ASSESSMENT REPORT

On The

PHASE II DIAMOND DRILLING and GEOLOGICAL MAPPING PROGRAMS

ELIZABETH PROPERTY

Lillooet Mining Division, British Columbia

For

J-PACIFIC GOLD INC. Suite 1440 – 1166 Alberni Street Vancouver, B.C. V6E 3Z3

Prepared By:

Greg Z. Mosher, P.Geo. November 30, 2004

TABLE OF CONTENTS

1.0 SUMMARY	1
2.0 INTRODUCTION	2
3.0 PROPERTY DESCRIPTION	3
4.0 LOCATION, ACCESS, TOPOGRAPHY and CLIMATE	4
4.1 Location and Access	4
4.2 Topography and Climate	4
5.0 HISTORY OF EXPLORATION	5
5.1 Regional	5
5.2 Elizabeth Property	5
6.0 PHASE II EXPLORATION PROGRAM 2004	7
7.0 GEOLOGY	8
7.1 Regional Geology	8
7.2 Property Geology	11
7.2.1 Rock Types	11
7.2.2 Metamorphism	13
7.2.3 Structure	13
8.0 MINERALIZATION	16
8.1 Regional	16
8.2 Elizabeth Property	17
9.0 DRILL PROGRAM	21
9.1 Location and Purpose	21
9.2 Drilling, Logging and Sampling Procedures	22
9.3 Drilling Results	23
10.0 GEOLOGICAL MAPPING PROGRAM	25
11.0 CONCLUSIONS	26
12.0 RECOMMENDATIONS	28
13.0 REFERENCES	29
14.0 CERTIFICATE OF AUTHOR	30

TABLES

TABLES 2, 3 AND 4 AT END OF REPORT

2.0 PHASE II DRILL PROGRAM CORE RECOVERY AND RQD

- 3.0 PHASE II DRILL PROGRAM SAMPLE ANALYTICAL RESULTS
- 4.0 RE-ANALYSIS OF SAMPLES FOR METALLIC GOLD

APPENDICES

AT END OF REPORT

- 1.0 ACME ANALYTICAL ASSAY CERTIFICATES
- 2.0 DRILL LOGS DDH E04-11A 17 INCLUSIVE

FIGURES

ALL FIGURES AT END OF REPORT

- 1.0 ELIZABETH PROPERTY LOCATION MAP
- 2.0 ELIZABETH PROPERTY CLAIM MAP
- 3.0 ELIZABETH PROPERTY DRILL HOLE LOCATION MAP
- 4.0 ELIZABETH PROPERTY REGIONAL GEOLOGY
- 5.0 ELIZABETH PROPERTY PROPERTY GEOLOGY
- 6.0 GEOLOGY OF THE BRALORNE-PIONEER AREA
- 7.0 ELIZABETH PROPERTY SOIL GEOCHEMISTRY: GOLD
- 8.0 SECTION DDH E04-10, 12
- 9.0 SECTION DDH E04-11, 11A
- 10.0 SECTION DDH E04-13
- 11.0 SECTION DDH E04-14
- 12.0 SECTION DDH E04-14
- 13.0 SECTION DDH E04-16, 17

1

1.0 SUMMARY

The Phase II gold exploration drill program was carried out at the Elizabeth Property near Bralorne, British Columbia between August 28 and September 29, 2004. Seven NQ core holes, E04-11A to E04-17, with an aggregate length of 1,258.67 meters, were drilled to test portions of the Southwest, Ella, Tommy and No.9 Veins.

About 200 core samples were collected for analysis and were analyzed by Acme Analytical Laboratories in Vancouver, British Columbia. The best result obtained was 20029.5 parts per billion (20 grams per tonne) gold over one meter in DDH E04-11A in the Southwest Vein. One intercept of 702 ppb gold over two meters was obtained in hole DDH E04-13 in the Ella Vein. Two one-meter intercepts of 540 and 756.6 ppb gold were obtained in hole DDH E04-14 in the Tommy Vein. The top 13.85 meters of hole DDH E04-15 contained an average of 793 ppb gold in the Blue Creek Porphyry at the contact with the enclosing Shulaps Ultramafic Complex. A second interval in this contact zone contained 803.9 ppb gold over two meters. Eight (8) other samples from DDH E04-15 contained values in excess of 500 ppb gold, including one of 2523.1 ppb gold over 10 centimeters from the possible down-dip projection of the No.9 Vein. Hole DDH E04-17, the most southwesterly test of the Southwest Vein produced three samples in excess of 500 ppb gold, the highest being 1494.8 ppb gold from a 40-centimeter shear zone, but no well-developed vein, nor high-grade gold, similar to results obtained in holes that tested the Southwest Vein further to the northeast, were encountered in this hole.

No significant assays were obtained from holes DDH E04-12 and E04-16.

The Phase II drill program indicates that future exploration of the Southwest Vein should be directed to the possible northeasterly extension of this vein beyond holes E04-7 and 8. The contact zone of the Blue Creek Porphyry tested by holes E04-01 and E04-15 is also considered to warrant additional exploration.

2.0 INTRODUCTION

This report documents the Phase II drill program that was carried out on the Elizabeth Property near Bralorne, British Columbia to test several veins for their gold content. The Phase II program followed the Phase I drill program that encountered about 257 grams per tonne gold over 65 centimeters in hole DDH E04-10, drilled on the Southwest Vein.

Seven NQ-size holes, with an aggregate length of 1258.67 meters were drilled during Phase II, four on the Southwest Vein, and three to test other veins on the property.

The drill program took place between August 28 and September 29, 2004. The author logged holes E04-12 to E04-17 inclusive. Hole E04-11A was drilled under the supervision of, and logged by, another qualified geologist. Holes E04-12 through E04-14 were drilled under the supervision of an employee of J-Pacific Gold Inc. prior to the arrival of the author at the project site. The author supervised the drilling of holes E04-15 through E04-17.

This report contains descriptions of the core, details of the samples collected for analysis, analytical results obtained, and recommendations for further exploration.

3.0 PROPERTY DESCRIPTION

The Elizabeth Property is made up of a block of 29 contiguous claims that comprise four (4) Crown Granted claims (Elizabeth 1 to 4 inclusive), 20 four-post claims (Blue 1-8, 12,15,16 and Big Dog 1-9), and five (5) two-post claims (Blue 9, 10, 11, 13, 14). The claims cover an area of 8,625 hectares (21,217 acres). Only the Elizabeth 1-4 Claims have been legally surveyed. Details of the claims are given below in Table 1, and their locations are shown in Figure 2.

Claim Name	Tenure No.	Units	Expiry Date	Registered Owner
Elizabeth No. 1	L-7400	1	July 2, 2005	D. White and T. Illidge
Elizabeth No. 2	L-7401	1	July 2, 2005	D. White and T. Illidge
Elizabeth No. 3	L-7402	1	July 2, 2005	D. White and T. Illidge
Elizabeth No. 4	L-7403	1	July 2, 2005	D. White and T. Illidge
Blue No. 1	393080	12	May 8, 2013	Thomas Illidge
Blue No. 2	393081	12	May 8, 2013	Thomas Illidge
Blue No. 3	393082	20	May 8, 2013	Thomas Illidge
Blue No. 4	393083	20	May 8, 2013	Thomas Illidge
Blue 5	397199	15	Oct 10, 2013	J-Pacific Gold Inc.
Blue 6	397200	9	Oct 10, 2013	J-Pacific Gold Inc.
Blue No. 7	403995	15	July 27, 2013	J-Pacific Gold Inc.
Blue No. 8	403996	15	July 27, 2013	J-Pacific Gold Inc.
Blue No. 9	404000	1	July 16, 2013	J-Pacific Gold Inc.
Blue No. 10	404001	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 11	404002	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 12	403997	20	July 27, 2013	J-Pacific Gold Inc.
Blue No. 13	404003	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 14	404004	1	July 17, 2013	J-Pacific Gold Inc.
Blue No. 15	403998	20	July 21, 2013	J-Pacific Gold Inc.
Blue No. 16	403999	15	July 26, 2013	J-Pacific Gold Inc.
Big Dog # 1	412562	15	July 17, 2005	J-Pacific Gold Inc.
Big Dog # 2	412563	16	July 17, 2005	J-Pacific Gold Inc.
Big Dog # 3	412564	12	July 17, 2005	J-Pacific Gold Inc.
Big Dog # 4	412565	20	July 17, 2005	J-Pacific Gold Inc.
Big Dog # 5	412566	20	July 17, 2005	J-Pacific Gold Inc.
Big Dog # 6	412567	20	July 16, 2005	J-Pacific Gold Inc.
Big Dog # 7	412568	20	July 16, 2005	J-Pacific Gold Inc.
Big Dog # 8	412569	20	July 16, 2005	J-Pacific Gold Inc.
Big Dog # 9	412570	20	July 16, 2005	J-Pacific Gold Inc.
	Total Units	345		

In May 2002, J-Pacific Gold Inc. entered into an option agreement with Mr. David White and Thomas Illidge to earn a 100% interest in the Elizabeth No. 1-4 Claims. J-Pacific Gold Inc. has a separate option agreement with Mr. Illidge for the Blue No. 1-4 Claims. The author has not verified claim title or location. The author does not know of any private land titles or encumbrances on the Property.

4

4.0 LOCATION, ACCESS, TOPOGRAPHY and CLIMATE

4.1 Location and Access

The Elizabeth Property is located in the Lillooet Mining Division about 35 kilometers northeast of the town of Bralorne, on NTS Map Sheet 92O/2E. The location of the Elizabeth Crown Grants is approximately 51° 02' North Latitude, 122 ° 32' West Longitude (UTM NAD 83 coordinates 10U 531788 E / 5653732 N). (Figure 1)

Access to the Property is via paved Highway 40 that connects Lillooet and Goldbridge, for 32 kilometers, then 67 kilometers via an unpaved logging road that follows the Yalakom River to the northwest, and then nine kilometers westerly on a private property road along Blue Creek.

A network of bulldozer roads provides good access to the southern portion of the Property (Elizabeth No. 1-4 and Blue No. 1, 3 and 15 Claims) in which all exploration has been conducted to date. (Figure 3)

4.2 Topography and Climate

The Elizabeth Property is situated in the Shulaps Range between the Fraser Plateau to the east and the Chilcotin Ranges to the west, and occupies several broad glacial valleys. Streams in these valleys, the most prominent of which is Blue Creek, are tributaries of the Yalakom River and drain to the east.

Topographic relief is about 1,000 meters, rising from about 1,800 meters above sea level (m asl) along Blue Creek, to about 2,800 m asl on Big Dog Mountain. Elevations in the southern portion of the property range up to about 2,400 m asl.

Much of the property is covered by glacial till which, on the lower slopes and valleys is tens of meters thick, and which on a ridge within the Elizabeth Claims is both thick and notably stratified.

Lower elevations are forested by pine and balsam. The tree line is at about 2,200 m asl above which there is almost no vegetation of any type, a circumstance due less to the elevation than to the lack of nutrients and to poor soil development.

5

5.0 HISTORY OF EXPLORATION

5.1 Regional

Mining activity within the district dates from the mid 19th century, when prospectors entered the Bridge River area from the Fraser River Canyon during the 1850s. Placer gold was found in the area in 1863, and the first hardrock claims were staked in 1896. The Pioneer Mine went into production in 1914, and the Bralorne Mine in 1932. By the time production ceased at Bralorne in 1971, the Bralorne and Pioneer Mines had together produced 4.1 million ounces of gold at an average grade of 0.53 ounces per ton. The Bralorne Mine is currently (late 2004) back in production.

In 1956 copper mineralization was discovered at Poison Mountain, on the northern border of the Big Dog Claims that comprise part of the Elizabeth Property. During the 1960s to 1980s, about 37,000 meters of drilling defined a resource of 280 million tonnes at a grade of 0.26% copper and 0.14 grams per tonne gold.

5.2 Elizabeth Property

Gold-bearing quartz veins were discovered near Blue Creek in 1934, and in 1940 - 1941 the Elizabeth No. 1-4 claims were staked. Bralorne Mines Ltd. optioned the property in 1941 and during the period 1948 - 1949, explored the presently-named Main and West Veins at an elevation of 2,024 meters asl by about 700 meters of cross-cutting and drifting, as well as about 110 meters of raises (Lower Workings).

During the period 1950 – 1952, Bralorne explored the No. 9 Vein by surface trenching and about 250 meters of drifting.

During the period 1956 – 1958, Bethlehem Copper explored the Main and West Veins by about 250 meters of cross-cutting and drifting at an elevation of 2,204 meters asl (Upper Workings).

In 1983 Cal-Denver Resources re-sampled the No.9 Adit.

In 1987 Carson Gold Corp. also re-sampled the No.9 Adit and drilled four holes (600 meters) to test the No.9 Vein.

In 1990 Blackdome Mining Corp. rehabilitated the Upper and Lower Workings, sampled the West Vein in the Upper Workings, and conducted surface trenching, sampling and geological mapping.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	6
--	------	---

J-Pacific Gold Inc. commenced exploring the property in 2002 and carried out geochemical rock and soil sampling as well as 1,642 meters of drilling in 16 holes on the Main and West Veins. In 2003 J-Pacific conducted surface exploration in the area of the No.9 and Ella Veins, and discovered the Southwest Vein.

In May and June, 2004, J-Pacific drilled 11 holes (1,439 meters) to test the Southwest Vein, and carried out a systematic sampling of the Main and West Veins where exposed in the drifts of the Lower Portal workings.

This report describes a second phase of drilling on the Southwest Vein that was carried out during August and September, 2004.

6.0 PHASE II EXPLORATION PROGRAM 2004

During the period August 28 to September 29 inclusive, seven holes, E04-11A to E04-17, with an aggregate meterage of 1,268.57 meters were drilled on the Elizabeth Property as the Phase II, 2004 exploration program. In addition, very minor geological mapping was conducted, principally on road cuts, as well as to the north of the area in which exploration has been carried out to date.

Drillholes E04-11A, 12, 16, and 17 were drilled on the Southwest Vein. E04-11A was drilled at the site of DDH E04-11, the final hole in the 2004 Phase I drill program, that was terminated short of the target depth because of difficult drilling conditions. DDH E04-12 was drilled as an undercut of hole E04-10. DDH E04-16 was drilled to test for the strike extension of the Southwest Vein beyond DDH E04-11A but proved to be situated too far to the west. DDH E04-17 was drilled from the same setup as DDH E04-16, but was oriented so as to intersect the vein.

Drillhole E04-13 was drilled to test the Ella Vein, E04-14 to test the Tommy Vein, and E04-15 to test the No.9 Vein.

Drillhole locations are shown on Figure 3. The revised geology of the area of the Property within which drilling has taken place is shown in Figure 6.

8

7.0 GEOLOGY

7.1 Regional Geology

The area in which the Property is situated is underlain by several Late Paleozoic to Mesozoic tectonostratigraphic assemblages that are juxtaposed across a complex system of faults of mainly Cretaceous and Tertiary age. These Paleozoic to Mesozoic-age rocks are intruded by Cretaceous and Tertiary-age stocks and dikes of mainly felsic to intermediate composition, and are locally overlain by Paleogene volcanic and sedimentary rocks. (Figure 4)

The Property area is underlain by ultramafic rocks of the Shulaps Ultramafic Complex, of probable late Paleozoic age, that is a dismembered ophiolite comprised of two major structural divisions; an upper unit of harzburgite with a mantle-derived tectonic fabric, and a structurally underlying serpentinite mélange. These rocks were thrust-emplaced during the Cretaceous above the Cadwallader Terrane.

The Methow Terrane is located to the north of the Shulaps Ultramafic Complex, across the Yalakom Fault, and is comprised of Lower Jurassic-age sedimentary and volcanic rocks, and overlying mid-Cretaceous-age sedimentary rocks.

The Upper Tyaughton Basin, a belt of Jura-Cretaceous clastic sedimentary rocks lies principally to the northwest, and several slices to the west of the Shulaps Ultramafic Complex.

The Cadwallader Terrane is located further to the west and is made up of Triassic and Jurassic-age turbiditic sediments, mafic volcanics, and shallow-water conglomerate and carbonate rocks.

The Bridge River Terrane is situated to the south of the Shulaps Ultramafic Complex and is represented mainly by the Bridge River Complex, an assemblage of chert, argillite, greenstone, gabbro, serpentinite, limestone and clastic sedimentary rocks with no coherent stratigraphy. Ages range from Mississippian to late Middle Jurassic. The Bridge River Complex is overlain by a thick, coherent succession of clastic metasedimentary rocks referred to as the Cayoosh assemblage.

Igneous intrusions occurred during much of the interval from mid-Cretaceous through to the Neogene and coincided with major deformational events that evolved from mainly contractional during the middle to late Cretaceous, to dextral strike-slip and normal faulting during late Cretaceous and Tertiary.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	9

The largest intrusive bodies are medium-grained equigranular granitic batholiths of Late Cretaceous age (80 to 90 Ma). Hornblende-feldspar porphyry intrusives form stocks, plugs and dikes, and range in age from mid-Cretaceous to Paleocene. The porphyry consists of variable proportions of plagioclase and hornblende phenocrysts within a grey to green aphanitic to very fine-grained groundmass, and locally grades into equigranular, medium-grained diorite.

The porphyry that hosts the Elizabeth veins is mapped as a member of this group, but with conflicting age dates of 58 and 70 Ma, and more-closely resembles the Paleocene to Eocene-age porphyry stocks that occur east of Poison Mountain. These stocks are described as consisting of crowded feldspar porphyry containing large plagioclase phenocrysts and smaller, less-common hornblende and biotite phenocrysts within a fine-grained groundmass. These stocks have an age of about 58 Ma.

All these intrusives are inferred to belong to the Coast Plutonic Complex, the main portion of which was emplaced between 110 and 95 Ma, during the convergence of the North American and Pacific Plates. Diminished plutonism continued along the east flank of the complex until about 60 Ma.

Poison Mount is underlain by a porphyritic intrusion that hosts a coppermolybdenum deposit and is comprised of equigranular to porphyritic hornblende quartz diorite to granodiorite that passes outward into biotite-altered feldspar porphyry. These rocks have also been dated at about 57 to 60 Ma. Sulphides occur in the biotite-altered outer margins of the stocks. This description, including the presence of sulphides, copper and molybdenum, closely matches a biotite-porphyry that occurs on the western margin of the main feldspar porphyry on the Elizabeth Property.

Aplite dikes are a common component of the Coast Plutonic Complex and are commonly observed cutting the Blue Creek Porphyry on the Elizabeth Property.

Metamorphism is generally of low, predominantly greenschist, grade. Local amphibolite-grade metamorphism is recorded and the Bridge River Complex contains blueschist metamorphic rocks.

The overwhelmingly dominant structural fabric of the region is related to a complex series of anastomosing, predominantly northwest-trending faults. The most prominent of these are the Yalakom Fault to the north, and the Fortress-Castle-Marshall Creek system to the south. These are linked by a series of sygmoidal faults among which the Red Mountain and Quartz Mountain fault systems are major structures.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	10

Relevant to the Elizabeth Property area, the earliest significant movement was southwestward-directed thrusting that, among other developments, emplaced the Shulaps Ultramafic Complex. On the southwest margin of the Complex thrusts are northeast-dipping; on the northeastern margin, thrusts are southwest-dipping. Imbricate structures have been mapped in the lower, serpentinite mélange unit, and it is probable that similar structures exist in the overlying harzburgite member. Although this thrusting took place prior to the emplacement of the dioritic intrusives, it is evident that post-intrusive movement also occurred as most serpentinite-intrusive contacts have been sheared and most intrusive bodies have been separated from their metamorphic aureoles, a phenomenon that is observable on the Elizabeth Property.

Following thrusting during the late Cretaceous, most movement was dextral strike-slip which, on northwest-oriented structures, would have caused dilation on conjugate, northeast-trending structures.

7.2 Property Geology

The geology of the Elizabeth Property is simple on a large scale and complex in detail. (Figure 5)

7.2.1 Rock Types

There are essentially only two rock-types present: harzburgite and porphyritic diorite.

The harzburgite is comprised of orthopyroxene and olivine, and where undeformed weathers rusty-brown with a warty weathering texture that results from the resistant orthopyroxene weathering in relief against the more-abundant but less-resistant olivine. On fresh surface, the orthopyroxene is medium to dark-grey set in a dark-grey to black groundmass, which suggests that although apparently undeformed the rock has been partially serpentinized, Ultramafic rocks on the property are largely covered by overburden, but undeformed harzburgite is common in scree and presumably constitutes a significant proportion of the ultramafic bedrock. Harzburgite is not commonly observed in drill core, presumably because most holes have been drilled in areas of strong deformation in which the harzburgite has been sheared and serpentinized.

Serpentinization is common and of variable degree. In the least-deformed harzburgite, shearing has formed a network of hairline fractures that disrupt the porphyritic texture and deform the orthopyroxenes. With more advanced deformation, both orthopyroxene and olivine are serpentinized and the rock varies from nebulous dark-grey and black, to black. Texture varies from amorphous to highly sheared with slickensided shear surfaces. Rare asbestos-like fibers were noted on shear planes in drill core, as well as minor blue-green to bluish colored fracture-coatings, suggestive of various asbestos minerals. Buff to whitish talc was also observed on fracture surfaces.

Listwanite, a talc-carbonate \pm silica rock, forms by alteration of serpentinite and is present on the property in areas of intense deformation, prominently within serpentinite along the western margin of the main diorite porphyry intrusive, where it defines a shear or fault zone, as well as minor zones within the margins of the diorite itself where slices of serpentinite have been caught up in the intrusion, or have been emplaced as thrust slices.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	12
--	------	----

Diorite porphyry is used here as a field term for the intrusive rocks that cut the ultramafic and form the principal host for gold-bearing quartz veins on the property. This intrusive was termed the Blue Creek Porphyry by government geologists in the past. ⁽⁷⁾ The rock is comprised of plagioclase, hornblende and quartz ± rare biotite. Plagioclase is the dominant mineral and forms phenocrysts up to one centimeter in maximum dimension, and in extreme cases constitutes about 80 percent of the rock by volume. Typically, plagioclase phenocrysts constitute about 40 to 60 percent of the rock by volume and where observed in drill core, typically form an interlocking meshwork with the groundmass filling the interstices. Groundmass-supported phenocrysts are less-common. Hornblende also occurs as phenocrysts but is relatively less-abundant, about 10 percent or less of the rock by volume, and the crystals are millimeter-scale.

Groundmass within the porphyry is generally cream-colored, but where altered is commonly very pale-green in color, presumably due to epidote. Where alteration is more advanced, the plagioclase phenocrysts are translucent green, and the groundmass is light-brown and sericitized. Alteration, as noted in drill core, is almost invariably associated with zones of shearing and the degree and extent of alteration into the wallrock are reliable indicators of the intensity of deformation.

Although there are minor variations in abundance and size of phenocrysts, the main mass of diorite is essentially uniform throughout the area of surface exposures and in drill core. As mentioned above under Regional Geology, this diorite has been mapped ⁽⁷⁾ as hornblende-feldspar porphyry with an assumed correct age of about 70 Ma. However, the distinctive, crowded nature of the plagioclase phenocrysts consistent with the description of a younger (57 Ma) porphyry that occurs east of Poison Mountain, about 15 kilometers to the north of the Elizabeth Property. A similar age has been reported for the Blue Creek Porphyry on the Elizabeth Property.

The Blue Creek Porphyry is cut by aplite dikes, that seem to be most common near the margins of the intrusive, but this may be a function of exploration bias. Above the Upper Portal, an aplite dike strikes 080° and dips 40°. In the northern drifts of the Lower Portal workings, aplite dikes are common near the diorite-serpentinite contact and appear to be approximately parallel to the contact, i.e. about 310°/ 70°. The aplite dikes were probably emplaced along fractures in the diorite.

ELIZABETH PROPERTY PHASE II DRILL REPORT PAGE	13
---	----

A second diorite also occurs on the Elizabeth Property, immediately to the west of the prominent listwanitic fault zone that borders the No.9 Zone on the west. This porphyry is equigranular, coarse-grained and contains biotite in addition to hornblende. Analyses ⁽⁴⁾ have shown that this rock contains essentially no gold, but is anomalous with respect to copper and molybdenum, and is distinctive by virtue of a pyrite content sufficiently high to cause consistent rusty weathering. These characteristics match closely those of the intrusions that contain the Poison Mountain copper-molybdenum porphyry deposit (see Section 8.1 below), and that has been dated at 57 to 61 Ma. A dike or extension of this intrusion has been traced for several kilometers north from the No.9 Zone area toward Poison Mountain and may continue beyond the limits investigated. It is therefore possible that both the Blue Creek Porphyry and the biotite-bearing porphyry are related to the Poison Mountain area intrusives.

7.2.2 Metamorphism

No obvious metamorphism of either the ultramafic or dioritic rocks was observed on surface or in drill core. Although the effects of regional metamorphism could have easily been overlooked during the cursory surface mapping conducted during the Phase II program, and any such effects could have been masked by alteration within the drill core, the absence of contact metamorphism was noted during core logging. Neither thermal metamorphism of the enclosing ultramafic rocks, nor chill margins within the diorite porphyry were noted in numerous examples of such contacts. It was noted, however, that most if not all, such contacts are sheared and therefore post-intrusion deformation may have destroyed or dislocated any evidence of contact metamorphism.

7.2.3 Structure

The lithological simplicity of the Elizabeth Property is offset by the relative structural complexity: the ultramafic rocks are commonly sheared and the ultramafic-diorite contacts are marked by wide zones, measuring in the 10s of meters, of interleaving of slices of ultramafic and dikes or tectonic slices of diorite.

Although only two relatively minor faults are shown in the area of the Elizabeth Property on the published British Columbia Geological Survey map of the Taseko-Bridge River area⁽⁶⁾, structures that are significant on a property scale are common.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	14

The most obvious structure on the Elizabeth Property is the listwanitic fault or shear zone that marks the western edge of the Blue Creek Porphyry in the area of the No. 9 Zone. The northerly portion of the fault trends about 015° azimuth and has been traced for about 1000 meters between the No.9 Zone area and the height of land between the No.9 area and the cirque to the south, at which point it curves to the southeast on a trend of about 135° azimuth. This trend can be followed for about 700 meters to the access road leading to the Southwest Vein area, where a shear zone in serpentinite is exposed in road cut. Beyond that point the course of the fault is not known; it may continue to the southeast along a prominent, linear drainage into the Blue Creek valley , or may swing to the east along the southern margin of the Blue Creek Porphyry which is roughly coincident with the course of the access road. (Figure 5) The northerly portion of the fault dips steeply to the west, the southeast portion appears to have a vertical dip. Listwanitic alteration diminishes southward such that, in the road cut mentioned above, no listwanitic alteration is observed. This fault zone was intersected in drillhole E04-16, in which minor listwanitic alteration is present. Movement on the fault is inferred to be dextral, based on deformation evident in the northerly portion of the fault, and abundant sub-horizontal slickensides in adjacent serpentinite near the No.9A Zone.

The western margin of the Blue Creek Porphyry is poorly-exposed but has been investigated by trenching and drilling because of the discovery in 2002 of a new zone of mineralization, the Southwest Vein. Within the area investigated by drilling, the diorite-serpentinite contact zone appears to be vertical to steeply-east dipping, and coincides with the projection of the listwanitic fault zone exposed to the northwest. The contact zone is comprised of dikes or tectonic slices of porphyry interlayered with slices of serpentinite. Aplite dikes occur within the diorite, notably in the area of drillhole E04-17. Shearing of both the serpentinite and porphyry is common and minor listwanitic alteration of the serpentinite was observed locally.

The southern margin of the Blue Creek Porphyry is exposed in only one roadcut on the Southwest Main access road. Two other isolated exposures of diorite further to the east on this road, at the Ella Vein, and at the Lower Portal appear to be fault slices. Both are bounded by serpentinite to the south, and both are overlain by serpentinite with contacts that dip to the north. At the lower portal this contact is clearly exposed and has a strike of 220° and a dip of 70°. These exposures are inferred to be thrust slices but the detail of geological mapping is at present insufficient to confirm this interpretation.

A portion of the eastern margin of the Blue Creek Porphyry is exposed above the Upper Portal, and has been penetrated by both the Upper and Lower underground workings, as well as by drilling carried out in 2002 near the Upper Portal. All this information indicates that this margin of the porphyry is also structurally complex.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	15
--	------	----

The exposed face above the Upper Portal is at an elevation of about 2260 meters asl. Here the margin of the porphyry strikes about 135° and dips about 50° to the northeast and is structurally overlain to the northeast by a slice of serpentinite that has an exposed width on surface of about 100 meters. Within the surface cut, several diorite dikes cut or are entrained within the serpentinite.

The 2002 drilling in this area indicated that the serpentinite slice exposed at surface is tabular and dips to the southeast at about 45°, together with several diorite dikes or tectonic slices. Both the drill holes and the bedrock exposures in the Upper Portal workings show that the serpentinite slab or slabs, terminate or swing sharply southeasterly between the collar locations of drillholes E02-01 and 02, and the Upper Portal. To the north, the serpentinite slab appears to trend to the northeast while maintaining a moderate southeast dip, as indicted in drill holes E02-08, 09, and 16. This distribution suggests that the margin of the diorite here forms a small embayment. Exposures of serpentinite in the two northerly drifts of the Lower Portal workings, at an elevation of 2020 meters asl, indicate that here the serpentinite-diorite contact also has a strike of about 135°, and that the contact dips at about 45°, although it cannot be demonstrated conclusively that both the surface and underground exposures represent the same contact.

A dike, sill or slab of diorite porphyry, about 100 meters in thickness, structurally overlies the serpentinite to the northeast. On surface, this block contains the David Vein, and was intersected in drillholes E02-08, 09, and 16. This slab is projected to host the Allison Vein, and to be exposed in the Lower Portal crosscut where it lies in the immediate footwall of the thick serpentinite unit that is encountered immediately inside the portal and is exposed for about 200 meters along the crosscut. The serpentinite-diorite contact is steep, about 70°, and strikes about 220°, and is assumed to be a northeastward continuation of the southern thrust margin of the Blue Creek Porphyry. Both the strike and dip of this contact are similar to that of the serpentinite-diorite contact exposed at the Lower Portal, a contact also inferred to be a thrust.

An isolated outcrop of diorite is exposed in a roadcut at the junction of the spur road to the Upper Portal, and the main road. It is not known how this diorite body relates to the others on the Property, but it is inferred that it may be a northeast-dipping sill or dike.

Exposures on the north flank of the Blue Creek Porphyry are restricted to the area of the No.9 Zone. Eastward of this area, bedrock is covered by scree. However, it is probable that the scree is indicative of the underlying bedrock and that the diorite dips at a low angle to the northeast. Isolated diorite debris topographically above the main apron of diorite scree may be an expression of the overlying slab that contains the David and Allison Veins.

8.0 MINERALIZATION

8.1 Regional

The largest concentration of gold occurrences within the region is in the Goldbridge area, about 30 kilometers southwest of the Elizabeth Property, of which the Bralorne Mine was the most prolific. Other significant deposits and mines include the Pioneer, Wayside and Congress Properties. These deposits are largely similar, the Bralorne is described below as the representative example.⁽⁷⁾

Mineralization in the Bralorne deposit is contained within fissure veins that occur within a fault-bounded lens comprised of metasedimentary, ultramafic and intrusive rocks. The veins occur within an area 4600 meters long by 550 meters wide at a deflection in the regionally-extensive Cadwallader fault zone (Figure 6)

The age of the veins is late Cretaceous (85-86 Ma) and their development is attributed to deformation and hydrothermal activity that accompanied the emplacement of the Coast Plutonic Complex. The veins were emplaced as an array of tension fractures resulting from a shear couple that developed between the Cadwallder and Fergusson Faults. The veins developed in a variety of rock types, although the principal host is diorite. Veins end abruptly against serpentinite. Abnormally high concentrations of gold occur in veins near serpentinite which has been interpreted to reflect the impermeability of the serpentinite to mineralizing fluids.

About half of the 30 veins present produced significant ore. Veins range up to six meters in width and are typically from 0.9 to 1.5 meters wide, and are composed of quartz with minor carbonate, talc, mica, sulphides, scheelite and native gold. The quartz is milky-white and commonly banded with numerous partings of wallrock as a result of repetitive hydrothermal events. Calcite and ankerite occur as alteration envelopes on vein walls, particularly in areas of good ore development.

Sulphides average one to three percent of vein material and are mostly pyrite, arsenopyrite, chalcopyrite, sphalerite and pyrrhotite, galena and tetrahedrite. Pyrite is disseminated throughout veins and wallrocks. Native gold is commonly associated with arsenopyrite as discreet grains, and in association with fine-grained pyrite in vein partings. Small inclusions of native gold also occur in sphalerite.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	17
--	------	----

The second deposit type that occurs within the region and is of possible relevance to the potential of the Elizabeth Property is the Poison Mountain porphyry copper-molybdenum deposit, located about 13 kilometers north of Blue Creek. Here, mineralization is associated with two granodiorite to quartz diorite stocks that intrude arkosic and conglomeratic sandstone and shale of the Lower Cretaceous Jackass Mountain Group. The highest-grade mineralization occurs within biotite-altered border phases of the intrusions and adjacent hornfelsed sedimentary rocks. Mineralization is comprised of pyrite, chalcopyrite, molybdenum and bornite that occurs as disseminations and fracture-fillings and in veins associated with quartz. The Minfile database of the British Columbia Geological Survey (MINFILE Number 0920 046), states that the Copper Creek Zone contains reserves of 280 million tonnes grading 0.261 percent copper, 0.142 grams per tonne gold and 0.007 percent molybdenum. The Fenton Creek Zone is estimated to contain 18.3 million tonnes grading 0.31 percent copper and 0.128 grams per tonne gold.

8.2 Elizabeth Property

Mineralization of potential economic significance at the Elizabeth Property is comprised of gold in quartz veins. The veins cut both porphyry and serpentinite, but significant vein development occurs only in the porphyry.

Four principal veins have been investigated, the Main, West, No.9 and Southwest. The first three have been explored both underground and by drilling from surface, the Southwest Vein has been investigated by surface drilling only. There are a number of minor, or at least less-studied, veins as well; David, Allison, Tommy, Ella, No.4 and 9A. (Figure 5)

The known portions of the Main, West, Southwest and Allison veins strike about 210° to 230° and dip about 70°. The David, Tommy, Allison and Ella Veins probably have similar orientations. The No.9 vein and 9A vein zone strike about 190° and dip from 70° to vertical. The No.4 Vein, the apparent exception to the general trend, strikes about 130°.

The Main and West Veins are well-exposed in drifts in the Lower Portal workings where the Main Vein has been followed for about 100 meters along strike and the West Vein for about 200 meters. These exposures demonstrate a number of features that are significant with respect to the genesis and nature of the veins.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	18
--	------	----

Both veins occupy pre-existing zones of fracturing and as well, have textures that indicate that additional fracturing occurred during vein emplacement. The veins pinch and swell dramatically along both strike and dip and change from solid veins up to several meters in thickness to narrow quartz-filled shears over distances of meters, and equally, develop into stockwork-like lenses of anastomosing vein sets up to three to four meters in width. The constant, and clearly controlling aspect of the veins is the shear or fracture zone that they occupy; regardless of the nature or dimensions of the vein at a given point, the host fracture is present and persistent.

The attitude of the veins is also variable along the dip; although the overall dip may be relatively constant, dip of vein segments can vary over short distances by as much as 30 degrees.

The high degree of variability of the character of the veins has obvious significance with respect to exploration by drilling; correlation of vein intercepts is subject to uncertainty, and meaningful characterization of a given vein with respect to average grade and thickness is only possible with close-spaced drilling.

The veins have also undergone post-emplacement shearing, although most deformation appears to have occurred on the margins of the veins.

The Main and West Veins have been traced to the northeast into the adjacent serpentinite where both veins dissipate over a short distance. The David Vein occurs in the basal portion of the diorite slab that structurally overlies the serpentinite that borders the Blue Creek Porphyry. This vein is weakly developed and is associated with a stockwork of millimeter-scale quartz veinlets and fractures. The David Vein is also reasonably on strike with the northeastern extremity of the Main Vein and it is probable that the David Vein represents the extension of the Main Vein where the fracture system emerged into the diorite slab through the intervening serpentinite. The David Vein is neither extensive nor robust, and is considered to demonstrate a phenomenon observed at Bralorne, that economically significant quartz veins end at the serpentinite contact, which reflects the ductile nature of the serpentinite in contrast to the brittle nature of the porphyry.

The Main and West Veins have been most intensively explored at their northeastern end. Both have also been followed to the southwest for about 300 meters, at which point they end or are buried under scree. Soil sample results suggest that the veins continue to the southwest for several hundred meters more, to the southwestern margin of the porphyry. (Figure 7)

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	19
--	------	----

The Southwest Vein has been traced for about 200 meters on surface and for about another 200 meters to the southwest by drilling, at which point it probably terminates at the margin of the porphyry. Several veins were intersected by a horizontal hole drilled by Bralorne from the end of the Lower Adit crosscut. The thicker of these, the D Vein is on reasonable northeastern strike continuity with the surface trace of the Southwest Vein, but there is no other evidence upon which to base a correlation.

The No.9 Vein strikes parallel to the western margin of the Blue Creek Porphyry and the bounding listwanitic fault zone about 250 meters to the west. The vein was followed for about 300 meters by a horizontal drift that was in porphyry for its entire length. On the basis of existing documentation, it appears that both the vein and host diorite continue to the south beyond the end of the drift.

The No.9A is a zone of quartz veins up to 20 meters in width, that have developed in the Blue Creek Porphyry immediately adjacent to the bounding, listwanitic fault zone. The zone has been traced for about 600 meters along the eastern margin of the listwanite zone to the northwest of the No.9 Adit. A southern zone, the 9A Extension, is exposed about 300 meters to the south, on the height of land between the "No.9 Valley" and the cirque to the south.

The gold content of all known veins is highly variable. Sampling of the No.9 Vein demonstrated the presence of three higher-grade zones.⁽⁵⁾ It is not known whether these have vertical continuity which would indicate the existence of shoots that could be traced within the plane of the vein. The Main and West Veins were systematically sampled by J-Pacific in May and June, 2004. No comparably detailed geological mapping of the workings was done and it is therefore difficult to assess the results. Sampling of the Southwest Vein has resulted in gold values of up to several hundred grams per tonne, but sampling density is too coarse to permit the recognition of any continuity or zonation. Surface lithogeochemical sampling of the 9A Zone resulted in a composite value of 1.1 grams per tonne gold over 13.65 meters. DDH E04-01, that cut the zone about 60 meters below surface, intersected 1.2 grams per tonne gold over a comparable width. Hole DDH E04-15 intersected about 0.75 grams/tonne gold over 13.85 meters in the same zone. However, two other holes drilled to the north in this zone, DDH E04-03 and 05, encountered only trace gold values despite soil geochemical responses in this area of up to almost seven grams per tonne gold.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	20
--	------	----

Most of the current areas of interest were soil sampled during 2002, 2003 and 2004, and all known veins generate a geochemical response. (Figure 7) Given the steep terrain however, most anomalies are, to varying degrees, offset downslope from the sources. The same surveys produced anomalies that do not correspond to any known veins. One is a northeast-trending linear between the Ella and Main Veins that is close to or coincident with diorite exposed in a roadcut on the Southwest Main Road. A second single-point anomaly about 100 meters to the west may be indicative of another vein. Another area of interest is located on the north end of the Elizabeth grid on Lines 4N and 5N. This irregular zone may reflect the northern extension of the Southwest Vein which can be reasonably projected to the northeast into this area. By the same logic, two anomalous stations on Line 6N of the Elizabeth Grid may be related to the West or Main Veins.

The full extent of the Elizabeth Property veins is not known and therefore any suggested model of their formation is conjectural. It is tempting, however, to draw an analogy between the Elizabeth Property veins and those of the Bralorne-Pioneer area. At Bralorne-Pioneer the veins form splays from the Cadwallader Fault, and are most abundant where a flexure occurs in that fault. (Figure 6) A similar flexure exists on the Elizabeth Property where the listwanitic fault zone wraps around the southwestern margin of the Blue Creek Porphyry. Interestingly, the Southwest, West and Main Veins can be projected into that flexure, and the No.9 Vein and 9A Zone extend to the north from the same area.

9.0 DRILL PROGRAM

9.1 Location and Purpose

The 2004 Phase II drill program was comprised of seven NQ holes with an aggregate length of 1,268.57 meters. Drilling took place between August 28 and September 29, 2004. Details of the holes are presented in the following table. See Figure 3 and Figures 8 through 13.

HOLE ID	NORTHI	EASTING	BEARING	DIP	LENGTH	START	FINISH
	NG						
E04-11A	5653608	531075	125	-50	300.53	AUG 28	SEP 12
E04-12	5653689	531070	125	-50	147.83	SEP 07	SEP 11
E04-13	5653600	531920	045	-45	139.60	SEP 12	SEP 14
E04-14	5653799	531720	190	-45	104.24	SEP 15	SEP 16
E04-15	5654197	530817	125	-45	276.15	SEP 18	SEP 22
E04-16	5653480	531032	305	-50	100.58	SEP 23	SEP 25
E04-17	5653481	531032	090	-50	199.64	SEP 25	SEP 29
				TOTAL	1268.57	METERS	

Hole E04-11A was drilled to test the Southwest Vein about 90 meters to the southwest of DDH E04-10 and was drilled beside DDH E04-11, the last hole of the 2004 Phase I program, that was stopped short of its objective because of technical problems.

Hole E04-12 was drilled to undercut DDH E04-10 in which the Southwest Vein intercept contained coarse, visible gold. Hole E04-12 was terminated short of the probable down-dip projection of the Southwest Vein.

Hole E04-13 was drilled to test the Ella Vein a short distance north of the only exposure of this vein, in bank of the Southwest Main road.

Hole E04-14 was drilled to test the Tommy Vein south of the Upper Portal.

Hole E04-15 was drilled to test the down-dip continuity of the No.9 Vein beneath the best-mineralized portion of this vein in the No.9 Adit.

Hole E04-16 was drilled to test the southwest strike continuity of the Southwest vein about 140 meters beyond DDH-E04-11/11A, but was abandoned after 100 meters as it became evident that the vein did not extend into this area as had been hypothesized.

Hole E04-17 was drilled beside E04-16 but in the opposite direction to test for the revised strike projection of the Southwest Vein.

9.2 Drilling, Logging and Sampling Procedures

Drill holes were located using GPS and the orientation of the hole was indicated using a flagged picket as a foresight. Drilling was conducted during one twelvehour shift per day. Markers were placed in the core box at the end of each drill run and were marked in both imperial and metric units. Core was delivered to the core logging building at the end of each shift by the drill crew.

Before lithological logging, core was measured for percent recovery and RQD. Recovery is expressed as a percentage of core present within a given drill run relative to the length of that run. RQD measurements are expressed as the aggregate length of pieces of core within an individual drill run that measure at least 10 centimeters in length. Both measurements were recorded in a computer-based spreadsheet. (Table 2)

Lithological logging comprised the documentation of identification, extent or spatial location, and description of primary rock-types, alteration, structures and mineralization. Intervals to be sampled were then identified and assigned a sample number that corresponds to the number on the sample tag that was subsequently placed in the sample bag with the core. This information was recorded in a computer-based word-processing format. Drill logs are appended to this report as Appendix 2. The core was photographed prior to being sampled and stored.

Samples were obtained by sawing the core into halves; half was placed in a plastic sample bag together with an identifying sample tag, and the sample number was also written on the outside of the bag in indelible ink. The remaining half of the core was placed back into the core box. The sample bags were closed with wire ties and placed in shipping bags that contained from 20 to 20 samples each. Bagged samples were stored in the core logging building during the course of the program and were delivered directly to the Acme Analytical Laboratories, Vancouver, at the end of the drill program. In total 214 core samples were taken; lengths varied from 11 centimeters to about 1.5 meters. Emphasis was placed on the sampling of individual quartz veins, but where broad zones of narrow quartz veins or other possible sites of mineralization were encountered, consecutive samples, normally one meter in length, were collected. Acme Analytical Laboratories analyzed all core for gold by fire assay, and a 36-element suite using ICP. Analytical protocols are appended to this report together with the assay certificates.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	23
--	------	----

Following processing, core boxes were labeled with aluminum tags and were placed on covered racks adjacent to the core logging building in the Elizabeth base camp.

As each drill hole was completed, the collar location was re-checked by GPS and a wooden post with an aluminum tag bearing the hole number, dip, bearing and length, was inserted into the collar of the hole.

9.3 Drilling Results

Table 3 contains all analytical results for all core samples. The drill logs contain analytical results for gold, arsenic, copper and molybdenum. Values of gold, arsenic, copper and molybdenum for all samples containing greater than 500 parts per billion (ppb) gold are shown on the drill sections (Figures 8 to 13).

The most significant intercept in DDH E04-11A is Sample 143668, that contained 20029.5 ppb (20 grams) gold over the one-meter interval 110.24 to 111.24 meters, and is comprised of a quartz vein with contacts at 60 degrees to core axis and contained within an interval of sheared, altered serpentinite and feldspar porphyry. This is probably the Southwest Vein as its position in the hole is consistent with a linear strike projection of the vein from DDH E04-10. There were three other samples in this hole with values in excess of 500 ppb: 143670 from 201.6 – 201.83m @ 549.9 ppb gold; 143671 from 222.22 – 222.86m @ 585.4m gold; and 143672 from 223.15 – 223.85m @ 500.6 ppb gold. All sample intervals are associated with quartz veins and quartz stringer zones. (Figure 9)

There were no significant sample results in DDH E04-12. (Figure 8)

In DDH E04-13, two consecutive one-meter samples, 143724 and 143725, from 50.10 to 52.10 meters contained an average of 702 ppb gold / meter. These samples were collected at the base of a quartz vein zone in diorite porphyry that was intersected between 44.10 and 52.10 meters depth, and are interpreted to represent the Ella Vein. (Figure 10)

There are two samples from DDH E04-14 that exceed 500 ppb gold, 143752 from 85.70 – 86.70m @ 540 ppb gold, and 143756 from 95.20 – 96.20m @ 756.6 ppb gold. Both occur within quartz vein zones; the second sample is inferred to represent the Tommy Vein because an intercept at this depth is consistent with the assumed dip of the vein. This hole ended within the quartz vein zone and so it is possible that additional mineralized veins exist at depth. (Figure 11)

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	24
--	------	----

The top of DDH E04-15 contained an interval of quartz veining between 9.14 – 19.0 (13.86) meters with an average gold content of 793 ppb, This is the 9A Zone and this intercept lies between a surface sample collected in the road bed that contained 1.1 g/t (grams per tonne) gold over 13.65 meters, and an intercept in DDH E04-01 that contained 1.2 g/t gold over 13.25 meters. The quartz vein zone in DDH E04-15 extends to 23.0 meters down the hole and contains another interval, from 21.0 to 23.0m with an average gold content of 803 ppb. Given the apparent dip of the zone, the widths are essentially true. (Figure 12)

This zone occurs on the contact of the Blue Creek Porphyry and the adjacent, listwanitic ultramafic. The zone is persistent over a depth of about 60 meters and remains open down-dip. Only scattered, low gold values were intersected in holes E04-03 and E04-05 to the north, but to the south, about 300 meters of the contact remain untested. Surface geochemical sampling on the height of land several hundred meters to the south of DDH E04-15 obtained only background values of gold, but it is probable that this is because of thick overburden, as higher values were obtained further south where the contact zone emerges from beneath the ultramafic overburden. Therefore, although the grades are low, this zone is considered to represent a valid target for further exploration.

