REPORT ON THE 2004

EXPLORATION AND DEVELOPMENT PROGRAM

ON THE

CARIBOO GOLD PROJECT

WELLS, BRITISH COLUMBIA

Combined Report for INTERNATIONAL WAYSIDE GOLD MINES LTD.

and

ISLAND MOUNTAIN GOLD MINES LTD.

NTS: 093H/3,4

Latitude: 53° 05' N Longitude: 121° 32' W

CARIBOO MINING DIVISION

For

International Wayside Gold Mines Ltd. 15th floor – 675 West Hastings St. Vancouver, B.C. V6B 1N2 Tel: 604-669-6463 Fax: 604-669-3041

Owner/Operator:

International Wayside Gold Mines Ltd. 15th floor – 675 West Hastings St. Vancouver, B.C. V6B 1N2

Authors: Edward E. Gates, M.Sc. Geo., Registered Geologist - Washington Janet Riddell, P. Geo. – British Columbia Daria Duba, M. Sc. Geo.

March, 2005

PART A - VOLUME 1

META Vol. 1

REPORT ON THE 2004 EXPLORATION AND DEVELOPMENT PROGRAM

ON THE

CARIBOO GOLD PROJECT

WELLS, BRITISH COLUMBIA

Combined Report for ATIONAL WAYSIDE GOLD MINES LTD.

and

ISLAND MOUNTAIN GOLD MINES LTD.

NTS: 093H/3,4

Latitude: 53º 05' N

Longitude: 121

CARIBOO MINING DIVISION

For

International Wayside Gold Mines Ltd. 15th floor – 675 West Hastings St. Vancouver, B.C V6B 1N2 Tel: 604-669-6463 Fax: 604-669-3041

Owner/Operator:

APPR-11-520085

MANCOUNTER FBA

HCommissioner's Office

International Wayside Gold Mines Ltd. 15th floor – 675 West Hastings St. Vancouver, B.C. V6B 1N2

Authors:

Edward E. Gates, M.Sc. Geo., Registered Geologist - Washington Janet Riddell, P. Geo. – British Columbia Daria Duba, M. Sc. Geo.

March, 2005

SUMMARY:

The 17,000 ha land package of International Wayside Gold Mines Ltd., comprising part of the Cariboo Gold Project, is located in the Wells – Barkerville Gold Camp, Wells, British Columbia, approximately 120 km southeast of Prince George and 500 km north of Vancouver, on NTS map sheet 093H/4, in the Cariboo Mining Division. Good road access exists across the project area. The project area covers 66 crown-granted claims and 662 units in two and four post mineral claims. In addition International Wayside Gold Mines Ltd. owns 63 contiguous crown-granted claims on Island Mountain, under option to Island Mountain Gold Mines Ltd., which has an option to earn a 50% interest in the crown-grants subject to an underlying agreement with Mosquito Consolidated Gold Mines Limited.

Geologically, the project area is underlain by a northwest striking, moderately northeast dipping sequence of Late Proterozoic and Paleozoic continental shelf and slope deposits, including turbiditic clastic sedimentary rocks with lesser amounts of volcanic rocks and minor carbonates, on the steep, overturned limb of a southwest-verging antiform, which, in turn, is on the northeast flank of the Island Mountain Anticlinorium. The sequence has been metamorphosed to lower greenschist facies.

The 2004 exploration program focused mainly on the Bonanza Ledge gold deposit. An underground bulk sample, of approximately 13,000 tonnes, was mined and trucked to the Mount Polley mill, where it was milled to produce a pyrite-gold concentrate. A total of 15,924 meters (52,242 feet) of surface and underground diamond drilling were completed, which finished the definition of the deposit, yielded metallurgical sample material, and provided engineering data necessary for mine permitting and development. Three large trenches were completed at Bonanza Ledge, totalling 55 meters (180) in length, which defined the location of the overburden-ore contact, demonstrated the continuity of the ore body up to the paleo-surface, and provided oxidized ore for metallurgical testing. Highlights of the channel sampling in the trenches were 30 ft @ 26.8 g/t gold and 9 ft @ 97.4 g/t gold.

Late in 2003 and early in 2004, the Myrtle property received 861 meters (2,826 feet) of diamond drilling. The highlights of this drilling were 3.42 g/t gold over 1.5 meters and 2.67 g/t over 2.0 meters.

The Goldfinch Target was tested with 827 meters (2,712 feet) of diamond drilling in six holes. One hole intersected 21.7 g/t gold over 3.7 meters (12 feet).

The Cow Mountain and Lowhee Target areas received geologic mapping and geochemical sampling, which added to or refined drill targets for the 2005 exploration program.

Other improvements made on the Cariboo Gold Project include 4,450 meters (14,600 feet) of access road improvement on the east side of Cow Mountain, and the construction of storage capacity of 23,592 meters (77,400 feet) of NQ or BQ diamond core.

The 22,000 hectare Island Mountain Gold Project was explored in 2004 for pyrite replacement mineralization of the Bonanza Ledge type. An existing soil geochemistry sample grid was extended, with 1,397 soil samples being analyzed. The sampling extended the strong Snapjack gold anomaly. Six diamond drill holes were completed, totalling 860 meters. The highlight of the drilling program was hole IGM 04-1 in the Snapjack Zone, which contained intercepts of 2 meters of 10.4 g/t gold, 3 meters of 5.06 g/t gold, 3 meters of 9.37 g/t gold and 3 meters of 1.28 g/t gold.

Exploration in 2005 will include testing the Lowhee Target, conducting step-out drilling on the Goldfinch Target intercept, drilling step-out holes in the Waoming Target from a 2001 gold intercept, and continuation of the drilling of the Snapjack Target. Mapping and sampling will continue in the lower part of the Lowhee area.

Engineering and permitting work will continue in 2005, with the objective of bringing the Bonanza Ledge deposit into production. Efforts will also continue on permitting for the Cariboo Gold Project – Cow Mountain deposit.

TABLE OF CONTENTS - Part A

Page

SUMM	1ARY	.i
1.0	INTRODUCTION.	1
2.0	LOCATION, ACCESS AND INFRASTRUCTURE	1
3.0	LEGAL DESCRIPTION	2
4.0	PHYSIOGRAPHY, VEGETATION AND CLIMATE	2
5.0	HISTORY	3
	GEOLOGY	3 4
	2004 WORK PROGRAM SUMMARY 7.1 Underground Development 7.2 Surface Development 7.2.1 Cow Mountain Road 7.2.2 Lowhee Core Processing Facility 7.3 2004 Exploration Work	6 7 7 7
	TRENCHING	7 7 8 9

iii

iv

9.0	GEOL 9.1 9.2	LOGICAL MAPPING	0
10.0	GEO	CHEMISTRY SAMPLING	0
	10.1	Soil Geochemistry 10	
		10.1.1 Procedure	0
		10.1.2 Lower Lowhee Results	1
	10.2	Rock Geochemistry 1'	1
		10.2.1 Procedure	
		10.2.2 Results	1
11.0	DIAM 11.1	OND DRILLING	2 2
		11.1.2 Surface Drilling Results - Bonanza Ledge	3
		11.1.3 Waste Dump Condemnation 17	
		11.1.3.1 Procedure 17	7
		11.1.3.2 Results 17	•
		11.1.4 Oriented Core Geotechnical Holes	
		11.1.3.1 Procedure	
		11.1.3.2 Results	
		11.1.5 Goldfinch Target Exploration	
	11.2		
	11.2	Underground Drilling - Bonanza Ledge	
		11.2.1 Procedure 20 11.2.2 Results 20	
		11.2.2 1.000mb	ر ا

12.0	CONCLUSIONS AND RECOMMENDATIONS	28	8
------	---------------------------------	----	---

Part B – Separate Cover

Report on the 2004 Diamond Drilling Program on the Island Mountain Gold Property, Wells, British Columbia

Authors: David L. Johnson John Childs Janet Riddell

Part C – Separate Cover

Report on 2004 Diamond Drilling on the Myrtle Claim Group, Cariboo Mining Division, Wells, British Columbia

Author: Daria Duba

TABLE OF CONTENTS

LIST OF FIGURES

Following Page

Figure 1	Location Map	1
Figure 2	Claim Map	2
Figure 3	Regional Geology	3
Figure 4	Property Geology	4
Figure 5	Work Area Map	6
Figure 6	Underground Development	6
Figure 7	Bonanza Ledge Trenches	•
Figure 8	Photograph – Trench Sampling at Bonanza Ledge	
Figure 9	Cow Mountain Road - Channel Sampling and Geology	back pocket
Figure 10	Cow Mountain and Lowhee Surface Geology	back pocket
Figure 11	Bonanza Ledge Underground Geology - J. Kadar	back pocket
Figure 12	Bonanza Ledge Underground Geology - N. Reid	back pocket
Figure 13	Bonanza Ledge Underground Geology – J. Childs	back pocket
Figure 14-A	Lower Lowhee Soil Geochemistry - Gold Values	
Figure 14-B	Lower Lowhee Soil Geochemistry - Au Contour Map	11
Figure 15-A	Bonanza Ledge Surface Drilling	back pocket
Figure 15-B	Bonanza Ledge Underground Drilling	back pocket
Figure 16	Section 20+620E	back pocket
Figure 17	Section 20+560E	back pocket
Figure 18	Section 20+500E	back pocket
Figure 19	Section 20+440E	back pocket
Figure 20	Section 20+400E	back pocket
Figure 21	Section 20+380E	back pocket
Figure 22	Section 20+360E	back pocket
Figure 23	Section 20+340E	back pocket
Figure 24	Section 20+320E	back pocket
Figure 25	Section 20+300E	back pocket
Figure 26	Section 20+280E	back pocket
Figure 27-A	Section 20+260E - Lithology	back pocket
Figure 27-B	Section 20+260E - Alteration	back pocket
Figure 28	Section 20+240E	back pocket
Figure 29	Section 20+220E	back pocket
Figure 30-A	Section 20+200E - Lithology	back pocket
Figure 30-B	Section 20+200E - Alteration	back pocket
Figure 31	Section 20+180E	back pocket
Figure 32	Section 20+160E	back pocket
Figure 33 - A	Section 20+140E - Lithology	-

TABLE OF CONTENTS

LIST OF FIGURES - continued

Figure 33 - B	Section 20+140E - Alteration	back pocket
Figure 34	Section 20+120E	back pocket
Figure 35	Section 20+100E	. back pocket
Figure 36	Section 20+080E	. back pocket
Figure 37	Section 20+060E	back pocket
Figure 38 - A	Section 20+040E - Lithology	back pocket
Figure 38 - B	Section 20+040E - Alteration	. back pocket
Figure 39	Section 20+020E	. back pocket
Figure 40	Section 20+000E	. back pocket
Figure 41	Section 19+980E	. back pocket
Figure 42	Section 19+960E	. back pocket
Figure 43	Section 19+940E	. back pocket
Figure 44	Section 19+920E	back pocket
Figure 45	Section 19+880E	back pocket
Figure 46	Section 19+800E	back pocket
Figure 47	Section 19+700E	back pocket
Figure 48	Engineering Drilling	back pocket
Figure 49	Section 19+400E (Waste Dump Condemnation)	back pocket
Figure 50	Section 19+200E (Waste Dump Condemnation)	back pocket
Figure 51	Section 19+000E (Waste Dump Condemnation)	back pocket
Figure 52	Goldfinch Target Drilling - 2004	back pocket
Figure 53	Section 18+600E (Goldfinch Target)	back pocket
Figure 54	Section 18+500E (Goldfinch Target)	back pocket

LIST OF TABLES

Following Page

Table 1	Surface Drill Results - Bonanza Ledge Zone	12
	Goldfinch Target - Surface Drill Results	
Table 3	Underground Drill Results – Bonanza Ledge Zone	20

TABLE OF CONTENTS

APPENDICES

Appendix I F	References
--------------	------------

- Appendix II Statement of Claims
- Appendix III Statement of Expenditures
- Appendix IV Statement of Qualification
- Appendix V Bonanza Ledge Bulk Sample
- Appendix VI Bonanza Ledge Trenches

Appendix VII Cow Mountain Roadside Sampling

Appendix VIII Analytical Laboratory Procedures

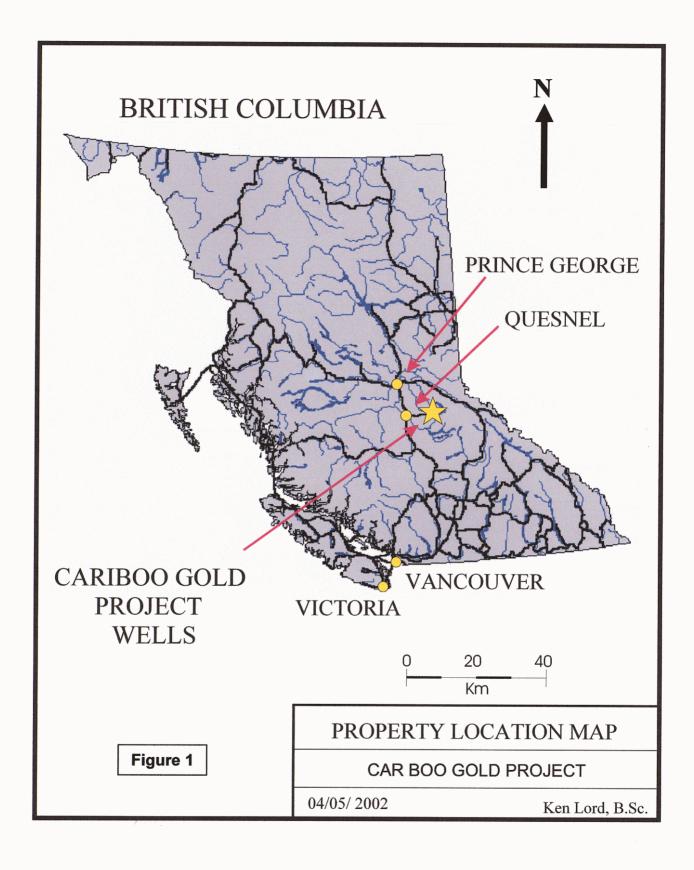
- Appendix IX Soil Geochemistry Results
- Appendix X Rock Geochemistry Results
- Appendix XI Bonanza Ledge Surface Drilling Logs and Assays
- Appendix XII Goldfinch Drilling Logs and Assays
- Appendix XIII Bonanza Ledge Underground Drilling Logs and Assays

1.0 INTRODUCTION

This report documents the combined results of the 2004 exploration program, completed between January 1 and December 31, 2004, on the Cariboo Gold Project of International Wayside Gold Mines Ltd., and the properties of Island Mountain Gold Mines Ltd. The project area is located in the Wells – Barkerville Gold Camp, Wells, British Columbia. The program included 18,411 meters of diamond drilling, 55 meters of mechanized trenching, 4,450 meters of access road improvement, greatly enhanced core processing and storage facilities, geologic mapping, rock sampling and soil geochemistry surveys.

During 2004, the Bonanza Ledge bulk sample underground workings were completed, stopes were developed, and approximately 13,000 tonnes of mineralized rock were extracted. The sample was trucked to the Mount Polley Mill, where it was test-milled, and a concentrate produced.

In addition, various environmental studies were conducted in preparation for applying for the 70,000 tonne mining permit.


A complete report on the 2004 exploration work conducted on the Island Mountain Gold Mines properties was authored by Janet Riddell and others, and is included in this report as Part B. Also included, is a complete report on the late-2003 and 2004 exploration work conducted on the Myrtle property, authored by Daria Duba, and included in this report as Part C. The remainder of the text of this report is concerned with the International Wayside Gold Mines property, excepting the Myrtle property.

2.0 LOCATION, ACCESS AND INFRASTRUCTURE (Figure 1)

The Cariboo Gold Project of International Wayside Gold Mines Ltd., NTS map sheet 093H/4, surrounds the community of Wells, British Columbia, approximately 120 km southeast of Prince George and 500 km north of Vancouver, in the Cariboo Mining Division. The 2004 exploration program concentrated on the Bonanza Ledge Zone, 3.5 km southeast of the town of Wells at latitude 53° 05' N and longitude 121° 32' W. Drilling also took place on the Goldfinch Target, 366 meters (1,200 feet) northwest of Bonanza Ledge. Mapping and geochemical sampling was conducted along the Lowhee stream drainage and on the eastern flank of Cow Mountain, 1.5 km south of Wells.

The project area is accessible via Highway 26 that branches off from Provincial Highway 97 at Quesnel, 85 km to the west. Gravel roads, established during historic placer and lode mining activity, provide access to the property from Wells. Power is readily available by connecting to the provincial hydro grid at Wells.

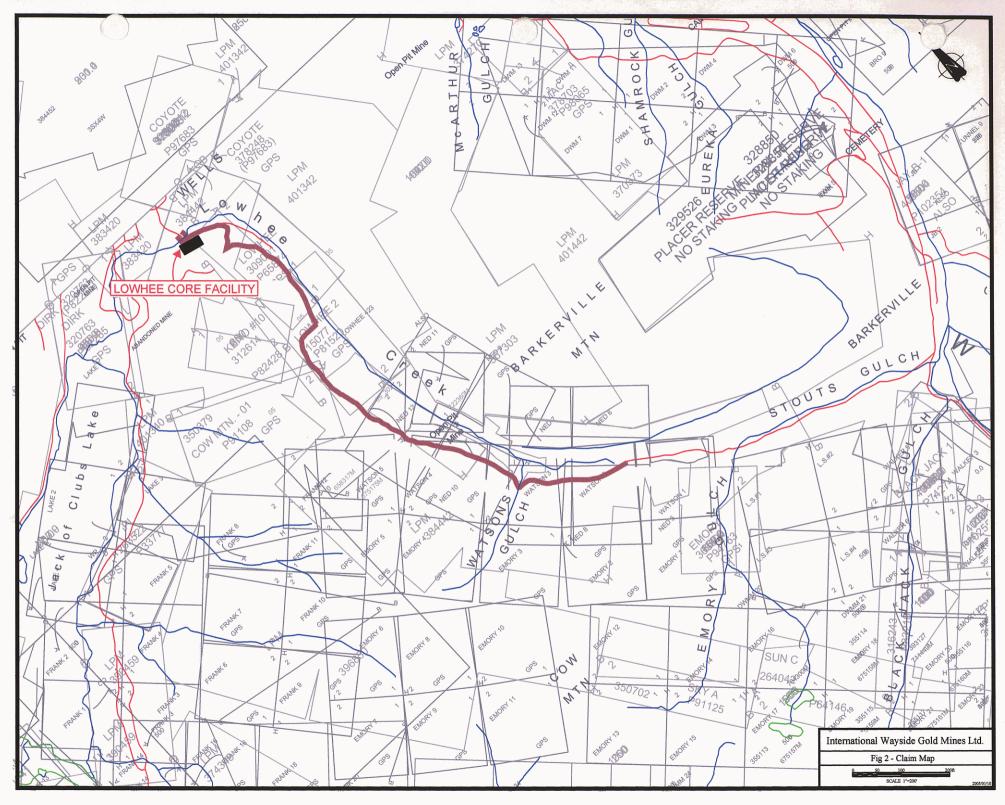
A hospital and airport are situated in the town of Quesnel and basic supplies and services are available in Wells.

3.0 LEGAL DESCRIPTION (Figures 1 and 2)

The Cariboo Gold Project of International Wayside Gold Mines Ltd. covers approximately 17,000 ha within the Cariboo Mining Division, including 66 crown-granted claims and 662 units in two and four post mineral claims. In addition International Wayside Gold Mines Ltd. owns 63 contiguous crown-granted claims on Island Mountain, under option to Island Mountain Gold Mines Ltd., which has an option to earn a 50% interest in the crown-grants subject to an underlying agreement with Mosquito Consolidated Gold Mines Limited.

The Bonanza Ledge, Lowhee Goldfinch and Cow Mountain work areas are situated on the IWA Group of 66 crown-granted claims and adjoining two and four post mineral claims. Lots 2F and 42F are 100% owned by International Wayside Gold Mines Ltd. and the remaining lots are under option from Mosquito Consolidated Gold Mines Ltd. Of the remaining mineral claims, 436 units are 100% owned and 226 units are 75% owned by International Wayside Gold Mines Ltd.

The Myrtle Group, adjoining the Bonanza Ledge Zone to the east, consists of 19 contiguous crown-grants that cover 250 ha, under option from Gold City Industries Ltd., Vancouver, British Columbia. International Wayside Gold Mines Ltd. can earn a 50% interest in the property by issuing 300,000 shares and incurring 250,000 in exploration expenditures by December 31, 2005, under an option agreement dated July 18, 2001.


A detailed statement of claims is shown in Appendix II.

4.0 PHYSIOGRAPHY, VEGETATION AND CLIMATE

The current project area lies south of Jack of Clubs Lake, situated within the Quesnel Highlands on the eastern edge of the Interior Plateau. The topography is moderate, rising from about 1200m at Wells to just over 1600m on Barkerville Mountain. Summits are generally rounded, having been glaciated by continental ice sheets during the Pleistocene Epoch (Holland, 1976, Hart, 2001). Ice direction is generally to the northwest near Wells and glacial till is the most widespread surficial deposit in the area.

The Wells area is generally well forested. Hillside slopes are dominated by spruce and sub-alpine fir, accompanied by alders and other deciduous foliage on lower wetter slopes flanking river valleys.

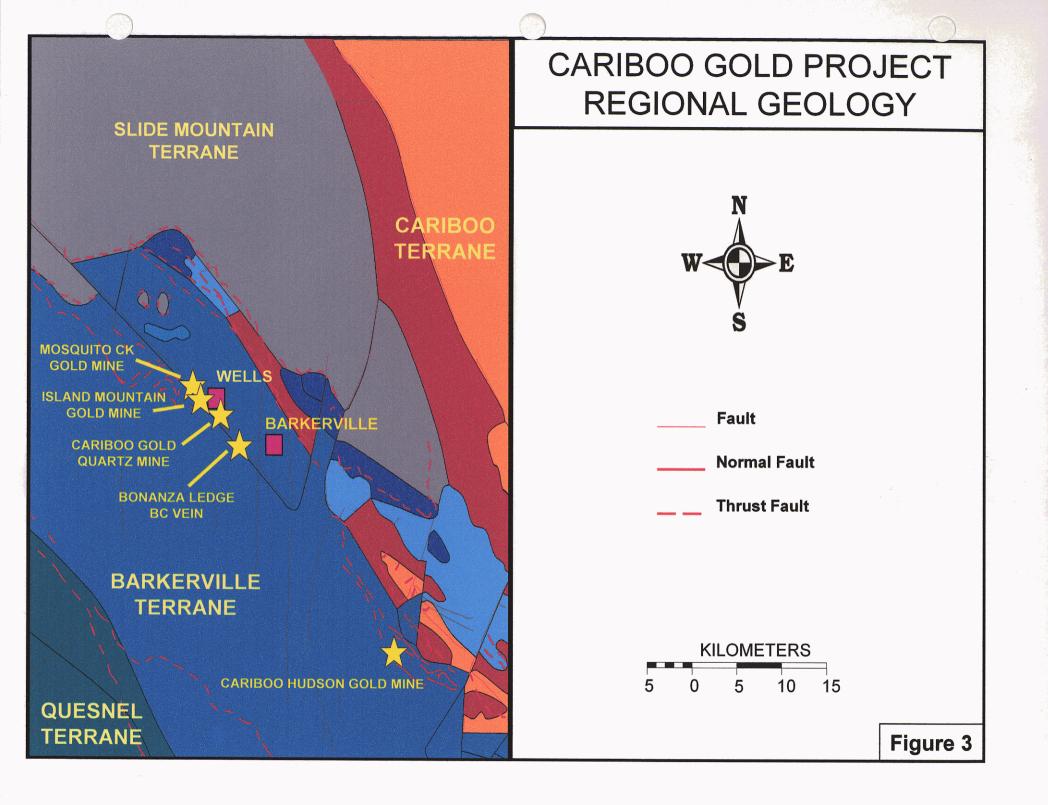
The climate consists of cool summers and cold winters due to the moderately high altitude of the Wells area. The climate is wet throughout the year, with a mean annual precipitation of 100 cm that includes a significant amount of snow, especially at the higher elevations.

(2013) A second control of the second s second s Second se Second sec

5.0 **HISTORY** (Figure 2)

The Cariboo Gold Project of International Wayside Gold Mines Ltd. is situated within the Cariboo Gold Belt, a world-class producer of gold that has had a history of mining dating from the Cariboo gold rush in the 1860's. The region is estimated to have produced 2.6 million ounces of placer gold.

The project area includes the past producing Cariboo Gold Quartz Mine, situated on the IWA group of crown grants, south of Jack of Clubs Lake, which produced 1.68 million tons grading 0.37 oz/ton Au from 1933 to 1959, primarily from quartz veins. Three past producing gold mines, the Island Mountain, Aurum and Mosquito Creek Gold Mines, are located on the 63 IGM and Mosquito Groups of crown-granted mineral claims, north of Jack of Clubs Lake under option to Island Mountain Gold Mines Ltd. The Island Mountain/Aurum Mines (1934-1967) and the Mosquito Creek Gold Mine (1980-1983) produced 603,800 ounces (18.8 tonnes) of gold from approximately 1.35 million tons (1.22 million tonnes) of ore (Hall, 1999) from quartz-type ore with an average grade of 0.35 ounces per ton (12.0 g/t) gold and pyrite-type ("replacement") ore with an average grade of 0.67 ounces per ton (23.0 g/t) gold.


The Bonanza Ledge Zone was discovered by International Wayside Gold Mines Ltd. in March of 2000 on the IWA group of crown-grants, about 3.5 km southeast of Wells on the southwestern flank of Barkerville Mountain. The Bonanza Ledge Zone contains significant gold grades associated with pyrite mineralization developed in a strongly dolomite-sericite-silica-pyrite altered turbidite sequence in the footwall of the B.C. Vein, a strike vein from which several pyritic ore shoots were historically mined from the Cariboo Gold Quartz workings. Production from the Cariboo Gold Quartz workings on Cow Mountain, 2 km northwest of the Bonanza Ledge Zone, was obtained from several zones including the No. 1, Tailings, Rainbow, Sanders and Pinkerton Zones.

Recent work in the project area has included geologic mapping, trenching, grid establishment, surface geophysics including magnetic, SP, VLF and IP surveys, soil geochemistry, surface and underground drilling. A decline was driven into the Bonanza Ledge deposit, to obtain a bulk sample and to conduct underground diamond drilling to further define the deposit. Efforts are underway to permit and develop a 70,000 tonne open pit mine on the Bonanza Ledge deposit.

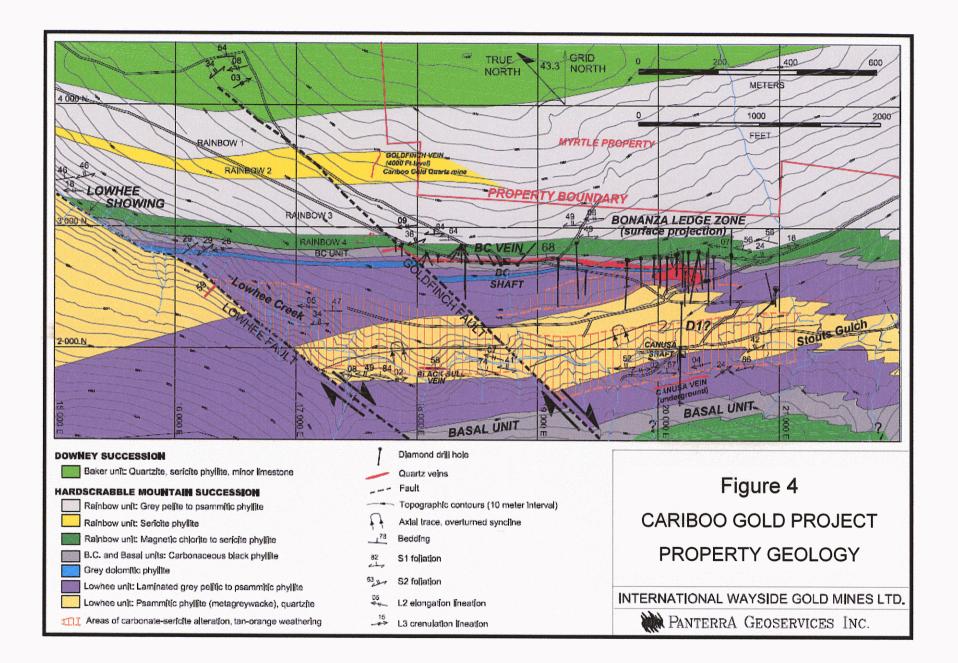
6.0 GEOLOGY

6.1 Regional (Figure 3)

The geology of the Cariboo gold mining district has been presented in reports and maps by Bowman (1889, 1895), Johnston and Uglow (1926), Hanson (1935), Sutherland Brown (1957), Struik (1988) and Levson and Giles (1993). The following geological description references directions relative to true north. Project work descriptions, beginning with section 7.0 reference Mine Grid, which is defined at the start of that section.

The Cariboo Gold Project lies within the Kootenay (Barkerville) Terrane, part of the Omineca Belt of the Canadian Cordillera (cf. Struik, 1986; 1988) The Barkerville Terrane consists of a Late Proterozoic and Paleozoic sequence of continental shelf and slope deposits developed adjacent to the craton of Ancestral North America and includes clastic sedimentary rocks along with lesser amounts of volcanic rocks and carbonates. It is structurally the lowest exposed stratigraphic sequence in the area and is more deformed and metamorphosed than adjacent terrains.

Rocks of the Snowshoe Group in the Wells area have been metamorphosed to lower greenschist facies, generally of lower metamorphic grade than other sequences in the Barkerville Terrane.


Rocks of the Barkerville Terrane were subjected to an early period of ductile deformation that resulted in westward directed, asymmetrical folds plunging shallowly to the northwest. Post metamorphic open folds with upright cleavage are superimposed on earlier structures. During Late Cretaceous to Early Tertiary time, the terrane was disrupted by northwest trending dextral strike-slip faults such as the Willow Fault, a major strike slip fault of unknown displacement that has been mapped through Mount Tom, Island Mountain, Cow Mountain and Richfield Mountain in the Wells area (Struik, 1988). Northwest and north-trending faults, with an important normal component and generally apparent right lateral displacements, record extension, probably associated with transcurrent movement. The north striking cross faults are an important control for the gold vein mineralization at Wells (cf. Hall, 1999).

Stratigraphic position, host rock lithologies and proximity to north-striking fault zones are important guides to the three styles of gold mineralization recognized in the Wells area. The mineralization is stratabound in that each style is confined for the most part to a particular section of the local stratigraphy. Historical production has been from mesothermal pyrite-bearing quartz vein systems that cut siliceous turbiditic rocks and from semi-massive to massive pyrite bodies that occur in carbonate-rich rocks structurally higher but stratigraphically lower in the sequence.

6.2 Property (Figure 4)

The Cariboo Gold Project of International Wayside Gold Mines Ltd. is underlain by a northwest striking, moderately northeast dipping sequence of rocks on the steep, overturned limb of a southwest-verging antiform, which, in turn, is on the northeast flank of the Island Mountain Anticlinorium of Sutherland Brown (1957). Symmetry in the stratigraphy and local variations in stratigraphic tops noted in drill core suggest that the sequence has been internally folded and is not a simple overturned monoclinal sequence (Hall, personal communication).

Stratigraphic nomenclature for the sequence of rocks at the Island Mountain/Aurum, Mosquito and Cariboo Gold Quartz Mines has been modified several times. Hanson (1935) included the sequence in two members, a structurally upper carbonate-dominated

()

sequence of lighter coloured rocks comprising the "Baker Member" and a lower sequence of darker coloured siliceous metaturbidite rocks he called the "Rainbow Member" or Rainbow quartzite. Sutherland Brown (1957) included the Baker Member and structurally upper portion of the Rainbow Member in the Snowshoe Formation, which, in turn, was subsequently included in the Downey Succession of Struik (1988). Structurally lower portions of the Rainbow Member were included in the Midas Formation of Sutherland Brown (1957) and subsequently in the Hardscrabble Mountain Succession of Struik (1988).

The current project area is underlain by the Baker, Rainbow, BC and Lowhee Units, (Rhys and Ross, 2000 – Figure 4). The Barkerville, Baker and upper Rainbow Units are part of Struik's Downey succession and the lower Rainbow, BC and Lowhee Units, comprise part of the Hardscrabble Mountain Succession. It should be noted that the Rainbow Member of Hanson includes the Rainbow and BC Unit of Rhys and the BC Unit does not correspond to the BC or Basal Argillite Member of Hanson. The Basal Argillite has been intersected in drilling in the Bonanza Ledge area and is generally considered as a marker that the prospective stratigraphy lies structurally higher in the sequence (Pautler, 2004).

6.3 Mineralization

The Bonanza Ledge Zone, of International Wayside Gold Mines Ltd., discovered in March of 2000, is located about 3.5 km southeast of the town of Wells. Gold mineralization occurs in discrete areas of massive, banded and stringer pyrite developed in a strongly dolomite-sericite-silica-pyrite altered turbidite sequence comprised of lower greenschist metamorphosed calcareous argillite, siltstone and sandstone of the Rainbow Member. The rocks are commonly highly sheared, with zones being mylonitized.

The host stratigraphy is structurally lower but stratigraphically higher than the siliceous turbiditic rocks hosting the mesothermal pyrite-bearing quartz veins and the pyrite-rich replacement mineralization that occur at the Cariboo Gold Quartz, Island Mountain Gold /Aurum and Mosquito Creek Gold Mines. According to Rhys (2001), mineralization style, timing and associated alteration at Bonanza Ledge is broadly comparable to pyritic replacement style mineralization that was historically mined in the district, although the host rock differs, and the size of the Bonanza Ledge mineralized bodies is greater.

The Bonanza Ledge Zone, with grades ranging from 1 to >80 g/t Au, occurs in the footwall of the B.C. Vein, a strike vein from which several pyritic ore shoots were historically mined from the Cariboo Gold Quartz workings.

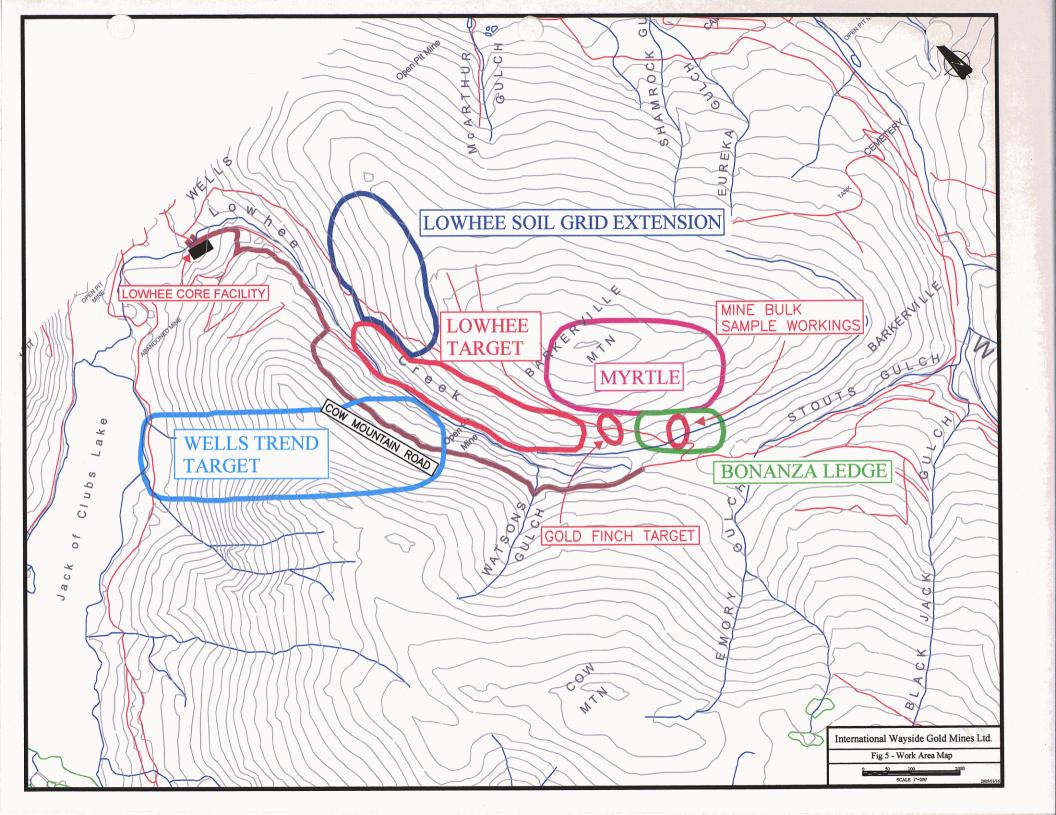
A magnetite porphyroblastic unit occurs in the structural hanging wall of the BC Vein. The magnetite porphyroblastic unit appears to be a key alteration indicator within a marker horizon above the Bonanza Ledge Zone.

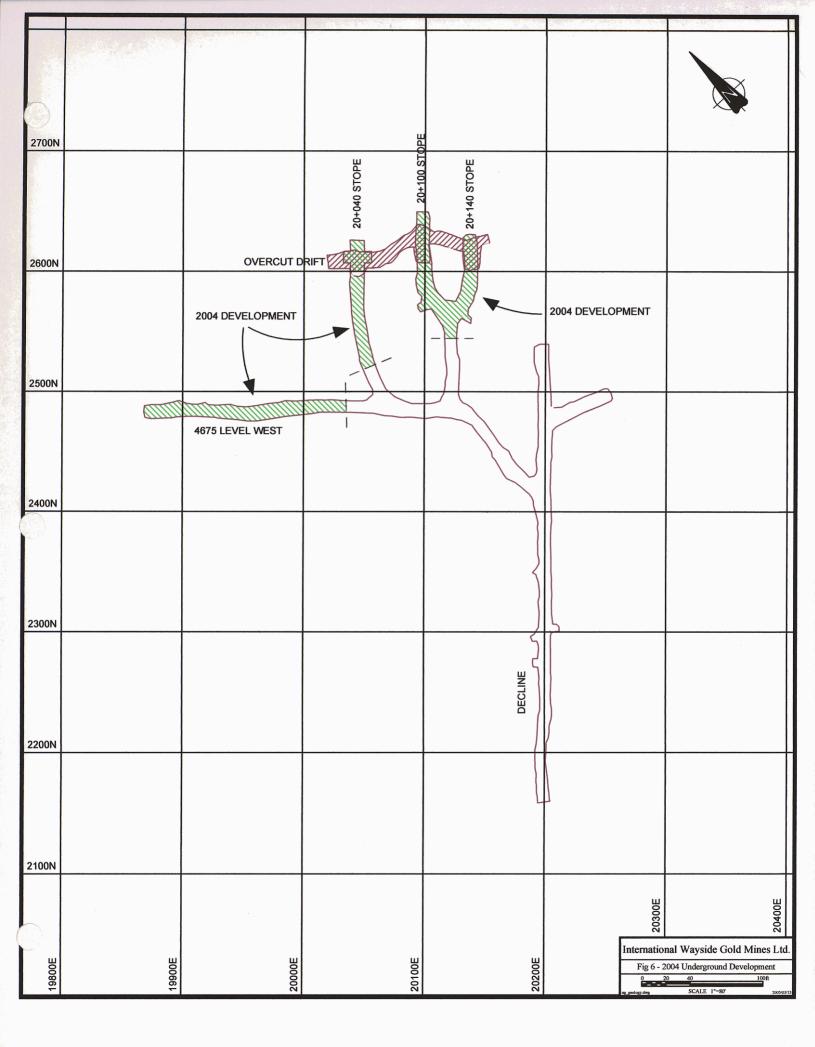
The Bonanza Ledge Zone occurs proximal to the northerly trending Goldfinch Fault. Ore shoots within the gold-bearing veins at the Cariboo Gold Quartz Mine were commonly

restricted to within 50m from major northerly trending faults and some projected into contemporaneous elongate replacement bodies (Kocsis, 2001). Northerly trending silicified zones and quartz veins exposed at Bonanza Ledge appear to have strong control on the distribution of gold.

The presence of mauve-colored alteration, an assemblage of sericite and albite, appears to represent a distal alteration to the Bonanza Ledge Zone and generally does not carry gold. The presence of pyrrhotite, which does not carry gold in the Bonanza Ledge area, may also represent distal mineralization to the Bonanza Ledge Zone (Rhys and Ross, 2000).

7.0 2004 WORK PROGRAM SUMMARY (Figure 5)


The 2004 work program on the Cariboo Gold Project of International Wayside Gold Mines Ltd. involved both mine development and exploration activities, with most of the work focused on the Bonanza Ledge deposit. Project work is done using imperial units for distance, to maintain consistency with the extensive historical database. Also, all project work is tied to the Mine Grid, where north on the Mine Grid equals 43 degrees east of True North. For the remainder of this report, directional references regarding project activities and azimuths of drill holes will be to mine grid.


The Bonanza Ledge deposit was core drilled from the surface and from underground, for a total of 52,242 feet (15,924m) in 161 holes, to complete the deposit definition. Three stopes were developed, from which approximately 13,000 tonnes of bulk sample were produced and trucked to the Mt Polley mill, owned by Imperial Resources, and subsequently processed. Three large trenches were excavated above the Bonanza Ledge ore zone, totalling 180 feet (55 meters), to define the top of the ore body and provide metallurgical samples of the oxide mineralization. Condemnation drilling was completed in the footprint area of the proposed waste dump. Engineering core holes were drilled along the margin of the projected pit wall. Two groundwater monitoring wells were completed, totalling 394 feet. Modelling was conducted for both the mineralization resource and for ML/ARD. Biologic and hydrologic studies were also carried out, together with environmental remediation efforts. A prospectus for the proposed 70,000 tonne mine plan was submitted to the Ministry of Energy and Mines.

Other project work included the expansion of the core processing and storage facilities, and the upgrading of the access road on the east side of Cow Mountain, along the west side of the Lowhee Creek canyon. A statement of expenditures is located in Appendix III, and a statement of qualification is in Appendix IV.

7.1 UNDERGROUND DEVELOPMENT (Figure 6)

The year began with the continuation of the underground development begun in late October of 2003. By the end of 2003, the decline portion of the workings had been completed. In January of 2004, 175 meters of access drifting was completed. This was followed by raising 15 meters and the driving of an overcut drift in the ore body. Three

stopes were developed, with approximate dimensions of 7 meters diameter and a height of 12 meters. Approximately 13,000 tonnes of ore was trammed to the surface, and trucked to the Mount Polley mill (Appendix V). Trucking was completed on July 30.

Several drilling stations were developed, for deposit definition drilling.

7.2 SURFACE DEVELOPMENT (Figure 5)

7.2.1 Cow Mountain Road

The access road on the east side of Cow Mountain, along the west side of Lowhee Creek drainage, was improved by widening, ditching, installation of culverts and capping with rock, over a distance of 4,450 meters (14,600 feet).

7.2.2 Lowhee Core Processing Facility

Several improvements were made to the Lowhee core processing facility. Covered core racks were constructed, capable of holding 3,870 NQ or BQ size wooden core boxes. At 20 feet of core per box, the new storage capacity is approximately 77,400 feet (23,592 meters) of core. An extension was built onto the core logging shed, to double the available work space. A second core sawing shed was constructed and equipped. Also, a sample shipping work area with benches was created.

7.3 2004 EXPLORATION WORK (Figure 5)

Exploration activities included trenching at Bonanza Ledge, geologic mapping of the Wells Trend and Lowhee Targets, extending the soil grid over the lower Lowhee area, channel sampling along road exposures on Cow Mountain, and drilling in the Myrtle and Goldfinch Target areas.

- **8.0 TRENCHING** (Figure 5)
- 8.1 Bonanza Ledge (Figure 7)

8.1.1 Procedure

A Samsung 300 excavator was used to dig three trenches, totalling 55 meters (180 feet) length, to provide metallurgical and ore zone data for oxidized mineralization at the bedrock surface. The trenches ranged from 18 to 37 feet wide at the toe and were from 15 to 20 feet deep. Two of the trenches were on either side of a stope collapse crater, which was used to store much of the overburden.

The contact between the overburden toe and the bedrock was surveyed with a theodolite, as was the crest, which provided elevation data for the bedrock surface, and overburden thickness. After the overburden was scraped off, channel samples were cut using a pick

and shovel. The channel sample lines were 10 feet apart, with samples collected every 3 feet along the lines. Since metallurgical tests were anticipated, sample volumes averaged one half of a five gallon bucket. Concurrent with the sampling, the geology of the bedrock surface was mapped. Photographs were taken of the operations. See Figure 8.

A total of 148 samples were collected from the trenches and sent to Eco Tech Laboratory Ltd., in Kamloops, B. C., for 28-element ICP geochemistry, plus gold by fire assay with atomic absorption finish.

The trenches were left open, but fenced, pending anticipated mining.

Figure 8. Trench sampling at Bonanza Ledge.

8.1.2 Results

The trenching was highly successful in defining the top of portions of the gold deposit, and in showing that the high grades encountered in the drilling, continue to the bedrock surface. The following summarizes the results, while detailed descriptions are found in Appendix VI.

Trench 1 – Northeast side of the stope collapse 9 ft @ 11.0 g/t in channel closest to collapse 3 ft @ 23.8 g/t in channel 10 feet east of the first channel

Most of trench one was north of the main mineralization trend, and exposed mauve to tan colored phyllite. In its southern part, strongly sericite altered phyllite carried good gold grades.

Trench 1-South – East and southeast of the stope collapse 30 ft @ 26.8 g/t in channel closest to the collapse 15 ft @ 18.3 g/t in channel 10 feet east of the first channel

Prominent features in the south extension of the first trench include the east-west trending graphitic Footwall Fault and associated quartz vein near the south end, and a northwest trending zone of strong limonite and silicification which probably is a fault zone. Gold grades were the strongest and most continuous in the northwest silicified zone and extending south to the Footwall Fault.

Trench 2 – Southwest of the stope collapse

9 ft @ 97.4 g/t in channel closest to the stope collapse
15 ft @ 26.7 g/t in channel 10 feet to the west of the first channel
6 ft @ 19.6 g/t in channel 20 feet to the west of the first channel
9 ft @ 7.1 g/t also in the channel 20 feet to the west of the first channel

The second trench exposed the strongly graphitic Footwall Fault and vein near its southern end. Immediately north of this fault, the phyllite is bleached white, shows extreme sericite alteration, and returned very strong gold grades, up to 146 g/t.

Trench 3 – Centered approximately 150 feet east of the stope collapse 6 ft @ 11.3 g/t in channel just west of the center of the trench Several scattered samples between 1 g/t and 5 g/t

The third trench exposes an area of transition, from weak gold mineralization to the immediate west, and strong gold to the east. Near the middle of the trench, a northerly trending zone of quartz was encountered, suggesting that a northerly fault is controlling the mineralization. There was also a graphitic quartz vein in the southwest corner of the trench, which might be an offset extension of the Footwall Fault.

8.2 Cow Mountain (Figure 5)

8.2.1 Procedure

During access road improvements, a Hyundi Robex LC 130 excavator was used to deepen drainage ditches along the Cow Mountain Road. While not technically trenches, they served the purpose of exploration trenches, exposing several areas of alteration on the northeast side of Cow Mountain. Within these ditches, channel samples were cut, with both 5 foot and 10 foot sample lengths.

8.2.2 Results (Figure 9)

A 600 foot zone of clay alteration and limonite (Figure 9), which lies within the Wells Trend zone of anomalous gold in soil and sericite-carbonate alteration, yielded several anomalous gold assays, with a high value of 6.28 g/t. Several other samples averaged about 0.5 g/t gold.

A 260 foot zone of clay altered phyllite and limonite was sampled further along the road to the east (Figure 9). Only two samples returned weakly anomalous gold. Near the east end of the road, just before it turns downhill (Figure 10), channel samples were cut in strongly limonitic phyllite. Three samples contained anomalous gold, with a high of 2.44 g/t. Appendix VII.

9.0 Geological Mapping

9.1 Procedure

Geologic mapping was conducted using topographic base maps, and utilizing GPS where possible to determine locations. Some detailed mapping was also tied into the soil sample grid stakes. Trench mapping at Bonanza Ledge was tied in by theodolite to the mine grid survey network. Mapping was conducted in the Bonanza Ledge decline and drifts, and was tied into the mine survey control.

9.2 Results

Surface geologic mapping is shown in Figures 7, 9, and 10, in the back pocket. Underground geologic mapping is shown in Figures 11, 12, and 13, in the back pocket.

10.0 Geochemistry Sampling

10.1 Soil Geochemistry

10.1.1 Procedure

The existing soil grid, based on the mine grid, showed an open-ended gold anomaly along the north side. Also, wide-spaced (750 feet) reconnaissance-style soil lines showed scattered strongly anomalous gold. The grid was extended to the north by 3,000 feet, covering a width of 1,200 feet. The lines run north-south on the mine grid, are spaced 200 feet apart, and have a sample spacing of 50 feet. A total of 480 samples were collected, with the B horizon being targeted. The samples were analyzed by Eco Tech Laboratory Ltd., in Kamloops, B. C., for 28-element ICP geochemistry, plus gold by fire assay with atomic absorption finish. The lab conducted repeat analyses of sample pulps and rejects for quality control. Lab procedures and results are outlined in Appendix VIII.

10.1.2 Lower Lowhee Results (Figures 14-A and 14-B)

The zone of anomalous gold extends nearly the entire length of the new grid, and has a pronounced northwest trend. The northwest portion of the anomaly is somewhat broken. Several areas returned gold in the 100's of ppb Au, with the high value being 720 ppb Au. The results are located in Appendix IX.

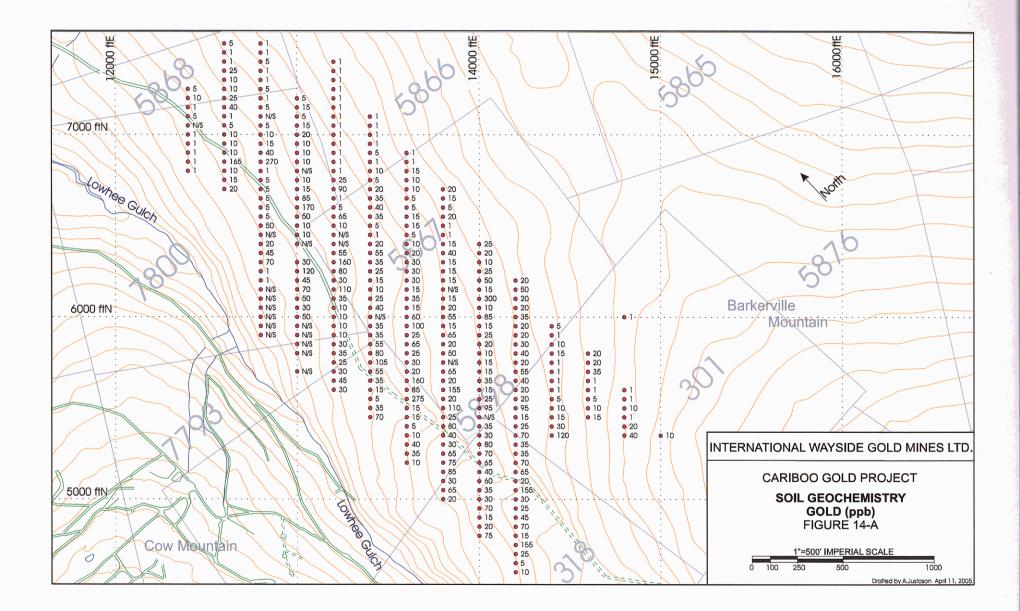
10.2 Rock Geochemistry

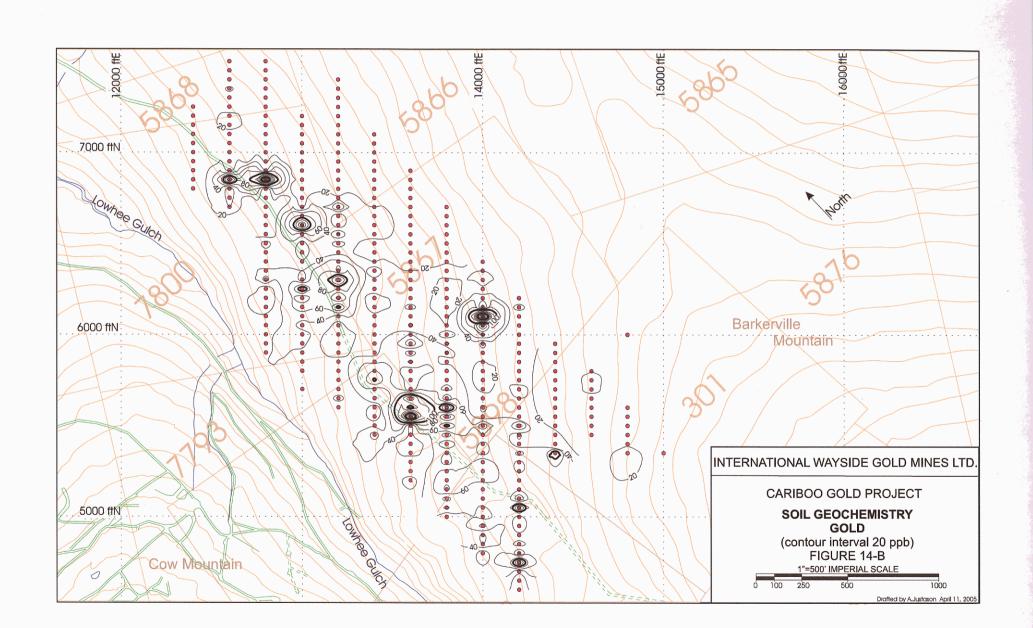
10.2.1 Procedure

Samples weighing approximately 2 kilograms were collected in the course of geologic mapping, and analyzed by Eco Tech Laboratory Ltd., in Kamloops, B. C., for 28-element ICP geochemistry, plus gold by fire assay with atomic absorption finish. The lab conducted repeat analyses of sample pulps and rejects for quality control. Lab procedures and results are outlined in Appendix VIII.

10.2.2 Results

The results are shown on Figures 7, 9 and 10, and included in Appendix X. Several rock samples along the Cow Mountain Road contained very anomalous gold, up to 6.28 g/t.


11.0 DIAMOND DRILLING


During 2004, diamond core drilling for the combined IWA Group of claims and the IGM Group of claims totalled 18,471 meters (60,598 feet), and is subdivided as follows:

Bonanza Ledge - Total	15,924 meters	52,242 feet
IGM Property	859 meters	2,818 feet
Myrtle Property	861 meters	2,826 feet
Goldfinch Target	827 meters	2,712 feet
Total Diamond Drilling:	18,471 meters	60,598 feet

Drilling on the IGM claims totalled 859 meters (2,818 feet), and is described in the IGM Report in Part B of this report.

Drilling on the IWA Group of claims totalled 17,612 meters (57,780 feet), and includes 861 meters (2,826 feet) on the Myrtle Property, which is described in a separate report in Part C of this report.

The bulk of the IWA diamond drilling was on the Bonanza Ledge deposit, and is subdivided as follows:

Bonanza Ledge – Surface	7,788 meters	25,551 feet
Bonanza Ledge – Underground	6,236 meters	20,459 feet
Bonanza Ledge - Engineering (surface)	1,900 meters	6,232 feet
Bonanza Ledge Total:	15,924 meters	52,242 feet

11.1 Surface Drilling

11.1.1 Procedure

Drilling was carried out between January 4 and December 20, 2004 by three surface drills, owned by three separate companies. Standard Drilling and Engineering Ltd. of Vancouver, British Columbia, used a skid-mounted Longyear 38 core drill with NQ wireline tools and Hardrock Diamond Drilling Ltd, of Naramata, British Columbia, used a skid-mounted Val d'Or core drill with NQ wireline tools. FB Diamond Drilling Ltd., of Cranbrook, British Columbia used a skid-mounted core drill with NQ wireline tools.

Drill core was delivered to a secure core logging compound along Lowhee Creek in Wells (Lowhee Core Shack) for logging and sampling. A total of 6,340 samples of core were sawn in half on site and sent to Eco Tech Laboratory Ltd., of Kamloops, British Columbia. All samples were analyzed for gold, by fire assay with an atomic absorption finish. The lab inserted standards and conducted repeat analyses of sample pulps and rejects. Lab procedures and results are outlined in Appendix VIII.

In addition, sludge samples (drill cuttings) were collected in porous bags by the driller at the drill site in 10 foot (3 m) intervals labeled and delivered to the core logging facility near Wells where they were dried and packaged in waterproof plastic buckets for shipping. The sludge samples were assayed for use as an indicator of the presence of gold in the rock being drilled, including soft gouged material that may not be recovered in the core. The sludge sample assay results were also used as one of the guidelines for sampling of the core for analysis. The sludge sample results are a guideline only and must not be considered as being a reliable indicator of the gold grade over the interval from which the sample was collected. The sludge samples were assayed using fire assay and atomic absorption finish.

Drill hole specifications are summarized in Table 1 and drill hole locations are shown on Figure 15-A. Drill logs are included in Appendix XI, along with summary sheets and assay certificates. Vertical sections showing geology and gold results are shown in Figures 16 through 47, located at the back of the report. The Section numbers correspond to the Mine Grid Easting, which utilizes Imperial measurements (in feet). The core is stored on site at the Lowhee Core Compound in Wells.

Table 1 Surface Drill Results (all results as weighted averages). North (ft) East (ft) Elev. Az. Dip Depth From To Width Width oz/t g/t												
DDH	(mine) *	cast (π) (mine) *	(ft)	AZ. (mine) *	- nib	(ft)	(ft)	(ft)		Width	oz/t	g/t
BC-04-1	2484.29	20618.46	4761.95	· · · ·	-44	437			(ft)	(m)	Au	Au
BC-04-1 BC-04-2				1						ant results		<u> </u>
	1482.87	20558.98	4766.67	1	-45	456			lo significa		- ·	<u> </u>
BC-04-3	2481.31	20499.20	4769.83	0	-45	456	396.0	406.0	10.0	3.0	0.40	13.70
BC-04-4	2481.91	20440.17	4772.33	359	-45	_ 465			lo significa			
BC-04-5	2477.29	20379.63	4779.73	0	-45	436	133.3	139.3	6.0	1.8	0.08	2.88
······							411.0	421.0	10.0	3.0	0.18	6.27
BC-04-6	2481.58	20319.79	4782.65	0	-45	445	<u>156</u> .0	213.0	57.0	17.4	0.23	8.03
							416.0	425.0	9.0	2.7	0.06	2.21
							151.0	201.0	<u>5</u> 0.0	15.2	0.54	18.53
BC-04-7	2481.04	20260.48	4786.37	0	-45	466	231.0	<u>25</u> 1.0	20.0	6.1	0.04	1.41
00 04 1		20200.40	4100.01			-00	276.0	316.0	40.0	12.2	0.03	1.25
<i></i>							441.0	451.0	10.0	3.0	0.17	5.81
BC-04-8	2388.40	20259.75	4770.04	250	45	700	226.0	271.0	45.0	13.7	0.10	3.44
DC-04-0	2300.40	20259.75	4773.81	359	-45	700	696.0	700.0	4.0	1.2	0.04	1.44
BC-04-9	2388.31	20499.68	4755.01	357	-44	255	135.7	139.7	4.0	1.2	0.04	1.22
							82.4	85.7	3.3	1.0	0.25	8.61
BC-04-10	2383	20320	4768	359	-45	696	228.1	340.1	112.0	34.1	0.10	3.44
BC-04-11	2380	20320	4770	359	-57	517	362.8	372.0	9.2	2,8	0.05	
BC-04-12	2378	20320	4771	358	-76	735	002.0				0.03	1.89
BC-04-12 BC-04-13	2379	20320	4770	359		495			lo significa			
DC-04-10	2319	20320	4770	309	-66	490	477.0		lo significa			
BC-04-14	2806	20350	4842	182	-46	557	177.0	187.0	10.0	<u>3.0</u>	0.06	2.23
DU-04-14]						267.0	374,4	107.4	32.7	0.14	4.67
000115	0.00		Including				334.2	342.4	8.2	<u>2.5</u>	0.48	16.60
BC-04-15	2491	20407	4776	3	46	486		N	o significa			-
BC-04-16	2811	20299	4845	156	-55	528	341.8	390.0	48.2	14.7	0.16	5.45
BC-04-17	2490	20406	4776	3	-62	<u> 306 </u>			o significa	ant results		
BC-04-18	2489	20408	4775	3	-76	366	171.7	18 <u>1</u> .0	9.3	2.8	0.08	2.80
BC-04-19	2611	19697	4788	319	84	979		. N	o significa	int results		
BC-04-20	2811	20299	4845	156	-84	1015			o significa			
BC-04-21	2479	20291	4784	1	-44	506	150.3	225.2	74.9	22.8	0.35	12.06
BC-04-22	2611	19697	4789	360	-65	679	351.2	359.0	7.8	2.4	0.05	1.59
DC 04 33	2628	20263	4814	180	-80	360	109.7	251.0	141.3	43.1	0.40	13.65
BC-04-23	`	4	Including	· · · · · · · · · · · · · · · · · · ·			117.0	137.0	20.0	6.1	1.09	37.25
BC-04-24	2605	19700	4788	0	-45	280			o significa			01.20
BC-04-25	2475	20290	4783	180	-78	408	292.2	298.5	6.3	1.9	0.04	1.51
BC-04-26	2611	19697	4789	0	-65	600	232.2		o significa		0.04	_1.51
					03		77.0	117.0			0.74	07.40
BC-04-27	2628	20263	4814	179	-72	407			40.0	12.2	0.74	25.43
BC-04-28	2628	20263	4014	470		0.57	175.0	237.0	62.0	18.9	0.06	2.15
			4814	179	-50	257	37.0	62.8	25.8	7.9	0.03	1.15
BC-04-29	2660	19400	4921		-90	269				efore targe		
BC-04-30	2616	20264	4815	0	-75	330				efore targe		
BC-04-31	2490	20360	4775	355	45	446	130.2	203.3	73.1	22.3	0.16	5.59
BC-04-32	2624	20241	4914	269	-45	126			o significa	nt results		
BC-04-33	2616	20264	4815	0	-76	1027	185.9	248.3	72.4	22.1	0.04	1.45
BC-04-34	2558	19961	4818	57	-45	117	69.4	117.0	47.6	14.5	0.32	10.93
BC-04-35	2490	20202	4789	21	-62	112		Aba		efore targe		
BC-04-36	2490	20202	4789	21	-55	479	153.0	238.0	85.0	25.9	0.11	3.87
BC-04-37	2616	20264	4815	0	-45	257			o significa			0.07
BC-04-38	2628	20252	4814	103	-58	467	115.8	177.0	61.2	18.7	0.17	5.96
							167.0	182.0	15.0		0.17	
BC-04-39	2624	20251	4816	129	-58	487 -	232.5	247.0		4.6		2.36
									14.5	4.4	0.08	2.60
BC-04-40	2625	20253	4813	114	-57	507	157.0	196.5	39.5	12.0	0.34	11.73
	2625	20252	- 1044		- <u></u>		221.0	296.0	75.0	22.9	0.19	<u>6.46</u>
BC-04-41	2625	20253	1814	116	-46	391	78.2	147.0	68.8	21.0	0.20	6.76
			Including				101.4	117.0	15.6	4.8	0.64	21.99
BC-04-42	2629	20255	4813	86	-65	497		N	o significa	nt results		
BC-04-43	2621	20254	4813	1	-65	319	81.0	87.0	6.0	1.8	0.31	10.70
BC-04-44	2621	20251	4815	337	-67	717	192.0	215.7	23.7	7.2	0.13	4.60

DDU	North (ft)	East (ft)	Elev.	Az.	Dip	Depth	hted a	To	Width	Width	oz/t	g/t
DDH	(mine) *	(mine) *	(ft)	(mine) *		(ft)	(ft)	(ft)	(ft)	(m)	Au	Au
BC-04-45	2621	20251	4815	336	-57	387	157.0	180.4	23.4	7.1	0.12	3.94
	2619	20249	4814	314	-60	565	22.0	117.0	95.0	29.0	0.40	13.83
BC-04-46			Including	;;	•		22.0	57.0	35.0	10.7	1.00	34.14
00-04-40							146.5	181.6	35.1	10.7	0.93	31.76
							327.0	367.0	40.0	12.2	0.10	3.52
BC-04-47	2619	20249	4813	312	-54	377	27.0	67.0	40.0	12.2	0.13	4.59
							254.3	327.0	71.7	21.9	0.10	4.84
BC-04-48	2622	20254	<u>4</u> 814	223	-65	284	37.0	52.0	15.0	4.6	0.91	31.17
							197.0	217.0	20.0	6.1	0.08	2.82
BC-04-49	2490	20478	4771	297	-44	476	198.3	347.0	148.7	45.3	0,15	5.28
BC-04-50	2500	20702	4756	64	-46	517		N	lo significa	int results		
BC-04-51	2601	20417	4797	180	-45	207			o significa	int results		
BC-04-52	2604	20417	4799	175	-81	367	207.0	217.0	10.0	3.0	0.05	1.77
BC-04-53	2604	20416	4798	0	-70	167		N	o significa	int results		
BC-04-54	2608	20338	4808	329	-52	150			o significa			
BC-04-55	2609	20340	4813	325	-88	147		N	o significa	int results		
BC-04-56	2604	20416	4798	180	-88	387	122.8	237.0	114.2	34.8	0.08	2.89
BC-04-57	2609	20340	4813	325	-88	147	87.0	297.0	210.0	64.0	0.18	6.31
		·	Including				107.5	197.0	89.5	27.3	0.34	11.76
BC-04-58	2612	20340	4811	182	-68	177		N	o significa	nt results		J
BC-04-59	2607	20340	4811	3	-45	150	97.7	104.2	6.5	2.0	0.24	8.33
BC-04-60	2610	20340	4811	_7	-71	207		N	o significa			
BC-04-61	2599	19398	4873	183	45 [307			o significa			
BC-04-62	2604	19397	4873	278	-89	257			o significa			
BC-04-63	2617	19399	4876	359	-44	237			o significa			
BC-04-64	2619	19198	4887	182	-45	297			o significa			
BC-04-65	2614	19201	4886	182	-90	267			o significa			
BC-04-66	2608	19204	4886	4	-44	247			o significa			
BC-04-67	2588	18990	4888	181	-45	317			o significa			
BC-04-68	2592	18990	4888	287	-89	277			o significa			
							187.0	197.7	10.7	3.3	0.87	29.90
BC-04-69	2596	18987	4888	1	-42	397	314.9	326.0	11.1	3.4	0.03	1.15
						L L	375.5	379.0	3.5	1.1	0.06	2.09
							156.2	161.0	4.8	1.5	0.13	4.54
BC-04-70	3092	19371	5003	226	-46	647	304.0	312.0	8.0	2.4	0.13	4.54
						ŗ	486.0	501.7	15.7	4.8	0.23	7.84
BC-04-71	3419	19563	5077	240	-43	797			o significa		0.20	7.04
BC-04-78	2489	20479	4770	268	-44	366	•		o significa			
BC-04-79	2505	19976	4807	84	-43	241			o significa			
BC-04-80	3002	20125	4912	180	-44	496	471.0	496.0	25.0	7.6	0.2	6.8
BC-04-81	3004	20125	4912	180	-65	390			significa		0.2	0.0
BC-04-82	3007	19790	4946	125	-45	346			o significal			
BC-04-83	2983	20409	4881	217	-47	346			o significar			

11.1.2 Surface Drilling Results - Bonanza Ledge Deposit Definition (Figure 15-A)

A brief description of the drill holes follows, organized by location and purpose. A summary of results, calculated as weighted averages, is shown in Table 1.

Section 20+620E, DDH BC-04-1 (Figure 16)

DDH BC04-01 was collared on section 20+620E, on May 20, from the 2480N Road. It was drilled northward, as a large step-out to the east of the main part of the Bonanza Ledge deposit. It encountered not significant gold. Weak sericite alteration accompanied the gold, and mariposite was noted near the bottom.

Section 20+560E, DDH BC-04-2 (Figure 17)

DDH BC04-02 stepped back in toward the deposit by 60 feet, and was collared on the 20+560E section. The hole encountered only weak sericite alteration, with no significant gold, and terminated in the BC Vein.

Section 20+500E, DDH BC-04-3, 9 (Figure 18)

DDH BC04-03 stepped back to the west another 60 feet. It was collared on the 20+500 section, but ended up on section 20+520E. Most of the hole contained no significant gold, however, between 399 feet and 406 feet, a strong zone of replacement pyrite assayed 13.7 g/t gold, in the position of the Discovery Zone, just before the BC Vein. This intercept is open both above and below, and should be offset if looking for underground-mineable resources.

DDH BC04-09 stepped down from hole BC01-05, and encountered pyritic argillite, but no significant gold.

Section 20+440E, DDH BC-04-04, 15, 17,18, 51, 52, 53, 54, 55 (Figure 19)

The fan of holes DDH BC-04-51 through 55 was drilled from the 2600N Road, but intersected no significant mineralization. DDH BC04-04 was drilled from the 2480N Road, and angled to the north. Zones of 5-20% pyrite were cut, but the hole contained no significant gold. Holes DDH BC-04-15, 17 and 18 were drilled from the 2480N Road, and angle onto this section from the west. Holes 17 and 18 both intersected minor zones of 1 to 3 g/t gold.

Section 20+400E, DDH BC-04-15, 17, 18 (Figure 20)

Holes BC04-15, 17 and 18 collared on this section, but pass off onto section 20+420E. While on this section, they are just south of the prospective zone, and contain no significant intercepts.

Section 20+380E, DDH BC-04-05, 16 (Figure 21)

Hole BC-04-05 collared on this section, but passes off onto section 20+360E. The upper part of the hole intersected 1.8 meters of 2.88 g/t gold, in a highly pyritic zone. In the lower part of the hole, on the adjacent section, 3.0 meters in the BC Vein assayed 6.27 g/t gold.

Hole BC-04-16 was collared on section 20+300E, but passes onto this section, where it cut 14.7 meters of 5.45 g/t gold in the East Lobe.

Section 20+360E, DDH BC-04-05, 31 (Figure 22)

Hole BC-04-31 collared on this section, and intersected 22.3 meters of 5.59 g/t gold in the East Lobe of the orebody, before passing off section to the west. Also, on this section, was the BC-04-05 intercept in the BC Vein, mentioned above.

Section 20+340E, DDH BC-04-14, 31, 56, 57, 58, 59, 60 (Figure 23)

Hole BC-04-14 technically collared on section 20+360E, but nearly all of the hole is on this section. It encountered a small intercept of 3.0 meters of 2.23 g/t gold in the Discovery Zone, and then cut 32.7 meters of 4.67 g/t gold in the East Lobe.

Part of the intercept of hole BC-04-31, mentioned on the preceding section, also lies on this section.

The fan of holes, from BC-04-56 through 60, were collared on the 2600N Road, and drilled on section. Holes 56 and 57 both cut strong intercepts of East Lobe mineralization. BC-04-56 intersected 34.8 meters of 2.89 g/t gold, while BC-04-57 intersected 64.0 meters of 6.31 g/t gold. BC-04-58 offset hole 57 to the south, but found no significant mineralization. Hole BC-04-59 was drilled to the north, and apparently passed above all East Lobe mineralization. However, it did intersect 2.0 meters of 8.33 g/t gold in the Discovery Zone. Hole BC-04-60 split the difference between holes 56 and 59, but also passed above the East Lobe mineralization, encountering no significant gold.

Section 20+320E, DDH BC-04-06, 10, 11, 12, 13, 16, 20 (Figure 24)

Holes BC-04-06 and BC-04-10 through BC-04-13 comprise a fan of holes drilled across the East Lobe from the south. Hole 06 cut 17.4 meters grading 8.03 g/t gold in the East Lobe, and also cut 2.7 meters of 2.21 g/t gold in the BC Vein. Hole 10 stepped down approximately 100 feet, and intersected 34.1 meters of 3.44 g/t gold in the East Lobe. It also encountered 1.0 meters of 8.61 g/t gold in a graphitic fault zone, with pyrite. The hole also crossed the BC Fault Zone at depth, but there was only minor quartz where the BC Vein normally lies. Hole BC-04-11 stepped down again, but the mineralization dropped off considerably, only returning 2.8 meters of 1.89 g/t gold. Holes BC-04-12 and BC-04-13 were further step-downs, and neither returned significant gold mineralization. Hole BC-04-20 passes onto the section from the west, and is a deep test of the deposit, from the north (hanging wall) side. It found no significant mineralization.

Section 20+300E, DDH BC-04-16, 20, 21 (Figure 25)

BC-04-16 collared on this section, and was drilled to the southeast. The hole intersected significant gold mineralization, which is described on Section 20+380.

The upper part of BC-04-20 lies on this section, but contained no significant mineralization.

Hole BC-04-21 angled north from the 2480N Road, and cut 22.8 meters of 12.06 g/t gold in the East Lobe.

Section 20+280E, DDH BC-04-25 (Figure 26)

Hole BC-04-25 was angled south from the 2480N Road, and intersected 1.9 meters of 1.51 g/t gold in a quartz vein. The object of the hole is unknown, but possibly to check whether the ore zone folds back to the south at depth.

Section 20+260E, DDH BC-04-07, 08, 23, 27, 28, 30, 33, 37 (Figures 27-A & 27-B)

Holes BC-04-07 and 08 were drilled to the north from the 2480N Road and the 2380N Road, respectively, with hole 08 being a step-down from hole 07, which cut 15.2 meters of 18.53 g/t gold in the East Lobe. The hole also intersected 25 meters of scattered 1-2 g/t gold deeper in the hole, possibly in the position of the Discovery Zone. The hole also intersected 3.0 meters of 5.81 g/t gold in the BC Vein. Hole BC-04-08 cut 13.7 meters of 3.44 g/t gold in the East Lobe approximately 100 feet below the hole 07 intercept.

The fan of holes BC-04-23 through 27 further delineated the East Lobe, with holes 23 and 27 both cut strong mineralization. Hole 23 intersected 43.1 meters of 13.65 g/t gold and a lower zone of 6.1 meters of 37.25 g/t gold. Hole 37 cut 12.2 meters of 25.43 g/t gold and a lower zone of 18.9 meters of 2.15 g/t gold. Hole BC-04-28 contained only a minor intercept of 7.9 meters of 1.15 g/t gold, near the surface. BC-04-30 started out as a deep test, but was terminated for management reasons at about 100 meters. The hole was offset and redrilled by hole BC-04-33, which was taken to 313 meters. The hole intersected lengthy zones of 5% pyrite, and contained an intercept of 22.1 meters of 1.45 g/t gold. Hole BC-04-37 angled to the north, testing the BC Vein and fault zone, but found no significant mineralization. Hole BC-04-43 tested the Discovery Zone target, and intersected 1.8 meters of 10.70 g/t gold.

BC-04-32 and BC-04-34 Stope Probe Holes (Figures 15-A, 39 and 40)

Following the failure of the 20+100E stope, and its caving to the surface, holes BC-04-32 and BC-04-34 were drilled as probe holes into the two remaining stopes, to determine the lateral extent of any collapse. Both of these stopes appeared to be holding their integrity. Hole 32 contained no significant mineralization, but hole 34 returned 10.93 g/t gold over 14.5 meters.

BC-04-38, 39, 40, 41, 42 East Lobe – East Lobe - Longitudinal (Figures 15-A, 28 and 29)

Since most of the drilling had been done on a north-south grid, it was decided to drill longitudinal holes, from section 20+260E, along the apparent trend of the East Lobe. Hole BC-04-38 cut 18.7 meters of 5.96 g/t gold. Hole BC-04-39 was a 26 degree azimuth stepout, and intersected two small zones, 4.6 meters of 2.36 g/t gold and 4.4 meters of 2.60 g/t gold. Hole BC-04-40 split the difference in azimuth of the preceding two holes, and made substantial cuts of 12.0 meters of 11.73 g/t gold and 22.9 meters of 6.46 g/t gold. With the strong mineralization in hole 40, hole BC-04-41 was drilled as an offset closer to the surface. It cut 21.0 meters at 6.76 g/t gold. Hole BC-04-42 was drilled as a step-out to the north of hole 38, but contained no significant mineralization.

BC-04-44, 45, 46, 47 Discovery Zone - Longitudinal (Fig's. 15, 28,29,30-A & B and 31)

As a continuation of the effort to get longitudinal data, and to fill in some data gaps in the Discovery Zone, holes BC-04-44 through 47 were drilled to the northwest from section 20+260E. Hole BC-04-44 cut 7.2 meters of 4.6 g/t, followed by another intercept of 6.1 meters of 2.24 g/t gold. Hole BC-04-45 stepped down, and cut 7.1 meters of 3.94 g/t gold. Hole BC-04-46 was directed further to the northwest, and cut two strong zones of gold mineralization. The upper zone, from 6.7 meters to 35.7 meters in the hole, carried 13.83 g/t over 29.0 meters, and included abundant limonitic quartz vein. This included a 10.7 meter zone of 34.14 g/t gold. A deeper zone, from 44.7 meters to 55.4 meters, assayed 31.76 g/t over 10.7 meters. There was also a third zone further down the hole, which carried 3.52 g/t gold over 12.2 meters. Hole BC-04-47 stepped up from hole 46, and intersected 12.2 meters of 4.59 g/t gold, followed by a deeper intercept of 21.9 meters of 4.84 g/t gold.

BC-04-48 Main Zone – East Lobe Gap - Longitudinal (Figure 15-A)

Hole BC-04-48 was drilled as a longitudinal hole to the southwest from section 20+260E, to help understand the apparent gap in mineralization between the Main Zone and the East Lobe. The hole cut 4.6 meters near the surface, with silicification and quartz veinlets, that assayed 31.17 g/t gold. This likely correlates with the high grade zone near the top of hole 46, and indicates a northerly trending siliceous zone with high grade, that may be a feeder structure. Further down in the hole, 6.1 meters assayed 2.82 g/t gold.

BC-04-49 Longitudinal of SE Lobe (Figure 15-A)

Hole BC-04-49 was collared southeast of the East Lobe, and drilled to the northwest, back through the mineralized zone. It intersected 45.3 meters grading 5.28 g/t gold.

BC-04-50 Southeast Probe (Figure 15-A)

Hole BC-04-50 collared on section 20+700E and drilled at an azimuth of 64 degrees, for a longitudinal test to the east of the known mineralization. The hole penetrated alternating zones that were argillite-rich and quartzite-rich, but did not encounter significant mineralization. Some pyrrhotite and chalcopyrite were logged.

BC-04-35 and BC-04-36 East Lobe diagonal holes from 2,480N Road (Figure 15-A)

Hole BC-04-35 was collared on the 20+200E section, and drilled to the northeast, as a semi-longitudinal test of the East Lobe mineralization. The hole was lost in a fault zone, and BC-04-36 was offset to a more shallow dip, and continued to test the target. The hole encountered 25.9 meters of 3.87 g/t gold.

Section 19+700E, DDH BC-04-19, 22, 24 and 26 (Figure 47)

Holes BC-04-19, 22, 24 and 26 were drilled in a fan pattern, as a step out along trend to the west of the Bonanza Ledge deposit. The holes intersected no significant mineralization.

11.1.3 Waste Dump Condemnation (Figure 48)

11.1.3.1 Procedure

The lower part of the dump was condemned by fans of three core holes each, on three sections 200 feet apart, at 19+000E, 19+200E and 19+400E. Two core holes were also drilled higher on the mountain side, to condemn the upper part of the waste dump area. A total of 4,047 feet was drilled in 11 holes, with the entire length of each hole being assayed. On each of the three sections, a hole was drilled at -45 degrees south, vertical, and -45 degrees to the north.

11.1.3.2 Results

Section 19+400E, DDH BC-04-61, 62, 63 (Figure 49)

The three holes contained no significant mineralization.

Section 19+200E, DDH BC-04-64, 65, 66 (Figure 50)

The three holes contained no significant mineralization.

Section 19+000E, DDH BC-04-67, 68, 69 (Figure 51)

Holes BC-04-67 and BC-04-68 contained no significant mineralization. Hole BC-04-69 intersected 3.3m grading 29.9 g/t gold, in a pyritic zone in the BC Vein. While this is a substantial intercept, its depth below the surface of 41 meters (135 feet) precludes mining by open pit. It does, however, add to the resource in the BC Vein, which may be

economic to mine from underground. Hole 69 also contained two other small intercepts, much deeper in the hole.

Hole BC-04-70 (Figure 48)

Several pyritic quartz veins were intersected, which contained several g/t of gold, including a deep cut through the BC Vein, which assayed 10.6 g/t over 3.4 meters. This intercept was also to deep to consider mining from the surface.

Hole BC-04-71 (Figure 48)

This hole contained no significant mineralization.

The drilling was successful in condemning the ground for a waste dump.

11.1.4 Surface Drilling - Oriented Core Geotechnical Holes

11.1.4.1 Procedure (Figure 15-A)

Six holes were drilled to provide geotechnical data along the north and south proposed Bonanza Ledge pit walls (Figure 48). A total of 666m (2,185ft) of NQ core was drilled. Detailed information about fracture characteristics was recorded, including measuring the true orientation of the fracture in space. To determine the orientation, an off-center weighted tool was lowered down the hole after core runs, with a ball of plasticine in the end to make an impression of the next piece of core in the next run. This impression was then set aside until the next core run was brought out, and then the first piece was lined up with the impression in the plasticine, and the "top" line marked on the core. Back in the core shed, the core was oriented with respect to a large piece of grid paper, for azimuth and dip. A laser was then used to project the plane from the planar surface of the fracture to a line on the grid paper on the table top. A strike line was then drawn on the paper, and the azimuth measured. The data was converted to dip and dip direction, for plotting on a lower hemisphere stereo net.

After the geotechnical logging was complete, mineralized zones were cut with a diamond saw, sampled and assayed, as described in section 9.1.1.

11.1.4.2 Results - DDH BC-04-78, 79, 80, 81, 82 and 83

The geotechnical data has yet to be plotted, however, RQD data suggests a moderate to poor rock quality for the pit wall. A complete pit wall stability report will be prepared.

Hole BC-04-78, drilled on the southeast side of the proposed pit, encountered zones of pyrite mineralization, however, there were no significant intercepts.

18

Hole BC-04-79, drilled on the southwest side of the proposed pit, found no significant mineralization.

Hole BC-04-80, drilled in the centre of the north wall of the proposed pit, was drilled deep enough to penetrate the BC Vein and fault, and test the Discovery Zone in an area of insufficient drilling data. The hole returned an intercept of 7.6 meters of 6.8 g/t gold pyritic sericitic phyllite in the Discovery Zone. (Figure 34)

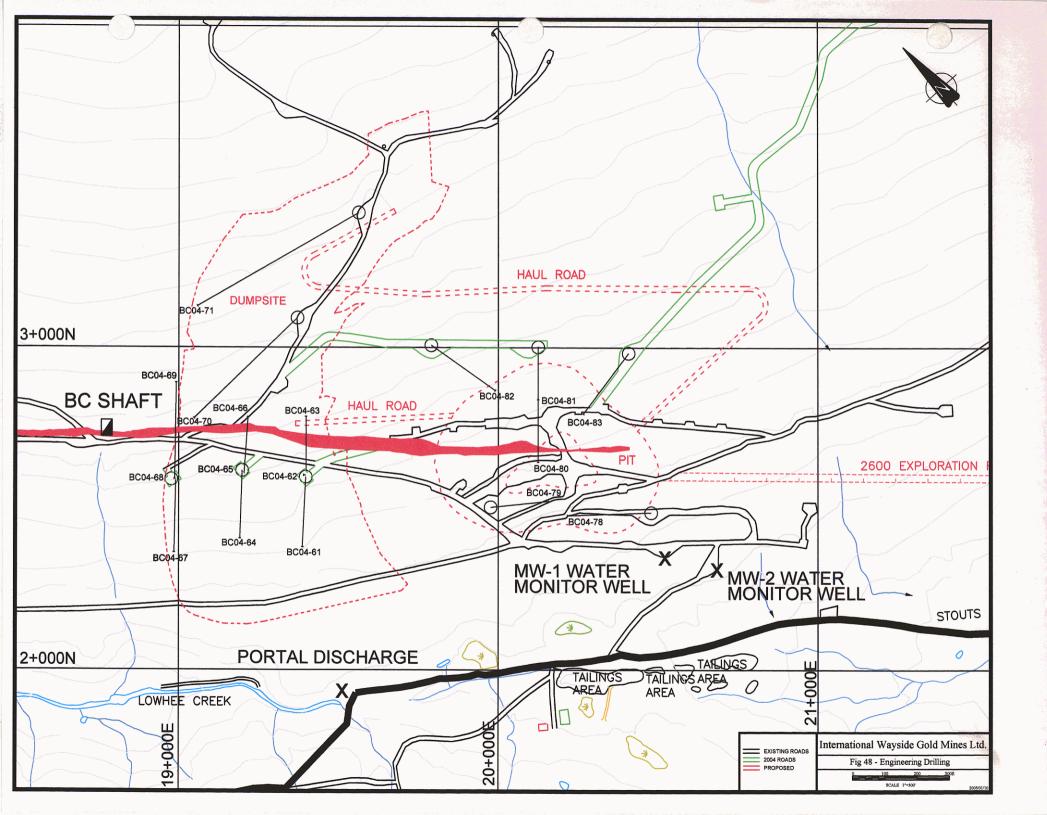
Holes BC-04-81 through 83 were drilled entirely within the hangingwall of the BC fault and vein, in the hangingwall phyllite. The rock was chloritic and contained abundant magnetite porphyroblasts. The holes encountered no significant mineralization.

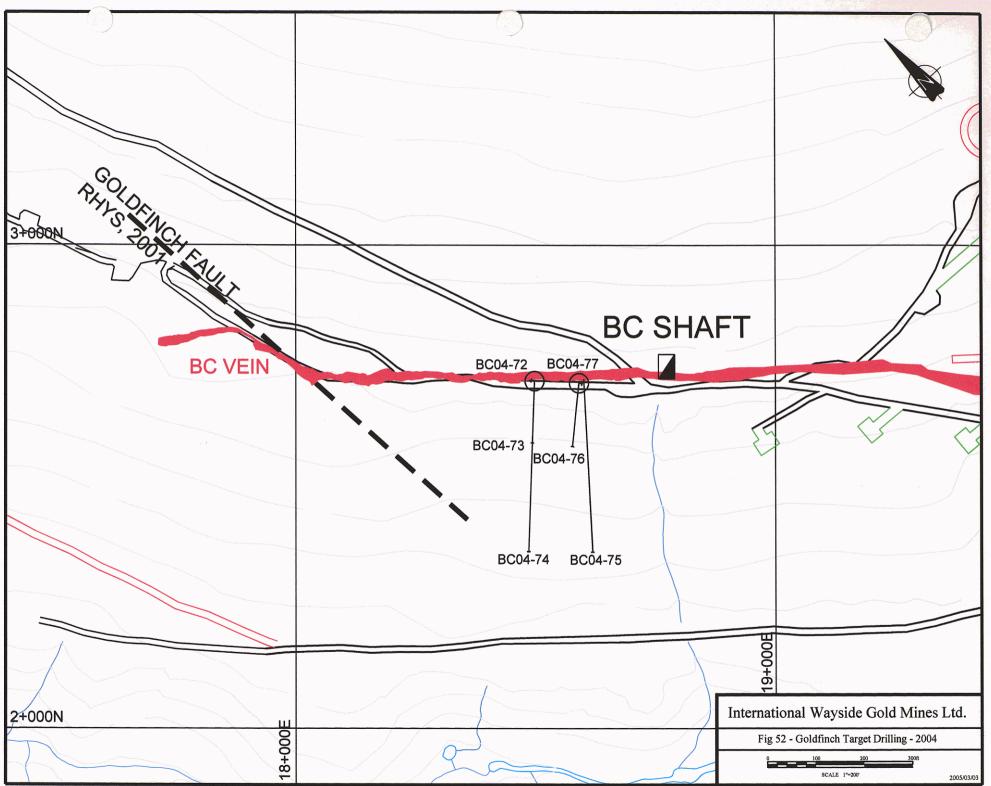
11.1.5 Surface Drilling - Goldfinch Target Exploration (Figure 52)

Six holes were drilled between the BC Shaft and the Goldfinch Fault to explore a 700 foot gap between drill holes in the same stratigraphic position as the Bonanza Ledge deposit (Figure 52). Two fans of three holes each tested for pyritic replacement mineralization in the footwall of the BC Vein and fault zone. This area was also near the shallow pit just west of the shaft that produced 400 tons of 2 opt gold ore. The drill logs and assays are located in Appendix XII.

11.1.5.1 Goldfinch Results (Table 2)

Section 18+600E, DDH BC-04-75, 76, 77 (Figure 53)


Holes BC-04-75, BC-04-76 and BC-04-77 cut mostly argillite, with lesser amounts of siltite and quartzite. The holes contained very spotty anomalous gold, with the best sample being 3.45 g/t gold, at 114 meters down in hole 76.


Section 18+500E, DDH BC-04-72, 73, 74 (Figure 54)

Hole BC-04-72, a nearly vertical hole, was drilled next to the outcrop of the BC Vein and fault zone. The upper part of the hole contained a low-grade gold intercept of 22.9 meters of 1.90 g/t in sheared, graphitic argillite and quartz vein.

Hole BC-04-73 penetrated calcareous argillite, with zones of graphite and fuchsite, and some silicification. Two zones of mineralization were intersected, both with strong pyrite. The upper zone, was very fine grained pyrite, together with a quartz vein, which assayed 21.70 g/t gold over 3.7 meters. The nearest drill hole to this intercept is 21 meters away. The lower mineralized zone contained 2.8 meters of 15 to 20% pyrite, but only assayed 0.93 g/t gold.

Hole BC-04-74 contained spotty anomalous gold, however, it cut a 22.7 meter zone of replacement pyrite, ranging from 7% to 20%, between 110 and 133 meters. This intercept should be offset closer to the surface.

DDH	North (ft) (mine	East (ft) (mine)	Elev. (ft)	Az. (mine)	Dip	Depth (ft)	From (ft)	To (ft)	Width (ft)	Width (m)	oz/t Au	g/t Au
BC-04-72	2718	18498	4936	285	-89	387	22.0	97.0	75.0	22.9	0.06	1.90
BC-04-73	2718	18498	4936	182	-73	437	236.6	248.6	12.0	3.7	0.63	21.70
BC-04-74	2718	18498	4936	182	-47	517		N	o signific	ant result	s	
BC-04-75	2723	18601	4937	177	-45	507		N	o signific	ant result	s	
BC-04-76	2714	18591	4938	186	-74	477		N	o signific	ant result	ts	
BC-04-77	2715	18591	4939	110	-89	387		N	o signific	ant result	s	

11.2 Underground Drilling (Figure 15-B)

11.2.1 Procedure

A total of 6023 m (19,792 feet) of underground diamond drilling in 73 holes (UG04-04 to 76) was completed on the Bonanza Ledge Zone during the 2004 exploration program. Drilling was carried out between January 4 and July 29, 2004 by F. Boisvenu Diamond Drilling Ltd., of New Westminster, British Columbia utilizing a lydracore #1000 to drill BQTK core.

Drill core was delivered to a secure core compound in Wells for logging and sampling. A total of 2569 samples of core were sawn in half on site and sent to Eco Tech Laboratory Ltd., of Kamloops, British Columbia. All samples were analyzed for gold, by fire assay with an atomic absorption finish. The lab inserted standards and conducted repeat analyses of sample pulps and rejects. Lab procedures and results are outlined in Appendix VIII.

Underground drill hole specifications are summarized in Table 3, and the locations are shown on Figure 15-B. Underground drill logs are included in Appendix XIII, together with assays and summary sheets. Four vertical sections show detailed lithology and alteration, with gold results, and are denoted with an A and B. The remainder of the sections show gold results and lithology labels along the drill holes. Upgrading of the entire set of sections with detailed lithology and alteration interpretations is in progress. The sections are in pockets at the back of the report. The section numbers correspond to the Mine Grid Easting.

11.2.2 Results (Table 3)

The initial phase of the underground diamond drilling program was designed to define the Bonanza Ledge high-grade gold mineralization for a 10,000 ton bulk sampling program (UG03-01 to 03, and UG04-04 to 14). It was followed up by an exploration

TABLE	3 Unde	rground	Drill R	esults	(all r	esults	as w	eiahted	avera	ides)		
	North (ft)	East (ft)	Elev.	Az.	Dip	Depth	From		Width	Width		g/t
DDH	(mine) *	(mine) *	(ft)	(mine) *		(ft)	(ft)	(ft)	(ft)	(m)	Au	Au
UG-03-01	2509.02	20060.54	4687.46	355	10	208	87.2	153.4	66.2	20.2	0.39	13.31
00-03-01							170.0	188.0	18.0	5.5	0.18	6.60
UG-03-02	2509.53	20060.67	4688.44	354	22	207	82.0	153.1	71.0	21.7	0.38	13.07
·····	2507.20	20121 04	4607.45	000	L		165.2	187.0	21.8	6.6	0.15	5.25
UG-03-03	2507.20	20121.04	4687.15	360	10	252	71.0	146.2	75.2	22.9	0.32	10.82
	2507.51	20121.03	4688.41	359	21	251	190.5 80.0	222.4 212.6	<u>31.9</u>	9.7	0.50	17.22
UG-04-04		1 20121.00	including			201	98.0	137.0	<u>132.6</u>	<u>40.4</u> 11.9	0.32	10.85
	2493.41	20032.71	4688.54	360	10	252	97.0	137.0	35.0	10.7	0.93 0.57	31.96 19.50
UG-04-05			including	· · · · · ·		LOL	122.0	132.0	10.0	3.0	1.32	45.20
		1				[` ` `	167.0	202.0	35.0	10.7	0.07	45.20
UG-04-06	2493.60	20032.73	4689.76	360	21	232	107.6	142.0	34.4	10.5	0.07	26.46
UG-04-07	2538.38	20054.95	4688.23	18	11	172	57.0	117.0	60.0	18.3	0.67	23.04
UG-04-08	2537.67	20054.67	4689.99	20	31	171	66.0	91.0	25.0	7.6	0.51	17.58
UG-04-09	2575.51	20121.69	4687.18	343	10	103	0.0	69.6	69.6	21.2	0.50	17.16
			including				63.0	69.6	6.6	2.0	3.27	112.00
UG-04-10	2574.97	20121.85	4689.12	345	39	102	0.0	76.0	76.0	23.2	0.57	19.66
			including				52.0	76.0	24.0	7.3	1.59	54.56
UG-04-11	2575.81	20121.16	4687.31	16	12	104	4.0	68.5	64.5	19.7	0.37	12.54
UG-04-12	2574.79	20120.89	4689.38	17	37	103	8.0	73.0	65.0	19.8	0.36	12.41
			including				18.0	58.0	40.0	12.2	0.53	18.15
UG-04-13	2595.62	20145.72	4686.23	27	2	63			significan		0.00	10.10
UG-04-14	2594.64	20145.24	4688.54	31	38	84	0.0	24.0	24.0	7.3	0.05	1.76
UG-04-15	2492.86	19999.68	46 89.61	360	10	278	104.8	133.0	28.2	8.6	0.20	7.01
							218.0	245.0	27.0	8.2	0.18	6.18
<u>UG-04-16</u>	2491.96	19999.49	4686.71	355	-38	274			ignificant		0.10	0.10
UG-04-17	2493.20	19999.57	4692.21	358	37	172	117.0	127.0	10.0	3.0	0.97	33.21
							157.0	167.0	10.0	3.0	0.08	2.58
UG-04-18	2486.79	19958.79	4688.97	0	10	273	238.0	243.0	5.0	1.5	0.04	1.25
UG-04-19	2487.44	19959.00	4692.79	0	36	180	105.0	130.0	25.0	7.6	0.07	2.34
UG-04-20	2490.61	19926.26	4688.60	0	10	273	63.0	68.0	5.0	1.5	0.20	6.80
							143.0	163.0	20.0	6.1	0.05	1.64
UG-04-21	2490.02	19926.18	4691.07	1	36	183	132.0	158.0	26.0	7.9	0.06	2.06
UG-04-22	2490.80	19886.70	4689.40	0	10	274		No s	ignificant			
UG-04-23	2490.28	19886.42	4692.03	3	<u> 36 </u>	178			ignificant			
	2489.53	20102.21	4683.41	1	-31	372	67.0	102.0	35.0	10.7	0.15	5.31
UG-04-24							164.9	202.0	37.1	11.3	0.12	4.06
							212.0	227.0	15.0	4.6	0.10	3.59
							293.0	317.0	24.0	7.3	0.05	1.68
UG-04-25	2488.60	20102.30	4682.28	1	-50	249	60.1	84.0	23.9	7.3	0.13	4.49
	0.00.00	0000100					94.0	129.0	35.0	10.7	0.10	3.32
UG-04-26	2492.66	20031.96	4683.80	1	-33		78.0	133.0	55.0	16.8	0.20	6.79
UG-04-27	2492.66	20031.96	4683.80	0	-45	488	69.1	128.0	58.9	18.0	0.24	8.37
	0575.00		including				<u>69</u> .1	103.0	33.9	10.3	0.39	13.20
UG-04-28	2575.00	20120.00	4687.00	0	-5	213	0.5	13.0	12.5	3.8	0.16	5.65
06-04-20	ļ						28.0	71.1	43.1	13.1	0.17	5.88
	2575.00		1007.00				117.2	162.6	45.4	13.8	0.06	2.16
UG-04-29	2575.00	20120.00	4687.00	0	-20	224	4.0	_24.0	20.0	6.1	0.17	5.83
00-04-29	[L	39.0	93.3	54.3	16.6	0.24	8.28
	2575 00	20100 00	4007.00				131.7	139.0	7.3	2.2	0.26	9.01
UG-04-30	2575.00	20120.00	4687.00	0	-40	278	0.0	108.0	108.0	32.9	0.26	8.75
00-04-30			including				73.0	103.8	30.8	9.4	0.65	22.45
110-04-24	2479.00	20200 00 1	1005 00				183.0	213.8	30.8	9.4	0.13	4.59
UG-04-31 UG-04-32	2478.00	20200.00	4665.00	0	0	247	182.0	220.6	38.6	11.8	0.38	13.13
	2487.00	20200.00	4665.00	_0	17	243	173.0	224.2	51.2	15.6	0.12	4.07
UG-04-33	2487.00	20200.00	4665.00	0	33	222	203.7	222.0	18.3	5.5	0.11	3.71
UG-04-34 UG-04-35	2487.00	20200.00	4665.00	23	0	242	112.0	149.5	32.5	9.9	0.50	16.98
00-04-00	2487.00	20200.00	4665.00	43	0	268	128.6	183.0	54.4	16.6	0.24	8.23

TABLE	3 Unde	erground	Drill R	esults	(all r	esults	s as we	eighted	avera	ades)	-	
DDH	North (ft)	Last (ff)	Elev.	Az.	Dip	Depth	From	To	Width	Width		g/t
	(mine) *	(mine) *	(ft)	(mine) *		(ft)	(ft)	(ft)	(ft)	(m)	Au	Au
UG-04-36	2487.00	20200.00	4665.00	0	-38	389	74.0	119.0	45.0	13.7	0.13	4.42
	0407.00	00000.00	4005.00	<u> </u>			321.5	339.0	17.5	5.3	0.25	8.41
UG-04-37	2487.00	20200.00	4665.00	0	-15	274	104.0	164.5	60.5	18.4	0.15	5.18
00010			including				<u>149.0</u> 199.0	164.5 229.0	<u>15.5</u> 30.0	4.7	0.45	15.56
	2486.65	20140.01	4681.15	355	-39	498	58.0	81.4	23.4	<u>9.1</u> 7.1	0.07	2.46 6.76
UG-04-38			1				108.0	148.0	40.0	12.2	0.16	5.42
	1						153.0	168.0	15.0	4.5	0.07	2.48
	2487.03	20140.09	4000.00				469.2	<u>49</u> 8.0	28.8	8.8	0.11	3.70
UG-04-39	2407.03	20140.09	4682.00 including	358	-23	353	83.0	273.0	153.2	46.7	0.28	9.73
	2487.05	20140.06	4683.13	359	-6	278	235.8 83.0	250.0 93.0	<u>14.2</u> 10.0	<u>4.3</u> 3.0	0.70	23.90
UG-04-40			1 1000.10	000		270	128.0	183.0	55.0	16.8	0.06	1.98 9.07
		_					223.0	251.9	28.9	8.8	0.15	5.11
UG-04-41	2484.13	20140.21	4680.78	0	-60	539	61.4	124.0	53.5	16.3	0.16	5.41
UG-04-42	2462.77	20159.25	4676.46	359	-43	360	74.0	<u>99</u> .0	25.0	7.6	0.11	3.62
	<u> </u>	<u> </u>					119.0	209.0	90.0	27,4	0.11	3.74
UG-04-43	2484.46	20136.10	4676.55	0	-27	354	74.2	179.0	104.8	31.9	0.12	4.12
	2484.46	20136.10	4677.27	359	-9	299	<u>211.8</u> 114.0	237.2 214.0	<u> 25.4 </u> 100.0	7.7	0.09	3.24
UG-04-44			including			_200	194.0	214.0	20.0	6.0	0.19 0.74	6.56 25.30
							265.0	282.9	17.9	5.5	0.38	12.99
UG-04-45	2484.46	20136.10	4678.38	359	10	268	233.5	255.2	21.7	6.6	0.37	12.74
<u>UG-04-46</u>	2437.32	20180.03	4670.07	0	-45	489	140.4	149.0	8.6	2.6	0.12	3.95
UG-04-47	2484.66	20136.10	4671.24	0	-26	360	95.0	225.0	<u>130.0</u>	39.6	0.12	4.06
	2437.99	20180.01	including 4671.53	23	-15	315	155.0	170.0	15.0	4.5	0.44	15.12
UG-04-48		20100.01	4011.00		-15	313	<u>100.0</u> 170.0	<u>115.0</u> 310.8	<u>15.0</u>	4.5	0.05	1.81
		·	including				300.6	310.8	10.2	31.5 3.1	0.16	<u>5.41</u> 19.95
UG-04-49	2438.81	20179.98	4672.96	0	10	88		No significa				19.95
UG-04-50	2468.79	19961.18	4687.07	0	-40	344		Nos	ignificant	results		
UG-04-51 UG-04-52	2487.00	19961.00	4687.00	355	-14	349	154.0	169.0	15.0	4.6	0.09	3.04
00-04-52	2492.00 2494.00	20000.00	4687.00 4686.00	0	-15	340	125.0	134.5	9.5	2.9	0.14	4.98
UG-04-53	2101.00	20040.00	Including		-14	300	<u>94.0</u> 145.0	165.0	71.0	21.6	0.28	9.69
							219.9	165.0 270.0	<u>20.0</u> 50.1	6.0 15.3	0.97	33.13
UG-04-54	2493.00	20080.00	4685.00	359	-19	329	89.3	183.8	94.0	28.7	0.09	3.25 10.52
							216.8	275.0	58.2	17.7	0.06	2.16
UG-04-55	2480.00	20080.00	4682.00	0	-47	448	57.6	68.0	15.4	4.6	0.4	13.2
<u>UG-04-56</u> UG-04-57	2491.30 2491.67	19920.34	4689.44	4	1	350	145.0	155.0	10.0	3.0	0.16	5.52
UG-04-58	2491.60	19920.35 19920.30	4688.36	4	-20 -40	304	154.0	162.5	8.5	2.6	0.14	4.64
UG-04-59	2491.52	19920.23	4685.83	$-\frac{3}{1}$	-58	474 313			ignificant ignificant			
UG-04-60	2490.00	19920.00	4685.00	0	60	105			ignificant			
UG-04-61	2490.00	19880.00	4685.00	357	-10	329	218.2	239.0	20.8	6.3	0.08	2.64
UG-04-62	2490.00	19880.00	4685.00	0	-30	369			ignificant		0.00 1	2.04
UG-04-63	2491.00	19886.00	4687.00	353	-50	270			gnificant			
UG-04-64 UG-04-65	2491.00	19884.00	4686.00	300	-49	349		No si	gnificant	results		
UG-04-66	2491.09 2490.93	19883.15 19883.39	4687.14 4688.10	301	-29	468		No si	gnificant	results		
UG-04-67	2490.59	19884.02	4689.21	<u>301</u> 303	<u>-9</u> 10	369 323			gnificant			
UG-04-68	2490.62	19884.12	4691.68	304	30	193			gnificant			
UG-04-69	2492.91	19995.69	4691.32	352	23	148	118.0	138.4	gnificant 20.4		0.58	20.06
UG-04-70	2493.25	19995.68	4691.73	352	31	213	88.0	179.3	91.3	27.8		17.40
	0.10.1.5		Including				128.0	143.0	15.0	4.6		62.50
UG-04-71	2494.71	20026.30	4690.15	1	23	105		No si	gnificant			
UG-04-72	2495.07	20026.30	4601 00		2.		110.0	116.8	6.8	2.1	0.18	6.28
	2-100.07	20020.30	4691.98	0	34	200	119.2	125.0	5.8		0.19	6.38
UG-04-73	2495.56	20075.37	4687.50	- 1	21	125	157.7	175.0	17.3		0.17	5.83
						120	103.0	125.0	22.0	6.7	0.17	5.70

TABLE :												
DDH	North (ft) (mine) *	East (ft) (mine) *	Elev. (ft)	Az. (mine) *	Dip	Depth (ft)	From (ft)	To (ft)	Width (ft)	Width (m)	oz/t Au	g/t Au
UG-04-74	2494.89	20075.10	4689.95	356	40	124	115.6	119.0	3.4	1.0	0.08	2.87
							83.0	94.3	1.3	0.4	0.06	2.11
UG-04-75	2492.66	20131.96	4685.40	359	10	130	95.3	107.3	12.0	3.7	0.22	7.48
							108.4	113.0	4.6	1.4	0.93	31.80
UG-04-76	2491.49	20131.94	4688.06	2	35	130		No	significan	t results		

drilling to extend the strike length and depth of mineralization for a potential 70,000 ton bulk-sample. Drilling was carried out on sections spaced 20 to 40 feet apart, from 19+880E to 20+260E (Mine Grid North), predominantly at right angles to the strike of mineralized zones, over a total length of 125 m (380 feet).

