fault ate to	zone which strong epic etite replac	ch extends dote-chlor	to 99.87 rite alterat	Breccia ion and	a fragme variable	ents be e, altho	twee	n 98. ocally	21 aı y stro	nd 99 ong, p	.87	are 1	- 3 ¢	m in s	ize, a	angul	ar ar	nd fin	nmed	l with	hema	atite aft	er

Page:	3	of	5
i auc.	•	OI.	

**			, ,	\$TDI	CTURE	11	i i	t)	:- 1				-		_									_	_				
From (m)	JOR UNIT To (m)	Notes	Code	From (m)		° CA	Sample #	From (m)	SAMPLES To (m)	Interval	Pas	CODE	Ks	Bí						ery stroi		u.				CODE		1	LYSIS
7.10 (1)	10 (11)		FC	96.76	97.00	30	147916	96.76	98.21	1.45			r2		Ab	r3	CIT	v3	v2	r4	Se	пе	LITT	ivig	Py	Cp v2	MO		Au (g/t) 0.342
			-		77.00	-	147917	98.21	99.87	1.66	98%		-	-		r3	+	v3	\ <u>\</u>	r5	-				-	VZ			0.342
					 	 	147918	99.87	102.00	2.13	100%		r3		-	v2	+	v5	v3	r4	-	f2		-	v3	v2			
		 			-	+-	147919	102.00	103.46	1.46	98%		13			r2		v5		f3					-	v2 v2			0.606
			ВС	104 56	104.90			102.00	105.47		98%		r4	-				v5 v5	v3	f4		f3			v3	+			0.474
			ВС	104.56	104.80		147920		+	2.01		 		-		r2	-	+	v3	14		f2			v2	v2		0.121	
					-		147921	105.47	107.57	2.10	100%		r3			r4	r3	v3	v3	<u> </u>	 -	f2		d1	v3	v3			
					1111	-	147922	107.57	109.49	1.92	99%		<u></u>	ļ		r4	r4	v3	v4	ļ <u>.</u>		r3			v2	v3			0.562
		ļ	cv	111.42	111.47	25	147923	109.49	111.47	1.98	99%		r2			r4	r4	v3	v3	ļ		r2			v2	v3			0.452
		ļ			-	<u> </u>	147924	111.47	113.50	2.03	98%		r2			r4	r4	v3	v3			r2		d1	v2	v2		0.062	0.319
					ļ	ļ	147925	113.50	115.50	2.00	101%		r2			r4	r4	v3	v3	<u> </u>		r2		d1	v2	v3		0.082	0.467
		ļ				ļ	147926	115.50	117.50	2.00	98%	lm				r3	r3	v3	v3	f3	<u> </u>	r2		d1	v1	v2		0.057	0.350
		l	ВС	117.50	117.80	<u> </u>	147927	117.50	119.57	2.07	99%	lm				r3	r3	v 3	v 3	f3		r2		d1	v1	v2		0.124	0.697
		l					147928	119.57	121.51	1.94	99%	lm				r3	r3	v 3	v 3			r2		d2	v2	v3		0.080	0.480
							147929	121.51	123.58	2.07	98%	lm	e2			r3	r3	v3	v3	T		f2		d2	v1	v3		0.057	0.387
		123.	58 to 1	29.54 A	weakly de	evelop	ed breccia	with frag	ments of	monzon	ite porp	hyry (v	ar. G	host l	Porp	hyry)					12.2					-			
							147930	123.58	125.51	1.93	101%	lmx	е3			r3	r3	v4	v3	T		f3		d2	v2	v3		0.075	0.502
		TS	1				147931	125.51	127.46	1.95	101%	lmx	г3		r2	r3	r3	v4	v3	1		f3		d1	v2	v3		0.080	0.477
		1	İ				147932	127.46	129.54	2.08	102%	lmx	r4			r3	r3	v4	v3			r3		d2	v2	v3		0.071	0.431
			ВС	130.11	130.30		147933	129.54	131.54	2.00	103%	lm	r4			r3	r3	v3	v2	1		f3		d2	v2	v2		0.103	0.674
		1					147934	131.54	133.53	1.99	98%	lm	r4			r4	r4	v3	v3	1		f2		d2	v1	v3	_	0.093	0.781
		1	cv	134.34	134.39	20	147935	133.53	134.95	1.42	101%	lmx	r4			r4	r3	v4	v4	1	-	f2	\vdash	d2	v2	v3		0.112	
		136.0	04 to 1				and clay-a	1					1	i	<u> </u>	1	1.4	1	1	1		اــــــــا				1	l		
		1	FC	136.04	136.12	T	147936	134.95	136.85	1.90		la	r2			r2	r2	v4	v2	f3		f3			Γ	v2		0.121	0.875
		 	BC	136.85		30	147937	136.85	138.60	1.75	99%		r2			12	12	v5	v1	f5		f3			-	v1			0.268
		ļ		138.50		35	147337	100.00	130.00	1.75	3370	-	12			12	-	100	-	15		13				VI		0.033	0.200
138.57	155.00	Mon					l ite breccia	(lbv) with	intervale	of mon	zonito (li	m) Me	dera	te no	tacci	c an	d etr	ng e	nidet	o chl	orite (altora	tion	Bro	ccia	froam	onte	includo	
130.37	155.00						maller, typ																						
							and pyrite																	gnet	110 111	uio ii	10140		100.00
			I		Ť <u>-</u>	Í	147938	138.60	141.00		101%		r3			r5	r4	v3	v2	T		r4		d2		v3		0.060	0.347
			cv	141.00	141.07	45		141.00	143.03	2.03	101%		r4			r5	r4	v3	v2			r4		d3		v3		0.043	
					1.41.01		147940	143.03	145.00	1.97	101%		r3			r5	r4	v2	v2			r3		d4		v2		0.049	
		TS				 	147941	145.00	146.98	1.98	99%		r3			r5	r5	v2	v1	+-				d3	f1	f2		0.039	
		-					147942	146.98	149.00	2.02			p3			r5	r5	v2 v1	v1					d3	f3	f2		0.039	0.200
					-		147942	149.00	151.00	2.02	98%	——	рз e2			r5	r5	v2	v1					d3	f3	f3		0.047	
									+		102%							 	-	-						+			
					-		147944	151.00	153.00	2.00			p4			r5	r4	v1	v1					d3	v2	v2		0.054	
		<u> </u>					147945	153.00	155.00	2.00	100%	lim	p4			r5	14	v2	v1					d3	f3	f2		0.070	0.413

From (m) 1 55.00 16	700.52	TS 160.5 sever from Latite	ding of the difference of the	9.60 Pate erent type 6 to 164.5 160.51	chy mode s of fragr 0 is domi	porph cted for erate to ments	or thin sect 147946 147947 147948 to strong p (especiall y monzoni	onzonite tion work) 155.00 156.97 159.04 otassic ar ly betwee	porphyry carry ble 156.97 159.04 160.51 and epidote n 164.50 ry. 162.56 164.50	bs of characteristics of the characteristics	ragmer alcopyri 97% 100% 98% alterat	tts. Serte. x x x x ix uding	r2 r2 r2 r2 scure crowd	albite, f f s textu	Ab E magne 2 r5 2 r5 2 r5 res and	r4 r4 r4 r4 d mak	v2 v2 v1 es ide	Si lorite v1 v1 v1 v1 entific	rich 1	Se H - 2 cm	reccia f	d4 d4 d5 entitive-gra	Py veer r/3 r/2 r/e in ined	f4 f4 d4 this in	Mo Cu (%) 00 and 160 0.076 0.085 0.084 nterval. The	0.51 0.465 0.475 0.488 ere are interval
	700.52	TS 160.5 sever from Latite	ding of the difference of the	SPECCIA (IX) SP.60 Pate erent type 6 to 164.5 160.51 Brown-co	chy mode s of fragr 0 is domi	porph cted for erate to ments	yry with mor thin sect 147946 147947 147948 to strong por (especially monzoni 147949 147951 147952	onzonite tion work) 155.00 156.97 159.04 otassic ar by betwee te porphy 160.51 162.56	porphyry carry ble 156.97 159.04 160.51 and epidote n 164.50 ry. 162.56 164.50	precial fibs of characteristics	ragmer alcopyri 97% 100% 98% e alterat .26) inci	tts. Serte. x x x x ix uding	r2 r2 r2 r2 scure crowd	albite, f f s textu	magne 2 r5 2 r5 2 r5 lires and	r4 r4 r4 d mak	v2 v2 v1 tes ide	v1 v1 v1 v1 entification	rich 1	of the borphyry	reccia fin	d4 d4 d5 entitive-gra	f3 v3 f2 re in	f4 f4 d4 this ir	0.076 0.083 0.084 0.084 nterval. The	0.465 0.465 0.479 0.488 ere are interval
60.51 20	700.52	TS 160.5 sever from Latite	1 - 16 al diff 162.5 FC	9.60 Pate erent type 6 to 164.5 160.51	chy mode s of fragr 0 is domi 160.61	erate t	147946 147947 147948 to strong p (especiall y monzoni 147949 147951 147952	155.00 156.97 159.04 otassic arry between te porphy 160.51 162.56	carry ble 156.97 159.04 160.51 and epidote in 164.50 ry. 162.56 164.50	2.07 1.47 2.07 1.47 2-chlorite and 168	97% 100% 98% e alterat .26) inc	te. x x x x ion ob luding	r2 r2 r2 scure crowd	f f s textu	2 r5 2 r5 2 r5 res and	r4 r4 r4 d mak	v2 v2 v1 es ide	v1 v1 v1 entification	ation	of the b	reccia f	d4 d4 d5 entitive-gra	f3 v3 f2 re in	f4 f4 d4 this in	0.076 0.083 0.084 nterval. The	0.465 0.479 0.488 ere are interval
60.51 20	200.52	160.5 sever from	al diff 162.5 FC	erent type 6 to 164.5 160.51 Brown-co	s of fragr 0 is dom 160.61	ments	147947 147948 to strong p (especiall y monzoni 147949 147951 147952	156.97 159.04 otassic ar ly between te porphy 160.51 162.56	159.04 160.51 nd epidote n 164.50 ry. 162.56 164.50	2.07 1.47 e-chlorite and 168	100% 98% alterat .26) inci	Ix Ix iori ob luding Imk	r2 r2 scure crowd	f s textu	2 r5 2 r5 res and dspar r	r4 r4 d mak porphy	v2 v1 es ide yry, m	v1 v1 entification nonzo	ation onite po	rphyry	and fin	d4 d5 entitiv	v3 f2 re in	f4 d4 this in , dark	0.083 0.084 nterval. The latite. The	3 0.479 4 0.488 ere are interval
60.51 20	200.52	160.5 sever from	al diff 162.5 FC	erent type 6 to 164.5 160.51 Brown-co	s of fragr 0 is dom 160.61	ments	147948 to strong p (especiall y monzoni 147949 147951	159.04 otassic ar ly betwee te porphy 160.51 162.56	160.51 nd epidote n 164.50 ry. 162.56 164.50	1.47 e-chlorite and 168	98% e alterat .26) inc	lx iori ob luding Imk	r2 scure crowd	f s textu	2 r5 res and dspar i	r4 d mak porphy	v1 es ide yry, m	v1 entification	ation on the position	rphyry	and fin	d5 entitiv	f2 re in ined	d4 this in , dark	0.083 0.084 nterval. The latite. The	3 0.479 4 0.488 ere are interva
60.51 20	200.52	sever from Latite	al diff 162.5 FC	erent type 6 to 164.5 160.51 Brown-co	s of fragr 0 is dom 160.61	ments	to strong p (especially y monzonii 147949 147951 147952	otassic ar y between te porphy 160.51 162.56	nd epidote n 164.50 ry. 162.56 164.50	e-chlorite and 168 2.05	alterat .26) inc 102%	ion ob luding lmk	crowo	s textu	res and dspar (d mak porphy	es ide yry, m	entific	ation o	rphyry	and fin	entitiv e-gra	e in ined	this in	0.084 nterval. The latite. The	4 0.486 ere are interva
60.51 20	200.52	sever from Latite	al diff 162.5 FC	erent type 6 to 164.5 160.51 Brown-co	s of fragr 0 is dom 160.61	ments	(especially monzonii 147949 147951 147952	y between te porphy 160.51 162.56	n 164.50 ry. 162.56 164.50	and 168	.26) inc	luding	crowo	s textu	res and dspar (orphy	yry, m	onzo	ation o	rphyry	and fin	entitiv e-gra	e in ined	this in	nterval. The	ere are interva
60.51 20	200.52	sever from Latite	al diff 162.5 FC	erent type 6 to 164.5 160.51 Brown-co	s of fragr 0 is dom 160.61	ments	(especially monzonii 147949 147951 147952	y between te porphy 160.51 162.56	n 164.50 ry. 162.56 164.50	and 168	.26) inc	luding	r2	led fel	dsparı	orphy	yry, m	onzo	nite po	rphyry	and fin	e-gra	ined	, dark	o.62	interva 1 0.60
60.51 20		Latite	FC (VI):	160.51 Brown-co	160.61	inantl	147949 147951 147952	160.51 162.56	162.56 164.50						r5	r5	v2	v3	T	r2		d2	v2	v3		
60.51 20		Latite) (VI):	Brown-co			147951 147952	162.56	164.50						r5	r5	v2	v3		12		d2	v 2	v3		
60.51 20		porph	(VI):	Brown-co	loured la		147952		 	1.94	1039/	١.														
60.51 20		porph	(VI):	Brown-co	loured la			164.50	100 EO				r2		r4	r4	v2	v 3		12		d3	2	f4	0.064	0.34
60.51 20		porph	(VI):	Brown-co	loured la		147953		166.52	2.02	97%	lx	p2		p4	r4	v2	v4		f2		d3	d3	v 3	0.07	0.36
60.51 20		porph	(VI):	Brown-co	loured la		• — — — — — — — — — — — — — — — — — — —	166.52	168.26	1.74	100%	lx	рЗ		p4	r4	v2	v 3				d3	f3	f3	0.056	0.27
60.51 20		porph	(VI):	Brown-co	loured la		147954		169.60	1.34			рЗ		r4	r4	v1	v1						v 2		4 0.30
			yritic 1	handiin - ^		itite di	splaying st	trong pota	assic alter	ation ove	erprintin	g mod	erate	to stro	ng epi	dote a	itera	ion.	Alterat	on higi	hlights	the w	eakl	/-dev	eloped feld	spar
				Latite (VI): Brown-coloured latite displaying strong potassic alteration overprinting moderate to strong epidote alteration. Alteration highlights the weakly-developed feld porphyritic texture. Small mafic phenocrysts are common in the following intervals: 169.60 - 171.78, 176.00 - 178.03, 188.06 - 189.97. These may be cross-cutting latit Generally weak magnetism. Weakly mineralized by chalcopyrite in grey quartz veins, which have died out by the end of this interval.															e dykes							
		Gene	rally v	veak mag	netism. \	Weak	r			r			т	have	died ou	t by th	e en	d of th	nis inte	rval.						
							147955		171.78	2.18	100%		г 5		r3	r2	v1	v1				d2	/1	v1	0.035	0.24
							147956	171.78	173.82	2.04	100%	VI	r 5		r3	r2	v1	v1				d2	/1_	v1	0.034	4 0.27
							147957	173.82	176.00	2.18	101%	VI	г 5		r3	r2	v1	v1				d2	/1	v1	0.032	0.23
		TS					147958	176.00	178.03	2.03	100%	VI	г3		r4	r3	v2	v1				d2	2	f2	0.029	0.22
							147959	178.03	179.99	1.96	99%	VI	г4		r4	r4	v3	v1				d2	12	v1	0.039	0.29
							147960	179.99	182.10	2.11	98%	VI	r5		r4	r2	v3	v2	v2			d2	/3	v2	0.035	0.28
		TS					147961	182.10	184.13	2.03	100%	VI	r5		r3	r2	v2	v2				d2	/3	v2	0.036	0.30
							147962	184.13	186.06	1.93	99%	VI	r5		r3	r2	v3	v2				d2	12	v1	0.057	0.39
							147963	186.06	188.01	1.95	105%	VI	r4		r3	12	v3	v2		-				v2	0.025	0.19
							147964	188.01	189.97	1.96	98%		r 4		r4	r3	v4	v1		_				v1	0.020	
							147965	189.97	192.04	2.07	100%		г4		r3	r2	v3	v2					/3	v2	0.056	
							147966	192.04	193.95	1.91	102%		г5		r3	12	v3	v2					/2	v2	0.034	
							147967		196.01	2.06	98%		г5		r3	12	v2			_			2		0.015	
							147968	196.01	197.99	1.98	104%		г 4		r4	г 4	v2	-					2		0.018	
	···																									
00.52 21	18.00	Latite (VI): Dark-grey coloured latite displaying pervasive strong epidote-chlorite alteration. Carbonate replacement alteration increases with depth. Small mafic phenocrys																								
00.52														. Carbonate replacement alteration increases with depth. Small mafic phenocrysts These may be cross-cutting dykes and represent a fairly significant portion of this unit.												
					-		-								-					-		-	-		ich strengt	
			•	_			se hematit	•										,		,				,		
		T					147970	200.52	202.50	1.98	98%	VI	г1		r5	r4	v2	T				d3	11	d1	0.018	0.10
							147971		204.49	1.99	101%	VI			r5	r5	v2	1					1	f1	0.032	

_			
Page:	_	٥f	_
raue.	J	OI	- 5

MA	JOR UNIT			STRU	CTURE				SAMPLES			LITH			A.	T.C.O.	DE //	- 4	<i>.</i>								-		
From (m)	To (m)	Notes	Code		To (m)	° CA	Sample #	From (m)	To (m)	Interval	Rec.	CODE	Ks	Bi	Ab	Ep	Ch		,5 = ve Si	ry stror Cy		He	l.m	Ma		CODE	Мо		LYSIS Au (g/t)
			BZ	205.43	205.78			204.49	206.50	2.01	96%					r5	r4	v3		f2		1,0		d1	· ,		1110	0.022	
			BZ	206.92	208.05	İ	147973	206.50	208.05	1.55	95%	VI				r5	r5	v5	†	f2				d1	<u> </u>			0.019	
			ВС	209.35	209.80		147974	208.05	210.09	2.04	96%	VI				r3	r2	v3		f3		r5		d1	d2		-	0.016	0.105
							147975	210.09	211.98	1.89	101%	VI				r3	r5	v3				r3		d1	d3			0.010	
			вс	212.10	212.80		147976	211.98	214.21	2.23	98%	VI				r4	r5	v3		f2				d1	d3			0.011	0.079
			cv	215.96	216.02	10	147977	214.21	216.15	1.94	102%	VI				r4	r5	v4						d1	d3			0.008	<0.034
							147978	216.15	218.09	1.94	99%	VI				r4	r4	v4		f2				d1	d3			0.007	<0.034
		anoth vein	ner int at 238 ograph	erval of s .38 Diss nic work w	trong cart seminated vas unable	onate very : e to de	o approxime-clay alter strong pyrietermine if the interva	red intrusi tization is this volca	ve. Chalo pervasive anic was i	copyrite through ntrusive,	mineral h this in extrusi	ization terval, a ve or py	is lim along yrocla	ited to with astic.	o a fe mod The	ew m erate natu	inor pota re of	blebs assic the in	in a a and e	carbo pidot ils of	nate te-chl	vein lorite	at 22 alter	28.84 ation	and . Ess	in a c sentia	uart: Ily no	z-carboi on-mag	nate netic.
			cv	218.40	218.84	5	147979	218.09	220.28	2.19	97%	Va				r3	r3	v5		f5				d1	v4	v2	v1	0.006	1.428
			QC	219.22	219.23	50													-										
			FC	220.28	222.00		147980	220.28	222.00	1.72	100%	Fz				r3	r4	v5		f5					d2			0.007	<0.034
			FC	222.00	223.73	15	147981	222.00	223.73	1.73	105%	Fz				r 4	r4	v5		f5					d1			0.006	<0.034
		223.73 - 230.00 Intrusive mega-breccia with a few feldspar porphyry fragments to 40 cm.																											
							147982	223.73	226.02	2.29						r4	r4	r5		f2		f1			d5			0.006	<0.034
			cv	227.74	227.80	40	147983	226.02	228.01	1.99			r1			r 4	r4	r5	L			r3			d5			0.011	<0.034
					228.86		1	1	230.00	1.99	104%	lx	r2			r4	r3	r4		f2		f1			d5			0.017	<0.034
		230.0	00 - 24	19.63 Car	bonate al	tered	intrusive s	howing st		zation.				,	,						,		,						
		ļ					147985	230.00	232.01	2.01	100%		r3				r3	r5	<u> </u>	f2		r2			d5				<0.034
							147986	232.01	234.01	2.00			r3			r3	r4	r5	<u> </u>			г2			d5				<0.034
		TS			<u> </u>		147987	234.01	235.99	1.98	<u> </u>		r3			r3	r4	r5	ļ			г2			d5				<0.034
							147988	235.99	238.02	2.03			r3			r3	r4	r5				r2			d4				<0.034
		ļ		238.38	238.42	20	147989	238.02	240.00	1.98			r3			r3	r3	r5	v1			r3			d5	v1	v1		0.200
				241.37	241.50		 	240.00	242.00	2.00						r4	г4	r5	-			r2		 	d5				<0.034
			BZ	242.15	242.68		147991	242.00	243.94	1.94	98%	——				r3	r2	r5				r3			d5			-	<0.034
							147992	243.94	246.74	2.80	99%		12			r2		r4	-			r3			d5				<0.034
040.00		F6:					147993	246.74	249.63	2.89	96%	Va_	r2			r2		r 4				r4			d5			0.008	<0.034
249.63		EOH					L					L	L																

APPENDIX B ANALYTICAL CERTIFICATES

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

510 - 510 Burrard St., Vancouver BC V6C 3A8

Fjordland Exploration Inc. File # A402889 Page 1

K W Au** Sample SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V P La Cr Mg Ba Ti B Αl Na % ppm ppm % mag mag mag mag mag mag mag % ppm ppm ppm ppm ppm ppm ppm ppm % ppm % ppm % % ppm ppb 3 < .01 < 2 < 8 .12 <.001 .01 <2 <2 <2 2 < .5 <3 <3 <1 <1 <1 <.01 3 < .01 < 3 .01 .52 C 202501 3 10 1055 4.91 3 <8 <2 <2 32 1.4 <3 <3 91 1.19 .076 3 6 .44 84 .07 5 .59 .07 .06 <2 934 4.46 .07 3 11 1014 5.73 2 <8 <2 <2 25 1.6 <3 <3 100 .77 .078 .33 .50 .09 .07 C 202502 60 <2 1667 2.78 4 7 C 202503 15 1205 51 488 1.2 3 11 996 5.40 <2 <8 <2 <2 26 2.8 <3 <3 99 .66 .085 - 40 44 .07 .48 .05 .06 <2 941 4.13 3 10 1095 5.31 .85 .078 5 5 4 <8 <2 <2 26 1.4 <3 <3 93 3 .38 68 .05 .45 C 202504 15 1465 79 260 1.1 .06 .06 <2 949 4.00 16 <8 <2 18 <.5 .51 .084 .57 34 .04 . 05 .05 C 202505 3 11 1152 4.68 <2 .60 2 1460 3.35 C 202506 18 1711 54 180 1.3 5 15 1445 5.86 27 <8 <2 <2 20 <.5 <3 <3 100 .90 .084 5 .73 139 .02 .61 .03 3 1884 .10 4.45 C 202507 4 17 2255 6.15 78 <8 <2 <2 45 3.2 3 <3 95 4.05 .074 8 1.40 243 <.01 .59 .03 . 14 <2 1188 3.81 5 25 2163 6.53 711 <8 <2 <2 19 .9 19 <3 73 1.11 .079 5 .69 219 <.01 <3 .38 .02 . 15 <2 779 C 202508 19 3088 97 409 1.8 4.24 21 1061 32 239 .7 3 10 1666 5.41 73 <8 <2 2 22 .7 <3 <3 77 .71 .090 .45 57 < .01 .41 . 04 .10 <2 608 C 202509 2.99 C 202510 2 9 1281 4.33 310 <8 <2 <2 23 .60 .082 .36 .04 .07 3 1466 23 2071 62 171 1.7 3 10 1568 4.72 297 <8 <2 <2 26 .5 .082 .33 216 < .01 < 3 C 202511 22 1810 76 192 1.5 <3 68 .60 .45 . 04 .11 <2 1035 4.45 4 <3 70 .55 .086 .31 836 < .01 .37 .04 2 747 3.59 C 202512 20 1669 62 177 1.1 3 10 1440 4.83 224 <8 <2 <2 29 <.5 .10 3 22 2497 5.32 101 <8 <2 2 26 1.3 5 <3 58 1.40 .076 6 1 .70 34 < .01 -45 .02 .22 <2 764 4,49 C 202513 22 1399 77 341 .9 6 4 17 2752 6.62 27 <8 <2 2 29 .8 <3 <3 85 1.21 .080 2 .64 35 <.01 5 .40 .03 .13 2 722 C 202514 4.60 1.22 .092 .52 <2 498 4 13 2288 5.45 41 <8 <2 38 1.1 <3 <3 82 .61 889 < .01 .04 .13 3.56 C 202515 <2 C 202516 21 1127 36 167 1.2 4 11 1363 4.57 69 <8 <2 2 35 <.5 <3 <3 87 .65 .092 .32 208 < .01 < 3 .42 .05 .07 2 697 2.60 3 12 1532 4.99 83 <8 <2 2 42 .5 <3 <3 93 .67 .097 4 .37 48 < .01 < 3 .55 .06 .08 3 808 4.10 C 202517 18 1377 52 195 1.1 C 202518 15 2387 67 227 1.5 3 13 1590 5.14 196 <8 <2 2 38 1.3 <3 <3 85 .59 .092 5 .35 24 <.01 6 .49 .04 .06 <2 1691 3.99 5 .089 .34 141 <.01 .52 .06 19 1741 64 205 1.5 3 11 1800 4.97 237 <8 <2 <2 38 .8 <3 <3 87 .62 .08 3 1176 c 202519 .089 3 12 2240 5.28 124 <8 <2 .9 <3 <3 86 .59 23 < .01 -48 .06 .07 <2 956 C 202520 18 1428 45 247 1.6 3 12 2232 5.27 122 <8 <2 2 40 .8 <3 <3 85 .58 .088 .29 23 < .01 -46 .06 .07 <2 1046 RE C 202520 3 11 2180 5.12 125 <8 <2 <2 38 3 <3 82 .57 .086 22 < .01 < 3 -45 .05 .06 <2 1036 RRE C 202520 18 1434 48 237 1.5 3 17 2567 5.50 332 <8 <2 <2 37 1.1 <3 81 .65 .083 8 .34 27 < .01 < 3 .45 .08 <2 1175 c 202521 17 1662 65 266 2.0 5 6 .05 3.97 2 9 54 3888 5.23 491 <8 <2 <2 53 7.1 20 3.74 .059 1.53 78 < .01 .38 .03 .13 <2 1370 C 202522 17 2581 104 425 7.0 9 <3 67 2.48 .96 507 < .01 .11 <2 1012 4.06 c 202523 4 14 3509 4.97 190 <8 <2 <2 37 3.7 .067 6 -50 . 03 2 10 2262 4.50 83 .98 .089 .40 205 <.01 20 2032 67 403 3.1 <8 <2 <2 28 1.7 6 <3 66 5 3 .46 .02 .11 <2 1236 4.21 C 202524

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

13 147 24 138 .3 26 12 765 3.01 18 8 <2 3 47 5.7 4 6 62 .76 .096 11 184

<8 <2

1 12 1864 5.72 110 <8 <2 2 46 <.5 <3 <3 93

<2

2 14 3380 5.88 83 <8 <2

2 14 2472 5.46 231 <8 <2

3 15 3265 6.90 10 <8 <2

1 12 1795 5.79 100 <8

2 13 1634 5.31 64 <8

1 11 1497 5.09 184

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

<2 <2 49

2 37 2.8

2 41 <.5

2 50 1.0

2 42 1.4 <3 <3 101

2 44 .5 <3 <3 92

2 <2 40 1.3 <3 <3 84

7 <3 80

3 <3 88

4 <3 94

.9 <3 <3 107

1.11

.80

.59

.65

.79

.75

.102

.103

.108

.098

.103

. 103

.62 .105

.61 .106

2

2

6 <1

5

8

.52 24 < .01

.44 22 <.01

.38 20 < .01

.36 22 < .01

.36 22 < .01

.44 19 < .01

.38 27 < .01

24 <.01

.33

-50 -03

.53

.59 .05

-59

.65

. 59

.66 141 .10 17 1.97 .04 .15 5 491

3

.04

.05

.04

.05

-06

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

15 2376 92 227 2.2 2 16 1675 5.01 206 <8

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

16 1803 86 463 1.5

14 740 35 416 .6

17 1636 57 210 1.1

17 1921 115 272 1.4

18 1253 55 214 1.0

C 202525

C 202526

c 202527 C 202528

C 202529

C 202530

C 202531

C 202532

.10 <2 1449

.09

.07

.09

.09

.62 .04 .08 <2 1639

.09

- 09

<2 595

3 1521

<2 970

4 1028

<2 1065

3 672

1.32

1.36

1.76

1.78

2.20

2.84

2.14

3.83

Page 2

ACITE ANALITICAL																																ACHE AP	WLT I ILAL
SAMPLE#								Mn ppm																								Sample kg	
C 202533 C 202534 C 202535 C 202536	17 15 12	1069 1134 1850	28 31 74	190 156 171	.7 1.5 1.4	2 2 3	11 9 12	2130 1848 2389	4.77 4.56 4.33	31 32 107	<8 <8 <8	<2 <2 <2	2 2 <2	59 56 62	<.5 .7 1.2	<3 <3 <3	<3 <3 <3	98 102 82	2.74 2.96 3.57	.092 .093 .078	5 6 5	4 2 6	.44 .34 .61	20< 22< 22<	.01 .01	5 6 <3	.58 .52 .48	.05 .06 .05	.09 .08 .07	3 2 2	616 585 1161	3.22 4.27	
C 202536																																4.18	
C 202538 C 202539 C 202540 C 202541 C 202542	12 11 9	1818 1149	26 71 28	127 96 129	.6 1.5 .6	2 2 2	8 6 7	1438 898 1387	4.34 4.03 4.43	266 159	<8 <8 <8	<2 <2 <2	2 2 2	75 55 42	<.5 <.5	<3 3 <3	<3 <3 <3	97 74 58	.71 .56 .59	.107 .098 .082	7 6 6	5 2 4	.33 .26 .29	23< 20< 22<	.01 .01 .01	4 3 4	.77 .56 .43	.06 .05 .05	.08 .07 .07	2 <2 2	791 1196 831	3.22 2.99 3.51 3.50 4.22	
C 202543 C 202544 C 202545 C 202546 C 202547	17 9 12	1149	83 27 28	195 178 154	3.1 .9 1.0	3 3 3	14 8 8	2106	3.60 4.44 4.33	489 110 161	<8 <8 <8	<2 <2 <2	2 3 2	32 39 34	2.3 .7 <.5	8 <3 <3	<3 <3 <3	39 61 57	1.37 .48 .46	.060 .079 .073	8 8 7	1 4 <1	.55 .25 .24	27< 37< 30<	.01 .01 .01	4 3 3	.33 .46 .37	.03 .06 .05	.14 .10 .08	2 2 2	968 446 783	4.48 3.30 2.81 3.18 2.74	
C 202548 C 202549 C 202550 RE C 202550 RRE C 202550	11 9 9	1381 436 441	52 16 17	168 144 148	1.3 .5	3 2 2	8 6 6	1726 1689 1449 1488 1461	3.39 3.26 3.34	212 18 22	<8 <8 <8	<2 <2 <2	2 3 2	30 28 29	1.4 .6	8 <3 <3	<3 <3 <3	41 44 46	.48 .37 .38	.071 .080 .082	7 8 8	2 <1 <1	.24 .18 .19	37< 26< 27<	.01 .01 .01	6 5 5	.43 .43 .45	.03 .03 .03	.17 .15 .15	2 3 2	1614 349 392		
C 202551 C 202552 C 202553 C 202554 C 202555	11 15	1155 1211 1465	33 42 50	244 324 214	2.0 2.6 1.1	3 3 3	9 15 12	2638 3601	3.70 4.96 4.56	152 23 129	<8 <8 <8	<2 2 <2	2 <2 2	28 39 58	1.6 1.9 .8	6 <3 <3	3 <3 <3	60 84 105	1.52 3.09 .97	.085 .100 .105	8 6 6	<1 6 4	.57 1.27 .51	31< 25< 20<	.01 .01 .01	6 7 7	.51 .78 .58	.03 .03 .05	.15 .14 .07	<2 <2 3	930 806 881	3.12 4.44 3.58 4.43 3.88	
C 202556 C 202557 C 202558 C 202559 C 202560	17 10 12	1410 2228	30 39 35 35	204 160 178	.6 1.4 1.7	4 3 4	14 11 14	2187 1547 1262	5.15 4.02 4.64	222 55	<8 <8 <8	<2 <2 <2	<2 <2 <2	26 58 48	<.5 <.5 1.0	<3 <3 <3	<3 <3 <3	63 83 93	.53 2.42 1.77	.089 .082 .078	5 5 3	3 7 7	.50 .49 .69	479< 31 112	.01 .01 .06	5 7 8	.49 .62 .78	.03 .07 .09	.27 .08 .10	3 2 2	812 1147 1711	3.75 3.50 4.05 4.87 4.75	
C 202561 C 202562 C 202563 C 202564 STANDARD DS5/AU-R	9 10 8	5094 1507 1481 1146 148	63 90 5 29	346 239 189	1.6	3 4	13 14 12	2620 1896	4.52 4.67 4.11	168 195 69	<8 <8 <8	<2 <2 <2	<2 2 <2	61 63 65	2.4 1.3 1.2	6 <3 3	<3 <3 <3	80 109 103	4.68 3.32 3.12	.080 .086 .092	5 5 5	7 7 7	.65 .43 .39	73< 100< 148	.01 .01 .01	6 8 10	.46 .54 .53	.05 .09 .09	.10 .09 .07	<2 <2 2	1002 1151 772	4.28 4.19	

Page 3

ACME ANALTITCAL																																ALME ANALYTICAL
SAMPLE#	Mo		Pb Pd		•	Ni ppm		Mn ppm						Sr ppm					Ca %		La ppm		Mg %	Ва ррт	Ti %			Na %		W ppm	Au** ppb	Sample kg
C 202565 C 202566 C 202567 C 202568 C 202569	9 9 9 8 9	1206 795 973 1063 1424	33 4 24 2	289 418 205	.9 1.5 1.1 .9	6 6 4	19 19 12	2353 3507 1719	4.38 4.72 6.24 4.64 4.14	42 53 83	<8 <8 <8	<2 <2 <2	<2 <2 <2	64 7 71 7 61	2.1 2.7 .9	<3 3 <3	<3 <3 <3	81 107 111	1.70 2.37 1.60	.083 .082 .097	6 9 6		.76 .85 .51	88 92< 984< 106< 64	.01 .01 .01	<3 5	.56		.09 .08 .07	4 <2 <2 2 2	1181 505 596 673 850	4.36 3.92 3.51 4.28 5.36
C 202570 C 202571 C 202572 C 202573 C 202574	7 9 8	1259 2015 3098 2826 10000	71 2 67 2 54 2	200 268 249		4 4 3	11 11 10	1232 1905 1629	3.93 3.96 4.74 5.12 16.07	321 505 644	<8 <8 <8	<2 <2 2	2 <2 2	71 56 31	1.0 1.5 1.2	<3 <3 <3	<3 <3 <3	108 103	1.39 1.12 .48	.095	5 6 5	7		1302 151< 144< 36< 41<	.01 .01 .01		.79 .49 .33	.17 .15 .08 .07	.07 .06 .08	<2	726 1232 2279 1985 61800	4.37 3.98 4.03 3.24 .90
C 202575 C 202576 C 202577 C 202578 C 202579	7 5 7 7 10	368	17 3 20 3 45 2	303 323 286	1.2 .6 .7 1.3 <.3	3	10 9 10	2204 2377 1946	3.82 4.72 4.53 4.02 3.71	42 13 388	<8 <8 <8	2 <2 <2 <2 <2	2 3 2	39	1.2 1.9 1.1	<3 <3 6	<3 <3 <3	74 76 69	.86 1.19 1.00	.084 .080 .074 .082 .077	8 8 7	3	.43 .55 .56		.01 .01 .01	<3 <3	.54 .61 .57	.05 .05	.07 .09 .13	3 <2 <2 <2 <3	1082 808 327 1043 175	3.32 2.68 2.82 4.58 4.52
C 202580 C 202581 C 202582 RE C 202582 RRE C 202582	12 16 10 11	183 325 421 419 411	18 2 12 1 14	223 138 136	.4 .3 .4 .4	2	9 11 11	1769 1527 1534	3.26 3.25 2.87 2.90 2.86	25 77 78	<8 <8 <8	_	2 2 2	27 43	.7 .8 .5	<3 3 <3	<3 <3 <3	60 47 48	1.75 2.64 2.65	.081 .084 .080 .080	7 7 7	2 2 1	.73 .37 .37	37< 134< 145< 145< 135<	.01 .01 .01	<3 3	.58 .48 .48	.02 .03 .04 .04	.18 .17 .17	4 <2 2 3 2	115 250 138 123 136	4.35 4.31 4.17
C 202583 C 202584 C 202585 C 202586 C 202587	8 13 6 8 8	315 231 289 315 249	17 1 11 1 14	146 123 168	.6 .3 <.3 .3	2 2 2 2 3	8 7 6	2105 1426	2.83 2.80 2.33 2.60 3.14	41 31 33	<8 <8 <8	<2	<2 2 2	45 49 51 40 31	.7 .6 .5	<3 <3 <3	<3 3 3	35 40 50	3.80 4.78 2.95	.082 .071 .076 .081	8 9 9	<1 <1 1	.34 .60 .61 .51	41< 185< 72< 80< 343<	.01 .01 .01	<3 <3 3	.48	.03 .03 .04	.29 .27 .20	2 3 2 3 3	556 120 192 109 755	4.68 5.01 4.04 4.19 4.31
C 202588 C 202589 C 202590 C 202591 C 202592	8 9 9 11 7	302 411 401 1160 1301	12 7 16 69 7	224 175 261	<.3 .3 .3 2.3 .9	3 3 2 4 2	8 5 10	1957 1906 2261	3.00 3.24 2.52 2.90 3.26	37 54 320	<8 <8 <8	<2 <2	2 2 2	40 40 41	.6 5. 2.3	<3 <3 12	<3 <3 3	54 46 52	2.82 3.55 4.51	.076 .077 .079 .062 .074	9 9 7	2 2 4	.87 .64 .47 1.03	179< 38< 37<	.01	5 3 6	.55 .42 .65	.04 .04 .03 .03	.23 .18 .24	2 <2 2 <2 2	391 101 105 529 865	4.88 4.02 4.17 4.30 4.62
C 202593 C 202594 C 202595 C 202596 STANDARD DS5/AU-R	8 3 9 9	535 328 245 247 142	10 5 <3	110 132	.3 .9 <.3 <.3	2 2 2	7 9 10	1377 1692 2050	3.18 2.77 3.00 3.09 3.00	16 28 29	<8 <8 <8	<2 <2	2 2 2	47 51 56	<.5 <.5 <.5	<3 <3 <3	<3 <3 3	54 51 41	3.02 3.63 4.52	.074 .077 .074 .071	8 8 8	2 2 <1	.53 .68	42< 75< 68<	.01 .01 .01	<3 <3	.36 .39 .34		.10 .17 .18	<2	628 202 121 151 495	4.82 4.55 4.32 4.42

Page 4

	CHE ANALTITUAL	,																															ACME A	ANALYTICAL
	SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ní	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Βí	٧	Ca	Р	La	Cr	Mq	Ва	Ti	В	Αl	Na	K	W	Au**	Sample	
		ррт	ppm	ppm	ppm	ppm	ppm	ppm	ррт		ppm											ppm p										ppb	kg	
	C 202597 C 202598	1	711 1072			1.0				2.58	101	<8	<2	2	43	<.5	<3	<3	59	1.93	.078	5	3	.23	··-	.01	5	.45		.09	<2	558	3.48 4.61	
	C 202599					1.5														3.21					204<				.07				3.98	
1	C 202600					1.5														2.76													4.50	
1	C 202601					1.3														1.68													5.15	
1	0 202001		1014	0,	143	1.5	7		,,,	3.71	33	٠.	`-	٠.	72	• '	٠,5	٠,5	, ,	1.00	.007	,	7	,	,0	.00	7	.00	. 13	. 10	``	1131	را . ر	
	C 202602	5	2071	86	274	1.5	4	11	2027	4.84	192	<8	<2	<2	56	1.3	5	<3	82	3.38	.077	5	5	.34	63	.01	9	-44	.08	.12	<2	1245	4.73	
	C 202603	9	2121	137	381	11.9														5.35					300<				.07				4.09	
1	C 202604	4	1509	56	195	10.6														3.40												1066	4.70	
	C 202605	6	2604	69	263	2.1	5	17	2545	6.06	62	<8	<2	<2	55	1.8	<3	<3	99	3.33													4.41	
	C 202606																			2.80		6	8	.66	80	.03	8	.53	.12	.10	<2	1272	5.16	
i		-											_	_			_	_					_				_				_		21.0	
	C 202607	5	1358	39	254	1.4	4	16	2550	6.76	32	<8	<2	<2	49	1.1	<3	<3	89	3.03	.068	5	3	.51	65	.02	4	.34	.08	.07	<2	1005	4.70	
	C 202608	5	2244	61	172	1.7	4	12	1707	5.12	104	<8	<2	<2	52	.7	3	<3	91	2.44	.074	4	8	.46	157	.02	3	.43	.10	.09	<2	1679	4.56	
1	C 202609					1.3														3.50			<1	.52	37	.01	5	.31	.06	.06	<2	1029	4.68	
	C 202610	5	1160	31	180	1.0	4	13	1951	5.59	63	<8	<2	<2	50	.9	16	<3	74	3.14	.073	4	6	.44	38	.01	<3	.34	.07	.08	<2	817	4.74	
	RE C 202610	5	1169	33	180	1.1	3	13	1956	5.61	64	<8	<2	<2	50	.9	16	<3	75	3.13	.072	4	6	.44	38	.01	<3	.33	.07	.08	<2	835	-	
							_						_	_																				
1	RRE C 202610					1.1														3.22												805	-	
	C 202611		1493			.9	3	12	1479	5.84	27	<8	<2	<2	44	.6	16	<3	85	2.35	.069	4	8	.40	94	.03	4	.40	.07	.08	<2	1204	4.69	
	C 202612																			2.15													4.90	
	C 202613	1 -	1855																	2.32													4.88	
	C 202614	4	2102	56	145	1.4	3	10	1187	3.99	49	<8	<2	2	58	<.5	<3	<3	64	1.75	.086	5	6	.31	122	.03	4	.51	.11	.06	<2	1396	3.41	
	0.202/45	_ ا	47/5		407		-	40	407/	7 (2	22	.0		_	- ^				74		007	_	_	70		~-	-	, -	4.0	٠,		4077		
	C 202615					1.2	3	10	1234	3.62	22	۲8 د-	<2	- 2	50	<.5	< 5	<3	11	1.68	.083	5	2	.30	61	.03	<3	.43	.10	.06	<2	1077	2.81	
1	C 202616		1377																	2.16													5.31	
1	C 202617	0	2002	15	172	0.3	4	14	1224	4.20	19	٥>	<2	<2	102	۲.۶	<3	<3	105	2.23	.119	0	<1 7	.33	130	.05	5	1.21	.22	.09	<2	551	5.16	
	C 202618						1	11	1337	4.00	12	٥ <u>></u>	٠2	٠2	70	.8	< 3	<2	107	2.31	.110	2	3	.48	320	.05	2	.96	.17	-11	<2	1320	4.98	
	C 202619	1	1561	39	108	2.2	1	10	כוט	4.0/	0	<8	<2	<2	71	.5	<5	<3	107	1.43	.115	5	1	.35	90	.06	<3	.84	. 14	.08	<2	929	4.65	
	C 202620	R	1380	28	107	1.1	1	٥	1017	4.56	٥	~8	2	-2	60	- 5	-3	-3	96	1.80	108	5	/.	3/.	8/.	07	-7	45	11	ΩR	-2	827	4.97	
	C 202621	_	1163																	3.13												620	4.79	
	C 202622	_	1698																	1.89													4.56	
	C 202623	_	1962															_		1.92												1342	5.18	
	C 202624		1297																	2.09												684	5.63	
	C 202024	3	1271	32	172	.,	2	12	1200	7.07	30	٠0	12	12	, ,	1.1	٠,	٠,	71	2.07	. 113	U	,	-) (טכו	.07	,	.02	. 12	.07	2	004	ده. ر	
	C 202625	5	1005	13	94	.5	1	7	1544	3.67	75	<8	<2	<2	69	<.5	3	<3	69	3.20	.112	7	4	.44	204	.01	<3	.56	.11	.08	<2	588	3.37	
	C 202626		1542					15	1454	5.11	52	<8	<2	<2	77	.8	3	<3	110	2.08	.103	6	10	.49	176	.05	<3	.77	.14	.11	<2	830	5.66	
	C 202627	1	1075	-																1.93													4.86	
	C 202628	1	1411	_																1.58												671	4.80	
	STANDARD DS5/AU-R	1	149																	.78													-	
	2170127012 222,710 K		, ,,							3										•••						• • •						7,7		

Page 5

	,																															ACME ANALYTICAL
SAMPLE#	Mo ppm				-		Co ppm	Mn ppm							Cd ppm				Ca %		La ppm			Ba ppm	Ti %	B ppm	Al %	Na %			Au** ppb	Sample kg
C 202629 C 202630 C 202631 C 202632 C 202633	5 5 4	1086 777 1113 650 1204	1. 2.		5 1.0) 1) 1	9 1 10 1 9	653 787 1372	4.36 4.02 4.35	9 12 21	<8 <8 <8	<2 <2 <2	<2 <2 <2	137 102 118	.9 1.3 .8	<3 <3 <3	<3 <3 <3	122 111 106	1.51 1.71	.110 .130 .128 .129 .115	5 5 6	3 3 4 2 <1	.51 .54 .47 .43	86 88 79	.06	11 8 12	.98 1.15 1.14 1.31 1.02	.17 .17	.08 .08 .08 .08	<2 <2	553 370 678 394 642	5.44 5.81 5.04 4.74 5.40
C 202634 C 202635 C 202636 C 202637 C 202638	7 7 7	728 636 1042 702 875	2 1 1	0 20	7 .8 1 1.1 3 .9	3 3	3 12 3 13 3 14	1769 895 1485	4.41 4.12 3.44 3.94 3.87	69 74 54	<8 <8 <8	<2 <2 <2	<2 <2 <2	74 51 56	1.0 1.0 1.0	<3 <3 3	<3 <3 <3	59 61 57	2.31 2.65 1.19 2.58 1.20	.116 .080 .077 .071	6 5 5	3 3 4 5 6	.40 .37 .43 .43	103 110	.01 .01 .05 .01	7	.52 .65	.11 .14	.07 .05 .15 .14	2 <2	455 248 452 263 293	4.52 4.59 4.54 4.13 4.69
C 202639 C 202640 RE C 202640 RRE C 202640 C 202641	10 9	467 472	1: 1: 1:	7 263 3 110 5 108 4 111 5 198	3. 8 3. 8	3 3	3 12 3 12 3 12	822 813 850	4.14 4.06	18 16 16	<8 <8 <8	<2 <2 <2	<2 <2 <2	60 59 59	.6 .7 <.5	<3 <3 <3	<3 <3 <3	74 73 77	1.29 .97 .96 1.00 1.59	.077 .081 .079 .080	5 4 4	4 6 4 5 6	.35 .48 .48 .51 .45	67 66	.02 .05 .05 .05	<3 <3		.14 .12 .12 .12 .11		<2 <2	452 156 155 166 288	4.30 4.82 - - 4.04
C 202642 C 202643 C 202644 C 202645 C 202646	11 11 11 10 10	719 558	1:	2 180 5 22! 2 189 2 26: 7 270	5 1.3 9 .9 3 1.3	3 3	3 11 3 12 4 12	1547 1292 1417	3.89 3.74 3.58 3.81 3.84	63 36 50	<8 <8 <8	<2 <2 <2	<2 <2 <2	58 57 57	1.1 .9 1.4	5 <3 <3	<3 <3 <3	58 58 60	1.07 2.27 1.74 1.61 1.36	.078 .071 .077 .074	5 5 4	2 5 5 6 8	.32 .39 .36 .40 .47	43	.01 .02 .01 .01	3 6 4 3 5		.10 .10 .12 .11	.05 .05 .05 .05	<2 2	223 326 186 358 223	4.82 4.48 4.17 4.51 4.46
C 202647 C 202648 C 202649 C 202650 C 202651	14 12 13 10 9	760 970	1 6 7	1 287 5 298 5 44 3 33! 8 20	3 1.4 1 1.7 5 1.6	, 4 7 4 5 4	12 13 12	1462 1528 1293	4.28 3.85 3.47	9 21 42	<8 <8 <8	<2 <2 <2	2 <2 <2	71 57 65	1.5 2.6 2.3	<3 <3 <3	4 <3 <3	172 91 87	1.62 1.46 1.56 1.67 1.85	.083 .083 .079 .077	5 5 4		.52 .80 .70 .60	109 188 58	.04 .08 .04 .04	7 13 3 3 6		.13 .16 .12 .12 .18	.05 .08 .06 .06	<2 <2	235 403 267 271 286	4.28 4.94 4.72 5.15 4.31
C 202652 C 202653 C 202654 C 202655 C 202656	9	517 437	1 1	5 16! 9 25	2 .7 5 .7 4 1.0	7 1	5 13 1 18 1 19	1278 1281 1487	4.28 3.91 4.42 4.41 4.71	13 7 11	<8 <8 <8	<2 <2 <2	<2 <2 <2	67 91 89	.6 .7 1.4	<3 <3 <3	<3 <3 <3	125 137 122	2.19 2.35 2.30 2.41 3.85	.089 .083 .092 .087	5 5 5	16 9 12 17 20	.90 .71 .95 .87 1.28	117 64 129	.07 .05 .07 .05	7 7 7	1.35 .91 1.29 1.19 1.32	.24 .13 .22 .19	.09 .13 .07 .07	2 3 <2	163 162 137 270 110	4.44 4.62 4.63 3.33 4.54
C 202657 C 202658 C 202659 C 202660 STANDARD DS5/AU-R	8 8 9 14 14	356 575 478	, ;	5 193 9 21	2 .8 4 1.0	3 12 3 12 0 5	1 18 2 19 5 13	1850 1271 1210	4.51 5.09 5.29 3.88 3.08	7 8 11	<8 <8 <8	<2 <2	<2 <2 <2	88 69 75	.7 .7 1.1	<3 <3 <3	<3 <3 <3	176 129 110	2.02 2.83 1.32 1.42 .76	.090 .095 .081	5 4 4	16 17 4		84 100 102	.10 .06	7 6 3	1.67 1.77 1.28 .72 2.00	.25 .20 .13 .11	.20 .15 .06 .06	<2 <2	58 141 231 224 487	5.13 5.00 5.32 4.72

Page 6

ACME ANALTTICAL																						· · · · · · · · · · · · · · · · · · ·									ACME ANALYTICAL
SAMPLE#	Mo Cu	Pb	Zn	Ag	Ni	Co	Mn				Au						٧	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Au**	Sample
	ррт ррт	ppm	ppm	$pp \hspace{-1pt} m$	ррп	ррп	ррп	%	ppm	ррп	ррп	ррm	ррп	ррп	ррп	$pp \\ m$	ррт	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	kg
C 202661	15 478	3	165	7	5	13	1430	4.23	11	<8	<2	2	58	7	<3	<3	105	1.73	.084	4	8	.91	60	.05	8	.72	.09	.05	2	205	4.10
C 202662	13 583	_	163	.7	6			4.35					48	-	<3			3.83	.078	5	3	1.43		.01	8	1.40	.06	.09	2	138	4.10
C 202663	9 421	_	164	.8	5			3.94		<8	_	<2	61	.7	_	< 3		2.49	.078	4	6		240		8	.92	.11	.07	2	109	5.53
C 202664	8 398		193	.6	3			3.28			<2	_	_		4				.074	6	6			<.01	_	.80	.07	.10	2	158	4.70
C 202665	8 412		143					3.65							-	_	114		.082	4	7	.66		.07	7	.88	.15	.05	2	138	5.40
					_		, . -		• • •		_	_			-	•		,,,,,	7002	•	•			•••	•		• 1.5		_	130	3.40
C 202666	9 540	12	138	.6	4	13	1138	4.02	12	<8	<2	<2	60	.6	<3	<3	103	1.48	.083	4	7	.76	118	.06	7	.65	.08	.05	2	236	4.74
C 202667	12 560	5	111	.5	5	13	1440	4.28	10	<8	<2	<2	52	<.5	<3	<3	122	1.99	.079	4	4	1.07	102	.06	9	.92	.10	.05	<2	173	4.65
C 202668	10 426	3	139	.4	7	14	1843	4.19	12	<8	<2	<2	62	<.5	<3	<3	104	2.95	.078	5	4	1.20	83	.01	8	1.12	.10	.04	<2	247	3.44
C 202669	18 686	12	129	.8	5	13	1475	4.39	24	<8	<2	2	61	.5	<3	<3	105	2.20	.080	5	9	.83	123	.02	12	.73	.10	.06	<2	325	6.88
C 202670	18 406	11	129	.8	4	12	1150	3.82	14	<8	<2	<2	53	.6	<3	<3	92	1.18	.079	4	4	.59	58	.04	5	.55	.10	.04	2	207	5.65
C 202671	16 639					. –	–	3.77		_								1.54	.077	3	4	.72		.06	4	.67	.09	.04	2	299	4.59
C 202672	12 628							3.86		_	_	_		<.5	_	_		2.46	.072	4	5	1.13	88	.02	7	.93	.09	.07	2	279	4.61
RE C 202672	12 645					-		3.97			<2					<3			.074	4	9				8	.95	.09	.07	<2	257	-
RRE C 202672	13 656							4.01		_								2.48	.073	4	6			.02	10	.93	.09	.06		277	-
C 202673	12 545	16	124	1.2	3	10	1187	3.64	23	<8	<2	<2	52	.5	<3	<3	80	1.44	.074	4	4	.64	51	.03	4	.60	.11	.05	2	260	3.33
	1	_			_					_	_	_		_	_	_				_	_										
C 202674	11 678	_	140	–				3.44										1.48	.073	. 5	5			<.01		.68	.10	.07	_	447	4.26
C 202675	11 559		178			. –		3.28		_	<2	_	88		<3	_		2.79	.068	6	4					.77	.09	.08	<2	150	4.62
C 202676	15 494		170					3.88		_	<2	_	65	.8	_	<3			.082	5	5	.83	48		. –	.66	.11	.05	2	214	3.33
C 202677	18 656							3.66							<3			1.41	.076	4	4	.75	47			.79	.12	.05	2	273	4.19
C 202678	26 656	27	245	2.2	5	14	1319	4.18	20	<8	<2	2	61	1.2	<3	<3	98	1.41	.082	5	4	.81	75	.06	13	.72	.08	.04	<2	299	4.64
C 202679	31 736	7/	742	2 6	F	1/	1715	3.88	1.	-0	<2	-2	45	2 1	-7	<3	88	1.53	.080	4	7	Ω1	166	.08	9	.78	.07	.04	-2	318	4.79
C 202680	23 538		261		_			3.94		<8				1.4		_			.077	4	6	.99		.03	-	.92	.07	.04			4.79
C 202681	16 592		205		_			3.19	_	_	<2	_			_	_			.076	4	4	.59	61	.05		.76	.12	.04			3.90
C 202682	20 415		164		3			3.25	_									1.25	.075	7.	7.	.66	57	.04		.72	.09	.04	3		3.47
C 202683	25 573	_	331		_	-	–	3.68			<2							1.79	.073	7	Z	.67	57			.74	.10	.04	_	308	4.26
C 202003	27 773	,	,,,	1.3	,	10	1540	3.00	,	٠.	``_	٦.	50		٠,	``	′ '	1.7	.015	7	7	.07	,	.04	.0	. / 4	. 10	.04	٦.	500	7.20
STANDARD DS5/AU-R	13 146	25	136	<.3	25	12	770	3.03	19	<8	<2	3	47	5.6	4	5	61	.75	.095	11	196	.69	141	.10	15	1.99	.04	.15	6	493	-
										-												-									

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

Fjordland Exploration Inc. File # A402889R 510 - 510 Burrard St., Vancouver BC V6C 3A8

全全

SAMPLE#	Cu Au**	
	% gm/mt	
C 202574 STANDARD R-2a/AU-1	7.075 62.72 .565 3.41	

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HN03-H20) DIGESTION TO 100 ML, ANALYSED BY ICP-ES. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE.