There were eight other sample intervals in DDH E04-15 that contained greater than 500 ppb gold: 143788 from 56.5 - 57.5m @ 832.6 ppb in a quartz vein zone; 143790 from 129.14 – 130.0m @ 1077.6 ppb in a quartz vein zone; 143800 from 151.2 - 152.2m @ 1153.7 ppb in a quartz vein zone; 143803 from 192.85 – 193.85m @ 1581 ppb in a shear zone; 143807 from 204.0 – 205.0m @ 706.8 ppb in a quartz vein zone; 143811 from 208.0 - 209.0m @ 564.9 ppb in a quartz vein zone; 143813 from 221.65 - 221.90m @ 1579.1 ppb in a 20 centimeter quartz vein; and 143816 from 241.15 - 241.50m @ 2523.1 ppb in a 10 centimeter quartz vein. Either of the last two may be the continuation of the No.9 Vein, given a projected dip of the vein between 70 and 90 degrees.

No samples were collected from DDH E04-16. (Figure 13)

DDH E04-17 was drilled to test for the southwestern continuation of the Southwest Vein beyond DDH E04-11/11A. Three samples from this hole contained more than 500 ppb gold: 143829 from 100.0 – 100.4m @ 1494.8 ppb in a shear zone; 143843 from 132.1 – 132.3m @ 644.5 ppb in a quartz vein; and 143848 from 142.75 – 143.75m @ 527.1 ppb. None of these is self-evidently the Southwest Vein, and several possible veins that were sampled contained almost no gold i.e. 143845 @ 20.8 ppb and 143846 @ 47.5 ppb. The Southwest Vein may have terminated to the north of this hole, may be represented by the mineralized shear at 100 meters depth which is reasonably on strike with the vein to the northeast, or may be represented by one of the barren quartz veins. Whichever the case, the significant gold grades encountered to the northeast are absent in this hole. (Figure 13)

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	25

Seventeen samples with gold values in excess of one gram per tonne were reassayed for the presence of particulate gold (metallics). Only one, 143688, showed the possible significant presence of particulate gold. The initial analysis of this sample was 20029.5 parts per billion, 20.029 grams per tonne. It was reassayed twice, to give values of 24.3 and 28.0 grams per tonne. Of these amounts, metallics represented 1.58 and 1.03 grams per tonne respectively, or about five percent of the total gold content. A copy of the laboratory report is appended with the other analytical results.

10.0 GEOLOGICAL MAPPING PROGRAM

During the course of the Phase II drill program it became necessary to reevaluate the existing geological interpretation of the western margin of the Blue Creek Porphyry in the vicinity of the Southwest Vein. This exercise led to the recognition that not all available geological observations had been incorporated into the existing Property geological map. Portions of several days were therefore spent locating these additional bedrock exposures, principally those exposed in roadcuts, and modifying the geological map accordingly. The modified map in included in this report as Figure 5. In general changes are minor; the western margin of the Blue Creek Porphyry has been constrained, and a number of details have been added to both the western and eastern contacts of the Porphyry, several probable thrusts have been indicated along the southeastern margin of the Dorphyry, and the probable existence of a slice or sill of porphyry in the area of the Lower Portal has been indicated. In addition, several dikes or sills, related to the Blue Creek Porphyry, were noted to the northeast of the main porphyry body.

10.0 CONCLUSIONS

The Elizabeth Property is located northeast of Bralorne, British Columbia, and contains about ten auriferous quartz veins.

The veins are hosted by the Blue Creek Porphyry that has intruded the Shulaps Ultramafic Complex.

These veins have been explored intermittently since the early 1940s, and this work has included surface sampling and drilling as well as underground workings on three of the veins.

J-Pacific Gold has held the property since 2002 and has carried out surface geological mapping, geochemical sampling, geophysical surveying and three campaigns of drilling.

The first drill program, in 2002, tested the Main and West Veins in the vicinity of the Upper Portal underground workings. The second drill program(Phase I in 2004) tested a portion of the Southwest Vein that was discovered in 2002. The third drill program (Phase II in 2004), the subject of this report, also tested the Southwest Vein, as well as the Ella, Tommy and No.9 Veins.

The Phase II drill program comprised seven (7) NQ-size core holes with an aggregate length of 1268.57 meters. Four holes (E04-11A, 12, 16 and 17) were drilled on the Southwest Vein, and one each on the Ella (E04-13), Tommy (E04-14) and No.9 Veins (E04-15). About 200 core samples were collected for analysis.

The best result was from DDH 11A in which a one-meter sample from the Southwest Vein assayed 20 grams per tonne gold.

Testing of the Ella and Tommy Veins produced results in the range of 500 to 850 parts per billion (0.5 and 0.85 grams per tonne) gold.

DDH E04-15 intersected 13.86 meters with an average of 793 parts per billion (0.793 grams per tonne) gold in the 9A Zone, as well as 1.5 over20 centimeters and 2.5 grams per tonne gold over 10 centimeters, in two quartz veins, either of which may be the No.9 Vein.

Holes E04-12 contained no gold values in excess of 500 parts per billion, and no samples were collected from DDH E04-16.

Hole E04-17 produced one assay of 1.5 grams per tonne gold over 40 centimeters from a shear zone, but the Southwest Vein was either not intersected by this hole, or is present but contains no significant gold.

ELIZABETH PROPERTY PHASE II DRILL REPORT	PAGE	27

It appears that the results obtained in DDH E04-17 constrain the exploration potential of the Southwest Vein to the southwest of hole E04-11, but the vein has not been explored to the northeast of holes E04-7 and 8 from the 2004 Phase I drill program. Intercepts of the vein in both holes produced values ranging from five to 13.7 grams per tonne gold so additional exploration in this direction is clearly warranted.

There are indications, from historical underground drilling and 2002 surface soil geochemical sampling, that the Southwest Vein may continue to the northeast beyond holes E04-7 and 8 for several hundred or more meters.

Results from drill-tests of the Ella, Tommy, and No.9 Veins are not considered sufficiently encouraging to warrant additional exploration.

The No.9A zone, intersected by DDH E04-01 in Phase I, and DDH E04-15 in Phase II, indicates the presence of a quartz vein zone from about 13 to 20 meters in width with an average gold content of about one gram per tonne. Although the grade is low, the zone is of substantial width and is open down-dip and to the south of those holes. Additional exploration is considered warranted to determine whether higher-grade zones may be present.

The soil sampling programs conducted in 2002, 2003 and 2004 generated several anomalies that may be indicative of previously undiscovered veins, or extensions of known veins. Two areas of particular interest are between the Ella and Tommy Veins, and to the northeast of the Southwest and Main Veins. These areas should be prospected and sampled in greater detail to determine whether drill-testing is warranted.

The soil geochemical surveys also indicate the probable continuation of the Main and West Veins westward of their presently known limits. These anomalies should be investigated as well in order to determine whether extensions of the veins can be located, and whether these may warrant drill-testing.

Both the surface and drill data generated on the Property to date should be integrated into a single database that would permit greater utilization of the information than is presently the case.

11.0 RECOMMENDATIONS

Additional drill exploration should be conducted on the Southwest Vein to the northeast of holes E04-7 and 8. Fences of two to three holes at intervals of 25 meters are recommended.

Similar drill testing of the 9A Zone to the south of holes E04-01 and 15 should be done.

Prospecting of soil geochemical anomalies between the Ella and Tommy Veins, to the northeast of the Southwest and Main Veins, and to the west of the known limits of the Main and West Veins should be carried out to establish is drill targets exist in these areas.

All existing data from the project should be integrated into a GIS-type database, not only to maximize the benefit to be derived from this information, but also to facilitate the integration of data to be obtained from future programs.

29

12.0 REFERENCES

- Church, B,N., and Jones, L.D., January, 1999 Metallogeny of the Bridge River Mining Camp (092/J10, 15 & 092/O2) British Columbia Ministry of Energy and Mines
- Gruenwald, W., December 30, 2002
 Assessment Report on the Geochemical and Diamond Drilling Programs Elizabeth Property, Lillooet Mining Division, British Columbia J-Pacific Gold Inc.
- Gruenwald, W., December 30, 2003
 Assessment Report on the Geochemical and Geological Programs Elizabeth Property, Lillooet Mining Division, British Columbia J-Pacific Gold Inc.
- Gruenwald, W., August 15, 2004 Assessment Report on the Diamond Drilling, Geochemical and Geophysical Programs

Elizabeth Property, Lillooet Mining Division, British Columbia J-Pacific Gold Inc.

- Leighton, Douglas G., September, 1990
 Drilling Report on the Yalakom Property, Lillooet Mining Division Balsam Resources Inc. (BCDM Assessment Report 20, 404)
- Schiarizza, P. and Gaba, R.G., 1993 Geoscience Map 1993-8: Geology of the Bridge River Map Area NTS 92J/16 British Columbia Ministry of Energy and Mines
- Schiarizza, P, Gaba, R.G., Glover, J.K., Gaver, J.I., and Umhoefer, P.J., 1997 Geology and Mineral Occurrences of the Taseko-Bridge River Area British Columbia Ministry of Employment and Investment, Bulletin 100

14.0 CERTIFICATE OF AUTHOR

I, Gregory Zale Mosher, of North Vancouver, British Columbia, do hereby certify that:

1) I am a consulting geologist with a business address at 3761 Edgemont Boulevard, North Vancouver, British Columbia.

2) I am a graduate of Dalhousie University (B.Sc. Hons., 1970) and McGill University (M.Sc. Applied, 1973)

3) I have practiced my profession in mineral exploration continuously for the past 30 years.

4) I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia. (#121151)

5) I have no interest, direct or indirect, nor do I expect to receive any, in the securities or properties of J-Pacific Gold Inc.

6) I have based this report upon a review of existing information and upon a logging and mapping activities on the Elizabeth Property visit during the period September 16 to 29, 2004.

7) I consent to and authorize the use of this report by J-Pacific Gold Inc. in any public document they may choose.

Signed and dated this 30th day of November, 2004 at Vancouver, British Columbia.

G.Z. Mosher, P.Geol.

STATEMENT OF EXPENDITURE

Prepared by J-Pacific Gold Inc. Management

	\$	\$
Consulting Fees / Labour		
Greg Mosher, P. Geo.		
15 days @ \$600 / day (Sept 16 - 30)	9,000.00	
(Oct 14-22, 26, 27, Nov 10-12, 15, 16)	8,400.00	
Mitchell Geological Services Inc.		
10 days @ \$500 / day (Aug 31 - Sept 10)	5,211.80	
SRK Consulting (May 22 - June 30)	12,671.00	
125.25 hours between July 1 and Oct 29	,	
Illidge Contracting	8,100.00	
Camp crew (camp manager, cook, labourers)	22,024.13	
(Aug 28 to Oct 28, Dec 10)	,	
Administrative time and camp management	7,960.00	73,366.93
Too hours between (Aug 1 and Oct 29)		
Drilling		88 500 04
Lone Ranger Drining (1209 meters)		66,500.04
Analytical Costs		
ACME Analytics		5,638.00
214 core samples, 36 element ICP 19 metallics fire assav		
Transportation Costs		
I ranportation	880.87	
Rental and stand by charges	3 000 00	3 880 87
	0,000.00	0,000101
Roads	4 500 00	
Access roads	4,596.00	7 661 00
Show plowing	3,005.00	7,001.00
Board		
Room and board		3,254.74
Other		
Cores shack	4,220.53	
Gate	1,500.00	
Fuel	4,794.51	
Field geer and related field supplies	255.13	
Miscellaneous supplies and communications	1,582.98	12,353.15
		194,654.73

TABLE 2: ELIZABETH PROPERTY CORE RECOVERY & RQD: E04-11A - 17

DIAMOND DRILL CORE RECOVERY/RQD SHEET

HOLE ID: RIG TYPE	[DH04-11A				DRILLED E	BY:	LONE RANGE	ER		
GEOLOGIS	ST _	MAM				Date Starte	id	000.011		Aug 28/04	
NORTHING	3	5653607				Date Comp	neted			Sept 07/04	
From (m)	To (m)	Run (m)	Recovery Meas	Rec (%)	Core Size	RQD CORE	Run	RQD (%)	Box	Box No From	o. To
12.20	14.00	1.8	1.70	94.4% 97.7%	NQ NO	0.32	1.8	17.78%	1	12.2	18.1
17.07	18.30	1.23	0.68	55.3%	NQ	0.00	1.23	0.00%	3	24.72	32.28
18.30 20.1	20.10	1.8	0.00	0.0% 90.8%	NQ NQ	0.00	1.8	0.00%	4 5	32.28	38.7 44.18
21.3	23.20	1.9	1.90	100.0%	NQ	1.20	1.9	63.16%	6	44.18	49.80
25.00	25.61	0.61	0.48	78.7%	NQ	0.00	0.61	0.00%	8	55.48	61.00
25.61 26.15	26.15	0.54	0.38	70.4%	NQ NQ	0.00	0.54	0.00%	9	61.00 66.64	66.64 72.43
28.15	29.27	1.12	0.29	37.0%	NQ NO	0.24	1.12	21.43%	11	72.43	78.16
32.62	35.37	2.75	1.72	62.5%	NQ	1.11	2.75	40.36%	13	84.07	89.88
35.37	37.06	1.69	1.69	100.0% 99.3%	NQ	0.60	1.69	35.50%	14	89.88 95.45	95.45 101.31
38.42	39.78	1.36	1.20	88.2% 100.0%	NQ NO	0.73	1.36	53.68% 74.07%	16 17	101.31	106.72
40.05	41.46	1.41	1.32	93.6%	NQ	0.71	1.41	50.35%	18	112.44	118.02
41.46 43.45	43.45	1.99	1.99	100.0%	NQ NQ	1.24	1.99	62.31% 99.06%	19 20	118.02 123.73	123.73 129.74
44.51	47.56	3.05	3.05	100.0% 97.7%	NQ NO	2.42	3.05	79.34%	21	129.74 134.98	134.98 140.41
50.61	53.05	2.44	2.39	98.0%	NQ	1.71	2.44	70.08%	23	140.41	146.23
56.10	56.70	3.05	0.60	94.1% 100.0%	NQ	0.42	3.05	41.97%	24	140.23	151.73
56.70 59.76	59.76	3.06	2.97	97.1% 100.0%	NQ NO	2.79	3.06	91.18% 70.39%	26	156.03	163.26
61.28	62.81	1.53	1.35	88.2%	NQ	1.14	1.53	74.51%	28	169.14	174.75
62.81	65.24	2.43	2.38	97.9%	NQ	2.16	2.43	52.26%	30	179.53	179.53
68.29 71.45	71.45	3.16	3.08	97.5% 100.0%	NQ NO	2.64	3.16	83.54% 100.00%	31	186.20	191.97
73.54	76.22	2.68	1.82	67.9%	NQ	1.35	2.68	50.37%	33	197.63	203.42
76.67	78.05	0.45	0.41	82.6%	NQ	0.32	1.38	35.51%	35	203.42 210.24	210.24
78.05	81.10 83.54	3.05	3.05	100.0% 92.6%	NQ NQ	1.98 1.85	3.05	64.92% 75.82%	36 37	215.04 220.71	220.71 226.54
83.54	86.59	3.05	3.05	100.0%	NQ	2.44	3.05	80.00%	38	226.54	232.08
89.63	92.09	3.04	2.96	91.4%	NQ	0.98	3.04	39.84%	40	232.08	242.98
92.09 95.12	95.12 98.17	3.03	3.03	100.00% 98.69%	NQ NQ	1.54	3.03	50.83% 51.15%	41 42	242.98 248.90	248.90 254.52
98.17	101.22	3.05	2.99	98.03%	NQ	1.89	3.05	61.97%	43	254.52	260.30
101.22	104.27	1.22	1.12	91.80%	NQ	1.09	1.22	89.34%	44	266.13	271.95
105.49 108.54	108.54	3.05	2.86	93.77% 98.36%	NQ NQ	2.39	3.05	78.36% 45.25%	46 47	271.95 277.62	277.62 282.23
111.59	114.15	2.56	2.56	100.00%	NQ NO	1.60	2.56	62.50%	48	282.23	288.89
117.35	120.40	3.05	2.90	95.08%	NQ	2.30	3.05	77.70%	50	244.92	300.53
120.4 123.2	123.20	2.80	2.74	97.86% 91.38%	NQ NQ	2.26	2.80	80.71%			
126.1 129.11	129.11	3.01	3.01	100.00%	NQ NQ	2.58	3.01	85.71% 99.27%			
131.86	133.53	1.67	2.20	131.74%	NQ	1.02	1.67	61.08%			
135.52	135.52	2.59	3.00	48.26%	NQ	2.22	2.59	54.27% 85.71%			
138.11 140.24	140.24	2.13	1.59	74.65% 88.52%	NQ NQ	1.90	2.13	89.20% 54.64%			
142.07	145.12	3.05	3.05	100.00%	NQ NO	2.62	3.05	85.90% 64.63%			
149.7	151.52	1.82	1.82	100.00%	NQ	0.64	1.82	35.16%			
151.52	152.44	3.05	2.92	95.74%	NQ	2.47	3.05	69.57% 80.98%			
155.49 158.54	158.54	3.05	2.00	65.57% 89.51%	NQ NQ	2.40	3.05	78.69%			
161.59	164.63	3.04	3.04	100.00%	NQ	2.75	3.04	90.46%			
167.68	170.73	3.05	2.92	95.74% 100.00%	NQ	2.73	3.05	92.46%			
170.73 173.78	173.78	3.05	3.05	100.00%	NQ NQ	2.40	3.05	78.69%			
175.61	178.66	3.05	3.05	100.00%	NQ	2.80	3.05	91.80%			
181.71	183.54	1.83	1.83	100.00%	NQ	1.48	1.83	80.87%			
183.54 186.59	186.59	3.05	3.05	100.00%	NQ NQ	2.97	3.05	97.38% 94.08%			
189.63 192.68	192.68	3.05	3.05	100.00%	NQ NO	2.67	3.05	87.54% 94.10%			
195.73	198.78	3.05	3.05	100.00%	NQ	3.00	3.05	98.36%			
201.83	201.83	3.05	3.05	97.38%	NQ	2.60	3.05	85.25%			
204.88 207.73	207.73	2.85	2.85	100.00%	NQ NQ	2.85	2.85	100.00%			
210.98	214.02	3.04	2.92	96.05%	NQ	2.84	3.04	93.42%			
217.07	220.12	3.05	3.05	100.00%	NQ	2.71	3.05	93.11%			
220.12 223.17	223.17 224.39	3.05	3.05	100.0%	NQ NQ	3.05	3.05	100.00% 91.80%			
224.39	227.38	2.99	2.99	100.0%	NQ	1.33	2.99	44.48%			
228.75	231.80	3.05	3.05	100.0%	NQ	2.71	3.05	88.85%			
231.80 234.39	234.39	2.59	2.59	100.0%	NQ NQ	1.92	2.59	74.13%			
237.44	240.49	3.05	3.05	100.0%	NQ NO	2.77	3.05	90.82%			
243.23	244.45	1.22	1.22	100.0%	NQ	0.9	1.22	73.77%			
244.45	247.19 250.24	3.05	3.97	98.5% 130.2%	NQ	3.05	3.05	100.00%			
250.24	251.16 254.36	0.92	3.20	347.8% 95.0%	NQ NO	0.92	0.92	100.00%			
254.36	257.40	3.04	3.04	100.0%	NQ	2.3	3.04	75.66%			
260.45	263.50	3.05	3.05	100.0%	NQ	2.8 3.05	3.05	91.80%			
263.50 266.70	266.70	3.2	3.20	100.0% 100.0%	NQ NQ	3.2	3.2	100.00%			
269.75	272.80	3.05	3.05	100.0%	NQ NO	2.84	3.05	93.11% 83.55%	-		
275.84	278.89	3.04	3.04	100.0%	NQ	2.64	3.04	86.56%			
278.89 281.94	281.94 285.14	3.05	3.05	95.3%	NQ	2.94	3.05	96.39% 97.81%			
285.14 288.19	288.19 291.39	3.05	3.05	100.0% 100.0%	NQ NQ	2.97	3.05	97.38% 81.25%			
291.39	294.44	3.05	3.05	100.0%	NQ NO	2.2	3.05	72.13%			
EOH	550.55	0.09	0.09	100.070	EOH	EOH 5.9	0.09	50.00%			
CORE is th	e sum of th	le pieces of	core over 1	0.0 cm per	run. RQD%	is that leng	th divided t	by the length o	f the run.		

CORE is the sum of the pieces of core over 10.0 cm per run. RQD% is that length divided by the length of the run.
Det Colorist EASTING C2M Date Shared Structure Spl (17)-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	HOLE ID:		E04-12				DRILLED E	BY:	Lone Ranger		
EASTING S031070 Date Completed Sept 11/04 From To Run Recovery RCD NO Box No. Tom O State RDD (%) RDD (%) <thrd (%)<="" th=""> <thrdd (%)<="" th=""> <thrdd< td=""><td>GEOLOGI</td><td>ST</td><td>GZM</td><td></td><td></td><td></td><td>Date Starte</td><td>ad .</td><td>Sept 07/04</td><td></td><td></td></thrdd<></thrdd></thrd>	GEOLOGI	ST	GZM				Date Starte	ad .	Sept 07/04		
NORTHING 558:88 Core Size NQ (m) (m) Meas Rec(%) CORE Run ROD(%) Box From To 0 3.05 3.05 0.00% RoD ROD(%) Box From To 13.05 1.83 1.83 1.8 ROD ROD 1.83 2.7% 2 1.138 1.7 1.8 5.7 1.7 1.8 1.7 1.8 1.7 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.7 1.8 1	EASTING		531070				Date Comp	pleted	Sept 11/04		
From To Run Recovery CORE ROD (%) Box From To 0 3.06 3.05 0 0.07% 0 3.05 Box From To 13.05 1.48 1.83 1.58 2.07% 0.61 1.83 2.7% 2 1.136 1.48 1.136 1.48 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.136 1.138 1.136 1.136 1.136 1.136 1.136 1.137 1.007 1.007% 1.137 1.007% 1.137 1.007% 1.137 1.007% 1.137 1.007% 1.137 1.007% 1.137 1.007% 1.137 1.007% 1.137 <td< td=""><td>NORTHIN</td><td>G</td><td>5653689</td><td></td><td></td><td></td><td>Core Size</td><td></td><td>NQ</td><td></td><td></td></td<>	NORTHIN	G	5653689				Core Size		NQ		
	From	То	Run	Recovery		RQD				Box No	Э.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	(m)	(m)	(m)	Meas	Rec (%)	CORE	Run	RQD (%)	Box	From	То
3.55 4.85 1.83 1.83 1.83 22.0% 21.1%8 1.1	0	3.05	3.05	0	0.00%	0	3.05	0.00%	1	3.05	11.98
**** ***** ****** ******** ************************************	3.05	4.88	1.83	1.5	82.00%	0.6	1.83	32.79%	2	11.98	17.9
A.22 3.38 1.38 0.42 1.38 0.00% 4 2.54 1.23 10.35 10.05 0.67 0.68 6.05% 0.3 0.01 48.187% 5 2.34 1.33 10.35 10.35 10.25 0.67 0.68 0.3 0.01 48.187% 5 11.33 10.25 0.67 0.05% 0 1.07 0.07% 1 44.23 4 11.35 11.451 10.77 0.75 70.07% 0 1.07 0.07% 1 6.5.48 6 11.453 10.7 0.8 7.407% 1.2 0.07% 1.1 6.0.55 7.71 11.755 1.8.75 1.22 0.75 6.1.50% 0 1.22 0.07% 1.1 6.0.55 7.71 1.25 1.1.3 7.1.68 8.3.34 1.1 1.1 1.6 8.4.2 7.7 8.8 1.1.7 1.8.8 8.3.34 1.1 1.1 1.1 1.1 <td>4.88</td> <td>7.92</td> <td>3.04</td> <td>0.45</td> <td>14.80%</td> <td>0</td> <td>3.04</td> <td>0.00%</td> <td>3</td> <td>17.9</td> <td>23</td>	4.88	7.92	3.04	0.45	14.80%	0	3.04	0.00%	3	17.9	23
10.37 10.37 0.37 <th0.37< th=""> 0.37 0.37 <t< td=""><td>7.92</td><td>9.3</td><td>1.38</td><td>0.25</td><td>18.10%</td><td>0.0</td><td>1.38</td><td>10.00%</td><td>4</td><td>23</td><td>28.4</td></t<></th0.37<>	7.92	9.3	1.38	0.25	18.10%	0.0	1.38	10.00%	4	23	28.4
1030 1031 0.37 0.38 2030 0.31 45.00% 9 25.86 30 11234 1356 122 0.0 66.00% 0 122 0.00% 9 44.82 40 1356 14.63 1.07 0.75 70.10% 0 1.07 0.00% 1.0 55.48 6 15.39 16.46 1.07 0.9 84.10% 0 1.07 46.73% 1.2 66.35 7.1 17.753 1.875 1.22 0.76 0.79 0.90% 0.8 1.37 40.64% 1.47 7.1 1.82 20.12 21.03 0.91 0.7 76.90% 0.13 0.94 6.48 7.9 9.23.66 2.44 1.68 9.936 10 2.44 1.68 9.936 10 2.44 1.68 9.936 10 2.44 1.68 1.69 1.65 1.65 9.50% 0 1.24 0.00% 1.11.1 1.16	9.3	10.30	0.61	0.05	09.409/	0.2	1.00	10.07 %	5	20.4	33.39
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.30	12.34	1.37	0.0	60.30%	0.3	1.37	49.16%	7	38.56	30.30
11 150 107 0.00% 107 0.00% 107 0.00% 107 0.00% 11 60.5 66 114.63 15.39 16.46 107 0.00% 10.76 0.00% 11 60.5 66 15.39 16.46 107 0.9 84.10% 0.5 107 46.75% 12 66.35 77 17.753 17.7 1.37 10.00% 0.68 1.37 49.64% 14 77.1 122 20.12 21.03 0.91 0.7 76.90% 0.13 0.91 14.29% 15 82.77 88 21.03 1.37 1.23 88.80% 0.32 1.37 2.3.86 1.68 16.8 95.0% 0.244 8.93% 16 16 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 16.6 17.7 17.8 18.3	12.34	12.54	1.37	0.93	65.60%	0	1.37	0.00%	7	44.2	44.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13.56	14.63	1.22	0.0	70 10%	0	1.22	0.00%	9	49.53	55.48
15.39 16.46 10.7 0.00% 11 60.5 66 16.46 17.53 1.07 0.9 84.10% 0.5 1.07 46.75% 12 66.35 7.71 17.53 1.22 0.075 61.50% 0. 1.22 0.00% 1.8 7.6 64.64% 1.4 7.71 1.82 20.12 21.03 0.91 0.7 76.90% 0.13 0.94 64.84 1.8 84.64% 1.4 7.71 1.82 2.20 1.2 2.10% 0.07 0.76 9.21% 1.6 88.43 94 21.79 23.16 1.44 1.66 1.65 95.0% 0.24 4.00% 19 105.6 111 27.28 2.246 2.44 2.34 95.0% 0.2 2.9 6.90% 111.1 116 16.80 95.0% 0.1 126 1.00% 24.44 1.33 124 123 126.00% 0.1 127 123.43	14.63	15.39	0.76	0.75	32.90%	0	0.76	0.00%	10	55.48	60.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.39	16.46	1.07	0.8	74.80%	0	1.07	0.00%	11	60.5	66.35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16.46	17.53	1.07	0.9	84.10%	0.5	1.07	46.73%	12	66.35	71.62
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.53	18.75	1.22	0.75	61.50%	0	1.22	0.00%	13	71.62	77.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.75	20.12	1.37	1.37	100.00%	0.68	1.37	49.64%	14	77.1	82.77
	20.12	21.03	0.91	0.7	76.90%	0.13	0.91	14.29%	15	82.77	88.43
21.79 23.16 1.37 1.23 89.80% 0.32 1.37 23.36% 17 94.07 90 23.16 24.44 1.65 98.07% 0.15 1.68 89.37% 18 99.996 10 24.44 22.28 2.244 2.34 95.90% 0.24.44 0.00% 19 105.65 111 27.28 2.25 66.20% 0.2 1.26 13.16% 21 114.1 116 23.048 33.38 2.9 2.5 66.20% 0.2 2.9 6.90% 22 12.13.16% 21 12.4 12.2 12.3 137.13 13.43 139 35.36 37.19 1.35 1.52 2.00% 0 1.42 0.00% 22 133.1 144 35.01 1.42 1.22 0.00% 25 133.1 144 44.01 1.42 1.62 16.98 147 143.3 144 44.5 1.66 1	21.03	21.79	0.76	0.7	92.10%	0.07	0.76	9.21%	16	88.43	94.07
23.16 24.84 27.82 24.44 23.44 85.90% 0.15 1.68 8.93% 18 99.96 10 24.84 0.2728 2.44 2.34 95.90% 0.1 1.68 5.95% 20 11.11 116 2.24 0.00% 19 105.6 11 23.04 1.52 1.43 94.10% 0.2 1.52 13.116% 221 111.642 12 33.38 3.38 2.9 2.5 86.20% 0.2 1.82 6.90% 22 12.12 13.117 127 13.33 13.33 13.33 13.33 1.33 13.33 1.32 1.31 14.43 1.32 1.00% 22 19.13 14.44 1.00 1.22 0.00% 22 19.13 14.44 1.41 1.33 1.35 1.30 1.33 1.34 1.44 1.07 1.37 3.54 1.44 1.41 1.43 1.41 1.41 1.43 1.41 1.41 1.41	21.79	23.16	1.37	1.23	89.80%	0.32	1.37	23.36%	17	94.07	99.96
24.44 27.28 2.44 2.44 0.00% 19 105.6 11 27.28 22.896 1.68 1.6 9.50% 0.2 1.68 5.95% 21 11.1.1 11.6 23.048 3.38 2.9 2.5 66.20% 0.2 2.9 6.90% 22 12.1.3 127 33.38 3.5 3.5 1.99 1.6 80.80% 0.33 1.99 1.6.3 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.44 1.43 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.45	23.16	24.84	1.68	1.65	98.20%	0.15	1.68	8.93%	18	99.96	105.6
27.28 28.96 1.68 1.68 5.92% 20 111.11 116 23.96 33.38 2.9 2.5 86.20% 0.2 1.52 13.11% 1116.42 112 33.38 33.38 2.9 2.5 86.20% 0.2 1.52 13.11% 111	24.84	27.28	2.44	2.34	95.90%	0	2.44	0.00%	19	105.6	111.1
22.896 30.48 1.52 1.4.10% 2.1 1.1.10% 2.1 1.1.10% 2.1 1.1.10% 2.1 1.1.10% 2.1 1.1.10% 2.1 1.1.10% 2.1 1.1.10% 1.1.11%	27.28	28.96	1.68	1.6	95.20%	0.1	1.68	5.95%	20	111.1	116.42
30.48 33.38 2.9 2.5 86.20% 0.2 2.9 6.90% 22 121 127 33.38 35.36 1.88 11.68% 223 127.84 133 35.36 37.19 1.83 1.5 82.00% 0 1.83 0.00% 224 133.44 139 37.19 30.01 40.23 1.22 1.5 82.00% 0 1.82 0.00% 22 144.31 147 40.23 4.22.1 1.94 1.57 88.40% 0.23 1.22 1.85% 1 147.53 147.54 147.53 147.55 147.54 147.53 147.54 147.55 147.54 147.55 147.54 147.55 147.54 147.55 147.54 147.55 147.54 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 147.55 1	28.96	30.48	1.52	1.43	94.10%	0.2	1.52	13.16%	21	116.42	121.3
33.38 35.36 1.98 1.6 80.80% 0.35 1.88 1.768% 23 1.27.44 13 35.36 37.19 1.58 1.58 0.00% 2.24 1.33.4 139 37.19 39.01 1.82 1.2 65.90% 0 1.82 0.00% 2.24 1.33.4 134 44.30 1.22 1.62 0.00% 0.00% 2.01 1.44.83 1.47 40.23 1.42 1.48 0.00% 0.23 1.22 1.88.5% 1.44.83 1.47 42.21 4.34 1.66 1.66 9.820% 0.75 1.39 4.45 4.46 1.89 1.66 9.820% 0.75 1.39 3.74.85% 1.47 1.46 1.66 9.820% 0.75 1.39 3.74.85% 1.47 1.45 1.46 1.66 9.820% 1.2 1.68 7.45% 1.46 1.65 9.20% 1.2 1.68 7.45% 1.46 1.65 9.20% 1.2 1.68 7.45% 1.55 1.46 5.66 9.57% 0.5 <	30.48	33.38	2.9	2.5	86.20%	0.2	2.9	6.90%	22	121.3	127.84
35.36 37.19 1.83 1.5 82.00% 0 1.83 0.00% 224 133.4 144 39.719 39.01 1.22 1.2 65.90% 0 1.82 0.00% 226 134.8 134 40.23 4.221 1.98 45.45% EOH 147.83 147 42.21 4.44.5 1.07 1.83.80% 0.41 107 37.36% 144.5 147.83 44.45 1.06 1.68 82.05% 0.45 1.68 22.76% 144.5 147.83 44.51 4.61.16 1.65 82.05% 0.45 1.68 22.76% 145.5 145.5 145.5 145.5 145.5 145.5 145.76% 145.5 155.75 145.76% 145.5 145.76% <	33.38	35.36	1.98	1.6	80.80%	0.35	1.98	17.68%	23	127.84	133.4
3/19 39.01 1.82 1.22 0.00% 25 1.33 144 38.01 40.23 1.22 1.00% 0.01 1.22 0.00% 25 1.44.83 147 40.23 4.22.1 1.39 1.75 88.40% 0.3 1.22 1.86 1.44.83 1.47 42.21 4.34 1.22 1.86 86.0% 0.23 1.22 1.86 85.0% 1.22 1.86 85.0% 1.24 1.86 85.0% 1.46 1.26 1.86 1.66 1.66 9.27% 1.27 1.86 85.0% 0.75 1.39 5.47 1.57 1.57 9.57 1.37 5.47 1.57 1.47 1.57 1.47 1.57 1.47 1.47% 1.45 1.47 1.53 1.57	35.36	37.19	1.83	1.5	82.00%	0	1.83	0.00%	24	133.4	139.13
39.01 40.23 1.22 1 82.00% 0.0 1.24 0.00% 2.0 144.83 147 40.23 42.21 1.93 1.75 88.40% 0.23 1.22 1.84.85% 147 42.21 43.43 1.22 1.05 86.10% 0.23 1.22 18.85% 1.45 43.43 44.45 1.07 1.83.50% 0.44 1.07 3.73% 1.45 1.46 1.45 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46 <	37.19	39.01	1.82	1.2	65.90%	0	1.82	0.00%	25	139.13	144.83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	39.01	40.23	1.22	1	82.00%	0	1.22	0.00%	26	144.83	147.83
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40.23	42.21	1.98	1./5	88.40%	0.9	1.98	45.45%	EOH	147.83	
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	42.21	43.43	1.22	1.05	80.10%	0.23	1.22	18.85%			
44.10 47.56 1.37 1.38 98.60% 0.75 1.37 5.87.46% 44.755 49.53 1.96 1.96 99.60% 0.75 1.38 5.87.46% 44.755 42.75 1.32 1.12 97.50% 0.75 1.38 5.97.86% 52.73 5.24.41 1.66 1.65 98.20% 1.2 1.68 71.43% 54.44 1.65 9.28 2.22 2.24 41.67% 1.65 56.69 57.43 3.05 3.00 1.00.00% 1.53 3.05 4.0.9% 52.73 3.05 3.05 1.00.00% 1.83 3.70% 1.62 1.83 1.00.00% 1.83 3.23.2% 1.66.6 66.6 1.98 1.98 1.00.00% 1.83 3.2.63% 1.66.6 1.98 1.97 1.00.00% 1.83 3.5.2% 1.71 2.2.42 2.44 1.00.00% 1.63 3.5.5.2% 1.74 7.45 3.2 1.97 1.97 1.97	43.43	44.5	1.07	1.65	93.30%	0.4	1.07	26 70%			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	46.18	40.10	1.00	1.05	08 50%	0.45	1.00	54 74%			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40.10	47.55	1.37	1.33	98.50%	0.75	1.37	37 88%			
15273 54.41 168 165 98.20% 1.2 168 71.43% 154.41 56.60 2.22 100.00% 9.2 2.41 67.5 156.60 59.74 3.05 3.05 100.00% 1.25 3.05 40.98% 159.74 62.79 3.05 3.05 100.00% 1.51 3.05 377.0% 162.70 64.62 1.83 1.83 100.00% 1.5 1.83 27.32% 64.62 66.6 9.89 1.90 1.00.00% 1.2 2.28 52.63% 71.32 74.52 3.2 3.2 1.00.00% 1.5 1.83 2.52.8% 71.32 74.52 7.42 2.4 4.10.00.00% 1.83 3.65.2% 74.52 7.63 1.83 1.83 100.00% 0.85 1.83 3.66.9% 76.35 76.35 1.68 1.68 1.60.00% 0.92 0.92 1.00.00% 74.52 74.52 3	49.53	52.73	3.2	3.12	97 50%	27	3.2	84 38%			
	52.73	54.41	1.68	1.65	98.20%	1.2	1.68	71.43%			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	54.41	56.69	2.28	2.28	100.00%	0.95	2.28	41.67%			
	56.69	59.74	3.05	3.05	100.00%	1.25	3.05	40.98%			
	59,74	62.79	3.05	3.05	100.00%	1.15	3.05	37.70%			
64.62 66.6 1.98 1.98 100.00% 0.6 1.98 30.30% 66.6 68.8 2.22 100.00% 1.2 2.28 52.63% 71.32 74.4 2.44 100.00% 1.3 2.44 55.28% 71.32 74.52 3.2 100.00% 1.5 3.2 67.19% 74.52 76.35 1.83 1.83 100.00% 0.65 1.83 35.52% 76.35 78.03 1.68 100.00% 0.65 1.68 36.69% 78.03 8.0 1.97 1.97 100.00% 0.92 0.00.00% 80 0.92 0.92 0.00.00% 2.55 3.2 78.69% 84.12 3.2 3.2 100.00% 2.55 3.2 78.69% 90.22 93.27 3.05 3.05 100.00% 2.55 3.2 78.69% 93.27 96.01 2.74 2.74 100.00% 2.55 3.05 86.69% <	62.79	64.62	1.83	1.83	100.00%	0.5	1.83	27.32%			
66.6 68.88 2.28 2.28 100.00% 1.2 2.28 52.63% 71.32 74.42 24.4 100.00% 1.3 2.44 53.28%	64.62	66.6	1.98	1.98	100.00%	0.6	1.98	30.30%			
68.88 71.32 2.44 2.44 100.00% 1.3 2.44 55.28% 71.32 74.52 3.2 2.100.00% 1.51 3.2 67.19% 74.52 7.635 1.83 1.83 100.00% 0.65 1.83 35.52% 76.35 78.30 1.68 100.00% 0.65 1.83 35.69% 78.03 8.00 1.97 1.97 100.00% 1.97 50.76% 80 0.92 0.92 100.00% 2.02 100.00% 4.97 80.717 3.05 3.05 100.00% 2.55 3.2 76.69% 87.17 3.05 3.05 100.00% 2.75 3.05 90.16% 90.22 93.27 3.05 3.05 100.00% 2.55 3.2 78.69% 93.27 96.61 98.76 7.75 2.75 80.00% 1.95 2.74 71.17% 98.76 101.8 3.64 98.70% 2.5 3.04 <td>66.6</td> <td>68.88</td> <td>2.28</td> <td>2.28</td> <td>100.00%</td> <td>1.2</td> <td>2.28</td> <td>52.63%</td> <td></td> <td></td> <td></td>	66.6	68.88	2.28	2.28	100.00%	1.2	2.28	52.63%			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	68.88	71.32	2.44	2.44	100.00%	1.3	2.44	53.28%			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	71.32	74.52	3.2	3.2	100.00%	2.15	3.2	67.19%			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	74.52	76.35	1.83	1.83	100.00%	0.65	1.83	35.52%			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	76.35	78.03	1.68	1.68	100.00%	0.65	1.68	38.69%			
80 80.92 0.92 0.92 0.92 0.92 0.92 0.02 0.02 0.02 0.000% 80.92 0.8412 3.2 3.2 100.00% 2.55 3.2 79.69% 84.12 87.17 3.05 3.05 100.00% 2.55 3.2 79.69% 90.22 3.05 3.05 100.00% 2.76 3.05 90.16% 90.22 3.05 3.05 100.00% 2.65 3.05 80.00% 93.27 96.01 2.74 2.71 100.00% 2.2 2.75 80.00% 98.76 101.8 3.04 3.98.70% 2.5 3.04 82.24% 101.8 103.78 1.98 1.9 96.00% 1 1.98 5.5% 105.46 1.68 1.68 5.55% 1 1.68 5.55% 106.83 1.37 1.35 98.00% 0.25 1.37 1.82.5% 1112.5 11.30 1.8 1.8	78.03	80	1.97	1.97	100.00%	1	1.97	50.76%			
80.92 64.12 3.2 3.2 100.00% 2.55 3.2 79.69% 87.17 3.05 3.05 100.00% 1.95 3.05 90.26 3.95 100.00% 2.75 3.05 90.16% 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.05 100.00% 2.65 3.04 82.24% 100.00% 2.65 3.04 82.24% 100.83 103.76 1.98 100.51% 100.83 103.77 105 40.05% 1.68 56.55% 100.63 11.37 1.38 89.0% 0.22 1.37 18.25% 100.83 103.25.14% 100.83 103.25.14% 100.83 103.25.14% 100.83 103.25.14% 111.25 13.08 89.3% 1.25 1.37 163.26.16% <td< td=""><td>80</td><td>80.92</td><td>0.92</td><td>0.92</td><td>100.00%</td><td>0.92</td><td>0.92</td><td>100.00%</td><td></td><td></td><td></td></td<>	80	80.92	0.92	0.92	100.00%	0.92	0.92	100.00%			
84.12 87.17 3.05 3.05 100.00% 1.95 3.05 60.93% 90.22 93.27 3.05 3.05 100.00% 2.75 3.05 90.016% 90.22 93.27 3.05 3.05 100.00% 2.65 3.05 80.016% 90.22 93.27 3.05 3.05 100.00% 2.65 3.05 80.016% 93.27 96.01 2.74 2.74 100.00% 2.2 2.75 80.00% 98.76 101.8 3.04 3.98.70% 2.5 3.04 82.24% 101.8 103.78 1.98 1.9 95.0% 1.98 5.05 105.46 1.68 1.65 55.5% 105.46 106.83 1.37 1.35 98.0% 0.25 1.37 1.82.5% 106.83 1.37 1.35 98.0% 0.25 1.37 1.82.5% 103.36 11.125 1.33 1.35 98.0% 0.25 1.37 1.83.8 89.40% 1.52 1.44 1.52 <td>80.92</td> <td>84.12</td> <td>3.2</td> <td>3.2</td> <td>100.00%</td> <td>2.55</td> <td>3.2</td> <td>79.69%</td> <td></td> <td></td> <td></td>	80.92	84.12	3.2	3.2	100.00%	2.55	3.2	79.69%			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	84.12	87.17	3.05	3.05	100.00%	1.95	3.05	63.93%			
30.22 35.27 3.05 3.05 100.00% 2.65 3.05 86.89% 93.27 96.01 2.74 2.74 100.00% 1.95 2.74 71.17% 96.01 98.76 2.75 2.75 100.00% 2.22 2.75 80.00% 98.76 101.8 3.04 3.98.70% 2.2 3.04 82.24% 101.8 103.78 1.98 1.9 96.00% 1 1.98 50.51% 105.46 1.68 16.555% 2.50% 0.95 1.68 56.55% 106.83 1.03.36 1.51 1.58 96.55% 2.51.47% 106.83 1.03.36 1.37 1.35 98.50% 0.25 1.37 1.82.5% 111.25 1.30 1.83 1.88 98.40% 1.25 1.83 68.31% 111.25 1.31 1.31 1.88.940% 1.25 1.63 1.64 1.65 1.55 111.25 1.17.04 1.25	87.17	90.22	3.05	3.05	100.00%	2.75	3.05	90.16%			
35.2.1 350.41 2.74 2.74 100.00% 1.350 2.74 1.1.17% 96.01 96.76 2.75 100.00% 2.2 2.75 80.00% 98.76 101.8 3.04 3 98.70% 2.5 3.04 82.24% 101.8 103.76 1.98 1.98 60.05% 1 98.70% 103.77 106.48 1.53 1.58 80.0% 1.98 65.05% 1 103.78 1.98 65.05% 2.5 3.04 82.24% 1 103.78 1.98 65.05% 2.5 1.37 1.85 85.5% 106.83 1.53 1.5 98.05% 0.25 1.37 1.83 86.31% 111.25 1.83 0.81 1.25 1.83 68.31% 1 113.06 1.44 2.27 1.20 1.83 68.31% 1 113.06 1.43 1.85 2.14 7.85 86.31% 1	90.22	93.27	3.05	3.05	100.00%	2.65	3.05	86.89%			
B00/10 B0.76 2.73 2.73 100.00% 2.24 2.73 B0.00% 98.76 101.8 3.04 3.98.70% 2.5 3.04 B2.24% 101.8 103.78 105.46 1.68 165.55% 105.46 1.68 16.65 55.65% 105.46 1.68 15.59% 0.25 1.37 18.65 55.55% 105.46 1.68 15.59% 0.25 1.37 1.82.5% 106.83 1.08.30 1.53 1.59.60% 0.42 1.53 2.61.4% 106.83 1.13 1.83 89.40% 1.25 1.83 68.31% 111.25 1.13.06 1.13 1.35 98.40% 1.53 2.61.4% 111.25 1.13 1.35 98.40% 1.55 2.14 70.09% 111.45 1.17.04 1.53 2.61.61.00.40% 1.52 2.61.7% 114.45 1.37 1.35	93.27	90.01	2.74	2.74	100.00%	1.95	2.74	/1.1/%			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	96.01	98.76	2.75	2.75	100.00%	2.2	2.75	80.00%			
10:00 1:00 <t< td=""><td>98.76</td><td>103.79</td><td>3.04</td><td>10</td><td>98.70%</td><td>2.5</td><td>3.04</td><td>50.51%</td><td> </td><td></td><td></td></t<>	98.76	103.79	3.04	10	98.70%	2.5	3.04	50.51%			
Income Income<	101.8	105.78	1.98	1.9	95.00%	0.95	1.98	56 55%			
International International International International International 106.83 108.36 1.53 1.5 98.00% 0.4 1.53 28.14% 106.83 111.25 1.83 98.40% 1.25 1.83 28.64.37% 111.25 1.13.06 1.83 1.84 89.40% 1.25 1.83 68.31% 111.25 1.13.06 1.83 1.84.940% 1.25 1.83 68.31% 111.25 1.13.06 1.83 1.35 98.40% 1.25 1.05.01% 111.45 1.17.04 1.59 2.61 1.00.40% 1.37 69.34% 114.45 1.17.04 2.58 50.19% 1.11.25 1.05.01% 119.18 1.16.2 2.44 2.4 98.40% 1.31 1.22 1.05.66% 123.76 1.249.7 1.22 1.28.40% 1.33 1.22 1.06.56% 124.497 1.26 2.43 3.33 1.00.00% 1.33 3.25	105.76	106.83	1.00	1 35	98.50%	0.90	1.00	18 25%			
100.38 111.25 2.89 2.2 100.30% 2.1 2.89 72.6% 111.25 113.06 13.30 13.	106.83	108.36	1.57	1.50	98.00%	0.23	1.57	26.14%			
111 25 13.08 1.83 1.6 08.40% 1.25 1.83 68.31% 113.08 114.45 1.37 1.33 98.50% 0.95 1.37 68.34% 114.45 1.37 1.33 98.50% 0.95 1.37 68.34% 114.45 1.47 1.33 98.50% 0.95 1.37 69.34% 117.04 1.59 2.61 100.40% 1.3 2.59 50.19% 117.04 119.18 2.14 2.15 100.50% 1.5 2.14 70.09% 119.18 124.62 2.44 2.4 98.40% 1.52 2.43 75.82% 121.42 1.497 1.21 1.2 94.0% 1.3 1.22 1.25 1.12 1.2 94.0% 1.3 1.22 1.52 1.5 98.70% 1.4 1.52 92.11% 1.22 1.2 94.0% 1.3 3.33 10.00% 1.3 3.35 10.00% 1.22 92.14%	108.36	111.25	2.89	29	100.30%	21	2.89	72.66%			
113.00 114.40 1.37 1.33 98.50% 0.96 1.37 89.34% 114.45 1.70 4.50 2.61 0.06 1.37 89.34% 114.45 1.70 4.50 2.61 0.06% 1.3 2.50 50.10% 114.45 1.17 0.42 0.06% 1.5 2.54 70.09% 119.16 1.216.2 2.44 2.4 94.49% 1.5 2.14 70.09% 121.62 2.43 2.4 94.0% 1.85 2.44 75.82% 122.76 1.497 1.22 1.2 44.0% 1.3 1.22 106.86% 124.47 1.28 4.07 1.33 3.22 106.86% 1.22 1.2 44.0% 1.33 1.22 106.86% 1.24 76.00% 1.22 1.2 44.07 1.25 45.07% 1.25 1.25 1.26 1.26 1.26 1.27 1.26 1.26 1.27 1.26 1.33 2.26	111.25	113.08	2.09	2.9	98.40%	1.1	2.09	68.31%			
114.45 117.04 2.59 2.6 100.40% 2.59 2.50.19% 117.04 119.18 2.14 2.15 100.50% 1.5 2.54 2.50.19% 117.04 119.18 2.14 2.15 100.50% 1.55 2.14 70.09% 119.18 12.16.2 2.44 2.4 98.40% 1.85 2.44 75.82% 121.62 12.44 2.1 98.40% 1.95 2.13 89.20% 123.75 12.497 1.22 1.2 88.40% 1.3 1.21 06.56% 124.497 1.22 1.5 98.70% 1.4 1.52 92.1% 126.49 1.52 1.5 98.70% 1.4 1.52 92.1% 126.49 1.52 1.5 98.70% 1.3 3.35 100.06% 1.3 2.2 92.64% 125.94 135.54 3.05 100.00% 1.9 2.76 60.09% 135.64 136.51 0.00.07% 2.3	113.08	114.45	1.37	1.35	98.50%	0.95	1.37	69.34%			
117 Od 119 18 2.14 2.15 100.50% 1.5 2.14 70.09% 119 18 121 62 2.44 2.4 94.0% 1.85 2.44 75.82% 121 42 121 62 2.44 2.4 94.0% 1.85 2.44 75.82% 121 42 123 75 2.13 2.13 100.00% 1.9 2.13 86.20% 122 75 124 497 122 2.984/0% 1.3 1.22 106.56% 124 497 126.49 1.52 1.5 98.70% 1.4 1.52 92.1% 126 49 122 94 3.33 100.00% 1.9 2.76 60.09% 128 50 135 64 3.05 3.05 100.00% 1.9 2.76 60.09% 132 59 135 64 136.53 2.89 2.9 100.30% 1.9 2.80 65.74% 138 53 141.58 3.06 10.00% 2.85 3.06 93.44% 144.63 3.05	114.45	117.04	2,59	2.6	100.40%	1.3	2.59	50.19%			
119.18 121.62 2.44 2.4 98.40% 1.85 2.44 75.82% 121.62 123.75 2.13 120.00% 1.92 2.13 89.40% 1.3 120.80% 1.85 1.47 75.82% 1.85 1.85 1.47 75.82% 1.21 1.21 1.20 1.23 89.40% 1.3 1.22 106.56% 1.22 1.2 88.40% 1.3 1.22 106.56% 1.24 1.24 1.22 1.5 88.70% 1.3 1.22 106.56% 1.24 1.24 1.22 1.5 88.70% 1.3 1.22 106.56% 1.24 1.24 1.22 1.5 88.70% 1.3 1.32 92.11% 1.25 1.5 1.5 1.00.00% 1.3 3.33 100.00% 1.3 3.33 1.00.00% 1.3 3.33 1.00.00% 1.25 1.5 1.5 1.1 1.25 2.54% 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4	117.04	119,18	2.14	2.15	100.50%	1.5	2.14	70.09%			
121 62 123 75 2.13 2.13 100.00% 1.9 2.13 892.0% 123 75 124 07 1.22 1.2 84.0% 1.3 1.22 100.85% 124 77 126 49 1.52 1.5 98.70% 1.4 1.52 92.1% 126 49 1.52 1.5 98.70% 1.4 1.52 92.1% 126 49 1.32 9.28 3.33 100.00% 1.3 3.25 05.6% 128 49 135 29 2.75 2.77 100.00% 1.9 2.76 60.09% 132 59 135 64 1.36 3.05 100.00% 1.9 2.77 65.04% 135 50 1.41 58 3.06 100.00% 1.9 2.80 65.74% 138 53 1.41 58 3.06 100.00% 2.9 3.06 77.05% 138 54 1.41 58 3.06 100.00% 2.58 3.06 85.1% 141 58 1.41 58 3.06 3.06 <t< td=""><td>119.18</td><td>121.62</td><td>2.44</td><td>24</td><td>98.40%</td><td>1.85</td><td>2.44</td><td>75.82%</td><td></td><td></td><td></td></t<>	119.18	121.62	2.44	24	98.40%	1.85	2.44	75.82%			
123.75 124.97 1.22 1.2 98.40% 1.3 1.22 106.56% 124.97 126.49 1.52 1.5 98.70% 1.4 1.52 92.11% 126.49 129.84 3.35 3.35 100.00% 3.1 3.35 22.54% 129.84 132.59 127.57 107.00% 1.9 2.25% 11.3 125.59 135.64 3.05 3.05 100.00% 1.9 2.25% 11.3 135.54 1.52 2.71 100.00% 1.9 2.35 3.05 170.05% 135.64 138.53 2.89 2.91 100.30% 1.9 2.89 65.74% 138.53 14.158 3.05 100.00% 2.85 3.05 93.44% 144.63 3.05 100.00% 2.85 3.05 93.44%	121.62	123.75	2.13	2,13	100.00%	1.9	2.13	89.20%	1		
124.497 126.49 1.52 1.5 98.70% 1.4 1.52 92.11% 126.49 129.44 3.35 100.00% 3.35 100.00% 1.33 22.54% 129.44 132.59 2.77 2.77 100.00% 1.9 2.77 66.09% 132.59 135.64 3.05 100.00% 1.9 2.77 66.09% 132.59 135.64 1.03 3.06 100.00% 2.83 3.06 70.05% 138.50 1.41.58 3.06 100.00% 2.98 65.74% 1.158 138.53 1.41.58 3.06 100.00% 2.85 3.06 93.44% 144.63 3.05 3.06 100.00% 2.85 3.06 93.44%	123.75	124.97	1.22	1.2	98.40%	1.3	1.22	106.56%			
128.40 129.84 3.35 3.35 100.00% 3.1 3.35 92.54% 129.84 132.59 2.75 127.57 100.00% 1.9 2.75 60.00% 132.59 135.64 3.05 3.05 100.00% 2.38 3.05 77.05% 135.64 138.53 2.89 2.9 100.30% 1.9 2.89 65.74% 135.64 136.53 3.06 100.00% 2.53 3.05 77.05% 135.64 131.58 3.05 3.05 100.00% 2.53 3.05 77.05% 135.64 131.58 3.05 3.05 100.00% 2.53 3.05 77.05% 135.53 141.58 3.05 3.05 100.00% 2.53 3.05 87.4% 144.63 3.05 3.05 100.00% 2.85 3.05 93.44% 144.63 17.83 3.2 100.00% 2.83 3.2 57.50%	124.97	126.49	1.52	1.5	98.70%	1.4	1.52	92.11%			
129.44 132.59 2.75 2.75 100.00% 1.9 2.75 60.09% 132.59 135.64 136.5 3.05 100.00% 2.35 3.05 77.05% 135.54 135.64 136.54 3.05 77.05% 103.26 100.30% 1.9 2.80 65.74% 138.53 141.58 3.06 100.00% 2.55 3.06 35.61% 144.63 3.05 3.06 100.00% 2.85 3.06 93.44% 144.63 3.2 2.00.00% 2.85 3.05 93.44% 144.63 3.2 2.32 2.50.00% 3.2 2.32 2.50.00% 3.2 3.2 100.00% 2.85 3.05 93.44% 144.63 147.83 3.2 2.100.00% 2.85 3.06 93.44% 144.63 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83 147.83	126.49	129.84	3.35	3.35	100.00%	3.1	3.35	92.54%			
132:59 135:64 3.05 3.05 100.00% 2.35 3.05 77.05% 135:64 138:53 2.89 2.9 100.30% 1.9 2.89 65.74% 138:53 141:58 3.05 100.00% 2.55 3.05 83.61% 141:58 144:63 3.05 3.05 100.00% 2.85 3.05 93.44% 144:58 147:83 3.2 100.00% 2.85 3.05 93.44%	129.84	132.59	2.75	2.75	100.00%	1.9	2.75	69.09%			
135.64 138.53 2.89 2.9 100.30% 1.9 2.89 65.74% 138.53 141.58 3.06 100.00% 2.55 3.06 83.61% 141.58 144.63 3.05 3.00 100.00% 2.85 3.00 93.44% 144.63 147.83 3.2 100.00% 2.85 3.05 93.44%	132.59	135.64	3.05	3.05	100.00%	2.35	3.05	77.05%			
138.53 141.58 3.05 3.05 100.00% 2.55 3.05 83.61% 141.58 144.63 3.05 3.05 100.00% 2.86 3.05 93.44% 144.63 147.83 3.2 3.2 100.00% 2.8 3.21 87.50%	135.64	138.53	2.89	2.9	100.30%	1.9	2.89	65.74%			
141.58 144.63 3.05 3.05 100.00% 2.85 3.05 93.44%	138.53	141.58	3.05	3.05	100.00%	2.55	3.05	83.61%			
144.63 147.83 3.2 3.2 100.00% 2.8 3.2 87.50%	141.58	144.63	3.05	3.05	100.00%	2.85	3.05	93.44%			
	144.63	147.83	3.2	3.2	100.00%	2.8	3.2	87.50%		-	