Bonanza Ledge Zone, site of the underground drilling program, is underlain by metasiliciclastic rocks of Downey and Hardscrabble Mountain successions consisting predominantly of laminated to thinly bedded, dark grey to black, carbonaceous argillite (phyllite) intercalated with pale to medium grey guartzite. Gold mineralization is hosted in broad, semi-concordant, <10 m to 75 m (<30 to 250 feet) wide zones of alteration that imparts tan to mauve color to the host lithologies. The alteration consists of intense tancolored sericite-carbonate (dolomite/ankerite)-pyrite in and adjacent to mineralized zones, to distal, less intense, dominantly mauve-colored, sericite-carbonate (sideritemagnesite)-chlorite-albite+/-pyrite (Rhys and Ross, 2001). Mineralization occurs in discrete, high grade pyritic zones, <5 to 80% pyrite, as very fine to medium grained disseminations, veinlets and foliation-parallel (S2), locally folded semi-massive to massive bands. In the structural footwall of the mineralized zone, host rocks are silicified, in the form of pale grey to white pervasive silicification or as closely spaced, narrow, light grey quartz veins and stringers. The hanging wall of the Bonanza Ledge Zone is formed by the BC Vein, a fault hosted guartz vein in graphitic phyllite. The true thickness of the vein/fault varies from <1 to 10 m (<3 to 35 feet) in the drill holes. Laminated, light grey-green, chlorite-sericite phyllite, locally magnetite porphyroblastic, occurs in the hanging wall of the BC vein/fault.

At least three distinct mineralized bodies are interpreted from the surface drilling (Paulter, 2004); from structurally lowest to highest (south to north), these are referred to as the Footwall, Main and Discovery Zones, shown in the plan view in Figures 27, 30, 33 and 38. The Main Zone occurs in the central area and is generally bounded by late, sub vertical to steeply north dipping graphitic faults. The Discovery Zone, often semi-concordant to S2 foliation, occurs in the structural footwall of the BC vein/fault, commonly within <5 to 20 m (<10-30'). The Footwall Zone is localized in the footwall of the Main Zone with its south contact formed by a graphitic fault structure. On some sections, distribution of gold values is sporadic and discontinuous, with mineralized zones overlapping. On other sections, three ore lenses may be interpreted.

The summary of significant gold intersections, calculated as weighted averages, is found in Table 3. The assay results discussed in the text below are also reported as weighted averages, with g/t Au over widths in meters.

Section 19+880E, DDH UG04-22, 23, 61 to 68 (Figure 45)

Ten holes were collared on this section, from which five, UG04-64 to 68, were drilled off-section in the northwesterly direction. Several zones of typical Bonanza Ledge style, tan to lesser mauve, sericite-dolomite (+/-ankerite) alteration, about 10 to 35 m (35 to110 feet) in width, and <5% pyrite in UG04-22 and 23 and <30% pyrite in UG04-61 to 64, were intersected. Generally, there is no significant mineralization associated with the alteration in these drill holes. Only two weakly mineralized intersections are

reported, 2.64 g/t Au over 6.3 m in UG04-61 and 1.53 g/t Au over 0.3 m from a discrete quartz-lesser dolomite vein with 5-7% pyrite in the silicified footwall of the Main Zone, in UG04-23.

Most of the assays from five off-section holes returned <0.03 g/t Au with the exception of one intercept which carried 1.37 g/t Au/0.5 m from a narrow interval of cm/mm scale quartz>dolomite stringers and 20% pyrite (UG04-66).

Section 19+920E, DDH UG04-20, 21, 56 to 60 (Figure 44)

Seven holes were collared on this section targeting the strike and the depth extent of gold mineralization. Narrow widths of weak mineralization are reported in shallower holes, 1.64 g/t over 6.1 m (UG04-20), 2.06 g/t over 7.9 m (UG04-21), 5.52 g/t over 3 m (UG04-56) and 4.64 g/t over 2.6 m (UG04-57). Gold intercepts define a sub-vertical to steeply north dipping Main Zone that decreases in thickness with depth, between the 4790 and 4630-foot levels. Two holes UG04-58 and 59, drilled to the 4380 and 4415 foot levels, respectively, intersected broad zones of sericitization and dolomitization, to 75 m (250') in thickness, however, assays returned insignificant gold contents (<0.03 to 0.21 g/t Au). Hole UG04-60 targeted the mineralization at the shallower depth than UG 04-21. However, it was collared at to steep of angle (+60°) to intercept the Main Zone. No significant mineralization is reported.

Section 19+940E, DDH UG04-51 (Figure 43)

Hole UG04-51 was collared on section 19+960E and drilled slightly off-section. It intersected a narrow, weakly mineralized Main Zone at approximately 4645-foot level. Gold values returned 3.04 g/t over 4.6 m. The host-rock is a typical laminated, mauve, sericite-carbonate (dolomite/ankerite)-pyrite (5-15%) altered argillite (phyllite).

Section 19+960E, DDH UG04-18, 19, 50, 51 (Figure 42)

Four holes were drilled on this section. UG04-18 and 19, targeted gold mineralization at the shallow depths, and UG04-50 and 51, tested for the deposit depth extent. Narrow zones of mineralization were intercepted, 2.34 g/t Au over 7.6 m (UG04-19) and 4.38 g/t Au over 1.5 m (UG04-18), defining a steeply north dipping Main Zone that decreases in thickness with depth, between 4765 and 4715-foot levels. Hole UG04-50 drilled underneath the other holes on this section, to a elevation of 4360 feet, did intersect more than a 60 m (200') wide zone of typical Bonanza Ledge style sericite-dolomite (ankerite)-pyrite alteration without any associated mineralization.

Hole UG04-18 also intersected a narrow interval of 1.25 g/t Au/1.5 m, in the footwall of the BC vein/fault at 4730-foot levels (Discovery Zone).

Section 19+980E, DDH UG04-16, 69, 70 (Figure 41)

One exploration hole, UG04-16, and two geotechnical holes, UG04-69 and 70, were collared on the section 20+00E but drilled slightly off-section.

Holes UG04-70 and 69 intersected the Main Zone, grading 17.4 g/t Au over 27.3 m, including a high grade section of 62.5 g/t Au over 4.6 m and 20.06 g/t Au over 6.2 m, respectively. Surface drill hole BC2K-08 (2000 drilling), drilled on the same section, intersected only narrow, 5-15' intervals of generally weaker gold mineralization, below 2004 holes. The Main Zone substantially decreases in thickness between 4780 and 4705-foot levels. Hole UG04-16 tested for the depth extent of mineralization to the 4510-foot level, and intersected tan and mauve, moderately to strongly sericite-dolomite altered argillite and quartzite, 57 m (186') in thickness, with associated banded and disseminated pyrite (<1 to 3%). No significant mineralization is reported.

Section 20+000E, DDH UG04-15, 16*, 17, 52, 69*, 70* (Figure 40) *discussed on previous section

Four exploration holes, UG04-15 to 17, 52, and two geotechnical holes, UG04-69 and 70, were collared on this section.

Holes UG04-15 and 17, designed to test for mineralization close to the surface, intersected 7.01 g/t Au over 8.6 m and 33.21 g/t Au over 3 m, respectively. The ore grade intersections from these holes and one surface hole, BC2K-28 (2000 drill program), define a steeply north dipping, semi-concordant Main Zone that expands from 3 m to almost 9 m and decreases to 3 m with depth between 4770 and 4610-foot levels. Hole UG04-52, targeting the depth extent of mineralization, was not drilled deep enough (to 4400-foot level) to intercept the Main Zone. However, it encountered the Footwall Zone at the 4575-foot level, assaying 4.98 g/t over 2.9 m. Several other narrow zones of low grade mineralization were also intersected in this hole, interpreted as the Footwall Zone. These assayed 1.37 g/t Au/0.85 m to 3.75 g/t Au/2.2 m. The Discovery Zone, grading 6.18 g/t Au over 8.2 m was intersected in hole UG04-15, within about 7 m from the BC vein/fault contact.

Section 20+020E, DDH UG04-71, 72 (Figure 39)

Two holes, UG04-71 and 72, collared on this section, were drilled for geotechnical data. Hole UG04-72 contained several intersections of Main Zone mineralization, between 4750 and 4790-foot levels. Gold assays graded about 6.3 g/t Au over 3.9 m and 5.83 g/t over 5.3 m. Surface holes from 2000 drilling, BC2K-26 and 27, intersected the Main Zone to the 4610-foot level (14.1 g/t Au over 6.1 m). Hole UG04-71 was not drilled long enough to intercept the Main Zone.

Section 20+040E, DDH UG 03-01, 02, UG04-05, 06, 26, 27, 53 (Figure 38)

Two definition holes, UG03-05, 06, and three exploration holes, UG04-26, 27, and 53 were collared on this section. Holes UG03-01 and 02 are also definition holes, collared on this section.

Holes UG03-01, 02, UG04-05 and 06 were designed to define the high grade portions of the Main Zone on section 20+040E, to be mined for the 10,000 ton bulk sample. Medium to high gold values are reported over broad zones from all four holes; 13.31 g/t Au over 20.2 m (UG 03-01), 13.07 g/t Au over 21.7 m (UG 03-02), 19.5 g/t over 10.7 m, including 45.2 g/t over 3 m (UG04-05) and 26.46 g/t over 10.5 m (UG 04-06) between 4705 and 4745 foot-levels.

Three exploration holes, UG04-26, 27, and 53, were drilled targeting the depth extent of the Main Zone at various levels below the 040E stope. Hole UG04-53 intersected 9.6 g/t Au over 21.6 m at 4650-foot level. Holes UG04-26 and 27, drilled beneath this hole to a levels of 4475 and 4335 feet, respectively, did not encounter any significant mineralization.

Holes UG03-01, 02 and 53, intersecting 6.6 g/t Au over 5.5 m, 5.25 g/t Au over 6.6 m and 3.2 g/t Au over 15.3 m, respectively, define a Discovery Zone which ranges from 5.5 to 12.2 m (18'-40') in thickness, between the 4760 and 4620-foot levels. This zone is interpreted as steeply northerly dipping and roughly semi-concordant to S2 foliation, within 12 to 18 m from the southern contact of the BC vein/fault. The zone widens with depth, however, it is absent at deeper levels (in holes UG04-26 and 27).

Footwall Zone was intersected in holes UG04-26 and 27 to a level of 4590 feet with gold values grading 6.79 g/t over 16.8 m and 8.37 g/t over 18 m, respectively. The ore grade intersection, 6.46 g/t over 4.5 m, in the upper part of hole UG04-53 may also be included in the Footwall Zone (4660-foot level). The distribution of gold intercepts suggests that this zone has a southerly dip.

Section 20+060E, DDH UG03-01*, 02*, UG04-07**, 08**, 74 (Figure 37) *discussed on previous section, **discussed on following section

Four holes, UG03-01, 02, UG04-07 and 08, collared on this section, were drilled during the definition phase and outlined the high grade portion of the Main Zone for the bulk sampling, similarly to the previous section. Hole UG04-74 was drilled for geotechnical data, above holes UG03-01 and 02.

Hole UG04-74 intersected 2.87 g/t over 1 m (at 4765-foot level). It was not drilled long enough to intersect the Main Zone, probably just touching its western boundary.

Five surface drill holes, BC03-11, 12, 22, 26 and BC2K-29, from 2000 and 2003 drilling programs, intersected the Main Zone to the 4590-foot level, more than 200 feet from the surface and almost 100 feet below the 4685 level of the bulk-sample workings.

Section 20+080E, DDH UG04-07, 08, 54, 55, 73 and 74* (Figure 36) *discussed in the above section

Four holes were collared on this section. Two, UG04-54 and 55, were exploration holes and two (UG04-73 and 74), were geotechnical holes. Two holes, UG04-07 and 08,

drilled off-section, were designed during the definition phase for the bulk sample extraction.

Holes UG04-07 and 08 intersected high grade mineralization assaying 23.04 g/t Au over 18.3 m and 17.58 g/t Au over 7.6 m, respectively, between the 4700 and 4730- foot levels. The geotechnical hole UG04-73 intersected the Main Zone at the 4730-foot level. Assays returned 5.7 g/t Au over 6.7 m. Hole UG04-54 exploring the depth extent of the Main Zone, intersected a broad zone, 28.7 m (94') in thickness, that assayed 10.52 g/t Au, to the 4625-foot level. Assays results from these underground holes, together with five surface holes (BC03-09, 10, 22, 26, BC2K-10), define a sub-vertical to steeply northerly dipping Main Zone, approximately 15 to 27 m in thickness, that thickens with depth, between the 4780 and 4615-foot levels. Hole UG04-55 was drilled underneath the other underground holes, to the 4355-foot level, but did not intersect the Main Zone at depth.

A discontinuous and weakly mineralized Discovery Zone, 17.7 m (58.2 ft) in thickness, was intersected in hole UG04-54. Assays returned 2.16 g/t Au.

Hole UG04-55 intersected the Footwall Zone, grading 13.2 g/t Au over 4.6 m. The zone is also defined by discontinuous gold mineralization from the surface drilling in holes BC2K-10 and BC01-09, to an elevation of 4555 feet. It is interpreted be sub-vertical to steeply south dipping.

Section 20+100E, DDH UG04-07*, 8* to 10, 24, 25 (Figure 35)

*discussed in previous section

Four holes UG04-07 to 10 were drilled as part of the definition drilling to define the highest grade gold mineralization within the Main Zone. Results were used to design the 100E stope for bulk sample extraction, as was done on section 20+040E. Holes UG04-24 and 25, collared on this section, were exploration holes targeting the depth extent of mineralization beneath the stope 100E.

Holes UG04-9 and 10 intersected the Main Zone, returning 17.16 g/t Au over 21.2 m, including 112 g/t Au/2 m and 19.66 g/t Au over 23.2 m, including 54.56 g/t Au over 7.3 m, respectively, to the 4690 foot-level. Two weakly mineralized intervals of the Main Zone were intersected in UG04-24, assaying 4.06 g/t Au over 11.3 m and 3.59 g/t Au over 4.6 m. Ore grade intersections of five underground and four surface drill holes, BC02-08, 12, BC03-08 and 09, define a sub-vertical to steeply north dipping Main Zone, from about 17 to 27 m in thickness, that thickens with depth, between the 4780 and 4565-foot levels.

The Footwall Zone was intersected in holes UG04-24 and 25, grading 5.31 g/t Au over 10.7 m and 4.69 g/t Au over 7.3 m, respectively. A distribution of ore grade intersections from these two holes and one surface hole (BC02-12) suggest that this zone is steeply dipping to the south.

Weakly mineralized zones (Discovery Zone) were intersected in UG04-24 and UG04-38, assaying 1.68 g/t Au over 7.3 m and 3.7 g/t Au over 8.8 m, respectively. The gold intersection in UG04-38 is from the 4370 to the 4785-foot level.

Section 20+120E, DDH UG03-03, UG04-04, 09*, 10* to 12, 28 to 30, 38**, 39 (Figure 34) *discussed on previous section, **discussed on following section

Four holes collared on this section, UG03-03, UG04-04, and 09 to 12, were drilled during the definition phase for the underground bulk sampling, and five holes, UG04-28 to 30, 38 and 39, were exploration holes targeting the depth extent of mineralization.

The assays returned 10.82 g/t Au over 22.9 m (UG03-03), 10.85 g/t over 40.4 m (UG04-04), 12.54 g/t Au over 19.7 m (UG04-11) and 12.41 g/t over 19.8 m (UG04-12). The gold-bearing intersections from eight underground and two surface drill holes (BC03-14, 25) define a roughly sub-vertical Main Zone, from 6 to 20 m (20'-70') in thickness, which thins with depth, between the 4790 and 4570-foot levels.

The Discovery Zones was intersected in holes UG03-03 (17.22 g/t Au over 9.7 m), UG04-4 (2.87 g/t Au over 10.7 m), UG04-28 (2.16 g/t Au over 13.8 m), UG04-29 (8.62 g/t Au over 2.1 m and 1.9 g/t Au over 3 m) and UG04-30 (4.59 g/t Au over 9.4 m). The gold intercepts from these holes define a steeply north dipping, semi-concordant (to S2 foliation), 6 to 9 m (20' to 35') wide mineralized zone, to a level of 4550 feet.

Section 20+140E, DDH UG04-11*, 12*, 13, 14**, 38 to 41, 75, 76** (Figures 33-A & B) *discussed on previous section, **on following section

This section contains the 140E stope, which was developed for bulk sampling. Four exploration holes, UG04-38 to 41, and two geotechnical holes, UG04-75 and 76, were collared on this section. The former were drilled underneath the stope 140E, testing for the depth extent of mineralization.

Numerous ore grade intersections of variable grade and thickness are reported; 5.42 g/t Au/12.2 m and 2.48 g/t Au/4.5 m in UG04-38, 9.73 g/t Au/46.7 m, including 23.9 g/t Au/4.3 m in UG04-39, 1.98 g/t Au/3 m and 9.07 g/t Au/16.8 m in UG04-40 and 5.41 g/t Au over 16.3 m in UG04-41. The gold intercepts define a wide zone of mineralization without an obvious separation between the Footwall and Main zones, between the 4740 and 4570-foot levels. The deepest hole, UG04-41, drill to the 4215-foot level, did not intersect any mineralization.

The Discovery Zone was intersected in two holes, UG04-39 (9.6 g/t Au/13.5 m) and UG04-40 (5.11 g/t Au/8.8 m). Gold values from these underground holes and three surface holes, (BC2K-03, 04 and 32), define the Discovery Zone as being semi-concordant to S2 foliation and about 4.5-12 m (15'-40') thick, to the 4600 foot level.

UG04-75 intersected three narrow zones of mineralization from 83' to 113' which returned 2.11 g/t Au over 0.4 m, 7.48 g/t Au over 3.7 m and 31.8 g/t over 1.4 m (Main

Zone). Hole UG04-76 did not intersect any significant mineralization, since it was not drilled long enough to reach the Main Zone.

Section 20+160E, DDH UG04- 13, 14, 42 to 45 (Figure 32)

Four holes, UG04-42 to 45, collared on this section, east of the bulk sample workings, were exploration holes testing for the strike and down dip extent of mineralization to the east. Holes UG04-13 and 14 were definition holes, drilled as part of the bulk sample program.

Hole UG04-13 did not intercept any significant mineralization, and only a weakly mineralized Main Zone was intersected in hole UG04-14. It assayed 1.76 g/t Au over 7.3 m. Several narrow intervals of mineralization were intersected in UG04-45, 12.74 g/t Au over 6.6 m, in the Discovery Zone adjacent to the contact with the BC vein/fault. Three holes, drilled underneath the definition holes, intersected various grades and widths of mineralization: 3.62 g/t Au over 7.6 m and 3.74 g/t Au over 27.4 m in UG04-42, 4.12 g/t Au over 31.9 m and 3.24 g/t Au over 7.7 m in UG04-43 and 6.56 g/t Au over 30.5 m, including 25.3 g/t Au over 6 m in UG04-44. On this section, distribution of gold values is generally discontinuous and spread out over wide intervals. The three mineralization zones (Main, Discovery and Footwall) are not easily discernible. The deepest hole, UG04-42, intersected the Main Zone to a level of 4530 feet.

Section 20+180E, DDH UG04- 46, 47 and 48 (Figure 31)

Three holes, UG04-46 to 48, were collared on this section. Hole UG04-46 was drilled at the steepest angle of the three, and mostly passed beneath the mineralization. It did intersect 2.6 m of 3.95 g/t Au. Holes 47 and 48 intersected mineralization spanning the region of the Main Zone and the Discovery Zone, and defined their width and grade. Hole UG04-47 cut 39.6 m grading 4.06 g/t Au. Hole UG04-48 intersected 31.5 m which assayed 5.41 g/t Au, including an intercept in the BC Vein of 3.1 m of 19.95 g/t Au.

Section 20+200E, DDH UG04-31 to 36 (Figure 30)

Five holes, UG04-31 to 36, were collared in the north drift, east of the bulk-sample stopes, targeting the eastern extension of mineralization along strike and down dip (easternmost section used for the underground drilling). Two of these holes, UG04-33 and 34, were drilled off-section, 023° and 043° azimuth, respectively, and therefore appear on the other sections to the east.

All the holes intersected some mineralization but generally of lower grade than on the previous sections to the west. Assays returned 13.13 g/t Au over 11.8 m in UG04-31, 4.07 g/t Au over 15.6 m in UG04-32, 3.71 g/t Au over 5.5 m in UG04-33, 16.98 g/t Au over 9.9 m in UG04-34, 8.23 g/t Au over 16.6 m in UG04-35 and two intercepts 4.42 g/t Au over 13.7 m and 8.41 g/t over 5.3 m in UG04-36. From distribution of gold values, it is suggested that three distinct zones of mineralization occur on this section, a narrow Footwall Zone between the 4685 and 4595-foot levels, a central Main Zone between the

4665 and 4575-foot levels and a Discovery Zone in the footwall of BC vein/fault, between the 4785 and 4450-foot levels.

12.0 CONCLUSIONS AND RECOMMENDATIONS

The 2004 drilling program at Bonanza Ledge completed the defining of the deposit, especially the bottom and the east end. Trenching provided the location of the bedrock surface, and demonstrated that the high grade mineralization found in drill holes at depth in pyritic zones, continues to the bedrock surface in oxidized rock. This data, combined with density measurements of the ore and waste, allowed the calculation of a resource and an economic analysis.

The Bonanza Ledge bulk sample program yielded important information toward the development of the deposit.

- The ore body is continuous, as suggested by surface drilling.
- The gold grade is highly variable.
- The rock quality and fault zones strongly indicate against developing the deposit by underground mining methods.
- The ore can be milled by floatation, however, the variability in the ore suggests that a small to medium capacity mill would be advantageous, in order to optimize recovery.

Additional metallurgical testing is needed, and is planned for 2005.

The late-2003 and 2004 drilling on the Myrtle property (see the 2004 drilling report by Daria Duba - Part C) returned moderate gold grades in narrow quartz-iron carbonate-pyrite veins and stringers. This style of mineralization has produced the bulk of the lode gold in the district. D. Duba believes that the Myrtle property has not been fully tested, and recommends data compilation, trenching and diamond drilling. Several targets are scheduled to be tested from the road constructed in 2004, in the eastern part of the property.

Soil geochemistry results for the lower part of the Lowhee Target extended the zone of anomalous gold by 2,500 feet to the north, from the previous 50 foot by 200 foot grid. An exploration road and drill sites are permitted and the area will be tested in 2005.

The road ditching on Cow Mountain exposed extensive alteration zones, and the channel sampling identified gold grades warranting follow-up drilling. Roads and pads have been permitted, and drill-testing is planned for 2005.

Drilling at the Goldfinch Target discovered high grade gold mineralization in massive pyrite, in proximity to the Goldfinch Fault. Follow-up drilling is planned for 2005.

In 2004, it was noted that a 2001 drill intercept, in the Waoming Fault area east of the Bonanza Ledge deposit, of 15 feet of 15.5 g/t gold (hole BC01-08) had never been offset. Follow-up drilling will be conducted in 2005.

Please see the conclusions and recommendations for the Island Mountain Gold Mines properties and the Myrtle Property, located in Parts B and C respectively.

APPENDIX I

REFERENCES

:

References

British Columbia Minfile, (2003): 093H; Ministry of Energy and Mines.

- Andrew, A., Godwin, C.I. and Sinclair, A.J. (1983): Age and genesis of Cariboo gold mineralization determined by isotope methods (93H); in Geological Fieldwork 1982, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1983-1, pp. 305-313.
- Bolin, D.S. (1984): Report to Wharf Resources Ltd. on the Cariboo Gold Quartz Mine, Wells, British Columbia, Canada; 17 p. Unpublished report by Golder Associates for Wharf Resources Ltd.
- Bowman, A. (1889): Report on the geology of the mining district of Cariboo, British Columbia; Geological Survey of Canada, Annual Report for 1887- 1888, V. 3, pt. 1, pp. 1-49c.
- Bowman, A. (1895): Maps of the principal auriferous creeks in the Cariboo mining district, British Columbia; Geological Survey of Canada, Maps 364- 372.
- Campbell, D.D. (1966): Report on Potential of Ore Reserves and Production, Cariboo Gold Quartz Mine, Wells, British Columbia; Unpublished report by Dolmage Campbell & Associates Ltd. for Cariboo Gold Quartz Mining Company Limited.
- Campbell, D.D. (1969): Surface exploration and production potential of ore reserves and production, Cariboo Gold Quartz Mine, Wells, British Columbia; 28 p. Unpublished report by Dolmage Campbell & Associates Ltd. for Cariboo Gold Quartz Mining Company Limited.
- Cameron, R. and Fox, P.E. (1995): Summary Report on the Welbar Gold Project, Cariboo Gold District, Wells, British Columbia; 17 p. Unpublished report by Fox Geological Consultants Ltd. for Gold City Mining Corporation.
- Eyles, N. and Kocsis, S.P. 1989: Sedimentological controls on gold distribution in Pleistocene placer deposits of the Cariboo mining district, British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, Paper 1989-1, pp. 377-385.

Hall, R.D. 1999: Cariboo Gold Project at Wells, British Columbia. Unpublished report prepared for International Wayside Gold Mines Ltd.

- Hanson, G. 1935: Barkerville Gold Belt, Cariboo District, British Columbia. Geological Survey of Canada, Memoir 181, 42 p.
- Hart, S. 2001: Quesnel Highlands recreational and tourism overview. Report prepared by J.S. Hart and Associates Ltd., Tatla Lake, B.C. for the District of Wells, Wells, B.C. 32 p.
- Holland, S.S. 1976: Landforms of British Columbia: A Physiographic Outline. Bulletin 48. British Columbia Department of Mines and Petroleum Resources. 138 p.

- Johnston, W.A. and Uglow, W.L. 1926: Placer and vein gold deposits of Barkerville, Cariboo District, British Columbia; Geological Survey of Canada, Memoir 149.
- Jukes, A.H. 1971: Summary of current pertinent data, Barkerville-Wells Prospect, Cariboo District, British Columbia, Canada. Unpublished report for Mosquito Creek Gold Mining Company Limited.
- Kelly, J.A. 1983: Summary report on the 1983 surface exploration programs, Mosquito Creek, Wharf and Bralorne properties. Unpublished report for Mosquito Creek Gold Mining Company Limited
- Knight, J. and McTaggart, K.C. 1989: Lode and placer gold of the Coquihalla and Wells areas, British Columbia (92H,93H); British Columbia Geological Survey Branch, Exploration in British Columbia 1989, pp. 105-118.
- Krom, A.S. 1988: Exploration program for the Mosquito Project, Lyon Lake Mines Limited. Unpublished report for Lyon Lake Mines Limited.
- Laird, A. 1988: Cariboo Gold Quartz Property, 1988 Work Program Summary Report; 35 p. Unpublished report for Pan Orvana Resources Inc.
- Laird, A. 1990: Cariboo Gold Quartz Property, 1989 Work Program Summary Report; 11 p. Unpublished report for Pan Orvana Resources Inc.
- Levson, V.M., and Giles, T.R. 1993: Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H); British Columbia Geological Survey Branch, Bulletin 89.
- Lord, T.M. and Green, A.J. 1985: Soils of the Barkerville area, British Columbia. Report No. 40 of the British Columbia Soil Survey. Soil Survey Unit, Land Resource Research Institute, Agriculture Canada, Vancouver. 79 p.
- Mason, E.E. 1973: Wharf Resources Limited Cariboo Gold Quartz Properties; 18 p. Unpublished report by Dolmage, Mason & Stewart Ltd. for Wharf Resources Ltd.
- Mason, E.E. and Guiguet, M. 1980: Properties and Operations 1933-1967 of the Cariboo Gold Quartz Mining Company Limited, Wells, B.C. Unpublished report for Wharf Resources Ltd.
- Pautler, J. 2004: Report on the 2003 Diamond Drill and Trenching Program on the Cariboo Gold Project – Wells, British Columbia; Report prepared for International Wayside Gold Mines Ltd.
- Pickett, J.W. 2002: Technical report on the 2002 exploration program of International Wayside Gold Mines Ltd. on the Myrtle Claim Group, Wells area, British Columbia. Report for International Wayside Gold Mines Ltd.

- Ray, G., Webster, I., Ross, K. and Hall, R. 2001: Geochemistry of Auriferous Pyrite Mineralization at the Bonanza Ledge, Mosquito Creek Mine and Other Properties in the Wells-Barkerville Area, British Columbia. British Columbia Ministry of Energy and Mines, Geological Fieldwork 2000, Paper 2001-1, p. 135-167.
- Rhys, D. 2001: Lode gold in the Cariboo: the Bonanza Ledge discovery of International Wayside Gold Mines. 2001 Cordilleran Roundup Abstracts p. 20-21.
- Rhys, D.A. and Ross, K.V. 2001: Evaluation of the geology and exploration potential of the Bonanza Ledge Zone and adjacent areas between Wells and Barkerville, east central British Columbia. Unpublished report by Panterra Geoservices Inc. for International Wayside Gold Mines Ltd.

2000: Report on Petrography, check sampling and geological interpretation of drill core at the Bonanza Ledge Zone, Cariboo Gold Quartz Property, British Columbia. Unpublished report by Panterra Geoservices Inc. for International Wayside Gold Mines Ltd.

- Richards, F. 1948: Cariboo Gold Quartz mine. In Structural Geology of Canadian Ore Deposits, Canadian Institute of Mining and Metallurgy, p. 162-168
- Skerl, A.C. 1948: Geology of the Cariboo Gold Quartz Mine, Wells, B.C. Economic Geology, v. 43, p. 571-597
- Smellie, D.W. 1962: Preliminary report, underground drill-hole electromagnetic survey, Cariboo Gold Quartz Mine, Wells, B.C. Unpublished report for the Cariboo Gold Quartz Mining Company Limited.
- Struik, L.C. 1986: Imbricated terranes of the Cariboo Gold belt with correlations and implications for tectonics in southeastern British Columbia; Canadian Journal of Earth Sciences, v. 23, pp.1047-1061.
- Struik, L.C. 1988: Structural geology of the Cariboo Gold Mining District, East-Central British Columbia. Geological Survey of Canada, Memoir 421, 100 p.
- Sutherland Brown, A. 1957: Geology of the Antler Creek area, Cariboo District, British Columbia. British Columbia Department of Mines, Bulletin No. 38, 105 p.
- Walton, G. 2003: Report for assessment, Cariboo Gold Project Wells, British Columbia; Report prepared for International Wayside Gold Mines Ltd.

2002: Report for assessment, Cariboo Gold Project – Wells, British Columbia; Report prepared for International Wayside Gold Mines Ltd.

APPENDIX II

STATEMENT OF CLAIMS

iv

APPENDIX II

STATEMENT OF CLAIMS

IWA Group of Crown-granted Mineral Claims

Claim Name	Lot No.	Date Crown Granted
BLACK BULL	2F	November 26, 1874
WAOMING	42F	May 20, 1876
AMERICAN	92	March 1, 1889
CARIBOO	93	March 1, 1889
ST. LAURENT	94	March 1, 1889
GOLDFINCH NO.2	301	October 7, 1901
EAGLE FRACTION	302	October 7, 1901
GLADSTONE	303	October 7, 1901
GOLDFINCH	318	April 28, 1898
PINKERTON	356	April 28, 1898
OLYMPIC NO. 5	5862	August 19, 1936
OLYMPIC NO. 3	5863	August 19, 1936
OLYMPIC NO. 1	5864	August 19, 1936
OLYMPIC NO. 4	5865	September 30, 1936
OLYMPIC NO. 2	5866	August 19, 1936
CARIBOO NO. 7	5867	August 19, 1936
TELLURIDE FRACTION	5868	September 30, 1936
OLYMPIC NO. 12	5869	August 19, 1936
EMMA FRACTION	5870	September 30, 1936
EMMA	5871	August 19, 1936
BULL MOOSE	5872	August 19, 1936
SNOW STORM	5873	August 31, 1936
CAMERON	5874	August 19, 1936
CARIBOO TRAIL	5875	August 19, 1936
APEX FRACTION	5876	September 30, 1936
OLYMPIC FRACTION	5877	September 30, 1936
OLYMPIC NO. 6	5878	September 30, 1936
OLYMPIC NO. 7	5879	August 19, 1936
OLYMPIC NO. 13	5880	September 30, 1936
OLYMPIC NO. 14	5881	September 13, 1936
OLYMPIC NO. 11	5882	August 19, 1936
OLYMPIC NO. 9	5883	August 19, 1936
OLYMPIC NO. 8	5884	August 19, 1936
OLYMPIC NO. 17	5885	September 13, 1936
OLYMPIC NO. 10	5886	August 19, 1936
OLYMPIC NO. 16	5887	September 30, 1936
OLYMPIC NO. 15	5888	May 29, 1935

Claim Name	Lot No.	Date Crown Granted
CARIBOO NO. 2 FRACTION	5889	September 30, 1936
GOLD STANDANRD FRACTION	5890	December 9, 1936
BULLION	5891	December 10, 1938
GOLD BOOM	5892	December 10, 1938
GOLD STANDARD	5893	December 12, 1938
GOLD STANDARD NO. 1	5894	December 12, 1938
GOLD STANDARD NO. 2	5895	December 12, 1938
GOLD STANDARD NO, 3	5896	December 12, 1938
APEX	5897	September 13, 1936
PINKERTON FRACTION	5898	September 13, 1936
BROOKFORD NO. 2	5899	February 1, 1936
CARIBOO FRACTION	5919	December 12, 1938
DOLLY GREY FRACTION	7793	May 29, 1935
RAINBOW	7794	May 29, 1935
DOLLY VARDEN	7795	May 29, 1936
LAKEVIEW	7796	May 29, 1935
JACK OF CLUBS	7797	May 29, 1935
TELLURIDE	7798	May 29, 1936
TELLURIDE NO. 2	7799	May 29, 1935
TELLURIDE NO. 3	7800	May 29, 1936
CARIBOO NO. 1	7801	May 29, 1935
CARIBOO NO. 2	7802	May 29, 1935
MOTHER LODE	7803	May 29, 1935
RAINBOW FRACTION	7804	May 29, 1935
CARIBOO NO, 3	7805	May 29, 1935
GOLDBRICK	7806	May 29, 1935
MUCHO ORO	10026	September 18, 1925
BROOKFORD NO. 1	10351	February 1, 1936
INIT. FRACTION	11227	July 28, 1939

IWA Group of Two/Four-post Mineral Claims

Mineral Cla	ims	Tenure number	Date Staked	Due Date	Units
L423 (RCG)		206856	March 22, 1990	2004.03.22	1
FRANK	1-12	339130-339141	August 18, 1995	2004.12.31	12
LAKE	1-4	355141-355144	April 4, 1997	2004.12.31	4
FRANK	13-17	355124-355128	April 5, 1997	2004.12.31	5
FRANK	18-27	355129-355138	April 17, 1997	2004.12.31	10
CLUB	1-7	355152-355158	April 5, 1997	2004.12.31	7
CLUB	8-17	355159-355168	April 6, 1997	2004.12.31	10
CLUB	18-21	355169-355172	April 18, 1997	2004.12.31	4
CLUB	22-31	355173-355182	April 17, 1997	2004,12,31	10
FIELD	1-6	355085-355090	April 16, 1997	2004.12.31	6
FIELD	8-12	355092-355096	April 16, 1997	2004,12,31	5
WATSON	1-5	355080-355084	Apríl 6, 1997	2004.12.31	5
WALKER	1-6	355145-355150	April 7, 1997	2004.12.31	6
EMORY	1-5	355997-355101	April 6, 1997	2004.12.31	5
EMORY	6-11	355102-355107	April 16, 1997	2004.12.31	6

ñ

Mineral Cla	aims	Tenure number	Date Staked	Due Date	Units
EMORY	12-25	355108-355121	April 17, 1997	2004.12.31	14
L.S. #	1-4	366281-366284	November 9, 1998	2005.12.31	4
MOSQ	2, 4	368577, 79		2004.11.30	2
LIBERTY		375059	March 26, 2000	2004.12.31	1
GOLD	4,5,3,1	375061-375064	March 28, 2000	2004.12.31	4
MARTINS		375097-98		2004.11.30	29
NED	5-12	375120-375127	March 30, 2000	2004.12.31	8
IPO	17-22	375339-375344	April 10, 2000	2004.12.31	6
IPO	1-16	375347-375362	April 7, 2000	2004.12.31	16
RAVEN #	1-6	375444-375449	April 16, 2000	2004.12.31	6
WING	6-17	376090-376100	April 30, 2000	2004.12.31	11
WING	4-5	376101-376102	April 30, 2000	2004.12.31	2
FRANK	7-9	377533-377535	May 22, 2000	2004.12.31	3
BUD 8		377537	May 28, 2000	2004.12.31	20
KING FRAC		375060		2004.12.31	1
CORNISH		375101		2004.11.30	20
BRO 1-21		376232-53		2004.11.30	21
PIN 1-33		376254-86		2004.11.30	33
BRO 22-47		376287-317		2004.11.30	26
RTC 11-20		376572-81		2004.11.30	10
RTC 1-10, 2	5-34	376586-605		2004.11.30	20
RTC 21-24		376582-5		2004.11.30	4
DWM 1-7,11		385640-385649		2004.12.31	10
VICTORIAN		387491		2004.11.08	20
VIC 4-7		387795-8		2004.11.08	4
WOLF 16-35	5	322119-28, 385693	3-701	2004.11.08	20
DWM 30-44		389630-44		2004.11.08	15
					436

Two/Four-post Mineral Claims 75% owned by IWA

Mineral Claims	Tenure number	Date Staked	Due Date	Units
TOM 1,2	373358-9	April, 1997	2004.11.30	21
TOM 6, 60	343575, 42	April, 1997	2004.11.30	40
TOM 66, 67, 5, 19	343833-4,7-8	April, 1997	2004.11.30	34
DOWNEY, DOWNEY 2	375274,5	•	2004.11.30	38
TOM 48, 70, 72	375440-2	April, 1997	2004.11.30	55
CREW	376961		2004.11.30	12
MONSTER 1-7	376962-87		2004.11.30	<u>26</u>
				226

iii

(held by Gold City Industries Ltd –Joint venture with Wayside earning 50% interest)				
Claim Name	Lot No.	_ · · _ · ,		
Shamrock No.4	10377			
Shamrock No.5	10378			
Shamrock No.6	10379			
Shamrock No.7	10380			
Progress No.8	10387			
Progress No.7	10388			
Progress No.6	10389			
Lone Fraction	10404			
Myrtle	10501			
Marie	10502			
Y Fraction	10507			
Martha	10508			
Mabel	10509			
Florence	10511			
Cariboo	10512			
Z Fraction	10513			
N.M. No.5 Fraction	10514			
Stephanie Fraction	11453			
Noisy Enemy Fraction	11454			

Myrtle Group of Crown Granted Mineral Claims

APPENDIX II

STATEMENT OF CLAIMS

iv

	TISH Ministry of Ene Energy and Minerals Mineral Titles Branch	Division	PAGE 1 OF
ATEMEN Type of Title: Mining Division	Mineral Tenure / Sections 29, 30, 31, 3 Mineral 🔀	3 and 50 Placer	RECEIVED GOVERNMENT AGENT QUESNER NOV 30 2004 NOT AL OPFICIAL RECEIPT TRANS # Gold Commissioner Approval of Physical Work:
I, FRAN MACPHE	RSON (Name)		TACHED LIST
BOX 232	(Address)		(Address)
VOK 2R0 (Postal Code) Client Number	B.C. 250-994-333 (Telephon 116548		(Telephone)
List the titles (clain SEE ATTACHED L	If paying cash in lieu of we	plete the following and contin ork or lease rental, turn to (and srown grant lot) on which the work	ue onto Page 3. d complete) Page 4. k specified below was actually done:
Date work started	2004-Jan-01 compl	eted 2004-Nov-30 WOR	K PERMIT No. MX-11-113/147/181
TYPE OF WO			AIMED ON THIS STATEMENT
Physical Refer to Technical	Page 2 for claimable physics Prospecting	sical work types and requirem	ents \$ A \$ B
Portable Assessme	Geological, Geochemical, ent Credit (PAC) Withdrawa	Geophysical, and/or Diamond D	Ψ
from the account	either [] or [] (s) of:	B0% of value in Box B & C only Total PAC	\$D
_		A+B+C+E	E \$ 3,392,946.00 E

Frances Jean Macpherson P.O. Box 232 Wells, BC, V0K 2R0 Phone: 250-994-3337 Client No. 116548

Acting as Agent for the following:

International Wayside Gold Mines Ltd.

305-455 Granville Street Vancouver, BC, V6C 1T1 Phone: 604-669-6463 Client No. 104256

Island Mountain Gold Mines Ltd.

305-455 Granville Street Vancouver, BC, V6C 1T1 Phone: 604-669-6463 Client No. 144284

Gold City Industries Ltd.

200-580 Hornby Street Vancouver, BC, V6C 3B6 Phone: 604-682-7677 Client No. 136420

Douglas Warren Merrick

Box 19 Wells, BC, V0K 2R0 Phone: 250-994-3398 Client No. 118217

Evan Williams

Box 253 Wells, BC, V0K 2R0 Phone: 250-994-3325 Client No. 131998

Bart Jerzy Jaworski

4042 W 27th Avenue Vancouver, BC, V6S 1R7 Phone: 604-221-4011 Client No. 142260

Harold Kenneth Herrick

Box 203 Wells, BC, V0K 2R0 Phone: 250-994-3429 Client No. 111705

Timothy Aaron Young

1022 - 470 Granville Street Vancouver, B.C., V6C 1V5 Phone: 604-689-0299 Client No. 137682

Tenure/Lot No. 42F 93 94 301 302 303 318	Name Waoming Cariboo St. Laurent Goldfinch No. 2 Eagle Fraction Gladstone	Tenure/Lot No. 10355 10356 10359 10364	Name Mosquito Vancouver Mosquito Fraction Red Gulch No. 5
93 94 301 302 303 318	Cariboo St. Laurent Goldfinch No. 2 Eagle Fraction	10356 10359 10364	Vancouver Mosquito Fraction
94 301 302 303 318	St. Laurent Goldfinch No. 2 Eagle Fraction	10359 10364	Vancouver Mosquito Fraction
301 302 303 318	Goldfinch No. 2 Eagle Fraction	10364	Mosquito Fraction
302 303 318	Eagle Fraction		
303 318			Inced Guich No. 5
318	Gladstone	10365	Red Gulch No. 6
		10517	Aurm
	Goldfinch	11066	Aurm West
356	Pinkerton	11067	Aurm South
5866	Olympic No. 2	11069	Mohawk No. 2
5867	Cariboo No. 7	11070	Paystreak No. 1
5870	Emma Fraction	11071	Triangle Fraction
5893	Gold Standard	11072	Mohawk No. 3
5894	Gold Standard No. 1	11081	Okay Fraction
5919	Cariboo Fraction	11090	Mohawk No. 7
7800	Telluride No. 3	11092	Art Fraction
7801	Cariboo No. 1	11093	Ivan Fraction
7802	Cariboo No. 2	11094	N. M. No. 9 Fraction
7803	Mother Lode	333038	WHIP 1
7805	Cariboo No. 3	333039	WHIP 2
10501	Myrtle	337601	COULTER 1
10502	Marie	385249	SUGAR
10512	Cariboo	386728	SUGAR MTN
11227	Init. Fraction	394027	MUSTANG
	Ned No. 6	377674	EAGLE
355080	Watson No. 1		
355081	Watson No. 2		1
355082	Watson No. 3		
355083	Watson No. 4		
355084	Watson No. 5		
	Watson No. 5		1
7798 7799	Telluride		

† Note: Reconnaisaince geology was also performed in areas not specifically noted in tenure list

I wish to apply \$

274, 600.00 M EVENT NUMBER: _____ 309, 600.00 of the total value in Box E (from Page 1) as follows:

CAGE 2 OF 27

Claim Name	Tenure	No. of	Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per line)	Number	Units*	·	Value	Years	Fee	Date
1	204930	1	2004.11.30	200	1	10	2005.11.3
/	204931	1	2004.11.30	200	1	10	2005.11.30
FRANK 1	339130	1	2004.12.31	200	1	10	2005.12.3
FRANK 2	339131	1	2004.12.31	200	1	10	2005.12.3
FRANK 3	339132	11	2004.12.31	200	1	10	2005.12.3
FRANK 4	339133	1	2004.12.31	200	1	10	2005.12.3
FRANK 5	339134	1	2004.12.31	200	1	10	2005.12.3
FRANK 6	339135	1	2004.12.31	200	. 1	10	2005.12.3
FRANK 7	339136	1	2004.12.31	200	1	10	2005.12.3
FRANK 8	339137	1	2004.12.31	200	1	10	2005.12.3
TRANK 9	339138	1	2004.12.31	200	1	10	2005.12.3
FRANK 10	339139	1	2004.12.31	200	1	10	2005.12.3
TRANK 11	339140	1	2004.12.31	200	1	10	2005.12.3
FRANK 12	339141/	1	2004.12.31	200	1	10	2005.12.3
TOM 6	343575	20	2004.11.30	4000	1	200	2005.11.3
•TOM 60	343642	20	2004.11.30	4000	1	200	2005.11.30
TOM 66	343833	1	2004.11.30	200	1	10	2005.11.30
TOM 67	343834	1	2004.11.30	200	1	10	2005.11.30
TOM 5	343837	20	2004.11.30	4000	1	200	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are or	w unit each	TOTALS	15200		760	

NOTICE TO GROUP / CAD EVENT NUMBER:

RECORDED

Value of work to be credited to portable assessment credit (PAC) account(s). (May only be credited from the approved value of Box C not applied to claims.)							
	. Name	Amount					
Name of	1	\$					
owner/operator	2	\$					

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer slaims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure Act.

NOVEMBER 30, 2004

PAGE 3 OF 27

I wish to apply \$

EVENT NUMBER: 3021124 of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
ТОМ 19	343838	12	2004.11.30	2400	1	120	2005.11.30
WATSON 1	355080/	1	2004.12.31	200	1	10	2005.12.31
WATSON 2	355081	1	2004.12.31	200	1	10	2005.12.31
WATSON 3	355082	1	2004.12.31	200	1	10	2005.12.31
WATSON 4	355083	1	2004.12.31	200	1	10	2005.12.31
WATSON 5	355084	1	2004.12.31	200	1	10	2005.12.31
FIELD 1	355085	1	2004.12.31	200	1	10	2005.12.31
FIELD 2	355086	1	2004.12.31	200	1	10	2005.12.31
FIELD 3	355087	1	2004.12.31	200	1	10	2005.12.31
FIELD 4	355088	1	2004.12.31	200	1	10	2005.12.31
FIELD 5	355089	1	2004.12.31	200	1	10	2005.12.31
TIELD 6	355090	1	2004.12.31	200	1	10	2005.12.31
FIELD 8	355092	1	2004.12.31	200	1	10	2005.12.31
FIELD 9	355093	1	2004.12.31	200	1	10	2005.12.31
FIELD 10	355094	1	2004.12.31	200	1	10	2005.12.31
FIELD 11	355095	1	2004.12.31	200	1	10	2005.12.31
FIELD 12	355096	1	2004.12.31	200	1	10	2005.12.31
EMORY 1	355097	1	2004.12.31	200	1	10	2005.12.31
EMORY 2	355098	1	2004.12.31	200	1	10	2005.12.31
* 2 Post, Fraction, Rev. Crown Grant and	d Placer Claims are on	e unit each	TOTALS	6000		300	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

áture

		dited to portable assessment credit (PAC) account(s). om the approved value of Box C not applied to claims.)	
		Name	Amount
Name of	1		\$
owner/operator	2		\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer claims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Minute rep ure

NOVEMBER 30, 2004

PAGE 4 OF 27 EVENT NUMBER: 322112

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per line)	Number	Units*	<u> </u>	Value	Years	Fee	Date
EMORY 3	355099	1	2004.12.31	200	1	10	2005.12.3
EMORY 4	355100	_ 1	2004.12.31	200	1	10	2005.12.3
EMORY 5	355101	1	2004.12.31	200	1	10	2005.12.3
EMORY 6	355102	1	2004.12.31	200	1	10	2005.12.3
EMORY 7	355103	1	2004.12.31	200	1	10	2005.12.3
EMORY 8	355104	1	2004.12.31	200	1	10	2005.12.3
EMORY 9	355105	1	2004.12.31	200	1	10	2005.12.3
EMORY 10	355106	1	2004.12.31	200	1	10	2005.12.31
EMORY 11	355107	1	2004.12.31	200	1	10	2005.12.3
EMORY 12	355108	1	2004.12.31	200	1	10	2005.12.3
EMORY 13	355109	1	2004.12.31	200	1	10	2005.12.31
EMORY 14	355110	1	2004.12.31	200	1	10	2005.12.31
EMORY 15	355111	1	2004.12.31	200	1	10	2005.12.31
EMORY 16	355112	1	2004.12.31	200	1	10	2005.12.31
EMORY 17	355113	1	2004.12.31	200	1	10	2005.12.31
EMORY 18	355114	1	2004.12.31	200	1	10	2005.12.31
EMORY 19	355115	1	2004.12.31	200	1	10	2005.12.31
EMORY 20	355116	1	2004.12.31	200	1	10	2005.12.31
EMORY 21	355117	1	2004.12.31	200	1	10	2005.12.31
2 Post, Fraction, Rev. Crown Grant and	d Placer Claims are on	e unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

		ted to portable assessment credit (PAC) account(s). In the approved value of Box C not applied to claims.)	
		Name	Amount
Name of	1		\$
owner/operator	2		\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer slaims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure A

NOVEMBER 30, 2004

EVENT NUMBER: 3221120

PAGE 5 OF 27

1 wish to apply \$

_____ of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No, of	Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
EMORY 22	355118	1	2004.12.31	200	1	10	2005.12.31
EMORY 23	355119	1	2004.12.31	200	1	10	2005.12.3
EMORY 24	355120	1	2004.12.31	200	1	10	2005.12.31
LMORY 25	355121	1	2004.12.31	200	1	10	2005.12.31
FRANK 13	355124	1	2004.12.31	200	1	10	2005.12.31
FRANK 14	355125	1	2004.12.31	200	1	10	2005.12.31
FRANK 15	355126	1	2004.12.31	200	1	10	2005.12.3
FRANK 16	355127	1	2004.12.31	200	1	10	2005.12.31
FRANK 17	355128	1	2004.12.31	200	1	10	2005.12.3
FRANK 18	355129	1	2004.12.31	200	1	10	2005.12.31
FRANK 19	355130	1	2004.12.31	200	1	10	2005.12.31
RANK 20	355131	1	2004.12.31	200	1	10	2005.12.31
FRANK 21	355132	1	2004.12.31	200	1	10	2005.12.31
FRANK 22	355133	1	2004.12.31	200	1	10	2005.12.31
FRANK 23	355134	1	2004.12.31	200	1	10	2005.12.31
FRANK 24	355135	1	2004.12.31	200	1	10	2005.12.31
TRANK 25	355136	1	2004.12.31	200	1	10	2005.12.31
FRANK 26	355137	1	2004.12.31	200	1	10	2005.12.31
FRANK 27	355138	1	2004.12.31	200	1	10	2005.12.31
* 2 Post, Fraction, Rev. Crown Grant and	d Placer Claims are on	e unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER:

RECORDED

	f work to be credited to portable assessment credit (PAC) account(s). y be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer claims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure Act.

NOVEMBER 30, 2004

EVENT NUMBER: 3001104

PAGE 6 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to b	Work to be applied		New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
LAKE 1	355141	1	2004.12.31	200	1	10	2005.12.31
LAKE 2	355142	1	2004.12.31	200	1	10	2005.12.31
LAKE 3	355143	1	2004.12.31	200	1	10	2005.12.31
LAKE 4	355144	1	2004.12.31	200	1	10	2005.12.31
WALKER 1	355145	1	2004.12.31	200	1	10	2005.12.31
WALKER 2	355146	1	2004.12.31	200	1	10	2005.12.31
WALKER 3	355147	1	2004.12.31	200	1	10	2005.12.31
WALKER 4	355148	1	2004.12.31	200	1	10	2005.12.31
WALKER 5	355149/	1	2004.12.31	200	1	10	2005.12.31
WALKER 6	355150	1	2004.12.31	200	1	10	2005.12.31
CLUB 1	355152	1	2004.12.31	200	1	10	2005.12.31
CLUB 2	355153	1	2004.12.31	200	1	10	2005.12.31
CLUB 3	355154	1	2004.12.31	200	1	10	2005.12.31
CLUB 4	355155	1	2004.12.31	200	1	10	2005.12.31
CLUB 5	355156	1	2004.12.31	200	1	10	2005.12.31
CLUB 6	355157	1	2004.12.31	200	1	10	2005.12.31
CLUB 7	355158	1	2004.12.31	200	1	10	2005.12.31
CLUB 8	355159	1	2004.12.31	200	1	10	2005.12.31
CLUB 9	355160	1	2004.12.31	200	1	10	2005.12.31
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are or	e unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

Value of work to be credited to portable assessment credit (PAC) account(s). (May only be credited from the approved value of Box C not applied to claims.)							
	Name	Amount					
Name of	1	\$					
owner/operator	2	\$					

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or pla slaims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure

NOVEMBER 30, 2004

Dete

EVENT NUMBER: 3221

PAGE 7 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
CLUB 10	355161	1	2004.12.31	200	1	10	2005.12.31
CLUB 11	355162	1	2004.12.31	200	1	10	2005.12.31
CLUB 12	355163	1	2004.12.31	200	1	10	2005.12.31
CLUB 13	355164/	1	2004.12.31	200	1	10	2005.12.31
CLUB 14	355165	1	2004.12.31	200	1	10	2005.12.3
CLUB 15	355166	1	2004.12.31	200	1	10	2005.12.31
CLUB 16	355167	1	2004.12.31	200	1	10	2005.12.31
CLUB 17	355168	1	2004.12.31	200	1	10	2005.12.31
CLUB 18	355169	1	2004.12.31	200	1	10	2005.12.31
CLUB 19	355170	1	2004.12.31	200	1	10	2005.12.31
CLUB 20	355171	1	2004.12.31	200	1	10	2005.12.33
CLUB 21	355172	1	2004.12.31	200	1	10	2005.12.31
CLUB 22	355173	1	2004.12.31	200	1	10	2005.12.31
CLUB 23	355174	1	2004.12.31	200	1	10	2005.12.31
CLUB 24	355175	1	2004.12.31	200	1	10	2005.12.31
CLUB 25	355176	1	2004.12.31	200	1	10	2005.12.31
CLUB 26	355177	1	2004.12.31	200	1	10	2005.12.31
CLUB 27	355178	1	2004.12.31	200	1	10	2005.12.31
CLUB 28	355179	1	2004.12.31	200	1	10	2005.12.31
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are o	he unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

	of work to be credited to portable assessment credit (PAC) account(s). Ny be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
owner/operator	2.	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Minaral Jonure Act

NOVEMBER 30, 2004

I wish to apply \$

EVENT NUMBER: JO of the total value in Box E (from Page 1) as follows:

PAGE 8 OF 27

Claim Name	Tenure	No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
CLUB 29	355180	1	2004.12.31	200	1	10	2005.12.3
eLUB 30	355181	1	2004.12.31	200	1	10	2005.12.3
CLUB 31	355182	1	2004.12.31	200	1	10	2005.12.3
L.S.#1	366281	1	2005.12.31	200	1	10	2006.12.3
L.S.#2	366282	1	2005.12.31	200	1	10	2006.12.3
a. s.#3	366283	1	2005.12.31	200	1	10	2006.12.3
z. S.#4	366284	1	2005.12.31	200	1	10	2006.12.3
MOSQ 2	368577	1	2004.11.30	200	1	10	2005.11.30
MOSQ 4	368579	1	2004.11.30	200	1	10	2005.11.30
TOM 1	373358	20	2004.11.30	4000	1	200	2005.11.30
TOM 2	373359	1	2004.11.30	200	1	10	2005.11.30
LIBERTY	375059	1	2004.12.31	200	1	10	2005.12.31
KING FR	375060	1	2004.12.31	200	1	10	2005.12.31
GOLD 4	375061	1	2004.12.31	200	1	10	2005.12.31
GOLD 5	375062	1	2004.12.31	200	1	10	2005.12.31
GOLD 3	375063	1	2004.12.31	200	1	10	2005.12.31
GOLD 1	375064	1	2004.12.31	200	1	10	2005.12.31
MARTINS	375097	9	2004.11.30	1800	1	90	2005.11.30
TOM 35	375098	20	2004.11.30	4000	1	200	2005.11.30
2 Post, Fraction, Rev. Crown Grant and	d Placer Claims are on	e unit each	TOTALS	13000		650	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

Value o (May on	of work to be credited to portable assessment credit (PAC) account(s). ly be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Historial Lenure

NOVEMBER 30, 2004

EVENT NUMBER: 3031

PAGE 9 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to b	Work to be applied		New Expiry
(one claim per line)	Number	Units*	ļ	Value	Years	Recording Fee	Date
CORNISH	375101	20	2004.11.30	4000	1	200	2005.11.3
NED 5	375120	1	2004.12.31	200	1	10	2005.12.3
NED 6	375121	1	2004.12.31	200	1	10	2005.12.3
NED 7	375122	1	2004.12.31	200	1	10	2005.12.3
NED 8	375123	1	2004.12.31	200	1	10	2005.12.3
NED 9	375124	1	2004.12.31	200	1	10	2005.12.3
NED 10	375125	1	2004.12.31	200	1	10	2005.12.3
HED 11	375126	1	2004.12.31	200	1	10	2005.12.3
NED 12	375127	1	2004.12.31	200	1	10	2005.12.3
DOWNEY	375274	18	2004.11.30	3600	1	180	2005.11.30
DOWNEY 2	375275	20	2004.11.30	4000	1	200	2005.11.30
IPO 17	375339	1	2004.12.31	200	1	10	2005.12.31
IPO 18	375340	1	2004.12.31	200	1	10	2005.12.31
1PO 19	375341	1	2004.12.31	200	1	10	2005.12.31
IPO 20	375342/	1	2004.12.31	200	1	10	2005.12.31
₽PO 21	375343	1	2004.12.31	200	1	10	2005.12.31
₹P0 22	375344	1	2004.12.31	200	1	10	2005.12.31
IPO 1	375347	1	2004.12.31	200	1	10	2005.12.31
T PO 2	375348	1	2004.12.31	200	1	10	2005.12.31
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are on	e unit each	TOTALS	14800		740	······································

NOTICE TO GROUP / CAD EVENT NUMBER:

RECORDED

		portable assessment credit (PAC) account(s). pproved value of Box C not applied to claims.)	
		Name	Amount
Name of	1		\$
owner/operator	2		\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and merel and merel or placer stairns(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral April Act.

NOVEMBER 30, 2004

EVENT NUMBER: 300/121

PAGE 10 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure N	No. of		Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
IPO 3	375349	1	2004.12.31	200	1	10	2005.12.3
1PO 4	375350	1	2004.12.31	200	1	10	2005.12.3
IPO 5	375351	1	2004.12.31	200	1	10	2005.12.3
IPO 6	375352	1	2004.12.31	200	1	10	2005.12.3
IPO 7	375353	1	2004.12.31	200	1	10	2005.12.3
IPO 8	375354	1	2004.12.31	200	1	10	2005.12.3
1PO 9	375355	1	2004.12.31	200	1	10	2005.12.3
IPO 10	375356	1	2004.12.31	200	1	10	2005.12.3
TPO 11	375357	1	2004.12.31	200	1	10	2005.12.3
1PO 12	375358	1	2004.12.31	200	1	10	2005.12.3
TPO 13	375359	11	2004.12.31	200	1	10	2005.12.3
JPO 14	375360	1	2004.12.31	200	1	10	2005.12.3
#P O 15	375361	1	2004.12.31	200	1	10	2005.12.3
IPO 16	375362	1	2004.12.31	200	1	10	2005.12.3
TOM 48	375440	15	2004.11.30	3000	1	150	2005.11.3
POM 70	375441	20	2004.11.30	4000	1	200	2005.11.3
#OM 72	375442	20	2004.11.30	4000	1	200	2005.11.3
RAVEN #1	375444	1	2004.12.31	200	1	10	2005.12.3
RAVEN #2	375445	1	2004.12.31	200	1	10	2005.12.3
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are or	ne unit each	TOTALS	14200		710	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

	f work to be credited to portable assessment credit (PAC) account(s). ly be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1.	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer claims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure

NOVEMBER 30, 2004

AGE 11 OF 27 399112

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

EVENT NUMBER:

Claim Name	Tenure	No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*	l	Value	Years	Fee	Date
RAVEN #3	375446	1	2004.12.31	200	1	10	2005.12.31
RAVEN #4	375447	1	2004.12.31	200	1	10	2005.12.31
RAVEN #5	375448	1	2004.12.31	200	1	10	2005.12.31
RAVEN #6	375449	1	2004.12.31	200	1	10	2005.12.31
MING 6	376090	1	2004.12.31	200	1	10	2005.12.31
MING 7	376091	1	2004.12.31	200	1	10	2005.12.31
WING 8	376092	11	2004.12.31	200	1	10	2005.12.31
WING 9	376093	1	2004.12.31	200	1	10	2005.12.31
WING 10	376094	1	2004.12.31	200	1	10	2005.12.31
WING 12	376095	1	2004.12.31	200	1	10	2005.12.31
WING 13	376096	1	2004.12.31	200	1	10	2005.12.31
WING 14	376097	1	2004.12.31	200	1	10	2005.12.31
WING 15	376098	1	2004.12.31	200	1	10	2005.12.31
WING 16	376099	1	2004.12.31	200	1	10	2005.12.31
WING 17	376100	1	2004.12.31	200	1	10	2005.12.31
NING 4	376101	18	2004.12.31	3600	1	180	2005.12.31
WING 5	376102	18	2004.12.31	3600	1	180	2005.12.31
BRO 1	376232	1	2004.11.30	200	1	10	2005.11.30
BRO 2	376233	1	2004.11.30	200	1	10	2005.11.30
2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are or	ne unit each	TOTALS	10600		530	

NOTICE TO GROUP / CAD EVENT NUMBER: ______ RECORDED

	work to be credited to portable assessment credit (PAC) account(s). / be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or place laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure J

NOVEMBER 30, 2004

EVENT NUMBER: 220112

PAGE 12 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure No	No. of	of Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units'	L	Value	Years	Fee	Date
BRO 3	376234	1	2004.11.30	200	1	10	2005.11.30
BRO 4	376235	1	2004.11.30	200	1	10	2005.11.30
BRO 5	376236	1	2004.11.30	200	1	10	2005.11.30
BRO 6	376237	1	2004.11.30	200	1	10	2005.11.30
BRO 7	376238	1	2004.11.30	200	1	10	2005.11.30
BRO 8	376239	1	2004.11.30	200	1	10	2005.11.30
BRO 9	376240	1	2004.11.30	200	1	10	2005.11.30
5RO 10	376241	1	2004.11.30	200	1	10	2005.11.30
BRO 11	376242	1	2004.11.30	200	1	10	2005.11.30
BRO 12	376243	1	2004.11.30	200	1	10	2005.11.30
BRO 13	376244	1	2004.11.30	200	1	10	2005.11.30
BR0 14	376245	1	2004.11.30	200	1	10	2005.11.30
BRO 15	376246	1	2004.11.30	200	1	10	2005.11.30
BRO 16	376247	1	2004.11.30	200	1	10	2005.11.30
BRO 17	376248	1	2004.11.30	200	1	10	2005.11.30
BRO 18	376249	1	2004.11.30	200	1	10	2005.11.30
BRO 19	376250	1	2004.11.30	200	1	10	2005.11.30
BRO 20	376251	1	2004.11.30	200	1	10	2005.11.30
BRO 21	376253	1	2004.11.30	200	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are of	ne unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER:

RECORDED

	f work to be credited to portable assessment credit (PAC) account(s). y be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1.	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be capelled and the subject mineral or placer 'aims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure Act.

NOVEMBER 30, 2004	
Dete	Signature of Apploant

EVENT NUMBER:

AGE 13 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one cleim per line)	Number	Units*		Value	Years	Fee	Date
PIN 1	376254	1	2004.11.30	200	1	10	2005.11.30
PIN 2	376255	1	2004.11.30	200	1	10	2005.11.30
PIN 3	376256	1	2004.11.30	200	1	10	2005.11.30
PIN 4	376257	1	2004.11.30	200	1	10	2005.11.30
PIN 5	376258	1	2004.11.30	200	1	10	2005.11.30
PIN 6	376259	1	2004.11.30	200	1	10	2005.11.30
PIN 7	376260	1	2004.11.30	200	1	10	2005.11.30
PIN 8	376261	1	2004.11.30	200	1	10	2005.11.30
PIN 9	376262	1	2004.11.30	200	1	10	2005.11.30
PIN 10	376263	1	2004.11.30	200	1	10	2005.11.30
PIN 11	376264	1	2004.11.30	200	1	10	2005.11.30
PIN 12	376265	1 .	2004.11.30	200	1	10	2005.11.30
PIN 13	376266	1	2004.11.30	200	1	10	2005.11.30
PIN 14	376267	1	2004.11.30	200	1	10	2005.11.30
PIN 15	376268	1	2004.11.30	200	1	10	2005.11.30
PIN 16	376269	1	2004.11.30	200	1	10	2005.11.30
PIN 17	376270	1	2004.11.30	200	1	10	2005.11.30
PIN 18	376271	1	2004.11.30	200	1	10	2005.11.30
PIN 19	376272	1	2004.11.30	200	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are or	e unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: _____ RECORDED

	f work to be credited to portable assessment credit (PAC) account(s). Iy be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
Name of 1 owner/operator 2	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be canenad and the subject pointral or placer slaims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Fenure

NOVEMBER 30, 2004

EVENT NUMBER: 300112

PAGE 14 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	f Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
PIN 20	376273	1	2004.11.30	200	1	10	2005.11.30
PIN 21	376274	1	2004.11.30	200	1	10	2005.11.30
PIN 22	376275	1	2004.11.30	200	1	10	2005.11.30
PIN 23	376276	1	2004.11.30	200	1	10	2005.11.30
TIN 24	376277	1	2004.11.30	200	1	10	2005.11.30
TIN 25	376278	1	2004.11.30	200	1	10	2005.11.30
PIN 26	376279	1	2004.11.30	200	1	10	2005.11.30
PIN 27	376280	1	2004.11.30	200	1	10	2005.11.30
PIN 28	37628		2004.11.30	200	1	10	2005.11.30
PIN 29	376282	1	2004.11.30	200	1	10	2005.11.30
PIN 30	376283	1	2004.11.30	200	1	10	2005.11.30
PIN 31	376284	1	2004.11.30	200	1	10	2005.11.30
PIN 33	376286	1	2004.11.30	200	1	10	2005.11.30
BRO 22	376287	1	2004.11.30	200	1	10	2005.11.30
BRO 23	376288	1	2004.11.30	200	1	10	2005.11.30
BRO 24	376289	1	2004.11.30	200	1	10	2005.11.30
BRO 25	376290	1	2004.11.30	200	1	10	2005.11.30
BRO 26	376291	1	2004.11.30	200	1	10	2005.11.30
BRO 27	376292	1	2004.11.30	200	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are or	e unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

	of work to be credited to portable assessment credit (PAC) account(s). In be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1.	\$
owner/operator	2	\$

), the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer plaims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenury

NOVEMBER 30, 2004

PAGE 15 OF 27 10010

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

EVENT NUMBER:

Claim Name (one claim per line)	Tenure	No. of	Expiry Date	Work to I	e applied	Recording	New Expiry Date
	Number	Units*	L	Value	Years	Fee	
BRO 28	376293	1	2004.11.30	200	1	10	2005.11.30
BRO 29	376294	1	2004.11.30	200	1	10	2005.11.30
BRO 30	376300	1	2004.11.30	200	1	10	2005.11.30
BRO 31	376301	1	2004.11.30	200	1	10	2005.11.30
BRO 32	376302	1	2004.11.30	200	1	10	2005.11.30
BRO 33	376303	1	2004.11.30	200	1	10	2005.11.30
BRO 34	376304	1	2004.11.30	200	1	10	2005.11.30
BRO 35	376305	1	2004.11.30	200	1	10	2005.11.30
BRO 36	376306	1	2004.11.30	200	1	10	2005.11.30
BRO 37	376307	1	2004.11.30	200	1	10	2005.11.30
BRO 38	376308	1	2004.11.30	200	1	10	2005.11.30
BRO 40	376310	1	2004.11.30	200	1	10	2005.11.30
BRO 41	376311	1	2004.11.30	200	1	10	2005.11.30
BRO 42	376312	1	2004.11.30	200	1	10	2005.11.30
BRO 43	376313	1	2004.11.30	200	1	10	2005.11.30
BRO 44	376314	1	2004.11.30	200	1	10	2005.11.30
BRO 45	376315	1	2004.11.30	200	1	10	2005.11.30
BRO 46	376316	1	2004.11.30	200	1	10	2005.11.30
BRO 47	376317	1	2004.11,30	200	1	10	2005.11.30
2 Post, Fraction, Rev. Grown Grant and	Placer Claims are on	e unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: ______ RECORDED

Value (May c	of work to be credited to portable assessment credit (PAC) account may be credited from the approved value of Box C not applied to claim	i(s). ms.)
	Name	Amount
Name of	1	\$
owner/operator		\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. | acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be faise and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and Subject mineral o yplacer. laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mine Tenure

NOVEMBER 30, 2004 Date

EVENT NUMBER: 3221124

PAGE 16 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name (one claim per line)	Tenure	No. of	Expiry Date	Work to b	e applied	Recording	New Expiry
	Number	Units*		Value	Years	Fee	Date
RTC 11	376572	1	2004.11.30	200	1	10	2005.11.30
RTC 12	376573	1	2004.11.30	200	1	10	2005.11.30
RTC 13	376574	1	2004.11.30	200	1	10	2005.11.30
RTC 14	376575	1	2004.11.30	200	1	10	2005.11.30
RTC 15	376576	1	2004.11.30	200	1	10	2005.11.30
RTC 16	376577	1	2004.11.30	200	1	10	2005.11.30
RTC 17	376578	1	2004.11.30	200	1	10	2005.11.30
RTC 18	376579	1	2004.11.30	200	1	10	2005.11.30
RTC 19	376580	1	2004.11.30	200	1	10	2005.11.30
RTC 20	376581	1	2004.11.30	200	1	10	2005.11.30
RTC 1	376586	1	2004.11.30	200	1	10	2005.11.30
RTC 2	376587	1	2004.11.30	200	1	10	2005.11.30
RTC 3	376588	1	2004.11.30	200	1	10	2005.11.30
RTC 4	376589	1	2004.11.30	200	1	10	2005.11.30
RTC 5	376590	1	2004.11.30	200	1	10	2005.11.30
RTC 6	376591	1	2004.11.30	200	1	10	2005.11.30
RTC 7	376592	1	2004.11.30	200	1	10	2005.11.30
RTC 8	376593	1	2004.11.30	200	1	10	2005.11.30
RTC 9	376594	1	2004.11.30	200	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant and	d Placer Claims are on	e unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: ______ RECORDED

	f work to be credited to portable assessment credit (PAC) account(s). y be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure

NOVEMBER 30, 2004

EVENT NUMBER: 3221124

PAGE 17 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name (one claim per line)	Tenure	No, of	Expiry Date	Work to b	e applied	Recording	New Expiry Date
	Number	Units*		Value	Years	Fee	
RTC 10	376595	1	2004.11.30	200	1	10	2005.11.30
RTC 25	376596	1	2004.11.30	200	1	10	2005.11.30
RTC 26	376597	11	2004.11.30	200	1	10	2005.11.30
RTC 27	376598	1	2004.11.30	200	1	10	2005.11.30
KTC 28	376599	1	2004.11.30	200	1	10	2005.11.30
RTC 29	376600	1	2004.11.30	200	1	10	2005.11.30
RTC 30	376601	1	2004.11.30	200	1	10	2005.11.30
RTC 31	376602	1	2004.11.30	200	1	10	2005.11.30
RTC 32	376603	1	2004.11.30	200	1	10	2005.11.30
RTC 33	376604/	1	2004.11.30	200	1	10	2005.11.30
RTC 34	376605	_1	2004.11.30	200	1	10	2005.11.30
CREW	376961	12	2004.11.30	2400	1	120	2005.11.30
MONSTER 1	376962	20	2004.11.30	4000	1	200	2005.11.30
MONSTER 2	376963	1	2004.11.30	200	1	10	2005.11.30
MONSTER 3	376964	1	2004.11.30	200	1	10	2005.11.30
MONSTER 4	376965	1	2004.11.30	200	1	10	2005.11.30
MONSTER 5	376966	1	2004.11.30	200	1	10	2005.11.30
MONSTER 6	376967	1	2004.11.30	200	1	10	2005.11.30
MONSTER 7	376987	1	2004.11.30	200	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant an	d Piacer Claims are or	e unit each	TOTALS	9800		490	

NOTICE TO GROUP / CAD EVENT NUMBER: _____ RECORDED

	f work to be credited to portable assessment credit (PAC) account(s). Iy be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
Name of 1. owner/operator 2.	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineret

NOVEMBER 30, 2004

EVENT NUMBER: 3221124

PAGE 18 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name (one claim per line)	Tenure No.	No. of		Work to b	e applied	Recording	New Expiry
	Number	Units*		Veiue	Years	Fee	Date
FRANK 7	377533	20	2004.12.31	4000	1	200	2005.12.3
FRANK 8	377534	20	2004.12.31	4000	1	200	2005.12.3
FRANK 9	377535	20	2004.12.31	4000	1	200	2005.12.3
B0D 8	377537	20	2004.12.31	4000	1	200	2005.12.3
LAGLE	377674/	20	2004.11.30	4000	1	200	2005.11.3
WILL 6	377675	12	2004.11.30	2400	1	120	2005.11.3
WILL 3	377678	20	2004.11.30	4000	1	200	2005.11.3
WILL 4	377679	20	2004.11.30	4000	1	200	2005.11.3
WILL 5	377680	20	2004.11.30	4000	1	200	2005.11.3
WILL 7	377681	20	2004.11.30	4000	1	200	2005.11.3
BOULDER 1	377861	20	2004.11.30	4000	1	200	2005.11.3
BOULDER 2	377862	20	2004.11.30	4000	1	200	2005.11.3
BOULDER 3	378319	20	2004.11.30	4000	1	200	2005.11.3
JEFF 18	384452	12	2004.11.30	Nº2400	1	120	2005.11.3
JEFF 19	384453	1	2004.11.30	02,200	1	10	2005.11.3
DWM 1	385640	1	2004.12.31	100300	1	10	2005.12.3
DWM 2	385641	1	2004.12.31	10-200	1	10	2005.12.3
DWM 3	385642	1	2004.12.31	0200	1	10	2005.12.3
DWM 4	385643	1	2004.12.31	102200 J	1/1	10	2005.12.3
* 2 Post, Fraction, Rev. Crown Grant and P	lacer Claims are one	e unit each	TOTALS	53800-	7	2690	

	f work to be credited to portable assessment credit (PAC) account(s). y be credited from the approved value of Box C not applied to claims.)	
ł	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject more all or placer viaims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Faure Act.

NOVEMBER 30, 2004

PAGE 19 OF.27 EVENT NUMBER: 3331134

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	Tenure No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
DWM 5	385644	1	2004.12.31	DO 505 0	1	10	2005.12.3
DWM 6	385645	1	2004.12.31	100200	1	10	2005.12.3
DWM 7	385646	1	2004.12.31	00200	1	10	2005.12.3
DWM 11	385647	1	2004.12.31	100200	1	10	2005.12.3
DWM 12	385648	1	2004.12.31	100200	1	10	2005.12.3
DWM 13	385649	1	2004.12.31	100200	1	10	2005.12.3
EAGLE 2	385650	15	2004.11.30	150,000	1	150	2005.11.3
WILL 2	387175	20	2004.11.30	000,4000	1	200	2005.11.3
WILL 1	387386	20	2004.11.30	2003000	1	200	2005.11.3
EAGLE 3	387387	18	2004.11.30	6003600	1	180	2005.11.3
8 M	387955	20	2004.11.30	20091000	1	200	2005.11.3
8M 2	387956	8	2004.11.30	BD 1600	1/1	80	2005.11.3
FRANK 40	407787	20	2004.12.31	2000	1	200	2005.12.3
LOWHEE 423	409029	1	2004.18.31	100	1	10	2005.12.3
ST 1	376320	1	2004.11.30	200	1	10	2005.11.3
ST 2	376321	_1	2004.11.30	200	1	10	2005.11.30
ST 3	376322	1	2004.11.30	200	1	10	2005.11.30
ST 4	376323	1	2004.11.30	200	1	10	2005.11.30
BT 5	376324	1	2004.11.30	200	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are on	unit each	TOTALS	_24500		1330	
IOTICE TO GROUP / CAD I	EVENT NUMBE	R:		13800 RECORD	DED -		

NOTICE TO GROUP / CAD EVENT NUMBER:

	of work to be credited to portable assessment credit (PAC) account(s). In be credited from the approved value of Box C not applied to claims.)	
1	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure Act.

NOVEMBER 30, 2004

PAGE 20 OF 27

I wish to apply \$

EVENT NUMBER: 3771124 of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*	ļ	Value	Years	Fee	Date
ST 6	376325	1	2004.11.30	200	1	10	2005.11.30
ST 7	376326	1	2004.11.30	200	1	10	2005.11.30
•ST 8	376327	1	2004.11.30	200	1	10	2005.11.30
ST 9	376328	1	2004.11.30	200	1	10	2005.11.30
ST 10	376329	1	2004.11.30	200	1	10	2005.11.30
ST 11	376330	1	2004.11.30	200	1	10	2005.11.30
ST 12	376331	1	2004.11.30	200	1	10	2005.11.30
ST 14	376333	1	2004.11.30	200	1	10	2005.11.30
ST 16	376335	1	2004.11.30	200	1	10	2005.11.30
6 T 18	376336	1	2004.11.30	200	1	10	2005.11.30
3 T 19	376337	1	2004.11.30	200	1	10	2005.11.30
ST 21	376339	1	2004.11.30	200	1	10	2005.11.30
ST 22	376340	1	2004.11.30	200	1	10	2005.11.30
ST 23	376341	1	2004.11.30	200	1	10	2005.11.30
ST 24	376342	1	2004.11.30	200	1	10	2005.11.30
et 25	376343	1	2004.11.30	200	1	10	2005.11.30
ST 26	376344	1	2004.11.30	200	1	10	2005.11.30
ST 27	376345	1	2004.11.30	200	1	10	2005.11.30
ST 29	376347	1	2004.11.30	200	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant an	d Placer Claims are or	ne unit each	TOTALS	3800		190	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

	f work to be credited to portable assessment credit (PAC) y be credited from the approved value of Box C not applie	
	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or place laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Minetal Te

NOVEMBER 30, 2004 Date

EVENT NUMBER: 3731170 of the total value in Box E (from Page 1) as follows:

PAGE 21 OF 27

۱	wish	to	ap	ply	\$	
---	------	----	----	-----	----	--

Claim Name Tenure **Expiry Date** No. of Work to be applied Recording New Expiry (one claim per line) Number Units" Value Years Fee Date ST 30 376348 1 2004.11.30 200 1 2005.11.30 10 ST 31 376349 1 2004.11.30 200 1 10 2005.11.30 ST 32 376350 1 2004.11.30 200 1 10 2005.11.30 5T 33 376351 1 2004.11.30 200 1 10 2005.11.30 ST 34 376352 1 2004.11.30 200 1 10 2005.11.30 ST 35 376353 1 2004.11.30 200 1 10 2005.11.30 ST 36 376354 1 2004.11.30 200 1 10 2005.11.30 ST 37 376355 1 2004.11.30 200 1 10 2005.11.30 ST 38 376356 1 2004.11.30 200 1 10 2005.11.30 ST 39 376357 1 2004.11.30 200 1 10 2005.11.30 ST 40 376358 1 2004.11.30 200 1 10 2005.11.30 ST 41 376359 1 2004.11.30 200 1 10 2005.11.30 ST 42 376360 1 2004.11.30 200 1 10 2005.11.30 ST 43 376361 2004.11.30 1 200 1 10 2005.11.30 ST 44 376362 1 2004.11.30 200 1 10 2005.11.30 ST 45 376363 1 2004.11.30 200 1 10 2005.11.30 ST 46 376364 1 2004.11.30 200 1 10 2005.11.30 ST 47 376365 1 2004.11.30 200 1 10 2005.11.30 51 52 2004.11.30 376371 1 200 1 10 2005.11.30 * 2 Post, Fraction, Rev. Crown Grant and Placer Claims are one unit each TOTALS 3800 190

NOTICE TO GROUP / CAD EVENT NUMBER:

RECORDED

Value (May e	e of work to be cre only be credited fr	edited to portable assessment credit (PAC) account(s). om the approved value of Box C not applied to claims.)	
		Name	Amount
Name of	1		\$
owner/operator	2		\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Jenure Act

NOVEMBER 30, 2004

PAGE 22 OF. 27

I wish to apply \$

EVENT NUMBER: 300112

of the total value in Box E (from Page 1) as follows:


Claim Name	Tenure N	No. of		Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
ST 53	376372	1	2004.11.30	200	1	10	2005.11.3
S T 54	376373	1	2004.11.30	200	1	10	2005.11.3
ST 55	376374	1	2004.11.30	200	1	10	2005.11.3
ST 56	376375	1	2004.11.30	200	1	10	2005.11.3
ST 57	376376	1	2004.11.30	200	1	10	2005.11.30
ST 58	376377	1	2004.11.30	200	1	10	2005.11.3
ST 65	376384	1	2004.11.30	200	1	10	2005.11.3
RTC 21	376582	1	2004.11.30	200	1	10	2005.11.3
RTC 22	376583	1	2004.11.30	200	1	10	2005.11.3
RTC 23	376584	1	2004.11.30	200	1	10	2005.11.3
RTC 24	376585	1	2004.11.30	200	1	10	2005.11.30
SUGAR	385249	20	2004.11.30	4000	1	200	2005.11.30
STAN	386009/	12	2004.11.30	2400	1	120	2005.11.30
STAN 1	386010	6	2004.11.30	200,1200	1	60	2005.11.30
STAN 2	386011	20	2004.11.30	20004000	1	200	2005.11.30
STAN 3	386012	20	2004.11.307	00 ³ 4008	1	200	2005.11.30
STAN 4	386013	20	2004.11.30	2004000	1	200	2005.11.30
NELSON 1	386124	20	2004.11.30	1000	1	200	2005.11.30
NELSON 2	386125	12	2004.11.30	2032400	1	120	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant and P	lacer Claims are or	w unit each	TOTALS	28200		1410	

NOTICE TO GROUP / CAD EVENT NUMBE

	f work to be credited to portable assessment credit (PAC) account(s). y be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject-mineral or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Anni Fe

NOVEMBER	30,	2004
<u>م</u>	ute	

' ish to apply \$

of the total value in Box E (from Page 1) as follows:

EVENT NUMBER:

Claim Name	Tenure	No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
NELSON 3	386126	20	2004.11.30	20091000-	1	200	2005.11.30
NELSON 4	386127	20	2004.11.30)	000 4000	1	200	2005.11.30
NELSON 5	386128	20	2004.11.30	4000	1	200	2005.11.30
NELSON 6	386129	16	2004.11.30	003200	1	160	2005.11.30
SUGAR MTN	386728	20	2004.11.30	20094000	1	200	2005.11.30
CAFE 1	393131	20	2004.11.30	2000	1	200	2005.11.30
CAFE 2	393132	16	2004.11.30	1600	1	160	2005.11.30
MUSTANG	394027	20	2004.11.30	2000	1	200	2005.11.30
MUSTANG 1	394028	20	2004.11.30	2000	1	200	2005.11.30
MUSTANG 2	394029	20	2004.11.30	2000	1	200	2005.11.30
HUSTANG 3	394030	18	2004.11.30	1800	1	180	2005.11.30
MUSTANG 4	394031	20	2004.11.30	2000	1	200	2005.11.30
MUSTANG 5	394032	20	2004.11.30	2000	1	200	2005.11.30
CAFE 3	394252	20	2004.11.30	2000	1	200	2005.11.30
× 3.5	394331	20	2004.11.30	2000	1	200	2005.11.30
CAFE 6	394332	20	2004.11.30	2000	1	200	2005.11.30
CAFE 4	394561	20	2004.11.30	2000	1	200	2005.11.30
CAFE 7	394576	1	2004.11.30	100	1	10	2005.11.30
CAFE 8	394577	1	2004.11.30	100	1	10	2005.11.30
* 2 Post, Fraction, Rev. Crown Grant and	d Placer Claims are o	ne unit each	TOTALS	42800		3320	

IOTICE TO GROUP / CAD EVENT NUMBER:

RECORDED

	of work to be credited to portable assessment credit (PAC) acc may be credited from the approved value of Box C not applied to	
	Name	Amount
Name of	1	\$
Name of owner/operator	2.	\$

the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the quirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge ad understand that it is an offence to knowingly provide false information under the *Mineral Tenure Act*. I acknowledge and inderstand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and ivelopment has not been performed, then the work reported on this Statement will be cancelled and the subject-mineral or placer air) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure Act.

NOVEMBER 30, 2004

EVENT NUMBER: 300112

PAGE 24 OF 27

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to be applied		Recording	New Expiry
(one claim per line)	Number	Units*		Velue	Years	Fee	Date
CAFE 9	394578	1	2004.11.30	100	1	10	2005.11.3
CAFE 10	394579	1	2004.11.30	100	1	10	2005.11.3
CAFE 11	394580	1	2004.11.30	100	1	10	2005.11.3
CAFE 12	394581	1	2004.11.30	100	1	10	2005.11.3
CAFE 13	394582	1	2004.11.30	100	1	10	2005.11.3
CAFE 14	394583	1	2004.11.30	100	1	10	2005.11.3
CAFE 15	394584	1	2004.11.30	100	1	10	2005.11.3
CAFE 16	394585	1	2004.11.30	100	1	10	2005.11.3
CAFE 17	394586	1	2004.11.30	100	1	10	2005.11.3
CAFE 18	394587	1	2004.11.30	100	1	10	2005.11.3
CAFE 19	394588	1	2004.11.30	100	1	10	2005.11.3
SAFE 20	394589	1	2004.11.30	100	1	10	2005.11.3
DM 2	401336	1	2004.11.30	100	1	10	2005.11.30
DM 3	401337	1	2004.11.30	100	1	10	2005.11.30
DM 4	401338	1	2004.11.30	100	1	10	2005.11.30
DM 5	401339	1	2004.11.30	100	1	10	2005.11.30
DM 6	401474	1	2004.11.30	100	1	10	2005.11.30
DM 7	401475	1	2004.11.30	100	1	10	2005.11.30
DM 8	401476	1	2004.11.30	100	1	10	2005.11.30
2 Post, Fraction, Rev. Crown Grant and	I Placer Claims are or	e unit each	TOTALS	1900		190	

NOTICE TO GROUP / CAD EVENT NUMBER:

RECORDED

	of work to be credited to portable assessment credit (PAC) account(s). By be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer claims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure Act.

NOVEMBER 30, 2004

PAGE 25 OF 27 EVENT NUMBER: 322112

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per line)	Number	Units*		Value	Years	Fee	Date
DWM 30	401757	1	2004.11.30	100	1	10	2005.11.30
DWM 31	401758	1	2004.11.30	100	1	10	2005.11.30
DWM 32	401759	1	2004.11.30	100	1	10	2005.11.3
DWM 33	401760	1	2004.11.30	100	1	10	2005.11.3
D WM 34	401761	1	2004.11.30	100	1	10	2005.11.30
DWM 35	401762	1	2004.11.30	100	1	10	2005.11.30
	401763	1	2004.11.30	100	1	10	2005.11.3
-DWM 37	401764	1	2004.11.30	100	1	10	2005.11.30
EFF 1	403266	15	2004.11.30	1500	1	150	2005.11.3
JEFF 2	403267	20	2004.11.30	2000	1	200	2005.11.30
JEFF 11	403268	20	2004.11.30	2000	1	200	2005.11.30
JEFF 3	403269	1	2004.11.30	100	1	10	2005.11.30
JEFF 4	403270	1	2004.11.30	100	l	10	2005.11.30
JEFF 5	403271	1	2004.11.30	100	1	10	2005.11.30
JEFF 6	403272	1	2004.11.30	100	1	10	2005.11.30
JEFF 7	403273	1	2004.11.30	100	1	10	2005.11.30
EFF 8	403274	1	2004.11.30	100	1	10	2005.11.30
JEFF 9	403275	1	2004.11.30	100	1	10	2005.11.30
IEFF 10	403413	20	2004.11.30	2000	1	200	2005.11.30
2 Post, Fraction, Rev. Crown Grant and	d Placer Claims are on	e unit each	TOTALS	9000		900	

NOTICE TO GROUP / CAD EVENT NUMBER: ______ RECORDED

Value o (May on	f work to be credited to portable assessment credit (PAC) account(s). Iy be credited from the approved value of Box C not applied to claims.)	
	Name	Amount
Name of	1	\$
Name of owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be faise and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject minglal or placer laims(s) may, as a result, forfeit and vest back to the Province under section 35 of the section Te fiire.

