REPORT ON 2004 DIAMOND DRILLING ON THE MYRTLE CLAIM GROUP

CARIBOO MINING DIVISION WELLS, BRITISH COLUMBIA

NTS: 93H/04

Latitude: 53° 05' N

Longitude: 121° 33' W

۷

Prepared for

International Wayside Gold Mines Ltd. 15th floor – 675 West Hastings St. Vancouver, BC V6B 1N2 Tel: 604-669-6463 Fax: 604-669-3041

By

Daria Duba, M.Sc. R.R.#1, S.4, C.1 Naramata, BC V0H 1N0

February, 2005

PART C

REPORT ON 2004 DIAMOND DRILLING ON THE MYRTLE CLAIM GROUP

CARIBOO MINING DIVISION WELLS, BRITISH COLUMBIA

NTS: 93H/04

Latitude: 53° 05' N

Longitude: 121° 33' W

Prepared for

1 BRAT International Wayside Gold Mines Ltd. 15th floor - 675 West Hastings St. Vancouver BC V6BN2 Tel: 604-669-6463 Fax 604-669-3 By

> Daria Duba, M.S R.R.#1, S.4, C.1 Naramata, BC **V0H 1N0**

February, 2005

TABLE OF CONTENTS

i

SUMMARY	1
1.0 INTRODUCTION	2
2.0 LEGAL DESCRIPTION AND LOCATION	2
3.0 ACCESS AND INFRASTRUCTURE	3
4.0 PHYSIOGRAPHY, VEGETATION AND CLIMATE	3
5.0 HISTORY	4
6.0 2004 WORK PROGRAM	5
7.0 GEOLOGICAL SETTING	5
7.1 Regional Geology	5
7.2 Property Geology	6
7.3 Mineralization in the Wells area	
8.0 DIAMOND DRILLING	
8.1 Procedure	8
8.2 Results 1	0
9.0 SAMPLE PREPARATION, ANALYSES AND SECURITY 1	3
10.0 DATA VERIFICATION	4
11.0 CONCLUSIONS AND RECOMMENDATION	4
12.0 REFERENCES	6
13.0 CERTIFICATE OF AUTHOR	9

LIST OF FIGURES

Following Page

Figure 1	Location Map	2
Figure 2	Myrtle Claim Group	2
Figure 3	Regional Geology	5
Figure 4	Property Geology	6
Figure 5	Compilation and 2003-2004 Diamond Drilling (1:1,250)	in pocket
Figure 6	Myrtle Claim Group - DDH M03-06	
Figure 7	Myrtle Claim Group- DDH M03-08 and 09	9
Figure 8	Myrtle Claim Group- DDH M04-10	
Figure 9	Myrtle Claim Group- DDH M03-07	10
Figure 10	Myrtle Claim Group- DDH M04-11	11
Figure 11	Myrtle Claim Group- DDH M04-12	11
Figure 12	Myrtle Claim Group- DDH M04-13	11
Figure 13	Myrtle Claim Group- DDH M04-14	12
Figure 14	Location of New Roads	in appendix

LIST OF TABLES

Table 1	Myrtle Crown Granted Mineral Claims	3
Table 2	Drill Hole Specifications	9
	Summary of Significant Drill Intersections	

APPENDICES

AppendixDrill Logs - M03-06, 07, 08, 09 and M04-10, 11, 12, 13 and 14;Drill Core Sample Descriptions and AnalysesAssay Certificates and Description of Analytical MethodsFigure 14 – 2004 work program, new roadsStatement of expenditures

SUMMARY

International Wayside Gold Mines Ltd., under the option from Gold City Industries Ltd., conducted a diamond drilling program on the Myrtle Claim Group between January 4, 2004 and March 31, 2004. The claim group of 19 crown-granted mineral claims, covering 250 ha, is located about 3.5 km southeast of town of Wells in the Cariboo Mining Division, on NTS map 93H/4, at latitude of 53° 05' and longitude 121° 33 '.

The Myrtle Claim Group is underlain by Late Proterozoic to Paleozoic metamorphosed and complexly deformed rocks of the Barkerville subterrane, on the north-eastern flank of Lightning Creek Anticlinorium. They are composed of siliciclastic rocks and subordinate carbonate and mafic volcanic rocks of the Snowshoe Group. The dominant deformation in the area is the Middle Jurassic event that produced overturned, tight to isoclinal folds, with associated northwest trending and moderately northeast dipping axial planar S2 foliation.

Historical gold production in the Cariboo Gold district is from mesothermal auriferous quartz veins and from carbonate hosted, semi-massive, pyritic replacement bodies. The "Bonanza Ledge style" of gold mineralization is recognized as another important deposit type since its discovery by IWA in 2000.

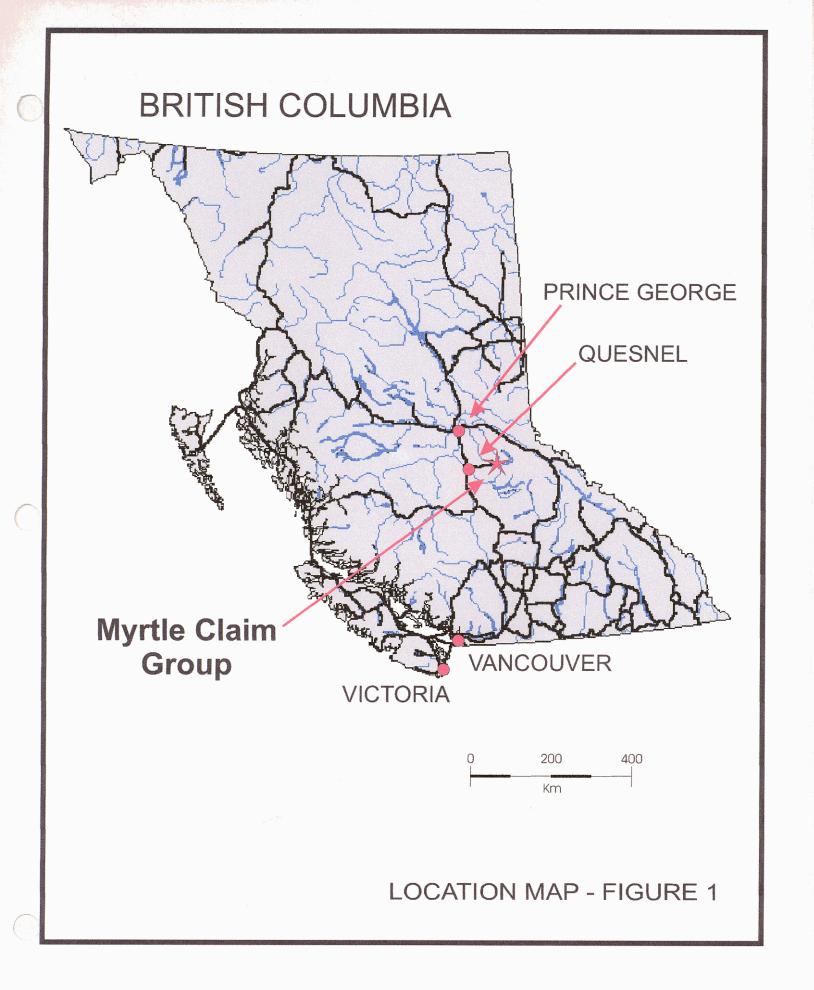
The 2004 program involved drilling of five holes (M04-10 to M04-14), totalling 861 m, (2826 feet) and reporting on nine holes, including four (M03-06 to M03-9), 781.5 m (2564 feet), drilled on the Myrtle Claim Group in the late 2003. Results of the drilling program indicate the presence of isolated, narrow, and weakly to moderately auriferous quartz veins hosted in metamorphosed and weakly altered, siliciclastic rocks of the Rainbow and Baker Members (Downey and Hardscrabble Successions).

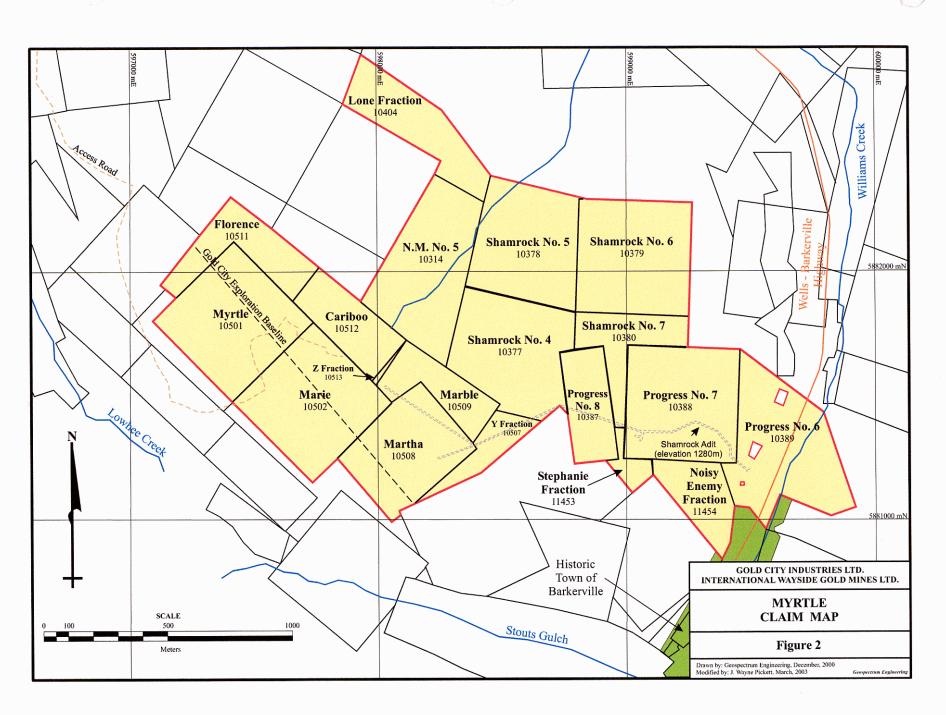
It is recommended to trench previously identified target areas and follow up with geological mapping and diamond drilling.

1.0 INTRODUCTION

This report documents the results of the 2004 exploration program between January 4 and March 31, 2004, on the Myrtle Claim Group of International Wayside Gold Mines Ltd. The Myrtle Claim Group, under option from Gold City Industries, is located near Wells/Barkerville, in the Cariboo Gold mining district, British Columbia.

The 2004 exploration program involved 861 m (2826 feet) of diamond drilling in 5 holes and reporting on the total of 9 holes, including 4 holes (781.5 m/2564 feet) completed by December 31, 2003. A new access road, approximately 0.5 km long, was build for proposed 2005 drilling program.


Diamond drilling was carried out by Standard Drilling and Engineering Ltd. of Vancouver. Jean Paulter, P.Geo. designed and spotted all of the drill collars and provided the drill-program supervision until December 7, 2003. The author took over the program, including on-site supervision, core logging and report writing. Core samples were cut and packed by N. Matheson, D. Runge and C. Kirsh and Barry Denney has organized their shipments to the assay lab in Vancouver. Gary Polischuk and Gene Harris prepared drill pads.


The information, opinions, conclusions and recommendations contained in this report are based on work performed by the author on the Myrtle Claim Group and on a review of available literature and previous exploration work on the property and surrounding areas.

2.0 LEGAL DESCRIPTION AND LOCATION

The Myrtle Claim Group is located about 3.5 km southeast of Wells and adjacent to historic town of Barkerville, on NTS map sheet 93H/4, at latitude 53° 05' N and longitude 121° 33' W. The claim group consists of 19 contiguous crown-granted mineral claims that cover about 250 ha in Cariboo Mining Division (Figures 1 and 2, Table 1).

International Wayside Gold Mines Ltd. (IWA) and Gold City Industries Ltd. (GCI), Vancouver, British Columbia, announced a joint venture agreement on July 18, 2001 with respect to the Myrtle, Proserpine and Promise Claim Groups. IWA was granted an option to acquire a 50% interest in the claim groups by issuing 300,000 shares and incurring \$250,000 in exploration expenditures on, or before December 31, 2005.

(3...)

Claim Name	Lot No.	Units	Claim Name	Lot No.	Units
Shamrock No.4	10377	1	Y Fraction	10507	1
Shamrock No.5	10378	1	Martha	10508	1
Shamrock No.6	10379	1	Mabel	10509	1
Shamrock No.7	10380	1	Florence	10511	1
Progress No.8	10387	1	Cariboo	10512	1
Progress No.7	10388	1	Z Fraction	10513	1
Progress No.6	10389	1	NM No.5 Fraction	10514	1
Lone Fraction	10404	1	Stephanie Fraction	11453	1
Myrtle	10501	1	Noisy Enemy Fraction	11454	1

Table 1. Myrtle Crown Granted Mineral Claims

3.0 ACCESS AND INFRASTRUCTURE

The Myrtle Claim Group is located approximately 120 km southeast of Prince George, 500 km north of Vancouver and near towns of Wells and Barkerville (Figure 1). The latter two communities can be reached via Highway 26, that branches off from Provincial Highway 97, 85 km east of Quesnel. All weather-gravel roads, established during placer and lode mining activity in the area provide access to the property from Wells and Barkerville.

Power is readily available by connecting to the provincial hydro grid at Wells. The town also provides basic supplies and services. Additional services including hospital and airport are found in Quesnel.

4.0 PHYSIOGRAPHY, VEGETATION AND CLIMATE

The current project area lies in the Quesnel Highlands on the eastern edge of the Interior Plateau. The topography is moderate, rising from about 1200 m at Wells to just over 1600 m on Barkerville Mountain. Summits are generally rounded, having been glaciated by continental ice-sheets during the Fraser Glaciation of Pleistocene Epoch (Holland, 1976, Hart, 2001). Ice direction is generally to the northwest. The most widespread surficial deposit is glacial till with glacio-fluvial and contemporary fluvial materials and locally occurring colluvium, the latter on steeper slopes (Lord and Green, 1985; Hart, 2001).

The Wells area is generally well forested. Hillside slopes are dominated by spruce and sub alpine fir, accompanied by alders and other deciduous varieties on lower wetter slopes flanking river valleys. The climate is generally cool during both summer and winter months due to moderately high altitude of the Wells area. The climate is wet throughout the year, with a mean annual precipitation of 100 cm that includes a significant amount of snow, especially at the higher elevations.

5.0 HISTORY

The Myrtle Claim Group is situated within the world-class Cariboo gold mining district, historically most important gold producing area in the western Canada. Since placer gold was first discovered in the district in 1861, approximately 2.6 million ounces of placer gold was produced, mainly between 1861-1965, from buried Tertiary and Quaternary glacial paleo-channels beneath modern creeks (Levson and Giles, 1993). Williams Creek and its tributaries, Stout Gulch and Lowhee Creek, latter passing through the eastern portion of the Myrtle Claim Group, have seen the most significant placer gold production in the district and became the highest producing creeks in British Columbia's mining history.

In the late 1800's after placer gold rush waned, prospectors and hard rock miners focused their attention on gold-bearing quartz veins, including BC vein, which was tested with underground workings. It was not until the 1930's when first commercial lode gold production was achieved, Cariboo Gold Quartz mine in 1933 and Island Mountain/Aurum in 1934. An estimated 1,230,564 oz/ton Au from 3,030,394 short tons of ore and 67.5% of it from auriferous quartz veins was produced from these two mines and the Mosquito Creek Mine, northwest and above workings of the Island Mountain Mine (Hall, 1999a).

Exploration activity on the Myrtle Claim Group dates back to the early days of the placer gold rush. In the 1920's extensive hand trenching and tunneling was done and most of it is still visible today. The last twenty-five years of exploration is summarized below.

1981-1984 Newmont - Magnetometric, VLF, EM and soil geochemical surveys. A limited geological mapping was carried out by examining angular rock fragments unearthed from the soil pits, in areas lacking bedrock exposure (Bohme, 1985). Results of the soil geochemistry indicated numerous gold anomalies.

1989-1990 Pan Orvana - Compilation of previous work, establishing a new grid, geological mapping, soil geochemical and geophysical surveys (magnetometrics, VLF-EM and gamma ray). A follow-up of geochemical and geophysical anomalies was recommended (Bradshaw, 1990).

1995 Gold City Industries Ltd. - Property wide airborne geophysics (EM, magnetometric, VLF and radiometric surveys). A follow-up of geophysical anomalies by limited diamond drilling program.

2000 - Gold City Industries Ltd. - Establishing control grid consisting of 5 km of cut lines and 17.4 km of flagged survey lines. Self-potential, induced polarization, soil geochemical surveys, hand trenching and geological mapping.

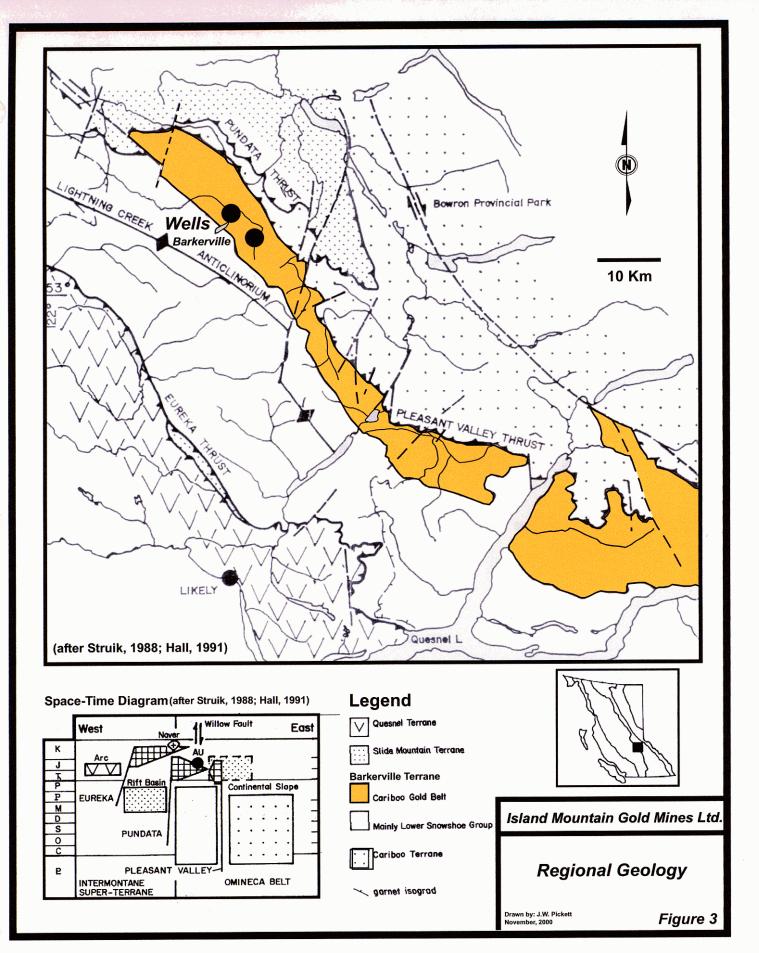
2002 - International Wayside Gold Mines Ltd. - Prospecting, geological mapping, rock sampling, 1,206 m of diamond drilling and compilation of soil geochemical and geophysical surveys.

2003 - International Wayside Gold Mines Ltd. - Trenching (5 trenches, 47 m), limited geological mapping, rock sampling and 781.5 m of diamond drilling (reported in the 2004 assessment report).

6.0 2004 WORK PROGRAM

The 2004 drill program on the Myrtle Claims Group was carried between January 4 and March 31, 2004 and involved 861 m (2826 feet) of diamond drilling in 5 holes, M04-10 to 14.

In August 2004, a road was constructed through the Myrtle Claim Group, approximately 0.5 km in length, to access the area of historical workings where additional drilling is proposed for the 2005 field season (Figure 14, in Appendix).


The 2003 drill program and its continuation into the 2004, was designed to test several areas for mesothermal vein and/or Bonanza style of gold mineralization. Four holes (M03-06, 08, 09 and M04-10) targeted high grade auriferous quartz veins of the Ethel Zone (Paulter, 2004), two holes (M04-12 and M04-13) tested two geophysical anomalies (Makepeace, 2000) and three holes (M03-07, M04-11 and M04-14) were drilled to test the strike extent of auriferous quartz stringers from the 2002 drilling program by IWA (Pickett, 2003). DDH M04-13 and M04-14 also tested underneath highly anomalous in gold soils and rock samples.

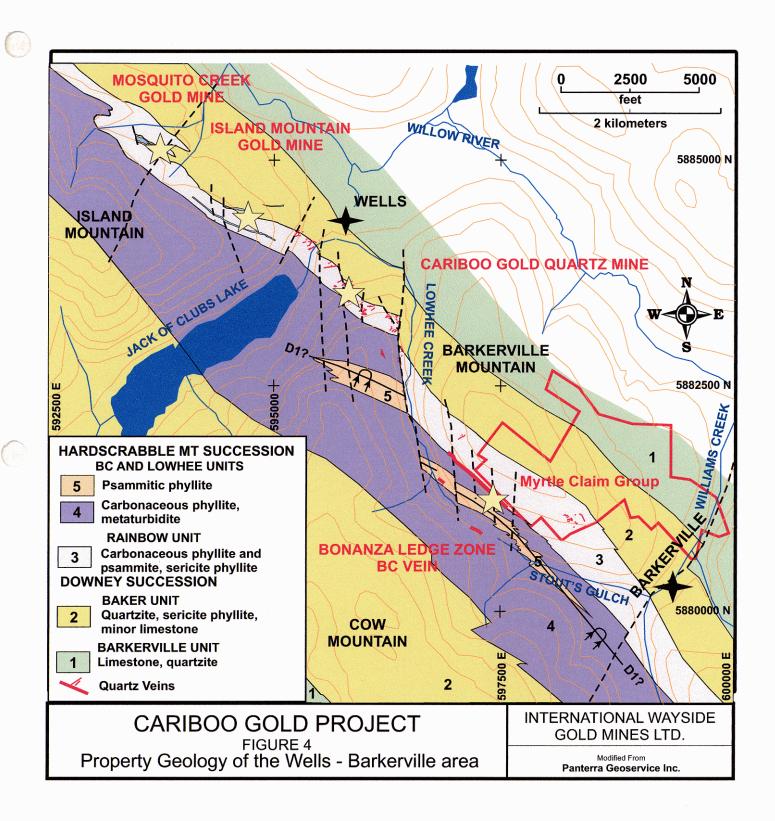
Results of a total of 781.5 m (2464 feet) drilled in four holes, M03-06 to 09, between November and December 2003, are also reported.

7.0 GEOLOGICAL SETTING

7.1 Regional Geology

The Cariboo Gold belt lies within the Kootenay Terrane (Barkerville subterrane), one of four structural belts of the Omineca Belt that forms part of the Canadian Cordillera (Struik, 1986; 1988; Figure 3). The Barkerville subterrane is composed of oceanic continental shelf and slope siliciclastic rocks, lesser carbonate and volcaniclastic rocks of Paleozoic, and possibly Late Proterozoic age, developed adjacent to the Ancestral North American craton. To the east, the Precambrian to

Permo-Triassic continental shelf clastic and carbonate sequence of Cariboo subterranne is structurally emplaced over the rocks of the Barkerville subterrane along the Pleasant Valley Thrust. The rift-floor pillowed basalt and chert of Slide Mountain subterrane to the northeast is overthrust onto the Barkerville and Cariboo subterranes along the Pundata Thrust. The Quesnel subterrane, the Lower Mesozoic assemblage of island arc volcaniclastic and fine grained clastic rocks, is eastwardly thrust over the Barkerville subterrane along the Eureka Thrust.


Polyphase penetrative Jurassic to Early Cretaceous deformation affected all the rocks in the Barkerville subterrane. It produced both east- and west-verging folds during and after terrane accretion, and in early stages was probably coeval with activity along the terrane bounding thrust faults (Struik, 1986, 1988). At least four phases of deformation are discernable in the Wells area; early isoclinal folding and bedding parallel cleavage (D1 event), intermediate age, tight to isoclinal northwest trending folds with spaced to penetrative axial planar cleavage (D2 event), and late, open folds (D3 event) associated with steep, northwest trending crenulation cleavage (Struik, 1988). The youngest structures (D5 event) are Late Cretaceous to Early Tertiary, steeply dipping and north to northeast trending brittle, dextral strike-slip faults and related folds, superimposed on the earlier formed folds and penetrative fabric.

Within the Barkerville subterrane the stratigraphic relationships between units are poorly understood and therefore difficult to map, mostly because of compositional similarities, lack of unique markers, poor fossil preservations and repetition of lithologies due to intense folding. Rock units have been subdivided, revised and renamed numerous times (e.g. Bowman, 1889, Johnston and Uglow, 1926, Hanson, 1935, Holland, 1954, Sutherland Brown, 1957, Struik, 1988, Schiarizza and Ferri, 2003). Hanson (1935) subdivided the metasiliciclastic sequence to two members, "Baker Member" and younger but structurally lower "Rainbow Member" or Rainbow quartzite, former dominated by light coloured, carbonate and siliciclastic rocks and latter by darker coloured pelitic and arenaceous rocks. Struik (1988) in his recent regional geological and structural synthesis of the mining district divided the stratigraphy into one formal unit, Snowshoe Group and fourteen informal units. Schiarizza and Ferri (2003) have completed the latest revision of the geology of the Wells area.

7.2 Property Geology

The Myrtle Claim Group is underlain by northwest striking, moderately northeast dipping, possibly Late Proterozoic and Paleozoic rocks of the Snowshoe Group, on the overturned limb of a southwest-verging antiform, which, in turn, is on the northeast flank of an open and upright Lightning Creek Anticlinorium (Struik, 1988).

Downey and Hardscrabble Mountain successions, two stratigraphic units of the Snowshoe Group exposed on the Myrtle Claim Group, consist predominantly of

siliciclastic rocks with subordinate carbonate and mafic volcanic and volcaniclastic rocks. The Baker and lower Rainbow Members (Units 2 and 3 in Figures 4 and 5) included in the Downey Succession, are structurally above (stratigraphically below) upper Rainbow and BC Argillite Members, included in the Hardscrabble Mountain Succession, near the south-western claim boundary (Figure 5). According to Rhys and Ross (2001; Figure 4), both upper and lower Rainbow Members are included in the Hardscrabble Mountain Succession and BC Argillite/Rainbow contact is interpreted further to the southwest than shown in Figure 5.

Barkeville Member, stratigraphically oldest map unit, underlies the northeastern part of the Myrtle Claim Group and consists predominantly of limestone and quartzite. It overlain by pale grey-green phyllite and siltite, dark grey to black phyllite, quartzite and grit with subordinate limestone and mafic, volcanic derived chlorite schist of the Baker Member. The Rainbow Member, structurally below (stratigraphically above) the Baker Member, comprises of dark grey to black phyllite, siltite and lesser quartzite and volcanic derived chlorite phyllite/schist. The BC Argillite Member, the youngest map unit, is composed of dark grey to black, non-calcareous phyllite that is commonly intercalated with pale grey siltite. The entire metasedimentary sequence is affected by lower greenschist facies of metamorphism, a generally lower metamorphic grade than other assemblages in the Barkerville subterrane. The dominant structural fabric is associated with D2 deformation that produced overturned, northeasterly, verging tight to isoclinal folds, moderately northeast dipping penetrative axial planar S2 foliation and prominent, shallow northwest plunging elongation lineation (L2), at the intersection of S2 and older S1 foliation.

7.3 Mineralization in the Wells area

Historical lode gold production in the Cariboo mining district has been from two styles of gold mineralization, mesothermal auriferous pyrite-bearing quartz vein systems (i.e. Cariboo Gold Quartz and Mosquito Creek mines) and carbonatehosted, replacement gold-pyrite bodies (i.e. Island Mountain-Aurum and Mosquito Creek mines).

7.31 The mineralized quartz veins are structurally late features, Jurassic to Late Tertiary in age, and postdate most of the ductile deformation in the mining district (Andrew et al. 1983; Rhys and Ross, 2001). Based on the orientation, four vein types have been historically recognized for their significance to host gold

mineralization (Hanson, 1935; Johnston and Uglow, 1926; Richards, 1948): 1. *Strike veins*, the oldest veins, trend northwest, parallel to bedding and/or S2 foliation with moderate to steep northeasterly dips.

2. *Diagonal veins* (oblique), oblique to S2 foliation, strike 70 to 90°, and are subvertical to steeply north dipping.

3. *Transverse veins* (orthogonal), typically strike 30-40°, perpendicular to S2 foliation and dip steeply southeast to subvertical.

4. Northerly veins, occupy north-striking faults.

The majority of gold production has been from diagonal and transverse veins occurring in the Rainbow Member, within 100 m of the Baker/Rainbow contact.

7.32 The replacement style gold mineralization is composed of semi-massive to massive pyrite lenses within calcareous and dolomitic rocks of the Baker Member, proximal to its contact with structurally underlying siliceous metasedimentary rocks of the Rainbow Member. In the Island Mountain-Aurum mine carbonate-hosted auriferous pyrite mineralization occurs mainly as northwest plunging pencil-like ore shoots developed parallel to L2 in the F2 fold hinges or as tabular bodies on the long limbs of the F2 folds (Robert and Taylor, 1989; Hall, 1999b).

