DIAMOND DRILLING ASSESSMENT REPORT

ON THE

KUTCHO CREEK PROJECT: NORTH CENTRAL BRITISH COLUMBIA

VOLUME I - TEXT

LIARD MINING OUSTRICT 2 9 2005 104I018, 019, 028, 029) mission 58°12'N : 128°22 COUVED 'S CO

Jeff#4 (227719), Jeff#6 (227721), Jeff#92 (227802), Jeff#94 (227804) KC32 (227910), SMRB#13 to #16 (227648 to 227651)

> WESTERN KELTIC MINES INC. OWNER AND OPERATOR

> > Prepared by:

Peter M. Holbek, M.Sc. P.Geo. VP Exploration Western Keltic Mines Inc.

and

Rob G. Wilson, P.Geo Exploration Manager Western Keltic Mines Inc.

ASTESCHENT REPORT

APRIL 26, 2005

EXECUTIVE SUMMARY

The Kutcho Creek project is situated within the Cassiar Mountains of northern British Columbia, approximately 100 km east of the town of Dease Lake. Claim holdings, which total approximately 5,500 hectares, cover the thickest part of the Permo-Triassic Kutcho Formation which hosts volcanogenic massive sulphide mineralization. Three sulphide deposits have been defined that form a linear, shallow plunging, westerly trend, approximately four kilometres in length.

The easternmost and largest deposit of the three is the near-surface Kutcho deposit which, prior to 2004 had been defined by 153 drill holes and one underground cross-cut and contained a measured and indicated resource of 14.9 million tonnes grading 1.85% Cu, 2.62% Zn, 31.6 g/t Ag and 0.37 g/t Au. Wright Engineers Limited, in the 1985 pre-feasibility study for the previous owners, estimated that the open-pit, diluted, recoverable mineralization would total 14.2 million tonnes grading 1.75% Cu, 2.47% Zn, 28.9 g/t Ag and 0.34 g/t Au, based on 1985 cost estimates and metal prices (US\$0.95 Cu, \$0.55 Zn and a 72% Canadian to US dollar exchange rate).

The middle deposit, the Sumac West lens, is a large low-grade pyritic body that has only received minimal drilling due to sub-economic grades. It contains a historical inferred resource of 5.3 million tonnes grading 1.09% Cu, 1.62% Zn and 14.4 g/t Ag, based on seven drill intersections.

The Esso West deposit occurs on the western end of the trend at a depth of more than 400 metres. This deposit has been defined by 63 drill-holes, including wedge branches, and prior to the current program contained an indicated resource of 1.5 million tonnes grading 3.37% Cu, 5.71% Zn, 63.4 g/t Ag and 0.54 g/t Au.

In March 2004, Western Keltic Mines Inc. completed the acquisition of a 100% interest in the property from Barrick Gold Inc., a subsidiary of Barrick Gold Corporation and AMI Resources Inc., its 20% partner on the project, and Sumac Mines Ltd., a subsidiary of Sumitomo Metal Mining Co. Ltd.

An infill diamond drill program from July to October consisted of 41 holes (including 2 branch holes) totaling 7,936m. Twenty-two HQ holes were drilled into the Kutcho deposit, seven HQ holes were drilled into the Foot Wall Zone, 100 m, stratigraphically below the Kutcho deposit, and twelve NQ/BQ holes were drilled into the Esso West deposit. Material from the mineralized intersections was collected for metallurgical testing. Assay results for copper and precious metals were significantly higher than indicated from previous drilling whereas zinc values were slightly lower. Drilling within the Esso West deposit increased its size by approximately 25%.

Results of the 2004 drilling have been merged into the historical database and revised resource estimates have been carried out. Measured and indicated resources for the Kutcho deposit are 13.1 million tonnes grading 1.94% Cu, 2.59% Zn, 33.7 g/t Ag and 0.41 g/t Au, based on a 1% Cu cut-off. A new sectional estimate for the Esso West deposit yields indicated resources of 2.1 million tonnes grading 3.22% Cu, 5.75% Zn 82.1 g/t Ag and 0.64 g/t Au.

TABLE OF CONTENTS

Execu	itive Summaryii
1.0	Introduction1
1.1	Property Description and Location1
1.2	Access, Physiography, & Climate4
1.3	Exploration History 4
1.4	2004 Exploration Program
2.0	Geology
2.1	Regional Geology6
2.2	Property Geology7
2	2.2.1 Stratigraphy
2	2.2.2 Structure
3.0	Mineralization and Alteration13
3.1	Deposit Type13
3	3.2.1 Kutcho Deposit
3	2.2.2 Sumac West Deposit
3	2.2.3 Esso West Deposit
3	3.2.4 Other Mineralization
4. 2	004 Diamond Drill Program19
4.1	Introduction
4.2	Description of Program and Methods19
4.3	Results
4	.3.1 Kutcho Deposit D rill Results
4	.3.2 Esso West Drill Results
4	.3.3 Footwall Zone Drill Results
5. Re	source Estimation
5.1	Estimation Methods
5.2	Results
6.0	Conclusions
7.0	Recommendations
Refer	ences

LIST OF FIGURES

Page

Figure 2.1	Location Plan for the Kutcho Project	3
Figure 2.2	Claim Map	4
Figure 3.1	Regional Geological Setting of the Kutcho Project	8
Figure 3.2	Schematic Cross Section of the Kutcho Formation	9
Figure 3.3	Kutcho Property Geological Plan	10
Figure 3.4	Reconstructed Stratigraphic Section	11
Figure 3.5	Cross Section through the Kutcho Deposit	15
Figure 3.6	Generalized Internal Stratigraphy of the Kutcho deposit	18
Figure 4.1	Kutcho Creek Project Diamond Drill Collars	Back Pocket
Figure 5.2	Longitudinal Plan of Drill Hole Locations, Kutcho deposit	23
Figure 5.2	Longitudinal Vertical Section displaying drill-hole locations	
	Esso West deposit	24

LIST OF TABLES

		Page
Table 4.1	Drill Collar Data for 2004 Drilling	21
Table 5.2	Summary of Drill Data on the Kutcho Project	24

APPENDICES

APPENDIX I	List of Claims for Kutcho Creek Property
APPENDIX II	Diamond Drill Logs & Strip Logs
APPENDIX III	Drill Core Sample Details
APPENDIX IV	Assay Laboratory Certificates
APPENDIX V	Lab Accreditation and QA/QC Overview
APPENDIX VI	Itemized Cost Statement
APPENDIX VII	Certificates of Qualifications
APPENDIX VIII	Cross Sections

iv

1.0 INTRODUCTION

Western Keltic Mines Inc. (WKM), through two separate purchase agreements, has purchased a 100% interest in the Kutcho Creek project in north central British Columbia. The purchase agreements are with Barrick Gold Inc., a subsidiary of Barrick Gold Corporation, and Sumac Mines Ltd., a subsidiary of Sumitomo Metal Mining Co. Ltd. It is WKM's intent to advance the project towards production.

Exploration of the Kutcho property through the late 1970's and early 1980's defined three sulphide deposits or lenses that form a gently plunging, east-west oriented, linear trend. The largest of the deposits, the Kutcho lens is a near-surface sulphide deposit which contains a historical estimate for diluted, open-pit mineable resources of 14.2 million tonnes grading 1.76% copper, 3.47% zinc, 34.2 g/t silver and 0.34 g/t gold (Wright Engineers Limited pre-feasibility study, 1985). The next sulphide lens to the west is the Sumac West deposit which is an, approximately, 10 million tonne sulphide body within which there is 5 million tonnes of relatively low grade mineralization. The Esso West deposit is furthest to the west and lies at a depth of 400 to 500 m. This lens is open to expansion and contains a historically estimated indicated resource of 1.5 million tonnes grading 3.4% copper, 5.7% zinc, 63.4 g/t silver and 0.54 g/t gold as estimated by Esso Minerals Canada (1983).

Three areas, or development goals have been identified that would have significant impact on project economics going forward: expansion of the Esso West deposit; improvement in metallurgical recoveries and concentrate quality; and discovery of additional resources. An exploration/metallurgical program, consisting of approximately 8,000 to10,000 metres of drilling, to achieve the above goals, in conjunction with preliminary assessment or scoping type studies was recommended. This drill program was completed in the summer of 2004, the results of which are the subject of this report.

1.1 **PROPERTY DESCRIPTION AND LOCATION**

The Kutcho Creek project area is situated 100 km east of the town of Dease Lake, and 330 km north of Smithers in northern B.C. (Fig 2.1). The property occurs within the NTS map sheet 104I/1 and geodetic coordinates for the center of the claim area are 58°12'N and 128°22'W. The claims cover an area of approximately 5,500 hectares. Overlap between historical claims results in the sum of the individual claim areas being greater than the actual total claim area. Claims are shown in Figure 2.2 and listed in Appendix I. Western Keltic Mines Inc. owns the claims through two separate purchase agreements. One agreement is with Barrick Gold Inc., a subsidiary of Barrick Gold Corporation, and AMI Resources Inc who had 80% and 20% ownership, respectively, in all of the claims except the 16 SMRB claims and the 30 KC claims, which are the subject of the other agreement with Sumac Mines Inc., a subsidiary of Sumitomo Metal Mining Co. Ltd. The claims are subject to net smelter return royalties (NSR); in the case of the Barrick claims the NSR is 2% and in the case of the Sumac claims the NSR is 3% beginning 36 months after achieving Commercial Production.

Figure 1.1 Property Location Plan

Figure 1.2 Kutcho Creek Claim map

1.2 ACCESS, PHYSIOGRAPHY, & CLIMATE

Access to the property is by fixed-wing aircraft from Smithers or Dease Lake to the 1,100 metre gravel airstrip located at the junction of Kutcho and Andrea Creeks. The deposit area of the property is connected to the airstrip by an 8 km road (currently this road has had culverts removed and is only passable to four wheel drive vehicles with good clearance). Land access via the 125 km tote road to Dease Lake is available to four wheel drive vehicles during late summer and early fall but passage is somewhat dependent upon weather due to extensive muddy sections.

The property is located within the Cassiar Mountains, just to the north of the continental divide between the Arctic and Pacific watersheds. The area is moderately rugged with elevations ranging from 1,400 to 2,200 metres. Most of the area is alpine with tree line at approximately 1500 metres. Structural fabric and two periods of glaciation have produced an intersecting pattern of east-west and north-south ridges and valleys. The major valleys are commonly filled with a deep layer of glacial till and outwash gravels.

Winters are cold and dry, while the summers are cool and moist. Average annual temperature is -1°C with average annual precipitation of 50 cm, approximately half of which occurs as snow. Snow cover can persist for nine months of the year, particularly on north facing, shady slopes.

1.3 EXPLORATION HISTORY

Mineralization was first discovered on what was to become the Kutcho property in 1968 by an exploration joint venture operated by Imperial Oil Ltd. The discovery was made by prospecting in response to anomalous stream sediment samples collected during a regional drainage survey. Twenty claims were staked by W. Melnyk directly over the as of yet undiscovered main Kutcho sulphide deposit. These claims were allowed to lapse when the other partners in the joint venture declined to fund further exploration. Imperial Oil returned to the area in 1972, after the statutes of the joint venture agreement expired, in order to re-stake the area. However, Sumac Mines Ltd. had conducted stream sediment sampling earlier that season and in response to anomalous samples, R. Britten staked 8 'two-post' claims along the anomalous stream, and an additional 8 claims (SMRB claims) along the geological strike direction resulting in the cruciform claim outline overlying the western part of the main Kutcho sulphide deposit. Imperial Oil (later becoming Esso Minerals Canada Ltd.) staked a much larger area encompassing Sumac's claims.

Beginning in 1973, exploration work was carried out by both Sumac and Esso and early success prompted additional staking resulting in the claim boundaries more or less as they are today. Diamond drilling commenced in 1974 and by 1982 approximately 60,000 metres had been drilled by both companies, defining three sulphide lenses. Additionally, Esso had drilled a number of exploration targets in other areas of the property with moderate technical success. Environmental, metallurgical and engineering studies were begun by both groups in 1980. A partnership agreement on engineering and development

work was signed by Esso and Sumac in 1983 but was retroactive to 1981; the year Sumac began work driving the adit in order to collect a 100 tonne bulk sample. The agreement was, in essence, a 50:50 joint venture for development work, and culminated in a pre-feasibility study by Wright Engineers Limited in 1985. The pre-feasibility study indicated an 11.3% internal rate of return when using a copper price of US\$0.95. Given the risk factors involved and long term price projections for copper below the 95 cent level, the companies put the project on hold pending further exploration results. Limited exploration on Esso's claims south of the main mineralized trend between 1985 and 1988 and the numerous earlier geophysical surveys indicated a reduced potential for additional open pit mineralization.

In 1989, Esso sold most of its mining assets to Homestake Canada Ltd. In 1990. Homestake optioned the Kutcho property to American Reserve Mining Corporation who funded a \$1.1M exploration program (Homestake remained the operator) which included 7,031m of drilling in 28 holes (Holbek et al, 1991) mostly in outlying target areas and thereby earned a 20% interest. Exploration was successful in confirming the presence of extensive areas of favourable geology and alteration indicative of hydrothermal activity, but failed to discover zones of potentially economic mineralization. For example, 10 km to the southwest of the Kutcho deposit, a narrow zone of cryptocrystalline massive pyrite with a strike length in excess of five kilometres was intersected in four widely spaced drill holes but was barren of base or precious metals. American Reserve carried out engineering studies but did no further exploration work and relinquished the option in 1993 but retained a 20% interest in Homestake's property. The property was optioned to Teck Cominco Metals Ltd. in 1992. Teck Cominco carried out deep penetration EM geophysical surveys (UTEM) over the Esso West zone with the goal of defining additional conductors along the Kutcho trend. Due to extensive cover of conductive argillaceous units in the hanging wall, the UTEM system was unable to detect the Esso West deposit or other conductors at depth, consequently Teck-Cominco dropped the option. Homestake was purchased by Barrick Gold Corp in 2003.

Extensions of the Kutcho stratigraphy to the west have been staked and worked by various companies in the past. Shortly after the discovery of the Kutcho deposits, Noranda staked the Kutcho formation to the west of Kutcho Creek. Noranda conducted geophysical surveys, and carried out a small drill program. The claims were allowed to lapse and were re-staked in 1995 by Gary Belik. Mr. Belik carried out a detailed mapping program and optioned the claims to Atna Resources in 1997. Atna conducted UTEM geophysical surveys and an extensive drill program. Results of Atna's work were mixed and although no deposits were discovered, significant but weak to moderately mineralized alteration zones were intersected. Structural complexity and lack of clear geophysical targets prevented additional work and the option was terminated.

Negotiations by Western Keltic Mines to purchase the property from Barrick and Sumitomo were initiated in 2003 and concluded in early 2004.

1.4 2004 EXPLORATION PROGRAM

A diamond drilling program was undertaken from mid-July to early October on the Kutcho Creek property. The purpose of the drill program was to: verify historical drill results, obtain sufficient sample material for metallurgical testing, expand the massive sulphide deposits, particularly the high-grade Esso West deposit and to explore for new mineralization.

Two drills were used, one set-up for HQ diameter core drilling, and the other for NQ or BO drilling. A total of 7.936 metres were drilled in 41 holes with a total cost of approximately \$1 million. Drilling in the Esso West area (NQ) totalled 4,974 metres in 12 holes, including 2 BO diameter wedge branches. Two of the Esso West holes were aborted when it became clear that drill-hole deviation would result in the holes being significantly off-target. Drilling in the Kutcho deposit area consisted of 21 HQ drillholes in the Kutcho deposit, totalling 2,340 metres and eight HQ exploration drill-holes in the Kutcho footwall zone (FWZ), totalling 622 metres. Approximately 3,000 kg of drill core was packaged in nitrogen to prevent oxidation and shipped Lakefield Research in Ontario for metallurgical testing. A total of 770 core samples, representing nearly 1,000 m of drill core, were analyzed by ICP methods for 33 elements following an aquaregia digestion. Copper, zinc, or silver values above the ICP detection limits (50,000 ppm for Cu and Zn, and 200 ppm for Ag) were re-analyzed by atomic adsorbtion methods following an aqua-regia digestion. All samples were analyzed for gold by fire assay on a 30 g sub-samples and sulphur was analyzed by Leco furnace. Specific gravities of all samples were measured in the field by weighing the sample and water and air.

The exploration crew of 14 people consisted of three geologists, one core splitter, one cook/first aid attendant, one excavator operator, four diamond drillers, four driller helpers and one drill foreman. Fuel, drilling equipment, and camp supplies were mobilized into the property by Delta tundra-tired vehicles using the tote-road from Dease Lake. The drill contractor was Hy-Tech Diamond Drilling of Smithers, B.C. The drills were moved between drill sites by a Cat 300 Excavator owned by Jade West.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

The Kutcho property lies within the King Salmon Allochthon (KSA), a narrow belt of Permo-Triassic island-arc volcanic rocks and Jurassic sediments, sandwiched between two northerly dipping thrust faults: the Nahlin fault, to the north and the King Salmon fault to the south (Fig. 2.1). Penetrative foliation and axial planes of major folds are parallel to these east-west trending, bounding faults. The belt of volcanic rocks is thickest in the area where it hosts the volcanogenic massive sulphide deposits; due in part to primary deposition, but also to stratigraphic repetition by folding and possibly, thrusting. The KSA is terminated to the east, near the eastern edge of the property, by the strike-slip Kutcho fault (Gabrielse, 1978) but extends to the west for hundreds of

kilometers, however, Kutcho Formation rocks thin to the west and are poorly exposed within the area from 10 km to the west of Kutcho Creek and Dease Lake.

Stratigraphy of the KSA consists primarily of the Kutcho Formation which is overlain by the limestone of the upper Triassic, Sinwa Formation, which in turn is overlain by sediments, predominately argillite, of the Lower Jurassic Inklin Formation. Major folds are clearly delineated by the Sinwa limestone or the contact between the Kutcho and Inklin Formations where the Sinwa Fm. is absent (Fig. 2.2).

2.2 PROPERTY GEOLOGY

2.2.1 Stratigraphy

Stratigraphy of the Kutcho property has been described by Thorstad (1983), Bridge (1984), and Holbek (1985) and will only be briefly reviewed here. A property plan map is given in Fig. 2.3 and a generalized re-constructed stratigraphic section is presented in Fig. 2.4. Stratigraphy is best understood in the upper part of the Kutcho Formation where units are better exposed and drill information is available. The footwall stratigraphy particularly away from the deposit area is not well understood.

The lowest rocks in the section are exposed on the southern ends of Imperial and Sumac Ridges and include interlayered (interfolded?) basalts, basaltic tuffs and wackes, rhyolitic lapilli tuffs and possible trondhjemite. The mafic rocks are fine to very fine grained, chloritic, equigranular to weakly porphyritic and are commonly given the field term of greenstone. The lapilli tuffs are pale grey, siliceous and commonly contain very fine quartz phenocrysts and lenticular fragments from 0.5 to 3 cm in length. Textures can only be seen on weathered, but lichen-free, surfaces. The trondhjemite unit is somewhat equivocal. It is described by Pearson and Pantaleyev (1975) and Bridge *et al*, (1983) as a fine grained, equigranular, plagioclase rich unit; however it is very similar to some of the tuffaceous units as well. A weak but pervasive carbonate-chlorite-pyrite or propylitic alteration of this unit is subtle but discernable.

Rocks overlying the greenstone-lapilli tuff package have been termed the "ore-sequence" and consist of lapilli tuffs, crystal-lithic tuffs, quartz and quartz-feldspar crystal tuffs. Away from the deposit area, these units tend to be thin, interbedded and variably but weakly altered. Fine quartz-crystal ash tuff with silica rich laminations and rare thin zones of ferroan dolomite typically mark the distal exhalative zone. The sulphide zones occur at, or near to, the contact between footwall lapilli tuff and hanging wall quartz crystal tuff. In general both lapilli fragments and phenocrysts are much coarser grained in the vicinity of the deposits and become progressively finer grained to the south and west. The quartz-feldspar crystal tuff is quartz-rich near the deposits and to the south becomes more feldspar rich.

Figure 2.1 Kutcho Project, Regional Geological Setting

A large zone of feldspar crystal tuff with almost no free quartz occurs a few hundred metres south of the sulphide zones and it is indeterminate whether this unit is footwall, hanging wall, or a facies equivalent to the quartz-feldspar crystal tuff. An interesting feature is the occurrence of a coarse breccia texture within the quartz-feldspar crystal tuff immediately over the sulphide zones. The breccia fragments are typically sub-round from 2 to 30 cm in size and are identical to crystal tuff matrix except for an increase in the amount of epidote from one or two to closer to ten percent. This feature has been interpreted to be a debris flow of semi-consolidated crystal tuff shed from a flow dome complex and trapped in the graben or half-graben like structure which hosts the sulphide lenses.

Rocks between the ore sequence and the overlying conglomerate unit are referred to as the Tuff-Argillite Unit (TAU) and consist of gabbroic to basaltic intrusive sills and dykes, greywackes and argillite. In the area of the deposit the gabbroic units are commonly coarse-grained and are commonly referred to as metagabbro. Higher in the section and both to the east and west from the Kutcho deposit this mafic unit becomes much finer grained and an intrusive origin is not so clearly identified. The amount of argillite increases in a westerly direction supporting the concept that this direction is towards the marine basin. The base of the TAU is interpreted to be a thrust fault and there are numerous other fault zones within the unit as noted in drill core and the adit. The basal thrust plane does not cause significant offset of the Sinwa limestone in the fold nose to the west which implies a scissor type action with increasing movement to the east.

Ť.

Figure 2.3 Kutcho Creek Project: Property Geology with historical claim outline and surface projection of sulphide deposits.

Figure 2.4 Reconstructed stratigraphic section. Vertical exaggeration approximately 10x.

Overlying the TAU, and truncating it to the west is the Kutcho Conglomerate. This unit is a heterolithic, fragment-supported conglomerate composed of sub-rounded clasts, ranging in size from 1 to 38 cm (long axis) and derived from all of the underlying lithologies. The conglomerate is conformably overlain and transitional into the Sinwa limestone, which in turn appears to be conformably overlain by Jurassic aged Inklin Formation argillite, although it is quite possible that there could be a contact between Kutcho Formation argillite and Inklin Formation argillite higher in the section which would be difficult to spot and could be unconformable.

The Kutcho Formation is of Upper Triassic to uppermost Permian in age. Thorstad (1983) determined an Upper Triassic age on the basis of Rb-Sr dating of volcanic rocks and regional stratigraphic constraints. Subsequent work by F. Childe at the Mineral Deposit Research Unit of The University of B.C. in 1996 suggest ages in the lower Triassic to uppermost Permian age range.

2.2.2 Structure

Rocks of the Kutcho Formation are characterized by penetrative axial planar foliation that has a relatively constant strike direction of 270 to 290 degrees with northerly dips from 45 to 65 degrees. Minor but systematic changes in foliation from the east to west suggest low amplitude buckling of the fold axes. There appears to be a tendency for the dip of the foliation to decrease with structural depth indicating that the axial planes are convex to the south.

Folds are open to tight, asymmetrical, inclined and verging to the south. Fold plunges range from 0 to 30 degrees in a westerly direction. Folds are most evident in well-bedded, competent units and therefore spatial distribution of the fold data is heavily biased to the western property area where these units predominate.

Two aspects of the structure that critically affect stratigraphic interpretations are (i) the number and size of foliation parallel thrust faults, and (ii) the degree to which the folds are propagated through the stratigraphic sequence. Neither of these aspects can be determined independently and therefore there remains considerable scope to re-interpret stratigraphic position of various units locally. Foliation parallel thrust faults are difficult to detect from surface outcrop but can be inferred from missing stratigraphy, contact geometry, shearing and topographic evidence. Faults of this type are consistent with the deformation style and are considered to be prevalent over the property area.

Fold hinges outlined by the Sinwa limestone unit on Conglomerate Ridge, immediately east of Kutcho Creek, are difficult to trace in an easterly direction. Structural data (Holbek, 1985) indicate that the folds are cylindrical and therefore should be continuous within the depth of exposed stratigraphy. However, lithological competency contrasts are likely to result in disharmonic folding (Holbek and Heberlein, 1986) causing discontinuity of the axial plane towards the core of the fold. Stratigraphically thicker units will tend to produce a series of lower amplitude folds toward the core of the structure which may explain why the axes of folds so clearly outlined by the limestone unit on the western part of the property are not at all evident to the east, in the vicinity of the Sumac West and Kutcho deposits. Therefore, a certain degree of flexibility needs to be maintained regarding structural and stratigraphic interpretations in the vicinity of the sulphide deposits.

3.0 MINERALIZATION AND ALTERATION

There are three known deposits which comprise the Kutcho project and form a westerly plunging linear trend (see Figure 2.3). From east to west the deposits are termed the Kutcho deposit or lens, the Sumac West lens and the Esso West lens. The Kutcho deposit comes to surface at its eastern end whereas the Esso West deposit occurs at depths greater than 400 m below surface.

3.1 DEPOSIT TYPE

Mineralization of the Kutcho project is part of the volcanogenic massive sulphide (VMS) family of deposits. These deposits are a major source of copper, zinc, lead, silver and gold around the world. Speculation about the origin of these deposits goes back to mid 1850's when various French and English scientists postulated chemical precipitation from seafloor volcanic activity (Stanton, 1991). In the early 19th century Japanese workers documented astute observations of the sulphide textures preserved in the Kuroko deposits of Japan and the association of these deposits with ryholite domes and articulated the "submarine sinter theory". However, this work did not seem to attract much attention and genetic theories or models of ore formation of this deposit type did not really gain international acceptance until similar observations were published by other workers world wide in the 1950's and 1960's. Discovery of the Red Sea brine deposits in 1965 provided substantial impetus for the proponents of the "submarine exhalative" model. A certain amount of controversy between syngenetic and epigenetic theories continued through the 1970's, but with the advent of deep-sea submersibles and the filming of black and white "smokers" or hydrothermal vents in volcanic rift zones on the sea-floor, scientific models could go to a new level of detail.

VMS deposits have been classified into various subtypes depending upon the composition of the host rocks and the mineralization, and the tectonic setting of origin. The Kutcho deposits are VMS deposits of the Kuroko type or Felsic volcani-siliciclastic depending upon the classification scheme. Mineralization is related to felsic volcanism in island-arc or back-arc tectonic setting. Perhaps the most significant feature of VMS deposits from an exploration point of view is their tendency to occur in clusters. Larger VMS camps can have up to 25 discrete deposits, and mineralized districts are common.

Features of the Kutcho deposits suggest that they formed at or very near to the water-seafloor interface in a structurally controlled depression, likely a half graben type structure. The Kutcho deposits have some features that are not common: the absence of lead and barite is likely due to the low potassium content of the volcanic host rocks (and presumably the associated rhyolite dome) and abundant carbonate of probable exhalative origin.

Alteration associated with VMS deposits is well documented and provides a valuable exploration tool, in that the area of alteration is much larger (up to a factor of 10 to 100) than the actual sulphide deposit thereby providing a much larger exploration target. Extensive studies of the alteration around the Kutcho deposit have been undertaken and the chemical composition of the alteration is well-zoned about the hydrothermal vent area. This zonation allows geochemical analysis of drill core, within the alteration zone, to provide vectors towards the hydrothermal vent area and, hopefully, the sulphide deposits.

Geophysical techniques such as electro-magnetic (EM) and gravity surveys are useful for locating conductors or possible sulphide concentrations. EM methods can be used in airborne and ground surveys but can also be used down drill holes to locate "off-hole" conductors thereby effectively increasing the search area of a drill hole. A large number of airborne and ground geophysical surveys have been completed on the Kutcho property and all high-priority targets have been tested; however there are many lower-priority targets that still require additional follow-up.

3.2.1 Kutcho Deposit

The Kutcho deposit has an elliptical, lenticular shape with approximate dimensions of 1,500 m in length, 260 m wide (down-dip) and 20 (34 maximum) metres thick. The long axis of the deposit plunges to the west at about 12 degrees, just slightly less than the regional fold axes. The deposit is approximately conformable with stratigraphy. There is a gentle warping of the deposit such that the dip of the deposit changes from east to west and north to south. The shallowest dip, about 38°, occurs at the southeastern edge and becomes progressively steeper, to about 63°, at the northwestern edge. In general, the up-dip edge of the sulphide lens is narrow and pinches out, whereas the down-dip edge is thick and interlayered with tuffaceous rock (Fig. 3.1).

Sulphide mineralogy of the deposit is relatively simple consisting of pyrite, chalcopyrite, sphalerite and bornite, with minor sulphide minerals chalcocite, tetrahedrite, diginite (and related minerals), galena, idiaite, hessite and electrum. Gangue minerals include quartz, dolomite ankerite, sericite, gypsum and anhydrite. Fluorite and barite have been observed but do not occur in volumetrically significant amounts.

Interpretation of the shape of the sulphide zone, taken together with the observed volcanic and depositional textures of the enclosing rocks, suggest that the sulphide mineralization was deposited in a structural depression, likely a half-graben type structure. The internal stratigraphy of the Kutcho deposit was determined by detailed drill core logging (Holbek and Heberlein, 1986) along a single longitudinal section of drill holes and is given in figure 3.2. The deposit appears to have formed from three hydrothermal-depositional cycles that begin with barren pyrite which grades into a copper rich middle and zinc rich top. Depositional cycles are commonly separated by layers of exhalative quartz and/or carbonate and minor volcanic ash, however, continued hydrothermal activity results in sulphide replacement mineralization which tends to blur grade boundaries in some areas. Additional features such as an irregular depositional surface and localized slumping of sulphide mineralization or chimney collapse, and late stage (post depositional) hydrothermal activity also cause complexity to the internal sulphide stratigraphy. Areas of late overprinting by oxidized copper species and enrichment in precious metals are interpreted as indicators of vent areas and occur along a linear trend on the down-dip side of the deposit with two "hot-spots" near each end of the deposit. However, no areas of 'classical' copper-rich footwall stringer mineralization have yet been identified by drilling.

Figure 3.1 Cross Section through the central part of the Kutcho deposit. (see text for information on NSR value of intersections)

The upper contact of the sulphide mineralization is sharp with almost no sulphide minerals occurring in the hanging wall rocks with the exception of scattered coarse grains of porphyroblastic pyrite. However, silicate alteration in the hanging wall is intense and occurs for up to 50 m above the sulphide contact. It is common for a small shear zone to occur at the sulphide-schist contact which varies from 20 to a maximum of 200 cm in thickness and in many drill holes carries some grade. The base of the deposit consists of nearly barren massive pyrite with interstitial quartz. The contact between 'ore' and the footwall pyrite zone can be either gradational or sharp. Below the footwall pyrite zone is quartz-sericite schist with bands of generally barren, massive to semi-massive pyrite. The footwall pyrite content diminishes with depth away from the deposit but extends to a maximum depth of 200 m below the central part of the deposit. Although the footwall material appears to be of low competence in the drill core it holds up very well in the underground adit.

3.2.2 Sumac West Deposit

The Sumac West deposit has not received much attention due to its relatively low grades. The shape of the deposit is primarily taken from conductance contours generated by a 'Mis-la-Mass' or chargeability geophysical survey carried out during the early days of exploration. A chargeability survey is carried out by putting an electrical current into a sulphide zone and measuring the change in the magnetic field due to electrical flow through the conductive (sulphide-rich) rocks. The deposit has an elongate lenticular shape, approximately 900 m long, up to 200 m wide and up to 32 m thick and is composed mostly of massive pyrite. The total tonnage of the pyritic lens likely exceeds 10 million tonnes. A total of 10 drill holes at 100 to 200 m spacing have intersected the deposit. Better intercepts include 1.26% Cu, 1.24% Zn, 19.3 g/t Ag over 32 metres and 1.09% Cu, 2.54% Zn, 11.1 g/t Ag over 21.5m. It is possible that sulphide mineralization of the Sumac West zone is continuous with the Esso West zone across the historic property boundary. An inferred* resource estimate for the Sumac zone, based on a polygonal method, is quoted by Sumac and Esso as 5.3 million tonnes grading 1.09% Cu. 1.62% Zn and 14.4 g/t Ag. As this resource was not deemed to be economic very little additional work has been done and the resource could easily be increased with additional drilling. Distribution of grades within the historical drilling does not show any strong or clear metal zonation that might be used to locate higher-grade zones. However, further analysis of the data including lithogeochemical analyses of the footwall alteration may assist in locating a vent area with the possibility of higher grades.

3.2.3 Esso West Deposit

The Esso West deposit was discovered as a natural consequence of following the trend in mineralization through the Kutcho and Sumac West areas. The deposit occurs between depths of 400 and 520 m below surface. The Esso West deposit, like the others, is an elongate lens shape with current dimensions of approximately 680 m in length, up to 110 m in width and up to 24 m in thickness. The deposit consists of two lenses; a larger

lower lens and a smaller upper lens. Current interpretation suggests that the upper lens is a faulted portion of the main lens. The upper lens appears to have the greatest likelihood of expansion in the westerly direction.

Unlike the Sumac zone, there is a both a zonation in thickness and grades from the central area of the main lens. A resource estimate by Esso (Didur, 1980) using the sectional method had the following results: 1.63 million tonnes grading 3.42% Cu, 6.5% Zn, 62.7 g/t Ag and 0.53 g/t Au in the main part with 0.46 million tonnes grading 2.1% Cu, 3.13% Zn, 46.5 g/t Ag and 0.43 g/t Au in the upper zone. Drill holes are spaced approximately 10 to 30 m along sections and sections are variably spaced, between 60 and 120 m (Fig. 5.2). The above estimate is based on 43 drill intersections and includes idealized cross sectional shape interpretations of the deposit. Mineralization which was located within 30 m of a drill hole was classified as indicated*, with the remainder classified as inferred*. Approximately 50% of the mineralization was within 30 m of a drill hole. Subsequent, published estimates by Esso, for which documentation is unavailable, state a resource of 1.5 million tonnes grading 3.37% Cu, 5.71% Zn, 63.4 g/t Ag and 0.54 g/t Au. It is presumed that this estimate used a more conservative ore body shape and may have been estimated using geostatistical interpolation. The estimate was classified by Esso as indicated*. The Esso West deposit is open to expansion in a number of directions particularly the southeast and northwest.

3.2.4 Other Mineralization

Other zones of mineralization include the Footwall zone, and the Jenn area. The Footwall zone occurs, as the name implies, in the footwall of the Kutcho lens, approximately 100 m below and up-dip from the area near the eastern Esso-Sumac claim boundary. The FW zone is relatively narrow, at 2-5 m thick, and relatively zinc rich. A resource estimate by Didur (1979) using a polygonal method is 230,000 tonnes grading 1.47% Cu, 5.52% Zn, 43.7 g/t Ag and 0.4 g/t Au. This resource is classified as inferred*. The mineralization was only drilled up to Esso's property boundary with Sumac claims and the zone remains open to the west on the claims previously owned by Sumac.

The Jenn claims are on the eastern end of the property and received a fair amount of attention by Esso. Although significant alteration and some local mineralization were intersected, no resources have been defined in the Jenn area. Data needs to be compiled and re-interpreted in light of present understanding of both VMS deposits, in general, and the Kutcho property, in particular.

* Although the resource estimates described above pre-date the Standards on Mineral Resources and Reserves Definitions and Guidelines adopted by CIM council on August 20th, 2000, the use of the terms: Indicated and Inferred have been used and have the same meanings as the CIM definitions.

Figure 3.2: Kutcho Deposit, Internal Sulphide Stratigraphy.

4. 2004 DIAMOND DRILL PROGRAM

4.1 INTRODUCTION

Approximately 70,000 metres of diamond drilling in 276 drill-holes and 39 wedge branches had been completed on the property prior to 2004. Most of the drilling was completed between 1974 and 1983 (Esso and Sumac) with an additional 7,031 metres in 28 exploration holes completed by ARM and Homestake in 1990. The Kutcho deposit was defined by 151 drill holes (105 by Sumac and 47 by Esso). The Esso West deposit is not yet fully defined, but there were 49 intersections in the area. The shape of the Sumac West deposit has been largely determined from geophysical data as there are only 10 drill holes in and around the deposit due to its relatively low grades. In the summer of 2004 a work program, as outlined in the recommendations section of a 43-101 Report by WKM (Marr and Holbek, 2004), was undertaken to provide sufficient data in order to initiate a preliminary feasibility study.

In 2004, Western Keltic drilled 7,936 metres in 41 holes within the Kutcho and Esso West deposits. Drill-hole locations are shown in plan on figure 4.1. Twenty-one, HQ diameter holes, totaling 2,340m were drilled into the Kutcho deposit area. Eight HQ drill-holes, totaling 622 m, tested the up-dip edge of the Foot Wall (FW) zone, located 100 m stratigraphically below the Kutcho deposit. Ten NQ drill-holes and two BQ branches, totalling 4,974m were drilled in the Esso West deposit area. Two of the Esso West holes were abandoned when drill-hole flattening did not occur at the rate predicted and the targets would have been missed by significant amounts. Directional accuracy was problematic in drilling on the Esso West due to unavailability of wedges. Attempts to use BQ strings in branch holes from an NQ pilot hole to achieve more pronounced flattening had marginal success, achieving separations of only about 12m between the branch and pilot holes. Better success could be achieved using different BQ drill bits and a more flexible drill string. Table 4.1 summarizes drilling by all companies to date.

Company	Kutcho lens	Sumac West lens	Esso West lens area	Exploration/ Other	Total
Sumac	102	10		16	128
Esso	49		63* (24)	45	120
ARM	2			26	28
WKM	29		12		41
Total	182	10	61	92	356

Table 4.1 Summary of Drill Holes, Kutcho Project

* 24 pilot holes plus 39 wedge branches.

4.2 DESCRIPTION OF PROGRAM AND METHODS

Drill-hole locations were determined using hand held GPS instruments in addition to chain and compass surveys using existing, surveyed drill collars as reference points. All of the Esso and Sumac drill holes had been surveyed by McElhanney Engineering.

Table 4.2 summarizes drill-hole locations and lengths. Collar locations are in GPS UTM Nad83 coordinates and should be considered approximate only, with a possible error of +/-5 metres. Mine Grid coordinates were either calculated from UTM coordinates, or measured from known and surveyed historic drill collars. More accurate collar surveys are planned as part of the next field program.

The holes were geologically logged using a modified GEOLOG style system. Drill logs are located within Appendix II. Mineralized sections were often logged first and independently of the rest of the holes due to the speed at which the holes were being drilled, and the need to isolate metallurgical samples within a nitrogen environment in order to prevent oxidation. In the case of some Esso West drill-holes, only the part of the drill hole containing the intersections were logged as the thick hanging wall geology is relatively well understood and climatic conditions prevented mobilization of the remaining drill core.

Mineralized drill core intersections were sawn in half, and then ½ of the core was again sawn in half or quartered. The half core was collected for metallurgical testing by packing in nitrogen filled, sealed bags which were then packed within airtight, nitrogen filled plastic pails. A quarter of the core was sent for assay and the final ¼ returned to the core box. New BQ boxes were used to hold the quartered HQ or NQ core. Appendix III contains a list of the 770 core and blank (QA/QC) samples collected. Assay results are located within Appendix IV. Specific gravity measurements were done on the quartered core by the process of weighing in air and weighing in water.

Prior to drilling start-up, the camp at the Kutcho airstrip (owned by Jade West) was rejuvenated by WKM after being unoccupied for several years. Indiscriminate use and abuse by the public (hunters) had rendered the camp unlivable, and considerable effort and expense went into rehabilitating the living, washing and dining facilities.

A majority of historical the drill core is stored on the property. A new core storage area was constructed for the Esso drill core in 1985, and all of the salvageable drill-core was moved over the next six years. The Sumac core was stored on core racks in the area between the Kutcho and Sumac West deposits. Due to decomposition of these racks the core was recently removed and cross-stacked nearby and the core racks were dismantled. Approximately 40% of both Sumac and Esso drill core from the Kutcho deposit was re-logged in 1984 and 1985 (Holbek and Heberlein, 1986) using the GEOLOG system. This data is available in digital format.

Core from 2004 drilling was transported to the new core storage area (core-farm) except a few holes in the Esso West area which became inaccessible once the fall rains started. Core from these holes is stored at the drill site. Core at the core-farm is stacked on old drill rod which is elevated on timbers. Core boxes have been labeled with aluminum tags engraved with drill-hole, box and depth information.

Table 4.2: Drill Collar Data for 2004 Drilling Mine

			11TM Each	WITTE							
Holeld	Deposit	North	UTW East	North	Mine East	Elevation	Azimuth	Dip	Total Depth (m)	Drilled Length (m)	LogStatus
WK0401	EW	535490	6452572	23280	36018	1525	0	-90	566.3	566.3	Complete
WK0402	KL	537286	6451929	22620	37811	1609	180	-60	103.3	103.3	Complete
WK0403	KL	537431	6451843	22540	37956	1639	180	-63	85.0	85.0	Complete
WK0404	KL	537413	6451937	22633	37938	1604	180	-45	130.8	130.8	Complete
WK0405	KL	537298	6451860	22560	37823	1615	175	-70	63.7	63.7	Complete
WK0406	KL	537697	6451676	22367	38220	1646	174	-45	130.8	130.8	Complete
WK0407	EW	535666	6452775	23468	36191	1468	175	-60	609.3	609.3	Complete
WK0407B	EW	535666	6452775	23468	36191	1468	175	-74	246.6	246.6	Not Logged
WK0408	KL	537736	6451774	22464.2	38258.3	1635.2	180	-60	123.7	123.7	Complete
WK0409	KL	537889	6451746	22430	38412.5	1638	180	-60	63.7	63.7	Complete
WK0410	KL	537889	64517 4 6	22429	38412.5	1637.7	180	-80	88.1	88.1	Complete
WK0411	KL	538039	6451735	22414	38565	1623	180	-55	61.0	61.0	Complete
WK0412	KL	538082	6451784	22467	38605	1613	180	-85	85.0	85.0	Complete
WK0413	KL	538082	6451784	22466.5	38605	1613	180	-45	73.2	73.2	Complete
WK0414	KL	537982	6451857	22540	38504	1608	180	-45	121.6	121.6	Complete
WK0415	KL	537982	6451857	22540.7	38504	1608	180	-78	133.8	133.8	Complete
WK0416	KL	538083	6451861	22550	38608	1596	180	-45	112.5	112.5	Complete
WK0417	KL	538226	6451802	22487	38751	1589	180	-80	78.6	78.6	Complete
WK0418	KL	538226	6451802	22486.5	38751	1589	180	-45	75.9	75.9	Complete
WK0419	EW	535348	6452939	23653	35888	1452	175	-57	130.8	130.8	Not Logged
WK0420	KL	538301	6451792	22464	38836	1586	180	-45	63.7	63.7	Complete
WK0421	KL	537784	6451979	22668	38310	1572	180	-45	185.6	185.6	Complete
WK0422	EW	535347	6452819	23527	35894	1474.8	175	-67	588.0	588.0	Intersection Only
WK0423	KL	537538	6452019	22715	38064	1568	180	-58	197.8	197.8	Complete
WK0424	KL	537229	6452047	22746	37766	1565	180	-75	176.5	176.5	Complete
WK0425	KL	537399	6452011	22711	37925	1582	180	-70	176.5	176.5	Complete
WK0426	KL	537302	6451990	22688	37828	1586	180	-57	139.9	139.9	Complete
WK0427	EW	535186	6452565	23278	35713	1498	180	-83	470.6	470.6	Intersection Only
WK0427B1	EW	535186	6452565	23278	35713	1498	180	-83	471.8	219.1	Intersection Only
WK0428	KL	537590	6451635	22329	38111	1665	180	-45	146.0	146.0	Complete
WK0429	KL	537804	6451598	22287	38225	1652	180	-45	75.9	75.9	Complete
WK0430	KL	537804	6451598	22287.5	38225	1652	0	-90	51.5	51.5	Complete
WK0431	KL	537759	6451578	22268.5	38279	1655	180	-45	63.7	63.7	Complete
WK0432	KL	537759	6451578	22269	38279	1655	0	-90	84.4	84.4	Complete
WK0433	KL	537704	6451606	22296	38225	1653	180	-45	52.7	52.7	Complete
WK0434	KL	537704	6451606	22296.5	38225	1653	180	-80	17.4	17.4	Not Logged
WK0435	EW	535186	6452565	23277.5	35713	1498	182	-75	426.4	426.4	Intersection to End
WK0435B1	EW	535186	6452565	23277.5	35713	1498	182	-75	456.0	204.5	Intersection to End
WK0436	EW	535490	6452575	23281	36014	1519	180	-77	483.7	483.7	Intersection to End
WK0437	EW	535564	6452558	23258	36094	1521	175	-80	492.6	492.6	Intersection to End
WK0438	EW	535430	6452586	23286	35960	1510	180	-81	536.1	536.1	Intersection to End
								Total	8440.5	7936.3	

Hy-Tech drilling out of Smithers, B.C. was contracted to conduct the drilling using a pair of Tech 5000 drills. The Tech 5000 is an in-house built skid mounted diamond drill which uses proprietary design and head technology enabling these machines to drill to depths in excess of 5,000 feet. Excellent recoveries were achieved, and the average production per shift, including mob-demob, moves and other non-drilling periods, was in excess of 53 metres.

Drill results for 2004 holes are contained in Appendix II (Logs) and IV (Assays). Sample details are contained within Appendix III and Table 5.2 summarizes the significant intersections of the drill program. Selected cross-sections are included in Appendix VIII. It should be noted that holes WK04-01, 07, 19, 22, 27, and 35 to 38 are drilled in the Esso West deposit with the remaining holes drilled in the Kutcho deposit area. Holes WK04-06 and 28-34 tested the Foot Wall zone which occurs approximately 100m stratigraphically below the Kutcho Deposit. Kutcho deposit stratigraphy is shown in Figure 3.1 and also in cross section 38520E (Appendix VIII).

4.3 RESULTS

4.3.1 Kutcho Deposit Drill Results

The 2004 Kutcho deposit drill program was completed primarily to obtain material for metallurgical testing, but 'pierce point' targets for these holes were also selected to provide additional geological information in areas where deposit morphology was not well defined. Additionally, many of the previously drilled holes in the western half of the deposit did not have gold assays, and results from this program will allow a much better estimation of the gold grade. In general, the 2004 drill assays confirmed and improved upon the historical results, as well as indicating that the deposit is open to some expansion in the up-dip and down-dip directions. Pre-2004 drilling on the Kutcho deposit had been carried out with drill-holes spaced approximately 30 metres along sections, with sections spaced at 60 metres. All previous drilling was done with BQ (38 mm) diameter core. Drill recoveries were very good for the historical drilling. The 2004 drilling in the Kutcho deposit.

Drill holes WK04-02 through 05, and 23 to 26 were drilled at the western end of the Kutcho deposit. Drill-hole 05 returned one of the highest grade intersections to-date in the deposit, and together with drill-hole 03 have extended the deposit slightly in the up-dip direction. Drill-holes 23 to 26 are located on the down-dip western edge of the Kutcho deposit, with drill-hole 25 intersecting mineralization beyond the boundaries of previous resource estimates. Drill-hole 23 returned the deepest, high-grade intersection of significant thickness in the deposit. This intersection occurs within a high-grade zone that has a strike length of approximately 150 m and is open in the down-dip direction for over 90 m, where it is closed off by a low-grade drill-hole.

Figure 4.1 Plan of Kutcho deposit drill collars with deposit outline approximately projected to surface.

Figure 4.2 Vertical projection of longitudinal section of the Esso West deposit drill-hole pierce points.

Hole ID	Deposit	From	To (m)	Length	Cu%	Zn%	Ag g/t	Au g/t
		(m)		(m)				
WK04-01	Esso West	503.7	506.3	2.6	1.17	5.10	11.4	0.06
and		510.7	522.8	11.1	3.25	4.72	112.1	1.73
WK04-02	Kutcho*	74.1	76.0	1.9	2.24	1.11	77.7	0.46
WK04-03	Kutcho	64.6	75.3	10.7	2.79	2.61	65.0	0.47
WK04-04	Kutcho	100.6	104.9	4.3	2.25	2.32	64.7	0.48
and		107.6	111.0	3.4	2.64	1.49	25.2	0.20
and		117.5	122.6	5.1	2.89	1.08	42.7	0.57
WK04-05	Kutcho	41.1	49.4	8.3	5.34	5.94	138.6	2.28
WK04-06	FW zone	95.7	101.5	5.8	0.15	1.03	2.8	0.06
and		111.0	111.7	0.7	0.6	2.88	18.0	0.12
WK04-07	Esso West		Deviated	too far to ea	st – no s	significant	intersectio	n
WK04-08	Kutcho	57.2	63.0	5.8	2.54	2.32	41.9	0.35
WK04-09	Kutcho	53.8	57.8	4.0	3.36	2.31	40.5	0.25
WK04-10	Kutcho	48.2	51.5	3.3	3.18	3.45	41.3	0.27
and		67.4	74.9	7.9	2.17	4.19	35.6	0.48
WK04-11	Kutcho	22.6	28.1	5.5	3.76	3.52	44.5	1.14
WK04-12	Kutcho	61.7	79.6	17.9	2.52	2.33	61.1	0.49
Incl.		63.6	75.6	12.0	2.94	3.01	78.1	0.57
WK04-13	Kutcho	52.9	64.8	11.9	1.99	3.58	26.3	0.34
WK04-14	Kutcho	96.6	114.2	17.6	3.23	3.11	52.7	0.72
WK04-15	Kutcho	110.4	116.0	5.6	1.96	3.89	39.5	0.66
Incl.	·····	113.0	116.0	3.0	3.28	4.69	66.2	1.12
WK04-16	Kutcho	91.8	99.0	7.2	2.94	3.35	37.3	0.50
And		101.7	104.1	2.4	2.84	4.32	45.5	0.55
WK04-17	Kutcho	55.7	57.6	1.9	1.32	2.89	28.2	0.25
WK04-18	Kutcho	41.5	50.6	9.1	3.27	4.78	54.7	1.01
WK04-19	Esso West		A	borted due to	excess	ive deflect	tion.	
WK04-20	Kutcho	38.1	39.1	1.0	1.88	0.08	56.0	0.35
WK04-21	Kutcho	150.0	157.7	7.7	2.64	0.19	79.2	0.17
WK04-22	Esso West	575.2	578.2	3.0	3.17	9.73	80.1	0.46
WK04-23	Kutcho	177.9	186.8	8.9	3.08	2.09	68.8	0.63
WK04-24	Kutcho	162.5	169.8	7.3	1.67	2.56	51.8	0.52
WK04-25	Kutcho	163.2	165.8	2.6	1.89	2.03	118.7	2.11
WK04-26	Kutcho	122.5	127.8	5.3	5.11	1.17	96.8	0.99
WK04-27	Esso West	450.8	453.9	3.1	1.76	14.84	50.4	0.68
WK04-27b1	Esso West	444.7	449.9	5.2	3.03	18.61	65.4	0.93
WK04	-28 to 34 are sha	allow drill-h	oles in the	FW zone a	nd inters	ected low	-grade zinc).
WK04-35	Esso West*	420.1	420.6	0.7	2.72	0.33	9.0	0.21
WK04-36	Esso West*	459.0	467.1	8.5	0.93	0.14	10.8	0.11
and		470.5	473.9	3,4	0.96	1.05	31.9	0.27
WK04-37	Esso West	469.9	475.0	7,1	4.60	4.36	113.6	0.50
WK04-38	Esso West	491.5	501.0	9,5	1.77	5.22	20.3	0.36
and		504.0	518.0	14.0	3.20	5.92	140.0	1.13

Table 4.3 Significant 2004 Drill Intersections

* On edge, or external to, actual massive sulphide deposit.

The central, part of the Kutcho deposit was tested by holes WK04-08 to 10, and 21. Drill holes 08 and 10 were drilled along the up-dip edge of the deposit and confirm the presence of a near-surface, high grade copper and zinc rich core in the Kutcho deposit. Drill-hole WK04-21 is below the central, down-dip edge of the deposit and extends the deposit slightly in the down-dip direction.

Kutcho deposit holes WK04-11 to 20 (except 19) are from the eastern end of the deposit. Hole 11 intersects the deposit near surface, is well mineralized, and was not oxidized, raising the prospect for minimal pre-stripping and early, high grade mill feed. Holes 12, 13, 16 and 18 confirm a thick, high-grade, near surface zone ideal as a starter pit area. Continuity of thickness and grade in the down-plunge direction from the starter pit area is demonstrated by drill-hole 14, and to a lesser extent by drill-hole 15. A sharp cutoff to the deposit on the down-dip edge along the eastern end is evidenced by the low-grade intersections in drill-holes 17 and 20, which pierce the deposit plane only 30 m down-dip of historical holes with moderate grade mineralization.

Statistical analysis of historical and current drill data reveals some interesting trends. On the basis of intersections based on minimum thicknesses (3.0 m) and minimum grades (\$30 NSR) the drill intersections show some significant variations as displayed in Table 4.4.

Table 4.4: Summary of Kutcho Diamond Drill Intersections grouped by area (comp	any)
and/or date of drilling (intersections based on minimum 3 m thickness and \$30 NSR	
rock value).	

Drill Program	Number of drill-holes	Number of intersections	Thickness Avg. (m)	Cu%	Zn%	Ag g/t	Au g/t
Kutcho: Sumac 1974-1981	71	86	9.2	2.32	3.20	38.8	0.43
Kutcho: Esso Pre-1981	25	33	8.3	2.52	3.32	39.7	0.44
Kutcho: Esso 1981-1983	12	13	11.4	2.79	3.62	43.8	0.86
Kutcho: WKM 2004	19	23	9.0	2.86	3.14	56.6	0.67
Esso West: Esso	22	28	8.1	3.39	4.89	73.6	0.67
Esso West: WKM	5	6	10.8	2.27	6.38	87.1	0.90

The significant feature of this table is the variation in grades with the program or area drilled. The Sumac drilling in the Kutcho deposit is from the western two-thirds of the deposit whereas the Esso drilling is from the eastern third of the deposit. Most of the pre-1981 Esso drill-holes did not have gold analysis and gold grades were calculated based on the average silver to gold ratio of 98:1 in the Sumac drilling (Wright Engineers, 1985). The post 1980 drilling by Esso in the same area of the deposit have a significantly higher, average gold to silver ratio. The average gold value of the post-1980 Esso drilling is skewed by a single very high grade intersection but even if this value is removed from the population the average gold value is still 0.70 g/t. This suggests that the eastern part of the deposit is more gold rich than the western part which is partly true – it is actually the western third of the Kutcho deposit that is overall lower grade and less well endowed with the precious metals than the eastern $2/3^{rd}$ of the deposit. Therefore, using the average silver to gold ratio of the entire western $2/3^{rds}$ of the deposit, resulted in understating the actual gold grade in the previous resource estimates.

The higher grades in Cu, Ag and Au, within the 2004 drilling in the Kutcho deposit over previous drilling is somewhat surprising, especially considering that these holes were essentially randomly selected with respect to grade and thickness of the deposit, being spotted by areas with slightly lower drill-hole density and further controlled by drill sites that could be reached by an excavator with minimal road building. The improved precious metal grades are also noted in the Esso West deposit, where they are even more pronounced as this drilling was in more zinc-rich areas of the deposit where precious metals are usually lower.

The increase in both copper and precious metal grades is attributed to three factors: 1) better recovery in large diameter core, 2) better quality splitting coupled with slightly more detailed sampling, and 3) improvements in analytical techniques and laboratory quality control. Gold and silver are closely associated with the presence of primary chalcocite within the Kutcho deposit; it is possible that BQ diameter core would be more likely to break along thin chalcocite bands and grind up some of the chalcocite than would the HQ diameter core. During the 2004 drill program, the core was first logged and then sawn in half, with one half, re-sawn into quarters. The core was sawn piece by piece and reassembled in the core box. The core box was then returned to the logging area where the geologists collected the analytical sample for specific gravity measurements. Sampling was based on ore mineralogy and core lengths were carefully measured. Relying on the measuring blocks placed by drillers for core lengths can commonly result in errors of more than 10% in sample lengths. Change in analytical methods could also account for significant differences between historical and present analyses. It is not known which analytical methods were used for gold and silver in the historical drill programs but it is possible that wet chemical methods were used, and little importance was attached to the precious metals, in part due to their low values in the deposit and their, relatively, lower prices. Quality control within commercial laboratories, particularly for precious metals has improved significantly over the last 30 years. Some of the historical core has been re-sampled and is currently being re-analyzed to determine the effect of laboratory changes.

4.3.2 Esso West Drill Results

Twelve holes were drilled in the vicinity of the Esso West deposit, and several were successful in extending the deposit in the up-dip, down-dip and westerly directions. Two holes were terminated early due to deflection off course. Attempts to use more deflection

prone BQ drill strings in place of (unavailable) wedges for branch holes were marginally successful as drill-hole separations of only 10 to 12m were achieved.

Drill holes WK04-01, 07 and 22 were all drilled below the bottom edge of the deposit and holes 01 and 22 extend the central part of the deposit an additional 25-30m in the down-dip direction. Drill-hole 07 was targeted to extend the eastern end of the deposit in the down-dip direction but curved too far to the east (200m east of previous drilling) and failed to intersect massive sulphide mineralization. The hole did, however, intersect a copper bearing stringer zone, previously unknown, that suggests some eastward extension of the deposit may be possible.

Drill holes 27, 27B1 and 35 through 38 were drilled in the Esso West deposit area. The Esso West deposit consists of two massive sulphide lenses, a main lens and a subordinate up-dip adjacent lens (see figure 5.2). Holes 27 and 35 their branch holes, 27B1 and 35B1, were drilled on the western end of the subordinate lens and extended the lens to the west where it remains open. Drill-holes 27 and 27B1 intersected the lens near its lower or down-dip edge whereas holes 35 and 35B1 flattened too much and intersected the zone on its up-dip edge thereby only cutting a very thin massive sulphide unit.

Drill-hole WK04-36 was drilled to test for an up-dip extension of the main Esso West lens and intersected narrow massive sulphide zones intercalated with host rock suggesting a location right on the edge of the deposit. Drill-hole 37 intersected the massive sulphide lens right on the up-dip edge of the previously interpreted boundary and because of a relatively thick intersection (>6 m true thickness) indicates that the actual edge of the deposit is further up dip. Both drill holes 37 and 38 will be used as pilot holes from which wedge branches will be drilled next season.

4.3.3 Footwall Zone Drill Results

The Footwall Zone (FWZ), occurs approximately 100 m stratigraphically below the Kutcho deposit and had been tested with 8 fairly wide-spaced holes drilled by Esso. A polygonal resource estimate by Esso in 1981 indicated that the zone contained 223,000 tonnes grading 1.28% Cu, 4.80% Zn, 38.0 g/t Ag and 0.35 g/t Au. A single hole drilled by Sumac, 400 m to the west and along the up-dip edge of the zone appeared to have intersected 4.5 m grading 2.5% Cu and 9.6% Zn. Subsequent investigations of the original data, determined that this intercept was in fact only 0.45 m in length. The area between the Esso drilling and the Sumac drill hole is a swampy area that might be used as a waste dump during mining of the Kutcho zone. Therefore it was important to test this area of the footwall zone to determine whether any open-pittable mineralization was present.

Drill holes 06, and 28 through 34 were short exploration holes designed to test the up-dip potential of the Foot Wall (FW) zone and did not return sufficient grades or thicknesses required to constitute economic intercepts. Drill-holes 28-34 were drilled along the south edge of the swamp area and intersected a significant fault zone, which is manifest on surface by a sharp break-in-slope. The fault zone appears to be vertical. Core recovery was poor in the steeper holes which cut the fault at a shallower angle. Overall, these holes might be

considered a poor test of the footwall zone due to the proximity of a major fault. However, drill-hole 06 was drilled from the northwest side of the fault and intersected the Footwall zone deeper and in an un-faulted area, but still returned low-grade mineralization, indicating that the open-pit potential of the footwall zone is likely negligible in this area. WK04-06 does give a good view of the thick footwall alteration of the Kutcho deposit, however and was sampled for lithogeochemical analysis.

5. RESOURCE ESTIMATION

Subsequent to obtaining results from the 2004 drilling new resource estimates were prepared for both the Kutcho deposit and the Esso West deposit. Details of the estimation procedures are located in the following sections.

5.1 ESTIMATION METHODS

The resource estimate for the Kutcho deposit was carried out using an interpolated block model constrained by a 3-dimensional (solid) model outline. The estimate for the Esso West deposit was initially completed using a sectional estimate and subsequently re-estimated as a block model similar to the methodology used for the Kutcho deposit.

1. **Solids models**. An outline of the mineralization is created on each section. The outline follows geology in general but attempts to use "smooth" lines that would be considered mineable. Usually the hanging wall contact is sharp; whereas the footwall contact is locally gradational, and an assay cut-off is used. NSR assay cut-offs would be between US\$10 and US\$20 for the Kutcho deposit and between \$20 and \$30 for the Esso West deposit. First pass outlines attempted to minimize waste, provided that it was greater than 3m in thickness. Generally this resulted in bifurcation along the down dip part of a number of sections, as well as a small upper lens in the eastern part of the Kutcho deposit. There were also two sections with bifurcations in the Esso West deposit. Sectional estimates of the deposits were completed at this stage. Creation of sectional outlines was done by 'snapping' lines to actual assay intervals on the drill-holes in 3-dimensional space; as the drill-holes do not lie perfectly along section lines, the outlines are 3-dimensional and would appear 'jagged' in plan view. Points were then assigned at 10m intervals around the section outline to assist in creating the solid surface around the outside of the section frames.

During the process of connecting the sectional outlines into 3-dimensional 'solids' models, it became clear that the bifurcation of the section caused problems triangulating between sections to create the solids, due to crossing triangles. Essentially the scale of bifurcation was so small relative to the overall scale of the deposit that it became very difficult to create a solid without intersecting triangles. Extensive use of tie-lines might be able to overcome this problem, however it was felt that a complex shape would be difficult for miners as well, and therefore the bifurcations were streamlined, or simplified by placing the outline around the outside perimeter of the mineralization (closer spaced drilling, or more sections would also help to alleviate this problem as shape changes between sections would be more gradual). This results in the inclusion of waste within the block model and some smearing of grade into

waste blocks and visa-versa. The Kutcho hanging wall lens was included into the main body of mineralization where it was thick enough and ignored where it was thin (< 3m) resulting in the "loss" of some mineralization and the local inclusion of hanging-wall waste. Sectional outlines were compared to neighboring sections and minor adjustments where made to create shape similarity between the sections and to create a smoother outline along the up-dip and down-dip edges as the more irregular outline is interpreted to be an artifact of drill spacing rather than reality. Some sections still required tie-lines or connecting segments between the sections in order to prevent "crossing triangles", particularly where there are significant differences between the shapes or sizes of adjacent sections.

Once the solid was completed it was checked against infill holes that occur between existing sections. There were a number of cases where some mineralization was falling outside of the solids on the infill holes. In these cases, the nearest section was adjusted so that the resultant solid shape would include the entire mineralized interval in the isolated hole. It would be better to have a complete in-between section in order to generate a more precise solid shape, however, in all cases the changes required to the adjacent sections were relatively small so that the net differences in volume and grades would be also be small.

2. Sectional Estimates. Sectional estimates were carried out using the Surpac software which provides a 2-dimensional area of the sectional deposit outline and carries out a length weighted average grade for the area based on all drill-hole assays within the area, including the projection of the area for a specified distance (half-way to adjoining sections). A volume is calculated by multiplying the 2-D area by the projection distance which is half the distance to the next section. Tonnages are calculated by multiplying by the specific gravity which has also been 'averaged' with the assay data. Section volumes are summed and grades averaged on tonnage weighted basis to produced estimated grades and tonnage for the entire deposit. As section outlines were changed slightly during the creation of solids models the tonnages of the sectional estimates will not be identical to the contained tonnage of the solids models. Additionally the solids models were given interpreted "ends" (usually merging the solids to a point located at the position of the next section) which will result in a small difference when compared the sectional estimate where the section is projected ½ of the section spacing.

3. **Block Models**. Block models are established by determining the model origin, maximum dimensions and block sizes. The Kutcho model needs to be large enough to include a full size open pit, whereas the Esso West model was just large enough to enclose the deposit. Both models are based on orthogonal co-ordinates and are not rotated. Block size for the Kutcho deposit is 10m in the east-west direction (x), 5 m in the north –south direction (y) and 3 m in the vertical direction (z). Block dimensions are arbitrary but were chosen to be the largest size that would reasonably conform to the shape of the deposit. A 3 m vertical distance was chosen to be compatible with 6, 9 or 12 m bench heights. Sub-blocking was allowed to go to $\frac{1}{2}$ of the block size in all directions. It is worth noting, that, as the deposit is currently being modelled (3,000 t/day), 5 blocks of massive sulphide mineralization is one day of mill feed. Initial block models in the Esso West deposit used the same block size but subsequent models using 10 x 3 x 3 m blocks with 50% sub-blocking yielded slightly better results due to the narrower thicknesses along the deposit edges.

4. **Composites**. Composites are created to subdivide the drill-hole intersections into equal lengths for interpolation calculations. The process of compositing begins at the up-dip edge of the solids model and then subdivides the distance along the drill-hole that is within the model into the specified composite length. Choice of composite length is determined with consideration being given to initial sample size, number of samples, block size and thickness of the solids model. Generally, one would want the statistical distribution of the initial sample population to be reflected in the composite population. For the last sample, at the lower boundary of the solids model, inclusion for the interpolation is set at 51%. That is, if 51% of the composite is within the solids model it is used for the interpolation; conversely if less than 51% is within the solids model the composite is not created. Typically composite lengths are 50% of block size, however, in this case a composite length of 1m was chosen. This length is better suited to the areas where the deposit is relatively narrow (< 6 metres) and provides better resolution of grade boundaries in the down-hole direction.

5. **Interpolation**. Block models were interpolated using inverse distance methodology. Geostatistical studies carried out previously (WEL, 1985; and Holbek and Champigny, 1990) provided information on directions of best data continuity, however this is somewhat selfevident by simple inspection of the deposit. Interpolation of block grades within a massive sulphide deposit is fraught with difficulty and can be debated at length. The crux of the problem lies in the stratiform nature of the mineralization and the overall geometry of the deposit. Both the Kutcho and Esso West deposits are finely layered with significant grade variations within the overall thickness of the massive sulphide deposits. The deposits ('massive sulphide sheets') are slightly curvi-planar such that connection of the higher grade zones is not along a straight line in either the strike or dip direction. Consequently the search ellipse used during interpolation may use data from the middle of the deposit in the center of the ellipse, from the top of the deposit at one end of the ellipse and from the bottom of the deposit at the other end. The possibility of creating grade shells (creating solid models for a succession of grade increases) was investigated and found to be impractical for deposit scale interpolation. A variety of search ellipse shapes and constraints were investigated. The Kutcho deposit has dimensions of approximately 1,500 m in the east-west direction, 300 m in the down dip direction, a maximum thickness of 34 m and an average thickness of about 10-15 m. Thus the relative dimension ratios are 150:30:1. The distribution of data is quite different, in that drill holes are most commonly drilled perpendicular to the deposit thickness with anywhere from 3 to 20 assay intervals* in the down hole direction. Drill sections are spaced at 60m along the deposit strike length, with drill hole spacing of about 30 m between holes along the sections. Thus, assay data density is in somewhat reverse proportions to the deposit shape.

The search ellipse was designed such that a maximum of 12 composites could be used with a maximum of 4 composites from a single hole, and that a minimum of 5 composites was required, thereby ensuring that a least two drill holes contributed to a block grade. The major axis of the search ellipse was along the down-plunge trend of the deposit, and rotated into the plane of the deposit. Sample weighting is in proportion to the axis lengths of the search ellipse which tends to counteract the unbalanced data distribution within the deposit.

Interpolation was carried out in successive passes. Initially the search ellipse had radii of 150, 30 and 10 m, and the solid model was checked to ensure that all blocks received a grade. Subsequent passes were carried out with smaller radii, however due to the limiting the minimum and maximum number of composites, changes due to these additional interpolations were relatively small but did provide some increase in grade. Interpolation was done using inverse distance cubed. Inverse distance to the power of 5 was also tried on the last pass (smallest ellipse) interpolation but had a negligible impact on the results. In parts of the deposit were the strike orientation changes, the trend of the major axis of the ellipse was also adjusted to match this change, resulting in a very small effect on the estimation results.

* Assay intervals within drill-holes varied with both company and samplers. In general, the early EMC drilling incorporated relatively large (3m) samples with limited shoulder sampling. Sumac used much finer, geological or mineralogical based sampling. Current sampling used a geological/mineralogical approach to sampling with a minimum sample distance of 0.5m (except in rare circumstances) and maximum sample thickness of 1.5m. Generally two, 0.5m 'shoulder' samples bounded all mineralized intervals.

6. **Kutcho gold grades**. Gold values are not available (not analyzed) for 22 of the Esso holes, equivalent to approximately 50% of the holes in the eastern third of the deposit. Previously, these gold grades had been calculated from silver grades based on the very strong correlation of gold to silver. Data from all of the other drilling indicated an average ratio of gold to silver of 1:98, as calculated by Sumac and used in the Wright Engineers pre-feasibility study. However, if this data is grouped by area and data with gold or silver values near the detection limits is not included, the ratios are quite different. Gold-silver ratios of drill-hole intersections have nearly identical ratios as the individual assay samples, but are slightly less variable. Grouping the intersections by area, indicates that silver/gold ratios are lower in the eastern part of the deposit as shown in Table 5.1.

Drill Hole Group	# of drill-holes	# of intersections	Silver:gold
Sumac	60	86	90
Esso (w/out Au assay)	16	25	96
Esso (with Au assay)	22	25	58
WKM (all)	19	23	84
WKM (eastern holes)	7	10	58

Table 5.1 Silver:gold ratios of grouped drill hole intersections based on minimum 3m greater than \$30 NSR cut-off.

It is easily observed that the silver to gold ratio varies if drill holes are grouped by location. The Esso drill-hole intersections without gold assays have a silver/gold ratio of 96 which is to be expected as all gold values were calculated on the basis of a silver-to-gold ratio of 98. The Sumac holes have a ratio of 90 which is less than the determined 98 value, primarily because the precious metal ratio is slightly biased by very low grade samples which have been removed by taking intersections above a cut-off grade. The drill intersections from the eastern part of the deposit (Esso drill-holes with gold assays) have an average silver to gold ratio of 58, and the WKM drill intersections in this area have the same ratio.
Copper is almost as well correlated with gold as is silver. The correlation line through the graph of the Cu vs. Au plot indicates that on average 1% copper corresponds to 0.25 g/t gold. Consequently, it was felt that a calculated gold grade would be better if it used both silver and copper data to base it on. After some experimentation it was determined that the formula (Cu*0.23)/2+(Ag/70)2 yielded gold values that shared the same distribution as the gold assays within the Esso drill data (post 1980), but at an average grade approximately 14% below the assayed data. This still results in an overall increase of 25% over the previously calculated grade and an average silver/gold ratio of 74. When additional drilling in the eastern part of the Kutcho deposit is completed it will be possible to eliminate the calculated gold data, as there will be sufficient gold assay data density to properly estimate block grades.

Along similar lines it was noted that Esso cut the silver grades of the Esso West deposit for during its resource estimate. No reasons are given for cutting but high samples were cut to 170 g/t. There does not appear to be any statistical reason for cutting high silver values as the all of the values form part of a single log-normal distribution. There were 8 values within the Esso database that were cut. Interestingly, there are eight or more silver assays within the 2004 Esso West drilling that are greater than 170 g/t. Consequently, the silver values which were cut within the historical database were restored to their original values.

5.2 RESULTS

Following interpolation block grades are summed. Blocks are summed based on a calculated NSR value which corresponds to an approximate copper % cut-off grade as given below.

Cut-off (% Cu)	Tonnes (000's)	Cu %	Zn %	Ag g/t	Au g/t
0.5	13,061	1.94	2.59	33.7	0.41
0.7	12,565	2.00	2.65	34.6	0.42
1.0	11,554	2.10	2.80	36.2	0.44
1.2	10,364	2.22	2.98	38.1	0.47

Table 5.2: Resource estimates for the Kutcho deposit as a function of cut-off grade.

The above estimates have lower tonnage and slightly higher grades than previous estimates (14.9 million tonnes grading 1.85% Cu, 2.62% Zn, 31.6 g/t Ag and 0.37 g/t Au (Wright Engineers, 1985) and 13.2 million tonnes grading 1.96% Cu, 2.70% Zn, 33.8 g/t Ag and 0.39 g/t Au (Holbek and Champigny, 1992). The current estimate is considered the most accurate to date in that the volume of the deposit has been constrained by the 3-d solids model. The solids model is conservative in that it assumed minimal projection in areas with little data, consequently there is room to expand the deposit in both the up-dip and down-dip directions as the model seldom extended more than 20 m beyond drill-hole data. Additional drilling in the deposit would likely result in somewhat higher grades both because of the noted increase in grades within the more recent drilling but also due to the fact that as drill holes become closer spaced the interpolation becomes better able keep high-grade with high-grade and low-

grade with low-grade as opposed to the smearing that goes on due to the curvi-planer nature of the deposit. Resources within the Kutcho deposit are classified as measured and indicated.

The Esso West deposit was first estimated using the sectional method. Two outlines of the deposit were done; one at \$25 NSR cut-off of drill holes and the second at a \$30 cut-off. There were also slight changes with the sectional outline of the deposit which contributed to some of the difference. Following the sectional estimates a solid model was constructed. As in the case of the Kutcho deposit the deposit shape was smoothed and simplified to allow easier connection between sections. This revised outline incorporates some waste and cuts off some areas that might contain ore but these areas are relatively insignificant. The Esso West deposit model is based on wider spaced drilling and is likely to change with additional drill data. As in the Kutcho deposit the process of interpolation of block grades results in some smearing of grades in to waste areas which results in lower tonnes and grades, when compared to the sectional estimates. The Esso West deposit has a higher range of specific gravity data and less correlation between specific gravity and grade such that tonnage is more significantly impacted by interpolation than it is in the Kutcho deposit.

Method	Cut-off \$NSR	Tonnes (000's)	Cu %	Zn %	Ag g/t	Au g/t
Sectional	25	2.12	3.22	5.75	82.1	0.64
Sectional	30	1.95	3.35	6.14	79.6	0.65
Block model	20	2.07	2.82	5.55	65.6	0.67
Block model	30	1.82	3.01	6.07	69.8	0.70

Table 5.3: Resource Estimates for the Esso West Deposit.

The Esso West deposit remains open to expansion to the west. Resources within the Esso West deposit are classified as indicated.

6.0 CONCLUSIONS

The Kutcho Creek volcanogenic sulphide deposits occur within a 4 km long, gently plunging linear trend, between felsic lapilli tuffs and quartz-crystal tuffs within the Kutcho Formation in northern British Columbia. The three known deposits, from east to west are the Kutcho lens, the Sumac West lens and the Esso West lens.

Western Keltic Mines Inc. purchased a 100% interest, subject to royalties, in the Kutcho property from Sumac Mines Ltd. and Barrick Gold Corp. Title to claims is secure and size of the property provides ample room for future exploration and development. The project has had a long history of exploration, beginning in 1969 and extending to the mid 1990's, including a pre-feasibility study by Wright Engineers Limited (WEL) on the open pit mining of the main Kutcho deposit.

Drilling during 2004 on the Kutcho deposit succeeded in obtaining nearly 3,000 kg of sample material for metallurgical testing. Additionally, current drilling confirmed previous drilling and geological interpretations and indicates that deposit grades may be slightly understated. Additional investigations need to be carried out to determine why current drilling achieves slightly higher Cu, Ag and Au grades relative to the historical drilling. Drill results from 2004 also indicate that there are a number of areas along the Kutcho deposit margins where the deposit could be extended to create additional resources.

Esso West deposit drilling in 2004 did not meet the total program objectives due to the lack of wedges. The program was still successful at increasing the size of the Esso West deposit, confirming that it is open to the west and providing confirmation of the locations and grades of the previous drill holes. Similar to the drilling in the Kutcho deposit the 2004 Esso West drilling also indicates that precious metal values of the deposit could be understated by the historical data.

7.0 **RECOMMENDATIONS**

There are two key issues to address in advancing Kutcho Creek towards production. The first is updating the metallurgy, now 20 to 30 years out of date, to make use of considerable improvements in metallurgical techniques and practices. Previous metallurgy was based on deposit grades using a 1% copper equivalent cut-off. Current target grades will be approximately 50% higher than past work which could contribute to a positive impact on recoveries, processing costs and concentrate characteristics. Consequently, an extensive program of metallurgical testing has been initiated. Additional work in this area will be dependent upon initial results.

The second issue is expansion of both the Kutcho and Esso West deposits. Drill holes targeting the Kutcho deposit near surface would help determine the pre-stripping required for open pit mining as well as determining the oxidation boundary within the deposit. If the amount of oxidized rock is found to be minimal, the overall strip ratio and amount of pre-stripping will be less with a significant positive impact on project economics. Discovery of additional mineralization at Esso West also has the potential to substantially impact project economics. The deposit is still open to the west and there is a reasonable possibility of discovering new sulphide lenses near by. It is recommended that additional drilling be completed for the Esso West area. Down hole surveys will need to very accurate to ensure that the positions of any intersections are well known, and wedging would be required to control drill string directions. Metallurgical testing of the Esso West mineralization should also be undertaken in conjunction with that completed on Kutcho.

Additional exploration targets at Kutcho remain to be tested. Although testing of the nearsurface area of the Footwall zone yielded negative results, this zone is still open in all other directions. The discovery of copper-rich stringer mineralization just off of the eastern downdip edge of the Esso West deposit suggests that an additional massive sulphide lens could exist in this direction and would be in the shadow of the Sumac West deposit and therefore blind to geophysical surveys. Moderate depth targets on the eastern end of the property did

not get tested during the 2004 program as initially planned and remain to be tested by subsequent programs.

ŕ

REFERENCES

- Bridge, D., 1982. 1981 Progress Report on the Kutcho Creek Property, an unpublished report for Esso Minerals Canada Ltd.
- Bridge, D., 1983. 1982 Progress Report on the Kutcho Creek Property, an unpublished report for Esso Minerals Canada Ltd.
- Bridge, D., 1984. 1983 Progress Report on the Kutcho Creek Property, an unpublished report for Esso Minerals Canada Ltd.
- Didur, B., 1979. Kutcho Creek Ore Reserves. Unpublished report prepared for Esso Minerals Canada Ltd.
- Didur, B., 1981. Diamond Drill Results and Ore Reserve Estimates. Unpublished text of presentation given in Tokyo Japan on behalf of Esso Minerals Canada Ltd.
- Gabrielse, H., 1978. Geology of NTS Map Sheet 104I (Cry Lake); Geological Survey of Canada, Open File, # 610.
- Gasparini, C., 1979. Study of Cu, Zn, and Ag distribution in Five Samples from the Kutcho Creek; In: Summary of 1978 Metallurgical testwork for Kutcho Creek, by H.E. Neal.
- Holbek, P.M., 1985. 1984 Exploration Report on the Kutcho Creek Project; an unpublished report for Esso Minerals Canada.
- Holbek, P.M., 1989. 1988 Geochemical and Geophysical Report on the Kutcho South Area Kutcho 89A and 89B Claim Groups. British Columbia Assessment Report.
- Holbek, P.M., 1990. 1990 Diamond Drilling Report on the Kutcho Creek Property. British Columbia Assessment Report.
- Holbek, P.M., and Heberlein, D., 1986. 1985 Exploration Report on the Kutcho Property; and unpublished report for Esso Minerals Canada.
- Holbek, P.M., and McPherson, M.D., 1990. The Kutcho Creek Property: A summary of exploration status and proposed future work; unpublished report for Homestake Canada Limited.
- Holbek, P.M., McPherson, M.D., and Oyie, H., 1991. Report on 1990 Diamond Drilling Program, Kutcho Creek Property; unpublished report for American Reserve Mining Corp. and Homestake Canada Limited.
- Holbek, P.M., and Champigny, N., 1992. Geological Reserve Estimate for the Kutcho Lens, Kutcho Creek Volcanogenic Massive Sulphide Deposits, Northwestern British Columbia; unpublished report for Homestake Canada Limited, American Reserve Mining Corp., and Sumitomo Metal Mining Canada Ltd.

- Pearson, D.E., and Pantaleyev, A., 1975. Cupiferous Iron Sulphide Deposits, Kutcho Creek Map Area (104I/1W); Geological Field Work, British Columbia Ministry of Mines and Petroleum Resources, pp. 86-93.
- Smith, J.B., 1991. Report on the Potential for Underground Mining Main Zone; Kutcho Creek Property. A study by Laxey Mining Services for American Reserve Mining Corp. and Homestake Canada Ltd.
- Stanton, R.L., 1991. Understanding Volcanic Massive Sulphides Past, Present, and Future. <u>In</u>: Historical Perspectives of Genetic Concepts and Case Histories of Famous Discoveries, Papers Arising from SEG Symposia, Oct 30 and 31, 1988 Denver, Colorado; Economic Geology Monograph 8, Skinner, B.J., Ed.
- Sumitomo Exploration Dept., 1984. ORC1: Explanatory note on the ore reserve calculation of the Kutcho main ore body, B.C., Canada; unpublished report for Sumitomo Metal Mining Canada Ltd.
- Thorstad, L.E., 1983. The Upper Triassic Kutcho Formation, Cassiar Mountains, North Central British Columbia; unpublished M.Sc. Thesis, The University of British Columbia.
- Thorstad, L.E, and Gabrielse, H., 1986. The Upper Triassic Kutcho Formation, Cassiar Mountains, North Central British Columbia; Geological Survey of Canada, Paper 86-16, 53p.
- Wright Engineers Limited, 1985. Pre-feasibility Study of the Kutcho Creek Project for Esso Minerals Canada Ltd. and Sumac Mines Ltd.