HOLE ID: RIG TYPE GEOLOGI	: ST	E04-13 GZM				DRILLED E Total Depti Date Starte	BY: h ed	Loneranger D 139.6 Sept 12/04	rilling	
EASTING		531920				Date Comp	pleted	Sept 14/04		
From	J To	5653600 Run	Recovery		ROD	Core Size		NQ	Box N	0
(m)	(m)	(m)	Meas	Rec (%)	CORE	Run	RQD (%)	Box	From	To
0	3.05	3.05	0	0.00%	0	3.05	0.00%	1	3.05	9.14
3.05	3.81	0.76	0.76	100.00%	0.4	0.76	52.63%	2	9.14	14.94
3.81	5.18	1.37	0.9	65.70%	0.3	1.37	21.90%	3	14.94	20.24
5.18	6.4	1.22	1	82.00%	0.4	1.22	32.79%	4	20.24	25.44
7 32	9.14	0.92	0.6	65.20%	0.5	1.82	54.35% 43.96%	5	25.44	30.04
9.14	10.97	1.83	1.6	87.40%	1	1.83	54.64%	7	36.75	41.98
10.97	12.19	1.22	0.8	65.60%	0.25	1.22	20.49%	8	41.98	47.45
12.19	14.02	1.83	1.7	92.90%	1.35	1.83	73.77%	9	47.45	53.25
14.02	15.24	1.22	1.1	90.20%	1.05	1.22	86.07%	10	53.25	58.81
15.24	17.07	1.83	1.8	98.40%	1.15	1.83	62.84%	11	58.81	64.42
17.07	19.51	2.44	2.4	98.40%	1.00	2.44	61 / 8%	12	69.96	09.90
21.95	23.16	1.21	1.2	99.20%	0.5	1.21	41.32%	14	75.8	81.08
23.16	24.84	1.68	1.5	89.30%	0.55	1.68	32.74%	15	81.08	86.7
24.84	26.21	1.37	1.2	87.60%	0.1	1.37	7.30%	16	86.7	92.1
26.21	27.74	1.53	1.3	85.00%	0.25	1.53	16.34%	17	92.1	97.52
27.74	29.26	1.52	1.1	72.40%	0.4	1.52	26.32%	18	97.52	102.67
29.26	30.94	1.68	1.5	89.30%	0.2	1.68	11.90%	19	102.67	108.41
30.94	33.53	1.37	1.23	91.20% 73.80%	0.85	1.37	43.80%	20	114.2	120.1
33.53	34.75	1.22	1.2	98.40%	0.35	1.22	28.69%	22	120.1	125.85
34.75	36.73	1.98	1.6	80.80%	0.75	1.98	37.88%	23	125.85	131.42
36.73	38.4	1.67	1.65	98.80%	1.2	1.67	71.86%	24	131.42	137.2
38.4	41	2.6	2.5	96.20%	1.4	2.6	53.85%	25	137.2	139.6
41	41.76	0.76	0.75	98.70%	0.25	0.76	32.89%	26	139.6	EOH
41.76	44.5	2.74	2.75	100.40%	1.95	2.74	71.17%	27	0	
44.5	40.48	1.98	1.95	98.50%	1.00	1.98	78.28%	28	0	
47.55	50.6	3.05	3.05	100.00%	2.1	3.05	68.85%	30	0	
50.6	53.49	2.89	2.85	98.60%	1.1	2.89	38.06%	31	0	
53.49	55.02	1.53	1.5	98.00%	0.75	1.53	49.02%	32	0	
55.02	56.69	1.67	1.65	98.80%	1.25	1.67	74.85%	33	0	
56.69	59.74	3.05	3.05	100.00%	2.7	3.05	88.52%	34	0	
62.79	64.92	2.13	2.15	100.00%	2.7	2.13	70 / 2%	30	0	
64.92	67.97	3.05	3.05	100.00%	2.55	3.05	83.61%	37	0	
67.97	70.41	2.44	2.4	98.40%	1.7	2.44	69.67%	38	0	
70.41	73.46	3.05	3.05	100.00%	2.4	3.05	78.69%	39	0	
73.46	76.5	3.04	3	98.70%	2.1	3.04	69.08%	40	0	
76.5	78.49	1.99	2.2	110.60%	1.1	1.99	55.28%	41	0	
70.49	79.00	1.00	1.53	100.00%	06	1.00	30.22%	42	0	
81.08	84.12	3.04	3.04	100.00%	2.8	3.04	92.11%	45	0	
84.12	85.95	1.83	1.83	100.00%	0.6	1.83	32.79%	45	0	
85.95	86.72	0.77	0.75	97.40%	0.3	0.77	38.96%	46	0	
86.72	87.93	1.21	1.2	99.20%	0.35	1.21	28.93%	47	0	
87.93	89.46	1.53	1.53	100.00%	0.15	1.53	9.80% 25.95%	48	0	
92.35	92.30	2.69	2.85	98.00%	0.75	2.89	54 64%	49	0	
94.18	96.32	2.14	2.14	100.00%	1.85	2.14	86.45%	51	0	
96.32	99.36	3.04	3.04	100.00%	2.5	3.04	82.24%	52	ō	
99.36	100.89	1.53	1.5	98.00%	0.65	1.53	42.48%	53	0	
100.89	101.5	0.61	0.6	98.40%	0.1	0.61	16.39%	54	0	
101.5	102.41	0.91	0.91	100.00%	0.55	0.91	60.44%	55	0	
102.41	103.46	3.05	3.05	100.00%	2.3	3.05	78.60%	57	0	
108.51	111.25	2.74	2.74	100.00%	2.45	2.74	89.42%	58	0	
111.25	114.3	3.05	3.05	100.00%	2.65	3.05	86.89%	59	ō	
114.3	116.43	2.13	2.13	100.00%	1.65	2.13	77.46%	60	0	
116.43	118.26	1.83	1.8	98.40%	1.4	1.83	76.50%	61	0	
118.26	120.7	2.44	2.44	100.00%	2.05	2.44	84.02%	62	0	
120.7	123.75	3.05	3.05	100.00%	3.05	3.05	100.00%	63	0	
123.75	126.8	3.05	3.05	98.40%	2.9	3.05	95.06%	64	0	
128.63	131.67	3.04	3.04	100.00%	2.1	3.04	69.08%	66	Ő	
131.67	134.72	3.05	3.05	100.00%	2.75	3.05	90.16%	67	0	
134.72	137.62	2.9	2.9	100.00%	2.4	2.9	82.76%	68	0	
137.62	139.6	1.98	1.9	96.00%	0.9	1.98	45.45%	69	0	

HOLE ID: RIG TYPE: GEOLOGI	: ST	E04-14 GZM				DRILLED E Total Depti Date Starte	BY: h (m) ad	Lone Ranger 104.24 Sept 15/04	Drilling	
EASTING		531720				Date Comp	oleted	Sept 16/04		
NORTHING	G	5653799				Core Size		NQ		
From	To	Run	Recovery	D = = (0()	RQD	Dura		0	Box N	0. T-
(m)	(m) 12.0	(m)	Meas	Rec (%)	CORE	Run 12.0	RQD (%)	BOX	12.10	10 10 4
12.9	13.11	0.21	0.2	95.20%	0	0.21	0.00%	2	19.4	25.2
13.11	13.87	0.21	0.5	65.80%	0.15	0.21	19 74%	3	25.2	32
13.87	14.63	0.76	0.45	59.20%	0.15	0.76	19.74%	4	32	37.4
14.63	16.76	2.13	1.85	86.90%	0.6	2.13	28.17%	5	37.4	42.87
16.76	19.81	3.05	3	98.40%	0.9	3.05	29.51%	6	42.87	48.54
19.81	20.73	0.92	0.85	92.40%	0.5	0.92	54.35%	7	48.54	54.6
20.73	22.86	2.13	1.3	61.00%	1	2.13	46.95%	8	54.6	59.2
22.86	25.15	2.29	1.8	78.60%	0.4	2.29	17.47%	9	59.2	65.12
25.15	26.21	1.06	0.05	4.70%	0	1.06	0.00%	10	65.12	71.6
26.21	28.04	1.83	1.2	65.60%	0.4	1.83	21.86%	11	71.6	77.4
28.04	28.96	0.92	0.9	97.80%	0.15	0.92	16.30%	12	77.4	83.15
28.96	29.72	0.76	0.6	78.90%	0.25	0.76	32.89%	13	83.15	89
29.72	30.02	0.3	0.1	33.30%	0	0.3	0.00%	14	89	94.8
30.02	32.31	2.29	2.05	85.20% 100.00%	1.1	2.29	48.03%	15	94.8	100.58
35.36	36.30	0.01	0.85	03.40%	0.95	0.01	16 / 8%	10	100.38	104.24 EOH
33.30	30.27	1.09	1.0	93.40%	0.13	1.09	47.000/	17	104.24	EOH
30.27	40.54	2.20	2.05	90.00%	0.95	2.20	47.90%			+
40.54	40.34	1.83	1.7	92.90%	0.25	1.83	0.00%			+
42.37	44.5	2 13	1.95	91.50%	1 35	2.13	63 38%			
44.5	46.02	1.52	1.35	88.80%	0.8	1.52	52.63%			1
46.02	48.46	2.44	2.44	100.00%	1.5	2.44	61.48%			
48.46	50.6	2.14	2.1	98.10%	0.75	2.14	35.05%			
50.6	53.34	2.74	2.5	91.20%	2	2.74	72.99%			
53.34	54.86	1.52	1.5	98.70%	0.35	1.52	23.03%			
54.86	56.24	1.38	1.2	87.00%	0	1.38	0.00%			
56.24	59.59	3.35	3.35	100.00%	2.25	3.35	67.16%			
59.59	60.81	1.22	1.15	94.30%	0.75	1.22	61.48%			
60.81	61.87	1.06	1.06	100.00%	0.35	1.06	33.02%			
61.87	64.92	3.05	3.05	100.00%	2.05	3.05	67.21%			
64.92	66.14	1.22	1.25	102.50%	0.9	1.22	73.77%			
66.14	67.51	1.37	1.4	102.20%	0.95	1.37	69.34%			
67.51	69.04	1.53	1.35	88.20%	0.65	1.53	42.48%			
71.02	71.93	2.09	2.9	100.30%	2.00	2.09	70.93%			
74.93	76.2	2.9	2.9	65 70%	0.25	1 27	18 25%			+
76.2	76.66	0.46	0.45	97.80%	0.23	0.46	21.74%			+
76.66	78.33	1.67	1.65	98.80%	0.7	1.67	41 92%			-
78.33	80.77	2.44	2.1	86.10%	1.35	2.44	55.33%			1
80.77	82.6	1.83	1.8	98,40%	1.15	1.83	62.84%			
82.6	85.65	3.05	3.05	100.00%	2.9	3.05	95.08%			
85.65	86.87	1.22	0.85	69.70%	0.4	1.22	32.79%			1
86.87	90.07	3.2	3.1	96.90%	2.75	3.2	85.94%			1
90.07	93.12	3.05	3.05	100.00%	2.6	3.05	85.25%			
93.12	95.4	2.28	2.28	100.00%	2.2	2.28	96.49%			
95.4	98.3	2.9	2.8	96.60%	2.5	2.9	86.21%			
98.3	99.97	1.67	1.3	77.80%	0.85	1.67	50.90%			
99.97	100.58	0.61	0.4	65.60%	0.1	0.61	16.39%			
100.58	101.65	1.07	1	93.50%	0.1	1.07	9.35%			
101.65	102.57	0.92	0.7	76.10%	0.25	0.92	27.17%			$ \longrightarrow $
102.57	104.24	1.67	1.65	98.80%	0.35	1.67	20.96%			$ \longrightarrow $
104.24	EUR					I		I		1

HOLE ID: RIG TYPE: GEOLOGI EASTING	: ST	E04-15 530817				DRILLED E Total Depti Date Starte Date Comp	BY: h(m) ∋d	Lone Ranger 276.15 18-Sep-04 22-Sep-04	Drilling	
NORTHING	G	5654197 Run	Recovery		POD	Core Size		NQ	Box M	
(m)	(m)	(m)	Meas	Rec (%)	CORE	Run	RQD (%)	Box	From	J. To
0	9.14	9.14	0	0.00%	0	9.14	0.00%	1	9.14	13.82
9.14	10.97	1.83	1.7	92.90%	0.2	1.83	10.93%	2	13.82	19.6
10.97	11.89	0.92	0.85	92.40%	0	0.92	0.00%	3	19.6	25.2
13.72	16.15	2.43	2.1	86.40%	0.2	2.43	41.15%	4	31	36.7
16.15	17.07	0.92	1.04	113.00%	0.2	0.92	21.74%	6	36.7	42.3
17.07	20.12	3.05	2.94	96.40%	2.15	3.05	70.49%	7	42.3	48
20.12	22.56	2.44	2.4	98.40%	0.95	2.44	38.93%	8	48	53.64
22.56	25.45	2.89	2.89	100.00%	1.3	2.89	44.98%	9	53.64	59.38
28.5	31.7	3.2	3.2	100.00%	2.25	3.2	70.31%	11	65.1	70.87
31.7	34.75	3.05	3.05	100.00%	2.9	3.05	95.08%	12	70.87	76.62
34.75	37.8	3.05	3.05	100.00%	2.45	3.05	80.33%	13	76.62	82.3
37.8	40.69	2.89	2.9	100.30%	2.6	2.89	89.97%	14	82.3	87.85
40.69	43.89	3.2	3.2	100.00%	2.4	3.2	75.00%	15	87.85	93.6
45.09	40.94	0.91	0.91	100.00%	0.55	0.91	60.44%	10	99.36	105.01
47.85	50.6	2.75	2.75	100.00%	2	2.75	72.73%	18	105.01	110.74
50.6	53.64	3.04	3.04	100.00%	2.7	3.04	88.82%	19	110.74	116.5
53.64	56.08	2.44	2.44	100.00%	1.7	2.44	69.67%	20	116.5	122.3
56.08	59.13	3.05	3.05	100.00%	2.4	3.05	78.69%	21	122.3	127.91
59.13	65.23	3.05	3.05	100.00%	2.65	3.05	93.44% 78.69%	22	133.75	139.38
65.23	68.28	3.05	3.05	100.00%	2.55	3.05	83.61%	23	139.38	145.04
68.28	71.32	3.04	3.04	100.00%	2.6	3.04	85.53%	25	145.04	150.67
71.32	74.52	3.2	3.2	100.00%	2.85	3.2	89.06%	26	150.67	155.15
74.52	77.57	3.05	3.05	100.00%	2.85	3.05	93.44%	27	155.15	162.15
80.62	83.36	3.05	3.05	100.00%	2.25	3.05	69.34%	28	162.15	167.75
83.36	84.43	1.07	1.07	100.00%	0.45	1.07	42.06%	30	173.7	179.41
84.43	87.17	2.74	2.74	100.00%	2.35	2.74	85.77%	31	179.41	185.24
87.17	90.22	3.05	3.05	100.00%	2.2	3.05	72.13%	32	185.24	191.05
90.22	93.27	3.05	3.05	100.00%	2.5	3.05	81.97%	33	191.05	196.9
93.27	96.32	3.05	3.05	100.00%	2.4	3.05	78.69%	34	196.9	202.28
90.32	102.41	3.04	3.04	100.00%	2.5	3.04	81 97%	30	202.20	208.39
102.41	105.46	3.05	3.05	100.00%	2.45	3.05	80.33%	37	214.1	219.93
105.46	108.51	3.05	3.05	100.00%	2.6	3.05	85.25%	38	219.93	225.63
108.51	111.56	3.05	3.05	100.00%	2.89	3.05	94.75%	39	225.63	230.43
111.56	114	2.44	2.44	100.00%	1.95	2.44	79.92%	40	230.43	237.2
114	117.04	3.04	3	98.70%	2.85	3.04	93.75%	41	237.2	242.89
119.48	122.22	2.44	2.4	100.00%	1.00	2.44	62.04%	42	242.09	240.03
122.22	125.27	3.05	3.05	100.00%	2.75	3.05	90.16%	44	254.5	260.3
125.27	127.71	2.44	2.4	98.40%	1.7	2.44	69.67%	45	260.3	266.04
127.71	129.84	2.13	2.1	98.60%	1.3	2.13	61.03%	46	266.04	271.8
129.84	132.44	2.6	2.6	100.00%	1.6	2.6	61.54%	47	271.8	276.15
132.44	135.48	3.04	3.05	100.30%	2.55	3.04	83.65%		EOH	
138.53	140.97	2.44	2.4	98.40%	1.95	2.44	79.92%			
140.97	144.17	3.2	3	93.80%	2.2	3.2	68.75%			
144.17	147.21	3.04	3.12	102.60%	2.5	3.04	82.24%			
147.21	150.27	3.06	2.93	95.80%	2.6	3.06	84.97%			
150.27	152.4	2.13	2.15	01 90%	0.85	2.13	39.91% 60.66%			
155.45	158.5	3.05	3.06	100.30%	2.6	3.05	85.25%			
158.5	161.54	3.04	3.05	100.30%	2.75	3.04	90.46%			
161.54	162.15	0.61	0.54	88.50%	0.54	0.61	88.52%			
162.15	165.2	3.05	3.05	100.00%	2.53	3.05	82.95%			
165.2	166.77	1.57	1.55	98.70%	1.2	1.57	76.43%			
169.47	172.52	3.05	3.05	100.00%	2.35	3.05	77.05%			
172.52	175.56	3.04	3.04	100.00%	1.6	3.04	52.63%			
175.56	178.61	3.05	3.05	100.00%	2.65	3.05	86.89%			-
178.61	181.66	3.05	3.05	100.00%	2.7	3.05	88.52%			
181.66	184./1	3.05	3.05	100.00%	2.7	3.05	97.05%			
187.76	190.8	3.04	3.04	100.00%	2.68	3.04	88.16%			
190.8	193.85	3.05	3.05	100.00%	2.76	3.05	90.49%			
193.85	196.9	3.05	3.05	100.00%	2.72	3.05	89.18%			
196.9	199.95	3.05	3.05	100.00%	2.8	3.05	91.80%		-	
199.95	203	3.05	3.05	100.00%	2.45	3.05	80.33%			
203	200.04	3.04	3,05	100.00%	2.3	3.04	75.41%			
209.09	212.14	3.05	3.04	99.70%	2.58	3.05	84.59%			
212.14	215.04	2.9	2.9	100.00%	2.05	2.9	70.69%			
215.04	218.08	3.04	3.04	100.00%	2.55	3.04	83.88%			
218.08	221.13	3.05	3.05	100.00%	2.8	3.05	91.80%			
221.13	224.18	3.05	3 11	97 20%	2.55	3.05	87 50%			
227.38	230.43	3.05	3.14	103.00%	3.04	3.05	99.67%			-
230.43	233.48	3.05	3.05	100.00%	2.8	3.05	91.80%			
233.48	236.52	3.04	3	98.70%	3	3.04	98.68%			
236.52	239.57	3.05	3.05	100.00%	3.05	3.05	100.00%			
239.57	242.32	2.75	2.75	100.00%	2.58	2.75	93.82%			
245.36	248.41	3.04	3.04	100.00%	2.05	3.04	91.80%			
248.41	251.61	3.2	3.1	96.90%	2.96	3.2	92.50%			
251.61	254.66	3.05	3.05	100.00%	1.75	3.05	57.38%		_	
254.66	257.71	3.05	3.05	100.00%	2.7	3.05	88.52%			
257.71	260.91	3.2	3.05	95.30%	2.7	3.2	84.37% 77.05%			
263.96	203.90	3.05	3.05	100.00%	2.35	3.05	96.05%			
267	270.05	3.05	3.05	100.00%	2.6	3.05	85.25%			
270.05	273.1	3.05	3.05	100.00%	2.7	3.05	88.52%			
273.1	276 15	2.05	2 05	100.009/	2.65	2.05	06 000/			

HOLE ID:		E04-16				DRILLED B	3Y:	Lone Ranger I	Drilling	
RIG TYPE:						Total Dept	n	100.58		
GEOLOGI	ST	GZM				Date Starte	bd	23-Sep-04		
EASTING		531032				Date Comp	oleted	25-Sep-05		
NORTHING	G	5653480				Core Size		NQ		
From	То	Run	Recovery		RQD				Box No	
(m)	(m)	(m)	Meas	Rec (%)	CORE	Run	RQD (%)	Box	From	
0	21.34	21.34	0	0.00%	0	21.34	0.00%	1	21.34	
21.34	22.56	1.22	1.1	90.20%	0.7	1.22	57.38%	2	26.45	
22.56	25.6	3.04	2.75	90.50%	1.75	3.04	57.57%	3	32	
25.6	28.65	3.05	2.8	91.80%	0.7	3.05	22.95%	4	37.8	
28.65	29.57	0.92	0.9	97.80%	0.45	0.92	48.91%	5	43.29	
29.57	30.78	1.21	1.05	86.80%	0.3	1.21	24.79%	6	48.8	
30.78	32.31	1.53	1.5	98.00%	0.48	1.53	31.37%	7	54.5	
32.31	35.36	3.05	2.98	97.70%	1.5	3.05	49.18%	8	60.04	
35.36	38.4	3.04	2.9	95.40%	2.4	3.04	78.95%	9	65.84	
38.4	41.45	3.05	3	98.40%	2.5	3.05	81.97%	10	71.48	
41.45	43.28	1.83	1.83	100.00%	1.6	1.83	87.43%	11	77	
43.28	43.59	0.31	0.3	96.80%	0.3	0.31	96.77%	12	82.36	
43.59	44.35	0.76	0.76	100.00%	0.65	0.76	85.53%	13	88	
44.35	47.24	2.89	2.8	96.90%	1.45	2.89	50.17%	14	93.57	
47.24	49.83	2.59	2.5	96.50%	1.15	2.59	44.40%	15	98.86	
49.83	50.6	0.77	0.73	94.80%	0.35	0.77	45.45%	16	EOH	
50.6	51.82	1.22	1.1	90.20%	0.75	1.22	61.48%			
51.82	53.64	1.82	1.75	96.20%	1.4	1.82	76.92%			
53.64	56.69	3.05	3.05	100.00%	1.9	3.05	62.30%			
56.69	59.74	3.05	2.95	96.70%	2.1	3.05	68.85%			
59.74	62.79	3.05	3.05	100.00%	2.2	3.05	72.13%			
62.79	63.86	1.07	1.07	100.00%	0.25	1.07	23.36%			
63.86	65.23	1.37	0.7	51.10%	0.12	1.37	8.76%			
65.23	65.84	0.61	0.6	98.40%	0.6	0.61	98.36%			
65.84	68.43	2.59	2.55	98.50%	1.5	2.59	57.92%			
68.43	71.48	3.05	3.2	104.90%	2.75	3.05	90.16%			
71.48	74.07	2.59	2.58	99.60%	1.2	2.59	46.33%			
74.07	77.11	3.04	3	98.70%	2.5	3.04	82.24%			
77.11	80.16	3.05	3.1	101.60%	2.45	3.05	80.33%			
80.16	83.36	3.2	3.05	95.30%	2.4	3.2	75.00%			
83.36	86.41	3.05	3.05	100.00%	2.6	3.05	85.25%			
86.41	89.46	3.05	3.05	100.00%	1.1	3.05	36.07%			
89.46	91.44	1.98	1.9	96.00%	0.65	1.98	32.83%			
91.44	93.57	2.13	2	93.90%	0.65	2.13	30.52%			
93.57	96.32	2.75	2.75	100.00%	1.3	2.75	47.27%			
96.32	97.54	1.22	1.2	98.40%	0.15	1.22	12.30%			
97.54	100.58	3.04	3	98.70%	1.4	3.04	46.05%			
EOH										

HOLE ID: RIG TYPE	: 9T	E04-17				DRILLED E Total Depti	BY: h	Lone Ranger	Drilling	
EASTING	o) 0	531032 5653491				Date Starte	pleted	29-Sep-04 29-Sep-04		
From	То	5653481 Run	Recovery		RQD	Core Size		NQ	Box N	0.
(m)	(m) 21.34	(m)	Meas	Rec (%)	CORE	Run 21.34	RQD (%)	Box 1	From 21.34	To 28.0
21.34	21.34	21.34	0.8	58.40%	0	21.34	0.00%	2	21.34	34.9
22.71	23.77	1.06	0.5	47.20%	0	1.06	0.00%	3	34.9	40.8
23.77	24.69	0.92	0.8	87.00%	0	0.92	0.00%	4	40.8	46.25
24.69	25.91	1.22	0.5	41.00%	0	1.22	0.00%	5	46.25	51.8
25.91	26.97	1.06	0.4	37.70%	0	1.06	0.00%	6	51.8	57.25
20.97	27.43	1.83	0.7	71.00%	0.12	1.83	26.09%	/	62.85	68.33
29.26	31.55	2.29	1.05	45.90%	0.5	2.29	0.00%	9	68.33	74.04
31.55	32.61	1.06	2.2	207.50%	0.12	1.06	11.32%	10	74.04	79.4
32.61	34.9	2.29	2.6	113.50%	0.47	2.29	20.52%	11	79.4	85.1
34.9	37.49	2.59	1	38.60%	1.13	2.59	43.63%	12	85.1	90.9
37.49	38.56	1.07	2.2	205.60%	0.5	1.07	46.73%	13	90.9	96.71
38.56	41.15	2.59	3.05	117.80%	0.7	2.59	27.03%	14	96.71	102.72
41.13	44.33	1 37	1.33	42.20%	2.00	1 37	34 31%	15	102.72	113.57
45.72	47.55	1.83		163.90%	1.3	1.83	71.04%	17	113.57	119.35
47.55	50.6	3.05	2.5	82.00%	1.42	3.05	46.56%	18	119.35	124.9
50.6	53.19	2.59	1.7	65.60%	0.7	2.59	27.03%	19	124.9	130.58
53.19	55.02	1.83	1.5	82.00%	0.62	1.83	33.88%	20	130.58	136.26
55.02	56.54	1.52	1.82	119.70%	0.67	1.52	44.08%	21	136.26	141.98
56.54	58.52	1.98	1.2	60.60%	0.25	1.98	50.51%	22	141.98	147.68
59.52	59.74	1.22	1.15	94.30% 82.00%	0.35	1.22	20.09%	23	153.52	103.02
60,96	62,18	1.22	1	82.00%	0.22	1.22	8.20%	24	159.45	165.9
62.18	63.09	0.91	0.79	86.80%	0.26	0.91	28.57%	26	165.9	170.6
63.09	65.84	2.75	2.65	96.40%	2.3	2.75	83.64%	27	170.6	176.4
65.84	68.88	3.04	2.93	96.40%	2.52	3.04	82.89%	28	176.4	181.96
68.88	71.93	3.05	3	98.40%	2.32	3.05	76.07%	29	181.96	187.71
71.93	74.98	3.05	3.05	100.00%	1.75	3.05	57.38%	30	187.71	193.2
74.98	78.03	3.05	3.05	100.00%	1.22	3.05	40.00%	31	193.2	198.81
79.55	81.08	1.52	1.0	85.00%	0.52	1.52	33.99%	FOH	199.64	199.04
81.08	83.36	2.28	2.4	105.30%	1.85	2.28	81.14%	2011	100.04	
83.36	86.56	3.2	3.18	99.40%	2.9	3.2	90.62%			
86.56	89.6	3.04	2.9	95.40%	2.9	3.04	95.39%			
89.6	92.66	3.06	3.04	99.30%	2.87	3.06	93.79%			
92.66	95.4	2.74	2.7	98.50%	1.78	2.74	64.96%			
95.4	98.15	2.75	2.12	98.90%	2.45	2.75	03 75%			
101.19	102.87	1.68	1.2	71.40%	0.3	1.68	17.86%			
102.87	104.39	1.52	1.5	98.70%	1.5	1.52	98.68%			
104.39	104.85	0.46	0.4	87.00%	0.32	0.46	69.57%			
104.85	107.9	3.05	2.85	93.40%	1.75	3.05	57.38%			
107.9	110.95	3.05	3.15	103.30%	2.45	3.05	80.33%			
110.95	113.39	2.44	2.44	100.00%	1.7	2.44	69.67%			
115.39	110.43	3.04	3.03	99.70%	2.08	3.04	86.90%			
119.48	122.22	2 74	2.75	100.40%	1.05	2 74	71 17%			
122.22	124.51	2.29	2.25	98.30%	1.94	2.29	84.72%			
124.51	125.73	1.22	1.2	98.40%	0.72	1.22	59.02%			
125.73	128.93	3.2	3.18	99.40%	1.83	3.2	57.19%			
128.93	131.22	2.29	2.3	100.40%	1.95	2.29	85.15%			
131.22	131.98	0.76	0.55	72.40%	0.3	0.76	39.47%			
131.98	133.35	1.37	1.25	91.20%	0.95	1.37	50 60°			
135.35	135.48	2.13	2.05	30.20%	1.27	2.13	59.02% 61.64%			
138.53	141.58	3.05	3.05	100.00%	2.41	3.05	79.02%			
141.58	144.63	3.05	3.03	99.30%	2.75	3.05	90.16%			
144.63	147.68	3.05	3.05	100.00%	2.65	3.05	86.89%			
147.68	150.88	3.2	3.04	95.00%	3.04	3.2	95.00%			
150.88	153.92	3.04	3.1	102.00%	2.87	3.04	94.41%			
153.92	156.67	2.75	2.45	89.10%	2.07	2.75	75.27%			<u> </u>
156.67	159.72	3.05	3.1	100.00%	2.12	3.05	86 9.4%			<u> </u>
162.76	165,96	3.04	3.04	98.10%	2.04	3.04	82.81%			
165.96	169.01	3.05	3	98.40%	2.1	3.05	68.85%			
169.01	171.45	2.44	2.3	94.30%	1.8	2.44	73.77%			
171.45	174.5	3.05	3.05	100.00%	2.6	3.05	85.25%			
174.5	176.48	1.98	1.9	96.00%	1.8	1.98	90.91%			\square
176.48	178.61	2.13	2.13	100.00%	1.65	2.13	77.46%			<u> </u>
1/8.61	183.19	3.05	3.1	92 10%	2.9	3.05	95.06%			
183.18	185.01	1.02	1.83	100.00%	1.07	1.92	60.11%			
185.01	187.76	2.75	2.75	100.00%	2.45	2.75	89.09%			
187.76	190.35	2.59	2.55	98.50%	1.6	2.59	61.78%			
190.35	193.4	3.05	3.04	99.70%	2.35	3.05	77.05%		_	
193.4	196.29	2.89	2.75	95.20%	2.1	2.89	72.66%		_	
196.29	197.51	1.22	1.2	98.40%	0.6	1.22	49.18%			<u> </u>
197.51	199.64	2.13	2.08	97.70%	1.78	2.13	83.57%			├ ──┤
EOH	199.64									1 1

TABLE 3: SUMMARY OF DRILL SAMPLE ANALYTICAL RESULTS

J-PACIFIC ELIZABETH PROPERTY DRILL ASSAYS: DDH E04-11A TO E04-17 INCLUSIVE

SAMPLE #	DDH #	FROM m	TO m	LENGTH n	n SAMPLE	Mo ppm	Cu ppm	Pb ppm
143651	E04-11A	47.89	49.39	1.50	D143651	4.5	14	1.9
143652	E04-11A	49.39	50.89	1.50	D143652	3.5	17.5	1.7
143653	E04-11A	55.48	56.98	1.50	D143653	11.2	15.1	6.4
143654	E04-11A	56.98	58.48	1.50	D143654	6.3	51.1	2.2
143655	E04-11A	58.48	59.98	1.50	D143655	36.7	41.1	5.8
143656	E04-11A	59.98	60.60	0.62	D143656	6.2	30.3	2.8
143657	E04-11A	72.23	73.73	1.50	D143657	6.9	220.4	2.9
143658	E04-11A	73.73	76.20	2.47	D143658	16.5	149.4	2.2
143659	E04-11A	99.10	100.45	1.35	D143659	23.1	44.8	1.4
143660	E04-11A	100.45	102.00	1.55	D143660	6.7	69.7	2.9
143661	E04-11A	102.00	103.50	1.50	D143661	22.5	125.8	4.3
143662	E04-11A	103.50	104.90	1.40	D143662	43.7	92.1	3.1
143663	E04-11A	104.90	105.94	1.04	D143663	17.7	83.7	2.8
143664	E04-11A	105.94	107.00	1.06	D143664	53.3	38.7	1.2
143665	E04-11A	107.00	107.83	0.83	D143665	11.8	28.2	0.2
143666	E04-11A	107.83	109.49	1.66	D143666	29.1	20.8	0.5
143667	E04-11A	109.49	110.24	0.75	D143667	1.9	13.6	1.4
143668	E04-11A	110.24	111.24	1.00	D143668	8.5	109.5	93.9
143669	E04-11A	111.24	112.74	1.50	D143669	20.1	232.1	18.7
143670	E04-11A	201.60	201.83	0.23	D143670	36.8	373	130
143671	E04-11A	222.22	222.86	0.64	D143671	3.3	14.8	3.3
143672	E04-11A	223.15	223.85	0.70	D143672	507.4	14.5	30.6
143673	E04-11A	224.77	225.50	0.73	D143673	1626.7	14	55.4
143674	E04-11A	257.40	257.80	0.40	D143674	9.8	34.2	4.6
143675	E04-12	30.18	30.25	0.07	D143675	5.9	9.2	2
143676	E04-12	22.20	23.10	0.90	D143676	6.7	28.1	2.3
143677	E04-12	35.70	35.90	0.20	D143677	11.8	20.1	6
143678	E04-12	13.56	14.63	1.07	D143678	1.2	58.6	3.3
143679	E04-12	17.00	17.50	0.50	D143679	4.1	32.2	4.7
143680	E04-12	23.20	24.84	1.64	D143680	7.4	23.7	3
143681	E04-12	24.84	25.80	0.96	D143681	10.6	37.6	5.7
143682	E04-12	25.80	26.67	0.87	D143682	8.2	48	3.2
143683	E04-12	26.67	27.40	0.73	D143683	10.9	96.6	3.7
143684	E04-12	27.40	28.76	1.36	D143684	11.7	51.3	3.8
143685	E04-12	28.76	29.00	0.24	D143685	6.1	46	11.1
143686	E04-12	4.88	7.92	3.04	D143686	3.3	43.4	2.7
143687	E04-12	33.38	33.88	0.50	D143687	2.1	31.8	3.5
143688	E04-12	33.88	34.48	0.60	D143688	3	74	39.5
143689	E04-12	34.48	34.59	0.11	D143689	5	47.6	137.9
143690	E04-12	37.60	38.00	0.40	D143690	26.8	152.4	105.5
143691	E04-12	39.10	40.60	1.50	D143691	7.2	82.9	5.3
143692	E04-12	44.00	44.50	0.50	D143692	18.4	66.1	12.7
143693	E04-12	49.83	50.53	0.70	D143693	8	163.2	4.5
143694	E04-12	50.53	51.63	1.10	D143694	27.6	174.1	4.7
143695	E04-12	51.63	52.18	0.55	D143695	3	28.2	4.6
143696	E04-12	52.18	52.73	0.55	D143696	4.7	39.4	4.9
143697	E04-12	56.69	57.50	0.81	D143697	11.2	92.7	5.9

