REPORT ON THE 2004

ENTRANCE PEAK PROJECT:

POLY PROPERTY, SKEENA MINING DIVISION,

STEWART MINING CAMP,

NTS 104A/04E

NORTHWESTERN BRITISH COLUMBIA

BY

GEOFINE EXPLORATION CONSULTANTS LTD.

FEBRUARY 2005

REPORT ON THE 2004

ENTRANCE PEAK PROJECT:

POLY PROPERTY, SKEENA MINING DIVISION,

FEBRUARY 2005

FRONTSPIECE PHOTO 1: MAIN AREA OF 2004 EXPLORATION PROGRAM, POLY PROPERTY LOOKING NORTH FROM HWY 37A:

IDEALIZED CONTROL LINES: OLD HWY 37A & CONTROL LINE NEW HWY 37A STEWART POWER LINE BL50E, BL51E, BL53+75E & CL 345° HIGHWAY ZONE CREEK CONTROL LINE CRID LINES HIGHWAY ZONE CREEK SHOWING ICE AND UPPER ICE SHOWINGS

SCALE: VARIABLE

REPORT ON THE 2004 ENTRANCE PEAK PROJECT:

POLY PROPERTY, SKEENA MINING DIVISION,

STEWART MINING CAMP, NORTHWESTERN BRITISH COLUMBIA

SUMMARY:

The Poly Property is situated about 42 km east of Stewart or about 18 km west of Meziadin Lake, in the Entrance Peak Area of Northwestern British Columbia. The Poly 1-7 Claims are located in the Skeena Mining Division of the Stewart Gold Camp and registered in the name of Geofine Exploration Consultants Ltd. ("Geofine") on behalf of Geofund, a private investment group. Old Hwy 37A, Hwy 37A and the Stewart power line corridor bisect the claims and provide excellent access.

Latecgra Resources Corp. ("LEG") holds the property under option from Geofine and can earn a 100% interest by fulfilling escalating option payments and work conditions. The LEG interest is subject to a Geofund 2.5% NSR.

A. HISTORIC WORK:

Interest in the area was generated in 1991 as a result of Geofine's interpretation and application of the same exploration rationale used to discover the Red Mountain deposit i.e., favorable structural fabric and altered Hazelton pyroclastic rocks intruded by a quartz monzonite pluton. Sulfidized boulders (Type 1 mineralization, as defined below) with metal contents of up to 56.85 g Au/t, 520 g Ag/t, and 15.2% Zn were soon discovered near the shoulder of old Hwy 37A, below the apparent target area, which had no historic mineral showings.

Follow-up activities in 1992 located the Hwy Zone Creek Showing ("HZCS"), a quartz-ankerite vein system, situated about 900 m north of old Hwy 37A in upper Hwy Zone Creek. Chip samples returned up to 9.85 g Au/t, 1163 g Ag/t, 0.33% Cu, 0.54% Pb and 0.33% Zn across a 3 m width. Sampling of a sulfide rich section of a quartz vein returned 123.3 g Au/t; 1897 g Ag/t; 0.85% Cu, 5.79% Pb and 0.47% Zn over 15 cm. Encouraging stream sediment anomalies and mineralization were also found in East and Hwy Zone Creeks. The multielement signature ("MES" i.e., Au, Ag, Cd, Cu, Pb, Zn, As, Sb) in stream sediments from Hwy Zone Creek was of particular interest in view of the stronger gold values (up to 349 ppb) that occurred over a 750 m strike length, which remained open to the north – towards the HZCS, and to the south.

An apparent extension of the favorable exploration environment, the Highway 37A Zone Showing ("HS"), was discovered between and to the south of old Hwy 37A and Hwy 37A in 1999. In 2000, detailed geochemical and geological surveys expanded the HS target area to an additional 500 m to the southeast.

Geochemical and geological surveys carried out by Geofine in 2002 continued to confirm the importance of the exploration environment. The stream sediment geochemical survey further delineated the anomalous MES in East, Middle and Hwy Zone Creeks. The results of the soil geochemical survey were interpreted to confirm the results of the stream sediment survey i.e., one of the principal target areas on the grid is located mainly on the west end of all the grid lines in the lower target area i.e., proximal to Hwy Zone Creek. Locally, the target area extended to the east to beyond BL50E, to East Creek. Anomalous soil Au, Ag, Cd, Cu, Pb, Zn, As and Sb zones showed good correlation and trended north in the general area of Hwy Zone Creek, along a strike length of over 600 m. The zones remained open for delineation and broadened in the southwest area of the grid, where an inflection in the structural fabric appeared particularly favorable for sulfide deposition.

The 2002 rock geochemical and geological surveys identified 4 principal types of mineralization:

Mineralization Type:

Elemental Signature:

Type 1: Pyrite, arsenopyrite, sphalerite, chalcopyrite, galena :	Au, Ag, Cd, Cu, Pb, Zn, As, Sb
Type 2: Pyrite, arsenopyrite:	Au, Ag, As, Sb +/- Cu, Pb, Zn
Type 3: Pyrrhotite +/-chalcopyrite:	Cu +/- Au, Ag, As
Type 4: Specular hematite or spec:	+/- Au, Cu

The results of the 2002 rock geochemical survey suggested that mineralization Types 1 and 2 are the most important exploration targets, although Type 3 should not be overlooked; and, that the main target areas are Lower and Upper Hwy Zone Creek and Upper East Creek.

The rock geochemical and geological surveys indicated that the mineralization types can be found in most of the altered (silicified, sulfidized +/- ankerite, sericite, fuchsite, chlorite, calcite, epidote) rock types observed on the grid: ash tuff is the host of 2% of the mineralized samples collected; crystal tuff, 7%; crystal tuff breccia, 51%; rhyolite, 1%; argillite, 8%; and, a variety of quartz veins and breccia vein types found in argillite, crystal tuff and crystal tuff breccia or as vein material, 31%. However, 40% of the anomalous Au values are associated with the quartz vein material; 13% are found in crystal tuff or crystal tuff breccia with associated quartz vein material; and 42% are associated with altered and sulfidized crystal tuff breccia. Forty-two percent of the rock samples with anomalous gold values were collected in Hwy Zone Creek and 33% in East Creek.

The geological, structural and topographic information indicated that the creeks and their oftenlinear tributaries are mainly controlled by fractures that generally strike between 270 ° to 20° and have vertical or steep dips. Such structures and their junctions and inflections are interpreted to control the epithermal-mesothermal hydrothermal mineralization on the property. For example, Type 2 mineralization observed at the Ice Showings in Upper East Creek and Types 1 and 2 found in Hwy Zone Creek generally comprise quartz-ankerite-sulfide fracture fillings hosted by altered crystal tuff breccia. The mineralization is often associated with fuchsite, with evidence of multiphase activity (e.g., brecciation, flow banding).

B. 2004 EXPLORATION PROGRAM:

The 2004 exploration program on the Poly Property totalled about \$190,000 (Table 2) and was carried out intermittently from June 2004 to March 2005. The program consisted of a number of phases of fieldwork, technical data integration/processing and reporting. The work included the re-establishment of the 2002 grid (base lines, control lines, grid lines) and its expansion to the east, west, north and south, along with 4 fill-in lines (a total of about 11 km, Frontspiece Photo 1); geochemical surveys including the collection of 13 stream sediment samples, 261 soil samples, 55 rock samples and 67 check samples including standards, re-runs and metallic sieved samples; vegetation and geological surveys; JVX Spectral IP/resistivity (~7.5 km) and magnetic surveys (~8.5 km); the initiation of a 600 m drill program in late October, including the preparation of 6 drill sites, the building of two drill pads and the carrying out of topographical surveys. The drill program had to be abandoned due to a major storm on November 4 that precipitated snow slides in the vicinity of the upper drill sites. The project was based out of Stewart, BC and the work site was accessed in most cases on foot. Some helicopter support was required to remove samples from Upper Hwy Zone Creek and to place drill pad materials on L55N, L54N and L52N.

B.1. 2004 STREAM SEDIMENT, SOIL AND ROCK GEOCHEMICAL AND VEGETATION SURVEYS:

The 2004 geochemical and vegetation surveys were carried out on the extensions of the historic grid and control lines and on the new grid and base lines. The MES referenced above i.e., the anomalous Au, Ag, Cd, Cu, Pb, Zn, As, Sb multielement signature routinely used by Geofine to evaluate targets in the Stewart Camp, was utilized in the interpretation of the analytical results from the sediment, soil and rock geochemical surveys.

B.1.a. STREAM SEDIMENT GEOCHEMICAL SURVEY:

The results from the 13 stream sediment samples were integrated with the 2002 and 2000 sediment samples and the database provides further positive exploration target rationale. For example, all four 2004 sediment samples collected in the Upper Middle Creek Area ("UMCA"; i.e., between Hwy Zone Creek and East Creek north of L56N) have weakly anomalous Au, Ag and Cd contents, anomalous Cu, Zn and Sb contents and, strongly anomalous As (average value of 304 ppm As) contents. Arsenic is one of the best indicators of gold and polymetallic mineralization on the property. The Upper Middle Creek area was deemed of interest in 2002 in view of a number of mineral showings located in East and Hwy Zone Creeks associated with structures and conjugate structures that extend into the Upper Middle Creek Area. The current importance of the UMCA is readily apparent via reference to the JVX geophysical compilation Map GP 1, attached to this Summary: as referenced below, the postulated northern extension of main IP Zone C is up the Upper Middle Creek shear zone.

The importance of the southern area of the Poly Grid is further confirmed by a 2004 stream sediment sample taken on L48N in the vicinity of IP target T6, at the south end of IP Zone C (Map GP 1). The sample returned weakly anomalous Cu and Au values, strongly anomalous Cu, Pb, Zn and Cd values and anomalous As and Sb values.

TABLE 2: EXPENDITURES, 2004 EXPLORATION PROGRAM, POLY PROPERTY:

EXPENDITURE TYPE:	AMOUNT* (\$CDN):	GST INCL. (\$CDN):
SALARIES, FEES, INSURANCE: RE. BUDGETING, PERMITTING, CONTRACTS, CONTRACTOR SUPERVISION; FIELD WORK INCL. RESTORE OLD GRID, HORIZ & SLOPE PICKETING INCL. N EW GRID; STREAM SEDIMENT, SOIL, ROCK GEOCHEMICAL SURVEYS; VEGETATION	61976.85	4041.50
AND GEOLOGICAL SURVEYS; SPECTRAL IP		
INCL. HOLE SPOTTING, TOPOG SURVEYS, PAD		
BUILDING. SECURITY, QUALITY ASSURANCE,		
DATA VERIFY, RECLAMATION.		
SUPPLIES:	5440.70	312.06
COMMUNICATIONS:	1657.59	119.96
ACCOMODATION, SUBSISTANCE:	9202.66	130.73
MOB-DEMOB:	8082.74	526.07
AIRCRAFT TRAVEL:	2.44.00	15.96
HELI CHARTER:	1670.49	109.29
ANALYSES:	9717.12	635.05
VEHICLE RENTAL, INSURANCE,		
FUEL:	5308.38	288.45
COURIER, SHIP, EXPEDITE:	5455.43	336.30
LINE CUTTING & IP CREW PARTICIPATION:	17474.22	1142.81
GEOPHYSICAL SURVEYS, DATA PROCESSING &		
MODELLING, REPORTING:	28077.71	1838.36
CLEAR DRILL SITES; DRILL PADS,		
MATERIALS:	7941.12	517.65
DIAMOND DRILLING, PROJECT FUEL,		
MOB-DEMOB:	4575.07	299.30
COPIER	786.17	51.17
DATA ENTRY, VERIFY, COMPILE, COMPUTER		
PLOTS, DATA INTERPRET, QUALITY ASSURANCE,		
DRAFTING; REPORTING, REPRODUCTION:	12000.00	784.80
FILING FEES, PERMIT REQUIREMENTS	6180.00	
TOTAL:	185790.25	11149.46
OVERHEAD	5573.71	
GRAND TOTAL*:	191363.96	11149.46

* ITEMS SUCH AS OPTION PAYMENT, RECLAMATION BOND NOT INCL.

Based on the integration of the historic database and the 2004 sample results, it is concluded that the stream sediment geochemistry from Hwy Zone Creek and East Creek provides one of the most apparent indications of the target mineralization. For example, the twelve 2000-2004 sediment samples collected in Hwy Zone Creek have average MES values of 140 ppb Au, 2 ppm Ag, 2.1 ppm Cd, 86 ppm Cu, 39 ppm Pb, 231 ppm Zn, 200 ppm As and 4 ppm Sb. These values are relative to threshold values routinely used by Geofine in the Stewart Camp of 10 ppb Au, 0.4 ppm Ag, 0.7 ppm Cd, 45 ppm Cu, 15 ppm Pb, 130 ppm Zinc, 24 ppm As and 4 ppm Sb.

B.1.b. SOIL GEOCHEMICAL SURVEY:

The 2004 soil geochemical survey included the collection and analysis of 261 mainly B-horizon soil samples, along with check samples. In addition to the 2002 MES soil anomalies referenced above, the 2004 soil results delineate some interesting MES anomalies on the new grid lines and extensions of historic lines. The 2004 soil anomalies tend to confirm the importance of many of the JVX IP anomalies discussed below and provide evidence additional to the geological information and rock and stream geochemistry that the main exploration targets extend over a 1.1 km strike length and remain open to the south, southeast and to the north of the current grid.

For example, the anomalous MES is often moderate to strong and often fairly complete for soil samples on L48N in the vicinity of Target T6, IP Zone C and the IP anomaly farther to the east (Map GP 1); on L49+50N on the east flank of Target T-5, IP Zone C and possibly indicative of another target, near the east end of L49+50N in apparent quartz monzonite terrain; on the west end of L49+85N, along strike of the southern projection of IP Zone A from L51N (Map GP 1); on L49+85N, associated with IP Zone C; on the west end of L51N across IP Zone A and the IP anomaly further to the west; on L51N on the east flank of IP Zone C; on L53+50N, associated with Target T12, IP Zone B; on L54N, associated with IP Zone A; on L54+50N, associated with Target T8 and Target T7, IP Zone B; on BL51E between 56+75N to L59N, where BL51E ends; and, on L59N for some soil samples.

Based on the integration of the 2004 soil samples with the historic samples taken in 2000 and 2002, it is concluded that:

- 1. A B-horizon soil geochemical anomaly with an anomalous MES that includes Au, Ag, Cu, Pb, Zn, As, Sb and Cd, has been delineated on the Poly Grid. The signature remains open to the north, south and southeast.
- 2. The areas of IP Zones A, B and southern part of the C (Map GP 1) have moderate to good development of the B soil horizon. The middle and upper part of the IP Zone C is generally covered with boulder terrain associated with the various channels of East and Middle Creeks. The resulting, often poor to moderate soil horizon development is thought to account for the lack of a stronger MES over parts of the upper and middle IP Zone C.
- 3. Arsenic is one of the best indicators of gold and polymetallic mineralization on the Poly grid. Most areas of the IP zones have direct correlation with anomalous arsenic values.

The arsenic signature remains open to the north and south, particularly to the north, in the Upper Middle Creek area.

- 4. Most areas of the IP Zones have some direct correlation with weak to strong gold anomalies. IP Zones A and B, the southern part of the IP Zone C and the area of Target T7, IP Zone C on L54+50N generally have the best direct correlations with the strongest soil gold values.
- 5. Anomalous silver values are fairly wide spread, but the highest values are fairly concentrated in their distribution: in the area of the Upper Middle Creek Grid; along IP Zones A and B; and, in the vicinity of some of the IP Zone C anomalies i.e., Target T-9 on L55N, which remains open to the north, into the Upper Middle Creek Grid; Target T-7 on L54+50N; and, Target T-11 on L53N.
- 6. Anomalous copper values generally are associated with the gold values. IP Zones A and B and southern and northern parts of IP Zone C generally have direct correlation with the strongest soil copper values.
- 7. Lead is a key indicator that is often used by Geofine to further prioritize anomalies. Most areas of the IP Zones are associated with some anomalous lead values. IP Zones A, B and the southern part of IP Zone C have direct correlation with the strongest soil lead values.
- 8. Zinc anomalies are more limited in their extent. Generally IP Zones A, B and the southern part of IP Zone C have direct correlation with the strongest soil zinc values. Based on Geofine's experience in the Stewart Camp, zinc, lead and cadmium anomalies often halo gold-copper mineralization.
- 9. Anomalous cadmium values are rather specific in their distribution, with and the highest values often associated with the higher zinc values e.g., with IP Zone C and the and the eastern IP anomaly on L48N; with IP Zone C, L49+50N; with the west end of L49+85E, possibly on the southern extension of IP Zone A from L51N; across IP Zone A to the west end of L51N.
- 10. Anomalous antimony soil values are rather specific and generally weak on the Poly Grid. There is some weak antimony association with IP Zone C on L48N; a broad association with Target T-5, IP Zone C on L49+50N and with the east flank of the IP anomaly on the on the west end of L49+50N; some weak association with IP Zone C on L49+85N and broad association with west end of L49+85N, possibly indicative of the south eastern extension of IP Zone A from L51N; weak association with IP Zone C and some association with IP Zone A on L51N; some weak association with IP Zones C and A on L52N; some weak association with IP Zones C and B on L53N; some weak association with Target T-2, IP Zone C on L55N; and, some weak association with the Upper Middle Creek Shear Zone on BL51E between 57+75N and 58+75N.

B.1.b. ROCK GEOCHEMICAL SURVEY:

The 2004 rock geochemical survey continued the historic activities re. the collection, classification and analysis of mineralized rock float rock and in situ rock samples, in order to further define the main mineralization target types and to locate and prioritize drill targets on them. The fifty-five 2004 rock samples were collected mainly in Upper Middle Creek, Hwy Zone Creek and in Upper Hwy Zone Creek in the vicinity of the HZCS. Type 1 mineralization comprises 42% of the samples; Type 2, 33%; and, Type 3, 25%. Forty percent of the 2004 samples have gold contents ranging from 2.13 to 40.5 g Au/t. Seventy-seven percent of these values came from Type 1 mineralization, 18% from Type 2 mineralization, and 5% from Type 3.

When these values are entered into Table GR 1 with historic samples (Map GR 1) that have gold grades of at least 2 g Au/t, the importance of Type 1 mineralization becomes most apparent: it constitutes 83 % of the samples relative to 13% for Type 2 and 4% for Type 3. However, Types 2 and 3 should not be overlooked since they can have significant gold contents e.g., up to 7.51 and 16.65 g Au/t, respectively, in the 2004 rock samples.

The aforementioned types do constitute a high-grade exploration target with a strong MES: the 48 higher grade samples referenced in Table GR 1 have an average grade of 13.26 g Au/t, 632.54 g Ag/t, 0.29% Cu, 0.25% Pb, 0.54% Zn, 0.31% As, 0.04% Sb and 0.01% Cd. The samples listed in Table GR 1 have been found on the Poly Grid from L48N to station 61N on the Upper Hwy Zone Creek Control Line i.e., over a strike length of about 1.3 km (Map GR 1).

The 2004 analytical results from the rock geochemical surveys (Table GR 1) range up to 40.5 g Au/t, 812 g Ag/t (based on the average of 2 Au and 2 Ag assays), 0.87% Cu, 0.16% Pb and 0.17% Zn in rock float sample 609787RF (Photo 4). Results for in situ composite samples range up to 9.05 g Au/t (with 3 metallic sieve assays averaged), 447.7 g Ag/t, 0.25% Cu, 0.04% Pb and 0.06% Zn (with three analyses averaged) over 20 cm in sample 609780R. The sample is from a quartz-sulfide vein ("vein 431") in the Upper HZCS area (Photos 2, 3). A 10 cm sample (609781R) of vein 431 wall rock contained 6.45 g Au/t, 155.9 g Ag/t (based on the average of 2 Au and 2 Ag assays), 0.14% Cu, 0.03% Pb and 0.03% Zn.

As indicated in some 2002 samples, there is more evidence of a sulfide nugget effect. For example, 3 additional samples of the 609780R 431vein material referenced above had average gold contents of 9.47 g Au/t relative to metallic sieve analyses that averaged 9.05 ppm for the same material (Photo 2). The coarse metallic fractions of the samples contain significant gold and future programs should be cognizant of such nugget effects.

Based on the integrated rock geochemical database, the higher-grade mineralization i.e., with at least 2 g Au/t, has been found in rock float and in situ samples over a 1.3 km strike length on the Poly Grid. To date, the elevated values have been returned from samples collected mainly in the area of Hwy Zone Creek and Upper Middle Creek and are mostly associated with Type 1 and Type 2 mineralization i.e., coarse pyrite + arsenopyrite +/- sphalerite, galena and chalcopyrite quartz-carbonate veins.

This distribution of the higher-grade mineralization as shown in Table GR 1 is thus confirmative

	·		TABLE GF	1					
	MULTI ELEMENT SIGNATURE AL		PESIIIT						e+
	LOWER, UPPER HWY ZONE CR	EEK. MIDD	LE CREEK	AND EAS	T CREEK AR	EAS. WITH	ANOMALOU	S VALUES**	J ,
	SHOWN IN ITALICS:							I	·······
SAMPLE NUMBERS;	ROCK***, MINERALIZATION	AU	AG	CD	CU	PB	ZN	AS	SB
LOCATION (S TO N); YEAR	TYPES****:	(g/t)	(g/t)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
500535DE-1 49N 54+42E- 2004		244		NA	NA		N A		
868000E: 21 50E 50425N-2004	QV IN IIS, I TPE 2	3.14	20 2	2.1	NA 244	NA 400	NA 949	NA	NA
38342RF: CL50+30N_35E: 1992	H6 TYPE 1	10.45	170 10	68.4	244	327	4743	1177	15
38343RF; CL50+30N, 35E; 1992	H6, TYPE 1	3.83	68.40	18.5	453	225	1532	621	22
686751RF; CL51+10N; 2000	QVM, SMS, TYPE 1	33.70	5895.00	153.5	14200	4500	11900	10000	9700
686752RF; CL51+10N; 2000	QVM, TYPE 2	9.90	41.20	4.0	251	166	404	10000	48
38415RF; CL51+90N; 1992	QVM, TYPE 1	56.85	520.00	22.5	5964	968	1867	512	125
599942RF; L52N, 48+81E; 2004	QV, OX MAT; TYPE 1	7.55	816.00	241.0	10600	209	19600	3020	78
686853RF; CL52+50N, 2004	QVM; TYPE 3	16.65	3.20	0.1	143	239	69	7	1
686852RF; CL52+60N; 2004	QVM, TYPE 1	3.64	45.50	7.9	478	419	403	1715	19
38999RF; CL52+70N; 1992		26.80	13.00	100.0	10030	3525	49300	622	177
6830420KF, CL52+65N, 1992	QUARBYM, TYPE 1	2.27	117.80	38.8	600	2100	11500	10000	2/
38423RE: C1 52+00N: 1002		7.05	209.00	30.8	6100	406	2460	590	111
683782RF: CL 53+76N: 2002	OVM TYPE 1	0.50	402.00	44	1070	335	6500	402 530	108
38428RF: CL54+25N: 1992	OVM TYPE 1	17.70	30 40	100.0	497	2100	17600	123	130
38430RF; CL54+88N; 1992	QCARBVM, TYPE 1	14.90	271.00	0.1	2981	1024	568	6119	80
38432RF; CL55+05N; 1992	QCARBVM, TYPE 1	2.76	29.00	14.6	186	325	1352	323	8
39021RF; CL55+25N; 1992	S1, QVM, TYPE 1	5.69	63.70	2.1	830	301	878	2605	4
39508RF; CL55+50N; 1992	QVM, TYPE 1	18.90	6.10	50.3	40	143	2719	248	1
38992RF; CL55+55N; 1992	QCARBVM, TYPE 1	5.48	91.10	0.1	782	318	410	4878	22
609851RF; MCL, 56+00N; 2004		3.11	37.50	0.1	439	252	320	379	1
186679RF; BL51E, 57N; 2004	QVM, H3; TYPE 2	3.75	237.00	4.8	1925	96	196	7160	64
609858RF; CL58+19N; 2004		7.84	259.65	0.9	998	268	690	407	103
100065RF; NGL, 30+25N; 2004		7.01 4.01	101.00	205.0	80 410	403	122	9170	47
683795RE CL58+59N 2002		9.01	126.00	200.0	413	124	3920	1175	77
683793RF: CL58+64N: 2002		14 75	791.00	218.0	4070	444	15200	3310	368
609790RF; CL58+92N: 2004	QVM. TYPE 1	9.18	353.90	30.0	2901	290	2124	1276	113
609787RF; CL59+80N; 2004	QVM, TYPE 1*******	40.50	812.30	21.7	8745	1852	1703	645	109
609788RF; CL59+80N; 2004	WR, S1, TYPE 1******	6.67	187.15	0.1	1403	140	273	189	12
609865RF; CL59+84N; 2004	QCARBVM, TYPE 1******	15.95	222.90	2.4	2208	560	986	485	35
609866RF; CL59+85N; 2004	QVM, TYPE 2	6.87	33.00	0.1	423	172	139	3227	1
39360R; CL59+97N, 03W; 1992	QVM, TYPE 1	123.30	1897.00	100.0	8467	57900	4692	3964	565
39354R; CL59+98N, 05W; 1992	QVM IN S1, TYPE 1	5.81	2980.00	100.0	3821	1023	7439	5141	136
39356R; CL59+98N, U3W; 1992	QVM IN S1, TYPE 1	22.50	465.00	43.0	5579	14900	2082	3753	136
39213R, CL39+99N, USVV; 1992		17.45	3980.00	100.0	1/400	1/25	20600	10000	5030
39352R: CL 80+26N_03W, 1992		4.01	104 80	04.1 20.8	8531	203	1208	10000	3/
609869R: CL 60+27N, 02E: 2004		6.44	48.50	63.1	488	463	7215	783	
39415R: CL60+27N, 04W: 1992	OVM. TYPE 1	4.56	217.00	100.0	1205	6100	26100	6686	81
39347R; CL60+28N, 02W; 1992	QVM IN S1, TYPE 1	4.28	132.10	100.0	1474	554	14600	3465	71
609870R; CL60+29N, 02E; 2004	QVM, TYPE 1*****	7.43	75.10	0.1	799	395	307	1859	1
609789R; CL60+29N, 02E; 2004	WR, SI, TYPE1*****	2.33	26.00	0.1	223	279	512	385	1
609785RF CL60+30N; 2004	QVM, TYPE 1*****	8.62	266.80	25.6	1390	761	1991	4406	74
609780R; CL60+31N, 03W; 2004	QVM, TYPE 1******	9.05	447.67	11.4	2465	356	641	2208	56
609781R; CL60+31N, 03W; 2004	WR, S1, TYPE 1******	6.45	155.90	0.1	1414	274	271	1441	21
609782R; CL61+00N, 2004	QVM IN S1, TYPE 1	2.13	18.5	16.6	212	1145	938	1905	12
	TOTALO								
	IUTALS	0.30.40	29/29.4/	21/2.9	134309	115/51	255334	144/45	18022
	MULTELEMENT SIGNATURE	13.26	622 54	46 22	2857 64	2462 70	5477 66	2070 69	797 44
	VALUES	10.20	002.04	40.20	2001.04	2402.13	3452.00	3073.00	303,44
			1		†		<u> </u>	-	
* Au grades over 2 g/t used; IPL K	CP results used if Chemex ICP resul	ts not avail	abie		+				· · ·
		1			1.			1	
**ANOMALOUS VALUES BASED	ON GEOFINE REGIONAL THRESH	IOLD CRIT	ERIA		1	_			
OF 10 ppb Au, 0.4 ppm Ag, 0.7 pp	m Cd, 45 ppm Cu, 15 ppm Pb, 130	ppm Zn, 24	ppm As, 4	ppm Sb					
(For Cd values shown, 0.1 = <0.5	ppm; for As, 1 = <5 ppm; for Sb, 1 =	= <5 ppb.)							
		ļ			<u> </u>	ł			
ABBREVIATIONS:	MINERALIZATION TYPES		AVEI	AGE GOL	D VALUE CAI	LCULATED			
DE BOCK ELOAT	TYPE 1 DY ASDY SPHAL CDV				X ANALY IICA		·		
H2 CRYSTAL TIES	TYPE 2: PT, AOPT, OPTAL, CPY,		******	ACE COL					
H3: CRYSTAL THEF RRECCIA	TYPE 3: PO +/- CPV	 · · ·	FD	MIPLANA		SULTS	+	1	
H4: ASH TUFF	TYPE 4: SPEC	+					ł	1	
H6: RHYOLITE. DACITE	TYPE 5: PY. PO	 -	*************	RAGE GO		ER VALUES	-	1	<u>├</u>
S1: ARGILLITE		+		LCULATED	FROM IPL A	NALYTICAL	1		
WR: WALL ROCK	1	1	RE	SULTS			<u>+</u>	1	
RF: ROCK FLOAT	1	1	1	1	1		1	1	
R: ROCK IN SITU SAMPLE		1	*******AV	ERAGE GO	DLD AND SILV	VER VALUES	i	1	
QVM: QUARTZ VEIN MATERIAL			CA	LCULATED	FROM CHEN	EX ANALYT	CAL	1	
QCARBVM: QUARTZ-CARBONA	TE VEIN MATERIAL	1	RE	SULTS	T	1			
SMS: SEMI MASSIVE SULFIDES									
CL: HWZ ZONE CREEK CONTR		<u> </u>			1				
MCL: MIDDLE CREEK CONTRO									
···									