APPENDIX I

List of Claims

For

Kutcho Creek Property

APPENDIX I: List of Claims for Kutcho Creek Property

Barrick Claims

Kutcho Creek Property NTS 104I/1 Liard Mining Division British Columbia

<u> Tenure Number</u>	<u>Claim Name</u>	<u>Units</u>
221728	STU	6
221729	ANDREA	14
221730	SVEA	6
221863	LIN 0 01 FR	1
221907	CGL NO. 1 FR.	1
222015	JEFF 57 FR .	1
222119	JEFF 113 FR	1
222120	JEFF 114 FR	1
222121	JEFF 0 64 FR	1
222379	POND 001	14
222380	POND 002	4
222385	JOSH 1	16
222430	JOSH 3	18
222431	JOSH 4	18
227716	JEFF 001	1
227717	JEFF 002	1
227718	JEFF 003	1
227719	JEFF 004	1
227720	JEFF 005	1
227721	JEFF 006	1
227722	JEFF 007	1
227723	JEFF 009	1
227724	JEFF 013	1
227725	JEFF 014	1
227726	JEFF 015	1
227727	JEFF 016	1
227728	JEFF 017	1
227729	JEFF 018	1
227730	JEFF 019	1
227731	JEFF 020	1
227732	JEFF 021	1
227733	JEFF 022	1
227734	JEFF 024	1
227735	JEFF 025	1
227736	JEFF 026	1
227737	JEFF 027	1
227738	JEFF 028	1
227739	JEFF 029	1

227740	JEFF 030	1
227741	JEFF 031	1
227742	JEFF 032	1
227743	JEFF 033	1
227744	JEFF 034	1
227745	JEFF 035	1
227746	JEFF 036	1
227747	JEFF 037	1
227748	JEFF 038	1
227749	JEFF 039	1
227750	JEFF 040	1
227751	JEFF 041	1
227752	JEFF 042	1
227753	JEFF 043	1
227754	JEFF 044	1
227755	JEFF 045	1
227756	JEFF 046	1
227757	JEFF 047	1
227758	JEFF 048	1
227759	JEFF 049	1
227760	JEFF 050	1
227761	JEFF 051	1
227762	JEFF 052	1
227763	JEFF 053	1
227764	JEFF 054	1
227765	JEFF 055	1
227766	JEFF 056	1
227767	JEFF 057	1
227768	JEFF 058	1
227769	JEFF 059	1
227770	JEFF 060	1
227771	JEFF 061	1
227772	JEFF 062	1
227773	JEFF 063	1
227774	JEFF 064	1
227775	JEFF 065	1
227776	JEFF 066	1
227777	JEFF 067	1
227778	JEFF 068	1
227779	JEFF 069	1
227780	JEFF 070	1
227781	JEFF 071	1
227782	JEFF 072	1
227783	JEFF 073	1
227784	JEFF 074	1
227785	JEFF 075	1
227786	JEFF 076	1
227787	JEFF 077	1
227788	JEFF 078	1
227789	JEFF 079	1

,

227790	JEFF 080	1	
227791	JEFF 081	1	
227792	JEFF 082	1	
227793	JEFF 083	1	
227794	JEFF 084	1	
227795	JEFF 085	1	
227796	JEFF 086	1	
227797	JEFF 087	1	
227798	JEFF 088	1	
227799	JEFF 089	1	
227800	JEFF 090	1	
227801	JEFF 091	1	
227802	JEFF 092	1	
227803	JEFF 093	1	
227804	JEFF 094	1	
227805	JEFF 095	1	
227806	JEFF 096	1	
227807	JEFF 097	1	
227808	JEFF 098	1	
227809	JEFF 099	1	
227810	JEFF 100	1	
227826	JEFF 101	1	
227827	JEFF 102	1	
227828	JEFF 103	1	
227829	JEFF 104	1	
227830	JEFF 105	1	
227831	JEFF 106	1	
227832	JEFF 107	1	
227833	JEFF 108	1	
227834	JEFF 109	1	
227835	JEFF 110	1	
227836	JEFF 111	1	
227837	JEFF 112	1	
227838	JENN 001	1	
227839	JENN 002	1	
227850	JEFF 113	1	
227851	JEFF 114	1	
227852	JEFF 115	1	
22/853	JEFF 116	1	
227854	JEFF 11/	1	
221833	JEFF 118	1	
22/830	JEFF 119	1	
22/03/	JEFF 120	1	
221838	JEFF 121		
227859	JEFF 122	1	
227860	JEFF 123	1	
227861	JEFF 124	1	
227862	JEFF 125		
22/803	JEFF 120	1	
22/804	JEFF 127	I	

,

227865	JEFF 128	1	
227866	JEFF 129	1	
227867	JEFF 130	1	
227868	JEFF 131	1	
227869	JEFF 132	1	
227870	JEFF 133	1	
227871	JEFF 134	1	
227872	LIN 011	1	
227873	LIN 039	1	
227874	LIN 040	1	
227875	JENN 003	1	
227876	JENN 004	1	
227877	JENN 005	1	
227878	JENN 006	1	
227879	JENN 007	1	
227880	JENN 008	1	
227881	JENN 009	1	
228044	JEFF 135	1	
228045	JEFF 136	1	
228046	JEFF 137	1	
228047	JEFF 138	1	
228056	REX 1 FR.	1	
228057	REX 2 FR.	1	
228058	REX 3 FR.	1	
228059	REX 4 FR.	1	

SUMAC Claims

Kutcho Creek Property NTS 104I/1 Liard Mining Division British Columbia

<u>Claim Name</u>	Record Number	<u>Units</u>
SMRB#1	227636	1
SMRB#2	227637	1
SMRB#3	227638	1
SMRB#4	227639	1
SMRB#5	227640	1
SMRB#6	227641	1
SMRB#7	227642	1
SMRB#8	227643	1
SMRB#9	227644	1
SMRB#10	227645	1
SMRB#11	227646	1

SMRB#12	227647	1
SMRB#13	227648	1
SMRB#14	227649	1
SMRB#15	227650	1
SMRB#16	2 27651	1
KC122	2 21659	3
KC124FR	221874	1
KC125FR	221875	1
KC1	227882	1
KC2	22 7883	1
KC3	227884	1
KC4	227885	1
KC5	227886	1
KC6	2 27887	1
KC7	227888	1
KC8	22 7889	1
KC12	2 27890	1
KC13	227891	1
KC14	227892	1
KC15	227893	1
KC16	227894	1
KC17	227895	1
KC18	227896	1
KC19	2 27897	1
KC20	227898	1
KC21	227899	1
KC22	227900	1
KC23	22 7901	1
KC24	22 7902	1
KC25	227903	1
KC26	227904	1
KC27	227905	1
KC28	227906	1
KC29	227907	1
KC30	227908	1
KC31	227909	1
кС32	227910	1
KC33	22 7911	1 `

APPENDIX II

•

Diamond Drill Logs

&

Strip Logs

Diamond Drill Logging Codes

I (INDEX)	(INDEX)		OGY (ROCK TYPE) cont.	LITHOL	OGY (RM) cont.	COMPONENTS (C=MINL) C			nents (MINL.) cont	TEXTU	RE (Tx) cont		TEXTURE (Tx) cont
P	Primary	LLTF	Lapilli Tuff	LS	limy	AB	Albite	PY	Pyrite	EQ	Equigranular	PI	Pisolitic, pea-like
L	Lower	LLXT	Lapilli crystal tuff	LT	latitic	AM	Amygdules	QA	Quartz, agate	F\$	Fissile	PK	Poikilitic
R	Remark	LOST	Lost core	MF	mafic	AL	Alunite	QV	Quartz vein, massive	FB	Flow banded	PL	Pelleted
A	Analysis Type	LXTF	Lithic crystal tuff	мz	monzonitic	AP	Apatite	QX	Quartz, crystals	FD	Folded	PM	Polymictic
S	Survey	MSSX	Massive sulphide	PG	pegmatitic	AS	Arsenopyrite	QZ	Quartz, general	FE	Flattened & Eloigaed	PP	Porphyritic
E	Exended	MUDS	Mudstone	РН	phyllitic	AU	Augite	SE	Serpentine	FG	Fine-Grained	PS	Poorty Sorted
FLAG (FL	G)	OVER	Overburden	PP	porphyritic	AX	Amphiboles, general	SL	Sphalerite	FO	Foliated	RW	Reworked
11	Clear Field	PATE	Pyritic Ash Tuff	PY	pyritic	BA	Barite	SP	Sphalente	FR	Fragmental	SB	Slabby
BRX	Breccia zone	PLTF	Pyritic-lapilli tuff	RY	rhyolitic	в	Biotite	SE	Serpentine	FT	Flattened	SC	Schistose
CNT	Contact	PMDS	Pyritic mudstone	SH	shalv	BF	Breccia Fragments	SD	Siderite	FY	Flaggy	SE	Seriate
DYK	Dyke, dike	QFXT	Quartz feldspar crystal tuff	s	silty	во	Bornite	SX	Sulphides (general)	G:	Graded-bedded	SG	Sugary
F/W	Footwall	QXAT	Quartz crystal ash tuff	SL	salty	CA	Calcite	TA	Talc	GB	Granoblastic	SH	Sheared
FLT	Identified faults	QXLT	Qtz Xtal Lithic Tuff	ST	schistose	СВ	Carbonate	тм	Tourmaline	GC	Gradational Contact	SP	Spotted
FTZ	Fault Zone	OZVN	Quartz vein, alternative form	SY	svenitic	СК	Chrysocolla	π	Tetrahedrite	GG	Fault Gouge	sw	Stockworked
HAW	Hanging wall	RHYL	Rhvolite	TE	tuffaceous	CI	Chlorite	XF	Crystal Fragments	GN	Gneissic	тв	Thin Bedded
MIN	Mineralization	SEXL	Silica Exhalite	UM	ultramatic	CN	Cinneber	TEXTUR	RF (TraTexture)	GP	Glomero-porphyritic	TE	Tuffaceous
OVB	Overburden	SIBX	Silica Breccia		volcanic	CP	Chalconvrite	ST	Sheeted	GT	Granitic	TG	Trachytic trachytoid
SUM	Summary	SILT	Siltstone				Clev		Microveiged	GY	Graasy sectile	тр	Trachytic
тны	Thin section	SMDV	Semi-massive purite	1	Very Dark		Dolomite		Macroveined		Lorrfeie	VG	Vugov
UTHOL OF	CY (Em=Eormation)	SMSY	Semi-massive sulphide	2	Dark	ED	Epidote	1.	Amvadaloidal	пг	Heterolithic	VG	Vaggy
APD	Augen Phyodacite	STD7	Stringer Zone	5	Modium		Elucito	Î.E			Hemogeneous	1/6	Venieular
GMD	Green Marcon Phyd	OVEN	Sunite	2	Rela				Augen Eyes		Hotorogeneous	V3 \\\\	Vesicular
	Mottled Mete David	TEDD		12			Feldspar (general)		Angular Fragments		necerogeneous	VV MD	Vened
	Silves Divilite		Linke over so sh		Very Light		Feidspar prienocyrsts	AG	Augen structured	1B	Interbedded		vveided
	Silver Priyilite			COLOU			Fault Gouge	AM	Amygaaloidai	IM	Impricated	VVL	vvelded
SPR	Speckled Rhyolite	VEIN		A	Grey	GL	Galena	AP	Aplitic	IN	Interstitial	ws	vvispy
SEX	Sliica Exhalite	VSLI	Voicanic Siltstone	B	Blue	GI	Gamet	BD	Bedded		Inequigranular	XB	Cross-bedded
LITHOLOG	ST (LITI=ROCK ITPE)	XAIF	Crystal-ash tum	G	Green	GO	Goethite	BK	Blocky	IR 	Integular	xc	Cross-cutting
AGLM	Aggiomerate	XLAT	Crystal-lithic tuff	0	Orange	GP	Graphite	BN	Banded	KR	Crackled		
ANDS	Andesite	LITHOL	OGY (RM=Rx MODIFIER)	R	Red	GY	Gypsum	BR	Brecciated	LB	Lensoid-banded		
ARGL	Argillite	AK	arkosic	T	Tan	нв	Homblende	вт	Botryoidal	LE	Lineated		
ASHT	Ash tuff	AN	andesitic	υ	Brown	HE	Hematite, earthy	BX	Brecciated	LM	Laminated		
BAEX	Barite Exhalite	AP	aplitic	Y	Yellow	нм	Hematite, magnetite	CA	Cataclastic	LN	Lenticular		
BASL	Basalt	AR	argillaceous	AG	Grey-green	нs	Hematite, specularite	СВ	Crackle Breccia	LT	Lithic		
BRXX	Breccia	BN	bentonitic	AT	Gray Tan	JA	Jarosite	cc	Concretionary	MG	Medium Grained		
CASE	Casing	CG	conglomeratic	AU	Gray Brown	KF	K-spar, orthoclase	CG	Clay-galled	ML	Monolithic		
CHRT	Chert	сн	cherty	AW	Grey White	LF	Lithic Fragments	СМ	Chilled margin	MM	Monomictic		
CONG	Conglomerate	со	coaly	GA	Greenish-grey	LI	Limonite	CN	Contorted	MP	Microporphyry		
DACT	Dacite	CY	clayey	GM	Green & Maroon	MC	Malachite	co	Colloform Banded	мт	Mottled		
DBRF	Debris Flow	DB	diabasic	GN	Green & Black	MF	Mafics, general	CP	Crowded Porphyry	MV	Microviened		
DIOR	Diorite	DC	dacitic	NG	Blackish Green	MG	Magnetite	CR	Crenulated	МХ	Massive		
DOLM	Dolomite	DO	dolomitic	NN	Black	м	Micas (general)	cs	Closed-structured	MY	Mylonitic		
DYKE	Dyke	DR	diorític	OA	Orange and Gray	MS	Muscovite-sericite	СТ	Clastic	ND	Nodular		
EXHL	Exhalite	FL	felsitic	TG	Tan-green	MU	Muscovite	cx	Crowed Crystal	PA	Patchy		
FLTZ	Fault zone	GB	gabbroic	WG	Whitish green	ox	Oxides (general)	DF	Drag-folded	РВ	Porphyroblastic		
GOUG	Gouge	GN	gneissic	ww	White	PF	Plagioclase feldspar	EL	Elongate Fragments	PF	Psuedofragmental		
GRWK	Greywacke	GR	granitic	YA	Yellowish Gray	PO	Pyhrrotite		- •	PG	Pegmatitic		
LATF	Lithic ash tuff	HR	homfelsic	YG	Yellowish Green	PX	Pyroxene, general	1		РН	Phyllitic		

1	W	ester	n Keltic					Projec	t: KU ⁻	гсно с	REEK
	.	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Ho	le Id.: Wi	K04-01	
Hole Azimu	th:0	00	Dip:90°	Total I	Depth:	566.3m (18	58')			<u>Geologi</u>	cal Summary
Date Started	d: <u>Jul</u>	<u>y 23, 2004</u>	Date Completed:	August 4, 2004	(Core Size: _	NQ	_	Purpose /	Target: Tes	st below highgrade zone on Esso
			Northing	Easting			<u>Elevati</u>	on	West Depo	sit.	
UTM Locat	ion:	<u> </u>	- 6452571	~ 535488			~ 1521		Comment	s: Good inte	rsection below and to east of
Grid Locatio	on:		23280	36018			1521		E073. Will way throug	build some h hole (wid	tonnage. Switched drill rigs par er pads on 2nd drill).
Collar Surv	ev:										
									-		
Down Ho	le Surve	<u>Y</u>	Sample mormation		Split By:	A. Boy	yce		_		
Survey Met	hod: <u>Reflex</u>		# of Samples: <u>26 & 1 Blan</u> l	<	Туре:	<u>1/4 Sawn C</u>	ore				
Depth	Azimuth	Din*	280201 - 28	80227	<u></u>						
72.8	163.2	-86.5	Date Shipped: <u>August 18</u>	, 2004	Assay Ce	rtificate # :	VA040	56370			
124.7	166.3	-85.0	An ab dia ab tanàn amin'ny fisiana							Key Inte	rsections
203.9	165.5	-83.6	Analytical Lad: <u>ALS Cheme</u>	×					From	То	Results
233.5	167.0	-81.9	Drill Information	· <u>· · · · · · · · · · · · · · · · ·</u>							
274.0	169.0	-79.1									
307.5	171.6	-77.3	Drill Contractor: <u>Hy-Tech</u>		Drill Size:	Tech :	5000				
334.7	173.1	-75.8									
365.5	172.3	-74.7	Driller: <u>Warren Ash / Wayne M</u>	ayner	Shift	Distance	Shift	Distance			
399.0	171.8	-73.1	Driller: <u>Trevor Hooper / Boyd E</u>				· · · ·				
460.0	1/1.8	-/0.9	Helper: <u>James Dickinson / Ste</u>	ve voss is Peterson						<i></i>	
556 2	171.3	-567-7	neiper. <u>Cameron Dakker / Chr</u>				L			yr	
556.3	172.8	-07.7									

Project: Kutcho Creek

Inte	erval	Geo-T	echnical	Litho	logy	C	olour		C	mpo	nent	s			Tex	ture			Stru	ture						Alter	ation							M	ineral	izatic	'n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	CpA	SpH	SpA	BnH	BnA
0.0	3.0			CASE																														_	_	_			
3.0	41.1	100	90	GBBR		3	G	FX	25	HB	20			PP	SE			FL	30	FL	25					3	7									_			
41.1	43.3	100	90	VSLT		3	AU							FG	LM			BD	20																				
43.3	79.6	100	95	GBBR																																			
79.6	86.3	100	70	VSLT		3	AU							LM	FG			BD	20										_										
86.3	93.9	100	100	GBBR		3	G	HB	20					PP																									
93.9	115.8	100	90	GYWK		3	AU							BD	TB	FG		BD	30	BD	25																		
115.8	139.8	100	95	GBBR		1	AG	HB	20	GX	20	CL	CB	FG	PP											0	10												
139.8	179.5	100	78	VSLT		5	U	FX	20					FG	PP	LM										Q	5												
179.5	189.7	100	90	VSLT	GBBR	3	UG	CD						IB												3	15												
189.7	211.5	100	100	GBBR		1	AG	HB	20	FX	20			MG	PP	SE				_						3	15												
211.5	245.7	100	93	GYWK	ARGL	5	AG							FG	IB	FR		BD	30																				
245.7	319.4	100	97	GBBR		3	AG	HB	20	FX	15	EΡ	CB	FG	PP	FL		FL	28																				
319.4	337.7	100	93	HNFS		1	Α							FG	AP	GC																							
337.7	379.2	100	88	GYWK		7	G							IB	LM			BD	30																				
379.2	414.2	99	73	ARGL		1	A/N											BD	34																				
414.2	469.7	100	96	QFXT		9	G	QX	25	MS	20			PP										Р	20	0	3	3	5					-					
469.7	487.5	100	50	QFXT		5	G																																
487.5	491.6			QFXT		9	PT	QX	15	СВ	15	MS		PP	SP									Р	30	0	15			\$	5	D	1						
491.6	498.5	100	60	QFXT	FLTZ		W	QX	25	MS	35	СВ	PY	PP				FL	60	FT	70	V	2	Р	35	н	10	Q	3			D	1						
498.5	504.0	97	80	QCEX	QZVN		w	QZ	40	CB	40	MS	SX					.				Ρ	40	J	10	PB	30	Q	10			D	2	D	1	J	5		
504.0	506.9	100	70	CBEX		5	AG	СВ	50	MS	30	SX	QZ	MT				FL	_45			Q	10	Ρ	30	X	50					J		J	3	J	10		
506.9	510.4	100	60	QXAT		7	G	MS	30	CB	20	SX	LF	FR	VN			FL	40			Q	20	P	30	Q	20					D	2	V	5	D	3	D	0.5
510.4	511.9	100	60	QXAT		7	AG	MS	35	CB	15	BN	SX	PP	FG			FL	50					Р	35	0	15					D	2	J	4	D	1	J	4
511.9	515.1	100	70	SMSX				SX	30	QZ	30	MS	СВ	LM	NET			FL	55			Q	15	Р	20	0	10					L	7	Ν	8	D	2		
515.1	519.7	100	90	MSSX				CP	30	PY	30	SP	QZ									Р	15	P	5	Q	10					L	30	L	30	J	4	J	2
519.7	520.6	100	95	MSSX				CP	25	SP	10	PY	QZ	FG	LM	BX						J	10			Q	5					L	45	L	25	L	10		
520.6	522.9	100	95	MSSX				PY	40	QZ	30	SP	CP	ΒX	LM	GC						#	30									L	40	D	10	Х	10	J	5
522.9	535.4	100	30	LLAT		9	A	MS	30	LF	20	PY	GG	LB	FG		-	FL	50					Р	30	Q	3					L	15	D	1	D	0.5		
535.4	547.1	100	55	LLTF		7	Α	LF	45	MS	25	PY	СВ	LB	FR							Ρ	5	Р	25	0	8					L	10						
547.1	556.3	100	83	LLAT		7	AG	LF		MS		ΡY	CB	LB	FR	IB		FL	50					Р	20					\$	5	L	7						
556.3				EOH																																			

Int	erval	
From	То	Comments
0.0	3.0	Casing. No core.
3.0	41.1	Standard porphyritic greenstone with variable sized feldspar crystals from coarse bladed to fine disseminated. Irregular intrusive contact into VSLT below.
41.1	43.3	Fine grained, laminated volcanic siltstone.
43.3	79.6	As above
79.6	86.3	As above
86.3	93.9	Fine to medium grained homblende porphyry
93.9	115.8	Alternating fine to medium grained volcanic derived sediments
115.8	139.8	Fine grained feldspar-homeblende porphyry with zones of carbonate (ank?) alteration. Locally coarser grained suggesting perhaps multiple phase intrusion.
139.8	179.5	Fine grained volcanic sediment; possibly even a tuff. Altered feldspar phenocrysts in very fine ground mass but bedding visible. Fault gouge @ 165.7-166.1
179.5	189.7	Interlayered sediments and thin gabbroic intervals Strong carbonate fracture fillings-but quite irregular. Contact zone between gabbro and 'wet' sediments.
189.7	211.5	Typical (?) Gabbro, coarse bladed FX-very faint; fine grained euhedral to subhedral HB. Carbonate veining and fracture fill.(?)
211.5	245.7	Mixed sediment package, volcaniastic, commonly with ARGL matrix, locally a conglomerate phase over 3m (718-728)
245.7	319.4	Slight textural variations but same basic unit. This interval marks presence of epidote as well as a penatrative foliation with hornblende aligned along folliation planes (trachyte texture???)
319.4	337.7	Very dark coloured rock with near concoidal fracture. Vague suggestion of bedding suggests seds but overall texture is that of a hornfels zone. Contacts are gradational and somewhat arbitrary. Well form p-b
		structure.
337.7	379.2	Light green coloured volcanic sediments ranging from volcanic siltstone to waterlain crystal tuff. Finely bedded to finely laminated. Broken rock @ 363.0-363.9
379.2	414.2	Fault zone at 380.1-381. Becomes more graphitic towards 396.2. Fault at 412.7. Conformable contact with QFXT
414.2	469.7	Surprisingly altered, right from the get go. Slightly green, strong muscovite alteration. Ends in 61cm fault, broken rock.
469.7	487.5	strangel 3 sections of quite broken rock in interval. Ranges from strong to almost no alt. Thrust slices?
487.5	491.6	20 cm gouge @ 489.9. Pale pink, strong muscovite-carbonite alteration. Lower QX population than normal. Variable colours from mediumgreen to pink-cream. Hint of flouro-mica.
491.6	498.5	Bleached QFXT. FX only visible as seen grains for dolomite/carbonate porphyroblasts. Four fractures-gougey zones within interval from 5-15 cm in width. Interval finishes up 25 cm gouge zone
498.5	504.0	An unusual occurance of CBEX +/- SEXL. carbonate occurs as coarse grained nearly interlocking euhedral grains with interstitial sulphides. (Sp≥>Py≥CP) and green muscovite. Qz is patchy like silicification, but is
		milky white like QZ vein material. Narrow parts of the zone can make ore but is unlikely
504.0	506.9	Mixed carbonate and Qz alternation (exhalative??) with QXAT. sphalerite and chalcopryrite with less pyrite form matrix for carbonate grains
506.9	510.4	Highly altered, very soft Qx ash tuff up 10% lithic fragments, patchy silicification and carbonate alteration. Numerous massive Cp veins to 2cm in the thickness. Minor disseminated sphalerite and pyrite
510.4	511.9	Bomite is concentrated in upper part of interval. Co occurs throughout but probably not enough to make one
5119	515.1	Solasty coarse block of Co to stat interval: firer grained and intermixed with Pyrite further down the interval
515.1	519.7	Zone varies from massive to semi-massive sulphides. Co==Py. Co occurs as "splashy" block to net textured around Qz (+/- CB) grains and as fine intergrowth with pyrite and rarely sphalerite. Chalcopyrite
010.1	010.7	
519.7	520.6	Similar to previous interval but sphalerite becomes much more prevelant
520.6	522.9	Almost a Qz Bx with sulphides filling matrix. Locally very Sp rich and narrow zones of net or matrix bornite. Lower contact gradational over 0.5m into footwall tuffs.
522.9	535.4	Pale grey Qz-Ms-Py schist or "silverschist". One 25 cm band of SMSX with Cp just above 524.0. Minor Cp & Sp but clearly (?) not enough to make grade
535.4	547.1	Well sorted fine grained lapilli tuff with flattened close spaced silicous fragments. Wispy laminated Py (+/- Cp +/- Sp) Locally concentrated to almost semi-massive status. A fracture zone runs almost parallel to
		core axis. This qualifies as silver schist.
547.1	556.3	A coarser grained lapilli tuff of minor ash intervals with very few fragments. Pyrite decreases gradually with depth. Ash interlayers have sheeted ankerite. Lapilli are still quite siliceous and monomictic.
556.3		End of Hole.

Meste	rn Keltic		Project	: KU1	гсно с	REEK
Min	es Inc. DIAMON	D DRILL LOG	Drill Hole	e Id.: WI	<04-02	
Hole Azimuth: <u>180°</u>	Dip:60° To	tal Depth:103.3m_(339')	_		Geologi	cal Summary
Date Started:July 31, 2004	4 Date Completed:July 31, 2004	Core Size: <u>HQ</u>		P urpose / Sample.	Target: Kute	cho Deposit. Metallurgical
	Northing East	ng Elevatio	<u>n</u>			
UTM Location:	~ 6451929 ~ 5372	286~ 1619m	<u> </u>	Comments	5:	
Grid Location:	22620 378	111609				
Collar Survey:		<u></u>				
Down Hole Survey	Sample Information	Split By: <u>A. Boyce</u>				
Survey Method: Reflex	# of Samples:19 & 1 Blank	Type:1/4 Sawn Core				
Depth Azimuth Dip* 0.0 180.0 -60.0	0 Date Shipped: August 18, 2004	Assay Certificate # :VA0405	6370			
103.3 177.7 -57.	5				Key Inte	rsections
	Analytical Lab: <u>ALS Chemex</u>			From	То	Results
	Drill Information					
		Drill Size: HO				
├ ──┼──┼───			ł			
	Driller: <u>Warren Ash</u>	Shift Distance Shift	Distance			
	Driller: <u>Trevor Hooper</u>					
	Helper: <u>James Dickinson</u> Helper: <u>Cameron Bakke</u> r			Logged B	y:M	. Holbek_and P. H. Daubeny

Project: Kutcho Creek

Inte	erval	Geo-T	echnical	Litho	ology	С	olour		C	ompo	nent	5			Tex	ture			Stru	cture						Alter	ation							M	linera	lizatio	n		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH		AkH	Aka	РуН	PyA	СрН	CpA	SpH	SpA	BnH	BnA
0.0	3.0	10	0	CASE																																	\square		
3.0	7.9	99	20	QFXT	ASHT			EΡ	20	QX		LM		IP	PP												· · - ·					D	0.1						
7.9	27.4	100	90	QFXT		3	G	QX	20	FX	20	MS	SX	PP	TF	FG	GC	FL	55					Р	10	Ρ	3					W	F	D	0.1				
27.4	47.2	100	98	TFBX		4	G	LF	40	EP	20	QX	FX	FR	PS	PP								Ρ	5														
47.2	56.4	100	65	QFXT	FLTZ	5	U	LM	10	QX	25	HM	QZ	PP	GG		_	FL	55								1										\square		
56.4	63.7	100	50	QFXT		5	G	QZ	15	QI	20	FX	LF	PP	FR	VN						V	15																
63.7	66.8	100	60	QFXT		2	PK	HE	5	QX	25	MS	QZ					FL	60			V	5	Ρ	15														
66.8	72.8	100	30	QFXT	FLTZ	1	G	MS	30	QX	20	FX	FM	PP	SH			FL	65					Р	30			D	1										
72.8	74.2	96	20	SEXL	FLTZ	5	Α	QZ	40	PY	15	MS	GG	LM	FG	GG		FL	64			Ρ	40	Ρ	20							L	15	D	0.1	L	5	1	1
74.2	76.0	90	0	MSSX	FLTZ	3	Α	PY	40	SL	30	QZ	MS	SH	GG	MX								Ρ	20							X	40			Х	30		
76.0	81.8	100	20	SMSX	SEXL	7	Α	PY	30	MS	30	QZ	SX	LM	FL			FL	63			Ρ	30	Ρ	30							L	30	D	1	L	2		1
81.8	85.6	100	25	MSPY				PY	90	QZ	5	MS	SX	MX								Ρ	5	Р	5							Р	90	D	0.5	0	0.1		
85.6	95.4	100	35	SMPY	SEXL	5	A	ΡY	30	QZ	30	MS		LM	QF	FL		FL	55	FT	20	Ρ	30	Ρ	25							L	30	D	0.5	D	0.5	D	0.1
94.4	97.2	100	30	LATE		9	Y	AK	25	LF	10	MS	PY	\$T	LM	FR						Ρ	10	Ρ	20					\$	25	D	10						
97.2	103.3			LATE		5	G	LF	20	MS	20	CB	QX	FL	FR			FL	55					Ρ	20	\$	10	Х	3			D	5						
103.3				EOH																																			

Project: Kutcho Creek

Inte	erval	
From	То	Comments
0.0	3.0	Casing. No core.
3.0	7.9	Epidotized QFXT with 30% interlayered ash tuff. Limonitic due to weathering.
7.9	27.4	Realatively fine grained QFXT with no visible bedding, sorting etc. Gradational (arbitrary) contacts. Wispy Py with trace Cp.
27.4	47.2	Classic tuff breccia with rounded epidotized QXTF fragments within QFXT; as well as other lithic fragments.
47.2	56.4	Limonitic altered QFXT due to fault or fracture in center of interval. Some silicification and early hematite alteration.
56.4	63.7	A bit unusal darker green with abundant Qz veins / veinlets
63.7	66.8	Pale pink (He-wash) QFXT with increasing muscovite.
66.8	72.8	Highly altered QFXT. Frequently gouged zones to 10 cm. Low Sx. Carbonate alteration almost impossible to see.
72.8	74.2	Medium gray silica exhalite muscovite ash and Sx. Locally broken and gougy-not good u/g rock.
74.2	76.0	Possible high grade zinc zone sheared faulted, badly broken & gougy. Pale gray to cream sphalerite.
76.0	81.8	Dark grey interlayered mssx and semi-massive sulphidesin a Qz-Ms Matrix. Minor Bn=Cp=Sp (all quite low) This looks more like footwall mineralization.
81.8	85.6	Massive Pyrite in a Qz-Mx matrix. Local areas with weak Cp, Bn and Sp. All about equal quantity. Does not appear to be a well mineralized. Top and bottom 1m of interval are gradatudinal into surrounding units
85.6	95.4	Silicified late (or silica exhalite and tuff) with 20-30% dissem and laminated Py. Minor Cp and Sp. Rare Bn. Typical Footwall late component intensity sericitized. Fault at 89.9m
94.4	97.2	Intensely carbonate +/- muscovite altered as sheeted zone. Relatively low Sx
97.2	103.3	Medium green soft ash tuff with minor fragments and phenos. Does not have regular footwall alterated intensity.
103.3		End of Hole.

A	W	<i>l</i> ester	n Keltic						Project	t: KU	СНОС	REEK
1	-	Min	es Inc.	[DIAMOND	DRILL	LOG		Drill Ho	le Id.: Wi	K04-03	
Hole Azim	uth:	180°	Dip:	-60°	Total D	Depth: 8	5.0m (279))	-		Geologi	cal Summary
Date Start	ed: <u>A</u> L	igust 1, 200	4 Date Co	mpleted:	August 1, 2004		Core Size: _	HQ	-	Purpose / up dip wes	Target: Kut tern side.	cho Deposit. Site O. met sample
			Northing		Easting			<u>Elevatio</u>	n			
UTM Loca	ation:		- 6451843		~537431				_	Comments	5:	
Grid Loca	tion:		22540		37956			1639				
Collar Sur	vey:											
Down H	ole Surv	ey	Sample Information	on								
Survov Ma	thod:					Split By: _	A. Boy	/ce		-		
	Reflex		# of Samples:17	& 1 Blank		Туре:	1/4 Sawn Co	ore				
Depth	Azimuth	Dip*	20	0071-2000	<u></u>							
0.0	180.0	-63.0	Date Shipped:			Assay Ce	tificate # :	VA0405	6370		Kay Into	ve e eti e n e
85.0	1/7.1	-61.5	Analytical Lab: AL	S Chemex							<u>Ney Inte</u>	rsections
										From	То	Results
			Drill Information									
			Drill Contractor:	-lv-Tech		Drill Size:	G-Tech 500	00				
				11 10011		Dim oizo.	0 100.000					
			Driller: <u>Warren Ash</u>			Shift	Distance	Shift	Distance			
			Driller: <u>Trevor Hooper</u>									
			Helper: <u>James Dickins</u>	son kar								
			Helper: <u>Cameron Bak</u>	<u>ke</u> r		L	I			Logged B	y: <u>P.N</u>	

ODEEK

Project: Kutcho Creek

Int	erval	Geo-T	echnical	Litho	logy	C	olour		C	ompo	nent	\$			Tex	ture			Stru	cture						Alter	ation					[M	linera	lizatio	n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	СрА	SpH	SpA	BnH	BnA
0.0	3.0			CASE																																			
3.0	31.4	100	85	TFBX		5	G	LF	40	QX	25	EΡ		FR	PP	PS	FS	FL	55			V	2	Р	3														
31.4	37.8	100	90	QFXT		3	G	QX	30	LF	20	CL	EP	PP	FR																	D	2			D	1		
						-																									<u> </u>								
37.8	50.9	100	90	QFXT		4	G	LF	15	DO	20	QX	CL	FR	SP	PP		FL	50			V	2	Q	10			0	20			D	2			D	1		
50.9	57.3	100	85	QFXT				DO	20	QX	20	CL	MS	SP	FR	\$T		FL	55			V	3	\$	20							L	3	D	0.2				
57.3	61.9	99	80	LLAT		7	A	MS	30	CB	20	LF	SX	\$T	LB			FL	50			V	2	P	30	\$	10	0	10			W	3	W	0.3	w	0.3		
61.9	65,5	96	40	LLAT	SEXL	7	A	QZ	30	MS	30	SX	СВ	LM	IB	FD		FL	45	FL	55	L	30	Р	30	L	10					L	10	L	3	L	0.5		1.5
65.5	66.9	95	10	MSSX				PY	70	SP	20	CP	BN	MX	LM	FG		BD	65	LM	70										<u> </u>	М	70	1	4	М	20	1	4
66.9	71.5	95	50	CBEX		9	A	DO	75	SX	10	QZ		MT	CB	VN	MX					V	10					Ρ	75		1	V	3	V	5	V	0.5	V	5
71.5	73.2	96	20	SMSX	QZVN	L	w	SX	40	QZ	50	MS	DO	VN	ΜХ							V	40	P	10	Q	5					ΜΧ	20	в	4	мх	10	в	5
73.2	74.6	98	10	ASHT	FLTZ	5	A	MS	40	SX	10	GG	CB	LB	SH	MT		FT	30	FT	45			Р	40	Р	10				<u> </u>	L	5	Q	2	L	2		
74.6	76.0			SMSX	SEXL		1	SX	45	QZ	40	MS	GG	LM	SH			FT	45			Р	40	P	5							L	35	1	10	L	5		1
76.0	78.9			MSPY				PY	90	SX	5	QZ	GY	MX	FG			FT	80												— —	MX	90	I	3	I	2		
78.9	85.0			SMPY	SEXL	-	W	PY	40	QZ	40	SX	MX					LM	50			Р	40								<u> </u>	L	40	D	1	W	3		
85.0				EOH		<u> </u>																									<u> </u>					-			

Project: Kutcho Creek

1

Inte	erval	
From	То	Comments
0.0	3.0	Casing. No core.
		Tuff breccia phase of the QFXT fragment supported with large round QXP fragments and mode flattened possibly chloritic fragments. The QXP fragments have a pale snot green colour and sit in darker QFXT
3.0	31.4	matrix. Most Fx phenos are epidotized.
		An unusual unit QFXT of 30% quartz eyes but about 5% of these are extremely large (+1cm). Also fragments of epidote matrix QXTF but rounded to eliptical and all the same 1cm size some pressure shadows
31.4	37.8	around these fragments. Dark green, possibly due to chlorite plus relatively high sx content.
		Similar to above but with dark green flattened fragments and intense dolomite porphyroblasts (spots!) Locally intense muscovite development over 0.5 to 1m. Disseminated Py and locally Sp is disseminated.
37.8	50.9	Rock does seem to have some chlorification as well. Very coarse dolomite spots.
50.9	57.3	As above, but with rusty patches or zones and increasing Ms and minor laminated or wispy Py with traces of Cp.
57.3	61.9	Very soft intensly altered lapilli ash tuff. Pervasive sericitization and dolomitization: both matrix and fragments wispy sulphide streaks incease towards bottom of interval.
		Interval marks the start of potentially economic mineralization. Hightly altered lapilli-ash tuff interspersed with silica exhalite (or silicification) and CBEX or laminated dolomite. Bands of sulphide with Cp=Py where
61.9	65.5	they occur together and Cp > Bn (2:1 ratio) much of mineralization is mediumto coarse grain.
65.5	66.9	A very nice interval of massive fine grained Py-Sp-Cp-Bn Cp= Bn. Interval finishes of with a splash of coarse coarse grained Bn-Cp-Sp
66.9	71.5	Mottled carbonate exhalite with patchy silicification. Coarse to fine grain sulphide minerals occur as fracture fillings. Distribution of sulphide is irregular. Cp=Bn>>Sp. Low Py content.
1		An unusual interval that begins with a bull Qz vein with coarse Qz grains and interstitial Bn + Cc + Tt. Also bright green fluorite or Alunite. Next part of interval is a highly altered mottled-laminated rock with coarse
71.5	73.2	piers of Bn, Cp and Py. This gives way to a band of massive sphalerite with interstitial Py, Cp and Bn. Interval ends in highly sheared altered well mineralized rock.
73.2	74.6	Very intensity altered ash unit. Sheared and motted up 10-20 cm faint gouge at both ends of interval Cp>Bn Relatively low sulphide interval.
74.6	76.0	Intermixed MSSX, SEXL and SMSX. Upper part of interval contains a 22 cm massive band of Sx where Cp>Py>Sp>Bn. Pyrite and Chalocopyrite occur as fine grained inter (?) growths.
76.0	78.9	Massive pyrite and not much else, although it would be easy to hide a few % Sp or Cp
78.9	85.0	Qz-Py Footwall zone. Probable low grade
85.0		End of hole.

T.	Western	Keltic
T	Mines	Inc.

Drill Hole Id.: WK04-04

Project: KUTCHO CREEK

•

•

Hole Azim	uth:	180°	Dip: <u>-45°</u>	Total D)epth:	130.8m (42	9.0')			Geologi	cal Summary
Date Starte	əd: <u> </u>	ugust 2, 200	4 Date Completed:	August 2, 2004		Core Size:	HQ		Purpose / ` embavmen	Target: Kut t on down-o	tcho Deposit Site "N" Test dip edge of kutcho lens
			Northing	Easting			<u>Elevat</u>	ion			
UTM Loca	tion:		~ 6451932	~537412			~1601	1	Comments	: Two zone	es of Msv Sx seperated by lapilli tu
Grid Locat	ion:			37938			1604		and CBEA.	1/4-suipos	aus from 117.6 - 116.6m
Collar Sur	vey:										
Down He	ole Surv	ey	Sample Information	· · · · · · · · · · · · · · · · · · ·	Split By:	A Bo			-		
Survey Me	thod: Reflex		# of Samples:27 & 2 Blank 280101 - 280	s	Туре:	1/4 Sawn C	ore				
Depth 88.4	Azimuth 180.6	Dip* -43.1	Date Shipped:		Assay Ce	rtificate #					
130.8	181.1	-42.6	Analytical Lab: <u>ALS Chemex</u>							Key Inte	rsections
									From	То	Results
			Drill Information						330.1	339.3	30% Sx, 1% Cp, 1% Bo, 4% Sph
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	G-Tech 50	00		355.2	405	Semi msv to msv Sx- Ore grade
		<u></u>	Drillor: Warren Ash		Ch:#	Distance	Ch;#	Distance			
			Driller: Trevor Hooper			Distance	Shin	Distance			
			Helper: James Dickinson								
			Helper: <u>Cameron Bakke</u> r						Logged By	/: <u>P.D</u>	aubeny
						-		•	1		

Project: Kutcho Creek

Inte	ervai	Geo-T	echnical	Litho	loav	C	olour		С	ompo	onent	s			Tex	ure			Stru	cture						Alter	ation		_					M	inera	lizatio	'n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	СЬА	DIH	DIA	\kH	Aka	PyH	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	3.0			CASE																																			
3.0	6.1	100	40	QFXT		3	G	QX	15	FX	15	CB	CL	PP	SE	VN						V	3			н	5					PB	1						
6.1	6.4	90		FLTZ				GG																															
6.4	24.4	0		QFXT		3	G	QX	10	FX	15	CL	EP	PP	MG			FL	65													D	1						
24.4	39.9	100	90	QFXT		4	G	QX	35	LF	15	FX	EP	CG	PP			FL	65																				
39.9	93.0	100	85	TEBX	FI TZ	4	G	ox	30	FP	25	СІ		PP	FR	PS	мт					v	2																
93.0	95.4	100	100	OFXT	1212	5	тм	FX	25	OZ	10	HE	MS	PP				FL	70			<u> </u>			20						<u> </u>	D	0.5						
95.4	96.9	50	50	QEXT		7	TM	FX	25	QX	10	MS		LM				FL	80			\$T	20		30							Ī	1						
96.9	97 7	50	50	CBEX		9	A	CB	80	QZ	5	SX	-	MSV																		L	3	В	0.3				-
97.7	98.0			FLTZ	CBEX	9	A	GO	30									FZ	60																				
98.0	100.6	100	85	ASHT	-	5	Α	MS	30	PY	15	QZ	co	FO	BN			FL	75			L	5	Ζ	30							L	15	D	0.5				
100.6	103.4	85	20	ASHT	SMSX	5	Α	PY	25	SP	4	MS	QZ	MX	LM			FL	75			L	25	L	30							м	25	D	1	L	4	>	1
103.4	104.9			LATF	SMSX	5	GA	СР	4	тт				м				FL	80			L	5	Р	30	L	10					L	18	L	3	D	0.5		
104.9	108.3	100	70	CBEX	SEXL	9	AG	СВ	91	SI	8	SX		\$ T	MX	LM	LB	LM	75			L	8			м								В	0.3			В	0.5
108.3	112.0	100	50	LATF	MSSX	5	YA	FX	10	CP	1			MX	LM			F	80			LB	10	Ρ	20							MX	35	MX	8			D	1
112.0	113.3	100	100	MSSX		5	YA	PY	50	CP	1	SP		MX	BN	LM		FL	70			J	25	J	10							Ζ	50	d	1	1	5		
113.3	117.3	100	60	SMSX	LLTF	7	Α	SX	40	QZ		LF	MS	LM	LB	MX	FR	FL	70			Р	15	Ρ	10							Ζ	40	В	0.5				
117.3	121.1	100	70	MSSX	LXTF	7	YA	SX	40	QZ	20	MS						FL	70			Р	20	Р	15							м	50						2.5
121.1	123.4	100	70	MSSX		7	Α	SX	90	QZ	7	MS						FL	75			Ρ	7	Ρ	3							м	90	В	2			D	0.5
123.4	124.1	100	6	MSSX	LXTF	7	Α											FL	75			Ρ	20	Р	30							Р	50	L					
124.1	124.7			FLTZ	SMSX	9	A	GO	50	SX	15	MS						FZ	_70																				L
124.7	128.4	100	65	MSSX	LXTF	7	Α	SX	50	QZ	20	MS						FL	70			Р	20	Ρ	15							М	50			-			
128.4	130.8	100	80	LLTF	SMSX	7	Α	SX	15	QZ	25	MS		LB				FL	70			Р	20	P	_ 25							Х	15						
130.8				EOH																																			

Project: Kutcho Creek

Inte	erval	
From	То	Comments
0.0	3.0	Casing. No core.
3.0	6.1	Standard QFXT but darker green than normal. Possibly some wispy fragments (fiamme) but no obvious coarse lithics.
6.1	6.4	Fault zone.
6.4	24.4	As above, but darker, (more chlorite) less or no Qz veining and finer grained phenocryst dark green fiams maybe mafic phenos. Also 3% hem or mag in matrix
24.4	39.9	Coarse grained, more abundant phenocrysts and 10-15% flattened mafic (volc glass) lithic fragments
		Unit begins with coarse monolithic fragmental where coarse grained pale-yellow-green QXP fragments are set in a QFXT matrix with depth. The colour of the fragment looks more and more like the matrix. Local
		bleaching of rock appears related to oxidation along fracture zones. Lower in interval (76.2) fragments become fine grained chloritic and matrix is lighter green (reverse of above). Lower 12.2 of interval represents
39.9	93.0	mottle fragment supported Bx with enrich matrix and CI-rich fragments. FLTZ @ 39.9-43.0 and 50.6-52.1; minor gouge, broken core
93.0	95.4	Tan maroon porphyry texture. Strong He muscovite altered.
95.4	96.9	Beige weak laminated SEXL in med-str muscovite altered QEXT. 1% Py porphroblasts to 1cm
96.9	97.7	One foot gouge with 5% Py at start of interval. Py and trace Cp concentrated at base of massive CBEX. Qz veinlets x-cut CBEX
97.7	98.0	Fault zone.
98.0	100.6	Strongly sericite altered fine grained ASHT. Heavy dissemination and laminated Py. Occasional disseminated and laminated Cp
100.6	103.4	Banded and laminated Py. Traces of Cpy in ASHT followed by 30 cm massive pyrite - Sp. Tuffaceous SEXL, 1 foot. Semi massive Py-Sp-Cp-Bo at base of interval.
		Heterogeneous unit including semi massive bands, sulphide laminated carbonate and silica exhalite. Intervals of strong sericite and Strong Ser/chlorite alteration and intervals of ash and XTAL tuff all mineralized.
103.4	104.9	Bornite disseminated in small bands of sulphide.
104.9	108.3	Massive carbonate exhalite, wispy and blebs cpy-Bo include 35 cm ashy intervals at 105.6m
108.3	112.0	3 intervals all < 60 cm thick of msv-py-cpy +/- Bo spererated by well mineralized and strongly altered LAFT and LXFT with Cpy dominent sulphide. 1 cm bands of flouromuscovite.
112.0	113.3	Semi massive to massive sulphide sheeted, banded.
113.3	117.3	Massive to semi-massive sulphides generally as matrix to siliceous lithic fragments - low base metal. 116.0 - 116.5. Semi-massive to massive Py- 4% - 5% Cpy XATF host.
117.3	121.1	10 cm to 1m wide bands of massive py with interstitial bornite. 4-5 cm bornite rich bands with 1-2% sulphosalts from 117.8 - 118.8m. Low Cp. Locally wispy bands Cpy, interstitial bornite.
121.1	123.4	Dominently massive Py interstitial Cpy bornite similar, but lower grade than 119.2 - 121.7
123.4	124.1	
124.1	124.7	
124.7	128.4	
128.4	130.8	
130.8		End of Hole.

Project: KUTCHO CREEK

Drill Hole Id.: WK04-05

1

1

1 1 1

Hole Azimuth: <u>175°</u> Dip: <u>-70°</u> Total Depth: <u>63.7m (209')</u> Geological Summary Date Started: <u>August 3, 2004</u> Date Completed: <u>August 4, 2004</u> Core Size: <u>HQ</u> Purpose / Target: Kutcho Deposit Site "T" Northing Easting Elevation UTM Location: ~6451860 ~537298 1617 Comments: 16' of good grade MSSX followed by 12' of possible ore-grade CBEX Grid Location: ______ 22560 ______ 37823 _____ 1615 Collar Survey: _____ Down Hole Survey Sample Information Split By: A. Boyce Survey Method: Reflex # of Samples: 12 & 1 Blank Type: 1/4 Sawn Core 280089 - 280100; 280130 Depth Azimuth Dip* 0.0 175.0 -70.0 Date Shipped: Assay Certificate # : VA04056370 63.7 171.1 -69.6 **Key Intersections** Analytical Lab: <u>ALS Chemex</u> From To | Results **Drill Information** 150.5 MSSX high grade Cu 134.7 150.5 162.1 CBEX-Cp 60 ore Drill Contractor: <u>Hy-Tech</u> Drill Size: G-Tech 5000 162.1 169.9 MSSX-2%(?) Cu Driller: Warren Ash Shift Distance Shift Distance Driller: <u>Trevor Hooper</u> Helper: James Dickinson Helper: Cameron Bakker Logged By: P. Daubeny

Project: Kutcho Creek

1 1

· · · · · · · ·

Inte	rval	Geo-T	chnical	Litho	logy	C	olour		Co	mpo	nent	5			Tex	ture			Stru	cture						Alter	ation							M	inera	lizatic	'n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	СЬА	DIH	DIA	AkH	Aka	PyH	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	3.0			CASE																																			
3.0	5.6	10	0	OVBD																																			
5.6	13.4	100	70	QXLT	ASHT		м	HE	5	FS	10	LF	QZ	PP	BD	FO		FL	35			1	25																
13.4	13.5			QZVM										MX				LC	50																				
13.5	21.6	100	80	QXLT		5	G	HE	5	FS	10	QI	LF	PP	FR	PS		FL	50				25	Ρ	7														
21.6	23.5			QXLT		7	A																																
23.5	32.3	100	20	QXLT		9	A	MS		QI		LF	FM					FL	60			1	15	Р	25														
32.3	33.4	100	5	ASHT	QXLT	9	A	QL	5	MS	20							FL	65			1	5			0	7												
33.4	35.1	100	5	ASHT		9	A	СВ	5	MS	20							FL	65					Ρ	20	0	40												
35.1	37.2	100		ASHT		5	A	MS	15	QZ	15	СВ	SX	FO	FD	MV		FL	65			Ρ	15	Ρ	15	Е	5					V	4						
37.2	41.1	100	0	LLXT	ASHT	7	A	MS	20	CB	10	QX	SX	LB	FD	ST	EM	FL	70			Р	15	Ρ	20	0	10					L	4						
41.1	45.9	100	65	MSSX				PY	50	CP		SP	FM					BN	70	LC	50	J	14	J	5							Z	50	Ζ	15	Z	20	J	1
45.9	49.4	100	60	CBEX		9	AW	CP	6			BO	ΡY	BR	СО	W	MX									Z	70					10	6	6	6			6	4
49.4	51.8	100	65	MSSX	SMSX	4	A	SX	50	CB	35	MS	QZ	LB	FO	MX	BR	FL	70	LC	60	J	10	J	5	J	35					М	46	Ρ	2	1	0.5	0.8	В
51.8	52.2			FLTZ	LLTF			GO	35	QZ	20	MS	SX	F\$	FD	LB	FO	FL	60					\$	30							Х	15						
52.2	57.9	100	80	LLTF	FLTZ	7	A	QZ	40	QI	1	SX	MS	LB	\$T	FR		FL	45	LC	45	Р	40	1	10							X	18						
57.9	63.7			LLTF				QZ	60	SX	5			LB	FR			FL	60	LC	60	Ρ	60	1	12							Х	5						
63.7				EOH																																			

Project: Kutcho Creek

1

Inter	val	
From	То	Comments
0.0	3.0	Casing. No core
3.0	5.6	Approx. 2 ft pebbles and regolith
5.6	13.4	Primary hematite shows through oxide zone
13.4	13.5	Quartz vein
13.5	21.6	Qz XTAL lithic tuff, hematite altered, no epidote
21.6	23.5	Bleached to sericite starts at 71.0 Hematite out of lower end.
23.5	32.3	(FM=fluormuscovite)
32.3	33.4	
33.4	35.1	
35.1	37.2	ASHT with 20 cm intervals of < 1cm scale. Py-carbonate vms irregular oriented and folded. Viened intervals siliceous.
37.2	41.1	Heterolithic interval with increasing Carbonate alteration and increase in folded Py laminatae towards lower contact.
41.1	45.9	High grade intersection, crudely zoned Zn rich @ top, cpy rich middle and bornite-py rich base.
		CBEX very brecciated with epithermal textures, coliform banded faults, pervasive brecciation, disseminated Py and Cpy and bornite veins and veinlets increase down interval to semi msv. Occasional cm scale x-
45.9	49.4	cutting Py vein feeds overlying massive Py-Cpy-Bo? Lower contact marked by increase in Py to semi-massive to massive
49.4	51.8	Semi massive to massive sulphide with carbonate matrix.
51.8	52.2	Fault zone.
52.2	57.9	V silicous fragmental with barren looking pyrite.
57.9	63.7	
63.7		End of Hole.

Project: KUTCHO CREEK

a,

1

Hole Azimut	th:	174°	Dip:45°	Total De	epth:13	0.8m (429))	-		<u>Geologi</u>	cal Summary					
Date Started	d: <u>Au</u>	gust 4, 200	4 Date Complete	d: <u>August 5, 2004</u>		Core Size:	_HQ	_	Purpose / KT-129	Target: Tes	st K-footwall zone 50m East of					
			Northing	Easting			Elevatio	<u>on</u>								
UTM Locati	ion:		~6451678	~537699			1655m	1655m Comments: intersected SEXL horizor								
Grid Locatio	on:		22367	38220			1646		SMSX. Scattered SMSX with minor MSSX throughout. Chlorite altered footwall . No true MSSX lens, but some							
Collar Surve	ey:								grade poss	sible.						
Down Ho	le Surve	ey	Sample Information		Split By:	A Boy			1							
Survey Meth -	hod: Reflex		# of Samples:15 & 1 Bla 280131 - 2	nk 80145; ?	Туре:	1/4 Sawn C										
Depth 0.0	Azimuth 174.0	Dip* -45.0	Date Shipped:		Assay Ce	rtificate # :										
22.6	168.8 177.8	-44.3 -43.7	Analytical Lab: Acme							Key Inte	rsections					
			Drill Information						From	To	Results					
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	G-Tech 500	00									
			Driller: <u>Warren Ash</u> Driller: Trevor Hooper		Shift	Distance	Shift	Distance								
			Helper: <u>James Dickinson</u> Helper: <u>Cameron Bakke</u> r						Logged B	y:P.H	lolbek					

١

.

1

Project: Kutcho Creek

Inte	rval	Geo-T	Geo-Technical Lithology					Components						Texture					Structure				Alteration												Mineralization									
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	Рун	PyA	СрН	СрА	SpH	SpA	BnH	BnA					
0.0	9.1			CASE																																								
9.1	12.8	100	10	LLAT		7	G	MS	25	LF	30	CB		LB	FR			FL	60					P	25	\$	10					D	1											
12.8	18.6	70	0	LLAT	FLTZ		W	MS	35	DL	20	QX	PY	LB	FR							L	20	Р	35	\$	15					D	2											
18.6	37.2	100	20	LLAT	CBEX	9	A	MS	35	DL	20	QX	PY	LB	FR	\$T	IB	FL	60					Р	35	\$	10	L	20			D	5						-					
27.0	05.0					_			40			0.0	0			6T		-					_		40			-	6					_										
37.2	65.8	99	30	LLAI		-4	YVV	MS	40		20	CB	SX	FR	LB	31		FL	60			_ V	3	Р	40	\$	10	PB	5			L	10	+	1		1	<u> </u>						
65.8	83.2	98	35	XATF		7	G	мs	30	св	15	QZ	sx	FG	\$T			FL	70			L	5	Р	30	\$	10	PB	3			F	3											
83.2	94.5	100	20	ASHT	SEXL	9	Α	MS	40	QZ	20	SX	CB	GL	٨			FL	80			L	20	P	40	Q	10					L	10	D	0.1	L	1		\square					
94.5	97.4	100	40	SEXL	SMSX	7	A	oz	50	sx	30	MS	СВ	LM	GC			LM	85			L	40	Р	20	Q	5						30	1	3		6							
97.4	104.9	100	70	SMSX	XATF	3	G	sx	20	QZ	20	CL	СВ	FG	LM			FL	70			Q	20	Р	10	Q	5					L	15	L	3	L	5	;						
104.9	112.8	100	80	XATF	SMSX	5	G	sx	15	СГ	10	СВ	MS	FG	LM	РВ		FL	70			Q	15	Р	10	Q	4					L	10	D	2	L	4	,						
112.8	113.4			FLTZ		5	А	GG	80																																			
113.4	125.3	99	25	LLAT		9	А	MS	40	sx	10	СВ	LF	LB	\$Т	GC		FL	75					Р	40	\$	10					L	3	D	0.5	L	1							
125.3	130.8	100	65	LLXT		7	G	LF	30	MS	25	QX	CB	LB	GC			FL	70			Q	5	P	25	0	5	Q	5			L	2	D	0.1	L	0.3							
130.8				EOH																																								

Project: Kutcho Creek

and the second second

Inte	erval	
From	To	Comments
0.0	9.1	Casing. No core.
9.1	12.8	
12.8	18.6	
18.6	37.2	Qz-Ms-Py schist or "silver schist" very close to maximum alteration. Carbonate exhalite up to 2 m thick (or v. fine xtal ash) from 24.1-26.5. Poker chip core, not very competant.
		Quite intense altered footwall tuff. Lensoidal banded with strong Ms development and sheeted carbonate +/- Ms. Porphyroblastic carbonate grains to 1cm. A siliceous fragments has abundant Cp and may
37.2	65.8	represent a boudin from a feeder type vein. Siliceous layers maybe SEXL or Qz feeder veins; although now foliation parallel.
		Pale green with yellow sheeting. Fine grained XTAL ash tuff (Qx<1mm). Flattened pyrite fragments. Laminated Py with siliceous bands coarse porphyroblastic dolomites to 1cm are distinctive. Gouge zone at
65.8	83.2	66.9 over 10cm with shattered rock for 1 m on either side.
83.2	94.5	"Silver schist" finely laminated, silvery rock with fine laminations; locally quite siliceous with wispy laminated Py and minor sphalerite and trace chalcopyrite.
		Narrow zone of mixed silica exhalite and sulphide with ash giving way into laminated, nearly semi-massive sulphide mineralization. Most of the sulphide is pyrite but in many spots has a chalopyrite type cast.
94.5	97.4	Sphalerite comes in both grey and reddish-black varieties.
		A Qz XTAL ash tuff with local layers of semi-massive Py-Sp-Cp. Sulphide laminae range from 1 cm to 10 cm. If all the sulphide was in the 2-3 m it would make a nice zone; as it is it may be a bit wide and low.
97.4	104.9	Rock became more chloritic down the interval.
		Unusual unit, very fine grain Qz XTALS set in aphanatic, chloritic ground mass. Local bands of semi-massive sulphide and patchy zones of silcification and dolomitization. Locally conspicuous carbonate
104.9	112.8	poryphoblasts. Lower 3m of interval is quite Sp and Cp rich (relative) with Sp approaching 10%.
112.8	113.4	
113.4	125.3	"Silver schist" again. Flattened to elliptical fragments in a musc-Qz-carbonate matrix. 10% with fine Sp+/- Cp laminae throughout. Numerous little "gouge" zones from 1-10cm thick between 199.5-121.6.
125.3	130.8	Lensoil banded lithic (lapilli) XTAL tuff. Variably altered but alteration appears to be decreasing down the interval.
130.8		End of Hole

1	W	estei	n Kel	tic						Projec	t: KUT	гсно с	REEK	
1	-	Min	es Inc	•	DIA	MOND	DRILL	LOG		Drill Ho	le Id.: Wi	K04-07		
Hole Azimı	uth:1	75°		Dip: <u>-63</u>	>	Total De	epth: <u>60</u>	9.3m (1999	<u>ə')</u>			Geologi	cal Summary	
Date Starte	ed: <u>Auc</u>	ust 7, 200	4	Date Compl	eted: <u>Au</u>	gust 13, 2004		Core Size	: <u>NQ</u>		Purpose /	Target: Ea	stern Edge of Esso	West Deposi
			Northing			Easting			<u>Elevati</u>	on				
UT M Loca	tion:		~ 6452775			~535666			~1468		Comment	s: Initial Ho	le 7b was aborted a	and steepened
Grid Locat	ion:		23468			36191			1468		to complete way)	e as hole 7	(NB core boxes nu	mbered other
Collar Surv	/ey:													
Down Ho	ole Surve	<u>У</u>	Sample I	nformation			Split By:	P Hol	bek					
Survey Me	thod: Reflex		# of Sample	es: <u>13 & Ø</u> 004751	Blank I - 004763		Туре:	Representa	tive Pieces	;				
Depth	Azimuth	Dip*	Date Shinn	od.			Assav Co	rtificato # ·						
161.2	173.8	-61.7		.			A3349 00	funcate # .			<u> </u>	Key Inte	ersections	
191.7	175.1	-61.5	Analytical L	ab: <u>Cheme</u>	x	-								
222.2	173.2	-60.4									From	To	Results	
252.7	173.5	-59.1	Drill Intol	rmation										
283.2	173.7	-59.1	Drill Contra	ctor: Hv-T	ech		Drill Size	G-Tech 50	00					
344.2	174.5	-57.9					Dim 0120.	0-1001100	00					
374.6	177.6	-57.5	Driller: Bo	vd Elson			Shift	Distance	Shift	Distance				
405.1	179.4	-57.1	Driller: _Tre	vor Hooper										
435.6	179.6	-56.2	Helper: _Ste	evie Voss										
466.0	181.3	-55.6	Helper: <u>Je</u>	d Clay							Logged B	y:P.H	lolbek	
496.5	183.3	-54.7	Foreman: <u>W</u>	ayne Mayner										-
527.0	184.5	-54.1												
557.5	185.1	-52.0												
588.0	185.7	-50.3	-											
609.3	185.3	-49.2												

Project: Kutcho Creek

1 1

1

e e **e**

Inte	erval	Geo-T	echnical	Litho	logy	C	olour		C	ompo	nent	s			Tex	ture			Strue	cture						Altera	ation			-				M	linera	lizatio	n		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	A AIG	kH	Aka	PyH	PyA	CpH	CpA	SpH	SpA	BnH	BnA
0.0	4.6			CASE														FL	45												_								
4.6	35.2			CNGL		7	AG	LF	60			FR	FS	PS	PM																			W	0.5				
35.2	45.4			GYWK		7	G					FG	LM					UC	70	BD	70	V	1									W	1						
45.4	74.4			CNGL																																			
74.4	76.8			ARGL		2	Α																																
76.8	97.5			GBBR		2	G	PX	30	FX	20			PP	SE																								
97.5	107.3			GYWK		5	G							FG	LM																								
107.3	187.1	100	95	GBBR		3	G	PX	30	FX	20			MG	PP																								
187.1	251.2	100	95	GYWK		5	AG							FG	BD	LM		FL	45	BD	80																		
251.2	333.5	100	96	XATF		7	AG	FX	30	PX	10	CB						FL	50							0	20					D	2						
333.5	341.4	100	90	VSLT		3	PG							FG				BD	75							0	10					W	2	D	0.2				
341.4	351.7	100	90	INTR		5	AG	FX	35					PP	MT																								
351.7	356.6	100		VSLT																																			
356.6	380.4		70	ARGL		1	Α	LF	15					FG	LM			LM	68																				
380.4	423.4	100	95	GBBR		5	G	FX	20	PX	30	CL		PP	SW																								
423.4	452.0	90		VSLT	GYWK	7	GA											LM	50	FL	50											D	1						
452.0	487.4	100	40	ARGL	FLTZ																																		
487.4	490.2	100	90	VSLT		7	G											LC	55																				
490.2	508.7	100		QFXT	TFBX	9	YG	QX	35	MS	20	CB	PY					FL	50					Р	20	Ρ	20					D	2						
508.7	509.9			CQEX		9	YW	LF	30	CB	60	QZ	MS	LB	LV	FR	FS					Ρ	20	Р	20	Х	50			\$	10								
509.9	514.2	100	70	LLAT		7	YG	QZ	20	CB	20	LF	MS	LB	FR	\$T		FL	55			Р	20	Р	20	3	15			\$	5	D	4	D	1.5	D	1	D	0.5
514.2	538.6	100	38	XLTF		7	G	MS	35	FX	15	LF	SX	PP	SE	FR	\$T					3	5	Р	35	3	10					w	3	D	0.5	D	0.5		
538.6	543.9	100	40	XLAT		9	Y	MS	35	AK	20	LF	SX	FG	PP	FR	\$T	FL	45			Q	5	Р	35	0	5			\$	20	D	2	D	Tz	D	Τz		
543.9	565.9	100	30	LLAT		7	GP	LF	25	MS	30	СВ	SX	LB	\$ T	SP						•	10			0	5			\$	5	•	3	D	0.3	•	3		
565.9	568.5	100	85	CQEX			W	QZ	40	CB	40	MS		MX	SP							М	40	P	40	М	40	0	10	\$	10								
568.5	572.7	100	35	LLAT		7	GA	LF	25	MS	30	CB	PY	LB	LM			FL	55					Р	30	0	5			\$	5	w	5						
572.7	582.9	100	78	LLTF		5	A	LF	30	MS	30	CP	ΡY	LB	LM			FL				Ρ	15	P	30	0	2			\$	1	L	2	L	2	D	0.5		
582.9	597.4	100	75	LLTF		5	Α	LF	60	MS	30	SX		LB	MT							Q	2	Р	25							J	3	<	1.5	D	0.1		
597.4	609.3	100	70	LLTF		7	Α	MS	20	QZ	20	SX		LB	MT	SH						Q	20	P	20							W	3	<	2				
609.3				EOH																																			

Project: Kutcho Creek

Int	erval	
From	To	Comments
0.0	4.6	Casing. No core.
4.6	35.2	Classic polymitic volcanic conglomerate. Nice fireplace rock.
35.2	45.4	Very fine grained, waterlain volcanic clastic with fine specks of wispy pyrite throughout.
45.4	74.4	Matrix becomes darker with depth.
74.4	76.8	
76.8	97.5	Fine grained at contact; coarsens over 2m.
97.5	107.3	
107.3	187.1	Medium to coarser and finer grained varieties. Gradational contacts between different Px-Fx varieties.
187.1	251.2	
251.2	333.5	Pepperite? Tuff or altered int (?) most likely XTAL tuff but local Fx euthedral and In good shape, however over most of interval Fx are fuzzy and indistinct.
333.5	341.4	Very fine grained sediment with fine coarser grained laminae. Appreciable sulphide content. Purple hue.
341.4	351.7	Intrusive contacts-chill margins; odd textures with Fs Ø = pepperite. Rhyolite-dacite dyke?
351.7	356.6	
356.6	380.4	Top of interval contains ARGL Rip-up clasts, otherwise standard laminate ARGL with some graphite. Lower part of interval grades into gray-green VSLT
380.4	423.4	Variable textured porphyritic intrusive. Fine Fx phenos throughout with coarse euhedral Fx locally.
423.4	452.0	Green grey volcanic siltstone and greywacke. 1-3% PØ and 1% Py as wispy disseminations.
452.0	487.4	Fault at 467.6 - 472.7 gouge broken rock and 60% recovery.
487.4	490.2	Sharp, sedimentary contact (conformable) with XTAL tuff
490.2	508.7	Yellow, "hard" rock with a few coarse lithic fragments (could be TFBR) and abundant coarse quartz eyes. Sharp lower contact into lavalamp rock.
508.7	509.9	Carbonate Qz fragments that merge into CBEX bands.
509.9	514.2	Variably altered with muscovite & carbonate and patchy silicification very finely disseminated mineralization. Not ore but appears to be trying.
		A white and red spotted unit. Intense muscovite alteration of matrix, (pale-medium green) with some ghost lapilli frags. White spots have fuzzy borders and are not aligned and are too soft to be Fx. Therefore
514.2	538.6	carbonate, but after Fx or porphyroblastic? The red ones also appear to be carbonate. Very fine sulphide to 5%; mostly pyrite.
538.6	543.9	Mostly as with minor fragments and XTALS (altered to invisibility?) yellow tan with intense muscovite alteration and ankerite sheeting.
		Green and locally pink lapilli ash tuff. Intense muscovite alteration; moderate ankente sheeting and coarse carbonate spots. Some siliceous lapilli fragments contain semi-massive Py and Sp. Alteration very
543.9	565.9	intense 554.1-557.5 and lower most 0.76 of interval.
565.9	568.5	Carb-Qz exhalative rock (?) Intergrown Qz and carbonate bands. 1-0.5m between soft massive muscovite with coarse crowded 1cm euhedral carbonate porphyroblasts. Just a trace of Sx
568.5	572.7	Lensoid banded nature aludes to fragments which are just slightly more siliceous than matrix. Intense muscovite alteration with moderate ank/dolo sheeting. 5% wispy pyrite. Possess trace base metals.
572.7	582.9	Lensoid banded, silicified medium grey lapilli tuff with relative coarse lapilli. Cp and Py stringers occur throughout approximately 2cm of stringer/ 1m core gives or take.
582.9	597.4	Similar to above but coarse fragments with very little matrix and fuzzy indistinct frag outlines. Still stringers but possibly lower Cp content.
597.4	609.3	Quite a weird rock similar to previous interval but rock has been crumpled so that fragment outlines are squiggly and discontinuous. Not sure what to make of this?? Still Py-Cp stringers.
609.3		End of Hole.

	STR Easting Nor 36191.0 234	IP LOG: WK0407 Time RL Azimuth Dip Depth 64.0 1468.0 0.0 -90.0 609.3
STRIP		
1	Sampke_No Lith1	VALUES PAT CODE DESCRIPTION CNGL congiomerate GYWK troywacke CASE Calling GBBR tabbro VSLT Volcanic attaches ARGL tergitite QFXT quark feldspar crystal buff
		LLAT lapill ash tuff
		XATF crystal ash tutf
1	1.00.1	TEVT
1	Linth 2	
2	Cullec	VALUES
2	Cunc	BAR PLOT
3	Zn_pc	VALUES
3	Zn_pc	BAR PLOT
4	Act .coot	VALUES
4	Aging	BAR PLOT
5	Au opt	VALUES
5	Au ont	BAR PLOT
6	Fe pc	VALUES
6	Feloc	BAR PLOT
7	Spc	VALUES
7	Spc	BAR PLOT
8	Ha ppm	VALUES=
8	Hq ppm	BAR PLOT
9	Pb_ppm	VALUES
9	Pb_ppm	BAR PLOT
10	SG	VALUES Min 1
10	SG	BAR PLOT

WK0407	Sample_No	- Lith1 Lith25LT GYWK Cu	pc Zn	pc Ag	gpt Au	igpt Fe	pc S	pc Hg	ppm Pb	ppm S	G
450 m =				1.000							
100											
460 -											
470		-ARGL_FLTZ									
-/0											
480											
490											
500 =		QEXT_IFBX									
510		<u>CQEX</u>									1 1.00 V
		15-11									
520 -						┫ <i>──</i> ─ ─ ─	Louis and the second				
		XLTF									
530 -			1								
		-									
540		XLAT									
550											
		LLAT									
560	·										
570 -		CQEX									
580											
590											
600 -											
-	-					- .					F

Project: KUTCHO CREEK

-

÷ 1

Hole Azim	uth:	<u>175°</u>	Dip:74°	Total Dep	th: <u>240</u>	6.6m (809'))	-		<u>Geologi</u>	cal Summary
Date Start	ed: <u>Au</u>	gust 5, 200	4 Date Completed: _	August 7, 2004	(Core Size:	NQ	_	Purpose /	Target: Ess	so West Deposit
			Northing	Easting			<u>Elevatio</u>	on			
UTM Loca	ation:		~ 6452775	~535666			~1468		Comments	s: Hole abo	rted ue to non-flattening of hole.
Grid Loca	tion:		23468	36191			1468		Drilled prio	r to 7 which	was redrilled at steeper D.P.
Collar Sur	vey:		<u></u> _								
<u>Down H</u> Survey Me	ole Surve ethod: Reflex	<u>ey</u>	Sample Information # of Samples:Ø		Split By: _ Type:f	P. Holl Representa	bek tive Pieces				
Depth 8.8	Azimuth 173.7	Dip* -74.5	Date Shipped:		Assay Cer	tificate # :					
68.3 100.3	171.5 172.4	-73.1 -72.8	Analytical Lab: <u>Acme</u>							Key Inte	<u>rsections</u>
130.8	171.3	-72.6							From	То	Results
161.2	172.8	-72.4	Drill Information								
222.2	172.5	-72.2	Drill Contractor: Hy-Tech		Drill Size:	G-Tech 500	00				
246.6	172.9	-72.2									
			Driller: <u>Boyd Elson</u>		Shift	Distance	Shift	Distance			
			Driller: <u>Trevor Hoope</u> r								
			Helper: <u>Stevie Vos</u> s								
			Helper: <u>Jed Clay</u>	[Logged By	/: <u>Not</u>	logged
			Foreman: <u>Wayne Mayner</u>								-

Project: Kutcho Creek

Int	erval	Geo-T	echnical	Lithe	ology	C	olour		C	ompo	onents			Т	exture			Stru	icture						Altera	tion							Mine	alizati	on	-	
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2% C	3 C4	I Tx	1 Tx	2 Tx3	3 Tx	4 SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA A	kH /	ka P	H P	ACp	H Cp/	A SpH	SpA	BnH	BnA
0.0	3.7			CASE																																	
3.7	246.6			NLOG																																	
146.6				EOH																																	

*

DIAMOND DRILL LOG

7

, <u>,</u>

,

٦

Project: Kutcho Creek

1

.

Int	erval							
From	То	Comments		 	 	 	 	
0.0	3.7	Casing. No core.						
3.7	246.6	Not logged.	 _					
146.6				 		 		

Ea	STRIP	LOG:	WK0407B
	V	enical scale	1632
STRIP			
1	Lithi	PAT	CODE DESCRIPTION
			CASE Casing
			NLOG No log
•			
2	Cu_pc	BAR PL	
3	Zn_pc	BAR PL	LOT TOT
4	Ag_gpt	BAR PL	от
5	Au_gpt	BAR PL	101
6	Fe_pc	BAR PI	107
7	S_pc	BAR PL	.от
8	Hg_ppm	BAR PL	.07
9	Pb_ppm	BAR PL	.07
10	SG	BAR PL	от

WK0407B	Sample_No	Lith1 Lith2 Cu	pc Zr	Ag	gpt Au	gpt Fe	e_pc S	с_рс С	Hg_ppm	Pb_ppm	SG
10 m -							•				
20				New Market					-		
30											
40		A-338-56 - 54	11					•		_	
50 -											
70											
90						-					
100											
120											
130		NLOG									
140										-	
150 -										-	
160							•		A 6 8 5 65		
170											_
190							•				
200											
210											
220											
240											
	-		l	ļ .	ļ.	ļ	Ţ	Ţ	1	ļ	Ţ

	V.	Vestei	rn Kel	tic					Project	t: KU	снос	REEK
	-	Min	es Inc.	•	DIAMOND	DRILL	LOG		Drill Ho	le Id.: WI	<04-08	
Hole Azim	uth:	180°		Dip: <u>-60°</u>	Total De	epth:12	<u>3,7m (406')</u>)	-		Geologi	cal Summary
Date Start	əd: <u>A</u>	ugust 5, 200)4	Date Completed:	August 6, 2004		Core Size:_		_	Purpose /	Target: Ku	tcho Deposit New site "L".
			Northing		Easting			<u>Elevatio</u>	<u>on</u>			
UTM Loca	tion:		~6451774		~537736			~1634		Comments	5	
Grid Locat	ion:		22464.2		38258.3	<u> </u>		1635.2				
Collar Sur	vey:											
Down He Survey Me	ole Surv	<u>′eγ</u>	Sample In	formation		Split By: _	Adrian	Воусе				
	Reflex_		# of Samples	s: <u>16 and Ø Blar</u> 280229 - <u>280244</u>	1 <u>k</u>	Туре:	1/4 Sawn					
Depth 0.0	Azimuth 180.0	Dip*	Date Shippe	d:August 18, 2004		Assay Ce	rtificate # :					
123.7	181.	5 -55.4	Analytical La	ab: Chemex							Key Inte	rsections
			Drill Infor	mation						From	То	Results
				mation								
		-	Drill Contrac	tor: <u>Hy-Tech</u>		Drill Size:	G-Tech 500	00				
		-	Driller: <u>Can</u>	neron Bakker		Shift	Distance	Shift	Distance			
			Holpor: _War	<u>ren ASN</u> is Peterson				-		↓		L
			Helper: <u>Jan</u>	nes Dickinson						Logged By	:P. Holb	<u>ek</u>
										<u> </u>		

Project: Kutcho Creek

1

٦

Inte	erval	Geo-T	echnical	Litho	ology	Co	lour		C	ompo	onent	s			Text	ure			Stru	cture						Alter	ation							N	linera	lizatio	on .		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	РуН	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	3.0			CASE																																			
3.0	15.8	95	50	QFXT		5	AG	QZ	30	MS	10	LI		PP	SE			FL	60					Ρ	10							D	0.1				-	-	
15.8	33.7	100	65	QFXT		7	AG	QX	30	FX	20	MS	LI	PP	SE			FL	50					P	20			н	5										
33.7	42.1	100	70	QFXT		7	YW	QX	30	MS	30	CB	LF	PP	LB	\$T		FL	50					Р	30	\$	10	Ø	8			D	1		<u> </u>			-	
42.1	44.8	100	60	LLAT		7	G	MS	30	CB	15	LF	QX	LB	FR	PP	\$T					Q	5	\$	25			PB	10			F	3					1	
																																						1	
44.8	46.0	100	50	MSSX	FLTZ			ΡY	90			[1	5									м	9	D	1	L	1		
46.0	57.5	99	65	LLAT		9	A	MS	30	QZ	20	SX	LF	LB	LM	FR		FL	50			L	20	Р	30							L	10	D	5	L	1	-	
57.5	57.9	100		MSSX				PY	9	BN	5	CP	TT	MX	LM	FG															1	м	9	1	3			J	5
57.9	59.1	100	10	XLAT	FLTZ		AW	MS	40	CB	20	GG	LF	FG	PP	FR	SH	FL	60					Р	40	0	20					W	3	W	0.5	W	0.5		
59.1	63.4	100	80	MSSX		Г		PY	90	BN	8	CP	SP	MX	LM	FG								J	2	J	2					м	9	1	4			J	8
						\Box																									1								
63.4	73.2	100		LLAT	SMSX	7	A	PY	25	MS	30	QZ	LF	FR	BN			FL	65			Q	15	P	30							L	25	J	2	L	2	J	2
73.2	123.7	96	30	LLTF		7	G	LF	30	MS	20	PY	QZ	FR	PS							V	5	P	20			0	5			L	5	1					
123.7				EOH																																			

Project: Kutcho Creek

Int	erval	
From	То	Comments
0.0	3.0	Casing. No core.
3.0	15.8	Patchy alteration within coase grained version of QFXT. Fractured and limonitic due to surface weathering. Fx grains difficult to discern either due to Ms alteration or weathering.
15.8	33.7	Moderately altered (Ms only) coarse grained phase of QFXT. No fragments visible. Patchy zones of carbonate after Fx. Commonly carbonate grains and fracture surfaces are limonitic.
33.7	42.1	Transitional to LLAT. Alteration is more intense and sulphide grains or fragments become conspicuous. Rare Py porphyroblasts.
42.1	44.8	Sheeted, lensoid banded unit where fragments look like glomeroporphyroblasts. Py fragments, grains & porphyroblasts.
		MSSX seems a bit out of place, too soon or too high in sequence. Approx 1.1m of 90% Py with only minor base metals visible with the exception of thin (1mm) Sp laminae at bottom of interval. 20 cm of fault
44.8	46.0	gouge to start the interval
46.0	57.5	"Silver schist" gray pyritic, lensoid banded, muscovite-Qz-Py schist. Py as wispy laminae to 2cm massive bands.
57.5	57.9	Very fine grained very massive; although interstitial Bn and Tt defines laminations. Pyrite has a greenish hue or cast suggesting finely intergrown Cp.
57.9	59.1	Intensely Mx and Cb altered but fragments or crystals still visible, although largely converted to Ms or carbonate. Last 30 cm is transitional into fault gouge.
59.1	63.4	Very massive with Bn or Ms-Cb wisps defining laminations. Bn-Cp have fine intergrowths. Bn>Cp. Sphalerite may or may not be present in limited quantity. (ie:<1%)
		"Silver schist" standard footwall. Ms-Qz-Py schist. Lapilli fragments elongated to flattened within ash matrix. Sulphide occur as massive bands from 1-3 cm thick to semi-massive layers up to 20cm thick. Also
63.4	73.2	some areas of sparsly laminated Py giving an almost disseminated look. Overall pyrite decreases in quantity.
		Pale green lapilli tuff. Almost fragment supported, most fragments elongate and siliceous. Fragment distribution and alteration intensity is variable within the interval but still same basic lithology. Lots of broken
73.2	123.7	rock and gouge between 97.5-100.9. Again at 110.3. Sulphide content decreases with depth as does Ms albeit much more gradually.
123.7		

1	W	ester	m Keltic					Project	t: KU	гсно с	REEK
	-	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Hol	le Id.: W	K04-09	
Hole Azim	uth:	180°	Dip:60°	Total D	epth: <u>63</u>	.7m (209')				Geologi	cal Summary
Date Start	ed: <u>Au</u>	<u>gust 6, 200</u>	04 Date Completed	August 7, 2004		Core Size:	HQ	_	Purpose /	Target: Kut	tcho Deposit
			Northing	Easting			Elevatio	<u>on</u>			
UTM Loca	ation:		~ 6451746	~537889					Comment	5:	
Grid Locat	tion:		22430	38412.5			1638				
Collar Sur	vey:										
Down H	ole Surve	eγ	Sample Information		Split By:		/ce				
Survey Me	ethod: Reflex		# of Samples: <u>17 & Ø Blan</u> 280146-280	k 0150; 280245-280256	Туре:	1/4 Sawn Co					
Uepth 0.0	Azimuth 180.0	-60.0	Date Shipped:		Assay Ce	rtificate # :					
63.7	185.0	-57.7	Analytical Lab: <u>Chemex</u>							Key Inte	rsections
								- * 10.5	From	То	Results
			Drill Information						<u> </u>		
			Drill Contractor:Hy-Tech_		Drill Size:	G-Tech 500	<u>00</u>				
			Drillor: Cameron Bakker		lshift	Distance	Shift	Distance	<u> </u>		
			Driller: Warren Ash		Sim	Distance		Distance			
			Helper: <u>Chris Peterson</u> Helper: <u>James Dickenson</u>						Logged B	y: <u>P.H</u>	lolbek

Project: KUTCHO CREEK

1

Project: Kutcho Creek

the second se

Inte	erval	Geo-T	echnical	Lithe	ology	Co	olour		С	omp	onen	ts			Tex	lure			Stru	cture						Alter	ation							M	inera	lizatio	n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	PyH	РуА	CpH	СрА	SpH	SpA	BnH	BnA
0.0	1.5			CASE																																			
1.5	22.3	97	25	QFXT		9	AG	QX	35	FX	25	СВ	LI	PP	OT			FL	45					Р	15	0	5												
22.3	31.1	100	40	QFXT		7	' YG	MS	35	CB	15	QX		PP	OT			FL	50					Р	35	0	15					PB	1						
31.1	34.6	92	35	LLXT	FLTZ	7	' YG	LF	30	MS	35	PY	CB					FL	50					Р	35	\$	10					D	3						
34.6	35.4	90	0	MSPY				PY	90			I		FG	MX							Q	5									М	90	+	2	+	1		
35.4	42.7	100	40	LLAT		7	' A	MS	30	QZ	40	PY	LF					FL	55			Ρ	40	Р	30	\$	2					W	8						
42.7	48.2	100	45	LLTF	FLTZ	7	' YA	LF	40					CS	LB									\$	10	\$	5	0	5			W	8						
48.2	49.1	100	35	CBEX	SMSX			СВ	40	SX	30	QZ	MS	LM								Q	20	\$	10	M	40					L	30	L	10				
49.1	52.9	100	50	MSSX				PY	95	CP	2	SP		FG	MX											-						М	95	D	2	J	2		
52.9	53.9	100	50	LLTF	CBEX			LF	30	CB	30	MS	SX	FR	LM	\$ T		FL	60					P	2	L	30					L	20						
53.9	58.2	100	90	MSSX		-		PY	60	CP	10	CB	BN	ΒX	MG							#	5			#	5					F	60	#	10	L	10	#	5
58.2	61.3	1		SMSX	SEXL			PY	30	QZ	30	MS	LF	LM	FR							L	30									L	30	D	0.3			W	1
61.3	63.7			LLTF		7	' YG	LF	30	MS	30	СB	PY	LB	FR	\$ T		FL	70					\$	30			PB	5			W	5						
63.7				EOH					_																														

.

DIAMOND DRILL LOG

7

۴

Project: Kutcho Creek

•

,

٦

Inte	rval	
From	То	Comments
0.0	1.5	Casing. No core.
		Standard QFXT with both coarse (1cm) and fine (1mm) quartz grains. Fx are altered, commonly with fuzzy boarders or replaced by carbonate. Carbonate is rusty like "old core". Rock is broken and limonitic due
1.5	22.3	to near surface weathering. Muscovite content increases with depth.
22.3	31.1	Intense muscovite alteration with strong carbonate spotting. Much of the carbonate is weathered and rusty. Large pyrite porphyroblasts in lower 1m of interval.
31.1	34.6	Perhaps one of the best exposed (ie:sharp) contacts between QFXT and LLXT or LLAT. Almost clast supported; most fragments are silicous and contain Py. A 30cm fault zone at end of interval.
34.6	35.4	Very broken; short interval of massive Py with minor Bn and Sp associated with x-cutting Qz veinlets.
35.4	42.7	"Silvery schist" locally siliceous (silicified?) wispy laminated Py in Qz-Ms schist, lithic fragments are flattened.
42.7	48.2	Fragment support LLTF with flattened to elliptical frags; mostly white siliceous variety set in a sheeted muscovite carbonate and pyrite matrix. 10 cm of fault gouge at end of interval.
48.2	49.1	Carbonate +/- silica exhalite and touch of graphitic argilite and semi massive Py and Sp and fluoromuscovite.
49.1	52.9	Moderately fine-grained with very minor intergrown Cp and localy disseminated or interstitial sphalerite. Debatable if this makes ore.
52.9	53.9	Altered lapilli tuff transitional into carbonate exhalative.
53.9	58.2	An unusual unit in that it is brecliated Sx. Py+/- Sp fragments in Qz-Cb-Cp-Bn matrix (sort of) late Cp + Bn. relatively coarse grained. Nice looking stuff. Cp>Bn
58.2	61.3	Mix of sulphides, silica exhalite or silcification and lapilli tuff. Minor bornite and trace of Cp. Sp is possible.
61.3	63.7	Intensely sericitized lapilil tuff. Soft yellow green sheeted muscovite (+/- carb) gives lensoid band appearance as it wraps around elongated / flattened fragments.
63.7		End of hole.