SAMPLE #	DDH #	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm
143651	E04-11A	23	<.1	998.2	73.8	703	3.68	19.8
143652	E04-11A	25	0.1	1158.1	70.7	707	3.76	47
143653	E04-11A	36	<.1	873.2	53.1	688	2.93	143.4
143654	E04-11A	23	0.1	1273.7	78	668	3.69	46.1
143655	E04-11A	31	0.1	1225.8	82.4	678	3.52	27.7
143656	E04-11A	27	<.1	1016.7	76.8	684	3.38	22.3
143657	E04-11A	44	0.1	34.7	16.6	181	2.52	26.3
143658	E04-11A	33	0.1	39.4	16	155	2.69	26.8
143659	E04-11A	40	<.1	665.6	67.2	713	2.86	65.2
143660	E04-11A	86	<.1	8.5	9.7	413	2.7	2.6
143661	E04-11A	63	0.1	13.8	12.4	339	2.91	7.8
143662	E04-11A	75	0.1	8.4	10.2	385	2.68	30.1
143663	E04-11A	63	0.1	8.1	10.5	341	2.82	74.4
143664	E04-11A	42	<.1	864.6	72.8	871	3.79	36.5
143665	E04-11A	55	<.1	1859.9	97.5	722	5.2	4.8
143666	E04-11A	20	<.1	887.1	79.9	948	3.46	18.6
143667	E04-11A	16	0.1	1007.6	92.9	815	3.51	67.6
143668	E04-11A	77	5.6	427.6	28.5	370	1.71	1980.2
143669	E04-11A	45	0.6	68.9	15.9	361	3.47	3186.8
143670	E04-11A	69	1.6	41.4	7.2	338	1.67	1349.1
143671	E04-11A	38	0.1	11	8.1	502	2.25	330
143672	E04-11A	58	0.2	15.8	11.9	410	3.28	159.3
143673	E04-11A	28	0.3	14.1	7.7	323	1.73	108.8
143674	E04-11A	49	0.1	14.8	13	544	2.99	200.7
143675	E04-12	50	<.1	9.3	6	261	1.77	27.8
143676	E04-12	27	<.1	8.4	5	275	1.45	794.7
143677	E04-12	23	0.1	40.2	3.8	436	1.2	1146.4
143678	E04-12	47	<.1	7	6.2	241	2.02	159.5
143679	E04-12	58	0.1	10.4	6.4	346	2.26	523.1
143680	E04-12	22	<.1	6	5.5	265	1.56	167.2
143681	E04-12	54	0.1	10.2	7	353	2.21	293.7
143682	E04-12	73	0.1	9.5	6.6	314	2.06	409.2
143683	E04-12	68	0.2	8.7	7.4	365	2	451.7
143684	E04-12	56	0.1	5.7	6.4	361	1.89	561.3
143685	E04-12	60	0.2	7.8	7.1	280	2.18	405.1
143686	E04-12	91	0.1	6.3	5.9	436	2.17	284.2
143687	E04-12	52	0.1	6.7	5.9	307	1.92	247.5
143688	E04-12	83	0.7	8.6	6.9	455	2.14	595.6
143689	E04-12	74	2.2	5.1	3.2	290	1.03	470.7
143690	E04-12	40	2.4	8.9	7.1	231	2.66	591
143691	E04-12	45	0.1	6.1	5.8	277	2.1	479.9
143692	E04-12	74	0.3	8.4	8.5	380	2.49	413.1
143693	E04-12	51	0.2	7.8	9.4	297	2.49	69
143694	E04-12	52	0.1	14.9	10.6	367	2.73	175.4
143695	E04-12	20	<.1	4.8	3.2	171	1.1	29.8
143696	E04-12	16	<.1	3.5	2.6	222	1.02	29
143697	E04-12	69	0.1	31.7	9.7	428	2.39	79.8

SAMPLE #	DDH #	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm
143651	E04-11A	0.1	1.8	<.1	228	<.1	0.2	0.1
143652	E04-11A	0.2	7.2	<.1	201	<.1	1.2	0.2
143653	E04-11A	0.2	11.5	<.1	1472	<.1	7.2	0.1
143654	E04-11A	0.1	4.4	<.1	374	<.1	0.7	0.1
143655	E04-11A	0.1	3	<.1	852	<.1	1.3	0.1
143656	E04-11A	0.1	2.8	<.1	433	<.1	0.2	0.1
143657	E04-11A	0.2	5.2	0.8	170	<.1	1	0.1
143658	E04-11A	0.2	3	0.6	134	<.1	1.1	0.1
143659	E04-11A	0.1	3.3	0.2	331	<.1	0.2	0.1
143660	E04-11A	0.5	2.3	1.3	133	<.1	0.3	0.3
143661	E04-11A	0.6	12.6	1.2	137	<.1	0.5	0.3
143662	E04-11A	0.4	5.8	1.4	106	<.1	0.6	0.2
143663	E04-11A	0.4	6.8	1.4	120	<.1	0.8	0.1
143664	E04-11A	0.1	1.6	0.1	254	<.1	0.3	<.1
143665	E04-11A	<.1	1.3	<.1	17	<.1	0.3	<.1
143666	E04-11A	<.1	2.5	<.1	89	<.1	0.1	<.1
143667	E04-11A	<.1	9.5	<.1	216	<.1	0.2	0.1
143668	E04-11A	0.1	20029.5	0.2	381	0.5	12.4	1.7
143669	E04-11A	0.5	254.3	1.1	124	<.1	2.6	0.7
143670	E04-11A	0.1	549.9	0.6	296	0.4	10.8	3.2
143671	E04-11A	0.8	585.4	2.6	238	<.1	1	0.1
143672	E04-11A	0.8	500.6	2.6	140	<.1	0.7	2.8
143673	E04-11A	0.9	34.9	3.2	127	<.1	1.1	6.6
143674	E04-11A	0.6	54	2.4	246	<.1	1.1	0.1
143675	E04-12	0.3	2.1	1.3	37	<.1	1	<.1
143676	E04-12	0.4	37.7	1.9	64	<.1	2.2	0.1
143677	E04-12	0.8	50.5	5.7	129	<.1	2.2	0.4
143678	E04-12	0.4	2.6	2.8	39	<.1	1.2	<.1
143679	E04-12	0.4	10.7	1.7	72	<.1	2.8	0.1
143680	E04-12	0.5	19.2	3	65	<.1	0.8	0.1
143681	E04-12	0.4	23.9	2.1	33	<.1	1.3	0.6
143682	E04-12	0.4	14.6	2	70	<.1	2.2	0.2
143683	E04-12	0.5	33.5	2.2	80	0.1	2.7	0.2
143684	E04-12	0.6	59.9	2.6	79	<.1	2.8	0.2
143685	E04-12	0.5	22.9	1.8	39	<.1	3.1	0.4
143686	E04-12	0.4	15.5	1.4	124	<.1	1.4	0.1
143687	E04-12	0.4	19.2	1.8	54	0.1	1.4	0.2
143688	E04-12	0.4	30.3	1.5	114	0.2	2.7	1.8
143689	E04-12	0.3	23	0.7	37	0.6	2.6	6.1
143690	E04-12	0.4	29.2	1.4	23	<.1	6	41.2
143691	E04-12	0.6	67.3	2.8	59	<.1	2.1	0.3
143692	E04-12	0.4	13.2	1.6	47	0.1	3.7	6.9
143693	E04-12	0.6	8	1.4	98	0.1	0.9	0.8
143694	E04-12	0.5	5.9	1.4	118	<.1	1.9	0.5
143695	E04-12	1	14.5	5.9	57	<.1	0.3	0.1
143696	E04-12	0.7	5.1	3.6	54	<.1	0.3	0.2
143697	E04-12	0.9	12.1	2.7	149	<.1	1.2	0.2

SAMPLE #	DDH #	V ppm	Ca %	Ρ%	La ppm		Cr ppm	Mg %	Ba ppm
143651	E04-11A	16	0.96	0.001	<1		403.4	12.49	137
143652	E04-11A	16	0.96	0.002		1	362.9	13.33	92
143653	E04-11A	19	6.09	<.001	<1		454.1	9.45	11
143654	E04-11A	18	1.83	0.001	<1		510.3	13.56	11
143655	E04-11A	22	3.23	0.001	<1		513	12.74	13
143656	E04-11A	19	1.89	0.001	<1		489.6	12.55	36
143657	E04-11A	71	2.7	0.133		5	16.6	1.66	78
143658	E04-11A	58	2.1	0.104		5	31.5	1.43	39
143659	E04-11A	28	2.31	0.006		1	587.8	7.26	33
143660	E04-11A	53	2.02	0.077		6	9	1.07	27
143661	E04-11A	44	2.47	0.079		5	11.7	0.91	62
143662	E04-11A	51	1.81	0.071		6	8.5	0.89	55
143663	E04-11A	63	2.11	0.08		6	11.1	1.01	86
143664	E04-11A	34	2.19	0.007		1	543.9	8.99	11
143665	E04-11A	26	0.3	0.001	<1		739.1	16.89	7
143666	E04-11A	19	1.24	<.001	<1		634.8	9.49	3
143667	E04-11A	18	2.12	0.001	<1		524.4	8.69	3
143668	E04-11A	17	2.75	0.009		1	261	3.72	14
143669	E04-11A	60	2.78	0.066		5	78.4	1.74	28
143670	E04-11A	10	5.53	0.032		3	10.3	0.51	16
143671	E04-11A	23	3.68	0.063		6	12.9	1.18	25
143672	E04-11A	30	3.59	0.087		7	17	0.76	38
143673	E04-11A	18	3.49	0.07		5	10.4	0.58	83
143674	E04-11A	37	3.31	0.078		6	24.3	1.29	38
143675	E04-12	49	1.64	0.048		5	17.2	0.63	16
143676	E04-12	17	2.39	0.05		10	6.2	0.18	29
143677	E04-12	8	1.41	0.008	1	12	10.7	0.81	32
143678	E04-12	53	1.3	0.059		9	10.1	0.67	28
143679	E04-12	55	2.35	0.081		9	16.3	0.73	38
143680	E04-12	23	1.87	0.045	1	12	7.6	0.35	25
143681	E04-12	32	1.69	0.067		9	13.6	0.4	39
143682	E04-12	45	1.66	0.065		8	11	0.53	27
143683	E04-12	24	1.9	0.058		8	6.8	0.32	24
143684	E04-12	16	2.31	0.056		8	4.2	0.23	19
143685	E04-12	56	1.14	0.066		7	12.3	0.73	20
143686	E04-12	47	2.59	0.075		7	6.9	0.53	23
143687	E04-12	21	1.92	0.067		8	5.6	0.34	31
143688	E04-12	21	1.88	0.066		7	5.8	0.25	38
143689	E04-12	8	0.81	0.04		4	2.1	0.07	25
143690	E04-12	50	0.31	0.066		7	8.3	0.63	35
143691	E04-12	41	1.44	0.06		8	5.8	0.51	32
143692	E04-12	60	1.15	0.075		8	8.8	0.8	31
143693	E04-12	57	1.34	0.075		5	6.6	0.83	43
143694	E04-12	52	1.65	0.092		6	5.9	0.95	38
143695	E04-12	10	0.71	0.026	1	14	2.8	0.41	25
143696	E04-12	6	0.75	0.025		9	1.7	0.34	19
143697	E04-12	33	1.81	0.079		7	6.7	1.12	67

SAMPLE #	DDH #	Ti %	B ppm	AI %		Na %	K %		W ppm	I	Hg pp	m
143651	E04-11A	0.001	4	0.	.22	0.004		0.04		0.6		0.02
143652	E04-11A	0.001	8	0.	.26	0.008		0.07		0.4		0.04
143653	E04-11A	0.001	4	0.	.21	0.003		0.03		0.3		0.02
143654	E04-11A	0.001	4	0.	.24	0.003		0.02		0.4		0.02
143655	E04-11A	0.001	3	0.	.21	0.002		0.03		1.1		0.02
143656	E04-11A	0.001	7	0.	.18	0.004		0.03		0.6		0.01
143657	E04-11A	0.042	6	1.	.04	0.048		0.5		0.3 ·	<.01	
143658	E04-11A	0.027	6	0.	.94	0.038		0.28		0.2		0.01
143659	E04-11A	0.001	7	0.	.57	0.006		0.04		0.1		0.02
143660	E04-11A	0.003	6	1.	.06	0.034		0.19	<.1			0.01
143661	E04-11A	0.004	12	0.	.98	0.05		0.27		0.3		0.01
143662	E04-11A	0.007	7	0.	.98	0.037		0.19		0.2		0.01
143663	E04-11A	0.02	7	1.	.07	0.053		0.23		0.3		0.01
143664	E04-11A	0.002	31	0.	.52	0.006		0.08		0.2		0.02
143665	E04-11A	0.004	194	0.	.39	0.004		0.1		0.5		0.02
143666	E04-11A	0.001	8	0.	.32	0.004		0.02		0.1		0.01
143667	E04-11A	0.001	4	0.	.25	0.003	<.01		<.1			0.01
143668	E04-11A	0.001	4	0.	.48	0.006		0.09	<.1			0.14
143669	E04-11A	0.003	9	1.	.27	0.032		0.36		0.3		0.01
143670	E04-11A	0.001	4	0.	.28	0.011		0.17		0.4		0.02
143671	E04-11A	0.001	4	0.	.58	0.034		0.21		0.9		0.01
143672	E04-11A	0.006	5	0.	.77	0.033		0.22		0.3		0.03
143673	E04-11A	0.024	5	0.	.73	0.025		0.2		2.2		0.02
143674	E04-11A	0.001	9		1.2	0.024		0.36		0.3		0.02
143675	E04-12	0.11	7	1.	.08	0.04		0.09		1.6		0.02
143676	E04-12	0.001	5	0.	.42	0.035		0.17		0.2		0.01
143677	E04-12	<.001	2	0.	.38	0.028		0.16		2.3		0.01
143678	E04-12	0.08	19	0.	.93	0.05		0.11		0.3		0.03
143679	E04-12	0.006	5	0.	.98	0.034		0.16		2.5		0.02
143680	E04-12	0.002	3	0.	.53	0.036		0.11		0.1		0.01
143681	E04-12	0.002	8	0.	.79	0.057		0.21		0.8		0.02
143682	E04-12	0.002	6	0.	.72	0.029		0.13		0.2		0.03
143683	E04-12	0.001	9	(0.7	0.022		0.24		0.3		0.02
143684	E04-12	0.001	7	0.	.64	0.02		0.24		0.2		0.02
143685	E04-12	0.071	9		1	0.034		0.14		0.5		0.02
143686	E04-12	0.021	7	0.	.73	0.04		0.14		0.2		0.02
143687	E04-12	0.001	8	(0.6	0.023		0.23		0.2		0.02
143688	E04-12	0.001	8	0.	.58	0.023		0.22		0.3		0.02
143689	E04-12	0.001	7	0.	.31	0.007		0.21		0.2		0.02
143690	E04-12	0.004	10	(0.9	0.037		0.14		0.3		0.02
143691	E04-12	0.011	6	0.	.78	0.038		0.16		0.2		0.02
143692	E04-12	0.006	6	1.	.12	0.033		0.19		0.2		0.01
143693	E04-12	0.016	8	0.	.84	0.04		0.14		0.2		0.02
143694	E04-12	0.003	7	0.	.91	0.037		0.17		0.1		0.02
143695	E04-12	0.001	7	0.	.43	0.04		0.13		0.1		0.01
143696	E04-12	0.001	2	(0.3	0.03		0.12		0.1		0.01
143697	E04-12	0.008	5	0.	.81	0.044		0.24		0.1		0.04

SAMPLE #	DDH #	Sc ppm Tl p	opm	S %		Ga ppm		Se ppr	n	Au	ppb**
143651	E04-11A	6.7 <.1			0.1		1	<.5			2
143652	E04-11A	5.7 <.1			0.24		1	<.5			12
143653	E04-11A	4 <.1			0.14		1	<.5			17
143654	E04-11A	5.8 <.1			0.38		1	<.5			7
143655	E04-11A	6.1 <.1			0.39		1		0.6		4
143656	E04-11A	7.3 <.1			0.35		1	<.5			9
143657	E04-11A	4.1	0.1		1.05		6	-	0.8		8
143658	E04-11A	3.7 < 1	-		0.94		5		0.5		9
143659	E04-11A	5.6 < 1			0.48		3	<.5	0.0		4
143660	E04-11A	26<1			0.6		7	< 5			10
143661	E04-11A	31<1			14		6		12		18
143662	E04-11A	28<1			0.67		6	< 5			14
143663	E04-11A	29<1			0.74		6	< 5			10
143664	E04-11A	6.9 < 1			0.33		2	< 5			
143665	E01-11A	8	0.1		0.00		1	< 5		-2	Ŭ
143666	E04-11A	66<1	0.1		0.40		1	< 5		~2	6
143667	E04-11A	64 < 1			0.40		1	< 5			12
143668	E04-11A	24 < 1			0.07		2	1.0	06		16513
1/3660	E04-11A	2.4 <.1			1 52		5		2.1		167
143670	E04-11A	0.0 <.1 1 ~ 1			0.02		1		1.2		552
143671	E04-11A	16<1			0.52		י 2		0.5		624
143672		4.0 <.1			2.58		2		3.6		606
143672		2.7 <.1			2.50		2		2.0		32
143674		1.4 <.1			0.63		J ⊿	~ 5	2.0		18
143074	E04-11A	4.2 <.1			0.05		4	<.5			40
143675	F04-12	2 - 1		< 05			6	< 5			2
143676	E04-12 E04-12	1921		< 05			2	< 5			37
143677	E04-12 E04-12	07<1		< 05			2	< 5			50
1/3678	E04-12	1 0 ~ 1		<.00	0 1 1		6	~ 5			1
143679	E04-12	26 < 1		< 05	0.11		6	<.5			13
1/3680	E04-12	18 < 1		< 05			2 2	~ 5			20
143681	E04-12	25 < 1		< 05			1	<.5			20
143682	E04-12	2.0 < 1		<.05	0.06		1	<.5			21
143683	E04-12	2.2 <.1		< 05	0.00		4	<.5			20 60
143684	E04-12	1.3 <.1		< 05			2	<.5			00 00
143685	E04-12	21 < 1		< 05			6	<.5			30
143003	E04-12	2.1 <.1		< 05			1	<.5			24
143000	E04-12	1.9 <.1		<.05	0.07		4	<.5			24
143007	E04-12	ر × ۲ × ۲ × ۲ × ۲		< 05	0.07		2	<.5			50
143000	E04-12	1.0 <.1		<.05			2 1	<.5			46
143009	E04-12	0.7 <.1		<.05	0.07		ו ה	<.5	<u>^ 0</u>		40
143090	E04-12	1.9 <.1			0.07		S ⊿		0.0		40
143091	E04-12	1.9 <.1			0.13		4		0.6		103
143092	E04-12	2.1 <.1			0.07		0		0.5		17
143093	E04-12	2.0 <.1			0.00		C ⊿		1.0		11
143094	E04-12	2.9 <.1			0.74		4	. 5	1.4		10
143095	E04-12	0.8 <.1			0.15		2	<.ɔ	~ ~		18
143696	E04-12	0.7 <.1			0.21		1		0.6		1
143697	E04-12	3 <.1			0.37		3		0.7		18

SAMPLE #	DDH #	FROM m	TO m	LENGTH m	n SAMPLE	Mo ppm	Cu ppm	Pb ppm
143698	E04-12	57.50	58.84	1.34	D143698	12.7	115.2	5.8
143699	E04-12	58.84	60.50	1.66	D143699	14.8	90.1	7.8
143700	E04-12	61.20	62.00	0.80	D143700	9.9	72.7	3.6
143701	E04-12	70.30	70.85	0.55	D143701	3.8	32.1	7.8
143702	E04-12	70.85	71.60	0.75	D143702	3.9	53.8	7.4
143703	E04-12	71.60	72.60	1.00	D143703	27.2	29.9	102.8
143704	E04-12	72.60	73.60	1.00	D143704	53.3	207.1	29.5
143705	E04-12	73.60	74.60	1.00	D143705	13.3	110.8	13
143706	E04-12	74.60	75.60	1.00	D143706	10.6	59.5	11.8
143707	E04-12	75.60	76.60	1.00	D143707	11.9	184.2	10.1
143708	E04-12	76.60	77.80	1.20	D143708	20.1	30.2	23.4
143709	E04-12	77.80	78.85	1.05	D143709	22.5	112.5	8.6
143710	E04-12	78 85	80.00	1 15	D143710	62	53.5	44.8
143711	E04-12	89.20	89 70	0.50	D143711	13.4	116.4	10.6
143712	E04-12	103 45	103 78	0.33	D143712	76.6	8.3	167.4
143713	E04-12	113.00	114 00	1 00	D143713	18	225.1	4.8
143714	E04-12	114 00	115.00	1.00	D143714	14.1	347.2	4 4
143715	E01-12	115.00	116.00	1.00	D143715	132.1	205.4	9.3
143716	E04-12 E04-12	125.00	126.00	1.00	D143716	6.9	46.7	47
1407 10		120.00	120.00	1.00	0140710	0.0	-0.7	7.7
143717	E04-13	33.50	34.00	0.50	D143717	8	9.9	21.8
143718	E04-13	44.10	45.10	1.00	D143718	130.4	57.1	13.1
143719	E04-13	45.10	46.10	1.00	D143719	2.2	29.5	4.1
143720	E04-13	46.10	47.10	1.00	D143720	5.6	18.1	3.6
143721	E04-13	47.10	48.10	1.00	D143721	32.8	26.4	4.3
143722	E04-13	48.10	49.10	1.00	D143722	11.7	24	3.7
143723	E04-13	49.10	50.10	1.00	D143723	24.7	85.7	3.5
143724	E04-13	50.10	51.10	1.00	D143724	90.5	61.1	96.2
143725	E04-13	51.10	52.10	1.00	D143725	281.2	71.1	33.9
143726	E04-13	58.60	59.70	1.10	D143726	41.4	92	5.3
143727	E04-13	59,70	60.20	0.50	D143727	707.2	109.1	11.8
143728	E04-13	66.00	66.50	0.50	D143728	8.1	7.8	4.1
143729	E04-13	68.50	69.00	0.50	D143729	6.8	8.1	2.8
143730	E04-13	71.30	71.80	0.50	D143730	478.1	100.8	14.6
143731	E04-13	77.00	78.10	1.10	D143731	25.3	78.1	6.9
143732	E04-13	78.10	79.00	0.90	D143732	6.6	30.9	3.4
143733	E04-13	79.00	79.80	0.80	D143733	11.3	24.8	3.4
143734	E04-13	79.80	80.80	1.00	D143734	83.6	29.6	6.6
143735	E04-13	104.00	104.50	0.50	D143735	19.2	17.2	4.2
143736	E04-13	106.00	107.00	1.00	D143736	68.8	46	8
143737	E04-13	107.00	108.00	1.00	D143737	3.2	38.8	3.1
143738	E04-13	128.20	128.60	0.40	D143738	204.4	26.4	12
143739	E04-13	138.40	139.60	1.20	D143739	25.9	33	4.2
143740	E04-14	40.75	41.75	1.00	D143740	2.5	15.8	0.9
143741	E04-14	41.75	42.25	0.50	D143741	0.9	37.1	0.7
143742	E04-14	54.00	55.00	1.00	D143742	2.6	93.2	3.6
143743	E04-14	55.00	55.50	0.50	D143743	3.4	57.2	3
143744	E04-14	67.50	67.75	0.25	D143744	19.6	36.1	8.4
143745	E04-14	74.95	75.95	1.00	D143745	7.2	57.1	4.2

SAMPLE #	DDH #	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm
143698	E04-12	84	0.1	12.3	9.7	458	2.51	115.7
143699	E04-12	60	0.1	15.2	8.9	558	2.43	120.8
143700	E04-12	73	0.1	12.5	9.7	441	2.49	581.7
143701	E04-12	37	0.1	162.6	8.2	475	1.76	51.7
143702	E04-12	58	0.1	13.4	8.8	524	2.37	85.2
143703	E04-12	20	2.4	5.2	3.8	229	1.3	373
143704	E04-12	49	0.7	8.8	15.1	319	2.82	48.1
143705	E04-12	23	0.1	3.8	4.6	155	1.27	33.7
143706	E04-12	12	0.1	4.6	2.3	117	0.78	25.2
143707	E04-12	54	0.6	11.5	9.7	307	2.59	253.5
143708	E04-12	37	0.2	8.9	5.1	326	1.45	52.8
143709	E04-12	58	0.2	629.4	40.9	824	3.34	595.2
143710	E04-12	74	0.6	30.8	6.5	333	1.91	214.2
143711	E04-12	25	0.2	9	6.3	178	1.51	9
143712	E04-12	4	2.5	24.6	2.3	641	0.78	18.9
143713	E04-12	59	0.2	16.5	14.7	314	2.81	76.7
143714	E04-12	58	0.2	20.6	18.6	243	3.18	68
143715	E04-12	56	0.2	16.2	10	237	2.64	20.1
143716	E04-12	40	0.1	20.5	5.6	392	1.68	38.8
143717	E04-13	26	0.2	196.5	10	227	1.44	52.8
143718	E04-13	43	0.2	6	8.1	460	2.29	641.3
143719	E04-13	60	0.1	9.2	10.7	559	3.02	210.8
143720	E04-13	57	<.1	8.3	10.9	563	2.89	50.4
143721	E04-13	41	0.1	5.9	7.9	429	2.22	361.9
143722	E04-13	53	<.1	7.9	11.1	489	2.98	76.5
143723	E04-13	50	0.1	7.1	9.8	509	2.82	64
143724	E04-13	88	1.4	4.8	6.1	451	1.79	1738.1
143725	E04-13	52	0.4	6	8.3	400	2.29	3486.2
143726	E04-13	50	0.2	6.7	8.7	526	2.51	66.1
143727	E04-13	61	0.1	7.3	10	491	2.88	29
143728	E04-13	53	<.1	6	9	498	2.49	26.9
143729	E04-13	53	<.1	6.8	9.2	491	2.56	12.4
143730	E04-13	30	0.3	4.7	6.4	318	2.11	223.7
143731	E04-13	31	0.2	4.8	8	626	2.36	388.7
143732	E04-13	64	<.1	9.2	12.2	872	3.3	10.7
143733	E04-13	59	<.1	9	11.8	498	3.33	36.4
143734	E04-13	42	0.1	6.7	9.4	412	2.65	38.8
143735	E04-13	20	<.1	2.4	4.3	169	1.32	5.4
143736	E04-13	42	0.2	6.5	8.4	364	2.61	252.6
143737	E04-13	41	<.1	5.8	8	338	2.5	2.9
143738	E04-13	6	0.2	1.5	1.1	111	0.81	1248.8
143739	E04-13	46	0.1	5.4	8.1	475	2.18	106.4
143740	E04-14	14	<.1	74.6	4.3	98	0.5	2.2
143741	E04-14	16	<.1	40.1	4.5	88	0.55	1
143742	E04-14	19	0.1	13.3	7.3	93	1.08	525.7
143743	E04-14	29	<.1	71.4	8.8	172	1.38	193.4
143744	E04-14	14	0.1	3.2	4.7	511	1.5	62
143745	E04-14	39	0.1	6.6	7.3	337	2.36	44.3

SAMPLE #	DDH #	U ppm	Au ppb	Th ppm	Sr ppm C	Cd ppm	Sb ppm	Bi ppm
143698	E04-12	0.9	16.4	2.7	98 <	:.1	0.9	0.4
143699	E04-12	1	11.9	3.1	132 <	.1	1.1	0.3
143700	E04-12	0.9	40.3	2	144	0.1	1.3	0.1
143701	E04-12	1	1.4	5.1	136 <	.1	2.1	0.3
143702	E04-12	1.1	9.8	3.1	120	0.1	0.9	0.4
143703	E04-12	1.4	120.5	8	61	0.1	1.7	6.9
143704	E04-12	1.2	10.9	2.6	88 <	.1	1.2	12.8
143705	E04-12	1.6	4	6	30 <	.1	0.7	0.5
143706	E04-12	1.2	2.5	7.2	15 <	.1	0.7	0.2
143707	E04-12	1.2	471.8	3.9	54	0.1	2.6	0.5
143708	E04-12	0.7	27.2	3.5	75 <	.1	0.6	0.7
143709	E04-12	0.3	14.5	0.3	396 <	.1	16.6	2.8
143710	E04-12	0.4	24.8	1.9	110	0.4	2.4	1.3
143711	E04-12	0.9	1.2	1.7	44 <	.1	0.8	0.8
143712	E04-12	<.1	61.6	<.1	163	0.1	0.7	140.2
143713	E04-12	0.3	6.3	0.8	183 <	:.1	0.9	0.8
143714	E04-12	0.3	6	0.8	95 <	:.1	0.6	0.6
143715	E04-12	0.5	1.1	0.8	50 <	.1	0.4	1.4
143716	E04-12	0.8	6	4.2	240	0.1	0.5	0.2
143717	E04-13	1	4.9	9.5	139	0.1	0.9	2.1
143718	E04-13	0.5	70.1	0.9	261	0.1	1.6	1.1
143719	E04-13	0.6	13.6	1.2	188 <	:.1	0.7	0.1
143720	E04-13	0.4	8.2	1.3	167 <	.1	0.6	0.1
143721	E04-13	0.4	48.9	1	218 <	:.1	0.8	0.3
143722	E04-13	0.7	3.2	1.3	209 <	:.1	0.5	0.1
143723	E04-13	0.6	42.1	1.2	164 <	:.1	0.9	0.2
143724	E04-13	0.2	542.5	0.5	177	0.6	3.2	2
143725	E04-13	0.4	861.5	0.7	193	0.1	5.3	0.9
143726	E04-13	0.2	50.6	0.7	317 <	:.1	0.7	0.3
143727	E04-13	0.4	5.4	0.8	132 <	:.1	0.5	1.5
143728	E04-13	0.5	19.9	1.3	364	0.1	0.5	0.1
143729	E04-13	0.2	5.7	0.8	183	0.1	1.4	0.1
143730	E04-13	0.4	125.6	0.6	118 <	.1	1.8	2
143731	E04-13	0.4	378.5	1.3	557 <	:.1	0.9	0.3
143732	E04-13	0.8	6.9	1	319	0.1	0.6	0.1
143733	E04-13	1	3.6	0.9	198 <	:.1	0.4	0.1
143734	E04-13	1.1	87.8	2.8	269	0.1	0.7	0.3
143735	E04-13	0.9	2.1	3.6	90 <	:.1	0.5	<.1
143736	E04-13	0.4	227.8	0.8	122 <	:.1	1.3	0.3
143737	E04-13	0.6	0.5	1.1	103 <	.1	0.8	0.4
143738	E04-13	<.1	98.4	0.1	42 <	:.1	1.6	1
143739	E04-13	0.3	246	1	240 <	:.1	0.5	0.1
143740	E04-14	<.1	1.1	0.1	6 <	:.1	0.3	0.6
143741	E04-14	0.1	<.5	0.4	9 <	.1	0.2	0.2
143742	E04-14	0.4	<.5	1	63 <	:.1	2.6	0.3
143743	E04-14	0.3	<.5	1	55 <	:.1	2.9	0.4
143744	E04-14	0.5	25.3	0.7	515	0.1	0.7	0.7
143745	E04-14	0.5	3.5	1.8	95	0.1	0.8	0.3

SAMPLE #	DDH #	V ppm	Ca %	Ρ%	La ppm	Cr ppm	Mg %	Ba ppm
143698	E04-12	47	1.69	0.075	7	12	1.1	50
143699	E04-12	43	2.05	0.065	7	8.2	1.59	50
143700	E04-12	77	2.5	0.078	5	14.1	1.09	16
143701	E04-12	32	1.31	0.024	8	132	2.4	34
143702	E04-12	50	1.58	0.067	10	14.1	1.06	79
143703	E04-12	23	0.85	0.033	9	3.4	0.44	18
143704	E04-12	42	1.58	0.096	5	1.7	0.88	43
143705	E04-12	14	0.79	0.028	8	1.1	0.26	33
143706	E04-12	8	0.41	0.014	10	1.2	0.17	24
143707	E04-12	39	0.78	0.073	5	2.4	0.58	71
143708	E04-12	14	1.3	0.049	8	3.4	0.64	44
143709	E04-12	70	4.13	0.031	2	408	5.57	18
143710	E04-12	40	1.08	0.048	6	20	1.53	50
143711	E04-12	44	1.4	0.043	6	6.8	0.51	24
143712	E04-12	8	1.63	0.001	<1	9	1.12	2
143713	E04-12	63	2.58	0.091	5	13	1.19	34
143714	E04-12	81	1.76	0.099	5	17.4	1.28	27
143715	E04-12	79	1.64	0.098	4	14.8	1.2	16
143716	E04-12	12	2.39	0.037	9	8.6	1.25	23
4 40747	504.40		0.04	0.004	0	04.0	0.04	•
143717	E04-13	38	0.61	0.001	9	84.3	3.64	8
143718	E04-13	40	3.07	0.066	4	9.6	0.84	16
143719	E04-13	66	3.05	0.087	7	18.1	1.34	28
143720	E04-13	56	2.84	0.09	8	17.3	1.25	25
143721	E04-13	38	3.07	0.063	5	9.5	0.82	24
143722	E04-13	71	2.69	0.082	1	16.3	1.23	32
143723	E04-13	55	2.89	0.082	7	13	1.1	34
143724	E04-13	13	3.22	0.049	3	3.5	0.46	24
143725	E04-13	15	2.59	0.082	4	3.8	0.66	21
143720	E04-13	48	4.4	0.072	5	11.3	0.96	30
143727	E04-13	78	2.79	0.091	6	18.2	1.26	35
143728	E04-13	42	3.36	0.073	/	10.5	1	23
143729	E04-13	48	3.92	0.083	8	12.0	1.11	47
143730	E04-13	32	2.31	0.054	4	7.5	0.06	19
143731	E04-13	16	5.55	0.067	4	3.9	0.6	28
143732	E04-13	78	5.16	0.096	6 7	21.1	1.43	43
143733	E04-13	88	2.40	0.103	1	21.0	1.51	47
143734	E04-13	54	3.08	0.083	0	13.9	0.97	38
143735	E04-13	31	1.37	0.024	10	5	0.43	46
143730	E04-13	51	1.80	0.075	5	12.7	0.88	101
143737	E04-13	70	1.53	0.075	0	15.2	0.96	48
143738	E04-13	3	1.08	0.006	1	3.1	0.11	11
143739	E04-13	16	3.07	0.068	5	4.5	0.66	41
143740	E04-14	8	0.26	0.005	1	29.2	0.6	9
143741	E04-14	13	0.33	0.042	3	22.9	0.49	35
143742	E04-14	27	0.9	0.078	5	9	0.29	22
143743	E04-14	41	0.58	0.089	5	18.7	0.94	19
143744	E04-14	16	7.48	0.036	3	4.5	0.33	14
143745	E04-14	60	1.51	0.069	7	18.4	0.87	38

SAMPLE #	DDH #	Ti %	B ppm	AI %		Na %	K %	V	V ppm	Hg pp	om
143698 E	E04-12	0.005		6	0.96	0.036	5	0.23	0.1	011	0.04
143699 E	E04-12	0.003		3	0.92	0.036	5	0.2	0.1		0.03
143700 E	E04-12	0.005	<1		1.27	0.033	3	0.16	0.1		0.03
143701 E	E04-12	0.007		4	1.23	0.03	3	0.16	0.1		0.16
143702 E	E04-12	0.015		9	0.86	0.036	5	0.25	0.1		0.37
143703 E	E04-12	0.001		3	0.34	0.028	3	0.13	0.2		0.06
143704 E	E04-12	0.002		10	0.83	0.024	Ļ	0.23	0.2		0.04
143705 E	E04-12	0.001		3	0.45	0.034	Ļ	0.17	0.1		0.04
143706 E	E04-12	0.001		5	0.34	0.041		0.13	0.1		0.05
143707 E	E04-12	0.002		5	0.82	0.029)	0.3	0.2		0.09
143708 E	E04-12	0.001		7	0.52	0.02	2	0.24	0.1		0.02
143709 E	E04-12	0.006	<1		1.1	0.007	,	0.08 <	.1		0.02
143710 E	E04-12	0.009		6	0.95	0.03	3	0.19	0.2		0.02
143711 E	E04-12	0.041		4	0.69	0.033	3	0.09	0.2		0.01
143712 E	E04-12	<.001	<1		0.04	0.003	3	0.01	0.1	<.01	
143713 E	E04-12	0.021		8	1.21	0.026	5	0.16	0.2		0.02
143714 E	E04-12	0.065		8	1.24	0.029)	0.14	0.4		0.01
143715 E	E04-12	0.124		5	1.16	0.034	Ļ	0.1	4.2		0.01
143716 E	E04-12	0.001		10	0.53	0.017	,	0.15	0.1		0.01
143717 E	E04-13	0.001		3	1.27	0.033	3	0.02	0.3		0.05
143718 E	E04-13	0.002		5	0.97	0.016	5	0.16	0.1		0.02
143719 E	E04-13	0.003		8	1.49	0.027	,	0.19	0.1		0.01
143720 E	E04-13	0.005		5	1.43	0.022	2	0.16 <	.1		0.01
143721 E	E04-13	0.002		4	1.04	0.013	3	0.18	0.1	<.01	
143722 E	E04-13	0.004		4	1.45	0.02	2	0.16	0.1	<.01	
143723 E	E04-13	0.002		6	1.38	0.02	2	0.17	0.2		0.01
143724 E	E04-13	0.001		8	0.69	0.006	5	0.22	0.7		0.08
143725 E	E04-13	0.001		6	0.89	0.006	5	0.24	0.2		0.03
143726 E	E04-13	0.031		8	1.11	0.02	2	0.13	0.2		0.01
143727 E	E04-13	0.073		15	1.27	0.028	3	0.12	0.2		0.01
143728 E	E04-13	0.012		5	1.08	0.015	5	0.12	0.1		0.01
143729 E	E04-13	0.02		18	1.29	0.028	3	0.2 <	.1	<.01	
143730 E	E04-13	0.002		8	0.78	0.017	,	0.13	0.2		0.07
143731 E	E04-13	0.001		6	0.88	0.015	5	0.24	0.1		0.02
143732 E	E04-13	0.002		8	1.59	0.021		0.17 <	.1		0.01
143733 E	E04-13	0.004		5	1.73	0.026	5	0.19	0.1		0.02
143734 E	E04-13	0.017		7	1.25	0.022	2	0.2	0.1		0.02
143735 E	E04-13	0.084		5	0.75	0.052	2	0.07	0.1	<.01	
143736 E	E04-13	0.06		9	1.07	0.028	3	0.16	0.2		0.01
143737 E	E04-13	0.128		12	1.26	0.041		0.13	0.2		0.01
143738 E	E04-13	0.001		5	0.19	0.005	5	0.08	0.2		0.01
143739 E	E04-13	0.001		9	1.05	0.011		0.36	0.1		0.01
143740 E	E04-14	0.018		1	0.11	0.005	5	0.03 <	.1		0.04
143741 E	E04-14	0.045		2	0.15	0.009)	0.09 <	.1		0.01
143742 E	E04-14	0.059		67	0.86	0.063	}	0.12	0.2		0.01
143743 E	E04-14	0.09		11	0.87	0.057	,	0.11	0.3		0.01
143744 E	E04-14	0.001		3	0.44	0.008	}	0.12	0.1		0.01
143745 E	E04-14	0.045		5	1.14	0.024	ŀ	0.17	0.1		0.01

SAMPLE #	DDH #	Sc ppm	TI ppm		S %		Ga ppm	S	Se ppr	า	Au pp	b**
143698	E04-12	3.1	<.1			0.44		5 <	<.5			22
143699	E04-12	2.5	<.1			0.45		4		1		17
143700	E04-12	2.7	′ <.1			0.31		7		0.7		55
143701	E04-12	2.3	5 <.1			0.15		4 <	<.5		<2	
143702	E04-12	4.6	i <.1			0.48		4		0.9		9
143703	E04-12	1.8	s <.1			0.57		1		1.3		136
143704	E04-12	1.7	′ <.1			1.14		3		1.9		17
143705	E04-12	0.8	s <.1			0.49		2		0.8		8
143706	E04-12	0.6	i <.1			0.14		1		0.5		4
143707	E04-12	1.6	5 <.1			0.68		3		1.7		576
143708	E04-12	1.4	<.1			0.37		2		0.9		32
143709	E04-12	4.9	<.1			0.61		5		1.7		21
143710	E04-12	2.7	′ <.1			0.35		4		1.2		39
143711	E04-12	1.5	.1			0.51		4		1		4
143712	E04-12	0.3	s <.1			0.22	<1			3.1		68
143713	E04-12	3	5 <.1			1.13		6		1.6		3
143714	E04-12	3.3	5 <.1			1.67		8		1.8		7
143715	E04-12	2.3	5 <.1			1.65		8		2.7		4
143716	E04-12	1.5	.1			0.27		2		0.6		3
143717	E04-13	1.4	<.1		<.05			6 <	<.5			14
143718	E04-13	2.3	s <.1			0.88		5		2.3		81
143719	E04-13	4.1	<.1			0.45		9		0.7		7
143720	E04-13	3.4	<.1			0.32		9		0.5		13
143721	E04-13	2.6	i <.1			0.5		5		1.2		50
143722	E04-13	4.5	.1 <			0.26		8		0.8		3
143723	E04-13	3	i <.1			0.46		7		1.3		30
143724	E04-13	0.8	s <.1			0.87		3		1.9		562
143725	E04-13	1.3	i <.1			1.19		3		1.5		969
143726	E04-13	2.7	′ <.1			0.76		6		1.4		52
143727	E04-13	4	<.1			0.96		8		1.9		8
143728	E04-13	3.1	<.1			0.53		6 <	<.5			28
143729	E04-13	3.3	i <.1			0.47		7		0.5		7
143730	E04-13	1.7	′ <.1			1.27		4		2.6		153
143731	E04-13	1.4	<.1			1.67		3		2.3		418
143732	E04-13	4.5	<.1			0.59		8		1.2		22
143733	E04-13	4.9	<.1			0.33		9 <	<.5			10
143734	E04-13	3.4	· <.1			0.81		6		1.5		36
143735	E04-13	0.9	<.1			0.28		4		1		5
143736	E04-13	2.9	<.1			0.95		5		1.9		264
143737	E04-13	2.5	i <.1			0.39		7		0.9		9
143738	E04-13	0.3	5 <.1			0.21		1		0.8		110
143739	E04-13	1.9)	0.1		0.49		3		0.7		284
									_			
143740	E04-14	0.3	5 <.1		<.05			1 <	<.5			6
143741	E04-14	0.3	s <.1		<.05			1 <	<.5			5
143742	E04-14	0.8	5 <.1			0.22		5	_	1		4
143743	E04-14	1	<.1			0.07		6 <	<.5			3
143744	E04-14	2.5	.1			0.31		2		1.3		25
143745	E04-14	3.1	<.1			0.18		6		0.9		4

SAMPLE #	DDH #	FROM m	TO m	LENGTH m	SAMPLE	Mo ppm	Cu ppm	Pb ppm
143746	E04-14	75.95	76.60	0.65	D143746	5.1	124.2	6.7
143747	E04-14	76.60	77.60	1.00	D143747	17.7	67.7	8.8
143748	E04-14	77.60	78.00	0.40	D143748	5.6	41.9	3.9
143749	E04-14	80.00	80.80	0.80	D143749	552.2	242.3	8.9
143750	E04-14	83.70	84.70	1.00	D143750	20.2	95.4	6.7
143751	E04-14	84.70	85.70	1.00	D143751	24.7	236.7	4.1
143752	E04-14	85.70	86.70	1.00	D143752	16.5	92.8	55.9
143753	E04-14	86.70	87.50	0.80	D143753	15.4	219	5.9
143754	E04-14	93.20	94.20	1.00	D143754	33.3	83.5	4.6
143755	E04-14	94.20	95.20	1.00	D143755	99.1	277.9	7.3
143756	E04-14	95.20	96.20	1.00	D143756	56.1	116.9	17.9
143757	E04-14	96.20	97.20	1.00	D143757	20.2	66.7	3.7
143758	E04-14	97.20	98.20	1.00	D143758	87.5	126	6.7
143759	E04-14	98.20	99.20	1.00	D143759	114.7	125.9	357
143760	E04-14	99.20	100.20	1.00	D143760	90.2	124.7	6.3
143761	E04-14	100.20	101.20	1.00	D143761	10.1	118.7	5.9
143762	E04-14	101.20	102.20	1.00	D143762	68.1	85.7	16.4
143763	E04-14	102.20	103.20	1.00	D143763	5.7	67.2	3.8
143764	E04-14	103.20	104.24	1.04	D143764	6.4	56.1	5.5
143765	E04-15	9.14	10.00	0.86	D143765	0.7	92.8	2.4
143766	E04-15	10.00	11.00	1.00	D143766	1.4	51.7	2.9
143767	E04-15	11.00	12.00	1.00	D143767	3.2	85.1	3.5
143768	E04-15	12.00	13.00	1.00	D143768	4.1	174.3	2.6
143769	E04-15	13.00	14.00	1.00	D143769	16.4	85.5	4.1
143770	E04-15	14.00	15.00	1.00	D143770	23.1	215.9	3.9
143771	E04-15	15.00	16.00	1.00	D143771	77	170.6	3.8
143772	E04-15	16.00	17.00	1.00	D143772	5.7	98.6	4.2
143773	E04-15	17.00	18.00	1.00	D143773	5.4	145.3	3.8
143774	E04-15	18.00	19.00	1.00	D143774	6.3	202.5	6.3
143775	E04-15	19.00	20.00	1.00	D143775	3.3	70.6	3.1
143776	E04-15	20.00	21.00	1.00	D143776	11.8	211	4
143777	E04-15	21.00	22.00	1.00	D143777	5.9	142.5	2.9
143778	E04-15	22.00	23.00	1.00	D143778	4.1	110.9	2.8
143779	E04-15	23.00	24.00	1.00	D143779	1.3	93.7	3.2
143780	E04-15	24.00	25.00	1.00	D143780	32.6	65.2	3.5
143781	E04-15	25.00	26.00	1.00	D143781	1	27.4	2
143782	E04-15	26.00	27.00	1.00	D143782	0.9	50.4	3.8
143783	E04-15	27.00	28.00	1.00	D143783	4	64.3	3.7
143784	E04-15	28.00	29.00	1.00	D143784	3.2	107	3.8
143785	E04-15	29.00	30.00	1.00	D143785	5	73.3	3.4
143786	E04-15	30.00	31.00	1.00	D143786	24.6	378.3	3
143787	E04-15	31.00	32.30	1.30	D143787	9.9	391.7	3.4
143788	E04-15	56.50	57.50	1.00	D143788	1	118.9	3.2
143789	E04-15	57.50	58.80	1.30	D143789	4.4	195.2	2.5
143790	E04-15	129.14	130.00	0.86	D143790	2.6	114.3	5.4
143791	E04-15	130.00	131.00	1.00	D143791	3.5	136.5	5.1
143792	E04-15	131.00	132.00	1.00	D143792	2.3	278.7	6.6
143793	E04-15	132.00	133.00	1.00	D143793	1	470.5	2.7
143794	E04-15	133.00	134.00	1.00	D143794	1.2	190.4	3.1

