
GEOCHEMICAL ASSESSMENT REPORT

ON THE

LA VETA PROPERTY

Atlin Mining Division, British Columbia Tatsamenie Lake Area NTS 104K/09 TRIM 104K.049 & 059 Latitude: 58° 30'42" North Longitude: 132° 13' 49" West

Owned By

SUMMARY

The La Veta Property is located in the Atlin Mining District, roughly 100km southeast of Altin BC. The two claim, 900 ha property is held under a Letter of Intent granting Solomon until March 1, 2005 to formalize an option with the vendor.

Mineralization on the property consists of multiple east-west striking quartz veins hosted in hornfelsed and pyritic sediments occurring peripheral to a Tertiary diorite stock. The 2 to 50 centimetres wide veins are traceable for over 150 metres and exhibit mineral zoning of arsenopyrite-stibnite and galena-chalcopyrite-sphalerite assemblages from east to west respectively. Mineralization also occurs in a quartz-carbonate alteration zone within the centre of the property containing combinations of; massive sphalerite-galena-pyrrotite-pyrite-stibnite-chalcopyrite and tetrahedrite within a <10 to 60 centimetre wide quartz vein that is traceable for 50 m.

A total of 4 person-days were spent on the property in early August 2004 prospecting, geological mapping and collecting a total of 16 rock samples, including 9 grab samples, 6 float samples and 1 chip sample. The float samples were collected from mineralised talus boulders and are considered locally derived from a possible quartz-carbonate vein source located underneath a talus apron. Sample results ranged from trace to 9,040 ppb Au obtained from a float boulder containing quartz-pyrite-arsenopyrite (L04SC-F25). A total of 63 soil samples were collected on three contour soil lines located to fill data gaps from previous work. Two infill soil lines along the north property boundary provided greater resolution of a multi-element soil anomaly defined by previous operators. A soil Au-Cu-Ag geochemical anomaly was detected on a hillside and may have been derived from a continuation of a quartz vein system exposed to the north and south. Two additional soil lines were completed south of the above anomaly area on a ridge above the projected strike extent of a carbonate alteration zone. No anomalous geochemical values were reported.

Further work should involve trenching on the plateau surface located above the soil geochemical anomaly and between known mineralized vein exposures.

TABLE OF CONTENTS

Summary

1.0 Introduction	5
1.1 Location and Access	5
1.2 Physiography and Climate	5
1.3 Claim Status and Ownership	
1.4 History	6
1.5 2004 Exploration Program	
2.0 Geology	7
2.1 Regional Geology	
2.2 Economic Significance within the Tulsequah Map Area	
2.3 Property Geology	10
2.4 Property Mineralization	
3.0 Purpose	11
4.0 Methods	12
5.0 Results and Interpretations.	12
5.1 Soil Geochemical Sampling in the Cold Creek Area	
5.2 Soil Geochemical Sampling in the Big Onion Tributary Gully Area	
5.3 Prospecting in the Big Onion Tributary Gully Area	
6.0 Conclusions	
Recommendations	15
References	

LIST OF FIGURES

Figure 1:	Property Location Map
Figure 2:	Claim Map5
	Regional Geology Map7
Figure 4:	Sample Site Location Mapin pocket

LIST OF TABLES

On Page

6
•

LIST OF APPENDICES

APPENDIX I.	Statement of Costs1	9
APPENDIX II.	Sample Analyses Sheets	21
APPENDIX III.	Field Data Sheets	22
APPENDIX 1V.	Percentile Calculations for Soil Geochemical Samples	23
APPENDIX V.	Mineral Claim Certificates	25
APPENDIX VI.	Statement of Qualifications	26
APPENDIX VIII.	List of Personnel	28

1.0 INTRODUCTION

Solomon Resources Limited (Solomon) conducted geological, geochemical and prospecting surveys of the La Veta mineral exploration property August 7th and 8th, 2004. The following report details this work and is provided for assessment credit purposes.

1.1 Location and Access

The La Veta property is located within the Atlin Mining Division of northwest British Columbia (Fig.1). The property is approximately 110 km from the coast and overlooks the Sheslay River Valley to the east. The nearest communities are Telegraph Creek 90 km to the southeast and Juneau, Alaska 120 km to the west. Permanent helicopter and float plane bases at Dease Lake 130 km to the east and Atlin 150 km to the northwest provide the best points of access to the property. The Golden Bear mine road to the south provides land access to within 29 km of the property. The mine road was blocked off in September 2004 and now vehicle access is only possible to within 80 km of the property. Helicopter is required to access the property.

During the 2004 field season, Solomon crews relied on daily put outs by a Lakelse Air Ltd. Robertson 44 helicopter from a camp on the Metla property 25 km to the southwest.

1.2 Physiography and Climate

The La Veta prospect is located in the Stikine Plateau on the lee side of the Coast Mountain Range. The property is situated on two north-south oriented remnant peneplains, or plateaus connected by a northeast trending ridge. Several deep gullies have incised into the sides of the plateau. Topographical relief within the claim group is in the order of 900m above sea level (a.s.l.) with elevations ranging from 920m to slightly greater than 1800m a.s.l. (see Figure 2). The gullies were likely formed by pocket glaciers and have steep talus covered slopes and precipitous outcrop cliffs. The entire property drains along steep gullies to second order tributaries of the Sheslay River, a tributary of the west flowing Taku River system.

The majority of the property is above the treeline, although stands of stunted balsam fir and willow shrubs occupy the lower valleys bottoms.

The area is subject to moderate, but wet summers and cold winters. Temperatures typically range between 5°C and 15°C in summer and -30° C and -10° C in winter. Precipatation is lowest in the spring months and snow accumulations can be expected to exceed 1.5m. The La Veta property is located on the lee edge of the Coast Range and can be expected to be marginally drier than the highlands to the

west.

1.3 Property Status and Ownership

The La Veta property is located in the Atlin Mining District. It is comprised of 2 contiguous four-post claims of 18 units each and covers a total area of roughly 900ha.

Claim Name	Map Number	Record No.	No. of Units	Date Recorded	Expiry Date*
La Veta #3	104K049	409100	18	March 26, 2004	March 26, 2005
La Veta #4	104K049	409101	18	March 26, 2004	March 26, 2005
*Expir	ry date based	on credit beir	ig granted f	or work reported her	ein.

 TABLE 1: Claim Tenure

The La Veta property is subject to a Letter of Intent (LOI), by which the vendor, Mr. Clive Aspinall of Atlin BC, grants Solomon until March 1, 2004 to conduct a due diligence investigation of the property and subsequently complete and file a minimum one year assessment work (minimum \$3,600 field work).

1.4 History

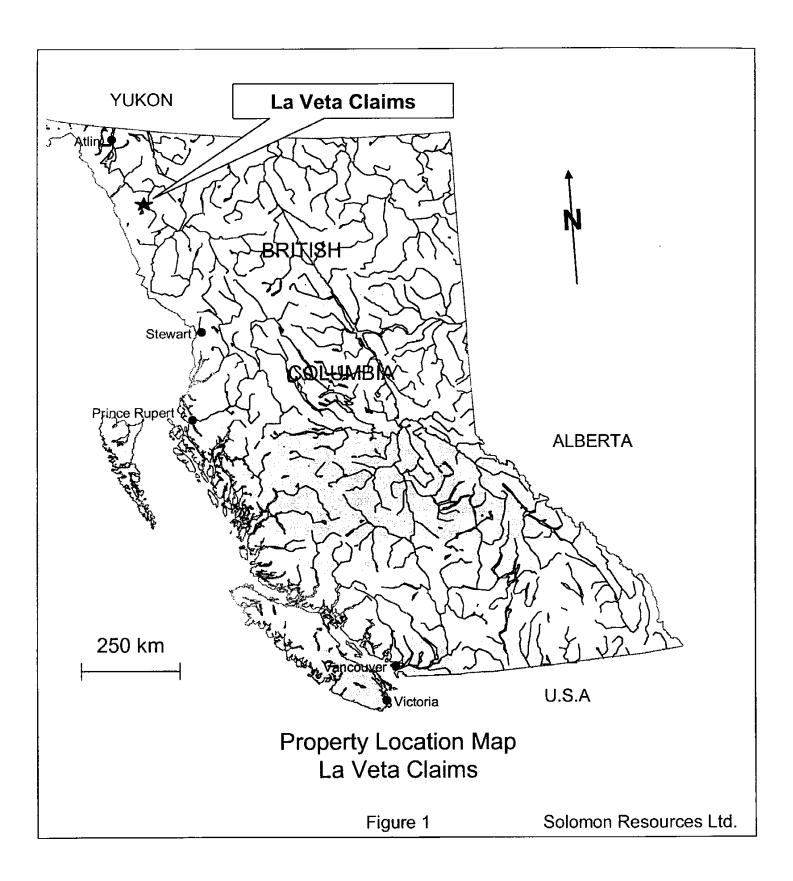
The regional geology of the Trapper-Tatsamenie Lake areas was first mapped in detail by Souther (Map 1262A, 1971) as a part of the Tulsequah Mapsheet (NTS 104K). More detailed mapping was undertaken within the area north and south of Tatsamenie Lake by Oliver and Hodgson (1989), Bradford and Brown (1993), Oliver and Gabites (1993) and Oliver (1995) for the B.C. Geological Survey (BCGSB). This work focused on Devonian and Permian lithologies associated with gold mineralization discovered near Muddy Lake by Chevron in the early 1980's. BCGSB mapping work has similarly been focused in the Tulsequah mine area in recent years (Mihalnyuk et al, 1994; Sherlock et al, 1994; Sebert et al., 1995). In addition, a regional geochemical survey (RGS) of the 104K mapsheet was conducted by the BCGSB in 1987.

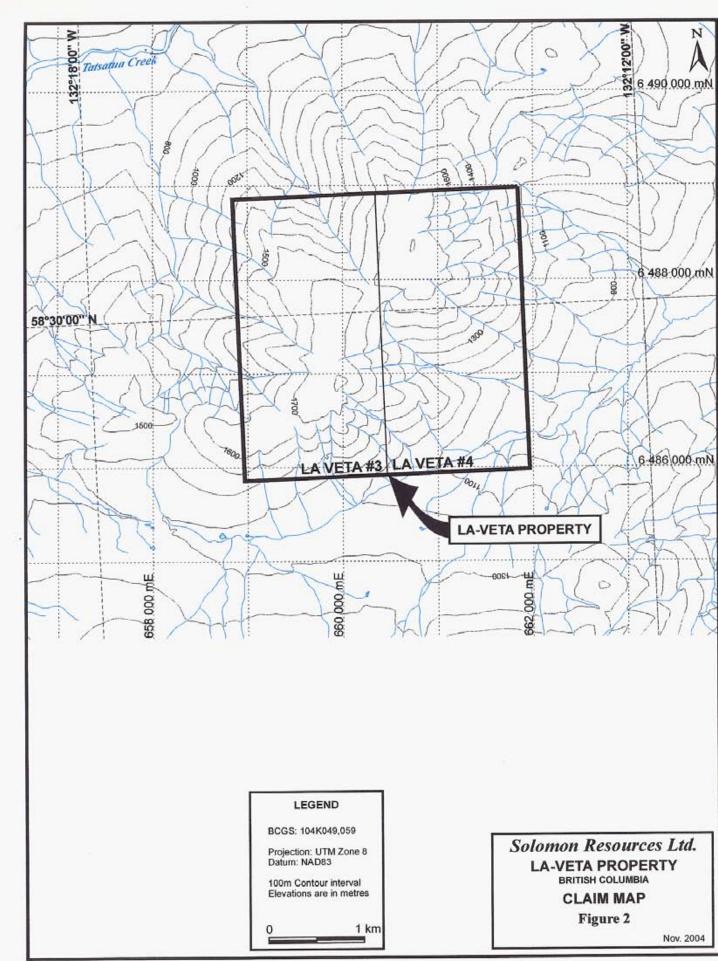
The La Veta property was first staked as the Vein claims by Chevron Minerals Ltd. in 1982 after regional heavy mineral stream sediment sampling survey work conducted by Chevron identified a precious metal anomaly in the area. Chevron's work included geological mapping, prospecting and preliminary soil sampling. In 1983, Chevron collected 549 soil samples and 71 rock samples. Their conclusion was that a gold bearing arsenopyrite-stibnite±quartz-chalcopyrite-sphalerite-galena vein system was crosscutting the local country rocks. Chevron then allowed their claims to lapse in 1986, likely due to their focused interest in the development of their Muddy Lake (Golden Bear) Property to the south with partner North American Metals Ltd. The property was re-staked in 1987 as the Vine claims and optioned to Waterford Resources Inc. An exploration program was carried out for Waterford by Stetson Resource Management Corp. under the direction of J.C. Freeze (P.Geo) in 1987. Stetson's program consisted of geological mapping, prospecting, detailed rock chip and soil sampling. Freeze concluded that mineralization on the Vine property fit Lindgren's (1933) criteria for a mesothermal ore deposit, as is the case with the Golden Bear Deposit.