		,
STF Nonthing 22430.0		XK0409 Azimuth Dip Depth 0.0 -90.0 63 7
mpke_No Lbh1	VALUES PAT CODE CASE QFXT LLTF LLAT LLXT COEX SMSX MSSX	DESCRIPTION Casing quartz fektspar srynna tuff keptil ash tuff keptil prystal tuff carbonite exhatire serri massive exiphitae massive aviphice massive pythe
Lith1 Lith2 Cu_po Cu_po Zn_po Zn_po Ag_gpt Ag_gpt Au_gpt Au_gpt Au_gpt S_po S_po S_po S_po S_po S_po S_S SG SG	TEXT TEXT BAR PLOT BAR PLOT BAR PLOT VALUES BAR PLOT VALUES BAR PLOT VALUES BAR PLOT VALUES BAR PLOT VALUES BAR PLOT VALUES BAR PLOT	
TERN Kutcł Strip I	N KELTI no Creek Kutcho De Log: DDH	C MINES INC. Property posit WK04-09

•

Drill Hole Id.: WK04-10

and the second second

Project: KUTCHO CREEK

Hole Azim	uth:	_180 [°]		Dip:	-80° (?)		Total D	epth:	<u>88.1m (28</u>	9')	<u> </u>		Geologic	cal Summary
Date Starte	əd:A	ugust 7, 20	04	Date Co	ompleted:	August 7,	2004		Core Size:	HQ		Purpose / [·]	Target: Kut	cho Deposit
			Northing			Ea	sting			<u>Elevati</u>	on			
UT M Loca	tion:		~ 6451746			~537	889					Comments	s: 47.1m to	51.5m breccia textured mssx
Grid Locat	ion:		22429		_	384	412.5		_	1637.7		with good g 68.4m msv	rade Cp - B to weakly la	o preferential to matrix. 61.6- aminated mssx Py>>cph>>Cpy,
Collar Sur	vey:								<u>-</u>			laminated n	nssx near b	ottom of interval.
Down Ho	ole Surv	<u>ey</u>	Sample Inf	formati	on			Split By:	A. Bo	yce		1		
Survey Me	thod: <u>Reflex</u>		# of Samples	: <u>28</u> 28	+ 3 Blank 30257 - 2802	287		Туре:	<u>1/4 Sawn C</u>	Core				
Depth 0.0	Azimuth 180.0	Dip*) Date Shipped	1:				Assay Ce	rtificate # :					
88.1	197.9	-76.1	Analytical La	ь. Сн	amer								Key Inte	rsections
				D. <u>01</u>								From	То	Results
			Drill Inforn	nation								47.1	51.5	
			Drill Contract	tor:	Hy-Tech			Drill Size:	G-Tech 50	<u>00</u>		61.6	74.9	
				- Hooner				01:0	ID:stan as	lo-:#	ID:-+			·····
	<u></u>		Driller: Warn	en Ash				Shirt	Distance	Shift	Distance			
		+	Helper: Chris	s Peterso	n							¹	1	
		Helper: James Dickenson										Logged By	/: <u>P.D</u>	aubeny
										<u></u>		1		

x x y

,

DIAMOND DRILL LOG

Project: Kutcho Creek

inter	val	Geo-T	echnical	Litho	logy	C	olour		C	ompo	nent	s			Tex	ture			Stru	cture						Alter	ation							N	linera	lizati	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	РуН	PyA	CpH	CpA	SpH	SpA	BnH	BnA
0.0	11.3	100	80	QFXT		5	AG	QX	20	CL	5	MS	FX	PD	SE			FL	40					P	5	0	3												
11.3	23.8	100		QFXT		7	Α	QX	25	MS	10			PP	SE			FL	45				[P	10					0	5								
23.8	30.2	90	20	QFXT	FLTZ	5	AP	QX	25	AK	15	MS	GG	PP	OT			FL.	40					Ρ	20					0	15								
30.2	37.7	100	80	QFXT		9	G	QX	30	MS	30	CB	AK	PP	PB	1		FL	45					P	30	0	5			0	5	PB	1						
37.7	42.2	100	60	QFXT		9	YG	QX	25	MS	35	CB		PP	ŌT	1	-	FL	40	-				P	35	0	15			0	10						†		
42.2	46.6	100	40	LLTF		7	0	LF	40	AK	20	MS		ML	FS	FR	GC	FL	45					P	25	0	10	1	1	\$	15					-			
46.6	47.1	100	25	LLXT		5	AT	FS	8	MS	25	LF	SX	HT	PP	FR	EL	FL	45	-		•	5	P	25	<u> </u>		1				L	4						
47.1	49.5	100	25	MSSX		3	A	CB	50	SP	3	CP	BO	BR	LM	WS	MV	LM	45	1	1				-	J	40					M	55	3	4	1	3		
49.5	49.8	100	0	ASHT		3	A	FS	15	SX	7	CB	MS							1	1			P	20	C	20	1-				1	6			1	1		
49.8	51.5	100	25	MSSX		3	Α	СВ	50	SP	3	CP	BO	BR	LM	ws	MV	LM	45			-				J	40	†			1	M	55	3	4	T	3		
51.5	60.1	95	10	TFBX		3	Α	LF	50	SX	15	MS	СВ	FR	LB	ML	F\$	FL	50		1			P	30	1	3		†			V	14	1	0.5	1	0.3	<	0.1
60.1	62.2	100	35	LATE	ASHT			SX	16	FR	20	QZ	СВ	DF	LM	FR	LB	LM	50		T	Z	5	P	30	Z		1				Z	13			I I	2	Z	1
62.2	69.3	100	50	MSSX		3	A	SX	80	FL	1	MS	СВ	MX	LM		t	LM	50		1	J	10	J	5	J	8	1-				M	75	1	4	1 I	0.5	B	01
69.3	74.8	100	70	MSSX		3	A	SX	75	QZ	4	СВ	MS	MS	LM	MV	BX	BN	50	t	-	T	4	J	1	J	20	1	-			Z	60	3	6			<	2
74.8	80.4	100	60	TFBX		7	A	QZ		SX		MS	-	ML	LB	EL	ST	FL	50	<u> </u>		X	35	J	7							x	30	3	02	T	0.5	3	01
80.4	82.0			TFBX		7	AT	oz	20	MS	30	SX	LF	\$T	FE	WS	LB	BN	60			\$	20	X	30							K	15		0.2				
82.0	88.1	1		LLTF		7	TG	MS	30	PY	10	QZ	СВ	LB	\$T	LM				t	1	ΤŤ	5	P	30	\$	10	†	1			1	10	1	1	1	1		
88.1				EOH																				-				1								-	<u> </u>		

•

•

•

•

DIAMOND DRILL LOG

Project: Kutcho Creek

1

Inte	erval	
From	To	Comments
0.0	11.3	Typical QFXT with very weak alteration.
11.3	23.8	As above but more bleached with a bit of hematite wash giving rock a purplish tinge.
23.8	30.2	FLTZ from 26.8-28.7. Fractured rock with minor gouge. Medium-coarse quartz eyes. Strong ankerite (rusty) spotting (euhedral).
30.2	37.7	Pale green, intensity muscovite altered. Relatively coarse quartz eyes with abundant Cb and Ak spots.
37.7	42.2	As above but pale yellow green with strong dolomite spotting and localized ankerite spotting.
42.2	46.6	QFXT grades into lapilli rich unit over 50cm. LLTF is monolithic with round white siliceous fragments in matrix of muscovite and orange sheeted carbonate (ankerite).
46.6	47.1	Very strong sericite altered and fragmented. 1mm feldspar porphry in matrix and some clasts.
47.1	49.5	Massive to occasionally semi massive sulphide with breccia texture. Wispy Cp and Bo preferential to matrix breccia.
49.5	49.8	Little tuffaceous interlude.
49.8	51.5	Massive to occasionally semi massive sulphide with breccia texture. Wispy Cp and Bo preferential to matrix breccia
51.5	60.1	Disseminated and/or sheeted, massive and/or laminated sulphide in monolithic lapilli tuff breccia.
60.1	62.2	A heterolithic, occasionally tuffaceously laminated usually fragmental irregularly mineralized with occasional bands < 5 cm of SEXL and CBEX. Localy splashy Bo-Cpy
62.2	69.3	Very massive pyrite. Base metal concentrated @ top of interval. Fluormuscovite common.
69.3	74.8	Slightly less massive than 62.2-69.3, higher grade Cu-Zn. Relatively high bomite.
74.8	80.4	Very siliceous sulphide rich monolithic fragmental. Abrupt lower contact in 5cm Qz vein.
80.4	82.0	Prevasive tan sericite as wispy sheeting
82.0	88.1	A mix of lapilli tuff with intense muscovite alteration and carbonate sheeting and laminated Py +/- silica. Upper part of interval is yellow gray but changes to pale green with depth.
88.1		End of hole.

Drill Hole Id.: WK04-11

Project: KUTCHO CREEK

Hole Azimu	uth:	180°		Dip:	55°	Total	Depth: <u>6</u>	1.0	_			<u>Geologi</u>	cal Summary
Date Starte	ed:AL	<u>igust 8, 200</u>)4	Date Co	ompleted:	August 8, 200	4	Core Size:	_HQ		Purpose /	Target: Ku	tcho Deposit Site "E"
			Northing			<u>Eastin</u>	ß		Elevatio	on			
UTM Loca	tion:		~ 6451733			~538039					Comment	s:	
Grid Locat	ion:		22414			38565			1623	-			
Collar Surv	/ey:												
Down Ho	ole Surv	еу	Sample In	formati	on		Split By:	A. Bo	yce]		
Survey Met	thod: Reflex E	Z-shot	# of Samples	s: <u>23</u> 28	<u>+ 1 Blank</u> 0451 - 2804	74	Туре:	1/4 Sawn C	Core				
Depth 0.0	Azimuth 180.0	Dip* -55.0	Date Shipped	d:			Assay Ce	ertificate # :					
61.0	180.6	-53.3	Analytical La		a max							Key Inte	ersections
			Analytical La	aD. <u>CI</u>							From	To	Results
			Drill Inform	mation									
			Drill Contrac	tor:	Hy-Tech		Drill Size	: <u>G-Tech 50</u>	00				
			Drillor: Warre	an Ach			Shift	Distance	C Li#	Distance			
┣────┤		<u> </u>	Driller: Walle	ASIT ASIT			Shint	Distance		Distance			
	_		Helper: Jam	nes Dicker	nson				<u> </u>			L	
			Helper:								Logged B	v: P.M. Ho	lbek
			Foreman: <u>Wa</u>	ayne May	ner			_L			1		

,

·

1

٠

.2

,

Project: Kutcho Creek

1 1

٦

Int	erval	Geo-T	echnical	Litho	logy	C	olour		С	omp	nent	s			Tex	ture			Stru	cture						Altera	ation							N	linera	lizatio	on .		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	CpA	SpH	SpA	BnH	BnA
0.0	1.5			CASE																																			
1.5	15.8	100	20	QFXT		9	AP	QX	25	MS	25	HE	AK	PP	SP			FL	50					Ρ	25					0	10	PB	1				-		
15.8	17.7	100	30	QFXT		9	YG	MS	35	CB	15	QX	PY	SP	PP			FL	50					Ρ	35	0	15					PB	2						-
17.7	19.5	98	25	LLTF		9	R	LF	15	CB	20	MS		FR	LB							*	5	P	30	*	15	3	5	\$	10								
19.5	21.5	100	0	LLAT		5	A	MS	30	LF	35	CB	PY	LB	\$T			FL	58					Ρ	30					\$	10	w	7						— —
21.5	23.5	100	20	SEXL		9	A	QX	60	SP	10	CB	MS	LM				LM	60			Ρ	60	Q	10	L	20					L	10			L	10	<u> </u>	
																												<u> </u>			-								
23.5	27.9	100	50	MSSX	LATE			PY	70	CP	10	ΒN	SP									V	10			\$	5					м	70	L	10	J	5	J	3
27.9	36.6	97	15	LATF	SEXL	7	A	SX	20	LF	30	MS	СВ	BN	LM	\$T		FL	65			L	30	Ρ	20	0	5			\$	5	L	5	L	3	L	10		
36.6	43.1	100	25	LLAT		7	A	LF	30	MS	30	SX		LΒ				FL	75			Q	10	P	30	0	4					w	5	W	2	w	1		
43.1	44.2	100	30	MSPY	ARGL			PY	60													J	10			J	5					L	60	D	0.2	D	0.1		
44.2	49.4	100	25	LLTF		7	A	LF	40	MS	25			LB	PM			FL	80			3	5	Р	25	\$	4					D	3	D	0.5	D	1.5		
49.4	61.0	100	30	LLTF		9	YG	QZ	30	CB	30	MS		\$T	LB							*	30	\$	30	\$	30	-				L	3	L	1			t –	
61.0				EOH																																			

Project: Kutcho Creek

Inte	rval	
From	То	Comments
0.0	1.5	Casing. No core.
1.5	15.8	Moderate to intense muscovite alternation of QFXT. Surface oxidation has made the ankerite spots very rusty. Weak He wash is localized.
15.8	17.7	Loss of oxidation (limonite) and hemetite. Cream coloured with fewer and finer quartz crystals (except for rare very large quartz crystals to 1.5 cm).
17.7	19.5	Subround Qz-carbonate clasts scattered within intensely muscovite altered ash with strong Ak sheeting. Bottom 30 cm carbonate Bx (>) then 5cm gouge.
19.5	21.5	Lensoid banded grey/white lapilli tuff with mostly flattened fragments, but round Qz-carbonate lumps. Pervasive wispy pyrite and intense muscovite alteration.
21.5	23.5	Both silicified mineralized ash tuff and laminated silica (+/- Sx). Better mineralized than most exhalites. Last 50cm is muscovite ash and massive cream coloured carbonate (+/- Qz).
-		Finely laminated sulphide to fine grained massive to brecciated textured sulphides intercalated with 2 LATF bands (30 and 70cm thick), also a 50cm bull white Qz vein in center of interval. 'Nice' sulphide textures
23.5	27.9	(deformed laminae; mineralized lithic fragments and coarse splotches of chalcopyrite.
		An odd interval. Intensely musc-Cb altered tuffaceous rock with narrow bands (0.5-5cm) of semi-massive Sp or Py+/-Cp as well as intercalated SEXL (30%) and a 35cm band of massive green (+/- grey) sphalente
27.9	36.6	(30.5-30.8).
		Pale grey ash tuff up to 30% flattened lapilli. Intense muscovite aleration. Local bands of semi-massive Py(+/-Cp+/-Sp) from 1 to 5cm thick massive 10%-15% of interval. Also patchy areas of silicification. Cp and
36.6	43.1	Sp mineralization also patchy but generally weak.
43.1	44.2	Massive granular pyrite in a Qz-carbonate matrix. Pyrite occurs in 20-50cm bands with intercalated argillaceous ash material.
44.2	49.4	Light grey lapilli polymictic with flattened frags. Wispy Py, Sp and rare Cp. Moderate Musc-Cb alteration. Crumpled foliation.
49.4	61.0	Intensely altered sheeted carbonate-muscovite rock with lensoid Qz fragments. Very odd!!! Unsure whether rock is alteration product or formed from exhalitive or volcanic process.
61.0		

1	W	^v estei	n Keltic					Project	t: KU ⁻	гсно с	REEK
1		Min	es Inc.	DIAMOND	DRILI	LOG		Drill Hol	le Id.: W	K04-12	
Hole Azim	uth:	180°	Dip:85°	Total D	epth: <u>8</u>	5.0m_(279')				Geologi	cal Summary
Date Starte	əd: <u>Au</u>	gust 8, 200	4 Date Completed	August 9, 2004		Core Size:	HQ	_	Purpose /	Target: Kut	cho Deposit Site "F"
			Northing	Easting			<u>Elevatio</u>	<u>n</u>			
UTM Loca	tion:		~ 6451784	~538082					Comment	5:	
Grid Locat	ion:		22467	38605			1613				
Collar Sur	vey:										
Down Ho	ole Surve	ey	Sample Information								
SUDIOV NO	thad				Split By:	A. Boy	ce	····	-		
Survey Me	Reflex		# of Samples: <u>21 + 1 Blan</u> l		Туре:	1/4 Sawn Co	ore				
Depth	Azimuth	Din*	280429 - 28	0450							
0.0	180.0	-85.0	Date Shipped:		Assay Ce	ertificate # :					
85.0	182.4	-80.5								Key Inte	<u>rsections</u>
			Analytical Lab: <u>Chemex</u>						From	То	Results
		A	Drill Information								
						0 Task 500					
			Drill Contractor: <u>Hy-lecn</u>		Drill Size	: <u>G-Tech 500</u>	<u>10</u>				
			Driller: Warren Ash		Shift	Distance	Shift	Distance			
			Driller: Cameron Bakker								
			Helper: James Dickenson								
			Helper: Chris Peterson						Logged B	: P. Daube	eny & P.M. Holbek
			Foreman: <u>Wayne Mayne</u> r		L						

· ·

Project: Kutcho Creek

Int	erval	Geo-Technical		eo-Technical Lithology			olour	Components						Texture					Stru	cture						Alter	ation				·		Mineralization						
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CbH	СЬА	DIH	DIA	AkH	Aka	РуН	РуА	CpH	СрА	SpH	SpA	BnH	BnA
0.0	1.5			CASE																																			
1.5	18	90	50	QFXT		5	A	HE	10	HS	2	FS	QI	CP	CG	CX	FO	FL	40			1	35	J	6														
18	50.9	100	85	QFXT		9	A	QX	35	MS	25	AK	LF	PP	GB			FL	45					Р	24	0	10			0	5								
50.9	51.8	95	50	FLTZ		5	U	LI	20																														
51.8	58.5	100	30	QFXT		7	YG	MS	40	QX	30	СВ	ΡY	PP	F\$	GC		FL	50					P	40	0	20					PB	1			· · · · ·			
58.5	60.4	100	20	LLAT		7	AG	MS	40	LF	20	СВ	GG	FR	\$ T	SH	GG	FL	50			*	5	P	40		10			\$	5	D	2						
60.4	61.6	100	90	CQEX	SEXL		W	CB	50	QZ	35	AK	ΡY	MX	LM			ĹМ	60			Ρ	35			MX	50			\$	10	L	5	D	1				
61.6	63.6	100	20	LXAT	MSSX	5	A	MS	40	LF	30	SX		LB	FG	<u> </u>						3	5	Ρ	40	0	5		1			D	5	L	10	L	5		
63.6	69.2	100	35	MSSX				PY	90	SP	8	CP	BN	MX	FG			LM	75													М	90	D	4	J	8	D	1
69.2	71.3	100	80	MSSX				BN	10	PY	40	св	QZ									3	10			3	20					z	50	D	3	#	8	#	10
71.3	77.9	100	95	QCEX			W	СВ	55	QZ	40	ΒN	SX	MX	CB							Х	40			X	50			3	5	<	2	<	0.5	<	2	<	5
77.9	79.6	100	95	MSSX				PY	80	CB	10	SX	MS	MX	MT	MG													1	J	10	Х	80	L	5	L	4		
79.6 85.0	85	100	0.5	LATF EOH		7	A	MS	30	PY	15	LF	СВ	LB	F\$	SH		FL	50	LM	50	L	3	Р	30	0	5			\$	3	L	15	D	2	D	1		

•

.

DIAMOND DRILL LOG

Project: Kutcho Creek

Inte	erval	
From	То	Comments
0.0	1.5	Casing. No core.
1.5	18	Weakly sencite altered QEXL (occasionally lithic) tuff with occasional wispy red specular hemitite bands. Oxide in fractures to Box 4. Crowded eg. Qz porphyry.
		Typical QFXT with high quartz crystal content but variable throughout. Some size sorting of quartz crystals suggests graded bedding. Wispy He (purple) stain and localized abundance of ankerite also suggests
18	50.9	beds or layers muscovite increases with depth as does Cb content. Rock is limonitic adjacent to fracture zones.
50.9	51.8	Intense limonite and oxidation related to fracture zone, but no gouge.
51.8	58.5	Yellow green QFXT with maximum intensity muscovite-carbonate alteration. Qz eyes in a muscovite and spotted carbonate matrix. Locally rusty.
58.5	60.4	Lower 70cm of interval is very fissile/sheared and almost gouged.
60.4	61.6	Massive white carb-Qz "exhalite" with bands of 'sheeted' ankerite (orange) and pyrite (+/-Cp/Sp). Grades into finely laminated silica exhalite for last 0.76 cm.
61.6	63.6	Speckled grey lithic tuff with intense muscovite alteration, minor Qz veining and hosts narrow (40cm) bands of massive Cp-Py-Sp at top of interval and at 1m off bottom of interval.
63.6	69.2	Fine grained extremty massive Py with interstitial Sp and rare dissemination. Cp or Bn (%'s hard to estimate - Bn low) unit becomes more Sp rich at bottom with fine Sp laminations visible.
		A mixed interval. Top 1.3 m is a SMSX and QCEX that may outline a broad fold nose as laminations flip parallel to core & then back the other way. Below this 40cm of massive Py and Sp with pitted surface
69.2	71.3	texture; below this is 60cm of massive Bn-Sp-Cp in a carbonate matrix-could be recemented breccia as Bn occurs as net texture and is likely a late replacement feature (see below).
71.3	77.9	Massive carbonate-Qz band (exhalite) locally fractured with Bn (+/- Sp +/- Py +/- Cp) infilling, Bn fillings occur between 72.8-75.9
77.9	79.6	Massive grained massive sulphide with carbate matrix. Local Bn and Sp with laminated Py and Cp towards bottom of interval.
		Silver schist, fine flattened lithic fragments in intensely muscovite altered matrix with carbonate spots and bands of semi-massive Py and rare other sulphide (Sp,Cp) numerous (6) 1-5cm gougy zones, typically
79.6	85	parallel to folliation.
85.0		End of hole.

I	W	ester	m Keltic				t: KU	гсно с	REEK					
Ţ		Min	es Inc.	DIAMOND	DRILL	. LOG		Drill Ho	le Id.: W	K04-13				
Hole Azimuth	h:1	80°	Dip:45°	Total D	epth:73	8.2m_(240')				Geologi	cal Summary			
Date Started:	:Aug	<u>ust 9, 200</u>	4 Date Complete	d: <u>August 9, 2004</u>		Core Size:	HQ	_	Purpose /	Target:				
			Northing	Easting			Elevatio	on						
UTM Locatio	on:		~ 6451784	~538082					Comment	5:				
Grid Locatio	n:		22466.5	38605			1613							
Collar Survey	y:				····									
Down Hole	e Surve	<u>y</u>	Sample Information					· · · · · · · · · · · ·	-					
	od:				Split By:	A. Boy	/ce	·····	-					
Survey Meth	Reflex		# of Samples:23 + 2 Bla	nks	Туре:									
Depth A	zimuth	Dip*	280404	280428										
0.0	180.0	-45.0	Date Shipped: Sept 5/04		Assay Ce	rtificate # :				Koylpto				
73.2	181.3	43.8	Analytical Lab: Chemex							<u>rey me</u>	rsections			
									From	То	Results			
			Drill Information											
			Drill Contractor: Hy-Tech	n	Drill Size	G-Tech 500	00		<u> </u>					
				·	Dim Oleo.	0 10011000	<u></u>		<u> </u>					
			Driller: <u>Warren Ash</u>		Shift	Distance	Shift	Distance						
			Driller:											
			Helper: <u>James Dickenson</u>											
			Helper:						Logged By: <u>P.M. Holbek</u>					
			Foreman: <u>Wayne Mayne</u> r								-			

Project: Kutcho Creek

Inter	val	Geo-T	echnical	Litho	ology	C	olour		С	ompo	onent	5			Tex	ture			Stru	cture						Alter	tion							M	inera	lizatio	'n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	١ng	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	РуН	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	1.5			CASE																																			
1.5	25.0	93	65	QFXT		5	AG	QX	25	FX	10	MS	LM	PP	BD	SE		FL	70					Р	10	3	3												
25.0	25.6	100	0	FLTZ		7	μ	GG	30	LI	30																												
25.6	34.0	100	80	QFXT		7	YA	QX	30	MS	20	AK														3	2			0	5								
34.0	45.1	100	80	QFXT		7	YG	MS	30	QX	25	СВ	LI	PP				FL	75					P	30	3	15			0	5								
45.1	45.7	80	0	FLTZ																											1								
45.7	51.2	100	60	LLTF	QCEX	7	YA	СВ	35	QZ	35	MS	AK	FR	cs	MT	\$T	FL	80			F	35	P	20	F	35			\$	15					L	5		
51.2	54.4	100	40	LXTF	MSSX	5	A	LF	20	MS	30	SX	СВ	LM	LB	FG		FL	80	LM	80	3	5	Р	30	0	5			\$	3	L	20	L	5	L	2		
54.4	63.1	100	45	MSSX				SX	97	ΡY	75	SP	СР	MX	FG			LM	75			J	3									L	75	L	10	L	12	'	
63.1	65.3	100	20	QCEX			W	СВ	50	QZ	30	SP	SX	MX	MT	VN		LM	85			3	30			М	50							3	3	L	5	В	2
65.3	67.5	80	10	SMSX	FLTZ			PY	35	BN	5	QZ	MS	SH	LM			LM	85			V	5									L	35	D	2				
67.5	73.2	100	25	LLTF		7	A	LF	25	MS	30	PY	СВ	LB	LM	\$T		FL	88					Р	30	\$	5					L	10						
73.2				EOH																											1								

Project: Kutcho Creek

Inte	erval	
From	То	Comments
0.0	1.5	Casing. No core.
		Rock is quite broken (surface effects) for first 10m and moderately broken over the rest of the interval. Limonite is extensive as fracture coatings and staining adjacent to fractures. QFXT varies in both phenocryst
1.5	25.0	size and population as well as matrix colour which varies from light green to grey to very pale grey.
25.0	25.6	Broken gougy limonitic calcite rich zone derived from QFXT.
25.6	34.0	Coarse grained, crystal rich, moderaltely muscovite altered QFXT. Still lots of limonite staining and rusty ankerite (?). Porphyroblasts of replaced feldspar crystals. Also weak He wash gives core a purplish hue.
		Unit defined by intense muscovite alteration and large euhedral dolomite grains (+end of purple hue). Start of interval has very coarse Qx (~1cm) whereas the Qz size is 2-5cm or less at the bottom. The change in
34.0	45.1	crystal size is gradual. Rock has a pale yellow green (flouromica) hue. Bottom 1m consists of carbonate-muscovite ash with a smattering of Qz grains.
45.1	45.7	Broken and gougy rock of the unit below.
		An unusual unit "lava lamp rock." Interval begins with fine (<1 cm) cream coloured lapilli that are Qz-Cb (?) in a grey ash matrix. Fragments become larger and more abundant until they begin to coalesce into a
		massive unit over first half of interval. Remainder is scattered large Qz-Cb rounded fragments floating in ankerite sheeted, grey ash matrix which is highly muscovite altered. There is a 20cm band of massive
45.7	51.2	sphalerite (cream, green and steely coloured varieties at 50m. Unit ends at the band of massive Py-Cp.
		Grey "spotted" or "speckled" ash with flattened lapilli and lithic fragments and some crystal grains. Both fragments and crystals have fuzzy boundaries due to alteration. 30cm massive Py-Cp to start and two 10 to
51.2	54.4	15 cm bands at 52.1 and 53.0m with the upper as massive pyrite and lower as massive chalcopyrite.
		Grain size and texture is similar throughout interval. Mainly fine grained laminated Py with minor disseminated or interstitial chalcopyrite and sphalerite. Local areas of significant CP or Sp. eg 1st m very Cp rich;
54.4	63.1	from 60.6 to 61.9 quite Sp rich. Locally core is quite broken.
63.1	65.3	Core is broke, recrystatalized exhalite or vein material. Not laminated and coarse interlocking Qz and Cb grains "splashes" and splotches of Cp and Bn, but not a lot of metal.
65.3	67.5	Mostly medium grained Py as semi massive bands 1-20 cm thick in a Qz-muscovite matrix. Towards bottom of interval Py forms coarse aggregates with interstitial or coatings of bornite.
67.5	73.2	"Silver schist" standard lapilli tuffQz-musc-Py schist.
73.2		

Drill Hole Id.: WK04-14

Project: KUTCHO CREEK

Hole Azimuth:180°	Dip:45° T	otal Depth: <u>121.6m (399</u>	9')		Geologi	cal Summary
Date Started: <u>August 9, 200</u>	4 Date Completed:August 10	, 2004 Core Siz	e: <u>HQ</u>	Purpose / 1	Target:	
	Northing Eas	sting	Elevation			
UTM Location:	~6451857~537	<u>′982</u>		Comments	:	
Grid Location:	22540385	04	1608			
Collar Survey:	<u></u>					
Down Hole Survey	Sample Information	Split By: A. Bo	русе	1		
Survey Method: Reflex	# of Samples: <u>20 + 1 Blank</u> 280366 - 280386	Type:1/4 Sawn (Core			
Depth Azimuth Dip* 121.6 182.0 -41.2	Date Shipped: Sept 5/04	Assay Certificate #	:			
	Analytical Lab: <u>Chemex</u>			From	Key Inte	rsections Results
	Drill Information					
	Drill Contractor: <u>Hy-Tech</u>	Drill Size: <u>G-Tech 5</u>	000			
	Driller: <u>Warren Ash</u>	Shift Distance	Shift Distance			
	Driller: <u>Cameron Bakker</u>					
	Helper: <u>James Dickenson</u>					
	neiper: <u>Chris Peterson</u>			Logged By	: _ Р.М. Но	IDEK

•

Project: Kutcho Creek

Inte	erval	Geo-T	echnical	Litho	logy	С	olour		C	ompo	nent	5			Tex	ture			Stru	cture						Alter	ation	-						M	inera	izatio	n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	СЬА	DIH	DIA	AkH	Aka	PyH	PyA	СрН	CpA	SpH	SpA	BnH	BnA
0.0	0.5			CASE																																			
0.5	18.0	100	60	QFXT		7	AG	QX	30	LI	5	FX	MS	PP	SE			FL	50					Р	15														
18.0	57.3	99	70	QFXT		7	AG	QX	30	MS	20	LI		PP	SE			FL	55			V	3	Р	20														
57.3	64.6	98	65	TFBX		5	AG	QX	30	LF	10			PP	FR									P	10														
64.6	87.5	100	90	QFXT		9	A	QX	30	MS	30	AK	СВ	CG	PP	SP		FL	60					P	30	0	10			R	5	PB	1						
87.5	93.6	98	10	QFXT			W	MS	35	QX	30	CB	ΡY	PP	\$T			FL	80					Р	35	0	15					PB	2						
93.6	94.8			LLTF				LF	30	CB	30	MS	PY	FR										Ρ	30	F	20			\$	10	L	10						
94.8	96.9	94	0	SEXL	ASHT	9	A	QZ	30	CB	30	PY	MS	LM								Ρ	30	P	20	Ρ	30					L	10						
96.9	100.9	93	0	ASHT	MSSX	5	A	MS	20	CB	20	SX	FM	LB	\$T	GG		FL	75			3	5	\$	20	3	20					L	10	3	2	L	3	В	1
100.9	102.4	97	35	MSSX				PY	60	SP	30	BN	CP	MX	LM																	L	60	D	3	J	30	D	30
102.4	103.3	100	20	LLTF		7	A	MS	30	LF	20	SX	CB	FR	SP	LM		FL	70					P	30	0	10			\$	5	L	8	L	3	L	2	D	1
103.3	104.7	100	70	MSSX				PY	60	SP	20	CP	BN	LM				BD	85			J	5									L	60	В	8	L	10	В	5
104.7	105.3	100		LLTF		7	A																															В	2
105.3	107.8	100	100	MSSX				PY	40	CP	10	BN	SP	BX	СВ							Т	10			J	10					M	40	J	10	J	5	J	6
107.8	110.6	100	100	MSSX				PY	60	SP	20	BN	CP	LM	ВX	FG		LM	90			J	5			J	3							L	15	м	20		
110.6	114.1	100	100	MSSX	SXBX			SX	70	CB	30	SP	CP	BX	MT	ΜV										F	30					#	30	<	10	#	20	<	5
114.1	116.9			SMSX	LATF			PY	20	MS	20	QZ	SX	LM	LB							Ρ	15	P	15							L	20	D	0.5			D	0.5
116.9	121.6	100	30	LATF		9	A	MS	35	SX	10	QZ	CB	LB	FG	\$T																L	8	D	1			D	1
121.6				EOH																																			

Project: Kutcho Creek

, ı

•

· · · · · ·

inte inte	erval	
From	То	Comments
0.0	0.5	Casing. No core.
		More or less standard QFXT with both coarse and fine grained quartz crystals. Feldspar crystals are no longer visible but have faded into matrix. Pervasive MS at 15% and moderate to strong limonite "wash" over
0.5	18.0	much of the coarse FLTZ at 56.7m.
18.0	57.3	As above but with coarser grained Qz grains and more variation, change in the Qz eye size suggestive of bedding localized fracture zones with limonitic wash. 30cm FLTZ @ 56.7
57.3	64.6	QFXT with scattered rounded choritic fragments and zones (beds?) of chloritic alteration (or mafic tuff)
64.6	87.5	Coarse grained Qz phyric tuff with fining of grain size upwards suggestive of bedding. Ankerite spots (rusty) and black, vitrieous fine graind dissemnations (Mag) but not magnetic. Some Fluro-mica and Pb Py.
87.5	93.6	White Qz-Ms Schist. Strong carbonate spotting (after feldspar crystals?) and porphyroblastic pyrite. Local fluoromuscovite and limonite stain last 30 cm is gouge.
93.6	94.8	Coarse lapilli, partly carbonate in muscovite and carbonate matrix. Quite gougey for first 50cm of inteval.
94.8	96.9	Qz-carbonate exhalite and ash tuff (silver schist) carbonate is in upper part of interval; Qz in lower part. 40% ash material core breaks apart on sheeted muscovite. Small "m" fold in core.
96.9	100.9	A mixed zone of gouge, sericite schist and massive sulphide with Qz blobs and "splashes" of Bn and Cp. Last 1.5 is fairly lean. Overall rock quality is poor.
100.9	102.4	An odd weathered textured to MSSX; but Sx not oxidized. Looks like gypsum or calcite matrix has been leached.
102.4	103.3	
103.3	104.7	Similar weathered texture as above MSSX; more abundant Cp and Bn
104.7	105.3	Similar to above interval.
105.3	107.8	High grade interval where massive Py (+/- Sx) has been brecciated (or slumped) and recemented with Qz, Cp and Bn. Py relatively fine grained with coarser Bn and Cp.
107.8	110.6	Fine to medium grained Py and interfaminated Sp with narrow zones of sulphide breccia and ash (5%) and dolomite clasts.
110.6	114.1	Carbonate matrix breccia with sulphide matrix. Matrix is Py +Sp with late overprints of Cp and bornite. Very, very nice interval.
114.1	116.9	
116.9	121.6	Classic "silver schist" approx 10% laminate Py in 1-3 cm semi-massive laminatious with local medium to coarse grained splashes of Bn and Cp
121.6		End of hole.

1	W	'estei	n Keltic	,					Project	t: KU1	гсно с	REEK
1	-	Min	es Inc.	C	IAMOND	DRILL	LOG		Drill Ho	le Id.: WI	<04-15	
Hole Azim	uth:	180°	Dip	-78°	Total De	pth:13	3.8m (439')				Geologi	cal Summary
Date Starte	ed: <u>Au</u>	<u>gust 10, 20</u>	04 D	ate Completed:	August 11, 2004	1	Core Size	: <u>HQ</u>		Purpose /	Target: On	e of two holes from this set-up.
			Northing		Easting			<u>Elevatio</u>	n			
UT M Loca	tion:		~6451857		~537982					Comments	s: Fringe ho	ble with fringe type mineralization
Grid Locat	ion:		22540.7		38504			1608	-	Moderate g moderate g	rade Zn fro rade Zn> C	m 110.4-111.6 (1.5m) and Cu from 114.9 - 116.0 (1.1m).
Collar Surv	/ey:									metal.	BEX from 1	16.0 - 125.9m but low base
Down Ho	ole Surve	ey	Sample Inform	nation		Salit Dvr	A Roy			1		
Survey Me	thod: Reflex		# of Samples:	<u> 16 + 1 Blank</u> 280387 - 28040	13	Spiit By: _ Туре:	<u>A. Boy</u>	ore				
Depth 133.8	Azimuth 174.0	Dip* -76.3	Date Shipped:		_	Assay Ce	rtificate # :					
			Analytical Laby	Chamay							Key Inte	rsections
			Analytical Lab: _	Chemex			_			From	То	Results
			Drill Informat	ion								
			Drill Contractor:	Hy-Tech		Drill Size:	G-Tech 500	00				
			1	- L								
			Driller: Warren As	<u>sn</u> Bakker		Shift	Distance	Shift	Distance			
			Helper: James [Dickenson								
			Helper: Chris Pet	erson						Logged B	y: <u>P.M.</u> Ho	lbek & P. Daubeny
												· · · ·

Project: Kutcho Creek

Inte	ervai	Geo-T	echnical	Litho	logy	С	olour		С	ompo	onent	s			Tex	ture			Stru	cture						Altera	ation	_						M	inera	lizatic	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	Рун	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	1.5			CASE																																			
1.5	42.1	100	92	QFXT		3	AG	QX	25	CL	10	FX	LÌ	PP	SE			FL	38					Ρ	3	0	3						1	1					
42.1	68.6	100	86	QFXT		9	G	QX	40	MS	15	QZ		PP	SE			FL	45			3	5	Ρ	15							D	1						
68.6	88.1	100	90	QFXT		9	YW	QX	40	CB	10	HE	MS	PP	SE			FL	45					Р	25	0	10					D	2						
88.1	94.8	100	65	QFXT			w	AK	20	QX	40	HE	MS	PP	GC			FL	50					Р	30					0	20	PB	2						
94.8	97.8	100	15	XLAT		9	G	QX	15	LF	20	MS	CB	SP	PP									Р	35	0	20					w	1						
97.8	99.5	100	45	QCEX			W	QZ	50	СВ	50			MX								Μ	50					М	50										
99.5	105.2	98	60	LLTF		9	AT	LF	50	MS	25	CB	AK	FR	FS	LB		FL	55			*	20	Р	25	*	20			\$	10	PB	2						
105.2	107.9	100	40	SEXL		9	Α	QZ	90					LM	FG							L	90	P	10							L	10						
107.9	109.9	90	10	SEXL		3	A	QZ	92	SX	3	MS		FG	LM	CR		BN	50			Ζ	92	I	5						-								
109.9	110.1			FLTZ		3	AW	GG	50					GG	F\$		-	FZ	70																				
110.1	110.4			ASHT		5	Α	MS	40					F\$	WS			FL	40					Р	40						1								
110.4	111.3	95	20	MSSX	SMSX	3	AY	SX	55	MS	20	QZ	CB	ΒN	LM	ws	MX	FL	30			L	10	P	20	J	10				<u> </u>	Z		+	0.2	Z	5		
111.3	111.6			MSSX		5	AY	SX	80	QZ	10	MS						ΒN	60			J	10	J	10	J	10					Х	72		0.5	L	7	D	0.5
111.6	113.0	80	35	QXAT		5	В	QZ	30	CB	5	MS		CX	PB	MG	CR					1	25	Р	10	0	5					D	3						
113.0	113.7	100	50	MSSX		5	YA																								1								
113.7	114.9	75	0	LATF	SEXL	5	AW	TT	0.1	SX	6	CB	MS	HT	PB	BN	GG	FL	50			Ζ	15	P	30	0	20					!	2			В	1.5	В	3
114.9	116.0	100	70	MSSX		5	YA	SX	60	CB				MX	BN	LM	SP	BN	70			J	15	J	10	J	15					М	55	BN	2	Z	3	В	0.5
116.0	125.9	100	80	MSSX	CBEX	5	YAVAV	SX	50	CB	30	MS	QZ	MX	BN	BR	ws	BN	30			Ζ	25	1	5	Ζ	39					М	50						
125.9	127.9			LLTF		5	Α	QZ	30	SD	2	MS	SX	LB	FE	FR	WS	FN	45			Ρ	30	1	5							!	8	В	0.1				
127.9	130.8			LLTF		7	GA	QZ	40	SP	4	MS	CB	PM	PB	FR	WS	FL	50			Ρ	40	Р	25	0	5					D	3						
130.8	133.8			FLTZ		3	W	GG	100					GG				FZ	60															\square					
133.8				EOH																																			

1

•

DIAMOND DRILL LOG

.

Project: Kutcho Creek

2

Inte	rvai	
From	To	Comments
0.0	1.5	Casing. No core.
		Weakly altered QFXT, Fine green chlorite (?) specks occur in matrix. Quartz crystals normal size 3-10mm and abundance feldspar crystals hard to see - merged. Limonite adjacent to fracture. Interval ends in
1.5	42.1	small fault.
42.1	68.6	As above but moderate pervasive muscovite and patchy silicification and Qz veining. Some very coarse quartz eyes (>1cm) and two size populations. Still limonite staining along fracutres.
68.6	88.1	Increasing muscovite alteration; now strong with yellow carbonate spots, disseminated He grains and Py.
88.1	94.8	Intense muscovite-carbonate alteration. Locally up to 5% He/Mag as wispy streaks carbonate spots are rusty therefore ankerite but could just be localized oxidation. Gradational contact with ash unit below.
94.8	97.8	Palest green quartz crystal ash with flattened lithic fragments. Intense muscovite - carbonate alteration. 50cm gouge between intervals.
97.8	99.5	Possibly a vein but with 50% carbonate perhaps an exhalatite origin.
99.5	105.2	Classic lapilli tuff or the "lavalamp rock" variety siliceous fragments in a more muscovite rich matrix. Porphyroblastic pyrite to 4cm. Strong sheeted ankerite.
105.2	107.9	Very good example finely laminated SEXL with minor Py (not ore) and 10% intercalated ash tuff.
107.9	109.9	Well laminated and bedded light to dark grey "chert" with sulphide increasing towards lower contact.
109.9	110.1	Fault zone.
110.1	110.4	
110.4	111.3	Bands to semi massive to massive py to 10cm +/- Sp in ASHT, interval ends with 30cm of massive Py-Sp
111.3	111.6	
111.6	113.0	Silicous crystal tuff with carbonate porphroblasts. Single 3cm band of massive Py.
113.0	113.7	
113.7	114.9	Silicous and carbonate exhailite, intercaluded with LATF, Bo>Cpsulphosalts spatially associated with bornite.
114.9	116.0	MSSX with 5cm massive Sp at top of first half of interval and Cp concentrated at the bottown half of interval. Bo conc in two 1cm wide bands of coarsely crystaline Py.
116.0	125.9	Intercalated massive pyrite with CEBX mixed with heavy disseminated to SMPY. Minor intervals of tan and orange.
125.9	127.9	Qz>>Ser alteration, tan siderite sheeted at top of interval.
127.9	130.8	Greenish-grey polymictic LLTF with wispy tan/orange ankerite/sidierite? Faulted upper and lower contact.
130.8	133.8	Drillers report 2.6 meters of missing core. EOH @ 130.8m
133.8		End of hole.

Drill Hole Id.: WK04-16

Project: KUTCHO CREEK

• •

1

,

•

•

Hole Azimu	uth:	180°	Dip:45°	Total De	epth: <u>11</u>	2.5m_(369')			Geologi	cal Summary
Date Starte	əd: <u>A</u> ı	igust 11, 20	04 Date Completed: _	August 12, 2004	4	Core Siz	e: <u>HQ</u>		Purpose /	Target: Site	e G, section 78600E? Down dip
			Northing	Easting			<u>Elevati</u>	on			
UTM Loca	tion:	:	- 6451861	~538083					Comments	s: High-grad	de Cu from 91.8-99.0. Very high
Grid Locat	ion:		22550	38608			1596		grade from in CBEX fro	91.8 - 94.8 om 99.0-10	8. Moderate-grade. Cu-Zn found 4.1
Collar Surv	vey:										
Down Ho	ole Surve	ey	Sample Information		Solit By:	A Boy	/CP		1		
Survey Me	thod: <u>Reflex</u> E	Ez-shot	# of Samples:19 + 1 Blank 280304 - 28032	23	Type:	Sawn core					
Depth 0.0	180 ?	-45.0	Date Shipped:		Assay Cei	tificate # :					
112.5	194.3	-40.1	Analytical Lab: <u>Chemex</u>							Key Inte	rsections
	· · · · · · · · · · · · · · · · · · ·		Drill Information						From	То	Results
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	G-Tech 500	00				
			Driller: <u>Warren Ash</u>		Shift	Distance	Shift	Distance			
			Driller: Cameron Bakker								
			Helper: <u>James Dickenson</u>								
			Helper: <u>Chris Peterson</u>						Logged By	: <u>P.M. Ho</u>	olbek & P. Daubeny
			Foreman: <u>Wayne Mayne</u> r						1		

Project: Kutcho Creek

1

Int	erval	Geo-T	echnical	Litho	logy	C	olour		C	ompo	onent	s			Tex	ture			Stru	cture						Alter	ation							N	linera	lizatio	'n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	СрН	CpA	SpH	SpA	BnH	BnA
0.0	3.0			CASE																																			
3.0	24.4	100	45	QFXT		5	G	QX	20	LF	20	FX	СВ	FR	PS			FL	70					P	5	0	5					PB	1						
24.4	36.4	100	75	QFXT		9	A	QX	25	MS	20	CB	ΗE	PP	SE			FL						P	20	0	10	V	3			PB	2						
36.4	42.7	100	80	QFXT		3	G	QX	25	CL	10	CB		PP	SE										· · · ·	3	15												
42.7	67.1	100	80	QFXT			w	QX	25	MS	30	MG		CG	PP			FL	75					P	30	0	10			0	5	D	2						
67.1	86.6	99	70	QFXT			W	MS	30	CB	30	QX	AK	OT	PP			FL	80					P	30	0	20			0	10	D	3						
86.6	89.0	85	0	LLTF			w	MS	30	LF	20			FR	LB	SH	GG							P	30	\$	10	0	10			W	5						
89.0	90.7	75	0	ASHT		7	AT	SX	5	QZ	25	MS	CB	\$T	HT	WS	F\$	BN	20			Z	25	Z	20	J	7		1			1	5	В	0.1				
90.7	91.8	80	10	ASHT	MSSX			SX	19	SP	12	MS	QZ	MS	ST	HT	F\$	BN	70			Z	20	Z	30	-						X	12	В	0.5	Z	12		
91.8	99.0	100	80	MSSX		3	YA	SX	90	MS	5	QZ	CB	MX	BN	ws		BN	75	LC	50	3	2	!	5	3	3					Z	77	Ζ	10	Z	15		
99.0	100.7	100	75	CBEX	MSSX	5	AW	СВ	45	SX	45	MS		MX	BR	WS	HT	BN	70					Z	7	Z	45					Z	35	Ζ	5	Z	5	#	0.1
100.7	101.7	95	85	CBEX		7	AW	TT	10	CP	2	CB	SP	BX	WS	BN	W	BN	80							м	75		-			Z	10	#	2	#	5	-	
101.7	104.1	100	75	CBEX	MSSX	5	AW	СВ	45	SX	45	MS		MX	BR	ws	HT	BN	70					Z	7	Z	45					Z	35	Ζ	5	Z	5	#	0.1
104.1	107.3	100	70	MSSX	CBEX	5	A/AW	SX	60	CB	40	MS		MX	BN	BX		BN	80					Z	12	Z	40					Z	60	В	0.3				
107.3	112.5	100	30	LLTF		7	A	LF	35	SX	15	MS	QZ	FR	FE	\$T	BN	FL	75			•	18	P	25						1	Z	15						
112.5				EOH																																			

Project: Kutcho Creek

1

1 1

Inte	erval	
From	To	Comments
0.0	3.0	Casing. No core.
		Tuff breccia phase of QFXT, lithic fragment outlines. Difficult to discem but QFXT fragments in a slightly more chloritic QFXT matrix. Fragments are poorly sorted and so large as to resemble beds. Hint of
3.0	24.4	polymictic fragments.
24.4	36.4	Pale grey to purplish, moderate muscovite alteration with a He stain? Moderate-intense limonite staining adjacent to fractures.
36.4	42.7	An unusual but distinctive phase of the QFXT. Very chloritic matrix with coarse Qz eyes and abundant white carbonate as veins, spots and patches. Breccia replaced by carbonate.
		White to palest green. Qz grains can be large (>1cm) and are conspicous in cream coloured background. Ankerite spots occur locally. ~3% black specks which look like magnetite but pencil magnet doesn't
42.7	67.1	react.
67.1	86.6	As above but carbonate and ankerite spotting increase in intensity; particularly over last few meters. Some limonite stain on fracture coatings, Rock becomes quite fissile in lower part of interval.
86.6	89.0	Baddly broken very fissile and gougy with moderate clay development.
89.0	90.7	Heterogeneous interval dominated by silcified ASHT including SEXL < 10cm, all grading to very sericitic ASHT. Sulphides increase down interval.
90.7	91.8	Zinc rich semi-massive sulphides to massive sulphide bands in very sericinic ASHT +/- SEXL.
91.8	99.0	Very massive with wispy Sp and Cp bands defining laminations, Cpy >> Bo. Relatively high base metal content. Overall include good grade Zn. Lower contact marked by 10cm gouge.
99.0	100.7	CBEX dominated interval with bands of semi massive to massive sulphide with locally very high grade Sp over 1m. CBEX breccia textured or locally banded or laminated with sulphides.
100.7	101.7	Massive breccia textured CBEX with base metal and tetrahedrite preferential to matrix of fragments.
101.7	104.1	CBEX dominated interval with bands of semi massive to massive sulphide with locally very high grade Sp over 1m. CBEX breccia textured or locally banded or laminated with sulphides.
104.1	107.3	Monolithic semi massive to massive Py and CBEX banded with occational breccia textures. Low grades.
107.3	112.5	Foot wall style mineralization hosted in LLTF.
112.5		End of hole.

Drill Hole Id.: WK04-17

Project: KUTCHO CREEK

Hole Azimu	ıth:	180°	Dip:80°	Total De	epth:78	.6m (258')				<u>Geologi</u>	cal Summary
Date Starte	d:Au	gust 12, 20	04 Date Completed:	August 13, 2004	1	Core Siz	e: <u>HQ</u>		Purpose /	Target: Kut	cho Deposit New "A"
			Northing	Easting			<u>Elevatio</u>	<u>on</u>			
UTM Loca	tion:		~6451802	~538226		. <u> </u>			Comments	5:	
Grid Locati	on:		22487	38751			1589				
Collar Surv	ey:										
Down Ho Survey Met Depth	hod: Reflex	<u>₽</u> Dip*	Sample Information # of Samples: <u>17 + 1 Blank</u> <u>280348 - 280365</u>		Split By: _ Type:	A. Boy Sawn Core	/ce				
0.0	180.0	-80.0	Date Shipped:		Assay Cer	tificate # :		<u> </u>			
78.6	198.9	-76.7	Analytical Lab: <u>Chemex</u>						From	<u>Key Inte</u>	rsections Results
			Drill Information								
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	<u>G-Tech 500</u>	<u>00</u>				
			Driller: <u>Warren Ash</u>		Shift	Distance	Shift	Distance			
			Driller: <u>Cameron Bakker</u> Helper: <u>James Dickenson/Greg Sto</u> Helper: Chris Peterson/Jed Clay	<u>bke</u> s					Logged By	/: P.M. Ho	lbek & P. Daubeny
			Foreman: <u>Wayne Mayne</u> r		L	L	1	I	1		······································

Project: Kutcho Creek

Inte	rval	Geo-T	echnical	Litho	logy	C	olour		Co	ompo	nent	5			Tex	ture			Stru	ture						Alter	ation							N	linera	lizatic	'n		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	СЬА	DIH	DIA	AkH	Aka	Рун	PyA	CpH	СрА	SpH	SpA	BnH	BnA
0.0	4.6			CASE																																<u> </u>			
4.6	20.4			QFXT		5	N	HE	5	FS	15	MS	LF	PP	СХ	CG	FR	FL	65					1	20	P	5					В	0.1						
																<u> </u>																-							
20.4	34.1	99	70	QFXT		7	YG	QX	30	MS	25	СВ	LI	PP	FR			FL	65			3	10	Р	25	3	20					ΡВ	2						
34.1	39.3	97	20	LLTF	XLTF	7	AG	LF	_20	MS	30	СВ	SX	FR	PP	GC		FL	55	-				<u>P</u>	30	3	20			\$	5	D	4	D	0.5	D	2		
39.3	39.9	100	50	SEXL		9	А	QZ	90	sx	5			LM	мт			LM	55			L	90									<	3	<	2	<	1	<	1
39.9	52.6	90	10	LLAT	CBEX	7	YA	мs	35	AK	20	LF	sx	FR	\$T	LM	LB	FL	55	LM	55		5	Р	35	Р	10			\$	20		5	D	0.3		1		
52.6	53.5	100	0	CBEX		9	AT	SD	5	СВ	79	SX	MS	SP	BR	ws	\$T	FL	75					P	20							1	0.5		+	<u> </u>			
53.5	54.9	100	85	CBEX		9	AW	СВ	84	QZ	15	SX	MS	BR	MX	W	ws	FL	50			Z	15	>	1			-			1	i	1			<u> </u>			
54.9	55.7	100	100	ARGL		5	NW	sx	7	MS	3	CB		FO	LM	CR	W	VP	0							Ē	3				<u> </u>	Ĺ	7						
55.7	56.6	100	60	MSSX		3	AY	sx		CB		QZ		MX	WS	ML	BN	FL	60			*	1		3	J	5					M	82	С	1	1	2		
56.6	57.2	100	100	CBEX				SX	20	CB	80			BR	WS	BN	W	VP	55							Z	80				1	#	20		· ·	† ·			
57.2	57.6	100	60	MSSX		3	AY	SX		CB			QZ	MX	WS	ML	BN	FL	60			*	1	1	3		5					M	82	С	1	1	2		
57.6	59.8	100	75	ASHT		7	AG	SD	7	CB	15			\$T	WS	SP	BN	FL	40					1	10	0	15				1	D	4		· · ·	<u> </u>			
59.8	60.7			MSSX		5	AY	PY						MX	BN	ML		BN	50			J	15	J	3	-					1	M	81						
60.7	62.2			MSSX	ASHT	5	YA\O	MS	40	77	1	СВ	CP	\$T	F\$	MX	нт	FZ	50					Z	40	0	5				1	X	40	В	0.5	1			
62.2	66.5			MSSX	CBEX	5	GA	SX		CB		MS	LF	MX	\$T	BR	нт	FL	45		-				1							<u> </u>		-					
66.5	74.1			LLTF		5	AW	LF	30	QZ	15	SX	MS	FR	BN	WS	PB	FL	40			Z	15	Р	25							X	15	В	0.2				
74.1	78.6	100	75	LLAT		5	A	QZ	50	PY	20	MS	LF	LB			_	FL	45			P	50	Р	15							L	20	D	1	D	1		
78.6				EOH																																			

Project: Kutcho Creek

.

Inte	erval	
From	To	Comments
0.0	4.6	Casing. No core.
4.6	20.4	Grey to rusty weathering coarse-grained quartz eyes. Feldspar crystal tuff with pure lithic fragments. At least one bleb / fragment Py.
20.4	34.1	Pale yellow-green; intensity muscovite and carbonate altered QFXT. Limonite is intense adjacent to fractures. Zones or beds(?) where carbonate alteration approaches 40%. Also zones of pale flouromuscovite.
		Mixed zone of intensity muscovite-carbonate altered lapilli tuff with lesser LXTF and narrow bands of CBEX. A black and blood red mineral is finely disseminate within or adjacent to siliceous clasts. Red mineral
34.1	39.3	could be jasper but does appear to be cinnabar.
		Classic silica exhalite. Pale grey; fine to coarse laminations of cryptocrystaline Qz. Cut by fractures which host Cp and other sulphides. But probably not enough to make economic grade. Possibly native Ag on
39.3	39.9	fracture.
39.9	52.6	Yellow-grey with local greenish cast. Bedded LLTF with variable fragment sizes and abundance between different beds but transitions are gradual. A CB-QZ vien or exhalative band is located at 48.8-49.7.
52.6	53.5	Tuffacious breccia textured CBEX-minor sheeted orange siderite.
53.5	54.9	Insitue "crackle" brecciated CBEX.
54.9	55.7	Argillite with cm scale Py veins with minor carbonate envelopes.
55.7	56.6	
56.6	57.2	
57.2	57.6	
57.6	59.8	ASHT with wispy to sheeted orange siderite (?) spots (to 1.5cm) and laminae +/- lensoidal bands of carbonate. Generally with alteration and mineralization.
59.8	60.7	Massive Py devoid of visible base metal. Qz > carbonate matrix.
60.7	62.2	Sheeted tan/orange sericite altered ash tuff with 30 cm of semi massive to massive Py with Qz matrix and 5 cm of semi-massive tetrahedrite and CBEX. Contacts of these lithologies look faulted.
62.2	66.5	Hetrolithic interval dominated by various exhalites. LLTF and occasional interval up to 10cm of massive sericite/chorite.
66.5	74.1	Banded / laminated, stockwork Py. Very locally splashyCpy, in sericite Qz altered LLTF.
74.1	78.6	"Silver shist" but here intensity silicified particularly the upper part of the interval. Pyrite is fine to medium grained.
78.6		End of hole.

_ *

Diamond Drill Logging Codes

Kutcho Creek Project

\$

FRAGMENT	S (TY=TYPE)	FRAGMEN	TS (Sort=SORTING)	VEINS (Vm=VEIN MATERIAL)		ON (H=HOW (HABIT))	ALTERATIO	ON (Amt=Amount)
Use Compor	nents - Mineral	1	Extremely poor	Use Components - Mineral	н	Clear Field	0.1	15
		2	Very poor		#	Breccia fillings	0.5	20
FRAGMENT	S (Sh=SHAPE)	3	Poor	VEINS (AT=AVERAGE THICKNESS)	\$	Sheeting	1	25
1	Extremely angular	4	Moderately Poor	Use Fragments Sz Scale)	CL/MG replaces MF	3	30
2	Very Angular	5	Moderate		· ·	Clasts	5	35
3	Angular	6	Moderately good	VEINS (Or=ORIENTATION)	+	Within quartz vein	7	40
4	Moderately Angular	7	Good	Relative to core axis	0	Fresh, primary rock	10	etc
5	Intermediate	8	Very good		1	A, minor > and/or scat. Crysta		
6	Moderately rounded	9	Extremely good	VEINS (V/M=VEINS/METRE)	2	Macroveins and Veins		
7	Rounded				3	Veins, Spots or Patches	MINERALIZ	ATION (H=HOW)
8	Very rounded	STRUCTUR	RE (SD=STR. DEF.)		4	Veins, and/or occas. Envelopes	Use Alterati	on H (How) scale
9	Extremely rounded	<<	Microvein		5	Veins, and/or abundant Envelop		
A	Angular	>>	Macrovein		6	P or D Less Than <, S, and E	MINERALIZ	ATION (Amt=% Amount)
В	Bladed	BD	Bedding		7	P or D Equal To <, S, and E	0.1	15
С	Compact, cubic	BN	Banding		8	P or D Greater Than <, S and E	0.5	20
E	Elongated	СТ	Contact		9	P or D, V, <, S and E	1	25
F	Flattened	DY	Dyke		<	Microveins, fracture fillings	3	30
L	Lengthened	FB	Flow banding		=	MS/CY replaces FX	5	35
м	Mixed	FO	Foliation		>	Macroveins	7	40
Р	Platy	FS	Fracture set		A	A, cavity fillings	10	etc
R	Rounded	FT	Fault		B	Blebs		
S	Sub-Angular	FZ	Fault zone		C	Coatings & encrustations		
FRAGMENT	S (Sz=SIZE)	JS	Joint set		D	Disseminations, scat. crystals		
A	< .004 mm	LM	Laminations		E	Envelopes		
в	.004 to .008 mm	LN	Lineations		F	Framework crystals	SUM (AF=A	lt'n Facles)
С	.008 to .016 mm	QV	Quartz Vein		G	Gouge	FR	Fresh, primary rock
D	.016 to .03 mm	S#	Schistosity		н	Replaced phenocrysts	PP	Propylitic
E	.032 to .06 mm	S/	Shear zone		1 1	Eyes,augen	MN	Montmorillonitic
F	.06 to .12 mm	SF	Single fracture		J	Interstitial	IA	Intermediate argillic
G	.128 to .25 mm	SH	Shear		<u>к</u>	Stockwork	KF	KF-stable
н	.25 to .5 mm	SL	Sill		L	Laminations/bedded	PH	Phyllic/greisenous
	.5 to 1 mm	TL	Tuffaceous Layering		м	Massive	AA	Advanced argillic
J	1 to 2 mm	VC	Carbonate vein		N N	Nodules	PT	Pottassic
к	2 to 4 mm	VE	Epidote vein		0	Spots	CP	Chlori-potassic
L	4 to 8 mm	VN	Vein		P	Pervasive	sc	Silicic
м	8 to 16 mm	VP	Pyrite vein		Q	Patches, as in quilts		
N	16 to 32 mm	VQ	Quartz vein		R	Rosettes & crystals clusters		
0	32 to 64 mm				s	Selvages	SUM (AF) (Amt=Amount)
Р	64 to 128 mm				Т	Stainings, as in tamish	1	Trace
Q	128 to 256 mm				U U	Eu-hedral crystals	2	Very Weak
R	256 to .5 m	1			V V	Veins	3	Weak
s	.5 to 1 m				w	Boxwork	4	Moderate-Weak
Т	1 to 2 m				X	K and/or \$, M and/or L	5	Moderate
U	2 to 4 m				Y	Dalmationite	6	Moderate-Strong
X	1 to 4 m	1			Z	Massive,Laminated/Bedded	7	Strong
						Wispy Laminations	8	Intense
FRAGS (Mx	P=MAX SIZE)]					9	Very Intense
Use Sz scale	e	7					x	Complete

Drill Hole Id.: WK04-18

Project: KUTCHO CREEK

Hole Azim	uth:	180°	Dip:45°	Total Depth:	75.9m_ (249')	<u> </u>			<u>Geologi</u>	cal Summary
Date Starte	ed: <u>Au</u>	gust 13, 20	04 Date Completed:	August 14, 2004	Core Siz	ze: <u>HQ</u>		Purpose /	Target: Ku	tcho Deposit
			Northing	Easting		Elevatio	on			
UTM Loca	tion:		6451802	538226				Comment	s: Very high	grade Cu from 41.5-42.6, and
Grid Locat	ion: _	:	22486.5	38751		1589		again from good grade	43.3-50.6m e Sp and 3%	 43.3-44.0 complex sulphosalts- 6 bo. Barren looking MSSX from
Collar Surv	/ey:							55.2-60.7		
Down Ho Survey Me	ble Surve	<u>ey</u>	Sample Information	Split	By: <u>A. Bo</u>	yce				
	Reflex		# of Samples: <u>22 & 2 Blanks</u> 280324 - 280347	Туре	1/4 Sawn o	core				
Depth 0.0	Azimuth 180.0	Dip* -45.0	Date Shipped:	Assa	Certificate # :					
75.9	184.9	-43.3	Analytical Lab: Chemex						Key Inte	rsections
								From	To	Results
			Drill Information							
			Drill Contractor: <u>Hy-Tech</u>	Drill \$	ize: <u>G-Tech 50</u>	000				
			Driller: <u>Warren Ash</u>	Shift	Distance	Shift	Distance			
			Driller: <u>Wayne Mayner</u>							
			Helper: <u>Greg Stokes</u> Helper: <u>James Dickinson</u>					Logged B	y: <u>P. Daub</u>	eny & P.M. Holbek.

Project: Kutcho Creek

and the second second

Drill Hole Id: WK04-18

Int	erval	Geo-T	echnical	Litho	logy	C	olour		С	ompo	onent	s			Tex	ture			Stru	cture						Alter	ation							N	linera	lizati	on		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	РуН	PyA	СрН	CpA	SpH	SpA	BnH	BnA
0.0	4.6			CASE																																			
4.6	5.5			QZVN																																			
5.5	29.3	95	35	QFXT		5	U	QX	25	LI	15	AK	PY	PP	SE	\$T		FL	80					P	20	3	20			0	10	PB	3						
29.3	30.3	20	0	LLFT	FLTZ	5	U	LF	30	L	10	MS	СВ	LB	FR									P	30	3	25												
30.3	35.4	93	10	XLTF		5	A	LF	30	XF	20	MS	СВ	LB	FG	FR		FL	75			V	5	Ρ	30	0	15			\$	5	D	1						
35.4	38.7	99	25	LLXT		7	Т	AK	20	LF	30	MS	QZ									3	10	P	30	3	10			\$	20	D	1						
38.7	41.5	95	10	LLTF	CBEX	7	AT	MS	30	QZ	4	СВ	SX	FR	LB	FD	W	FL	70			L	4	P	30	3	30	Τ				2	4						
41.5	42.6	100	15	MSSX	LLTF	3	YA	SX	85	СВ	1	MS		MS	LM	W	BX	BN	70	LC	70			1	3	J	12					65	Z	Z	35	X	5	. 3	1
42.6	43.3	100	40	SMSX	QXLT	3	AY	SX	20	CB	15	MS	QZ	WS	PP			ΒN	70	LM	0		5	Р	35	3	15					Х	18			1	2		
																										Τ													
43.3	51.7	100	75	MSSX	ASHT	5	YA	SX	75	MS	10	СВ		MX	LM	ws	BN	BN	65				1			J	15					Z	12			Z	10	В	0.1
51.7	55.2	80	40	LLTF	MSSX	5	A	QZ	40	SX	12	MS	СВ	FR	SP	FD	WS	FL	80	FL	60	Ρ	40	K	7	0	4					Х	12	B	0.5				
55.2	60.7	100	95	MSSX		3	A	SX	87	CB	7	MS		MX	BN	W	WS	BN	70					1	5	7	7					I.	0.5	I		1	0.2		1
60.7	64.0	100	80	LLTF	SMSX	5	A	SX	25	QZ	25	MS	QV	FR	ΒN	W	FD	BN	55			Р	25	P	10							Х	25			1	0.2		
64.0	75.9	100	50	LLAT		7	A	MS	30	PY	20	LF	СВ	LB	MT			FL	70	LM	70	Р	15	P	30	3	5					L	20						
75.9				EOH																																			

Project: Kutcho Creek

Drill Hole Id: WK04-18

Inte	rval	
From	То	Comments
0.0	4.6	Casing. No core.
4.6	5.5	Quartz vein.
		Strongly limonite coated QFXT. Possibility of subunits within QFXT but difficult to discern with extensive limonite coating. Moderate to intense muscovite-carbonate alteration and porphyroblastic pyrite is rare, but
5.5	29.3	ubiquitous. 15cm gouge zone (now ferricrete) at 28.3m.
29.3	30.3	Only 30 cm of rock unit and then 5cm of clay gouge.
		This is a common unit in or around the sulphide zone; medium grey speckled unit with carbonate grains and Qz XTALS in a flattened mush of fine grained lithic fragments. Dark Grey colour may come from
30.3	35.4	argillaceous matrix.
35.4	38.7	Tan to orange in colour due to intense sheeted ankerite. Similar unit to above but with 10% coarse lapilli rock. Turns green over last 50 cm of interval.
38.7	41.5	Strongly carbonate alteration with frequent folded carbonate veins. Carbonate replacement of feldspar.
41.5	42.6	Cp rich mssx with Sp concentrated over lower 30 cm at interval Cp>>Bo.
42.6	43.3	Carbonate quartzeye matrix to SMSX.
43.3	51.7	Massive high-grade Cp>Sp>>bornite. Sulphide generally laminated/banded; carbonate matrix. Very little breccia texture. Very Sp rich from 43.3-44m. Bornite rare; concentrated in first 1.5 m of interval.
51.7	55.2	Qz-Py dominate alteration, locally 5% Cp over 10cm but overall. Base metal poor.
55.2	60.7	Very massive carbonate micro veined and fracture fill pyrite. Trace wispy Sp, trace bands Cp?, carbonate matrix.
60.7	64.0	Qz>Py>>Ms dominated alteration, occasionally blebs or wispy laminae. Cp ≠ Sp. Borderline Fw type Py but probably well through the base metal zone.
64.0	75.9	"Silver schist footwall" alteration is so intense that individual fragments are hard to see, but are present. Laminae of Py and very fine fracture(?) fill as well.
75.9		End of hole.

Drill Hole Id.: WK04-19

Project: KUTCHO CREEK

and the second second

Hole Azim	uth:	180°		Dip:	-57°	Total I	Depth: <u>13</u>	80.8m_(429')				<u>Geologi</u>	cal Summary
Date Starte	əd: <u>Au</u>	gust 13, 20	004	Date (Completed	August 14, 20	04	Core Siz	∋: <u>NQ</u>		Purpose /	Target: Es	so West Deposit
			Northing			Easting			<u>Elevatio</u>	<u>on</u>			
UTM Loca	tion:		~6452938			~535348	- Mr				Comment	s: Hole aba	ndoned due to excessive
Grid Locat	ion:		23653			35888		_	1452		flattening o (shortage o	f hole due to of casing) a	o casing not advanced to bedrock nd rods deflecting off
Collar Sur	vey:										until 300+ f	ft.	ers. Lack of casing not reported
Down He	ole Surve	∋γ_	Sample Inf	ormati	on		Split By:	A Boy	/ce		1		
Survey Me	thod: Reflex		# of Samples:	:Ø_		-	Туре:	1/4 Sawn co	ore				
Depth 0.0	Azimuth 175.0	Dip* -55.0	Date Shipped	l:			Assay Ce	rtificate # :					
39.3	166.5	-55.8]									Key Inte	ersections
69.8 100.3	165.7	55.1 54.2	Analytical Lat	b: <u>Cr</u>	nemex	······					From	То	Results
130.8	168.0	53.7	Drill Inform	nation									
			Drill Contract	or:	<u>Hy-Tech</u>		Drill Size:	G-Tech 500	00				
			Driller: <u>James</u>	Dickins	on		Shift	Distance	Shift	Distance			
			Driller: <u>Boyd E</u>	Elson									
			Helper: <u>John</u>	Leclair/	Jed Clay							u Matlan	
			neiper: <u>Sieve</u>	<u>v055</u>				1		1	Londer B	y. <u>INOLIO</u>	<u>Jeu</u> .

;

• •

1

Western Keltic Mines Inc.

Project: Kutcho Creek

							_							_																	_						_	_	
Int	erval	Geo-T	echnical	Litho	logy	C	olour		Co	ompo	onent	s			Tex	ture			Stru	cture						Altera	tion							M	linera	lizatio	n		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	CpA	SpH	SpA	BnH	BnA
0.0	9.1			CASE																																			
9.1	130.8			NLOG																																			
130.8				EOH																																			

Project: Kutcho Creek

•

,

•

۲

1

٦

Int	erval	
From	To	Comments
0.0	9.1	Casing. No core.
9.1	130.8	Not logged.
130.8		

												···· .	· · · · ·			·	-
WBK	MARE_No	Lith1 Lith2 Cu	pc Zn	pc Ag	gpt Au	gpt Fe	pc S_	pc Hg_	ppm Pb_	ppm S	G F	۶L			STRIP	LOG: WK0419	
		ŝ.										- 1450		35	180.0 23653.0 V	1452.0 175.0 -57.0 130.0 reflical scale 1.335	
		CASE												strip 1	Light	PAT CODE DESCRIPTION	
																NLOG No log	
10 m -	41223		•											2 3	Cu_pc Zn_pc	BAR PLOT	
												- 1440		4 5 6	Ag_gpt Au_gpt Fe.oc	BAR PLOT BAR PLOT BAR PLOT	
														7 8	S_рс Нд_ррт	BAR PLOT BAR PLOT	
20 -		•												9 10	Pb_ppm SG	BAR PLOT	
												- 1430					
30 -			-														
40 -												- 1420					
50-												-1410					
60 -	•									•		- 1400					
												- 1460					
70 -	** · *	-NLOG															
												-1390					
60 -																	
												- 1380					
90 -											<i>.</i>						
		1															1

•14

WK0419 Sample_	Lith1 No Lith2 Cupc	Zn_pc Ag	_gpt Au	_gpt Fe	рс S	рс Hg_	ppm Pb	.ppm S	G D
	CASE								
10 m ······									
20									
30									
40									
50									
60									
70	• • • • • • • • • • • • • • • • • • •								
80 08									
90									
10									
110 -									
120									
130									
130]	-1 1	1							F

1	-	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Hol	le Id.: Wi	K04-20	
Hole Azim	uth:	180°?	Dip:45°	Total D	Depth: <u>6</u>	3.7m (209')				Geologia	cal Summary
Date Start	ed: <u>Au</u>	igust 14, 20	04 Date Completed	t:August 14, 2004	4	Core Size	9: <u>HQ</u>		Purpose /	Target: Tes	st secton 38750 E, site C
			Northing	Easting			<u>Elevatio</u>	<u>n</u>			
UT M Loca	ation:		~6451792	~538301					Comments	s: 6m of MS	V pyirite with 1-3% Sph. Minor
Grid Locat	tion:	2	2464	38836			1586		bornite in ir Generally I	mmediate ha neavy bande	anging wall to msv stuff. ed to laminated Py in footwall.
Collar Sur	vey:			·····							
Down H	ole Surv	ey	Sample Information		Split By: _	A. Boy	ce		1		
Survey Me	thod: Reflex		# of Samples: <u>14 & 1 Blank</u> 280288 - 280302	<u>s</u>	Туре:	Sawn core		_			
Depth	Azimuth	Dip*	Date Shinned [.]		Assav Ce	rtificato # ·					
63.7	177.6	-41.2	Date Shipped.		Assay Co				<u> </u>	Key Inte	rsections
			Analytical Lab: <u>Chemex</u>				· · · · · ·		From	То	Results
			Drill Information						39.3	45.4	
						_			msv py	~1/2-1% Zr	1
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	<u>G-Tech 500</u>	<u>00</u>		L		
			Driller: Warren Ash		Shift	Distance	Shift	Distance	<u> </u>		
			Driller: Cameron Bakker					2.0.0.100			
			Helper: <u>Greg Stokes</u>								
			Helper: <u>Jed Cla</u> y						Logged B	y: <u>P. Daub</u>	eny & P.M. Holbek.

Project: KUTCHO CREEK

in the second second

Western Keltic

Western Keltic Mines Inc.

DIAMOND DRILL LOG

Project: Kutcho Creek

1

٩.

Int	erval	Geo-T	echnical	Litho	ology	C	olour		C	omp	onen	s	-		Tex	ture			Stru	cture						Alter	ation							N	linera	lizatio	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	РуН	PyA	СрН	CpA	SpH	SpA	BnH	BnA
0.0	3.0			CASE																																			
3.0	9.1	50	0	LLTF	CBEX	9	AT	LF	30	MS	30	CB	PY	FR	\$T	LB								Ρ	30	L	20					W	5						-
9.1	12.0	98	5	XLAT		5	A	LF	40	XF	20	MS	CB	LB	\$T	ØT		FL	90			Ρ	30	3	10							L	8						
12.0	16.2	100	0	LLAT		9	AT	LF	20	MS	30	AK						FL	90					Р	30	3	10	F	5	\$	5	PB	2						
16.2	27.1	97	40	LLTF		5	G	MS	30	CL	15	СВ	SX	мт	FR	LB		FL	80					P	30	F	20	Ø	10										
27.1	30.6	100	70	CBEX			YW	СВ	70	QZ	20	MS	SX	MT	LM	FR		FL	75			3	20	D	5	Х	70					D	5						
30.6	35.4	100	50	LATF	SMPY	5	A	SX	20	LF	20	MS	CB	FR	LM	FG		FL	70			L	10	Ρ	20	Ρ	10					L	20	D	2	D	1		
35.4	36.1	100	60	LLTF		7	A	MS		SX		LF	QZ	WS	VN	FR		FL	60			F	25	Ρ	20	0	15					!	10						
36.1	39.2	100	25	SMSX		5	A	SX		MS		QZ	LF	WS	VN	\$T	MX	BN	60			F	25	P	20							Z	40						
39.2	45.4	100	90	MSSX		5	A	SX		MS		QZ	CB	М	MM	W	WS	ΒN	70			J	12	J	15	3	5					М	65			1	2		
45.4	47.9	100	20	SMSX		5	A	MS	35	QZ	25	SX	LF	\$T	BN	ws		BN	60			J	30	J	35?							Z	45						
47.9	56.3	100	40	LLTF		7	A	SX	20	LF	40	MS	QZ	LB	\$T	FR	WS	FL	65			J	25	J	20							Z	45						
56.3	63.7	100	30	LATF	SMSX	5	A	SX	20	MS	30	LF	QZ	LM	MT	FR		FL	75			3	10	P	30	P	10					L	15	D	1	D	1		

Project: Kutcho Creek

Int	erval	
From	То	Comments
0.0	3.0	Casing. No core.
3.0	9.1	Rock is in poor condition. Pyritic LLAF-LLTF with numerous narrow zones of massive dolmite and locally dolo frags.
9.1	12.0	Grey spotted unit commonly seen in between sulphide bands with minor CBEX. A few 1-2 cm gouge zones.
12.0	16.2	Qz-Cb eliptical fragments in an ash matrix, rusty sheeted ankerite and intense muscovite; some clay development.
16.2	27.1	A distinctive but unusual unit. Coarse irregular shaped soft chloritic fragments and carbonate fragments or porphyroblasts in a muscovite altered ash matrix. Rock has a mottled rather than fragmental appearance
27.1	30.6	Cream to palest green mottled carbonate-Qz +/- muscovite & sulphide unit. Likely exhalative but could be replacement. 8cm of gouge at bottom of interval.
30.6	35.4	Nearly SMSX but not quite enough sulphide. Rock is reminisent of footwall material.
35.4	36.1	Clast supported, wispy to 3cm wide. Py veins and laminae, mostly in matrix. 7cm massive sericite @ base of interval.
36.1	39.2	Devoid of base matal. Same hosted rock as 35.1-36.1
39.2	45.4	Very massive pyrite with wispy Sp bands, but otherwise low base metal. Ms>Qz>carbonate matrix. Monolithic, no brecciation. Muscovite increases towards base of interval.
45.4	47.9	Sericite rich LLTF protlith trending to coarse crystaline shut down rock. Minor tan sericite.
47.9	56.3	Barren footwall massive / laminated pyrite hosted in Qz grains > sericite lithic tuff. Sulphide decreasing down interval.
56.3	63.7	

1 1

1 1 1

- 1

•

Project: Kutcho Creek

Inte	rval	Geo-T	echnical	Litho	logy	C	olour		С	ompo	onent	5			Tex	ture			Stru	cture					-	Alter	ation							N	linera	lizatio	,n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	СЬА	DIH	DIA	AkH	Aka	РуН	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	1.5			CASE																				_															
1.5	124.1	100	90	GBBR		3	G	FX	30	CL	20	нв	HE	PP	SE											н	5												
124.1	143.6	100	80	QFXT		9	GA	QX	30	MS	20	СВ		PP	SP			FL	75					Ρ	20	3	10			\$	2	D	1						
143.6	147.5	99	50	LLXT		7	OA	AK	20	мз	20	LF	QX	PP	FR	LB		FL	80					Р	20	L	15			\$	20	*	3						
147.5	150.0	100	40	XLTF		5	A	MS		св		QХ	LF	FR	PP	FG	LM	FL	75					Р	30	3	10			\$	10	w	6	w	1	w	1		
150.0	151.2	100	60	CBEX			WT	ΒN	10	СВ	60	QZ	SP	LM	MX							3	10	Р	10	X	60					D	3	D	2	D	6	D	10
151.2	153.8	100	80	QZVN			w	QZ	90	SX	5											М	90											В	1			>	8
153.8	158.8	100	70	LLAT		9	A	QZ	25	CB	20	MS	SX	MT	LB			FL	60			Р	25	Ρ	15	3	20					L	3	L	2	D	1	L	2
158.8	162.3	97	40	LLAT		7	AG	MS	30	СВ	20	SX	LF	LB	LM	FR		FL	70			Q	20	Р	30	3	20					L	10	D	0.3	D	0.5	D	0.5
162.3	164.3	91	10	FLTZ	LLAT	9	AG	GG	50									SH	70					Р	30							W	5						
164.3	174.0	98	86	LATE	SMPY	7	AG	QZ	_ 25	PY	25	MS	СВ	FG	LM			FL	70			Р	25	Р	20	3	15					L	25	В	0.5				
174.0	182.0	100	90	MSPY				PY	90	QZ	10	SP	CP	LM	MX			LM	70			J	10									М	90	D	1	D	2		
182.0	185.6	100	90	SMPY	LLTF			PY	40	QZ	40	MS	LF	LB	LM			FL	66			Р	40			0	5					L	40						

4

DIAMOND DRILL LOG

Project: Kutcho Creek

Inte	rval	
From	То	Comments
0.0	1.5	Casing. No core
		Mafic intrusive?! Quite consistent in this hole. Fine grained porphyry with ragged feldspar crystals and Px phenos. Carbonate replaces feldspar crystals locally. Matrix is chlorite. Epidote concentration is variable
1.5	124.1	Abundant black metallic specks are hematite derived from magnetite.
124.1	143.6	Moderately to strongly (lower) muscovite-carbonate altered. Prominent carbonate spots at top but carbonate is throughout. Interval ends in a 20 cm fault.
		Orange-grey, intensly ankerite sheeted, carbonate rich unit. Fragments may have 'dissappeared' into carbonate alteration. ~10% Qz. Both Pb, Py cubes and pyritic fragments. Partial hematite stain gives rock a
143.6	147.5	purple hue, locally.
		"Speckled grey tuff" Qz crystal rich lithic tuff with strong muscovite-carbonate alteration. Abundant apple green fluoro-mica and wispy sulphide with Cp + Sp showing-up towards bottom of interval. 3 - 2 to 5 cm
147.5	150.0	gouge zones.
150.0	151.2	Carbonate altered, sulphide-rich speckled grey tuff (SGTF) grades into Carbonate-Qz exhalite with a smattering of sulphides.
151.2	153.8	White Bull Qz with 'varicose' bornite and calchocite and minor Cp. Vein or recrystalized exhalite? Probably a vein.
153.8	158.8	An odd rock. Appear to be patchy silicification and carbonate alteration of a lapilli ash tuff. ~3% finely disseminated sulphide throughout and 4-5 bands of semi-massive Bn + Cp from 3-7cm thick.
158.8	162.3	Same rock as above, but with little in the way of base metals and localized bands of semi-massive Py. Intense Ms-Cb alteration.
162.3	164.3	The above rock, but sheared and gougy with little or no basemetal sulphides.
164.3	174.0	Pale green ash tuff locally silicified or intercalated with Qz (+/- CB) exhalitive material and bands of semi-massive Py. Py bands from 20cm to 120 cm thick. Low (or no) base metals visible.
174.0	182.0	Very massive fine grained Py in center grading out to slightly less massive on both margins.
182.0	185.6	Silicified LLTF with semi-massive to near massive Py bands with only a trace of base metal sulphides.

-

Drill Hole Id.: WK04-22

Hole Azimu	uth:	175°	Dip:	67°	Total De	pth:58	8.0m (1929	<u>')</u>			Geologi	cal Summary								
Date Starte	d: <u>Au</u>	<u>gust 15, 20</u>	04 Date Co	Date Completed: <u>August 23, 2004</u> Core Size: <u>NQ</u>								Purpose / Target: Esso West Deposit								
			Northing		Easting		<u>n</u>													
UTM Locat	tion:	~6452	807	~	·535353					Comments	:									
Grid Locati	ion:	23527			35894		-	1474.8	3											
Collar Surv	/ey:																			
Down Ho	ole Surve	₽Y.	Sample Information	<u>n</u>		Split By:	A. Boy	ce												
Survey Met	thod: Reflex		# of Samples:8 & 1	Blanks		Туре:	1/4 Sawn co	re												
Depth	Azimuth	Dip*	280151-280	150, 200192																
39.3	172.5	-65.7	Date Shipped:			Assay Cer	tificate # : .				Kov Into	reactions								
100.3	173.8	-65.0	Analytical Lab: Cher	nex							ney me	isections								
161.3	174.6	-63.9								From	To	Results								
191.8	173.9	-63.3	Drill Information																	
222.3	174.8	-63.5																		
252.1	174.6	-62.9	Drill Contractor:H	/-Tech		Drill Size:	G-Tech 500	<u>00</u>												
283.2	174.7	-62.4	D-Illen Boud Floor			101-10		01:4	Distance											
313.6	1/4.8	-62.1	Driller: <u>Doya Elson</u> Driller: James Diskinson			Snift	Distance	Shin	Distance											
343.8	174.1	-01.0	Holpor: Steve Voss																	
405.1	173.3	-60.8	Helper: Jed Clay			Loaged By	: P.M. Holl	bek.												
435.6																				
465.5	175.3	-59.7																		
496.5	177.3	-59.3																		
527.0	178.2	-59.0																		
557.5	179.0	-58.9																		
588.0	179.8	58.8																		

Project: KUTCHO CREEK

1

,

,

Project: Kutcho Creek

Int	erval	Geo-Technical Lithology				C	olour	Components							Tex	ture			Stru	cture		Alteration											Mineralization									
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	СЬА	DIH	DIA	AkH	Aka	PyH	PyA	CpH	СрА	SpH	SpA	BnH	BnA			
0.0	12.2			CASE																						_				_			_									
12.2	23.8	100	100	VSLT				PY	3																											-						
23.8	102.0	100		VCGL										FR	CS															-			-									
102.0	178.6	100		GBBR										MG																												
178.6	180.7	80	13	FLTZ															-														-									
180.7	230.7			GBBR																				1																		
230.7	266.7			GYWK																																						
266.7	276.1			GBBR											-			BD	80					1					-1													
276.1	303.0			GYWK				—																	-								-			<u> </u>						
303.0	346.9			GBBR																																						
346.9	349.9			VSLT												1				-			1													\vdash						
349.9	388.2			ARGL				<u> </u>				-												1																		
388.2	395.3			GBBR																																						
395.3	415.6			ARGL							_		-																													
415.6	462.1			ASLT																											· · ·											
462.1	463.9			QFXT	ARGL																																					
463.9	476.1			ARGL																																						
476.1	515.3			QFXT	XATF																																					
515.3	553.2			GBBR																									1							-						
553.2	568.5			QFXT										FG									1																			
568.5	572.7			QFXT										FR																												
572.7	574.6	100	30	LLAT	SEXL	7	AG	LF	20	MS	30	QZ	SX	FR	LB			FL	60	LM	60	P	15	P	30	\$	5					L	5	<	2	D	1					
											_																		1													
574.6	575.2	100	20	LLAT	FLTZ	7	AG	Į							ļ				ļ				ļ											<	5							
575.2	576.4	97	70	MSSX	FLTZ			SP	50	CP	25	PY	GG	LM	FG	MX		LM	60													L	25	L	25	L	50					
		_									_																															
576.4	578.7	99	20	LLXT	SMSX	7	A	LF	20	XF	20	MS	SX	SP	SK	FR	SH					Р	10	P	25	3	5					D	4	D	3	D	3					
578.7	588.0	100		LLAT		5	A	LF	35	MS	35	PY		FR				FL	50			*	5	P	35	0	4					В	5	D	0.5	D	0.5					
588.0				EOH																																						

Project: Kutcho Creek

Inte	erval	
From	То	Comments
0.0	12.2	Casing. No core.
12.2	23.8	
23.8	102.0	
102.0	178.6	
178.6	180.7	
180.7	230.7	
230.7	266.7	
266.7	276.1	
276.1	303.0	
303.0	346.9	
346,9	349.9	
349.9	388.2	
388.2	395.3	
395.3	415.6	
415.6	462.1	
462.1	463.9	
463.9	476.1	
476.1	515.3	
515.3	553.2	
553.2	568.5	
568.5	572.7	
572.7	574.6	
		Grey -green, locally laminated, labilities tuff fragments are elliptical to flattened and generally more silicous than matrix excent for sections that have been 'silicified'. Fine grained wisny Py with very fine
574.6	575.2	disseminated Sp and fracture surface coating of Cp.
575.2	576.4	Core is 60% gouge but fragmental texture still visible. Repeatly shattered and clav altered but likely not much slip
		Fantastically beautiful!! Massive sulphide as laminated Sp. Cp + Py. Both grey metallic and grange-green vitreous Sp. Relatively fine grained. Last 10 cm is sulphide-rich. Fault gouge but almost all core
576.4	578.7	recovered
578.7	588.0	Matrix supported sub-round to eliptical siliceous clasts within intensiv Ms altered matrix. Scattered crystal aggregates of Pv and finely disseminated Sp + Cp
588.0		End of hole.