- SAMPLE TYPE: CORE PULP

Data FA ___ DATE RECEIVED: JUL 10 2004 DATE REPORT MAILED: July 15/04

E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-01 File # A404906 510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

											<u> </u>	<u> </u>																			
SAMPLE#	Mo Cu ppm ppm			_												Bi ppm p		Ca %		La ppm			Ba ppm	Ti %	B ppm		Na %			\u** s ppb	Sample kg
SI C 146001 C 146002 C 146003 C 146004	<1 <1 49 417 33 464 60 618 48 595	16 16 8	510 432 504	.4 .6 .5	5 10 12	12 20 20	1821 2165 2688	4.18 5.32 5.85	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	81 : 64 53	2.5 1.5 1.4	<3 <3 <3	उ उ उ	89 158 191	.12 2.01 1.96 2.58 2.99	.067 .046 .055	5 5 5	11 18 17		130 100 64	.04 .07 .09	11 8 7	.01 .92 1.41 1.38 1.89	.10 .13 .08	.04 .07	<2 <2 <2	236 236 273	2.80 5.42 5.08 5.05
C 146005 C 146006 C 146007 C 146008 C 146009	20 551 28 331 24 283 10 273 12 320	45 6 7	657 363 476	.9 <.3 .3	14 21 12	21 26 28	2381 2309 1989	5.78 5.75 5.99	2 <2 9	<8 <8 <8	<2 <2 <2	<2 <2 2	63 67 87	2.5 .7 .9	<3 <3 <3	<3 1 <3 1	174 152 173	2.26 3.35 3.17	.082 .081 .086	8 9 8	15 14 16	1.77 1.62 1.78 2.04 2.05	62 248 810	.01 .02	12 11 14	1.87 1.73 2.05 2.20 2.20	.09 .08 .12	.08 .18 .16	<2 <2 <2	189 108 136	4.62 4.60 5.22 4.87 5.56
C 146010 C 146011 C 146012 C 146013 C 146014	5 83 4 100 4 101 3 50 1 67	4 8 3	361 283 135	<.3 <.3 <.3	13 14 13	20 24 24	1881 1543 1535	5.60 5.76 5.48	<2 2 2	9 <8 <8	<2 <2 <2	<2 <2 <2	61 66 71	.8 <.5 <.5	3 <3 <3	<3 ' <3 '	180 169 127	3.97 3.12 3.18 4.45 4.02	.084 .084 .083	6 6 7	15 10 14	2.12 2.06 1.95	175 186 265	.03 .03 <.01	9 10 7	2.18 2.36 2.26 2.21 2.70	.08	. 19	<2 <2		4.80 4.47 4.14 4.03 4.85
C 146015 C 146016 C 146017 C 146018 C 146019	1 105 1 32 2 72 1 87 3 107	<3 5 4	134 138 136	<.3 <.3 <.3	14 13 12	22 23 20	1603 1411 1594	5.60 5.52 5.20	11 20 22	<8 <8 13	<2 <2 <2	<2 2 <2	63 60 65	<.5 <.5 <.5	3 3 4	<3 ' <3 '	148 154 1 3 0	2.92 3.68 3.07 3.23 3.98	.085 .085 .083	6 6 6	15 13 14	2.27 2.04 2.17 2.08 1.95	239 210 171	.04 .04 .01	8 8 6	2.46 2.30 2.34 2.33 2.21	.05 .07	.16 .11 .15	<2 <2 <2	54 18 55 70 80	4.71 4.15 3.70 4.15 4.18
C 146020 RE C 146020 RRE C 146020 C 146021 C 146022	3 80 4 81 1 84 2 100 1 84	4 7 8	148 151 128	<.3 <.3 <.3	14 14 14	20 22 25	1620 1692 1427	5.36 5.55 5.72	12 15 10	<8 8 9	<2 <2 <2	<2 <2 <2	71 73 75	<.5 <.5 <.5	<3 <3 <3	<3 '	138 136 153	3.42 3.48 3.70 2.98 3.60	.084 .084 .086	6 7 7	9 13 12	2.07 2.07 2.15	228 237 413	<.01 <.01 .01	10 9 12	2.29 2.32 2.25 2.33 2.19	.07 .06	.18 .16 .13	<2 <2 <2	31	4.55 - - 4.17 3.97
C 146023 C 146024 C 146025 C 146026 C 146027	2 81	<3 3 <3	152 123 126	<.3 <.3 <.3	15 14 11	24 26 22	2027 1642 1796	5.90 5.77 5.54	15 5 4	8 <8 11	<2 <2 <2	<2 <2 <2	72 68 71	<.5 <.5 <.5	4 <3 3	उ ^र उ ^र	173 159 154	3.53 3.90 3.22 3.33 3.72	.088 .087 .086	7 6 7	16 12 17	2.37 2.08	347 152 185	<.01 .01	8 6 10	2.38 2.53 2.28 2.37 2.48	.08	.13 .12	<2 <2 <2	51 40 45 35 55	4.15 4.52 4.33 4.68 3.91
C 146028 C 146029 C 146030 C 146031 C 146032	3 153 4 161 2 164 3 198 3 139	5 <3 5	178 167 181	<.3 <.3 <.3	11 12 14	22 22 24	2203 2233 2654	5.93	7 3 4	13 <8 <8	<2 <2 <2	<2 <2 <2	84 81 80	<.5 <.5 <.5	<3 <3 <3	<3 '<3 '	155 149 147	4.01	.084 .084 .085	7 6 6	12 13 9	1.96 2.18	326 168 277	.02 .01	15 14 12	2.35 2.34 2.20 2.39 2.29	.12 .08	.10 .14 .12	<2 <2 <2	18 49	4.15 4.84 4.64 4.15 4.67
STANDARD DS5/AU-R	12 142	25	136	.3	26	11	766	3.12	18	<8	<2	3	48	5.3	4	7	61	.75	.094	12	187	.68	136	.10	14	2.06	.04	.15	5	495	-

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

- SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED Data FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Fjordland Exploration Inc. PROJECT 04-WJ-DC-01 FILE # A404906

Page 2

ALME ANALYTICAL																															ACME ANALYTICAL
SAMPLE#	Mo Cu			•					As									Ca %		La		_	Ba ppm	Ti %	B	Al %	Na %			Au**	Sample kg
C 146033 C 146034 C 146035 C 146036 C 146037	3 116 3 102 3 237 6 187 3 157	8 5 3	125 130 150 251	<.3 <.3 <.3	5 7 10 12	13 15 21 31	1967 1664 1865 2012	4.10 4.86 5.12 5.17	6 4 3 8	<8 <8 <8	<2 <2 <2	<2 <2 <2	102 83 73	.5 .7 <.5 1.5	<3 <3 <3	7 5 4	130 135 129	3.59 3.13 3.18 3.70 2.84	.090 .080	7 6 6	<1 13 14		72 77 166 176	<.01 .01 .02 .01	11 8 10	1.23 1.41 1.91 1.45 1.90	.13 .10	.20 .06 .15 .18	<2 <2 <2 <2 <2	35 51 58 298	3.97 4.28 4.38 4.58 4.89
C 146038 C 146039 C 146040 C 146041 C 146042	6 41 2 134 2 130 2 68 3 97	<3 <3	110 117 3 57	<.3 <.3 <.3	12 13 13	28 21 22	1439 1113 1560	5.57	3 4 4	<8 <8 <8	<2 <2 <2	<2 <2 <2	66 113 64	<.5 <.5 .5 1.6	<3 <3 <3	9 4 6	170 189 139	2.21 2.24 2.33 2.63 2.57	.083 .086 .086	4 4 6	13 24 12	1.57 1.60 1.37 1.64 1.93	192 285 123	.06 .16 .05	14 13 8	2.48 2.30 2.11 2.14 2.15	.12 .24 .12		<2 2	59 40 44 68 20	4.71 4.52 4.67 4.58 4.79
C 146043 C 146044 RE C 146044 RRE C 146044 C 146045	3 96 2 130 3 132 2 129 3 112	6 5 7 <3	285 285 294	<.3 <.3	16 16 15	28 28 28	1554 1541 1570	5.74 5.88 5.81 5.91 5.43	2 2 3	<8 <8 <8		<2 <2 2	83 83 86	<.5 1.6 1.5 1.6 .7	<3 <3 <3	4 7 3	186 186 190	2.47 2.54 2.54 2.61 1.96	.084 .085 .085	4 4	19 17 21	2.01 2.02	67 67 70	.09 .09	11 17 16	2.17 2.32 2.33 2.38 2.46	.15 .15 .16	.06 .05 .05 .05	<2	30 45 42 50 14	4.29 4.56 - - 4.32
C 146046 C 146047 C 146048 C 146049 C 146050	1 107 3 144 6 244 4 98 5 206	6 8 10	151 136 136	<.3 <.3 <.3	16 10 5	22 19 15	1209 1117 1098	5.39 5.41 5.47 5.08 5.50	5 3 4	<8 <8 <8	<2 <2 <2	2 <2 <2	72 95 88	.9 .6 .5 .5	<3 <3 <3	3 6 5	194 182 158	1.53 1.60 1.99 2.02 1.85	.092 .096 .111	4 4 3	23 13 1	1.60 1.20 1.14	77 77 125	.15 .13 .15	14 14 16	2.16 1.88 1.70 1.47 1.87	.17 .20 .15	.05 .06 .08 .09	2 2 2		4.66 4.97 4.53 3.85 5.53
C 146051 C 146052 C 146053 C 146054 STANDARD DS5/AU-R	3 94 2 73 2 36 1 82 12 140	3 3 2 3	90 107	<.3 <.3 <.3	5 14 13	18 22 21	1385 1285 1982	6.25 5.41 5.49 5.39 3.01	5 2 <2	<8 <8 <8	<2 <2	<2 <2 <2	109 73 64	<.5	<3 <3 <3	3 <3 3	145 166	1.95 2.90 2.20 3.78 .72	.109	4 5 6	5 25 17	1.50 1.35 1.56 1.95 .68	209 247 111	.08 .06 <.01	8 17 6	2.10 1.92 2.08 2.23 2.02	.13 .15 .08	.15 .12 .14 .17	<2 <2	39 40 10 6 492	5.17 4.56 4.27 5.04

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-02 File # A404907
510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

		<u> </u>					<u> </u>					<u> </u>	<u> </u>										·								
SAMPLE#	Mo Cu	Pl	o Zn	Αq	Ni	Со	Mn	Fe	As	IJ	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr	Ma	Ba	Ti	В	Al	Na	K	W	Au** 9	Sample
	ррт ррт	pp	пррп	ppm	ppm	ppm	ppm		ррт									%		ppm j		_	ppm		ppm		%			ppb	kg
	· · · · ·	•		•••		•				•			•	•		· · · · ·	•						<u> </u>		<u></u>				<u> </u>		
SI	<1 1	<	3 1	<.3	<1	<1	<2	.08	2	<8	<2	<2	3	<.5	<3	<3	<1	.13	<.001	<1	2	<.01	3	<.01	<3	.01	.55	.01	<2	<2	-
c 146055	1 146	, !	5 109	<.3	13	22	1903	5.33	10	<8	<2	<2	65	<.5	<3	<3	124	4.11	.089	7	15	1.97	99	<.01	11	2.16	.07	.17	2	13	4.77
C 146056	2 49	٠ ;	B 109	.3	12	23	1729	6.42	6	12	<2	<2	45	<.5	<3	<3	121	3.17	.088	7	16	1.79	93	<.01	14	2.36	.04	.24	3	5	4.76
c 146057	1 277	•	3 154	.4	13	21	1773	5.41	7	<8	<2	2	65	.6	<3	<3	180	3.25	.092	6	18	1.87	138	.05	15	2.40	. 13	.17	<2	10	4.93
C 146058	2 142	1.	2 195	.4	12	23	1311	5.05	5	9	<2	<2	77	1.1	<3	<3	138	2.38	.120	6	18	1.41	124	.06	14	1.95	. 16	.11	<2	15	4.22
	1																														
C 146059	2 66	, '	9 149	.3	10	22	1428	5.14	7	<8	<2	<2	87	.7	<3	<3	150	2.25	.117	7	14	1.44	421	.01	10	1.87	.13	.05	<2	25	4.48
C 146060	1 31	:	3 118	<.3	9	21	1278	5.24	5	<8	<2	2	69	<.5	<3	<3	157	1.84	.098	7	11	1.47	163	.01	12	1.91	. 15	.06	<2	7	4.62
c 146061	3 42	1	1 147	.5	10	21	1350	5.14	7	<8	<2	2	80	.5	<3	<3	156	2.14	.096	7	13	1.51	148	.01	16	1.91	.16	.05	<2	10	4.75
C 146062	<1 1	<	3 1	<.3	<1	<1	8	.04	<2	<8	<2	<2	<1	<.5	<3	<3	1	.02	.001	<1	4	.01	1	<.01	<3	.01	<.01	<.01	<2	10	4.33
c 146063	3 35	;	4 180	.4	8	18	1416	4.81	7	<8	<2	<2	93	.6	<3	<3	133	2.62	.087	6	6	1.32	206	<.01	14	1.86	. 16	.10	<2	19	4.16
	ļ																														
C 146064	2 8	<	3 56	4	2	11	1567	4.99	6	14	<2	<2	158	<.5	<3	<3	154	3.89	.122	5	8	1.07	78	.05	15	1.90	.25	.05	2	16	4.70
C 146065	2 49	<	3 92	.3	10	20	1701	5.54	6	16	<2	<2	124	<.5	<3	<3	196	2.84	.103	5	16	1.45	108	.09	13	2.31	. 26	.05	<2	12	4.81
C 146066	2 43	;	5 90	<.3	7	18	2150	5.58	6	10	<2	<2	127	<.5	<3	<3	159	3.76	.112	7	7	1.54	154	.01	13	2.23	.20	.12	<2	5	5.16
RE C 146066	2 43	;	4 91	.5	7	18	2150	5.59	5	8	<2	<2	126	<.5	<3	<3	157	3.77	.113	7	12	1.55	154	.01	17	2.23	.20	.12	<2	5	-
RRE C 146066	1 47	•	3 91	<.3	7	18	2146	5.55	6	<8	<2	<2	122	<.5	<3	<3	158	3.68	.115	6	9	1.55	155	.01	15	2.23	. 19	.12	<2	5	-
c 146067	1 59	> <	3 596	7	11	27	1914	5.73	8	11	<2	<2	114	2.2	<3	<3	188	2.96	.086	6	14	1.72	214	.01	13	2.60	. 23	.07	2	13	4.94
c 146068	1 60) <	3 142	.3	12	23	1712	5.77	5	9	<2	<2	128	.7	<3	<3	212	3.18	.094	5	18	1.83	159	.04	11	2.77	.28	.04	<2	14	5.04
c 146069	2 358	} <	3 82	.3	11	26	1797	6.24	5	11	<2	<2	69	<.5	<3	<3	143	3.33				1.71	126	<.01	8	2.18	.10	.15	2	20	4.72
c 146070	1 778	} <	3 58	.4	5	25	1322	6.16										2.07		7	2	1.44	230	<.01	7	1.93	.05	.20	2	123	4.80
C 146071	2 257	' <	3 58	<.3	2	15	1514	6.15	8	<8	<2	<2	56	<.5	<3	<3	130	3.10	.120	8	1	1.57	261	<.01	7	1.92	.06	.18	<2	8	5.02
STANDARD DS5/AU-R	13 138	3 2	6 135	.3	24	12	741	2.90	18	<8	<2	3	45	5.4	4	6	58	.72	.094	11	179	.67	134	.10	16	1.99	.04	.14	5	498	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data W FA ___ DATE RECEIVED: AUG 23 2004 DATE REPORT MAILED: DESCRIPTION OF THE PROPERTY OF TH

PHUNE (604) 253-3138 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-03 File # A404954

510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

Page 1

AA

	T										<u></u>									ted by			1000									
SAMPLE#	ppm ppm							Mn ppm		As ppm	_								Ca %		La ppm		_	Ba ppm		ppm ppm	A l %	Na %			Au** ppb	Sample kg
sı	<1	<1	3	1	·.3	1	<1	8	.06											<.001										<2	<2	-
C 146072	5	26	_		3 .3	_	_	1622							<.5					.117			1.46		.02	17	2.11	.21	.05	<2	26	4.71
C 146073	1		_		3 < .3	_		1375							' <. 5					.120			1.27				2.04	.20	.05			4.83
C 146074	2		_	_	<.3															.117									.06		5	5.01
C 146075	1	132	<3	6	· <.3	9	19	1300	4.97	7 8	<8	<2	2	102	<.5	<3	<3	151	1.65	.081	4	7	1.53	110	.04	19	2.35	.27	. 05	<2	24	5.00
C 146076				68	3 <.3	10	23	1654	5.68											.080		16	1.70	107	.01	14	2.39	.26	.06	<2	6	4.84
C 146077		116	_		_			1372												.074			1.60				2.33		.06		11	5.10
C 146078	1																		1.83				1.52						.07	<2	6	4.74
C 146079	<1	71	<3	66	5 <.3	12	21	1267	5.07											.075									.11		7	4.27
C 146080	<1	61	5	62	2 <.3	5 11	20	1396	5.12	2 4	12	<2	2	120	<.5	<3	3	156	2.43	.080	5	13	1.44	216	.05	26	2.39	.27	.06	<2	19	4.54
C 146081	2	570	3	60) <.3	14	34	1364	5.89	7	11	<2	2	91	<.5	<3	4	175	2.88	.083	5	15	1.52	234	.04	22	2.54	.21	. 19	<2	17	4.59
C 146082	<1	88	<3	62	2 < .3	12	22	1520	5.30		9				<.5		3	158	2.26	.075	5	15	1.87	93	.05	19	2.68	.25	.05	<2	7	4.63
C 146083	1	104	<3	59	> <.3	10	19	1419	4.88	3 5	<8	<2	<2	89	<.5	<3	<3	151	1.83	.083	5	10	1.77	95	. 05	13	2.38	.20	. 05	<2	18	4.96
C 146084	<1	85	<3	56	5 <.3	6	17	1897	4.83	5 5	<8	<2	2	120	<.5	<3	4	140	2.37	.107	4	7	1.66	176	.05	16	2.46	. 24	.04	<2	13	4.70
C 146085	<1	3 0	<3	52	2 <.3	3	15	2122	4.69	8	<8	<2	<2	123	<.5	<3	<3	135	2.89	.122	4	6	1.49	202	.05	18	2.29	.20	. 05	<2	3	4.91
C 146086	1	39	<3	55	5 <.3	5 5	17	2335	5.32	2 7	10	<2	2	125	<.5	<3	<3	162	2.75	.120	5	2	1.50	108	.06	23	2.47	.28	.06	<2	4	5.48
C 146087	2	49	<3	49	> <.3	3	14	2690	5.0	8	<8	<2	<2	134	<.5	<3	<3	151	3.63	.118	4	5	1.33	179	.08	17	2.09	.24	. 05	<2	<2	4.71
C 146088	1	119	<3	6	1 <.3	3 11	20	1461	5.10) 4	<8	<2	<2	97	<.5	<3	<3	163	1.96	.076	6	12	1.67	100	.05	10	2.46	.25	.07	<2	12	4.64
C 146089	1	154	<3	46	5 .3	5 10	21	1040	4.9	5 6	8	<2	2	92	<.5	<3	4	185	1.65	.087	7	15	1.54	210	.11	15	2.43	.29	.30	2	11	4.74
C 146090	<1	37	<3	47	7 .3	3 10	21	919	5.38	3 5	11	<2	3	99	<.5	<3	<3	233	1.66	.070	7	16	1.41	268	.16	27	2.56	.34	.49	<2	6	2.27
RE C 146090	1	36	<3	47	7 .4	10	21	913	5.35	5 5	<8	<2	2	99	· <.5	<3	<3	234	1.65	.070	7	12	1.41	267	.16	22	2.55	.34	.48	<2	2	
RRE C 146090	1	38	<3	50) <.3	10	22	949	5.48	3 7	15	<2	3	97	<.5	<3	<3	240	1.68	.072	7	14	1.46	265	.16	23	2.53	.32	.49	<2	6	-
C 146091	178	239	21	904	4 7.6	5 4	12	2333	4.34	4 <2	<8	<2	2	48	2.8	<3	<3	105	2.76	.080	9	3	1.07	136	.01	4	1.16	.08	.07	<2	180	3.80
C 146092	108	281	10	749	9 2.9	9 4	13	2429	4.56	5 3	<8	<2	2	47	2.3	<3	4	104	3.03	.078	8	7	1.06	352	.01	11	1.17	.07	.07	<2	264	4.12
C 146093	94	615	26	410	0 1.4	¥ 3	13	2007	4.44	, <2	<8	<2	<2	60	1.5	<3	4	96	2.39	.073	6	3	.72	269	.01	7	.98	.08	.06	<2	645	4.22
c 146094	16	1038	14	300	1.0	3	12	1861	4.70) <2	<8	<2	<2	64	1.1	<3	3	99	1.95	.073	6	3	.69	233	.04	5	.95	.06	.06	<2	1012	4.72
C 146095	19	967	20	442	2 .8	3	12	2238	5.39	> <2	10	<2	2	71	1.6	<3	5	110	2.45	.074	6	6		173	.06	5		.09	.06	<2	1001	3.70
C 146096	53	366	11	514	4 <.3															.073		7					1.03	-07	.07	<2	431	3.80
C 146097					1.5			2331							3.3					.067				78			1.24					3.34
C 146098	1				7 1.0			1820												.074				111	-		1.12	.07	.06	<2	678	4.09
C 146099	30	483	154	67	7 1.3	3	10	1673	4.07	3 <2	<8	<2	<2	83	3.9	<3	4	98	2.78	.076	6	10	.56	204	- 10	11	.87	.09	.06	<2	630	4.25
C 146100	1				5 .9															.073				96			.83		.05			4.62
C 146101																				.076		8	.56		-			.08		_	1115	4.57
C 146102		1506						1846												.070												4.02
C 146103	1	1588																		.083				151				.07				4.16
STANDARD DS5/AU-R	13	147																					68	140	11	17	2 10	n4	14	4	500	-
31740AVO D37/AOAK	1 13	17/		יכו		<u>, , , , , , , , , , , , , , , , , , , </u>	- 12	100	J. 00	, 17				77				-02		.072		172		170	<u>• • • </u>		2.10	.07	• 17		200	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sept. 10/0x.

Fjordland Exploration Inc. PROJECT 04-WJ-DC-03 FILE # A404954

Page 2

L	ACIE MAETIONE																																ACME ANALYTICAL
	SAMPLE#	1				_			Mn ppm							Cd ppm				Ca %		La ppm				Ti %		Al %	Na %			Au** ppb	Sample kg
	C 146104 C 146105 C 146106 C 146107 C 146108	24 24 24	1789 922 1425 2383 1174	5 <3 13	410 200 415	2.3 1.2	5 4 5	26 15 16	1944 1292 1013	5.26 5.31 5.25	11 3 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	44 43 51	1.1 <.5 1.7	<3 <3 <3	6 5 7	64 114 127	3.10 3.19 2.33 1.58 1.48	.069 .077 .073	5 4 4	7 3 6 10 2	.74 .63 .46	55 86 119	.01 <.01 .04 .09	3 <3 3	.76 1.09 .91 .62 .65	.03 .06 .09	.17 .11 .06	<2 <2 <2	1034	4.54 4.73 4.02 4.69 4.42
	C 146109 C 146110 C 146111 C 146112 C 146113	19 21 25	780 775 1479 1227 1416	4 11 13	302 251 344	.9 2.3 1.0	3 3 4	11 12 11	849	3.90 4.35 4.73	<2 <2 3	<8 <8 9	<2 <2 <2	<2 <2 <2	49 45 59	1.5 1.3 1.8	<3 <3 <3	<3 6 <3	85 81 107	1.73 1.91 1.23 1.28 1.50	.069 .065 .076	4 4 3	4	.66 .56 .59	108	.08 .08 .09 .10	3 <3	.65		.07 .08	<2 <2 <2	566 1170 919	4.88 4.12 4.20 4.42 4.25
	C 146114 C 146115 C 146116 RE C 146116 RRE C 146116	22 29 29	1534 1593 1464 1452 1486	<3 9 9	343 242 241	1.4	3 3 3	12 12 12	1040 1016 1272 1264 1284	4.82 4.77 4.73	4 6 4	<8 <8 <8	<2 <2 <2	<2 <2 <2	49 56 56	1.6	<3 <3 <3	5 5 <3	103 101 99	1.30 1.12 1.46 1.45 1.48	.072 .077 .077	3 4 3	7	.59 .64 .63	85 109 109	.09 .10 .10 .10	4 <3 3	.65 .63 .64 .63	.07	.07 .07 .07 .07	<2 <2 <2	1128 969 752	4.44 4.40 4.46 -
	C 146117 C 146118 C 146119 C 146120 PULP C 146121	31 23 21	2122	<3 6 12	339 203 84	1.7 2.1 1.2	4 3 548	12 12 22	1415 1188 1591 867 1286	4.62 4.25 7.23	5 14 16	<8 <8 <8	<2 <2 <2	<2 <2 <2	51 63 106	1.6 1.0	<3 <3 7	5 3 7	87 79 47	1.44 1.13 1.72 1.93 1.83	.090 .076 .077	4 4 4	2 6 2 720 4	.57 .62 .86	97 115 41	.08 .09 .06 <.01 .10	3 7 5	.58 .64 .64 .87 .75	.08 .06	.06 .39	<2 <2 <2	880 1359	4.38 4.46 4.59 - 4.19
	C 146122 C 146123 C 146124 C 146125 C 146126	21 21 16	1524 1403 1696 2767 1628	<3 <3 26	136 130 304	1.1	1 1 1	11 12 12	975 921 1134 1907 2052	5.43 4.98 7.54	4 6 135	8 <8 <8	<2 <2 <2	<2 <2 <2	62 57 34	2.3	<3 <3 3	4 8 5	109 109 99	1.12 1.19 1.57 1.95 3.15	.088 .089 .079	3 4 5	1 2 1 <1 2	.75 .80 1.16	51 37 80	.10 .03	6 8 <3	.81 .84 .97 1.74 1.00	.09	.08	<2 <2 <2	964 1081 936	4.61 4.64 4.74 4.78 4.62
	C 146127 C 146128 C 146129 C 146130 C 146131	13 16 16	768 1175	25 19	209 184 195	1.2 .8 1.1	3 2 4	13 12 14	1869 2242 2102 2361 1738	5.19 5.00 6.27	55 36 75	<8 <8 <8	<2 <2 <2	2 <2 <2	59 55 48	.9 .6 <.5	3 <3 <3	6 3 6	119 104 93	2.96 3.35 3.36 2.39 1.97	.078 .083 .075	6 6 6	<1 <1 <1 4 5	.79 .67 .77	67 27 124	.03 .01 <.01 <.01 .02	7 <3 5	.69	.05		<2 <2 <2	489 430	4.55 4.62 4.34 4.11 4.43
	C 146132 C 146133 C 146134 C 146135 STANDARD DS5/AU-R	14 17 18		<3 <3	143 216 239	<.3 .8 .9	2 3 3	12 13 14	1557 1301	4.36 4.33 4.57	8 9 4	<8 <8 <8	<2 <2 <2	<2 <2 <2	68 68 79	.9 1.4	<3 <3 <3	5 <3 6	105 123 114	2.73 1.88 2.16 1.69 .73	.081 .085 .090	4 3 4	6 3 12	.74 .67 .73	78 78 138	.05 .05 .08	7 14 15	.91 .91	.09 .09 .10	.06 .07	<2 <2 <2	377 485	4.55 4.42 4.38 4.59

Fjordland Exploration Inc. PROJECT 04-WJ-DC-03 FILE # A404954

A404954 Page 3

																																ACME ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm			Ag ppm			Mn ppm		As ppm							Bi ppm	ppm V	Ca %		La ppm p		Mg % p		Ti % p	B opm	Al %	Na %	K %		Au** ppb	Sample kg
C 146136 C 146137 C 146138 C 146139 C 146140	15	941 803 1274 1433 1457	3 4 14	148 127 124 168 171	<.3 .3 .8	3	12 13 12	1128 4 1222 4 1340 4 1415 4 1771 !	4.64 4.80 4.79	5 7 8	<8 <8 <8	<2 <2 <2	<2 <2 <2	72 57 61		<3 <3 <3	<3 <3	126 121 112	1.52 1.63 2.08 2.09 2.67	.095 .097 .093 .090	4 3 3 3 4	13	.50 .74 1 .73 .73 2	74 98	.07 .07	<3 <3 <3 <3 <3	.76 .82 .81 .79 1.10	.09 .10 .08 .08	.06 .07 .07 .07	2 2 <2	619 504 785 907 859	4.53 4.79 4.71 4.60 4.12
C 146141 C 146142 C 146143 C 146144 C 146145	16 14 15	1838 1162 1410 806 1067	6 <3 3	149 127 105	1.3 .7 1.2 .7 1.4	4 4 3	13 12 11	1774 1661 1344 1142 1040	4.54 4.47 3.76	8 10 4	<8 <8 <8	<2 <2 <2 <2 <2	<2 2 <2	65 67 71	.6	<3 <3 <3	<3 <3	86 90 86 78 96	1.66 2.22 1.65 1.61 1.45	.088 .081 .087 .084 .087	5 4 4 3 3		.64 1 .66 1 .72 1 .63 2 .76 1	88 19 204			.75 .87 .90 .81 .83	.08 .08 .08 .07	.07 .06 .07 .06 .07	<2 2 2	1879 685 755 461 668	4.92 4.59 4.50 4.44 4.87
C 146146 C 146147 C 146148 RE C 146148 RRE C 146148	14 11 11 11 13	1094 981 805 789 791	4 10 7	189 122 159 158 163	.9 .5	3 2 2	16 18 18	1310 1198 1218 1196 1229	5.53 5.33 5.25	5 5 3	<8	<2 <2 <2	<2 <2 <2	_		<3 <3	<3 <3 <3	138 140 138	2.27 2.24	.090 .109 .131 .129 .129	3 3 3	6 6 2 6 3	.97 1.36 1.34	57 45 30 30 33		3 <3 <3 6 8	.77. 1.17 1.56 1.54 1.57	.07 .12 .07 .07	.06 .08 .05 .05			4.38 4.76 4.75 -
C 146149 C 146150 STANDARD DS5/AU-R	11 15 12	601 757 144	6	140 151 132	.7	3		1073 1087 736	4.67	5	_	<2		65	.6 .5 5.3		<3	136 131 59	2.04 1.84 .71	.133 .102 .092	3	6 5 188		30 53 37	.09 .09 .10	9 6 16	1.48 1.11 1.99	.07 .11 .04	.06 .09 .14	<2 2 5		4.76 4.69

(ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-04 File # A404967
510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

SAMPLE# Mo Cu Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Au** Sample	`
ррт ррт ррт ррт ррт ррт ррт урт урт урт	
SI <1 <1 <3 1 <.3 <1 <1 <2 .02 <2 <8 <2 <2 2 <.5 <3 7 <1 .10 <.001 <1 5 <.01 2 <.01 <3 .01 .44 .01 <2 <2 -	
C 146151 27 721 <3 263 .5 4 15 1272 4.39 2 <8 <2 <2 55 1.7 <3 4 107 2.19 .090 4 <1 .81 70 .06 12 1.00 .11 .06 <2 419 4.41	ı
C 146152 26 714 12 280 .6 3 14 1238 4.20 3 <8 <2 <2 67 2.1 <3 4 109 1.81 .087 3 6 .88 105 .08 8 .92 .07 .05 2 421 4.52	-
C 146153	_
C 146154 19 1281 16 250 1.6 4 16 1474 3.76 14 <8 <2 <2 68 2.0 <3 3 82 2.39 .082 4 7 .69 61 .03 13 .88 .07 .06 <2 1070 5.05	
C 146155 26 678 8 256 .7 4 13 1557 4.26 4 <8 <2 <2 75 1.4 <3 <3 95 2.32 .085 3 7 .83 169 .05 10 .87 .07 .06 <2 467 4.48	3
c 146156 23 967 9 287 1.4 4 15 1985 4.54 5 <8 <2 <2 68 1.8 <3 6 105 2.66 .084 4 5 .71 167 .03 12 .76 .07 .05 <2 705 4.65	5
c 146157 21 962 8 259 1.6 6 21 1369 4.26 9 <8 2 <2 69 2.0 <3 <3 113 2.12 .089 3 7 .79 184 .04 8 .95 .07 .05 <2 659 4.97	7
C 146158 21 573 5 169 .8 4 14 1384 3.88 6 <8 <2 <2 69 .8 <3 <3 102 2.18 .089 4 5 .87 118 .05 8 1.02 .08 .05 <2 387 4.59)
C 146159 23 765 4 267 .9 5 14 1317 4.18 5 <8 <2 <2 59 1.6 <3 4 103 1.95 .085 3 4 .84 76 .06 4 .95 .08 .06 <2 459 4.87	7
C 146160 19 1259 7 215 1.6 4 16 1304 4.28 3 <8 <2 <2 68 1.3 <3 <3 108 1.91 .083 3 2 .87 156 .07 5 .84 .06 .05 <2 727 4.56	5
c 146161	•
c 146162	•
RE C 146162 16 1101 15 271 1.7 5 18 1710 4.83 4 <8 <2 <2 69 1.6 <3 5 111 1.98 .086 4 8 .70 94 .03 13 .84 .07 .05 <2 639 -	•
RRE C 146162 19 1053 11 272 1.4 5 17 1743 4.92 3 <8 <2 <2 72 1.5 <3 3 112 2.03 .087 4 11 .70 91 .03 7 .85 .07 .05 <2 625 -	
C 146163 18 1132 7 264 1.5 4 15 1432 4.12 3 <8 <2 <2 75 1.9 <3 <3 102 2.19 .088 3 8 .66 128 .06 7 .93 .10 .05 <2 598 4.75	5
C 146164 17 1012 13 213 1.3 4 13 1127 4.14 5 <8 <2 <2 65 1.4 <3 <3 104 1.74 .092 4 6 .66 93 .06 5 1.02 .13 .05 <2 618 4.63	3
c 146165 13 802 5 157 .8 5 13 1005 4.35 <2 <8 <2 <2 71 .7 <3 <3 139 1.65 .089 4 7 .76 67 .07 5 1.22 .17 .05 <2 467 4.68	3
c 146166	5
STANDARD DS5/AU-R 13 146 24 138 <.3 25 12 748 2.99 18 8 <2 3 45 5.6 3 6 59 .74 .093 12 189 .69 137 .10 14 2.01 .04 .15 4 499 -	•

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. - SAMPLE TYPE: CORE R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 1/FA DATE RECEIVED: AUG 30 2004 DATE REPORT MAILED:

7 % CB 74%

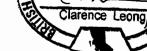
E. HASTINGS ST. VANCOUVER BC VOA 1Ro

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-05 File # A405056 510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

											,					7/)`		CIO)III) C	~~			,, соп			- 10 10 mm					ing disease Sounds Delay		
SAMPLE#	Mo Cu ppm ppm								As ppm p									Ca %		La ppm				Ti %			Na %			Au**	Sample kg	
S1 C 146167 C 146168 C 146169 C 146170	<1 <1 16 1051 15 821 13 774 14 987	16 8 7		1.0 .4 1.0	3 4 5	15 1 14 1 14 2	600 4 843 4	.15	17 19 17	<8 <8 <8	<2 <2 <2	<2 <2 <2	68 75 86	1.9 .9 .9	<3 <3 <3	<3 <3 <3	81 96 88	2.51 2.99 2.59	<.001 .081 .086 .083	3 4 5	12 8 6	.72 .72 .99	349 93 28	.03 .01 .01	3 4 7 4 5	.55	.07 .07 .08		<2 <2 <2	642 480 430	5.70 5.60 2.26 2.73	
C 146171 C 146172 C 146173 C 146174 C 146175	15 941 16 795 15 757 13 579 14 804	9 21 14	172 273 174	.5 .7 1.0	3 4 3	11 1 15 2 12 1	2063 5 1596 3	.85 .11 .77	18 12 19	8 8 8	<2 <2 <2	<2 2 2	65 66 67	.9 .8 .7	<3 <3 <3	<3 3 3	78 125 94		.081 .077 .085 .083	4 5 5	8	.64 .51	30 36 25	.01	6 6 5 8 8	.51 .69 .69	.08 .08 .08		<2 <2 <2	587 502 428	4.02 4.32 4.77 4.89 5.22	
C 146176 C 146177 C 146178 C 146179 C 146180	17 949 16 808 17 727 18 708 14 833	14 9 10	285 270	.9	4 4 4	14 1 15 1 16 2	944 4 2196 4	3.91 3.50 3.17	11 10 28	<8 <8 <8	<2 <2 <2	<2 <2 <2	67 2 70 5 62 5	2.0 1.9 1.4	<3 <3 <3	<3 <3 <3	85 102 89	1.99 1.54	.089 .079 .086 .083	3 4 5	13 13 10	.78 .82 .69 .70	50 32 44		8 <3 6 4 <3	.75 .73 .60	.08 .08	.06 .06 .05 .09	<2 <2 <2	495 409 393	5.33 5.42 5.25 5.52 5.20	
RE C 146180 RRE C 146180 C 146181 C 146182 C 146183	14 820 13 786 16 640 14 750 13 767	6 6 12		1.3 .7 .9	5 3 4	16 2 13 1 16 1	802 3	.79 3.94 3.84	15 10	<8 <8 <8	<2 <2 <2	<2 <2 <2	60 67 75	1.3 1.2 2.0	<3 <3 <3	<3 <3 <3	98 90 80	2.02 2.50	.080 .079 .082 .084 .086	5 4 4	9 6 6	.61 .78	55 45 112		6 7 7 4 5	.56	.08 .08 .80		<2 <2 <2	547 428 532	4.80 5.33 4.66	
C 146184 C 146185 C 146186 C 146187 C 146188	11 824 10 1291 14 807 13 949 12 933	17 4 10	350 238 191	1.6 .7 .9	6 4 3	25 2 13 1 11 1	1529 4 1951 4	.73	6 24	<8 <8 <8	<2 <2 <2	<2 <2 <2	66 7 59 62	2.1 .9 .8	<3 <3 <3	<3 5 <3	93 98 86	2.72 1.98 3.07	.086 .077 .085 .084 .083	4 4 5	10 7 8	.73	118 81 42	.04	3 5 5 <3 7	.83 .84 .86	.10 .10 .10	.05 .05 .06 .10	<2 <2 <2	936 520 522	4.97 5.07 5.03 5.26 4.69	
C 146189 C 146190 C 146191 C 146192 C 146193	8 855 12 1023 8 497 6 638 7 461	18 12 11	234 158 149	1.0 .8 .8	5 3 3	18 2 14 1 12 1	1911 3 2139 4 1250 3 1092 3 866 3	.00 3.63 3.64	114 35 9	<8 <8 <8	<2 <2 <2	<2 <2 <2	71 74 91	1.6 1.1 1.0	4 <3 <3	3 7 <3	71 79 77	3.13 1.41 1.74	.078 .072 .095 .101 .086	5 5 5	7 5 4	.65 .79 .50 .56	39 45 81	.01 .03	4 <3 6 5 6	.83 .91	.10 .14 .13	.10 .11 .06 .06	<2 <2 <2	413 220 432	5.33 4.88 5.03 5.37 5.12	
C 146194 C 146195 C 146196 C 146197 C 146198	7 710 6 846 7 711 7 662 8 582	5 6 10	116 100 186	.9 .7 1.0	2 1 3	9 8 10 1	1311 3 976 3 971 3 1366 3 856 3	3.40 3.34 3.31	4 6 14	<8 <8 <8	<2 <2 <2	<2 <2	81 61 68	.9 .7 1.5	<3 <3 <3	<3 <3 <3	69 62 71	1.70 1.46 2.32	.097 .098 .096 .083	4 4 4	2 5	.46 .58 .56	67 105 112		5 6 5 4 <3	.86 .73	.13 .10 .11	.07 .05 .06 .05	<2 <2 <2	519 472 403	5.02 5.18 4.92 5.14 5.52	
STANDARD DS5/AU-R	13 147	26	137	.3	25	12	764 3	3.01	19	<8	<2	2	45	5.4	3	6	58	.73	.094	11	194	.68	135	.10	16	2.01	.04	.14	5	495		


GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. - SAMPLE TYPE: CORE R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: AUG 31 2004 DATE REPORT MAI

Fjordland Exploration Inc. PROJECT 04-WJ-DC-05 FILE # A405056

Page 2

ALME ANALYTICAL																																ALME ANALY !!	CAL
SAMPLE#	Mo ppm				_			Mn ppm		As ppm									Ca %		La ppm			Ba ppm		B ppm	Al %	Na %			Au** ppb	Sample kg	
C 146199 C 146200 C 146201 C 146202 C 146203	7 8 7	834 836 1390	16	202 162 133	.8 .9 1.0	5 5 3	16 14 11	1629 1765 1649	4.48 4.04	14 47 73	<8 <8 <8	<2 <2 <2	<2 <2 <2	64 81 83	1.3 1.2 1.2	<3 3 <3	4 4 <3	128 87 78	2.11 2.48 3.20 3.53 2.44	.091 .097 .082 .086	5 6 6	5 12 2 4 2	.60 1.02 .99	51 31 102		5 6 5 4 7	.64 .48	.16 .10 .11 .09	.06 .04	<2 <2 <2	318 349 357 1120 306	4.87 4.90 4.99 5.16 5.28	
C 146204 C 146205 C 146206 C 146207 C 146208	5 6 5	657 950 722 1065 1009	2 11	3 151 203 3 138	1.0 1.1 1.1 1.1	6 5 4	14 14 13	1090 1874 1424		4 23 23	<8 <8 <8	<2 <2 <2	<2 2 <2	56 64 59	1.1 1.4 1.5	3 <3 <3	4 <3 <3	91 90 52	2.44 1.65 2.15 2.16 2.37	.073 .075 .075	5 4 6 5 5	9 8 8 1 7	.47 .54 .33	90 110 125 65 100	.04 .02 .01	7 5 3 <3 3	.60 .46 .37	.10 .12 .10 .08	.05 .07 .05	<2 <2 <2		4.63 5.31 4.99 4.89 5.23	
C 146209 C 146210 RE C 146210 RRE C 146210 C 146211	5 6 6	855 563 549 537 401	3 10 7 5	133 133 134	1.0 .8 .9 .7	2 2 3	9 9	1355 1349 1328	3.71 3.84 3.80 3.82 3.78	12 10 11	<8 <8 <8	<2 <2 <2	<2 <2 <2	74 73 74	1.0 1.0 .9	<3 <3 <3	<3 3 4	94 93 93	1.97 2.80 2.80 2.67 6.59	.110 .109 .112	7 7 6	6	.52 .52	46 45 48	.02 <.01 <.01 <.01 <.01	6 7 7 4 6	.63 .61 .63	.14 .10 .10 .10	.08 .08	<2 <2 <2	249 270	4.87 5.06 - - 5.34	
C 146212 C 146213 C 146214 C 146215 C 146216	3 5 6	707 875 537 434 455	7 7	130 7 123	1.3	1 1 2	9 8 12	1187 1388 1270	3.47	13 15 20	<8 <8 <8	<2 <2 <2	<2 <2 <2	88 133 110	1.1 1.0 1.2	3 <3 <3	<3 <3 <3	71 89 69	5.40 2.82 3.51 3.17 2.49	.111 .122 .109	5 5 6	2 4 <1	.43		.01 .02 .01		.68 1.12 .79	.04 .12 .18 .13	.05 .06 .06	<2 <2 <2	318 468 318 204 241	6.00 4.84 5.02 5.45 4.95	
C 146217 C 146218 C 146219 C 146220 C 146221	6 9 23	797	3 10 7 11 8 19	125 1 193 9 390	1.1 .8 1.0 2.8 2.1	2 3 4	11 14 15	1302 1874 1608		61 193 71	<8 <8 <8	<2 <2	<2 2 <2	57 65 60	1.1 1.3 3.8	5 <3	3 <3 <3	46 38 57	3.42 2.81 4.37 2.26 1.72	.073 .060 .074	5 5 7	6 <1	.58 1.66 .47	166 200 98	<.01	6 5 8 3 4	.38 .37 .36	.06 .07 .06 .08	. 13	<2 <2 <2	284 490	4.78 5.09 5.30 4.86 5.17	
C 146222 C 146223 C 146224 C 146225 C 146226	18 19 29 23 38	683 806 448	3 37 5 13 8 1	2 658 3 508 1 458	1.9 3.0 3.2.5 3.1.5	3 3 3	14 17 14	2510 1823 1992	3.26	116 60 48	<8 <8 <8	<2 <2 <2	<2 <2 <2	75 54 60	3.6 2.9 3.3	3 <3 <3	<3 <3 <3	42 43 49	1.65 2.34 1.60 2.38 2.11	.066 .073 .075	7 5 7	<1 <1	.81 .55 .51	781 119 152	<.01 <.01 <.01 <.01 <.01	5 <3 <3	.34	.07 .07 .08 .08	.04 .05 .05	<2 <2 <2	262 482 443 309 167	5.18 5.22 5.31 4.82 4.86	
C 146227 C 146228 C 146229 C 146230 STANDARD DS5/AU-R	28 14 14 25 13	105 63 188	5 6 3 6 8 3	9 240 5 192 4 225	.4) <.3 ? .3 ; .6	3 2 3	13 8 14	1744 1189 978	3.80 3.11 3.26	11 6 26	<8 <8 <8	<2 <2 <2	<2 <2 <2	55 52 68	1.0 .6 1.6	<3 <3 <3	<3 <3 <3	29 40 33	2.20 3.75 2.62 2.74 .69	.072 .075 .074	7 6 7	2	.53 .51 .82	182 62 93	<.01 <.01 <.01 <.01	<3 <3 3	.41	.06	.09 .15 .11 .11	<2 <2 <2	78 76 77	4.93 5.16 4.86 5.04	

Fjordland Exploration Inc. PROJECT 04-WJ-DC-05 FILE # A405056

Page 3

L	ACHE AIRETTICAE																																ACME ANALTTICA	<u> </u>
	SAMPLE#	Mo ppm				_			Mn ppm							Cd ppm				Ca %		La ppm			Ba ppm		ppm B	Al %	Na %			Au** ppb	Sample kg	
	C 146231 C 146232 C 146233 C 146234 PULP C 146235	8 21	6074	6 17 16	138 140 90	.4 .6 1.6	3 3 515	11 18 21	665 716 878	3.25 3.29 7.27	7 25 11	<8 <8 <8	<2 <2 <2	<2 <2 <2	56 65 108	<.5 .6 <.5	<3 3 4	<3 <3 4	51 61 44	2.91 2.74 2.57 1.96 1.87	.075 .076 .083	7 8 4	4 8	.62 .76 .90	253 227 23	<.01 <.01 <.01 <.01	9 12 9	.73 .66 .84	.08 .07 .07 .05	.19 .12 .40	<2 <2 <2	48 87 509	4.82 5.18 5.25 - 5.15	
	C 146236 C 146237 C 146238 C 146239 C 146240	1	21 146 87	24 16 13	271 126 122	1.0	4 5 4	17 12 14	860	3.80 3.31 3.56	4 30 12	<8 <8 <8	<2 <2 <2	<2 <2 <2	47 66 69	1.4 <.5 <.5	<3 <3 <3	<3 <3 <3	53 35 69	2.45 2.24 3.48 3.06 3.68	.075 .070 .081	6 7 6	6 4 1	.78 .66 .61	39 36 34	<.01 <.01 <.01	9 7 8	.72 .59 .55	.07 .06 .05 .06	.10 .14	<2 <2 <2	13 57 13	4.91 4.90 5.31 4.87 5.28	
	C 146241 C 146242 C 146243 C 146244 C 146245	10	56 144	14 19 14	129 125 100	.3 .6 .4	4 6 4	10 18 13	1056 993	3.02 4.00 3.48	11 23 14	<8 <8 <8	<2 <2 <2	2 <2 <2	60 64 51	<.5 <.5 <.5	<3 <3 <3	<3 3 <3	67 62 68	6.11 3.08 2.89 2.50 3.83	.081 .080 .077	8 8 6	1 11 5	.77 .83 .61	132 46 40	<.01 <.01 <.01	16 12 11	.80 .70	.05 .06 .07 .07	.15 .13 .13	<2 <2 <2	22 59 63	5.07 5.06 5.01 5.53 5.05	
	C 146246 C 146247 C 146248 C 146249 C 146250	2	56 100	11 6 11	192 174 169	.5 <.3 <.3	17 13 14	23 19 19	1696 1638 1628	5.62 5.11 5.20	8 7 24	<8 <8 <8	<2 <2 <2	<2 <2 <2	91 82 97	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	205 176 137	3.32 3.30 3.46 3.02 3.55	.090 .090 .092	7 6 7	19 14 15	2.24	70 72 49	.01 <.01 <.01	8 6 10	2.40 2.35 2.07 1.98 2.05	.14 .11 .10	.05 .05 .05	<2 <2 <2	27 19 13	5.11 4.98 5.42 5.07 5.04	
	RE C 146250 RRE C 146250 C 146251 C 146252 C 146253		109 144 96	25 3	177 196 237	<.3 <.3	14 15 15	22 25 23	1741 1572 2492	5.04 5.28 5.76	14 13 21	<8 <8 <8	<2 <2 <2	<2 <2 <2	99 150 228	<.5 <.5 <.5	<3 <3 <3	<3 3 <3	136 149 159	3.54 2.65 4.50	.096 .100 .093	9 5 9	15 15 15	2.22 2.05 2.31	43 76 62	<.01 .03 .01	10 3 7 1 11	2.09 2.16 2.36 2.01 1.81	.11 .21 .13	.05 .06 .06	<2 <2 <2	18 5 8	5.16 5.15 4.82	
	C 146254 C 146255 C 146256 C 146257 C 146258	1 2 2 1 2	47 194 95	13 13 13	176 176 156	.3	7 6 5	16 15 15	1630 1604 1357	4.10 4.11 3.85	21 16 15	<8 <8 <8	<2 <2 <2	<2 <2 <2	79 95 79	<.5 <.5	<3 <3 <3	<3 6 5	105 86 73	3.23 2.78 3.31 2.97 3.52	.081 .080 .076	7 7 6	5 7 4	1.16 .93 .79	202 336 70	<.01 <.01 <.01	13 1 16 1 15	.72	.10 .10	.06	<2 <2 <2	27 17 13	5.14 5.06 5.95 5.44 5.13	
	C 146259 C 146260 C 146261 C 146262 STANDARD DS5/AU-R	2 3 <1 1 12	226 13 16	25 <3	185 54 3 70	.7 <.3 <.3	13 13 12	22 6 6	1496 1310 594 489 749	4.82 1.55 1.45	87 2 3	<8 <8 <8	<2 <2 <2	2 4 4	81 92 89	.7 <.5 <.5	<3 <3 <3	6 4 5	83 30 26	3.00 1.88 1.88 1.76 .72	.090 .066 .064	9 17 16	5 25 23	.84 .91 .93	25 597 430	<.01 .04	1 18 20 9 1 10	.89 .76	.11 .11 .11 .10	.13 .27 .26	<2 <2 <2	86 <1 2	5.02 6.31 5.39 5.37	

Fjordland Exploration Inc. PROJECT 04-WJ-DC-05 FILE # A405056

Page 4

SAMPLE#	1				-		Co ppm p	in F					Sr ppm					Ca %	P %	La ppm		Mg Ba % ppm	Ti %	В	Al %	Na %	K %		Au** 9	Sample kg
C 146263	<1	15	8	58	<.3	13	6 6	31 1.5	2 !	5 9	> <2	4	96	<.5	<3	3	27	2.41	.061	18	22	1.05 456	.04	12	.70	.10	.24	<2	<2	5.01
C 146264 PULP	23 6	5183	16	86	1.2	531	21 9	24 7.6	4 1	3 1	1 <2	<2	105	<.5	7	4	47	2.03	.081	4	689	.94 46	<.01	11	.97	.05	-41	2	501	~
STANDARD DS5/AU-1	13	144	25	133	.5	25	12 7	59 3.0	4 1	3 <	3 <2	3	46	5.4	4	6	62	.73	.091	12	193	.69 139	.10	17	2.12	.04	.15	3	482	~

Sample type: CORE R150 60C.

002 E. HASTINGS ST. VANCOUVER BC VOA 1Ro

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-06 File # A405285
510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

Page 1

1		l	/	A	ĺ.
-	10			ľ	
	ı			ı,	

SAMPLE#					_			Mn ppm	Fe %						Cd ppm		Bi ppm		Ca %		La ppm			Ba ppm	Ti %	ppm B	Al %	Na %		ppm Ppm		Sample kg
SI C 146265 C 146266 C 146267 C 146268	2 439 52		5 143 28	60 430 225	<.3 11.8	12 14 7	6 26 18	586 1746 1497	1.38	3 580 22	<8 <8 <8	<2 <2 <2	4 <2 <2	90 76 55	<.5 10.9 .8	<3 12 <3	<3 5 <3	29 66 78	.07 1.77 2.64 2.33 3.19	.066 .061 .084	15 8 7	23 6 <1	.89 1.24 .63	283 87 110	.04 <.01 <.01	5 26 20	.74 .68 .68	.11 .07 .07	<.01 .25 .19 .26	<2 <2 <2	_	5.96 2.93 5.31 4.88
C 146269 C 146270 C 146271 C 146272 C 146273	23 16 13	173 963 567 328 220	18 11 6	130 100 106	1.3	6 5 4	18 10 10	1699 1293 1232	4.09 3.45 3.09 3.28 3.55	325 99 59	<8 <8 <8	<2 <2 <2	<2 <2 <2	88 61 44	.8 .7 <.5	3 <3 <3	3 <3 <3	48 61 69	5.06 3.66 2.68 1.39 2.09	.068 .074 .077	6 6	4 6	.74	110 164 55	<.01 <.01	20 16 12	.65 .48	.07 .07 .07	.20 .19 .16 .15	<2 <2 <2	276	5.38 5.46 5.21 4.63 4.70
C 146274 C 146275 C 146276 C 146277 C 146278	21 25 31	518 636 460 361 205	13 <3 6	186 153 147	.9 1.0	5 6 7	12 14 19	1601 1319 866	4.55 4.90 4.18 3.44 3.57	63 46 32	<8 <8 <8	<2 <2 <2	<2 <2 2	142 126 128	1.0 <.5 .9	<3 <3 <3	3 <3 <3	110 98 82	2.37 2.96 2.59 2.07 2.29	.107 .088	7 6 6	2 7 4	.97 1.00	43 57 72	.01 <.01 <.01	16 19 4	1.18 .82	.17 .17 .16	.08 .07 .06 .05	<2 <2 <2	326 188	5.29 4.79 5.07 3.85 4.75
C 146279 C 146280 C 146281 C 146282 RE C 146282	44 26 26	321 244 143 192 204	17 12 24	324 138 191	1.1 .4 .8	4 4	14 9 22	1534 1123 806	4.39 3.63 3.15 3.42 3.55	24 36 36	<8 <8 <8	<2 <2 <2	<2 <2 <2	57 61 65	2.0 <.5 1.5	<3 <3 <3	<3 <3 <3	75 58 67	4.02 2.20 2.41 2.38 2.47	.072 .068 .075	6 6 7	1 3 9 5 <1	.68 .65	200 278 156	<.01 <.01 <.01 <.01 <.01	13 11 6	.71 .50 .69	.08 .06 .80	.10 .08 .13 .09	<2 <2 <2	238	5.28 4.87 5.37 5.05
RRE C 146282 C 146283 C 146284 C 146285 C 146286	22	147 56	11 <3 <3	121	<.3 .7 .4	5 9 11	14 19 22	791 1148 1102	3.51 3.88 4.62 5.42 5.43	26 14 3	<8 <8 <8	<2 <2	<2 2 <2	72 69 67	<.5 <.5 <.5	<3 3 <3	<3 <3 <3	93 133 137	2.37 2.16 2.68 2.18 2.40	.078 .074 .083	7 9 10	3 10 7	.67 1.03 1.56 1.86 1.66	194 208 75	<.01 <.01 <.01	5 15 20	1.99	.09	.09	<2 <2 <2	91 38 98 52 38	5.31 4.94 5.02 2.94
C 146287 C 146288 C 146289 C 146290 C 146291	2 3 2 3 2	22 17 27	18 4	129	<.3 .4 <.3	3 3 4	10 11 10	1251 1318 1318	3.68 3.24 3.56 3.59 3.81	3 4 3	8 8> 8>	<2 <2	<2 <2 <2	33 38 37	. <.5 <.5 <.5	<3 <3 <3	<3 <3 <3	51 61 64	2.53 2.48 2.47 2.53 2.68	.078 .080 .080	7 7 7	6 9 4	.88 .96	168 313 256	<.01 <.01 <.01	16 13 8	1.20 1.34 1.36	.05 .05	.18 .19 .19 .18	<2 <2 <2	48 44 28 30 37	3.36 4.80 5.30 5.08 4.87
C 146292 C 146293 C 146294 PULP C 146295 C 146296	22	32 6035 32	19 14 14	89 116	<.3 1.3 <.3	3 526 4	11 22 11	1201 846 1167	3.40 3.54 7.32 3.57 3.71	2 13 <2	<8 8 <8	<2 <2 <2	<2 <2 <2	40 112 41	<.5 .5 <.5	<3 7 <3	<3 <3 <3	69 44 70	2.65 2.75 1.99 2.65 2.63	.083 .084 .083	8 4 7	6 689 8	1.02 1.06 .91 1.03 1.06	121 37 195	<.01 <.01 <.01	9 13 7	1.43 .89 1.40	.05 .05	.18 .20 .41 .19	<2 <2 <2	33 27 497 29 22	5.04 5.06 - 5.04 4.53
STANDARD DS5/AU-R	13	145	22	136	<.3	25	12	744	3.00	18	9	<2	3	47	5.6	4	7	59	.73	.093	11	189	REÇ	 	DEP		2.91	.04	.14	4	494	-

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU 2000 BILLIT

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Jungles Seg Hilling No are werens and the tree story to the series

DATE RECEIVED: SEP 7 2004 DATE REPORT MAILED:.

Sept 22/04.

Clarence Leong

Fjordland Exploration Inc. PROJECT 04-WJ-DC-06 FILE # A405285

Page 2

ACTE AIRCTTEAC																										····						ACTIL AIR	ACTITICAL
SAMPLE#																																Sample kg	
C 146297 C 146298 C 146299 C 146300 C 146301	3 1 1 2 1	15 15 22	21 53 44	152 194 171	<.3 <.3 <.3	3 3 3	12 11 10	1343 1046 927	3.77 3.57 3.50	7 8 7	' 10 8 8 ' <8	<2 <2 <2	<2 2 <2	81 56 49	.9 1.5 1.0	<3 <3 3	<3 <3 6	63 58 59	2.66 2.25 2.08	.081	4 3 3	<1 <1 <1	1.21 1.11 1.10	65 68 70	.01 .04 .05	16 12 4	1.73 1.51 1.46	.06 .06 .05	.16 .13 .13	<2 <2 <2	6 3 1	5.06 4.79 5.02 5.12 4.58	
C 146302 C 146303 C 146304 C 146305 C 146306	<1	8 14 42	17 13 20	139 108 110	· <.3 · .3 · <.3	3 3 4	11 11 12	833 876 892	3.35 3.54 3.39	4 6 7	11 9	<2 <2 <2	<2 <2 <2	49 51 58	.9 <.5 .7	<3 <3 <3	4 5 <3	55 59 61	2.22 2.30 2.23	.080 .080 .083	4 4 4	<1 8 4	1.09 1.14 1.18	94 81 122	.03 .03 .03	7 12 10	1.43 1.50 1.67	.06 .06 .07	.12 .11 .11	<2 <2 <2	<1 2 5	5.13 5.28 4.67 4.90 5.07	
C 146307 C 146308 C 146309 C 146310 RE C 146310	2	115 3 6 7	<3 26 <3	135 176 166	<.3 <.3 <.3	5 5 3	17 14 10	1086 1383 1510	4.56 4.35 3.74	9	3 10 9 12 3 <8	<2 <2 <2	<2 <2 <2	71 71 77	<.5 1.1 .6	<3 3 <3	7 <3 <3	105 98 81	1.84 2.07 2.09	.100 .098 .092 .088 .088	3 4 4	6 10 4	1.52 1.55 1.43	234 145 205	.02 .01 .01	14 15 15	2.09 2.12 1.92	.06 .06 .07	.07 .07 .06	<2 <2 <2	8 10 1	4.71 4.90 4.65 4.81	
RRE C 146310 C 146311 C 146312 C 146313 C 146314	3 2 1	60 17 38	3 <3 11	145 145 144	<.3 <.3 <.3	3 2	12 12 11	1606 1719 1504	3.57 3.48 3.09	9 4 3	<8 <8 <8	<2 <2 <2	<2 <2 <2	71 74 70	<.5 <.5 .6	<3 <3 <3	<3 4 <3	77 79 65	2.00 2.22 1.67	.083 .078	5 5 5	6 8 8	1.36 1.32 1.19	114 158 192	.01 .02 .01	14 8 7	1.83 1.77 1.68	.06 .06	.06 .06 .07	<2 <2 <2	2 2 <1	4.83 5.24 5.12 5.06	
C 146315 C 146316 C 146317 C 146318 C 146319	1 1	249 123 138	<3 <3	209 191 207	9 .8 1 .4 2 .3	5 5 5	24 19 19	2040 1870 2066	4.41 4.40 4.39	5	5 12 3 <8 4 <8	<2 <2 <2	<2 <2 <2	70 67 70	<.5 .5	<3 3 <3	4 <3 <3	98 113 110	1.75 1.72 2.29	.094	5 5 5	4 9 7	1.69 1.61 1.72	413 108 186	.01 .01 .01	12 12 9	2.18 2.07 2.13	.06 .06	.05 .05 .05	<2 <2 <2	3 3 2	5.18 4.57 4.58 4.98 5.04	
C 146320 C 146321 C 146322 C 146323 C 146324 PULP	2 3 1	27	9	196 193 185	<.3 <.3 <.3	5 4 5 3 5 4	17 13 14	1995 1888 1790	4.21 4.01 4.05	<2 <2	5 <8 2 8 3 <8	<2 <2 <2	<2 <2 <2	67 76 87	.6 <.5 <.5	<3 <3 <3	3 4 <3	88 92 87	2.47 2.36 2.38	.090	5 5 5	11 7 7	1.52 1.34 1.42	199 128 80	.01 .02 .01	4 7 7	1.96 1.89 1.97	.06 .08	.08 .12 .11	<2 <2 <2	<1 4 10	5.03 5.13 5.15 5.03	
C 146325 C 146326 C 146327 C 146328 STANDARD DS5/AU-R	2 1 <1	3 3 171	<3 <3 73	148 143 134	3 < .3 5 < .3	5 1 5 1	12 12 16	1699 1674 1407	4.44 4.67 4.27	5	5 <8 5 <8 3 <8	<2 <2 <2	<2 <2 <2	79 83 72	<.5 <.5	3 <3 <3	<3 <3 <3	102 110 97	2.53 2.51 2.45	.099 .102 .094	6 5 4	1 8 <1	1.66 1.74 1.54	94 59 48	.02 .05	13 18 6	2.22 2.36 2.03	.10 .09 .09	.05 .07 .07	<2 <2 <2	16 3 85	4.80 5.42 5.06 5.34	

Fjordland Exploration Inc. PROJECT 04-WJ-DC-06 FILE # A405285

Page 3

ACME ANALYTICAL																																ACME ANALYTICAL
SAMPLE#	1	Cu ppm			_	Ni ppm		Mn ppm		As ppm									Ca %		La ppm		-	Ва ррп	Ti %	В	Al %	Na %			Au** ppb	Sample kg
C 146329 C 146330 C 146331 C 146332 C 146333	2 <1 1 1 5	3 21 6	<3 <3 3	116 120 115	<.3 <.3 <.3	1 1 1	11 12 12	1598 1519 1554 1593 1688	4.66 4.71 4.65	7 2 3	9 <8 <8	<2 <2 <2	<2 <2 <2	73 65 64	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	113 110 107	2.45 2.63 2.79 2.88 2.92	.098 .098 .099	4 4 4	8 <1 1	1.56 1.54 1.58	69 72 80	.11 .10 .08	8 3 7	2.23 2.08 1.94	.13 .12 .11	.12 .13 .14	<2 <2 <2	8 31 33 59 55	5.05 5.00 5.20 5.09 5.08
C 146334 C 146335 C 146336 C 146337 C 146338	7 3 2 1 3	28 16	<3 <3 <3	116 115 114	.3 <.3 <.3	4 3 4	15 14 15	1768 1760 1808 1899 1551	4.55 4.32 4.45	2 3 5	<8 <8 <8	<2 <2 <2	<2 <2 <2	59 56 55	<.5 <.5 <.5	<3 <3 3	<3 <3 <3	111 102 107	3.15 2.87 2.89 3.14 3.13	.088 .088 .092	2 3 4	8 7 7	1.53 1.40 1.41	100 105 105	.08 .06 .05	9 5 5	1.62	.09	.14 .16 .17	<2 <2 <2		5.48 4.96 4.78 5.10 4.94
C 146339 C 146340 RE C 146340 RRE C 146340 C 146341	12 16	234 247	<3 <3 <3	175 186	<.3 <.3 <.3	4 4 4	13 12 13	1781 1794 1773 1848 1634	7.14 7.06 7.51	2 3 5	<8 <8 <8	<2 <2 <2	<2 <2 <2	44 44 45	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	114 112 116	3.37 2.37 2.33 2.32 2.54	.099 .098 .101	7 7 7	4 6 13	1.42 1.41 1.47	520 512 555	.01 .01 .01	11 10 11	2.40 2.52	.04 .04	.28 .27	<2 <2 <2	124 102 118	4.84 5.10 - - 4.97
C 146342 C 146343 C 146344 C 146345 C 146346	16 13 8 5 32		<3 <3 8	399 720	.4	4 4	17 17 17	1867 1783 1852 1720 2004	4.44 4.59 4.60	5 2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	53 51 54	1.5 2.7	<3 <3 <3	<3 <3 <3	93 109 102	3.54 3.20 3.44 3.19 3.44	.097 .092 .097	5 6 7	10 11 13	1.39 1.35 1.28	153 184 161	.04 .03 .01	11 11 15	1.89 1.80	.07 .06 .07	.21 .21	<2 <2 <2		5.28 4.99 5.48 4.79 4.74
C 146347 C 146348 C 146349 C 146350 C 146351	22 6 13 14 7	36 134 47	5 <3	237 1580	.4 .3 <.3 . <.3	4 4 4	15 17 16	1636 1721 1968 2399 3154	4.02 4.46 4.48	2 3 3	<8 <8 <8	<2 <2 <2	<2 <2 <2	54 57 59	4.8 4.8	<3 3 <3	<3 <3 <3	85 98 120	3.50 3.26 3.14 3.59 3.57	.091 .093 .094	6 6	10 11 7	1.25 1.35 1.49	139 153 101	.01 .01 .01	17 12 11	1.67 1.85 1.75	.06 .07 .06	.21 .21	<2 <2 <2	126	5.50 4.81 4.87 5.02 5.29
C 146352 C 146353 C 146354 PULP C 146355 C 146356		55 6047 105	5 15 7	87	<.3 ' .9 <.3	2 556 4	17 22 13	2543 872	7.18 7.35 3.81	14 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	61 109 63	.9 .5 2.3	<3 6 <3	<3 <3 <3	170 44 83	3.65 2.94 1.99 4.05 3.43	.126 .080 .093	6 4 6	10 724 13	1.90 .90 1.43	94 50 149	.03 <.01 <.01	16 14 5	2.34 2.52 .88 1.83 1.93	.09 .05 .06	.14 .39 .21	<2 <2 <2	135 537	5.13 5.37 - 5.25 5.37
C 146357 C 146358 C 146359 C 146360 STANDARD DS5/AU-R	12 17 13	146 261	3 12 9	146 178 208	<.3 3 <.3	5 5 6	16 20 16	1515 1477 1658	4.57 4.46 4.57	3 2	<8 <8 <8	<2 <2 <2	<2 2 <2	66 72 71	<.5 6. !	<3 <3 <3	<3 <3 <3	118 109 121	3.37 3.40 3.21 3.01 .75	.085 .082 .082	5 6 6	16 13 11	1.52 1.43 1.55	158 109 92	.05 .05 .04	10 11 12	1.86 1.80 1.95	.08 .08 .80	.18 .15 .11	<2 <2 <2	95	5.08 5.35 5.09 5.19