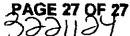
NOVEMBER	30,	2004	
<u>_</u>	10		

PAGE 26 OF 27

I wish to apply \$

EVENT NUMBER: 300112

of the total value in Box E (from Page 1) as follows:


Claim Name	Tenure	No. of	Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per line)	Number	Units*	L	Value	Years	Fee	Date
JEFF 12	403414	20	2004.11.30	2000	1	200	2005.11.30
JEFF 13	403415	18	2004.11.30	1800	1	180	2005.11.30
WHIP 1	333038	6	2004.11.30	1200	1	60	2005.11.30
WHIP 2	333039	3	2004.11.30	600	1	30	2005.11.30
COULTER 1	337601	20	2004.11.30	4000	1	200	2005.11.30
COULTER 2	337602	20	2004.11.30	4000	1	200	2005.11.30
COULTER 3	337603	20	2004.11.30	4000	1	200	2005.11.30
COULTER 4	337604	20	2004.11.30	4000	1	200	2005.11.30
COULTER 5	337605	1	2004.11.30	200	1	10	2005.11.30
COULTER 6	337606	1	2004.11.30	200	1	10	2005.11.30
COULTER 7	337607	1	2004.11.30	200	1	10	2005.11.30
COULTER 8	337608	1	2004.11.30	200	1	10	2005.11.30
PROMISE 1	342687	1	2004.11.30	200	1	10	2005.11.30
PROMISE 2	342688	1	2004.11.30	200	1	10	2005.11.30
PROMISE 3	342689	1	2004.11.30	200	1	10	2005.11.30
PROMISE 4	342690	1	2004.11.30	200	1	10	2005.11.30
PROMISE 5	342691	1	2004.11.30	200	1	10	2005.11.30
PROMISE 6	342692	1	2004.11.30	200	1	10	2005.11.30
PROMISE 7	34269	1	2004.11.30	200	1	10	2005.11.30
2 Post, Fraction, Rev. Crowin Grant and	d Placer Claims are or	e unit each	TOTALS	23800		1380	

NOTICE TO GROUP / CAD EVENT NUMBER: _____ RECORDED

	f work to be credited to portable assessment credit (PAC) account(y be credited from the approved value of Box C not applied to claim	
	Name	Amount
Name of	1	\$
owner/operator	2	\$

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be false and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer claims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenute A

NOVEMBER 30, 2004

I wish to apply \$

of the total value in Box E (from Page 1) as follows:

Claim Name	Tenure	No. of	Expiry Date	Work to b	e applied	Recording	New Expiry
(one claim per tine)	Number	Units*		Value	Yeers	Fee	Date
PROMISE 8	342694	1	2004.11.30	200	i	10	2005.11.30
					-		† · · · ,
·					·	,	
						†	
				1		1	
					1		<u>}</u> _ <u>−</u>
							<u>+</u>
				1		<u> </u>	}
		• <u> </u>	†	1	<u>}</u>	<u> </u>	<u> </u>
	1	······································		<u>+</u>			<u> </u> _
	1					<u> </u>	<u> </u>
	++					<u> </u>	
				<u> </u>		<u> </u>	
	++						
	1						
	11						
}	╶┼╌╌╾┥						
	<u> </u>			200		10	
* 2 Post, Fraction, Rev. Crown Grant and	Placer Claims are on	e unit each	TOTALS	309600		17500	

NOTICE TO GROUP / CAD EVENT NUMBER: RECORDED

Value o (May on		A	
		Name	2.293 346
Name of	1.	INTERNATIONAL WAYSIDE GOLD MINES LTD.	\$2,250,540
owner/operator	2.	ISLAND MOUNTAIN GOLD MINES LTD.	\$ 825,000.00

I, the undersigned Applicant, hereby confirm that the information is supplied and the credits are claimed in accordance with the requirements in the Mineral Tenure Act, the Mineral Tenure Act Regulation, and the Mineral Act Regulation. I hereby acknowledge and understand that it is an offence to knowingly provide false information under the Mineral Tenure Act. I acknowledge and understand that if the statements made, or information given, in this Statement of Work are found to be faise and the exploration and development has not been performed, then the work reported on this Statement will be cancelled and the subject mineral or placer slaims(s) may, as a result, forfeit and vest back to the Province under section 35 of the Mineral Tenure A

NOVEMBER 30, 2004

APPENDIX III

STATEMENT OF EXPENDITURES

APPENDIX III

STATEMENT OF EXPEDITURES

Cariboo Gold Project - International Wayside Properties (Part A)

Geological Contractors			
John Childs	00 dava @ \$2005		
Dasha Duba	96 days @ \$605	58,080	
Henry Foilman	78 days @ \$350	27,300	
Ed Gates	74 days @ \$500	37,000	
David Johnson	148 days @ \$ 500	74,000	
Kelly Mahoney	19 days @ \$400	7,600	
Dan McGrane	12 days @ \$300	3,600	
Charlie Moore	15 days @ \$500	7,500	
Doug Onychuk	116 days @ \$275	31,900	
Jean Pautler	51 days @ \$250	12,750	
Robert Reid	13 days @ \$475	6,175	
	14 days @ \$400	5,600	
Janet Riddell	18 days @ \$325	5,850	
Jim Yin	125 days @ \$375	46,875	
	Total Geological	\$324,230	0
Other Contractors			
Drafting & Surveying	251 days @ \$345	86,595	
Surveying	183 days @ \$120	21,960	
	Total Other Contractors	\$108,555	C
leals and Accomodation			
Geological Contractors	779 person days @ \$84/day	CE 400	
Other Contractors	434 person days @ \$84/day	65,436	
	Total Meals & Accomodation	<u>36,456</u> \$101,892	
		¢ 10 1,002	
quipment Rental 4 x 4 pick-up trucks	4 trucke x 7 me x #040/me		
	4 trucks x 7 mo x \$940/mo Total Equipment Rental	26,320 \$26,320	0
		<i>\$20,320</i>	V
liamond Drilling Surface Diamond Drilling (Ge	otoch & Dofinition (Lolar)		
37 321 feet of NO drilling @ 9	26.00 per ft (includes fuel, boxes)		
	20.00 per it (includes fuel, boxes)	970,346	0
Underground Diamond Drilling	g		
20,459 feet of BQ drilling @ \$	26.00 per ft (includes fuel, boxes)	531,934	
	Total Diamond Drilling	\$1,502,280	٥
urface Percussion Drilling - Pneumat	ic Hammer		
723 feet of 6 inch drilling, casi	ing, grouting, intallation of water		
monitoring well equipment @	\$40 per foot	00.000	
	Total Percussion Drilling	28,920	
	The recussion priming	\$28,920	¢

APPENDIX III (Continued)

STATEMENT OF EXPEDITURES

Assaying		ICNI OF EXPEDITURES		
	Core samples	6340 samples @ \$18.83 ea	119,382	
5	Sludge samples	1029 samples @ \$18.83 ea	19,376	
5	Soil samples	838 samples @ \$21.39 ea	17,925	
F	Rock samples	613 samples @ \$14.55 ea	8,919	
ד	ruck & muck samples	668 samples @ \$18.83 ea	12,578	
		Total Assaying	\$178,180	נ
Sample Shi	ppina			
	lost samples shipped by bus,	billed from lab	28,979	
		Total Sample Shipping	\$28,979	Ε
ield Suppli	es			
	ample bags, flagging, survey	stakes buckets	6 005	
c	ore saw blades, etc.		5,305	
		Total Field Supplies	\$5,305	Ε
ore Storag	e Construction			
	apacity of 77,400 feet of NQ of	or BQ core		
R	acks: 42 feet x 48 feet = 2,01	6 square feet		
	,016 sq ft x \$25/sq ft =		50,400	
	. ,	Total Core Storage Const.	\$50,400	
		en en en en en age eenst,	\$ 50,400	(
	rill Pad Construction			
E	quipment - Standard Drilling &	Engineering, Wells, BC		
S	amsung 300 excavator	183 hours @ \$225/hr	41,175	
	yundi Robex LC 130 excav.	139 hours @ \$112/hr	15,568	
	at D-6 bulldozer	575 hours @ \$120/hr	69,000	
Ci	at D-8 bulldozer	22 hours @ \$160/hr	3,520	
Lo	og skidder	47 hours @ \$85/hr	3,995	
Di	ump Truck	32 hours @ \$60/hr		
Lo	wbed - mob / de-mob		1,920	
Ci	ulverts		10,550	
		Sub-total	16,207 \$161,935	
Fr	uipment - Wright Contracting		<i>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	
Ca	at D-3 buildozer	118 hours @ \$41/hr		
	at 428C hoe		4,838	
	0 LC excavator	175 hours @ \$40/hr	7,000	
	0 Kobelco excavator	44 hours @ \$122/hr	5,368	
	yard dump truck	7.5 hours @ \$157/hr	1,178	
	ater truck	151 hours @ \$60/hr	9,060	
	ater truck ock delivered to site	3 hours @ \$60/hr	180	
	uipment mob / de-mob		5,489	
ц	de-mop		520	
		Sub-total	\$33,633	۵

APPENDIX III (Continued)

STATEMENT OF EXPEDITURES

Miscella	neous Hourly Wages			
	Core cutting	825 man days @ \$120/day	99,000	
	Core handling	82 days @ \$120/day	9,840	
	Timber felling	28 days @ \$160/day	4,480	
	Environmental remediation	75 days @ \$120/day	9,000	
	Data entry & compilation	115 days @ \$128/day	14,720	
	• •	Total Misc. Hourly Wages	\$137,040	
Bulk Sar	nple			
	Mining Contractor - Roktek	Services Ltd.		
	Contractor's Mobilization		27,291	
	Site Preparation		26,180	
	Mine Development		2,197,338	
		Sub-total Roktek	\$2,250,809	
	Mining Shut-Down Costs		145,193	
	Contractors cost plus charges		17,272	
	Changes to PAG Storage (cos	t plus)	8,446	
	Ore haulage to Mount Polley N		397,759	
	Additional Mining and Trucking		81,350	
	с с	Total Bulk Sample	\$2,900,829	۵
Report				
report	Report writing: 11 days @ \$50) per dav	5,500	
	Drafting: @ 24 days @ \$250 p		6,000	
	Copying, plotting and assembly		1,792	
	Report supplies:	14 days (2 \$120 per day	453	
		Total Report Costs	\$13,745	C
	SUB-TOTAL FOR INTERNAT	IONAL WAYSIDE PROPERTIES	\$5,602,243	
	Administration and office co	sts: 10% of above	\$560,224	
GRANDE	TOTAL - INTERNATIONAL WA	YSIDE PROPERTIESIWA	\$6,162,467	
Cariboo		untain Gold Mines Properties (
	port, Appendix III, by J. M. Ride			
GRAND 1	TOTAL - ISLAND MOUNTIAN G	OLD MINES PROPERTIESIGM	\$194,393	
COMBI	NED EXPENDITURES FOR	R IWA & IGM	\$6,356,860	
TOTAL A	MOUNT APPLIED FOR ASSES	SMENT	\$139,000	
work don	ditures marked with a square were e in 2004, as described in this rep d based on Mineral Titles Informa	e verified by E. Gates, by reviewing orig port. I Expenditures marked with diamo tion Letter No. 19 guidelines A Expendence	ond were	

APPENDIX IV

STATEMENT OF QUALIFICATION

vi

APPENDIX IV

STATEMENT OF QUALIFICATION

I, Edward E. Gates, do hereby certify that:

1 am a geologist with more than twenty years of experience in mineral exploration and development.

I am a graduate of the University of Texas at El Paso, with a M.Sc. degree in geology (June, 1985). I am also a graduate of the Mackay School of Mines at the University of Nevada – Reno, with a B.Sc. degree in geology (June, 1980).

I hold a Professional License in the state of Washington - #2253.

I am the author of the written portion of Part A of this report. I have read and concur with Part B and Part C of this report, each having been authored by qualified geologists, as documented therein.

I joined the project in June 2004, and am familiar with the project activities that occurred earlier in the year. I supervised and implemented the drilling program on Bonanza Ledge and the Goldfinch Target, planned and supervised the trenching and channel sampling at Bonanza Ledge and the sampling along the Cow Mountain Road. I planned and supervised the Lower Lowhee soil geochemistry program, and the mapping and sampling on Cow Mountain and in the Lowhee Creek area.

Since January 2005, I have been Acting Mine Manager for the Cariboo Gold Project

I own 21,142 shares of International Wayside Gold Mines Ltd, which is the subject of this report.

Edward E. Lates

Edward E. Gates Geologist

APPENDIX V

BONANZA LEDGE BULK SAMPLE

Vİİ

Sample #	· · · · · · · · · · · ·	- <u> </u>			MTPA	lley Scale	RUCK SAM	LE2		
Sample #			Shift	Weight (kg)	Weight IN (kg)	Weight OUT (kg)			J	
	$\frac{10}{10}$	6 23-Feb-04	1	47460	46970			Tons(short)	Assay (oz)	Assay (g
		9 23-Feb-04	<u>اا</u>		40300	<u> </u>		22.02		<u>,</u>
		1 23-Feb-04			48630	10000	21700	21.26		·
<u></u>		3 23-Feb-04			46780			24.12		
166701		23-Feb-04			21580	10000	01200	17.82		
166702		24-Feb-04			43580	19310		13.49		
166703		24-Feb-04				19310	24270	22.13	0.443	15.2
166704		24-Feb-04	AM					0.00	0.484	16.6
166705	14	24-Feb-04	AM					0.00	0.712	24.4
166706	<u>_</u>	24-Feb-04	AM	38730	38450	15670		0.00	0.391	13.4
166707	3	24-Feb-04 24-Feb-04	AM			13070	22780	17.96	0.560	19.2
166708		24-Feb-04 24-Feb-04	AM					0.00	2.187	75.00
166709			AM					0.00	0.688	23.60
166710		24-Feb-04	AM	42780	42530	18760		0.00	0.659	22.60
166711	°	24-Feb-04					23770	21.50	1.709	58.60
66712		24-Feb-04	AM					0.00	0.411	14.10
+		24-Feb-04	AM					0.00	0.382	13.10
		<u>24-1 eb-04</u>			42830	19200	23630	0.00	0.627	21.50
66901	16	25-Feb-04	AM				23030	22.01		
66902	3			45410	44910	19370	25540	0.00		
66903		25-Feb-04	AM	40380	40150	15700	2334024450	22.20	0.220	7.56
66904		25-Feb-04	AM		43740	19360	24380	17.99	0.674	23.10
					44280	18740	25540	22.19	0.709	24.30
36713	16	26-Feb-04	AM -		T		20040	21.48	0.502	17.20
6714			AM		45290	19210	26080	0.00		
6715	14 2				45170	19490	25680	22.02	0.443	15.20
6716 (K	(eis) 792 2	6-Feb-04	AM -					22.34	0.662	22.70
<u>6717 </u> (K	(eis) 792 2		AM	45400	45210	17930	27280	0.00	0.566	19.40
6718			AM					20.55	0.405	13.90
6719			AM	38690	38110	15450	22660	0.00	0.499	17.10
6720			AM	44070				0.00	0.747	25.60
6721	9 2		AM	44070	43360	18750	24610	21.49	0.464	15.90
6722	14 20		- M					21.49	0.367	12.60
-		<u>-</u> <u>-</u> <u>-</u>		<u>l_</u>	25940	11000	14940	12.61	0.572	19.60

				ANZA LE	DGE BUI	KG					
Sample #	Truck #	Date		Quesnel Scal		-11 0	MINELE	TRUCK SAM	API ES		
166723	41.4 ·	27-Feb-04		Weight (kg)	Weight IN 7	Polle	y Scale	g) Ore Weight (kg)	LEO		
166724	<u> </u>	27-Feb-04 27-Feb-04	AM			<u>va) v</u>	veight OUT (k	g) Ore Weight (ka)			T
166725		27-Feb-04	AM			340	1808	30 00 00 00 00 00 00 00 00 00 00 00 00 0	Tons(short)	Assay (oz)	1 Acor
166726	16	27-Feb-04 27-Feb-04	AM					22760	20.72	0.452	
166727		27-Feb-04	AM		429	10	1936		0.00	0.531	+
166728		27-Feb-04	AM					23550	22.19	0.423	<u> </u>
166729		27-Feb-04	AM		406	90	1894		0.00	0.752	
166730		27-Feb-04	AM	3687		_		21750	21.71	1.607	
166731		27-Feb-04	AM	0007	363	BO	15710		0.00	0.478	
66732			PM					20670	18.01	0.519	1
66733	14[2		PM		4629	90]	19370	t	0.00	0.455	1
66734	1012	7-Feb-04	PM		<u> </u>			26920	22.20	0.455	1
66735	1012	7-Feb-04	PM		5005	0	19360	l	0.00		2
66736		7-Feb-04 1	PM		<u> </u>		00000		22.19	0.239	
36737 (K	eis) 9 28	7-Feb-04	PM		7064	0	40980		0.00	0.502	17
6738 (Ke		B-Feb-04	M			T^{-}	0000	29660	46.97	0.601	2(
6739		B-Feb-04 A	M		65310	2	39970	T	0.00	0.265	9
6740	3 28	-Feb-04 A	M			$T^{}$	00070	25340	45.81	0.280	9
6741	3 28	-Feb-04 A	M		57520		37740		0.00	0.933	32
6742	10[28	Feb-04 P	м —					19780	43.26	0.569	19
5743		Feb-04 Pi	И		68900		41480		0.00	0.219	7
3744	14 28-	Feb-04 PM	л —					27420	47.54	0.227	7.
745	14 28-	Feb-04 PN	1		71690		43790		0.00	0.531	18.
746	3 28-	Feb-04 PN	1					27900	50.19	0.312	10.
747	3[28-]	Feb-04 PN	1		66090		38340		0.00	0.548	18.8
748	9 29-1	eb-04 AM	i —				0	27750	43.94	0.481	16.5
749	9 29-F	eb-04 AM			65220		41090		0.00	0.367	12.6
750	16 29-F	eb-04 AM	1		T			24130	47.10	0.429	
<u></u> +	16 29-F	eb-04 AM	<u> </u>		65880		41480		0.00/	0.694	23.8
05			1					24400	47.54	0.221	7.5
06	14 29-F	eb-04 AM	T						0.00	0.761	26.1
07	14 29-Fe	eb-04 AM	1		68430		41350		0.00	0.230	7.87
28	3 29-Fe	eb-04 AM	T					27080	47.39		
)9	3 29-Fe	b-04 AM	<u> </u>		62600		37440		0.00	0.338	11.60
	16 29-Fe	b-04 PM		47030				25160	42.91	0.385	13.20
					46500		21760		0.00	0.528	18.10
								24740	24.04	0.793	27.20

	16 14 14 9 9 9 (Keis) 9 (Keis) 9 16	Date 29-Feb-04 29-Feb-04 29-Feb-04 29-Feb-04 29-Feb-04 01-Mar-04 01-Mar-04 01-Mar-04	Shift PM PM PM PM AM	Weight (kg)	Weight IN (kg) 46890 47970	lley Scale Weight OUT (kg) 19760	Ore Weight (kg) 27130	Tons(short) 0.00 22.65 0.00	Assay (oz) 0.260 0.290	Assay (g 8.9 9.9
166911 166912 166913 166914 166915 (166915 (166917 166918	14 14 9 9 (Keis) 9 (Keis) 9 16	29-Feb-04 29-Feb-04 29-Feb-04 29-Feb-04 01-Mar-04 01-Mar-04	PM PM PM PM		46890			0.00	0.260	8.
166912 166913 166914 166915 (166916 166917 166918	14 9 9 (Keis) 9 (Keis) 9 16	29-Feb-04 29-Feb-04 29-Feb-04 01-Mar-04 01-Mar-04	PM PM PM			19760	27130	22.65	0.260	8.
166913 166914 166915 (166916 (166917 166918	9 9 (Keis) 9 (Keis) 9 16	29-Feb-04 29-Feb-04 01-Mar-04 01-Mar-04	PM PM AM			19760	27130			
166914 166915 (166916 (166917 166918	9 (Keis) 9 (Keis) 9 16	29-Feb-04 01-Mar-04 01-Mar-04	PM AM		47970					
166915 (166916 (166917 166918	(Keis) 9 (Keis) 9 16	01-Mar-04 01-Mar-04	AM					0.00]	0.143	
166916 166917 166918	(Keis) 9 16	01-Mar-04					24310	0.00	0.671	23.0
166916 166917 166918	(Keis) 9 16	01-Mar-04						0.00	0.481	16.5
166917 166918	16	01-Mar-04			44730	18150				
166918	16	01-Mar_∩⊿1				10150	26580	20.80	0.426	14.6
	16		AM		45780	19630		0.00	0.332	11.4
INNUTO I	4.4	01-Mar-04	AM			19630	26150	22.50	0.193	6.6
66920	14	01-Mar-04	AM	43300	42810	19670		0.00	0.373	12.8
66921	14	01-Mar-04	AM			19070	23140	22.55	0.300	10.3
66922		01-Mar-04	AM	39690	39420	15760		0.00	0.344	11.8
		01-Mar-04	AM			10760	23660	18.06	0.365	12.5
	·	01-Mar-04	PM		44790	18930		0.00	0.149	5.1
66925		01-Mar-04	PM	T			25860	21.70	0.188	6.4
66926			PM		68110	41620		0.00	0.335	11.50
66927			PM				26490	47.70	0.267	9.16
6928			PM	47530	68760	41400	27200	0.00	0.315	10.80
6929			PM T				27360	47.45	0.235	8.07
6930		the second second second second second second second second second second second second second second second se			63800	37520		0.00	0.347	11.90
6931			РМ			0/020	26280	43.00	0.633	21.70
6932				42150	41840	20090		0.00	0.548	18.80
						20000	21750	23.03	0.292	10.00
					46790	18510		0.00	0.197	6.75
6935			AM				28280	21.22	0.359	12.30
6936	16 02		AM	44930	44520	19700		0.00	0.297	10.20
6937	14 02		M				24820	22.58	0.290	9.96
6938	14 02		M	45130	44780	19670		0.00	0.470	16.10
5939			M				25110	22.55	0.414	14.20
5940			M	38960	38780	15850		0.00	0.516	17.70
5941			M				22930	18.17	0.507	17.40
942	16/02		M	47530	70060	41430		0.00	0.332	11.40
	10[02	-mar-04 P	M				28630	47.49	0.283	9.71

		E	BON	ANZA LED	GE BULK	SAMPLE TH	RUCK SAM	PLES		
				Quesnel Scale	MT Pol	ley Scale				
Sample #	Truck #	Date	Shift	Weight (kg)	Weight IN (kg)	Weight OUT (kg)	Ore Weight (kg)	Tons(short)	Assay (oz)	Assay (g)
166943	9	02-Mar-04	PM		69690	41170	28520	47.19	0.199	6.82
166944	9	02-Mar-04	PM					0.00	0.408	14.00
166945	14	02-Mar-04	PM		70360	41620	28740	47.70	0.202	6.93
166946	14	02-Mar-04	PM					0.00	0.289	9.91
166947	3	03-Mar-04	ÂM	42120	41850	15910	25940	18.24	0.257	8.80
166948	3	03-Mar-04	AM					0.00	0.265	9.10
166949	9	03-Mar-04	AM	45400	44940	19660	25280	22.53	0.161	5.52
166950	9	03-Mar-04	AM					0.00	0.128	4.40
								0.00		
165201		NO TAG						0.00		
165202	16	03-Mar-04	AM	45380	44950	19730	25220	22.61	0.400	13.70
165203	16	03-Mar-04	AM					0.00	0.242	8.30
165204	14	03-Mar-04	PM		49627	19736	29891	22.62	0.309	10.60
165205	14	03-Mar-04	PM					0.00	0.347	11.90
165206	16	03-Mar-04	PM		49445	19695	29750	22.57	0.391	13.40
165207	16	03-Mar-04	PM					0.00	0.216	7.40
165208	3	04-Mar-04	PM		38700	15980	22720	18.32	0.324	11.10
165209	3	04-Mar-04	PM					0.00	0.350	12.00
165210	14	04-Mar-04	PM		45540	19640	25900	22.51	0.437	15.00
165211	14	04-Mar-04	PM					0.00	0.446	15.30
165212	16	04-Mar-04	PM		46720	20100	26620	23.04	0.280	9.61
165213	16	04-Mar-04	PM					0.00	0.478	16.40
165214	9	04-Mar-04	PM		45830	19550	26280	22.41	0.129	4.42
165215	9	04-Mar-04	PM					0.00	0.502	17.20
165216	9	05-Mar-04	AM	45220	44855	19382	25473	22.21	0.213	7.30
165217	9	05-Mar-04	AM					0.00	0.388	13.30
165218	14	05-Mar-04	AM		45018	19809	25209	22.70	0.362	12.40
165219	14	05-Mar-04	AM					0.00	0.309	10.60
165220	16	05-Mar-04	AM		46110	19940	26170	22.85	0.163	5.60
165221		05-Mar-04	AM					0.00	0.052	1.78
165222	3	05-Mar-04	AM	40220	40118	15918	24200	18.24	0.306	10.50
165223		05-Mar-04	AM					0.00	0.289	9.90
165224		06-Mar-04	AM		45736	19245	26491	22.06	0.878	30.10
165225	9	06-Mar-04	AM					0.00	0.849	29.10

Sample #	Truck #	Date			MT Po	SAMPLE T		LE9		
165226			Shift	Weight (kg)	Weight IN (kg)	Weight OUT (kg)			T	
165227		3 06-Mar-04			39900	15000		Tons(short)	Assay (oz)	Assay (
165228						15930	23970	18.26		19.
165229		06-Mar-04			46780	40000		0.00	0.749	25.
165230	14	06-Mar-04				19800	26980	22.69	0.688	23.
165231	10	06-Mar-04			47120	40700		0.00	0.854	23.
165232	10	06-Mar-04				19790	27330	22.68	1.047	
165233	10	06-Mar-04	PM		47480		I	0.00	0.297	
165234		06-Mar-04	PM			19810	27670	22,71	0.449	15.4
165235	9	06-Mar-04	PM		46460			0.00	0.475	16.3
65236		06-Mar-04	_PM T			19320	27140	22.14	0.747	25.6
65237		06-Mar-04	PM		41070			0.00	0.892	
65238	3	06-Mar-04	PM			15750	25320	18.05	0.808	
65239		06-Mar-04	PM		48290			0.00	1.309	<u>27.7</u> 44.9
65240		06-Mar-04	PM			19390	28900	22.22	0.505	<u>44.9</u> 17.3
65241		07-Mar-04	ID DAY		52660			0.00	0.408	
65242	<u> </u>	07-Mar-04	ID DAY		02000	19450	33210	22.29	0.321	<u>14.0</u> 11.0
35243	3	07-Mar-04	D DAY		43510			0.00	0.190	<u>17.01</u> 6.5(
55244	3	07-Mar-04	D DAY			15880	27630	18.20	0.318	10.9
5245		07-Mar-04 II	<u>D DAY</u>		52650			0.00	0.300	10.3
5246	14 (07-Mar-04 11	<u>D DAY</u>		02000	19700	32950	22.58	0.534	18.30
5247	1010	07-Mar-04 II	<u>D DAY</u>		49260			0.00	0.254	8.71
5248)7-Mar-0411				19890	29370	22.80	0.300	10.30
5249		8-Mar-04	AM		42030			0.00	0.292	10.30
5250	310	8-Mar-04	<u>AM [</u>		42030	15830	26200	18.14	0.122	
5251	<u> </u>	8-Mar-04	AM	49610	49320			0.00	0.122	<u>4.20</u> 4.07
	910	8-Mar-04	AM			19440	29880	22.28	0.312	
	pup) 2 0		AM	24930	24720			0.00	0.426	<u>10.70</u> 14.60
5254	pup) 8 0		AM	24180	23900	11260	13460	12.91	0.330	
5255		8-Mar-04 A	AM	47450	47170	11300	12600	12.95	0.213	11.30
256			AM			19800	27370	22.69	0.067	7.30
257	16 08		M		45900			0.00	0.187	2.31
258	16 08		M			19680	26220	22.56	0.093	6.40
259	16 08	B-Mar-04 P	PM		52400			0.00	0.154	3.18
	16 08	Mar-04 P	M			19470	32930	22.32	0.330	5.29

Sample #	Truck #	╀──╤────				SAMPLE T		FLES		
165260		Date	Shift	Weight (kg)	Weight IN (kg)	Weight OUT (kg)				<u> </u>
165260		08-Mar-04	PM		50590			Tons(short)	Assay (oz)	Assay (
165262	14	08-Mar-04	PM			19200	31390	22.01	0.201	6.
165263		08-Mar-04	PM		52280			0.00	0.269	9.1
165264	9	08-Mar-04	PM		02200	19050	33230	21.83	0.246	8.4
165265		08-Mar-04	PM		46600	155.40		0.00	0.615	21.
		08-Mar-04	PM			15540	31060	17.81	0.178	<u>21.</u> 6.1
165267	(no pup) 2	09-Mar-04	ÂM		22420	11130		0.00	0.373	12.8
	(no pup) 8	09-Mar-04	AM		22630	11130	11290	12.76	0.332	11.4
165269	(no pup)10	09-Mar-04	AM	22060	21870	12170	11470	12.79	0.519	17.8
165270	10	09-Mar-04	AM	44960	45060	19910	9700	13.95	0.437	15.0
165271	10	09-Mar-04	AM			19910	25150	22.82	0.290	9.9
65272		09-Mar-04 09-Mar-04	AM	44570	44370	19680		0.00	0.382	13.1
65273		09-Mar-04	AM			19080	24690	22.56	0.300	10.3
65274		09-Mar-04	AM	Ī	41800	19710		0.00	0.265	9.1
65275			AM				22090	22.59	0.251	8.6
65276					36510	15990		0.00	0.280	9.6
65277	3		AM AM				20520	18.33	0.624	21.4
65278					38350	15700	22650	0.00	0.292	10.00
65279							22000	17.99	0.414	14.20
35280	16/1				44490	19390	25100	0.00	0.143	4.90
65281 (+							25100	22.22	0.225	7.70
	- pup) 2 1			38280	37660	15570	22090	0.00	0.414	14.20
5283							22090	17.85	0.306	10.50
5284			AM	46190	45440	19330	26110	0.00	0.408	14.00
5285			M				20110	22.16	0.452	15.50
5286	91		M	43890	43200	19350	23850	0.00	0.446	15.30
5287	3 15		M				23030	22.18	0.260	8.90
5288	3 15		M		41640	15710	25930	0.00	0.408	14.00
5289			M				23330	18.01	0.694	23.80
5290			M -	50270	49800	19550	30250	0.00	1.493	50.50
5291	9 15		M		<u></u>		0200	22.41	0.843	28.90
5292		-Mar-04 A			47680	19550	28130	0.00	0.647	22.20
5293	14 15	-Mar-04 A						22.41	1.234	42.40
					47990	19710	28280	0.00	0.700	24.00

165296 (- 165297 165298 165299 165300 165301 165302 65303 (+ 65304 (+ 65305 (n) 65307 65308	(+ pup) 2 (+ pup) 2 3 3 16 16 9 9	Date 15-Mar-04	Shift AM AM			SAMPLE T Iley Scale Weight OUT (kg) 15700		Tons(short)	Assay (oz)	Assay (
165295 (; 165296 (; 165297 (; 165298 (; 165299 (; 165300 (; 65301 (; 65302 (; 65303 (; 65305 (;; 65306 (;; 65307 (;; 65308 ; 65309 NC	(+ pup) 2 (+ pup) 2 3 3 16 16 9 9	15-Mar-04 15-Mar-04 16-Mar-04 16-Mar-04 16-Mar-04 16-Mar-04	AM AM AM				Ore Weight (kg)		Assay (oz)	Assav (
165296 (* 165297 165298 165298 165300 165300 165300 165301 165302 65303 (+ 65304 (+ 65305 (n) 65306 (n) 65307 65308 65309 NC	(+ pup) 2 3 16 16 9 9	15-Mar-04 16-Mar-04 16-Mar-04 16-Mar-04 16-Mar-04	AM AM AM		38980	15700			(02)	- Assavi
165297 165298 165299 165300 165301 165302 65303 65304 (+ 65305 (n) 65306 (n) 65307 65308 65309	3 3 16 16 9 9	16-Mar-04 16-Mar-04 16-Mar-04 16-Mar-04	AM AM			157001		0.00	0.703	
165298 165299 165300 165301 165302 165303 165304 165305 165306 165307 165308 165309	3 16 16 9 9	16-Mar-04 16-Mar-04 16-Mar-04	AM			<u> </u>	23280	17.99	1.056	24
165299 165300 65301 65302 65303 65304 65305 65306 65307 65308 65309	16 16 9 9	16-Mar-04 16-Mar-04	_		39490			0.00	0.927	36
165300 65301 65302 65303 65304 (+ 65305 (n) 65306 65307 65308 65309	16 9 9	16-Mar-04	AM			15920	23570	18.25	0.854	31
65301 65302 65303 65304 65305 65306 65307 65308 65309	9			45660	45270			0.00	0.709	29
65302 65303 (+ 65304 (+ 65305 (n) 65306 (n) 65307 65308 65308 65309	9	16-Mar-04	AM		43270	19540	25730	22.40	1.280	<u>24</u> 43
65303 (+ 65304 (+ 65305 (n) 65306 (n) 65307 65308 65308 65309 NC			AM	45560	45090			0.00	0.901	43 30.
65304 (+ 65305 (n) 65306 (n) 65307 65308 65308		16-Mar-04	AM			19570	25520	22.43	1.272	<u>30.</u> 43.
65305 (n 65306 (n 65307 65308 65309 NC		16-Mar-04	AM		40850			0.00	0.540	<u>43.</u> 18
65306 (n 65307 65308 65309 NC	+ pup) 2	16-Mar-04	AM			16020	24830	18.36	0.933	32.
65307 65308 65309 NC	no pup) 8	16-Mar-04	AM	23700	23390			0.00	0.738	25.
65308 65309 NC	10 pup) 7	6-Mar-04	AM	22380	22040	10870 9950	12520	12.46	0.213	23. 7.
65309 NC		6-Mar-04	AM	44620	44070		12090	11.40	0.709	24.
	OT USED	6-Mar-04	AM			19640	25730	22.74	0.729	25.
		7 44 0 0					<u>_</u>	0.00	0.989	33.9
35311			AM		41830	15580		0.00		
	o pup)10 1	7-iviar-04					26250	17.86	0.379	13.0
5313	1611		AM		23830	11850		0.00	0.936	32.1
5314	16 1		AM	48010	48240	19550	11980	13.58	2.733	93.7
5315			AM			13030	28690	22.41	1.041	35.7
5316				43540	43260	19250		0.00	0.542	18.6
	2 pup) 8 17						24010	22.06	0.694	23.8
	2 pup/ 0 17			23240	22950	11190	11760	0.00	0.548	18.8
				23490	23210	9800		12.83	0.420	14.4
r				40320	40860	15960	13410	11.23	1.289	44.2
5321							24900	18.29	0.653	22.4
5322	14 17		<u>am </u>	46100	46380	20190	26190	0.00	0.490	16.8
323								23.14	0.604	20.7
324					39090	15870	23220	0.00	0.580	19.90
325			M M				23220	18.19	0.656	22.50
326	16 18		M M	<u> </u>	42430	19780	22650	0.00	0.749	25.70
327			M				22030	22.67	0.595	00.75
	9 18-				43300	_ /	1	0.00	0.353	20.40

				Quesnel Scale		SAMPLE T	KUUK SAM	PLES		
Sample #	Truck #	Date	Shift	Weight (kg)	MT Po	lley Scale				
165328		9 18-Mar-04			weight in (kg)	Weight OUT (kg)	Ore Weight (kg)	Tons(short)	A	ļ
165329		18-Mar-04	AM						Assay (oz)	Assay (
165330		18-Mar-04	AM	35870	35900	15930	19970	0.00	0.120	
165331		1 18-Mar-04	AM					18.26	0.332	11.
165332	14	18-Mar-04	AM	41950	41600	20000	21600	0.00	0.391	13.
165333	3	23-Mar-04	AM				27000	22.92	0.198	6,
165334		23-Mar-04	AM		41000	15620	25380	0.00	0.455	15.
165335	(no pup)13	23-Mar-04	AM				23300	17.90	0.175	6.
165336	9	23-Mar-04	AM		24130	11940	12190	0.00	0.344	11.
65337	9	23-Mar-04		49430	49370	19360	30010	13.69	0.297	10.
165338	(no pup)10	23-Mar-04						22.19	0.359	12.
	(<u>no pup)16</u>	23-Mar-04	AM		23000	12140		0.00	0.248	8.
65340	(<u>no pup) 8</u>	23-Mar-04	AM	33370	33580	16680	10860	13.91	0.233	8.0
65341	16	24-Mar-04	AM	23130	22870	11300	16900	19.12	0.379	13.0
65342		24-Mar-04	AM	45910	45640	19470	11570	12.95	0.292	10.0
	no nun)13	24-Mar-04	AM				26170	22.32	0.446	15.3
65344	10 pup/15		AM		23920	11460		0.00	0.685	23.5
65345		24-IVIAR-04	AM	39250	39340	15570	12460	13.14	0.478	16.4
65346	3	24-Mar-04	AM				23770	17.85	0.318	10.9
35347		24-Mar-04	AM	46570	45980	19320		0.00	0.300	10.3
			AM				26660	22.14	0.408	14.0
\.			AM	25310	25050	12050		0.00	0.478	16.4
5350	10 pup) 8		AM	24730	24400	11320	13000	13.81	0.423	14.5
5351			AM		48250	20100	13080	12.97	0.429	14.7
5352		24-Mar-04	AM T			20100[28150	23.04	0.749	25.7
5353	24		AM	37580	37710			0.00	0.300	10.3
5354	22		AM			15840	21870	18.16	0.580	19.90
5355	16 2		AM T		47830			0.00	0.490	<u>19.9(</u> 16.80
	16[2		AM			19340	28490	22.17	0.095	3.27
	o pup)13 2	5-Mar-04 A	M	23160	22980		0	0.00	0.148	
5357	3 2	5-Mar-04 A	M	40600	40370	11530	11450	13.22	0.169	5.08
	3 2	5-Mar-04 A	M			15400	24970	17.65	0.213	5.81
5359 (no	o pup) 8 2		M	24700	24290			0.00	0.262	7.32
5360	92	5-Mar-04 A	M	46830	46560	11180	13110	12.81	0.269	9.00
5361	92	5-Mar-04 A	M		<u>40000</u>	19430	27130	22.27	0.144	9.23
				<u></u>	<u>L</u>			0.00	0.144	<u>4.94</u> 6.61

r	BONANZA LEDGE BULK SAMPLE TRUCK SAMPLES										
		ī		Quesnel Scale	MT Pol	ley Scale					
Sample #	Truck #	Date	Shift	Weight (kg)	Weight IN (kg)	ley Scale Weight OUT (kg)	Ore Weight (kg)	Tons(short)	Assay (oz)		
		25-Mar-04		23230			10950	13.87	0.210	7.20	
165363	2	25-Mar-04	AM		39290	15780	23510	18.09	0.222	7.60	
165364		25-Mar-04							0.324	11.10 13.70	
165365		25-Mar-04	AM		49060	20180	28880	23.13	0.400	10.30	
165366		25-Mar-04	AM						0.300	10.30	
		15-Jun-04						6913.80		<u></u>	
	<u> </u>	25-Jun-04				744850		819.34		}	
h								2546.50			
	<u>}</u>							102/9.63	tot 7/10/04	}	
<u>├</u> ────							<u></u>				
}	{							6285.27	<u>↓</u>	╂┥	
h	[1				L	744.85	}	<u> </u>	
h	{	1	1		[<u> </u>	2315	the second second second second second second second second second second second second second second second se	╆	
	1		1			L	<u> </u>	2210	·}	<u> </u>	
 	+						<u></u>	↓	<u> </u>	<u> </u>	
t	1				L	<u> </u>	+		╂	╉━━━━━━	
	1				L	<u></u>	÷		+	<u> </u>	
	1				<u> </u>		+	<u> </u>		+	
					<u> </u>	+	<u> </u>	<u> </u>	+	+	
	1			<u></u>	<u> </u>	<u> </u>	+	<u> </u>	+	+	
	1						<u></u>				

	BONANZA LEDGE BULK SAMPLE MUCK SAMPLES										
	STOPE ID	#SCOOPS	TONNGE	2.5 YD	#SCOOPS	TONNGE	3.5 YD	TOTAL	ASSAY	ASSAY	OZ AU
		2 YD	FACTOR	TONS	3.5 YD	FACTOR	TONS	MUCKED	G/T	OPT	
06/27/2004	100	15	2	30				30	38.80	1.25	37.4
06/28/2004	100	20	2	40				40	31.60	1.02	40.6
06/29/2004	100	35	2	70				70	39.90	1.28	89.8
06/30/2004	100	40	2	80				80	28.20	0.91	72.5
07/01/2004	100	40	2	80				80	19.70	0.63	50.7
07/06/2004	40	46	2	92				92	18.30	0.59	54.1
07/07/2004	40	101	2	202	75	4.5	337.5	539.5	26.40	0.85	458.0
07/08/2004	40	102	2	204	116	4.5	522	726	21.10	0.68	492.6
07/09/2004	40	21	2	42	27	4.5	121.5	163.5	21.10	0.68	110.9
07/09/2004	100	1	2	2	50	4.5	225	227	21.10	0.68	154.0
07/10/2004	40	45	2	90	79	5.5	434.5	524.5	13.00	0.42	219.2
07/11/2004	40	21	3	63	45	6.5	292.5	355.5	20.30	0.65	232.0
SUBTOTAL											2012.0
TOTAL		487		995	392		1933	2928	21.37	0.69	2012.0

* ALL TONS IN SHORT TONS

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANAL IS CERTIFICATE

Int'l Wayside Gold Mines Ltd. File # A306195 P.O. Box 247, 2422 Barker, Wells BC VOK 2R0

P.O. Box 247, 2422 Barker,	Wells BC VOK 2RO						
SAMPLE#	Au*						
SI	ppb						
40116 40117	<.2 2.4						
40118 40119	<.2 2.4 127.8 372.7 83.4						
40120 40121							
40122 40123 40124	281.3 37.6 17.8 436.2 .7						
40125 40126 40127 40128 40129	.3 1.0 .7 3.1 <.2						
40130							
RE 40130 40131 40132	<.2 .5 2.0 .8						
40133	1.9						
40134 40135 40136 STANDARD AU-R	.5 <.2 1.5 462.6						
AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.							
DATE RECEIVED: DEC 18 2003 DAWE DECEM	ED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS						
All results are considered the confidential property of the client. Acme assumes							
li li	ities for actual cost of the analysis only.						
-	FAE						

	SAMPLE#	Au* ppb	
	40137 40138 40139 40140 40141	1.4 1.8 1.8 2.7 1.0	•.
	STANDARD AU-1	R 465.0	
	AU* IGNITED, ACID LEACHED, ANALY	ZED BY ICP-MS. (15 gm)	
	- SAMPLE TYPE: ROCK R150 60C	nP	
DATE RECEIVED: JAN 7 2004 DA	te report mailed: Jam 20/04 s	IGNED BY	D B.C. ASSAYER
	0 '	1	
		1	1

INTERNATIONAL WAYSIDE GOLD MINES LTD.

12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: Sample type: Core Project #: None Given Shipment #: None Given 22-Jan-04

UNDERGROUND CHIP SAMPLING

Au Au ET #. Tag # (oz/t) (g/t) 1 40201 0.071 2.44 2 40202 0.77 0.022 3 40203 0.65 0.019 4 40204 0.76 0.022 5 40205 0.69 0.020 6 40206 0.64 0.019 7 40207 2.99 0.087 8 40208 1.28 0.037 40209 5.46 9 0.159 10 40210 5.21 0.152 40211 0.002 11 0.07 12 40142 0.53 0.015 13 40143 0.59 0.017 14 40144 3.12 0.091 15 40145 0.72 0.021 16 40146 0.049 1.69 40147 2.27 0.066 17 40148 9.06 0.264 18 0.048 19 40149 1.64 Whets from 40 X/C 100 HC + 140 X/C 0x/C 20 40150 7.76 0.226 21 40164 4.73 0.138 22 40165 7.71 0.225 0.554 10 19.0 23 40166 24 40167 8.56 0.250 25 40168 19.7 0.575 <u>9</u>8.7 26 40169 2.878 27 40170 6.37 0.186 28 40171 34.5 1.006 29 40172 14.3 0.417 30 40173 16.7 0.487 31 40174 39.7 1.158 32 40175 7.36 0.215 40176 35.2 33 1.027 ECO TECH LABORATORY LTD. 34 40177 19.7 0.575 0.222 35 40178 7.60 Jutta Jealouse **B.C. Certified Assayer**

40151 -> Ho163(?)

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-040

22-Jan-04

ET #.	Tee #	Au	Au	
	Tag #	(g/t)	<u>(oz/t)</u>	
QC DATA:				
Repeat:	:			
1	40201	2.33	0.068	
9	40209	5.87	0.171	
10	40210	5.53	0.161	
18	40148	8.90	0.260	
19	40149	1.61	0.047	
23	40166	18.4	0.537	
26	40169	98.6	2.875	
29	40172	15.6	0.455	
30	40173	18.9	0.551	
33	40176	35.7	1.041	
Resplit:				
1	40201	2.21	0.064	
Standard:				
PM163		1.74	0.051	

JJ/kk XLS/04

. **-**

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

(, (

2-Feb-04

(

No. of samples received: 35 Sample type: Core Project #: None Given Shipment #: None Given

		Au	Au		
<u> </u>	Tag #	(g/t)	(oz/t)		
1	40212	1.46	0.043		
2	40213	·· 0.72	0.021		
2 3	40214	~ 0.55	0.016		
4	40215	0.14	0.004		
5 6 7	40216	3.72	0.108		
6	40217	9.36	0.273	1 21-26	
7	40218	17.3	0.505	26-31	5 fut
8	40219	11.8	0.344	31-36	5 Full
9	40220	1.38	0.040	_	
10	40221	1.30	0.038		
11	40222	1.92	0.056		
12	40223	2.29	0.067		
13	40224	0.93	0.027		
14	40225	3.44	0.100		
15	40226	1.98	0.058	• • • • • •	
1 6	40227	6.97	0.203	30-35	
17	40228	3.56	0.104		
18	40229	5.61	0.164		
19	40230	5.79	0.169		
20	40231	1.53	0.045		
21	40232	1.52	0.044		
22	40233	4.31	0.126		
23	40234	1.48	0.043		
24	40235	4.20	0.122		
25	40236	25.3	0.738	T. Int+	
26	40237	22.4	0.653	10ft	
27	40238	1.55	0.045	· ·	
28	40239	4.63	0.135		
29	40240	0.48	0.014		

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-048

2-Feb-04

<u> </u>	Tag #	Au (g/t)	Au (oz/t)	
30	40241	4.30	0.125	
31	40242	1.84	0.054	
32	40243	23.2	0.677	$\overline{\lambda}$
33	40244	21.5	0.627	2-1
34	40245	32.4	0.945	2046
35	40246	15.3	0.446	$\underline{\vee}$

QC DATA:

Repeat:	-		
1	40212	1.46	0.043
6	40217	9.80	0.286
7	40218	17.0	0.496
8	40219	11.6	0.338
10	40221	1.12	0.033
16	40227	6.61	0.193
18	40229	6.00	0.175
19	40230	5.42	0.158
25	40236	25.0	0.729
26	40237	22.1	0.645
33	40244	23.0	0.671
Resplit			
1	40212	1.11	0.032
Standard:			
PM163		1.71	0.050
PM163		1.72	0.050

JJ/kk XLS/04

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

C

No. of samples received: 4 Sample type: Rock

5-Feb-04

Quartz Vinis

C (

		Au	Au	
<u> </u>	Tag #	(g/t) (oz/t)	
1	40247	1.40 0	.041	- white owner rom C.g. mystalline, fine to
2	40248	4.94 0	.144	hereiver a small and in marky mynit
3	40249	1.29 0	038	white prost of the get provide in gy into the
4	40250	1.46 0	043	- white prant vern C.g. mystalline, me to wessive F. to med. gr. project in gu in.g. Mytil where prants, c.g. to med. gr. project, t f.g. - the some as 40249

QC DATA:

Resplit: 1	40247	1.50	0.044
Standard: PM163		1.67	0.049

.

JJ/kk XLS/04

×)

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

> 40247 } 11 ft west of FS 40248 } 11 ft west of FS to 032 40249 } 34 ft west of FS to 3

Page 1

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 9 Sample type: Rock Samples Submitted by: Not Indicated

MUCK SAMPLES

12-Feb-04

 \bigcirc

CT #	Tag #	Au (g/t)	Au (oz/t)
ET #.	40179	0.47	0.014
2	40180	0.30	0.009
2	40180		
		2.28	0.066
4	40182	0.65	0.019
5	40183	0.41	0.012
6	40184	0.34	0.010
7	40185	1.69	0.049
8	40186	0.47	0.014
9	40187	3.01	0.088
QC DATA: Repeat:			
3	40180	2.20	0.064
7	40185	1.80	0.052
Resplit: 1	40179	0.37	0.011
Standard: PM163		1.78	0.052

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

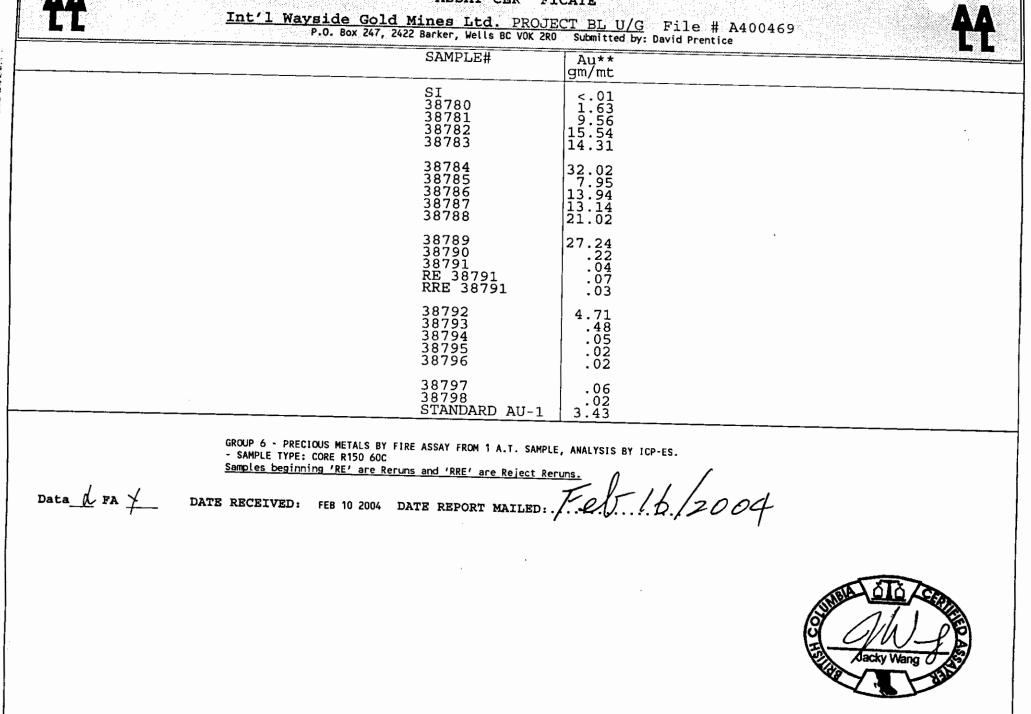
 $\left(\right)$

12-Feb-04

No. of samples received: 2 Sample type: Rock Samples Submitted by: Dasha 140 x cut muck samples from Hofoot vise raise

		Au Au	
<u> </u>	Tag #	(g/t) (oz/t)	
1	40188	8.00 0.233	
2	40189	19.7 0.575	

QC DATA: Repeat:			
2	40189	18.2	0.531
Resplit: 1	40188	8.10	0.236
Standard: PM163		1.78	0.052


JJ/kk XLS/04

____(ISC 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CEK FICATE

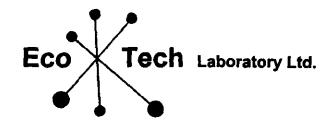
All results the considered the confidential property of the client. Acme assumes

li 'ities for actual cost of the analysis only.

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

1

No. of samples received: 9 Sample type: Core **Project #: UG**


	_	Au	Au	
<u> </u>	<u> </u>	(g/t)	<u>(oz/t)</u>	
1	38844	0.86	0.025	
2	38845	0.98	0.029	
3	38846	0.09	0.003	
4	38847	0.18	0.005	· · · · · · · · · · · · · · · · · · ·
5	38848	0.17	0.005	
6	38849	0.24	0.007	
7	38850	0.05	0.001	. .
8	40190	86.7	2.528	-> 100 X-cuh
9	40191	2.46	0.072	MUCKS
			~	NUCKS 140X-ant
				140 X- unt
QC DATA:	-			
Repeat:	_			
2	38845	0.94	0.027	
8 9	40190	79.3	2.313	
9	40191	2.53	0.074	
Resplit:				
1	38844	0.74	0.022	
Standard:				
PM163		1.61	0.047	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

3-Mar-04

F.

06-04-15

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-089

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 25 Sample type: Muck

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	166901	7.56	0.220	
2	166902	23.1	0.674	
3	166903	24.3	0.709	
4	166904	17.2	0.502	·
5	166701	15.2	0.443	
6 7	166702	16.6	0.484	
	166703	24.4	0.712	
8	166704	13.4	0.391	
9	166705	19.2	0.560	
10	166706	75.0	2.187	
11	166707	23.6	0.688	
12	166708	22.6	0.659	
13	166709	58.6	1.709	
14	166710	14.1	0.411	
15	166711	13.1	0.382	
16	166712	21.5	0.627	
17	166713	15.2	0.443	
18	166714	22.7	0.662	
19	166715	19.4	0.566	
20	166716	13.9	0.405	
21	166717	17.1	0.499	
22	166718	25.6	0.747	
23	166719	15.9	0.464	<i>,</i>
24	166720	12.6	0.367	
25	166721	19.6	0.572	

ABGRATORY LTD. ECØ Jutta Jealouse B.C. Certified Assaver

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-089

4-Mar-04

		Au	Au	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	
QC DATA:	-			
Repeat:				
1	166901	7.93	0.231	
2	166902	21.3	0.621	
7	166703	25.1	0.732	
10	166706	78.0	2.275	
12	166708	22.3	0.650	
13	166709	59.7	1.741	
21	166717	18.1	0.528	
22	166718	23.4	0.682	
Resplit:				· · · · · · · · · · · · · · · · · · ·
1	166901	8.07	0.235	
Standard:				
PM163		1.67	0.049	

JJ/kk XLS/04

·

.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Oertified Assayer

.

5-Mar-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-098

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 10 Sample type: Core. Muck -Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	166731	21.6	0.630	
2	166732	8.2	0.239	
3	166733	17.2	0.502	
4	166734	20.6	0.601	
5	166735	9.1	0.265	
6	166736	9.6	0.280	
7	166737	32	0.933	
8	166738	19.5	0.569	
9	166739	7.5	0.219	
10	166740	7.8	0.227	

QC DATA:

Resplit: 1	166731	22.1	0.645
Standard: PM163		1.66	0.048

JJ/kk XLS/04

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assaver

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-095

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 14 Sample type: Muck **Project #: UG** Samples Submitted by: L. Turner

Au Au ET#. Tag # (g/t) (oz/t) 1 166741 18.2 0.531 2 166742 10.7 0.312 3 166743 18.8 0.548 4 166744 16.5 0.481 5 166745 12.6 0.367 6 166746 14.7 0.429 7 166747 23.8 0.694 8 166748 7.59 0.221 9 166749 26.1 0.761 10 166750 7.87 0.230 11 166905 11.6 0.338 12 166906 13.2 0.385 13 166907 18.1 0.528 14 166908 27.2 0.793 QC DATA: Repeat:

1	166741	18.9	0.551	
Resplit: 1	166741	17.9	0.522	
Standard: PM163		1.68	0.049	

ECO TECH LABORATORY LTD. Jyrta Jealouse B.C. Certified Assaye

JJ/kk XLS/04

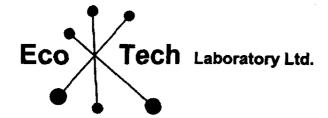
5-Mar-04

.

Sec. 6. 11. 12

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-097


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 9 Sample type: Muck Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1 -	166722	16.4	0.478	
. 2	166723	15.5	0.452	
3	166724	18.2	0.531	
4	166725	14.5	0.423	
5	166726	25.8	0.752	
6	166727	55.1	1.607	
7	166728	16.4	0.478	
8	166729	17.8	0.519	
9	166730	15.6	0.455	
QC DATA:				
Repeat:				
5	166726	26.4	0.770	
6	166727	52.2	1.522	
Resplit:				
1	166722	19.8	0.577	
Standard:				
PM163		1.66	0.048	

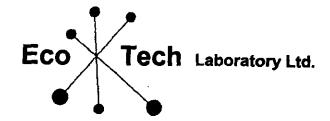
JJ/kk XLS/04

ECO DECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

وجوارة توافع هوائين ورو

10041 Dallas Drive, Kamloops. BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-104


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 18 Sample type: Muck **Project #: U.G.** Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1 -	166923	6.43	0.188	
2 3	166924	11.5	0.335	
3	166925	9.16	0.267	
4	166926	10.8	0.315	
5 6 7	166927	8.07	0.235	
6	166928	11.9	0.347	
7	166929	21.7	0.633	
8 9	166930	18.8	0.548	
	166931	10.0	0.292	
10	166932	6.75	0.197	
11	166933	12.3	0.359	
12	166934	10.2	0.297	
13	166935	9.96	0.290	
14	166936	16.1	0.470	
15	166937	14.2	0.414	
16	166938	17.7	0.516	
17	166939	17.4	0.507	
18	166940	11.4	0.332	
QC DATA:				
Repeat:				
1	166923	6.13	0.179	
10	166932	6.80	0.198	
Resplit:				
1	166923	5.96	0.174	
Standard:				
PM163		1.67	0.049	

ABORATORY LTD. ECO TECH Jutta Jealouse B.C. Certified Assayer

JJ/kk XLS/04

9-Mar-04

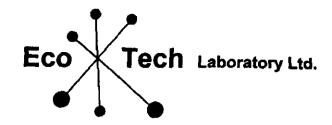
-,--

19.14 Sec. 19.

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-108

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0


No. of samples received: 12 Sample type: Core/Muck Project #: UG Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	<u> </u>	(g/t)	<u>(oz/t)</u>	
1	166941	9.71	0.283	
2 3	166942	9.73	0.284	
	166943	6.82	0.199	
4	166944	14.0	0.408	
5	166945	6.93	0.202	
6 7	166946	9.91	0.289	
	166947	8.80	0.257	
8	166948	9.10	0.265	
9	166949	5.52	0.161	
10	166950	4.40	0.128	
11	165202	13.7	0.400	
12	165203	8.30	0.242	
	<u> </u>			
Repeat:	_			
4	166944	13.6	0.397	
5	166945	6.49	0.189	
7	166947	8.70	0.254	
9	166949	5.31	0.155	
11	165202	13.3	0.388	
Resplit:				
1	166941	9.70	0.283	
Standard:				
PM163		1.63	0.048	

JJ/kk XLS/04

ECO, ABOR

Jutta Jealouse **B.C. Certified Assayer**

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-102

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 14 Sample type: Muck **Project #: UG** Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	166909	10.3	0.300	
2	166910	8.91	0.260	·
3	166911	9.93	0.290	
4	166912	4.90	0.143	
5	166913	23.0	0.671	
6	166914	16.5	0.481	
7	166915	14.6	0.426	
8	166916	11.4	0.332	
9	166917	6.62	0.193	
10	166918	12.8	0.373	
11	166919	10.3	0.300	
12	166920	11.8	0.344	
13	166921	12.5	0.365	
14	166922	5.11	0.149	
QC DATA:	-			
Destauts	-			

Repeat: 1	166909	10.5	0.306
Resplit: 1	166909	9.10	0.265
Standard: PM163		1.73	0.050

JJ/kk XLS/04

ECO TECH LABORATORY LTD. Juitta Jealouse B.C. Certified Assays

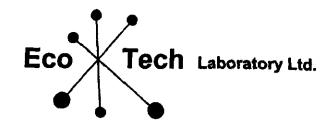
10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-115

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 12 Sample type: Ore/Muck **Project #: U.G.** Samples Submitted by: L. Turner

		Au	Au		
<u> </u>	Tag #	(g/t)	(oz/t)		
1	165204	10.6	0.309		
2	165205	11.9	0.347		
3	165206	13.4	0.391		
4	165207	7.40	0.216		
5	165208	11.1	0.324		
6	165209	12.0	0.350		
7	165210	15.0	0.437		
8	165211	15.3	0.446		
9	165212	9.61	0.280		
10	165213	16.4	0.478		
11	165214	4.42	0.129		
12	165215	17.2	0.502		


QC DATA:

Repeat: 1	- 165204	10.6	0.309
Resplit: 1	165204	12.3	0.359
Standard: In House St	andard	1.38	0.040

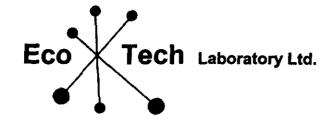
JJ/kk XLS/04

ECO TECH LA ABORATORY LTD. **B.C.** Certified Assaver

11-Mar-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-120


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 10 Sample type: Ore/Muck **Project #: UG** Samples Submitted by: L. Turner

		Au	Au	
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	
1	165248	4.20	0.122	
2	165249	4.07	0.119	
3	165250	10.7	0.312	
4	165251	14.6	0.426	
5	165252	11.3	0.330	
6	165253	7.30	0.213	
7	165254	2.31	0.067	
8	165255	6.40	0.187	
9	165256	3.18	0.093	
10	165257	5.29	0.154	
QC DATA:				
Repeat:				
5	165252	11.7	0.341	
Resplit: 1	165248	4.45	0.404	
I	100240	4.15	0.121	
<i>Standard:</i> PM163		1.65	0.048	·

ABORATORY LTD. EÇŐ Jutta Jejakuse B.C. Certified Assayer

JJ/kk XLS/04

15-Mar-04

المراد المتحد مرام مراجع

.

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-116R

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 32 Sample type:/Ore Muck **Project #: U.G.** Samples Submitted by: L. Turner

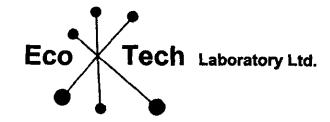
		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165216	7.30	0.213	
2 3	165217	13.3	0.388	
	165218	12.4	0.362	
4	165219	10.6	0.309	
5 6	165220	5.60	0.163	
Ô	165221	1.78	0.052	
7	165222	10.5	0.306	
8	165223	9.90	0.289	
9	165224	30.1	0.878	
10	165225	29.1	0.849	
11	165226	19.9	0.580	
12	165227	25.7	0.749	
13	165228	23.6	0.688	
14	165229	29.3	0.854	
15	165230	35.9	1.047	
16	165231	10.2	0.297	
17	165232	15.4	0.449	
18	165233	16.3	0.475	
19	165234	25.6	0.747	
20	165235	30.6	0.892	
21	165236	27.7	0.808	
22	165237	44.9	1.309	
23	165238	17.3	0.505	
24	165239	14.0	0.408	<i>.</i>
25	165240	11.0	0.321	
26	165241	6.50	0.190	
27	165242	10.9	0.318	
28	165243	10.3	0.300	
29	165244	18.3	0.534	
30	165245	8.71	0.254	
31	165246	10.3	0.300	\frown
32	165247	10.0	0.292	\bigcirc

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-116R

٢

15-Mar-04

. .


ET #.	Tag #	Au (g/t)	Au (oz/t)	
QC DATA				
Resplit:	-			
1	165216	8.4	0.245	
Repeat:				
1	165216	7.22	0.211	
10	165225	29.2	0.852	
19	165234	26.9	0.784	
22	165237	44.2	1.289	
27	165242	10.8	0.315	
Standard: IH STD		1.52	0.044	
		1.52	0.044	

JJ/ejd XLS/04

ECOTECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Eco Tech LABORATORY LTD. Page 2

.

15-Mar-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com


CERTIFICATE OF ASSAY AK 2004-124

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 19 Sample type: Muck Project #: U.G. Samples Submitted by: L. Turner

		Αυ	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165258	11.3	0.330	
2	165259	12.7	0.370	
3	165260	6.90	0.201	
4	165261	9.21	0.269	
5 6	165262	8.42	0.246	
6	165263	21.1	0.615	
7	165264	6.10	0.178	
8	165265	12.8	0.373	
9	165266	11.4	0.332	
10	165267	17.8	0.519	
11	165268	15.0	0.437	
12	165269	9.93	0.290	
13	165270	13.1	0.382	
14	165271	10.3	0.300	
15	165272	9.10	0.265	
16	165273	8.61	0. <u>2</u> 51	
17	165274	9.60	0.280	
18	165275	21.4	0.624	
19	165276	10.0	0.292	
QC DATA	•			
Resplit:				
1	165258	11.0	0.321	
•	100200	1.0	0.321	
Repeat:				
1	165258	11.8	0.344	
4	165261	10.1	0.295	
8	165265	12.4	0.362	
10	165267	18.4	0.537	
11	165268	15.7	0.458	
17	165274	10.6	0.309	
				\frown
Standard:				\bigcirc $()$
PM163		1.63	0.048	$\langle n \rangle$
				ECO TECH LABORATORY LTD.
JJ/ejd				outta Jealouse

B.C. Certified Assayer

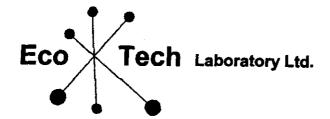
10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-136

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

19-Mar-04

No. of samples received: 10 Sample type: Muck **Project #: UG** Samples Submitted by: L. Turner


<u> </u>	Tag #	Au (g/t)	Au (oz/t)			
1	165287	23.8	0.694			
2	165288	50.5	1.473			
3	165289	28.9	0.843			
4	165290	22.2	0.647			
5	165291	42.4	1.237			
6	165292	24.0	0.700			
7	165293	39.8	1.161			
8	165294	24.1	0.703			
9	165295	36.2	1.056			
10	165296	31.8	0.927			
QC DATA	QC DATA:					

Resplit:

- tooping			
1	165287	24.8	0.723
2	165288	54.9	1.601
10	165296	29.1	0.849
Standard	<i>ſ</i> :		
ET504		1.37	0.040

Juita Jealouse B.C. Certified Assayer

JJ/kk XLS/04

23-Mar-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-140


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 3 Sample type: Muck Samples Submitted by: Dasha

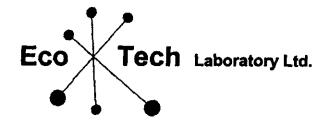
		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	40569	44.5	1.298	
2	40570	53.8	1.569	
3	40571	23.1	0.674	
QC DATA:	_			
Repeat:	=			
2	40570	54.0	1.575	
3	40571	25.9	0.755	
Resplit:				
1	40569	47.6	1.388	
Standard:				
ET 504		1.36	0.040	

JJ/kk XLS/04

ECO T LABORATORY LTD. Ен kitta Jealouse B.C. Certified Assayer

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-135


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 10 Sample type: Muck **Project #: UG** Samples Submitted by: L. Turner

	_	Au	Au
<u> </u>	Tag #	<u>(g/t)</u>	<u>(oz/t)</u>
1	165277	14.2	0.414
2 3	165278	4.90	0.143
3	165279	7.70	0.225
4	165280	14.2	0.414
5 6	165281	10.5	0.306
6	165282	14.0	0.408
7	165283	15.5	0.452
8	165284	15.3	0.446
9	165285	8.90	0.260
10	165286	14.0	0.408
QC DATA:	_		
Repeat:	-		
3	165279	7.51	0.219
6	165282	14.2	0.414
Resplit: 1	165277	14.5	0.423
Standard: ET504		1.36	0.040

JJ/kk XLS/04

ECO TE CH LABORATORY LTD. Jutta Jeaiouse B.C. Certified Assa er

24-Mar-04

....

واليوا بالوالعة فالمحد بتطابعكون

. ...

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-146

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 10 Sample type: Muck Project #: UG Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
<u> </u>	165323	22.5	0.656	
2	165324	25.7	0.749	
3	165325	20.4	0.595	
4	165326	12.1	0.353	
5	165327	15.4	0.449	
6	165328	25.0	0.729	
7	165329	11.4	0.332	
8	165330	13.4	0.391	
9	165331	6.80	0.198	
10	165332	15.6	0.455	
00 0 4 5 4				
QC DATA	≓			
Repeat:				
5	165327	16.0	0.467	
Resplit:				
1	165323	25.8	0.752	
Standard:				
ET 504		1.26	0.037	

JJ/kk XLS/04

ECO TECHLABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-159

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 8 Sample type: Muck **Project #: U.G.** Samples Submitted by: L. Turner


		Au	Au	
ET #	Tag #	(g/t)	(oz/t)	
1	165333	6.00	0.175	
2	165334	11.8	0.344	•
3	165335	10.2	0.297	
4	165336	12.3	0.359	
5	165337	8.50	0.248	
6	165338	8.00	0.233	
7	165339	13.0	0.379	
8	165340	10.0	0.292	

QC DATA:

Resplit: 1	165333	5.30	0.155
Standard: OX123		1.84	0.054

JJ/kk XLS/04

ECO TE BORATORY LTD. iutta Jealouse B.C. Certified Assayer

ی) کی دمین ما ح^ر با مستقد ہے جم

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-158

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wellis, BC, V0K 2R0

No. of samples received: 12 Sample type: Muck Project #: U.G. Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165297	29.3	0.854	
2	165298	24.3	0.709	· · ·
3	165299	43.9	1.280	
4	165300	30.9	0.901	
5	165301	43.6	1.272	
6	165302	18.5	0.540	
7	165303	32.0	0.933	
8	165304	25.3	0.738	
9	165305	7.30	0.213	
10	165306	24.3	0.709	
11	165307	25.0	0.729	
12	165308	33.9	0.989	
QC DATA:				
Repeat:	•			
1	165297	28.4	0.828	
5	165301	44.8	1.307	
9	165305	6.98	0.204	
4.0				

12 165308 34.1 0.994 **Resplit:** 165297 1 27.6 0.805 Standard: SH13

1.34

0.039

ECO FECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

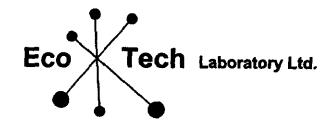
JJ/kk XLS/04

Page 1

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-160

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0


No. of samples received: 13 Sample type: Muck **Project #: UG** Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165341	15.3	0.446	
2 3	165342	23.5	0.685	·
3	165343	16.4	0.478	
4	165344	10.9	0.318	
5 6 7	165345	10.3	0.300	
6	165346	14.0	0.408	
	165347	16.4	0.478	
8	165348	14.5	0.423	
9	165349	14.7	0.429	
10	165350	25.7	0.749	
11	165351	10.3	0.300	
12	165352	19.9	0.580	
13	165353	16.8	0.490	
• • • • - •				
QC DATA:	-			
Repeat:				
1	165341	15.3	0.446	
Resplit:				
1	165341	16.2	0.472	
04				
Standard:				
OX123		1.85	0.054	

JJ/kk XLS/04

BORATORY LTD. TE пн utta jealouse B.C. Certified Assayer

1-Apr-04

1-Apr-04

ليستري وراديا والمتحفظ معتكمهم فستتحيظ فتواهي الإرار

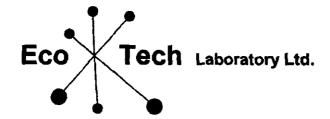
10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-157

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 13 Sample type: Muck **Project #: UG** Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165310	13.0	0.379	
- ² - 3	165311	32.1	0.936	
	165312	93.7	2.733	
4	165313	35.7	1.041	
5 6 7	165314	18.6	0.542	
6	165315	23.8	0.694	
	165316	18.8	0.548	
8	165317	14.4	0.420	
9	165318	44.2	1.289	
10	165319	22.4	0.653	
11	165320	16.8	0.490	
12	165321	20.7	0.604	
13	165322	19.9	0.580	
QC DATA:				
Repeat:				
1	165310	12.3	0.359	
3	165312	94.5	2.756	
4	165313	36.1	1.053	
9	165318	43.6	1.272	
12	165321	20.9	0.610	<i>.</i>
Resplit:				
1	165310	12.2	0.356	
Standard:				


0.054

1.86

OX123

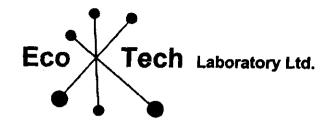
JJ/kk XLS/04

ECO TECH ORATORY LTD. Jutta Jealouse B.C. Certified Assayes

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-171

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0


No. of samples received: 13 Sample type: Muck Project #: UG Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165354	3.27	0.095	
2 3	165355	5.08	0.148	
	165356	5.81	0.169	
4	165357	7.32	0.213	
5	165358	9.00	0.262	
6 7	165359	9.23	0.269	
	165360	4.94	0.144	
8	165361	6.61	0.193	
9	165362	7.20	0.210	
10	165363	7.60	0.222	
11	165364	11.1	0.324	
12	165365	13.7	0.400	
13	165366	10.3	0.300	
QC DATA:	=			
Repeat:				
1	165354	2.92	0.085	
Resplit:				
1	165354	3.10	0.090	
Standard:				
SH13		1.34	0.039	•

JJ/ejd :LS/04

ECO TECH LABORATORY LTD. B.C. Certified Assayer

5-Apr-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-185

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

8-Apr-04

No. of samples received: 4 Sample type: Rock / Muck **Project #: Bulk, u/g** Samples Submitted by: Norm Matheson

	_	Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	E08701	1.78	0.052	
2	E08702	<0.03	<0.001	
3	E08703	6.51	0.190	
4	E08704	7.81	0.228	

QC DATA: Repeat:	z		
1	E08701	1.84	0.054
3	E08703	6.40	0.187
4	E08704	8.21	0.239
Resplit:			
1	E08701	1.10	0.032
Standard:			
SH13		1.33	0.039
SH13		1.30	0.038

JJ/cr XLS/04 ECO TECH LABORATORY LTD.

Jufta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2004-193

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

(

14-Apr-04

()

No. of samples received: 36 Sample type: Percussion **Project #: Bonanza Test Holes** Samples Submitted by: Ned Reid

		Au	Au
<u>ET #.</u>	Tag #	(g/t)	(oz/t)
1	E08705	5.15	0.150
2	E08706	12.8	0.373
3	E08707	1.72	0.050
4	E08708	0.73	0.021
5	E08709	0.38	0.011
6	E08710	0.61	0.018
7	E08711	0.78	0.023
8	E08713	0.85	0.025
9	E08714	6.5	0.190
10	E08715	0.58	0.017
11	E08716	8.00	0.233
12	E08717	0.95	0.028
13	E08718	2.01	0.059
14	E08719	10.1	0.295
15	E08720	1.65	0.048
16	E08721	0.47	0.014
17	E08722	0.35	0.010
18	E08723	0.36	0.010
19	E08724	1.15	0.034
20	E08725	2.15	0.063
21	E08726	0.28	0.008
22	E08727	0.16	0.005
23	E08728	0.44	0.013
24	E08729	3.74	0.109
25	E08730	4.26	0.124
26	E08731	0.86	0.025
27	E08732	11.0	0.321
28	E08733	4.16	0.121
29	E08734	12.6	0.367
30	E08735	3.79	0.111
31	E08736	0.89	0.026
•••	200.00	0.03	0.020

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-193

 $\left(\right)$

14-Apr-04

()

		Au	Au
ET #.	Tag #	(g/t)	(oz/t)
32	E08737	1.01	0.029
33	E08738	12.4	0.362
34	E08739	17.7	0.516
35	E08740	15.5	0.452
36	E08741	16.4	0.478
	<u>.</u>		
Repeat:			
1	E08705	4.84	0.141
2	E08706	12.7	0.370
10	E08715	0.51	0.015
11	E08716	8.26	0.241
19	E08724	1.17	0.034
27	E08732	10.8	0.315
33	E08738	12.3	0.359
35	E08740	16.5	0.481
Resplit:			
1	E08705	4.81	0.140
36	E08741	16.9	0.493
Standard:			
SH13		1.34	0.039
SH13		1.29	0.038
		1.20	0.000

JJ/kk XLS/04

.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

CERTIFICATE OF ASSAY AK 2004-195

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

.

)

16-Apr-04

يرابق بيستحصيه مصحورين بالاباد والما

No. of samples received: 13 Sample type: Percussion **Project #: Bonanza Ledge** Samples Submitted by: Ned Reid

,

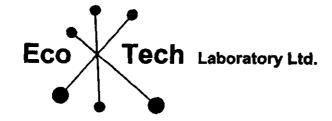
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	E08742	0.24	0.007	
2	E08743	0.94	0.027	
3	E08744	15.1	0.440	
4	E08745	1.03	0.030	
5	E08746	8.89	0.259	
6	E08747	27.3	0.796	
7	E08748	8.36	0.244	
8	E08749	3.27	0.095	
9	E08750	0.74	0.022	
10	E08751	8.75	0.255	
11	E08752	21.7	0.633	
12	E08753	15.3	0.446	
13	E08754	33.4	0.974	

Page 1

QC DATA:			
Repeat:			
1	E08742	0.23	0.007
3	E08744	16.0	0.467
12	E08753	14.8	0.432
13	E08754	34.0	0.992
Resplit:			
1	E08742	0.29	0.008
Standard: SH13		1.32	0.038

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-236


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 13 Sample type: Muck **Project #: Bonanza Ledge** Samples Submitted by: Ned Reid

			Au	Au	
3	<u>ET #</u>	<u> </u>	(g/t)	<u>(oz/t)</u>	
	1	E08755	13.3	0.388	
	2	E08756	37.6	1.097	
	З	E08757	36.2	1.056	
	4	E08758	20.4	0.595	
	5	E08759	40.8	1.190	
	6	E08760	11.8	0.344	
	7	E08761	7.12	0.208	
	8	E08762	3.89	0.113	
	9	E08763	17.8	0.519	
	10	E08764	33.7	0.983	
	11	E08765	24.2	0.706	
	12	E08766	14.2	0.414	
	13	E08767	36.7	1.070	
=	QC DATA	-			
	Repeat:				
	1	E08755	12.7	0.370	
	2	E08756	38.3	1.117	
	7	E08761	6.73	0.196	
	13	E08767	34.0	0.992	
	Resplit:				
	1	E08755	13.1	0.382	
				0.002	
	Standard:				
	OX123		1.81	0.053	
	OX123		1.85	0.054	
	SH13		1.33	0.039	

JJ/kk XLS/04 ECO TECH LABORATORY LTD.

Jutta Jealouse B.C. Certified Assayer 30-Apr-04

5-May-04

Contraction of the second second second second second second second second second second second second second s

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

. . .

CERTIFICATE OF ASSAY AK 2004-239

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 19 Sample type: Muck **Project #: Bonanza Ledge** Samples Submitted by: Ned Reid

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	E08768	45.5	1.327	
2	E08769	40.0	1.167	
3	E08770	46.2	1.347	
4	E08771	19.1	0.557	
5	E08772	9.51	0.277	· ·
6	E08773	3.30	0.096	
7	E08774	32.0	0.933	
8	E08775	41.0	1.196	
9	E08776	24.2	0.706	
10	E08777	10.9	0.318	
11	E08778	16.5	0.481	
12	E08779	11.1	0.324	
13	E08780	9.60	0.280	
14	E08781	30.5	0.889	
15	E08782	6.52	0.190	
16	E08783	10.8	0.315	
17	E08784	10.7	0.312	
18	E08785	7.00	0.204	
19	E08786	10.3	0.300	
QC DATA Repeat:	:			
1 Nepeat.	E08768	43.0	4.054	
2	E08769	43.0 41.3	1.254	
3	E08770	41.3	1.204	
10	E08777	43.5	1.263 0.353	
16	E08783	11.0	0.353	
	200100	11.0	0.321	
Resplit:				
1	E08768	45.9	1.339	
•				
Standard:				\sim
OX123		1.93	0.056	\frown
SP17		18.2	0.531	
SN16		8.60	0.251	
				- Alter
JJ/kk				ECO TECH LABORATORY LTD.
JJ/KK				Jutta Jealouse

XLS/04

Certified Assat/er

•

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-245

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

6-May-04

No. of samples received: 7 Sample type: Muck **Project #: Bonanza Ledge** Samples Submitted by: Ned Reid

	Au	Au
		<u>(oz/t)</u>
	9.90	0.289
	13.7	0.400
	26.2	0.764
E08790	21.0	0.612
E08791	27.3	0.796
E08792		0.113
E08793		0.123
E09797	0.00	0.000
		0.289
		0.793
E08790	20.9	0.610
E08787	11.6	0.338
	1.32 18.1	0.038 0.528
	E08792 E08793 E08787 E08789 E08790	Tag # (g/t) E08787 9.90 E08788 13.7 E08789 26.2 E08790 21.0 E08791 27.3 E08792 3.86 E08793 4.23 E08789 27.2 E08789 27.2 E08789 27.2 E08789 27.2 E08789 27.2 E08789 21.0 E08787 9.90 E08789 27.2 E08789 21.2 E08787 11.6

JJ/kk XLS/04

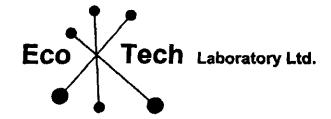
ECO TECH/LABORATORY LTD. Junta Jealouse S.C. Certified Assayer

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-260

٠

12-May-04

_		Au	Au	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	
QC DATA				
Repeat:				
1	E08794	10.1	0.295	
8	E08801	18.6	0.542	
10	E08803	20.1	0.586	
12	E08805	26.1	0.761	
13	E08806	12.6	0.367	
14	E08807	17.9	0.522	
16	E08809	14.6	0.426	
Resplit:				
1	E08794	10.3	0.300	
Standard:				
OX123		1.82	0.053	
SN16		8.63	0.252	
SP17		18.4	0.537	
		10.4	0.007	


JJ/kk XLS/04

•

.

ECO/TECH LABORATORY LTD. Juita Jealouse B.C. Certified Assayer

Eco Tech LABORATORY LTD. Page 2

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-260

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Weils, BC, V0K 2R0

12-May-04

No. of samples received: 26 Sample type: Muck **Project #: Bonanza Ledge** Samples Submitted by: Ned Reid

		Au	Au
<u> </u>	Tag #	(g/t)	(oz/t)
1	E08794	10.6	0.309
2 3	E08795	5.06	0.148
	E08796	15.6	0.455
4	E08797	7.15	0.209
5	E08798	15.7	0.459
6	E08799	5.06	0.148
7	E08800	3.39	0.099
8	E08801	20.7	0.604
9	E08802	17.2	0.502
10	E08803	20.7	0.604
11	E08804	9.13	0.266
12	E08805	2.57	0.075
13	E08806	13.0	0.379
14	E08807	16.7	0.487
15	E08808	17.5	0.510
16	E08809	14.5	0.423
17	E08810	13.8	0.402
18	E08811	13.9	0.405
19	E08812	7.15	0.209
20	E08813	8.80	0.257
21	E08814	15.3	0.446
22	E08815	33.4	0.974
23	E08816	59.0	1.721
24	E08817	14.7	0.429
25	E08818	25.3	0.738
26	E08819	20.0	0.583

ECO TECH LABORATORY LT Jutta Jealouse B.C. Certified Assayer

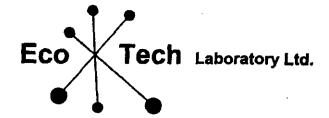
10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

يه، تنه ۲۰ مر که

CERTIFICATE OF ASSAY AK 2004-270

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

12-May-04


No. of samples received: 2 Sample type: Muck **Project #: Bonanza Ledge** Samples Submitted by: Ned Reid

		Au	Au	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	
1	E08820	24.9	0.726	
2	E08821	23.1	0.674	

QC DATA: Resplit: 1	E08820	25.3	0.738
Standard: SH13		1.38	0.040

ECO/TECH LABORATORY LTD. Jutte Jealouse B.C. Certified Assayer

JJ/kk XLS/04

. -

. .

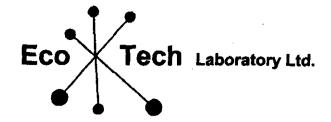
10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-349

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 12 Sample type: Muck Project **#: Bonanza Ledge Muck** Samples Submitted by: Carmen Kirsh

		Au	Αυ	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	E08846	2.17	0.063	
2	E08847	5.85	0.171	
3	E08848	19.9	0.580	
4	E08849	8.67	0.253	
5	E08850	17.2	0.502	
6	E08851	6.63	0.193	
7	E08852	7.91	0.231	
8	E08853	12.9	0.376	
9	E08854	9.96	0.290	
10	E08855	11.3	0.330	
11	E08856	11.5	0.335	
12	E08857	2.55	0.074	
	•			
QC DATA:	•			
Repeat:				
1	E08846	2.18	0.064	
4	E08849	8.36	0.244	
10	E08855	11.1	0.324	


12	E08857	2.54	0.324
Resplit: 1	E08846	2.67	0.078
Standard: OX123		1.84	0.054

JJ/jm XLS/04

156-2

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

2-Jun-04

باريوا بوليت بعارت بماحا سؤهدا بارتان

10041 Dallas Drive, Kamloops. BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-366

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 4 Sample type: Muck Project #: BL 740 Muck

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165407	8.06	0.235	
2	165408	12.5	0.365	
3	165409	11.6	0.338	
4	165410	14.3	0.417	
QC DATA: Resplit: 1	165407	8.30	0.242	
Standard: SH13		1.36	0.040	

JJ/jm XLS/04

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assay Á,

3-Jun-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-365

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

3-Jun-04

No. of samples received: 11 Sample type: Muck Project #: BL Muck - AOSPP - coc4 Stopet ?

		Au	Au
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>
1	E08858	10.8	0.315
2 · 3	E08859	16.7	0.487
	E08860	13.5	0.394
4	E08861	18.6	0.542
5 6 7	E08862	18.8	0.548
6	E08863	17.2	0.502
7	E08864	10.8	0.315
8 9	165402	11.2	0.327
9	165403	12.8	0.373
10	165404	25.7	0.749
11	165405	23.2	0.677
QC DATA:			
Repeat:			
1	E08858	11.3	0.330
Resplit:			
1	E08858	10.2	0.297
_			
Standard:			
SH13		1.34	0.039

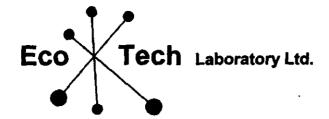
ECO/TECH LABOR TORY LTD. Jutta Jealbuse B.C. Centified Assaver

. ...

الودي ليتعادله المتحديثية المالم بالمدار المتبارك

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-374


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 4 Sample type: Muck Project #: BL740 Muck BL 14-0 HUCK Samples Submitted by: Carrmen Kirsh

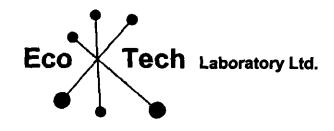
		Au	Au	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	
1	165411	11.4 .	0.332	
2	165412	27.1	0.790	
3	165413	11.9	0.347	
4	165414	14.8	0.432	
QC DATA:				
Repeat:				
2	165412	27.3	0.796	
3	165413	11.2	0.327	
Resplit:				
1	165411	10.5	0.306	
Standard:				
OX123		1.86	0.054	
SP17		18.3	0.534	

ECOTECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm XLS/04 4-Jun-04

na standar an chailteach an stairte

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com


CERTIFICATE OF ASSAY AK 2004-383

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 3 Muck **Project #: BL 740 Muck** Samples Submitted by: Carrmen Kirsh 7-Jun-04

		Au	Au	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	
1	165423	29.4	0.857	
2	165424	14.0	0.408	
3	165425	12.2	0.356	
QC DATA: Resplit:				
1	165425	26.4	0.770	
Standard: OX123		1.79	0.052	

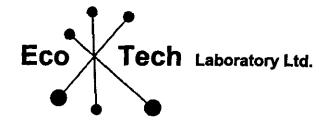
ECO/TECH LABORATORY / TI Jutta Jealouse B.C. Certified Assayer

10041 Dailas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

.

CERTIFICATE OF ASSAY AK 2004-380

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0


No. of samples received: 4 Sample type: Muck **Project #: UG / Muck** Samples Submitted by: L. Turner

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165415	16.7	0.487	
2	165416	15.4	0.449	
3	165417	14.4	0.420	
4	165418	15.0	0.437	
QC DATA:				
Repeats:				
1	165415	17.0	0.496	
2	165416	16.1	0.470	
3	165417	14.5	0.423	
4	165418	15.9	0.464	
Resplit:				
Ť	165415	16.0	0.467	
Standard:				
OX123		1.86	0.054	
SP17		17.5	0.510	

ECO

Jutte Jealouse B.C. Certified Assayer

JJ/jm KLS/04 8-Jun-04

8-Jun-04

المراجع وفاديهم ومعاديا والمراجع

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-381

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 4 Sample type: Muck **Project #: Bonanza Muck** Samples Submitted by: Reid

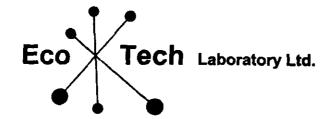
<u> </u>	Tag #	Au (g/t)	Au (oz/t)	
1	165419	12.8	0.373	▙▝▙▝▙▝▙▝▙▝▙▝▙▝▙▝▙▝▙▖ ▖ ▖ ▖ <u>▙▖<u>▖</u>▖▖▖▖</u>
2	165420	15.8	0.461	
3	165421	10.2	0.297	
4	165422	13.5	0.394	
<u>QC DATA:</u> Resplit: 1	165419	13.7	0.400	
Standard: OX123 OX123		1.79 1.81	0.052 0.053	

ECO TECH

Jutta Jealouse B.C. Certified Assayer

10041 Dailas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-392


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

9-Jun-04

No. of samples received: 4 Sample type: Muck **Project #: BL # 740 Muck** Samples Submitted by: Carrmen Kirsh

<u> </u>	Tag #	Au (g/t)	Au (oz/t)	
1	165426	9.15	0.267	
2	165427	17.0	0.496	
3	165428	14.5	0.423	
4	165429	22.2	0.647	
QC DATA: Repeat:				
1	165426	9.5	0.277	
Resplit: 1	165426	11.4	0.332	
Standard: OX123		1.85	0.054	

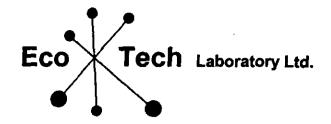
ECO/TECH LABORATORY LT Jutta Jealouse B.C. Certified Assayer

·

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-408

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0


14-Jun-04

المحرير المراجع فيستساده وال

No. of samples received: 8 Sample type: Muck **Project #: BL 740 STOPE Muck** Samples Submitted by: Carrmen Kirsh

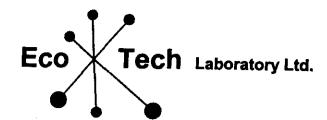
ET #. Tag # (g/t) (oz/t) 1 165430 BL#140 Stope Muck Truck #3 June 1/04 14.8 0.432 2 165431 BL#140 Stope Muck Truck #14 June 1/04 15.5 0.452 3 165432 BL#140 Stope Muck Truck #9 June 1/04 25.2 0.735 4 165433 BL#140 Stope Muck Truck #9 June 1/04 8.21 0.239 5 165434 BL#140 Stope Muck Truck #9 June 2/04 15.1 0.440 6 165435 BL#140 Stope Muck Truck #3 June 2/04 16.9 0.493 7 165436 BL#140 Stope Muck Truck #14 June 2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #14 June 2/04 8.96 0.261 2C DATA: Repeat: 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #14 June 1/04 27.2 0.793
2 165431 BL#140 Stope Muck Truck #14 June 1/04 15.5 0.452 3 165432 BL#140 Stope Muck Truck #9 June 1/04 25.2 0.735 4 165433 BL#140 Stope Muck Truck #9 June 1/04 8.21 0.239 5 165434 BL#140 Stope Muck Truck #9 June 2/04 15.1 0.440 6 165435 BL#140 Stope Muck Truck #3 June 2/04 16.9 0.493 7 165436 BL#140 Stope Muck Truck #14 June 2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #16 June 2/04 8.96 0.261 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353
3 165432 BL#140 Stope Muck Truck #9 June 1/04 25.2 0.735 4 165433 BL#140 Stope Muck Truck #9 June 1/04 8.21 0.239 5 165434 BL#140 Stope Muck Truck #9 June 2/04 15.1 0.440 6 165435 BL#140 Stope Muck Truck #3 June 2/04 16.9 0.493 7 165436 BL#140 Stope Muck Truck #3 June 2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #14 June 2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #16 June 2/04 8.96 0.261 2 CDATA: 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #14 June 1/04 27.2 0.793
4 165433 BL#140 Stope Muck Truck #9 June 1/04 8.21 0.239 5 165434 BL#140 Stope Muck Truck #9 June2/04 15.1 0.440 6 165435 BL#140 Stope Muck Truck #3 June 2/04 16.9 0.493 7 165436 BL#140 Stope Muck Truck #14 June2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #16 June 2/04 8.96 0.261 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #9 June 1/04 27.2 0.793
5 165434 BL#140 Stope Muck Truck #9 June2/04 15.1 0.440 6 165435 BL#140 Stope Muck Truck #3 June 2/04 16.9 0.493 7 165436 BL#140 Stope Muck Truck #14 June2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #16 June 2/04 8.96 0.261 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #9 June 1/04 27.2 0.793
6 165435 BL#140 Stope Muck Truck #3 June 2/04 16.9 0.493 7 165436 BL#140 Stope Muck Truck #14 June2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #16 June 2/04 8.96 0.261 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #9 June 1/04 27.2 0.793
6 165435 BL#140 Stope Muck Truck #3 June 2/04 16.9 0.493 7 165436 BL#140 Stope Muck Truck #14 June2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #16 June 2/04 8.96 0.261 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #9 June 1/04 27.2 0.793
7 165436 BL#140 Stope Muck Truck #14 June2/04 36.3 1.059 8 165437 BL#140 Stope Muck Truck #16 June 2/04 36.3 0.261 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #9 June 1/04 27.2 0.793
8 165437 BL#140 Stope Muck Truck #16 June 2/04 8.96 0.261 2C DATA: Repeat: 2 165431 BL#140 Stope Muck Truck #14 June 1/04 12.1 0.353 3 165432 BL#140 Stope Muck Truck #9 June 1/04 27.2 0.793
Propert: Provide <
7 165436 BL#140 Stope Muck Truck #14 June2/04 33.4 0.974
Resplit: 1 165430 BL#140 Stope Muck Truck #3 June 1/04 11.0 0.321

ECO TECH ABORATORY LTD. B.C. Certified Assayer

يه الے ان موجود فرد الارد الارد الارد ا

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-409


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

14-Jun-04

No. of samples received: 3 Sample type: Muck **Project #: BL # 740 STOPE MUCK** Samples Submitted by: Carrmen Beverly

ET#.	Tag #	Au (g/t)	Au (oz/t)	
1	165439 BL#140 Stope Muck Truck #3 June 3/04	22.0	0.642	
2	165440 BL#140 STOPE MUCK TRUCK #16 June 3/04	12.8	0.373	
3	165441 BL#140 STOPE MUCK TRUCK #9 June 3/04	15.8	0.461	
QC DATA: Resplit:				
1	165439 BL#140 Stope Muck Truck #3 June 3/04	24.0	0.700	
Standard: SH13				
5115		1.41	0.041	

ECO TECH LABORATORY LTD. Juita Jealouse B.C. Certified Assayer

يبيرينا أستنق ستنتجز فليتوجأ خافاتهما تمحا فالتعويات

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-430

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 4 Sample type: Muck **Project #: BL # 740 STOPE** Samples Submitted by: Carrmen Beverly

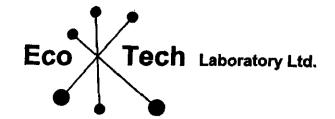
		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	165442	12.2	0.356	
2	165443	12.8	0.373	
3	165444	13.6	0.397	
4	165445	15.7	0.458	
QC DATA:				
Resplit:				
i	165442	12.1	0.353	
E to a do ada				
Standard: SH13		1.49	0.043	

I LABORATORY LTD. ECO/TEC Juta Jealouse B.C. Certified Assaye

JJ/jm XLS/04 15-Jun-04

15-Jun-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com


CERTIFICATE OF ASSAY AK 2004-429

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 4 Sample type: Muck **Project #: BL # 740 STOPE** Samples Submitted by: Carrmen Beverly

ET #.	Tag #	Au (g/t)	Au (oz/t)	
	165446	8.90	0.260	
2	165447	12.9	0.376	
3	165448	15.3	0.446	
4	165449	14.1	0.411	
QC DATA: Resplit:				
1	165446	8.60	0.251	
Standard: SH13		1.39	0.041	

FEO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

See a second second second

r = 1 + 2

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

22-Jun-04

CERTIFICATE OF ASSAY AK 2004-471

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 3 Sample type: Muck **Project #: BL # 140 Stope** Samples Submitted by: Carmen Beverly

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	-
1	165450 June 6 Truck #3	17.6	0.513	
2	165452 June 6 Truck #16	11.9	0.347	
3	165451 June 7 Truck #16	8.21	0.239	

QC DATA:

Resplit: 1	165450 June 6 Truck #3	18.5	0.540
Standard: SN16		8.60	0.251

ECO/TE H LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk XLS/04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-515

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 6 Sample type: Muck **Project #: Bonanza Ledge** Samples Submitted by: H. Follman

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	40851 Stope Muck Left Stope 1	9.89	0.288	
2	40852 Muck Left Stope 2	13.3	0.388	
3	40853 Muck Middle Stope 1	32.2	0.939	
4	40854 Muck Middle Stope 2	32.4	0.945	
5	40855 Muck RT Stope 1	6.9	0.201	
6	40856 Muck RT Stope 2	1.76	0.051	
QC DATA	=			
Resplit:				
1	40851 Stope Muck Left Stope 1	10.7	0.312	
3	40853 Muck Middle Stope 1	29.4	0.857	
4	40854 Muck Middle Stope 2	32.7	0.954	
Standard:				
OXE21		0.62	0.018	

ECO TECH LABORATORY LTD. Jutta Jeajouse B.C. Certified Assaye

JJ/jm XLS/04 25-Jun-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-632

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 18 Sample type: Muck **Project #: BL Muck** Samples Submitted by: Henry Follman

			Au	Au	
<u> </u>	Tag #		(g/t)	(oz/t)	
1	41977 65 70)	38.0	1.108	<u>, 199</u> 999, <u>1999</u> , <u>1999</u> , <u>19</u> 97, <u>1997</u> , <u>1</u>
2	41978 66 70)	22.3	0.650	
3	41979 71 75	5	23.0	0.671	
4	41980 71 75	5 Course	67.3	1.963	
5	41981 76 80)	19.4	0.566	
6	41982 76 80	Course	48.2	1.406	
7	41983 81 85	5	11.4	0.332	
8	41984 81 85	i course	7.40	0.216	
9	41985 86 90)	3.92	0.114	
10	41986 86 90) Course	12.4	0.362	
11	41988 91 95	5	30.9	0.901	
12	41989 91 95	o Course	4.63	0.135	
13	41990 96 10	0	17.9	0.522	
14	41991 96 10	0 Course	31.4	0.916	
15	41992 101 10)5	17.1	0.499	
16	41993 101 10	5 course	37.8	1.102	
17	41994 106 11		26.0	0.758	
18	41995 106 11	0 course	92.6	2.700	
QC DATA:					
	•				
Repeat:	41977 65 70		38.1	1.111	
4		Course	73.0	2.129	·
10	41986 86 90		11.9	2.12 5 0.347	
16	41993 101 10		37.0	1.079	
18	41995 106 11		95.0	2.770	
		0.000.00	00.0	2	· .
Resplit:					
1	41977 65 70	i -	39.9	1.164	
Standard:					\frown
OX123			1.82	0.053	
					Inde

JJ/jm XLS/04 Jutta Jealouse

EGO TEGH LABORATORY LTD.

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-601

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 3 Sample type: Muck **Project #: BL Muck** Samples Submitted by: Heny Follman

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1	41951	47.7	1.391	
2	41952	27.0	0.787	
3	41953	38.2	1.114	
QC DATA: Repeat:				
1	41951	53.0	1.546	
3	41953	38.1	1.111	
Standard:				
OX123		1.90	0.055	

TECH LABORATOR ECØ

Juta Jealouse B.C. Certified Assayer

JJ/jm XLS/04

al a tana ata a fa la alta a la a

...