1.5 2004 Exploration Program

In 2004, a portion of the original Vine claims was restaked by Clive Aspinall (P.Eng) under a LOI with Solomon. Solomon personnel spent a total of 4 persondays on the property on August 7th and 8th, 2004. A total of 16 rock (7 float and 9 bedrock) and 63 soil samples were collected during the exploration program.

The work included 2 detailed soil sampling lines on the ridge along the projected strike extent of the Cold Creek quartz-carbonate alteration zone as was recommended by Stetson (1988). The soil lines were spaced 50 m apart from each other and had an individual sample spacing interval of 10 m.


Inside of the Big Onion Tributary gully, 2 detailed follow-up soil sampling lines were run above and below a gold-copper soil geochemical anomaly that was identified from Chevron's 1983 survey, in an attempt to narrow down a source. Limited rock sampling and prospecting was also conducted, primarily in the gully surrounding Big Onion Creek and the gully opposite the Cold Creek quartz - carbonate alteration zone.


2.0 GEOLOGY

The La Veta property is located on the western margin of the Intermontane Geomorphological Belt. It is also found within the northwestern corner of Stikinia Terrane, pinched between the Cache Creek Complex to the north and the Coastal Plutonic Complex to the southwest.

2.1 Regional Geology

The area of interest for this project lies immediately to the northeast of the Coastal Plutonic Complex and to the southwest of the Nahlin Thrust Fault (Fig. 3). The oldest rocks in the region are those of the Upper Paleozoic Stikine Assemblage that were formed in a volcanic arc-type depositional environment and whose ages may range from Devonian to Permian (Sherlock et al., 1994 and Nelson and Payne (1984) in Mihalynuk ,1994). The Stikine Assemblage rocks found to the south and west of Tatsamenie Lake include recrystallized limestones, dolomitic limestones,

minor cherts and argillites (Bradford and Brown, 1993; Oliver, 1995; Souther, 1971; BCGS). Overlying these rocks, both to the west and to the south of Tatsamenie Lake are a series of Stikine Assemblage fine grained clastic metasedimentary rocks and intercalated metavolcanic rocks mostly altered to greenstones and phyllites as well as chert, jasper, greywacke and limestone. Other Stikine Assemblage rocks in the area include rhyolites and felsic volcanics, marine sedimentary rocks, a sequence of coarse clastic sedimentary rocks to the southwest and volcaniclastic rocks to the northwest.

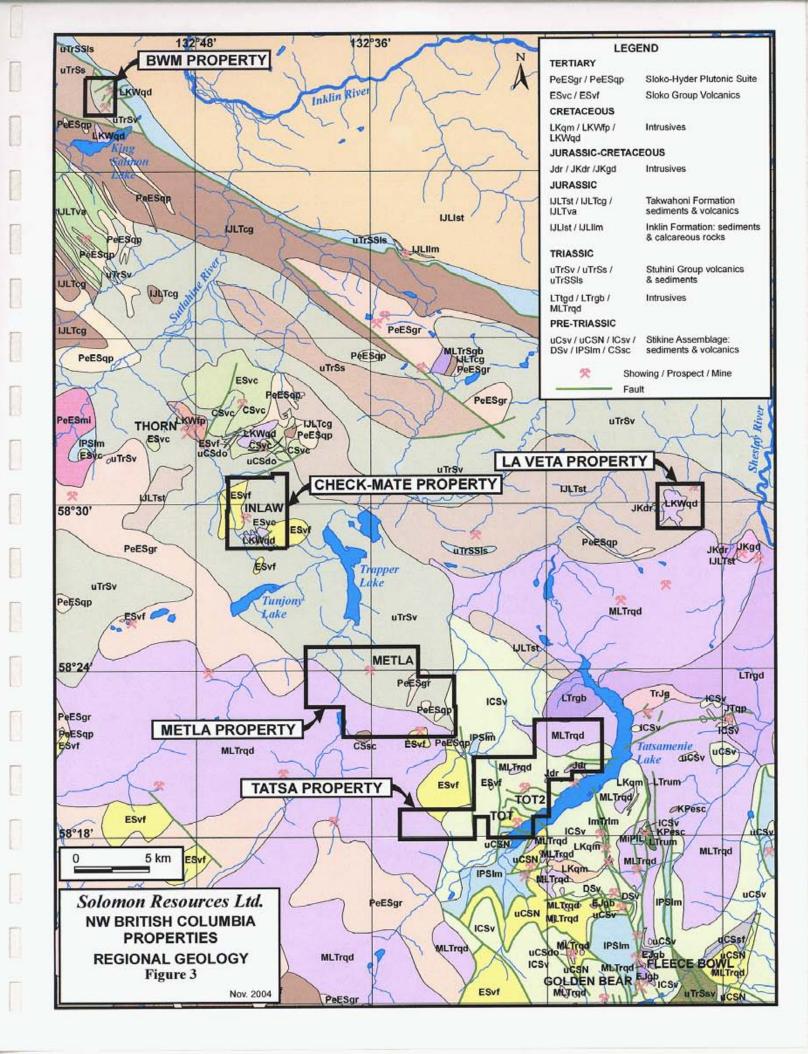
Upper Triassic Stuhini Group rocks are found extensively throughout the area, especially in the central northwest-southeast axis of the region. Stuhini rocks were deposited in an arc-type environment and comprise andesite and basalt flows, pillow lavas, green augite-phyric pillowed flows, volcanic breccias, lapilli tuffs, feldspar-phyric flows and massive Norian limestones as well as argillites, siltstones and limestones. The Stuhini Group also includes the Sinwa Formation limestones and their accompanying minor sedimentary rocks (Bradford and Brown, 1993; Mihalynuk, 1994; and Souther, 1971).

Large bodies of quartz diorite intrusives, strongly foliated diorite and minor granodiorite that Souther (1971) believed to be Lower or Middle Triassic in age are found to the east and west of Tatsamenie Lake. North of Trapper and Tatsamenie Lakes is the Laberge Group, a belt of Lower to Middle Jurassic sedimentary rocks that include the Inklin and Takwahoni Formations. The Inklin Formation comprises well bedded greywacke, siltstone, silty sandstone, mudstone, limy pebble conglomerate and the Takwahoni Formation includes granite-boulder/chert-pebble conglomerates, greywacke, quartz sandstones, siltstones and shales (Souther, 1971).

The Late Cretaceous and Early Tertiary Sloko Group intrusive and extrusive rocks are ubiquitous throughout the Tulsequah region, especially to the south of the King Salmon Thrust Fault. Sloko rocks include rhyolite, dacite and trachyte flows, pyroclastics and volcanic sedimentary rocks as well as rhyolitic and felsic dykes. Souther (1971) also believed that a series of widespread similarly aged felsite, quartz feldspar porphyry and quartz monzonite intrusions were associated with these Sloko extrusives. Other significant Late Cretaceous intrusives in the area are those of the Windy Table Complex which comprise feldspar porphries and quartz diorites.

North of the interest area lies the Nahlin Thrust Fault, believed to have been active throughout the Middle Triassic and forms the southern boundary of the Atlin Horst. South of the Nahlin Fault lies the northwest-west trending King Salmon Thrust Fault, dipping towards the northeast. Sinwa and Inklin Formation rocks were thrusted southwards over the younger Takwahoni sediments via this structure. Stikine Assemblage rocks south of the Nahlin Fault are characterized by northsouth trending folds with steep parallel limbs. The King Salmon Thrust Fault is believed to have been activated during the Upper Jurassic from renewed movement on the Nahlin Fault. Rocks south of this thrust are folded into plunging northwesterly trending symmetrical folds with minor faulting and shearing (Souther, 1971).

2.2 Economic Significance within the Tulsequah Map Area


Many of the mineral occurrences within the Tulsequah map area can be divided into three northwest trending belts that include: Cu and Cu-Mo porphyry systems associated with the Coastal Batholith; Au-Ag-base metal vein and Au-rich massive sulphide occurrences associated with Mid-Paleozoic to Triassic volcanosedimentary sequences west of the Nahlin Thrust Fault; and, Cu-porphyry systems west of the Nahlin Thrust Fault. The most significant of these include the Tulsequah-Taku and Golden Bear mine camps located within the central of these belts. The mineral resource calculations within the following paragraphs were filed before NI 43-101 reporting standards were established and are therefore not compliant, however, they were reported to the standards of their time.

To the northwest, near the confluence of the Taku and Tulsequah Rivers lie three past producing properties; the Tulsequah Chief, Big Bull and Polaris Taku. The Taku River Valley was opened up to prospecting between 1897 and 1898 when it was used as a means of access to the Klondike goldfields (Souther, 1971).

The New Polaris (formerly Polaris Taku Mine) gold mine, on the west side of the Tulsequah River operated between 1937 and 1951. Two main shear zones host auriferous arsenopyrite bearing quartz-carbonate veins and fissure fillings near the base of a carbonatized volcanic succession within the Whitewater Suite of Stikinia. The mine historically produced 7,203,579 g gold (231,600 oz) from of 689,090 tonnes of ore. Canarc Resources Corp., the current property owner, estimates current gold resources to be 40,433,900 g gold (1,300,000 oz) at an average grade of 12.3 g/t Au (Canarc Resources, 2003; Souther, 1971; Redfern Resources, 2003).

The Tulsequah Chief and Big Bull deposits, located on the eastern side of the Tulsequah River, were both actively mined by Cominco Ltd. between 1951 and 1957. These deposits were originally thought to be of the shear replacement-type, but in the 1980's it became apparent they were polymetallic volcanogenic massive sulphide (VMS) deposits. They are hosted within the Mount Eaton Group of the Stikine Terrane, and separated from the Whitewater Suite to the west by the Llewelyn Fault. The total ore production for the Tulsequah Chief and Big Bull deposits was 2,931,644g Au (95,340 oz), 105,744,215g Ag (3,329,938 oz), 56,559 tonnes Zn, 12,341 tonnes Cu, 12,214 tonnes Pb from 935,536 tonnes of ore. Redfern Resources Ltd. estimates the total resources remaining in the Tulsequah Chief deposit to be around 7,557,949 tonnes grading 1.32% Cu; 1.23 % Pb; 6.63% Zn; 2.51 g/t Au and 105.25 g/t Ag and it is currently in the final stages of development (Redfern Resources, 2003).

In the southeast corner of the Tulsequah Map sheet, south of Tatsamenie Lake are the Golden Bear (Muddy Lake) deposits. A major structure called the Ophir Break

Zone runs through the area and extends as far north as Tatsamenie Lake (Hodgson and Brown, 1993). Mineralization is hosted within hydrothermally brecciated dolomites of the Stikine Terrane. The Golden Bear Mine, operated by North American Metals Ltd. followed by Wheaton River Resources Ltd. between 1989 and 2002, produced 15,044,867 g gold (483,704 oz) and 1,716,107 g silver (55,174 oz) from 2,171,150 tonnes of ore (Minfile Report, 104K 079).