Fjordland Exploration Inc. PROJECT 04-WJ-DC-06 FILE # A405285

Page 4

AGIL AIRETTICE																															ACME ANALYTICAL
SAMPLE#	Mo Cu ppm ppr			•					As ppm									Ca %		La ppm		-	Ba ppm			Al %	Na %			Au** ppb	Sample kg
C 146361 C 146362 C 146363 C 146364 C 146365	11 170 16 210 16 11 22 380 20 22	11 1 <3 0 7	1431 563 367	.6 <.3 .6	5 6 5	18 18 17	1825 1425	4.92 5.34 4.48	4 4 3	11 9 8	<2 <2 <2	<2 <2 <2	69 71 70	4.9 .6 <.5	<3 <3 <3	3 3 <3	139 155 114	3.00 3.15 3.02 2.77 3.08	.088 .090 .085	6 5 5	11 14 10	1.72 1.73 1.47	66 68 184	.04 .07 .04	7 10 7	2.06 1.84	.08 .09 .08	.05 .08 .11	<2 2 <2	184 97	4.79 4.97 5.04 4.83 5.50
C 146366 C 146367 C 146368 C 146369 C 146370	13 144 10 10! 21 146 13 166 4 108	5 11 9 9	235 244 189	.5 .3 .6	5 4 6	18 15 18	1120 12 3 6	4.61 4.47 4.98	4 4 <2	10 <8 <8	<2 <2 <2	<2 <2 <2	64 62 58	<.5 <.5 <.5	<3 <3 <3	10 9 3	132 120 143	3.04 2.66 3.04 2.97 2.98	.092 .093 .092	5 4 4	10 9 13	1.60 1.53 1.70	60 245 87	.08 .06 .10	10 7 11	2.09 1.96 2.14	.11 .08 .09	.10 .14 .13	2 <2	29 88 103	5.33 5.45 5.32 4.88 5.02
C 146371 C 146372 RE C 146372 RRE C 146372 C 146373	3 8 3 8 2 8	5 13 2 14 1 9	226 227 215	.4 .5 .5	6 5 6	20 20 19	1275 1451 1441 1382 1830	5.35 5.31 5.13	3 2 4	8 10 <8	<2 <2 <2	<2 <2 <2	75 74 72		<3 <3 <3	<3 7 6	163 163 156	3.10 2.75 2.73 2.64 2.23	.097 .097 .094	5 5 5	11 11 11	1.88 1.88 1.80	67 66 69	.07 .06 .06	6 9 7		.12 .12 .12	.06 .06	<2 <2 <2	47 34 39	5.00 4.87 - - 5.11
C 146374 C 146375 C 146376 C 146377 C 146378	3 8 1 12 1 4	9 20 1 4 5 8	559 508 417	1.1 1.1 .5	6 5 6	19 21 13	2134	5.23 4.87 5.02	<2 <2 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	82 72 75	2.3 2.1 1.1	<3 <3 3	<3 7 8	160 125 159	2.57 2.47 2.24 2.39 2.65	.091 .094 .101	5 4 5	10 10 12	1.84 1.65 1.93	78 78 46	.01 .01	9 5 6	2.20	.12 .11 .11	.03 .05 .06	<2 <2 <2	43	5.11 4.99 5.10 4.41 4.68
C 146379 C 146380 C 146381 C 146382 C 146383	2 7' 1 7' 3 7' <1 7' 2 6'	6 6 6 6 6 9	180 191 228	.8 .9 .8	5 5 6	16 18 19	1519	4.79 4.97 4.88	4 <2 3	<8 <8 <8	<2 <2 <2	<2 2 2	87 78 78	<.5 <.5 1.0	<3 <3 <3	4 3 4	124 142 126	2.35 2.34 2.26 2.19 2.31	.095 .097 .089	4 4 4	11 12 13	1.73 1.76 1.79	63 71 58	.01 .01 .01	6 7 7	2.23 2.27 2.21 2.21 2.45	.16 .13 .14	.07 .06	<2 <2 <2	10	4.84 5.19 5.05 4.94 4.97
STANDARD DS5/AU-R	14 14	2 24	138	.3	25	12	767	3.03	19	<8	<2	3	46	5.7	3	5	60	.77	.096	12	186	.68	137	.11	16	2.05	.04	.15	5	487	-

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-07 File # A405321
510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

Page 1

								10	ا ا	JU1 1 6			V DI (C	········		, , , , , ,	, ,,,,		GDIII C	red by		, c Pre	/I COII										
SAMPLE#	ppm p				-			Mn ppm							Cd Ppm				Ca %		La ppm			Ba ppm		ppm B	Al %	Na %		ppm W		Sample kg	
SI C 146384 PULP C 146385 C 146386 C 146387	<1 1	60	12 12 11	87 179	1.8 .5 .7	5 5	21 19 19	834 1438 1514	7.08 4.29 4.71	13 2 4	<8 <8 <8	<2 <2 <2	<2 2 2	102 68 67	.5 .7 .6	7 <3 <3	3 <3 <3	43 96 110	1.91 2.12 2.23	<.001 .081 .093 .093 .092	3 4 4	685 9 8	.88 1.53 1.60	39 70 53	01.> 01.> 01.	17 7 <3	.02 .80 1.96 2.03 2.30	.11	.36 .07	<2 <2 <2		4.86 4.93 4.37	
C 146388 C 146389 C 146390 C 146391 C 146392	2 1 1 3 <1	86 82	<3 7 14	214 154 137 151 186	.4 <.3 .4	6 6 5	19 18 20	1634 1308 1262 1329 2025	4.60 5.12 5.11	3 <2 2	<8 <8 <8	<2 <2 <2	<2 <2 <2	75 74 62	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	114 140 114	2.33 2.20 1.80	.096 .099 .095 .100	5 4 6	7 8 7	1.75 1.82 1.76	63 100 59	<.01 <.01 <.01	<3 3 <3	2.38 2.33 2.02	.11 .12 .10	.08	<2 <2 <2	22 9 28 41 10	4.58 4.79 4.90 4.52 4.72	
C 146393 C 146394 C 146395 C 146396 C 146397	2 <1 2 <1 1	63 73 42	<3 5 <3	145 112 100 89 94	<.3 .3 <.3	5 6 6	15 18 15	1587 1371 1078 899 953	4.42 4.35 4.00	3 2 3	<8 <8 <8	<2 <2 <2	<2 <2 <2	67 74 68	<.5 <.5 <.5	<3 <3 <3	3 <3 <3	113 111 97		.087	7 6 5	6 9 6	1.53 1.58 1.53	129 81 88	<.01 <.01 <.01	6 7 9	1.98 2.05	.09 .10 .10	.08	<2 <2 <2	19 9 5 7 6	4.59 4.89 4.58 4.67 5.02	
C 146398 C 146399 C 146400 RE C 146400 RRE C 146400	<1 1 <1 1 1	79	12 <3 4	89 120	<.3 <.3	5 7 7	17 17 17	803 980 1163 1144 1154	5.18 4.70 4.63	3 4 2	<8 <8 <8	<2 <2 <2	<2 <2 <2	67 67 67	<.5 <.5 <.5	<3 <3 <3	4 <3 <3	131 126 124	2.24 2.23 2.20	.097 .094 .089 .088 .088	5 6 6	7 10 9	1.82 1.64 1.62	58 64 64	<.01 <.01 <.01	<3 7 <3	2.01	.11 .11	.05 .07 .07	<2 <2 <2	4 8 10 12	4.99 5.34 5.05 -	
C 146401 C 146402 C 146403 C 146404 C 146405			11 5 9	142 177 174 175 120	<.3 .5 .4	6 7 7	18 18 14	932 1190 1223 1449 1223	4.77 4.59 4.78	7 3 5	<8 <8 <8	<2 <2 <2	<2 <2 <2	66 66 64	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	121 134 137	1.83 1.84 1.81 1.82 2.09	.085 .084 .087	5 6 6	9 9 9	1.68 1.73 1.78	65 133 79	<.01 <.01 <.01	5 6 8	1.89 1.96	.10 .10	.07 .06 .05 .04 .08	<2 <2 <2	16 66 29 26 24	4.98 4.37 4.96 5.37 5.38	
C 146406 C 146407 C 146408 C 146409 C 146410	6	44	11 15 15	217 275	.5 .5 <.3	7 7 4	15 13 11	1254 1123 942 851 590	3.92 3.95 3.46	6 7 4	<8 <8 <8	<2 <2 <2	2 2 <2	62 59 54	<.5 <.5 1.4	<3 <3 <3	<3 <3 <3	114 97 73	1.52 1.04 1.44	.080 .075 .077 .081	6 5 6	12 19 5	1.13 1.41 1.20	144 78 100	<.01 <.01 <.01	9 4 <3				<2 <2	46 49 182 61 38	5.26 5.02 5.70 4.85 5.37	
C 146411 C 146412 C 146413 C 146414 PULP C 146415	1 3 5 20 6 2	094	6 11 14	121 126 89		3 4 467	11 12 20	896 802 1028 868 1184	3.21 3.56 7.27	2 6 14	<8 <8 <8	<2 <2 <2	<2 <2 <2	41 45 108	.5 .5	<3 <3 8	<3 <3 <3	44 62 43	1.55 1.58 2.05	.082 .078 .080 .086 .084	6 6 4	5 5 6 622 7	.85 .86 .94	68 70 39	<.01 <.01 <.01	8 3 18	1.11 1.00 1.02 .84 1.04	.08 .08	.08	<2 <2 2	17 16 30 515 29	5.17 5.11 4.93 - 5.34	
STANDARD DS5/AU-R	13	146	25	136	.3	24	12	737	3.02	18	<8	<2	3	45	5.4	3	6	59	.71	.093	11		.66	135	.10	16	2.01	.04	.14	5	489	-	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSIS CAN LIMIT AU SOLUBILITY

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB 20 AS > 1%, AG > 30 PPM & AU > 1000 PPB

- 5 10- 2004

- SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 8 2004 DATE REPORT MAILED:

Sept 27/04

Fjordland Exploration Inc. PROJECT 04-WJ-DC-07 FILE # A405321

Page 2

AGRE AMETITIONE																																ACHE ANALTTICAL
SAMPLE#	Mo ppm				Ag ppm			Mn ppm							Cd ppm				Ca %		La ppm			Ba ppm	Ti %	B ppm	Al %	Na %			Au** ppb	Sample kg
C 146416 C 146417 C 146418 C 146419 C 146420	1 2 1 1 1	57 38 108 66 61	4 28 16	164 193 530	<.3 <.3 1.0 1.0	3 3 3	9 14 16	1893 1222 916 2373 695	3.26 3.62 4.72	5 6 8	<8 <8 <8	<2 <2 <2	<2 <2 2	55 61 145	<.5 .8 2.1	<3 <3 4	<3 <3 <3	59 31 50	2.13 1.44 2.38 4.47 1.02	.079 .075 .066	6 6	2 5 2	.49 .52 1.78	78 35 53	<.01 <.01	9 13 11	.88	.08 .07	.05	<2 <2 <2	28 18 44 21 25	4.93 4.85 5.64 4.84 5.06
C 146421 C 146422 C 146423 C 146424 C 146425	<1 1 1 1 1 15	61 70 60	34 30 15	640 859 406	.5 1.1 1.1 8	3 3 4	13 13 11	914 812 1054 1384 817	3.66 3.60 3.47	7 8 <2	<8 <8 <8	<2 <2 <2	<2 <2 <2	46 51 61	2.6 4.2 1.4	<3 <3 <3	<3 <3 <3	36 44 44	1.17 1.52 1.27 1.33 1.54	.073 .074 .069	5 5 7 5	2	.49 .64 .76	36 43 53	<.01 <.01 <.01 <.01 <.01	8 10 10	.70 .64 .72 .69 .71	.08 .08	.08 .05 .07	<2 <2 <2	20 20 27 35 34	5.18 5.14 5.16 5.04 4.94
C 146426 C 146427 C 146428 C 146429 C 146430	3 2 <1 <1 1	50 47	53 28 25	568 569 694	.5 1.1 .9 1.6	3 3 4	13 12 13	1250 841 1044 1173 1590	3.70 3.83 4.16	8 7 10	<8 <8 <8	<2 <2 <2	<2 <2 2	62 56 65	2.5 2.2 3.3	<3 <3 <3	<3 <3 <3	36 50 62	.96 1.42 1.31 1.53 2.04	.068 .070 .071	5 6 6	4 3 6	.69 .71	33 32 30	<.01 <.01 <.01 <.01 <.01	11 9 15	.88 .57 .61 .57 .87	.08	.06 .06 .07 .07	<2 <2 <2	30 44 35 49 17	5.14 5.22 5.15 5.55 5.08
C 146431 C 146432 C 146433 C 146434 RE C 146434	4 6 2 8 8	115 12 40	8 8 3	3 230 3 165 3 124		2 2 2	9 7 9	1313 1468 1382 1029 1022	3.75 3.26 3.13	17 7 4	<8 <8 <8	<2 <2 <2	2 <2 <2	61 58 62	<.5 <.5	<3 <3 <3	<3 <3 <3	63 55 45	.91	.071	3 7 3 7 1 6	3 2 3 <1 <1	.87 .85 .69	168 165 69	<.01 <.01 <.01 <.01 <.01	6 7 6	.91 .89 .62	.08 .08 .07 .07	. 05 . 05 . 04	<2 <2 <2	37 62 22 31 35	5.04 4.90
RRE C 146434 C 146435 C 146436 C 146437 C 146438	8 18 16 17 27	75 279	45 10	196 167 150	3 .5 7 1.0 3 .5	3 3 2	13 11 10	1053 848 1135 1095 1176	3.40 3.51 3.35	7 9 7	<8 <8 <8	<2 <2 <2	<2 2 <2	58 52 53	1.1 .5 <.5	<3 <3 <3	<3 <3 <3	45 61 63	1.19 1.56 1.60 1.87 2.05	.071 .075 .072	6 6 2 6	2	.72 .77 .85	45 93 120	<.01 <.01 <.01 <.01 <.01	10 6 6	.52 .88 .95	.08 .07 .08 .07	.04 .04 .05	<2 <2 <2	38 32 215 89 142	5.29 5.18 5.10 5.01
C 146439 C 146440 C 146441 C 146442 C 146443	29 13 7 1	115 126 19	4	208 132 226	2 1.3 3 .4 2 .3 5 .5	3 2 3	13 13 14	1085 1003 785 789 1057	3.29 2.94 3.47	6 12 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	67 56 64	.8 <.5 1.0	<3 <3 <3	<3 <3 <3	43 47 39	.63	.070 .070	6 6 7 5	2 1 2 2 1	.40 .28 .31	122 87 49	<.01 <.01 <.01 <.01 <.01	7 5 12	.50 .71	.08 .09 .08 .10	.04	<2 <2 <2	266 76 117 14 22	4.87 5.30 4.93 5.47 4.71
C 146444 PULP C 146445 C 146446 C 146447 STANDARD DS5/AU-R	10 15 2	242 226 286	<3 5 <3	118 84 140	3 <.3 .6 .4	3 3 4	34 20 13	943 957 1708	3.68 3.23 3.77	24 30 11	8> 8 <8>	<2 <2 <2	<2 <2 <2	41 50 72	<.5 <.5 ! <.5	<3 3 <3	<3 <3 <3	40 35 60	1.60 3.08	.080 .069	5 5 7	724 1 <1 3 180	.36 .66 .73	43 62 126	<.01 <.01 <.01 <.01	7 4 5	.83 .45 .34 .49 2.00	.06 .04 .05	.15 .15 .12	<2 <2 <2	51 13	4.79 5.42 5.31

Fjordland Exploration Inc. PROJECT 04-WJ-DC-07 FILE # A405321

Page 3

SAMPLE#								Mn ppm							ppm Cd				Ca %		La ppm			Ba ppm	Ti %	B ppm	Al %	Na %			Au** ppb	Sample kg
C 146448 C 146449 C 146450 C 146451 C 146452	2 29		11 23 21	168 199 311	.6 1.3 .7	4 7 15	10 14 25		3.93 4.20 5.30	19 15 8	<8 <8 <8	<2 <2 <2	<2 <2 2	96 86 80	.5 .7 .9	<3 <3 3	<3 <3 <3	69 75 136	3.12 3.74 3.04 1.87 2.74	.071 .080 .092	7 7 7	2 4 14	1.25 1.15 2.18	48 52 70	<.01 <.01 <.01	15 12 12	.53 .81 2.19	.08	.13	<2 <2	26 28 157 111 6	5.16 5.03 4.93 5.04 5.22
C 146453 C 146454 C 146455 C 146456 C 146457	2 <1 1 1	27 26 26	3 15 11	271 214 204	<.3 .3 .3	15 15 14	20 27 24	2311 2252 2224 1888 1973	5.45 5.56 5.30	4 5 3	<8 <8 <8	<2 <2 <2	2 <2 <2	86 100 86	<.5 <.5	<3 <3 <3	<3 <3 <3	173 135 130	2.81 2.68 3.55 2.83 3.24	.091 .092 .089	8 7 8	17 18 17	2.34 2.10	152 63 59	<.01 .01 .01	10 4 9	2.13 2.44 2.42 2.25 2.27	.09 .10 .11		2 2 2 3 3	17 5 7 12 7	5.02 5.32 5.27 5.26 5.24
C 146458 C 146459 C 146460 RE C 146460 RRE C 146460	2 8 <1 <1	42 71 74	6 5 13	142 161 161	<.3 <.3 <.3 .4 <.3	5 7 7	12 18 19	1441 1511 1415 1396 1550	3.67 4.03 3.99	7 8 10	<8 <8 <8	<2 <2 <2	<2 <2 <2	75 71 70	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	79 99 98	2.06 3.55 2.46 2.43 2.86	.078 .080 .080	8 7 6	3 5 6	1.23 1.36 1.34	209 140 141	<.01 <.01 <.01	7 5 5	1.53 1.40 1.48 1.47 1.47	.06 .06 .06	.10 .05 .05	<2 <2	22	5.05 4.80 5.24
C 146461 C 146462 C 146463 C 146464 C 146465	<1 1 <1 <1 <1	33 30 54	7 3 6	142 136 113	<.3 <.3 <.3 <.3	5 6 5	14 15 13	1530 1475 1376 1120 1371	3.94 3.96 3.93	5 5 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	62 58 53	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	75 81 88	2.80 2.53 1.97 1.38 1.69	.077 .082 .076	7 7 6	6 6 5	1.34 1.25 1.27 1.23 1.40	156 89 77	<.01 <.01 <.01	6 7 6	1.46 1.45 1.44 1.37 1.59	.07 .08 .09	.10	<2 <2	9 13 15 8 16	4.84 5.46 5.17 5.46 5.27
C 146466 C 146467 C 146468 C 146469 C 146470	<1 <1 <1 <1 <1	33 34 54	7 8 13	99 99 95	.3 <.3 <.3 <.3	4 5 4	13 13 12	1438 1119 1128 997 1051	3.38 3.68 3.45	4 4 7	<8 <8 <8	<2 <2 <2	<2 <2 <2	56 50 51	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	75 68 70	1.93 2.12 1.74 2.05 1.48	.077 .076 .077	6 7 6	3 6 3	1.13	171 98 95	<.01 <.01 <.01	9 6 5	1.62 1.33 1.30 1.23 1.26	.06 .07 .07	.09 .07	<2 <2	9 9 18 27 17	5.21 4.95 5.07 5.28 4.94
C 146471 C 146472 C 146473 C 146474 PULP C 146475	19 <1 24	82 53 5946	29 7 16	73 73 89	.4 <.3 1.4	6 4 477	14 14 20	891 862	4.44 3.39 7.08	11 5 12	<8 <8 <8	<2 <2 <2	<2 <2 <2	63 49 104	<.5 <.5 <.5	<3 <3 5	<3 <3 <3	55 63 41	1.60 2.63 2.07 1.99 1.86	.072 .078 .080	7 6 4	5 4 597	1.19 1.07 .89	51 76 49	<.01 <.01 <.01	9 7 6	.99 1.15	.06 .06 .05	.08	<2 <2 3	36 13	5.39 5.50 5.00 - 3.73
C 146476 STANDARD DS5/AU-R	1 12		5 27	85 136	<.3 .4	3 25	11 12	890 751	3.09 3.03	12 19	<8 8	<2 <2	<2 3	41 46	<.5 5.3	<3 4	<3 7	64 59	1.49 .73	.077	6 11	2 181	1.00 .68	96 136	<.01 .09	6 19	1.14 1.98	.07 .04	.05 .14	<2 5	19 483	2.83

034 E. MASTINGS ST. VANCOUVER BC VOA 1Ro

PHUNE (604) 253-3138 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-08 File # A405322 P
510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

44

									10 -	J 10	bui i e	ii u 3	· . ,	vario	ouve	:1 BC	VOC	JAO		ubmitt	Led by	. 01	. C PIO	LOIT									بنا بنا	
	SAMPLE#	l	Cu ppm			•					As ppm									Ca %		La ppm			Ba ppm	Ti %	ppm	Al %	Na %		w / ppm		Sample kg	
	SI C 146477 C 146478 C 146479	26	<1 1240 1229 1129	16 10	298 224	1.6	4	12 12	<2 925 925 986	4.70 4.55	2	<8 <8	<2 <2	<2 <2	44 55	<.5 1.9 1.1 1.2	4 <3	<3 8 6 3	119 116	.94 .78	<.001 .081 .084 .080	3 4	14		92 200 161	.10	12 9	.76 .79	.34 .08 .08	<.01 .07 .07	<2	1025	4.05 4.95 4.90	
!	C 146480 C 146481 C 146482 C 146483	19 16	1997 1409 1434 1382	13 10	197 151		4	11 11	1488 1048 1337 1047	4.32 4.21	3	<8 <8	<2 <2	<2 <2	47 57		<3 <3	3	91 79	1.49 1.35 2.01 1.41	.075	3	8 <1 11	.58	90	.04 .09 .07	8 7 4 3	.62 .66 .72 .71		.06	<2 ** <2 ** <2 **	1096 920	4.71 4.89 4.80 4.81	
1	C 146484 C 146485 C 146486	25 25	1221 1505 1296	6 5	309 211	1.8 1.5	4 5	11 12	1054 1009 1253	4.07 4.86	<2 <2 <2	<8 <8 <8	<2 <2	<2 <2 <2	51 53 59	3.0 1.9	<3 <3 <3	5 3 4	81 81 126		.066	3	2 8 11	.89 .80	123	.09	<3 11	.70 .74	.08	.07 .06	<2 <2 <2	946 1041 857	5.08 4.72 5.20	
	C 146487 C 146488 C 146489 C 146490	20 19	2014 1338 1225 1177	23 21	248 237	1.2	5 4 3	13 12 12		4.93 4.48 4.48	9 20 108	<8 <8 <8	<2 <2 <2	<2 <2 <2	61 53 60	.6 .9 1.1	<3 <3 4	4 4 <3	116 107 89	2.40 1.72 4.11	.077 .082 .082 .082	3 5 6	6	.72 .79 .66 .59	59 110	.09	11	.77 .87 .74 .70	-	.08 .08 .06 .09	<2 <2	894 715	4.75 4.62 4.98 4.55	
	RE C 146490 RRE C 146490 C 146491 C 146492 C 146493	17 22 17	1176 1185 1093 931 736	33 26 32	240 227 230	1.5 1.5 1.6	3 3 3	12 11 9	3122 2654	4.31 4.14 3.99	110 68 133	<8 <8 <8	<2 <2 <2	<2 2 <2	58 48 44	1.0 1.4 1.4	4 5 12	3 <3 <3	85 83 77	4.13 3.50 4.16	.082 .077 .081 .081	6 5 6	3 8	.56 .49 .40	74 48 33	.02 .02 .02 <.01 <.01	11 17 20	.68 .63 .66 .57	.06 .05 .05 .03	.09 .08 .08 .09	<2 <2 <2	797 738 689	4.20 4.90 5.10	
	C 146494 C 146495 C 146496 C 146497 C 146498	16 19 17	1173 1501 1866 1092 1084	33 35 23	318 252 228	2.3 2.5 1.8	2 2 1	12 12 12	3064 2347 2244	5.14 4.97 4.88	133 169 18	<8 <8 <8	<2 <2 <2	<2 <2 <2	51 54 65	2.0 1.2 .7	6 3 <3	<3 <3 <3	103 106 101	2.40 2.93 3.04	.097 .092 .097 .094	8 6 5	7		25 26 44	<.01 <.01 .03 .05	13 15 12	.64 .67 .63 .79 .83	.03	.10 .10 .08 .07	<2 <2 <2	862 1122 656	4.31 4.59 4.97 5.22 4.85	
	C 146499 C 146500 C 146501 C 146502 C 146503	15 16 21	1243 1067 802 793 931	31 29 23	254 269 254	1.6 1.5 1.3	2 2 4	14 13 13	2874	5.04 4.94 4.80	23 13 4	<8 <8 <8	<2 <2 <2	<2 <2 <2	76 78 58	.8 .8 .8	<3 <3 <3	<3 <3 <3	91 109 124	4.10 3.70 1.63	.094 .089 .090 .083	6 5 3	4 10	.71 1.02 .85 1.00 1.12	257 55 58	.03 .05 .10	16 16 11	.82 .89 1.00 .90	.06 .06 .06 .07	.08 .09 .10 .07	<2 <2	710 445 462	5.38 4.71 5.20 5.34 4.56	
	C 146504 PULP C 146505 C 146506 C 146507 C 146508	15 22 24	6075 1284 919 894 845	17 14 6	192 275 173	1.4	6 4 4	12 15 12	860 1063 1451 1283 1396	4.89 4.95 4.39	4 4 4	<8 <8 <8	<2 <2 <2	<2 <2 <2	49 54 69	.8 .7 .6	<3 <3 <3	<3 <3 <3	120 1 33 105	1.15 1.90 1.69		3 4 3	15	.90 1.10 1.24 1.11	44 91 123	.10	8 9 13	.88 .85 1.06 .89 .89	.05 .09 .09 .08	.38 .09 .08 .06	<2 <2 <2	763 536 544	5.25 5.37 4.80 5.18	
	STANDARD DS5/AU-R	13	145	25	135	.3	25	12	754	3.01	17	12	<2	2	47	5.4	5	7	60	.72	.092	11	187	.68	137	.10	16	2.05	.04	.15	4	492	-	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES OF THE COMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data V FA

DATE RECEIVED: SEP 8 2004 DATE REPORT MAILED: 5

Sypt 27/04

Fjordland Exploration Inc. PROJECT 04-WJ-DC-08 FILE # A405322

Page 2

ACHE ANALTTICAL																			 													ALME A	NALYTICAL
SAMPLE#	Mo				_			Mn ppm										V ppm	Ca %		La ppm										Au** ppb	Sample kg	
C 146509 C 146510 C 146511 C 146512 C 146513	30 29 27	1347 821 954	8 15 14	236 305 366	<.3 1.8 1.0 1.7 2.4	5 4 4	15 14 14	1498 1682 1871	5.47 4.85 4.38	18 14 60	<8 <8 9	<2 <2 <2	<2 <2 <2	62 52 61	1.1 1.2 1.6	<3 <3 <3	3 <3 <3	133 115 106	2.21 2.03 1.97	.070 .086 .098 .101	4 4 4	9 7 6	.83 .82 .85	264 155 93	.09 .07 .05	<3 4 6	.87 .85 .92	.09 .07 .09	.07 .06 .07	<2 <2 <2	302 1046 424 614 579	5.00 5.38	
C 146514 C 146515 C 146516 C 146517 C 146518	18 13 12	679 633 596	17 21 31	175 245 493	1.1 .9 1.2 .5 .5	2 4 7	8 11 19	1162 2140 3602	3.11 4.22 5.74	19 18 17	<8 <8 <8	<2 <2 <2	<2 <2 <2	54 57 49	.5 .8 1.8	<3 <3 <3	7 <3 <3	92 96 111	1.04 1.08 1.27	.090 .100 .099 .088 .101	6 7 8	5 5 2	.37 .41 .54	23< 105< 319<	.01 .01	10 7 6	.58 .64 .59	.07 .07 .06	.07 .08 .20	<2 <2 <2		4.87 5.46 5.26 5.35 5.18	
C 146519 C 146520 C 146521 C 146522 C 146523	17 17 12	791 717 655	26 24 19	222 202 179	2 1.3 2 1.6 2 .7 3 1.1 3 .7	3 3 4	10 9 12	1900 1579 1544	3.81 3.64 3.72	36 27 62	<8 <8 <8	<2 <2 <2	<2 <2 <2	51 64 71	1.0 .8 1.0	3 3 <3	3 <3 <3	81 89 100	.89 1.06 1.66	.096 .091 .086 .089	6 5 5	4 4 7	.39 .42 .40	40< 15< 81	.01 .01 .01	6 5 8	.69 .82 .76	.07 .07 .13	.09 .05 .08	<2 <2 <2	535 497 422 460 475	5.21 5.70 4.11 5.58 5.43	
C 146524 C 146525 C 146526 RE C 146526 RRE C 146526	8 8 9	644 705 699	12 29 30	137 321 324	3 .8 7 .7 1 .5 3 .4 5 .3	2 6 6	11 16 16	1298 2944 2967	3.94 5.95 5.95	67 37 35	<8 <8 <8	<2 <2 <2	<2 <2 <2	65 59 60	.8 1.7 1.9	<3 <3 <3	<3 3 <3	115 144 144	1.87 1.03 1.04	.089 .127 .118 .118 .119	3 7 6	1 4 2	.50 .71 .71	107 42 42	.03 .02 .02	11 6 <3	.66 .80 .80	.10 .08 .09	.09 .19 .19	<2 <2 <2	422 428 433		
C 146527 C 146528 C 146529 C 146530 C 146531	11 12 13	483 522 680	38 2 22 3 24	535 189 273	1.0 6 .6 7 .8 3 .7 3 3.6	7 4 4	19 11 13	4529 1452 2211	6.47 3.99 4.87	14 32 28	<8 <8 <8	<2 <2 <2	<2 <2 <2	60 73 59	3.2 1.2 1.5	<3 <3 <3	<3 <3 <3	124 127 121	1.53 1.48 1.23	.093 .092 .091 .090	9 5 6	3 6 6	.69 .40 .41	26< 45 26<	.01 .01	<3 <3 <3	.62 .69 .61	.07 .11 .08	.10 .08 .07	<2 <2 <2	289 376	5.05 4.85 4.76 5.80 5.14	
C 146532 C 146533 C 146534 PULP C 146535 C 146536	11 23 9	460 6046 497	32 5 12 7 22	189 99 214	1.1	603 5	9 23 12	2752 894 2305	3.09 7.50 4.17	69 13 36	8 <8 11	<2 <2 <2	<2 <2 <2	61 111 80	1.6 <.5 1.0	13 6 5	4 3 4	96 46 108	6.17 2.07 4.89	.072 .083 .083 .083 .073	8 4 6	7 766 10	.38 .93 .48	38< 52< 70	.01 .01	13 <3	.62 .88 .72	.03 .05 .07	.10 .38 .10	<2 3 <2	515 333	4.73 5.51 - 5.56 5.23	
C 146537 C 146538 C 146539 C 146540 STANDARD DS5/AU-R	10 12 8	685 815 963	5 24 5 31 5 23	224 223 221	7 .9 6 3 .9 1 1.0 7 .3	6 3 5	13 12 16	1617 1621 1144	4.24 4.17 4.20	44 43 22	<8 <8 <8	<2 <2 <2	<2 <2 <2	60 57 56	1.6 1.7 1.7	<3 4 5	<3 <3 <3	3 100 3 93 3 116	2.85 2.69 2.03	.082 .085 .081 .082	4 4 4	10 7 11	.51 .44 .69	91 140 115	.02 .01 .06	3 3 7	.72 .52 .90	.09 .06 .13	.07 .09 .12	<2 <2 <2		5.42 4.99 5.38 5.25	

Fjordland Exploration Inc. PROJECT 04-WJ-DC-08 FILE # A405322

Page 3

ACME ANALTTICAL																																ACME ANALYT	ICAL
SAMPLE#					-			Mn ppm		As ppm									Ca %		La ppm			Ba ppm	Ti %	B ppm	Al %	Na %	K %		Au**	Sample kg	
SI C 146541 C 146542 C 146543 C 146544	1 11 12 14	2 740 911 1235	5 18 26 21	45 171 221 213	<.3 .7 1.1 1.1	5 4 4 4	4 13 13 13	531 1236 2047 1226	1.96 4.16 4.29 4.12	<2 18 43 9	<8 <8 <8 <8	<2 <2 <2 <2	3 <2 <2 <2 <2	77 67 69 61	<.5 1.0 2.0 1.5	<3 3 11 <3	<3 <3 <3 <3	40 118 105 106	.53 2.45 4.02 2.42 1.87	.079 .086 .080	7 5 5 4	42 8 6 5	.56 .71 .52	242 92 109 74	.14 .07 .03 .05	<3 13	.91 1.12 .84	.09 .16 .11	.51 .14	<2 <2 <2 <2 <2	<2 416 537 704	5.35 5.26 5.33 5.09	
C 146545 C 146546 C 146547 C 146548 C 146549	7 9 7	2722 1160 985 633 556	34 17 14	240 280 173	1.3 1.6 .8	2 2 1	10 9 7	1212 1273	3.68 3.53 3.20	32 19 11	<8 <8 <8	<2 <2 <2	<2 <2 <2	62 61 56	1.7 2.2 1.1	<3 <3 <3	<3 <3 <3	73 68 67	2.24 2.12 2.35 2.07 1.89	.110 .108 .111	7 6 6	2 3 1	.42 .49	38 68 64		10	.53 .55	.06 .09 .08 .08	.07	<2 <2 <2	849 717 536	5.04 4.98 4.99 5.27 5.21	
C 146550 C 146551 C 146552 C 146553 C 146554	8 6 6	721 397 475 460 521	13 11 17	173 177 201	.5 .5 .6	1 2	7 8 8	764 944 1818	3.48 3.55 3.54	4 7 19	<8 <8 <8	<2 <2 <2	<2 <2 <2	60 67 61	1.0 .9 2.5	<3 <3 10	<3 <3 <3	80 81 63	2.10 1.60 1.69 4.12 2.54	.117 .119 .107	6 6 8	3 2 2		125 146 77		12 15 12	.65 .69 .59	.10 .10 .11 .06	.06	<2 <2 <2	272 309 317	4.80 5.04 5.28 5.08 4.72	
C 146555 C 146556 C 146557 C 146558 C 146559	5 4 6	499 540 333 504 316	23 27 11	159 224 170	.5		7 8 8	1367	3.21 3.76 3.75	22 48 18	<8 <8 <8	<2 <2 <2	<2 <2 <2	61 77 60	.8 1.9 .9	4 9 <3	<3 <3 <3	64 52 71	2.40 2.40 5.61 1.72 1.62	.117 .094 .119	7 10 8	<1 <1 <1		25 20 28	.01 .01	9	.60 .48	.08 .07 .06 .09	.07 .07	<2 <2 <2	329 166	5.01 4.28 5.52 4.74 4.66	
C 146560 RE C 146560 RRE C 146560 C 146561 C 146562	4 5 5	351 359 352 340 278	9 9 14	131 139 149	.6 .6 .8 .7	1 1	8 8 8	1015 1069 931	3.36 3.42 3.04	13 13 20	<8 <8 <8	<2 <2 <2	<2 <2 <2	64 64 63	.6 .6 .9	<3 <3 <3	<3 <3 <3	70 70 66	1.44 1.47 1.48 1.58 1.94	.122 .120 .116	7 7 7	2 3 1	.38	34 36 34		13 9 12 7 12	.63 .64 .60	.09 .09 .09 .09	.05 .05	<2 <2 <2	241 235 233	5.18 - - 5.15 5.32	
C 146563 C 146564 PULP C 146565 C 146566 C 146567	22 5 7	376 5915 290 274 294	17 7 7	110	1.4 .4 .5		21 7 7	862	7.16 3.13 3.34	12 23 14	9 <8 <8	<2 <2 <2	<2 <2 <2	103 77 81	<.5 .5 <.5	7 <3 <3	3 <3 3	43 67 73		.083 .116 .115	4 8 8	631 1 2	.88 .39	47 50 62		9 24 8 8 10	.84 .71 .85	.11 .05 .12 .13 .12	.38 .04 .04	2 <2 <2	274	5.45 5.54 5.44 5.25	
C 146568 C 146569 C 146570 C 146571 C 146572	7 10 7	322 485 686 603 304	12 12 5	162 195 158	.4 .8 .9 .8	1 1	8 8 9	1018 1098 1330	2.97 3.20 3.74	23 27 18	<8 <8 <8	<2 <2 <2	<2 <2 <2	74 69 72	1.0 1.3 .7	<3 <3 <3	5 <3 <3	63 54 69	1.94 1.73 1.80 2.30 2.80	.116 .110 .113	8 7 8	2 1 2	.44	50 88 46	.04	10 10 14	.68 .60	.10 .09 .06 .10	.05	<2 <2 <2	441 387	4.79 5.45 4.85 5.21 5.16	
STANDARD DS5/AU-R	12	146	26	134	<.3	25	12	742	3.01	19	<8	<2	2	46	5.3	5	6	59	.73	.093	11	182	.67	135	.10	17	2.00	.04	.14	4	499	-	

Fjordland Exploration Inc. PROJECT 04-WJ-DC-08 FILE # A405322

Page 4

									_																								
SAMPLE#	Mo ppm p				_		Co ppm	Mn ppm		As ppm	U ppm		Th ppm					ppm V	Ca %		La ppm		_	Ва ррп		ррп	Al %	Na %				Sample kg	
C 146573 C 146574 C 146575 C 146576 C 146577	7 3 6 4 4 4 5 4 4 2	48 26 04	<3 4 4	131 112 113 102 103	1.7	1 2 2	6 8 7	1158 1265 1045	3.22 3.61 3.31	15 18 10	<8 <8 <8	6 <2 <2	<2 <2 <2	64 67 63	.6 .5 .5	<3 <3 <3	<3 <3 <3	70 77 79	2.80 2.65 2.64 2.41 3.73	.114 .116 .111	9 10 8	1 2 2	.42 .53 .49	63 40 56 61 96	.02 .03 .05	4 4 6		.10 .11 .10	.09 .09 .08	<2 <2 <2	303 352 271	5.51 5.07 5.25	
C 146578 C 146579 STANDARD DS5/AU-R	4 3 5 4 13 1	51	3	103 78 136	.5	1 2 24	8	1244	3.32	28	<8	<2	<2	64	<.5	<3	<3	70	3.60 3.35 .72	.117	9	1	.56	112< 114 135	.01	5	.77	.08	.12	<2	314 394 491		

Sample type: CORE R150 60C.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-09 File # A405395
510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

Page 1

44

SAMPLER Mo Cu Pb Zn Ag Ni Co Pb Fe As U Au Th Sr Cd Sb Bi V Ca Pt La Ca Ca Ft Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Bi V Ca Th Day Th Sr Cd Sb Si V Ca Th Day Th Sr Cd Sb Si V Ca Th Day Th Sr Cd Sb Si V Ca Th Day Th Sr Cd Sb Si V Ca Th Th Day Th Sr Cd Sb Si V Ca Th Th Day Th Sr Cd Sb Si V Ca Th Th Th Th Th Th Th T																	7(``	Ĭ	don't ct														
S1 (46580	SAMPLE#	Mo Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	Р	La	Cr			Τi	В	Αl	Na	K	W	Au** 5	Sample	
C 146581 6 556 4 38 43 1 8 1198 3.4 11 8 8 2 2 58 4.5 43 8 71 3.21 1122 10 41 .68 75 .02 5 .89 .08 .11 42 234 4.93 C 146581 6 556 4 38 4.2 1 8 1193 3.5 10 7 8 42 2 74 4.5 43 78 2.80 .117 8 1 .59 45 .03 5 .89 .08 .11 42 234 4.93 C 146583 8 422 5 102 4.3 1 8 1158 3.50 7 8 42 2 74 4.5 43 78 2.80 .117 8 1 .59 45 .03 5 .90 .10 8 42 167 5.14 C 146583 8 422 5 102 4.3 1 8 1158 3.50 7 8 42 2 74 4.5 63 78 2.80 .117 8 1 .59 45 .03 5 .92 .12 .08 42 167 5.14 C 146584 4 .310 .7 102 .4 1 8 1082 3.16 13 8 42 2 50 2 40 4.5 19 7 2.86 .116 8 2 .44 84 .03 3 .93 .10 .08 42 232 4.82 C 146586 6 28 8 105 4.3 1 8 1158 3.50 9 8 42 2 40 4.5 19 7 3 65 3.63 .14 9 2 .78 157 .01 4 3 .90 .05 .11 42 1241 4.95 C 146586 8 46 6 38 73 .3 18 1146 3.20 9 8 4 2 2 60 4.5 19 4 .92 .78 157 .01 4 .3 10 .9 .05 .11 42 1241 4.95 C 146587 8 47 6 38 7 6 .3 1 8 1146 3.20 9 8 4 2 2 50 4.0 4.5 19 4 .92 .78 157 .01 4 .9 1 .9 1 .9 1 .9 1 .9 1 .9 1 .9 1 .		ppm ppm	ppm	ppm	p pm į	ppin	pm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	kg	
C 146581 6 556 4 38 43 1 8 1198 3.4 11 8 8 2 2 58 4.5 43 8 71 3.21 1122 10 41 .68 75 .02 5 .89 .08 .11 42 234 4.93 C 146581 6 556 4 38 4.2 1 8 1193 3.5 10 7 8 42 2 74 4.5 43 78 2.80 .117 8 1 .59 45 .03 5 .89 .08 .11 42 234 4.93 C 146583 8 422 5 102 4.3 1 8 1158 3.50 7 8 42 2 74 4.5 43 78 2.80 .117 8 1 .59 45 .03 5 .90 .10 8 42 167 5.14 C 146583 8 422 5 102 4.3 1 8 1158 3.50 7 8 42 2 74 4.5 63 78 2.80 .117 8 1 .59 45 .03 5 .92 .12 .08 42 167 5.14 C 146584 4 .310 .7 102 .4 1 8 1082 3.16 13 8 42 2 50 2 40 4.5 19 7 2.86 .116 8 2 .44 84 .03 3 .93 .10 .08 42 232 4.82 C 146586 6 28 8 105 4.3 1 8 1158 3.50 9 8 42 2 40 4.5 19 7 3 65 3.63 .14 9 2 .78 157 .01 4 3 .90 .05 .11 42 1241 4.95 C 146586 8 46 6 38 73 .3 18 1146 3.20 9 8 4 2 2 60 4.5 19 4 .92 .78 157 .01 4 .3 10 .9 .05 .11 42 1241 4.95 C 146587 8 47 6 38 7 6 .3 1 8 1146 3.20 9 8 4 2 2 50 4.0 4.5 19 4 .92 .78 157 .01 4 .9 1 .9 1 .9 1 .9 1 .9 1 .9 1 .9 1 .	0.1	.4 .4	.7	4	. 7	_1	-11	7	0.5	-2	_0	-2		2		-7	-7	4	12	001	_1	4	- O1	_	- 01	-7	02	14	01	-2			
C 146582 6 26 6 89 4.3 1 8 1197 3.1 16 48 4.2 2 54 4.5 4.3 4.8 1117 8.1 197 3.0 16 48 4.2 2 74 4.5 4.3 4.8 1117 8.1 197 3.4 1.8 1112 3.3 11 19 48 4.2 2 60 4.5 6 4.7 6 2.86 1117 8 1 .59 45 0.3 5 .59 2.12 .08 4.2 167 5.14 6.8 1 1.2 1.0 146.5 1.0 14																														_	_	/ 07	
C 146583 8 422 5 102 18 8 1158 3.5.0 7 8 22 77 4 5 3 3 78 2.80 117 8 1 1 59 45 03 5 5 92 12 08 2 165 5 116 5 117 8 1 1 59 45 03 5 5 92 12 08 2 165 5 116 5 117 8 1 1 117 8 1 1 59 45 03 3 3 10 08 2 167 5 14 14 14 14 14 14 14 14 14 15 14 15 14			_				0 1	200	J.44	11	10	-2	-2	20	\.J	17	13		7.21														
C 146583 8 422 \$ 102 < 3 1 8 1112 3.31 19																																	
C 146584		1																															
C 146585	C 146583	8 422	5	102	<.3	1	8 1	1112	3.31	19	<8	<2	<2	60	<.5	6	<3	76	2.86	.116	8	2	.64	84	.03	3	.93	. 10	.08	<2	322	4.82	
C 146585	C 146584	4 310	7	102	-4	1	8 1	082	3.16	13	<8	<2	<2	58	<.5	<3	<3	72	2.61	.122	7	<1	.58	78	.03	<3	.81	.08	.05	<2	200	4.81	
C 146586 6 288 3 105 < .3 1 8 1146 3.20 9 < 8 <2 <2 61 < .5 6 <3 75 2.86 .118 7 2 .53 78 .03 3 .89 .09 .11 <2 154 4.97																																	
C 146587 C 146588 C 146589 C 146580 C 146590 C 146590 C 146590 C 146591 C 146591 C 146592 C 146592 C 146593 C 146593 C 146593 C 146594 Dulp C 146595 C 146595 C 146596 C 146596 C 146597 C 146598 C 146599 C 146699 C 146690 C 146599 C 146599 C 146599 C 146599 C 146599 C 146600 C 146598 C 146599 C 146600 C 146600 C 13 302 2149 C 146600 C 13 302 2149 C 13 302 31 1 1279 3.40 C 146600			_																														
C 146588		,																															
C 146589 7 321 7 139 .3 1 8 2094 2.66 26 88 <2 <2 55 .6 6 <3 34 5.35 .113 7 2 .54 97 <.01 9 .57 .04 .21 <2 253 5.05 C 146590 9 528 4 133 <3 1 10 1552 3.74 19 88 <2 <2 56 <5 5 9 <3 80 3.47 113 7 2 .60 68 .02 4 .84 .07 .10 <2 371 4.96 12 14.53 1 10 1526 4.00 12 88 <2 <2 56 <5 5 9 <3 80 3.47 113 7 2 .60 68 .02 4 .84 .07 .10 <2 371 4.96 12 14.53 1 10 1526 4.00 12 88 <2 <2 62 62 .6 <3 <3 103 2.69 .114 6 1 .74 96 .05 5 1.12 10 1.12 10 1.5 <2 283 4.61 12 10																													_				
\$\frac{146590}{146591}\$ 9 \frac{528}{528} \frac{1}{33} \frac{3}{3} 1 \frac{1}{9} \frac{52}{8} \frac{2}{3} \frac{7}{3} \frac{8}{3} \frac{2}{3} \frac{8}{3} \frac{1}{3} \frac{2}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3} \q	C 146588	8 4/6	<3	87	<.5	1	1	1797	3.04	24	<8	<2	<2	53	<.5	4	<5	וכ	4.93	.119	y	<1	.40	258	<.01	′	.55	.04	. 10	~2	200	4.0/	
C 146590 C 146591 9 528 4 133 < .3 1 10 1552 3.74 19	C 146589	7 321	7	139	.3	1	8 2	2094	2.66	26	<8	<2	<2	55	.6	6	<3	34	5.35	.113	7	2	.54	97	<.01	9	.57	.04	.21	<2	253	5.05	
\$\frac{146591}{146592}\$ \begin{array}{cccccccccccccccccccccccccccccccccccc		9 528	4	133	<.3	1	10 1	1552	3.74	19	<8	<2	<2	56	<.5	9	<3	80	3.47	.113	7	2	.60	68	.02	4	-84	.07	.10	<2	371	4.96	
C 146593 8 154 .9 2 11 824 4.17 <2 <8 <2 <2 74 .7 <3 <3 129 1.66 .111 5 4 .65 130 .08 4 1.05 .14 .06 <2 343 4.93 C 146594 PULP 2 1595 2 14 92 1.2 533 2 1874 7.18 12 <8 <2 <2 70 .6 <3 <3 120 150 <5 5 .88 85 .04 9 1.18 .12 .10 <2 280 5.11 C 146595																						1	.74	96	- 05	5	1.12	- 10	. 15	<2	283	4.61	
C 146593 8 509 3 143 .3 3 12 1594 4.53 <2 <8 <2 <2 70 .6 <3 <3 120 3.29 .105 6 5 8.88 85 .04 9 1.18 .12 .10 <2 280 5.11 C 146594 PULP C 146595 8 395 9 136 <3 4 12 1899 3.62 8 8 <2 <2 105 <5 9 <3 44 2.00 .086 3 664 .92 31 <.01 7 .89 .05 .40 <2 526 -1 C 146595																																	
C 146594 PULP 21 5952 14 92 1.2 533 21 874 7.18 12 <8 <2 <105 <.5 9 <3 44 2.00 .086 3 664 .92 31 <.01 7 .89 .05 .40 <2 526 - C 146595 8 395 9 136 <.3 4 12 1899 3.62 8 <8 <2 <2 55 <.5 3 <3 75 3.88 .081 5 4 .94 317 <.01 3 .97 .06 .13 <2 221 5.15 C 146596 4 137 5 121 <.3 3 11 1029 3.37 3 <8 <2 <2 39 <.5 <3 <3 85 1.70 .081 4 8 .71 70 .06 <3 .81 .09 .08 <2 70 5.32 C 146597 7 499 9 156 <.3 3 11 1679 3.34 10 <8 <2 <2 51 .7 7 3 57 3.23 .077 5 4 .68 525 .01 <3 .55 .05 .09 <2 322 4.99 C 146598 4 313 28 189 .3 3 11 1295 3.43 3 <8 <2 <2 54 .9 3 <3 69 2.09 .077 4 6 .69 199 .05 <3 .76 .10 .05 <2 208 5.29		, -																															
C 146595 B 395 9 136 < 3	C 140393	8 309	,	143		,	12	1374	4.55	12	10	12	``	70	.0	٠,	٠,	120	3.27	. 105	Ü	,	.00	0)	.04	,	1.10	. 12	. 10	12	200	J. 11	
C 146596 C 146597 C 146598 C 146600 C 1	C 146594 PULP	21 5952	14	92	1.2	533	21	874	7.18																	7	.89	.05	.40	<2	526	-	
C 146597 C 146598 C 146600 C 146601 C 146601 C 146603 C 146603 C 146604 C 13 332 C 146606 C 146606 C 13 332 C 146606 C 146607 C 146608 C 146608 C 146608 C 146608 C 146608 C 146608 C 146608 C 146608 C 146609 C 146608 C 146609 C 146608 C 146609 C 146608 C 146609 C 146609 C 146609 C 146609 C 146609 C 146609 C 146609 C 146609 C 146606 C 146606 C 146606 C 15 10 182 3 10 1123 3.45 C 146606 C 146606 C 15 10 182 3 10 1123 3.45 C 146606 C 146606 C 146606 C 15 10 182 3 10 1123 3.45 C 146607 C 146608 C 146608 C 146608 C 146609 C 146609 C 146609 C 146609 C 146609 C 146600 C 1	C 146595	8 395	9	136	<.3	4	12 ′	1899	3.62	8	<8	<2	<2	55	<.5	3	<3	73	3.88	.081	5	4	.94	317	<.01	3	.97	.06	. 13	<2	221	5.15	
C 146598 4 313 28 189 .3 3 11 1295 3.43 3	C 146596	4 137	5	121	<.3	3	11 '	1029	3.37	3	<8	<2	<2	39	<.5	<3	<3	85	1.70	.081	4	8	.71	70	.06	<3	.81	.09	.08	<2	70	5.32	
C 146598 4 313 28 189 .3 3 11 1295 3.43 3 3 < 8 < 2 < 2 54 .9 3 < 3 69 2.09 .077 4 6 .69 199 .05 < 3 .76 .10 .05 < 2 208 5.29 RE C 146598 RRE C 146598 C 146598 5 310 25 188 .3 3 11 1279 3.40 3 3 < 8 < 2 < 2 53 1.0 4 < 3 68 2.06 .078 4 5 .68 195 .05 < 3 .75 .10 .05 < 2 176 - 6 .69 199 .05 < 3 .75 .10 .05 < 2 176 - 7 .10 .05 < 2 176 - 7 .10 .05 < 2 176 - 7 .10 .05 < 2 176 - 7 .10 .05 < 2 176 - 7 .10 - 7 - 7 .10 - 7 .10 - 7 .10 - 7 .10 - 7 - 7 - 7 <	c 146597	7 499	9	156	<.3	3	11 1	1679	3.34	10	<8	<2	<2	51	.7	7	<3	57	3.23	.077	5	4	.68	252	.01	<3	.55	.05	.09	<2	322	4.99	
RE C 146598 RRE C 146598 6 287 22 182 .4 3 11 1324 3.39 4 <8 <2 <2 53 1.0 4 <3 68 2.06 .078 4 5 .68 195 .05 <3 .75 .10 .05 <2 176 - C 146599 7 286 10 182 <3 4 13 1223 3.74 3 <8 <2 <2 54 .9 3 <3 69 2.14 .079 4 6 .69 215 .05 6 .76 .10 .05 <2 145 - C 146600 3 426 5 164 .3 3 13 1294 3.84 4 <8 <2 <2 60 1.0 <3 <3 89 1.95 .091 4 8 .73 182 .05 3 .91 .11 .06 <2 138 5.33 C 146601 4 368 6 118 <3 3 10 993 3.30 6 <8 <2 <2 54 .6 <3 <3 82 1.93 .081 4 6 .67 47 .03 <3 .72 .10 .08 <2 240 5.26 C 146602 3 300 8 145 .4 2 12 1660 3.40 4 <8 <2 <2 51 <.5 <3 <3 63 3.11 .072 4 3 .88 30 .02 4 .58 .07 .05 <2 180 .52 C 146603 3 332 4 131 <3 3 11 1207 3.47 4 <8 <2 <2 55 <5.5 <3 <3 68 1.88 .084 4 3 .76 46 .04 3 .80 .08 .06 <2 239 5.10 C 146605 4 296 13 133 <3 3 11 1029 3.44 4 <8 <2 <2 57 .5 <3 <3 68 1.88 .084 4 3 .76 46 .04 3 .80 .08 .05 <2 233 5.51 C 146607 4 308 22 149 <3 3 10 1065 3.31 5 <8 <2 <2 52 .7 <3 <3 55 1.54 .072 4 6 .77 73 .04 <3 .80 .11 .05 <2 178 5.20 C 146608 6 316 42 160 <3 2 10 1065 3.31 5 <8 <2 <2 2 64 1.2 <3 <3 57 1.5 .00 .078 4 5 .68 174 .02 <3 .80 .01 1 .05 <2 181 4.81 C 146609 5 231 25 149 <3 3 10 1123 3.45 6 <8 <2 <2 56 1.5 <4 <3 <3 57 1.5 .00 .078 4 5 .07 .05 <3 .80 .11 .05 <2 178 5.20 C 146600 6 316 42 160 .5 2 9 756 3.29 4 8 <2 <2 56 1.5 4 3 3 57 1.5 1.0 .078 4 5 .68 174 .00 <3 3 .80 .01 4 .95 .05 .14 <2 178 5.15 C 146601 8 257 15 119 <3 2 13 1714 3.11 16 <8 <2 <2 56 1.5 4 3 56 1.5 1.0 1.0 1 5 3 1.0 1 4 8 <10 1 4 .81 C 146611 7 344 6 194 <3 2 9 1334 3.20 8 8 8 <2 <2 61 <.5 4 3 68 3 5 7 15 1.0 1 4 .95 .05 .14 <2 111 4.90						_																6							.05	<2	208	5.29	
RRE C 146598 6 287 22 182 . 4 3 11 1324 3.39 4 <8 <2 <2 54 . 9 3 <3 69 2.14 .079 4 6 .69 215 .05 6 .76 .10 .05 <2 145 - C 146599 7 286 10 182 <.3 4 13 1223 3.74 3 <8 <2 <2 60 1.0 <3 <3 89 1.95 .091 4 8 .73 182 .05 3 .91 .11 .06 <2 138 5.33 C 146600 3 426 5 164 . 3 3 13 1294 3.84 4 <8 <2 <2 72 .8 4 <3 96 2.10 .096 4 3 .75 39 .03 3 .84 .11 .03 <2 284 5.24 C 146601 4 368 6 118 <.3 3 10 993 3.30 6 <8 <2 <2 54 . 6 <3 <3 82 1.93 .081 4 6 .67 47 .03 <3 .72 .10 .08 <2 240 5.26 C 146602 C 146603 3 300 8 145 . 4 2 12 1660 3.40 4 <8 <2 <2 61 . 9 <3 <3 63 3.11 .072 4 3 .88 30 .02 4 .58 .07 .05 <2 180 5.12 C 146603 3 382 4 131 <.3 3 11 1207 3.47 4 <8 <2 <2 53 <.5 <3 <5 <3 <5 <3 <5 <3 <5 <3 <5 60 1.38 .08 4 3 .77 81 .02 4 .88 .08 .06 <2 239 5.10 C 146604 3 332 5 130 <.3 2 10 1237 3.48 6 <8 <2 <2 57 .5 <3 <3 68 1.88 .084 4 3 .76 46 .04 3 .80 .08 .05 <2 233 5.51 C 146606 2 363 6 140 <.3 2 10 1065 3.31 5 <8 <2 <2 42 .7 <3 <3 69 1.44 .078 4 5 .68 55 .05 <3 .80 .11 .05 <2 178 5.20 C 146606 2 363 6 140 <.3 2 10 1065 3.31 5 <8 <2 <2 42 .7 <3 <3 69 1.44 .074 3 4 .67 41 .04 <3 .88 .08 .04 <2 270 5.27 C 146608 6 316 42 160 .5 2 9 756 3.29 4 <8 <2 <2 61 .2 3 <3 55 1.54 .072 4 6 .77 73 .04 <3 .72 .09 .05 <2 181 4.81 C 146609 5 231 25 149 .4 3 10 1193 3.33 3 <8 <2 <2 46 1.2 <3 <3 55 1.54 .072 4 6 .77 73 .04 <3 .72 .09 .05 <2 181 4.81 C 146601 8 257 15 119 <.3 2 13 1714 3.11 16 <8 <2 <2 61 <.5 4 <3 64 3.55 .071 5 3 1.04 184 <.01 4 .95 .05 .14 <2 131 4.90	0 140570	7 313		,		_	• •		3.,5	_		-	_	-	• /	-		٠,	,		•	•	,	.,,		-	•			_		, ,	
C 146599 C 146600 C 146601 C 146601 C 146601 C 146602 C 146602 C 146603 C 146603 C 146603 C 146604 C 146604 C 146604 C 146605 C 146606 C 146606 C 146606 C 146606 C 146606 C 146606 C 146606 C 146606 C 146607 C 146607 C 146607 C 146607 C 146608 C 146609 C 146601 C 1	RE C 146598	5 310	25	188	.3	3	11 '	1279	3.40																							•	
C 146600	RRE C 146598	6 287	22	182	.4	3	11 ′	1324	3.39	4	<8	<2	<2	54	.9	3	<3	69	2.14	.079	4	6	.69	215	.05	6	.76	.10	.05	<2	145	-	
C 146600	C 146599	7 286	10	182	<.3	4	13 '	1223	3.74	3	<8	<2	<2	60	1.0	<3	<3	89	1.95	.091	4	8	.73	182	.05	3	.91	.11	.06	<2	138	5.33	
C 146601																																5.24	
C 146602 C 146603 C 146603 C 146604 C 146605 C 146605 C 146606 C 146607 C 146607 C 146608 C 146608 C 146608 C 146609 C 146609 C 146609 C 146609 C 146601 C 1																																	
C 146603 C 146604 C 146605 C 146606 C 146606 C 146607 C 146608 C 146608 C 146608 C 146609 C 146609 C 146609 C 146601 C 1	C 140001	4 300	Ü	110	`	,	10	,,,	3.30	U	٠.	12	``	74	.0	٠,5	٠,5	O.E.	1.75	.001	7	Ü	.0,	71	.05	٠,	• 7 2		.00	`_	240	5.20	
C 146604 C 146605 C 146606 C 146607 C 146608 C 146609 C 146609 C 146609 C 146609 C 146601 C 1	c 146602	3 300	8	145	.4	2	12 '	1660	3.40	4	<8	<2	<2	61	.9	<3	<3	63	3.11	.072			.88	30	.02	4	.58	.07	.05	<2	180	5.12	
C 146605 C 146606 4 296 13 133 < .3 3 11 1029 3.44 4 < 8 < 2 < 2 55 .8 < 3 < 3 67 1.40 .078 4 5 .68 55 .05 < 3 .80 .11 .05 < 2 178 5.20 2 146606 C 146607 C 146608 C 146608 C 146609 C 146609 C 146609 C 146610 C 146610 C 146611 C 146611 C 146611 C 146611 C 146611 C 146611 C 146615 C 146611	c 146603	3 382	4	131	<.3	3	11 '	1207	3.47	4	<8	<2	<2	53	<.5	<3	<3	76	2.13	.088	4	3	.77	81	.02	4	.88	.08	.06	<2	239	5.10	
C 146605 C 146606 4 296 13 133 < .3 3 11 1029 3.44 4 < 8 < 2 < 2 55 .8 < 3 < 3 67 1.40 .078 4 5 .68 55 .05 < 3 .80 .11 .05 < 2 178 5.20 2 146606 C 146607 C 146608 C 146608 C 146609 C 146609 C 146609 C 146610 C 146610 C 146611 C 146611 C 146611 C 146611 C 146611 C 146611 C 146615 C 146611	C 146604	3 332	5	130	<.3	2	10 1	1237	3.48	6	<8	<2	<2	57	.5	<3	<3	68	1.88	.084	4	3	.76	46	.04	3	.80	.08	.05	<2	233	5.51	
C 146606 2 363 6 140 < .3 2 10 1065 3.31 5 <8 <2 <2 42 .7 <3 <3 69 1.44 .074 3 4 .67 41 .04 <3 .68 .08 .04 <2 270 5.27 C 146607 C 146608 C 146608 C 146609 C 146610 C 146610 C 146611 C 146611 C 146611 C 146611 C 146611 C 146610 C 146611 C 146610 C 146611 C 146610 C 146611 C 146611 C 146610 C 146611 C 146611 C 146611 C 146611 C 146611 C 146610 C 146611 C 146611 C 146611 C 146611 C 146611 C 146611 C 146611 C 146611 C 146610 C 146611 C 146		4 296																		.078	4	5	. 68	55	. 05	<3	-80	.11	.05	<2	178	5.20	
C 146607 C 146608 C 146609 C 146609 C 146610 C 146611 C 1					-																												
C 146608 6 316 42 160 .5 2 9 756 3.29 4 <8 <2 <2 46 1.2 <3 <3 57 .84 .073 3 4 .61 77 .07 <3 .69 .11 .05 <2 181 4.81 C 146609 5 231 25 149 .4 3 10 1193 3.33 3 <8 <2 <2 46 .8 <3 <3 56 1.68 .067 4 5 .75 49 .03 <3 .82 .09 .05 <2 147 5.15 C 146610 C 146611 7 344 6 194 <.3 2 9 1334 3.20 8 <8 <2 <2 46 .9 <3 <3 79 2.57 .068 4 4 .86 174 .02 <3 .94 .06 .14 <2 211 4.90	C 140000	2 303	Ü	140	٠.,	_		1005	3.31	_	٠.	`_		72	• '	``	``	0,	1.44	.014	-	7	.0,	٠,	.04	٠,	.00	.00	.04	-		J.L.	
C 146609 5 231 25 149 .4 3 10 1193 3.33 3 <8 <2 <2 46 .8 <3 <3 56 1.68 .067 4 5 .75 49 .03 <3 .82 .09 .05 <2 147 5.15 C 146610 8 257 15 119 <.3 2 13 1714 3.11 16 <8 <2 <2 61 <.5 4 <3 64 3.55 .071 5 3 1.04 184 <.01 4 .95 .05 .14 <2 134 5.40 C 146611 7 344 6 194 <.3 2 9 1334 3.20 8 <8 <2 <2 46 .9 <3 <3 79 2.57 .068 4 4 .86 174 .02 <3 .94 .06 .14 <2 211 4.90		4 308	22	149	<.3																4	6								_		-	
C 146610 8 257 15 119 < .3 2 13 1714 3.11 16 <8 <2 <2 61 < .5 4 <3 64 3.55 .071 5 3 1.04 184 < .01 4 .95 .05 .14 <2 134 5.40 C 146611 7 344 6 194 < .3 2 9 1334 3.20 8 <8 <2 <2 46 .9 <3 <3 79 2.57 .068 4 4 .86 174 .02 <3 .94 .06 .14 <2 211 4.90	C 146608	6 316	42	160	.5	2	9	756	3.29											.073							.69					4.81	
C 146610 8 257 15 119 <.3 2 13 1714 3.11 16 <8 <2 <2 61 <.5 4 <3 64 3.55 .071 5 3 1.04 184 <.01 4 .95 .05 .14 <2 134 5.40 C 146611 7 344 6 194 <.3 2 9 1334 3.20 8 <8 <2 <2 46 .9 <3 <3 79 2.57 .068 4 4 .86 174 .02 <3 .94 .06 .14 <2 211 4.90	C 146609	5 231	25	149	.4	3	10	1193	3.33																		.82	.09	.05	<2	147	5.15	
C 146611 7 344 6 194 < .3 2 9 1334 3.20 8 <8 <2 <2 46 .9 <3 <3 79 2.57 .068 4 4 .86 174 .02 <3 .94 .06 .14 <2 211 4.90		8 257	15	119	<.3	2	13	1714	3.11											.071	5	3	1.04	184	<.01	4	.95	.05	.14	<2	134	5.40	
																											.94	.06	.14	<2	211	4.90	
STANDARD DS5/AU-R 13 150 25 139 .3 25 12 769 3.02 18 <8 <2 3 47 5.6 4 7 61 .76 .097 11 188 .71 138 .10 16 2.09 .04 .15 4 491 -	STANDARD DS5/AU-R	13 150	25	139	.3	25	12	769	3.02	18	<8	<2	3	_47	5.6	4		61	.76	.097	11	188	.71	138	.10	16	2.09	.04	. 15	4	491	-	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CALL THAT AUSGUBLES ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 10 2004 DATE REPORT MAILED:

Sept 27/04

- 5 -10- **2004**

Fjordland Exploration Inc. PROJECT 04-WJ-DC-09 FILE # A405395

Page 2

ACHE MINETTICAL																																ACITE AIMETTENE	
SAMPLE#	1					_		Mn ppm		As ppm									Ca %		La ppm			Ba ppm	Ti %	ppm ppm	Al %	Na %			Au** ppb	Sample kg	
C 146612 C 146613 C 146614 C 146615 C 146616	9 11 12		5 2 3 3	6 20 8 15 9 17	5 1. 7 < 1	3 : 3 :	3 10 2 11 3 13	1425 1204 1690 1922 1590	3.53 3.36 3.52	5 7 3	<8 9 8	<2 <2 <2	<2 <2 <2	78 65 56	1.2 .5 .6	<3 <3 <3	<3 <3 <3	103 72 75	1.66 1.30 2.62 3.33 2.22	.073 .077 .075	4 5 5	5 5 4	.85	95 180 90	<.01	<3 5 6	.88		.06 .13 .14	<2 <2 <2	301 125	5.22 4.83 4.70	
C 146617 C 146618 C 146619 C 146620 C 146621	14 19 15	269 300	9 2	9 14 2 12 5 11	5 1 7 2. 8 2 6 < 9 <	7 2 4	4 15 4 16 4 14	1341	3.79 3.95 3.34	10	<8 11 <8	<2 <2 <2	<2 <2 <2	77 53 49	.5 <.5 <.5	<3 <3 <3	<3 <3 <3	102 102 99	1.68 1.65 1.71 1.52 2.98	.080 .076 .075	4 4 3	5 7 5	1.17 1.03	93 49 45	.07 .04 .02	<3 <3 3	.78 1.03 1.05 1.02 1.04	.11 .12 .11	.04	<2 <2 <2	188 164 104	5.42	
C 146622 C 146623 C 146624 PULP C 146625 C 146626	25 24 20	266 5988	6 B 1 7 <	5 15 0 9 3 26	0 . 3 .	4 9 45 3	4 11 3 20 3 12	1058	3.66 7.18 3.42	7 3 17 2 6	<8 11 <8	<2 <2 <2	<2 <2 <2	54 106 52	.5 <.5 1.1	<3 7 <3	<3 3 <3	111 43 95	1.60 1.74 2.02 1.45 1.24	.079 .086 .074	3 3 4	7 561 6	.90	98 38 104	<.01	6 <3 8	.96 .83	.11		<2 2 <2	137 536	5.34 - 5.40	
C 146627 C 146628 RE C 146628 RRE C 146628 C 146629	13	349 349	9 9 4	3 29 7 28 6 27	8 .	5 6 5	8 16 8 16 7 15	7 1888 5 1679 5 1638 6 1562 1288	4.01 3.94 3.72	5 7 2 5	8> 8 <8>	<2 <2 <2	<2 <2 <2	68 66 62	.8 .7 .7	<3 <3 <3	<3 <3 <3	124 120 114	2.08 1.97 1.92 1.79 1.47	.082 .081 .077	4 4 4	12 12 9	1.46 1.42 1.36	93 90 85	.04 .04 .04	5 9 4		.12 .11 .10	.05 .05 .04	<2 <2 <2	107 100	5.02	
C 146630 C 146631 C 146632 C 146633 C 146634	13 6 5 7 7	6	5 5 3 5	6 17 4 38 9 19	5 <. 1 <.	3 1 3 1 3	4 23 3 23 5 13	1096 1335 1384 1384 917 950	5.15 5.05 3.82	6 16 12	<8 <8 <8	<2 <2 <2	<2 2 <2	68 68 48	<.5 .8 .6	<3 <3 <3	<3 <3 <3	160 178 103	1.47 2.30 2.36 1.52 1.57	.094 .095 .079	4 5 3	20 19 8	1.99 1.99	59 65 109	.11 .12 .08	3 4 3		.18 .18 .10		<2 <2 2		5.28 4.95 5.28	
C 146635 C 146636 C 146637 C 146638 C 146639	8 8 4 5 5	14: 6: 11:	6 5 9	7 16 5 17 4 12	9 <. 5 <. 2 <. 0 <.	3 3 3	4 13 5 14 5 13	868 3 1090 4 1338 3 1400 2 1330	4.37 4.24 4.00	7 9 7 7	9 10 <8	<2 <2 <2	<2 <2 <2	42 45 46	<.5 <.5 <.5	<3 <3 <3	3 4 <3	94 91 79	1.29 1.91 2.91 3.29 2.84	.075 .078 .080	4 5 6	7 5 6	1.10 1.29 1.23	149 164 137	.04 .01 .01	<3 <3 <3	1.33 1.49	.06 .06 .05	.13 .17	<2 <2 <2	1 3 0 47	5.27 5.36 5.13	
C 146640 C 146641 C 146642 C 146643 STANDARD DS5/AU-R	3 7 7 5 14	7 7 7	8 9 9	4 13 7 13 8 12	11 <. 16 <. 13 <.	3 3 3	6 13 6 13 5 21	3 1375 1 1447	4.94 4.82 4.35	8 2 10 5 11	10 8 10	<2 <2 <2	<2 <2 <2	59 46 40	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	97 89 82	2.55 3.03 2.86 3.17 .76	.082 .079 .077	6 5 6	8 6 7	1.47 1.46 1.36	197 114 109	.01 .01 .01	6 <3 3	1.65 2.05 1.85 1.57 2.10	.09 .06 .05	.22 .17 .15	<2 <2 <2	65	4.94 4.79 5.54	

Fjordland Exploration Inc. PROJECT 04-WJ-DC-09 FILE # A405395

Page 3

ACME ANALTTICAL																															ACME ANALYTICAL
SAMPLE#	Mo ppm				-			Mn ppm		As ppm	_			-				V ppm	Ca %		La ppm p		Mg B % pp		i B % ppm		Na %			Au** ppb	Sample kg
C 146644	7	55	6	110	<.3	5	15	1152	3 07	12	٠,8	-22	ري	45	< 5	<3	<3	QR.	2 52	075	5	7	1.30 12	7 .0	2 8	1.48	ΩR	.12	<2	61	5.00
C 146645	3	38	_		<.3	_	• -	1129		. –	_		_						1.99		4		1.46 16			1.57		.07			4.74
C 146646	1	45	_		<.3			— -			_	_	_			_	_		2.00				1.42 15		-	1.61	.09	.06	_		5.85
C 146647		40	_		<.3	_					_		_			_	_		2.50		5		1.45 9		_	1.59		.09	_		5.14
C 146648	1	30			<.3	_					_								2.38		6		1.28 11			1.47			_		5.28
C 146649	6	02	15	170	<.3	5	17	16/0	7 95	12	٦,	-2	-2	50	- 5	-2	-2	7/.	3 57	n 7 0	7		1.38 22	1 - 0	1 8	1.66	04	21	-2	34	5.17
C 146650	5				<.3	_				. –	_	_	_			_	_		3.54				1.35 11			1.63		.21		13	4.83
C 146651	٦		_		<.3														4.23				1.36 14			1.48				16	5.04
_	3	30 31			· <.3	_		1633											2.68				1.12 15			1.29		.16		8	5.09
C 146652	3	31	_			_		1489		-	_					_	_	_	2.35				.97 34			1.25		.16	_	25	5.08
C 146653	1	31	4	140	<.3	3	10	1489	3.02	0	<8	<2	<۷	39	۲.5	<2	<2	29	2.33	.075)	4	.97 34	٥٠.٥	1 3	1.20	.04	. 10	٧2	25	2.08
C 146654 PULP	25	6173	. –								_								2.04		4 7		.91 3					.40	_	496	
C 146655	1	42	6	121	<.3	_		1405			_	_	_			_	_		2.66		5					1.11	.04		<2	63	4.49
C 146656	2	45	5	165	<.3			1637											2.88				1.04 38			1.35			2	17	4.95
C 146657	3	101	21	209	' <.3														3.53				1.13 36			1.31				60	4.59
C 146658	2	160	8	643	<.3	4	13	1473	3.65	22	<8	<2	<2	42	3.1	<3	<3	81	2.61	.077	6	3	1.37 23	3 <.0	1 8	1.55	.05	.12	<2	126	4.80
RE C 146658	1	159	11	644	<.3														2.62				1.38 23			1.56					-
RRE C 146658	1	163	6	658	<.3						_					_	_		2.62				1.39 22			1.58					-
C 146659	2	124	6	268	<.3	4	12	1311	3.70	14	<8	<2	<2	46	1.0	<3	<3	90	2.27	.074	5	4	1.28 19	0 <.0	1 9	1.48	.06	.10	<2		4.69
C 146660	2	55	3	113	<.3	3	10	894	3.18	9	<8	<2	<2	35	<.5	<3	<3	67	1.79	.069	5	5			-	1.14	.06	.11	<2	26	4.88
C 146661	3	47	3	138	<.3	4	14	939	3.39	11	<8	<2	<2	42	<.5	<3	<3	73	1.47	.073	6	4	1.03 5	7 <.0	1 9	1.24	.08	.10	<2	37	4.73
C 146662	3	67	<3	109	· <.3	3	11	1069	3.67	10	<8	<2	<2	49	<.5	<3	<3	83	2.02	.074	5	5	1.02 8	9 .0	3 6	1.34	.10	.17	<2	43	4.72
C 146663	<1	36	8	106	<.3	6	15	982	4.23	2	<8	<2	2	81	<.5	<3	<3	132	1.92	.082	4	6	1.30 12	4 .1	0 7	1.80	.22	.12	<2	9	4.94
C 146664	<1	26	3	119	<.3	3	12	1382	4.77	18	8	<2	<2	56	<.5	<3	<3	101	2.95	.108	5	4	1.22 16	6.0	2 10	1.59	.08	.23	<2	57	4.82
C 146665	2	26	11	105	<.3														3.55			2	1.06 16	7 .0	1 10	1.27	.06	.31	<2	36	5.17
C 146666	5	68			<.3		16	2180	4.36	28	8	<2	<2	57	.5	<3	<3	66	4.16	.080	8	5	.81 18	7 .0	1 12	.89	.05	.33	<2	139	3.71
C 146667	157	07	-2	2/2	.3	3	ρ	1607	5 10	<2	٧,	٠2	<2	22	< 5	<٦	<٦	60	1,58	074	9	2	.91 37	′2 < ∩	1 <3	1.56	.03	20	<2	193	1.94
STANDARD DS5/AU-R																			.74			_	.68 13								-
SIANUMAU VSJ/AU-K		140	-4	, ,,,,	٠.,	2.7	16	112	٠.٠٠		-0			70					• • •	.0,5			.00		- 17	2.07	.04			7,7	

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

(ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-10 File # A405396
510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

Page 1

44

	SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn		As									Ca		La					В		Na	K	W	Au**	Sample	
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm_	ppb	gm	
	\$I	<1	3	<3	<1	<.3	<1	<1	2	.04	<2	8	<2	<2	2	<.5	<3	<3	<1	. 10	<.001	<1	<1	<.01	2	< .01	<3	< 01	45	Ω1	<2	<1	_	
	C 146668	1 -	_		334				1742	4.74	<2	<8	<2	2	27	.7	<3	<3	68	1.78	.080			.92	433	<.01	<3	1.41	.03	.15	<2	186	4.73	
	C 146669	157	201	<3	504	.4	2	11	1978	3.60	<2	<8	<2	<2	36	1.8	<3	4	69	2.99	.079			.92				1.03					4.49	
	C 146670				212																.077							1.08					4.60	
	C 146671	56	113	3	452	.4			2152												.077						<3	.87	-	.07			4.70	
				_			_					_	_	_			_	_				_					_				_			
	C 146672	_	_		908															3.19					580				.05				4.83	
	C 146673		_		503	-	_	. –	2302												.077				-		_		_	.16			5.14	
	C 146674	1	126	_	1629				2060											2.51								1.19		.08			4.87	
	C 146675	1			1141																.084								. 05				4.76	
	C 146676	21	71	<3	796	.9	3	12	1802	3.95	5	<8	<2	<2	46	1.9	<3	<3	59	2.24	.088	7	3	1.07	252	<.01	<3	1.26	.02	.23	<2	240	4.71	
	C 146677	36	118	<3	497	4	3	15	1695	3.87	3	<8	<2	<2	47	1.6	<3	<3	61	3.22	.084	8	3	1.01	299	< 01	5	1,28	.03	.19	<2	222	4.77	
	C 146678				735				1793											2.49				1.17			-			.23			4.62	
	C 146679	1	111		1574				1739												.081							1.39					4.85	
	C 146680		113						1729												.081												5.30	
i	RE C 146680		110																		.081							1.51						
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			•			_	-			-	-	_	_			_	_				-	_				_				-			
	RRE C 146680	53	112	5	1440	.3			1515												.082							1.37		.06			-	
	C 146681	1			1062				1719											2.52				1.18				1.43		.08			4.72	
	C 146682	82	132						1457												.082	5						1.42		.05	<2	146	5.20	
	C 146683	78	262	9					1999											3.79			3					1.10					5.47	
	C 146684 PULP	21	5615	9	85	1.7	543	21	842	7.10	12	<8	<2	<2	105	<.5	3	<3	43	1.94	.082	4	703	.86	38	<.01	8	.81	.05	.38	<2	499	-	
	C 146685	78	333	۲3	346	7	3	22	2130	4 85	3	<8	<2	<2	52	7	<3	<3	83	2.96	078	6	5	1 07	606	01	3	1.52	05	12	<2	331	5.03	
İ	C 146686				1046															2.68				.90				1.02					5.02	
	C 146687	1			1716		_		1759	_										2.32			6	.99				1.08					4.78	
ļ	C 146688				1537				1825												.092	5	8	1.21		.06		1.32					5.02	
	C 146689		351		2524				1628												.093				100			1.10	.08	.05			5.15	
ĺ	C 140007	0.	351	,	LJLT	1.7	7	17	IOLO	3.,,	_	•	`_	٠.		0.4	٠,5	٠,5	102		.075	Ŭ	•	• / ·	100	.00	Ū		.00	.05	-	200	2	
	C 146690	73	275	9	3249	1.3	6	18	1524	4.49	6	8	<2	<2	68	8.6	<3	<3	129	1.64	.096	6	15	1.30	93	.12	10	1.16	.07	.06	<2	443	5.37	
	C 146691	88	188	4	2151	1.3	5	15	1734	3.82											.090		10	1.04	205	.11	13	1.13	.06	-04	<2	295	4.94	
	C 146692	38	700	4	758	2.5	4	14	1275	4.48	<2	<8	<2	<2	168	2.2	<3	<3	110	1.60	.090	4	6	.98	147	.10	8	.95	.09	.05	<2	654	4.74	
	C 146693		974	3	707	2.5	3	14	1267	4.73	<2	<8	<2	<2	76	2.0	<3	<3	95	1.64	.081	5	3	.76	107	.06	4	.91	.08	.09	<2	824	4.93	
	C 146694	1	651	_	802	1.7															.082	6	2		83	.06	4	.73	.06	.06	<2	464	5.20	
				-																														
	C 146695	92	259	<3	839	.6	3	13	1474	3.30										2.19					326					.06	<2	216	5.10	
1	C 146696		291		1158				1911											3.51									.06	.07			4.95	
	C 146697	82	293																	2.13				1.05				1.03					2.95	
l	C 146698	64	201	3	381	.5	5	13	1577	4.01											.086			1.29				1.26		.05	<2	126	4.86	
	C 146699	63	267	14	646	1.2	2	17	1868	4.06	3	<8	<2	<2	55	1.7	<3	<3	100	3.07	.083	7	4	1.16	60	.01	6	1.35	.06	.07	<2	188	5.19	
	CTANDADD DCE /ALL D	12	1/7	2F	175	7	25	13	75 F	7 00	10	-0	-2	7	1.4	E 4	,	7	40	77	004	11	10/	۷0	177	10	15	2.05	0/	1/	5	E00	_	
	STANDARD DS5/AU-R	12	143		133		25	14	122	3.00	17				40	٥.د	4		80	./3	.094		104	.00	131	. 10	12	2.05	.04	. 14	2	J00		

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 13 2004 DATE REPORT MAILED:

upt 29/04

Clarence Le

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Fjordland Exploration Inc. PROJECT 04-WJ-DC-10 FILE # A405396

Page 2

ACHE AMALTITICAL																																ACME ANALYTICAL
SAMPLE#	1	Cu ppm			_			Mn ppm		As ppm									Ca %		La ppm		_	Ba ppm	Ti %	B ppm	Al %	Na %			Au** ppb	Sample kg
C 146700 C 146701 C 146702 C 146703 C 146704	51 26 39	160 265 235 362 442	3 3 <3	1044 712 1418	.4 <.3 .5	3 2 3	13 19 16		4.76 6.05 4.70	2 3 <2	<8 <8 <8	<2 <2	<2 <2 <2	34 34 39	3.1 1.1 2.9	<3 <3 <3	3 <3 <3	85 82 102	2.43 2.66 1.84 3.00 2.81	.084 .088 .088	8 10 7	5 4 5	1.19 1.22 1.39	70 476 105	<.01 <.01 <.01	<3 <3 <3	1.55 1.84 1.48	.03 .03	.24 .21 .11	<2 <2 <2	267 300 389	5.16 4.83 5.01
C 146705 C 146706 C 146707 C 146708 C 146709	34 13 9 11 20	49 58	6 11 <3	1130 327	<.3 .3 <.3	<1 1 <1	13 15 15	2045 1945 1916 1694 1708	4.48 4.17 7.67	3 3 7	<8 <8 <8	<2 <2 <2	<2 <2 <2	45 49 23	2.6 .6 <.5	<3 <3 <3	<3 <3 <3	100 73 79	3.13 3.94 4.80 1.50 .91	.101 .099 .093	7 7 8	<1 1 <1	1.47 1.31	106 115 57	<.01 <.01 <.01	5 <3 <3	1.64 1.54 2.29	.04 .02 .02	.17 .22	<2 <2 <2	104 3 2	4.63
C 146710 C 146711 C 146712 C 146713 C 146714 PULP	49 44 41	627 819 618 691 5981	4 <3 6	233 249 233	1.1 .9 .8	3 2 3	14 18 15	1726 1986	5.69 5.70 7.00	<2 <2 47	<8 <8 <8	<2 <2 <2	2 2 <2	49 49 45	<.5 <.5 <.5	<3 4 <3	<3 3 <3	148 142 128	2.72 3.54 3.24 2.86 2.06	.084 .094 .090	7 6 7	5 4	1.16 1.47 1.37	77 91 272	01.> .02 .01.>	9 7	1.36 1.49	.07 .07	.12 .08	<2 <2 <2	635 423 534	4.90 4.91
C 146715 C 146716 C 146717 C 146718 RE C 146718	38 26 39	696 683 750 1087 1105	10 3 7	263 398	1.3 1.7 2.2	3 2 3	16 14 16	1615 1423 1561	4.23 4.44 4.07	10 6 11	<8 <8 <8	<2 <2 <2	<2 <2 <2	88 79 88	.9 1.8 2.5	3 <3 <3	<3 <3 <3	97 103 79	2.88 2.64 2.47 2.63 2.66	.087 .084 .084	4 3 4	6	1.35 1.07 1.05 .83 .85	98 59 103	.02 .06 .02	13 10 10		.06 .05 .05	.04 .05	<2 <2 <2	527 647 827	5.43
RRE C 146718 C 146719 C 146720 C 146721 C 146722	24 29 25	1112 801 799 520 1000	4 9 7	533 252 305 259 385	1.7 1.8 1.0	4 3 3	17 18 15	1558 1440 1342 1121 1120	4.05 4.71 4.12	11 5 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	110 80 90	1.0 1.5 1.2	<3 <3 <3	<3 <3 <3	101 112 118	2.62 2.61 2.54 2.03 1.84	.083 .093 .096	3 4 3	5 5 7	.93 1.19	126 71	.02 .05 .09	13 9 12	1.34	.05 .05 .05	.05 .03 .05 .04	<2 <2 <2	553 511 567	5.01 4.97 5.46 5.24
C 146723 C 146724 C 146725 C 146726 C 146727	27 28 25	1247 694 866 783 635	6 <3 <3	163 123 196	1.2 1.3 1.3	2 3 3	14 14 13	904 974 1099 1067 1125	3.85 4.08 3.81	4 5 3	<8 <8 <8	<2 <2 <2	<2 <2 <2	99 75 75	.5 <.5 .8	<3 <3 <3	<3 <3 <3	109 110 84	1.37 1.67 1.93 1.71 1.75	.088 .087 .073	3 3 2	5 5	1.02 .99 .88	281 74 87	.11	8 9 8	1.28	.06 .07 .06	.04 .05 .05	<2 <2 <2	521 623 648	4.83 5.58
C 146728 C 146729 C 146730 C 146731 STANDARD DS5/AU-R	22 25 21	798 840	11 11 10	327 246 245	1.4 1.7	3 4 4	15 13 14	1227 1122 895 898 779	4.24 4.21 4.51	7 5 6	9 <8 <8	<2 <2 <2	<2 <2 <2	103 70 62	1.8 1.5 1.5	<3 <3 <3	<3 <3 <3	115 107 126	2.04 1.75 1.38 1.66 .76	.086 .090 .085	4 4 3	5 4 6	.92 .99 .85	91 85	.10 .10 .10	11 13 11	1.15 1.06 1.08 .89 2.09	.11 .13 .11	.06 .06 .07	<2 <2 <2	477 465 598	5.06 5.31 5.17

Fjordland Exploration Inc. PROJECT 04-WJ-DC-10 FILE # A405396

Page 3

A	A
44	P
L	L
ACME ANAL	YT I CAL

							~~~																								
SAMPLE#	Mo C						Mn ppm		As ppm					Cd ppm	Sb ppm		V ppm	Ca %	P %	La ppm		Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %		Au** ppb	Sample kg
C 146732	10 47	4 7	1 220	1 4	2	10	1169	5 00	9	<8	-2	<2	68	.8	<3	-7	138	2.42	.129		2	1.42	26	.12	71	1 / 7	.08				·· ·· ·· ··
C 146733	10 85				2		1479			_	_	_		4.1	<3		124	3.66	.129	4	4		136	.07	27	1.47	.08	.06 .07	<2 <2	179 447	5.30 5.01
C 146734	10 79	_	9 174		2	19	1092			8	_	_			<3	_	149	2.16	.128	3	3	1.33		.11	29	1.43	.10	.09	<2	431	5.02
c 146735	19 96		1 255		4	14	,		_	_	_	_		1.5			117	1.51	.090	4	8	.85		.08	21	1.02	.14	.09	2	541	5.16
C 146736	12 89	<b>5</b> 1	1 214	1.2	4	14	1119	4.05	4	9	<2	<2	67	1.1	<3	<3	111	1.69	.083	4	9	.77	60	.06	23	.98	.09	.07	2	546	5.17
C 146737	14 72	0 2	0 234	8	5	14	1195	4.40	5	8	<2	<2	73	1.3	<3	<3	133	1.58	.088	4	9	.80	80	.08	15	1.01	.14	.07	2	410	4.93
C 146738	14 57	5	8 175	.6	4	13	1062	4.16	6	10	<2	<2	80	1.1	<3	<3	116	1.47	.090	4	8	.87	92	.09	15	1.11	. 15	.07	<2	303	5.41
C 146739	14 76		6 191		5		1079			10	<2	2	70		<3	_	122	1.80	.082	4	12		139	.07	17	.99	. 14	.06	<2	474	4.91
RE C 146739	13 78	0 1	5 190	8. (	- 5	13	1084	4.09	14	10	<2	<2			<3		123	1.81	.083	4	11		141	.07	17	.98	. 14	.06	2	457	-
RRE C 146739	12 74	1 2	2 200	.6	4	13	1069	4.16	13	<8	<2	<2	73	1.1	<3	<3	126	1.78	. 083	4	9	.83	136	.08	18	1.01	. 15	.06	2	413	-
c 146740	11 73	0	9 144	8	5	13	1086	4.28	6	<8	<2	<2	71	.7	<3	<3	130	1.88	.081	3	13	.74	76	.08	17	1.03	. 13	.06	<2	454	4.78
C 146741	12 49	3 1	5 189	.6	4	14	781	4.30	4	<8	<2	<2	75	1.0	<3	<3	127	1.31	.085	3	10	.85	84	.11	11	1.14	. 16	.07	<2	228	2.39
STANDARD DS5/AU-R	13 14	6 2	6 136	<b>5 &lt;.3</b>	25	12	747	3.03	19	<8	<2	3	46	5.4	5	5	60	.73	.092	11	185	.68	135	.10	16	2.01	.04	.15	5	488	-

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

#### 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

### GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT 04-WJ-DC-11 File # A405494 510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Bill Morton

																					<u></u>		وننتيب			<del> </del>						
SAMPLE#	Mo C		b Zr m ppm	_										Cd ppm p				Ca %		La ppm		_	Ba ppm	Ti %	В <b>ррп</b>	Al %	Na %		W/ ppm		Sample kg	
SI C 146742 C 146743 C 146744 PULP C 146745	<1 < 11 57 5 43 21 616 8 49	2 1 5 1 4 1	7 206 15 196 15 90	.5 .5 1.0	4 2 457	10 20	1103 988	3.81 3.13 7.25	5 4 15	<8 <8 <8	<2 <2 <2	<2 <2 2	72 96 105	1.4 1.3 <.5	<3 <3 7	<3 ' <3 <3	101 57 44	1.70 1.95 2.01	.106	3 3 4	6 3 577	.80 .82	96 139 39 •	<.01	11 14 17	.01 .93 1.10 .84 1.04	.09 .05 .05	<.01 .05 .04 .40	<2 <2 <2	341 516	5.36 5.04 - 5.24	
C 146746 C 146747 C 146748 C 146749 C 146750	11 34 11 17 11 31 6 25 6 27	6 1 1 9 1		.5 .6	1	8 10 8	1366 1603 1106 987 1429	3.58 3.32 3.35	3 3 2	<8 <8 <8	<2 <2 <2	<2 <2 <2	80 88 68	.8 1.3 1.3	3 <3 <3	<3 <3 <3	71 66 73	2.39 2.61 2.09 1.96 3.73	.117 .119 .119 .123 .111	3 3 3	2 1 1 1	.78 .87 .94 .74	175 197 100	.05 .05 .03 .06	14 7 17	1.02 1.04 1.16 .95 .74	.08	.04	<2 <2 <2	128 195 141	4.93 5.08 5.54 5.14 4.84	
C 146751 C 146752 C 146753 C 146754 C 146755	6 53 6 41 6 28 6 27 4 26	1 2 <	3 133 5 146 3 147 6 232 8 152	.8 7 .6 2 .5	1 4	10 9 15	1289 1788 1171 1100 1130	3.73 3.71 3.95	13 5 4	<8 <8 <8	<2 <2 <2	<2 <2 <2	74 93 73	1.1 .8 1.1	<3 <3 <3	<3 <3 <3	62 75 99	3.20 3.55 2.56 1.94 1.94	.123	6 5 4	1 4	.63 1.07 .58 .82	33 · 32 38	.03	16 13 14	.76 .99 1.12	.12	-11 -04	<2 <2	216 187 134	5.08 5.31 5.55 5.45 4.87	
C 146756 C 146757 C 146758 C 146759 C 146760	5 27 4 23 3 19 4 13 5 23	0 1 8	3 114 9 142 3 116 6 109 5 121	2 <.3 3 .3 7 <.3	2 1 2	9 7 7	944 1094 952 899 1056	3.28 2.80 2.92	5 5 3	<8 <8	<2 <2 <2	<2 <2 <2	75 61 45	.7 <.5 .6	<3 <3 <3	<3 <3 <3	64 61 65	1.78 2.38 1.66 1.51 2.23	.109 .097 .083	4 3 4	2 1 3 2 1	.59 .65 .62 .49	83 108 41	.04 .04 .02 .02	14 9 7			.04 .04 .03 .04	<2 <2 <2	162 1 <b>3</b> 5	5.44 5.34 5.26 4.83 5.44	
RE C 146760 RRE C 146760 C 146761 C 146762 C 146763	3 23 5 23 2 25 2 25 3 17	4 7 2	7 121 4 125 3 115 4 127 6 148	6 .6 5 .6 7 .4	1 1 1	8 9 8	1048 1073 1051 1059 1338	3.26 3.06 3.14	5 7 6		<2 <2 <2	<2 <2 <2	87 80 79	.7 .5 .5	<3 <3 <3	<3 <3 <3	65 59 61	2.12 2.17	.106 .109 .112 .115 .109	4 4 4	1 1 1 <1	.59 .60 .74 .71 .83	59 59 27	.02 .02 .01 .01	6 16 14	.89 1.06	.11	.04 .04 .04 .04	<2 <2 <2	168 137 156	5.20 5.45 5.00	
C 146764 C 146765 C 146766 C 146767 C 146768	3 17 3 20 2 15 5 16 4 21	2 1 1 2 1	6 118 9 108 10 158 19 231 9 163	3 .3 3 <.3 1 .5	2	8 10 15	911 1121 1049 1202 1166	2.97 3.14 4.00	7 2 7		<2 <2 <2	<2 <2	73 77 70	.7 .8 1.1	<3 <3 <3	<3 <3 <3	61 74 105	1.78 2.25 1.81 1.91 1.97	.087 .100 .090	5 4 3	1 1 3 8 9	.77 .71 .76 1.04	71 41 51	.01	6 10 8	1.04 .83 1.02 1.59 1.49			_	90 105 98 61 73	5.07 5.38 5.39 5.48 5.45	
C 146769 C 146770 C 146771 C 146772 C 146773	13 20 9 24 19 18 14 24 19 27	.9 ' .0 .2	6 154 12 189 4 223 9 205 12 225	.4 3 <.3 5 .3	5 5 5	20 19 15	1424	3.89 4.30 4.19	5 <2 15	<8 <8 <8	<2 <2 <2	<2 <2 <2	102 90 84	.9 .9 1.0	<3 <3 <3	<3 <3	99 112 113		.091	5 4 4	8 4	.81 1.00 .95	90 51 86	.01 .03 .03	14 15 12	1.28 1.11 1.39 1.15 1.10	.14 .18 .13	.04 .05 .04	<2 <2 <2	115 116 182	5.84 5.39 5.64 5.45 4.86	
STANDARD DS5/AU-R	12 14	9 2	26 134	4 <.3	25	12	772	3.04	18	<8	<2	3	47	5.7	5	6	60	.77	.096	11	190	.70	139	.11	18	2.06	.04	. 15	3	497	-	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN UNITEDATE OF CONCENTRATION EXCEEDS UPPER LIMITS.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 15 2004 DATE REPORT MAILED:

- 8 -10- 2004

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.



Fjordland Exploration Inc. PROJECT 04-WJ-DC-11 FILE # A405494

Page 2



																															CHE ANALTTICAL
SAMPLE#	Mo ppm				•	Ni ppm		Mn ppm							Cd ppm				Ca %		La Ci ppm ppi		Ba ppm	Ti %	B ppm	Al %	Na %	K %	W. ppm	Au** ppb	Sample kg
C 146774 PULP C 146775 C 146776 C 146777 C 146778	21 9 17	5825 358 285 403 183	10 12 10	203 202 284	.8 .4	7 3 4	17 9 12	1821 2261 1300	3.84 3.59 3.66	21 17 12	<8 <8 <8	<2 <2 <2	<2 <2 <2	73 65 49	.5 .7 1.0	<3 <3 <3	<3 <3 <3	74 59 80	3.99	.090 .083 .087	7 5	5 .88 2 1.24 3 .4	8 89 412 41	<.01 <.01 <.01 <.01 <.01		.81 .54	.04 .07	.14 .28	<2 <2 <2	218 146 275	4.93 5.21 4.62 4.87
C 146779 C 146780 C 146781 C 146782 C 146783	15 6 3 2 2	116 43 69	11 15 18	238 82 137		5 3 7	15 11 18	2083 2040 1216 1742 1886	4.26 2.99 4.25	9 6 7	<8 <8 <8	<2 <2 <2	<2 <2 <2	56 52 58	.5 <.5 <.5	3 <3 <3	<3 <3 4	71 31 78	3.43 3.27 3.09 3.37 3.94	.079 .074 .077	6 6 5	2 1.35 1 .66 3 .68	161 105 73	<.01 <.01 <.01 <.01 <.01	10 7 9		.06 .05 .05 .06	.19 .19	<2 <2 <2	54	5.00 5.07 5.20 5.49 5.02
C 146784 C 146785 C 146786 C 146787 C 146788	2 1 1 2 <1		13 22 16	86 103 94	<.3 <.3 <.3 <.3	4 4 3	13 14 11	1203 1171 1406 1287 1181	3.49 3.73 3.23	5 4 5	<8 <8 <8	<2 <2 <2	<2 <2 <2	51 66 54	<.5 .5 <.5	<3 <3 <3	<3 <3 <3	46 47 45	2.47 2.75 3.48 3.17 3.43	.080 .079 .076	6 7 6	1 .9° 3 .89 2 .86	89 97 190	<.01 <.01 <.01 <.01 <.01	6 6 6	.99 1.02 1.02 1.14 .81	.07 .08 .07 .07	.13 .14 .13	<2 <2 <2	6 3	5.01 5.13 5.24 5.48 5.31
C 146789 C 146790 RE C 146790 RRE C 146790 C 146791	6 1 1 1 1 1	66 68	17 20 14	137 138 138	<.3 <.3 <.3 <.3	4 4 3	14 14 14	1641 1395 1455 1452 1360	3.36 3.51 3.53	9 9 6	<8 <8 <8	<2 <2 <2	<2 <2 <2	61 63 62	.5 .5 <.5	<3 <3 <3	<3 <3 <3	57 59 56	3.77 3.32 3.45 3.39 2.70	.079 .082	5 6 6	4 .70 3 .72 5 .72	138 119 134	<.01 <.01	6 7	.75 .78 .81 .82 .75	.05	.15 .15 .15 .16	<2 <2 <2	13 11 15	5.30 4.79 - - 5.02
C 146792 C 146793 C 146794 C 146795 C 146796	2 1 1 2 2	59 44 25	16 21 9	126 161 101	<.3 <.3 <.3 <.3	2 3 3	9 12 14	1271	3.19 3.82 3.80	7 17 8	<8 <8 <8	<2 <2 <2	<2 <2 <2	49 61 47	<.5 .7 <.5	<3 3 <3	<3 <3 <3	44 35 37	2.89 2.65 3.50 3.08 3.11	.082 .077 .081	6 7 6	2 .53 2 1.58 2 .62	232 3 155 2 59	<.01 <.01 <.01 <.01 <.01	7 9	.59 .53 .67 .52		.15 .18 .27 .19	<2 <2 <2	7 3 7 <1 7	5.02 5.14 5.74 5.14 4.88
C 146797 C 146798 C 146799 C 146800 C 146801	1 2 3 7 2	336 82 193	26 19 459	142 162 265	<.3	3 4 4	12 11 10	1274	3.26 3.29 3.32	28 17 68	<8 <8 <8	<2 <2 <2	<2 <2 <2	55 49 50	.7 .9 2.0	<3 <3 12	<3 <3 <3	35 37 32	3.01 3.20 2.92 3.37 2.38	.074 .076 .070	6 : 6 : 8 :	3 .67	7 61 9 124 1 152		5	.56 .48 .57 .55	.05 .04 .04 .04	.21 .19 .25 .24	<2 <2 <2	12 16 14 21 7	5.38 5.53 5.35 5.26 4.64
C 146802 C 146803 C 146804 PULP C 146805 STANDARD DS5/AU-R	20 43	30 112 6011 235 146	14 13 96	140 89 330	<.3 1.0 1.1	3 498 4	13 21 15	1182	3.83 7.20 4.08	23 15 63	<8 <8 <8	<2 <2 <2	<2 <2 <2	37 101 52	.8 <.5 2.8	<3 4 9	<3 <3 <3	44 43 39	2.26 2.08 1.95 3.66 .74	.080 .083 .069	6 3 64	2 .47 4 .88 2 .90	50 3 38 5 71	<.01 <.01 <.01 <.01	6 12 8	.49 .54 .80 .54 2.03	.04 .05 .05 .04	.20 .21 .39 .22 .15	<2 2 <2	5 13 496 66 493	4.99 4.95 - 5.66



Fjordland Exploration Inc. PROJECT 04-WJ-DC-11 FILE # A405494

Page 3



																																ACTIC ATTACT TICAL
SAMPLE#	Mo ppm							Mn ppm						-	Cd ppm			-	Ca %		La ppm		_	Ba ppm	Ti %	B ppm	Al %	Na %			Au** ppb	Sample kg
C 146806 C 146807 C 146808 C 146809 C 146810	10 1 <1 22 2	52 80 94	9 16 27	126 115 152	.8 .4 .8 <.3	3 3 5	11 9 13	1655 1778 1702	3.42 3.05 2.96	22 36 45	<8 <8 <8	<2 <2 <2	<2 2 <2	50 49 43	<.5 <.5 .7	<3 <3 4	<3 3 <3	42 38 21	4.13 3.55 2.51 3.32 3.27	.075 .072 .067	7 6 5	2 1	.55 .70 1.07	138 197 96	<.01 <.01	16 17 8	.44 .52	.05	.19 .19 .20 .20	<2 <2 <2	48 8 18 42 3	5.24 4.90 5.36 5.53 5.19
C 146811 C 146812 C 146813 C 146814 C 146815	4 10 8 1 2	106 75 57 86 109	17 6 11	100 78 85	.5 .4 <.3 .5 .4	3 3 4	12 11 14	1421 978 1030	3.07 3.08 3.74	27 6 8	<8 <8 <8	<2 <2 <2	<2 <2 <2	56 50 79	<.5 <.5 <.5	3 <3 <3	5 <3 <3	22 45 86	3.29 3.90 1.92 3.09 4.67	.070 .073 .089	7 5 6	2 1 2	1.11 .48 .57	138 103 99	<.01 <.01	11 9 13	.36 .50 .66	.03 .04 .07 .08 .06	.18 .12 .08	<2 <2 <2	7	4.96
C 146816 C 146817 C 146818 C 146819 C 146820	1 19 1		38 155 8	125 151 107	.4 1.1 <.3	3 4 3	12 12 13	1282 1017 1312	3.52 2.99 4.36	15 53 17	<8 <8 <8	<2 <2 <2	<2 2 <2	64 49 65	.5 .9 <.5	<3 <3 <3	<3 <3 <3	60 38 47	3.50 3.47 2.30 3.00 3.37	.083 .070 .071	7 6 7	1 5 2		72 39 74	<.01	18 17 13	.66 .61 .67	.07 .05 .04 .06	.21 .33 .18	<2 <2 <2		5.55 5.17 5.51 5.24 5.05
RE C 146820 RRE C 146820 C 146821 C 146822 C 146823	1 1 <1	113 102 113 216 203	25 22 16	107 100 95	.3 <.3 .4	3 3 3	10 11 11	1029 944 859	3.40 3.23 2.84	24 23 41	<8 <8 <8	<2 <2 <2	<2 <2 <2	64 55 51	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	46 46 46	3.39 3.09 2.58 2.34 3.09	.068 .072 .074	7 6 6	1 1 <1	1.44 1.31 1.05 .73 1.26	90 82 63	<.01 <.01 <.01	13 7 15	.61 .44 .51	.06 .06 .06 .06	.11 .11 .12	<2 <2 <2	15	5.63 5.32 5.39
C 146824 C 146825 C 146826 C 146827 C 146828	1 1 2 3 3	104 99 75	528 77 87	255 235 194	1.8 -8 .7	4 4 5	13 15 16	1598 2076 1905	3.39 3.72 3.49	43 45 28	<8 <8 <8	<2 <2 <2	<2 2 2	65 62 63	1.0 1.0 .9	4 <3 <3	<3 3 6	33 49 32	2.69 2.61 4.23 3.47 3.55	.074 .076 .075	7 7 6		.76	51 64 77		18 12 22	.52 .67 .64	.05 .05 .04 .04	.13 .16 .17	<2 <2 <2	6 10 10 6 9	5.36 4.84 5.12 5.15 5.53
C 146829 C 146830 C 146831 C 146832 C 146833	2 4 2 3 5	69 39	43 86 33	278 156 165	.8	6 4 4	14 14 15	2001 1048 718	3.94 3.48 4.10	30 21 14	<8 <8 <8	<2 <2 <2	<2 <2 <2	65 36 18	1.2 .6 <.5	<3 <3 <3	<3 <3 <3	36 51 44	4.41 4.42 1.94 .83 2.20	.062 .084 .075	6 6	1 <1 4 <1 <1	1.77 .90 .45	55 90 64	<.01 <.01 <.01 <.01	20 12 10	.50 .54 .53	.03 .04 .03 .03	.18	<2 <2 <2	12	5.25 5.20 3.76 3.77 5.17
C 146834 PULP C 146835 C 146836 C 146837 STANDARD DS5/AU-R	3 2 <1	154 189 137	31 39 30	248 216 170	.8	7 11 12	18 22 23	822 1224 2183 1370 737	5.15 5.99 5.24	17 37 30	<8 <8 <8	<2 <2 <2	<2 2 <2	27 37 45	1.2 <.5 <.5	<3 <3 <3	<3 <3 3	62 90 75	.51 .51	.081 .086 .090 .095	7 5 6	730 4 9 4 189	.50 .76 .52	60 53 50	<.01	9 7 14	.44 .53	.04	.14	<2 <2 <2	47 52 26	4.80 4.33 5.26



### Fjordland Exploration Inc. PROJECT 04-WJ-DC-11 FILE # A405494

Page 4



AGIC AMETTICAL																															ACME ANALYTICAL
SAMPLE#	I				_			Mn ppm							Cd ppm				Ca %		La ppm p			Ti % pp		Al %	Na %			Au**	Sample kg
C 146838	1			<u></u>	.3	•••	•••												1.99				1.03 82 <.								
C 146839	1				·3				4.64									87			0	_			8						4.76
C 146840						_			6.70									99			7	5	.67 118 <.		8		.05				4.67
C 146841	1								5.33						<.5	-	_			.082			1.17 56 <.				.06	-	-	5	5.15
C 146842	1								4.73	_					_	-	-		.92		9	7	.81 37 <.		7		.08		_	(	4.40
C 140042	'	91	12	101	.4	• • •	19	1725	4.73	2	<b>&lt;</b> 0	<2	2	12	۲.5	<>>	<3	83	.99	.102	9	13	.58 136 <.	01 1	10	. 74	.08	.10	<2	4	5.59
C 146843									4.67										1.99			15	.51 78 <.			.79	.07	.12	<2	7	4.74
C 146844																			4.32	.083	8	5	.76 71 <.	01 1	11	.57	.06	.11	<2	10	5.47
C 146845					.3														2.32			5	.70 62 <.	01	9		.06			8	5.09
C 146846																			1.07			4	.49 46 <.				.07			11	4.99
C 146847	1	99	21	125	.3	8	20	1113	4.13	25	<8	<2	<2	48	<.5	<3	<3	66	1.54	.088	7	6	.50 58 <.	01 1	11	.68	.07	.17	<2	13	4.95
C 146848	2	50	11	132	<.3	5	14	1208	4.17	4	<8	<2	<2	43	<.5	<3	<3	53	.97	.081	6	2	.42 89 <.	01 1	10	.50	.07	.11	<2	6	4.94
RE C 146848	1	50	13	131	<.3	5	14	1185	3.92	6	<8	<2	<2	43	<.5	<3	<3	52	.96	.081	6	3	.41 88 <.	01	6	.49	.07	.11	<2	5	-
RRE C 146848	1	49	10	120	<.3	4	13	1103	3.61	4	<8	<2	<2	42	<.5	<3	<3	49	.94	.079	6	3	.39 96 <.	01	7	.49	.07	.11	<2	5	-
C 146849					<.3	_	14	1176	3.64	_									1.95	.080	6	2	.37 111 <.	01	9	-49	.07	.11	2	8	5.30
C 146850	<1	41	4	121	<.3	6	15	1324	4.11	4	<8	<2	<2	63	<.5	<3	<3	69	2.63	.081	7	4	.58 177 <.	01	5	-66	.07	.10	<2	7	5.22
c 146851	1	32	5	129	<.3	6	16	1378	4.15	15	<8	<2	<2	67	<.5	<3	<3	80	2.66	.085	7	3	.59 172 <.	01	5	.72	.08	.11	2	4	4.70
C 146852	<1	34	3	101	.3				4.07										2.24		8	3	.46 116 <.	01	8	.62	.07	.08	<2	15	5.18
C 146853	1	36	3	89	<.3	5	12	1167	3.42	4	<8	<2	<2	61	<.5	<3	<3	70	2.31			2	.66 138 <.	01	6	.58	.07	.07	<2	7	5.11
C 146854	<1	70	5	94	<.3	5	13	1115	3.39	9	<8	<2	<2	67	<.5	<3	<3	68	2.07	.074	6	4	.64 200 <.	01	5	.60	.08	.08	<2	7	5.14
C 146855	<1	117	6	101	<.3	6	15	1198	3.68	22	<8	<2	<2	72	<.5	<3	<3	74	2.17	.077	7	4	.71 153 <.	01	4	.58	.08	.08	<2	9	5.31
C 146856	<1	76	4	81	<.3	4	11	944	3.14	4	8	<2	<2	59	<.5	<3	<3	61	1.64	.072	6	<1	.47 124 <.	01	3	.53	.08	.08	<2	9	4.40
C 146857	1	28			<.3				3.52										2.11				.51 139 <.		5		.08			7	5.35
C 146858	1	27			<.3	_			3.53		_				_	_			2.79		_		.80 139 <.		7		.07		_	9	5.44
C 146859	<1		-		<.3	_				_									1.61				.56 122 <.		8			.09	_	1Ó	5.66
C 146860	1	61			<.3														1.96			2	.61 99 <.		7		.08	.09	_	10	5.04
C 146861	1	25		07	′ <.3	7	12	1174	3.02		-0	-2	-2	57	<.5	-7	7	4.1	1.85	072	4	2	.48 89 <.	01 1	10	.42	07	10	-2		4.23
STANDARD DS5/AU-R	1 '								3.00								7			.072			.68 136 .						_	_	4.23
STANDARD DSJ/AU-R	12	142	40	133		23	14	740	3.00	17	٠٥	```		45	7.4		'	טכ	./3	.071		00	.00 130 .	10	10	1.77	.04	. 14		472	

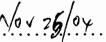
PHONE (604) 253-3158 FAX (604) 253-1716

#### GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT WJ04-12A File # A406812 510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Jay W. Page

		cr, valicouver be voe sho substituted by day		
SAMPLE#		Au Th Sr Cd Sb Bi V Ca P La C ppm ppm ppm ppm ppm ppm ppm % % ppm pp	• • • •	K W Au** Sample % ppm ppb kg
SI C 146901 C 146902 C 146903 C 146904	13 1350 20 196 1.1 2 9 1228 3.82 66 <8 14 892 37 302 1.0 3 12 1905 4.94 83 <8	<pre>&lt;2 &lt;2 33 1.3 4 &lt;3 63 2.27 .063 4 &lt;2 &lt;2 37 2.0 6 &lt;3 58 3.12 .059 6 &lt;2 &lt;2 33 1.4 &lt;3 &lt;3 64 1.50 .061 3</pre>	6 .23 71 .01 8 .39 .05 7 .57 225 <.01 7 .38 .03 3 .33 181 .02 5 .39 .05	.02 <2 909 <2 1329 5.27 .14 <2 852 5.41 .06 <2 1086 6.42 .06 <2 1343 5.03
C 146905 C 146906 C 146907 C 146908 C 146909	11 1107 12 185 .6 2 10 1394 5.30 6 <8 13 1639 7 190 1.3 2 11 1057 5.89 5 <8 11 2441 6 191 1.5 3 14 1334 5.09 7 <8 14 1014 9 481 .9 8 32 5667 9.58 58 <8 9 2068 8 159 1.2 2 13 1669 5.20 9 <8	<pre>&lt;2 &lt;2 40 1.1 &lt;3 &lt;3 75 1.19 .057 3 &lt;2 &lt;2 24 1.3 &lt;3 &lt;3 69 .62 .053 3 &lt;2 &lt;2 20 .6 &lt;3 &lt;3 49 .84 .048 5 1</pre>	8 .34 141 .05 3 .41 .05 5 .26 46 .03 6 .44 .05 13 .77 43 <.01 10 .58 .02	.06 <2 978 5.30 .07 <2 1524 4.91 .07 <2 2116 3.74 .21 <2 587 2.02 .12 <2 1884 3.63
C 146910 C 146911 C 146912 C 146913 C 146914	10 1639 10 229 1.2 2 11 1334 5.56 8 <8 11 2159 9 189 1.4 3 11 1362 5.26 9 <8 11 1922 5 223 1.2 3 18 2275 5.99 8 <8 9 2257 9 191 1.3 2 11 1230 4.87 10 <8 10 1858 9 223 1.2 4 17 1995 5.81 25 <8	<pre>&lt;2 &lt;2 30 1.4 4 &lt;3 78 .97 .060 3 &lt;2 &lt;2 33 1.2 &lt;3 &lt;3 73 1.54 .055 4 &lt;2 &lt;2 32 1.8 &lt;3 &lt;3 73 1.16 .059 3</pre>	10 .38 105 .03 6 .53 .05 6 .30 51 .04 6 .46 .05	.06 <2 1190 5.31 .06 <2 1633 4.86 .07 <2 1551 4.95 .06 <2 2402 3.86 .07 <2 1651 4.01
C 146915 C 146916 C 146917 C 146918 C 146919	6 1532 <3 90 .6 4 12 1207 5.53 4 <8 6 770 <3 82 <.3 4 11 886 5.69 <2 <8 6 1539 3 84 .7 6 13 1554 5.97 4 <8 7 1739 7 92 .9 2 10 1739 5.18 6 <8 9 2192 4 70 1.0 3 11 1010 5.35 3 <8	<pre></pre>	16 .54 90 .07 11 .93 .14 20 .70 126 .08 11 .78 .09 9 .44 89 .03 10 .60 .07	.08 <2 896 4.62 .07 <2 515 5.14 .09 <2 993 5.31 .06 <2 1051 6.59 .07 <2 1600 4.31
C 146920 RE C 146920 RRE C 146920 C 146921 C 146922	8 1337 3 88 <.3 3 12 1215 6.35 4 <8 7 1272 <3 86 .4 3 11 1165 6.00 4 <8 8 2057 4 98 .7 2 11 1216 5.86 13 <8 8 1738 <3 93 .7 2 10 1200 5.75 8 <8 8 1486 4 76 .6 1 9 1154 5.13 4 <8	<pre>&lt;2 &lt;2 47 &lt;.5 &lt;3 &lt;3 96 1.27 .063 4 &lt;2 &lt;2 44 .8 &lt;3 &lt;3 77 1.53 .069 3 2 &lt;2 42 .7 &lt;3 &lt;3 77 1.47 .070 3</pre>	6 .66 85 .07 7 .89 .13 7 .46 76 .05 10 .66 .09 5 .46 66 .05 8 .65 .08	.06 2 877 2.78 .06 <2 841 - .09 <2 1774 - .08 <2 1368 3.19 .07 <2 1041 4.03
C 146923 C 146924 C 146925 C 146926 C 146927	8 3494 14 122 1.2 2 11 1488 4.72 587 <8	<pre>&lt;2 &lt;2 41 .9 3 &lt;3 69 1.18 .051 3 &lt;2 &lt;2 37 1.2 7 &lt;3 75 1.02 .052 4 &lt;2 &lt;2 47 .8 4 &lt;3 95 1.71 .067 4</pre>	10 .39 100 <.01 9 .41 .06 9 .41 97 .01 8 .56 .07	.07 <2 1591 4.81 .06 <2 950 5.02 .07 <2 2680 5.38 .08 <2 1343 4.87 .10 <2 1811 4.92
C 146928 C 146929 C 146930 C 146931 STANDARD DS5/AU-R2		3 <2 38 1.2 7 <3 80 1.14 .043 4 <2 <2 40 .8 5 <3 78 .70 .066 5 <2 <2 42 .8 4 <3 84 .83 .077 5	9 .58 158 <.01 9 .60 .04 6 .47 36 <.01 8 .62 .03	.09 <2 3026 5.12 .09 <2 4254 5.08 .11 <2 1008 4.73 .11 <2 442 4.56 .13 5 595

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.


(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: CORE R150 60C AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP.

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data ل FA

DATE RECEIVED: OCT 29 2004 DATE REPORT MAILED: ....







## Fjordland Exploration Inc. PROJECT WJ04-12A FILE # A406812

Page 2



																					·											ACING AI	INTELLIGE
SAMPLE#	Mo ppm	Cu ppm	PP dq	Zn ppm	Ag ppm	Ni ppm	Со <b>ррп</b>	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr (	om pp	sb om p	Bi pm p	V opm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррт	Ti %p	B Spm	Al %	Na %	K %	₩ ppm	Au** ppb	Sample kg	
C 146932 C 146933 C 146934 C 146935 PULP C 146936	6 8 20	5115	26 21 21	207 142 84	.9 1.2 1.0	6 3 449	10 7 19	2691 1501 808	4.25 3.88 7.56	83 110 16	<8 <8 <8	<2 <2 <2	<2 <2 <2	48 < 46 1 45 < 106 < 53 <	.0 < .5 < .5 1	<3 <3 11	<3 <3 3	68 1 75 1 42 1	1.87 1.06 1.77	.069 .086 .080	6 6 4	6 2 668	.68 .33 .75	81<. 37<. 54<.	01 01 01	10 9 12	.49 .64 .79	.03 .04 .04	.11 .09 .34	<2 <2 <2	585 680 517	3.87 4.54	
C 146937 C 146938 C 146939 C 146940 C 146941	10 6 8		25 44 18	120 333 140	.9 1.6 1.2	3 5 2	8 16 9	1561 3117 1306	4.03 6.79 4.62	209 298 91	<8 <8 <8	<2 <2 <2	<2 <2 <2	73 72 < 67 1 71 50	.5 .5 <	3 <3 <3	<3 <3 <3	80 1 91 1 88 1	1.68 1.73 1.59	.082 .081 .080	5 6 5	4 3 3	.53 .90 .38	139 . 147 . 55 .	01 01 04	12 10 12 1	.94 .75 .09	.14 .06 .16	.08 .11 .09	<2 <2 <2	1474 1229 1501	5.35 5.43 3.78 5.27 4.75	
C 146942 C 146943 C 146944 C 146945 C 146946	8 9 9	1722 2048 2450 799 1169	35 12 10	122 108 106	4.6 1.8 .5	2 2 2	8 9 8	1623 1240 1546	3.68 4.12 3.76	82 37 29	<8 <8 <8	<2 <2 <2	<2 <2 <2	54 42 40 51 44	.8 • .6 • .5 •	<3 <3 <3	<3 <3 <3	55 1 56 1 54 2	1.58 1.47 2.07	.063 .062 .067	5 5 5	3 2 2	.35 .29 .33	57 . 96 . 190 .	01 02 01	6 8 10	.39 .35 .41	.06 .05 .06	.06 .06 .07	<2 <2 <2	2183 584		
C 146947 C 146948 C 146949 C 146950 RE C 146950	9 11 10	1901 1118 851 1037 1044	12 20 43	123 116 246	.7 1.0 3.0	2 4 6	10 17 21	1289 1259 2646	4.36 4.31 5.47	77 187 251	<8 <8 <8	<2 <2 <2	<2 <2 <2	56 1. 71 70 < 56 1. 56 1.	.5 .5 .1	<3 <3 4	<3 <3 <3	99 1 76 1 88 1	1.79 1.22 1.75	.085 .090 .081	5 5 7	5 3 6	.42 .40 .81	108 . 39<. 51<.	04 01 01	14 1 11 21	.00 .81 .82	.15 .09 .05	.07 .09 .15	<2 <2 <2	830 415 664	5.23 5.39 4.62 4.71	
RRE C 146950 C 146951 C 146952 C 146953 C 146954	10 19 11		31 40 25	114 377 182	1.0 1.9	2 8 4	9 29 11	1050 3820 1803	3.71 6.72 5.04	172 80 153	<8 <8 <8	<2 <2 <2	<2 <2 <2	57 1 53 < 54 2 54 63	.5 .2 .7 •	<3 4 <3	<3 <3 <3	72 79 2 87	.72 2.34 .94	.091 .080 .085	5 7 5	2 5 4	.37 .96 .38	26<. 62<. 180<.	01 01 01	4 19 9	.51 .61 .51	.04 .04 .05	.07 .12 .08	<2 <2 <2	656 231 669	4.32 4.47 4.42 4.39	
C 146955 C 146956 C 146957 C 146958 C 146959	9 11 10	880 1259 1010	10 10 17	124 154 185	.6 .7 .6	2 3 3	8 11 13	1483 1661 1812	4.08 4.30 4.45	17 22 17	<8 <8 9	<2 <2 <2	<2 <2 <2	54 63 60 69 80	.6 .6 .6 .6 .8 .	<3 <3 <3	<3 ' <3 '	103 1 94 1 100 1	1.32 1.63 1.75	.093 .088 .091	6 5 6	6 4 2	.39 .48 .50	60 . 51 . 98 .	01 01 01	8 7 9	.58 .53 .60	.06 .05 .07	.04 .04 .04	<2 <2 <2	476 598 744 591 1079	4.12 4.84	
C 146960 C 146961 C 146962 STANDARD DS6/AU-R2	10	600	13 10	207 113	<.3 .7	4 2	13 7	2188 1494	4.53 3.32	18 12	<8 <8	<2 <2	<2 <2	80 75 <	.8 ·	<3 <3	<3 <3	78 1 81 1	1.07 1.32	.088	7 5	4 5	.44 .34	28<. 26<.	01 01	5 9	.72 .77	.06 .06	.03 .03	<2 <2	364 420	4.28 4.61 4.24	



### Fjordland Exploration Inc. PROJECT WJ04-12A FILE # A406812

Page 3



SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Со	Mn										-	Са	Р	La	Cr					Al	Na	K	W	Au**	Sample
	ppm	ppm	ppm	ppm	ppm	ррп	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%			ppb	kg
C 146963 C 146964 C 146965 C 146966 C 146967	8 5 6	755 765 559	3 <3 <3	125 171 187	.3 .8 .4	3 2 2	10 13 15	1545 1818 1937	3.86 5.55 5.88	10 15 18	<8 <8 15	<2 <2 <2	<2 <2 <2	79 72 71	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	100 130 127	1.04 1.99 1.72 2.51 1.83	.083 .118 .119	4 4 4	9 4	.55 .70 .98	60 38	.03 .02 .05	10 9 12	.85 .88 1.06 1.24 .97	.13 .11 .10		<2 <2 2	560 512 333	4.58 6.11 4.73 4.81 2.25
C 146968 C 146969 C 146970 C 146971 C 146972	8 9 9	1182	13 12 13	193 158 158	.4 .5	4 4 5	14 12 14		4.70 4.42 4.65	9 6 15	<8 <8 12	<2 <2 <2	<2 <2 <2	76 94 90	.8 6. 5.>	<3 <3 <3	<3 <3 <3	109 105 107	1.71 1.99 1.71 1.74 2.37	.091 .091 .074	3 4 4	8 12 9	.76 .75 .53	138 238 292	.06 .07 .04	12 8 11	1.27 1.11 1.53 1.97 1.29	.13 .20 .26	.09 .08 .06 .17	<2 2 <2	464 441 553	4.58 4.29 4.75 4.67 5.38
C 146973 C 146974 C 146975 C 146976 C 146977	7 12 15	725 655 785 1197 1206	8 12 8	157 215 171	.6 .6	4 5 4	11 14 15	2156 1852	3.97 4.66 5.37	24 27 13	<8 8 <8	<2 <2 <2	<2 <2 <2	76 69 64	.5 1.0 <.5	<3 <3 <3	<3 <3 <3	72 96 107	1.96 3.75 3.98 3.00 2.39	.079 .078 .078	5 5 4	7 11 11	.62 .69 .61	141 112 137	.07 <.01 <.01 .02	14 13 8	1.42 .93 .74 .79 .82	.09 .07 .09	.14 .14	<2 <2 <2	488	4.26 4.41 4.45 4.39 4.53
C 146978 C 146979 C 146980 PULP C 146981 C 146982	14 19 15	5536 1247	10 11 14	180 89 179	.9 1.1 .4	4 427 6	11 19 12	831 1761	4.67 8.20 5.04	16 14 26	<8 <8 10	<2 <2 <2	<2 <2 <2	65 102 57	.8 <.5 .8	<3 13 <3	<3 <3 <3	109 46 122	2.21 2.47 1.89 1.79 1.77	.083 .080 .085	5 4 4	11 630 18	.39 .84 .53	33 55		4 14 10	.67 .63 .92 .59	.08 .05 .07		<2 3 <2	679 513 907	4.27 4.61 - 4.60 4.27
C 146983 C 146984 RE C 146984 RRE C 146984 C 146985	15 16 14		5 9 11	180 184 185	.6	5 5 4	14 14 14	2027 2081 2162	4.82 4.99 4.97	24 20 25	<8 <8 <8	<2 <2 <2	<2 <2 <2	67 69 68	<.5 .5 <.5	<3 <3 5	<3 <3 <3	110 113 110	4.03 3.10 3.16 3.36 3.05	.080 .081 .083	6 5 5	13 13	.72 .74 .75	45 45 41	.01 .02 .02 .02 .02	9 6 10	.80 .81 .83 .80	.09	.08 .08 .07 .07	<2 <2 <2	557 575	4.09 4.11 - - 4.07
C 146986 C 146987 C 146988 C 146989 C 146990	14 15 14	1370 1549 1237 1709 1737	23 7 11	289 168 227	1.0 .4 1.6	5 4 5	16 14 16	1876	4.04 4.59 5.62	20 24 40	9 <8 9	<2 <2 <2	<2 <2 <2	74 63 62	2.6 .7 .8	3 <3 <3	<3 <3 <3	91 95 109	2.73 2.27 2.62 3.12 2.83	.081 .081 .076	3 4 4	8 6 8	.73 .79	226 118 67	.03	7 4	.71 .80 .67 .78	.09 .08 .10	.06 .07 .07 .09	<2 <2 <2	1128 1031 1137	4.69 4.58 4.37 4.12 3.98
C 146991 C 146992 C 146993 STANDARD DS6/AU-R2	27 12	1102 1226 1729 123	26 7	407 248	1.1	4 5	16 17	2964 1649	5.00 5.52	206 13	<8 <8	<2 <2	<2 <2	52 48	2.1	9 <3	<3 <3	82 127	3.96 4.39 2.94 .83	.078 .079	6 4	9	.86 1.02	190 105	.05	11 7	.98 .51 .96 1.84	.04	.15 .08	<2 <2	784	3.12 2.87 3.66



### Fjordland Exploration Inc. PROJECT WJ04-12A FILE # A406812

Page 4



ACIL AIRETTICAL																																ALME ANALYTT	.CAL
SAMPLE#	ł				Ag ppm			Mn ppm	Fe %	As ppm	U ppm			Sr ppm			Bí ppm	ppm V	Ca %		La ppm j	Cr opm	Mg % p	Ва	Ti %	B ppm	Al %	Na %	K %		Au** ppb	Sample kg	
C 146994 C 146995 C 146996 C 146997 C 146998	38 46 57	715 570 871 868 651	40 24 12	261 249 239	2.0 1.2 2.0 1.1 1.1	4 2 3 4 4	12 18 16	2101 2759 2822 2727 2394	3.84 4.17 5.10	59 76 67	<8 <8 <8	<2 <2	<2 <2 <2	54 43 43	1.5 1.8 1.5 .5	<3 <3 <3	<3 <3 <3	72 55 78	3.74 5.04 4.17 3.39 5.55	.077 .073 .067 .067	6 6 5 5	8 4 3 7 5	.55 4 .51 4 1.22 1 1.18 .64 1	43 < 101 < 59 <	<.01 <.01 <.01	16 13 13 11 15	.62 .45 .38 .45	.05 .03 .03 .03	.10 .14 .13 .14	<2 <2 <2	672 939	4.05 4.63 4.71 4.60 3.02	
C 146999 C 147000 STANDARD DS5/AU-R2	16	664 940 140	5		.8 1.2 <.3	4 3 23		1417 1106 723	4.38	6	<8	<2		49	.5 .7 5.2	<3 <3 4	<3 <3 <3	89 87 56	2.11 1.53 .70	.074 .072 .083	3 3 11	9 5 183		63 98 132	.04 .05 .09	10 12 18	.71 .53 1.92	.07 .07 .03	.05 .05 .13	<2	583 839 617	4.27 4.68	

Sample type: CORE R150 60C.