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E~mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-619

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 7 Sample type: Muck **Project #: Bonanza Ledge** Samples Submitted by: Henry Follman

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
1.	41954	49.2	1.435	
2	41955	4.24	0.124	
3	41957	46.9	1.368	
4	41958	34.3	1.000	
5 6	41959	6.40	0.187	
6	41960	42.8	1.248	
7	41961	73.6	2.146	
QC DATA:				
Repeat:				
1	41954	46.9	1.368	
3	41957	49.0	1.429	
6	41960	36.2	1.056	
Resplit:				
1	41954	46.4	1.353	
Standard:				
OX123		1.84	0.054	
OX123		1.83	0.053	

ECO TEGH LABORATORY LTD. Juita Jealouse B.C. Certified Assave

JJ/jm XLS/04

والمراجع والأحاجة والأ

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-620

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 16 Sample type: Muck **Project #: BL Muck** Samples Submitted by: Henry Follman

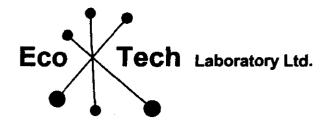
		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	41956	18.4	0.537	
2	41962	30.4	0.887	,
2 3	41963	28.1	0.819	
4	41964	10.9	0.318	
5	41965	20.2	0.589	
5 6 7	41966	21.2	0.618	
	41967	22.5	0.656	
8	41968	41.4	1.207	
9	41969	35.4	1.032	
10	41970	33.6	0.980	
11	41971	25.5	0.744	
12	41972	81.5	2.377	
13	41973	27.1	0.790	
14	41974	152	4.433	
15	41975	21.4	0.624	
16	41976	45.4	1.324	
QC DATA:				
Repeat:				
1	41956	23.4	0.682	·
8	41968	38.8	1.132	
13	41973	28.4	0.828	
16	41976	45.7	1.333	
Resplit:				
1	41956	26.1	0.761	
Standard:				
OX123		1.84	0.054	
OX123		1.83	0.053	
				\frown

ECO TECH LABORATORY LTD. B.C. Certified Kssavér

JJ/jm XLS/04

Page 1

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com


CERTIFICATE OF ASSAY AK 2004-650

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 16 Sample type: Muck **Project #: BL Muck** Samples Submitted by: Henry Follman

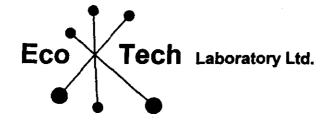
ET #. Tag # (g/t) (oz/t) 1 40751 1 5 8.56 0.250 2 40752 0 5 coarse 29.6 0.863 3 40753 6 10 8.09 0.236 4 40754 6 10 coarse 21.8 0.636	
2 40752 0 5 coarse 29.6 0.863 3 40753 6 10 8.09 0.236 4 40754 6 10 coarse 21.8 0.636	
3 40753 6 10 8.09 0.236 4 40754 6 10 coarse 21.8 0.636	
4 40754 6 10 coarse 21.8 0.636	
5 40755 11 15 12.6 0.367	
6 40756 11 15 coarse 2.67 0.078	
7 40757 16 20 8.46 0.247	
8 40758 16 20 coarse 15.5 0.452	
9 40759 21 25 8.20 0.239	
10 40760 21 25 coarse 4.21 0.123	
11 40761 26 30 30.2 0.881	
12 40762 26 30 coarse 34.9 1.018	
13 40763 31 35 11.3 0.330	
14 40764 31 35 coarse 4.70 0.137	
15 40765 35 40 10.7 0.312	
16 40766 36 40 18.8 0.548	
QC_DATA:	
Repeat:	
1 40751 1 5 8.57 0.250	
2 40752 0 5 coarse 34.0 0.992	
4 40754 6 10 coarse 21.8 0.636	
7 40757 16 20 8.49 0.248	
11 40761 26 30 30.8 0.898	
12 40762 26 30 coarse 32.8 0.957	
Beenlite	
1 40751 1 5 10.6 0.309	
Standard:	
OX123 1.90 0.055	

JJ/kk XLS/04

والمراجع والمراجع والمقار ووراسه

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-649R


INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 16 Sample type: Muck **Project #: BL Muck** Samples Submitted by: H. Follman

				Au	Au	
<u> </u>	Tag #			(g/t)	(oz/t)	
1	40767	41	45	16.4	0.478	
2	40768	41	45 coarse	20.3	0.592	
3	40769	46	50	20.2	0.589	
4	40770	46	50 coarse	10.8	0.315	
5	40771	51	56	15.9	0.464	
6	40772	51	55 coarse	12.5	0.365	
7	40773	56	60	35.3	1.029	
8	40774	56	60 coarse	45.2	1.318	
9	40775	61	65	12.8	0.373	
10	40776	61	65 coarse	92.5	2.698	
11	40777	66	70	19.6	0.572	
12	40778	66	70 coarse	2.23	0.065	
13	40779	71	76	11.5	0.335	
14	40780	71	75 coarse	36.9	1.076	
15	40782	76	80	18.9	0.551	
16	40783	76	80 coarse	28.7	0.837	
QC DATA:						
Repeat:	2					
1	40767	41	45	16.5	0.481	
8	40774	56	60 coarse	45.4	1.324	
10	40776	61	65 coarse	89.7	2.616	
- •••						-
Resplit:						
1	40767	41	45	18.7	0.545	
Standard:						
OX123				1.79	0.052	

ECO TECHLABORATORY LTD. Jutta Jeaguse B.C. Cerffied Assayer

Page 1

A CARLER AND A CARLER AND

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-694

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 34 Sample type: Muck **Project #: BL Muck** Samples Submitted by: H. Follman

			Au	Au	
ET #.	Tag #		(g/t)	(oz/t)	
1	40787	86 90	17.6	0.513	
2	40788	86 90 coarse	15.6	0.455	
3	40789	91 95	20.6	0.602	,
4	40790	90 95 coarse	15.6	0.454	
5	40791	96 100	18.7	0.546	
6	40792	96 100 coarse	16.7	0.488	
7	40793	102 106	19.5	0.568	
8	40794	101 105 coarse	27.2	0.793	
9	40795	106 110	7.24	0.211	
10	40796	106 110 coarse	20.2	0.590	
11	40797	111 115	13.9	0.407	
12	40798	111 115 coarse	28.0	0.815	
13	40799	116 120	9.07	0.265	
14	40800	116 120 coarse	36. 9	1.076	
15	25951	121 125	7.36	0.215	
16	25952	121 125 coarse	18.0	0.526	
17	25953	126 130	28.4	0.828	
18	25954	126 130 coarse	15.1	0.439	
19	25955	131 135	26.4	0.769	
20	25956	131 135 coarse	8.96	0.261	
21	25957	136 140	17.7	0.515	
22	25958	141 145	13.0	0.378	
23	25959	146 150	26.2	0.764	
24	25960	151 155	33.2	0.969	
25	25961	156 160	26.0	0.758	
26	25962	161 165	25.1	0.732	
27	25963	166 1 70	36.2	1.056	
28	25964	171 175	18.3	0.534	
29	25965	176 180	10.5	0.307	
30	25966	181 185	16.0	0.468	
31	25967	186 190	60.1	1.752	
32	25968	191 195	30.8	0.898	\bigcirc
33	25969	196 200	34.3	1.000	
34	25970	201 205	52.0	1.517	

BORATORY LTD. τeς Inta Jealduse B.C. Certified Assayer

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK04-694

			Au	Au	
<u> </u>	Tag #		<u>(g/t)</u>	(oz/t)	
QC DATA:					
Repeat:					
1	40787	86 90	19.0	0.553	
4	40790	90 95 coarse	11.0	0.322	
7	40793	102 106	20.3	0.591	
10	40796	106 110 coarse	19.0	0.554	
11	40797	111 115	14.4	0.421	
14	40800	116 120 coarse	39.9	1.162	
19	25955	131 135	27.1	0.791	
20	25956	131 135 coarse	7.87	0.230	
23	25959	146 150	23.3	0.681	
27	25963	166 170	36.7	1.069	
31	25967	186 190	68.9	2.009	
Standard:					
OX123			1.84	0.054	

OX123

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

16-Jul-04

JJ/jm XLS/04

Eco Tech LABORATORY LTD.

Page 2

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-744

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 39 Sample type: Muck **Project #: Bonanza Ledge Muck** Samples Submitted by: H. Follman

				Au	Au	
ET <u>#</u> .	_Tag #			(g/t)	(oz/t)	
1	25971	266	210	26.9	0.784	
2	25972	211	215	31.5	0.919	
2 3	25973	216	220	24.9	0.726	
4	25974	221	225	22.3	0.650	
5	25975	226	230	28.0	0.817	
6	25976	231	235	21.6	0.630	
7	25977	pile 1 of	4	46.6	1.359	
8	25978	pile 2 of	4	7.03	0.205	
9	25979	pile 3 of	4	10.2	0.297	
10	25980	pile 4 of	4	12.7	0.370	
11	25981	pile 1 of	5	6.74	0.197	
12	25982	pile 2 of	5	12.4	0.362	
13	25983	pile 3 of	5	27.3	0.796	
14	25984	pile 4 of	5	11.4	0.332	
15	25985	pile 1 of	5	23.9	0.697	
16	25986	pile 2 of	5	40.4	1.178	
17	25987	pile 3 of	5	38.1	1,111	
18	25988	pile 4 of	5	7.36	0.215	
19	25989	pile 5 of	5	32.1	0.936	
20	25990	pile 5 of	5	19.1	0.557	
21	25991	10 scoops	of graphitic waste	1.63	0.048	
22	25992	1 of	14	10.2	0.297	
23	25993	2 of	14	15.7	0.458	
24	25994	3 of	14	15.6	0.455	
25	25995	4 of	14	18.1	0.528	
26	25996	6 of	14	16.6	0.484	
27	25997	7 of	14	15.7	0.458	
28	25998	8 of	14	14.1	0.411	
29	25999	11 of	14	21.5	0.627	<u>_</u>
30	26000	12 of	14	8.40	0.245	\bigcirc

LABORATORY LTD. ECO TEC Jutta Jealouse B/C. Certified Assayer

CERTIFICATE OF ASSAY AK 2004-775

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 17 Sample type: Muck **Project #: BL Muck** Samples Submitted by: Henry Follman

				Au	Au	
ET #.	Tag #			(g/t)	(oz/t)	
1	25906 F	Pile 1	5	6.79	0.198	
2	25907 F	Pile 6	10	4.86	0.142	
3	25908 1	11	15	10.8	0.315	
4	25909 1	16	20	9.16	0.267	
5	25910 2	21	25	9.78	0.285	
6	25911 2	26	30	24.1	0.703	
7	25912 3	31	35	30.3	0.884	
8	25913 1	1	5	19.5	0.569	
9	25914 6	3	10	12.1	0.353	
10	25915 1	11	15	9.93	0.290	
11	25916 1	6	20	10.7	0.312	
12	25917 2	21	25	12.9	0.376	
13	25918 2	26	30	10.9	0.318	
14	25919 3	31	35	9.76	0.285	
15	25920 F	Pile	#1	21.9	0.639	
16	25921 F	Pile	#2	19.3	0.563	
17	25922 7	7	12 Oxide Muck	19.8	0.577	
QC DATA:	_					
Repeat:	=					
1	25906 F	Pile 1	5	6.98	0.204	
2	25907 F	Pile 6	10	4.35	0.127	
3	25908 1	1	15	9.86	0.288	
10	25915 1		15	11.0	0.321	
15	25920 F	Pile	#1	21.9	0.639	
Resplit:						
1 respire.	25906 F	Pile 1	5	7.69	0.224	
Standard:						
OX123				1.86	0.054	
SN16				8.45	0.246	
						ECO TECH LABORATORY LTD.
						EVO TEVIT LABORATORI ETD.

INTERNATIONAL WAYSIDE GOLD MINES LTD. AK04-744

19-Jul-04

وترور فيدحه معاملتهما سعيناه الالالمان

.

ET #.Tag #(g/t)(oz/t)31419969 of142.290.06732419975 of1421.60.630334199813 of1477.92.272344199914 of1517.80.519352590110 of1412.60.36736259021 of435.11.02437259032 of444.51.29838259043 of434.91.01839259054 of452.31.525QC DATA:Repeat:12597126621026.70.77922597221121530.80.8981025980pile 4 of413.00.3791425984pile 4 of57.360.2151925999pile 5 of531.60.922212599110 scoops of graphitic waste1.540.04525259988 of1414.00.40831419969 of142.240.06536259021 of435.61.038Standard:0X1231 of435.61.038					Au	Au	
31 41996 9 of 14 2.29 0.067 32 41997 5 of 14 21.6 0.630 33 41998 13 of 14 77.9 2.272 34 41999 14 of 15 17.8 0.519 35 25901 10 of 14 12.6 0.367 36 25902 1 of 4 35.1 1.024 37 25903 2 of 4 44.5 1.298 38 25904 3 of 4 34.9 1.018 39 25905 4 of 4 52.3 1.525 QC DATA: Repeat: 1 25971 266 210 26.7 0.779 2 25972 211 215 30.8 0.898 10 25980 pile 4 of 5 7.36 0.215 18 25989 pile 5 of 5 31.6 0.922 21 25991 10 scoops of graphitic waste 1.54 0.045 <	<u>ET #.</u>	Tag #					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	41996	9 of	14	2.29	0.067	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	41997	5 of				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		41998	13 of				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		41999		15			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	25901	10 of				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25902	1 of	4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	37	25903	2 of	4			
39 25905 4 of 4 52.3 1.525 QC DATA: Repeat: 1 25971 266 210 26.7 0.779 2 25972 211 215 30.8 0.898 10 25980 pile 4 of 4 13.0 0.379 14 25984 pile 4 of 5 7.36 0.215 19 25989 pile 5 of 5 31.6 0.922 21 25991 10 scoops of graphitic waste 1.54 0.045 25 25995 4 of 14 18.0 0.525 28 25998 8 of 14 14.0 0.408 31 41996 9 of 14 2.24 0.065 36 25902 1 of 4 36.1 1.053 Standard: 0X123 1 of 4 35.6 1.038	38	25904					
QC DATA: Repeat:12597126621026.70.77922597221121530.80.8981025980pile 4 of 413.00.3791425984pile 4 of 512.10.3531825989pile 5 of 531.60.922212599110 scoops of graphitic waste1.540.04525259954 of 1418.00.52528259988 of 1414.00.40831419969 of 142.240.06536259021 of 436.11.053Resplit: 112597126621027.90.81436259021 of 435.61.038Standard: 0X123	39	25905					
Repeat:12597126621026.70.77922597221121530.80.8981025980pile 4 of413.00.3791425984pile 4 of512.10.3531825988pile 4 of57.360.2151925989pile 5 of531.60.922212599110 scoops of graphitic waste1.540.04525259954 of1418.00.52528259988 of1414.00.40831419969 of142.240.06536259021 of436.11.053Resplit:12597126621027.90.81436259021 of435.61.038Standard: $OX123$ 1.860.054							
1 25971 266 210 26.7 0.779 2 25972 211 215 30.8 0.898 10 25980 pile 4 of4 13.0 0.379 14 25984 pile 4 of5 12.1 0.353 18 25988 pile 4 of5 7.36 0.215 19 25989 pile 5 of5 31.6 0.922 21 25991 10 scoops of graphitic waste 1.54 0.045 25 25995 4 of 14 18.0 0.525 28 25998 8 of 14 14.0 0.408 31 41996 9 of 14 2.24 0.065 36 25902 1 of 4 36.1 1.053 Resplit:1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: $OX123$ 1.86 0.054	QC DATA:						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Repeat:						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		25971	266	210	26.7	0.779	
1025980pile 4 of413.00.3791425984pile 4 of512.10.3531825988pile 4 of57.360.2151925989pile 5 of531.60.922212599110 scoops of graphitic waste1.540.04525259954 of1418.00.52528259988 of1414.00.40831419969 of142.240.06536259021 of436.11.053Resplit:12597126621027.90.81436259021 of435.61.038Standard: $QX123$ 1.860.054	2	25972	211	215			
14 25984 pile 4 of 5 12.1 0.353 18 25988 pile 4 of 5 7.36 0.215 19 25989 pile 5 of 5 31.6 0.922 21 25991 10 scoops of graphitic waste 1.54 0.045 25 25995 4 of 14 18.0 0.525 28 25998 8 of 14 14.0 0.408 31 41996 9 of 14 2.24 0.065 36 25902 1 of 4 36.1 1.053 Resplit: 1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038	10	25980	pile 4 of	4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14	25984					
19 25989 pile 5 of 5 31.6 0.922 21 25991 10 scoops of graphitic waste 1.54 0.045 25 25995 4 of 14 18.0 0.525 28 25998 8 of 14 14.0 0.408 31 41996 9 of 14 2.24 0.065 36 25902 1 of 4 36.1 1.053 Resplit: 1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: QX123 1.86 0.054							
21 25991 10 scoops of graphitic waste 1.54 0.045 25 25995 4 of 14 18.0 0.525 28 25998 8 of 14 14.0 0.408 31 41996 9 of 14 2.24 0.065 36 25902 1 of 4 36.1 1.053 Resplit: 1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: QX123 1.86 0.054		25989					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
28 25998 8 of 14 14.0 0.408 31 41996 9 of 14 2.24 0.065 36 25902 1 of 4 36.1 1.053 Resplit: 1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: QX123 1.86 0.054	25	25995					
31 41996 9 of 14 2.24 0.065 36 25902 1 of 4 36.1 1.053 Resplit: 1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: OX123 1.86 0.054							
36 25902 1 of 4 36.1 1.053 Resplit: 1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: OX123 1.86 0.054	31	41996	9 of				
Resplit: 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: 0X123 1.86 0.054							
1 25971 266 210 27.9 0.814 36 25902 1 of 4 35.6 1.038 Standard: OX123 1.86 0.054							
36 25902 1 of 4 35.6 1.038 Standard: 0X123 1.86 0.054	Resplit:						
36 25902 1 of 4 35.6 1.038 Standard: 0X123 1.86 0.054	1	25971	266	210	27.9	0.814	
OX123 1.86 0.054	36	25902	1 of				
OX123 1.86 0.054							
					1.86	0.054	
0.123 1.86 0.054	OX123				1.86	0.054	

ECO TECH LABORATORY LTD. Juna Jealquise B.C. Certified Assayer

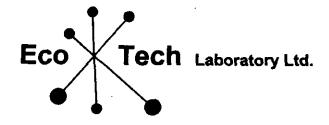
JJ/jm XLS/04

> Eco Tech LABORATORY LTD. Page 2

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ASSAY AK 2004-1711

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0


No. of samples received: 10 Sample type: Concentrate **Project #: BC-Bulk sample** Samples Submitted by: Ed Gates

		Au	Au	Fe	Ag	Ag	Cu	
<u> </u>	Tag #	(g/t)	(oz/t)	%	(g/t)	<u>(oz/t)</u>	%	
1	E43401	220	6.416	38.6	32.4	0.945	0.34	
2	E43402	324	9.449	39.1	47.2	1.376	0.34	
3	E43403	330	9.624	41.4	48.1	1.403	0.56	
4	E43404	203	5.923	40.2	32.4	0.945	0.42	
5	E43405	178	5.191	38.5	29.3	0.854	2.66	
6	E43406	257	7.507	39.8	40.2	1.172	0.71	
7	E43407	167	4.870	38.5	27.6	0.805	1.36	
8	E43408	161	4.695	39.0	28.2	0.822	2.74	
9	E43409	155	4.520	37.3	33.4	0.974	4.07	
10	E43410	55.8	1.627	26.6	45.0	1.312	23.7	
	<u>\:</u>							
Repeats	:							
1	E43401			38.7	32.0	0.933	0.34	
10	E43410			25.1	45.1	1.315	23.7	
Standard	-							
CH3				11.9				
Cu106					136	3.966	1.46	
SN16		9.25	0.270				0.83	
OX123	-	1.80	0.052				2.20	

* Results to follow

BORATORY LTD. ECO PECH Jutta Jealour C. Certified Assayer

5-Nov-04

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

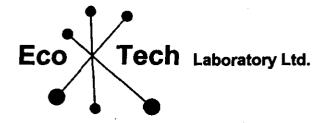
CERTIFICATE OF ASSAY AK 2004-1711

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 10 Sample type: Concentrate **Project #: BC-Bulk sample** Samples Submitted by: Ed Gates

		Au	Au	Fe	Ag	Ag	Cu	
ET #	Tag #	(g/t)	(oz/t)	%	(g/t)	<u>(oz/t)</u>	%	
1	E43401	220	6.416	38.6	32.4	0.945	0.34	
2	E43402	324	9.449	39.1	47.2	1.376	0.34	
3	E43403	330	9.624	41.4	48.1	1.403	0.56	
4	E43404	203	5.923	40.2	32.4	0.945	0.42	
5	E43405	178	5.191	38.5	29.3	0.854	2.66	
6	E43406	257	7.507	39.8	40.2	1.172	0.71	
7	E43407	167	4.870	38.5	27.6	0.805	1.36	
8	E43408	161	4.695	39.0	28.2	0.822	2.74	
9	E43409	155	4.520	37.3	33.4	0.974	4.07	
10	E43410	55.8	1.627	26.6	45.0	1.312	•	
	λ:							
Repeats	4 1							
.1	E43401			38.7	32.0	0.933	0.34	
10	E43410			25.1	45.1	1.315	*	
Standard	1:							
СНЗ				11.9				
Cu106					136	3.966	1.46	
SN16		9.25	0.270				0.83	
OX123		1.80	0.052					

* Results to follow


EC TECH LABORA

Jutta Jealouse B.C. Certified Assayer

JJ/sc XLS/04

Page 1

5-Nov-04

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, BC V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 E-mail: info@ecotechlab.com www.ecotechlab.com

CERTIFICATE OF ANALYSIS AK 2004-1711

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0 5-Nov-04

No. of samples received: 10 Sample type:Concentrate **Project #: BC-Bulk sample Shipment #: None Given** Samples submitted by: Ed Gates

		Moisture	
<u>ET #.</u>	Tag #	(%)	
1	E43401	6.61	
2	E43402	5.34	
3	E43403	4.51	
4	E43404	5.00	
5	E43405	5.96	
6	E43406	6.66	
7	E43407	12.4	
8	E43408	15.8	
9	E43409	15.8	
10	E43410	16.6	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/sc XLS/04 J-11UV-04

ECO TECH LABON JRY LTD. 10041 Dallas Drive KAMLOOPS; B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANAL LOS AN 2004-1711

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 10 Sample type:Concentrate Project #: BC-Bulk sample Shipment #: None Given Samples submitted by: Ed Gates

Values in ppm unless otherwise reported

•	Et #.	Tag #	Ag	AI %	As	Ba	BI	<u>Ca %</u>	_Cd_	Co_	Cr	Çu	Fe %	La Mg %	Mo_	Mo_Na %	Ni	P	Pb	Sb	Sn	Sr TI%	U	V	W	Y	Zn
-	1	E43401	>30	0.04	890	50	<5	0.16	<1	94	<1	3264	>10	<10 <0.01	62	12 < 0.01	210	20	236	<5	<20	11 < 0.01	<10	5	<10	<1	145
	2	E43402	>30	0.03	880	45	<5	0.15	<1	96	<1	3204	>10	<10 <0.01	60	11 <0.01	217	40	232	<5	<20	6 <0.01	<10	4	<10	<1	146
•	3	E43403	>30	0.02	895	45	<5	0.08	<1	97	<1	5402	>10	<10 <0.01	25	12 <0.01	216	<10	248	<5	<20	2 < 0.01	<10	4	<10	<1	135
	4	E43404	>30	0.02	925	45	<5	0.10	<1	99	<1	4048	>10	<10 <0.01	38	13 <0.01	217	<10	232	<5	<20	4 <0.01	<10	3	<10	<1	136
	5	E43405	28.1	0.02	915	40	<5	0.11	<1	97	<1	>10000	>10	<10 <0.01	46	18 <0.01	212	<10	326	<5	<20	4 <0.01	<10	4	<10	<1	155
	6	E43406	>30	0.03	910	45	<5	0.11	<1	98	<1	5819	>10	<10 <0.01	41	19 <0.01	224	<10	282	<5	<20	4 <0.01	<10	4	<10	<1	165
	7	E43407	26.0	0.04	900	45	<5	0.15	<1	99	<1	>10000	>10	<10 <0.01	55	13 0.01	208	<10	458	<5	<20	6 <0.01	<10	8	<10	<1	247
	8	E43408	25.6	0.05	940	- 50	<5	0.15	<1	103	<1	>10000	>10	<10 <0.01	62	14 0.01	204	<10	806	<5	<20	9 <0.01	<10	12	<10	<1	378
	9	E43409	>30	0.05	905	50	<5	0.13	<1	100	<1	>10000	>10	<10 <0.01	57	14 0.01	199	<10	930	<5	<20	6 < 0.01	<10	10	<10	<1	349
	10	E43410	>30	0.31	1025	100	<5	0.37	<1	221	18	>10000	>10	<10 <0.01	296	100 0.02	62	<10	1590	<5	<20	17 <0.01	<10	58	<10	<1	1400

OC DATA:																												
Standard: GEO '04	1.4 1.56	70	145	<5	1.49	<1	19	61	88	4.14	<10	0.82	631	<1	0.03	27	650	24	<5	<20	60	0.09	<10	68	<10	6	74	

ECOTECH LABORATORY LTD. Juna Jealouse B.C. Certified Assayer

JJ/sc df/1686 XLS/04

1

CERTIFICATE OF ASSAY AK 2004-1033

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No, of samples received: 29 Sample type: Waste Rock **Project #: Bonanza Waste Rock** Samples Submitted by: J. McAllister

. *****

Į

		Au	Au
<u>ET #.</u>	Tag #	(g/t)	(oz/t)
1	165502	0.93	0.027
2	165504	0.45	0.013
3	165518	1.21	0.035
4	165520	1.42	0.041
5	165522	3.77	0.110
6	165524	2.02	0.059
7	165532	0.04	0.001
8	165534	0.03	0.001
9	165536	0.08	0.002
10	165538	<0.03	<0.001
11	165540	0.24	0.007
12	165542	0.27	0.008
13	165544	0.25	0.007
14	165546	0.26	0.008
15	165548	0.49	0.014
16	165550	0.79	0.023
17	165552	0.89	0.026
18	165554	1.57	0.046
19	165556	0.44	0.013
20	165558	0.53	0.015
21	165560	0.07	0.002
22	165562	0.11	0.003
23	165564	0.13	0.004
24	165566	1.11	0.032
25	165568	0.05	0.001
26	165570	0.03	0.004
20	165570	1.14	0.004
28			0.033
	165574	1.32	
29	165576	1.17	0.034

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

07-Oct-04

.

.

1

27-Aug-04

ET #.	Tag #	Au (g/t)	Au (oz/t)	
		<u></u>		
QC DATA:	<u></u>			
Repeat:	-			
1	165502	0.94	0.027	
4	165520	1.35	0.039	
5	165522	3.84	0.112	
6	165524	1.80	0.052	
10	165538	<0.03	<0.001	
28	165574	1.26	0.037	
29	165576	1.25	0.036	
Resplit:				
1	165502	1.08	0.031	
Standard:				
OX123		1.89	0.055	
GATE		1.03	0.000	

WHOLE ROCK CERTIFICATE OF ANALYSIS AK 2004-1033

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

ATTENTION:

, ^{...} '

1

No. of samples received: 29 Sample type: Waste Rock **Project #: Bonanza Waste Rock** Samples submitted by: J. McAllister

Note: Values expressed in percent

E	#.	Tag #	BaO_	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2_	Na2O	K20	<u>L.O.I.</u>
	1	165502	0.17	0.11	62.0	0.10	8.06	1.76	15.0	1,89	1.03	0.50	3.49	5.93
1	3	165544	0.08	0.23	58.8	0.13	7.98	2.29	15.7	2.18	0.74	0.38	3.76	7.76
1	4	165546	0.15	0.14	59.3	0.08	6.91	2.40	16.0	2.30	1.09	0.37	4.22	7.06
1	5	165548	0.21	0.14	59.9	0.09	7.14	1.20	14.8	2.31	1.44	0.34	5.32	7.10
1	6	165550	0.13	0.14	61.7	0.11	7.39	1.85	14.5	1.92	0.82	0.26	3.92	7.34
1	7	165552	0.11	0.11	61.4	0.08	6.21	2.15	15.6	2.44	0.87	0.36	3.94	6.72
1	8	165554	0.19	0.24	45.5	0.07	11.1	1.55	21.5	1.61	1.38	0.33	6.5	10.0
1	9	165556	0.14	0.12	56.8	80.0	8.52	2.35	16.5	2.65	1.02	0.34	4.17	7.28
	DATA dard:	-												
S]	γ4		0.05	0.13	50.0	0.11	6.56	0.54	20.7	8.33	0.29	7.10	1.62	4.56
m	g1		0.02	0.06	38.8	0.17	17.6	13.7	8.34	14.6	3.64	0.68	0.18	2.22

df/wr1033A XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

l

07-Oct-04

APPENDIX VI

BONANZA LEDGE TRENCHES

viii

	BONANZA LEDGE TRENCHES - 2004											
			Au	Au								
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description							
				ļ								
	527504		4.00	0.400	Phyllite - silver colored, 80% arg / 20% silt, weak silicification, strong sericite,							
BL TR-1	E37501	BL-TR1-1	4.33	0.126	abundant gouge Phyllite - silver colored, 80% arg / 20% silt, weak silicification, strong sericite,							
BL TR-1	E37502	BL-TR1-2	5.26	0.153	abundant gouge							
	201002			1 0.100	Phyllite - silver colored, 80% arg / 20% silt, weak silicification, strong sericite,							
BL TR-1	E37503	BL-TR1-3	23.40	0.682	abundant gouge							
<u> </u>					Phyllite - reddish gray, 60% qtz / 30% silt / 10% arg, weak to mod silicification,							
BL TR-1	E37504	BL-TR1-4	0.24	0.007	weak sericite							
					Phyllite - reddish gray, 60% qtz / 30% silt / 10% arg, weak to mod silicification,							
BL TR-1	E37505	BL-TR1-5	0.18	0.005	weak sericite							
.		/ _			Phyllite - reddish gray, 60% qtz / 30% silt / 10% arg, weak to mod silicification,							
BL TR-1	E37506	BL-TR1-6	0.18	0.005	weak sericite							
					Phyllite - orange-yellow, 60% qtz / 30% silt / 10% arg, abundant limonite &							
BL TR-1	E37507	BL-TR1-7	<0.03	<0.001	hematite, thinly laminated, 5-10% qtz veinlets parallel to foliation, with abundant hematite							
	237307	DL-IRI-7	0.03		Phyllite - orange-yellow, 60% gtz / 30% silt / 10% arg, abundant limonite &							
					hematite, thinly laminated, 5-10% qtz veinlets parallel to foliation, with							
BL TR-1	E37508	BL-TR1-8	0.08	0.002	abundant hematite							
				<u> </u>	Phyllite - orange-yellow, 60% qtz / 30% silt / 10% arg, abundant limonite &							
					hematite, thinly laminated, 5-10% qtz veinlets parallel to foliation, with							
BL TR-1	E37509	BL-TR1-9	0.13	0.004	abundant hematite							
					Phyllite - orange-yellow, 60% qtz / 30% silt / 10% arg, abundant limonite &							
			o 17		hematite, thinly laminated, 5-10% qtz veinlets parallel to foliation, with							
BL TR-1	E37510	BL-TR1-10	0.17	0.005	abundant hematite							
	E07511		0.06	0.000	Phyllite - light gray, weak hematite stain, iron oxide after disseminated pyrite							
BL TR-1	E37511	BL-TR1-11	0.06	0.002	porphyroblasts Phyllite - maroon-red (mauvite?), 20% qtz / 50% silt / 30 % arg, abundant qtz-							
	l l				iron oxide veinlets or laminae parallel to foliation, weak to mod silicification,							
BL TR-1	E37512	BL-TR1-12	0.21	0.006	strong sericite							
				<u> </u>	Phyllite - maroon-red (mauvite?), 20% qtz / 50% silt / 30 % arg, abundant qtz-							
					iron oxide veinlets or laminae parallel to foliation, weak to mod silicification,							
BL TR-1	E37513	BL-TR1-13	0.05	0.001	strong sericite							

1

	BONANZA LEDGE TRENCHES - 2004											
			Au	Au								
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description							
BL TR-1	E37514	BL-TR1-14	0.03	0.001	Phyllite - maroon-red (mauvite?), 20% qtz / 50% silt / 30 % arg, abundant qtz- iron oxide veinlets or laminae parallel to foliation, weak to mod silicification, strong sericite							
BL TR-1	E37515	BL-TR1-15	23.80	0.694	Phyllite - maroon-red (mauvite?), 20% qtz / 50% silt / 30 % arg, abundant qtz- iron oxide veinlets or laminae parallel to foliation, weak to mod silicification, strong sericite							
BL TR-1	E37516	BL-TR1-16	2.96	0.086	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white qtz veins with abundant hematite							
BL TR-1	E37517	BL-TR1-17	0.41	0.012	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white gtz veins with abundant hematite							
BL TR-1	E37518	BL-TR1-18	0.28	0.008	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white gtz veins with abundant hematite							
BL TR-1	E37519	BL-TR1-19	0.48	0.014	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white gtz veins with abundant hematite							
BL TR-1	E37520	BL-TR1-20	0.39	0.011	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white gtz veins with abundant bematite							
BL TR-1	E37521	BL-TR1-21	0.23	0.007	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white qtz veins with abundant hematite							
BL TR-1	E37522	BL-TR1-22	0.37	0.011	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argiilite laminae, 3-4% 5mm to 2cm white gtz veins with abundant hematite							
BL TR-1	E37523	BL-TR1-23	0.44	0.013	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white qtz veins with abundant hematite							
BL TR-1	E37524	BL-TR1-24	0.03	0.001	Phyllite - maroon-red "mauvite" 20-30% yellow green sericite after Argillite laminae, 3-4% 5mm to 2cm white gtz veins with abundant hematite							
BL TR-1	E37525	BL-TR1-25	0.21	0.006	Phyllite - silver grey							
BL TR-1	E37526	BL-TR1-26	3.12	0.091	Phyllite - silver grey							
BL TR-1	E37527	BL-TR1-27	1.12	0.033	Phyllite - orange							
BL TR-1	E37528	BL-TR1-28	0.04	0.001	Phyllite - silver grey, 60% qtz / 20% silt / 20% arg, weak to moderate silicification, moderate sericite, 5% qtz veins up 1 cm							
BL TR-1	E37529	BL-TR1-29	0.08	0.002	Phyllite - silver grey, 60% qtz / 20% silt / 20% arg, weak to moderate selicification, moderate sericite, 5% qtz veins up 1 cm							

BONANZA LEDGE TRENCHES - 2004											
			Au	Au							
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description						
		BL-TR1-30			Phyllite - "tannite" 40% qtz / 50% silt / 10% arg, abundant limonite, mod						
1					silicification, mod to strong sericite, 5-8% qtz veinlets, 2-3% fg ds py, small						
BL TR-1	E37530		<0.03	<0.001	rootless hinges in qtzite laminae						
		BL-TR1-31			Phyllite - "tannite" 40% qtz / 50% silt / 10% arg, abundant limonite, mod						
					silicification, mod to strong sericite, 5-8% qtz veinlets, 2-3% fg ds py, small						
BL TR-1	E37531		<0.03	<0.001	rootless hinges in qtzite laminae						
		BL-TR1-32			Phyllite - "tannite" 40% qtz / 50% silt / 10% arg, abundant limonite, mod						
				-	silicification, mod to strong sericite, 5-8% qtz veinlets, 2-3% fg ds py, small						
BL TR-1	E37532		0.03	0.001	rootless hinges in qtzite laminae						
		BL-TR1-33			Phyllite - "tannite" 40% qtz / 50% silt / 10% arg, abundant limonite, mod						
				[silicification, mod to strong sericite, 5-8% qtz veinlets, 2-3% fg ds py, small						
BL TR-1	E37533		0.10	0.003	rootless hinges in qtzite laminae						
1		BL-TR1-34		[Phyllite - "tannite" 40% qtz / 50% silt / 10% arg, abundant limonite, mod						
					silicification, mod to strong sericite, 5-8% qtz veinlets, 2-3% fg ds py, small						
BL TR-1	E37534		0.05	0.001	rootless hinges in qtzite laminae						
		BL-TR1-35			Phyllite - "tannite" 40% qtz / 50% silt / 10% arg, abundant limonite, mod						
					silicification, mod to strong sericite, 5-8% qtz veinlets, 2-3% fg ds py, small						
BL TR-1	E37535		0.22	0.006	rootless hinges in qtzite laminae						
	507044										
BL-TR-1-S	E37614	BL-TR1-S-1	1.14	0.033	Phyllite - silver gray 100% arg						
BL-TR-1-S	E37615	BL-TR1-S-2	1.61	0.047	Phyllite - silver gray 100% arg						
BL-TR-1-S BL-TR-1-S	E37616 E37617	BL-TR1-S-3	2.35	0.069	Phyllite - red, fault zone?						
BL-TR-1-S	E37617	BL-TR1-S-4	26.90	0.784	Phyllite - red, fault zone?						
BL-TR-1-S	E37618 E37619	BL-TR1-S-5 BL-TR1-S-6	34.60 53.40	1.009 1.557	Phyllite - red, fault zone?						
BL-TR-1-S	E37619	BL-TR1-S-6 BL-TR1-S-7			Phyllite - red, fault zone?						
BL-TR-1-S	E37620 E37621	BL-TR1-S-7 BL-TR1-S-8	<u> 12.00 </u> 12.10	0.350	Phyllite - silver gray, strong limonite						
BL-TR-1-S	E37621 E37622	BL-TR1-S-8 BL-TR1-S-9	48.50		Phyllite - silver gray, strong limonite						
BL-TR-1-S	E37622 E37623	BL-TR1-S-9 BL-TR1-S-10	<u> 48.50 </u>	1.414 0.968	Phyllite - silver gray, strong limonite						
BL-TR-1-S	E37623	BL-TR1-S-10 BL-TR1-S-11	24.00	0.968	Phyllite - silver gray, strong limonite						
BL-TR-1-S	E37625	BL-TR1-S-12	14.20	0.700	Phyllite - silver gray, strong limonite Phyllite - silver gray, strong limonite						
BL-TR-1-S	E37625 E37626	BL-TR1-S-12 BL-TR1-S-13	8.64	0.414	Phyllite - silver gray, strong limonite						
BL-TR-1-S	E37627	BL-TR1-S-13	0.49	0.252	Graphitic fault zone, black, quartz vein - Footwall Fault						

		BON	ΙΔΝΖΔ	I EDG	E TRENCHES - 2004
			Au	Au	
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description
BL-TR-1-S	E37628	BL-TR1-S-15	0.36	0.010	Graphitic fault zone, black, guartz vein - Footwall Fault
BL-TR-1-S	E37629	BL-TR1-S-16	0.09	0.003	Graphitic fault zone, black, quartz vein - Footwall Fault
BL-TR-1-S	E37630	BL-TR1-S-17	0.06	0.002	Phyllite - gray
BL-TR-1-S	E37631	BL-TR1-S-18	0.06	0.002	Phyllite - gray
BL-TR-1-S	E37632	BL-TR1-S-19	6.55	0.191	Phyllite - silver gray, 100% arg
BL-TR-1-S	E37633	BL-TR1-S-20	3.21	0.094	Phyllite - silver gray, 100% arg
BL-TR-1-S	E37634	BL-TR1-S-21	1.21	0.035	Phyllite - silver gray, 100% arg
BL-TR-1-S	E37635	BL-TR1-S-22	2.34	0.068	Phyllite - silver gray, 100% arg
BL-TR-1-S	E37636	BL-TR1-S-23	1.54	0.045	Phyllite - silver gray, 100% arg
BL-TR-1-S	Ê37637	BL-TR1-S-24	0.31	0.009	Phyllite - red, fault zone?
BL-TR-1-S	E37638	BL-TR1-S-25	0.46	0.013	Phyllite - red, fault zone?
BL-TR-1-S	E37639	BL-TR1-S-26	2.35	0.069	Phyllite - red, fault zone?
BL-TR-1-S	E37640	BL-TR1-S-27	4.68	0.136	Phyllite - red, fault zone?
BL-TR-1-S	E37641	BL-TR1-S-28	10.90	0.318	Phyllite - silver gray, strong limonite
BL-TR-1-S	E37642	BL-TR1-S-29	49.40	1.441	Phyllite - silver gray, strong limonite
BL-TR-1-S	E37643	BL-TR1-S-30	10.00	0.292	Phyllite - silver gray, strong limonite
BL-TR-1-S	E37644	BL-TR1-S-31	16.60	0.484	Phyllite - silver gray, strong limonite
BL-TR-1-S	E37645	BL-TR1-S-32	1.31	0.038	Graphitic fault zone, black, quartz vein - Footwall Fault
BL-TR-1-S	E37646	BL-TR1-S-33	1.30	0.038	Graphitic fault zone, black, quartz vein - Footwall Fault
BL-TR-1-S	E37647	BL-TR1-S-34	0.84	0.024	Graphitic fault zone, black, quartz vein - Footwall Fault
BL-TR-1-S	E37648	BL-TR1-S-35	0.84	0.024	Phyllite - gray
	E27626		0.05	0.001	Qtzite - silvery grey, 50% Qtz / 30% silt / 20% arg, weak to mod silicification, weak sericite, minor graphite, 5% red Fe-Ox-qtz porphyroblasts, 1% Fe-OX qtz
BL TR-2	E37536	BL-TR2-1	0.05	0.001	after pyrite
					Qtzite - silvery grey, 50% Qtz / 30% silt / 20% arg, weak to mod silicification,
	507507		0.04	0.004	weak sericite, minor graphite, 5% red Fe-Ox-qtz porphyroblasts, 1% Fe-OX qtz
BL TR-2	E37537	BL-TR2-2	0.04	0.001	after pyrite
	F 27522	BL-TR2-3	0.40	0.000	gouge - grey brown gouge derived from same rock as above, fragments have strong mylonitic foliation, gge zone = 313/67N, locally @ sample 3 Qtzite - silvery grey, 70% Qtz / 10% silt / 20% arg, same as above except increase in
BL TR-2	E37538_		0.12	0.003	iron oxide

	BONANZA LEDGE TRENCHES - 2004										
······································			Au	Au							
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description						
BL TR-2	E37539	BL-TR2-4	0.13	0.004	gouge - grey brown gouge derived from same rock as above, fragments have strong mylonitic foliation, gge zone = 313/67N						
BL TR-2	E37540	BL-TR2-5	0.18	0.005	graphite rich mylonite and breccia, strong silicification, strong graphite, graphite coats qtz frags, 5-10% euhedral pyrite cubes now leached ->FeOx in black qtz in breccia matrix, qv frags 1-6", early mylonite later breccia and pyrite						
BL TR-2	E37541	BL-TR2-6	0.16	0.005	graphite rich mylonite and breccia, strong silicification, strong graphite, graphite coats qtz frags, 5-10% euhedral pyrite cubes now leached ->FeOx in black qtz in breccia matrix, qv frags 1-6", early mylonite later breccia and pyrite						
BL TR-2	E37542	BL-TR2-7	23.00	0.671	Qtzite - silver gge grading to white pale yellow sericite alteration, 50% qtz / 25% silt / 25% arg, strong sericite, moderate silicification, leached-punky with abundant secondary white qtz and vnlts,						
BL TR-2	E37543	BL-TR2-8	16.20	0.472	Qtzite - white silver w/ abundant limonite staining, 50% qtz / 25% silt / 25% arg, very strong sericite, weak to mod. Silicification, locally FeOx after euhedral 3- 4mm pyrite						
BL TR-2	E37544	BL-TR2-9	0.73	0.021	Qtzite - white silver w/ abundant limonite staining, 50% qtz / 25% silt / 25% arg, very strong sericite, weak to mod. Silicification, locally FeOx after euhedral 3- 4mm pyrite						
BL TR-2	E37545	BL-TR2-10	0.68	0.020	Qtzite - white silver w/ abundant limonite staining, 50% qtz / 25% silt / 25% arg, very strong sericite, weak to mod. Silicification, locally FeOx after euhedral 3- 4mm pyrite						
BL_TR-2	E37546	BL-TR2-11	1.83	0.053	abundant white vein qtz with minor hematite on fractures, very strong sericite, mod silicification/veining, 25% coarse crystalline qv material up to 8" has little FeOx						
BL TR-2	E37547	BL-TR2-12	5.66	0.165	abundant white vein qtz with minor hematite on fractures, very strong sericite, mod silicification/veining, 25% coarse crystalline qv material up to 8" has little FeOx						
BL TR-2	E37548	BL-TR2-13	6.75	0.197	abundant white vein qtz with minor hematite on fractures, very strong sericite, mod silicification/veining, 25% coarse crystalline qv material up to 8" has little FeOx						

	BONANZA LEDGE TRENCHES - 2004											
			Au	Au								
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description							
			·	1	abundant white vein qtz with minor hematite on fractures, very strong sericite,							
				1	mod silicification/veining, 25% coarse crystalline qv material up to 8" has little							
BL TR-2	E37549	BL-TR2-14	8.97	0.262	FeOx							
BL TR-2	E37550	BL-TR2-15	0.38	0.011	Graphitic fault zone, black, quartz vein - Footwall Fault							
BL TR-2	E37551	BL-TR2-16	0.94	0.027	Phyllite - very strong white sericite							
BL TR-2	E37552	BL-TR2-17	0.66	0.019	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37553	BL-TR2-18	0.75	0.022	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37554	BL-TR2-19	1.02	0.030	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
_												
BL TR-2	E37555	BL-TR2-20	0.50	0.015	Quartz vein within silver gray phyllite, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37556	BL-TR2-21	2.36	0.069	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37557	BL-TR2-22	5.45	0 159	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37558	BL-TR2-23	0.04	0.001	Phyllite - silver gray, 50% qtz / 50% arg							
BL TR-2	E37559	BL-TR2-24	0.05	0.001	Phyllite - silver gray, 50% qtz / 50% arg							
BL TR-2	E37560	BL-TR2-25	0.26	0.008	Phyllite - silver gray, 50% qtz / 50% arg							
BL TR-2	E37561	BL-TR2-26	0.11	0.003	Phyllite - silver gray, 50% qtz / 50% arg							
BL TR-2	E37562	BL-TR2-27	0.34	0.010	Graphitic fault zone, black, quartz vein - Footwall Fault							
BL TR-2	E37563	BL-TR2-28	0.46	0.013	Graphitic fault zone, black,quartz vein - Footwall Fault							
BL TR-2	E37564	BL-TR2-29	22.50	0.656	Phyllite - very strong white sericite							
BL TR-2	E37565	BL-TR2-30	49.80	1.452	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37566	BL-TR2-31	40.10	1.169	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37567	BL-TR2-32	9.05	0.264	Quartz vein within silver gray phyllite, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37568	BL-TR2-33	12.10	0.353	Phyllite - silver gray, 50% qtz / 50% arg, abundant iron oxide							
BL TR-2	E37569	BL-TR2-34	0.12	0.003	Phyllite - silver gray, 50% qtz / 50% arg							
BL TR-2	E37570	BL-TR2-35	0.33	0.010	Phyllite - silver gray, 50% qtz / 50% arg							
BL TR-2	E37571	BL-TR2-36	0.69	0.020	Graphitic fault zone, black, quartz vein - Footwall Fault							
BL TR-2	E37572	BL-TR2-37	0.91	0.027	Graphitic fault zone, black, quartz vein - Footwall Fault							
BL TR-2	E37573	BL-TR2-38	3.06	0.089	Graphitic fault zone, black,quartz vein - Footwall Fault							
BL TR-2	E37574	BL-TR2-39	146.00	4.258	Phyllite - very strong white sericite							
BL TR-2	E37575	BL-TR2-40	143.00	4.170	Phyllite - very strong white sericite							
BL TR-2	E37576	BL-TR2-41	0.74	0.022	Phyllite - silver gray, 50% qtz / 50% arg							
BL TR-2	E37577	BL-TR2-42	0.76	0.022	Phyllite - silver gray, 50% qtz / 50% arg							

	BONANZA LEDGE TRENCHES - 2004													
<u> </u>			Au	Au										
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description									
BL TR-2	E37578	BL-TR2-43	1.26	0.037	Graphitic fault zone, black,quartz vein - Footwall Fault									
BL TR-2	E37579	BL-TR2-44	0.27	0.008	Graphitic fault zone, black,quartz vein - Footwall Fault									
					Graphitic black 30-40% Qtz? / 30% silt? / 30-40% arg?, mod silicification,									
BL TR-2	E37580	BL-TR2-45	0.32	0.009	strong graphite, "L" tectonite, strong pencils=rods=134/05									
BL TR-2	E37581	BL-TR2-46	0.12	0.003	Phyllite - silver gray, 50% qtz / 50% arg									
BL TR-2	E37582	BL-TR2-47	0.81	0.024	Graphitic fault zone, black,quartz vein - Footwall Fault									
					Phyllite - silver gray, 30%qtz / 70% arg, very strong sericite, strg hematite									
<u>BL TR-3</u>	E37583	BL-TR3-1	0.18	0.005	boxworks									
					Phyllite - silver gray, 30%qtz / 70% arg, very strong sericite, strg hematite									
BL T <u>R-</u> 3	E37584	BL-TR3-2	1.23	0.036	boxworks									
					Phyllite - silver gray, 30%qtz / 70% arg, very strong sericite, strg hematite									
BL TR-3	E37585	BL-TR3-3	17.50	0.510	boxworks									
BL TR-3	E37586	BL-TR3-4	5.08	0.148	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite									
					Phyllite - mauve, 60%? qtz / 40% arg and silt, probably relict sandy lamiae now									
BL TR-3	E37587	BL-TR3-5	0.30	0.009	all clay hematite and limonite, yellow laminae are arg, now replaced by sericite									
BL TR-3	E37588	BL-TR3-6	0.07	0.002	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite									
BL TR-3	E37589	BL-TR3-7	0.79	0.023	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite									
BL TR-3	E37590	BL-TR3-8	0.95	0.028	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite									
BL TR-3	E37591	BL-TR3-9	1.30	0.038	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite									
				1	Graphitic fault zone, 60% white qv w/ abundnadt FeOx (hematite) in a qtz									
BL TR-3	E37592	BL-TR3-10	0.16	0.005	cemented breccia. Also, phyllite - black, 60%? arg / 30%? silt, 10%? Qtz									
		BL-TR3-11		ſ	Phyllite - tan/orange, 20% qtz / 20% silt 7 60% arg (quite variable ratios), weak									
BL TR-3	E27502		0.47	0.005	silicification, strong sericite, 5% disseminated euhedral to subhedral pyrite									
DL IK-3	E37593		0.17	0.005	porphyroblasts -> FeOx, thin bedded to laminated, minor faults and silicified									
					Phyllite - tan/orange, 20% qtz / 20% silt / 60% arg (quite variable ratios), weak									
				ĺ	silicification, strong sericite, 5% disseminated euhedral to subhedral pyrite									
	E27504		0.50	0.040	porphyroblasts -> FeOx, thin bedded to laminated, minor faults and silicified									
BL TR-3	E37594	BL-TR3-12	0.56	0.016	zones parallel to foliation									
					Argillite - 0% qtz / 30% silt / 70% arg, very strong sericite, weak to mod									
BL TR-3	E27505		0.54	0.045	silicification, strong hematite-limonite stain, silver sericite, 2-3% hematite after									
DL IK-3	E37595	BL-TR3-13	0.51	0.015	1-2mm pyrite porphyroblasts									

		BON	IANZA	LEDG	E TRENCHES - 2004
			Au	Au	
Trench	Tag Number	Sample Number	(g/t)	(oz/t)	Sample Description
BL TR-3	E37596	BL-TR3-14	2.31	0.067	strong silicification, white qtz veins with 3-5% hematite after pyrite in the qtz veins
BL TR-3	E37597	BL-TR3-15	3.26	0.095	strong silicification, white qtz veins with 3-5% hematite after pyrite in the qtz veins
BL TR-3	E37598	BL-TR3-16	2.04	0.059	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37599	BL-TR3-17	0.51	0.015	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37600	BL-TR3-18	0.99	0.029	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37601	BL-TR3-19	0.99	0.029	Phyllite - silver gray, 30%qtz / 70% arg, very strong sericite, strg hematite boxworks
BL TR-3	E37602	BL-TR3-20	4.96	0.145	Phyllite - silver gray, 30%qtz / 70% arg, very strong sericite, strg hematite boxworks
BL TR-3	E37603	BL-TR3-21	2.63	0.077	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37604	BL-TR3-22	1.35	0.039	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37605	BL-TR3-23	1.12	0.033	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37606	BL-TR3-24	0.61	0.018	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37607	BL-TR3-25	0.24	0.007	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37608	BL-TR3-26	0.31	0.009	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37609	BL-TR3-27	0.07	0.002	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37610	BL-TR3-28	<0.03	< 0.001	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37611	BL-TR3-29	0.06	0.002	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37612	BL-TR3-30	0.20	0.006	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite
BL TR-3	E37613	BL-TR3-31	0.08	0.002	Phyllite - silver gray, 60% qtz / 40% arg, qtz vein, hematite

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy.

PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 35 Sample type: Rock **Project #: BL-TRI** Samples Submitted by: John Childs

	Au	Au
Tag #	(g/t)	(oz/t)
E37501	4.33	0.126
E37502	5.26	0.153
E37503	23.4	0.682
E37504	0.24	0.007
E37505	0.18	0.005
E37506	0.18	0.005
E37507	<0.03	<0.001
E37508	0.08	0.002
E37509	0.13	0.004
E37510		0.005
E37511	0.06	0.002
E37512		0.006
		0.001
E37514		0.001
E37515		0.694
		0.086
		0.012
		0.008
		0.014
		0.011
		0.007
		0.011
		0.013
		0.001
		0.006
		0.091
		0.033
		0.001
E37529	0.08	0.002
	E37501 E37502 E37503 E37504 E37505 E37506 E37507 E37508 E37509 E37510 E37510 E37511 E37512 E37512 E37513 E37514 E37515 E37516 E37517 E37518 E37518 E37519 E37520 E37521 E37522 E37523 E37523 E37524 E37525 E37526 E37527 E37528	Tag #(g/t)E375014.33E375025.26E3750323.4E375040.24E375050.18E375060.18E37507<0.03

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

25-Nov-04

		Au	Au	
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	
30	E37530	<0.03	< 0.001	
31	E37531	<0.03	<0.001	
32	E37532	0.03	0.001	
33	E37533	0.10	0.003	
34	E37534	0.05	0.001	
35	E37535	0.22	0.006	
QC DATA:				
Repeat:				
1	E37501	4.54	0.132	
2	E37502	5.34	0.156	
3	E37503	21.8	0.636	
10	E37510	0.14	0.004	
15	E37515	26.7	0.779	
16	E37516	2.88	0.084	
19	E37519	0.45	0.013	
26	E37526	3.27	0.095	
Resplit:				
1	E37501	4.66	0.420	
ſ	E37301	4.00	0.136	
Standard:				
PM182		1.26	0.037	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

. .

20-1107-04

ECO TECH LAB. JRY LTD. 10041 Dalles Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

INTERNATIONAL WAYSIDE GOLD minES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 35 Sample type: Rock **Project #: BL-TRI** Shipment **#: Not indicated** Samples submitted by: John Childs

_Et #.	Tag #	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na %	NI	<u> </u>	Pb	Sb	Sn	Sr TI %	U	V	W	<u>Y</u>	Zn
1	E37501	0.4	0.05	100	35	<5	0.02	<1	<1	27	2	1.00	<10 <0.01	19	1 < 0.01	2	230	28	<5	<20	37 < 0.01	<10	4	<10	<1	2
2	E37502	0.4	0.11	130	80	10	0.02	<1	<1	13	2	1.71	<10 <0.01	23	3 <0.01	2	530	32	<5	<20	76 <0.01	<10	6	<10	<1	2
3	E37503	2.4	0.11	70	50	5	0.01	<1	1	8	2	0.79	<10 <0.01	51	1 <0.01	4	170	58	<5	<20	10 <0.01	<10	6	<10	<1	9
4	E37504	<0.2	0.20	125	90	<5	0.10	<1	22	50	28	4,76	<10 <0.01	1437	5 <0.01	59	950	8	<5	<20	26 < 0.01	<10	7	<10	10	62
5	E37505	<0.2	0.19	85	60	<5	0.05	<1	12	58	44	3,28	<10 <0.01	532	4 <0.01	33	630	8	<5	<20	22 <0.01	<10	5	<10	4	47
8	E37506	<0.2	0.13	80	60	-6	0.04	-4		73	22	2.86	<10 <0.01	796	3 <0.01	25	370	6	<5	<20	8 <0.01	<10	3	<10	3	30
07	E37506 E37507	<0.2		60 76	60	<5	0.04	<1	11					790 590	3 < 0.01	25	490	0 6	<5	<20 <20	12 < 0.01	<10	3 4	<10	3	-
	E37508		0.12	75	50	<5	0.04	<1	11	47	27	3.07	<10 <0.01		+	25		-	-				7	<10	<1	32 45
		<0.2	0.16	215	75	<5	0.03	<1	15	79	61	4,73	<10 <0.01	353	6 < 0.01	36	600	4	<5	<20	19 < 0.01	<10	•		•	
8	E37509	<0.2	0.12	100	50	<5	0.02	<1	11	64	36	3.12	<10 <0.01	249	4 <0.01	31	310	<2	<5	<20	4 < 0.01	<10	3	<10	<1	49
10	E37510	<0.2	0.11	140	45	<5	0.02	<1	14	50	45	3.22	<10 <0.01	205	5 <0.01	49	280	2	<5	<20	6 <0.01	<10	4	<10	<1	56
11	E37511	<0.2	0.17	100	70	<5	0.06	<1	11	73	39	3.15	<10 <0.01	269	4 < 0.01	34	530	4	<5	<20	7 <0.01	<10	4	<10	<1	34
12	E37512	<0.2	0.19	220	80		0.20	<1	32	76	97	6.85	<10 0.02		9 < 0.01	91	1630	6	<5	<20	19 < 0.01	<10	11		<1	67
13	E37513	<0.2	0.23	240	75	<5	0.16	<1	34	38	82	8.26	<10 0.03		8 < 0.01	125	1530	12	<5	<20	13 < 0.01	<10		<10	1	112
14	E37514	<0.2	0.22	280	80	<5	0.12	<1	36	54	101	9,19	<10 0.03		7 < 0.01	149	1280	38	<5	<20	9 <0.01	<10		<10	<1	125
15	E37515	2.1	0.10	130	80	-	0.02	<1	3	9	7	1.77	<10 <0.00	165	4 0.01	9	190	196		<20	53 < 0.01	<10		<10	<1	17
	201010	4 1	0.10	100	00	15	0.02	~1		3		1.77	410 40.01	105	4 0.01	•	130	100		-40	00 90,01	-10	-	~ I V	- 1	• •
16	E37516	0.5	0.14	190	50	5	0.03	<1	12	27	22	3.66	<10 <0.01	552	4 < 0.01	37	440	32	<5	<20	13 <0.01	<10	6	<10	2	48
17	E37517	<0.2	0.18	185	70	<5	0.11	<1	18	10	20	4.75	<10 0.02	2059	4 < 0.01	72	850	22	<5	<20	6 <0.01	<10	7	<10	17	69
18	E37518	<0.2	0.18	325	110	10	0.12	<1	40	12	20	9.17	<10 0.05	4022	8 < 0.01	139	1030	6	<5	<20	10 <0.01	<10	14	<10	11	94
19	E37519	<0.2	0.23	450	145	15	0.17	<1	61	15	27	>10	<10 0.08	5708	10 <0.01	220	1620	12	<5	<20	15 <0.01	<10	22	<10	17	140
20	E37520	<0.2	0.21	330	145	15	0.26	<1	54	36	22	>10	<10 0.08	6172	9 <0.01	186	2050	10	<5	<20	21 <0.01	<10	19	<10	21	145
•						_	`											-	_							
21	E37521		0.19	230	90		0.22		28	18	30		<10 0.02		5 < 0.01	105		4		<20	15 < 0.01	<10		<10	18	76
22	E37522	<0.2	0.26	380	115	<5	0.34	<1	36	17	61	7.27	<10 0.02		6 < 0.01	147		4	<5	<20	24 <0.01	<10	18		24	139
23	E37523	<0.2	0.23	445	105	5	0.28	<1	53	32	77	>10	<10 0.03	3171	9 <0.01	189	2240	12	<5	<20	22 <0.01	<10	19		17	177
24	E37524	<0.2	0.15	275	70	5	0.12	<1	37	76	25	7.43	<10 0.03	2806	6 <0.01	152	1160	8	<5	<20	9 <0.01	<10	12	<10	6	95
25	E37525	<0.2	0.17	20	95	<5	0.02	<1	<1	37	5	0.75	<10 <0.01	36	2 <0.01	4	160	10	<5	<20	23 <0.01	<10	10	<10	<1	5
26	E37526	0.4	0.15	10	135	5	<0.01	<1	<1	40	2	0.74	<10 <0.01	15	2 <0.01	2	100	22	<5	<20	27 <0.01	<10	٥	<10	<1	3
	E37520								•		-						590	- 22	<5	<20	28 < 0.01	<10	10		<1	36
27		<0.2		170	85	<5	0.02	<1	5	43	38	3.31	<10 <0.01		4 < 0.01	18		2	-						×1 7	
28	E37528	<0.2	0.26	100	105	<5	0.05	<1	17	93	63	3.39	<10 <0.01		4 < 0.01	49	760	4	<5	<20	23 < 0.01	<10	6		2	70
29	E37529	<0.2	0.23	95	75	<5	0.05	<1	18	44	56	4.11	<10 <0.01		4 < 0.01	43	640	4	<5	<20	13 <0.01	<10	5		_	92
30	E37530	<0.2	0.27	195	95	<5	0.04	<1	14	71	54	4.37	<10 <0.01	350	4 <0.01	36	840	4	<0	<20	55 <0.01	<10	10	<10	<1	68

INTERNATIONAL WAYSIDE GOLD MINES LTD.

Et #.	Tag #	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Çu	Fe %	La Mg %	Mn	Mo Na %	Ni	P	Pb	Sb	Sn	Sr TI%	<u> </u>	<u>v</u>	W	<u>Y</u>	Zn
31	E37531	<0.2	0.22	140	60	<5	0.03	<1	11	76	71	3.65	<10 <0.01	243	5 < 0.01	38	680	<2	<5	<20	11 <0.01	<10	6	<10	<1	59
32	E37532	<0.2	0.21	215	60	<5	0.03	<1	17	58	79	4.79	<10 <0.01	405	8 <0.01	49	590	6	<5	<20	8 <0.01	<10	7	<10	<1	80
33	E37533	<0.2	0.15	105	45	<5	0.02	<1	12	57	47	2.34	<10 <0.01	268	4 < 0.01	38	200	6	<5	<20	4 <0.01	<10	3	<10	<1	44
34	E37534	<0.2	0.21	155	65	<5	0.07	<1	10	37	34	2.46	<10 <0.01	618	3 <0.01	42	650	4	<5	<20	8 <0.01	<10	6	<10	8	26
35	E37535	<0.2	0.33	405	120	<5	0.23	<1	54	27	213	>10	<10 0.03	1923	15 0.01	147	2120	14	<5	<20	27 <0.01	<10	21	<10	3	104
<u>QC D/</u> Reper	t:																									
1	E37501	0.4	0.05	100	30	<5	0.02	<1	<1	28	3	1.01	<10 <0.01	18	1 <0.01	3	230	28	<5	<20	35 < 0.01	<10		<10	<1	2
10	E37510	<0.2	0.10	140	45	<5	0.02	<1	- 14	49	45	3.21	<10 <0.01	207	5 <0.01	50	290	2	<5	<20	7 <0.01	<10		<10	<1	56
19	E37519	<0.2	0.23	445	145	5	0.17	<1	61	14	27	>10	<10 0.07	5711	9 <0.01	223	1560	10	<5	<20	17 <0.01	<10	22	<10	16	141
Respi 1	t: E37501	0.5	0.11	100	50	<5	0.03	<1	<1	41	3	1.04	<10 <0.01	30	2 <0.01	4	230	26	<5	<20	34 <0.01	<10	6	<10	<1	4
Stand GEO 1		1.4	1.43	55	135	<5	1.35	<1	16	55	89	3.65	<10 0.77	573	<1 0.02	25	610	22	<5	<20	59 0.10	<10	68	<10	9	73

JJ/ac df/1856 XLS/04

.

.

÷

.

.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 35 Sample type: Rock **Project #: BL-TR-1-South** Samples Submitted by: John Childs

			Au	Au	
ET #.		Tag #	(g/t)	(oz/t)	
1	E37614	BL-TR1S-1	1.14	0.033	
2	E37615	BL-TR1S-2	1.61	0.047	
3	E37616	BL-TR1S-3	2.35	0.069	
4	E37617	BL-TR1S-4	26.9	0.784	
5	E37618	BL-TR1S-5	34.6	1.009	
6	E37619	BL-TR1S-6	53.4	1.557	
7	E37620	BL-TR1S-7	12.0	0.350	
8	E37621	BL-TR1S-8	12.1	0.353	
9	E37622	BL-TR1S-9	48.5	1.414	
10	E37623	BL-TR1S-10	33.2	0.968	
11	E37624	BL-TR1S-11	24.0	0.700	·
12	E37625	BL-TR1S-12	14.2	0.414	
13	E37626	BL-TR1S-13	8.64	0.252	
14	E37627	BL-TR1S-14	0.49	0.014	
15	E37628	BL-TR1S-15	0.36	0.010	
16	E37629	BL-TR1S-16	0.09	0.003	
17	E37630	BL-TR1S-17	0.06	0.002	
18	E37631	BL-TR1S-18	0.06	0.002	
19		BL-TR1S-19	6.55	0.191	
20		BL-TR1S-20	3.21	0.094	
21		BL-TR1S-21	1.21	0.035	
22		BL-TR1S-22	2.34	0.068	
23	E37636	BL-TR1S-23	1.54	0.045	
24		BL-TR1S-24	0.31	0.009	
25		BL-TR1S-25	0.46	0.013	
26		BL-TR1S-26	2.35	0.069	
27	E37640	BL-TR1S-27	4.68	0.136	
28	E37641	BL-TR1S-28	10.9	0.318	
29	E37642	BL-TR1S-29	49.4	1.441	
30	E37643	BL-TR1S-30	10.0	0.292	
31		BL-TR1S-31	16.6	0.484	,
32		BL-TR1S-32	1.31	0.038	
33	E37646	BL-TR1S-33	1.30	0.038	
34	E37647	BL-TR1S-34	0.84	0.024	
35	E37648	BL-TR1S-35	0.84	0.024	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

23-Nov-04

23-Nov-04

//		Au	Au	
<u> </u>	Tag #	(g/t)	<u>(oz/t)</u>	
QC DATA:	=			
Repeat:	CO7644 DI TO40 4	1.06	0.024	
1	E37614 BL-TR1S-1	1.06	0.031	
4	E37617 BL-TR1S-4	26.0	0.758	
5	E37618 BL-TR1S-5	33.7	0.983	
6	E37619 BL-TR1S-6	49.1	1.432	
9	E37622 BL-TR1S-9	46.5	1.356	
10	E37623 BL-TR1S-10	32.3	0.942	
11	E37624 BL-TR1S-11	24.8	0.723	
12	E37625 BL-TR1S-12	13.8	0.402	
13	E37626 BL-TR1S-13	8.20	0.239	
19	E37632 BL-TR1S-19	6.48	0.189	
29	E37642 BL-TR1S-29	48.5	1.414	
		17.1		
31	E37644 BL-TR1S-31	17.1	0.499	
D 184				
Resplit:		6 04	0.007	
1	E37614 BL-TR1S-1	0.94	0.027	
Standard:				
SH13		1.32	0.038	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

25-Nov-04

ECO TECH LABOR... JRY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANAL. SIS AK 2004-1838

INTERNATIONAL WAYSIDE Gold MINES L' 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 35 Sample type: Rock **Project #: BL-TR-1-South** Samples Submitted by: John Childs

Values in ppm unless otherwise reported

_Et #.	Tag #		Ag /	AI %	As	Ba E	I Ca %	Cd	Co	Çr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	V I	W Y	/ Zn
1	E37614 BL-TF	R1S-1	0.7	0.29	415	100	5 0.10	<1	22	21	38	7.89	<10	<0.01	328	7	0.01	42	1710	40	<5	<20	39 <	0.01	<10	16 <'	10 <1	48
2	E37615 BL-TF	R1S-2	0.3	0.24	205	100 <	5 0.06	<1	7	62	29	3.10	<10	<0.01	102	5	0.01	17	840	12	<5	<20	70 <	0.01	<10	14 <	10 <1	16
3	E37616 BL-TF	R1S-3	0.7	0.27	695	115 1	0.06	i <1	12	45	23	8.37	<10	< 0.01	134	10	0.01	26	1540	26			123 <					
4	E37617 BL-TF	R1S-4	1.8	0.21	550	95 1	0.0	<1	9	84	18	6.30	<10	<0.01	98	9	<0.01	25	1060	48			30 <					
5	E37618 BL-TF	₹1S-5	2.1	0.17	425		0.03					5.67			91	7	<0.01	20	950	46			30 <					
6	E37619 BL-TF	R1S-8	2.7	0.22	525	80	5 0.04	<1	9	72	14	6.40	<10	<0.01	117	10	0.01	21	850	58	<5	<20	16 <	0.01	<10	13 <'	10 <1	l 19
7	E37620 BL-TF	R1S-7	8.0	0.23	250	85 1	0 0.03	<1	2	60	6	2.88	<10	<0.01	50	5	0.01	6	360	84	<5	<20	18 <	:0.01	<10	14 <	10 <1	l 7
8	E37621 BL-TF	R1S-8	1.2	0.19	250	70 1	0 0.03	1 <1	3	29	6	3.17	<10	<0.01	77	6	0.01	9	390	54	<5	<20	16 <	:0.01	<10	12 <	10 <1	19
9	E37622 BL-TF	R1S-9	3.1	0.20	190	80 <	5 0.03	<1	<1	58	3	1.42	<10	<0.01	27	4	0.01	6	180	132	<5	<20	13 <	0.01	<10	10 <	10 <1	17
10	E37623 BL-TR	15-10	2.3	0.22	135	65 <	5 0.0	5 <1	2	61	5	2.52	<10	<0.01	53	6	0.01	11	350	74	<5	<20	4 <	0.01	<10	16 <	10 <1	19
11	E37624 BL-TR	1S-11	1.5	0.23	55	75	5 0.04	<1	2	59	8	2.22	<10	<0.01	72	3	0.01	6	330	52	<5	<20	15 <	0.01	<10	16 <'	10 <1	19
	E37625 BL-TR		1.2	0.13	160	75	5 0.03	3 <1	2	72	2	1.64	<10	<0.01	25	5	0.01	6	230	66	<5	<20	43 <	<0.01	<10	3 <	10 <'	18
13	E37626 BL-TR	1S-13	1.5	0.14	500	130 1	5 0.00	3 <1	2	100	4	3.02	<10	<0.01	33	5	0.02	4	1170	68	<5	<20	69 <	<0.01	<10	13 <	10 <1	14
	E37627 BL-TR		0.4	0.13	370	190 1	5 0.08	3 <1	3	119	6	3.59	<10	<0.01	89	17	0.02	8	810	84	<5	<20	197 <	<0.01	<10	2 ¹ <	10 <1	1 12
15	E37628 BL-TR	1S-15	0.3	0.18	365	210 <	5 0.00	3 <1	3	132	6	3.23	<10	<0.01	80	9	0.01	8	670	20	<5	<20	58 <	<0.01	<10	18 <	10 <1	1 17
	E37629 BL-TR		:0.2		110	- +	5 0.02		-					<0.01	42	_	<0.01		340	6	-		22 •			-		
17			:0.2		115		5 0.03							<0.01	79		0.01		460	6			30 🔹				-	
18	E37631 BL-TR		:0.2		235		5 0.0		18	65	47	5.27	<10	<0.01	182	7	0.02	77	720	8	<5	<20	65 <	<0.01	<10	8 <	10 <1	193
19	E37632 BL-TR		0.6	0.18	45	110 <	5 0.02	2 <1						<0.01	12	2	0.01	4	290	34	<5	<20	50 -	<0.01	<10	9 <	10 <′	1 3
20	E37633 BL-TR	15-20	0.9	0.15	120	65 <	5 0.03	2 <1	<1	38	1	1.39	<10	<0.01	10	2	<0.01	3	300	24	<5	<20	12 •	< 0.01	<10	8 <	10 <′	12
-			. .												_			_			_					_		
21	E37634 BL-TR		0.4	-	40		5 <0.0		-					<0.01			0.01		110				<1					
	E37635 BL-TR		0.5		10		5 <0.0	•						<0.01	6		<0.01		40				<1 •					
	E37636 BL-TR		0.3		25		5 <0.0							<0.01	_5	_	0.02		80				30 •					
	E37637 BL-TR		0.2		255		5 0.0		-					<0.01	71		0.01	-	790		-		30 -					
25	E37638 BL-TR	18-25	0.2	0.30	130	115 1	0 0.0	<1	9	63	36	7.37	<10	<0.01	113	6	0.01	23	1270	22	<5	<20	37 •	<0.01	<10	16 <	10 <	1 26
26	E37639 BL-TR	140 06	0.4	0.20	420	05	5 0.0		~	40	4 6	4.64	-40	-0.04	-	~	0.04	40		40		-00	67	-0.04		A		4 4 6
20	E37640 BL-TR		0.4		130		5 0.0		-	49				<0.01 0.07	93	-	0.01		890				57					
	E37641 BL-TF		0.0		50 95		5 U.U 0 0.0							<0.07	163	-	0.01	. –	890		_		38					
					85										126		0.01		640				44					
29 30	E37642 BL-TF		3.5		30		0 0.0							< 0.01	74	-	<0.01	-	190		-	<20			<10			
30	E37643 BL-TF	(13-30	0.8	0.18	40	60 1	5 0.0	∔ ≤ 1	1	3/	5	2.41	<10	<0.01	35	5	<0.01	5	320	52	<0	<20	9 4	<0.01	<10	15 <	10 <	16

Ët #.		Tag »	Ag	AI %	As	Ba	Bi (Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>.</u> g %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	T	Zn
31	E37644	BL-TR1S-31	1.5	0.15	135	60	10	0.04	<1	3	82	4	2.38	<10	<0.01	53	6	<0.01	8	330	56	<5	<20	33	<0.01	<10	9	<10	<1	10
32	E37645	BL-TR1S-32	0.6	0.35	255	85 -	<5	0.08	<1	14	109	20	4.64	<10	0.06	353	13	0.01	28	680	28	<5	<20	25	<0.01	<10	22	<10	<1	41
33	E37646	BL-TR1S-33	0.3	0.33	130	145 -	<5	0.06	<1	8	104	15	3.10	<10	0.06	249	6	0.01	22	480	22	<5	<20	47	<0.01	<10	15	<10	<1	34
34	E37647	BL-TR1S-34	0.3	0.33	130	170 ·	<5	0.06	<1	10	68	20	3.31	<10	0.05	268	7	0.02	22	610	22	<5	<20	107	<0.01	<10	12	<10	<1	35
35	E37648	BL-TR1S-35	0.2	0.35	170	135 ·	<5	0.06	<1	11	103	32	4.12	<10	0.01	153	5	0.02	35	920	12	<5	<20	121	<0.01	<10	14	<10	<1	49
	ATA:																													
Resp																			_											
1	E37614	BL-TR1S-1	0.6	0.29	420	105	10	0.10	<1	22	22	38	8.02	<10	<0.01	293	7	0.01	42	1710	32	<5	<20	38	<0.01	<10	17	<10	<1	49
Repe	art:																													
1		BL-TR1S-1	0.6	0.30	420	105	10	0.10	<1	22	23	38	7.98	<10	<0.01	331	7	0.01	42	1710	34	<5	<20	38	<0.01	<10	16	<10	<1	48
10		BL-TR1S-10	2.1	0.22	135	70	. –	0.05		2					< 0.01	55	6	0.01	10	350	74	<5	<20	5	< 0.01	<10	16	<10	<1	9
19	E37632	BL-TR1S-19	0.6	0.19	45	120	<5	0.02	<1	<1	42	2	1.32	<10	<0.01	11	2	0.01	2	300	34	<5	<20	51	<0.01	<10	9	<10	<1	3
Stan	da nd -																													
GEO			1.5	1.57	55	130	<5	1.35	<1	16	58	82	3.78	<10	0.82	580	<1	0.03	25	590	24	<5	<20	51	0.08	<10	66	<10	9	69

.

.

JJ/jm df/1838 XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

CERTIFICATE OF ASSAY AK 2004-1894

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 47 Sample type: Rock **Project #: BL-TR2** Samples Submitted by: John Childs

	Au	Au
Tag #	(g/t)	(oz/t)
E37536	0.05	0.001
E37537	0.04	0.001
E37538	0.12	0.003
E37539	0.13	0.004
E37540	0.18	0.005
E37541	0.16	0.005
E37542	23.0	0.671
E37543	16.2	0.472
E37544	0.73	0.021
E37545		0.020
E37546		0.053
E37547	5.66	0.165
E37548		0.197
E37549		0.262
E37550		0.011
E37551		0.027
E37552		0.019
E37553		0.022
E37554		0.030
E37555		0.015
E37556		0.069
E37557		0.159
		0.001
		0.001
		0.008
		0.003
		0.010
		0.013
		0.656
		1.452
		1.169
	E37536 E37537 E37537 E37538 E37540 E37540 E37541 E37542 E37543 E37544 E37545 E37546 E37546 E37547 E37548 E37549 E37550 E37551 E37552 E37553 E37555 E37555 E37555 E37555	Tag #(g/t)E375360.05E375370.04E375380.12E375390.13E375400.18E375410.16E3754223.0E3754316.2E375440.73E375450.68E375461.83E375475.66E375486.75E375500.38E375510.94E375520.66E375530.75E375541.02E375550.50E375562.36E375575.45E375580.04E375610.11E375620.34E375630.46E3756422.5E3756422.5E3756549.8

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

29-Nov-04

29-Nov-04

the second se

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
32	E37567	9.05	0.264	
33	E37568	12.1	0.353	
34	E37569	0.12	0.003	
35	E37570	0.33	0.010	
36	E37571	0.69	0.020	
37	E37572	0.91	0.027	
38	E37573	3.06	0.089	
39	E37574	146	4.258	
40	E37575	143	4.170	
41	E37576	0.74	0.022	
42	E37577	0.76	0.022	
43	E37578	1.26	0.037	
44	E37579	0.27	0.008	
45	E37580	0.32	0.009	
46	E37581	0.12	0.003	
47	E37582	0.81	0.024	
QC DATA:				
Repeat:				
1	E37536	<0.03	<0.001	
5	E37540	0.16	0.005	
6	E37541	0.16	0.005	
7	E37542	24.6	0.717	
8	E37543	16.1	0.470	
10	E37545	0.69	0.020	
14	E37549	9.08	0.265	
15	E37550	0.42	0.012	
19	E37554	0.85	0.025	
21	E37556	2.58	0.075	
27	E37562	0.40	0.012	
28	E37563	0.52	0.015	
29	E37564	22.5	0.656	
30	E37565	49.6	1.446	
31	E37566	40.7	1.187	
32	E37567	9.12	0.266	
38	E37573	3.10	0.090	
39	E37574	144	4.199	
39	E37574	148	4.316	
40	E37575	139	4.054	
40	E37575	146	4.258	
44	E37579	0.28	0.008	
45	E37580	0.28	0.008	

Resplit:

1 36	E37536 E37571	0.05 0.53	0.001 0.015
Standard.	;		
PM182		1.26	0.037
PM182		1.27	0.037

JJ/jm XLS/04

.-

٠.

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

. .

and a set . May 24 to a

1-1-1-101-1-14

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700 Fax : 250-573-4557

V2C 6T4

ECO TECH LABOR JRY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2004-1894

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 47 Sample type: Rock Project #: BL-TR2 Samples Submitted by: John Childs

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %			W		Zn
1	E37536	<0.2	0.25	180	55	<5	0.12	<1	35	47	57	6.19	<10	<0.01	684	7	<0.01	159	1130	10			19	<0.01	<10	10	<10	<1	117
2	E37537	<0.2	0.18	105	50	<5	0.03	<1	13	70	42	4.49	<10	<0.01	144	5	<0.01	42	440	10	<5	<20	11	<0.01	<10	5	<10	<1	107
3	E37538	<0.2	0.19	110	85	<5	0.05	<1	11	78	53	4.80	<10	<0.01	136	7	0.02	32	700	20	<5	<20	53	<0.01	<10	8	<10	<1	73
4	E37539	<0.2	0.22	140	100	<5	0.07	<1	5	85	34	2.89	<10	0.01	107	6	0.01	16	690	16	<5	<20	79	<0.01	<10	10	<10	<1	31
5	E37540	0.2	0.13	225	110	<5	0.07	<1	3	92	14	2.86	<10	<0.01	75	16	<0.01	11	570	26	<5	<20	73	<0.01	<10	15	<10	<1	27
6	E37541	0.2	0.10	350	185	10	0.06	<1	3	108	10	3.82	<10	<0.01	75	16	<0.01	9	730	86	<5	<20	108	<0.01	<10	15	<10	<1	14
7	E37542	3.5	0.08	30	75	<5	0.01	<1	<1	137	2	0.74	<10	<0.01	22	5	<0.01	4	80	30	<5	<20	17	<0.01	<10	3	<10	<1	6
8	E37543	1.1	0.15	140	130	<5	0.06	<1	2	62	8	1.96	<10	<0.01	77	4	<0.01	8	560	66	<5	<20	86	<0.01	<10	11	<10	<1	17
9	E37544	0.3	0.12	165	95	<5	0.03	<1	3	62	11	2.01	<10	<0.01	36	- 4	<0.01	7	380	32	<5	<20	52	<0.01	<10	9	<10	<1	15
10	E37545	0.3	0.16	295	90	<5	0.07	<1	20	43	63	4.72	<10	<0.01	326	5	0.01	54	620	42	<5	<20	38	<0.01	<10	15	<10	<1	59
11	E37546	0.5	0.12	185	145	10	0.05	<1	2	73	6	1.82	<10	<0.01	72	4	0.01	5	400	68	<5	<20	66	<0.01			<10		7
12	E37547	0.7	0.11	30	210	5	0.03	<1	<1	96	3	1.04	<10	<0.01	33	3	0.01	4	180	100	<5	<20	50	<0.01	<10	5	<10	<1	7
13	E37548	1.0	0.13	10	255	<5	0.07	<1	<1	75	3	0.66	<10	0.02	83	3	<0.01	5	60	50	<5	<20	5	<0.01	<10	8	<10	<1	8
- 14	E37549	1.3	0.12	<5	115	<5	0.02	<1	<1	72	2	0.44	<10	<0.01	53	2	<0.01	3	30	34	<5	<20	2	<0.01	<10	5	<10	<1	5
15	E37550	0.3	0.11	600	150	20	0.08	<1	5	103	10	4.52	<10	<0.01	114	17	<0.01	10	980	64	<5	<20	9 7	<0.01	<10	12	<10	<1	20
48	E37551		0.40	000			0.04		-	445	•	0.02	-40	-0.04	75	-	-0.04	40	400	04	7E	~20	24	<0.01	-40		<10	-1	29
16 17		0.2	0.12	290	95	<5		<1		115		2.83		<0.01	75		<0.01	12	460	24	<5	<20 <20				_	<10		24
18	E37552 E37553	0.2	0.13	65	65	<5	0.03	<1	2			1.02		<0.01	43		<0.01	7	210	18 78		<20 <20		<0.01 <0.01			<10		10
	E37555	0.4	0.14	325	110	<5	0.06	<1	3			2.94	•	<0.01	88		<0.01	5	680		-			<0.01			<10		12
19 20	E37555	0.3	0.18	310	140 95	<5	0.15	<1 <1	-	114		3.08 1.59		<0.01 <0.01	75 60		<0.01 <0.01	79	1140 550	76 72	<5	<20 <20		<0.01			<10		15
20	E97999	0.2	0.15	130	90	<0	0.05	~ 1	J	73	3,44)	1.08	~10	NU.U 1	00	3	~0.01	э	550	12	~ 0	~20		<0.01	510	11	~10		19
21	E37558	0.4	0.09	10	110	<5	0.01	<1	<1	108	2	0.57	<10	<0.01	18	3	<0.01	4	70	32	<5	<20	25	<0.01	<10	5	<10	<1	3
22	E37557	0.6	0.09	10	115	<5	0.02	<1	<1	110	3	0.61	<10	<0.01	43	2	<0.01	3	90	42	<5	<20	40	<0.01	<10	4	<10	<1	4
23	E37558	<0.2	0.22	60	50	<5	0.07	<1	12	100	29	3.05	<10	<0.01	189	5	0.01	36	660	6	<5	<20	28	<0.01	<10	-5	<10	<1	64
24	E37559	<0.2	0.20	140	60	<5	0.07	<1	14	62	41	4.60	<10	<0.01	227	5	0.01	63	760	12	<5	<20	45	<0.01	<10	8	<10	· <1	69
25	E37560	<0.2	0.11	145	60	<5	0.04	<1	5	23	26	2.91	<10	<0.01	72	5	<0.01	14	540	10	<5	<20	55	<0.01	<10	6	<10	<1	29
26	E37561	<0.2	0.17	145	70	<5	0.08	<1	7	60	49	3.60	<10	<0.01	95	6	0.01	20	530	6	<5	<20	28	<0.01	<10	A	<10	<1	44
27	E37562	0.2	0.17	255	115	<5	0.21	<1	5		16	3.48		0.03	158			14	580	26	<5			<0.01		-	<10		26
28	E37563	0.2	0.09	615	105	10	0.07	<1	3	82		4.24	-	<0.00	83		<0.01	6	790	54	-	<20		<0.01			<10		-8
29	E37564	4.0	0.12	130	70	<5	0.06	<1	2		-	1.35		0.01	53	-	< 0.01	5	160	36	<5			<0.01	-		<10		9
30	E37565	4.4		145	60	5		<1	3			2.25		< 0.01	36			9	160	52	<5			<0.01	-	-	<10		13
•••			0.10	140		v	0.01	- 1	Ŭ		Ŷ					Ŭ		Ŭ		~~						•		·	
31	E37566	2.4	0.13	420	70	10	0.05	<1	11	47	8	6.34	<10	<0.01	99	10	<0.01	23	520	70	<5	<20	16	<0.01	<10	10	<10	<1	49
32	E37567	0.6	0.11	205	50	<5	0.07	<1	5	111	7	2.95	<10	<0.01	64	6	<0.01	10	360	46	<5	<20	16	<0.01	<10	7	<10	<1	14
33	E37588	1.3	0.22	305	65	5	0.18	<1	15	- 94	23	5.04	<10	0.03	402	10	<0.01	30	580	38	<5	<20	18	<0.01	<10	12	<10	<1	35
34	E37569	0.2	0.13	120	90	<5	0.05	<1	2	73	9	1.84	<10	<0.01	78		0.01	7	480	12	<5	<20	97	<0.01	• -		<10		16
35	E37570	0.2	0.09	235	150	<5	0.04	<1	3	50	8	2.74	<10	<0.01	66	7	0.02	7	630	18	<5	<20	162	<0.01	<10	8	<10	<1	15
INTÉ	RNATIONAL	WAYS	INF GC) ה M i	NERIT	'n			10m 0	~ ~ ~	15101			F	Page 1		~•							·					

<u> Zn</u>	<u>W</u> Y	V	<u> </u>	TI %	Sr	Sn	Sb	Pb	P	NI	Na %	Mo	Divi O	Mg %	La	Fe %	Cu	Cr	Co	Cd	Ca %	BI	Ba	As	AI %		Tag #	Et #.
1 28	<10 <1	14	<10	<0.01	196	<20	<5	40	1060	12	0.01	12	94	< 0.01	<10	4.70	11	79	4	<1	0.06	5	195	475	0.13	0.3	E37571	36
1 18	<10 <1	16	<10	<0.01	120	<20	<5	46	1140	11	<0.01	22	107	<0.01	<10	7.13	9	76	6	<1	0.08	10	190	685	0.11	0.3	E37572	37
1 20	<10 <1	17	<10	<0.01	37	<20	<5	72	620	16	<0.01	18	78	<0.01	<10	4.55	5	106	4	<1	0.06	10	100	535	0.07	0.6	E37573	38
12	<10 <1	3	<10	<0.01	<1	20	<5	38	50	2	<0.01	1	19	<0.01	<10	0.38	<1	<1	<1	<1	0.01	<5	20	30	0.05	13.4	E37574	39
15	<10 <1	4	<10	<0.01	4	<20	<5	72	40	2	<0.01	2	35	0.01	<10	0.39	2	19	1	<1	0.03	5	40	10	0.10	10.0	E37575	40
1 94	<10 <1	10	<10	<0.01	26	<20	<5	16	630	45	0.01	9	139	<0.01	<10	5.27	46	26	16	<1	0.04	<5	55	190	0.15	0.2	E37576	41
	<10 <1	7	<10	< 0.01	7	<20	<5	10	450	33	<0.01		94	<0.01		4.15	• •		12	<1	0.03	<5	45	155	0.14	0.2	E37577	42
1 32	<10 <1	7	<10	< 0.01	48	<20	<5	18	510	10	0.01	11	66	<0.01		3.28	25		5	<1	0.03	<5	90	245	0.11	0.3	E37578	43
1 12	<10 <1	9	<10	<0.01	35	<20	<5	14	420	6	<0.01	9	47	<0.01	<10	2.47	5	85	2	<1	0.03	<5	100	225	0.09	0.2	E37579	44
	<10 <1	9	<10	<0.01	5	<20	<5	8	290	4	<0.01		34	<0.01	-	1.52	-		2	<1	0.03	<5	45	210	0.07	0.2	E37580	45
1 16	<10 <1	10	<10	<0.01	61	<20	<5	10	500	7	0.01	7	74	<0.01	<10	2.59	17	79	4	<1	0.03	<5	60	140	0.13	<0.2	E37581	46
1 45	<10 <1	20	<10	0.02	7	<20	<5	24	550	17	<0.01	13	269	<0.01		9.52		-	12	<1	0.08	10	35	465	0.17	0.2	E37582	47
																												<u>OC D</u> Resp
1 115	<10 <1	9	<10	<0.01	19	<20	<5	6	1070	149	<0.01	6	673	<0.01	<10	6.06	54	59	33	<1	0.11	<5	65	170	0.25	<0.2	E37536	1
1 26	<10 <1	13	<10	<0.01	204	<20	<5	40	1020	12	0.01	12	96	<0.01	<10	4.72	12	95	4	<1	0.06	5	205	450	0.13	0.3	E37571	36
																											et:	Repe
1 114	<10 <1	9	<10	<0.01	17	<20	<5	8	1120	156	<0.01	6	676	<0.01	<10	6.10	56	47	34	<1	0.11	<5	55	185	0.24	<0.2	E37536	i
1 61	<10 <1	16	<10	<0.01	32	<20	<5	44	660	54	0.01	5	323	<0.01	<10	4.77	62	43	20	<1	0.07	<5	90	305	0.16	0.3	E37545	10
1 12	<10 <1	17	<10	<0.01	100	<20	<5	72	1100	7	<0.01	5	72	<0.01	<10	3.00	14	110	3	<1	0.14	<5	130	300	0.17	0.3	E37554	19
1 29	<10 <1	14	<10	<0.01	197	<20	<5	40	1080	12	0.01	16	94	<0.01	<10	4.75			4	<1		<5	205	485	0.13	0.3	E37571	36
																											ierd:	Stan
0 73	<10 10	60	<10	0.09	52	<20	<5	22	570	24	0.02	<1	543	0.72	<10	3.86	86	52	15	<1	1.28	<5	130	50	1.32	1.4		GEO
9 74			<10		56	<20	<5	22	590	27	0.05	-	584		<10	3.93			16	<1		<5	140	50	1.64	1.4		GEO
:1 :1	<10 <1 <10 <1 <10 10	17 14 60	<10 <10 <10	<0.01 <0.01 0.09	100 197 52	<20 <20 <20	<5 <5 <5	72 40 22	1100 1080 570	7 12 24	<0.01 0.01 0.02	5 16 <1	72 94 543	<0.01 <0.01	<10 <10	3.00 4.75 3.86	14 11	110 80 52	3 4 15	<t <1 <1</t 	0.14 0.05 1.28	<5 <5 <5	130 205 130	300 485 50	0.17 0.13 1.32	0.3 0.3 1.4	E37554 E37571 Jard: '04	19 36 Stan GEO

JJ/jm df/1947 XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer ł

ĉ

CERTIFICATE OF ASSAY AK 2004-1906

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 31 Sample type: Rock Project #: BL-TR3 Shipment #: Not Indicated Samples submitted by:John Childs

	ionnited by.30mm	Au	Au
<u>ET #.</u>	Tag #	(g/t)	(oz/t)
1	E37583	0.18	0.005
2	E37584	1.23	0.036
3	E37585	17.5	0.510
4	E37586	5.08	0.148
5 6	E37587	0.30	0.009
6	E37588	0.07	0.002
7	E37589	0.79	0.023
8	E37590	0.95	0.028
9	E37591	1.30	0.038
10	E37592	0.16	0.005
11	E37593	0.17	0.005
12	E37594	0.56	0.016
13	E37595	0.51	0.015
14	E37596	2.31	0.067
15	E37597	3.26	0.095
16	E37598	2.04	0.059
17	E37599	0.51	0.015
18	E37600	0.99	0.029
19	E37601	0.99	0.029
20	E37602	4.96	0.145
21	E37603	2.63	0.077
22	E37604	1.35	0.039
23	E37605	1.12	0.033
24	E37606	0.61	0.033
25	E37607	0.24	0.007
26	E37608	0.24	0.009
27	E37609	0.07	0.003
28	E37610	<0.03	<0.002
29	E37611	0.06	0.001
30	E37612	0.00	0.002
31	E37613	0.08	0.002
	E3/013	0.06	0.002

29-Nov-04

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

. .

29-Nov-04

ET #.	Tag #	Au (g/t)	Au (oz/t)	
,				
OC DATA:				
Resplit: 1	E37583	0.22	0.006	
•	E37383	0.22	0.000	
Repeat:				
1	E37583	0.24	0.007	
3	E37585	17.8	0.519	
4	E37586	5.14	0.150	
10	E37592	0.18	0.005	
19	E37601	0.95	0.028	
20	E37602	5.18	0.151	
Standard:				
PM182		1.25	0.036	
PM176		2.17	0.063	
SN16		9.06	0.264	

JJ/jm XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

. . .

20-1404-04

ICP CERTIFICATE OF ANALYSIS AK 20. . 1908

ECO TECH LABOIL AY LTD. 10041 Deltes Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 31 Sample type: Rock Project #: BL-TR3 Shipment #: Not indicated Samples submitted by:John Childs

Et #.	Tag #	.Ag	AI %	As	Ba	81 ()a %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn_	Sr	TI %	U	V	W _	Y	Zn
1	E37583	<0.2	0.51	190	125	<5	0.07	<1	19	149	88	4.27	<10	0.01	767	8	0.02	69	630	14	<5	<20	17	<0.01	<10	23	<10	2	190
2	E37584	<0.2	0.37	190	105	<5	0.04	<1	16	142		4.19			841	9	0.01	65	600	16	<5	<20	13	<0.01	<10	21	<10 -	<1	159
3	E37585	2.5	0.29	275	100	<5	0.03	<1	8	63	69	3.34	<10	<0.01	176	7	<0.01	35	320	58	<5	<20	8	<0.01	<10	19 -	<10 ·	<1	108
4	E37586	0.9	0.32	320	120	<5	0.05	<1	30	43	145	7.65	<10	<0.01	803	11	<0.01	77	680	48	<5	<20	11	<0.01	<10	25 ·	<10 ·	<1	302
5	E37587	0.2	0.54	280	215	<5	0.21	<1	58	20	223	>10	<10	<0.01	1608	10	0.01	133	2900	24	<5	<20	60	<0.01	<10	32 ·	<10	5	372
6	E37588	<0.2	0.47	200	275	-	0.12	•		66	89			<0.01	3617	-	0.01				-	<20	. –	<0.01				-	315
7	E37589	0.2	0.41	415	235		0.09	•		75	40			<0.01	2515	• •			1450	-		<20	-	<0.01	-				146
8	E37590		0.62	405	215		0.18	•		140	72			<0.01	2152	-			1980		-	<20		<0.01					165
9	E37591	0.2	0.58	470	185	-	0.14	•	- 44		102			<0.01		9			2090			<20		<0.01				_	187
10	E37592	<0.2	0.30	320	315	<5	0.68	<1	4	170	29	4.59	<10	<0.01	140	12	0.01	- 14	8980	12	<5	<20	161	<0.01	<10	95 ·	<10	13	19
11	E37593	<0.2	0.39	275	155	<5	0.14	<1	22	40	213	4.56	<10	<0.01	315	6	0.01	54	1630	12	<5	<20	31	<0.01	<10	27	<10	<1	62
12	E37594	<0.2	0.44	325	195		0.24			54	143			<0.01	509	9	0.01		2480					<0.01					118
13	E37595	<0.2	0.28	175	155	-	0.04	-		70	30			<0.01	40	5	0.01		750			<20		<0.01					19
14	E37596	0.5	0.28	250	135	-	0.03	•	-	137	29			<0.01	71	-		-		. —				<0.01					34
15	E37597	0.6	0.38	185	115		0.06			113	60			<0.01	413	_	0.01			-		<20		<0.01		-	-		96
15		0.0	0.30	100	119	~0	0.00	N	12	113	00	3.70	10	NU.V1	415	0	0.01	40	000	27	-0	~20	91	-0.01	~10	10	10	4	30
16	E37598	0.6	0.73	360	245	<5	0.12	<1	46	27	158	>10	<10	<0.01	1089	11	0.02	138	1930	28	<5	<20	58	<0.01	<10	36	<10	<1	245
17	E37599	0.3	0.57	395	220	5	0.09	<1	79	69	96	>10	<10	<0.01	2030	10	0.01	272	1580	22	<5	<20	25	<0.01	<10	32	<10	<1	200
18	E37600	0.3	0.65	445	300	15	0.11	<1	66	94	46	>10	<10	<0.01	2096	9	0.02	274	1420	22	<5	<20	15	<0.01	<10	36	<10	<1	155
19	E37601	0.2	0.92	515	195	<5	0.16	<1	91	109	206	>10	<10	<0.01	3758	11	0.01	343	2200	22	<5	<20	15	<0.01	<10	60	<10	15	581
20	E37602	0.6	0.38	530	105	<5	0.08	<1	28	106	184	>10	<10	<0.01	645	9	<0.01	95	1110	26	<5	<20	7	<0.01	<10	36	<10	<1	246
21	E37603	0.3	0.50	525	130	-5	0.10	-1	G A	116	211	>10	~10	<0.01	2520	12	20.04	227	1550	24	~5	<20	٩	<0.01	~10	34	~10	2	442
22	E37604		0.50	330	235	-	0.33	-		16	97	-		0.01					2520			<20		<0.01	-		-		261
23	E37605		0.48	235	175		0.15	-		111	70			<0.01		_			1470			<20		<0.01			-		205
24	E37606		0.44	295	165	-	0.27			60	164			<0.01			<0.01				-	<20		<0.01					306
25	E37607		0.43	290	155		0.20			59	169			<0.01		-	0.01				-	<20		<0.01					364
			0,40	200			0.20	- 1		00	100	0.00		-0.01	2000	Ũ	0.01					-20		-0.01	- 10			•	001
26	E37608	<0.2	0.60	380	190	<5	0.24	<1	70	65	231	>10	<10	<0.01	3232	7	0.01	211	2000	16	<5	<20	14	<0.01	<10	41	<10	6	315
27	E37609	<0.2	0,43	100	135	<5	0.21	<1	42	115	134	6.46	<10	<0.01	1256	7	0.01	100	1470	16	<5	<20	10	<0.01	<10	21	<10	4	269
28	E37610	<0.2	0.29	95	90	<5	0.19	<1	32	59	106	6.49	<10	<0.01	1171	4	<0.01	90	1290	12	<5	<20	10	<0.01	<10	15	<10	2	1 92
29	E37611	<0.2	0.30	95	120	<5	0.27	<1	46	62	110	7.80	<10	<0.01	1833	8	<0.01	92	1910	12	<5	<20	12	<0.01	<10	20	<10	3	173
30	E37612	<0.2	0.33	145	145	<5	0.29	<1	62	39	164	>10	<10	0.01	2857	7	<0.01	151	2200	10	<5	<20	13	<0.01	<10	19	<10	3	295
31	E37613	<0.2	0.40	155	120	<5	0.24	<1	65	37	218	>10	<10	0.01	2577	9	<0.01	210	1780	6	<5	<20	12	<0.01	<10	23	<10	<1	354
<u>QC D</u> Resp					•																								
1	E37583	<0.2	0.44	170	105	<5	0.05	<1	19	136	78	3.91	<10	<0.01	706	4	0.01	66	620	10	<5	<20	12	<0.01	<10	17	<10	1	188

ł

Et #.	Tag #		<u>Al %</u>	As	Ba	Bi	Ca %	Cđ	Co	Cr	Cu	Fe %	La	Mg %	ł w ++ 1	Mo	Na %	Ni	P	РЬ	Sb	Sn	Sr	TI %	<u> </u>	۷	W	Y	Zn
Repe	nt:																												
1	E37583	<0.2	0.51	210	120	<5	0.08	<1	21	163	82	4.11	<10	0.01	787	8	0.01	80	760	14	<5	<20	12	<0.01	<10	24	<10	<1	209
10	E37592	<0.2	0.31	300	300	<5	0.66	<1	4	168	29	4.43	<10	<0.01	138	12	0.01	15	8320	8	<5	<20	163	<0.01	<10	99	<10	13	18
19	E37601	0.2	0.94	535	200	<5	0.17	<1	93	117	205	>10	<10	<0.01	3843	11	0.01	350	2270	22	<5	<20	14	<0.01	<10	62	<10	15	808
Stand	ard:																												
GEO	04	1.5	1.41	60	145	<5	1.35	<1	16	58	83	3.74	<10	0.72	577	<1	0.02	28	690	22	<5	<20	53	0.09	<10	63	<10	9	73

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm dt/1906 XLS/04

.