SAMPLE #	DDH #	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm
143746	E04-14	45	0.3	7.3	8.1	391	2.61	379.7
143747	E04-14	31	0.1	4.8	5.4	283	1.68	130.7
143748	E04-14	7	0.1	1.2	1.7	211	0.52	58.8
143749	E04-14	35	0.4	6.4	6.2	227	2.83	403.8
143750	E04-14	55	0.2	11.4	12.2	631	3.54	398.5
143751	E04-14	45	0.1	9.4	9.6	306	2.82	265.5
143752	E04-14	40	1.3	7.2	8.1	421	2.55	2299.1
143753	E04-14	65	0.5	10.7	12.8	588	3.54	1790.7
143754	E04-14	52	0.1	11.7	12.5	621	3.33	783.1
143755	E04-14	43	0.4	9.9	10.2	458	2.72	275
143756	E04-14	69	0.7	9.1	9.5	446	2.61	2465
143757	E04-14	43	0.1	12.6	10.1	462	2.56	181.1
143758	F04-14	53	0.2	11.4	12.2	556	3 44	63.4
143759	E04-14	321	4.6	8.5	72	477	2 52	512.4
143760	E04-14	56	0.2	10.6	10.8	557	3.29	128.9
143761	E04-14	57	0.2	12.1	11.4	543	3.54	172.1
143762	E04-14	44	0.2	8.5	7.6	479	2 76	269.5
143763	E01-14	50	0.2	11 7	11 1	395	2.78	121.6
143764	E01-14	39	0.1	9.1	9	339	2.67	177 7
110701	20111	00	0.1	0.1	Ŭ	000	2.07	
143765	E04-15	37	1.4	10.1	7.7	352	1.8	5432.7
143766	E04-15	34	1.1	9.8	7.3	288	1.5	3345.2
143767	E04-15	54	1.1	18.1	11.2	516	2.41	2845.5
143768	E04-15	52	1.9	11.6	10	510	2.5	2462.3
143769	E04-15	57	0.4	15.2	11.5	591	2.94	2374.7
143770	E04-15	51	0.5	13	9.7	543	2.73	1068.4
143771	E04-15	53	1.2	36.1	10.8	522	2.95	2602.3
143772	E04-15	55	0.2	11.2	11.1	597	2.84	698.8
143773	E04-15	54	0.5	10.7	9.7	592	2.47	1888.3
143774	E04-15	48	1	11.9	12.5	535	2.67	4933.5
143775	E04-15	44	0.2	10.2	11.3	594	2.74	859
143776	E04-15	52	0.4	9.7	10.7	605	2.58	608
143777	E04-15	59	0.4	12.3	12	588	2.85	1133
143778	E04-15	46	0.6	20	11.8	569	2.69	1404
143779	E04-15	59	0.1	14.4	11.6	498	2.77	53.9
143780	E04-15	55	<.1	12.6	10.3	447	2.57	11.3
143781	E04-15	46	<.1	12.7	11	509	2.49	271.8
143782	E04-15	44	0.2	12.5	9.5	380	2.39	203.5
143783	E04-15	42	<.1	10.3	8.6	333	2.35	12.6
143784	E04-15	43	0.1	9.3	9.6	343	2.37	12
143785	E04-15	51	0.4	10.1	10.2	416	2.56	728.1
143786	E04-15	58	0.2	10.5	9.9	607	2 44	57.2
143787	E04-15	61	0.5	11.2	10.6	667	2.61	154.5
143788	E04-15	48	0.4	10	10.3	1081	2.86	1811
143789	E04-15	38	0.3	7.2	8.1	590	2.01	282.5
143790	E04-15	42	0.3	10	9.1	423	2.28	2123
143791	E04-15	50	0.4	11.5	10.9	468	2.58	1209
143792	E04-15	49	0.3	9.1	11	428	2.66	16.1
143793	E04-15	53	0.3	9.8	11.3	423	2.73	7.7
143794	E04-15	51	0.2	9.5	10.5	517	2.74	8

SAMPLE #	DDH #	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm
143746	E04-14	0.5	30.8	1.8	60	0.1	2	1.1
143747	E04-14	0.3	3.2	0.9	89	<.1	1.5	2
143748	E04-14	0.1	2.4	0.1	102	<.1	0.7	0.3
143749	E04-14	0.8	12.7	1.1	52	<.1	2.5	2.8
143750	E04-14	0.6	6.3	1.4	144	<.1	2.3	2.2
143751	E04-14	1	3.3	2.7	63	<.1	1.7	0.3
143752	E04-14	0.5	540	1.2	230	0.1	6.8	31.4
143753	E04-14	0.4	132.4	0.9	93	0.2	4.8	0.5
143754	E04-14	0.6	257.8	1.1	166	<.1	3.4	0.3
143755	E04-14	1.4	6.7	1	150	<.1	2	0.6
143756	E04-14	0.8	756.6	1.2	142	0.2	7.4	2.1
143757	E04-14	3	7.6	4.9	82	<.1	1.5	0.1
143758	E04-14	0.4	12.9	1.2	134	<.1	0.7	0.6
143759	E04-14	0.3	119.9	1	253	3.8	1.5	9.9
143760	E04-14	0.4	10.7	0.8	146	<.1	0.8	0.8
143761	E04-14	0.4	10	1.3	143	0.1	1	0.3
143762	E04-14	0.3	12.4	1	241	<.1	1	3
143763	E04-14	0.8	2	2.3	79	<.1	0.9	0.1
143764	E04-14	0.6	2.7	1.8	108	<.1	1.1	1.2
143765	E04-15	0.1	1391.2	0.3	157	<.1	84.5	0.2
143766	E04-15	0.2	837.8	0.6	98	<.1	48.4	0.2
143767	E04-15	0.2	998.7	0.4	126	<.1	60	0.3
143768	E04-15	0.2	1009.2	0.4	107	0.1	54.4	0.3
143769	E04-15	0.2	946.8	0.5	113	<.1	32.8	0.2
143770	E04-15	0.3	569.7	0.5	147	0.1	33.2	0.6
143771	E04-15	0.2	990.6	0.6	110	<.1	75.7	0.4
143772	E04-15	0.2	354.9	0.9	165	<.1	17	0.2
143773	E04-15	0.3	254.9	0.9	240	0.1	35	0.2
143774	E04-15	0.3	973.2	1	284	0.2	122.8	0.9
143775	E04-15	0.4	221	1.5	219	0.1	19.6	0.2
143776	E04-15	0.5	195.4	1.9	244	0.1	45.5	0.2
143777	E04-15	0.7	649	2.1	159	0.1	25.1	0.3
143778	E04-15	0.5	958.9	1.9	146	<.1	29.6	0.2
143779	E04-15	0.9	53	2.6	81	0.1	7.6	0.1
143780	E04-15	0.6	2	2.2	68	<.1	1.9	<.1
143781	E04-15	0.4	119.8	1.9	118	<.1	4.2	<.1
143782	E04-15	0.5	290.7	1.9	118	0.1	4.6	0.1
143783	E04-15	0.5	1	1.7	69	<.1	2.8	<.1
143784	E04-15	0.5	6.2	1.1	62	<.1	2.3	0.1
143785	E04-15	0.6	369.4	1.6	71	0.1	12.9	0.1
143786	E04-15	0.8	34.7	2.1	145	<.1	2	0.2
143787	E04-15	0.7	38.4	1.9	134	0.1	9.9	0.2
143788	E04-15	0.4	832.6	1.3	227	<.1	31.9	0.2
143789	E04-15	0.4	42.3	0.9	155	<.1	34.9	0.2
143790	E04-15	0.3	1077.6	0.6	133	0.1	24.1	0.2
143791	E04-15	0.4	369.9	0.8	154	0.1	4.8	0.2
143792	E04-15	0.4	25.2	0.8	110	<.1	1.9	0.3
143793	E04-15	0.6	1.5	0.8	104	0.1	2.1	0.1
143794	E04-15	0.5	10.3	0.8	164	0.1	2.1	0.2

SAMPLE #	DDH #	V ppm	Ca %	Р%	La ppm	Cr ppm	Mg %	Ba ppm
143746	E04-14	59	1.31	0.075		6 · · · · · · · · · · · · · · · · · · ·	0.93	39
143747	E04-14	44	1.61	0.045		3 14.1	0.49	20
143748	E04-14	11	5.45	0.003	<1	5.3	0.11	19
143749	E04-14	65	0.51	0.06	Ę	5 20.4	0.62	38
143750	E04-14	91	3.56	0.099	7	7 29.5	1.44	31
143751	E04-14	79	1.36	0.094	8	3 20.9	0.89	25
143752	E04-14	57	2.97	0.08	Ę	5 16.9	0.82	25
143753	E04-14	78	2.71	0.1	Ę	5 26.3	1.38	42
143754	E04-14	82	3.18	0.097	6	6 34.5	1.32	41
143755	E04-14	79	2.95	0.107	6	6 21.7	0.9	26
143756	E04-14	44	2.48	0.091	Ę	5 14.6	0.82	29
143757	E04-14	75	2.09	0.067	6	6 35.3	1.06	20
143758	E04-14	81	2.51	0.091	6	6 29.4	1.3	23
143759	E04-14	36	2.96	0.063	Ę	5 11.7	0.75	26
143760	E04-14	74	2.28	0.086	6	6 25.3	1.2	32
143761	E04-14	91	2.34	0.101	7	7 31.4	1.47	41
143762	E04-14	67	3.53	0.097	7	7 21.2	1.04	24
143763	E04-14	95	1.42	0.116	7	7 30.1	1.13	20
143764	E04-14	81	1.9	0.104	8	3 27.8	0.96	23
143765	E04-15	11	1.63	0.071	4	4.4	0.69	8
143766	E04-15	8	1.13	0.062	4	4.2	0.45	8
143767	E04-15	14	1.79	0.066	4	8.6	0.76	19
143768	E04-15	19	1.92	0.085	4	l 9.3	0.87	13
143769	E04-15	17	2.34	0.083	Ę	5 7.3	0.99	16
143770	E04-15	16	2.64	0.084	4	4 8	1.1	12
143771	E04-15	12	2.27	0.088	4	l 5	0.86	21
143772	E04-15	33	2.95	0.084	Ę	5 15.4	1.12	30
143773	E04-15	17	2.83	0.078	4	l 7.3	1.21	31
143774	E04-15	11	3.01	0.081	4	l 5	1.36	27
143775	E04-15	28	3.11	0.086	6	6 11.2	1.42	143
143776	E04-15	23	3.39	0.082	7	7 10.3	1.39	124
143777	E04-15	34	2.89	0.111	6	6 13.7	1.16	85
143778	E04-15	31	2.83	0.088	6	6 17.6	1.09	102
143779	E04-15	65	2.3	0.079	7	7 28	1.17	203
143780	E04-15	69	1.78	0.081	6	6 28	1.13	119
143781	E04-15	54	2.35	0.078	8	3 28.6	1.12	487
143782	E04-15	56	2.04	0.079	6	6 22.4	0.9	146
143783	E04-15	67	1.47	0.08	6	6 27.5	0.91	84
143784	E04-15	72	1.77	0.083	Ę	5 27.5	0.9	122
143785	E04-15	55	2.13	0.073	6	6 23.7	1	210
143786	E04-15	33	4.2	0.082	ç	9 15.5	1.07	258
143787	E04-15	37	4.31	0.087	ç	9 14.1	1.09	117
143788	E04-15	16	5.32	0.067	7	7 5.3	2.11	28
143789	E04-15	14	3.57	0.056	Ę	56	1.06	190
143790	E04-15	29	3.24	0.067	Ę	5 14.7	0.73	99
143791	E04-15	49	3.25	0.079	Ę	5 21.4	0.93	43
143792	E04-15	73	2.65	0.077	4	27.4	1.06	46
143793	E04-15	82	2.05	0.076	Ę	5 27.9	1.22	201
143794	E04-15	67	3.05	0.081	6	6 25	1.22	170

SAMPLE #	DDH #	Ti %	B ppm	AI %		Na %	K %		W ppm	Hg ppm
143746	E04-14	0.049	5		1.19	0.018		0.16	0.1	0.02
143747	E04-14	0.077	7		0.8	0.021		0.06	0.3	0.01
143748	E04-14	0.004	183		0.62	0.003		0.01	35.5	0.01
143749	E04-14	0.087	3		0.93	0.036		0.09	1.1	0.01
143750	E04-14	0.08	3		1.51	0.02		0.1	2.6	0.01
143751	E04-14	0.111	13		1.19	0.024		0.08	1.4	0.02
143752	E04-14	0.039	4		1.02	0.014		0.16	1.2	0.01
143753	E04-14	0.044	5		1.54	0.011		0.23	1.5	0.02
143754	E04-14	0.038	13		1.39	0.023		0.15	0.2	0.01
143755	E04-14	0.044	10		0.97	0.027		0.1	9.5	0.02
143756	E04-14	0.007	7		0.85	0.014		0.25	1.4	0.02
143757	E04-14	0.065	6		1.19	0.026		0.08	2	0.01
143758	E04-14	0.012	4		1.34	0.024		0.12	0.2	0.01
143759	E04-14	0.002	6		1.04	0.021		0.22	0.2	0.1
143760	E04-14	0.006	9		1.26	0.024		0.14	0.2	0.02
143761	E04-14	0.009	8		1.62	0.024		0.16	0.2	0.02
143762	E04-14	0.03	6		1.12	0.017		0.12	0.3	0.01
143763	E04-14	0.117	7		1.46	0.026		0.07	0.9	0.01
143764	E04-14	0.1	10		1.29	0.026		0.07	0.6	0.01
143765	E04-15	0.001	6		0.22	0.004		0.19	0.4	0.27
143766	E04-15	0.001	5		0.21	0.003		0.17	0.2	0.19
143767	E04-15	0.001	7		0.35	0.006		0.24	0.4	0.23
143768	E04-15	0.001	6		0.41	0.007		0.21	0.3	0.19
143769	E04-15	0.001	7		0.42	0.005		0.24	0.3	0.18
143770	E04-15	0.001	6		0.44	0.005		0.27	0.2	0.18
143771	E04-15	<.001	6		0.4	0.004		0.24	0.3	0.34
143772	E04-15	0.001	7		0.63	0.008		0.26	0.2	0.15
143773	E04-15	0.001	8		0.46	0.006		0.27	0.2	0.21
143774	E04-15	0.001	9		0.38	0.005		0.26	0.4	0.45
143775	E04-15	0.003	6		0.61	0.015		0.33	0.2	0.21
143776	E04-15	0.001	6		0.63	0.011		0.32	0.2	0.44
143777	E04-15	0.003	7		0.75	0.013		0.3	0.2	0.28
143778	E04-15	0.002	5		0.97	0.01		0.32	0.1	0.37
143779	E04-15	0.068	3		1.2	0.028		0.17	0.1	0.12
143780	E04-15	0.106	2		1.14	0.036		0.13	0.2	0.15
143781	E04-15	0.032	5		1.16	0.02		0.27	0.1	0.06
143782	E04-15	0.073	6		1.05	0.027		0.21	0.1	0.1
143783	E04-15	0.135	5		1.2	0.042		0.11	0.2	0.05
143784	E04-15	0.141	5		1.13	0.037		0.11	18.7	0.11
143785	E04-15	0.068	6		1.11	0.023		0.23	0.5	0.26
143786	E04-15	0.001	9		1.28	0.01		0.29	0.1	0.11
143787	E04-15	0.008	8		1.28	0.011		0.27	0.2	0.33
143788	E04-15	0.001	10		0.78	0.003		0.3	0.8	0.21
143789	E04-15	0.001	9		0.58	0.003		0.24	0.4	0.28
143790	E04-15	0.013	9		0.98	0.009		0.26	11.7	0.04
143791	E04-15	0.02	8		1.14	0.013		0.29	55	0.04
143792	E04-15	0.115	12		1.32	0.034		0.12	30.4	0.02
143793	E04-15	0.107	11		1.35	0.033		0.12	0.3	0.02
143794	E04-15	0.036	9		1.09	0.026		0.21	0.2	0.03

SAMPLE #	DDH #	Sc ppm TI ppm	ו	S %		Ga ppm	S	e ppm	Au	opb**
143746	E04-14	2.5 <.1			0.39		6	1.3		35
143747	E04-14	1.5 <.1			0.35		4	1.6	<2	
143748	E04-14	0.7 <.1		<.05			3	0.5		7
143749	E04-14	2.4 <.1			0.25		6	3.5		17
143750	E04-14	4.4 <.1			0.52		9	1.6		8
143751	E04-14	2.1 <.1			0.65		7	1.9		6
143752	E04-14	2.9 <.1			0.63		5	2.3		544
143753	E04-14	5 <.1			0.96		6	1.6		148
143754	E04-14	4.5 <.1			0.44		8	1.1		298
143755	E04-14	3.5 <.1			1.45		6	4.5		8
143756	E04-14	3.2	0.1		0.69		3	1.6		810
143757	E04-14	3.2 <.1			0.27		6	0.7		15
143758	E04-14	4.2 <.1			1.05		7	2.9		37
143759	E04-14	2.5 <.1			0.51		4	2.9		121
143760	E04-14	4.8 <.1			0.62		6	2		10
143761	E04-14	4.7 <.1			0.2		8	1.1		11
143762	E04-14	4.1 <.1			0.66		5	1.8		17
143763	E04-14	3.3 <.1			0.12		8	0.6		24
143764	E04-14	2.9 <.1			0.32		7	1		3
143765	E04-15	2.7 <.1			0.69		1	0.5		1571
143766	E04-15	2 <.1			0.57		1	0.5		965
143767	E04-15	3.2 <.1			0.87		1	0.7		1185
143768	E04-15	3.7 <.1			0.86		2	0.8		1042
143769	E04-15	4.1 <.1			1.21		1	0.9		1030
143770	E04-15	3.7 <.1			1.03		1	0.8		499
143771	E04-15	3.3	0.1		1.59		1	1.1		943
143772	E04-15	4.3	0.1		0.91		2	0.7		358
143773	E04-15	3.4	0.1		0.92		2	0.9		279
143774	E04-15	4	0.1		1.12		1	1		947
143775	E04-15	5.2 <.1			0.71		2	0.5		262
143776	E04-15	4.4	0.1		0.54		2	0.7		225
143777	E04-15	4 <.1			1.24		3	1.2		778
143778	E04-15	3.1	0.1		0.83		3	1		1135
143779	E04-15	3.4 <.1			0.33		7 <	.5		73
143780	E04-15	2.7 <.1			0.18		6	0.5	<2	
143781	E04-15	3.3 <.1			0.21		5 <	.5		145
143782	E04-15	2.1 <.1			0.46		6 <	.5		364
143783	E04-15	1.8 <.1			0.1		6 <	.5	<2	
143784	E04-15	1.7 <.1			0.18		7	0.6		13
143785	E04-15	2.8 <.1			0.56		5	0.5		504
143786	E04-15	2.2 <.1			0.51		4	0.7		48
143787	E04-15	3.1 <.1			0.69		4	1.4		51
143788	E04-15	3.4 <.1			0.76		2	1.2		1008
143789	E04-15	2.2 <.1			0.56		2	1.1		62
143790	E04-15	2.5 <.1			0.79		3	1		1333
143791	E04-15	3 <.1			0.94		5	1.1		484
143792	E04-15	3 <.1			0.7		7	1		37
143793	E04-15	3.3 <.1			0.36		8	0.9		5
143794	E04-15	4.1 <.1			0.78		6	1		31

SAMPLE #	DDH #	FROM m	TO m	LENGTH m	SAMPLE	Mo ppm	Cu ppm	Pb ppm
143795	E04-15	134.00	135.00	1.00	D143795	2.3	117.7	4.3
143796	E04-15	135.00	136.00	1.00	D143796	3.2	100.3	9.4
143797	E04-15	136.00	137.00	1.00	D143797	2.5	169.4	3.3
143798	E04-15	137.00	138.00	1.00	D143798	1.4	202.1	2.7
143799	E04-15	138.00	139.00	1.00	D143799	21.7	404.1	4.6
143800	E04-15	151.20	152.20	1.00	D143800	2.4	100.8	40.8
143801	E04-15	152.20	153.20	1.00	D143801	2.2	162.5	341.2
143802	E04-15	153.20	153.60	0.40	D143802	2.2	317.2	4.5
143803	E04-15	192.85	193.85	1.00	D143803	1.8	93.4	4.7
143804	E04-15	198.10	199.10	1.00	D143804	15.6	83.4	8.6
143805	E04-15	202.00	203.00	1.00	D143805	10.2	83.4	5.4
143806	E04-15	203.00	204.00	1.00	D143806	11.1	64.4	7
143807	E04-15	204.00	205.00	1.00	D143807	22.6	55.3	62.5
143808	E04-15	205.00	206.00	1.00	D143808	10.6	67.5	4.2
143809	E04-15	206.00	207.00	1.00	D143809	8.3	39.4	8.3
143810	E04-15	207.00	208.00	1.00	D143810	18.1	56.6	21.9
143811	E04-15	208.00	209.00	1.00	D143811	36.7	77.5	26.4
143812	E04-15	216.00	216.25	0.25	D143812	7.5	37.3	4.4
143813	E04-15	221.65	221.90	0.25	D143813	2	20.8	7.5
143814	E04-15	230.43	231.33	0.90	D143814	14.6	38.4	3.5
143815	E04-15	239.50	240.50	1.00	D143815	22.4	41.1	11.5
143816	E04-15	241.15	241.50	0.35	D143816	0.3	83.2	5.5
143817	E04-15	241.50	241.85	0.35	D143817	0.2	16	127.1
143818	E04-15	241.85	242.85	1.00	D143818	0.4	26	27.8
143819	E04-15	242.85	243.60	0.75	D143819	1.4	34.5	4.2
143820	E04-15	263.60	264.10	0.50	D143820	3.6	23.6	4.7
143821	E04-17	44.05	44.70	0.65	D143821	4.6	329.6	4
143822	E04-17	66.00	67.00	1.00	D143822	51.8	112.1	12.3
143823	E04-17	67.00	68.00	1.00	D143823	60.7	128.6	10.9
143824	E04-17	68.00	69.00	1.00	D143824	212.6	125.3	19.2
143825	E04-17	79.00	80.00	1.00	D143825	176.4	222.1	3.1
143826	E04-17	95.40	96.40	1.00	D143826	80.6	431	6.4
143827	E04-17	96.40	97.10	0.70	D143827	205.5	483.2	7.3
143828	E04-17	98.50	99.00	0.50	D143828	130.3	228.7	6.2
143829	E04-17	100.00	100.40	0.40	D143829	29.9	91.1	6.2
143830	E04-17	106.90	107.30	0.40	D143830	162.6	105.1	2.1
143831	E04-17	109.20	110.20	1.00	D143831	65.2	53	5.1
143832	E04-17	110.20	111.20	1.00	D143832	27	91.3	3.9
143833	E04-17	111.20	112.20	1.00	D143833	11.9	92.5	5.6
143834	E04-17	112.20	113.20	1.00	D143834	22.2	107.9	3.4
143835	E04-17	114.10	114.85	0.75	D143835	159.6	113.2	11.3
143836	E04-17	119.00	119.83	0.83	D143836	122.1	139.7	14.5
143837	E04-17	119.83	121.03	1.20	D143837	13	140.3	2.7
143838	E04-17	123.80	124.80	1.00	D143838	7.5	70.4	3.3
143839	E04-17	124.80	125.80	1.00	D143839	1.1	37.9	2.7
143840	E04-17	129.20	130.20	1.00	D143840	27.3	26.6	3.3
143841	E04-17	130.20	131.20	1.00	D143841	4.5	74.4	6.6
143842	E04-17	131.20	132.10	0.90	D143842	45.4	30.4	6.6
143843	E04-17	132.10	132.40	0.30	D143843	7.3	50.1	17.7

SAMPLE #	DDH #	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm
143795	E04-15	49	0.3	10.6	10.1	500	2.52	282.8
143796	E04-15	40	0.3	8.8	8.6	489	2.11	511.4
143797	E04-15	48	0.1	9.3	9.1	288	2.34	3.7
143798	E04-15	47	0.1	9.9	9.6	275	2.36	4.4
143799	E04-15	55	0.3	9.7	9.2	306	2.27	4.2
143800	E04-15	45	0.8	7.4	7.5	452	2.06	1790
143801	E04-15	43	5.9	10.2	10.5	419	2.68	130.4
143802	E04-15	61	0.3	10.2	11.7	495	2.73	24.1
143803	E04-15	52	0.6	10.8	11	432	2.52	2255
143804	E04-15	51	0.2	11.2	11.3	511	2.87	10.5
143805	E04-15	49	0.1	9	9.7	407	2.29	7.9
143806	E04-15	52	0.2	10.1	9.6	514	2.39	1399
143807	E04-15	49	1.2	10.9	11.1	477	2.59	1948
143808	E04-15	53	0.1	11.2	9.9	484	2.68	14
143809	E04-15	54	0.2	11.7	10.7	561	2.89	135.6
143810	E04-15	65	0.5	12.6	11.5	442	2.69	294
143811	E04-15	49	0.9	9.8	9.6	461	2 47	872
143812	E01-10	.34	0.0	77	6.6	417	1 93	98.5
143813	E01-10	22	0.1	6.5	5.4	158	1.60	242.1
143814	E01-10	45	0.0	9.4	9.7	636	2 39	24.9
143815	E01-10	43	0.1	10.8	9.7	379	2.86	69
143816	E04-15	53	1.6	9.2	8.7	144	2.00	6108
143817	E01-10	194	1.0	1	0.7	681	0.51	340
143818	E01-10	56	0.5	14 5	13.2	743	3 23	484.6
143819	E04-15	57	0.0	12.3	13.1	515	2.86	1269
143820	E04-15	58	0.2	12.0	11.1	559	2.00	111 3
140020		00	0.1	11.4	11.0	000	2.01	111.0
143821	E04-17	43	0.1	20.6	24.6	306	3.67	89.6
143822	E04-17	62	0.2	13	11.1	238	2.13	134.5
143823	E04-17	114	0.1	13.6	11.6	343	2.63	201.4
143824	E04-17	70	0.2	15.8	11.9	326	2.55	497.3
143825	E04-17	41	0.1	9.8	14.7	154	3.02	3
143826	E04-17	39	0.1	13.8	13.6	144	3.29	3.7
143827	E04-17	37	0.1	12.1	13.7	124	3.29	10.5
143828	E04-17	30	0.1	9.3	9.1	122	2.03	1524.3
143829	E04-17	31	0.4	11.1	8	285	2.51	9319
143830	E04-17	26	<.1	13.4	15	151	2.24	65.7
143831	E04-17	17	<.1	11.8	7.2	111	1.42	27.5
143832	E04-17	38	<.1	8.4	12.2	162	2.05	58.2
143833	E04-17	59	0.1	7.1	10.9	228	2.36	453.4
143834	E04-17	71	0.1	6.7	10.6	216	2.5	172.8
143835	E04-17	55	0.5	5.7	10	224	2.47	2508
143836	E04-17	46	0.4	8.4	9.6	250	2.32	2882
143837	E04-17	50	0.1	7.8	8.4	188	2.06	46.5
143838	E04-17	43	0.2	8.4	8.4	297	1.82	722.2
143839	E04-17	46	<.1	8.2	7.2	263	1.68	85.6
143840	E04-17	21	<.1	3.4	4.2	158	1.02	218.1
143841	E04-17	60	0.2	6	8	258	2.05	2122.4
143842	E04-17	76	0.4	14.3	7.4	247	1.64	1842.7
143843	E04-17	37	0.3	4.6	5.1	161	1.28	4984.5

SAMPLE #	DDH #	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm
143795	E04-15	0.3	127.4	0.6	152	<.1	17.1	0.2
143796	E04-15	0.3	128.9	0.4	163	<.1	10.5	0.4
143797	E04-15	0.4	2.2	0.7	82	<.1	0.5	0.1
143798	E04-15	0.3	3.3	0.7	66	<.1	0.4	0.1
143799	E04-15	0.4	9	1.2	84	0.1	0.7	0.3
143800	E04-15	0.2	1153.7	0.3	140	0.2	12.2	2.1
143801	E04-15	0.2	153.4	0.5	127	0.2	13.4	62.9
143802	E04-15	0.4	46.2	0.8	159	<.1	19.7	0.4
143803	E04-15	0.4	1581	0.6	144	0.1	15.1	0.4
143804	E04-15	0.7	54.7	0.6	172	<.1	0.9	0.9
143805	E04-15	0.5	6.2	0.5	151	<.1	0.7	1.2
143806	E04-15	0.5	141	0.6	190	0.1	2.2	1.1
143807	E04-15	0.7	706.8	0.6	181	0.1	3.9	6.1
143808	E04-15	0.4	9.3	0.7	144	<.1	0.5	0.5
143809	E04-15	0.6	52.4	0.7	236	0.1	4.5	2
143810	E04-15	0.4	86.1	0.6	138	<.1	2	1.8
143811	E04-15	0.5	564.9	0.6	145	0.1	5	15.5
143812	E04-15	0.3	93.5	0.5	130	<.1	1	0.4
143813	E04-15	0.3	1579.1	0.5	63	<.1	1.6	0.5
143814	E04-15	0.5	78.8	0.7	365	<.1	0.6	0.2
143815	E04-15	0.4	118.6	0.9	176	0.1	1.2	0.9
143816	E04-15	0.4	2523.1	0.8	46	0.2	25.1	0.3
143817	E04-15	<.1	115.9	<.1	139	1.8	1.4	4.5
143818	E04-15	0.4	166.7	0.9	180	0.1	1.9	1.6
143819	E04-15	0.4	258.3	0.9	166	0.1	3.9	0.1
143820	E04-15	0.2	385.8	0.7	305	<.1	0.9	1.4
143821	E04-17	0.5	3.6	0.9	108	<.1	2.2	0.4
143822	E04-17	0.7	7.4	1.8	40	<.1	2	5.4
143823	E04-17	0.4	5.2	1.3	52	0.2	2.6	5.3
143824	E04-17	0.4	8	1.1	66	<.1	5.4	2.1
143825	E04-17	0.2	<.5	0.4	32	<.1	0.3	0.2
143826	E04-17	0.3	1.5	0.9	53	<.1	0.3	1.2
143827	E04-17	0.4	1.1	1	42	<.1	0.4	1.6
143828	E04-17	0.3	5	0.7	29	<.1	6.8	0.7
143829	E04-17	0.4	1494.8	0.7	70	<.1	40.2	0.5
143830	E04-17	0.3	2	0.7	36	<.1	0.7	0.2
143831	E04-17	2	5.1	3.7	30	<.1	1.3	0.8
143832	E04-17	0.8	2.7	2.1	31	<.1	1.1	0.6
143833	E04-17	0.9	7.7	2	49	<.1	2.2	1.6
143834	E04-17	0.8	15.1	1.6	45	<.1	1.7	0.5
143835	E04-17	0.5	239.3	1.2	64	<.1	6.2	6.6
143836	E04-17	1.2	391.3	2	76	<.1	5.6	0.5
143837	E04-17	3.4	4.3	4.3	68	<.1	1.4	0.1
143838	E04-17	2	103.8	3.7	118	0.1	5.6	0.1
143839	E04-17	2.3	9.5	4.7	97	<.1	1.5	0.1
143840	E04-17	3	16.2	6.9	82	<.1	2	0.1
143841	E04-17	1.2	358.5	2.9	124	0.1	7.2	0.2
143842	E04-17	2.5	335.5	4.3	113	0.1	8.8	0.4
143843	E04-17	1.1	644.5	2.7	188	0.2	21.6	0.6

SAMPLE #	DDH #	V ppm	Ca %	Ρ%	La ppm	Cr ppm	Mg %	Ba ppm
143795	E04-15	35	3.03	0.073		19.6	1.08	78
143796	E04-15	32	3.67	0.06	4	15.3	0.72	37
143797	E04-15	76	1.42	0.072	4	27.8	0.98	56
143798	E04-15	68	1.56	0.077	4	25.3	0.9	183
143799	E04-15	66	1.76	0.073	4	25.8	0.96	104
143800	E04-15	8	3.04	0.046	3	6.3	0.58	120
143801	E04-15	29	2.5	0.054	4	. 14	0.84	72
143802	E04-15	56	2.79	0.083	6	19.8	1.19	251
143803	E04-15	41	2.68	0.069	5	20.5	0.78	105
143804	E04-15	66	2.87	0.077	5	26.4	1.16	28
143805	E04-15	58	2.19	0.064	5	23.7	1	49
143806	E04-15	36	2.88	0.064	5	15.6	0.89	18
143807	E04-15	30	2.7	0.07	4	12	0.81	23
143808	E04-15	80	2.38	0.076	5	35.1	1.19	27
143809	E04-15	63	3.3	0.065	6	26.5	1.07	44
143810	E04-15	75	2.2	0.079	6	33.1	1.04	22
143811	E04-15	41	2.73	0.066	4	19	0.84	81
143812	E04-15	42	2.66	0.051	4	18.8	0.7	25
143813	E04-15	10	0.99	0.035	2	4.7	0.29	35
143814	E04-15	45	4.88	0.063	6	5 17	1.19	46
143815	E04-15	58	2.24	0.071	5	25.5	0.91	44
143816	E04-15	10	0.93	0.053	3	5.7	0.17	16
143817	E04-15	3	6.01	0.003	2	3.1	0.06	3
143818	E04-15	75	3.72	0.081	6	36.7	1.4	23
143819	E04-15	35	3.28	0.076	5	18.9	1.02	58
143820	E04-15	27	3.45	0.083	5	10.6	1.32	28
					-			
143821	E04-17	72	3.98	0.133	4	17.2	2.13	22
143822	E04-17	65	1.63	0.061	4	30.2	0.9	10
143823	E04-17	79	1.86	0.067	5	35.2	1.12	15
143824	E04-17	77	2.02	0.072	5	33.1	1.16	15
143825	E04-17	96	1.78	0.095	2	5.5	1.05	23
143826	E04-17	62	1.33	0.077	4	21.9	0.77	22
143827	E04-17	73	1.21	0.068	4	23.8	0.9	39
143828	E04-17	42	1.23	0.046	3	13.8	0.49	26
143829	E04-17	43	3.01	0.045	5	19.2	0.74	47
143830	E04-17	60	1.03	0.045	4	6.8	0.78	20
143831	E04-17	33	1.17	0.03	3	7.9	0.32	13
143832	E04-17	54	1.31	0.045	3	8.2	0.62	15
143833	E04-17	61	1.62	0.075	4	8.2	0.74	18
143834	E04-17	63	1.16	0.076	5	8.9	0.79	22
143835	E04-17	40	2.14	0.063	4	5.5	0.64	45
143836	E04-17	33	2.61	0.06	F	5.3	0.51	24
143837	E04-17	57	1.43	0.051	5	8.2	0.71	41
143838	E04-17	39	2.67	0.057	6	6.5	0.63	38
143839	E04-17	33	2	0.056	7	6.2	0.58	25
143840	E04-17	18	1.45	0.027	۲ ج	5.1	0.29	 19
143841	E04-17	15	2.17	0.062	4	. 3.1	0.37	15
143842	E04-17	12	1.93	0.064	Ę	2.8	0.45	27
143843	E04-17	7	1.66	0.032	4	3.6	0.2	13

SAMPLE #	DDH #	Ti %	B ppm	AL	%	Na %	K %		W ppr	n	Hg pp	om
143795	E04-15	0.007		11	0.84	0.015		0.24		0.4	011	0.08
143796	E04-15	0.007		9	0.9	0.009		0.25	>100			0.13
143797	E04-15	0.135		5	1.29	0.033		0.1		0.5		0.01
143798	E04-15	0.111		9	1.26	0.04		0.1		0.4		0.01
143799	E04-15	0.115		13	1.21	0.035		0.11		3.5		0.01
143800	E04-15	0.001		7	0.51	0.003		0.21	>100			0.35
143801	E04-15	0.002		9	0.71	0.014		0.21		45.4		0.07
143802	E04-15	0.029		14	1.1	0.021		0.27		1.2		0.19
143803	E04-15	0.024		12	0.98	0.019		0.26		1.4		0.02
143804	E04-15	0.036		12	1.03	0.025		0.2		0.2	<.01	
143805	E04-15	0.043		7	0.77	0.033		0.13		2.3		0.01
143806	E04-15	0.002		10	0.8	0.014		0.28		0.1		0.02
143807	E04-15	0.013		7	0.59	0.011		0.25		0.2		0.03
143808	E04-15	0.058		6	1.28	0.038		0.15		0.1		0.01
143809	E04-15	0.006		9	0.94	0.026		0.17		0.1		0.63
143810	E04-15	0.057		11	1.21	0.032		0.16		0.1		0.18
143811	E04-15	0.008		8	0.89	0.016		0.22		0.2		0.03
143812	E04-15	0.059		8	0.86	0.02		0.14		0.7		0.02
143813	E04-15	0.001		9	0.42	0.003		0.21		0.1		0.03
143814	E04-15	0.011		12	0.91	0.024		0.2		0.2		0.04
143815	E04-15	0.042		9	0.97	0.028		0.18		0.1		0.02
143816	E04-15	0.001		7	0.41	0.004		0.27		0.4		0.05
143817	E04-15	<.001		2	0.05	0.002		0.04		49.1		0.4
143818	E04-15	0.009		6	1.4	0.02		0.22		0.7		0.01
143819	E04-15	0.002		12	1.25	0.01		0.32		2.7		0.05
143820	E04-15	0.001		10	0.65	0.024		0.24		0.2		0.05
143821	E04-17	0.063		6	2.04	0.022		0.26		0.5	<.01	
143822	E04-17	0.103		11	1.21	0.046		0.07		20.8		0.02
143823	E04-17	0.088		14	1.17	0.04		0.09		2.8		0.04
143824	E04-17	0.047		6	1.18	0.037		0.12		1.4		0.02
143825	E04-17	0.155		10	1.67	0.044		0.12		0.5		0.01
143826	E04-17	0.114		7	1.22	0.045		0.09		0.2		0.01
143827	E04-17	0.118		7	1.32	0.045		0.14		0.3		0.01
143828	E04-17	0.065		6	0.96	0.035		0.06		0.4		0.02
143829	E04-17	0.011		8	0.81	0.017		0.16		6.7		0.03
143830	E04-17	0.118		7	1.06	0.037		0.08		0.5		0.01
143831	E04-17	0.062		5	0.62	0.045		0.04		0.6		0.01
143832	E04-17	0.099		6	1.01	0.041		0.07		1.2		0.01
143833	E04-17	0.103		9	1.12	0.046		0.11		0.6		0.01
143834	E04-17	0.105		8	1.15	0.04		0.12		0.3		0.01
143835	E04-17	0.037		9	0.87	0.024		0.23		0.9		0.02
143836	E04-17	0.016		8	0.77	0.02		0.26		0.4		0.02
143837	E04-17	0.079		4	0.99	0.045		0.11		0.3		0.01
143838	E04-17	0.017		7	0.9	0.032		0.19		0.3		0.01
143839	E04-17	0.01		5	0.89	0.036		0.2		0.1		0.01
143840	E04-17	0.004		5	0.51	0.04		0.16		0.1		0.02
143841	E04-17	0.001		8	0.78	0.018		0.3		0.1		0.02
143842	E04-17	0.001		11	0.83	0.017		0.31		0.2		0.02
143843	E04-17	0.001		5	0.41	0.013		0.21		0.1		0.01

SAMPLE #	DDH #	Sc ppm TI p	pm S%	G	3a ppm	Se ppm	Au ppb**
143795	E04-15	3.8	0.1	0.89	3	0.8	169
143796	E04-15	2.3 <.1		0.79	3	0.9	119
143797	E04-15	2.1 <.1		0.46	7	0.9	13
143798	E04-15	2.4 <.1		0.56	6	1.1	6
143799	E04-15	2.3 <.1		0.61	7	1.1	3
143800	E04-15	1.3 <.1		0.94	1	1.4	1176
143801	E04-15	2.8 <.1		1.54	3	3.8	149
143802	E04-15	3.8 < 1		0.48	5	0.6	64
143803	E04-15	2.6 < 1		0.86	4	1.3	1769
143804	E04-15	38<1		0.93	5	21	85
143805	E04-15	33<1		0.63	4	1.5	8
143806	E04-15	36<1		0.87	3	1.0	177
143807	E04-15	31 < 1		1 39	2	3.5	815
1/3808	E04-15	3.8 < 1		0.36	7	0.0	12
143800	E04-15	0.0 <.1 4 1 < 1		1 1 2	5	0.0	50
143810	E04-15	4.1 <.1		0.53	7	2.1	70
143010	E04-15	4.5 <.1		1.02	1	0.7	70
143011	E04-15	3.0 <.1		1.03	3	2.1	721
143012	E04-15	2.3 <.1		0.49	4	0.7	90
143813	E04-15	0.8 <.1		1.07	1	0.5	3004
143814	E04-15	3.4 <.1		0.38	4	0.6	93
143815	E04-15	3 <.1		1.07	5	2.4	155
143816	E04-15	0.8 <.1		1.46	1	0.7	2611
143817	E04-15	1.2 <.1		0.16 <	:1	0.7	142
143818	E04-15	4.6 <.1		0.47	6	0.5	188
143819	E04-15	3.4 <.1		0.74	4	0.6	335
143820	E04-15	5.2	0.1	0.6	2	0.8	435
143821	E04-17	2.5 <.1		0.85	12	1.1	10
143822	E04-17	2.1 <.1		0.57	7	0.7	8
143823	E04-17	4 <.1		0.95	7	1.9	6
143824	E04-17	3.5 <.1		0.9	7	2.2	13
143825	E04-17	2 <.1		1.04	8	0.7	<2
143826	E04-17	1.5 <.1		1.79	7	2.9	2
143827	E04-17	1.9 <.1		1.58	7	2.1	5
143828	E04-17	1.3 <.1		0.96	5	1.5	7
143829	E04-17	1.5 <.1		0.96	4	1.7	1642
143830	E04-17	1.3 <.1		0.42	5	1	5
143831	E04-17	1.2 <.1		0.64	4	1.6	7
143832	E04-17	1.5 <.1		0.57	6	1.3	3
143833	E04-17	1.6 <.1		0.74	7	1.4	9
143834	E04-17	1.8 <.1		0.65	6	0.7	17
143835	E04-17	1.6 <.1		1.23	4	2.2	274
143836	E04-17	1.4	0.1	1.19	3	1.6	447
143837	E04-17	2.1 <.1		0.51	6	0.9	8
143838	E04-17	1.6 <.1		0.49	4	0.7	119
143839	E04-17	1.6 < 1		0.31	4	<.5	23
143840	E04-17	11 < 1		0.26	2	0.6	20
143841	E04-17	11	0.1	1.04	- 3	0.9	439
143842	E04-17	12	0.1	0.63	3	0.0	356
143843	E04-17	0.6 < 1	0.1	0.63	1	1	644
		0.0		0.00	•		0.4

SAMPLE #	DDH #	FROM m	TO m	LENGTH m	SAMPLE	Mo ppm	Cu ppm	Pb ppm
143844	E04-17	132.40	133.00	0.60	D143844	2.2	96.5	4
143845	E04-17	136.30	137.20	0.90	D143845	449	36.1	7.3
143846	E04-17	140.33	141.65	1.32	D143846	368.8	55.8	4.3
143847	E04-17	141.65	142.75	1.10	D143847	205.5	58.4	10.3
143848	E04-17	142.75	143.75	1.00	D143848	577.2	101.7	11.3
143849	E04-17	143.75	144.75	1.00	D143849	13.7	201.9	7.8
21301	E04-17	144.75	145.75	1.00	21301	10.4	153.1	4.3
21302	E04-17	145.75	146.75	1.00	21302	44	64.6	7.1
21303	E04-17	146.75	147.75	1.00	21303	29.1	208.2	4.7
21304	E04-17	147.75	148.75	1.00	21304	181.2	127.9	7
21305	E04-17	148.75	149.75	1.00	21305	900.7	38.2	18.8
21306	E04-17	149.75	150.75	1.00	21306	>2000	87.4	29
21307	E04-17	150.75	151.75	1.00	21307	213.3	229	6.3
21308	E04-17	151.75	152.35	0.60	21308	158.9	180.5	4.3
21309	E04-17	158.90	159.90	1.00	21309	74.2	101.8	7.7
21310	E04-17	183.90	184.50	0.60	21310	203	39.2	9
143850		GRAB	31727E / 56	53996N	D143850	10.7	143	11.5

**: 30 GRAM SAMPLE BY FIRE ASSAY / ICF

SAMPLE # [DDH #	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm
143844 E	E04-17	45	0.3	15.8	10.2	258	2.08	3555.5
143845 E	E04-17	19	0.1	4.4	6.3	175	1.24	465
143846 E	E04-17	13	0.1	4.7	5.7	120	0.97	516.7
143847 E	E04-17	18	0.1	2.4	3.7	160	1.07	705.2
143848 E	E04-17	39	0.5	7.1	11.7	261	2.46	3668.9
143849 E	E04-17	47	0.3	6.6	9.4	269	2.59	683.4
21301 E	E04-17	39	0.1	6.8	9.2	220	2.26	415.6
21302 E	E04-17	30	0.1	3.7	6.2	173	1.42	548.8
21303 E	E04-17	50	0.1	6.7	10.4	208	2.53	268.4
21304 E	E04-17	36	0.1	6.4	11.3	181	2.48	36.5
21305 E	E04-17	37	0.1	7.9	11.6	205	2.53	17.6
21306 E	E04-17	42	0.1	8.1	10.9	218	2.38	78.4
21307 E	E04-17	35	0.2	5.5	11	164	2.71	489.7
21308 E	E04-17	43	0.3	5.1	10	186	2.46	2179.3
21309 E	E04-17	25	0.1	7.6	8.1	168	1.78	64
21310 E	E04-17	32	0.1	133.9	11.9	397	1.81	99.2
143850		205	0.1	373.8	30.4	1018	4.31	418.3

SAMPLE	# DDH #	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm
143844	E04-17	1.8	413.6	2.5	104	<.1	15	0.2
143845	E04-17	2.5	20.8	4.1	51	<.1	3.1	0.7
143846	E04-17	1	47.5	2.2	57	<.1	3.9	0.4
143847	E04-17	4.2	22.9	6.4	74	0.1	3.5	0.8
143848	E04-17	0.6	527.1	1.7	122	<.1	16.3	0.8
143849	E04-17	0.5	76.3	1.4	100	0.1	5.5	1.8
21301	E04-17	2	34.1	3.5	68	<.1	4.3	0.2
21302	E04-17	3.5	16.1	6.3	79	<.1	5.8	0.3
21303	E04-17	0.9	1.2	2.1	68	<.1	3.8	0.3
21304	E04-17	0.6	1.9	1.4	51	<.1	1.1	1
21305	E04-17	0.6	1.1	1.1	62	<.1	0.9	2.9
21306	E04-17	0.9	1.9	2.1	82	<.1	1.5	4.5
21307	E04-17	0.5	7	1.1	55	<.1	2.9	0.9
21308	E04-17	0.5	169.5	1.3	64	<.1	9.7	0.1
21309	E04-17	1.8	0.7	5.2	67	<.1	1	0.3
21310	E04-17	2.4	1.6	7.3	55	<.1	1.7	0.8
143850		0.2	9.8	0.7	12	0.8	6.7	0.8

SAMPLE #	DDH #	V ppm	Ca %	Ρ%	La ppm	Cr ppm	Mg %	Ba ppm
143844	E04-17	20	1.83	0.085	5	i 4.1	0.52	17
143845	E04-17	17	1.14	0.026	3	4.4	0.22	12
143846	E04-17	9	1.32	0.016	2	. 6.2	0.12	9
143847	E04-17	18	1.83	0.025	Z	5.4	0.24	16
143848	E04-17	25	2.44	0.074	5	5.3	0.48	24
143849	E04-17	51	2.24	0.071	5	6.8	0.72	71
21301	E04-17	50	1.58	0.064	5	5 7.9	0.65	28
21302	E04-17	26	1.57	0.041	6	5.3	0.36	105
21303	E04-17	62	1.51	0.066	5	; 9	0.7	62
21304	E04-17	71	1.3	0.072	Z	8.1	0.68	21
21305	E04-17	62	2.02	0.074	Z	8.1	0.61	18
21306	E04-17	76	2.05	0.072	5	9.4	0.69	59
21307	E04-17	67	1.32	0.066	Z	10.5	0.69	21
21308	E04-17	54	1.95	0.068	Z	7.2	0.69	40
21309	E04-17	44	1.39	0.05	5	5 20.1	0.43	31
21310	E04-17	36	1.24	0.006	3	125.8	1.68	26
143850		60	0.19	0.06	6	5 144	3.98	65

SAMPLE #	DDH #	Ti %	B ppm	AI %	Na %	K %	W ppm	Hg ppm
143844	E04-17	0.005	8	0.91	0.011	0.32	2 0.3	0.02
143845	E04-17	0.023	4	0.4	0.036	0.14	4 0.5	0.01
143846	E04-17	0.003	3	0.24	0.019	0.1	1 0.4	0.01
143847	E04-17	0.006	6	0.46	0.044	0.1	5 0.6	0.01
143848	E04-17	0.01	11	0.8	0.019	0.2	3.3	0.03
143849	E04-17	0.061	8	0.97	0.024	0.22	2 0.8	0.01
21301	E04-17	0.101	8	0.94	0.043	0.1	5 0.8	0.01
21302	E04-17	0.041	7	0.63	0.035	0.19	9 0.7	0.01
21303	E04-17	0.098	6	0.97	0.042	0.14	4 0.6	0.01
21304	E04-17	0.108	8	1.02	0.046	0.0	3 0.6	0.01
21305	E04-17	0.093	7	0.89	0.049	0.0	7 8	0.01
21306	E04-17	0.079	6	0.81	0.038	0.13	3 16.8	0.06
21307	E04-17	0.095	101	0.98	0.042	0.1	1 2.1	0.02
21308	E04-17	0.068	33	1.01	0.031	0.18	3 2.9	0.02
21309	E04-17	0.076	13	0.78	0.047	0.1	1 1.6	0.01
21310	E04-17	0.011	3	0.91	0.031	0.0	5 0.1	0.02
143850		0.012	6	2.22	0.015	0.18	3 1.1	0.04
SAMPLE #	DDH #	Sc ppm	Tl ppm	S %	Ga ppm	Se ppm	Au ppb**	
----------	--------	--------	--------	------	-----------------	--------	----------	
143844	E04-17	1.3	0.1	0.9	95 3	3 0.9	490	
143845	E04-17	1	<.1	0	.6 2	2 1.1	20	
143846	E04-17	0.6	<.1	0.5	57 ⁻	1 1.4	53	
143847	E04-17	0.9	<.1	0.3	39 2	2 0.7	30	
143848	E04-17	1.4	0.1	1.5	51 :	3 1.6	609	
143849	E04-17	2.2	<.1	1	.3 క	5 1.4	89	
21301	E04-17	1.7	<.1	0.7	77 5	5 0.5	39	
21302	E04-17	1.2	<.1	0.5	52 3	3 0.6	18	
21303	E04-17	2	<.1	1.1	1 6	6 1.1	8	
21304	E04-17	1.5	<.1	1.2	21 7	7 2	5	
21305	E04-17	1.3	<.1	1.9	93 6	6 3.2	4	
21306	E04-17	1.7	<.1	2	.2 6	6.4	4	
21307	E04-17	1.8	<.1	1.2	24 6	6 2.1	15	
21308	E04-17	1.5	<.1	0.9	99 5	5 0.6	193	
21309	E04-17	1.4	<.1	0.7	74 t	5 1	4	
21310	E04-17	1.5	<.1	0.8	54 5	5 1.7	9	
143850		4.1	<.1	<.05	8	3 <.5	9	

**: 30 GRAM SA

TABLE 4: RE-ANALYSIS OF SAMPLES FOR METALLIC GOLD

TABLE 4: RE-ANALYSIS OF SAMPLES > 1 GRAM/TONNE FOR METALLIC GOLD

Acme file # A406433R	Received	: NOV 17 2	2004 * 20	0 sam	ples in	this disk file.
ELEMENT	S.Wt	N Au	Au	Dup	p Au	Tot Au
SAMPLES	gm	mg	gm/mt	gm	ı/mt	gm/mt
SI	360	<.01	0.01	-		0.01
D 143668	508	1.58	21.19)	22.3	24.3
RRE D 143668	533	1.03	26.07	′ -		28
D 143725	408	0.02	1.01	-		1.06
D 143765	514	<.01	0.78	} -		0.79
D 143766	505	<.01	0.82	2 -		0.82
D 143767	514	<.01	0.69) -		0.69
D 143768	503	<.01	1.07	' -		1.07
D 143769	520	<.01	0.85	5 -		0.85
D 143771	477	<.01	1.03	3 -		1.03
D 143774	516	<.01	0.95	5 -		0.95
D 143778	477	<.01	1.21	-		1.21
D 143788	499	<.01	1.07	′ -		1.07
D 143790	486	<.01	1.22	2 -		1.22
D 143800	504	<.01	1.33	} -		1.33
D 143803	484	<.01	1.62	2 -		1.62
D 143813	265	0.2	4.86	; -		5.61
D 143816	369	<.01	2.77	-		2.77
D 143829	515	<.01	1.58	3 -		1.58
STANDARD AU-1 <	1	<.01	3.35	5 -		3.35

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 J-Pacific Gold Inc.