PHOTO 2: TYPE 1 MINERALIZATION IN 431 VEIN: QTZ-CARBONATE- SULFIDE BRECCIA VEIN IN ARGILLITE @ STN 431 M N UP HWY ZONE CRK CONTROL LINE I.E., ABOUT 431 M NORTH OF L56+07N. 2 ~ 1 X .2 M AREA OF VEIN REMOVED & SAMPLED: COMPOSITE SAMPLE 609780 RETURNED 6.02 G AU/T (AVERAGE OF TWO ORIGINAL ASSAYS) AND, AS CALCULATED IN TABLE 5B, 447.67 G AG/T, 2465 PPM CU, 356 PPM PB, 641 PPM ZN, 56 PPM SB, 11.4 PPM CD. AN ~ 1 X 10 CM AREA OF WALL ROCK (COMPOSITE SAMPLE 609781R), WITH 2 AU & 2 AG ASSAYS, AVERAGED 6.45 G AU/T, 155.9 G AG/T, 1414 PPM CU, 274 PPM PB, 271 PPM ZN, 1441 PPM AS, 21 PPM SB, <0.2 PPM CD. 3 ADDITIONAL SAMPLES OF THE 431 VEIN MATERIAL (609780, 609780A & 609780B) HAVE AVERAGE AU CONTENTS OF 9.47 G/T. BASED ON METALLIC SIEVING, THE 3 ADDI-TIONAL SAMPLES HAVE AVERAGE AU CONTENTS OF 9.05 PPM (TABLE 5B). THE VEIN IS LOCATED IN THE NORTHERN AREA OF THE HISTORIC HWY ZONE CREEK SHOWING.

PHOTO 3: CLOSE UP OF 431 VEIN IN PHOTO 2, SHOWING ANGULAR ARGILLITE BRECCIA FRAGMENTS TO 10X3 CM AND COARSE, VUGGY PYRITE BANDS.

PHOTO 5: SAMPLE 609865RF - QTZ-CARB-SULFIDE BRECCIA VEIN IN ROCK FLOAT AT 380 M N ON HWY ZONE CRK CONTROL LINE: 16 PPM AU, 222.9 PPM AG (WITH 2 AU & 2 AG ANALYSES AVERAGED), 2208 PPM CU, 560 PPM PB, 986 PPM ZN, 485 PPM AS, 35 PPM SB, 2.4 PPM CD. THE SAMPLE & THE SAMPLE SHOWN BELOW (609787RF) ARE THOUGHT TO HAVE COME FROM THE AREA OF THE HISTORIC HWY ZONE CREEK SHOWING (~380 - 430 M N).

609787

PHOTO 4: SAMPLE 609787RF - QTZ-SULFIDE VEIN IN ANGULAR ROCK FLOAT AT STN 380 M N ON HWY ZONE CRK CONTROL LINE: 40.5 PPM AU, 812.3 PPM AG (WITH 2 AU & 2 AG ANALYSES AVERAGED), 8745 PPM CU, 1652 PPM PB, 1703 PPM ZN, 645 PPM AS, 109 PPM SB, 21.7 PPM CD .

of the some of the main target areas suggested by the stream sediment and soil geochemical surveys. For example, 19 of the samples of the higher-grade mineralization have been located along Hwy Zone Creek on the Lower Grid. Based on the MES values shown in Table GR 1, some of the highest grade polymetallic mineralization (Type 1 with Au, Ag and strong base metal values) on the property has been located in the southwest area of Lower Hwy Zone Creek, in the vicinity of the inflection in the Hwy Zone Creek Fault i.e., in the vicinity of IP Zones A and B.

Another apparent target area is indicated in Table GR 1 by the 24 higher-grade samples located in the Upper Grid along the Hwy Zone Creek fault, including at the HWCS. High priority drill targets have been recommend by JVX on IP Zone B (Map GP 1), which is open to the north and is postulated to extend up Hwy Zone Creek north of L56+07N.

Although little work has been carried out to date the UMCA, the favorable structural fabric and alteration, along with the discovery of elevated MES values in quartz-sulfide vein material, suggest the area is equally prospective. As indicated on Map GP 1, the main IP Zone C is open to the north of L56N and is postulated to extend up Middle Creek. High-priority drill targets have been recommended by JVX on IP Zone C on all five grid lines immediately south of and along strike of the northern extension of the Middle Creek Fault into the UMCA. Rock float sample 609851RF (Table GR 1) was collected directly over the IP Zone C on L56N and the other samples from the UMCA in Table GR 1 were collected along the Middle Creek shear zone.

No apparent large surface showings of the target mineralizations have been located to date. However, the mainly coarse grained sulfides are regarded as an excellent target for delineation by Spectral IP surveying. The IP anomalies referenced above and discussed below do appear to offer sizable drill targets that have considerable strike lengths.

B.1.b. VEGETATION SURVEY:

The 2004 vegetation survey continues to confirm previous indications that the main vegetation type associated with strongest soil MES on the central and northern part of the grid is MV1 (tag alders, berry bushes and ferns). To the east and west, beyond the soil anomalies, MV2 (large poplar and fir trees) generally dominate, along with some MV3 (grass, fireweed). The prominence of MV1 is somewhat explained by the structural controls of the mineralization: MV1 is located near the drainage channels where larger vegetation would normally not survive the seasonal runoffs and snow slides. However, the MV1 often appears stunted and growth inhibited, perhaps by the postulated, near surface sulfide environment in which it growths. On the southern area of the grid where the sulfide target is interpreted to be much deeper, MV2 and MV4 (cottonwoods and poplar) predominate.

B.2. 2004 GEOLOGICAL SURVEYS:

The results of the 2004 geological surveys continue to support the information provided in historic surveys:

- 1. The main exploration target is located on the west margin of the Eocene Strohn Creek quartz monzonite pluton.
- 2. The west contact of the pluton is somewhat defined by geological information provided from the few outcrops and the composition of rock fragments and soil particles in the soil holes and in the stream sediments. The pluton is further delineated by its topographic relief and via information provided by the IP chargeability/resistivity and magnetic geophysical survey results, which are summarized on Map GP 1.
- 3. The pluton has intruded crystal tuff and coarse volcanic breccia of the Jurassic Hazelton Group, which include some thin interbeds of argillite. An orthogonal fabric comprised of generally north trending structures and their conjugates has been developed in the pyroclastic rocks, which are generally propylitically altered. In the vicinity of the main structures, the rocks are, to varying degrees chloritized, silicified, sulfidized, carbonatized and oxidized.
- 4. The main structures control the drainage channels (i.e., Hwy Zone Creek, Middle Creek and East Creek Faults) and appear to be hosted by the pyroclastic rocks or located at or near the contact of the volcanic breccia and argillite. They appear to have considerable strike extent and depth persistence e.g., the difference in elevation between drill holes spotted on L48N and L55N is about 175 m. The structures trend mainly northwest to northeast and have a dips ranging from near vertical to steep, mainly to the east. The orthogonal fabric is conducive for the development of plunging ore shoot morphologies.

As referenced in the historic work and shown on Map GP 1, there is a warp in the southwest area of Hwy Zone Creek that is interpreted via the geochemical, geological and geophysical information as an inflection in the Hwy Zone Creek Fault. Based on the soil and rock geochemical results and on the Spectral IP anomalies, the flexure is postulated to have been a favorable depositional environment for sulfides.

- 5. The target mineralization mainly comprises Types 1 and 2 described above and is generally hosted by epithermal to mesothermal quartz-sulfide +/- ankerite-fuchsite veins. The veins can be strongly brecciated, with large inclusions of wall rock and sulfide grains. The veins are often banded, indicative of multiphase hydrothermal activity. They are associated with a favorable structural fabric, which includes generally sub-parallel, vertical to steeply dipping main structures, inflections in them and their conjugate structures.
- 6. The target mineralization is mainly associated with coarse-grained sulfides including pyrite, pyrrhotite arsenopyrite, chalcopyrite, bornite, galena and sphalerite. Sphalerite is

often found riming other sulfides and chalcopyrite often occurs as inclusions within and rims around pyrrhotite grains. Sulfides often rim the quartz-ankerite veins and fill fractures and vugs within the veins. The pyrrhotite mineralization often has some weak to strong copper association but generally has weak gold contents. However, as noted above, samples of Type 3 mineralization can have very significant gold contents. Type 3 mineralization can be locally strongly magnetic. However, as indicated below, the IP anomalies do not generally have a strong magnetic signature and are interpreted to be mainly associated with coarse-grained Type 1 and Type 2 sulfide mineralization.

B.3. JVX GEOPHYSICAL SURVEYS:

In view of the favorable geological environment, high-grade target mineralization and excellent infrastructure, JVX Spectral IP and magnetic surveys were carried out as an attempt to locate priority drill targets, with apparent tonnage potential.

B.3.a. SPECTRAL IP SURVEY:

The IP survey was successful in delineating a number of moderate to extremely strong IP chargeability anomalies, many of which JVX has interpreted as high-priority drill targets. JVX has grouped the anomalies into three (3) zones labelled A to C on the compilation Map GP 1 and has provided the following interpretation:

ZONE A:

Zone A extends from at least L51N to at least L54N near the western limit of the grid. On lines 5300N and 5400N, the chargeable source is well-defined with peak chargeabilities on L53N exceeding 30 mV/V. Spectral MIP values are high with long Tau, suggesting that the source is coarse-grained sulfides. South of L53N, the zone is poorly defined and appears to be depth limited.

ZONE B:

This zone trends north south and extends from L53N to at least L56N. It exhibits a strong correlation with Hwy Zone Creek west of the BL50E. It is on strike with the HZCS 300 m north of L56N. The majority of the anomalies are strong with a very strong response (>40 mV/V) on L56E. Zone B coincides with a weak resistivity low. On line L55N it flanks the east edge of a deep (n=5) resistivity high. The zone also correlates with a weak, narrow magnetic high. Spectral MIP values are high (400 to 500 mV/V) with corresponding long Tau's suggesting moderate to high concentrations of coarse-grained sulphide mineralization. There is also a strong association with anomalous geochemical values. Drilling is recommended with several targets outlined in Section 4 below.

(Geofine's current interpretation of IP Zones A and B is somewhat similar to JVX's. However, as described in the 2002 report on the Entrance Peak Project (Molloy, 2002), it is postulated that there is a flexure in the southwest area of the Hwy Zone Creek Fault. Geofine would thus extend

IP Zone B southwest along Hwy Zone Creek through the IP anomalies on the west end of L52N. These anomalies would not have been fully evaluated i.e., the IP survey was run somewhat parallel to them and IP Zone B thus remains open to the west IP Zone A appears to be associated with a cross-cutting structure to the Hwy Creek Fault and remains open to the south, west of the west end of L49+85N. As noted above, based on the geochemical, geological and geophysical data, this area is regarded as highly prospective).

ZONE C:

Zone C contains the strongest chargeability responses on the grid. The zone extends for at least 800 m from the south boundary on L48N to L56N. North of L52N, the zone trends north south and contains several very strong chargeability anomalies occurring at or near the surface. These anomalies are associated with a strong, well-defined resistivity low, high to very high Spectral MIP's and long Tau's. They also occur in the vicinity of several creeks including the East Creek. From L52N to L48N, Zone C trends northwest southeast. The chargeability zones are not as strong and generally occur at moderate depths (n=2 to n=4) in association with moderate resistivity lows. MIP values are high with corresponding long Tau's.

Zone C is associated with low magnetic values apart from a weak magnetic high between L53+50N and L55N. In the south section, near Highway 37A, the zone does occur along the west flank of a broad magnetic high. The Strohn Creek Pluton is the interpreted source of the magnetic anomaly.

B.3.b. RESISTIVITY AND MAGNETIC SURVEYS:

Apparent resistivity is variable over the survey area. High values (>10,000 ohm-m) occur only on the east side of the grid and are associated with the Strohn Creek Pluton. Weak resistivity highs occur on L51N and L52N between BL50E and BL51E and on L53N to L55N west of 49+00E. A broad resistivity low is observed along the south and southwest boundary of the grid. A well-defined resistivity low occurs between L53N and L56N at 51+00E. This low exhibits a strong association with strong to very strong chargeability highs.

Magnetic relief over the grid is moderate. The deep-seated Strohn Creek Pluton, at the east edge of the survey area, produces a strong west to east gradient in the magnetic field. The highest magnetic value occurs on L51N east of 53+00E. A 1st Vertical Derivative of the Magnetic Field was generated to enhance near-surface features. Several weak magnetic trends have been identified. Some of these correlate with strong chargeability anomalies. Structural features have also been interpreted including two (2) north-northeast/south-southwest faults (F-1 and F-2) that appear to correlate with the Hwy Zone and East Creeks, respectively.

B.4. DRILL TARGETS:

Based on the geophysical, geochemical and geological information referenced above, JVX has identified 12 high priority drill targets. Most of the specific targets have been further interpreted from the 2D IP inversion results and are shown on the compilation Map GP 1. As shown in the

following tables, JVX has designed a six-hole, Phase 1 drill program to test IP Zones B and C; and, a follow-up six (6) hole, Phase 2 program, if favorable results are obtained from Phase 1. Specifications of the drill holes are provided in the following tables:

<u></u>	PHASE 1							
Target #	Location	Azimuth (Deg.)	Dip (Deg.)	Length (m)				
1	5400N/5050E	90	-45	125				
2	5500N/5025E	90	-45	125				
3	5500N/4915E	90	-45	125				
4	5200N/5050E	90	-45	125				
5	4950N/5160E	90	-45	175				
6	4800N/5235E	90	-45	175				

Table 1: Specifications for the Phase 1 Drill Program

PHASE 2								
Target #	Location	Azimuth (Deg.)	Dip (Deg.)	Length (m)				
7	5450N/5025E	90	-45	125				
8	5450N/4900E	90	-45	125				
9	5600N/5050E	90	-45	125				
10	5600N/4935E	90	-45	100				
11	5350N/5060E	90	-45	100				
12	5350N/4935E	90	-45	100				

Table 2: Specifications for the Phase 2 Drill Program

B.5. 2004 DIAMOND DRILL PROGRAM:

In view of the positive 2004 exploration results, a 600 m diamond drill program was initiated in late October. Parts of BL50E and the grid lines were restored; six drill holes were spotted and six drill sites were prepared; pad materials were mobilized onto the property; two drill pads were constructed; topographic surveys carried out and drill sections prepared. A Britton Bros. drill was mobilized to the property on November 4 in view of favorable snow conditions anticipated by government avalanche authorities in Stewart: a major rain storm on November 3 was predicated to remove most early snow accumulation in the Stewart area.

However, the heavy rain in the Stewart area fell as snow on the Poly Property, such that snow accumulations quickly exceeded avalanche danger thresholds. With the continuance of heavy snow, the program was terminated on November 4 before the drill was mobilized onto the first drill pad. On November 5, snow accumulations in the area of the first drill hole exceeded 3 meters and snow slides were occurring down East Creek and Hwy Zone Creek across the site of

the planned drill pump station and near the drill pads on L55N. The conditions are considered early and unusual - in 2003, snow conditions are reported to have been amenable to working on the Poly Property all winter long.

B.6. CONCLUSIONS, RECOMMENDATIONS:

B.6. a. CONCLUSIONS:

High priority drill targets for gold and silver and associated base metal mineralization have been outlined on the Poly Grid by geological, geochemical and geophysical surveys. The targets have been delineated over an 800 m strike length that remains open to the south and appears to extend at least another 300 m to the north (Maps GR 1, GP 1).

The grade and composition of the target mineralization is indicated by 48 historic and 2004 rock samples that have gold contents of at least 2 g Au/t (Table GR 1). The samples have an average grade of 13.26 g Au/t, 632.54 g Ag/t, 0.29% Cu, 0.25% Pb, 0.54% Zn and are mainly comprised of coarse-grained pyrite, arsenopyrite, chalcopyrite, galena and sphalerite. The mineralization is hosted by epithermal to mesothermal quartz-sulfide breccia veins in a favorable orthogonal structural fabric that is interpreted to be conducive to the development of plunging oreshoot morphologies.

The Spectral IP survey has outlined a number of moderate to extremely strong chargeability anomalies that have been interpreted by JVX as being associated with coarse sulfides (Map GP 1). The widths of the mineralized zones have been estimated to be up to over 25 m. The target mineralization has a strong multielement signature, which the soil geochemical surveys have delineated over many of the IP anomalies.

B.6. b. RECOMMENDATIONS:

JVX has interpreted 12 high priority drill targets and recommended that a Phase 1 program to include 6 of these targets (Map GP 1). Attempts to implement that program in 2004 were curtailed by early and severe winter conditions. It is thus recommended that the program now be carried out early in the summer of 2005. Since topographic conditions are not conducive to some of the of the drill sites proposed by JVX, the respective drill sites were repositioned and hole directions were reversed in consultation with JVX (Table GP 1).

If the Phase 1 program is successful, the six Phase 2 holes recommended by JVX become highpriority drill targets. Many other priority drill targets would also become immediately apparent along the strike extent of the IP Zones B and C.

It is recommended that such a Phase 2 program also include provision for additional geophysical surveying. Additional IP, geochemical and geological surveys are recommended in the southwest area of the Poly Grid, where some of the highest-grade mineralization on the property has been found in float boulders in the vicinity of the flexure in the Hwy Zone Creek Fault. At least 2 IP lines run across i.e., perpendicular to the flexure, should delineate some additional, high priority drill targets

The apparent southern extension of IP Zone C is on relatively flat ground under and beyond the Stewart Power Line Corridor. Any drill targets defined there by IP surveying should remain accessible throughout most of the winter. Additional IP surveying is also recommended in the Upper Middle Creek area. The work there would entail 12.5 m station spacing and would proceed slowly, as permitted by the challenging topography.

The estimated budgets for the proposed 2005 Phase 1 and Phase 2 drill programs are shown in Tables S1 and S2, respectively. The Phase 1 800 m drill program, including helicopter support, is estimated at about \$278,000, subject to contractor bids. A Phase 2, 1200 m drill program, along with the recommended geophysical program, is estimated at about \$447,000.

			TABLE GP 1					
		PROPOSED	PHASE 1, 2005	DDH PROGI	RAM			······································
2004 JVX	2005							
NO.	DDH NO.	TARGET	LINE	STATION	ELEVATION	AZIMUTH	DIP	PLANNED LENGTH
2	P05-01	T-2	L55+00N	50+25E	535 M	90°	-45	125 M
3	P05-02	Т-3	L55+00N	BL50+00E	537.5 M	270°	-45	125 M
1	P05-03		L54+00N	50+50E	497.5 M	90°	-45	125 M
4	P05-04	T-4	L52+00N	50+50E	444 M	90°	-45	125 M
5	P05-05	T-5	L49+50N	52+82E	392 M	270°	-45	175 M
6	P05-06	T-6	L48+00N	53+65E	365.5 M	270°	-45	175 M

TABLE S1: POLY PROPERTY:

PROPOSED PHASE 1 BUDGET, 2005 FINAL WORK PROGRAM: 800 M DIAMOND DRILLING PROGRAM (BASED ON BRITTON BROS. 2004 BID):

<u>ITEM</u>

ESTIMATED COST

• .		(\$)
1) ;;)	Property, assessment work research	1500
11) iii)	Coochemical signature analyses	1200
iv	Broperty Compensation	
\mathbf{v}	Structural fabric studies airphotos	
• /	mag maps	
vi)	Field equipment, supp incl standards, coresplit	2500
vii)	Mob-demob	5500
viii)	Ground transport, shipping	6000
ix)	Analyses, assays 200 @ \$40	8000
x)	Linecutting	
xi)	Geophys surveys:	
xii)	Land surveys	
xiii)	Food, sustenance, accommodation	5000
xiv)	Communications - in field (sat phone, fax)	1500
xv)	Compilations, drafting, reporting, assess. rpts,	, 8500
	quality assurance	
• 、	Government filing fees	4500
XV1)	Land acquisition payments, option payments	
XV11)	Legal fees	
XV111}	Licences	24000
XIX)	Salaries: local labour, geological crew	24000
	\$1000 (days 6 24 days)	
ww) D-	iemond drilling.900m 0210/m incl nedg boli	160000
AAT D.	mob/demob	100000
xxi) Co	ontingency:	20000
	Subtotal	255000
		8544
$\mathbf{XX11}$ (Geofine Overnead 03%	7500
XXTTT)	69T	12200
	Ε. Ω ΥΤΜΑ ΥΠΕ ΤΗ ΤΗ Α SE 1 ΡΟΙ Υ ΒΙΠΩΕΦΙ*	278000
		6700VV

*Subject to Contractor Bids and Permit Requirements.

TABLE S2: POLY PROPERTY:

PROPOSED PHASE 2 BUDGET, 2005 FINAL WORK PROGRAM: GEOPHYSICAL SURVEYS, 1200 M DIAMOND DRILLING PROGRAM (BASED ON BRITTON BROS. 2004 BID):

ITEM

ESTIMATED COST

		(\$)
i)	Property, assessment work research	
ii)	Project permitting, planning, gov't bond	
iii)	Geochemical signature analyses	
iv)	Property Compensation	
V)	Structural fabric studies, airphotos,	
• -	mag maps	
vi)	Field equipment, supp incl standards, coresplit	7500
vii)	Mob-demob	7500
viii)	Ground transport, shipping	7500
ix)	Analyses, assays 250 @ \$40	10000
xii)	Linecutting	7500
xiii)Geophys surveys:10 days, travel mob, report	30000
xii)	Land surveys	
xiii)	Food, sustenance, accommodation	7500
xiv)	Communications - in field (sat phone, fax)	2500
xv)	Compilations, drafting, reporting, assess. rpts	, 9500
	quality assurance	•
	Government filing fees	
xvi)	Land acquisition payments, option payments	
xvii)	Legal fees	
xviii)	Licences	
xix)	Salaries: local labour, geological crew	36000
	Workers Comp Ins.	
	\$1200/day @ 30 days;	
xx) l	Diamond drilling: 1200m @210/m	252000
	mob/demob	
xxi) Co	ontingency:	33000
	Cubt at a l	41 AE AA
	Subcotar	410300
xxii) (Geofine Overhead @3%	12000
xxiii)	GST CST	25000
,		23000
		A 47500
	POLITICALI VICALI VICAL	±47300

*Subject to Contractor Bids and Permit Requirements.