Near the centre of the Tulsequah Map area is the Thorn Property, currently being explored by Cangold Limited and Rimfire Minerals Corporation. At the Thorn, mineralization occurs both in an epithermal alteration system that hosts massive pyrite-enargite-tetrahedrite veins, and in a breccia zone containing sulphides and potentially high grade silver/gold mineralization within the siliceous matrix. Sampling to date on the Oban Zone has returned results of up to 3.05% copper, 1.1 g/t gold and 132 g/t silver across a length of 2.25 metres (Rimfire, 2004; Cangold, 2004).

The Mt. Ogden molybdenite occurrence is located in the west part of the map sheet near the BC-Alaska border. The majority of the mineralization is hosted by a Tertiary-Cretaceous stock of alaskite and occurs in veins, veinlets, along fractures and as rosettes (Minfile 104K-013).

Some adjacent showings of interest include the TERR occurrence to the southeast, composed of widely-spaced mineralized veins in granodiorite/diorite that contain pyrite-chalcopyrite-arsenopyrite with minor galena-sphalerite-pyrite-graphite-tetrahedrite. The VAL showing to the south is composed of a quartz monzonite intrusion and a quartz feldspar porphyry cut by porphyry dykes. One area is pyritized, containing minor molybdenite, malachite and rare chalcopyrite (Minfile 104K-076 & 104K-040).

2.3 Property Geology

A concise summary of the property geology was provided by J.C. Freeze of Stetson (1988) and has been updated. The La Veta property is underlain primarily by Jurassic Takwahoni Formation sedimentary rocks of the Laberge Group that were intruded by three separate igneous events (Figure 4). The first intrusion is Jurassic to Cretaceous in age and is composed of diorite found in the western part of the property. The second intrusion occurred in Late Cretaceous time and comprises quartz diorite stock of the Windy Table Complex. The texture of the diorite varies from fine to coarse grained and is most commonly massive. The third intrusive event was the Cretaceous and Tertiary Sloko Group of felsite (quartz feldspar porphyry, aplite and tuff) and rhyolite dykes and small stocks that cross-cut the diorite and sediments. A foliation usually occurs in the diorite adjacent to the Sloko Group dykes.

Strong folding occurs within the Takwahoni sediments towards the northern end of

the property, possibly due to the diorite intrusion as evidenced by several beds dipping away from the batholith.

2.4 Property Mineralization

Stetson (1988) outlined that mineralization primarily occurs within two main zones referred below as the Big Onion-Vein Zone and the Cold Creek Zone (Fig. 4).

The Big Onion-Vein Zone contains a series of quartz-carbonate veins with goldsilver-copper-lead-zinc-antimony-arsenic. The mineralized veins outcrop in Vein Creek and in Big Onion Tributary, 1 km apart and on strike. A gold and copper soil geochemical anomaly also occurs on the plateau between the two creeks. Stetson obtained 11.25 g/t gold over 15 cm in Vein Creek (Chevron obtained 7.54 g/t Au) and 2.72 g/t gold over 20 cm in Big Onion Tributary.

The Cold Creek mineralized zone to the south comprises a quartz-carbonate alteration zone approximately 2.8 m wide that trends to the northeast from Cold Creek, cross-cutting the local lithologies. The alteration zone contains a northeasterly striking quartz vein that is 40 to 60 cm thick over a 30 m strike length with massive sphalerite, galena, pyrrotite, pyrite, stibnite and chalcopyrite blebs that had up to 3.63 g/t gold over 60 cm. The vein then strikes to the west and contains massive galena, tetrahedrite, chalcopyrite and pyrite over a 20 m strike length as well as 1.75 g/t gold and 2,876 g/t silver over 25 cm. At the eastern end of the alteration zone is a crackle breccia with quartz and massive pyrite that contained 1.80 g/t gold in a grab sample.

3.0 PURPOSE

This exploration project had several purposes. Earlier work programs by Stetson and Chevron were quite extensive in their coverage, including detailed sampling of the showings within the Big Onion, Vein Creek and Cold Creek zones. Solomon designed its efforts to undertake work previously recommended by Stetson and Chevron or to fill data gaps based identified in their results.

The first objective was to attempt to intersect a possible extension of the mineralized Cold Creek carbonate alteration zone underlying the plateau to the west using geochemical soil sampling. The second objective, also involving soil geochemical sampling, was to follow-up a soil anomaly detected by Chevron north of the Big Onion Creek drainage and to try and pinpoint a source.

Another goal was to prospect in the Big Onion Creek gully area to look for newly exposed mineralized outcrops. Prospecting was also conducted on the plateau along the strike of the Big Onion and Vein Creek mineralized quartz veins in search of outcrop and mineralization.

4.0 METHODS

Two parallel soil lines, L04SS2N and L04SS2S, were conducted on the plateau west of Cold Creek, separated by 50 m. Each line contained 16 soil geochemical samples with a spacing interval of 10 m. These samples were taken with a mattock from soils on the grass-covered plateau surface.

Two soil lines, L04SSN and L04SSS, were also run in the Big Onion Tributary Gully above and below a Chevron soil geochemical anomaly. The individual samples were spaced 50 m apart from one another and were taken from talus and vegetation covered slopes.

Sample were typically taken from a depth of 10 to 15 cm below the surface. The vegetated slopes were likely composed of soliflucted or colluvial material. The start and endpoints for each soil line were recorded using a hand-held Magellan GPS. North American Datum 83 (NAD83) was used for the map and a hip chain was utilized to measure the distance between each sample site.

Prospecting was done in the areas where soil sampling was conducted. Soil samples were placed in individual paper bags and bedrock and float samples were placed into plastic bags. Bedrock and float sample site locations were recorded using handheld Garmin and Magellan GPS models. All geochemical samples were then sent to the Teck Cominco Global Discovery Labs in Vancouver and analyzed by chemist Alice Kwan for gold using atomic absorption (AA) as well as 28 additional elements using inductively coupled plasma (ICP).

The soils were dried overnight, sieved through an -80 mesh screen and then a 5 gram subsample was digested in hot reverse aqua regia.

Rock samples were dried and crushed, split in a Jones Riffler and then a 250-300 gram subsample was extracted. The subsample was then milled through a "puck and rock" mill until more than 95 % of it passed through a 150 mesh sieve. A 5 g sample was then taken and digested in hot aqua regia.

Both soil and rock samples were then analyzed using ICP. To analyze for gold, 5 g was taken from each sample, heated, digested in aqua regia, then the gold was extracted using a solvent and finally analyzed through AA (Global Discovery Labs Manual).

5.0 RESULTS AND INTERPRETATION

Complete geochemical analyses are provided in Appendices II and III. All soil sample geochemical results were statistically analyzed to decide which soils were

elevated compared to the local background values. Values below the assaying detection limit were assumed to have values of either 0 ppb (Au) or 0 ppm. All soils taken on the property were combined to calculate the 95th, 90th and 85th percentiles for the following elements; Au, Ag, Cu, Pb, Zn, As, Sb and Mo (Appendix IV). On the results compilation map (Fig.4), every value that falls above the 95th percentile for a particular element, is highlighted in red, as highly anomalous. All elevated values above the 85th percentile are marked in bold.

5.1 Soil Geochemical Sampling in the Cold Creek Area

Soil geochemical sampling lines, L04SS2 N and S, along the ridge perpendicular to the projected strike extent of the Cold Creek alteration zone (Fig. 4) did not yield any anomalously high precious or base metal values. This may be explained due to either; 1) The strike of the alteration zone deviates from its projected southwest orientation below the ridge and the soil sample lines missed the corresponding geochemical anomaly; 2) The quartz-carbonate alteration zone may be present at depth in the bedrock underneath the ridge, revealing no geochemical anomalies in the surface soils; 3) The alteration area does not extend beneath the ridge.

5.2 Soil Geochemical Sampling in the Big Onion Tributary Gully Area

Soil sampling above and below the gold-copper soil geochemical anomaly detected by Chevron near the northern La Veta claim boundary yielded a cluster of anomalous values in gold, copper, arsenic, silver, lead, zinc and molybdenum (Fig. 4 or Append. II or III). There were also several scattered soil sites with elevated results.

This confirms a geochemical soil anomaly located above and below the one detected by Chevron, suggesting a possible point source beneath the surface. However, these soil samples were taken from a hillside covered with talus and vegetation and it is likely that the vegetation was covering soliflucted material, meaning that the soils in this area may have been derived from the plateau summit to the east. Stetson (1988) showed elevated gold and copper geochemical soil values on the plateau immediately above the geochemically anomalous zone confirmed by this survey (Fig.4).

On the other hand, the soil geochemical anomaly is located between the Big Onion Tributary mineralized quartz vein showings and the quartz veins discovered by Stetson Resource Management Corp. in the tributary gully to the north (Fig.4). This may indicate a possible continuation of a mineralized quartz vein system between the two exposures.

5.3 Prospecting in the Big Onion Tributary Gully Area

On the southwest flank of the Big Onion Tributary gully, lie a series of northeast trending felsic dykes. The dykes occupy steep gullies and have intruded into the local diorites. A sulphide boulder train was traced up one of these gullies and included samples; V04AR-113, V04AR-115, V04AR-116, L04SF-17, and L04SF-18. The float was angular to sub-rounded and contained various combinations of pyrite, galena, sphalerite, arsenopyrite, stibnite and tetrahedrite(?) The float ran between 440 and 3200 ppb gold and all had high lead, zinc, arsenic and antimony values. The majority of the float mineralization was associated with quartz veining and/or stringers which sometimes had a sawtoothed pattern. Banded carbonate was also associated with mineralization in some of the float fragments. The boulder train was eventually lost into the talus ³/₄ of the way up the tributary gully and the source not traced.

The shape and abundance of this mineralized float indicates that its source likely lies within the gully underneath the talus apron, possibly at the contact between the dyke and the diorite. The sulphides may have been derived from a quartz carbonate vein of unknown extent.

Mineralized float was also sampled in a gully on the northern side of the Big Onion Tributary. One of the float pieces, L04SF-21, was angular and contained a 3 cm wide quartz vein with massive pyrite and yielded 3400 ppb gold and 205,100 ppm arsenic while the other one, L04SF-25, contained 9040 ppb gold with 79.8 ppm silver, 10280 ppm lead, 154000 ppm arsenic, 10550 ppm zinc and 1942 ppm antimony. Soil sample L04SS 2+70S, taken in the same gully, also yielded 106 ppb gold and 2867 ppm arsenic. This discovery was made in an area where Chevron and Stetson reported quartz veins with massive sulphides and elevated gold values and this float may have been derived from one of those veins. Their reported quartz veins were not located on the ground during the 2004 program so it is uncertain whether this vein float (L04SF-21) was from a new exposure up-gulley or one that had been previously sampled.

Other rock samples either yielded disappointing results or were likely sampled from previous sample sites. Samples L04SR-19 & 20 were taken from an intensely stained malachite shear zone believed to have been sampled by Stetson in 1987, the latter containing 1872 ppb gold. Chip sample L04SC-23 (over 30 cm), containing 1980 ppb gold, and grab sample L04SC-24 (1246 ppb gold) were likely taken from quartz veins previously sampled by either Stetson or Chevron.

6.0 CONCLUSIONS

The Cold Creek carbonate alteration zone may not extend under the plateau to the west, or alternately, the soil sampling lines missed its corresponding anomaly. The soil geochemical anomaly to the north of Big Onion Creek may have been derived from anomalous soil material moving downslope from the top of the plateau to the east. The geochemical soil anomaly may also be in situ since it is found between two historically noted mineralized vein occurrences. The author believes the former to be a more likely possibility since soil values on the plateau and below are both in primarily gold and copper.