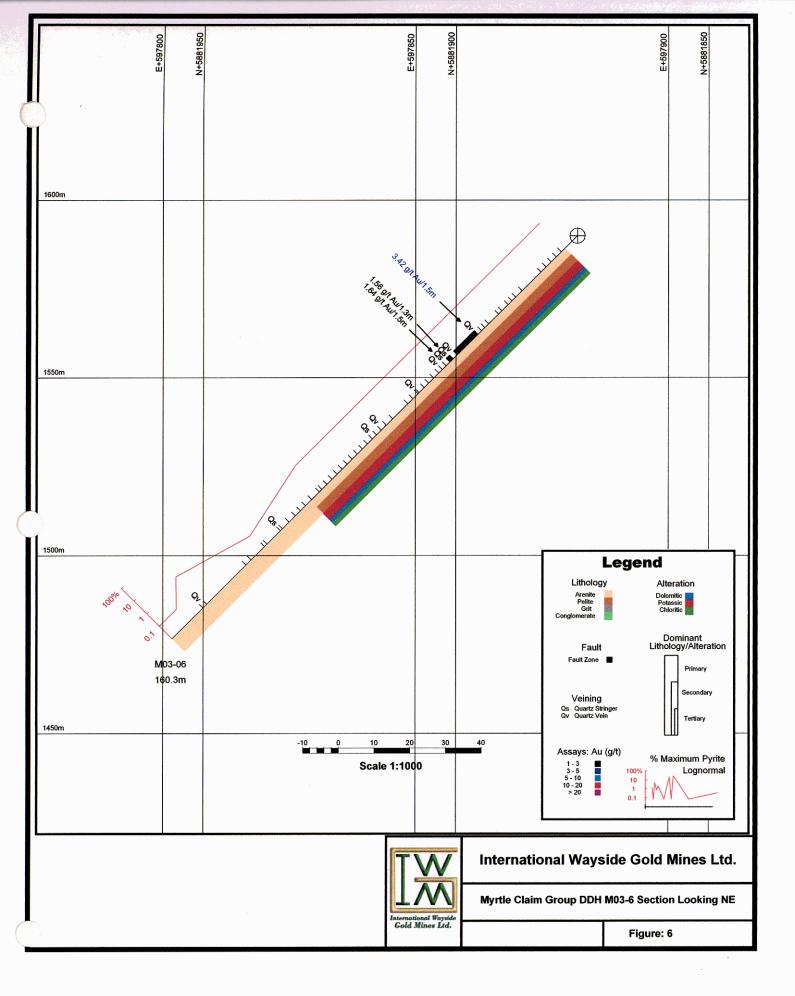
7.33 The Bonanza Ledge Zone (BLZ) of International Wayside Gold Mines Ltd., located 3.5 km southeast of Wells and <200 meters south from the Myrtle Claim Group boundary, represents a third style of gold mineralization. Although similar to replacement style mineralization, BLZ has a greater size potential and occurs in a different stratigraphic position and host lithologies than the other gold deposits historically mined in the district (Rhys and Ross, 2001). This discovery opened up new areas for exploration, in previously unexplored parts of stratigraphy that were historically considered unfavourable.

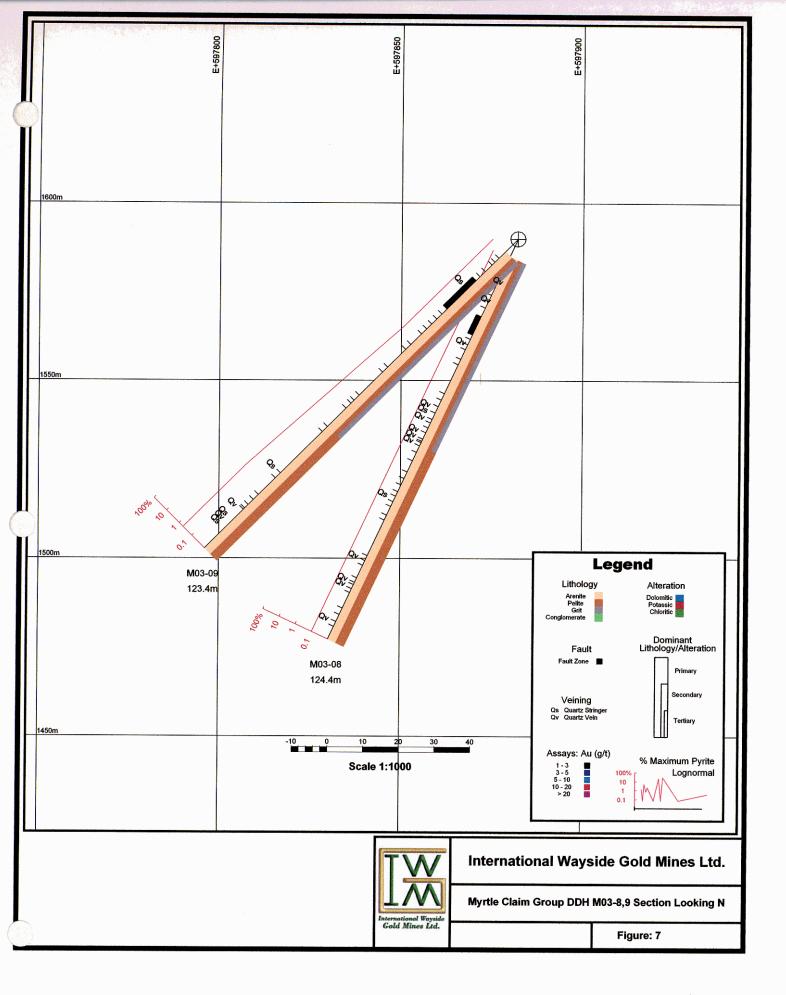
The "Bonanza Ledge style" gold mineralization occurs in discrete zones of intense pyrite mineralization, 10 to 80%, within strongly sericite-carbonate (dolomite/ankerite)-pyrite+/-silica altered Lowhee phyllite and quartzite. Alteration forms >10m to 70m wide semi-concordant zones within a structural footwall of the BC vein/fault (Rhys and Ross, 2001). A recent estimate shows indicated resources of 372 000 t grading 0.24 oz/t Au and inferred resources of 44 000 t grading 0.18 oz/t (using 0.02 oz/t cutoff; Schiarizza and Ferri, 2003).

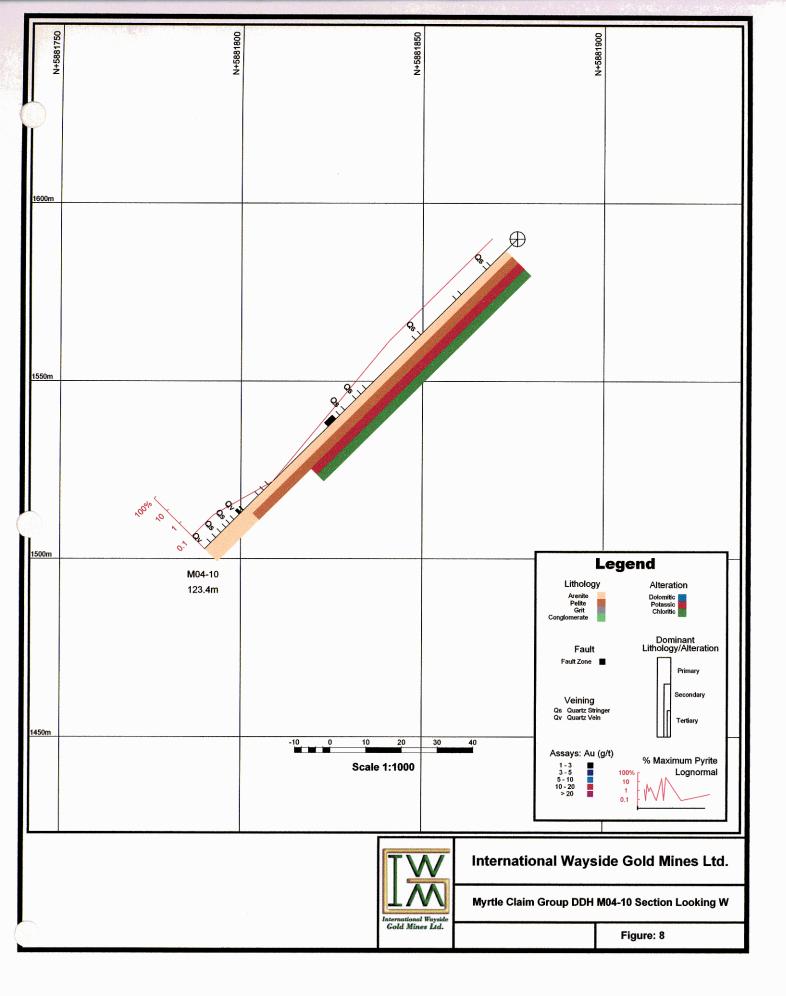
Stratigraphic position, host rock lithologies and proximity to north-striking fault zones are important guides to the three styles of gold mineralization recognized in the Wells area of the Cariboo mining district.

8.0 DIAMOND DRILLING

8.1 Procedure


A total of 861 m (2826 feet) of diamond drilling in five holes has been completed on the Myrtle Claim Group between January 4 and March 31, 2004. This report also includes results of the 2003 winter drilling, a total of 781.5m/2564 feet in four holes, which has not been reported in the 2003 assessment work on the Myrtle property. Drilling was carried out by Standard Drilling and Engineering of Vancouver, British Columbia, utilizing two skid-mounted Longyear 38 core drill with NQ wireline tools. Drill collar locations and their surface projections from the current drilling and those from 2002 and 2003 exploration programs (Pickett, 2003; Paulter, 2004) are shown in Figure 5 (in pocket) and specifications for the 2004 drill holes are summarized in Table 2.


International Wayside Gold Mines Ltd										
	DIAMOND DRILL HOLE RECORD									
HOLE DA		TE	TE TRUE		E.O.H.	COORDINATES COLLAR				
	START	END	AZIMUTH	ANGLE	E.U.n.	NORTHING	EASTING	ELEVATION		
MO 03-06	14-Nov-03	15-Dec-03	290	-45	526	5212.66	19741.16	5216.47		
MO 03-07	15-Nov-03	11-Dec-03	300	-45	1225	3725.7	19330.82	5216.47		
MO 03-08	16-Dec-03	18-Dec-03	218	-65	408	5212.66	19741.16	5216.47		
MO 03-09	19-Dec-03	10-Jan-04	218	-45	405	5212.66	19741.16	5216.47		
MO 04-10	10-Jan-04	14-Jan-04	148	-45	405	5212.66	19741.16	5216.47		
MO 04-11	14-Jan-04	5-Feb-04	288	-45	521	4051.02	18967.44	5269		
MO 04-12	6-Feb-04	26-Feb-04	8	-45	601	3889.11	20157.51	5144.4		
MO 04-13	2-Mar-04	6-Mar-04	188	-45	406	3975.19	19983.27	5157		
MO 04-14	8-Mar-04	19-Mar-04	295	-45	893	3624.17	19641.34	5134.56		

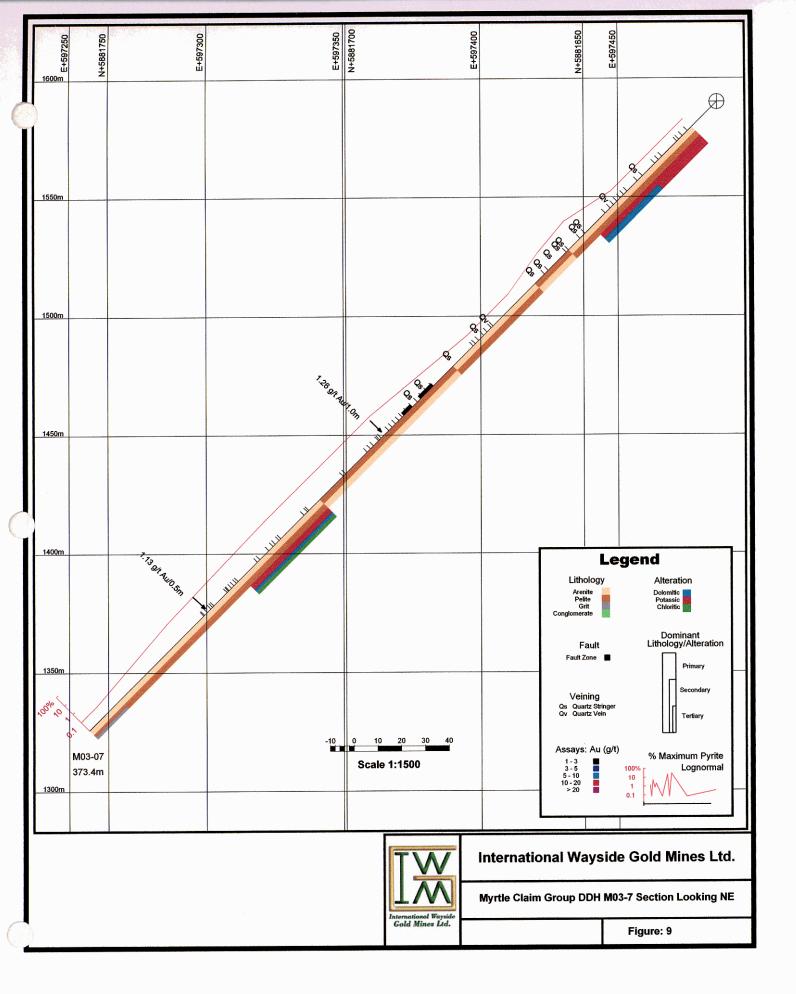

Table 2. 2003-2004 Drill Hole Specifications

A simplified nomenclature established by IWA's geologists in 2003 was used in core-logging during the 2004 drilling program. Detailed hand-written drill logs and core sample record sheets including sample number, sampling interval, recovery, assay results and sample descriptions for DDH M03-6 to 09 and M04-10 to 14 are included in the Appendix I. Copies of assay certificates for core and sludge samples and description of analytical methods are also appended (Appendix I).

The core is currently stored on site at the compound of International Wayside Gold Mines Ltd. in Wells.

8.2 Results

DDH M03-06, M03-08, M03-09 and M04-10 (Figures 5, 6 7 and 8)


Four drill holes, M03-06, M03-08, M03-09 and M04-10 were designed to test a north trending and steeply east dipping zone of visible gold mineralization, hosted in a sheared quartz-sulphide vein and uncovered in Trench 03-1, Ethel Zone (Paulter, 2004). The rock-chip sampling returned impressive 1917.7 g/t Au over 0.3 m (Sample #161802), 54.9 g/t Au over 1.2 m (#162804) and 19.2 g/t Au over 0.65m (#162805). The zone was trenched to follow up on 18,015 ppb Au in soil anomaly obtained by GCI in 2000 (Makepeace, 2000). Rocks underlying the area are Baker Member dark grey to black phyllite and light grey quartzite with Baker/Rainbow contact approximately 250 m southwest. A northeast striking fault is interpreted less than 15 m to the south.

Drill holes M03-6 and M04-10 were planned to test the strike extent of the Ethel Zone to the north and south, respectively, and holes M03-08 and M03-09 targeted its depth potential.

Drill holes M03-06 and M04-10 intersected a sequence of weakly metamorphosed, light grey to grey-green, thinly to thickly bedded, massive to weakly foliated quartz arenite (quartzite) interlayered with lesser very thinly bedded to laminated, tan sericite pelite, dark grey to black, partly carbonaceous pelite (phyllite) and medium green chlorite pelite (phyllite). In holes M03-08 and M03-09, similar light grey arenite was encountered interbedded with subordinate, commonly thicker bedded quartzose grit, grey-green sericite pelite and dark grey to black, carbonaceous pelite

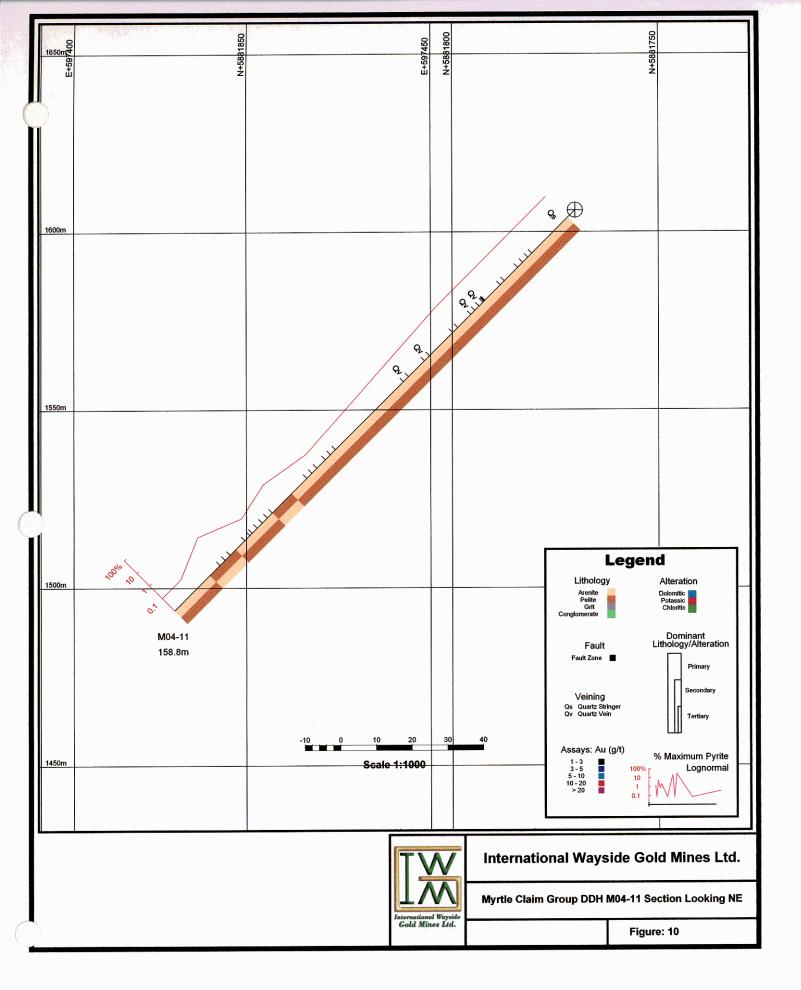
Host rocks are cut by numerous, narrow, typically <1 cm to 1.5 m wide, quartz +/iron carbonate (dolomite/ankerite) veins, stringers and quartz flooded zones. Veins strike parallel (strike veins) and oblique (transverse and diagonal veins) to S1/S2 foliation and locally exhibit complex cross-cutting relationships.

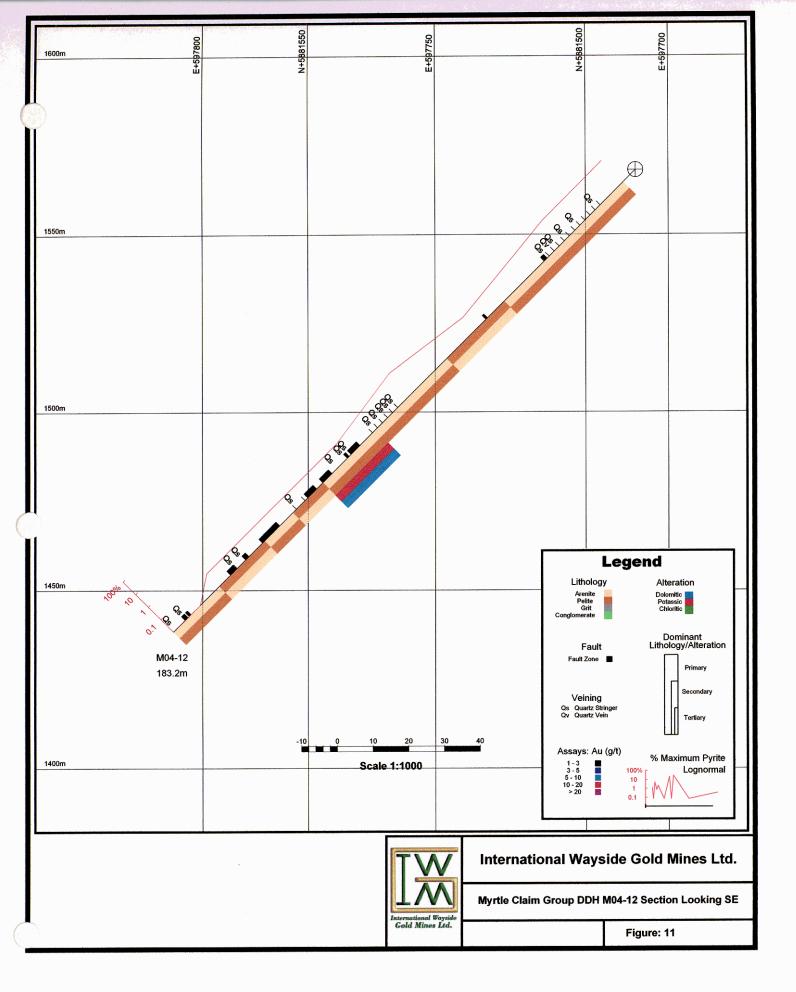
In hole M03-06, the best intersection is from a upper part of the fault zone (39.3-40.8 m) which contains 10% narrow quartz+/- dolomite (ankerite?) veins, trace to 0.1% pyrite, hosted in sericitized and chloritized pelite and quartz arenite. It assayed 3.42 g/t Au over 1.5 m. The lower part of this structure returned lower grade gold, 0.98 g/t Au over 1.9 m (45.6-47.5m). Other weakly auriferous intersections, 49.1-50.4 m and 50.4-51.9 m, are from two, narrow zones with up to 10% quartz-lesser dolomite (+/-ankerite) veinlets and stringers, <0.1-0.5% coarse euhedral pyrite, in weakly sericite-chlorite-dolomite altered quartz arenite and lesser pelite. The assays returned 1.56 g/t Au over 1.3 m and 1.64 g/t Au over 1.5 m, respectively No significant gold mineralization was encountered in drill holes M03-08, M03-09 and M04-10.

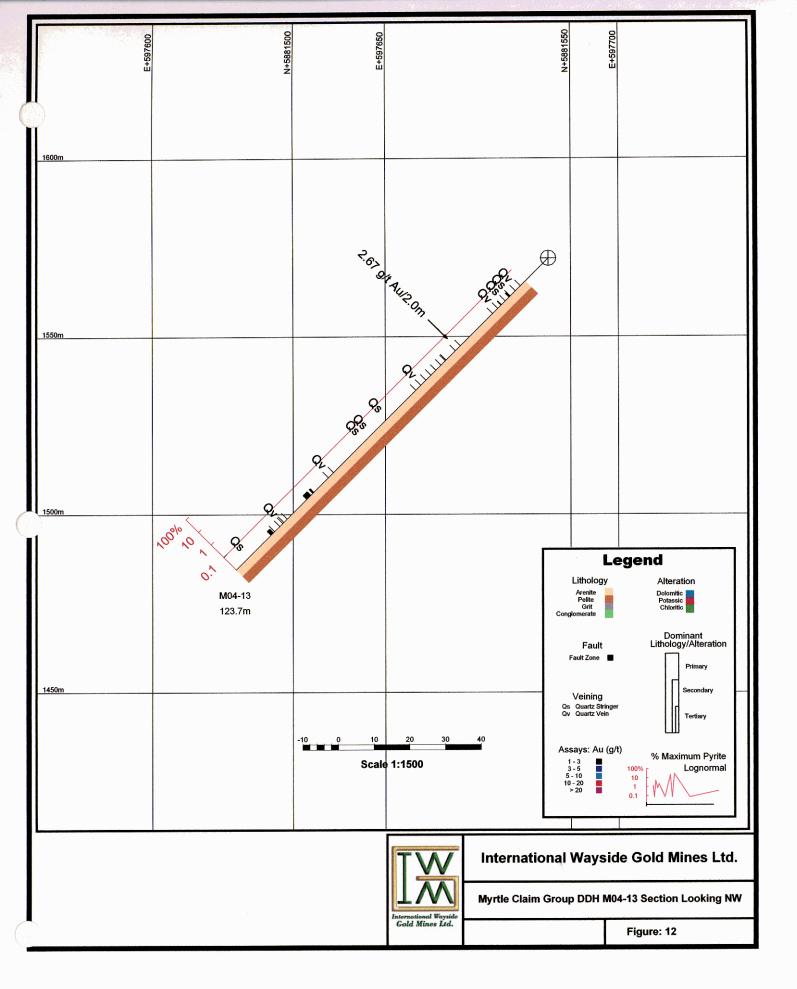
DDH M03-07 (Figures 5 and 9).

DDH M03-7 targeted the southern strike extent of an open 17.6 m intersection, from 93.0 to 110.6 m in DDH M02-01, consisting of multiple, narrow quartz-sulphide veins grading 9.1 g/t Au and located approximately 300 m into the hangingwall of the BC Vein/Bonanza Ledge Zone (Pickett, 2003). The gold mineralization, hosted by the Rainbow Member on the property, is similar to the mineralization mined historically in the Cariboo Gold Belt.

The drill hole intersected weakly metamorphosed quartz arenite and subordinate quartz grit, dark grey to black pelite and sericite pelite of the Rainbow Member. These rock types are very similar to the Baker Member lithologies encountered in holes M03-06 and M03-08 to M04-10. The metasedimentary rocks are intruded by numerous, multiple generations of quartz-dolomite (+/-ankerite) veins and stringers, striking, both, parallel (strike veins) and oblique (transverse and diagonal veins) to S1/S2 foliation. The quartz veins are typically narrow, <1 cm to 55 cm in widths and have associated 1 to 5% medium to coarse grained, euhedral pyrite. The most significant intersections returned 1.26 g/t Au over 1.0 m from 199.7 to 200.7 m and 1.13 g/t Au over 0.5 m from 305.9 to 305.4 m.


DDH M04-11 (Figures 5 and 10)


DDH M04-11 was drilled to test for the northern strike extension of the mineralized zone encountered in DDH M02-01 grading 9.1 g/t Au over 17.6 m.

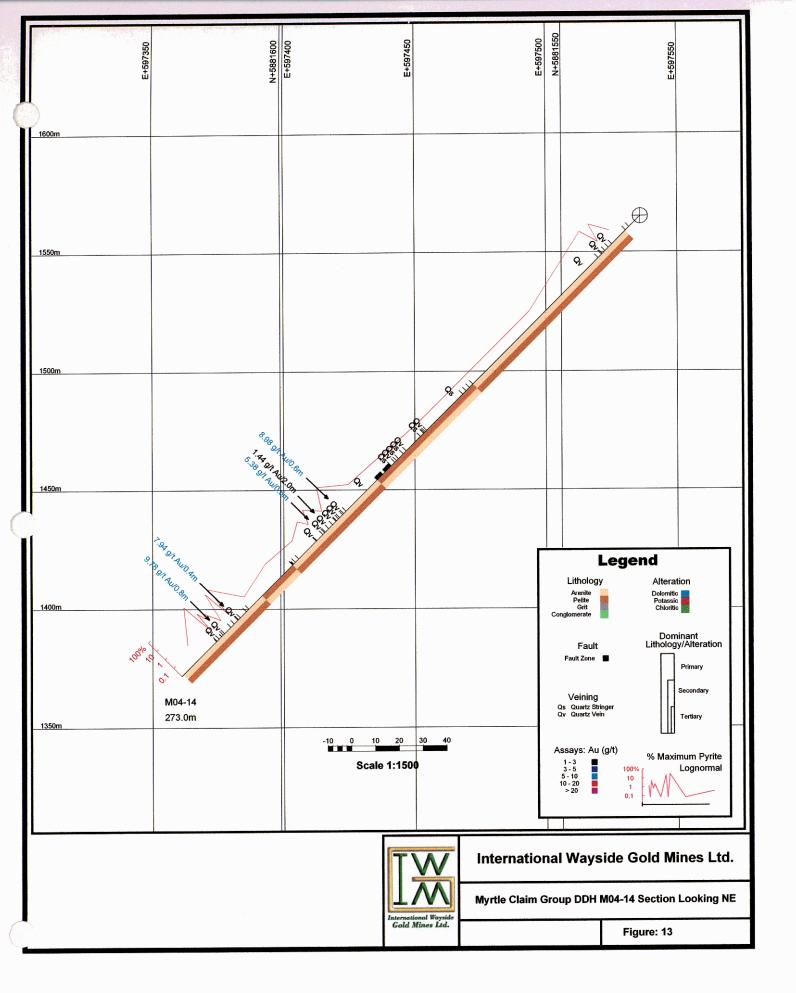

The drill hole intersected weakly metamorphosed, light grey arenite interbedded with subordinate carbonaceous pelite and chloritic pelite of the Rainbow Member, similar to lithologies encountered in DDH M03-07. Host rocks are cut by abundant, narrow, foliation parallel and foliation oblique, quartz-lesser dolomite veins. Medium to coarse, euhedral to subhedral pyrite typically averages <0.5% over 2 m sampling widths and occurs as fracture filling in and in the vein selvages and also as trace to <0.1% disseminations in the host rocks. No significant gold mineralization was intersected.

DDH M04-12 (Figures 5 and 11)

Drill hole M04-12 was planned to test for the Bonanza Ledge style mineralization in an area with similar geophysically anomalous signatures from self-potential (SP) and induced polarization (IP) resistivity surveys to that of the Bonanza Ledge Zone. The geophysical anomalies were interpreted from surveys completed by Gold City Industries Ltd. in 2000 (Makepeace, 2000) and compiled by IWA (Pickett, 2003; Figures 13 and 14; B2 anomaly).

The DDH M04-12 intersected typical meta-siliciclastic rocks of the Rainbow Member consisting of light grey-green quartz arenite interbedded with subordinate dark grey carbonaceous pelite. The entire sequence is intruded by narrow, quartz-lesser dolomite veins/stringers. Pyrite contents are low, averaging <0.5%, both in veins and in the host rocks. The assay results did not returned any significant gold values.

DDH 04-13 (Figures 5 and 12)


Drill hole M04-13 was designed, similarly to DDH M04-12, to test for the Bonanza Ledge style mineralization underneath a geophysically anomalous area (SP and IP resistivity; Figures 13 and 14, Pickett, 2003) with coincident highly anomalous gold in soils and rock samples (Pickett, 2003; Figures 6, 10 and 11). The area is underlain by the Rainbow Member metasiliciclastic rocks.

The drill hole intersected a sequence of light grey-green, thinly to thickly bedded arenite and subordinate, very thinly bedded to laminated, dark grey to black carbonaceous pelite. The most significant mineralization is from a narrow zone of <5% quartz-lesser dolomite-trace to 0.1% pyrite stringers and disseminations hosted in quartz arenite interbedded with dark grey pelite. The assay returned 2.67 g/t Au over 2 m from 34.8 to 36.8 m.

DDH M04-14 (Figures 5 and 13)

DDH M04-14 was designed to drill test an area underneath a highly anomalous gold in soils (400-1,400 ppb; Pickett, 2003; Fig.11- B6 anomaly) and a grab sample of quartz vein assaying 20.89 g/t Au (Pickett, 2003; Fig.5). The drill hole also targeted a possible southern strike extent of an open 17.6 m intersection in DDH M02-01 which returned 9.1 g/ton Au.