	STF Easting No 35694.0 23	RIP LO	G: W	K0422 nth Dip Depth -90.0 588.0
		Vermont	(Jan 1, 1)	0
1	Lnh 1	PAT	CODE GYWK CASE GBBR VSLF ARGL OFXT LLAT LLAT LLAT FLTZ MSSX	DESCRIPTION greywacka Casing gabbro yofcawic sittstone argillea quartz foldspar orystal tuff tapelii ash juff tapelii ash juff tapili gystai nuff tault zonii massive sulphide
2 3 4 5 6 7 8 9 10	Cu_pc Zn_pc Ag_gpt Au_gpt Fe_pc S_pc Hd_Dom Pb_ppen SG	BAR PL BAR PL BAR PL BAR PL BAR PL BAR PL BAR PL BAR PL	ot ot ot ot ot ot ot ot ot ot ot	

And the second state of the second state of the

1.	Western Keltic	
T	Mines Inc.	

Drill Hole Id.: WK04-23

Project: KUTCHO CREEK

Hole Azim	uth:	180°	Dip:58°	Total De	epth:19	7.8m_(649')				Geologic	cal Summary
Date Start	ed: <u>Au</u>	<u>gust 19, 20</u>	04 Date Completed:	August 20, 2004	4	Core Size	: <u>HQ</u>		Purpose /	Target: Site	e "V" (Section 38060E)
			Northing	Easting			Elevatio	<u>on</u>			
UTM Loca	tion:		~6452019	~537538					Comments	5:.	
Grid Locat	tion:		22715	38064			1568				
Collar Sur	vey:										
Down H	ole Surve	eγ	Sample Information		Split By:	A Boy					
Survey Me	thod: 		# of Samples: <u>14 & 1 Blanks</u> 280475 - 280489		Туре:	1/4 Sawn Co	ore				
Depth 0.0	Azimuth 180.0	Dip* -58.0	Date Shipped:		Assay Cer	tificate # :					
60.9	181.4	-57.2	Angletical Laboration Observes							Key Inte	rsections
121.9 197.8	182.6	-54.8 -51.8	Analytical Lad: <u>Chemex</u>						From	То	Results
			Drill Information								
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	G-Tech 500	00				
			Driller: <u>Warren Ash</u>		Shift	Distance	Shift	Distance			
			Driller: Cameron Bakker								
			Helper: <u>Greg Stokes</u> Helper: <u>Peter Greene</u>						Logged By	/: <u>P.M. Hol</u>	bek.
											-

•

,

3

Ţ

,

Project: Kutcho Creek

٦

71

1

Int	erval	Geo-T	echnical	Litho	logy	C	olour		С	ompo	onen	s			Tex	ture		Structure Alteration												N	linera	lizati	on						
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	РуН	РуА	CpH	CpA	SpH	SpA	BnH	BnA
0.0	1.5			CASE																																			
1.5	11.9	100	89	GBBR		5	AG	FX	20	CL	10	PX	Qx	FG	PP																	D	1	D	0.5				
11.9	160.6	100	90	GBBR		3	G	HB	30	FX	25	EP		PP	SE																								
160.6	166.4	100	85	QFXT		3	G	QX	25	CL	10	FX	LF	PP	FR	GC																							
166.4	171.9	100		QFXT		7	YG	MS	35	CB	15	QX	FM	PP	SP									P	35	0	15	1			1	D	1						
																												1											
171.9	178.0	98		LLAT		7	YO	LF	25	AK	15	MS	ΡY	\$T	FR			FL	70			V	3	P	30					\$	15	PB	3					1	
																			1								T		1		1								
178.0	178.9	100	70	MSSP				SP	35	PY	40	QZ	sx	LM	FD			BD	70			L	20									L	40	D	3	L	35	D	2
178.9	181.1	100	90	MSSX				sx	60	СВ	15	MS	QZ	MT	BХ	FG						3	5	Q	10	3	15					м	40	D	2	J	10	J	8
181.1	186.8	100	90	MSSX				sx	60	QZ	25	СВ		BХ	MT							•	25				15					#	50	#	2	#	5	#	5
186.8	188.2	100	70	MSPY				PY	85	GY	10	CB	QZ	MG	MX											J	5	-			1	М	85	D	0.2	D	0.4		
188.2	188.7	100		QCEX				QZ	50	CB	40	SX		LB	MX			FL	50			P	50			Ρ	40					W	4	В	1	W	2	В	3
																											1			1									
188.7	197.8	55	0	XLAT	FLTZ	7	A	MS	30	PY	30	GG		FG	SH	GG	LM	FL	70					P	30	0	2					L	30	D	0.5	D	1	D	0.5
197.8				EOH															1				-		1				1										

Project: Kutcho Creek

Int	erval	
From	То	Comments
0.0	1.5	Casing. No core.
1.5	11.9	Fine grained medium gray-green weakly porphyritic rock with 'hard-to-distinguish' phenocrysts. Border phase of GBBR?
11.9	160.6	Variable textured intrusive mafic rock. Mafic phenos hornblende or pyroxene are squished. Epidote is throughout but abundance is variable.
160.6	166.4	QFXT is unusual in that it contains layers and fragments that are highly chloritic. Appears to have incorporated mafic material into itself (?!?)
166.4	171.9	Very intensity muscovite-carbonate altered with abundant (relative) fluoromuscovite.
		Very strong ankerite sheeting gives rock an orange colour. Intense muscovite alteration with prominent porphyroblastic Py. Fine (relative) flattened fragments but also a few rounded Qz-Cb coarse frags. A bit of
171.9	178.0	breakage above ore zone, but otherwise in pretty good shape.
178.0	178.9	Massive sphalerite in upper half with sharp contact into Py and Sp and minor Cp in lower half. Contact is sedimentary! Uppermost part of interval is finely laminated SEXL and Sp that has been folded (crumpled.)
		Massive to semi -massive sulphide in a strongly carbonate altered tuffaceous matrix. Py + Sp are fine grained but Bn and Cp form coarse grained "net-textured" blotches. Rock may be brecciated but replacement
178.9	181.1	of Py in a pyritic altered tuff more likely.
181.1	186.8	A breccia with Qz-carbonate fragments floating in a py + Sp + Bn + Cp matrix. Original carbonate fragments partially replaced by Qz. Py and Sp relatively fine grained bornite has more of a varicose texture.
186.8	188.2	Medium grained, granular to crystal aggregates of Py set in a gypsum(?) carbonate (+/-Qz) matrix. Trace of base metal.
188.2	188.7	Narrow Qz-carbonate zone could be fragmental in origin. Minor amount of sulphide.
		"Silver schist" muscovite-Py-Qz schist. Upper 1.5m of interval is semi-massive Py with minor Bn + Sp then narrow bands of MSPY to SMPY throughout remainder. Gougy zones throughout interval with only 55%
188.7	197.8	recovery
197.8		End of hole.

Drill Hole Id.: WK04-24

Project: KUTCHO CREEK

Hole Azim	uth:	<u>180°</u>	Dip:75°	Total Dep	oth:170	6.5m				<u>Geologi</u>	cal Summary
Date Starte	ed: <u>Au</u>	<u>gust 21, 20</u>	004 Date Completed:	August 22, 2004		Core Size	∋: <u>HQ</u>		Purpose /	Target: Site	e "S"
			Northing	Easting			Elevatio	<u>on</u>			
UTM Loca	ation:		~6452047	~537229			~1578		Comments	5:.	
Grid Locat	tion:		22746	37766			1565				
Collar Sur	vey:										
Down H	ole Surve	ey_	Sample Information		Split By:	A Boy					
Survey Me	thod: Reflex		# of Samples: <u>28 & 2 Blanks_</u> 004855 - 004884		Туре:1	/4 Sawn Co	ore				
Depth 0.0	Azimuth 180.0	Dip* -75.0	Date Shipped:		Assay Cer	tificate # : .					
8.8 30.2	172.7 180.2	-75.1 -74.7	Analvtical Lab: Chemex							Key Inte	rsections
75.9	181.1	-70.7							From	То	Results
136.9	181.4	-67.1	Drill Information								
176.5	184.8	-66.3	Drill Contractor: <u>Hy-Tech</u>		Drill Size:	G-Tech 500	<u>)0</u>				
			Drillor: Cameron Bakker		Ch:#	Distance	Chiff	Distance			· · · · · · · · · · · · · · · · · · ·
			Driller: Warren Ash		Shin	Distance	Sim				
			Helper: <u>Greg Stokes</u>					<u> </u>	1		I
			Helper: Peter Greene						Logged By	/: <u>P.M. Hol</u>	bek.
			1	•				-			

Project: Kutcho Creek

٠

•

• • •

1

• • • • •

,

ź

Inte	erval	Geo-T	echnical	Lithe	vpolo	C	olour	T-	C	ompo	onent	s	-		Tex	ture			Stru	cture		<u> </u>				Alter	ation					<u> </u>		-	linera	lizati	on		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	PyH	РуА	CpH	CpA	SpH	SpA	BnH	BnA
0.0	3.0	20	0	CASE																									1			-				-	_		
3.0	64.9	100	70	XATF		5	AG	AX		FS	10	EP	HE	MG	FD	CX	PP	FL	40			1	1	J	5	H	10		-	1	0.5	D	0.1						
																													1										
64.9	119.5	100	80	QXLT		5	AG	FS	15	HS	0.1	LF	EP	PP	MG	cx		FL	50			ι	15	J	2					[D	0.1						
119.5	125.5	100	90	QXLT		5	GM	HE	10	QI	15	EP	LF	MG	PP	CX	1	FL	50			1	15	J	3										-				
125.5	126.8	100	75	QXLT		5	AM	CB	30	HE	20	QI	EP	\$T	LB	VV	PP	BN	45	-		-		Ι	70	X	30		-										
126.8	135.9	100	65	QXLT		5	AG	СВ	15	FS		QI	LF	PP	FR	VN	SP	FL	60			1	15			V	10		-										
135.9	138.5	100	40	QXAT		5	Т	CB	40	FS	15	MS	QZ	PP	VV	FD	SP	FL	60			T	10	Ρ	15	V	10	1		Ρ	30	D	0.5						1
138.5	144.7	100	20	SEXL	ASHT	7	A	QZ		SX		CB	MS	LM	WS	\$T	PB	LM	55	LM	80	Z	75	Ρ	10	0	8		-		1	L	5						
144.7	151.1	100	100	SMSX	SEXL	5	A	SX	25	CB	30	QZ	MS	LM	\$T	WS	MX	BN	60			J	30	1	20	Z	27		—	1	5	z	15	В	1.5	Z	5	В	1
																							<u> </u>					-	-										1
151.1	152.2	100	75	CBEX	SMSX	7	AW	СВ	40	sx	4.5	MS	si	н	ws	LM	PB	BN	55			X	20	Р	30	X	40		i i	\$	5	1	3	в	0.5	1	1		
								-									-	—											t	<u> </u>					1			-	
152.2	153.3	100	90	MSSX	SMSX	7	YA	sx	40	oz	10	СВ	MS	мх	ws	FS	LM	LM	60	LC	40	•	7	z	20	Z	30		1			z	10	z	5	z	20		
													_													-		-	-		<u> </u>		-						
153.3	161.9	100	70	CBEX	ASHT			СВ	30	sx	25	QZ	MS	FR	HT	PK	ws	FL	35			z	25	х	20	z	45	[1	1	3	1	5	1	0.5		
161.9	163.1	90	10	FLTZ	LLTF			GO	50	SX	15	CB	QZ	F\$	FÓ	FR	LB	FL	30			*	5		35	*	10	-	-			1	14			!	0.5		
163.1	168.2	100	90	MSSX		5	AY	PY	89	ZN	1	CB	QZ	MX	WS				_			J	5			J	5		-		-	М	89			1	1		
168.2	169.8			SMSX	MSSX	5	YA	sx	40	MS	25	QZ	FR					FL	40			X	35	Ρ	30	0	5		-			X	40	С	0.1			J	1
169.8	176.5	100	20	LLTF		5		SX	18	QZ	35	MS	CB	FR	FT	LB	ws	FL	50			X	35	Х	25	0	5				1	Х	18				_		
176.5				EOH																						-													

Project: Kutcho Creek

То	Comments
3.0	Casing. No core.
64.9	Relatively Qz eye poor, crystal tuff with traces of specular hematite with epidote alteration. Carbonate alteration of feldspar, weathered on fracture surfaces to 59m.
119.5	Qz crystal tuff with occasional lithic fragments and occasional interval of crowded lithic fragment. Epidote encrusting 1-2 mm feldspar crystals. Specular hematite increase from trace to ~ 1% near lower contact.
125.5	Disseminated red hematite increases towards lower contact. Still some weathered fractured surfaces.
126.8	Heavy disseminated hematite and lensoidal banded carbonate and Qz overprinting QXLT.
135.9	Unit very distinctive for pervasive carbonate replacement of feldspar.
138.5	Bleached to tan highly carbonate and ankerite altered QXFT in QXLT with pervasive carbonate. Bands of flouromuscovite near lower contact.
144.7	Laminated intercalated siliceous and sericiteic ASHT with SEXL. Sulphide and carbonate increase down interval.
151.1	Sp rich SMSX band with trace chalcocite, 1% flouromuscovite and 50% wispy tan ankerite. Minor folding evident in sulphide bands.
	Hetrolithic CBEX with irregularily distributed silica bands and sulphide laminae blebs and disseminations. Carbonate has a pisolitic or spotted texture. Spots average ~ 1mm. Occassional bands of
152.2	flouromuscovite.
	Heterolithic very Sp rich; Cp mostly as singly 10 cm massive blob that occupies 1/2 core only. 5% flouromuscovite carbonate +/- quartz as massive, granular (spots), beds, and laminations. Quartz also as clasts
153.3	possibly remobilized. Lower contact 5cm gouge.
	Heterolithic interval dominated by brecciated and fragmental CBEX often with a pisolitic or locally lava lamp texture. Sulphides vry irregularily distributed, locally moderate grade. Tuffacous quality to much of the
161.9	fragmental. CBEX -now altered to sericite. styolite and specular hematite blebs seen locally in massive CBEX.
163.1	60 cm of well foliated gouge after LLTF
168.2	Very massive Py, Sp concentrated in top metre.
169.8	Semi massive to massive pyrite, banded with occasional intervals of "globular" Py "clasts" (<3mm) with bornite-sericite-Qz).
176.5	Clasic looking footwall Py-Qz sericite alteration with <3mm carbonate spots.
	End of hole.
	3.0 64.9 119.5 25.5 225.5 26.8 35.9 38.5 344.7 51.1 152.2 53.3 161.9 63.1 68.2 69.8 176.5 76.5

Drill Hole Id.: WK04-25

Project: KUTCHO CREEK

Hole Azimı	uth:	180°	Dip:70°	Total Dep	oth: <u>17</u> 0	<u>6.5m (579')</u>				Geologi	cal Summary
Date Starte	ed: <u>Au</u>	gust 22, 20	04 Date Completed:	August 23, 2004		Core Siz	e: <u>HQ</u>		Purpose /	Target: Kut	icho Deposti Site "P"
			Northing	Easting			<u>Elevatio</u>	on			
UTM Loca	tion:	-	-6452011	~537400		_	1582		Comments	5:.	
Grid Locat	ion:	:	22711	37925			1582				
Collar Surv	/ey:										
Down Ho	ole Surve	<u>≥γ</u>	Sample Information		Salit Dur	A Po					
Survey Me	thod: Reflex		# of Samples:14 & 1 Blanks 004801 - 004815		Туре:1	7. 80	ore				
Depth 0.0	Azimuth 180.0	Dip* -70.0	Date Shipped:		Assay Cer	tificate # :					
60.0 120.1	175.8	-68.0	Analytical Lab: Chemex							Key Inte	<u>rsections</u>
176.5	181.2	-64.1							From	То	Results
			Drill Information		Drill Size:	G-Tech 500	<u>00</u>				
			Driller: <u>Cameron Bakker</u> Driller: <u>Warren Ash</u> Helper: <u>Greg Stokes</u>		Shift	Distance	Shift	Distance			
			Helper: <u>Peter Greene</u> Foreman: <u>Wayne Mayne</u> r				Logged By	/: <u>P.M. Hol</u>	bek.		

Project: Kutcho Creek

Int	erval	Geo-T	echnical	Litho	logy	C	olour		C	ompo	nent	s			Tex	ture	-		Stru	cture						Alter	ation							M	inera	lizatio	n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	РуН	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	6.1			CASE																																			
6.1	117.7	100	100	GBBR		3	G	FX	25	HB	25	CL	HE	FG	PP			FL	65																				
117.7	104.7			GBBR	QFXT	7	G	FX	50	LF	5	MS	PY	PP	FR			FL	65					Р	10	н	10					*	O.5						L
																															l							. 1	
104.7	154.5	100	95	QFXT	TFBX	5	G	QX	30			CL		PP	CG	BD		BD	70			3	5	Ρ	5														
154.5	161.5	100		XLTF		3	G	CL	20	LF	20	QX	СВ	FR	PP	PM	GC	BD	65	FL	65	3	10			PB	5												
161.5	162.2	70	0	XATF		7	Т	MS	40	CB	20	GG	QZ	SH	GG							3	5	Ρ	40	\$	20												1
162.2	163.1	90	0	XATF		3	Α	MS	30	GG	15	CB	QZ	SH	FT																	D	1	D	0.5				
163.1	163.7	70	50	SMSX		7	A	SP	10	CP	8	CB	QZ	LM	FR	BX	FG					J	30			*	15					D	3	D	8	L	10		
163.7	164.4	98	0	XATF													_																						
164.4	165.8	100	50	MSSX				PY	50	CP	10	αz	CB	MX	VN							3	5			3	10					X	50	D	10	Q	10		
165.8	167.0	95	35	CQEX		7	A	СВ	40	QZ	40	SX		MT	VN							#	40			*	40					D	3	D	4	D	3		
167.0	170.5	90	5	SEXL		9	A	οz	60	SX	20	MS	CB	GC	-							L	60	Ρ	10	\$	10					L	15	L	3	L	2		
						1																																	
170,5	176.5	100	75	CQEX	XATF	9	A	oz	40	СВ	40	MS	sx	мт								#	40			*	40					D	3	D	1	D	1		
176.5				EOH																					_	-					1								

Project: Kutcho Creek

Inte	erval	
From	To	Comments
0.0	6.1	Casing. No core.
		Variable texture but standard feldspar-hornblende porphyry with chloritized mafic phenocrystss and partially altered fuzzy with boudary feldspar crystal. Spotted (cb?) and bleached at end of interval - grading into
6.1	117.7	next interval.
117.7	104.7	Bleached matrix with mafic fragments (fiame) and Py clasts. Resembles both the QFXT without quartz crystals and the GBR without the mafic phenocrysts.
		Different version. Either an extremely coarse version of TFBR (debris flow - DBFL) or bedded version with intercalations of chloritic ash. QXTF beds or fragments from 10cm to 100 cm thick with chloritic ash
104.7	154.5	"layers" ~5-20 cm thick. Debris flow I think.
154.5	161.5	Again, first time this unit shows up. Appears to be mixed erosional material from mafic rocks with QFXT stuff.
161.5	162.2	Highly altered - almost 100% gone to Ms-carb-Qz. Could be derived from previous unit. Very condensed alteration section.
162.2	163.1	Highly altered; sheared with 2-4cm gouge zones.
163.1	163.7	High sulphide Qz-Cb exhalite, fine grained sulphide as laminations and desseminations.
163.7	164.4	As previous (162.2-163.1) complete with gougy bands.
164.4	165.8	Massive sulphide developed in a carb-Qz exhalitive layer. Gradational lower contact, good grade, both coarse and fine grained sulphide minerals.
165.8	167.0	Mottled "brain" rock. Appears to be shattered carbonate healed with Qz. Patchy sulphide distribution. Low grade but might make ore.
167.0	170.5	Mixed bag. Mostly pale grey SEXL with semi-massive sulphide layers and tuffaceous layers. Bands of fault gouge. Alternating hard and soft rock has taken its toll.
		Interval begins with strongly ankerite sheeted and silicified LLTF- quickly graded into exhalite(?) with some crystal ash layers. Mottled texture looks like "brain rock" - not sure of origin but likely some form of
170.5	176.5	replacement. Some sulphide but looks like low grade. Hole inadvertantly stopped here.
176.5		End of hole.

· · ·

Drill Hole Id.: WK04-26

Project: KUTCHO CREEK

Hole Azim	uth:	180°	Dip:57°	Total Depth:	139).9m (459')				Geologi	cal Summary
Date Starte	əd:Au	igust 23, 20	04 Date Completed:	August 24, 2004		Core Size	: <u>HQ</u>		Purpose /	Target: Kut	cho Deposti Site "R"
			Northing	Easting			<u>Elevatio</u>	<u>n</u>			
UT M Loca	tion:		~6451989	~537302			1596		Comments	5.	
Grid Locat	ion:	2	2688	37828			1586	_			
Collar Sur	vey:										
Down Ho	ole Surve	ey	Sample Information	Sd	lit By:	A. Bov	ce				
Survey Me	thod: <u>Reflex</u>		# of Samples: <u>37 & 2 Blanks</u>	Ту	pe:1	/4 Sawn Co	re				
Depth 0.0	Azimuth 180.0	-57.0	Date Shipped:	As	say Cert	ificate # : _					
60.7	177.8	-55.5								Key Inte	rsections
136.9	179.5	-54.2	Analytical Lab: <u>Chemex</u>						From	То	Results
			Drill Information								
			Drill Contractor: <u>Hy-Tech</u>	Dri	ill Size:_(G-Tech 500	0				
<u> </u>			Driller: Cameron Bakker	lshi	ift l	Distance	Shift	Distance			
			Driller: Warren Ash			Biotanoo		Diotanoo			
			Helper: Greg Stokes								
			Helper: <u>Peter Greene</u>						Logged By	: P.M. Hol	bek.
			Foreman: Wayne Mayner						1		

Project: Kutcho Creek

Inte	erval	Geo-T	echnical	Litho	ology	C	olour		С	omp	onents				Textu	ге			Stru	ture						Altera	ation							N	inera	lizatio	'n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2% C	:3 C	:4 T	x1 T	x2 '	Tx3	۲x4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	СЬА	DIH	DIA	AkH	Aka	РуН	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	3.0			CASE																																			
3.0	12.8	78	40	GBBR		5	G	FX	25	CL	20 H	E	F	P							_			\$	2							D	1						
12.8	17.5	90	0	LLXT	FLTZ	7	AG	oz	40	LF	20 N	ISIG	GL	MF	R	IC		FL	45	LM	55	L	40	Р	10							L	2	L	0.3	L	1		
17.5	23.5	95	15	LLXT		5	AG	LF	20	QX	20 S	xc	BF	PL	M	GC		FL	30	FL	10	3	5	P	20	0	15					L	10	L	3	L	2		
23.5	25.0	100	75	CQEX		5	W	СВ	60	QZ	30 5	x	E	3X		-						#	30			*	60					<	2	<	2	<	3		
25.0	30.2	100	70	XATE		7	YG	QХ	30	CB	30 N	IS S	X	TP	P			FL	55	FL	60			P	30	\$	30					D	1	D	1	D	1		
30.2	43.3	100	90	GBBR		3	G	FX	20	HB	25 C	LP	ØF	PN	G	GC	_							-							<u> </u>	D	3						
43.3	75.0	100	90	TFBX	QFXT	5	G	QX	15	EP	25 L	FC	LF	PF	R		_	FL	60							н	5				<u> </u>	D	1						
75.0	79.6	100	20	TFBX		3	G	CL	30	FX	30 E	PC	X F	P							-																		
79.6	91.1	100	85	TFBX	QFXT	7	AP	QX	30	MS	10 H	E	F	PF	R							V	3	Р	10														
91.1	94.2	100	70	QFXT		3	G	CL	10	QX	20 H		VZ F	PF	R	PM		FL	50			3	8			Ρ	10	0	5										
94.2	96.9	50	10	FLTZ	QFXT																																		
96.9	98.8	80	5	LLXT	FLTZ	9	GA	MS	30	CB	30 C	XF	M	EL L	В	SP	SH					3	20	Ρ	30	3	20			\$	10	PB	2						
08.8	105.0	90	50	COEX		5	10/		40	07	40 5											3	40	0	5	×	40						5		2	E	3		
105.0	105.0	30			MSSY	5	~	CC	40	ev.	30 0				-		-	EL	10			- V	20	<u> </u>		~	40				+	1 `	10			Y	10	\vdash	
105.0	105,7			FLIZ	101337	13	~	00	40	3^	30 1		-		-+	-		FL	10			<u> </u>	20									<u>⊢</u> ^	10			<u> </u>	10		
105.7	110.2	100	80	MSSX	CQEX			ΡY	60	SP	10 C	вс	Z N		т	FG		FL	45			3	10			х	20					x	60	в	3	x	10		
110.2	112.1	100	20	ASHT		7	A	СВ	30	MS	20 C	vz s	×ι	<u>M</u> V	N	\$T		LM	55			3	30	Р	20					\$	20	L	5	L	1		\square		
112.1	117.3	100	60	MSSX				PY	70	SP	10 C	P	l	.M N	x	FG		LM	65													м	70	в	2	L	10	J	1
117.3	122.5	100		ASHT	SEXL	3	A	мs	30	sx	30 C	xG	G F	GL	м	ян		FL	65			Q	30									L	20	в	3	L	3	в	1
122.5	129.7	100	65	MSSX				PY	70	СР	5 E	NS			м	вх						J	10			J	5					M/L	70	J	6	L	6	в	6
129.7	136.9	100	90	SMPY		7	A	PY	35	QZ	60		L	MN	Х							Ρ	60									L	35	D	1	D	1		
136.9	139.9	100	70	SEXL	SMPY	7	A																																
139.9				EOH																																		L	

Project: Kutcho Creek

1

1

1

Inte	ervai	
From	То	Comments
0.0	3.0	Casing. No core.
		Quite weathered and limonite stains except for a 2m interval where original rock is preserved. Feldspar hornblende porphyry but mafic phenocrystss have been converted to chlorite. Matrix is pale grey and may be
3.0	12.8	more felsic.
12.8	17.5	Box may have been dropped? Core broken and awfully mixed up. Appears to be an altered lapilli-XTAL tuff intermixed with tan SEXL Zones. Extensively broken and surface oxidized. Suspect fault contacts.
17.5	23.5	Highly unusual! A mixed LLTF and QFXT and mineralization; and totally out of position. Thrust slice.
23.5	25.0	Believe this to be exhalative in origin but possibly tectonically brecciated and rehealed. Weakly mineralized.
25.0	30.2	Intensity carbonate sheeted and muscovite altered crystal ash tuff. Finely disseminated Py, Cp and Sp.
30.2	43.3	Epidote rich variety. Appears to have gradational contact with underlying crystal tuff.
43.3	75.0	Low quartz crystal content (higher in pale green epidote matrix frags). More chloritic than normal. Ca-Gx mostly replaced by epidote.
75.0	79.6	As above but with a very strongly chloritized matrix and few quartz eyes.
79.6	91.1	Pinkish bleached hematite washed version. Minor limonite on(?) or around fractures.
91.1	94.2	An odd unit. Appears to be a mafic tuff but still has Qz eyes but is dark green (chloritic matrix?) with abundant hematite spots, some limonite and a few polymictic fragments. Possibly a bit of a debris flow?
94.2	96.9	A bleached, limonitic version of previous interval but badly broken.
96.9	98.8	Fragment poor, crystal rich, extremely muscovite-carbonate altered. Lapilli tuff-crystal tuff transition. Locally fluoromica. Bottom 30cm is completely fault gouge.
98.8	105.0	Mottled white and light grey carbonate-Qz unit. 50% of interval is completly smashed up and unit ends in serious fault gouge. Splotches of sulphides; might make "ore" locally but total sulphides are low.
105.0	105.7	Fault zone cuts through a massive Sp+Py band and silica exhalite.
		Unit starts as massive (fine grained) pyrite (+/- Sp) but tends to be semi-massive lower in the interval with a carbonate Qz matrix. Splashes and blotches of Cp locally but may be a bit lean overall to make ore.
105.7	110.2	Fault repetition of the preceeding interval.
110.2	112.1	Highly altered ash tuff with patches of silicification and cut by a 35cm wide white bull Qz vein. Finely laminated with Py at bottom of interval.
		Interval begins with 40cm of laminated Sp then becomes 90% massive Py with minor interstitial base metal sulphides. Lower 1m of interval is massive to semi massive Py bands intercalated with siliceous ash or
112.1	117.3	
117.3	122.5	Dark grey muscovite rich ash intercalated with semi-massive sulphide and silicified or SEXL zones. 103.9-118.6 sheared and broken with abundant fluoromica. Narrow zones of good Cp concentration.
		Interval begins with laminated massive sulphides, mostly Py but finely intergrown (?) Cp and locally Sp. From 124.4-126.8 rock becomes slightly brecciated and healed with Qz-CB + Bn & Cp. Below this returns
122.5	129.7	to massive laminated Py with ~5% Cp scattered thoughout, rarely as large clots.
129.7	136.9	Lamintated/banded fine grained pyrite in a silicified (very) LLTF(?) Could be silica exhalite.
136.9	139.9	Fault zone for 30cm at top of interval. Laminated pale grey silica with bands of semi-massive Py. Low, low base metals.
139.9		End of hole.

Drill Hole Id.: WK04-27

Project: KUTCHO CREEK

Hole Azim	uth:	<u>180°</u>	Dip:	83°	Total D	epth: <u>47</u>	'0.6m				Geologi	cal Summary
Date Start	ed: <u>Augu</u>	<u>st 24, 2004</u>	(Aug 31/04) Da	te Completed:	August 25, 2004	(Sept 3/04)	Core Si	ze: <u>HQ</u>		Purpose /	Target: Es	so West Deposit F5 Target
			Northing		Easting			<u>Elevatio</u>	<u>on</u>			
UTM Loca	tion:		~6452565		~535184		_	~1501		Comments	5:.	
Grid Locat	ion:		23278		35713		-	1498				
Collar Sur	vey:											
Down H	ole Surve	ey	Sample Inform	nation		0-14 D						
Survey Me	thod: Reflex		# of Samples: 004885	<u>12 & 1 Blanks</u> - 004897		Split By: _	<u>A. Bo</u>	ore				
Depth 39.3	Azimuth 172.4	Dip* -81.6	Date Shipped:			Assay Ce	rtificate # :					
69.8	169.1	-81.7				-			_		Key Inte	rsections
100.3 161.2	173.0 173.5	-81.7	Analytical Lab: _	Chemex					···	From	То	Results
191.7	173.2	-81.3	Drill Informati	on								
252.7	176.8	-80.7	Drill Contractor			Drill Circo	C Tech 50	00				
258.8	172.4	-80.8	Driff Contractor.	пу-тесп		Drill Size.	G-Tech SU	00				
000.2			Driller: <u>Cameron E</u>	akker/Boyd Elso	<u>on</u>	Shift	Distance	Shift	Distance			
			Driller: Warren As	<u>h</u>								
			Helper: <u>Jed Clay</u>	<u>Ryan McKay</u>								
			Helper: <u>Steve Vos</u>	5		L	L	1	1	Logged By	y: <u>P.M. Ho</u> l	IDEK.

3

•

,

DIAMOND DRILL LOG

,

Project: Kutcho Creek

Int	erval	Geo-Te	chnical	Litho	ology	C	olour		C	omp	onen	ts			Tex	ture			Stru	cture						Alter	ation							M	linera	lizatio	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CbH	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	CpA	SpH	SpA	BnH	BnA
_ 0.0	7.6			CASE																																			
7.6	430.0			NLOG																																			
430.0	449.3			QFXT		9	YG	FM	40	CB	20	QZ		PP					1			3	5	P	40	0	20		1			D	1						
449.3	450.8	20	20	QFXT	FLTZ	9	YG	FM	40	CB	20	QZ	QX	PP	VN							3	10	P	40	0	20	1				D	5						
													-			-				-									-										
450.8	451.7	90	10	QZVN	FLTZ		w	QZ	40	CP	5	SP	СВ	VN	SH							Р	40	J	5	Q	20					D	3	D	5	D	4		
																											-												
451.7	453.9	100	90	MSSX				SP	40	PY	30	CP	BN	LM	MХ	VN		LM	50	FL	50	3	10									L	30	F	8	L	40	в	1
																												1 -											
453.9	456.7	100	95	XLTF		5	AG	LF	25	CB	15	MS	sx	FR	\$Т	BD		1				3	10	P	20	\$	15					L	5	D	2	D	3		
456.7	461.2	100	90	LLAT		5	AG	LF	30	MS	20	PY	QZ	FR				<u> </u>		-		3	10	P	20	\$	3					D	15	D	1	D	1		
461.2				EOH																																			

١

, ·

DIAMOND DRILL LOG

Project: Kutcho Creek

,

,

٠

1

Inte	rval	
From	To	Comments
0.0	7.6	Casing. No core.
7.6	430.0	Not logged.
430.0	449.3	Start of QFXT is probably above this interval, but not yet logged.
449.3	450.8	As above but with very low recovery although not much gouge. Intense fluoromica alteration. Rock consists entirely of fluoromica, carbonate spots, Qx and QzVn and disseminated Py.
		Footage marker @ 450.8m. Then 2cm of MSSP, 20cm clay gouge, then remainder Qz-carbonate vein (?) or exhalitive with net textured chalcopyrite and sphalerite with transition into massive pyrite-sphalerite over
450.8	451.7	last 10cm.
		A very nice interval begins with net textured Py-Cp (Bn) in massive Sp over 20 cm then 15cm of weak laminated sulphide in LLAT followed by 60cm of massive laminated yellow and black Sp, which grades into
451.7	453.9	massive Pyrite with splashes, clots, and disseminated chalopyrite
		Could be LLTF but much finer grained. Darker green right below sulphide but goes grey within 1m. Many fragments are siliceous - localized bands of silicifcation. Fine disseminated sulphide throughout but also
453.9	456.7	bright Cp bands between 455.7 and 456.7m
456.7	461.2	As above but fragments slightly larger, bore abundant and more prominent. Finely disseminated pyrite (+/_ sulphides) to almost 20%.
461.2	_	End of hole.

....

	STF Easting Nk 35713.0 23	RIP LOG: W rthing RL Azin 278.0 1498.0 0. Vertical scale 1:12	/K0427 nuth Dep Depth 0 -90.0 475.2 20
STRIP			
1	Lnth 1	PAT CODE	DESCRIPTION
		QZVN	quartz vein
		CASE	Cassing
		NLOG	No log
		QEXT	quartz feidspar crystal tuff
		LLAT	lupili ash kut
		MSSX	massive suprede
2	Cu_pc	BAR PLOT	
3	Zn_pc	BAR PLOT	
4	Ag_gpt	BAR PLOT	
5	Au_qpt	BAR PLOT	
6	Fe_pc	BAR PLOT	
7	S_pc	BAR PLOT	
8	Hg_ppm	BAR PLOT	
9	Pt_ppm	BAR PLOT	
10	SG	BAR PLOT	

•

Drill Hole Id.: WK04-27B1

Project: KUTCHO CREEK

Hole Azim	uth:	<u>180°</u>	Dip:83	° Total	Depth: <u>252.</u>	7 - 471.8m				<u>Geologic</u>	cal Summary
Date Starte	ed <u>: Augu</u>	st 26, 2004	Date Completed:A	ugust 31, 2004 Core	Size <u>BQ</u>				Purpose /	Target:Ess	o West Deposit F5 target up dip
			Northing	Easting	1		<u>Elevatio</u>	<u>on</u>	branch.		
UT M Loca	tion:		-6452565	~535186		_	1498		Comments	5 :.	
Grid Locat	ion:		23278	35713			1498				
Collar Sur	vey:										
Down Ho Survey Me	thod: <u>Icefield</u>	<u>ey</u>	Sample Information # of Samples:9 & 1 E 004901 - 00491	<u>Ilanks</u>	Split By: _ Type:	<u>A. Boy</u> 1/4 Sawn Co	yce ore				
Depth 402.3	Azimuth 172.7	 -77.3	Date Shipped:		Assay Ce	rtificate # :					
463.0	179.2	-76.0	Analytical Lab: <u>Cheme</u>	ex	-					Key Inte	rsections
									From	То	Results
			Drill Information								
			Drill Contractor: <u>Hy-</u> 7	lech	Drill Size:	<u>G-Tech 500</u>	<u>00</u>				
			Driller:		Shift	Distance	Shift	Distance			
			Driller:								
			Helper:								h - k
			Helper:			L			Logged By	y: <u>P.M. Hol</u>	Dek.

٦

7

Project: Kutcho Creek

۰.

Int	erval	Geo-T	chnical	Litho	logy	C	olour		C	omp	nent	s			Tex	ture			Stru	cture						Alter	ation							M	inera	lizatio	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CbH	CbA	DIH	DIA	AkH	Aka	PyH	РуА	CpH	CpA	SpH	SpA	BnH	BnA
0.0	252.7																																					\square	
252.7	439.1	100	90	QFXT		7	EG	MS	35	ĊВ	30	QX		PP	SP			FL	45	LC	45	3	5	P	35	3	30												
439.1	444.7	70	50	LLXT	FLTZ	7	PT	СВ	30	LF	20	MS	QX	\$T	PΒ							*	20	Ρ	30	0	20			\$	10	*	2	D	0.1				
444.7	446.8	40	0	MSSP	FLTZ		N	SP	50	PY	10	CP	MS	LM	FG	SH						V	5	P	20							L	10	В	5	L	50		
446.8	447.9	100	90	MSSP		1	A	SP	70	PY	10	CP		LM	FG			LM	35	FL	45	J	2									J	10	J	5	L	70		
																														_									
447.9	449.3	100	90	MSSX				CP	50	PY	30	BN	SP	NT							i					J	5					J	20	F	50	J	10	Q	3
449.3	449.9	100	50	LATE	SMSX	7	A	MS	20	PY	10	QZ	CP	FR				FL	45			Ρ	10	Ρ	30							W	5	В	8	D	1		
449.9	452.9	100	60	LLAT		7	A	LF	30	MS	20	PY	CP	FG	FR		-					P	10	Ρ	20	\$	10					W	10	<	3	D	T2		
452.9				EOH																																			

Project: Kutcho Creek

Int	erval	
From	To	Comments
0.0	252.7	Pilot hole. Geology as WK0427. Rods were switched to BW, which deviated from main hole over approximately 15m. Recovery starts out poor and increases as hole separates from pilot.
252.7	439.1	Very, very intensely muscovite-carbonite altered QFXT. Muscovite is bright green like fluoromica. Carbonate spots are cream coloured with fuzzy outlines and make up 30% of rock.
		Cream to pink coloured (hematite stain). Interval starts as a crystal ash, then fragments start appearing and increasing in size with depth. Carbonate forms porphyroblastic aggregates that resemble cumulus
439.1	444.7	clouds. Strong sheeted ankerite. Fault gouge starts at 350.2 but last 1.5m of interval is missing.
444.7	446.8	Approx 65%-70% of interval is MSSX - mostly fine interlaminated black and orange Sp with minor Py and Cp with intensly altered LLTF sheared and broken on both ends.
446.8	447.9	Massive black (darkest grey) and tan coloured Sp with interstitial Py and cp. Quite unique.
447.9	449.3	Massive sulphide which begins with Cp + Bn + Sp + Py, but Bn falls off after 30cm. Cp gradually decreases down the interval as pyrite increases. Euhdral carbonate grains (1-5mm) floating in sulphides.
449.3	449.9	Essentially a Qz-Ms-Py schist with 20cm of semi-massive Cp-Py at end of interval. 2-4 % Dissem Cp throughout. Rock is a lapilli tuff with finer & fewer fragments than is typical.
449.9	452.9	Fine lapilli-ash tuff. Fine ellipitical fragments partially silicified and cut by pyrite "veins" or bands.
452.9		End of hole.

-

CITING	STRIF Easting Nor 35713.0 232	PLOG thing AL 78.9 1496 Vertical s	: WK Azamu 19 0.0 caler 1:122	0427B1 th Dip Depth -90.0 475.2
1 1	Lith 1	PAT	CODE OFXT LATF LLAT LLAT MSSX	DESCRIPTION quartz fektspar erystal but litnic asih tuff taptili asih tuff leptili crystal tuff massive sulphide
2	CN pc	BAR PL	от	
3	Zn éc	BAR PL	or	
4	Ag apt	BAR PL	OT.	
5	Au_gpt	BAR PL	то То	
6	Fe_pc	BAR PL	07 📁	
7	S_pc	BAR PL	от 📗	
8	Hg_ppm	BAR PL	от 📔	
9	Pb_ppm	BAR PL	от 🚺	

BAR PLOT

SG

1

•

Drill Hole Id.: WK04-28

Project: KUTCHO CREEK

Hole Azim	uth:	180°	Dip:	-45°	_ Total De	pth: <u>146.(</u>	<u>Dm</u>			Dumos /	<u>Geologi</u>	cal Summary
Date Starte	su <u>. Augu</u>	51 24, 2004	Date completed	August 20, 2004		28				Purpose /	Target: Nu	
			Northing		Easting			<u>Elevatio</u>	<u>in</u>			
UTM Loca	ition:	·	~6451635		~537590			~1663		Comments	s: .	
Grid Locat	tion:		22329		38111			1665				
Collar Sur	vey:											
Down He	ole Surve	<u>≥γ</u>	Sample Information	<u>on</u>		Split By: _	A. Boy	/ce				
Survey Me	thod: Reflex		# of Samples: <u>24 </u> <u>004517 -</u> 004	& Ø Blanks 4540		Туре:	1/4 Sawn Co	ore				
Depth 72.8	Azimuth 192.2	Dip* -41.6	Date Shipped:			Assay Ce	rtificate # :					
145.9	175.5	-38.7	Analytical Lab: <u>Che</u>	emex						From	Key Inte	Results
			Drill Information								10	
			Drill Contractor:	ly-Tech		Drill Size:	G-Tech 500	<u>00</u>				
			Driller: Warren Ash			Shift	Distance	Shift	Distance			
			Holper: Cameron Bakke	1								
			Helper: Peter Greene							Logged By	v: P.M. Hol	bek.
							I		L			

· · · · · · · · ·

Project: Kutcho Creek

1

<u>) "] 1 1 7 1 1</u>

. •

•

•

4

Drill Hole Id: WK04-28

Int	erval	Geo-T	echnical	Litho	ology	C	olour		С	omp	onen	s			Tex	ture			Stru	cture						Alter	ation	-				<u> </u>		N	linera	alizati	on		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CbH	СЬА	DIH	DIA	AkH	Aka	Рун	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	5.8			CASE																																			
5.8	8.8			NADA							-					[1									
8.8	17.2	97	5	LLXT		5	G	CB	15	QX	10	LF	CL	SP	FR							3	1	P	20	0	15			\$	2	D	0.5						
17.2	40.5	100	20	LLTF		7	G	LF	40	MS	25	AK	CB	FR	CS	\$T		FL.	80					P	25	PB	5	T	1	\$	8	D	1.5			L	1		—
								1																					†—										-
40.5	50.9	100	40	LLTF		5	т	LF	30	AK	20	мs	sx	LB	мт	IB		FL	82			3	5	Р	25	3	5			\$	20	D	5	D	0.5	D	0.5		
																												1	1	1					[-	
50.9	56.1	98	60	LLTF		7	υ (AK	20	sx	10	οz	LF	LB	MT			FL	83			Р	10	P	10	3	2			3	10	D	7	D	1	L	2		
																													1										
56.1	63.1	100	70	SEXL	LLTF	5	A	QZ	50	sx	15	СВ	MS	мτ	LM	ł		LM	84			L	50	P	15	3	5			\$	10	L	9	D	2	L	4		
63.1	71.5	100	20	LATF	LLTF	5	Α	MS	30	LF	40	СВ	PY	FG	FR	IB		FL	85				1	P	30	PB	3			\$	5	D	3		[—				
																																						-	
71.5	94.2	100	50	LATE		7	YA	MS	30	CB	10	QZ	sx	МΤ	LB			FL	85			3	5	P	30	3	5	1	1	\$	5	<	3	D	1	<	1		1 _
		_														_																						[
94.2	121.6	100	65	ASHT		9	G	MS	25	CB	5	LF	sx	FG	i i			FL	85					P	25	3	5	0	3					D	0.7				
121.6	126.5	100	50	ASHT		9	AG	MS	30	CB	15	QZ	SX	\$T	FG			FL	86			3	5	Ρ	30	3	8			\$	7	D	3	D	1	D	1		
																											1	1		1									
126.5	136.2	100	65	ASHT		9	A	QZ	30	sx	10	MS	СВ	VN	BN	[Р	30	P	30	\$	5			\$	2	<	5	L	3	L	2		
136.2	146.0	100	55	ASHT		9	G	QZ	10	CB	4	SX	MS					FL	86			3	10	P	25	\$	4		1			+	2	D	0.5	,			
146.0				EOH																									T										

Project: Kutcho Creek

very) Cp and
nificant grade.
nts. Zones of
nout the
nd beyond.
r

and the second second

Project: Kutcho Creek

int	erval	Geo-T	echnical	Litho	logy	С	olour		С	ompo	nent	s			Tex	ture			Stru	cture						Alter	ation							M	linera	lizati	on .		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CbH	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	СрА	SpH	SpA	BnH	BnA
0.0	7.6			CASE																																_	_		
7.6	11.9			RUBL																																			
11.9	27.7	100	20	LLAT		5	G	MS	35	св	10	LD	CL	FR	PS			FL	75					Р	35	ο	8					*	3						
27.7	33.2	100	15	LLAT		7	G	MS	35	LF	15	CB	AK	FR	SP	\$T		FL	75			3	3	Р	35	0	7			\$	5	D	1						
33.2	36.6	100	20	LLAT		7	AG	MS	40	PY	10	AK	LF	FR	AL	MT		FL	70			3	2	Р	40					\$	2	W	10			D	1		
36.6	41.1	100	30	SEXL	LLAT	7	А	oz	30	PY	10	SP		LM	BN			LM	80			Р	30	Р	20					\$	5	L	10	D	1	D	5		
41.1	42.7	100	50	LATF		7	AU	CB	15	QZ	20	SX	MS	LB	MT			LM	75			P	20	Ρ	20	P	10			\$	10	<	10	D	1	D	3		
42.7	53.6	100	50	LLTF		5	G	MS	20	CB	10	SX	LF	LB	MT			FL	75			3	5	Ρ	20	0	4			\$	4	L	7	D	2	L	6		
53.6	57.9	100	60	XATF		7	G	CB	20	MS	15	CL		FG	PP		_	FL	75			3	5	Ρ	15	н	20					D	5			D	2		
57.9	58.8	20	0	FLTZ																					_						-								
58.8	66.8	100	70	LLTF		5	А	LF	60	мз	20	св	sx	FR	LB	cs		FL	75			3	2	Р	20	\$	5					L	10			L	1		
66.8	75.6	100	30	LLAT		7	A	MS	35	LF	20	sx	СВ	FR	LB	мт		FL	80			3	5	Р	35	\$	5					w	7			w	2		
75.6				EOH																																			

Project: Kutcho Creek

Int	erval	
From	То	Comments
0.0	7.6	Casing. No core.
7.6	11.9	Virtually no recovery.
		Medium green lapilli-ash tuff. Lapilli fragments range from 3-75m and are poorly sorted. Almost all fragments are flatted and many have fine grained Py in them. Carbonate spotting is prominent with yellow
11.9	27.7	subhedral carbonate grains from 3-8mm. Set in soft green matrix. Strong muscovite and possilbe chlorite component. Core is broken with narrow gouge zone at bottom of interval.
27.7	33.2	As above but more "bleached" or lighter with no chlorite. Slightly fewer and smaller fragments and ankerite sheeting.
33.2	36.6	Likely same rock as above but intensly altered to a mottled grey-green. Wispy pyrite and specks of Sp.
36.6	41.1	Start of mineralized interval, grey LLAT; intensly altered followed by 1.5m of finely laminated silica exhaulite. Less that 20% of total sulphides. Zinc is sporadically associated with Py and Cp is rare.
41.1	42.7	Grey-Brown banded rock likely similar to LLAT but alteration overprints primary textures. Silicification and carbonate sheeting are strong. Grey brown colour may disguise some of the sphalerite.
42.7	53.6	Medium to dark green fragmental or psuedo fragmental rock. Fairly regularly spaced. Stringers or liminae of Py + Sp, but total sulphide less that 15%. Rare dissemeniated Cp.
53.6	57.9	Medium green porphyritic rock. Looks like fine feldspar porphyry and rare Qz, where feldspar crystals are totally gone to carbonate.
57.9	58.8	Fault zone.
58.8	66.8	Lensoid banded, clast supported lapilli tuff. Fragments are siliceous and can be fragmental themselves. Sheeted carbonate wraps around frags. Abundant very fine pyrite (Sp?) forms part of matrix.
		Intensly altered rock. Sulphide increases downwards, not abundant, but increasing with visible Sp. One very large Qz-rich fragment of 10cm size is 20% sulphide. Middle section of interval is same as previous
66.8	75.6	interval with remainder being too intensly altered to see only the faintest outlines of frags.
75.6		End of hole.

29 5	Sample_No — — — -	Lith1 Lith2 		Zn_pc	Ag_gpt	Au_gpt	Fe_pc	S_pc	Hg_ppm		sg 	RL
		CASE										-16
	** **	- RUBL	5									
		т										-16
												+16
	4601 4602	LLAT	0.00	0.02	2.0	0.01	2.62	2.78 1.20	:1			
	4503 4804 4505 4806 4807 4808 4809 4809 4619	SEXL LLA	0.00 0.01 0.03 0.01 0.01 0.01 0.01 0.01	0.02 0.46 0.45 0.05 0.09 0.05 0.65 0.62	05 1.0 6.0 5.0 2.0 7.6 2.0 7.6 2.0 7.6	001 002 002 0.03 0.04 0.04 0.01 0.01	1.46 1.52 5.17 3.63 3.15 6.29 6.29	1.90 1.72 1.72 3.47 3.16 5.97 6.89 8.80		130 150 970 2260 30		163
	4611 4612 4613 4614 4615 4616 4616 4617	LLTF	0.05 0.05 0.04 0.03 0.01 0.01 0.01	0.96 1.42 1.98 0.00 0.16 0.13 0.27	10 20 10 10 10 10 10	0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.01	6.45 4.46 8.00 7.07 2.74 4.32 0.15	6.39 6.43 10.50 6.93 7.51 1.4.5		20 5 5 20 30		-163
		XATF				u						
		FLTZ										
		2001										160
	4619 4620 4621 4623	UAT 0.	0.00 0.06 0.09 0.02	0.05 0.47 0.48 0.07	1.0 5.0 6.0 05	0.02 0.06 0.11 0.02	1 28 2.61 2.04 2.09	1.64 2.59 2.18 1.44		160 10 5 20 5		

1	W	^r estei	n Keltic					Projec	t: KU	гсно с	REEK
1		Min	es Inc.	DIAMOND	DRILL	LOG		Drill Ho	le Id.: W	K04-30	
Hole Azim	uth:	180°	Dip:90°	Total De	epth: <u>51.5</u>	n				Geologi	cal Summary
Date Start	ed <u>: Augu</u>	<u>st 26, 2004</u>	Date Completed: Augus	t 26, 2004 Core S	ize <u>: HQ</u>				Purpose /	Target: Kut	tcho Deposit Footwall Zone.
			Northing	Easting			<u>Elevatio</u>	<u>n</u>			
UTM Loca	ation:		~6451598	~537804			~1652		Comments	s: Hole aba	andoned due to sticking rods
Grid Locat	tion:		22287.5	38225			1652		before targ	et. Deptha	achieved.
Collar Sur	vey:										
Down H	ole Surve	ey_	Sample Information						1		
Survey Me	ethod: <u>None</u>		# of Samples: <u>None</u>		Split By: Type:						
Depth	Azimuth	Dip*	Date Shipped:		Assay Ce	tificate # :					
			Analytical Lab: Chemex							Key Inte	rsections
									From	То	Results
			Drill Information								<u> </u>
			Drill Contractor:Hy-Tech		Drill Size:	G-Tech 500	00				
					1			_			
			Driller: Cameron Bakker		Shift	Distance	Shift	Distance			
			Helper: Peter Greene								
			Helper:						Logged B	/: <u>P.M. Hol</u>	bek.

Western Keltie Mines Inc.

Project: Kutcho Creek

Int	erval	Geo-T	echnical	Litho	ology	C	olour		C	ompo	nent	s			Tex	ture			Stru	cture						Altera	ation							м	inera	izatio	'n		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	СрА	SpH	SpA	BnH	BnA
0.0	6.1			CASE																																			
6.1	18.0	5	Ó	RUBL				_																															
18.0	22.6	45	0	LATF	FLTZ	7	G	MS	35	CB	10	CL	QZ	SP	FG	SH		FL	30			L	10	Ρ	35	0	10					D	2						
22.6	23.8	100	60	LLTF		7	Y	MS	25	QZ	30	СВ	LF	FR	PS							Р	30	Ρ	25	P	20					D	1						
23.8	51.5	100	20	LLTF		7	G	MS	25	LF	25	СВ		FR	CS			BD	40	FL	40	3	3	Ρ	25	0	4	3	2	\$	1	*	1						
51.5				EOH																																			

÷

DIAMOND DRILL LOG

•

.

Project: Kutcho Creek

1 . 1 . 1 . 1

Int	erval	
From	To	Comments
0.0	6.1	Casing. No core.
6.1	18.0	Talus/rubble fault
18.0	22.6	Pale green, carbonate spotted muscovite schist with suggestion of relic lithic frags. Core is broken and gougey. Some fragments in core are siliceous with fine ground disseminated Py.
		Yellow to cream coloured rock with abundant flattened white lapilli and much coarser grey lapilli with disseminated euhedral Py. Possible mineralized zone between 18-20.4cmmostly gouge with Qz-rich sulphide
22.6	23.8	bearing chunks.
		Same rock as above but in the standard pale green colour. Fine flattened fragments are almost invisible but large grey rounded to eliptical fragments are prominent and comprise 10% of rock but decrease
23.8	51.5	downwards. Coarse euhedral carbonate porphyrobiasts and small "spots" locally.
51.5		End of hole.

(0430 Sample_No	Lith1 Lith2 Cu_pc @	Zn_pc	Ag_gpt	Au_gpt	Fe_pc	S_pc	Hg_ppm	Pb_ppm	SG
				Ĭ	Ĭ		Ĭ	Ĭ	Ĭ
	CASE								
	RUÐL								
	- [67]								
	LAYF FLTZ		·						
	LIYE								
	-								
200,000									
	2								
	8								
	LLYF								
_	<u>.</u>								
	15								

E /~-	STR	IP LOG: WK0430
38325.0	22287.5	1652.0 0.0 -90.0 51.5
STRIP		
	Sample_No	VALUES
	Lith 1	PAT CODE DESCRIPTION
		LATE With and Yof
1	Lith 1	TEXT
	Lith2	TEXT
	Cu_pc	VALUES
3	Znipc	VALUES
3	Zn_pc	BAR PLOT
4	Ag_gpt	VALUES
4	Ag_gpt	BAR PLOT
5	Au_got Au_got	VALUES
6	Fe oc	VALUES
6	Fe_pc	BAR PLOT
7	S_pc	VALUES
7	S_pc	BAR PLOT
8	На_ррт На сот	VALUES
9	Po pom	VALUES
9	Pb_ppm	BAR PLOT
10	SG	VALUES Min 1
10	SG	BAR PLOT
1		
1		
	TEDN	KELTIC MINES INC
		RELITO WIINED INC.
	Kutch	o Creek Property
	ĸ	utcho Deposit
	N	
,	Strip L	

Drill Hole Id.: WK04-31

Project: KUTCHO CREEK

Hole Azimı	uth:1	180°	Dip:45°	Total De	pth: <u>63.7</u> 1	n				Geologi	cal Summary
Date Starte	d <u>: Augus</u>	st 27, 2004	Date Completed:August 27, 20	004 Core Si	ze <u>: HQ</u>				Purpose /	Target: Kut	cho Deposit Footwall Zone.
			Northing	Easting			Elevatio	<u>en</u>			
UTM Loca	tion:		-6451578	~537759			~1655		Comments	5:	
Grid Locat	ion:		22268.5	38279			1655				
Collar Surv	/ey:										
Down Ho	thod: Reflex	<u>εγ</u>	Sample Information # of Samples: <u>13 & Ø Blanks_</u> <u>004504 - 004516</u>		Split By: _ Type:	A. Boy awn Core	ce				
18.0	177.8	-44.2	Date Shipped:		Assay Ce	tificate # :					
63.7	179.3	-43.2	Analytical Lab: <u>Chemex</u>	_					From	<u>Key Inte</u> ⊺∘	rsections Results
			Drill Information								
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	<u>G-Tech 500</u>	00				
			Driller: Cameron Bakker		Shift	Distance	Shift	Distance			
		 	Driller: <u>Warren Ash</u> Helper: <u>Peter Greene</u> Helper: <u>Greg Stokes</u>						Logged By	/: <u>P.M. Hol</u>	<u>bek</u> .

Project: Kutcho Creek

Int	erval	Geo-Te	echnical	Litho	logy	C	olour		C	ompo	onent	s			Tex	ture			Stru	cture						Altera	ation							M	linera	lizatio	on 🗌		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	РуН	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	6.1			CASE																																			
6.1	11.9			RUBL																																			
11.9	14.9	90	30	LLTF	LATF	5	A	MS	25	PY	15	мs		LB	FR	PM		FL	65			Р	10	Ρ	15							L	15	D	0.2	D	1		
14.9	16.5	99	20	LATF		5	A	MS	25	LF	20	CB	PY					FL	_65					Ρ	25	0	5					L	5						
16.5	19.5	100	50	SEXL		7	A	QZ	65	PY	15	MS	SX	LM	IB							L	65	Ρ	10							L	15	D	0.3	L	3		
19.5	20.1	100	65	SMSX				PY	45	QZ	35	SP		LM								L	35									L	45			D	5		
20.1	22.3	100	35	ASHT		5	G	MS	30	PY	15	AK	CB	FG	\$T			FL	65					P	30	3	5			\$	5	w	15	D	1	D	5		
22.3	24.5	100	50	ASHT		5	AG	οz	20	MS	30	PY	AK	FG	\$T							3	20	Ρ	30	3	3			\$	8	W	10			D	2		
24.5	29.6	95	0	LLAT	FLTZ	5	AG	GG	10	AK	10	LF	MS	\$Т	F\$	GG		FL	70					Ρ	20	3	5			\$	10	D	7						
29.6	37.8	100	30	LATF	LLTF	7	AG	MS	30	AK	8	CB	LF	IB				FL	70			3	3	Р	30	0	4			\$	8	D	2						
37.8	46.0	100	25	LLAT		7	GA	MS	35	sx	10	CB		ΜΤ	LB	GC		FL	70					Ρ	35	3	15			\$	6	W	5	W	1	W	4		
46.0	52.7	100	35	LLAT		9	AG	MS	30	AK	15	LF	PY	LB	\$T	MT		FL	75			3	5	Ρ	30	3	5			\$	15	D	5			L	1		
52.7	58.1	100	40	LLAT		9	A	MS	30	CB	7	PY	LF	MT	LB			FL	75			3	3	Ρ	30	3	5			\$	2	D	4			D	1		
58.1 63.7	63.7	100	50	LLAT		9	AT	AK	10	MS	30	PY		мт	LB			FL	80			3	1	Ρ	30	3	5			\$	10	L	5	D	1	D	1		

Project: Kutcho Creek

Inte	rval	
From	То	Comments
0.0	6.1	Casing. No core.
6.1	11.9	Rubble.
11.9	14.9	Coarse grained lapilli tuff; clast supported, polymictic with Py forming boundaries between lapilli. A few feet of pale green carbonate spotted ash tuff at bottom of intervalwhich seems out of place.
14.9	16.5	Grey almost featureless ash tuff with local beds containing lithic to lapilli size fragments. Moderate alteration.
16.5	19.5	Pale grey laminated near chalcedonic Qz. Laminated to fracture fill pyrite to 15%very fine grained with sphalerite locally.
19.5	20.1	Narrow zone of semi-massive Py. Very fine grained. Could be a minor amount of chalopyrite. Fine Sp occurs locally but does not appear to be significant.
20.1	22.3	Medium grained, very fine to aphanitic rock with wispy pyrite laminations, sheeted orange ankerite and patchy carbonate alteration. Intense muscovite development.
22.3	24.5	Similar to above but with moderate silicification.
24.5	29.6	Shattered and gougy lapilli-ash tuff.
29.6	37.8	Strongly muscovite altered ash tuff with layers of lapilli tuff. Moderate ankerite sheeting and weak carbonate spotting.
37.8	46.0	Rock is strongly altered. Very similar to above but this mineral is weakly mineralized.
46.0	52.7	Pale light green-grey with prominent yellow ankerite sheets. Fragments are indistinct with fuzzy outlines giving rock a lensoid banded texture. Disseminated Py throughout with rare Sp.
52.7	58.1	Finer grained version with less, much less carbonate alteration, particularly ankerite sheeting. FLTZ at 56.4 and end of the interval. FLTZ are from 20-10 cm wide repectively.
		Still a lapilli tuff with only vague outlines of most fragments (some are still very clear). Strongly ankerite sheeted gives rock a creamy colour. Locally significant concentrations of Sp and/or Cp but not enough to
58.1	63.7	make and "intersection".
63.7		End of hole.

Wester Mine	rn Keltic es Inc.	DIAMOND	DRILL	LOG		Project Drill Hol	t: KU ⁻ le ld.: Wi	ГСНО С к04-32	REEK
Hole Azimuth:180°	Dip:90°	Total De	pth: <u>84.4</u>	m_(277.0')				Geologi	cal Summary
Date Started: <u>August 27, 2004</u>	Date Completed: August	28, 2004 Core Si	ze <u>: HQ</u>				Purpose /	T arget : Kut	cho Deposit Footwall Zone.
	Northing	Easting			<u>Elevatio</u>	<u>on</u>			
UTM Location:	-6451578	~537759			~1655		Comments	5:	
Grid Location:	22268.5	38279			1655				
Collar Survey:	······								
Down Hole Survey Survey Method: <u></u>	Sample Information # of Samples: <u>19 & Ø Blanks</u> <u>004580 - 004598</u> Date Shipped:		Split By: _ Type:1 Assay Cel	A. Boy /4 Sawn cor	e				
	Analytical Lab: <u>Chemex</u>							Key Inte	rsections
	Drill Information		*				From	То	Results
	Drill Contractor:Hy-Tech		Drill Size:	G-Tech 500	0				
	Driller: <u>Cameron Bakker</u> Driller: <u>Warren Ash</u> Helper: <u>Peter Greene</u>		Shift	Distance	Shift	Distance			
	Helper: <u>Greg Stoke</u> s						Logged By	/: <u>P.M. Hol</u>	bek.

Project: Kutcho Creek

۰ ،

i

.

In	terval	Geo-T	echnical	Litho	logy	С	olour	T	c	omp	onen	ts		Γ	Tex	ture			Stru	cture						Alter	ation							Ň	linera	lizatio			n
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CbH	CbA	DIH	DIA	AkH	Aka	Рун	РуА	CpH	СрА	SpH	SpA	BnH	BnA
0.0	6.1			CASE																																			
6.1	11.9			RUBL																																			
						I																		1				\square			1								
11.9	29.6	30	0	LLTF	FLTZ	9	G	MS	40	LF	35	CB	GG	FL	SP	CS		FL	30				_	P	_40	PB	5			\$	1	D	1						
29.6	36.3	95	35	LATF		9	BG	MS	40	AK	5	LF	PY	FR	FG	GC		FL	40			3	2	P	40	0	2			\$	5	D	3						
36.3	38.6	96	10	ASHT		7	Α	QZ	10	PY	15	MS	AK	GC	FG	LM		FL	35			Ρ	10	P	20					\$	2	L	15			D	2		
38.6	41.5	100	30	SMSX		7	μ	QZ	20	AK	10	SX	MS	LM	MT		1	FL	35			Q	20	P	20					\$	10	L	20	D	3	L	6		
41.5	46.9	100	65	SMSX	ASHT	5	G	CL	10	sx	20	СВ	MS	FG	LM	SP						3	4	P	15	0	5	3	4	\$	1	L	18	D	0.1	L	2		1
46.9	50.3	98	10	LATF	FLTZ	5	AU	AK	6	SX	10	MS	QZ	FG	\$T	VN		FL	45			V	20	P	20					\$	6	W	10			W	1		
50.3	66.4	97	60	LLTF		7	Α	LF	30	MS	30	CB	PY	FR	MT	LB	GG	FL	45			Р	10	P	30	3	2			\$	4	J	5						
66.4	67.2			FLTZ																																			
67.2	73.8	100	50	LLTF		7	A	LF	40	MS	30	AK	PY	FR	LB			FL	47			P	3	P	30	3	3			\$	10	D	5						
73.8	84.4	100	60	LLTF		7	AT	LF	40	MS	30	AK	PY	FR	LB	\$T	MT	FL	50			3	5	P	30	3	10			\$	15	3	10			L	3		
84.4				EOH																																			

5

•

4

•

1

DIAMOND DRILL LOG

1 1

1

1

1

1

N N

Project: Kutcho Creek

1

Int	erval	
From	To	Comments
0.0	6.1	Casing. No core.
6.1	11.9	Rubble.
		Pale green (almost irredescent) intense muscovite alteration and large (5-9mm) carbonate porphyroblasts. Relatively coarse lapilliin matrix of finer fragments and ash. 40-60cm gouge/broken zone at top and
11.9	29.6	bottom of interval.
29.6	36.3	Finer grained version of above with prominent brown ankerite sheeting. Much less in spotting and slightly more pyrite.
36.3	38.6	Almost a silica exhalite but a relatively high ash componentlocally almost becoming argilliaceous.
38.6	41.5	An unusual interval intense ankerite sheeting masks the amount of sulphides present; particularly Sp. Qz occurs as laminations (SEXL) and blobspossibly big fragments.
41.5	46.9	Medium to dark green chlorite(?) schist with 15% laminated Py (+/- Sp) and 5% spotted carbonate (same as footwall schist in WK04-06). Some bands of near massive sulphide in the lower half of interval.
46.9	50.3	A gougy interval consisting of fault zone (fractured rock and minor gouge); Qz veins and strongly ankerite-muscovite altered lithic ash tuff with 10-20% wispy pyrite.
50.3	66.4	"Silver schist" strongly altered lapilli tuff. Poorly sorted, clast supported, lensoid fragments with carbonate and pyrite sheets sperating them. Numerous small gouge zones from 2-10cm throughout interval.
66.4	67.2	Broken rock and gouge
67.2	73.8	Similar rock to previous interval but even coarser grained and increasing alteration intensity.
_73.8	84.4	As above but alteration still increasing (possibly due to subtle change in lithology). Patchy cream coloured sections are reminiscent of lava lamp rock.
84.4		End of hole.

T.	W	estei	rn Keltic					Project	t: KUT	гсно с	REEK
]	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Ho	le Id.: WI	K04-33	
Hole Azimuth:	18	30°	Dip:45°	Total De	pth: <u>52.7</u>	n				<u>Geologi</u>	cal Summary
Date Started:	August	28, 2004	Date Completed:Aug	ist 29, 2004 Core Si	ze <u>: HQ</u>				Purpose /	Target: Kut	tcho Deposit Footwall Zone.
			Northing	Easting			<u>Elevatio</u>	<u>on</u>			
UTM Location:						-			Comments	s: Hole Aba	andoned due to squeezing on
Grid Location:			22296	38225		_	1653		rods in bro	ken ground	
Collar Survey: _											
Down Hole S	urve	/	Sample Information								
		L			Split By: _	A. Boy	/ce		-		
Survey Method: <u>Nor</u>	ne		# of Samples: <u>16 & Ø Blanks</u>		Type: <u>S</u>	awn Core					
Depth Azim	nuth	Dip*	<u>004788 - 004800; 0</u>	<u>04501 - 004503</u>		· · · _ · · · ·					
			Date Shipped:		Assay Cei	rtificate # :	<u> </u>			Koy Into	vreactions
			Analytical Lab: <u>Chemex</u>								
			Drill Information						From	To	Results
			Drill Contractor: <u>Hy-Tecl</u>	<u>ı </u>	Drill Size:	<u>G-Tech 500</u>	<u>00</u>				
			Driller: Comerce Bakker		lehitt	Distance	C H	Distance			
			Driller		Shin	Distance	Shin	Distance			
			Helper: Peter Greene					1	<u> </u>	1	L
			Helper:					<u> </u>	Logged By	y: <u>P.M. Ho</u>	lbek.
						-					

e de la construcción de la construc

Western Keltic Mines Inc.

Project: Kutcho Creek

Inte	rval	Geo-T	echnical	Litho	ology	C	olour		C	omp	onen	ts			Tex	ture			Stru	cture						Alter	ation							N	linera	lizati	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	РуН	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	6.1			CASE																																			
6.1	11.9			RUBL																																			
11.9	29.6	30	0	LLTF	FLTZ	9	G	MS	40	LF	35	СВ	GG	FL	SP	CS		FL	30					Р	40	PB	5			\$	1	D	1						
29.6	36.3	95	35	LATF		9	BG	MS	40	AK	5	LF	PY	FR	FG	GC		FL	40			3	2	Р	40	0	2			\$	5	D	3						
36.3	38.6	96	10	ASHT		7	Α	QZ	10	PΥ	15	MS	AK	GC	FG	LM		FL	35			Ρ	10	Р	20					\$	2	L	15			D	2	2	
38.6	41.5	100	30	SMSX		7	μ	QZ	20	AK	10	SX	MS	LM	MT			FL	35			Q	20	Ρ	20					\$	10	L	20	D	3	L	6	;	
41.5	46.9	100	65	SMSX	ASHT	5	G	CL	10	sx	20	CB	MS	FG	LM	SP					[3	4	P	15	0	5	3	4	\$	1	L	18	D	0.1	L	2	2	
46.9	50.3	98	10	LATF	FLTZ	5	AU	AK	6	SX	10	MS	QZ	FG	\$T	VN		FL	45			V	20	Ρ	20					\$	6	W	10			W	1		
																									-														
50.3	66.4	97	60	LLTF		7	A	LF	30	MS	30	СВ	PΥ	FR	MT	LB	GG	FL	45			P	10	P	30	3	2			\$	4	J	5						
66.4	67.2			FLTZ																																			
67.2	73.8	100	50	LLTF		7	Α	LF	40	MS	30	AK	PY	FR	LB			FL	47			Ρ	3	Р	30	3	3			\$	10	D	5						
73.8	84.4	100	60	LLTF		7	AT	LF	40	MS	30	AK	PY	FR	LB	\$Т	MT	FL	50			3	5	P	30	3	10			\$	15	3	10			L	3		
84.4				EOH																																			

Project: Kutcho Creek

and the second second

Int	erval	
From	То	Comments
0.0	6.1	Casing. No core.
6.1	11.9	Rubble.
		Pale green (almost irredescent) intense muscovite alteration and large (5-9mm) carbonate porphyroblasts. Relatively coarse lapilliin matrix of finer fragments and ash. 40-60cm gouge/broken zone at top and
11.9	29.6	bottom of interval.
29.6	36.3	Finer grained version of above with prominent brown ankerite sheeting. Much less in spotting and slightly more pyrite.
36.3	38.6	Almost a silica exhalite but a relatively high ash componentlocally almost becoming argilliaceous.
38.6	41.5	An unusual interval intense ankerite sheeting masks the amount of sulphides present; particularly Sp. Qz occurs as laminations (SEXL) and blobspossibly big fragments.
41.5	46.9	Medium to dark green chlorite(?) schist with 15% laminated Py (+/- Sp) and 5% spotted carbonate (same as footwall schist in WK04-06). Some bands of near massive sulphide in the lower half of interval.
46.9	50.3	A gougy interval consisting of fault zone (fractured rock and minor gouge); Qz veins and strongly ankerite-muscovite altered lithic ash tuff with 10-20% wispy pyrite.
50.3	66.4	"Silver schist" strongly altered lapilli tuff. Poorly sorted, clast supported, lensoid fragments with carbonate and pyrite sheets sperating them. Numerous small gouge zones from 2-10cm throughout interval.
66.4	67.2	Broken rock and gouge.
67.2	73.8	Similar rock to previous interval but even coarser grained and increasing alteration intensity.
73.8	84.4	As above but alteration still increasing (possibly due to subtle change in lithology). Patchy cream coloured sections are reminiscent of lava lamp rock.
84.4		End of hole.

/K0433	Sample_No	Lith2	Cu_pc	Zn_pc	Ag_gpt	Au_gpt	Fe_pc	S_pc	Нд_ррт	Pb_ppm	SG
27 							Ī				
		CASE									
		<u>ğı</u>									
-											
		RUBL									
		3									•
		LLAT									
 		8									
	4788 4789 4790	SEXL LAT	0.00	0.22	0.5	0.01	8 57 7 37	8.66 7.41		5 20 20	
	4791		0.05	0.61	1.0 0.5	0.01	4.88	6.31	4	30 5	ŀ
	4793 4794 4795		0.12 0.01 0.02	0.90	2.0 0.5 1.0	0.01 0 01 0.02	5.87 3.26 2.82	6.94 5.30 5.29		250 J 10 20 J	
	4796	XATF	0.02	0.09	1.0	0.01	2.31	5.11		5 10	
	4798		0.03	0.23	1.0	0.00	2.34	5.28	1	5	E E
	-1/35 	E	0.01	0.11	1.0	0.01	2.58	2 66	4	40	
	4501 4502] 4503	1176 8 7	0 20 0.01 0 01	0.07 0.42 0.07	61.0 2.0 0.5	0.12 0.01 0.01	5.95 2.75 3.45	5.93 2.70 3.62	4	270 190 - 40	
-											
1			ļ	4		ļ	↓ ₊	L _T		ļ	Ţ

4	W	'estei	n Keltic					Project	t: KU1	гсно с	REEK
`↓	•	Min	es Inc.	DIAMOND	DRILL	LOG		Drill Ho	e Id.: Wi	K04-34	
Hole Azim	uth:	180°	Dip:80°	Total D	epth:17.4r	n				Geologi	cal Summary
Date Start	əd <u>: Augu</u>	st 29, 2004	Date Completed: August	29, 2004 Core S	iize <u>: HQ</u>				Purpose /	T arget : Kut	cho Deposit Footwall Zone.
			Northing	Easting			Elevatio	on			
UTM Loca	tion:			<u> </u>		_			Comments	s: Hole abar	ndoned due to squeezing on rods
Grid Locat	ion:		22296.5	38225		-	1653		in broken g Target not	round. Min achieved.	imal recovery to 57' (EOH).
Collar Sur	vey:										
Down H	ole Surve	εγ	Sample Information								
Survey Me	thod:				Split By:						
- u , , , , , , , , , , , , , , , , , ,	None		# of Samples: <u>None</u>		Туре:						
Depth	Azimuth	Dip*									
			Date Shipped:		Assay Cei	tificate # : .				Key Inte	rsections
			Analytical Lab:							<u>1.0 j 1110</u>	
			Drill Information						From	То	Results
			Drill Contractor: <u>Hy-Tech</u>		Drill Size:	<u>G-Tech 500</u>	00				
			Driller: <u>Warren Ash</u>		Shift	Distance	Shift	Distance			
			Driller:								
			Helper: <u>Greg Strokes</u> Helper:						Logged By	: Not logg	ed.

the second se

· ·

Western Keltic Mines Inc.

Project: Kutcho Creek

In	terval	Geo-T	echnical	Litho	logy	C	olour		С	ompo	onent	s			Tex	ture			Stru	cture						Altera	tion							М	inera	lizatio	on		
From	Т	o %Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	CpH	СрА	SpH	SpA	BnH	BnA
0.0	6.	1		CASE																																			
6.1	17.	4		FLTZ												:									-														
17.4				EOH																								_											

,

.

1

,

DIAMOND DRILL LOG

5

5

Project: Kutcho Creek

in	terval	
From	То	Comments
0.0	6.1	Casing. No core.
6.1	17.4	Rubble. Hole abandoned due to squeezing on rods.
17.4		End of hole.

The subscript of the second second second

1

,

2

1

Drill Hole Id.: WK04-35

Project: KUTCHO CREEK

1

Hole Azim	uth:1	180°	Dip:75°	Total Depth: <u>426.4</u>	m			<u>Geologi</u>	cal Summary
Date Start	ed <u>: Septem</u>	<u>ber 3, 200</u>	4 (Sept 9/04) Date Completed: S	eptember 6, 2004 (Sept 11/04)	ore Size <u>:N</u>	<u></u>	Purpose /	Target: Es	so West Deposit
			Northing	Easting	E	levation			
UTM Loc	ation: _		6452565	535186	1	498	Comment	5:	
Grid Loca	tion:		23277.5	35713	1,	498			
Collar Sur									
Down H	ole Surve	Y.	Sample Information	Split By: A	Воусе	<u> </u>	1		
Survey Me	thod:								
	Reflex		# of Samples: <u>14 & 1 Blank</u>	Туре: <u>1/4 S</u>	awn Core				
Dawth	A :		<u>004970 - 004984</u>						
21.0	181.5	-74.7	Date Shipped:	Assav Cer	ificate # :				
63.7	183.9	-74 7						Key Inte	ersections
104.4	182.4	-73.9	Analytical Lab: <u>Chemex</u>						
155.1	181.8	-73.4					From	То	Results
200.9	184.1	-71.8	Drill Information						
252.7	185.1	-70.0							
274.1	184.5	-69.5	Drill Contractor: <u>Hy-Tech</u>	Drill Size:	<u>G-Tech 5000</u>				
310.1	186.1	-68.9				1-1			
338.1	187.0	-68.2	Driller: Warren Ash/Wayne Mayner	Shift	Distance Shif	t Distance			
366.1	186.6	-67.2	Uriller: Mark Konst				L		
402.0	186.9	-66.5	Helper: Kyan McKay/ Brady Stokes						
426.4	100.3	-00.3	neipei. Travis Dayes				Logged B	y. <u>P. M. H</u> C	JIDEK

Project: Kutcho Creek

Inte	rval	Geo-T	echnical	Litho	ology	C	olour		С	ompo	onent	s			Tex	ture			Stru	cture						Alter	ation							N	linera	lizatio	on		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	Срн	CbA	DIH	DIA	AkH	Aka	РуН	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	5.2			CASE																																			
5.2	370.0			NLOG																																			
370.0	380.4	100	80	QFXT		9	A	QX	30	MS	15	CB	HE	PP				FL	45			V	10	P	15	н	5												
380.4	385.0	100	90	QFXT		9	Т	QX	30	MS	25	CB		PP				FL	50					Р	25	н	15												
385.0	391.2	100	50	QFXT		9	YG	QZ	25	MS	30	FM	CB	PP	VN	GC		FL	55			3	5	P	30	н	20					PB	2					1 1	
391.2	393.5	65	30	FLTZ	LLTF	9	YG	MS	35	CB	40	QZ	ΡY	LB	PB	VN						3	20	P	35	*	40					PB	1						
393.5	396.5	100	55	QCEX	_	9	YW	Q	40	CB	60	PY		MT	FR							J	40			*	60					D	2						
396.5	407.8	98	10	LLTF	FLTZ	9	А	LF	20	MS	30	CB		LB	SP	GG		FL	55			3	5	P	30	0	15			\$	3	D	2					1 '	
407.8	411.4	100	60	CBEX	LLTF	7	Α	CB	40	QZ	15	MS		SP	MT							3	15	Р	30	0	30	3	10			D	5						
																	-																						
411.4	413.5	100	60	LLAT	SMSX	9	A	CB	20	MS	20	sx	QZ	\$Т	FR	ł		FL	55	BO	60	Р	10	P	20	0	5	3	5	\$	10	L	10	L	2	D	2	1 '	1
413.5	418.0	100		LLTF	SMSX	5	Α	LF	40	PY	15	MS	CB	FR	LM			FL	60			3	10	Р	20	Q	3					L	15	С	0.3	D	1		
418.0	426.4	100	45	LLTF		5	Α	LF	50	PY	15	MS	CB	FR	LB	MT		FL	60			Р	10	P	15	3	15					w	15	D	1	D	0.5		
426.4				EOH																																			

Project: Kutcho Creek

1

1 1

1

٠

۲

1 1

Inte	ervai	
From	Το	Comments
0.0	5.2	Casing. No core.
5.2	370.0	Not logged.
370.0	380.4	Bleached QFXT. Very light grey with purple (He) hue. Quartz crystals from 2-9mm. Feldspar crystals from 1-3 mm and replaced Py carbonate(?).
380.4	385.0	Essentially as above but increased intensity of muscovite-carbonate alteration. 2-3% black non-magnetic species; He(?). Quartz crystals are slightly larger from 3-11mm.
	_	
385.0	391.2	Three changes from above standout: apple green flouro-mica becomes conspicuous; carbonate-muscovite alteration intensity has increased and porphyroblastic pyrite (to 2cm) are prominent. Also 5% Qz veinlets.
391.2	393.5	So intensly altered not sure about protolith. Coarse subhedral to elliptical carbonate grains float in a Qz-muscovite matrix. 50% of gouge (with pyrite) represents 1.5m of lower part of interval.
393.5	396.5	"Lavalamp rock" but bottom of the lamp! Mottled texture due to irregular cream coloured Qz-carbonate fragments(?) glued together with vitreous grey Qz matrix.
		Fault at 398.5-400m and at 407.4 - 407.8, therefore rock is quite fractured over most of interval. Fragments, other than those made of Qz seem to have been altered out of existance, leaving only faint outlines
396.5	407.8	behind. Intense carbonate spotting and muscovite alteration. Py mostly associated with Qz veins.
407.8	411.4	Interval begins with LLTF like previous interval but carbonate alteration increase until rock is a spotted mass of carbonate and Qz.
		A 10cm band of massive Py+Cp+Sp @ 412.5m. Surrounding rock is about 10-15% sulphide with finely disseminated to laminated Py-Sp and minor Cp. Intense ankerite sheeting and possibly even some
411.4	413.5	argillaceous component to matrix.
413.5	418.0	A very fine, well sorted, crowded lapilli tuff with pervasive 15% wispy laminated Py. Last 50cm is sheeted.
		Crowded, coarse-grained lapilli tuff. Clast supported, siliceous fragments sit in muscovite + Py + carbonate matrix. Pyrite highlights the lensoid banded texture. A 10cm band of SMSX @ 420.3m contains about
418.0	426.4	25% Cp.
426.4		End of hole.

WESTERN KELTIC MINES INC.

Western Keltic Mines Inc.

,

Project: Kutcho Creek

Int	erval	Geo-T	echnical	Litho	ology	C	olour		С	ompo	nent	s			Tex	ture			Stru	cture						Alter	ation							M	inera	lizati	'n		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СРН	CbA	DIH	DIA	AkH	Aka	РуН	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	5.2			CASE																																			
5.2	381.0			NLOG																																			
381.0	386.8	100	75	QFXT		7	YG	QX	20	св	20	MS	FX	SP	PP			FL	55			3	3	P	30	н	20					D	0.3						
386.8	392.9	65	0	FLTZ	XATF	7	YA	СВ	25	MS	35	qz	GG	PB	sн	GG						3	10	Р	35	PB	25					•	1						
392.9	394.6	87	0	LLTF		7	YG	AK	10	LF	30	MS	QZ	FR	\$T	LB		FL	55			Q	5	P	25	3	6			\$	10	D	2						
394.6	406.6	92	20	LXTF		7	YA	СВ	20	MS	25	LF	sx	PP	FR	\$Т	PB	FL	60			3	10	P	25	0	15	3	5	\$	5	3	5	D	2	D	0.3		
406.6	423.8	99	70	LLTF	SMSX	3	A	LF	40	SX	20	MS	CB					FL	55			P	10	P	15	0	5					L	25	L	1.5	L	1		
423.8	428.5	96	50	LLAT		7	YG	LF	25	MS	30	СВ	ΡY									3	3	P	30	0	10			\$	2	D	5						
428.5	445.6	100	55	LLAT		7	YA	мs	30	СВ	15	LF	ΡY	LB	FR	SP	IB					Ρ	5	P	30	0	15					D	2						
445.6	456.0	100	50	LLAT		7	G	СВ	<u>1</u> 0	MS	25	LF		SP	LB	GC						3	5	Ρ	25	0	10					D	2						
456.0				EOH																											1								

ŧ

Project: Kutcho Creek

1

1

3

٦

1

Int	erval	
From	То	Comments
0.0	5.2	Casing. No core.
5.2	381.0	Pilot hole. Geology as WK0435. Rods were switched to BW, which deviated from main hole over approximately 15m. Recovery starts out poor and increases as hole separates from pilot.
381.0	386.8	Intensly altered with muscovite and yellow carbonate. Quartz crystals decrease in size and abundance down the interval so that rock is more of a QXAT at the bottom but totally infested with carbonate spots.
386.8	392.9	Mostly broken gougy rock dervied from grey crystal ash with large 0.5 - 3.0 cm carbonate porphyroblasts or crystal aggregates (may even by fragments). Qz-Py-fluoromica fragments within the gouge zones.
392.9	394.6	Strongly sheeted, muscovite-carbonate altered lapilli tuff with localized pyrite associated with silicification.
		Very intense carbonate-muscovite alteration. Fragments barely visible. Patchy Qz blobs and prominent carbonate spots. Rare Fluoromica. Fault zone at 402-403m. Lowermost 1m of interval is 1/2 way to
394.6	406.6	becoming Qz-carbonate rock.
406.6	423.8	Classic footwall lapilli tuff, monomictic, eliptical shaped siliceous framents in a muscovite-pyrite matrix. Chalopyrite and sphalerite occurs sporadically throughout the interval.
		A fine grained lapilli tuff or more of a lithic tuff with mostly fragments. Pea size or smaller (but flattened) intense muscovite-carbonate alteration makes rock a near perfect match for the hanging wall. Fault at bottom
423.8	428.5	of interval.
		Intensely altered, interbedded lapilli and lithic ash tuff. Textures, alteration, and carbonate spotting are the same but matrix colour changes from grey to cream with the grey variety having the coarser lapilli frags.
428.5	445.6	Patches of pyrite.
445.6	456.0	Same unit as above(?), but with decreasing alteration intensity rock is returning to more natural colour very similar unit to that at the top of the footwall zone holes.
456.0		End of hole.

MARO	35B1		· · · · · · · · · · · · · · · · · · ·			T	T	1	1		
- VVI\U	Sample_No	Lith1 Lith2 Cu	pc Zn	pc Ag	gpt Au	gpt Fe	pc S	pc Hg	ppm Pb	_ppmS	G
370 m 🗝											
		NLOG									
380 -											
		OEXT									
390 -		FLTZ _XATE	4								
		LUTE									
	0										
400 -)		┫────	 _	_	
[
	4985 4986 4987	0.11	0.01 0.01	2.0 _ 4.0	0.03	6 72 <mark>2 94</mark>	6.38 2.96 6.38 9.06		20 20 40		-
410 -	<u>4988</u> <u>4989</u>	0.03	0.09		0.04	10.55 17.80	9.93	₽;	20	generation and an	
	4990 4991	0.02	0.02 0.02	0.5	0.04	15.80 14.05	15.00		5 10	Ţ	-
	4982 4983 3	U.06 LLTF SMSX 0.11	0.06	0.5	0.03	10.25	13.60		10	ŧ	-
	4995	0.05	0.03	0.5	0.02	7.14	6.73		5	+	-
420 -	4990	0.12	0.02	<u>10</u> 05		7,19				+ •	-
	4999]	0.05	0.07	1.0] 0.5]	0.02	12.80	11.05		5	+	-
		12						-	ľ	1	-
		LLAT									
430 -											
		5									
		LLAT									
440 -											
450 -					2510 0 15100						
		LLAT						I			
		24									
			+ -			- -	50°0		•	+ •	-
	<u>-</u>										

· · ·

DIAMOND DRILL LOG

Drill Hole Id.: WK04-36

Project: KUTCHO CREEK

Hole Azim	uth: <u>1</u>	<u>80°</u>	Dip:77°	Total Depth:	_483.7	m				<u>Geologi</u>	cal Summary			
Date Starte	ed: Septen	nber 11, 20	004Date Completed: <u>Septembe</u>	r 15, 2004 Core Siz	:e:N	2			Purpose /	Target: Ess	so West Deposit			
			Northing	Easting		<u>Elevatio</u>								
UTM Location:			6452575	535490			1519		Comments:					
Grid Locat	ion:		23281	36014			1519							
Collar Surv	/ey:													
Down Ho	ole Surve	<u>Υ</u>	Sample Information	Spli	t Bv: A	Bovce								
Survey Me	thod:			op.		Dojoc								
			# of Samples: <u>30 & 1 Blank</u> Type: <u>1/4 Sawn Core</u> 004940 - 004969; 004898											
Depth 11.9	Azimuth 164.2	Dip* -77.6	Date Shipped:	Ass	ay Cert	ificate # :								
24.1	163.6	-77.5			-	-		Key Intersections						
69.8	166.3	-77.0	Analytical Lab: <u>Chemex</u>											
124.1	168.2	-76.9							From	То	Results			
158.2	167.6	-76.1	Drill Information											
203.9	173.3	-72.9												
246.6	171.5	-70.5	Drill Contractor: <u>Hy-Tech</u>	Drill	Size: (G-Tech 500	0							
280.1	173.7	-70.0												
325.8	173.0	-69.5	Driller: <u>wayne Mayner</u>	Shift	t	Distance	Shift	Distance						
368.5	1/1.9	-68.7	Helper: Mark Konst											
399.0	174.2	-00.5	Helper: Travis Bayes								lbak			
429.5	175.8	-67.2	Travis Dayes	L					rofified D	т. <u>г. ічі. ПО</u>				

1

٦

3 5 1

1

1 1 1

Project: Kutcho Creek

1 1 1

Int	erval	Geo-T	echnical	Litho	ology	C	olour		С	omp	onent	s			Tex	ture			Stru	cture						Alter	ation							N	linera	lizati	on		
From	То	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	PyH	PyA	СрН	СрА	SpH	SpA	BnH	BnA
0.0	2.7			CASE																																			
2.7	430.0			NLOG																																			
																										1													
430.0	443.6	100	80	QFXT		9	Α	MS	30	QZ	30	CB	HE	PP	SP							3	3	Р	30	0	15	3	2			PB	1						
443.6	446.7	100		LLXT		7	YG	AK	20	MS	30	LF	CB	\$T	SP	FR	LB	FL	50			_		P	30	0	10	L	5	\$	20	D	1						
446.7	452.3	100	70	CBEX		5	Α	CB	50	MS	35	QZ	PΥ	CS	PS							*	10	P	35	*	50					D	5						
452.3	455.5	100	100	QCEX			W	QZ	60	CB	35			FR	CS							3	60			*	35					D	0.5	D	1				
455.5	460.8	100		CBEX	LLTF	5	Α	CB	40	MS	30	CP	AK	FR	\$T	LB		FL	50			*	10	Ρ	30	*	30			\$	5	D	5	V	2	D	0.5		
																_																							
460.8	468.4	100	65	LLAT		7	Α	MS	30	LF	25	AK	SX	FL	IB			FL	60			3	5	P	30	3	5			\$	10	L	8	L	3	L .	1.5		
468.4	473.9	100	60	LLAT	SMSX	9	A	QZ	30	LF	30	SX		FR								Ρ	30	Ρ	10	3	5					D	25	D	4	D	2		
473.9	483.7	100	70	LLTF	SMSX	7	Α	LF	35	QZ	30	SX	MS	FR	LM			FL	60			P	30	Ρ	20					\$	2	D	20	D	3	D	1		
483.7				EOH																																			

•

7

•

۲

1

•

٦.