#### E. MASI'INGS ST. VANCOUVER BC VOA 1RO

### Prond (60+) 453-3130 FAA (004) 233-1716

### GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT WJ04-12B File # A406813 510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Jay W. Page

<u> </u>				-																									غيست				7
	SAMPLE#	Mo ppm				-			Mn ppm						Sr Co				Ca %		La ppm (			Ва ррп				Na %	К % р	pm p	** S	ample kg	
	SI C 147001 C 147002 C 147003 C 147004	10	<1 839 1162 1576 999	5 15 26	165 260 446	1.5	4 4 4	13 13 15	1023 1228 1602	4.60 4.78 4.71	3 8 12	<8 <8 <8	<2 <2 <2	<2 <2 <2	1 < .5 46 .9 56 1.6 63 2.9 82 1.7	<3 <3 <3	<3 3 3	83 94 91	1.27 1.68 2.50	.085 .086	3 3 3	7 7 10	.51 .57 .67	58 124 158	.06 .06 .05	13 13 11	.53 .65 .66		05 06 06	<2 6°	92 26	- 4.19 4.97 4.84 4.45	
	C 147005 C 147006 C 147007 C 147008 C 147009	8 9 7	1697 2234 1070 1205 1202	12 10 9	149 182 133		3 4 4	13 13 12	1674 1786 1487	4.70	212 19 30	9 <8 <8	<2 <2 <2	<2 <2 <2	83 1.5 66 .8 65 .7 57 <.5 65 <.5	<3 ' <3 ' <3	<3 6 4	76 93 92	2.99 2.87 2.21	.074 .079 .087 .081 .080	4 4 3	4 5 7	.45 .59 .54	33<, 72<, 81 109 56	.01 .02 .04	11 12 9	.40 .60 .55	.07 . .08 .	07 06 05	2 10 <2 15 <2 8 <2 10 <2 10	75 41 56	5.97 5.02 5.17 4.65 4.28	
	C 147010 C 147011 C 147012 C 147013 C 147014	9 12 12	1267 1329 1150 1349 955	12 9 10	181 158 229	1.3 .7 1.4	5 4 4	15 12 13	1469 1692 1855	4.96 4.59 4.81	31 60 58	<8 11 20	<2 <2 3	<2 <2 <2	69 .9 58 .7 57 <.5 66 1.1 80 .7	<3 <3 <3	3 7 5	97 96 92	2.38 2.78 3.49	.077 .077 .081 .072 .083	4 4 4	7 6 6	.53 .48 .40	78 55 71	.03 .01 .01	11 12 16	.61 .46 .45	.08 . .07 . .08 .	05 06 06	<2 116 <2 10 <2 11	50 18 78	5.98 5.65 5.71 4.02 4.16	
	C 147015 C 147016 C 147017 C 147018 C 147019	19 11 12	1089 1689 1263 1377 875	18 11 13	361 363 256	1.4	6 5 5	30 15 14	2436 2458 2188	4.78 5.19 4.12	60 40 26	13 <8 9	<2 <2 <2	<2 <2 2	80 .8 66 2.0 81 1.2 68 1.2 76 .8	<pre> &lt;3 2 &lt;3 2 &lt;3</pre>	3 6 3	77 68 80	5.22 4.65 4.81	.077 .065 .059 .067	5 5	5	.50 .58 .50	377< 211< 160<	.01 .01 .01	14 15 13	.38 .42 .47	.05 . .06 .	10 08 11	<2 8 <2 11 <2 10 <2 13 <2 7	24 22 26	4.47 4.29 4.76 4.53 4.58	
	C 147020 RE C 147020 RRE C 147020 C 147021 C 147022	13 16 11	1098 1116 1099 717 583	15 12 7	286 291	1.0 1.3 .4	5 5 5	15 16 12	1969 2030 1852	5.00 5.08 5.23 4.86 4.04	9 6 14	<8 9 13	<2	<2 <2 <2		′ <3	5 7 7	98 101 93	2.83 2.90 3.34	.073 .074 .075 .076 .078	5	8 7 4 8	.80 .82 .55	37 38 126	.02 .02 .01	12 11 11	.59 .59	.08 . .08 .	06 06 06	<2 100 <2 100 <2 100 <2 50 <2 4	29 59 33	4.26 - - 4.87 4.42	
	C 147023 C 147024 C 147025 PULP C 147026 C 147027	21 27	474	<3 13 7	337 87 278	1.3	8 485 10	14 19 13	1508 803 1198	4.31 7.61	7 15 12	8 8> 8>	<2 <2 <2	2 <2 2	76 2.1 62 2.1 97 <.5 64 1.8 64 1.7	<3 6 8 <3	6 10 3	107 43 57	2.65 1.82 1.70	.081	5 4 5	21 717	.57 .77 .52	168 93 27< 42 188	.05 .01 .03	14 21 16	.64 .80 .70	.07 . .04 .	05 <b>34</b> 05	<2 47 <2 41 <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <2 5: <4	03 34 15	4.53 4.26 - 4.10 4.51	
	C 147028 C 147029 C 147030 C 147031 STANDARD DS6/AU-R2	26 28 17		14 9 51	228 264 413	1.6 2.1	3 3 4	13 12 13	1169 1248 1470	3.77 3.75 3.87 3.71 2.81	10 7 16	8 11 9	<2 <2 <2	<2 2 2	58 1.1 69 1.2 60 1.6 68 2.9 37 5.8	<ul><li>&lt;3</li><li>&lt;3</li><li>&lt;3</li></ul>	<3 4 6	65 65 49	1.53 1.90 2.12	.074 .074 .079 .071 .078	6	10 8 6	.54 .57 .60	73 80	.04 .04 .01	13 15 12	.66 .66	.08 . .08 .	05 05 06	<2 66 <2 4 <2 5 <2 5 2 6	17 39 02	3.95 4.21 3.71 3.62	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

AU** GROUP 3B - 30.00 GM SAMPLE ANALYSIS BY FA/ICP. - SAMPLE TYPE: CORE R150 60C

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 29 2004 DATE REPORT MAILED



### Fjordland Exploration Inc. PROJECT WJ04-12B FILE # A406813

Page 2



ACHE AMALITICAL																														NOTE ANALITICA	ıL,
SAMPLE#	Mo Cu ppm ppr																	Ca %		La ppm (		Mg Ba	a Ti n %	B ppm		Na %			Au** ppb	Sample kg	
C 147032 C 147033 C 147034 C 147035 C 147036	41 579 22 56 17 720 22 679 21 83	3 1 8 1 9	7 323 2 328 7 275	.9 1.6 1.6	4 4 5	12 13 13	1526 1828 1515	3.89 4.38 3.70	7 7 7	<8 <8 <8	<2 <2 <2	<2 <2 2	71 68 64	1.3 1.4 1.1	<3 <3 3	<3 <3 <3	66 90 73	2.81 3.20 2.10	.071 .076 .071	5 6 5	11 13 13	.47 6/ .58 15/ .62 9/ .67 8	3 .02 9 .03 7 .03	8 5 7	.76 .71 .80	.08	.07 .07 .06	<2 <2 <2	411 288	3.74 3.82 4.85 3.53 4.70	
C 147037 C 147038 C 147039 C 147040 C 147041	27 101 28 56 31 60 26 63 17 127	6 3 9 1 4 1	0 584 2 185 0 151	1.5 1.1 .9	2 4 3	12 12 12	1421 1488 1296	3.66 3.59 3.37	6 8 6	<8 <8 <8	<2 <2 <2	<2 2 <2	74 68 62	3.2 .5 <.5	<3 <3 <3	<3 <3 <3	52 60 51	1.93 2.54 1.89	.072 .074 .068	5 6 6	5 9 6	.55 12 .60 15 .61 17 .58 10 .81 6	1 .01 9 .01 7 .01	11 11 9	.67 .82 .70	.09 .08 .08 .08	.06 .08 .06	<2 <2 <2	218 384 402	4.73 4.01 4.17 3.19 2.25	
C 147042 C 147043 C 147044 C 147045 C 147046	21 76 17 74 12 102 10 100 14 84	2 6 5 1	6 331 7 201 1 172	1.0 1.5 2 1.1	2 4 3	11 12 9	1609 1421 1904	4.49 4.38 4.65	6 8 19	<8 <8 <8	<2 <2 <2	<2 <2 <2	72 56 92	1.5 .8 .5	<3 <3 <3	<3 <3 <3	63 64 54	2.06 2.23 3.38	.072 .070 .065	5 5 6	5 8 5	.58 15 .68 9	0 .04 7 .01 4 .01	9 6 5	.74 .73 .72	.07	.08 .07 .07	<2 <2 <2	391 580 518	4.06 4.52 2.59 3.58 3.43	
C 147047 C 147048 C 147049 C 147050 RE C 147050	13 104 13 94 19 75 22 92 22 95	3 7 1 5 1	6 166 10 184 14 231	1.6	4 3 4	10 11 10	2173 1379 1219	4.38 3.61 3.75	10 5 4	<8 <8 <8	<2 <2 <2	<2 <2 <2	128 72 63	<.5 .8 .8	<3 <3 <3	<3 <3 <3	53 57 51	3.21 1.88 1.71	.061 .069 .066	4 4 4	6 4 8	.71 13 .74 24 .55 11 .49 10 .51 11	7 .01 2 .04 9 .05	3 11 4	.68 .71 .64	.08 .08 .08 .09	.06 .07 .08	<2 <2 <2	389 296 404	4.98 4.21 4.29 4.53	
RRE C 147050 C 147051 C 147052 C 147053 C 147054	21 103 14 97 13 101 13 87 10 173	7 3 4 1	9 265 8 203 10 254	1.5 1.3 1.2	4 2 3	13 11 11	1495 1548 1755	4.38 4.30 4.13	11 23 18	<8 <8 <8	<2 <2 <2	<2 <2 <2	68 78 72	.9 .6 1.0	<3 <3 3	<3 <3 <3	70 54 50	2.69 2.46	.066 .065 .064	5 5 4	8 5 7	.50 10 .64 11 .59 6 .61 8	2 .02 0 .01 B .01	9 5 5	.69 .66 .63	.09 .08	.06 .06	<2 <2 <2	441 494 409	4.05 4.41 4.37 3.89	
C 147055 C 147056 C 147057 C 147058 C 147059	11 101 10 54 14 67	8 2 1 1 70 1	27 189 11 109 12 12	9 1.0 9 .6 7 .7	2 5 5	11 13 17	1509 1357 1450	4.17 4.30 4.28	66 28 35	<8 <8 <8	<2 <2 <2	<2 <2 <2	85 89 84	.9 <.5 <.5	10 7 14	<3 <3 <3	68 85 58	3.01 2.87 3.57	.065 .072 .064	5 7 6	4 10 3	.56 9 .58 18 .54 3 .75 40 1.14 26	6 .01 1 .01 0 .01	6 8 7	.66	.07 .08 .07	.06 .07 .07	<2 <2 <2	479 197	4.31 4.13 3.69 4.65 4.38	
C 147060 C 147061 C 147062 STANDARD DS6/AU-R2	14 121 14 41	1 5	6 10° 8 8°	7 .5	4 3	12 11	1135 1165	3.96 3.96	22 18	<8 <8	<2 <2	<2 <2	89 65	<.5	13 10	<3 <3	80 76	2.77 2.80	.066 .069	6 6	5 4	.83 12 .76 20 1.02 12 .59 16	8 <.01 3 .01	4 7	.80 1.16	.06 .06	.08 .07	<2 <2	415 159	4.36	



### Fjordland Exploration Inc. PROJECT WJ04-12B FILE # A406813

Page 3



																				<del></del>								===			
SAMPLE#	Mo	Cu	Рb	Zn	Ag	Νí	Со	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Βi	٧	Ca	Р	La	Cr	Mg B	a Ti	В	Αl	Na	Κ	W	Au**	Sample
<u> </u>	ppm	mag	maa	mag	mag	maa	maa	mag	%	mag	mag	ppm	ppm	mag	mag	mag	mag	mag	%	%	ppm	mag				%		%	maa	ppb	kg
	1 1											· · · · ·	<u> </u>								-				1-1				P P		
C 147063	15	606	0	76	< 3	4	15	1111	5 22	64	<8	<2	<2	38	< 5	<3	<3	68	1.52	060	6	5	.94 26	1 01	Я	1.29	04	15	2	2/.6	5.96
C 147064																			5.14				1.35 64			1.40		.19			
	1																														2.59
C 147065	1 -	1098																	3.34			6	-94 59			1.07					4.87
C 147066		1957																	2.49				.68 8			.76	.06				3.94
C 147067	10 1	1591	13	101	.8	2	11	1299	4.27	10	<8	<2	<2	55	.5	<3	<3	79	2.88	.067	5	6	.80 15°	9.01	3	.92	.06	.11	<2	586	4.21
C 147068	9 '	1781	6	132	1.7	4	14	1523	5.08	7	<8	<2	2	62	<.5	<3	<3	96	3.26	.071	6	10	.92 23	4 < .01	11	.97	. 05	. 12	<2	606	4.68
C 147069		1739	_						4.54										2.76				.90 25							650	4.72
C 147070 PULP			_																1.84				.73 4								-
C 147071	1	461							3.71										2.75				.86 17								4.24
C 147072	12	571	9	199	.9	2	13	1424	3.57	6	<8	<2	<2	69	1.1	<3	<3	11	2.70	.072	5	2	.81 14	2 .01	7	.95	.06	.10	<2	194	3.29
C 147073	9 '	1025	6	119	1.0	3	14	1395	3.90	6	<8	<2	2	60	<.5	3	<3	74	3.09	.071	5	8	.80 16	9 .01	8	.90	.05	.09	<2	353	3.61
C 147074	10 1	1901	3	105	1.2	3	12	1102	4.04	6	<8	<2	<2	50	.5	<3	<3	84	2.34	.067	5	4	.79 10	4 <.01	5	1.00	.07	.10	<2	708	1.91
C 147075			_			5	16	1666	4.58														1.24 25			1.25					4.29
C 147076		2757			1.3				5.49														1.22 21			1.36					4.21
I .	1 .	979																					1.07 24								4.32
C 147077	12	919	כ	137	.4	4	10	1392	5.55	٧2	۲0	٧2	٠2	00	۲.5	٠,	۲,	109	2.90	.070	)	'	1.07 24	4 .01	۲5	1 - 14	.05	- 1 1	٧2	420	4.32
- 4/7070	4.5			450	_	_	4.0	4404		_	_		_	74	,	_		470	2 00	0/5	,	.,	4 37 44	<b>7</b> 04		4 77		4-		741	
C 147078	1	793							5.90														1.27 11								4.18
C 147079	1	287							6.85							_			2.78				1.51 29		_						4.06
C 147080	25	733	<3	104	.5	8	20	1658	5.23	5	<8	<2	<2	88	<.5	<3	<3	122	4.06				1.02 23				.06	.10	<2	277	4.18
RE C 147080	26	742	3	108	.7	8	21	1700	5.37	6	<8	<2	<2	89	<.5	<3	<3	126	4.16	.076	7	6	1.04 24	0 <.01	8	.99	.06	.11	<2	330	-
RRE C 147080	24	816	3	107	.8	8	21	1722	5.50	7	<8	<2	2	89	<.5	<3	<3	127	4.23	.077	8	8	1.05 20	9 <.01	12	.98	.06	.11	<2	307	-
	- '																														
C 147081	31	1843	237	144	3 2	5	16	1409	5 27	22	<8	<2	<2	76	0	<3	<3	78	4.01	.077	7	8	.67 24	1 < 01	15	53	.03	24	<2	485	3.73
C 147082																			1.98				.73 19				.02				4.11
	١				<.3														2.22				.75 73					.22			5.39
C 147083	! !		_				-																								
C 147084	1	13					_		1.14										2.14				.91 41					.20		8	3.81
C 147085	2	12	6	29	<.3	11	6	308	1.04	5	<8	<2	3	184	<.5	<3	<3	22	1.82	.064	17	19	.76 44	υ .02	<3	.78	.11	.20	<2	26	3.46
	1																														
C 147086	<1	9	8	30	<.3	12	7	346	1.03	4	<8	<2	4	175	<.5	3	<3	22	2.13	.059	17	17	.78 62	2 .02	10	.70	.09	.19	<2	2	3.71
C 147087	2	12	_		<.3				1.15										2.01				.79 25	7 .03	3	.76	.10	.21	<2	4	5.85
C 147088																			3.27				.84 34				.03				2.38
STANDARD DS6/AU-R2																			.87				.56 16								2.50
STANDARD DSO/AU-RZ	12	121	30	130	۲.٥	23	10	001	2.70	۷ ا	`0	``		30	٥.ر	4		ככ	.01	.011	14	117	. 00 10	3 .00	, 10	1.01	.07	. 14		010	

604 E. MASI'INGS ST. VANCOUVER BC VOA 1R6

PRUNE (604) 253-3158 FAX (604) 253-1716

# GEOCHEMICAL ANALYSIS CERTIFICATE

Fjordland Exploration Inc. PROJECT WJ04-13A File # A407121 510 - 510 Burrard St., Vancouver BC V6C 3A8 Submitted by: Jay W. Page

Page .

盤

								<i></i>		, 00,		٥٠.	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		JC (1			Jubili 1	ted by		, w.	rage									
SAMPLE#	Mo	Cu	Pb	Zr	n Ag	Ni	Co	Mn	Fe	As	U	Au	Th	\$r	Cd	Sb	Вi	٧	Са	Р	La	Cr	Mg	Ba	Ti	В	Αl	Na	K	W	Au** (	Sample
,,,	ppm	ppm	ppm	ррп	ppm	ррп	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm		ppm	%	%			ppb	kg
SI	1	1	<3	4	3	1	<1	7	.19	9	<8	<2	<2	3	<.5	<3	<3	<1	. 16	<.001	<1	3	<.01	4	<.01	<3	.01	.66	.01	<2	9	
C 147101	4	324							4.11									68	.77		6	6	.57	-	.01	_	.62	.04	.21	_	52	4.09
C 147102		132							3.71											.085	6	3	.49		<.01	_	.49		.18		91	3.70
C 147103		848				. 3	9	1171	3.32	107	<8	<2	<2	28	1.2	3	<3		.85	.082	8	7	.34		<.01				.20			3.51
C 147104	_	309			1.2				3.50									43	.74	.087	7	4	.32		<.01		.49	.01				3.24
c 147105	17	1416	16	202	4.6	. 3	10	1688	3.65	232	<8	2	<2	18	<.5	6	<3	45	.49	.091	9	5	.24	26	<.01	9	.51	.01	.32	٠2	265	2.86
C 147106		443							3.76										.51	.092	7	5	.32		<.01	-	.68		.13	_	305	4.17
C 147107		418			1.7														2.43	.085	8	6	.39		<.01		.58		.23			4.99
C 147108		238	-		<.3														5.75	.065	9	6		1391			.45		.29			5.76
C 147109		247			.6														4.91		8	8		1148			.51		.16			
C 147 109	כו	247	0	107			7	2190	3.00		10	12	\2	15	٠.5	۲3	۲3	96	4.91	.073	٥	٥	.57	1140	١٠.٧	12	.51	.03	. 10	<2	133	5.85
C 147110		151	-		<.3				3.37										4.01	.075	6	3	.42	546	<.01	6	.62		.14	<2	137	4.44
C 147111	12	137	6	241	.7														3.64	.077	6	3	.37		<.01		.58	.04	.10	<2	114	6.12
C 147112	11	282	14	249	1.5				3.45										2.69	.081	6	7	.46	356	.01	8	.64	.05	.09	<2	152	4.08
C 147113	17	246	15	318	3 1.3	4	15	1645	3.52	7	<8	<2	<2	77	1.1	<3	<3	79	2.91	.086	6	8	.67	247	.01	12	-94	.05	.09	<2	116	5.81
C 147114	14	251	6	306	1.2	4	14	1696	3.73	5	<8	<2	<2	68	.7	<3	<3	80	2.66	.090	5	7	.73	183	.02	10	.97	.06	.09	<2	108	5.14
C 147115	21	183	8	230	. 8	4	13	1548	3.90	3	<8	<2	<2	69	.6	<3	<3	84	2.35	.088	5	8	.69	280	.01	6	.97	.06	.07	<2	114	2.39
C 147116	17	129	11	272	2 .8				3.65										2.01	.094	5	6	.88		.04		1.13	.06	.05	<2	68	2.67
C 147117		122																	1.99	.082	4	5	.79		.02		.95	.06		<2	77	4.76
C 147118		101							3.67										1.65	.090	5	6	.43		.01		.77		.06		61	4.29
C 147119		135		234					4.10		<8					<3			5.16	.068	9	5	1.91		<.01		.52	.03	.08	<2	78	7.13
C 147120	10	260	14	325	: 1 3		11	2233	4 58	10	<8	٠,	2	70	Я	رح	~3	50	3.20	.071	6	3	.66	20	<.01	12	65	.03	.08	-2	101	5.01
C 147121		143			1.0														2.24	.073	6	5	.73		<.01		.58		.11	<2	84	4.50
C 147121		147			) .4				3.88										4.20	.127	6	4	.72		.02	-	1.18	.13	.05			5.31
RE C 147122		143	_		3 .6	_			3.78						.6				4.16		6	4	.71				1.17		.05			2.31
	1	–			.9				3.90						 4.5						_	6	.74									-
RRE C 147122	13	149	0	וכו	9		10	2112	3.90		<b>*</b> 0	۲2	۲2	119	۲.5	<3	4	91	4.50	.126	6	0	. 74	88	.02	12	1.17	. 13	.05	<2	129	-
C 147123	19	160	10	173	3 .6	2	10	1477	3.92										3.14	.142	6	5	.61	122	.05	10	1.34	.15	.05	<2	140	5.99
C 147124	10	166	8	197	'.3				3.91											.137	6	3	.77	139	.05	8	1.25	.10	.08	<2	114	5.51
C 147125	11	268	9	194	9	3	12	1324	4.16	7	<8	<2	<2	106	1.0	3	<3	103	2.26	.133	6	5	.60	259	.03	10	1.22	.15	.06	<2	161	4.83
C 147126	12	178	7	172	2 .6	2	10	1210	3.78	4	<8	<2	<2	120	.7	<3	<3	95	2.14	.134	6	<1	.58	180	.04	<3	1.16	.13	.06	<2	145	4.96
C 147127	6	193	5	141	۱ .6	2	8	1529	4.24	9	<8	<2	<2	126	<.5	<3	<3	97	3.04	. 133	6	3	.57	198	.02	8	1.16	.15	.06	<2	138	4.12
c 147128	6	104	10	121	۱ .4	. 2	10	1164	3.81	5	<8	<2	<2	121	<.5	<3	<3	105	2.79	. 141	7	3	.58	185	.04	9	1.35	. 17	.06	<2	72	4.55
C 147129	_	160			·	_			3.92										2.16		6	1	.63	153	_	-	1.37	.18	.06		114	4.25
C 147129		291		158					3.99										1.74	.134	5		.55		.05		1.45	.20	.06			5.51
C 147131	8		_		5 .6				3.70										2.53			10	.48						.05			4.58
C 147131	_																		4.49	.119	9		.59		<.01		.61		- 19			5.09
C 147 132	7	زرے	11	121	. '	4	13	1717	٠. ١	17	10	٦٢.	`~	04	.0	٠,	٠,	31	7.47	. 117	7	4	7	32	`.01	0	.01	.02	. 17	``	120	3.09
STANDARD DS6/AU-R2	11	122	28	139	.3	24	10	696	2.85	22	<8	<2	3	40	5.7	4	6	55	.85	.078	14	184	.59	173	.08	16	1.84	.07	.16	4	621	

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES.

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

DATE RECEIVED: NOV 8 2004 DATE REPORT MAILED:.

Nov 30/04





### Fjordland Exploration Inc. PROJECT WJ04-13A FILE # A407121

Page 2



ACITE AIMETTICAE																																AUME A	NAL YII CAL
SAMPLE#					_			Mn ppm												P %	La ppm (		_	Ba ppm							Au** ppb	Sample kg	
C 147133 C 147134 C 147135 PULP C 147136 C 147137	20 11	397 5809 439	22 13 20	400 91 279	1.7 1.2 1.0	3 432 4	19 19 16	4035 853 3049	6.98 7.94 5.82	104 16 50	21 13 12	<2 <2 <2	2 <2 2	53 107 33	1.0 <.5 <.5	6 5 <3	5 <3 5	50 4 43 59 3	4.50 1.93 3.17	.072 .082 .095	7 4 6 8	<1 ′ 520 4	.63 .82 .68	19<. 45<. 18<.	01 01 01	16 .4 15 .4 8 .7 12 .4	2 . 79 . 77 .	.02 . .05 .	.31 .38 .35	<2 <2 <2	121 557 149	4.83 4.02 - 5.29 3.93	
C 147138 C 147139 C 147140 C 147141 C 147142	8 11 12	218 204	15 13 11	264 175 197	1.0	2 2 3	18 14 12	2532 1383 2259	6.16 4.25 5.33	37 6 6	<8 13 <8	<2 <2 <2	3 2 <2	37 45 27	.7 <.5 <.5	<3 <3 <3	<3 5 <3	89 100 80	.84 1.08 .84	.098 .102 .104	7 7 8	3 4 5	.66 .41 .54	17<. 16<. 19<.	01 01 01	16 .6 15 .6 15 .6 12 .5	51 . 59 . 59 .	.02 . .03 .	.16 .12 .26	<2 <2 <2	307 116 122	3.50 3.10 3.81 3.82 3.77	
C 147143 C 147144 C 147145 C 147146 C 147147	9 6 7	447 197 432	16 28 13	195 168 140	.9 .8 .6	3 3 3	17 14 14	1894 934 1492	5.84 4.19 4.73	10 8 36	<8 <8 12	<2 <2 <2	<2 <2 <2	41 49 39	<.5 .7 .5	<3 <3 <3	<3 <3 3	83 116 96	.82 .84 2.16	.095 .098 .092	7 6 7	5 7 4	.58 .44 .50	48<. 22 . 23 .	01 01 01	16 .6 16 .1 11 .9 15 .1	72 . 97 . 74 .	.02 . .05 .	.32 .11 .22	<2 <2 <2	94 110 317	4.35 4.15 3.08 4.71 4.79	
C 147148 C 147149 C 147150 RE C 147150 RRE C 147150	16 15 15	239 243 251	16 14 10	187 183 187	.5 .4 .5	3 3 4	12 13 13	1498 1519 1555	5.25 5.25 5.42	28 25 24	<8 <8 <8	<2 <2 <2	<2 <2 <2	44 43 44	<.5 <.5 <.5	<3 <3 <3	<3 <3 3	109 102 105	1.44 .99 1.01	.110 .103 .106	7 6 7	3 4 5	.71 .59 .60	53<. 279<. 282<.	01 01 01	16 .! 11 .6 14 .6 15 .6	57 . 54 . 54 .	.02 . .02 .	.20 .24 .25	<2 <2 <2	151 95 94	4.46 4.96 4.29	
C 147151 C 147152 C 147153 C 147154 C 147155	14 14 16	159 321 163 283 189	13 11 6	172 168 167	1.8 .6 .5	4 3 4	14 15 21	1598 1641 1780	4.54 5.34 6.01	25 47 12	10 <8 <8	<2 <2 <2	<2 <2 <2	57 44 53	<.5 <.5 <.5	<3 <3 <3	3 <3 <3	100 95 107	3.11 2.68 2.84	.091 .083 .091	6 5 6	9 3 7	.72 .65 .92	126 . 92<. 240<.	02 01 01	13 .: 17 .9 17 .6 19 1.2	93 . 57 . 20 .	.07 . .03 .	.20 .28 .17	<2 <2 <2	204 76 91	4.77 4.41 4.54 4.35 4.79	
C 147156 C 147157 C 147158 C 147159 C 147160	11 8 7	220 508 329 273 942	7 6 12		.4 .5 .3	3 3 3	14 14 12	1777 1576 1033	4.92 4.15 4.15	6 11 8	<8 <8 9	<2 <2 <2	<2 <2	51 57 65	<.5 .5 .6	<3 <3 <3	<3 <3 <3	88 84 121	2.54 3.11 2.07	.089 .090 .093	5 6 4	5 3 6	.99 .58 .49	250 . 96 . 140 .	01 01 04	13 1.0 12 1.2 13 1.0 6 .0	22 . 01 . 95 .	.05 . .07 . .11 .	.18 .16 .07	<2 <2 <2	146 213 150	4.98 4.77 4.56 4.56 5.24	
C 147161 C 147162 C 147163 C 147164 STANDARD DS6/AU-R2	6 7 8	521 374 438	15 17 17	267 224 274	.9 1.5 .9	4 4 4	21 22 32	2612 1915 2559	8.24 6.84 8.39	34 39 53	8 <8 <8	<2 <2 <2	<5 <5 5	45 49 35	<.5 <.5 <.5	<3 4 4	<3 <3 <3	110 106 103	1.09 1.18 1.06	.122 .105 .113	6 5 6	1 1 2	.84 .86 .89	33<. 19<. 100<.	01 01 01	13 .! 16 .6 15 .! 14 .6	53 . 56 . 54 .	.03 . .03 .	.21 .15 .24	<2 <2 <2	151 165 102	5.42 4.76 6.26 4.51	

Sample type: CORE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data WFA_



### Fjordland Exploration Inc. PROJECT WJ04-13A FILE # A407121

Page 3



SAMPLE#	Mo ppm		Pb ppm	Zn ppm			Co	Mn							Cd ppm										Ti E % ppr	Α					Au** ppb	Sample kg	
C 147165 C 147166 C 147167 C 147168 C 147169	20>1 11 20		152 28 16	646 358 260	44.1 3.1 1.6	7 6 4	65 35 26 35 87 30	38 575 36	6.01 9.91 6.24 8.13 8.72	1335 216 277	13 8 10	3 <2 <2	<2 <2 2	29 50 28	10.0 2.0 .8	60 12 15	4 <3 <3	54 57 49	2.14 3.87 1.85	.046 .056 .069	4 4 4	8 4 6	1.13 1.61 1.10	22<. 22<. 35<.	01 7 01 8 01 10	.4	5 . 5 5 . 4	02 . 02 . 01 .	.27 .24 .23	<2 3	371 197 563	4.76 4.39 4.92 4.67 4.58	
C 147170 C 147171 C 147172 C 147173 C 147174	23 19 20 16 15	344 419 234	5 11 3	199 114 109 100 183		3 2 3	36 27 11 18 9 17 9 15 14 27	391 780 572	3.80 3.52	11 12 12	18 11 <8	<2 <2 <2	<2 <2 <2	55 50 42	<.5	<3 <3 4	<3 <3 <3	105 100 89	3.41 2.42	.093 .093 .091	6 5 6	9 7 8	.32 .28 .26	41 . 33 . 30<.	01 9 01 7 01 1	.6	3 . 4 . 6 .	04 . 04 . 03 .	.06 .07 .09	<2 <2 <2	249 231	4.43 4.92 4.65 4.71 3.43	
C 147175 C 147176 RE C 147176 RRE C 147176 C 147177	15 14 16	2380 2496	28 32 33	549 562 572	2.2 2.3 2.4	5 5 5	21 35 22 36 22 36	516 509 568	6.83 9.49 9.82 9.75 10.29	316 328 345	17 16 18	<2 <2 <2	2 <2 <2	23 23 23	1.4 1.6 1.7	22 20 24	<3 <3 <3	61 61 61	1.26 1.26 1.28	.083 .085 .085	6 5 5	7 5 5	.98 1.00 1.01	52<. 54<. 54<.	01 8 01 10 01 9 01 10 01 17	.4	6 . 7 . 4 .	01 . 01 . 01 .	.25 .25 .25	<2 3 3 3 8	144 25 37 40 22	4.68 4.98 - - 5.10	
C 147178 C 147179 C 147180 PULP C 147181 C 147182	17 17 18 24 21	5628 434	12 14 15	344	.6 1.3 .6	4 442 12	64 25 19 7 14 2	522 795 199		116 15 78	9 11 16	<2 <2 <2	<2 <2 2	18 104 42	<.5 <.5 <.5	10 8 12	<3 <3 <3	56 42 72	1.32 1.83 4.41	.078 .082 .088	4 4 7	9 613 19	.96 .77 1.05	37<. 50<. 102<.	01 13 01 9 01 10 01 10 01 14	) .4 ) .8 ) .4	1 . 0 . 7 .	01 . 04 . 01 .	.36 .25	7 <2 <2	22 8 540 60 47	4.68 6.03 - 4.45 5.41	
C 147183 C 147184 C 147185 C 147186 C 147187	19 16 22 15 12	137	<3 4 8	120 127 177	<.3 <.3	5 4 4	14 13 15 18 14 15 14 13 14 23	819 558 788	4.22 3.81 4.13	14 21 20	11 12 9	<2 <2 <2	<2 <2 <2	49 51 43	<.5 <.5 <.5 <.5	<3 <3 <3	<3 <3 <3	69 66 79	4.28 4.17 3.85	.097 .091 .097	7 6 6	8 6 5	.65 .62 .76	146<. 72<. 91<.		.6	6. 7. 2.	02 . 02 .	. 23 . 19 . 19			4.51 5.06 4.73 4.96 5.57	
C 147188 C 147189 C 147190 C 147191 C 147192	15 50 58 99 76	282	<3 5 11	214 183 201 616 1940	2.4 .8 1.7	5 4 4	17 13 15 16 13 13 16 16 20 23	634 263 649	4.67 4.41 4.55	14 15 2	9 13 10	<2 <2 <2	<2 <2 <2	51 54 57	<.5	<3 <3 <3	<3 <3 <3	75 76 91	3.27 3.26 2.81	.092 .097 .091	8 7 6	7 5 6	.70 .59 .51	43<. 57<. 205<.	01 6 01 16 01 6 01 16 01 16	.5	5 . 4 . 6 .	03 . 03 . 04 .	. 15 . 15 . 09	<2 2 <2	196 189 449	4.03 4.93 4.83 4.52 5.66	
C 147193 STANDARD DS6/AU-R2	48 11	170 120					16 20 10 6																		01 : 08 18							4.78	,

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

USZ E. ANDFINGO DT. VANCOUVER DC VON IRC PHONE (60 x, 233-5130 FAR, 004) 233-1716

ASSAY CERTIFICATE

Fjordland Exploration Inc. PROJECT WJ04-13A File # A407121R 1550 - 409 Granville St., Vancouver BC V6C 1T2 Submitted by: Jay W. Page

SAMPLE#		Cu %
C 147166 STANDARD	R-2a	1.666 .559

GROUP 7AR - 1.000 GM SAMPLE, AQUA - REGIA (HCL-HN03-H20) DIGESTION TO 100 ML, ANALYSED BY ICP-ES.

- SAMPLE TYPE: Core Pulp

DATE RECEIVED: JAN 13 2005 DATE REPORT MAILED: JOH 20/05



# FJORDLAND EXPLORATION-X04 WOODJAM/147194-312

Report date: 19 NOV 2004

Job V 04-0873R

	Report	iate: 19 NOV 2004	JOD V 04-08/3R
LAB NO	FIELD NUMBER	Au(4)	
ERD IIIO	TIELD HOMBER	g/t	
R0434789	147194	0.182	
R0434790	147195	0.199	
R0434791	147196	0.133	
R0434792	147197	0.209	
R0434793	147198	0.422	
R0434794	147199	0.373	
R0434795	147200	0.565	
R0434796	147201	0.210	
R0434797	147202	0.296	
R0434798	147203	0.327	
R0434799	147204	0.348	
R0434800	147205	0.449	
R0434801	147206	0.350	
R0434802	147207	0.187	
R0434803	147208	0.276	
R0434804	147209	0.189	
R0434805	147210	0.260	
R0434806	147211	0.257	
R0434807	147212	0.078	
R0434808	147213	0.258	
R0434809	147214	0.116	
R0434810	147215	0.210	
R0434811	147216	0.257	
R0434812	147217	0.188	
R0434813	147218	0.184	
R0434814	147219	0.413	
R0434815	147220	0.502	
R0434816	147221	0.683	
R0434817	147222	0.331	
R0434818	147223	0.320	
R0434819	147224	0.426	
R0434820	147225	0.606	
R0434821	147226	0.394	
R0434822	147227	0.378	
R0434823	147228	0.346	
R0434824	147229	0.252	
R0434825	147230	0.224	
R0434826	147231	0.287	
R0434827	147232	0.122	
R0434828	147233	0.212	
R0434829	147234	0.277	
R0434830	147235	0.523	
R0434831	147236	0.111	
R0434832	147237	0.102	
R0434833	147238	0.089	
R0434834	147239	0.321	
R0434835	147240	0.283	
R0434836	147241	0.145	
R0434837	147242	0.121	
R0434838	147243	0.111	
R0434839	147244	0.149	

Danart data:	19 NOV 2004	
Report date:	19 NUV ZUU4	

t date: 19 NOV 2004	Job V 04-0873R
---------------------	----------------

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0434840	147245	0.164	
R0434841	147246	0.130	
R0434842	147247	0.157	
R0434843	147248	0.218	
R0434844	147249	0.076	
R0434845	147250	0.085	
R0434846	147251	0.181	
R0434847	147252	0.276	
R0434848	147253	0.129	
R0434849	147254	0.086	
R0434850	147255	0.153	
R0434851	147256	0.274	
R0434852	147257	0.152	
R0434853	147258	0.203	
R0434854	147259	0.095	
R0434855	147260	0.162	
R0434856	147261	0.244	
R0434857	147262	0.351	
R0434858	147263	0.559	
R0434859	147264	0.702	
R0434860	147265	0.385	
R0434861	147266	0.402	
R0434862	147267	0.371	
R0434863	147268	0.262	
R0434864	147269	0.286	
R0434865	147270	0.540	
R0434866	147271	0.321	
R0434867	147272	0.363	
R0434868	147273	0.234	
R0434869	147274	0.530	•
R0434870	147275	0.360	
20434871	147276	0.648	
R0434872	147277	0.347	
R0434873	147278	0.739	
R0434874	147279	0.360	
0434875	147280	0.415	
0434876	147281	0.329	
0434877	147282	0.512	
0434878	147283	0.378	
0434879	147284	0.330	
0434880	147285	0.469	
0434881	147286	1.067	
R0434882	147287	0.754	
0434883	147288	0.904	
0434884	147289	2.476	
0434885	147290	0.640	
0434886	147291	1.071	
0434887	147292	0.468	
0434888	147293	0.311	
0434889	147294	0.404	
0434890	147295	0.342	
0434891	147296	0.331	
0434892	147297	1.127	
0434893	147298	0.411	
0434894	147299	0.275	
0434895	147300	0.253	

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0434896	147301	0.796	
R0434897	147302	0.242	
R0434898	147303	0.107	
R0434899	147304	0.099	
R0434900	147305	0.102	
R0434901	147306	0.119	
R0434902	147307	0.160	
R0434903	147308	0.200	
R0434904	147309	0.170	
R0434905	147310	0.126	
R0434906	147311	0.245	
R0434907	147312	0.217	
R0434794 rpt	147199 rpt	0.361	
R0434799 rpt	147204 rpt	0.370	
R0434807 rpt	147212 rpt	0.088	
R0434816 rpt	147221 rpt	0.641	
R0434824 rpt	147229 rpt	0.273	
R0434835 rpt	147240 rpt	0.315	
R0434842 rpt	147247 rpt	0.127	
R0434848 rpt	147253 rpt	0.138	
R0434856 rpt	147261 rpt	0.272	
R0434868 rpt	147273 rpt	0.284	
R0434878 rpt	147283 rpt	0.392	•
R0434884 rpt	147289 rpt	3.054	
R0434891 rpt	147296 rpt	0.293	
R0434901 rpt	147306 rpt	0.140	
Rpt. Value	STD: T3(1AT)	5.100	
Rpt. Value	STD: T3(1AT)	4.928	
Rpt. Value	STD: T3(1AT)	4.986	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

#### **ANALYTICAL METHODS**

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

#### COMMENTS:

Rpt. Value = repeat value of standard STD: T3(1AT) = In-house standard

Steve Clark, Certified B.C. Assayer-Teck Cominco G.D.L.

#### FJORDLAND EXPLORATION-X04 WOODJAM/147194-312



Report date: 18 NOV 2004 Job V 04-0873R

	•	. 16 NOV 200														- <b></b> -		<b></b>									04-08/3		
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	K %	P
R0434789	147194	271	10	3630	0.8	36	65	7	13	2	4.47	57	32	<5	<5	76	<2	4	55	9	<2	1898	0.72	<.01	0.78	3.66	0.05	0.14	893
R0434790	147195	127	13	2394	<.4	32	110	5	13	3	4.42	54	28	<5	<5	65	<2	7	55	10	<2	2167	0.96	<.01	0.46	4.36	0.04	0.16	811
R0434791	147196	97	11	1270	0.4	35	70	2	15	4	4.46	46	36	<5	<5	77	<2	5	47	10	<2	2261	0.76	<.01	0.60	3.58	0.04	0.17	845
R0434792	147197	438	53	1473	1.4	114	103	6	11	2	4.95	71	22	8	14	72	2	4	92	12	<2	3753	2.40	<.01	0.70	6.08	0.05	0.16	705
R0434793	147198	302	28	2393	2.2	71	39	6	19	5	6.10	76	19	5	8	98	2	4	60	11	<2	3603	1.17	<.01	0.83	3.59	0.05	0.13	913
R0434794	147199	129	25	2444	0.6	45	38	5	17	6	6.45	70	21	8	<5	100	<2	6	79	12	<2	4416	2.22	<.01	0.76	4.59	0.05	0.15	756
R0434795	147200	478	38	1032	2.2	166	183	4	19	5	5.03	45	31	<5	<5	64	<2	7	79	11	<2	4401	2.52	<.01	0.71	6.02	0.05	0.26	599
R0434796	147201	152	25	411	0.5	30	772	2	13	3	5.40	35	36	5	<5	71	2	8	78	11	<2	4727	2.10	<.01	0.64	5.15	0.04	0.41	610
R0434797	147202	372	15	443	1.2	46	1065	2	13	3	5.47	52	27	<5	<5	108	<2	3	54	12	<2	2792	1.26	<.01	0.77	2.81	0.05	0.17	801
R0434798	147203	340	11	371	2.2	51	76	1	12	2	4,98	42	47	<5	<5	89	<2	<2	45	9	<2	2301	0.70	<.01	0.65	2.33	0.06	0.13	774
R0434799	147204	557	13	471	1.2	37	42	2	22	3	4.61	37	43	<5	<5	85	2	6	41	10	<2	1961	0.38	<.01	0.54	2.51	0.05	0.13	736
R0434800	147205	616	12	248	0.6	101	114	<1	12	3	5.04	48	36	<5	<5	108	<2	4	49	9	<2	2296	0.43	<.01	0.49	2.92	0.06	0.10	833
R0434801	147206	456	23	370	0.6	88	139	1	21	5	5,50	23	36	<5	<5	92	<2	5	58	11	<2	2891	0.87	<.01	0.66	3.86	0.05	0.12	798
R0434802	147207	174	31	302	<.4	42	216	2	13	3	3.57	36	48	<5	<5	43	<2	4	82	14	<2	3992	2.47	<.01	0.52	6.33	0.04	0.31	515
R0434803	147208	566	23	247	0.4	95	151	1	11	2	5.38	14	35	<5	<5	62	<2	6	62	12	<2	3125	1.43	<.01	0.74	3.69	0.05	0.16	738
R0434804	147209	402	18	247	<.4	85	246	<1	10	2	5.66	12	46	<5	<5	69	<2	4	53	12	<2	3325	0.98	<.01	0.82	3.51	0.04	0.26	785
R0434805	147210	136	35	298	<.4	16	222	1	13	2	4.56	9	33	<5	<5	45	<2	3	101	14	<2	3899	2.59	<.01	0.68	7.14	0.05	0.31	578
R0434806	147211	405	21	242	<.4	103	83	1	13	1	4.51	12	46	<5	<5	38	<2	5	54	11	<2	2943	1.50	<.01	0.74	3.76	0.04	0.29	725
R0434807	147212	204	14	201	<.4	35	43	1	8	3	4.21	9	53	<5	<5	54	<2	3	55	11	<2	2105	1.02	<.01	0.70	2.95	0.05	0.17	765
R0434808	147213	493	16	284	0.6	86	60	1	11	2	4.73	8	43	<5	<5	46	<2	5	59	13	<2	3181	1.17	<.01	0.54	3.75	0.05	0.18	663
R0434809	147214	233	12	190	<.4	27	84	<1	11	1	4.40	8	39	<5	<5	84	2	4	78	13	<2	1823	0.46	<.01	0.84	2.43	0.11	0.10	935
R0434810	147215	483	12	164	0.4	21	61	<1	10	2	3.52	5	62	<5	<5	71	<2	<2	52	9	<2	1413	0.36	0.02	0.55	2.01	0.10	0.05	764
R0434811	147216	524	15	249	0.7	25	171	1	14	2	5.01	10	53	<5	<5	63	2	6	67	14	<2	2693	0.79	0.01	0.64	3.10	0.08	0.11	754
R0434812	147217	307	14	244	<.4	11	82	1	11	2	4.71	5	55	<5	<5	96	<2	5	67	11	<2	1733	0.42	0.04	0.74	1.40	0.13	0.05	887
R0434813	147218	361	15	253	<.4	15	62	1	13	3	4.80	6	57	<5	<5	122	<2	3	66	10	<2	1572	0.46	0.05	0.71	1.47	0.11	0.06	868
R0434814	147219	634	40	301	0.6	30	453	1	12	4	4.78	5	73	<5	<5	98	<2	<2	71	12	<2	2006	0.41	0.04	0.66	1.97	0.12	0.06	804
R0434815	147220	843	48	325	0.6	30	331	2	11	3	4.38	6	56	<5	<5	83	<2	5	75	9	<2	1860	0.53	0.06	0.91	2.72	0.13	0.07	873
R0434816	147221	1149	88	433	2.0	18	176	3	10	2	4.43	8	65	<5	<5	70	<2	6	59	8	<2	1503	0.57	0.07	0.75	2.12	0.10	0.07	738
R0434817	147222	568	66	460	0.6	16	224	3	10	2	4.50	10	58	<5	<5	87	2	6	66	8	<2	1611	0.63	0.07	0.72	2.24	0.10	0.06	770
R0434818	147223	521	29	291	0.4	17	175	2	10	2	4.08	8	58	<5	<5	75	<2	2	64	7	<2	1460	0.47	0.06	0.61	1.89	0.10	0.06	783
R0434819	147224	781	22	225	0.8	39	125	2	11	2	4.19	9	58	<5	<5	75	<2	2	73	8	<2	1345	0.47	0.05	0.67	1.46	0,11	0.06	777
R0434820	147225	6260	29	92	1.0	11	23	1	24	681	8.26	25	880	<5	<5	38	<2	9	116	5	<2	792	0.85	<.01	0.83	2.03	0.06	0.38	865
R0434821	147226	663	27	337	<.4	93	28	2	13	3	5.23	7	42	<5	<5	43	<2	7	70	19	3	3054	1.00	<.01	0.31	2.65	0.07	0.09	699
R0434822	147227	671	23	218	0.9	80	63	1	11	2	3.62	6	50	<5	<5	48	<2	<2	48	10	<2	1435	0.34	<.01	0.32	0.84	0.12	0.05	723
R0434823	147228	546	17	232	0.6	24	145	1	10	2	3.65	10	57	<5	<5	51	<2	<2	52	8	<2	1249	0.39	0.02	0.48	1.56	0.09	0.06	702
R0434824	147229	463	25	198	0.4	39	111	1	10	1	3.33	9	55	<5	<5	52	<2	3	53	9	<2	1177	0.31	0.02	0.51	1.64	0.09	0.06	730
R0434825	147230	390	22	205	<.4	33	130	1	9	2	3.80	7	48	<5	<5	57	4	<2	62	11	<2	1475	0.31	<.01	0.46	1.61	0.09	0.06	730

Teck Cominco Ltd.

Report date: 18 NOV 2004 Job V 04-0873R

LAB NO	FIELD	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	 Мо	Cr	Bi	 Sb	۷	Sn	w	Sr	Υ	La	Mn	 Mg	Ti	AI	Ca	 Na	ĸ	P
	NUMBER	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm
R0434826	147231	523	28	229	0.5	21	170	1	10	2	3.71	7	50	<5	<5	59	2	<2	56	8	<2	1297	0.52	0.04	0.63	1.78	0.09	0.06	713
R0434827	147232	292	20	194	<.4	28	67	1	8	2	3.50	7	57	<5	<5	39	<2	<2	50	9	<2	1240	0.30	0.01	0.49	1.62	0.09	0.06	696
R0434828	147233	409	25	206	<.4	49	141	1	9	2	3.53	9	41	<5	<5	52	<2	<2	61	10	<2	1303	0.34	<.01	0.53	1.75	0.09	0.06	655
R0434829	147234	532	22	238	0.5	38	158	1	10	1	3.98	10	45	<5	<5	48	<2	<2	58	10	<2	1213	0.32	0.01	0.45	1.19	0.09	0.04	731
R0434830	147235	887	25	213	1.0	116	58	1	12	2	3.56	8	42	<5	<5	39	<2	<2	57	10	<2	1321	0.33	<.01	0.37	1.55	0.09	0.04	682
R0434831	147236	298	19	204	<.4	16	116	<1	9	2	3.26	7	56	<5	<5	40	<2	<2	48	6	2	1080	0.45	0.02	0.53	1.47	0.12	0.05	682
R0434832	147237	267	17	170	<.4	20	54	<1	9	2	3.38	8	53	<5	<5	60	4	2	47	8	<2	981	0.33	0.02	0.45	1.21	0.09	0.04	843
R0434833	147238	222	15	162	<.4	17	209	1	8	1	3.65	9	48	5	<5	58	3	<2	61	10	<2	1326	0.43	0.01	0.44	1.77	0.10	0.04	702
R0434834	147239	655	23	221	0.5	83	41	1	10	2	4.03	7	56	<5	<5	55	<2	<2	53	9	<2	1336	0.41	0.02	0.53	1.64	0.10	0.05	646
R0434835	147240	628	19	160	0.5	21	108	1	9	1	4.07	11	59	<5	<5	72	<2	3	57	6	<2	1045	0.47	0.07	0.70	1.66	0.10	0.05	694
R0434836	147241	399	19	163	<.4	18	73	1	9	2	3.38	9	50	<5	<5	66	<2	<2	72	6	<2	847	0.62	0.07	0.83	1.35	0.10	0.05	734
R0434837	147242	333	14	178	<.4	16	80	<1	10	1	4.74	7	47	<5	<5	86	<2	2	91	9	<2	1404	0.72	0.05	0.99	2.52	0.12	0.06	725
R0434838	147243	323	69	175	0.4	11	62	1	10	2	3.68	9	64	<5	<5	68	40	<2	58	7	<2	774	0.61	0.07	0.96	1.38	0.12	0.05	750
R0434839	147244	457	17	152	0.4	27	91	<1	15	2	4.21	7	68	<5	<5	77	<2	2	54	8	<2	818	0.53	0.07	0.88	1.19	0.13	0.05	804
R0434840	147245	462	11	127	<.4	8	81	<1	11	2	4.38	10	60	<5	<5	86	<2	3	56	7	<2	946	0.63	0.08	0.91	1.81	0.12	0.05	727
R0434841	147246	409	24	132	0.4	60	68	1	13	3	3.90	7	49	<5	<5	56	<2	<2	65	8	<2	1518	0.63	0.03	0.70	2.93	0.10	0.04	691
R0434842	147247	526	16	127	0.6	27	53	<1	11	3	3.52	8	50	<5	<5	67	<2	5	69	5	<2	575	0.73	0.06	1.00	0.97	0.15	0.05	729
R0434843	147248	1489	11	147	0.9	31	70	1	12	4	3.64	6	67	<5	<5	77	<2	5	56	6	<2	506	0.75	0.09	1.08	0.86	0.15	0.10	780
R0434844	147249	669	7	77	<.4	20	87	<1	12	6	3.54	5	65	<5	<5	86	<2	<2	72	6	<2	423	0.74	0.10	1.17	0.85	0.18	0.17	782
R0434845	147250	527	10	111	<.4	70	113	<1	13	5	3.78	7	58	<5	<5	100	2	<2	90	6	<2	556	0.84	0.13	1.47	1.16	0.21	0.27	805
R0434846	147251	1221	8	109	0.5	170	114	1	16	5	3.96	8	65	<5	<5	119	<2	4	91	7	<2	584	0.79	0.12	1.51	1.27	0.23	0.24	825
R0434847	147252	1383	19	186	1.0	70	98	1	15	5	3.94	7	55	<5	<5	113	<2	<2	91	9	<2	1114	0.68	0.06	1.39	1.99	0.23	0.18	814
R0434848	147253	477	7	140	<.4	84	97	<1	13	4	4.32	22	65	<5	<5	145	<2	2	83	8	<2	1014	0.57	0.11	1.35	1.57	0.21	0.17	821
R0434849	147254	439	5	97	<.4	128	101	<1	10	3	3.63	9	80	<5	<5	97	<2	2	58	6	<2	744	0.59	0.11	1.07	1.17	0.17	0.20	781
R0434850	147255	706	6	104	<.4	115	133	1	12	13	3.77	6	66	<5	<5	95	<2	2	59	8	<2	649	0.72	0.12	1.09	1.01	0.18	0.26	779
R0434851	147256	787	8	120	0.4	85	83	1	10	3	3.90	7	46	<5	<5	79	<2	3	43	7	<2	597	0.69	0.06	0.77	0.79	0.12	0.14	745
R0434852	147257	858	7	114	<.4	114	111	1	15	7	3.76	7	53	<5	<5	100	<2	3	60	8	<2	610	0.91	0.11	1.32	0.94	0.18	0.31	811
R0434853	147258	841	18	146	0.6	68	64	<1	12	6	4.68	6	45	<5	<5	108	<2	3	88	12	<2	1756	1.06	0.04	1.07	2.76	0.14	0.21	787
R0434854	147259	580	8	92	<.4	12	140	<1	14	12	5.03	4	52	<5	<5	160	<2	2	118	6	<2	693	1.01	0.15	2.41	1.60	0.33	0.35	936
R0434855	147260	712	11	111	0.6	7	146	<1	16	11	5.37	4	62	<5	<5	170	<2	7	121	6	<2	767	0.97	0.17	2.41	1.80	0.34	0.33	944
R0434856	147261	686	14	148	0.7	11	122	1	16	9	5.10	8	48	<5	<5	169	2	6	108	7	<2	1039	0.91	0.14	1.94	2.11	0.28	0.21	877
R0434857	147262	914	12	135	0.8	10	80	<1	15	7	5.33	7	37	<5	<5	156	<2	<2	100	9	<2	1239	0.81	0.13	1.65	2.86	0.24	0.15	933
R0434858	147263	1247	23	244	0.8	15	57	1	12	6	5.98	10	40	<5	<5	143	<2	3	79	7	<2	1073	0.70	0.17	1.37	2.01	0.18	0.10	909
R0434859	147264	1295	20	167	1.2	12	54	1	8	1	4.39	11	26	<5	<5	103	<2	<2	99	10	2	999	0.34	0.13	0.99	2.53	0.17	0.07	1143
R0434860	147265	953	20	208	1.0	3	68	1	8	1	4.50	13	27	<\$	<5	101	<2	4	85	9	<2	598	0.50	0.16	0.97	1.34	0.16	0.07	1180
R0434861	147266	964	25	231	1.4	12	54	2	7	1	4.81	14	32	<\$	<5	104	<2	6	84	10	<2	696	0.56	0.16	0.97	1.50	0.16	0.08	1251
R0434862	147267	727	26	154	0.5	14	55	1	6	<1	4.08	7	36	<\$	<5	100	<2	2	95	9	<2	698	0.61	0.14	1.10	1.43	0.16	0.06	1221
R0434863	147268	718	19	196	0.5	12	82	1	7	<1	4.40	10	26	<\$	<5	87	2	6	96	10	<2	1075	0.63	0.12	1.05	2.35	0.13	0.06	1199
R0434864	147269	506	14	140	0.4	7	75	<1	6	<1	4.28	13	29	<\$	<5	88	<2	4	80	10	9	755	0.51	0.13	0.91	1.63	0.17	0.07	1225
R0434865	147270	6456	27	96	1.3	12	26	1	24	698	8.77	27	920	<5	<5	39	3	10	122	6	<2	815	0.89	<.01	0.98	2.07	0.07	0.44	893
R0434866	147271	551	41	398	0.5	22	93	1	8	<1	4.38	7	28	<5	<5	82	<2	6	65	12	<2	1301	0.80	0.06	1.07	2.69	0.09	0.07	1209
R0434867	147272	720	38	268	0.6	11	98	1	7	<1	4.34	9	22	<\$	<5	77	2	5	72	11	<2	1210	0.69	0.09	0.94	2.51	0.09	0.05	1205
R0434868	147273	472	12	129	0.4	2	67	1	6	<1	3.64	11	33	<5	<5	84	<2	3	80	9	6	718	0.50	0.09	0.91	1.80	0.14	0.06	1228
	171210	7,2		120	V7	-	٠,		v	~,	0.04					~~		•		•	•		4.04	0.00	*.* '				

Teck Cominco Ltd.