DDH M04-14 intersected typical Rainbow Member lithologies that were observed in DDH M04-11 to M04-13. These consist of very thinly to thickly bedded sequence of light grey arenite, dark grey carbonaceous pelite and lesser medium green chlorite pelite and weakly chloritized mafic tuff. The entire assemblage is intruded by multiple generations, variably oriented quartz-lesser dolomite (+/-ankerite)-pyrite veins and stringers. These are typically <30 to 60 cm in widths, strike, orthogonal (transverse) and diagonal veins, variably pyritic (<5 to 40% medium to very coarse grained euhedral/subhedral clusters). The most significant intersections are as follows; 8.98 g/t Au over 0.6 m (176.6-177.3 m), 5.38 g/t Au over 0.45 m (187.6 - 188.05 m), 7.94 g/t Au over 0.35 m (239.4 - 239.75 m) and 9.78 g/t Au over 0.8 m (247.7-248.5 m). A zone of 15% narrow, quartz-lesser dolomite-trace pyrite stringers and disseminations was intersected from 185.6 to 187.6 m. The assay returned 1.44 g/t Au over 2.0 m.

DDH	To (m)	From (m)	Width (m)	g/ton Au	
M03-06	39.3	40.8	1.5	3.42	
	49.1	50.4	1.3	1.56	
	50.4	51.9	1.5	1.64	
M03-07	199.7	200.7	1.0	1.26	
	304.9	305.4	0.5	1.13	
M04-13	34.8	36.8	2.0	2.67	
M04-14	176.7	177.3	0.6	8.98	
	185.6	187.6	2.0	1.44	
	187.6	188.05	0.45	5.38	
	239.4	239.75	0.35	7.94	
	247.7	248.5	0.8	9.78	

Table 3. Summary of significant drill intersections

9.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

The drill-core was delivered to a secure core logging facility of International Wayside Gold Mines Ltd. (Lowhee Core Shack) in Wells for logging and sampling. Sections of drill core to be analyzed were identified and marked by the author for sampling. Selected core intervals were sawn in half lengthwise under the supervision of the author. Half of the sawn core for each sample was placed in a plastic bag, labelled and sealed to prevent contamination. The other half was placed back into the same position in the core-box. The saw was washed down after cutting each sampling interval of core.

In addition, sludge samples (drill cuttings) were collected in porous white bags by the driller at the drill site in 10 foot (3 m) intervals, labeled and delivered to the core logging facility in Wells where they were dried.

All core and sludge samples were packed into water-proof buckets and transported to Quesnel for shipping by Greyhound bus to ACME Analytical Laboratories Ltd., 852 E. Hastings St., Vancouver, BC, V6A 1R6 for assaying. Core samples were analyzed for gold using Acme's Group 6 - PRECIOUS METALS BY FIRE GEOCHEM (with an atomic absorption finish) method and sludge samples by their Group 3a - GOLD BY WET DIGESTION or Group 3b -PRECIOUS METALS BY FIRE GEOCHEM methods (Appendix C). ACME Analytical Laboratories is certified under the Assayers Certification Program of British Columbia. The standards and blank samples were inserted into numerous shipments on site as a quality control measure. The lab also inserted standards and conducted repeat analyses of sample pulps and rejects. It is the author's opinion that sample preparation and analysis were carried out properly and that security during sample handling was adequate.

10.0 DATA VERIFICATION

It is the author's opinion that the analytical results obtained are reasonable. Evidence for this includes field observations by the author of the material sampled and the presence or absence of mineralization noted in samples collected.

11.0 CONCLUSIONS AND RECOMMENDATIONS

1. Results of the 2003-2004 diamond drilling indicate the presence of isolated, narrow, moderately auriferous quartz-iron carbonate-pyrite veins and stringers hosted predominantly in meta-siliciclastic rocks of the Rainbow and Baker Members, i.e. DDH M03-06, M03-07, M04-13 and M04-14. Quartz veins typically exhibit at least three different orientations (strike, transverse and diagonal veins), similar to the auriferous quartz vein systems that were historically mined in the Cariboo Gold belt; i.e. Cariboo Gold Quartz Mine that produced estimated 626,755 ounces of gold from 1.68 million tons of ore primarily from transverse and diagonal veins (Hall, 1999a).

2. Drilling results in DDH M04-14 confirm that gold-in-soil anomalies are formed over the mesothermal, auriferous quartz vein systems on the Myrtle Claim Group.

3. Drill holes M03-06, M03-08, M03-09 and M04-10 did not intersect a shearhosted gold mineralization of the Ethel Zone. The exposed mineralized quartz veins, occupying north to north-northwest trending structures in Trenches 03-01 and 03-02 are narrow and appear to lack in continuity, both, down-dip and along strike.

4. A zone of auriferous quartz veins and stringers from DDH M02-01 as projected along its strike length to the northeast and southwest was not intersected in holes DDH M03-07, M04-11 and M04-14. The mineralized quartz veins in DDH M02-01 are narrow and have poor continuity along their strike and also down-dip.

The 2003-2004 drill program has not fully tested the potential of the Myrtle Claim Group for the Bonanza Ledge and/or mesothermal vein style gold mineralization. Further exploration is warranted to follow up on Pickett's recommendations based on his synthesis of results of the 2002 exploration program by IWA that included prospecting, lithogeochemical sampling, diamond drilling (1,206 m/ 3,957 ft) and compilation of previous geochemical and geophysical surveys by GCI and Newmont Exploration (Pickett, 2003, Makepeace, 2000, Bohme, 1985).

An exploration program incorporating data compilation, trenching and diamond drilling is proposed as follows:

- Research and compile all the relevant previous work on the Myrtle Claim Group and incorporate it into a database.

- Carry out trenching and geological mapping/prospecting in high and medium priority target areas A1 to A3 and B1, B3 to B5 and B7 (Pickett, 2003; B2 and B6 anomalies were drilled as part of the 2003-2004 drilling program).

- Select diamond drill target based on the results of trenching, geological mapping and rock sampling.

- Locate historical trenches and carry out geological mapping and rock sampling. Define targets to follow-up with diamond drilling.

12. REFERENCES

- Andrew, A., Godwin, C.I. and Sinclair, A.J. 1983. Age and genesis of Cariboo gold mineralization determined by isotope methods (93H); in Geological Fieldworks 1982, British Columbia Ministry of Energy, Mines and Petroleum Resources, Paper 1983-1, pp. 305-313.
- Bohme, D. 1985. Geological, geochemical and geophysical report on the Myrtle and Proserpine crown-granted mineral groups, NTS 93H/4E. Unpublished report for Newmont Exploration of Canada Limited.
- Bowman, A. 1889. Report on the geology of the mining district of Cariboo, British Columbia; Geological Survey of Canada, Annual Report for 1887- 1888, V. 3, pt. 1, pp. 1-49c.
- Bowman, A. 1895. Maps of the principal auriferous creeks in the Cariboo mining district, British Columbia; Geological Survey of Canada, Maps 364- 372.
- Bradshaw, P.M.D. 1990. Myrtle/Proserpine properties summary report. Unpublished report for Pan Orvana Resources Inc.
- Hall, R.D. 1999a. Cariboo Gold Project at Wells, British Columbia. Unpublished report prepared for International Wayside Gold Mines Ltd.
- Hall, R.D.1999b. Summary of gold properties on Island Mountain at Wells, British Columbia. Unpublished memo to F. Callaghan, President, Island Mountain Gold Mines Itd.
- Hanson, G. 1935. Barkerville Gold Belt, Cariboo District, British Columbia. Geological Survey of Canada, Memoir 181, 42 p.
- Hart, S. 2001. Quesnel Highlands recreational and tourism overview. Report prepared by J.S. Hart and Associates Ltd., Tatla Lake, B.C. for the District of Wells, Wells, B.C. 32 p.
- Holland, S.S. 1976. Landforms of British Columbia: A Physiographic Outline. Bulletin 48. British Columbia Department of Mines and Petroleum Resources. 138 p.
- Johnston, W.A. and Uglow, W.L. 1926. Placer and vein gold deposits of Barkerville, Cariboo District, British Columbia; Geological Survey of Canada, Memoir 149.
- Knight, J. and McTaggart, K.C. 1989. Lode and placer gold of the Coquihalla and Wells areas, British Columbia (92H,93H); British Columbia Geological Survey Branch, Exploration in British Columbia 1989, pp. 105-118.

- Levson, V.M., and Giles, T.R. 1993. Geology of Tertiary and Quaternary Gold-Bearing Placers in the Cariboo Region, British Columbia (93A, B, G, H); British Columbia Geological Survey Branch, Bulletin 89.
- Lord, T.M. and Green, A.J. 1985. Soils of the Barkerville area, British Columbia. Report 40 of the British Columbia Soil Survey. Soil Survey Unit, Land Resources Research Institute, Agriculture Canada, Vancouver. 79p.
- Makepeace, D.K. 2000. Geological Report on the Myrtle and Proserpine Claims Groups, Cariboo Mining Division, British Columbia, Canada. Unpublished report by Geospectrum Engineering for Gold City Industries Ltd.
- Mason, E.E. 1973. Wharf Resources Limited Cariboo Gold Quartz Properties, Unpublished report by Dolmage, Mason & Stewart Ltd. for Wharf Resources Ltd.
- Paulter, J. 2004. Report on the 2003 diamond drilling and trenching program on the Cariboo Gold Project, Wells, British Columbia. Report for International Wayside Gold Mines Ltd.
- Pickett, J.W. 2003. Technical report on the 2002 exploration program of International Wayside Gold Mines Ltd. on the Myrtle Claim Group, Wells area, British Columbia. Report for International Wayside Gold Mines Ltd.
- Richards, F. 1948. Cariboo Gold Quartz mine. In structural Geology of Canadian Ore Deposits, Canadian Institute of Mining and Metallurgy, p. 162-168.
- Robert, R. and Taylor, B.E. 1989. Structure and mineralization at the Mosquito Creek Gold Mine, Cariboo District, BC. Unpublished paper by the Geological Survey of Canada.
- Rhys, D. and Ross, K.V. 2001. Evaluation of the geology and exploration potential of the Bonanza Ledge Zone, and adjacent area between Wells and Barkerville, east-central British Columbia. Unpublished report by Panterra Geoservices for International Wayside Gold Mines Ltd.
- Schiarizza, P. and Ferri, F. 2003. Barkerville Terrane, Cariboo Lake to Wells: A new look at stratigraphy, structure and regional correlation of the Snowshoe Groug; in BC Ministry of Mine and Energy, Geological Fieldwork 2002, Paper 2003-1, 77-96.
- Struik, L.C. 1986. Imbricated terranes of the Cariboo Gold belt with correlations and implications for tectonics in southeastern British Columbia; Canadian Journal of Earth Sciences, v. 23, pp.1047-1061.

- Struik, L.C. 1988. Structural geology of the Cariboo Gold Mining District, East-Central British Columbia. Geological Survey of Canada, Memoir 421, 100 p.
- Sutherland Brown, A. 1957. Geology of the Antler Creek area, Cariboo District, British Columbia. British Columbia Department of Mines, Bulletin No. 38, 105 p.

13.0 CERTIFICATE OF AUTHOR

Daria Duba, M.Sc.

R.R.1, S.4, C.1 Naramata, BC V0H 1N0 Telephone: (250) 496-5191 Fax: (250) 496-5191 dduba@shaw.ca

I, Daria Duba, M.Sc., do hereby certify that:

1. I am a consulting geologist with a business office at: RR1, S.4, C.1, Naramata, BC, V0H 1N0.

2. I graduated with a Bachelor of Science Degree from Concordia University of Montreal in 1978. I have obtained a Master of Science degree in geology from McGill University of Montreal in 1982.

3. I have over 20 years experience in exploration geology, and have practiced my profession since graduation in 1978 in Canada, United States and Europe.

4. I am an author of the report titled "2004 Diamond Drilling Program on the Myrtle Claim Group, Wells area, BC" and dated February 2005. I am responsible for the supervision of the work program, logging of nine drill holes between December 7, 2003 and March 19, 2004 and writing of the report.

5. The information, opinions and recommendations in this report are based upon evaluation of drill core, exploration data and a review of previous work.

6. I do not own or expect to receive any interest (direct, indirect or contingent) in the property, described herein nor in the securities of International Wayside Gold Mines Ltd. or any of its affiliates.

Myrtle	International Wayside Gold Mines Ltd											
	DIAMOND DRILL HOLE RECORD						2004 FIELD SEASON					
	B	OLD: Collar	Not Surveye	ed				·				
HOLE	DA	TE	TRUE			COOR	DINATES C	OLLAR				
	START	END	AZIMUTH	ANGLE	E.O.H.	NORTHING	EASTING	ELEVATION	SLUDGE	CORE		
MO 04-10	10-Jan-04	14-Jan-04	148	-45	405	5212.66	19741.16	5216.47	A400182	A400208		
MO 04-11	14-Jan-04	5-Feb-04	288	-45	521	4051.02	18967.44	5269	A400688 A401564	A400468 A400850 & 976		
MO 04-12	6-Feb-04	26-Feb-04	8	-45	405.8	3975.19	19983.27	5144.9	A400741	A400850		
MO 04-13	2-Mar-04	6-Mar-04	188	-45	405.8	3975.19	19983.27	5157	A400987 A401565	A400976		
MO 04-14	8-Mar-04	19-Mar-04	295	-45	892.8	3624.17	19641.34	5134.56	A401113	AK4-161a A401566 & 432		
		``										

LOGGING CODES

September 17, 2004

LITHOLOGY

è

Overburden-various alluvium, glacial, etc.	
(Quaternary colluvium/alluvium)	QC
Quartzite (Arenite)	Qzt
Quartz Vein	QV
Argillite (inc. Mica < 50%)	Arg
Calcareous	Cc
Chert	Cht
Diabase	Db
Diorite	Di
Dolomite	Do
Felsite	Fs
Igneous	Ig
Limestone	Ls
Meta Conglomerate	Cg
Meta Greywacke	Gwk
Meta Grit	Gr
Metatuff	Τf
Phyllite/Pelite (inc. Mica > 50%)	Pl
Schist	Sc
Siltite	Slt
Turbidite (specify Lithology)	Tu
No Recovery	NR
Poor Recovery (washed away, etc)	PR

LITHOLOGY - MODIFIERS

Calcareous	Cc
Chlorite	Ch
Dolomite porphyroblastic	Do pb
Feldspar	Fp
Graphitic	Gf
Ilmenite	Il
Magnetite porphyroblastic	Mt pb
Sericite	S

GRAIN SIZE

Very fine grained	vfg
Fine grained	fg
Medium grained	mg
Coarse grained	cg

TEXTURES

Mylonitic	my
Phyllitic	pl
Porphyroblastic	pb
Schistose	SC
Turbiditic	tu
Vuggy	vu

. .:

BEDDING FORMS

Laminated	L	
Very Thin bedded	vtb	<1 cm
Thin bedded	tb	1 to 10 cm
Medium bedded	mb	10 to 30 cm
Thick bedded	tkb	$> 30 \mathrm{cm}$
Massive	Μ	
Graded Beds	Grb	
Overturned beds	otb	

<u>COLOUR</u>

Black	В
Brown	Br
Green	Gn
Grey	Gy
Grey-Blue	Gy-Bl
Mauve	Mv
Orange	Or
Pink	Pk
Red	Rd
Silver	Si
Tan (khaki)	Т
White	W
Yellow	Y
Light	Lt
Dark	Dk

MINERALOGY

Ankerite	Α
Calcite	С
Chlorite	Ch
Clay (Kaolinite)	Cl
Dolomite	D
Feldspar	Fp
Fuchsite	Fu
Graphite	Gf
Ilmenite	I1
Magnetite	Mt
Muscovite	Mu
Pyrite	Ру
Quartz	Q
Rutile	R
Siderite	Sd
Talc	Tc

Page 2

STRUCTURES

Page 3

FAULTS	* Include C/A (for Faults, Gouges, My & Fol'n, etc.) in Structure Columns
---------------	---

Fault	F
Fault Zone	Fz
Breccia	Bx
Gouge	Gg

OTHER STRUCTURES

Axial Planar foliation	Ap Fol
Bedding	Bd
Crenulations	Cren
Foliation	Fol
Folds	Fold
Kink Band	KB
Mylonite	Му
Ptygmatic folds	Ptg
Lineation	
Boudins	Bou
Crenulation Axes	CA
Fold Axes	FA
Intersection lineation	IL
Mullions	Mul
Pencils	Pe
Rodding	R
Slickenside striae	SL
S/C	S/C

MINERALIZATION

As
Сру
Cos
Ga
He
Ja
Li
Mt
Ру
Po/Pyr
Sp

MINERALIZATION STYLE

Clt
Ds
Fr
Hbx
Μ
Rpl
Str
V
Vnlt(s)
Wa

MINERALIZATION GRAIN SIZE

Very Fine grained	vfg
Fine grained	fg
Medium grained	mg
Coarse grained	cg

ALTERATION

* Include C/A (for QV & S, etc) in ALTERATION Columns

Albite	Ab
Ankerite	Α
Bleached	Bl
Calcite	С
Carbonate	СЬ
Chlorite	Ch
Cr-Mica (Chromium, Fuchsite, Mariposite)	F
Dolomite	D
Epidote	Ep
Graphite	Gť
Potassic (sericite) ->>	(\mathbf{K})
Quartz Stringers	QS-
Quartz Veins	QV
Quartz Veinlet(s)	QVnlt(s)
Sericite (Micaceous, Muscovite, Tannite, Maux	vite) S
Silicification (flood/ing)	(Sf)

INTENSITY

י

Weak	wk	(1)
Moderate	md	(2)
Strong	st	(3)

Page 4

FOR REFERENCE ONLY:

OLD LITHOLOGY CODES that were Described as Unit No's:

<u>Unit #</u>	<u>Root 1</u>	<u>Root 2</u>	Root 3	Modifier 1	Modifier 2
1	Qzt	Gr		В	
2	Pl			В	gf
3	QV/QS				
4	Sc			S	
5	P1			Mt pb	Do
6	Qzt	Do		fu	
7	Qzt	Do	Gr	Т	
8	Pl	Do		Т	
9	Pl	Do		S	
10	QV				

<u>K TYPES</u>	<u>USE</u>		
	Rock Type I	Rk Type II	Modifier
Black Quartzite	Qzt		В
Black Grit	Gr		В
Black Siltite	SLT		В
Dolo-Arenite	Qzt	Do	
White Ar Do	Qzt	Do	W
White Grit Do	Gr	Do	W
	Black Grit Black Siltite Dolo-Arenite White Ar Do	Rock Type IBlack QuartziteQztBlack GritGrBlack SiltiteSLTDolo-AreniteQztWhite Ar DoQzt	Rock Type IRk Type IIBlack QuartziteQztBlack GritGrBlack SiltiteSLTDolo-AreniteQztWhite Ar DoQzt

STRATIGRAPHIC Modifiers - BC Vein

- 1 Rainbow
- 2 Black Siltstone (bs) bc Argillite
- 3 Lowhee? Watery Quartz veins, ptygmatic, fg turbidite unit (?)
- 4 Lowhee? Muscovite schist may be an alteration effect, light grey-white
- 5 Mag/dolo porphyroblastic unit probably mafic tuffs, Rainbow Unit 4
- 6 Lowhee Dolomite
- 7 Lowhee cg turbidite unit (tannite)
- 8a Lowhee fg turbidite unit (tannite, silicate locally)
- 8b Lowhee fg turbidite unit seric/dolo/alb altered locally

Cariboo Gold Project/Logging Forms/Logging Codes

	ND DRI		6				RIBOO GOLD PR	GOLD MINES LT	J.		
				<u></u>	Date: Jaw				Sheet of	5	
	le: M						Elevation			and the second se	
the second distance of the second distance of the second distance of the second distance of the second distance	<u>h:</u>				Northing	Easting		Location:	4120 77	ON	
	1				588 18 76	59 700	21 1590 m		·		
	123.41		+	Tail:		<u></u>		Creatia	Coole : All m	1	
	by:		_					Graphic	: Scale : 1" =	T	
lain nterval			S-C^ Sz	% pyrite	Description					Notes	
	to		~ ~								
סי	4.6				CASING				`		
4.6	86.3	argar	· >	tr-	QUARTZ 1	ARENITE	AND LESSE	e sericite p	ELITE		
		pl		6.1				light guy		quest	
								ve to pon			
		-						light to med			Γ
			23.5/					is hightly f			Γ
		1	D		Sz folia	tion.	/ ·		·····		
			35.6				is moduri	te and perro	sive in		
			00		politai	bids. Ch	loritization	is weak to	locally mode	vate.	
		1	59.41		Rmont	V low's pr	d stripper	s form < 5	to of rock		
·		1	0"				segnence.				
		1	711		Printo	is give	-ally trace	to 0,1% on	akerage		
	<u> </u>	1	3°		as freit	To Ven la	me enhedial!	to 0.1% on onbhedul on	semination	s	
	1		83.6/	1	* Quart	arente is	; ifter bedded ,	with contruct	minid		
	<u> </u>		Z2°		0			1-3 mm) mass		une	
		·			to off-m	mite mit	bids.	<u>_</u>		9	
		1		C	mart vens ar	e traicall	m parrow.	<1 min wid	the eight ofte		
	1	1			Gos deto	rmed a	nd are ont	by Jontger	Foliation of	dome	
<u> </u>	1	1	1		sets.					10	ΙŤ

AA AALA DOO JEAT MAA

	_					~	
<u> Drill Ho</u>		Moi	1-10		Date: Sheet 2 of	5	·
ogged	<u>by:</u>		T		Graphic Scale : 1" =	• • • • • • • • • • • • • • • • • • • 	- <u></u>
Main nterval		Lith. code	S - C^	% pyrite	Description	Notes	
rom	to						
					4.6-10.4 mity oxidhied tracture surfaces from dup		
					wenthering		
					11.4-11.5 While grattz - mist dolomte veni, irregula	-	
					contracts trace vitime granned papite disselmmations		
					trace V.F. purphotite (!)		
					12.2-12.5 soft with frult gange / fult-shertz	one?	
		1			16.2-16.8 Servicite gange, Latrow fault pone?		
				tr	22.1-22.9 white quart stringers 5% of rock volume. The v.fme gramed prome discuminations		_
		_		<u></u>	the vibre granned promte discommations	/	
	ļ	_		1-2	20.4-26.9 horrow KIm wide, white gract stringers		
	ļ			ļ	26.4-26.9 Lovron Kim wide, white quet stringers, deformed, Ingaray " textured, 1-2% pyrite in Vinn	its	_
		·		ļ	and wallrock		
					31.1-31.3 soft, vumbly are with seriate ponge 38.1-38.5 40% white quarty um irregular contr		_
				tr_	38.1-38.5 40% white quarts um irregular contr	d <u>s</u>	
					TTACK fine gurned ky	_	*
				tr	61.7-62.5 poorly competitut core over more 50% of	_	
	4	<u> </u>			this section day goinge at 62.4-62.5 about 5%		
	ч <u>,</u>				62.5-63.7 ~ 250 milly quarty Venis/ stringers trending		
		- ·		tr	62.5-63.7 ~ 25% milly quarty Venis/ stringers trending		
					obligne to faliation trade prite moderate secondar	<u>.</u>	_
	L				servicite and welk chlorite alter		
				tr	68.1-68.8 about 30% medmin gramed "Sugary" white		_
					quenty stricture trace by discon		·
,					70:4-71.6 Screral < 50m, will sections of bumbly core 71.6-74.6 owindly core with a goinge	wikd	let a

DIAMO	ND DRI	LL LC	<u>)G</u>		CARIBOO GOLD PROJECT 2007		
Drill Ha	le:				Date: Sheet <u>3</u> of <u>5</u>		
Logged	l by:				Graphic Scale : 1" = '		
Main Interval		Lith. code	S - C^	% pyrite	Description Notes		
rom	to				74.6-78.1 poorly competent work over 750% of this interval,		
					minor Finelt garge, rare oxidized freetune e foliation punfaces	· •	
86.3	106.9	arzpl		tr.	OX DIZED QUARTZ ARENITE SEGUCITE - CHLORITE PELITE	l	
•					RARE CARBONACEUS, PELITE		
					think to thickly bedded quarty arenite, light gray-green		L
					mappive to weakly foliated, is miter bedded with sensite-		
					chlorite pulite, "thinky bedded the lamen ated, well foliated.		
		<u> </u>			Abundant oxiderid (+to-oxide ond/or cerbounte?) Foliation		
					and tracture sanfaces. Weak to moderate sen initization		
					and theritization pervasively developed. Bynite occurs		
	 				to fine to medicin gr. Insters and subherhal enledyl		L
					Misshing trace. Querty > doboniste venis form ~ 5%		ŀ
·					of rock volume: these one light blue-gruy to makite, early halicopian		L
		<u> </u>	ļ		I sets complexly deformed and one out by lesser foliation		ŀ
		<u> </u>			obligne pits, matthy calcite (< 3% rock volame).		
		 			86.3-86.9 Sincite gonge broken-mp vore, metry traditions		
		ļ			87.7-89.9 porty competent were m/ day gauge, 5% quarts >		ļ
	ļ				trobomite vomis complety folded, anterite - rich silvages		ŀ
		ļ	ļ	ļ	92.8- 76.4 norrow sections of day grange, andcente - gt		ŀ
		 	<u> </u>		tox amonted m/ Uny matrix (93.2-93.25) oxidaged fracture		ŀ
	<u> </u>	 			and Folicition onlaces, < 3% folicition 11 "price-md-		ŀ
	ļ	_	 	· .	prull" gmarty > chlock vomis, <5 to >2 cm width, frend 0° to CA mkerite in vims, trace provide		$\left \right $
<u></u>	 	ļ	<u> </u>		trend 0° to CA mkerite in rims, trace provide	•	ŀ
					Dark guy v. think bedded (Imminated continaceous pelite < 3% of rak volume (86.3-106.9).		J

CARIBOO GOLD PROJECT 2007

DIAMO	ND DRI	LL LC)G		CARIBOO GOLD PROJECT 2007			
Drill Ha	e:				Date: Sheet <u>t</u> of	2		
_ogged	d by:		.		Graphic Scale : 1" =			
Main Interval		Lith, code	S - C^ らえ	% pyrite	Description	Notes		
rom	to							
					98.1-107.2 poorly competiment care with occassional			
					clay games over more than 50% of this interval			
					mont 5% complety deformed Folded calcite +		1	
			1		Jesser marity stringers and quarty w/ lesser calate stringe	15	1	
ī	1				out by panger undeformed, him to an scale stringers			
1-5			<u> </u>				1	┢╴
106.9	123.4	ar	tr-	0.1%	QUARTZ ARENITE		1	F
					Moderation to thirdy bedded poorly foliated		1	
					gnant aremte. Light guy-orien too light grey.		1	
					Werk service and Marite alteration down on the		1	Γ
					Fracture controlled. On ant vomis, white, course any stalli	he vinge] ;	Γ
					Form, about 20 % of this interval. Pyrte averages	3 00	<u>ر ۲</u>	
					about 0.10h, fine the medmin grame it, outhethe to genetic	·		
			[bornimon mity orange oxidation, fracture contro Ikel:			L
.					ankerite + it on actile (?).			L
					108.0-108.2 membly poorly competent are mity clay			L
			<u> </u>		Fonde			
					109,0-109.7 Frinkt gronze	_		
					109.7-110.0 broken preces of white generity			
					111.8-115.0 white quarty - lesser doporte (ankerife) - aremte br	Lecia,		L
					mostly cools competent broken preice of mart-milerite	1 '		L
					and atente host rock meterite and dark guy graphitics material filling fracture in the vini (~ 50% rock volum		- I	L
					material Filling Fracting in the vini (~ 50% rock volum	el l		

DIAMO	ND DR	ILL LC)G		CARIBOO GOLD PROJECT 2007			_
Drill Ho	le:	107	- 10		Date: Jm 17/2004 Sheet 5 0	5		
Logged	by:	D, D	UBA	·	Graphic Scale : 1" =	1		
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
from	to							_
					115.0-116.4 poorly unmetting care quest crimite		:	
					L'5% white ment shi ngets			
					116.4-119.2 35% what anot about any framents			
*			1		of Algoritoria there in the arente the pills por			
			<u> </u>	<u> </u>	115.0-116.4 pooly unipetint core quest white 25% white quests shi ngets 116.4-119.2 35% white querts, abundant fragments 116.4-119.2 35% white querts, abundant fragments 116.4-119.2 35% white querts, abundant fragments 122-123.4 about 60% white, vieggy, coarse vystal quests - 10% dobomite in senertized quests arenite	lin		
			<u> </u>		mast = 4 / delamite is so to to de mast	·····		
				<u> </u>	the more in survive proving himse			
23.4			 -	<u> </u>	EOM			-
K2.4				<u> </u>				
					······································			
			}	ļ				┝
								_
				ļ			1	
			l					L
.								L
-								
]	ſ
							1	Γ
	· · · · ·						1	Γ
							1	F
		+					1	\vdash
							1 .	\vdash
			ļ	ļ			4	F

ł

		l	NTERN	IATION	NAL WA	YSIDE G	old Mi	NES LTI	D.		2001 C	ARIBOC	GOLD PF	ROJECT		D	OH COD	ING RE	CORD			
HOLE #		104-	10				ZONE:										12004		SHEET:	IC)))	
FROM (ft)	TO (R)	MOO	LITH	LOGY COL	BAND	LITHOLÖGY CODE	FROM (70)	TO (M)	BANDING	FROM (ft)	то (М)	COL	ALTERATION CODE	FROM (N)	TO (N)	FAULT	FROM (ft)	то (%)	CITZ STRINGER CODE	FROM (P)	10 (ft)	SULPHICE
		<u> </u>												FA.6	74.6	F-27	L109.7	110.0	Quy	4.6	86.3	t0.1
4.6	86.3	<u> </u>	atype		m-th					4.6	86.3	w>gy	med K								1	
				87				L				1		409.0	109.7	FZY	<111.8	1150	35-14 QV - Dv) 35-96 QV 7 6-17	86.3	106.9	tr
86.3	106.9		ar7pl	w7	t-th					86.3	106.9	w7gy	weak/ma K, M				416.4	(19.2	35%			
				ઝર								00					K122.0	123.4	2002 QV >	106.9	123.4	tr01
106.9	123.4		Ş	3	m-th					106.9	123.4	~	Werk K, M									
·														· ·								
													_									
																					İ	
														· · · ·				-				
																			· ·			
		1	l																			

* of rock to (sume

M ro m			LOGY COL	BAND	LITHOLOGY	ZONE:													1	· ·	
F0 F0	MOD		COL	BAND	LITHOLOGY	and the second se								DATE: Jan 18/2004			SHEET: OF:)				
6.3					CODE	FROM (70)	TO EP	BANDING	FROM (ft)	TO (FC)	COL	ALTERATION CODE	FROM	TO (R)	FAULT	FROM (ft)	3 0	QTZ STRINGER CODE	FROM (R)	10 (ft)	SULPHICE
6.3		ar-											CF1.6	-74.6	Fz	K109.7	110.0	Quy	4.6	86.3	tr0.1
		atyp	~	m-th		_			4.6	86.3		Weuklund K.M	108.0	108.2	Fz						L
										<u> </u>			409.0	109.7	FZY	<111.8	1150	55-1-+ Q5 DV	86.3	106.9	tr
6.9		ar7el	~	t-th					86.3	106.9		Weak K M				416.4	119.2	3506			<u> </u>
5																<122.0	123.4	QV >	106.9	122.4	tr0.
3.4		\$	~	m-th												11.4	11.5	Øs			L
																38.1	385	95			
																62.5	63.7	Qs			
																68.1	68.8	30% Qs			
-																					
																					Í
				<u> </u>	·																
_																					
丌																					
$\neg \uparrow$																					
	···· ·																				
	•.9) 5.4	<u></u>))))))))		6.9 ar7pl w t-th	6.9 ar7pl w t-th	6.9 ar7pl w t-th 86.3 196.9 K.M	6.9 ar7pl w t-th 66.3 106.9 K.M	6.9 07.01 \cdots $4-46$ 56.3 106.9 \vee , M 416.4 1 1 1 1 1 1 1 3.4 $0r$ \cdots m 1 1 11.4 3.4 $0r$ 1 1 1 11.4 38.1 1 1 1 1 1 38.1 62.5 1 1 1 1 1 62.5 68.1 1 1 1 1 1 1 62.5 1 1 1 1 1 62.5 68.1 1 1 1 1 1 1 62.5 68.1 1 62.5 1 1 1 1 1 1 62.5 68.1 1 1 1 1 1 1 1 1 1 1	6.4 $0r2el$ w $t-th$ 66.3 106.4 $V_{\rm M}$ 416.4 114.2 1 $0r$ w $m-th$ 11.4 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>eq <math>arrel $6e.3$ $ige.q$ K td>$(a_1^{n})_{(n)}$ $(a_1^{n})_{(n)}$ /td></math></td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	eq $arrel 6e.3 ige.q K(a_1^{n})_{(n)} (a_1^{n})_{(n)}	$(a_1^{n})_{(n)}$

.