NOTE:

S.Wt = Starting Weight in grams N Au = Particulate gold content in milligrams gm/mt = grams per metric ton

Dup Au = Duplicate analysis

Tot Au = Total gold content

APPENDIX 1: ACME ANALYTICAL LABORATORIES ASSAY CERTIFICATES

									•גזר	io si	sKje	ue ə	վի ին	o te	ວງເ	actus	for	səit	iJid	តរៀ	әцт	səwn	sse ;	этэА	• Jua	∍il⊃	әцт	ty of	n9qor	ıd Je	itnə	biłn	e co	үз р	qerec	isnoc	are	stlu	All resu
	A	R	T	È,	\mathcal{R}	Èp)																																	
	37- 2	6			Clai	Ľ	E											•••		• त न		7.7 7		57 37			+007		٦¥	: নেল	사고편	৲ব্য	न्त्रा	wа				т —	
		b	,	1	ν		6								ታ	9 G	1	nor	\checkmark	• വഷ	.11.6	Mu	ava	ча	79.17 V	.u	700C	62 JI	ĨV	•03	1173	0ad	2,11	vu.			¥.C	1	1
	Y	Ø3	<u>র্</u> যু	<u>ل</u> ة م	C	<u>919</u>	. YT	- פורו	sunj NTOS	t Rei	TIMI 29[9	ILG R	E va	I GMA	s suc	unnes TH9AS	stel D Cl	RY AI	, Bu VCLO	inni REFR	6əq i C	ıb (TTA ' ms2	ארבי אררג:	ITAA AMA2	9 Э8 А.Т.А	YAM I M	У ЕВАГЗ	NIM 3 Assa	EIBE 20WE	. ST Y8	**UA IMI⊥	РЕК	09 dn s	8120 CEED	sock i Sn exi	ITAAT YPE:	rnadi (t a.	- 2∀WЪГ (<) CON
										SM	ICb-	βλ	'AZED	IANA	' TW	01 01	L Q31	סורח.	18,	е но	INO 8	C FOI	•93)	a 56	TA (2-H2C	onh-	S HCL	-2-2	אר 2	HTI	IED M	EACH	רב ר	IGMA2	5 W9 C	S ° 0 ·	- XQ	L GROUP 1
- 89°8 86°9	6 2 T2 t T6	313 713 72	1 .8 2 1.3 7 4.8	90° 12 19	;> [[[> 5. - 4 < - 3 1	18 3 05 1 05 1	. 5. . 2.	.22 .24 .14 4	200 003 220	86 99 19	τ9τ Ζ Ζ	260 100 100	134 32 51	99. 97. 90	5.98 5.9 84.2	15 1 3 3	063 062 044	97. 88. 03.	09 15 1 9 1	2. 4. 0.0	3.9 12.0 10.0	1. 2. 9.ð	97 97 99	9. 2 9. 8 9. 6	2.04 3.0011 3.04	2 ⁻⁶	18-0 292-3 292-3	66 [°] 58 [°] 68 [°]	747 2 250 1 228 1	6'T1 0'Z 0'9	5'72 8'5 9'4	€. ⊅. 5 £.	141 113 52	5 6 8 8 9 0	44-8-2 47-4-6 32-4-2	6.0 1 2.3 2 2.3	ττ- ε τ	ISEE41 (148541 (UA/220 G9AGNAT2
5.65 5.65	5 I 6 9 I 6	21.1 21.1	4.1 S 1 1.4	۲۲. ۵3	ιī.	> 9.	05 S	. 4. . 4.	6T. 08.	200 200	. 42	9 I 8	Т00 Т00	38 378	72. 72.	9.4 7.8	2 2	980 777	29 29	2 2 3 2 3	⊅. ⊅.	1.21 5.5	[. [.>	79 773	7. 1 7. 1	1045.1 308.1	6. 2.	749.2 749.2	9 TS. I 84.	181 J 182 J	2'S	Z.2	τε. ε.	88 78	2.8 7.1	9.65 9.65	9.9 0.6	2	0 143613 0 143615
80.8 10.4 81.8	9T 6 7T <u>9</u> ET 6	57 - 57 - 57 - 57 -	G.> Z 8. I 8. S	. 46 . 50 . 24	I I I	> 5 > 2 > 4 <	03 S 05 J 05 J	. I. . I.	- 12 - 50 - 54	200 200 810	92 92 92	4 2 9 J	T00 T00 S00	45< 33 184	61. 55. 00.	6.02 5.2 7.3	2 2 2	. 036 1036 1024 1024	74 0 74 0 74 0	4 I 2 Z 23 3	I. 2. I.	2.5 7.7	Γ. Γ. δ.	09 92T 09T	9. 1 9. 6	7°999 5°179 5°67I	д. 1. Г.	4.705 4.11,7 4.205,4	.35 .44 I .35	1 69 1 310 1 254 5	3°3 : 8°3 : 8°3 :	1.4 8.8 7.9	ε. ε. Σ.	27 92 2112	9.5 2.6 3.5	12.9 4 33.6 1 12.9 4	4.3 8.1 8.2	I) 143611) 143605) 143600
11.5 78.2	81 IS 21 IS	36 ⁻	5.1 1 2.1 2	60 67	TT.	> 0. > G.	0† 3 01	. Į.	.30 14	011 200	. 10 72.	⊺6 †	900 00J	- TS - 98	21. 66.	14.3 7.4	Б С	270. 272	20 70	34 S 3 I	5. .4	9.01 8.55	I. I	140 98	4. 6	8°168 5'98'6	₽. 1.	6.229 885.9	23 I 23 S	Z 99t T T81	γ <u>7.</u> 6 Στ.ε	7.6 8.5	6.1 8.	27 50	2.8 2.8	2.4.2 14.2	1 6.2 2.6	Ţ) 143890) 143886
- 4.49 14.49	GT (71 9 4	.35 .35 .57	0'T 8 9' 8 9' 1	.46 242 29	- T.	. > 2	03 2 03 2 03 3	. ð. . I. . S.	. 40 . 27 . 15	010 710 003	96. 86. 81.	10 10 ⊽	T00 T00 T00	. 74 273 18<	60. 87.	5.2 1.01 4.2	9 7 7	080 690 710	06 II IV	Z0 3 Z0 3	С. 0.5 С.	310 272 310	I. I.	350 548 71	4. 7 2.2 (7.1 7	2.961).862 7.778	S. 8. ₽.	0.386.0 5.804	1 28. 10. 85.	2 [2] 53 5 52 62	1.5 7.7 2.1	8.5 7.3 1.9	4. ⊅. S.	43 48 54	0°0; 0'0;	12.5 17.3 17.3 17.3	5.4 5.8 4.2	2) 143826) 143824 3E D 143224
89.1 00.4	TT 8	30. 32.	G`> Į G`> ∤	31 89	- I	:> E.	0T 0S S	. S.	91 74	₩00 170	6T 6T	† ⊺0⊺	Т00 Z00	78< 78<	90° 78'	4-9 4-3	2 9	⊅T0 ∠80	745 16	5 3† 5	S. ₽.	1.8 1.8	ε. 2.	78 222	7.18	2°267 3°62	2. 2.	447.2 542.9	T 98. 96	101 †56 5	5°7	5.9 5.3	2. 4.	56 81	6°T 8°0	1 1.91 1 1.91	1.1 1.1	7) 143224) 143241) 143241
2.97 84.00	ET 1 21 9 71 8	76'I 91' 21'	7. ð 8. 2 8. 2	91 97 38	ιι. . τ	. > 4. . 0. . ð.	03 J 05 3 03 J	. <u>S</u> . . <u>S</u> .	- 35 - 35 - 24	002 013 055	. 55. 82. 35.	Ζ Ι 6 Ι 9	001 003 032	. 95 . 48 . 36	50 141	2.21 2.21 20.1	2 Д Д	890 TOT 280	60. 85.	2 14 S 2 19 89	₽' ₽' ['	4.1 2.4	Γ.> Σ.	981 201 211	G 8 I'I 6 9' 4	8 2991 5'9TT 2'66	ε. ε.	2.36.3 436.3	92 92 82	2 608 8 99t 2 88t	202 781 790	5 9 ت 2 8 ت 2 8	יי די די	38 23] 29	5.3 2.3	0.88 92.0 2 95.0 2	2°0 2°0	Z I) 143472) 143472)
89°2 57°1	21 8 11 7	22. 32.	G'> [: G'> [:	10 < 55 <	T T	> Z > Z	T0 90	. 8.	20 90	200 203	. II. . 70.	Z	100 100	->8 ->8<	50. 20.	7.7 7.8	[> [004 004	. 46 . 52	3 5	ε. Σ.	7.5 7.0	['>	16 14	['> '	180.5	[.>	21672 27912	7 Z2 Z2	701 98	1 6' E'I	2.I 7.I	5. 1.	S 9I	9.3 8.3	3.9 I 2.7 I	3.0 3.0	-) 143468) 143446
90 t 172 E 199 t	ZET S ZET S	34. 90.1 94.	9.> [: 2.> [:	19 27 30 <	· I · I	.> 2. .> 5.	03 03 03	. S. . E.	62 50 75	. 200 . 200 . 210	. 71. . 12.	с С С	100 100 100	33< 33<` J2	40. 80. 85	77 87 97	I Z	190 900 020	- 42 - 38 - 38	2 5 7	1.1 1.1	4 2 I	I. I.	901 81 02	ε. (Σ. 8	3-292.0 3-898 392.0	ξ. Γ.	8 761 8 979 1 978	2 19 7 20. 7 72.	1 92 1 96 72	8.I 8.I	1.2 2.0 8	ε. 5.	77 75 72	0.8 6.0	8 8 2 13 8	2 E 9 Z L 7	2 2 1	143444 143444 143443
17.2 15.54	EI S	92. 92.	ð.> ð ð. £	23 41	- T - T	2 <:	03 J 03 J	. 2. . 4.	1 72. 28	720 720	92 57	9 I S	800 200	120 ⁻ 57 -	: 98 : 74	2°9 2°01	9 2	043 620	68 69	52 J 24 S	ľ. ľ.	2.9 7.2	τ. 2.	150 155	5.1.4	16°C	ς. ε.	012't t93't	T 29 SS	576 T 826 S	2 9 9 2 9 9	6.5 7.3	τ. ε.	29 83	4.9	T 6.98	8.7 8.7	T Z) I4344J 14344J
10.12 10.12	21 1 71 1 91 (11 · 19 · 58 ·	8. S 1.1 8 2.> 2	26 15 75	. [. [. [. > 2. . > 2.	20 T 90 T 90	. 8. . 4.	- 56 - 33 - 33	010 010 120	. <u>1</u> 2. . 18. . 87.	с 2 8	τοο τοο τοο	- 97 - 53 - 09	-38 -138 -138	2.2 7.8 8.4	4 8 8	180 TSO TSO	- 57. - 25. - 73	1 01 7 71 7 6	д. 5.	2.0 4.4 8.5	[' [' [106 543 184	2 L 0 9 T 1 9 T 1	5 221 277 4 377 4	4. 5.	6.840 6.810 9.818	E IO. 28. 78.	I 991 I 883 I 883	2 6 9 2 6 9 2 7 9	1.3 8.5 8.5	ε. ε.	72 49 74	9'6 9'1	6 79 I I 99	5 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2	143438 143456 143459
75.47 7.10	4 Jt 9 J3	32. 37	2 [.] 9	74 57	. [. [· 0·	T 20	. 2. . 8.	30	013 ⁻ 014 -	· 29.	L L	100 100	44 - 45 -	32. 25	4.0 2.3	۲ 8	045 037	. 62. 06.	ττ τ9	6'1 0't	1.0 Z	τ. τ.	174 124	7.4.2 4.2	4.94S	8.I I.I	8-824 167-3	- 28 - 58	554 I 531 I	5 4.8 7 0 5	2.5 4.6	5. 5.	44 45	7.8 2.2	1 2 2 1 2 2	2.7 2.7	T	1434I0 1434I0
3.80 1.13 -) I3 8 J4	10.> 38.8 21.	9.> 5 9. I 2.> I:	15 92 02 <	. I . I . > I	;> 1 ;> 4 ;> 2	90 90 10	. I. . S.	91 21 > 10	τ 1 0 200 223	- 29. - 25. - 20.	₽ 5 [>	800 100 100	- 43 - 95 ->52	τε. οτ. το.:	2.7 7.5 2.7 2	11 2 [>	620 610 100	. 04. . 12. .>91.	161 7 <j< th=""><th>[.> č. [.></th><th>> I. 5.21 > 7.</th><th>I. 2. I.</th><th>73 34 3</th><th>1.> 8. 0.4.0</th><th>364.6 3120.9 8.></th><th>1.> 5.5 5.1</th><th>158°0 080°0 5°9</th><th>21 60 80 80</th><th>I 69 I 88 0I</th><th>3.6 1 3.2 2.2</th><th>2.1 7.2</th><th>I. I.</th><th>34 37 I 91</th><th>2.8 8.8 2.8</th><th>8 2.1 8 2.1 8 2.1</th><th>τ[.] 5 9.8 τ.</th><th>}</th><th>143368 I 143368 I</th></j<>	[.> č. [.>	> I. 5.21 > 7.	I. 2. I.	73 34 3	1.> 8. 0.4.0	364.6 3120.9 8.>	1.> 5.5 5.1	158°0 080°0 5°9	21 60 80 80	I 69 I 88 0I	3.6 1 3.2 2.2	2.1 7.2	I. I.	34 37 I 91	2.8 8.8 2.8	8 2.1 8 2.1 8 2.1	τ [.] 5 9.8 τ.	}	143368 I 143368 I
k∂ ⊔b⊺6	1162 °	 Հա∖ան հ≁⊔A	mqq m	dd % D S	ша L	Ju bb	ld wd S 6H	ld uud M	ړ b د √	% PN	% I∀	шdo В	1 % LL	mqc Ba	i % 6W	udd J)	udo rg	у с	۶J %	шde Л	d wda L8	i wdd qs	wdd pcq	bbw JS	udd YL	qdd n∀	wdd N	sA mqq	۲e %	wdo uW	່ wdd ວງ	wdd LN	ud 6∀	d wda uz	bbw b PP	l wdd nj	wdd ow	1	₩PLE#
	7	٦		-								-				£2£	39A	, BC	iənno	ooue/	<u>، 'ن</u>	ns iu	lber	∀ 99	ιι <u>-</u>	0771		.											ר ר
	V	\mathbb{A}	/												77 27	491	DD. TF	ਸ L ਮ ਸ	ອ ເ ວ	는려 SIS	ያአባ	ANA	ץ. ריז	rof Rof	сил	i fi HDC	GE(α_T,											$\forall \forall$
	9	т <i>L</i> т	-892	(70	9) X	.A'T	85	τε-	892	:(+0	9)2	INOI	ы		 9ਬ	:9	Δ	ря	лев	nop	NA1	<u></u> -	.S ຣ	:DNI	LSI	<u>л</u> н .	<u>э</u> 2	.98		.α1	י) צ דינ	CO RIE	IOT <i>I</i> D93	чтр 280	EAB LAB	JAL DA 2	006 117	NAL. OS	IA EMDA II)

_					٠۲	juo	sisy	geue	əųı	t of	soc	נחפן	or ac	of se	itil	ideij	әц	t səi	wnssi	e 9003	ρ Α .	tn9 i	Jo ər	lt to	σετλ	brop	lsīt	uəpı	tnop	əqt l	derec	pisno	are co	מן בפ	All res	
VER		R	A A								•••			•••		•••	ялт	AM	тяс	এয়স	E E	TAQ	: 50	1 S0	2 9NA	:0	ITVE	вов	ਬ ਬ	TAU			¥	а ∕∕	_ Data	
ST Buc	ence Lec	Clan	<u>Ya</u>								7	he	121		\mathcal{N}																			/		
a -	-y -	$\overline{\mathcal{A}}$	6									•		•5	unja	ect R	ĮэЯ	are	, ERE	y, pu	is ar	unjə	are R	RE' a	, ɓuịu	nn i bə	q sə	Jdme	5	009	0519	оск і	E: B		AMAS -	
E.	Å	U	ß	י גדודע	เยกาต	os n	A TI	א רוא	AAD 8	WPLES	AS D	ітін	авя	dna	торү	сғрас	в	KED.	DATT	/ J.T.	IAIT	ядч	38 YA	/w st	АЯЭИ П	N EWO	s ·	STIM	IL 93 ER LI	dqU ; T_A	BOW J CEEDS	N EX	IOITAS	ITNEONO	a **!!≬)) (<)	
NO TO THE REAL PROPERTY IN THE PROPERTY INTERPOPERTY	/ চাত	100				- 9	SM-43	DI YE	SED E	SYJAN.	ר ' ∀	W OL	01 0	JETUL	110 '	ROUR	ONE	ROR	о ·:	DEC 9	56 T	A OS	:H-20N	เห-าว	Н 2-2	Wr 5-	EΗ	TIW (ACHED	37 J.	I GMA2	6 W9 //sso	02.00 02.0	- XQI 10AT2 2	standard is GROUP	
- 25.8	E I'S Z	<.05	Į.ľ ð.	ε <i>ι</i> ι.	6.4	4ī.	7E0.	66°I	81	TOT.	98T	89 <i>°</i>	9.681	T3 1	060-	£7.	29	6.3	8.6	Υ.č	67	6.2 (0.44.0	6.3	9.0I	16.5	C 672	6.II	6.⊅S	б.	138	25.1	145.4	12.6	SQ QAAQNATZ	
.04 IS.80 .14 I3.29	9. T 8. T	19. 82.	I.> E. I. E.	I IO. I IO.	Т. Э.	5Ι. 72.	SI0. 810.	86. 82.	9 7	T00 T00:>	56 ⊽8<	79. 71.	2.5 I.T	с С	890. 710	24.I 96.	58 28	č. Ľ.	1.1 9.1	[`> [`>	971 17	t.2.4 ₹.2.4	2.721 4.85	9. G.	1°901 8°668	87. 2,23	549 S 130	⊅.S 7.7	2.5 1.3	ε. Σ.	97 9 01 1	8.02 8.02	7.02 20.4	2°19 2	D 143231	
22.II II.22	3 < 2	90°	['> 6'	TO.	ľ.	Ι <u>Γ</u> .	.033	69'	G ,	TOO.	7C	87.	6.3 1.01	g c	980. +00.	78. 78.	50 74	τ.	с. 2.	I.>	τ <u>ζ</u>	1°2 (17.0	4. 1.3	2.11 2.402	98.1 98.1	183 I	0.8	7.6 7.5	Ι.> Ι.>	57 S	0.4 0.4	9'0T 9'8T	7.4 8.2	D 143256 D 143258	
CZ LL OU	EVE	VC	L - Z		L		100	00 1		100			1 01	3	/90	10 0	Cr	L 	51		OTT		0.10		T. COD		, 200	0.0	0.7	۰ ۰		c·	1.20	5 0 T	(700+T 0	
-52 12.34 01 11.44	8. S	92. 92.	I.> I.	-03 -07 S	9'L 7'8<	9L-	240.	1.00 1.00	9 :6	100° 100°	71 77	18. 18.	8.EI 13.8	۲ ۲	260 260.	78.1 78.1	91 23	Σ. 7	5. 84	[.> [.>	911 891	2 L I 2 T I	0 187 0 11 0	7 9	1 6EU 1 6I	2.27 2.27	1 972 2 828	2.8 2.2	2.7 2.7	Γ.>	55 57	2-4 2	3.85	1.25 32.1	D 143252	
17.81 81.	9'>9 9'7	- 53 - 4/	I.> 8. I.> 8.	I IO: ZO:	3.4 >2.	.14 23	120.	20°T 78'	5 <u>/</u> 9	ТОО ⁻ ТОО-	S2 TP	92° 77°	10'3 0'9	с С	690° 820°	5° T0 5° TP	17 11	8. I.>	0.1 2.5	['>	5⊅T 99T	6' 9 Z'	374°9	2. 5.	309.5 554.4	5-31 1-50	33J S 543 J	⊅.5 3.4	5.8 8.8	[`> S'	97 :	5.72 27.3	0'TI T'6I	5.3 2.3	D 143252 D 143254	
68.91 89.	2.> S	τ <u>ς</u> .	I.> Ţ.	IO.	Į.	22.	900.	84.	4	100 ⁻	ΪŢ	LΣ.	0.4	ŝ	240.	82.I	εī	4.	<u>7.</u> £	ſ.>	00T	6.	6.878	ε.	6.044	1.35 1	172 1	4.9	4.9	Í.	51	Z.ð	8.72	S.II	D 143622	
17.51 20.	¢].8	23	I:> 9.	T TO'	>/.	OT:	223	<i>LL</i> .	S	700°	34	29.	9°01	g	670	18.8	98	9' T	£.	[`>	5I0	5.5	4.2	2.1	7.41	76.1	372]	['9	4.d	['	68 0+	9.6	7.IOI	9°8/1	D 143251	
01 14 12 02 13 80	8.6 4 7 3.8	U7 20°T	[> 8 [> 8	T TO.	7.I	22 11	020	10 L 179 -	. S [400. 200	21 45	97. 64.	2 01 9 01	9	280 640	10 I 79 I	27 22	2.1 1	ς. ς.	[> [>	103 704	0.5 1 1	1.8 1.8	₽.I	7.85 897	68.1	5 275 5 263	₽.ð	4.4 8.8	ζ.	30	1.7 1.7	6.902	I.014	D 143210	
- 70. 70.	G.> 8 2.> 8	τς. τς.	I.> 5. I.> 2.	E IO. E IO.	7 7	4Ι.	1E0.	1.43 1.43	9	900 [.] 900	54 52	1.23 1.23	21.3 21.3	9 9	00T. 660.	2.12 2.13	18 82	Ι.	2.I 2.I	[.>	6TT ZTT	6' 0'I'	59.1 22.5	4. 4.	262.4 254.6	81.8 02.8	483 3 481 3	9'0T 9'0T	1.01 2.9	[` [`	89 89	4°J 7'7	30 ⁻ 4	13.5 12.5	BE D 143218 D 143218	
4a.a /0.	C.> 4	07.	T.> 8.	т то.	7.	тт.	6T0.	G/*	7	200-	/T	79.	G.II	7	գգր.	6/°T	7 1 ⁄2	<i>z</i> .	₩.I	T'>	26	8.	4.84	Z-	0.045	//``	r /08	9.d	2.6	Ţ.	34	£.4	8.22	I.8I	LI9641 0	
.02 II.43	3.> 5 3	SI.	[.> 2.	T TO.	Ĩ.	II.	9201	09.	7	200.	50	57.	p.7	6	-034 -034	1.26 1.26	58	Ţ	t.	[.>	98 98	5.2	6'8 6'01	1.4	2°I†	134 70, 7	557 I	9.6	4.e	['>	54	†`∠ 6`7ĭ	7.4c	0.8 0.8	0 I†3219	
99 II 91 99 II 91	Z 8	94.	[.> č.	ε το. ε το.	τ.	91. 91.	620 ⁻	1 13 1 41	[9]	£00.	92 92	9T.I	9.71 8.	9 L	780. 200	2 92 5 32	99 82	ς.	2°7	Ţ.	591 591	9'I	116 0	9. 9	264.1	66 6	2 IES	10.4	2 ⁻ 6	τ.	09	6°Z	[.82	3.5	D 143214	
96.EI SO.	G.> T	52-	[.> [.	E IO.	Ţ.	SI.	350.	52.1	[]	700 ⁻	31	11.1	1.81	Ľ	6Z0°	78.5	22	L	8.	[>	181	8 L	76	7	7 99	U6 d	687	8.6	68	L	19	13	L 22	0 01	D 143213	
.04 I3.08 .63 I0.78	2' ΟΪ 8' Ι	87. 67.	[.>].	02 6 20.	С. Т.	2I. 81.	.026 026	06'T TZ'	[9 	900. 100.	72 76	68°T 01'	31.0 4.4	9 乙	9ZI. 0S5	2.23 5.23	9TT 9	ε. 2.	2.8 8.5	[.>	174 152	ε. σ.	23°J 0'82	2. 5.	5.11.8 8.11.8	1'52 '67 5	203 ¢ 505	9.EI	4.5 8.51	2. 2.	74 12	2.01 2.01	2°979	8.71 8.45	D 143211 D T43206	
.91 14.89	2.1 I	∠†.	I.> E.	60'	2	72.	200.	τΩ.	3	100:	>9Z	90.	0.4	ī t	EI0.	80'I	5	4. 2.1	7.6 7.4	g- T·	29 772	<u>ζ.</u>	61878	с. 5	8.4\c	2 68°	ZII 7 CI 1	5.0	6'I 7'0	8. 8.	99 77	2018 11811	3.85 2.08	15.4 12.1	D J43208	
86.41 85	1 2.1.2	1.32	τ. Υ.	I 20.	ς.	08.	400. 200	۲ <u>9</u> .	OT	T00.	08	£4.	8.5	t	080.	08.I	15	Ş.	Į.7	Į.	110	4.I	4.4041	[<u>3</u> .	£.902	2 64.3	321 2	ζ.e	8.3	Ľ	52	6.II	I.88	2.22	D 143204	
.24 IS.71	0.I S	22.	I. 0.	IO.	ε.	.22	ZIO.	IG.	8	τοo.	98	52.	8.6	9	040.	62°I	6	6.2	3.5	ſ.	96	1.4	213-3	9°T	9.975	[[†]	546]	9.4	8.4	₽.	82	7.12	t'tt	34.4	D 143201	
.08 10.66 .08 14.13	I 2°2 I <j <'9<="" th=""><th>18.1 20.></th><th>I. 9.</th><th>90. 90.</th><th>5.</th><th>12. 90.</th><th>SI0. 200.</th><th>.44 11</th><th>9 3</th><th>τοο: τοο:</th><th>38 59<</th><th>74. 74</th><th>8.9I 16.8</th><th>2 2</th><th>020. 003</th><th>97'T 90'</th><th>2 8</th><th>1.S</th><th>7.51 7.</th><th>[.></th><th>IOL S</th><th>5. Г.З</th><th>0-2309 9-63-0</th><th>8. 8.</th><th>6 260 7 69</th><th>9 77 9 9 77 9</th><th>2 222 89</th><th>8. 14. T</th><th>69 7.1</th><th>ς. Ο Γ</th><th>65 S</th><th>2.7 2.2</th><th>2 28 6.4</th><th>0.8E 0.0a</th><th>D 143486</th><th></th></j>	18.1 20.>	I. 9.	90. 90.	5.	12. 90.	SI0. 200.	.44 11	9 3	τοο: τοο:	38 59<	74. 74	8.9I 16.8	2 2	020. 003	97'T 90'	2 8	1.S	7.51 7.	[.>	IOL S	5. Г.З	0-2309 9-63-0	8. 8.	6 260 7 69	9 77 9 9 77 9	2 222 89	8. 14. T	69 7.1	ς. Ο Γ	65 S	2.7 2.2	2 28 6.4	0.8E 0.0a	D 143486	
81.41 80.	5 6. 7 5 7	20°T 17°	[.> č. I.> č.	70°	7	-14 20	900. 900.	[⊅. 61.	4 4	100°	6 T 4 <	85. 85.	6°8 6'7	3 /	980. 700.	<u>9</u> 9΄ Τ/	8 Z	т. 8.	7.7 8.5	Σ. Σ.	38 43	7.1 7.1	6.88	6. 1.4	91078 81285	767. 767.	T 101 16	2.1 1.2	1.1 6.3	ι. 2.1	25 8	30.04	9.14 9.14	49.9 44.3	D 143380 D 143312	
T/:#T /C.	<u>с</u> . т	/0.	T'~ /'	то.	с.	c7.	/00.	06.	, 0	τοο.	, r 07	c7.		-		/0.T	õ	с. С. т	0.61	- 7.	TOT	с.т	G. 404	6.	0.844	с т и	T 677	7.C	0.0	ç.	85	G'TT	8.65	8.I	0 T#336\	
IC 11 70	2 1.0 1	10.I	['> G'	50.	ζ.	36 52	200 200	36 74	8	100 100	50]t	92.	5.5 2.9	3	740.	26	9	⊅. ⊅.	5.21	S.	98	1.1	536.1	E 9'	1'996	7 09 7 09	[67]	7 G	Z.7	4.	17 C	2.6	7.75 27.4	10.4	D 143365	
.01 14.04	1 '2 2'1 '2	71.1 14.	I.> E.	1 E0.	. 4. 2.	.24 .70	IIO. 900.	55. 35	9 7	100. 100.	6 8	1.40 1.40	018 168	3 I	900. 820.	97 2011	7 8	8. S.	2.5 2.5	ζ' [75 75	6. Г Г	8.868. 8.868.	ι 7΄ Γ	8.4.8 234.8	7 99 °	1 211 I 997	. 8. LI . 8. PI	31 S 34 S	с 1. Г. р.	3E 36	0.9E	2.81 2.81	6.8I	D 143324	
- TO.	G.> [>	30.>	I.> I.	> IO.	>[`>	> IO.	LIT.	τ0.	[>	T00*	>7	IO.>	· [>	[>	100.	.>22.	۲>	['>	ſ.>	Í.>	4	[`>	G.>	Í.>	Ç.>	20.	ττ	Í.>	ς.	[.>	Ţ	4.	ς.	Ι.	IS	_
א דשעון מא זיאר אַמשטון	ac Se A Mg mgg mg	d % S	wbbw >c 11	ld wdd 5 6H	1 wdd M	% t K	% %	% [∀	udd g	% []	ь8 mqq	% Б₩	ndq T	שלכ פק	i % d	۶) %	wdd Λ	udd 19	udd qs	udd PC	nqq N2	udd Y <u>I</u>	qdd n V	wdd N	andq ₽	a∃ %	udd uW	l wdd og	udd LN	bA ₽A	udd uz	udd 9d	wdd ກງ	wdd o₩	#JJdWA2	
		-	~					-•	น่เว	sn¥ (5əJn	:	pəii	Linau	s. •	۔ ۶ <u>7</u> ۶ ۹	9/ ^	- B Je	avuos	nev	,. [†] .	s iu	nedJA	991	ւ - Ո [,]	171									7 7	History
<u>, I, I</u>									T	ə£	Seg		E0	<u>9</u> 90)₽A	#	θŢ	ŢЯ	•	ouj	L F	oŢo	ອີວ	,±Ŧ	Ļ96	<u>1-D</u>										10000
WW	1										ञ	TA:	FIC	ТЪ	IEI)	SI	SX	IA1	L A	JA5)IV	изн	EOG	ເອ				1.~~	· ···			<u></u>	700	- 097	_∖₩₩	
9T4T	- 257 (†	09)3	(AA 8	STE	- 89	62 ()	609)) INC	эна		97	ЯT :	₹9V	ວຍ	র সহ	ΙΛΠΟ	JNG	₹Λ	•TS	SÐI	NTT.	SAF	I.a	25	8	•	ТΤ	, 0, इच्च	EOR1	AATC + i b	LAB	_⊿ ⊿∆	DIT	VIAN/	ACME	

ACME ANALYTICAL	
W W	
W W	

Page 2

J-Pacific Gold Inc. FILE # A406503

-	3.43	I.C 0	90	>I.I 8		ζ <u>Γ΄</u> Ζ΄	Þ SI.	7201	66.	I 9I	660	98T	63.	7.E81	11	t60.	27.	89	8.3	3.8	9.6	97	2.6	45.0	8.6	; 0.8I	5.94	94C	12.0	54°I	ς ε.	140	24.3	7.34	12.71	I-UA\ZZO O9AQNAT
22°91	τ9.	9. I	<u>5</u> 5.	[.> č	i (εo. ε.	SI.	900	44.	L	T00.	>16	72.	3.5	3	SE0.	<u>9</u> 9.1	3 3	4.	ſ.ð	Í.>	513	9.I	7.864	8.	2.134.2	9E.I	722	4.0	₹.4	4.	53	f.8I	2.92	1.91	143 995
14.61	86.	9. I	[4]	['> 9). I	EO. ε.	SI.	£00.	. 34	9	T00	34<	12.	7.4	Ζ	120.	74.1	11	ς.	۲.ð	Į.	08	g.	342.I	ς.	1822.0	9T:T	792	3.2	3.6	ς.	52	1.21	8.7I	9.4	143953
5.72	69.	S -> 2	-52	Ţ'> ⊆	i i	[0.>S.	τī.	Z00.	.42	G	900	14	53.	2.7	Z	920.	18.1	[6	8.	8.3	Į.	85	4.	543.I	ς.	7.3513	1.14	₽ZT	3.0	9.4	ε.	43	5.92	18.4	9°7	I43630
86'II	63.	g. Į>	62.	I.> 1	: {	EO. I.	60.	£003	. EI.	7	T00.	'>G	40°	4.4	Ţ	600.	44°	τ	8.	₽.8	ε.	6T	I.	G.98ð	Í.	1476.8	īΖ	44	6'I	7.S	Τī	98	9.94	0.88	6.S	143611
J2 S2	ST.	ς:> [<i>∠</i> ⊅.	[`> ξ	: 6	50. Þ.	۲Ľ.	£00°	. 38 .	L	τοο.	70<	12.	3.9	2	8I0.	99.	4	8.	6.3	ε.	30	₽.	8.ðľ7	Ţ-	9°677I	70.I	67T	3.5	6.8	Ζ.	L⊅	I.95	8.14	0'9	143609
19.11	-33	Ğ.> ĺ	[⊅.	Į.> č). 4	<i>7</i> 0.8.	OI.	900	- 33	ç	100 ⁻	L	₽S.	4.8	2	120.	16	Ι6	£.	5.5	τ.	64	ε.	324.6	Į.	6.268	90.I	88T	6°E	5.9	Ğ.	14	8.12	5.83	0'TT	143605
12-91	t0.	G. [>	τī.	Į.> 2	;	[0.>1.:	> 90.	900	. 12 .	3	100 ·	'>∠	90-	7.A	T	400.	68.	5	S.	8.	Í.>	69	ε.	7.7S	ſ.	134.0	69.	60T	2.1	1.1	ľ.	ħ	9.4	8°TS	33.5	143264
13.31	8T.	G.> [>	- GO.	>[`> [∵> ∂	20. I.	₽0 ⁻	£00.	. CG.	τ	100.	3<	IO.	5.3	[>	100 -	SI.	τ	4.	7.I	5.	9	I.>	7.86S	[.>	> 8,172	SÞ.	02	G.	1.3	5.	54	7.80	2.2.22	8.41	199671
08.OI	09.	9. A	ĉč.	[.>]	17	SO. S.	22.	EIO.	. 48.	3	200.	3T	09.	S.8	4	290.	44	Z 6I	ε.	7.4	[:>	138	1.4	1.104	4	1264.5	2.14	292	9.7	9.9	ζ.	29	29	33 6	1 981	. 999571
94.II	52.	S. [>	II.	[.>]		TO. I.	01.	4 00	11	2	100 ·	>/	50.	1.4	I	800	10	2	<u> </u>	618		ZL	7	213.4		8 7891	89	99	51	81	ζ.	86	6 80	35 3 3	ש צו דיד	29957L
14.03	79°2	G. L	<u>9</u> 9.	[> 2		20 2	ΖL	800	53	ç	100	>6	90	66	5	75.0	29	L	2	6 UZ	5 L	96	ΖL	7 2881	9	C 8081	γιι	29	67	UV	Ч	33	L L	30 3	2 2	113262
6I.EI	1.24	6. S	<u>9</u> 9.	[:> 8	513	50. S.	82.	4 00	69.	8	T00	52	GG.	2-2	\mathbf{b}	0Z0.	6T .	Z 9	ε.	4.2	Ι.	J40	I.I	8.5101	E E.	8'960T	2.03	362	ĽL	0.0	₽.	945	8.8	28.3	23 [.] 0	143220
13°00	⊅I.	6. S	04.	τ. ε	ст.	το. S.	SS.	900	. 63.	8	T00	58	99.	1.2	\mathbf{b}	990 ⁻	525	8 3	9.	9.I	[:>	132	ľ.ľ	151.4	4.	I'ZOT	2.00	380	£.7	I.ð	ς.	32	Γ.6	6.II	47.2	I43246
-	0E.I	6' I	52.	['> /	. 7	ZO. I.	92.	400	. 43 .	4	T00	74<	82.	0.S	3	Z20.	£7	3 I	S.	3.2	Į.	154	ττ	6.4201	[<u>S</u> .	1414.9	88.I	S38	5.2	3.9	9.	ī⊅	8.3	6.53	5.5	E D J43248
27°63	1.33	8. I	961	I:> 7		ZO. I.	92.	S00	. It.	9	T00	J3<	72.	6'I	3	990.	69	3 J	ς.	3.8	Γ.	9TT	τι	6'90I1	[2.	1374.9	28.I	238	6.2	4°5	9.	45	0.8	0.63	7.S	143648
12.04	35.	с. S	S⊅.	ī.> t	, I .	EO. S.	62.	210	. 7δ.	L	100 T	6T	94.	4.0	4	990.	82.2	6 5	Ι.	⊅.I	ſ.	5¢7	ε.τ	9.79I	S.	4.704	06.I	862	8.2	7.4	ς.	40	8.2	7.13	G.21	143242
84.GI	87.	G'> 7	UC.	⊺`> t	, т -	10.>2.	17.	9T0.	· 0/·	q	T00	50	/G ⁻	с. ^с	ç	Z/0.	76	T ZT	Ţ.	£1.3	⊺:>	TET	Z.I	539.3	ç.	8.682	21.2	338	6.3	\$`\$	z.	LÞ	0.3	I.34	13.2	143244
96°ZT	74 74	1. 2	τ <u>τ</u> .	T'> 0	а·т -	ro: Z-	GI.	ZZ0	· 96.	7	T00	8T	74.	9.8	ç	920	89	T 9T	έ.	9.1	Ţ.>	90T	9.1	7.4al	ç.	I.168	69'T	202	0.6	g g	ζ.	52	6'II	: E'ZI	2.91	I43243
13.41	9T.	6. 6	97.	I'> 7	2-2-	10.>£.	12.	920	· 00.	τ.8 Ι.8	500	69	£8.	2.91	9	790.	02.8	35 3	ζ.	6	[.>	242	3'T	7.25	9.	9°6Z	82.28	097	8 L	G.8	I.	22	Ι.მ	₹.S2	13 [.] 6	143642
61.91	ĪĞ.	0 T T	53.	I'> 7		EO. 4.	εī.	700	. 8I.	3	TOO	>79	60-	6.2	Z	024	۶Ľ.	5	ç.	<u> </u>	Í.>	55	ς.	45112	I.	2.845.7	1.12	203	2.4	2.5	4.	6T	6.91	56.6	21.1	I43640
Z0.21	52-	G.> [>	- 22	I.> 5	, -	το. ε.	4I.	800	· 81.	2	T00	23<	60.	0.4	Ζ	9T0 [.]	92.	Ţ	[.	₽.S	Í.>	14	4.	3IS.4	Ι.	0.818	07.	SOT	8.ſ	9.I	S.	ΤŢ	0.4	2.4I	9.6	143538
14 06	TO.	9. t	9T.	I.> č	9.I.	το. ε.	۲ī.	920	. 87.	3	τ00	. 72	92.	9.0I	9	690-	44	56 5	9.	Ľ.	<u>ī</u> :>	283	6.I	£.11	Ľ.	7°.4	2.I4	451	£.7	t.ð	I.	45	1.1	7.82	24.0	143637
13.81	90.	3 <'2	ζ⊅.	['>]	11	IO.>I.	82.	SIO	. 52.	4	200	6T	64.	S.ð	4	690	38.9	53 5	τ.	ĽĨ	I.	510	£.1	G.44	ς.	224.7	2.14	563	ĽL	I.ð	Ι.	09	6.8	51.3	2.2	I43232
I4.8	.02	с. S	G0.	>['> 6	5	.2<.01	OI.	035	· 74.	Ζ	T00	13	04.	I.ð	4	620	78. S	50 S	4.	<u>۲</u>	Í.>	99T	8.I	4 4	G.	35.6	82.I	529	4.3	7.5	Į.	77	0.8	9°01	33.6	143234
15.00	92.	7. S	S⊅.	[:> /	<u>.</u>	το. τ.	.20	610	. 7ð.	Z	T00	. SI	EE.	6.3	3	744	52	T 9T	ε.	1.E	[.>	<i>L</i> 6	I.I	7.35.7	ε.	6°89Z	₽2.I	88T	8.4	0.8	ς.	24	6.II	[[] 9t	Z4.7	143633
18.91	το.	7. 4	02.	[.>]	.1.	IO.>S.	4I.	240	· 87.	4	200	. 22	82.	4.SI	ç	220.	<u>6</u> 9	31 I	Ι.	ε.	[.>	SII	ζ.Ι	Γ.Γ	9.	7.5I	98.I	997	S. 9	Υ.δ	Į.>	> 01	1.E	8.72	7.4	143232
kд	դա/աք	5 wdd wo	d %	udd u	udd i	udd uud	d %	%	ž	шd	i %	udd	%	wdd	udd	1%	%	шdс	d wdd	i wdd	wdd	шdd	wdd	qdd	udo	d wdd	%	wdd	udd	шdd	шdо	i wdd	шdd	wdd	udd	_
ອເດຫຍ	S ××nA	ac 66	S	11 3	DS f	5H M	К	БN	L∀	В	ŕΤ	Бâ	бW	J	۳٦	d	БĴ	٨	١g	qS	рЭ	JS	ЧŢ	nA	N	sA	9-]	uМ	၀၂	ĻN	рĄ	uZ	ЪЪ	ng	оM	dMPLE#

Sample type: ROCK RI50 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANALYTICAL LABORATORIES LTD.