		TABLE GR	R 1A					
LTI ELEMENT SIGNATURE A	NALYTICA	L RESULTS	S FOR HIS	TORIC AND	2004 HIGHER	R GRADE RO	CK SAMPLE	S*,
WER, UPPER HWY ZONE CR	REEK, MIDD	LE CREEK	AND EAS	T CREEK AF	REAS, WITH	ANOMALOUS	VALUES**	
OWN IN ITALICS:								
CK*** MINERALIZATION	LIA	AG	CD	си	PB	ZN	AS	SI
ES****:	(g/t)	(g/t)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm
					11			
IN H3, TYPE 2	3.14	NA	NA	NA	NA	NA	NA	<u>N</u>
	2.43	170 10	2.1	244	499	318	1415	1
	3.83	68 40	18.5	453	225	1532	621	2
A. SMS, TYPE 1	33.70	5895.00	153.5	14200	4500	11900	10000	970
A, TYPE 2	9.90	41.20	4.0	251	166	404	10000	4
A, TYPE 1	56.85	520.00	22.5	5964	968	1867	512	12
OX MAT; TYPE 1	7.55	816.00	241.0	10600	209	79600	3020	/
A; IYPE 3 A TYPE 1	10.00	45 50	7.9	43	239	403	1715	1
t: TYPE 1	26.80	13.00	100.0	10030	3525	49300	622	17
RBVM, TYPE 1	2.21	117.80	38.8	600	2100	11500	10000	2
I, TYPE 1*****	7.05	209.00	30.8	869	406	2460	590	11
I, TYPE 1	8.90	462.00	71.9	6190	1300	6500	482	10
TYPE 1	9.29	30 40	4.4 100 0	1070	2100	17600	123	1.90
RBVM, TYPE 1	14 90	271.00	0.1	2981	1024	568	6119	8
RBVM, TYPE 1	2.76	29.00	14.6	186	325	1352	323	
QVM, TYPE 1	5.69	63.70	2.1	830	301	878	2605	
I, TYPE 1	18.90	6.10	50.3	40	143	2719	248	~
RBVM, TYPE 1	5.48	91.10	0.1	/82	318	410	48/8	2
1, 11PE 1	3.75	237.00	4.8	1925	96	196	7160	6
I. TYPE 1******	7.84	259.65	0.9	998	268	690	407	10
, TYPE 2	7.51	151.00	1.1	85	463	122	9170	8
I, TYPE 1	4.01	49,90	205.0	419	3030	3920	1175	1
2VM, TYPE 2*****	9.56	126.00	2.1	265	124	280	195	7
, TYPE 1	14.75	791.00	218.0	4070	444	15200	3310	36
, IYPE 1	9.18	812.30	21 7	8745	1652	1703	645	10
S1. TYPE 1******	6.67	187.15	0.1	1403	140	273	189	1
RBVM, TYPE 1******	15.95	222.90	2.4	2208	560	986	485	3
, TYPE 2*****	6.87	33.00	0.1	423	172	139	3227	
, TYPE 1	123.30	1897.00	100.0	8467	57900	4692	3964	56
I IN S1, TYPE 1	5.81	2980.00	100.0	3821	1023	7439	5141	13
DRVM IN S1 TYPE 1	22.50	465.00	43.0	17400	14900	2062	10000	503
RBVM TYPE 1	4 01	77.00	64.1	508	253	7000	10000	3
I IN S1, TYPE 1	14.60	194.80	30.8	6531	2703	1208	6155	3
I, TYPE 1*****	6.44	48.50	63. 1	488	463	7215	763	
I, TYPE 1	4.56	217.00	100.0	1205	6100	26100	6686	8
IN S1, TYPE 1	4.28	132.10	100.0	1474	554	14600	3465	/
SI TYPE 1	2.33	26.00	0.1	223	279	512	385	
1. TYPE 1******	8.62	266.80	25.6	1390	761	1991	4406	7.
1, TYPE 1*******	9.05	447.67	11.4	2465	356	641	2208	5
S1, TYPE 1******	6.45	155.90	0.1	1414	274	271	1441	2
IN S1, TYPE 1	2.13	18.5	16.6	212	1145	938	1905	1:
ÅL C	000.40	00700 47	0470.0	424200	445754	055004	444745	1202
AL5	636.48	29129.41	2172.9	134309	115/51	255334	144145	1002
TI ELEMENT SIGNATURE	13.26	632.54	46.23	2857.64	2462.79	5432.65	3079.68	383.4
JES								
ults used if Chemex ICP resul	ts not availa	DIE						
EOFINE REGIONAL THREEL		RIA						
45 ppm Cu, 15 ppm Pb, 130	ppm Zn. 24	ppm As. 4 r	opm Sb					
for As, 1 = <5 ppm; for Sb, 1 =	<5 ppb.)		•					
INERALIZATION TYPES		***** AVER	AGE GOLE	VALUE CAL	CULATED			
1 DV ACDV CDUAL COV		FRO	M CHEME)	ANALYTICA	L RESULTS			
2 1. PT, ASPY, SPHAL, CPY,	GAL	****** \/ED	AGE COL					
= 3: PO +/- CPY		FRO	M IPL ANAL	LYTICAL RES	SULTS			
E 4: SPEC		1				t		
E 5: PY, PO		******AVE	RAGE GOL	D AND SILV	ER VALUES	· · · · · · · · · · · · · · · · · · ·		
		CAL	CULATED	FROM IPL A	VALYTICAL			
	ļ	RES	SULTS					
	ļ	********	PACE CO		ED VALUES			
	1	AVE	MAGE GO	LU AINU SILV	ILK VALUES			
	1	CAL			FX ANAI VTI	CAL		
	-	CAL		FROM CHEN	IEX ANALYTI	CAL		
		CAL RES	CULATED SULTS	FROM CHEN	IEX ANALYTI	CAL		

	LEGEND	
5400	BL50+00E L55+00N	base line grid line
		claim post & claim lines
	00	Stewart powerline
	609510	2004 stream sample location and number
5300	∆ 683713 ↓	historic stream sample location and number stream flowing at time of survey dry stream swamp
		mineralized zone
		sulfidized rubble

TABLE OF CONTENTS

TITLE :	PAGE :
SUMMARY	iii
TABLE OF CONTENTS.	xxv
1. INTRODUCTION	1
2. POLY PROPERTY	1
3.LOCATION, ACCESS	6
4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND VEGETATION	6
5. STEWART CAMP GEOLOGY	
6.STEWART CAMP MINERALIZATION AND 2004 EXPLORATION	R
ACTIVITY	
7. EXPLORATION HISTORY, GEOLOGY, MINERALIZATION: POLY PROPERTY AND ENTRANCE PEAK AREA	21
7.A. EXPLORATION HISTORY	21
MINFILE 104A 025	24
MINFILE 104A 026	25
MINFILE 104A 027	26
MINFILE 104A 028	27
MINFILE 104A 096	28
MINFILE 104A 128	29
7.B.GEOLOGY	
7.C.MINERALIZATION	31
8.2004 EXPLORATION ACTIVITIES	33
8.A.SECURITY, SAFETY, ENVIRONMENTAL PROTECTION,	
QUALITY ASSURANCE OF ANALYTICAL DATA, DATA	
VERIFICATION	33
8.A.1.SECURITY	33
8.A.2.SAFETY, ENVIRONMENTAL PROTECTION	36
8.A.3.QUALITY ASSURANCE	36
8.B.2004 EXPLORATION ACTIVITIES	44
8.B.1.2004 POLY GRID	44

TABLE OF CONTENTS (CON'T)

8.B.2.2004 STREAM SEDIMENT, SOIL AND ROCK GEOCHE	MICAL
SURVEYS AND VEGETATION SURVEY	
8.B.2.a.STREAM GEOCHEMICAL SURVEY	
8.B.2.b.SOIL GEOCHEMICAL SURVEY	48
8.B.2.c.ROCK GEOCHEMICAL SURVEY	52
8.B.2.d.VEGETATION SURVEY	62
8.B.3.2004 GEOLOGICAL SURVEY	63
8.B.4.JVX GEOPHYSICAL SURVEYS	69
8.B.4.a.SPECTRAL IP SURVEY	69
8.B.4.b.RESISTIVITY AND MAGNETIC SURVEYS	
8.B.4.C.DRILL TARGETS	71
8.B.5.DRILL PROGRAM	72
9. CONCLUSIONS, RECOMMENDATIONS	
9. A. CONCLUSIONS	78
9.B.RECOMMENDATIONS	78
10.REFERENCES	82
11. STATEMENT OF QUALIFICATIONS	
APPENDIX B.2.SECTIONS APPENDIX C: REPORT ON JVX GEOPHYSICAL SURVEYS	
LISI OF FIGURES	DACE.
	PAGE :
1.LOCATION MAP, POLY PROPERTY	2
2.STEWART GOLD CAMP	
2.A.POLY PROPERTY MINERAL CLAIMS, AREA MINFILE	
SHOWINGS	4
3.ROAD MAP	8
4.RELIEF MAP	11
5 STENADT COMDLEY	10
6A.DILWORTH FORMATION IN STEWART COMPLEX	14
6B.STEWART VOLCANIC BELT	
6C.GENETIC MODEL FOR MINERAL DEPOSITS, STEWART (:AMP17

LIST OF FIGURES (CON'T)

TITLE: PAGE:
7.MINFILE OCCURENCES, ENTRANCE PEAK AREA
8.GEOLOGY, MINFILE LOCATIONS, AREA OF POLY PROPERTY 32
LIST OF TABLES TITLE: PAGE OR MAP:
S1.PROPOSED PHASE 1, 2005 DRILL PROGRAM BUDGET
S2.PROPOSED PHASE 2, 2005 DRILL PROGRAM BUDGET xxii,81
GP 1.DRILL HOLE PARAMETERS, PROPOSED PHASE 1,2005 DRILL PROGRAM
GR 1.MES RESULTS FOR HISTORIC AND 2004 HIGHER-GRADE ROCK SAMPLES
GR 2.2004 ROCK SAMPLE DESCRIPTIONS AND MES RESULTS
GSC 1.2004 STREAM SEDIMENT SAMPLE DESCRIPTIONS AND MES RESULTS
GSC 1A.HISTORIC AND 2004 STREAM SEDIMENT SAMPLES AND MES RESULTS
GSC 2.SOIL SAMPLE DESCRIPTIONS AND MES RESULTS
1. POLY MINERAL CLAIMS
2.EXPLORATION EXPENDITURESvi,34
3. GEOCHEMICAL AND CHECK SAMPLE TYPES
4.DESCRIPTION OF CANMET STANDARDS
5. ANALYTICAL QUALITY ASSURANCE - CANMET STANDARDS
CHECK SAMPLE RE-RUNS
5.B.ANALYTICAL QUALITY ASSURANCE - ROCK SAMPLE RE-RUNS, METALLIC SCREENING

	PHOTOS :	
	TITLE: PA	GE :
1.FRO	NTSPIECE PHOTO 1: POLY GRID	ii
2.431	VEIN, HWY ZONE CREEK SHOWING	56
3.431	VEIN, HWY ZONE CREEK SHOWING	56
4.SAM	PLE 609865RF, HWY ZONE CREEK SHOWINGxii,	57
5.SAM	PLE 609787RF, HWY ZONE CREEK SHOWINGxii,	57
6 . HWY	37A, STEWART POWERLINE IN STROHN CREEK VALLEY	9
7.HWY	37A FROM UPPER HWY ZONE CREEK	9
8.MV1	, MV2 VEGETATION, POLY GRID	10
9.SUM	MER GRID RESTORATION, MV1 VEGETATION, POLY GRID	45
10.WI	NTER GRID RESTORATION, POLY GRID	45
11.42	9 VEIN, HWY ZONE CREEK SHOWING	59
12.42	9 VEIN, HWY ZONE CREEK SHOWING	59
13.SA	MPLE 609859RF, UPPER HWY ZONE CREEK	60
14.SA	MPLE 609851RF, ON IP ZONE C, MIDDLE CREEK	60
15.AL	TERED CRYSTAL TUFF BRECCIA IN LOWER EAST CREEK	64
16.AL	TERED CRYSTAL TUFF BRECCIA, UPPER POLY GRID	65
17.AL: 2 :	TERED CRYSTAL TUFF BRECCIA, AREA OF UPPER ICE Showing, upper East creek	66
18.CO TU CRI	NJUGATE QUARTZ-FUCHSITE VEINS IN ALTERED CRYSTA FF BRECCIA, AREA OF ICE SHOWINGS, UPPER EAST EEK	ட 67
19.43	1 VEIN IN ARGILLITE, HWY ZONE CREEK SHOWING	68
20.QU CRI	ARTZ-CARBONATE VEINS IN ARGILLITE, UPPER HWY EEK E SHOWING STRUCTURE	68

xxviii

PHOTOS (CON'T):

PAGE :	TITLE :	
73	21.DRILL SITE,	2
73	2.DRILL SITE,	2
74	23.DRILL SITE,	2
74	4.DRILL SITE,	2
75	25.DRILL SITE,	2
75	26.DRILL SITE,	2
76	27.SNOW SLIDES	2
	8. SNOW SLIDES	2

LIST OF MAPS (MAP BINDER, APPENDIX B.1):

MAP: MAP POCKET: 1. POLY PROPERTY CLAIM MAP. POCKET 1 **3.HISTORIC EXPLORATION ACTIVITIES, ENTRANCE** PEAK AREA POCKET 3 4. HISTORIC EXPLORATION ACTIVITIES, POLY PROPERTY......POCKET 4 GSC 1. HISTORIC AND 2004 STREAM SEDIMENT SAMPLES WITH MES RESULTS POCKET 5 GSC 2.LOCATIONS OF HISTORIC AND 2004 SOIL SAMPLES.....POCKET 6 GSC 3. CONTOURS OF GOLD RESULTS FOR HISTORIC AND 2004 SOIL SAMPLES......POCKET 7 GSC 4.CONTOURS OF SILVER RESULTS FOR HISTORIC AND 2004 SOIL SAMPLES POCKET 8

LIST OF MAPS (CON T, MAP BINDER, APPENDIX B.I	MAP BINDER, APPENDIX B.I	BINDER,	MAP	CON'T;	MAPS	OF.	TTPT.
---	--------------------------	---------	-----	--------	------	-----	-------

MAP: PAGE, MAP POCKET:

GSC 5. CONTOURS OF COPPER RESULTS FOR HISTORIC
And 2004 SOIL SAMPLES POCKET 9
GSC 6. CONTOURS OF LEAD RESULTS FOR HISTORIC AND
2004 SOIL SAMPLES POCKET 10
GSC 7. CONTOURS OF ZINC RESULTS FOR HISTORIC AND
2004 SOIL SAMPLES POCKET 11
GSC 8.CONTOURS OF ARSENIC RESULTS FOR HISTORIC AND
2004 SOIL SAMPLES POCKET 12
GSC 9. ANTIMONY RESULTS FOR HISTORIC AND 2004
SOIL SAMPLES POCKET 12
GR 1.HISTORIC AND 2004 HIGHER-GRADE SAMPLES AND
MES RESULTS
GR 2.GEOLOGY, 2004 ROCK SAMPLES WITH MES RESULTS
AND VEGETATION SURVEYS POCKET 14
GP 1. JVX GEOPHYSICAL COMPILATION MAP WITH
PROPOSED 2005 DRILL PROGRAM
LIST OF SECTIONS (MAP BINDER, APPENDIX B.2:
SECTION: MAP POCKET:
55+00N, DDHP05-01
•
55+00N, DDHP05-02
54+00N, DDHP05-03POCKET 3
52+00N, DDHP05-04POCKET 4
49+50N, DDHP05-05POCKET 5

Appendix I

Appendix II

REPORT ON THE 2004 ENTRANCE PEAK PROJECT

POLY PROPERTY, SKEENA MINING DIVISION,

NORTHWESTERN BRITISH COLUMBIA

1. INTRODUCTION:

The following report reviews the approximately \$190,000, 2004 exploration program (Table 2) carried out on the Poly Grid (Frontspiece Photo 1, Map GP 1), located in the northeastern area of the Poly Property (Map 1). The Poly 1-7 claims are located in the Entrance Peak Area of the Stewart Gold Camp (Figures 1, 2, 2A), Northwestern British Columbia. The property was staked in 1999 to cover a favorable geological setting, which includes altered Hazelton Group rocks intruded by the Strohn Creek Pluton, composed of quartz monzonite.

The exploration target is high-grade, epithermal-mesothermal hydrothermal gold-silver and base metal mineralization, generally with a multielement signature (MES) of Au, Ag, Cd, As, Sb +/-, Cu, Pb, and Zn. The target mineralization is associated with a silica flooded and sulfidized orthogonal structural fabric. The mineralization comprises coarse-grained sulfides i.e., pyrite, arsenopyrite +/- sphalerite, chalcopyrite and galena. It occurs mainly as disseminations, stringers and semi massive sulfide veins and lenses in quartz-ankerite-fuchsite multiphase breccia veins and stockworks and in silicified and pyritized crystal tuff breccia and argillite.

An indication of the potential of the target is provided by the analytical results obtained from the 48 higher-grade historic and 2004 rock samples collected on the Poly Grid that have gold contents of at least 2 g/t. The 48 samples have an average uncut grade of 13.26 g/t Au, 632.54 g/t Ag, 0.29% Cu, 0.25% Pb, and 0.54% Zn (Table GR 1). Based on the results of the geophysical surveys, large concentrations of such mineralization are postulated to be associated with the main structures, particularly in flexures and at structural junctions in the orthogonal structural fabric.

Relevant Stewart Camp exploration models hosted by altered Hazelton Group rocks include aspects of the historic Silbak-Premier deposit (Figure 2), which produced 56,000 kg of Au and 1,281,400 kg of Ag from 1918 to 1976; and, of the Marc Zone type mineralization (auriferous pyrite and chalcopyrite in fracture controlled, often brecciated zones associated with a quartz monzonite intrusion) at the Red Mountain deposit (Figure 2), which totals about 1.26 M t grading about 7.9 g Au/t and 24.7 g Ag/t.

2. <u>POLY PROPERTY:</u>

The Poly 1-7 mineral claims comprise 93 units (about 23 square km) on British Columbia Mineral Titles Map 104A04E (Figure 2A, Map 1, Table 1). The claims are registered in the name of Geofine Exploration Consultants Ltd, as Nominee for Geofund, a private investment group, which owns the property. Lateegra Resources Corp. ("LEG") holds the property under option from Geofine and can earn a 100% interest by fulfilling escalating option payments and work conditions. The LEG interest is subject to a Geofund 2.5% NSR.

B.C. Ministry of Energy and Mines

TABLE 1

POLY CLAIMS, ENTRANCE PEAK PROJECT:

CLAIM	UNITS	TENURE NO.	EXPIRY DATE
POLY 1	12	370975	JULY 17, 2007
POLY 2	16	370976	JULY 17, 2007
POLY 3	12	370977	JULY 17, 2007
POLY 4	3	370978	JULY 17, 2007
POLY 5	18	378755	JULY 17, 2006
POLY 6	16	378756	JULY 17, 2006
POLY 7	16	378757	JULY 17, 2006

TOTALS: 7 CLAIMS; 93 UNITS

Appendix III

Appendix IV

3. LOCATION AND ACCESS:

The Poly Claims (Figures 1-3) are located in the Skeena Mining Division of Northwestern British Columbia, about 42 km east of Stewart or about 18 km of west of Meziadin Lake, in the Entrance Peak Area of the Stewart Gold Camp. Stewart is located on the Portland Canal (Figure 2) and has the distinction of being Canada's most northerly, ice-free seaport.

The Poly Property is part of the Entrance Peak Project, which is centred at about Latitude 56° 07'N, Longitude 129° 32'W on NTS Map 104A/04E (Map 2). The old and new segments of Hwy 37A (Photo1, 7) trend generally west through the centre area of the Poly Claims, and provide excellent year round access. The Stewart Power Line also trends west through the property south of Hwy 37A (Photo 1). The power line corridor and various trails to it provide access to the southern part of the property (Map GR 2). A road to the Windy Point avalanche station, located north of Strohn Creek, provides access to the southeastern area of the property i.e., on the Poly 3 Claim.

4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE & VEGETATION:

The Poly Property straddles the Strohn Creek Valley (Photo 6), which trends generally east west. Elevations range from over 400 m above sea level in the valley, to over 2100 m on Entrance Peak (Figure 4; Map 2). The mountain terrain is incised with young, deep valleys, which extend south and north from Hwy 37A. High-energy creeks flow south and north into the main valley, which is drained to the east by Strohn Creek. The creeks often have thick boulder beds (Photo 7), such that during dry summer periods, weak flow is internal in the otherwise apparently dry creeks. The narrow mountain valleys are conducive to the development of avalanche conditions in the winter months.

The 2004 field activities were carried out on the Poly Grid (Frontspiece Photo 1, Map GR 2), located north of Hwy 37A on the north side of the Strohn Creek Valley at elevations ranging between \sim 400 to \sim 850 m. The south-facing mountain slopes average 25-30°. The exploration target area is located immediately to the west of the much steeper topography associated with the Strohn Creek Pluton.

The exploration field season in the Stewart Camp generally extends from late June to November. However, with their good access and lower elevations, the Poly Property exploration targets can normally be pursued for much of the year. Summers are usually characterized by long hours of daylight and pleasant temperatures. In 2004, the Stewart area experienced one of the warmest and driest summers in history, with daily temperatures often exceeding 30°C.

Although winters have been getting milder and glaciers have been rapidly receding, snow can cover higher evaluations in the late fall and accumulations can total several metres in a 24-hour period. The winter of 2004 arrived early in November with a severe winter storm. The resulting snow accumulations and snow slides in the Upper Hwy Zone and East Creek areas (Photos 27, 28) terminated the Poly drill program on November 4.

The proximity to the ocean and relatively high mountains can make for highly changeable weather, including dense morning fog and rain along the coast. The weather systems are channelled through the Bear Pass on the Hwy 37A into the Strohn Valley where they often dissipate on contact with the much more stable air mass to the east. A climatic phenomenon often exists on the Poly Property, such that rain can fall all day on the west side of the property (west of Hwy Zone Creek), while the east side remains sunny and completely dry.

Wildlife on and in the area of the Poly Property include skunks, mountain goats, moose, foxes, black bears, grizzly bears, wolves, coyotes, lynx, marmots, martins, ptarmigan, eagles, hawks, jays, gulls, and crows. Swarms of bees and flocks of migrating robins are not uncommon. Vegetation in the valleys and on their sides ranges from dense tag alders, devil's club, ferns and fireweed to areas of spruce, pine, cottonwood and poplar forest (Map GR 2). Sub-alpine spruce thickets, with heather and alpine meadows, occur at higher elevations. Bare rock, talus slopes and glaciers with occasional islands of alpine meadow prevail above tree line, at approximately 1,200 m.

The lower area of the 2004 Poly Grid located is north of Hwy 37A (Frontspiece Photo 1) is covered by MV1 vegetation (dense tag alders, devil's club, ferns; Photos 6, 8) which has been compacted and oriented down slope by snow accumulations. Any small openings in the alders are usually filled with mature devil's club. As such, the dominant MV1 cover is rather formidable and budgets have to make allowance for extra costs involved in grid restoration each year. Areas of the MV1 often appear stunted such that the sulfide environment may be toxic to their growth.

Appendix V

5. STEWART CAMP GEOLOGY:

The Poly Property is located in the Stewart Gold Camp (Figure 2), which is characterized by a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figures 5, 6) by Grove (1986) and forms part of the Stikinia Terrain. The Stikinia Terrain, together with the Cache Creek and Quesnel Terrains, constitute the Intermontaine Superterrane, which was accreted to North America in Middle Jurassic time (Monger et al, 1982). To the west, the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

The Jurassic stratigraphy was established by Grove (1986, Figure 5) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been made and are currently being modified and refined as regional work continues, most notably by the Geological Survey Branch of the British Columbia Ministry of Energy, Mines and Petroleum Resources (Alldrick, 1984, 1985, 1989); and, by the Geological Survey of Canada (Anderson, 1989; Anderson and Thorkelson, 1990; Lewis, 1992; Greig, et al, 1995). The sedimentological, structural, and stratigraphic framework of the area is being established with some degree of precision.

The Hazelton Group represents an evolving (alkalic/calc-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick, 1987):

- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian).
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian).
- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian).
- 4. The Middle to Upper Jurassic Nass Formation (Toarcian to Oxfordian Kimmeridigian).

Alldrick assigned formational status (Mt. Dilworth Formation, Figure 6A) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek Formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.

Figure 1-27-4. North-south schematic reconstruction through the Stewart complex.

Figure 1-27-5. West-cust schematic reconstruction through the Stewart complex.

FIGURE 6A

DILWORTH FORMATION IN STEWART COMPLEX STRATIGRAPHY The Unuk River Formation (Figure 6A), a thick sequence of andesite flows and pyroclastic rocks with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart Camp (Figure 2). Heterogeneous, maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation, unconformably overlies the unit. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation (Figure 6A). This formation represents the climatic and penultimate volcanic event of the Hazelton Group volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson, 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc).

Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and they include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with the Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west.

Two main intrusive episodes occurred in the Stewart area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase and phenocrysts and locally potasium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs and a widespread dyke phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al., 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontaine - Insular superterrane boundary (Rubin et al. 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.

Figure 1-27-3. Distribution of the Stewart complex showing the locations of section lines for Figures 1-27-4 and 1-27-5.

FIGURE 6B

STEWART VOLCANIC BELT

Distribution of ore deposits within a stratovolcano (modified from Branch, 1976).

1

FIGURE 6C

MINERALIZATION TYPES STEWART CAMP

Appendix VI

6. STEWART CAMP MINERALIZATION AND 2004 EXPLORATION ACTIVITY:

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri, Red Mountain, Snip, Johnny Mountain, Eskay Creek), Sulphurets, and Kitsalt (Alice Arm) gold/silver mining camps (Figure 2). Mesothermal to epithermal, depth persistent gold-silver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Lower Jurassic Calc-alkaline intrusions and volcanic centres (Figures 6B, C). These intrusions are often characterized by 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

The most prominent example of this type of mineralization is the historic Silbak-Premier goldsilver mine, which has produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was re-opened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g gold/t and 80.23 g silver/t (Randall, 1988). The mine was closed in the summer of 1997 and the mill is currently up for sale.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses, which are developed over a strike length of 180 m and through a vertical range of 600 m (Grove, 1986; McDonald, 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections, but also occurs locally concordant with andesitic flows and breccias.

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena, with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald, 1988).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An example of this type of deposit is the BC Molybdenum Mine at Lime Creek.

The world class Eskay Creek Mine (Figure 2; total deposit size of about 7.10 M oz gold equivalent) was obtained by Barrick Gold in a merger with Homestake in 2001. In 2003, the mine produced about 350,000 ounces of gold and about 17 million ounces of silver. Proven and probable reserves at the end of 2003 totalled 927,000 tons grading 1.02 ounces gold/ton and 46.78 ounces silver/ton. Production for 2004 is expected to be about 300,000 ounces of gold and 14 million ounces of silver (Barrick, 2003).

The deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact Unit. The second style occurs in the adjacent footwall rhyolite, and features a stock work style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered (Blackwell, 1990; Barrett et al, 1996). Drilling continues to expand the original, approximately 280 m by 100 m zone that has an average thickness of 10 m.

The Eskay Creek 21B deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high-grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding parallel. Sulfide minerals present include sphalerite, tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver are associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization, are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

In 2002, the Wheaton River Group sold its interest in the Red Mountain deposit to Seabridge Gold Inc., which also purchased the Kerr and Sulphurets projects in the Stewart Camp (Figure 2). In January 2003 Steffen Robertson and Kirsten (Canada) Inc. ("SRK") completed an engineering and preliminary economic study of the project for Seabridge. The SRK mineral resource calculation is shown in the following table (Seabridge, 2004):

Resources Used in SRK Study - All Categories of Resources (000's)				
	Tonnes	Au g/t	Ag g/t	
Mineral Resources (All Categories > 0 g/t Au)	1,941.2	7.74	26.2	
Mineral Resources (All Categories > 6 g/t Au)	1,216.6	9.14	28.7	
Mining Recovery	89%			
Recovered Tonnes	1,081.2	9.13	28.9	
Dilution Percent	14%			
Dilution Tonnes	180.7	0.55	n/a	
Tonnes	1,261.9	7.90	24.7	

Under SRK's base case analysis and using a 5% discount rate, a break-even project is achieved at a gold price of US\$399/oz. The life of mine cash operating costs average US\$213 per ounce and total costs, inclusive of capital, average US\$358 per ounce. A 50% increase in mineable tonnage and reductions of 15% in capital and operating costs would reduce the break even gold price to \$338.

Seabridge did not carry out any work on the Red Mountain project in 2004. The deposit is comprised of the Marc Zone and its northerly extension, the AV Zone. The zones comprise sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the Goldslide Intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and deformation are indicated by the presence of different generations of pyrite and breccia fragments consisting of pyrite. High-grade gold values are usually associated with the semi massive, coarse-grained pyrite aggregates, but also with stock works of pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides.

As reported by the BC Ministry of Energy and Mines (2005), there was a substantial increase in exploration activities in Northwest Region of BC in 2004 to about \$55 M, more than double that in 2003. Most of the activities were allocated to 41 large projects, 35 of which included drilling.

One of the largest drill programs in the Stewart area in 2004 comprised about 4800 m in 36 holes and was completed on the Del Norte Property by Teuton Resources Corporation and Lateegra Resource Corp. (LEG). The Del Norte property is located approximately 34 km east of Stewart in the upper drainage area of the White River system. The target is silver-gold mineralization in quartz-sulfide breccia veins (the Kosciuszko Zone, the LG Vein, the LG Vein Extension and the Horatio Zone) that have been found over a vertical distance of over 300 m and along a 9.7 km long trend (Teuton Resources Corp., 2004). Drilling in 2004 delineated the LG vein, a one-meter wide quartz-calcite breccia vein over a horizontal distance of 750 m. Hole 2004-01 is reported to be representative and to have returned 9.25 g gold/t and 958 g silver/t over 0.7 m (BC Ministry of Energy and Mines, 2005).

LEG also funded a 2004 drill program carried out by Geofine on the Todd Property (Molloy, 2004). The Todd Creek Property is located about 35 km northwest of Stewart and hosts the historic South Zone Deposit and is reported to contain drill indicated reserves of 207,000 tonnes grading 5.48 g Au/t (Hemlo Gold Mines Inc., 1988 Annual Report), along with significant copper credits. The mineralization mainly comprises epithermal to mesothermal, multiphase quartz-sulfide breccia veins containing coarse blebs of chalcopyrite. Six holes totalling 761 m were used to evaluate the down dip/plunge extension of the deposit and its along strike extension at the NEXT Zone, 500 m to the north. DDHSZD04-04, the deepest hole ever drilled on the South Zone Deposit returned 3.09 g Au/t and 0.29% Cu over a core length of 10 m, including 10.51 g Au/t and 0.88% Cu over a core length of 2.22 m.

In other developments in the Stewart Area, Tenajon Resources Corporation resumed exploration at its Summit Lake Gold Mine (geological resources estimated at 120,000 t grading 19.2 g Au/t). Fourteen holes were drilled from the mine workings and intersections ranged from 0.3 to 4 m.

Appendix VII

Serengeti Resources drilled 4 holes on the Tide Property, 36 km north of Stewart to evaluate gold showings and soil anomalies. One hole that tested porphyry style mineralization at the 36 Zone returned 1 g Au/t over the top 129.4 m. The 52 Zone, a quartz-pyrite-arsenopyrite vein, was discovered 2 km northwest of the 36 Zone and two samples across a 0.5 m width averaged 476 g Au/t and 11314 g Ag/t.

7. EXPLORATION HISTORY, GEOLOGY, MINERALIZATION: POLY PROPERTY AND ENTRANCE PEAK TARGET AREA:

<u>7.A. EXPLORATION HISTORY:</u>

The MINFILE occurrences in the Entrance Peak Project Area are shown in Figure 7, and the individual MINFILE descriptions are provided in the following pages. The mineral occurrences on and in the vicinity of the Poly Claims include molybdenum associated with the Strohn Creek quartz monzonite intrusion; gold, silver and zinc mineralization on historic claims west of the Hwy Creek Zone Showing e.g., the Ptarmigan Zone; and, narrow quartz veins mineralized with sphalerite and galena, which were investigated with open cuts and adits by Bear Pass Mining. The Ptarmigan Zone may be the old Montreal 1-8 Showing (Minfile 104A-026; see attached), where short tunnels investigated mineralized breccia and veins and open cuts at various elevations.

The MINFILE occurrences do not appear to reference the Hwy Zone Creek Showing ("HZCS"; Maps 3, 4), which was apparently first discovered in 1991 via the reconnaissance evaluation of color anomalies and structural fabric in the vicinity of intrusive rocks. Talus blocks originating from shear zones in creek valleys on the south facing mountain valley side returned up to 56.85 g Au/t, 520 g Ag/t, and 15.2% Zn (Map 3; Kennedy, 1992). The mineralized zone was located in situ, about 900 m to the north of the old Hwy 37A.

In 1992, the HZCS was explored with geological and geochemical surveys funded by Cameco Corp. (Map 4; Kennedy, 1992). Quartz-ankerite veins and stock works mineralized with galena and sphalerite returned up to 9.85 g Au/t, 1163 g Ag/t, 0.33% Cu, 0.54% Pb and 0.33% Zn across a 3 m width in chip samples. Selective sampling over a 15 cm width of a sulfide rich section of a quartz vein returned 123.3 g Au/t; 1897 g Ag/t; 0.85% Cu, 5.79% Pb and 0.47% Zn. Sediment sampling revealed rather anomalous gold and arsenic values in both creeks as shown on Map 4. The planned drill program was not carried out because of an inadequate land package.

Other Entrance Peak area historic exploration targets are shown on Map 3. They include the Cornice Mountain Breccia Zone, where chip sampling returned 6.78 g Au/t and 2.24% Zn across 14.5 m; and, 11.1 g Au/t over 6 m on another sample line (Kennedy, 1992). Drill testing by Cameco in 1993 failed to intersect significant mineralization and it was concluded the sulfide target was associated with a dip slope (Kennedy, 1993).

Float boulders and in situ quartz-carbonate veins found in the Galena Creek target area (Map 3)

were mineralized with sphalerite, galena and chalcopyrite. The generally narrow veins have yielded assays up to 7.88 g Au/t, 54.1 g Ag/t; 0.49% Cu, 1.65% Pb and 10.6% Zn (Kennedy, 1992). The importance of the target was confirmed by the 1999 program stream sediment sample 160226 (Molloy, 1999) which returned interesting As, Au, Ag, Cu, Pb and Zn values.

As described in the Report on the 1999 Prospectors Assistance Program (Molloy, 1999), the Highway 37A Showing (or Highway 37A Zone Showing; Figure 7) was discovered during a regional geochemical survey. The showing comprises an area of oxidized soil and altered (oxidized, silicified, sulfidized, sericitized) angular float boulders and large blocks, located in tag alders between the old Hwy 37A and the new Hwy 37A. It had an apparent north-northwest trend and a width of up to over 50 m. The Poly 1-4 Claims (Map 1) were staked in August 1999 to cover the Highway 37A Showing, the Hwy Zone Creek Showing and the favorable geological environment north of Entrance Peak.

In 1999, a small grid was established on the Highway 37A Showing and initial prospecting, and geological and geochemical surveys carried out. The soil samples returned rather anomalous Au, Cu, Pb, Zn and As values, along with anomalous Ag, Cd, Mo, Ni, Co contents; and, some anomalous Sb, Hg and Ba values. Thirteen of the 15 composite subcrop samples of altered crystal tuff breccia had weakly anomalous gold contents ranging up to 70 ppb. All the rock samples had strongly anomalous copper contents, averaging 198 ppm. They also had weakly anomalous Ag contents, ranging up to 23 ppm and 10 ppm, respectively.

In 2000, two Prospectors Assistance Programs were carried out on separate areas of the property (Molloy, 2000; Kennedy, 2000). The geochemical signature of the Highway 37A Showing was traced via prospecting and reconnaissance geochemical rock float and soil sampling for an additional 200 m to the southeast to beyond the Stewart power line corridor above Strohn Creek Valley. The signature has an east-west component north of the new Hwy 37A of up to over 350 m that remains open for delineation. It has also been traced an additional 500 m to the east-southeast, to beyond the station at Windy Point.

Geochemical and geological surveys carried out by Geofine in 2002 for Island Arc Mining Corp. continued to confirm the importance of the exploration environment. The stream sediment geochemical survey further delineated the anomalous multielement signature ("MES": Au, Ag, Cd, Cu, Pb, Zn, As, Sb) in Middle and Hwy Zone Creeks. The results of the soil geochemical survey were interpreted to confirm the results of the stream sediment survey i.e., one of the principal target areas on the grid is located mainly on the west end of all the grid lines in the lower target area i.e., proximal to Hwy Zone Creek. Locally, the target area extends to the east to beyond BL50E, to East Creek. Anomalous soil Au, Ag, Cd, Cu, Pb, Zn and As zones show good correlation and trend north in the general area of Hwy Zone Creek, along a strike length of over 600 m. The zones remain open for delineation and broaden in the southwest area of the grid, where an inflection in the structural fabric appears particularly favorable for sulfide deposition.

B.C. Ministry of Energy and Mines

(Modified by Geofine, 2002)

MINFILE 104A 025:

Run Date: 2005/Feb/23

Run Time: 08:17 PM

MINFILE / www MASTER REPORT GEOLOGICAL SURVEY BRANCH MINISTRY OF ENERGY & MINES

MINFILE Number: 104A 025

.....

Name(s): FITZGERALD

 Status:
 Showing

 Regions:
 British Columbia

 NTS Map:
 104A04E (NAD 83)

 Latitude:
 56 06 32 N

 Longitude:
 129 33 15 W

 Elevation:
 457 Metres

 Location Accuracy:
 Within 1KM

 Comments:
 Approximate centre of the Strohn Creek pluton (Bulketin 63).

.

Mining Division: Skeena

National Mineral Inventory: 104A4 Mo1

<u>UTM Zone:</u> 09 (NAD 83) <u>Northing:</u> 6218337 <u>Easting:</u> 465535

Commodities: Molybdenum

MINERALS

Significant:	Molybdenite
Associated:	Quartz
Mineralization Age:	Unknown

DEPOSIT

Character:	Vein	Stockwork	
Classification:	Hydrothermal	Epigenetic	Porphyry
<u>Type:</u>	[Porphyry Mo (Low F	- type).]	

HOST ROCK

Dominant Host Rock: Plutonic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other	· · · · · · · · · · · · · · · · · · ·
Middle Jurassic	Hazelton	Salmon River	и · ·	
Tertiary		, 	Coast Phytonic Complex	

Lithology: Porphyritic Quartz Monzonite Sediment/Sedimentary

Host Rock Comments: The Strohn Creek pluton is a satellite pluton that lies east of the Coast Plutonic Complex.

GEOLOGICAL SETTING

Tectonic Belt:	Intermontane
Terrane:	Stikine

Physiographic Area: Boundary Ranges

INVENTORY	(Reserves/Resources not compliant with National Instrument 43-101 unless specified in comments)			
Ore Zone:	SAMPLE	Report On: N		
Category:	Assay/analysis		Year: 1917	
Sample Type:	Bulk Sample			
	Commodity	Grade		
	Mołybdenum	6.000 %		

Comments: A sample, weighing several hundred kilograms (200 assumed), averaged 6 per cent molybdenite.

Reference: Minister of Mines Annual Report ,1917, page 68.

CAPSULE GEOLOGY

The exact location of the Fitzgerald showing is not known. The property is described as being about 9.7 kilometres east of the Bear River divide (Minister of Mines Annual Report, 1917).

Three claims were located over the showing by the Fitzgerald brothers in 1917.

The area is underlain by the porphyritic Tertiary(?) Strohn Creek pluton (Bulletin 63), which intrudes Hazelton Group sediments of the Middle Jurassic Salmon River Formation. The Strohn Creek pluton is a massive, coarse-grained quartz monzonite that contains large phenocrysts of potash feldspar, minor biotite, lesser hornblende and accessory apatite, zircon and magnetite. Mineralization in the pluton consists of molybdenite, typically associated with quartz, along joint surfaces and fractures (Bulletin 63, p. 80).

The Fitzgerald showing consists of a 1 to 2-metre wide quartz vein, in the quartz monzonite, that contains molybdenite (Minister of Mines Annual Report, 1917, p. 68). A sample, weighing several hundred kilograms, was reported to average about 6 per cent molybdenite (Minister of Mines Annual Report, 1917, p. 68).

BIBLIOGRAPHY

EMPR AR *1917-68; 1921-72 EMPR BULL 9, p. 91; 63 EMPR MAP 8 GSC MAP 307A; 315A; 9-1957; 1418A GSC OF 2582 WWW http://www.infomine.com/

Date Coded: 1985/07/24 Date Revised: 1991/10/21 Coded By: GSB Revised By: WC Field Check: N Field Check: N

MINFILE 104A 026:

Run Date: 2005/Feb/23

Run Time: 08:20 PM

MINFILE / www **MASTER REPORT** GEOLOGICAL SURVEY BRANCH MINISTRY OF ENERGY & MINES

MINFILE Number: 104A 026

National Mineral Inventory: 104A4 Ag14

Name(s): MONTREAL 1-8, MURDOCK (L. 3440-3446), DOUVILLE

Status: Showing Mining Division: Skeena Regions: British Columbia NTS Map: 104A04E (NAD 83) UTM Zone: 09 (NAD 83) Latitude: 56 06 44 N Northing: 6218720 Longitude: 129 34 42 W Easting: 464035 Elevation: 762 Metres Location Accuracy: Within 1KM Comments: The location given lies immediately east of the Murdock (104A 128) claim group (L. 3440-3446) (Minister of Mines Annual Report, 1928).

Commodities: Silver Zinc Lead

MINERALS

Significant:	Sphalerite	Galena	Pyrite
Alteration:	Silica		
Alteration Type:	Silicific'n		
Mineralization Age:	Unknown		

DEPOSIT

Character:	Shear	Disseminated
Classification:	Replacement	
<u>Type:</u>	[Polymetallic veins Ag-	Pb-Zn±Au.]
Comments:	North-striking, west-dip	ping zone in greenstone

HOST ROCK

Dominant Host Rock: Volcanic

Stratigraphic Age	Group	Formation Igneous/Metamorphic/Other
Triassic-Jurassic	Hazelton	Unuk River
Middle Jurassic	Hazelton	Salmon River

Lithology: Greenstone Volcanic Breccia

GEOLOGICAL SETTING

Tectonic Belt: Intermontane Terrane: Stikine

Physiographic Area: Boundary Ranges

INVEN

TORY	(Reserves/Resources not compliant with National Instrument 43–101 unless specified in comments)		
Ore Zone:	SAMPLE	Report On:	N
Category:	Assay/analysis	Year:	1928
Sample Type:	Grab		
	Commeditor C		

Commodity	Grade		
Silver	68.60 g/t		

<u>Comments:</u> Sample from silicified zone in greenstone. Trace gold. <u>Reference:</u> Minister of Mines Annual Report, 1928, page 111.

CAPSULE GEOLOGY

The location of the Montreal showings is not known exactly. Several showings are reported on the Montreal 1-8 claims, which are reported to lie immediately east of the Murdock claims (Minister of Mines Annual Report 1925, p. 94). The claims are assumed to have been staked on the north side of Strohn Creek, about 4.5 kilometres east of the Bear River Pass.

The claims were located in 1925 by Douville and others. Four veins, 1.8 to 7.6 metres wide, were reported that year. During 1925-29, the owners emplaced several opencuts and at least 2 tunnels.

The area is underlain by north-striking Hazelton Group rocks. The Upper Triassic to Lower Jurassic Unuk River Formation is unconformably overlain to the east by the Middle Jurassic Salmon River Formation (Bulletin 63). The Salmon River Formation rocks are intruded by an Eocene(?) stock of quartz monzonite to the east of the showings. Several showings have been reported on the Montreal claims.

At about 594 metres elevation (immediately below the old camp) several opencuts expose disseminations and stringers of galena and sphalerite in volcanic breccia. A chip sample assayed trace gold, 13.7 grams per tonne silver, nil lead and 1.5 per cent zinc across 4.6 metres (Minister of Mines Annual Report 1928, p. 111).

At about 617 metres elevation, argentiferous galena occurs in a shear zone in a 6-metre long tunnel.

At 640 metres elevation, a silicified zone in greenstone carries minor pyrite, sphalerite and rare galena stringers. The zone strikes north, dips west and is up to 10 metres wide. A grab sample from a tunnet, 13.7 metres long, assayed 68.6 grams per tonne silver and trace gold (Minister of Mines Annual Report 1928, p. 111).

At 732 metres elevation, a 6-metre wide pyritic silicified zone is exposed in a creek.

Float samples of highly leached material, containing quartz and galena, assayed 0.7 grams per tonne gold, 1,542.9 grams per tonne silver and 43 per cent lead (Minister of Mines Annual Report 1928, p. 111).

BIBLIOGRAPHY

EMPR AR 1925-94; 1926-95; *1928-111; 1929-102 EMPR ASS RPT <u>20200</u> EMPR BULL 63 EMPR MAP 8 GSC MAP 307A; *315A; 9-1957; 1418A GSC MEM 175, p. 132 GSC OF 2582

Date Coded: 1985/07/24 Date Revised: 1991/10/21 Coded By: GSB Revised By: WC Field Check: N Field Check: N

MINFILE 104A 027:

.

Run Date: 2005/Feb/23

Run Time: 08:23 PM

MINFILE / www MASTER REPORT GEOLOGICAL SURVEY BRANCH MINISTRY OF ENERGY & MINES

MINFILE Number: 104A 027

National Mineral Inventory: 104A4 Cu5

Name(s): SOUTHERN CROSS

Commodities:	Copper	Gold	Silver	Zinc	Lead
MINERALS					
Significant:	Chalcopyrite Pyrite	Tetrahedrite	Sphalerite	Silver	Galena
Associated: Mineralization Age:	Quartz Unknown	Hematite	Magnetite		

DEPOSIT

<u>Character:</u> Vein <u>Classification:</u> Hydrothermal Epigenetic <u>Type:</u> [Polymetallic veins Ag-Pb-Zn±Au.]

HOST ROCK

Dominant Host Rock: Volcanic

	•		
Triassic-Jurassic Haze	lton	Unuk River	

Lithology: Volcanic Tuff Breccia Argillite

GEOLOGICAL SETTING

Tectonic Belt:	Intermontane
Terrane:	Stikine

Physiographic Area: Boundary Ranges

INVENTORY	(Reserves/Resources not compliant with National Instrument 43-101 unless specified in comments)		
Ore Zone:	SAMPLE	Report On: N	
Category:	Assay/analysis	Year: 1972	
Sample Type:	Grab		

Commodity	Crade
Gold	1.10 g/t
Copper	0.620 %

<u>Comments:</u> This sample, collected just east of the Bear River Pass, about 30 metres from the highway, may have been from this showing.

Reference: Assessment Report 6303.

CAPSULE GEOLOGY

The exact location of the Southern Cross showing is not known. The Southern Cross claims are reported to lie on the east side of the Bear River glacier. The former position of the glacier in the Bear River valley is now occupied by Strohn Lake.

Morris and Lake carried out stripping and open cutting on the Southern Cross claims during 1929-30. In 1972, Keith Copper Mines Ltd. conducted a geophysical survey on the nearby Mina claims.

The area is underlain by Hazelton Group volcanics of the Upper Triassic to Lower Jurassic Unuk River Formation. These rocks strike east-southeast and dip north (Bulletin 63).

Several showings have been reported on the claims. One of the showings comprises quartz veinlets carrying chalcopyrite, tetrahedrite and minor sphalerite and native silver(?). These occur across a width of 6 metres in tuffs, breccias and argillites (Minister of Mines Annual Report, 1930).

Elsewhere on the claims, 4 parallel veins contain hematite, magnetite, pyrite and some galena along small fractures (Minister of Mines Annual Report, 1930).

A rock sample collected just east of the Bear River Pass, about 30 metres from the highway, may have been from the Southern Cross showing. The sample assayed 0.62 per cent copper and 1.1 grams per tonne gold (Assessment Report 6303).

BIBLIOGRAPHY

EMPR AR 1929-102; *1930-108 EMPR BULL 63 EMPR MAP 8 GSC MAP 307A; *315A; 9-1957; 1418A GSC MEM 175, p. 147 GSC OF 2582

Date Coded: 1985/07/24 Date Revised: 1991/10/21 Coded By: GSB Revised By: WC Field Check: N Field Check: N

MINFILE 104A 028:

Run Date: 2005/Feb/23

Run Time: 08:27 PM

MINFILE / www **MASTER REPORT** GEOLOGICAL SURVEY BRANCH **MINISTRY OF ENERGY & MINES**

MINFILE Number: 104A 028

National Mineral Inventory: 104A4 Ag15

	Name(s):	BEAR PASS MINING	
	Status:	Showing	Mining Divisio
	Regions:	British Columbia	
	<u>NTS Map:</u>	104A04E (NAD 83)	UTM Zon
	Latitude:	56 05 59 N	Northin
	Longitude:	129 34 43 W	Eastin
	Elevation:	457 Metres	
L	ocation Accuracy:	Within 5KM	
	Comments:	South side of Strohn Creek, about 4.8 kilometres east of the	e Bear River Pass (Minister of Mines
		Annual Report, 1928).	

Lead

ng Division: Skeena

UTM Zone: 09 (NAD 83) Northing: 6217329 Easting: 464006

Commodities: Silver

Zinc

Gold

MINERALS

Significant:	Sphalerite	Galena	Pyrite
Associated:	Quartz		
Alteration:	Silica		
Alteration Type:	Silicific'n		
Mineralization Age:	Unknown		

DEPOSIT

Character: Unknown Classification: Unknown Type: [Polymetallic veins Ag-Pb-Zn±Au.] Comments: One mineralized zone trends north.

HOST ROCK

Dominant Host Rock: Volcanic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other	
Triassic-Jurassic	Hazelton	Unuk River		:

Lithology: Greenstone Andesite Feldspar Porphyry

GEOLOGICAL SETTING

Tectonic Belt: Intermontane Terrane: Stikine

Silver

Physiographic Area: Boundary Ranges

INVENTORY	(Reserves/Resources not compliant with National Instrument 43-101 unless specified in comments)				
Ore Zone:	MAIN	Report On: N			
Category:	Assay/analysis	Year: 1928			
Sample Type:	Chip				
	Commodity Grade				

82.30 g/t
<u>Comments:</u> Across 2.4 metres. Trace gold. <u>Reference:</u> Minister of Mines Annual Report, 1928, page 111.

CAPSULE GEOLOGY

The exact location of the Bear Pass Mining showing is not known. The showing is reported to lie at an elevation of 457 metres on the south side of Strohn Creek, about 4.8 kilometres east of the Bear River Pass.

The Bear Pass Mining Syndicate held the property in 1928. Exploration work consisted of open cutting and 2 short adits.

The area is underlain by north(?)-striking, steeply dipping andesites(?) of the Upper Triassic to Lower Jurassic Unuk River Formation (Hazelton Group) (Bulletin 63). Small stocks of feldspar porphyry intrude the volcanics.

Several silicified zones, carrying quartz stringers and minor pyrite, sphalerite and galena, occur in greenstone. A chip sample from the 7.6 metres wide, north-trending main zone assayed trace gold and 82.3 grams per tonne silver across 2.4 metres (Minister of Mines Annual Report, 1928).

BIBLIOGRAPHY

EMPR AR *1928-111 EMPR BULL 63 EMPR MAP 8 GSC MAP 307A; *315A; 9-1957; 1418A GSC MEM 175, p. 107 GSC OF 2582

<u>Date Coded:</u> 1985/07/24 Date Revised: 1991/10/16 Coded By: GSB Revised By: WC Field Check: N Field Check: N

MINFILE 104A 096:

<u>Run Date:</u> 2005/Feb/2 <u>Run Time:</u> 08:26 PM	3	M GEOLOG MINISTR	MINFILE / www ASTER REPORT ICAL SURVEY BRA Y OF ENERGY & M	NCH INES	
MINFILE Number:	104A 096			National Mineral I	nventory:
<u>Name(s):</u>	STEWART				
Status: Regions: <u>NTS Map:</u> Latitude: Longitude: Elevation: Location Accuracy: Comments:	Showing British Columbia 104A04E (NAD 83) 56 05 59 N 129 31 07 W 330 Metres Within 500M Permatitic phase in a s	rmall pluton on t	he Stewart highway (<u>Mining</u> <u>UT</u>]	Division: Skeena <u>M Zone:</u> 09 (NAD 83) <u>Northing:</u> 6217300 <u>Easting:</u> 467739
<u>comments.</u>	79-1A).				1 I apri
Commodities:	Uranium	Thorium			
MINERALS Significant: <u>Associated:</u> Mineralization Age:	Uraninite Pyrite Unknown	Cyrtolite Quartz	Feldspar	Muscovite	Biotite
DEPOSIT Character: Classification: Type:	Disseminated Pegmatite [Rare element pegmati	ite - NYF family.]		
HOST ROCK Dominant Host Rock:	Plutonic				
Stratigraphic Age	Grou	n Form	nation Ig	neous/Metamorphic/Othe	• •• •• •• •• •• •• •• •• •• •• •• •• •
Tertiary	······································	· · · · · · · · · · · · · · · · · · ·	<u>-</u>	bast Plutonic Complex	•,
Lithology:	Quartz Feldspar Biotita Porphyritic Quartz Mo	e Pegmatite onzonite			
Host Rock Comments:	The host is a pegmatiti Plutonic Complex.	ic phase of the T	ertiary(?) Strohn Creel	k pluton, a satellite pluton o	f the Coast
GEOLOGICAL SET Tectonic Belt: Terrane:	FING Intermontane Stikine	Bowser L	ake	Physiograp	phic Area: Boundary Ranges
INVENTORY	(Reserves/Resources n	ot compliant wi	th National		
Ore Zone: Category:	Instrument 43-101 un SAMPLE Assay/analysis	less specified in	<i>comments)</i> <u>Report On:</u> N <u>Year:</u> 19	79	
<u>Баприс 1уре:</u>	Commodity	Grade			

Thorium		0.02	0 %	'n		
Uranium	-	0.0	99 %	6		
1	 				+	

Reference: Geological Survey of Canada Paper 79-1A, page 398.