+ % forock vo (sume

NG

1

	,			······································	
		וראו	EKNATI	ONAL WA	YSIDE GOLD MINES LTD.
C		SAMPL			003 CARIBOO GOLD PROJECT
X	HOLE: M	04-10	DATE:	SHEET:	
	SAMPLE #	INTER FROM		RECOVERY	SAMPLE DESCRIPTION
<0.01	39 168 -	10.7	12.2	1.5	10% quents veins, stringers, trace my
0.02	39 169	22.1	24.1	2.0	u . U
<0.0	39 170	38.1	40.1	2.0	И
< 0.01	39 171	59.7	61.7	2.0	armite guit with interb putte 10% querts Vamis, tr.pg dissen
< 0,0	39 172	61.7	63.7	2.0	ц (ј
:0.01	39 173	68.1	70.1	2.0	ч ц
0:05	39 174	98.1	100,1	2	arimbe, Histor all-sen + and pilite 205%
< 0.0	39 175	100.1	12.1	2	(c
0.10	39 176	111.8	113.5	1.5	quarty < ankerife - aremite breccia, 0.1 thry
0.07	39 177	113.5	115.0	1.5	u 🖉 🤹 🖉
1-0	39178	115.0	•117.0	2	25% while quiting - in quarty state 0.1% p
< 0.01	39 179	117	119	2	ч ч и
0.02	39180	119	121.0	2	15% quarty < dohamite Vemis, 0.1% py
2.04	39181	121.0	123,4	2.4	20% vaggy quarty = dolom Vinis, tr 3.1%
-	3918,2	STANL	ari	B. 5gt	(pulp > 12.90)
					·
				Ī	
ſ					
F					
L		L	I		

ſ

١

.

2	ACME AVALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716
02/02	AA <u>Int'l Wayside Gold Mines Ltd. PROJECT MRT 04-10</u> File # A400208 P.C. Box 247, 2422 Barker, Wells BC VOK 2R0
ч. -	SAMPLE# Au** gm/mt
	SI <.01
6042531716	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
FAX NO. 60	39177 .07 39178 .01 RE 39178 .01 RRE 39178 .01 39179 <.01
ш	39180 .02 39181 .04 39182 PULP 12.90 STANDARD AU-1 3.38
ANALYTICAL LAB	GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u> DATE RECEIVED: JAN 19 2004 DATE REPORT MAILED: AMALED SIGNED BY
ACME	
52 AM	
TUE 09:	
JAN-27-2004 TI	
-	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_fA

From ACME ANALY		D. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R
	Received: FEB 2 2004 •	8 samples in this disk file.
SAMPLES gm/mt		·
SI < .01		
39166 < .01		
39167 0.02		
39183 0.01		
39184 0.01		
39185 < .01		
39186 0.01		
STANDAR 3.4		

 $\left(\right)$

		13. ~			ð						
	-	$(\mathbf{\dot{,}})$.1						
	INTE	RNATION	NAL WAY	SIDE GOLD	MINES L	TD.					
	SLUDGE SAMPLE RECORD 2004 CARIBOO GOLD PROJECT HOLE: M. toy-10 DATE: Jan. 15/04 SHEET: 1 OF: 1										
SAMPLE #		RVAL TO	GOLD (PPB)	SAMPLE #	INTE FROM	RVAL TO	GOLD (PPB)				
166635	125	135	20								
166636	135	145	4.7								
166637	145	155	(e.1								
166638	155	165	5.5								
166639	165	175	2.0								
166640	175	185	.6								
166641	185	195	4.4								
166642	195	205	13.7								
166643	205	215	4.5								
166644	225	235	1.0			<u></u>					
166645	235	245	1.6								
166646	255	265	2.0 (5.1)							
166647	265	275	1.6								
166648	275	285	4.0								
166649	295	305	2.4				•				
166650	305	315	35.9								
166651	315	325	36.7								
166652	325	335	48.0								
							•				

ACME	LYTICAL LABORATORIES LTD. 852 B. HASTINGS ST 'ANCOU 9002 Accredited Co.) GEOCHEMICAL ANALYSIS	ZER BC V6A 1R6 PHONE(604)253-3158 PAX(6 253-171) CERTIFICATE
	Int'l Wayside Gold Mines Ltd. PROJECT P.O. Sox 247, 2422 Barker, Wells SC VOK 280	
	SAMPLE#	Au* ppb
	SI C 166635 C 166636 C 166637 C 166638	20.0 4.7 6.1 5.5
	C 166639 C 166640 C 166641 C 166642 C 166642 C 166643	2.0 .6 4.4 13.7 4.5
2	C 166644 C 166645 C 166646 RE C 166646 RE C 166646 C 166647	1.0 1.6 2.0 3.1 1.6
	C 166648 C 166649 C 166650 C 166651 C 166652	4.0 2.4 35.9 36.7 48.0
	STANDARD AU-R	459.1
DATE REG	AU* IGNITED, ACID LEACHED, ANALYZED - SAMPLE TYPE: SLUDGE R150 60C <u>Samples beginning 'RE' are Reruns a</u> CEIVED: JAN 16 2004 DATE REPORT MAILED: Jan 27/2004 SIG	and 'RRE' are Reject Reruns.
مر	- / /	
Ail result	s are considered the confidential property of the client. Acme assumes the liab	pilities for actual cost of the analysis only. Data AA_

From ACME		CAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R(lines Ltd.
Acme file # A4	400742 F	Received: MAR 3 2004 ** 15 samples in this disk file.
ELEMENT Au	i*	
SAMPLES pp	b	
SI <.	2	
C 166679	205	
C 166680	112.4	
C 166681	160.3	
C 166682	79.6	
C 166683	87.6	
C 166684	106.6	
C 166685	58.7	
C 166686	86	
C 166687	78.2	
C 166688	102.2	
RE C 1666	96.2	
C 166689	74.8	
C 166690	247.6	
C 166691	108.9	
STANDAR	471.6	

C

OMAIC	ND DRI		G			CARI	BOO GOLD PRO	OJECT 2003			
Drill Hole: Mo4 -11					Date: Feb 5	104			Sheet of	3_	
Azimut	th:	3302				Easting	Elevation	Location:	28055/	460N	
Angle:		150		Collar:			1 1606 m	1		····	
	521 fu	tri						1			
Logge		\		/				Graphic	Scale : 1" =	· · · · · · · · · · · · · · · · · · ·	
Main Interval		Lith. code	S - C^	% pyrite	Description					Notes	
rom	to										
0	3			ļ	CASING			· · · · · · · · · · · · · · · · · · ·			
	<u> </u>							<u></u>	AND CH		<u>↓</u>
3	70.0	ar)7	4	0.1-	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER			SER CARBONA			┨ ┠
	_	pl		0.5	Light gu	y mode	hataly the	thickly bedd	ed quart		
								lonk guy canba			chon
	7.		- 7		pilite. P	elte is ven	y think be	Ided to lomm	rated and		
								ssive to we		<u>.</u>	
					The segme	mee is co	mpletly del	formed, SI F	olinhim		
		-			. oul prom	its hay	Śz.	*			
					White q	mont - 14	esser dolom	the vening	Foliation		
	19 j				11 omd	foliation	-obligme VA	mis form k	5% 0/		
3							this inte		<i>r</i>		
					Arente k	5 pelite	ntio is ~	75 to 25 from	1 3 to 254	<u></u>	
								belone 25.0			
÷								and discont		the second	
					Fracture-1	controlled.	mkerite (dole	anite) + to ox	rile alteration	or,	
		·			Dolomitra	ation is 1	while form of	f 1-2mm paysh	moblasts:	, ···] [
					dereboord	disconti	mansly. W	verk pretting	-controlled		
					- allon top a	Atim.					
					Printe or	uns as for	at to re anh	edial onbitedia	and about it		

CARIBOO GOLD PROJECT 2007

DIAMOND DRILL LOG			G		CARIBOO GOLD PROJECT 2007	
Drill Ho	ole:				Date: Sheet $\frac{2}{5}$ of $\frac{8}{5}$	
Logged	d by:		·····		Graphic Scale : 1" = _ '	
Main Interval			S-C^ 52	% pyrite	Description Notes	
from	to					
					0-5.4 poorly competent core strong fracture-controlled	
					milty orange For oxide alteration and "spots"	
			5.7/		after printe	
<u></u>			220		5.4-5.5 white ungang 4 cm width quart - 10h	
			15.7/		omkerite veni, 450 to CA orthogonal printe and	
			230		rentry remnants in selvages (~106)	
					11.0-11.2 broken mo vore nith day gronge to oxide on fractures	
	·		29.51		12.8 - 12.9 poorly competent fraction red interval @	
			300		45to CA harrow quart stringers	
			38.5/		14.5-17.1 several < 10 to as m with intervals of	
			230		poorly competent core	
				1-2		
			5D.6/		oxidized Fractures, 1-2% provide as medicin gramiel	
			18°		dissemmatrions	
~ <u> </u>			59.7/29	25	19.4 - 19.8 poorly competent thinky bedded forminated	
_/			69.5/		carbonneous public and aremite, foliation oblight	
			250		while quent venis contacts roughly trend P 450 to ca	
					and some are irregular med the warse genned	
					enkelvel projite in host rock (~ 2-3%)	
					28,9-29.4 cumbly core mith fronth gouge a the	
					Toner contract of the anorth Veni, 3-4 cm mide	
					while quarty veni, minor Nobomite in selvages of the granal	
					while quarty veni, minor Abbamte in selvages of the genal, 25° to CA, 1-2° bay me 0.1° bo galena in fractiones	
					in prime in selvages,	

Veni

1.1-

....

CARIBOO	GOLD	PRO	JECT	2007
---------	------	-----	------	------

DIAMO	ND DF	RILL LC)G		CARIBOO GOLD PROJECT 2007	
Drill Ho	ole:	104	- 11		Date: Jm 25 04 Sheet	3 of <u>8</u>
Logged	d by:				Graphic Scale : 1	¹¹ = 1
Main Interval		Lith, code	S - C^	% pyrite	Description	Notes
from	to					
					35.7-36.1 soft mushy were, day gronge / hurrow	-
					fault pone	
					37.0-37.7. about 5 m wide fault gonge at	
Ĺ					the "mapper" vontact with narrow print ve	m
؛ ۱				0.5	37.1-37.2 quant rubbl, white vurger 5:5%	printe
					and drike guy workte [?] that	·
		_			40.5-40.6 white quest veri irregular and dit	Fneld
	·	_			contacts silicons aromite (quantinte) to 1% kg	ite _
					in the wallrock	
					41.5-41.8 Harrow irregular cross-anthing white 9	mart -
		_			Jesset dobornite vanilets much lenses Fine to med.	
					pynile disclormination in selvages of host quartiste	
<u></u>					46.5-50.0 < 5% vibite gnants Flooding and fol	iation obligne
			L	ļ	quarty venis hiver dolamite	
L				•	57.2-57.7 White grantz flooding, diffused contact	ŧ l
r			<u> </u>		mith the quants arembe host	
					58.5-58.7 narrow quarty veri w/	
	ļ				About c host rock in chinon's host is strongly ch	kontriged
	_		ļ	ļ	V. Hmily bedded arembe and chlorite petite irrep	mlan
				<u> </u>	contacts - 1% c.g. pyrite in selvages	
				ļ	66.8 - 67.40 white grant Veni, upper contact in	Anlatas
	ļ				contactes, 1% c.g. pyrite in selvages 66.8 - 67.40 white quarty veri, upper contact un med rough orientation is 42° to CA, lower cont irregular, veri is a foliation oblique, minor dolor	actis
				ļ	irregular, venis a foliation oblique, minor dolor	nite
					very too fine the coarse enhand pythe onserve in se	Ivalois

۰.

CARIBOO GOLD	PROJECT	2007
--------------	---------	------

DIAMOND DRILL LOG CARIBOO GOLD PROJECT 2007 Drill Hole: Date: Logged by: Graphic Scale : 1" = '								
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
rom	to							
					and in the differentized wallwock			
					ана стана br>По стана с			
				_	cave in @ about 250 fut, shirt down the bale		1	
					cave in @ about 250 fut, plut down the hole and moved several, fut forward. Logged to			
1					about 70 meters.	1	1	Γ
			1	1		1	1	F
•	1			- 1	Started boggning the new MOU-II from 70 meters to the bottom of the hole \$ 158.8 m.		1	
					to the bottom of the Lole A 158.8m.		1	F
	1						-	F
	+		1	+	······································		-	┢
	+						-	┢
····	+			+			-	┝
				<u> </u>			-	-
							4	+
				ļ		ļ	_	
` <u></u>	ļ			`			_	
	ļ							_
								L
								L
								ſ
							1	
			1	1	· · · · · · · · · · · · · · · · · · ·	1	1	ſ
	<u> </u>	-				-	1	F
			<u> </u>			1	┥.	\mathbf{F}
							-	┢
	1		1	ł	1		1	

. I						ISLAND	JUNTAIN GO	OLD MINES LTD.		<u>}</u>	
NAMO	ND DRI	LL LC	с. Ж				03 MOSQUITO				
oH IInC	le: M'	D4-	11 B		Date: March	/		Sheet 5 of	8		and the second
Azimutt	h: 3	5300			Northing	Easting	Elevation	Location:			
Angle:	~	-45°	(Collar:		1	}	1			
							1	1			
Logged	i by:							Graphic Scale : 1" =	•		
Main Interval		Lith. code	8 - C^	% pyrite	Description	- : 			Notes		Γ
	to										
70.0	91.2							CARBONADEOUS PELITE			
	<u> </u>	<u> </u>	75.6/17	4			einc Per	ويربيك اليوجيديين بيطوي ويريان والمسر برادي ومنافية كشكون والمترافية فيترافي والمترافية والبراد		1	
		 	B1.3/37	<u> </u>				in the previous		1	
		<u> </u>	90/100	 	M04-1	1 (pages 1	-4).				_
		┨───	100								
91.2	112.5	╂	<u> </u>					CARBONACTOUS AGUTE	- 	4	
		+	+	+0.19	Light of	in the cu	ung white	massive to poorly			
				 	Folintia	thru by	the thickle	bedded quart arenite			-
		+	104.4	<u> </u>	anth m	that chill	mate-rich	pelitic Jammae. These	- 	4	<u> </u>
		+	280					funite to petite ratio~9	0-95 12	5	10.
 		+	- di	 	thre p	minh vim	mg, 2 5	-5% of rock volume.		1	┣
	+	+	111.6	<u> </u>	VVenu	No moa	+ + +	rasive regional Aminto	phin		┝━
	+	-{	1~~	+	m d d	con the	and our	Do form the atrian is weak ob porphysoblasts, 1-2m			
	+		+	 	in leng	1	A US -1	0 to parpropriations 1-2m	4		
	1	1	+	<u> </u>			10/ white on	mont flogsland and			<u> </u>
		+	+	†	Da art	imphle <	: 0.5% en	marty flooding and the medming the coarse, ende			
	+	+	+	<u>†</u>	99.0-16	2,4 koo	h compant	whe over > 500% of	unn_		<u> </u>
	1	1	1		this inthe	erval lia	Lt gran d	an gange blan tired	+		
	1	1	1		Foliat	ion and i	acture Aun	haves blow typed	1		

 \bigcirc

 $\left(\right)$

DIAMON	D DRII	LL LO	G		CARIBOO GOLD PROJECT 2007		
Drill Hol	e:				Date: Sheet 6 of	8	
_ogged	by:				Graphic Scale : 1" =		
Main Interval			S - C^ S2	% pyrite	Description	Notes	
rom	to					1	
					102.4-104.4 < 5% white mark venime foliation	<u> </u> :	
					obligne, 2-490 vouse to medinin gramed endedul py	te	
					102.4-104.4 < 5% white quarts vening foliation obligne, 2-4% vouve to mednin gromed enleder py in venis, in the selvages		
					Below 105.5, carbonaceons pelite forms about 20-25% of rock volume.		
					20-25% of mark volume.		
	. <u> </u>	<u> </u>					
12.5	120.1	1	 	<03	CARBONATIONS PELITE AND LESSER QUARTZ ARENITE	,	
	<u> </u>	1			Dark arm carbona come relite your through beddel		
			114.6		Dark guy conformacions pelite, very thinky beddel: the lannhated intercalated with to light grey quarty as	h. +;	
			22.		there a to de them into bids of box days and lensor d	price,	
					tdisrupted, this interbeds of bon drin aged and lensorid. The depresse is complexly folded 52 and 53 Poliati Rare narrone white quart vem letter < 3% of	m.	
				<u> </u>	Rake harcome ashite anast 10m Pits < 3% d		
		1		<u>}</u>	rock volume. Pelite to arente ratio is ~70 to 30. P	ite is	
			<u> </u>	<u> </u>	< 0.3%.		
120.1	134.6	,		0.1	OUPETZAPENITE LESSER CARSONACEOUS AND CHLORITIC		
		1	1		RELITE		
		<u> </u>			Light dry - grien prarts arente to grantose		
·					pelite (guartate) moderately the thickly		
			126.1		Ladie to Det a the later allow the let	1-1	
			140		mail carbonaums selater (below- 129.5m). Atemite to a	the ratio	
			1	We	moderate pervasive senicity atria and moderate	15~80-1	0 10 10
		1			dobonitization the form of to -15% small dobonite		· ·
					poppy-blasts, <1 to 2 mm in lengths. Lesser datami		

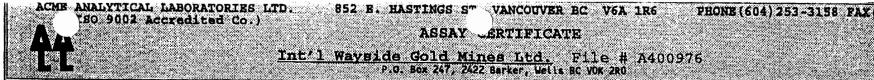
DIAMO	ND DRI	LL LO	G		CARIBOO GOLD PROJECT 2007			
	ie: 11	04-	11B		Date: Sheet 7 of 2	3		
oggeo	l by:			·	Graphic Scale : 1" =	• •		
Main Interval		1 .	९ - С^ ५२	% pyrite	Description	Notes		
rom	to						-	_
					as foliation parallel laminal. Pyinte content averages a	conto.	20.	Ŀ
					120.1-121.6 ~ 10% quartz - leser do formate very ma			
					and "Hooding" moderate debarnite alifn as perpengio	-sts		
					and laminel 0.5% printe. Fre to medicin gramed			
					schedral	1		Γ
		1			121.6-121.8 cross-onthing querz-lesser dolomite string	urs.		Γ
		1			1-2% pronte			
	1.	1			121.8-122.4 the same as 120.1-121.6		1	Γ
	1	1	129.71		122.4 - 122.9 Unggy, milly quarts venis, immen contact,		1	
	+	1	33•		niuch dologi to 39 mid a hidral i to		1	F
	<u> </u>		00		minor dolomite 3% med. gr. enhedral pyrite 122.9 - 128.1 about 5% white guarz venimi, @ 126.1 h		1	┝
					lad - 1 128:1 upont op white funding to 120:1 m			┝
	+	+			3-4 m wide veri @ 25-40° to CA			F
			·		129.5-134.6 carbonaceans petite forms about 20%	-{	1	┢
·					of rock comme of this interval		1	╞
<u> </u>		+					{	F
134.6	144.9		·	10.5-			$\frac{1}{2}$	-
		+			sim in me 112. 5 120,1 Journe ins districted in this is		{	┝
					about 50 to 50.		\mathbf{I}	F
<u></u>	·		137	<u> </u>	Pryntie 0.5-1.0% peans medmin grannid enhedral pribledra Dimartz, lesser adomite Formes < 3% of rock volume.	4	ł	-
			450		Quinarty, lesser detormite formes < 3% of rock volume.		-	-
	+						4	\vdash
							-	F
		-				-		

DIAMO	ND DRI	LL LC	G	····-	CARIBOO GOLD PROJECT 2007			
Drill Ho	le: M	04-	113		Date: Sheet 8 of	<u>B</u>		
Logged	by:				Graphic Scale : 1" =	1		
Main Interval		Lith, code	S - C^	% pyrite	Description	Notes		
	to							
144.9	158.8			0.1%	WARTZ ADENITE MINDLE CARBONACEOUS PELITE AND		1:	Ŀ
	·				CHLORITIC PELITE			
		ļ			Moderately to thickly budded poorly Folioted			
			146 30		light gry-grun quants aremite miter lagured			
	L				with lesser dark guy carbonaceons pilite and			
					mednin green Alantic pelite. Pelite is very the	fily		
					budded for James at d, fronte to pelite ratio is 75 to 25	5.	1	
			157/		Weak service, aboute and "destante attention		1	
			250		Dolomite occurs in Fractures of quarte veris.	F	1	
					and as perphysioblasts in post arenite / pelite.	1	1	
		1			Quarte-Jesser dokenite venis and stringers form		1	
	1		1	1	< 390 og ræck volume.		-	
					Trightly Falitical Sz is shiftly wary, over partial by S3		1	
	1	1			Folition. Both S2 and S3 are chiorophed by			
,			1	, in the second	later gnontz - dohamite vening.		1	
			1	1	150.3-150.6 poorly competent core with minor		1	
		1		1	day gauge	1	1	
	1	1 -	1	1	153.1-153.4 broken up core, 30% vaggy gunts venis	-	1	F
		1	1	1	153.9-154.2 poorly competent core	-	1	
<u></u>	1	1	1	1	156.7-156.9 poorly competent we	1	1	
**************************************	1	1	1	1		1		
	1	1	1			+	-	
158.8	1	1	<u> </u>	1	EOH	†	-	\vdash
		<u> </u>				- <u> </u>	-	

5

INT	ERNATI	ONAL	WAYSI	DE GO	LD MIN	ES LTD.	ISLAN	D MOUN	TAIN	GOLD	INES L	TD.	200	3 CARIE	800 GO	LD PR	OJECT		DDH C	ODING	RECOR	D
HOLE #	1: Mo4	- 11					ZONE:							DATE:	Aperil				SHEET:	-		(
FROM ØQ	TO R	MOD	LITHC ROOT	COL	BAND	CODE	DEPTH (70)	ANGLE DEGREES	S	FROM (T)	TO IN	COL	ALTERATION CODE	FROM (R)	TO CR	FAULT	FROM (PQ	TO (R)	QTZ STRINGER CODE	FROM (T)	TO M	SULPHICE
3	91.2				m-th					0	70.0		KDM	35.7	36.1	Fz	40.5	40.6	Øv	3	300	0.1-0.
																	58.5	58.7	QV		91.2	
91.2	112.5		arzpl	W 704	t-th					91.2	112.5		KDM KDM				66.8	67.1	Q,	91.2	112.5	tra
					VE7																	
112.5	120.1	•	plyar																	112.5	120.1	< 0.3
										 			weak		<u> </u>							ļ
120.1	134.6		arypl	wyqy	m-th					120.1	134.6		KOM							120.1	134.6	0.1
B4.6	144.9)F	pl-ar	w-gy	vt										<u> </u>					134.6	(44.9	< 0.5-1
																				144.9	158.8	0.1
144.9	158.8		arypl		m>Vt															ात्ताल	150.0	0.1
									<u> </u>													ļ
										 			<u> </u>		1							<u> </u>
									 	1			1		1							

.


		INTE	ERNATI	ONAL WA	YSIDE GOLD MINES LTD.
\int	CORE Hole: M	E SAMPLE			003 CARIBOO GOLD PROJECT
glton	SAMPLE	INTER		RECOVERY	SAMPLE DESCRIPTION
° A₩	#	FROM	ТО	(feet) h	
0.20	39187	17.1	18.7	1.6	rare gnortz- For-oxide (+om/urite?) Vommig < 2060, 0.1060 kg
0.38	39188	18.7	20.7	2.0	< 30% quaity vanis in atmite/ pulity of
0.02	39189	20.7	22.7	2.0	<3% querty & dolomite venis, 0.5% py
0.03	39 190	28.0	29.6	1.6	4 cm quarts ven may 1-2 lopy 0.1 by ya in artmite, chilter afferred
< 0.01	39 191	36.5	30.0	1.5	250m will quart vom, arente host trail my difter
< 0.01	39 192	38.0	39.7	1.7	more quarty vening (< 5%), to 0.5%
0.01	39 193	39.7	41.3	1.5	ι. γ
< ०. <i>ा</i>	39194	46.5	48.5	2.0	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··
0.01	39195	57.7	59.7	2.0	(3% quart vinis chl + sur. alta, activity Monte pulite 0.1% py
0.01	39196	66.0	68.0	2.0	25% grant Verni in chlon trijed alla 1%
7.01	39 215	95	97	2.0	quarty aremite, 5-7% while opening <0,3% by
< 0.01	39216	.97	99	2.0	11 11 ~ 10% grant- lesser dog " Verns. 0,1%pm
0,02	39 217	102.4	104.4	2.0	< 3% quartz - do formite venis quartz cremte > cons + de pelite 0.1% m
< 0.01	39 21B	104.4	106.4	2.0	u H U
0,46	39 219	120.1	122.1	2.0	10% quarty-dolomile venis in quarty atomt
0.04	39 220	122.1	124.1	2.0	u u y
0.09	39 221	124.1	126.1	2.0	5% nehite quart venis + punt flooding quart arente host dolan perphysical (456 0
0.01	39222	126.1	128.1	2.0	a u u
0.01	39 223	129	131	2.0	The querty Verning in atente >> contor - chlorite petite, tr.p
< 0,9	39 224	136. 8	138.8	2.0	< 5% quarty Vernis, in chemike / conb pulite 5.5-1 pp
0.21	39 225	138.8	140.8	2.0	и и и
·0.01	39226	140.8	142.8	2.0	< 5% quarty > dol stringers ar pl <0.5%
-					

FHUNE (604) 253-3158 FAX (60-253-1716 0.4 TKO LISO 9002 Accredited Co.) ASSAY 02/03 RTIFICATE Int'l Wayside Gold Mines Ltd. File # A400468/ P.O. Box 247, B422 Barker, Weils BC VOK 2R0 Submitted by: N.B. Nathgaon M04-11 **d**. SAMPLE# Au** gm/mt SI 39187 <.01 .20 .38 39188 39189 .02 39190 .ŏā 39191 39192 <.01 <.01 6042531716 39193 .01 39194 <.01 RE 39194 <.01 RRE 39194 39195 39196 .01 .01 Fax No. 01 STANDARD AU-1 3.37 GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns, Feb 13/2004 Data / DATE RECEIVED: DATE REPORT MAILED: FEB 9 2004 FEB-16-2004 MON 03:17 PM ACME ANALYTICAL LAB All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

AC NALVIICAL LABORATORIES LID. 852 K. HASTINGS ST VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (S0 8022 Accredited Co.) ASSAY CERTIFICATE <u>Island Mountain Gold Mines Ltd.</u> File # A400850 Box 247, Welle Bt V0K 280

02/02

a.							
			SAMPLE#	Au** gm/mt			
		•	SI 39197 39198 39199 39200	<.01 .03 <.01 .04 .06			
FAX NO. 6143531718		· .	39201 39202 39203 39204 39205	.18 .12 <.01 .21 .15	M04-12		• •
FAX NO. 6'			39206 39207 39208 RE 39208 RRE 39208	.07 .21 .05 .02 .02			
			39209 39210 39211 39212 39212 39213	.05 .62 <.01 .02 <.01		·	
ICAL LAB	•	M04-11	39214 39215 39216 STANDARD AU-1	.18 <.01 <.01 3.41		•	:
AM ACHE ANALYTICAL	Data	GROUP 6 - PRECIOUS METALS BY - SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Re DATE RECEIVED: MAR 9 2004		WALL IN	•	1111 - <u>616</u>	
104 TUE 09:29	•					Clarence Leong	
MAR-16-2004							2 2 2

SAMPLE#	Au** gm/mt	
 SI 39217 39218 39219 39220	<.01 .02 <.01 .06 .04	
39221 39222 39223 39224 39225	.09 .01 .01 <.01 .21	Mo4-11
39226 39227 39228 RE 39228 RRE 39228	<.01 .36 .02 .02 .02 .03	
39229 39230 39231 39232 39232 39233	.03 .15 2.67 .13 .06	
39234 39235 39236 39237 39238	.01 M .09 M .24 .01 .43	104-13
39239 39240 39241 39242 39242 39243	.22 .05 .07 .03 .02	
STANDARD AU-1	3.42	

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Dat

02/02

6n42531716

FAX NO.