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 1D & 1DX – ICP & ICP-MS ANALYSIS – AQUA REGIA

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

A modified Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO₃ and de-mineralised H₂O is added to each sample to leach for one hour in a hot water bath (>95°C). After cooling the solution is made up to final volume with 5% HCl. Sample weight to solution volume is 1 g per 20 mL.

Sample Analysis

Group 1D: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, Ti, U, V, W, Zn.

Group 1DX: solutions aspirated into a Perkin Elmer Elan6000 ICP mass spectrometer are analysed for 36 elements: Ag, Al, As, Au, B, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, *Ga, Hg,* K, La, Mg, Mn, Mo, Na, Ni, P, Pb, *S*, Sb, *Sc, Se, Tl*, Sr, Th, Ti, U, V, W, Zn.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS5 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau, Ken Kwok, Dean Toye and Jacky Wang.

Document: Method and Specifications for Group 1D&1DX.do	Date: Jan 15, 2004	Prepared E	By: J. Gravel
			,

ACME ANALYTICAL LABORATORIES LTD.

METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 3B & 3B-MS - PRECIOUS METALS BY FIRE GEOCHEM

Comments

Sample Preparation

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 μ m). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 μ m) in a mild-steel ring-and-puck mill. Pulp splits of 30 g are weighed into fire-assay crucibles.

Sample Digestion

The sample aliquot is custom blended with fire assay fluxes, PbO litharge and a Ag inquart. Firing the charge at 1050°C liberates Au \pm PGEs that report to the molten Pb-metal phase. Once cooled the Pb button is recovered then fired in a MnO cupel at 950°C to render a Ag \pm Au \pm PGE dore bead. The bead is weighed and parted (i.e. leached in 1 mL of hot HNO₃) to dissolve Ag then 10 mL of HCl is added to dissolve the Au \pm PGEs. A Rh fire assay requires inquarting with Au for quantitative analysis.

Sample Analysis

Group 3B: Solutions analysed by a Jarrel Ash Atom-Comp 975 ICP-ES determine Au only. Analyses on a Perkin Elmer Elan 6000 ICP-MS determine Au, Pt and Pd.

Group 3B-MS: Lower Au, Pt and Pd detection limits are achieved by a longer determination time on the Elan 6000 ICP-MS.

Rh by Au inquart gives a quantitative analysis. Rh by Ag inquart is semi-quantitative owing to the limited solubility of Rh in Ag.

Quality Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like OC-80, Au-S, Au-R, Au-1 or FA-10R and FA-100S monitor accuracy. Group 3B-MS incorporates new crucibles and additional reagent blanks to permit accurate analysis at very low concentration levels.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

	Document: Method and Specifications for Group 3B-MS.doc	Date: Mar. 17, 2004	Prepared By: J. Gravel
--	---	---------------------	------------------------

APPENDIX 2: DRILL LOGS: E04-11A – E04-17 INCLUSIVE

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11A

PAGE: 1 OF 6

DIP AN	D AZIMUTH	TESTS
DEPTH	ANGLE	AZMTH
15.0 m	-43.0	-
152.4 m	-49.0	-
300.6 m	-44.0	-

Depth

То

(m)

From

	CORE SIZE: NQ			TOTAL D	EPTH: 985	ft 300.53 m	DATE	STARTED:	August 28/	04
	HOLE ANGLE: -50°			HOLE AZ	IMUTH: 12	25°	DATE	FINISHED:	Sept 06/04	
	SECTION:			COLLAR	ELEVATIO	DN: 2313 m	ANALY	YSIS BY: AC	ME LABS	3
	LOCATION: SW Vei	n		RECOVE	RY:		LOGG	ED BY: M.A.	Mitchell	
	UTM (NAD 83): Not	located by G	PS	CLAIM:	Elizabeth		CORE	STORED AT	: Property	1
	DDH E04-11 @ 5310	50E / 56536	07N							
Interval Descri	iption	Sample No.	s	ample Desc	ription	Sample Interval From To	Au ppb	As ppm	Cu ppm	Mo ppm
		143651	Shea porp /Har	ared hyry/Dunit zburgite	feldspar e	47.89 49.39	2	19.8	14	4.5
rgite, contact weathered ru	with Feld Porphyry sty brown.	143652	Shea porp /Har	ared hyry/Dunit zburgite	feldspar e	49.39 50.89	12	47	17.5	3.5
hyry Bleache	ed, rusty,,shattered.			-						

0	12.2	CASING	143651	Sheared feldspar porphyry/Dunite /Harzburgite	47.89 49.39	2	19.8	14	4.5
12.2	12.58	Dunite/Harzburgite, contact with Feld Porphyry @ 45, altered, weathered rusty brown.	143652	Sheared feldspar porphyry/Dunite /Harzburgite	· 49.39 50.89	12	47	17.5	3.5
12.58	16.67	Feldspar porphyry Bleached, rusty,,shattered. Dunite/ Harzburgite dikes from 14.16 to 14.48@ CA 45 & 15.52 to 15.9 @ CA 50							
16.68	33.16	Dunite /Harzburgite , variously sheared and serpentinaceous oxidization stops @ 17.5 Dominant shearing angle is CA 45. Core becomes mottled and porphyritic, Augite/gray green olivine or clay							
33.16	43.0	Fault zone upper fauctures throuhht every 0.3 m CA @25lt contact @ CA 35. Dunite/Harzburgite Brecciated, listtwanitic , sheared rusty stained on fractures with un- identified clay minerals and serpentine a smear of Quartz and Fuchsite @ 40.80 lower fault contact @ CA 37 @ 43.0 m							
43.0	47.89	Dunite/Harzburgite, relatively unaltered fractured @CA 27. Contact with following broken gradational, sheared, listwanitic @ CA							

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11A

PAGE: 2 OF 6

From	Depth (m) To	Interval Description	Sample No.	Sample Description	Sample Interval From To	Au ppb	As ppm	Cu ppm	Mo ppm
		50.							
47.89	50.63	Sheared feldspar porphyry/Dunite /Harzburgite Shearing @ CA 45, Chlorite, Qtz stringers @ random angles to shearing direction and in shearing direction. No Sulphide, minor Fuchsite. This is an Listwanite.							
50.63	55.48	Feldspar porphyry dike (Diorite) Dark grey with white Pheno crysts to 1 cmUpper contact @ CA 30 and lower contact at CA 30. The dike has large chilled selvedges on both sides Dike has a zone of sheared material on both sides (listwanite) of undetermined provenance, Probably composed of Dunite/ Harzburgite, sheared and altered. Within the dike there are zones of tan weathering along the fractures							
55.48	60.60	Sheared Feldspar Porphyry/Dunite/Harzburgite as in 47.89 to 50.63 (Listwanite)	143653	Sheared feldspar porphyry/Dunite /Harzburgite	55.48 56.98	17	143.4	15.1	11.2
60.60	73.23	Slightly altered Dunite/Harzburgite Contact with previous @ CA 50 Serpentine filled fractures @ 68.81@ CA 45 & 68.97@ CA 135 &70.54@ CA 45 & 72.41 & 72.51 @ CA 45 @ 73.22 contact with the following @ CA 65	143654	Sheared feldspar porphyry/Dunite /Harzburgite	56.98 58.48	7	46.1	51.1	6.3
73.23	76.2	Feldspar porphyry dike (Diorite) grayish purple Slightly altered with fine grained green phases. Contact with following @ CA 85 Many specks of pyrite throughout	143655	Sheared feldspar porphyry/Dunite /Harzburg	58.48 59.98	4	27.7	41.1	36.7
76.2	76.63	Dunite/Harzburgite slightly sheared.	143656	Sheared feldspar porphyry/Dunite /Harzburg	59.98 60.60	9	22.3	30.3	6.2
76.63	76.82	Fault zone. Both contacts @ CA 85	143657	Dunite/Harzburgite Contact	72.23 73.73	8	26.3	220.4	6.9
76.82	83.35	Dunite/Harzburgite Fractured, fractures @	143658	Feldspar porphyry dike	73.73	9	26.8	149.4	16.5

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11A

PAGE: 3 OF 6

From	Depth (m) To	Interval Description	Sample No.	Sample Description	Sample Interval From To	Au ppb	As ppm	Cu ppm	Mo ppm
		various angles and slightly serpentinaceous			76.20				
83.35	86.44	Dunite/Harzburgite, altered, chloritic with 70- 80% deformed blebs of grayish green calcite. 1 cm wide Qtz vein @ 83.54 Contact with following @ CA 90							
86.44	99.10	Slightly altered Dunite/Harzburgite.Contact with previous @ CA 50 Serpentine filled fractures @ 7.33, 87.48 & 87.55 @ CA 25, 45 & 25 Core broken & rubbly @ 88.88 to 89.63 Qtz filled fractures @ 98.55 & 98.88 Contact with following @ CA 45							
99.10	100.45	Contact zone Dunite/Harzburgite with Feldspar porphyry, Listwanite.	143659	Listwanite	99.10 100.45	4	65.2	44.8	23.1
100.45	105.94	Altered Feldspar porphyry dike. Greenish with ghosty outlines in medium grey groundmass. 102.82, 0.4 qtz vein @CA 50 Quartz stringes @ 104.54 & 104.63.	143660	Feldspar porphyry	100.45 102.00	10	2.6	69.7	6.7
105.94	111.24	Highly altered Dunite/Harzburgite. Quartz vein 105.94- 106.24 on contact with dike @ CA 45, listwanite, serpentine + quartz to 111.24 Gouge @ 110.24-110.34, quartz vein 110.24-111.24 on contact with following @CA 60	143661	Feldspar porphyry	102.00 103.50	18	7.8	125.8	22.5
111.24	122.06	Altered Feldspar porphyry dike? May be a part of the main body, ghostey white Feldspar crystals slightly chloritic in a grayish brown groundmass with up to 0.5% pyrite moderate white quartz veining at random angles up to 2 cm wide with pyrite crystals <1% Contact with following a 4 cm serpentinaceous shear @ CA 45	143662	Feldspar porphyry	103.50 104.90	14	30.1	92.1	43.7
122.06	126.99	Dunite/Harzburgite relatively unaltered, minor serpentine filled fractures every 1.0 m. Contact with following a serpentine and gouge filled	143663	Feldspar porphyry	104.90 105.94	10	74.4	83.7	17.7

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11A

PAGE: 4 OF 6

From	Depth (m) To	Interval Description	Sample No.	Sample Description	Sample Interval From To	Au ppb	As ppm	Cu ppm	Mo ppm
		shear @ CA 40.							
126.66	200.33	Fresh Feldspar porphyry (hornblende diorite), Shear filled with serpentine, quartz and clay from 133.10 to 133 .63 @ CA 40. small andesite dike 139.11 to 139.68 @ CA 90 and 20. and also from 142.07 to 142.65 @ Ca 40 and 85 minor quartz stringers, and > 0.5 % pyrite. 142.07 to 142. 65, Altered andesite dike (chloritized).145.44 to 145.62 @, 1cm quartz veins in silicified shear @CA 45, Locally the core contains minor muscovite.154.69 to 157.19 quartz stringer zone mostly barren, a little pyrite.	143664	Quartz vein	105.94 107.00	3	36.5	38.7	53.3
		157.19 in fresh feldspar porphyry. Barren quartz stringers every 1 m. in fresh feldspar porphyry through 173.78, and through 189.93 Core becoming more pyritic and less altered toward 198.78. Quartz vein 201.60 to 201.83 Contact with the following @ CA 46 ragged	143665	Dunite/Harzburgite altered/Listwanite etc	107.00 107.83	<2	4.8	28.2	11.8
200.33	203.65	Pyritic andesite dike, barren quartz stringers at various angles.Contact with the following @ CA 60	143666	Dunite/Harzburgite etc	107.83 109.49	6	18.6	20.8	29.1
203.65	204.50	fresh feldspar porphyry. Contact with the following @204.50 & @ CA 60 ,	143667	Dunite/Harzburgite highly altered	109.49 110.24	12	67.6	13.6	1.9
204.50	204.99	2cm qtz vein @ CA 30 2% pyrite and some smears of sphalerite? Associated with aplitic material to 204.99.	143668	Gouge and quartz vein	110.24 111.24	16513	1980.2	109.5	8.5
204.99	216.4	feldspar porphyry occasional randomly oriented bands of aplitic material 25/75 also minor quartz. In some areas the aplitic material has formed a hybrid rock with the feldspar porphyry giving an aplitic material more mafics.	143669	Altered feldspar porphyry	111.24 112.74	167	3186.8	232.1	20.1
216.4.	228.09	Coarse teldspar porphyry lightly chloritized with	143670	Quartz vein	201.60	552	1349.1	373	36.8

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11A

PAGE: 5 OF 6

From	Depth (m) To	Interval Description	Sample No.	Sample Description	Sample Interval From To	Au ppb	As ppm	Cu ppm	Mo ppm
		quartz stringers @ CA 35-40. Quartz flooded zones from 222.22 to 222.86, 223.15 to 223.85 and 224.77 to 225.50			201.83				
228.09	228.80	. Pyritic dayk grey-black dike @ 228.09 to 228.80 contacts @ CA 80	143671	Quartz flooded zone	222.22 222.86	624	330	14.8	3.3
228.80	235.73	Coarse feldspar porphyry	143672	Quartz flooded zone	223.15 223.85	606	159.3	14.5	507.4
235.73	236.46	Aplite dike Contacts @ CA 20.	143673	Quartz flooded zone	224.77 225.50	32	108.8	14	1626.7
236.46	242.38	Coarse feldspar porphyry Mafics and feldspars slightly chloritized. 239.67 to 239.92 aplite dike, contacts @ 45	143674	Quartz flooded zone	257.40 257.80	48	200.7	34.2	9.8
242.38	244.98	Aplite feldspar porphyry hybrid, contacts gradational to 244.98 Contacts @ Ca~ 45							
244.98	285.60	Coarse feldspar porphyry. Mafics and feldspars slightly chloritized. 246.53 to 343.68 aplite dike (hybrid) contacts @ CA 45 Quartz veining @ random angles throughout @ 0.5 m avg. intervals. Odd speck of arsenopyrite in quartz veins. Quartz flooded zone from 257.40 to 257.80							
		Quartz veining @ 1 m intervals to 269.75 Aplite dike 281.00 to 281.80 pyrite<1% Contact with the following sharp @ CA 45.							
285.60	287.85	Mafic dike, looks similar to Dunite/Harzburgite but is intrusive rather than appearing intruded.Contacts @ CA 45							
287.85	290.65	Coarse feldspar porphyry., mafics look slightly grey brown. (brown Biotite)							
290.65	294.47	Mafic dike, looks similar to Dunite/Harzburgite but is intrusive rather than appearing intruded. Contacts @ 45 & 60							
294.47	297.1	Coarse feldspar porphyry., mafics look slightly grey brown. (brown Biotite)							

PROPERTY: Elizabeth

DRILL HOLE NO.: DDH 04-11A

PAGE: 6 OF 6

From	Depth (m) To	Interval Description	Sample No.	Sample Description	Sample Interval From To	Au ppb	As ppm	Cu ppm	Mo ppm
297.1	300.53	Mafic dike, looks similar to Dunite/Harzburgite but is intrusive rather than appearing intruded. Contact @ 45							
		EOH		EOH			EOH		

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 1 of 8

DIP AN	DIP AND AZIMUTH TESTS											
DEPTH	ANGLE	AZMTH										
75.0	49.5	-										
147.8	49.5	-										

CORE SIZE: NQ	TOTAL DEPTH: 147.83 m	DATE STARTED: Sept 07, 2004
HOLE ANGLE: -50°	HOLE AZIMUTH: 125°	DATE FINISHED: Sept 11, 2004
SECTION:	COLLAR ELEVATION: 2346 m	ANALYSIS BY: ALS Chemex
LOCATION: SW VEIN	RECOVERY: %	LOGGED BY: Greg Z. Mosher
UTM (NAD 83): 531070E; 5653689N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
0	3.05	CASING									
3.5	53.45	DIORITE PORPHYRY:	143686	4.88	7.92	2.04	12	24	284.2	43.4	3.3
		Cream-colored plagioclase phenocrysts in medium-grey guartz-plagioclase-hornblende groundmass.	143678	13.56	14.63	1.07	75	4	159.5	58.6	1.2
		Phenocrysts euhedral to subrounded, 2-5mm, 30-50% of rock by volume. Amphiboles slightly chloritized.	143679	17.00	17.50	0.50	80	13	523.1	32.2	4.1
		Trace (<<1%) sub-millimeter scale disseminated pyrite in matrix + trace magnetite. Trace mariposite	143676	22.20	23.10	0.90	78	37	794.7	28.1	6.7
		Quartz veinlets 1-10mm throughout at irregular	143680	23.20	24.84	1.64	100	20	167.2	23.7	7.4
		intervals, about 1/ meter; variable orientations 30,60, 90 degrees to core axis (TCA).	143681	24.84	25.80	0.96	89	21	293.7	37.6	10.6
		Pack heavily fractured to about 40 maters, continuator	143682	25.80	26.67	0.87	70	26	409.2	48.0	8.2
		scale fragments common, > 10cm rare. Fractures @ 30, 45, 60 deg TCA. Iron-oxide stained, minor iron-	143683	26.67	27.40	0.83	84	60	451.7	96.6	10.9
		carbonate fracture-fill. @ 14 10 – 14 15: Aplite dike Light-grey	143684	27.40	28.76	1.36	88	90	561.3	51.3	11.7
		@ 14.40 14.50: Aplite dike. Upper 8 lower contacts	143685	28.76	29.00	0.24	83	35	405.1	46.0	6.1
		 @ 80 deg TCA. 	143675	30.18	30.25	0.07	100	2	27.8	9.2	5.9
		@ 22.40 – 22.80: Quartz veinlets @ 5-10cm intervals = about 10% of interval @ 60-80 deg. TCA, associated with heavy Fe-carbonate alteration.	143687	33.38	33.88	0.50	80	31	274.5	31.8	2.1

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 2 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		@ 28.00 – 29.00: Rock heavily fractured and limonite- stained, especially 28.0 – 28.2: 28.4 – 29.0m. Interval	143688	33.88	34.48	0.60	83	50	595.6	74.0	3.0
		contains common quartz veinlets @ 45 & 60 deg TCA +	143689	34.48	34.59	0.11	91	46	470.7	47.6	5.0
		@ 30.18 - 30.25: Quartz vein contacts @ 70-80 deg	143677	35.70	35.90	0.20	75	50	1146.4	20.1	11.8
		TCA.	143690	37.60	38.00	0.40	100	48	591.0	152.4	26.8
		@ 33.90 – 35.36: Limonite rubble.	143691	39.10	40.6	1.50	80	183	479.9	82.9	7.2
			143692	44.00	44.50	0.50	50	17	413.1	66.1	18.4
			143693	49.83	50.53	0.70	100	11	69.0	163.2	8.0
			143694	50.53	51.63	1.10	100	10	175.4	174.1	27.6
			143695	51.63	52.18	0.55	100	18	29.8	28.2	3.0
			143696	52.18	52.73	0.55	100	7	29.0	39.4	4.7
53.45	56.69	SERPENTINITE / LISTWANITE:									
		Upper contact @ 60 deg TCA Top 15cm sheared. Buff, carbonate-altered to 54.8m, mottled light and dark-grey to 55.60m, carbonate-altered to 56.69m (Listwanite).									
		@ 55.15m: Shear, 2cm, @ 45 deg TCA with mm-scale quartz veinlets, milky-white with trace pyrite.									
		@ 55.20 – 55.69: Sheared, limonite-stained with mm- scale quartz stringers @ 70 deg TCA.									
56.69	62 70	Lower contact broken, probably @ 60-70 deg TCA.	143697	56 69	57 50	0 79	100	18	79.8	92 7	11.2
00.00	02.70	Greenish-buff, strong carbonate-alteration, plagioclase	143698	57.50	58.84	1.34	100	22	115.7	115.2	12.7

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 3 of 8

phenocrysts up to 5mm, generally rounded. Groundmss greenish-brown, carbonate-altered. Below 60.3 porphyry less-altered, light to medium-grey. 143699 58.84 60.50 1.66 100 17 120.8 90.1 14.8 Cut by cm-scale quartz stringers @ 10.45, 30, 70 deg TCA., = 5% of interval at centimetric intervals. Two generations, second narrower and whiter. Carbonate stringers minor, generally @ 10% 45 deg TCA. 61.20 62.00 0.80 100 55 581.7 72.7 9.9 Core fractured throughout, most commonly @ 45 deg TCA. Core fractured throughout, most commonly @ 45 deg TCA. Aplite dikes @ 59.45 - 59.55m, UC @ 45 deg TCA, LC @ 30 deg TCA; 59.9 - 60.0m, contacts @ 45 deg TCA; 60.1 - 60.3m, UC @ 30 deg TCA, LC @ 45 deg TCA, Lower contact broken, @ 45 deg TCA. Lower contact broken, @ 45 deg TCA.<	Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
@ 64.35 - 64.50: Aplite dike, contacts @ 45 deg TCA. @ 64.50 - 64.62: Sheared, rusty limonite alteration. @ 64.62 - 64.70: Fault gouge, medium-green. @ 64.70 - 70.30m Light-greenish due to talc. @ 65.60 - 70.30: Carbonate stringers, mm-scale @ 45 deg TCA + minor mm-scale quartz stringer filled shears @ 30 & 80 deg TCA	62.7	70.30	 phenocrysts up to 5mm, generally rounded. Groundmss greenish-brown, carbonate-altered. Below 60.3 porphyry less-altered, light to medium-grey. Cut by cm-scale quartz stringers @ 10,45, 30, 70 deg TCA., = 5% of interval at centimetric intervals. Two generations, second narrower and whiter. Carbonate stringers minor, generally @ 10% 45 deg TCA. Core fractured throughout, most commonly @ 45 deg TCA Aplite dikes @ 59.45 - 59.55m, UC @ 45 deg TCA, LC @ 30 deg TCA; 59.9 - 60.0m, contacts @ 45 deg TCA; 60.1 - 60.3m, UC @ 30 deg TCA, LC @ 45 deg TCA. Lower contact broken, @ 45 deg TCA. SERPENTINITE: Mottled medium to light-grey, after 64.7m anstomosing network of medium and light-grey. @ 63.20 - 63.80: Fault gouge, medium-green. @ 64.50 - 64.62: Sheared, rusty limonite alteration. @ 64.62 - 64.70: Fault gouge, medium-green. @ 64.70 - 70.30m Light-greenish due to talc. @ 65.60 - 70.30: Carbonate stringers, mm-scale @ 45 deg TCA + minor mm-scale quartz stringer filled shears @ 30 & 80 deg TCA 	143699 143700	58.84 61.20	60.50	1.66 0.80	100	17 55	120.8	90.1 72.7	14.8 9.9

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 4 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Lower contact @ 45 deg TCA									
70.30	72.25	DIORITE PORPHYRY:	143701	70.30	70.85	0.55	100	<2	51.7	32.1	3.8
		Cream-colored plagioclase phenocrysts up to 1cm with buff-colored carbonate-altered specks. Sheared,	143702	70.85	71.60	0.75	100	9	85.2	53.8	3.9
		chlorite-altered.	143703	71.60	72.60	1.00	100	136	120.5	29.9	27.2
		Disseminated pyrite 1%.	143704	72.60	73.60	1.00	100	17	10.9	207.1	53.3
		Minor fractures @ 60 deg TCA.									
		Lower contact @ 45 deg TCA .									
72.25	72.90	APLITE DIKE:									
		Cream with buff carbonate-altered plagioclase (?). Minor fractures @ 60 deg TCA.									
		Lower contact @ 45 deg TCA with milky-white quartz vein + carbonate alteration.									
72.90	74.00	DIORITE PORPHYRY:	143705	73.60	74.60	1.00	100	8	33.7	110.8	13.3
		Light-grey with 5% faint plagioclase phenocrysts. Cut by cm-scale quartz veinlets @ decimeter intervals @ 30 deg TCA and fractures @ 45 & 60 deg TCA, both with pyrite as disseminations and as fracture coatings.									
		Lower contact @ 45 deg TCA.									
74.00	76.00	APLITE DIKE:	143706	74.60	75.60	1.00	100	4	25.2	59.5	10.6
		Cream-colored with mm-scale carbonate altered plagioclase. Carbonate-altered fractures @ 10 & 45 deg TCA.	143707	75.60	76.60	1.00	100	576	253.5	184.2	11.9
		Lower contact broken.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 5 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
76.00	77.80	DIORITE PORPHYRY: Cream-colored plagioclase phenocrysts with carbonate alteration. Possibly aplite but with 10% mafic minerals. Pyrite as 2-10mm blebs, <<1%.	143708 143709	76.60	77.80	1.20	100	32	52.8	30.2	20.1
77.80	78.85	SERPENTINITE / HARZBURGITE: Light green-grey with light-grey mottles. Cut by hairline quartz veinlets @ 30, 45, & 60 deg TCA. With limonite staining. Cm-scale quartz stringers in shears with mariposite on margins. Lower contact @ 45 deg TCA.	143709	77.80	78.85	1.05	100	21	595.2	112.5	22.5
78.85	80.00	DIORITE PORPHYRY: Cream-white plagioclase phenocrysts with sericitized mafics in groundmass. <<1% disseminated pyrite. Lower contct @ 45 deg TCA, sheared.	143710	78.85	80.00	1.15	100	39	214.2	53.5	6.2
80.00	80.90	HARZBURGITE: Mottled medium and dark-grey, cut by hairline carbonate-filled fractures @ 30, 45 & 60 deg TCA. Lower contact @ 70 deg TCA, sheared.									
80.90	83.80	APLITE DIKE: Greenish-white, medium-crystalline, mafic content increases downhole to about 10%, possibly as contamination from adjacent diorite. Cut by milky-white cm-scale quartz veins @ decimeter intervals, increasing in abundance downhole. Blebs of pyrite. Lower contact @ 45 deg TCA, marked by greenish quartz vein, 1cm, probably sericitic.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 6 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
83.80	98.76	 DIORITE PORPHYRY: Cream-white plagioclase phenocrysts 50% of rock by volume in medium to dark-grey groundmass. Phenocrysts commonly contain sub-mm scale nuclei of amphibole (?). Generally <<1% disseminated pyrite. Cut by cm-scale aplite dikelets. Cut by mm-scale quartz veinlets @ 0, 45 & 60 deg TCA, mostly milky-white, also clear. Fractures generally @ 45 & 60 deg TCA, commonly rusty with disseminated pyrite. @ 87.20 – 87.50: Possible composite aplite dike, contains <1% disseminated pyrite and rare, soft, blue-grey mineral (molybdenum or stibnite) + possibly sphalerite on lower contact, LC @ 45 deg TCA. @ 96.90 – 97.20: Possible aplite dike@ 70 deg TCA, with 1-2% blebby pyrite on fractures @ variable angles TCA. LC sheared with euhedral pyrite + soft blue-grey mineral (moly or stibnite) on fractures and disseminated into adjacent porphyry for two cm. 	143711	89.20	89.70	0.50	100	4	9	116.4	13.4
98.76	103.45	 SERPENTINITE: Medium to dark green-grey, streaky, sheared, cut by abundant light-green to greenish-cream talcose, slickensided fractures, generally @ 30 deg TCA, with minor orientations of 60, 45, 0 deg TCA – conjugate fractures. @ 101.45 0- 102.10: Intense shearing. @ 102.10 – 102.20: Fault gouge, light-green. Lower contact broken. 									
103.45	103.78	QUARTZ VEIN:	143712	103.45	103.78	0.33	100	68	18.9	8.3	76.6

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 7 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Milky-white with fractures @ 30 & 60, minor @ 10 deg TCA. Rust and chlorite on fractures. Very rare (<<1%) specks of soft blue-grey mineral (moly / stibnite) on 60 deg TCA fractures. Lower contact broken.									
103.78	111.35	 SERPENTINITE / HARZBURGITE: Medium to dark green-grey, variably streaky, + mottled medium to dark-grey in less-deformed intervals. @ 105.50 - 106.83: Sheared, broken. @ 110.50 - 111.35: Sheared, light green-grey, possibly contaminated by adjacent porphyry. Lowermost 15 cm contains cm-scale quartz veins @ 45 deg TCA. Lower contact sheared @ 45 deg TCA. 									
111.35	121.10	DIORITE PORPHYRY: Variably medium to light-grey in alternating bands @ 60 to 45 deg TCA. Plagioclase phenocryst content = 20- 30% throughout. In lighter zones phenocrysts are more nebulous and the rock possibly slightly more siliceous. Fractures common @ 45 deg TCA with associated bleaching, hairline silica, and rare pyrite blebs (overall pyrite content <<1%, in bleached zones 1-2%). Rare cm-scale quartz veins @ 60 deg TCA, milky-white, no obvious mineralization. @ 118.50: Quartz vein, 2cm, @ 45 deg TCA with 1-2% disseminated pyrite. Lower contact @ 45 deg TCA, sharp.	143713 143714 143715	113.00 114.00 115.00	114.00 115.00 116.00	1.00 1.00 1.00	100 100 100	3 7 4	76.7 68.0 20.1	225.1 347.2 205.4	18.0 14.1 132.1
121.10	125.00	HARZBURGITE / SERPENTINITE: Dark grey with medium-grey mottles to 122.8m, then sheared texture. Minor light-grey talcose alteration.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-12

PAGE:Page 8 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
125.00	147.83	 Top 20cm contains clear and milky cm-scale quartz veins with bands of biotite. (a) 121.30 – 121.40: Light-green talc alteration, contacts sheared (a) 60-70 deg TCA. (a) 122.60 – 122.80: Possible aplite dike, contacts (a) 45 deg TCA, with 10% mafic minerals. Fractured (a) 60 & 0 deg TCA with dark-green (chlorite?) and talc alteration. Lower contact (a) 45 deg TCA, broken, minor shearing. 	143716	125.00	126.00	1.00	100	3	38.8	46.7	6.9
125.00	147.83	 Generally fresh, milky-white plagioclase phenocrysts in dark-grey groundmass. From 126.5 – 147.83 groundmass is black. Phenocrysts = 50% of rock by volume. Cut by cm-scale aplite dikes and quartz veinlets with rare rust and pyrite on contacts, generally @ 30 & 45 deg TCA. Fractured at decimeter intervals @ 45 & 60 deg TCA with minor associated rust. @ 125.75 – 126.15: Aplite dike, creamy-white, contacts @ 60 deg TCA. @ 132.50 – 133.25: Possible aplite dike, light-green mottled, contacts @ 45 deg TCA. Possibly zone of silicification. @ 141.20 – 141.50: Greenish cast to plagioclase phenocrysts – sericitization. @ 144.50 – 144.80: Dark-grey, finer-grained phase with majority of phenocrysts mm-scale. 	1437 10	125.00	120.00	1.00		3	30.0	40.7	0.9
147.83	147.83	END OF HOLE									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-13

PAGE:Page 1 of 6

DIP AND AZIMUTH TESTS								
DEPTH	ANGLE	AZMTH						
140.24 m	-42	-						

CORE SIZE: NQ	TOTAL DEPTH: 139.60 m	DATE STARTED: Sept 12, 2004
HOLE ANGLE: -45°	HOLE AZIMUTH: 045° (?)	DATE FINISHED: Sept 14, 2004
SECTION:	COLLAR ELEVATION: 2138 m	ANALYSIS BY: ALS Chemex
LOCATION: ELLA VEIN	RECOVERY: %	LOGGED BY: Greg Z. Mosher
UTM (NAD 83): 531920E; 5653600N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	3.05	CASING									
3.05	31.00	 HARZBURGITE: Dark-grey to black with minor dark-grey mottles. Cut by cm-scale fractures and shears at decimeter intervals @ 30,45, 70 deg TCA. Slickensided surfaces with cream, light-green and bluish talc-serpentine. Minor asbestos fiber. @ 26.00 - 31.00- rock is generally fractured and sheared at cm to 5cm intervals. Fractures generally @ 45, 60, 80 deg TCA. 									
31.00	36.30	LISTWANITE: Rock pervasively sheared and carbonate-altered to medium buff-brown, although generally competent. @33.53 – 34.00: Quartz vein (?) heavily fractured, cemented by light-green fault gouge. @ 35.75 – 36.00: Serpentinite cut by irregular mm- scale quartz veinlets, conjugate @ 60 deg TCA. @ 36.00 – 36.30: Fault gouge – clay with serpentinite fragments.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-13

PAGE:Page 2 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Lower contact broken, possibly @ 60 deg TCA.									
			143717	33.50	34.00	0.50	100	14	52.8	9.9	8.0
36.30	44.10	DIORTTE PORPHYRY: Plagioclase phenocrysts = 75% of rock by volume, phenocrysts form network, plagioclase slightly greenish to buff (sericite alteration). Alteration diminishes downhole. Cut by mm-scale quartz veinlets at decimeter intervals @ 45 deg TCA. Fractured @ 45 & 80 deg TCA at decimeter intervals. Fracture surfaces rusty after pyrite. Lower contact arbitrary at start of more-frequent quartz veining.									
44.10	52.10	QUARTZ VEIN ZONE (ELLA VEIN ?):	143718	44.10	45.10	1.00	100	81	641.3	57.1	130.4
		Hostrock diorite porphyry, same as preceeding interval but altered light-green by sericitization. Interval contains about 5% guartz veins ranging in thickness	143719 143720	45.10 46.10	46.10 47.10	1.00 1.00	100 100	7 13	210.8 50.4	29.5 18.1	2.2 5.6
		from 2cm to 15cm. Veins commonly associated with shears @ 45, 70, 90 deg TCA. Quartz veins fractured and ribbony. Fractures rusty. Diorite and guartz veins	143721	47.10	48.10	1.00	100	50	361.9	26.4	32.8
		contain <1% disseminated pyrite + rare cm-scale blebs.	143722	48.10	49.10	1.00	100	3	76.5	24.0	11.7
		Significant quartz veins @: 44.10m, 2cm; 44.35m, 15cm; 44.50m, 18cm, sheared; 47.40m, 15cm; 47.95m,	143723	49.10	50.10	1.00	100	30	64.0	85.7	24.7
		5cm; 49.60m, 5cm; 50.10, 55cm, top 30cm sheared; 50.85m, 15cm, sheared; 51.20m, 5cm; 51.45m, 5cm;	143724	50.10	51.10	1.00	100	562	1738.1	61.1	90.5
		51.75m, 25cm, brecciated.	143725	51.10	52.10	1.00	100	969	3486.2	71.1	281.2
52.10	73.86	DIORITE PORPHYRY:	143726	58.60	59.70	1.10	100	52	66.1	92.0	41.4

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-13

PAGE:Page 3 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Plagioclase phenocrysts form network, slightly less- abundant than in interval 36.3 – 52.1m, generally with light-green alteration. Groundmass dark-grey to black	143727	59.70	60.20	0.50	100	8	29.0	109.1	707.2
		mm to cm-scale quartz veins @ 45 & 80 deg TCA. Disseminated pyrite <<1%. Fractured @ decimeter to	143720	66.00	00.50	0.50	100	20	20.9	7.0	0.1
		meter intervals @ 45 & 80 deg TCA, commonly rusty.	143729	68.50	69.00	0.50	100	7	12.4	8.1	6.8
		Quartz veins @: 59.65m, 10cm; 60.40m, 20cm, fractured, rusty; 68.50m, 20cm, brecciated; 71.25m, 12cm; 71.48m, 15cm.	143730	71.30	71.80	0.50	100	153	223.7	100.8	478.1
		@ 53.40 – 53.50: Fault gouge.									
		@ 61.10: Fractured with soft blue-grey mineral (molybdenite / stibnite).									
		@ $66.10 - 66.40$: Aplite dikelet parallel TCA, cut off by quartz veinlets @ 30 deg TCA .									
		Lower contact sharp @ 90 deg TCA.									
		DIKE:									
73.86	74.86	Medium-grey, fine-crystalline, plagioclase + mafics (diabase?). Cut by hairline quartz veinlets @ 45 & 30 deg TCA.									
		Lower contact sharp @ 90 deg TCA.									
74.86	84.92	DIORITE PORPHYRY:									
		Cream-colored plagioclase phenocrysts forming									
		Minor hairline quartz veinlets on fractures to 77.10m.									
		@ 76.40 – 79.55: Fractured on cm-scale, sheared, sericitized light-green. Most fractures @ 45 deg TCA.									
		@ 77.10 – 77.85: Quartz veins contorted, sheared,									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-13

PAGE:Page 4 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		fractured, remobilized.	1/13731	77.00	78 10	100		118	388 7	78 1	25.3
		@ 77.85 – 78.10: Quartz vein, fractured @ 70 deg TCA, trace disseminated pyrite. Upper contact @ 70	143732	78.10	79.00	100		22	10.7	30.9	6.6
		deg TCA, lower contact broken.	143733	79.00	79.80	100		10	36.4	24.8	11.3
		 @ 78.10 – 79.55: Broken at cm intervals. @ 79.80 – 80.25: Quartz vein, fractured, slightly sheared and brecciated. Upper contact broken, lower contact sheared @ 45 deg TCA 	143734	79.80	80.80	100		36	38.8	29.6	83.6
		Lower contact @ 80 deg TCA.									
84.92	91.30	DIKE: As 73.86 – 74.86m. Light green-grey, fine-crystalline. Cut by hairline quartz-lined fractures @ 10, 30, 45 deg TCA, minor conjugate fractures. Upper contact 25cm of breccia with quartz fragments, probably several cm-scale quartz veins. @ 85.85 – 86.30: Diorite porphyry block within dike or two dikes on either side of porphyry. Contacts @ 45 deg TCA.									
91.30	128.20	DIORITE PORPHYRY: Generally phenocryst-supported, cream-colored plagioclase with slight greenish cast + dark-grey matrix. Rare cm-scale quartz veins @ 20, 45, 70 deg TCA. Significant veins @: 92.4m, 2cm; 93.1m, 1cm; 93.18m, 1cm; 94.9m, 1cm; 101.0m, 1cm; 101.15m, 2cm; 102.85m, 2cm; 104.0m, 5cm; 104.15m, 5cm; 105.25m, 5cm; 107.05m, 5cm (possible vg); 108.9m, 1cm;									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-13

PAGE:Page 5 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		113.2m, 1cm; 113.35m, 2cm; 118.6m, 1cm. Quartz veins commonly contain 1-2% disseminated pyrite on margins	143735	104.00	104.50	0.50	100	5	5.4	17.2	19.2
			143736	106.00	107.00	1.00	100	264	252.6	46.0	68.8
		TCA.	143737	107.00	108.00	0.80	100	9	2.9	38.6	3.2
		@ 100.70 – 101.50: Core broken, cm-scale fragments, fracture surfaces rusty after minor pyrite.									
		@ 109.45: 2cm rounded xenolith of fine-crystalline diorite.									
		@ 125.20 – 125.90: Leucocratic phase.									
		Lower contact @ 70 deg TCA.									
128.20	128.60	QUARTZ VEIN: Milky-white, fractured @ 45 deg TCA, fractures coated with black chloritic or graphitic material and minor, soft blue-grey mineral (moly/stibnite).	143738	128.20	128.60	0.40	100	110	1248.8	26.4	204.4
128.6	138.4	DIORITE PORPHYRY:									
		Plagioclase phenocryst-supported – 80% phenocrysts with light-greenish cast. Fractures at 20-50cm intervals @ 45 & 70 deg TCA. Rare mm-scale quartz veinlets @ 45 & 70 deg TCA. Lower contact @ 70 deg TCA, marked by cm-scale guartz vein.									
138.4	139.6	DIORITE PORPHYRY:	143739	138.40	139.60	1.20	100	284	106.4	33.0	25.9
		Same unit as above but fractured and sericite-altered – soft and talcose. Cut by mm-scale quartz veinlets @ 30 deg TCA with <1% disseminated pyrite and hematite after pyrite.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-13

PAGE:Page 6 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Lower 30cm fault rubble with minor quartz fragments.									
139.6	139.6	END OF HOLE									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-14

PAGE:Page 1 of 6

DIP AND AZIMUTH TESTS								
DEPTH	ANGLE	AZMTH						

CORE SIZE: NQ	TOTAL DEPTH: 104.24m	DATE STARTED: Sept 15, 2004
HOLE ANGLE: -45°	HOLE AZIMUTH: 190°	DATE FINISHED: Sept 16, 2004
SECTION:	COLLAR ELEVATION: 2212 m	ANALYSIS BY: ALS Chemex
LOCATION: TOMMY VEIN	RECOVERY: %	LOGGED BY: Greg Z. Mosher
UTM (NAD 83): 531720E; 5653799N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
0	12.19	CASING									
12.9	22.46	SERPENTINITE: Black, sheared, generally @ 30 & 60 deg TCA. Cut by hairline quartz stringers @ 0, 20, 70 deg TCA. @ 16.25 – 16.76: Broken, fault rubble.									
22.46	30.02	DIORITE PORPHYRY: Cream-white plagioclase phenocrysts in medium to light-grey groundmass. Phenocrysts = 30-40% of rock by volume. Upper contact broken, interval generally broken and rubbly, fractures rust-stained, phenocrysts kaolinized and chalky where weathering most intense. Fractures @ 30, 45, 70 deg TCA. Lower contact broken, sheared.									
30.02	32.00	SERPENTINITE: Black to green, mottled, sheared, faulted. Top 20cm fault gouge. Shearing @ 60 deg TCA. @ 31.30 – 31.50: Sheared @ 60 deg TCA + fault gouge.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-14

PAGE:Page 2 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Lower contct broken.									
32.00	32.80	DIORITE PORPHYRY:									
		Light greenish-cream. Plagioclase phenocrysts = 80- 90% of rock by volume. Fractured @ 60 deg TCA. Lower contact @ 30 deg TCA.									
32.80	40.75	SERPENTINITE:									
		Black, sheared; where more intensely sheared rock is mottled brown-green color. Fractured generally @ 60 deg TCA, also @ 80, 30, 45 deg TCA. @ 33 80 – 34 20: Fault gouge									
		@ 34.60 – 35.00: Intense snearing									
		@ 35.36: Diorite porphyry, 2cm.									
		@ 38.40 – 38.60: Sheared @ 30 deg TCA, possible cm-scale diabase dike.									
		@ 38.60 – 39.60: Intense shearing.									
		@ 40.35 – 40.75: Intense shearing and faulting @ 30 deg TCA, most rock reduced to fault gouge.									
		Lower contact sheared @ 30 deg TCA.									
40.75	42.25	QUARTZ VEIN:	143740	40.75	41.75	1.00	95	6	2.2	15.8	2.5
		Milky-white, fractured @ 50 deg TCA at 5cm intervals. Cut by chlorite (?) and sericite filled shears @ 20 deg TCA. Negligible sulphides.	143741	41.75	42.25	0.50	100	5	1.0	37.1	0.9
		Lower contact broken.									
42.25	53.60	SERPENTINITE / HARZBURGITE:									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-14

PAGE:Page 3 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
50.00		 Where sheared, black network enclosing medium to dark-grey, where less-deformed, mottled black and dark-grey. Shears @ 60 deg TCA. @ 48.60 – 49.60: Sheared @ 30 deg TCA, broken, rusty. @ 49.00: Possible 2cm aplite dike, sheared @ 30 deg TCA. @ 53.20 – 53.40: Broken core. @ 53.40 – 53.60: Dark-green, sheared, talcose. Lower contact sharp @ 60 deg TCA. 									
53.60	59.20	 DIORTLE PORPHYRY: Cream-colored plagioclase phenocrysts, 60% of rock by volume, forming network with interstitial dark-grey to slightly greenish groundmass. Rock fractured @ 45 & 60 deg TCA at generally 50cm intervals. @ 54.05 – 55.20: Porphyry cut by rare cm-scale quartz veins, generally @ 60 deg TCA. @ 55.40 – 56.00: Inclusion of serpentinite, upper contact 90 deg TCA, fractured, sheared @ 20-30 deg TCA. @ 56.00 – 56.25: Possible apite dike, greenish plagioclase-quartz, contacts possibly @ 60 deg TCA. Lower contact broken, possibly @ 60 deg TCA. 	143742 143743	54.00 55.00	55.00 55.50	1.00 0.50	100 50	4 3	525.7 193.4	93.2 57.2	2.6 3.4
59.20	60.40	DIKE: Diorite, medium to fine-crystalline, plagioclase-quartz- amphibole with rare 2-3mm plagioclase phenocrysts.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-14

PAGE:Page 4 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Probably phase of main intrusive. Cut by hairline quartz veinlets @ 45 deg TCA,. Minor rust on fractures @ 45 deg TCA.									
		Lower contact @ 45 deg TCA.									
60.40	76.60	DIORTIE PORPHYRY: Cream-white plagioclase phenocrysts = 60-70% of rock, form meshwork with dark grey-green-brown interstitial groundmass.									
		 @ 67.50 – 67.75: Quartz vein, corroded, fractured, with inclusions of quartz-sericite rich rock. Upper contact broken, lower contact @ 60 deg TCA. Rock fractured @ 30, 45, 60 deg TCA at decimeter to 50cm intervals. Minor rust on fractures. 	143744 143745	67.50 74.95	67.75 75.95	0.50	100 100	25 4	62.0 44.3	36.1 57.1	19.6 7.2
		Lower contact @ 10 deg TCA.	143746	75.95	76.60	0.65	100	35	379.7	124.2	5.1
76.60	78.00	QUARTZ VEIN:	143747	76.60	77.60	1.00	100	<2	130.7	67.7	17.7
		Milky-white, fractured, minor sericite and pyrite on fractures. Pyrite generally fine-grained with rare cm- scale euhedral crystals. Internal variation in color of quartz possibly suggests several pulses. Intersected at very low angle, true thickness probably 5-10cm.	143748	77.60	78.00	0.40	100	7	58.8	41.9	5.6
78.00	83.70	DIORITE PORPHYRY: Milky-white euhedral plagioclase phenocrysts = 60% of rock by volume. Green-grey interstitial groundmass. Pyrite disseminated, mm-scale <1%. Rare mm-scale quartz veinlets @ 60-70 deg TCA. Fractures @ 45 deg TCA at 5-50cm intervals.	143749	80.00	80.80	0.80	100	17	403.8	242.3	552.2