٠

DIAMOND DRILL LOG

٠

٦

1 .

1

· · · •

٦

Project: Kutcho Creek

Inte	erval	
From	To	Comments
0.0	2.7	Casing. No core.
2.7	430.0	Not logged.
430.0	443.6	Alteration picks up over last 3m with increase in muscovite and carbonate, fluoromica and porphyroblastic pyrite. Scattered hematite (?) black specks in upper part of interval. 6cm fault gouge at contact.
443.6	446.7	Intensly muscovite-carbonate altered. Coarse lapilli are eliptical and sit in a muscovite-sheeted ankerite matrix. Some Qz eyes and abundant porphyroblasts.
446.7	452.3	"Lava lamp rock." Soft dark grey muscovite-rich matrix (+/- gypsum) with variably sized Qz-carbonate clasts. The only visible sulphide is pyrite.
452.3	455.5	White Qz-carbonate fragments have coalesced into a near solid mass with about 5% clear glassy Qz matrix. Minor Cp begins 0.5m from lower contact.
455.5	460.8	Similar to 446-452 interval with the exception the unit grades into LLTF and has splashy bands of ameboid chalcopyrite.
		Interbedded lapilli tuff and ash (intervals with no fragments). Laminated sulphides Py or Cp or both with minor Sp. Lots of copper but maybe just too spread out. Primary layering shows some nice but small "M"
460.8	468.4	folds in core.
468.4	473.9	Silicified and mineralized LLTF, almost a semi-massive sulphide. Some samples may make "ore."
473.9	483.7	Standard stringer zone but with liberal endowment of copper (+/- Zn) ie "real" stringer zone - low grade but may have an interval or two of interest and possible precious metals.
483.7		End of hole.

WESTERN KELTIC MINES INC. Kutcho Creek Property Esso West Deposit Strip Log: DDH WK04-36

Drill Hole Id.: WK04-37

Project: KUTCHO CREEK

and the second second

Hole Azim	uth:1	180°	Dip:80°	Total Depth: <u>492.6m</u>				<u>Geologi</u>	cal Summary		
Date Start	ed <u>:_Septer</u>	<u>mber 15, 20</u>	004)Date Completed: <u>Septe</u>	Purpose / Target: Esso West Deposit							
			Northing	Easting	<u>Ele</u>	vation					
Location:							Comment	5:			
Grid Locat	tion:		23258	36094	152	.1					
Collar Sur	vey:										
Down H	ole Surve	Υ	Sample Information	Split By: <u>A. Boy</u>	ce						
Survey Me	thod:										
	_Reflex		# of Samples: <u>22 & 2 Blank</u>	Type : <u>1/4 Sawn</u>							
			<u>004911 - 004939</u>								
Depth	Azimuth	Dip*	Dete Obligered								
14.9	182.3	-79.5	Date Shipped:	Assay Certifica	(e#:	. <u> </u>					
60.7	180.2	-79.2	Analytical Laby Chamay					Key Inte	ersections		
106.4	176.1	-78.3	Analytical Lab: <u>Chemex</u>				Erom	I To	Paquita		
107.9	174.7	-10.1	Drill Information					10			
243.5	174.7	-74.7	Dimmoniation								
289.3	172.6	-70.2	Drill Contractor: Hy-Tech	Drill Size: G-Te	ch 5000						
335.0	172.4	-68.3									
379.2	172.0	-66.7	Driller: <u>Wayne Mayner</u>	Shift Dista	nce Shift	Distance					
426.4	174.7	-65.7	Driller: <u>Mark Konst</u>								
484.3	175.3	-64.1	Helper: Brady Stokes								
			Helper: <u>Travis Baye</u> s				Logged B	y: <u>P. M. H</u> o	olbek		
							1				
DIAMOND DRILL LOG

Project: Kutcho Creek

Drill Hole Id: WK04-37

Int	erval	Geo-T	echnical	Litho	ology	C	olour	1	С	omp	onen	s			Tex	ture	_		Stru	cture						Alter	ation							N	linera	lizati	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	CbH	CbA	DIH	DIA	AkH	Aka	РуН	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	3.7			CASE																																			
3.7	430.0			NLOG																																			
430.0	446.5			QFXT		5	G	QX	25	MS	10			PP										Ρ	10							PB	1						
446.5	451.1	100	85	QFXT		9	Α	QX	30	MS	25	HE	CB	PP	SE	SP		FL	50					Ρ	25	н	10												
451.1	460.2	96	55	QFXT		9	AG	QX	25	CB	25	MS	FM	PP	SP			FL	45					Ρ	30	0	25					PB	2						
																											-												
460.2	465.1	100	50	CBEX	LLTF	9	A	СВ	30	LF	15	MS	SX	LB	\$T			FL	50			Р	10	P	20	0	10	3	10	\$	10	D	3	D	1	D	1		
465.1	467.9	100	95	QCEX			W	QZ	50	CB	40	SX		MT	BX	GC						Ρ	50			3	40							В	3	D	0.5		
467.9	475.0	100	60	MSSX				CP	10	SP	15	PY	BN	SM	MX	NT	ВX					J	20			3	10	0	5			L	25	NT	10	L	10	В	4
475.0	477.3	100	70	SMSX				ΡY	15	SP	10	CP	MS									Ρ	15	P	15	3	10					L	15	L	3	L	10		
477.3	479.5	100	65	LLTF		5	A	QZ	30	CB	20	PY		LB								P	30			0	20					L	15	D	1	L	3		
479.5	492.6	100	50	LLTF		5	Α	QZ	30	LF	30	PY	SX	LB	SZ	FR		FL	60			P	30	Р	10					\$	1	L	15	L	2	L	2		
492.6				EOH																																			

DIAMOND DRILL LOG

Project: Kutcho Creek

Drill Hole Id: WK04-37

Int	erval	
From	То	Comments
0.0	3.7	Casing. No core.
3.7	430.0	Not logged.
430.0	446.5	
446.5	451.1	Crowded Qz-Fs crystal tuff. "Bleached" white with a hint of purple hue due to He(?). Quartz crystals very visible with the alteration.
451.1	460.2	Decent thickness of highly altered QFXT. Clear, round to elongate 3-13mm Qz eyes and subhedreal white carbonate grains and crystal aggregates sit in soft cream coloured muscovite.
		Highly altered lapilli tuff/carbonate 'exhalite' not exactly "lava-lamp' but same unit without full textural development. First 0.4m is nicely mineralized with Sp + Cp + Py; remainder of interval is <2% sulphides. Broken
460.2	465.1	rock and minor gouge 1.5m up from lower contact.
465.1	467.9	Mottled - almost breccia textured Qz and carbonate rock. Gradation into MSSX.
		Quite a mixed bag of sulphide components and textures as follows: 467.0-coarse grain Qz-carbonate rock with splashes of interstitial Cp and Sp between 5-10% each; 469.0-470.5 interval starts with 8cm of time
		grained laminate Cp + Sp with remainder of interval being net textured Cp-Sp-Py-Bn grading into semi-massive Py-Cp to 471.3; 471.3 - 472.6 laminated bands of semi-massive to massive Py with silicified tuff;
467.9	475.0	472.6-473.1 as previous but 40% sulphides with some Cp; from 473.1-473.7 massive fine grained Sp+Py+Cp, exactly like WK04-22; from 473.7-475.0 net textured semi-massive Cp+Bn+Py.
475.0	477.3	Not typical footwall due to abundant Sp. Fine grained laminated sulphides.
477.3	479.5	Rock was lapilli tuff, very silicified and carbonate altered with 15% laminated Py around fragments. Typical footwall.
479.5	492.6	Fairly typical footwall stringer zone with local splashes of Cp or laminae of Sp. A couple of samples may have interesting grades. Base metal sulphide gradually decreases with depth.
492.6	-	End of hole.

-

K04;	37 Sample No	Lith1 Lith2	Cu	pc	Zn	pc Ag	gpt Au	lgpt F	epc	S	рс H	g_ppm	Pb	opm	SG
												-			
		NLOG													
╉		777													
		QFXT													
		<u></u> 040			- 267										
ŀ															
		ai -													
Ļ															
									1			1			
		OFXT													
L		1					· · · · · · · · · · · · · · · · · · ·					_		······································	
	4912 4911		0.01	0.08	1.49]	1.0 4.0	0.05	0.58 4.01	Ť	2.15 3.61	4	1	5 30	‡	iπ.
	4913	UBEX LLI	0.16		0.04	1.0	0.01	0.15		1 29		4	10		27
		QCEX	0.61		0.05	20	0.01	- 07		2.01			10	+	28
ľ	4916 4917		6.42 6.10	5.67	0.05	10.0	0.07	6.07 6.07 23.9	1	3.65 7.83 17.25			30 30 80	26	
t	4918-4918-4919	MISSX	2.59		0.68	247.0	0.28	28 9 33 #		23.90					36
	4924	3	1.72	t1 35.	0.79		0.34 0.17	41.30		21.50	12	-	1320 fo	42	
	4928	SMSX	0.85		3.79	59.0	0.16	18.9		13-75 16-65		1	170 540		
ĺ	4928 4929 4930	LLTF 0	0.16 0.04 0.02	4.01	0.35 0.32	6.0 2.0 30	0.98 D.03 0.04	18.20 7.61 10.2	F	13.05 6.63 (8.91	F 1	f	270 580 410	3.9	
3				<u>e - e - e</u>	0.45 0.73	4.0						1			
	4933		0.04	-	1.14	3.0	0.05	17.4		15:20			80 30	Ŧ	l.
	4935		0.09		1.25	3.0 15.0	0,04	13.6		11.85		1	70 500		r r
	4937 4938	LULIF.	0.37		0.08	6.0 4.0	0.06	11.00 11.90		11.25 11.55		Ť	50 40	Ĩ	-
Į.		Ś				4.U	0.04		F -			1		ŧ	·
L	1	1	92					L							+
			c		C		⁰ 50 150 250 30	0 -	0.9925	38888	8485520	° ° 3		0,1000	

	0.7.0		NIZO 407
	SIR Lasting No		VKU437 muth Dip Depth
	6094-9 \$40	Vertical scale 1:3	313
STRIP			
1	ելիլ	PAT CODI	E DESCRIPTION
		NLG	G No log
		OFXI	Allartz feldapat Crysta' (ut
		AL IF	lapilli tuff guarte carbonete exhalite
		GBE	carbonite exhalts
		SMS.	 sens massive sulphide mu^{as}live sulphide
2	Cu_pc	BAR PLOT	
3	Zn_pc	BAR PLOT	
4 5	Ag_gpt Au_gpt	BAR PLOT	
6	Fe_pc	BAR PLOT	
7 8	S_pc Ha_pom	BAR PLOT	The second s
9	Pb_ppm	BAR FLOT	
10	SG	BAR PLOT	
		** *	T F 1.4
4	î.	Weste	ern Keltic
+		Weste	ern Keltic
+	₽	Weste	ern Keltic nes Inc.
+	Þ	Weste Mir	ern Keltic nes Inc.

Esso West Deposit Strip Log: DDH WK04-37

- 1100

الارجا أبريك الاست ألسب ألسب ألابيت أليبيت أبريت أرار والمرار والرار والرار

DIAMOND DRILL LOG

Western Keltic Mines Inc.

Project: Kutcho Creek

Drill Hole Id: WK04-38

Inte	erval	Geo-T	echnical	Litho	logy	C	olour		С	ompo	onent	s			Tex	ture			Stru	cture						Aitera	ation							M	inera	lizati	on		
From	To	%Rec	RQD	Lith1	Lith2	Sh	CoL	C1	C1%	C2	C2%	C3	C4	Tx1	Tx2	Tx3	Tx4	SD1	Ang	SD2	Ang	QzH	QzA	MsH	MsA	СЬН	CbA	DIH	DIA	AkH	Aka	РуН	РуА	СрН	СрА	SpH	SpA	BnH	BnA
0.0	3.1			CASE																																			
3.1	483.0			NLOG																																			
483.0	484.2	90	0	FLTZ				GG	90									FC	50																				
484.2	491.6	100	70	LLTF	FLTZ	3	AG	qz	30	св	30	MS	sx	мт	SP	SH		FL	45	FL	10	3	10	Р	30	0	20	3	10			D	5	D	1	D	4		
491.6	498.0	100	80	SEXL		9	A	QZ	60	св	20	мs	sx	LM	мт	VN		LM	50			L	60	Q	10	0	20					в	2	в	5	в	3		
498.0	501.0	100	100	MSSX				SP	30	СР	20	ΡY	qz	LM	NT	мх		LM	45			3	10	Q	20	о	5					L	20	в	20	x	30		
501.0	505.5	100	95	SMSX	LLTF	1	A	QZ	30	SX	30	LF	MS	FR	LM			FL	35			Р	30	Ρ	10	Q	5					L	20	В	5	L	3	В	2
505.5	514.6	100	100	MSSX				sx	60	oz	20			LM	мх	IL		LM	50			Q	20	Q	5							L	25	L	15	L	20	в	3
514.6	515.6	100	100	QCEX		7	A	QZ	40	СВ	40	SX		MT	BX							Р	40			*	40					D	3	B	5	D	2	L	
515.6	518.0	100		SMSX				CL	30	PY	30	CP						FL	30													L	20	В	10				
518.0	536.1	100	90	LLTF		5	A	LF	40	PY	10	MS	QZ	FR	LB			FL	30	FL	45	Р	20	Ρ	20							L	10	В	1	D	1		
536.1				EOH																																			

٦

۰.

DIAMOND DRILL LOG

Project: Kutcho Creek

Drill Hole Id: WK04-38

Inte	rval	
From	To	Comments
0.0	3.1	Casing. No core.
3.1	483.0	Not logged.
483.0	484.2	Shattered rock and LLAT gouge derived from adjacent units
		Not sure what to call this rock. Equal part carbonate spots, Qz blobs and muscovite matrix. Original rock may have been lapilli tuff, but alteration has obliterated primary texture. Gouge zones at 484.8-485.1m;
484.2	491.6	485.9-486.1 and 487.0-487.4. Foliation starts flattening parallel to core axis towards bottom of interval.
		Upper half of interval is similar to above interval although Qz-carbonate and sulphide have all increased. Qz content increases to near massive (laminated) Qz at bottom of interval. Chalcopyrite occurs as fine to
491.6	498.0	coarse splotches with or without Sp and Py. Fluoromica locally.
498.0	501.0	Mixed interval begins with net textured Sp (+/-Cp + Py) grading into massive Sp (+/-Py) ~1m followed Py semi-massive Cp + Sp + Py with some 30-40cm bands of massive Cp + Py + Sp. Matrix is Qz and Cb.
501.0	505.5	Silicified lapilli tuff with laminated to pathcy crystal aggregated sulphide mineralization; somewhat reminiscent of footwall style mineralization.
		Interval starts with patches of semi-massive to massive sulphide interspersed with siliceoius zones, becoming continuous sulphide @ 508m and >90% sulphide by 509.4m. Although the sulphide appears to be
505.5	514.6	coarse, Cp & Py are finely intergrown. At 511.6m massive Py and Cp gives way to massive laminated Sp of the pale grey variety. Contact with massive Py + Sp at 513.0m.
514.6	515.6	Odd textured Qz-carbonate-sulphide rock. Some form of healed breccia. White smoker chimney.
515.6	518.0	Patchy zones of semi-massive sulphide within a black chlorite(?) matrix.
518.0	536.1	Silicified monomictic(?) coarse lapili tuff. Typical footwall. Py starts as semi-massive but decrease to 10-15% within 4m. No splashy chalopyrite stringers like elsewhere.
536.1		End of hole.

APPENDIX III

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-01	280201	498.3	499.7	1.4	2597.2	1649.2	2.7
WK04-01	280202	499.7	500.3	0.6	1721.4	1113.5	2.8
WK04-01	280203	500.3	501.5	1.2	2748.4	1754.0	2.8
WK04-01	280204	501.5	502.3	0.8	1975.7	1257.7	2.8
WK04-01	280205	502.3	503.7	1.4	3109.3	1940.4	2.7
WK04-01	280206	503.7	504.9	1.2	3035.7	1018.9	1.5
WK04-01	280207	504.9	506.3	1.4	1898.4	1075.5	2.3
WK04-01	280208	506.3	507.1	0.8	2260.4	1454.6	2.8
WK04-01	280209	507.1	508.2	1.1	2887.2	1854.0	2.8
WK04-01	280210	508.2	509.7	1.5	3299.4	2096.0	2.7
WK04-01	280211	509.7	510.7	1	2221.1	1401.3	2.7
WK04-01	280212	510.7	511.2	0.5	1372.7	894.1	2.9
WK04-01	280213	511.2	511.9	0.7	1963.3	1257.4	2.8
WK04-01	280214	511.9	512.5	0.6	879.3	617.1	3.4
WK04-01	280215	512.5	513.5	1	1103.0	749.9	3.1
WK04-01	280216	513.5	514.5	1	1804.3	1344.6	3.9
WK04-01	280218	514.5	515.5	1	1522.5	1078.3	3.4
WK04-01	280219	515.5	516.5	1	1868.5	1386.6	3.9
WK04-01	280220	516.5	517.5	1	1868.9	1425.7	4.2
WK04-01	280221	517.5	518.5	1	1779.4	1331.1	4.0
WK04-01	280222	518.5	519.5	1	1640.4	1214.8	3.9
WK04-01	280223	519.5	520.5	1	1541.2	1171.6	4.2
WK04-01	280224	520.5	521.8	1.3	2334.5	1647.0	3.4
WK04-01	280225	521.8	522.8	1	1628.6	1193.2	3.7
WK04-01	280226	522.8	524	1.2	1471.6	982.7	3.0
WK04-01	280227	524	524.6	0.6	612.3	393.3	2.8
WK04-02	280051	72.2	72.8	0.6	1158.8	736.7	2.7
WK04-02	280052	72.8	74.1	1.3	2188.3	1414.0	2.8
WK04-02	280053	74.1	74.9	0.8	1193.3	843.8	3.4
WK04-02	280055	74.9	76	1.1	2311.9	1508.0	2.9
WK04-02	280056	76	77.5	1.5	2936.3	1984.0	3.1
WK04-02	280057	77.5	79.1	1.6	1735.3	1115.5	2.8
WK04-02	280058	79.1	80.5	1.4	2540.0	1842.0	3.6
WK04-02	280059	80.5	81.7	1.2	2768.2	1863.2	3.1
WK04-02	280060	81.7	82.8	1.1	2671.7	1872.4	3.3
WK04-02	280061	82.8	83.8	1	2791.1	1890.9	3.1
WK04-02	280062	83.8	84.8	1	2670.0	1860.8	3.3
WK04-02	280063	84.8	85.6	0.8	2045.5	1506.8	3.8
WK04-02	280064	85.6	86.6	1			
WK04-02	280065	86.6	88.1	1.5			
WK04-02	280066	88.1	89.6	1.5			
WK04-02	280067	89.6	91.1	1.5			
WK04-02	280068	91.1	92.7	1.6			
WK04-02	280069	92.7	94.2	1.5			
WK04-02	280070	94.2	95.4	1.2			
WK04-03	280071	61.0	61.9	0.9	1238.0	802.8	2.8
WK04-03	280072	61.9	63.2	1.4	2654.0	1731.4	2.9
WK04-03	280073	63.2	64.6	1.4	2204.4	1419.1	2.8
WK04-03	280074	64.6	65.6	1.0	1271.1	850.4	3.0

Appendix III

Kutcho Creek Project 2004 Diamond Drill Program

Drill Core Sample Details

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
	000075	05.0	66 0	4.2	2200.0	0505 7	4.0
WK04-03	280075	65.6	66.9	1.3	3306.9	2525.7	4.2
WK04-03	280076	66.9	69.0	2.1	28/1.1	1931.9	3.1
WK04-03	280077	69.0	70.2	1.1	2/11.6	1810.4	3.0
WK04-03	280078	70.2	71.5	1.3	1897.3	1229.3	2.8
WK04-03	280079	71.5	73.2	1.7	2789.6	1896.5	3.1
WK04-03	280080	73.2	74.6	1.4	2137.2	1406.0	2.9
WK04-03	280081	74.6	75.3	0.7	1447.5	1030.7	3.5
WK04-03	280083	75.3	76.2	0.9	1783.6	1207.6	3.1
WK04-03	280084	76.2	77.6	1.4	3796.4	2902.6	4.2
WK04-03	280085	77.6	78.9	1.4	3936.4	2663.1	3.1
WK04-03	280086	78.9	80.7	1.8	3606.4	2593.5	3.6
WK04-03	280087	80.7	82.1	1.4	3860.8	2796.5	3.6
WK04-03	280088	82.1	83.6	1.5	3489.8	2453.6	3.4
WK04-04	280101	98	99.3	1.3	2075.1	1348.6	2.9
WK04-04	280102	99.3	100.6	1.3	2501.4	1632.4	2.9
WK04-04	280103	100.6	102	1.4	2297.8	1553.8	3.1
WK04-04	280104	102	103.5	1.5	2072.2	1417.4	3.2
WK04-04	280105	103.5	104.9	1.4	3136.9	2067.4	2.9
WK04-04	280106	104.9	106.1	1.2	2214.1	1433.2	2.8
WK04-04	280107	106.1	107.6	1.5	2705.0	1756.0	2.9
WK04-04	280108	107.6	108.3	0.7	1268.9	836.1	2.9
WK04-04	280109	108.3	109.5	1.2	3073.9	2330.3	4.1
WK04-04	280110	109.5	110.6	1.1	2076.1	1375.8	3.0
WK04-04	280111	110.6	111	0.4	1167.0	883.1	4.1
WK04-04	280112	111	112.1	1.1	2118.4	1426.9	3.1
WK04-04	280113	112.1	113.3	1.2	3099.5	2329.2	4 0
WK04-04	280114	113.3	114.7	14	3039 1	2086.2	32
WK04-04	280115	114.7	116.1	14	3563.4	2363.2	3.0
WK04-04	280116	116 1	117.5	14	2572.6	1768.8	3.2
WK04-04	280117	117.5	117.9	0.4	2462.5	1884.6	43
WK04-04	280118	117.0	118.8	0.9	2138.8	1525 5	35
WK04-04	280119	118.8	120.1	13	2764.3	2086.6	J.J
	280110	120.1	120.1	1.5	2/04.0	1004 5	4.1
WK04-04	280123	120.1	127.6	1.1	4724 6	3678 7	4.5
	280124	127.2	122.0	0.0	2756.2	2166 7	4.5
	200124	122.0	123.5	0.9	1229.0	2100.7	4.1
	200125	123.5	124.1	0.0	1230.0	915.9	3.0
	200120	124.1	120.4	1.3	2000.1	1974.3	4.3
	200127	125.4	120.0	1.4	4008.0	2335.8	2.3
VVK04-04	280128	120.8	128.4	1.6	4077.3	1954.7	1.9
WK04-04	280129	128.4	128.9	0.5	1963.7	1195.5	2.6
WK04-05	280089	40.5	41.1	0.6	1561.6	994.5	2.8
WK04-05	280090	41.1	42.5	1.4	4475.8	2585.7	2.4
WK04-05	280091	42.5	43.9	1.4	3891.9	1405.1	1.6
WK04-05	280092	43.9	44.7	0.8	1458.0	1098.8	4.1
WK04-05	280093	44.7	45.9	1.2	3381.1	1459.3	1.8
WK04-05	280094	45.9	47.1	1.2	2348.0	1453.2	2.6
WK04-05	280095	47.1	48.5	1.4	3100.3	1583.3	2.0
WK04-05	280096	48.5	49.4	0.9	2084.0	1504.6	3.6
WK04-05	280098	49.4	50.9	1.5	3344.0	1611.8	1.9

Appendix III: Page 2 of 15

Kutcho Creek Project 2004 Diamond Drill Program

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
		50.0	54.0				
VVK04-05	280099	50.9	51.8	0.9	2675.0	1541.1	2.4
VVK04-05	280100	51.8	53.2	1.4	2824.3	1563.2	2.2
VVK04-05	280130	53.2	54.2	1	1/1/.1	1137.5	3.0
VVK04-06	280131	93.7	94.4	0.7			
VVK04-06	280132	94.4	95.7	1.3			
VVK04-06	280133	95.7	96.6	0.9			
VVK04-06	280134	96.6	97.1	0.5			
WK04-06	280135	97.1	97.7	0.6			
WK04-06	280136	97.7	98.3	0.6			
VVK04-06	280137	98.3	99.4	1.1			
WK04-06	280138	99.4	100.4	1			
WK04-06	280139	100.4	101.5	1.1			
WK04-06	280140	101.5	102.5	1			
WK04-06	280141	102.5	104.1	1.6			
WK04-06	280142	104.1	104.9	0.8			
WK04-06	280143	104.9	111	6.1			
WK04-06	280144	111	111.7	0.7			
WK04-06	280145	111.7	112.6	0.9			
WK04-08	280229	45	46	1	2684.2	2019.6	4.0
WK04-08	280230	46	47.2	1.2	2448.0	1646.1	3.1
WK04-08	280231	47.2	48.2	1	1816.2	1201.8	3.0
WK04-08	280232	48.2	49.7	1.5	1899.6	1257.8	3.0
WK04-08	280233	49.7	51.2	1.5	2436.6	1583.3	2 .9
WK04-08	280234	51.2	52.7	1.5	2769.7	1805.1	2.9
WK04-08	280235	52.7	54.2	1.5	2121.8	1373.3	2.8
WK04-08	280236	54.2	55.7	1.5	3039.7	1978.3	2 .9
WK04-08	280237	55.7	57.2	1.5	2871.1	1839.6	2.8
WK04-08	280238	57.2	57.9	0.7	1604.2	1191.7	3. 9
WK04-08	280239	57.9	59.2	1.3	2534.2	1621.9	2.8
WK04-08	280240	59.2	60.2	1	2545.6	1949.3	4.3
WK04-08	280241	60.2	61.2	1	3149.1	2435.3	4.4
WK04-08	280242	61.2	62.2	1	3092.2	2403.7	4.5
WK04-08	280243	62.2	63	0.8	2396.3	1867.2	4.5
WK04-08	280244	63	64.1	1.1	2220.3	1502.7	3.1
WK04-09	280146	34.2	34.8	0.6	848.8	541.8	2.8
WK04-09	280147	34.8	35.7	0.9	1148.4	860.0	4.0
WK04-09	280148	35.7	36.7	1	1840.0	1194.5	2.9
WK04-09	280149	47	47.8	0.8	1551.0	992.7	2.8
WK04-09	280150	47.8	49.1	1.3	2264.5	1524.6	3.1
WK04-09	280245	49.1	50.1	1	2801.2	2175.9	4.5
WK04-09	280246	50.1	51.1	1	3039.2	2381.8	4.6
WK04-09	280247	51.1	52.1	1	2671.6	2101.6	4.7
WK04-09	280248	52.1	52.9	0.8	2025.4	1577.2	4.5
WK04-09	280249	52.9	53.8	0.9	2524.6	1641.0	2.9
WK04-09	280250	53.8	54.8	1	2358.3	1768.8	4.0
WK04-09	280251	54.8	55.8	1	2607.5	1943.4	3.9
WK04-09	280252	55.8	56.8	1	2552.8	1898.5	3.9
WK04-09	280253	56.8	57.8	1	2893.9	2169.0	4.0
WK04-09	280254	57.8	58.8	1	2269.4	1546.8	3.1

Kutcho Creek Project 2004 Diamond Drill Program

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-09	280255	58.8	59.3	0.5	2248.4	1527.4	3.1
WK04-09	280256	59.3	60.8	1.5	2404.7	1690.1	3.4
WK04-10	280257	46.6	47.1	0.5	833.3	529.5	2.7
WK04-10	280258	47.1	48.2	1.1	2877.0	2114.4	3.8
WK04-10	280259	48.2	49.3	1.1	3434.2	2526.5	3.8
WK04-10	280260	49.3	50.4	1.1	2177.5	1564.0	3.5
WK04-10	280261	50.4	51.5	1.1	2590.7	1910.5	3.8
WK04-10	280263	51.5	53.1	1.6	2840.1	1943.7	3.2
WK04-10	280264	53.1	54.6	1.5	2492.5	1370.8	2.2
WK04-10	280265	54.6	56.2	1.6	2793.2	1822.4	2.9
WK04-10	280266	56.2	57.8	1.6	3265.1	2107.4	2.8
WK04-10	280267	57.8	59.3	1.5	1412.5	927.9	2.9
WK04-10	280268	59.3	60.2	0.9	1412.0	934.8	3.0
WK04-10	280269	60.2	61.6	1.4	2744.4	1854.2	3.1
WK04-10	280287	61.6	62.2	0.6	1423.1	1019.4	3.5
WK04-10	280270	62.2	63.2	1	3034.1	2338.6	4.4
WK04-10	280271	63.2	64.2	1	3179.6	2460.1	4.4
WK04-10	280272	64.2	65.3	1.1	3163.9	2477.7	4.6
WK04-10	280273	65.3	66.4	1.1	2781.3	2193.2	4.7
WK04-10	280274	66.4	67.4	1	2649.6	2091.0	4.7
WK04-10	280275	67.4	68.4	1	3365.7	2645.0	4.7
WK04-10	280276	68.4	69.4	1	2289.2	1774.6	4.4
WK04-10	280277	69.4	70.4	1	2774.5	2093.7	4.1
WK04-10	280278	70.4	71.5	1.1	3012.3	2285.0	4.1
WK04-10	280279	71.5	72.6	1.1	3174.6	2420.2	4.2
WK04-10	280280	72.6	73.7	1.1	3183.6	2369.0	3.9
WK04-10	280283	73.7	74.9	1.2	3051.3	2270.3	3.9
WK04-10	280284	74.9	76.4	1.5	3103.8	2108.4	3.1
WK04-10	280285	76.4	77.8	1.4	2762.2	1817.8	2.9
WK04-10	280286	77.8	79.4	1.6	3167.0	2191.6	3.2
WK04-11	280451	21.1	21.8	0.7	1210.5	767.6	2.7
WK04-11	280452	21.8	22.6	0.8	1464.3	950.6	2.9
WK04-11	280453	22.6	23.6	1	1458.3	963.9	2.9
WK04-11	280454	23.6	24.9	1.3	3427.0	2584.2	4.1
WK04-11	280455	24.9	25.8	0.9	1836.0	1270.2	3.2
WK04-11	280456	25.8	26.8	1	1619.2	1043.8	2.8
WK04-11	280457	26.8	28.1	1.3	2701.7	1943.5	3.6
WK04-11	280458	28.1	28.8	0.7	977.6	628.6	2.8
WK04-11	280459	28.8	30.7	1.9	2429.7	1558.2	2.8
WK04-11	280460	30.7	31.2	0.5	947.7	661.2	3.3
WK04-11	280462	31.2	31.7	0.5	950.8	607.9	2.8
WK04-11	280463	31.7	33	1.3	2164.2	1386.6	2.8
WK04-11	280464	33	34.7	17	6723.2	4304.5	2.8
WK04-11	280465	34.7	36	1.3	2425.6	1556.9	2.0
WK04-11	280466	36	36.8	0.8	1476.8	981 9	3.0
WK04-11	280467	36.8	37.8	1	1375.9	857.0	27
WK04-11	280468	37.8	39.3	1.5	2800.2	1774 0	2.7
WK04-11	280469	39.3	40.8	1.5	2514 3	1553 7	2.6
WK04-11	280470	40.8	41.8		2202.3	1473 3	3.0
		, 0.0			2202.0		0.0

Appendix III

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-11	280471	41.8	43.2	1.4	2628.3	1696.5	2.8
WK04-11	280472	43.2	44.2	1	2536.5	1840.9	3.6
WK04-11	280473	44.2	45.8	1.6	2246.8	1427.0	2.7
WK04-11	280474	45.8	47.2	1.4	2264.5	1432.9	2.7
WK04-12	280429	59.7	60.4	0.7	1084.1	679.1	2.7
WK04-12	280430	60.4	61.7	1.3	2496.5	1628.8	2.9
WK04-12	280431	61.7	62.9	1.2	2561.6	1805.5	3.4
WK04-12	280432	62.9	63.6	0.7	1181.3	753.6	2.8
WK04-12	280433	63.6	64.6	1	2769.0	2156.7	4.5
WK04-12	280435	64.6	65.6	1	3021.1	2374.8	4.7
WK04-12	280436	65.6	66.6	1	3101.6	2439.9	4.7
WK04-12	280437	66.6	67.5	0.9	2701.9	2128.0	4.7
WK04-12	280438	67.5	68.5	1	2966.8	2324.7	4.6
WK04-12	280439	68.5	69.5	1	2601.1	1938.9	3.9
WK04-12	280440	69.5	70.5	1	2117.9	1476.7	3.3
WK04-12	280441	70.5	71.5	1	2485.4	1817.2	3.7
WK04-12	280442	71.5	73	1.5	2966.8	1922.5	2.8
WK04-12	280443	73	74.5	1.5	2821.8	1883.3	3.0
WK04-12	280444	74.5	75.6	1.1	1986.1	1303.1	2.9
WK04-12	280445	75.6	76.6	1	2221.3	1450.4	2.9
WK04-12	280446	76.6	77.6	1	1913.9	1242.6	2.9
WK04-12	280447	77.6	78.6	1	2872.8	2140.0	3.9
WK04-12	280448	78.6	79.6	1	2684.0	2005.8	4.0
WK04-12	280449	79.6	80.6	1	2200.2	1480.0	3.1
WK04-12	280450	80.6	81.6	1	1859.3	1211.7	2.9
WK04-13	280404	49.3	49.8	0.5	826.2	525.6	2.7
WK04-13	280405	49.8	50	0.2	535.5	393.5	3.8
WK04-13	280406	50	51	1	1933.6	1247.3	2.8
WK04-13	280407	51	51.4	0.4	1047.9	786.0	4.0
WK04-13	280408	51.4	51.9	0.5	941.8	617.5	2.9
WK04-13	280409	51.9	52.9	1	1860.8	1247.3	3.0
WK04-13	280410	52.9	53.3	0.4	845.2	604.0	3.5
WK04-13	280411	53.3	54.2	0.9	2037.8	1317.7	2.8
WK04-13	280412	54.2	55.2	1	2727.3	2129.7	4.6
WK04-13	280414	55.2	56.2	1	3248.6	2559.2	4.7
WK04-13	280415	56.2	57.2	1	2732.6	2150.7	4.7
WK04-13	280416	57.2	58.2	1	2280.0	1801.5	48
WK04-13	280417	58.2	59.2	1	3070.0	2425.6	48
WK04-13	280418	59.2	60.2	1	3283 4	2587.2	4.0
WK04-13	280419	60.2	61.2	1	3003 7	2347.2	4.7
WK04-13	280421	61.2	62.1	0 9	2380.0	1850 0	4.0
WK04-13	200421	62.1	63.1	0.9	1062.9	1452.0	4.0
	200422	62.1	64.2	10	1902.0	1402.0	0.0 0 0
M/K04-13	200423	64.2	64.0	1.2	764.0	E20 6	2.0
VVICU4-13	200424	04.3	04.0	0.5	/04.2	032.0 540.0	5.5
VVNU4-13	280425	04.8	00.3	0.5	052.5	549.2	∠.ŏ
VVKU4-13	280426	65.3	66.7	1.4	1682.2	1180.2	3.4
VVKU4-13	280427	66.7	67.5	0.8	1483.2	1040.8	3.4
VVK04-13	280428	67.5	68.5	1	2049.2	1328.9	2.8
WK04-14	280366	95.6	96.6	1	1492.2	955.2	2.8

Appendix III

Kutcho Creek Project 2004 Diamond Drill Program

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
	200207	00.0	07.4	0.0	1450.0	000 F	2.0
VVK04-14	280367	90.0	97.4	0.8	1452.3	969.5	3.0
VVKU4-14	280308	97.4	98.5	1.1	14/0.3	1014.0	3.2
VVK04-14	280309	98.5	99.5	1 1 2	1040.2	1012.9	2.9
VVK04-14	280370	99.5	100.8	1.3	1923.2	1224.8	2.8
VVK04-14	280371	100.8	102.4	1.0	2532.2	1882.8	3.9
VVK04-14	280372	102.4	103.3	0.9	1609.2	1055.5	2.9
VVK04-14	280373	103.3	104.3	1	2599.8	1941.9	4.0
VVK04-14	280374	104.3	105.1	0.8	1939.4	1350.6	3.3
VVK04-14	280375	105.1	106.1	1	1419.4	1053.5	3.9
WK04-14	280376	106.1	107.1	1	11/3.2	8/4.3	3.9
WK04-14	280377	107.1	108	0.9	1209.2	913.9	4.1
WK04-14	280378	108	109.2	1.2	1952.4	1505.1	4.4
WK04-14	280379	109.2	110.5	1.3	1961.5	1491.9	4.2
WK04-14	280380	110.5	111.4	0.9	1187.9	902.6	4.2
WK04-14	280381	111.4	112.4	1	1175.0	862.9	3.8
WK04-14	280382	112.4	113.4	1	1400.0	1017.0	3.7
WK04-14	280384	113.4	114.2	0.8	1221.1	888.5	3.7
WK04-14	280385	114.2	114.8	0.6	1532.4	1102.0	3.6
WK04-14	280386	114.8	115.4	0.6	1493.3	1054.9	3.4
WK04-15	280387	108.9	110.4	1.5	1335.1	845.3	2.7
WK04-15	280388	110.4	111.6	1.2	3185.9	2365.7	3.9
WK04-15	280389	111.6	113	1.4	2308.6	1514.0	2.9
WK04-15	280390	113	113.7	0.7	1811.7	1415.8	4.6
WK04-15	280391	113.7	114.9	1.2	1442.1	945.8	2.9
WK04-15	280392	114.9	116	1.1	2901.7	2192.5	4.1
WK04-15	280393	116	116.9	0.9	2128.9	1463.2	3.2
WK04-15	280394	116.9	117.9	1	2789.0	2044.4	3.7
WK04-15	280395	117.9	118.9	1	2476.8	1841.1	3.9
WK04-15	280396	118.9	119.9	1	3308.6	2571.5	4.5
WK04-15	280397	119.9	120.9	1	3300.1	2525.1	4.3
WK04-15	280398	120.9	122.1	1.2	2470.7	1673.4	3.1
WK04-15	280399	122.1	123.4	1.3	3576.1	2691.4	4.0
WK04-15	280400	123.4	124.7	1.3	36 3 5.3	2780.0	4.3
WK04-15	280402	124.7	125.9	1.2	3076.3	2219.0	3.6
WK04-15	280403	125.9	127.4	1.5	2682.9	1737.8	2.8
WK04-16	280304	89.5	90.7	1.2	913.7	582.7	2.8
WK04-16	280305	90.7	91.8	1.1	1609.4	1102.9	3.2
WK04-16	280306	91.8	92.8	1	3097.1	2410.9	4.5
WK04-16	280307	92.8	93.8	1	2875.5	2250.2	4.6
WK04-16	280308	93.8	94.8	1	2797.6	2199.3	4.7
WK04-16	280309	94.8	95.9	1.1	3918.3	3090.6	4.7
WK04-16	280310	95.9	97	1.1	3231.1	2547.2	4.7
WK04-16	280311	97	98	1	2982 5	2346.9	47
WK04-16	280312	98	99	1	3328.3	2611.4	4.6
WK04-16	280313	99	99.8	0.8	1919.3	1421 7	3.9
WK04-16	280314	99.8	100.6	0.0	2150.3	1599.9	3.9
WK04-16	280315	100.6	100.0	1 1	2130.0	1426.0	3.0
	280315	101.7	107.0	1.1	2801 5	2117 2	37
	200310	107.0	102.5	1.2	2091.0	2300 8	3.0
VVI\04~10	200310	102.9	104.1	1.2	5104.0	2300.0	3.9

Appendix III

Kutcho Creek Project 2004 Diamond Drill Program

Hole_ Id	Sample_No	From	om To Width		Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-16	280319	104.1	105.2	1.1	3291.5	2526.9	4.3
WK04-16	280320	105.2	106.3	1.1	3015.3	2311.3	4.3
WK04-16	280321	106.3	107.3	1	2860.5	2173.7	4.2
WK04-16	280322	107.3	108.8	1.5	3048.4	2055.5	3.1
WK04-16	280323	108.8	110.3	1.5	2661.7	1764.5	3.0
WK04-17	280348	53.5	54.9	1.4	2759.2	1790.6	2.8
WK04-17	280349	54.9	55.7	0.8	2057.5	1493.8	3.6
WK04-17	280350	55.7	56.6	0.9	2393.7	1876.7	4.6
WK04-17	280351	56.6	57.2	0.6	1833.3	1303.2	3.5
WK04-17	280352	57.2	57.6	0.4	1373.9	1061.2	4.4
WK04-17	280353	57.6	59.8	2.2	2955.7	1911.5	2.8
WK04-17	280354	59.8	60.7	0.9	2697.3	2072.1	4.3
WK04-17	280355	60.7	61.2	0.5	917.6	650.2	3.4
WK04-17	280356	61.2	62.2	1	2166.5	1591.3	3.8
WK04-17	280358	62.2	63.9	1.7	1835.1	1292.3	3.4
WK04-17	280359	63.9	64.8	0.9	3009.6	1982.2	2.9
WK04-17	280360	64.8	65.3	0.5	1480.1	998.4	3.1
WK04-17	280361	65.3	66.5	1.2	3466.1	2590.9	4.0
WK04-17	280362	66.5	67.7	1.2	2804.8	1887.7	3.1
WK04-17	280363	67.7	69.2	1.5	2732.3	1813.5	3.0
WK04-17	280364	69.2	70.7	1.5	2608.8	1730.3	3.0
WK04-17	280365	70.7	72.2	1.5	3192.7	2088.0	2.9
WK04-18	280324	40	41.5	1.5	1602.7	1014.5	2.7
WK04-18	280325	41.5	42.6	1.1	1941.3	1472.0	4.1
WK04-18	280326	42.6	43.3	0.7	1380.4	939.1	3.1
WK04-18	280327	43.3	44	0.7	1787.0	1315.3	3.8
WK04-18	280328	44	44.6	0.6	2306.1	1777.7	4.4
WK04-18	280331	44.6	45.6	1	2212.4	1654.6	4.0
WK04-18	280332	45.6	46.6	1	1871.3	1447.4	4.4
WK04-18	280333	46.6	47.6	1	3184.4	2512.4	4.7
WK04-18	280334	47.6	48.6	1	3109.7	2431.5	4.6
WK04-18	280335	48.6	49.6	1	3434.2	2688.8	4.6
WK04-18	280336	49.6	50.6	1	2705.4	2103.1	4.5
WK04-18	280337	50.6	51.7	1.1	3127.8	2304.5	3.8
WK04-18	280338	5 1 .7	52.8	1. 1	2188.8	1451.6	3.0
WK04-18	280339	52.8	54.3	1.5	2259.5	1506.7	3.0
WK04-18	280340	54.3	55.2	0.9	2089.4	1430.1	3.2
WK04-18	280341	55.2	56.2	1	3424.5	2663.5	4.5
WK04-18	280342	56.2	57.2	1	3073.6	2407.2	4.6
WK04-18	280343	57.2	58.2	1	3274.8	2569.6	4.6
WK04-18	280344	58.2	59.2	1	3131.7	2434.7	4.5
WK04-18	280345	59.2	60.7	1.5	4103.3	3140.0	4.3
WK04-18	280346	60.7	62.2	1.5	3603.9	2610.9	3.6
WK04-18	280347	62.2	63.8	1.6	3413.0	2364.4	3.3
WK04-20	280288	35.1	36.1	1	2166.3	1399.9	2.8
WK04-20	280289	36.1	37.1	1	2014.4	1447.3	3.6
WK04-20	280290	37.1	38.1	1	2395.0	1747.5	3.7
WK04-20	280291	38.1	39.1	1	1934.9	1429.1	3.8
WK04-20	280292	39.1	40.2	1.1	3331.2	2587.4	4.5

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-20	280293	40.2	41.3	1.1	3317.8	2618.9	4.7
WK04-20	280294	41.3	42.3	1	3621.2	2857.0	4.7
WK04-20	280296	42.3	43.4	1.1	3071.7	2395.9	4.5
WK04-20	280297	43.4	44.4	1	3053.0	2377.4	4.5
WK04-20	280298	44.4	45.4	1	2927.4	2238.5	4.2
WK04-20	280299	45.4	46.5	1.1	3166.6	2376.9	4.0
WK04-20	280300	46.5	48	1.5	3618.7	2583.8	3.5
WK04-20	280301	48	49.5	1.5	3501.4	2485.0	3.4
WK04-20	280302	49.5	51	1.5	4377.4	3312.6	4.1
WK04-21	280159	149.5	150	0.5	837.1	529.4	2.7
WK04-21	280160	150	150.9	0.9	1723.4	1131.9	2.9
WK04-21	280161	150.9	151.5	0.6	1032.0	670.4	2.9
WK04-21	280162	151.5	152.5	1	2005.4	1324.4	2.9
WK04-21	280163	152.5	153	0.5	988.2	633.0	2.8
WK04-21	280164	153	153.9	0.9	1652.4	1078.8	2.9
WK04-21	280166	153.9	154.6	0.7	1267.6	799.6	2.7
WK04-21	280167	154.6	155.3	0.7	1490.5	974.1	2.9
WK04-21	280168	155.3	156.9	1.6	2280.2	1448.9	2.7
WK04-21	280169	156.9	157.7	0.8	1697.0	1119.5	2.9
WK04-21	280170	157.7	158.2	0.5	1136.9	735.9	2.8
WK04-21	280171	158.2	159.2	1	1923.8	1252.5	2.9
WK04-21	280172	159.2	160.8	1.6	2843.2	1925.8	3.1
WK04-21	280173	160.8	162.3	1.5	2089.9	1338.5	2.8
WK04-21	280174	162.3	164.2	1.9	2428.6	1483.4	2.6
WK04-21	280175	164.2	165.6	1.4	2098.0	1354.5	2.8
WK04-21	280176	165.6	167	1.4	2950.1	1930.5	2.9
WK04-21	280177	167	168.5	1.5	3142.9	2138.3	3.1
WK04-21	280178	168.5	170	1.5	3769.2	2617.7	3.3
WK04-21	280179	170	171.7	1.7	3582.8	2560.2	3.5
WK04-21	280180	171.7	172.7	1	2656.2	1929.2	3.7
WK04-21	280181	172.7	174	1.3	2627.0	1758.7	3.0
WK04-21	280182	174	175.3	1.3	3434.2	2613.0	4.2
WK04-21	280183	175.3	176.4	1.1	3009.2	2310.0	4.3
WK04-21	280184	176.4	177.4	1	3362.6	2596.1	4.4
WK04-21	280185	177.4	178.4	1	3105.6	2455.0	4.8
WK04-21	280186	178.4	179.5	1.1	3295.3	2615.5	4.8
WK04-21	280187	179.5	180.5	1	3112.8	2453.9	4.7
WK04-21	280188	180.5	181.5	1	3020.2	2341.8	4.5
WK04-21	280189	181.5	183	1.5	3576.0	2496.4	3.3
WK04-21	280190	183	184.5	1.5	4136.9	3065.0	3.9
WK04-21	280191	184.5	185	0.5	1217.6	856.6	3.4
WK04-22	280151	573.8	574.3	0.5	827.1	534.1	2.8
WK04-22	280152	574.3	574.7	0.4	527.4	328.3	2.6
WK04-22	280153	574.7	575.2	0.5	521.2	334.5	2.8
WK04-22	280154	575.2	576.4	1.2	1870.4	1409.9	4.1
WK04-22	280156	576.4	576.9	0.5	614.5	401.1	2.9
WK04-22	280157	576.9	577.6	0.7	882.8	566.0	2.8
WK04-22	280158	577.6	578.2	0.6	906.8	594.0	2.9
WK04-22	280192	578.2	579.2	1	698.5	452.5	2.8

Appendix III

Kutcho Creek Project 2004 Diamond Drill Program

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-23	280475	177.4	177.9	0.5	893.1	569.9	2.8
WK04-23	280476	177.9	178.6	0.7	2421.3	1779.5	3.8
WK04-23	280477	178.6	179.6	1	2330.3	1662.8	3.5
WK04-23	280479	179.6	181.1	1.5	34 09.4	2442.3	3.5
WK04-23	280480	181.1	182.6	1.5	3521.9	2554.1	3.6
WK04-23	280481	182.6	183.6	1	2651.2	1934.6	3.7
WK04-23	280482	183.6	184.6	1	2823.9	2123.1	4.0
WK04-23	280483	184.6	185.6	1	2265.1	1589.4	3.4
WK04-23	280484	185.6	186.8	1.2	3152.5	2324.0	3.8
WK04-23	280485	186.8	188.2	1.4	3981.2	3054.0	4.3
WK04-23	280486	188.2	188.7	0.5	886.3	593.5	3.0
WK04-23	280487	188.7	189.3	0.6	1468.2	1052.4	3.5
WK04-23	280488	189.3	191.1	1.8	1289.5	895.5	3.3
WK04-23	280489	191.1	191.6	0.5	750.1	461.1	2.6
WK04-24	4855	144	144.7	0.7	1359.5	881.5	2.8
WK04-24	4856	144.7	145	0.3	618.7	408.1	2.9
WK04-24	4857	145	146	1	1768.0	1099.8	2.6
WK04-24	4858	146	147	1	1680.6	1023.7	2.6
WK04-24	4859	147	147.8	0.8	457.0	306.8	3.0
WK04-24	4860	147.8	149.5	1.7			
WK04-24	4861	149.5	151.1	1.6			
WK04-24	4862	151.1	152.2	1.1	1797.4	1104.7	2.6
WK04-24	4863	152.2	153.4	1.2	2173.5	1641.4	4.1
WK04-24	4865	153.4	154.5	1.1	1861.2	1166.0	2.7
WK04-24	4866	154.5	155	0.5	784.6	508.1	2.8
WK04-24	4867	155	155.8	0.8	1632.1	996.3	2.6
WK04-24	4868	155.8	157.1	1.3	1878.2	1190.3	2.7
WK04-24	4869	157.1	157.8	0.7	1305.0	798.6	2.6
WK04-24	4870	157.8	159.4	1.6	2479.8	1589.6	2.8
WK04-24	4871	159.4	160.6	1.2	2178.4	1415.5	2.9
WK04-24	4872	160.6	161.9	1.3	2162.9	1402.0	2.8
WK04-24	4873	161.9	162.5	0.6			
WK04-24	4874	162.5	163.1	0.6	1 2 25.0	814.2	3.0
WK04-24	4875	163.1	164.1	1	2847.4	2044.4	3.5
WK04-24	4876	164.1	164.9	0.8	2381.7	1893.4	4.9
WK04-24	4877	164.9	165.9	1	23 28.9	1775.3	4.2
WK04-24	4878	165.9	166.9	1	2782.3	2022.8	3.7
WK04-24	4879	166.9	168.7	1.8	2690.7	2003.2	3.9
WK04-24	4880	168.7	169.8	1.1	3433.7	2212.5	2.8
WK04-24	4881	169.8	170.9	1.1	1819.0	1205.1	3.0
WK04-24	4882	170.9	172.2	1.3	2701 2	1755.6	29
WK04-24	4883	172.2	173 7	1.5	2517 1	1740.3	3.2
WK04-25	4801	162.8	163.2	0.4	372.6	236.8	27
WK04-25	4802	163.2	163.7	0.4	924 1	616.8	3.0
\/K04-25	4802	163.7	164.4	0.0	1037 /	653.6	27
\M/K04-25	4003	164 4	165.9	1 /	2027.4	2220 7	2.1
MK04-25	4004	165.8	166.7	0.0	1083 0	1211 0	3.0
MK04-25	4000	166.7	168 5	1.9	2500.0	1610.9	5.0 2 g
M/K04-25	1007	169.5	160.5	1.0	1070 5	013.0	2.0
VVI (0-4-20		100.0	109.0	1.0	212.0	301.0	0.4

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-25	4809	169.5	170.5	1.0	1555.2	1005.1	2.8
WK04-25	4810	170.5	171.9	1.4	1951.7	1247.8	2.8
WK04-25	4811	171.9	172.9	1.0	1928.5	1225.9	2.7
WK04-25	4812	172.9	174.0	1.1	1919.3	1260.5	2.9
WK04-25	4813	174.0	175.0	1.0	2003.3	1316.8	2.9
WK04-25	4814	175.0	176.0	1.0	1817.9	1181.7	2.9
WK04-25	4815	176.0	176.5	0.5	1149.5	745.2	2.8
WK04-26	4816	20.7	21.7	1.0	1713.9	1101.4	2.8
WK04-26	4817	21.7	22.5	0.8	1712.0	1129.2	2.9
WK04-26	4818	22.5	23.5	1.0	1451.7	952.8	2.9
WK04-26	4819	23.5	25.0	1.5	2892.3	1862.2	2.8
WK04-26	4820	25.0	25.9	0.9	1805.5	1153.3	2.8
WK04-26	4821	98.1	98.8	0.7	1117.0	698.2	2.7
WK04-26	4822	98.8	100.0	1.2	2183.8	1417.4	2.8
WK04-26	4823	100.0	101.1	1.1	1887.7	1218.6	2.8
WK04-26	4824	101.1	101.8	0.7	1610.6	1087.9	3.1
WK04-26	4825	101.8	103.1	1.3	2217.7	1479.1	3.0
WK04-26	4826	103.1	104.1	1.0	2256.9	1495.0	3.0
WK04-26	4827	104.1	105.0	0.9	1995.1	1383.2	3.3
WK04-26	4828	105.0	105.7	0.7	1606.8	1005.0	2.7
WK04-26	4829	105.7	106.7	1.0	2492.5	1873.6	4.0
WK04-26	4830	106.7	107.8	1.1	2001.3	1447.0	3.6
WK04-26	4831	107.8	109.0	1.2	3003.7	2165.3	3.6
WK04-26	4832	109.0	110.2	1.2	2861.5	2063.3	3.6
WK04-26	4833	110.2	111.0	0.8	1556.0	978.8	2.7
WK04-26	4834	111.0	112.1	1.1	1854.5	1181.4	2.8
WK04-26	4835	112.1	113.3	1.2	3353.9	2515.3	4.0
WK04-26	4836	113.3	114.5	1.2	3415.0	2574.3	4.1
WK04-26	4837	114.5	115.5	1.0	2877.3	2259.8	4.7
WK04-26	4838	115.5	116.4	0.9	2559.7	1964.9	4.3
WK04-26	4839	116.4	117.4	1.0	2283.5	1627.7	3.5
WK04-26	4840	117.4	118.5	1.1	2100.5	1415.9	3.1
WK04-26	4841	118.5	119.5	1.0	1628.6	1078.7	3.0
WK04-26	4842	119.5	120.5	1.0	2099.0	1423.8	3.1
WK04-26	4843	120.5	121.5	1.0	2142.7	1438.8	3.0
WK04-26	4844	121.5	122.5	1.0	2279.5	1509.4	3.0
WK04-26	4845	122.5	123.6	1.1	3294.0	2557.0	4.5
WK04-26	4846	123.6	124.5	0.9	2518.2	1848.6	3.8
WK04-26	4847	124.5	125.8	1.3	2869 1	2130 7	3.9
WK04-26	4848	125.8	126.7	0.9	2206.9	1636.6	39
WK04-26	4851	126.7	127.8	1 1	3416.1	2404.2	34
WK04-26	4852	127.8	128.9	1.1	3128.4	2148 5	3.2
WK04-26	4853	128.9	129.7	0.8	2289.8	1699.4	3.0
WK04-26	4854	129.7	130.7	1.0	2145 7	1436 1	3.0
WK04-27	4885	449 3	450.8	1.0	2140.7	1430.1	2.0
WK04-27	4886	450 R	451.7	0.0	470.0	200.0	2.0
WK04-27	4000	450.0	452.2	0.9	3157	JZZ.0 242 A	3.1
WK04-27	4007	452.2	452.2	1.0	846 E	243.4	3.4
WK04-27	4000	453.2	453 Q	0.7	556 7	302.6	3.0
	-030	-00.2	-00.9	0.7	330.7	392.0	0.4

Kutcho Creek Project 2004 Diamond Drill Program

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-27	4891	453.9	454.9	1.0	640.4	394.0	2.6
WK04-27	4892	454.9	455.7	0.8	1154.4	771.9	3.0
WK04-27	4893	455.7	456.7	1.0	1346.8	853.0	2.7
WK04-27	4894	456.7	458	1.3	1899.5	1219.3	2.8
WK04-27	4895	458.0	459.0	1.0	1406.3	901.3	2.8
WK04-27	4896	459	460.2	1.2	1675.3	1073.3	2.8
WK04-27	4897	460.2	461.2	1.0	1394.7	997.3	3.5
WK04-27B1	4901	441.7	444.7	3.0	722.6	452.6	2.7
WK04-27B1	4902	444.7	446.8	2.1			
WK04-27B1	4903	446.8	447.9	1.1			
WK04-27B1	4904	447.9	448.9	1.0			
WK04-27B1	4905	448.9	449.4	0.5			
WK04-27B1	4906	44 9.4	449.9	0.5	773.6	502.8	2.9
WK04-27B1	4907	449 .9	450.9	1.0	1301.9	838.1	2.8
WK04-27B1	4908	450.9	452.4	1.5	1969.3	1249.3	2.7
WK04-27B1	4909	452.4	452.9	0.5	575.2	369.5	2.8
WK04-28	4517	52.3	52.8	0.5			
WK04-28	4518	52.8	53.5	0.7			
WK04-28	4519	5 3 .5	54.2	0.7			
WK04-28	4520	54.2	55.2	1.0			
WK04-28	4521	55.2	56.2	1.0			
WK04-28	4522	56.2	57.0	0.8			
WK04-28	4523	57.0	57.6	0.6			
WK04-28	4524	57.6	58.6	1.0			
WK04-28	4525	5 8 .6	59.8	1.2			
WK04-28	4526	5 9 .8	60.3	0.5			
WK04-28	4527	60.3	60.9	0.6			
WK04-28	4528	60.9	61.5	0.6			
WK04-28	4529	61.5	62.2	0.7			
WK04-28	4530	62.2	62.9	0.7			
WK04-28	4531	62.9	63.4	0.5			
WK04-28	4532	126.4	126.9	0.5			
WK04-28	4533	126.9	128.0	1.1			
WK04-28	4534	128.0	128.6	0.6			
WK04-28	4535	128.6	129.7	1.1			
WK04-28	4536	129.7	130.0	0.3			
WK04-28	4537	130.0	130 5	0.5			
WK04-28	4538	130.5	131.3	0.8			
WK04-28	4539	131.3	132.4	1 1			
WK04-28	4540	132.4	133.0	0.6			
WK04-29	4601	33.2	34.1	0.0			
WK04-29	4602	34 1	35.1	1.0			
WK04-29	4603	35.1	36.1	1.0			
\MK04-29	4003	36.1	36.6	1.0			
WK04-29	4004	30.1	30.0	0.5			
MK04-29	4000	30.0	57.5	0.7			
WIX04-29	4000	37.3	30.3	1.0			
VILU4-29	4007	30.3	39.3	1.0			
VILU4-29	4000	39.3	40.1	0.0			
vvr.04-29	4609	40.1	41.1	1.0			

Hole_ Id	Sample_No	From	То	To Width \		Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
			·				
WK04-29	4610	41.1	42.3	1.2			
WK04-29	4611	42.3	43.3	1.0			
WK04-29	4612	43.3	44.5	1.2			
WK04-29	4613	44.5	45.0	0.5			
WK04-29	4614	45.0	46.1	1.1			
WK04-29	4615	46.1	47.3	1.2			
WK04-29	4616	47.3	48.6	1.3			
WK04-29	4617	48.6	49.3	0.7			
WK04-29	4618	49.3	49.8	0.5			
WK04-29	4619	71.1	72.1	1.0			
WK04-29	4620	72.1	73.1	1.0			
WK04-29	4621	73.1	74.1	1.0			
WK04-29	4622	74.1	74.6	0.5			
WK04-29	4623	74.6	75.1	0.5			
WK04-31	4504	16.7	17.9	1.2			
WK04-31	4505	17.9	19.1	1.2			
WK04-31	4506	19.1	20.1	1.0			
WK04-31	4507	20.1	21.1	1.0			
WK04-31	4508	21.1	22.1	1.0			
WK04-31	4509	22.1	23.1	1.0			
WK04-31	4510	23.1	24.5	1.4			
WK04-31	4511	24.5	25.7	1.2			
WK04-31	4512	25.7	27.5	1.8			
WK04-31	4513	27.5	28.6	1.1			
WK04-31	4514	28.6	30.2	1.6			
WK04-31	4515	30.2	31.5	1.3			
WK04-31	4516	31.5	32.5	1.0			
WK04-32	4580	36.6	37.1	0.5			
WK04-32	4581	37.1	37.6	0.5			
WK04-32	4582	37.6	38.5	0.9			
WK04-32	4583	38.5	39.6	1.1			
WK04-32	4584	39.6	40.5	0.9			
WK04-32	4585	40.5	41.5	1.0			
WK04-32	4586	41.5	42.7	1.2			
WK04-32	4587	42.7	43.2	0.5			
WK04-32	4588	43.2	43.9	0.7			
WK04-32	4589	43.9	44.9	1.0			
WK04-32	4590	44.9	45.9	1.0			
WK04-32	4591	45.9	46.9	1.0			
WK04-32	4592	46.9	47.5	0.6			
WK04-32	4593	78.8	79.8	1.0			
WK04-32	4594	79.8	80.4	0.6			•
WK04-32	4595	80.4	81.4	1.0			
WK04-32	4596	81.4	82.4	1.0			
WK04-32	4597	82.4	83.4	1.0			
WK04-32	4598	83.4	84 4	1.0			
WK04-33	4788	30.7	31.6	0.9			
WK04-33	4789	31.6	32.6	1.0			
WK04-33	4790	32.6	33.5	0.9			

Hole_ Id	Sample_No	From	То	Width	Wt_in_Air	Wt_in_H2O	SG
		metres	metres	metres	grams	grams	
WK04-33	4791	33.5	34.7	1.2			
WK04-33	4792	34.7	36.0	1.3			
WK04-33	4793	36.0	36.6	0.6			
WK04-33	4794	36.6	37.6	1.0			
WK04-33	4795	37.6	38.7	1.1			
WK04-33	4796	38.7	39.8	1.1			
WK04-33	4797	39.8	40.8	1.0			
WK04-33	4798	40.8	42.3	1.5			
WK04-33	4799	42.3	43.5	1.2			
WK04-33	4800	43.5	44.9	1.4			
WK04-33	4501	44.9	46.6	1.7			
WK04-33	4502	46.6	47.1	0.5			
WK04-33	4503	47.1	48.1	1.0			
WK04-35	4970	410.3	410.9	0.6			
WK04-35	4971	410.9	411.7	0.8			
WK04-35	4972	411.7	412.4	0.7			
WK04-35	4973	412.4	412.8	0.4			
WK04-35	4974	412.8	413.5	0.7			
WK04-35	4975	413.5	414.5	1.0			
WK04-35	4976	414.5	415.5	1.0			
WK04-35	4977	415.5	416.5	1.0			
WK04-35	4978	416.5	417.5	1.0			
WK04-35	4979	417.5	418.3	0.8			
WK04-35	4981	418.3	419.1	0.8			
WK04-35	4982	419.1	420.1	1.0			
WK04-35	4983	420.1	420.6	0.5			
WK04-35	4984	420.6	421.6	1.0			
WK04-35B1	4985	406.5	407.3	0.8			
WK04-35B1	4986	407.3	408.1	0.8			
WK04-35B1	4987	408.1	408.6	0.5			
WK04-35B1	4988	408.6	409.6	1.0			
WK04-35B1	4989	409.6	411.2	1.6			
WK04-35B1	4990	411.2	412.2	1.0			
WK04-35B1	4991	412.2	413.2	1.0			
WK04-35B1	4992	413.2	414.2	1.0			
WK04-35B1	4993	414.2	415.2	1.0			
WK04-35B1	4994	415.2	416.7	1.5			
WK04-35B1	4995	416.7	418.1	1.4			
WK04-35B1	4996	418.1	419.1	1.0			
WK04-35B1	4997	419.1	420.1	1.0			
WK04-35B1	4998	420.1	421.6	1.5			
WK04-35B1	4999	421.6	422.6	1.0			
WK04-35B1	5000	422.6	423.8	1.2			
WK04-36	4940	454.8	455.5	0.7			
WK04-36	4941	455.5	456.5	1.0			
WK04-36	4942	456.5	457.6	1.1			
WK04-36	4943	457.6	459.0	1.4			
WK04-36	4944	459.0	459.9	0.9			
WK04-36	4945	459.9	460.9	1.0			

Appendix III

Hole_ Id	Sample_No	Sample_No From <u>To</u> Width		Width	Wt_in_Air	SG		
		metres	metres	metres	grams	grams		
WK04-36	4946	460.9	461.9	1.0				
WK04-36	4947	461.9	463.5	1.6				
WK04-36	4948	463.5	464.3	0.8				
WK04-36	4898	464.3	464.9	0.6				
WK04-36	4949	464.9	465.6	0.7				
WK04-36	4950	465.6	466.5	0.9				
WK04-36	4951	466.5	467.5	1.0				
WK04-36	4952	467.5	468.4	0.9				
WK04-36	4954	468.4	469.3	0.9				
WK04-36	4955	469.3	470.5	1.2				
WK04-36	4956	470.5	471.5	1.0				
WK04-36	4957	471.5	472.0	0.5				
WK04-36	4958	472.0	472.9	0.9				
WK04-36	4959	472.9	473.9	1.0				
WK04-36	4960	473.9	474.4	0.5				
WK04-36	4961	474.4	475.5	1.1				
WK04-36	4962	475.5	476.5	1.0				
WK04-36	4963	476.5	477.5	1.0				
WK04-36	4964	477.5	478.9	1.4				
WK04-36	4965	478.9	479.9	1.0				
WK04-36	4966	479.9	480.9	1.0				
WK04-36	4967	480.9	481.9	1.0				
WK04-36	4968	481.9	482.9	1.0				
WK04-36	4969	482.9	483.7	0.8				
WK04-37	4911	460.2	460.7	0.5				
WK04-37	4912	460.7	461.2	0.5				
WK04-37	4913	461.2	466.9	5.7	807.7	513.0	27	
WK04-37	4914	466.9	467.9	1.0	1190.5	757.6	2.8	
WK04-37	4915	467.9	468.4	0.5	593.7	392.9	3.0	
WK04-37	4916	468.4	469.0	0.6	808.0	499.3	2.6	
WK04-37	4917	469.0	469.7	0.7	1107.8	788.8	3.5	
WK04-37	4918	469.7	470.6	0.9	1592.8	1168.6	3.8	
WK04-37	4919	470.6	470.0	0.0	1272 7	921.5	3.6	
WK04-37	4921	471.4	472.6	12	1821.0	1233.8	3.1	
WK04-37	4923	472.6	473.1	0.5	769.4	524.5	3.1	
WK04-37	4924	473.1	473 7	0.0	1146 7	876 4	4.2	
WK04-37	4925	473 7	475.0	13	1992.6	1410.0	3.4	
WK04-37	4926	475.0	476.0	1.0	1164.5	703 7	3.4	
\ //K 04-37	4920	475.0	476.8	0.7	083.4	6 /6 6	20	
MK04-37	4927	476.8	470.0	0.7	903.4 765.2	640.0 600 4	2.9	
\MK04-37	4920	470.0	477.5	0.5	705.2	509.4	3.0	
VVIC04-37	4929	477.0	477.0	0.5				
VILU4-37	4930	477.0	479.0	1.7				
VVICU4-37	4931	479.5	400.5	1.0				
VVICU4-3/	4932	480.5	481.6	1.1				
VVKU4-37	4933	481.6	483.0	1.4				
VVKU4-37	4934	483.0	484.1	1.1				
VVKU4-37	4935	484.1	485.2	1.1				
VVK04-37	4936	485.2	486.3	1.1				
VVK04-37	4937	486.3	486.8	0.5				

Hole_ Id	Sample_No	From metres	To metres	Width metres	Wt_in_Air grams	Vt_in_Air Wt_in_H2O grams grams	
						··· ···	
WK04-37	4938	486.8	487.8	1.0			
WK04-37	4939	487.8	488.8	1.0			
WK04-38	4544	487.9	488.6	0.7	830.5	543.8	2.9
WK04-38	4545	488.6	489.5	0.9	883.6	568.9	2.8
WK04-38	4546	489.5	490.5	1.0	1167.1	745.1	2.8
WK04-38	4547	490.5	491.5	1.0	786.0	479.8	2.6
WK04-38	4548	491.5	492.0	0.5	583.5	382.4	2.9
WK04-38	4549	492.0	493.2	1.2	1212.8	772.8	2.8
WK04-38	4550	493.2	494.2	1.0	1124.3	724.8	2.8
WK04-38	4551	494.2	495.3	1.1	1423.5	907.1	2.8
WK04-38	4552	495.3	496.7	1.4	1716.5	1124.9	2.9
WK04-38	4553	496.7	498.1	1.4	1685.7	1106.8	2.9
WK04-38	4554	498.1	499.0	0.9	1424.7	1056.0	3.9
WK04-38	4555	499.0	499.8	0.8	906.0	610.6	3.1
WK04-38	4556	499.8	501.0	1.2	1473.0	1048.5	3.5
WK04-38	4558	501.0	502.0	1.0	1312.6	872.5	3.0
WK04-38	4559	502.0	503.0	1.0	1257.8	844.2	3.0
WK04-38	4560	503.0	504.0	1.0	1440.5	996.1	3.2
WK04-38	4561	504.0	504.8	0.8	1066.4	730.2	3.2
WK04-38	4562	504.8	505.6	0.8	1003.1	660.9	2.9
WK04-38	4563	505.6	506.9	1.3	1982.3	1402.4	3.4
WK04-38	4564	506.9	507.6	0.7	874.8	614.1	3.4
WK04-38	4565	507.6	508.3	0.7	1118.7	786.3	3.4
WK04-38	4566	508.3	509.4	1.1	1782.0	1325.3	3. 9
WK04-38	4567	509.4	510.7	1.3	2043.0	1538.8	4.1
WK04-38	4568	510.7	511.5	0.8	1393.3	1074.4	4.4
WK04-38	4569	511.5	512.0	0.5	845.1	644.4	4.2
WK04-38	4570	512.0	513.0	1.0	1685.2	1275.5	4.1
WK04-38	4571	513.0	514.3	1.3	2208.7	1701.3	4.4
WK04-38	4572	514.3	514.6	0.3	456.6	320.5	3.4
WK04-38	4573	514.6	515.6	1.0	1220.0	808.2	3.0
WK04-38	4574	515.6	516.3	0.7	1153.2	863.5	4.0
WK04-38	4575	516.3	516.9	0.6	823.5	566.0	3.2
WK04-38	4576	516.9	518.0	1.1	1466.8	1044.2	3.5
WK04-38	4577	518.0	519.0	1.0	1258.1	851.5	3.1
WK04-38	4578	519.0	520.0	1.0	1258.8	866.0	3.2

APPENDIX IV

Assay Laboratory Certificates

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Ag-AA46

Cu-AA46

Au-AA23

Page: 1 Finalized Date: 10-SEP-2004 This copy reported on 11-SEP-2004 Account: LTU

AAS

AAS

AAS

C	ERTIFICATE VA0405509	33		SAMPLE PREPARATION			
			ALS CODE	DESCRIPTION			
Project: Kut P.O. No.: This report Is for 95 Drill Co 18-AUG-2004. The following have acce	oject: Kut O. No.: is report Is for 95 Drill Core samples submitted to our lab in Vancouver, BC, Canada or -AUG-2004. ne following have access to data associated with this certificate: DONALD PETER HOLBEK ROB W		WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um			
DONALD	PETER HOLBEK	ROB W		ANALYTICAL PROCEDUR	ES		
			ALS CODE	DESCRIPTION	INSTRUMENT		
			ME-ICP41a Zn-AA46	High Grade Aqua Regia ICP-AES Ore grade Zn - aqua regia/AA	ICP-AES AAS		

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Ore grade Ag - aqua regia/AA

Ore grade Cu - aqua regia/AA

Au 30g FA-AA finish

Signature: Place Com

\$

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

	Method Analyte	WEI-21 Recvd Wt.	Au-AA23 Au	Au-AA23 Au Check	ME-ICP41a Ag	ME-ICP41a Al	ME-ICP41a As	ME-ICP41a Ba	ME-ICP41a Be	ME-ICP41a Bi	ME-ICP41a Ca	ME-ICP41a Cd	ME-ICP41a Co	ME-ICP41a Cr	ME-ICP41a Cu	ME-ICP41a Fe
Sample Description	Units	kg	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	*	ppm C	ppm	ppm	ppm	%
		0.02	0.005	0.005	1	0.05	10	50	5	10	0.05					0.05
280051		2,36	0.016		<1 2	0.31	<10 10	<50 <50	<5 <5	<10 10	0.76	<5 13	15 22	18 17	357 623	4.20 6.10
280052		5.20 2.28	0.038		102	0.23	460	50	~5 <5	20	184	62	139	24	27200	23.1
280053		1 40	<0.005		1	1.76	<10	140	<5	<10	1.52	<5	24	107	368	3.59
280055		4.58	0,395		60	0.21	300	130	<5	20	1.27	43	55	34	18950	13.60
280056		6.68	0.070		7	0.21	30	70	<5	10	0.08	10	46	12	2270	12.55
280057		3.14	0.101		10	0.17	<10	60	<5	<10	<0.05	<5	43	37	4280	11.30
280058		2.78	0.072		17	0.18	<10	50	<5	10	<0.05	<5	87	14	1940	17.40
280059		2.96	0.081		6	0.16	20	60	<5	10	<0.05	7	122	27	1920	26.1
280060		2.90	0.191		18	0.17	30	50	<5	20	0.05	7	140	15	5230	28.8
280061		2.82	0.114		3	0.16	40	50	<5	<10	0.11	17	234	26	2250	40.0
280062		2.66	0.097		2	0.12	50	<50	<5	<10	<0.05	12	286	18	476	39.5
280063		2.06	0.033		<1	0.12	80	<50	<5	10	<0.05	7	147	30	492	29.6
280065		1.66	0.031		2	0.16	90	50	<5	.10	0.12	<5	52	19	1180	17,45
280065		0.50	0.040			0.16	130		< <u></u>	10	0.55		49		1100	20.9
280066		6.68	0.014		1	0.25	<10	60	<5	<10	3.63	<5 <5	20	15	1685	10.70
280068		5.62	0.005		1	0.20	<10	<50	<5	10	0.05	<5	57	25	213	10.40
280069		6.44	0.011		<1	0.19	30	<50	<5	<10	<0.05	<5	41	40	852	14.35
280070		3.46	0.010		<1	0.28	10	<50	<5	<10	0.20	<5	52	20	42	10.65
280071		1.24	0.048		3	0.54	<10	60	<5	20	1.08	6	15	27	549	5.73
280072		2.66	0.066		4	0.31	20	<50	<5	10	0.22	11	13	20	2000	6.23
280073		2.22	0.010		1	0.42	30	<50	<5	<10	0.33	<5	13	26	985	3.06
280074		1.28	0.664		77	0.39	170	60	<5	10	1.24	16	27	18	36300	8.18
280075		3.30	0.389		73	0.07	930	<50	<5	100	0.79	435	211	11	34400	30.6
280076		2.88	0.351		28	0.24	20	<50	<5	10	13.80	104	21	16	14350	6.51
280077		2.72	0.860		126	0.22	50	<50	<5	10	15.10	47	7	<5	48200	2.97
280078		1.90	0.045		5	0.22	20	<50	<5	<10	14.90	<5	<5	6	2530	1.24
280079		2.80	0.919		122	0.33	70	<50	<5	30	1.84	295	49	15	43000	8.96
280080		2.16	0.234		26	0.26	30	50	<5	<10	0.55	43	28	5	12600	6.90
280081		1.46	0.226		92	0.31	230	60	<5	120	0.91	37	48	17	>50000	21.2
280082		1.80	<0.005		1	1.70	<10	140	<5	<10	1.65	<5	28	115	324	3.46
280083		1.80	0.038		5	0.20	60	<50	<5	<10	<0.05	34	110	36	891	13,70
280084		3.82	0.041		2	0.11	100	<50	<5	20	<0.05	9	184	11	1210	36.3
200000		4.02	0.044		2	0.15	<10	<50	<5	<10	U.11	<5	1/8	37	843	40.5
280086		3.64	0.013		2	0.15	20	<50	<5	<10	<0.05	10	106	14	742	25.1
280087		3.88	0.059		2	0.13	30	<50	<5 <5	10	<0.05	9	108	41	2190	27.2
280089		1.62	0.015		1	0.10	20	<50	<5	<10 40	0.10	10	54	20	204	21.4
280090		4.62	0.009		80	0.40	640	<50	<5	100	0.77	K0 R01	<0 270	10	2/50	3.74
		4.02	0.034				040		~~	100	0.51	021	219	3	21200	29.0

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

Sample Description	Method Ansiyte Units LOR	ME-ICP41a Ga ppm 50	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0,05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb Ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5
280051		<50	<5	0.07	<50	0.75	240	12	0.05	<5	130	30	3.81	10	<5	9
280051		<50	<5	0.08	<50	0.09	50	84	<0.05	6	50	10	6.58	<10	<5	6
280053		<50	<5	<0.05	<50	1.04	600	52	<0.05	<5	240	300	26.2	30	<5	21
280054		<50	<5	1.55	<50	1.82	540	<5	<0.05	8	3130	10	0.12	<10	<5	39
280055		<50	10	0.07	<50	0.72	460	40	<0.05	<5	80	140	15.25	<10	<5	15
280056		<50	<5	0.10	<50	0.05	30	38	<0.05	8	<50	30	13.65	10	<5	<5
280057		<50	<5	0.09	<50	<0.05	<30	41	<0.05	<5	<50	40	12.20	<10	<5	<5
280058		<50	<5	0.09	<50	<0.05	<30	43	<0.05	9	<50	20	18.70	10	<5	<5
280059		<50	<5	0.08	<50	<0.05	<30	70	<0.05	<5	<50	<10	28.3	<10	<5	<5
280060		<50	<5	0.09	<50	<0.05	40	85	<0.05	<5	<50	20	31.3	<10	<5	<5
280061		<50	<5	0.07	<50	0.06	40	77	<0.05	<5	<50	<10	43.8	<10	<5	<5
280062		<50	<5	0.06	<50	<0.05	<30	95	<0.05	13	<50	<10	42.8	20	<5	<5
280063		<50	<5	0.06	<50	<0.05	<30	91	<0.05	24	<50	70	32.1	20	<5	<5
280064		<50	<5	0.09	<50	0.07	60	50	<0.05	11	<50	<10	18.95	<10	<5	<5
280065		<50	<5	0.08	<50	0.30	240	34	<0.05	<5	<50	80	22.9	<10	<5	<5
280066		<50	<5	0.11	<50	1.96	1310	34	<0.05	7	<50	20	11.60	<10	<5	15
280067		<50	<5	0.13	<50	0.87	300	22	<0.05	<5	140	20	11.15	10	<5	17
280068		<50	<5	0.11	<50	<0.05	<30	20	<0.05	<5	<50	30	15.40	10	<5	<5
280069		<50	<5	0.10	<50	<0.05	<30	14	<0.05	<5	<50	10	12.25	10	<5	<5
280070		<50	<5	0.08	<50	0.64	90	37	<0.05	<5	60	<10	11.05	10	<5	<5
280071		<50	<5	0.09	<50	1.74	310	35	0.07	56	3340	80	5.88	10	<5	24
280072		<50	<5	0.09	<50	0.52	100	79	<0.05	16	260	40	6.60	<10	<5	5
280073		<50	<5	0.07	<50	0.16	60	21	0.09	34	1150	<10	3.19	<10	<5	13
280074		<50	<5	0.09	<50	0.48	400	37	0.06	105	2120	210	9.42	<10	<5	19
280075		<50	17	<0.05	<50	0.20	400	202	<0,05	30	2120	4420	37.4	40	<u></u>	14
280076		<50	<5	0.06	<50	7.18	6190	94	<0.05	/6	5630	570	7.73	<10	<5	106
280077		<50	<5	0.05	<50	8.21	5320	49	<0.05	28	2960	220	3.51	<10	<5	101
280078		<50	<5	0.06	<50	8.52	5150	<5	<0.05		390	230	0.50	<10	5	98
280079		<50	<5	80.0	<50	0.89	800	76	0.05	77	1240	2790	12.60	<10	<5	33
280080		<50	<5	0.07	<50	0.29	230	42	0.05	35	220	190	7.92	<10	<5	
280081		<50	<5	0.08	<50	0.19	180	170	<0.05	53	2800	960	23.5	10	<5	13
280082		<50	<5	1.48	<50	1.76	500	<5	<0.05	23	3310	<10	0.09	<10	<5	47
280083		<50	<5	0.10	<50	<0.05	<30	60	<0.05	<5	80	20	14.95	<10	<5	<5
280084		<50	<5	0.06	<50	<0.05	<30	44	<0.05	<5	120	20	39.2	10	<5	<5
280085		<50	<u></u>	0.07	<50	0.06	50	64	<0.05	<5	<50	<10	43.6	<10	<5	<5
280086		<50	<5 <5	0.07	<50 <50	<0.05	<30	21	<0.05	10 ~E	<50	20	27.3	<10	<5	<5
20008/		<50	<0 	0.07	<00	<0.05	30	43	<0.05	~ 7	100	<10	29.4	10	<5	<5
200000		<50		0.08	~50	0.00	20	21	CU.US	1	100	20	23.2	10	5	N D
280000		<50	21	0.11 <0.05	<50	0.00	200	∠ y 172	0.00 <0.05	19	400	3800	3,14 39 E	50	<5	14
200090			JI	 		0.22			<0.05	10		3000	30.3	00	<0	0