MAR-26-2004 FRI 01:53 PM ACME ANALYTICAL LAB

.....

e.

1

DATE RECEIVED: MAR 16 2004 DATE REPORT MAILED: March 25/04

1253

-171

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

0411		$\left(\begin{array}{c} \\ \end{array} \right)$			()		
MRT.	INTER	RNATION	AL WAYS	SIDE GOLD			
SLUD Hole:	ge samp	LE RECO	DRD	2001 CAR SHEET:	BOO GOI	D PROJ OF:	IECT
SAMPLE #	INTE FROM	RVAL TO	GOLD (PPB)	SAMPLE #	INTER FROM	TO	GOLD (PPB)
166751	26	36	6.2				(/
166752	ac.	46	4.6				
166753	46	56	9.0				
166754	56	66	24.5				
166755	66	76	99999.0				
166756	76	86	11919				
166757	86	96	216.9				
166758	96	106	47.1				
166759	106	116	43.0				
166760	116	126	51.1				ļ
166761	126	136	11.6				
166762	136	146	20.2				_
166763	146	156	15.3				
166764	156	166	25.1				
166765	166	176	27.8				
166766	176	186	10.1				
166 767	186	196	3060.2				
166768	196	206	187.6				
166769.	206	216	15.2				
Nosampie	216	226					
166770	226	236	5.9				
166771	236	246	9.4				·
166 772	246	256	5.3				
166 773	256	266	4.2				
166 724	266	276	8.1				

a second seco

··<u>·</u> ·. ·

• •

· .	(((
SLUDO HOLE: MY				SIDE GOLD 2001 CAR			JECT
SAMPLE	INTE	RVAL	GOLD	SAMPLE	INTE	RVAL 7	GOLD
#	FROM	то	(PPB)	#	FROM	ТО	(PPB)
166988	216	226	38.5				
166989	236	246	33.3				
166990	246	256	30-1				
							1
							<u> </u>
							<u> </u>
							<u> </u>
						L _{an.}	

:

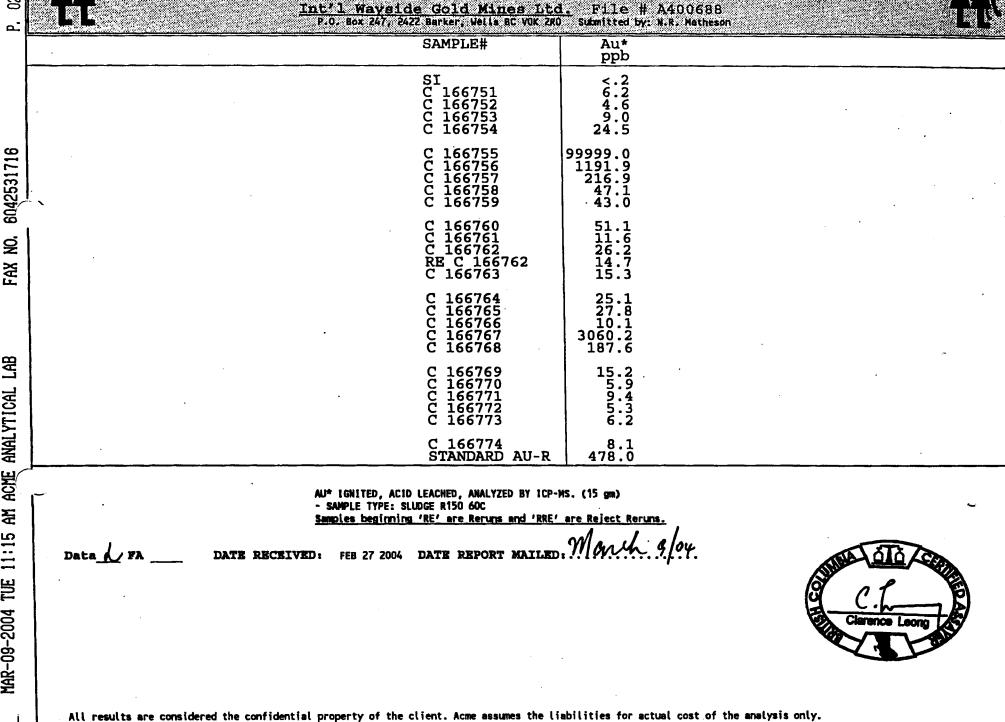
(

.

(

VALYTICAL LABORATORIES LTD. 852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 0 9002 Accredited Co.)

PHONE (604) 253-3158 FAX (604-253-1


GEOCHEMICAL AN. YSIS CERTIFICATE

02/02 _م

11:15 AM ACME ANALYTICAL LAB

MAR-09-2004 TUE

ACMB

ANALYTICAL LADORATORIES LTD. B52 F. HASTINGS ST VANCOUVER AC VGA LRG PRONE (604) 253-5158 FAXT GEOGREMICAL AALYSIS CERTIFICATE Int'l Wayside Gold Minest Ltd. PROJECT MRT 04-511 Files # A401564 5.8 mon 207; 202 PRIMET WEIER OVER 200 Automic metheson SAMPLE# Automic metheson SAMPLE# Automic metheson C166989 33 3 C1669990 33 3 C1669990 Automic metheson Automic metheson AUTOMIC TYPE: SLUDGE RISO 60C AUTOMIC TYPE: SLUDGE RISO 60C AUTOMIC TYPE: SLUDGE RISO 60C AUTOMIC TYPE: SLUDGE RISO 60C	
edited Co.) GEOCHEMICAL AALYSIS CERTIFICATE Int'l Wayside Gold Mines Ltd. PROJECT MRT-04.511 File.# A401564 P.D. Rov 207, 7422 Barker, Heile RC VOK 200 Submitted 57, Morel Mathedon SAMPLE# Au* ppb SI C166988 38.5 C166989 33.3 C166990 30.1 STANDARD AU-R 474.9 AU* IGNITED, ACID LEACHED, AMALYZED BY ICP-MS. (15 gm) - SAMPLE TYPE: SLUDGE R150 60C DATE RECEIVED: APR 20 2004 DATE REPORT MAILED:	
GEOCHEMICAL A. ALYSIS CERTIFICATE Le Gold Miness Ltd. PROJECT MRT-04*11 File # A401564 dt Hox 27; 2422 Butker; Hells HC VOK 280 Bubilited By: Horn Mathedon SAMPLE# Aut* ppb SI 2.3 C166988 38.5 C166989 33.3 C166990 30.1 STANDARD AU-R 474.9 * IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) SAMPLE TYPE: SLUDGE R150 60C APR 20 2004 DATE REPORT MAILED:	
IEMICAL AALYSIS CERTIFICATE 1053 LCd. PROJECT MRT-04*11 File # A401564 Pauker, Heild RC VOK 280 Submitted by: Norm Matheson SAMPLE# Au* ppb SI 2.3 C166988 38.5 C166989 30.1 STANDARD AU-R 474.9 EACHED, ANALYZED BY ICP-MS. (15 gm) Mate REPORT MAILED: Amil 28/04 OATE REPORT MAILED: Amil 28/04	
AU-R 474.9 YICP-MS. (15 gm)	
VIE File # A401564 More Hattegon	
11564	Y
	Clarence Leong

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

2

AMON	ID DRI	LL LO	G				1001 MOSQUITO	D PROJECT			
dill Ho	le: M	04-	12		Date: Feb	26 200	4		Sheet of	9	الرغين برادها
	1: 0'							Location:	65/4401	V V	
Ingle:	L	t5°	C	Collar:	5881491	1 59770	71 156Bm	1			
	ft (1			Taii:		1	1	1			*
ogged	by:	-					\ \ \	Graphie	c Scale : 1" =	1	
lain ntervai		Lith. code	8-C^ 52	% pyrite	Description					Notes	\prod
rom	10										
0	4.9				CASIN	16-					
								····		_	
4.9	52,1	ar7pl		0.1-			TE AND I	LESSER CARB	onactous	1	
				015	PELITE		·····				
		<u> </u>	14/250		Light qu	y thim	by to thi	thy budded, p	isoly		
·····	ļ				foliated	(quarte	avenite 1	o miterculat	Ed mith		
			24.5		dorch o	juy cant	whallons k	selfte mith lig	the guy		
			20°		silty	(quart	arente)	miterbeds. A	Kenite]
	1				to pel	te noti	is about	t 65 to 35	· complex de	forma	tion
	<u> </u>		40.7/		The a	nha ceron	s buts Fr	e weakly se	natived.	रा	22
			30°	· ·				ite vinis on] [
			· ·	·	form	about	5-7% 0	roth us fume.	These are +	=price/1	4
				L	Vhggy, foli	ation p	availed and	Foliation ob	ligne sets		[
		-		ļ	and st	vingers.	Pinte o	occurs as me	think to		
				<u> </u>	coand	gramed a	enherral / su	nphedral drisse	mmatrions		
	1	_			trace to	0.1%	some venis	s containi mp	to 2-3%	1	
		_			agentei	n selves	RAC.	ť			ļľ
				<u> </u>	0-14.0	poorly	competint	core at the	trap of		ļſ
ļ			1	<u> </u>	the dose	poor	core reco	Very 10% on Evactories	my vening		[
					vusta à	STRA BE	mkerite in	Practimes.	ч — - у	1	[

÷

•

DIAMO	ND DF	RILL LC	G		CARIBOO GOLD PROJECT 2007			
Drill Ho	ole:	MOG	-12		Date: Sheet 2 of	q		
Logged					Graphic Scale : 1" =			
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
from	to	-						
	ļ			ļ	14-16 Vingoy white quarty-fesser dobamite			Ł
	ļ			ļ	vern's and stringers 5% of vock volume, at		_	
					15.5 m D.75 m wide, vugan gnarty-dotomite veni			
<u> </u>					Umis and stringers 5% of vock volume, at 15.5 m 0.75 m vide, vuggy gnarty-dotomike veni @ 150 to cA, trale to 0.1% provide med. to c.g. outshe	Kinl_		
					18.7-18.8 2m wide quarty-omkerike ven, Trend			
			<u> </u>		is 30° to CA		_	
					20.7-20.8 2mm wide questy -ankerike veni, 28° to CA			
					0.5% monte in the wallrock			
					22.5-22.9 Viggy quarty-dolomite Veni, 5 cm wick,			
					trending 170 to CA 50 pointe institus, medium give	mod	7	
					26-28.0 at least 15% vargage quarty- Jesser dolomite		7	
					Verning 10% mehrin gemeid enhedral printe is <1 cm			
					wide vin <10% pyrite as very fine to mednin gromi	d		
					disstm.			
1	,			T	31.1-31.4 30% white quart-dolomite stringers			
					31.9-32.2 vugan querti-dolomite Veni voatse gramei	d	7	
					31.9-32.2 vuggy quarty-dolomite Veni voorse gramei ingstallike, upper vontact is pregular, Joner trands @			
					25° ka CA		7	
					33:3-33.5 about 2m wide quests - abomite veni	/		
					1 @ 20° to CA" carbon a rome public plesser igharts arente			
					host, 1-2% c.g. enkedrul fignte			
			1		34.6-34.7 Atricte fault gange 20% quart vien]	
-	1		1 ·		35-36 poorly compitint broken mp oore mith some Frult gange der 75% of this interval 1-3% pmi	tom		

DIAMO	DIAMOND DRILL LOG Drill Hole:				CARIBOO GOLD PROJECT 2003								
Drill Ha	le:				Date: Sheet 3 of	1							
Logged	l by:					Graphic Scale : 1" = '							
Main Interval		Lith, code	S - C^ シュ										
rom	to							_					
					granniel prompte drissem.			_					
					gramid promte dissem. 36.6-37.0 broken up cote, minor day gange								
					on fractures] [
52.1	74.9	plya			CARBONAGEOUS PELITE LESSER QUARTZ ARENITE								
					Very thinky bedded to lammiated carbonaceous]]						
					pelite is miterbedded mite thinky to very thinky								
					bedded slight onen quart arente.								
					Complexely deformed S2 and S3 foliations;								
					Sz overprinting (tefolding) Sz. White quarty venis form < 5% of back blume.								
					White quart venis form < 5% of bock blume.] [
	,				These are complexly holded and locally boundaria	Bad] [
					and broken up mike lenges.] [
		[Printe is about trace to 0.1% and accurs] [
			54.71	•	as medicine to wave inhedrer forbietra.] [
			0"] [
			64.5/		58.7-59,3 poorly competent section, clay gonge								
			200		on tractures finit (shear zone?] [
			68.9/		65.7-65.9 broken mp, poorly competent core] [
			0°		68.6-69.5 poorly competent cote, clay grange on			-					
					Fractives D° Es CA								
					LESSER								
74.9	103.2				QUARTZ APENITE HINDE CARBONACEOUS PELITE] · [
					Similar to 4.9-52.1] [

,					INTERNATIONAL WAYSIDE GOLD MINES LTD.			
DIAMOI	ND DI	RILL LC)G		CARIBOO GOLD PROJECT 2007	 		
Drill Ho	ole:	Mo4-	- 12		Date: Feb 27/04 Sheet 4 of 9	<u>1</u>		
Logged	d by:				Graphic Scale : 1" =			
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
from	to				k			
			77.61		Armite to petite ratio is 70 to 30. Quartz venim	i	:	
			33°		and flooding form 5 about 510% of rock volume.	1		Γ
	Τ		81.11		Track to 0.1% in the host arenite and in are.	1	1	Γ
<u> </u>	1		34"		of your rough. Fine the medmin mound.		1	F
					Below 99.4mm neases down-hole to '85-90 to 10.	1566	h- "	70
			90.5/		The graphite content prelite is vorriable from			F
	1		28-3	00	< 30% to 7 70%. Jupplite-rich seams define the	1	1	L
	1.	-	1		foliation in poorly bedded and folicted quartz armi		1	F
	1		+		A formation the participation of the second	F/	1	F
				+	95.0-95.2 white quarts venis and stringers,		1	F
					to Dom width, some trind 45° to CA "Libitelo		1	
					fine to medunin openned dissem.]	
					frue to medunin granned dissom. 96.0-96.15, to 3 m wide quartz-lesser dobom	fe –	1	Γ
					Veni, 28° to CA, mednin to c.g. inhe that pyrite]	
					(in the remi (1-2%) and fime too med. gr. anhedral			
					pyinte in comb. pelite host 3-5%]	
					97.8-98.1 several Vupay, white course ingstalline	,]	
					quarty venis, 2.5 to 4.5 cm widths, 18 to 240 to (7]	Γ
					2-3% pine to medmin gramid entertral printe in]	
					selvages of the Lost rock]	
					100.3-100.7 two quarty-lester dobonite venis]	
		ŀ			1-2.5 cm in widths, approximate trends 250 to of]	
					0.5 % med to F.g. pyrite in the host rack, also	1] .	Ĺ
					harrow commindestringers of variable or indef	tons		Γ

1

1

DIAMO	AMOND DRILL LOG CARIBOO GOLD PROJECT 2003							
Orill Ho	le:	•			Date: Sheet 5 of	9		
ogged	l by:				Graphic Scale : 1" =	•		
Main Interval		Lith. S code		% pyrite	Description	Notes		
rom	to							
					102.9-103.2 grants Stringers and veris one] :	Ł
					102.9-103.2 gunts Stringers and Vemis one to Iom with trends o'to to CA <1% pynte	,		
					fine the med- gre chisching]	
							1	Γ
103.2	124.0				QUARTZ ARENITE MINOR LARZONALEOUS PELITE]	
					Light grung moderately to thickly bedled mart			
					Light grey moderately to thrichly bedled quarty aremite anth <10-15% of dark grey carbonaceons			
	•				pelite laminitions. Cortonaceous content in oreases	down L	Je.	
					White quarts venis and stringers Form < 3% of.		1	Γ
					rock volume.	· · · ·	1	F
		1	116.5	 	Trace to <0.1% fine to medium gramed enledel		1	
			35°	1	Anbledual projecte.		1	
			119.3		Pervasive module sencitization and weak		1	
			200		debornitizations in form of 10-15% discontinuonal	2	1	
	1				distributed 1-2 mm in length korphyro blast 5.	0	1	
					distributed 1-2 mm in length porphyro blastic. 108,9=-109.0 about 2 cm wide graves- lesser dolomite]	
					veri trend is 50° to CA]	
					109.3-112. B foult prove abundant day goinge,		1	Γ
					ome to myddle		7	
	1		- <u> </u>	1	113.6-114.3 fault some		1	
					113.6 - 114.3 finit pone 113.0 - 113.2 white quarts stringers lesser deformite in quarts and in selvages 114.1 - 114.3 quarts - Jesser deformite stringers 115.2 - 118.0 poorly competent core mith rare. <15 cm			
					in quarty and in selvages			
					1K4.1-114.3 quarty - Jesser debornite stringers] .	Γ
					115.2-118,0 works competent care with rare KIFOM		1	

DIAMO	ND DRII	LL LO	G		CARIBOO GOLD PROJECT 2007			
Drill Ho	ie: Ma	ΜØ	4-12		Date: Sheet 6 of 1	9		٦
Logged	by:				Graphic Scale : 1" =			
Main Interval		Lith. code	8 - C^ 5ჯ		Description	Notes		
from	to							
					wide sections of servicite gange		:	Ŀ
					118.0 - 118.1 narrour quartz- Jesser domte venis			
					120.4-124.0 fault pone, more than 60% of this			
					interval uncists of our by core into a day grange			
124.0	135.9	P1>			CARBONACEOUS PELITE LESSER QUARTZ ARENITE			
		ar			The same is 52.1-74.9			
	•				124.0-124.6 poorly competent, broken mp interval			
					126.5-130.0 front Bove marthy soft whe with			
			134.9		126.5-124.6 poorly competent, booken mp interval 126.5-130.0 front Rove marky soft whe mith abundant graphtic garge]	
			200		131.5-132.0 partly broken - Mp care mith some finit]	
					132.1-132.2 to 3.5 m wide @ 28° to CA quantz			
					I I SCRE HOLDON DE VING VINCE DE LONA			
				·	132.7-132.9 work con retent core with seriate orange			
					133.9-134.4 most- lesser debomite mith irregular on	tacts]	
					133.4-134.4 martz-Jesser dolomite mith irregular on and vinggy gnartz armbole, 20% of vock udure 1 of this interval]	
					1 of this interval			
					a a a a a a a a a a a a a a a a a a a		* *	·7
135.9	147.1			+	OWART 2 ARENITE AND CARBONACEOUS PELITE			
				0.1		Jed		
			139.3		Thinky the moderately budged quarts akenite interbeds	eks.]	
			45°		Atmate to peter vatio is obout 50: 50.			·
			146.5	1	Trace to 0.1% medium to C.g. entetral poputer.			

		•			Bal	~		
Drill Ho					Date: Sheet 7 of	<u>4</u>		
Logged		F			Graphic Scale : 1" =	· 		
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
from	to	_						
· **· •	ļ	L	·		Dobornite pomphysoblacts 1-2mm Form <5 to			
	ļ				715% of rock volume of venecions bads, discontri	nunous		
1	L				distribution.			
·								
147.1	165.Z			7-	CARBONACEDOS PELITE AND LESSER DUMETZ APENITS			
				0.1	Very thinky pedded to amineted dark guy carbon	a cons		
ì.			151.2		peter is mittipedded with thinky to moduately			
	• 4.5		28°		bedded light grey quart orcente (quartase			
					siltstone). The petite to avenite ratio is		1	
	1		156.8/		approximatily 70:30.	-	1	
		1	46 ~		The dominant alter ation is weak sericity ation	and chl	J.F	Tiet.
		1		<u> </u>	of only interbeds.		1	ef.
 .		•	163.7	<u> </u>	Pyrite, trace to <0.1% occurs as medium to	-	1	
		1	30"	(75h	Desarse gramed enhedral discliminations (toublediet	2)	1	
	1				Dimanty- Jesser Porms < 3% of rock volume.	1	1	
					Venis are both foliation obligne and Foliation]	
			1		penallel and < 3 cm in width. These also occur]	
					as irrepulat masses [flooding.		7	
			1		The entire much is strongly deformed, the S24	roliatio	h	
	1				is warrand undulating refolded by Sz.		1	
					is wavy and undulating, refolded by 53. Borly competent broken mp core over more than	60% 01 /	this i	nter
	 		1		147.1-147.9 unmily soft we fault pone with	1	1	
	1	1			about clay youge 10% guarty-Tesser dolomite	wins	1.	<u>├</u> -
	1	1		+	152.2- 152.9 poorly competent care with minor days	smal	1	[

.

DIAMO	ND DRI	LL LO	G		CARIBOO GOLD PROJECT 2007				
Drill Ha	le:				Date: Sheet ^B of	9			
Logged	l by:				Graphic Scale : 1" =				
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes			
rom	to	·							
	ļ	ļ			153.3 - 154.6 poorly competent action, gupen	tic	:		
	ļ				and seriatic garge, findt pone				
					154.6 - 155.2 1570 gnart stringers chloritic altrat	ion			
					155.2-155.7 broken-mp core, Sincitic and				
	<u> </u>				chloritic pault gauge fint parce?				
					154.6 - 155.2 1570 gnarz stringers chloritic alterat 155.2 - 155.7 broken - mp core, Stricitic and chloritic frault gonge frult porce? 158.0 - 158.2 gnarz-fesser do to mite vem 3-5 min				
					width irregular contacts				
					158.2-160.6 fmlt pane, Joenite + graphike				
					gange				
					gange 161.4-161.6 suffling gange 164.4-164.9 grin day Coencide?) gange on fractiontes and foliation planes				
		1			164.4 - 164.9 and clay (service?) game, on fractities				
		1		1	and tolistion planes				
		1							
165.2.	183.2				ARENITE LESSER CARTSONACEOUS PELITE				
					thickly bedded medning ong- onen to light gran	1			1
			166.0		arenite (siltstrone? (green asker) interbudded mith	10 hor he	0	ond	H
		1	180	1	ARENITE LESSER CARBONACEOUS PELITE Thickly bedded, mednin gry-grun to light gry aremite (siltstrone? (grymarky) interkedded mth dark greg carbonaceous pelite. Armite to	inter	Jay	irs	(<
	1		<u> </u>		plite vations is about 60 to 40.				i L
		1	166.4]		bleak allow the states allows the states and				
	1	-	220		Weak Alonitrication Denicitrization and discontinuous debormitization as 1-2 mm				
		1	1	1	Konphynoblasts (< 5th 10°h).				
		1	172.8	1	more then 50% of this interval consists of poorly	1			,
		1	28°	<u>'</u>	competent vore.		•	•	
	1		170.6	/B0°		1			

DIAMO			G		CARIBOO GOLD PROJECT 2003					
Drill Ho					Date: Murch 1)04 Sheet 9 of	9				
Logged					Graphic Scale : 1" =	1				
Main Interval		Lith. S - C^		% pyrite	Description	Notes				
	to			Pyinta		110103				
					174.9 - 175.8 poorly competent core, day grange		÷			
ری استان سور در ا					176.3-177.0 mmbly soft core mth light					
				<u> </u>						
\ \					ny day gouge, Findet prone 177.5-178.6 Fault prove, 5% quartz mbble					
			<u> </u>		179.0-179.8 poorly competent core mith some					
					cky gouge					
					180.4 - 180.6 brdan core					
1	1.				181.1 - 183.2 poorly competint miterral, < 3%					
	1				quart unique did a slided maphitic Fractures.		1			
			1		quarty remining dichen-slided graphitic Fractures. minor day gauge, trace enhedral popule, medin gra	nd d	1			
	<u> </u>			+	f f f f f f f f f f f f f f f f f f f		1			
183.Z	1		1	1	EOH		1			
	†		1	1	t.		1			
	1		1							
•			1	1			1			
	1		1	1			1			
]			
	1]			
]			
			1	1						
]			
					· ·					
			1] ·			
[-			1	1			

•

INT	ERNATI	ONAL	WAYSI	DE GC	LD MIN	ES LTD.	ISLAN	D MOUN	TAIN	GOLD N	INES L	rd.	2003	3 CARIB	00 GOL	DPR	OJECT		DDH C	ODING	RECOR	D
HOLE	: Mor	t- 12					ZONE:							DATE:	Apri	L 161	04		SHEET:		DF: 1	
FROM -#thm	10 18 m	MOD	LITH ROOT	0L007 COL	BAND	LITHOLOGY CODE	DEPTH (N)	ANGLE DEGREES	S	FROM AND M	to Ørm	COL	ALTERATION CODE	FROM -(R) m	10 117 m	FAULT	FROM Ø m	TO Marin	CITZ STRINGER CODE	FROM A in	10	SULPHD %
4.9	છ્યા		arypi	wyorg	t-th					4.9	52.1		weak K	35	36	Fz	14	16	5% Q 5	٦٠٩	52.1	10.1-0.
52.1	74.9	9F			VE >t									58.7	59.3	F2.	22.5	22.6	502 Qs	52.1	74.9	tr0.
74.9	103.2		T.		t-th		•							109.3	112.8	<i>∓</i> 2	26	28	15% C.S 30%	74.9	103.Z	0.1-0.
103.2	124.0		arypl	w you	m-th					103.2	124.0		Weak/mod KD weak	113.6	114.3	‡	31.	31.4	Q5°°	103.2	124.0	<u>tr0</u>
124.0	135.9	9F	pisar	9470	vt>t									120.4	124.0	F2	31.9	32.Z	Q 1 20%	124.0	135.9	tr0.
135.9	147.1		ar>pl	wygy						135.9	147.1		weak D weak	126.5	130.0	F2	34.6	34.7	as t	135.9	147.1	tr0
147-1	165.Z	gf:	PIYAH	gy m	vt>m					147.1	165.2		KM	141. \	147.9	Fz	95	95.Z	Q _S	147.1	165.Z	<u>tr</u> 0
165.2	183.Z		arzpl	WYSY	th >vt					165.2	(93.2		KDM	153.3	154.6	‡-2	٩6	96.15	L <u>e</u>		ļ	ļ
			<u> </u>	ļ										158.2	160.6	FZ	97.8	98.1	ų		<u> </u>	
														176.3	177.0	Fz	1∞.3	100,7			Ļ	<u> </u>
•				ļ								<u> </u>		177.5	178.6	Fz	102.9	103.Z	U		<u> </u>	ļ
									_	· · · · ·							113.0	113.Z	r		Ļ	<u> </u>
				<u> </u>													114.1	114.3	<u>ل</u> ر		Ļ	L
																	1180	118,1	4 20°6		ļ	ļ
	ļ		<u> </u>	L													133.4	134.4	QS			ļ
					<u> </u>			ļ	ļ					ļ			154,6	155.2	Q's T		<u> </u>	ļ
			<u> </u>					ļ									(<u>5</u> 8	15B.Z	Rs			
·			<u> </u>					ļ					ļ				174.5	178.6	Q 5 %			
				L				<u> </u>									(81.1	183.z	Q5 4			
													·									

Ì

		Ć	•		
		ISLA		IN GOLD	MINES LTD.
HOLE: M	04-12	CORE S	AMPLE REC		2002 PROJECT
SAMPLE #	INTE FROM	RVAL TO	RECOVERY	GOLD	An SAMPLE DESCRIPTION
39197	. 14	16	2	0.03	quarty arente > conto pelite Sto outrit vonist do
198	16	18	2	< 0.01	4 4 0.1% Pg
199	18	20	2	0.04	и ч.
39200	20	22	2	0.06	n l(
201	22	24	2	0.18	11 0.5% pg
202	26.2	28.2	2	0.12	- 01499412 P
203	28.2	30.2	2	<0.01	cours perfete > quarty artite 0.5%
204	30.2	32.2	2	0.21	cremte ? cents peter 0.1-0.56
205	32.2	34.2	. 2	0.15	1 13% quarty-dolven's
206	34.2	36.2	2	0.07	N 11 1-2%
207	94.3	96.3	2	0.21	conto pelite > aremite < 5% quarts = dolomite Venis, 0.5-7.0% p
208	96.3	98.3	Z	0.05	(L 11 L 1)
209	98.3	100.3	Z .	0.05	4 < 5% growty ± de (om veni 11 30,5-1% printe
39 210	100.3	102.3	2	0.62 0.02	11 3% pnorth vomis
39211	102.3	104.3	2	40.01	
39212	17.6	119.6	2.0	0.02	11 h 11 quart overher > carb. pelite 10-6 quartz Venis, 0.1 Carbon · pelite > quartz aremite <500 quart viris io.5
39213	131.1	134.5	3.4	< 0.01	Carbon . pelite? marts aremite
39214	158	160	2,0	0-18	H 4
		:	-		
- 					
		ľ			
	-6 				
	, ,				

ACME NINTICAL LABORATORIES LTD.