12

APPENDIX VII

COW MOUNTAIN ROADSIDE SAMPLING

			(Cow Moi	untain R	oadside Sampling		
TAG SAMPLE #			EASTING	NORTHING	FOOTAGE	LOCATION/DESCRIPTION	DATE COLLECTED	RESULTS (nom
164189	Cow Mtn.	Channel Sample			0' - 5'	Cow Channel 1	17-Aug-04	0.03/0.06(repeat
164190	Cow Mtn.	Channel Sample			5' - 10'	Cow Channel 1	17-Aug-04	0.29/0.22(repeat
164191	Cow Mtn.	Channel Sample			0' - 5'	Cow Channel 2	17-Aug-04	<0.03
164192	Cow Mtn.	Channel Sample			5' - 10'	Cow Channel 2	17-Aug-04	<0.03
164193	Cow Mtn.	Channel Sample			10' - 15'	Cow Channel 2	17-Aug-04	<0.03
164194	Cow Mtn.	Channel Sample			15' - 17'	Cow Channel 2	17-Aug-04	0.04
164195	Cow Mtn.	Rock	595886	5883331		Quartz grab sample	17-Aug-04	0.04
164196	Cow Mtn.	Channel Sample			0' - 5'	Cow Channel 3. Sampled outcrop surrounding sample 14424, 65' in total	17-Aug-04	0.25
164197	Cow Mtn.	Channel Sample			5' - 10'	Cow Channel 3	17-Aug-04	0.25
164198	Cow Mtn.	Channel Sample			10' - 15'	Cow Channel 3	17-Aug-04	0.86
164199	Cow Mtn.	Channel Sample			15' - 20'	Cow Channel 3	17-Aug-04	0.12
164200	Cow Mtn.	Channel Sample			20' - 25'	Cow Channel 3		
164251	Cow Mtn.	Channel Sample			25' - 30'	Cow Channel 3	17-Aug-04	0.05
164252	Cow Mtn.	Channel Sample		··	30' - 35'	Cow Channel 3	17-Aug-04	0.05
164253	Cow Mtn.	Channel Sample			35' - 40'	Cow Channel 3	17-Aug-04	0.04
164254		Channel Sample		· · · · · ·	40' - 45'	Cow Channel 3	17-Aug-04	0.04
164255		Channel Sample			45' - 50'	Cow Channel 3	17-Aug-04	0.04
164256		Channel Sample			50' - 55'	Cow Channel 3	17-Aug-04	0.16
164257		Channel Sample			55' - 60'		17-Aug-04	0.21
164258		Channel Sample			60' - 65'	Cow Channel 3 Cow Channel 3	17-Aug-04	1.11
					00 00	COW Challel 3	17-Aug-04	0.05

			. (Cow Μοι	untain Ro	adside Sampling		
SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	FOOTAGE	LOCATION/DESCRIPTION	DATE	RESULTS (g/t)
165701	Cow Mtn.	Channel Sample			0' - 5'	Roadside trench	07-Sep-04	0.12
165702	Cow Mtn.	Channel Sample			5' - 10'	Roadside trench	07-Sep-04	0.08
165703	Cow Mtn.	Channel Sample			10' - 15'	Roadside trench	07-Sep-04	0.22
165704	Cow Mtn.	Channel Sample			15' - 20'	Roadside trench	07-Sep-04	0.61
164055	Cow Mtn.	Channel Sample			20' - 25'	Roadside trench	12-Aug-04	0.40/0.59(repeat)/0.38(respli
164056	Cow Mtn.	Channel Sample			25' - 30'	Roadside trench	12-Aug-04	0.31/0.25(repeat)
164057	Cow Mtn.	Channel Sample			30' - 35'	Roadside trench	12-Aug-04	0.64/0.69, 0.65(repeat)
164058	Cow Mtn.	Channel Sample			35' - 40'	Bonanza roadside trench	12-Aug-04	6.28/6.06(repeat)
164059	Cow Mtn.	Channel Sample			40' - 45'	Bonanza roadside trench	12-Aug-04	1.21
164060	Cow Mtn.	Channel Sample			45' - 50'	Bonanza roadside trench	12-Aug-04	0.19
164061	Cow Mtn.	Channel Sample			50' - 55'	Bonanza roadside trench	12-Aug-04	0.27
164062	Cow Mtn.	Channel Sample			55' - 60'	Bonanza roadside trench	12-Aug-04	0.15
164063		Channel Sample			60' - 65'	Bonanza roadside trench	12-Aug-04	<0.03
164064	Cow Mtn.	Channel Sample			65' - 75'	Bonanza roadside trench	12-Aug-04	< 0.03
164065	Cow Mtn	Channel Sample			75' - 85'	Bonanza roadside trench	12-Aug-04	<0.03
164066		Channel Sample			85' - 95'	Bonanza roadside trench	12-Aug-04	<0.03
164067		Channel Sample			95' - 100'	Bonanza roadside trench	12-Aug-04	<0.03
164068		Channel Sample			100' - 105'	Bonanza roadside trench	12-Aug-04	0.46/0.48(repeat)
164069		Channel Sample			105' - 110'	Bonanza roadside trench	12-Aug-04	0.05
164070		Channel Sample			110' - 115'	Bonanza roadside trench	12-Aug-04	<0.03
164071		Channel Sample			115' - 120'	Bonanza roadside trench	12-Aug-04	<0.03
164072		Channel Sample			120' - 125'	Bonanza roadside trench	12-Aug-04	0.53/0.71(repeat)
164073		Channel Sample			125' - 135'	Bonanza roadside trench	12-Aug-04	<0.03
164074		Channel Sample				Bonanza roadside trench	12-Aug-04	0.09
164075		Channel Sample				Bonanza roadside trench	12-Aug-04	0.06
164076		Channel Sample		-		Bonanza roadside trench	12-Aug-04	<0.03
164077		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03
164078		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03
164079		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03
164080		Channel Sample		·		Bonanza roadside trench	12-Aug-04	<0.03
		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03
		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03
		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03
		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03
164085		Channel Sample				Bonanza roadside trench	12-Aug-04	<0.03

AMPLE#	PROJECT	SAMDIE TYDE	EACTING	NODTUNIO		adside Sampling		
164086		SAMPLE TYPE	EASTING	NORTHING		LOCATION/DESCRIPTION	DATE	RESULTS (g/t)
164087	Cow Mtn.	Channel Sample			250' - 260'	Bonanza roadside trench	12-Aug-04	< 0.03
164088	Cow Mtn.	Channel Sample			260' - 265'	Bonanza roadside trench	12-Aug-04	< 0.03
164089	Cow Mtn.	Channel Sample			265' - 270'	Bonanza roadside trench	12-Aug-04	< 0.03
164089	Cow Mtn.	Channel Sample			270' - 275'	Bonanza roadside trench	12-Aug-04	< 0.03
164090	Cow Mtn.	Channel Sample	<u></u>		275' - 280'	Bonanza roadside trench	12-Aug-04	< 0.03
	Cow Mtn.	Channel Sample			280' - 287'	Bonanza roadside trench	12-Aug-04	< 0.03
164092	Cow Mtn.	Channel Sample			287' - 295'	Bonanza roadside trench	12-Aug-04	< 0.03
164093	Cow Mtn.	Channel Sample			295' - 305'	Bonanza roadside trench	12-Aug-04	< 0.03
164094	Cow Mtn.	Channel Sample				Bonanza roadside trench	12-Aug-04	0.03
164095	Cow Mtn.	Channel Sample			<u>315' - 325'</u>	Bonanza roadside trench	12-Aug-04	< 0.03
164096	Cow Mtn.	Channel Sample				Bonanza roadside trench	12-Aug-04	< 0.03
164097		Channel Sample			335' - 345'	Bonanza roadside trench	12-Aug-04	< 0.03
164098		Channel Sample			345' - 355'	Bonanza roadside trench	12-Aug-04	< 0.03
164099		Channel Sample			355' - 365'	Bonanza roadside trench	13-Aug-04	< 0.03
164100	Cow Mtn.	Channel Sample				Bonanza roadside trench	13-Aug-04	< 0.03
164101	Cow Mtn.	Channel Sample			375' - 385'	Bonanza roadside trench	13-Aug-04	< 0.03
164102		Channel Sample			385' - 395'	Bonanza roadside trench	13-Aug-04	< 0.03
164103		Channel Sample			395' - 405'	Bonanza roadside trench	13-Aug-04	< 0.03
164104		Channel Sample				Bonanza roadside trench	13-Aug-04	< 0.03
164105		Channel Sample			415' - 425'	Bonanza roadside trench	13-Aug-04	< 0.03
164106		Channel Sample				Bonanza roadside trench	13-Aug-04	< 0.03
164107		Channel Sample			430' - 435'	Bonanza roadside trench	13-Aug-04	< 0.03
164108		Channel Sample				Bonanza roadside trench	13-Aug-04	< 0.03
164109		Channel Sample			440' - 450'	Bonanza roadside trench	13-Aug-04	<0.03
164110		Channel Sample			450' - 455'	Bonanza roadside trench	13-Aug-04	< 0.03
164111		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164112		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164113		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164114		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164115		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164116	Cow Mtn.	Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164117		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164118		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164119		Channel Sample				Bonanza roadside trench	13-Aug-04	<0.03
164120	Cow Mtn.	Channel Sample				Bonanza roadside trench	13-Aug-04	0.04

			Cow Mou	untain Ro	adside Sampling		
SAMPLE #			EASTING NORTHING		LOCATION/DESCRIPTION	DATE	RESULTS (g/t)
164121	Cow Mtn.	Channel Sample		550' - 560'	Bonanza roadside trench	13-Aug-04	< 0.03
164122	Cow Mtn.	Channel Sample		560' - 570'	Bonanza roadside trench	13-Aug-04	< 0.03
164123	Cow Mtn.	Channel Sample		570' - 580'	Bonanza roadside trench	13-Aug-04	< 0.03
164124	Cow Mtn.	Channel Sample		580' - 592'	Bonanza roadside trench. The end of this trench	13-Aug-04	<0.03
164125	Cow Mtn.	Channel Sample		0' - 10'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164126	Cow Mtn.	Channel Sample		<u> 10' - 2</u> 0'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164127	Cow Mtn.	Channel Sample		20' - 30'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164128	Cow Mtn.	Channel Sample		30' - 40'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164129	Cow Mtn.	Channel Sample		40' - 50'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164130	Cow Mtn.	Channel Sample		50' - 60'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164131	Cow Mtn.	Channel Sample		60' - 70'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164132	Cow Mtn.	Channel Sample		70' - <u>80</u> '	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164133	Cow Mtn.	Channel Sample		80' - <u>90</u> '	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164134	Cow Mtn.	Channel Sample		90' - 100'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164135	Cow Mtn.	Channel Sample		100' - 110'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164136	Cow Mtn.	Channel Sample		110' - 120'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164137	Cow Mtn.	Channel Sample		120' - 130'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164138	Cow Mtn.	Channel Sample		130' - 140'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03
164139	Cow Mtn.	Channel Sample		140' - 150'	Bonanza roadside #2 trench (BR2 trench)	14-Aug-04	<0.03

Cow Mountain Roadside Sampling									
SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	FOOTAGE	LOCATION/DESCRIPTION	DATE	RESULTS (g/t)	
						Bonanza roadside #2 trench			
164140	Cow Mtn.	Channel Sample	<u> </u>		150' - 155'	(BR2 trench)	14-Aug-04	< 0.03	
						Bonanza roadside #2 trench			
164141	Cow Mtn.	Channel Sample			<u> 155' - 160'</u>	(BR2 trench)	14-Aug-04	<0.03	
				l		Bonanza roadside #2 trench	1		
164142	Cow Mtn.	Channel Sample			160' - 165'	(BR2 trench)	14-Aug-04	<0.03	
						Bonanza roadside #2 trench			
164143	Cow Mtn.	Channel Sample			165' - 170'	(BR2 trench)	14-Aug-04	<0.03	
						Bonanza roadside #2 trench			
164144	Cow Mtn.	Channel Sample			<u> 170' - 175'</u>	(BR2 trench)	14-Aug-04	<0.03	
				!		Bonanza roadside #2 trench	ļ		
164145	Cow Mtn.	Channel Sample			<u> 175' - 180' </u>	(BR2 trench)	14-Aug-04	<0.03	
						Bonanza roadside #2 trench			
164146	Cow Mtn.	Channel Sample		·	<u> 180' - 185'</u>	(BR2 trench)	14-Aug-04	<0.03	
10111-		a		1		Bonanza roadside #2 trench			
164147	Cow Mtn.	Channel Sample			185' - 190'	(BR2 trench)	14-Aug-04	<0.03	
101110	<u> </u>					Bonanza roadside #2 trench		0.00	
164148	Cow Mtn.	Channel Sample		· · · · ·	190' - 195'	(BR2 trench)	14-Aug-04	<0.03	
101110	0				4051 0001	Bonanza roadside #2 trench	44.5.04	-0.00	
164149	Cow Mtn.	Channel Sample			195' - 200'	(BR2 trench)	14-Aug-04	<0.03	
164150	Courthate	Channel Comple				Bonanza roadside #2 trench	14 4.00 04	<0.03	
104150	Cow Mtn.	Channel Sample		Į	200' - 205'	(BR2 trench) Bonanza roadside #2 trench	14-Aug-04	<0.03	
164151	Cow Mtn.	Channel Sample			2051 2401	(BR2 trench)	14 4.00 04	<0.03	
104151		Channel Sample		┟──────┤	205' - 210'	Bonanza roadside #2 trench	14-Aug-04		
164152	Cow Mtn.	Channel Sample			210' - 215'	(BR2 trench)	14-010-04	<0.03	
104102		Channel Sample		┟─────┤	210 - 210	Bonanza roadside #2 trench	14-Aug-04		
164153	Cow Mtn.	Channel Sample			215' - 220'	(BR2 trench)	14-Aug-04	<0.03	
10+100		Unannier Sample		┠─────┥	210-220	Bonanza roadside #2 trench	<u>14-7.09-04</u>		
164154	Cow Mtn.	Channel Sample			220' - 225'	(BR2 trench)	14-Aug-04	<0.03	
		Chamber Gample	<u></u>	┟─────┤	220 - 220	Bonanza roadside #2 trench	<u></u>		
164155	Cow Mtn.	Channel Sample	!		225' - 230'	(BR2 trench)	14-Aug-04	<0.03	
	00111111	onamor oampie		┟╼─────┤	220 200	Bonanza roadside #2 trench	<u></u>	-0.00	
164156	Cow Mtn	Channel Sample			230' - 235'	(BR2 trench)	14-Aug-04	<0.03	

Cow Mountain Roadside Sampling									
SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	FOOTAGE	LOCATION/DESCRIPTION	DATE	RESULTS (g/t)	
						Bonanza roadside #2 trench			
164157	Cow Mtn.	Channel Sample			235' - 240'	(BR2 trench)	14-Aug-04	< 0.03	
						Bonanza roadside #2 trench			
164158	Cow Mtn.	Channel Sample	<u> </u>		240' - 245'	(BR2 trench)	14-Aug-04	<0.03	
404450						Bonanza roadside #2 trench			
164159	Cow Mtn.	Channel Sample			245' - 250'	(BR2 trench)	14-Aug-04	<0.03	
164160	Cow Mtn.	Channel Cample				Bonanza roadside #2 trench			
104100		Channel Sample			<u> 250' - 255'</u>	(BR2 trench) Bonanza roadside #2 trench	14-Aug-04	<0.03	
164161	Cow Mtn.	Channel Sample			255' - 260'	(BR2 trench)	14 4.00	<0.03	
		Channel Cample			200 - 200		14-Aug-04	<0.03	
						Ditch road channel sample.			
D4951	Cow Mtn.	Channel Sample	596951	5881199	0' - 5'	Weathered and rusty argillite	18-Aug-04	<0.03	
. <u></u>		<u> </u>							
						Ditch road channel sample.			
D4952	Cow Mtn.	Channel Sample			5' - 10'	Weathered and rusty argillite	18-Aug-04	<0.03	
						Ditch road channel sample.			
D4953	Cow Mtn.	Channel Sample			<u> 10' - 15'</u>	Weathered and rusty argillite	18-Aug-04	<0.03	
DAGEA						Ditch road channel sample.			
D4954	Cow Mtn.	Channel Sample			15' - 20'	Weathered and rusty argillite	18-Aug-04	<0.03	
						Ditab read above al assession			
D4955	Cow Mtn.	Channel Sample			20' - 25'	Ditch road channel sample. Weathered and rusty argillite	19 400 04	<0.02	
D4300	COW WITH.	Channel Sample			20 - 25	Phyllite, mud limonite, weak to	18-Aug-04	<0.03	
						no carbonate, some quartz			
D4956	Cow Mtn.	Channel Sample	597139	5881166	0' - 10'	stringers	18-Aug-04	<0.03	
						Phyllite, mud limonite, weak to			
						no carbonate, some quartz			
D4957	Cow Mtn.	Channel Sample			10' - 20'	stringers	18-Aug-04	< 0.03	
						Phyllite, mud limonite, weak to			
D4958	Cow Mtn.	Channel Sample			20' - 30'	no carbonate, some quartz	19 Aug 04	0.15	
04000	COW WILLI.	Sharmer Sample		i	20 - 30	stringers	18-Aug-04	0.15	

Cow Mountain Roadside Sampling													
SAMPLE # PROJECT SAMPLE TYPE EASTING NORTHING FOOTAGE LOCATION/DESCRIPTION DATE RESULTS (g/t)													
	Phyllite, mud limonite, weak to no carbonate, some guartz												
D4959 Cow Mtn. Channel Sample 30' - 40' stringers 18-Aug-04 0.13													

	Cow Mountain Roadside Sampling										
SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	FOOTAGE	LOCATION/DESCRIPTION	DATE COLLECTED	RESULTS (g/t)			
164162	Cow Mtn.	Channel Sample			0' - 5'	BR #3 trench	15-Aug-04	<0.03			
164163	Cow Mtn.	Channel Sample			5' - 10'	BR #3 trench	15-Aug-04	< 0.03			
164164	Cow Mtn.	Channel Sample			10' - 15'	BR #3 trench	15-Aug-04	<0.03			
164165	Cow Mtn.	Channel Sample			15' - 20'	BR #3 trench	15-Aug-04	0.04			
164166	Cow Mtn.	Channel Sample			20' - 25'	BR #3 trench	15-Aug-04	0.03			
164167	Cow Mtn.	Channel Sample			25' - 30'	BR #3 trench	15-Aug-04	0.04			
164168	Cow Mtn.	Channel Sample			30' - 35'	BR #3 trench	16-Aug-04	< 0.03			
164169	Cow Mtn.	Channel Sample			35' - 40'	BR #3 trench	16-Aug-04	0.03			
164170	Cow Mtn.	Channel Sample			40' - 45'	BR #3 trench	16-Aug-04	<0.03			
164171	Cow Mtn.	Channel Sample			45' - 50'	BR #3 trench	16-Aug-04	<0.03			
164172	Cow Mtn.	Channel Sample			50' - 55'	BR #3 trench	16-Aug-04	< 0.03			
164173	Cow Mtn.	Channel Sample			55' - 60'	BR #3 trench	16-Aug-04	<0.03			
164174	Cow Mtn.	Channel Sample			60' - 65'	BR #3 trench	16-Aug-04	<0.03			
164175	Cow Mtn.	Channel Sample			65' - 70'	BR #3 trench	16-Aug-04	2.44/2.49(repeat)			
164176	Cow Mtn.	Channel Sample			70' - 75'	BR #3 trench	16-Aug-04	0.03			
164177	Cow Mtn.	Channel Sample			75' - 80'	BR #3 trench	16-Aug-04	0.41			
164178	Cow Mtn.	Channel Sample			80' - 85'	BR #3 trench	16-Aug-04	0.06			
164179	Cow Mtn.	Channel Sample			85' - 90'	BR #3 trench	16-Aug-04	1.86/1.94(repeat)			
164180	Cow Mtn.	Channel Sample			90' - 95'	BR #3 trench	16-Aug-04	0.23/0.19(repeat)			
164181	Cow Mtn.	Channel Sample			95' - 100'	BR #3 trench	16-Aug-04	0.03			
164182	Cow Mtn.	Channel Sample			100' - 105'	BR #3 trench	16-Aug-04	0.11			
164183	Cow Mtn.	Channel Sample			105' - 110'	BR #3 trench	16-Aug-04	<0.03			
164184	Cow Mtn.	Channel Sample			110' - 115'	BR #3 trench	16-Aug-04	0.03			
164185	Cow Mtn.	Channel Sample			115' - 120'	BR #3 trench	16-Aug-04	<0.03			
164186	Cow Mtn.	Channel Sample			120' - 125'	BR #3 trench	16-Aug-04	0.08			
164187	Cow Mtn.	Channel Sample			125' - 130'	BR #3 trench	16-Aug-04	<0.03			
164188	Cow Mtn.	Channel Sample			130' - 135'	BR #3 trench	16-Aug-04	<0.03			

CERTIFICATE OF ASSAY AK 2004-1120

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 14 Sample type: Rock **Project #: Cow Channel 3** Samples Submitted by: J. McAllister

)

		a	A
ET #.	Tag #	Au (g/t)	Au (oz/t)
<u> </u>	Tag #		
1	164195	0.04	0.001
2	164196	0.25	0.007
3	164197	0.86	0.025
4	164198	0.97	0.028
5 6 7	164199	0.12	0.003
6	164200	0.05	0.001
	164251	0.05	0.001
8	164252	0.04	0.001
9	164253	0.04	0.001
10	164254	0.04	0.001
11	164255	0.16	0.005
12	164256	0.21	0.006
13	164257	1.11	0.032
14	164258	0.05	0.001
QC DATA:			
Repeat:			
1	164195	0.03	0.001
2	164196	0.20	0.006
2 3	164197	0.97	0.028
4	164198	0.92	0.027
Resplit:			
1	164195	0.03	0.001
•		0.00	0.001
Standard:			
OX123		1.86	0.054
0/(120		1.00	0.001

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

ł,

02-Sep-04

CERTIFICATE OF ASSAY AK 2004-1136

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 27 Sample type: Rock **Project #: BR3 Trench Shipment #: None Given** Samples submitted by:J. McAllister

ŧ

		Au	Au
ET #.	Tag #	(g/t)	<u>(oz/t)</u>
1	164162	<0.03	<0.001
2	164163	<0.03	<0.001
3	164164	<0.03	<0.001
4	164165	0.04	0.001
5 6	164166	0.03	0.001
6	164167	0.04	0.001
7	164168	<0.03	<0.001
8	164169	0.03	0.001
9	164170	<0.03	<0.001
10	164171	<0.03	<0.001
11	164172	<0.03	<0.001
12	164173	<0.03	<0.001
13	164174	<0.03	<0.001
14	164175	2.44	0.071
15	164176	0.03	0.001
16	164177	0.41	0.012
17	164178	0.06	0.002
18	164179	1.86	0.054
19	164180	0.23	0.007
20	164181	0.03	0.001
21	164182	0.11	0.003
22	164183	<0.03	<0.001
23	164184	0.03	0.001
24	164185	<0.03	<0.001
25	164186	0.08	0.002
26	164187	<0.03	<0.001
27	164188	<0.03	<0.001

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ÿ

INTERNATIONAL WAYSIDE GOLD MINES LTD.

1

03-Sep-04

¥

	T #	Au (=#)	Au (oz/t)	
<u> </u>	Tag #	(g/t)	(023)	
QC DATA:				
Repeat:	5			
1	164162	<0.03	<0.001	
10	164171	<0.03	<0.001	
14	164175	2.49	0.073	
18	164179	1.94	0.057	
19	164180	0.19	0.006	
Resplit:				
Respire.	404400	<0.03	<0.001	
1	164162	~0.05	-0.001	
Standard:				
OX123		1.89	0.055	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

JJ/jm XLS/04

-

01-Sep-04

ECO TECH LABORA . . . KY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

3

ICP CERTIFICATE OF ANALYSIS AK 2004-1138

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 27 Sample type: Rock Project #: BR3 Trench Shipment #: None Given Samples submitted by:J. McAllister

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Mn	Mo Na	<u>%</u> N	li	Р	Pb	Sb	Sn	Sr	TI %_	U	V	W	Y	Zn
1	164162	<0.2	0.15	<5	30	<5	0.01	<1	3	110	9	1.39	20	0.03	108	10 <0.	01 1	8	120	10	<5	<20	2	< 0.01	<10	2	<10	2	27
2	164163	<0.2	0.15	25	30	<5 4	<0.01	<1	3	96	12	1.28	10	0.03	86	8 <0.0	01 1	2 1	140	8	<5	<20	2	<0.01	<10	2	<10	1	26
3	164164	<0.2	0.15	5	25	<5 4	<0.01	<1	4	125	7	1.08	20	0.02	74	10 <0.	01 1	7 1	130	20	<5	<20	2	<0.01	<10	1	<10	2	28
4	164165	<0.2	0.12	20	20	<5 4	<0.01	<1	4	169	15	1.58	10	0.03	68	14 <0.	01 1	9 1	140	8	<5	<20	<1	<0.01	<10	1	<10	2	30
5	164166	<0.2	0.13	10	30	<5 ·	<0.01	<1	3	104	8	0.91	10	0.02	42	8 <0.	01 1	2	80	4	<5	<20	<1	<0.01	<10	1	<10	1	17
6	164167	0.3	0.26	<5	105	<5	0.02	<1	13	118	27	2.72	20	0.05	883	9 <0.	01 3	4 :	210	30	<5	<20	3	<0.01	<10	4	<10	4	102
7	164168	<0.2		<5	40	<5	0.03	<1	10	122	20	2.31	20	0.08	175	8 <0.	01 4	4 ·	160	8	<5	<20	3	< 0.01	<10	3	<10	4	118
8	164169	<0.2		20	40	<5	<0.01	<1	9	95	19	2.36	20	0.05	125	7 <0.			170	8	<5	<20	4	<0.01	<10	3	<10	3	55
9	164170	<0.2		15	55	<5	<0.01	<1	12	122	19	2.97	20	0.05	339	10 <0.		4 ·	160	4	<5	<20	1	<0.01	<10	3	<10	3	69
10	164171	<0.2	0.24	15	215	<5	0.02	<1	31	47	41	3.47	30	0.07	2391	4 <0.			310	4	<5	<20		0.01	<10	-	<10	5	117
			•					•	÷.				•••				••••		•••	•	•	-	•	0.01		•		•	•••
11	164172	0.2	0.20	<5	30	<5	0.01	<1	6	91	22	1.41	10	0.03	72	7 <0.	01 2	20	110	30	<5	<20	1	<0.01	<10	2	<10	2	55
12	164173	0.2	0.26	10	50	<5	0.03	<1	15	55	57	3.21	30	0.06	158	3 <0.			300	20	<5	<20	4	< 0.01	<10	4	<10	4	112
13	184174	<0.2		15	100	<5	0.05	<1	23	47	53	3.88	30	0.08	850	3 <0.			380	14	<5		8	< 0.01	<10	8		4	107
14	164175	7.9	0.20	50	110	165	0.02	<1	14	162	13	2.30	10	0.05	1190	13 <0.	01 3	34	230	214	<5	<20	4	< 0.01	<10	7	<10	3	54
15	164176	<0.2		<5	185	<5	0.01	<1	13	120	10	1.39	10	0.03	2107	10 <0.			120	14	<5	<20	6		<10		<10	3	34
				-		-																						•	
16	164177	0.3	0.21	10	95	<5	0.02	<1	8	124	19	1.70	20	0.04	574	10 <0.	01 2	25	160	8	<5	<20	3	<0.01	<10	4	<10	2	41
17	164178	1.0	0.14	45	365	<5	0.02	<1	14	97	13	2.27	10	0.04	2984	8 <0.	01 3	37 3	210	26	<5	<20	10	0.01	<10	3	<10	4	68
18	164179	0.5	0.15	55	80	<5	<0.01	<1	7	136	10	2.17	20	0.04	738	9 <0.	01 2	23	160	16	<5	<20	2	<0.01	<10	2	<10	3	35
19	164180	0.3	0.13	10	95	<5	0.03	<1	6	127	7	0.86	10	0.02	739	10 < 0.	01 1	8	170	6	<5	<20	5	< 0.01	<10	2	<10	2	22
20	164181	<0.2		<5	65	<5	0.02	<1	4	164	5	0.59	10	0.02	406	12 <d.< th=""><th></th><th>16</th><th>60</th><th>4</th><th></th><th><20</th><th></th><th>< 0.01</th><th><10</th><th></th><th><10</th><th>1</th><th>15</th></d.<>		16	60	4		<20		< 0.01	<10		<10	1	15
				•		-		•	•		•						-				•								
21	164182	0.6	0.13	30	65	5	0.02	<1	7	107	9	1.15	10	0.03	540	8 <0.	.01 2	21	90	24	<5	<20	1	<0.01	<10	2	<10	2	31~
22	164183	<0.2	0.12	<5	100	<5	<0.01	<1	7	119	6	0.82	. 10	0.02	756	8 <0.	.01 1	18	60	4	<5	<20	2	<0.01	<10	1	<10	2	24
23	164184	0.2	0.14	5	145	<5	0.01	<1	8	113	7	1.22	20	0.03	1437	9 <0	.01 2	25	120	12	<5	<20	5	< 0.01	<10	3	<10	3	39
24	164185	0.2		<5	180	<5	0.01	<1	15	134	10	1.33	20	0.03	1344	9 <0			100	12	<5	<20	5	<0.01	<10	2	<10	2	43
25	164186	0.3		15	80	-	<0.01	<1	7	107	8	1.00	<10	0.02	623	8 <0		19	70	6		<20		<0.01	<10	1		2	26
26	164187	0.4	0.15	<5	95	<5	0.01	<1	7	150	7	0.83	10	0.02	863	10 <0	.01 2	21	80	28	<5	<20	2	<0.01	<10	2	<10	2	32
27	164188	0.2	0.15	<5	85	<5	0.01	<1	8	109	7	0.93	20	0.03	680	7 <0	.01 2	20	100	24	<5	<20	2	<0.01	<10	2	<10	2	36
•																													
Resp				_		-			-		-		•			. -										-		-	
<u>⊊</u> 1	164162	<0.2	0.16	5	30	<5	0.02	<1	3	115	9	1.39	20	0.04	108	9 <0	.01 1	19	120	10	<5	<20	<1	<0.01	<10	2	<10	2	27
A																													
ROAD																													
- ¥														_															
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~														Pag	e 1														

INTERNATIONAL \ DE GOLD MINES LTD.					ŀ	ICP CERTIFICATE OF ANALYSIS AK -1						-11	-1136									. <b>Y</b>	LTD.							
Eti	Tag #		Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr		U	v	w	Y	Zn
Rep	eet:																													
1	16416	2 <(	0.2	0.16	<5	25	<5	0.01	<1	3	112	9	1.40	20	0.03	109	8	<0.01	18	120	8	<5	<20	<1	<0.01	<10	2	<10	2	28
10	16417	1 <(	0.2	0.25	15	210	<5	0.02	<1	30	47	40	3.42	30	0.07	2342	4	<0.01	52	300	4	<5	<20	8	0.01	<10	7	<10	5	115
19	16418	<b>)</b> (	0.3	0.13	10	95	<5	0.03	<1	6	131	7	0.86	10	0.02	733	10	<0.01	18	170	6	<5	<20	5	<0.01	<10	2	<10	2	22
Sta	nderd:																													•
	0'04		1.4	1.64	55	135	<5	1.76	<1	20	58	85	3.63	<10	0.97	606	1	0.02	30	650	22	<5	<20	40	0.26	<10	53	<10	9	74

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer -

JJ/jm df/1148 XLS/04

Page 2

# CERTIFICATE OF ASSAY AK 2004-1137

#### INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 70 Sample type:Rock Project #: BR Trench Shipment #: Not indicated Samples submitted by: J. McAllister

 $\boldsymbol{v}^{\ast}$ 

	Infinited by: 0. Workhold	Au	Au
ET #.	Tag #	(g/t)	(oz/t)
1	164055	0.40	0.012
	164056	0.31	0.009
2 3 4	164057	0.64	0.019
4	164058	6.28	0.183
	164059	1.21	0.035
5 6 7	164060	0.19	0.006
7	164061	0.27	0.008
8	164062	0.15	0.004
8 9	164063	< 0.03	< 0.001
10	164064	< 0.03	< 0.001
11	164065	< 0.03	<0.001
12	164066	< 0.03	<0.001
13	164067	<0.03	<0.001
14	164068	0.46	0.013
15	164069	0.05	0.001
16	164070	< 0.03	< 0.001
17	164071	< 0.03	< 0.001
18	164072	0.53	0.015
19	164073	<0.03	<0.001
20	164074	0.09	0.003
21	164075	0.06	0.002
21	164076	<0.03	<0.002
23	164077	< 0.03	<0.001
23 24	164078	< 0.03	<0.001
24 25	164079	<0.03	<0.001
25 26	164080	< 0.03	<0.001
27	164081	<0.03	<0.001
28	164082	< 0.03	<0.001
29	164083	< 0.03	<0.001
30	164084	< 0.03	<0.001
31	164085	<0.03	<0.001
32	164086	<0.03	<0.001
33	164087	<0.03	<0.001
34	164088	<0.03	<0.001

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ROAD



1

#### INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-1137

يرويانه المجير فيتعدده مار

•• • • • •

.

ø

07-Sep-04

		Au	Au	
<u> </u>	Tag #	(g/t)	(oz/t)	
35	164089	<0.03	<0.001	
36	164090	<0.03	<0.001	
37	164091	<0.03	<0.001	
38	164092	<0.03	<0.001	
39	164093	<0.03	<0.001	
40	164094	0.03	0.001	
41	164095	<0.03	<0.001	
42	164096	<0.03	<0.001	
43	164097	<0.03	<0.001	
44	164098	<0.03	<0.001	
45	164099	<0.03	<0.001	
46	164100	<0.03	<0.001	
47	164101	<0.03	<0.001	
48	164102	<0.03	<0.001	
49	164103	<0.03	<0.001	
50	164104	<0.03	<0.001	
51	164105	<0.03	<0.001	· ·
52	164106	<0.03	<0.001	
53	164107	<0.03	<0.001	
54	164108	<0.03	<0.001	
55	164109	<0.03	<0.001	
56	164110	<0.03	<0.001	
57	164111	<0.03	<0.001	
58	164112	<0.03	<0.001	
59	164113	<0.03	<0.001	
60	164114	<0.03	<0.001	
61	164115	<0.03	<0.001	
62	164116	<0.03	<0.001	
63	164117	<0.03	<0.001	
64	164118	<0.03	<0.001	
65	164119	<0.03	<0.001	
66	164120	0.04	0.001	
67	164121	<0.03	< 0.001	
68	164122	<0.03	<0.001	
69	164123	<0.03	<0.001	
70	164124	<0.03	<0.001	
QC DATA:				
Repeat:				
1	164055	0.59	0.017	
2	164056	0.00	0.007	
3	164057	0.69	0.020	
3	164057	0.65	0.019	
4	164058	6.06	0.010	
Т			Page 2	

)

10	164064	<0.03	<0.001
14	164068	0.48	0.014
18	164072	0.71	0.021
19	164073	<0.03	<0.001
36	164090	<0.03	<0.001
54	164108	<0.03	<0.001

#### ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

#### INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-1137

فيز

Au Au (g/t) (oz/t) ET #. Tag # **Resplit:** 0.38 0.011 1 164055 <0.001 36 164090 < 0.03 Standard: OX123 0.054 1.84 OX123 0.055 1.87

Page 3

07-Sep-04

,

07: Sep-04

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 70 Sample type:Rock Project #: BR Trench Shipment #: Not indicated Samples submitted by: J. McAllister

_	Et #.	Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Lal	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	<u>71 %</u>	U	<u>v</u>	W	<u>Y</u>	Zn
_	1	164055	<0.2	0.20	140	35	<5	0.01	<1	7	142	14	1.78	20	0.03	61	10	<0.01	17	230	16	<5	<20	5	< 0.01	<10	4	<10	3	20
	2	164056	<0.2	0.23	185	35	<5	0.02	<1	17	98	69	3.91	20	0.06	103	5	<0.01	35	550	22	<5	<20	2	<0.01	<10	5	<10	4	51
	3	164057	0.3	0.16	125	20	<5	0.03	<1	18	131	185	3.85	. 20	0.06	134	7	<0.01	33	420	72	<5	<20	3	<0.01	<10	3	<10	4	86
	4	164058	2.8	0.28	220	40	1035	0.07	<1	13	61	25	3.79	30	0.07	195	2	<0.01	25	820	840	<5	<20	9	<0.01	<10	6	<10	6	203
	5	164059	0.4	0.26	270	30	<5	0.05	1	35	111	82	7.69	30	0.13	1196	4	<0.01	81	950	48	<5	<20	7	<0.01	<10	6	<10	10	197
	6	164060	0.2	0.33	200	35	<5	0.07	<1	44	63	109	9.76	40	0.16	1039	<1	0.01	90	1160	64	<5	<20	9	0.01	<10	7	<10	10	192
	7	164061	0.2	0.28	215	25	<5	0.25	1	32	74	56	6.16	30	0.11	640	10	<0.01	66	1850	12	<5	<20	23	<0.01	<10	5	<10	9	82
	8	164062	<0.2	0.36	115	90	<5	0.06	<1	27	156	29	6.02	20	0.11	220	9	0.01	58	730	4	<5	<20	9	<0.01	<10	8	<10	7	218
	9	164063	<0.2	0.37	45	70	<5	0.13	<1	36	49	45	6.04	30	0.14	223	<1	0.01	80	860	<2	<5	<20	8	<0.01	<10	4	<10	5	266
	10	164064	<0.2	0.30	30	105	<5	0.13	<1	25	71	<b>4</b> B	4.97	30	0.09	768	5	0.02	87	880	<2	<5	<20	9	<0.01	<10	6	<10	6	179
	11	164065	<0.2		15	130	<5	0.26	3	20	93	58	4.37	30		4313		0.01	115	1300	4	-			0.02	<10	-	<10	10	242
	12	164066	<0.2		15	140	<5	0.15	2	26	106	131	3.85	30		1824		0.01	100	940	4	<5			<0.01	<10		<10	9	218
	13	164067	<0.2		15	120	<5	0.22	2	36	119	183	4.72	30	0.09			<0.01	109	1470	<2	-	<20		0.01	<10		<10	11	173
	14	164068	<0.2		70	90	<5	0.11	<1	35	133	231	6.94	30	0.13			0.01	114	1070	<2	<5			<0.01	<10		<10	10	188
	15	164069	<0.2	0.30	60	55	<5	0.09	<1	25	91	139	5.72	20	0.11	643	4	<0.01	73	1250	<2	<5	<20	9	<0.01	<10	4	<10	7	156
	16	164070	<0.2	0.43	95	50	<5	0.06	<1	30	93	156	8.04	30	0.14	356	6	0.01	100	1600	<2	<5	<20	0	<0.01	<10	5	<10	8	226
	17	164070	<0.2		75	30	<5 <5	0.22	<1	40	64	191	9.10	20	0.25	491		0.01	158	1960	<2			-	<0.01	<10	-	<10	12	300
	18	164072	-0.2		105	45		0.12	<1	40	87	382	9.16	20	0.25	530		0.01	168	2040	<2	<5		-	<0.01	<10	-	<10	14	284
	19	164072	<0.2		20			0.07	1	17	117	98	3.31	20	0.06	165		<0.01	74	740	16	-			<0.01	<10	-	<10	9	160
	20	164074	-0.2		20	50		0.08	<1	7	90		1.86	<10	0.03	206	-	<0.01	29	920	26	-	<20		<0.01	<10		<10	5	65
	2.4	104074	0.0	0.10	LV		-0	0.00	-1	•	30		1.00	-10	0.00	200	,	-0.01	20	320	20	-0	-20		-0.01	10			v	
	21	164075	<0.2	0.43	25	110	<5	0.12	5	66	93	308	5.81	30	0.11	1739	8	0.01	176	1060	4	<5	<20	8	0.01	<10	9	<10	15	434
	22	164076	<0.2		15	110	<5		2	26	117	200	3.59	20	0.06	491		<0.01	88		4				<0.01	<10		<10	14	283
	23	164077	<0.2		20	115	<5	0.21	11	73	70	277	5.94	20	0.15		9		201	1470	10				<0.01	<10		<10	22	534
	24	164078	0.2		10	135	<5	0.12	10	36	53	45	4.93	30	0.21	1410	2		81	790	16	<5	<20	9	<0.01	<10	5	<10	19	365
	25	164079	<0.2	0.48	30	150	<5	0.88	2	41	65	68	5.38	20	0.21	1537	<1	0.02	115	1240	<2	<5	<20	9	<0.01	<10	24	<10	11	139
	26	164080	<0.2	-	<5	140		-	2	26	67	43	4.17	30		1239		0.02	68		2				<0.01	<10	-	<10	11	156
	27	164081	<0.2		10	160		-	2		68	51	5.24	30	0.18		2		127		4		<20		<0.01	<10		<10	13	305
	28	164082	<0.2		10	150		0.29	1		122	140		20	0.39	1596	<1		237		4	-		14	-	<10		<10	12	275
	29	164083	<0.2		20	195	-	0.58	<1		121			20		1938	<1	0.02	125		4	<5		13	-	<10		<10	11	303
	30	164084	<0.2	0.47	10	45	<5	0.12	2	57	57	40	7.42	20	0.18	3022	<1	<0.01	136	270	<2	<5	<20	11	0.01	<10	10	<10	13	786
	31	164085	0.3	0.99	5	65	<5	0.06	<1	38	54	35	6.22	30	0.40	1280	<1	0.01	74	470	4	<5	<20	6	<0.01	<10	12	<10	4	216
	32	164086	<0.3		5	65		0.00	<1	38	54 64	41	6.35	30	0.40			<0.01	76	610	10	-			<0.01	<10		<10	4	169
	33	164087	<0.2		10		-	0.10	<1	- 30 - 45	75	34	6.67	30	0.73		<1		90	470	8	<5			<0.01	<10		<10	5	180
	33 34	164088	<0.2		20	85 85		0.06	<1	45 47	75 54	119	0.07 7.01	30	0.09		2		145	1280	4	-			<0.01	<10		<10	9 9	169
	35	164089	<0.2			00 160				107	54 169	170		30		ig <mark>∂</mark> 8 17		0.02	457		<2		<20		0.01	<10		<10	11	232
	90	104008	<b>~</b> Ų.∠	0.02	130	100	-0	9,19	~1	107	104	170	-10	00	V. <b>F</b> B	igen i i	21	V.UZ		1000	~2	-0	72V	- 1	0.01	NIV.	77	410		LVL

ECO TECH LABORATOR\

E	t#	Tag #	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Nł	P		Sb	Sn	Sr	TI %	U	<u>v</u>		Y	Zn
		164090	<0.2	0.43	115	135	<5	3.24	<1	89	138	130	>10	20	0.33	2696	<1	0.02	-	1770	<2	90	<20	<1	0.01	<10		<10	11	164
		164091	<0.2	0.21	100	125	<5	>10	<1	48	123	31	>10	20	4.01	3325	<1	0.02	171	550	2	<5	<20	112	0.02	<10		<10	9	107
		164092	0.2	0.44	10	135	<5	0.22	5	38	70	70	4.80	30	0.11	383	- 8	0.01		1160	18		<20		<0.01	<10		<10	16	351
		164093	<0.2	0.30	<5	100	<5	0.28	4	39	92	95	4.14	20	0.07	838	16	0.01		1700	6	<5	<20		<0.01	<10		<10	9	290
	40	164094	0.2	0.27	<5	115	<5	0.24	3	17	92	79	2.45	20	0.04	274	6	<0.01	54	1470	10	<5	<20	11	<0.01	<10	20	<10	9	182
		164095	0.4	0.30	10	120	<5	0.06	5	30	56	163	4.03	30	0.08	637	9	0.01	86	680	8	<5	<20		<0.01	<10		<10	10	283
		164096	0.4	0.29	10	135	<5	0.07	5	36	66	206	4.44	20	0.08	672	6	0.01	106	970	<2		<20		<0.01	<10		<10	12	268
		164097	<0.2	0.82	<5	30	<5	0.03	<1	6	85	23	2.86	20	0.37	53	6	0.01	14	360	10	<5	<20		<0.01	<10		<10	3	44
		164098	<0.2	0.72	<5	35	<5	0.03	<1	7	99	23	2.79	20	0.28	44	<1	0.01	17	380	12	<5	<20		<0.01	<10		<10	2	42
	45	164099	<0.2	0.55	<5	45	<5	0.04	<1	9	75	31	3.62	20	0.17	85	3	<0.01	26	470	10	<5	<20	8	<0.01	<10	6	<10	3	61
	- +	164100	<0.2	3.34	<5	105	<5	1.16	<1	60	226	69	9.06		1.92	1528	<1	0.02	163	1530	12	<5	<20	18	0.02	<10		<10	14	113
		164101	<0.2	2.48	<5	120	<5	0.38	<1	62	114	102	8.48	30	1.17	1602	<1	0.02		1790	8	<5	<20	18	0.02	<10		<10	13	101
		164102	<0.2	3.00	<5	125	<5	0.46	<1	49	90	82	8.60	40	1.45	1418	<1	0.02	86	2060	10	<5	<20	25	0.03	<10		<10	14	112
		164103	<0.2	2.62	<5 -5	<5	<5 ~5	0.41	6	44	81	87	7.69	30	1.22	1246		< 0.01	113	1600		110		50	0.03	<10		<10	44	105
	50 ·	164104	<0.2	2.25	<5	110	<5	0.37	<1	45	72	81	7.74	40	0.98	1649	<1	0.02	63	1840	8	<5	<20	19	0.02	<10	13	<10	14	108
	-	164105	<0.2	2.35	<5	90	<5	0.50	<1	59	90	102	8.83	30	1.07	1275	<1	0.02	97	1780	6	<5	<20	19	0.03	<10		<10	14	114
		164106	<0.2	2.09	<5	<5	<5	0.44	10	49	80	103	7.91	20	0.91	1130		<0.01	126	1220	<2	50	<20	25	0.02	<10		<10	59	102
		164107	<0.2	1.08	<5	<5	<5	0.23	17	32	53	88	4.02	10	0.04	585		< 0.01	31	1180	36	<5	<20	15	0.02	<10	282	<10	150	50
		164108	<0.2	1.43	<5	85	<5	0.40	<1	64	73	98	>10	40	0.60	1366	<1	0.03	58	2620	<2	<5	<20	22	0.02	<10	56	<10	12	123
	55	164109	<0.2	2.58	<5	75	<5	0.45	<1	81	70	73	>10	20	1.31	1635	<1	0.02	60	2250	8	<5	<20	24	0.02	<10	86	<10	9	128
	56	164110	<0.2	2.61	10	75	<5	0.27	<1	41	74	98	>10	20	1.31	486	<1	0.08	57	2050	6	<5	<20	102	0.02	<10	106	<10	8	134
		164111	<0.2	2.58	<5	70	<5	0.24	<1	45	76	89	>10	20	1.20	194	<1	0.03	66	2200	10	<5	<20	84	0.02	<10	80	<10	9	134
		164112	<0.2	1.31	<5	50	<5	0.06	<1	11	108	36	4.34	-20	0.59	90	4	0.01	21	540	8	<5	<20		<0.01	<10	17		3	64
		164113	<0.2	0.91	15	155	<5	0.30	<1	58	86	117	7.10	20	0.24	1343		<0.01	225	1420	14	<5	<20	11	0.01	<10		<10	13	135
	60	164114	<0.2	3.40	5	65	<5	1.18	<1	52	87	66	8.45	30	1.91	1057	<1	0.01	79	1190	18	<5	<20	30	0.02	<10	182	<10	14	113
		164115	<0.2	3.30	<5	70	<5	0.35	<1	54	154	87	8.10	30	1.90	1206	<1	0.02	126	1450	14	<5	<20	14		<10	148	<10	11	98
		164116	<0.2	0.52	5	45	<5	0.03	<1	11	94	42	4.23	20	0.13	75	7		33	580	28	<5	<20		<0.01	<10	6	<10	3	68
		164117	<0.2	0.61	5	35	<5	0.03	<1	11	80	67	5.19	20	0.17	39		<0.01	37	940	16	<5	<20		<0.01	<10		<10	3	78
· ·		164118	<0.2	0.56	<5	45	<5	0.03	<1	9	88	32	3.29	20	0.16	31	7		29	450	44	<5	<20		<0.01	<10		<10	3	69
	65	164119	<0.2	0.65	<5	30	<5	. 0.02	<1	14	67	42	3.53	20	0.21	103	1	<0.01	32	410	10	<5	<20	7	<0.01	<10	5	<10	3	64
	66	164120	<0.2	0.65	<5	30	<5	0.05	<1	26	75	49	4.15	20	0.24	185	5	0.01	52	470	8	<5	<20	5	<0.01	<10	5	<10	4	89``
	67	164121	<0.2	0.60	<5	25	<5	0.04	<1	19	74	53	4.38	20	0.23	126	<1	<0.01	36	450	6	<5	<20	5	<0.01	<10	5	<10	3	86
		164122	<0.2		<5	40	<5	0.04	<1	10	118	21	3.14	20	0.13	83	10		23	370	14	<5		16		<10		<10	3	51
		164123		0.52	10	30	<5	0.06	<1	19	97	42	3.86	20	0.18	178		<0.01	53	610	8	<5			<0.01	<10		<10	4	66
	70	164124	<0.2	0.44	<5	30	<5	0.05	<1	21	112	75	5.06	10	0.13	205	10	0.01	65	700	6	<5	<20	13	<0.01	<10	8	<10	3	78
	C.DAT																													
	1	164055	<0.2	0.18	160	30	<5		<1	7			1.86		0.03			<0.01	18				<20		<0.01	<10		<10	3	22
	36	164090	<0.2	0.41	120	125	<5	3.21	<1	89	137	136	>10	20	0.35	2859	<1	0.02	337	1660	<2	95	<20	<1	0.02	<10	33	<10	12	165
F	lepest:	,																												
		164055	<0.2	0.22	135	40	<5	0.01	<1	7	146	14	1. <b>79</b>	20	0.03	58	10	<0.01	17		16	<5	<20	3	<0.01	<10	4	<10	3	20
		164064	<0.2	0.31	30	115		0.13	<1	25	72	49	4.97	30	0.09	766	4	0.02	88		<2	<5	<20	9	<0.01	<10		<10	6	179
		164073	<0,2	0.29	20	80	<5	0.07	<1	17	120	97	3.31		0.06				75		16		<20		<0.01	<10		<10	9	160
:	36	164090		0.45	110	135		3.24	<1	88	143	131						0.02		1830	<2		<20		0.02	<10		<10	12	163
	45	164099	<0.2	0.56	<5	45	<5	0.03	<1	9	75	31	3.62	20	0 þa	ige 2 ⁸¹	4	0.01	27	460	10	<5	<20	8	<0.01	<10	6	<10	3	61

54	_ <b>£8410</b> 8	νż	1.39	<5	80	<5	0.39	<1	62	71	96	>10	30	0.58	?6	<1	0.03	56	2410	2	<5	<20	22	0.02	<10	55	<10	?	119
INTER	NATIONAL	Wr. 3	DE GOL	d Min	ES LTD	•			ICP CE	RTIFIC	CATE	of an/	ALYSIS	5 AK 2	004-11	37								ECO TE		BORA	TORY	LTD.	
 Et #.	Tag #	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	<u>Fe %</u>	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	<u>TI %</u>	U	_ v	<u>w</u>	Y	Zn
Standa GEO '0 GEO '0	4	1.5 1.4	1.68 1.63	60 65	135 120	<5 <5	1.60 1.54	<1 <1	20 19	60 57	86 87	3.60 3.66	<10 <10	0.95 0.92	610 592	1 <1	0.02 0.02	30 30	660 600	22 20	-	<20 <20	43 42	0.08 0.09	<10 <10		<10 <10	10 9	74 75

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

# CERTIFICATE OF ASSAY AK 2004-1138

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 2 Sample type: Rock **Project #: Cow Channel 2** Samples Submitted by: J. McAllister

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
1	164189	0.03	0.001	
2	164190	0.29	0.008	

Page 1

#### QC DATA:

)

Repeat			
1	164189	0.06	0.002
2	164190	0.22	0.006
Standard	d:		
OX123		1.89	0.055

C

JJ/jm XLS/04 and the second

02-Sep-04

يد سو م

.

. . . . . . . .

ECO TECH LABOR 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4		Y LTD.					I	CP CEI	RTIFIC/	ATE O	F ANAL	.Y8IS	AK 200	." )4-1 ⊧38	ł					· 	12422   PO Box	Barke < 247	NAL V rville H /0K 2R	•	e gol	D MINE	:ə LΠ	D.
Phone: 250-573-57 Fax : 250-573-45 Values in ppm uni	57	herwis	e repo	rted																	Sample Projec Shipm	type t #: C ent #	None	nnei 2	Alliste	r		
Et #. Tag #	Ag	AI %	As	Ba	Bł	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	W	Y	Zn
1 164189	<0.2	0.26	40	60		<0.01	<1	18	92	40	4.84	40	0.08	544		<0.01	28	470	8	<5	<20		<0.01	<10		<10	5	52
2 164190	<0.2	0.17	100	30	<5	<0.01	<1	8	116	13	3.60	20	0.06	176	5	<0.01	15	370	6	<5	<20 、	1	<0.01	<10	2	<10	3	32
<u>OC DATA:</u> Resplit: 1	<0.2	0.21	40	55	<5	<0.01	<1	17	88	38	4.83	30	0.08	457	5	<0.01	27	460	8	<5	<20	2	<0.01	<10	3	<10	4	36
<b>Standard:</b> GEO '04	1.4	1. <b>64</b>	55	135	<5	1.76	<1	20	58	85	3.43	10	0.97	606	1	0.02	30	650	22	<5	<20	40	0.26	<10	53	<10	9	74

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/sc df/1148 XLS/04

02-Sep-04

1

# CERTIFICATE OF ASSAY AK 2004-1139

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

•

)

No. of samples received: 4 Sample type: Rock **Project #: Cow Channel 2** Samples Submitted by: J. McAllister

FT 4	<b>T</b> aa <b>#</b>	Au (g/t)		
<u> </u>	Tag #			
1	164191	<0.03		
2	164192	<0.03	<0.001	
3	164193	<0.03	< 0.001	
4	164194	0.04		
C DATA Resplit:	:			
1	164191	<0.03	<0.001	
Standard: OX123	:	1.89	0.055	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

۰.

02-Sep-04

JJ/jm XLS/04 02-Sep-04

ICP CERTIFICATE OF ANALYSIS AK 2004-1139

ECO TECH LABORA'I JRY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

-----

:

5

:

No. of samples received; 4 Sample type:Rock Project #: Cow Channel 2 Shipment #: None Given Samples submitted by: J. McAllister

Values in ppm unless otherwise reported

Et #.	Tag #	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Çr	Cu	Fe %	La	Mg %	Mn	Mo	<u>Na %</u>	N	P	Pb	Sb	Sn	Sr	TI %	U.	<b>v</b>	W	Y .	<u>Zn</u>
1	164191	<0.2	0.28	35	40	<5	0.01	<1	28	47	41	5.53	20	0.11	921	<1	< 0.01	34	550	<2	<5	<20	2	< 0.01	<10	4	<10	2	68
2	164192	<0.2	0.22	40	45	<5	0.01	<1	23	69	43	5.01	20	0.10	1273	<1	<0.01	32	430	<2	<5	<20	ູ 2	<0.01	<10	- 4	<10	2	47
3	164193	0.2	0.41	35	30	<5	0.02	<1	30	34	44	6.21	30	0.19	868	<1	<0.01	36	700	<2	<5	<20	2	<0.01	<10	5	<10	3	86
4	164194	<0.2	0.66	45	35	<5	0.02	<1	22	72	28	5.34	30	0.25	892	4	0.01	30	500	10	<5	<20	- 4	<0.01	<10	9	<10	3	74
Resp	ATA: ##: 164191	<0.2	0.27	40	40	<5	0.01	<1	29	36	40	5.75	20	0.12	1018	<1	<0.01	36	590	<2	<5	<20	2	<0.01	<10	3	<10	3	71
Stan GEO	d <b>and:</b> 104	1.4	1.64	55	155	<5	1.76	<1	20	58	85	3.83	10	0.97	606	1	0.02	30	650	22	<5	<20	40	0.10	<10	53	<10	9	74

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm df/1148 XLS/04

# CERTIFICATE OF ASSAY AK 2004-1140

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247

Wells, BC, V0K 2R0

.,

No. of samples received: 37 Sample type: Rock **Project #: BR2 Trench** Samples Submitted by: J. McAllister

		Au										
ET #	Tag #	(g/t)			 	 	 	·····	 			
1	164125	<0.03	< 0.001	)1			· · · · · · · · · · · · · · · · · · ·	<u> </u>		······································	······································	
2 3	164126	<0.03	<0.001	)1								
3	164127	<0.03	<0.001	)1								
4	164128	<0.03	<0.001	)1								
5	164129	<0.03	<0.001	)1								
6	164130	<0.03	<0.001	)1								
7	164131	<0.03	<0.001	)1								
8	164132	<0.03	<0.001	)1								
9	164133	<0.03	<0.001	)1								
10	164134	<0.03	<0.001	)1								
11	164135	<0.03	<0.001	)1								
12	164136	<0.03	<0.001	)1								
13	164137	<0.03	<0.001	)1								
14	164138	<0.03	<0.001	1								
15	164139	<0.03	<0.001	)1								
16	164140	<0.03	<0.001	/1								
17	164141	<0.03	<0.001	/1								
18	164142	<0.03	<0.001	1								
19	164143	<0.03	<0.001	1								
20	164144	<0.03	<0.001	1								
21	164145	<0.03	<0.001	1								
22	164146	<0.03	<0.001	1								
23	164147	<0.03	<0.001									
24	164148	<0.03	<0.001	1								
25	164149	<0.03	<0.001									
26	164150	<0.03	<0.001									
27	164151	<0.03	< 0.001									
28	164152	<0.03	<0.001	1								
29	164153	<0.03	<0.001									
30	164154	<0.03	<0.001									

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ROAD

03-Sep-04

)

#### INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-1140

· •

s"

*

03-Sep-04

)

		Au	Au
ET #.	Tag #	(g/t)	(oz/t)
31	164155	<0.03	< 0.001
32	164156	<0.03	<0.001
33	164157	<0.03	<0.001
34	164158	<0.03	<0.001
35	164159	<0.03	<0.001
36	164160	<0.03	<0.001
37	164161	<0.03	<0.001
Repeat:			
1	164125	<0.03	<0.001
10	164134	<0.03	<0.001
19	164143	<0.03	<0.001
Resplit:			
1	164125	<0.03	<0.001
36	164160	<0.03	<0.001
Standard	:		
OX123		1.87	0.055
OX123		1.83	0.053

10-Sep-04

1

ECO TECH LABORA, JRY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-1140

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 37 Sample type: Rock Project #: BR2 Trench Samples Submitted by: J. McAllister

Values in ppm unless otherwise reported

2       164126       -0.2       2.25       10       205       -5       0.45       -1       7       8       10       -10       30       11/1       170       6       -5       2.02       10       0.01       21       11/1       170       6       -5       2.02       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       11       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <t< th=""><th>Ē</th><th>t#.</th><th>Tag #</th><th>Ag</th><th>AI %</th><th>As</th><th>Ba</th><th>Bi</th><th><u>Ca %</u></th><th>Cd</th><th>Co</th><th>Cr</th><th>Cu</th><th>Fe %</th><th>Lal</th><th>Mg %</th><th><u>Mn I</u></th><th>lo l</th><th>Na %</th><th>NI</th><th>Р</th><th>Pb</th><th>Sb</th><th>Sn</th><th>Sr</th><th>Ti %</th><th>U</th><th>v</th><th><u>w</u></th><th>Y</th><th>Zn</th></t<>	Ē	t#.	Tag #	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	Lal	Mg %	<u>Mn I</u>	lo l	Na %	NI	Р	Pb	Sb	Sn	Sr	Ti %	U	v	<u>w</u>	Y	Zn	
3       164427 $0.2$ $1.74$ $20$ $65$ $0.26$ $<1.74$ $20$ $65$ $0.26$ $<1.74$ $20$ $65$ $0.26$ $<1.74$ $0.26$ $<1.76$ $<5$ $0.12$ $<1.27$ $23$ $33$ $>10$ $30$ $1.06$ $1349$ $<1$ $0.01$ $219$ $1300$ $4$ $<5$ $20$ $16$ $10.7$ $813$ $<10.01$ $219$ $1300$ $4$ $<5$ $20$ $16$ $0.02$ $<10$ $87$ $<10$ $6$ $122$ 5 $164130$ $<0.2$ $0.76$ $<5$ $0.26$ $<1.1$ $74$ $96$ $90$ $>10$ $30$ $100$ $383$ $4$ $0.01$ $218$ $8100$ $14$ $145$ $120$ $14$ $1633$ $300$ $101$ $33$ $30$ $1001$ $383$ $100$ $16$ $8001$ $10$ $14$ $175$ $110$ $1101$ $1101$ $1101$ $11011$ $11011$ $11011$ $11011$ $110111$ $11011$	-	1	164125	<0.2	3.39	10	110	<5	0.18	<1	75	582	107	>10	40	2.55	1629	<1 4	0.01	391	1190	8	<5	<20	17	0.08	<10	101	<10	9	166	
4       164128 $0.2$ $0.76$ $e_5$ $0.23$ $e_5$ $237$ $524$ $30$ $0.41$ $463$ $e_1$ $c_0$ $14$ $e_5$ $e_2$ $22$ $120$ $14$ $e_5$ $e_2$ $220$ $16$ $0.07$ $e_10$ $87$ $100$ $8$ $164130$ $e_2$ $e_2$ $e_2$ $110$ $100$ $110$ $300$ $0.21$ $e_10$ $8$ $120$ $110$ $300$ $0.21$ $e_10$ $8$ $122$ $110$ $100$ $130$ $100$ $300$ $0.22$ $110$ $150$ $120$ $110$ $300$ $0.01$ $218$ $1510$ $e_2$ $e_5$ $200$ $104133$ $100$ $104133$ $100$ $104133$ $100$ $100$ $100$ $100$ $100$ $110$ $300$ $0.01$ $218$ $810$ $10$ $4001$ $400$ $400$ $400$ $400$ $400$ $400$ $400$ $400$ $400$ $400$ $400$ $400$ $400$ $410413$ $4100$ <		2	164126	<0.2	2.25	10	205	<5	0.45	<1	79	186	100	>10	30	1.12	1750	<1 <	0.01	276	1770	8	<5	<20	30	0.08	<10	42	<10	9	120	
5       164129       <0.2		3	164127	<0.2	1.74	20	65	<5	0.26	<1	46	127	48	8.47	30	1.07	883	<1 •	<0.01	141	1270	4	<5	<20	16	0.05	<10	31	<10	6	126	
6       164130       <0.2       0.70       15       180       <5       0.21       <1       74       96       90       >10       30       0.32       2216       1       0.01       218       150       <2       <5       20       16       0.08       <10       21       <10       6       122         7       164131       <0.2       0.38       <5       120       <5       0.06       <1       15       109       18       383       30       0.09       189       8       0.01       38       380       10       <5       <20       8       0.02       <10       4       <10       4       74       74       74       96       90       >10       30       0.01       38       380       10       <5       <20       8       0.02       <10       4       10       4       76       76       <0.03       0.07       <11       4       17       30       0.07       69       4       0.01       24       370       20       <5       <20       6       0.02       <10       4       10       12       144       10       8       45       20       20       12		4	164128	<0.2	0.76	<5	70	<5	0.12	<1	25	52	37	5.24	30	0.41	463	<1 •	<0.01	57	540	14	<5	<20	9	0.03	<10	7	<10	- 4	96	
7       164131 $< 02$ 0.38 $< 5$ 135 $< 5$ 0.07 $< 1$ 18       81       20       4.10       30 $0.10$ 303 $4$ 0.01       38       380       10 $< 5$ 20       6       0.02 $< 10$ 4       74         9       164132 $< 0.2$ 0.38 $< 5$ 105 $< 5$ 0.06 $< 1$ 19       79       94       19       30       13       597 $4$ 0.01       38       380       10 $< 5$ <       20       8       0.02 $< 10$ 4       10       4       77       10       164134 $< 0.2$ 0.41 $< 5$ 10 $< 5$ 0.06 $< 1$ 17       91       22       4.23       30       0.12       290 $5$ 0.01       44       410       4       4       10       4       10       4       10       4       10       4       10       4       10       4       10       4       10       4       10       4       10       4       10       4       10       4       10       4 <t< th=""><th></th><th>5</th><th>164129</th><th>&lt;0.2</th><th>2.12</th><th>25</th><th>140</th><th>&lt;5</th><th>0.23</th><th>&lt;1</th><th>67</th><th>233</th><th>83</th><th>&gt;10</th><th>30</th><th>1.06</th><th>1349</th><th>&lt;1 •</th><th>&lt;0.01</th><th>219</th><th>1300</th><th>4</th><th>&lt;5</th><th>&lt;20</th><th>16</th><th>0.07</th><th>&lt;10</th><th>87</th><th>&lt;10</th><th>6</th><th>129</th></t<>		5	164129	<0.2	2.12	25	140	<5	0.23	<1	67	233	83	>10	30	1.06	1349	<1 •	<0.01	219	1300	4	<5	<20	16	0.07	<10	87	<10	6	129	
8       164132       -0.2       0.36       -5       102       -5       0.06       -1       15       109       18       3.93       30       0.09       189       8       0.01       36       380       10       -5       -20       8       0.02       <10		6	164130	<0.2	0.70	15	180	<5	0.21	<1	74	96	90	>10	30	0.32	2216	<1	0.01	218	1510	<2	<5	<20	16	0.08	<10	21	<10	6	122	
8       164132       <0.2		7	164131	<0.2	0.38	<5	135	<5	0.07	<1	18	81	20	4.10	30	0.10	393	4 •	<0.01	48	410	14	<5	<20	6	0.02	<10	3	<10	4	75	
9       164133           79       29       4.19       30       0.13       597       4 <0.01       42       370       8       < 5       <20       6       0.03       <10       5       <10       4       410       8       <5       <20       6       0.02       <10       4       4       77       29       4.23       30       0.12       290       5       <0.01       44       410       8       <5       <20       6       0.02       <10       4       4       78       29       4.23       30       0.12       290       5       <0.01       44       410       8       <5       <20       6       0.01       <10       3       <10       4       78       29       4.23       30       0.13       174       20       144       47       3.49       30       0.01       21       44       20       20       25       100       124       320       10       <5       20       21       133       44       17       3.14       30       0.21       47       20       3.00       12       45       20       6       0.02       <10       3 <td></td> <td>8</td> <td>164132</td> <td>&lt;0.2</td> <td>0.36</td> <td>&lt;5</td> <td>120</td> <td>&lt;5</td> <td>0.06</td> <td>&lt;1</td> <td>15</td> <td>109</td> <td>18</td> <td>3.93</td> <td>30</td> <td>0.09</td> <td>189</td> <td>8</td> <td>0.01</td> <td>38</td> <td>380</td> <td>10</td> <td>&lt;5</td> <td>&lt;20</td> <td>8</td> <td>0.02</td> <td>&lt;10</td> <td>4</td> <td>&lt;10</td> <td>4</td> <td>74</td>		8	164132	<0.2	0.36	<5	120	<5	0.06	<1	15	109	18	3.93	30	0.09	189	8	0.01	38	380	10	<5	<20	8	0.02	<10	4	<10	4	74	
10       164134       <0.2       0.41       <5       10       <5       0.07       <1       17       91       22       4.23       30       0.12       290       5       <0.01       44       410       8       <5       <20       6       0.02       <10       4       <10       4       <10       4       <10       4       <10       4       <10       8       <5       <20       6       0.02       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       4       <10       24       320       10       <12       <10       <10       3       <10       5       <10       3       <10       5       <10       24       320       <10       24       320       10       24       320       10       24       320       10       24       320       10       24       320       10       24       320		9	164133				105	<5	0.06	<1	19				30		597	4 -	<0.01			8			8		<10			4	75	
12       164136       <0.27		10	164134		-	-		<5										5	<0.01			-	-		6			-		-	78	
13       164137 $< 0.2$ $0.47$ $< 5$ 70 $< 5$ $0.07$ $< 1$ 14       69       24 $3.25$ $20$ $0.25$ $130$ $5$ $0.01$ $27$ $350$ $26$ $< 5$ $20$ $3$ $< 10$ $4$ $66$ 14       164139 $<0.2$ $0.48$ $< 5$ $60$ $< 5$ $0.07$ $< 1$ $13$ $44$ $17$ $3.14$ $30$ $0.24$ $132$ $10$ $< 5$ $200$ $< 6$ $0.02$ $< 10$ $3$ $< 10$ $4$ $66$ 15       164139 $<0.2$ $0.69$ $<5$ $110$ $<22$ $47$ $21$ $3.83$ $30$ $0.18$ $737$ $2$ $0.01$ $55$ $550$ $28$ $<5$ $20$ $10$ $17$ $100$ $17$ $144$ $109$ $77$ $10$ $0.39$ $2697$ $< 0.01$ $292$ $840$ $18$ $5<20$ $20$ $110$ $17$ $101$ $17$ $101$ $17$ $101$		11	164135	<0.2	0.23	<5	60	<5	0.07	<1	9	42	16	2.27	30	0.07	69	4 ·	<0.01	24	370	20	<5	<20	6	0.01	<10	3	<10	4	89	
13       164137       <0.2		12	164136	<0.2	0.27	<5	75	<5	0.09	<1	14	47	35	3.49	30	0.13	174	2 •	<0.01	34	490	26	<5	<20	5	0.02	<10	3	<10	5	81	
14       164138       <0.2		13	164137	<0.2	0.47	<5	70	<5	0.07	<1	14	69	24	3.25	20	0.25	130	5	<0.01	27	350	26	<5	<20	5	0.02	<10	3	<10	4	69	
15       164139 $< 0.2$ $0.69$ $< 5$ 115 $< 5$ $0.08$ $< 1$ 18       97 $20$ $3.40$ $30$ $0.31$ $441$ $7 < 0.01$ $39$ $360$ $12$ $< 5$ $< 20$ $6$ $0.02$ $< 10$ $5$ $< 10$ $4$ $699$ 16       164140 $< 0.2$ $0.39$ $< 5$ $100$ $< 5$ $0.10$ $< 1$ $22$ $47$ $21$ $3.83$ $30$ $0.18$ $737$ $2 < 0.01$ $55$ $550$ $28$ $< 5$ $< 20$ $6$ $0.02$ $< 10$ $4$ $< 10$ $7$ $71$ $141$ $133$ $2697$ $< 1 < 0.01$ $292$ $840$ $18$ $< 5 < 20$ $11$ $0.07$ $< 10$ $14$ $113$ $18$ $14142$ $< 0.2$ $2.49$ $75$ $225$ $< 5$ $0.32$ $< 11$ $130$ $133$ $2575$ $10.02$ $514$ $820$ $2$ $5$ $20$ $141$ $0.08$ $< 10$ $1118$ $100$ $133$ <td></td> <td>14</td> <td>164138</td> <td></td> <td></td> <td></td> <td></td> <td>&lt;5</td> <td>0.07</td> <td>&lt;1</td> <td></td> <td>-</td> <td></td> <td>4</td> <td></td> <td></td> <td>-</td> <td></td> <td>4</td> <td>66</td>		14	164138					<5	0.07	<1													-		4			-		4	66	
17       164141        <0.2		15	164139				115	<5	0.08	<1		97		3.40	30								-		6					4	69	
18       184142 $(0.2)$ $2.26$ 65 $220$ $<5$ $0.29$ $<1$ $117$ $385$ $121$ $>10$ $50$ $1.44$ $2997$ $<1$ $<0.01$ $564$ $1470$ $4$ $<5$ $<20$ $22$ $0.11$ $<10$ $82$ $<10$ $19$ $184143$ 19 $164143$ $<0.2$ $2.49$ $75$ $225$ $<5$ $0.32$ $<1$ $167$ $627$ $137$ $>10$ $40$ $1.33$ $2575$ $<1$ $0.02$ $514$ $820$ $2$ $<5$ $20$ $118$ $<10$ $9$ $155$ 20 $164144$ $<0.2$ $1.45$ $25$ $205$ $<5$ $0.32$ $<1$ $129$ $731$ $161$ $>10$ $30$ $1.31$ $1932$ $<1$ $0.02$ $514$ $820$ $2$ $<5$ $20$ $23$ $0.07$ $<10$ $68$ $<10$ $10$ $111$ $23$ $147$ $140$ $4$ $5$ $<20$ $27$ $0.08$ <t< td=""><td></td><td>16</td><td>164140</td><td>&lt;0.2</td><td>0.39</td><td>&lt;5</td><td>100</td><td>&lt;5</td><td>0.10</td><td>&lt;1</td><td>22</td><td>47</td><td>21</td><td>3.83</td><td>30</td><td>0.18</td><td>737</td><td>2</td><td>&lt;0.01</td><td>55</td><td>550</td><td>28</td><td>&lt;5</td><td>&lt;20</td><td>6</td><td>0.02</td><td>&lt;10</td><td>4</td><td>&lt;10</td><td>7</td><td>55</td></t<>		16	164140	<0.2	0.39	<5	100	<5	0.10	<1	22	47	21	3.83	30	0.18	737	2	<0.01	55	550	28	<5	<20	6	0.02	<10	4	<10	7	55	
18       184142 $< 0.2$ 2.26       65       220 $< 5$ 0.29 $< 1$ 117       385       121       >10       50 $1.44$ 2697 $< 1$ $< 0.01$ 564 $1470$ 4 $< 5$ $< 20$ $22$ $0.11$ $< 10$ 82 $< 10$ $19$ 184         19       164143 $< 0.2$ $2.49$ 75       225 $< 5$ $0.32$ $< 1$ $167$ $627$ $137$ $>10$ $40$ $1.33$ $2575$ $< 1$ $0.02$ $514$ $820$ $2$ $< 5$ $< 20$ $21$ $(10)$ $< 118$ $< 10$ $9$ $155$ 20       164144 $<0.2$ $1.45$ 25 $205$ $< 5$ $0.32$ $< 1$ $142$ $429$ $108$ $9.81$ $30$ $0.66$ $2489$ $< 1$ $0.02$ $514$ $820$ $2$ $< 5$ $20$ $27$ $0.08$ $< 10$ $10$ $1161$ $87$ $>10$ $0.051$ $2311$ $< 1$ $0.02$ $511$ $100$ $45$		17	164141	<0.2	0.67	40	215	<5	0.12	<1	68	99	77	>10	40	0.39	2697	<1 -	<0.01	292	840	18	<5	<20	11	0.07	<10	17	<10	14	113	
19       184143 $< 0.2$ 2.49       75       225 $< 5$ $0.32$ $< 1$ 167 $627$ $137$ $>10$ $40$ $1.33$ $2575 < 1$ $0.02$ $644$ $1380$ $2$ $< 5$ $< 20$ $20$ $0.10$ $< 10$ $118$ $< 10$ $9$ $155$ 20       164144 $< 0.2$ $2.02$ $50$ $140$ $< 5$ $0.19$ $< 1$ $129$ $731$ $161$ $>10$ $30$ $1.13$ $1932 < 1$ $0.02$ $514$ $820$ $2$ $< 5$ $< 20$ $14$ $0.08$ $< 10$ $100$ $161$ $87$ $>10$ $0.02$ $514$ $820$ $2$ $< 5$ $< 20$ $21$ $0.07$ $< 10$ $68$ $< 10$ $10$ $118$ $< 10$ $10$ $118$ $< 10$ $21 64148 < 2 < 5 < 20 23 0.07 < 10 68 < 10 10 118 < 10 10 118 10 10 118 10 112 $		18	164142	<0.2		65	220	<5	0.29	<1	117	385	121	>10	50	1.44	2697	<1 ·	<0.01	564	1470	4	<5	<20	22	0.11	<10	82	<10	19	184	
20       184144       <0.2       2.02       50       140       <5 $0.19$ <1       129       731       161       >10       30       1.13       1932       <1       0.02       514       820       2       <5       <20       14 $0.08$ <10       109       <10       7       134         21       164145       <0.2       1.45       25       205       <5 $0.32$ <1       142       429       108       9.81       30       0.66       2489       <1       0.03       624       1340       <2       <5       <20       23 $0.07$ <10       68       <10       10       115         22       164146       <0.2       0.92       10       190       <5 $0.50$ <1       100       161       87       >10       40 $0.51$ 2311       <1 $0.02$ 351       1700       4       <5       <20       27 $0.08$ <10       53       <10       13       112       133       133       1932       <1 $0.02$ 351       1700       4       <5       <20       23 $0.07$ <10       83<		19	164143	<0.2	2.49		225	<5	0.32	<1	167	627	137	>10	40	1.33	2575	<1	0.02	644	1380	2	<5	<20		0.10	<10		-			
22       164146       <0.2													-	. +								_	-	-			-			-	134	
22       164146       <0.2       0.92       10       190       <5       0.50       <1       100       161       87       >10       40       0.51       2311       <1       0.02       419       1420       4       <5       <20       27       0.08       <10       53       <10       13       112         23       164147       <0.2       2.88       <5       165       <5       1.92       <1       94       412       105       >10       30       1.79       1536       <1       0.02       351       1700       4       <5       <20       20       0.08       <10       97       <10       9       147         24       164148       <0.2       1.74       <5       185       <5       0.40       1       92       228       87       >10       60       1.03       2385       1       0.01       294       1530       <2       <5       <20       28       0.10       <10       52       <10       17       133         25       164149       <0.2       2.12       <5       170       <5       0.44       1       82       347       74       >10       40		21	164145	<0.2	1.45	25	205	<5	0.32	<1	142	429	108	9.81	30	0.66	2489	<1	0.03	624	1340	<2	<5	<20	23	0.07	<10	68	<10	10	115	
23       164147       <0.2       2.88       <5       165       <5       1.92       <1       94       412       105       >10       30       1.79       1536       <1       0.02       351       1700       4       <5       <20       20       0.08       <10       97       <10       9       147         24       164148       <0.2	<1		22	164146					<5							40								-								112
24       164148       <0.2								<5					- ·					•				-	-				• +				147	
25       164149       <0.2       3.53       <5       180       <5       0.39       1       99       380       110       >10       70       1.99       1766       <1       0.02       436       1210       2       <5       <20       28       0.11       <10       126       <10       13       198         26       164150       <0.2	<1						-		<5			-							-									-			-	133
27       164151       <0.2										1		-						-					-								199	
28       164152       <0.2		26	164150	<0.2	2,12	<5	170	<5	0.44	1	82	347	74	>10	40	1.14	2526	<1	0.01	423	1280	<2	<5	<20	30	0.11	<10	78	<10	20	153	
29 164153 <0.2 1.38 <5 135 <5 0.32 <1 126 292 97 >10 40 0.80 2007 <1 0.03 454 1510 <2 <5 <20 22 0.08 <10 69 <10 13 110		27	164151	<0.2	2.61	<5	150	<5	0.36	1	71	373	108	>10	40	1.72	2653	<1	0.01	345	1260	<2	<5	<20	27	0.11	<10	125	<10	13	200	
		28	164152	<0.2	2.70	<5	155	<5	1.04	1	123	505	145	>10	50	1.89	2329	<1	0.01	562	1170	<2	<5	<20	23	0.12	<10	113	<10	14	217	
		29	164153	<0.2	1,38	<5	135	<5		<1		292	97	>10	40	0.80	2007	<1	0.03	454	1510	<2	<5	<20	22	0.08	<10	-		13	110	
						-		-				-						-				_	-					- +			94	

ROAD

INTERNATIONAL DE GOLD MINES LTD.

ECO TECH LABOK RY LTD.

-

Et #.	Tag #	Ag	AI %	As	Ba	81	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	lo I	Na %	Ni	<u>P</u>	Pb	Sb	Sn	Sr	TI %	_ U	V	W	<u>Y</u>	Zn
31	164155	<0.2	1.13	10	145	<5	0.18	<1	128	327	112	>10	30	0.76	2370	<1	0.02	507	1100	<2	<5	<20	14	0.09	<10	62	<10	14	88
32	164156	<0.2	2.44	<5	145	<5	0.37	<1	84	372	117	>10	40	1.48	1832	<1	0.02	374	1560	<2	<5	<20	26	0.08	<10	92	<10	9	110
33	164157	<0.2	1.78	<5	155	<5	0.35	<1	69	229	127	>10	40	1.02	1593	<1	0.03	238	1570	<2	<5	<20	25	0.08	<10	67	<10	9	105
34	164158	<0.2	1.35	<5	185	<5	0.19	2	116	320	149	>10	40	0.94	2621	<1	0.01	405	1050	<2	<5	<20	16	0.11	<10	60	<10	18	126
35	164159	<0.2	1.02	<5	140	<5	0.28	<1	73	153	124	>10	30	0.59	1979	<1	0.02	196	1590	<2	<5	<20	20	0.08	<10	34	<10	15	94
36	164160	<0.2	2.83	<5	130	<5	0.30	<1	63	305	126	>10	30	2.02	1683	<1 •	0.01	300	1300	2	<5	<20	22	<0.01	<10	66	<10	12	108
37	164161	<0.2	2.89	<5	120	<5	0.30	<1	62	308	125	>10	30	2.09	1686	<1 •	<0.01	301	1320	2	<5	<20	19	<0.01	<10	67	<10	12	110
OC E									_				_																
1	164125	<0.2	3.66	10	95	<5		<1	78	594	113	>10	40	2.76			<0.01	404	1130	8	<5	<20	17	0.09	<10	109	<10	9	170
36	164160	<0.2	1.89	<5	120	<5	0.33	<1	64	229	105	>10	30	1.29	1422	<1 ·	<0.01	273	1500	<2	<5	<20	20	<0.01	<10	42	<10	11	88
Rep	net:																												
1	164125	<0.2	3.43	5	105	<5		<1	77	598	106	>10	40	2.58	1664	<1 -	<0.01	398	1130	8	<5	<20	16	0.08	<10	103	<10	9	173
10	164134	<0.2	0.41	<5	110	<5		<1	17	93	21	4.23	30	0.12	293	5	<0.01	44	410	8	<5	<20	7	0.02	<10	4	<10	4	78
19	164143	<0.2	2.57	80	225	<5	0.32	<1	166	634	143	>10	40	1.38	2596	<1	0.02	653	1340	2	<5	<20	23	0.10	<10	120	<10	9	155
Sten	derd:																												
GEO	<b>'04</b>	1.4	1.96	60	150	<5	1.91	<1	22	61	88	3.96	<10	1.13	712	1	0.03	30	670	22	<5	<20	61	0,09	<10	64	<10	12	75
GEO	'04	1.5	1.98	65	155	<5	1.84	<1	22	62	86	4.06	<10	1.11	691	<1	0.03	30	720	22	<5	<20	65	0.13	<10	60	<10	12	77

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm df/1193A XLS/04 APPENDIX VIII

ANALYTICAL LABORATORY PROCEDURES

# ECO TECH LABORATORY LTD.

# **Analytical Method**

### GOLD ASSAY

Samples are sorted and dried (if necessary). A sub sample is pulverized in a ring & puck pulverizer to 95% - 140 mesh. The sample is rolled to homogenize. Concentrates will be processed in our Concentrate sample prep area.

A 10 to 30g sample, run in triplicate, is fire assayed using appropriate fluxes. Concentrate will be fused in a dedicated furnace to ensure no cross contamination. The resultant dore bead is parted and then digested with aqua regia and then analyzed on an AA instrument.

Appropriate standards (Quality Control Components) accompany the samples on the data sheet.

### Analytical Procedure Assessment Report

### METALLIC GOLD ASSAY

Samples are catalogued and dried. Rock samples are two stage crushed to minus 10 mesh, then split to achieve a 250 gram (approximate) sub sample. The sample is pulverized to 95% -140 mesh. The sample is weighed, then rolled and homogenized and screened at 140 mesh.

The –140 mesh fraction is homogenized and 2 samples are fire assayed for Au. The +140 mesh material is assayed entirely. The resultant fire assay bead is digested with acid and after parting is analyzed on a Perkin Elmer atomic absorption machine using air-acetylene flame to .03 grams/t detection limit.

The entire set of samples is redone if the quality control standard is outside 2 standard deviations or if the blank is greater than .015 g/t.

The values are calculated back to the original sample weight providing a net gold value as well as 2-140 values and a single +140 mesh value.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and or mailed to the client.

# ECO TECH LABORATORY LTD.

### Analytical Procedure Assessment Report

### SAMPLE PREPARATION

Samples are catalogued and dried. Soils are prepared by sieving through an 80 mesh screen to obtain a minus 80 mesh fraction. Samples unable to produce adequate minus 80 mesh material are screened at a coarser fraction. These samples are flagged with the relevant mesh. Rock samples are 2 stage crushed to minus 10 mesh and a 250 gram sub sample is pulverized on a ring mill pulverize to -140 mesh. The sub sample is rolled, homogenized and bagged in a pre-numbered bag.

#### GEOCHEMICAL GOLD ANALYSIS

The sample is weighed to 30 grams and fused along with proper fluxing materials. The bead is digested in aqua regia and analyzed on an atomic absorption instrument. Overrange values for rocks are re-analyzed using gold assay methods.

Appropriate reference materials accompany the samples through the process allowing for quality control assessment. Results are entered and printed along with quality control data (repeats and standards). The data is faxed and/or mailed to the client.

# ECO TECH LABORATORY LTD.

# Analytical Procedure Assessment Report

#### MULTI ELEMENT ICP ANALYSIS

A 0.5 gram sample is digested with 3ml of a 3:1:2 (HCI:HN03:H20) which contains beryllium which acts as an internal standard for 90 minutes in a water bath at 95°C. The sample is then diluted to 10ml with water. The sample is analyzed on a Jarrell Ash ICP unit.

Results are collated by computer and are printed along with accompanying quality control data (repeats and standards). Results are printed on a laser printer and are faxed and/or mailed to the client.

	Detection Lir	nit			Detection Lir	nit	
Ag Al Ba Bi Ca Cd Co Cr Cu	0.2ppm 0.01% 5ppm 5ppm 0.01% 1ppm 1ppm 1ppm 1ppm	Low 30.0ppm 10.0% 10,000ppm 10,000ppm 10,000ppm 10,000ppm 10,000ppm 10,000ppm 10,000ppm	Uppe	r Fe La Mg Mn No Na Pb Sb	0.01% 10ppm 0.01% 1ppm 0.01% 1ppm 10ppm 2ppm 5ppm	Low 10.00% 10,000ppm 10.00% 10,000ppm 10,000ppm 10,000ppm 10,000ppm 10,000ppm 10,000ppm	Upper
Sn Sr Ti U V Y Zn	20ppm 1ppm 0.01% 10ppm 1ppm 1ppm 1ppm	10,000ppm 10,000ppm 10.00% 10,000ppm 10,000ppm 10,000ppm 10,000ppm					

APPENDIX IX

SOIL GEOCHEMISTRY RESULTS

.

	22-Ju1-04																													
1004	TECH LAB 1 Dallas Drh 1LOOPS, B.( 6T4	ve i ev	LTD.						I	CP CI	ERTIF	ICATI	e of Ai	NALYS	IS AK	2004-7	10					I	NTERN 12422 E PO Box <b>Velis,</b> (	Barker 247	ville Hv	vy.	)E GC	)LD M	INES	LTD
	ne: 250-573-6																					4	Attentic	on: Je	an Pau	ıtlər				
•	: 250-573-4																						No. of s Sampla P <b>roject</b> Sample	type: :#:14	Siit IA Rg			autier		
Valu	es in ppm u	niess other	wise	reporte	d																									
Et#.	. Tag#	Au(ppb)	Åα	AI %	As	Ba	BI	Ca %	Cđ	Co	Cr	Си	Fe %	La	Ma %	Mn	Мо	Na %	NE	Р	₽ь	Sb	Sa	Sr	TI %	u	v	w	Y	Zn
1	163167 F 163172 L	15	0.4	0.57 1.78	20	<5	<5 <5	0.05	1	14 186	65 74	46 65	>10 >10	<10	0.38 0.40	<1	3	0.01	16 54	610 550	<2 <2	<5	<20 <20	2	0.32 0.43	<10	15	<10 <10	17 16	43 93
001	DATA:																													
. <b>Rep</b> i	<b>nat:</b> 163167 F	-	0.4	0.58	25	<5	<5	0.05	<1	16	72	45	>10	<10	0.41	<1	<1	0.01	15	610	<2	<5	<20	1	0.36	<10	16	<10	20	39
Stan GEO	i <b>derd:</b> ) '04	140	1.4	1.55	50	140	<5	1.44	<1	19	56	88	3.60	<10	0.91	554	<1	0.03	29	600	20	<5	<20	38	0.15	<10	66	<10	5	69
:																														
							``																							-

JJ/kk d/708 XLS/04 .

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

22-Jul-04 /

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700

Fax : 250-573-4557

V2C 6T4

ECO TECH LABORATORY LTD.

ICP CERTIFICATE OF ANALYSIS AK 2004-712

INTERNATIONAL WAYSIDE GOLD MINES L⁻ 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

Attention: Jean Pautier

No. of samples received: 22 Sample type: Soll Project #: IWA-Regional Shipment #: Not indicated Samples submitted by: Jean Pautler

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	_ Co	Cr	Cu	Fe %	La I	Vig %	Mn	Mo	Na %	Ni	P_	Pb	Sb	Sn	Sr	<u>TI %</u>	U	<u>v</u>	<b>W</b>	<u> </u>
1	163055	5	<0.2	1.11	25	105	<5	0.21	<1	71	115	164	>10	30	0.76	2338	<1	0.01	275	880	10	<5	<20	8	0.18	<10	33	<10	15
2	183056	<5	0.2	2.26	5	110	<5	0.33	<1	85	367	120	>10	20	1.19	1432	<1	0.01	422	940	10	<5	<20	15	0.17	<10	58	<10	10
3	163057	155	<0.2	0.85	5	55	<5	0.18	<1	104	107	108	>10	20	0.61	1964	<1	<0.01	333	790	6	<5	<20	8	0.16	<10	36	<10	13
4	163063	30	0.6	0.87	15	110	<5	0.10	<1	27	30	95	4.03	20	0.36	347	2	<0.01	53	710	12	<5	<20	16	0.08	<10	29	<10	7
5	163066	10	0.3	0.95	15	120	<5	0.11	1	25	27	83	4.47	20	0.34	824	3	<0.01	66	640	22	<5	<20	8	0.10	<10	25	<10	5
6	163067	20	<0.2	0.48	15	20	<5	0.17	<1	29	17	70	4.66	30	0.25	697	1	<0.01	33	560	6	<5	<20	7	0.07	<10	7	<10	9
7	163069	35	0.2	0.84	10	55	<5	0.17	<1	25	19	36	3.58	20	0.28	546	<1	0.01	24	520	16	<5	<20	10	80.0	<10	17	<10	7
8	163070	125	0.2	0.86	20	50	<5	0.26	<1	21	24	41	4.05	20	0.38	444	<1	0.02	33	590	16	<5	<20	17	0.11	<10	23	<10	8
9	163071	185	0.5	0.56	30	30	<5	0.10	<1	30	22	60	5.32	20	0.25	737	1	<0.01	59	740	18	<5	<20	- 14	0.09	<10	13	<10	9
10	163072	15	<0.2	0.36	5	120	<5	0.23	<1	18	8	24	2.92	30	0.16	1747	<1	<0.01	26	570	16	<5	<20	15	0.07	<10	2	<10	6
11	163073	10	<0.2	0.14	5	10	<5	0.12	<1	20	12	37	3.84	20	0.11	487	<1	<0.01	31	460	10	<5	<20	10	0.05	<10	3	<10	4
12	163076	170	0.8	0.81	45	95	<5	0.12	3	122	22	64	5.07	20	0.22	3990	8	<0.01	124	1240	28	<5	<20	14	0.15	<10	14	<10	11
13	163077	220	0.3	0.62	60	25	<5	0.10	2	47	27	91	7.17	20	0.24	1418	3	<0.01	152	1350	16	<5	<20	6	0.13	<10	14	<10	7
14	163078	180	0.6	0.80	80	135	<5	0.08	3	63	37	83		20		3107	6	0.01		2630		<5	<20	61	0.21	<10	20	<10	9
15	163079	345	0.5	0.66	90	55	<5	0.07	2	69	35	87	>10	20	0.24	2271	7	0.01	163	2250	26	<5	<20	14	0.18	<10	16	<10	8
16	163080	70	0.8	1.38	30	150	<5	0.30	2	104	130	108	>10	20	0.76	2918	2	<0.01	283	2240	12	<5	<20	24	0.19	<10	64	<10	10
17	163083	20	<0.2	1.11	35	60	<5	1.01	<1	21	25	38	3.80	20	0.60	564	<1	0.01	32	570	24	<5	<20	33	0.08	<10	22	<10	5
18	163084	10	0.7	0.53	45	55	<5	2.18	<1	62	30	71	8.06	10	0.38	1322	7	0.01	101	1550	<2	<5	<20	36	0.12	<10	22	<10	6
19	163240	20	0.4	1.30	215	300	<5	0.11	6	143	119	149	>10	50	0.63	6542	5	0.01	585	1630	24	5	<20	2	0.35	<10	39	<10	49
20	163246	<5	<0.2	0.68	10	40	<5	0.01	<1	13	19	30	3.62	20	0.27	215	<1	<0.01	23	470	18	<5	<20	5	0.05	<10	10	<10	2
21	163248	15	<0.2	0.77	15	60	<5	0.14	<1	31	33	41		20	0.35	238	<1	<0.01	62	550	16	<5	<20	12	0.05	<10	16	<10	3
22	163249	25	0.2	0.69	15	60	<5	0.12	<1	17	19	31	3.03	30	0.29	434	1	<0.01	40	500	18	<5	<20	10	0.05	<10	13	<10	3
OC D/ Reper																													
1	163055	-	<0.2	1.38	30	115	<5	0.25	2	70	138	141	>10	20	0.91	2056	<1	0.01	290	1030	10	<5	<20	12	0.16	<10	37	<10	12
3	163057	130	-				-	-	-	-			-		-		-								-		-		-
10	163072	15	<0.2	0.37	5	130	<5	0.23	<1	19	8	24	2.89	30	0,16	1770	<1	<0.01	23	560	16	<5	<20	16	0.07	<10	2	<10	6
19	163240	-	0.4	1.36	220	305	<5	0.11	7	143	121	147	>10	50	0.64	6640	5		579	1620	26	5	<20	3	0.36	<10	40	<10	48
Stand																													
GEO '	04	140	1.5	1.62	55	145	<5	1.54	<1	19	58	86	3.37	10	0.96	549	<1	0.03	28	600	24	<5	<20	42	0.18	<10	65	<10	7

ECO TECH LABORATORY LTD. Jutta Jealouse

Page 1

22-Jul-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-712

INTERNATIONAL WAYSIDE GOLD MINES L' 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

Attention: Jean Pautler

No. of samples received: 22 Sample type: Soil Project **#: IWA-Regional** Shipment **#: Not indicated** Samples submitted by: Jean Pautler

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Ċd	Co_	Cr	Cu	Fe %	La M	lg %	_Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr_	TI %	U	<u>v</u>	W	<u>Y</u>
1	183055	5	<0.2	1.11	25	105	<5	0.21	<1	71	115	164	>10	30	0.76	2338	<1	0.01	275	880	10	<5	<20	8	0.18	<10	33	<10	15
2	163056	<5	0.2	2.26	5	110	<5	0.33	<1	85	367	120	>10	20	1.19	1432	<1	0.01	422	940	10	<5	<20	15	0.17	<10	58	<10	10
3	163057	155	<0.2	0.85	5	55	<5	0.18	<1	104	107	108	>10	20	0.61	1964	<1	<0.01	333	790	6	<5	<20	8	0.16	<10	36	<10	13
4	163063	30	0.6	0.87	15	110	<5	0.10	<1	27	30	95	4.03	20	0.36	347	2	<0.01	53	710	12	<5	<20	16	80.0	<10	29	<10	7
5	163066	10	0.3	0.95	15	120	<5	0.11	1	25	27	83	4.47	20	0.34	824	3	<0.01	66	640	22	<5	<20	8	0.10	<10	25	<10	5
6	163067	20	<0.2	0.48	15	20	<5	0.17	<1	29	17	70	4.66	30	0.25	697	1	<0.01	33	560	6	<5	<20	7	0.07	<10	7	<10	9
7	163069	35	0.2	0.84	10	55	<5	0.17	<1	25	19	36	3.58	20	0.28	546	<1	0.01	24	520	16	<5	<20	10	0.08	<10	17	<10	7
8	163070	125	0.2	0.86	20	50	<5	0.26	<1	21	24	41	4.05	20	0.38	444	<1	0.02	33	590	16	<5	<20	17	0.11	<10	23	<10	8
9	163071	185	0.5	0.56	30	30	<5	0.10	<1	30	22	60	5.32	20	0.25	737	1	<0.01	59	740	18	<5	<20	14	0.09	<10	13	<10	9
10	163072	15	<0.2	0.36	5	120	<5	0.23	<1	18	8	24	2.92	30	0.16	1747	<1	<0.01	26	570	16	<5	<20	15	0.07	<10	2	<10	6
11	163073	10	<0.2	0.14	5	10	<5	0.12	<1	20	12	37	3.84	20	0.11	487	<1	<0.01	31	460	10	<5	<20	10	0.05	<10	3	<10	4
12	163076	170	0.8	0.81	45	95	<5	0.12	3	122	22	64	5.07	20	0.22	3990	8	<0.01	124	1240	28	<5	<20	14	0.15	<10	14	<10	11
13	163077	220	0.3	0.62	60	25	<5	0.10	2	47	27	91	7.17	20	0.24	1418	3	<0.01	152	1350	16	<5	<20	6	0.13	<10	14	<10	7
14	163078	180	0.6	0.80	80	135	<5	0.08	3	63	37	83	>10	20	0.24	3107	6	0.01	158	2630	16	<5	<20	61	0.21	<10	20	<10	9
15	163079	345	0.5	0.66	90	55	<5	0.07	2	69	35	87	>10	20	0.24	2271	7	0.01	163	2250	26	<5	<20	14	0.18	<10	16	<10	8
16	163080	70	0.8	1.38	30	150	<5	0.30	2	104	130	108	>10	20	0.76	2918	2	<0.01	283	2240	12	<5	<20	24	0.19	<10	64	<10	10
17	163083	20	<0.2	1.11	35	60	<5	1.01	<1	21	25	38	3.80	20	0.60	564	<1	0.01	32	570	24	<5	<20	33	0.08	<10	22	<10	5
18	163084	10	0.7	0.53	45	55	<5	2.18	<1	62	30	71	8.06	10	0.38	1322	7	0.01	101	1550	<2	<5	<20	36	0.12	<10	22	<10	6
19	163240	20	0.4	1.30	215	300	<5	0.11	6	143	119	149	>10	50	0.63	6542	5	0.01	585	1630	24	5	<20	2	0.35	<10	39	<10	49
20	163246	<5	<0.2	0.68	10	40	<5	0.01	<1	13	19	30	3.62	20	0.27	215	<1	<0.01	23	470	18	<5	<20	5	0.05	<10	10	<10	2
21	163248	15	<0.2	0.77	15	60	<5	0.14	<1	31	33	41	3.71	20	0.35	238	<1	<0.01	62	550	16	<5	<20	12	0.05	<10	16	<10	3
22	163249	25	0.2	0.69	15	60	<5	0.12	<1	17	19	31	3.03	30	0.29	434	1	<0.01	40	500	18	<5	<20	10	0.05	<10	13	<10	3
<u>oc D/</u>																													
Repea	163055		<0.2	1.38	30	115	<5	0.25	2	70	138	444	>10	20	0.91	2056		0.04	290	1030	10	<5	<20	40	0.16	<10	37	<10	12
3	163055	130	<u.z< td=""><td>1.30</td><td>30</td><td>115</td><td>-</td><td>0.23</td><td>2</td><td>70</td><td>130</td><td>141</td><td>210</td><td>ZŲ</td><td>0.91</td><td>2000</td><td>~1</td><td>0.01</td><td>250</td><td></td><td></td><td></td><td>~20</td><td>12</td><td>0.10</td><td>510</td><td></td><td>10</td><td>12</td></u.z<>	1.30	30	115	-	0.23	2	70	130	141	210	ZŲ	0.91	2000	~1	0.01	250				~20	12	0.10	510		10	12
10	163057	150	<0.2	0.37	- 5	130		0.23	<1	19	- 8	- 24	2.89	30	0.16	1770	<1	- <0.01	23	- 560	- 16	- <5	<20	- 16	0.07	<10	2	- <10	6
19	163240	15	0.4	1.36	220	305	<5 <5	0.23	7	143	121	147	2.05 >10		0.18	6640	•		23 579	1620		-5 5	<20	3	0.07	<10	40		48
19	103240	-	0.4	1.90	220	303	~0	<b>U</b> .11		143	121	14/	210	30	0.04	0040	5	0.01	519	1020	20	5	<b>≺</b> ∠∪	3	0.30	10	40	~10	40
Stand GEO 1		140	1.5	1.62	55	145	<5	1.54	<1	19	58	86	3.37	10	0.96	549	~1	0.03	28	600	24	-6	<20	42	0.18	<10	65	<10	7
GEU		140	1.9	1.02	99	140	-0	1.04	~1	19	00	90	J.J/	10	0.90	049		0.03	20	000	24	-0	~20	72	0.10	×10	00	~IV	1

ECO TECH LABORATORY LTD. Jutta Jealouse Ł

- - / log 04

ECO TECH LABOR, .Y LTD.