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti % 0.05	ME-ICP41a Ti ppm 50	ME-1CP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Zn-AA46 Zn % 0.01	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	
280051		<0.05	<50	<50	5	<50	390				
280052		<0.05	<50	<50	<5	<50	2290				
280053		<0.05	<50	<50	20	<50	15100				
280054		0.25	<50	<50	107	<50	170				
280055		<0.05	<50	<50	8	<50	8240				
280056		<0.05	<50	<50	<5	<50	2340				
280057		<0.05	<50	<50	<5	<50	970				
280058		<0.05	<50	<50	<5	<50	820				
280059		<0.05	<50	<50	<5	<50	1940				
280060		<0.05	<50	<50	<5	<50	1360				
280061		<0.05	<50	<50	<5	<50	3900				
280062		<0.05	<50	<50	<5	<50	2700				
280063		<0.05	<50	<50	<5	<50	1140				
280064		<0.05	<50	<50 <50	<5	<50	690				
20005		<0.05	<00	<50	<0	<u> </u>	1040				
280066		<0.05	<50	<50	<5	<50	270				
280067		<0.05	<50	<50	<5	<50	140				
280068		<0.05	<50	<50	<5	<50	280				
280069		<0.05	<50	<50	<5	<50	180				
280070		<0.05	<50	< 30		<00					
280071		<0.05	<50	<50	58	<50	1320				
2800/2		<0.05	<50	<50	18	<50	2020				
280073		<0.05	<50	<50	18	<50	700				
280074		<0.05	<50	<50	27	<50	2200	9 5 4			
200075		<0.05	<50	<u></u>		<00	>50000	0.04			
280076		<0.05	<50	<50	69	<50	18750				
280077		<0.05	<50	<50	52	<50	/520				
280078		<0.05	<50	<50	27	<50	250	5.07			
280079		<0.05	<00	<00	0	<00	>00000 7840	5.97			
200000		~0.00	<u></u>	<u></u>							
280081		<0.05	<50	<50	21	<50	6850			5.13	
280082		0.28	<50	<50	112	<50	90				
280084		<0.05	<50	<50	<5	<50	0180				\$
280085		<0.05	<50	<50	<5	<50	1220				
		-0.00					1320				
280086		<0.05	<50	<50	<5	<50	3860				
200087		<0.05	<50	<50	<5 <5	<50	2100				
280089		<0.05	<0U	<50	<5	<50	2960				
280090		<0.05	~50	V0>	10	VC>	700 >50000	14.10			
		-0.05	<u> </u>	~00		×00	~50000	14,10			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-AA23 Au Check ppm 0.005	ME-ICP41a Ag ppim 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-IGP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05
280091		3.96	0.356		64	<0.05	1100	<50	<5	80	0.29	474	118	12	19050	31.4
280092		2.10	0.717		82	0.09	290	<50	<5	50	0.64	162	200	<5	33300	36.5
280093		3.52	1.700		>200	0.13	630	<50	<5	<10	1.49	391	268	5	>50000	29.4
280094		2.38	4.48		142	<0.05	300	<50	<5	80	12,95	54	19	<5	45600	7,45
280095		3.22	5.31	7.55	>200	0.07	250	<50	<5	430	13.05	25	28	<5	>50000	9.40
280096		2.28	0.017		45	0.15	120	<50	<5	30	3.11	168	125	22	18800	26.1
280097		1.70	0.089		1	1.92	10	140	<5	10	2.44	<5	25	120	510	3.60
280098		3.44	0.287		23	0.12	200	<50	<5	20	7.88	19	74	13	12850	22.7
280099		2.80	0.076		2	0.24	<10	<50	<5	10	1.58	<5	91	24	1715	33.5
280100		3.00	0.026		<1	0.24	10	<50	<5	10	0.37	<5	11	37	456	19.80
280101		2.34	0.201		13	0.17	20	130	<5	<10	0,57	6	24	24	1435	5.55
280102		2.76	0.096		10	0.21	10	<50	<5	10	0.19	11	21	23	1900	6.52
280103		2.44	<0.005	0.000	68	0.27	200	90	<5	20	1.69	170	24	27	17150	11.75
280104		2.24	0.675	0.809	/6	1.01	230	180	<5	30	2.34	156	41	40	28800	13.05
280103		3.10	0.545	·	*/	1.01	<10	00			2.50	49	19		21300	0.92
280106		2.24	0.062		4	1.15	10	<50	<5	<10	13.00	<5	<5	<5	5050	1.60
280107		2.76	0.035		8	0.21	20	<50	<5	<10	18.00	17	1	<5	3610	1.06
200108		1.30	0.230		33	0.11	<10 210	<50	<5	<10	16,70	12	0	<5	22400	2.59
280109		2.10	0.249		35 11	1 78	210	<50 70	<5	30	1.94	210	30	20	33900	31.5
200110		2.12	0.110			1.70			~~~~~		2.01	10			22900	9.77
280111		1.20	0.166		21	0.07	140	<50	<5	40	0.31	31	111	40	14650	38.4
280112		2.10	0.106		10	0.53	<10 80	90	<5	10	1.53	106	24	43	5220	9.91
280113		3.12	0.090		2	0.08	60	~50 50	<5	10	0.03	23	20	32	4270	15 90
280115		3.60	0.008		1	0.34	20	<50	<5	<10	1.80	<5	12	26	449	8.57
280118		2.62	0.032	·	3	0.41	30	160	<5	10	5 57	R	14	17	7500	14 15
280117		2.50	0.450		57	0.11	60	50	<5	40	0.43	19	69	31	30400	35.5
280118		2.18	1.640		85	0.19	70	60	<5	60	1.35	29	87	27	31500	20.7
280119		2.80	0.379		32	0.48	110	70	<5	40	1.70	147	182	38	25300	31.7
280120		2.48	0.374		37	0.12	110	<50	<5	30	0.33	22	157	53	45700	39.3
280121		1.38	<0.005		2	1.95	20	130	<5	<10	2.10	<5	30	122	493	4.22
280122		1.18	<0.005		<1	1.90	20	130	<5	<10	1.94	<5	26	110	347	3.74
280123		4.76	0.241		26	0.05	250	<50	<5	60	0.24	39	253	43	17100	39.5
280124		2.80	0.134		9	0.05	130	<50	<5	30	0.30	13	349	31	5810	43.2
280125		1.34	0.904		1	0.15	60	<50	<5	10	0.35	<5	143	41	3560	31.8
280126		2.88	0.030		<1	0.18	40	<50	<5	<10	0.91	<5	201	81	326	35.6
280127		4.16	0.016		<1	0.22	<10	<50	<5	<10	0.81	<5	128	92	138	30.8
280128		4.14	0.212		<1	0.28	<10	<50	<5	10	0.57	<5	127	80	254	29.8
200129		2.20	0.014		<1	0.31	60	<50	<5	<10	<0.05	<5	26	106	188	11.45
260130		1.76	0.006		<1	0.21	10	<50	<5	<10	0.10	<5	36	87	94	10.90

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

Sample Description	Method Analyte Units LOR	ME-ICP41a Ga ppm	ME-ICP41a Hg ppm	ME-1CP41a K %	ME-ICP41a La ppm	ME-ICP41a Mg %	ME-ICP41a Mn ppm 20	ME-ICP41a Mo ppm	ME-ICP41a Na %	ME-ICP41a Ni ppm	ME-ICP41a P ppm	ME-ICP41a Pb ppm	ME-ICP41a S %	ME-ICP41a Sb ppm	ME-ICP41a Sc ppm	ME-ICP41a Sr ppm
		50		0.05		cu.u			60.0		JU	10	U,U3	10		
280091		<50	20	<0.05	<50	0.10	220	266	<0.05	12	490	3390	38.9	100	<5	5
280092		<50	5	0.05	<50	0.16	180	231	<0.05	28	1700	1740	41.2	10	<5	15
280093		<50	37	0.05	<50	0.23	250	333	<0.05	37	5070	1860	35.9	40	<5	20
280094		<50	<5	<0.05	<50	7.10	2590	31	<0.05	10	1290	200	9.03	20	<5	54
280095		<50	<5	<0.05	<50	6.89	2580	24	<0.05	16	3100	270	12.45	30	<5	55
280096		<50	<5	<0.05	<50	1.68	610	27	<0.05	<5	440	4010	30.8	10	<5	15
280097		<50	<5	1.48	<50	1.81	560	<5	<0.05	19	3300	<10	0.09	<10	5	64
280098		<50	<5	<0.05	<50	4.30	1420	64	<0.05	22	50	110	26.2	20	<5	24
280099		<50	<5	0.09	<50	0.86	390	133	<0.05	8	130	70	37.0	10	<5	9
280100		<50	<5	0.11	<50	0,19	100	23	<0.05	<5	<50	10	21.7	10	<5	<5
280101		<50	<5	0.08	<50	0.25	150	74	<0.05	<5	480	120	5.87	<10	<5	5
280102		<50	<5	0.08	<50	0.09	80	192	<0.05	21	140	210	7.05	<10	<5	<5
280103		<50	<5	0.08	<50	0.52	420	107	<0.05	77	2110	730	14.25	20	<5	24
280104		<50	<5	0.11	<50	0.85	440	159	<0.05	152	4020	750	15.55	<10	<5	24
280105		<50	<5	0.08	<50	5,12	980	107	<0.05	89	850	200	7.21	<10	5	31
280106		<50	<5	<0.05	<50	9.81	5640	<5	<0.05	15	280	40	0.63	<10	5	87
280107		<50	<5	<0.05	<50	10.35	7880	12	<0.05	<5	100	50	0.62	<10	<5	97
280108		<50	<5	0.05	<50	9.28	8410	6	<0.05	12	310	130	2.26	<10	<5	110
280109		<50	9	<0.05	<50	1.04	950	178	<0.05	98	<50	550	36.0	10	<5	23
280110		<50	<5	0.11	<50	4.35	810	86	<0.05	106	1400	100	9.69	<10	<5	44
280111		<50	<5	<0.05	<50	0.14	70	148	<0.05	114	140	200	39.5	20	<5	13
280112		<50	<5	0.18	<50	0.09	70	160	0.05	267	6390	460	11.55	<10	<5	35
280113		<50	<5	<0.05	<50	0.34	220	78	<0.05	29	220	380	35.8	<10	<5	6
280114		<50	<5	0.08	<50	1.89	710	31	<0.05	<5	340	30	16.85	10	<5	18
280115		<50	<5	0.10	<50	1.66	650	42	<0.05	6	130	10	8.98	<10	<5	12
280116		<50	<5	0.09	<50	3.74	1620	184	<0.05	<5	680	130	15.10	<10	<5	57
280117		<50	<5	0.06	<50	0.24	170	50	<0.05	11	150	70	39.1	10	<5	5
280118		<50	<5	0.09	<50	0.95	520	48	<0.05	<5	190	200	23.3	10	<5	13
280119		<50	<5	0.08	<50	1,63	690	124	<0.05	18	260	120	35.5	30	<5	19
280120		<50	<5	<0.05	<50	0,19	170	108	<0.05	16	140	310	41.7	20	<5	<5
280121		<50	<5	1.60	<50	1.92	620	<5	<0.05	36	3570	10	0.23	10	<5	70
280122		<50	<5	1.41	<50	1.76	540	<5	<0.05	18	3420	<10	0.15	20	<5	59
280123		<50	<5	<0.05	<50	0.13	170	140	<0.05	<5	100	230	42.8	20	<5	<5
280124		<50	<5	<0.0 5	<50	0.15	150	144	<0.05	<5	90	100	46.5	<10	<5	<5
280125		<50	<5	0.07	<50	0.19	130	27	< 0.05	<5	<50	<10	34.6	<10	<5	<5
280126		<50	<5	0.09	<50	0.50	320	29	<0.05	<5	<50	20	39.2	<10	<5	7
280127		<50	<5	0.10	<50	0.44	260	50	<0.05	<5	<50	20	33.5	10	<5	5
280128		<50	<5	0.11	<50	0.67	220	53	<0.05	<5	60	10	32.2	<10	<5	<5
280129		<50	<5	0.15	<50	<0.05	<30	49	<0.05	<5	<50	20	12.25	10	<5	<5
280130		<50	<5	0.10	<50	0.09	30	17	<0.05	<5	150	<10	11.65	10	<5	<5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti % 0.05	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Zn-AA46 Zn % 0.01	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	
280091		<0.05	<50	<50	<5	<50	>50000	10.35			
280092		<0.05	<50	<50	19	<50	29000			_	
280093		<0.05	50	50	40	<50	>50000	6.80	242	7.40	
280094		<0.05	<50	<50	49	<50	8730				
280095		<0.05	<50	<50	49	<50	3470		273	13.70	
280096		<0.05	<50	<50	<5	<50	34200				
280097		0.38	<50	<50	134	<50	130				
280098		<0.05	<50	<50	<5	<50	3230				
280099		<0.05	<50	<50	<5	<50	400				
280100		<0.05	NOU	<50		<u></u>	90				
280101		<0.05	<50	<50	<5	<50	1120				
280102		<0.05	<50	<50	<5	<50	2050				
280103		<0.05	<50	<50	26	<50	34600				
280104		<0.05	<50	<50	57	<50	26100				
280105		NOD	<u></u>	<50		<u></u>	6040				
280106		<0.05	<50	<50	26	<50	650				
280107		<0.05	<50	<50	5	<50	3180				
280108		<0.05	<50	<50	7	<50	1520				
280109		<0.05	<50	<50	<5	<50	37000				
280110		<0.05	<50	<50		<50	2890				· · · · · · · · · · · · · · · · · · ·
280111		<0.05	<50	<50	<5	<50	5080				
280112		<0.05	50	<50	68	<50	19750				
280113		<0.05	<50	<50	<5	<50	4230				
280114		<0.05	<50	<50	<5	<50	1070				
280115		<0.05	<50	<50	<5	<50	470				
280116		<0.05	<50	<50	<5	<50	1200				
280117		<0.05	<50	<50	<5	<50	2920				
280118		<0.05	<50	<50	<5	<50	4790				
280119		<0.05	<50	<50	11	<50	26100				
280120		<0.05	<50	<50	<5	<50	4000				······································
280121		0.34	<50	<50	135	<50	180				
, 280122		0.38	<50	<50	120	<50	60				
280123		<0.05	<50	<50	<5	<50	8070				
280124		<0.05	<50	<50	<5	<50	2900				\$
280125		<0.05	<50	<50	<5	<50	600			-	
280126		<0.05	<50	<50	<5	<50	690				
280127		<0.05	<50	<50	<5	<50	650				
280128		<0.05	<50	<50	<5	<50	220				
280129		<0.05	<50	<50	<5	<50	110				
280130		<0.05	<50	<50	<5	<50	20				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

1

Sample Description	Method Analytø Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-AA23 Au Check ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm §	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 6	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05
280131		2.66	0.006		<1	0.34	20	<50	<5	10	0.08	<5	<5	46	27	2.96
280132		5.88	0.015		<1	0.30	90	<50	<5	<10	0.72	19	9	55	67	6.30
280133		3.54	0.112		14	0.17	180	<50	<5	<10	0,12	69	9	89	2400	5.07
280134		2.50	0.045		<1	0.34	10	<50	<5	<10	0.15	50	35	95	349	11.10
280135		2.98	0.028		<1	1.09	30	<50	<5	<10	0.11	15	24	142	1520	12.35
280136		2.70	0.013		<1	2.33	10	<50	<5	<10	0.15	<5	30	203	1355	7.47
280137		4.70	0.054		<1	2.60	50	<50	<5	<10	0.14	84	43	185	668	12.00
280138		4.36	0.015		1	3.11	70	<50	<5	<10	0.51	29	37	175	206	6.36
280139		4.90	0.059		1	3.80	40	<50	<5	10	3.22	51	26	166	2250	11.85
280140		4.58	0.033		1	5.26	30	<50	<5	10	0.28	<5	42	249	1500	11.80
280141		5.04	0.015		<1	4.81	<10	<50	<5	10	1.60	40	35	238	425	7.44
280142		4.82	0.007		1	5.73	30	<50	<5	10	0.32	26	38	226	321	8.27
280143		3.74	0.019		3	4.42	10	<50	<5	10	1.65	49	33	251	974	6.03
280144		3.36	0.120		18	2.06	20	150	<5	<10	0.44	108	10	78	6030	4.96
280145		4.02	0.015		1	0.62	<10	120	<5	<10	0.25	8	9	56	326	4.92

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

Sample Description	Method Analyte Units	ME-ICP41a Ga ppm	ME-ICP41a Hg ppm	ME-ICP41a K %	ME-ICP41a La ppm	ME-ICP41a Mg %	ME-ICP41a Mn pom	ME-ICP41a Mo ppm	ME-ICP41a Na %	ME-ICP41a NI ppm	ME-ICP41a P ppm	ME-ICP41a Pb ppm	ME-ICP41a S %	ME-ICP41a Sb ppm	ME-ICP41a Sc ppm	ME-ICP41a Sr ppm
	LUK	50	5	0.05	50	0.05	30	5	0.05	5	50	10	0.05	10	5	5
280131		<50	<5	0.09	<50	1.28	100	<5	<0.05	12	140	20	2.90	<10	<5	<5
280132		<50	<5	0.07	<50	0.59	260	47	0.05	10	1180	10	6.89	10	<5	8
280133		<50	<5	<0.05	<50	<0.05	<30	25	<0.05	11	480	30	6.07	<10	<5	<5
280134		<50	<5	0.09	<50	0.21	80	13	0.06	90	710	30	12.30	<10	<5	5
280135		<50	<5	<0.05	<50	4.45	1370		<0.05	88	370	10	11.20	10	12	<5
280136		<50	<5	<0.05	<50	6.38	2620	<5	<0.05	102	410	<10	4.33	<10	17	<5
280137		<50	<5	<0.05	<50	7.07	2360	9	<0.05	92	470	20	10,10	<10	23	<5
280138		<50	<5	<0.05	<50	9.55	2970	<5	<0.05	65	450	<10	3.22	10	27	<5
280139		<50	5	<0.05	<50	7.89	4520	5	<0.05	45	490	40	10.15	<10	21	12
280140		<50	<u></u>	<0.05	<00	7.80	2000		<0.05	90	460	<10	/.8/	<10	27	<5
280141		<50	8	<0.05	<50	8.60	4220	<5	<0.05	88	570	10	4.11	<10	25	8
280142		<50	<5	<0.05	<50	8.76	2600	<5	<0.05	61	490	<10	3.91	<10	30	<5
280143		<50	<0	<0.05	<50	7.82	4200	<5	<0.05	102	450	480	5.06	<10	20	1
280144		<50	<5	0.07	<50	3.28 1.42	400	<5	<0.05	-19 <5	250	400 <10	5.00	<10	<5	<5
									-0.00							
		1														
		1														
		1														
		1														
		1											٠			
		1														
		1														

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 10-SEP-2004 Account: LTU

Project: Kut

CERTIFICATE OF ANALYSIS VA04055093

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti % 0.05	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Zn-AA46 Zn % 0.01	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	
280131 280132 280133		<0.05 <0.05 <0.05	50 <50 <50	<50 <50 <50	<5 <5 5	<50 <50 <50	250 4340 14950				
280134 280135		<0.05 <0.05	<50 <50	<50 <50	11 71	<50 <50	10100 3680				
280136 280137		<0.05 <0.05	<50 <50	<50 <50	99 144	<50 <50	1200 13700				
280138		<0.05	<50	<50	183	<50	6590				
280139 280140		<0.05 <0.05	<50 <50	<50 <50	149 192	<50 <50	9340 1760				
280141		<0.05	<50	<50	170	<50	8000				
280142 280143		<0.05	<50 <50	<50 <50	211 132	<50 <50	5350 11600				
280144 280145		<0.05 <0.05	<50 <50	<50 <50	19 <5	<50 <50	28800 2360				
Commente: sample 28	80095 sho		u second di		6 71 000						

900-808 W HASTINGS ST **EXCELLENCE IN ANALYTICAL CHEMISTRY** VANCOUVER BC V6C 2X4

ROB W

To: WESTERN KELTIC MINES INC.

SPL-21

PUL-31

Page: 1 Finalized Date: 11-SEP-2004 Account: LTU

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

CERTIFICATE VA04056370

Project: Kutcho

P.O. No.:

This report is for 43 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 24-AUG-2004.

The following have access to data associated with this certificate: PETER HOLBEK

DONALD

ALS CODE DESCRIPTION WEI-21 Received Sample Weight LOG-22 Sample login - Rcd w/o BarCode **CRU-31** Fine crushing - 70% <2mm

SAMPLE PREPARATION

Split sample - riffle splitter

Pulverize split to 85% <75 um

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES
Ag-AA46	Ore grade Ag - aqua regia/AA	AAS
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Place Com

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 11-SEP-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04056370

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
280201		2.62	0.011	<1	0.21	<10	<50	<5	<10	7.03	<5	<5	52	293	1.98	<50
280202		1.74	0.018	2	0.22	<10	<50	<5	<10	8.87	<5	6	6	769	3.19	<50
280203		2.86	<0.005	<1	0.08	50	<50	<5	<10	5.62	<5	<5	71	220	1.01	<50
280204		2.02	0.011	21	0.16	180	<50	<5	10	11.25	<5	6	<5	16750	3.22	<50
280205		1.60	<0.005	3	0.12	50	<50	<5	<10	10.10	<5	<5	47	1605	1.86	<50
280206		1.36	0.050	13	0.23	10	<50	<5	<10	5.60	345	10	<5	15200	3.25	<50
280207		1.50	0.070	10	0.32	40	60	<5	<10	3.82	218	7	16	8750	4.25	<50
280208		1.06	0.014	1	0.61	50	90	<5	<10	8.84	<5	6	<5	134	2.41	<50
280209		3.06	0.069	7	2.62	<10	50	<5	<10	1.65	<5	5	10	11950	3.48	<50
280210		3.62	0.027	1	3.60	20	<50	<5	<10	1.30	<5	9	<5	6920	2.27	<50
280211		2.46	0.040	14	3.24	10	<50	<5	<10	0.43	<5	8	16	560	1.70	<50
280212		1.40	0.405	>200	1.22	40	<50	<5	<10	0.20	247	6	<5	40300	2.56	<50
280213		2.14	3.64	18	2.25	100	50	<5	<10	0.15	21	12	20	13450	3.37	<50
280214		0.90	0.297	11	1.80	<10	<50	<5	10	0.32	15	<5	<5	28800	21.2	<50
280215		1.12	0,107	4	2.22	<10	<50	<5	<10	0.24	<5	9	23	7470	15.35	<50
280216		1.82	0.967	35	0.45	40	100	<5	<10	<0.05	24	<5	<5	>50000	32.0	<50
280217		1.22	<0.005	3	1.84	<10	130	<5	<10	2.05	<5	30	120	305	3.98	<50
280218		1.54	0.850	49	0.27	30	70	<5	10	<0.05	30	5	<5	22800	21.9	<50
280219		1.88	1.730	103	0.10	80	<50	<5	10	<0.05	66	<5	35	17850	30.1	<50
280220		1.88	2.82	>200	0.10	100	<50	<5	60	0.08	111	<5	29	36400	37.0	<50
280221		1.80	0.995	38	0.18	60	70	<5	10	0.15	41	<5	<5	34000	32.5	<50
280222		1.70	1.100	34	0.94	50	<50	<5	<10	0.59	263	<5	20	43400	28.6	<50
280223		1.58	2.12	70	0.12	110	<50	<5	30	1.84	1590	<5	<5	19050	19.40	<50
280224		2.26	3.85	>200	0.07	40	<50	<5	20	6.97	342	<5	9	>50000	23.0	<50
280225		1.70	0.571	46	1.83		100	<0	10	0.08	/2	<5	<0	11300		<50
280226		1.50	0.509	21	1.60	40	<50	<5	20	0.11	<5	<5	<5	11400	12.25	<50
280227		0.70	0.110	4	0.35	30	50	<5	<10	<0.05	16	<5	41	270	4.61	<50
280229		2.74	0.215	8	0.41	120	<50	<5	20	0.10	19	162	<5	5810	38.4	<50
280230		2.60	0.053	4	0.24	20	<50	<5	10	<0.05	53	40	50	11/5	12.80	<50
280231		1.88	0.020	1	0.25		<50	<5	10	<0.05	<5	18	<0	162	8.40	<50
280232		2.12	0.020	1	0.22	30	<50	<5	<10	<0.05	8	22	37	100	9.66	<50
280233		2.54	0.013	<1	0.23	<10	<50	<5	10	<0.05	<5	12	<5	75	6.23	<50
280234		2.84	0.019	1	0.29	10	<50	<5	<10	<0.05	<5	11	19	46	5.13	<50
280235		2.14	0.017	1	0.29	10	<50	<5	10	0.07	7	19	<5	152	4.13	<50
280236		3.10	0.014	1	0.37	<10	<50		10	0.15	8	30	30	133	6.51	<50
280237		2.90	0.005	1	0.23	<10	<50	<5	10	0.37	17	7	<5	293	3.57	<50
200238		1.62	0,111	30	0.16	420	<50	<5	<10	0.83	49	144	32	21500	31.0	<50
200239		2.56	0,090	5	0.20	10	/U <50	<0	<10	2.04	<5	<5	<5	3090	2.41	<50
280240		2.50	0.000	104	0.13	230	<50	<5 -5	<10	1.68	224	131	16	>50000	34.8	<50
200241		3.10	0,260	43	0.18	320	<50	<5	20	1.26	192	120	<5	21400	38.7	<50

Comments: Highly mineralized samples may bias results for some elements

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 11-SEP-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04056370

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm	ME-ICP41a K %	ME-ICP41a La ppm	ME-ICP41a Mg %	ME-ICP41a Mn ppm 20	ME-ICP41a Mo ppm	ME-ICP41a Na %	ME-ICP41a Ni ppm	ME-ICP41a P ppm	ME-ICP41a Pb ppm	ME-ICP41a S %	ME-ICP41a Sb ppm	ME-ICP41a Sc ppm	ME-ICP41a Sr ppm	ME-ICP41a Ti %
		3	CU.U	00	<u> </u>	30		0.03	<u> </u>		10	¢0.0	UF			0.03
280201		<5	0.11	<50	3.61	1150	73	<0.05	6	100	<10	0.87	<10	<5	124	<0.05
280202		<5 -5	<0.05	<50	5.90	1520	200	<0.05	12	120	30	1.35	<10	5	1/2	<0.05
280203		<5 25	<0.05	<00	2.74	1000	140	<0.05	<0	400	10	1 55	190	<0 E	0/ 170	<0.05
280204		<5	0.07 <0.05	<50	5.71	2290	07 61	<0.05	10	510 410	20	1.55	100	5 <5	146	<0.05
280205					2.00	1240	107	<0.05	40	410	40	4.94			00	<0.05
280206		<5	0.12	<50	2.79	1020	82	<0.05	13	270	120	4.04	10	<5	58	<0.05
280207		<5	0.70	<50	5.80	4090	10	<0.05	10	260	40	171	10	<5	164	<0.05
280209		<5	0.13	<50	6.72	1040	5	<0.05	<5	300	350	2 48	10	<5	58	<0.05
280210		<5	0.06	<50	7.16	870	5	<0.05	<5	340	<10	1.34	<10	<5	43	<0.05
280211		<5	0.10	<50	5.67	500	5	<0.05	<5	110	<10	0.93	<10	<5	21	<0.05
280212		12	0.08	<50	2.14	220	17	<0.05	<5	150	160	4.65	<10	<5	9	<0.05
280213		<5	0.10	<50	3.83	280	8	<0.05	<5	<50	150	3.37	10	<5	10	<0.05
280214		6	<0.05	<50	3.47	380	13	<0.05	21	110	20	23.0	<10	5	5	<0.05
280215		<5	0.07	<50	3.78	340	24	<0.05	11	150	10	16.40	10	<5	9	<0.05
280216		6	0.18	<50	0.24	50	49	<0.05	23	<50	1680	34.9	<10	<5	<5	<0.05
280217		<5	1.66	<50	2.08	570	<5	<0.05	30	3450	<10	0.12	<10	<5	47	0.28
280218		<5	0.12	<50	0.05	30	26	<0.05	17	<50	1500	24.0	10	<5	<5	<0.05
280219		9	0.05	<50	< 0.05	30	52	<0.05	13	<50	2570	33.3	20	<5	<5	<0.05
280220		<5	<0.05	<50	0.07	50	72	<0.05	30	110	4230	40.9	20	<5	<5	<0.05
280221		7	0.07	<50	0.14	100	27	<0.05	19	<50	1450	35.1	10	<5	<5	<0.05
280222		<5	<0.05	<50	1.68	410	38	<0.05	23	520	1160	33.1	<10	<5	9	<0.05
280223		8	<0.05	<50	0.//	720	/9 67	<0.05	41	1980	4690	36,0	30	<5 ~5	11 47	<0.05
280224		20	0.00	<50	3.00 2.29	2940	30	0.02	13	90	1200	29.1 32.6	10	~5	4/ 10	<0.05
200220			-0.12		4.20	200		<0.00				40.00				
280226		<5 0	<0.05	<50	2.73	200	10	<0.05	21	<50	50	12.80	<10	<0	<5	<0.05
200227			0.07	<50	0.31 <0.05	40 70	20	0.03	5 18	270	140	4.90	<10	<5	<5	<0.05
280220		<5	0.00	<50	<0.05	<30	33	<0.05	17	<50	10	14 20	<10	<5	~5 <5	<0.05
280231		<5	0.09	<50	<0.05	<30	15	<0.05	6	50	20	8.91	<10	<5	<5	<0.05
280232		6	0.08	<50	<0.05	<30	39	<0.05	<5	50	20	10.45	<10	<5	<5	<0.05
280233		10	0.08	<50	<0.05	<30	12	<0.05	25	<50	30	6.60	<10	<5	<5	<0.05
280234		6	0.11	<50	0.08	<30	7	<0.05	15	<50	10	5.46	<10	<5	<5	<0.05
280235		<5	0.11	<50	0.25	50	10	<0.05	10	130	50	4.38	~ 10	<5	<5	<0.05
280236		9	0.14	<50	0.58	100	9	0.05	5	<50	40	6.93	<10	<5	5	<0.05
280237		<5	0.10	<50	0.50	210	10	<0.05	19	130	20	3.80	<10	<5	6	<0.05
280238		13	0.06	<50	0.44	570	96	<0.05	24	100	300	34.3	<10	<5	6	<0.05
280239		<5	0.10	<50	1.38	1370	6	<0.05	23	90	100	2.49	<10	<5	15	<0.05
280240		16	<0.05	<50	0.89	860	192	<0.05	61	190	1490	40.5	<10	<5	11	<0.05
280241		15	<0.05	<50	0.63	630	124	<0.05	46	640	200	44.1	20	<5	45	<0.05

Comments: Highly mineralized samples may bias results for some elements

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 11-SEP-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04056370

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA45 Zn % 0.01	
280201		<50	<50	9	<50	470				
280202		<50	<50	15	<50	1060				
280203		<50	<50	<5	<50	110				
280204		<50	<50	<5	<50	410				
280205		<50	<50	<5	<50	180				
280206		<50	<50	7	<50	>50000			6.05	
280207		<50	<50	6	<50	42900				
280208		<50	<50	<5	<50	530				
280209		<50	<50	(<50	1310				
280210		<50	<50	0	<50	1180				
280211		<50	<50	<5	<50	630				
280212		<50	<50	<5	<50	39500	608			
280213		<50	<50	<5	<50	3640				
280214		<50	<50	<5	<50	2680				
280215		<50	<50	<5	<50	1120				
280216		<50	<50	<5	<50	3840		5.79		
280217		<50	<50	131	<50	60				
280218		<50	<50	<5	<50	6190				
280219		<50	<50	<5	<50	13250				
280220		<50	<50	<5	<50	23500	268			•
280221		<50	<50	<5	<50	8040				
280222		<50	<50	<5	<50	48100				
280223		<50	<50	26	<50	>50000			29.9	
280224		<50	<50	8	<50	>50000	211	4.93	6.48	
280225		<50	<50	11	<50	12950				
280226		<50	<50	12	<50	1010				
280227		<50	<50	<5	<50	3020				
280229		<50	<50	8	<50	3450				
280230		<50	<50	5	<50	9110				
280231		<50	<50	<5	<50	150				
280232		<50	<50	<5	<50	1600				
280233		<50	<50	<5	<50	60				
280234		<50	<50	<5	<50	30				
280235		<50	<50	<5	<50	1440				1
280236		<50	<50	<5	<50	1540				
280237		<50	<50	<5	<50	3520				
280238		<50	<50	<5	<50	8160				
280239		<50	<50	<5	<50	570				
280240		<50	<50	7	<50	38800		5.61		
280241		<50	<50	19	<50	32800				

Comments: Highly mineralized samples may bias results for some elements

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 11-SEP-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04056370

Sample Description	Method	WEI-21	Au-AA23	ME-ICP41a												
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Bo	Bl	Ca	Cd	Co	Cr	Cu	Fe	Ga
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm
	LOR	0.02	0.005	1	0.05	10	50	5	10	0.05	5	5	5	5	0.05	50
280242		3.10	0.349	49	0.08	230	<50	<5	30	1.36	231	180	25	34600	38.1	<50
280243		2.42	0.162	20	0.23	220	<50	<5	20	0.68	136	98	<5	20300	39.7	<50
280244		2.24	0.089	5	0.17	20	<50	<5	<10	<0.05	49	118	48	1955	14.00	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 11-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a \$ % 0.05	ME-ICP41a 85 ppm 10	ME-ICP41a So ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41# Ti % 0.05
280242 280243 280244		12 16 <5	<0.05 0.07 0.07	<50 <50 <50	0.65 0.37 <0.05	480 360 40	56 108 48	<0.05 <0.05 <0.05	40 18 10	1180 160 <50	240 130 100	44.5 44.4 15.55	<10 20 <10	<5 <5 <5	12 5 <5	<0.05 <0.05 <0.05
													\$			
Comments: Highly min	eralized s	amples may	bias results	for some e	lements											

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 11-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01
280242		<50	<50	21	<50	38400			
280243		<50	<50	7	<50	22600			
280244		<50	<50	<5	<50	8610			

VA04057353 - Finalized

CLIENT : "LTU - Western Keltic Mines Inc."

of SAMPLES : 64

DATE RECEIVED : 2004-08-30 DATE FINALIZED : 2004-09-14

PROJECT : "Kutcho"

CERTIFICATE COMMENTS : "Highly mineralized samples may bias results for some elements"

PO NUMBER : " "

-	Au-AA23	Au-AA23	ME-ICP41a								
SAMPLE	Au	Au Check	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co
DESCRIP	1 ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
280146	s <0.005		2	0.43	20	60	<5	<10	3.23	5	6
280147	' 0.218		28	0.41	130	50	<5	20	0.12	155	130
280148	0.006		1	0.25	30	<50	<5	<10	<0.05	<5	17
280149	0.006		<1	0.94	40	60	<5	<10	0.38	<5	10
280150	0.162		15	0.5	20	<50	<5	20	1.32	75	46
280245	0.08		6	0.08	180	<50	<5	30	0.14	17	72
280246	0.063		3	0.05	300	<50	<5	10	0.16	12	33
280247	0.071		5	<0.05	310	<50	<5	10	0.15	69	33
280248	0.124		6	0.06	250	<50	<5	40	0.27	129	58
280249	0.006		1	0.97	20	140	<5	10	4.57	14	8
280250	0.101		27	0.08	240	<50	<5	20	5.45	389	126
280251	0.252		51	0.08	250	<50	<5	20	7.1	104	176
280252	0.177		37	0.05	270	<50	<5	10	7.71	59	157
280253	0.461		47	0.09	190	<50	<5	· 10	6.47	19	171
280254	0.118		6	0.38	50	<50	<5	10	0.16	11	37
280255	0.064		4	0.25	<10	<50	<5	<10	0.46	<5	23
280256	0.022		1	0.22	<10	<50	<5	20	0.11	<5	33
280257	′ <0.005		<1	0.89	<10	50	<5	<10	2.48	<5	7
280258	0.161		6	<0.05	140	<50	<5	20	8.39	108	151
280259	0.152		12	0.08	150	<50	<5	20	7.73	262	91
280260	0.189		63	0.39	330	<50	<5	50	13.5	412	270
280261	0.471		49	0.06	170	<50	<5	40	8.53	255	157
280262	<0.005		1	2.31	<10	170	<5	<10	2.93	<5	37
280263	0.061		5	0.4	60	70	<5	10	1.17	17	123
280264	0.012		2	0.76	20	100	<5	<10	0.09	5	11
280265	0.023		3	0.53	<10	70	<5	<10	<0.05	13	31
280266	0.034		4	0.37	30	<50	<5	10	0.05	31	18
280267	0.021		3	0.72	<10	80	<5	10	<0.05	13	29
280268	0.05		4	0.34	10	<50	<5	<10	0.25	5	25
280269	0.418		34	0.67	30	80	<5	40	2.47	195	25
280270	0.089		13	0.19	260	<50	<5	30	1.4	76	37

	Au-AA23	Au-AA23	ME-ICP41a								
SAMPLE	Au	Au Check	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co
DESCRIPT	l ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm
280271	0.08		9	<0.05	390	<50	<5	30	0.83	27	53
280272	0.117		3	<0.05	330	<50	<5	50	0.49	68	311
280273	0.099		6	<0.05	460	<50	<5	40	0.22	31	38
280274	0.088		9	<0.05	440	<50	<5	30	0.15	94	38
280275	0.161		11	0.05	440	<50	<5	30	0.13	367	119
280276	0.138		6	0.1	170	<50	<5	<10	1.74	465	206
280277	0.295		34	<0.05	270	<50	<5	30	5.57	173	226
280278	0.876		68	0.07	330	<50	<5	30	5.54	35	324
280279	1.41	1.305	61	0.06	210	<50	<5	40	4.15	596	155
280280	0.31		51	<0.05	260	<50	<5	10	7.49	105	198
280281	0.006		3	1.66	<10	130	<5	<10	2.32	<5	23
280282	0.007		2	1.76	<10	150	<5	<10	2.19	5	28
280283	0.215		20	0.32	100	<50	<5	20	3.15	50	185
280284	0.133		3	0.56	30	80	<5	10	0.16	5	34
280285	0.064		1	0.22	<10	50	<5	10	0.14	19	36
280286	0.028		2	0.46	<10	50	<5	<10	0.09	<5	62
280287	7.6		162	0.38	170	<50	<5	260	2.34	166	101
280288	0.023		4	0.69	20	120	<5	<10	<0.05	<5	12
280289	0.049		1	0.32	60	60	<5	10	<0.05	9	70
280290	0.102		5	0.56	110	160	<5	<10	<0.05	11	34
280291	0.345		56	0.42	80	170	<5	10	<0.05	25	58
280292	0.144		4	0.34	30	70	<5	10	0.33	35	78
280293	0.137		10	0.07	270	<50	<5	10	0.32	34	124
280294	0.189		15	0.26	160	<50	<5	10	0.23	39	392
280295	5 <0.005		<1	1.96	10	210	<5	10	2.51	<5	21
280296	6 0.107		6	0.32	80	120	<5	<10	0.12	24	326
280297	0.038		1	0.24	50	50	<5	10	<0.05	16	162
280298	0.035		1	0.5	20	60	<5	<10	< 0.05	5	117
280299	0.02		<1	0.41	40	50	<5	10	0.26	<5	80
280300	0.016		<1	0.86	<10	150	<5	<10	0.05	<5	54
280301	0.022		1	0.37	<10	60	<5	<10	< 0.05	<5	30
280302	0.031		1	0.69	30	100	<5	<10	< 0.05	<5	110
280303	3 <0.005		1	1.91	<10	140	<5	10	2.07	<5	26

VA0405735

CLIENT : "I

of SAMPI

DATE REC

PROJECT

CERTIFIC/

PO NUMBE

-	ME-ICP41a									
SAMPLE	Cr	Cu	Fe	Ga	Hg	ĸ	La	Mg	Mn	Мо
DESCRIPT	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm
280146	30	305	2.55	<50	6	0.05	<50	2.88	810	<5
280147	148	9580	34.4	<50	5	0.09	<50	0.07	90	152
280148	39	432	6.56	<50	<5	0.07	<50	<0.05	<30	15
280149	77	691	3.64	<50	<5	0.21	<50	2.53	420	7
280150	61	8160	10.05	<50	<5	0.13	<50	0.09	110	142
280245	148	5000	41.8	<50	<5	<0.05	<50	0.08	130	55
280246	93	4550	44.7	<50	<5	<0.05	<50	0.08	120	57
280247	107	7230	45.7	<50	<5	<0.05	<50	0.08	130	61
280248	68	13700	41.4	<50	5	<0.05	<50	0.15	160	66
280249	55	412	3.12	<50	<5	0.26	<50	2.94	1930	18
280250	48	19850	28.8	<50	16	<0.05	<50	2.91	2340	76
280251	30	49100	27.1	<50	10	<0.05	<50	3.85	3460	43
280252	28	26400	27.4	<50	11	<0.05	<50	4.15	3710	59
280253	38	39100	29.8	<50	<5	<0.05	<50	3.33	3970	95
280254	59	4230	15	<50	<5	0.14	<50	0.12	90	29
280255	252	3480	16.05	<50	<5	0.11	<50	0.25	300	21
280256	67	1865	20.4	<50	7	0.1	<50	0.07	60	31
280257	64	89	1.8	<50	7	0.14	<50	1.26	850	7
280258	25	9680	27.1	<50	10	<0.05	<50	4.5	4460	88
280259	42	18300	26.1	<50	6	<0.05	<50	4.18	4820	52
280260	65	45200	46.6	<50	24	0.06	<50	7.28	6710	182
280261	27	31800	26.1	<50	23	<0.05	<50	4.54	4320	86
280262	163	352	4.82	<50	<5	2.17	<50	2.7	800	<5
280263	55	2810	18	<50	11	0.13	<50	0.63	470	92
280264	87	179	7.62	<50	10	0.28	<50	0.09	40	11
280265	121	1095	7.56	<50	12	0.14	<50	<0.05	<30	12
280266	40	1445	5.08	<50	5	0.1	<50	<0.05	30	11
280267	109	642	8.68	<50	11	0.24	<50	<0.05	<30	46
280268	34	3050	10.4	<50	9	0.11	<50	0.14	90	46
280269	55	22000	8.69	<50	9	0.21	<50	0.32	240	195
280270	98	10200	38.5	<50	9	0.06	<50	0.75	1260	79

	ME-ICP41a									
SAMPLE	Cr	Cu	Fe	Ga	Hg	ĸ	La	Mg	Mn	Мо
DESCRIPT	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm
280271	73	7560	38.7	<50	<5	<0.05	<50	0.42	770	62
280272	122	5890	43.2	<50	10	<0.05	<50	0.23	440	60
280273	82	11700	46.3	<50	<5	<0.05	<50	0.12	190	78
280274	144	9160	46.3	<50	20	<0.05	<50	0.07	160	78
280275	68	11950	41.4	<50	20	<0.05	<50	0.07	220	135
280276	99	2150	38.4	<50	13	<0.05	<50	0.78	1660	94
280277	28	16800	31.3	<50	11	<0.05	<50	2.84	4320	106
280278	44	34300	33.3	<50	15	<0.05	<50	2.87	2690	120
280279	30	30900	31.3	<50	18	<0.05	<50	2.08	2150	78
280280	29	39400	28.6	<50	13	<0.05	<50	3.92	3140	54
280281	116	552	3.66	<50	<5	1.49	<50	1.84	560	<5
280282	130	1715	4.26	<50	6	1.55	<50	2.09	660	<5
280283	47	16150	29.1	<50	18	0.1	<50	1.7	1190	100
280284	166	5200	14.8	<50	<5	0.26	<50	0.11	80	22
280285	81	1730	9.87	<50	15	0.1	<50	0.08	60	16
280286	210	724	17.9	<50	9	0.19	<50	0.06	40	11
280287	82	>50000	17.8	<50	21	0.06	<50	1.82	990	170
280288	150	578	5.51	<50	<5	0.18	<50	<0.05	<30	36
280289	67	1070	25.1	<50	5	0.1	<50	<0.05	<30	28
280290	163	5010	28.4	<50	<5	0.19	<50	<0.05	<30	9
280291	75	18750	29.9	<50	17	0.16	<50	<0.05	40	19
280292	131	1195	40.2	<50	12	0.1	<50	0.18	90	<5
280293	85	4500	45.3	<50	10	<0.05	<50	0.15	110	8
280294	145	7350	44.8	<50	9	0.06	<50	0.11	100	20
280295	148	248	3.9	<50	10	1.5	<50	1.86	570	<5
280296	158	1445	42.8	<50	5	0.09	<50	0.07	70	30
280297	93	232	42.3	<50	10	0.09	<50	<0.05	50	55
280298	167	243	38	<50	12	0.15	<50	<0.05	30	43
280299	78	116	34.8	<50	15	0.12	<50	0.1	80	15
280300	163	112	23.9	<50	12	0.29	<50	0.06	40	23
280301	102	67	23.4	<50	<5	0.14	<50	<0.05	30	11
280302	165	104	36.8	<50	5	0.22	<50	<0.05	30	23
280303	128	192	3.91	<50	<5	1.53	<50	1.94	530	<5

VA0405735

CLIENT : "I

of SAMPI

DATE REC

PROJECT

CERTIFIC/ PO NUMBE

Ρ	O	N	JM	Ы

	ME-ICP41a									
SAMPLE	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Ti	Tí
DESCRIP1	%	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm
280146	0.08	7	<50	120	1.76	10	5	38	<0.05	<50
280147	0.06	18	180	1100	35.5	20	<5	5	<0.05	<50
280148	<0.05	7	60	150	6.51	10	<5	5	<0.05	<50
280149	0.11	<5	60	130	3.09	10	<5	15	<0.05	<50
280150	0.07	147	5290	280	10.85	20	<5	15	<0.05	<50
280245	<0.05	36	80	150	41.6	<10	<5	<5	<0.05	<50
280246	<0.05	31	90	120	44.3	10	<5	<5	<0.05	<50
280247	<0.05	31	<50	290	45.9	20	<5	<5	<0.05	<50
280248	<0.05	36	<50	560	46.2	<10	<5	<5	<0.05	<50
280249	0.17	21	220	30	2.89	<10	5	32	<0.05	<50
280250	<0.05	15	420	220	35.3	20	<5	20	<0.05	<50
280251	<0.05	<5	300	180	31.6	<10	<5	28	<0.05	<50
280252	<0.05	18	750	170	31.9	<10	<5	31	<0.05	<50
280253	<0.05	10	860	210	33.7	<10	<5	23	<0.05	<50
280254	<0.05	<5	<50	20	16.1	<10	<5	<5	<0.05	<50
280255	<0.05	<5	<50	10	17.25	<10	<5	<5	<0.05	<50
280256	<0.05	11	<50	<10	22.5	10	<5	<5	<0.05	<50
280257	0.23	12	160	10	1.57	10	<5	27	<0.05	<50
280258	<0.05	23	280	390	31.1	<10	<5	37	<0.05	<50
280259	<0.05	33	230	300	31.4	<10	<5	34	<0.05	<50
280260	0.09	40	1080	630	>50	<10	<5	66	<0.05	<50
280261	<0.05	34	530	510	31.5	10	<5	34	<0.05	<50
280262	0.05	40	3490	10	0.1	<10	5	75	0.36	<50
280263	0.06	20	110	220	19.8	<10	<5	13	<0.05	<50
280264	0.12	18	140	60	8.25	10	<5	11	<0.05	<50
280265	0.1	<5	<50	10	8.16	<10	<5	6	<0.05	<50
280266	0.06	9	<50	<10	5.73	<10	<5	5	<0.05	<50
280267	0.12	12	<50	40	9.38	10	<5	7	<0.05	<50
280268	0.05	67	130	40	11.45	<10	<5	15	<0.05	<50
280269	0.09	230	8610	510	11.55	<10	<5	57	<0.05	<50
280270	<0.05	96	160	240	43	<10	<5	14	<0.05	<50

	ME-ICP41a									
SAMPLE	Na	Ni	Р	Pb	S	Sb	Sc	Sr	Ti	TI
DESCRIPT	%	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm
280271	<0.05	28	<50	170	43.2	<10	<5	<5	<0.05	<50
280272	<0.05	36	<50	150	48.1	<10	<5	5	<0.05	<50
280273	<0.05	47	100	230	>50	10	<5	<5	<0.05	<50
280274	<0.05	30	<50	150	>50	10	<5	<5	<0.05	<50
280275	<0.05	41	110	370	48.2	30	<5	<5	<0.05	<50
280276	<0.05	35	740	190	46.1	10	<5	5	<0.05	<50
280277	<0.05	24	130	370	37	10	<5	13	<0.05	<50
280278	<0.05	14	80	480	37.5	10	<5	17	<0.05	<50
280279	<0.05	30	470	320	39.7	10	<5	13	<0.05	<50
280280	<0.05	16	1490	190	33.1	<10	<5	25	<0.05	<50
280281	<0.05	46	3290	<10	0.32	<10	<5	50	0.32	<50
280282	0.06	36	3230	<10	0.84	<10	<5	56	0.37	<50
280283	<0.05	30	570	210	33.1	10	<5	17	<0.05	<50
280284	0.05	8	90	10	16.15	<10	<5	6	<0.05	<50
280285	<0.05	6	<50	20	10.75	<10	<5	<5	<0.05	<50
280286	<0.05	16	<50	<10	19.6	<10	<5	<5	<0.05	<50
280287	<0.05	124	5150	950	23.2	<10	<5	66	<0.05	<50
280288	0.13	16	<50	<10	5.84	10	<5	6	<0.05	<50
280289	<0.05	16	<50	40	27.8	<10	<5	5	<0.05	<50
280290	0.07	6	110	40	30.7	<10	<5	5	<0.05	<50
280291	<0.05	8	<50	130	32.6	<10	<5	<5	<0.05	<50
280292	<0.05	16	150	160	44.4	<10	<5	7	<0.05	<50
280293	<0.05	15	180	230	49.2	<10	<5	<5	<0.05	<50
280294	<0.05	<5	200	<10	49.4	<10	<5	5	<0.05	<50
280295	<0.05	46	3560	<10	0.29	<10	5	85	0.4	<50
280296	<0.05	22	100	40	46.9	<10	<5	6	<0.05	<50
280297	<0.05	23	<50	40	45.8	<10	<5	<5	<0.05	<50
280298	0.07	14	<50	40	41.5	<10	<5	<5	<0.05	<50
280299	0.05	13	50	<10	37.8	10	<5	5	<0.05	<50
280300	0.11	25	<50	30	26	<10	<5	7	<0.05	<50
280301	<0.05	20	<50	<10	25.4	<10	<5	<5	<0.05	<50
280302	0.08	22	70	20	39.9	<10	<5	<5	<0.05	<50
280303	<0.05	39	3480	<10	0.16	<10	<5	54	0.45	<50

VA0405735						
CLIENT : "I						
# of SAMPI						
DATE REC						
PROJECT						
CERTIFIC						
PO NUMBI						
-	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	Cu-AA46	Zn-AA46
SAMPLE	U	V	W	Zn	Cu	Zn
DESCRIPT	ppm	ppm	ppm	ppm	%	%
280146	<50	5	<50	1090		
280147	<50	6	<50	26600		
280148	<50	<5	<50	760		
280149	<50	14	<50	680		
280150	<50	83	<50	14350		
280245	<50	30	<50	3680		
280246	<50	19	<50	2130		
280247	<50	9	<50	13900		
280248	<50	9	<50	29800		
280249	<50	12	<50	3220		
280250	<50	8	<50	>50000		6.5
280251	<50	5	<50	16150		
280252	<50	5	<50	9070		
280253	<50	<5	<50	2270		
280254	<50	<5	<50	2250		
280255	<50	<5	<50	380		
280256	<50	<5	<50	510		
280257	<50	<5	<50	220		
280258	<50	5	<50	16800		
280259	<50	9	<50	42500		
280260	<50	17	<50	>50000		2.05
280261	<50	8	<50	40500		
280262	<50	177	<50	200		
280263	<50	5	<50	2910		
280264	<50	<5	<50	1020		
280265	<50	<5	<50	2590		
280266	<50	<5	<50	6370		
280267	<50	6	<50	2070		
280268	<50	13	<50	810		
280269	<50	134	<50	35400		
280270	<50	116	<50	15600		

Page 7 of 8

	ME-ICP41a	ME-ICP41a	ME-ICP41a	ME-ICP41a	Cu-AA46	Zn-AA46
SAMPLE	U	V	W	Zn	Cu	Zn
DESCRIPT	ppm	ppm	ppm	ppm	%	%
280271	<50	28	<50	5650		
280272	<50	24	<50	15800		
280273	<50	19	<50	5720		
280274	<50	22	<50	18000		
280275	<50	14	<50	>50000		7.15
280276	<50	21	<50	>50000		8.34
280277	<50	10	<50	28600		
280278	<50	14	<50	5510		
280279	<50	10	<50	>50000		9.91
280280	<50	5	<50	17050		
280281	<50	116	<50	610		
280282	<50	120	<50	740		
280283	<50	<5	<50	8460		
280284	<50	<5	<50	860		
280285	<50	<5	<50	4310		
280286	<50	<5	<50	580		
280287	<50	383	<50	32600	12.45	
280288	<50	<5	<50	540		
280289	<50	<5	<50	490		
280290	<50	<5	<50	490		
280291	<50	<5	<50	780		
280292	<50	<5	<50	10450		
280293	<50	<5	<50	7500		
280294	<50	<5	<50	7190		
280295	<50	128	<50	130		
280296	<50	5	<50	4030		
280297	<50	<5	<50	2570		
280298	<50	<5	<50	480		
280299	<50	5	<50	60		
280300	<50	<5	<50	110		
280301	<50	<5	<50	780		
280302	<50	5	<50	120		
280303	<50	134	<50	50		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 1 Finalized Date: 1-OCT-2004 Account: LTU

C	ERTIFICATE VA040614	93	
			ALS CODE
Project: Kutcho			WEI-21
P.O. No			LOG-22
This report is for 62 Drill Co	re complex submitted to our lob in	Vancouver BC Canada an	CRU-31
10-SEP-2004	re samples submitted to our lab in	vancouver, BC, Canada on	SPL-21
The following have acces	s to data associated with this co	ertificate:	PUL-31
DONALD	PETER HOLBEK	ROB W	[

		SAMPLE PREPARATION	
ALS C	ODE	DESCRIPTION	
WE1-21		Received Sample Weight	
LOG-2	2	Sample login - Rcd w/o BarCode	
CRU-3	1	Fine crushing - 70% <2mm	
SPL-21	١	Split sample - riffle splitter	
PUL-3	1	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES
Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
Au-AA23	Au 30g FA-AA finish	AAS

Culo Jo & Aspen Augur Fe S Pb Hg.

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Presed Dog

\$

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 1-OCT-2004 Account: LTU

Project: Kutcho

Sample Des	scription	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Aì % 0.05	ME-ICP41a As ppm 10	MÉ-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	МЕ-ICP41a Ві ррт 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280304	with.	16 -	0.92	0.040	8	0.43	60	50	<5	<10	0.69	6	10	118	1445	5.21	<50
B280305			1.64	0.072	9	0.64	30	<50	<5	<10	2.53	199	13	99	5600	15.60	<50
B280306			3.12	0.853	30	0.09	300	<50	<5	<10	0.41	234	48	62	37500	32.8	<50
B280307			2.90	0.762	38	0.12	360	<50	<5	10	0.49	291	72	77	45000	38.9	<50
B280308			2.82	0.436	48	0.08	480	<50	<5	40	0.35	98	45	71	>50000	41.9	<50
B280309			3.94	0.501	55	0.08	590	<50	<5	20	0.14	328	65	94	25200	39.6	<50
B280310			3.24	0.381	43	0.05	770	<50	<5	20	0.30	186	98	96	14050	41.9	<50
B280311			3.00	0.290	19	<0.05	670	<50	<5	10	0.48	48	281	95	12850	43.2	<50
B280312			3.34	0.311	26	0.05	830	<50	<5	10	0.56	96	98	55	17950	41.6	<50
B280313			1.94	0.201	8	0.27	350	60	<5	10	4.00	32	32	47	7920	31.4	<50
B280314			2.18	0.132	4	0.13	250	<50	<5	<10	5.25	15	9	47	4900	34.7	<50
B280315			2.14	0.057	3	0.25	10	<50	<5	10	14.20	70	13	14	9190	6.43	<50
B280316			2.90	0.713	64	0.13	270	<50	<5	10	8.04	281	45	26	41000	26.8	<50
8280317			1.54	<0.005	<1	2.05	<10	130	<5	<10	2.19	<5	17	128	264	4.01	<50
B280318			3.14	0.379	27	0.27	80	50	<5	<10	3.17	108	28	37	15900	31.1	<50
B280319	·. · · · · · · · · · · · · · · · · · ·		3.30	0.062	1	0.21	20	<50	<5	<10	2.43	<5	86	59	2250	37.8	<50
B280320			3.04	0.085	4	0.19	50	<50	<5	<10	2.66	<5	90	60	12800	42.1	<50
B280321			2.88	0.110	18	0.22	70	60	<5	<10	2.48	10	60	50	23300	34.4	<50
B280322			3.26	0.032	1	0.28	<10	130	<5	<10	0.28	<5	29	50	376	14.35	<50
B280323			2.70	0.021	3	0.40	80	370	<5	<10	0.12	<5	6	54	327	9.22	<50
B280324			1.66	0.012	<1	0.48	30	70	<5	<10	5.21	14	<5	42	135	3.33	<50
B280325			1.98	2.36	80	0.21	1280	100	<5	100	0.39	216	375	39	>50000	33.9	<50
B280326			1.42	0.091	5	0.35	80	110	<5	<10	0.10	96	<5	49	1990	11.20	<50
B280327			1.82	2.27	120	0.28	180	120	<5	30	0.66	821	5	45	40100	18.70	<50
B280328			2.34	1.755	91	0.14	610	80	<5	30	0.61	515	86	41	28100	31.5	<50
B280329			1.72	0.010	1	2.09	<10	130	<5	<10	1,74	<5	20	136	337	4.08	<50
B280330			1.58	<0.005	<1	1.98	<10	120	<5	<10	1.83	<5	18	120	257	3.94	<50
8280331			2.24	0.270	6	0.33	310	50	<5	10	1,89	26	215	44	7010	31.9	<50
B280332			1.90	0.707	46	0.16	100	<50	<5	<10	0.40	149	21	45	38000	38.0	<50
B280333			3.20	1.240	106	0.05	190	<50	<5	<10	0.31	51	192	48	49100	41.9	<50
B280334			3.14	0.709	64	0.08	210	<50	<5	<10	0.28	226	102	49	32800	39.1	<50
B280335			3.46	0.675	32	80.0	350	<50	<5	10	0.25	374	128	64	17450	39.1	<50
B280336			2.72	0.250	14	0.13	260	50	<5	<10	0.40	141	96	54	13200	39.4	<50
B280337			3.16	.0.106	4	0.33	90	<50	<5	10	1.47	159	12	52	1380	28.0	<50
B280338			2.22	0.036	2	0.36	40	70	<5	<10	0.97	5	<5	48	419	8.26	<50
B280339			2.30	0.089	8	0.37	60	100	<5	<10	0.44	59	<5	53	6920	10.40	<50
B280340			2.12	0.149	10	0.33	90	170	<5	<10	0.74	5	10	60	7340	15.60	<50
B280341			3.46	0.135	11	0.16	140	90	<5	<10	0.18	7	288	91	6650	42.0	<50
B280342			3.10	0.156	4	0.11	270	<50	<5	<10	0.69	9	205	71	2420	42.7	<50
B280343			3.30	0.113	5	0.11	560	<50	<5	<10	0.79	<5	98	85	3850	43.8	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 1-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a \$ % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280304		<5	0.09	<50	0.15	140	24	0.08	61	1970	910	5.63	<10	<5	21	<0.05
B280305			0.10	<50	1.20	690	106	0.12	25	1760	230	19.05	<10	<5	33	<0.05
B280306		10	<0.05	<50	0.23	410	124	<0.05	16	100	2490	36.2	20	<5	6	<0.05
B280307		<5	<0.05	<50	0.28	540	164	<0.05	22	70	2980	44.9	20	<5	<5	<0.05
B280308		8	<0.05	<50	0.22	500	97	<0.05	22	<50	490	45.2	20	<5	<5	<0.05
B280309		9	<0.05	<50	0.12	320	99	<0.05	10	<50	900	46.1	40	<5	<5	<0.05
B280310		8	<0.05	<50	0.18	320	110	<0.05	8	90	460	48.0	30	<5	<5	<0.05
B280311		9	<0.05	<50	0.25	350	55	<0.05	12	110	170	47.9	20	<5	11	<0.05
B280312		<5	<0.05	<50	0.30	300	88	<0.05	6	180	290	46.9	20	<5	7	<0.05
B280313		6	0.07	<50	1,96	2500	55	<0.05	<5	710	410	34.7	30	<5	31	<0.05
B280314		<5	<0.05	<50	2.66	2750	35	<0.05	<5	440	120	38.1	10	<5	32	<0.05
B280315		<5	<0.05	<50	7.58	6500	304	0.05	<5	230	100	7.07	10	5	105	<0.05
B280316		14	<0.05	<50	3.91	5030	114	<0.05	33	2560	1330	32.8	10	<5	42	<0.05
B280317		<5	1,67	<50	2.00	610	<5	<0.05	28	3440	<10	0.09	<10	<5	57	0.30
B280318		9	0.05	<50	1.58	1460	59	<0.05	11	750	80	34.4	10	<5	27	<0.05
B280319		5	0.05	<50	1.26	840	19	<0.05	<5	90	10	40.8	<10	<5	19	<0.05
B280320		11	<0.05	<50	1.42	890	39	<0.05	6	100	30	46.1	<10	<5	24	<0.05
B280321		6	0.06	<50	1.30	910	27	<0.05	<5	110	60	37.4	. 10	<5	20	<0.05
B280322		5	0.14	<50	0.16	100	12	<0.05	8	<50	20	15.35	<10	<5	5	<0.05
B280323		<5	0.20	<50	0.12	70	15	<0.05	9	<50	40	9.87	<10	<5	9	<0.05
B280324		<5	0.10	<50	2.67	2100	60	0.08	31	2760	10	2.46	<10	5	49	< 0.05
B280325		5	<0.05	<50	0.23	300	205	<0.05	19	330	1220	38.1	20	<5	5	<0.05
B280326		<5	0.08	<50	0.54	240	2/6	0.07	16	70	250	12.65	10	<5	<5	<0.05
B280327		20	0.08	<50	0.35	490	143	0.05	20	<50	1150	28.7	<10	<5	10	<0.05
B200320			<0.05	<50	0.44		100	<0.05	2/	160	2090	39.3	40	<5		<0.05
B280329		7	1.70	<50	2.02	560	<5	<0.05	19	3460	10	0.15	<10	5	68	0.32
B280330		<5	1.67	<50	1.94	540	<5	<0.05	28	3640	10	0.16	<10	<5	48	0.31
B280331		8	0,07	<50	1.57	1210	62	<0.05	<5	140	470	34.2	30	<5	16	<0.05
B280332		9	<0.05	<50	0.22	220	68	<0.05	13	90	730	42.1	<10	<5	6	<0.05
B280333		6	<0.05	<50	0.15	220	107	<0.05	11	290	290	45.8	20	<5	<5	<0.05
B280334		8	<0.05	<50	0.17	260	114	<0.05	28	240	890	44.3	20	<5	<5	<0.05
B280335		11	<0.05	<50	0.13	320	166	<0.05	15	60	1600	45.2	,10	<5	<5	<0.05
B280336		<5	<0.05	<50	0.23	450	152	<0.05	9	<50	480	43.0	10	<5	<5	<0.05
B280337		<5	0.07	<50	0.72	1080	141	0.07	9	490	1010	31.3	10	<5	14	<0.05
B280338		<5	0.11	<50	0.47	730	177	0.07	10	<50	40	8.74	10	<5	12	<0.05
B280339		<5	0,11	<50	0.22	290	123	0.07	<5	110	40	11.65	10	<5	6	<0.05
B280340		<5	0.16	<50	0.37	460	209	<0.05	22	200	50	16.50	<10	<5	9	<0.05
B280341		6	0.06	<50	0.10	170	51	<0.05	22	<50	80	44.4	10	<5	5	<0.05
B280342		<5	0.05	<50	0.37	490	65	<0.05	5	<50	100	46.7	10	<5	5	<0.05
B280343		<5	<0.05	<50	0.40	380	45	<0.05	7	<50	30	48.0	10	<5	5	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 1-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Zn-AA46 Zn % 0.01	Cu-AA46 Cu % 0.01	
B280304		<50	<50	22	<50	970			
B280305		<50	<50	25	<50	35900			
B280306		<50	<50	18	<50	44600			
B280307		<50	<50	20	<50	>50000	5.31		
B280308		<50	<50	22	<50	17600		5.50	
B280309		<50	<50	15	<50	>50000	5.91		
B280310		<50	<50	16	<50	32900			
B280311		<50	<50	14	<50	8480			
B280312		<50	<50	6	<50	16350			
B280313		<50	<50	<5	<50	6510			
B280314		<50	<50	<5	<50	3760			
B280315		<50	<50	5	<50	15500			
B280316		<50	<50	21	<50	>50000	5.91		
B280317		<50	<50	136	<50	190			
B280318		<50	<50	15	<50	27300			
B280319		<50	<50	<5	<50	630			
B280320		<50	<50	<5	<50	690			
B280321		<50	<50	<5	<50	1210			· · · · · · · · · · · · · · · · · · ·
B280322		<50	<50	<5	<50	100			
B280323		<50	<50	<5	<50	60			
B280324		<50	<50	20	<50	3190			
B280325		<50	<50	12	<50	39400		8.55	
B280326		<50	<50	8	<50	20900			
B280327		<50	<50	5	<50	>50000	16.40		
B280328	-	<50	<50	8	<50	>50000	10.55		
B280329		<50	<50	149	<50	610			
B280330		<50	<50	148	<50	460			
B280331		<50	<50	7	<50	6510			
B280332		<50	<50	16	<50	32900			
B280333		<50	<50	<5	<50	11000			
B280334		<50	<50	7	<50	>50000	5.11		
B280335		<50	<50	<5	<50	>50000	7.12		1
B280336		<50	<50	<5	<50	26400			•
B280337		<50	<50	<5	<50	36500			
B280338		<50	<50	<5	<50	1420			
B280339		<50	<50	<5	<50	11750			
B280340		<50	<50	<5	<50	400			
B280341		<50	<50	<5	<50	1530			
B280342		<50	<50	<5	<50	1640			
B280343		<50	<50	<5	<50	700			

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 1-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04061493

\$

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Ai % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP4ta Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280344		3.16	0.274	19	0.21	340	90	<5	10	0.11	15	146	68	9200	41.0	<50
B280345		4.18	0.069	3	0.24	110	50	<5	<10	0.10	43	82	96	1515	38.4	<50
B280346		3.66	0.030	1	0.21	60	<50	<5	<10	0.08	<5	41	83	387	24.2	<50
B280347		3.44	0.060	3	0.26	70	50	<5	<10	0.06	<5	40	112	1010	19.20	<50
B280348		2.78	<0.005	<1	0.18	20	<50	<5	<10	16.00	12	<5	24	144	2.15	<50
B280349		2.12	0.096	5	0.53	60	50	<5	<10	0.08	13	43	71	3790	24.8	<50
B280350		2.42	0.349	52	0.10	270	<50	<5	30	0.40	154	424	55	23100	41.0	<50
B280351		1.86	0.128	2	0.32	50	<50	<5	<10	7.49	65	<5	44	3520	20.5	<50
B280352		1.40	0.230	14	0.17	420	50	<5	10	0.22	322	111	62	5220	38.9	<50
B280353		3.00	0.007	<1	3.49	<10	<50	<5	<10	1.71	<5	6	13	101	5.17	<50
B280354		2.74	0.017	1	0.37	<10	100	<5	<10	0.06	<5	89	64	167	39.6	<50
B280355		0.94	0.025	2	0.50	50	100	<5	<10	2.01	<5	34	60	9940	20.3	<50
B280356		2.22	0.010	1	0.35	20	100	<5	<10	0.49	<5	61	66	597	32.3	<50
B280357		1.60	<0.005	<1	2.31	10	150	<5	<10	2.39	<5	23	142	242	4.77	<50
B280358		1.88	0.008	1	0.33	40	80	<5	<10	0.08	<5	32	58	69	23.2	<50
B280359		3.04	0.005	<1	2.04	10	<50	<5	<10	3.96	<5	31	23	51	7.54	<50
B280360		1.50	0.007	<1	1.27	<10	110	<5	<10	1.16	<5	39	19	55	11.15	<50
B280361		3.50	0.022	1	0.56	30	100	<5	<10	1.06	6	65	63	186	31.8	<50
B280362		2.84	0.028	<1	0.50	60	110	<5	<10	1.10	<5	18	35	124	10.45	<50
B280363		2.78	0.034	<1	0.36	40	100	<5	<10	0.51	<5	14	62	278	11.25	<50
B280364		2.64	0.032	2	0.33	<10	90	<5	<10	0.34	<5	25 、	53	816	10.00	<50
B280365		3.24	0.040	3	0.37	50	80	· <5	<10	0.13	<5	17	65	1335	7.82	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 1-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04061493

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-tCP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280344		6	0.09	<50	0.06	80	47	<0.05	<5	<50	50	43.7	<10	<5	<5	<0.05
B280345		<5	0.10	<50	0.06	60	30	<0.05	6	<50	10	41.0	10	<5	<5	<0.05
B280346		5	0.08	<50	0.05	40	46	<0.05	<5	<50	10	25.6	10	<5	<5	<0.05
B280347		<5	0.10	<50	<0.05	30	35	<0.05	<5	<50	10	20.3	10	<5	<5	<0.05
B280348		<5	0.05	<50	8.35	6790	15	<0.05	<5	330	20	1.20	10	<5	69	<0.05
B280349		6	0.08	<50	0.22	80	38	0.13	15	<50	30	26.2	<10	<5	<5	<0.05
B280350		12	<0.05	<50	0.20	280	88	<0.05	8	180	500	45.0	20	<5	<5	<0.05
B280351		<5	0.05	<50	3.67	6820	7	0.07	<5	400	50	22.6	<10	<5	52	<0.05
B280352		11	<0.05	<50	0.47	270	106	<0.05	<5	230	360	43.7	10	<5	<5	<0.05
B280353		<5	<0.05	<50	7.40	1520	11	<0.05	<5	50	10	3.44	<10	8	14	<0.05
B280354		<5	0.10	<50	0.39	130	11	<0.05	<5	<50	30	41.4	10	<5	<5	<0.05
B280355		<5	0.12	<50	3.23	1150	31	<0.05	<5	<50	10	21.0	10	<5	21	<0.05
B280356		<5	0.11	<50	1.44	200	12	<0.05	<5	<50	20	3 3.9	<10	<5	<5	<0.05
B280357		<5	1.77	<50	2.19	700	<5	<0.05	27	3620	<10	0.15	10	7	71	0.28
B280358		<5	0.12	<50	0.38	70	18	<0.05	<5	90	20	24.3	10	<5	<5	<0.05
B280359		<5	<0.05	<50	5.79	2190	<5	<0.05	<5	1090	10	7.04	10	5	31	<0.05
B280360		7	0.10	<50	5,38	1160	10	<0.05	5	170	20	10.65	10	<5	8	<0.05
B280361		5	0.13	<50	1.74	640	14	<0.05	<5	<50	20	33.4	10	<5	6	<0.05
B280362		7	0.18	<50	2.13	800	19	<0.05	<5	<50	10	10.70	10	<5	10	<0.05
B280363		<5	0.15	<50	0.29	420	35	<0.05	<5	<50	<10	11.95	<10	<5	5	<0.05
B280364		<5	0.14	<50	0.30	260	24	<0.05	<5	<50	10	10.60	10	<5	9	<0.05
B280365		<5	0.16	<50	0.08	110	39	<0.05	5	<50	10	8.24	<10	<5	<5	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 1-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04061493

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-(CP41a W ppm 50	ME-ICP41a Zn ppm 10	Zn-AA46 Zn % 0.01	Cu-AA46 Cu % 0.01	
B280344		<50	<50	<5	<50	3520			
B280345		<50	<50	<5	<50	8/60			
B280346		<50	<50	<5	<50	120			
B280348		<50	<50	<5	<50	2140			
B280349		<50	<50	<5	<50	2860			
B280350		<50	<50	<5	<50	28700			
B280351		<50	<50	<5	<50	11200			
B280352		<50	<50	<5	<50	>50000	5.57		
B280353	_	<50	<50	7	<50	1040			
B280354		<50	<50	<5	<50	1030			
B280355		<50	<50	<5	<50	430			
B280356		<50	<50	<5	<50	260			
B280357		<50	<50	158	<50	70			
B280358		<50	<50	<5	<50	100			
B280359		<50	<50	<5	<50	520			
B280360		<50	<50	5	<50	850			
B280361		<50	<50	<5	<50	710			
B280362		<50	<50	<5	<50	510			
B280363		<50	<50	<5	<50	20			
B280364		<50	<50	<5	<50	60			
B280365		<50	<50	<5	<50	20			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Au-AA23

Ag-AA46

ME-ICP41a

Au 30g FA-AA finish

High Grade Aqua Regia ICP-AES

Ore grade Ag - aqua regia/AA

Page: 1 Finalized Date: 29-SEP-2004 Account: LTU

AAS

AAS

ICP-AES

CERTIFIC	ATE VA040628	08		SAMPLE PREPARATIO	N
			ALS CODE	DESCRIPTION	
Project: Kutcho P.O. No.: This report is for 92 Drill Core samples 14-SEP-2004. The following have access to data a	submitted to our lab in issociated with this c	Vancouver, BC, Canada on ertificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
DONALD	PETER HOLBEK	ROB W		ANALYTICAL PROCEDU	RES
			ALS CODE	DESCRIPTION	INSTRUMENT
			Cu-AA46 Pb-AA46 Zp-AA46	Ore grade Cu - aqua regia/AA Ore grade Pb - aqua regia/AA Ore grade Zn - aqua regia/AA	AAS AAS

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Reserves

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B280366 ພ¥ 🗢 📩	98 5 54	1.54	0.016	2	0.84	30	<50	<5	<10	0.26	53	6	17	371	5.02	<50
B280367		1.50	0.603	70	1.36	70	160	<5	<10	2.02	44	18	62	23900 *	9.57	<50
B260368	1	1.52	1.350	40	0.91	70	280	<5	<10	1.00	168	24	24	15650	15.75	<50
B280369		1.60	0.355	64	1.01	30	350	<5	20	2.34	22	5	30	26600	6.09	<50
B280370		1.98	0.024	2	1.22	20	260	<5	<10	2.27	15	7	13	625	4.74	<50
B280371		2.66	0.789	56	0.14	200	90	<5	40	2.77	209	444	12	33200	36.0	<50
B280372		1.66	0.074	4	1,16	20	470	<5	10	2.47	<5	30	6	3780	8.36	<50
B280373	[2.68	0.716	35	0.30	130	90	<5	10	2.05	160	59	<5	27400	35.3	<50
B280374		2.02	0.578	28	1.21	30	380	<5	<10	1.31	35	11	16	19200	18.00	<50
B280375		1.46	1.465	102	0.08	150	<50	<5	30	7.28	233	43	<5	>50000	25.2	<50
B280376		1.20	1.090	84	<0.05	230	<50	<5	40	5.51	207	112	<5	>50000	26.7	<50
B280377		1.24	1.040	89	<0.05	280	<50	<5	60	5.60	148	154	<5	>50000	29.6	<50
B280378		1.98	0.298	31	0.10	340	<50	<5	<10	2.14	253	104	10	21900	34.0	<50
B280379		1.98	0.725	31	0.32	140	<50	<5	<10	2.73	381	98	7	21600	33.3	<50
B280380		0.60	0.365	41	0.18	120	<50	<5	10	3.82	226	119	<5	24900	34.1	<50
B280381		0.76	0.259	47	0.08	120	<50	<5	10	8.02	198	131	<5	31200	25.5	<50
B280382		1.42	0.382	55	0.13	290	<50	<5	10	9.15	220	35	<5	41600	21.7	<50
B280383		1.84	<0.005	<1	2.02	30	160	<5	<10	1,96	<5	22	114	421	3.98	<50
B280384		1.24	2.64	160	0.06	180	<50	<5	130	9.57	134	71	<5	>50000	20.4	<50
B280385		1.58	0.142	22	0.45	120	140	<5	10	1.90	42	48	16	11100	21.8	<50
B280386		1.52	0.152	21	0.51	120	150	<5	<10	0.12	35	78	27	10200	23.9	<50
B280387		1.38	0.045	4	0.68	200	<50	<5	<10	0.59	12	<5	25	7460	3.86	<50
B280388		3.26	0.169	12	0.49	270	<50	<5	10	0.08	278	56	28	6680	28.2	<50
B280389		2.36	0.084	6	0.58	40	<50	<5	<10	<0.05	21	12	19	2400	5.35	<50
B280390		1.84	0.662	36	0.07	210	60	<5	<10	0.44	246	206	32	25600	39.3	<50
B280391		1.48	1.360	105	0.36	80	120	<5	<10	2.74	71	<5	47	46500	5.29	<50
B280392		2.96	1.160	43	0.20	220	230	<5	<10	2.22	357	69	70	22400	29.6	<50
B280393		2.16	0.135	10	0.28	10	<50	<5	10	9.84	<5	<5	58	6480 🖕	13,75	<50
B280394		2.82	0.057	2	0.58	50	<50	<5	10	2.36	<5	31	78	702	28.5	<50
B280395		2.50	0.078	2	0.77	10	50	<5	10	0.86	<5	138	72	765	34.2	<50
B280396		3.34	0,146	8	0.32	80	160	<5	20	0.28	<5	59	130	3070	41.8	<50
B280397		3.34	0.064	3	0.47	30	120	<5	10	0.78	<5	33	111	1495	39.4	<50
B280398		2.50	0.005	<1	0.75	<10	50	<5	10	9.51	<5	28	38	130	11.55	<50
B280399		3,60	0.015	1	0.48	10	100	<5	10	2.15	<5	34	101	355	34.8	<50
B280400 いいる… V	5 173-184	3.64	0.013	1	0.26	10	<50	<5	10	2,87	<5	67	110	687	37.7	<50
B280401		1.16	<0.005	<1	2.05	<10	110	<5	<10	2.89	<5	24	178	171	4.37	<50
B280402		3.10	0.021	2	1.52	<10	<50	<5	10	2.76	<5	52	61	1800	26.3	<50
B280403		2.72	0.244	14	1.12	20	190	<5	<10	0.89	<5	<5	55	4610	5.93	<50
B280404		0.84	<0.005	<1	0.80	10	110	<5	<10	3.92	<5	<5	39	57	1.72	<50
B280405		0.56	0.101	38	0.15	<10	490	<5	10	1.14	1185	<5	68	535	1.56	<50
		1		5 an	+						1				-	,

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Мп ррт 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a 8 % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41= Ti % 0.05	
B280366		<5	0.10	<50	<0.05	40	28	0.20	38	1080	120	5.51	<10	<5	10	<0.05	
B280367		<5	0.32	<50	0.05	80	158	0.23	201	9360	2520	11.00	<10	5	38	<0.05	
B280368		6	0.23	<50	0.31	310	81	0.15	70	2290	740	18.20	<10	<5	11	<0.05	
B280369		<5	0.30	<50	0.97	670	36	0.15	76	3710	320	6.67	<10	5	21	<0.05	
B280370		<5	0.26	<50	1.60	710	34	0.18	55	890	40	4.69	<10	<5	25	<0.05	
B280371		<5	<0.05	<50	1.41	2780	92	<0.05	43	230	820	38.7	<10	<5	18	<0.05	
B280372		<5	0.31	<50	1.55	820	57	0.16	24	50	30	8.76	<10	<5	31	<0.05	
B280373		7	0.09	<50	1.02	2940	56	<0.05	31	280	290	36.7	<10	<5	12	<0.05	
B280374		<5	0.28	<50	0.81	870	60	0.21	7	200	90	19.20	<10	<5	18	<0.05	
B280375		7	<0.05	<50	3.79	6450	41	<0.05	14	490	420	29.8	<10	<5	24	<0.05	
B280376		<5	<0.05	<50	2.87	5300	51	<0.05	6	70	550	30.3	<10	<5	21	<0.05	
B280377		<5	<0.05	<50	2.88	4850	41	<0.05	<5	140	350	33.5	<10	<5	19	<0.05	
B280378		10	<0.05	<50	0.39	1400	89	<0.05	13	90	390	37.7	10	<5	10	<0.05	
B280379		13	0.11	<50	1.07	1900	73	<0.05	10	480	380	38.8	<10	<5	10	<0.05	
B280380		<5	<0.05	<50	1.83	2570	76	<0.05	<5	1260	180	38.6	<10	<5	18	<0.05	
B280381		10	<0.05	<50	4.12	4720	82	<0.05	16	480	260	29.7	10	<5	29	<0.05	
B280382		12	<0.05	<50	4.91	4740	112	<0.05	9	1400	170	26.2	<10	<5	38	<0.05	
B280383		5	1.60	<50	2.01	570	<5	0.06	27	3510	<10	0.15	<10	5	50	0.35	
B280384		<5	<0.05	<50	5.23	4650	91	<0.05	6	1380	300	24.8	<10	<5	33	<0.05	
B280385		<5	0.20	<50	0.95	930	104	<0.05	5	330	70	23.4	<10	<5	10	<0.05	
B280386		5	0.21	<50	0.07	80	44	0.05	6	<50	190	25.3	<10	<5	<5	<0.05	
B280387		<5	0.11	<50	0.27	220	104	0.14	41	2030	270	3.83	10	<5	10	<0.05	
B280388		12	0.06	<50	<0.05	120	323	0.12	23	80	380	32.0	<10	<5	<5	<0.05	
B280389		<5	0.07	<50	<0.05	30	399	0.17	11	80	60	5.71	<10	<5	5	<0.05	
B280390		5	<0.05	<50	0.24	310	89	<0.05	34	140	850	42.9	20	<5	<5	<0.05	_
B280391		<5	0.07	<50	1.53	2030	142	0.08	8	130	690	6.27	<10	<5	20	<0.05	
B280392		10	0.07	<50	1.20	1000	156	<0.05	24	410	740	34.4	<10	<5	19	<0.05	
B280393		<5	<0.05	<50	5.87	4190	17	<0.05	9	1390	20	15.00	<10	<5	78	<0.05	
B280394		<5	<0.05	<50	3.83	940	21	<0.05	<5	320	20	29.7	<10	<5	19	<0.05	
B280395		7	<0.05	<50	2.00	860	23	<0.05	9	<50	30	34.6	<10	<5	5	<0.05	
B280396		8	0.13	<50	0.19	120	46	<0.05	<5	<50	60	43.6	<10	<5	<5	<0.05	
B280397		6	0.20	<50	0.46	330	22	0.05	14	50	20	41.1	<10	<5	7	<0.05	
B280398		<5	0.10	<50	6.04	3170	<5	0.09	9	280	20	11.40	~1 0	5	73	<0.05	
B280399		11	0.16	<50	1.38	840	39	<0.05	6	<50	30	36.5	<10	<5	14	<0.05	
B280400		9	<0.05	<50	1.89	1190	25	<0.05	<5	90	10	40.1	<10	<5	19	<0.05	
B280401		5	1.46	<50	1.92	630	<5	<0.05	27	3490	10	0.43	<10	7	102	0.40	
B280402		7	<0.05	<50	5.17	1300	16	<0.05	<5	110	20	27.4	<10	5	18	<0.05	
B280403		5	0.23	<50	2.38	580	15	<0.05	<5	<50	10	5.60	<10	<5	7	<0.05	
B280404		<5	0.14	<50	3.98	1140	<5	0.13	<5	60	30	0.55	<10	5	31	<0.05	
B280405		46	0.05	<50	0.61	340	18	<0.05	8	140	>50000	18.95	<10	<5	82	<0.05	/