CAPSULE GEOLOGY

The Stewart uranium-thorium occurrence lies about 33 kilometres northeast of Stewart, about 7.5 kilometres east of the Bear River Pass and along the Stewart highway (37A).

The area has been explored since about 1917, when an adjacent area was staked over the Fitzgerald molybdenum showing (104A 025). The occurrence was discovered in 1978 during a car-borne scintillometer survey along the highway.

The Tertiary(?) Strohn Creek porphyritic quartz monzonite pluton cuts Jurassic Hazelton Group sediments. The pluton contains radioactive coarse quartz-feldspar muscovite-biotite pegmatitic phases containing pyrite, uraninite and cyrtolite.

A selected sample assayed 0.0988 per cent uranium and 0.02 per cent thorium (Geological Survey of Canada Paper 79-1A).

BIBLIOGRAPHY

EMPR MAP 8 EMPR OF 1990-32, p. 27 GSC MAP 307A; 315A; 9-1957; 1418A GSC OF 551, 2582 GSC P *79-1A, pp. 397-399

<u>Date Coded:</u> 1987/09/01 <u>Date Revised:</u> 1992/01/29

Coded By: LDJ Revised By: WC Field Check: N Field Check: N

MINFILE 104A 128:

.

Run Date: 2005/Feb/23

Run Time: 08:32 PM

MINFILE / www MASTER REPORT GEOLOGICAL SURVEY BRANCH MINISTRY OF ENERGY & MINES

.

MINFILE Number: 104A 128

National Mineral Inventory: 104A4 Ag14

Name(s): MURDOCK (L. 3440-3446), HUGH 9-10, HUGH 4

Status:ShowingMining Division:SkeenaRegions:British Columbia09 (NAD 83)NTS Map:104A04E (NAD 83)UTM Zone:09 (NAD 83)Latitude:56 06 52 NNorthing:6218976Longitude:129 35 39 WEasting:463053Elevation:1219 MetresEasting:463053Location Accuracy:Within 1KMVithin 1KMComments:Approximate centre of Murdock claims (L. 3440-3446) (Mineral Titles Reference Map
104A/4E).Image: Comment in the state of the state

Commodities: Lead

MINERALS

Significant: Galena Mineralization Age: Unknown

DEPOSIT

<u>Character:</u> Unknown <u>Classification:</u> Unknown <u>Type:</u> [Polymetallic veins Ag-Pb-Zn±Au.]

HOST ROCK

Dominant Host Rock: Volcanic

Stratigraphic Age	Group	Formation	Igneous/Metamorphic/Other	
Triassic-Jurassic	Hazelton	Unuk River		
<u></u>	i			

Lithology: Volcanic

GEOLOGICAL SETTING

<u>Tectonic Belt:</u> Intermontane <u>Terrane:</u> Stikine

Physiographic Area: Boundary Ranges

CAPSULE GEOLOGY

The Murdock showing is located on the Murdock claims (L. 3440 to 3446 inclusive), on the north side of Strohn Creek about 3 kilometres east of the Bear River Pass.

The Murdock claims were staked in 1921 by McHugo and Douville. Work was reported on the claims during 1923-25. No further activity has been reported.

The area is underlain by Hazelton Group volcanics of the Upper Triassic to Lower Jurassic Unuk River Formation (Bulletin 63). The volcanics strike north to northeast and dip to the west.

An occurrence of galena is reported on the claims (Minister of Mines Annual Report, 1923, 1925). No details on the mineralization are available.

BIBLIOGRAPHY

EMPR ASS RPT <u>22040</u> EMPR AR 1923-75; *1925-94 EMPR BULL 63 EMPR MAP 8 GSC MAP 307A; 315A; 9-1957; 1418A GSC OF 2582

<u>Date Coded:</u> 1991/10/21 <u>Date Revised:</u> 1992/02/17 Coded By: WC Revised By: WC Field Check: N Field Check: N The 2002 rock geochemical and geological surveys identified 4 principal types of mineralization:

Mineralization Type:	Elemental Signature:
Type 1: Pyrite, arsenopyrite, sphalerite, chalcopyrite, galena :	Au, Ag, Cd, Cu, Pb, Zn, As, Sb
Type 2: Pyrite, arsenopyrite:	Au, Ag, As, Sb +/- Cu, Pb, Zn
Type 3: Pyrrhotite +/-chalcopyrite:	Cu +/- Au, Ag, As
Type 4: Specular hematite or spec:	+/- Au, Cu

The results of the 2002 rock geochemical survey suggested that mineralization Types 1 and 2 are the most important exploration targets, although Type 3 should not be overlooked; and, that the main target areas are Lower and Upper Hwy Zone Creek and Upper East Creek.

The rock geochemical and geological surveys indicated that the mineralization types can be found in most of the altered (silicified, sulfidized +/- ankerite, sericite, fuchsite, chlorite, calcite, epidote) rock types observed on the grid: ash tuff is the host of 2% of the mineralized samples collected; crystal tuff, 7%; crystal tuff breccia, 51%; rhyolite, 1%; argillite, 8%; and, a variety of quartz veins and breccia vein types found in argillite, crystal tuff and crystal tuff breccia or as vein material, 31%. However, 40% of the anomalous gold values are associated with the quartz vein material; 13% are found in crystal tuff or crystal tuff breccia with associated quartz vein material; and 42% are associated with altered and sulfidized crystal tuff breccia. Forty-two percent of the rock samples with anomalous gold values were collected in Hwy Zone Creek and 33% in East Creek.

The geological, structural and topographic information indicated that the creeks and their oftenlinear tributaries are mainly controlled by fractures that generally strike between 270 ° to 20° and dip vertically to 75° east. Such structures and their junctions and splays are interpreted to control the epithermal-mesothermal hydrothermal mineralization on the property. For example, Type 2 mineralization observed at the Ice Showings in Upper East Creek and Types 1 and 2 found in Hwy Zone Creek generally comprise quartz-ankerite-sulfide fracture fillings hosted by altered crystal tuff breccia. The mineralization is often associated with fuchsite, with evidence of multiphase activity (e.g., brecciation, flow banding).

<u>7.B. GEOLOGY:</u>

As indicated in Figures 5 and 8, the Lower Jurassic Unuk River Formation of the Hazelton Group underlies most of the Entrance Peak Project Area. The formation comprises predominantly sub-aerial volcanics of intermediate composition. Pyroclastic rocks, including lithic and crystal tuff, lapilli tuff, agglomerate and volcanic breccia, are common and are locally interbedded with sediments including argillite and sandstone.

The volcanic pile has been intruded by hypabyssal intrusions, some of which are of similar age, and consist of feldspar porphyry and rhyolite domes. The intrusions are found at Cornice Peak and Yvonne Peak (Map 4) and are believed to represent volcanic centres. The rhyolitic domes,

dykes and welded tuffs are believed to represent late stage acidic volcanism in the evolving island arc.

To the west, Mount Strohn (Map 4) is composed of shales and argillites unconformably overlaying the volcanic rocks of the Unuk and Betty Creek Formations. The eastern part of the project area is composed mainly of the Salmon River Formation: argillite, with minor sandstone, limestone and shale. A large Eocene stock, herein "the Strohn Creek quartz monzonite pluton", has intruded Salmon River Formation on the east side of the Poly Property (Figure 8).

<u>7.C. MINERALIZATION:</u>

The Hwy Zone Creek Showing or HZCS as referenced above is associated with a northnorthwest trending, east dipping structure exposed in the upper reaches of Hwy Zone Creek (Map 2). The structure is up to 10 m wide and hosts boudined quartz-ankerite veins from 0.15 to 1 m in width. The veins are mineralized with disseminations and stringers of pyrite, pyrrhotite, arsenopyrite, galena, sphalerite, chalcopyrite, and tetrahedrite. Associated minerals include ankerite, potassium feldspar, chlorite, sericite and fuchsite. The veins are hosted by pyritized and silicified, green crystal tuff breccia and black argillite, with the structure postulated to be located near their contact (Kennedy, 1992). Fuchsite, epidote and chlorite halo the veins.

Other showings discovered on the Poly Grid in 2002 include the East Creek, Upper Ice 1 and Upper Ice 2. The showings are located in Upper East Creek and generally comprise Type 2 pyrite mineralization in quartz veins hosted by coarse pyroclastic rocks. Although the gold, silver and base metal contents of the samples are at best mainly weak, they do contain some significant arsenic and antimony values.

The historic Ptarmigan Zone is located near the northwestern boundary of the Poly 1 Claim (Map 4). Epithermal style quartz-carbonate veins mineralized with galena, minor chalcopyrite, sphalerite and pyrite are associated with hypabyssal intrusions (Kennedy, 1992). The most prominent intrusion is a pyritized rhyolite that forms a prominent jarosite/alunite stained gossan. Other intrusion types include hornblende porphyry and feldspar porphyry, and the main host rocks for all the types is crystal tuff and agglomerate.

The aforementioned veins occur in the pyroclastic rocks, proximal to the intrusions. Selected grab samples have yielded up to 69 g Au/t, 873 g Ag/t, 9.70% Pb and 9.72% Zn. However, initial chip samples failed to return significant values. As indicated in Section 7.A. above, the Ptarmigan Zone may be the old Montreal 1-8 Showing, where mineralized breccia and veins were investigated by short tunnels and open cuts at various elevations. According to Minfile 104A-026, float samples, at 732 m elevation and of highly leached material containing quartz and galena, assayed 0.7 g Au/t, 1,542.9 g Ag/t and 43% Pb.

B.C. Ministry of Energy and Mines FIGURE 8: GEOLOGY, MINFILE LOCATIONS, POLY PROPERTY

http://webmap.ei.gov.bc.ca/minpot/map/pdac.MW/F

F.

P

1

[

Appendix VIII

8. 2004 EXPLORATION PROGRAM ON THE POLY PROPERTY:

The 2004 exploration program on the Poly Property totalled about \$190,000 (Table 2) and was carried out intermittently from June 2004 to March 2005. The program consisted of a number of phases of fieldwork, technical data integration, processing and reporting. The work included the re-establishment of the 2002 grid (horizontally chained base lines, control lines, and horizontally chained and slope chained grid lines) and its expansion to the east, west, north and south, along with 4 fill-in lines (a total of 10.7 km, Frontspiece Photo 1).

Geochemical, vegetation, and geological surveys were carried out on the expanded grid. The surveys included the collection, logging, classification and analysis of 13 stream sediment samples, 261 soil samples and 55 rock samples. Quality assurance work with respect to the geochemical surveys included the utilization of 67 check samples (standards, re-runs and metallic sieved samples, Table 3). A JVX Spectral IP/resistivity (~7.5 km) was carried out on all the grid lines and a magnetic survey (~8.5 km) was carried out on all the grid lines and some baselines. The JVX data processing and reporting included 2D IP modeling. A 600 m drill program was initiated in late October and included the preparation of 6 drill sites, the building of two drill pads and the carrying out of topographical surveys.

ALS Chemex ("Chemex") in Vancouver analyzed most of the samples for gold (30 g FA/AA) and for 27 additional elements (ICP). In view of the backlog at Chemex, International Plasma Labs ("IPL") in Vancouver was used to complete the gold assay (30 g FA/AA) and ICP (30 element) analytical work. The Chemex and IPL Certificates of Analysis are included in Appendices A.1.and A.2., respectively. The JVX geophysical report is included as Appendix C. The exploration expenditures, including GST, are summarized in Table 2.

8.A. 2004 SECURITY, SAFETY, ENVIRONMENTAL PROTECTION, <u>QUALITY ASSURANCE OF ANALYTICAL DATA (TABLES 4, 5, 5A, 5B),</u> <u>DATA VERIFICATION:</u>

8.A.1. SECURITY:

The 2004 Poly exploration program utilized a number of security/confidentiality measures and procedures. The requirement of confidentiality for third party contractors was documented in their service contracts. The program was based out of a Geofine office facility in a secure apartment complex in Stewart, B. C. The exploration database, other than the geophysical data for which JVX was responsible, remained confidential and in the complete care and control of Geofine at all times.

Check samples were prepared by Geofine personnel and remained in their care before insertion into lab shipments. Geofine staff collected and transported the geochemical samples and logged

TABLE 2: EXPENDITURES, 2004 EXPLORATION PROGRAM, POLY PROPERTY:

SALARIES, FEES, INSURANCE: RE. BUDGETING, PERMITTING, CONTRACTS, CONTRACTOR SUPERVISION; FIELD WORK INCL. RESTORE OLD GRID, HORIZ & SLOPE PICKETING INCL. N EW GRID; STREAM SEDIMENT, SOIL, ROCK GEOCHEMICAL SURVEYS; VEGETATION AND GEOLOGICAL SURVEYS; SPECTRAL IP ELECTRODE CREW; DRILL PROGRAM INITIATION,	61976.85	4041.50
INCL. HOLE SPOTTING, TOPOG SURVEYS, PAD BUILDING. SECURITY, QUALITY ASSURANCE, DATA VERIFY, RECLAMATION.		
SUPPLIES:	5440.70	312.06
COMMUNICATIONS:	1657.59	119.96
ACCOMODATION, SUBSISTANCE:	9202.66	130.73
MOB-DEMOB;	8082.74	526.0 7
AIRCRAFT TRAVEL:	244.00	15.96
HELI CHARTER:	1670.49	109.29
ANALYSES:	9717.12	635.05
VEHICLE RENTAL, INSURANCE,		
FUEL:	5308.38	288.45
COURIER, SHIP, EXPEDITE:	5455.43	336.30
LINE CUTTING & IP CREW PARTICIPATION:	17474.22	1142.81
GEOPHYSICAL SURVEYS, DATA PROCESSING &		
MODELLING, REPORTING:	28077.71	1838.36
CLEAR DRILL SITES; DRILL PADS,		
MATERIALS:	7941.12	517.65
DIAMOND DRILLING, PROJECT FUEL,		
MOB-DEMOB:	4575.07	299.30
COPIER	786.17	51.17
DATA ENTRY, VERIFY, COMPILE, COMPUTER		
PLOTS, DATA INTERPRET, QUALITY ASSURANCE,		
DRAFTING; REPORTING, REPRODUCTION:	12000.00	784.80
FILING FEES, PERMIT REQUIREMENTS	6180.00	

TOTAL:	185790.25	11149.46
OVERHEAD	5573.71	
GRAND TOTAL*:	191363.96	11149.46

* ITEMS SUCH AS OPTION PAYMENT, RECLAMATION BOND NOT INCL.

TABLE 3:

.

2004 POLY SAMPLE TYPES:

SAMPLE TYPE:	NUMBER:
STREAM SEDIMENT	13
SOIL	
ROCK	55
CHECKS:	
CANMET STANDARDS	17
GEOFINE SAND STANDARDS	18
CHEMEX RE-RUNS & METALLIC SIEVE.	32
REPRESENTATIVE ROCK SUITE	<u>.27</u>
TOTAL SAMPLES:	423

and prepared them for shipment at Geofine's Stewart facility. The samples were placed in labeled and tagged sample bags and were immediately secured in rice bags for shipment. The bags were sealed and three colour-coded security tags were fastened to each bag. The bags were stored in a secure Geofine cargo trailer until shipment from Stewart by Bandstra Transportation to ALS Chemex in Vancouver. Geofine personnel transported the samples analyzed by IPL from Stewart to the lab. The labs were required to verify that the security tags were still in place for each shipping bag when the samples arrived at their facility.

8.A.2. SAFETY, ENVIRONMENT PROTECTION:

The program was carried out based on the requirements of the government project permit and the laws and regulations of BC. All project staff were required to have at least Level 1 BC First Aid Certificates. David Kennedy, P. Geo. and David Molloy, P.Geo., the project geologists, each had Level 1 Certificates with Transportation Endorsement and were on site for all phases of the project. Satellite telephones were utilized for field communications. No injuries were sustained during the exploration program.

The program was carried out with adherence to the appropriate environmental standards, safeguards and equipment requirements. The property was maintained in a clean and natural state with all garbage and exploration equipment removed from the property. The line cutting involved the clearing of tag alders and small popular but larger trees were left in place. The drill pads on L55N and lumber on L54+50N have been left on the property. All prepared drill sites were left in a clean and natural state and no contaminants were discharged in drainage channels (Photos 10, 13-17).

Field activities regarding the initiation of drill program in late October were carried out in close consultation with the government avalanche authorities in Stewart BC. The program was terminated when the snow accumulation thresholds they had so referenced were quickly exceeded and snow slides were initiated via a severe storm on November 4.

8.A.3. QUALITY ASSURANCE:

Four CANMET Standards (Tables 4, 5, 5A, 5B) as described below were used to monitor the quality of the Chemex analytical results from the analyses of the drill core. It should be noted that not all CANMET values are certified values. Those provided by other laboratories are so named by CANMET i.e., provisional and informational values to indicate a lower confidence level relative to certified values.

- a) CANMET Standard MA-1b was used as a "high" gold check and has a certified gold content of 17 g Au/t and an informational value of 4 g Ag/t (Table 4).
- b) CANMET Standard MA-3a was used as a "moderate" gold check and has a certified content of 8.56 g Au/t (Table 4). Other analytical values for MA-3a referenced are informational (Table 4).

- c) CANMET Standard MA-2c was used as a "moderate-low" gold check and has a CANMET certified gold content of 3.02 g/t and a provisional silver value of 0.51 g/t. Other analytical values for MA-2c referenced in Tables 4 and 5 are informational.
- d) CANMET Standard GTS-2 was used as a "low" gold check and has a CANMET certified content of 263 ppb gold and a provisional silver value of 1 g/t (Table 4). Other analytical values for GTS-2 shown in Tables 4 and 5 are informational.

In addition to the CANMET Standard, a Geofine standard (Sand Standard) was also used with the analysis of the soil and stream sediment samples. Based on its historic use of this commercial beach sand product, Geofine's "informational values" for the Sand Standard are: <0.005 ppm Au, <0.5 ppm Ag, <5 ppm As, <0.5 ppm Cd, 10 ppm Cu, <5 ppm Sb and 45 ppm Zn. With the low MES (multi element signature) contents, the Sand Standard is used mainly as a "low" and "contamination" check sample.

The MES analytical results for each of the CANMET Standards and each of the Sand Standards submitted to Chemex and IPL during the 2004 Poly program are shown in Table 5 relative to the MES values reported by CANMET for the standards; and, to the MES values reported by Geofine for the Sand Standard. The Chemex Certificates and their issue dates are also referenced in Table 5 in order to ascertain any apparent trends over time in deviations from the certified values. The complete analytical results for each standard sample are shown on the Chemex Certificates included in Appendices A1 and A2, along with the samples they were submitted with. In addition to the utilization of the standards, a number of the IPL pulps were rerun at Chemex and some sample materials were analysed by Chemex using metallic sieving.

Based on the results referenced above, and on the use of some of the same standards in the 2000 and 2002 Poly exploration programs and issues that were then resolved (Molloy, 2000, 2002), it is concluded that

- a) For the CANMET Standards (Table 5):
 - ii> Most Chemex and IPL gold and silver analytical results for the CANMET Standards relative to the CANMET values fall within the range of acceptable statistical variance (Table 5). The small variability in some of the gold and the larger variability in some of the silver results probably relates to the difficulty in maintaining the homogeneous concentration of it in the standards.
 - iii> With regard to the Chemex and IPL ICP analyses, Chemex used a 4 acid total digestion while IPL used an aqua regia partial digestion. The IPL and Chemex ICP copper, lead and zinc values shown in Table 5 fall within the range of acceptable statistical variance with regard the CANMET values. With regard to arsenic, Chemex indicates that each method should produce "good" numbers. However, in Table 5 there is some indication of an apparent problem with regard to some of the arsenic values. For example, the GTS-2 standard has an informational value of 110 ppm arsenic. Chemex reported 144 ppm arsenic in sample 600500A while IPL reported 37

and 44 ppm arsenic in samples 609861 and 609792. While some variance is expected based on the difference digestion methods referenced above, the IPL numbers appear to have a low bias. This issue will be discussed further in Section c) below, with regard to the results of the Chemex re-runs of soil samples analysed at IPL.

b) For the Geofine Sand Standard (Table 5):

i> Most Chemex and IPL gold and silver analytical results for the Geofine Sand Standard relative to the Geofine informational values fall within the range of acceptable statistical variance (Table 5). However, there is some evidence of possible minor contamination in results from both labs for some analyses done in late August and early September. Chemex has reported a gold content of 28 ppb for sample 186188 and IPL has reported values of 10 ppb gold and 100 ppb silver for sample 599869 and 10 ppb gold and 500 ppb silver for sample 599875. As shown by the rest of the IPL and Chemex analyses and as referenced by the Geofine informational values, the Sand standard check does not normally return such values.

Most of the other MES values reported by Chemex and IPL for the Sand Standard relative to the Geofine informational values fall within the range of acceptable statistical variance (Table 5). However, the 85 ppm Chemex lead value for sample 186188, relative to the much lower other 17 lead values reported by the two labs suggest the Chemex value is erroneous. As referenced above, Chemex also reported a gold content of 28 ppb for 186188, perhaps indicating a mix up with other soil results.

c) For Chemex re-runs of soil, stream and Sand Standard samples analyzed at IPL (Table 5A):

With regard to the apparent problem referenced in a) iii above with regard to arsenic, soil samples run at IPL that had sufficient sample material remaining were re-run at Chemex with ICP. Some were also re-run for gold, as material allowed. One sediment sample and two Sand Standard samples were also re-run at Chemex. As shown in Table 5A, many of the <5 IPL arsenic values increased substantially (up to 60 ppm) and most of the higher IPL arsenic values also increased significantly e.g. 83 to 178 ppm. Some cadmium and antimony values have increased e.g., from <5 to 11 ppm and from <0.2 to 1.4 ppm, respectively. While most IPL and Chemex gold and silver values show good correlation, most Chemex copper, lead and zinc values are higher than the respective IPL values. While the generally small increase in base metal values seems attributable to the Chemex total digestion versus the IPL partial digestion, increases in some of the lead values e.g., 27 from 7 ppm and increases in some of the zinc values e.g., 116 from 22 ppm seem rather excessive relative to digestion methods. In view of these concerns, the Chemex ICP database is reported, when available, for the MES analytical values in Table GR 2.

d) For Chemex analytic results for some rock samples compared to the IPL results (Table 5B):

Some issues are apparent in Table GR 2, where the rock samples are described along with MES analytical results, and in Table 5B. For example, the original IPL values for sample 609780R (well sulfidized, in situ quartz vein material) average 6.02 g Au/t (Table 5B). However, the values for sample 609781R (wall rock to sample 609780 with much weaker mineralization) average 6.45 g Au/t (Table GR 2). When 3 additional samples (609780A, 609780B, 609780) of the 609780 vein material were analysed at Chemex, they had average gold contents of 9.47 g Au/t (Table 5B).

The interpreted sulfide nugget effect was confirmed via the analytical results from metallic sieving of the pulps of the 3 samples analysed at Chemex (Certificate VA04063552 attached to Table 5B). All coarse sieve fractions contain significant amounts of gold and the total gold values for the three samples average 9.05 g Au/t. This sulfide nugget effect is also indicated in sample 609787 for which the two IPL gold results are 36.3 and 44.7 g Au/t and the silver results are 251.2 and 1373.4 g Ag/t.

e) For the 2004 analytical data base:

Based on the aforementioned quality assurance work, most of the Chemex and IPL analytical results fall within the range of acceptable statistical variance and are reliable. With regard to a comparison of the Chemex ICP analytical data and the IPL ICP data, a number of IPL arsenic, antimony and cadmium values seem to be unusually low. When the material was re-analyzed at Chemex, the results for some of the Chemex ICP results i.e., for arsenic, antimony and cadmium showed some substantial increase relative to the IPL results. Perhaps most of this difference can be attributed to the different digestion methods, but many of the IPL values do seem to have a low bias. There is also an apparent sulfide nugget effect with regard some of the mineralization collected on Poly Property that should be routinely evaluated in future programs. In view of the issues referenced above, quality assurance work is a very essential part of any such exploration program.

TABLE 4

CANMET STANDARD SAMPLE DESCRIPTIONS:

MA-1b, MA-2c, MA-3a, GTS-2

			ra.a
	and a second	<u></u>	the second s
	Au	0.497 ± 0.008	17.0 ± 0.3
2			

Approximate Chemical Composition

Constituent	wt %
Si	24.5
Al	6.11
Fe	4.62
κ	4.45
Na	1.49
S	1.17

C (total)	2.44
H2O- (100°C)	0.1
LOI (1000°C)	7.9
Ag	4 µg/g
Au	17.0 µg/g*

* Certified value

CCRMP, CANMET Mining and Mineral Sciences Laboratories

555 Booth Street, Ottawa Ontario, Canada K1A 0G1

Telephone: (613) 995-4738 Facsimile: (613) 943-0573 <u>E-mail</u>

Last Modified: 2004-01-05

▲

Important Notices

<u>Français | Contact Us | Help | Search | Canada Site</u> <u>Home | What's New | CANMET-MMSL | MMS Site | NRCan Site</u>

Description

MA-2c is the fourth generation in a series with predecessors, MA-2, MA-2a and MA-2b, which are no longer available. The deposits of the area are known to contain electrum in a relatively simple siliceous ore.