10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700

ICP CERTIFICATE OF ANAL, AK 2004-1019

INTERNATIONAL WAYSIDE GOLD MINŁ_ 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 118 Sample type:Soil Project #: LOWHEE Shipment #:None Given Samples submitted by:J. McAllister

Values in ppm unless otherwise reported

•

Et #	Tag #	Au(ppb) Ag	AI %	As Ba Bi	Ca % Cd	Co Cr	Cu	Fe %	La	Mg %	Mn	Mo I	Na %	NI	P	Pb Sb	Sn	Sr	T1 %	U	V	W	Y	Zn
1	1-26+00E 67+00N	20 < 0.2	0.87	35 45 <5	0.05 <1	12 26	41	4.08	40	0.31	148	<1 •	<0.01	25	680	24 <5	<20	1	<0.01	<10	21	<10	1	57
2	1-26+00E 67+50N	15 0.2	1.12	20 90 <5	0.06 <1	8 25	20	3.11	30	0.25	86	<1 <	<0.01	15	220	20 <5	<20	5	0.01	<10	41	<10	2	39
3	1-26+00E 68+00N	10 0.2	0.80	5 50 <5	0.06 <1	5 17	12	1.67	30	0.19	82	<1 4	<0.01	10	210	16 <5	<20	2	0.01	<10	37	<10	2	28
4	1-26+00E 68+50N	165 <0.2	0.76	15 45 <5	0.04 <1	5 16	16	2.06	30	0.17	79	<1 •	<0.01	13	350	14 <5	<20	2	<b>&lt;</b> 0.01	<10	26	<10	1	29
5	1-26+00E 69+00N	10 0.2	0.69	5 135 <5	0.47 <1	7 12	13	1.54	20	0.17	754	<1 •	<0.01	15	410	14 <5	<20	32	<0.01	<10	15	<10	2	38
ß	1-26+00E 69+50N	10 -0 2	1 20	20 90 <5	1 07 -1	21 21	50		50	0.64	672	-4	-0.01	41	670	36 <5	~20	100	0.02	<10	20	<10	44	70
7	1-26+00E 70+00N			15 145 <5					20	0.01		-		8	- · -	12 <5				<10		<10		
8	1-26+00E 70+50N			15 145 <5					30	0.39				27		28 <5			0.01	<10		<10	_	
_	1-26+00E 71+00N			20 95 <5					30	0.35		•	<0.01	17		18 <5			<0.01	<10		<10	-	
	1-26+00E 71+50N								-							16 <5		-		<10		<10		
10	1-2010UE / 1+5UN	40 0.6	0.55	20 40 <5	0.06 <1	5 14	13	2.32	20	0.11	120	<1 •	~0.01	10	320	10 <0	<20	2	<0.01	510	30	<10	<1	30
	1-26+00E 72+00N			15 90 <5							735	<1 4	<0.01	36		26 <5				<10		<10	_	
	1-26+00E 72+50N	10 0.2		20 70 <5						0.23		<1 ·	<0.01	14		24 <5		-	<0.01	<10		<10		
-	1-26+00E 73+00N	10 <0.2		20 60 <5					30	0.33			<0.01	20		24 <5				<10		<10		
	1-26+00E 73+50N	25 0.2	-	15 110 <5	+						1567	<1 ·	<0.01			32 <5				<10	-	<10		
15	1-26+00E 74+00N	<5 0.4	1.04	10 105 <5	2.98 <1	11 26	41	2.50	20	0.23	854	<1 ·	<0.01	27	1290	22 <5	<20	185	<0.01	<10	17	<10	9	58
16	1-26+00E 74+50N	<5 <0.2	1.40	20 150 <5	0.23 <1	14 35	41	5.41	40	0.39	182	<1 ·	<0.01	24	500	32 <5	<20	20	<0.01	<10	40	<10	<1	74
17	1-26+00E 75+00N	5 0.2	1.33	10 100 <5	0.89 <1	18 35	44	4.07	30	0.45	834	<1	<0.01	37	900	26 <5	<20	64	< 0.01	<10	30	<10	7	71
18	1-34+00E 54+50N	70 < 0.2	1.21	25 110 <5	0.13 <1	14 31	24	4.04	30	0.28	399	<1	<0.01	23	450	32 <5	<20	7	< 0.01	<10	27	<10	2	68
19	1-34+00E 55+00N	35 < 0.2	1.30	40 120 <5	0.44 <1	22 36	57	4.14	40	0.60	901	<1 ·	<0.01	49	680	30 <5	<20	22	0.02	<10	26	<10	8	79
20	1-34+00E 55+50N			15 155 <5						0.90	722	<1 ·	<0.01	56	670	24 <5	<20	127	0.04	<10	28	<10	6	79
21	1-34+00E 56+00N	15 -0 2	1 24	25 115 <5	276 /1	22 20	55	4 08	40	0 73	914	-1	c0 01	56	660	28 <5	~20	76	0.02	<10	26	<10	7	76
	1-34+00E 56+50N			30 100 <5		+				0.47		-	<0.01	44	660	30 < 5			0.02	<10		<10		
	1-34+00E 57+00N	55 0.4		30 70 <5						0.30			<0.01	31	500				0.01	<10		<10		
	1-34+00E 57+50N	105 0.3		30 65 <5						0.30		•	<0.01	23	580	28 <5			0.01	<10		<10		- ·
	1-34+00E 58+00N	80 < 0.2		25 30 <5				- · ·		0.24		-	<0.01	23 15	280	16 <5			<0.02	<10		<10	-	
25	1-34TOUE 30TOUN	80 -0.2	0.00	29 30 5	0.05 1	1 10	10	2.07	30	Q. 14	137		~0.01	15	200	10 -0	~20	3	~0.01	-10	20	~10	1	41
26	1-34+00E 58+50N	55 <0.2	0.81	55 55 <5	0.37 <1	16 21	33	3.38	30	0.27	634	<1	<0.01	27	460	28 <5	<20	24	<0.01	<10	15	<10	5	68
27	1-34+00E 59+00N	35 < 0.2	0.27	10 15 <5	0.12 <1	24	5	0.55	20	0.03	23	<1	<0.01	4	110	4 <5	<20	5	<0.01	<10	12	<10	1	11
28	1-34+00E 59+50N	35 < 0.2	0.81	50 65 <5	0.08 <1	16 20	36	3.27	40	0.28	513	<1	<0.01	31	360	28 <5	<20	3	<0.01	<10	13	<10	5	72
29	1-34+00E 60+00N	No Sample																						
30	1-34+00E 60+50N	40 0.6	1.22	35 115 <5	1.11 <1	19 28	46	3.77	30	0.32	1421	<1	<0.01	38	920	34 <5	<20	86	<0.01	<10	20	<10	8	70
31	1-34+00E 61+00N	25 <0.2	1.03	40 75 <5	0.40 <1	18 25	39	3.63	30	0.34	620	<1	<0.01	34	650	30 <5	<20	30	<0.01	<10	17	<10	6	82
	1-34+00E 61+50N	10 0.2		20 65 <5				2.06			442	-		20	420	+ -			< 0.01	<10		<10		
	1-34+00E 62+00N	15 0.3						3.76		0.34			<0.01	34	850	34 <5			< 0.01	<10		<10	-	
	1-34+00E 62+50N	25 0.2		35 70 <5						0.15		•	<0.01	17	380	30 <5			< 0.01	<10		<10		
	1-34+00E 63+00N	+		65 45 <5							251			16	420	24 <5		-	<0.01	<10		<10	_	-
		00 -0.E	0.00		0.00 41	10 10		0.10		Page		- 1	w				-2.7	-						

INTERNATIONAL WAYSIDE GOLD MINES LTD.

Page 1 ICP CERTIFICATE OF ANALYSIS AK 2004-1019

ECO TECH LABORATORY LTD.

Et#		Au(ppb)										La	Mg \	ln	Mo N	<b>la</b> %	NI		Pb Sb				U		w		
36	1-34+00E 63+50						0.68 <					30	0.25	5 <del>4</del> 6	<1 <	0.01	28	600	30 <5				<10	15	<10	4 60	
	1-34+00E 64+00N	20	<0.2				0.03 <		_			20	<0.01		<1 <		1	80	4 <5	<20	<1	<0.01	<10	3	<10 •	:1 4	
	1-34+00E 64+50N		0.3				0.19 <					30		1034			17	920	28 <5		13	<0.01	<10			2 70	
	1-34+00E 65+00N						0.05 <				3.67			143			15	390	24 <5			<0.01	<10			:1 45	
40	1-34+00E 65+50N	35	<0.2	0.77	35	55 <5	0.05 <	<1	7 21	20	3.44	30	0.23	78	<1 <	0.01	16	510	24 <5	<20	4	<0.01	<10	18	<10	<1 49	ł
41	1-34+00E 66+00N	40	0.5	0.85	40	50 <5	0.04 <	:1 1	3 21	31	3.31	30	0.30	292	<1 <	0.01	23	290	26 <5	<20	4	<0.01	<10	17	<10	2 61	
42	1-34+00E 66+50N	35	<0.2	0.87	30	55 <5	0.68 <	:1	9 21	33	3.70	30	0.17	103	<1 <	0.01	21	460	32 <5	<20	53	<0.01	<10	27	<10	2 48	1
43	1-34+00E 67+00N	20	1.2	1.44	35 ·	135 <5	1.35 <	:1 1	8 29	65	4.01	40	0.28	1884	<1 <	0.01	46	1580	40 <5	<20	102	<0.01	<10	21	<10	15 97	,
44	1-34+00E 67+50N	5	0.8	1.22	25 °	160 <5	1.72 <	:1 1	9 26	54	3.69	30	0.26	3463	<1 <	0.01	38	1220	32 <5	<20	106	0.01	<10	22	<10	9 80	J .
45	1-34+00E 68+00N	10	0.2	1.05	20	100 <5	0.85 <	:1 1	8 27	34	4.08	30	0.24	1125	<1 <	0.01	21	650	36 <5	<20	51	0.01	<10	29	<10	4 84	۲
46	1-34+00E 68+50N	<5	<0.2	1.15	25	80 <5	0.12 <	(1 1	7 30	35	4.65	40	0.27	634	<1 <	0.01	21	550	34 <5	<20	7	<0.01	<10	27	<10	1 75	;
47	1-34+00E 69+00N	5	<0.2	1.19	20	75 <5	0.08 <	<1 2	0 32	33	4.17	40	0.38	457	<1 <	0.01	25	500	32 <5	<20	6	<0.01	<10	28	<10	6 66	5
48	1-34+00E 69+50N	<5	<0.2	1.48	20	80 <5	0.24 <	(1 - 1	2 34	32	4.25	40	0.35	144	<1 <	0.01	21	310	32 <5	<20	17	<0.01	<10	36	<10	3 55	ز
49	1-34+00E 70+00N	<5	<0.2	1.64	10	130 <5	0.69 <	(1 2	3 35	41	5.56	40	0.54	794	<1 <	0.01	29	660	40 <5	<20	44	0.02	<10	69	<10	5 77	1
50	1-34+00E 70+50N	<5	<0.2	1.13	10	70 <5	0.08 <	<1 1	1 29	30	3.97	40	0.29	134	<1 <	:0.01	19	290	28 <5	<20	5	0.01	<10	44	<10	3 53	ł
	1-34+00E 71+00N	<5					0.88 <			• •		40	0.49	726	<1 <	0.01	40	920	40 <5	<20	34	0.01	<10	30	<10	9 73	}
	2+00+00E 53+50N	<5	0.8	1.60	20	170 <5	0.80	1 2	3 34	47	4.37	40	0.40	4021	<1 <	:0.01	38	1170		-	-		<10			8 112	
	2+00+00E 53+75N	155	0.8	1.53	35	110 <5	0.36 <	<1 1	5 32	40	4.68	40	0.40	349	<1 <	0.01	28	820	52 <5	<20	26	<0.01	<10	30	<10	4 91	l –
	2+00+00E 54+00N	25	1.4				0.99 <					30	+	424			27		54 <5				<10			6 78	
55	2+00+00E 54+25N	45	0.8	1.15	45	85 <5	0.80 <	<1 1	4 23	26	3.57	30	0.31	307	<1 <	0.01	24	770	64 <5	<20	43	<0.01	<10	20	<10	6 71	1
	2+00+00E 54+50N	20					0.29					30	0.22	411	<1 <	0.01	22		80 <5				<10			3 80	
	2+00+00E 54+75N						1.74 •					40		2203			47		98 <5				<10			20 109	-
-	2+00+00E 55+00N	25	2.1				0.21 <					40		715			37		128 <5				<10			16 106	
	2+00+00E 55+25N	20					0.63 <					30		270			19		62 <5				<10			3 77	
60	2+00+00E 55+50N	10	0.3	0.98	45	130 <5	0.56	<1 1	1 21	19	3.42	30	0.17	328	<1 <	:0.01	18	550	96 <5	<20	33	<0.01	<10	24	<10	2 76	\$
	2+00+00E 55+75N	10				150 <5	4					40		907			25		122 <5		-		<10			6 101	
	2+00+00E 56+00N	15	0.8				0.69 •		-			40		1786			23		100 <5				<10			5 97	
	2+00+00E 56+25N		1.2				1.25					30		1371				-	68 <5				<10		-	8 81	
	2+00+00E 56+50N	5	-				1.99					30		526			27		62 <5				<10			4 95	-
65	2+00+00E 56+75N	20	0.3	1.01	20	100 <5	0.38	<1 1	3 23	21	3.21	30	0.28	238	<1 <	<0.01	20	410	60 <5	<20	15	<0.01	<10	22	<10	2 86	3
66	2+00+00E 57+00N	5	<0.2	1.49	25	65 <5	0.26	<1 2	5 31	60	4.60	50	0.72	775	<1 <	<0.01	65	630	34 <5	<20	14	<0.01	<10	29	<10	4 94	4
67	2+00+00E 57+25N	5	0.5	0.83	20	105 <5	0.28	<1	9 19	24	2.84	30	0.20	115	<1 <	<0.01	21	300	50 <5	<20	11	0.01	<10	29	<10	2 75	5
66	2+00+00E 57+50N	165	<0.2	0.52	100	35 <5	0.04	<1	7 18	15	3.59	40	0.12	111	<1 <	<0.01	13	360	26 <5	<20	1	<0.01	<10			<1 50	-
	2+00+00E 57+75N	10	0.2	1.05	25	65 <5	0.14	<1_1	0 30	12	4.15	40	0.36	69	<1 <	<0.01	21	480	22 <5	<20	6	<0.01	<10	22	<10	2 67	7
70	2+00+00E 58+00N	5	<0.2	0.43	15	35 <5	0.04	<1	7 13	15	2.93	40	0.06	100	<1 <	<0.01	17	380	18 <5	<20	1	<0.01	<10	16	<10	<1 54	4
71	2+00+00E 58+25N	15	0.3	0.72	25	110 <5	0.18	<1	8 24	14	3.05	20	0.21	148	<1 <	<0.01	20	390	36 <5	<20	7	<0.01	<10	22	<10	2 57	7
72	2+00+00E 58+50N	65	<0.2	0.55	280	85 <5	0.08	<1	4 12	9	1.92	20	0.06	90	<1 <	<0.01	9	230	52 <5	<20	4	<0.01	<10	26	<10	1 37	7
	2+00+00E 58+75N						0.06												52 <5				<10			3 53	3
74	2+00+00E 59+00N						0.08												50 <5			< 0.01	<10	26	<10	2 57	7
75	2+00+00E 59+25N						0.11												26 <5			<0.01				1 35	
76	2+00+00E 59+50N	No Sampie																									
77	2+00+00E 59+75N	10	0.2	0.78	145	55 <5	0.03	<1	6 17	18	3.14	30	0.14	73	<1 <	<0.01	12	590	48 <5	<20	<1	<0.01	<10	17	<10	<1 48	3
78	2+00+00E 60+00N	10	0.3	0.65	65	50 <5	0.04	<1	8 18	14	3.57	40	0.09	408	<1 <	<0.01						<0.01		24	<10	<1 59	Э
	2+00+00E 60+25N						0.05										14	430	26 <5	<20	3	<0.01	<10			<1 48	
80	2+00+00E 60+50N	5	0.9	1.66	20	100 <5	0.50	<1 1	9 32	103	4.00	50	0.29	871	<1 <	<0.01	35	1230	94 <5	<20	33	0.02	<10	23	<10	16 83	3

INTERNATIONAL WAYSIDE GOLD MINES LTD.

ICP CERTIFICATE OF ANALaysis AK 2004-1019

ECO TECH LABORATORY LTD.

J

Et #	Tag #	Au(ppb)	Ag	<u>Ai %</u>			Ca % C				F <u>e %</u>	Lal	Mg	Mn	Mo	Na %	Ni	Р	Pb Sb	Sn	Sr	TI %	U	<u>v</u>	w	Y	
81	2+00+00E 60+	<5	0.6	0.27			0.03 <			12	1.60	20	<u>0.</u> u	36	<1	< 0.01	13	340	14 <5	<20	<1	< 0.01	<10	13	<10	ন 🚽	
82	2+00+00E 61+0uN	<5	<0.2	0.24	<5	60 <5	0.06 <	12	5	6	0.59	20	0.02	51	<1	<0.01	6	170	12 <5	<20	4	<0.01	<10	11	<10	<1 1	6
83	2+00+00E 61+25N	<5	0.8	0.78	30	85 <5	0.27 <	1 19	20	35	3.50	30	0.13	918	<1	<0.01	16	690	66 <5	<20	23	0.01	<10	22	<10	4 6	<b>j</b> 3
	2+00+00E 61+50N	<5	0.2	0.66	20	55 <5					3.26	30	0.19	282	<1	< 0.01	18	400	54 <5	<20	16	0.02	<10	22	<10	2 10	7נ
85	2+00+00E 61+75N	<5	<0.2	0.50	15	20 <5					1.76	30	0.05	85	<1	< 0.01	11		12 <5			<0.01	<10		<10		
**		•						• •	••			•••			•		••	•••			-						
86	2+00+00E 62+00N	<5	0.6	1.23	15 :	205 <5	1.26 <	22	19	29	2.54	30	0.17	7161	<1	<0.01	23	1330	54 <5	<20	62	0.02	10	24	<10	4 6	36
87	2+00+00E 62+25N	<5	0.3	0.52	10	55 <5	0.21 <	1 5	12	10	1.46	20	0.14	205	<1	<0.01	8	480	28 <5	<20	13	<0.01	<10	30	<10	<1 3	37
88	2+00+00E 62+50N	5	0.5	1.33	25	85 <5	0.55 <	1 19	25	69	3.28	40	0.26	653	<1	<0.01	33	760	54 <5	<20	44	0.01	<10	22	<10	9 (	56
89	2+00+00E 62+75N	15	0.3	1.12	30	75 <5	0.10 <	1 11	27	66	3.85	40	0.23	320	<1	<0.01	23	700	106 <5	<20	10	0.01	<10	26	<10	11 7	71
90	2+00+00E 63+00N	5	0.5	0.81	15	90 <5	0.70 <	1 8	18	55	2.61	30	0.12	285	<1	<0.01	19	570	46 <5	<20	41	0.01	<10	26	<10	5 {	51
		-								••								•.•									
91	2+00+00E 63+25N	10	0.9	1.59	25	95 <5	0.48 <	1 19	32	96	3.93	50	0.29	828	<1	<0.01	36	1160	90 <5	<20	31	0.02	<10	23	<10	16 8	83
92	2+00+00E 63+50N	10	0.3	0.77	20	75 <5	0.26 <	19	20	25	3.14	30	0.17	207	<1	<0.01	20	480	44 <5	<20	18	0.01	<10	22	<10	3 (	63
93	2+00+00E 63+75N	5	0.2	0.96	15	70 <5	0.24 <	1 9	21	21	2.72	30	0.31	304	<1	<0.01	22	510	34 <5	<20	13	<0.01	<10	16	<10	3 8	55
94	2+00+00E 64+00N	10	<0.2	0.37	10	30 <5	0.04 <	15	11	13	1.60	20	0.06	71	<1	<0.01	13	540	18 <5	<20	2	<0.01	<10	22	<10	1 2	26
95	2+00+00E 64+25N	35	1.3	2.22	25 ·	120 <5	0.98 <	1 23	33 1	31	3.82	80	0.25	3157	<1	<0.01	53	2520	94 <5	<20	60	0.02	10	20	<10	57 9	94
96	2+00+00E 64+50N	30	0.3	0.30	5	40 <5	0.31 <	1 2	4	7	0.50	20	0.04	176	<1	<0.01	5	220	16 <5	<20	18	<0.01	<10	10	<10	2 .	13
97	2+00+00E 64+75N	10	0.3	0.71	35		0.06 <				3.44	30	0.17	408	<1	<0.01	18		52 <5			< 0.01	<10	17	<10	1 (	54
	2+00+00E 65+00N	15	0.5	0.32			0.29 <		7		1.03	20	0.05		•	<0.01	5	220					<10	16	<10	1	16
	2+00+00E 65+25N	10	0.6	0.51			0.32 <		18			30	0.11		-	< 0.01	7	460					<10		<10		
	2+00+00E 65+50N	15		0.64		50 <5					3.77	30	0.14			<0.01			52 <5			0.02	<10		<10		
100		10	0.5	0.04	50	50 -5	0.04 ~	1 7	20	10	0.17	00	V. 14	3/0	~1	-0.01	4.1	1140	52 55	~20	-	0.02	10	00	-10	• •	-
101	2+00+00E 65+75N	10	0.2	0.59	20	40 <5	0.03 <	14	16	8	2.58	20	0.12	196	<1	<0.01	8	520	44 <5	<20	3	<0.01	<10	30	<10	<1 2	22
102	2+00+00E 66+00N	<5	<0.2	1.19	30	80 <5	0.06 <	1 12	28	27	4.41	40	0.37	253	<1	<0.01	25	470	44 <5	<20	3	< 0.01	<10		<10		
103	2+00+00E 66+25N	30	0.7	0.85	30	50 <5	+				4.91	40	0.19		•	< 0.01	14	960	•••			0.01	<10		<10		
	2+00+00E 66+50N	20		0.70		50 <5				• •	2.54	30	0.14		-	<0.01	12	560				<0.01	<10	_	<10		
	2+00+00E 66+75N	20		0.77	25	50 <5					2.69	30	0.20		•	< 0.01	20	500				<0.01	<10		<10		
			0.0	•				•			2.00	•••	0.20		••	-0.01	20	000	00 -0	~2.0	•					_ `	
106	2+00+00E 67+00N	20	0.6	0.89	25	70 <5	0.15 <	19	22	16	3.23	30	0.21	190	<1	<0.01	17	430	62 <5	<20	10	0.01	<10	22	<10	2	56
107	2+00+00E 67+25N	30	0.9	0.93	35	85 <5	0.37 <	1 13	23	25	3.72	30	0.23	280	<1	<0.01	23	650	68 <5	<20	23	<0.01	<10	18	<10	3	75
108	2+00+00E 67+50N	20	1.6	1.66	45	190 <5	0.60 <	1 17	35	38	4.76	30	0.27	477	<1	<0.01	33		110 <5				<10	29	<10	3 1	26
109	2+00+00E 67+75N	15	0.2	1.20	5	85 <5	3.09 <	1 22	32	45	4.35	30	0.71	516	<1	<0.01	50	590	28 <5	<20	158	0.01	<10	21	<10	3	79
110	2+00+00E 68+00N	No Sample			-																						
_																											
111	2+00+00E 68+25N	5	0.2	1.15	<5	70 <5	4.71	1 21	27	58	4.01	40	0.64	655	<1	<0.01	47	900	40 <5	<20	237	0.01	<10	27	<10	6	83
	2+00+00E 68+50N	5		1.57		85 <5						40	0.84			< 0.01	47	790					<10		<10		
	2+00+00E 68+75N	10	-		-	125 <5					4.42	50	0.57			<0.01	48		46 <5				<10		<10		
	2+00+00E 69+00N	10	0.5	0.68	15	20 <5						30	0.08			<0.01	-0-8	530					<10		<10		
	2+00+00E 69+00N	10		0.98	15	35 <5			21	9	3.14	30	0.08			<0.01	12		106 <5			< 0.02	<10		<10		
115	2-00-00-09-20N	ţU	0.9	0.90	13	JJ 50	0.03 <	1 3	∠1	9	J, 14	30	0.17	20	\$1	<b>~0.01</b>	12	000	100 <0	~20	1	<u>~0.01</u>	~10	44	~10	~1	70
116	2+00+00E 69+50N	5	0.5	0.91	15	85 <5	0.08 <	1 9	19	14	3.66	30	0.17	137	<1	<0.01	14	280	64 <5	<20	4	<0.01	<10	34	<10	<1	87
. +	2+00+00E 69+75N	<5		0.83		110 <5						30	0.20		•	< 0.01	12	350			-	<0.01	<10		<10		61
	2+00+00E 70+00N	-		1.09			0.07 <					- +			-	< 0.01	18		40 <5			<0.01	<10		<10		
		•			•		<b></b>	•	~~	, 🗸						-0.01		100			•		••			•	

.

<u> </u>	144.17	ריקקוויה	<u>~</u> u	<u> // //</u>	~3		Va /0	vu	<u></u>	<u>u u</u>	1 1 10 /	) <u>La</u>	<u>1119</u> /0		ниу	14cl /0	131		ານວນ	्रम्	<u></u>	11 /0	J	<u>, v</u>		-	44
<u>QC</u> Rep	DATA:																										,
1	1-26+00E 67+00N	15	<0.2	0.85	40	45 <5	0.05	<1	11	26 41	4.1	5 30	0.30	156	<1	<0.01	26	650	26 <5	<20	<1	<0.01	<10	20	10	2	57
10	1-26+00E 71+50N	40	0.6	0.60	20	45 <5	0.06	-		15 13			0.12	112			8	330	20 <5	<20	4	<0.01	<10	30		<1	31
19	1-34+00E 55+00N	35	<0.2	1.26	35	115 <5	0.44	<1	22	35 56	<b>4</b> .1	40	0.59	899	<1	<0.01	46	690	32 <5	<20	22	0.02	<10	25	<10	8	79
20	1-34+00E 55+50N	5	-	-	-		-	-	-	-	-		-			-	-	-		-		-	-	-	-	-	-
21	1-34+00E 56+00N	15	-	-	-		-	-	-	-	-		-	-	-	-	-	-		-		-	-	-	-	-	-
28	1-34+00E 59+50N	35	<0.2	0.81	50	65 <5	0.08	<1	15	20 34	<b>3.2</b>	2 40	0.28	502	<1	<0.01	29	370	28 <5	<20	5	<0.01	<10	13	<10	5	72
36	1-34+00E 63+50N	15	0.2	0.84	65	75 <5	0.70	<1	15	21 38	5 3.2	5 30	0.25	567	<1	<0.01	30	580	32 <5	<20	58	<0.01	<10	15	<10	4	64
45	1-34+00E 68+00N	5	0.2	1.08	25	100 <5	0.82	<1	19 ;	27 35	5 4.00	) 40	0.24	1098	<1	<0.01	23	650	36 <5	<20	52	0.01	<10	28	<10	4	82
53	2+00+00E 53+75N	55	-	-	-		-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-
54	2+00+00E 54+00N	15	1.4	1.19	45 ·	105 <5	0.96	<1	16 3	24 33	3 3.50	3 40	0.34	416	<1	<0.01	30	820	54 <5	<20	58	<0.01	<10	22	<10	5	78
63	2+00+00E 56+25N	15	1.2	1.24	25 ·	165 <5	1.34	<1	16 (	22 34	¥ 3.12	2 30	0.29	1587	<1	<0.01	28	1920	70 <5	<20	50	0.01	<10	16	<10	8	86
68	2+00+00E 57+50N	165	-	-	•		-	-	_	-	-		-	-	-	· •	-	-		-	-	-	-	-	-	-	-
71	2+00+00E 58+25N	20	0.3	0.81	25	100 <5	0.16	<1	8	20 16	3 2.8-	1 30	0.23	135	<1	<0.01	14	420	32 <5	<20	6	<0.01	<10	23	<10	1	50
80	2+00+00E 60+50N	10	0.9	1.63	20	90 <5	0,49	<1	19	33 100	4.0	50	0.29	911	<1	<0.01	36	1180	94 <5	<20	32	0.02	<10	23	<10	17	84
85	2+00+00E 61+75N	40	-	-	-		-	-	-	-	-		-	-	-		-	-		-		-	-	-	-	-	-
89	2+00+00E 62+75N	10	0.3	1.10	30	80 <5	0.10	<1	11 :	27 63	3 3.8	3 40	0.23	318	<1	<0.01	22	710	102 <5	<20	9	0.01	<10	26	<10	11	71
98	2+00+00E 65+00N	10	0.4	0.32	10	30 <5	0.28	<1	2	6 8	3 0.9	7 20	0.05	126	<1	<0.01	4	220	16 <5	<20	13	0.01	<10	15	<10	1	14
106	2+00+00E 67+00N	20	0.5	0.89	35	60 <5	0.15	<1	9 :	22 1	5 3.1:	3 30	0.21	169	<1	<0.01	19	420	60 <5	<20	9	0.01	<10	21	<10	1	56
115	2+00+00E 69+25N	•	0.9	1.00	10	35 <5	0.03	<1	5	21 1(	3.0	3 30	0.18	38	<1	<0.01	10	680	104 <5	<20	<1	<0.01	<10	22	<10	<1	49
Stan	dard:																										
GEO		135	1.4	1.63	60	145 <5	1.59	<1	19	63 8	3 3.5	7 <10	0.94	615	<1	0.02	30	670	22 <5	<20	46	0.09	<10	54	<10	8	69
GEO		140	1.5	1.64	55	145 <5	1.57	<1	19	62 8			0.95	602	<1	0.02	32	680	24 <5	<20	49	0.10	<10	64	<10	9	68
GEO		140	1.5	1.65		140 <5	1.58			62 8			0.95				30	680	26 <5				<10	60		9	64
GEO		140	1.5	1.71		140 <5	1.64	-		66 8			0.97	628	•		30	650	22 <5		49		<10	56		9	67

JJ/jm df/1019 XLS/04

> ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ICP CERTIFICATE OF . . . YSIS AK 2004-1020

INTERNATIONAL WAYSIDE GOLL (ES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0X 2R0

No. of samples received: 106 Sample type:Soll Project #: LOWHEE Shipment #:None Given Samples submitted by:J. McAllister

Et#. Tag # Aci Al% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Au (ppb) Mn Mo Na % Ni P PbSb Sn Sr TI% U V W Y Zn 1 2+02+00N 58+00E No Sample 2 2+02+00N 58+25E No Sample 3 2+02+00N 58+50E 10 0.7 1.17 20 55 <5 0.51 <1 18 25 44 3.64 30 0.38 794 <1 <0.01 32 730 60 <5 <20 22 0.01 <10 20 <10 16 77 4 2+02+00N 58+75E <5 3.2 1.18 15 135 <5 2.98 1 9 21 82 2.12 40 0.23 1253 <1 <0.01 40 1360 68 < 5 <20 136 0.01 <10 14 <10 27 63 5 2+02+00N 59+00E 0.5 0.69 20 55 70 <5 0.07 <1 7 18 14 130 330 66 <5 2 28 1 53 3.10 20 0.14 <1 <0.01 12 <20 0.01 <10 <10 8 2+02+00N 59+25E 10 0.4 0.87 0.20 366 40 15 90 <5 0.37 <1 9 20 17 3.33 30 <1 <0.01 11 440 46 <5 <20 24 0.02 <10 <10 3 69 7 2+02+00N 59+50E <5 0.7 1,13 30 130 <5 0.48 <1 18 26 30 3.71 30 0.25 1740 <1 <0.01 24 770 88 <5 <20 26 0.02 <10 29 <10 7 104 8 2+02+00N 59+75E <5 0.3 0.68 60 <5 7 17 13 20 <20 19 2 52 30 0.20 <1 2.84 0.15 149 <1 < 0.01 12 380 32 <5 11 < 0.01 <10 <10 9 2+02+00N 60+00E 15 <0.2 0.37 5 15 <5 0.03 2 20 0.02 46 <0.01 130 6 <5 <20 14 <1 11 <1 4 4 0.54 <1 <1 <1 <0.01 <10 <10 10 2+02+00N 60+25E 5 <0.2 0.85 30 45 <5 0.05 <1 10 24 19 20 0.19 244 <1 <0.01 17 560 48 <5 <20 3 < 0.01 <10 21 <10 1 -83 4.11 11. 2+02+00N 60+50E 10 <0.2 0.29 15 20 <5 0.10 <1 4 7 9 1.20 20 0.03 174 <1 < 0.01 5 220 10 <5 <20 4 0.01 <10 21 <10 <1 27 12 2+02+00N 60+75E 5 0.5 1.26 55 60 <5 0.67 <1 15 25 63 3.28 60 0.21 1473 <1 <0.01 25 1180 68 <5 <20 47 0.01 <10 21 <10 40 69 13 2+02+00N 61+00E <5 1.0 0.35 20 25 <5 2.22 1 4 7 20 0.84 20 0.09 174 <1 <0.01 11 860 12 <5 <20 145 <0.01 <10 5 <10 11 41 14 2+02+00N 61+25E 15 < 0.2 0.58 25 35 <5 0.10 <1 8 19 18 3.47 20 0.11 111 <1 < 0.01 14 340 26 <5 <20 7 0.01 <10 28 <10 1 53 15 2+02+00N 61+50E 0.5 27 5 0.44 40 30 <5 0.06 <1 9 19 17 3.64 20 0.12 261 <1 <0.01 13 390 30 <5 <20 2 0.02 <10 <10 2 53 16 2+02+00N 61+75E 20 <0.2 0.57 20 20 320 8 < 0.01 20 45 <5 0.16 <1 7 16 15 2.66 0.14 95 <1 <0.01 16 28 <5 <20 <10 <10 1 47 17 2+02+00N 62+00E 5 0.3 20 9 16 21 279 25 0.50 50 <5 0.16 <1 3.28 20 0.11 <1 <0.01 15 460 34 <5 <20 7 0.02 <10 <10 2 64 18 2+02+00N 82+25E <0.2 25 60 <5 0.14 <1 17 21 22 799 26 <5 0.74 3.54 40 0.16 <1 <0.01 16 660 32 < 5 < 20 9 0.01 <10 <10 5 65 19 2+02+00N 62+50E 5 0.3 0.37 10 <5 0.03 <1 38 7 1.25 0.05 73 3 300 10 <5 <20 13 10 20 <1 < 0.01 <1 <0.01 <10 <10 <1 15 20 2+02+00N 82+75E 10 0.2 0.71 30 35 <5 0.03 <1 8 25 17 4.35 30 0.19 249 <1 <0.01 11 1700 28 <5 <20 2 < 0.01 <10 28 <10 <1 44 21 2+02+00N 63+00E No Sample 22 2+02+00N 63+25E 2.5 <5 1.63 20 75 <5 1.06 <1 21 31 69 3.56 40 0.25 4364 <1 <0.01 35 1210 62 <5 <20 60 0.02 <10 22 <10 52 70 23 2+02+00N 63+50E 13 < 0.01 70 0.3 0.84 20 40 <5 0.20 <1 13 21 21 3.06 30 0.26 296 <1 <0.01 23 370 30 < 5 <20 <10 17 <10 4 52 24 2+02+00N 63+75E <5 1.0 1.76 20 55 <5 0.62 <1 22 32 66 3.52 90 0.30 2830 <1 <0.01 38 1320 40 <5 <20 28 0.01 <10 19 <10 66 64 25 2+02+00N 64+00E <5 <0.2 0.15 <5 10 <5 0.04 <1 <1 2 2 0.18 20 0.01 44 <1 <0.01 100 2 < 5 <20 <1 <0.01 2 4 1 <10 1 <10 26 2+02+00N 64+25E <5 <0.2 0.23 <5 0.03 <1 7 <10 <1 10 <5 1 3 3 0.32 20 0.01 52 <1 <0.01 160 4 < 5 <20 <1 <0.01 <10 6 1 27 2+02+00N 64+50E 25 <0.2 0.36 20 20 <5 0.05 <1 4 11 9 1.68 20 0.08 405 <1 <0.01 6 480 16 <5 <20 <1 <0.01 <10 28 <10 <1 20 28 2+02+00N 64+75E 5 <0.2 0.46 10 20 <5 0.02 <1 2 7 3 1.06 20 0.05 63 <1 <0.01 2 180 10 < 5 <20 <1 <0.01 <10 13 <10 <1 12 29 2+02+00N 65+00E 25 <0.2 0.76 25 35 <5 0.02 <1 8 17 13 2.75 30 0.16 455 <1 <0.01 10 490 38 <5 <20 <1 <0.01 <10 18 <10 1 41 30 2+02+00N 65+25E 1398 37 95 <5 0.3 1.55 25 85 <5 0.13 <1 29 33 49 5.90 90 0.33 <1 <0.01 52 740 102 <5 <20 12 < 0.01 <10 13 <10 31 2+02+00N 65+50E No Sample 32 2+02+00N 65+75E 10 0.2 1.16 45 45 <5 0.06 <1 18 23 38 3.57 30 0.27 438 <1 <0.01 31 500 80 <5 <20 4 < 0.01 <10 15 <10 3 98 33 2+02+00N 66+00E 15 0.3 0.22 5 20 <5 0.03 <1 2 3 3 0.35 20 0.02 109 <1 <0.01 2 230 8 < 5 < 20 <1 <0.01 <10 3 <10 <1 7 34 2+02+00N 66+25E 45 0.2 0.68 30 70 <5 0.19 <1 8 20 17 3.44 20 0.12 289 <1 <0.01 12 520 44 <5 <20 11 < 0.01 <10 24 <10 1 65 35 2+02+00N 66+50E 15 0.5 0.60 25 85 <5 0.21 <1 8 17 15 2.52 20 0.13 447 <1 <0.01 12 660 50 < 5 < 20 14 0.01 <10 20 <10 1 62

INTERNATIONAL WAYSIDE GOLD MINES LTD.

Page 1 ICP CERTIFICATE OF ANALYSIS AK 2004-1020

CONTECUI ABODATODVI TO

ECO TECH LABO⁷ RY LTD. 10041 Dattas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-673-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

Et #.	Tar	Au (ppb)	Ag	AI %	As	Ba Bi	Ca %	Cd	Co_C	r Cu	Fe %	L	%	Mn	Mo Na %	NI	P	Pb Sb	Sn	Sr	TI %	U	v	~	Y	Zn
36	2+02+00N	60	1.0	1.06	25	80 <5	0.42	<1	15 23	3 32	3.38	30	0.29	582	<1 <0.01	26	600	58 <5	<20	23	<0.01	<10	17	<10	4	88
37	2+02+00N 67+00E	30	2.3	1.41	30	115 <5	0.76	<1	20 29	3 41	4.64	20	0.18	746	<1 <0.01		1520	94 <5		46	0.01	<10		<10	8	97
38	2+02+00N 87+25E	10	3.8	0.52		80 <5	0.90				1.68	10	0.11	136	<1 <0.01		1170	26 <5	-		<0.01	<10		<10	2	49
39	2+02+00N 87+50E	15	0.3	0.94	-	55 <5			20 2		3.80	30	0.42	685	<1 <0.01	33	690		<20	27	0.01	<10		<10	7	• •
40	2+02+00N 87+75E	<5	0.4	1.23	-	160 <5	0.79					20	0.27	657	<1 <0.01	26	890	48 <5		52	-	<10		<10	7	80
41	2+02+00N 68+00E	No Sample																								
42	2+02+00N 68+25E	No Sample																								
43	2+02+00N 68+50E	<5	1.1	1.67	20	125 <5	0.71	<1	17 36	3 45	4.46	40	0.31	533	<1 <0.01	32	750	54 <5	<20	34	0.01	<10	30	<10	20	77
44	2+02+00N 68+75E	15		1.17	10	100 <5	0.38		10 23		2.98		0.22	851	<1 <0.01	20	370		-	÷	<0.01	<10		<10		172
45	2+02+00N 69+00E	<5	1.8	1.19		70 <5	0.37				3.10	30	0.23	872	<1 <0.01	21					<0.01	<10		<10		417
46	2+02+00N 69+25E	<5	0.5	0.88	10	60 <5	0.12	د1	A 10	13	2.96	20	0.15	171	<1 <0.01	12	280	66 <5	<20	3	<0.01	<10	31	<10	2	7 <del>6</del>
47	2+02+00N 69+50E	No Sampie					0.12		• •		2.00	~~	0.10	•••		16	200	00.00	-20		10101	-19		~ 10	*	
48	2+02+00N 69+75E	5	0.2	0.70	40	80 <5	0.08	-1	9 1	7 40	2.77	20	0.15	118	<1 <0.01	15	210	44 <5	<20		<0.01	<10	22	<10	4	67
49	2+02+00N 70+00E	No Sample	0.2	0.70	10	00 -0	0.00		9.13		£	4V	0.10	110	1 -0.01	10	¥ 10	44 -0	~ <b>Z</b> Ų	-	-0.01	-10	22	10	•	07
50	1+32+00E 56+00N	•	-02	0.00	20	55 /5	0.14	-1	10.00	:	3.24	20	0.22	200		22	400	06 45	~20		-0.04	-46	50	-40	~	5 e
50	17327002 30700N	30	<0.2	0.86	30	55 <5	0.11	< I	13 23	23	3.31	20	0.32	366	<1 <0.01	22	420	26 <5	<20	4	<0.01	<10	20	<10	4	55
51	1+32+00E 58+50N	45	0.5	1.15	35	100 <5	0.36	<1	17 28	3 38	3,62	30	0.35	961	<1 <0.01	35	520	28 <5	<20	21	<0.01	<10	21	<10	10	71
52	1+32+00E 57+00N	30	0.2	D.87	45	45 <5	0.19	<1	13 24	4 24	3.45	30	0.30	277	<1 <0.01	22	460	24 <5	<20	8	<0.01	<10	19	<10	1	66
53	1+32+00E 57+50N	25	0.2	0.90	40	65 <5	0.05	<1	8 20	5 19	3.82	30	0.23	55	<1 <0.01	13	530	34 <5	<20	3	<0.01	<10	23	<10	<1	
54	1+32+00E 58+00N	35	0.3	1.15	40	55 <5	0.06	<1			4.03	30	0.36	324	<1 <0.01	30	390	44 <5	<20	3		<10		<10		72
55	1+32+00E 58+50N	30	0.4	0.85	30	55 <5	1.29					20	0.27	578	<1 <0.01	28	700	22 <5			<0.01	<10		<10	7	
56	1+32+00E 59+00N	10	0.3	0.82	45	40 <5	0.03	<1	10 2	3 21	3.63	30	0.19	399	<1 <0.01	15	480	20 <5	<20	2	<0.01	<10	34	<10	<1	51
57	1+32+00E 59+50N	10	0.5	1.14	35	60 <5	0.14		16 2			20	0.30	254	<1 <0.01	25	540	30 <5	<20	11		<10		<10	3	
58	1+32+00E 60+00N	10	0.6	0.66		140 <5	0.15			3 14	1.99	20	0.14	344	<1 <0.01	-9	290	10 <5		15	-	<10		<10	<1	-
59	1+32+00E 80+50N	10	0.2	0.85		45 <5	0.07	-	9 2		3.47	30	0.27	114	<1 <0.01	17	250	14 <5	<20	3		<10	-	<10	- <1	
60	1+32+00E 61+00N	35	0.2	0.92		60 <5						20	0.33	638	<1 <0.01	28		22 <5		_	< 0.01					63
		33	U.4	0.34	30	00 40	0.77	~1	17 2	2 32	3.14	20	0.35	000	<1 <0.01	20	530	22 -5	~20	42	<b>NO.01</b>	<10	10	<10	5	03
61	1+32+00E 81+50N	110	0.3	1.03	50	65 <5	0.20	<1	12 2	5 26	4,29	20	0.22	214	<1 <0.01	21	480	30 <5	<20	15	<0.01	<10	27	<10	2	69
62	1+32+00E 62+00N	30	0.6	1.25	40	105 <5	1.13	<1			3.69	30	0.31	1362	<1 <0.01	40	830	30 <5	<20	76	<0.01	<10	19	<10	16	74
63	1+32+00E 62+50N	80	0.2	0.69	45	50 <5	0,12	<1	14 1	9 30	3.26	30	0,21	560	<1 <0.01	25	400	22 <5	<20	6		<10	15	<10	4	
64	1+32+00E 83+00N	160	0.4	0.85	35	50 <5	0.12				3.17	20	0.19	428	<1 <0.01	25	330	20 5	-		<0.01	<10		<10	4	
65	1+32+00E 63+50N	55	0.3	0.94	75	75 <5					3.83	20	0.29	817	<1 <0.01	30	540	28 <5			<0.01	<10		<10	6	
66	1+32+00E 64+00N	No Sample	1																							
67	1+32+00E 64+50N	No Sample																								
68	1+32+00E 65+00N	10	0.6	0.97	30	95 <5	1.71	<1	15 2	0 41	2.93	20	0.27	1596	<1 <0.01	34	900	24 <5	<20	96	<0.01	<10	16	<10	8	75
69	1+32+00E 65+50N	85	<0.2	0.33	25	35 <5			5			20	0.05	88	<1 <0.01	7			<20		<0.01	<10		<10	1	
70	1+32+00E 66+00N	5	1.4	1.01	25	90 <5		•				20	0.19		<1 <0.01	24	960	26 <5				<10		<10		60
71	1+32+00E 66+50N	<5	0.9	1.22	25	155 <5	1.59	<1	17.2	4 34	3.07	20	0.24	4087	<1 <0.01	30	1100	24 <5	<20	97	0.02	<10	20	<10	6	71
72	1+32+00E 67+00N	90	1.2		-	185 <5						10	0.20	3661	<1 <0.01						0.01	<10		<10	5	75
73	1+32+00E 67+50N	25	<0.2			40 <5						30	0.18	153	<1 <0.01			12 <5			<0.01	<10		<10	1	44
74	1+32+00E 68+00N	<5	0.2			70 <5	- • • •	-				20		583	<1 <0.01						<0.01	<10		<10	Å	
75	1+32+00E 68+50N	<5	0.2			70 <5							0.36		<1 <0.01						< 0.01	<10	-	<10	8	
		-0										20					-					-10			_	
76	1+32+00E 69+00N	<5	0.2			45 <5						20		546	<1 <0.01		710				<0.01	<10		<10		64
77	1+32+00E 69+50N	<5	0.6			130 <5						30	0.16	780	<1 <0.01		480				0.01	<10		<10	8	
78	1+32+00E 70+00N	<5	0,4	1.28		85 <5						30		841	<1 <0.01		710	28 <5	<20	28	0.01	<10	29	<10	8	71
79	1+32+00E 70+50N	<5	0.4	1.20	25	75 <5	0.81	<1	17.2	9 32	4.07	20	0,35	447	<1 <0.01	26	560	26 <5	<20	29	<0,01	<10	31	<10	- 4	65
60	1+32+00E 71+00N	<5	0.4	1,10	20	95 <5	0.53	<1	18 2	7 31	3.78	20	0.35	635	<1 <0.01	25	620	26 <5	<20	26	<0.01	<10	26	<10	6	72

ECO TECH LABORATORY LTD.

1

Et #.	Tag,"	Au (ppb)	Ag	AI %_	As	Ba <u>Bl</u>	Ca <u>%</u> C	d C	o Cr	Cu	Fe %	Ŀ	%	Mn	Mo Na	a %	NI	P	Pb Sb	Sn	Sr_1	ri %	U	v		Y	Zn
81	1+32+00E ON	<5	0.8	1.34	30	110 <5	1.31 <	1 1	9 30	60	3.95	3(	33	1638	<1 <0	0.01	43 ⁴	1150	30 <5	<20	69 (	0.01	<10	25	47	13	57
82	1+32+00E00N	<5	0.4	1.13	35	75 <5	0.71 •	:1 1	9 28	46	4.31	30	J.36	672	<1 <0	0.01	34	530	32 <5	<20	37 <	0.01	<10	23	<10	9	57
83	1+32+00E 72+50N	<5	0.3	1.29	30	70 <5	0.30	<1 2	2 30	52	4.61	30	0.35	902	<1 <0	0.01	36	520	32 <5	<20	20 <	0.01	<10	25	<10	10	70
84	1+32+00E 73+00N	<5	0.3	0.95	30	50 <5	0.47 <	:1 2	1 25	37	4.42	20	0.35	489	<1 <0	0.01	27	440	26 <5	<20	27 <	0.01	<10	19	<10	4	62
85	1+32+00E 73+50N	<5	0.4	1.16	25	70 <5	0.75 <	:1 1	5 25	39	4.10	30	0.31	659	<1 <0		27	710	24 <5	<20	45 <	0.01	<10	24	<10	10	61
66	1+32+00E 74+00N	<5	0.4	1.25	25	45 <5	0.25 <	(1 1	9 28	29	4.36	30	0.37	358	<1 <0	0.01	23	500	28 <5	<20	13 <	0.01	<10	25	<10	8	61
87	1+40+00E 54+50N	No Sampk	9																								
88	1+40+00E 55+00N	95	0.3	0.44	25	25 <5	0.05 <		5 13		2.22	20	0.11	134	<1 <0	0.01	9	550		<20		0.01	<10		<10	<1	29
89	1+40+00E 55+50N	25	0.3	0.82	45	45 <5	0.38 <			36	3.67	30	0.32	705	<1 <0	0.01	31	630	30 <5	<20	20 <	0.01	<10	18	<10	6	74
90	1+40+00E 56+00N	15	0.7	1.09	35	90 <5	0.96 <	:1 1	5 24	32	3.47	20	0.30	905	<1 <0	0.01	27	760	28 <5	<20	42 <	0.01	<10	22	<10	7	75
91	1+40+00E 56+50N	35	1.0	0.90		20 <5			6 22		3.68	20	0.15	1388	<1 <0		21	580		<20	_	0.01	<10		<10	6	61
92	1+40+00E 57+00N	15	0.6	0.82		60 <5	0.67			24	3.57	20	0.24	299		0.01	19	570		<20		0.01	<10	22	<10	4	70
93	1+40+00E 57+50N	15	1.0	1.12		105 <5				36	2.97	20	0.28	1338	-	0.01		1300	24 <5	<20		0.01	<10		<10	10	94
94	1+40+00E 58+00N	10	0.3	1.08	-	65 <5	0.34 <		8 25		3.79	20	0.26	455		0.01	24	440		<20		0.01	<10	-	<10	5	72
95	1+40+00E 58+50N	20	1.3	0.64	20	55 <5	1.43 •	:1	7 14	28	1.60	20	0.13	420	<1 <(	0.01	16	450	14 <5	<20	87 <	:0.01	<10	16	<10	5	41
96	1+40+00E 59+00N	25	0.2	0.49	30	50 <5	0.10		•	14	1.75	20	0.09	171	<1 <(		9	210	12 <5	<20	-	<0.01	<10	19		2	30
97	1+40+00E 59+50N	15	0.6	0.69	25	60 <5	0.07 <	<1	7 19	17	2.93	20	0.17	308		0.01	12	400	18 <5	<20	1 <	0.01	<10	21	<10	<1	35
98	1+40+00E 60+00N	85	<0.2	0.45	35	40 <5			5 11		1.64	30	0.09	120	<1 <(	0.01	9	260	10 <5	<20	2 <	:0.01	<10		<10	<1	26
99	1+40+00E 60+50N	10	0.4	1.07	40	65 <5	****			43	3.74	30	0.31	875		0.01	35	550	26 <5	<20	17 <	<0.01	<10	18	<10	9	68
100	1+40+00E 61+00N	300	0.3	0.54	35	45 <5	0.09	<1 1	11 18	21	3.24	20	0.15	628	<1 <(	0.01	15	400	16 <5	<20	3 <	0.01	<10	22	<10	1	49
101	1+40+00E 61+50N	15	0.3	1.07	40	55 <5	0.12	<1 1	19 25	29	3.85	30	0.28	607	<1 <(	0.01	28	430	28 <5	<20	10 <	0.01	<10	16	<10	9	66
102	1+40+00E 62+00N	50	1.8	1.03	35	40 <5				33	3.84	30	0.26	317		0.01	28	360	28 <5	<20		0.01	<10	16	<10	9	55
103	1+40+00E 62+50N	25	0.4	0.54	35	55 <5				16	3.06	20	0.18	242		0.01	15	320	14 <5	<20	-	<0.01	<10	. +	<10	1	43
104	1+40+00E 63+00N	10	0.8	1.05	25	60 <5				25	3.83	20	0.23	616		0.01	21	560	26 <5	<20	+	<0.01	<10		<10	3	59
105	1+40+00E 63+50N	20	<0.2	0.49	15	45 <5	0.04		4 10	8	1.48	20	0.10	119		0.01	6	200	8 <5	<20		<0.01	<10	21	<10	<1	22
106	1+40+00E 64+00N	25	0.4	0.89	30	55 <5	0.10			22	3.39	20	0.20	396		0.01	16	340	20 <5	<20		<0.01	<10	25	<10	2	52
Repe																											
3	2+02+00N 58+50E	10		-	-	40	0.00	-			4 00	-	-	-	-	-		-	 	-00	-	-0.04					-
10	2+02+00N 60+25E	<5	<0.2		35	45 <5			10 24		4.23	30	0.20	255		0.01	16	590	52 <5	<20	_	<0.01	<10	22	<10	2	68
19	2+02+00N 62+50E	10	<0.2		-	15 <5		<1	38	6	1.18	20	0.05	68	<1 <		3	290	10 <5	<20	-	<0.01	<10	12		<1	13
28	2+02+00N 64+75E	-	0.3	0.47	10	20 <5			2 7	3	1.04	20	0.05	65		0.01	2	180	10 <5	<20		<0.01	<10	13		1	12
36	2+02+00N 86+75E	-	1.0	1.05	30	75 <5	0.39	<1	14 23	31	3.44	30	0.28	563	<1 <	0.01	28	600	60 <5	<20	21 ◄	<0.01	<10	18	<10	4	90
37	2+02+00N 67+00E	15			-			-		-		~~~	-	-	-		-	-			-		-	-	•	-	-
45	2+02+00N 69+00E	5	1.6	1.13	10	65 <5	0.34			26	2.96	30	0.22	645		0.01	21	430	1438 <5	<20		<0.01	<10	26	<10		397
54	1+32+00E 58+00N	-	0.3	1.15	40	55 <5	0.06	< <u>1</u> 1	14 27	33	3.98	30	0.37	323	<1 <	0.01	28	390	34 <5	<20	4 4	<0.01	<10	19	<10	3	69
58	1+32+00E 60+00N	15		-	-		• • •	-		-	-	-	-		-	-		-			-			-		-	
63	1+32+00E 62+50N	-	0.2	0.66	45	50 <5	0.11	<1	14 19	30	3.28	20	0.21	542	<1 <	0.01	25	380	20 <5	<20	6 -	<0.01	<10	15	<10	4	56
65 74	1+32+00E 63+50N	15	-	-	-	488 -5	-	-		-	-	-	-		- - 4	-	-	-		-	-	-	-	-		-	-
71	1+32+00E 66+50N	حر	0.9	1.18	20	155 <5	1.64	<b>N</b> 1	17 24	34	3.13	20	0.23	4104	<1 <	0.01	30	1060	26 <5	<2U	96	0.02	<10	20	<10		71
74	1+32+00E 68+00N	<5	-	4 04	-	05 -5	0.50	-	17 00	-	2 00		- 	-		-	- 	-	- • 24 -=		- 95 -			3e		-	-
80 82	1+32+00E 71+00N	-	0.3	1.04	20	95 <5	0.50	SE .	17 20	30	3.66	20	0.33	598	<1 <	0.01	24	610	24 <5	<20	25 <	<0.01	<10	25	<10	9	70
83 89	1+32+00E 72+50N 1+40+00E 55+50N	20	• • •	- ^ •^	- 40	 AE -E	0 27		17 22	- 25	2 50	20	- 1 24	840		-	20	640	20 -5	-20	10 -	-	~10	40	<10	6	- 73
98 98	1+40+00E 60+00N	40	0.3		40	45 <5			5 10		3.59	20	0.31	649 104	<1 <		30	640	30 <5 8 <5			<0.01	<10		<10	4	
106	1+40+00E 64+00N	•				40 <5 55 <5						20 20	0.08	104 458	<1 <		7 16	260 340	24 <5			<0.01 <0.01	<10 <10		<10	2	25 53
100	ITTUTUE OFFUUN	-	0.4	0.92	20	<b>00 &lt;0</b>	0.10	<b>~</b> F	19 22	24	3.03	20	0.20	430	<1 <	0.01	16	<b>34</b> U	24 SO	~20	0 4	-0.01	-10	20	NIV	2	00

INTERNATIONAL WAYSIDE GOLD MINES LTD.

.

ICP CERTIFICATE OF ANALYSIS AK 2004-1020

ECO TECH LABORATORY LTD.

÷

6L #.	1451 14	wa (hba)	Ay	AI 70	AS	ра р	I LA	% UO	60 6	r Gu	F <b>8</b> %	La	~~q %	Mn	Мо	Na %	Ni	<u> </u>	PbSb	Sn	Sr	11 %	U	<u>v</u>	, ···,	<u> </u>	Ľ٦
<b>Standard:</b> GEO '04 GEO '04 GEO '04		135 135 140	1.5 1.5	1.61	60	145 <5 140 <5	1.5	58 <1		9 88	3.54	<10	0.92	619 617	<1 <1	0.02		640 630	24 <5 24 <5	<20	40	0.10	<10 <10	65	• •	8	76 75
GEO '04 GEO '04		140 135	1.5 1.5	1.59 1.64		145 <5 150 <5		58 <1 30 <1	18 58 19 61				-	613 627	<1 <1	0.02 0.02	31 32	610 620	22 5 22 <5	<20 <20	42 43	0.09 0.09	<10 <10	61 65	<10 <10	8 8	73 74

JJ/jm df/1020 XLS/04 ECO TECH LABORATORY LTD. Jutta Jeslouse B.C. Certified Assayer . 1

•,

## ICP CERTIFICA.

## ECO TECH L ATORY LTD. 10941 Dalles L KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

.

. مالية المراجع

INTERNATIONAL WA 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

YOLD MINES LTD

No. of samples received: 71 Sample type:Soil Project #: LOWHEE Shipment #: None Given Samples submitted by:T. McDonnell

Values in ppm unless otherwise reported

	Tag #	Au(ppb)	Ag	<u>AI %</u>	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	Lai	Vig %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	_ ປ	V	w	Y	Zn	
1	1+36+00E 54+50N	15	1.1	1.41	65	80	<5	0.37	<1	15	33	33	3.84	40	0.44	483	<1	<0.01	33	520	22	<5	<20	25	0.02	<10	37	<10	15	59	
2	1+38+00E 55+00N	15	0.4	1.80	20	125	<5	0.15	<1	14	51	23	4.81	30	0.68	199	<1	<0.01	35	450	20	<5	<20	- 4	0.03	<10	45	<10	2	65	
3	1+36+00E 55+50N	275	0.4	0.58	50	70	<5	0.19	<1	5	15	7	2.30	30	0.15	208	<1	<0.01	8	330	18	<5	<20	11	0.01	<10	26	<10	1	26	
4	1+38+00E 56+00N	85	0.5	0.55	35	35	<5	0.03	<1	4	15	7	2.29	20	0.09	65	<1	<0.01	6	760	14	<5	<20	1	<0.01	<10	23	<10	<1	17	
5	1+36+00E 56+50N	160	0.3	0.76	30	30	<5	0.15	<1	9	25	14	4.13	30	0.23	352	<1	<0.01	15	610	16	<5	<20	6	0.01	<10	24	<10	<1	39	
6	1+36+00E 57+00N	20	0.9	0.76	40	55	<5	0.3 <del>9</del>	<1	7	21	17	3.24	30	0.17	458	<1	<0.01	14	840	22	<5	<20	24	<0.01	<10	<b>29</b>	<10	<1	41	
7	1+38+00E 57+50N	30	0.3	1.09	35	65	<5	0.05	<1	13	26	24	3.74	30	0.26	487	<1	<0.01	20	610	26	<5	<20	- 4	<0.01	<10	23	<10	5	67	
8	1+36+00E 58+00N	25	0.4	1.14	35	65	<5	0.36	<1	17	27	26	3.81	30	0.30	686	<1	<0.01	26	690	28	<5	<20	27	<0.01	<10	21	<10	8	70	
9	1+36+00E 58+50N	65	1.0	1.11	50	70	<5	0.08	<1	16	27	31	3.83	30	0.25	579	<1	<0.01	24	760	26	<5	<20	12	0.01	<10	22	<10	9	70	
10	1+36+00E 59+00N	25	1.3	1.71	55	125	<5	0.41	<1	22	35	51	5.04	40	0.31	1394	<1	<0.01	40	1290	42	<5	<20	30	0.01	<10	27	<b>&lt;10</b>	14	105	
11	1+36+00E 59+50N	100	0.3	0.45	50	35	<5	0.11	<1	6	14	16	2,38	30	0.10	155	<1	<0.01	11	400	14	<5	<20	6	0.01	<10	24	<10	1	37	
12	1+36+00E 60+00N	60	0.4	1.08	40	65	<5	0.58	<1	17	26	39	3.75	30	0.34	738	<1	<0.01	33	610	26	<5	<20	30	<0.01	<10	18	<10	7	77	
13	1+36+00E 60+50N	15	0.5	1.01	25	75	<5	0.85	<1	11	24	28	3.36	30	0.26	303	<1	<0.01	22	670	22	<5	<20	50	0.01	<10	23	<10	6	66	
14	1+36+00E 61+00N	35	0.5	0.94	40	70	<5	0.71	<1	17	22	39	3.38	20	0.26	614	<1	<0.01	31	600	26	<5	<20	63	<0.01	<10	17	<10	5	59	
15	1+36+00E 61+50N	15	0.3	0.97	30	55	<5	0.37	<1	12	26	29	4.43	30	0.27	180	<1	<0.01	22	370	28	<5	<20	32	<0.01	<10	27	<10	4	54	
16	1+36+00E 62+00N	30	0.3	0.93	25	60	<5	0.06	<1	8	22	17	3.34	20	0.23	60	<1	<0.01	14	350	20	<5	<20	6	<0.01	<10	24	<10	<1	43	•
17	1+36+00E 62+50N	30	0.9	1.16	35	60	<5	0.33	<1	15	27	34	3.84	30	0.33	526	<1	<0.01	28	610	26	<5	<20	23	<0.01	<10	19	<10	7	62	÷
18	1+36+00E 63+00N	30	1.3	1.46	40	110	<5	0.87	<1	18	31	52	4.46	30	0.26	1288	<1	<0.01	36	1150	40	<5	<20	72	0.01	<10	22	<10	15	72	
19	1+36+00E 63+50N	20	0.3	0.69	30	45	<5	0.08	<1	6	18	20	3.00	30	0.12	64	<1	<0.01	13	300	20	<5	<20	9	<0.01	<10	26	<10	<1	42	
20	1+36+00E 64+00N	10	0.3	1.00	110	80	<5	0.68	<1	16	23	35	3.51	30	0.28	669	<1	<0.01	29	470	28	<5	<20	58	<0.01	<10	18	<10	6	68	
21	1+38+00E 64+50N	5	0.3	0.79	95	75	<5	2.27	<1	12	18	37	2.59	20	0.24	718	<1	<0.01	30	930	20	<5	<20	161	<0.01	<10	12	<10_	. 6	60	
22	1+36+00E 65+00N	15	0.3	0.65	40	150	<5	0.11	<1	8	15	23	2.57	30	0.14	162	<1	<0.01	16	240	16	<5	<20	16	<0.01	<10	22	<10	1	53	
23	1+36+00E 65+50N	15	0.3	1.02	60	60	<5	0.32	<1	19	24	41	3.79	30	0.33	762	<1	<0.01	32	630	30	<5	<20	25	<0.01	<10	18	<10	6	71	
24	1+36+00E 66+00N	5	0.5	1.20	45	70	<5	0.89	<1	17	25	45	3.71	30	0.36	788	<1	<0.01	38	880	30	<5	<20	58	<0.01	<10	19	<10	8	77	
25	1+36+00E 66+50N	5	0.6	1.22	35	75	<5	0.48	<1	15	26	34	3.85	30	0.34	601	<1	<0.01	30	640	26	<5	<20	34	<0.01	<10	20	<10	6	76	
26	1+36+00E 67+00N	10	0.5	1.58	40	115	<5	0.29	<1	20	32	36	5.04	30	0.33	710	<1	<0.01	37	710	32	<5	<20	21	<0.01	<10	24	<10	4	97	•
27	1+38+00E 67+50N	10	0.6	0.87	30	40	<5	0.24	<1	9	18	27	2.85	30	0.14	188	<1	<0.01	14	400	20	<5	<20	18	<0.01	<10	29	<10	3	40	
28	1+36+00E 68+00N	15	0.8	1.45	45	110	<5	0.80	<1	18	31	48	4,55	30	0.32	684	<1	<0.01	34	1080	34	<5	<20	64	<0.01	<10	25	<10	10	95	
29	1+36+00E 68+50N	<5	0.4	1.16	30	100	<5	0.35	<1	13	25	28	3.94	30	0.26	229	<1	<0.01	21	520	28	<5	<20	31	<0.01	<10	29	<10	3	63	
30	1+36+00E 69+00N	<5	0.3	0.90	40	60	<5	0.13	<1	10	27	25	4,55	30	0.22	152	<1	<0.01	19	400	22	<5	<20	13	0.01	<10	31	<10	<1	53	

Et #.	Te~ ~	Au(ppb)	Ag	<u>AI %</u>	As	Ba	Bi	Ca <u>%</u>	Cd	Co	Cr	Cu	۳ ۲ <u>.</u>	Lal	Mg <u>%</u>	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	_,	v	W	Y	Zn
31	1+28+00 .00N	No Sample														· · ·														
32	1+28+00 _+50N	No Semple																												
33	1+28+00E 60+00N	No Sample																												
34	1+28+00E 60+50N	No Sample																												
35	1+28+00E 61+00N	No Sample																												
	1+28+00E 61+50N	No Sample																												
37	1+28+00E 62+00N	<5	0.3	0.71	30	35	<5	0.06	<1	6	17	16	2.59	30	0.18	146	<1	<0.01	11	530	16	<5	<20	<1	<0.01	<10	24	<10	1	37
38	1+28+00E 62+50N	<5	0.3	1.24	30	75	<5	0.48	<1	19	33	43	3.79	30	0.49	574	<1	<0.01	36	600	26	<5	<20	36	0.02	<10	27	<10	7	70
	1+28+00E 63+00N	70	0.2	0.96	35	35	<5	0.04	<1	7	25	15	3.88	20	0.22	58	<1	<0.01	13	440	18	<5	<20	4	<0.01	<10	26	<10	<1	36
40	1+28+00E 63+50N	45	0.4	1.14	30	50	<5	0.05	<1	11	29	29	4.07	30	0.37	158	<1	<0.01	23	420	22	<5	<20	1	<0.01	<10	23	<10	2	60
• •	1+28+00E 64+00N	20	0.5	1.21	35	85	<5	0.99	<1	18	30	42	3.86	30	0.38	961	<1	<0.01	33	880	30	<5	<20	72	0.01	<10	24	<10	11	72
	1+28+00E 84+50N	No Sample																												1
	1+28+00E 65+00N	50	0.4	1.55	25	105	-	1.19	<1	20	41	47	4.26	40	0.46	1057		<0.01	42	860	34	<5	<20	95	0.03	<10	35	<10	23	64
	1+28+00E 65+50N	5	0.8	1.72	30	165	<5	1.12	<1	22	44	75	4.56	40	0.51	2378	<1		47	730	32	<5	<20	94	0.02	<10	39	<10	21	82
45	1+28+00E 66+00N	5	0.2	1.39	10	140	<5	0.14	<1	14	45	30	4.19	30	0.57	305	<1	<0.01	29	410	28	<5	<20	4	0.06	<10	47	<10	4	70
46	1+28+00E 66+50N	5	0.2	1.24	30	80	<5	0.39	<1	20	32	36	4.17	30	0.43	633	<1	<0.01	29	660	34	<5	<20	21	<0.01	<10	27	<10	6	73
47	1+28+00E 67+00N	5	0.2	1.47	15	95	<5	0.39	<1	22	38	46	4.34	50	0.62	678	<1	<0.01	39	550	30	<5	<20	29	0.02	<10	30	<10	25	70
48	1+28+00E 67+50N	5	0.3	0.49	20	40	<5	0.11	<1	4	11	9	1.50	20	0.08	237	<1	<0.01	7	350	10	<5	<20	5	<0.01	<10	22	<10	1	23
49	1+28+00E 68+00N	<5	0.5	1.29	30	100	<5	0.53	<1	20	32	42	4.21	30	0.43	1142	<1	<0.01	33	760	30	<5	<20	23	0.01	<10	28	<10	7	75
50	1+28+00E 68+50N	270	<0.2	0.62	15	30	<5	0.23	<1	6	17	13	2.47	30	0.17	113	<1	<0.01	11	500	14	<5	<20	8	0.03	<10	33	<10	3	30
51	1+28+00E 69+00N	40	0.2	0.48	20	60	<5	0.05	<1	5	12	9	1.89	20	0.09	212	<1	<0.01	7	250	14	<5	<20	2	0.02	<10	31	<10	<1	25
	1+28+00E 69+50N	15	0.4	0.60	20	90	<5	0.97	<1	8	16	19	2.24	20	0.16	680	<1		15	670	16	<5	<20	49	0.01	<10	25	<10	2	47
	1+28+00E 70+00N	10	0.7	0.98	25	60	<5	0.56	<1	12	24	23	3.46	20	0.23	444	<1		18	610	22	<5	<20	28	0.01	<10	29	<10	3	59
	1+28+00E 70+50N	5	0.4	1.20	30	95	<5	0.47	<1	15	28	31	3.53	30	0.28	1187	<1		23	830	26	<5	<20	25	0.01	<10	31	<10	7	82
	1+28+00E 71+00N	No Sample	•••			•••	•		-		-•						-			••••		-		_		••	•		-	
58	1+44+00E 54+50N	15	1.0	1.56	35	105	<5	0.56	<1	20	32	41	4.50	30	0.30	816	~1	<0.01	36	900	36	<5	<20	25	<0.01	<10	25	<10	11	70
	1+44+00E 55+00N	10	0.9	1.30	35	95	<5	0.90	<1	17	28	60	4.04	40	0.30	825	•	<0.01	39	830	32	<5	<20			<10	25		18	70
58	1+44+00E 55+50N	5	0.5	0.98	30	35 75	<5	1.90	<1	15	23	37	3.14	20	0.28			<0.01	29	990	26	<5	<20		<0.01	<10	15		8	81
59	1+44+00E 58+00N	<5	<0.2	0.95	45	55	<5	0.25	<1	13	26	33	4.41	30	0.29	312		<0.01	25	320	24	<5	<20	_	<0.01	<10	26		3	66
60	1+44+00E 58+50N	<5	1.1	0.73	30	40	<5	0.04	<1	7	20	19	3.23	20	0.14	132	<1		12	460	22	<5	<20	2		<10	26		<1	35
00		77	1.1	0.70	00	-0	-0	0.04	-1	'	20	17	0.40	20	<b>V</b> . 14	1JZ		-0.01	1.6.	400	**	~~	~60	-	-0.03	-10	20	-10	-	~
61	1+44+00E 57+00N	<5	0.2	0.64	30	30	<5	0.03	<1	6	16	13	2.33	30	0.17	233	<1	<0.01	11	680	10	<5	<20	-	<0.01	<10	21	• -	1	35
62	1+44+00E 57+50N	<5	0.6	1.05	35	35	<5	0.02	<1	10	27	20	4.19	30	0.27	304	<1	<0.01	16	630	16	<5	<20	2	<0.01	<10	- 24	<10	1	55
63	1+44+00E 58+00N	15	0.3	0.83	35	30	<5	0.02	<1	8	23	18	3.64	30	0.23	221	<1	<0.01	14	630	18	<5	<20	1	<0.01	<10	20			41
64	1+44+00E 58+50N	10	<0.2	0.35	10	10	<5	0.03	<1	2	6	6	1.01	30	0.04	104	<1	<0.01	4	480	4	<5	<20	<1	<0.01	<10	- 14		<u>, &lt;1</u>	- 14 -
65	1+44+00E 59+00N	<5	0.5	0.86	30	40	<5	0.03	<1	11	25	19	4.33	30	0.20	861	<1	<0.01	15	1020	28	<5	<20	<1	<0.01	<10	28	<10	1	45
66	1+44+00E 59+50N	5	1.4	0.69	25	20	<5	0.02	<1	4	16	12	2.46	20	0.13			<0.01	9	450	18	<5	<20		<0.01	<10	29			26
67	1+48+00E 60+00N	<5	0.6	1.05	25	95	<5	0.11	<1	15	26	24	3.99	30	0.28			<0.01	16	740	26	<5	<20	6		<10	29		2	59
68	1+48+00E 54+50N	<5	0.4	0.89	35	35	<5	0.03	<1	9	25	17	3.78	30	0.28	300		<0.01	14	750	16	<5			<0.01	<10	31			45
69	1+48+00E 55+00N	10	0.3	1.11	35	35	<5	0.02	<1	10	32	19	4.82	30	0.35		<1		17	830	18	<5			<0.01	<10	25			53
70	1+48+00E 55+50N	<5	0.7	0.91	30	40	<5	0.02	<1	8	26	13	3.85	30	0.24	274	<1		13	740	18	<5	<20	_	<0.01	<10	31		<1	37
71	1+48+00E 56+00N	<5	0.2	0.55	20	30	<5	0.04	<1	3	11	5	1.68	20	0.10	157	<1	<0.01	6	800	8	<5	<20	2	<0.01	<10	31	<10	1	16

ECO TECH LABORATORY LTD.

00	DATA:																							<u></u>							هنتوسنه
Rep	eet:																										- 4				
Ĵ	1+36+06	.+50N	15	1.1	1.41	60	80	<5	0.38	<1	17	35	33	د	40	0.44	478	<1	<0.01	33	560	22	<5	<20	26	0.02	<10	36	<10	15	61
2	1+36+00E	55+00N	10	-	-	-	•	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-		•
10	1+36+00E 8	59+00N	-	1.3	1.72	55	125	<5	0.42	<1	22	36	52	5.10	40	0.32	1415	<1	<0.01	43	1330	42	<5	<20	31	0.01	<10	28	<10	14	105
18	1+36+00E	52+00N	10	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-				
19	1+36+00E 6	33+50N		0.3	0.66	30	45	<5	0.08	<1	6	17	19	2.94	20	0.11	56	<1	<0.01	11	290	22	<5	<20	10	<0.01	<10	26	<10	<1	42
23	1+36+00E 6	35+50N	15	-			-	•		-	-					-		_		-			-		-	-			-		
28	1+36+00E 6			0.8	1.43	45	105	<5	0.81	<1	18	31	47	4.51	30	0.31	697	<1	<0.01	35	1070	34	<5	<20	64	<0.01	<10	25	<10	11	94
43	1+28+00E 6		5	-		-			-	-				-		-	-						-		-	-					•-
	1+28+00E 6		10	0.2	1.37	10	135	<5	0.13	<1	14	44	28	4.04	30	0.55	289	<1	<0.01	28	390	26	<5	<20	4	0.08	<10	47	<10	3	69
54	1+28+00E 7		<5	0.4	1.25	30	95	<5	0.48	<1	14	28	31	3.52	30	0.28	1174	<1		23	860	26	<5	<20	24	0.01	<10	32		7	83
63	1+44+00E 5		40	<0.2	0.85	35	25	<5	0.02	<1	8	23	17	3.60	30	0.23	180	<1	<0.01	16	600	18	<5	<20	<1	<0.01	<10	19		<í	
71	1+48+00E 5	- +	-	0.2	0.57	30	30	<5	0.04	<1	4	13	6	1.97	20	0.11	198	<1	<0.01	6	880	10	<5	<20	<1	<0.01	<10	36		•	18
Ster	dend:																														
GEC	+		135	1.5	1.66	65	145	<5	1.58	<1	19	60	86	3.59	<10	0.93	615	<1	0.02	32	700	24	<5	<20	45	0.12	<10	66	<10	٥	67
GEC			135	1.5		55	150	<5	1.63	<1	19	60	85	3.69	<10	0.96	620	<1			690	22	<5	<20	48		<10	64		ģ	68
GEC			135		1.69		150	-																	40						
GEC			135	1.6	1.09	60	190	<5	1.58	<1	19	66	86	3.61	<10	0.95	611	<1	0.02	32	650	22	<5	<20	47	0.11	<10	65	<10	8	67
																						•									

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

1

_

JJ/jm df/1023 XLS/04 27 / Wg-V7

ECO TECH LABOF AY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700, Fax : 250-573-4557 ICP CERTIFICATE OF ANALY \K 2004-1043

INTERNATIONAL WAYSIDE GOLD MINES 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received; 96 Sample type:Soil Project #: LOWHEE Shipment #: Not indicated Samples submitted by: J. McAllister

Values in ppm unless otherwise reported

Et #.	Tag #	Au (ppb)	Ag	A1 %	As	Ba	BI C	a %	Cd	Co	Cr (	Cu I	Fe %	La I	Mg %	Mn	Мо	Na %	NI	Р	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
1	L1+38+00E 54+50N	25	0.4	0.83	45	70	<5	0.07	<1	14	24	20	3.77	30	0.23	1022	<1	<0.01	14	1360	34	<5	<20	5	<0.01	<10	25	<10	2	51
2	L1+38+00E 55+00N	110	0.4	0.82	40	65	<5	0.05	<1	9	26	18	4.05	20	0.27	160	<1	<0.01	17	790	20	<5	<20	3	<0.01	<10	21	<10	2	52
3	L1+38+00E 55+50N	20	1.1	1.19	45	65	<5	0.50	<1	17	27 3	37	4.00	30	0.27	1116	<1	<0.01	27	1080	30	<5	<20		<0.01	<10	25	<10	12	67
4	L1+38+00E 56+00N	155	0.4	0.70	35	45	<5	0.38	<1	12	19	19	3.18	20	0.15	433	<1	<0.01	14	640	22	<5	<20	19	0.01	<10	22	<10	5	44
	L1+38+00E 56+50N	20		1.00							22		3.03		0.23			< 0.01		770			<20		<0.01	<10		<10	7	44
-							-	••••		-						• • •	•	•.•.				-							-	
6	L1+38+00E 57+00N	65	0.3	0.54	40	35	<5	0.21	<1	9	19	21	3.44	20	0.18	245	<1	<0.01	17	620	20	<5	<20	11	0.01	<10	20	<10	2	49
7	L1+38+00E 57+50N	No Sample			-												-					-						-		-
8	L1+38+00E 58+00N	50	1.3	1.49	50	110	<5	0.65	<1	23	33 4	46	4.86	30	0.39	1635	<1	<0.01	53	870	36	<5	<20	42	0.01	<10	24	<10	15	98
9	L1+38+00E 58+50N	20		0.98						13	30 3	36	4.27	30	0.27	372	<1	<0.01	21	440	26	<5	<20	12	0.01	<10	30	<10	4	61
10	L1+38+00E 59+00N	65	0.6	0.82	45	70	<5	0.20	<1	10	21 3	24	3.41	20	0.26	234	<1	<0.01	17	430	18	<5	<20	14	<0.01	<10	20	<10	4	48
11	L1+38+00E 59+50N	15	0.3	1.07	45	110	<5	0.25	<1	16	28	29	4.49	20	0.24	550	<1	<0.01	18	770	30	<5	<20	21	<0.01	<10	23	<10	2	93
12	L1+38+00E 60+00N	55	0.3	1.12	45	75	<5	0.41	<1	18	26	36	3.74	30	0.32	848	<1	<0.01	31	680	28	<5	<20	25	<0.01	<10	18	<10	8	72
13	L1+38+00E 60+50N	20	0.9	1.42	45	90	<5	1.01	<1	17	27	46	3.80	30	0.32	934	<1	<0.01	39	910	28	<5	<20	54	<0.01	<10	18	<10	17	82
14	L1+38+00E 61+00N	15	1.5	1.39	35	90	<5	1.28	<1	15	24	48	3.28	30	0.28	1274	<1	<0.01	42	1040	24	<5	<20	66	<0.01	<10	15	<10	22	76
15	L1+38+00E 61+50N	No Sample																												
16	L1+38+00E 62+00N	15	0.7	1.75	40	105	<5	0.52	<1	14	34	47	4.98	30	0.27	274	<1	<0.01	35	810	46	<5	<20	42	<0.01	<10	24	<10	12	74
	L1+38+00E 62+50N	15	0.2	0.60	30	45	<5	0.05	<1	7	16	18	2.70	20	0.13	125	<1	<0.01	11	330	16	<5	<20	4	<0.01	<10	27	<10	<1	40
18	L1+38+00E 63+00N	15	0.7	0.80	30	70	<5	0.43	<1	11	20	34	3.24	30	0.16	229	<1	<0.01	20	360	24	<5	<20	37	0.01	<10	25	<10	5	43
19	L1+38+00E 63+50N	40	0.5	0.85	45	75	<5	0.62	<1	12	21	31	3.53	20	0.18	572	<1	<0.01	20	370	26	<5	<20	55	<0.01	<10	22	<10	4	54
20	L1+38+00E 64+00N	15	<0.2	0.59	85	55	<5	0.56	<1	8	13	24	2.02	20	0.12	172	<1	<0.01	-14	230	- 14	<5	<20	52	<0.01	<10	20	<10	2	34
	L1+38+00E 64+50N	<5		0.63					•	_	15 .				0.19		-	<0.01		580		-	<20		<0.01	<10		<10	7	36
	L1+38+00E 65+00N	<5		0.73				0.61	•		16		2.51		0.16		•	<0.01		310	-	-	<20		<0.01	<10		<10	2	28
	L1+38+00E 65+50N	20		1.09				1.45			23		3.41		0.28			<0.01		840		-	<20		<0.01	<10	• -	<10	15	53
	L1+38+00E 66+00N	5		1.27				0.13			27		4.04		0.37		-	<0.01		520	-		<20		<0.01	<10		<10	8	72
25	L1+38+00E 66+50N	15	0.3	1.15	70	70	<5	0.68	<1	17	27	31	4.24	30	0.37	231	<1	<0.01	25	560	34	<5	<20	47	<0.01	<10	21	<10	5	62
20	14.00.005.07.000				~~			~ ~ 7		-	•	~~		~~					40		~~		-00	40	-0.04		~~	-40		40
	L1+38+00E 67+00N			0.93	30	100	<0	0.07	<b>&lt;</b> 1		21	20	3.86	20	0.18	41	<1	<0.01	1Ų	350	28	<0	<20	12	<0.01	<10	21	<10	1	40
	L1+30+00E 57+00N	No Sample																												
	L1+30+00E 58+00N	No Sample																												
	L1+30+00E 58+50N	No Sample																												
30	L1+30+00E 59+00N	No Sample	)																											
31	L1+30+00E 59+50N	No Sample																												
	L1+30+00E 60+00N	50 starting to		0.60	40	25	<b>45</b>	0.04	e1	5	15	7	2.41	20	0.11	20	-1	<0.01	5	370	18	<5	<20	3	<0.01	<10	20	<10	<1	15
	L1+30+00E 60+50N	30		1.13						-			3.67		0.42			<0.01	-			-	<20		<0.01	<10		<10	5	72
	L1+30+00E 61+00N	50		0.57									1.61		0.42			<0.01			-		<20		<0.01	<10		<10	<1	16
	L1+30+00E 61+50N	70		0.42				0.10			11		1.86		0.07			<0.01					<20		<0.01	<10		<10	<1	18
~~			0.0	V.76		55		J. 10	- 1	7	• •	5	,	<b>-</b> V	Page	-	-1	-0.01				-0	-47		-9.91	-14		- I <b>V</b>	~1	
															ray															

INTERNATIONAL WAYSIDE GOLD MINES LTD.

ICP CERTIFICATE OF ANALYSIS AK 2004-1043

ECO TECH LABORATORY LTD.

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba	BI (	Ca % (	Cd	Co Cr	Cu	Fe <u>%</u>	La I	Mg 5	<u>/n</u>	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	<u> </u>	<u>n</u> 61
- 36	L1+30+00E 62+00N	45	0.6	0.86	40	90 -	<5	0.21	<1	13 25	25	3.66	20	0.18	809	<1	<0.01	18	560	28	<5	<20	18	0.01	<10	24	<10	3	61
37	L1+30+00E 62+50N	120	0.5	0.57	20	75 -	<5	0.08	<1	5 11	11	1.68	20	0.09	178	<1	<0.01	7	340	14	<5	<20	7	<0.01	<10	22	<10	1	28
38	L1+30+00E 63+00N	30	0.3	0.95	45	75 •	<5	0.56	<1	16 25	39	3.42	30	0.39	620	<1	<0.01	31	560	20	<5	<20	35	0.01	<10	20	<10	5	63
39	L1+30+00E 64+00N	No Sample	,		• -		-	• · · · ·			- +			+			_												
	L1+30+00E 64+50N			1.53	10	95 <	<5	0.35	<1	23 49	49	<b>4</b> 20	30	0.85	888	<1	<0.01	47	650	28	<5	<20	17	0.09	<10	31	<10	13	73
								0.00		70 40	-,•	1.20	<b>~</b> •	0.00				••					••	0.00		•••			
41	L1+30+00E 65+00N	10	02	1 13	30	75	-6	0.09	c1	12 32	28	4 17	30	0.38	164	<1	<0.01	24	360	22	5	<20	5	0.01	<10	29	<10	2	57
	L1+30+00E 65+50N		<0.2		-		-	0.04				2.43					<0.01		250		-		-	<0.01	<10		<10	1	34
	L1+30+00E 66+00N	170		-	-			0.12		10 24						-	<0.01	-	350		-	<20		0.01	<10	-	<10	1	43
		=						-									-				-					-	<10	1	-
	L1+30+00E 66+50N							0.08			-	1.77					< 0.01	-	230	. –	-	<20		0.01	<10	-	-		26
45	L1+30+00E 67+00N	15	<0.2	0.95	25	40 •	<5	0.06	<1	15 25	29	3.76	30	0.25	421	<1	<0.01	17	490	28	<0	<20	5	<0.01	<10	20	<10	4	55
						••	_						• •							• •	_								
-	L1+30+00E 67+50N	10		1.26	30	90 •	<5	0.33	<1	23 33	44	4.35	30	0.47	1062	<1	<0.01	36	670	34	<5	<20	17	0.01	<10	27	<10	8	81
	L1+30+00E 68+00N																											_	
-	L1+30+00E 68+50N	10						0.09		10 30		4.19		0.34			<0.01		530					0.01	<10		<10	1	49
49	L1+30+00E 69+00N	10						0.41		18 26				0.41			<0.01		460		<5	<20	15	0.01	<10		<10	5	66
50	L1+30+00E 69+50N	10	0.2	1,19	25	50 ·	<5	0.13	<1	17 28	39	4.02	30	0.34	418	<1	<0.01	21	710	30	<5	<20	11	<0.01	<10	23	<10	7	63
																								•					
	L1+30+00E 70+00N	20	0.2	0.90	30	60 ·	<5	0.39	<1	18 24	30	3.76	20	0.21	1108	<1	<0.01	18	560		-	<20		<0.01	<10		<10	2	51
52	L1+30+00E 70+50N	15	<0.2	0.85	30	35 ·	<5	0.09	<1	8 24	16	4.20	30	0.24	77	<1	<0.01	12	400	22	<5	<20	6	<0.01	<10		<10	<1	45
53	L1+30+00E 71+00N	5	<0.2	0.90	30	60 ·	<5	0.17	<1	10 27	24	3.81	30	0.30	141	<1	< 0.01	19	310	20	<5	<20	12	0.01	<10	31	<10	1	55
54	L1+30+00E 71+50N	15	0.2	0.49	20	30	<5	0.29	<1	5 12	14	1.96	20	0.10	74	<1	<0.01	8	260	12	<5	<20	15	<0.01	<10	26	<10	1	23
55	L1+30+00E 72+00N	5						0.47		16 22	26	3.43	20	0.21	549	<1	<0.01	16	600			<20	33	0.01	<10	24	<10	2	64
		•		••••		•••	-	-	•							-	••••				-		•••						
56	L1+86+00N 60+00E	720	07	0.91	25	65	<5	0.35	<1	15 23	33	3 69	30	0.22	667	<1	<0.01	22	780	52	<5	<20	23	<0.01	<10	13	<10	12	70
-				0.01	20	00	-0	0.00	-1	10 20	50	0.00	00	0.22	007	- 1	-0.01		100	02		-20		-0.01			-10		
	L1+86+00N 60+50E																												
		No Sample	-	~ ~ ~		45		o 00	-4	a	-	= 40	20	0.40	200	- 4	-0.04	45	500	24	-	-00		0.01	-10	04	~10	2	50
	L1+86+00N 60+75E	5						0.03				5,10					< 0.01						-		<10	-	<10	2	50
60	L1+86+00N 61+00E	5	0.3	0.21	5	25	<5	0.02	<1	34	9	0.93	20	0.02	49	<1	<0.01	3	260	6	<5	<20	2	<0.01	<10	8	<10	<1	15
					_		_				-									-	-	~~							
	L1+86+00N 61+25E							0.02		1 6	-	0.79		0.02			< 0.01			-	-	<20		< 0.01	<10		<10	<1	6
	L1+86+00N 61+50E	-					-	0.02				4.44		0.14			<0.01	-	600	30	-	<20		0.02	<10		<10	1	34
	L1+86+00N 61+75E	5				-	-	0.03				3.06		0.10			<0.01		490	28	-	<20		<0.01	<10	-	<10	1	37
	L1+86+00N 62+00E			0.60	20	30	<5	0.04	<1	6 18	14	3.33	30	0.14	174	<1	<0.01	10	630	26	<5	<20	3	0.01	<10	23	<10	1	39
65	L1+86+00N 62+25E	No Sample	•																										
	L1+86+00N 62+50E	5			• -			0.02		4 18				0.10			<0.01					<20		0.01	<10	** **	<10	<1	21
67	L1+86+00N 62+75E	10	0.2	0.71	10	<b>4</b> 0 ·	<5	0.02	<1	4 15	11	2.11	20	0.11	85	<1	<0.01	6	350	30	<5	<20	2	<0.01	<10		<10	<1	27
68	L1+86+00N 63+00E	15	<0.2	0.53	15	35	<5	0.03	<1	5 14	10	2.49	30	0.08	412	<1	<0.01	5	490	22	<5	<20	2	0.02	<10	34	<10	1	31
69	L1+86+00N 63+25E	5	0.3	0.86	20	35	<5	0.04	<1	9 28	21	4,72	30	0.19	318	<1	<0.01	12	630	32	<5	<20	3	0.02	<10	28	<10	2	54
70	L1+86+00N 63+50E	5	0.3	0.66	25	25	<5	0.08	<1	11 19	23	3.31	20	0.23	324	<1	<0.01	19	500	34	<5	<20	4	0.01	<10	15	<10	2	72
_		-					-	•					-				-												
71	L1+86+00N 63+75E	15	1.0	0.58	20	40	<5	0.06	<1	9 22	18	3,79	20	0.18	297	<1	<0.01	14	810	28	<5	<20	3	0.01	<10	24	<10	1	42
	L1+86+00N 64+00E	25					-	0.25	-	13 27							<0.01				-	<20		0.01			<10	5	55
	L1+86+00N 64+25E							0.14							169							<20	. 9	0.01	<10	-	<10	3	45
	L1+86+00N 64+50E							0.06		13 33							<0.01					<20		0.01			<10	2	66
																											<10	2	
/5	L1+86+00N 64+75E	15	<b>~</b> 0.2	0.07	20	20	<0	0.04	<b>S</b> I	7 ∠1	19	3.40	30	0.16	108	<1	<0.01	13	480	20	~0	~20	51	0.02	<10	20	~10	4	48
70	14-00-001-00-00-	00	~ ~			-	-5	0.04		40.00	~~	4.00	20	0.00	000		-0.04	40	E 4 6		~F	-00	~	0.00	-40	00	-40	A	<b>E</b> 0
	L1+86+00N 65+00E							0.04		10 29							< 0.01					<20		0.02			<10	1	59
	L1+86+00N 65+25E							0.04		12 37							< 0.01					<20		0.01	<10		<10	ž	63
	L1+86+00N 65+50E	20						0.21		10 26							<0.01					<20	9			-	<10	4	49
	L1+86+00N 65+75E	10			_		-	0.37		25 39									970					0.01	<10		<10	9	100
80	L1+86+00N 66+00E	10	0.4	1.20	20	85	<5	0.41	<1	16 31	28	3.88	30	0.40	998	<1	<0.01	22	1020	50	<5	<20	20	0.01	<10	30	<10	7	71

INTERNATIONAL WAYSIDE GOLD MINES LTD.

ICP CERTIFICATE OF ANALPS

ECO TECH LABORATORY LTD.