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn pøm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Pb-AA46 Pb % 0.01	Zn-AA46 Zn % 0.01	
B280366		<50	<50	22	<50	9730					
B280367		<50	<50	197	<50	8990					
B280368		<50	<50	55	<50	30900					
B280369		<50	<50	94	<50	3220					
B280370		<50	<50	57	<50	2920					
B280371		<50	<50	18	<50	38900					
B280372		<50	<50	10	<50	970					
B280373		<50	<50	13	<50	37200					
B280374		<50	<50	5	<50	6460					
B280375		<50	<50	8	<50	42100		6.08			
B280376		<50	<50	5	<50	37000		7.64			
B280377		<50	<50	<5	<50	26500		6.74			
B280378		<50	<50	<5	<50	44100					
B280379		<50	<50	8	<50	>50000				7.62	
B280380		<50	<50	<5	<50	44400					
B280381		<50	<50	16	<50	37600					
B280382		<50	<50	13	<50	41400					
B280383		<50	<50	130	<50	330					
B280384		<50	<50	<5	<50	24700		7.31			
B280385		<50	<50	<5	<50	7830					· · · · · · · · · · · · · · · · · · ·
B280386		<50	<50	<5	<50	6590					
B280387		<50	<50	34	<50	2360					ł.
B280388		<50	<50	8	<50	>50000				5.94	
B280389		<50	<50	8	<50	4270					
B280390		<50	<50	<5	<50	>50000				5.80	
B280391		<50	<50	9	<50	15650					
B280392		<50	<50	7	<50	>50000				7.38	
B280393		<50	<50	<5	<50	900					
B280394		<50	<50	<5	<50	780					
B280395		<50	<50	<5	<50	2030					
B280396		<50	<50	<5	<50	450					
B280397		<50	<50	<5	<50	700					
B280398		<50	<50	<5	<50	2000					3
B280399		<50	<50	<5	<50	470					
B280400		<50	<50	<5	<50	200					
B280401		<50	<50	149	<50	60					
B280402		<50	<50	12	<50	1240					
B280403		<50	<50	<5	<50	470					
B280404		<50	<50	7	<50	730					
B280405		<50	<50	9	<50	>50000			5.40	>30.0	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Anelyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-iCP41a Ai % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a F o % 0.05	ME-ICP41a Ga ppm 50
B280406		1 96	0.012	4	0.85	30	250	<5	10	3.32	30	<5	42	239	2.61	<50
B280407		1.08	0.170	46	0.33	40	130	<5	20	1.33	29	6	98	5830	32.9	<50
B280408		0.96	0.019	2	1.04	40	170	<5	<10	1.51	5	8	64	306	5.78	<50
B280409		1.90	0.024	2	0.62	30	140	<5	<10	1.47	<5	9	93	641	10.85	<50
B280410		0.88	0.323	57	0.36	210	100	<5	<10	0.89	116	27	77	>50000	21.7	<50
B280411		2.08	0.027	2	0.47	30	130	<5	<10	0.85	17	6	23	1925	3.50	<50
B280412		2.80	0.409	32	0.14	660	<50	<5	<10	0.24	244	31	83	>50000	39.3	<50
B280413		1.78	<0.005	1	2.38	<10	140	<5	<10	2.67	<5	28	165	507	4.73	<50
B280414		3.28	0.600	53	0.06	970	<50	<5	30	0.15	151	65	77	18250	43.1	<50
B280415		2.76	0.464	35	0.08	940	<50	<5	20	0.15	132	104	97	13600	43.4	<50
B280416		2.30	0.303	17	0.07	510	<50	<5	10	0,17	69	169	99	9120	44.1	<50
B280417		3.14	0.410	31	0.07	750	<50	<5	20	0.10	124	198	120	15000	43.6	<50
B280418		3.30	0.380	31	0.07	850	<50	<5	30	0.12	239	61	86	14150	43.5	<50
B280419		3.02	0.334	25	0.06	780	<50	<5	20	0.24	550	40	99	14700	40.0	<50
B280420		1.82	<0.005	<1	2.16	<10	140	<5	<10	2.88	5	24	166	398	4.65	<50
B280421		2.42	0.415	30	0.07	720	<50	<5	30	0.66	473	36	91	18300	36.6	<50
B280422		1.98	0.229	18	0.75	60	50	<5	10	1.28	22	78	72	11450	33.0	<50
B280423		1.84	0.104	8	0.35	<10	<50	<5	<10	12.40	32	5	71	9630	4.92	<50
B280424		0.78	0.584	20	0.42	40	70	<5	<10	3.75	565	38	95	10800	10.55	<50
B280425		0.88	0.005	1	0.25	30	<50	<5	<10	11.00	<5	<5	18	295	1.38	<50
B280426		1.84	0.164	11	0.39	30	240	<5	20	2.71	56	32	150	8720	21.6	<50
B280427		1.54	0.816	58	0.26	40	130	<5	30	0.14	27	95	167	31100	19.85	<50
B280428		2.08	0.055	4	0.33	30	70	<5	10	<0.05	5	13	118	1870	6.16	<50
B280429		1.12	0.023	3	0.60	20	70	<5	<10	2.25	25	11	83	947	6.29	<50
B280430		2.56	0.016	3	0.55	20	<50	<5	<10	5.75	42	7	104	825	5.39	<50
B280431		2.60	0.334	31	0.45	100	<50	<5	40	0.54	218	147	102	25800	20.1	<50
B280432		1.24	0.011	<1	0.34	<10	<50	<5	10	0.17	5	<5	29	326	2.53	<50
B280433		2.78	0.674	60	0.05	400	60	<5	<10	0.24	217	29	84	37400	38.4	<50
B280434		1.32	<0.005	1	2.17	<10	130	<5	<10	2.95	<5	25	164	370	4.38	<50
B280435		3.06	1.420	61	<0.05	530	<50	<5	20	0.38	192	10	99	22200	42.0	<50
B280436		3.12	0.370	40	<0.05	730	<50	<5	20	0.29	139	159	79	20400	42.5	<50
B280437		2.72	0.338	28	<0.05	590	<50	<5	30	0.42	79	214	89	14700	43.5	<50
B280438		2.98	0.422	29	0.10	830	<50	<5	30	0.29	240	32	80	16000	40.5	<50
B280439		2.64	0.178	8	0.36	360	70	<5	<10	2.84	283	8	64	18150	28.9	<50
B280440		2.14	0.105	12	0.31	80	80	<5	10	8.22	226	50	55	5440	16.25	<50
B280441		2.50	1.200	119	0.27	280	<50	<5	10	6.75	377	56	33	42800	20.5	<50
B280442		2.98	<0.005	1	0.66	20	<50	<5	<10	11.80	<5	<5	21	3920	2.49	<50
B280443		2.84	0.998	>200	0.18	<10	<50	<5	<10	14.65	10	<5	<5	>50000	2.75	<50
B280444		2.00	0.599	109	0.18	<10	<50	<5	<10	17.30	6	<5	<5	31700	1.60	<50
B280445		2.24	0.172	44	0.13	20	<50	<5	<10	17.70	<5	<5	13	16650	1.39	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analytø Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280406		<5	0.14	<50	3.31	960	24	0.16	7	240	1060	2.23	<10	5	31	<0.05
B280407		6	0.08	<50	0.94	380	57	0.05	16	60	850	35.0	<10	<5	9	<0.05
B280408		5	0.26	<50	0.13	60	64	0.19	117	6460	60	6.12	<10	<5	24	<0.05
B280409		5	0.16	<50	1.13	350	45	0.11	68	1780	60	11.55	<10	<5	18	<0.05
B280410		11	0.08	<50	0.91	340	77	0.07	43	120	100	21.3	<10	<5	8	<0.05
B280411		11	0.12	<50	1.56	300	114	0.08	22	580	70	3.44	<10	<5	10	<0.05
B280412		21	<0.05	<50	0.14	310	114	<0.05	20	210	570	41.0	20	<5	<5	<0.05
B280413		10	1.72	<50	2.20	680	<5	<0.05	25	3570	<10	0.20	<10	9	94	0.44
B280414		5	<0.05	<50	0.12	510	203	<0.05	14	<50	590	48.2	20	<5	<5	<0.05
B280415		14	<0.05	<50	0.13	290	172	<0.05	25	160	350	48.1	20	<5	<5	<0.05
B280416		6	<0.05	<50	0.13	210	84	<0.05	10	60	200	48.3	10	<5	<5	<0.05
B280417		8	<0.05	<50	0.08	210	116	<0.05	22	160	250	48.1	<10	<5	<5	<0.05
B280418		13	<0.05	<50	0.12	350	124	<0.05	14	<50	280	47.2	10	<5	<5	<0.05
B280419		18	<0.05	<50	0.16	470	110	<0.05	10	<50	330	45.2	10	<5	<5	<0.05
B280420		<5	1.60	<50	1.96	660	<5	<0.05	25	3370	10	0.48	<10	6	93	0.41
B280421		17	<0.05	<50	0.35	860	118	<0.05	18	320	660	42.3	10	<5	<5	<0.05
B280422		<5	0.06	<50	2.47	1140	31	<0.05	6	480	80	33.9	<10	<5	13	<0.05
B280423		9	0.05	<50	7.33	5660	66	0.08	7	320	160	5.27	<10	5	77	< 0.05
B280424		24	0.07	<50	2.19	1540	72	0.10	18	170	4360	17.45	<10	<5	29	< 0.05
8280425		8	<0.05	<50	6.37	3970	47	0.06	<5	260	340	0.84	<10	1	/6	<0.05
B280426		10	0.13	<50	1.56	960	64	0.05	<5	70	400	23.8	<10	<5	20	<0.05
B280427		8	0.10	<50	0.09	50	24	<0.05	<5	<50	50	21.5	<10	<5	<5	<0.05
B280428		5	0.12	<50	<0.05	<30	15	0.05	<5	<50	20	6.40	<10	<5	<5	<0.05
B280429		9	0.15	<50	1.76	1520	30	0.09	5	<50	20	5.48	<10	<5	26	<0.05
B200430		10	0.00	<50	4.09	2590	19	0.06	28	1000	210	5.19	<10	<5	4/	<0.05
B280431		18	0.08	<50	0.32	380	193	0.10	30	650	680	22.5	10	<5	7	<0.05
B280432		5	0.05	<50	0.09	130	232	0.09	<5	110	20	2.59	<10	<5	6	< 0.05
B280433		12	<0.05	<50	0.15	330	102	< 0.05	29	<50	340	42.2	30	<5	<5	<0.05
B280434		8	1.64	<50	1.98	650	<5	<0.05	26	3450	10	0.19	<10	6	102	0.43
D200430		1/	<0.05	<50	0.22	390	/5	<0.05	13	<50	350	45.8	20	<5	<5	<0.05
8280436		11	<0.05	<50	0.18	300	87	<0.05	5	100	390	46.1	20	<5	<5	<0.05
B280437		6	<0.05	<50	0.23	320	81	<0.05	16	140	220	47.5	≪10	<5	7	<0.05
B280438		12	<0.05	<50	0.17	250	142	<0.05	16	80	850	44.3	10	<5	<5	<0.05
B280439		10	0.07	<50	1.58	1200	55	0.05	<5	<50	470	32.9	<10	<5	24	<0.05
B280440		11	0.06	<50	4.54	2930	65	0.07	10	820	140	19.30	<10	<5	64	<0.05
B280441		18	<0.05	<50	4.07	2950	105	<0.05	29	2200	900	26.4	10	<5	33	<0.05
B280442		<5	<0.05	<50	8.41	4510	8	0.07	<5	1100	30	1.27	<10	7	95	<0.05
B280443		<5	<0.05	<50	8.55	5550	6	0.05	<5	680	400	3.06	<10	<5	78	<0.05
B280444		<5	<0.05	<50	10.65	6170	17	<0.05	<5	470	120	1.44	<10	<5	85	<0.05
B280445		8	<0.05	<50	10.85	4930	5	<0.05	<5	620	50	1.05	<10	<5	85	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu- AA46 Cu % 0.01	Pb-AA46 Pb % 0.01	Zn-AA46 Zn % 0.01	
B280406		<50	<50	9	<50	7870					
B280407		<50	<50	12	<50	5910					
B280408		<50	<50	72	<50	1000					
B280409		<50	<50	41	<50	790					
B280410		<50	<50	19	<50	20700		8.31			
B280411		<50	<50	27	<50	3440					
B280412		<50	<50	23	<50	45700		7.25			
B280413		<50	<50	164	<50	260					
B280414		<50	<50	20	<50	27600					
B280415		<50	<50	28	<50	20800					
B280416		<50	<50	21	<50	11900					
B280417		<50	<50	22	<50	20200					
B280418		<50	<50	19	<50	41300					
B280419		<50	<50	18	<50	>50000				8.65	
B280420		<50	<50	142	<50	820					
B280421		<50	<50	13	<50	>50000				8.46	
B280422		<50	<50	11	<50	7020					
B280423		<50	<50	5	<50	6700					
B280424		<50	<50	<5	<50	>50000				13.80	
B280425		<50	<50	<5	<50	940					
B280426		<50	<50	<5	<50	11450					
B280427		<50	<50	<5	<50	5710					
B280428		<50	<50	<5	<50	1020					
B280429		<50	<50	9	<50	5690					
B280430		<50	<50	28	<50	9320					
B280431		<50	<50	17	<50	42900					
B280432		<50	<50	<5	<50	1040					
B280433		<50	<50	7	<50	47900					
B280434		<50	<50	148	<50	300					
B280435		<50	<50	13	<50	39100					
B280436		<50	<50	12	<50	26500					
B280437		<50	<50	12	<50	13800					4
B280438		<50	<50	8	<50	44500					
B280439		<50	<50	6	<50	>50000				5.52	
B280440		<50	<50	5	<50	47700					
B280441		<50	<50	36	<50	>50000				8.25	
B280442		<50	<50	58	<50	1780					
B280443		<50	<50	9	<50	1500	308	9.10			
B280444		<50	<50	9	<50	710					
B280445		<50	<50	11	<50	630					

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04062808

	Method Analyte	WEI-21 Recvd Wt.	Au-AA23 Au	ME-ICP41a Ag	ME-ICP41a Al	ME-ICP41a As	ME-ICP41a Ba	ME-ICP41a Be	ME-ICP41a Bi	ME-ICP41a Ca	ME-ICP41a Cd	ME-ICP41a Co	ME-ICP41a Cr	ME-ICP41a Cu	ME-ICP41a Fe	ME-ICP41a Ga
Sample Description	LOR	kg 0.02	0.005	ppm 1	% 0.05	ppm 10	ppm 50	ppm 5	ррт 10	% 0.05	ppm 5	ppm 5	ppm 5	ppm 5	% 0.05	ppm 50
B280446		1.94	<0.005	<1	0.10	<10	<50	<5	<10	18.35	5	<5	<5	314	0.95	<50
B280447		2.90	0.773	33	0.20	20	<50	<5	<10	5.27	<5	48	58	21300	29.4	<50
B280448		2.70	0.591	41	0.27	90	130	<5	<10	3.23	<5	90	23	28800	30.9	<50
B280449		2.22	0.020	4	0.64	10	360	<5	<10	0.54	<5	21	65	450	13.20	<50
B280450		1.88	0.026	2	0.38	30	270	<5	10	0.44	<5	6	17	170	7.84	<50
B280451		1.24	0.006	1	0.71	10	100	<5	<10	0.70	9	<5	29	95	2.87	<50
B280452		1.50	0.013	1	0.34	20	<50	<5	<10	0.06	238	6	77	3840	3.98	<50
B280453		1.46	0.010	1	0.40	<10	<50	<5	<10	4.18	239	<5	57	13300	5.15	<50
B280454		3.46	4.02	120	0.20	120	<50	<5	30	2.23	238	120	61	>50000	29.3	<50
B280455		1.84	0.634	55	0.44	130	110	<5	90	2.11	193	47	71	>50000	14.35	<50
B280456		1.64	0.042	3	0.55	10	150	<5	<10	2.92	10	10	57	6000	3.60	<50
B280457		2.88	0.339	27	0.34	110	110	<5	10	2 53	194	75	59	22000	26.9	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41# Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B280446		<5	<0.05	<50	11.30	6140	<5	<0.05	<5	480	10	0.39	<10	<5	81	<0.05
B280447		8	0.06	<50	2.97	1860	14	<0.05	5	250	30	32.2	<10	<5	28	<0.05
B280448		7	0.06	<50	2.08	970	11	<0.05	8	80	50	33.1	<10	<5	27	<0.05
B280449		<5	0.26	<50	1.31	270	11	0.05	<5	<50	30	14.00	<10	<5	7	<0.05
B280450		8	0.19	<50	0.62	240	38	<0.05	<5	<50	40	8.28	<10	<5	5	<0.05
B280451		9	0.14	<50	2.40	340	5	0.12	<5	50	140	2.32	<10	5	10	<0.05
B280452		9	<0.05	<50	0.08	<30	5	0.10	<5	<50	70	6.63	<10	<5	<5	<0.05
B280453		8	0.06	<50	2.32	1360	7	0.10	<5	70	30	7.34	<10	<5	36	<0.05
B280454		14	<0.05	<50	1.18	1260	138	<0.05	46	390	160	33.5	10	<5	17	<0.05
B280455		11	0.15	<50	1.18	1000	182	80.0	24	120	160	15.85	<10	<5	17	<0.05
B280456		7	0.22	<50	1.66	810	57	0.07	<5	<50	50	3.53	<10	<5	23	<0.05
B280457		8	0.08	<50	1 36	1200	134	<0.05	56	390	770	30.5	<10	<5	21	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 29-SEP-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04062808

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	РЬ-АА46 Рь % 0.01	Zn-AA46 Zn % 0.01
B280446		<50	<50	9	<50	1510				
B280447		<50	<50	6	<50	340				
B280448		<50	<50	<5	<50	500				
B280449		<50	<50	<5	<50	250				
B280450		<50	<50	<5	<50	130				
B280451		<50	<50	<5	<50	2580				
B280452		<50	<50	<5	<50	>50000				6.05
B280453		<50	<50	<5	<50	>50000				5.86
B280454		<50	<50	10	<50	40700		6.74		
B280455		<50	<50	10	<50	32100		7.78		
B280456		<50	<50	6	<50	1890				
B280457		<50	<50	16	<50	39400				

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Au-AA23

ME-ICP41a

Page: 1 Finalized Date: 6-OCT-2004 Account: LTU

AAS

ICP-AES

C	ERTIFICATE VA040653	70		SAMPLE PREPARATIO	N
			ALS CODE	DESCRIPTION	
Project: Kutcho P.O. No.: This report is for 74 Drill Co 22-SEP-2004. The following have acce	ore samples submitted to our lab in this contract to data associated with this contract to the second s	Vancouver, BC, Canada on ertificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
DONALD	PETER HOLBEK	ROB W		ANALYTICAL PROCEDUR	RES
			ALS CODE	DESCRIPTION	INSTRUMENT
		•	Cu-AA46 Zn-AA46	Ore grade Cu - aqua regia/AA Ore grade Zn - aqua regia/AA	AAS AAS

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Au 30g FA-AA finish

High Grade Aqua Regia ICP-AES

Phiel Dog

\$

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-AA23 Au Check ppm 0.005	Au-AA23 Au Check ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a AI % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a BI ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5
280151		0.88	0.462	0.372		26	0.65	30	240	<5	10	0.24	<5	6	60	3240
280152		0.56	0.192			19	0.45	40	210	<5	<10	0.42	14	<5	58	4720
280153		0.56	1.170	0.625	0.558	31	0.78	60	250	<5	<10	0.96	78	<5	47	9480
280154		1.88	0.807			128	0.20	1440	80	<5	<10	0.16	1350	<5	64	42000
280155		0.92	0.005			<1	2.54	10	180	<5	<10	2.21	<5	26	141	403
280156		0.64	0.195			65	0.94	20	80	<5	<10	1.19	116	<5	98	39500
280157		0.92	0.085			14	0.91	90	100	<5	<10	0.70	48	<5	47	8440
280158		0.94	0.420			74	0.93	<10	130	<5	<10	1.31	36	9	102	31800
280159		0.86	0.020			1	0.72	10	<50	<5	10	6.46	<5	<5	15	920
280160		1.74	0.557			110	0.61	30	60	<5	<10	8.77	23	<5	80	38100
280161	_	1.04	0.009			1	0.61	<10	<50	<5	10	15.45	<5	<5	7	613
280162		2.04	0.074			180	0.25	<10	<50	<5	30	17.45	<5	<5	<5	>50000
280163		1.00	0.036			3	1.54	<10	<50	<5	10	16.90	<5	<5	8	2210
280164		1.68	0.424			160	1.27	<10	<50	<5	<10	12.30	5	<5	<5	>50000
280165		1.56	<0.005			<1	2.39	10	160	<5	10	2.15	<5	22	134	315
280166		1.28	0.013			2	5.61	30	<50	<5	10	3.21	<5	<5	18	332
280167		1.52	0.154			166	1.24	30	90	<5	<10	2.00	48	<5	88	39900
280168		2.30	0.017			3	1.70	40	<50	<5	<10	0.78	<5	<5	70	547
280169		2.06	0.216			78	2.89	<10	<50	<5	<10	2.07	6	<5	60	35400
280170		1.16	0.044			3	5.02	10	60	<5	<10	1.01	<5	6	19	2240
280171		1.98	0.071			9	2.09	20	140	<5	<10	2.45	21	<5	73	4740
280172		2.88	0.042			2	0.64	50	100	<5	10	2.06	5	<5	95	2380
280173		2.16	0.046			1	0.58	20	100	<5	<10	5.22	57	<5	102	2120
280174		2.50	0.021			<1	2.51	<10	160	<5	10	3,15	<5	<5	65	727
280175		2.12	0.040			2	5.37	50	100	<5	10	1.29	<5	7	56	1025
280176		2.98	0.015			<1	2.83	<10	110	<5	10	1.74	<5	5	57	162
280177		3.18	0.010			<1	1.63	20	90	<5	<10	0.51	<5	6	147	483
280178		3.80	0.020			<1	1.95	10	140	<5	10	0.55	<5	6	102	643
280179		3.62	0.053			З	1.04	<10	160	<5	<10	1.72	6	23	154	1755
280180		2.68	0.013			<1	1.50	10	130	<5	10	1.40	<5	55	102	1510
280181		2.64	0.037			2	2.79	20	130	<5	<10	1.28	<5	. 24	67	3360
280182		3.46	0.036			3	0.46	10	180	<5	<10	0.09	11	357	198	1385
280183		3.04	0,045			3	0.54	20	120	<5	10	0.06	10	176	166	1055
280184		3.38	0.059			5	0.49	180	90	<5	<10	0.07	12	137	192	2740
280185		3,12	0.119			9	0.22	180	50	<5	20	0.07	41	259	197	4570
280186		3.32	0.152			16	0.14	140	<50	<5	10	<0.05	13	381	208	9170
280187		3.14	0.169			17	0.21	350	60	<5	20	0.05	9	345	140	8890
280188		3.04	0.024			1	0.28	60	80	<5	<10	0.06	6	277	163	244
280189		3.60	0.036			2	0.55	20	80	<5	10	<0.05	<5	56	167	1195
280190		4.16	0.088			7	0.39	80	70	<5	10	<0.05	9	178	268	3270

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-1CP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5
280151		5.94	<50	<5	0.32	<50	0.81	120	9	<0.05	<5	<50	70	6.27	<10	<5
280152		4.04	<50	<5	0.24	<50	1.08	160	9	<0.05	<5	<50	80	4.21	10	<5
280153		4.99	<50	<5	0.36	<50	2.14	440	18	<0.05	10	320	200	5.60	30	<5
280154		23.4	<50	11	0.07	<50	0.08	240	93	<0.05	32	210	4550	36.1	590	<5
280155		4.75	<50	<5	1.96	<50	2.36	710	<5	0.05	32	3650	20	0.13	<10	6
280156		5.32	<50	<5	0.15	<50	2.11	530	49	0.11	54	460	320	5.41	<10	<5
280157		3.37	<50	<5	0.19	<50	1.22	270	87	0.15	49	450	270	3.69	20	<5
280158		5.90	<50	<5	0.23	<50	0.89	310	162	0.13	57	1360	290	6.15	10	<5
280159		1.54	<50	<5	0.09	<50	3.73	2090	72	0.15	7	100	20	1.25	<10	8
280160		3.02	<50	10	0.11	<50	4.91	2730	56	0.13	25	460	140	3,88	10	6
280161		1.15	<50	<5	0.08	<50	8.63	3990	<5	0.12	<5	460	20	0.64	<10	6
280162		1.62	<50	6	<0.05	<50	10.10	5000	<5	0.05	<5	90	120	2.06	<10	12
280163		1.00	<50	<5	<0.05	<50	11.65	5050	<5	<0.05	<5	280	130	0.29	<10	8
280164		1.59	<50	<5	<0.05	<50	8.34	3850	18	0.08	<5	<50	230	2.02	<10	11
280165		4.20	<50	<5	1.66	<50	2.17	650	<5	<0.05	17	3510	<10	<0.05	<10	6
280166		2.48	<50	<5	<0.05	<50	10.05	1650	11	<0.05	<5	<50	310	1.44	<10	11
280167		4.63	<50	<5	0.09	<50	2.14	720	12	0.11	<5	310	70	6.04	<10	<5
280168		2.69	<50	<5	0.05	<50	2.20	390	12	0.11	<5	450	90	2.68	<10	<5
280169		5.53	<50	6	0.07	<50	4.42	1090	9	0.14	<5	230	70	6.16	10	7
280170		5.96	<50	<5	0.08	<50	6.94	830	<5	0.10	<5	160	20	5.82	10	7
280171		7.37	<50	<5	0.21	<50	3.27	990	10	0.10	<5	130	20	8.24	10	<5
280172		15.25	<50	5	0.17	<50	1.08	700	9	0.07	<5	<50	20	17.25	10	<5
280173		7.50	<50	<5	0.16	<50	2.05	1600	7	0.05	<5	120	10	8.64	<10	<5
280174		7.14	<50	<5	0.18	<50	3.63	1160	10	<0.05	6	190	<10	7.37	<10	<5
280175		7.31	<50	<5	0.10	<50	7.72	1320	15	<0.05	<5	200	10	6.83	<10	6
280176		7.72	<50	<5	0.11	<50	4.51	1340	11	<0.05	<5	220	20	7.90	10	<5
280177		15.20	<50	<5	0.09	<50	2.07	360	16	<0.05	6	520	20	16.40	<10	<5
280178		19.25	<50	<5	0.13	<50	2.53	440	18	<0.05	<5	230	50	21.1	<10	<5
280179		22.9	<50	6	0.14	<50	1.76	620	10	0.06	<5	420	60	25.4	<10	<5
280180		26.9	<50	<5	0.15	<50	2.38	490	19	0.05	<5	190	20	29.6	20	<5
280181		11.90	<50	<5	0.22	<50	4.04	570	10	0.06	<5	600	30	12.60	<10	5
280182		35,9	<50	7	0.17	<50	0.10	60	18	<0.05	<5	<50	20	39.2	<10	<5
280183		39.0	<50	9	0.19	<50	0.08	50	33	0.05	8	<50	80	42.4	10	<5
280184		39.3	<50	<5	0.17	<50	0.06	60	40	0.05	<5	<50	70	42.9	20	<5
280185		44.6	<50	<5	0.09	<50	0.05	60	34	<0.05	<5	<50	70	48.8	20	<5
280186		45.4	<50	6	0.06	<50	<0.05	70	13	<0.05	<5	<50	40	49.4	10	<5
280187		47.0	<50	6	0.09	<50	<0.05	50	16	<0.05	13	70	80	>50	20	<5
280188		43.3	<50	<5	0.12	<50	<0.05	40	40	<0.05	11	<50	110	46.3	10	<5
280189		20.2	<50	<5	0.23	<50	<0.05	<30	38	0.07	<5	<50	30	21.7	.10	<5
280190		34.7	<50	<5	0.14	<50	<0.05	50	37	0.05	15	<50	100	37.2	10	<5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Sr ppm	ME-ICP41a Ti %	ME-ICP41a Ti ppm	ME-ICP41a U ppm	ME-ICP41a V ppm	ME-ICP41a W ppm	ME-ICP41a Zn ppm	Cu-AA46 Cu %	Zn-AA46 Zn %	
		5	0.05	50	50	3	50	10	0.01	0.01	
280151		17	<0.05	<50	<50	<5	<50	690			
280152		25	<0.05	<50	<50	<5	<50	2090			
260153		50	<0.05	<50	<50	41	<50	>50000		22.5	
280155		75	0.42	<50	<50	160	<50	500		22.5	
280156		41	<0.05	<50	<50	34	<50	22900			
280157		32	<0.05	<50	<50	33	<50	9430			
280158		47	<0.05	<50	<50	79	<50	6260			
280159		41	<0.05	<50	<50	14	<50	430			
280160		47	<0.05	<50	<50	19	<50	4140			
280161		73	<0.05	<50	<50	<5	<50	490			
280162		104	<0.05	<50	<50	<5	<50	250	6.02		
280163		87	<0.05	<50	<50	7	<50	540			
280164		67	<0.05	<50	<50	7	<50	630	5.54		
280165		72	0.40	<50	<50	148	<50	60			
280166		17	<0.05	<50	<50	12	<50	1160			
280167		16	<0.05	<50	<50	<5	<50	9930			
280168		9	<0.05	<50	<50	<5	<50	580			
280169		14	<0.05	<50	<50	<5	<50	1190			
280170		10	<0.05	<50	<50	5	<50	1540			
280171		17	<0.05	<50	<50	<5	<50	4190			
280172		10	<0.05	<50	<50	<5	<50	560			-
280173		14	< 0.05	<50	<50	<5	<50	5970			
280174		10	<0.05	<50	<50 <50	<5	<50	2/0			
260175		10	<0.05	<50	<50	•	<00	1060			
280176		11	<0.05	<50	<50	<5	<50	670			
280177		<5	<0.05	<50	<50	<5	<50	200			
2001/8		6	<0.05	<50	<50	<5	<50	210			
2001/9		13	<0.05	<50	<50	<5 ~5	<50	360			
200100			<0.05		NON	<u> </u>		230			
280181		13	<0.05	<50	<50	6	<50	510			
280182		5	<0.05	<50	<50	<5	<50	1980			1
200183		<0	< 0.05	<50	<50	<5	<50	1460			·
280185		<5	<0.05	<50 <50	<50	<0 <5	<50	2580 0730			
200100		+	-0.00			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
280186		<5	<0.05	<50	<50	<5	<50	2180			
200187		<5	<0.05	<00	<50	<5	<50	1300			
290190				<00 <50	NOU	ND	<50	1000			
280109		5	<0.05	<0U <50	<50	<5	<50	1570			
200190			×0.05	<00	~00	NO	NO	1970			

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg	Au-AA23 Au ppm 0.005	Au-AA23 Au Check ppm 0.005	Au-AA23 Au Check ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5
280101		1.24	0.065				0.29	30	<50		<10	<0.05	12	222	234	1515
260191		0.72	0.000			~ 6	0.29	50	120	<5	<10	1.55	65	<5	154	2370
280458		1.00	0.006			2	0.44	20	70	<5	<10	4 40	<5	<5	44	356
280459		2.46	<0.005			1	0.62	<10	110	<5	<10	5.84	<5	7	93	1835
280460		0.98	0.076			25	0.31	20	1570	<5	<10	0.98	1440	<5	111	6380
280461		1.34	<0.005		·	<1	2.27	<10	140	<5	<10	2.96	<5	29	175	216
280462		0.98	<0.005			2	0.98	<10	70	<5	<10	0.85	<5	<5	57	53
280463		2.20	0.015			5	0.80	30	110	<5	10	0.99	<5	6	100	198
280464		6.76	0.013			7	0.87	40	130	<5	<10	1.28	7	12	65	268
280465		2.44	0.024			9	0.72	40	80	<5	<10	2.90	45	<5	112	600
280466		1.48	0.115			36	0.34	130	130	<5	10	6.91	196	33	90	1645
280467		1.38	0.009			2	0.53	10	140	<5	<10	0.15	<5	11	53	132
280468		2.82	0.010			2	0.49	<10	140	<5	<10	<0.05	<5	11	49	272
280469		2.52	0.008			1	0.42	<10	100	<5	<10	0.25	<5	14	48	201
280470		2.22	0.013			<1	0.58	<10	260	<5	<10	0.50	<5	43	130	269
280471		2.62	0.011			<1	0.71	<10	210	<5	<10	0.17	<5	34	103	190
280472		2.56	0.025			2	0.47	10	340	<5	<10	0.98	<5	100	124	531
280473		2.26	<0.005			<1	0.76	<10	90	<5	<10	0.24	. <5	6	148	522
280474		2.28	0.008			1	0.46	<10	90	<5	<10	0.12	<5	6	112	1310
280475		0.92	<0.005		<u></u>	<1	0.60	<10	100	<5	<10	2.23	<5	<5	137	26
280476		2.44	0.421			65	0.18	520	150	<5	<10	2.29	585	25	142	35000
280477		2.36	0,683			140	0.44	170	150	<5	10	7.70	140	27	74	>50000
280478		1.40	<0.005			1	2.10	<10	150	<5	<10	2,52	<5	24	156	444
280479		3.44	1.405			110	0.44	50	240	<5	<10	9.18	64	29	99	42400
280480		3.54	0.109			24	0.10	50	<50	<5	<10	9.75	40	14	122	16150
280481		2.64	0.202			43	0.09	150	<50	<5	20	7.87	65	44	74	20300
280482		2.84	0.250			38	0.10	50	150	<5	10	5,55	11	44	143	22600
280483		2.28	0.907			80	0.14	10	170	<5	<10	11.90	28	12	66	38200
200484		3.18	0.869			54	0.17	40	160	<5	<10	7.46	43	105	155	24200
200485		4.00	0.099			22	0.48		330	<>	10	1.04	10	108	144	8290
280486		0.92	0.232			24	0.69	50	100	<5	<10	9.91	<5	<5	86	12350
280487		1.48	0.151			28	2.21	20	150	<5	<10	2.08	,≨5	8	126	12600
280488		1.26	0.120			17	1.28	<10	100	<5	<10	1.60	<5	7	104	6770
280489		0.80	0.005			<1	0.43	30	210	<5	<10	0.07	<5	6	200	98

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5
280191		26.1	<50	<5	0,10	<50	<0.05	30	15	<0.05	5	<50	110	28.1	<10	<5
280192		5.44	<50	<5	0.16	<50	0.87	430	28	0.10	41	310	70	6.09	10	<5
280458		2.42	<50	6	0.10	<50	2.35	1640	33	0.10	11	180	30	2.14	<10	6
280459		2.86	<50	<5	0.11	<50	3.40	2070	41	0.14	21	80	40	2.34	<10	7
280460		3.33	<50	41	0.05	<50	0.85	310	15	0.06	15	230	4670	18.80	<10	<0
280461		4.26	<50	<5	1.61	<50	2.00	640	<5	<0.05	25	3530	20	0.09	<10	7
280462		3.21	<50	<5	0.12	<50	3.15	450	5	0.15	9	240	20	2.11	10	6
280463		3.21	<50	<5	0.13	<50	1.96	440	27	0.14	10	100	40	2.70	20	<5
280464		3.08	<50	<5	0.17	<50	1.82	500	33	0.15	11	160	320	2.83	<10	<5
280465	_	4.05	<50	<5	0.13	<50	2.91	1100	13	0.11	<5	<50	290	4.22	<10	<5
280466		7.72	<50	<5	0.08	<50	3.86	2110	84	0.07	6	720	3270	10.30	10	<5
280467		2.97	<50	<5	0.19	<50	0.12	50	9	0.09	<5	70	10	3.16	<10	<5
280468		3.46	<50	<5	0.18	<50	0.07	<30	11	0.08	<5	<50	<10	3.69	10	<5
280469		4.75	<50	<5	0.19	<50	0.18	100	13	0.05	<5	60	10	5.11	<10	<5
280470		15.10	<50	<5	0.21	<50	0.24	170	35	0.05	<5	80	80	16.40	<10	<5
280471		7.89	<50	5	0.34	<50	0.13	80	18	0.07	6	100	<10	8.47	<10	<5
280472		30.5	<50	<5	0.19	<50	0.67	340	27	<0.05	<5	530	30	33.3	10	<5
280473		5.03	<50	<5	0.30	<50	0.58	130	9	0.07	<5	420	<10	5.22	10	<5
280474		4.28	<50	<5	0.20	<50	0.18	70	10	0.05	<5	<50	· <10	4.45	<10	<5
280475		2.46	<50	6	0.13	<50	1.63	810	<5	0.08	5	120	<10	1.45	<10	<5
280476		20.8	<50	21	<0.05	<50	1.19	1230	134	<0.05	19	140	2200	29.9	150	<5
280477		18.70	<50	9	0.09	<50	3.90	3920	202	0.07	6	330	460	23.4	30	5
280478		4,17	<50	<5	1.50	<50	1.81	590	5	<0.05	25	3480	<10	0.15	<10	6
280479		22.7	<50	<5	0.11	<50	4.87	3690	112	0.09	14	1480	100	27.0	20	5
280480		24.7	<50	<5	<0.05	<50	4.91	4500	20	<0.05	<5	610	100	28.6	10	<5
280481		28.5	<50	<5	<0.05	<50	4.06	3670	41	<0.05	9	640	230	33.0	30	<5
280482		33.3	<50	<5	<0.05	<50	2.68	3300	19	<0.05	7	220	120	38.0	10	<5
280483		16.75	<50	<5	<0.05	<50	6.69	6100	16	<0.05	6	320	40	20.2	10	<5
280484		27.5	<50	<5	<0.05	<50	3.94	4550	6	<0.05	11	160	50	32.5	<10	<5
280485		39.2	<50	6	0,10	<50	0.51	380	7	0.10	<5	210	50	43.5	10	<5
280486		9,79	<50	9	0.05	<50	5.91	4590	6	0.09	<5	180	40	11.55	<10	5
280487		27.1	<50	<5	0.05	<50	3.64	810	29	0.06	<5	90	40	30.4	10	5
280488		27.0	<50	<5	0.07	<50	2.15	620	25	0.06	<5	120	40	30.5	<10	<5
280489		1.74	<50	<5	0.17	<50	0.06	40	7	0.05	<5	<50	<10	1.68	<10	<5

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01			 	
280191		<5	<0.05	<50	<50	<5	<50	2000						
280192		35	<0.05	<50	<50	20	<50	11300						
280458		46	<0.05	<50	<50	<5	<50	880						
280459		60	<0.05	<50	<50	6	<50	1060						
280460		40	< 0.05	<50		<5	<50	>50000		29.8			 	
280461	1	87	0.42	<50	<50	152	<50	160						
280462		49	<0.05	<50	<50	15	<50	1640						
280463		21	<0.05	<50	<50	11	<50	780						
280464		26	<0.05	<50	<50	14	<50	1680						
280465		32	<0.05	<50	<50	7	<50	10500						
280466		63	<0.05	<50	<50	6	<50	38900						
280467		8	<0.05	<50	<50	<5	<50	390						
280468		8	<0.05	<50	<50	<5	<50	100						
280469		7	<0.05	<50	<50	<5	<50	70						
280470		10	<0.05	<50	<50	<5	<50	360					 =	
280471		7	<0.05	<50	<50	<5	<50	450						
280472		14	<0.05	<50	<50	<5	<50	320						
280473		15	<0.05	<50	<50	<5	<50	170						
280474		5	<0.05	<50	<50	<5	<50	70						
280475		19	<0.05	<50	<50	<5	<50	170					 	
280476		13	<0.05	<50	<50	9	<50	>50000		13.75				
280477		36	<0.05	<50	<50	10	<50	30000	5,15					
280478		77	0.42	<50	<50	140	<50	570						
280479		51	<0.05	<50	<50	6	<50	12550						
280480		42	<0.05	<50	<50	<5	<50	8080					 	
280481		33	<0.05	<50	<50	<5	<50	13350						
280482		25	<0.05	<50	<50	<5	<50	2010						
280483		53	<0.05	<50	<50	<5	<50	4810						
280484		31	<0.05	<50	<50	<5	<50	7230						
280485		12	<0.05	<50	<50	<5	<50	1540			_		 	
280486		38	<0.05	<50	<50	<5	<50	450						
280487		12	<0.05	<50	<50	<5	<50	400						
280488		10	<0.05	<50	<50	<5	<50	650				1		
280489		<5	<0.05	<50	<50	<5	<50	30						

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 1 Finalized Date: 3-OCT-2004 Account: LTU

CERTI	FICATE	VA04065	371

Project: Kutcho

P.O. No.:

This report is for 13 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 22-SEP-2004.

The following have access to data associated with this certificate:

DONALD

PETER HOLBEK

ROB W

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI-21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU-31	Fine crushing - 70% <2mm	
SPL-21	Split sample - riffle splitter	
PUL-31	Pulverize split to 85% <75 um	

ANALYTICAL PROCEDURES

ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP41	34 Element Aqua Regia ICP-AES	ICP-AES

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Rest Com

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 3-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04065371

,

Sample Description	Method Anslyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bl ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10
004751		2.38	0.2	0.77	<2	<10	30	<0.5	<2	2.06	<0.5	4	31	76	1.94	<10
004752		3.16	<0.2	0.52	<2	<10	30	<0.5	<2	1.82	<0.5	4	58	13	2.23	<10
004753		2.16	<0.2	0.39	<2	<10	30	<0.5	<2	1.68	<0.5	3	39	66	1.76	<10
004754		2.28	0.7	0.66	20	<10	60	<0.5	<2	1.71	2.0	3	30	80	2.72	<10
004755		2.80	1.9	1.78	18	<10	170	<0.5	<2	1.38	1.9	4	16	363	2.46	<10
004756		3.36	<0.2	1.97	7	<10	20	<0.5	<2	1.31	<0.5	3	27	11	2.42	<10
004757		2.60	<0.2	1.08	<2	<10	20	<0.5	<2	1.03	<0.5	2	17	10	2.21	<10
004758		1.88	<0.2	0.65	<2	<10	40	<0.5	<2	0.64	<0.5	2	28	11	2.19	<10
004759		2.10	<0.2	1.14	<2	<10	40	<0.5	<2	0.61	<0.5	3	11	16	2.34	<10
004760		2.50	<0.2	0.61	<2	<10	40	<0.5	<2	0.99	<0.5	2	26	6	1.81	<10
004761		2.36	<0.2	1.26	4	<10	30	<0.5	<2	0,71	<0.5	4	11	12	1.96	<10
004762		1.60	<0.2	0.39	<2	<10	40	<0.5	<2	8.91	<0.5	2	8	13	1.75	<10
004763		2.04	0.2	1.38	31	<10	20	<0.5	<2	0.18	<0.5	4	14	23	2 10	<10

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 3-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04065371

1

Sample Description	Method Analyte Units LOR	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1	ME-ICP41 Ti % 0.01	
004751		<1	0.11	<10	0.98	286	2	0.04	2	150	4	0.04	<2	5	77	0.01	
004752		<1	0.14	<10	1.02	319	1	0.05	3	130	5	0.04	<2	6	46	<0.01	
004753		.1	0.15	<10	0.48	300	2	0.04	2	150	3	0.04	2	4	48	<0.01	
004754		<1	0.19	<10	1.86	402	3	0.05	5	60	10	1.25	<2	5	45	<0.01	
004755		<1	0.15	<10	2.20	371	2	0.06	1	100	8	0.97	<2	6	51	0.01	
004756	<u> </u>	1	0.08	<10	1.54	348	1	0.09	3	130	5	0.67	<2	6	30	0.01	Î
004757) 1	0.07	<10	1.25	474	1	0.07	2	160	4	0.22	<2	5	19	<0.01	
004758		<1	0.12	<10	1.82	437	1	0.09	<1	300	<2	0.16	<2	4	16	<0.01	
004759		<1	0.10	<10	1.92	338	<1	0.07	2	150	<2	0.05	<2	3	11	<0.01	
004760		<1	0.13	<10	1.81	330	<1	0.06	1	130	<2	0.04	<2	3	17	<0.01	
004761		<1	0.09	<10	2.12	340	1	0.07	2	220	<2	0.23	<2	3	15	<0.01	1
004762		<1	0.21	<10	4.75	1790	2	0.05	1	410	5	0.30	<2	5	148	<0.01	
004763		1 1	0.08	<10	2.01	182	3	0.08	2	150	6	1.64	<2	2	9	<0.01	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 3-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2
004751		<10	<10	12	<10	39
004752		<10	<10 <10	13	<10 <10	40 40
004754		<10	<10	5	<10	436
004755		<10	<10	4	<10	398
004756		<10	<10	4	<10	83
004757		<10	<10	4	<10	78
004758		<10	<10	4	<10	80
004/59		<10	<10	4	<10	95 78
004764		<10	<10		<10	
004767		<10	<10	3 6	<10	117
004763		<10	<10	3	<10	120
}						
		1				

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada

Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Ag-AA46

Page: 1 Finalized Date: 6-OCT-2004 Account: LTU

AAS

CE	RTIFICATE VA0406537	72		SAMPLE PREPARATION	[
			ALS CODE	DESCRIPTION	
Project: Kutcho P.O. No.: This report is for 37 Drill Core 22-SEP-2004. The following have access	e samples submitted to our lab in \ s to data associated with this ce	Vancouver, BC, Canada on ertificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
DONALD	PETER HOLBEK	ROB W		ANALYTICAL PROCEDUR	ES
			ALS CODE	DESCRIPTION	INSTRUMENT
			Zn-AA46 Au-AA23 ME-ICP41a	Ore grade Zn - aqua regia/AA Au 30g FA-AA finish High Grade Aqua Regia ICP-AES	AAS AAS ICP-AES

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Ore grade Ag - aqua regia/AA

Signature: Phile Com

ŧ

To:

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4 Page 1 of 1

INVOICE NUMBER 1142114

			·····	ANALYS	SED FOR	UNIT	
	BILLING INFORMATION		QUANTITY	CODE -	DESCRIPTION	PRICE	TOTAL
			1	BAT-01	Administration Fee	24.00	24.00
Certificate:	VA04065370		74	PREP-31	Crush, Split, Pulverize	4.80	355.20
Account:	I TII		160.10	PREP-31	Weight Charge (kg) - Crush, Split, Pulverize	0.24	38.42
Account.	7 OCT 2004		1	Au-AA23	Au 30g FA-AA finish	9.60	9.60
Date :	7-001-2004		1	Au-AA23	Au 30g FA-AA finish	9.60	9.60
Project:	Kutcho		72	Au-AA23	Au 30g FA-AA finish	9.60	691.20
Ouote:	cnm521ltu 04g		74	ME-ICP41a	High Grade Aqua Regia ICP-AES	7.80	577.20
Terms'	Due on Receipt	C1	3	Cu-AA46	Ore grade Cu - aqua regia/AA	3.00	9.00
		0.	3	Zn-AA46	Ore grade Zn - aqua regia/AA	3.00	9.00
0			74	ASY-AR02	Aqua Regia Dig for ME-ICP41a	3.20	236.80
Comments:			6	ASY-AR01	Assay Aqua Regia Digestion	3.60	21.60
			ļ				
					л.		

- SUBTOTAL (CAD) \$ 1,981.62
- GST R100938885 \$ 138.71
- TOTAL PAYABLE (CAD) \$ 2,120.33

ŧ

WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Please Remit Payments To : **ALS Chemex** 212 Brooksbank Avenue North Vancouver BC V7J 2C1 ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
4801		0.40	0.082	10	0.48	<10	100	<5	10	5.83	46	<5	150	2570	3.76	<50
4802		0.94	0.182	46	0.19	10	60	<5	10	19.95	321	<5	16	11850	5.02	<50
4803		1.08	0.052	8	0.47	10	100	<5	<10	2.72	60	6	83	1945	3.26	<50
4804		3.26	3.83	>200	0.13	320	50	<5	70	10.20	61	49	53	29900	21.2	<50
4805		1.12	<0.005	1	2.15	10	130	<5	<10	1.62	<5	28	164	257	4.34	<50
4806		2.02	0.091	15	0.29	60	100	<5	10	17.30	19	<5	21	3850	4.55	<50
4807		2.54	0.098	10	0.38	<10	90	<5	<10	4.64	14	20	111	2800	6.71	<50
4808		1.30	0.086	11	0.45	10	120	<5	<10	0.33	242	<5	149	2350	21.2	<50
4809		1.60	0.012	3	1.30	10	100	<5	<10	1.81	7	7	147	410	3.96	<50
4810		1.98	0.007	2	2.55	20	<50	<5	<10	0.64	53	5	43	126	2.91	<50
4811		1.94	<0.005	2	2.04	<10	<50	<5	10	7.83	<5	<5	46	62	1.42	<50
4812		1.94	0.006	1	0.51	30	110	<5	<10	12.10	<5	<5	59	517	4.35	<50
4813		2.02	0.010	2	1.05	20	180	<5	10	9.04	10	<5	42	629	5.07	<50
4814		1.84	<0.005	1	0.49	<10	150	<5	<10	14.90	<5	6	38	83	1.84	<50
4815		1.16	<0.005	1	0.24	30	780	<5	<10	14.75	<5	<5	32	44	1.61	<50
4816		1.74	0.133	11	0.47	30	160	<5	<10	1.38	8	<5	92	1630	4.25	<50
4817		1.74	0.359	33	0.28	<10	130	<5	10	0.63	6	27	86	6260	9.67	<50
4818		1.48	0.073	16	0.40	20	120	<5	<10	0.17	21	<5	105	5670	6.83	<50
4819		2.92	0.074	31	0.32	30	80	<5	<10	16.55	44	<5	47	3880	4.49	<50
4820		1.82	0.008	2	0.76	<10	120	<5	<10	3.87	<5	14 .	68	391	3.84	<50
4821		1.14	0.048	<1	0.66	<10	130	<5	<10	5.48	<5	15	78	107	3.80	<50
4822		2.22	0.022	2	0.23	<10	<50	<5	<10	16.95	<5	<5	33	286	1.89	<50
4823		1.92	<0.005	<1	0.14	<10	<50	<5	<10	18.15	<5	<5	37	40	1.51	<50
4824		1.66	0.143	3	0.32	<10	50	<5	<10	11.95	6	12	39	1745	10.10	<50
4825		2.24	0.140	5	0.31	30	80	<5	<10	12.70	19	19	65	2890	8.29	<50
4826		2.28	0.058	4	0.20	<10	<50	<5	<10	15.60	23	13	24	5840	5.48	<50
4827		2.02	0.122	7	0.19	40	<50	<5	10	11.30	120	58	84	15900	15.85	<50
4828		1.60	0.114	6	0.40	30	80	<5	<10	0.92	47	34	114	6700	11.65	<50
4829		2.52	1.445	76	0.20	250	60	<5	50	0.52	156	66	171	13900	35,5	<50
4830		2.02	0.691	29	0.44	100	<50	<5	10	4.32	42	51	95	6740	23.3	<50
4831		3.02	0.272	12	0.12	70	<50	<5	10	8.89	102	45	77	10400	21.6	<50
4832		2.88	0.217	5	0.35	180	<50	<5	10	7.55	6	22	92	3360	24.1	<50
4833		1.58	<0.005	<1	0.61	<10	70	<5	<10	2.03	<5	8	158	337	1.46	<50
4834		1.88	0.015	1	0.69	10	110	<5	<10	0.70	<5	9	110	611	3.52	<50
4835		3.38	0.042	1	0.61	40	50	<5	<10	0.63	268	<5	121	1990	33,7	<50
4836		3.44	0.223	21	0.29	110	60	<5	10	1.42	90	24	105	13450	34.7	<50
4837		2.90	0.295	21	0.07	490	<50	<5	20	0.31	61	55	128	8470	44.0	<50
1																

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm	ME-ICP41a K %	ME-ICP41a La ppm	ME-ICP41a Mg %	ME-ICP41a Mn ppm 20	ME-ICP41a Mo ppm	ME-ICP41a Na %	ME-ICP41a Ni ppm	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm	ME-ICP41a 8 %	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
			0.05	50	0.05			0.05	J			0.05				0.05
4801		<5	0.11	<50	2.30	660	20	0.12	8	330	530	3.59	<10	<5	30	<0.05
4802		5	< 0.05	<50	4.82	2900	94	0.05	14	410	2700	0.14 2.44	<10	<5	10	<0.05
4803		8	0.09	<50	1.39	490	20	0.10	23	2120	1020	3.44 25 1	20	<5	19	<0.05
4804		6	1.01	<50	2.01	1000	-5	<0.05	25	2130	<10	20.1	<10	-5 5	40 53	0.30
4805		J	1.91	<50	2.21				J1		~10	0.07	~10			0.50
4806		<5	0.08	<50	9.91	2560	18	0.05	8	1120	390	4.76	10	<5	74	<0.05
4807		<5	0.09	<50	3.39	1520	1/	0.05	7	480	120	6.85	10	<5	80	<0.05
4808		8	0.11	<50	0.64	110	288	0.09	63	60	3190	26.6	10	<5	8	<0.05
4809		<5	0.07	<50	2.81	1260	33	0.11	22	1060	300	4.16	<10	<5	15	< 0.05
4810		<5	<0.05	<50	8.33	1140	9	0.05	<5	510	920	2.34	10		12	<0.05
4811		<5	<0.05	<50	8.05	5710	<5	<0.05	9	220	660	0.82	10	5	29	<0.05
4812		<5	<0.05	<50	7.32	7230	<5	0.07	<5	600	50	4.69	<10	<5	42	<0.05
4813		<5	0.05	<50	6.23	4730	7	0.09	<5	1040	50	5.50	<10	6	37	<0.05
4814		<5	<0.05	<50	9.04	6170	<5	0.05	<5	340	20	1.22	<10	<5	55	<0.05
4815		<5	<0.05	<50	8.70	4540	<5	<0.05	<5	230	<10	0.95	10	<5	66	<0.05
4816		<5	0.36	<50	0.62	340	55	<0.05	14	1450	250	4.29	<10	<5	70	<0.05
4817		<5	0.24	<50	0.33	180	136	<0.05	67	100	300	10.60	10	<5	26	<0.05
4818		<5	0.33	<50	0.13	60	10	<0.05	9	<50	120	7.41	<10	<5	11	<0.05
4819		<5	0.23	<50	3.37	2290	27	<0.05	12	520	410	4.09	10	<5	503	<0.05
4820		6	0.32	<50	2.73	1060	9	<0.05	19	2520	10	0.99	<10	<5	154	<0.05
4821		9	0.15	<50	2.40	950	<5	0.12	16	390	<10	1.51	10	7	50	<0.05
4822		<5	0.07	<50	9.43	3770	<5	<0.05	<5	490	50	0.76	<10	<5	93	<0.05
4823		<5	<0.05	<50	10.10	3870	<5	<0.05	5	270	10	0.07	<10	6	112	<0.05
4824		<5	0.10	<50	6.63	2790	120	0.05	13	70	20	10.70	<10	5	98	<0.05
4825		<5	0.13	<50	7.03	3070	128	<0.05	34	1390	60	9.07	<10	<5	81	<0.05
4826		6	0.07	<50	8.76	3900	28	<0.05	<5	540	140	5.28	10	5	104	<0.05
4827		7	0.06	<50	6.19	3480	47	<0.05	10	880	480	19.10	<10	<5	76	<0.05
4828		7	0.14	<50	0.45	210	84	0.06	45	550	170	13.65	<10	<5	32	<0.05
4829		<5	0.05	<50	0.27	180	116	<0.05	38	340	1480	41.1	10	<5	16	<0.05
4830		<5	<0.05	<50	3.84	2550	267	0.05	48	540	310	27.1	<10	<5	33	<0.05
4831		<5	< 0.05	<50	5.32	5200	27	<0.05	25	490	200	26.6	<10	<5	50	<0.05
4832		7	< 0.05	<50	5.31	4330	17	< 0.05	18	270	110	28.1	10	<5	47	<0.05
4833		<5	0.15	<50	4.08	1220	27	0.06	18	120	10	0.68	<10	5	23	< 0.05
4834		<5	0.25	<50	1.60	240	114	0.08	155	2520	120	3.47	<10	<5	31	< 0.05
4835		18	0.08	<50	1.49	790	98	0.08	55	50	610	40.8	<10	<5	10	<0.05
4836		<5	0.07	<50	1.17	1190	68	<0.05	19	70	230	39.8	10	<5	12	<0.05
4837		<5	<0.05	<50	0.18	200	100	<0.05	14	180	220	49.1	30	<5	8	<0.05
															·	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 6-OCT-2004 Account: LTU

Project: Kutcho

4801 <50	
4803 <50 <50 10 <50 11150	
4804 <50 <50 22 <50 9450 200	
4805 <50 <50 148 <50 120	
4806 <50 <50 27 <50 3070	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
4610 <50 <50 <50 <50 <10 -10	
4820 < 50 < 50 23 < 50 1020	
4021 50 50 21 50 120 4822 50 5 50 930	
4823 < 50 <50 <5 50 390	
4824 <50 <50 6 <50 1240	
4825 <50 <50 9 <50 4290	
4826 <50 <50 5 <50 5220	
4827 <50 <50 6 <50 23800	
4828 <50 <50 13 <50 9210	
4829 <50 <50 11 <50 30500	
4830 <50 <50 45 <50 10250	
4831 <50 <50 19 <50 25300	
4832 <50 <50 24 <50 1260	
4833 <50 <50 50 <50 980	
4835 <50 <50 34 <50 >50000 6.48	
4836 <50 <50 7 <50 20200	
4837 <50 <50 <5 <50 10850	

w.,

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Ag-AA46

Page: 1 Finalized Date: 21-OCT-2004 Account: LTU

AAS

CERTIFICATE VA04068090		SAMPLE PREPARATION	
	ALS CODE	DESCRIPTION	
Project: Kutcho P.O. No.: This report is for 99 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 1-OCT-2004. The following have access to data associated with this certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
		ANALYTICAL PROCEDURI	ES
	ALS CODE	DESCRIPTION	INSTRUMENT
	Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
	Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
	Au-AA23	Au 30g FA-AA finish	AAS
	ME-ICP41a	High Grade Aqua Regia ICP-AES	ICP-AES

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Ore grade Ag - aqua regia/AA

Signature: Read Con

5

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
BB004764		6.04	0.051	2	1.19	30	<50	<5	10	0.12	<5	<5	60	1815	3.44	<50
BB004765		3.92	0.072	3	1.12	50	<50	<5	<10	0.12	<5	<5	12	5710	4.34	<50
BB004766		3.70	0.044	1	1.42	<10	50	<5	10	0.15	8	<5	66	610	6.43	<50
BB004767		3.30	0.070	5	1.12	50	<50	<5	10	0.09	13	<5	15	12200	8.59	<50
BB004768		2.62	0.030	3	1.84	40	<50	<5	10	0.08	<5	<5	46	247	4.08	<50
BB004769		3.14	0.057	3	2.37	30	<50	<5	10	0.09	<5	<5	29	4420	8.43	<50
BB004770		4.14	0.018	2	1.38	20	<50	<5	<10	<0.05	<5	<5	16	328	2.83	<50
BB004771		4.02	0.025	1	1.50	30	<50	<5	<10	0.05	<5	<5	13	154	2.96	<50
BB004772		3.76	0.027	<1	1.20	40	<50	<5	<10	<0.05	<5	<5	20	543	3.09	<50
BB004773		2.48	0.018	1	1.14	<10	<50	<5	<10	<0.05	<5	<5	18	922	2.07	<50
BB004774		4.02	0.026	3	0.83	40	50	<5	<10	<0.05	<5	<5	29	1635	2.79	<50
BB004775		4.08	0.043	2	1.05	60	<50	<5	10	<0.05	<5	<5	15	1030	4.47	<50
BB004776		3.54	0.052	2	1.22	40	<50	<5	<10	<0.05	<5	<5	24	2070	3.71	<50
BB004777		3.82	0.041	<1	1.38	40	<50	<5	<10	<0.05	<5	<5	14	516	2.64	<50
BB004778		1.50	<0.005	<1	1.87	<10	110	<5	<10	3.09	<5	26	184	182	3.83	<50
BB004779		3.80	0.030	1	1.56	30	<50	<5	<10	<0.05	<5	<5	16	1340	4.08	<50
BB004780		3.40	0.021	2	1.50	20	<50	<5	10	0.05	<5	<5	27	1830	3.91	<50
88004781		4.76	0.043	3	1.52	30	<50	<5	<10	0.08	<5	<5	15	3510	4.44	<50
BB004782		3.86	0.018	2	1.08	<10	<50	<5	<10	0.05	<5	<5	28	579	2.46	<50
BB004783		4.12	0.023	2	1.10	30	<50	<5	<10	<0.05	<5	<5	18	1520	4.94	<50
BB004784		2.82	0.058	7	0.85	10	<50	<5	<10	0.05	<5	<5	30	6050	8.05	<50
BB004785		3.70	0.025	1	1.09	30	<50	<5	<10	<0.05	<5	<5	12	989	3.81	<50
BB004786		4.06	0.031	2	0.97	20	<50	<5	10	0.05	<5	<5	24	1475	3.54	<50
BB004787		3.18	0.026	1	1.55	30	<50	<5	<10	0.07	<5	<5	15	876	2.90	<50
88004898		1.76	0.391	68	0.24	20	70	<5	<10	<0.05	<5	<5	19	42800	14.90	<50
BB004911		1.34	0.033	4	0.30	40	<50	<5	<10	1.69	114	8	22	1360	3.61	<50
BB004912		1.30	<0.005	1	0.55	20	70	<5	<10	1.36	<5	<5	5	77	2.15	<50
BB004913		0.82	0.006	1	0.13	<10	<50	<5	<10	8.61	<5	<5	17	1565	1.29	<50
BB004914		1.20	0.011	2	0.17	<10	<50	<5	<10	8.93	<5	<5	5	5110	2.04	<50
BB004915		0.60	0.165	27	0.12	20	<50	<5	10	3.82	<5	<5	<5	>50000	7.83	<50
BB004916		0.84	0.065	10	0.13	30	<50	<5	10	4.53	288	8	<5	17100	3.85	<50
BB004917		1.12	0.633	25	0.13	10	<50	<5	<10	0.25	621	9	<5	>50000	17.25	<50
BB004918		1.68	1.450	>200	0.10	50	<50	<5	30	0.45	58	<5	<5	>50000	26.1	<50
BB004919		1.28	0.283	>200	0.09	410	160	<5	20	0.72	660	<5	18	35900	23.9	<50
BB004920		1.28	0.005	1	1.97	<10	120	<5	<10	2.55	<5	23	117	425	3.91	<50
BB004921		1.94	0.494	34	0.16	60	60	<5	10	0.86	10	<5	39	5890	20.4	<50
BB004922		1.02	<0.005	1	1.91	<10	120	<5	10	2.01	<5	27	102	225	3.93	<50
BB004923		0.78	0.171	8	0.26	40	50	<5	10	0.75	42	<5	17	17200	21.5	<50
BB004924		1.18	0.338	46	0.05	1280	<50	<5	40	0.57	664	<5	25	39700	32.6	<50
BB004925		2.04	0.459	152	0.10	70	<50	<5	30	8.81	15	<5	<5	>50000	19.30	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
BB004764		<5	0.11	<50	1.11	1 10	5	0.13	<5	130	10	3.30	<10	<5	8	<0.05
BB004765		<5	0.09	<50	1.20	130	8	0.06	<5	100	50	4.37	<10	<5	8	<0.05
BB004766		<5	0.12	<50	1.44	180	9	0.09	8	100	30	6.66	10	<5	11	<0.05
BB004767		<5	0.08	<50	1.20	150	13	0.06	<5	120	60	8.90	10	<5	<5	<0.05
BB004768		<5	0.09	<50	2.06	210	6	0.08	8	200	30	3.97	<10	<5	5	<0.05
BB004769		<5	0.06	<50	2.98	320	10	0.06	11	160	40	8.46	10	<5	6	<0.05
BB004770		<5	0.05	<50	1.74	180	6	<0.05	8	80	10	2.68	10	<5	<5	<0.05
BB004771		<5	0.08	<50	1.63	180	7	0.06	<5	140	10	2.74	10	<5	<5	<0.05
BB004772		<5	0.06	<50	1.32	150	9	0.05	<5	160	100	2.97	<10	<5	<5	<0.05
BB004773		<5	0.08	<50	1.12	130	7	0.07	<5	140	30	1.86	10	<5	8	<0.05
BB004774		<5	0.06	<50	0.89	110	6	<0.05	<5	120	50	2.74	10	<5	<5	<0.05
BB004775		<5	0.07	<50	1.10	140	13	0.05	5	100	110	4.42	10	<5	<5	<0.05
BB004776		<5	0.07	<50	1.38	180	7	<0.05	13	150	10	3.64	<10	<5	6	<0.05
BB004777		<5	0.11	<50	1.32	190	<5	0.07	<5	120	<10	2.41	<10	<5	5	<0.05
BB004778		<5	1.56	<50	2.02	690	<5	<0.05	30	2770	<10	<0.05	<10	6	82	0.25
BB004779		<5	0.14	<50	1.58	250	11	0.06	8	140	10	3.85	<10	<5	7	<0.05
BB004780		<5	0.09	<50	1.76	300	6	<0.05	<5	120	10	3.67	10	<5	<5	<0.05
BB004781		<5	0.14	<50	1.59	290	10	0.05	<5	80	<10	4.20	10	<5	<5	<0.05
BB004782		<5	0.10	<50	1.14	210	7	<0.05	5	180	150	2.30	10	<5	6	<0.05
BB004783		<5	0.13	<50	1.03	200	10	0.05	<5	160	460	4.87	10	<5	6	<0.05
BB004784		<5	0.09	<50	0.83	180	8	<0.05	<5	140	350	8.22	10	<5	<5	<0.05
BB004785		<5	0.14	<50	0.91	190	8	0.06	<5	180	10	3.65	<10	<5	<5	<0.05
BB004786		<5	0.09	<50	0.99	210	6	<0.05	<5	190	10	3.44	10	<5	<5	<0.05
BB004787		<5	0.14	<50	1.55	360	6	0.05	7	200	<10	2.50	<10	<5	10	<0.05
BB004898		<5	0.09	<50	0,25	<30	8	<0.05	<5	<50	30	14.95	<10	<5	<5	<0.05
BB004911		<5	0.07	<50	0.94	180	<5	<0.05	16	130	30	4.07	10	<5	42	<0.05
BB004912		<5	0.13	<50	2.48	200	<5	<0.05	11	<50	<10	0.56	<10	<5	47	<0.05
BB004913		<5	<0.05	<50	4.29	2400	<5	<0.05	<5	1310	10	0.19	10	<5	91	<0.05
BB004914		<5	0.06	<50	4.52	2450	1	0,05	<5	790	10	0.74	10	5	114	<0.05
88004915		<5	<0.05	<50	1.93	1160	12	0.09	<5	70	<10	7.30	10	5	58	<0.05
BB004916		6	<0.05	<50	2.29	1320	38	0.09	<5	160	30	6.07	<10	5	69	<0.05
BB004917		6	0.06	<50	0.11	100	42	<0.05	12	140	80	23.9	10	<5	<5	<0.05
BB004918		<5	<0.05	<50	0.22	220	16	<0.05	10	50	90	28.9	₹10	<5	<5	<0.05
BB004919		1 11	<0.05	<50	0.34	330	50	<0.05	20	440	2620	33.4	230	<5	11	<0.05
BB004920		<5	1.66	<50	2.01	600	<5	<0.05	28	3360	20	0.14	10	<5	61	0.26
BB004921		<5	0.09	<50	0.45	430	28	<0.05	8	<50	30	22.4	10	<5	11	<0.05
BB004922		<5	1.58	<50	1.80	600	<5	<0.05	23	3500	<10	0.07	<10	5	107	0.17
BB004923		<5	0.11	<50	0.26	210	19	<0.05	<5	1030	180	23.7	10	<5	14	<0.05
BB004924		12	<0.05	<50	0.26	380	98	<0.05	34	360	1320	41.3	180	<5	<5	<0.05
BB004925		<5	<0.05	<50	4.81	1690	18	<0.05	10	420	60	21.2	10	<5	58	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

.

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	M£-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
BB004764 BB004765 BB004765		<50 <50	<50 <50	<5 <5	<50 <50	620 760				
BB004767 BB004768		<50 <50 <50	<50 <50 <50	<5 <5 <5	<50 <50 <50	1980 400				
BB004769 BB004770 BB004771 BB004772 BB004773		<50 <50 <50 <50 <50	<50 <50 <50 <50 <50 <50	<5 <5 5 <5 <5	<50 <50 <50 <50 <50	630 130 280 210 150				
BB004774 BB004775 BB004776 BB004777 BB004778		<50 <50 <50 <50 <50 <50	<50 <50 <50 <50 <50 <50	<5 <5 <5 <5 <5 143	<50 <50 <50 <50 <50 <50	190 590 310 190 50				
B8004779 B8004780 B8004781 B8004782 B8004783		<50 <50 <50 <50 <50 <50	<50 <50 <50 <50 <50	<5 <5 <5 <5 <5 <5	<50 <50 <50 <50 <50	190 180 180 420 770				·
BB004784 BB004785 BB004786 BB004787 BB004898		<50 <50 <50 <50 <50 <50	<50 <50 <50 <50 <50 <50	<5 <5 <5 <5 <5 <5	<50 <50 <50 <50 <50	470 140 110 140 240				
BB004911 BB004912 BB004913 BB004914 BB004915		<50 <50 <50 <50 <50	<50 <50 <50 <50 <50	<5 <5 <5 <5 <5 <5	<50 <50 <50 <50 <50	14900 780 350 510 470		6.42		
BB004916 BB004917 BB004918 BB004919 BB004920		<50 <50 <50 <50 <50	<50 <50 <50 <50 <50	<5 <5 <5 10 132	<50 <50 <50 <50 <50	>50000 >50000 9790 >50000 400	247 347	6.10 5.62	5.67 11.80 13.30	3
BB004921 BB004922 BB004923 BB004924 BB004925		<50 <50 <50 <50 <50 <50	<50 <50 <50 <50 <50	<5 138 7 26 5	<50 <50 <50 <50 <50	1780 100 7880 >50000 2740		9.44	11.35	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Ai % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41s Cd ppm 5	ME-ICP41s Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41n Fo % 0.05	ME-ICP41a Ga ppm 50
BB004926		1.36	0.348	59	0.30	60	50	<5	10	0.42	150	<5	19	8830	13.75	<50
BB004927		1.00	0.509	10	0.18	60	<50	<5	10	0.08	59	<5	35	1285	14.45	<50
BB004928		0.78	0.081	6	0.18	30	<50	<5	10	3.13	188	<5	14	1615	13.05	<50
BB004929		1.36	0.030	2	0.19	40	60	<5	10	4.29	14	<5	31	366	6.63	<50
BB004930		4.88	0.035	3	0.21	140	50	<5	<10	5.62	12	<5	13	247	8.91	<50
BB004931		2.78	0.064	4	0.22	110	60	<5	<10	0.06	17	<5	35	522	13.95	<50
BB004932		3.54	0.051	4	0.24	90	<50	<5	10	0.13	31	<5	19	662	14.00	<50
BB004933		3.76	0.051	3	0.22	60	<50	<5	10	0.21	61	<5	34	396	15.20	<50
BB004934		3.26	0.036	1	0.31	30	<50	<5	10	<0.05	27	<5	22	421	12.15	<50
BB004935		3.18	0.046	3	0.28	30	<50	<5	10	<0.05	61	<5	45	859	11.85	<50
BB004936		2.98	0.096	15	0.19	210	<50	<5	10	0.44	73	<5	34	15300	10.45	<50
BB004937		1.28	0.059	6	0.26	60	50	<5	10	0.19	<5	<5	19	3690	11.25	<50
BB004938		2.86	0.046	4	0.28	70	<50	<5	10	<0.05	5	<5	41	244	11.55	<50
BB004939		2.90	0.040	4	0.48	10	<50	<5	10	<0.05	19	<5	17	371	11.00	<50
BB004940		2.00	0.025	2	0.19	30	<50	<5	<10	11.20	<5	<5	11	3240	2.81	<50
BB004941		2.84	0.026	1	0.47	20	70	<5	<10	5.01	<5	9	7	827	2.77	<50
BB004942		3.04	0.262	12	0.22	30	<50	<5	10	3.95	<5	<5	14	15450	3.04	<50
BB004943		3.64	0.074	2	0.52	70	120	<5	<10	1.92	<5	<5	12	751	4.46	<50
BB004944		2.46	0.265	11	0.35	20	<50	<5	10	2.89	<5	<5	- 11	19550	3.34	<50
BB004945		2.72	0.021	<1	0.63	20	70	<5	10	1.23	<5	<5	10	64	2.69	<50
BB004946		2.54	0.016	5	0.40	<10	<50	<5	10	0.29	<5	<5	17	8150	1.70	<50
BB004947		3.98	0.042	1	0.63	30	60	<5	10	0.64	<5	8	8	69	1.91	<50
BB004948		1.94	0.069	16	0.39	20	70	<5	<10	1.17	<5	8	16	4560	2.80	<50
BB004949		2.04	0.060	3	0.44	10	110	<5	<10	<0.05	<5	<5	12	527	10.10	<50
BB004950		2.44	0.037	1	1.70	20	60	<5	<10	0.40	<5	<5	14	1025	2.96	<50
BB004951		2.10	0.219	18	1.08	<10	110	<5	<10	2.68	37	<5	<5	22800	3.62	<50
BB004952		2.12	0.037	3	0.39	30	80	<5	<10	1.00	16	5	16	2690	5.24	<50
BB004953		1.30	<0.005	<1	1.91	<10	240	<5	<10	2.02	<5	15	115	242	3.09	<50
BB004954		2.70	0.119	12	0.16	100	<50	<5	<10	2.01	<5	<5	37	4820	12.30	<50
BB004955		2.82	0.201	16	0.28	160	60	<5	<10	1.30	<5	<5	17	2600	11.80	<50
BB004956		3.14	0.524	39	0.13	70	<50	<5	10	2.40	24	<5	30	15350	23.8	<50
BB004957		1.54	0.057	4	0.19	60	<50	<5	<10	5.00	26	<5	13	1545	20.3	<50
BB004958		2.88	0.168	37	0.13	150	<50	<5	<10	4.18	24	<5	21	12250	20.8	<50
BB004959		3.26	0.230	34	0.33	80	80	<5	<10	1.24	102	<5	16	5540	23.7	<50
BB004960		1.38	0.019	11	0.29	10	60	<5	<10	0.16	19	<5	33	258	7.50	<50
BB004961		3.00	0.015	2	0.26	70	50	<5	<10	0.09	5	<5	31	181	14.50	<50
BB004962		2.68	0.013	1	0.31	50	70	<5	<10	<0.05	<5	<5	20	77	11.35	<50
BB004963		3.06	0.047	10	0.23	250	50	<5	<10	0.22	26	<5	31	2850	15.75	<50
BB004964		3.78	0.042	2	0.52	30	70	<5	<10	<0.05	32	<5	19	2590	13.65	<50
BB004965		2.84	0.017	2	1.34	<10	50	<5	<10	0.06	29	<5	23	748	8.92	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
BB004926		<5	0.11	<50	0.22	80	46	<0.05	6	50	170	16.90	10	<5	<5	<0.05
BB004927		<5	0.07	<50	0.05	<30	41	<0.05	8	<50	540	16,60	<10	<5	<5	<0.05
BB004928		5	0.07	<50	1.72	1000	31	<0.05	<5	110	270	16.20	10	<5	17	<0.05
BB004929		<5	0.06	<50	2.38	980	23	<0.05	<5	<50	580	7.57	<10	<5	19	<0.05
BB004930		<5	0.06	<50	3.21	790	13	<0.05	5	<50	410	10.25	20	<5	28	<0.05
BB004931		<5	0.08	<50	<0.05	<30	23	<0.05	5	<50	90	15.60	10	<5	<5	<0.05
BB004932		<5	0.09	<50	0.08	30	14	<0.05	<5	<50	220	15.55	10	<5	<5	<0.05
BB004933		5	0.08	<50	0.17	30	15	<0.05	<5	<50	80	17.40	<10	<5	<5	<0.05
BB004934		<5	0.09	<50	0.25	30	12	<0.05	8	<50	30	13.65	<10	<5	<5	<0.05
BB004935		<5	80.0	<50	0.63	50	13	<0.05	<5	<50	70	13.55	10	<5	<5	<0.05
BB004936		<5	0.05	<50	0.38	60	20	<0.05	<5	<50	500	11.65	20	<5	10	<0.05
BB004937		<5	0.08	<50	0.23	40	20	<0.05	<5	<50	50	11.65	20	<5	11	<0.05
8B004938		<5	0.06	<50	0.39	40	18	<0.05	6	70	40	11.90	<10	<5	7	<0.05
BB004939		<5	0,06	<50	0.68	70	22	<0.05	<5	<50	40	11.55	10	<5	<5	<0.05
BB004940		<5	0.06	<50	5.65	1940	<5	<0.05	6	270	10	1.55	10	9	154	<0.05
BB004941		<5	0.13	<50	2.57	620	19	0.10	11	<50	10	2.21	<10	5	90	<0.05
BB004942		<5	0.06	<50	2.01	590	7	0.05	<5	<50	20	2.73	20	5	55	<0.05
BB004943		<5	0.16	<50	1.44	250	15	0.07	<5	<50	<10	4.36	10	<5	48	<0.05
BB004944		<5	0.07	<50	3,13	500	7	0.06	5	<50	40	2.75	<10	. 5	59	<0.05
BB004945		<5	0.09	<50	2.43	260	7	0.10	<5	<50	10	2.14	<10	<5	42	<0.05
BB004946		<5	0,05	<50	1.74	90	<5	0.07	<5	<50	<10	1.23	10	<5	13	<0.05
BB004947		<5	0.08	<50	1.92	190	<5	0.11	9	80	<10	1.47	<10	<5	31	<0.05
BB004948		<5	0.08	<50	2.24	380	13	0.06	<5	<50	20	2.54	<10	<5	28	<0.05
BB004949		5	0.14	<50	0.74	30	12	0.05	<5	<50	10	11.05	<10	<5	13	<0.05
BB004950		5	0.07	<50	3.56	210	7	< 0.05	<5	100	<10	2.61	<10	<5	18	< 0.05
BB004951		<5	0.10	<50	4.42	370	<5	0.06	<5	230	40	3.41	<10	<5	148	<0.05
BB004952		<5	0.08	<50	2.14	260	9	0,05	<5	100	10	5.76	<10	<5	50	<0.05
BB004953		<5	1.36	<50	1.54	470	<5	<0.05	30	3870	<10	<0.05	<10	<5	71	0.34
88004954		<5	<0.05	<50	1.16	490	39	<0.05	5	50	10	13.75	10	<5	44	<0.05
BB004955		6	0.07	<50	0.73	340	63	0.05	<5	<50	60	13.15	10	<5	26	<0.05
BB004956		<5	<0.05	<50	1.34	480	23	<0.05	<5	<50	60	27.1	<10	<5	42	<0.05
BB004957		<5	0.06	<50	2.86	920	24	<0.05	<5	120	50	23.6	<10	<5	64	<0.05
BB004958		<5	<0.05	<50	2.40	700	22	<0.05	<5	70	170	24.1	∢10	<5	57	<0.05
BB004959		7	0.12	<50	0.72	240	26	<0.05	<5	50	120	27,4	<10	<5	25	<0.05
BB004960		6	0.10	<50	1.58	60	15	<0.05	<5	<50	70	8.35	<10	<5	14	<0.05
BB004961		<5	0.10	<50	0.79	30	17	<0.05	<5	<50	100	16.15	<10	<5	8	<0.05
BB004962		<5	0.13	<50	0.34	30	21	<0.05	<5	<50	50	12.45	<10	<5	7	<0.05
BB004963		<5	0.09	<50	0.41	70	25	<0.05	<5	<50	30	17.70	20	<5	9	<0.05
BB004964		<5	0.11	<50	0.82	60	18	<0.05	<5	60	40	15.20	<10	<5	10	<0.05
BB004965		<5	0.09	<50	1.97	130	10	<0.05	<5	160	20	9.82	<10	<5	8	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

.