Report date: 18 NOV 2004 Job V 04-0873R

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	Al %	Ca %	Na %	K %	P ppm
R0434869	147274	777	13	179	1.3	6	56	1	7	<1	4.13	11	25	<5	<5	86	<2	4	 73	9	<2	806	0.43	0.07	0.79	1.87	0.16	0.06	1191
R0434870	147275	821	21	211	0.7	6	47	1	7	1	4.80	10	23	<5	<5	83	<2	4	79	9	<2	859	0.47	0.07	0.78	1.87	0.13	0.06	1173
R0434871	147276	1299	50	417	1.1	31	63	2	8	<1	5.19	11	29	<5	<5	95	2	4	71	10	<2	1067	0.59	0.15	0.87	2.30	0.10	0.07	1127
R0434872	147277	658	26	181	0.5	15	106	1	7	<1	4.65	8	32	<5	<5	96	<2	5	96	10	<2	993	0.51	0.14	1.09	2.15	0.16	0.07	1216
R0434873	147278	1637	13	193	1.3	9	118	1	7	1	5.24	10	32	<5	<5	104	<2	5	95	11	<2	957	0.54	0.14	1.15	1.94	0.17	0.07	1240
R0434874	147279	934	13	127	0.5	6	59	<1	7	<1	4.33	10	37	<5	<5	99	<2	2	119	10	<2	758	0.45	0.13	1.00	1.79	0.15	0.06	1155
R0434875	147280	806	11	110	0.5	12	87	<1	7	1	4.40	7	35	<5	<5	102	<2	2	106	9	<2	683	0.39	0.10	1.10	1.86	0.21	0.07	1193
R0434876	147281	852	11	181	0.5	13	58	1	7	<1	4.28	8	31	<5	<5	80	<2	3	90	10	3	1011	0.53	0.07	0.91	2.11	0.12	0.06	1167
R0434877	147282	816	12	182	0.5	13	62	1	7	<1	4.12	8	37	<5	<5	87	2	2	88	9	4	914	0.40	0.07	0.95	1.98	0.14	0.06	1131
R0434878	147283	766	13	145	0.6	6	81	1	6	<1	4.17	8	33	<5	<5	89	<2	4	105	9	<2	562	0.34	0.07	1.13	1.47	0.18	0.05	1152
R0434879	147284	678	14	109	0.5	6	62	1	6	<1	4.00	7	28	<5	<5	81	<2	3	94	8	<2	571	0.36	0.07	0.97	1.53	0.20	0.06	1158
R0434880	147285	1007	12	96	0.5	9	76	<1	6	<1	4.07	8	29	<5	<5	82	<2	<2	88	8	<2	452	0.46	0.06	0.93	1.22	0.15	0.05	1154
R0434881	147286	1604	17	208	1.2	8	47	1	9	<1	5.57	8	39	<5	<5	105	<2	3	98	9	<2	819	0.44	0.14	1.12	1.99	0.16	0.07	1215
R0434882	147287	1669	13	117	0.7	8	81	1	11	<1	6.01	6	32	<5	<5	138	<2	9	136	12	<2	1019	0.64	0.13	1.50	2.64	0.20	0.08	1300
R0434883	147288	815	13	137	<.4	19	63	1	14	<1	7.09	7	28	<5	<5	130	<2	8	115	15	<2	1293	1.03	0.05	1.92	3.11	0.19	0.10	1334
R0434884	147289	8994	39	163	2.0	2952	31	<1	222	3	15.27	34	23	<5	<5	82	<2	40	54	9	<2	2138	1.99	<.01	3.45	1.62	0.05	0.19	1198
R0434885	147290	1326	20	108	0.4	86	134	<1	62	1	9.26	9	22	<5	<5	94	<2	12	56	15	<2	1468	1.12	<.01	1.85	2.40	0.06	0.20	1328
R0434886	147291	1949	14	238	1.3	16	124	1	14	<1	6.01	8	31	<5	<5	112	<2	6	99	11	<2	1029	0.68	80.0	1.26	2.19	0.15	0.08	1229
R0434887	147292	879	14	132	0.5	7	95	1	9	<1	5.69	5	27	<5	<5	135	<2	4	150	9	<2	776	0.59	0.10	1.45	1.78	0.19	0.07	1367
R0434888	147293	598	11	192	0.4	6	131	1	9	<1	5.15	8	26	<5	<5	115	<2	4	104	9	<2	806	0.71	0.10	1.19	1.61	0.14	0.06	1294
R0434889	147294	956	10	145	0.5	14	142	1	9	<1	5.41	5	22	<5	<5	135	2	6	163	10	<2	721	0.61	0.07	1.42	1.79	0.20	0.06	1342
R0434890	147295	743	14	130	0.5	14	122	<1	12	3	5.67	6	29	<5	<5	127	<2	6	98	10	<2	1227	1.10	0.06	1.35	2.30	0.14	0.05	1178
R0434891	147296	720	12	157	0.6	12	75	<1	17	9	5.91	14	36	<5	<5	165	<2	9	73	8	<2	1018	1.09	0.16	1.34	1.35	0.14	0.06	1015
R0434892	147297	1620	20	184	1.2	13	76	1	16	7	5.61	11	47	<5	<5	139	<2	6	77	8	<2	1044	1.04	0.14	1.21	1.38	0.12	0.06	979
R0434893	147298	1003	16	189	0.7	16	77	<1	19	9	6.26	7	46	<5	<5	193	<2	6	77	9	<2	1406	1.39	0.15	1.60	2.19	0.15	0.07	853
R0434894	147299	827	38	284	0.8	3	118	2	19	10	6.75	7	40	<5	<5	199	<2	6	109	7	<2	1361	1.34	0.18	1.52	1.88	0.14	0.06	886
R0434895	147300	491	15	133	<.4	7	188	<1	22	10	6.55	6	37	<5	<5	182	<2	6	104	10	<2	1504	1.50	0.14	1.78	2.33	0.16	0.13	848
R0434896	147301	119	39	219	0.8	54	30	<1	167	7	10.14	73	83	<5	<5	55	<2	46	50	7	<2	2366	1.27	<.01	2.00	3.75	0.04	0.11	488
R0434897	147302	450	18	192	0.8	15	122	<1	21	11	6.71	7	35	<5	<5	184	<2	5	76	8	<2	1407	1.47	0.12	1.67	1.87	0.14	0.06	897
R0434898	147303	338	11	151	<.4	7	91	<1	18	10	6.13	8	33	<5	<5	188	<2	6	93	7	2	1009	1.25	0.13	1.47	1.43	0.18	0.08	958
R0434899	147304	372	16	174	0.7	18	263	<1	21	7	5.68	6	30	<5	<5	101	<2	4	208	12	<2	3062	2.28	<.01	0.90	6.86	0.10	0.15	671
R0434900	147305	400	17	170	<.4	12	78	<1	23	12	7.28	7	23	5	<5	182	<2	6	79	12	<2	1932	1.86	0.04	2.14	3.31	0.11	0.11	924
R0434901	147306	439	21	220	<.4	28	94	<1	29	12	7.47	10	31	6	<5	149	<2	10	66	10	<2	2136	1.82	0.05	2.22	3.61	0.09	0.14	863
R0434902	147307	451	11	140	<.4	20	99	<1	22	9	6.52	14	27	<5	<5	163	<2	13	90	12	<2	1836	1.69	0.09	2.01	3.68	0.12	0.10	946
R0434903	147308	550	12	153	0.5	25	101	<1	22	9	6.71	9	28	<5	<5	171	<2	12	78	11	<2	2001	1.97	0.11	2.13	3.95	0.13	0.10	914
R0434904	147309	858	16	172	0.9	32	153	<1	26	11	7.82	12	24	<5	<5	150	2	8	61	11	<2	2325	2.31	0.07	2.62	3.19	0.08	0.12	915
R0434905	147310	496	11	168	0.4	8	101	<1	21	10	6.27	11	36	<5	<5	181	<2	6	67	9	<2	1857	1.94	0.16	1.96	2.99	0.11	0.07	911
R0434906	147311	764	12	190	1.2	12	83	<1	19	9	6.35	10	23	<5	<5	182	<2	10	71	8	5	1472	1.59	0.20	1.49	2.00	0.12	0.06	922
R0434907	147312	726	16	178	0.9	8	73	<1	21	10	6.88	13	24	<5	<5	185	<2	5	79	10	<2	1896	1.67	0.19	1.74	2.97	0.11	0.07	976
R0434789 rpt	147194 rpt	292	12	3734	0.8	41	65	6	14	3	4.50	57	35	5	<5	70	3	6	56	10	<2	1952	0.74	<.01	0.71	3.77	0.05	0.13	926
R0434796 rpt	147201 rpt	159	31	429	0.5	36	325	1	14	3	5.37	38	35	<5	<5	49	<2	5	70	11	<2	4746	2.09	<.01	0.40	5.16	0.04	0.31	648
R0434803 rpt	147208 rpt	554	17	248	0.4	99	122	1	11	1	5.03	16	31	<5	<5	45	<2	10	63	13	<2	3162	1.44	<.01	0.43	3.77	0.05	0.12	752
R0434826 rpt	147231 rpt	538	33	256	0.6	21	178	1	11	2	4.24	9	54	<5	<5	57	<2	<2	59	9	<2	1387	0.54	0.06	0.75	1.86	0.09	0.06	777

Teck Cominco Ltd.

Report date: 18 NOV 2004 Job V 04-0873R

LAB NO	FIELD	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	NI Ni	Fe	Mo	Cr	Bi	Sb	v	Sn	w	Sr	Υ	La	Mn	Ma	Ti	Al	Ca	Na Na	₋	
LAD NO	NUMBER	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm
R0434832 rpt	147237 rpt	295	18	189	0.6	17	61	<1	11	3	4.13	7	61	<5	<5	74	<2	3	55	9	<2	1098	0.36	0.05	0.62	1.33	0.11	0.05	931
R0434848 rpt	147253 rpt	494	11	153	0.4	94	96	<1	14	5	4.73	23	65	<5	<5	137	<2	5	84	9	<2	1058	0.62	0.10	1.41	1.63	0.20	0.17	906
R0434867 rpt	147272 rpt	695	38	265	0.5	18	90	1	7	2	4.23	7	39	<5	<5	70	<2	5	57	9	<2	1115	0.64	0.06	0.83	2.30	80.0	0.04	1200
R0434872 rpt	147277 rpt	656	21	184	0.5	11	103	1	7	<1	4.64	8	24	<5	<5	89	<2	6	78	9	<2	886	0.50	0.07	0.89	1.96	0.15	0.06	1251
R0434885 rpt	147290 rpt	1370	14	113	0.6	81	92	<1	66	<1	9.03	9	16	<5	<5	87	<2	10	57	16	<2	1506	1.10	<.01	1.76	2.45	0.06	0.18	1408
R0434905 rpt	147310 rpt	501	10	172	0.5	8	104	<1	21	10	6.44	10	38	<5	<5	180	<2	9	70	10	<2	1956	2.01	0.19	2.06	3.09	0.11	0.08	934
Rpt. Value	STD: DA	125	230	685	6.4	58	306	4	13	41	3.63	6	43	<5	<5	61	<2	<2	35	9	10	639	0.55	0.08	2.07	0.52	0.06	0.13	1009
Rpt. Value	STD: DA	117	228	674	5.9	60	264	4	12	39	3.48	6	40	<5	<5	60	2	2	33	8	7	633	0.54	0.07	1.89	0.51	0.06	0.12	1004
Rpt. Value	STD: DA	123	216	662	5.9	56	310	4	12	39	3.47	4	39	<5	<5	62	<2	2	33	9	8	623	0.50	0.07	1.88	0.50	0.06	0.12	983
Rpt. Value	STD: DA	118	212	668	6.7	58	478	4	13	41	3.72	3	45	<5	<5	68	<2	6	39	9	18	638	0.56	0.11	2.28	0.52	0.06	0.13	1006
Rpt. Value	STD: SS-1	783	229	7142	1.8	19	102	35	30	244	2.45	8	71	<5	<5	23	3	5	197	9	<2	427	0.62	0.03	0.97	13.14	0.06	0.20	1125
Ref. Value	STD: SS-1	690	233	6775	1.9	18	102	34	28	231	2.04	5	64		<5	19			202	8		425	0.60	0.02	0.95	13.73	0.02	0.19	1070

I=Insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

#### **ANALYTICAL METHODS**

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

#### COMMENTS

Ref. Value = reference value of standard Rpt. Value = repeat value of standard

STD: DA = In-house Standard

STD: SS-1 = Certifled Reference Material

Alice Kwan, Chemist-Teck Cominco G.D.L.



#### FJORDLAND EXPLORATION-X04 WJ04-14A/147401-531

Report date: 26 NOV 2004 Job V 04-0893R

LAB NO	FIELD NUMBER	Au(4)
		g/t
R0435403	147401	0.449
R0435404	147402	0.948
R0435405	147403	0.461
R0435406	147404	0.234
R0435407	147405	0.184
R0435408	147406	0.299
R0435409	147407	0.386
R0435410	147408	1.048
R0435411	147409	0.096
R0435412	147410	0.147
R0435413	147411	0.088
R0435414	147412	0.123
R0435415	147413	0.807
R0435416	147414	0.143
R0435417	147415	0.143
R0435418	147416	0.129
R0435419	147417	0.143
R0435420	147418	0.132
R0435421	147419	0.105
R0435422	147420	0.094
R0435423	147421	0.120
R0435424	147422	0.065
R0435425	147423	0.083
R0435426	147424	0.082
R0435427	147425	0.110
R0435428	147426	0.067
R0435429	147427	0.038
R0435430	147428	0.065
R0435431	147429	<0.034
R0435432	147430	0.038
R0435432	147431	<0.034
R0435434	147432	<0.034
		<0.034
R0435435	147433	
R0435436	147434	<0.034
R0435437	147435	0.538
R0435438	147436	<0.034
R0435439	147437	<0.034
R0435440	147438	<0.034
R0435441	147439	<0.034
R0435442	147440	0.093
R0435443	147441	0.093
R0435444	147442	0.154
R0435445	147443	<0.034
R0435446	147444	0.092
R0435447	147445	0.092
R0435448	147446	0.034
R0435449	147447	<0.034
R0435450	147448	<0.034
R0435451	147449	<0.034
R0435452	147450	<0.034
R0435453	147451	<0.034
		-91001

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0435454	147452	<0.034	
R0435455	147453	<0.034	
R0435456	147454	0.082	
R0435457	147455	<0.034	
R0435458	147456	<0.034	
R0435459	147457	<0.034	
R0435460	147458	<0.034	
R0435461	147459	<0.034	
R0435462	147460	<0.034	
R0435463	147461	<0.034	
R0435464	147462	<0.034	
R0435465	147463	<0.034	
R0435466	147464	<0.034	
R0435467	147465	<0.034	
R0435468	147466		
		<0.034	
R0435469	147467	<0.034	
R0435470	147468	<0.034	
R0435471	147469	<0.034	
R0435472	147470	<0.034	
R0435473	147471	<0.034	
R0435474	147472	<0.034	
R0435475	147473	<0.034	
R0435476	147474	<0.034	
R0435477	147475	<0.034	
R0435478	147476	<0.034	
R0435479	147477	<0.034	
R0435480	147478	<0.034	
R0435481	147479	<0.034	
R0435482	147480	0.556	
R0435483	147481	<0.034	
R0435484	147482	<0.034	
R0435485	147483	<0.034	
R0435486	147484	<0.034	
R0435487	147485	0.038	
R0435488	147486	0.047	
R0435489	147487	0.036	
R0435490	147488	0.128	
R0435491	147489	0.131	
R0435492	147490	0.090	
R0435493	147491	0.096	
R0435494	147492	0.072	
R0435495	147493	0.057	
R0435496	147494	0.038	
R0435497	147495	0.050	
R0435498	147496	0.042	
R0435499	147497	0.041	
R0435500	147498	<0.034	
R0435501	147499	<0.034	
R0435502	147500	0.116	
R0435503	147501	<0.034	
R0435504	147502	0.034	
R0435505	147503	0.141	
		<0.034	
R0435506	147504		
R0435507	147505	0.041	
R0435508	147506	<0.034	
R0435509	147507	0.046	

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0435510	147508	<0.034	
R0435511	147509	<0.034	
R0435512	147510	<0.034	
R0435513	147511	<0.034	
R0435514	147512	<0.034	
R0435515	147513	<0.034	
R0435516	147514	<0.034	
R0435517	147515	0.034	
R0435518	147516	0.119	*
R0435519	147517	0.216	
R0435520	147518	0.169	
R0435521	147519	0.169	
R0435522	147520	0.485	
R0435523	147521	0.591	
R0435524	147522	0.477	
R0435525	147523	0.518	
R0435526	147524	0.241	
R0435527	147525	0.525	
R0435528	147526	0.526	
R0435529	147527	0.135	
R0435530	147528	0.149	
R0435531	147529	0.172	
R0435532	147530	0.136	
R0435533	147531	0.090	
R0435408 rpt	147406 rpt	0.333	
R0435414 rpt	147412 rpt	0.160	
R0435419 rpt	147417 rpt	0.149	
R0435431 rpt	147429 rpt	<0.034	
•		<0.034	
R0435439 rpt	147437 rpt	<0.034	
R0435450 rpt	147448 rpt	<0.034	
R0435457 rpt	147455 rpt		
R0435463 rpt	147461 rpt	<0.034	
R0435471 rpt	147469 rpt	<0.034	
R0435483 rpt	147481 rpt	<0.034	
R0435492 rpt	147490 rpt	0.101	
R0435500 rpt	147498 rpt	<0.034	
0435506 rpt	147504 rpt	<0.034	
R0435515 rpt	147513 rpt	<0.034	
R0435522 rpt	147520 rpt	0.604	
Rpt. Value	STD: T3(1AT)	5.095	
Rpt. Value	STD: T3(1AT)	4.928	
₹pt. Value	STD: T3(1AT)	5.097	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

#### **ANALYTICAL METHODS**

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

#### COMMENTS:

Rpt. Value = repeat value of standard STD: T3(1AT) = In-house standard

Steve Clark, Certified B.C. Assayer-Teck Cominco G.D.L.

#### FJORDLAND EXPLORATION-X04 WJ04-14A/147401-531

**teck**cominco

Global Discovery Labs

Re	port	date:	30	NOV	2004
	p-0		~		200

Job	٧	04-0893R

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	8a ppm	Cd	Co	NI ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V	Sn ppm	W	Sr ppm	Y	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	 К %	P
																													ppm
R0435403	147401	348	9	702	2.1	10	72	2	11	2	4.34	251	33	<5	<5	80	<2	<2	29	8	<2	1208	0.55	0.01	0.75	2.09	0.06	0.03	754
R0435404	147402	681	24	1434	2.6	7	121	4	13	3	4.90	35	39	<5	<5	84	<2	<2	55	9	4	1512	0.30	0.01	0.55	3.23	0.06	0.03	731
R0435405	147403	278	7	3390	1.0	9	58	9	10	1	4.11	29	43	<5	<5	79	2	<2	50	7	<2	1182	0.44	0.02	0.67	2.21	0.06	0.03	780
R0435406	147404	206	18	2027	0.8	11	243	6	10	2	3.59	53	41	<5	<5	68	<2	<2	58	8	<2	1687	0.79	0.02	0.95	2.82	0.06	0.04	767
R0435407	147405	139	117	1983	1.0	8	211	6	11	2	3.90	63	35	<5	<5	80	<2	<2	47	8	<2	1707	0.99	<.01	1.11	2.52	0.06	0.07	808
R0435408	147406	271	19	916	0.9	5	405	3	9	3	4.03	40	21	6	<5	74	<2	<2	41	9	<2	1591	0.84	<.01	1.13	2.88	0.05	0.13	746
R0435409	147407	468	32	719	0.9	10	149	2	14	3	3.27	23	37	<5	<5	61	<2	<2	44	8	3	1707	0.95	<.01	1.26	2.61	0.06	0.09	814
R0435410	147408	642	12	1461	2.0	8	201	3	13	2	3.45	49	27	<5	<5	77	<2	<2	44	6	<2	1607	0.99	0.01	1.16	1.94	0.06	0.03	816
R0435411	147409	167	17	1429	0.4	12	153	4	13	2	3.58	25	26	<5	<5	61	<2	<2	41	6	<2	1602	0.99	<.01	1.16	2.00	0.06	0.03	800
R0435412	147410	180	17	1664	0.5	6	164	5	11	2	3.78	50	27	<5	<5	78	<2	<2	43	5	<2	1499	1.13	0.01	1.28	1.85	0.06	0.04	845
R0435413	147411	68	21	957	<.4	9	139	3	11	2	3.91	43	20	<5	<5	81	<2	<2	51	7	<2	1687	1.22	0.01	1.37	2.52	0.06	0.04	842
R0435414	147412	137	38	646	0.7	13	92	1	11	1	4.10	49	21	<5	<5	86	<2	<2	52	7	<2	1583	1.12	0.02	1.37	2.44	0.07	0.03	810
R0435415	147413	594	19	766	2.1	7	69	2	9	2	4.38	44	28	<5	<5	102	<2	<2	56	8	<2	1501	1.12	0.03	1.44	2.34	0.07	0.03	829
R0435416	147414	149	23	1318	0.7	10	206	3	10	2	3.90	50	21	<5	<5	77	<2	<2	50	7	<2	1463	1.01	<.01	1.35	2.44	0.06	0.02	761
R0435417	147415	184	37	1788	1.3	10	141	4	12	2	4.23	53	21	<5	<5	86	<2	<2	52	8	3	1547	1.12	0.02	1.55	2.38	0.07	0.03	814
R0435418	147416	196	80	1939	1.6	9	156	4	14	1	4.01	40	25	<5	<5	69	<2	2	53	8	<2	1407	1.11	0.01	1.56	2.31	0.06	0.05	811
R0435419	147417	222	41	2808	1.2	15	146	7	15	3	4.15	40	24	<5	<5	77	<2	<2	52	8	<2	1478	1.17	0.02	1.55	2.33	0.07	0.05	825
R0435420	147418	257	19	2818	1.3	20	281	8	14	3	4.33	34	19	<5	<5	84	<2	<2	63	9	<2	1655	1.13	0.01	1.55	2.86	0.07	0.06	819
R0435421	147419	100	6	990	0.4	7	305	2	10	2	3.73	35	18	<5	<5	78	<2	<2	65	9	<2	1560	1.11	<.01	1.49	3.34	0.06	0.11	817
R0435422	147420	136	7	1461	0.5	6	70	3	10	3	3.94	37	18	<5	<5	81	<2	<2	74	8	3	1368	1.20	<.01	1.55	2.43	0.07	0.04	829 [′]
R0435423	147421	178	4	1332	<.4	14	133	3	13	4	4.65	26	20	<5	<5	110	<2	<2	61	9	<2	1649	1.33	0.01	1.73	2.84	0.06	0.04	901
R0435424	147422	138	5	1648	0.5	10	115	4	14	5	5.17	20	38	<5	<5	119	<2	<2	54	9	<2	1732	1.40	0.01	1.85	2.92	0.06	0.05	961
R0435425	147423	150	8	1736	0.5	9	211	4	16	3	5.30	22	33	<5	<5	125	<2	3	48	9	<2	1781	1.46	<.01	1.85	3.12	0.06	0.06	983
R0435426	147424	86	12	1623	0.5	12	220	3	13	3	4.91	21	36	<5	<5	107	<2	<2	41	8	<2	1843	1.43	<.01	1.91	3.09	0.05	0.08	1011
R0435427	147425	102	9	508	0.4	23	465	1	11	4	4.68	15	40	<5	<5	96	<2	<2	41	8	<2	1679	1.22	<.01	1.76	2.96	0.05	0.11	983
R0435428	147426	107	17	287	<.4	21	274	<1	14	3	4.16	10	33	<5	<5	76	2	5	38	8	<2	1637	1.21	<.01	1.65	2.92	0.05	0.13	856
R0435429	147427	81	23	253	<.4	31	248	<1	23	3	6.30	6	27	<5	<5	66	<2	<2	33	9	<2	1610	1.27	<.01	2.23	2.51	0.03	0.16	867
R0435430	147428	34	64	459	0.6	31	15	3	136	5	9.41	31	29	<5	<5	42	<2	<2	20	5	<2	1352	1.05	<.01	2.43	1.27	0.02	0.14	741
R0435431	147429	18	22	238	0.4	29	71	1	11	2	4.33	3	31	<5	<5	48	<2	2	31	7	<2	1438	1.09	<.01	1.64	2.68	0.04	0.18	856
R0435432	147430	98	7	158	<.4	16	260	<1	10	2	3.25	<2	27	6	<5	53	<2	<2	36	8	<2	1470	0.96	<.01	1.40	3.32	0.04	0.16	787
R0435433	147431	93	7	282	<.4	8	282	<1	14	2	4.38	4	29	<5	<5	70	<2	2	41	9	2	2028	1.52	<.01	2.05	3.41	0.05	0.14	891
R0435434	147432	41	8	300	0.4	8	283	<1	15	5	4.72	5	34	<5	<5	82	<2	<2	45	10	<2	1931	1.44	<.01	1.99	3.16	0.05	0.15	927
R0435435	147433	59	9	241	0.4	15	202	<1	12	3	4,21	4	31	<5	<5	83	<2	<2	43	8	<2	1646	1.26	0.01	1.75	2.76	0.05	0.10	870
R0435436	147434	28	9	294	<.4	13	429	<1	16	5	5.31	2	31	<5	<5	127	<2	_	54	11	<2	2011	1.74	0.03	2.07	3.08	0.06	0.05	979
R0435437	147435	5858	19	94	2.0	16	21	<1	24	689	8.38	29	884	<5	<5	43	2	<2	112	5	<2	764	0.84	<.01	0.73	2.00	0.06	0.33	865
R0435438	147436	145	, s	246	0.4	9	321	<1	14	3	4.41	-0	28	<5	<5	106	<2	3	61	R	<2	1668	1.47	0.02	1.88	2.48	0.07	0.08	951
R0435439	147437	23	6	213	<.4	10	70	<1	13	3	4.26	ā	27	<5	<5	100	<2	<2	46	7	<2	1522	1.35	0.03	1.70	2,16	0.06	0.05	933
170422422	141431	23	•	213	~	10	, 0	~1	13	3	7.40	-	-1	~5	~3	100	~2	-2	70	,	74	1 344	1.55	0.03	1.10	2	0.00	0.00	550

Teck Cominco Ltd.

Report date: 30 NOV 2004

- 1	lob	.,	^4	^-	^-	-
	00	v	U4-	41 M		

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni <del>pp</del> m	Fe %	Mo ppm	Cr ppm	BI ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	K %	P
R0435440	147438	43	5	213	0.4	9	142	 <1	12	<b>-</b>	4.06	3	29	 <5	<5	84	 <2	 <2	 48	 8	 <2	1621	1.31	0.03	1.68	2.39	0.06		
R0435441	147439	142	5	218	<.4	7	167	<1	14	3	4.65	3	34	<5	<5	102	<2	<2	63	11	<2	1617	1.25	0.03	1.65	2.45	0.08	0.04 0.06	886 955
R0435442	147440	738	8	272	0.5	7	123	<1	16	2	4.63	39	20	<5	<5	82	<2	<2	36	11	<2	1763	1.15	<.01	1.56	2.82	0.06	0.10	919
R0435443	147441	238	4	264	<.4	10	202	<1	13	3	4.70	45	22	<5	<5	79	<2	<2	34	10	<2	1638	1.16	<.01	1.61	2.71	0.05	0.13	987
R0435444	147442	338	4	208	<.4	4	441	<1	9	2	5.13	17	20	<5	<5	69	<2	<2	35	9	<2	1359	1.08	<.01	1.67	2.22	0.04	0.15	953
R0435445	147443	179	9	188	<.4	2	764	<1	8	3	7.58	29	24	5	<5	72	<2	<2	37	13	5	1398	1.20	<.01	2.23	1.75	0.04	0.16	940
R0435446	147444	9	<4	154	<.4	5	161	<1	9	1	4.41	14	20	<5	<5	73	<2	<2	40	12	<2	1408	1.20	<.01	1.58	3.37	0.04	0.15	1024
R0435447	147445	8	<4	147	<.4	7	193	<1	13	<1	5.21	6	16	5	<5	87	<2	<2	42	14	5	1613	1.47	<.01	1.75	3.51	0.04	0.13	1057
R0435448	147446	172	11	144	0.7	5	98	<1	21	<1	8.03	11	18	7	<5	80	<2	<2	36	15	<2	1696	1.42	<.01	2.37	2.83	0.04	0.14	1037
R0435449	147447	7	<4	102	<.4	<2	66	<1	11	<1	4.74	<2	19	<5	<5	85	<2	<2	52	14	<2	1562	1.38	<.01	1.62	3.83	0.05	0.15	1083
R0435450	147448	6	4	106	<.4	9	156	<1	11	1	4.47	<2	11	<5	<5	79	<2	<2	58	13	<2	1531	1.35	0.01	1.46	3.41	0.05	0.12	1088
R0435451	147449	9	4	127	<.4	5	62	<1	12	<1	4.82	2	16	<5	<5	88	<2	5	58	12	<2	1730	1.51	0.02	1.65	3.38	0.06	0.11	1062
R0435452	147450	15	6	143	<.4	8	60	<1	12	<1	4.59	4	17	<5	<5	91	<2	3	64	10	<2	1812	1.50	0.03	1.79	3.13	0.07	0.10	1038
R0435453	147451	5	<4	138	<.4	5	54	<1	11	<1	4.71	<2	15	<5	<5	94	<2	<2	61	10	<2	1740	1.48	0.03	1.65	2.91	0.07	0.09	997
R0435454	147452	35	16	187	<.4	9	57	<1	13	1	5.04	2	18	<5	<5	96	<2	2	74	11	<2	1948	1.58	0.01	1.97	2.57	0.09	0.07	1006
R0435455	147453	71	25	837	1.4	11	19	4	24	4	6.35	3	29	<5	<5	105	<2	<2	60	9	<2	1499	1.54	<.01	1.74	0.82	0.08	0.07	994
R0435456	147454	63	74	3267	5.4	27	41	14	17	3	5.64	9	25	<5	<5	88	<2	4	66	11	<2	2174	1.13	<.01	1.60	3.78	0.06	0.17	997
R0435457	147455	78	456	3140	1.8	13	29	18	19	2	5.24	2	28	<5	<5	73	<2	<2	50	8	<2	1892	1.22	<.01	1.42	2.99	0.06	0.14	989
R0435458	147456	38	429	2044	2.0	7	29	12	15	3	5.16	4	32	8	<5	76	<2	<2	60	11	<2	1662	1.31	<.01	1.41	2.94	0.07	0.13	1002
R0435459	147457	40	188	952	1.7	5	21	7	12	2	4.90	4	27	<5	<5	79	<2	<2	59	10	<2	1505	1.30	<.01	1.32	2.50	0.08	0.09	922
R0435460	147458	34	14	229	0.8	8	70	1	11	2	4.37	4	27	<5	<5	77	<2	<2	59	9	6	1824	1.21	<.01	1.64	2.59	0.08	0.09	1034
R0435461	147459	55	21	197	8.0	6	64	1	14	2	4.04	4	19	<5	<5	66	<2	2	65	11	<2	1727	1.18	<.01	1.56	2.46	0.07	0.09	935
R0435462	147460	39	12	218	0.7	12	98	<1	15	4	4.74	3	25	<5	<5	83	<2	<2	67	11	<2	1786	1.29	<.01	1.80	2.45	0.08	0.09	1002
R0435463	147461	92	13	198	1.0	6	74	<1	20	3	4.72	<2	23	<5	<5	79	<2	<2	54	10	<2	1598	1.32	<.01	1.72	3.26	0.06	0.09	968
R0435464	147462	22	6	176	0.4	7	67	<1	11	2	4.46	2	16	<5	<5	90	<2	2	62	11	<2	1623	1.57	<.01	2.02	3.76	80.0	0.13	1158
R0435465	147463	23	6	158	<.4	5	86	<1	10	4	4.83	3	29	<5	<5	103	<2	<2	66	9	<2	1365	1.44	0.02	2.02	2.70	0.10	80.0	1051
R0435466	147464	42	14	149	8.0	7	72	<1	20	4	5.14	3	16	<5	<5	104	2	3	80	7	<2	1237	1.59	0.06	2.24	2.31	0.11	0.05	1116
R0435467	147465	12	<4	131	0.5	. 11	62	<1	11	3	4.56	2	14	<5	<5	109	<2	<2	79	7	<2	1084	1.54	0.08	2.30	2.27	0.10	0.04	1129
R0435468	147 <b>46</b> 6	33	31	121	0.6	5	105	<1	15	3	4.68	4	17	<5	<5	111	<2	<2	78	6	<2	1034	1.57	0.08	2.17	2.06	0.10	0.04	1032
R0435469	147467	45	<4	110	0.6	10	91	<1	14	3	4.73	3	12	<5	<5	101	2	6	76	5	<2	926	1.49	0.07	2.10	1.98	0.10	0.05	1033
R0435470	147468	42	14	103	0.6	6	110	<1	16	3	4.49	4	12	<5	<5	95	2	<2	76	5	<2	826	1.40	0.05	1.98	2.00	0.09	0.04	938
R0435471	147469	48	15	98	0.5	9	58	<1	14	3	4.16	<2	14	<5	<5	65	<2	<2	63	3	<2	717	1.35	0.03	1.77	1.68	80.0	0.04	880
R0435472	147470	53	26	100	0.6	11	41	<1	12	2	3.85	<2	11	<5	<5	57	<2	<2	73	3	<2	605	1.18	0.02	1.59	1.69	0.10	0.05	983
R0435473	147471	46	23	103	0.6	9	39	<1	15	5	4.43	4	14	<5	<5	76	<2	<2	77	4	<2	718	1.33	0.03	1.78	1.87	0.10	0.04	976
R0435474	147472	39	15	111	0.7	4	35	<1	13	3	4.36	2	15	<5	<5	74	<2	3	82	5	<2	730	1.37	0.03	1.85	1.81	0.11	0.04	986
R0435475	147473	45	22	118	0.6	6	37	<1	15	4	4.68	3	13	<5	<5	79	<2	<2	97	8	<2	862	1.41	0.01	1.93	1.78	0.11	0.04	1010
R0435476	147474	67	9	131	0.7	14	59	<1	20	1	5.86	<2	<4	<5	<5	119	<2	<2	106	8	<2	1209	2.08	0.02	2.73	2.43	0.11	0.04	1416
R0435477	147475	33	19	119	0.6	9	34	1	19	1	5.89	3	4	<5	<5	104	2	2	111	9	<2	999	1.87	0.02	2.41	2.70	0.11	0.05	1430
R0435478	147476	58	28	106	0.6	4	36	<1	14	1	5.33	2	5	<5	<5	96	3	4	103	12	7	932	1.86	0.01	2.26	2.81	0.09	0.05	1393
R0435479	147477	59	8	88	<.4	<2	33	<1	15	1	5.43	<2	7	<5	<5	99	5	2	82	8	11	852	1.99	0.01	2.20	2.16	0.09	0.06	1350
R0435480	147478	52	8	68	<.4	<2	50	<1	18	4	4.66	<2	13	<5	<5	86	<2	3	87	9	8	721	1.58	<.01	2.04	2.38	0.10	0.07	921
R0435481	147479	29	4	96	<.4	<2	41	<1	15	3	5.03	<2	12	<5	<5	101	2	3	91	8	9	787	1.57	0.02	2.26	1.99	0.14	0.04	980
R0435482	147480	5820	16	88	1.2	<2	20	<1	23	663	7.80	23	836	<5	<5	37	3	7	110	5	7	744	0.80	<.01	0.71	1.91	0.06	0.31	827

Teck Cominco Ltd.

Report date: 30 NOV 2004

Job	v	04-0893R

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	K %	P Ppm
R0435483	147481	 11	6	71	 <.4	<2	 55	<1	12	4	4.88	<2	18	<5	<5	108	2	4	 73	6	8	754	1.59	0.02	2.15	2.17	0.12	0.04	 891
R0435484	147482	21	20	55	<.4	7	32	<1	17	4	4.94	<2	23	<5	<5	99	<2	2	60	9	10	632	1.50	0.01	1.79	2.02	0.09	0.06	880
R0435485	147483	4	4	55	<.4	<2	42	<1	16	4	5.03	<2	20	<5	<5	82	3	4	63	9	14	614	1.36	0.01	1.85	2.08	0.10	0.07	909
R0435486	147484	11	10	66	<.4	4	51	<1	14	3	5.14	2	18	<5	<5	101	<2	4	75	8	12	693	1.63	0.03	2.17	1.90	0.12	0.04	899
R0435487	147485	23	<4	59	<.4	<2	43	<1	14	4	5.12	<2	20	<5	<5	99	2	3	66	6	8	638	1.62	0.01	2.01	1.65	0.13	0.06	884
R0435488	147486	27	5	58	<.4	<2	46	<1	18	5	5.46	<2	24	<5	<5	105	<2	3	64	10	11	678	1.64	0.01	2.11	1.84	0.09	0.07	939
R0435489	147487	49	6	56	<.4	<2	40	<1	13	3	4.82	<2	17	<5	<5	106	<2	3	64	9	7	607	1.63	<.01	1.95	1.58	0.10	0.07	923
R0435490	147488	90	7	53	<.4	<2	31	<1	18	5	5.33	<2	24	<5	<5	101	3	4	59	8	7	537	1.49	<.01	1.86	1.85	0.08	0.10	953
R0435491	147489	113	7	60	0.4	11	34	<1	15	4	4.51	<2	18	<5	<5	83	<2	3	73	8	17	582	1.56	<.01	1.78	2.60	80.0	0.08	927
R0435492	147490	41	<4	60	<.4	5	23	<1	17	5	5.09	<2	22	<5	<5	96	3	4	66	6	8	533	1.48	<.01	1.69	1.82	0.09	0.07	925
R0435493	147491	71	8	71	0.5	8	14	<1	15	5	5.03	<2	35	<5	<5	94	<2	2	66	7	6	480	1.56	<.01	1.62	1.96	0.09	0.05	908
R0435494	147492	48	11	82	0.4	2	13	<1	18	5	5.51	<2	29	<5	<5	103	<2	5	65	6	7	411	1.69	<.01	1.74	1.77	0.11	0.04	912
R0435495	147493	73	6	65	<.4	7	20	<1	18	5	5.60	<2	30	<5	<5	113	<2	2	59	8	9	469	1.67	0.01	1.62	1.95	0.09	0.07	951
R0435496	147494	30	4	45	<.4	<2	10	<1	16	5	4.78	<2	22	<5	<5	83	<2	<2	59	7	11	361	1.48	<.01	1.35	2.12	0.07	0.07	832
R0435497	147495	27	4	54	<.4	<2	23	<1	16	4	4.55	<2	20	5	<5	73	<2	<2	58	9	10	394	1.30	<.01	1.41	2.50	0.06	0.10	874
R0435498	147496	43	5	50	0.5	<2	30	<1	14	4	4.44	2	15	5	<5	79	<2	2	75	7	11	415	1.47	<.01	1.69	1.66	0.08	0.08	961
R0435499	147497	59	5	56	<.4	<2	28	<1	15	4	4.89	<2	20	<5	<5	90	<2	<2	73	6	10	407	1.40	<.01	1.79	1.09	0.09	0.06	911
R0435500	147498	10	<4	46	<.4	4	21	<1	14	4	4.08	2	21	9	<5	75	<2	<2	52	6	7	380	1.34	0.01	1.39	1.66	80.0	0.05	797
R0435501	147499	11	<4	61	<.4	<2	12	<1	14	3	4.53	2	18	<5	<5	75	2	3	62	9	11	436	1.46	<.01	1.36	2.33	0.07	0.07	874
R0435502	147500	28	<4	52	<.4	6	17	<1	16	5	4.71	<2	16	<5	<5	71	2	<2	62	7	9	451	1.46	<.01	1.47	2.02	0.09	0.07	918
R0435503	147501	25	<4	43	<.4	2	13	<1	18	5	4.86	2	20	5	<5	84	2	4	57	7	14	444	1.46	<.01	1.35	1.61	0.06	0.06	836
R0435504	147502	40	9	59	0.4	9	21	<1	17	5	4.67	2	18	<5	<5	75	<2	2	63	7	11	445	1.45	<.01	1.55	1.72	0.08	0.09	875
R0435505	147503	18	20	50	<.4	<2	16	<1	16	3	4.25	<2	17	<5	<5	63	<2	4	44	6	15	681	1.22	<.01	1.38	3.09	0.04	0.12	835
R0435506	147504	11	5	45	<.4	7	22	<1	18	6	5.07	2	23	<5	<5	100	<2	4	50	7	10	771	1.66	<.01	1.67	2.63	0.06	0.07	849
R0435507	147505	26	5	56	<.4	<2	25	<1	17	6	5.09	2	26	7	<5	95	2	5	52	7	10	831	1.57	0.01	1.76	2.78	80.0	0.09	862
R0435508	147506	17	<4	48	<.4	<2	25	<1	14	5	4.21	2	29	<5	<5	76	2	2	65	8	11	730	1.42	0.02	1.59	2.51	0.07	0.06	895
R0435509	147507	84	18	125	<.4	3	14	<1	20	6	5.60	<2	19	<5	<5	112	<2	6	71	8	14	911	1.75	0.01	1.95	2.68	0.06	0.06	990
R0435510	147508	37	8	78	<.4	4	19	<1	16	5	4.26	2	17	6	<5	77	4	3	70	7	10	827	1.51	<.01	1.62	2.70	0.07	0.07	901
R0435511	147509	41	<4	54	<.4	3	23	<1	14	6	4.16	2	15	<5	<5	74	2	<2	142	7	12	769	1.48	<.01	1.62	2.77	0.08	0.06	835
R0435512	147510	30	6	73	<.4	<2	19	<1	14	6	4.48	2	18	<5	<5	83	<2	4	74	6	6	842	1.58	0.01	1.61	2.45	0.08	0.05	836
R0435513	147511	14	<4	55	<.4	6	18	<1	16	5	4.43	<2	15	<5	<5	82	4	3	84	8	11	778	1.50	<.01	1.59	2.54	0.07	0.06	856
R0435514	147512	14	<4	53	<.4	<2	22	<1	15	5	4.67	<2	16	<5	<5	72	3	2	92	8	14	710	1.44	<.01	1.65	2.52	0.09	0.08	857
R0435515	147513	38	<4	80	<.4	2	20	<1	16	5	5.09	3	15	<5	<5	82	2	4	79	8	8	758	1.43	<.01	1.62	2.95	0.05	0.09	888
R0435516	147514	91	7	115	0.6	22	27	<1	24	5	5.63	<2	7	<5	<5	60	4	4	64	8	14	1414	0.72	<.01	1.02	3.57	0.03	0.16	1097
R0435517	147515	2	7	127	0.5	8	24	<1	92	9	10.11	4	5	<5	<5	87	3	12	28	,	12	1361	1.41	<.01	2.15	1.66	0.02	0.16	1260
R0435518	147516	326	10	105	0.5	27	39	<1	38	6	7.78	12	14	6	<5	53	<2	15	56	8 -	11	1230	0.72	<.01	1.33	3.06	0.05	0.21	861
R0435519	147517	1960	9	88	0.5	3	440	<1	18	5	7.56	13	15	7	<5	60	<2	12	47	7	10	1011	0.95	<.01	1.92	1.83	0.08	0.25	770
R0435520	147518	767	<4	76	0.4	12	641	<1	10	2	4.78	14	11	<5	<5	56	<2	10	86	10	8	1340	0.67	<.01	1.14	4.33	0.06	0.26	789
R0435521	147519	852	7	88	<.4	5	220	<1	15	4	6.13	10	17	5	<5	79	<2	6	63	10	13	1404	1.05	<.01	1.63	3.57	0.05	0.20	775
R0435522	147520	1198	10	118	0.6	3	261	<1	21	9	6.88	10	16	9	<5	115	<2	9	54	12	11	1460	1.21	<.01	1.59	3.27	0.06	0.15	781
R0435523	147521	1865	8	84	0.6	3	163	<1	20	10	6.83	11	14	5	<5	123	<2	5	80	13	11	1444	1.13	<.01	1.47	4.43	0.07	0.17	871
R0435524	147522	2085	9	83	0.7	3	323	<1	22	11	7.43	43	14	7	<5	124	<2	7	73	11	13	1490	1.22	<.01	1.67	4.12	0.06	0.17	864
R0435525	147523	1640	5	104	0.5	<2	364	<1	23	11	7.52	58	12	<5	<5	138	<2	12	82	12	15	1538	1.22	<.01	1.64	4.27	0.06	0.17	949

Teck Cominco Ltd.

Report date: 30 NOV 2004 Job V 04-0893R

LAB NO	FIELD	Cu	Pb	Zn	Ag	As	Ва	Cd	Co	Ni	Fe	Мо	Cr	Bi	Sb	٧	Sn	W	Sr	Y	La	Mn	Mg	Ti	At	Ca	Na	К	F
	NUMBER	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppn
R0435526	147524	829	11	101	0.6	3	265	<1	21	11	8.01	53	11	<5	<5	132	<2	10	68	12	12	1635	1.23	<.01	1.70	4.20	0.06	0.15	977
R0435527	147525	6274	25	97	1.6	8	19	<1	24	711	8.82	29	916	<5	<5	37	<2	9	119	5	12	802	0.88	<.01	0.84	2.07	0.10	0.36	910
R0435528	147526	585	12	100	<.4	7	725	<1	23	11	7.35	34	11	<5	<5	127	<2	4	85	12	10	1691	1.46	<.01	1.86	4.73	0.06	0.15	950
R0435529	147527	357	8	103	<.4	<2	85	<1	22	12	6.85	15	14	5	<5	181	2	12	79	11	7	1408	1.57	0.03	1.43	3.68	0.10	0.06	1025
R0435530	147528	315	7	113	0.6	<2	131	<1	23	13	6.28	24	14	<5	<5	164	<2	6	71	10	9	1534	1.36	0.06	1.34	3.77	0.09	0.07	989
R0435531	147529	307	6	108	0.8	8	242	<1	21	13	6.48	88	18	5	<5	175	<2	8	70	11	16	1900	1.35	0.07	1.40	4.19	0.09	0.09	1009
R0435532	147530	180	5	118	<.4	<2	140	<1	24	14	7.14	46	15	6	<5	190	<2	12	66	12	18	2148	1.85	0.02	1.72	4.47	0.09	0.06	998
R0435533	147531	195	10	98	<.4	<2	381	<1	26	14	9.32	65	13	13	<5	128	<2	13	50	11	13	1778	2.00	<.01	2.80	3.06	0.05	0.15	1006
R0435405 rpt	147403 rpt	286	7	3344	0.8	9	61	9	9	2	4.11	29	49	<5	<5	81	<2	4	52	8	<2	1189	0.44	0.02	0.67	2.24	0.07	0.03	788
R0435413 rpt	147411 rpt	63	18	939	0.4	10	140	3	10	1	3.86	43	22	<5	<5	83	<2	<2	53	7	<2	1665	1.20	0.01	1.36	2.51	0.07	0.05	829
R0435427 rpt	147425 rpt	105	10	494	0.6	18	327	1	12	3	4.52	14	32	<5	<5	87	<2	2	40	9	<2	1684	1.19	<.01	1.68	2.96	0.05	0.10	955
R0435442 rpt	147440 rpt	728	9	272	0.6	11	121	<1	16	1	4.65	37	20	<5	<5	87	<2	<2	35	10	<2	1763	1.13	<.01	1.54	2.80	0.06	0.09	922
R0435454 rpt	147452 rpt	41	14	184	0.4	10	55	<1	13	<1	4.94	2	17	<5	<5	94	<2	<2	73	10	<2	1923	1.57	0.01	1.91	2.53	0.09	0.06	994
R0435468 rpt	147466 rpt	32	28	117	0.5	<2	102	<1	15	2	4.50	3	15	<5	<5	106	<2	4	76	5	9	1042	1.53	0.05	2.05	2.00	0.10	0.05	994
R0435487 rpt	147485 rpt	23	5	62	<.4	3	49	<1	14	5	5.28	2	21	<5	<5	95	<2	5	59	6	2	614	1.54	0.01	2.06	1.57	0.08	0.04	910
R0435495 rpt	147493 rpt	63	5	70	0.5	7	20	<1	20	8	5.83	<2	30	<5	<5	107	2	3	49	6	11	437	1.60	0.01	1.70	1.83	0.09	0.06	996
R0435508 rpt	147506 rpt	20	<4	49	<.4	<2	24	<1	14	5	4.17	2	21	<5	<5	78	2	2	65	7	7	740	1.43	0.02	1.51	2.53	0.07	0.06	900
R0435526 rpt	147524 rpt	809	10	98	<.4	3	256	<1	20	10	7.70	56	11	<5	<5	133	<2	13	66	11	9	1585	1.20	<.01	1.62	4.10	0.06	0.15	940
R0435532 rpt	147530 rpt	178	6	113	<.4	<2	141	<1	23	13	6.87	47	15	12	<5	184	<2	9	67	12	11	2118	1.82	0.02	1.64	4.43	0.09	0.06	961
Rpt. Value	STD: DA	116	216	635	6.0	61	249	4	11	37	3.26	6	36	6	<5	62	<2	2	30	8	9	587	0.50	0.06	1.72	0.49	0.06	0.11	935
Rpt. Value	STD: DA	119	216	639	7.4	63	263	4	12	38	3.25	5	35	<5	<5	58	<2	<2	31	8	13	591	0.49	0.06	1.67	0.49	0.06	0.12	937
Rpt. Value	STD: DA	117	229	662	6.1	53	345	4	13	41	3.41	5	41	<5	<5	59	5	<2	33	8	18	604	0.51	0.07	1.89	0.50	0.06	0.11	982

l=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

#### **ANALYTICAL METHODS**

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

#### COMMENTS

Ref. Value = reference value of standard Rpt. Value = repeat value of standard STD: DA = In-house Standard Alice Kwan, Chemist-Teck Cominco G.D.L.



### FJORDLAND EXPLORATION-X04 WJ04-15/147601-757

Report date: 10 DEC 2004

Job V 04-0917R

	Report	late: 10 DEC 2004	Job V 04-0917R
LAB NO	FIELD NUMBER	Au(4)	
EAD NO	TIELD HOMBER	g/t	
R0436239	147601	0.086	
R0436240	147602	0.170	
R0436241	147603	0.035	
R0436242	147604	<0.034	
R0436243	147605	<0.034	
R0436244	147606	0.160	
R0436245	147607	<0.034	
R0436246	147608	0.063	
R0436247	147609	0.089	
R0436248	147610	<0.034	
R0436249	147611	<0.034	
R0436250	147612	<0.034	
R0436251	147613	<0.034	
R0436252	147614	0.267	
R0436253	147615	0.058	
R0436254	147616	<0.034	
R0436255	147617	<0.034	
R0436256	147618	<0.034	
R0436257	147619	<0.034	
R0436258	147620	<0.034	
R0436259	147621	0.081	
R0436260	147622	<0.034	
R0436261	147623	<0.034	
R0436262	147624	<0.034	
R0436263	147625	<0.034	
R0436264	147626	0.117	
R0436265	147627	<0.034	
R0436266	147628	<0.034	
R0436267	147629	<0.034	
R0436268	147630	<0.034	
R0436269	147631	<0.034	
R0436270	147632	<0.034 .	
R0436271	147633	0.068	
R0436272	147634	<0.034	
R0436273	147635	0.570	
R0436274	147636	<0.034	
R0436275	147637	<0.034	
R0436276	147638	<0.034	
R0436277	147639	<0.034	
R0436278	147640	0.051	
R0436279	147641	0.077	
R0436280	147642	<0.034	
R0436281	147643	<0.034	
R0436282	147644	<0.034	
R0436283	147645	<0.034	
R0436284	147646	0.109	
R0436285	147647	<0.034 <0.034	
R0436286	147648	<0.034 <0.034	
R0436287	147649		
R0436288	147650	<0.034 0.184	
R0436289	147651	U. 10-4	

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0436292 rpt	147654 rpt	<0.034	
R0436300 rpt	147662 rpt	<0.034	
R0436309 rpt	147671 rpt	0.056	
R0436315 rpt	147677 rpt	<0.034	
R0436321 rpt	147683 rpt	<0.034	
R0436332 rpt	147694 rpt	0.358	
R0436341 rpt	147703 rpt	0.310	
R0436351 rpt	147713 rpt	0.095	
R0436356 rpt	147718 rpt	0.275	
R0436364 rpt	147726 rpt	0.213	
R0436375 rpt	147737 rpt	0.050	
R0436383 rpt	147745 rpt	0.034	
Rpt. Value	STD: T3(1AT)	4.839	
Rpt. Value	STD: T3(1AT)	4.931	
Rpt. Value	STD: T3(1AT)	4.926	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

#### **ANALYTICAL METHODS**

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

#### COMMENTS:

Rpt. Value ≈ repeat value of standard STD: T3(1AT) = In-house standard

Steve Clark, Certified B.C. Assayer-Teck Cominco G.D.L.

#### FJORDLAND EXPLORATION-X04 WJ04-15/147601-757

teckcominco

Global Discovery Labs

Report date: 3 DEC 2004 Job V 04-0917R

	Nepon uan	e: 3 DEC 20																									04-0917		
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	Ai %	Ca %	Na %	K %	ppr
R0436239	147601	16	13	227	0.5	<2	194	<1	11	3	4.05	<2	32	6	<5	59	<2	8	45	10	10	1601	0.57	<.01	0.86	4.41	0.06	0.20	89
R0436240	147602	181	15	331	1.2	<2	213	1	15	2	4.62	8	30	<5	<5	86	<2	5	61	12	6	1534	0.92	<.01	1.63	3.11	0.07	0.09	93
R0436241	147603	2	13	222	<.4	<2	167	<1	10	<1	3.39	<2	14	<5	<5	38	<2	5	48	11	6	1691	0.90	<.01	1.01	4.32	0.03	0.15	95
R0436242	147604	<1	14	171	<.4	16	226	<1	10	<1	3.53	<2	21	<5	<5	52	<2	5	48	12	6	1565	1.00	<.01	1.12	4.48	0.07	0.18	96
R0436243	147605	6	13	189	<.4	50	176	<1	11	<1	3.78	<2	18	<5	<5	59	<2	5	55	11	16	1588	0.76	<.01	0.84	4.73	0.06	0.17	92
R0436244	147606	8	16	191	1.0	63	604	1	12	1	3.75	<2	23	5	<5	57	<2	7	68	11	9	1642	0.85	<.01	0.92	4.76	0.04	0.14	83
R0436245	147607	6	20	279	<.4	15	141	<1	15	2	4.70	<2	23	<5	<5	70	<2	8	71	11	18	1886	0.96	<.01	1.08	4.85	0.04	0.15	82
R0436246	147608	81	18	318	2.4	<2	65	<1	13	2	4.27	<2	19	<5	<5	82	<2	6	65	9	12	1735	1.01	<.01	1.22	4.50	0.04	0.14	84
R0436247	147609	35	22	326	1.5	3	318	<1	13	2	4.52	<2	18	6	<5	65	<2	7	74	11	10	1771	0.90	<.01	1.09	5.16	0.07	0.18	84
R0436248	147610	9	19	141	<.4	<2	299	<1	12	1	3.88	<2	21	<5	<5	67	<2	9	82	11	6	1679	1.02	<.01	1.24	5.51	0.04	0.18	80
R0436249	147611	4	15	106	<.4	<2	652	<1	11	2	3.97	<2	20	<5	<5	64	<2	9	87	11	9	1469	0.98	<.01	1.08	5.02	0.04	0.19	84
R0436250	147612	7	14	100	<.4	<2	334	<1	10	2	3.71	<2	16	5	<5	67	<2	7	75	9	4	1216	0.62	<.01	1.03	3.54	0.05	0.19	98
R0436251	147613	8	16	96	<.4	<2	221	<1	9	1	3.77	<2	17	5	<5	53	<2	7	75	10	12	1461	0.63	<.01	0.50	4.45	0.04	0.16	95
R0436252	147614	49	25	127	0.6	<2	454	1	11	1	4.17	<2	11	<5	<5	40	<2	6	105	14	23	3074	0.80	<.01	0.33	8.56	0.04	0.15	73
R0436253	147615	230	25	120	0.7	2	90	<1	11	2	3.98	6	20	<5	<5	89	<2	3	92	12	10	1333	0.88	<.01	1.13	4.66	0.06	0.06	88
R0436254	147616	165	25	105	0.4	4	110	<1	12	2	4.15	<2	30	7	<5	80	<2	7	72	11	8	1030	0.98	<.01	1.28	3.21	0.09	0.07	89
R0436255	147617	4	16	118	<.4	<2	254	<1	13	3	4.20	<2	22	<5	<5	96	<2	7	65	10	5	1409	1.32	<.01	1.48	3.33	0.05	0.15	83
R0436256	147618	<1	14	91	<.4	<2	296	<1	12	3	3.92	<2	31	<5	<5	74	<2	7	58	10	11	1233	1.20	<.01	1.32	3.13	0.05	0.16	83
R0436257	147619	4	8	77	<.4	<2	374	<1	13	4	4.05	<2	31	6	<5	69	<2	<2	56	10	10	1186	1.17	<.01	1.34	3.20	0.05	0.19	85
R0436258	147620	5	8	84	<.4	<2	211	<1	13	3	4.07	<2	22	7	<5	77	<2	7	48	11	5	1260	1.29	<.01	1.43	3.58	0.05	0.21	88
R0436259	147621	20	68	95	<.4	28	117	<1	13	4	4.38	<2	23	<5	<5	83	<2	8	62	11	8	1307	1.02	<.01	1.41	4.51	0.07	0.21	88
R0436260	147622	139	33	241	1.3	117	138	1	13	2	6.11	<2	56	8	<5	31	<2	7	32	7	9	3072	0.44	<.01	0.47	2.61	0.02	0.30	60
R0436261	147623	686	137	339	0.7	90	34	2	17	4	8.39	<2	31	5	<5	59	<2	13	26	10	9	2151	0.88	<.01	1.11	2.04	0.06	0.25	76
R0436262	147624	202	28	172	0.4	48	58	<1	9	2	5.12	<2	26	6	<5	50	<2	7	36	10	3	2174	0.45	<.01	0.50	4.24	0.03	0.25	79
R0436263	147625	28	12	83	<.4	7	628	1	11	4	3.96	<2	31	<5	<5	69	<2	8	49	10	6	1349	1.10	<.01	1.21	3.93	0.03	0.20	81
R0436264	147626	6	9	96	<.4	<2	80	<1	15	4	4.27	<2	30	7	<5	87	<2	9	45	8	16	1469	1.52	<.01	1.57	3.60	0.07	0.18	88
R0436265	147627	3	12	109	<.4	<2	237	<1	15	4	4.40	<2	26	<5	<5	87	<2	5	32	7	13	1132	1.49	<.01	1.56	1.30	0.05	0.14	89
R0436266	147628	6	14	103	<.4	<2	194	<1	14	5	4.39	<2	35	<5	<5	101	<2	4	59	9	8	1515	1.53	<.01	1.60	3.21	0.06	0.13	84
R0436267	147629	3	12	90	<.4	<2	479	<1	13	3	4.31	<2	31	9	<5	91	<2	5	86	10	5	1508	1.49	<.01	1.68	3.39	0.07	0.14	83
R0436268	147630	6	13	98	<.4	<2	125	<1	14	4	4.52	<2	30	5	<5	102	<2	7	74	10	<2	1478	1.60	<.01	1.84	3.04	0.07	0.15	86
R0436269	147631	6	13	96	<.4	<2	299	<1	13	4	4.31	<2	26	6	<5	90	<2	7	82	11	4	1432	1.51	<.01	1.83	3.22	0.06	0.15	86
R0436270	147632	50	12	101	<.4	<2	436	<1	13	4	4.05	<2	28	<5	<5	91	<2	5	66	9	12	1344	1.34	<.01	1.78	3.30	0.06	0.20	86
R0436271	147633	248	12	114	0.7	2	421	<1	14	5	4.56	<2	28	6	<5	101	<2	7	66	13	7	1628	1.31	<.01	1.75	4.98	0.05	0.27	85
R0436272	147634	9	17	126	<.4	6	312	<1	14	5	4.29	<2	22	<5	<5	93	<2	4	59	10	12	1519	1.43	<.01	1.70	4.29	0.08	0.25	91
R0436273	147635	5669	23	77	1.6	8	27	<1	23	692	8.20	24	889	<5	<5	45	<2	12	112	5	9	802	0.84	<.01	1.11	1.96	0.09	0.48	85
R0436274	147636	8	20	157	<.4	<2	442	<1	16	5	4.96	<2	35	<5	<5	107	<2	6	69	10	8	1692	1.62	<.01	1.84	4.28	0.05	0.23	93
R0436275	147637	5	19	148	<.4	<2	515	<1	16	-	5.22	<2	32	_	<5	107	<2	-	70	11		1565	1.67	<.01	1.88	4.06	0.06	0.23	93

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr	Bi	Sb	V ppm	Sn	W	Sr	Y	La	Mn	Mg	Ti	AI	Ca	Na	K	
											/0 		ppm	ppm	ppm		ppm	ppm	ppm 	ppm	ppm	ppm	% 	% 	% 	%	<b>%</b>	<b>%</b>	PP
R0436276	147638	2	13	98	<.4	<2	188	<1	16	5	4.88	<2	30	5	<5	95	<2	7	70	11	8	1405	1.61	<.01	1.85	4.36	0.09	0.22	86
R0436277	147639	55	13	124	<.4	6	135	<1	15	5	4.68	<2	24	<5	<5	91	<2	5	70	9	16	1509	1.42	<.01	1.88	4.45	0.09	0.22	87
R0436278	147640	416	42	195	2.1	71	176	1	14	5	4.75	<2	38	<5	<5	90	<2	6	81	11	3	1971	1.26	<.01	1.72	6.27	0.08	0.24	88
R0436279	147641	1116	26	222	4.6	96	132	<1	16	5	5.40	2	22	<5	<5	119	<2	9	81	11	14	2291	1.49	<.01	1.98	5.21	0.05	0.20	100
R0436280	147642	6	18	131	0.5	31	146	<1	13	4	4.61	<2	35	8	<5	83	<2	2	67	11	10	2013	1.01	<.01	1.50	4.71	0.05	0.28	93
R0436281	147643	4	10	89	<.4	<2	162	<1	15	4	4.61	<2	42	10	<5	98	<2	8	55	12	9	1482	1.56	0.02	1.82	3.44	0.07	0.19	90
R0436282	147644	2	10	97	<.4	<2	164	<1	15	5	4.76	<2	38	6	<5	109	<2	7	58	10	10	1524	1.67	0.02	1.89	3.24	0.07	0.16	87
R0436283	147645	12	13	103	<.4	<2	274	<1	14	4	4.71	<2	35	<5	<5	116	<2	5	78	11	6	1593	1.62	<.01	2.07	4.09	0.08	0.13	90
R0436284	147646	44	16	104	<.4	<2	272	<1	14	6	4.64	<2	38	<5	<5	124	<2	5	93	13	13	1617	1.68	0.06	2.16	3.54	0.11	0.14	86
R0436285	147647	6	14	112	<.4	<2	129	<1	15	4	4.87	<2	32	<5	<5	121	<2	7	92	12	7	1529	1.72	0.16	2.24	3.36	0.08	0.14	92
R0436286	147648	8	12	127	<.4	<2	118	<1	17	5	5.48	<2	35	<5	<5	154	<2	6	96	11	9	1639	1.86	0.19	2.41	3.81	0.08	0.13	97
R0436287	147649	6	17	138	<.4	<2	112	<1	16	4	5.42	<2	29	<5	<5	148	<2	8	100	10	10	1672	1.91	0.15	2.41	3.99	0.08	0.11	92
R0436288	147650	8	16	140	<.4	3	212	<1	15	5	4.69	<2	25	10	<5	117	<2	3	99	11	5	1767	1.81	0.02	2.26	4.57	0.07	0.11	92
R0436289	147651	237	17	140	0.6	8	283	<1	15	4	4.91	<2	32	5	<5	123	<2	6	91	11	16	1742	1.65	<.01	2.19	4.84	0.08	0.18	95
R0436290	147652	2	12	146	<.4	2	274	<1	15	4	4.50	<2	20	8	<5	98	<2	5	92	13	7	1674	1.77	<.01	2.11	4.59	0.08	0.16	91
R0436291	147653	4	14	148	<.4	13	170	<1	14	5	4.43	<2	24	5	<5	96	<2	11	100	15	18	1706	1.59	<.01	2.26	5.59	0.11	0.18	83
R0436292	147654	7	14	158	<.4	3	402	<1	15	5	4.69	<2	21	5	<5	127	<2	5	103	13	14	1722	1.78	<.01	2.33	5.13	0.11	0.16	85
R0436293	147655	49	46	139	<.4	<2	140	<1	14	5	4.53	<2	28	<5	<5	120	<2	8	108	10	12	1460	1.61	0.05	2.34	4.16	0.14	0.10	83
R0436294	147656	170	40	99	0.9	3	79	<1	14	4	4.66	<2	37	<5	<5	147	<2	5	105	9	16	1139	1.51	0.15	2.30	2.86	0.18	0.07	83
R0436295	147657	<1	18	171	<.4	<2	221	<1	17	4	5.36	<2	30	<5	<5	172	<2	10	95	11	17	1610	1.87	0.20	2.35	3.96	0.11	0.09	81
R0436296	147658	5	12	171	<.4	<2	93	<1	16	4	5.18	<2	37	<5	<5	145	<2	6	75	10	14	1424	1.86	0.16	2.28	3.10	0.12	0.10	8€
R0436297	147659	2	16	183	<.4	2	84	<1	18	6	5.74	<2	30	5	<5	166	<2	8	79	11	15	1563	2.09	0.20	2.42	3.17	0.12	0.12	92
R0436298	147660	5	15	174	<.4	<2	122	<1	18	6	5.61	<2	29	<5	<5	149	<2	11	70	12	6	1571	2.04	0.14	2.30	3.18	0.08	0.13	93
R0436299	147661	2	14	161	<.4	<2	145	<1	16	7	5.10	<2	36	<5	<5	106	<2	6	66	10	2	1515	1.77	0.02	2.07	3.30	0.08	0.15	89
R0436300	147662	35	11	126	0.5	<2	148	<1	14	4	4.40	<2	35	7	<5	84	<2	6	81	11	16	1531	1.44	<.01	1.93	4.90	0.07	0.19	82
R0436301	147663	67	9	90	<.4	<2	109	<1	12	3	4.03	<2	32	<5	<5	85	<2	7	62	10	7	1500	1.40	<.01	1.99	4.22	0.05	0.23	75
R0436302	147664	9	11	82	<.4	62	92	<1	11	5	4.32	<2	50	6	<5	79	<2	5	49	10	9	1532	1.25	<.01	1.79	4.19	0.07	0.25	82
R0436303	147665	830	17	196	<.4	18	44	<1	22	4	7.32	6	35	9	<5	65	<2	12	33	9	6	2363	1.68	<.01	3.04	3.57	0.03	0.24	80
R0436304	147666	74	44	125	0.5	18	79	<1	15	6	4.44	<2	40	8	<5	85	<2	6	64	11	24	2153	1.32	<.01	2.08	6.29	0.05	0.23	83
R0436305	147667	67	19	161	0.5	<2	99	<1	19	7	5.26	6	35	5	<5	147	<2	7	73	11	13	1435	1.66	0.02	2.03	3.49	0.09	0.08	83
R0436306	147668	3	7	128	<.4	4	95	<1	16	9	4.87	<2	32	7	<5	118	<2	7	47	9	7	1244	1.84	<.01	2.04	3.47	0.07	0.15	83
R0436307	147669	83	17	287	<.4	2	134	<1	20	18	5.43	5	62	5	<5	184	<2	6	84	10	6	1625	2.05	0.05	2.14	3.90	0.08	0.05	75
R0436308	147670	141	15	292	0.6	3	74	1	13	3	4.13	9	51	<5	<5	82	<2	4	76	9	14	1228	1.25	0.04	1.54	2.30	0.09	0.06	78
R0436309	147671	85	27	184	0.5	3	153	1	11	2	3.81	<2	43	<5	<5	66	<2	5	66	9	10	1163	1.11	0.03	1.42	2.18	0.11	0.06	84
R0436310	147672	10	9	213	<.4	<2	142	<1	13	4	4.35	<2	42	<5	<5	72	<2	7	51	10	5	1358	1.45	<.01	1.66	2.46	0.07	0.08	80
R0436311	147673	6	11	213	<.4	<2	370	<1	12	3	4.07	<2	51	<5	<5	67	<2	<2	45	8	14	1247	1.30	<.01	1.62	2.58	0.06	0.13	76
R0436312	147674	10	9	186	<.4	<2	378	<1	12	4	4.07	<2	51	<5	<5	67	<2	9	44	8	5	1269	1.26	<.01	1.61	2.92	0.06	0.19	78
R0436313	147675	24	6	143	<.4	21	160	<1	11	3	3.39	<2	60	<5	<5	48	<2	2	47	9	5	1221	1.12	<.01	1.51	3.55	0.08	0.23	75
R0436314	147676	105	14	187	<.4	9	107	<1	12	3	3.66	5	48	<5	<5	61	<2	5	60	10	7	1748	1.20	<.01	1.72	4.20	0.05	0.26	77
R0436315	147677	<1	16	189	<.4	<2	108	<1	14	6	4.76	<2	45	<5	<5	114	<2	4	83	12	7	1843	1.62	<.01	1.93	3.49	0.10	0.08	82
R0436316	147678	15	12	155	<.4	15	67	<1	11	4	3.71	<2	47	<5	<5	65	<2	4	88	10	10	1563	1.30	<.01	1.87	2.91	0.08	0.11	73
R0436317	147679	15	10	164	<.4	<2	60	<1	11	4	4.19	<2	56	<5	<5	81	<2	7	61	10	13	1691	1.28	0.01	1.60	2.49	0.12	0.11	84
R0436318	147680	5386	28	73	1.2	3	29	<1	22	667	7.85	20	855	<5	<5	41	<2	9	107	5	8	783	0.84	<.01	1.04	1.90	0.09	0.46	81

Teck Cominco Ltd.