The massive sulphide boulders in the gully on the southern side of Big Onion Creek probably came from a quartz-carbonate vein underneath the talus pile within the gully.

RECOMMENDATIONS

Trenching on the plateau along the projected strike extent of the mineralized quartz vein system between Vein and Big Onion Creeks is suggested as was recommended by Stetson (1988). The geochemical soil anomalies detected from both this survey and Chevron's sampling, are likely to have been dispersed from this plateau source.

REFERENCES

B.C. Geological Survey (January, 1989): Tulsequah-B.C. Stream Sediment Data: Regional Geochemical Survey (104K, 1:500 000).

BC Geological Survey Map; Ministry of Mines and Energy; Programs and Services; <u>http://webmap.em.gov.bc.ca/mapplace/minpot/bcgs.cfm</u>; (NTS 104K East, 1:100,000)-Compiled by Solomon Resources- July 2004).

Bradford, J.A. and D.A. Brown (1993): Geology of the Bearskin Lake and Southern Tatsamenie Lake Map Areas, Northwestern British Columbia (104K/1 and 8); in Geological Fieldwork 1992, B.C. Ministry of Mines and Petroleum Resources, Paper 1993-1.

Bradford, J.A. and D.A. Brown (1993): Geology of the Bearskin Lake and Southern Tatsamenie Lake Map Areas, Northwestern British Columbia (104K/1 and 8; Scale 1:50 000 & 1:100 00); British Columbia Geological Survey Branch Open File, Maps 1993-1.

Brown, D and G. Walton (1983): Assessment Report, Geological and Geochemical Survey, Vein Claims, Atlin Mining Division, Tatsamenie Lake Area, B.C.; NTS 104K/Tulsequah Map Sheet, Lat. 58° 30' N, Long. 132°15' W; Chevron Canada Limited. Geological Branch Assessment Report 11,497.

Canarc Resources Coorporation (Website-2003): Development- New Polaris; http://www.canarc.net/ppt/Canarc2004_files/frame.htm.

Cangold Limited (Website- 2003): Thorn Property; http://www.cangold.ca/s/Thorn.asp.

Freeze, J.C., W.J. Dynes, W.D. Robb, J.F. Wetherhill (1988). Geological Assessment Report on the Vine 1-4 Claims, Atlin Mining Division, Tatsamenie Lake Area, B.C.; NTS 104K/8 & 9, Lat. 58° 30' N, Long. 132° 15' W; Tahltan Holdings Ltd., Vancouver, B.C. Geological Branch Assessment Report #17,910.

Government of British Columbia: Ministry of Energy and Mines; Programs and Services; Minfile Capsule Geology and Bibliography and Production Reports (104K 079): http://www.em.gov.bc.ca/cf/minfile/search/search.cfm?mode=capbib&minfilno=104K++ 079.

Government of British Columbia: Ministry of Energy and Mines; Programs and Services; Minfile Capsule Geology and Bibliography and Production Reports (104K 013): http://www.em.gov.bc.ca/cf/minfile/search/search.cfm?mode=capbib&minfilno=104K++013.

Government of British Columbia; Ministry of Mines and Energy Website; Programs and Services; Capsule Geology and Bibliography; *TERR occurrences (Minfile,104K+076)* www.em.gov.bc.ca/cf/minfile/search/search.cfm?mode=capbib&minfilno=104K++076.

Government of British Columbia; Ministry of Mines and Energy Website; Programs and Services; Capsule Geology and Bibliography; *VAL occurrences (Minfile,104K+040)* www.em.gov.bc.ca/cf/minfile/search/search.cfm?mode=capbib&minfilno=104K++040.

Oliver, J.L. and C.J. Hodgson (1989): Geology and Mineralization, Bearskin (Muddy) and Tatsamenie Lake District (South Half), Northwestern British Columbia (104K); in Geological Fieldwork 1988, B.C. Ministry of Mines and Petroleum Resources, Paper 1989-1.

Oliver, J.L. and C.J. Hodgson (1990): Geology and Mineralization, Tatsamenie Lake District, Northwestern British Columbia (104K); in Geological Fieldwork 1989, B.C. Ministry of Mines and Petroleum Resources, Paper 1990-1.

Mihalynuk, M.G., Smith, M.T., Hancock, K.D., and Dudka, S. (1994): Regional and Economic Geology of the Tulsequah River and Tulsequah Glacier Areas (NTS 104K-12 and 13); in Geological Fieldwork 1993, Grant, B., Newell, J.M. Editors, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1994-1.

Mihalynuk, M.G., Smith, M.T., Hancock, K.D., Dudka, S., J.G. Payne (1993): Regional and Economic Geology of the Tulsequah River and Tulsequah Glacier Areas (NTS 104K-12 and 13, 1: 50 000); B.C. Ministry of Energy Mines and Petroleum Resources, BCGSB Open File Map 1994-3.

Nelson, J. and Payne, J.G., (1984): Paleozoic Volcanic Assemblages and Volcanogenic Massive Sulphide Deposits near Tulsequah, British Columbia; Canadian Journal of Earth Sciences, Volume 21, pages 379-381.

Oliver, J and J. Gabites (1993): Geochronology of Rocks and Polyphase Deformation, Bearskin (Muddy) and Tatsamenie Lakes District, Northwestern British Columbia (104K/8, 1); in Geological Fieldwork 1992, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1993-1.

Oliver, J (1995): Geology of the Muddy Lake, Tatsamenie Lake District, Northwestern British Columbia (NTS 104K/1 & 104K/8); British Columbia Geological Survey Branch, Open File Maps 1995-21.

Redfern Resources Limited (Website- 2003): Tulsequah Project; http://www.redfern.bc.ca/projects/tulsequah/index.html.

Rimfire Minerals Coorporation (Website – 2004): *Thorn Property*; http://www.rimfire.bc.ca/s/Thorn.asp.

Sebert, C.F.B., K.M. Curtis, T.J. Barrett, R.L. Sherlock (1995): Geology of the Tulsequah Chief Volcanogenic Massive Sulphide Deposit, Northwestern British Columbia

(104K/12); in Geological Fieldwork 1994, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1995-1.

Sherlock, R.L., Childe, F., Barrett, T.J., Mortensen, J.K., P.D. Lewis (1994): Geological Investigations of the Tulsequah Chief Massive Sulphide Deposit, Northwestern British Columbia (104K/12); in Geological Fieldwork 1993, Grant, B., Newell, J.M. Editors, B.C. Ministry of Energy Mines and Petroleum Resources, Paper 1994-1.

Souther, J.G., (1971): Geology and Mineral Deposits of the Tulsequah Map-area, British Columbia. Geological Survey of Canada, Memoir 362, 84 pages. Includes Geology Map 1262A.

Teckcominco Global Discovery Labs: Sample Preparation and Analytical Procedure

APPENDIX I

Statement of Costs

2004 STATEMENT OF COSTS La Veta Property

Item	Description		Quantity		Price	Cost
T. Hutchings	Geological Consultant (Aug 2-14)	0.25	days @	\$400	/day	\$100
A. Hilchey	Geologist (Aug. 2-14; Nov. 15-17)	2	days @	\$200	/day	\$400
S. Sheffield	Field Technician (Aug. 9 - 14)	2	days @	\$225	/day	\$450
B. Henson	Field Technician (Aug. 7 - 14)	0	days @	\$175	/day	\$0
D. Williams	Cook (Aug 2-14)	0	days @	\$150	/day	\$0
W. Fogel	Pilot	0	days @	\$0		\$0
Mob/Demob	Filghts, Accom, Meals, Truck Rentals					\$584
Camp Costs -	Camp, food, equipment, rentals (camp	4.25	mandays @	\$225	/man/day	\$956
Per Diem	equip, radios) SAT-Phone, expediting,	l		1		
	support flights, etc.					
Analytical	Au-AA and 28 elements with ICP	16	samples @	\$15	/sample	\$240
Costs (rock)						_
Analytical	Au-AA and 28 elements with ICP	63	samples @	\$13	/sample	\$819
Costs (soil/silt)						
Helicopter	Lakelse Air (Robinson 44 plus fuel)	1.1	hours @	\$730	/hr	\$803
Shipping, etc.	Atlin-Vancouver					\$130
Reporting	D. Tupper	1	days @	\$400	/day	\$400
	A. Hilchey	3	days @	\$200	/day	\$600
	T. Lee - Drafting	10	hours @	\$25	/hr	\$250
	Reproduction, etc.					\$200
			···		Total Cost	\$5,932

Total Mob/Demob (flights, meals, a	ccommodation)	\$6,344
Calculation of Per Diem Rate		
Camp Rentals	\$2,863	
Camp Lumber Materials	\$6,549	
Camp Equipment - Purchase	\$20,146	
Consumables/Camp Equipment	\$3,425	
SATPhone (Purchase and Time)	\$1,440	
FM Radios	\$964	
Food	\$6,296	
Support Flights	\$3,348	
Trucking	\$1,188	
Truck Rental	\$1,000	1
Expediting	\$1,347	
Το	al Metla Project Expenses	\$48,566
Per Diem Rate (\$48,566 / 216 Total I	Metla Proj. Person-days):	\$225

This work program was completed in conjunction and simultaneously with work programs for an additional three properties under option to or owned by Solomon Resources Limited. The Metla Project included the Metla, Tatsa, Checkmate and La Veta properties, plus some off property reconnaissance work. All the 2004 field work was conducted by Solomon crews between July 12 and August 22, 2004 working out of a

single camp established on the Metla property. As a result, a number of the costs are determined on a per diem or percentage basis (based on a pro-rated percentage basis determined on a person-day/project over total person-days), including:

Mob/Demob (July 12-18; August 18-22) General Camp Costs

- food;
- Support flights (Total costs
- purchased camp equipment (tents, Sat-phone, field boxes);
- consumables (bear repellent, packing tape, fuel, notes books, flagging tape, etc.);
- rented equipment (FM radios, generator, fridge, stove, shower).

APPENDIX II

Sample Analysis Sheets

SHIPMENT #4

teckcominco

Global Discovery Labs

Report date: 23 AUG 2004

Job V 04-0528S

	Report dai	e: 23 AUG 200	4	Job V 04-0528
LAB NO	FIELD NUMBER	Au	Wt Au	, , , , , , , , , , , , , , , , , , ,
		ppb	gram	
S0409805	L04 S\$ 0+00S	98	10	
S0409806	L04 SS 0+50S	57	10	
S0409807	L04 SS 1+00S	194	10	
S0409808	L04 SS 1+50S	17	10	
S0409809	L04 SS 2+00S	12	10	
S0409810	L04 SS 2+50S	10	10	
S0409811	L04 SS 3+00S	10	10	
S0409812	L04 SS 3+50S	<10	10	
S0409813	L04 SS 4+00S	<10	10	
S0409814	L04 SS 4+50S	<10	10	
S0409815	L04 SS 5+00S	<10	10	
		<10	10	
S0409816	L04 SS 0+00N			
S0409817	L04 SS 0+50N	10	10	
S0409818	L04 SS 1+00N	<10	10	
S0409819	L04 SS 1+50N	<10	10	
S0409820	L04 SS 2+00N	<10	10	
S0409821	L04 SS 2+50N	<10	10	
S0409822	L04 SS 3+00N	14	10	
S0409823	L04 SS 3+50N	<10	10	
S0409824	L04 SS 4+00N	<10	10	
S0409825	L04 SS 4+50N	60	10	
S0409826	L04 SS 5+00N	10	10	
S0409827	L04 SS 5+50N	11	10	
S0409828	L04 \$\$ 6+00N	15	10	
S0409829	L04 \$\$ 6+50N	10	10	
S0409830	L04 SS 7+00N	98	10	
S0409831	L04 SS 7+50N	30	10	
S0409832	L04 SS 8+00N	42	10	
S0409833	L04 SS 8+50N	40	10	
S0409834	L04 SS2 0+00S	<10	10	
S0409835	L04 SS2 0+10S	<10	10	
S0409836	L04 SS2 0+20S	<10	10	
S0409837	L04 SS2 0+30S	<10	10	
S0409838	L04 SS2 0+40S	<10	10	
S0409839	L04 SS2 0+50S	<10	10	
S0409840	L04 \$\$2 0+60S	<10	10	
S0409841	L04 SS2 0+70S	<10	10	
S0409842	L04 SS2 0+80S	<10	10	
S0409843	L04 SS2 0+90S	<10	10	
S0409844	L04 SS2 1+00S	<10	10	
S0409845	L04 SS2 1+10S	<10	10	
S0409846	L04 SS2 1+20S	<10	10	
S0409847	L04 SS2 1+30S	<10	10	
S0409848	L04 SS2 1+40S	<10	10	
S0409849	L04 SS2 1+50S	<10	10	
S0409850	L04 SS2 0+00N	<10	10	
S0409851	L04 SS2 0+10N	<10	10	
S0409852	L04 SS2 0+20N	<10	10	
S0409853	L04 SS2 0+30N	<10	10	
S0409854	L04 SS2 0+40N	<10	10	
S0409855	L04 SS2 0+50N	<10	10	
S0409856	L04 SS2 0+60N	<10	10	
S0409857	L04 SS2 0+70N	<10	10	
S0409858	L04 SS2 0+80N	<10	10	