Intended Use

MA-2c is suitable for analysis of gold, silver, majors, minors, and trace elements in gold ores. Examples of intended use are: for quality control in the analysis of samples of a similar type, method development, arbitration and the calibration of equipment.

Instructions for Use

The assigned values pertain to the date when issued. CCRMP is not

responsible for changes occurring after receipt by the user. MA-2c should be used "as is". The contents of the bottle should be thoroughly mixed before taking samples.

Method of Preparation

Both gold ore and waste rock were dried, crushed, ground and sieved to produce a product with a mesh size of less than 75 μ m. After blending, the material was bottled in 400-g units. This is the only size available.

State of Homogeneity

A homogeneity assessment for gold was performed by an independent laboratory on 30 g samples using instrumental neutron activation analysis. Thirty gram samples were analysed for silver using fire assay with lead collection and determination by atomic absorption spectroscopy. No evidence of inhomogeneity was found for gold or silver. A one-way analysis of variance technique (ANOVA) was used to assess the homogeneity of gold and silver (1). The ratio of the between-bottle to within-bottle mean squares was compared to the F statistic at the 95% level of probability. No evidence of inhomogeneity was observed. Use of a smaller sub-sample will invalidate the use of the certified value and associated parameters. Further details are available in the certification report.

Method of Certification

Twenty industrial, commercial, and government laboratories participated in the 1998 interlaboratory certification program. Gold and silver were analysed by a variety methods. A statistical analysis of the data yielded Certified Values for gold, and a provisional value for silver. Informational values are derived from the mean of five results from up to six laboratories using one or more of instrumental neutron activation; acid digestion followed by atomic absorption spectroscopy, inductively coupled plasma – atomic emission spectroscopy, or inductively coupled plasma – mass spectrometry; fusion with lithium metaborate followed by x-ray fluorescence, and combustion methods. A one-way analysis of variance technique was used to estimate the consensus value and other statistical parameters (1). Full details of all phases of the work, including statistical analysis, the methods and the names of the participants are contained in CCRMP Report 00-2E.

Legal Notice

The Canadian Certified Reference Materials Project has prepared this reference material and statistically evaluated the analytical data of the interlaboratory certification program to the best of its ability. The purchaser, by receipt hereof, releases and indemnifies the CANMET from and against all liability and costs arising out of the use of this material and information.

Period of Validity

These certified values are valid until 2007. The stability of the material will be monitored every seven years. Purchasers will be notified of any significant changes.

Certifying Officers

Joseph Salley Maureen E. Leaver

For Further Information

The preparation and certification procedures used for MA-2c, including methods and values obtained by individual laboratories, are given in CCRMP Report 00-2E. This report is available free of charge on application to:

Sales Manager, CCRMP CANMET-MMSL (NRCan) 555 Booth Street Ottawa, Ontario, Canada K1A 0G1

Telephone: (613) 995-4738 Facsimile: (613) 943-0573 <u>E-mail</u>

Reference

Brownlee, K.A., Statistical Theory and Methodology in Science and Engineering; John-Wiley and Sons, Inc.; New York; 1960

Table ii - Informational values for the mean of up to six sets
using a variety of methods.

Element	Unit	Mean	SD
Al	%	6.70	0.29
As	hð\ð	9.10	2.32
Ba	%	0.22	0.01
Be	hð\ð	3.74	0.48
Bi	hð\ð	0.66	0.05
С	%	1.78	0.07
Ca	%	4.76	0.05
Cd	hð\ð	0.7	0.1
Ce	hð\ð	141	2
Co	µg/g	25	2
Cr	p/g/g	216	45
Cs	µg/g	9.09	0.73
Cu	µg/g	95	5
Dy	µ9/g	5.16	0.05
Er	hð\ð	2.26	0.02
Eu	p/g/g	3.15	0.15
Fe	%	5.39	0.51
Ga	µg/g	17.62	0.48
Gd	p/g	9.58	0.19
Hf	hð\d	5.40	0.14
Но	pg/g	0.92	0.03
K	%	3.20	0.06
La	hð\ð	61.49	8.48

MA-2c Gold Ore

Li	µg/g	27.71	1.94
Lu	hð\ð	0.30	0.01
Mg	%	2.91	0.32
Mn	%	0.10	0.01
Мо	hð\ð	14.3	1.4
Na	%	2.23	0.08
Nb	µg/g	6.52	0.13
Nd	µg/g	61.9	1.2
Ni	µg/g	64	8
Р	%	0.24	0.02
Pb	µg/g	25	4
Pr	µg/g	16.26	0.20
Rb	p/g/g	147	5
S	%	0.23	0.03
Sb	hð,ð	3.31	0.20
Sc	hð\ð	17.47	1.13
Si	%	24.40	0.20
Sm	hð\d	12.0	0.4
Sr	µg/g	1471	16
Та	µg/g	0.56	0.17
Tb	µg/g	1.10	0.13
Th	µg/g	9.2	2.6
Ti	%	0.40	0.02
ТІ	⊬ 9/g	0.92	0.04
Tm	48/8	0.30	0.02
U	hð\ð	2.69	0.11
V	hð\ð	155	29
W	µg/g	6.02	0.63
Y	hð\ð	24.5	1.4
Yb	hð\ð	2.00	0.09
Zn	µg/g	93	9
Zr	µg/g	211	38
LOI	%	7.55	0.04

Last Modified: 2004-01-05

Important Notices

<u>Français | Contact Us | Help | Search | Canada Site</u> Home | What's New | CANMET-MMSL | MMS Site | NRCan Site

MA-3a Gold Ore Reference Material

Certified Reference Materials at CANMET-MMSL

Specialized Services Publications/Reports

Technical Contacts

Photo Gallery

FAQ

List

How to Order

Advisory Committee

ISO 9001:2000

Ć	Partnering With Us)
(Lab Proficiency Testing)
()
(Материани)
()

Click to print PDF version of original certificate.

CCRMP has replaced reference material MA-3 with a better sample, MA-3a, MA-3 was a blend of ore and "waste rock" material from Lac Minerals Limited, Macassa Division, Kirkland Lake, Ontario, MA-3a is a gold ore sample obtained from the Macassa Division of Barrick Gold Corporation (now KinRoss Gold Corporation) from the mine at Kirkland Lake, Ontario.

The product is a compositional reference material having primarily a siliceous matrix and an intermediate gold concentration. It is inferred, from a mineralogical examination of material from the same mine previously used to produce MA-1 and MA-2, that guartz, feldspar, dolomite, muscovite, and chlorite are major mineral constituents in decreasing order of abundance. Pyrite, chalcopyrite, sphalerite, hematite, magnetite, altaite (PbTe), and melonite (NiTe2) are present in minor-to-trace levels. Calaverite (AuTe2) occurs as inclusions in some pyrite grains. The majority of gold occurs as an electrum (containing silver) dispersed in the gangue minerals.

The material, in the form of 10-cm chunks, was shipped in two 300-kg lots to CANMET for processing.

Each lot was dried and passed through primary and secondary crushers to reduce the size to 1 mm or less.

The resultant samples were milled, in 25-kg batches, in a vibration energy mill, and screened to -200 mesh. MA-3a was blended according to a split-blending protocol, and bottled in 200-g units.

The homogeneity of the stock with respect to its gold content was tested and confirmed at CANMET using bottles chosen according to a stratified random sampling scheme. A fire assay-atomic absorption method using a 20-g sample was employed for these tests.

Thirty-one industrial, commercial, and government laboratories participated in an interlaboratory certification program by providing gold analyses by methods of each laboratory's choice. Methods involving fire assay preconcentration predominated. Several laboratories also provided analyses for many other elements. A statistical analysis of the

data yielded a certified value for gold and information values for twenty-four other constituents. Data for other elements are either inadequate or inconclusive, but are disclosed in the final report.

A CANMET report describing this reference material is in preparation and will be available at no charge upon request to the Coordinator of CCRMP.

Certified Value and 95% Confidence Interval

Constituent	oz/ton	hð\ð
Au	0.250	8.56
	± 0.003	0.09

Information Values

Element	Wt %
Al	6
Ca	5.5
C	2.5
Fe	5
κ	4
LOI	10
Mg	3
Mn	0.1
Na	1.5
Ρ	0.2
S	1
Si	21
Element	hð\ð
Ag	2.4
As	8
Со	30
Cu	100
Мо	55
Ni	70
Pb	20
Sb	3
Sr	850
Те	12
V	80
Zn	80

CCRMP, CANMET Mining and Mineral Sciences Laboratories

555 Booth Street, Ottawa

Ontario, Canada K1A 0G1

Telephone: (613) 995-4738										
Facsimile: (613) 943-0573										
E-mail.										

Last Modified: 2004-01-05

Important Notices

<u>Français | Contact Us | Help | Search | Canada Site</u> Home | What's New | CANMET-MMSL | MMS Site | NRCan Site

Canada

Canada Site

Site Map

Price / Certificates

How to Order

Specialized Services

Home What's New CANMET-MMSL MMS Site NRCan Site

Search

Help

GTS-2 Gold Tailings Reference Material

Certified Reference Materials at CANMET-MMSL

Click to print PDF version of original certificate.

Ressources naturalles

Canada Contact Us

Publications/Reports

Technical Contacts

Photo Gallery

<u>FAQ</u>

Advisory Committee

ISO 9001:2000

RECOMMENDED VALUE

AuPoint Auµg/goz/tonMean0.2630.007795% confidence limits± 0.005± 0.0001

DESCRIPTION

GTS-2 is a gold tailings sample obtained from Placer Dome Canada Limited, South Porcupine, Ontario. It is intended to replace GTS-1, which is now depleted. GTS-1 was a composite of tailing from Placer Dome and the Macassa Division of Lac Minerals.

The sample for GTS-2 was taken from the No. 5 Dam and shipped under water in two 45-gallon drums to CANMET for processing.

The liquid from the bulk sample was decanted, and the remainder was dried on steam beds for 12 hours. Once dried, the material was passed through a jaw crusher to break up agglomerates.

The resultant sample was screened directly, in batches, without further milling. The weight of -200-mesh material obtained was 611 kg.

GTS-2 was blended according to a split-blending protocol, and bottled in 1497 400-g units.

The ore at Placer Dome Canada's Dome Mine consists of gold in quartz and ankerite; pyrite and pyrrhotite are present to the extent of about 2.5%. The host rocks are intermediate greenstone, conglomerate, slate, and porphyry. The ore is treated with sodium cyanide, and the gangue is disposed of as tailings.

The homogeneity of the stock with respect to its gold content was confirmed at CANMET using bottles chosen according to a stratified random sampling scheme.

CERTIFICATION

Thirty-one industrial, commercial, and government laboratories participated in an interlaboratory certification program by providing gold analyses by methods of each laboratory's choice. Several laboratories also provided analyses for many other elements. A statistical analysis of the data yielded a certified value for gold and information values for twenty other constituents. Data for the remaining elements was either inadequate or inconclusive, but will be disclosed in the final report.

LEGAL NOTICE

The Canadian Certified Reference Materials Project has prepared this reference material and statistically evaluated the analytical data of the inter-laboratory certification program to the best of its ability. The purchaser, by receipt hereof, releases and indemnifies the Canadian Certified Reference Materials Project from and against all liability and costs arising out of the use of this material and information.

REFERENCE

The preparation and certification procedures used for GTS-2 will be given in CANMET report CCRMP 94-7E which is in preparation. This report will be made available free of charge on application to:

Coordinator, CCRMP CANMET-MMSL (NRCan) 555 Booth Street Ottawa, Ontario, Canada K1A 0G1

Telephone: (613) 995-4738 Facsimile: (613) 943-0573 Telex: 053-3395 Pour obtenir la version française du présent certificat d'analyse, prière de s'adresser au Coordinateur du PCMR.

INFORMATION VALUES

Constituent	wt %
AI2O3	12.
CaO	5.7
Fe2O3 tot	11.1
K ₂ O	2.2
MgO	4.3
Na ₂ O	0.9
P ₂ O ₅	0.2
SiO ₂	50.
TĩO ₂	0.75
LOI	9.3
S tot	0.8

C tot	·	2.4	
Ele	ment	bg/g	
Ag		1	
As		110	
Ba		190	
Cr		250	
Си		100	
Ni		90	:
Sr		95	
V		40	
Zn		210	

CCRMP, CANMET Mining and Mineral Sciences Laboratories 555 Booth Street, Ottawa

Ontario, Canada K1A 0G1

Telephone: (613) 995-4738 Facsimile: (613) 943-0573 <u>E-mail</u>

Last Modified: 2004-01-05

Important Notices

Français | Contact Us | Help | Search | Canada Site Home | What's New | CANMET-MMSL | MMS Site | NRCan Site

TABLE 5

.

POLY PROPERTY ANALYTICAL QUALITY ASSURANCE FOR CANMET STANDARDS CHECK SAMPLES SORTED BY TYPE & DATE

CERTIFICATE <u>NUMBER</u>	2004 CERT. <u>DATE</u>	SAMPLE NO.	CHECKS <u>TYPE</u>	<u>LAB</u>	Au ppm	Au <u>ppm</u>	Ag ppm	As pom	Cd ppm	Cu ppm	Pb ppm	Sb <u>opm</u>	Zn <u>ppm</u>
VA04040707	Jul 16/04	186699	MA-1b	ALS	16.75								
VA04045823	Jul 31/04	609357A	MA-1b	ALS	17.75		2.3	9	<0.5	96	242	<5	66
VA04052345	Aug 18/04	609527B	MA-1b	ALS	16.2								
		CANMET CERT CANMET PROV	IFIED VALUE: ISIONAL VALUE RMATIONAL VAL	MA-1b : MA-1b -UE: MA-1b	17.00		4						
					16.90		·						
		AS % OF CEP			99.41%								
<u></u>	<u></u>	<u> </u>											
VA04040707	Jul 16/04	609526	MA-2c	ALS	3.29								
VA04045823	Jul 31/04	186231	MA-2c	ALS	3.27		<0.5	<5	<0.5	100	29	<5	95
VA04045823	Jul 31/04	609383A	MA-2c	ALS	2.91		0.5	<5	<0.5	92	22	<5	90
VA04052345	Aug 18/04	186151B	MA-2c	ALS	2.89								
IPLO4H1741	SEPT 2/04	609786	MA-2c	IPL.	2.83	2.95	0.9	<5	<0.2	96	27	<5	88
VA04064226	Sept 24/04	599887	MA-2c	ALS	2.91		0.6	<5	<0.2	101	20	<5	83
		CANMET CERT CANMET PROV CANMET INFOR	IFIED VALUE: ISIONAL VALUE MATIONAL VAL	: .UE:	3.02		0.51	9.1	07	95	25	3 31	93
		CHEMEX AVER			3.02			0,1	0.1		20	0.01	
					99.89%								
IPLO4H1741	SEPT 2/04	609850A	MA-3a	IPL	8.38	8.30	1.9	<5	<0.2	117	24	<5	77
IPLO4H1741	SEPT 2/04	609875	MA-3a	IPL	7,90	8.74	1.8	<5	<0.2	117	24	<5	71
IPLO4H1741	SEPT 2/04	609876	MA-3a	IPL	8.58	8.94	2.3	<5	<0.2	118	24	<5	71
	CANMET CER CANMET PRO	8.56											
	CANMET INFO	ORMATIONAL VAL	UE:			2.4	8		100	20	3	80	
	CHEMEX AVE	RAGE VALUE:			8.29								
CHEMEX AVERAGE VALUE AS % OF CERTIFIED VALUE:					96.81%								

CERTIFICATE <u>NUMBER</u>	2004 CERT. <u>DATE</u>	<u>SAMPLE NO.</u>	CHECKS <u>TYPE</u>	LAB	Au <u>pom</u>	Au ppm	Ag ppm	As ppm	Cd <u>opm</u>	Cu ppm	Pb <u>pom</u>	Sb ppm	Zn <u>ppm</u>
VA04040275	Jul 16/04	86998	GTS-2	ALS	0.256								
VA04045823	Jul 31/04	609500A	GTS-2	ALS	0.236		<0.5	144	<0.5	110	23	<5	244
VA04052345	Aug 18/04	609319	GTS-2	ALS	0.247						20		-
IPL04H1741	SEPT 2/04	609861	GTS-2	IPL	0.260		0.3	37	<0.2	111	19	<5	221
IPLO4H1741	SEPT 2/04	609792	GTS-2	IPL	0.260		0.6	44	<0.2	106	19	<5	222
			0.263										
	CANMET INFO	ORMATIONAL VAL	 .UE:				1	110	NA	100	NA	NA	210
	CHEMEX AVE	RAGE VALUE:			0.252		•						
	CHEMEX AVE	RAGE VALUE			95.74%								
	•												
VA04040708	Jul 13/04	609375	SAND	ALS	<0.005		<0.5	7	<0.5	7	10	<5	42
VA04045822	Jul 30/04	186651	SAND	ALS	<0.005		<0.5	<5	<0.5	9	14	<5	55
VA04045822	Jul 30/04	186700	SAND	ALS	<0.005		<0.5	<5	<0.5	8	9	<5	41
VA04045823	Jul 31/04	186225	SAND	ALS	<0.005		<0.5	<5	<0.5	7	10	<5	42
VA04045823	Jul 31/04	609390	SAND	ALS	<0.005		<0.5	5	<0.5	7	10	<5	41
VA04045823	Jul 31/04	609501	SAND	ALS	<0.005		<0.5	5	<0.5	8	13	<5	41
VA04052346	Aug 20/04	186171	SAND	ALS	<0.005		<0.5	5	<0.5	11	12	<5	49
VA04053798	Aug 20/04	186186	SAND	ALS	0.005		<0.5	6	<0.5	12	19	<5	55
VA04052344	Aug 20/04	599906	SAND	ALS	<0.005		<0.5	<5	<0.5	8	11	<5	44
VA04052344	Aug 20/04	599920	SAND	ALS	<0.005		<0.5	5	<0.5	8	14	<5	49
VA04052344	Aug 20/04	599934	SAND	ALS	<0.005		<0.5	<5	<0.5	12	9	<5	44
VA04052346	Aug 20/04	609301	SAND	ALS	<0.005		<0.5	<5	<0.5	6	12	<5	37
VA04052346	Aug 20/04	609550	SAND	ALS	<0.005		<0.5	5	<0.5	9	9	<5	47
VA04053798	Aug 20/04	186188	SAND	ALS	0.028		<0.5	11	<0.5	12	85	<5	56
IPLO4H1741	Sept 2/04	599869	SAND	IPL	0.010		0.1	<5	<0.2	16	6	<5	37
VA04064226	Sept 24/04	599869	SAND	ALS	NA		<0.5	<5	<0.5	16	17	<5	45
IPLO4H1741	Sept 2/04	599875	SAND	IPL	0.010		0.5	<5	<0.2	13	12	<5	42
VA04064226	Sept 24/04	599875	SAND	ALS	NA		<0.5	<5	<0.5	14	26	5	51

,

1

	[-	· · · · · · · · · · · · · · · · · · ·						
		COMPARISON	OF IPL AN	ID CHEMEX	RE-RUNS OF	SOIL, STRE	AM & CHECH	(SAMPLES			
ISSUE			Au	Aa	Cu	Pb	Zn	As	Sb	Cd	WORK
<u>NO.</u>	LAB,	Sample No.	ppm	<u>ppm</u>	ppm	ppm	ppm	ppm	ppm	ppm	ORDER
SOILS					· 	• 4. · · ·			·····		
1	IPL	599861	0.14	1.2	53	41	81	<5	<5	<0.2	04H1741
	CHEMEX	599861	0.24	1.7	57	58	87	53	<5	<0.5	VA04060215
	IPL	599862	0.02	0.4	28	3	43	<5	<5	<0.2	04H1741
	CHEMEX	599862		0.6	37	11	54	<5	<5	<0.5	VA04064226
	IPL	599863	0.01	0.9	52	15		<5	<5	<0.2	04H1741
	CHEMEX	599863		0.6	60	23	102	60	11	<0.5	VA04064226
	IPL	599865	0.02	0.8	31	3	25	<5	<5	<0.2	04H1741
	CHEMEX	599865		0.8	43	11	41	9	<5	<0.5	VA04064226
	IPL	599866	0.03	1.3	66	16		<5	<5	<0.2	04H1741
	CHEMEX	599866		1.1	69	18	81	25	<5	<0.5	VA04064226
	IPL	599867	0.01	1.6	39	8	37	<5	<5	<0.2	04H1741
	CHEMEX	599867		1.5	44	15	49	25	10	<0.5	VA04064226
	IPL	599868	0.02	1.2	76	4	34	<5	<5	<0.2	04H1741
	CHEMEX	599868		1.0	77	12	34	<5	<5	<0.5	VA04064226
	IPL	599871	0.07	1.7	59	17	138	118	<5	<0.2	04H1741
	CHEMEX	599871	0.015	1.9	62	24	150	209	6	0.6	VA04060218
	IPL	599872	0.02	1.4	51	15	119	91	<5	<0.2	04H1741
	CHEMEX	599872	0.019	1.0	50	18	124	141	<5	<0.5	VA04060218
									-		
		599873 599873	0.04	1.4	60 63	18	<u> </u>	102	<5	<0.2	04H1741 VA04060218
											04114744
		599874	0.03 NSS	1.6	<u>80</u> 83	26 27	133	178	<5 5	<0.2	VA04060218
											04114744
	IPL CHEMEX	599877 599877	0.01	0.6	<u>32</u> 	18 22	<u>83</u> 89	<5 31	<5	<0.2	04H1741 VA04064226
											0414744
		599878	0.01	0.7	<u> </u>	14	52 58	<5 26	<5 <5	<0.2	VA04064226

ISSUE			Au	Ag	Cu	Pb	Zn	As	Sb	Cd	WORK
<u>NQ.</u>	LAB.	Sample No.	ppm	ppm	ppm	ppm	mqq	mag	ppm	ppm	ORDER
	IPL	599879	0.01	0.6	30	16	95	<5	<5	<0.2	<u>04H174</u>
	CHEMEX	599879		0.5	40	20	109	36	<5	<0.5	VA04064226
	IPL	599880	0.01	0.6	28	17	89	<5	<5	<0.2	04H174
	CHEMEX	599880		<0.5	71	27	159	29	5	0.7	VA04064226
	IPI	599881	<0.01	0.8	18	7	22	<5	<5	<0.2	04H1741
	CHEMEX	599881		0.7	81	27	116	<5	<5	0.6	VA04064226
		500990	0.01	0.0	00	10	20		-5		0411744
	CHEMEX	599882	0.01	0.8	50	31	60	13	<5	<0.2	VA04064226
	IPL	599883	0.01	1.0	45	15	25	<5	<5	<0.2	04H1741
	CHEMEX	599883		1.3	61	25	46	6	<5	<0.5	VA04064226
	IPL	599884	0.01	1.3	74	7	69	<5	<5	0.6	04H1741
	CHEMEX	599884		1.6	85	21	78	<5	<5	1.2	VA04064226
	IPL	599885	0.01	0.1	13	11	32	<5	<5	<0.2	04H1741
	CHEMEX	599885		<0.5	15	15	42	13	7	<0.5	VA04064226
		500996	0.01	0.2	15	10	37	<5		<0.2	0481741
	CHEMEX	599886	0.01	<0.5	14	16	41	11	<5	<0.5	VA04064226
KEAM S	AMPLES										
2	IPL	599864	0.05	1.2	95	9	115	<5	<5	<0.2	04H1741
	CHEMEX	599864	0.007	1.5	100	15	130	47	<5	1.4	VA04060215
OFINE S	SAND CHE	CKS									• <u> </u>
3	IPL	599869	0.01	0.1	16	6	37	<5	<5	<0.2	04H1741
	CHEMEX	599869		<0.5	16	17	45	<5	<5	<0.5	VA04064226
	IPL	599875	0.01	0.5	13	12	42	<5	<5	<0.2	04H1741
	CHEMEX	599875		<0.5	14	26	51	<5	5	<0.5	VA04064226

ч а ^те - -

	1			•									
						TABLE 58							
			COMPARIS	ON OF IPI	L ROCK AN	ALYSES V	NITH CHEN	MEX ANAL	YSES OF				
			SCREENED	& UNSC	REENED R	OCK SAM	PLES AND	OF IPL PU	ILPS**				
		CHEMEX											
ļ		SCREENED					·						
		CERT VA04063552											
	Sample	Au Total (+)(-)	Au	Au	Ag	Ag	Cu	Pb	Zn	As	Sb	Cd	WORK
LAB	No.	<u>combined ppm</u>	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ORDER
L										4005			
IPL	609780R*		5.36	6.67	/93	248.4	2844	248	930	1625	18	<0.2	04H1741
CHENEY	600780D*	E 10	E E 1	<u></u>	964		2960	201	962	1015	62	13 7	V/A04060214
CHEWEX	609760R	0.12	9.31		242		1055	420	002	1910	50	10.0	VA04060214
	600790AD*	9.02	14.20		242		2590	405	406	3400		0.9	VA04060214
		12.00	14.20		237		2000		400	3490	40	9.0	
		N							1			+	
TADI ES CI	2 1 2 CP 1A.	9.05	9.47	···· • • • ···· ··· · • • •	AA7 7	·····	2465	356	644	2208	56	11 4	
TABLES OF			0.41				2-100						
IPL	609782R		2.20	2.27	15.4		235	1255	964	1914	6	10.0	04H1741
CHEMEX	609782R		2.13		18.5		212	1145	938	1905	12	16.6	VA04060214
IPL	609859RF		3.80	3.64	42		396	2869	4087	1127	15	195.7	04H1741
CHEMEX	609859RF		4.01		47.9		419	3030	3920	1175	17	205.0	VA04060217
	* Splits of sam	ne sample material											
	** Analytical Re	esults Referenced in Tab	ples GR 1 & C	GR 1A and	l in Report a	re Shown i	n BOLD.						

.