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	К %	ppr
R0436319	147681	9	8	154	<.4	<2	46 59	<1	10	3 2	3.96	<2	46 59	<5	<5 <5	75	<2 <2	6	50	8	5	1718	1.30	0.01	1.45	2.12	0.11	0.06	77
R0436320	147682	3	8	137	<.4	<2		<1	10	2	3.53	<2 -2		<5 <5	<5	62	<2	-	53 51	9	۰	1509	1.15	<.01	1.34	2.14	0.08	0.07	71
R0436321	147683	-4	14	140	<.4	4	54 103	<1 <1	10	2	3.65 4.05	<2 <2	44 37	<5 <5	<5 <5	66 80	<2	5	53	9	0	1641	1.25 1.39	<.01	1.55	2.14	0.11	0.07	73
R0436322	147684 147685	<1	•	167 122	<.4	<2	188	<1	11 9	2	3.28	<2	53	<5	<5	44	<2	5	44	9	7	1711 1431	0.98	<.01 <.01	1.62 1.42	2.75 3.36	0.09	0.11	80
R0436323		21	11		<.4	<2	119	<1	10	2		<2	49	<5	<5	55	<2	4	50	10	,	1467	1.16				0.08	0.24	75
R0436324	147686	5 5	40	189 195	<.4 <.4	3	101	<1	11	2	3.61 4.17	<2	46	-5	<5	73	<2	7	50	11	13	1496	1.28	<.01 <.01	1.53 1.45	2.65 2.59	0.09	0.16	72
R0436325	147687 147688	5	10			<2	106		''	2		<2	53	9	<5	45	<2	,	48	''	4	1237	1.09	<.01	1.38	2.28	0.07 0.08	0.10	77
R0436326		6	10	172 181	<.4 <.4	-2	52	<1 <1	9	2	3.44 3.36	<2	33	<5	<5	47	<2	3	54	9	4	1212	1.09	<.01	1.40	2.47	0.08	0.12	70
R0436327	147689		10	187	<.4	2	128	<1	10	3	3.35	<2	33 45	9	<5	47	<2	-	50	8	12	1110	1.04	<.01	1.36	2.29	0.11	0.12	68
R0436328 R0436329	147690 147691	86	14	272	<.4	9	109	<1	11	4	4.07	<2	50	< <b>5</b>	<5	73	<2	6	54	10	12	1396	1.34	<.01	1.48	2.70	0.10	0.13 0.10	71
R0436329 R0436330	147691	268	14	204	0.5	15	54	<1	10	2	3.77	20	50	<5	<5	57	<2	4	59	8	11	1335	0.94	0.01	1.23	2.76	0.10	0.10	78 67
R0436331	147693	263	14	479	<.4	5	148	3	10	3	3.63	21	58	<5	<5	52	<2		83	8	''	1487	0.78	0.01	1.26	2.58	0.10	0.05	69
R0436331	147694	366	15	590	1.6	7	69	4	11	3	4.00	34	38	<5	<5	84	<2	5	72	7	3	1520	0.79	0.04	1.10	2.45	0.09	0.04	61
R0436333	147695	639	14	446	1.5	3	54	,	11	3	4.79	26	56	<5	<5	98	<2	9	71		6	1701	0.78	0.06	1.08	2.77	0.11	0.04	65
R0436334	147696	404	14	473	0.6	<2	46	2	12	2	4.10	37	38	9	<5	71	<2	4	79	7	4	1893	0.89	0.04	1.20	2.64	0.12	0.06	65
R0436335	147697	289	12	725	0.7	4	82	4	12	2	3.83	48	35	<5	<5	83	<2	6	128	8	11	1834	0.87	0.11	1.37	2.57	0.12	0.05	74
R0436336	147698	377	10	254	1.0	<2	59	1	11	3	3.72	23	58	<5	<5	71	<2	5	114	8	6	1545	0.88	0.08	1.39	2.37	0.10	0.06	70
R0436337	147699	466	12	492	1.0	<2	88	,	13	3	4.71	24	33	<5	<5	110	<2	6	107	8	8	1817	0.79	0.13	1.22	2.65	0.08	0.05	72
R0436338	147700	339	12	492	0.6	7	36	2	17	4	5.01	54	28	<5	<5	119	<2	5	93	10	6	2053	1.12	0.03	1.29	2.38	0.12	0.06	78
R0436339	147701	337	11	496	0.7	9	55	2	13	5	4.49	47	47	7	<5	89	<2	5	81	9	11	1795	1.00	0.04	1.25	2.60	0.12	0.06	73
R0436340	147702	384	18	426	1.7	6	131	2	12	3	4.29	60	38	5	<5	72	<2	2	86	10	10	1732	0.75	0.01	1.01	2.98	0.09	0.05	69
R0436341	147703	240	25	1867	1.3	4	127	9	15	4	4.33	38	29	<5	<5	94	<2	8	69	9	10	2062	1.32	0.01	1.52	2.90	0.10	0.08	75
R0436342	147704	258	16	771	1.5	2	319	4	12	3	4.30	34	43	6	<5	81	<2	6	89	9	7	2053	1.12	0.04	1.42	2.75	0.11	0.06	71
R0436343	147705	456	17	511	2.1	<2	61	3	15	3	4.86	41	34	<5	<5	87	<2	6	72	10	9	2282	1.28	<.01	1.62	3.14	0.11	0.08	73
R0436344	147706	474	13	273	1.2	4	50	1	15	4	4.67	54	33	<5	<5	89	<2	4	63	9	10	2152	1.22	<.01	1.48	3.42	0.10	0.09	69
R0436345	147707	530	20	157	<.4	28	41	<1	51	4	6.00	38	53	6	<5	38	<2	16	48	8	7	1741	1.04	<.01	1.64	3.64	0.04	0.26	65
R0436346	147708	472	14	260	1.0	3	60	1	12	4	4.05	55	40	<5	<5	76	<2	4	58	8	9	1484	0.88	0.02	1.15	2.57	0.08	0.09	70
R0436347	147709	505	39	285	1.3	<2	74	2	10	2	3.98	36	45	<5	<5	80	<2	7	59	7	9	1449	0.83	0.04	1.13	2.19	0.12	0.08	69
R0436348	147710	452	14	213	1.0	<2	156	1	11	3	4.02	22	53	<5	<5	99	<2	5	69	8	11	1504	0.84	0.08	1.12	2.20	0.12	0.05	72
R0436349	147711	407	11	285	1.4	<2	81	1	11	2	3.71	25	38	<5	<5	84	<2	5	64	7	8	1513	0.99	0.02	1.24	2.20	0.11	0.05	72
R0436350	147712	274	15	725	1.1	3	126	5	12	2	3.65	31	34	<5	<5	81	<2	5	76	7	7	1681	0.90	0.04	1.16	2.13	0.11	0.05	72
R0436351	147713	198	7	448	1.3	<2	69	3	11	3	3.51	42	34	5	<5	69	<2	6	78	6	4	1521	0.77	0.03	0.91	1.75	0.08	0.05	71
R0436352	147714	379	16	134	0.9	5	175	<1	21	3	4.60	31	32	<5	<5	75	<2	8	45	8	14	1434	1.13	<.01	1.24	2.14	0.06	0.11	72
R0436353	147715	1031	11	167	2.4	2	189	1	15	4	4.48	28	30	<5	<5	79	<2	7	56	5	6	1288	0.93	0.05	1.13	1.83	0.07	0.07	72
R0436354	147716	515	14	319	1.6	<2	85	2	12	4	4.22	98	44	<5	<5	94	<2	8	79	6	8	1412	0.81	0.11	1.11	2.21	0.07	0.05	73
R0436355	147717	168	10	81	0.8	<2	118	<1	12	3	3.86	47	38	<5	<5	88	<2	5	91	6	3	1427	1.14	0.09	1.52	2.02	0.07	0.04	73
R0436356	147718	607	16	150	2.7	5	148	<1	16	6	4.20	52	31	<5	<5	94	<2	5	114	7	14	1796	1.26	0.07	1.67	2.62	0.07	0.04	80
R0436357	147719	267	16	585	1.5	6	202	3	17	6	4.00	68	46	<5	<5	98	<2	4	124	7	7	1953	1.45	0.05	1.90	2.63	0.07	0.03	80
R0436358	147720	300	15	512	1.4	2	96	2	16	6	4.13	73	34	<5	<5	91	<2	<2	105	8	15	2052	1.09	0.08	1.52	2.97	0.08	0.05	80
R0436359	147721	320	19	388	1.8	7	38	2	14	3	3.72	62	37	<5	<5	89	<2	3	68	7	7	1520	0.76	0.07	1.04	2.13	0.07	0.06	69
R0436360	147722	1188	24	382	3.2	3	72	2	22	13	6.65	80	32	<5	<5	136	<2	11	104	8	11	1848	1.19	0.10	1.63	2.40	0.08	0.04	65
R0436361	147723	246	17	494	0.8	3	64	2	23	11	6.08	76	19	<5	<5	146	<2	10	103	8	7	2101	1.29	0.09	1.54	3.02	0.08	0.04	70

Teck Cominco Ltd.

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Şr ppm	Y ppm	La ppm	Mn ppm	Mg %	TI %	AI %	Ca %	Na %	K %	P pom
R0436362	147724	332	17	443	1.1	 19	103	2	24	14	6.18	83	20	<5	 <5	149	<2	a	102			1704	1.21	0.05	4 62		~		
R0436363	147725	5515	25	73	1.5	2	25	<1	22	662	7.80	21	836	<5	<5	32	<2	14	102	4	<2	749	0.82	0.05 <.01	1.53 0.82	2.33 1.86	0.11	0.03	721
R0436364	147726	384	19	235	1.1	15	152	1	25	11	8.02	91	28	<5	<5	159	<2	10	84	12	9	1840	1.56	0.05	2.04	2.82	0.06 0.07	0.35	790
R0436365	147727	456	12	244	1.8	10	116	- <1	23	11	6.72	60	23	7	<5	163	<2	9	57	11	10	1868	1.58	0.03	1.53	2.84	0.08	0.08 0.07	813
R0436366	147728	399	15	175	0.6	47	147	<1	25	10	6.26	41	20	<5	<5	117	<2	13	57	13	15	2202	1.91	<.01	2.20	4.49	0.08	0.07	802
R0436367	147729	479	15	196	0.7	23	73	<1	26	10	6.26	59	23	<5	<5	132	<2	12	63	13	14	2341	2.14	<.01	2.28	4.20	0.07	0.10	771 810
R0436368	147730	234	19	201	1.2	18	68	1	39	10	7.06	81	19	10	<5	115	<2	12	64	11	3	1978	2.06	<.01	2.40	3.58	0.06	0.13	815
R0436369	147731	468	26	278	0.9	67	392	2	24	10	6.76	24	15	5	<5	115	<2	15	81	12	17	2364	1.70	<.01	1.95	4.85	0.07	0.19	776
R0436370	147732	502	16	338	<.4	2	265	<1	29	10	7.44	15	22	10	<5	115	<2	14	66	12	10	2245	2.00	<.01	2.39	3.60	0.06	0.20	772
R0436371	147733	63	14	562	0.7	<2	223	<1	24	13	6.37	<2	31	<5	<5	141	<2	12	82	13	10	2207	2.32	0.01	2.22	3.50	0.08	0.11	810
R0436372	147734	109	10	440	<.4	2	191	<1	22	13	5.72	10	30	6	<5	114	<2	11	57	11	11	1839	1.87	<.01	1.94	3.39	0.05	0.13	770
R0436373	147735	326	10	349	<.4	<2	82	<1	24	12	5.50	9	26	6	<5	108	<2	9	57	9	2	1890	2.08	<.01	2.25	4.17	0.04	0.17	829
R0436374	147736	1883	14	239	0.5	4	97	<1	26	13	7.09	6	30	6	<5	98	<2	11	40	11	6	1820	1.91	<.01	2.48	3.10	0.03	0.20	837
R0436375	147737	69	9	317	<.4	<2	119	<1	22	12	5.42	3	28	8	<5	103	<2	10	58	10	10	1649	1.68	<.01	1.89	4.08	0.05	0.21	845
R0436376	147738	101	11	379	<.4	<2	148	<1	24	11	5.85	2	22	<5	<5	119	<2	11	61	11	4	1887	1.98	<.01	2.13	4.30	0.05	0.20	863
R0436377	147739	172	9	333	<.4	3	170	<1	21	10	5.85	4	27	<5	<5	106	<2	7	69	15	10	1877	2.08	<.01	2.34	4.26	0.06	0.19	857
R0436378	147740	288	9	243	<.4	9	126	<1	21	11	6.42	11	24	<5	<5	104	<2	7	74	10	2	1825	1.73	<.01	2.30	3.23	0.06	0.22	894
R0436379	147741	574	11	136	<.4	9	140	<1	18	10	5.53	9	23	8	<5	72	<2	8	57	10	<2	1655	1.42	<.01	1.98	4.56	0.04	0.27	854
R0436380	147742	601	12	158	<.4	2	139	<1	21	11	5.42	3	26	7	<5	101	<2	12	67	11	<2	1767	1.76	<.01	2.15	4.32	0.06	0.22	885
R0436381	147743	30	11	261	<.4	2	91	<1	19	13	5.83	<2	19	7	<5	111	<2	8	84	11	13	2030	2.40	<.01	2.44	3.53	0.09	0.12	885
R0436382	147744	25	9	285	<.4	<2	241	<1	19	10	6.09	<2	24	10	<5	135	<2	8	85	11	6	2036	2.59	<.01	2.49	3.09	0.08	0.14	911
R0436383	147745	10	13	351	<.4	<2	201	<1	19	11	5.90	<2	26	10	<5	129	<2	8	80	9	13	1848	2.32	<.01	2.21	2.20	0.09	0.09	899
R0436384	147746	51	11	294	0.6	<2	97	<1	21	10	5.54	<2	23	<5	<5	134	<2	12	85	11	15	1851	2.53	<.01	2.45	2.45	0.09	0.09	907
R0436385	147747	365	15	327	2.5	<2	124	2	23	11	6.30	2	25	<5	<5	170	<2	6	92	11	<2	2035	2.78	<.01	2.67	2.30	0.10	0.05	874
R0436386	147748	57	12	201	8.0	2	534	<1	16	10	5.85	<2	21	<5	<5	130	<2	11	119	12	9	1952	2.46	<.01	2.64	3.59	0.08	0.20	923
R0436387	147749	54	11	209	0.6	<2	320	<1	21	11	5.45	2	20	9	<5	104	<2	15	98	11	10	1503	1.95	<.01	2.21	2.88	0.08	0.16	880
R0436388	147750	27	14	196	<.4	<2	203	<1	22	11	5.86	2	24	<5	<5	128	<2	10	98	11	6	1976	2.42	<.01	2.46	3.27	0.08	0.13	872
R0436389	147751	82	12	205	<.4	<2	301	<1	24	13	6.16	<2	26	6	<5	148	<2	11	96	10	10	2449	2.43	<.01	2.56	3.33	0.08	0.14	867
R0436390	147752	83	11	181	<.4	4	362	<1	23	10	5.49	<2	22	<5	<5	104	<2	11	101	9	7	2670	2.10	<.01	2.25	4.79	0.07	0.19	861
R0436391	147753	23	10	172	<.4	12	186	<1	22	13	6.18	<2	22	8	<5	142	<2	9	105	13	9	2121	2.40	<.01	2.12	3.54	0.08	0.09	889
R0436392	147754	23	10	137	<.4	14	204	<1	21	13	5.67	<2	22	7	<5	121	<2	5	108	12	7	1953	2.08	<.01	1.78	3.83	0.08	0.11	905
R0436393	147755	13	14	122	<.4	10	320	<1	20	12	5.34	<2	20	<5	<5	106	<2	7	141	12	10	1955	1.39	<.01	1.25	4.88	0.08	0.17	910
R0436394	147756	9	9	110	<.4	15	394	<1	20	13	5.30	<2	19	<5	<5	109	<2	13	119	12	6	1636	1.44	<.01	1.45	4.19	0.08	0.13	8 <del>9</del> 1
R0436395	147757	47	12	155	<.4	17	149	<1	25	18	6.12	<2	24	<5	<5	153	<2	9	114	11	5	1790	1.82	<.01	1.84	3.10	0.10	0.08	887
R0436239 rpt	147601 rpt	15	11	214	<.4	3	191	<1	10	1	3.9	<2	33	5	<5	57	<2	4	41	9	4	1515	0.55	<.01	0.9	4.14	0.06	0.21	837
R0436245 rpt	147607 rpt	16	17	284	<.4	9	181	<1	14	6	4.83	<2	30	<5	<5	73	<2	7	73	12	10	1883	0.98	<.01	1.46	4.87	0.07	0.23	826
R0436253 rpt	147615 rpt	245	26	128	0.5	<2	97	<1	12	2	4.34	6	24	<5	<5	107	<2	6	97	12	13	1359	0.94	<.01	1.72	4.73	0.1	0.08	889
R0436272 rpt	147634 rpt	9	20	139	<.4	12	330	<1	16	5	4.75	<2	25	<5	<5	94	<2	5	63	11	14	1633	1.52	<.01	1.82	4.57	0.05	0.25	1019
R0436284 rpt	147646 rpt	53	14	120	<.4	5	308	<1	17	3	5.32	<2	41	<5	<5	135	<2	6	103	15	12	1822	1.9	0.07	2.38	4.11	0.08	0.14	1006
R0436295 rpt	147657 rpt	1	20	182	<.4	<2	234	<1	17	5	5.67	<2	31	<5	<5	178	<2	9	96	10	14	1702	1.97	0.18	2.33	4.16	0.12	0.09	873
R0436314 rpt	147676 rpt	110	18	205	<.4	9	98	<1	13	4	3.98	7	50	5	<5	62	<2	6	62	11	6	1854	1.29	<.01	1.76	4.45	0.05	0.23	867
R0436326 rpt	147688 rpt	6	9	172	<.4	<2	102	<1	9	2	3.41	<2	53	<5	<5	41	<2	<2	47	7	6	1202	1.04	<.01	1.34	2.21	0.1	0.11	698
R0436339 rpt	147701 rpt	351	12	525	0.9	5	56	2	15	5	4.71	48	51	<5	<5	94	<2	7	85	8	5	1878	1.07	0.04	1.34	2.73	0.11	0.06	780

Sie Keren.

Alice Kwan, Chemist-Teck Cominco G.D.L.

LAB NO	FIELD	Cu	Pb	Zn	Ag	As	Ва	Cd	Со	Ni	Fa	Мо	Cr	Bi	Sb	v	Sn	w	Sr	~		Mn		Tł		_			
	NUMBER	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	Mg %	%	AI %	Са %	Na %	%	P ppm
R0436352 rpt	147714 rpt	379	16	139	0.6	8	178	<1	21	4	4.74	38	44	7	<5	77	<2	10	46	7	10	1393	1.14	0.01	1.35	2.17	0.07	0.12	689
R0436365 rpt	147727 rpt	429	13	234	1.8	12	115	1	22	10	6.51	58	23	<5	<5	165	<2	9	60	13	4	1870	1.54	0.08	1.56	2.79	0.07	0.07	780
R0436378 rpt Rpt. Value	147740 rpt STD: DA	278 118	11 223	242 540	<.4 5.7	5 52	128 446	<1 4	21 13	10 42	6.39 3.5	10	24 45	10 <5	<5 <5	107 65	<2 <2	9	74 38	9	8 23	1812 680	1.73 0.59	<.01 0.11	2.33 2.25	3.23 0.54	0.06 0.07	0.22	897
Rpt. Value	STD: DA	121	218	541	6.7	51	430	4	13	41	3.54	2	44	<5	<5	70	<2	5	37	9	14	667	0.58	0.11	2.17	0.53	0.07	0.14 0.13	962 959
Rpt. Value	STD: DA	127	237	578	5.9	54	487	5	13	44	3.78	2	48	<5	<5	74	<2	4	40	10	24	710	0.63	0.12	2.34	0.57	0.07	0.15	1042
Rpt. Value	STD: DA	115	220	548	6.2	53	425	4	13	42	3.53	3	44	<5	<5	61	<2	5	36	8	19	648	0.6	0.1	2.14	0.54	0.07	0.13	917

1=Insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

COMMENTS

Rpt. Value = repeat value of standard STD: DA = In-house Standard



# FJORDLAND EXPLORATION-X04 WJ04-16/147313-352

Report date: 3 DEC 2004

Job V 04-0922R

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
			***************************************
R0436418	147313	0.384	
R0436419	147314	0.260	
R0436420	147315	2.204	
R0436421	147316	0.252	
R0436422	147317	0.481	
R0436423	147318	0.667	
R0436424	147319	0.176	
R0436425	147320	0.664	
R0436426	147321	0.270	
R0436427	147322	0.143	
R0436428	147323	1.686	
R0436429	147324	0.089	
R0436430	147325	0.574	
R0436431	147326	0.601	
R0436432	147327	0.107	
R0436433	147328	0.255	
R0436434	147329	0.580	
R0436435	147330	0.652	
R0436436	147331	0.051	
R0436437	147332	0.047	
R0436438	147333	0.046	
R0436439	147334	0.069	
R0436440	147335	0.059	
R0436441	147336	<0.034	
R0436442	147337	<0.034	
R0436443	147338	0.268	
R0436444	147339	0.538	
R0436445	147340	<0.034	
R0436446	147341	0.034	
R0436447	147342	0.037	
R0436448	147343	0.085	
R0436449	1473 <del>44</del>	0.060	
R0436450	147345	0.046	
R0436451	147346	0.049	
R0436452	147347	0.075	
R0436453	147348	0.142	
R0436454	147349	<0.034	
R0436455	147350	<0.034	
R0436456	147351	<0.034	
R0436457	147352	0.034	
R0436423 rpt	147318 rpt	0.503	
R0436433 rpt	147328 rpt	0.341	
R0436448 rpt	147343 rpt	0.070	
Rpt. Value	STD: T3(1AT)	5.147	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

### **ANALYTICAL METHODS**

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

	Report da	te: 3 DEC 2004		Job V 04-0922R
LAB NO	FIELD NUMBER	Au(4) g/t	<del></del>	
	e = repeat value of standard AT) = In-house standard		It (II	

Steve Clark, Certified B.C. Assayer-Teck Cominco G.D.L.

#### FJORDLAND EXPLORATION-X04 WJ04-16/147313-352

**teck**cominco

Global Discovery Labs

Report date: 3 DEC 2004	Job V 04-0922R	

									_		_		_																
LAB NO	FIELD NUMBER	Cu	Pb	Zn	Ag	As ppm	Ba ppm	Cd	Co ppm	NI ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb	V	Sn	W ppm	Sr	PDE	La ppm	Mn ppm	Mg %	Ti %	Al %	Ca %	Na °′	K	Р
		ppm	ppm	ppm	ppm			• •					• •			 bbw	ppm		ppm	ppm						76	% ·	% 	ppm
R0436418	147313	4964	18	88	7.5	11	145	<1	25	4	6.86	4	58	<5	<5	42	<2	<2	39	7	11	1210	0.70	<.01	0.59	2.09	0.07	0.29	579
R0436419	147314	485	53	141	1.5	5	201	<1	42	5	7.01	3	43	8	<5	42	<2	<2	37	5	10	1336	0.78	<.01	0.65	2.04	0.03	0.24	550
R0436420	147315	18050	35	69	20.9	21	38	<1	58	5	7.52	5	80	<5	<5	41	<2	<2	24	4	7	996	0.62	<.01	0.40	1.74	0.06	0.24	276
R0436421	147316	1636	23	79	4.4	16	97	<1	37	4	5.16	10	48	<5	<5	31	<2	<2	43	8	11	1171	0.76	<.01	0.50	2.51	0.04	0.27	672
R0436422	147317	8712	18	76	8.6	13	62	<1	31	3	5.84	3	42	<5	<5	43	<2	<2	49	8	15	1185	0.84	<.01	0.48	3.27	0.04	0.26	<b>6</b> 60
R0436423	147318	1264	933	294	2.8	5	116	3	27	3	4.53	8	46	5	<5	35	<2	<2	42	8	16	1085	0.78	<.01	0.52	2.36	0.06	0.26	664
R0436424	147319	696	14	67	1.3	16	414	<1	15	2	3.98	4	35	7	<5	43	<2	<2	71	10	16	1553	1.20	<.01	0.54	4.30	0.05	0.26	672
R0436425	147320	1227	140	87	4.5	11	449	<1	18	3	4.38	4	39	<5	<5	48	<2	4	65	9	14	1462	0.90	<.01	0.64	4.02	0.05	0.23	705
R0436426	147321	485	22	66	0.8	6	359	<1	19	3	4.44	5	45	11	<5	53	<2	3	67	10	15	1387	0.86	<.01	1.18	3.66	0.05	0.25	692
R0436427	147322	372	22	89	1.3	7	284	<1	18	3	4.00	6	40	7	<5	59	<2	2	66	11	12	1348	0.73	<.01	0.99	3.43	0.06	0.23	771
R0436428	147323	1350	233	211	2.4	3	215	2	19	4	4.80	4	38	<5	<5	51	<2	<2	82	12	16	1473	1.12	<.01	1.48	3.81	0.05	0.25	760
R0436429	147324	235	13	69	0.8	2	103	<1	14	4	5.03	7	33	9	<5	80	<2	2	81	13	13	1322	0.93	0.03	1.68	3.29	0.10	0.22	1194
R0436430	147325	1884	14	72	1.3	3	126	<1	27	10	5.72	7	40	<5	<5	102	<2	<2	87	13	20	1231	0.86	0.07	1.58	2.85	0.14	0.17	1175
R0436431	147326	1786	13	77	3.5	3	112	<1	42	9	5.67	32	40	<5	<5	63	<2	<2	62	12	13	1611	1.09	<.01	1.81	3.30	0.09	0.19	974
R0436432	147327	840	13	67	0.4	<2	110	<1	18	6	6.05	6	28	<5	<5	93	<2	<2	65	13	13	1498	1.24	<.01	1.91	3.40	0.07	0.18	1094
R0436433	147328	2339	21	106	5.2	<2	95	<1	35	7	7.05	14	32	<5	<5	73	<2	<2	55	15	14	2423	1.99	<.01	2.84	4.67	0.03	0.25	997
R0436434	147329	662	18	84	0.8	5	121	<1	31	10	6.81	36	29	8	<5	116	<2	5	51	13	15	1727	1.57	<.01	2.24	3.22	0.05	0.26	999
R0436435	147330	212	238	115	1.7	<2	105	<1	34	11	6.74	10	25	<5	<5	120	<2	<2	64	15	14	1886	1.68	<.01	2.54	3.66	0.05	0.33	1010
R0436436	147331	173	17	109	0.5	<2	149	<1	20	10	5.90	7	22	6	<5	167	<2	<2	147	14	16	1897	1.81	0.01	3.19	4.83	0.23	0.29	1090
R0436437	147332	159	17	80	<.4	<2	69	<1	19	8	5.76	11	27	<5	<5	233	<2	<2	253	11	12	1477	1.63	0.11	4.59	4.29	0.51	0.12	1136
R0436438	147333	224	9	43	<.4	<2	199	<1	12	5	5.44	21	31	<5	<5	127	<2	2	377	11	11	1006	1.11	0.02	2.51	2.52	0.23	0.25	963
R0436439	147334	352	10	68	<.4	<2	117	<1	14	4	5.06	45	28	<5	<5	111	<2	<2	135	10	17	1227	1.35	0.02	3.12	3.42	0.25	0.27	910
R0436440	147335	189	10	54	<.4	<2	188	<1	13	4	5.08	30	30	8	<5	92	<2	<2	344	12	14	1327	1.28	<.01	2.38	3.60	0.15	0.39	965
R0436441	147336	79	10	44	<.4	<2	128	<1	12	4	5.29	14	40	5	<5	125	<2	<2	169	11	11	1009	1.09	0.06	3.47	2.87	0.37	0.21	982
R0436442	147337	48	10	44	<.4	<2	174	<1	12	3	5.25	<2	47	6	<5	124	<2	<2	173	11	11	1033	1.20	0.04	4.00	2.92	0.39	0.25	963
R0436443	147338	85	10	46	<.4	<2	148	<1	15	4	5.36	<2	47	7	<5	129	<2	<2	167	11	10	1065	1.21	0.05	4.26	2.81	0.40	0.20	957
R0436444	147339	6152	23	95	1.3	7	25	<1	25	715	8.58	24	922	<5	5	39	3	<2	121	6	15	844	0.86	<.01	1.10	2.04	0.10	0.48	915
R0436445	147340	254	13	52	<.4	15	106	<1	15	4	4.79	8	40	9	<5	97	<2	<2	115	11	11	1177	1.18	0.01	3.19	3.20	0.26	0.24	942
R0436446	147341	91	11	79	<.4	15	128	<1	15	3	4.82	6	35	<5	<5	93	<2	<2	161	11	6	1553	1.05	<.01	2.67	4.86	0.18	0.30	930
R0436447	147342	115	13	49	<.4	<2	126	<1	13	4	5.13	6	39	6	<5	133	<2	<2	176	11	12	1034	1.22	0.06	4.28	3.22	0.47	0.23	899
R0436448	147343	90	11	55	<.4	<2	132	<1	11	5	5.10	3	41	<5	<5	142	<2	<2	173	10	10	1023	1.33	0.08	4.20	3.23	0.45	0.14	900
R0436449	147344	265	10	66	<.4	<2	181	<1	13	5	5.15	37	41	<5	<5	153	<2	<2	187	11	10	1179	1.36	0.08	4.24	3.54	0.43	0.20	915
R0436450	147345	238	12	53	<.4	<2	105	<1	16	7	5.98	13	37	6	<5	141	2	<2	164	12	15	1261	1.52	0.05	4.01	3.58	0.31	0.14	1132
R0436451	147346	209	13	71	<.4	<2	71	<1	15	8	5.78	6	52	<5	<5	154	<2	3	201	11	11	1375	1.57	0.14	4.69	3.58	0.46	0.09	1153
R0436452	147347	320	10	68	<.4	<2	101	<1	16	7	5.46	6	51	5	<5	134	<2	<2	168	9	12	1249	1.38	0.10	3.96	3.39	0.39	0.12	1098
R0436453	147348	77	7	66	<.4	<2	189	<1	12	4	5.42	5	32	<5	<5	161	<2	4	195	12	12	1423	1.51	0.13	3.36	3.80	0.38	0.10	1327
R0436454	147349	39	4	44	<.4	<2	633	<1	13	3	4.43	6	40	5	<5	87	<2	<2	232	11	13	1222	1.45	0.04	2.77	3.07	0.10	0.12	1256

Teck Cominco Ltd.

Global Discovery Labs 1486 East Pender Street Vancouver, B.C. Canada V5L 1V8 Phone: (604) 685-3032 Fax: (604) 844-2686

Report date: 3 DEC 2004 Job V 04-0922R

Alice Kwan, Chemist-Teck Cominco G.D.L.

LAB NO	FIELD	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Мо	Cr	Bi	Sb	٧	Sn	W	Sr	Y	La	Mn	Mg	Ti	Αi	Ca	Na	K	Р
	NUMBER	ppm	ppm	ppm	ppm	ppm	ppm	ppm	• • •	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm
			- <del>-</del>																										
R0436455	147350	92	13	56	<.4	<2	90	<1	15	8	5.60	5	53	<5	<5	132	<2	<2	211	8	12	1135	1.50	0.12	5.03	3.99	0.53	0.09	1144
R0436456	147351	65	8	67	<.4	<2	80	<1	14	8	5.77	9	46	<5	<5	148	<2	<2	221	9	11	1431	1.70	0.12	5.28	4.19	0.57	0.08	1186
R0436457	147352	109	15	64	<.4	<2	82	<1	15	8	6.16	6	41	<5	<5	168	<2	4	252	8	10	1058	1.39	0.13	5.46	3.88	0.61	0.07	1385
R0436419 rpt	147314 rpt	480	55	134	2.1	<2	200	<1	40	6	6.77	9	45	8	<5	46	<2	<2	37	5	11	1257	0.73	<.01	0.75	1.92	0.04	0.26	533
R0436423 rpt	147318 rpt	1297	998	313	2.8	10	163	4	28	4	4.94	9	49	<5	<5	43	<2	<2	44	8	15	1126	0.80	<.01	0.78	2.44	0.04	0.32	710
R0436436 rpt	147331 rpt	185	17	125	0.4	<2	166	<1	21	10	6.63	9	25	7	<5	184	3	<2	162	15	17	2017	1.94	0.01	3.91	5.14	0.24	0.33	1247
Rpt. Value	STD: DA	134	223	710	6.7	59	539	5	14	48	3.83	4	49	<5	<5	80	2	<2	44	10	24	712	0.61	0.12	2.54	0.59	0.08	0.17	1036

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

COMMENTS

Rpt. Value = repeat value of standard STD: DA = In-house Standard



### FJORDLAND EXPLORATION-X04 WJ04-17/147801-869

Report date: 10 DEC 2004

Job V 04-0936R

	Кероп	date. 10 DEC 2004	JOD V 04-0936R
LAB NO	FIELD NUMBER	Au(4)	J.
		g/t	
R0436603	 147801	2.745	
R0436604	147802	2.929	
R0436605	147803	1.318	
R0436606	147804	1.084	
R0436607	147805	0.886	
R0436608	147806	1.173	
R0436609	147807	2.929	
R0436610	147808	0.962	
R0436611	147809	1.103	
R0436612	147810	1.549	
R0436613	147811	1.045	,
R0436614	147812	0.907	
R0436615	147813	1.269	
R0436616	147814	1.752	
R0436617	147815	1.085	
R0436618	147816	0.774	
R0436619	147817	0.631	
R0436620	147818	0.704	
R0436621	147819	0.888	
R0436622	147820	0.537	
R0436623	147821	0.669	
R0436624	147822	0.541	
R0436625	147823	0.206	
R0436626	147824	0.295	
R0436627	147825	0.239	
R0436628	147826	0.261	
R0436629	147827	0.390	
R0436630	147828	0.169	
R0436631	147829	0.152	
R0436632	147830	0.227	
R0436633	147831	0.440	
R0436634	147832	0.351	
R0436635	147833	0.263	
R0436636	147834	0.182	
R0436637	147835	0.525	
R0436638	147836	0.181	
R0436639	147837	0.099	
R0436640	147838	0.149	
R0436641	147839	0.128	
R0436642	147840	0.111	
R0436643	147841	<0.034	
R0436644	147842	<0.034	
R0436645	147843	<0.034	
R0436646	147844	<0.034	
R0436647	147845	<0.034	
R0436648	147846	<0.034	
R0436649	147847	<0.034	
R0436650	147848	<0.034	
R0436651	147849	<0.034	
		<0.034	
R0436652	147850		
R0436653	147851	<0.034	

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0436654	147852	0.115	
R0436655	147853	< 0.034	
R0436656	147854	< 0.034	
R0436657	147855	<0.034	
R0436658	147856	< 0.034	
R0436659	147857	0.054	
R0436660	147858	<0.034	
R0436661	147859	<0.034	
R0436662	147860	0.253	
R0436663	147861	<0.034	
R0436664	147862	<0.034	
R0436665	147863	<0.034	
R0436666	147864	<0.034	
R0436667	147865	<0.034	
R0436668	147866	< 0.034	
R0436669	147867	0.058	
R0436670	147868	<0.034	
R0436671	147869	0.034	
R0436606 rpt	147804 rpt	1.042	
R0436611 rpt	147809 rpt	1.258	
R0436622 rpt	147820 rpt	0.537	
R0436633 rpt	147831 rpt	0.516	•
R0436644 rpt	147842 rpt	<0.034	
R0436650 rpt	147848 rpt	<0.034	
R0436655 rpt	147853 rpt	<0.034	
R0436663 rpt	147861 rpt	<0.034	
Rpt. Value	STD: T3(1AT)	4.976	
Rpt. Value	STD: T3(1AT)	5.054	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

### **ANALYTICAL METHODS**

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

### COMMENTS:

Rpt. Value = repeat value of standard STD: T3(1AT) = In-house standard

Steve Clark, Certified B.C. Assayer-Teck Cominco G.D.L.

### FJORDLAND EXPLORATION-X04 WJ04-17/147801-869



Global Discovery Labs

Report date: 16 DEC 2004

Job V 04-0936R

																											04-0930	,	_
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	TI %	AI %	Ca %	Na %	К %	Ppm
R0436603	147801	1916	38	 451	2.2		53	2	10	3	4.37	34	49	<5	<5	 86	 <2	<2	50	 7	 <2	1472	0,43	0.04	0.79	2.86	0.06	0.07	836
R0436604	147802	3217	15	796	5.4	<2	66	5	11	5	4.69	25	60	<5	<5	75	<2	3	49	5	<2	1165	0.65	0.08	0.76	1.80	0.06	0.05	740
R0436605	147803	1370	16	500	2.4	<2	45	2	11	3	4.75	30	50	<5	<5	87	<2	2	40	5	7	978	0.83	0.10	0.75	1.06	0.07	0.05	796
R0436606	147804	1140	29	626	2.3	<2	37	2	11	2	4.20	32	40	<5	<5	75	<2	<2	47	5	5	1207	0.79	0.09	0.84	1.74	0.06	0.05	756 758
R0436607	147805	1000	29	475	1.5	<2	44	2	12	5	5.05	25	35	<5	<5	109	<2	<2	51	7	<2	1434	0.83	0.11	0.88	2.15	0.07	0.06	955
R0436608	147806	1266	27	561	2.5	<2	58	3	12	4	4.71	29	34	<5	<5	90	<2	4	54	8	<2	1872	0.50	0.06	0.82	3.60	0.05	0.06	885
R0436609	147807	2570	20	403	2.4	<2	44	2	16	5	6.08	28	31	<5	<5	112	<2	<2	36	5	<2	1038	0.89	0.08	0.78	1.15	0.06	0.06	877
R0436610	147808	1093	11	469	1.2	<2	38	3	16	6	5.54	32	25	<5	<5	121	<2	<2	31	5	<2	994	1.00	0.07	0.85	0.96	0.06	0.05	960
R0436611	147809	1345	14	518	1.5	<2	45	3	13	4	5.36	28	25	<5	<5	124	<2	<2	39	5	<2	968	1.05	0.10	0.82	1.10	0.06	0.05	926
R0436612	147810	1356	13	668	1.6	<2	46	3	14	4	5.02	29	31	<5	<5	96	<2	<2	45	4	3	935	1.08	0.10	0.91	1.02	0.07	0.06	901
R0436613	147811	822	15	480	1.3	<2	54	3	14	3	5.21	49	25	<5	<5	115	<2	<2	47	6	<2	1054	0.94	0.11	0.88	1,29	0.07	0.05	933
R0436614	147812	791	37	537	1.4	<2	153	2	14	4	4.89	37	27	<5	<5	105	<2	2	62	9	<2	2038	0.79	0.08	0.89	3.74	0.06	0.06	875
R0436615	147813	1239	26	636	2.3	2	82	3	12	4	4.75	42	36	<5	<5	74	<2	<2	57	7	<2	1400	0.66	0.09	0.89	2.31	0.06	0.05	859
R0436616	147814	1711	48	798	2.3	3	27	4	14	4	5.08	41	24	<5	<5	82	<2	2	55	8	<2	1957	0.65	0.03	0.79	3.08	0.05	0.05	760
R0436617	147815	1123	41	455	1.7	7	27	2	13	3	4.43	94	18	<5	<5	78	<2	<2	68	8	<2	1948	0.64	<.01	0.89	3.05	0.05	0.05	877
R0436618	147816	793	18	454	1.0	<2	52	2	13	3	4.51	98	21	<5	<5	86	<2	<2	74	7	<2	1520	0.62	0.04	0.99	1.97	0.06	0.04	925
R0436619	147817	667	43	828	0.9	<2	203	5	16	4	4.63	90	19	<5	<5	92	7	3	58	7	2	1639	1.09	0.07	1.28	1.85	0.07	0.05	987
R0436620	147818	825	24	332	1.0	<2	32	1	15	4	4.71	87	22	7	<5	103	<2	<2	51	7	5	1471	1.15	0.05	1.28	1.69	0.06	0.05	946
R0436621	147819	717	51	591	0.9	25	67	2	14	1	4.44	177	17	5	<5	82	<2	<2	50	8	<2	1694	1.21	0.01	1.40	2.22	0.07	0.05	982
R0436622	147820	483	28	587	1.7	11	34	2	13	2	5.25	87	8	<5	<5	115	<2	3	72	12	<2	2179	1.22	0.06	1.54	3.08	0.08	0.06	1030
R0436623	147821	478	25	1093	2.8	<2	25	4	13	2	5.31	88	8	<5	<5	121	<2	<2	65	10	<2	2368	1.30	0.08	1.68	2.90	0.10	0.06	1092
R0436624	147822	473	26	1119	2.6	25	23	5	13	1	5.42	111	9	<5	<5	121	<2	<2	69	10	<2	2380	1.41	0.07	1.77	3.34	0.09	0.06	1039
R0436625	147823	152	20	2915	1.2	7	25	16	13	1	5.06	61	7	<5	<5	134	<2	2	74	11	<2	2170	1.44	0.06	1.97	3.20	0.09	0.06	1042
R0436626	147824	107	16	1978	1.1	6	24	9	13	<1	5.09	45	6	<5	<5	118	<2	<2	74	11	<2	2169	1.68	0.09	2.31	2.96	0.08	0.05	1071
R0436627	147825	91	24	1731	1.2	15	19	13	12	1	4.46	58	8	<5	<5	111	<2	<2	89	11	<2	2035	1.50	0.06	2.17	2.89	0.07	0.04	1045
R0436628	147826	94	15	1165	1.2	10	23	1	12	2	5.06	44	<4	<5	<5	118	<2	3	70	10	<2	2109	1.64	0.06	2.13	2.76	0.07	0.06	1060
R0436629	147827	153	19	1017	2.2	11	33	1	12	2	4.75	40	4	<5	<5	113	<2	<2	89	12	<2	2179	1.57	0.02	2.06	3.97	0.08	0.05	1011
R0436630	147828	139	24	1109	1.8	19	37	6	15	3	5.16	69	8	<5	<5	128	<2	<2	75	9	<2	2074	1.64	0.03	1.99	3.04	0.07	0.05	974
R0436631	147829	99	14	1573	1.4	4	22	7	15	2	5.07	33	4	<5	<5	123	<2	<2	76	9	<2	2146	1.63	0.01	1.89	3.13	0.07	0.04	1000
R0436632	147830	116	14	1412	1.1	5	37	3	15	4	5.10	41	6	<5	<5	130	<2	2	73	10	<2	2217	1.55	0.02	1.85	3.35	0.08	0.04	985
R0436633	147831	279	15	1135	2.6	15	238	4	14	4	5.00	38	12	6	<5	133	<2	<2	108	15	3	2440	1.52	0.01	1.75	4.66	0.08	0.05	966
R0436634	147832	410	39	957	3.9	<2	61	2	13	3	4.48	26	11	<5	<5	108	<2	<2	73	9	<2	1960	1.43	0.02	1.78	3.15	0.08	0.06	951
R0436635	147833	299	7	872	2.5	4	44	1	14	4	4.44	10	9	<5	<5	103	<2	<2	102	13	<2	1953	1.49	<.01	1.87	3.96	0.08	0.06	957
R0436636	147834	75	10	830	0.5	<2	91	<1	13	3	4.12	13	11	<5	<5	103	<2	4	90	13	<2	1931	1.53	<.01	1.81	4.01	0.07	0.08	894
R0436637	147835	5752	19	92	1.4	3	20	1	23	686	8.01	23	889	<5	<5	40	<2	<2	108	5	<2	778	0.79	<.01	0.81	1.94	0.06	0.34	893
R0436638	147836	93	8	699	1.0	<2	82	<1	12	2	3.78	24	11	5	<5	83	<2	<2	84	8	<2	1581	1.25	0.01	1.72	3.08	0.08	0.10	1017
R0436639	147837	85	9	711	0.6	3	48	<1	13	5	4.50	2	13	7	<5	97	<2	<2	83	8	<2	1690	1.44	0.01	1.79	3.32	0.08	0.08	1011

Global Discovery Labs 1486 East Pender Street Vancouver, B.C. Canada V5L 1V8 Phone: (604) 685-3032 Fax: (604) 844-2686

Report date: 16 DEC 2004 Job V 04-0936R

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	T1 %	AI %	Ca %	Na %	K %	F ppn
R0436640	147838	33	12	690	1.1	<2	58	 <1	13	3	4.62	<2	11	<5	· <5	110	 <2	 <2	 70	 9	<2	1565	1.40	0.03	1.67	3.07	0.07	0.08	
R0436641	147839	122	10	756	1.8	6	58	<1	15	3	4.85	10	13	<5	<5	105	<2	2	60	7	<2	1543	1.37	0.03	1.77	2.82	0.07	0.08	1079
R0436642	147840	293	56	1390	5.2	7	95	5	17	4	5.33	15	17	<5	<5	123	<2	3	64	. 8	<2	2089	1.56	0.04	1.97	3.19	0.07	0.07	1022
R0436643	147841	13	9	425	1.5	6	58	<1	14	3	4.73	<2	9	<5	<5	118	<2	<2	72	8	3	1532	1.59	0.04	1.87	2.66	0.08	0.05	1024
R0436644	147842	3	11	317	0.5	6	315	<1	17	3	5.07	<2	8	<5	<5	97	<2	<2	102	10	<2	1595	1.52	<.01	1.98	3.15	0.09	0.10	983 1049
R0436645	147843	33	18	335	1.1	5	285	1	13	2	4.36	<2	7	6	<5	84	<2	<2	136	15	3	1714	1.45	<.01	2.01	3.97	0.10	0.10	
R0436646	147844	12	13	306	1.0	<2	810	<1	12	2	4.07	<2	5	7	<5	71	<2	3	168	20	<2	1888	1.40	<.01	1.83	6.39	0.09	0.08	989
R0436647	147845	9	15	299	1.0	7	348	<1	13	3	4.36	<2	5	6	<5	72	<2	2	110	12	<2	1538	1.38	<.01	1.85	3.74	0.09	0.00	841 952
R0436648	147846	3	17	242	0.7	13	613	<1	13	3	4.15	<2	6	<5	<5	73	<2	2	98	11	9	1459	1.32	<.01	1.59	3,60	0.07	0.13	913
R0436649	147847	4	16	234	0.7	5	842	1	13	3	4.10	<2	5	7	<5	60	<2	2	99	12	3	1453	1.23	<.01	1.46	4.21	0.07	0.14	962
R0436650	147848	2	11	214	0.6	4	336	1	13	1	4.08	<2	<4	<5	<5	61	<2	<2	75	12	<2	1579	1.43	<.01	1.65	3.94	0.07	0.14	1090
R0436651	147849	4	10	215	0.6	<2	78	<1	17	<1	6.31	4	<4	<5	<5	111	<2	<2	71	18	<2	1982	1.85	<.01	1.97	4.89	0.07	0.14	1477
R0436652	147850	4	10	195	0.7	2	145	<1	16	<1	5.51	2	<4	9	<5	103	<2	<2	68	15	<2	1810	1.64	<.01	1.78	4.97	0.05	0.16	1335
R0436653	147851	4	5	190	<.4	<2	203	<1	13	3	4.22	<2	11	5	<5	78	<2	<2	75	12	<2	1752	1.43	<.01	1.60	4.53	0.06	0.17	900
R0436654	147852	215	29	216	1.2	26	662	1	15	3	4.55	5	10	<5	<5	73	<2	<2	77	14	3	2046	1.45	<.01	1.87	4.64	0.06	0.18	1012
R0436655	147853	11	9	154	<.4	2	325	<1	13	2	4.53	<2	15	<5	<5	88	<2	<2	67	11	<2	2010	1.39	<.01	1.73	4.60	0.05	0.20	941
R0436656	147854	9	8	140	0.4	<2	251	<1	13	5	4.64	<2	14	5	<5	83	<2	2	62	9	2	1776	1.45	<.01	1.70	4.10	0.05	0.18	926
R0436657	147855	16	8	133	<.4	<2	329	<1	14	4	4.73	<2	15	<5	<5	91	<2	<2	68	11	<2	1633	1.44	<.01	1.77	4.42	0.05	0.18	916
R0436658	147856	83	6	93	0.7	5	145	<1	14	4	3.99	4	15	<5	<5	60	<2	<2	61	9	<2	1716	1.31	<.01	1.79	4.51	0.04	0.20	898
R0436659	147857	1154	12	97	0.8	<2	122	<1	21	4	5.44	<2	7	8	<5	56	<2	4	55	9	<2	1438	1.28	<.01	1.91	3.37	0.05	0.16	930
R0436660	147858	218	6	118	0.5	7	130	<1	14	5	5.09	3	16	<5	<5	91	<2	<2	51	8	<2	1610	1.46	<.01	1.91	3.21	0.05	0.13	951
R0436661	147859	180	16	146	1.1	<2	26	<1	19	7	6.03	4	21	7	<5	115	<2	5	51	8	2	1487	1.63	<.01	1.94	2.11	0.07	0.09	990
R0436662	147860	17110	32	194	4.9	52	9	1	186	5	11.44	4	10	<5	<5	68	<2	<2	38	12	<2	1461	1.32	<.01	2.24	2.11	0.08	0.12	742
R0436663	147861	154	13	142	0.7	9	38	<1	19	7	5.60	<2	16	<5	<5	100	<2	<2	59	9	<2	1314	1.53	<.01	1.93	1.60	0.07	0.10	963
R0436664	147862	88	13	174	<.4	<2	193	<1	15	5	5.14	4	11	8	<5	104	<2	<2	78	9	<2	1358	1.65	<.01	2.14	2.21	0.08	0.11	1025
R0436665	147863	205	21	185	<.4	8	163	<1	14	5	5.19	3	10	<5	<5	88	<2	<2	69	9	6	1439	1.52	<.01	2.13	2.48	0.08	0.12	1023
R0436666	147864	6	9	175	<.4	2	500	<1	13	3	4.64	<2	7	<5	<5	74	<2	2	90	12	<2	1433	1.39	<.01	1.89	3.58	0.08	0.13	1017
R0436667	147865	1	13	145	<.4	3	330	<1	13	2	4.31	<2	7	<5	<5	89	<2	2	77	10	<2	1393	1.43	<.01	1.74	3.51	0.07	0.11	922
R0436668	147866	15	9	217	<.4	<2	365	<1	15	5	4.73	<2	8	<5	<5	90	<2	<2	87	12	<2	1529	1.59	<.01	1.92	3.64	0.08	0.11	984
R0436669	147867	13	11	233	<.4	4	352	<1	16	5	5.09	<2	8	<5	<5	102	<2	<2	91	10	<2	1489	1.62	<.01	1.92	3.54	0.08	0.10	1005
R0436670	147868	<1	8	229	<.4	<2	386	<1	14	4	4.48	<2	11	<5	<5	96	3	<2	99	11	<2	1420	1.52	<.01	1.91	3.73	0.09	0.12	937
R0436671	147869	39	10	158	<.4	2	284	<1	14	4	4.36	2	9	<5	<5	87	<2	2	94	10	<2	1339	1.47	<.01	1.94	3.25	0.10	0.11	961
R0436634 rpt	147832 rpt	403	42	949	4.3	2	57	2	13	4	4.40	29	13	7	<5	105	<2	3	70	9	<2	1902	1.39	0.02	1.72	3.04	0.08	0.05	928
R0436607 rpt	147805 rpt	1001	28	474	1.3	<2	44	2	12	6	4.94	28	37	<5	<5	111	<2	2	45	6	<2	1367	0.81	0.08	0.81	2.05	0.06	0.05	955
R0436652 rpt	147850 rpt	9	9	199	<.4	<2	151	<1	16	1	5.59	<2	<4	5	<5	101	<2	<2	71	16	2	1869	1.69	<.01	1.83	5.14	0.06	0.17	1381
Rpt. Value	Std: DA	124	214	646	6.7	47	267	5	11	37	3.15	2	34	<5	<5	54	<2	<2	32	8	12	636	0.47	0.06	1.66	0.50	0.07	0.12	966
Rpt. Value	Std: DA	123	214	654	6.8	60	297	4	12	39	3.35	2	38	<5	<5	54	<2	<2	33	9	15	641	0.51	0.07	1.84	0.51	0.06	0.12	957

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

Alice Kwan, Chemist-Teck Cominco G.D.L.

Shee Kwa.

**ANALYTICAL METHODS** 

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regia (soil,sitt) or hot Aqua Regia(rocks).