SHIPMENT #4

teckcominco

Global Discovery Labs

Job V 04-0528S Report date: 23 AUG 2004 FIELD NUMBER Wt Au LAB NO Au gram ppb <10 L04 SS2 1+00N 10 S0409860 L04 SS2 1+10N S0409861 <10 10 L04 SS2 1+20N S0409862 <10 10 L04 SS2 1+30N S0409863 <10 10 S0409864 L04 SS2 1+40N <10 10 S0409865 L04 SS2 1+50N <10 10 S0409866 L04 SS 2+70S 106 10

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

SOLOMON	RESOURCES-X04
---------	----------------------

SHIPMENT #4

teckcominco

Job V 04-0528S

Global Discovery Labs

Report date:	26 AUG 2004

LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm		Fe %	Mo ppm	Cr ppm	BI ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Т1 [°] %	AI %	Ca %	Na %	K %	P ppm
S0409805	L04 SS 0+00S	1381	35	94	1	247	211	1	40	44	7.84	7	36	6	<5	137	<2	8	44	20	17	1062	1.46	0.13	2.93	0.47	0.04	0.61	1250
S0409806	L04 SS 0+50S	1281	186	239	1.4	659	202	2	34	43	8.24	10	31	<5	7	118	<2	<2	64	23	19	1202	1.18	0.11	2.61	0.73	0.04	0.45	1169
S0409807	L04 SS 1+00S	5752	93	293	3.2	271	235	4	42	38	9.50	22	21	11	<5	119	<2	4	31	33	53	1563	0.99	0.14	2.06	0.56	0.04	0.46	2002
S0409808	L04 SS 1+50S	500	84	127	0.6	169	196	1	21	21	5.32	32	17	7	5	61	<2	<2	56	19	19	1412	0.57	0.04	1.52	0.89	0.03	0.29	1095
S0409809	104 SS 2+00S	496	75	156	0.7	200	214	1	20	17	6.56	15	18	<5	<5	104	<2	<2	64	21	25	1058	1.08	0.17	1.82	0.90	0.03	0.48	1450
S0409810	L04 SS 2+50S	431	105	185	0,4	295	169	2	32	20	7,80	14	24	<5	<5	121	<2	<2	38	14	17	1762	1.17	0.14	2.75	0,28	0.04	0.39	1198
S0409811	L04 SS 3+00S	367	72	145	0.7	318	193	1	23	19	6.42	8	16	<5	<5	122	<2	<2	45	20	31	937	1.10	0.21	2.01	0.63	0.04	0.52	1966
S0409812	L04 SS 3+50S	255	33	112	<.4	147	129	1	19	16	5.73	5	18	<5	<5	97	<2	5	39	11	20	775	0.65	0.11	1.73	0.39	0.07	0.26	1714
S0409813	L04 SS 4+00S	350	55	183	<.4	246	181	2	25	19	7.09	8	17	<5	<5	107	<2	<2	47	24	28	1217	0.97	0.17	1.90	0.68	0.03	0.55	2172
S0409814	L04 SS 4+50S	322	37	153	0,4	190	186	1	22	19	6,85	5	18	<5	<5	116	<2	<2	52	22	25	1050	0.98	0.17	2.00	0.62	0.03	0.52	1993
S0409815	L04 SS 5+00S	284	55	165	0.7	258	171	1	23	19	7.08	6	19	<5	<5	114	<2	<2	57	25	31	1110	1.07	0.17	2.10	0.71	0.04	0.54	2221
S0409816	L04 SS 0+00N	147	13	172	<,4	45	198	1	49	41	9.13	4	29	<5	<5	138	<2	<2	69	36	47	2453	1.25	0.07	1.35	1.65	0.04	0.42	4200
\$0409817	L04 SS 0+50N	132	116	324	0.7	900	254	3	34	24	8.88	4	17	<5	6	124	<2	<2	73	34	34	2263	1.13	0.09	2.22	1.06	0.04	0.47	3873
S0409818	L04 SS 1+00N	143	19	93	0.4	55	465	1	32	28	6.69	<2	21	<5	<5	151	<2	<2	299	22	32	1157	2.12	0.15	2.98	1.48	0.04	0.71	4105
\$0409819	L04 SS 1+50N	193	29	122	<.4	67	370	1	38	33	7.62	2	26	<5	<5	144	<2	<2	282	23	26	1546	1.91	0.12	2.86	1.32	0.04	0.64	3324
S0409820	L04 SS 2+00N	108	20	97	<.4	121	148	2	23	20	5.81	3	21	<5	<5	109	<2	5	83	27	36	1064	1.44	0.15	1.84	1.14	0.03	0.43	3348
S0409821	L04 SS 2+50N	185	53	173	0.5	544	150	1	27	26	7.38	6	21	<5	<5	104	<2	<2	63	34	50	1183	0.83	0.10	1.56	1.10	0.03	0.35	2949
80409822	L04 SS 3+00N	148	196	271	0.7	311	138	1	21	19	7.37		20	<5	<5	111	<2	<2	66	26	36	913	1.01	0.14	1.96	0.86	0.03	0.47	2436
80409823	L04 SS 3+50N	120	48	152	<.4	105	298	1	25	21	7.69	3	16	<5	<5	136	<2	<2	51	22	23	1063	1.32	0.28	2.19	0.85	0.03	0.79	2182
S0409824	L04 SS 4+00N	138	52	166	<.4 0.6	174 596	218	2	27	19 20	7.63	5	18 13	<5 <5	9 6	129 128	<2 <2	<2 <2	39 49	21 23	25 30	1332	1.14	0.22	2.13	0.59	0.03	0.58	2448
S0409625	L04 SS 4+50N	276 215	230 98	292 194		351	196 174	4	25 22	20 18	7.93 6,55	6	13	<5	7	120	<2	<2	49 51	23 15	30 17	1230 966	1.18	0.21 0.20	2.19	0.83 0.72	0.03	0.55	2670 2166
S0409828	L04 \$\$ 5+00N	215	56	194	<,4 <,4	372	1/4		22	18	6.30	6	19	<5	<5	124	<2	<2	43	13	27	829	1.19	0.20	2.13 2.17	0.72	0.03	0.45	
S0409827	L04 \$\$ 5+50N L04 \$\$ 6+00N	352	104	269	<.4	695	207	2	19	17	6.71	4	17	<5	<5	107	<2	<2	43 54	18	21	846	1.10 1.18	0.16	2.17	0.57	0.03 0.03	0.34 0.32	2204 1854
S0409828 S0409829	L04 55 6+50N	532	45	155	1.1	248	232	4	26	19	6,59	9	11	<5	<5	92	2	<2	82	23	30	1453	0.99	0.14	1.72	1.23	0.03	0.32	2573
S0409829 S0409830	L04 \$\$ 7+00N	941	45 59	138	0.7	252	306	1	28	25	6.98	2	21	<5	<5	126	<2	<2	82	20	23	1079	1.36	0.19	2.26	0.81	0.03	0.46	1970
S0409830 S0409831	L04 SS 7+50N	633	50 60	206	0.7	265	185	2	30	36	9.00	6	27	<5	<5	123	<2	<2	56	29	21	1721	1.08	0.09	2.56	1.15	0.04	0.85	1690
S0409631 S0409632	L04 SS 8+00N	1901	54	146	0.8	431	202	2	50	44	8.45	16	32	<5	<5	130	<2	7	40	20	18	1645	1.23	0.13	2.60	0.38	0.03	0.55	1471
S0409833	L04 SS 8+50N	1492	51	103	0.0	357	273	2	46	46	10.27	8	34	12	<5	120	<2	8	113	22	15	1289	1.29	0.08	2.83	0.41	0.04	0.55	1340
S0409834	L04 552 0+00S	63	11	79	<.4	16	102	<1	19	48	4.90	2	51	<5	<5	106	<2	<2	30	7	7	759	1.04	0.08	2.36	0.23	0.04	0.08	735
S0409835	L04 882 0+10S	77	9	70	<.4	17	223	<1	19	43	4.94	~	39	<5	<5	95	<2	<2	54	11	15	862	1.13	0.09	2.35	0.52	0.04	0.06	811
S0409836	L04 SS2 0+20S	61	5	83	<.4	24	182	<1	21	49	5.52	2	45	<5	<5	96	<2	~	64	10	12	865	1.07	0.10	2.81	0.33	0.07	0.07	1293
50409837	L04 552 0+305	51	25	103	<4	21	161	1	18	30	5.28	2	33	<5	<5	92	<2	<2	95	9	11	1113	0.77	0.05	2.06	0.35	0.04	0.08	1827
S0409838	L04 \$\$2 0+405	74	16	113	<.4	20	114	<1	29	40	6.21	4	40	<5	<5	102	<2	<2	62	13	16	1148	1.11	0.09	2.97	0.17	0.04	0,12	1185
50409839	L04 SS2 0+50S	68	11	84	<.4	25	118	<1	22	41	5.88	2	41	<5	<5	117	<2	<2	37	10	13	863	1.08	0.09	2.90	0.22	0.04	0.08	969
S0409840	L04 \$\$2 0+60S	45	8	72	<.4	9	121	<1	17	31	5.08	<2	34	<5	<5	80	<2	<2	28	9	17	1008	0.74	0,15	2.34	0.24	0.04	0.05	1460
S0409841	L04 SS2 0+70S	64	9	86	<.4	22	102	<1	19	33	4.53	<2	29	<5	<5	77	<2	<2	22	7	7	809	0.80	0.05	2.38	0.11	0.03	0.06	800
S0409842	L04 \$52 0+80S	49	21	130	<,4	23	119	1	27	27	4.58	2	23	<5	<5	69	<2	<2	37	7	8	1638	0.55	0.02	1.62	0.29	0.06	0.05	1371
S0409843	104 SS2 0+90S	105	16	113	<.4	20	159	<1	29	35	6.89	<2	25	<5	<5	113	<2	<2	37	14	17	871	1.40	0.09	2.24	0.46	0.04	0.21	1299
S0409844	L04 552 1+005	70	<4	77	<.4	6	128	<1	24	22	6.14	<2	16	<5	<5	151	<2	<2	37	10	9	1177	1.20	0.17	1.74	0.56	0.04	0.15	1490
S0409845	L04 SS2 1+10S	37	<4	40	<.4	12	90	<1	13	11	2.91	3	15	<5	<5	74	<2	<2	33	3	4	907	0.34	0.03	0.90	0.29	0.04	0.08	1856
50409846	L04 SS2 1+20S	55	<4	66	<.4	8	84	<1	20	25	4.57	<2	17	<5	<5	114	<2	<2	24	4	2	606	1.15	0.16	1.83	0.30	0.04	0.14	898
\$0409847	L04 SS2 1+30S	52	<4	79	<.4	17	97	<1	19	26	5.06	2	22	<5	<5	91	<2	<2	24	6	7	1267	1.05	0.12	2.05	0.18	0.03	0.13	702
50409848	L04 SS2 1+40S	37	7	64	<,4	16	141	<1	13	18	4.30	3	19	<5	<5	88	<2	<2	37	5	4	1155	0.69	0,07	1,55	0,30	0.08	0.14	1217
S0409849	L04 SS2 1+50S	31	5	65	<.4	12	113	<1	15	21	4,65	2	27	<5	<5	80	<2	<2	34	3	6	1348	0.53	0.09	1.38	0.28	0.08	0.10	1151
\$0409850	L04 SS2 0+00N	121	6	59	<.4	19	303	<1	18	29	4.11	3	21	<5	<5	67	<2	<2	46	12	6	1096	1.16	0.05	2.71	0.47	0.08	0.04	1088
S0409851	L04 \$\$2 0+10N	52	<4	70	<.4	19	100	<1	18	23	4.88	<2	23	<5	<5	103	<2	<2	26	4	<2	879	1.12	0.09	2,35	0.21	0.04	0.05	794
\$0409852	L04 552 0+20N	45	5	46	<.4	13	81	<1	11	14	3.76	· 3	18	<5	<5	79	<2	<2	27	6	2	542	0.61	0.05	1.79	0.23	0.07	0.04	1213
\$0409853	L04 SS2 0+30N	42	10	70	<.4	17	132	<1	16	16	3.93	2	25	<5	<5	85	<2	<2	29	4	<2	1788	0.46	0.02	1.43	0.21	0.03	0.05	1552
\$0409854	L04 \$\$2 0+40N	55	4	68	<.4	10	84	<1	19	23	4.55	2	20	<5	<5	85	<2	<2	39	8	8	861	0.99	0.05	1.62	0.40	0.04	0.11	950
S0409655	L04 SS2 0+50N	62	10	89	<,4	15	101	<1	21	25	5.54	2	23	<5	<5	97	<2	<2	42	7	6	1256	1.58	0.09	1.77	0.43	0.04	0.11	1107