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba	81	Ca %	Cd	Co Ci	Cu	Fe %	Lal	Mg′	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	w	_	Zn
81	L1+86+00N 6 ∠	40	0.2	1.62	15	80	<5	0.10	<1	15 43	26	5.76	30	0.5	244	<1	<0.01	30	670	54	<5	<20	6	0.01	<10	29	<10	<b>-</b> 3	71
82	L1+86+00N 66+50E	No Sample	)																										
83	L1+86+00N 66+75E	10	0.7	1.01	20	65	<5	0.63	<1	17 27	34	3.28	20	0.32	1173	<1	<0.01	29	700	40	<5	<20	60	0.02	<10	17	<10	11	79
		No Sample	)																										
85	L1+86+00N 67+25E	10	0.7	1.29	35	80	<5	0.44	<1	20 33	40	4.01	30	0.42	891	<1	<0.01	34	510	76	<5	<20	40	0.02	<10	24	<10	12	73
86	L1+86+00N 67+50E	10	0.2	1.29	40	35	<5	0.05	<1	12 35	29	5.90	30	0.34			<0.01		490	46	<5	<20	2	0.01	<10	31	<10	2	70
	L1+86+00N 67+75E	25		1.08		45	<5	0.04	<1	10 30			30	0.26	134	<1	<0.01	17	370	44	<5	<20	3	0.01	<10	27	<10	1	67
	L1+86+00N 68+00E	15		1.10		65		0.07	<1	10 26				0.21	507		<0.01			50	-	<20	6	0.01	<10		<10	3	105
	L1+86+00N 68+25E	5		1.25	-	65		0.17				4.22		0.27	291		<0.01		350	44		<20		<0.01	<10		<10	<1	56
90	L1+86+00N 68+50E	10	0.2	0.90	30	50	<5	0.05	<1	9 24	18	3.96	30	0.18	247	<1	<0.01	13	510	34	<5	<20	4	<0.01	<10	29	<10	2	52 .
91	L1+86+00N 68+75E	10	0.3	0.85	20	45	<5	0.05	<1	9 25	21	4.00	30	0.21	310	<1	<0.01	15	450	34	<5	<20	2	0.01	<10		<10	1	53
92	L1+86+00N 69+00E	5	0.2	1.23	25	45	<5	0.06	<1	15 40	18	6.28	30	0.38	771	<1	<0.01	19	710	48	<5	<20	3	0.02	<10	30	<10	1	60
	L1+86+00N 69+25E	5	0.2	1.23	10	30	<5	0.02	<1	7 25	16	3.31	30	0.22	127	<1	<0.01	12	370	22	<5	<20	1	<0.01	<10	20	<10	<1	46
94	L1+86+00N 69+50E	15	<0.2	0.87	15	50	<5	0.04	<1	6 24	14	3.52	30	0.21	81	<1	<0.01	11	350	22	<5	<20	3	0.01	<10	28	<10	<1	40
95	L1+86+00N 69+75E	5	0.6	1.72	35	55	<5	0.19	<1	23 37	42	6.56	40	0.24	1411		<0.01		1080	220	<5	<20	13	0.01	<10	36	<10	18	114
96	L1+86+00N 70+00E	10	<0.2	1.53	40	70	<5	0.20	<1	16 34	14	6.66	40	0.28	182	<1	<0.01	17	550	24	<5	<20	13	<0.01	<10	21	<10	3	82
<u>0C D</u>	ATA:																												
Repe																													
-	L1+38+00E 54+50N	15		0.85		70		0.08		14 24	-			0.23			<0.01		1360	34	<5	<20		<0.01	<10	25	<10	2	51
	L1+38+00E 59+00N	40		0.85		65	-	0.20				3.53		0.27	275		< 0.01		430	18	<5	<20		<0.01	<10	20		4	50
	L1+38+00E 63+50N	40	0.5	0.91	45	80	<5	0.65	<1	13 23		3.70	20	0.19	565	<1	<0.01	23	370	28	<5	<20	57	<0.01	<10	24	<10	4	57
	L1+30+00E 60+00N	15		-	• •	-	-					-		-	-	;	-	-	-		-	-	-		-	-	-	-	-
	L1+30+00E 62+00N	95		0.89			<5	0.21		13 25				0.18	782		<0.01	-	590	26	<5	<20	16	0.01	<10	24	-	3	60
	L1+30+00E 67+00N	15		0.97		45	-	0.06		16 26		3.80		0.25	425				490	26	_	<20		<0.01	<10		<10	4	57
	L1+30+00E 71+50N	10		0.50		35	-	0.29			2 14			0.10			< 0.01	*	260	12	<5	<20		< 0.01	<10		<10	2	23
	L1+86+00N 61+75E	5		0.75	• •	40	-	0.03			17			0.11			<0.01	-	500	28	-	<20	2	0.01	<10		<10	1	36
	L1+86+00N 63+75E	15		0.62			-	0.06	-		3 17			0.18			< 0.01		900	26	-	<20	1	0.01	<10	25		<1	46
	L1+86+00N 66+00E	10		1.22	-		-	0.41		16 31				0.40			< 0.01		1020	50	_	<20	18	0.01	<10	30	<10	8	70
89	L1+86+00N 68+25E	10	<0.2	1.31	35	65	<5	0.06	<1	12 3 ⁻	18	4.58	30	0.29	302	<1	<0.01	18	380	44	<5	<20	6	<0.01	<10	36	<10	<1	58
Stan																												_	
GEO		135		1.62				1.53		18 60				0.93		<1	0.02		650	22	<5	<20	- 44	0.10	<10		<10	9	72
GEO		135		1.67				1.54		19-61		3.55		0.95	600		0.02		630	22		<20	46	0.10	<10		<10	8	73
GEO	'04	135	1.5	1.65	60	145	<5	1.52	<1	19 60	85	3.48	10	0.95	589	<1	0.02	30	660	24	<5	<20	45	0.10	<10	62	<10	9	72

JJ/jm df/1043 XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer ICP CERTIFICATE OF At 3IS AK 2004-1082

INTERNATIONAL WAYSIDE GOLD MINES L 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 35 Sample type: Soil Project #: LOWHEE Shipment #: None Given Samples submitted by: J. McAllister

Values In ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	V	w	Y	Zn
1	1+40+00E 48+00N	75	<0.2	1.19	20	100	<5	0.14	<1	16	41	26	5.06	30	0.38	318	-1	<0.01	35	510	24	<5	<20	-5	0.02	<10	42	<10	-4	81
2	1+40+00E 48+50N	20	0.8	1.17	25	115	<5	0.45	<1	12	38	16	4,89	30	0.32	230	<1	<0.01	23	400	22	<5	<20	17	0.02	<10	42	<10	3	70
3	1+40+00E 49+00N	15	<0.2	1.50	20	110	<5	0.10	<1	23	44	35	4,97	30	0.47	386	<1	<0.01	49	350	30	<5	<20	3	0.02	<10	30	<10	4	115
4	1+40+00E 49+50N	70	<0.2	1.59	25	130	<5	0.12	<1	17	51	23	6.24	30	0.41	226	<1	<0.01	33	510	30	<5	<20	7	0.02	<10	48	<10	4	91
5	1+40+00E 50+00N	30	0.4	1.02	40	105	<5	0.42	<1	14	34	17	4.61	30	0.24	339	<1	<0.01	22	430	24	<5	<20	17	0.01	<10	36	<10	3	77
6	1+40+00E 50+50N	35	0.7	1.28	45	135	<5	0.62	<1	20	41	36	5.00	40	0.31	1600	<1	<0.01	45	730	28	<5	<20	26	0.01	<10	31	<10	17	101
7	1+40+00E 51+00N	60	0.5	1.19	25	110	<5	0.77	<1	24	41	33	4.60	30	0.43	2151	<1	<0.01	45	760	26	<5	<20	29	0.03	<10	33	<10	12	99
8	1+40+00E 51+50N	40	0.2	1.21	45	80	<5	0.13	<1	20	39	27	5.32	40	0.28	542	<1	<0.01	37	660	28	<5	<20	7	0.01	<10	27	<10	10	103
9	1+40+00E 52+00N	65	0.3	0.86	40	50	<5	0.14	<1	13	35	16	5.70	30	0.24	179	<1	<0.01	22	480	20	<5	<20	9	0.02	<10	25	<10	3	69
10	1+40+00E 52+50N	70	<0.2	0.66	40	50	<5	<b>0.06</b>	<1	12	28	20	5.12	30	0.15	520	<1	<0.01	20	1470	26	<5	<20	5	<0.01	<10	22	<10	4	64
11	1+40+00E 53+00N	80	0.2	0.90	30	55	<5	0.06	<1	12	32	15	4.70	30	0.22	216	<1	<0.01	22	730	18	<5	<20	4	0.01	<10	20	<10	3	73
12	1+40+00E 53+50N	30	<0.2	0.86	40	40	<5	0.05	<1	16	36	21	5.66	40	0.25	493	<1	<0.01	23	730	24	<5	<20	5	<0.01	<10	24	<10	3	81
	1+40+00E 54+00N	35	<0.2	0.84	35	50	<5	0.04	<1	13	32	22	4.81	40	0.23	313	<1	<0.01	23	670	22	<5	<20	5	<0.01	<10	23	<10	6	80
14	1+38+00E 50+00N	20	<0.2	1.15	30	110	<5	0.66	<1	24	43	35	4.63	40	0.51	1027	<1	<0.01	49	820	25	<5	<20	21	0.04	<10	31	<10	18	97
15	1+38+00E 50+50N	65	<0.2	1.10	35	75	<5	0.07	<1	13	42	18	5.75	30	0.27	185	<1	<0.01	25	350	24	<5	<20	5	0.02	<10	30	<10	3	68
	1+38+00E 51+00N	30	0.2	1.45	30	145	<5	0.51	<1	26	49	31	5.34	40	0.48	1255	<1	<0.01	47	750	30	<5	<20	25	0.02	<10	37	<10	14	112
	1+38+00E 51+50N	85	0.4	1.08	20	150	<5	0.85	<1	18	38	28	4.26	30	0.40	1404	<1	<0.01	39	580	20	<5	<20	28	0.03	<10	35	<10	9	87
	1+38+00E 52+00N	75	0.3	0.75	25	75	5	0.14	<1	9	29	10	4.00	30	0.21	189	<1	<0.01	16	490	18	<5	<20	10	0.02	<10	28	<10	- 4	47
19	1+38+00E 52+50N	65	0.2	0.62	35	35	<5	0.08	<1	8	27	9	4.17	20	0.15	218	<1	<0.01	12	950	16	<5	<20	3	0.01	<10	28	<10	2	48
20	1+38+00E 53+00N	30	0.3	0.92	40	65	<5	0.05	<1	16	37	19	5.93	40	0.23	553	<1	<0.01	21	720	25	<5	<20	5	<0.01	<10	26	<10	3	80
21	1+38+00E 53+50N	40	0.5	1.16	65	95	<5	0.40	<1	28	39	34	5.08	40	0.34	1049	<1	<0.01	42	700	28	<5	<20	15	<0.01	<10	24	<10	16	106
	1+38+00E 54+00N	80	0.2	1.00	40	75	<5	0.07	<1	15	37	20	5.48	30	0.30	314		<0.01	25	600	24	<5	<20	6	<0.01	<10	23	<10	3	89
	1+36+00E 52+00N	10	0.2	1.81	25	120	<5	0.13	<1	22	49	26	5,55	30	0.43	343	<1		49	660	42	<5	<20	7	0.01	<10	29	<10	-	113
24	1+36+00E 52+50N	35	0.6	1.70	60	155	<5	0.74	<1	28	57	52	5.90	50	0.44	1632	<1		61	1070	30	5	<20	29	0.02	<10	37	<10		122
25	1+36+00E 53+00N	40	0.2	1.14	30	105	<5	0.10	<1	13	38	20	4.55	30	0.31	243	<1	<0.01	27	580	20	<5	<20	5	0.02	<10	41	<10	4	73
26	1+38+00E 53+50N	10	0.6	1.30	80	90	<5	0.94	<1	25	43	43	5.03	40	0.48	1118	<1	<0.01	56	790	23	<5	<20	29	0.02	<10	28	<10	29	107
27	1+38+00E 54+00N	5	<0.2	0.97	30	80	<5	0.20	<1	11	38	17	4.33	30	0.22	115	<1	<0.01	22	320	16	<5	<20	8	0.05	<10	74	<10	4	49
28	1+28+00E 71+50N	5	0.2	0.61	25	45	<5	0.18	<1	8	22	15	3.08	20	0.16	123	<1	<0.01	15	410	16	<5	<20	7	0.01	<10	27	<10	2	53
29	1+28+00E 72+00N	<5	0.4	1.35	20	145	<5	1.33	<1	26	49	42	4.71	30	0.59	700	<1	<0.01	56	950	22	<5	<20	38	0.04	<10	38	<10	14	116
30	1+28+00E 72+50N	5	0.3	1.03	35	75	<5	0.23	<1	11	33	22	5.38	30	0.19	119	<1	<0.01	22	430	24	<5	<20	12	0.01	<10	44	<10	2	73
	1+28+00E 73+00N	<5	0.5	0.74	10	80	<5	3.09	<1	13	27	49	2.51	20	0.33		<1	0.06	45	1120	18	<5	<20	53	0.01	<10	16	<10	.14	94
32		<5	0.4	1.08	30	90	<5	1.19	<1	23	33	39	4.68	30	0.36	963	<1	<0.01	42	690	24	<5	<20	34	0.01	<10	25	<10	10	91
33	1+28+00E 74+00N	5	0.5	1.08	30	95	<5	1.96	<1	18	30	37	4.17	30	0.24	1053	<1	<0.01	36	1150	26	<5	<20	61	0.01	<10	24	<10	12	68
- 34	1+28+00E 74+50N	<5	0.6	1.24	40	105	<5	1.97	<1	22	- 34	40	4.69	30	0.30	984	<1	<0.01	40	1130	26	<5	<20	68	0.01	<10	25	<10	12	89
35	1+28+00E 75+00N	<5	0.2	1.18	25	50	<5	0.22	<1	12	36	43	5.20	30	0.22	150	<1	<0.01	21	530	26	<5	<20	- 14	<0.01	<10	30	<10	6	61
														Page	1															

INTERNATIONAL WAYSIDE GOLD MINES LTD.

ECO TECH LABO! RY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

~

Et#.	Tag f	Au(ppb)	Aq	AI %	As	Ba	Bl	Ca %	Cd	Co	Cr	Cu	Fe %	_	8%	Mn	Mo	Na %	NI	P	РЬ	Sb	Sn	Sr	Ti %	U	V	-	<u> </u>	Zn
OC D Repe 1 10 19 28	ATA: ef: 1+40+00E 48+00N 1+40+00E 52+50N 1+38+00E 52+50N 1+28+00E 71+50N	15 65 75	<0.2	1,23 0,70 0,65 0,65	25 35 30 25	90 55 40 50	<5 <5 <5 <5	0.14 0.06 0.08 0.19	<1	16 12 9 8	41 28 27 23	26 18 10 16	5.16 4.21	30 30	0.16 0.15	297 559 220 127	<1 <1	<0.01 <0.01 <0.01 <0.01	34 20 15 14	530 1490 960 420	26 26 16 16	-	<20 <20 <20 <20	4 6 4 7	0.02 <0.01 0.01 0.01	<10 <10 <10 <10	42 24 29 29	<10 <10 <10 <10	4 4 2 2 -	79 65 50 55
31 Stand GEO		5 135	1,5	- 1.61	55	145	- <5	2.03	- <1	20	60	86	3.86	10	- 0.89	723	<1	0.02	30	750	24	<5	<20	45	0.13	<10	65	<10	9	73

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/sc df/5060 XLS/04 ICP CERTIFICATE OF

YSIS AK 2004-1065

INTERNATIONAL WAYSIDE WINES L' 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 33 Sample type:Soil **Project #: LOWHEE** Shipment #: None Given Samples submitted by:J. McAllister

Values in ppm unless otherwise reported

¥.

Y LTD.

· *

ECO TECH LABOR

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700 Fax : 250-573-4557

V2C 6T4

Et #.	Tag #	Au(ppb)	Ag	AI %	As_	Ba	BI	Ca % _	Cd	Co	Cr	Cu_	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Şb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	1+42+00E 46+00N	10	0.6	1,44	20	110	<5	0.58	<1	16	37	40	3.72	30	0.54	963	<1	<0.01	35	780	26	<5	<20	38	0.02	<10	35	<10	13	60
2	1+42+00E 46+50N	5	0.2	1.60	25	135	<5	0.20	<1	15	38	33	4.03	30	0.55	417	<1	<0.01	27	520	24	<5	<20	14	0.03	<10	50	<10	3	59
3	1+42+00E 47+00N	25	0.3	1.00	20	105	<5	0.08	<1	9	26	16	3.21	20	0.20	351	<1	<0.01	15	370	22	<5	<20	6	0.02	<10	52	<10	2	64
4	1+42+00E 47+50N	155	<0.2	1.64	20	110	<5	0.28	<1	24	42	36	4.40	30	0.68	798	<1	<0.01	37	660	28	<5	<20	19	0.04	<10	46	<10	3	75
5	1+42+00E 48+00N	15	0.9	1.96	25	135	<5	0.66	<1	20	50	51	4.59	30	0.48	593	<1	<0.01	43	710	32	<5	<20	47	0.04	<10	50	<10	10	67
8	1+42+00E 48+50N	70	0.4	1.67	20	110	<5	0.46	<1	21	46	41	4.04	40	0.74	781	<1	<0.01	41	770	30	<5	<20	29	0.04	<10	38	<10	13	63
7	1+42+00E 49+00N	45	<0.2	1.33	20	80	<5	0.08	<1	11	35	20	4.02	30	0.40			<0.01	22	430	20	<5	<20	5	0.03	<10		<10	2	48
8	1+42+00E 49+50N	25	0.5	1.46	30	115	<5	0.37	<1	18	37	38	3.94	30	0.52			<0.01	38	850	32	<5	<20	26	0.02	<10	-	<10	9	74
ğ	1+42+00E 50+00N	30	0.2	0.71	20	70	<5	0.29	<1	9	20	16	2.52	30	0.17			<0.01	13	440	18	<5	<20	21	0.02	<10		<10	2	42
-	1+42+00E 50+50N	155	0.2	0.92	35	40	<5	0.08	<1	12	26	31	3.82	30	0.20		•	<0.01	18	560	22	<5	<20	7	0.02	<10		<10	3	52
10	1,42,000 00,000	100	0.2	0.32	55	40	-0	0.00	~1	14	20	51	0.02	50	0.20	555		-0.01	10	500	~~	-0	~20	'	0.02	510	23	510	5	52
11	1+42+00E 51+00N	20	0.3	1.19	45	60	<5	0.25	<1	17	27	27	3.76	30	0.30	756	<1	<0.01	23	600	32	<5	<20	19	<0.01	<10	23	<10	5	62
12	1+42+00E 51+50N	65	0.2	0.90	35	55	<5	0.07	<1	10	25	24	3.98	30	0.25	287	<1	<0.01	19	560	24	<5	<20	10	<0.01	<10	23	<10	1	51
13	1+42+00E 52+00N	70	0.3	1.07	35	65	<5	0.53	<1	16	26	35	3.56	30	0.38	700	<1	<0.01	31	740	28	<5	<20	33	<0.01	<10	21	<10	8	67
14	1+42+00E 52+50N	35	<0.2	1.00	10	90	<5	0.15	<1	7	20	20	2.35	10	0.25	772	1	<0.01	11	860	18	<5	<20	10	0.06	<10	31	<10	3	70
15	1+42+00E 53+00N	35	0.2	0.88	35	45	<5	0.17	<1	13	26	24	3.94	30	0.25	551	<1	<0.01	18	570	26	<5	<20	14	<0.01	<10	20	<10	2	60
	1+42+00E 53+50N	70	<0.2	0.79	45	45	<5	0.04	<1	12	28	28	4.97	30	0.26			<0.01	19	660	28	-		-	<0.01	<10	21	<10	<1	57
	1+42+00E 54+00N	25	0.5	1.16	40	65	<5	0.51	<1	18	26	50	3.68	30	0.36		-	<0.01	34	730	28	<5	<20		<0.01	<10		<10	13	68
18	1+44+00E 53+50N	120	0.7	1.35	35	100	<5	0.64	<1	18	29	52	3.95	30	0.31	894	<1	<0.01	39	890	34	<5	<20	38	<0.01	<10	21	<10	10	69
19	1+44+00E 54+00N	30	0.4	1.31	35	100	<5	0.47	<1	16	28	36	4.12	30	0.24	602	<1	<0.01	26	670	36	<5	<20	28	<0.01	<10	25	<10	5	66
20	1+48+00E 53+50N	40	0.3	1.24	25	60	<5	0.22	<1	13	26	35	3.48	30	0.35	328	<1	<0.01	32	480	26	<5	<20	17	<0.01	<10	20	<10	7	56
	1+48+00E 54+00N	20	0.2	1.19	35	50	<5	0.26	<1	12	27	26	3.82	30	0.38			<0.01	24	480	20	<5		22	<0.01	<10		<10	2	54
	1+50+00E 53+50N	10	0.3	1.48	25	70	<5	0.07	<1	17	36	48	5.31	30	0.47		<1	<0.01	26	790	28	<5	<20	4	0.01	<10	42	<10	3	72
	1+48+00E 54+00N	5	<0.2	1.25	35	40	<5	0.04	<1	12	36	26	6.35	30	0.36	201		<0.01	19	660	24	<5	<20	4	0.01	<10	40	<10	<1	48
	1+24+00E 68+00N	<5	<0.2	1.58	25	80	<5	0.14	<1	21	38	50	4.01	30	0.56			<0.01	39	480	24	<5	<20	5	0.03	<10	31	<10	5	71
25	1+24+00E 68+50N	<5	<0.2	1.18	5	95	<5	0.27	<1	12	35	23	4.31	30	0.32	509	<1	<0.01	19	490	32	<5	<20	19	0.03	<10	55	<10	2	53
26	1+24+00E 69+00N	<5	<0.2	0.87	20	45	<5	0.11	<1	9	24	23	3.39	30	0.29	116	<1	<0.01	17	560	18	<5	<20	5	0.02	<10	28	<10	1	44
27	1+24+00E 69+50N	<5	<0.2	1.26	15	90	<5	0.11	<1	10	32	28	3.63	20	0.39	188	<1	<0.01	20	450	22	<5	<20	8	0.02	<10	40	<10	2	46
28	1+24+00E 70+00N	<5	0.6	0.01	<5	<5	<5	<0.01	<1	<1	<1	<1	0.04	<10	<0.01	5	<1	<0.01	<1	<10	<2	<5	<20	<1	<0.01	<10	<1	<10	<1	<1
29	1+24+00E 70+50N	No Sample	_	-	-	-																	-					-		
30	1+24+00E 71+00N	5	0.2	1.13	15	60	<5	0.09	<1	14	28	30	4.04	30	0.42	489	<1	<0.01	24	500	22	<5	<20	7	0.01	<10	31	<10	3	48
		-			• =		2		-								-					-		-					_	
31	1+24+00E 71+50N	<5	<0.2	1.60	15	90	<5	0.18	<1	19	42	40	4.37	30	0.54	472	<1	<0.01	31	600	28	<5	<20	10	0.02	<10	43	<10	4	68
32	1+24+00E 72+00N	10	<0.2	1.45	10	120	<5	2.61	<1	22	43	55	4.16	30	0.87	778	<1	<0.01	49	820	24	<5	<20	88	0.05	<10	33	<10	7	82
33	1+24+00E 72+50N	5	0.3	1.61	25	110	<5	0.47	<1	20	41	44	4.87	30	0.54	346	<1	<0.01	35	640	58	<5	<20	29	0.02	<10	34	<10	4	64

<u>Et #</u> .	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %		<u>Mg %</u>			Na %	NI	P	Pb	Sb	Sn	Sr	<u> </u>	U			Y	
<u>QC I</u> Repe	DATA: Mat:																													
1	1+42+00E 46+00N	10	0.6	1.52	15	110	<5	0.63	<1	17	39	41	3.93	30	0.57	1012	<1	<0.01	40	800	26	<5	<20	36	0.03	<10	36	<10	13	63
10	1+42+00E 50+50N	155	0.3	0.91	30	40	<5	0.09	<1	12	25	30	3.75	30	0.20	347	<1	<0.01	16	540	24	<5	<20	8	0.02	<10	28	<10	3	58
19	1+44+00E 54+00N	-	0.4	1.34	35	95	<5	0.45	<1	17	28	35	4.12	30	0.25	620	<1	<0.01	28	680	36	<5	<20	25	<0.01	<10	26	<10	6	65
20	1+48+00E 53+50N	35	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	_	_	-	-	-	•	-	-	
29	1+24+00E 70+50N	5	-	-	-	-	-	•	•	-	-	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stan	dard:																													
GEO	'04	135	1.4	1.73	55	155	<5	1.59	<1	19	62	88	3.58	<10	0.97	612	<1	0.02	30	740	22	<5	<20	46	0.11	<10	68	<10	8	73

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

JJ/jm/sc df/1065 XLS/04

	ł																				H	r 4-	IU K	C ·			<b>M F</b>
Et #.	Tag A	Au (ppb)	Ag	Ai %	As	Bal	BI C	a% Cd	Co	Cr Cu	Fe %	L	% ړ	Mn	Mo	Na %	NI	P	Pb Sb	Sn	Sr	TI %	U		1	Y	Zn
36.	2+02+00N 66+75E	, 60	1.0	1.06	25	80 •	<5 (	).42 <1	15	3 32	3.38	30	0.29	582	<1	<0.01	26	600	58 <5	<20	23	< 0.01	<10	17	<10	4	88
37 、	2+02+00N 67+00E/	<b>´</b> 30	2.3	1.41	30	115 <	<5 (	).76 <1	20	9 41	4.64	20	0.18	746	<1	<0.01	28	1520	94 <5		46	0.01	<10	24	<10	8	97
38	2+02+00N 67+25E	10	3.8	0.52	10	80 <	<5 (	0.90 <1		2 15		10	0.11	136		<0.01		1170	26 <5		50	<0.01	<10		<10	2	49
39	2+02+00N 67+50E	15	0.3	0.94	20	55 <	<5 (	).49 <1	20 2	25 39	3.80	30	0.42	685	<1	<0.01	33	690	52 <5	<20	27	0.01	<10	20	<10	7	77
40	2+02+00N 67+75E	<5	0.4	1.23	15	160 <	<5 (	).79 <1	14 2	24 37	3.14	20	0.27	657	<1	< 0.01	26	890	48 <5		52	0.01	<10	21		7	80
	$\sim$																						••			•	
41	2+02+00N 68+00E	No Sampk	9																								
42	2+02+000 68+25E	No Sample	9																								
43	2+02+001 68+50E	<5	1.1	1.67	20	125 <	<5 (	).71 <1	17 :	36 45	4.46	40	0.31	533	<1	<0.01	32	750	54 <5	<20	34	0.01	<10	30	<10	20	77
44	2+02+00N 68+75E	15	0.9	1.17	10	100 •	<5 (	).38 3	10 3	23 23	2.98	30	0.22	851	<1	<0.01	20	370	270 <5	<20	14	<0.01	<10	27	<10		172
45	2+02+00N 69+00E \	<b>\</b> <5	1.8	1.19	15	70 <	<5 (	).37 4	12 2	22 28	3.10	30	0.23	872	<1	<0.01	21	450	1588 <5	<20	12	<0.01	<10	28	<10	12	417
		$\mathbf{X}$																									
46	2+02+00N 69+25E	<u>∖</u> <5	0.5	0.88	10	60 <	<5 (	).12 <1	8 '	9 13	2.96	20	0.15	171	<1	<0.01	12	280	<b>6</b> 6 <5	<20	3	<0.01	<10	31	<10	2	76
47	2+02+00N 69+50E	No Sample																									
48	- 2+02+00N 69+75E	) 5		0.70	10	80 <	<5 (	0.08 <1	8	17 19	2.77	20	0.15	118	<1	<0.01	15	210	44 <5	<20	- 4	<0.01	<10	22	<10	1	67
49	2+02+00N 70+00E	No Sample																									
50	1+32+00E 56+00N		<0.2	0.86	30	55 <	<5 (	0.11 <1	13 3	25 23	3.31	20	0.32	366	<1	<0.01	22	420	26 <5	<20	4	<0.01	<10	20	<10	2	55
51	1+32+00E 56+50N	45	0.5	1.15				0.36 <1		28 38		30	0.35	961		<0.01	35	520	28 <5			<0.01	<10	21		10	71
52	1+32+00E 57+00N	30	0.2	0.87	45			0.19 <1	13 :			30	0.30	277		<0.01	22	460	24 <5		-	<0.01	<10		<10	1	66
53	1+32+00E 57+50N	25	0.2	0.90	40			).05 <1	8 2			30	0.23	55		<0.01	13	530	34 <5			<0.01	<10		<10	<1	39
54	1+32+00E 58+00N	35	0.3	1.15	40			0.06 <1	15 :			30	0.36	324		<0.01	30	390	44 <5			<0.01	<10		<10	2	72
55	1+32+00E 58+50N	30	0.4	0.85	30	55 <	<5	.29 <1	13	19 28	2.75	20	0.27	578	<1	<0.01	28	700	22 <5	<20	63	<0.01	<10	14	<10	7	55
56	1+32+00E 59+00N	10	0.3	0.82	45	40 <		).03 <1	40	22 04	3.63	20	0.40	200		-0.04	45	400	00.45	-00	~	-0.04					
57	1+32+00E 59+50N	10	0.5	1.14	35	• •	-	).14 <1	10 1	23 21 27 27		30 20	0.19 0.30	399 254		<0.01 <0.01	15 25	480	20 <5 30 <5	-		<0.01	<10		<10 <10	<1	51
58	1+32+00E 60+00N	10	0.6	0.66		140	-	).15 <1		13 14		20	0.30	344		<0.01	20 9	540 290	30 <5 10 <5			<0.01	<10			3	70
59	1+32+00E 60+50N	10	0.0		65		-	0.07 <1	9:			30	0.27	114		<0.01	9 17	290	10 <5	- +		<0.01 <0.01	<10 <10	19	<10 <10	<1 <1	44 5 E
60	1+32+00E 61+00N	35	0.2	0.92	35	• •	-	).77 <1		22 32		20	0.27	638		<0.01	28	530	22 <5		-	< 0.01	<10		<10	5	55 63
			<b>U.Z</b>	0.52	55	00					Q. 14	20	0.55	000	~ 1	~0.01	20	000	22 \3	~20	42	-0.01	~10	10	~10	3	03
61	1+32+00E 61+50N	110	0.3	1.03	50	65 <	< <u>5</u> (	).20 <1	12 :	26 26	4.29	20	0.22	214	<1	<0.01	21	480	30 <5	<20	15	<0.01	<10	27	<10	2	69
62	1+32+00E 62+00N	30	0.6	1.25		105		(.13 <1	17			30	0.31	1362		<0.01	40	830	30 <5			<0.01	<10		<10	16	74
63	1+32+00E 62+50N	80	0.2	0.69	45	50 4		).12 <1		19 30		30	0.21	560		<0.01	25	400	22 <5			<0.01	<10		<10	4	56
64	1+32+00E 63+00N	160	0.4	0.85	35		-	).12 <1	14			20	0.19	428		<0.01	25	330	20 5			<0.01	<10		<10	4	48
65	1+32+00E 63+50N	55	0.3		75		-	).76 <1		24 38		20	0.29	817		<0.01	30	540	28 <5			<0.01	<10		<10	6	65
			••	••••							0.00	20	0.20	•	- 1	-0.01		040	20 -0	-20	00	-0.01			-10	v	00
66	1+32+00E 64+00N	No Sample																									
67	1+32+00E 64+50N	No Sample																									
68	1+32+00E 65+00N	10	0.6	0.97	30	95 -	<5	1.71 <1	15 :	20 41	2.93	20	0.27	1596	<1	<0.01	34	900	24 <5	<20	96	<0.01	<10	16	<10	8	75
69	1+32+00E 65+50N	65	<0.2	0.33	25	35 <	<5 (	0.05 <1		9 8		20	0.05	88		<0.01	7	270	6 <5		1		<10		<10	1	24
70	1+32+00E 66+00N	5	1.4	1.01	25	90 -	<5 (	0.91 <1	15 :	22 33	3.10	20	0.19	1014	<1	<0.01	24	960	26 <5	<20	59		<10		<10	8	60
71	1+32+00E 66+50N	<5		1.22	25	155	<5	1.59 <1	17	24 34	3.07	20	0.24	4087	<1	<0.01	30	1100	24 <5	<20	97	0.02	<10	20	<10	6	71
72	1+32+00E 67+00N	90	1.2	0.73	20	165	<5	2.96 <1	12	16 41	2.16	10	0.20	3661	<1	<0.01	30	1110	16 <5	<20		0.01	<10		<10		75
73	1+32+00E 67+50N	25		0.65	30	40 •		0.08 <1		16 16	2.60	30	0.18	153	<1	<0.01	12	290	12 <5	<20		<0.01	<10	25	<10	1	44
74	1+32+00E 68+00N	<5		1.06	30	70 -	<5	0.89 <1	16	25 29	3.72	20	0.31	583	<1	<0.01	25	550	28 <5	<20	44	<0.01	<10	23	<10	4	59
75	1+32+00E 68+50N	<5	0.3	1.05	25	70 •	<5 (	3.75 <1	17	27 37	3.62	20	0.36	1037	<1	<0.01	32	850	26 <5	<20	38	<0.01	<10	22	<10	8	70
	4.00.000	_	<i></i>				_															_					
76	1+32+00E 69+00N	<5		1.14		45 •		0.23 <1			4.01		0.35	546		<0.01	23	710				<0.01	<10		<10		64
77	1+32+00E 69+50N	<5	0.6					0.10 <1		22 37			0.16	780		<0.01	15	480				0.01	<10		<10	8	54
78	1+32+00E 70+00N	<5		1.28	25			0.79 <1			4.19		0.45	841		<0.01	31	710				0.01	<10		<10	8	71
79	1+32+00E 70+50N	<5		1.20	25			0.81 <1			4.07		0.35	447		<0.01	26	560				< 0.01	<10		<10	4	65
80	1+32+00E 71+00N	<5	0.4	1.10	20	95 •	<5	0.53 <1	18	27 31	3.78	20	0.35	635	<1	<0.01	25	620	26 <5	<20	26	<0.01	<10	26	<10	6	7 <b>2</b>

Et #.	Tag /	Au (ppb)	Ag	Al %	As	Ba E	li Ca 🤊	6 Cd	Co Cr	Cu	Fe %		` <u>g</u> %	Mn	Mo Na %	NI	P	Pb Sb	Sn		TI %	ບ		w	Y Zr	1
81	1+32+00E 7 JN	<5	0.8	1.34	30	110 <	5 1.3	1 <1	19 30	60	3.95	<u> </u>	J.33	1638	<1 <0.01	43	1150	30 <5	<20	69	0.01	<10	- 23.	0	13 57	7
82 🖯	1+32+00E 72+00N	<5	0.4	1.13	35	75 <	5 0.7	1 <1	19 28	46	4.31	30	0.36	672	<1 <0.01	34	530	32 <5	<20	37 -	<0.01	<10	23	<10	9 57	7
83 .	1+32+00E 72+50N	<5	0.3	1.29	30	70 <	5 0.3	0 <1	22 30	52	4.61	30	0.35	902	<1 <0.01	36	520	32 <5	<20	20	<0.01	<10	25	<10	10 70	5
84	1+32+00E 73+00N	<5	0.3	0.95	30	50 <	5 0.4	7 <1	21 25	37	4.42	20	0.35	489	<1 <0.01	27	440	26 <5	<20	27	<0.01	<10	19	<10	4 62	2
85	1+32+00E 73+50N	<5	0.4	1.16	25	70 <	5 0.7	5 <1	15 25		4.10	30	0.31	659	<1 <0.01	27	710	24 <5	<20	45	<0.01	<10		<10	10 6	
						-																				•
86	1+32+00E 74+00N	<5	0.4	1.25	25	45 <	5 0.2	5 <1	19 28	29	4.36	30	0.37	358	<1 <0.01	23	500	28 <5	<20	13	<0.01	<10	25	<10	8 6	1
87	1+40+00E 54+50N	No Sample																			••••				•••	•
88	1+40+00E 55+00N	95	0.3	0.44	25	25 <	5 0.0	5 <1	5 13	12	2.22	20	0.11	134	<1 <0.01	9	550	14 <5	<20	1	<0.01	<10	26	<10	<1 2	•
89	1+40+00E 55+50N	25	0.3	0.82	45	45 <			18 23		3.67	30	0.32	705	<1 <0.01	31	630	30 <5	<20		<0.01	<10		<10	6 7	-
90	1+40+00E 56+00N	15	0.7	1.09	35	90 <			15 23		3.47	20	0.30	905	<1 <0.01	27	760	28 <5	<20		<0.01	<10	-	<10	7 7	
30		15	0.7	1.05	55	50 -	0.0	5 1	10 24	52	9. <del>4</del> 7	20	0.50	90J	-1 -0.01	41	700	20 -0	~40	44	-0.01	-10	22	N10 -	1 13	5
91	1+40+00E 56+50N	35	1.0	0.90	٨D	120 <	5 0.1	5 <1	16 22	28	3.68	20	0.15	1388	<1 <0.01	21	580	34 <5	<20	۵	<0.01	<10	26	<10	6 6	4
92	1+40+00E 57+00N	15	0.5	0.82	40	60 <			11 22		3.57	20	0.24	299	<1 <0.01	19	570	20 <5	<20	-	<0.01	<10		<10	4 7	-
93	1+40+00E 57+50N	15	1.0	1.12		105 <		D <1	14 23		2.97	20	0.28	1338	<1 <0.01	35	1300	20 <5	<20		<0.01	<10		<10		-
	1+40+00E 57+50N				45	65 <			18 25																10 9	
94		10	0.3	1.08							3.79	20	0.26	455	<1 <0.01	24	440	30 <5	<20		<0.01	<10		<10	5 7:	
95	1+40+00E 58+50N	20	1.3	0.64	20	55 <	5 1.4	3 <1	7 14	28	1.60	20	0.13	420	<1 <0.01	16	450	14 <5	<20	6/	<0.01	<10	16	<10	54	1
96	1+40+00E 59+00N	25	0.2	0.49	30	50 <	5 0.1	0 <1	7 11	14	1.75	20	0.09	171	<1 <0.01	9	210	12 <5	<20	5	<0.01	<10	19	<10	23	0
97	1+40+00E 59+50N	15	0.6	0.69	25	60 <		7 <1	7 19		2.93	20	0.17	308	<1 <0.01	12	400	18 <5	<20	-	<0.01	<10		<10	<1 3	-
98	1+40+00E 60+00N	85	<0.2	0.45	35	40 <		4 <1	5 11		1.64	30	0.09	120	<1 <0.01	9	260	10 <5	<20		<0.01	<10		<10	<1 2	
99	1+40+00E 60+50N	10	0.4	1.07	40	65 <		B <1	18 26		3.74	30	0.31	875	<1 <0.01	35	550	26 <5	<20		<0.01	<10		<10	9 6	-
100	1+40+00E 61+00N	300	0.4	0.54	35	45 <			11 18		3.24	20	0.15	628	<1 <0.01	15	400	16 <5	<20		<0.01	<10		<10	14	-
100		500	0.5	0.54	35	40 5	5 0.0		11 10	<b>Z</b> I	J.24	20	0.10	020	ST S0.01	10	400	10 5	~20	Ĵ	-0.01	10	~~	-10	1 4	a
101	1+40+00E 61+50N	15	0.3	1.07	40	55 <	5 0.1	2 <1	19 25	29	3.85	30	0.28	607	<1 <0.01	28	430	28 <5	<20	10	<0.01	<10	16	<10	96	6
102	1+40+00E 62+00N	50	1.8	1.03	35	40 <	5 0.0	9 <1	17 24	33	3.84	30	0.26	317	<1 <0.01	28	360	28 <5	<20	6	<0.01	<10	16	<10	95	5
103	1+40+00E 62+50N	25	0.4	0.54	35	55 <	5 0.0	8 <1	9 17	16	3.06	20	0.18	242	<1 <0.01	15	320	14 <5	<20	6	<0.01	<10	19	<10	14	
104	1+40+00E 63+00N	10	0.8	1.05	25	60 <	5 0.0	6 <1	14 24	25	3.83	20	0.23	618	<1 <0.01	21	560	26 <5	<20	4	<0.01	<10	22	<10	3 5	
105	1+40+00E 63+50N	20	<0.2	0.49	15	45 <	5 0.0	4 <1	4 10		1.48	20	0.10	119	<1 <0.01	6	200	8 < 5	<20		<0.01	<10	21	<10	<1 2	
106	1+40+00E 64+00N	25	0.4	0.89	30	55 <		0 <1	13 21	-	3.39	20	0.20	396	<1 <0.01	16	340		<20		<0.01	<10		<10		2
										,															-	
Repeat		40																								
3	2+02+00N 58+50E	10		-	-	-					-	-	-	~ ^			-						-			_
10	2+02+00N 60+25E	<5	<0.2	0.91	35	45 <			10 24		4.23	30	0.20	255	<1 <0.01	16	590	52 <5	<20	_	<0.01	<10	22	<10	26	-
19	2+02+00N 62+50E	10	<0.2	0.35	5	15 <		3 <1	38		1.18	20	0.05	68	<1 <0.01	3	290	10 <5	<20		<0.01	<10	12	<10	<1 1	
28	2+02+00N 64+75E	-	0.3	0.47	10	20 <		2 <1	27		1.04	20	0.05	65	<1 <0.01	2	180	10 <5	<20		<0.01	<10	13	<10	11	
36	2+02+00N 66+75E	-	1.0	1.05	30	75 <	5 0.3	9 <1	14 23	31	3.44	30	0.28	563	<1 <0.01	28	600	60 <5	<20	21	<0.01	<10	18	<10	49	0
37	2+02+00N 67+00E	15	-	-	-	-	-			-	-	-	-	-		-	-		-	-	-	-	-	-	-	-
45	2+02+00N 69+00E	5	1.6	1.13	10	65 <	5 0.3	43	11 21	26	2.96	30	0.22	645	<1 <0.01	21	430	1438 <5	<20	11	<0.01	<10	26	<10	11 39	7
54	1+32+00E 58+00N	-	0.3	1.15	40	55 <	5 0.0	6 <1	14 27	33	3.98	30	0.37	323	<1 <0.01	28	390	34 <5	<20	4	<0.01	<10	19	<10	36	9
58	1+32+00E 60+00N	15	-	-	-	-	-			-	-	-	-	-		-	-		-	-	-	-	-	-	•	-
63	1+32+00E 62+50N	-	0.2	0.66	45	50 <	5 0.1	1 <1	14 19	30	3.28	20	0.21	542	<1 <0.01	25	380	20 <5	<20	6	<0.01	<10	15	<10	4 5	6
65	1+32+00E 63+50N	15	-	-	-	-	-				-	-	-	-		-	-		-	-	-	-	-	-	-	-
71	1+32+00E 66+50N	-	0.9	1.18	25	155 <	5 1.6	4 <1	17 24	- 34	3.13	20	0.23	4104	<1 <0.01	30	1060	26 <5	<20	96	0.02	<10	20	<10	77	1
74	1+32+00E 68+00N	<5	-	-	-	-	-		• •		-	-	-	-		-	-		-	-	-	•	-	-	•	-
80	1+32+00E 71+00N	-	0.3	1.04	20	95 <	5 0.5	0 <1	17 26	30	3.66	20	0.33	598	<1 <0.01	24	610	24 <5	<20	25	<0.01	<10	25	<10	67	0
83	1+32+00E 72+50N	20		-			-																			-
89	1+40+00E 55+50N	40	0.3	0.80	40	45 <	5 0 3	7 <1	17 22	35	3.59	20	0.31	649	<1 <0.01	30	640	30 <5	<20	19	<0.01	<10	18	<10	67	3
98	1+40+00E 60+00N		<0.2	0.41	35	40 <		4 <1	5 10		1.58	20	0.08	104	<1 <0.01	7	260	8 < 5			<0.01	<10		<10	1 2	
106	1+40+00E 64+00N	-	0.4	0.92	25	55 <		0 <1	14 22		3.53	20		458	<1 <0.01	16	340	24 <5			<0.01	<10		<10	2 5	
100		-	V.4	Ų.82	20	00 4	J U.1	0 -1	17 22	<u> </u>	0.00	20	0.20		וע.ער דר	10	040	47 -0	~20	0	-0.01	210	20	-10	£ 0	0

ECO TECH LABORATORY LTD.

EL#. iag#	Au (ppb)	Ag	AI %	AS BA BI	La % Ld	LO LI LU	F0 %	<b>_'</b> ``'	WIY 70	IVII (	NO	Na 7o	<u>NI</u>	۲	rusu	ડા	JI	il 7a	<u> </u>	· ·	**		4,14
•																							
Stendard: *																							
GEÓ.'04	135	1.5	1.67	60 145 <5	1.62 <1	19 61 88	3.59	10	0.95	619	<1	0.02	32	640	24 <5	<20	44	0.10	<10	64	<10	8	76
GEO '04	135	1.5	1.61	60 140 <5	1.58 <1	19 59 88	3.54	<10	0.92	617	<1	0.02	31	630	24 <5	<20	40	0.10	<10	65	<10	8	75
GEO '04	140	1.5	1.59	55 145 <5	1.56 <1	18 58 88	3.46	<10	0.90	613	<1	0.02	31	610	22 5	<20	42	0.09	<10	61	<10	8	73
GEO '04	135	1.5	1.64	55 150 <5	1.60 <1	19 61 84	3.56	<10	0.93	627	<1	0.02	32	620	22 <5	<20	43	0.09	<10	65	<10	8	74

JJ/jm df/1020 XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

1       L4430       5       0.2       1.08       20       55       <5       0.62       <1       30       33       39       6.44       30       0.40       1601       <1       <0.01       35       960       70       <5       <20       37       <0.01       <10       22       <10       7       111         2       L4434       5       <0.2       1.07       10       50       <5       0.51       <1       21       25       33       4.25       30       0.44       910       <1       <0.01       25       780       22       <5       <20       24       <0.01       <10       29       <10       8       71         2       L4434       5       <0.2       1.07       10       50       <5       0.51       <1       21       25       30       0.44       910       <1<       <0.01       22       <5       <20       24       <0.01       <10       23       <10       7       11         QC DATA:       Resplit:       1       L4430       5       0.2       1.11       25       60       <5       0.67       <1       30       34 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>																															
Fax: : 250-573-4557       No. of samples received: 2 Sample type: Sitt Project #: IWA Regional Shipment #: Not Indicated         Velues In ppm unless otherwise reported         Et #. Tag # Au(ppb) Ag Al % As Be Bl Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Ne % NI P Pb Sb Sn Sr Ti % U V W Y Zz Standard         1       L4430       5       0.2       1.08       20       55       <5       0.62       <1       30       33       39       6.44       30       0.40       1601       <1       <0.01       35       960       70       <5       <20       37       <0.01       <10       22       <10       7       11         2       L4434       5       <0.2       1.07       10       50       <5       0.51       <1       21       25       33       4.25       30       0.44       910       <1<<0.01       25       780       22       <5       <20       24       <0.01       <10       29       <10       8       71         2       L4430       5       0.2       1.11       25       60       <5       0.87       <1       30       34       40       6.58       30       0.41       177       <1       <0.01       25       780       22       <5       <20	10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4 Phone: 250-573-5700 Fax : 250-573-4557														e of A	NALY	'SIS A	K 2004	-11 <b>5</b> 0					12422 PO Bo	Barke x 247	erville H	lwy.	IDE G	Sold I	AINES	LTD
Et #.       Tag #       Au(ppb)       Ag       Al %       As       Ba       Bi Ca %       Cd       Co       Cr       Cu       Fe %       La Mg %       Mn       Mo       Na %       Ni       P       Pb       Sb       Sn       Sr       Ti %       U       V       W       Y       Zi         1       L 4430       5       0.2       1.08       20       55       <5       0.62       <1       30       33       39       6.44       30       0.40       1601       <1       <0.01       35       960       70       <5       <20       37       <0.01       <10       22       <10       7       11         2       L 4434       5       <0.2       1.07       10       50       <5       0.51       <1       21       25       33       4.25       30       0.44       910       <1<<<0.01       25       760       22       <5<       <20       24       <0.01       <10       29       <10       8       71         2       L 4434       5       <0.2		Fax ::	250-573-4	557																				Sampi <b>Proje</b> t	le type ct #: I	s:Silt <b>VA Re</b>	gional				
1       L 4430       5       0.2       1.08       20       55       <5       0.62       <1       30       33       39       6.44       30       0.40       1601       <1       <0.01       35       960       70       <5       <20       37       <0.01       <10       22       <10       7       11         2       L 4434       5       <0.2       1.07       10       50       <5       0.51       <1       21       25       33       4.25       30       0.44       910       <1       <0.01       25       780       22       <5       <20       24       <0.01       <10       29       <10       8       71         2       L 4434       5       <0.2       1.07       10       50       <5       0.51       <1       21       25       33       4.25       30       0.44       910       <1       <0.01       22       <5       <20       24       <0.01       <10       23       <10       7       11         QC DATA:       Resplit:       1       L 4430       5       0.2       1.11       25       60       <5       0.67       <1		vaiues	in ppm ur	iiess otherv	vise re	рогтеа	ſ																								
OC DATA: Resplit: 1 L 4430 5 0.2 1.11 25 60 <5 0.67 <1 30 34 40 6.58 30 0.41 1779 <1 <0.01 33 1020 72 <5 <20 39 0.01 10 23 <10 7 11 Standard:		<u>Et #.</u> 1																			and the second second second second second second second second second second second second second second second								STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET	<u>Y</u> 7	<u>Zn</u> 118
Resplit: 1 L 4430 5 0.2 1.11 25 60 <5 0.67 <1 30 34 40 6.58 30 0.41 1779 <1 <0.01 33 1020 72 <5 <20 39 0.01 10 23 <10 7 118 Standard:				5	<0.2	1.07	10	50	<5	0.51	<1	21	25	33	4.25	30	0.44	910	<1	<0.01	25 78	10 2:	2 <5	<20	24	<0.01	<10	29	<10	8	79
Standard:			:																												
	•	·		5	0.2	1.11	25	60	<5	0.67	<1	30	34	40	6.58	30	0.41	1779	<1	<0.01	33 102	20 7	2 <5	<20	39	0.01	10	23	<10	7	118
GEO 04 130 1,3 1.70 60 133 53 1.61 51 20 39 66 3.51 510 0.99 623 1 0.62 37 630 22 55 520 50 0.09 510 67 510 10		Standa GEO '0		130	1.5	1.70	60	135	<5	1.61	<1	20	59	86	3.51	<10	0. <b>99</b>	623	1	0.02	37 65	502	2 <5	<20	50	0.09	<10	61	<10	10	74

JJ/jm df/1128 XLS/04

 $\frown$ 

.

06-Sep-04

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

1



03-Sep-04 ;

ECO TECH LABORATURY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-1149

١.

INTERNATIONAL WAYSIDE GOLD MINES LT 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

1

÷

1

÷

÷

No. of samples received: 9 Sample type: Soli Project **#: IWA Regional** Shipment **#: Not indicated** Samples submitted by: Jean Pautler

Values in ppm unless otherwise reported

Et f	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	TI %	U	<u> </u>	W	Y	Zn
1	S 166201	10	0.7	1.46	15	25	<5	0.02	<1	15	29	38	4.65	20	0.24	406	<1	<0.01	15	700	38	<5	<20	2	0.02	<10	41	<10	3	68
2	47+65N 54+75E	10	0.4	1.27	20	25	<5	0.22	<1	14	34	27	5.44	30	0.38	328	<1	<0.01	23	480	58	<5	<20	10	<0.01	<10	26	<10	2	62
3	48N 54+50E	20	0.3	0.57	20	20	<5	0.12	<1	13	25	29	5.34	20	0.20	656	<1	<0.01	17 1	1950	54	5	<20	1	<0.01	<10	27	<10	2	79
- 4	48N 54+75E	5	<0.2	0.66	15	20	<5	0.08	<1	13	24	27	4.51	20	0.21	322	<1	<0.01	18	650	30	<5	<20	7	<0.01	<10	26	<10	2	63
5	48+50N 54+75E	10	0.8	0.53	25	30	5	0.07	<1	16	24	33	5.10	30	0.17	497	<1	<0.01	18	790	66	5	<20	3	<0.01	<10	25	<10	2	89
6	S 4432	10	<0.2	2.00	30	40	<5	0.03	<1	27	46	- 34	8.29	30	0.34	2930	<1	<0.01	25	830	54	10	<20	2	0.02	<10	41	<10	8	111
7	S 4433	25	<0.2	1.51	25	30	<5	0.02	<1	21	40	46	7.50	30	0.37	600	<1	<0.01	24	720	32	10	<20	<1	<0.01	<10	39	<10	4	74
8	S 4435	10	<0.2	1.24	20	30	<5	0.02	<1	18	32	49	5.75	20	0.42	757	<1	<0.01	24	830	52	5	<20	1	0.01	<10	39	<10	5	78
9	S 4436	10	0.3	1.35	30	40	<5	0.02	<1	28	35	119	8.75	30	0.25	1127	<1	<0.01	21	1260	14	<5	<20	<1	<0.01	<10	16	<10	10	101
OC Rep 1	DATA: eet: S 166201	10	0.7	1.53	15	25	<5	0.02	<1	16	31	40	4.96	20	0.24	409	<1	<0.01	16	720	40	5	<20	2	0.02	<10	44	<10	3	72
	idend: D 104	135	1.5	1.70	60	155	<5	1.61	<1	20	59	86	3.51	<10	0. <del>9</del> 9	623	1	0.02	37	650	22	20	<20	40	0.09	<10	61	<10	10	67

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm df/1128 XLS/04 17-Sep-04

ECO TECH LABORATORY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-1254

INTERNATIONAL WAYSIDE GOLD MINI 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 16 Sample type:Soli Project #: Promise Shipment #: Not Indicated Samples submitted by:Dave Johnson

Values in ppm unless otherwise reported

Et#.	Tag #	Au (ppb)	Ag	Ai %	As	Ba	Bl	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La l	<u>Mg %</u>	Mn	Mo	Na %	NI	Р	Pb	Sb	Sn_	Sr [·]	TI %	U	V	W	Y	Zn
- 1	38952	<5	0.5	1.45	20	55	<5	0.07	<1	10	41	19	5.27	30	0.39	230	<1	< 0.01	19	870	36	<5	<20	6	0.04	<10	35	<10	4	66
2	38953	5	0.3	0.86	5	170	<5	0.07	<1	7	28	34	3.26	20	0.37	55	<1	<0.01	17	610	22	<5	<20	4	0.08	<10	53	<10	5	55
3	38954	<5	<0.2	2.17	<5	80	<5	0.08	<1	13	47	34	4.93	30	0.78	157	<1	<0.01	33	690	36	<5	<20	10	0.06	<10	27	<10	8	89
4	38955	<5	0.2	1.12	10	210	<5	0.07	<1	9	37	28	4.38	20	0.37	17 <del>6</del>	<1	<0.01	16	1300	28	<5	<20	6	0.08	<10	48	<10	5	57
5	38956	<5	0.2	1.29	10	65	<5	0.14	<1	12	40	29	3.94	20	0.53	282	<1	<0.01	23	1390	26	<5	<20	12	0.05	<10	47	<10	5	62
6	38957	25	0.2	1.16	35	50	<5	0.11	<1	9	29	17	3.59	30	0.37	125	<1	<0.01	18	510	28	<5	<20	3	0.02	<10	32	<10	2	64
7	38958	<5	<0.2	1.38	5	50	<5	0.07	<1	7	24	14	3.24	20	0.24	32	<1	< 0.01	12	270	24	<5	<20	9	0.03	<10	30	<10	3	54
8	38959	<5	<0.2	1.38	5	80	<5	0.08	<1	9	34	14	4.95	20	0.43	90	<1	< 0.01	15	990	30	<5	<20	7	0.06	<10	33	<10	5	63
9	38960	<5	<0.2	1.70	<5	55	<5	0.05	<1	8	33	16	5.02	30	0.36	98	<1	< 0.01	16	950	32	<5	<20	4	0.02	<10	35	<10	6	56
10	38961	<5	0.4	1.27	<5	30	<5	0.09	<1	6	24	11	3.94	20	0.30	89	<1	<0.01	11	1240	36	<5	<20	3	0.03	<10	27	<10	5	53
11	38962	<5	1.5	1.38	<5	40	<5	0.06	<1	8	36	22	6.01	40	0.43	107	<1	<0.01	14	1760	24	<5	<20	2	0.03	<10	41	<10	5	62
12	38963	<5	0.5	2.16	<5	110	<5	0.27	<1	52	38	65	4.30	160	0.54	1357	<1	<0.01	111	860	66	<5	<20	19	0.02	<10	25	<10	50	133
13	38964	<5	0.2	1.43	10	90	<5	0.10	<1	13	38	25	4.62	40	0.52	324	<1	<0.01	28	1580	34	<5	<20	9	0.04	<10	37	<10	9	75
14	38965	<5	<0.2	1.44	15	45	<5	0.08	<1	14	41	25	5.42	30	0.52	222	<1	<0.01	24	680	36	<5	<20	6	0.11	<10	27	<10	7	81
15	38966	<5	0.2	1.86	10	60	<5	0.10	<1	16	43	39	5.03	50	0.80	454	<1	<0.01	41	1440	34	5	<20	8	0.07	<10	26	<10	12	99
16	38967	<5	<0.2	1.59	10	60	<5	0.14	<1	13	36	25	5.11	40	0.70	324	<1	<0.01	26	1010	36	<5	<20	15	0.03	<10	27	<10	9	83
<u>OC D/</u> Reper																														
<u> </u>	38952	<5	0.5	1.47	15	50	<5	0.07	<1	11	41	20	5.17	30	0.39	209	<1	<0.01	20	830	34	<5	<20	5	0.05	<10	34	<10	4	65
6	38957	25	-	-	-	`-	-		-	-	-	-	-	-	•	-	-	-			-	-		-	-	-	-	-	-	
10	38961	<5	0.3	1.33	<5	40	<5	0.10	<1	6	25	11	3.98	30	0.32	88	<1	<0.01	11	1270	36	<5	<20	3	0.03	<10	26	<10	5	56
Stand GEO 1		135	1.5	1.90	60	150	<5	1.87	<1	22	62	88	3.60	20	1.09	712	<1	0.03	30	770	22	<5	<20	51	0.12	<10	61	<10	10 ·	74

ECO TECH LABORATORY LTD. Jutta Jeakuse B.C. Certified Assayer

JJ/jm df/1223 XLS/04 ICP CERTIFICATE OF AN. IS AK 2004-1263

-

No. of samples received: 94 Sample type:Soll Project #: WOLF Shipment #: Not indicated Samples submitted by:Brad

Values in ppm unless otherwise reported

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La I	Vig %	Mn	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	υ	v	w	Y	Zn
1	L56-00N 35+75E	1600	2.4	0.43	170	80	<5	7.31	2	32		262	8.36	30		4169	<1	<0.01	54	1540	430	<5	<20	366	0.01	<10	9	<10		430
2	L58-00N 36+00E	270	0.7	0.40	225	70	<5	1.61	<1	27	28	110	8.08	30	0.17	3611	<1	<0.01		1540	74	<5	<20			<10	8	<10	27	76
3	L58-00N 38+25E	1055	0.2	1.04	155	55	<5	0.31	3	29	57	83	>10	50	0.34	7401	<1	< 0.01	30	1990	1660	<5	<20	23		<10	27	<10		761
4	L58-00N 38+50E	40	0.6	1.39	20	60	<5	0.73	<1	26	44	66	8.78	30	0.43	2549	<1	< 0.01	24	1690	208	<5	<20	56		<10				198
5	L58-00N 38+75E	15	0.2	1.60	10	70	<5	0.62	<1	27	35	70	5.69	30	0.71	1680	<1	<0.01	36	1150	52	5	<20						-	126
6	L58-00N 37+00E	10	<0.2	1.44	10	80	<5	0.64	<1	26	34	57	5.42	30	0.66	1366	<1	<0.01	37	990	44	<5	<20	59	<0.01	<10	37	<10	11	117
7	L58-00N 37+25E	10	<0.2	1.42	10	55	<5	0.37	<1	26	33	53	5.46	30	0.59	970	<1	<0.01	35	930	40	10	<20		<0.01	<10	•	<10		103
8	L58-00N 37+50E	15	<0.2	1.63	10	55	<5	0.19	<1	25	37	44	5.44	30	0.63	490	<1	<0.01	34	640	46	<5	<20		<0.01	<10	-	<10	-	102
9	L58-00N 38+00E	10	0.2	1.41	10	90	<5	0.74	<1	23	34	43	4.78	20	0.57	1015	•	<0.01	33	1240	42	<5	<20		<0.01	<10	· ·			104
10	L58-00N 38+25E	15	0.6	1.84	10	105	<5	0.67	<1	27	38	48	5.01	30	0.54	1701	-		36	1880	62	<5	<20	49	0.01	<10			-	132
11	L58-00N 38+50E	15	0.8	1.64	10	75	<5	0.66	<1	21	37	36	4.83	20	0.49	743	<1	<0.01	29	2070	54	<5	<20	40	0.01	<10	32	<10	8	102
12	L58-00N 38+75E	10	0.2	0.82	10	65	<5	0.36	<1	12	25	29	3.88	20	0.27	275		< 0.01	20	830	30	<5	<20	26	0.01	<10			2	
13	L58-00N 39+00E	10	0.6	1.81	10	80	<5	0.22	<1	22	37	50	4.78	30	0.44	1331	•	<0.01	32		54	<5	<20	24	0.01	<10			_	110
14	L58-00N 39+25E	5	0.3	1.36	10	65	<5	0.53	<1	23	36	40	5.13	20	0.45	704		<0.01	29	1160	40	<5	<20	41	0.01	<10	32	<10		106
15	L58-00N 39+50E	10	0.4	1.60	10	80	<5	0.52	<1	24	39	31	5.21	20	0.49	1260		<0.01		1360	46	<5	<20	42	0.01	<10			-	110
16	L58-00N 39+75E	to	0.3	1.64	10	95	<5	0,69	<1	24	38	37	4.95	20	0.49	1573	<1	<0.01	29	1670	50	<5	<20	55	0.01	<10	32	<10	12	89
17	L58-00N 40+50E	No Sample													••••							-					-			•••
18	1.58-00N 40+75E																													
19	L58-00N 41+00E																													
20	L58-00N 41+25E																													
21	L58-00N 41+50E	No Sample	,																											
22	L58-00N 41+75E	No Sample	•																											
23	L58-00N 42+50E	5	<0.2	0.55	10	40	<5	0.27	<1	13	18	25	3.11	10	0,20	393	<1	<0.01	27	530	24	<5	<20	16	<0.01	<10	11	<10	1	70
24	L58-00N 42+75E	No Sample					-								0/	••••	•				_ •							~1.	'	
25	L58-00N 43+00E	10	0.5	1.62	15	100	<5	0.47	<1	24	40	38	4.68	30	0.43	1118	<1	<0.01	37	1600	68	<5	<20	30	0.01	<10	37	<10	17	107
26	L58-00N 43+25E	15	0.4	1.34	15	95	<5	0.24	<1	21	36	34	4.81	30	0.38	775	<1	<0.01	34	1000	72	5	<20	16	<0.01	<10	38	<10	11	99
27	L58-00N 43+50E	15	0.3	1.29	15	80	<5	0,28	<1	26	36	43	5.70	30	0,36	886	<1		38		142	-	-	18	<0.01	<10	28		15	114
28	L58-00N 43+75E	5	0.2	0.84	15	35	<5	0.03	<1	11	27	25	4.36	20	0.27	171	<1	< 0.01	27	490	32	<5	<20	4	<0.01	<10	24	<10	<1	91
29	L58-00N 44+00E	10	0.2	0.80	25	45	<5	0.03	<1	9	23	18	3.34	30	0.28	117	<1	<0.01	21	480	16	<5			<0.01	<10	27	<10	<1	52
30	L58-00N 44+25E	5	<0.2	0.71	5	25	<5	0.02	<1	10	27	18	4.79	20	0.20	119	<1	<0.01	20	940	28	<5	<20	1	0.01	<10	30	<10	<1	61

Page 1

ECO TECH LABOR' .Y LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

## •

INTERNATIONAL V. SIDE GOLD MINES LTD.

٠

. .

ICP CERTIFICATE OF A SIS AK 2004-1263

ECO TECH LABORATORY

		3								•				,	~				-													
	<u>Ét#.</u>		Au (ppb)		AI %	As	Ba	BI	Ca %	Ċd	Co	Cr	Ċu	Fe %	La N	lg %	Mn I	Mo	<u>Na %</u>	NI	P	Pb S	<u>b</u>	Sn	Sr	<u>Ti %</u>		V	<u>w</u>	<u>Y</u>	Zn	
	31	L58-00N 44+50E	5	0.4	0.68	15	30	<5	0.02	<1	13	27	27	5.08	20	0.20	313	<1	< 0.01	24	870	36 -	<5	<20	1	<0.01	<10	23	<10	<1	85	
	32	L58-00N 44+75E	10	<0.2	1.08	15	45	<5	0.03	<1	15	35	23	5,30	20	0.34	117	<1	<0.01	26	510	28 •	<5	<20	2	<0.01	<10	22	<10	<1	91	
	33	L58-00N 45+00E	10	<0.2	1,48	15	40	<5	0.02	<1	12	40	11	4.11	20	0.48	612	<1	<0.01	27	540	36 •	<5	<20	<1	<0.01	<10	36	<10	<1	76	
	34	L56-00N 30+00E	5	<0.2	0.78	<5	30	<5	0.02	<1	6	23	9	3.34		0.19			<0.01		1250		<5	<20		0.01			<10	<1	29	
:	35	L56-00N 30+25E	10	<0.2	1.43	10	45	<5	0.03	<1	14	31	30			0.46	221			25	710	32				<0.01			<10	<1	80	
		200-0011-00-202		-V.L	1.40	10		~	0.05	-1	14		00	4.70	20	0.40	441	<b>N</b>	-0.01	25	110	JZ	~0	~20	5	-0.01	~10	20	-10		00	
	36	L56-00N 30+50E	65	<0.2	1.04	~E	46	<5	0.04	<1	7	22	10	2.87	20	0.40	670	-4	-0.01	40	660	40	~E	-20	-	-0.01	-40	40	-10			
	37				1.01	<5	45	-		-	-					0.18	579	-		10	660	12				<0.01			<10	<1	33	
	-	L56-00N 30+75E	5	<0.2	1.88	<5	75		0.07	<1	20	38	34	4.69			-		<0.01		1070	30		<20	-	<0.01		-	<10	8	86	
,	38	L56-00N 31+00E	10	0.3	1.91	<5	70	-	0.25	<1	25	38	40	4,94			2111	•		-	1120	• •	-	<20		<0.01			<10	11	124	
	39	L56-00N 31+25E	5	0.2	1.02	<5	55	<5	0.09	<1	20	40	20	8.31	20	0.38	3085	<1	<0.01	30	830	34	10	<20	4	<0.01	<10	19	<10	- 4	88	
	40	L56-00N 31+50E	10	<0.2	1,59	<5	115	<5	0.13	<1	12	32	13	3.84	20	0.55	115	<1	<0.01	26	670	18	<5	<20	10	<0.01	<10	32	<10	<1	68	
	41	L56-00N 31+75E	5	0.4	2.52	<5	185	<5	0.49	<1	30	35	59	3.67	20	0.43	1850	<1	<0.01	42	1000	44	<5	<20	30	<0.01	<10	33	<10	14	94	
	42	L56-00N 32+00E	5	0.2	1.71	15	40	<5	0.28	<1	16	37	24	4.87	30	0.52	500	<1	< 0.01	25	690	40	5	<20		<0.01			<10		112	
:	43	L58-00N 32+25E	5	0.2	1.21	<5	35	<5	0.43	<1	15	32	30	4.39		0.36			<0.01	28	730	•		<20		<0.01			<10	<1	70	
	44	L58-00N 32+50E	-	0.2	2.03	_		-		<1		40		6.17		0.58		•					-							-		
			5	-		15	45	<5	0.47		37	•••	52					•	<0.01	43	1540			<20	18				<10		114	
	45	L58-00N 32+75E	10	0.3	1.89	10	40	<5	0.54	<1	35	43	71	5,75	20	0.67	1330	<1	<0.01	46	1660	34	5	<20	22	0.02	<10	33	<10	23	123	
	46	L56-00N 33+00E	15	0.2	2.11	5	45	<5	0.68	<1	44	43	55	5.29	20	0.66	987	<1	<0.01	44	<del>95</del> 0	38	<5	<20	36	0.01	<10	33	<10	9	99	
	47	L58-00N 33+25E	10	<0.2	1.57	5	20	<5	0.03	<1	16	43	29	6.40	30	0.42	154	<1	<0.01	26	540	22	5	<20	2	<0.01	<10	49	<10	<1	76	
	48	L56-00N 33+50E	5	0.3	1.92	15	55	<5	0.91	<1	29	38	44	5,72	20	0.49	709	<1	<0.01	40	1010	48	<5	<20	56	<0.01	<10	33	<10	6	100	
	49	L56-00N 33+75E	10	<0.2	1.33	15	40	<5	0.11	<1	29	39	45	6.92	20	0.35	590	<1	<0.01	38	870	34	<5	<20	10	<0.01	<10	38	<10	<1	108	
	50	156-00N 34+00E	5	<0.2	0.35	<5	20	<5	0.01	<1	9	11	11	2.38	20	0.05			<0.01	14	400	•	-	<20		<0.01			<10	<1	43	
	•••		•		0.00			•			Ū		••	2.00		0.00	101		-0.01	14	400	-		160	-	40.01	-10	20	-10			
	51	L56-00N 34+25E	10	0.2	0.65	20	46	<b>75</b>	0.21	-1	22	22	20	e 0e	40	0.11	1050	- 1	-0.04	40	070		.E	-00	20	-0.04	-10		-10	00	80	
			10	0.2		20	45	<5	0.31	<1	23	23	30	6.06			1958			42	870	-		<20		<0.01		8	<10	99	69	
	52	L56-00N 34+50E	10	<0.2	0.51	5	20	<5	0.08	<1	19	25	31	6.39	30	0.13		<1	<0.01	25	640	46	<5	<20	7	<0.01	<10	12	<10	6	78	
	53	L56-00N 34+75E	5	<0.2	1.54	<5	20	<5	0.02	<1	13	36	25	5.67	30	0.28	186	<1	<0.01	21	860	30	5	<20	2	<0.01	<10	53	<10	<1	63	
	54	L56-00N 35+00E	20	<0.2	1.11	15	30	<5	0.03	<1	14	43	22	6.72	20	0.33	562	<1	<0.01	24	2060	52	<5	<20	4	<0.01	<10	36	<10	<1	66	
	55	L56-00N 35+25E	5	0.2	1.55	5	10	<5	0.05	<1	13	42	33	5.29	20	0.51	228	<1	<0.01	26	1100	50	<5	<20	3	<0.01	<10	31	<10	<1	83	
				÷																			•		-	••••		•••		•		
	56	L56-00N 35+50E	5	<0.2	1.61	<5	25	<5	0.10	<1	16	38	17	7.32	30	0.51	482	<1	<0.01	17	1170	20	<5	<20	۵	<0.01	e10	58	<10	<1	73	
	57	L56-00N 35+75E	10	<0.2	0.89	<5	45	<5	0.24	<1	11	23	15	3.21	10	0.30			<0.01		850		-		_		• -	29		<1		
			• -			-	. –	-	• • - •		• •									17			-	<20		< 0.01	•				52	
	58	L56-00N 36+00E	10	0.2	0.85	<5	105	<5	0.05	<1	8	19	17	2.30				-	<0.01		1000			<20		<0.01		23		<1	43	
	59	L56-00N 36+25E	5	0.3	0.67	<5	25	<5	0.06	<1	9	18	17	2.29	20	0.21			<0.01		1000	10		<20		< 0.01		22		<1	39	
	60	L56-00N 36+50E	5	0.4	1.43	15	25	<5	0.05	<1	22	38	35	5.44	30	0.41	547	<1	<0.01	29	980	46	<5	<20	4	0.01	<10	38	<10	<1	88	
	61	L56-00N 36+75E	45	0.6	1.93	10	90	<5	Q.44	<1	28	40	47	5.54	20	0.44	1349	<1	<0.01	33	1640	50	<5	<20	32	0.01	<10	38	<10	21	104	•
	62	L58-00N 37+00E	5	<0.2	1.03	10	55	<5	0.07	<1	18	30	40	5.85	20	0.33	267	<1	<0.01	19	890	20	<5	<20	4	<0.01	<10	48	<10	<1	68	
	63	L58-00N 37+25E	5	0.3	0.61	10	30	<5	0.08	<1	14	21	32	4.33	20	0.15	227	<1	<0.01	12	800	12	5	<20	3	<0.01	<10	59	<10	<1	45	
	64	L56-00N 37+50E	10	<0.2	1.51	10	95	<5	0.08	<1	27	39	33	5.30	20	0.46	1480	<1	<0.01	26	1010	38		<20	10			46		<1		
	65	L56-00N 37+75E	10		1.48	10	155	<5	0.57	<1	26	36	60	4.97		0.58	-				1110		-	<20		<0.01		35		8	91	
	••			-0.2	1.40	10	100	~~	0.07	• •	20	00	00	4.57	00	0.00	1200	- •	-0.01	00	1110	40	~	-20	20	-0.01	510	50	10	•	91	
	66	L56-00N 38+00E	10	0.2	1 40	46	475	~5	4 40	-4	31	22	24	4 47	20	0.40	4470		-0.04	20	4350	70	-E	-00	70	-0.04	-40		-40		04	
					1.19			_																							94	
	67	L56-00N 38+25E	10	<0.2		10	50	<5	0.17	<1	18	33	33	5.65		0.32			<0.01	25	780					<0.01			<10	<1	89	
	68	L56-00N 38+50E	10			20	40		0.46	<1	17	30	51	4.46		0.26	269		<0.01	31	640			<20		<0.01		38	<10	4	73	
	69	L56-00N 38+75E	15	<0.2	0.97	10	50	<5	0.05	<1	13	30	36	5.11	20	0.25	148	<1	<0.01	20	460	60	<5	<20	6	<0.01	<10	42	<10	<1	61	
	70	L56-00N 39+00E	10	0.2	1.36	15	35	<5	0.27	<1	18	39	29	5.59	20	0.37	148	<1	<0.01	27	740	62	<5	<20	30	<0.01	<10	38	<10	<1	76	
	71	L56-00N 39+25E	10	0.2	1.46	35	65	<5	0.49	<1	26	35	33	4.95	20	0.43	569	<1	<0.01	31	880	60	<5	<20	73	<0.01	<10	32	<10	7	138	
	72	L56-00N 39+50E	65		1.61	20	50	<5	0.32	<1	29	42	39	5.62		0.62			<0.01	40	690	98		<20		<0.01			<10		121	
	73	L56-00N 39+75E	10	0.2	1.31	10	40		0.21	<1	26	35	43	5.04		0.49			<0.01		1090			<20		<0.01			<10		109	
	74	L56-00N 40+00E	10		1.08	10		<5			19	30	52	4.55		0.38			< 0.01	35	900			<20		< 0.01			<10		81	
		L56-00N 40+25E					50			<1																						
	75	LUO-UUN 4UT23E	20	0.3	0.86	15	35	<5	0.08	<1	15	30	28	5.36		0.32	495	<1	<0.01	22	910	28	<5	<20	4	<0.01	510	33	<1V	<b>&lt;</b> 1	71	
														P	aga 2																	

IŅTĒ	RHATIONAL !	IDE GOLD	MINE	S LTD.					10	CP CE	RTIF	CAT	E OF A	4	318 A	K 2004	-1263	3					E	сот	ECH L	ABOR	ATO	RYL		
Et #.	Tag #	Au (ppb)	Aa	AI %	As	Ba	Bi	Ca %	Cd_	Co	Cr	Cu	Fe %	La N	1g %	Mn N	lo N	Na %	Ni	P	Pb S			<b>2</b>	TI %	U	v	W	in the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the second value of the	Zn
78	L56-00N 40+50E	5	<0.2	0.44	10	30	<5	0.02	<1	9	20	23	3.78	20	0.10	••••	•	<0.01	14	450			<20	2		•••		<10	<1	46
77	L58-00N 40+75E	10	0.4	0.83	10	65	<5	0.05	<1	10	30	17	4.87	20	0.28		•	<0.01	17	600		-	<20	-		<10	•	<10	<1	67
78	L58-00N 41+00E	5	Ð.6	0.94	5	95	<5	0.11	<1	10	31	17	4.69	20	0.22			<0.01	16	570		-	<20	8		<10		<10	<1	73
79	L56-00N 41+25E	10	<0.2	0.47	10	50	<5	0.04	<1	8	20	17	3.39		0.12			<0.01	16	500		-	<20	3		<10		<10	<1 4	54 64
80	L56-00N 41+50E	15	0.5	0.91	5	95	<5	0.13	<1	11	25	23	3.16	20	D.19	949	<1 <	<0.01	16	650	30	<5	<20	12	0.01	<10	30	<10	4	04
81	L56-00N 41+75E	5	<0.2	1.19	20	55	<5	0.09	<1	21	33	39	4.72	- +	0.53	•••	•	<0.01	38	690		-	<20	-	··-·	<10 <10		<10 <10	3 g	98 87
82	L56-00N 42+00E	5	0.4	1.11	10	95	<5	0.26	<1	16	28	28	3.81	20	0.35		•	<0.01	28 19	920 1020		-	<20 <20	10		<10		<10	<1	77
83	L56-00N 42+25E	10	0.2	0.56	15	90	<5	0.25	<1	12	24	23	4.19	20	0.16	÷	•	<0.01		1020		-	<20		0.02		-	<10	<1	70
84	L58-00N 42+50E	10	<0.2	0.53	10	40	<5	0.02	<1	16	24	23	4.56	20	0.17 0.21			<0.01 <0.01	-	1180		-	<20		< 0.01	<10		<10	<1	82
85	L58-00N 42+75E	10	<0.2	0.70	15	35	<5	0.02	<1	15	29	24	5.06	20	0.21	049	~ `	<b>NO.01</b>				_		-						
86	L56-00N 43+00E	10	0.2	0.82	10	25	<5	0.01	<1	8	24	19	3.83	30	0.18			<0.D1	15	400	20	-	<20	-			20	<10	<1	49
87	L56-00N 43+25E	220	0.2	0.73	10	25	<5	0.06	<1	10	29	19	5.31	20	0.20		•	<0,01	18	1210	24	-	<20	3	0.01	<10	36	<10	<1	57
88	L58-00N 43+50E	15	0.2	0.57	10	25	<5	0.02	<1	9	20	21	3.50	20	0.15		•	<0.01	20	430	18	-	<20	-			21	<10	<1	82 49
89	L56-00N 43+75E	10	<0.2	0.62	30	15	<5	0.02	<1	9	19	15	3.63	20	0.15		-	<0.01	25	450	20	-	<20				18	<10	শ শ	84
90	L56-00N 44+00E	10	<0.2	0.90	60	30	<5	0.04	<1	14	30	27	4.76	20	0.29	204	<1	<0.01	25	730	30	<5	<20	2	<0.01	<10	30	<10	•1	04
91	L58-00N 44+25E	15	<0.2	0.93	15	55	<5	0.04	<1	16	31	33	4.60	20	0.29	236	•	<0.01	32	650	32	<5	<20	-	<0.01		20	<10	<1	91 78
92	L58-00N 44+50E	60	0.2	1.10	15	130	<5	0.31	<1	15	33	29	5.05	20	0.27	298		<0.01	25	650	50	<5	<20	• -	< 0.01		39	<10	2	119
93	L56-00N 44+75E	10	0,5	1.34	15	125	<5	0.47	<1	27	39	43	4.59	20	0.44	1355	-	<0.01	50	800	54	5	<20		<0.01		31 31	<10 <10	4	95
. 94	L56-00N 45+00E	5	0.6	1.14	10	110	<5	0.17	<1	24	34	41	4.70	20	0.34	761	<1	<0.01	33	1120	46	<5	<20	13	<0.01	<10	31	10	7	55
Repe	L56-00N 35+75E	1610	1.9	0.44	180	75	<5	7.37	2	33	30	279	8,49	30	0.25	4130	<1	<0.01	56	1590	428	<5	<20	373	0.01	<10	9	<10	23	416
1	L58-00N 36+00E		1.5	0.44	100	/5	~	7.57	-				-	-	-	-	-	-		•	•	•	-	-	-	-	•	-	-	•
10	L58-00N 38+25E		0.6	1.88	10	105	<5	0.65	<1	24	39	48	5.15	30	0.56	1673	<1	<0.01	37	1960	62	5	<20	49	0.01	<10	30	<10	20	131
28	L58-00N 43+75E	• • •	0.2		20	35	<5	0.03	<1	11	26	23	4,19	20	0.26	160	<1	<0.01	23	450	32	<5	<20	3	< 0.01	<10	24		<1	87
36	L56-00N 30+50E				<5	45	<5	0.04	<1	8	23	11	3.00	20	0,19	580	<1	<0.01	12	650	14	5	<20	3	< 0.01	<10	41	<10	<1	36
36	L56-00N 30+50E				-	-	-	-	-	-	-	-	-	•	-	-	-	-	•	-	•	-	-	•	• •	-	-	•	-	-
45	L56-00N 32+75E	E 5	0.3	1.87	15	45	<5	0.55	<1	37	43	70	5.67	20	0.65	1327	<1	<0.01	45	1680	36	<5		23		• • • •	32	, -	24	
54	L56-00N 35+00E	E 40	<0.2	1.12	15	25	<5	0.03	<1	14	42	19	6.64	20	0.33	592	<1		21	2060	52	<5		2			37		<1	• -
63	L56-00N 37+25	E 20	0.3	0.64	10	35	<5	0.09	<1	12	22	36	4,50	20	0.15			<0.01	14	860	14	<5			< 0.0				<1	
71	L56-00N 39+258	Ë 5	0.2	1.43	20	60	<5	0.48	<1	25	36				0.42		-	< 0.01	35	880	62								6 4	••
80	L56-00N 41+50E	E 10	0.4	0.91	<5	85	<5	0.12	<1	10	26				0.19		-	< 0.01	18		30	<5							-1 <1	
89	L56-00N 43+75E	E 15	<0.2	0.63	30	15	<5	0.02	<1	9	20	15	3.69	20	0,15	104	<1	<0.01	22	460	20	<5	<20		1 -0.0	1 <10	19		~1	40
	dard:	100								20	60	86		7 <10	0.95	5 600	<1	0.03	30	750	22	<5	<20	5	3 0.1	0 <10	60	) <10	10	) 73
GEC	·	130			65	160			<1 <1					7 <10							22					1 <10			11	
GEO	-	135			60	160									0.96		<1				24			-		1 <10		) <10		- •
GEC	0.04	130	1.4	1.73	60	165	5	1.94		20	00	90	0.0		0.50		1	, 0.00		,,,,			_							

21-Sep-04

ŧ

ECO TECH & ABORA Y LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

## ICP CERTIFICATE OF ANALY AK 2004-1259

INTERNATIONAL WAYSIDE GOLD MINEs. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

.

•

No. of samples received: 121 Sample type:Soil Project #: WOLF Samples submitted by: BRAD

Values in ppm unless otherwise reported

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba_	Bi	Ca %	Cd	Co_	Cr	Cu	Fe %	La I	Vig %	Mn	Mo	Na <u>%</u>	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	w	Y	Zn
1	L52-00N 30+00E	5	0.2	1.73	<5	45	<5	0.12	<1	27	42	55	4.70	20	0.78	429	<1	<0.01	41	620	28	<5	<20	9	<0.01	<10	34	<10	2	82
· 2	L52-00N 30+25E	10	0.4	2.25	15	40	<5	0.30	<1	49	46	62	5.47	30	0.67	2406	<1	<0.01	52	1100	56	5	<20	19	0.02	<10	36	<10	17 1	20
. 3	L52-00N 30+50E	5	0.2	1.51	10	35	<5	0.22	<1	37	39	30	4.85	20	0.56	890	<1	<0.01	29	930	36	5	<20	13	0.01	<10	40	<10	2	97
• 4	L52-00N 30+75E	No Sample	)																											
5	L52-00N 31+00E	20	<0.2	1.29	<5	25	<5	0.06	<1	9	32	23	4.44	20	0.31	143	<1	<0.01	13	670	38	<5	<20	3	<0.01	<10	37	<10	<1	48
6	L52-00N 31+25E	z	0.2	1.43	<5	30	<5	0.24	<1	16	33	35	6.10	20	0.39	340	-1	<0.01	18	1030	26	~5	<20	15	<0.01	<10	46	<10	£	76
7	L52-00N 31+50E	5	0.5	1.80	5	40	<5	0.48	<1	42	32	37	4.16	20	0.38	-		<0.01			34	-	<20		<0.01	<10		<10		64
Å	L52-00N 31+75E	5	0.2	1.69	<5	35	<5	0.13	<1	14	34	28	4.89	20	0.37	• • • •		<0.01		810	20	-	<20		<0.01	<10		<10		
ă	L52-00N 32+00E	5	0.2	1.34	10	75	<5	0.10	<1	24	31	36	4.54	20	0.37			<0.01			32	-	<20		0.01	<10		<10		89
10	L52-00N 32+25E	5	<0.2	0.89	10	35	<5	0.02	<1	12	31	29	5.54	20	0.21	255		< 0.01		640	20	-	<20		0.01	<10	_	<10		
		Ŭ	-414	0.00		00		U.UL	-	140	Ŷ.	20	0.01		<b>V</b>	200	•1	-0,01		0.10	~~	-0		v	0.01	* <b>IV</b>	40	~10		
11	L52-00N 32+50E	15	<0.2	0.96	10	35	<5	0.05	<1	17	30	46	6.47	20	0.21	768	<1	<0.01	18	950	20	<5	<20	3	<0.01	<10	49	<10	<1	73
12	L52-00N 32+75E	5	<0.2	0.51	15	20	<5	0.03	<1	19	22	63	5.57	20	0.13	331	<1	<0.01	14	720	12	<5	<20	2	<0.01	<10	27	<10	<1	47
13	L52-00N 33+00E	5	<0.2	0.30	5	20	<5	0.07	<1	7	12	14	2.70	10	0.06	378	<1	<0.01	13	690	18	<5	<20	2	<0.01	<10	15	<10	1	25
14	L52-00N 33+25E	5	<0.2	0.92	15	40	<5	0.01	<1	22	25	45	5.04	20	0.25	1155	<1	<0.01	28	660	16	<5	<20	1	<0.01	<10	15	<10	<1	88
15	L52-00N 33+50E	5	0.2	0.77	25	20	<5	0.02	<1	18	30	31	6.22	20	0.20	1190	<1	<0.01	17	1000	22	<5	<20	2	<0.01	<10	32	<10	<1	58
16	L52-00N 33+75E	70	0.3	1.25	10	20	<5	0.02	<1	15	35	23	5.43	20	0.34	590	<1	<0.01	16	1130	30	<5	<20	2	<0.01	<10	42	<10	<1	55
17	L52-00N 34+00E	5	0.4	1.55	15	20	<5	0.04	<1	19	43	43	6.27	20	0.61	492	<1	<0.01	31	1050	48	<5	<20	3	<0.01	<10	34	<10	<1	97
18	L52-00N 34+25E	No Sample	9																											
19	L52-00N 34+50E	<5	0.4		15	20	<5		<1	21	38	35	6.51	20			-	<0.01			46	-	<20	2		<10		<10		
20	L52-00N 34+75E	45	0.2	1.47	10	20	<5	0.02	<1	15	38	28	5.80	30	0.42	338	<1	<0.01	22	790	34	<5	<20	<1	0.01	<10	36	<10	<1	63
21	L52-00N 35+00E	15	<0.2	1.55	20	35	<5	0.04	<1	29	36	81	6.15	30	0.55	741	<1	<0.01	40	730	52	<5	<20	3	<0.01	<10	33	<10	<1	128 ~
22	L52-00N 35+25E	35	0.2	0.73	10	15	<5	0.02	<1	12	19	23	3.52	20	0.17	222	•	<0.01		860	16	-	<20	-	<0.01	<10		<10		
23	L52-00N 35+50E	10	0.7	0.72	15	25	<5	0.02	तं	11	28	27	5.24	20	0.23	359		<0.01		2020	20	<5	<20	•	0.01	<10		<10	-	
24	L52-00N 35+75E	15	<0.2		15	20	<5		<1	26	41	51	6.91	20	0.54			<0.01				5	<20	-	<0.01	<10		<10		
25	L52-00N 36+00E		0.2		10	30	<5		<1	12	33	24	5.44	20	0.33			<0.01				<5	<20		<0.01	<10		<10	-	
26	L52-00N 36+25E		0.4		15	20	<5	0.02	<1	14	39	26	6.78	20	0.32			<0.01			32	-	<20	_	<0.01	<10		<10		-
27	L52-00N 36+50E	-	0.3		15	25	<5	0.02	<1	11	37	17	6.48	20	0.29			<0.01			32	<5	<20		0.01	<10		<10		
28	L52-00N 36+75E		0.3		5	20	<5	0.06	<1	4	13	7	1.85	20	0.09			<0.01	-	720	14	<5	<20	_	<0.01	<10		<10	-	
29	L52-00N 37+00E	-	<0.2		15	35	<5	0.02	<1	27	45	53	6.13	30	0.55	803		<0.01	- +	660	46	<5	<20		0.01	<10		<10		
30	L52-00N 37+25E	10	0.2	0.84	10	15	<5	0.03	<1	12	22	22	3.55	20	0.24	309	<1	<0.01	14	920	28	<5	<20	2	<0.01	<10	36	<10	<1	42
31	L52-00N 37+50E	15	<0.2	0.81	10	35	<5	0.04	<1	14	29	40	5.42	20	0.29	482	! <1	<0.01	17	2150	24	<5	<20	4	<0.01	<10	47	<10	<1	67
32	L52-00N 37+75E		0.3		<5	30	<5	0.02	<1	13	19	24	3.45	20	0.15			<0.01			18	<5	<20	1		<10	33	<10	<1	42
33	L52-00N 38+00E		0.2		15	10	<5	0.03	<1	23	27	84	6.22	20	0.18			<0.01			36	<5	<20	<1	0.01	<10	41	<10	<1	57
34	L52-00N 38+25E	-	0.2		<5	15	<5	0.03	<1	18	29	46	5.30	20	0.35			<0.01		2280	36	<5	<20	•	<0.01	<10	• •	<10	-	71
	L52-00N 38+50E	-	0.6		5	20	-		<1		13	23	2.55a		0.08			<0.01			12	-	<20	-	<0.01	<10		<10		
					-		-			-				84 1.2		- / -	•					•		•					-	

INTERNATIONAL W DE GOLD MINES LTD, .

ICP CERTIFICATE OF ANAL AK 2004-1259 ECO TECH LABORA TD.

1

<i>4</i> − Et#,	r Tag #	Au (ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La N	<u>lg %</u>	Mn	Mo	Na %_	Ni	P	Pb	Sb	Sn	Sr	τι %	U	v	W	<u>Y</u> ;	Zn
36	L52-00N 38+75E	5	0.2	0.31	10	40	<5	0.05	<1	7	10	19	1.46	20	0.06	1014	<1	< 0.01	10	440	12	<5	<20	4	<0.01	<10	26	<10	<1	23
37	L52-00N 39+00E	5	0.6	1.16	10	30	<5	0.02	<1	14	47		7.13	20	0.37			<0.01	-		44	<5	<20		0.02	<10	-	<10 ·		94
; 38	L52-00N 39+25E	5	0.3	0.67	10	15	<5	0.02	<1	9	19		2.92	20	0.16	123	<1	<0.01	11	880	20	<5		<1	0.01	<10	48	<10	<1	33
: 39	L52-00N 39+50E	5	0.9	0.72	5	30	-	0.06	<1	12	24	24	4.30		0.21			<0.01			26	<5			0.01	<10		<10	•	
40	L52-00N 39+75E	5	0.5	0.58	5	10	<5	0.04	<1	7	20	16	3.54	20	0.14	170	<1	<0.01	8	2100	22	<5	<20	3	0.01	<10	60	<10	<1	30
		_	<b>.</b> .				_									<b>.</b>						_							-	
41	L52-00N 40+00E	5	0.4	0.61	10	40	<5	0.06	<1	15	21	23	3.64		0.18						26	<5			<0.01	<10		<10		
42	L52-00N 40+25E	25	0.3	0.94	20	65	<5	0.08	<1	17	31	40	5.29		0.28			<0.01			54		<20		0.01	<10		<10		
43	L52-00N 40+50E	10	0.4	0.75	10	45	<5	0.06	<1	17	26	40	5.03	20	0.24			< 0.01		850		-	<20		<0.01	<10		<10		
44	L52-00N 40+75E	5	0.5	0.53	20	40		0.12	<1	12	21	29	4.05	20	0.22			< 0.01		950		<5			<0.01	<10		<10		
45	L52-00N 41+00E	15	0.2	0.47	15	15	<5	0.12	<1	11	18	31	3.65	20	0.16	212	<1	<0.01	21	970	38	<5	<20	8	<0.01	<10	33	<10	1	62
;		-	4.0	4 40	40	4.5				26		~	2.04		0.04	0744		-0.04		4740			-00	40	0.00	-40	-		45	~~
: 46	L52-00N 41+25E	5	1.6	1.48	10	45	<5	0.14	<1	25	30	81	3.91	30						1710		<5			0.02	<10		<10		
· 47	L52-00N 41+50E	5	0.5	0.78	10	50	<5	0.11	<1	19	22	41	3.63	20		1166				1060	66	-	<20		< 0.01	<10	_	<10		- •
. 48	L52-00N 41+75E	5	0.9	1.23	10	85	<5	0.31	<1	25	29	53	4.35	20		2842				1980		-	<20		0.01	<10		<10		
: 49	L52-00N 42+00E	10	0.5	0.96	10	35	<5	0.10	<1	17	28	34	4.38	20	0.41			< 0.01		560	58	-	<20		<0.01	<10		<10	-	
50	L52-00N 42+25E	10	<0.2	0.63	15	35	<5	0.08	<1	14	25	43	4.17	20	0.19	303	<1	<0.01	25	770	60	<5	<20	6	0.01	<10	30	<10	<1	90
	1 53 000 40 - 500		~ ~		40	~~		A			~~		E 0 4	~~		0000		-0.04		4070			-00			-4.5	**		~	~~
51	L52-00N 42+50E	10	0.3	1.42	10	20	<5	0.09	<1	32	37	59	5.34							1270		-	<20		0.01	<10		<10		
52	L52-00N 42+75E	15	0.6	1.42	15	90	<5	0.33	<1	23	32	48	4.49	30						1690		-	<20		0.01	<10		<10		-
53	L52-00N 43+00E	10	1.1	1.20	5	70		1.34	<1	11	22	53	2.44	40	0.26	1044				1720	62	-	<20		<0.01	<10		<10		
	L52-00N 43+25E	10		1.58	15	85	<5	0.19	<1	18	32	41	4.20	30	0.39	1231	<1	<0.01	28	1320	68	<5	<20	15	<0.01	<10	26	<10	32	108
55	L52-00N 43+50E	No Sample	1																											
. 56	L52-00N 43+75E	No Samala																												
57	L52-00N 44+00E																													
58	L52-00N 44+25E																													
59	L52-00N 44+50E	35 NO 3600		0.92	15	135	~5	0.13	<1	16	31	35	4.88	20	0.28	762	~1	<0.01	22	690	54	<5	<20	18	0.01	<10	20	<10	-1	100
60	L52-00N 44+75E	45	0.4	0.92	20	45	<5 <5	0.03	<1	10	24	23	4.00 3.83	20	0.20			<0.01		620	32		<20		< 0.01	<10		<10		
00	L02-0011 44+7 0E	40	0.5	0.70	20	42	<b>\$</b> 0	0.03	~1	10	24	23	5.05	20	0.29	305	-1	~0.01	- 17	020	34	<b>~</b> 9	~20	3	<b>NO.01</b>	×10	23	~10	-1	40
61	L52-00N 45+00E	10	0.3	1.05	15	65	<5	0.21	<1	21	31	45	5.18	20	0.42	1007	-1	<0.01	24	900	66	5	<20	16	<0.01	<10	22	<10	<b>B</b> -	101
62	L54-00N 30+00E	5	0.3	1.60	<5	30	<5	0.21	<1	14	44	30	5.31	20	0.54	329		<0.01		840	34	<5	<20		<0.01	<10		<10		
63	L54-00N 30+25E	5 10	<0.2		<5	30	<⊃ <5	0.04	<1	21	39	36	5.31 6.71	20	0.54			<0.01		710	.34 16	-	<20		0.01	<10		<10		
64	L54-00N 30+50E			1.30	<b>N</b> 0	30	10	0.02	<b>N</b>	21	29	30	0.71	20	0.52	337	-1	<b>NU.UI</b>	21	110	10	10	~ <u>∠</u> u	4	0.01	>10	<b>Ş</b> I	10	-1	05
65	L54-00N 30+75E	rto sample 5		1.94	15	35	<5	0.30	<1	31	44	40	5.53	20	0.62	1025	~	<0.01	37	680	42	10	<20	19	0.01	<10	27	<10	7	102
00		5	0.4	1.34	τ <b>ρ</b>	30	-0	0.30	~1	51		40	0.00	20	0.02	1025	~1	~0.01	57	000	46	10	~20	13	0.01	10	32	10	'	103
66	L54-00N 31+00E	5	0.7	2.24	10	15	<5	0.20	<1	18	47	68	5.25	20	0.71	412	<1	<0.01	30	850	52	5	<20	13	<0.01	<10	20	<10	18	94
67	L54-00N 31+25E	10	1.0	1.93	<5	15	<5	0.20	<1	16	34	51	3.76	20	0.49	427		<0.01			40	<5	<20		<0.01	<10		<10		
68	L54-00N 31+50E	5	0.2		10	15	~5 <5	0.10	<1	27	40	49	7.76	20	0.72	572		<0.01		•	66	<5	<20	20		<10		<10		
69	L54-00N 31+75E	5	0.2	1.27	5	35	<5	0.06	<1	20	32	41	6.34	20	0.35			<0.01		840	22	<5	<20	-	<0.01	<10		<10		
70		5	<0.2		5	35	<5	0.18	<1	15	41	24	6.07	20	0.45			<0.01			24	<5			<0.01	<10	-			
		Ŭ	-0.6	1.00	v	~~	-0	0.10				<b>-</b>	0.01	~~	V. TV			-0.01	~~	0.0	27	-••	~~~		-0.01	-10				
71	L54-00N 32+25E	20	<0.2	0.54	5	25	<5	0.09	<1	9	17	26	3.35	20	0.09	95	<1	<0.01	14	500	10	<5	<20	7	<0.01	<10	30	<10	<1	44
	L54-00N 32+50E			0.04	Ť	Lu		0,44	.,				0.00	20	0.00		•	-0.0,					-20			-1-			•••	••
73		•		1.00	10	20	<5	0.04	<1	13	32	30	5.68	20	0.26	251	<1	<0.01	16	660	20	<5	<20	<1	0.01	<10	41	<10	<1	54
74				1.06	15					17	31		5.62		0.25					660					< 0.01			<10		
75		-		0.76	10	15	<5			8	20	20			0.15					660			<20		<0.01			<10		
		5							•	-				-7			•	5, 7,	. 🗸			-		•					•	
76	L54-00N 33+50E	5	<0.2	0.57	10	10	<5	0.02	<1	9	19	18	3.36	20	0.14	366	<1	<0.01	16	590	14	<5	<20	3	<0.01	<10	28	<10	<1	54
77		-		0.96						16	30	31			0.31					1210			<20		0.01			<10		
78	L54-00N 34+00E						-		•			÷.										-				•				
79	L54-00N 34+25E	•		1.01	780	10	<5	0.02	<1	24	33	56	6.35	20	0.39	753	<1	<0.01	30	1540	30	<5	<20	<1	<0.01	<10	26	<10	<1	73
80	L54-00N 34+50E			1.30						20	39	44		ge 2 ⁰						1210			<20		<0.01		42	<10	<1	82
		-											гd	AC T																

INTERNATIONAL W. IDE GOLD MINES LTD.

F

ICP CERTIFICATE OF ANAL\ AK 2004-1259

ECO TECH LABORATO .TD.