COMMENTS

Rpt. Value = repeat value of standard STD: DA = In-house Standard



### FJORDLAND EXPLORATION-X04 WJ04-18/147871-993

Report date: 16 DEC 2004

Job V 04-0944R

	Report d	ate. 16 DEC 2004	JOD V 04-0544F
LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0436733	147871	0.112	
R0436734	147872	0.142	
R0436735	147873	0.150	
R0436736	147874	0.330	
R0436737	147875	0.352	
R0436738	147876	0.378	
R0436739	147877	0.638	
R0436740	147878	0.732	
R0436741	147879	0.755	
R0436742	147880	0.807	
R0436743	147881	0.850	
R0436744	147882	0.628	
R0436745	147883	0.977	
R0436746	147884	0.989	
R0436747	147885	0.712	
R0436748	147886	0.921	
R0436749	147887	0.929	
R0436750	147888	0.630	
R0436751	147889	0.867	
R0436752	147890	0.789	
R0436753	147891	0.627	
R0436754	147892	0.927	
R0436755	147893	1.064	
R0436756	147894	1.134	
R0436757	147895	0.957	
R0436758	147896	0.966	
R0436759	147897	1.181	
R0436760	147898	0.715	
R0436761	147899	0.499	
R0436762	147900	0.785	
R0436763	147901	0.887	
R0436764	147902	0.721	
R0436765	147903	0.723	
R0436766	147904	0.638	
R0436767	147905	0.539	
R0436768	147906	0.692	
R0436769	147907	0.947	
R0436770	147908	0.608	
R0436771	147909	1.267	
R0436771	147910	0.615	
R0436772	147911	0.460	
R0436773	147912	0.719	
	147912	0.719	
R0436775	147914	0.798	
R0436776		0.611	
R0436777	147915 147916	0.811	
R0436778	147916	0.342 0.172	
R0436779	147917	0.172	
R0436780	147918		
R0436781	147919	0.474	
R0436782	147920	0.625	
R0436783	147921	0.506	

	Report o	late: 16 DEC 2004	Job V 04-0944F
LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0436784	147922	0.562	
R0436785	147923	0.452	
R0436786	147924	0.319	
R0436787	147925	0.467	
R0436788	147926	0.350	
R0436789	147927	0.697	
R0436790	147928	0.480	
R0436791	147929	0.387	
R0436792	147930	0.502	
R0436793	147931	0.477	
R0436794	147932	0.431	
R0436795	147933	0.674	
R0436796	147934	0.781	
R0436797	147935	0.746	
R0436798	147936	0.875	
R0436799	147937	0.268	
R0436800	147938	0.347	
R0436801	147939	0.266	
R0436802	147940	0.304	
R0436803	147941	0.208	
R0436804	147942	0.227	
R0436805	147943	0.325	
R0436806	147944	0.353	
R0436807	147945	0.451	
R0436808	147946	0.413	
R0436809	147947	0.465	
R0436810	147948	0.479	
R0436811	147949	0.488	
R0436812	147950	0.605	
R0436813	147951	0.349	
R0436814	147952	0.367	
R0436815	147953	0.273	
R0436816	147954	0.305	
R0436817	147955	0.245	
R0436818	147956	0.274	
R0436819	147957	0.233	
R0436820	147958	0.220	
R0436821	147959	0.298	
R0436822	147960	0.286	
R0436823	147961	0.300	
R0436824	147962	0.399	
R0436825	147963	0.195	
R0436826	147964	0.149	
R0436827	147965	0.564	
R0436828	147966	0.250	
R0436829	147967	0.144	
R0436830	147968	0.117	
R0436831	147969	0.173	
R0436832	147970	0.105	
R0436833	147971	0.267	
R0436834	147972	0.169	
R0436835	147973	0.129	
R0436836	147974	0.105	
R0436837	147975	0.062	
R0436838	147976	0.079	
R0436839	147977	<0.034	

LAB NO	FIELD NUMBER	Au(4)	
		g/t	
R0436840	147978	<0.034	
R0436841	147979	1.428	
R0436842	147980	<0.034	
R0436843	147981	<0.034	
R0436844	147982	<0.034	
R0436845	147983	<0.034	
R0436846	147984	<0.034	
R0436847	147985	<0.034	
R0436848	147986	<0.034	
R0436849	147987	<0.034	
R0436850	147988	<0.034	
R0436851	147989	0.200	
R0436852	147990	<0.034	
R0436853	147991	<0.034	
R0436854	147992	<0.034	
R0436855	147993	<0.034	
R0436742 rpt	147880 rpt	0.837	
R0436749 rpt	147887 rpt	0.992	
R0436766 rpt	147904 rpt	0.788	
R0436774 rpt	147912 rpt	0.720	
R0436779 rpt	147917 rpt	0.158	
R0436788 rpt	147926 rpt	0.326	
R0436796 rpt	147934 rpt	0.801	
R0436809 rpt	147947 rpt	0.461	
R0436818 rpt	147956 rpt	0.221	
R0436824 rpt	147962 rpt	0.382	
R0436830 rpt	147968 rpt	0.116	
R0436843 rpt	147981 rpt	<0.034	
Rpt. Value	STD: T3(1AT)	5.042	
Rpt. Value	STD: T3(1AT)	4.956	
Rpt. Value	STD: T3(1AT)	5.025	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

### **ANALYTICAL METHODS**

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

### COMMENTS:

Rpt. Value = repeat value of standard STD: T3(1AT) = In-house standard

Steve Clark, Certified B.C. Assayer-Teck Cominco G.D.L.

### FJORDLAND EXPLORATION-X04 WJ04-18/147871-993



Report date: 17 DEC 2004 Job V 04-0944R

	Neport date	DEC 2				~																				JOD 4	04-0944	HK	
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	NI ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	TI %	Ai %	Ca %	Na %	K %	F ppm
R0436733	147871	33	28	729	0.8	8	151	<1	14	3	4.61	105	12	10	<5	92	2	7	60	10	<2	2138	1.36	0.02	1.58	3.19	0.06	0.07	940
R0436734	147872	64	14	757	1.4	8	72	<1	14	3	4.51	25	15	<5	<5	105	<2	6	60	10	3	2108	1.27	0.05	1.56	3.09	0.07	0.07	919
R0436735	147873	29	11	815	<.4	6	74	<1	14	1	4.80	13	16	5	<5	113	<2	8	64	10	2	2164	1.41	0.06	1.73	2.68	0.07	0.07	981
R0436736	147874	131	15	771	1.6	24	98	<1	14	2	5.07	65	9	7	<5	115	<2	2	79	12	<2	2378	1.49	0.06	1.89	3.00	0.08	0.06	967
R0436737	147875	291	15	826	2.5	6	50	1	15	3	5.28	39	16	6	<5	118	<2	7	68	11	<2	2553	1.59	0.08	1.85	2.96	0.08	0.05	955
R0436738	147876	272	17	828	1.3	10	72	1	17	3	5.30	66	13	<5	<5	124	<2	9	75	11	5	2611	1.63	0.07	1.80	2.90	0.08	0.05	962
R0436739	147877	464	32	972	1.6	35	63	5	14	1	4.92	97	16	<5	<5	97	<2	7	67	10	<2	2030	1.13	0.07	1.38	2.56	0.08	0.06	945
R0436740	147878	681	59	597	1.0	37	112	2	13	1	4.72	159	11	<5	<5	93	<2	6	73	11	<2	2122	1.34	0.02	1.45	3.20	0.07	0.06	967
R0436741	147879	731	49	473	0.9	23	92	1	15	<1	5.13	172	9	<5	<5	99	<2	9	67	13	<2	1955	1.29	0.05	1.49	2.95	0.08	0.07	1032
R0436742	147880	702	42	381	1.1	29	68	<1	14	<1	4.97	205	8	6	<5	98	<2	2	72	13	<2	2028	1.24	0.03	1.44	3.45	0.08	0.07	1022
R0436743	147881	825	41	326	0.8	13	29	1	14	<1	5.18	111	12	<5	<5	109	<2	6	70	12	<2	1919	1.13	0.10	1.34	2.78	0.07	0.06	1022
R0436744	147882	589	28	772	8.0	2	30	4	14	<1	5.34	58	12	<5	<5	115	<2	5	78	8	<2	1642	1.46	0.16	1.49	1.83	0.08	0.06	1071
R0436745	147883	1515	52	764	1.6	10	24	4	14	2	5.74	80	14	<5	<5	119	<2	4	59	8	<2	1625	1.31	0.16	1.23	1.77	0.08	0.07	1024
R0436746	147884	1183	36	426	1.5	3	20	2	13	<1	5.12	45	18	<5	<5	103	<2	<2	84	8	<2	1525	1.25	0.14	1.28	2.20	0.07	0.06	999
R0436747	147885	1025	47	280	1.2	<2	20	1	13	<1	5.12	32	15	<5	<5	119	2	6	73	7	<2	1445	1.05	0.16	1.25	2.11	0.08	0.07	1018
R0436748	147886	1134	40	383	1.8	5	19	2	12	1	4.98	32	17	<5	<5	111	<2	9	88	7	<2	1480	1.19	0.16	1.25	2.15	0.08	0.06	1022
R0436749	147887	1289	26	450	1.5	2	18	3	12	<1	5.40	17	15	<5	<5	105	<2	6	78	8	<2	1547	0.80	0.12	1.14	2.36	0.08	0.06	1044
R0436750	147888	914	28	335	1.2	5	13	1	13	<1	5.32	16	11	<5	<5	100	<2	5	71	10	<2	1889	0.79	0.05	1.08	2.97	0.07	0.07	1024
R0436751	147889	1154	18	269	1.2	<2	75	1	13	1	5.35	24	12	<5	<5	107	<2	3	67	9	<2	1658	0.85	0.11	0.97	2.55	0.08	0.07	1016
R0436752	147890	1079	13	201	1.1	8	37	<1	13	<1	5.27	21	8	<5	<5	111	<2	5	77	11	<2	1820	0.82	0.07	0.94	2.26	0.08	0.06	1031
R0436753	147891	939	20	297	0.9	<2	17	<1	14	1	5.50	21	15	<5	<5	95	<2	5	85	14	<2	2152	1.06	0.03	1.16	3.09	0.07	0.06	1023
R0436754	147892	1286	11	314	1.2	8	59	2	14	<1	5.37	18	11	<5	<5	94	2	6	88	13	6	1964	0.97	0.03	1.19	1.98	0.10	0.05	1027
R0436755	147893	1442	13	216	1.5	10	32	<1	14	2	6.64	17	15	<5	<5	111	<2	7	59	11	<2	2266	1.02	0.03	1.17	2.84	0.10	0.06	927
R0436756	147894	1473	11	183	0.9	<2	40	<1	14	3	6.03	20	40	<5	<5	150	<2	6	74	9	<2	1865	0.97	0.09	1.07	2.65	0.08	0.06	915
R0436757	147895	1687	16	232	1.3	6	154	1	14	2	5.62	18	34	<5	<5	118	<2	6	80	7	<2	1350	1.21	0.14	1.08	1.68	0.08	0.05	916
R0436758	147896	1659	13	180	0.9	<2	76	<1	13	3	5.69	24	40	<5	<5	115	<2	9	79	6	<2	1307	0.94	0.12	1.04	1.66	0.07	0.05	886
R0436759	147897	2359	17	272	1.7	5	53	1	17	4	6.98	20	38	<5	<5	130	<2	10	51	9	<2	2002	0.99	0.10	1.09	2.88	0.09	0.07	890
R0436760	147898	1206	18	182	0.7	26	46	<1	13	3	5.44	18	23	<5	<5	103	<2	7	55	7	<2	1644	0.76	0.07	0.88	2.22	0.06	0.08	890
R0436761	147899	1164	25	408	1.2	243	49	2	22	3	6.83	19	39	<5	<5	63	<2	13	32	11	<2	5000	1.12	<.01	0.37	2.43	0.03	0.24	699
R0436762	147900	1638	38	357	1.5	241	25	2	14	2	6.09	29	29	<5	<5	73	<2	7	29	11	<2	3391	0.79	<.01	0.38	1.61	0.04	0.14	809
R0436763	147901	1730	21	220	1.3	72	40	<1	13	2	5.85	19	25	5	<5	91	<2	6	38	11	4	2477	0.43	<.01	0.46	0.56	0.06	0.09	936
R0436764	147902	1389	42	225	1.1	48	26	1	13	2	6.39	11	20	5	<5	96	<2	2	49	11	<2	2253	0.46	<.01	0.49	0.79	0.06	0.09	905
R0436765	147903	1248	24	181	0.7	60	22	1	10	2	5.85	15	23	<5	<5	98	<2	4	53	12	<2	2362	0.48	<.01	0.46	2.79	0.06	80.0	941
R0436766	147904	1183	35	259	1.4	136	298	2	12	1	5.33	10	19	11	<5	82	<2	3	58	12	<2	2914	0.74	<.01	0.58	2.93	0.05	0.13	875
R0436767	147905	6087	25	93	1.5	8	26	1	24	714	8.28	26	920	<5	<5	45	<2	10	116	6	<2	832	0.90	<.01	0.89	2.07	0.07	0.43	885
R0436768	147906	1307	33	159	1.0	65	384	2	14	3	5.56	11	26	8	<5	100	<2	8	73	12	2	1860	0.43	<.01	0.56	3.40	0.07	0.07	835
R0436769	147907	1385	12	122	1.4	24	32	1	12	2	5.60	9	24	5	<5	139	<2	4	69	10	<2	1442	0.43	0.03	0.73	1.63	80.0	0.06	990

Report date: 17 DEC 2004 Job V 04-0944R

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W Ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	K %	РРm
R0436770	147908	982	14	123	0.6	18	 55	 1	12	2	 5.11	 R	17	 7	 <5	120	<2	 <2	76	13	 <2	1588	0.43	0.01	0.79	2.01	0.08	^	
R0436771	147909	1290	15	96	0.9	34	49	<1	9	<1	4.77	14	12	· <5	<5	91	<2	3	70	12	<2	1246	0.33	<.01	0.64	1.04	0.07	0.06 0.05	941 1077
R0436772	147910	1038	13	89	0.7	19	79	<1	8	1	4.88	9	13	<5	<5	75	<2	<2	61	13	7	1451	0.28	<.01	0.56	1.00	0.07	0.06	1108
R0436773	147911	809	15	104	0.6	8	345	1	8	1	4.45	5	16	<5	<5	66	<2	<2	70	15	4	1460	0.37	<.01	0.54	0.97	0.07	0.05	1010
R0436774	147912	1521	10	136	0.9	8	81	<1	11	1	5.06	11	20	<5	<5	109	<2	<2	75	10	<2	1323	0.62	0.05	1.18	1.91	0.18	0.07	1024
R0436775	147913	1220	14	119	2.1	3	118	<1	10	<1	5.25	8	23	<5	<5	83	<2	5	63	11	<2	1371	0.52	0.04	0.87	2.26	0.13	0.07	1008
R0436776	147914	938	10	105	0.6	22	82	<1	10	<1	4.87	8	19	<5	<5	73	<2	5	65	12	<2	1398	0.48	0.03	0.76	2.06	0.12	0.06	1019
R0436777	147915	910	25	136	1.1	164	26	1	9	2	4.23	9	25	<5	<5	55	<2	3	44	12	<2	1384	0.44	<.01	0.42	1.12	0.08	0.13	878
R0436778	147916	564	70	219	1.1	143	25	1	17	3	5.28	5	12	<5	<5	51	<2	4	56	13	<2	2318	0.93	<.01	0.44	2.03	0.07	0.14	1035
R0436779	147917	130	25	277	<.4	6	42	1	13	4	5.94	4	11	6	<5	63	<2	9	39	13	<2	3128	0.93	<.01	0.41	1.32	0.07	0.22	931
R0436780	147918	1046	22	172	0.9	214	23	1	11	3	5.33	7	15	<5	<5	72	<2	6	59	9	6	1687	0.43	<.01	0.51	0.76	0.08	0.09	1036
R0436781	147919	744	161	304	1.9	128	76	2	39	7	7.88	15	14	<5	<5	67	<2	6	53	10	<2	2479	1.00	<.01	0.51	1.94	0.07	0.16	803
R0436782	147920	1210	19	173	0.7	159	606	1	11	3	5.83	10	19	5	<5	110	<2	3	68	11	<2	1673	0.65	<.01	0.58	1.47	0.09	0.07	915
R0436783	147921	774	15	195	0.5	46	184	1	14	3	4.92	9	22	<5	<5	118	<2	5	69	12	<2	1655	0.69	0.03	0.79	2.53	0.09	0.06	1041
R0436784	147922	902	17	206	0.4	27	150	1	12	3	5.17	10	21	9	<5	111	<2	5	60	9	<2	1650	0.78	0.06	0.82	2.76	0.09	0.07	995
R0436785	147923	793	22	213	0.7	39	96	1	14	3	5.25	8	26	<5	<5	133	<2	10	78	11	<2	2054	0.65	0.02	0.76	3.70	0.10	0.07	966
R0436786	147924	615	6	164	0.5	4	150	1	13	3	4.81	9	21	<5	<5	128	<2	7	65	10	6	1633	0.75	0.04	0.85	2.72	0.10	0.07	948
R0436787	147925	821	7	141	0.6	13	56	1	13	2	4.79	10	25	<5	<5	128	<2	4	65	10	2	1443	0.69	0.04	0.86	2.39	0.10	0.06	919
R0436788	147926	573	18	131	0.6	8	108	<1	10	1	4.61	7	18	7	<5	104	<2	2	75	14	<2	1843	0.44	<.01	0.65	4.32	0.10	0.09	936
R0436789	147927	1236	21	158	1.1	16	207	1	14	3	4.88	13	22	<5	<5	108	<2	8	76	10	<2	1614	0.64	0.02	0.86	2.96	0.13	0.06	923
R0436790	147928	797	6	152	0.8	4	101	1	13	4	5.19	14	34	<5	<5	140	<2	3	59	7	<2	1227	0.82	0.06	1.00	1.56	0.13	0.05	898
R0436791	147929	567	6	152	0.7	<2	90	<1	15	4	5.50	12	32	<5	<5	184	<2	7	74	8	<2	1290	0.94	0.07	1.24	1.85	0.16	0.06	989
R0436792	147930	748	9	161	0.8	6	100	<1	12	3	4.74	13	29	<5	<5	123	<2	8	69	9	<2	1535	0.98	0.05	1.16	2.42	0.15	0.06	923
R0436793	147931	796	12	158	0.7	4	164	1	13	4	5.08	8	31	<5	<5	114	<2	9	69	12	<2	1695	0.72	0.03	0.95	2.81	0.13	0.07	845
R0436794	147932	712	14	178	0.6	19	49	<1	13	3	4.76	8	29	<5	<5	99	<2	<2	64	12	<2	1702	0.61	0.02	0.84	2.43	0.11	0.08	910
R0436795	147933	1033	16	209	0.6	12	24	1	14	3	5.46	12	20	<5	<5	114	<2	4	62	11	<2	2156	0.56	0.02	0.64	2.44	0.09	0.06	865
R0436796	147934	933	28	285	1.0	20	66	1	13	3	4.99	12	16	5	<5	85	<2	6	69	10	<2	2401	0.85	0.02	0.64	3.74	0.09	0.05	759
R0436797	147935	1119	17	273	1.0	12	156	1	14	3	5.51	14	24	<5	<5	96	<2	7	68	11	<2	2313	0.76	0.01	0.76	4.06	0.09	80.0	937
R0436798	147936	1205	17	220	1.0	31	41	<1	14	3	5.71	17	17	9	<5	93	<2	11	62	11	<2	2111	0.65	<.01	0.51	3.81	0.07	0.13	849
R0436799	147937	532	26	185	1.1	77	298	1	13	2	4.59	6	14	6	<5	96	<2	7	80	13	<2	2598	2.07	<.01	0.49	5.56	0.09	0.12	792
R0436800	147938	599	9	146	8.0	10	52	<1	13	3	4.87	9	25	<5	<5	137	<2	5	66	8	<2	1226	0.77	0.05	88.0	2.10	0.11	0.06	963
R0436801	147939	425	14	218	0.5	5	40	1	18	3	5.94	6	11	<5	<5	149	<2	10	50	10	<2	1452	1.53	0.10	1.43	2.23	0.09	0.08	1320
R0436802	147940	492	6	162	2.4	4	20	<1	18	2	6.71	11	8	<5	<5	175	<2	9	69	9	11	1104	1.56	0.13	1.57	1.60	0.13	0.06	1482
R0436803	147941	389	8	130	0.6	3	39	<1	17	<1	6.37	7	9	5	<5	176	<2	8	98	10	<2	923	1.75	0.13	1.96	1.41	0.34	0.06	1473
R0436804	147942	470	11	150	0.7	2	32	<1	18	3	6.45	8	9	<5	<5	183	<2	8	134	9	<2	972	1.57	0.14	1.93	1.56	0.29	0.06	1462
R0436805	147943	581	7	158	8.0	5	32	1	17	1	6.48	7	5	<5	<5	168	<2	10	76	11	<2	1153	1.40	0.11	1.80	1.82	0.24	0.06	1464
R0436806	147944	536	14	189	0.9	5	29	1	26	3	9.49	11	13	<5	<5	150	<2	8	90	9	<2	878	1.31	0.12	2.40	1.50	0.16	0.05	2197
R0436807	147945	688	10	198	0.9	3	39	<1	16	3	5.58	9	14	<5	<5	149	<2	6	67	9	<2	1027	1.23	0.12	1.30	1.94	0.10	0.07	1144
R0436808	147946	701	9	291	0.9	2	44	1	12	4	5.10	6	19	5	<5	152	<2	5	74	7	<2	937	1.00	0.10	1.09	1.43	0.14	0.06	974
R0436809	147947	756	12	263	1.1	2	49	1	16	3	5.39	9	23	<5	<5	141	<2	8	74	6	7	831	0.82	0.10	1.31	1.24	0.17	0.06	1031
R0436810	147948	832	18	222	1.1	9	48	<1	14	4	5.19	7	33	<5	<5	127	<2	5	69	7	<2	1057	0.69	90.0	1.00	1.68	0.14	0.06	955
R0436811	147949	843	21	216	1.1	<2	43	<1	14	5	5.46	13	29	<5	<5	150	<2	8	60	7	<2	974	0.73	0.06	0.97	1.62	0.12	0.06	950
R0436812	147950	6206	23	95	1.6	9	26	1	25	719	8.43	29	930	<5	<5	43	3	14	118	5	<2	851	0.90	<.01	0.81	2.13	0.08	0.40	902

Global Discovery Labs 1486 East Pender Street Vancouver, B.C. Canada V5L 1V8 Phone: (604) 685-3032 Fax: (604) 844-2686

Report date: 17 DEC 2004 Job V 04-0944R

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	T1 %	Al %	Ca %	Na %	K %	P Ppm
R0436813	147951	644	20	218	0.8	 5	 88	 1	16	5	5.31	12	27	<5	 <5	 172	2	9	 73	5	 <2	824	0.89	0.10	1.10	1.35	0.14	0.06	
R0436814	147952	705	36	334	1.1	7	106	1	16	5	5.36	14	30	<5	<5	146	<2	2	62	6	2	918	0.89	0.10	1.04	1.79	0.14 0.11	0.06 0.06	905 921
R0436815	147953	558	28	264	0.9	8	153	1	16	7	4.81	12	25	<5	<5	152	<2	3	68	7	<2	851	1.14	0.03	1.27	1.49	0.11	0.06	921 927
R0436816	147954	544	12	201	0.7	3	88	1	13	4	4.63	16	20	<5	<5	126	<2	5	62	7	<2	803	1.21	0.08	1.13	1.32	0.13	0.05	927 977
R0436817	147955	346	14	238	0.6	<2	208	1	9	1	3.87	12	22	<5	<5	92	<2	<2	79	8	<2	829	1.05	0.13	1.15	1.55	0.09	0.05	1109
R0436818	147956	339	16	283	0.5	<2	216	1	9	<1	3.79	14	16	<5	<5	68	<2	8	85	9	<2	1226	0.87	0.05	1.11	2.59	0.08	0.05	1074
R0436819	147957	324	11	200	0.6	4	207	1	8	<1	3.42	14	14	<5	<5	58	<2	5	86	10	<2	1133	0.81	0.03	1.08	2.56	0.09	0.05	1096
R0436820	147958	289	10	187	0.6	<2	105	1	8	<1	3.91	14	23	<5	<5	77	<2	7	73	9	<2	1003	0.70	0.08	0.97	2.28	0.10	0.06	1131
R0436821	147959	389	13	206	0.7	5	182	1	10	1	3.72	10	16	<5	<5	75	<2	4	73	10	<2	1185	0.79	0.04	0.95	2.56	0.10	0.05	1060
R0436822	147960	349	24	331	0.6	5	119	2	7	<1	3.83	17	18	<5	<5	77	<2	2	74	10	<2	1094	0.76	0.06	0.96	2.30	0.09	0.05	1098
R0436823	147961	362	8	190	0.7	<2	105	<1	9	1	3.51	9	22	7	<5	68	<2	<2	74	10	<2	912	0.78	0.05	1.04	1.88	0.09	0.04	1098
R0436824	147962	567	15	202	0.9	6	51	1	9	1	3.68	7	18	<5	<5	66	<2	2	85	11	<2	1119	0.87	0.04	1.07	2.52	0.09	0.05	1085
R0436825	147963	254	12	236	0.7	6	42	<1	10	1	3.78	6	17	<5	<5	75	<2	6	88	10	<2	1195	0.86	80.0	1.07	2.34	0.10	0.05	1117
R0436826	147964	198	8	220	0.5	8	81	1	8	<1	3.52	8	18	<5	<5	70	<2	<2	81	9	<2	1012	0.88	0.07	0.97	1.94	0.10	0.04	1088
R0436827	147965	560	6	300	1.6	5	82	<1	8	1	3.76	13	26	<5	<5	81	<2	5	90	8	3	862	0.81	0.12	1.15	1.63	0.11	0.04	1086
R0436828	147966	335	9	267	1.2	5	70	1	7	<1	3.68	11	16	<5	<5	81	<2	<2	106	10	<2	1082	1.08	80.0	1.12	2.22	0.10	0.04	1097
R0436829	147967	149	13	227	0.6	3	53	<1	10	<1	3.41	17	20	<5	<5	70	<2	3	87	9	<2	955	0.89	0.09	1.26	1.94	0.09	0.04	1150
R0436830	147968	180	9	188	0.6	3	46	<1	12	3	4.00	19	20	<5	<5	99	<2	7	89	9	2	1098	1.11	0.08	1.38	1.96	0.09	0.04	1116
R0436831	147969	197	7	288	0.9	<2	72	1	12	<1	3.11	12	17	<5	<5	64	<2	3	75	9	<2	932	0.99	0.02	1.19	1.74	80.0	0.03	1174
R0436832	147970	177	9	356	0.7	2	55	1	13	3	4.38	12	23	5	<5	119	<2	2	107	8	<2	1082	1.09	0.11	1.37	2.14	0.12	0.04	982
R0436833	147971	324	13	315	1.4	<2	48	1	14	4	4.31	12	22	<5	<5	123	<2	5	143	9	<2	1078	1.06	0.12	1.35	2.78	0.13	0.04	903
R0436834	147972	222	12	273	1.1	<2	41	<1	15	4	4.13	17	19	5	<5	104	<2	9	108	11	<2	1202	1.27	0.04	1.62	2.90	0.15	0.04	933
R0436835	147973	189	13	313	1.0	<2	36	1	13	4	3.83	18	16	<5	<5	108	<2	5	119	13	<2	1472	1.15	0.01	1.47	4.46	0.15	0.04	917
R0436836	147974	161	17	380	0.7	6	31	1	14	5	4.84	36	19	6	<5	125	<2	9	72	12	<2	1573	1.49	0.01	1.55	3.13	0.08	0.05	967
R0436837	147975	102	13	534	0.6	<2	31	2	16	7	6.00	12	23	<5	<5	181	<2	7	55	12	2	1855	2.02	<.01	2.14	2.54	0.08	0.06	990
R0436838	147976	107	28	667	0.9	<2	94	3	16	5	4.78	6	9	9	<5	129	<2	6	72	10	<2	1722	1.82	<.01	2.12	3.28	0.08	0.12	969
R0436839	147977	81	18	270	<.4	2	231	<1	14	6	5.31	5	14	5	<5	146	<2	6	81	14	<2	1910	1.81	<.01	2.07	5.03	0.06	0.25	928
R0436840	147978	65	23	242	<.4	3	311	<1	14	6	5.71	3	17	5	<5	168	<2	9	80	14	<2	1628	1.61	<.01	2.00	4.88	0.07	0.21	981
R0436841	147979	64	632	973	0.6	17	120	8	16	5	4.76	<2	13	5	<5	109	<2	4	79	12	<2	1829	1.27	<.01	1.24	4.90	0.05	0.24	936
R0436842	147980	67	18	190	0.4	7	52	<1	14	5	5.45	<2	15	8	<5	126	<2	2	99	13	<2	1654	1.55	<.01	1.44	4.31	0.07	0.20	942
R0436843	147981	60	17	127	<.4	5	27	<1	13	4	4.88	4	9	<5	<5	96	<2	8	113	13	<2	1399	1.40	<.01	1.30	4.30	0.08	0.10	893
R0436844	147982	61	15	117	0.4	6	42	<1	18	6	5.14	<2	9	11	<5	132	<2	11	67	10	<2	1361	1.52	<.01	1.93	2.75	0.08	0.11	1032
R0436845	147983	108	17	94	0.4	14	72	<1	17	4	4.70	<2	9	<5	<5	94	<2	7	62	12	<2	1359	1.11	<.01	1.44	3.53	0.06	0.15	912
R0436846	147984	168	31	97	0.4	21	112	<1	18	4	4.81	2	10	5	<5	101	<2	5	55	10	<2	1441	1.22	<.01	1.58	3.52	0.06	0.21	943
R0436847	147985	49	11	78	<.4	21	185	<1	13	5	4.40	2	10	<5	<5	100	<2	10	54	11	2	1279	1.20	<.01	1.44	2.94	0.06	0.18	950
R0436848	147986	64	6	69	<.4	11	136	<1	14	4	3.98	<2	9	<5	<5	78	<2	5	46	10	<2	1220	1.31	<.01	1.69	3.23	0.05	0.22	992
R0436849	147987	56	11	68	<.4	12	194	<1	15	4	4.61	<2	11	7	<5	99	<2	8	45	11	2	1412	1.17	<.01	1.37	3.44	0.05	0.26	950
R0436850	147988	66	10	65	<.4	11	103	<1	14	3	4.46	<2	10	7	<5	73	<2	6	45	11	<2	1291	0.85	<.01	1.05	3.79	0.04	0.27	905
R0436851	147989	59	299	295	0.5	9	41	3	17	5	4.40	3	8	<5	<5	58	<2	6	55	13	<2	1270	0.93	<.01	0.87	4.18	0.05	0.22	920
R0436852	147990	67	10	66	<.4	8	50	<1	15	3	4.32	4	7	11	<5	67	<2	8	47	8	4	942	1.06	<.01	1.35	2.24	0.06	0.18	1109
R0436853	147991	52	8	66	<.4	12	111	<1	9	2	3.79	<2	6	<5	<5	65	<2	<2	46	9	<2	1048	0.83	<.01	0.96	3.03	0.06	0.21	1113
R0436854	147992	71	8	69	<.4	5	44	<1	18	5	4.72	<2	13	<5	<5	77	<2	4	52	12	<2	1259	0.95	<.01	0.76	4.26	0.05	0.21	924
R0436855	147993	81	11	64	<.4	10	47	<1	15	4	4.09	8	10	5	<5	54	<2	6	53	12	<2	1253	0.78	<.01	0.52	4.16	0.05	0.27	947

Report date: 17 DEC 2004

LAB NO	FIELD	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Мо	Cr	Bí	Sb	٧	Sn	W	Sr	Υ	La	Mn	Mg	TI	Al	Ca	Na	ĸ	P
	NUMBER	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm						
R0436743 rpt	147881 rpt	809	36	323	0.8	12	29	<1	13	<1	5.10	113	10	<5	<5	104	2	7	70	11	4	1921	1.11	0.10	1.31	2,77	0.08	0.06	1026
R0436756 rpt	147894 rpt	1503	14	187	0.9	<2	41	<1	15	2	6.15	20	30	5	<5	152	<2	7	74	8	3	1901	1.01	80.0	1.07	2.68	0.09	0.06	942
R0436768 rpt	147906 rpt	1340	34	161	1.2	68	389	2	13	3	5.57	13	24	9	<5	109	<2	6	73	12	<2	1882	0.43	<.01	0.56	3.45	0.07	0.06	832
R0436777 rpt	147915 rpt	878	26	131	1.1	161	25	1	9	1	4.09	9	26	<5	<5	64	<2	4	44	12	8	1394	0.42	<.01	0.41	1.12	0.08	0.12	849
R0436793 rpt	147931 rpt	776	12	156	0.7	6	161	<1	12	3	5.05	9	31	<5	<5	110	<2	5	68	11	<2	1683	0.72	0.02	0.90	2.77	0.12	0.06	841
R0436816 rpt	147954 rpt	514	11	188	0.9	5	88	1	12	3	4.33	16	21	<5	<5	128	<2	8	70	7	<2	865	1.23	0.13	1.17	1.45	0.11	0.06	931
R0436827 rpt	147965 rpt	579	7	304	1.6	3	84	1	8	1	3.77	16	24	<5	<5	81	<2	2	85	8	<2	840	08.0	0.10	1.10	1.57	0.11	0.04	1087
R0436845 rpt	147983 rpt	103	17	93	<.4	18	60	<1	17	4	4.59	<2	7	<5	<5	89	<2	6	61	12	<2	1355	1.07	<.01	1.31	3.50	0.06	0.12	899
R0436854 rpt	147992 rpt	79	7	66	<.4	5	41	<1	16	4	4.48	<2	13	10	<5	75	<2	6	52	11	<2	1265	0.95	<.01	0.77	4.26	0.05	0.23	871
Rpt. Value	STD: DA	125	233	677	6.2	56	420	4	13	42	3.53	5	41	<5	<5	71	<2	5	37	10	15	703	0.60	80.0	1.96	0.55	0.07	0.13	1001
Rpt. Value	STD: DA	137	224	673	6.8	56	338	4	13	41	3.45	5	39	<5	8	68	<2	<2	36	9	16	694	0.54	0.07	1.86	0.54	0.07	0.13	987
Rpt. Value	STD: DA	134	219	667	6.1	56	317	4	12	40	3.41	4	38	<5	<5	68	<2	<2	35	10	12	684	0.55	0.07	1.84	0.54	0.07	0.13	982
Rpt. Value	STD: DA	130	224	657	6.7	54	411	4	14	44	3.37	4	43	<5	<5	71	<2	2	37	10	15	703	0.61	0.10	1.98	0.57	0.04	0.13	987

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE: 0.5 gram sample digested in hot reverse aqua regla (soll,silt) or hot Aqua Regia(rocks).

COMMENTS

Rpt. Value = repeat value of standard STD: DA = In-house Standard

Alice Kwan, Chemist-Teck Cominco G.D.L.

Job V 04-0944R



### **FJORDLAND EXPLORATION-X04**

**GDL-ALS** Comparison

(GDL jobs: V04-0873R/893R/917R/922R/936R/944R)

Report date: 10 JAN 2005

		GDL	ALS	ALS	ALS	
LAB NO	FIELD NUMBER	Au(4)	Au	Au check	Au check	
		g/t	ppm	ppm	ppm	
R0434795	147200	0.565	0.544			
R0434892	147297	1.127	1.255			
R0435410	147408	1.048	1.060			
R0435525	147523	0.518	0.539			
R0436252	147614	0.267	0.164			
R0436252 rpt	147614 rpt	0.239				
R0436360	147722	1.186	1.315			
R0436433	147328	0.255	0.906			
R0436433 rpt	147328 rpt	0.341		0.329	0.588	
R0436609	147807	2.929	2.590			
R0436662	147860	0.253	0.256			
R0436662 rpt	147860 rpt			0.524	0.357	
R0436755	147893	1.064	0.852			
R0436828	147966	0.250	0.289			
R0436851	147989	0.200	0.221			

### **ANALYTICAL METHODS**

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T. - analysis by GDL Au Fire Assay/AA Finish (30 g) - analysis by ALS



### **ALS Chemex**

**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218

To: FJORDLAND EXPLORATION LTD. 510 - 510 BURRARD STREET VANCOUVER BC V6C 3A8 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 13-JAN-2005

Account: PEC

### CERTIFICATE OF ANALYSIS VA05000211

-



### **ALS Chemex**

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: FJORDLAND EXPLORATION LTD. 510 - 510 BURRARD STREET **VANCOUVER BC V6C 3A8** 

Page: 2 - A

Total # Pages: 2 (A) Finalized Date: 21-JUL-2004

Account: PEC

							С	ERTIFICATE C	F ANALYSIS	VA040433	08
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Cu-AA45 Cu ppm 1	Ac	ME					
C202518 C202549 C202571 C202598 C202639 C202683					1.671 1.619 1.232 2.941 4452 .308	2387 138) 2015 1072 1253 973					



### **ALS Chemex**

**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

ALS Canada Ltd.

212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: FJORDLAND EXPLORATION LTD. 510 - 510 BURRARD STREET **VANCOUVER BC V6C 3A8** 

Page: 2 - A

Total # Pages: 2 (A) Finalized Date: 21-JUL-2004

Account: PEC

					CERTIFICATE OF ANALYSIS VA04043308
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Cu-AA45 Cu ppm 1	
C202518		0.20	1.715	2360	
C202549		0.20	0.989	1405	
C202571		0.26	1.105	1875	
C202598		0.26	0.810	1130	
C202639		0.18	0.435	1255	
C202683		0.16	0.307	629	
		i			

### **APPENDIX C**

### **PETROGRAPHIC REPORT**

# PETROGRAPHIC REPORT SAMPLE, WJ-04-32, 780'

28 September 2004

Prepared For: Victor Tanaka
Fjordland Exploration Inc.
510 Burrard Street, Suite 510
Vancouver, British Columbia V6C 3A8

### PetraScience Consultants Inc.

700 – 700 West Pender Street Vancouver, B.C. V6C 1G8 Canada phone: 604.684.5857 fax: 604.222.4642

info@petrascience.com www.petrascience.com

### **Background**

Victor Tanaka of Fjordland Exploration Inc submitted one rock sample for petrographic analysis. A general description of the geology was provided, however no detailed geology or spatial information was made available. The goal of the work was basic transmitted and reflected light observations, including description of lithologies, alteration and mineralization. Anne Thompson carried out the analysis at the PetraScience office, Vancouver, B.C. The observations are summarized below and a detailed table and photographs follow. All percentages in the descriptions are approximate.

Sample Description: WJ-04-32, 780'

**LITHOLOGY**: Monzonite (porphyritic)

ALTERATION TYPE: K-feldspar, epidote, titanite; chlorite, carbonate

### **Hand Sample Description:**

The sample is a fine-grained, porphyritic rock which is characterized by zones of dark grey and pink dominant groundmass. Pink dominant typically contains fine-grained sulfide (chalcopyrite). The zones appear to have diffuse boundaries. Rock is moderately to strongly magnetic, and does not respond to HCl.

### Thin Section Description:

The section includes diffuse zones of alteration within apparently relatively fresh monzonite. The fresh material consists of crowded feldspar phenocrysts. The phenocrysts are dominantly plagioclase, with lesser likely orthoclase (based on twinning). Clinopyroxene is the dominant mafic phase, and is partly altered in this zone along fractures. The groundmass is cryptocrystalline and likely consists dominantly of feldspar. Magnetite, with minor hematite alteration, occurs throughout.

The altered zones appear brown in plane light, and only vague outlines of original feldspars are present. Clinopyroxene is also moderately altered to chlorite and carbonate, although outlines and remnant pyroxene are present. Based on evidence from the K-feldspar staining, it appears the groundmass in these zones now consists dominantly of K-feldspar. Also present is abundant irregular grains of chalcopyrite, magnetite (as throughout the entire sample), titanite, and apatite. Carbonate is present in thin discontinuous veinlets and minor small aggregates replacing pyroxene. The veinlet cross-cut both chalcopyrite and 'fresh' zones, implying alteration post deposition of chalcopyrite.

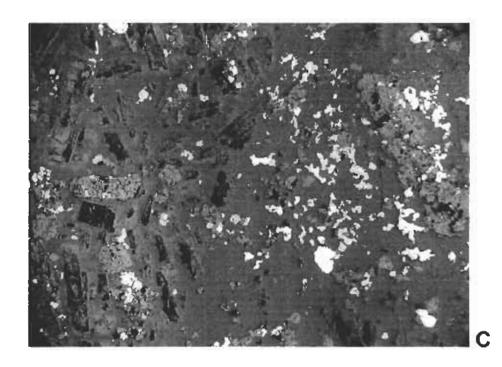
Overall, the boundaries appear diffuse, giving the impression of irregular alteration zones, as opposed to breccia textures. However, alteration of an intrusive breccia may produce similar textures. No biotite was observed in the sample.

Sample: WJ-04-32, 780'

### **MAJOR MINERALS**

Mineral	%	Distribution & Characteristics	Optical
Plagioclase	45	fine to medium-grained, fresh to strongly altered, rims zoned, occurs dominantly as crowded phenocrysts; some patchy replacement by sericite	
K-feldspar	15	Phenocrysts within "fresh" rock (typically 1mm); percentage partly based on staining	
Clinopyroxene	15	Phenocrysts, similar grain size to feldspar phenocrysts (0.5-1mm); typically more altered (to chlorite and carbonate) in zones with chalcopyrite	Incl . ext, pale grn
Groundmass	10	aphanitic, cryptocrystalline in "fresh rock" and in altered zones, likely to be composed of K-feldspar	

### MINOR MINERALS


Mineral	%	Distribution & Characteristics	Optical
Magnetite	4	fine-grained, anhedral grains and aggregates, occurs as replacement of mafic phases and disseminated, partly replaced by hematite	
Quartz	3	Anhedral, rare grains, typically forming discontinuous microveinlet	
Chalcopyrite	3	very fine-grained, anhedral, occurs disseminated, locally inclusions of chalcopyrite and/or pyrrhotite	
Carbonate	2	discontinuous veinlets and small aggregates (typically replacing pyroxene); veinlets x-cut all areas of sample	Pale pink/brn
Muscovite (sericite)	2	very fine-grained, anhedral, occurs as patchy replacement of plagioclase phenocrysts	
Rutile	tr	cluster of euhedral grains in brown, K-feldspar groundmass	
Apatite	tr	euhedral, needles to hexagonal grains; more abundant in zones with chalcopyrite and K-feldspar alteration	
Chlorite	tr	very fine-grained, anhedral, occurs as replacement of clinopyroxene	
Epidote	tr	very fine-grained, anhedral aggregates to individual grains, increased abundance in zones with sulphides	
Pyrite	tr	fine to very fine-grained, anhedral grains with chalcopyrite	
Hematite	tr	very fine-grained, occurs partly replacing magnetite	



A) Brown zone on right consists of fine-grained K-feldspar with chalcopyrite and magnetite as opaques. Remnant clinopyroxene appears as phenocryst in upper right. Area to left is "fresh" crowded porphyritic monzonite. PPL, FOV ~6mm.



B) Same view as above, note well defined phenocrysts in zone to left, with less altered clinopyroxene. XPL, FOV~6mm.



C) Same view as above, note concentration of chalcopyrite in zone of K-feldspar alteration. Grey opaques are magnetite with minor hematite. One large pyrite grain occurs in center lower portion of sulfides. RL, FOV~6mm.



### MINERALOGY AND GEOCHEMISTRY

534 ELLIS STREET, NORTH VANCOUVER, B.C., CANADA V7H 2G6

TELEPHONE (604) 929-5867

Report for:

Global Discovery Labs, 1486 East Pender Street,

1400 Edst Pender Str

VANCOUVER, B.C.

V5L 1V8

Report 05-02

January 17, 2005

### Introduction:

17 standard thin sections and corresponding off-cuts were submitted for petrographic descriptions - with special reference to rock names and alteration features.

Note that, because of the mode of preparation - which does not permit reflected light observations, no details can be given re the mineralogy and textural relations of any sulfides which may be present.

The sample numbers and corresponding slide numbers are as follows:

Sample No.	Slide No.
146947	04-37567
147024	04-37568
147246	04-37569
147307	04-37570
147352	04-37571
147421	04-37572
147470	04-37573
147607	04-37574
147859	04-37575
147883	04-37576
147914	04-37577
147931	04-37578
147941	04-37579
147947	04-37580
147958	04~37581
147961	04-37582
147988	04-37583

### Summary:

This suite is of consistent general character, being made up entirely of igneous rocks of quartz-poor, feldspar-rich composition

(in the latite-andesite or monzonite-diorite range). The bulk of them are porphyritic monzonites of intrusive textural aspect, including probable dyke rocks. A few appear to be of effusive character, including flows and tuffs. Several samples incorporate segregations of perceptibly different composition and/or texture, suggesting that they may be breccias of some kind.

A breakdown of the samples by rock type is as follows

- a) The following samples are classifiable as monzonites of probable intrusive origin: 146947, 147024, 147421 and 147931
- b) The following samples are similar to group a) but exhibit possible breccia features: 147246, 147914 and 147941
- c) The following samples have textures suggestive of extrusive or probable fine-grained dyke character: 147307, 147352, 147883, 147947, 147958 and 147961. Of these, 147883 is a possible flow breccia.
- d) The following samples have textures suggestive of pyroclastic character: 147470, 147607 and 147859
- e) Sample 147988 is a strongly altered (sericitized/carbonated) andesitic rock of uncertain affinities. It has similarities to 147607

### Alteration:

The most useful overall measure of alteration intensity is probably in the degree of pervasive alteration of plagioclase. In most of the samples this is very mild. Somewhat stronger alteration involving epidotization is observed in samples 147024, 147421, 147883, 147914, 147958 and 147961.

Strong alteration to sericite and carbonate is observed in samples 147607 and 147988.

Samples 147147, 147914 and 147931 are cut by thin quartz veinlets.

Samples 147352 and 147941 show veining by zeolites.

Traces of chalcopyrite were noted in several samples.

Individual petrographic descriptions are attached.

J.F. Harris Ph.D.

### SAMPLE 146947 (slide 04-37567) MONZONITE PORPHYRY

### Estimated mode

	Plagioclase	47
	K-feldspar	39
	Sericite	2
	Carbonate	3
	Epidote	trace
	Hornblende	1
	Pyroxene	3
Veinlet	s	
	Quartz	5
	Sericite	trace
	Carbonate	trace
	Chalcopyrite	0.5

This sample is a porphyritic igneous rock of monzonitic composition.

It consists of euhedral/subhedral phenocrysts of plagioclase, plus minor pyroxene and hornblende, 0.2 - 2.0 mm in size, evenly scattered through a microgranular groundmass of grain size 30 - 100 microns. The latter is composed of an intergrowth of K-feldspar, plagioclase and accessory mafics.

The plagicclase phenocrysts typically show only mild alteration, to dustings of sericite and rare epidote. The accessory pyroxene phenocrysts are commonly more strongly altered, dominantly to carbonate.

The groundmass feldspars show somewhat stronger alteration than the phenocrysts, and accessory mafics (dominantly pyroxene) are typically replaced by carbonate.

The sectioned area is traversed by an irregular veinlet, 1.5 - 2.5 mm in thickness. This is composed of anhedral quartz of grain size 0.1 - 0.3 mm, with minor intergrown carbonate.

This veinlet incoporates a central, discontinuous string of sulfide grains - apparently mainly chalcopyrite. A little chalcopyrite, of similar grain size, also occurs as random disseminations in the host rock.

A few hairline microfractures infilled by carbonate - sometimes with traces of chalcopyrite - are also present. These appear, in part, to postdate the quartz wein.

### SAMPLE 147024 (slide 04-37568) MONZONITE PORPHYRY

### Estimated mode

Plagioclase	32
Sericite	2
K-feldspar	30
Epidote	5
Hornblende	22
Carbonate	6
Chlorite	trace
Apatite	trace
Opaques	3

This is another quartz-free (undersaturated) porphyritic igneous rock. It shows some textural and mineralogical differences from 37567, and is generally more strongly altered.

Phenocrysts - consisting of plagioclase and hornblende in approximately equal proportions - are anhedral in form, and show a wide size range from 0.05 - 1.5 mm. The plagioclase ranges from fresh, through mildly sericitized, to more or less strongly epidotized. The hornblende shows varied degrees of alteration to carbonate and minor chlorite.

The abundant, vari-sized phenocrysts are somewhat clumpily developed within a minutely felsitic groundmass/interstitial phase of grain size 10 - 50 microns. This is composed dominantly of K-feldspar plus accessory mafics and carbonate.

Opaques occur throughout as fine-grained disseminations, often closely associated with carbonate. These include recognizable traces of sulfides (chalcopyrite) but may be dominantly Fe-Ti oxides.

Fine-grained carbonate occurs in diffuse form in the groundmass, and as occasional hairline microfracture fillings.

# SAMPLE 147246 (slide 04-37569) PORPHYRITIC MONZONITE (OR LATITE FLOW-BRECCIA)

### Estimated mode

Plagioclase	46
K-feldspar	25
Sericite	1
Hornblende	20
Carbonate	4
Epidote	1
Pyroxene	trace
Opaques	3

This sample resembles the previous two in general mineralogical composition. On the macroscopic scale (see off-cut) it shows heterogenous cryptofragmental textural features which suggest the possibility that the rock is a form of flow breccia.

It is composed essentially of sharply euchdral phenocrysts of plagicclase, 0.2 - 2.0 mm in size, together with rather abundant accessory hornblende as a finer-grained, dispersed, interstitial phase. The plagicclase phenocrysts are typically fresh, whereas the fine-grained accessory horblende shows partial alteration to carbonate and rare epidote.

The phenocrysts are set in a minutely felsitic groundmass of grain size 10 - 50 microns, which appears to be composed dominantly of K-feldspar (plus probable intergrown plagioclase and mafics). More or less extensive areas of the groundmass are relatively free of phenocrysts, and exhibit sub-trachytic/microlitic fabric - more consistent with extrusive rather than minor intrusive character.

Fine-grained disseminated opaques of grain size 10 - 200 microns occur throughout as a minor accessory.

The sectioned area is cut by a few hairline veinlets of carbonate and epidote.

### SAMPLE 147307 (slide 04-37570) LATITE

### Estimated mode

Plagioclase	43
Sericite	2
Hornblende	10
Carbonate	12
Quartz	trace
K-feldspar	25
Opaques	8

This sample differs texturally from the first two rocks of the suite. Its rather homogenous, very fine-grained character suggests probable extrusive character.

It is of similar composition to the previous samples, being made up essentially of a microphenocrystic aggregate of plagioclase and altered hornblende in a minutely felsitic, K-rich groundmass/interstitial phase. The bulk of the grains are in the 0.05 - 0.2 mm size range, with a few reaching 0.4 mm. Plagioclase crystals are subhedral in form, and show only very mild alteration (sparse fleckings of sericite). The hornblende, by contrast, is typically more or less strongly altered to carbonate.

The sub-phenocrystic grains grade in size down to those of 5 - 50 microns which make up the K-rich interstitial phase. Opaques, as micron-sized disseminations - locally aggregated as clumps of up to  $0.2 \ \text{mm}$  - are abundant.

The sectioned area is traversed by a few hairline microfractures, 0.05 - 0.2 mm in thickness, infilled by carbonate and traces of quartz.

### SAMPLE 147352 (slide 04-37571) ANDESITE/MICRODIORITE

### Estimated mode

Plagioclase	70
K-feldspar	6
Sericite	2
Hornblende	6
Carbonate	5
Chlorite	5
Epidote	trace
Opaques	6
Zeolite	1

This sample has a finely microgranular macroscopic appearance similar to that of the previous one (04-37570). However, it shows much weaker development of K-feldspar (yellow cobaltinitrite stain on the off-cut).

Petrographic examination reveals a subtly different texture, correlating with the essential absence of a minutely fine-grained interstitial/groundmass component.

Plagioclase is very much the dominant constituent, occurring as an aggregate of small, stumpy/prismatic euhedra, 0.05 - 0.5 mm in size, sometimes exhibiting growth zoning. These are typically fresh but for very mild flecking by sericite.

The principal accessory is hornblende, of similar size range to the plagioclase but typically showing more or less strong modification to carbonate and/or chlorite. K-feldspar is seldom identifiable; it presumably occurs as a minor interstitial component.

Fine-grained disseminated opaques, of grain size 10 - 100 microns, are of widespread occurrence.

The sectioned area is cut by a sharply defined fracture 1 mm in thickness, infilled by zeolite.

This rock is of andesitic to latitic composition, having the textural aspect of a microdiorite. It is possibly a fine-grained dyke rock.

### SAMPLE 147421 (slide 04-37572)

### PORPHYRITIC MONZONITE

### Estimated mode

Plagioclase	36
K-feldspar	40
Sericíte	2
Epidote	10
Carbonate	10
Opaques	2

The major part of the off-cut corresponding to the sectioned area of this sample has the appearance of a prominantly porphyritic monzonite with an abundantly developed potassic groundmass. Towards one end of the sectioned area this dominant lithotype is seen in apparent sharp contact with a finer-grained, more plagioclase-rich variant.

Plagioclase phenocrysts range in size from 0.5 - 3.0 mm, and are of euhdral/subhedral form. They typically show moderate to strong alteration to epidote and carbonate.

Scattered mafic phenocrysts - similar in size to the plagioclase - are strongly altered to pseudomorphs of epidote, carbonate and fine-grained opaques.

The groundmass is a microphyritic aggregate of tiny sub-phenocrysts in a minutely felsitic matrix of K-feldspar.

The finer-grained variant making up one end of the sectioned area is of closely similar appearance, except that plagioclase phenocrysts do not exceed 1.5 mm, and the groundmass has a higher proportion of tiny plagioclase sub-phenocrysts.

The relationship of the two textural variants in this slide is uncertain. It may result from an intermingling of intrusive phases, or could be indicative of breccia character.

### SAMPLE 147470 (slide 04-37573)

### LATITE TUFFITE

### Estimated mode

Plagioclase	38
K-feldspar	43
Sericite	2
Chlorite	3
Carbonate	3
Epidote	2
Leucoxene	4
Pyrite	5

Examination of the off-cut of this sample shows that it is a very fine-grained rock which exhibits a more or less clearly defined layering defined by compositional and grain size variations.

A positive yellow cobaltinitrite stain is diffusely developed overall, with banded variations in intensity suggesting differences in the ratio of K-feldspar to plagioclase. The rock resembles a fine-grained bedded tuff of latitic composition.

Thin section examination confirms this identification. The rock shows a fine clastic/pyroclastic fabric of grain size 10 - 100 microns. The bulk of the clasts are turbid and optically indeterminate but, no doubt, represent altered feldspars or feldspathic glass. Scattered, discrete, angular grains of clearer plagioclase are also seen.

Other optically recognizable constituents are sericite, chlorite, carbonate, epidote and fluffy sub-opaque material which is probably rutile/leucoxene. Quartz appears absent.

A distinctive feature is the presence of disseminated sulfides (pyrite?, arsenopyrite?) as scattered, spongy clusters of partially aggregated tiny grains, often with associated concentrations of epidote.

### SAMPLE 147607 (slide 04-37574)

#### ANDESITE TUFF

### Estimated mode

Felsite)	40
Plagioclase)	
Sericite	24
Carbonate	35
Epidote	trace
Opaques	1

This sample (see off-cut block) has textural similarities to the previous one, incorporating lenticular variations in grain size. It is distinctly coarser-grained overall than 04-37573, and differs compositionally in that it shows no yellow cobaltinitrite stain - i.e. it is K-poor. However, like the previous sample, it has the textural look of a felsic-intermediate tuff.

Thin section examination reveals that it has notably high contents of both sericite and carbonate.

The carbonate occurs as abundant, sub-prismatic grains 0.1 - 1.0 mm in size, and the sericite as compact, felted masses of a similar size. Others consist of intimate intergrowths of the two minerals. These bodies have the appearance of altered clasts and occur rather evenly distributed through a cryptocrystalline matrix of minutely felsitic material.

Scattered examples of recognizable plagioclase crystals, more or less extensively altered to carbonate and/or sericite, can also be seen. Some of the carbonate-rich clasts exhibit lozenge-shaped outlines suggesting possible derivation from original hornblende crystals.

The only other constituents are rare traces of epidote and scttered, minute, disseminated grains of opaques. These possibly include some sulfides, but are more likely mainly Fe-Ti oxides.

This rock is believed to represent a tuff of altered andesitic affinitites.

### SAMPLE 147859 (slide 04-37575)

### LATITE LAPILLI TUFF

### Estimated mode

Plagioclase	30
Felsite	40
K-feldspar	10
Sericite	5
Chlorite	6
Carbonate	7
Opaques	2

Macroscopic examination of the off-cut corresponding to the sectioned portion of this sample shows that it is of similar textural appearance to the previous one, though on a perceptibly coarser scale and without recognizable layering. More or less clearly defined lithic fragments are distinguishable, and the rock appears to be an aggregate of compositionally similar but texturally varied volcanic rock fragments.

The overall composition appears to be consistent with that of all previous samples of the suite - i.e. quartz-free, feldspar-rich igneous rocks of latite-andesite affinitites.

Thin section examination confirms the lithic fragmental character of this rock and, though outlines are often ill-defined, the fragments appear typically to be in the 1.0 -10.0 mm size range.

Many of them are prominently porphyritic, with plagioclase phenocrysts, 0.2 - 2.5 mm in size, partially altered to sericite and carbonate. The phenocrysts are set in a matrix of weakly potassic composition, showing minutely felsitic or microlitic textures, and containing more or less abundant accessory chlorite and fine-grained disseminated opaques. The latter include some recognizable pyrite, but are probably mainly Fe-Ti oxides. A proportion of the plagioclase grains may represent disaggregated crystal clasts.

The sectioned area is traversed by a few irregular hairline veinlets of carbonate.

# SAMPLE 147883 (slide 04-37576) HYBRID LATITE/ANDESITE FLOW-BRECCIA OR DYKE ROCK

### Estimated mode

Plagioclase	50
K-feldspar	35
Amphibole	5
Carbonate	1
Epidote	7
Opaques	2

The off-cut of this sample shows localized development of positive yellow cobaltinitrite staining alternating with unstained/whitish etched areas, as more or less sharply defined, clumpy differentiations, on a scale of 1 - 2 cm. This does not look like a typical fragmental texture, but rather the intermingling of two compositionally related but distinct volcanic phases - perhaps in a breccia flow, or as xenoliths of one in the other.

Thin section examination reveals a texture consistent with primary igneous origin - the stained and unstained areas being of essentially identical appearance, though the dominant feldspar must be K-spar in the one case, and plagioclase in the other.

The rock is of distinctive interlocking/microgranular (as opposed to porphyritic) texture, and resembles that of many intermediate dyke rocks.

It has an overall grain size range of 0.5 - 1.0 mm. Feldspars of more or less elongate prismatic form are by far the dominant constituent. These are typically turbid in appearance and show more or less strong replacement by epidote. Compared with some other samples of the suite, both sericite and carbonate are notably rare.

Amphibole is the principal primary mafic accessory - sometimes of somewhat modified (acicular aggregate) appearance, but generally only mildly altered.

Fine-grained disseminated opaques are the remaining constituent.

### SAMPLE 147914 (slide 04-37577)

### MONZONITE (BRECCIA?)

### Estimated mode

Plagioclase	48
_	
K-feldspar	30
Sericite	trace
Epidote	8
Carbonate	5
Hornblende	1
Pyroxene	2
Opaques	4
Quartz veinlets	2

This sample resembles some of those from the early part of the suite in that it is of monzonitic composition, and has typical intrusive-type textural features. It is less prominently porphyritic than those early samples, and resembles 04-37576 in its hypidiomorphic granular texture, though its mean grain size is perceptibly larger.

It consists essentially of an intergrowth of plagioclase and K-feldspar. The former partly occurs as scattered prismatic subhedra, to 2 mm or so in size, but the bulk of the feldspars form a blocky granular intergrowth in the 0.2 - 1.0 mm size range. Alteration is essentially confined to the development of flecks and local patchy replacements of plagioclase by fine-grained epidote.

About 25% of the thin section (constituting a more or less sharply defined area at one corner of the slide) is of slightly different appearance, being a rather evenly granular aggregate of feldspars in which larger phenocrystic grains are absent, and the level of alteration (epidotization) is much lower than in the rock at large. This could be a xenolith or a breccia fragment.

Original mafics apparently consisted dominantly of pyroxene, though the bulk of this is now strongly altered to carbonate. A little hornblende (generally fresh) is also recognizable, especially in the possible xenolithic area.

Opaques, as randomly disseminated grains 20 - 200 microns in size, are abundant. They occasionally aggregate as coarser veniform clusters, apparently related to local microfracturing. A few specks of chalcopyrite are macroscopically recognizable, but the bulk of the opaques appear oxidic.

The sectioned area is cut by a few irregular veinlets of granular quartz, 0.2 - 2.0 mm in thickness. The thickest of these incorporate intergrown pockets of sparry carbonate (hairline threads of which are also seen independent of quartz). The quartz veinlets partly coincide with the veniform clusters of coarser opaques.

Traces of apparent quartz are also seen as tiny randomly disseminated grains in the host rock.

### SAMPLE 147931 (slide 04-37578) FINE-GRAINED PORPHYRITIC QUARTZOSE MONZONITE

#### Estimated mode

Plagioclase	50
K-feldspar	31
Quartz	7
Sericite	2
Epidote	3
Hornblende	3
Carbonate	2
Opaques	2

The macroscopic appearance of this sample (see off-cut) appears to be that of another rock of monzonitic intrusive character - though of relatively fine overall grain size.

This is confirmed by thin section examination - which also indicates a feature not noted in previous samples of the suite - i.e. the presence of a little apparent quartz as a fine-grained interstitial accessory. (A similar feature was seen to a trace extent in 04-37577).

The rock is of sub-porphyritic character, with coarser grains of plagioclase, 0.5 - 2.0 mm in size, scattered through a microgranular matrix of grain size 50 - 150 microns. The latter is composed of an intergrowth of plagioclase and K-feldspar plus accessory quartz and hornblende (more or less altered to carbonate).

Overall alteration appears mild, the feldspar showing only weak flecking by fine-grained sericite and epidote. An exception is in the vicinity of a 2 mm veinlet of granular quartz which cuts one end of the sectioned area. Strong epidotization is observed in an envelope marginal to this veinlet, and a few discrete grains of epidote are developed within the vein. Sharply defined, thinner, multidirectional veinlets of quartz are also present.

Rare chalcopyrite is seen in the quartz veinlets. The rock also contains the usual randomly disseminated small grains and clumps of opaques which are most likely Fe-Ti oxides.

### Estimated mode

Plagioclase	58
K-feldspar	30
Sericite	2
Epidote	5
Hornblende	2
Carbonate	2
Chlorite	trace
Quartz	trace
Opaques	1

The off-cut of this sample is very similar to that of the previous one, suggesting that it is another example of the monzonite/latite lithotype, variants of which make up almost all the samples of the suite.

Thin section examination confirms the close mineralogical and textural similarity to Sample 147958 (q.v.).

The rock is characterized by hypidiomorphic granular texture in a wide grain size range of 0.05 - 2.0 mm. Feldspars are by far the dominant components - mafics being perceptibly less abundant than in the previous sample.

The plagioclase is turbid, lightly flecked with sericite, and locally rather strongly replaced by granular epidote. Very occasional tiny grains of apparent quartz were noted in the microgranular matrix.

The sectioned area is traversed by rare hairline veinlets of carbonate, 0.1 mm in thickness.

### SAMPLE 147988 (slide 04-37583)

### ALTERED ANDESITE

### Estimated mode

Plagioclase)	40
Felsite)	
K-feldspar	7
Sericite	30
Carbonate	20
Chlorite	2
Sphene	trace
Opaques	1

This rock is of distinctive macroscopic appearance in the off-cut, by virtue of the irregular-shaped and ill-defined outlines of the abundant constituent phenocrysts.

Thin section examination shows that this rock differs from almost all others of the suite in that the plagioclase exhibits strong pervasive alteration, being almost totally replaced by minutely felted sericite and diffusely intergrown carbonate. This feature was also seen in Sample 147607.

These pseudomorphed and partially pseudomorphed phenocrysts (or clasts?) range in size from 0.1 - 1.0 mm, and occur more or less closely scattered through a less altered groundmass of minutely felsitic material.

No mafics survive in this rock, but some altered phenocrysts - composed of flaky chlorite, carbonate and probable granules of sphene - likely originated as hornblende or pyroxene.

This rock is only weakly potassic, and appears to be of more andesitic than latitic composition. Its character - whether intrusive, extrusive or pyroclastic - is uncertain.