SOLOMON RESOURCES-X04 SHIPMENT #4

Report date: 26 AUG 2004

Global Discovery Labs

teckcominco

		e: 26 AUG 2																								-	/ 04-05:	-	
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %	Mo ppm	Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	К %	P ppm
S0409856	L04 SS2 0+6011	76	14	106	<.4	29	74	<1	26	20	5.98	<2	10	<5	<5	83	<2	<2	32	22	20	1720	0.55	0.03	1.11	0.74	0.03	0.12	2416
S0409857	L04 \$\$2 0+70N	148	9	120	<.4	11	133	<1	36	26	8.61	4	24	<5	<5	98	<2	<2	57	28	32	1094	1.57	0.03	2.63	1.05	0.03	0.21	1951
S0409858	L04 SS2 0+80N	96	11	92	<,4	11	109	<1	27	20	5.76	3	7	<5	5	77	<2	<2	33	28	29	1753	0.32	<.01	0.98	0.71	0.04	0.12	2213
S0409859	L04 SS2 0+90N	71	18	111	<.4	58	110	1	22	23	6.17	<2	18	<5	7	77	<2	<2	41	17	21	859	0.83	0.02	1.87	0.66	0.03	0.08	2113
S0409860	L04 SS2 1+00N	72	8	84	<.4	27	176	<1	21	38	5.3 9	<2	31	<5	<5	84	<2	<2	52	10	14	857	0.82	0.03	1.92	0.35	0.04	0.08	1017
S0409861	L04 SS2 1+10N	59	79	161	<.4	14	79	<1	27	11	7.95	5	8	<5	<5	85	<2	<2	60	21	37	2775	0.91	<.01	3.13	0.62	0.03	0.07	1641
\$0409862	L04 \$52 1+20N	61	7	82	<.4	23	144	<1	20	39	4.95	4	33	<5	<5	77	<2	<2	48	11	14	854	0.96	0.07	2.09	0.36	0.04	0.07	1209
S0409863	L04 SS2 1+30N	67	4	64	<.4	12	225	<1	19	53	4.38	<2	38	<5	<5	73	<2	<2	66	8	10	741	1.07	0.06	2.14	0.46	0.04	0.05	1065
S0409864	L04 SS2 1+40N	61	10	107	<.4	26	168	<1	20	53	4.92	3	40	<5	<5	88	<2	<2	117	11	8	1152	0.96	0.04	2.17	0.38	0.07	0.06	1163
S0409865	L04 SS2 1+50N	76	12	148	<.4	33	103	1	27	179	5.29	3	105	<5	<5	108	<2	<2	91	13	8	1079	1.57	0.09	1.96	0.52	0.04	0.10	844
S0409866	L04 SS 2+70S	857	437	551	2.9	2867	191	5	29	25	7.76	12	19	<5	39	104	<2	2	50	28	35	1457	0.93	0.15	1,51	1.01	0.03	0.42	2810

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soll,silt) or hot Aqua Regia(rocks).

SHIPMENT #4 & 5

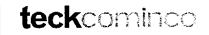
teckcominco

Global Discovery Labs

	Report da	te: 30 AUG 200	4	Job V 04-0529F
в NO	FIELD NUMBER	Au ppb	Wt Au gram	
419584	LO4SR-17	2120	5	
419585	LO4SR-18	440	5	
419586	LO4SR-19	20	5	
419587	LO4SR-20	1872	5	
419588	LO4SR-21	3400	5	
419589	LO4SR-22	90	5	
419590	LO4SR-23	1980	5	
419591	LO4SR-24	1246	5	
419592	LO4SR-25	9040	5	
419593	V04AR-113	1008	5	
419594	V04AR-114	<10	5	
419595	V04AR-115	3200	5	
419596	V04AR-116	2840	5	
419597	V04AR-118	<10	5	
419598	V04AR-119	<10	5	
419599	V04AR-120	<10	5	

Teck Cominco Ltd. Global Discovery Labs 1486 East Pender Street Vancouver, B.C. Canada V5L 1V8 Phone: (604) 685-3032 Fax: (604) 844-2686

SHIPMENT #4 & 5


teckcomince

Global Discovery Labs

		port date:																								/ 04-0529			
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag . ppm	As ppm	Ba ppm	Cđ ppm	Co ppm	NI ppm	Fe %	Mo ppm	Çr ppm	BI ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Ti %	AI %	Ca %	Na %	К %	P ppm
R0419584	LO4SR-17	262	35460	47090	36.0	29870	<5	254	3	12	20.35	3	48	14	14730	6	<2	<2	192	2	15	1300	1.90	<.01	0.06	5.17	0.02	0.02	38
R0419585	LO4SR-18	50	26590	6275	17.7	9790	16	37	10	8	9.18	3	50	6	11210	6	<2	5	360	5	3	4214	3.03	<.01	0.10	8.26	0.02	0.07	161
R0419586	LO4SR-19	9013	31	253	1.0	11	58	2	40	46	5.20	<2	26	<5	24	55	2	2	222	15	13	700	3.02	0.01	0.77	7.78	0,03	0.28	878
R0419587	LO4SR-20	4787	282	260	11.7	49	53	3	9	16	2.19	15	131	302	56	5	2	<2	19	6	5	156	0.07	<.01	0.20	0.70	0.03	0.16	634
R0419588	LO4SR-21	701	2900	886	20.0	205100	<5	18	38	9	24.13	22	43	61	1101	12	<2	16	14	<2	7	22	0.02	<.01	0.09	0.04	0.02	0.08	226
R0419589	LO4SR-22	177	710	1669	1.8	1194	97	12	1	5	1.45	10	129	8	229	<2	<2	9	128	3	3	889	0.76	<.01	0.06	2.24	0.02	0.03	54
R0419590	LO4SR-23	588	17360	5207	26.0	23460	14	36	8	9	8.88	12	107	227	4923	2	<2	20	32	<2	3	37	<.01	<.01	0.08	0.02	0.03	0.18	48
R0419591	LO4SR-24	5237	329	499	58.6	538	70	9	3	9	6.34	129	113	190	707	9	18	32	26	3	8	65	0.02	<.01	0.14	0.07	0.03	0.16	446
R0419592	LO45R-25	896	10280	10550	79.8	154000	<5	89	13	8	28.78	6	34	233	1942	11	<2	<2	21	<2	8	61	0.01	<.01	0.03	<.01	0.01	0.06	18
R0419593	V04AR-113	615	57970	35720	45.2	11930	16	191	2	10	14.55	2	53	7	23540	3	<2	<2	279	4	16	2224	2.99	<.01	0.10	8.01	0.02	0.07	161
R0419594	V04AR-114	73	66	60	1.0	52	17	1	2	2	1.60	6	75	<5	10	<2	<2	<2	5	4	8	16	<.01	<.01	0.26	<.01	0.02	0.20	40
R0419595	V04AR-115	79	10860	3818	14.5	23940	<5	39	69	16	22.38	3	91	32	4733	5	<2	<2	11	<2	4	44	0.04	<.01	0.04	0.16	0.02	0.03	45
R0419596	V04AR-116	302	20560	54270	20.9	21490	5	298	100	12	18.54	4	46	11	10120	8	2	5	224	5	24	1985	2.14	<.01	0.08	5.92	0,02	0.04	53
R0419597	V04AR-118	45	26	97	<.4	50	66	1	17	12	3.94	<2	43	<5	36	93	<2	<2	24	9	8	216	0.76	0.19	0.66	0.56	0.11	0.47	1365
R0419598	V04AR-119	16	39	63	<.4	73	17	1	3	31	3.94	<2	44	<5	21	58	<2	<2	553	12	18	1407	4.61	<.01	0.28	14.17	0.03	0.02	258
R0419599	V04AR-120	161	89	140	0.6	43	125	1	14	29	7.28	3	60	<5	12	83	5	<2	218	11	14	376	1.16	0.11	4.56	1.91	0.30	0.95	629

SHIPMENT #6

Global Discovery Labs

	Report date	: 8 SEP 2004		Job V 04-0564S
LAB NO	FIELD NUMBER	Au ppb	Wt Au gram	
S0410534	V04AS-112	15	10	

Teck Cominco Ltd. Global Discovery Labs 1486 East Pender Street Vancouver, B.C. Canada V5L 1V8 Phone: (604) 685-3032 Fax: (604) 844-2686

SOLOMON F	RESOURCES-X04 SHIPMENT #6																								ck(CON	nin		
LAB NO	FIELD NUMBER	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Ba ppm	Cd ppm	Co ppm	Ni ppm	Fe %		Cr ppm	Bi ppm	Sb ppm	V ppm	Sn ppm	W ppm	Sr ppm	Y ppm	La ppm	Mn ppm	Mg %	Tł %	Al %	Ca %	Na %	к %	P ppm
S0410534	V04AS-112	116	102	307	0.7	242	197	5	27	21	7.20	3	11	<5	15	62	<2	5	57	28	24	1956	0.78	0,06	1.53	0,84	0,04	0.53	3056