Project: Kutcho

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
BB004926		<50	<50	<5	<50	37900				
BB004927		<50	<50	<5	<50	12450				
BB004928		<50	<50	<5	<50	40100				
BB004929		<50	<50	<5	<50	3840				
BB004930		<50	<50	<5	<50	3240				
BB004931		<50	<50	<5	<50	4450				
BB004932		<50	<50	<5	<50	7300				
BB004933		<50	<50	<5	<50	11400				
BB004934		<50	<50	<5	<50	6250				
BB004935		<50	<50	<5	<50	12450				
BB004936		<50	<50	<5	<50	14700				
BB004937		<50	<50	<5	<50	830				
BB004938		<50	<50	<5	<50	1080				
BB004939		<50	<50	<5	<50	3730				
BB004940		<50	<50	<5	<50	240				
BB004941		<50	<50	6	<50	500				
BB004942		<50	<50	<5	<50	340				
BB004943		<50	<50	8	<50	210				
BB004944		<50	<50	6	<50	480				
BB004945		<50	<50	7	<50	530				
BB004946		<50	<50	6	<50	410				
BB004947		<50	<50	<5	<50	360				
BB004948		<50	<50	5	<50	450				
BB004949		<50	<50	<5	<50	350				
BB004950		<50	<50	5	<50	1020				
BB004951	_	<50	<50	6	<50	7900				
BB004952		<50	<50	<5	<50	4180				
BB004953		<50	<50	102	<50	60				
BB004954		<50	<50	<5	<50	900				
BB004955		<50	<50	_<5	<50	1020				
BB004956		<50	<50	<5	<50	5810				
BB004957		<50	<50	<5	<50	6450				
BB004958		<50	<50	<5	<50	5870				i
BB004959		<50	<50	<5	<50	21300				
BB004960		<50	<50	<5	<50	4270				
BB004961		<50	<50	<5	<50	1260		• • • • • •	· · · · ·	
BB004962		<50	<50	<5	<50	1130				
BB004963		<50	<50	<5	<50	5120				
BB004964		<50	<50	<5	<50	6810				
BB004965		<50	<50	<5	<50	6870				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04068090

1

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Ai % 0.05	ME-ICP41a As Þpm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
BB004966		3.02	0.028	3	0.27	<10	70	<5	<10	<0.05	66	<5	20	1225	13.00	<50
BB004967		2.98	0.029	3	0.27	10	<50	<5	<10	<0.05	<5	<5	28	2270	10.85	<50
BB004968		2.94	0.023	<1	0.91	20	50	<5	<10	<0.05	<5	<5	17	53	11.10	<50
BB004969		2.38	0.015	<1	0.78	20	50	<5	<10	<0.05	<5	<5	20	148	11.20	<50
BB004970		1.64	0.026	1	0.35	150	<50	<5	<10	5.16	<5	7	11	111	6.91	<50
BB004971		1.98	0.009	<1	0.43	20	50	<5	<10	3.56	43	<5	14	144	2.21	<50
BB004972		1.76	0.035	<1	0.63	50	50	<5	<10	0.81	67	<5	<5	583	3.34	<50
BB004973		1.14	0.079	12	0.42	60	<50	<5	<10	1.34	5	8	<5	14750	13.30	<50
BB004974		1.92	0.051	6	0.28	10	<50	<5	<10	1.83	23	<5	15	3070	10.55	<50
BB004975		2.62	0.033	2	0.22	20	<50	<5	<10	0.18	30	<5	26	864	11.25	<50
BB004976		2.74	0.039	2	0.31	10	<50	<5	10	0.47	14	<5	17	815	12.80	<50
BB004977		2.46	0.032	1	0.22	10	<50	<5	<10	0.72	15	7	23	744	7.99	<50
BB004978		2.34	0.032	<1	0.29	10	<50	<5	<10	2.15	15	<5	17	513	13.20	<50
BB004979		1.88	0.028	1	0.22	10	<50	<5	<10	3.06	<5	<5	25	477	9.53	<50
BB004980		1.64	<0.005	<1	2.18	<10	120	<5	<10	2.57	<5	24	123	162	4.15	<50
BB004981		2.12	0.039	2	0.18	<10	<50	<5	<10	4.45	<5	<5	19	1970	10.10	<50
BB004982		2.70	0.027	<1	0.32	20	<50	<5	<10	4.62	<5	<5	10	477	6.03	<50
BB004983		1.46	0.213	9	0.15	40	<50	<5	10	5.57	17	<5	17	27200	16.85	<50
BB004984		2.90	0.046	2	0.27	30	<50	<5	<10	6.29	8	<5	10	1490	9.56	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04068090

*

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-4CP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a 8 % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
BB004966		<5	0.10	<50	0.09	<30	14	<0.05	<5	80	90	15.05	<10	<5	9	<0.05
BB004967		<5	0.07	<50	0.15	<30	12	<0.05	<5	<50	80	11.95	<10	<5	7	<0.05
BB004968		<5	0.10	<50	0.99	80	15	0.05	<5	100	20	12.00	<10	<5	9	<0.05
BB004969		<5	0.09	<50	0.92	80	11	<0.05	5	80	<10	12.20	<10	<5	8	<0.05
BB004970		<5	0.07	<50	2.72	950	24	0.08	<5	90	10	7.26	10	5	75	<0.05
BB004971		<5	0.11	<50	3.91	550	6	0.05	<5	<50	<10	1.61	10	<5	71	<0.05
BB004972		<5	0.11	<50	4.25	250	22	0.07	<5	<50	30	2.56	<10	<5	28	<0.05
BB004973		<5	0.09	<50	3.24	340	22	0.05	<5	<50	100	13.75	<10	<5	34	<0.05
BB004974		<5	0.09	<50	1.00	520	18	0.05	<5	<50	80	11.75	10	<5	34	<0.05
BB004975		<5	0.09	<50	0.12	50	18	<0.05	10	<50	30	12.75	<10	<5	8	<0.05
BB004976		7	0.12	<50	0.28	130	13	<0.05	<5	<50	70	14.25	<10	<5	15	<0.05
BB004977		6	0.10	<50	0.38	170	10	<0.05	6	220	10	8.99	<10	<5	15	<0.05
BB004978		<5	0.12	<50	1.18	530	12	<0.05	<5	130	20	14.90	10	<5	29	<0.05
BB004979		<5	0.09	<50	1.70	730	7	<0.05	<5	190	10	10.70	<10	<5	37	<0.05
BB004980		<5	1.67	<50	2.01	610	<5	<0.05	25	3520	<10	0.06	<10	5	99	0.40
BB004981		<5	0.06	<50	2.51	1020	9	<0.05	<5	140	20	11.45	<10	<5	44	<0.05
BB004982		5	0.12	<50	2.61	1040	8	0.05	<5	190	30	6.72	<10	<5	45	<0.05
BB004983		<5	<0.05	<50	3.13	1280	15	<0.05	<5	230	70	19.05	<10	<5	56	<0.05
BB004984		<5	0.09	<50	3.67	1310	10	<0.05	18	80	30	11.10	<10	<5	54	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 21-OCT-2004 Account: LTU

Project: Kutcho

CERTIFICATE OF ANALYSIS VA04068090

1

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu- AA4 6 Cu % 0.01	Zn-AA46 Zn % 0.01	
BB004966		<50	<50	<5	<50	14700				
BB004967		<50	<50	<5	<50	140				
BB004968		<50	<50	<5	<50	220				
BB004969		<50	<50	<5	<50	170				
BB004970		<50	<50	<5	<50	400				
BB004971		<50	<50	9	<50	9570				
BB004972		<50	<50	12	<50	12900				
BB004973		<50	<50	5	<50	1620				
BB004974		<50	<50	<5	<50	4540				
BB004975		<50	<50	<5	<50	6420				
BB004976		<50	<50	<5	<50	2970	<u></u>			
BB004977		<50	<50	<5	<50	3110				
BB004978		<50	<50	<5	<50	3040				
BB004979		<50	<50	<5	<50	570				
BB004980		<50	<50	156	<50	60				
BB004981		<50	<50	<5	<50	580				
BB004982		<50	<50	<5	<50	550				
BB004983		<50	<50	<5	<50	3320				
BB004984		<50	<50	<5	<50	1470				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

ME-ICP41a

Ag-AA46

Page: 1 Finalized Date: 28-OCT-2004 Account: LTU

ICP-AES

AAS

CI	ERTIFICATE VA0406986	1		SAMPLE PREPARATIO	N
			ALS CODE	DESCRIPTION	
Project: KUTCHO P.O. No.: This report is for 153 Drill Co on 7-OCT-2004. The following have acces	ore samples submitted to our lab in s to data associated with this ce	Vancouver, BC, Canada rtificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um	
DONALD	PETER HOLBER	ROB W		ANALYTICAL PROCEDUR	RES
			ALS CODE	DESCRIPTION	INSTRUMENT
			Cu-AA46	Ore grade Cu - aqua regia/AA	AAS
			Zn-AA46	Ore grade Zn - aqua regia/AA	AAS
			Au-AA23	Au 30g FA-AA finish	AAS

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

High Grade Aqua Regia ICP-AES

Ore grade Ag - aqua regia/AA

Signature: Reset Con

3

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Bø ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fo % 0.05	ME-ICP41a Ga ppm 50
B004501		2.36	0.117	61	2.05	60	160	<5	<10	0.13	<5	<5	<5	2020	5.93	<50
B004502		1.66	0.006	2	2.11	<10	100	<5	<10	0.07	18	<5	<5	102	2.70	<50
B004503		4,06	0.008	<1	2.63	20	190	<5	<10	0.32	<5	<5	<5	72	3.62	<50
B004504		2.34	0.013	3	3.35	<10	<50	<5	<10	0.43	18	18	32	296	7.76	<50
B004505		1.88	0.016	3	2.88	<10	<50	<5	<10	0.14	45	14	17	1070	8.15	<50
B004506		2.00	0.040	3	2.24	30	<50	<5	<10	0.19	90	15	45	329	15.35	<50
B004507		1.98	<0.005	1	6.16	10	<50	<5	<10	0.18	25	40	215	278	7.32	<50
B004508		1.96	<0.005	<1	6.11	<10	<50	<5	<10	0.34	<5	46	268	56	5.98	<50
B004509		1.98	0.011	2	5.44	40	<50	<5	<10	0.28	<5	39	217	160	8.26	<50
B004510		2.62	800.0	2	4.80	20	<50	<5	<10	0.29	<5	35	174	131	8.81	<50
B004511		2.22	0.013	4	3.98	30	<50	<5	10	0.14	<5	31	168	303	7.04	<50
B004512		3.70	0.051	20	2.72	70	70	<5	10	0.22	15	26	92	1365	5.53	<50
B004513		3.36	800.0	2	1.18	<10	120	<5	<10	0.82	5	8	27	186	3.50	<50
B004514		1.20	0.007	1	1.29	<10	140	<5	<10	0.61	6	5	5	57	3.14	<50
B004515		1.96	<0.005	<1	1.63	<10	190	<5	<10	0.15	<5	<5	12	24	2.77	<50
B004516		1.78	<0.005	<1	1.40	<10	440	<5	<10	0.59	<5	7	<5	16	3.72	<50
B004517		1.00	<0.005	<1	0.80	<10	<50	<5	<10	0.05	<5	<5	21	9	2.12	<50
B004518		1.40	0.018	3	0.73	300	<50	<5	<10	3.33	<5	6	7	4020	6.70	<50
B004519		1.46	<0.005	<1	1.09	30	<50	<5	10	0.22	<5	8	28	206	3.93	<50
B004520		1.86	0.013	2	1.16	40	<50	<5	<10	0.78	<5	5	8	761	5.74	<50
B004521		1.82	<0.005	<1	2.16	<10	<50	<5	<10	0.39	<5	<5	9	32	3.78	<50
B004522		1.86	0.040	1	3.27	10	<50	<5	<10	0.62	<5	11	12	2330	8.60	<50
B004523		1.06	0.021	<1	4.05	<10	<50	<5	<10	0.13	<5	5	35	94	3.94	<50
B004524		1.90	0.020	<1	1.16	10	<50	<5	<10	0.42	50	7	14	532	8.52	<50
B004525		2.34	0.009	<1	1.30	20	<50	<5	<10	0.68	5	9	38	63	4.61	<50
B004526		0.96	0.013	<1	0.97	<10	<50	<5	<10	0.43	15	<5	67	347	4.45	<50
B004527		1.18	0.081	2	0.65	10	<50	<5	<10	0.19	230	6	177	2290	5.08	<50
B004528		0.98	0.057	1	0.66	20	<50	<5	<10	0.17	98	19	121	1830	7.08	<50
B004529		1.50	0.025	<1	2.01	10	<50	<5	<10	0.07	<5	41	32	186	6.22	<50
B004530		1.32	0.037	2	2.27	20	100	<5	10	0.14	105	14	86	1920	6.69	<50
B004531		1.34	0.015	1	0.88	<10	<50	<5	<10	0.07	<5	<5	13	59	2.91	<50
B004532		0.66	0.006	<1	0.58	20	<50	<5	<10	0.19	<5	<5	67	138	1.86	<50
B004533		1.96	0.007	<1	0.54	220	<50	<5	<10	0.24	<5	5	71	580	1.93	<50
B004534		1.00	0.006	<1	0.59	160	<50	<5	<10	0.68	<5	7	93	369	2.56	<50
8004535		0.96	0.042	1	0.67	1100	<50	<5	<10	0.73	<5	10	69	3220	6.13	<50
B004536		1.18	<0.005	<1	0.65	30	<50	<5	<10	0.27	<5	5	57	77	1.40	<50
B004537		0,94	0.031	1	0.55	290	<50	<5	<10	0.06	<5	<5	54	2520	2.75	<50
B004538		0.32	0.016	1	0.50	20	<50	<5	10	0.06	<5	<5	66	563	2.24	<50
8004539		0.94	0.175	3	0.49	20	<50	<5	<10	0.22	<5	<5	59	5290	2.72	<50
8004540		1.06	0.013	1	0.70	<10	<50	<5	<10	0.27	<5	<5	69	2000	1.91	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-1CP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a \$ % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-1CP41a Sr ppm 5	ME-ICP41a Ti % 0.05
					1.50	200		0.15	< <u>-</u>	200	270	5.05	10			<0.05
B004501		<5	0.29	<50	1.50	390	<5	0.15	<5	290	190	2 76	10	<5	<5	<0.05
B004502 B004503		<5	0.29	<50	1.80	470	<5	0.14	<5	1370	40	3 45	10	<5	<5	<0.05
8004504		<5	0.07	<50	4.62	1600	21	0.09	31	1520	120	7.65	<10	9	6	<0.05
B004505		<5	<0.05	<50	3.98	1230	11	0.05	27	460	80	8.28	<10	9	<5	<0.05
B004506		<5	<0.05	<50	3.42	1430	11	<0.05	50	710	40	16.40	<10	9	<5	<0.05
B004507		<5	<0.05	<50	9.56	3320	<5	<0.05	94	750	20	5.13	10	26	<5	<0.05
B004508		<5	<0.05	<50	9.31	2960	<5	0.06	111	740	10	4.49	<10	24	<5	<0.05
B004509		<5	0.07	<50	7.79	2280	<5	0.07	98	1140	60	7.70	<10	23	<5	<0.05
B004510		<5	0.12	<50	5.93	1450	10	0.17	103	1190	260	8.61	<10	21	8	<0.05
B004511		<5	<0.05	<50	8.13	1760	<5	<0.05	87	520	30	5.85	<10	18	<5	<0.05
B004512		<5	0.12	<50	5.28	1250	<5	0.09	43	930	50	5.19	10	10	5	<0.05
B004513		<5	0.26	<50	2.04	480	<5	0.11	<5	3810	20	3.34	<10	<5	10	<0.05
B004514		<5	0.29	<50	1.47	470	<5	0.10	<5	2750	30	2.38	10	<5	6	<0.05
B004515		<5	0.37	<50	1.85	650	<5	0.17	<5	200	160	2.56	<10	<5	<5	<0.05
B004516		<5	0.28	<50	2.24	1230	<5	0.14	6	160	60	3.11	<10	<5	15	<0.05
B004517		<5	0.13	<50	4.99	790	<5	<0.05	<5	150	10	0.63	<10	<5	<5	<0.05
B004518		<5	0.08	<50	5.88	2980	26	<0.05	30	1080	20	5.21	20	5	17	<0.05
B004519		<5	0.16	<50	4.56	810	<5	<0.05	5	160	10	2.97	. 10	<5	<5	<0.05
8004520		<>	0.08	<50	4.60	14/0	<u> </u>	<0.05	25	1/30	.10	3.85	<10	<u> </u>	11	<0.05
B004521		<5	0.11	<50	5.04	1200	<5	0.09	10	310	10	2.80	10	6	7	<0.05
B004522		<5	0.05	<50	4.94	1030	35	<0.05	26	1730	10	8.23	10	6	<5	<0.05
B004523		<5	<0.05	<50	5.99	1140	6	<0.05	7	220	10	2.66	<10	7	<5	<0.05
B004524		<5	0.06	<50	4.29	900	25	0.08	37	1260	20	6.78	<10	5	<5	<0.05
B004525	_	<5	0.12	<50	2.86	620	19	0.13	18	2290	20	4.04	10	<5	14	<0.05
B004526		5	0.06	<50	2.79	620	10	0.05	14	1860	<10	3.99	<10	<5	6	<0.05
B004527		9	<0.05	<50	0.92	280	26	0.05	21	550	20	7.29	<10	<5	<5	<0.05
B004528		<5	0.09	<50	0.46	150	25	0.07	31	790	20	8.21	<10	<5	<5	<0.05
B004529		<5	0.08	<50	4.09	890	<5	0.05	25	150	<10	5.23	<10	8	<5	<0.05
8004530		<0	0.19	00>	2.08	610	<5	0.09	15	510	30	7.12		5	<0	<0.05
B004531		<5	0.09	<50	4.34	500	<5	0.07	<5	160	30	2.14	<10	<5	<5	<0.05
B004532		<5	0.20	<50	2.42	430	<5	0.05	<5	220	10	1.05	10	<5	<5	<0.05
8004533		<5	0.18	<50	1.92	370	<5	0.06	<5	240	20	1.35	10	<5	<5	<0.05
8004534		<5	0.20	<50	2.15	/50	<5	0.06	<5	180	10	1.91	20	<5	<5	<0.05
8004535		< <u>></u>	0.23	<50	2.05	830	<5	0.05	5	120	20	5.93	10	<5	<5	<0.05
B004536		<5	0.25	<50	2.73	610	<5	0.05	<5	180	10	0.57	<10	<5	13	<0.05
B004537		<5	0.20	<50	1.35	250	<5	<0.05	<5	110	<10	2.45	<10	<5	<5	<0.05
B004538		<5	0.20	<50	1.11	230	7	<0.05	10	130	20	2.00	10	<5	<5	<0.05
B004539		<5	0.17	<50	1.39	430	9	<0.05	<5	120	10	2.43	10	<5	<5	<0.05
8004540		<5	0.22	<50	2.22	700	6	<0.05	<5	170	<10	1.23	10	<5	<5	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-JCP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
B004501		<50	<50	5	<50	700				
B004502		<50	<50	<5	<50	4210				
8004503		<50	<50	<5	<50	710				
B004504		<50	<50	134	<50	3660				
8004505		<50	<50	93	<50	9680				
B004506		<50	<50	69	<50	18450				
B004507		<50	<50	204	<50	5480				
B004508		<50	<50	198	<50	840				
B004509		<50	<50	192	<50	630				
8004510	. <u> </u>	<50	< 50	1/8	<50	990				
B004511		<50	<50	168	<50	830				
B004512		<50	<50	87	<50	3900				
B004513		<50	<50	5	<50	1490				
8004514		<50	<50	<5	<50	1640				
8004515		<50	<50	<5	<50	260				
B004516		<50	<50	<5	<50	220				
B004517		<50	<50	6	<50	240				
8004518		<50	<50	29	<50	870				
B004519		<50	<50	32	<50	450				
8004520		<50	<50	35	<50	850				
B004521		<50	<50	19	<50	740				
B004522		<50	<50	79	<50	1030				
B004523		<50	<50	61	<50	580				
B004524		<50	<50	62	<50	9570				
B004525		<50	<50	35	<50	1240				
B004526		<50	<50	54	<50	3420				
B004527		<50	<50	37	<50	47000				
B004528		<50	<50	27	<50	15850				
B004529		<50	<50	68	<50	1350				
B004530		<50	<50	41	<50	19800				
B004531		<50	<50	5	<50	600				
B004532		<50	<50	<5	<50	340				
B004533		<50	<50	<5	<50	150				,
B004534		<50	<50	<5	<50	170				*
8004535		<50	<50	<5	<50	260				
B004536		<50	<50	<5	<50	300				
B004537		<50	<50	<5	<50	210				
B004538		<50	<50	<5	<50	230				
B004539		<50	<50	<5	<50	210				
B004540		<50	<50	<5	<50	300				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	WEI-21 Røcvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B004541		2.06	0.471	93	0.14	210	<50	<5	<10	8.30	468	<5	29	19700	19.55	<50
B004542		2.52	0.502	36	0.96	20	150	<5	<10	0.83	68	<5	123	7760	13.15	<50
B004543		1.66	0.495	72	2.38	90	100	<5	10	2.83	83	<5	48	43900	11.30	<50
B004544		0.86	0.038	5	0.47	30	130	<5	<10	3.40	98	8	73	2970	6.43	<50
B004545		0.90	0.019	3	0.60	20	160	<5	<10	1.94	94	6	119	1155	4.06	<50
B004546		1.20	0.010	1	0.45	10	110	<5	<10	2.09	<5	9	48	338	2.59	<50
B004547		0.82	0.024	1	0.68	20	270	<5	<10	2.86	<5	<5	89	100	2.23	<50
B004548		0.60	1.645	28	0.43	10	100	<5	10	1.61	27	16	75	47000	6.50	<50
B004549		1.24	0.163	7	0.65	10	150	<5	<10	4.29	9	12	107	5110	2.98	<50
B004550		1.14	0.027	19	0.47	<10	100	<5	10	4.59		/	56	22500	3.35	<50
B004551		1.46	0.035	11	0.41	20	60	<5	<10	1.98	51	6	81	9590	3.27	<50
B004552		1.74	0.081	14	1.06	10	170	<5	<10	1.77	85	16	23	14700	7.12	<50
B004553		1.70	0.071	22	0.41	<10	60	<5	<10	0.73	122	7	43	29600	8.21	<50
B004554		1.50	0.443	46	0.27	630	220	<5	10	0.51	1900	<5	<5	5810	11.10	<50
8004555		0.98	0.794	14	1.42	30	190	<5	<10	0.27	358	5	7	30200	8.14	<50
B004556		1.50	0.932	30	1.32	50	110	<5	10	0.39	265	<5	<5	12000	20.3	<50
B004557		1.34	0.024	<1	2.32	<10	120	<5	<10	2.34	9	30	122	487	4.81	<50
B004558		1.32	0.160	5	0.51	20	140	<5	<10	<0.05	10	5	6	932	11.75	<50
B004559		1.28	0.758	49	0.53	40	160	<5	<10	<0.05	20	6	- 110	8950	12.95	<50
B004560		1.46	0.122	6	0.57	<10	150	<5	<10	<0.05	<5	<0	<5	1685	18.60	<50
B004561		1.08	0.580	115	0.62	<10	160	<5	10	<0.05	5	<5	56	36200	16.00	<50
B004562		1.02	0.188	111	0.60	10	180	<5	<10	<0.05	6	7	<5	4310	9.62	<50
8004563		2.00	0.272	47	0.40	40	120	<5	20	<0.05	13	<0	65	26200	20.7	<50
B004564		0.88	0.609	>200	0.51	120	170	<0	30	<0.05	12	<5	~ 5 36	20000	17.90	<50
8004000		1.14	0.040	00	0.00			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						18300		-50
B004566		1.80	2.18	134	2.06	50	1/0	<5	30	0.60	49	<5	<5	31300	30.3	<50
B004567		2.06	3.92	>200	0.20	10	50	<5	110	3.75	29	<5	20	>50000	30.2	<50
B004569		0.86	1.010	61	0.39	120	<50	<5	30	0.26	49	<5	<5	14000	16 20	<50
B004570		1.70	0.365	>200	0.32	150	<50	<5	40	0.30	2380	<5	35	10750	9.63	<50
B004571		2.22	0.727	20	1.06	70	<50		<10	0.40	429			6020	24.7	<50
B004572		0.48	2 91	>29	0.08	80	<50	<5	40	0.49	420	<5	<5	5930	12 55	<50
B004573		1 24	0.216	-200	0.00	60	<50	<5	40 <10	9.90 14.25	24	<5	<5	20000	6 13	<50
B004574		1.30	0.649	28	1 46	10	<50	<5	<10	1 20	116	<5	FJ 81	>50000	30.0	<50
B004575		0.88	0.907	26	5.84	100	<50	<5	<10	1.17	6	6	<5	14600	16.70	<50
B004576		1.62	0.509	24	2.91	10	50	<5	<10	0.20	12		54	24200	23.0	<50
B004577		1.28	0.051	4	0.53	<10	100	<5	<10	<0.20	<5	<5	110	24200	13.05	<50
B004578		1.28	0.053	2	0.60	<10	120	<5	<10	<0.05	<5	<5	140	242	17.00	<50
B004579		1.22	<0.005	<1	2.13	<10	120	<5	<10	2 11	<5	17	198	242	2.76	<50
B004580		2.04	0.009	1	1.63	10	<50	<5	<10	0.29	<5	12	116	214	7 10	<50
							•••			0.20	-0	12	110	201	1.18	NOU

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-1CP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a 8 % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B004541		10	<0.05	<50	4.33	2040	62	<0.05	19	520	2170	26.3	40	<5	39	<0.05
B004542		<5	0.26	<50	1.24	280	15	0.05	5	70	140	14.70	10	<5	10	<0.05
B004543		<5	0.14	<50	4.54	790	16	<0.05	11	90	140	12.50	10	<5	23	<0.05
B004544		<5	0.24	<50	1.54	510	18	<0.05	14	420	30	6.95	10	<5	46	<0.05
B004545		<5	0.29	<50	0.91	220	18	<0.05	8	90	10	4.55	10	<5	28	<0.05
B004546		<5	0.24	<50	0.99	200	21	<0.05	<5	90	20	2.40	<10	<5	31	<0.05
B004547		<5	0.38	<50	1.42	300	17	<0.05	9	130	10	1.93	<10	<5	48	<0.05
B004548		<5	0.21	<50	0.70	340	273	<0.05	61	770	140	6.08	10	<5	22	<0.05
B004549		<5	0.32	<50	1.99	910	112	<0.05	73	680	10	2.55	<10	<5	66	<0.05
B004550		<5	0.24	<50	2.06	930	57	0.05	19	770		2.45	<10	5	69	<0.05
B004551		<5	0.19	<50	0.88	530	68	0.05	17	440	10	2.90	<10	<5	26	<0.05
B004552		<5	0.44	<50	0.65	330	140	0.11	80	2170	30	7.82	<10	6	29	<0.05
B004553		<5	0.15	<50	0.23	130	60	0.11	49	1140	20	9.08	10	<5	13	<0.05
B004554		36	0.09	<50	0.28	230	152	<0.05	25	800	12250	27.0	370	<5	9	<0.05
8004555		6	0.29	<50	3.84	400	17	0.07	9	640	220	11.35	10	5	20	<0.05
B004556		5	0.15	<50	3.34	440	34	<0.05	11	920	460	23.3	10	<5	11	<0.05
B004557		<5	1.58	<50	1.94	640	<5	0.05	20	3390	30	0.43	<10	6	109	0.34
B004558		<5	0.24	<50	0.08	80	24	<0.05	<5	70	210	11.40	<10	<5	<5	<0.05
8004559		<5	0.25	<50	0.07	70	9	<0.05	7	50	380	13.35	. 10	<5	<5	<0.05
B004560		<5	0.24	<50	0.10	60	<5	<0.05	<5	80	140	19.30	10	<5	<5	<0.05
B004561		<5	0.24	<50	0.22	80	6	<0.05	<5	70	160	16.75	<10	<5	<5	<0.05
B004562		<5	0.26	<50	0.06	50	7	0.05	<5	70	90	9.73	10	<5	<5	<0.05
B004563		<5	0.17	<50	<0.05	50	7	<0.05	<5	<50	1100	21.8	20	<5	<5	<0.05
B004564		<5	0.24	<50	0.22	50	34	<0.05	<5	<50	810	18.95	70	<5	<5	<0.05
B004565		7	0.32	<50	0.33	50	49	0.06	8	<50	60	18.40	20	<5	<5	<0.05
B004566		<5	0.17	<50	2.41	440	36	0.07	23	660	1100	33.1	10	<5	22	<0.05
B004567		<5	0.06	<50	2.03	1780	35	<0.05	24	210	130	33.0	<10	<5	33	<0.05
B004568		<5	0.09	<50	0.60	450	79	0.07	39	470	310	40.4	20	<5	19	<0.05
B004569		15	<0.05	<50	0.22	170	106	<0.05	30	1310	4440	35.4	<10	<5	10	<0.05
B004570	-	22	<0.05	<50	0.20	180	81	<0.05	17	1070	6070	32.4	160	<5	9	<0.05
B004571		6	<0.05	<50	1,56	220	53	<0.05	44	1130	510	41.1	10	<5	12	<0.05
B004572		<5	<0.05	<50	5.62	4140	21	<0.05	<5	1010	370	15.00	20	<5	57	<0.05
B004573		<5	0.05	<50	9.30	4700	9	<0.05	5	490	130	6.05	<10	<5	73	<0.05
B004574		7	<0.05	<50	2.81	610	25	<0.05	15	80	110	34.1	<10	<5	9	<0.05
B004575		<5	<0.05	<50	9.18	980	79	<0.05	7	410	30	17.20	10	10	12	<0.05
B004576		<5	0.08	<50	4.11	360	31	<0.05	9	70	100	24.7	<10	5	5	<0.05
B004577		<5	0.16	<50	0.12	<30	15	0.06	<5	<50	250	14.80	<10	<5	7	<0.05
B004578		<5	0.17	<50	0.21	<30	17	0.06	<5	<50	210	18.30	<10	<5	9	<0.05
B004579		<5	1.53	<50	1.89	550	<5	<0.05	29	3460	<10	0.08	<10	5	82	0.36
B004580		7	0.08	<50	2.00	290	82	0.12	74	1250	130	7.53	<10	5	11	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-ICP41a T! ppm 50	ME-{CP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA48 Cu % 0.01	Zn-AA46 Zn % 0.01	
B004541		<50	<50	15	<50	>50000			9.97	
B004542		<50	<50	8	<50	13200				
B004543		<50	<50	8	<50	14800				
B004544		<50	<50	7	<50	13550				
B004545		<50	<50	6	<50	13200		_		
B004546		<50	<50	5	<50	300				
B004547		<50	<50	9	<50	280				
B004548		<50	<50	27	<50	4000				
B004549		<50	<50	30	<50	1560				
B004550		<50	<50	17	<50	820				
B004551		<50	<50	15	<50	7650				
B004552		<50	<50	93	<50	13750				
B004553		<50	<50	21	<50	21500				
B004554		<50	<50	15	<50	>50000			>30.0	
B004555		<50	<50	10	<50	>50000			6.47	
B004556		<50	<50	7	<50	48200	_			
B004557		<50	<50	158	<50	1690				
B004558		<50	<50	<5	<50	2280				
B004559		<50	<50	<5	<50	3270				
B004560		<50	<50	<5	<50	420				
B004561		<50	<50	<5	<50	630				
B004562		<50	<50	<5	<50	1300				1
B004563		<50	<50	<5	<50	2460				
B004564		<50	<50	<5	<50	1690	774	5.30		
B004565		<50	<50	5	<50	970				
B004566		<50	<50	12	<50	9360				
B004567		<50	<50	6	<50	5090	210	8.58		
B004568		<50	<50	17	<50	9060				
B004569		<50	<50	69	<50	>50000			>30.0	
B004570		<50	<50	44	<50	>50000	216		>30.0	
B004571		<50	<50	57	<50	>50000			8.30	
8004572		<50	<50	25	<50	14950	444	12.90		
B004573		<50	<50	30	<50	4930				*
8004574		<50	<50	15	<50	22300		4.90		
B004575		<50	<50	28	<50	2150				
B004576		<50	<50	10	<50	2810				
B004577		<50	<50	<5	<50	300				
B004578		<50	<50	<5	<50	830				
B004579		<50	<50	132	<50	60				
8004580		<50	<50	127	<50	660				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - A Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a 8a ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bi ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fo % 0.05	ME-ICP41a Ga ppm 50
8004581		2.24	0.013	2	1.35	<10	<50	<5	<10	0.61	8	12	88	260	7.94	<50
B004582		3.68	0.017	3	0.83	<10	<50	<5	<10	0.28	10	5	124	323	7.35	<50
B004583		4.44	0.029	1	0.89	50	<50	<5	<10	0.09	22	31	126	640	8.59	<50
B004584		3.10	0.006	1	1.53	30	<50	<5	<10	0.09	25	41	177	417	5.38	<50
B004585		4.42	0.018	1	3.21	10	<50	<5	<10	0.15	36	40	210	125	8.83	<50
B004586		4.44	0.006	1	5.37	<10	<50	<5	<10	0.10	13	23	256	73	8.47	<50
8004587		2.18	0.016	1	5.79	<10	<50	<5	<10	0.12	100	61	327	475	11.65	<50
8004588		3.46	0.005	<1	6.17	<10	<50	<5	<10	0.13	-	52	318	142	10.75	<50
B004589		4.80	0.027	1	4.72	30	<50	<5	<10	0.57	71	29	183	529	17.15	<50
B004590		4.22	0.014	1	6.16	<10	<50	<5	<10	5.16	8	34	217	246	8.75	<50
B004591		4.18	0.005	<1	6.29	<10	<50	<5	<10	0.38	<5	23	122	91	7.46	<50
B004592		2.02	<0.005	<1	3.71	20	<50	<5	<10	0.46	11	5	43	214	11.35	<50
B004593		3.74	0.009	<1	0.82	<10	60	<5	<10	0.18	<5	<5	55	214	2.34	<50
B004594		2.42	<0.005	<1	0.57	<10	50	<5	<10	0.09	<5	<5	54	147	1.69	<50
8004595		4.06	0.010	<1	2.00	<10	120	<5	<10	0.07	<5	<5	124	209	1.84	<50
B004596		3.54	0.017	1	0.79	<10	80	<5	<10	0.05	<5	<5	71	268	1.79	<50
B004597		3.96	0.021	1	0.79	<10	70	<5	<10	0.06	8	<5	73	890	2.14	<50
B004598		3.66	0.238	1	0.69	<10	80	<5	<10	0.05	14	<5	108	1940	3.19	<50
B004601		3.92	0.013	2	2.17	<10	<50	<5	<10	0.14	<5	<5	54	43	2.78	<50
B004602		3.54	0.005	<1	1.94	<10	<50	<5	<10	0.23	<5	<5	49	15	1.20	<50
B004603		3.34	0.005	<1	2.48	<10	<50	<5	<10	0.11	<5	<5	<5	15	1.90	<50
B004604		1.80	<0.005	1	1.80	<10	<50	<5	<10	0.10	<5	<5	36	56	1.74	<50
B004605		2.82	0.023	8	1.25	<10	<50	<5	<10	0.18	22	<5	7	265	4.95	<50
B004606		3.62	0.033	5	0.50	40	<50	<5	10	0.11	7	<5	36	110	3.47	<50
B004607		3.68	0.040	2	0.64	<10	<50	<5	<10	0.09	5	<5	<5	27	3.16	<50
B004608		2.66	0.035	2	0.82	30	<50	<5	<10	0.28	<5	<5	48	78	4.97	<50
8004609		3.98	0.011	7	0.62	30	<50	<5	<10	0.16	36	<5	12	400	5.89	<50
B004610		5.24	0.013	2	3.70	<10	<50	<5	10	0.20	26	41	180	222	8.66	<50
8004611		4.20	0.005	1	5.31	20	<50	<5	<10	0.14	43	35	199	542	8.99	<50
8004612		4.64	0.005	2	5.04	20	<50	<5	<10	0.10	68	34	263	452	8.43	<50
B004613		2.12	0.019	2	4.95	<10	<50	<5	<10	0.12	112	48	242	383	11.70	<50
B004614		4.84	0.019	1	4.79	10	<50	<5	10	0.16	52	34	239	337	10.50	<50
8004615		4.56	0.011	1	5.42	<10	<50	<5	<10	0.26	<5	33	184	138	6.93	<50
B004616		4.46	0.009	1	4.69	10	<50	<5	<10	1.38	<5	31	205	89	7.51	<50
B004617		2.92	0.015	2	4.39	<10	<50	<5	<10	3.09	8	43	176	489	11.45	<50
B004618		2.14	0.019	3	5.90	<10	<50	<5	<10	0.53	<5	25	217	1220	7.02	<50
B004619		3.96	0.019	1	1.29	30	90	<5	<10	1.70	<5	<5	29	46	1.64	<50
B004620		3.90	0.078	5	0.82	<10	120	<5	<10	0.24	20	<5	42	777	2.59	<50
B004621		3.90	0.110	6	0.89	10	100	<5	<10	0.31	24	<5	52	895	2.18	<50
B004622		1.94	0.017	1	1.63	<10	90	<5	<10	0.24	<5	<5	<5	211	2.74	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - B Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a 8 % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B004581		<5	0.06	<50	2.12	300	48	0.09	55	2700	230	8.36	<10	5	13	<0.05
B004582		<5	0.07	<50	1.17	170	38	0.11	34	1170	180	7.84	<10	<5	7	<0.05
B004583		5	0.09	<50	2.42	330	11	0.11	75	360	30	9.02	<10	8	8	<0.05
B004584		<5	0.07	<50	3.99	700	<5	0.09	106	390	10	5.01	<10	12	8	<0.05
B004585		<5	0.07	<50	5.66	1400	<5	0.07	100	640	<10	7.53	<10	16	7	< 0.05
B004586		<5	0.05	<50	7.67	2250	<5	0.05	76	370	<10	4.23	<10	22	7	<0.05
B004587		<5	<0.05	<50	7.44	2630	<5	<0.05	136	550	<10	8.04	<10	25	5	<0.05
B004588		6	<0.05	<50	9.13	2920	<5	<0.05	118	480	<10	6.36	<10	30	<5	<0.05
B004589		<5	<0.05	<50	7.38	3310	14	<0.05	71	680	20	16.80	10	22	8	<0.05
B004590		<5	<0.05	<50	12.20	7660	6	<0.05	80	720	20	6.48	<10	30	35	<0.05
B004591		<5	<0.05	<50	10.65	4080	<5	<0.05	39	310	10	5.30	<10	21	<5	<0.05
B004592		<5	0.06	<50	6.91	2770	6	<0.05	8	290	60	10.60	<10	10	6	<0.05
B004593		<5	0.20	<50	3.71	1300	<5	0.05	<5	260	<10	1.43	<10	<5	7	<0.05
B004594		<5	0.15	<50	3.28	930	<5	<0.05	<5	170	10	0.70	<10	<5	<5	<0.05
B004595		<5	0.56	<50	3.06	680	<5	0.08	<5	190	<10	0.96	<10	<5	8	<0.05
B004596		<5	0.24	<50	2.31	700	<5	<0.05	<5	160	<10	1.06	<10	<5	6	<0.05
B004597		<5	0.26	<50	1.99	520	<5	<0.05	<5	180	<10	1.60	<10	<5	5	<0.05
8004598		<5	0.26	<50	1.48	420	<5	<0.05	<5	170	10	2.98	<10	<5	5	<0.05
B004601		<5	0.08	<50	2.93	440	5	0.11	<5	330	30	2.52	. <10	5	8	<0.05
B004602		<5	0.08	<50	2.47	370	<5	0.13	<5	370	40	0.89	<10	<5	5	<0.05
B004603		<5	0.06	<50	3.31	290	<5	0,10	<5	380	130	1.46	<10	5	8	<0.05
B004604		<5	<0.05	<50	2.35	230	<5	<0.05	<5	270	150	1.52	10	<5	<5	<0.05
B004605		<5	0.09	<50	1.61	170	38	0.06	30	240	1530	5.17	<10	<5	<5	<0.05
B004606		<5	0.06	<50	0.72	80	11	<0.05	<5	330	970	3.63	10	<5	<5	<0.05
B004607		<5	0.05	<50	1.34	130	<5	<0.05	15	270	320	3.15	10	<5	<5	<0.05
B004608		<5	<0.05	<50	1.69	250	23	<0.05	<5	350	260	4.99	10	<5	<5	<0.05
8004609		<5	<0.05	<50	0.96	180	25	0.05	12	340	2260	6.29	10	<5	<5	<0.05
B004610		<5	<0.05	<50	5.52	1100	<5	<0.05	77	540	30	8.26	<10	16	<5	<0.05
B004611		<5	<0.05	<50	7.20	1570	<5	<0.05	86	470	20	6.45	<10	22	<5	<0.05
B004612		<5	<0.05	<50	6.93	2100	<5	<0.05	86	270	<10	4.45	<10	21	<5	<0.05
B004613		<5	<0.05	<50	7.30	2090	<5	<0.05	131	510	<10	8.96	20	25	<5	<0.05
B004614		<5	<0.05	<50	7.72	2500	<5	<0.05	94	610	<10	7.67	<10	27	<5	<0.05
B004615		<5	<0.05	<50	7.96	3910	<5	<0.05	84	510	<10	2.71	,10	30	<5	<0.05
B004616		<5	<0.05	<50	8.03	5200	<5	<0.05	84	510	20	4.32	<10	25	5	<0.05
B004617		<5	<0.05	<50	8.57	7200	6	<0.05	99	520	30	9.16	10	26	17	<0.05
8004618		<5	<0.05	<50	8.65	3120	8	<0.05	83	470	<10	3.88	10	25	<5	<0.05
B004619		<5	0.07	<50	2.97	2170	<5	<0.05	<5	250	180	1.28	10	<5	10	<0.05
B004620		<5	0.11	<50	1.40	500	12	<0.05	22	200	10	2.61	20	<5	<5	<0.05
B004621		<5	0.10	<50	2.08	880	6	<0.05	<5	180	<10	2.04	<10	<5	<5	<0.05
B004622		<5	0.19	<50	2.81	1040	<5	<0.05	<5	220	20	2.09	10	<5	<5	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd,

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 4 - C Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-1CP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu- AA46 Cu % 0.01	Zn- AA48 Zn % 0.01	
B004581		<50	<50	103	<50	1880				
B004582		<50	<50	50	<50	2210				
B004583		<50	<50	55	<50	4970				
B004584		<50	<50	90	<50	5440				
B004585		<50	<50	138	<50	6900			_	
B004586		<50	<50	196	<50	3810				
B004587		<50	<50	202	<50	17850				
B004588		<50	<50	219	<50	3060				
B004589		<50	<50	169	<50	15500				
8004590		<50	<50	202	<50	2830				
B004591		<50	<50	144	<50	1760				
B004592		<50	<50	61	<50	2940				
B004593		<50	<50	<5	<50	840				
B004594		<50	<50	<5	<50	730				
B004595		<50	<50	<5	<50	690			_	
B004596		<50	<50	<5	<50	940		_		
B004597		<50	<50	<5	<50	1870				
B004598		<50	<50	<5	<50	2940				
B004601		<50	<50	21	<50	150				
B004602		<50	<50	12	<50	100				
B004603		<50	<50	9	<50	150				
B004604		<50	<50	13	<50	230				
B004605		<50	<50	54	<50	4630				
B004606		<50	<50	5	<50	1520				
B004607		<50	<50	<5	<50	930				
B004608		<50	<50	11	<50	470				
B004609		<50	<50	28	<50	8530				
B004610		<50	<50	136	<50	6220				
B004611		<50	<50	188	<50	9640				
8004612	·····	<50	<50	186	<50	14200				
B004613		<50	<50	189	<50	19750				
B004614		<50	<50	196	<50	8320				
B004615		<50	<50	206	<50	1560				,
8004616		<50	<50	151	<50	1340				
8004617		<50	<50	140	<50	2080				·
B004618		<50	<50	178	<50	2000				
8004619		<50	<50	<5	<50	530				
8004620		<50	<50	<5	<50	4730				
B004621		<50	<50	<5	<50	4570				
B004622		<50	<50	<5	<50	730				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 5 - A Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Al % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bl ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fa % 0,05	ME-ICP41a Ga ppm 50
B004623		1.96	<0.005	<1	0.98	<10	50	<5	<10	0.17	<5	<5	45	67	1.44	<50
B004788		4.00	0.011	<1	2.47	<10	<50	<5	<10	0.15	11	<5	7	49	6.86	<50
B004789		4.38	0.018	2	2.34	10	<50	<5	<10	0.14	49	17	49	706	7.41	<50
B004790		3.04	0.014	2	1.90	10	<50	<5	<10	0.16	59	<5	13	896	3,39	<50
B004791		5.56	0.008	1	3.94	30	<50	<5	<10	<0.05	34	31	57	469	6.31	<50
B004792		5.14	0.009	<1	4.83	<10	<50	<5	10	0.05	7	33	41	246	5.29	<50
B004793		2.28	0.007	2	3.18	<10	<50	<5	10	0.15	42	21	108	1215	6.94	<50
B004794		4.32	0.006	<1	4.07	20	<50	<5	<10	0.08	<5	39	160	134	5.30	<50
B004795		4.54	0.018	1	3.96	<10	<50	<5	<10	1.85	<5	26	216	176	5.29	<50
B004796		4.26	0.005	1	5.03	20	<50	<5	10	0.22	<5	24	189	154	5.11	<50
B004797		4.74	0.005	<1	5.64	30	<50	<5	<10	0.09	8	33	194	160	5.74	<50
B004798		5.50	<0.005	1	5.36	<10	<50	<5	10	0.46	11	42	275	256	5.28	<50
B004799		5.06	0.029	2	2.80	<10	60	<5	10	0.29	19	19	98	751	5.78	<50
B004800		2.92	0.007	1	0.78	10	<50	<5	10	0.27	6	<5	44	121	2.66	<50
B004858B		1.20	0.012	2	0.11	<10	<50	<5	<10	0.29	<5	5	86	142	2.39	<50
B004860		1.72	0.017	2	0.12	20	<50	<5	<10	0.10	<5	<5	84	168	2.19	<50
B004861		1.86	0.043	4	0.16	10	50	<5	<10	1.72	9	<5	61	668	2.68	<50
B004985		0.76	0.031	2	0.19	<10	<50	<5	<10	2.42	13	<5	31	1065	2.96	<50
B004986		1.00	0.041	4	0.15	20	<50	<5	<10	0.49	<5	<5	52	2360	6.38	<50
B004987		0.38	0.057	7	0.13	20	<50	<5	10	0.60	<5	<5	55	4460	9.06	<50
B004988		1.16	0.035	1	0.15	10	<50	<5	<10	0.25	5	6	65	276	9.93	<50
B004989		0.58	0.042	1	0.12	20	<50	<5	<10	0.35	18	<5	45	355	16.45	<50
B004990		1.00	0.041	<1	0.11	10	<50	<5	<10	0.15	<5	<5	47	239	15.00	<50
B004991		1.24	0.060	1	0.13	<10	<50	<5	10	<0.05	<5	<5	55	1220	13.25	<50
B004992		1.40	0.054	<1	0.13	20	<50	<5	<10	0.05	<5	<5	55	630	15.20	<50
B004993		1.30	0.027	<1	0.16	30	<50	<5	<10	0.06	5	<5	61	1080	13.60	<50
B004994		1.94	0.029	<1	0.12	<10	<50	<5	<10	0.08	<5	<5	40	1430	7.40	<50
B004995		1.96	0.019	<1	0.16	<10	<50	<5	<10	2.74	<5	<5	32	477	6.73	<50
B004996		1.46	0.026	2	0.11	20	<50	<5	<10	5.84	<5	<5	34	1190	7.77	<50
B004997		1.14	0.021	1	0.13	<10	<50	<5	<10	5.10	<5	<5	44	1115	6.62	<50
B004998		2.10	0.036	<1	0.11	20	<50	<5	<10	5.33	12	<5	46	966	7.07	<50
B004999		1.42	0.017	1	0.14	10	<50	<5	<10	2.16	<5	<5	44	515	11.85	<50
B005000		1.46	0.055	<1	0.13	<10	<50	<5	<10	1.50	13	<5	4 1	697	8.99	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 5 - B Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B004623		<5	0.09	<50	2.35	1140	<5	<0.05	<5	190	<10	0.95	10	<5	<5	<0.05
B004788		<5	0.13	<50	2.71	670	10	0.08	7	560	<10	6.57	10	<5	<5	<0.05
B004789		<5	<0.05	<50	3.58	1110	17	<0.05	30	510	20	7.37	<10	6	<5	<0.05
B004790		<5	0.05	<50	2.55	820	33	0.05	19	530	20	3.33	<10	5	<5	<0.05
B004791		<5	<0.05	<50	5.63	2030	7	<0.05	18	80	30	4.88	<10	16	<5	<0.05
B004792		<5	<0.05	<50	6.70	2550	<5	<0.05	12	160	<10	3.28	<10	20	<5	<0.05
B004793		7	<0.05	<50	5.21	2140	17	<0.05	50	490	250	5.87	10	12	<5	<0.05
B004794		<5	<0.05	<50	5.85	2790	<5	<0.05	52	240	10	3.26	<10	18	<5	<0.05
B004795		<5	<0.05	<50	7.88	7980	<5	<0.05	70	370	20	2.82	10	21	5	<0.05
B004796		<5	<0.05	<50	7.94	4470	<5	<0.05	55	260	<10	2.31	<10	24	<5	<0.05
B004797	_	8	<0.05	<50	7.99	2940	<5	<0.05	55	190	10	2.33	<10	27	<5	<0.05
B004798		<5	<0.05	<50	8.35	3160	<5	<0.05	112	310	<10	2.34	<10	26	<5	<0.05
B004799		<5	<0.05	<50	4.61	1710	12	<0.05	41	890	30	5.00	<10	10	<5	<0.05
B004800		<5	0.08	<50	0.95	240	<5	<0.05	<5	1030	40	2.58	<10	<5	5	<0.05
B004858B		<5	<0.05	<50	0.08	40	19	<0.05	26	600	40	2.32	10	<5	10	<0.05
B004860		<5	<0.05	<50	<0.05	<30	51	<0.05	35	190	10	2.10	<10	<5	<5	<0.05
B004861		<5	0.05	<50	0.09	260	35	<0.05	27	710	30	2.70	<10	<5	12	<0.05
B004985		<5	0.07	<50	1.42	300	21	<0.05	<5	<50	20	2.94	<10	<5	53	<0.05
B004986		<5	0.05	<50	0.26	80	16	<0.05	<5	<50	20	6.72	<10	<5	13	<0.05
B004987		<5	0.05	<50	0.33	100	24	<0.05	<5	<50	40	9.64	<10	<5	15	<0.05
B004988		<5	0.06	<50	0.15	70	13	<0.05	<5	<50	20	10.55	<10	<5	10	<0.05
B004989		<5	0.05	<50	0.36	70	13	<0.05	10	<50	20	17.80	<10	<5	11	<0.05
B004990		<5	0.05	<50	0.42	40	12	<0.05	<5	<50	<10	15.80	<10	<5	7	<0.05
B004991		<5	0.06	<50	0.15	<30	10	<0.05	9	50	10	14.05	<10	<5	<5	<0.05
B004992		<5	0.05	<50	0.19	<30	22	<0.05	<5	<50	10	16.25	<10	<5	6	<0.05
B004993		<5	0.06	<50	0.19	<30	10	<0.05	14	<50	10	14.30	<10	<5	5	<0.05
B004994		<5	0.05	<50	0.25	<30	7	<0.05	<5	110	10	7.84	<10	<5	6	<0.05
B004995		<5	0.05	<50	1.80	550	<5	<0.05	<5	190	<10	7.14	<10	<5	32	<0.05
B004996		<5	<0.05	<50	3.29	1020	11	<0.05	<5	70	30	8.47	<10	<5	47	<0.05
B004997		<5	<0.05	<50	2.93	840	9	<0.05	5	100	20	7.19	<10	<5	42	<0.05
B004998		<5	<0.05	<50	3.01	880	10	<0.05	<5	50	20	7.78	10	<5	49	<0.05
B004999		<5	<0.05	<50	1.15	460	13	<0.05	12	<50	<10	12.80	<10	<5	27	<0.05
B005000		<5	<0.05	<50	0.79	290	9	<0.05	<5	60	<10	9.69	≰10	<5	20	<0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 5 - C Total # Pages: 5 (A - C) Finalized Date: 28-OCT-2004 Account: LTU

Project: KUTCHO

Sample Description	Method Analyte Units LOR	ME-ICP41a Tl ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
B004623		<50	<50	<5	<50	800				
B004788		<50	<50	25	<50	2200				
B004789		<50	<50	72	<50	9800				
B004791		<50	<50 <50	122	<50 <50	6120				
B004792		<50	<50	138	<50	1860				
B004793		<50	<50	109	<50	9000				
B004794		<50	<50	140	<50	660				
B004795		<50	<50	132	<50	940				
B004796		<50	<50	178	<50	940				
B004797		<50	<50	196	<50	2060				
B004798		<50	<50	172	<50	2260				
B004/99		<50	<50	67	<50	3770				
B004800 B004858B		<50	<50 <50	<5 6	<50 <50	1080 290				
B004860		<50	<50	8	<50	420				
B004861		<50	<50	10	<50	1680				
B004985		<50	<50	<5	<50	2570				
B004986		<50	<50	<5	<50	60				
B004987		<50	<50	<5	<50	220				
B004988		<50	<50	<5	<50	870				
B004989		<50	<50	<5	<50	3500				
B004990		<50	<50	<5	<50	200				·
B004991		<50	<50	<5	<50	200				
8004992		<50	<50	<5	<50	760				
B004993		<50	<50	<5	<50	1040				
8004994		<50	<50	<5	<50	250				
B004995		<50	<50	<5	<50	230				
8004997		<50	<50	<5 <5	<50 <50	420				
B004998		<50	<50	<5	<50	2270				
B004999		<50	<50	<5	<50	650				
B005000		<50	<50	<5	<50	2350				, 1
										·

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 1 Finalized Date: 29-OCT-2004 Account: LTU

CERTIFICATE VA04071673		SAMPLE PREPARATION			
	ALS CODE	DESCRIPTION			
Project: Kutch P.O. No.: This report is for 70 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 13-OCT-2004. The following have access to data associated with this certificate:	WEI-21 LOG-22 CRU-31 SPL-21 PUL-31	Received Sample Weight Sample login - Rcd w/o BarCode Fine crushing - 70% <2mm Split sample - riffle splitter Pulverize split to 85% <75 um			
PETER HOLBEK		ANALYTICAL PROCEDURE	ES		
	ALS CODE	DESCRIPTION	INSTRUMENT		
	Cu-AA46 Zn-AA46 Au-AA23 ME-ICP41a Ag-AA46	Ore grade Cu - aqua regia/AA Ore grade Zn - aqua regia/AA Au 30g FA-AA finish High Grade Aqua Regia ICP-AES Ore grade Ag - aqua regia/AA	AAS AAS AAS ICP-AES AAS		

To: WESTERN KELTIC MINES INC. ATTN: PETER HOLBEK 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Pferd bo

3

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - A Total # Pages: 3 (A - C) Finalized Date: 29-OCT-2004 Account: LTU

Project: Kutch

	Method Analyte Units	WEI-21 Rocvd Wt. kg	Au-AA23 Au ppm	ME-ICP41a Ag ppm	ME-ICP41a Al %	ME-ICP41a As pom	ME-ICP41a Ba ppm	ME-ICP41a Be ppm	ME-ICP41a Bi ppm	ME-ICP41a Ca %	ME-ICP41a Cd ppm	ME-ICP41a Co ppm	ME-ICP41a Cr ppm	ME-ICP41a Cu ppm	ME-ICP41a Fe %	ME-ICP41a Ga DDM
Sample Description	LOR	0.02	0.005	1	0.05	10	50	5	10	0.05	5	5	5	5	0.05	50
B4838		2.58	0.247	16	0.28	220	60	<5	30	0.93	30	35	63	7700	42.1	<50
B483 9		2.30	0.103	7	0.31	200	90	<5	10	1.79	12	36	61	8920	25.2	<50
B4840		2.12	0.074	4	0.71	60	140	<5	<10	3.24	21	29	44	5290	14.35	<50
84841		1.66	0.048	1	0.59	60	110	<5	<10	3.38	<5	37	50	3980	8.43	<50
B4842		2.14	0.084	2	0.74	50	150	<5	10	2.66	<5	59	49	9760	12.75	<50
B4843		2.18	0.111	9	0.32	120	60	<5	40	1.32	<5	18	77	5850	12.40	<50
84844		2.32	0.029	1	0.63	30	70	<5	<10	1.98	<5	6	41	2800	10.90	<50
B4845		3.34	0.093	5	0.14	120	<50	<5	10	1.32	<5	179	64	13850	41.9	<50
84846		2.54	2.23	88	0.11	120	<50	<5	60	8.02	35	40	20	45300	26.1	<50
84847		3.08	0.867	86	0.39	250	50	<5	50	4.37	149	64	35	39300	28.3	<50
B4848		2.24	2.02	>200	0.29	6 50	<50	<5	110	4.53	78	62	<5	>50000	23.7	<50
B4849		1.70	0.011	2	2.42	20	140	<5	<10	1.82	<5	20	140	1320	4.66	<50
84850		1.92	0.008	2	2.24	30	140	<5	<10	2.01	<5	22	131	968	4.37	<50
B4851		3.44	0.181	49	0.12	380	<50	<5	40	2.18	7	114	46	28800	38.9	<50
B4652		3.16	0.155	12	0.08	210	<50	<5	20	2.24		288	57	10750	37.9	<50
B4853		2.32	0.046	4	0.19	120	<50	<5	10	3.78	<5	248	42	5670	33.2	<50
84854		2.18	0.026	3	0.49	60	70	<5	<10	0.08	<5	38	55	414	15.80	<50
B4855		1.38	0.057	3	0.43	70	250	<5	10	1.02	<5	9	45	395	6.43	<50
B4856		0.64	1.530	78	0.65	520	440	<5	20	3.53	193	9	53	9670	6.20	<50
84657		1.80	0.019	3	0.35	20	440	<5	<10	1.10	<5	<5	87	240	2.07	<50
B4858		1.70	0.012	1	0.16	60	<50	<5	<10	0.44	<5	<5	92	133	2.11	<50
84859		0.50	0.795	65	0.42	50	180	<5	10	0.70	328	18	72	5300	10.80	<50
B4800		Not Recvo														
B4862		1 88	0.082	٩	0.49	10	90	~5	~10	E 41	22	E	27	4440	2.70	~50
B4962		2.50	0.002		0.70					0.41	23	<u>_</u>		4410	2.19	<50
B4864		2.50	<0.005	1	0.28	50	100	<5	40	4.92	601	28	15	>50000	12.65	<50
B4865		1.40	0.010	4	0.45	50	80	<5	<10	1.79	0 <5	21	104	/0/	4.90	<50
B4866		0.80	0.045	7	0.58	20	120	<5	10	0.60	<5	<5	45	415	3.47	<50
B4867		1.66	0.042	19	0.48	30	100	<5	<10	8.58	5	<5	25	29800	4.05	<50
B4868	-,·	1,90	<0.005	4	0.14	20	<50	<5	<10	17.15	16	<5	30	751	1 47	<50
B4869		1.32	<0.005	1	0.07	<10	<50	<5	<10	7 85	<5	<5	84	144	0.79	<50
B4870		2.88	0.017	3	0.46	<10	80	<5	10	2.99	<5	<5	23	906	4 43	<50
B4871		2.24	<0.005	1	0.18	40	<50	<5	<10	15.05	<5	<5	30	203	2 23	<50
B4872		2.20	0.009	2	0.42	20	70	<5	<10	6.95	7	<5	21	185	5.48	<50
B4873		0.88	0.031	3	0.34	60	180	<5	<10	1.96	24	<5	26	830	5.07	<50
B4874		1.30	0.151	24	0.38	70	90	<5	20	0.30	362	<5	43	7740	5.53	<50
B4875		3.12	0.237	27	<0.05	680	<50	<5	10	0.28	234	22	75	10400	41.4	<50
B4876		2.40	0.135	16	<0.05	660	<50	<5	10	0.64	151	6	61	7610	41.8	<50
B4877		2.34	0.358	65	<0.05	1040	<50	<5	10	1.34	247	6	67	12950	39.1	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - B Total # Pages: 3 (A - C) Finalized Date: 29-OCT-2004 Account: LTU

Project: Kutch

Sample Description	Method Analyte Unitz LOR	ME-ICP41a Hg ppm 5	ME-ICP41a K % 0.05	ME-ICP41a La ppm 50	ME-ICP41a Mg % 0.05	ME-ICP41a Mn ppm 30	ME-ICP41a Mo ppm 5	ME-ICP41a Na % 0.05	ME-ICP41a Ni ppm 5	ME-ICP41a P ppm 50	ME-ICP41a Pb ppm 10	ME-ICP41a S % 0.05	ME-ICP41a Sb ppm 10	ME-ICP41a Sc ppm 5	ME-ICP41a Sr ppm 5	ME-ICP41a Ti % 0.05
B4838		<5	0.12	<50	0.50	380	118	<0.05	5	110	250	45.1	10	<5	11	<0.05
B4839		<5	0.11	<50	0.92	690	83	<0.05	27	540	210	27.5	10	<5	14	<0.05
B4840		5	0.29	<50	1.44	810	45	0.08	22	3050	60	15.95	10	<5	30	<0.05
B4841		<5	0.25	<50	1.82	1040	24	0.08	52	430	30	9.02	<10	<5	22	<0.05
B4842		<5	0.34	<50	0.86	520	93	0.06	73	4940	50	13.65	10	<5	27	<0.05
B4843		<5	0.11	<50	0.57	390	20	0.05	25	1180	20	13.30	<10	<5	10	<0.05
B4844		<5	0.13	<50	1.73	550	13	0.06	6	1110	10	11.15	<10	<5	12	<0.05
B4845		<5	<0.05	<50	0.70	480	61	<0.05	12	230	50	44.8	10	<5	6	<0.05
B4846		<5	<0.05	<50	3.79	5060	130	<0.05	19	2480	240	29.5	<10	<5	25	<0.05
8484/		8	0.14	<50	1.94	2/40	118	0.05	16	2510	440	32.7	20	<5	16	<0.05
B4848		5	0.10	<50	2.06	2280	52	0.05	24	2270	1290	28.1	60	<5	15	<0.05
B4849		<5	2.04	<50	2.44	680	<5	<0.05	28	3510	10	0.37	10	<5	58	0.31
B4850		<5	1.95	<50	2.27	660	<5	<0.05	40	3310	20	0.20	10	<5	80	0.26
B4851		<5	<0.05	<50	0.86	1100	222	<0.05	<5	1660	320	42.2	20	<5	10	<0.05
B4852		<5	<0.05	<50	1.08	1270	84	<0.05	16	840	60	41.1	10	<5	9	<0.05
B4853		<5	0.05	<50	2.01	1750	17	<0.05	<5	320	30	36.4	20	<5	15	<0.05
B4854		<5	0.23	<50	0.05	50	28	0.05	<5	<50	<10	17.05	30	<5	<5	<0.05
B4855		<5	0.10	<50	0.49	200	40	0.09	51	860	140	6.97	10	<5	29	<0.05
B4856		<5	0.20	<50	1.22	440	91	0.08	89	6840	3470	8.72	. 30	6	91	<0.05
B4857		<5	0.09	<50	0.49	190	19	0.06	35	1380	50	2.17	<10	<5	32	<0.05
B4858		<5	<0.05	<50	0.11	50	33	<0.05	25	1010	60	2.20	10	<5	13	<0.05
B4859		12	0.10	<50	<0.05	30	273	0.08	95	2690	4540	14.80	20	<5	18	<0.05
B4860																
B4861		1	0.17	~50	0.60	960	20	0.00	45	650	400	2 40	40			<0.05
B4002		<5	0.12	<50	0.02			0.08	40		400	3.10		<u></u>		<0.05
B4863		23	0.09	<50	0.30	510	180	<0.05	146	1360	10050	20.3	20	<5	32	<0.05
84004		<5	2.10	<50	2.65	/60	<5	<0.05	43	3570	180	0.20	<10	8	79	0.27
B4805		<5	0.15	<50	0.56	670	22	0.09	20	380	340	3.51	20	<5	13	<0.05
B4860		<5	0.19	<50	0.31	320	52	0.12	30	190	740	7.99	10	<5	10	<0.05
B4007			0,10	<00	1.30	1320	23	0.09	<>	100	920	3.84	<10	<0	40	<0.05
84866		<5	<0.05	<50	8.18	5970	<5	<0.05	<5	390	480	0.95	<10	<5	79	<0.05
84869		<5	< 0.05	<50	3.75	2860	<5	<0.05	<5	300	60	0.38	10	<5	38	<0.05
D40/U D4071			0.17	<50	1.64	970	29	0.09	<5	80	190	4.69	,10	<5	25	<0.05
D40/1		0	<0.05	<50	8.21	5580	5	0.05	<5	250	100	1.37	10	<5	63	<0.05
040/2		<	0.16	<50	3.88	1820	31	0.08	5	120	80	5.65	20	<5	64	<0.05
B4873		<5	0.15	<50	1.07	440	21	<0.05	12	<50	230	5.67	10	<5	18	<0.05
B4874		24	0.13	<50	0.18	140	49	0.07	8	<50	2290	8.87	20	<5	5	<0.05
B4875		16	<0.05	<50	0.14	200	213	<0.05	10	60	400	45.5	30	<5	<5	<0.05
B4876		12	<0.05	<50	0.30	240	340	<0.05	7	<50	230	46.0	20	<5	5	<0.05
848//		17	<0.05	<50	0.60	260	101	<0.05	12	<50	250	44.1	30	<5	11	<0.05

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 2 - C Total # Pages: 3 (A - C) Finalized Date: 29-OCT-2004 Account: LTU

Project: Kutch

Sample Description	Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
D 4929		< <u>50</u>	<50	15	<50	5210				
D4030 D4830		<50	<50	11	<50	2260				
B4840		<50	<50	14	<50	4330				
B4841		<50	<50	18	<50	720				
B4842		<50	<50	56	<50	340				
B4843		<50	<50	13	<50	320				
B4844		<50	<50	36	<50	570				
B4845		<50	<50	6	<50	410				
B4846		<50	<50	8	<50	7410				
B4847		<50	<50	10	<50	30500				
B4848		<50	<50	<5	<50	15350	292	14.65		
B4849		<50	<50	168	<50	490				
B4850		<50	<50	154	<50	150				
B4851		<50	<50	7	<50	1280				
B4852		<50	<50	<5	<50	1260				
B4853		<50	<50	<5	<50	200				
B4854		<50	<50	<5	<50	40				
B4855		<50	<50	14	<50	340				
B4856		<50	<50	44	<50	35000				
B4857		<50	<50	15	<50	490				
B4858		<50	<50	8	<50	310				
B4859		<50	<50	18	<50	>50000			6.46	
B4860										
B4861				10	-50	0400				
84862		<50	<50	13	<50	3180				
B4863		<50	<50	14	<50	>50000		7.47	13.15	
B4864		<50	<50	169	<50	2090				
B4865		<50	<50	9	<50	290				
84868		<50	<50	9	<50	110				•
84867		<50	<50	<5	<50	360				
B4868		<50	<50	<5	<50	2960				
B4869		<50	<50	<5	<50	170				
B4870		<50	<50	<5	<50	100				t
84871		<50	<50	<5	<50	240				
B4872		<50	<50	<5	<50	900				
B4873		<50	<50	<5	<50	4720				
B4874		<50	<50	<5	<50	>50000			6.29	
B4875		<50	<50	<5	<50	40700				
B4876		<50	<50	<5	<50	29200				
B4877		<50	<50	7	<50	44400				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - A Total # Pages: 3 (A - C) Finalized Date: 29-OCT-2004 Account: LTU

Project: Kutch

CERTIFICATE OF ANALYSIS VA04071673

¥

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41a Ag ppm 1	ME-ICP41a Ai % 0.05	ME-ICP41a As ppm 10	ME-ICP41a Ba ppm 50	ME-ICP41a Be ppm 5	ME-ICP41a Bl ppm 10	ME-ICP41a Ca % 0.05	ME-ICP41a Cd ppm 5	ME-ICP41a Co ppm 5	ME-ICP41a Cr ppm 5	ME-ICP41a Cu ppm 5	ME-ICP41a Fe % 0.05	ME-ICP41a Ga ppm 50
B4878		3.08	0.543	51	0.27	120	100	<5	20	1.27	196	8	39	17600	34.7	<50
B4879		3.04	1.080	77	0.39	50	130	<5	10	0.37	17	44	50	22700	31.0	<50
B4880		4.26	0.493	63	0.30	30	150	<5	<10	0.56	6	43	34	26600	22.8	<50
B4881		1.86	0.065	15	0.44	<10	210	<5	<10	1.57	<5	13	72	5840	13.15	<50
B4882		2.76	0.025	12	0.48	30	360	<5	<10	0.58	<5	30	49	4660	12.90	<50
B4883		2.78	0.005	1	0.45	20	270	<5	10	2.50	<5	10	51	128	6.17	<50
B4884		1.86	<0.005	<1	1.95	20	120	<5	<10	2.31	<5	14	122	195	3.55	<50
B4885		0.24	<0.005	1	0.38	40	230	<5	<10	7.40	<5	<5	48	106	2.78	<50
B4886		0.60	0.720	52	0.33	70	140	<5	20	5.37	595	<5	16	24800	10.10	<50
B4887		0.42	1.105	122	0.44	210	<50	<5	90	4.30	304	6	36	25500	17.55	<50
B4888		0.88	0.649	32	0.19	350	<50	<5	<10	0.41	1680	5	24	7790	15.60	<50
B4889		1.66	<0.005	1	2.05	<10	110	<5	<10	2.19	7	16	121	267	3.74	<50
B4890		0.56	0.350	20	0.91	90	60	<5	10	0.26	32	<5	34	15950	25.8	<50
B4891		0.66	0.031	2	3.51	30	<50	<5	10	0.29	<5	<5	14	283	4.20	<50
B4892		1.18	0.136	5	1.56	40	90	<5	<10	0.11	<5	<5	31	656	11.00	<50
B4893		1.38	0.228	7	2.94	90	80	<5	<10	0.11	<5	5	15	7410	3.92	<50
B4894		1.92	0.084	5	0.41	20	70	<5	<10	<0.05	37	<5	46	2710	8.51	<50
B4895		1.44	0.037	3	1.07	20	80	<5	<10	0.05	7	<5	54	211	9.58	<50
B4896		1.70	0.033	3	1.35	10	70	<5	10	0.05	<5	<5	40	87	8.61	<50
B4897		1.42	0.039	4	0.80	20	60	<5	10	<0.05	6	<5	62	62	11.60	<50
B4901		0.82	<0.005	1	0.83	10	90	<5	10	1.57	<5	<5	23	32	2.62	<50
B4902		1.06	0.235	57	0.47	70	50	<5	60	0.52	1260	<5	39	15050	9.59	<50
B4903		1.08	1.355	62	0.18	120	<50	<5	10	0.43	2340	<5	16	5510	1 1. 40	<50
B4904		1.12	2.47	132	0.29	240	<50	<5	<10	0.24	54	<5	29	>50000	31.5	<50
B4905		0.54	0.584	25	0.23	40	<50	<5	10	<0.05	42	<5	35	38800	36.4	<50
B4906		0.80	0.136	15	0.34	70	50	<5	<10	0.07	25	<5	73	22500	14.45	<50
B4907		1.34	0.052	2	0.35	20	<50	<5	<10	<0.05	5	<5	51	510	12.10	<50
B4908		2.06	0.135	4	0.81	30	80	<5	<10	0.05	12	<5	64	2320	9.87	<50
B4909		0.60	0.073	2	0.90	10	60	<5	<10	0.28	<5	<5	40	84	8.73	<50
B4910		1.94	<0.005	1	2.02	20	110	<5	<10	2.26	<5	15	126	212	3.59	<50

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - B Total # Pages: 3 (A - C) Finalized Date: 29-OCT-2004 Account: LTU

Project: Kutch

CERTIFICATE OF ANALYSIS VA04071673

1

Sample Description	Method Analyte Units	ME-ICP41a Hg ppm	ME-ICP41a K %	ME-ICP41a La ppm	ME-ICP41a Mg %	ME-ICP41a Ma ppm	ME-ICP41a Mo ppm	ME-ICP41a Na %	ME-ICP41a Ni ppm	ME-ICP41a P ppm	ME-ICP41a Pb ppm	ME-ICP41a S %	ME-ICP41a Sb ppm	ME-ICP41a Sc ppm	ME-ICP41a Sr ppm	ME-ICP41a Ti %
Sample Description	LOR	5	0.05	50	0.05	30	5	0.05	5	50	10	0.05	10	5	5	0.05
B4878		10	0.10	<50	0.56	690	85	<0.05	10	<50	220	39.2	20	<5	5	<0.05
B4879		8	0.13	<50	0.10	150	34	0.06	16	60	60	33.6	10	<5	9	<0.05
B4880		<5	0.14	<50	0.17	190	15	<0.05	11	90	40	25.1	10	<5	<5	<0.05
B4881		~5	0.20	<50	0.53	430	8	<0.05	<5	210	20	14.10	10	<5	6	<0.05
B4882		<5	0.23	<50	0.12	100	18	<0.05	10	180	30	13.80	10	<5	5	<0.05
B4883		<5	0.22	<50	1.36	340	21	<0.05	<5	<50	<10	6.61	10	<5	10	<0.05
B4884		<5	1.43	<50	1.86	540	<5	<0.05	22	3420	<10	0.09	10	5	84	0.35
B4885		<5	0.20	<50	3.53	1520	<5	<0.05	24	510	10	1.34	10	<5	99	<0.05
B4886		5	0.13	<50	2.85	1390	106	<0.05	30	180	1920	15.80	10	<5	93	<0.05
B4887		9	0.13	<50	2.38	1960	141	0.07	82	770	1740	22.1	30	<5	59	<0.05
B4888		31	0.06	<50	0.25	170	112	<0.05	47	180	1550	31.9	330	<5	6	<0.05
B4889		<5	1.57	<50	1,95	570	<5	<0.05	26	3550	20	0,19	10	6	84	0.34
B4890		<5	0.16	<50	2,30	230	60	<0.05	22	180	340	27.8	10	<5	10	<0.05
B4891		<5	0.07	<50	7.43	630	10	<0.05	10	100	210	2.95	10	7	16	<0.05
B4892		<5	0.15	<50	4,59	290	28	0.06	6	150	230	11.30	10	<5	11	<0.05
B4893		<5	0.17	<50	5.34	390	20	0.05	11	200	60	3.13	10	<5	11	<0.05
B4894		<5	0.16	<50	0.50	30	19	<0.05	<5	70	200	9.34	20	<5	<5	<0.05
B4895		<5	0.19	<50	1.06	110	21	<0.05	9	100	110	10.20	10	<5	7	<0.05
B4896		<5	0.17	<50	1.52	140	15	0.05	<5	80	170	8.91	10	<5	8	<0.05
B4897		<5	0.17	<50	0.66	60	17	<0.05	<5	<50	300	12.30	10	<5	5	<0.05
B4901		<5	0.19	<50	3.44	700	<5	0.06	<5	70	30	0.59	10	<5	35	<0.05
B4902		7	0.10	<50	0.45	170	118	0.09	25	110	24900	20.7	20	<5	22	<0.05
B4903		43	0.06	<50	0.21	200	150	<0.05	23	440	960	32.7	50	<5	10	<0.05
B4904		<5	0.11	<50	0.16	80	32	<0.05	<5	<50	1100	34.6	30	<5	9	<0.05
B4905		<5	0.08	<50	0.07	30	40	<0.05	<5	<50	410	39.0	<10	<5	5	<0.05
B4906		<5	0.13	<50	0.07	<30	18	0.05	14	<50	130	15.75	20	<5	7	<0.05
B4907		<5	0.13	<50	0.25	<30	12	0.05	<5	<50	130	12.90	<10	<5	5	<0.05
B4908		<5	0.19	<50	1.44	110	14	0.06	<5	<50	20	10.40	<10	<5	9	<0.05
B4909		<5	0.17	<50	1.07	210	11	0.05	<5	80	10	9.15	10	<5	10	<0.05
B4910		<5	1.45	<50	1.92	530	<5	<0.05	25	3360	<10	0.09	10	6	82	0.36
		1														

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: WESTERN KELTIC MINES INC. 900-808 W HASTINGS ST VANCOUVER BC V6C 2X4

Page: 3 - C Total # Pages: 3 (A - C) Finalized Date: 29-OCT-2004 Account: LTU

Project: Kutch

Method Analyte Units LOR	ME-ICP41a Ti ppm 50	ME-ICP41a U ppm 50	ME-ICP41a V ppm 5	ME-ICP41a W ppm 50	ME-ICP41a Zn ppm 10	Ag-AA46 Ag ppm 1	Cu-AA46 Cu % 0.01	Zn-AA46 Zn % 0.01	
	<50	<50	<5 <5	<50	35600				
	<50	<50	<5	<50	660				
	<50	<50	<5	<50	220				
	<50	<50	<5	<50	270				
	<50	<50	<5	<50	220				
	<50	<50	128	<50	70				
	<50	<50	8	<50	330			44.05	
	<50	<50	29 77	<50	>50000			11.05 5.20	
	<50	<50		<50	>50000			>20.0	
	<50	<50	136	~50 <50	1820			>30.0	
	<50	<50	15	<50	5800				
	<50	<50	24	<50	1890				
	<50	<50	7	<50	1210				
	<50	<50	10	<50	1120				
	<50	<50	<5	<50	8430				
	<50	<50	<5	<50	1640				
	<50	<50	<5	<50	470				
	<50	<50	<0	<50	1120				
	<50	<50	8	<50	750				
	<50	<50	19	<50	>50000			22.0	,
	<50	<50	<5	<50	20000		8 03	>30.0	
	<50	<50	<5	<50	10100		0.00		
	<50	<50	<5	<50	6220				
	<50	<50	<5	<50	890				
	<50	<50	<5	<50	2440				
	<50	<50	<5	<50	290				
	<50	<50	138	<50	90				
									2
	Analyte Units LOR	Analyte Units LOR TI ppm 50 50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Analyte TI U Units ppm ppm 50 50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <th>Analyte Units LOR TI 50 U V 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 128 50 50 128 50 50 128 50 50 136 50 50 15 50 50 15 50 50 10 50 50 10 50 50 5 50 50 5 50 50 5 50 50<!--</th--><th>Analyte Units LOR TI U V W ppm ppm ppm ppm ppm 50 50 55 50 <50 <50 <5 <50 <50 <50 <50 <5 <50 <50 <50 <50 <50 <50<</th><th>Analyte Units LOR Ti 50 U V W Zn Hits LOR 50 50 5 50 10 <50 50 5 50 10 <50 <50 <5 <50 35600 <50 <50 <5 <50 660 <50 <50 <5 <50 220 <50 <50 <50 <5 <50 220 <50 <50 <50 <50 <70 <50 >50000 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50</th><th>Ansity Ti U V W Zn Ag LOR 50 50 5 50 1 50 50 5 50 3600 1 50 50 5 50 3600 1 50 50 5 50 3600 1 50 50 5 50 2370 50 55 50 220 50 50 55 50 220 50 550 220 50 50 55 50 220 50 56000 55 50 50 55 50 220 50 56000 560 2330 50 50 70 50 50000 550 50 330 50 50 50 50 50 50 10 50 120 50 55 50 1120 50 55 50 1120 50 50 50<th>Analyte Units LOR TI 50 U V W Zn Ag Cu 9pm ppm ppm ppm ppm y y ppm y y y ppm ppm y y y y ppm y y y y ppm y y y ppm y y y y y ppm y y y y ppm y <t< th=""><th>Analyte Units 50 TI 50 U V W Zn Ag Cu Zn Zn Zn</th></t<></th></th></th>	Analyte Units LOR TI 50 U V 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 5 50 50 128 50 50 128 50 50 128 50 50 136 50 50 15 50 50 15 50 50 10 50 50 10 50 50 5 50 50 5 50 50 5 50 50 </th <th>Analyte Units LOR TI U V W ppm ppm ppm ppm ppm 50 50 55 50 <50 <50 <5 <50 <50 <50 <50 <5 <50 <50 <50 <50 <50 <50<</th> <th>Analyte Units LOR Ti 50 U V W Zn Hits LOR 50 50 5 50 10 <50 50 5 50 10 <50 <50 <5 <50 35600 <50 <50 <5 <50 660 <50 <50 <5 <50 220 <50 <50 <50 <5 <50 220 <50 <50 <50 <50 <70 <50 >50000 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50</th> <th>Ansity Ti U V W Zn Ag LOR 50 50 5 50 1 50 50 5 50 3600 1 50 50 5 50 3600 1 50 50 5 50 3600 1 50 50 5 50 2370 50 55 50 220 50 50 55 50 220 50 550 220 50 50 55 50 220 50 56000 55 50 50 55 50 220 50 56000 560 2330 50 50 70 50 50000 550 50 330 50 50 50 50 50 50 10 50 120 50 55 50 1120 50 55 50 1120 50 50 50<th>Analyte Units LOR TI 50 U V W Zn Ag Cu 9pm ppm ppm ppm ppm y y ppm y y y ppm ppm y y y y ppm y y y y ppm y y y ppm y y y y y ppm y y y y ppm y <t< th=""><th>Analyte Units 50 TI 50 U V W Zn Ag Cu Zn Zn Zn</th></t<></th></th>	Analyte Units LOR TI U V W ppm ppm ppm ppm ppm 50 50 55 50 <50 <50 <5 <50 <50 <50 <5 <50 <50 <50 <5 <50 <50 <50 <5 <50 <50 <50 <5 <50 <50 <50 <5 <50 <50 <50 <5 <50 <50 <50 <50 <5 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50<	Analyte Units LOR Ti 50 U V W Zn Hits LOR 50 50 5 50 10 <50 50 5 50 10 <50 <50 <5 <50 35600 <50 <50 <5 <50 660 <50 <50 <5 <50 220 <50 <50 <5 <50 220 <50 <50 <5 <50 220 <50 <50 <5 <50 220 <50 <50 <5 <50 220 <50 <50 <50 <5 <50 220 <50 <50 <50 <50 <70 <50 >50000 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	Ansity Ti U V W Zn Ag LOR 50 50 5 50 1 50 50 5 50 3600 1 50 50 5 50 3600 1 50 50 5 50 3600 1 50 50 5 50 2370 50 55 50 220 50 50 55 50 220 50 550 220 50 50 55 50 220 50 56000 55 50 50 55 50 220 50 56000 560 2330 50 50 70 50 50000 550 50 330 50 50 50 50 50 50 10 50 120 50 55 50 1120 50 55 50 1120 50 50 50 <th>Analyte Units LOR TI 50 U V W Zn Ag Cu 9pm ppm ppm ppm ppm y y ppm y y y ppm ppm y y y y ppm y y y y ppm y y y ppm y y y y y ppm y y y y ppm y <t< th=""><th>Analyte Units 50 TI 50 U V W Zn Ag Cu Zn Zn Zn</th></t<></th>	Analyte Units LOR TI 50 U V W Zn Ag Cu 9pm ppm ppm ppm ppm y y ppm y y y ppm ppm y y y y ppm y y y y ppm y y y ppm y y y y y ppm y y y y ppm y <t< th=""><th>Analyte Units 50 TI 50 U V W Zn Ag Cu Zn Zn Zn</th></t<>	Analyte Units 50 TI 50 U V W Zn Ag Cu Zn Zn Zn

VA04075620 - Finalized CLIENT : "LTU - Western Keltic Mines Inc." # of SAMPLES : 153 DATE RECEIVED : 2004-10-29 DATE FINALIZED : 2004-11-03 PROJECT : "KUTCHO" CERTIFICATE COMMENTS : "" PO NUMBER : " "

	Zn-VOL50
SAMPLE	Zn
DESCRIPTION	%
B004554	35.97
B004569	38.17
B004570	46.45

APPENDIX V

Lab Accreditation

And

QA/QC Overview

April 18, 2005

ASSAYER'S CERTIFICATE

I, Keith Rogers, of 908 Tollcross Rd. North Vancouver British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am employed as Executive Manager Central Laboratory by ALS Chemex. of 212 Brooksbank Ave. North Vancouver B.C., and have over 35 years of experience in the mineral analytical services business.
- 2. THAT I have attained a Certificate of Efficiency from the Province of British Columbia dated 1973.
- 3. THAT I personally completed and/or directly supervised the assaying for those certificates that are signed by me for samples submitted by Western Keltic Mines Inc. between July and October, 2004.

Signed:

Keith Rogers, BC Certified Assayer

DATED at North Vancouver, British Columbia, this 18th day of April, 2005.

Quality Assurance Overview

LABORATORY REGISTRATION

ALS Chemex laboratories in North America are registered to ISO 9001:2000 for the "provision of assay and geochemical analytical services" by QMI Management Systems Registrars.

In addition to ISO 9001:2000 registration, ALS Chemex has successfully completed the audit required for accreditation to ISO 17025 under CAN-P-1579 "Guidelines for Accreditation of Mineral Analysis Testing Laboratories", and is in the final stages of completing the accreditation process. CAN-P-1579 is the Amplification and Interpretation of CAN-P-4 "General Requirements for the Accreditation of Calibration and Testing Laboratories" (Standards Council of Canada ISO/IEC Guide 25:1997(E)). The scope of accreditation includes the following methods offered by ALS Chemex:

- Au by Fire Assay/AAS
- Au and Ag by Fire Assay/Gravimetric
- Au, Pt & Pd by Fire Assay/ICP
- Cu, Ni & Co by Sodium Peroxide Fusion/ICP
- Co & Ni by 4-Acid Digestion/AAS
- Ag, Cu, Pb & Zn by Aqua Regia Digestion/AAS
- Multi-Element package by Aqua Regia Digestion/ICP

The ISO 9001:2000 registration provides evidence of a quality management system covering all aspects of our organization. ISO 17025 accreditation provides specific assessment of our laboratory's analytical capabilities. In our opinion, the combination of the two ISO standards provides our clients complete assurance regarding the quality of every aspect of ALS Chemex operations.

Aside from laboratory accreditation, ALS Chemex has been a leader in participating in, and sponsoring, the assayer certification program in British Columbia. Many of our analysts have completed this demanding program that includes extensive theoretical and practical examinations. Upon successful completion of these examinations, they are awarded the title of Registered Assayer.

QUALITY ASSURANCE PROGRAM

The quality function is an integral part of all day-to-day activities at ALS Chemex and involves all levels of staff. Responsibilities are formally assigned for all aspects of the quality assurance program. As well, all senior staff is expected to actively participate in the quality program through regular Quality Assurance and Technical Meetings.

Sample Preparation Quality Specifications

Standard specifications for sample preparation are clearly defined and monitored. The specifications are as follows:

- Crushing
 - > 70% of the crushed sample passes through a 2 mm screen
- Ringing
 - > 85% of the ring pulverized sample passes through a 75 micron screen (Tyler 200 mesh)
- Samples Received as Pulps
 - >80% of the sample passes through a 75 micron screen (Tyler 200 mesh)

These characteristics are measured and results reported and logged to verify the quality of sample preparation. Our standard operating procedures require that at least one sample per day be taken from each sample preparation station. Measurement of sample preparation quality allows the identification of equipment, operators and processes that are not operating within specifications.

QC results from all sample preparation laboratories are reported to the QC department monthly. The data is combined and reported to senior management. Review of the performance of each laboratory branch takes place as part of the quarterly Quality Assurance meeting.

Lab Accreditation & QA Overview.doc

Revision: 01.01 November 10, 2004 Page 2 of 6

Other Sample Preparation Specifications

Sample preparation is a vital part of any analysis protocol. Many projects require sample preparation to other specifications, for instance > 90% of the crushed sample to pass through a 2 mm screen. These procedures can easily be accommodated and the Prep QC monitoring system is essential in ensuring the required specifications are routinely met.

Analytical Quality Control – Reference Materials, Blanks & Duplicates

The Laboratory Information Management System (LIMS) inserts quality control samples (reference materials, blanks and duplicates) on each analytical run, based on the rack sizes associated with the method. The rack size is the number of sample including QC samples included in a batch. The blank is inserted at the beginning, standards are inserted at random intervals, and duplicates are analysed at the end of the batch. Quality control samples are inserted based on the following rack sizes specific to the method:

Rack Size	Methods	Quality Control Sample Allocation
20	Specialty methods including specific gravity, bulk density, and acid insolubility	2 standards, 1 duplicate, 1 blank
28	Specialty fire assay, assay-grade, umpire and concentrate methods	1 standard, 1 duplicate, 1 blank
39	XRF methods	2 standards, 1 duplicate, 1 blank
40	Regular AAS, ICP-AES and ICP-MS methods	2 standards, 1 duplicate, 1 blank
84	Regular fire assay methods	2 standards, 3 duplicates, 1 blank

The laboratory staff analyses quality control samples at least at the frequency specified above. If necessary, laboratory staff may include additional quality control samples above the minimum specifications.

All data gathered for quality control samples – blanks, duplicates and reference materials – are automatically captured, sorted and retained in the QC Database.

Quality Control Limits and Evaluation

Quality Control Limits for reference materials and duplicate analyses are established according to the precision and accuracy requirements of the particular method. Data outside control limits are identified and investigated and require corrective actions to be taken. Quality control data is scrutinised at a number of levels. Each analyst is responsible for ensuring the data submitted is within control specifications. In addition, there are a number of other checks.

Certificate Approval

If any data for reference materials, duplicates, or blanks falls beyond the control limits established, it is automatically flagged red by the computer system for serious failures, and yellow for borderline results. The Department Manager(s) conducting the final review of the Certificate is thus made aware that a problem may exist with the data set.

Lab Accreditation & QA Overview.doc

Sample Preparation Package – PREP-31 Standard Sample Preparation: Dry, Crush, Split and Pulverize

Sample is dried and the entire sample is crushed to better than 70% passing a 2 mm (Tyler 10 mesh) screen. A split of up to 250 grams is taken and pulverized to better than 85% passing a 75 micron (Tyler 200 mesh) screen.

ALS Chemex Method Code	Description
LOG-22	Sample is logged in tr acking system and a bar code label is attached.
CRU-31	Fine crushing of rock chip and drill samples to better than 70% of the sample p assing 2 mm.
SPL-21	Split sample using riffle splitter.
PUL-31	A sample split of up to 250 g is pulverized to better than 85% of the sample passing 75 microns.

Assay Procedure - ME-ICP41a High Grade Methods using Conventional ICP-AES Analysis (con't)

Element	Symbol	Detection Limit	Upper Limit	Units
Phosphorus	P	5	50000	ppm
Potassium*	K	0.05	50	%
Scandium*	Sc	5	50000	ppm
Silver	Ag	1	200	ppm
Sodium*	Na	0.05	50	%
Strontium*	Sr	5	50000	%
Sulfur	S	0.05	50	%
Thallium*	T1	50	50000	ppm
Titanium*	Ti	0.05	50	%
Tungsten*	W	50	50000	ppm
Uranium	U	50	50000	ppm
Vanadium*	V	5	50000	ppm
Zinc	Zn	10	50000	ppm

*Elements for which the digestion is possibly incomplete.

<u>Fire Assay Procedure</u> – Au-AA23 and Au-AA24 Fire Assay Fusion, AAS Finish

Sample Decomposition:Fire Assay FusionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquarted with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.

The bead is digested in 0.5 ml dilute nitric acid in the microwave oven, 0.5 ml concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 ml with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

ALS Chemex Method Code	Element	Symbol	Sample Weight	Lower Reporting Limit	Upper Reporting Limit	Units
Au-AA23	Gold	Au	30 g	0.005	10.0	ppm
Au-AA24	Gold	Au	50g	0.005	10.0	ppm

Assay Procedure - ME-ICP41a High Grade Method using Conventional ICP-AES Analysis

Sample Decomposition: Nitric-HCl Digestion

Analytical Method: Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES)

A prepared sample (0.4 gram) is digested with concentrated nitric acid for one half hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. The resulting solution is diluted to volume (100 ml) with demineralized water, mixed and then analyzed by inductively coupled plasma - atomic emission spectrometry. The analytical results are corrected for spectral inter-element interferences.

Element	Symbol	Detection Limit	Upper Limit	Units
Aluminum*	Al	0.05	50	%
Antimony	Sb	10	50000	ppm
Arsenic	As	10	100000	ppm
Barium*	Ba	50	50000	ppm
Beryllium*	Be	5	500	ppm
Bismuth	Bi	10	50000	ppm
Cadmium	Cd	5	2500	ppm
Calcium*	Ca	0.05	50	%
Chromium*	Cr	5	50000	ppm
Cobalt	Со	5	50000	ppm
Copper	Cu	5	50000	ppm
Gallium	Ga	50	50000	ppm
Iron	Fe	0.05	50	%
Lanthanum	La	50	50000	ppm
Lead	Pb	10	50000	ppm
Magnesium*	Mg	0.05	50	%
Manganese	Mn	25	50000	ppm
Mercury	Hg	5	50000	ppm
Molybdenum	Mo	5	0.05	ppm
Nickel	Ni	5	50000	ppm

i

<u>Assay Procedure</u> – ME-AA46 Evaluation of Ores and High Grade Materials by Aqua Regia Digestion – AAS

Sample Decomposition:Aqua Regia DigestionAnalytical Method:Atomic Absorption Spectroscopy (AAS)

A prepared sample (0.4 to 2.00 grams) is digested with concentrated nitric acid for one half hour. After cooling, hydrochloric acid is added to produce aqua regia and the mixture is then digested for an additional hour and a half. An ionization suppressant is added if molybdenum is to be measured. The resulting solution is diluted to volume (100 or 250 ml) with demineralized water, mixed and then analyzed by atomic absorption spectrometry against matrix-matched standards.

ALS Chemex Method Code	Element	Symbol	Detection Limit	Upper Limit	Units
As-AA46	Arsenic	As	0.01	30	%
Bi-AA46	Bismuth	Bi	0.001	30	%
Cd-AA46	Cadmium	Cd	0.001	10	%
Co-AA46	Cobalt	Co	0.01	50	%
Cu-AA46	Copper	Cu	0.01	50	%
Fe-AA46	Iron	Fe	0.01	30	%
Pb-AA46	Lead	Pb	0.01	30	%
Mo-AA46	Molybdenum	Мо	0.001	10	%
Mn-AA46	Manganese	Mn	0.01	50	%
Ni-AA46	Nickel	Ni	0.01	50	%
Ag-AA46	Silver	Ag	1	1500	ppm
Zn-AA46	Zinc	Zn	0.01	30	%

APPENDIX VI

Itemized Cost Statement

Appendix VI: Itemized Cost Statement (July 2 to October 4 unless otherwise specified)

Wages			
P.M. Holbek	between July 2 and October 4: 75 days @ \$450.00/day	\$33,750.00	
R.G. Wilson	between June 1 and October 4: 83 days @ \$350.00/day	\$29,050.00	
P.H. Daubeny	July 2 to September 16: 80 days @ \$350.00/day	\$28,000.00	
A. Boyce	July 12 to October 3: 80 days @ \$135.00/day	\$10,800.00	
K. Groth	July 12 to September 26: 76 days @ \$275.00/day	\$20,900.00	
T. Farrer	T. Farrer between May 27 and July 6: 25 days @ \$200.00/day		
	between July 7 and October 2: 354 hours @ \$25.00/hou	r\$ 8,850.00	
Camp and Accomoda	tion:	¢16 760 00	
Food: July 1 to Octobe	\$15,750.00		
Accommodation: July	\$18,000.00		
(Supplies to repair	and refurbish camp)	¢ 4 750 00	
Expediting: Smithers &	\$ 4,750.00		
Transport and Fauin	ment Pental		
Truck: (Prime Truck R	entals): July 12 to October 4: @ \$2000/month	\$ 5 940 00	
Fixed wing: (BC-Vuko	\$ 8 080 00		
Potery wing: (DC-1 uko	\$18,000.00		
Air Canada & Northern	\$12,500.00		
Generator (Land Sea P	\$ 2,800.00		
Down-hole Survey Inst	\$ 6300.00		
Pocksaw (Pothier Enter	\$ 940.00		
Rocksaw (Former Enter	\$ 1200.00		
Executor Cot EL 200	\$ 1,200.00		
Delta transport vehicle	\$70,550.00		
Trucking (Bondstra Tra	\$14,030,00		
Trucking (Dandstra Tra	isport, Byers, AT Denvery, 57 Contracting).	\$14,050.00	
Surveys and Analysis			
Drilling (Hy-Tech Drill	\$656,890.00		
Assaying (Chemex): July to November:			
770 samples IC	P & Au Assay @ \$25.40/sample:	\$19,560.00	
200 samples Cu	\$ 2,000.00		
Maps (McElhanney Ser	\$ 3,670.00		
	, ,	· · · ·	
Fuel			
Diesel, Gasoline, Propa	\$77,720.00		
Fuel Bladders & Pump	\$23,600.00		
a			
Communications	• • • • • • • •		
Satellite telephones: Ms	sat & Globalstar (Infosat & Apex Communications)	\$ 9,360.00	
Report Preparation			
Text & mans reproduct	\$ 3,000,00		
Text & maps, reproduct	ion & omding	φ 3,000.00	
Total costs:	\$1,157,630.00		

APPENDIX VII

Certificates of Qualifications

Certificate of Qualifications

I, Peter Holbek, residing at 1276 West 21st Street, North Vancouver, British Columbia, do hereby certify:

- 1. THAT, I am a geologist residing in the District of North Vancouver, B.C, currently employed by Western Keltic Mines Inc of 900-808 West Hastings Street, Vancouver, B.C..
- 2. THAT, I obtained a Bachelor of Science degree in Geology in 1981 and a Master of Science degree in Geology in 1988 from The University of British Columbia, Vancouver, British Columbia, Canada.
- 3. THAT, I have been continuously practicing my profession as a geologist since 1981 for a variety of major and junior companies including, Teck Explorations, Kerr Addison Mines, Esso Minerals Canada, Homestake Canada Ltd., Princeton Mining Corp, Atna Resources Ltd, and Western Keltic Mines Inc.
- 4. THAT, I am Registered Professional Geoscientist (License # 19763) in good standing with the Association of Professional Engineers and Geoscientists of British Columbia.
- 5. THAT, this report is based upon my knowledge of the project gained from working on the project seasonally between 1984 and 1991, and work conducted on the property from July 19th through October 5th, 2004.

Dated at Vancouver, British Columbia this 25th of April, 2004.

Signed By:

Peter Michael Holbek, M.Sc., P.Geo. Registered Professional Geoscientist.

GEOLOGIST'S CERTIFICATE

I, Robert G. Wilson, of 20216 8th Ave. Langley, in the Province of British Columbia, DO HEREBY CERTIFY:

- 1. THAT I am employed by Western Keltic Mines Inc. of 900 808 West Hastings., Vancouver B.C.
- 2. THAT I am a graduate of the University of British Columbia with a Bachelor of Science degree in Geology.
- 3. THAT I am a Professional Geoscientist registered in good standing with the Association of Professional Engineers and Geoscientists of the Province of British Columbia.
- 4. THAT this report is based in part on property work I personally completed and/or directly supervised between July 1 and October 5, 2004.

DATED at Vancouver, British Columbia, this <u>26</u> st day of <u>APRIL</u>, 2005.

Robert G. Wilson, P.Geo.