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD **UNIONVILLE ON L3R 4J8**

A State of S

Pag Total # Pages Finalized Date: 26-SE Accou 1

Project: Stewart

CERTIFICATE OF ANALYSIS VA04063552

Sample Description	Method Analyte Units LOR	Au-SCR21 Au Total Ppm 0.05	Au-SCR21 Au (+) F ppm 0.05	Au-SCR21 Au (-) F ppm 0.05	Au-8CR21 Au (+) m mg 0.001	Au-SCR21 WT. + Fr 8 0.01	Au-SCR21 WT Fr 8 0.1	Au-AA25 Au ppm 0.01	Au-AA25D Au ppm 0.01	
609780 609780A 609780B		6,12 12.00 9.02	76.5 90.5 94.8	4.87 9.75 8.34	1.353 2.649 0.789	17.69 29.27 8.32	999.2 1022.0 1039.5	4.81 9.34 8.50	4.93 10.15 8.17	
				•						

8.B. 2004 EXPLORATION ACTIVITIES:

<u>8.B.1. POLY GRID:</u>

As shown in Frontspiece Photo 1 and on Map GP 1, the Poly Grid is comprised of baselines, control lines and grid lines that total about 11 km. In 2004, the 2002 grid was restored and the grid lines were extended to the east and west. Four fill-in lines (L49+50N, L49+85N, L53+50N, L54+50N) were added and the Hwy Zone Creek Control Line was extended to beyond the Hwy Zone Creek Showing (HZCS). BL51E was installed and two grid lines (L57+50N and L59N were installed in Upper Middle Creek. BL53+75E was extended to the south across the Stewart Power Line corridor. The grid restoration and maintenance was an on-going activity in June, July, August and October and November 2004 (Photos 9, 10).

In order to accommodate the continuance of the historic geological and geochemical surveys and the Spectral IP survey, the grid was horizontally chained and the grid lines were also slope chained. Two sets of pickets were thus required in most areas on the grid lines. In view of the winter down slope compression of the dense MV1 vegetation onto the lines along with highenergy run-off and snow slides that remove or break off the pickets, much of the grid has to be restored each year.

8.B.2. 2004 STREAM SEDIMENT, SOIL AND ROCK GEOCHEMICAL AND VEGETATION SURVEYS:

The stream sediment, soil and rock geochemical samples were collected mainly on the extensions of the historic grid lines and control lines and on the new grid lines and base lines. The analytical results from the samples have been interpreted in terms of a multielement signature (MES), i.e., Au, Ag, Cd, Cu, Pb, Zn, As, Sb, with multielement threshold criteria (MESTC) of 10 ppb Au, 0.4 ppm Ag, 0.7 ppm Cd, 45 ppm Cu, 15 ppm Pb, 130 ppm Zn, 24 ppm As, and 4 ppm Sb (or 5 ppm Sb depending on detection limit). Geofine has successfully utilized such criteria in the execution of exploration programs in Hazelton Group terrain in the Stewart Camp.

8.B.2.a. STREAM SEDIMENT GEOCHEMICAL SURVEYS:

The 2004 stream sediment survey included the collection and analysis of 13 stream samples, along with check samples (Tables 5, 5A, GSC 1; Map GSC1). The analytical results were integrated with the 2002 and 2000 sediment samples (Table GSC 1A; Map GSC 1). The resulting database provides some important exploration target rationale regarding Hwy Zone Creek, Middle Creek and East Creek areas. For example, the 12 2000-2004 sediment samples collected in Hwy Zone Creek have elevated MES average values i.e., 139.5 ppb Au, 2 ppm Ag, 2.1 ppm Cd, 86 ppm Cu, 39 ppm Pb, 231 ppm Zn, 200 ppm As and 4 ppm Sb (Table GSC 1A), relative to most of the MESTC referenced above

The four 2004 sediment samples collected in the Upper Middle Creek Area ("UMCA") i.e., between Hwy Zone Creek and East Creek north of L56N (Map GSC 1), also have elevated MES

PHOTO 9: SUMMER GRID RESTORATION

PHOTO 10: WINTER GRID RESTORATION

TABLE GSC 1 STREAM SEDIMENT SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS

NUMBER, LOCATION	NAME, COLOUR, GRAIN SIZE, COMPOSITION	<u>STREAM</u>	GEOLOGY	AU (ppm)	AG (ppm)	CU (ppm)	РВ <u>(ppm)</u>	ZN (ppm)	AS (ppm)	SB (ppm)	CD (ppm)
LINE 48N	<u></u>										
609527SS L48N, 53+48E	SILT- ORG MUCK; BLK; 80% SILT, 20% ORG; SILT, WELL SORTED	LOW FLOW TO S STREAM ON E EDGE OF BOG	NO OC - ALT BX BLDRS TO EAST; STREAM FLOWS OVER IP TARGET 5	0.019	0.8	129	32	465	75	6	13
LINE 49+85N											
609549SS L49+85N, 52+40E	SILT-SAND FROM QM, BLK; 80% SILT, 10% FINE TO CO SD, 10%ORG; SILT-CO, FAIRLY WELL SORTED	SOUTH END OF LONG WOOD CULVERT UNDER OLD HWY 37A LOW FLOW TO S	NO OC - ALT BX & ARG BLDRS IN AREA	0.005	<0.5	57	14	140	17	<5	2.5
LINE 53N											
609361SS L53N, 54+10E	SD, YEL BRN, FI-CO SD; WELL SORTED, DERIVED FROM QM	LOW FLOW CREEK @ 140*	QM TERRAIN	<0.005	<0.5	18	13	141	19	<5	0.6
LINE 53+50N											
188187SS 153+50N, 50+35E	SILT- SD- HETRO FRAGS; LIGHT BRN; SILT - FRAGS- MAINLY ARG & ALT BX	BLDR BANK ON W SEG OF E CRK DRY BED - FLOWS SW	NO OC - BX & ARG BLDRS IN AREA	0.032	0.9	64	28	152	178	5	<0.5
LINE 54N											
609510SS L54N, 52+75E	ORG MUCK, SOUPY; BLK 60% Silt, 40% ORG; Silt	CREEK 150° DRY BED	QM TERRAIN	NSS	<0.5	17	12	113	18	<5	1.1
LINE 54+50N											
599864SS L54+50N, 48+90E	CLAY-SILT-GRAVEL, BRN; 20% CL, 40% SILT, 30% GRAV, 10% ORG; CL-FRAGS - MAINLY ARG	SMALL UNDERGROUND STREAM EXPOSED IN SUMP HOLE - LOW FLOW TO SE	LARGE ARG BLDRS - NO OC	0.050	1.2	95	9	115	<5	<5	<0.2
186663SS L56+07N, 48+50E	CLAY-SILT, BLK; 20% CL, 75% SILT, 5% FRAGS CL-CO	MINOR SEEPAGE SAMP 5M BELOW ROCK FACE	ALT BX - SHEARED, CHL	<0.005	<0.5	125	17	112	67	<5	<0.5

× •

¥

TABLE GSC 1 (CON'T)
STREAM SEDIMENT SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULT

NUMBER, LOCATION	NAME, COLOUR, GRAIN SIZE, COMPOSITION	<u>STREAM</u>	GEOLOGY	AU (ppm)	AG (ppm)	CU (ppm)	PB (ppm)	ZN (ppm)	AS (ppm)	SB (ppm)	CD (ppm)
BL61E (UPPER MIC	DDLE CREEK AREA)										
18668355 BL51+00E, 57+28N	CL-SILT-SD, BRN - ORGE BRN; 5% CL, 20% SILT, 75% SD; CL - FRAGS, FAIR TO POORLY SORTED	MIDDLE CREEK DRY BED, FLOWS TO S	NO OC; IN VICINTY OF MIDDLE CREEK FAULT HETRO BLDRS IN CRK: OX, SCHIST MATERIAL, QM, GRY BX, ARG	0.010	1.0	54	15	226	186	5	0.8
186680SS 56+96N, 51+03E	CL- SILT-ORG- HETRO FRAGS (ARG, GRY BX), BLK; 20% CL, 70% SILT, 5% ORG, 5% HETRO FRAGS CL - FRAGS WELL SORTED	MIDDLE CREEK LOW FLOW TO S	NO OC; IN VICINTY OF MIDDLE CREEK FAULT	0.020	2.1	67	19	317	260	7	1.3
186687SS 58+43N, 51+10E	FINE TO CO SD-HETRO FRAGS MINOR ORG, ORGE-BRN; 30% SD, 70% FRAGS & MINOR ORG; FI-FRAGS	MIDDLE CREEK LOW FLOW TO S	X CUT SHEAR IN ARG 03"/V; FRAGS MAINLY ANG FROM CHL, OX ARG; ALSO GREY BX, MINOR OX LIM	0.010	1.0	57	24	347	320	14	1.8
18668955 BL51+00E, 58+60N	CO TO FINE SD, BRN; WELL SORTED	MIDDLE CREEK LOW FLOW TO S	X CUTTING SHEAR IN ARG	0.023	1.6	56	20	268	448	13	1.0
HWY ZONE CREEK											
186191SS L53+50N, 49+25E	SILT-GRAVEL, BRN; 25% SILT, 55% SD, 20% FI-FRAGS - HETRO FRAGS MAINLY ARG & BX, OX MAT GENERALLY POORLY SORTED	WEST BANK HWY CREEK LOW FLOW TO S	NO OC	0.314	1.4	75	37	170	154	<5	1.0
60985355 HWY ZONE CRK ON CL @ 56+25N	SD-GRAVEL, BROWN; 20% SD, 80% HETRO FRAGS; FI-FRAGS - BX, OX, QTZ, ARG	HWY ZONE CRK LOW FLOW TO SOUTH	NO OC HETRO BLDRS IN CRK	NSS							

POLY PROPERTY

LIST OF ABBREVIATIONS – STREAM SAMPLES

alt – altered/alteration ang – angular ank - ankerite arg - argillite aspy – arsenopyrite assoc - associated ave - average bldrs – boulders blu – blue blk – black brn – brown brecc - brecciated bx – volcanic breccia carb – carbonate CA – core axis chl - chlorite cl - clay co-coarse comp - composition conj - conjugate cpy - chalcopyrite crk - creek CT – crystal tuff deg – degree dir-direction diss - disseminated dk – dark ea – each epi – epidote euhed -- euhedral fi – fine fracts - fractures fuch – fuchsite grav - gravel grn – green gry – grey hem - red hematite irreg - irregular

irrid - iridescent LC - lower contact lim – limed lt – light MV1 – tag alders, devils club vegetation MV2 - fir, birch, fern vegetation MV3 - grass vegetation mat - material Mn – manganese num – number oc - outcrop org - organic orge - orange peb - pebbles po – pyrrhotite prev - previous py - pyrite QM - quartz monzonite qtz – quartz rnd - round sd - sand sect – section sil - silicified stwk – stockwork spec – specular hematite str – strong sulf – sulfides text – texture tr-trace UC - upper contact vol – volcanic vn – vein wh – white wk -- weak xtals - crystals yel - yellow

2004 STREAM S	EDIMENT SAMPLES	AND M	JLTI ELE	MENT S	GNATU	RE ANAL'	YTICAL F	RESULTS	<u>3</u> •
LINE & Sample <u>Number,</u>	GRID OR CL LOCATION	AU (996)	AG (ppm)	CU (ppm)	PB (ppm)	ZN (ppm)	AS (ppm)	SB (ppm)	CD (ppm)
LINE 48N 609527	L48N, 53+48E	19	0.8	129	32	465	75	6	13.0
LINE 49+85N 609549	L49+85N, 52+40E	5	<0.5	57	14	140	17	<5	2.5
LINE 53N 609361	L53N, 54+10E	4	⊲0.5	16	13	141	19	<5	0.6
LINE 53+50N 186187	L53+50N, 50+35E	32	0.9	64	28	152	178	5	<0.5
LINE 54N 609510	L54N, 52+75E	NSS	<0.5	17	12	113	18	ধ	1.1
LINE 54+50N 599864	L54+50N, 48+90E	50	1.2	95	9	115	4	<\$	⊲0.2
LINE 56+07N 188663	L56+07N, 48+50E	<5	<0.5	125	17	112	67	<5	<0.5
BLSIE (UPPER MI	DDLE CREEK AREA)								
196683	BL51+00E, 57+28N	10	1.0	54	15	226	186	5	0.8
186680	56+96N, 51+03E	20	2.1	67	19	317	260	7	1.3
186687	58+43N, 51+10E	10	1.0	57	24	347	320	14	1.8
186689	BL51+00E, 58+60N	23	1.6	56	20	268	448	13	1.0
	AVER. VALUES	15.75	1.4	58.60	19.50	289.50	303.50	9.75	1.2
2002 STREAM S	BEDIMENT SAMPLES	AND M	ULTI ELE AG	EMENT S	IGNATU PB	RE ANAL ZN	YTICAL: AS	RESULT SB	<u>S</u> CD
SAMPLE NUMBER,	GRID OR CL LOCATION	<u>(666)</u>	<u>(ppm)</u>	(<u>pem)</u>	(<u>eem)</u>	<u>(pem)</u>	<u>(ppm)</u>	(pem)	<u>(ppm)</u>
BASE LINE 50E 683814	50+07E, 51+75N	12	0.6	52	18	147	144	4	<0.5
UNE 51N	404775 514075	0	0.7	e0	40	154	480		
	48+17E, 31+0114	4	V.7			134		•	0.0
LINE 52N	47.000 1.000		••		_		-	-	
683916 683971	47+65E, L52N 50+15E, L52N	<5 17	0.2	92 53	7 18	71 165	6 178	<2 5	<0.5 ≼0.5
								•	
UNE 53N 683726	40-405 1 595	00	24	64		220	277	•	22
683860	48449E, L53N 51+07E, L53N	13	24 <0.2	23	41 12	209 82	20	5 <2	2.2 <0.5
683835	49+85E, L54N	35	0.8	48	27	118	172	4	<0.5
683709	50+49E, L54N	8	0.8	49	15	262	142	2	27
683717	51+46E, L54N	<5	≪0.2	22	11	94	21	2	0.6
LINE 56 N 683907	50+84E, 54+97N	10	0.7	47	14	236	190	8	1.7
LINE 56N 683661	50+83E, L56N	18	ũ .7	2	18	261	150	0	24
								•	
ERGIGREER. 683713	50+70E, L54N	18	0.9	67	20	165	175	6	<05
683693	51+27E, 54+95N	19	0.5	62	22	155	167	2	0.8
683741	CL @ 54+83N	126	2.6	97	49	266	279	0	\$.0
683669	51+65E, L56N	55	0.8	66	24	175	181	4	0.7
683911	CL @ 56+30N	12	0.6	55	10	145	154	.5	<0.5
053914 893770	GL @ 56+94N	14	6.6 4 a		25	202	163	6	<0.5
663772	CL 02 50+62N	18 18	1.2	82	200 400	27%	474 174	ē	0.7
683779	CL @ 59+64N	14	1.7	79	35	297	170	8	1.2
683775	CL @ 59+77N	10	0.8	71	35	295	149	7	1.2
	AVER. VALUES	3 0	1.7	73	29	221	186	8	0.8

TABLE GSC 1A AM SEDIMENT SAMPLES AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULT

.

.

r

,

. .

SAMPLE NUMBER,	GRID OR CL Location	AU (dqq)	AG (<u>ppm)</u>	CU (<u>(99m)</u>	PB (ppm)	ZN (ppm)	AS (ppm)	\$8 (<u>ppm)</u>	CD (ppm)
2004 HWY ZONE	CREEK (MAIN AND SE	BRANCH)							
186191	L53+50N, 49+25E	314	1.4	75	37	170	154	<5	1.0
609853	CL @ 56+25N	NSS	NSS	NSS	NSS	NSS	NSS	NSS	NSS 1.0
2002 HWY ZONE	CREEK (MAIN AND SE	BRANCH)							
683928	48+47E, L52N	65	1.7	89	40	223	190	5	20
683939	48+85E, 52+02N	75	2.7	87	35	218	184	8	1.9
683731	49+18E, L53N	118	2.0	93	42	250	215	4	2.5
683831	49+43E, 54+03N	349	25	84	39	239	235	5	2.4
683680	49+50E, 55+04N	259	2.5	91	47	261	220	2	2.0
683900	49+75E, 58+06N	95	2.8	86	48	276	229	5	28
683794	CL259N, 13M NE	28	0.8	61	21	167	162	\$	0.5
HWY ZONE CREE	EK .								
2000 SAMPLES									
759812	48+85E, 51+08N	100	1.6	90	40	220	186	6	1.5
759979	46+85E, 51+38N	150	2.0	83	30	226	184	2	20
759980	47+05E, 51+38N	60	2.0	88	36	240	190	2	2.5
HWY ZONE CREE 2000 SAMPLE	EK WARP AREA								
759888	47+62E, 50+85N	65	2.4	107	48	284	248	4	2.5
	AVER. VALUES	139.50	2.0	80	39	231	200	4	2.1

•

.

*ANOMALOUS VALUES (SHOWN IN BOLD) BASED ON GEOFINE REGIONAL THRESHOLD CRITERIA OF 10 ppb Au, 0.4 ppm Ag, 0.7 ppm Cd, 45 ppm Cu, 15 ppm Pb, 130 Zn, 24 ppm As, 4 ppm Sb average values i.e., 15.75 ppb Au, 1.4 ppm Ag, 1.2 ppm Cd, 58.5 ppm Cu, 19.5 ppm Pb, 289.5 ppm Zn, 303.5 ppm As and 9.75 ppm Sb (Table GSC 1A). Similar elevated MES average values have been found East Creek: 30 ppb Au, 1.7 ppm Ag, 0.8 ppm Cd, 73 ppm Cu, 29 ppm Pb, 221 Zn, 186 ppm As and 6 ppm Sb. While Hwy Zone Creek has the strongest MES signature, the As and Sb values in UMCA are of particular interest since, other than gold, they are some of the best indicators of auriferous potential on the Poly Property.

The UMCA was deemed of interest in 2002 in view of a number of mineral showings (Ice, Upper Ice 1, Upper Ice 2, Hwy Zone Creek; Map GR 2) located in East and Hwy Zone Creeks, which are associated with structures and conjugate structures that extend into the UMCA. The current importance of the UMCA is readily apparent via reference to the JVX geophysical compilation Map GP 1: as discussed in Section 8.B.4.below, the postulated northern extension of main IP Zone C is up the Upper Middle Creek Shear Zone.

The importance of the southern area of the Poly Grid is further confirmed by the 2004 stream sediment sample 609527, taken on L48N in the vicinity of IP target T6, at the south end of IP Zone C (Table GSC 1; Maps GSC 1, GP 1). The sample returned weakly anomalous Cu and Au values, strongly anomalous Cu, Pb, Zn and Cd values and anomalous As and Sb values.

Stream sediment sample 186187 (Table GCS 1; Map GSC 1) with Au, Cu and As contents of 32 ppb, 64 ppm, and 178 ppm respectively, appears confirmative of the importance of IP Zone C on L53+50N. Sample 599864, with Au and Cu contents of 50 ppb and 95 ppm, respectively, may be indicative of the northern continuation of IP Zone A to at least L54+50N (Map GP 1).

Based on the current interpretation of the integrated stream sediment analytical database, it is concluded that there are strong indications that an important MES exists on the Poly Grid over a strike length of at least 1.1 km. The signature remains open to the north, southeast and south. The apparent priority of the targets areas so indicated are: the Hwy Zone Creek area, including the southeast area of the Poly Grid; the Middle Creek area, including north of L56N; the BL 53+75E area, including south of L48N; and, the East Creek area, including north of L56N.

<u>8.B.2.b.</u> SOIL GEOCHEMICAL SURVEY:

The 2004 soil geochemical survey entailed the collection and analysis of 261 mainly B-horizon soil samples, along with check samples (Tables GSC 2, 5, 5A; Maps GSC 2-9; Appendices A1, A2). The soil survey was carried out on the extensions of the historic grid lines and on the new grid lines and base lines in order to further delineate the anomalous soil zones partially outlined in 2002. The historic MES results had indicated that one of the principal target areas on the grid is located mainly on the west end of all the 2002 grid lines in the lower target area i.e., proximal to Hwy Zone Creek. Locally, the target area extended to the east to beyond BL50E i.e., to East Creek. Anomalous soil Au, Ag, Cd, Cu, Pb, Zn, As and Sb zones showed good correlation and trend north in the general area of Hwy Zone Creek, along a strike length of over 600 m. The zones remain open for delineation and broaden in the southeast area of the grid.

	POLY SOIL SAMPLE DESCRIPTIONS	AND MULTI ELEMENT S	TABLE GSC 2										
NUMBER, LOCATION	NAME, COMPOSITION	HORIZON, DEVELOPMENT	DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	2n ppm	As ppm	Sb ppm	Cd ppm
L48+00N, W-E													
60952850 L48N, 53+50E	SILT, SD, ORG, FRAGS 65% SILT, 25% FI SD, 5% ORG, 5% ANG FRAGS BX	STONY B GOOD	25 CM, BRN SILT-FRAGS	GOOD>W INTO SWAMP MV2, 4	ANG FRAGS IN HOLE: GREY BX, LIM, CHL BX TERRAIN?	0.029	1.0	177	26	278	46	<5	1.2
609529\$0 L48N, 53+62E	SILT, SD, FRAGS, ORG 55% FI-CO SD, 25% SILT, 5% ORG, 15% BX FRAGS, LIM, CHL, CARB	STONY B GOOD	30 CM, BRN-LT BRN SILT-FRAGS	GOOD>W MV2, 4	ABUND MN STAIN BX FRAGS TO 1.5 CM	0.032	0.7	203	40	306	72	5	2.9
80953080 L48N, 53+75E	SILT, SD, FRAGS, ORG 55% FI-CO SD, 25% SILT, 5%ORG, 5% BX FRAGS, LIM, CHL, CARB	STRONG B GOOD	30 CM, BRN-LT BRN Silt-FRAGS	GOOD>W MV2, 4	ALT BX BLDRS, STR SIL, LIM, ASPY	0.052	0.8	219	35	279	82	<5	1.7
60953180 L48N, 53+87E	SILT, SD, FRAGS 40% SILT, 55% FI-CO SD, 5% ANG CO, BX FRAGS	STONEY B GOOD	20 CM INTENSE ORGE/ BRN/RED SILT-FRAGS	GOOD>W MV1, 2	ANG BX BLDRS TO 2-3 M BX FRAGS TO 20 CM IN HOLE	0.023	2.6	81	56	160	55	<5	0.6
60953380 1.48N, 54+00E	CL, SILT, ORG 60% SILT, 30% CL, 10% ORG	B GOOD	30 CM, ORGE/BRN CL-SILT	MV1	LG ALT, BX BLDRS	<0.005	0.5	38	8	37	<5	<5	<0.5
60953480 L48N, 54+25E	CL, SILT, FRAGS 55% FI-CO SD, 40% SILT, 5% ANG CO, BX FRAGS	B Good	30 CM BANK, LT-YEL BRN SILT-FRAGS	GOOD>W MV4, 4	LIM-GRY BX BLDRS	0.038	0.8	226	49	300	82	5	1.0
60953680 L48N, 54+50ë	SILT, SD 40% SILT, 80% FI-CO SD, MINOR BX & QM FRAGS	STONEY B GOOD	30 CM BRN-ORGE BRN SILT-FRAGS	GOOD>W MV2, 4	LG OX BX BLDRS W ASPY & HBLD; 20X15 CM OX BX BLDRS IN HOLE	0.038	0.6	255	41	314	89	<5	2.4
60963780 L48N, 54+75E	SILT, SD 60% SILT, 40% CO SD,	STONEY B FAIR	20 CM, BRN-YEL/BRN SILT-CO	GOOD>W MV2	BX BLORS IN AREA	0.073	0.5	259	30	299	95	6	1.4
60953880 L48N, 55+00E	SILT, SD 60% SILT, 40% CO SD,	STONEY B FAIR	20 CM, BRN-ORGE/BRN SILT-CO	GOOD>N MV2, 1	3 M BX ANG BLDRS	0.026	0.6	159	23	186	55	5	0.9
80953980 L48N, 55+25E	SILT, SD 75% FI-CO SD, 20% SILT, 5% BX ANG FRAGS, LIM, MINOR QM	STONEY B FAIR	20 CM SILT-FRAGS	GOOD>N MV2	BX BLDRS IN AREA	0.039	0.7	277	33	299	87	<5	1.8
50954080 L48N, 55+50E	SILT 80% SILT, 20% ORG	WIDE A GOOD	30 CM, RED BRN SILT	MV1, 2	LG BX BLDRS, GRY FRAGS	<0.005	0.8	29	7	43	<5	<5	<0.5
60954180 L48N, 55+75E	SILT 80% SILT, 20% ORG	B GOOD	25 CM, RED BRN SILT	GOOD>E MV1	BX BLDRS IN AREA	<0.005	1.7	29	6	28	<5	<5	<0.5
60964280 L48N, 56+00E	SD, SILT 55% FI-CO SD, 40% SILT, 5% ORG MINOR FRAGS	STONEY B GOOD	BANK 20 CM, BRN Silt	GOOD>E MV2, 1, 4	FRAGS IN HOLE BX, FRESH, SOME ARGILLITE	0.040	0.7	173	27	240	47	5	1.8
60954380 L48N, 56+25E	SD, SILT 55% FI-CO SD, 30% SILT, 5% ORG 10% ANG GRY BX FRAGS	STONEY B FAIR	10 CM, YEL BRN SILT-FRAGS	POOR>E MV2, 1	BLDRS BX, SOME LIM; CO FRACT OF SD LIM	0.035	0.6	1 90	33	275	55	<5	2.6