•

APPENDIX III

Field Data Sheets

•

SAMPLE	MAP	1	UTM	NAD 83 UTM	ELEV.	SAMPLE	CHIP SAMPLE	100		WDTH	Au	Au	GV	Pb	Zn	As	56	DESCRIPTION
NUMBER	SCALE	AREA	Easting	Northling	Metros	Type	From	Tourn)	Azm	Mutras.	ppb	ppm	ppm	pper	ppri	ppm		and the second
V04AR-113	1:10.000	La Veta		6488043	1644	GRAB					1008	45.2	615	57970	36720	11930		Float: min boulder; sphal; py; rainbow chd min-tetrahedrite7; light orange min in mitrx not cbt; py clota
V04AR-114	1:10,000	La Veta	659955	6487970	~1700	GRAB		-			-10	1.0	73	66	60	52	10	Orc in talus; silicified porphyry dyke with data and crs py; in same guily as msu boulders found
V04AR-115	1;10,000	La Veta	659968	6455018	1675	GRAB					3200							Float: Otz may bidr: down takes slope from gan dyke; submided; py-clots; aspy and gal; likely from a gtz vein
V04AR-116	1:10,000	La Veta	660003	6458047	1658	GRAB					2840	20.9	302	20560	54270			Float: May bider with sph(>3 cm); py clots and gal; on whird surf around giz blebs; giz vina are sawloothed
V04AR-118		La Veta		6486992	1740	GRAB					-10	-0.4	45	26	97	50		Otzite/gsn rk (Takwahoni); diss and ors py (1%); in creek opposite Cold Creek showing
V04AR-110	1:10,000	La Veta	650434	6487190	1682	GRAB					-10	-0.4	16	39	63	73		Otz/obt stringrs in rsty bm rock; and lithic frags (conglom?); shear? Fit gauge?
V04AR-120	1:10,000	La Veta	660589	6458781	1790	GRAB			_		-10	0.0	161	89	140	4)	12	Gan in Takw aeds; rtn red/yellow all veins; grumbly and sugary; adjacent seds have diss py
LOASE-17	110.000	La Veta	660027	6488101	-	GRAB		-	-	-	2120	36.0	262	35460	47000	29670	14730	Float, pyrite 30% sph 15% quarter 5/20%, banded
L045F-18	1:10.000	La Veta	660045			GRAB					440	17.7				9790		Float, sph 2%, arseno 5%, bands of a metallic mineral?
L045R-19	110,000	La Veta	660139	6488550		GRAB					20	1.0	9013	31	253	11	24	heavily malachite stained argilite
LO4SR-20	1:10.000	La Veta	660120	6450564		GRAB		-			1872	11.7	4787	282	260	40	56	matachite stained quartz carbonate vein; 30-60 cm wide previously sampled
L045F-21	1:10.000	La Veta	6600544	6458500		GRAB					3400	20.0	701	2900	886	20510	0 1101	Float, vein piece 3-4cm wide; massive perfe
L045R-22	1:10.000	La Veta	660013	6485461		GRAB					90	1.8	177	710	1669	1504	229	6cm guartz vein 1% pyrite
L045C-23	1:10.000					CHIP	0	0.3		0.3	1980	26.0	588	17360	5207	23460	4923	30cm chip below sample 22(10 m) pv/te, sphal. Shear zone 1-1.5 m wide in diorite
L045C-24	1:10.000					GRAB		-			1246	58.6	\$237	329	499	538	707	ouarts stringer of shear ; malachite stain
L045F-28				6458500		GRAB					9040	79.8	806	10280	10550	15400	0 1942	Float: next to sample 21 in pully, argeno 60% guartz 20%

SOIL				NA	0.83										
SAMPLE		MAP		UTM	UTM	ELEV.	Au	Ág	Cu	Pb	Zn	As	55	Mo	
NUMBER	Date	SCALE	Area	Easting	Northing	Metres	ppb	ppm	<u>epm</u>		ppm	ppm	ppm	ppm	DESCRIPTIONS
0455-0+00N				660001	6488115	1771	-10	-0.4	147	13	172	45	0	4	Start at base of cliffs. Float samples L04SF-17/18 in gully nearby
	Aug-7-04						-10	0.7	132	116	324	900	6	4	
	Aug-7-04						-10	0.4	143	19	93	55	<5	-2	
	Aug-7-04						-10	-0.4	193	29	122	67	-45	2	
455-2+00N	Aug-7-04	1:10,000	La Veta				-10	-0.4	108	20	97	121	<5	2	
1455-2+50N	Aug-7-04	1:10,000	La Veta				-10	0.5	155	53	173	544	45	6	
045S-3+00N	Aug-7-04	1:10,000	La Veta				34	0.7	145	196	271	311	<\$	7	
04SS-3+50N	Aug-7-04	1:10,000	La Veta				-10	-0.4	120	40	152	105	<5	3	
0455-4+00N	Aug-7-04	1:10,000	La Veta	0			-10	-0,4	135	62	166	174	6	5	
0455-4+50N				in the second		A	65	0.6	276	230	292	596	6	6	
	Aug-7-04			660183	6499475	1715	10	-0.4	215	56	194	351	7	6	
	Aug-7-04					100.00	11	-0.4	255	55	165	372	-45	6	
455-6+00N	Aug-7-04	1:10,000	La Veta				15	-0.4	352	104	209	095	<5	4	
	Aug-7-04						10	1.1	622	45	155	245	<5	9	
	Aug-7-04						56	6.7	941	59	135	252	-4	2	
	Aug-7-04			- market			30	0,7	633	60	204	265	4	6	
	Aug-7-04			660187	6488763	1675	42	0.8	1901	. 54	148	431	4	16	
	Aug-7-04			20200			40	0.7	1492	51	103	357	-15	1	End of Line
	Aug-7-04			660113	6488810	1596	58	1	1381	35	34	247	4	1	Start- malachite samples L04SR-19/20 30m north in gully
	Aug-7-04						57	1.4	1281	386	239	659	7	10	
0455-1+005							194	3.2	5752	83	293	271	-5	22	
0455-1+505							17	0.6	500	- 54	127	189	5	32	
	Aug-7-04			and the second	Second Second		12	0.7	498	75	158	200	4	15	
	Aug-7-04			660018	6488599		10	0.4	421	105	185	295	<5	14	a service of the second state of the second state of the second state of the
	Aug-7-04						106	2.9	857	437	551	2967	39	12	In gully with mineralized float samples L04SF-21/25 and qtz vn
	Aug-7-04			-	-		10	0.7	367	72	145	318		1	
	Aug-7-04						+10	-0.4	255	33	112	147	- 45	5	Near vein shear
0455-4+005							-10	-0.4	350	55	183	246	-15	8	
0455-4+505							-10	0.4	322	37	153	190	- 4	5	
0455-5+005	Aug-7-04	1:10,000	La Veta		Courses in a		+10	0.7	284	55	185	258	-5	6	End of Line -end at creek
4552-0+001	Aug-8-04	1:10,000	La Veta	659925	6487088	1958	-10	-0.4	121	6	50	19	-15	3	Start of Line- 10 m spacing over possible ext. of Cold Crk. Zone
4552-0+10	N Aug-8-04	1:10,000	La Veta				-10	-0.4	52	4	70	19	-5	42	
4552-0+201	N Aug-8-04	1:10,000	La Veta				-10	-0,4	45	5	45	13	5	3	
4552-0+30	Aug-8-04	1:10,000	La Veta				-10	-0.4	42	10	70	17	-45	2	
4552-0+40				-			-10	-0.4	55	4	63	10	+5	2	
4SS2-0+50	Aug-8-04	1:10,000	La Veta				-10	-0.4	62	10	89	15	-45	2	
4552-0+608							-10	-0.4	78	14	108	29	- 15	9	
4552-0+708	Aug-8-04	1:10,000	La Veta				-10	-0.4	145		120		45	4	
	Aug-8-04			-			-10	-0.4	95	11	92	11	5	3	
	N Aug-8-04			/			-10	-0.4	71	18	111	58	1	4	
	N Aug-8-04			1	-		+10	-0.4	72	4	- 84	27	-5	4	
	Aug-8-04						-13	-6.4	59	79	161	14	6	5	
	N Aug-8-04						+10	-0.4	61	7	#2	23	9	4	
	Aug-8-04						-10	-0.4	67	4	64	12	4	4	
	N Aug-8-04						-10	-6.4	61	10	107	28	3	3	
	Aug-8-04			659895	6487218	_	-10	-4.4	76	12	145	33	4	3	End of Line
	S Aug-8-04			659865	6487216		-10	-0.4	63	11	78	10	4	2	Start of Line- 10 m spacing over possible ext. of Cold Crk. Zone
	S Aug-8-04			1000	100000000000000000000000000000000000000		-10	-0.4	77		70	17		2	Construction of the second
	5 Aug-8-04						-10	-0.4	61	1	63	24	3	2	
	S Aug-8-04						-10	-4.4	51	25	103	21	4	2	
	S Aug-8-04			-			-50	-0,4	74	16	113	20	4	4	
	S Aug-8-04						+10	-0.4	65	11	34	25	4	2	
	S Aug-8-04				-		-10	-0.4	45		72			4	
	S Aug-8-04						-30	-0.4	64		86	22	4	9	
	S Aug-8-04			-			+10	-0.4	42	21	130	23	4	2	
4552-0+903	S Aug-8-04	1:10,000	La Veta	1			-10	-0,4	105	18	113	20	- 6	4	
4552-1+003	S Aug-8-04	1:10,000	La Veta				+10	-0.4	70	0	77	4	-15	4	
	5 Aug-8-04						-10	-0.4	37	0	40	12	4	3	
			La Veta			_	-10	-0.4	55	0	66		-05	- 42	

SOIL SAMPLE MAP MINIMUM Date SCALE Area	NA UTM Easting	UTM Northing	ELEV. Metres	Au daa	Ад ррт	Cu	РЪ ррт	Zn	As ppm	Stb ppm	Mo ppm	DESCRIPTIONS
NUMBER Date SCALE Area		T		-10	-0.4	52	0	79	17	-15	2	
104SS2-1+40S Aup-8-04 1:10.000 La Veta	1	1		+10	-0.4	37	7	64	td	-15	3	Fadadilas
L04SS2-1+50S Aug-8-04 1:10,000 La Veta	659868	6487071		-10	-0.4	31	5	65	12	4	2	End of Line Crah coll in critiv with meru bradder train in Ric Onion Crk
V04AS-112 Aup-7-04 1:10,000 La Veta	660008	6488050		15	0.7	116	102	307	242	15		Grab soil in guty with may boulder train in big Onion Cik

43

S.,

APPENDIX IV

Percentile Calculations for Soil Geochemistry

	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Mo ppm
95th	04.0	4.00	4074	170		050 7	7	-
Percentile 90th	94.2	1.09	1371	179	292.9	652.7	(14.9
Percentile	41.6	0.7	812.2	103.6	263	419.2	6	9.8
85th								
Percentile	16.4	0.7	498.8	90.3	191.3	341.1	3.5	8
Average	13.5	0.3	357.6	48.0	138.9	200.0	1.6	4.8
Mean	0	0	61	0	70	17	0	0
Max	194	3.2	5752	437	551	2867	39	32
Min	0	0	31	0	40	6	0	0

La Veta soil sample geochemical statistical analysis. All 2004 soil samples were combined and the percentiles were calculated for the elements listed in this table. Values below the assaying detection limit were assumed to have values of either 0 ppm or 0 ppb (Au). On the results compilation map (Fig.4), every value that falls above the 95th percentile for a particular element, is highlighted in red, as highly anomalous. All values above the 85th percentile are marked in bold as anomalous.