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-14

PAGE:Page 5 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
83.70	87.45	QUARTZ VEIN ZONE:	143750	83.70	84.70	1.00	100	8	398.5	95.4	20.2
		Diorite porphyry hostrock, as for $78.00 - 83.70$ m, cut by mm to cm-scale quartz veins at decimeter intervals @ 30, 45, 69 deg TCA. Veins = 5% of interval.	143751	84.70	85.70	1.00	100	6	265.5	236.7	24.7
			143752	85.70	86.70	1.00	100	544	2299.1	92.8	16.5
		Significant quartz veins @: 83.70, 2cm; 84.00, 2cm; 84.4, 1cm; 85.0, 1cm; 85.5, 1cm; 85.6, 1cm; 86.62, 5cm; 87.30, 1cm; 87.45, 1cm.	143753	86.70	87.50	0.80	100	148	1790.7	219.0	15.4
		@ 86.30 – 86.73: Broken, rusty.									
		@ 86.73 – 87.27: Plagioclase phenocrysts altered light- green, groundmass sericitized light brown.									
		Lower contact = quartz vein @ 70 deg TCA.									
87.45	93.20	DIORITE PORPHYRY:									
		Milky-white phenocrysts, 70% of rock by volume, with black, chloritized interstitial biotite groundmass. Rare mm-scale quartz veinlets @ 45 deg TCA.									
		Lower contact arbitrary – at start of more-common guartz veins + pyrite, @ 70 deg TCA.									
93.20	104.24	QUARTZ VEIN ZONE (TOMMY VEIN ?):	143754	93.20	94.20	1.00	100	298	783.1	83.5	33.3
		Diorite porphyry hostrock as above, but generally more-	143755	94.20	95.20	1.00	100	8	275.0	277.9	99.1
		biotite groundmass is chloritized and sericitized. Rock	143756	95.20	96.20	1.00	100	810	2465.0	116.9	56.1
		molybdenum / stibnite common, pyrite 1-2%,	143757	96.20	97.20	1.00	100	14	181.1	66.7	20.2
		especially, but not restricted to shears.	143758	97.20	98.20	1.00	100	37	63.4	126.0	87.5
		Significant quartz veins @: 93.25, 2x1cm; 93.37, 1cm; 94.00, 1cm with moly/stibnite; 94.50, 1cm in 10cm	143759	98.20	99.20	1.00	80	121	512.4	125.9	114.7

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-14

PAGE:Page 6 of 6

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		interval of blebby pyrite + moly/stibnite; $94.50 - 94.70$,	143760	99.20	100.20	1.00	95	10	128.9	124.7	90.2
		disseminated pyrite and streaky moly/stibnite; 97.00 – 97.30, 1cm @ 30 deg TCA: 97.60, 1cm with blebby	143761	100.20	101.20	1.00	60	11	172.1	118.7	10.1
		pyrite; 98.35, 1cm @ 30 deg TCA; 98.45, 10cm @ 45 deg TCA with blebbyand streaky moly/stibnite; 98.70.	143762	101.20	102.20	1.00	95	17	269.5	85.7	68.1
		1cm @ 30 deg TCA; 99.85, 1cm with moly/stibnite; 101.30, 1cm @ 90 deg TCA; 101.55, 2cm broken;	143763	102.20	103.20	1.00	95	24	121.6	67.2	5.7
		102.90, 1cm @ 45 deg TCA; 103.10, 1cm @ 30 deg TCA; 103.75, 1cm @ 10 deg TCA; 103.90, 1cm @ 60 deg TCA; 104.24, 1cm @ 70 deg TCA.	143764	103.20	104.24	1.04	91	3	177.7	56.1	6.4
		@ 102.00 – 104.24: Diorite becomes less-altered and pyrite less abundant.									
104.24	104.24	END OF HOLE									
PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 1 of 13

DIP AN	ID AZIMUTH	TESTS
DEPTH	AZMTH	
137.2 m	-42.0	-
274.4 m	-37.0	-

CORE SIZE: NQ	TOTAL DEPTH: 276.15m	DATE STARTED: Sept 18, 2004
HOLE ANGLE: -45°	HOLE AZIMUTH: 125°	DATE FINISHED: Sept 22, 2004
SECTION:	COLLAR ELEVATION: 2329m	ANALYSIS BY: ALS Chemex
LOCATION: NO. 9 ZONE	RECOVERY: %	LOGGED BY: Greg Z. Mosher
UTM (NAD 83): 530817E; 5654197N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	9.14	CASING									
9.14	32.30	QUARTZ VEIN ZONE (9A ZONE):	143765	9.14	10.00	0.86	93	1571	5432.1	92.8	0.7
		Diorite porphyry hostrock, plagioclase phenocrysts altered to light-green and in places entire rock is light	143766	10.00	11.00	1.00	90	965	3345.2	51.7	1.4
		greenish-cream, possibly silicified. Alteration	143767	11.00	12.00	1.00	100	1185	2845.5	85.1	3.2
		with fresh to light-green plagioclase phenocrysts in	143768	12.00	13.00	1.00	100	1042	2462.3	174.3	4.1
		Phenocrysts = 70-80% of rock by volume, forming a meshwork. Pyrite disseminated about 1%	143769	13.00	14.00	1.00	100	1030	2374.7	85.5	16.4
		Quartz voine abundant, particularly in upper 20 meters	143770	14.00	15.00	1.00	100	499	1068.4	215.9	23.1
		then diminish progressively to end of zone. Significant, $p_{ant}(x) = 123$	143771	15.00	16.00	1.00	70	943	2602.3	170.6	77.0
		veins cm to decimeter-scale, probably 30% of interval,	143772	16.00	17.00	1.00	100	358	698.8	98.6	5.7
		spots after pyrite. Fractures commonly @ 45, 60 deg	143773	17.00	18.00	1.00	100	279	1888.3	145.3	5.4
		broken; 13.95, 2cm, heavily FeOx-stained; 13.25, 2cm,	143774	18.00	19.00	1.00	100	947	4933.5	202.5	6.3
		by cm-scale quartz veins @ 0, 45, 90 deg TCA ; 15.85, 2 cm broken; 17.00 – 17.30 diorite bleached cut by	143775	19.00	20.00	1.00	100	262	859	70.6	3.3
		mm-scale quartz veins @ 45, 70, 90 deg TCA; 17.80, 10 mm \approx 19.8 diorite bleached	143776	20.00	21.00	1.00	100	225	608	211.0	11.8
		with mm-scale quartz veins @ 45, 80, 90 deg TCA at decimeter intervals – conjugate veins; 20.15 – 32.3,	143777	21.00	22.00	1.00	100	778	1133	142.5	5.9

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 2 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		mm-scale quartz veins @ 30, 45, 70 deg TCA at dm to 50cm intervals. Rock fractured throughout @ 45, 60,	143778	22.00	23.00	1.00	100	1135	958.9	110.9	4.1
		90 deg TCA.	143779	23.00	24.00	1.00	100	73	53	93.7	1.3
		@ 17.70m: shear, 1cm, @ 70 deg TCA with black (chlorite(?)) material.	143780	24.00	25.00	1.00	100	<2	2	65.2	32.6
			143781	25.00	26.00	1.00	100	145	119.8	27.4	1.0
			143782	26.00	27.00	1.00	100	364	290.7	50.4	0.9
			143783	27.00	28.00	1.00	100	<2	1.0	64.3	4.0
			143784	28.00	29.00	1.00	100	13	6.2	107.0	3.2
			143785	29.00	30.00	1.00	100	504	369.4	73.3	5.0
			143786	30.00	31.00	1.00	100	48	34.7	378.3	24.6
			143787	31.00	32.30	1.30	100	51	38.4	391.7	9.9
32.30	56.50	DIORITE PORPHYRY:									
		Plagioclase phenocrysts 70-80% of rock by volume, form meshwork, plagioclase cream to light-green. Diorite cut by rare mm-scale quartz veinlets @ 45, 70, 90 deg TCA. @ 45.20 – 46.65: Diorite altered medium-green, sheared, cut by mm-scale quartz veinlets @ 70 – 90 deg TCA <1% discominated purite, rare hemitie on									
		 @ 46.15: Shear / quartz vein, 5mm, 80 deg TCA, hematite-filled. @ 46.25: Quartz vein, 5cm, sheared, @ 80 deg TCA. 									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 3 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		 @ 47.85 - 48.20: Core broken, fractured parallel TCA, with rusty gouge. @ 51.55: Quartz vein, 1cm, with abundant hematite, @ 80 deg TCA. @ 51.75: Quartz vein, 1cm, @ 30 deg TCA. @ 54.10 & 54.20: Quartz veinlets, mm-scale, @ 80 deg TCA, with hematite. @ 56.00: Quartz vein, 1cm, @ 80 deg TCA. @ 55.80 - 56.10: Core broken, fractures @ 0, 30 deg 									
56.50	58.80	QUARTZ VEIN ZONE: Diorite porphyry hostrock, plagioclase altered light- green, groundmass to light-brown sericitized. Cut by mm to cm-scale quartz veins generally @ 60 – 80, also 20 deg TCA. Interval also cut by common cm-scale aplite dikes that accompany or are cut by quartz veins. Minor rust after pyrite	143788 143789	56.50 57.50	57.50 58.80	1.00 1.30	100	1008 62	832.6 42.3	118.9 195.2	1.0
58.80	113.50	DIORITE PORPHYRY: Cream-white plagioclase phenocrysts commonly altered pale-green, minor decimeter intervals of medium to dark-green where alteration more-intense. Zones of stronger alteration commonly accompanied by 1-2% disseminated pyrite; rock generally contains <<1% pyrite. Cut by rare mm-scale quartz veins @ 30, 45, 60 deg TCA. Fractures @ dm to 50cm intervals @ 45, 60, 80 deg TCA. @ 69.30 – 70.30: Zone of medium-green plagioclase alteration + 1% disseminated pyrite and several cm- scale quartz veins @ 90 deg TCA with sooty (very fine crystalline) pyrite onfractures.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 4 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
From	To	 @ 77.65: Quartz vein, 10cm, sheared, shloritic, @ 80-90 deg TCA. @ 79.60: Quartz vein, 2cm @ 45 deg TCA in 30 cm shear zone @ 60 deg TCA, plagioclase medium-green, biotite sericitized. @ 81.30: Quartz vein, 5cm, @ 45 deg TCA. @ 81.80: Quartz vein, 5cm @ 60 deg TCA with 1-2% 5mm blebs of chalcopyrite and minor pyrite. @ 82.00: Quartz vein, 1cm, @ 30 deg TCA. @ 82.20: Quartz vein, 1cm, 0 deg TCA (60cm in core). @ 82.90: Quartz vein, 2cm, @ 80 deg TCA. @ 83.10: Quartz vein, 2cm, @ 45 deg TCA. @ 83.50 - 84.20: Shear zone, pale-green, irregular shearing, some @ 20 deg TCA, cut by hairline to mmscale quartz veinlets, @ 0 & 80 deg TCA. @ 84.73: Quartz vein, 1cm, @ 70 deg TCA. @ 84.80: Quartz vein, 2cm, sheared @ 60 deg TCA with sooty pyrite. @ 85.20: Quartz vein, 5cm @ 45 deg TCA. @ 85.20: Quartz vein, 2cm, with minor blebby pyrite. 				(m)	(%)	hhn			
		@ 89.80 – 90.10: Shear zone, light-green with 2 cm- scale quartz veins with very fine-crystalline pyrite, @ 70 deg TCA.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 5 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		@ 93.10: Quartz vein, 5cm, @ 45 deg TCA.									
		@ 93.85: Quartz vein, 2cm, @ 45 deg TCA.									
		@ 94.00 – 94.65: Quartz veins, mm-scale @ 45 deg TCA at dm intervals, some conjugate.									
		@ 97.65 – 97.90: Quartz veins, 3, cm-scale @ 45 deg TCA in zone of moderate alteration.									
		@ 99.60 – 99.70: Aplite dike @ 45 deg TCA, margins very diffuse, appears to be a phase of diorite, cut by mm-scale quartz veins @ 45 deg TCA – parallel to aplite.									
		@ 100.60: Quartz vein, 1cm, @ 45 deg TCA, cross-cut by quartz vein, 1cm @ 30 deg TCA.									
		 @ 102.7 – 103.25: Aplite dike with radiating biotite blades. Dike @ 30 deg TCA, cross-cut by 1cm quartz vein @ 60 deg TCA. 									
		@ 104.1 – 104.3: Shear zone qirh 3 cm-scale quartz veins @ 60 deg TCA.									
		@ 107.00: Aplite dike, 20cm, @ 45 deg TCA, cut by mm-scale quartz veinlets @ 45 & 80 deg TCA.									
		@ 109.50: Shear zone 10cm, with 3 mm-scale quart veinlets @ 60 deg TCA.									
		Lower contact @ 45 deg TCA.									
113.50	120.80	DIORITE:									
		Non-porphyritic, plagioclase & biotite in equal proportion, medium-crystalline, plagioclase cream and light-green, biotite black. Probably a phase of the porphyry, but contacts are intrusive.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 6 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
120.8	129.14	 @ 114.65 – 114.95: Quartz vein, 2cm @ 10 deg TCA. @ 115.85: Quartz vein, 10cm, @ 70 deg TCA, light- green sericite on fractures. @ 117.5 – 117.8: Shear zone, rock crumbly, fabric @ 60 deg TCA. @ 120.4: Quartz vein, 10cm, @ 60 deg TCA, upper contact irregular with black (chloritic ?) slips. Lower contact 60 deg TCA , sheared, with 1cm quartz vein. DIORITE PORPHYRY: Coarse-crystalline, phenocrysts to 5mm = 60% of rock, phenocrysts are groundmass-supported. 									
		 generally light-green, groundmass-supported. Plagloclase generally light-green, groundmass biotite. @ 121.30 – 121.80: Quartz vein, 1cm, parallel TCA. @ 121.85: Bleb of chalcopyrite. @ 121.90: Quartz vein, 2cm, 80 deg TCA. @ 122.90: Aplite dike, 15cm @ 30 deg TCA (8cm thick). @ 125.75: Quartz vein, 5cm @ 45 deg TCA, chlorite on slips parallel to margins. @ 127.00: Quartz veins, 2cm, @ 0 & 90 deg TCA. @ 127.20: Quartz vein, 8cm, multiple slips with chlorite and minor pyrite. 									
129.14	139.00	QUARTZ VEIN ZONE:	143790	129.14	130.00	1.00	100	1333	1077.6	114.3	2.6

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 7 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Diorite porphyry hostrock, moderately altered, light-	143791	130.00	131.00	1.00	100	484	1209.0	136.5	3.5
		groundmass. Cut by milky-white mm to cm-scale	143792	131.00	132.00	1.00	100	37	16.1	278.7	2.3
		<1% disseminated pyrite.	143793	132.00	133.00	1.00	100	5	7.7	470.5	1.0
		@ 132.40 – 133.50: Less alteration, normal diorite	143794	133.00	134.00	1.00	100	31	8.0	190.4	1.2
		cm to dm intervals.	143795	134.00	135.00	1.00	100	169	282.8	117.7	2.3
		133.50 – 135.80: Quartz veins, cm-scale = 20% of	143796	135.00	136.00	1.00	100	119	511.4	100.3	3.2
		thickest @ 135.45m = 15cm. Very rare disseminated	143797	136.00	137.00	1.00	100	13	3.7	169.4	2.5
		pyrite.	143798	137.00	138.00	1.00	100	6	4.4	202.1	1.4
		 @ 135.80 - 139.00: Quartz veinlets, mm-scale @ 0 & 70 deg TCA in moderately-altered diorite porphyry. 	143799	138.00	139.00	1.00	100	3	4.2	404.1	21.7
		Lower contact arbitrary at 1cm quartz vein @ 60 deg TCA with specks of fuchsite.									
139.00	151.20	DIORITE PORPHYRY:									
		Plagioclase phenocrysts cream to light-green, generally < 5mm, 1cm max = 60% of rock by volume and generally form meshwork.									
		@ 140.97: Quartz vein, 2cm, @ 60 deg TCA.									
		@ 141.15 – 141.45: Quartz veinlets, irregular, mm- scale @ 45 deg TCA.									
		@ 144.00: Quartz vein, 2cm, @ 90 deg TCA.									
		@ 145.25: Quartz vein, 2cm, @ 90 deg TCA.									
		@ 145.60: Quartz vein, 4cm @ 90 deg TCA.									
		Lower contact @ 45 deg TCA with quartz vein.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 8 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
151.20	153.60	QUARTZ VEIN ZONE:	143800	151.20	152.20	1.00	100	1176	1790	100.8	2.4
		Diorite porphyry hostrock as bove, but pervasively altered to medium to light-green, cut by mm to cm-scale quartz veins, generally @ 45 & 70 deg TCA. Quartz veins = 20% of interval.	143801 143802	152.20 153.20	153.20 153.60	1.00 0.40	100 100	149 64	130.4 24.1	162.5 317.2	2.2 2.2
		Significant quartz veins: 151.20 – 151.45: With laminae of sooty pyrite; 151.45 – 152.00, veins at dm intervals, minor silification, veins @ 70 & 20 deg TCA; 152.00 – 152.10: vein @ 90 deg TCA with pyrite blebs; 152.20 – 152.25, vein wih specks of moly/stibnite; 152.30 – 152.40, vein with cm-size clot of pyrite and specks of moly/stibnite, @ 90 deg TCA; 152.55, 5cm, @ 45 deg TCA with cm-scale euhedral pyrite; 152.85, 2cm, @ 45 deg TCA; 153.35, 2cm, @ 60 deg TCA. Rock fractured @ 45 & 60 deg TCA, fractures generally rusty after pyrite.									
153.60	202.00	DIORITE PORPHYRY: Plagioclase phenocrysts to 5mm = 60% of rock as clots in biotite groundmass. Plagioclase cream to common light-green. Cut by mm-scale quartz veins at dm to 50cm intervals, generally @ 45 deg TCA, also @ 0, 30, 80 deg TCA. Fractures @ 80, 30, 45 deg TCA, at dm to 50cm intervals. Trace (<<1%) disseminated pyrite throughout. @ 157.00: Quartz vein, 2cm, with 2mm chalcopyrite bleb. @ 162.70: Quartz vein, 2cm @ 60 deg TCA. @ 168.25 – 168.50: Shear zone, plagioclase translucent green, with cm-size quartz vein at top of interval, mm-size vein at base, 70 deg TCA.									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 9 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
From	To	 @ 171.27: Quartz vein, 4cm, @ 70 deg TCA. @ 171.60 - 172.52: Quartz vein, 1cm, parallel TCA. @ 174.40 - 174.70: Shear zone wit cm-size quartz vein at top, mm-size vein at base, 70 deg TCA. @ 183.40: Quartz vein, translucent light-grey, 1cm @ 30 deg TCA, with <1% disseminated pyrite and 1-2% disseminated moly/stibnite. @ 183.50: Quartz vein, 5mm, with moly/stibnite. @ 184.28: Quartz vein, 4cm, @ 30 deg TCA. @ 186.75 - 187.05: Shear zone with several cm-scale quartz veins @ 70 deg TCA. @ 191.30 - 191.40: Shear zone50% quartz veins @ 60 deg TCA. @ 191.90 - 192.00: Shear zone with mm-scale quartz veinlets, conjugate @ 60 & 70 deg TCA, minor @ 45 deg TCA. @ 192.85 - 193.65: Shear zone, medium-green translucent plagioclase phenocrysts and light-brown sericitized biotite groundmass. @ 196.25: Quartz vein, 5mm @ 80 deg TCA with 5cm zone of silicification in hangingwall. 	143803	192.85	193.85	(m)	(%)	1769	2255.0	93.4	1.8
		 ^(a) 198.10 – 199.10: Shear zone with minor mm-scale quartz veinlets ^(a) 45 & 70 deg TCA, except ^(a) 198.60, 5cm quartz vein ^(a) 90 deg TCA. Disseminated and blebby pyrite 1-2%. 	143804	198.10	199.10	1.00	100	85	10.5	83.4	15.6

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 10 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
202.00	209.00	QUARTZ VEIN ZONE:	143805	202.00	203.00	1.00	100	8	7.9	83.4	10.2
		Diorite porphyry hostrock, variably altered, cut by quartz	143806	203.00	204.00	1.00	100	177	1399.0	64.4	11.1
		TCA, also @ 0, 30, 60, 90 deg TCA. Veins commonly contain disseminated and minor blebby pyrite <1%	143807	204.00	205.00	1.00	100	815	1948.0	55.3	22.6
		throughout rock + very fine-crystalline pyrite on slips generally on vein margins. Veins represent about 10 of	143808	205.00	206.00	1.00	100	12	14.0	67.5	10.6
		zone at 10-20cm intervals. Largest vein @ 206.60, 25cm. contacts @ 45 deg TCA.	143809	206.00	207.00	1.00	100	59	135.6	39.4	8.3
		@ 203 15 $-$ 204 80: Intense shearing fractures $@$ 30 &	143810	207.00	208.00	1.00	100	70	294.0	56.6	18.1
		45 deg TCA.	143811	208.00	209.00	1.00	100	721	872.0	77.5	36.7
		@ 204.4 – 204.85: Possible aplite dikes @ 60 deg TCA, cut by parallel cm-scale quartz veins.									
		@ 208.70: Quartz vein, 15cm, @ 60 deg TCA with abundant chlorite slips.									
209.00	241.15	 DIORITE PORPHYRY: Plagioclase phenocrysts = 60% of rock by volume, generally groundmass-supported. Plgioclase fresh to light-green altered. Groundmass black biotite, generally unaltered. Disseminated pyrite 1%. Cut by rare quartz veins, cm-scale, predominantly @ 70 deg TCA at 50cm intervals. General absence of shearing. @ 212.50: Quartz vein, 10cm, barren white @ 70 deg TCA. @ 216.00: Quartz vein, 15cm, cut by abundant slips with sooty and fine-disseminated pyrite, contact @ 70 deg TCA. @ 221.65: Quartz vein, 20cm, (single 10cm vein + 2 cm-scale veins separated by slivers of diorite), milky- 	143812	216.00	216.25	0.25	100	90 3664	98.5	37.3	7.5
		cm-scale veins separated by slivers of diorite), milky- white with pinkish cast, abundant hairline fractures with	143813	221.65	221.90	0.25	100	3664	242.1	20.8	2.0

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 11 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		 chlorite and minor sooty pyrite. Contacts sheared @ 70 deg TCA. POSSIBLY NO.9 VEIN. @ 224.00: Quartz vein, 5cm, broken @ 70 det TCA. @ 226.25 - 226.40: Shear zone, light-green with mmscale quartz veinlets @ 80 deg TCA. @ 229.80 - 229.90: Shear zone, contorted, medium to dark green, altered diorite with interstitial quartz. @ 229.80 - 229.95: Quartz vein, 2cm, parallel TCA. @ 230.43 - 230.83: Wuartz vein, 2cm, @ 10 deg TCA, merges @ 220.73 with 5cm quartz vein @ 45 deg TCA. Separate 2cm quartz vein at base of interval @ 45 deg TCA, shear bounded. @ 230.83 - 231.25: Shear zone, light-green to dark-green. Diorite (?) or plagioclase clasts + sericitized biotite groundmass. @ 231.45: Quartz vein, 5cm, upper contact 60, lower contact 45 deg TCA. @ 231.60 - 231.80: Quartz vein, 2cm @ 10 deg TCA. @ 236.55 - 237.35: Fractures at dm intervals @ 45 deg TCA, rock altered light-green plagioclase and sericitized biotite, minor mm-scale quartz veinlets both on fractures and cross-cutting @ 45 deg TCA. @ 239.70 - 239.85: Shear zone with 3 cm-scale quartz veins@ 45, 60 & 90 deg TCA (flatten down-hole). 	143814	230.43	231.33	0.90	100	93	24.9	38.4	14.6
		@ 240.35: Quartz vein, 10cm, upper contact @ 90 deg TCA, lower contact @ 45 deg TCA, with chlorite slips and 1cm pyrite bleb.	143815	239.50	240.50	1.00	100	155	69.0	41.1	22.4

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 12 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Lower contact at top of shear @ 70 deg TCA.									
241.15	243.60	QUARTZ VEIN ZONE: Diorite porphyry variably sheared and altered, cut by quartz veins = 15-20% of interval. Significant quartz veins: 241.20 – 241.30, @ 70 deg TCA, nebulous texture + horizon of pyrite + steel-grey mineral (stibnite?); 241.40, 5cm, with inclusion of altered diorite @ 80 deg TCA; 241.50 – 241.85, milky- white with nebulous and lamellar texture, trace disseminated sulphide (stibnite?), upper contact broken, lower contact @ 45 deg TCA. POSSIBLY NO.9 VEIN ; 241.85 – 243.60, network of mm to cm-scale veins at cm to dm intervals, generally @ 70-90 deg TCA; 242.78, 4cm with euhedral quartz crystals. Lower contact end of prominent shearing, alteration and relative abundance of quartz veins.	143816 143817 143818 143819	241.15 241.50 241.85 242.85	241.50 241.85 242.85 243.60	0.35 0.35 1.00 0.75	100 100 100 100	2611 142 188 335	6108.0 340.0 484.6 1269.0	83.2 16.0 26.0 34.5	0.3 0.2 0.4 1.4
243.60	276.15	 DIORITE PORPHYRY: Milky-white to greenish plagioclase phenocrysts = 60-70% of rock by volume, both phenocryst and groundmass supported. @ 260.15: Quartz vein, 5cm, @ 60 deg TCA. @ 260.95 - 261.40: Shear zone with 3 cm-scale quartz veins @ 45 & 60 deg TCA + mm-scale cream colored plagioclase (?) stringers. @ 263.60 - 264.10: Shear zone with 5cm quartz vein at top with abundant very fine-crystalline pyrite on lower 	143820	263.60	264.10	0.50	100	435	111.3	23.6	3.6

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-16

PAGE:Page 1 of 3

DIP AND AZIMUTH TESTS									
DEPTH ANGLE AZMTH									

CORE SIZE: NQ	TOTAL DEPTH: 100.58m	DATE STARTED: Sept 23, 2004
HOLE ANGLE: -50°	HOLE AZIMUTH: 305 °	DATE FINISHED: Sept 25, 2004
SECTION:	COLLAR ELEVATION: 2250 m	ANALYSIS BY: ALS Chemex
LOCATION: SW VEIN	RECOVERY: %	LOGGED BY: Greg Z. Mosher
UTM (NAD 83): 531032E; 5653480N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	21.34	CASING									
21.34	24.75	DIORITE PORPHYRY: Mottled cream and light-grey, plagioclase phenocrysts 70-80% of rock by volume, generally rounded. Groundmass plagoclase-quartz-hornblende. Minor alteration except basal meter in which plagioclase is altered light-grey to light-green. Cut by rare (5 max) hairline quartz-filled fractures @ 60-70 deg TCA. Fractured at cm to dm intervals @ 30, 45, 60 deg TCA. Lower contact sheared @ 45 deg TCA.									
24.75	32.00	 SERPENTINITE: Dark-grey to black, with sheared texture as irregular network. @ 24.75 – 25.00: Sheared, partially carbonate altered to buff-brown. 25.00 – 25.60: Broken, fractures commonly parallel TCA. @ 28.15 – 28.50: Strongly sheared, rubble. @ 29.25 – 30.50: Broken. 									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-16

PAGE:Page 2 of 3

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		@ 30.78 – 31.50: Strongly sheared, altered light-green and buff-brown, contorted fractures and foliation, 45-80 deg TCA.									
32.00	100.58	 HARZBURGITE: Mottled black groundmass with medium to light-grey pyroxene phenocrysts. Pyroxene crystals appear to be aggregates. Fractured @ 45 & 80 deg TCA with light-green and light-blue talc on fracture surfaces. @ 48.70 – 49.83: Sheared with asbestos fibre on shear surfaces. @ 53.44 – 54.24: Sheared, altered light-grey and light-green, fabric generally @ 30 & 45 deg TCA. @ 56.20 – 56.70: Sheared, asbestos fibre on surfaces. Shear fabric @ 20 deg TCA. @ 61.80 – 62.00: Sheared, altered light-green, talcose, fibrous, @ 20 deg TCA. @ 66.70 – 68.40: Coarse mottled texture, pyroxene phenocrysts = 75% of rock by volume = black groundmass within pyroxene meshwork. @ 70.13 – 70.60: Sheared, fbric generallt @ 70 deg TCA. Altered light-grey and light-green. Fractured @ 20 deg TCA. @ 77.25 – 77.55: Shear @ 20 deg TCA, carbonate on fractures. @ 81.70 – 82.40: Erctured bleached light-grey to light-grey. 									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-16

PAGE:Page 3 of 3

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		green. Hairline quartz-filled fractures @ 30 & 45 deg TCA, conjugate. @ 91.00 – 91.20: Shear, upper contact @ 30 deg TCA, lower contact @ 80 deg TCA. Shear contorted, folded, contains several mm-scale quartz veinlets. @ 96.50 – 97.50: Broken @ 97.54 – 99.00: Hairline talc-filled fractures parallel TCA.									
100.58	100.58	END OF HOLE									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-15

PAGE:Page 13 of 13

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		 vein contact, @ 70 deg TCA., 1cm quartz vein at base @ 10 deg TCA. @ 264.40 – 266.90: Diorite porphyry, medium to coarse-crystalline, mm-scale phenocrysts, phenocrysts and groundmass 50/50%, Probably pulse of main diorite intrusion. Upper contact sharp @ 60 deg TCA, lower contact gradational. @ 268.10: Quartz vein, 4cm, @ 60 deg TCA. 									
276.15	276.15	END OF HOLE									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-16

PAGE:Page 1 of 3

DIP AND AZIMUTH TESTS									
DEPTH ANGLE AZMTH									

CORE SIZE: NQ	TOTAL DEPTH: 100.58m	DATE STARTED: Sept 23, 2004
HOLE ANGLE: -50°	HOLE AZIMUTH: 305 °	DATE FINISHED: Sept 25, 2004
SECTION:	COLLAR ELEVATION: 2250 m	ANALYSIS BY: ALS Chemex
LOCATION: SW VEIN	RECOVERY: %	LOGGED BY: Greg Z. Mosher
UTM (NAD 83): 531032E; 5653480N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	21.34	CASING									
21.34	24.75	DIORITE PORPHYRY: Mottled cream and light-grey, plagioclase phenocrysts 70-80% of rock by volume, generally rounded. Groundmass plagoclase-quartz-hornblende. Minor alteration except basal meter in which plagioclase is altered light-grey to light-green. Cut by rare (5 max) hairline quartz-filled fractures @ 60-70 deg TCA. Fractured at cm to dm intervals @ 30, 45, 60 deg TCA. Lower contact sheared @ 45 deg TCA.									
24.75	32.00	 SERPENTINITE: Dark-grey to black, with sheared texture as irregular network. @ 24.75 – 25.00: Sheared, partially carbonate altered to buff-brown. 25.00 – 25.60: Broken, fractures commonly parallel TCA. @ 28.15 – 28.50: Strongly sheared, rubble. @ 29.25 – 30.50: Broken. 									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-16

PAGE:Page 2 of 3

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		@ 30.78 – 31.50: Strongly sheared, altered light-green and buff-brown, contorted fractures and foliation, 45-80 deg TCA.									
32.00	100.58	 HARZBURGITE: Mottled black groundmass with medium to light-grey pyroxene phenocrysts. Pyroxene crystals appear to be aggregates. Fractured @ 45 & 80 deg TCA with light-green and light-blue talc on fracture surfaces. @ 48.70 – 49.83: Sheared with asbestos fibre on shear surfaces. @ 53.44 – 54.24: Sheared, altered light-grey and light-green, fabric generally @ 30 & 45 deg TCA. @ 56.20 – 56.70: Sheared, asbestos fibre on surfaces. Shear fabric @ 20 deg TCA. @ 61.80 – 62.00: Sheared, altered light-green, talcose, fibrous, @ 20 deg TCA. @ 66.70 – 68.40: Coarse mottled texture, pyroxene phenocrysts = 75% of rock by volume = black groundmass within pyroxene meshwork. @ 70.13 – 70.60: Sheared, fbric generallt @ 70 deg TCA. Altered light-grey and light-green. Fractured @ 20 deg TCA. @ 77.25 – 77.55: Shear @ 20 deg TCA, carbonate on fractures. @ 81.70 – 82.40: Erctured bleached light-grey to light-grey. 									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 1 of 8

DIP AND AZIMUTH TESTS										
DEPTH ANGLE AZMTH										
199.7 m	-43.0	-								

CORE SIZE: NQ	TOTAL DEPTH: 199.64 m	DATE STARTED: Sept 25, 2004
HOLE ANGLE: -50°	HOLE AZIMUTH: 090°	DATE FINISHED: Sept 29, 2004
SECTION:	COLLAR ELEVATION: 2253 m	ANALYSIS BY: ALS Chemex
LOCATION: SW VEIN	RECOVERY: %	LOGGED BY: Greg Z. Mosher
UTM (NAD 83): 531032E; 5653481N	CLAIM: Elizabeth	CORE STORED AT: Property

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
0.00	21.34	CASING									
21.34	29.06	SERPENTINITE: Black, cut by talcose, hairline fractures @ 20, 45, 70 deg TCA. Interval completely broken except basal 20 cm									
29.06	31.55	LISTWANITE: Carbonate-altered to green-brown, faulted and fractured @ 70 deg TCA. Abundant fault gouge. Minor millimeter-scale guartz veinlets @ 70 deg TCA, broken.									
31.55	47.80	DIORITE: Medium to light-grey, plagioclase phenocrysts 2-3mm, 30% of rock by volume, generally euhedral, in light- grey, fine-crystalline groundmass. Broken at 5cm intervals to 35.90m, fractures @ 90 & 45 deg TCA. FeOx stained on and adjacentto fractures. From 35.90 – 47.80 fractures @ 5-10cm intervals, minor FeOx stain. Millimeter-scale quartz veinlets @ 50cm intervals throughout, generally @ 60 & 45 deg TCA. Sulphides rare except @ 44.05 – 44.70, 1-2% disseminated pyrite. Probably dike. @ 38.56 – 39.20: Serpentinite, heavily sheared with anastomosing mm to cm-scale quartz stringers @ 30 & 45 deg TCA. Trace sub-mm scale pyrite.	143821	44.05	44.70	0.65	100	10	89.6	329.6	4.6

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 2 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		 @ 39.20 – 39.90: Diorite, fine-crystalline, medium-grey with rare mm-scale plagioclase phenocrysts at 10cm intervals. Lower contact @ 60 deg TCA. @ 39.90 – 41.20: Harzburgite, mottled light and dark-grey, upper contact sheared, broken, lower contact sheared @ 45 deg TCA. 									
47.80	62.65	 SERPENTINITE / HARZBURGITE: Dark-grey to black, variably sheared (serpentinite) to mottled (harzburgite). @ 47.80 – 48.80: Medium-brown, possibly sheared diorite to 48.50, then light-green with dark-grey fragments = sheared, talcose serpentinite. @ 48.80 – 60.96: Rock cut by talcose fractures @ 45 deg TCA. Rock generally fractured @ 45 & 90 deg TCA at 10cm intervals. @ 60.96 – 62.20: Serpentinite, sheared, talcose, fractures @ 45, 30, 0 deg TCA. 									
62.65	66.00	DIORITE PORPHYRY: Milky-white plagioclase phenocrysts in medium-grey quartz-plagioclase-amphibole groundmass. Phenocrysts to 1cm, average 5mm, =40% of rock by volume. Diorite unaltered except where noted below. Cut by rare mm to cm-scale quartz veins, parallel, 30, 60, 90 deg TCA, at irregular intervals generally 20- 50cm. Significant veins noted below. @ 65 – 65.25: Quartz vein, 2cm, wavy parallel TCA, cut off at 65.25 by 1cm quartz vein @ 45 deg TCA.									
66.00	69.00	QUARTZ VEIN ZONE:	143822	66.00	67.00	1.00	100	8	134.5	112.1	51.8

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 3 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Diorite slightly altered – plagioclase phenocrysts very light-green, groundmass sericitized light-brown. Irregular cm-scale quartz veins @ 20-50cm intervals with <1% disseminated pyrite and specks of moly/stibnite, <<1%.	143823 143824	67.00 68.00	68.00 69.00	1.00 1.00	100 100	6 13	201.4 497.3	128.6 125.3	60.7 212.6
69.00	95.40	 DIORITE PORPHYRY: Diorite as for 62.65 – 66.00. @ 73.35 – 74.10: Porphyry sericitized light green and medium-brown. Cut by cm-scale quartz veins @ 60 & 90 deg TCA at 5-20 cm intervals. @ 75.50 – 77.70: Shear zone, porphyry sericitized light-green and light-brown, rare, irregular quartz veins. Most intense shearing at 76.20 – 76.50m = chloritized porphyry with irregular quartz groundmass. Very rare sulphides. @ 79.00 – 80.00: Porphyry sericitized to medium-brown, cut by hairline fractures + mm to cm-scale quartz veins parallel & @ 90 deg TCA with 1-2% disseminated pyrite and 1% disseminated moly/stibnite. @ 81.00 – 81.60: Shear zone. Porphyry altered light-green and light-brown, rare quartz veins. Shear fbric @ 45 deg TCA. Quartz veins @ 70 deg TCA. @ 91.80 – 91.90: Quartz-filled shear, contacts @ 45 deg TCA. 	143825	79.00	80.00	1.00	100	<2	3.0	222.1	176.4

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 4 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
95.40	97.10	QUARTZ VEIN ZONE: Porphyry slightly altered, groundmass only, light-brown and green. Quartz veins mm to cm-scale, milky-white and clear, some with plagioclase, @ 30, 45, 70 deg TCA with 1% disseminated pyrite + moly/stibnite. Pyrite also disseminated throughout porphyry (1%).	143826 143827	95.40 96.40	96.40 97.10	1.00 0.70	100	2 5	3.7 10.5	431.0 483.2	80.6 205.5
97.10	136.30	 DIORITE PORPHYRY: Diorite as for 69.00 – 95.40. @ 98.60 – 98.90: Quartz vein, milky-white with chloritized diorite inclusions + 1-2% disseminated pyrite on fractures. Contacts @ 20 deg TCA. @ 100.00 – 100.50: Shear zone, altered light browngreen with 30% quartz veins @ 60-70 deg & parallel TCA. Black chloritized slips + 1% disseminated pyrite. @ 106.95 – 107.30: Quartz Vein Zone: . Cm-scale veins = 30% of interval @ 45 deg TCA, with whisps of chloritized diorite. @ 109.2 – 113.2: Porphyry slightly altered with cm-scale shears @ 80 deg TCA. Cm-scale quartz veins 10deg & parallel TCA with 1% disseminated and blebby pyrite. 	143828 143829 143830 143831 143832 143833	98.50 100.00 106.90 109.20 110.20 111.20	99.00 100.40 107.30 110.20 111.20 112.20	1.00 0.40 0.40 1.00 1.00	100 100 100 100 100	7 1642 5 7 3 9	1524.3 9319.0 65.7 27.5 58.2 453.4	228.7 91.1 105.1 53.0 91.3 92.5	130.3 29.9 162.6 65.2 27.0 11.9
		 @ 114.10 – 114.85: Shear zone, altered light-grey to light-green, cut by mm to cm-scale quartz veins @ 90 & 45 deg TCA + 1% disseminated pyrite. 	143834	112.20	113.20	0.75	100	274	2508.0	107.9	22.2 159.6

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 5 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		@ 119.00 – 121.03: Shear zone, light green-grey with cm-scale quartz veins @ 30, 45, parallel TCA, minor disseminated pyrite + possible moly/stibnite.	143836	119.00	119.83 121.03	0.83	100	447 8	2882.0 46.5	139.7 140.3	122.1 13.0
		@ 123.80 – 125.80: Quartz veins or aplite dikes, xcm- scale (contains rare, faint mm-scale plagioclase phenocrysts). Very light-grey and milky-white, @ 30, 70, parallel TCA, <1% disseminated pyrite.	143838 143839	123.80 124.80	124.80 125.80	1.00 1.00	100 100	119 23	722.2 85.6	70.4 37.9	7.5 1.1
		 29.20 – 130.20: Quartz vein or aplite dike zone. Porphyry sheared, altered light-green. Very light-grey, cut by mm-scale, milky-white quartz veins generally @ 30 deg TCA. Fractured, <1% disseminated and blebby pyrite. 	143840	129.20	130.20	1.00	100	24	218.1	26.6	27.3
		@ 130.20 – 133.30: Quartz vein / aplite dike zone. Milky-white quartz veins, mm to cm-scale, and greenish-cream cm-scale aplite dikes, in sericitized	143841 143842	130.20 131.20	131.20 132.10	1.00 0.90	100 100	439 356	2122.4	74.4 30.4	4.5 45.4
		diorite porphyry, plagioclase light-green, groundmass light-brown. Quartz veins @ 60, 30, 90 deg TCA = about 20% of interval. Most prominent quartz vein @	143843	132.10	132.40	0.30	100	644	4984.5	50.1	7.3
		 32.15 – 32.30m, contacts @ 60 deg TCA, contains chloritized slips parallel to contacts. 1% disseminated pyrite + rare moly/stibnite + possible arsenopyrite. @ 132.50 – 132.55: Quartz vein, 5cm, contacts @ 70 deg TCA, with pyrite + possible arsenopyrite on vein margins and on fractures within vein. @ 134.25 – 134.75: Aplite dike, contacts @ 30 deg TCA. 	143844	132.40	133.00	0.60	100	490	3555.5	96.5	2.2
136.30	137.20	Lower contact at start of prominent quartz veining @ 45 deg TCA. QUARTZ VEIN:	143845	136.30	137.20	0.90	100	20	465.0	36.1	449.0
136.30	137.20	QUARTZ VEIN:	143845	136.30	137.20	0.90	100	20	465.0	36.1	449.0

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 6 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		Probable combination of branching quartz veins enclosing slices of diorite and aplite dikes. Milky-white with 1% disseminated pyrite + 1% moly/stibnite on fractures and disseminated in veins.									
137.20	140.33	DIORITE PORPHYRY: Cream-colored plagioclase phenocrysts, up to 5mm, in medium to dark-grey groundmass. @ 137.70 – 138.53: Aplite dike in slilghtly altered diorite, plagioclase phenocrysts light-green in sericitized groundmass. Aplite dike contacts @ 30 deg TCA. Cut by sericitized fractures @ 90 deg TCA. Very rare (<<1%) disseminated pyrite. Dike continues to 139.05 as cm-scale vein // TCA.									
140.33	141.65	QUARTZ VEIN: Upper contact broken @ 60 deg TCA. Vein branches or includes fragments of highly-altered diorite and 1% disseminated + blebby pyrite + <1% mm-scale specks of moly/stibnite.	143846	140.33	141.65	1.32	100	53	516.7	55.8	368.8
141.65	142.30	APLITE DIKE: Hostrock diorite porphyry. Aplite dike @ 20 deg TCA, cut by quartz veins @ 10 deg TCA, cut by fractures @ 60 deg TCA Lower contact @ 70 deg TCA	143847	141.65	142.75	1.10	100	30	705.2	58.4	205.5
142.30	142.75	QUARTZ VEIN / APLITE DIKE: Upper contact @ 10 deg TCA, lower contact @ 80 deg TCA.									
142.75	152.34	DIORITE PORPHYRY: Variably altered, plagioclase cream-white to light-green, groundmass generally sericitized brown. Plagioclase phenocrysts rounded, 5mm maximum = 40% of rock by volume. Cut by mm to generally cm-scale quartz veins									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 7 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		and aplite dikes @ parallel, 10, 30, 60 deg TCA = 20% of interval to 147.50, then rare hairline fractures parallel and 45 deg TCA. 1% disseminated pyrite throughout.									
		@ 142.75 – 143.45: Heavily altered, plagioclase translucent green with cm-scale milky-white quartz vens @ 80 deg TCA \pm 1% disseminated pyrite	143848	142.75	143.75	1.00	100	609	3668.9	101.7	577.2
			143849	143.75	144.75	1.00	100	89	683.4	201.9	13.7
		@ 145.95 – 146.35: Aplite dike, contacts 30 deg TCA.	021301	144.75	145.75	1.00	100	39	415.6	153.1	10.4
		@ 147.50 – 152.34: Diorite contains 1-2% disseminated moly/stibnite in porphyry adjacent to hairline fractures.	021302	145.75	146.75	1.00	100	18	548.8	64.6	44.0
			021303	146.75	147.75	1.00	100	8	268.4	208.2	29.1
		brown, possibly silicified, moly/stibnite 2-3%.	021304	147.75	148.75	1.00	100	5	36.5	127.9	181.2
			021305	148.75	149.75	1.00	100	4	17.6	38.2	900.7
			021306	149.75	150.75	1.00	100	4	78.4	87.4	>2000
			021307	150.75	151.75	1.00	100	15	489.7	229.0	213.3
		Lower contact = shear @ 70 deg TCA.	021308	151.75	152.35	0.60	100	193	2179.3	180.5	158.9
152.34	186.80	APLITE ZONE:									
		Diorite porphyry hostrock, variably altered, generally slightly green, cut by 50% aplite dikes prallel, 30, 45, 90 deg TCA. Rare quartz veins, rare sulphides (<<1%). Aplite light-grey with mm-scale plagioclase phenocrysts + 1-2% disseminated amphibole (?), possibly phase of diorite. Significant aplite dikes @: 154.10 – 154.70, multiple dikes @: 154.10 – 154.70, multiple dikes @: 157.67, upper contact @ 45 deg TCA; 156.67 – 157.67, upper contact @ 45 deg TCA, lower contact @ 20 deg TCA; 159.14 – 160.30, upper contact 45, lower contact 30 deg TCA, sheared @ 70 deg TCA at 159.60m; 162.00 – 163.46, upper contact 45, lower	021309	158.90	159.90	1.00	100	4	64.0	101.8	74.2

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-17

PAGE:Page 8 of 8

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		 contact 90 deg TCA; 166.40 – 167.20, upper contact 20, lower contact 70 deg TCA; 169.05 – 169.70, contacts @ 45 deg TCA; 170.90 – 175.80, dike or multiple dikes with 5% cm to dm intervals of diorite, lower contact @ 20 deg TCA; 187.30 – 188.60, upper contact 45, lower contact 20 deg TCA. @ 183.90 – 184.50: Blebby pyrite 1%, associated with mm-scale veinlets and blotches of smoky quartz in aplite. Upper contact irregular, lower contact 90 deg TCA. 	021310	183.90	184.50	0.60	100	9	99.2	39.2	203.0
186.80	199.64	DIORITE PORPHYRY: White plagioclase phenocrysts up to 1cm = 30% of rock by volume, in dark-grey to green-grey groundmass. Coarser than above diorite. Cut by minor aplite dikes to 195.50m. @ 199.50: Quartz vein, 5cm, broken, rusty.									
199.64	199.64	END OF HOLE									

PROPERTY: Elizabeth

DRILL HOLE: DDH E04-16

PAGE:Page 3 of 3

Depth (m) From	Depth (m) To	Interval Description	Sample Number	Sample From	Sample To	Sample Length (m)	Sample Core Rec (%)	Au ppb	As ppm	Cu ppm	Mo ppm
		green. Hairline quartz-filled fractures @ 30 & 45 deg TCA, conjugate. @ 91.00 – 91.20: Shear, upper contact @ 30 deg TCA, lower contact @ 80 deg TCA. Shear contorted, folded, contains several mm-scale quartz veinlets. @ 96.50 – 97.50: Broken @ 97.54 – 99.00: Hairline talc-filled fractures parallel TCA.									
100.58	100.58	END OF HOLE									

FIGURES

	J-PACIFIC	GOLD INC.
	ELIZABETH LOCATI	PROPERTY ON MAP
	Lillooet Mining	Division, B.C.
		Date: November, 2004
pany a report by G.Z.Mosher, P. Geo.	Drawn By: EG	Figure: 1

To accom

J-PACIFIC GOLD INC	
BRALORNE - POINEER AREA GEOLOGY	
	FIGURE: 6

Lillooet Mining Division, B.C.

0	20 40
J-PACIFIC	GOLD INC.
ELIZABET	H PROPERTY
DDH I	E04-14
UTM 531720 NAD 83 Gr)E / 5653799N id Zone 10U
Logged by G.Z.Mosher	Date: November, 2004
Drawn By: GZM	Figure: 11