02/02

3 •• •

ASSAY CERTIFICATE Island Mountain Gold Mines Ltd., File # A400850

852 E. HASTINGS ST

BNCOUVER BC VOA 1R6

PHONE (604) 253-3158 FAX (

26-21

	SAMPLE#	Au** gm/mt	
	SI 39197 39198 39199 39200	<.01 .03 <.01 .04 .06	
	39201 39202 39203 39204 39205	.18 .12 <.01 .21 .15	M04-12
	39206 39207 39208 RE 39208 RRE 39208	.07 .21 .05 .02 .02	
	39209 39210 39211 39212 39213	.05 .62 <.01 .02 <.01	
Mat-11	39214 39215 39216 STANDARD AU-1	.18 <.01 <.01 3.41	
GROUP 6 - PRECIOUS METALS BY - SANPLE TYPE: CORE R150 60C Samples beginning 'RE' are R	FIRE ASSAY FROM 1 A.T. SAMPL eruns and 'RRE' are Reject Re	runs.	•
Data FA DATE RECEIVED: MAR 9 200	4 DATE REPORT MAILED	, 11/min 15	10.5 OTO CERT
			Clarence Leong
			Clarence Leong
	GROUP 6 - PRECIOUS METALS BY - SAMPLE TYPE: CORE R150 600 Samples beginning 'RE' are R	SAMPLE# SI 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39206 39207 39208 REE 39208 REE 39208 RRE 39208 39210 39211 39212 39212 39212 39213 39214 39215 39214 39215 39214 39215 39214 39215 39214 39215 39214 39215 39214 39215 39214 39215 39216 39216 39210 39210 39211 39212 39212 39213 39214 39215 39216 39216 39216 39210 39210 39211 39212 39213 39214 39215 39216 39216 39216 39216 39217 39216 39216 39217 39218 3928 39	ST <.01 39197 .03 39198 <.01 39200 .06 39201 .18 39202 .12 39203 <.01 39204 .21 39205 .15 39206 .07 39208 .05 RE 39208 .02 39210 .62 39210 .62 39210 .62 39210 .62 39211 .01 39212 .02 39213 .01 39214 .18 MC4-II .39216 .01 .39213 .01 .39214 .02 .39213 .01 .39216 .01 .01 .39216 .01 .341 .01 .39216 .01 .341 .01 .341 .01 .341 .01

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

MRT.	04-	12			(
	INTER	RNATION	AL WAYS	SIDE GOLD			
SLUDO HOLE:	GE SAMP	LE RECO	ORD	2001 CAR SHEET:	JECT		
SAMPLE	INTE		GOLD	SAMPLE	INTER		GOLD
#	FROM	ТО	(PPB)	#	FROM	то	(PPB)
166775	16	26	- 28.0 -				
165716	26	36	702.7				
166277	36	46	62.4			····	
166778	46	.56	131.8				
166779	56	66	1539.0			A	
166280	66	76	9187.9				
16678/	76	86	4805.0				
166782	88	96	549.4				
166783	96	106	819.8				
166784	106	116	766.9				
166785	116	126	211.7				
166286	126	136	190.1				
16287	136	146	18.0				
166788	146	156	25.2				
166789	156	166	27.9				
166290	166	176	18.4				
166791	176	186	16.6				
166792	186	196	25.3				
166793	196	206	17.5				
166794		216	45.8				
166795	216	226	7.9				
166296	226	236	9.8				
166797	236	246	9.8				
166798		256	9.8				
166798	a second s	266	53.1				

(

MRT 04-12

(

INTERNATIONAL WAYSIDE GOLD MINES LTD.											
SLUD Hole:	GE SAMP	LE RECO	RD	2001 CARIBOO GOLD PROJECT SHEET: OF:							
SAMPLE	INTE	RVAL	GOLD	SAMPLE	INTEF	RVAL	GOLD				
#	FROM	ТО	(PPB)	#	FROM	то	(PPB)				
166800	266	276	47.5			••••••					
166801	276	286	15.2			<u> </u>					
166802	286	286	19.8								
N.S.	286	306									
166803	306	316	110.1								
166804	316	326	1037.8			. <u>.</u>					
166805	326	336	.90.0			<u></u>					
166806	336	346	96.8								
166807	346	356	27.8				<u> </u>				
166808	356	366	28.9								
166809	366	376	42.8								
166810	376	386	18.9								
16681/	386	396	17.1								
1668/2	396	406	10.1								
166813	406	416	15.1								
166814	416	426	6.4								
166815	426	436	194.5								
N.S.	436	446	72.4		· · · · · · · · · · · · · · · · · · ·						
166816	446	456	216.6								
166817	456	466	28.6								
166818	466	476	70.5								
166819	476	486	18.5	_							
1668-20	4.86	496	14.4								
166821	496	506	19.0								
166822	506	516	53.4	1							

Ĵ

MRTOA-IC

(

INTERNATIONAL WAYSIDE GOLD MINES LTD.									
SLUD HOLE:	ge samp	PLE RECO	ORD	2001 CAR SHEET:	BOO GO	LD PROJ OF:	ECT		
SAMPLE	INTE	RVAL	GOLD	SAMPLE	INTER		GOLD		
#	FROM	TO	(PPB)	#	FROM	то	(PPB)		
166823	516	526	195.2						
166829	526	536	Ger.3						
166825	536	546	482.4						
166826	546	556	13.9						
166827	556	566	20.8						
166828	566	576	18.1						
N.S.	576	586							
N.S.	586	546							
166829	596	606	22.9						
						ļ			
						ļ			
				•	· .				

. . .

1253-1716

VALYTICAL LABORATORIES LTD. 852 S. HASTINGS S7 VANCOUVER BC VGA 1R6 PHONE(604)253-3158 FAX(.do 9003 Ameredited Co.) GEOCHEMICAL ANALYEIS CERTIFICATE GEOCHEMICAL ANALYSIS CERTIFICATE

02/03 ۵.

•

ACM

Int'l Waysids Gold Mines Ltd. File # A400741 Page 1. P.G. Kow 247, 2422 Gaster, Welts HC VOK 2RG Submitted by: B. Denney

d.	SAMPLE#		Sample gm		
	SI C 166775 C 166776 C 166777 C 166778	<.2 28.0 702.7 62.4 131.8	15 15 15 15 15		
6042531716	C 166779 C 166780 C 166781 C 166782 C 166783	1539.0 9187.9 4805.0 549.4 819.8	15 15 15 15 15		· ·
FAX NO. 60	C 166784 C 166785 C 166786 C 166787 C 166788	766.9 211.7 190.1 18.0 25.2	15 15 15 15 15		
	C 166789 C 166790 RE C 166790 C 166791 C 166792	27.9 18.4 15.7 16.6 25.3	15 15 15 15 15		
ANALYTICAL LAB	C 166793 C 166794 C 166795 C 166795 C 166796 C 166797	17.5 45.8 7.9 9.8 9.8	15 15 15 15 15 15		
ACME ANALY	C 166798 C 166799 C 166800 C 166801 C 166802	9.8 53.1 47.5 15.2 19.8	15 15 15 15 15		
01:45 PM	C 166803 C 166804 C 166805 C 166805 C 166806 C 166807	110.1 1037.8 90.0 96.8 27.8	15 15 15 15 15		•
THU	STANDARD AU-R	472.6	15		
MAR-11-2004 TF	AU* IGNITED, ACID LEACHED, AMALYZED BY - SAMPLE TYPE: SLUDGE R150 60C <u>Samples beginning 'RE' are Reruns and</u> DataFA DATE RECEIVED: MAR 3 2004 DATE REPORT M	ICP-WS. (15 'RRE' are Re	gm) <u>lect Reruns.</u>		Clarence Leong
	All results are considered the confidential property of the client. Acme assumes t	he liabiliti	es for actual cost o	of the analysis only.	

03/03

Int'l Wayside Gold Mines Ltd. FILE # A400741

Page 2

3

Data_____FA

ö	ADE ANLYTICAL		ADE MALYTKAL
~	SAMPLE#	Au* Samp ppb	le Jm
	C 166808 C 166809 C 166810 C 166811 C 166812	28.91542.81518.91517.11510.115	.0 .0 .0 .0
6042531716	C 166813 C 166814 C 166815 C 166815 C 166816 C 166817	15.1 15 6.4 15 196.5 15 72.4 15 216.6 15	.0 .0 .0 .0
NO.	C 166818 RB C 166818 C 166819 C 166820 C 166821	28.6 15 70.5 15 18.5 15 16.4 15 19.0 15	.0 .0 .0 .0
FAX	C 166822 C 166823 C 166824 C 166825 C 166825 C 166826	53.4 15 195.2 15 666.3 15 482.4 15 13.9 7	.0 .0 .0 .5
AL LAB	C 166827 C 166828 C 166829 STANDARD AU-R	20.8 15 18.1 15 22.9 15 486.8 15	.0 .0 .0
ANALYTICAL	Sample type: SLUDGE R150 60C. Samples beginning	<u>i 'RE' are R</u>	eruns and 'RRE' are Reject Reruns.
PM ACME			
THU 01:46			
MAR-11-2004			
W			1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only,

DIAMO	ND DRI	LL LO	G		والمراجع المتحدث والمحادث الم			2001 MOSQU	ITO PRO	JECT								
Drill Ho	le: M	04-	13		Date:	M	arch 9/20	004			Sheet <u>/</u> of	5						
Azimut	h: 2	30~			Nor	thing	Easting	Elevation		Location:	550E/ 46	ON						
Angle:		-45	° (Collar:	588	1546	59 761	85 157	2 m	<u></u>								
		23.7		Tail:			1.	1	1		· · · · · · · · · · · · · · · · · · ·			, ,				
Logge	l by:		Duba							Graph	ic Scale : 1" =	•						
Main Interval		Lith. code	8-C^ 52	% pyrite	Descrip	otion						Notes	Γ	Γ				
from	to																	
0	9.1			 	CA	SING	·			······			[
				 				*					1	L				
9.1	123.7		11.0	tr-al							acrows per	ITE						
ļ	·	_	900	 				in this					un -					
	<u> </u>	_	17.5	ļ	gno	<u>nt</u>	arente.	mterleye	red m	the dark	guery " thm	. In bid						
		<u> </u>	830	┟───							Enter to	0						
		+	28.9/ 70°		1			s about			and the second							
	+	-									(, whereas		4					
	<u> </u>		38.1		1 1						roliation (5	2).	-					
			75°					bolomite (مهما بالبارية المحمد الم			4	-				
		+	47.71	<u> </u>	4						nically folia	tion	4	 				
	+	+	800					: variable					\mathbf{I}	-				
	+	+	56.7 85*	+				riente do		the second s			1	\vdash				
	+	+	68.9/	+									ł					
}	+	+	750			<u>a mh</u>	value	gths pay	0 angro 0	11325 <u>2</u>	2 Ko 126]					
		1	75 8/.3/	+	D	i La	con to I	- ic var	mpoblas	alling has	continuously	- mspril	m	nga				
	+	+	740	·		d.	loce the	to oth	port-	ra king of	trace to the	1 this	in the					
	+		90.8		+	<u>r,</u>			ro In	- composition of c	7. Typicell							

1.

Drill Ho	le:				Date: Sheet 2 of 5	5		
Logged	by:				Graphic Scale : 1" =			
Main Interval			९ - С^ इ _र	% pyrite	Description	Notes		
rom	to	ļ						
					9.6-9.8 broken up vore, 1-2% printe med georried unheden	1,	:	
			99.4		rusty Folicitian Frachinke Ann Faces	·		
			80°		11.8 - 12.0 Vaggy, insty Fractured quarte, Vem < 106 dole	mite		1
			105.6		upper and lower contacts trend @ 20 to C.A.	Canke	rik	<u>D</u>
			780		1 h enhedral, and gramid prighte it the veri			
			117.7/		and 5% in the selvages (< 0.5 cm wide).			Γ
			740		12.85-12.9 3-4 m wide Folicitian parallel (~ 85°to	C54/	1	
			123.5		Venstry generity veni, 2-3% printe in the host carbona	cons		
		-	7.00		pelite quart armite		1	Γ
	1				14.3-14.6 20% quart mildle, rusty, white 3.5%	1 serie	1	\vdash
	1	1			mednin enlechal pyinte		1	
	<u> </u>				15.2-15.5 dark guy to known day gange	1	1	
	<u> </u>				Foult Bone	1	1	F
	+	-		0.5	16.0- 17.1 poorly competient interval, 30% mity		1	
	+	+	<u> </u>		white strongly oxidized, Fractionred quarter veri		1	\vdash
					material mostly smoke host is gnattose pelite		1	F
	<u> </u>			<u> </u>	(quartinte), 0.5% fine gramid to med.g. enhedral			F
			}		18.5-18.7 graphitic gange, 5th narrow, white	<u>'</u>	1	\vdash
			<u> </u>		quart vinis, fault pone	-	1	
				<u> </u>	20.0-20.1 foliation obligne gnout-lesser delomite	+	1	┢
	+		<u> </u>		Veni, 5-15° to CA trend		-	-
	+		<u> </u>	<u> </u>			1	\vdash
·····			+	0.3	20.1-20.2 mashy cumbly core with day ponge	+	-	\vdash
<u></u>				10.3	20-2-20.6 quart - Lesser (< 5%) ankerifi verin, Poliation obligne, menny contacts to 0.3% in the most rock undulation	1	-	-

.

undultur

DIAMOND DRILL LOG CARIBOO GOLD PROJECT 2003										
		0413		Date: Sheet 3 of 5						
Logged	d by:			Graphic Scale : 1" =	· · · · · · · · · · · · · · · · · · ·					
Main Interval		Lith. S code	- C^ % pyrite	Description	Notes					
from	to						L			
	ļ			21.5-22.0 approximately 50% quarty - < 5% dolomite		:	Ŀ			
				Conkerite) atringers vegage 2-3% fine to mednim						
<u></u>				grame'd pyrite in the wall rock (through bedded		7	Γ			
				Aremte pelite)						
				29.6-34.2 poorly competent broken up whe over	1	1				
				most if this section, mimor mashing, day goinge						
				in graphitic polite (32.3-34.2)]					
	<u> </u>		1-2	34.8-35.3 about 7-10% rusty white foliation						
				oblique quarty veris dolomite roman trated in the		7	Γ			
				rims (3-5%) 1-2% pyrite in the host-rock		1	Γ			
				35.9-36.1 viggy white quart veri 3 cm wide						
				contacts are unchilating approximate frind is 20 to CA		1				
			0,5%	contacts are unchilding approximate frend is 20 to CA 36.8 - 37.0 Vuggy to 3.5-4 m vide milly quarte - 2-3% dolomte (mkerite?) Voni, uneven contacts, approxim						
				2-3% dolomte (mkink?) von, uneven contacts approxim	nte					
				trend is 15-170 to CA, to 0.5% printe, med. grammed enhedred	el,					
				<0.1% chalcopyinte 40.0-41.0 white quarty Veni opernoximate friend of			Γ			
				univers contact is about 20° to cA rastomite growth			Γ			
				at the veni walls		7	ſ			
				45.0 - 45.15 rusty white quarty Veni-dolomitized			ſ			
	1			and arente prograi poorly composited core		1	ſ			
			5	145.65-45 80 tracticid mate amonte - deponte			T			
				Comberite) stringers, 5% very warse enhedring pynte	1	-	ſ			
	1			> 8mm in length		7	Γ			

DIAMON	ID DRI	LL LC) <u>G</u>		CARIBOO GOLD PROJECT 2007		
Drill Ho	le:				Date: Sheet 4 of 5		
Logged	by:				Graphic Scale : 1" = '		
Main Interval		Lith. code	S - C^	% pyrite	Description Note	15	
from	to	[·					
				0.5-1		:	ŀ.
					parallel and folicition obligne in quarty aremtel		
					carbon accons petite host, 0.5-1% pyrite as fine		
			L		to medine gromed subhedral dristen		
		<u> </u>			50.0-50.2 milling quart very broken were at the contact		
				0.1-	50.2-52.5 < 5% gnortz vanis, lesser datomite, both		
				6.3	Foliation parallel and foliation oblight 0.1 to 0.3% py	te	
					mednin gronned, enhedral		
					55.4-55.5 day gauge Tarrow sherr fault pore?	فت	
					60.0-60.3 poorly competent core with minor day Chericity)		
					gange Vingar		
_					63.4-63.5 harrow white mart stringers, 50% of		
					rock volume thisty yellow day gouge 0.5h prite		
		1	1		in Vings, track galena (medmin gu	m)	
			1		in Vings, trail galena (medmin gu 69.7 - 70.0 poorly vongetent core minor day gonge on frace 70.2 - 70.4 vinggy, white quarts veri, 2cm width, 25-28° to CA, dolomite + pynte (<0.1%) in the	tures	
		1	1	0.1	70.2-70.4 vugny white anget Ven 20m width,		
		1			25-28° to CA defamilie + printe (<0.1%) in the		
			1		tims		
		1			70.9-71.1 poorly competent core		
			1	40.5	172.4-72.5 Poliation oblight the 50m mode marte		
		1	1		stringers muchly folded visity Fractures (FR-skide		Γ
		1	1		and/or unkerite?) < 0.5% intertial Ambhedral		Γ
					fine to medmin gramed pyrite		· Г
	· ·		1		85.8-86.1 verte vagging grant verni, approximate trank		
	L		_				

DIAMO	ND DRI	LL LC)G		CARIBOO GOLD PROJECT 2007			
Drill Ho	le: Ma	<u>-</u> уч	13		Date: Sheet 5 of 5	5		
Logged					Graphic Scale : 1" = '			
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
from	to	·						
					is 10° ko VA		:	·
					93.0-93.4 poorly competent core fronth youge			
!			l		20% quarty verning, frind is 080° to cA			
J					94.2-95.8 poorly competent when the than 75%			
				ļ	of this interval soft medmin gren day gange fault			
	ļ	ļ	ļ	ļ	some <quants arbuilte<="" td=""><td></td><td></td><td></td></quants>			
	 			0.5%	pone <quartz armite<br="">104.3-104.9 graphitic petite & the contact mth</quartz>			
	·				40 cm will grave Van poorly competent core with day	Jonge	2	
				(contact will atomile @ 48° to CA (104.3m) 0.5% m.g. ppi	anthe	ha	2
	Ì				104.9 - 105.3 broken parosly competent core, white	1		
					quartz veni material, trace to 0.1% fine grand pointe]	
					anantz veni material, trace to 0.1% fine grand pointe 105.3-105.4 faulted lower contact, highly graphitic			
					pelite		ļ	
			<u> </u>	<0.32	105.4-109.5 guart aremite materialded mith Jesser			
ĩ					conformacions pulite 5% harrow, quarte - 40 to 15%			
					dolomite venis and strikgers modulately dolomitice	ł		
					as replacement laminal apparted with quarty			
					ovenite]	
					109.5-110.0 vambly soft core mill failt gauge,]	
					118.2-118.3 Foliation knowled, 65 to CA, quarty-lesson ashometers	mit] read	
1					5 cm in width]	
123.7					EoH			
							·	

IOLE	#: MO	4-13					ZONE:							DATE:	April	- 161	04		SHEET:	1 0	DF: 1	
FROM (ft)	TO (70)			01007	BAND	LITHOLOGY CODE	DEPTH (%)	ANGLE DEGREES	S	FROM (11)	TO EN	COL	ALTERATION	FROM (%)			FROM (P0	TO (R)	CODE	FROM (%)	-	8119H
9.1	123.7		arypi							٩.١	123.7		Werk KD	15.2	15.5	Fz	11.8	12.0	Q v	٩.(123.7	tı
														18.5	18.7	FZ	20.0	20.1	QV			
	1													93.0	93.4	HN	20.2	20.6	QV			
<u>.</u>	1		1												95.8	1	•	50.2				
<u>.</u>															110.0		85.8	86.1	ØV			
	1		1															105.3	<u>و</u> .,			
	1		1											[14.3	14.6	20%		1	
								T						1				17.1	_ 301		1	
																		63.5	502			1
														[70.2	70.3	35% Qs			1
	1		1														72.4	72.5	Q5 25%			
	1																		Q 50%		·	
	1																					1
						 																
	1		1			1		1														1
	1		1																		1	
	1													1							1	1
	1		1											1								1
										[1	
	<u> </u>		1		<u> </u>									 								

.

}

.

					$\overline{)}$
		ISLA	ND MOUNTA	IN GOLD	MINES LTD.
HOLE: M	104-13		AMPLE REC March 9 104	ORD	2002 PROJECT
SAMPLE #	INTE FROM	RVAL TO	RECOVERY (FEET)	GOLD	ton SAMPLE DESCRIPTION
39 227 2.	11	13	λ	0.36	quart arente 7 carb pelite 5% qualt- dolon venis p.5
228	13	15	2	0.02	<3.9 purt-dolan vinis 0.1-0.5
229	15	17_	. 1.75	0.03	" 50% quarty-adam vering the go
230	20	72.0	2.0	0.15	10% quart- meteric veris, of orenite pulity delimite eltered test 0.1-0.5%
231	34.8	36.8	2	2.67	< 5% quant-lescer dolon venis, trad-0.1%
232	36.8	38.8	Z	0.13	h u
<u> </u>	40.5	42.5	<u>;</u> 2	0.06	i k U
234	42.5	44.5	2	0.01	h h ji
235	44.5	46.5	2 ·	0.09	n k u
39:236	46.5	48.5	2 :	0.24	< 5% quarts vernis, arhute public host
237	48.5	50.5	2	0.01	<3% quartz venis, track to 0.1% py
39 238	570.5	52.5	2,0	0.43	u u
39239	85.Z	87.2	2.0	0.22	10% quantz vonis, gz wenites pelite
39240	103.6	1049	1.3	0.05	carb pilite squarts arente, 0.5%
241	104.9	105.3	0.4	0.07	white quartz veri, tr0.1% My, mpl
242	105.3	106.5	1.2	0.03	quartz aremte > carb pelite dolom Altered
39 243	106.5	108,5	2	0.02	quartz aremte > caus pelite dolom altered, qtz-arenete < cous pelite dolom trill <5 h quarts venis, 0.5 h
					• > •
			•		
					ł

ACME ANALYTICAL LABORATORIES LTD. '90 9002 Accredited Co.)

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 ASSAY RTIFICATE

PHONE (604) 253-3158 PAX (604) 253-1715

P. 02/02

FAX NO. 6042531716

MAR-26-2004 FRI 01:53 PM ACME ANALYTICAL LAB

TT Int'l W	P.O. Box 247, 2422 Barker, We	File # A400976 Lis BC VOK 2R0	
	SAMPLE#	Au** gm/mt	
	SI 39217 39218 39219 39220	<.01 .02 <.01 .06 .04	
	39221 39222 39223 39224 39225	.09 .01 .01 <.01 .21	:
	39226 39227 39228 RE 39228 RRE 39228 RRE 39228	<.01 .36 .02 .02 .03	
	39229 39230 39231 - 39232 39233	.03 .15 2.67 .13 .06	
	39234 39235 39236 39237 39238	.01 Mo4-13 .09 .24 .01 .43	
	39239 39240 39241 39242 39243	.22 .05 .07 .03 .02	
	STANDARD AU-1	3.42	
- SAMPLE TYPE: CORE R1 Samples beginning (RE)	ALS BY FIRE ASSAY FROM 1 A.T. SAMPLE 50 60C <u>are Reruns and 'RRE' are Reject Re</u> 2004 DATE REPORT MAILED:	runs,	Ciarence Leong
All results are considered the confidential property o	f the client. Acme assumes the liab	ilities for actual cost of the analys	is only.

		•)		
· ·		INTE	RNATION	AL WAY	SIDE GOLD	MINES L	.TD.	
	SLUD Hole: //	GE SAMF RT=04/	PLE RECO	ORD	2001 CAR	IBOO GO		
	SAMPLE" #		RVAL /	GOLD (PPB)	SAMPLE #	INTE FROM	RVAL TO	GOLD (PPB)
	166830.	56.	66.	148.5				(, , , , , , , , , , , , , , , , , , ,
	166831.	66.	76.	81.4				
	1668 32.	46.	86.	842.7				·
	1668 33.	86.	96,	359.4				
	1668 34.	96.	106.	5709.1				
	166835.	106.	116.	179.7				
	1668 36.	116.	126.	501.4				
	1668.37.	126.	136.	1058.6				
	166838 <u>(V-5</u>	136.	146.					
	166839.	146.	156.	1778.4		_		
	166840N.S.	156.	166.					
	166841. (N.S)	166.	176.					
	166842.		186.	38.6				
	166843.	186.	196.	234.3			· · · · · · · · · · · · · · · · · · ·	
	166844 (N.S			·				
	166845.			140.4				
	166846.		226					
	166847.							
				5455.2				
	166849							
	1668 50.	256.		14.7				
	166851.			5325.5			. <u></u>	
	166852			123.0			<u></u>	
	166853.	286.	276.	18.7				

:

)			.1		
	INTE	RNATION	IAL WAY	SIDE GOLD	MINES L	TD.	
	GE SAMF	PLE RECO	DRD	2001 CAR	IBOO GO	LD PRO. of:	IECT
SAMPLE #		RVAL TO	GOLD (PPB)	SAMPLE #	INTE FROM	RVAL TO	GOLD (PPB)
66982	196.	206.	4.1		1100		
66983	216	226.	357.8				
66984	346.	356	41.7				
66985	366.	376.	202.1				
66986	376.	386,	14.8				
66987	386,	396.	474.7				
							·
		. <u> </u>					
					·		
	· · · · · ·						

(

(ISO 3002 Ageredited Co.) VANCOUVER BC. V6A 1R6 852 BIRASTINGS ST GEOCHEMICAL ANALYEIS CERTIFICATE Int'l Wayside Gold Mines Ltd. PROJECT MRT-04-13 File # A408987

Prove Box 2447 (9422) BBCKGY / BBCL9 BBC 400 (2KU	
SAMPLE#	Au* ppb
SI	<.2
C 166830	148.5
C 166831	81.4
C 166832	842.7
C 166833	359.4
C 166834	5709.1
C 166835	179.7
C 166836	506.4
C 166837	1058.6
C 166839	1778.4
C 166842	38.6
C 166843	234.3
C 166845	140.4
C 166846	39.4
RE C 166846	20.1
C 166847	5.5
C 166848	5455.2
C 166849	775.8
C 166850	16.7
C 166851	5325.5
C 166852	123.0
C 166853	18.7
STANDARD AU-R	460.0
AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-	45, (15 gm)

- SAMPLE TYPE: SLUDGE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. DATE REPORT MAILED: Mar 23/2004

Data M FA

DATE RECEIVED: MAR 17 2004

02/02

പ്

A042531716

FAX NO.

MAR-23-2004 TUE 03:51 PM ACME ANALYTICAL LAB

i

1

.

M Int/1 Wayside Gold Mines Ltd. PROJECT NET 04-13 File # A401565 SAMPLE# Au* SAMPLE# Au* SI 65982 Ci 66983 357.8 Ci 66983 357.8 Ci 66983 202.1 Ci 66983 202.1 Ci 66986 16.8 Ci 66986 16.9 STANDARD AU-R 474.7	ACMB A'	YTICAL LABORATORIES LTD. 9002 Accredited Co.)	852 E. HASTINGS ST. ' GEOCHEMICAL ANALYS	,	PHONE (604) 253-3158 FAX (604)	-1716
SI <.5 C166982 4.1 C166983 357.8 C166984 61.7 C166985 202.1 C166986 16.8 C166987 39.9 STANDARD AU-R 474.7 AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) - SAMPLE TYPE: SLUDGE R150 60C Data_AFA DATE RECEIVED: APR 20 2004 DATE REPORT MAILED: APR 20 2004 DATE REPORT	11	<u>Int'l Wayside</u> P.O.			e # A401565 eson	ŤŤ
C166984 C166985 C166985 C166985 C166987 STANDARD AU-R 474.7 AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) - SAMPLE TYPE: SLUDGE R150 60C Data_/FA DATE RECEIVED: APR 20 2004 DATE REPORT MAILED:			· · · · · · · · · · · · · · · · · · ·	ppb		
C166987 STANDARD AU-R 474.7 AU* IGNITED, ACID LEACHED, ANALYZED BY ICP-MS. (15 gm) - SAMPLE TYPE: SLUDGE R150 60C Data_/FA DATE RECEIVED: APR 20 2004 DATE REPORT MAILED:			SI C166982 C166983 C166984 C166985	<.5 4.1 357.8 61.7 202.1		
Data_/FA DATE RECEIVED: APR 20 2004 DATE REPORT MAILED:			C166987	16.8 39.9 -R 474.7		
DATA DATA RECEIVEDT APR 20 2004 DATA REPORT MAILEDT	ĺĊ`	AU* 10 - SAMI	NITED, ACID LEACHED, ANALYZED BY I	A .	·	
Clarence Leong	Data_/	FA DATE RECEIVED: A	PR 20 2004 DATE REPORT MAIL	ED. 1m / 28/04	JUNEA OTO CERTA	
					Clarence Leong	
					The second se	
	1					
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.		a an considered the confidential scane	new of the client Arma accumes the	a lighilities for actual cost of	of the analysis only.	

ŝ

DIAMO	ND DRII		G		CARIBOO GOLD PROJECT 2003			
Drill Ho	le: h	at - 1	4		Date: MNRL 13 2004 Sheet 1 of 12	-		
Azimutł	1: 20	150			Northing Easting Elevation Location: 46°E/ 3407	V		
Angle:	L	t5°	(Collar:	5881536 597536 1565 m			
	96.0F	t (2	(72m)					·
Logged					Graphic Scale : 1" = '			
Main Interval		Lith. code	S - C^	% pyrite	Description 0-9.0 CASING	Notes		
	to							0
.9.0	997	arzp		tr-	QUARTZ ARENITE UTSER CHUORITIC AND			
		•		6.1%	MARHITIC PEUTE list grag			
			6/40	tr.po	Thinky to thickly bed hel gover attente is interpedde	d		
					N/ Very Humily pedded / lashimited chloritic and grychitic	pehte	ļ	
			13/35		Aremte to pelle ratio is variable and allevages 60 to 40.	4		
					Alteration is werk dominantly sencitization	<u> </u>		
			18/300		Montheatron and dobornitization. Dokomite		ļ	
					occurs as 1 to 2 mm in lengths popphyroblasts			_
			29/38°		discontinuously distributed.			<u>†</u>
		ļ			Aconacions bells are weakly policited (s2),			
					Jonersky consistent @ 35-45 to C.A.			
l 					Durants visits and stringers form on average < 506			-
			ļ		of rock volume. These are commonly toliution			
· · · ·			ļ		porallel (45-40 min width) and @ right male to folia	tion.	i i	•
					Hodhate oxidation of fracture surfaces to B.Om	•	J.	
ļ				ļ	Pynte is passerated with quests vening. Trace- <0.1 7.0-7.4 40 m vide white quests veni, Fe-oxide	<u>% m.c</u>	·g·	-
				 	7.0-7.4 40 m will white quarts very For oxide		-73 J	ine .
		ļ	ļ	ļ	stomed Practures surfaces, contacts are 35 to 45			
		 	_		to CA (orthogonal sett)			-
L	ŀ		<u> </u>	<u> </u>	17.5-17.6 2.5 cm will month vom, trend 11 to Folig	tion		_

* That po drishminitions and slivers.

in way with

. .