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ba	Bí	Ca %_	Cd	Co	Cr	Cu	Fe %	La I	ig %	<u>Mn</u>	Мо	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	v	W_	Y	Zn
81	L54-00N 34+75E	15	0.4	0.71	15	25	<5	0.02	<1	13	22	22	3.97	20	0.22	428	<1	<0.01	11	1380	24	<5	<20	3	<0.01	<10	41	<10 ·	<1	41
2 82	L54-00N 35+00E	No Sample																												
83	L54-00N 35+25E	5	<0.2	0.77	5	15	<5	0.01	<1	11	25	18	3.56	20	0.24	282	<1	<0.01	16	1290	18	<5	<20	1	<0.01	<10	41	<10	<1	40
84	L54-00N 35+50E	10	0.5	0.85	10	15	<5	0.02	<1	9	28	20	4.91	20	0.22	337	<1	<0.01	12	810	28	<5	<20	<1	0.01	<10	54	<10	<1	39
85	L54-00N 35+75E	15	0.3	0.93	10	15	<5	0.02	<1	11	26	18	4.34	20	0.28	405	<1	< 0.01	11	1320	26	<5	<20	1	<0.01	<10	41	<10	<1	40
( The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec																														
86	L54-00N 38+00E	10	0.2	1.18	15	20	<5	0.02	<1	16	38	30	6.70	20	0.39	598	<1	<0.01	18	1320	36	<5	<20	2	<0.01	<10	40	<10	<1	61
87	154-00N 38+25E	No Sample																												
5 88	L54-00N 38+50E	20	<0.2	0.87	15	15	<5	0.02	<1	18	33	43	6.02	20	0.28	1303	<1	<0.01	22	2780	26	<5	<20	1	<0.01	<10	42	<10	<1	69
89	L54-00N 36+75E	5	0.2	0.83	30	10	<5	0.01	<1	16	33	40	6.71	30	0.27	669	<1	< 0.01	18	2410	26	<5	<20	<1	<0.01	<10	39	<10	<1	66
90	L54-00N 37+00E	10	0.3	1.41	5	20	<5	0.06	<1	20	31	102	7.34	20	0.47	725	<1	<0.01	13	2170	18	10	<20	2	0.01	<10		<10		
; 91	L54-00N 37+25E	15	<0.2	0.85	20	15	<5	0.02	<1	17	28	38	5.48	20	0.25	631	<1	<0.01	21	1140	20	5	<20	1	<0.01	<10	33	<10	<1	63
92	L54-00N 37+50E	20	0.4	0.68	25	20	<5	0.02	<1	23	27	95	6.44	20	0.18	721	<1	<0.01	22	1080	20	<5	<20	2	<0.01	<10	27	<10	<1	64
93	L54-00N 37+75E	5	0.4	0.71	10	20	<5	0.02	<1	8	23	22	4.09	20	0.16	218	<1	<0.01	12	770	20	<5	<20	2	<0.01	<10	33	<10	<1	32
94	L54-00N 38+00E	30	0.4	0.99	25	15	<5	0.02	<1	13	32	26	5.60	20	0.22	597	<1	<0.01	13	1820	40	<5	<20	<1	0.01	<10	40	<10	<1	50
¹ 95	L54-00N 38+25E	10	1.3	0.74	10	15	<5	0.08	<1	12	20	38	3.59	20	0.16	678	<1	<0.01	14	840	948	5	<20	3	<0.01	<10	32	<10	<1	52
-																														
96	L54-00N 38+50E	• =	0.5	0.90	10	15	<5	0.04	<1	12	31	31	5.25	20	0.27	542	<1	<0.01	20	1290	44	<5	<20	2	<0.01	<10	38	<10	<1	56
97	L54-00N 38+75E		0.7	1.12	15	20	<5	0.03	<1	13	32	26	4.66	30	0.37	535	<1	<0.01	23	900	38	<5	<20	2	0.01	<10	39	<10	<1	60
: 98	L54-00N 39+00E	-	0.5	0.58	35	30	<5	0.06	<1	14	24	32	4.79	30	0.15	832	<1	<0.01	22	1810	30	<5	<20	2	0.01	<10	35	<10	<1	47
· 99	L54-00N 39+25E	10	0.5	1.04	15	20	<5	0.06	<1	14	34	31	5.56	20	0.24			<0.01		1070	34	<5	<20	4	0.01	<10	37	<10	<1	65
. 100	L54-00N 39+50E	15	0.4	0.99	15	15	<5	0.04	<1	16	30	39	5.23	20	0.34	346	<1	<0.01	24	890	30	<5	<20	2	<0.01	<10	28	<10	<1	64
•																														
101	L54-00N 39+75E		0.6	1.28	10	25	<5	0.03	<1	14	35	27	5.73	20	0.33	564	<1	<0.01	18	1460	- 38	<5	<20	2	0.01	<10	- 33	<10	<1	64
102	L54-00N 40+00E	10	0.4	1.10	15	20	<5	0.05	<1	20	36	38	6.47	20	0.32	1120	<1	<0.01	21	1770	40	<5	<20	<1	<0.01	<10	32	<10	<1	68
103	L54-00N 40+25E	-	0.4	0.72	10	15	<5	0.04	<1	10	20	23	3.58	20	0.19	406	<1	<0.01	13	810	20	<5	<20	2	<0.01	<10	30	<10	<1	43
. 104		-	0.3	0.82	20	15	<5	0.02	<1	12	27	28	5.05	20	0.23	206	<1	<0.01	20	1070	28	<5	<20	<1	<0.01	<10	- 33	<10	<1	47
105	L54-00N 40+75E	90	0.6	0.66	15	20	<5	0.01	<1	10	23	27	4.36	20	0.16	178	<1	<0.01	14	1510	34	<5	<20	2	<0.01	<10	35	<10	<1	39
		_					_																							
	L54-00N 41+00E	-	0.9		10	25	<5	0.05	<1	10	24	26	4.60	20	0.17					1250		-	<20		0.01	<10		<10		
	L54-00N 41+25E	=	0.2		10	50	<5	0.08	<1	12	27	35	4.48	20	0.31		-	<0.01		950		-	<20		<0.01	<10		<10		
	L54-00N 41+50E	-	0.3		5	35	<5	0.07	<1	10	12	18	1.76	10	0.13			<0.01		380		-	<20		<0.01	<10		<10		
109		-	<0.2		10	10	<5	0.01	<1	12	21	27	3.69	20				<0.01		590		-	<20	•	<0.01	<10		<10		
110	L54-00N 42+00E	15	<0.2	0.24	10	15	<5	0.02	<1	7	12	25	2.58	20	0.08	160	<1	<0.01	15	520	12	<5	<20	2	<0.01	<10	13	<10	<1	51_
	1 F/ AAN 40.0	Na 6																												-
	L54-00N 42+25E	•																												
	L54-00N 42+50E											•																		
	L54-00N 42+75E																													
	L54-00N 43+00E										~			~~					~~											
115	L54-00N 43+25E	: 5	<0.2	0.99	15	55	<5	0.14	<1	16	26	30	3.87	20	0.34	394	<1	<0.01	26	590	42	<5	<20	10	<0.01	<10	20	<10	4	81
440	L54-00N 43+50E	10	0.2	0.65	10	85	<5	0.17		2	18	15	2.41	40	0.17	70		<0.01	12	490	30	~F	<20	,	<0.01	<10	22	<10	~1	17
117			0.2				-	0.17	<1 <1	6 16	18 33	15 40	4.41		0.17			<0.01				-	<20	-	i <0.01 i <0.01	•-		<10	-	
	L54-00N 43+75E	• -	0.5				<5	0.40	<1	16	33 32	40 39	4.41	20			-	<0.01				-	<20		0.01			<10	-	
119			0.0		15	75 55	<5 <5	0.01	<1	10	32 20	39 16	4.37 3.18	10				<0.01				-			<0.01			<10	. –	
	L54-00N 44+20E	-	0.2		10		-	0.29	<1	13	20	23	3.33	20				<0.01	-		-	-			<0.01 <0.01			<10		
	L54-00N 44+75E	-	<0.2				-	0.14	<1	10	20 19	32	3.66	20				<0.01				-	<20	-	< 0.01			<10	-	
121	LUH-VUN 447/36	. 5	~v.z	0.50	IŲ.	00	-0	0.00	~1	10	19	J۲	3.00	20	U. 1Z	<b>24</b> 0	< I	~0.01	19	430	~~~	<0	~20	3	0.01	~10	21	~ 10	-	01

	RNATIONAL WAY	SIDE GOLC	MINE	S LTD.				•	ł	CP CEF	RTIFIC	ATE O	F ANAL	YSIS.	AK 200	04-125	9								ECO TE	CH LAE	BORA	TOR	Y LT	D.
<u>Et#.</u>	Tag #	Au (ppb)	Ag	At %	As	<u>8a</u>	BI	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	w	Y	Zn
. <u>QC D</u> Reps																														
1	L52-00N 30+00E	30	0.2	1.75	5	40	<5	0.12	<1	22	43	59	4.76	20	0.79	401	<1	<0.01	43	630	24	5	<20	7	<0.01	<10	34	<10	3	83
5	L52-00N 31+00E	20		-			-0	0.12	-	-			4.10	20	0.75			-0.01		000		5	~20	· _	-0.01	~10		-10	3	03
10	L52-00N 32+25E	<5	<0.2	0.87	10	35	<5	0.02	<1	13	32	34	5.84	20	0.21	294	<1	<0.01	17	630	20	<5	<20	3	0.01	<10	45	<10	<1	65
16	L52-00N 33+75E	15	-0.2	-				-			-		-		-			-0.01		-				č	0.01	-		10		-
19	L52-00N 34+50E		0.3	1.26	15	20	<5	0.03	<1	21	39	36	6.74	20	0.36	1353	<1	<0.01	21	1560	44	<5	<20	3	0.01	<10	38	<10	<1	75
28	L52-00N 36+75E	10	0.3	0.55	5	25	<5	0.06	<1	6	12	7	1.81	20	0.09	238	•	<0.01	<u> </u>	730	16	<5	<20	3	< 0.01	<10	33	<10	-	16
36	L52-00N 38+75E	-	<0.2	0.29	10	35	<5	0.04	<1	7	10	21	1.55	20	0.06	894		<0.01		430	12	<5	<20	-		<10	26	<10		24
37	L52-00N 39+00E	5	-	-			-	-		-	-			-	-					-				-	-				-	
45	L52-00N 41+00E	10	0.3	0.49	20	15	<5	0.13	<1	15	19	31	3.74	20	0.18	211	<1	<0:01	22	970	38	<5	<20	9	<0.01	<10	33	<10	<1	63
64	L52-00N 43+25E	5	0.3	1.56	15	80	<5	0.19	<1	18	32	42	4.22	30	0.39	1289	<1			1290	66	<5	<20	-	< 0.01	<10	26	<10	•	
63	L54-00N 30+25E	10	<0.2	1.57	<5	25	<5	0.02	<1	21	38	36	6.76	20	0.53	356	-		-	710	16	<5	<20	1	0.01	<10	51	<10		66
71	L54-00N 32+25E	5	<0.2	0.53	15	20	<5	0.08	<1	9	17	25	3.30	20	0.09	119	<1	<0.01	_	520	12	<5	<20	4		<10	30	<10	<1	45
79	L54-00N 34+25E	65	-	-	-	•	-	-	-	-			•	-	-	-				•		_			-	-			, .	-
80	L54-00N 34+50E	10	0.5	1.23	25	20	<5	0.03	<1	17	37	43	6.69	20	0.42	398	<1	<0.01	24	1170	34	<5	<20	3	<0.01	<10	39	<10	) <1	78
89	L54-00N 36+75E	25	0.2	0.82	25	15	<5	0.01	<1	18	33	39	6.65	30	0.26	579	<1	< 0.01	18	2420	28	<5	<20	2	<0.01	<10	39	<10	<1	61
98	L54-00N 39+00E	5	0.5	0.56	35	25	<5	0.05	<1	13	24	35	4.72	20	0.15	802	<1	<0.01	21	1770	30	<5	<20	2	0.01	<10	34	<10	<1	47
106	L54-00N 41+00E	5	0.8	0.56	15	20	<5	0.05	<1	11	24	25	4.64	20	0.17	390	<1	<0.01	15	1300	28	<5	<20	2	0.01	<10	42	<10	) <1	42
່ 115	L54-00N 43+25E	5	<0.2	1.01	15	50	<5	0.14	<1	18	26	32	3.92	20	0.35	403	<1	<0.01	28	560	46	<5	<20	9	<0.01	<10	20	<10	3	86
117	L54-00N 43+75E	10	-	-	-	-	-	-	-	•	-	-	•	-	-	-	-		· -	-	-	-	-	•	•	-	•		, .	-
Class	dard:																													
GEO		135	1.4	1.68	60	160	<5	1.46	-1	19	63	87	3.47	<10	0.96	589	<1	0.03		710		~8	<20	55	0.44	~10	<i>a</i> 0	-45	. 40	74
GEO		135	1.4		55	165	<5	1.40	<1 <1	20	63 61	88	3.47	<10	0.90	602		0.03		720	22 24	<5 <5	~20 <20	55 55		<10 <10	60 62		) 12	
GEO		130	1.4	1.66	60 60	160	<5	1.45	<1	19	63	87	3.47	<10	0.97	591	-	0.03		710	29	<5	~20 <20			<10	61	<10		
GEO		145	1.4	1.00	65	160	<5 <5	1.40	<1	20	60 60	88 	3.47	<10	0.94	608	-			710		<5	<20			<10	60			
		145	1,4	1.79	00	100	~0	1.92	<b>N</b>	20	00	00	3.97	210	0.90	000		0.03	00.0	710	22	~0	~20	56	0.10	< 10	-00	<1(	0 10	10

APPENDIX X

ROCK GEOCHEMISTRY RESULTS

xii

		2004 Recon	naissan	ce Samp	lina	
TAG SAMPLE #	PROJECT	SAMPLE TYPE			LOCAL GRID E	LOCAL GRID N
14401	Cow Mtn.	Rock	596239	5882189	15043.48	2376.52
14402	Cow Mtn.	Rock	596239	5882189	15043.48	2376.52
14403	Cow Mtn.	Rock	596233	5882236	14925.84	2478.13
14404	Cow Mtn.	Rock	596202	5882314	14679.23	2600.66
14405	Cow Mtn.	Rock	596177	5882399	14431.92	2753.43
14406	Cow Mtn.	Rock	596177	5882399	14431.92	2753.43
14407	Cow Mtn.	Rock	596143	5882621	13862.44	3220.99
14408	Cow Mtn.	Rock	596098	5882721	13533.43	3366.55
14409	Cow Mtn.	Rock	595907	5882754	12994.74	3028.60
14410	Cow Mtn.	Rock (Qv)	595794	5882765	12694.72	2807.84
14411	Cow Mtn.	Rock (Qv)	595830	5882848	12600.75	3089.39
14412	Cow Mtn.	Rock (Qv)	596098	5882900	13141.19	3803.63
14413	Cow Mtn.	Rock	596098	5882900	13141.19	3803.63
14414	Cow Mtn.	Rock (Qv)	596174	5882881	13368.39	3923.77
14415	Cow Mtn.	Rock	596031	5883133	12467.02	4225.74
14416	Cow Mtn.	Rock (Qv)	596031	5883133	12467.02	4225.74
14417	Cow Mtn.	Rock	596031	5883133	12467.02	4225.74
14418	Cow Mtn.	Rock	596966	5881154	19086.62	1442.38
14419	Cow Mtn.	Rock	596575	5881471	17437.25	1359.62
14420	Cow Mtn.	Rock	596555	5881510	17302.96	1411.02
14421	Cow Mtn.	Rock	586574	5881535	17294.57	1513.70
14422	Cow Mtn.	Rock	595899	5883262	11862.03	4251.47
14423	Cow Mtn.	Rock (Qv)	595706	5883217	11489.38	3718.67
14424	Cow Mtn.	Rock (Qv)	595629	5883062	11641.02	3171.47
14425	Cow Mtn.	Rock	595629	5883062	11641.02	3171.47
14426	Cow Mtn.	Rock (Qv)	595414	5882743	11815.07	1921.43
14427	Cow Mtn.	Rock	595414	5882743	11815.07	1921.43
14428	Cow Mtn.	Rock (Qv)	595942	5883351	11772.00	4563.01
14429	Cow Mtn.	Rock (Qv)	595781	5883600	10833.25	4818.21
14430	Cow Mtn.	Rock	596029	5883439	11791.60	4968.53
14431	Cow Mtn.	Rock	595914	5883400	11596.26	4621.30

	2004 Reconnaissance Sampling										
TAG SAMPLE #	DESCRIPTION	DATE	GOLD (ppb								
14401	Grab sample from grey phyllite, foliation 256° (dip direction) /10°	July 27,2004	5								
14402	Grab sample from light brown bleached phyllite	July 27,2004	5								
14403	Grab sample from light brown bleached phyllite	July 27,2004	10								
<u>14404</u>	Grab sample from light brown bleached phyllite	July 27,2004	<5								
14405	Grab sample from light brown (bleached) carbonate phyllite	July 27,2004	5								
14406	Grab sample from light brown bleached phyllite	July 27,2004	<5								
14407	Grab sample from dark grey silicified argillite with quartz stringer and pyrite	July 27,2004	5								
14408	Grab sample from brown thinly bedded argillite	July 27,2004	5								
14409	Grab sample from dark grey silicified argillite, no carbonate, no sulphide	July 27,2004	20								
14410	Grab sample from light brown quartz vein, about 7' wide, no pyrite and no carbonate	July 27,2004	<5								
14411	Grab sample from light brown quartz vein, about 1' wide, no pyrite and no carbonate	July 27,2004	5								
14412	Grab sample from light brown quartz vein, no pyrite and no carbonate	July 28,2004	30								
14413	Grab sample from dark grey argillite with about 3% coarse-grained pyrite cubes	July 28,2004	330								
14414	Grab sample from light brown quartz vein, 0.7'-7' wide, no sulphide in the vein	July 28,2004	280								
14415	Grab sample from a possible fault zone with quartz stringers	July 28,2004	10								
14416	Grab sample from white barren quartz vein in dark grey argillite with py cubes	July 28,2004	10								
14417	Grab sample from dark grey argillite with py cubes	July 28,2004	5								
14418	Grab sample from strong silicified dark grey argillite with py cubes	July 28,2004	5								
14419	Grab sample from the Lowhee fault zone with quartz stringer	July 29,2004	30								
14420	Grab sample from strong silicified dark grey argillite, foliation 30°(dip direction)/75°	July 29,2004	<5								
14421	Grab sample from strong silicified dark grey argillite with a foliation of 55°(dip direction)/40°	July 29,2004	5								
14422	Grab sample from strong silicified dark grey argillite with py cubes	July 29,2004	10								
14423	Grab sample from a 1.5-3cm wide light brown quartz vein cutting across dark grey argillite with pyrite	July 29,2004	85								
14424	Grab sample from light brown quartz vein cutting across dark grey silicified argillite	July 29,2004	815								
14425	Grab sample from dark grey silicified argillite with a foliation of 47° (dip direction)/68°	July 29,2004	15								
14426	Grab sample from a 3'-4' wide light brown quartz veins cutting across silicified dark grey argillite	July 29,2004	<5								
14427	Grab sample from silicified dark grey argillite, foliation 35° (dip direction)/25°	July 29,2004	<								
14428	Grab sample from light brown quartz vein, 0.6'-0.7' wide, no sulphide, no carbonate	July 29,2004	55								
14429	Grab sample from a 0.2'-0.4' wide quartz vein with coarse-grained pyrite cubes in dark grey argillite	July 29,2004	55								
14430	Grab sample from dark grey/black silicified argillite with medium-grained pyrite crystals	July 29,2004	60								
14431	Grab sample from green grey silicified sericite phyllite with pyrite cubes	July 29,2004	<								

	2004	LOWHEE C	REEK RE	CONNAIS	SANCE	
TAG SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	LOCAL GRID E	LOCAL GRID N
164201	Lowhee Crk	Rock	597003	5881253	18960.02	1765.19
164202	Lowhee Crk	Rock	597003	5881253	18960.02	1765.19
164203	Lowhee Crk	Rock (Qv)	597011	5881250	18986.13	1775.40
164204	Lowhee Crk	Rock	596955	5881304	18731.06	1784.54
164205	Lowhee Crk	Rock (Qv)	596860	5881406	18275.58	1825.43
164206	Lowhee Crk	Rock	596914	5881425	18306.64	2056.08
164207	Lowhee Crk	Rock	596912	5881448	18310.52	2041.93
164208	Lowhee Crk	Rock (Qv)	596863	5881443	18201.83	1922.34
164209	Lowhee Crk	Rock	596864	5881453	18182.36	1948.95
164210	Lowhee Crk	Rock (Qv)	596847	5881444	18160.57	1889.73
164211	Lowhee Crk	Rock	596833	5881421	18176.79	1802.89
164212	Lowhee Crk	Rock	596788	5881525	17839.02	1958.22
164213	Lowhee Crk	Rock	596831	5881392	18235.45	1727.69
164214	Lowhee Crk	Rock	596763	5881387	18080.37	1566.48
164215	Lowhee Crk	Rock	596771	5881397	18077.99	1608.43
164216	Lowhee Crk	Rock	596726	5881542	17650.38	1863.87
164217	Lowhee Crk	Rock	596711	5881528	17644.43	1796.82
164218	Lowhee Crk	Rock (Qv)	596696	5881558	17542.06	1837.02
164219	Lowhee Crk	Rock	596696	5881558	17542.06	1837.02
164220	Lowhee Crk	Rock (Qv)	596714	5881595	17504.94	1966.90
164221	Lowhee Crk	Rock (Qv)	596701	5881608	17444.71	1970.24
164222	Lowhee Crk	Rock	596684	5881655	17300.21	2047.75

	2004	LOWHEE C	REEK RE	CONNAIS	SANCE	
TAG SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	LOCAL GRID E	LOCAL GRID N
164223	Lowhee Crk	Rock	596684	5881655	17300.21	2047.75
164224	Lowhee Crk	Rock	596648	5881665	17190.39	1993.28
164225	Lowhee Crk	Rock (Qv)	596743	5881508	17766.39	1818.10
164226	Lowhee Crk	Rock (Qv)	596712	5881692	17287.50	2199.45
164227	Lowhee Crk	Rock	596712	5881692	17287.50	2199.45
164228	Lowhee Crk	Rock	596630	5881745	16971.14	2149.18
164229	Lowhee Crk	Rock	596619	5881810	16801.84	2283.79
164230	Lowhee Crk	Rock	No signal	No signal		·
164231	Lowhee Crk	Rock	No signal	No signal		
164232	Lowhee Crk	Rock & Qv	596633	5881819	16816.31	2336.44
164233	Lowhee Crk	Rock	596599	5881868	16625.91	2381.58
164234	Lowhee Crk	Rock	596598	5881877	16603.75	2401.37
164235	Lowhee Crk	Rock	596598	5881877	16603.75	2401.37
164236	Lowhee Crk	Rock	596559	5881916	16423.06	2411.14
164237	Lowhee Crk	Rock (Qv)	596540	5881958	16284.63	2472.06
164238	Lowhee Crk	Rock	596604	5881954	16449.67	2602.53
164239	Lowhee Crk	Rock	596622	5881902	16607.57	2515.00
164240	Lowhee Crk	Rock & Qv	596621	5881984	16425.44	2713.03
164241	Lowhee Crk	Rock	596626	5882011	16378.49	2789.92
164242	Lowhee Crk	Rock	596621	5882023	16339.98	2808.26
164243	Lowhee Crk	Rock	596608	5882039	16273.18	2818.84
164244	Lowhee Crk	Rock	596574	5882059	16146.33	2793.18

	2004	LOWHEE C	REEK RE	CONNAIS	SANCE	
TAG SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	LOCAL GRID E	LOCAL GRID N
164301	Lowhee Crk	Rock (Qv)	596550	5882046	16116.22	2708.84
164302	Lowhee Crk	Rock	No signal	No signal		
164303	Lowhee Crk	Rock (Qv)	596449	5882263	15394.09	3017.38
164304	Lowhee Crk	Rock	596449	5882263	15394.09	3017.38
164305	Lowhee Crk	Rock & Qv	596449	5882263	15394.09	3017.38
164306	Lowhee Crk	Rock	596449	5882263	15394.09	3017.38
164307	Lowhee Crk	Rock	596444	5882281	15342.44	3050.37
164308	Lowhee Crk	Rock	596433	5882309	15254.22	3094.64
164309	Lowhee Crk	Rock	596572	5882081	16093.24	2842.51
164310	Lowhee Crk	Rock	596565	5882078	16082.72	2819.85
164311	Lowhee Crk	Rock	596560	5882087	16050.79	2830.87
164312	Lowhee Crk	Rock	596532	5882104	15945.17	2811.02
164313	Lowhee Crk	Rock	596493	5882146	15757.91	2828.11
164314	Lowhee Crk	Rock (Qv)	596493	5882146	15757.91	2828.11
164315	Lowhee Crk	Rock	596490	5882182	15671.70	2909.44
164316	Lowhee Crk	Rock & Qv	596498	5882205	15640.83	2983.13
164317	Lowhee Crk	Rock & Qv	596527	5882219	15680.96	3080.86
164318	Lowhee Crk	Rock	596491	5882272	15476.92	3131.39
164319	Lowhee Crk	Rock (Qv)	596491	5882272	15476.92	3131.39

	2004	LOWHEE C	REEK RE	CONNAIS	SANCE	
TAG SAMPLE #	PROJECT	SAMPLE TYPE	EASTING	NORTHING	LOCAL GRID E	LOCAL GRID N
163651	Lowhee Crk	Rock	596442	5882274	15352.90	3028.90
163652	Lowhee Crk	Rock	596434	5882301	15274.20	3077.30
163653	Lowhee Crk	Rock (Qv)	596434	5882301	15274.20	3077.30
163654	Lowhee Crk	Rock	596441	5882342	15201.45	3192.75
163655	Lowhee Crk	Rock (Qv)	596428	5882333	15189.42	3142.28
163656	Lowhee Crk	Rock	No signal	No signal		
163657	Lowhee Crk	Rock	596486	5882288	15429.65	3159.50
163658	Lowhee Crk	Rock	596463	5882336	15268.31	3226.30
163659	Lowhee Crk	Rock (Qv)	596424	5882356	15129.26	3189.68
163660	Lowhee Crk	Rock & Qv	No signal	No signal		
163661	Lowhee Crk	Rock (Qv)	596407	5882413	14962.84	3291.61
163662	Lowhee Crk	Rock (Qv)	596407	5882413	14962.84	3291.61
163663	Lowhee Crk	Rock	596402	5882475	14814.78	3432.04
163664	Lowhee Crk	Rock	596397	5882569	14596.59	3650.61
163665	Lowhee Crk	Rock	596403	5882665	14400.87	3898.16
163666	Lowhee Crk	Rock (Qv)	596393	5882674	14365.73	3898.22

	2004 LOWHEE CREEK RECONNAISSANC	<u>Е</u>	
TAG SAMPLE #	DESCRIPTION	DATE COLLECTED	RESULTS(g/
164201	Grab sample, light brown sericite phyllite with strong carbonate alternation, from footwall of a fault nearby	18-Aug-04	< 0.03
164202	Grab sample, light brown sericite phyllite with strong carbonate alternation, about 1.5m away from sample 164201	18-Aug-04	<0.03
164203	Grab sample, from a small white quartz vein along foliation of light brown carbonate altered phyllite, elevation 4773 (1454m)	18-Aug-04	<0.03
164204	Grab sample from a pile of light brown / orange silicified argillite with pyrite crystals, elevation 4744' (1445m)	18-Aug-04	<0.03
164205	Grab sample from a small white quartz vein along foliation of brown phyllite, elevation 4699.7' (1432m)	18-Aug-04	<0.03
164206	Grab sample from strongly foliated quartzite or silicified dark grey argillite, brown/orange, no pyrite, no carbonation alternation	18-Aug-04	< 0.03
164207	Grab sample from thinly bedded grey phyllite, no pyrite, no carbonate, elevation 4686' (1427.74m)	18-Aug-04	< 0.03
164208	Grab sample from light brown quartz vein, 1.2'-2.0' wide, no pyrite, minor muscovite, elevation 4730' (1441.15m)	18-Aug-04	< 0.03
164209	Grab sample form the host rock of quartz vein 164208, light brown argillite, elevation 4712' (1435.67)	18-Aug-04	< 0.03
164210	Grab sample form black Bull quartz vein, 3.5-4m wide, about 40m long, 1% pyrite, vuggy, no carbonate, 81°(dip direction)/50°	18-Aug-04	2.92/2.63(repea
164211	Grab sample from strongly silicified argillite with pyrite weathered out, host rock of Qv 164210, elevation 4715' (1436.58m)	18-Aug-04	0.10/0.15(repea
164212	Grab sample from strongly silicified argillite with quartz stringers well developed along foliation, elevation 4683' (1426.95m)	18-Aug-04	<0.03
164213	Grab sample from strongly silicified argillite with coarse-grained pyrite weathered out, elevation 4086.3' (1427.84m)		<0.03
164214	Grab sample from a big conglomerate composing of angular, unsorted rock fragments, brown, elevation 4691' (1429m)	18-Aug-04	0.04
164215	Grab sample from dark grey silicified argillite, no pyrite, no carbonate alternation, hard and dense, foliation 82° (dip directon)/75°	18-Aug-04	<0.03
164216	Grab sample from brown quartzite or strongly silicified argillite, very weak carbonate alteration, thickly bedded	19-Aug-04	<0.03
164217	Grab sample from brown silicified argillite, no pyrite, no carbonate alternation, foliation 53° (dip direction)/63°	19-Aug-04	< 0.03
164218	Grab sample from light brown quartz vein without any pyrite, orientation of the vein 56° (dip direction)/30°	19-Aug-04	< 0.03
164219	Grab sample from host rock of the quartz vein 164218, foliation 56°(dip direction)/71°, light brown argillite, elevation 4703.8' (1433m)	19-Aug-04	< 0.03
164220	Grab sample from dark grey silicified argillite, quartz stringers well-developed along foliation of the rock, foliation 43°(dip directon)/75°	19-Aug-04	<0.03
164221	Grab sample from dark grey silicified argillite, quartz stringers well-developed along foliation of the rock, foliation 52°(dip directon)/48°	19-Aug-04	<0.03
	Grab sample from grey thinly bedded red phyllite as interbeds of the orange colored phyllite	19-Aug-04	< 0.03

G SAMPLE #	2004 LOWHEE CREEK RECONNAISSANCE											
164223	DESCRIPTION	DATE COLLECTED	<b>RESULTS(</b>									
104223	Grab sample from very thinly bedded orange phyllite with a foliation of 31° (dip direction)/46°	19-Aug-04	< 0.03									
164224	Grab sample from thinly bedded orange phyllite, no pyrite, no carbonate, elevation 4705' (1433.53mm), quartz veinlets along foliation	19-Aug-04	< 0.03									
164225	Grab sample from thinly bedded orange argillite, silicified, small quartz veins develop along foliation, no pyrite, no carbonate	21-Aug-04	<0.03									
164226	Grab sample from light brown quartz vein, no carbonate, no pyrite, elevation 1436.1m)	21-Aug-04	< 0.03									
164227	Grab sample from thinly bedded orange argillite, silicified, small quartz veins develop along foliation, no pyrite, no carbonate	21-Aug-04	<0.03									
164228	Grab sample from a big conglomerate of angular breccias of different types of rocks, elevation 1455.4m	21 Aug 04	<0.02									
164229	Grab sample from a fault zone composing of brown argillite and some other rocks	21-Aug-04 21-Aug-04	< 0.03									
164230	Grab sample from strongly silicified dark grey argillite	21-Aug-04 21-Aug-04	< 0.03									
164231	Grab sample from strongly silicified dark grey argillite, no carbonate, no pyrite, so GPS signal, foliation 210° (dip direction)/20°	21-Aug-04 21-Aug-04	<u>&lt;0.03</u> <0.03									
164232	Grab sample from thinly bedded light brown argillite with quart veins/veinlets along foliation, foliation 36° (dip direction)/19°	21-Aug-04	<0.03									
164233	On the left of the creek, grab sample from strongly carbonate altered argillite, orange, elevation 1395m	21-Aug-04	< 0.03									
164234	Grab sample from very strongly carbonate altered argillite, red or light brown, elevation 1387.7m	21-Aug-04 21-Aug-04										
164235	Grab sample from light brown argillite with carbonate alteration foliation 32° (din direction)/34°	21-Aug-04	<0.03									
164236	direction)/42°, elevation 1402.2m	21-Aug-04 21-Aug-04	< <u>0.03</u> <0.03									
164237	Grab sample from a 1.5-2m wide quartz vein, white, minor muscovite, no sulphide, orientation 344°(dip direction)/63°, elevation 1428m	21-Aug-04	<0.03									
	Grab sample from light brown argillite with 1-2% pyrite crystals, no carbonate, foliation of the rock 10°(dip direction)/40°	21-Aug-04	<0.03									
	Grab sample from thinly bedded dark grey argillite, minor pyrite crystals, foliation 36°( dip direction)/14°, elevation 1415.7(11)m	21-Aug-04	<0.03									
_	Grab sample from light brown argillite with quartz veinlets, thinly bedded, foliation 30°(dip direction)/50°, elevation 1423(20)m	21-Aug-04	< 0.03									
	Grab sample from light brown or grey green argillite, 10-15% fuchsite, strong carbonate alteration, elevation 1432(14)m	21-Aug-04	<0.03									
	Grab sample from orange fuchsite argillite, strong carbonate alteration, thickly bedded, foliation 20°(dip direction)/24°	21-Aug-04	<0.03									
	Grab sample from orange fuchsite argillite, strong carbonate alteration, thickly bedded, foliation 14°(dip direction)/10°	21-Aug-04	<0.03									
164244	Grab sample from black hard strong silicified layer, like basalt dyke, 1.5' wide, elevation 1405(10)m	21-Aug-04	<0.03									

	2004 LOWHEE CREEK RECONNAISSANCE											
AG SAMPLE #	DESCRIPTION	DATE COLLECTED	RESULTS(a									
<del></del>	Grab sample from a quartz vein along foliation, 3.5-4.0 cm wide, no carbonate, no sulphide, host rock is dark grey argillite	23-Aug-04	< 0.03									
164302	Grab sample from the same outcrop as sample 164301, silicified argillite, no sulphide, no carbonate, foliation 43°(dip direction)/22°	23-Aug-04	<0.03									
164303	Grab sample from a white quartz vein, 0.35'-0.60' wide, about 2% coarse-grained pyrite crystals, orientation 178°(dip direction)/87°	23-Aug-04	<0.03									
164304	Grab sample from light brown or orange fuchsite (about 1%) silicified argillite with local carbonate alteration	23-Aug-04	<0.03									
164305	Grab sample from a fault gouge, a grey green powder with some lenses-shaped vein quartz	23-Aug-04										
164306	Grab sample from dark grey silicified argillite, foliation 108°/72°		<0.03									
164307	Grab sample from silicified fuchsite argillite with carbonate alteration, foliation 29°(dip direction)/52°, elevation 1395.2(15)m	23-Aug-04 23-Aug-04	<0.03 <0.03									
164308	Grab sample from orange silicified argillite without carbonate and pyrite alternation, foliation 22°(dip direction)/44°, elevation 1380(23)m	23-Aug-04	<0.03									
164309	Brown silicified argillite, medium bedded, no pyrite, no carbonate, foliation 28° (dip direction)/28°, elevation 1431(11)m	24-Aug-04	<0.03									
164310	Grab sample from orange fuchsite argillite with strong carbonate alteration, foliation 16°(dip direction)/15°, elevation 1420.1m	24-Aug-04	0.05									
164311	Grab sample form brown (weathered) or dark grey (fresh) strongly silicified argillite, local strong carbonate alteration, no sulphide	24-Aug-04	< 0.03									
164312	Grab sample from medium to thick bedded silicified argillite, no sulphide and no carbonate alteration, elevation 1458m	24-Aug-04	0.03									
164313	Grab sample light brown strong silicified argillite with strong carbonate alteration, foliation 350°(dip direction)/34°, elevation 1397(14)m	24-Aug-04	<0.03									
164314	About 7m apart from 164311, grab sample from quartz vein along foliation of the rock, 0.5' wide, light brown, some Fe-carbonate occurs	24-Aug-04	<0.03									
164315	Grab sample from orange fuchsite argillite with very strong carbonate alteration, foliation 13°(dip direction)/64°, elevation 1401(19)m	24-Aug-04	<0.03									
164316	Grab sample from dark grey argillite with well-developed quartz veinlets along foliation and coarse-grained pyrite (weathered out)	24-Aug-04	<0.03									
164317	Grab sample from brown strongly silicified argillite with medium-grained pyrite crystals (most weathered out), small barren Qv along foliation	24-Aug-04	0.05									
164318	Grab sample from strong silicified argillite with medium-grained pyrite crystals (many of which weathered out), local carbonate alteration	24-Aug-04	0.03									
164319	Grab sample from 1.2m wide barren light brown quartz vein cutting across the argillite, orientation 36°(dip direction)/60°, elevation 1410(5)m	24-Aug-04	< 0.03									

	2004 LOWHEE CREEK RECONNAISSANC	E	
TAG SAMPLE #	DESCRIPTION	DATE COLLECTED	RESULTS(a/t
163651	Grab sample from strongly silicified black argillite with well-developed quartz veinlets along foliation 18°(dip direction)/46°	06-Sep-04	0.14
163652	Grab sample from orange Fe-carbonate porphyroblastic (about 20%) phyllite, size of the porphyroblasts is about 1.5-2.0mm in diameter	06-Sep-04	0.21
163653	Grab sample from Qvs cutting across porphyroblastic phyllite, orientation of major Qv 177°(dip direction)/72° and 46°(dip direction)/48°	06-Sep-04	<0.03
163654	Grab sample from a possible fault zone consisting of black graphitic argillite, orientation of foliation 47°(dip direction)/52°, elevation 1365.44m	06-Sep-04	0.21
163655	Grab sample from light brown Qv, orientation 122°(dip direction)/82°, cutting across Fe-carbonate porphyroblastic phyllite with a foliation of 35°(dip direction)/56°	06-Sep-04	0.43
163656	Grab sample from silicified dark grey argillite, the site is on the opposite side of sample 163655 across the creek, foliation 28°(dip direction)/52°	06-Sep-04	<0.03
163657	Grab sample from orange Fe-carbonate porphyroblastic phyllite, no pyrite in the rock, foliation 18°(dip direction)/44°	06-Sep-04	<0.03
163658	Grab sample from silicified dark grey argillite with about 1% coarse-grained pyrite cubes weathered out, no any carbonate, foliation 25°(dip direction)/53°	06-Sep-04	<0.03
163659	Grab sample from a big Qv with about 20-25% massive pyrite in vugs of the vein, 2.0'-2.4' wide, rusty or light brown, orientation 230°(dip direction)/80°, elevation 1392m	06-Sep-04	3.63
163660	On the right of the creek, grab sample from the dark grey (fresh rock) argillite with light brown rusty and vuggy Qvs, some coarse-grained pyrite crystals in the fresh rock	07-Sep-04	0.20
163661	Grab sample from a big Qv with massive pyrite locally, rusty, vuggy, 4.5'-5.0' wide, orientation 38°(dip direction)/18°, elevation 1417.25m	07-Sep-04	0.08
163662	Grab sample from a small Qv just about one meter below 163661, 0.2'-0.3' wide, with about 10% pyrite and 7% graphite in the vein, orientation 20°(dip direction)/60°	07-Sep-04	0.73
163663	Grab sample from orange fuchsite (1-3%) and carbonate altered phyllite, carbonate veinlets cutting across foliation locally, foliation 41°(dip direction)/60°, elevation 1370m	07-Sep-04	0.05
163664	Grab sample from orange carbonate phyllite within a possible fault zone, small carbonate veinlets along foliation 24°(dip direction)/88°, on the left bank of the creek	07-Sep-04	<0.03
163665	Grab sample from orange carbonate phyllite, foliation 34° (dip direction)/32°, on the right bank of the Lowhee Creek, elevation 1389.52m	07-Sep-04	0.03
163666	Grab sample from a rusty quartz vein without any pyrite, orientation 224°(dip direction)/10°, host foliation 41°(dip direction)/34°, elevation 1389.82m	07-Sep-04	<0.03



INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

05-Jul-04

## ATTENTION: JEAN PAUTLER

No. of samples received: 18 Sample type: Rock Project #: I.W.A

e

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
1	163201	11.7	0.341	(8/-/		
2	163202	32.5	0.948			
5	163208	1.12	0.033			
6	163209	13.5	0.394			
13	163236	15.6	0.455			
14	163237	9.89	0.288			
15	163238	18.1	0.528			
16	163212	0.90	0.026	31.5	0.92	
17	163217	1.08	0.031			
Standard.	<del>.</del>					

0.055

1.87

C

JJ/jm XLS/04

OX123

### ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

. . .

÷

07-Ji

> TECH LABORATORY LTD. 41 Dailes Drive ALOOPS, B.C. : 674

ne: 250-573-5700 : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 2004-585

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

____

٦

### Attention: Jean Pautier

No. of semples received; 18 Sample type: Rock Project #: I.W.A

ies in ppm Uniess otherwise reported

. Tag#	Au(ppb)	Ag	<u>AI %</u>	As	Ba	BI	Ca % (	Cd	Co	Cr	Cu	Fe %	La	<u>Mg %</u>	Mn	Mo	Na %	NI	<b>9</b>	Pb	Sb	<u>8n</u>	_8r	<u>TI %</u>	<u> </u>	V	W	Y	Zn
153201	>1000	1,B	0.14	>10000	15	40	0.87	<1	49	115	17	>10	40	0.48	5510	<1	<0.01	19	340	<2	15	<20	198	0.01	<10	6	<10	13	41
163202	>1000	5.4	0.05	5550	<5	35	0.88	<1	31	105	6	>10	20	0.53	3880	<1	<0.01	30	240	<2	<5	<20	7	<0.01	<10	2	<10	8	20
163203	160	0.2	0.22	255	95	<5	0.07	<1	17 1	110	26	5.16	10	0.08	1680	6	<0.01	61	660	4	<5	<20	7	<0.01	<10	5	<10	7	59
163207	30	2.0	0.10	55	<5	<5	<0.01	<1	36	94	70	>10	10	0.18	<1	<1	<0.01	30	120	1664	30	<20	3	<0.01	<10	2	<10	4	10
163208	>1000	<0.2	0.18	170	50	<5	1.58	<1	25	94	20	4.88	<10	0.79	1508	<1	<0.01	41	610	24	<5	<20	3 <del>9</del>	<0.01	<10	5	<10	-5	50
163209	>1000	1.2	0.05	1095	<5	<5	0.77	<1	59	112	8	>10	10	0.41	278	<1	<0.01	88	170	10	<5	<20	14	<0.01	<10	2	<10	4	11
163210	50	<0.2	0.51	35	170	<5	0.04	<1		111		>10	20	0.21	460	25	<0.01	140	1010	<2	<5	<20	8	<0.01	<10	34	10	9	582
163211	25	0.2	0.10	240	40	<5	>10		37		28	9.25	20	1.98	3010	<1	0.01	138	500	16	<5	<20	73		<10		<10	8	74
163223	15	0.2	0.16	<5	30	<5	0.03			75	15	1.72	10	0.03	52	6	0.01	12	230	12	<5	<20			<10			2	34
163224	90	0,5	0.15	65	25	<5	0.02			98	12	4.17	10	0.05	91	5		11	300	6	10	<20			<10		<10	2	30
163225	15	0.3	0.21	185	55	<5	0.03	<1	8	84	19	7.53	10	0.09	212	7	0.01	22	1480	28	15	<20	10	<0.01	<10	9	<10	•	<b>60</b>
163230	10	0.9	1.16	10	45	5		<1	10	88	37	5.29	<10	0.67	19	4	0.02	17	1480	26	10	<20		<0.01	<10	35	<10	3 3	68 70
163236	>1000	2.5	0.20	1385	90	35		<1	46	85	61	>10	20	0.32		- 4 - 41	0.02	24			• •				-			-	76
163237	>1000	1.3	0,20	600	35	20		<1	38	78	87	>10	10	1.54		ंदा			1070	14	<5	<20			<10	14		16	44
163238	>1000	3.3	0,20	1890	35 <5	20 45		-									<0.01	32	1240	10	<5	<20			<10	12		11	29
105236	>1000	3.3	0.10	1090	<9	40	8.25	<1	52	89	12	>10	30	2.20	6061	_<1	<0.01	50	780	20	<5	<20	59	0.01	<10	10	<10	14	31
163212	895	>30	0.06	60	<5	340	0.03	<1		126	92	1.28	<10	0.02	124	27	<0.01	11	150	2428	15	<20	<1	<0.01	<10	2	<10	<1	24
163217	880	0.2	0,25	340	115	<5	0.11	<1	35	158	44	>10	10	0.16	2009	- 11	<0.01	110	2570	6	<5	<20	29	<0.01	<10	22	<10	11	165
163221	30	0.2	0.32	50	110	<5	0.26	<1	77	133	106	9.59	20	0.18	3114	5	0.01	233	1830	8	<5	<20	18	<0.01	<10	32	10	15	209
MATA:																													
ME																			_										
163201	>1000	1.9		>10000	10	40		<1	-	112	16	>10		0.46				17	340		5		188		<10	6		14	40
153224	108	0.5	0.16	30	25	<5	0.02	<1	5	108	13	4.48	10	0.05	103	6	0.01	13	330	8	10	<20	3	<0.01	<10	4	<10	2	31
dit:																													
163201	>1000	-	-	-	-	•	•	•	-	•	-	•	-	•	•	•	•	-	-	-	•	-	-	-	-	•	-	-	•
terd:																													
'04	135	1.4	1.56	65	155	<5	1,74	<1	20	61	89	3.65	<10	0.93	659	<1	0.02	32	730	20	<5	<20	45	0.07	<10	<b>86</b>	<10	9	75

Dana 1

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

### ATTENTION: JEAN PAUTLER

No. of samples received: 7 Sample type: Rock **Project #: IWA Rg** Samples Submitted by: Jean Pautler

		Au	Au	Cu	
ET #.	Tag #	(g/t)	(oz/t)	(%)	
7	163189	2.36	0.069	1.24	
QC DATA:					
[/] Standard: OX123		1.87	0.055		
Cu106				1.43	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm XLS/04 20-Jul-04

)

ECO TECH LABORATORY LTD. 10041 Dailas Drive KAMLOOPS, B.C. V2C 6T4

ŧ

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-708

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

Attention: Jean Pautier

No. of samples received: 7 Sample type: Rock **Project #: IWA Rg** Samples submitted by: Jean Pautler

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	<u>Ca %</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	Ti %	U	<u>v</u>	W	<u>Y</u>	Zn
1	163164	160	<0.2	0.36	<5	115	<5	1.03	<1	13	77	31	3.86	20	0.50	834	5	0.02	3	1390	<2	<5	20	49	0.07	<10	7	<10	11	50
2	163165	30	<0.2	0.08	15	20	<5	0.11	<1	2	133	6	0.60	<10	0.05	84	15	<0.01	<1	20	<2	<5	<20	<1	<0.01	<10	2	<10	<1	9
3	163166	15	0.2	0.62	<5	90	<5	2.25	<1	25	39	81	4.53	10	0.55	716	4	0.05	7	2260	6	<5	20	110	0.08	<10	25	<10	15	74
4	163169	40	0.6	0.28	595	140	<5	<0.01	<1	6	149	158	9.29	<10	0.15	<1	53	<0.01	8	1540	992	10	100	3	0.15	<10	107	<10	3	62
5	163174	15	<0.2	0.37	30	15	<5	0.16	<1	116	85	137	5.58	<10	0.25	<1	42	<0.01	25	250	10	<5	60	<1	0.19	<10	23	<10	4	6
6	163186	15	<0.2	0.35	10	20	<5	0.01	<1	20	46	11	5.14	10	0.14	211	3	0.03	32	300	<2	<5	60	4	0.08	<10	2	<10	2	45
7	163189	>1000	11.0	0.31	<5	15	<5	0.78	3	25	88	>10000	4.65	<10	0.21	1082	- 14	0.02	8	820	8	<5	40	<1	0.31	<10	15	<10	3	164
<u>QC D</u> Respi		170	<0.2	0.42	<5	140	<5	1.17	<1	14	84	41	4.31	20	0.57	909	5	0.03	2	1530	<2	<5	40	59	0.08	<10	8	<10	12	55
Stand GEO '		140	1.4	1.55	50	120	<5	1.44	<1	19	56	78	3.60	<10	0.91	554	<1	0.03	29	600	20	<5	20	38	0.15	<10	66	<10	5	64

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk df/708 XLS/04

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

### ATTENTION: JEAN PAUTLER

)

No. of samples received: 18 Sample type: Rock **Project #: IWA - Regional** Samples Submitted by: Jean Pautler

		Au Au	
ET #.	Tag #	(g/t) (oz/t)	
9	163075	1.91 0.056	

### QC DATA:

Ŧ

Standard: SN16

8.36 0.244

21-Jul-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-711

INTERNATIONAL WAYSIDE GOLD MINES 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

**Attention: Jean Pautler** 

No. of samples received: 18 Sample type: Rock **Project #: IWA - Regional** Samples Submitted by: Jean Pautler

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	BI	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	РЬ	Sb	Sn	Sr	Ti %	U	v	w 1	Y Zn
1	163058	10	<0.2		30	155	<5	0.21	<1	70	204	94	>10	20	0.79	1290	<1	0.02	200	1450	6	<5	<20	10	0.15	<10	63 <	10	5 111
2	163059	20	0.7	0.57	<5	245	<5	0.01	<1	5	127	49	2.56	20	0.15	52	8	<0.01	22	310	8	<5	<20	2		<10			3 65
3	163060	10	0.5	0.53	<5	165	<5	<0.01	<1	5	143	30	3.34	<10	0.08	11	13	<0.01	19	410	2	<5	<20	2	0.04	<10	7 <1	10	3 75
4	163061	5	0.7	2.47	20	355	<5	0.40	2	123	125	178	>10	20	1.26	3534	3	0.01	308	1710	12	<5	<20	27	0.18	<10	68 <1	10 1	7 528
5	163062	15	2.0	0.47	10	265	<5	0.02	<1	6	153	47	2.16	10	0.13	81	11	<0.01	19	400	10	<5	<20	7	0.03	<10	8 <'	10 :	356
6	163064	10	1.6	0.90	30	1220	<5	0.05	3	75	89	79	>10	30	0.28	3278	23	<0.01	229	1230	10	<5	<20	13	0.21	<10	26 <	10 1	9 641
7	163065	10	0.4	0.91	50	115	<5	0.09	3	85	150	69	>10	30	0.33	1596	8	0.01	336	1700	<2	<5	<20	2	0.18	<10	63 <	10 1	9 467
8	163074	5	<0.2	0.30	140	25	<5	0.08	<1	13	65	30	6.83	30	0.13	108	2	0.01	22	1070	<2	<5	<20	3	0.09	<10	3 <	10 4	4 44
9	163075	>1000	0.3	0.29	160	40	<5	0.01	<1	6	61	4	3.69	30	0.07	11	3	0.01	14	310	10	<5	<20	<1	0.04	<10	3 <	10 : :	2 21
10	163081	15	0.6	0.44	<5	95	<5	0.05	<1	32	72	88	7.03	20	0.14	194	2	0.04	76	1560	<2	<5	<20	95	0.09	<10	25 <	10	5 168
11	163082	10	0.4	0.43	5	85	<5	0.03	1	13	106	75	5.22	20	0.11	233	7	<0.01	72	450	<2	<5	<20	5	0.07		-		3 191
12	163241	5	<0.2	0.25	60	160	<5	8.79	1	28	136	15	7.94	10	2.09	2163	4	0.03	108	460	2	<5	<20	7	0.14	<10	41 <	10 1	194
13	163242	5	0.2	1.45	10	150	<5	0.30	<1	77	179	119	9.41	30	0.66	1751	3	0.02	274	1270	20	<5	<20	8	0.15				
14	163243	<5	0.2	1.22	<5	95	<5	0.36	<1	57	73	81	>10	40	0.56	1383	3	0.04	46	2390	<2	<5			0.17				
15	163244	<5	<0.2	0.66	<5	120	<5	0.54	<1	66	58	125	>10	40	0.26	1559	2	0.04	58	2570	<2	<5	<20	19	0.16	<10	19 <	10 1	9 52
16	163245	<5	<0.2	1.48	<5	130	<5	0.08	<1	71	110	182	>10	30	0.40	611	3	0.02	194	1890	14	<5	<20	6	0.20	<10	26 <	10 1	5 142
17	163247	25	0.2	0.34	15	75	<5	0.04	<1	2	116	9	1.12	30	0.04	17	7	0.02	2	180	10	<5	<20	14	0.02	<10	4 <	10	15
18	163250	5	<0.2	0.19	<5	60	<5	0.02	<1	8	121	25	1.38	<10	0.04	306	8	0.01	11	120	<2	<5	<20	<1	0.02	<10	2 <	10 <	1 16
<u>QC DA</u> Respli																													
1	163058	10	<0.2	1.56	35	110	<5	0.24	<1	70	184	92	>10	20	0.85	1223	<1	0.02	202	1510	4	<5	<20	15	0.15	<10	60 <	10	5 <b>1</b> 18
Repea							_															_							<b>.</b>
	163058	10	<0.2	1.74	35	185	<5	0.23	<1	73	220	98	>10	30	0.87	1384	<1	0.03	211	1470	4	<5	-		0.16			· •	6 114
10	163081	15	0.5	0.47	<5	100	<5	0.06	1	33	76	91	7.26	20	0.15	198	3	0.05	81	1600	≤2	<5	<20	95	0.09	<10	26 <	10	5 173
Stand		125	4.5	4.54	= ^	400		4 40		10	54	05	2 20	-10	0.02	534		0.02	20	620	24	~*	~20	22	0.10	-10	60 -	10	6 69
GEO '	<b>,</b> 44	135	1.5	1.54	50	120	<5	1.46	<1	18	54	85	3.28	<10	0.92	531	<1	0.03	28	020	24	<5	<20	22	0.16	-10	ŲΖ <	10	6 69

JJ/jm df/708A

Copy in Promise

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

۰,

No. of samples received: 7 Sample type: Rock **Project #: Wotf/Promise** Samples Submitted by: Jean Pautler

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
5	4401	1.09	0.032	

QC DATA: Standard:

1[#]

1

SN16

0.249

8.53

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/kk XLS/04 28-Jul-04

ICP CERTIFICATE OF ANALYSI

**?004-784** 

INTERNATIONAL WAYSIDE GOLD LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

r

~

2.1

Attention: Jean Pautler

No. of samples received: 7 Sample type: Rock Project #: Wolf/Promise Samples Submitted by: Jean Pautier

Values in ppm unless otherwise reported

NY LTD.

ECO TECH LABOR

10041 Dallas Drive

KAMLOOPS, B.C.

Phone: 250-573-5700

Fax : 250-573-4557

V2C 6T4

_Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg <u>%</u>	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	Sr	TI %	U	<u>v</u>	W	Y	Zn
1	163193	5	<0.2	0.82	25	30	<5	0.05	<1	18	41	61	4.62	30	0.46	516	<1	0.02	63 6	350	8	<5	<20	3	<0.01	<10	6	<10	4	98
2	163194	15	<0.2	0.51	30	35	<5	0.06	<1	31	34	30	4.98	20	0.18	715	<1	0.03	32 E	510	26	<5	<20	8	<0.01	<10	6	<10	4	75
3	163195	20	0.4	1.41	25	55	<5	0.06	<1	37	50	143	3.69	20	0.57	160	<1	0.02	29 3	350	152	<5	<20	6	<0.01	<10	15	<10	3	55
4	163196	40	1.3	2.87	15	20	10	0.03	<1	40	94	195	>10	20	1.37	223	<1	0.01	66 3	380	90	<5	<20 ·	4	<0.01	<10	25	<10	3	151
5	4401	>1000	<0.2	0.18	295	95	10	0.02	<1	9	57	9	3.41	10	0.05	<1	3	0.01	13 3	390	44	<5	<20	58	<0.01	<10	6	<10	1	4
6	163085	60	1.0	0,18	55	345	<5	0.02	<1	3	79	18	1.41	10	0.05	35	13	<0.01	15 3	340	6	<5	<20	12	<0.01	<10	14	<10	3	64
7	163086	40	<0.2	1.44	<5	55	<5	0.23	<1	19	98	77	3.36	10	1.24	232	17	<0.01	40 12	220	34	<5	<20	4	0.07	<10	55	<10	10	265
Resp	DATA: Dit: 163193	5	<0.2	0.85	20	35	<5	0.04	<1	19	40	57	4.72	30	0.47	582	<1	0.02	64 (	520	8	<5	<20	5	<0.01	<10	6	<10	4	10 <b>1</b>
<b>Stan</b> GEO	d <b>a</b> rd: '04	150	1.4	1.58	55	140	<5	1.53	<1	19	57	84	3.36	10	0.93	586	<1	0.03	28	640	20	<5	<20	40	0.11	<10	60	<10	8	73

JJ/kk dl/759a XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Page 1

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 1 Sample type: Rock **Project #: Not indicated** Samples Submitted by: D. Bishop

۰.

ET #.	Tag #	Au (g/t)	Au (oz/t)	
1	166353	0.03	0.001	
QC DATA: Resplit: 1	166353	0.04	0.001	
Standard: OX123		1.86	0.054	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm XLS/04

(

22-Jul-04

10-Aug-04

.

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

1

Phone: 250-573-5700 Fax : 250-573-4557

4

ICP CERTIFICATE OF ANALYSIS AK 2004-936

INTERNATIONAL WAYSIDE GOLD Minués LT 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 31 Sample type:Rock **Project #: Cow Mtn Shipment #: Not Indicated** Samples submitted by:C. Moore

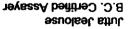
Values in ppm unless otherwise reported

Et #.	Tag #	Au (ppb)	Ag	AI %	As	Ва	BICa%	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	P Pt	s Sb	Sn S	<u>r Ti%</u>	U	<u>v</u> .	<u>w y</u>	Zn
1	14401	5	<0.2	0.24	<5	60	<5 0.02	<1	4	160	5	0.87	20 0.03	172	5 0.02	10	90 10	) <5	<20 2	2 < 0.01	<10	1 <	10 2	15
2	14402	5	<0.2	0.83	<5	155	<5 0.10	<1	13	99	13	3.2 <del>9</del>	40 0.29	289	<1 <0.01	28	450 10	) <5	<20_1	1 <0.01	<10	5 <1	10 5	85
3	14403	10	<0.2	0.56	<5	105	<5 0.13	<1	19	100	27	4.48	40 0.17	605	<1 <0.01	31	620 18	3 <5	<20_1	1 <0.01	<10	4 <	10 5	93
4	14404	<5	<0.2	0.45	15	70	<5 0.13	<1	16	95	15	4.05	30 0.13	640	<1 0.01	30	670 10	) <5	<20	9 <0.01	<10	3 <'	10 5	73
5	14405	5	<0.2	0.46	<5	55	<5 0.10	<1	8	127	11	1.95	30 0.13	354	6 0.01	20	550 12	2 <5	<20	5 <0.01	<10	3 <'	10 3	45
6	14406	<5	<0.2	0.75	<5	120	<5 0.23	<1	18	110	21	5.97	40 0.26	999		÷	1410 18		<20 1					
7	14407	5	<0.2	0.12	5	35	<5 <0.01	<1	2	157	5	1.21	<10 0.02		10 <0.01		50 12			1 <0.01			10 <1	-
8	14408	5	<0.2	0.65	<5	30	<5 0.04	<1	20	105	59	4.02	30 0.21	95	<1 0.01		550 20		-	4 <0.01		-	10 2	
9	14409	20	0.9	0.11	<5	75	<5 <0.01	<1	2	218	10	0.84	<10 0.01	15	15 <0.01	8	330 1			5 <0.01			10 <1	
10	14410	<5	<0.2	0.01	<5	<5	<5 <0.01	<1	<1	269	6	0.41	<10 <0.01	21	17 <0.01	6	40 <	2 <5	<20 <	1 <0.01	<10	1 <	10 <1	6
11	14411	5	<0.2	0.03	<5	<5	<5 <0.01	<1	1	227	20	0.44	<10 <0.01	30	9 <0.01	12			-	-				
12	14412	30	<0.2	0.01	30	<5	<5 <0.01	<1	3	237	6	0.77	<10 <0.01	49	15 <0.01	10	30 <2			1 <0.01				
13	14413	375	<0.2	0.22	110	25	<5 0.01	<1	11	101	20	2.93	30 0.04	266	<1 <0.01		340 46			1 <0.01				
14	14414	205	<0.2	0.01	70	<5	<5 <0.01	<1	2	251	7	0.98	<10 0.01	45	16 <0.01	-	100 <			1 <0.01				
15	14415	10	0.5	0.23	10	55	<5 0.02	<1	9	100	26	3.66	30 0.05	115	3 <0.01	32	520 9	3 <5	<20	9 <0.01	<10	6 <	10 2	287
16	14416	10	<0.2	0.03	<5	<5	<5 <0.01	<1	2	208	11	0.63	<10 <0.01	35	8 <0.01		60 <		<20 <			_	10 <1	
17	14417	5	<0.2		<5	65	<5 0.03	<1	9	90	31	2.25	20 0.05	91	<1 0.01		420 (			3 <0.01			10 1	
18	14418	5	<0.2	0.12	<5	45	<5 <0.01	<1	2	152	5	0.46	20 0.01	250	10 <0.01		60 10			1 <0.01			10 <1	
19	14419	30	0.4	0.12	50	245	<5 <0.01	<1	2	184	8	0.85	10 0.02	25	20 <0.01	16	100 4	4 5		1 <0.01		_	10 2	2 76
20	14420	<5	0.3	0.24	<5	305	<5 0.04	<1	3	132	22	0.86	10 0.08	18	9 <0.01	20	260	6 <5	<20	9 <0.01	<10	8 <	10 2	2 55
21	14421	5	0.5	0.06	<5	180	<5 <0.01	<1	<1	184	3	0.22	<10 <0.01	26	17 <0.01	5	<10 <	2 <5	<20 <	1 <0.01	<10	7 <	10 <1	4
22	14422	10	<0.2	0.44	10	70	<5 0.05	<1	8	79	23	1.68	20 0.06	87	2 0.01		=		<20			-	10 1	· • ·
23	14423	85	<0.2	0.16	50	45	<5 <0.01	<1	7	203	58	2.35	10 0.03	81	14 <0.01	27	710 4	4 <5	<20 2	3 <0.01	<10	10 <	10 3	3 54
24	14424	730	<0.2	0.04	20	<5	<5 <0.01	<1	<1	251	6	0.57	<10 <0.01	45	10 <0.01	6	70 <	2 <5	<20 <	1 <0.01	<10	1 <	10 <1	7
25	14425	15	<0.2	0.24	40	35	<5 0.03	<1	8	114	97	2.41	20 0.04	121	11 <0.01	36	490 <	2 <5	<20 <	1 <0.01	<10	3 <	10 3	40
26	14426	<5	<0.2	<0.01	<5	<5	<5 <0.01	<1	1	268	3	0.47	<10 <0.01	137	11 <0.01	8	30 <		<20 <					6
27	14427	<5	<0.2	0.15	<5	30	<5 0.05	<1	4	199	8	1.02	10 0.02	404	7 <0.01	12	270		<20			_		2 17
28	14428	55	<0.2		20	10	<5 <0.01	<1	2	148	6	0.60	<10 0.01	33	9 <0.01	-	60 1 [.]		<20 <			-		
29	14429	75	<0.2	0.06	20	15	<5 0.07	<1	13	166	128	5.47	10 0.12	1308	<1 <0.01	23	130 <		<20 <		-		10 5	
30	14430	60	<0.2	0.14	25	15	<5 <0.01	<1	3	191	10	0.92	20 0.01	49	12 <0.01	8			<20 <					• •
31	14431	<5	<0.2	0.14	5	15	<5 <0.01	<1	6	142	10	1.46	20 0.03	152	8 <0.01	11	90	4 <5	<20 <	1 <0.01	<10	1 <	10 <1	20

•		C	INTER	NATION	IAL WA	YSIDE	GOLD	MINES	B LTD.	ł	CP CEI	RTIFIC		F.,	_YSIS	AK 200	)4-93	16						ECC	TECH		OR/	TOR	(Y 🛌	-
<u>Et #.</u>	Tag #	Au (ppb)	Ag	<u>AI %</u>	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr	<u>TI %</u>	U	v	w	Y	Zn
<u>QC DA</u> Respli 1		<5	<0.2	0.23	<5	65	<5	0.02	<1	4	159	5	0.93	20	0.03	203	5	0.02	12	100	12	<5	<20	<1	<0.01	<10	1	<10	2	15
<b>Repea</b> 1 10 13 14 19 24	t: 14401 14410 14413 14414 14419 14424	5 <5 330 280 30 815	<0.2 <0.2 - - 0.2	0.25 0.01 - - 0.12	<5 <5 - 50	60 <5 - 255	-	0.02 <0.01 - - <0.01	<1 <1 - - <1 -	4 1 - 2 -	167 272 - 191 -	5 6 - 8 -	0.40	20 <10 - 10	0.03 <0.01 - - 0.02 -	173 19 - 27 -	-	0.02 <0.01	6	90 40 - 100 -		<5 <5 - <5 -	<20	<1 - -	<0.01 <0.01 - - <0.01	<10 <10 - - <10 -	1 - -	<10 <10 - - - - -	-	15 6 - 76 -
<b>Standa</b> GEO '0		140	1.5	1.53	65	1 <b>4</b> 0	<5	1.60	<1	19	62	85	3.44	10	0.88	601	1	0.02	2 32	720	22	<5	55	35	0.09	<10	50	<10	9	78

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer .

JJ/jm df/928r XLS/04


•

wed Johns J Missing Just 2

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 29 Sample type: Rock Project #: BL Sulphur Samples Submitted by: J. McAllister

		Au	Au	S	
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	(%)	
1	165501	0.76	0.022	1.09	
2	165503	0.46	0.013	1.47	
3	165517	1.19	0.035	4.06	
4	165519	0.92	0.027	4.64	
5	165521	2.50	0.073	5.09	
6	165523	1.01	0.029	4.03	
7	165531	0.11	0.003	0.56	
8	165533	0.12	0.003	0.49	
9	165535	0.06	0.002	0.73	
10	165537	0.03	0.001	0.43	
11	165539	0.18	0.005	0.92	
12	165541	0.35	0.010	1.17	
13	165543	0.31	0.009	0.97	
14	165545	0.48	0.014	1.34	
15	165547	0.33	0.010	1.26	
16	165549	0.35	0.010	1.52	
17	165551	<0.03	<0.001	0.45	
18	165553	2.44	0.071	7.08	
19	165555	2.22	0.065	3.09	
20	165557	0.53	0.015	2.84	
21	165559	0.12	0.003	0.85	
22	165561	0.11	0.003	0.72	
23	165563	0.38	0.011	1.41	
24	165565	1.05	0.031	3.87	
25	165567	0.03	0.001	0.93	
26	165569	0.22	0.006	1.69	
27	165571	0.27	0.008	1.65	XT2/04
<u>2</u> 8	165573	1.63	0.048	7.37	անչը
29	165575	1.3 <del>9</del>	0.041	5.42	



[165502 and 165502 and 165504 571/1 missing 165504 571/1 missing 165502 = 165501 Par 165504 = 165503

ECO TECH LABORATORY LTD. Jutta Jealouse **B.C. Certified Assayer** 

. . .

24-Aug-04

Page 1

## INTERNATIONAL WAYSIDE GOLD MINES LTD. AK4-1034

24-Aug-04

1

ET #.	Tag #	Au (g/t)	Au (oz/t)	S (%)	
		( <u>8</u> /··/			<u> </u>
QC DATA					
Repeat:	• =				
1	165501	0.73	0.021	1.09	
3	165517	1.20	0.035		
4	165519	0.91	0.027		
5	165521	2.35	0.069		
10	165537	<0.03	<0.001	0.44	
19	165555	2.19	0.064	3.10	
24	165565	1.05	0.031		
28	165573	1.49	0.043		
29	165575	1.43	0.042		
Resplit:					
1	165501	0.69	0.020	1.09	
Standard:					
OX123		1.88	0.055		
SH13		1.36	0.040		
PR-1				0.78	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

, •

.

JJ/jm XLS/04

p = 1

<u>ب</u>

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barberville Hay. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 7 Sample type: Rock Project #: REC J. CHILDS Samples Submitted by: John Childs

		Au	Au	
ET A.	Tag #		(oz/t)	
1	14465	<0.03	<0.001	
2	14466	<0.03	<0.001	
3	14467	<0.03	<0.001	
4	14468	0.04	0.001	
5	14469	<0.03	<0.001	
6	14470	<0.03	<0.001	
7	14471	<0.03	<0.001	
QC DATA	2			
Resplit:				
1	14465	<0.03	<b>&lt;0.00</b> 1	
Standard	<b>L</b>			
OX123	•	1.89	0.055	

ECO TECH LABORATORY LTD. Julia Jaalouse B.C. Certified Assayer

. •

€.

18-Aug-04

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 11 Sample type: Phyllite Project #: B.L Samples Shipment #: Not indicated Samples submitted by: J. McAllister

<u> </u>	Tag #	Au (g/t)	Au (oz/t)	 
6	25928	5.06	0.148	
QC DATA:				
Standard: OX123		1.87	0.055	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

20-Aug-04

JJ/jm XLS/04

Page 1

C

06-Sep-04

ECO TECH LABORATORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2004-1148

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 8 Sample type: Rock **Project #: IWA Regional** Shipment #: None Given Samples submitted by:Jean Pautier

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Çd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	P	Pb	Sb	Şn	Sr	Tł %	U	V	w	Y	Zn
1	166202	25	0.2	0.50	100	35	<5	0.04	<1	48	58	106	8.00	20	0.16	871	<1	0.03	22	900	6	<5	<20	<u>`9</u>	<0.01	<10	22	<10	5	114
2	166203	<5	<0.2	0.93	5	20	<5	0.06	<1	28	96	48	4.14	10	0.46	95	9	0.02	62	410	12	<5	<20	6	<0.01	<10	8	<10	3	53
3	166204	<5	<0.2	0.30	<5	20	<5	0.62	<1	8	136	12	3.07	20	0.16	1148	12	0.01	27	120	32	<5	<20	<1	<0.01	<10	3	<10	4	27
4	166205	<5	<0.2	1.76	<5	35	<5	0.09	<1	16	60	45	4.38	40	0.94	165	<1	0.01	36	630	16	<5	<20	5	<0.01	<10	14	<10	3	98
5	166206	5	<0.2	0.74	80	30	<5	6.48	<1	54	233	96	6.48	20	5.06	1549	<1	0.04	265	1 <del>9</del> 80	50	<5	<20	311	0.01	<10	31	<10	7	120
6	4431	<5	<0.2	0.13	<5	<5	10	>10	<1	19	73	124	>10	60	2.00	7678	<1	<0.01	59	170	<2	<5	<20	355	0.04	<10	4	<10	6	79
7	4437	<5	<0.2	0.04	<5	<5	<5	0.03	<1	1	141	3	0.51	<10	0.01	87	6	0.02	6	110	2	<5	<20	2	<0.01	<10	<1	<10	<1	8
8	4438	<5	<0.2	0.01	<5	<5	<5	<0.01	<1	2	196	5	0.89	<10	0.01	54	22	<0.01	7	50	4	<5	<20	<1	<0.01	<10	<1	<10	<1	8
<u>QC I</u> Res <u>r</u> 1	<b>DATA:</b> Dift: 166202	5	0.2	0.48	105	30	<5	0.03	<1	42	53	102	7.91	20	0.16	855	<1	0.03	22	880	4	<5	<20	7	<0.01	<10	21	<10	5	112
Stan GEO	<b>dard:</b> '04	140	1.4	1.64	55	135	<5	1.76	<1	20	58	85	3.63	10	0.97	606	1	0.02	30	650	22	<5	<20	50	0.10	<10	53	<10	9	73

JJ/sc df/1148 XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

INTERNATIONAL WAYSIDE GOLD MINES LTD.

12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 63 Sample type: Rock **Project #: Lowhee** Samples Submitted by: Jim Yin

		Au	Au	
E <u>T</u> #.	Tag #	(9/t)	(oz/t)	
1	164201	<0.03	<0.001	
2	164202	<0.03	<0.001	
2 3	164203	<0.03	<0.001	
4	164204	<0.03	<0.001	
5	164205	<0.03	<0.001	
5 6 7	164206	<0.03	<0.001	
7	164207	<0.03	<0.001	
8	164208	<0.03	<0.001	
9	164209	<0.03	<0.001	
10	164210	2.92	0.085	
11	164211	0.10	0.003	
12	164212	<0.03	<0.001	
13	164213	<0.03	<0.001	
14	164214	0.04	0.001	
15	164215	<0.03	<0.001	
16	164216	<0.03	<0.001	
17	164217	<0.03	<0.001	
18	164218	<0.03	<0.001	
19	164219	<0.03	<0.001	
20	164220	<0.03	<0.001	
21	164221	<0.03	<0.001	
22	164222	<0.03	<0.001	
23	164223	<0.03	<0.001	
24	164224	<0.03	<0.001	
25	164225	<0.03	<0.001	
26	164226	<0.03	<0.001	
27	164227	<0.03	<0.001	
28	164228	<0.03	<0.001	
29	164229	<0.03	<0.001	
30	164230	<0.03	<0.001	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

)

· · · · · · · · · · ·

## INTERNATIONAL WAYSIDE GOLD MINES LTD.

.

## 16-Sep-04

1

		۸.,	Au	
ET #.	Tag #	Au (g/t)	(oz/t)	
31	164231	<0.03	<0.001	
32	164232	<0.03	<0.001	
33	164233	<0.03	<0.001	
34	164234	<0.03	<0.001	
35	164235	<0.03	<0.001	
36	164236	<0.03	< 0.001	
37	164237	<0.03	< 0.001	
	164238	<0.03	<0.001	
38	164239	<0.03	<0.001	
39				
40	164240	<0.03	<0.001	
41	164241	<0.03	<0.001	
42	164242	<0.03	<0.001	
43	164243	<0.03	< 0.001	
44	164244	<0.03	<0.001	
45	164301	<0.03	<0.001	
46	164302	<0.03	<0.001	
47	164303	<0.03	<0.001	
48	164304	<0.03	<0.001	
49	164305	<0.03	<0.001	
50	164306	<0.03	<0.001	
51	164307	<0.03	<0.001	
52	164308	<0.03	<0.001	
53	164309	<0.03	<0.001	
54	164310	0.05	0.001	
55	164311	<0.03	<0.001	
56	164312	0.03	0.001	
57	164313	<0.03	<0.001	
58	164314	<0.03	<0.001	
59	164315	<0.03	<0.001	
60	164316	<0.03	<0.001	
61	164317	0.05	0.001	
62	164318	0.03	0.001	
63	164319	<0.03	<0.001	
03	104319	-0.03	~0.001	
QC DATA:				
Repeat:	404004	-0.00	.0.004	
1	164201	<0.03	<0.001	
10	164210	2.63	0.077	
11	164211	0.15	0.004	
19	164219	<0.03	<0.001	
36	164236	<0.03	<0.001	
45	164301	<0.03	<0.001	
54	164310	0.05	0.001	
Resplit:				
1	164201	<0.03	<0.001	
36	164236	<0.03	<0.001	
Standard:				
PM169		0.63	0.018	
PM169		0.64	0.019	

JJ/jm XLS/04

# ECO TECH LABORATORY LTD.

.

.

and a second second second second second second second second second second second second second second second

•

Jutta Jealouse B.C. Certified Assayer

---

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247

• •

Wells, BC, V0K 2R0

....

J

No. of samples received: 3 Sample type: Rock **Project #: Promise** Samples Submitted by: Dave Johnson

		Au	Au	
<u> </u>	Tag #	<u>(9/t)</u>	(oz/t)	
1	38976	<0.03	<0.001	
2	38977	<0.03	<0.001	
3	38978	<0.03	<0.001	

## OC DATA:

Resplit: 1	38976	<0.03	<0.001
Standard: PM176		2.12	0.062

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/jm XLS/04 07-Oct-04

)

## WHOLE ROCK CERTIFICATE OF ANALYSIS AK 2004-1290

INTERNATIONAL WAYSIDE GOLD MINES, LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

•

**,**,

1

No. of samples received: 3 Sample type: Rock **Project #: Promise** Shipment **#: None Given** Samples submitted by: Dave Johnson

### Note: Values expressed in percent

ET #.	Tag #	BaO	P205	SiO2	MnO	Fe203	MgO	AI203	CaO	TiO2	Na2O	K20	L.O.I.
3	38978	0.06	0.01	83.0	0.07	2.72	0.38	8.40	0.30	0.47	0.89	2.19	1.50
QC DATA Standard sy4 mrg1		0.05 0.02	0.13 0.06	50.0 38.8	0.11 0.17	6.56 17.6	0.54 13.7	20.7 8.34	8.33 14.6	0.29 3.64	7.10 0.68	1.62 0.18	4.56 2.22

df/wr1033a XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer 07-Oct-04

3

Island Mountain Gold WA Box 247, 12422 Barkerville Hwy. Wells, BC **V0K 2R0** 

23-Sep-04

)

No. of samples received: 22 Sample type: Rock Project #: Promise Shipment #: None Given Samples Submitted by: Dave Johnson

		Au	Au
ET #.	Tag #	(g/t)	(oz/t)
1	38979	11.8	0.344
2	38980	3.89	0.113
3	38981	0.24	0.007
4	38982	0.80	0.023
5	38983	0.12	0.003
6	38984	0.10	0.003
7	38985	<0.03	<0.001
8	38986	0.04	0.001
9	38987	0.05	0.001
10	38988	0.04	0.001
11	38989	0.06	0.002
12	38990	<0.03	<0.001
13	38991	<0.03	<0.001
14	38992	<0.03	<0.001
15	38993	<0.03	<0.001
16	38994	<0.03	<0.001
17	38995	<0.03	<0.001
18	38996	<0.03	<0.001
19	38997	0.05	0.001
20	38998	<0.03	<0.001
21	38999	<0.03	<0.001
22	39000	<0.03	<0.001

ECO TECH LABORATORY LTD.

Jutta Jealouse

B.C. Certified Assayer

## )

## land Mountain Gold AK4-1291

**.** ·

;

,

P

## 23-Sep-04

		Au	Au	
<u> </u>	Tag #	<u>(g/t)</u>	<u>(oz/t)</u>	
QC DATA:	-			
Repeat:	-			
1	38979	12.2	0.356	
2	38980	3.90	0.114	
3	38981	0.27	0.008	
4	38982	0.84	0.024	
10	38988	0.03	0.001	
Resplit:				
1	38979	9.58	0.279	
Standard:				
PM176		2.04	0.059	

JJ/jm XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

.

23-Sep-0/

-

## ECO VECH LABORA I ORY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

### ICP CERTIFICATE OF ANALYSIS AK 2004-1291

## Island Mountain Gold Box 247, 12422 Barkerville Hwy. Wells, BC V0K 2R0

.

-

6 A.

No. of samples received; 22 Sample type: Rock Submitted by: Dave Johnson

Values in ppm unless otherwise reported

Et #.	Tag #	Ag Al %	As	Ba	81	Ca <u>%</u>	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	NE	P	Pb	Sb	Sn	Sr	TI %	_ U	V	_w	Y	Zn
1	38979	1.0 0.11	2160	15	10	0.07	<1	7	150	9	5.12	10	0.09	416	1 <0.01	14	70	32	5	<20	7	<0.01	<10	2	<10	<1	27
2	38980	0.4 0.13	3210	15	10	0.09	<1	15	112	10	7.52	20	0.12	104	<1 <0.01	22	270	28	5	<20	9	<0.01	<10	2	<10	<1	17
3	38981	<0.2 0.25	2140	30	<5	0.20	<1	25	48	33	6.50	20	0.14	936	<1 <0.01	39	800	<2	<5	<20	15	<0.01	<10	4	<10	<1	37
4	38982	<0.2 0.22	1520	20	<5	0.25	<1	15	148	85	3.84	20	0.08	437	1 <0.01	37	920	16	<5	<20	26	<0.01	<10	4	<10	6	203
5	38983	2.1 0.26	100	45	5	0.05	<1	10	118	45	2.66	10	0.10	210	2 <0.01	44	380	174	<5	<20	10	<0.01	<10	16	<10	3	145
6	38984	0.4 0.32	55	120	<5	80.0	<1	11	129	64	3.62	20	0.07	122	5 <0.01	46	1090	22	<5	<20	34	<0.01	<10	14	<10	4	175
7	38985	<0.2 0.73	205	30	<5	0.23	<1	15	121	209	2.28	<10	0.07	504	7 <b>&lt;0</b> .01	135	1280	22	50	<20	28	<0.01	<10	14	<10	21	150
8	38986	0.2 0.18	50	105	<5	0.04	<1	4	129	22	2.49	20	0.04	12	5 <0.01	20	520	36	<5	<20	12	<0.01	<10	16	<10	2	123
9	38987	<0.2 0.08	70	60	<5	0.03	<1	3	218	8	2.01	<10	0.03	556	5 <0.01	21	250	6	<5	<20	8	<0.01	<10	11	<10	3	35
10	38988	0.9 0.14	15	30	<5	<0.01	<1	4	83	10	1.79	<10	0.03	<1	4 <0.01	22	20	12	<5	<20	<1	<0.01	<10	7	<10	<1	50
11	38989	0.2 0.50	50	100	<5	0.11	<1	15	83	57	2.77	10	0.22	198	6 <0.01	105	980	12	<5	<20	22	<0.01	<10	9	<10	3	206
12	38990	0.7 0.06	<5	15	<5	0.05	<1	3	175	10	0.80	<10	0.02	185	6 <0.01	15	380	178	<5	<20	5	<0.01	<10	2	<10	2	88
13	38991	<0.2 0.33		95	<5	0.05	<1	5	72	20	4.83	30	0.12	53	<1 <0.01	17	520	<2	<5	<20	7	<0.01	<10	3	<10	<1	72
14	38992	<0.2 0.02		20	<5	1.05	<1	5	180	3	1.64	<10	0.21	1254	4 <0.01	12	570	2	<5	<20	29	<0.01	<10	2	<10	5	25
15	38993	<0.2 0.03	<5	30	<5	0.70	<1	2	141	4	0.85	<10	0.10	532	3 <0.01	11	2360	4	<5	<20	80	<0.01	<10	1	<10	18	18
16	38994	<0.2 1.32	2 5	75	<5	0.69	<1	16	163	30	3.45	20	1.11	530	<1 0.01	66	490	20	<5	<20	74	<0.01	<10	17	<10	2	87
17	38995	<0.2 0.13	30	105	<5	0.04	<1	- 4	99	21	1.38	10	0.04	220	9 <0.01	32	180	18	<5	<20	4	<0.01	<10	5	<10	2	<del>9</del> 8
18	38996	<0.2 1.01	<5	40	<5	1.18	<1	13	104	20	2.81	30	0.44	578	<1 0.02	29	270	32	<5	<20	- 18	<0.01	<10	8	<10	3	61
19	38997	<0.2 0.97	65	30	<5	0.04	<1	6	123	15	2.53	20	0.43	182	1 <0.01	16	350	20	<5	<20	5	<0.01	<10	9	<10	<1	49
20	38998	<0.2 1.28	3 <5	35	<5	0.06	<1	13	133	23	3.48	20	0.70	273	2 <0.01	29	500	34	5	<20	3	<0.01	<10	13	<10	1	78
21	38999	<0.2 1.02	<5	20	<5	0.04	<1	8	125	21	2.82	20	0.54	214	1 <0.01	19	360	24	<5	<20	2	<0.01	<10	10	<10	<1	67
22	39000	0.8 0.09	1920	10	5	0.05	<1	6	127	7	4.53	10	0.08	356	2 <0.01	12	60	26	<5	<20	4	<0.01	<10	2	<10	<1	22

island	Möäntain	J							ICP C	ERTI	FICAT	re of	ANAL	YSIS /		)4-12	<del>9</del> 1			,					ECO T	ЕСН	LABC	)R	1
Et #.	Tag #	A		6 As	Ba	В	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	₽b	Sb	Sn	Sr	Ti %	U	v	w	Y	Ζπ
OC DAT	<u>'A:</u>									_									····					_	<u>ن جمعی منبع</u>			فاكبيهم	
<b>Repest:</b> 1 10	38979 38988		: 0.1( ) 0.1;	) 2265 5 20		-	0.06 <0.01	<1 <1	7 4	159 85	9 11	5.29 1.81			428 <1		<0.01 <0.01	16 25	80 20	32 12	<5 <5		-	<0.01 <0.01		2 7	<10 <10	<1 <1	26 50
<b>Standar</b> GEO '04		1.5	• <b>1.7</b> *	i 60	160	<5	1.55	<1	20	60	86	3.59	<10	0.97	617	<1	0.03	35	750	22	<5	<20	56	0.11	<10	61	<10	10	75

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

`

JJ/sc df/1263 XLS/04

.

Page 2

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0

No. of samples received: 4 Sample type: Rock Project #: Bonanza Rock Samples Submitted by: D. Onychuk

			Au	Au
<u>ET #.</u>	Tag #	(9	/t)	<u>(oz/t)</u>
1	165701	0.	12	0.003
2	165702	0.	08	0.002
3	165703	0.1	22	0.006
4	16570 <b>4</b>	• 0.	61	0.018
QC DATA: Resplit:	•			
i	165701	0.	12	0.003
Repeat:				
4	165704	3.	00	0.087
4	165704	1.4	47	0.043
4	165704	0.0	64	0.019
Standard:				
PM169		0.0	62	0.018

NOTE: • = Metallic Gold Suspected.

ECO TECH LAB	<b>ORATORY LTD.</b>
Jutta Jealouse	
D.O. O	
B.C. Certified As	Isaver

BON. CHANNEL

9

28-Sep-04

JJ/jm XLS/04

í

28-Sep-04

ECO TECH LABORATORY LTD. 10041 Dailes Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax: : 250-573-4557

#### ICP CERTIFICATE OF ANALYSIS AK 2004-1356

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, V0K 2R0 Ł

ئ.

1 • •

\$

No. of samples received: 4 Sample type: Rock Project #: Bonanza Rock Samples Submitted by: D. Onychuk

Values in ppm unless otherwise reported

1	Et #.	Tag #	Ag	AI %	As	Ba	Bl	Ca %	Cd	Co	Cr_	Cu	Fe %	La	Mg %	Mn	Mo	Na %	NI	P	Pb	Sb	Sn	<u>Sr</u>	TI %	U	<u>v</u>	W	Y	Zn
-	1	165701	<0.2	0.26	135	50	<5	0.03	<1	18	131	46	3.79	30	0.08	394	<1	0.01	41	610	22	5	<20	5	<0.01	<10	6	<10	2	71
	2	165702	<0.2	0.25	150	45	<5	0.02	<1	22	92	68	6.68	30	0.11	585	<1	0.01	56	790	2	5	<20	3	<0.01	<10	5	<10	3	130
	3	165703	<0.2	0.21	275	40	5	0.01	<1	15	116	42	4.70	20	0.07	179	6	<0.01	42	600	46	<5	<20	4	<0.01	<10	5	<10	3	92
	4	165704	<0.2	0.21	110	45	<5	<0.01	<1	6	139	8	1.58	20	0.03	101	2	<0.01	16	160	10	<5	<20	2	<0.01	<10	5	<10	2	21
	<mark>ac na</mark> Respii 1		<0.2	0.27	135	50	<5	0.02	<1	18	137	44	3.84	30	0.07	386	6	0.01	41	600	20	<5	<20	3	<0.01	<10	6	<10	2	69
	Repea 1	€: 165701	<0.2	0.26	140	45	<5	0.02	<1	19	133	44	3.91	30	0.07	404	<1	<0.01	42	620	22	<5	<20	3	<0.01	<10	6	<10	2	71
	Stand GEO 1		1.5	1.72	65	170	<5	1.58	<1	21	71	88	3.72	<10	0.98	636	<1	0.03	31	860	20	10	<20	52	0.11	<10	60	<10	10	74

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

JJ/Jm df/1344c XLS/04

.

28-Sep-04

ECO TECH LABORA. JRY LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

No. of samples received: 11 Sample type:Rock **Project #: BLS** Shipment #: Not indicated Samples submitted by: Dave Johnson

Values in ppm unless otherwise reported

Et #.	Tag #	Au (ppb)	Ag	<u>AI %</u>	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn_	Mo	Na %	Ni	P	Pb	Sb	Sn_	Sr	TI %	U	v	w	Y	Zn
1	4751	5	<0.2	0.03	10	25	<5	0.01	<1	1	153	11	0.37	<10	< 0.01	46	12	< 0.01	4	180	56	<5	<20	46	<0.01	<10	2	<10	2	7
2	4752	10	<0.2	0.09	35	30	<5	0.03	<1	2	213	10	0.65	<10	<0.01	32	3	<0.01	8	720	8	<5	<20	179	<0.01	<10	5	<10	4	10
3	4753	10	<0.2	0.08	25	25	<5	0.02	<1	2	182	9	0.54	<10	<0.01	50	14	<0.01	8	500	6	<5	<20	128	<0.01	<10	4	<10	2	8
4	4754	25	<0.2	0.07	25	25	<5	0.01	<1	2	200	11	0.64	<10	0.01	57	- 4	<0.01	8	280	8	<5	<20	71	<0.01	<10	4	<10	<1	13
5	4755	35	<0.2	0.11	15	35	<5	0.02	<1	2	176	12	0.61	<10	0.02	48	13	<0.01	10	320	6	<5	<20	92	<0.01	<10	4	<10	2	12
6	4758	15	<0.2	0.04	10	15	<5	<0.01	<1	2	201	11	0.47	<10	<0.01	56	3	<0.01	8	150	2	<5	<20	35	<0.01	<10	2	<10	<1	8
7	4757	30	<0.2	0.07	45	30	<5	<0.01	<1	2	169	17	0.62	<10	<0.01	36	13	<0.01	6	230	8	<5	<20		<0.01	<10	5	<10	<1	10
8	4758	135	0.4	0.15	230	115	<5	0.03	<1	4	183	57	2.47	<10	0.03	50	4	<0.01	13	1350	198	5	<20	227	<0.01	<10	21	<10	3	30
9	4759	135	1.0	0.06	30	30	<5	<0.01	<1	2	152	8	0.44	<10	<0.01	165	12	<0.01	7	130	162	<5	<20	22	<0.01	<10	6	<10	<1	9
10	4760	45	<0.2	0.29	135	85	<5	0.06	<1	31	61	9	6.72	30	0.13	502	<1	0.02	41	920	2	5	<20	9	<0.01	<10	23	<10	<1	123
11	4761	165	<0.2	0.26	195	345	<5	0.08	<1	20	76	16	5.05	30	0.09	499	1	0.02		720	14	5	<20	18	0.02	<10	19	<10	2	93
<u>QC D</u> Resp 1		5	<0.2	0.02	10	15	<5	0.01	<1	1	175	12	0.37	<10	<0.01	45	3	<0.01	6	180	56	<5	<20	42	<0.01	<10	2	<10	2	7
Repe 1 Stan	4751 <b>terd:</b>	5			10	15	<5	-	461	2	154	11	0.36		<0.01	52		<0.01		190	54	<5	<20		<0.01	<10		<10	-	7
GEO	'04	135	1.5	1.68	65	170	<5	1.56	<1	21	60	89	3.65	<10	0.96	622	<1	0.03	30	850	20	<5	<20	51	0.10	<10	61	<10	10	74

ROAD

JJ/jm df/1344c XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer -

3

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 16 Sample type: Rock **Project #: Lowhee** Samples Submitted by: J. Yin

۶

1         163651         0.14         0.004           2         163652         0.21         0.006           3         163653         <0.03         <0.001           4         163654         0.21         0.006           5         163655         0.43         0.013           6         163656         <0.03         <0.001           7         163657         <0.03         <0.001           8         163658         <0.03         <0.001           9         163659         3.63         0.106           10         163660         0.20         0.006           11         163661         0.08         0.002           12         163663         0.05         0.001           14         163664         <0.03         <0.001           15         163665         0.03         0.001           16         163666         <0.03         <0.001           15         163665         0.03         <0.001           16         163665         0.03         <0.001           16         163659         3.60         <0.03         <0.004           Resplit:	<b>FT</b> #	~	Au	Au
2       163652       0.21       0.006         3       163653       <0.03       <0.001         4       163654       0.21       0.006         5       163655       0.43       0.013         6       163656       <0.03       <0.001         7       163657       <0.03       <0.001         8       163658       <0.03       <0.001         9       163659       3.63       0.106         10       163660       0.20       0.006         11       163661       0.08       0.002         12       163663       0.05       0.001         14       163664       <0.03       <0.001         15       163665       0.03       <0.001         16       163666       <0.03       <0.001         16       163666       <0.03       <0.001         16       163659       3.60       0.105         16       163659       3.60       0.105         Standard:       9       163659       3.60       0.105	<u>ET #.</u>	Tag #	(g/t)	(oz/t)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		0.14	
4 $163654$ $0.21$ $0.006$ 5 $163655$ $0.43$ $0.013$ 6 $163656$ $<0.03$ $<0.001$ 7 $163657$ $<0.03$ $<0.001$ 8 $163658$ $<0.03$ $<0.001$ 9 $163659$ $3.63$ $0.106$ 10 $163660$ $0.20$ $0.006$ 11 $163661$ $0.08$ $0.002$ 12 $163662$ $0.73$ $0.021$ 13 $163663$ $0.05$ $0.001$ 14 $163664$ $<0.03$ $<0.001$ 15 $163665$ $0.03$ $0.001$ 16 $163651$ $0.15$ $0.004$ Repeat:         9 $163659$ $3.60$ $0.105$ Standard:         Standard:	2		0.21	
4       163654 $0.21$ $0.006$ 5       163655 $0.43$ $0.013$ 6       163656 $<0.03$ $<0.001$ 7       163657 $<0.03$ $<0.001$ 8       163658 $<0.03$ $<0.001$ 9       163659 $3.63$ $0.106$ 10       163660 $0.20$ $0.006$ 11       163661 $0.08$ $0.002$ 12       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $0.001$ 16       163651 $0.15$ $0.004$ Resplit:         1       163659 $3.60$ $0.105$ Standard:         9       163859 $3.60$ $0.105$			<0.03	
5       163655 $0.43$ $0.013$ 6       163656 $<0.03$ $<0.001$ 7       163657 $<0.03$ $<0.001$ 8       163658 $<0.03$ $<0.001$ 9       163659 $3.63$ $0.106$ 10       163660 $0.20$ $0.006$ 11       163661 $0.08$ $0.002$ 12       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $<0.001$ 16       163666 $0.03$ $<0.001$ QC DATA: $0.15$ $0.004$ Repeat:       9       163659 $3.60$ $0.105$ Standard: $$$ $$$ $$$ $$$				
6       163656 $<0.03$ $<0.001$ 7       163657 $<0.03$ $<0.001$ 8       163658 $<0.03$ $<0.001$ 9       163659 $3.63$ $0.106$ 10       163660 $0.20$ $0.006$ 11       163661 $0.02$ $0.006$ 11       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $<0.001$ 16       163666 $<0.03$ $<0.001$ QC DATA: $9$ 163659 $3.60$ $0.105$ Standard: $3.60$ $0.105$ $0.105$				
7       163657 $<0.03$ $<0.001$ 8       163658 $<0.03$ $<0.001$ 9       163659 $3.63$ $0.106$ 10       163660 $0.20$ $0.006$ 11       163661 $0.20$ $0.006$ 12       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $0.001$ 16       163666 $<0.03$ $<0.001$ 16       163651 $0.15$ $0.004$ Resplit:         1       163659 $3.60$ $0.105$ Standard:         9       163659 $3.60$ $0.105$				
8       163658 $<0.03$ $<0.001$ 9       163659 $3.63$ $0.106$ 10       163660 $0.20$ $0.006$ 11       163661 $0.20$ $0.006$ 12       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $0.001$ 16       163666 $<0.03$ $<0.001$ QC DATA:         9       163659 $3.60$ $0.105$ Standard:         Standard:		163657		
9       163659 $3.63$ $0.106$ 10       163660 $0.20$ $0.006$ 11       163661 $0.08$ $0.002$ 12       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $0.001$ 16       163666 $<0.03$ $<0.001$ QC DATA:         9       163659 $3.60$ $0.105$ Standard:         Standard:	8	163658		
10       163660 $0.20$ $0.006$ 11       163661 $0.08$ $0.002$ 12       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $0.03$ $0.001$ 15       163665 $0.03$ $0.001$ 16       163666 $<0.03$ $<0.001$ QC DATA:         9       163651 $0.15$ $0.004$ Repeat:         9       163659 $3.60$ $0.105$ Standard:         Standard:		163659		
11       163661 $0.08$ $0.002$ 12       163662 $0.73$ $0.021$ 13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $0.001$ 16       163666 $<0.03$ $<0.001$ QC DATA:		163660		
12 $163662$ $0.73$ $0.021$ $13$ $163663$ $0.05$ $0.001$ $14$ $163664$ $<0.03$ $<0.001$ $15$ $163665$ $0.03$ $0.001$ $16$ $163666$ $<0.03$ $<0.001$ QC DATA:		163661		
13       163663 $0.05$ $0.001$ 14       163664 $<0.03$ $<0.001$ 15       163665 $0.03$ $0.001$ 16       163666 $<0.03$ $<0.001$ QC DATA:	12	163662		
14       163664       <0.03	13	163663		
15       163665       0.03       0.001         16       163666       <0.03	14	163664		
16       163666       <0.03	15	163665		
QC DATA:         Code         Code	16	163666		
Resplit:         0.15         0.004           1         163651         0.15         0.004           Repeat:         9         163659         3.60         0.105           Standard:         SU12         SU12         SU12         SU12			~0.03	NU.001
1       163651       0.15       0.004         Repeat:         9       163659       3.60       0.105         Standard:         Ski12		=		
Repeat:         0.10         0.004           9         163659         3.60         0.105           Standard:         SU12		162651		
9 163659 3.60 0.105 Standard:	I	103031	0.15	0.004
Standard:				
CU12	9	163659	3.60	0.105
SH13 4 00 0 000	Standard:			
1.22 0.036	SH13		1.22	0.036

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

Page 1

••• • •• • • • •

--

08-Oct-04

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

No. of samples received: 2 Sample type: Rock Project #: Wolf Samples Submitted by: Janet Riddell

ſ

)

		Au Au	Au	
<u>ET #.</u>	Tag #	(g*i)	(oz/t)	
1	JR166304	<0.03	<0.001	
2	JR166305	<0.03	<0.001	
QC DATA Repeat:				
1	JR166304	<0.03	<0.001	
Standard	:			
OXE21		0.61	0.018	

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

9

08-Nov-04

ECO TECH LABO 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4	)	).				ICP	CERT	IFICA	te of <i>i</i>	ANALYS	BIS AI	K1	360					1 F	2422 20 Bo	NATIONA Barkerville × 247 BC, V0K	e Hwy.		GOLI	J Mlı	).		el el
Phone: 250-573-67 Fax : 250-573-45 Velues in ppm uni	57	e reporte	nd															8   !	Sampi Projet Shipn	samples i le type: Ro ct #: Wolf nent #: No les submit	ock One Gi	ven	Ridde	11		•	
Et #. Tag # 1 JR166304 2 JR166305	Ag Al % 0.2 0.03 <0.2 <0.01	<b>As</b> 135 5	<b>Ba</b> <5 <5			Cd Co <1 9 <1 2	_	Cu 61 6	<b>Fe %</b> 9.97 2.10	<10	0.48 0.67	Mn 4929 1187		<b>Na %</b> <0.01 <0.01	Ni 5 2	P 360 280	<b>Pb</b> 16 4	-	<b>8n</b> <20 <20	<b>Sr</b> Ti 1227 <0 1335 <0		U <10 <10		<b>W</b> <10 <10	Y <1 4	Zn 37 15	
<u>QC DATA:</u> Resplit: 1 JR166304	<0.2 0.05	145	10	5	>10	<1 8	8	58	>10	<10	0.47	5379		0.01	7	330	14	<5	<20	1272 <0	.01	<10	4	<10	<1	41	

Standard:

GEO '04 <1 0.03 27 720 76 50 0.08 1.4 1.45 60 130 <5 1.38 <1 17 63 86 3.86 <10 0.74 572 24 <5 <20 <10 60 <10 9

JJ/sc df/1648 XLS/04

 $\boldsymbol{\nabla}^{2}$ 

 $\mathbf{N}$ 

ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

ı,

~