APPENDIX V

Mineral Claim Certificates

	BRITISH M COLUMBIA	RECORD OF Mineral Tenur	nd Mines — Titles Divis 4 POST CLAIN re Act, Section 27 Tenure Number	Λ
3 DO NOT WRI E THIS AREA			Date of Record _	
1PPLICATION TO RECORD A 4 POST CLAIM	Box 22 Addresse ATLIN VOW IRO Postal Code Client Number 1010	Sill Man Hill B. C. 250-651 Telephone 24	-0001	Address Address Postal Code Telephone mber(s)
ACCESS	map number(s) <u>MIO4K</u> Describe how you gained access to landmarks and a description of the	049-059 to the location; include legal corner post loc HOKM THTSA ShEALQY ShEALQY	, in the ATL e reference to roads, trai sation. SE = 81 TUA = 61 River A	ached copy of mineral titles reference Mining Division Is, topographic features, permanent
G CLAIM NAM CLAIM NAM LOCATOR F FMC No. O AGENT FOF FMC No. T DATE COMM TIME DATE COMP TIME	N.C. ASP. 101024 Self MENCED 17MACCH 12,00 NO PLETED 26MACCH NUMBER OF CLAIM UNIT	t (or witness 3 all 2004 3 2004 s	IDENTIFICATION POS were W_2W3W 3W4H 3W GHW, 6H because *If a witness post was Bearing from witness p is at a distance of Bearing from Identified degrees, at a distance	STS NOT PLACED AIA, SWZN, SWSN SNJ N, ZN, SNSN SNJ N, ZNSN SNJ N, ZNSN
K the scation of corner post an The tap inform	SEE ad with all the terms and conditions of the 4 post claims and have attached a plan of ad all other corner posts (and witness and hation supplied above is the identical infor post when I located this claim, and this ir MARCENTION Signature of Locator	Mineral Tenure Act and of the location on which identification posts if ap mation that Limpressed	the positions of the legal plicable) are indicated.	MAR 2.9 2001 NOT AN OFFICIAL DECEIPT TRANS # 13 RECORDING STAMP

ACCESS DESCRIPTION CONTINUED

PART COVERS THIS CLAIM 1~1 JRACE 1 GRACE 4 FORNER 67 10n -83 - 85 - 84 RALE 83286 5 21H7 CLAIN 2 and 3 NES WEST ÐF \subset IMMERIAT _ਦ` envel ann > 11700 31 and S **GPS Information: (NAD 83 ONLY)** 22 A Make and Mode of GPS Receiver: POLLO ivceaft 10 Zone: 1.7 **GPS Co-ordinates:** Witness Post Legal Corner Post (if applicable) Northing SQ 58 Easting 132 . 86w 14

0 F	COLUMBIA RECORD O	and Mines — Titles Division)F 4 POST CLAIM ure Act, Section 27
Mini	ng Division	Tenure Number
E DO NOT WRI THIS AREA	TE IN Gold Commissioner	Date of Record
PPLICATION TO RECORD A 4 POST CLAIM	I. N.C. Aspinan Name of Locator BOX 22, Pill man Hill 2 Address Airin, B.C. VOLUIAD 250-651-0001 Postal Code Telephone Client Number DIO 24 bereby apply for a record of a 4 post claim for the loss	Address
ACCESS	map number(s) <u>MIO4K049-059</u> Describe how you gained access to the location; inclu landmarks and a description of the legal corner post lo <u>Located</u> <u>I40Km</u> <u>SE</u> <u>TATATUA</u> <u>CREEK</u>	_, in the <u>ATLIN</u> Mining Division ude reference to roads, trails, topographic features, permanent ocation. <u>af ATLIN, SOUTH OF</u> <u>ANY WEST OF SHESLAY</u> <u>STAXING SUPPORT</u> <u>ATLIN</u> (continue description on reverse)
A G CLAIM NAM LOCATOR F FMC No. AGENT FOF A FMC No. DATE COMM TIME DATE COMF TIME N LOCATOR FMC No. DATE COMF TIME N LOCATOR TIME N LOCATOR TIME N LOCATOR TIME N LOCATOR TIME TIME N LOCATOR TIME	rely fastened the metal identification tag embossed RNER POST" to the legal corner post (or witness npressed this information on the tag: LEGAL CORNER POST TAG NO. 2-16554 TAG NO. 2-16554	IDENTIFICATION POSTS NOT PLACED were IE, ZE, IN 3E, ZN 3E, 3N 3E, AN 3E, SN 5E, GN IE, GN ZE, IN because GN 5E, GN ZE, IN because GN 5E, GN ZE, IN because GN 5E, GN ZE, IN because AN, SN because AN, SN EXTREME MOUNTAINED SIZE, IN EXTREME MOUNTAINED SIZE, IN Bearing from witness post to true position of legal corner post is degrees, at a distance of metres. Bearing from identification post to witness post is degrees, at a distance of metres. Bearing from identification post to witness post is degrees, at a distance of metres. SCA NOTE: Legal corner post can be witnessed only if it was not feasible to place any posts. MAR 2 0 MAR 2 0 NOT an OFFICIENT INCEPT.
	Ne figural Signature of Locator	RECORDING STAMP

ACCESS DESCRIPTION CONTINUED ... ns claim V 0' SVEVS \sim 383286) RALE Mineral envie tenurus and 360711 040 360713 NIN fense. miner= ź 21 **GPS Information: (NAD 83 ONLY)** APOLLO ire RAFT Make and Mode of GPS Receiver: C PS : 1. 1. 5- -11 S ઝ√ Zone: NY 21 . **GPS Co-ordinates:** Witness Post Legal Corner Post (if applicable) 58 29.0 Northing -1 17 ₩Ĵ • . 137 Easting

14.82M

MTL 103 REV. 03/CT

APPENDIX VI.

Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Andrew Hilchey, of P.O. Box 182 Otter Pt. Rd., in the Village of Chester, in the Province of Nova Scotia, do hereby certify that:

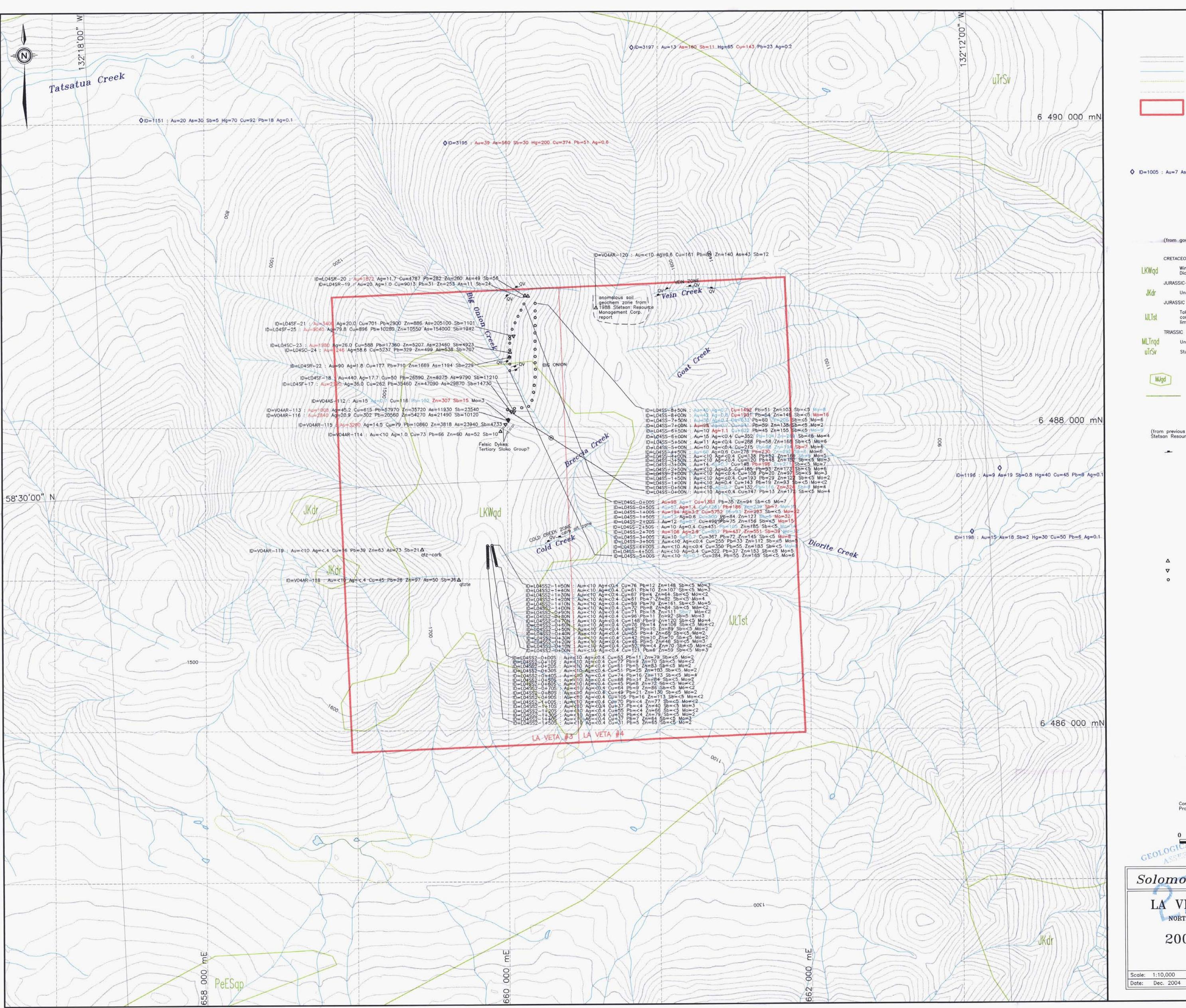
- 1) I am a contracting Junior Geologist with the firm of Solomon Resources Limited with offices at #900-475 Howe Street, Vancouver, B.C. V6C 2B3.
- 2) I am a 2004 graduate of Dalhousie University with a Bachelor of Science (Hons) degree in Geology.
- I am author of the report entitled "Geochemical Assessment Report on the La Veta Property, Tatsamenie Lake Area, Atlin Mining Division, B.C.", dated December, 2004.
- 4) I do not own, or expect to receive any interest (direct, indirect or contingent) in the property described herein, nor in the securities of Solomon Resources Limited, in respect for the services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this 1st day of December, 2004.

Endorsed By,

Dave Tupper (P.Geol)

Respectfully Submitted,


Andrew Hilchey (B.Sc.)

APPENDIX VIII Field Personnel

Andrew C. Hilchey, Junior Geologist

Steve Sheffield, Prospector / Field Assistant

.

			LEGEND				
			Topographic Contours				
			Drainage Swamp / Marsh				
	·		Ice Field Property Boundary				
0	ID=1005	: Au=7 As=	40 Sb=3.6 Hg=350 Cu=77 Pb=1 Ag=0.1 RGS Stream Silt Sample : results in ppm except Au & Hg in ppb >90 percentile results are highlighted				
		(from gove	GEOLOGY mment 1:250,000 scale geology)				
		CRETACEOU					
	LKWqd	Diori	y Table Intrusive Complex: Fine to coarse grained te stock. Most commonly massive.				
	JKdr	Unne	CRETACEOUS amed intrusive Diorites.				
	IJLTst	cong	rahoni Formation: Granite boulder / chert pebble glomerate, quartz sandstone, siltstone, minor stone lenses.				
	MLTrqd uTrSv	Unn	amed quartz diorite intrusive rocks ini Group: undivided volcanic rocks				
	unor	5101					
	MJ	gd	Regional Geological Contact & Rock Unit Code				
			Fault				
	(fror	n previous o san Resourc	assessment reports by Chevron, 1983 & by				
		-	Vein				
			2004 SAMPLING				
		∆ ⊽	Rock Sample (Note: > 1 g/t Au in red) Rock Float Sample				
		0	Soil Sample (Note: Results in ppm except Au which is in ppb)				
			(Note: for soil samples 95th percentile highlighted in red &				
			85th percentile highlighted in blue)				
		10.5M					
		Cont Proje	our interval is 20m ection & Datum: NAD 83, UTM, Zone 8				
		0 GICA	SURVEY BRANCH				
	GEOLOGICAD						
Solomon Resources Ltd.							
LA VETA PROPERTY NORTHWEST BRITISH COLUMBIA							
	2004 SAMPLING						
	and the second se	0,000 c. 2004	BCGS: 104K049,059 Fig: 4				
_	_						