)rill Ho	e:	104.	-14		Date: Sheet 2 of	2	
ogged	by:		i		Graphic Scale : 1" =		
Main nterval		Lith. code	5.C^ 52	% pyrite	Description	Notes	
mon	to						
<u> </u>	ļ				Bus to the ca		
	ļ			3-4		<u>i</u>	
····	ļ				@ 45° to CA 3-4% wave gr. printe @ the		
	ļ	_			imper contact inhimal and head a		
			32/45°		21.0 - 21.1 10 m wide quarter veni, inpeper contact		
·····		_			is @ 45° and lower @ 65° to CA.		
	<u> </u>			5	22.5-22.9 your will quarte veri foliation !!		
	· .		41.1 45		@ 470 to CA (appen contact) over contact		
					is obdarell by messive pyrite (~5%). Hend is approximately 60-65° to CA true C.g. pyrhotic 23.5-23.6 2.5 m wide or thogonal veri		
					approximately 60-65° to CA true C.g. pyrhoti		·
			49 45°		23.5-23.6 2.5 m wide or thogonal vini,		
	Ι				trend is 38° to CA to 5% m.g. enheural py in		
		bed	min/fr	mspor	vini tractures and selvages		
			51.7/		26.6-27.0 soft wore over 50% of this interval,		
			450		light my semitic gange deformed and menulated	10% 940	the shik
					light grey sensitic gange, deformed and inemnerated 28.2-29.35 vumbly vore mith pervinitic gange	1	
·			59.5 40	0	31.7-31.8 white grant veri 2.5 cm width, foliatio		
					pmallel @ 45° to ca		
		1			31.9-32.0 otto sonal veni, @ 45° to C.A. <1% c.a.		
					enhedral prite, antiming several < Im wide foliation 11 ve		
		-			34.5-34 Low wide quartz veni trunds parallel to		
	 				Foliation & 450 to CA	+	
		1			59.6-60.1 poorly competent care < 0.5% pignte in		
	<u> </u>				Fractures, chloritic material on foliation and fractures		

SAW CLARK

DIAMO	ND DRI)G		CARIBOO GOLD PROJECT 2007			
Drill Ho			• • • • • • • • • • • • • • •		Date: Sheet 3 of		<u></u>	
oggeo	d by:				Graphic Scale : 1" =			
Main nterval			S-C^ 52		Description	Notes		
rom	to.							
			L		67.4-68.0 poorly competent interval, at least five			
			71.51		<1.0 m vide quart > debomite vemilets and stringers,			
	<u> </u>		450		55-to go to C.A minon light guy day gauge] [
			80.8		on, fractures] [
			45		Below 89.9 m the rock volume of prophitic pelite			
					micreases to approximately 30%.			
99.7	156.7	plan		tr-	CARBONATEOUS PELITE AND LESSER QUARTZ ARENITE			
•				0.(Dark guy to back very thing bedded to aminited] [
* m	ednim ;	prey,	temih	a to	gupphitic polite "is interpedded with thinky to		1	
m	flante	1 be	ded p	lite,	productily bedded light com-gren anntoser.			
pa	scibly	fing			arenite. Pehte to arenite ratio is approximate	24		
	Τ	~)			75-90 to 10-25.	1	1	
			106.6/		Locally seguence is complexly deformed with		1	
			470		armacions beds being bondmägel (Szis refolding	92),	1	
			102.11		Weak periatriation and chloritisation of armite		1	
			38°		Weak peniatriation and chloritization of arenite.	1127	1 .	
					form about 5% of vock volume. Then we both Foli	tion	1	<u> </u>
					enrallel and foliation oblique.	1	1	Γ
					Pyrite is trace to 0.1%, medmin to c.g., enterhal subledal.		1	
					99.7-99.85 white gunt-lesser dolomite ~ Ban in	idth.	1	
				· ·	instacts and intria worked trank is a 28°5		1	Γ
					(Foliation parallel) ~ 190 c.g. onhight pyrile (Foliation parallel) ~ 190 c.g. onhight pyrile 100,4 - 100.6 Data aystalline milly quarte veni contact orthogonal veni, trale pyrite, med. gr. inhedral	1	1.	Γ
					100,4 - 100,6 " Water anotallive mill anoth Vem contact	4 A 4	1-6	17
			•••••••••••••••••••••••••••••••••••••••		or the ground vering trale painter med on enterthal		لعرب سيبات	للتندير. ا

DIAMO	ND DR	ILL LC	G		CARIBOO GOLD PROJECT 2007		
Drill Ho	ble: [104-	14		Date: April 09 04 Sheet 4		
ogge	d by:				Graphic Scale : 1" :	E 1	7
Main Interval		1 1	5 - C^ 52	% pyrite	Description	Notes	
rom	to						
					100.6-103.0 <2 cm in widte milhy gnonty mil stringers, Jesser dohomite, multiple-g	ulmis	
					and stringers, Jesser dohomite multiple-g	martions	
			110,3/		(folded and linear)] [
			56°		103.0-103.15 broken-mp core mith graphitic of	ange	
		50	110.3/		103.9-104.0 graphitic gonge		
			58°		104.0-107.2 5-7% deformed omd lesser linear, 1	www	
					gmonte stringers trace c.g. enhaling promite		
					107-2-107.5 preshly competent wore mith mino	r	
					anphitic gons.	,	1
			121.4/		graphitic gonge 108.6 - 108.7 5cm will vhypy gnntz- 30%	ustomit.	1
			63°		VIEW III 2 WITH WITH S VERVICES VIEW AND THE POLICE	1	1
				 	127.2-128.0 milling grant- million dolomite, <0.5	-0/0	
	1		138.7/		127.2-128.0 milhy gnants- minor dolomike <0.5 cg. enhebal pyrite, 2-3% inclusions of graphite Relite (mymlar), graphite material in minofo contacts (2) 37 to 60° (parallel to Foliation)	ì	
			70.		Relite (momenter) crachite material in minst	netures] [
					contacts @ 37 to 50° (parallel to foliation)	,	7.
	1	1	147.8		128.0-128.6 10% foliation parallel, linear and	6 lighton	7
	1		23°		obligne gnartz strikners 10% med to C.g.		7
			153.9/		obligne quarter stringers, 10% med to C.g. popula dissum + vimilities parallel to Foliation		
			540		128.6-129.0 quartz- Jesser drohomitz remi, <1°h py	ite	
					is Fractiones fine to medinin around upper contract	E	
					@ 650 to CA (10blight to foliation) and lower contr	retisp	
					550 to ca (porallel to foliation)		
		1			129.0-130.5 30% pmmtz vemis, <3 to 710 m i	width	<u> </u> .
P##21	1				mostly linear policition parallel white grants t	mindh	7

. . .

DIAMO	ND DR	ILL LC)G		CARIBOO GOLD PROJECT 2007			
Drill Ho	ole:				Date: Sheet 5 of 1	2		
Logged	d by:				Graphic Scale : 1" =	· · · · · · · ·		·
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
from	to							
		_			dobonite venis < 0.5% forme in med germeil inhibial		. ·	
					andhedral printe in veris and c. J. enhedral printe			
					in the wallrock]	
				ł	139.4 - 139.8 white quarts veri upper contract			
					139.4 - 139.8 white quarts veri reper contract 11 to foliation @ 25° to CA and report contact is].	
					(250° (poliation parallel < 0.3% pyrhotite 1%			
	<u> </u>				m/c gramed agente minor dobornite (< 5%)			
	· .			1	139.85-1412 at feast several foliation parallel			
					quarty-lesser dolomite Vinis 100 fine grameid			
					prante chratits and Fraiture Filliles <0.2%			
					pychotite Frie germed veris Form ~ 60% of rock ve 144.0-145.2 40% grantz - helt dolomite veris	June		
				0.5	144.0-145.2 40% gnartz - leser dohomite Vinis			
	ļ				contact themitantly parallel to follation (0 50 to	600		
	ļ				CA, 0.5% printe line to med gramed Insters		1	
		4		0.5	146.2-146.6 marts > dohomite veni contact 33 to 4.	5°	4	
	ļ				to CA (parallel to foliation) 0.5% prente chiste	rs,		
······					fone too med gramid .			L
					146.6 - 146.9 10% foliation parallel griatte Vinis,		1	
·····	 			ļ	0.3% popute	_	1	
···					146.9 - 147.3 quarte 7 domate (7%) > pyinte (5%, m/	cg.)	_	
	L			prv	My foliation parallel veni, untacts A 45-60° to CA			
		-	L		146.9-147.3 quartz 7 dolomite (7%) > pyinte (5%, m/ M foliation parallel veni, untacts @ 45-60° to ca lower vontact (60°) is oblighe to foliation	1		
					147.6-148.3 80% white quarts Vemis mostly rubble, some dry gange, frukt plane?			L
					some dry gonge, frutt piene?			

CARIBOO GOLD PROJECT 2007

Drill Ho					Date: Sheet <u>6 of 1</u>	2	
ogged	by:				Graphic Scale : 1" = '		
Aain nterval		Lith. code	S - C^	% pyrite	Description	Notes	
om	to						
			tation		148.3-152.0 poorly competent were <5% gnartz		
	pr	rall 1	1 two	oliation	1 veni monterial, fault poone? some graphtic	gonze	
	C	soo te	CA, SO	ml	153.4-156.7 furth prome most of brittle deformation	n	
	sa	Ito	suge	D 25°	trends parallel to foliation in 45-50° to CA 10°6		
	om	1 35	to cr	-	quarter verning orientation @ 0 to 10° to CA. Maas	un tel	
		V			fault gauge this budded selite arinte Dyem		1
	2 2	mpt	iense	ribly	vontact trinks @ 23° to CA		Í
			defor				
)
156.7	207.1	arzol	•	tr-0.3	QUARTZ ARENITE AND LESSER CARBONACEOUS PELITI		
		-1-			Light grey thing to moderately bedded quarts arenite		
			169.5		is interlayered with dark guy very thinky bedded to		
			45°		Inmitted carbonaceous pelite. Armite the pelite ratio		
			179/47	>	akerages about 70 to 30. About 30% of this interral		
			****		consist of 1 to 2.5 m long sections of graphitic		
			190.4		pelite (00%) miticalited with 20% light any mont at	mite.	
			45		Omart - lesser delomite, to 70 cm in vore Dougthi		
			201.0		Porm about 10% of noch uplume		
			450		Alteration is werk mostly sericities atrian of fuldear:	\$	
					and apprintziation of makic component. *		
					Printe is trace to <0.3% on average in the coa	nse	
					Alteration is werk, mostly sincity ation of fuldpars and allowitziation of metric component. * Printe is trace to <0.3% on average in the coa ground Inhelial to embledial dissen.		
					158, 1-159. 1 party competent-code with light give day		•
					gouge Frult pone	1	

* Dolomitriation is, weak and discontinuous and occurs in form

DIAMOND DRILL LOG

- -

-

DIAMO	ND DF	RILL LO)G		CARIBOO GOLD PROJECT 2007	
Drili Ho	ole:				Date: Sheet 7 of 12	
Logge	d by:				Graphic Scale : 1" = '	
Main Interval		Lith, code	S - C^	% pyrite	Description	
from	to				this intervel	_
		_			160.9-163.0 pronly vompetent vore, minor serientic pouge	
					10-15% quarty- Lesser dolomite stringers trypically	
					Foliation parallel < 0.3% medmin to c.g. enhedral parite	
					103.0 - 163.1 gnortz - Juser dohomite Veni < 0.5% pyrite	
<					and < 0.3% pyphotite ansters, contacts are oblight	Γ
-*					to Foliction (2 60-70° to CA	
					164.2-167.6 2000 < 30-50 m wide sections of	
	1.				peoply competent core with minder day panas.	
······					169.0-174.4 < 3% nerrow, to 5 cm wide guests veris	
			<u> </u>	1	+ lesser doomite poliation parallel @ 40-45 to 04	
<u> </u>	1		 	1	and orthogonal @40° to 50° to cA harrow (<15 m	
· · · · · · · · · · · · · · · · · · ·	1			<u></u>	wide) mitervals of broken care mith day pringe	F
	+			<u> </u>	are associated mith quarte vening (173.4-A3.5,	
	†		<u> </u>	<u> </u>	173.6 - 173.7 173.8 - 173.95 174.35 174.40 174.75 - 174.61.4.	
					173.6-173.7, 173.8-173.95 174.35-174.40 174.75-174.8) 4. 176.7-177.3 gnarty- dolomite veni, contacts are	
					wregular and broken-up 15th med. to very c.g. printe	
	<u> </u>				(>2 cm in lengths) and kednal to enhedral	
ر رو روز مر اد میدوند.					(72 cm in ling the) and kland in envenie	\vdash
					177.3 - 179.1 narrow quest-lesser delomite venis, 250 of rock volume, 3-56 med to cog in and in the	-
				+		\vdash
					rins of yours	
	╂				179.1-179.8 milly gnarty-miller dolomite vern, 1-2% ned. to c.g. enledral printe, upper contact is@ 20° to CA	┝
				<u> </u>	to c.g. enledral printe, upper contract isle 20 to CA	-
	<u> </u>				and lower conce is preprioring in a is	
	<u> </u>		L	L	C 35° t~ CA	

1

DIAMO	ND DRI)G		CARIBOO GOLD PROJECT 2007			
Drill Ho	ole:				Date: Sheet 8 of 1	2		
Logge	d by:		<u>, </u>		Graphic Scale : 1" =			
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
from	to	<u> </u>						
			[179.8 - 179.95 poorly competent were with some day		l . – .	
					conse.]	
					179.95 - 180.9 poorly competent were @ the "maple" cont	aet of	qu	
			<u> </u>		180.9 - 181.3 gnarte - Jesser dolomite veni lower	·		 _
Ĵ					contact is irregular upper contact is unch lating			
					yeppoximate Hind is \$ 50° to CA			
		<u> </u>			181.3-181.7 poorly competent core & the "lower"			
	· .	ļ	ļ		rem contact some day only o trind of S2 151	a 50°CA	14 A	
					185.6-186.0 ungerarty - Jesser debarnite veni A folliation	-		
		<u> </u>			envallel upper and lover contact zones (5-20	den]	
					[widths] consist of poorly competent host carbon.			
					petite gremite trinds are 38 to 50° to CA.			
				ļ	upper and lower contracts respectively 20% into copp	y enledig	L.	
	_	<u> </u>	_		187.6 - 188.05 guestz - lesser dolomite ven, irregular	V \		
l 	1				contactes 5% m. two. enledel subledel printe			
Ī			<u></u>		(to 1.0 cm in length orystals)			_
L		<u> </u>	ļ		1800-1887 102 quart-dolamile < 5 cm in width			
ļ		<u> </u>			foliation parallel and foliation obligne veris]	
	· .	<u> </u>	_	2	1927 - 193.05 milly quartz- minor dolormite, 2% cg. enle	Anl	1	
L		<u> </u>			pointe, upper contact is @ 250 to CA (ob/igne to Foliation)			
	<u> </u>				lower contact is undulating and irregular			
				· .	197.7 - 198.1 quarty - Jesset dobornite flooding and strike	ars		
	ļ				(quarty dolomite) 1981-2019 (<5% opunts > dolomite harrow, <2-5cm i	´	l'	<u> </u>
					198.1-201.9 (<5% opunits > dolomite harrow, < 2-5 cm i	I will	4	

INTERNATION/ NAYSIDE GOLD MINES LTD.

~ • ----..... ----

DIAMO	ND DRII	<u>_L LO</u>)G		CARIBOO GOLD PROJECT 2007		
Drill Ha	ole:	•			Date: Sheet 1 of 12		
Logged	d by:				Graphic Scale : 1" = '		
Main Interval		Lith. code	S - C^	% pyrite	Description	otes	Γ
rom	to						t
					typically both policition ponallel and folication oblight		ł
					sets, trail - 0.1% med. to cg. printe [enheld/onshede	al)	
					203.5 - 207.1 light grey - and bleached amount		F
					cremter strong pencitrication and weak moderate		
					doborn trigetral, admit ocans as porphysoplacts		
	1				sets, trail - 0.1% med. tw cg. pynte [enheld/onshele 203.5 - 207.1 light grey-green bleached? gmart Gremte, strong pencitization and weak/moderate dobornityation askomite ocans as porphyroblasts (1-2mm) and as replacement laminae, 10% gnowt-		
					User dopamite umis and stringers 1-3% pointe		
	•				User dohamite umis and stringers, 1-3% popule Fillily Trimstratures and open spaces in tractured		
					VIMS		Γ
					206.5-207.1 Fruit Bone, Dericite gange mith rocks Fragments (206.5-206.6) @ 18-20° to CA		F
					rocks fragments (206.5-206.6) @ 18-20° to CA		F
					0		Γ
207.1	225.3	p >	¢r.	10.1-	ORAPHITIC DELITE AND LESSER QUARTZ ARENITE		Γ
		CSF'		015			
			1		opproximately 70 to 30. Narrow intervals		
					I strong and complex deformation with bourdmiage	1	
			213)		and linearich arente beds.		
			450		Quartz > dolamente iumis are rake, < 3% of rock when	re.	
			218/45	,	Printe content is low < 0.1% to < 0.5% as		Γ
					medining the c.g. enternal/ enclosed dissem.		
			224/		Weak dolormitization as discontinuous distribution	i of	
		L	58°	·	<1-2 mm in length porphynoblasts to 10-15%.	V	
				<u> </u>	c1-2 mm in lengte porphysioblasts to 10-15%. 207.1-207.3 oumbly core with day goyle. 209.6-211.7 poorly competent core over more than	· · ·	
					209.6 - 211.7 poorly competent core over more than		

.

INTERNATION NAYSIDE GOLD MINES LTD.

DIAMOI	ND DRIL	<u>L LO</u>	G		CARIBOO GOLD PROJECT 2007		
Drill Ho		<u> </u>			Date: Sheet 10 of 1		
_ogged					Graphic Scale : 1" =		
Main Interval		Lith. code	s-c^ 5 ჯ	% pyrite	Description	Notes	
from .	to						
					40% of this interval, < 5-20 m wide -ones of orumbly core mith day gauge and quarte - dolomite		· •
					of orientely core with day aging and a most - defamite		1 1
					rubble		
					211. 3-211.9 Folicition obligne quarts dolomite veni		
					215.0 - 215.1 durity > defamile strilgers		
				L	213.5 - 218.7 pouly competent core with graphitic		
				ļ	Jonge		
	·				8		
225.3	254.6	atypl		tr	QUARTZ ARENITE AND LESSER (ARBONACEOUS. , PEL	ITE	1 [
				6-1	Similar to 156.7 - 207.1] [
			230.1/		Locally common debonite porphysidasts 1-2 mm		1 1
			55° '		in longths to 10-15%.		
	L		235.5	ļ	Discontinuous strong senintization over 1-2 m in	core] [
	ļ		450	<u> </u>	length intervals.		
	ļ	ļ		ļ			
		ļ		ļ	233.3-233.6 orthogrand quanty - minor (<3%) dolomite		
	 	 	ļ	ļ	Veni apper contact is @ 45° to CA. laver contact		
				·	is irreputer, very c. granned enhehal pyrite (2-5%	>	
	· ·	ļ			is irregular, very c. granned enhehal pyrite (2-5% 233.9-236.6 strong semicitiziation to 15% dolomite		
					parphyroplasts and stringers		
					238.3-238.5 questy > ashownthe verisg 15-70% medmin to		
		 	ļ	·	woard gramed pyrite		
	·	_	ļ	ļ	238.8-238.95 quarty Veni minor dohamite contac	<u>4</u> s	l I
			<u> </u>		are madratation approximate trend is @ 35th CA	56 c.q.	

• • •

INTERNATIONA NAYSIDE GOLD MINES LTD.

and the second second states of the second

DIAMOND DRILL LOG

CARIBOO GOLD PROJECT 2007

JAMO					CARIBOO GOLD PROJECT 2007			
Drill Ha					Date: Sheet U of I	2		
Loggec	l by:		.		Graphic Scale : 1" =			
Main Interval			8 - C^ Sz		Description	Notes		
rom	to							
					enhedral pyrite		:	
				40	239.4 - 239,75 quart-minor deformite veni		7	
			243.3		orthogonal contacts are \$ 43 ka 55° ka ca		1	
			50		40% med. to warse enhand on bhedral pointe		1	
				30	241.8 - 241.9 grant-mind dolomite veni, 40 to 550		1	
			254.5		to CA 30% med. to warse printe	<u> </u>		
	1	1	550		to cA 30% med. to coarse pyrite 242.9 - 243.3 35% quart-lesser dopomite vinis		1	
	1.				and stringers mostly orthogonal, trends are 20-30	•	1	
		-	1.		to ca	†	-	
	1		<u>}</u>	2-3			-	
	1	+			2-3% C. Q. Paledral / Andalada al an it	+	-	
	<u> </u>			3	2-3% C.g. enledral / enbledral printe 248.0-248.5 Vaggy grants-minor delemite Veni		-	
	1			+	3% pyrite in mid mi selvages contacty are @ 40-4		~	
	 				Stopyme in mig molecults which we will be		4	
	+		<u> </u>		249.4-249.5 fault gauge some queit rubble		-	
	<u> </u>	-		>-+	249.5-250.6 sericitized grants aremite some day		4	
					gange on Folicition on Free, 5-7% gonants Stringer	٩	-	
	<u> </u>				250.6-250.9 servitic frult gauge at the		_	
					contact mith the granty veri		4	
	· ·		<u> </u>	1-2	250.9-252.0 white ungay quarts very 1-2% free			
			<u> </u>		250.9-252.0 white ungan quarts veri, 1-2% free to course gramed in head al gamte			
				95	252.0 - 252.15 mel tw c.g. jeynte Philole	- 	_	
				· · ·	252-15-252.4 forht gange			
							ŀ	
							7	

INTERNATION/ NAYSIDE GOLD MINES LTD.

CARIDOO COLO DOO JECT 2009

DIAMON	ND DRIL	<u>L LC</u>)G		CARIBOO GOLD PROJECT 2007			
Drill Ho	le:				Date: Sheet 12 of	.2		
Logged	by:				Graphic Scale : 1" =	1		
Main Interval		Lith. code	S - C^	% pyrite	Description	Notes		
irom	to							
254.6	272.1			tr-	DUARTZ ARENITE UESSER CARE PELITE AND		 :	Ŀ
				< 0.3	MAFIC TUFF(1)			L
					Lightigney quarte archite, thinky to moderately			
					bedded is mite caleted with 25-30% dark guy graphit	۰. بل		
					pelite and 20% medicin grey-green makic truft]	Γ
					Theftacions beds have pitted appearance, after			ſ
					weathered out calcarions ?) porphynoblasts (2 5% of rock	10/ume)	
	•		257.8		puplitic pelite is very thinky budded to larminated		1	
			53		and is mithcaletel with quants arenite. Thefis wood	eratel.	1	
		1	272.8/	1	to hickly kedded.		1	F
			650	1	Faranty-lesser dolomitre. Venis and stringers forma	. 8%	1	F
		1	263.7/		grock rolume.		1	Ī
			52.		Servicitionation is generally merch. Defamite]	
					porychynolasts occur throughout this inthroat homevel			
					discontinuously. Tuffacions sections are chloritize	a		
					weakly to moderately.	/		
		<u> </u>			Rynte trace to < 0.3%, medimin to c.g. Inhedra	l		
					dresephinations.			
	· ·				266.8-267.2 60% quartz-lesser dobornite veris/string	ers]	
					0.1°h enhehal, m.g. printe]	
]	ſ
					·]	ſ
272.1	~				EOH] ·	ſ
	1	1		1			1	t

ISLAND MOUNTAIN GOLD MINES LTD.

T

		ISLA	ND MOUNIA	AIN GOLL	D MINES LTD.
HOLE: M	04-14		AMPLE REC Wrich 20/04	ORD	2002 PROJECT SHEET: \ OF: 2
SAMPLE		ERVAL	RECOVERY	GOLD	SAMPLE DESCRIPTION
#	FROM	1		(PPB)	
39244	6.6	8.6	2.0	< 0. 03	
245	16.8	18.8	2.0	0.17	5 cm & to on vhis, <0.1% py
246	18.6	20.8	. 2.0	<0.07	
247	20.3	22.5	1.7	0.07	8 vm g.V., tr. py
248	22.5	22.9	0.4	0.39	ov, white, tripy and trips
249	22.9	24.9	2.0	0.12	< 3% q.v., u>pl, tr. py
250	99.7	101.7	2.0	0.01	two q. V, 15-20 in widths, of pl host rock, trad c.g. pg
30 901	101.7	(03.7	2.0	0.07	solo q.v in gf pl, tr. pyc.g.
୧୦୨	103.7	105.7	2.0	0.03.	h u u
903	127.2	128.0	ତ୍ୟ	0,01	80 m in length quartz > dolomity
904	128.0	128.6	0.6	0.19	10% quests stringers, 1% mlc gr.pg
905	128.6	129.0	0.40	2.03	40 core, length) quartes dol ven cito py flug
906	129.0	130.g	1.9	0.01	2506 quarty > dobornite visit to.p
907	139.4	141.2	1.8	0.72	7090 gnarts venis, <1-22 c.g. py
908	144	145.2	1.2	<0.01	40% gnortz > dolomite vomis, 2% c.g. py
909	145.2	146.2	1.0	0.01	Jupphitic pelite, rare 95 venis (<29
38910	146.2	148.3	2.1	0.02	50% quartz venis, 3-5% m/c g. pg
39 911	175.3	176.7	1.4	0.02	SFpl> gtoremte, trad pg
. 912	176.7	177.3	0.6	8.10	60 cm quarty venit leser adam 15tm. 10 pants
- 112 	177.3	179.1	1.8	0.09.	10% quarts > dol venis, tv. ky
914	179.1	179.8	0.7	0.11	quartz verni » dolomite, 1-2% m/cgr. poputi
915	179.8	180.9	1.1	0.11	most pelite > armite, true py
39 916	180.g	181.3	0.4	0.02	quartz > dolamte veni
1977	181.3	183.3	2	0.03	(pelite >avenite, tr. c/m gr. pronte
39918	183.3	185.6	2.3	0.05	

ISLAND MOUNTAIN GOLD MINES LTD.

HOLE:	MO4-14		AMPLE REC Areal 14/0		2002 PROJECT -SHEET: 2 OF: 2
SAMPLE #	FROM	RVAL TO	RECOVERY (FEET)	GOLD (PPB)	SAMPLE DESCRIPTION
39919	185.6	187.6	2.0	1.44	15% quarty>dd remis, trpy
39920	187.6	188.05	0.45	5.38	45 in quarty, dol veni, 5% clmg.
921	188.05	L a	1.05	0.74	host cano petite 7 arente, 10% qu)
922	192.7	193.0	0.30	0.84	
923	203.5	205.5	2	0.06	pale (bleached?), K+D altered aromte
924	205,5	207.1	1.6	0.07	5 1-2% +/4
925	233.2	234.7	1.5	0.04	30 cm quarts > dobon veni, sericity arente 10% dolan po
926	238.3	239.4	1.1	0.12.	
39927	239.4	239.75	0.35	7.94.	35 in quartz > dolomite veni, 40%
928	239.75	241.9	1.25	0.42	(ob q.v. in crente = pette (gf) > 30% m/c gramid ponte
(929	241.9	243.9	2.0	IB . 18	40% quartz venis, gf pl> ar, tv-o
930	247.7	248.5	0.8	9.78	quenty-minor dol venis, 3% pointe (m/c)
931	248.5.	250.9	2.4	0.17	sencitized atomity some finit gouge
39932	250.9	252.15	1.25	0.32	quartz ven + pyrite (c.g. entedial)
					/
					·
		<u> </u>			
<u> </u>	<u> </u>	l	<u> </u>	l	

ANALYTICAL LABORATORIES LTD. 852 B. HASTINGS SP VANCOUVER HC V6A LR6 YO SCU2 Accredited Co.) GEOCHEMICAL A. STREETCATE

20

S	AMPLE#					Ag		Co			As			Th		Cd		Bi	۷	Ca	9	La			Ba		_	AL	Ne	K		Au**
		54pm	ppm	bbw	bbe	bhu	ppm /	ppm p	pm	<u> </u>	abua k		ppni	obuu	pipini j		obai i	ybw k		*	7.	ppm	bbu	7	bbu	X	ppm	<u> </u>	<u>×</u>	<u> </u>	ppm	gav/mt
S	I ·	<1	<1	<3	<1	<.3	1	<1	<2.	05	<2	<8	<2	<2	2	<.5	<3	<3	<1	.07	<.001	1	1	<.01	1	<.01	ব	<.01	.46	<.01	<2	<.01
3	8901	1	32	5	69	<.3	31	71	12 1.	66	41	<8	<2	2	42	<.5	<3	<3	12	.44	.027	7	10	.31	91	<.01	ŝ	.29		.15		.07
3	8902	1	49	9	137	<.3	37	8 2	30 2.	79	39	12	<2	2	91 ·	<.5	<3	<3	13	.96	.062	8	8	.66	106		Ŝ	.36	.02	. 19		.03
3	8903	1	15	- 4	7	<.3	8	15	361.	.66	15	<8	<2	<2	189	<.5	<3	<3	4	2.25	.089	2	12	.85		<.01	<3		<.01	.07	_	.01
3	6904	1	11	6	11	<.3	39	10.2	56 3.	.33 1	170	<8	<2	3	38	<.5	ব	4	13	.62	.039	7	7	-45		<.01			<.01	.18		. 19
3	8905	1	60	3	236	<.3	27	46	91 2.	.96	9	10	<2	~2	253	1.1	<3	3	<1	3.21	.016	1	. 9	1.18	7	<.01	ন	.04	<.01	.02	<2	.03
3	8906	2	36	3	126	<.3	36	72	12 2.	.20	9	<8	<2	2	85	.5	<3	ব	15	1.00	.068	7	10	.55	-	<.01		.35	.01	.20	-	.01
	8907	2	56	3	4	<.3	33	8 2	47 2.	.41	<2	<8	<2	<2	37	<.5	<3	<3	8	-47	.033	6	11	.41	-	<.01	-		<.01	.12	_	.72
	8908	1	59	3	69	<.3	49	85	18 3.	.48	6	<8	<2	<2	227	<.5	<3	<3	9	2.30	.063	5	11	1.18		<_01			<.01	.14	<2	<.01
R	ie 38908	<1	60	<3	68	<.3	50	8 5	26 3.	.54	4	<8	<2	<2	229	<,5	Q	<3	11	2.35	.064	4	10	1.20	. 83	<.01	<3		<.01	_14	_	<.01
, F	IRE 38908	2	49	3	72	-5	39	74	79 3.	. 15	7	8	<2	2	208	<.5	3	ও	10	2.21	.055	6	15	1.07	84	<.01	3	.25	<.01	. 15	<2	<_01
- 1	18909	2	- 39	6	17	.5	44	8	82 2.	.00	7	<8	<2	3	21		<3	3	16	.25	.054	- 11	8		115			.36		.20	_	.01
	18910	2	46	10	45	<.3	40	11 3	00 2	. 83	23	<8	<2	<2	90	<,5	<3	<3	10	1.24	.032	4	12	.61		<.01			<.81	.12		.02
3	19250	1	45	3	53	<.3	33	91	20 2	.04	22	<8	<2	2	38	<.5	<3	ও	12	.47	.048	7	9	.34			3	.35	.01	.14		.01
	ITANDARD DS5/AU-1	12	136	22	126	.3	24	12 7	25 2	00	22	8	<2	1	11	5.4	3	5	59	.69	.091	40	182		133	-10		1.94	.03	.13		3.35

Intil Wayside Gold Mines Ltd. PROJECT MRT 04-14 File # A401432

P.O. BOX 247, 2422 Barker, Hells BU VOK 280 Sumitted by L. RURNER

GROUP 1D - 0.50 GM SANPLE LEACHED WITH 3 ML 2-2-2 HCL-NN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPN & AU > 1000 PPB

- SAMPLE TYPE: CORE R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Date

m/23/04 DATE RECEIVED: APR 13 2004 DATE REPORT MAILED

PHONE (604) 253

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

VALYTICAL LABORATORIES LTD. SO 9002 Accredited (co.) 852 B. HASTINGS AT VANCOUVER BC VGA 1R6

В

FAX NO. 6042531716

	-	
~	-	

Int'l Wayside Gold Mines Ltd. PROJECT MYRTLE (MRT-04+14) File # A401566 P.O. Box 247, 2482 Barker, welle BC WOK 2RU Submitted by: L.TURNER

GEOCHEMICAL ANALYSIS CERTIFICATE

- [2. S. S. S.	1.00 M	79 <u>.489</u> 3	1.35.44	213.65	<u> 1424.</u>	<u> (</u>) () ()		umana.	S	349-12		<u></u>	<u></u>	<u>un p</u>	99839 1998	<u> ()) () () () () () () () () () () () ()</u>		<u></u>	<u>(2018)</u>	(1.003) (1.003)		<u>1998</u> 0			<u> ((181))</u>	<u>2000</u>	1462.4		107 X M	al de la com	
	SAMPLE#	•••=	Cu		Zn	-	Ni		Mn	Fe			Au						V	Ca		La		-	Ba Ti			Xa	K		Aut !	•	
Ļ		ppm	ppm	ppm	phu	ppm	ppn	ppm	þþm	A	ppm	hhu	ppm	p (com	phan	ppm	ppm	hbm t	spin	A		ppm	bbu		ppan 2	(ppm	X	<u>×</u>	76	ppm	ga/mt	<u>977</u>	
	SI	<1	21	ও	4	<.3	<1	<1	5	.04	<2	<8	<2	< 2	3	<.5	<3	<3	<1	.11<	.001	<1	1	<.01	3<.01	3	<.01	.51	.01	2	<.01	-	
	38911	8	151	28	29	.7	35	19	932	3,84	44	8	<2	6	72	<.5	<3	ব	5	1.52	.040	14	7	1.25	56<_0	17	.32	.02	.23	<2	.02	2800	
- 1	38912	Z4	64	1219	6	31.2	36	307	1284	16.55	813	<8	7	<2	89	1.8	3	799	3	2.36	. 187	2	7	.86	23<.0	<3	.25	.01	, 16	<2	8.98	1800	
	38913	3	53	29	25	<.3	29	13	880	3.01	75	9	<2	6	58	<.5	3	<3	4	1.61	.047	11	10	.84	43<,0	1 10	.31	-02	.22	2	.09	3700	
- 1	38914	1	18	7	3	<.3	8	2	163	1.08	28	10	<2	3	9	<,5	હ	<3	1	.34	.007	7	11	-14	21<.0	16	.15	-01	.09	<2	-11	1400	
5	38915	1	43	14	17	<.3	22	9	665	2.39	41	<8	<2	5	59	<.5	<3	ব	4	1.30	.039	11	19	.73	41<.0	1 6	.29	-01	.20	3	. 11	1400	
2]	38916	1	11	6				7	884	2.08	25	9					3			2.63		8	9	.97				.01		ā	.02	1000	
7	38917	1	28	5	18	<.3		Ú	588	2.86	39	-	<2					<3		1.27		-	16		48<.0			-01		2	-03	4400	
5	38918	l i	21	13	•-	<.3		12		3.09	36		<2	7				ব		,69		21	4	.87				.01		<2	.05	4300	
4 L	38919	3		9	3					3.10	188	-	<2	-			<3			1.66			19		25<.0	-		.01	-	4		1300	
ġ,	-	1	10		•			-			10.4			-				Ξ.	۲				••			• •	•••			•	11.44	1300	
	38920	<1	38	12	18	<.3	- 36	18	974	6.09	149	11	<2	<2	63	<.5	3	<3	- 4	1.92	.034	5	6	1.26	43<.0	1 <3	.35	.01	.23	<2	5.38	2500	•
5	38921	2	: 13	- 31	16	<.3	36	13	1287	2.73	87	16	<2			<.5	ও	<3	2	2.11	.050	14	7	1.03	56<.0	14	.34	.01	.24	2	.74	2500	
=	38922	<1	- 5	293	1	-4	9	- 4	380	2,20	126	<8	<2	<2	30	<.5	4	590	1	.84	.007	2	7	.36	13<.0	1 <3	.08	-01	.05	<2	-84	900	
5	38923	3	64	29	45	.3	20	11	1260	3.28	- 41		<2			<.5		ふ		2.62		8	19	1.24	41<.0	14	- 31	.02	-22	3	.06	4100	
	38924	9	61	22	75	.6	22	13	760	3.17	55	19	<2	10	90	.6	ব	<3	4	1.63	.041	13	13	.96	50<.0	16	.35	.02	.26	<2	.07	3200	
	RE 38924	9	62	21	74	.4	21	13	745	3.06	52	10	<2	9	89	<.5	<3	<3	4	1.61	.040	13	11	.94	49<.0	18	.35	-01	.25	<2	.05	-	
	RRE 38924	13	60	13	77	<.3	23	13	727	2.88	48	<8	<2	9	86	<.5	<3	ও	4	1.55	.041	14	13	-92	48<.0	17	.34	.01	.25	Z	. 05	•	
	38925	<1	29	5	11	<.3	24	10	1329	3.04	87	9	<2	4	51	<.5	<3	<3	- 3	2.03	.032			1.02	41<_0	1 3	.31	.01	-22	<2	.04	3100	
	38926	2	- 4	8	11	<.3	23	8	3225	3,56	116	<8	<2	4	-99	<.5	3	<3	- 3	4.08	,036	7	10	1,63	32<.0	1 5	.24	.01	.18	2	, 12	2500	
	38927	<1	3	193	<1	6.8	63	137	313	30.69	4365	<8	2	2	21	<.5	4	129	1	.51	.005		<1	.21	5<.0	1 5	.03	.01	,02	2	7.94	900	
	38928	<1	23	14	47	<.3	29	17	848	4,40	201	12	<2	5	74	. 5	.7	ও		1.52	045		4	. 08	40<.0	1 3	74	_01	25	12	.42	4700	
'		11	23 22							3.55						<.5		3		2.10					42<_0			.02		2	.18	4100	
1	38929		-=	10	∣ 17 ∣ 3				1152				_			<.5	_	40		2.08			-	.86				.02		_		1200	
5	38930	1		43	_	1.9	34		1504			-	-			<.5		• -		3.04		_		1.44		-		.03		~2	.17	5400	
:	38931	2				,4						-	_		10			-	2 <1		.004							.01		<2		2200	
	38932	<1	5	11	<1	.7	43	60	103	12.65	1037	<0	52	~2	10	.3	-3	9	51	.0	.004	1	20	- 1 (34.0	1 4	.v.a		τν.	~2	.90	2200	
	STANDARD D55/AU-1	13	147	24	139	<.3	25	13	749	3.00	19	<8	<2	2	47	5.6	3	6	62	.76	.088	13	191	. 69	137 .1	1 16	2.03	.04	.15	5	3,39	-	

GROUP 10 - 0.50 GN SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 NL, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZH AS > 17, AG > 30 PPM & AU > 1000 PPB AU** BY FIRE ASSAY FROM 1 A.T. SAMPLE. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: CORE R150 60C

Dat

DATE RECEIVED: DATE REPORT MAILE APR 13 2004

PAZ (604

PEONE (604) 25

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

CERTIFICATE OF ASSAY AK 2004-161

INTERNATIONAL WAYSIDE GOLD MINES LTD. 12422 Barkerville Hwy. PO Box 247 Wells, BC, VOK 2R0

1

29-Mar-04

No. of samples received: 6 Sample type: Core **Project #: MRT=04-14** Samples Submitted by: Norm Matherson

		Âu	Au	
<u>ET #.</u>	Tag #	(g/t)	(oz/t)	·
1	39244	<0.03	<0.001	
2	39245	0.17	0.005	
3	39246	<0.03	<0.001	
4	39247	0.07	0.002	
5	39248	0.88	0.026	
6	39249	0.12	0.003	
QC DATA: Repeat: 5	39248	0.91	0.027	
Resplit: 1	39244	<0.03	<0.001	
Standard: SH13		1.35	0.039	

JJ/kk XLS/04 ECO TECH LABORATORY LTD. Jutta Jealouse B.C. Certified Assayer

	на селото н Селото на селото на с Селото на селото на с		()			\cdot		
		INTE	RNATION	IAL WAY	SIDE GOLD	MINES	LTD.	
	SLUD HOLE: M		PLE RECO	DRD	2001 CAR	IBOO GC	OF: 1	ECT
	SAMPLE #	INTE FROM	RVAL /	GOLD (PPB)	SAMPLE #	INTE FROM	RVAL TO	GOLI (PPB
•	166854.	15	25	41.2	1668'79	265	275	2.5
	55,	25	3.5	10.5	\$0	275	285	1.4
	56,	35	45	5.9	81.	285	295	. [
	57.	45	55	4.4	82	295	305	.6
	58.	55	65	5233.3	83	305	315	1.1
	59.	65	75	844.9	<u>84</u>	315	325	2.4
	60.	75	85	215.3	85	325	335	39.1
	61.	85	95	10.3	86.	335	345	117.6
	62.	95	105	8.3	87.	345	355	11.4
	63.	105	115	8.1	88,	355	365	9.4
	64.	115	125	29.8	89.	365	375	4.2
	65.	125	135	1.4	90.	375	385	4.9.5
	66.	135	145	4.7	9],	385	395	4.4.7
	67.	145	1.5.5	15.7	92	395	405	68.7
	68,	155	165	3.0	93.	405	415	11.3.4
	69.	165	175	6.8	94.	415	425	203.5
	70.	175	185	7.0	95.	425	435	37.9
	71.	185	195	3.9	96.	435	445	9.7
	72	195	205	8.5	97.	445	455	16.9
	73.	205	215	5.3	98.	455	465	72.7
	74:	215	225	7.9	97-	465	475	14.6
	75	225	235	13.5	166900.	475	485	28.0
		235	245	1.6	166951.	485	495	120.1
		245	255	3.0	52	495	505	31.5
9	78	255	265	12.9	53.	505	515	399.0

Ÿ,

# FROM TO (PPB) # FROM TO (PPB) 1649 54 615 6.25 4754.8 41.855 855 924.4 55 6.25 6.35 1432.8 81.85 825 541.5 56.635 645 11445.4 81.85 825 541.5 56.635 645 1445.4 81.85 895.1 160.3 57.645 655 655 2058.3						· ·			
SLUDGE SAMPLE RECORD 2001 CARIBOO GOLD PROJECT HOLE: $MT = 0 + 49$ DATE: $3 + 1 + 62$ GOLD SAMPLE INTERVAL GOLD SAMPLE INTERVAL / GOLD SAMPLE # FROM TO (PPB) # FROM TO (PPB) # FROM State State State State State State State Idef State State State State State State State State State G.5 G.5 G.5 G.5 G.5 State <th< th=""><th></th><th></th><th>•</th><th>\sum</th><th>· .</th><th></th><th>L'Ì</th><th></th><th></th></th<>			•	\sum	· .		L'Ì		
HOLE: MRT=04-4 DATE:			INTE	RNATION	AL WAY	SIDE GOLD	MINES L	.TD.	
SAMPLE INTERVAL GOLD SAMPLE INTERVAL GOLD SAMPLE INTERVAL GOLD GOLD GOLD <th>SL HOLE</th> <th>UD ://</th> <th>GE SAMF</th> <th>LE RECO</th> <th>,</th> <th></th> <th>IBOO GO</th> <th></th> <th>IECT</th>	SL HOLE	UD ://	GE SAMF	LE RECO	,		IBOO GO		IECT
# FROM TO (PPB) # FROM TO (PPB) 1649 54. 615 625 4756.8 94.8 865 875 924.4 55 625 635 1432.8 80.8 875 825 541.5 56. 635 645 11445.4 81.8 855 875. 10.0.3 57. 645 655 675 902.5	SAMPL	LE	INTE	RVAL /			INTE		GOLD
55. 625 635 1432.8 \mathbf{M} . 845	#		FROM	ТО	(PPB)	#			(PPB)
56. 6.35 6.45 11445.4 $81.$ 8.55 $8.75.$ 1406.3 $57.$ 6.45 6.55 6.7319 8.5 $8.75.$ 1406.3 $57.$ 6.65 6.55 6.759 902.5 6.65 6.75 902.5 $60.$ 6.75 6.85 $2.34.4$ 9.66 9.765 9.66 <th>1669 :</th> <th>54.</th> <th>615</th> <th>625</th> <th>4754.8</th> <th>79.</th> <th>885</th> <th>895</th> <th>924,4</th>	1669 :	54.	615	625	4754.8	79.	885	895	924,4
57.645 655 47319 0.00 0.00 0.00 58.655 665 2058.3 0.00 0.05 0.00 60.675 685 2058.3 0.00 0.00 0.00 60.675 685 2058.3 0.00 0.00 0.00 60.675 685 2341.4 0.00 0.00 0.00 61.685 695 342.1 0.00 0.00 0.00 62.695 705 1513.44 0.00 0.00 0.00 62.695 705 715 0.00 0.00 0.00 0.00 64.755 725 735 313.8 0.00 0.00 0.00 64.735 745 1435.1 0.00 0.00 0.00 0.00 64.735 745 1455.1 0.00 0.00 0.00 0.00 64.755 745 1055.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	I	55.	625	635	1432.8	80.	845	885	541.5
58. 655 665 2058.3	į	56.	635	645	11445.4	81.	885	895.	14.04.3
57. 665 675 902.5	2	5%	645	655	6731.9				
60. 675 685 234.4 61. 685 695 342.1 62. 695 705 1513.4 166963(AS) 705 715 725 64. 715 725 50.4 64. 715 725 50.4 65. 725 725 50.4 65. 725 725 50.4 65. 725 725 50.4 65. 725 725 50.4 65. 725 725 50.4 66. 735 745 1435.1 68. 755 765 23.4 69. 745 765 23.4 69. 745 785 3757.7 70. 745 785 1546.7 74. 785 945 1546.7 74. 785 805 22037.9 74. 785 825 1085.7 74. 825 825.6	2	58.	655	665	2058.3				
61 685 695 342.1 62 695 705 1513.4 166963645 705 715 725 64 715 725 50.6 65 725 725 50.6 65 725 725 50.6 65 725 725 50.6 65 725 725 50.6 65 725 725 50.6 66 735 745 1435.1 66 745 7455 108.3 68 7455 765 23.44 67 765 775 77 765 775 3757.7 7 70 785 895 156.7 7475 785 156.7 7 7475 785 12637.9 7 7475 805 22037.9 7 748 835 835 1085.7 7 7835	1	59~	665	675	902.5				
62 695 705 1513.4 166963645 705 715 64 715 725 50.6 65 725 725 50.6 65 725 725 50.6 65 725 725 50.6 65 725 735 313.8 64 735 745 1935.1 68 755 765 23.4 69 765 785 3757.7 74 785 795 156.7 74 805 845 1085.7 </th <th>(</th> <th>60.</th> <th>675</th> <th>685</th> <th>234.4</th> <th></th> <th></th> <th></th> <th></th>	(60.	675	685	234.4				
166963(15) 705 715		61,	685	695	342.1				
64 715 725 50.0 65 725 735 313.8 66 735 745 1435.1 67 745 745 1435.1 68 7755 765 23.4 68 7755 765 23.4 $69.$ 745 7755 7765 745 7755 7765 23.4 $69.$ 7455 7765 23.4 $69.$ 7455 77655 23.4 745 7795 3757.7 7 $70.$ 7775 7855 1526.7 $74.$ 785 8975 1526.7 $74.$ 785 8975 1233.7 $72.$ 805 84.5 1233.7 $74.$ 84.5 805 1233.7 $74.$ 84.5 825.7 75.7 $74.$ 84.5 895.7 75.7 $75.$ 83.5 895.7 75.7 75		62	695	705	1513.4				
65 725 735 313.8 66 735 745 1435.1 67 745 755 108.3 68 755 765 23.4 68 755 765 23.4 68 755 765 23.4 <th>66963.(</th> <th>15</th> <th>705</th> <th>715</th> <th></th> <th></th> <th></th> <th></th> <th></th>	66963.(15	705	715					
66 735 745 1435.1 67 745 755 108.3 68 755 765 23.4 68 755 765 23.4 67 765 775 3757.7 70 745 785 1520.7 70 745 795 1520.7 74 785 995 1520.7 74 785 995 22037.9 72 805 845 1085.7 74 815 825 1085.7 74 815 825 822.6 74 835 895 822.6		64	715	725	50.4				
66 735 745 1435.1 67 745 755 108.3 68 755 765 23.4 68 755 765 23.4 67 765 775 3757.7 70 745 785 1520.7 70 745 795 1520.7 74 785 995 1520.7 74 785 995 22037.9 72 805 845 1085.7 74 815 825 1085.7 74 815 825 822.6 74 835 895 822.6		65	725	735	313.8				
67. 745 755 108.3		66.	735	745					
69. 765 775 3757.7	-	67.	745	755	108.3				
69.765 775 3757.7 70.775 785 785 1540.7 71.785 795 64684.8 72.785 805 22037.9 72.805 805 22037.9 72.805 845 1085.7 74.815 835 895 74.815 835 822.6 76.835 845 1076.1				765	23.4				
70. 745 785 1540.7 74. 785 9495 64684.8 78. 975 805 22037.9 73. 805 845 12835.7 74. 84.5 825 1085.7 74. 84.5 825 1085.7 75. 83.5 83.5 1085.7 75. 83.5 83.5 1076.1		69.	765	775	3757.7				
7.85 995 64684.8				785	1540.7				
72. 785 805 22037.9 73. 805 84.5 22835.7 74. 81.5 83.5 1085.7 75. 83.5 83.5 82.2.6 76. 83.5 84.5 1076.1				79 5	64684 8				
73. 805 83.5 22835.7 74. 83.5 83.5 1085.7 75. 83.5 83.5 822.6 76. 83.5 84.5 1076.1				805	22637.9				
74 83.5 83.5 1085.7 75 83.5 83.5 822.6 76. 83.5 84.5 1076.1					22835.7				
75. 83.5 83.5 822.6 76. 83.5 84.5 1076.1				825	1085.7				
76. 835 845 1076:1					822.6				
					1076.1				
77 845 855 1257.7					1257.7				
78. 855 865 764.3		· 1			764.3				

(

3

.

LISO 2002 SCHOOL ST COROCHEMICAL ANALYSIS CHEMICS ALL PROJECT MET 04-14 FILE 1400113 Page 1

23	The second se								
F-923	SAMPLE#	Au* Sam ppb	ole 'gm						
P.001/003	SI C 166854 C 166855 C 166856 C 166857	<.5 41.2 10.5 5.9 4.4	15 15 15 15 15 15		•				
1-302	C 166858 C 166859 C 166860 C 166861 C 166861 C 166862	5233.3 - 866.9 215.3 10.3 8.3	15 15 15 15 15	•					
+250 994 3338	C 166863 C 166864 C 166865 C 166865 C 166866 C 166866	8.1 29.8 1.4 4.7 15.7	15 15 15 15 15						
+280	C 166868 C 166869 C 166870 RE C 166870 C 166871	3.0 6.8 7.0 9.0 3.9	15 15 15 15 15 15						
	C 166872 C 166873 C 166874 C 166875 C 166876	8.5 5.3 7.9 13.5 1.6	15 15 15 15 15		-				
E-WELLS MINE	C 166877 C 166878 C 166879 C 166880 C 166881	3.0 12.9 2.5 1.4 1.1	15 15 15 15 15						
FROM-INT WAYSIDE-MELLS MINE	C 166882 C 166883 C 166884 C 166885 C 166885 C 166886	1.1 2.4 39.1 117.6	15		W				
Ë	STANDARD AU-R	462.0	15						
2004 18:55	AU ^o JGNITED, ACID LEACHED, ANALYZED BY ICP-NS. (15 pm) - SAMPLE TYPE: SLUDGE RISE 60C Samples bestiming 'SE' are Reruns and 'SHE' ore Reject Rerung. Date A/ FA DATE RECEIVED: Nor 26 2006 DATE REPORT MATLED: AM2/2004								
03-APR-2004	All results are considered the confidential property of the client. Acme assures the Liabilities for actual cost of the analysis only.								

T-302 P.002/003 F-923

+250 994 3338

FROM-INT WAYSIDE-WELLS MINE

03-APR-2004 18:57

Int'l Wayside Gold Mines Ltd. PROJECT MRT-04-14 FILE # A401113

Page 2

ADIE MINISTRAL			
· · · · · · · · · · · · · · · · · · ·	SAMPLE#	Au* Sample ppb gm	
	C 166887 C 166888 C 166889 C 166890 C 166891 C 166891	11.6 15.0 9.4 15.0 6.2 15.0 49.5 15.0 46.7 7.5	
	C 166892 C 166893 C 166894 C 166895 C 166896	38.7 15.0 113.4 15.0 203.5 15.0 37.9 15.0 9.7 15.0	
	C 166897 C 166898 C 166899 C 166900 RE C 166900	16.9 15.0 72.7 15.0 14.6 15.0 28.0 15.0 29.9 15.0	• •
	C 166951 C 166952 C 166953 C 166954 C 166955	120.1 15.0 31.5 15.0 399.9 15.0 4756.8 5.0 1432.8 15.0	
	C 166956 C 166957 C 166958 C 166959 C 166960	11445.4 6731.9 2058.3 902.5 15.0 234.4 15.0	
	C 166961 C 166962 C 166963 not received C 166964 C 166965	342.1 15.0 1513.4 15.0 50.6 15.0 313.8 15.0	
	C 166966 C 166967 C 166968 C 166969 STANDARD AU-R	1435.1 15.0 108.3 15.0 23.4 15.0 3757.7 15.0 468.0 15.0	
Sample type: SLUD	JR R150 60C. Samples beginning '	RE' are Reruns and 'RRE' are	Reject Reruns.

All results are considered the confidential property of the client. Acce assumes the liabilities for actual cost of the analysis only.

Bata LFA _

AA KEE AND THEA

F-923

P.003/003

T-302

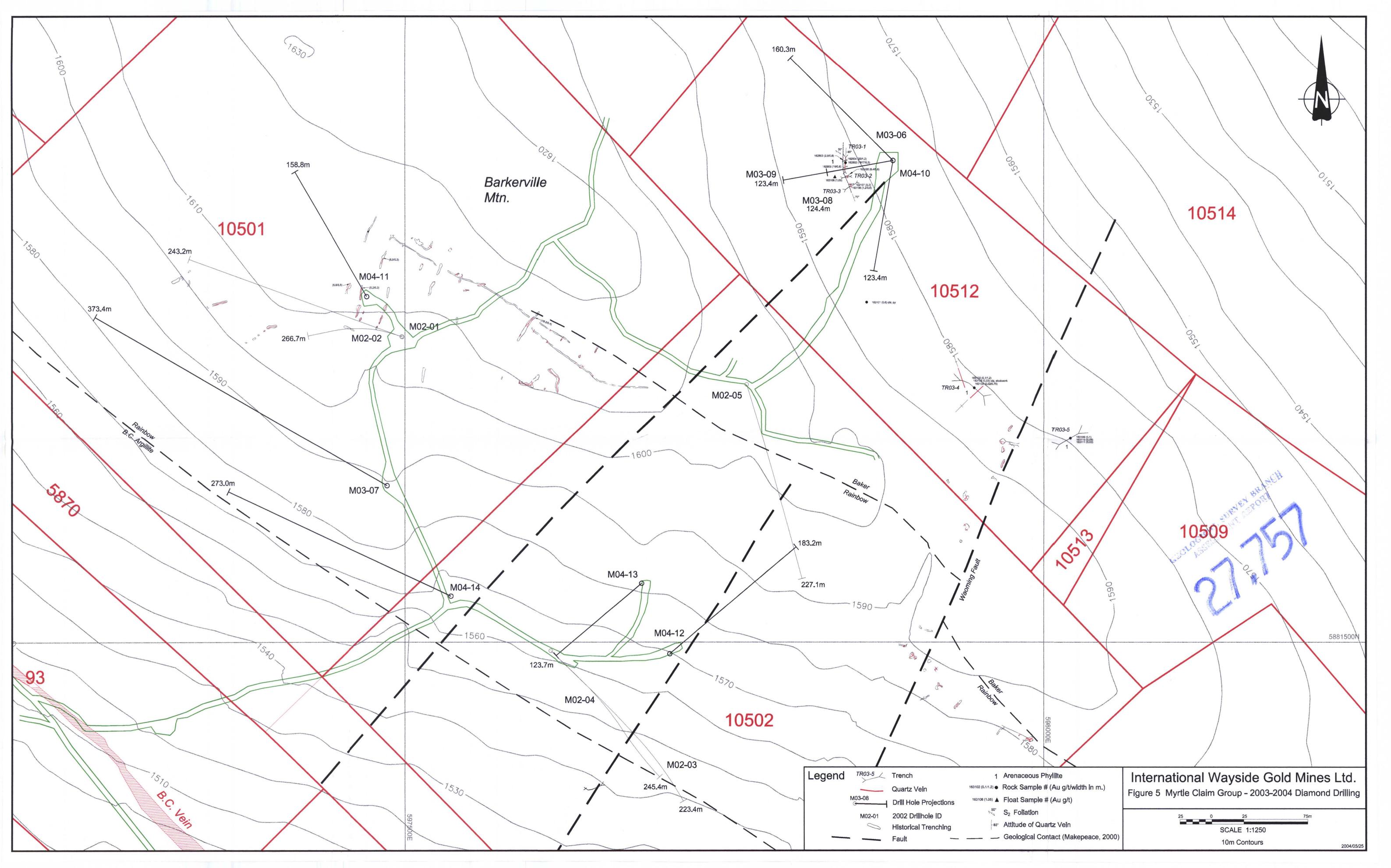
+250 994 3338

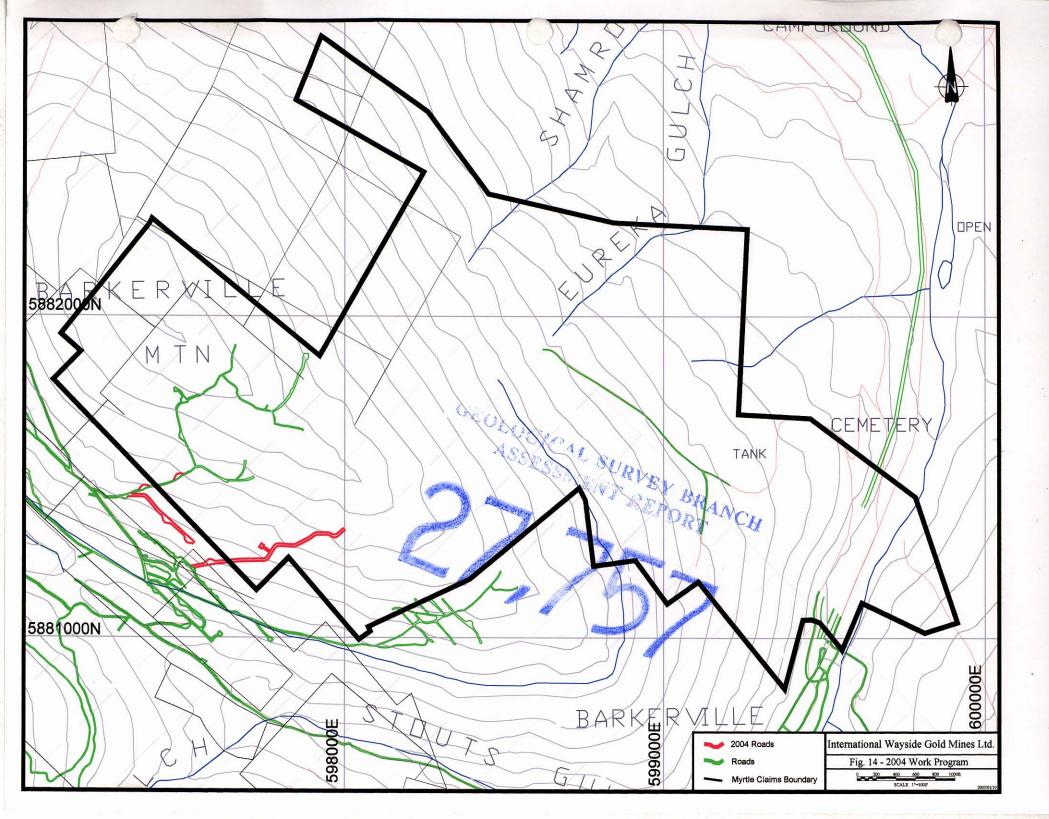
FROM-INT WAYSIDE-WELLS MINE

18:57

03-APR-2004

Int'l Wayside Gold Mines Ltd. PROJECT MRT-04-14 FILE # A401113 Page 3




	SAMPLE#	Au* S ppb	ample gm	
	C 166970 C 166971 C 166972	1560 <u>7</u> 64684.8 22658.3	15 15 15 15 15 15	
	C 166973 C 166974	11637.9 22835.7	15 15	
	C 166975 C 166976 C 166977	1085.7 822.6 1076.1	15 15 15 15 15	
~	C 166979 RE C 166978	1257.7	15 15	
	C 166979 C 166980 C 166981	924.4 541.5 1606.3	15 15 15 15	
	STANDARD AU-R	470.0	15	

Sample type: SLUDGE R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