: · · · ·

NUMBER, LOCATION	Poly Soil Sample descriptions Name, Composition	AND MULTI ELEMENT SIGN, HORIZON, DEVELOPMENT	TABLE G\$C2 (CON'T): ATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
L49+50N, W-E													
1 8622380 L49+50N, 49+50E	CL, SILT, FI SD, ORG 20% CL, 40% SILT, 30% FI SD, 10% ORG	STONEY B GOOD	18 CM, GRY/BRN CL-FI	POOR MV4, 1	N/A WATER TABLE AT SURFACE BOGGY	0.012	0.5	54	21	160	148	8	<0.5
1 86224SO L49+50N, 49+75E	SILT, FI SD, FRAGS, ORG 80% SILT, 15% FI SD, 5% FRAGS & ORG	STONEY B GOOD	BANK 22 CM, BRN-ORGE/BRN SILT-FRAGS	POOR MV1, SOME MV2, 4	FRAGS OX BX & ARG IN HOLE	0.012	0.7	49	25	132	144	6	<0.5
18622680 L49+50N, 50+25E	SILT, SD, ORG 70% SILT, 25% SD, 5% ORG	B GOOD	15 CM, YEL-BRN SILT-FI	FAIR>S MV1, 2, 4	N/A	0.012	0.5	45	25	142	160	8	<0.5
18622780 L49+50N, 50+37E	CL, SILT, ORG 15% CL, 75% SILT, 10% ORG	B GOOD	15 CM, GRY-BLK CL-SILT	FAIR/POOR>S MV1	N/A	0.011	0,9	58	28	171	192	10	<0.5
18822680 L49+50N, 50+50E	CL, SILT, ORG 45% CL, 45% SILT, 10% ORG	B GOOD	25 CM, GRY-YEL/BRN CL - SILT	FAIR>S MV1	N/A	<0.005	0.7	21	14	69	109	8	<0.5
18622980 L49+50N, 50+62E	CL, SILT, ORG, FRAGS 45% CL, 45% SILT, 5% ORG, 5% BX FRAGS	B GOOD	25 CM, GRY-YEL/BRN CL-FRAGS	FAIR>S MV1	POND 2M TO S, THEN ALL THE WAY TO PAVED HWY ANGULAR OX BX FRAGS IN HOLE	<0.005	1.1	30	20	84	91	7	<0.5
18623080 L49+50N, 50+75E	CL, SILT, FRAGS 45% CL, 45% SILT, 10% OX FRAGS	B, A (ABOUT 20 THICK) GOOD	25 CM, BRN CL-FRAGS	FAIR/POOR>S MV1	OX HETRO FRAGS IN HOLE	<0.005	<0.5	23	21	6 6	128	6	<0.5
186222SO L49+50N, 51+87E	FICO SD	B GOOD	15 CM, GRY F⊩CO	BOGGY GROUND	QTZ, FELD, ANG ARG, MINOR MICACEOUS FLECKS IN HOLE FLOODED FROM 51+82E TO 51+50E - POND AT LEAST 15 M S	<0.005	<0.5	16	14	73	23	5	<0.5
1 86221\$0 L49+50N, 52+00E	CL, SILT, ARG FRAGS 20% CL, 75% SILT, 5% FRAGS	B GOOD	18 CM, GRY CL-FRAGS	POOR (FLAT) MV1	HETRO FRAGS IN HOLE	0.012	<0.5	40	22	105	139	7	<0.5
18622080 L49+50N, 52+12E	CL, SILT, ARG FRAGS 20% CL, 75% SILT, 5% FRAGS	B GOOD	25 CM, GRY CL-FRAGS	POOR (FLAT) MV1	ARG FRAGS IN HOLE	0.019	0.8	41	29	114	187	7	<0.5
1 8621980 L49+50N, 52+25E	CL, SILT, ARG FRAGS 20% CL, 75% SILT, 5% FRAGS	B GOOD	25 CM, GRY CL-FRAGS	POOR (FLAT) MV1	ARG FRAGS IN HOLE	0.023	0.5	42	25	115	172	9	<0.5
1 8621890 L49+50N, 52+37E	CL, SILT, FI-CO SD, ORG 20% CL, 50% SILT, 20% SD 10% ORG	B GOOD	20 CM, GRY-BRN CL-CO	POOR MV1	NA	0.011	<0.5	25	17	86	31	5	<0.5
1 8821780 L49+50N, 52+50E	CL, SILT, FI-CO SD, ORG 20% CL, 50% SILT, 20% SD 10% ORG	B GOOD	20 CM, GRY-BRN CL-CO	POOR MV1	CO SD INCLUDES WHITE QTZ FELL DERIVED FROM QM	0.007	<0.5	27	20	76	82	6	<0.5

х х **х**

NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTION NAME, COMPOSITION	NS AND MULTI ELEMENT S HORIZON, DEVELOPMENT	TABLE GSC2 (CON'T): BIGNATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	2n ppm	As ppm	Sb ppm	Cd ppm
18621880 L49+50N, 52+62E	CL, SILT, FI-CO SD, FRAGS 10% CL, 70% SILT, 10% SD 10% ORG/OX FRAGS	B GOOD	30-35 CM, BRN-ORGE/BRN SILT-FRAGS	FAIR>W MV2	FRIABLE ALT BX IN HOLE FRAGS TO 6 CM OF OX BX	<0.005	<0.5	67	22	99	57	<5	<0.5
18621550 L49+50N, 52+75E	SILT, SD, HETRO FRAGS 30% SILT, 60% SD, 10% FRAGS	STONEY B GOOD	BANK 25 CM, LIGHT BRN SILT-FRAGS	GOOD>W MV2	BX TERRAIN, BLDRS TO 1.5X 1.5M - LIM SIL BX	0.010	0.5	104	21	156	37	<5	<0.5
18621480 L49+50N, 52+87E	SILT, SD, HETRO FRAGS 30% SILT, 60% SD, 10% FRAGS	STONEY B GOOD	BANK 20 CM, LIGHT BRN SILT-FRAGS	FAIR>N MV2	ROUNDED OM BLDR& ANG ALT BX BLDRS	0.008	0.8	89	26	149	29	5	<0.5
1 8621380 L49+50N, 53+00E	SILT, SD, HETRO FRAGS 30% SILT, 60% SD, 10% FRAGS	STONEY B GOOD	16 CM, BRN SILT-FRAGS	FAIR≻N MV2	WELL SIL BX BLDRS; FRAGS IN BX TO 8CM IN SIL MTX ASPY IN BLDR VEINS TO 0.5CM	<0.005	<0.5	65	23	171	28	6	0.9
18621280 L49+50N, 53+12E	SILT, FI-CO SD, FRAGS 60% SILT, 35% SD, 5% FRAGS	STONEY B FAIR	15 CM, YEL/BRN SILT-FRAGS	GOOD>W MV1, 2	OX BX BLDRS	0.038	<0.5	295	46	278	96	7	0.8
18621180 L49+50N, 53+25E	SILT, FI-CO SD, FRAGS 60% SILT, 35% SD, 5% FRAGS	STONEY B FAIR	10 CM, LIGHT-YEL BRN SILT-FRAGS	FAIR≻S MV1,2	ALT BX FRAGS, SOME STRONGLY LIM	0.047	<0.5	277	40	280	86	6	1.1
1 8621080 L49+50N, 53+37E	SILT, FI-CO SD, FRAGS 50% SILT, 35% SD, 15% FRAGS	B GOOD	12 CM, GRY/BRN SILT-FRAGS	FAIR - GOOD>S MV2	GEN ANG FRAGS BX IN HOLE	0.022	0.6	94	33	221	73	5	0.9
18620980 L49+50N, 53+50E	SILT, FI-CO SD, FRAGS 60% SILT, 35% SD, 5% FRAGS	B GOOD	18 CM, GRY/BRN SILT-FRAGS	FAIR - GOOD>S MV2	PLENTIFUL ALT BX BLDRS	0.017	<0.5	140	32	182	49	6	0.6
18620680 L49+50N, 53+62E	SILT, FI-CO SD, FRAGS 60% SILT, 35% SD, 5% FRAGS	B GOOD	18 CM, GRY/BRN SILT-FRAGS	Fair - good>s MV2	ALT BX BLDRS, GEN ANG LIM TO 40X18 CM, STRONGLY SIL, STRONG ASPY SMELL, UP TO 3% ASPY	0.013	<0.5	78	22	148	31	≺5	<0.5
60938980 L49+50N, 54+00E	SILT, SD, FRAGS 60% SILT, 35% SD, 5% FRAGS	STONEY B GOOD	BANK 20 CM, BRN-ORGE/BRN SILT-FRAGS	GOOD>S MV1	ANG BX & ROUNDED QM BLDRS	0.005	<0.5	50	23	93	29	<5	<0.5
60938880 L49+50N, 54+12E	SILT, SD, FRAGS 60% SILT, 35% SD, 5% FRAGS	STONEY B GOOD	BANK 30 CM, BRN-ORGE/BRN SILT-FRAGS	GOOD≻S MV1	SIL BX IN HOLE	0.211	<0.5	164	40	196	40	<5	<0.5
60938780 L49+50N, 54+25E	SILT, SD, FRAGS 80% SILT, 35% SD, 5% FRAGS	STONEY B GOOD	BANK 20 CM, ORGE-YEL/BRN Silt-Frags	GOOD>S MV1	54+28E - OC BX & SEVERAL ARG BLDRS LIM BX FRAGS IN HOLE	0.019	<0.5	188	69	212	51	<5	<0.5
60938680	SILT, FI-CO SD, ORG/OX FRAGS	STONEY B	BANK 25 CM, ORGE/BRN	GOOD>S	50% ANG BX & 50% QM BLDRS	0.039	0.5	102	23	146	50	<5	<0.5

MV1

BX FRAGS TO 20 CM IN HOLE; QM FRAGS TO 10CM

SILT-FRAGS

L49+50N, 54+50E 30% SILT, 60% SD, 10% FRAGS

			TABLE GSC2 (CON'T):										
NUMBER,	NAME,	HORIZON,	DEPTH, COLOUR,	DRAINAGE,	GEOLOGY	Au	Ag	Cu	Pb	Zn	As	Sb	Cd
LOCATION	COMPOSITION	DEVELOPMENT	GRAIN SIZE	VEGETATION		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
											••		••
60938550	SILT, SD, OX FRAGS	STONEY B	BANK 20CM, ORGE/BRN	GOOD>S	OX FRAGS FROM QM IN HOLE	0.016	0.5	140	43	159	34	<5	<0.5
L49+50N, 54+75E	40% SILT, 55% SD, 5% OX FRAGS		SILT-FRAGS	MV2									
60938480	SILT, SD, OX FRAGS	B	20CM, ORGE/BRN	GOOD	OX FRAGS FROM QM IN HOLE	0.018	0.6	128	21	124	38	<5	<0.5
L49+50N, 55+00E	40% SILT, 55% SD, 5% OX FRAGS	GOOD	SILT-FRAGS	MV1, 2									
		_											
60931880	CL, FI-CO SD, CO OX BX FRAGS	В	BANK 25CM, REDDISH BRN	SE	BX FRAGS IN HOLE	0.008	0.8	74	13	96	19	<5	0.7
L49+50N, 55+12E	5% CL, 30% SILT, 60% SD,	GOOD	SILT-CO	MV1									
	5% ORG												
40031700	OUT OD 50400 000	A / D		0000-0							_	_	
140+50N 55+05C	SILI, SU, FRAGS, ORG	AVD 0000	SO CM, REDDISH BRIN		BX TERRAIN, 2X2 M BX BLORS	<0.005	0.6	33	13	39	<5	<5	<0.5
L4973UN, 33723E	20% SILI, 20% SD, 20% AL; LIM	GOOD	SILT-FRAGS	MV1, Z									
	FRAGS, 40% ORG												
60931680	SILT FLCO SD FRAGS FROM	ARE STONEY B	30 CM REDDISH BBN	6000>8		<0.005	0.6	50	10	6 4	40	~ 5	-0 F
149+50N 55+37E	BX OPG	FAIR	SI LERAGS	MV1 2	ANG BA FRAGE IN HOLE	NU.005	0.0	50	13	01	19	<0	×0.5
240.0011, 00.07 E	40% SHT 40% SD 10% ORG												
60931580	CL, SILT, ORG	в	30 CM. REDDISH BRN	GOOD>S	N/A	<0 005	10	72	8	35	<5	<5	<0.5
L49+50N, 55+50E	10% CL, 80% SILT, 10% ORG	GOOD	CL-SILT	MV1					v	•••			-0.0
60931480	CL, SILT, ORG	B, ROCKY B	25CM, REDDISH BRN	FAIR>SW	N/A	<0.005	0.9	47	9	39	<5	<5	0.5
L49+50N, 55+62E	10% CL, 80% SILT, 10% ORG	GOOD	CL-SILT	MV1									
60931380	SILT, FI-CO SD, FRAGS	В	20CM, LIGHT BRN	GOOD>S	LIM BX FRAGS IN HOLE	0.027	<0.5	103	18	118	49	<5	0.7
L49+50N, 55+75E	30% SILT, 65% SD, 5% ORG, FRAGS	GOOD	SILT-FRAGS	MV1									
	LIM BX, MINOR QTZ												
60931280	SILT, FHMED SD	STONEY B	BANK 25 CM, BRN-ORGE/BRN	GOOD>S	NA	0.016	0.9	80	27	156	42	<5	0.6
L49+50N, 55+87E	80% SILT, 20% SD	GÓÓD	SILT-MED	MV1, 2									

, **.** .

			TABLE GSC2 (CON'T):										
NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTIONS NAME, COMPOSITION	S AND MULTI ELEMENT SI HORIZON, DEVELOPMENT	IGNATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
60931180 149+50N, 56+00E	SILT, FI-CO SD 70% SILT, 30% SD	B GOOD	BANK 25 CM, LIGHT BRN SILT-CO	GOOD>SW MV2	FRAGS LIM CHL BX, MINOR QM FRAGS	0.009	0.6	55	25	106	28	<5	<0.5
60931090 L49+50N, 56+12E	SILT, FI-MED SD, FRAGS LIM BX 60% SILT, 30% SD, 10% FRAGS	B GOOD	18 CM, LIGHT BRN-YEL/BRN SILT-FRAGS	GOOD>SW MV2	BX TERRAIN?? OX FRAGS LIM BX	0.080	0.5	130	16	199	56	<5	1.3
80930980 L49+50N, 56+25E	SILT, FI-CO SD, CO FRACT FROM BX 30% SILT, 70% SD	STONEY B GOOD	18 CM, ORGE/BRN SILT-CO	GOOD>S MV1, 2	BX TERRAIN?? OX FRAGS LIM BX	0.014	1.0	113	14	148	47	<5	<0.5
60930680 L49+50N, 56+50E	SILT, FI-CO SD 30% SILT, 70% SD	STONEY B FAIR	10 CM, ORGE/BRN- LIGHT BRN SILT-CO	GOOD>SW MV1, 2	QTZ FELD SPAR, MINOR BIOTITE SD; QM TERRAIN	0.047	0.7	131	21	170	72	<5	<0.5
60930780 L49+50N, 56+75E	SILT, FI-CO SD 30% SILT, 70% SD	STONEY B POOR	10CM, ORGE-BRN, LIGHT BRN SILT - CO SD	GOOD>SW MV1, 2, 4	QTZ FELD SPAR, MINOR BIOTITE SD; QM TERRAIN	0.045	0.5	105	15	147	42	<5	<0.5
60930680 L49+50N, 57+00E	CL, SILT, ORG 45% CL, 50% SILT, 5% ORG	B POOR	20CM, BRN - ORGE/BRN CL-SILT	GOOD>S MV1	5X4X3 M QM BLDRS QM TERRAIN	<0.005	0.6	27	11	28	<5	<5	<0.5
60930580 L49+50N, 57+25E	SILT, FI-CO SD, FRAGS OX QM 40% SILT, 60% SD, MINOR FRAGS	VERY STONEY B FAIR	12 CM, ORGE BRN SILT-FRAGS	GOOD>SW MV1	QM TERRAIN	0.013	0.5	110	28	124	22	<5	0.5
60930480 L49+50N, 57+50E	SILT, FI-CO SD, FRAGS 80% SILT, 30% SD, 2% ORG, 8% FRAGS	STONEY B FAIR	15 CM, GRY - ORGE/BRN SILT-FRAGS	GOOD>SW MV1	QM FRAGS QM TERRAIN	<0.005	0.8	38	18	49	17	<5	<0.5
60930380 L49+50N, 57+75E	SILT, FI-CO SD, FRAGS 60% SILT, 30% SD, 2% ORG, 8% FRAGS	STONEY B GOOD	25 CM, ORGE-BRN SILT-FRAGS	GOOD>SW MV2	WHITE TO OX FRAGS QTZ & FELD FROM QM	0.014	0.6	88	24	95	38	<5	<0.5
60930280 L49+50N, 58+00E	CL, SILT, ORG 40% CL, 40% SILT, 20% ORG	B GOOD	20 CM, BRN-ORGE/BRN CL-SILT	GOOD≻SW MV1, 2, 4	N/A	NSS	<0.5	12	10	20	<5	<5	1.0

			TABLE GSC2 (CON'T):										
	POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS												
NUMBER,	NAME,	HORIZON,	DEPTH, COLOUR,	DRAINAGE,	GEOLOGY	Au	Αα	Cu	Pb	Zn	As	Sb	Cd
LOCATION	COMPOSITION	DEVELOPMENT	GRAIN SIZE	VEGETATION		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
													••
<u>L49+85N, W-E</u>													
18616350	SD, SILT, FRAGS	в	20 CM, GRY	POOR, LOW AREA	NA	0.098	1.5	67	30	209	164	5	0.7
L49+85N, 48+00E	70% SILT, 20% FI SD, 10% CL,	GOOD	SILT-FI	MV1								_	-
	MINOR ORG												
19818480		B	20 CM GRY		\$1A	0.007	4.0	22	40	244	100	7	
149+85N 48+25E	70% SILT 20% ELSD 10% CI	6000	SILTEL	MV1	100	0.007	1.2	63	40	Z 11	190	(1.4
240,0014,40,202	MINOR ORG	0000	ULT T										
18616580	SD, SILT, FRAGS	B	20 CM, GRY	POOR, LOW GRD	NA	0.042	1.4	67	29	184	190	5	<0.5
L49+85N, 48+50E	10%CL, 70% SILT, 20% FI SD,	GOOD	SILT-FI	MV1									
	MINUR ORG												
186166SO	SILT, CL	в	20 CM, GRY-BRN	POOR, BOGGY	NA	0.041	1.0	60	23	185	162	5	<0.5
L49+85N, 48+75E	90% SILT, 10% CL	FAIR	CL-SILT	MV1									
4444700		-										_	
18616/50		8	35 CM, BRN-BLK	GOOD>S	NA	0.042	<0.5	36	24	91	143	9	<0.5
149+00N, 49+00E	5% CL, 90% SIL1, 5% ORG	GOOD	CL-SILT	MV1									
18616850	SILT, SD	STONEY B	20 CM, LT BRN	GOOD>S	ARG, BX FRAGS IN HOLE	0.051	1.8	74	35	170	162	<5	0.5
L49+85N, 49+25E	20% SILT, 70% FI-CO SD,	GOOD	SILT-FRAGS	MV1, 4									
	10% ARG & BX FRAGS												
	MINOR ORG												
16615950	SILT, SD, FRAGS	STONEY B	25 CM	GOOD>S	ARG. BX FRAGS IN HOLE	0.021	0.8	52	19	134	114	<5	<0.5
L49+85N, 49+50E	20% SILT, 70% SD, 10% ANG FRAGS	GOOD	SILT-FRAGS	MV2	·····							-	0.0
18617050	SILT, SD, FRAGS	STONEY B	20 CM	GOOD>S	ARG, BX FRAGS IN HOLE	0.012	0.5	46	22	154	99	6	<0.5
L49+85N, 49+75E	20% SILT, 70% SD, 10% ANG FRAGS	GOOD	SILT-FRAGS	MV2									
18616280	SILT, SD, FRAGS	STONEY B	20 CM BANK, BRN	GOOD>\$	OX ARG, BX FRAGS IN HOLE	<0.005	<0.5	42	18	126	44	<5	<0.5
L49+85N, 50+25E	20% SILT, 70% FI-CO SD	GOOD	SILT-FRAGS	MV2, 1									
	10% HETRO FRAGS OFARG & ANG												
	8X												
18616180	SILT. SD	STONEY B	20 CM, BRN-BLK	GOOD>S	OX ARG. BX FRAGS IN HOLE	0.011	<0.5	37	21	118	51	<5	<0.5
L49+85N, 50+50E	20% SILT, 70% SD, 10% ANG FRAGS	GOOD	SILT-FRAGS	MV3			2.2				÷'	-	
	OF ARG & LIM BX												
19818080	611 T 60	STONEY B	20 CM REN RIK	0000-6	OV ADD BY EDAOD NUMBER	0.007	-0.5					_	
10010030	3111, 30 20% SUT 70% SD 10% ANG ERAGE		20 UM, BRN-BLN SILT-FRAGS	GUUD25 MV3	UX ARG, BX FRAGS IN HOLE	0.007	<0.5	39	16	106	54	6	<0.5
2.0.000,00.70L	OF ARG & LIM BX	~~~~		1111									

	POLY SOIL SAMPLE DESCRIPTIONS	AND MULTI ELEMENT SIGNA	TABLE GSC2 (CON'T): ATURE ANALYTICAL RESULTS					_					
NUMBER, LOCATION	NAME, COMPOSITION	HORIZON, DEVELOPMENT	GRAIN SIZE	URAINAGE, VEGETATION	GEOLOGY	Au bom	Ag pom	Cu nom	Pb	Zn	As	Sb	Cd
LooAnon						Ph.u	Ph.	Ph	Pp	ppm	Phil	Pbu	ppm
18615980 L49+85N, 51+00E	SILT, SD 40% SILT, 50% FI SD, 5% ORG 5% HETRO FRAGS ARG & BX	STONEY B GOOD	25 CM, BRN-BLK SILT-FRAGS	GOOD>S MV3, 2, 1	OX ARG, BX FRAGS IN HOLE	0.009	0.5	31	13	71	82	<5	<0.5
1 8615880 L49+85N, 51+25E	SILT, SD 60% SILT, 30% FI SD, 10% HETRO FRAGS WITH ALT 8X & QM	B GOOD	25 CM BANK, LT BRN SILT-FRAGS	GOOD>S MV1	QM, BX FRAGS IN HOLE	0.005	<0.5	35	22	91	63	<5	<0.5
18615780 L49+85N, 51+50E	SILT, SD 70% SILT, 20% FI SD, 5% ORG, 5% HETRO OX FRAGS ANG ARG & BX	STONEY B FAIR	20 CM, BRN SILT-FRAGS	GOOD>S MV1	OX ARG, BX FRAGS IN HOLE	<0.005	0.5	36	17	98	50	<5	<0.5
18615680 L49+85N, 51+75E	SILT, SD 70% SILT, 20% FI SD, 5% ORG, 5% HETRO FRAGS ARG & BX	B GOOD	20 CM, BRN-BLK SILT-FRAGS	GOOD>S MV1, MV3 TO N	OX ARG, BX FRAGS IN HOLE	0.015	1.0	42	28	90	201	6	<0.5
18815580 L49+85N, 51+87E	SILT, SD 70% SILT, 20% FI SD, 5% ORG, 5% HETRO FRAGS ARG & BX	B GOOD	25 CM BANK, BRN-BLK SILT-FRAGS	GOOD>S MV1	OX ARG, BX FRAGS IN HOLE	<0.005	0.5	36	18	68	63	<5	<0.5
18615430 L49+85N, 52+00E	SILT, SD, ORG 50% SILT, 40% FI SD, 5% ORG, 5% ANG FRAGS ARG & OX BX	STONEY B GOOD	25 CM BANK, LT BRN SILT-FRAGS	FAIR>S MV1, 2	OX ARG, BX FRAGS IN HOLE	0.010	0.9	45	22	92	131	<5	<0.5
18615380 L49+85N, 52+12E	SILT, SD, ORG 50% SILT, 40% FI SD, 5% ORG, 5% ANG FRAGS ARG & OX BX	STONEY B GOOD	20 CM, BRN SILT-FRAGS	FAIR>S MV1, 2, 4	OX ARG, BX FRAGS IN HOLE	0.015	0.8	40	16	108	175	5	<0.5
1 8615280 L49+85N, 52+25E	SILT, SD, ORG 50% SILT, 40% FI SD, 5% ORG, 5% ANG FRAGS ARG & OX	STONEY B GOOD	20 CM, BRN SILT-FRAGS	FAIR>S MV2, 4	OX ARG, BX FRAGS IN HOLE	0.008	<0.5	25	14	75	53	5	<0.5

. .

	POLY SOIL SAMPLE DESCRIPTIONS	AND MULTI ELEMENT SIGNA	TABLE GSC2 (CON'T): TURE ANALYTICAL RESULTS										
NUMBER, LOCATION	NAME, Composition	HORIZON, DEVELOPMENT	DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
1 8815150 L49+85N, 52+37E	SD, SILT 20% SILT, 70% FI-CO SD, 10% OX, BX FRAGS	STONEY B GOOD	15 CM, LT BRN SILT-FRAGS	FAIR-GOOD>S MV2, 1	OX BX FRAGS IN HOLE	0.010	<0.5	34	22	102	38	8	<0.5
60954850 L49+85N, 52+50E	Silt, SD 60% Silt, 35% FI SD, 5% ORG	STONEY B GOOD	15 CM, BRN-YEL/BRN SILT-FI	GOOD>S MV2	NA	0.012	0.9	92	31	260	52	<5	2.3
60954780 L49+85N, 53+37E	SILT, SD 20% SILT, 80% FI-CO SD CO SD QTZ FELD FROM QM	B GOOD	20 CM, ORGE/BRN-YEL SILT-CO	GOOD>S MV1	CO SD FROM QM	0.011	<0.5	55	25	1 08	32	<5	<0.5
80954680 L49+85N, 53+50È	SILT, SD 20% SILT, 80% FI-CO SD CO SD IS ANG, LIM, BX	B Good	20 CM, BRIGHT YEL BRN, SILT-CO	GOOD>S MV1, MINOR MV4	CO SD FROM BX	0.016	0.5	98	20	135	42	<5	<0.5
60954580 L49+85N, 53+75E	SILT, SD, ORG 70% SILT, 15% FI SD, 15% ORG	B GOOD	35 CM, ORGE BRN, SILT-FI	GOOD>\$ MV1, 2, 3	CO SD FROM BX	<0.005	<0.5	35	6	31	<5	<5	<0.5
60954480 L49+85N, 54+00E	SILT,SD, ORG 70% SILT, 15% FI SD, 15% ORG	B GOOD	35 CM, ORGE BRN, SILT-FI	GOOD>S MV1	NA	<0.005	<0.5	50	7	38	<5	<5	<0.5

NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTIONS NAME, COMPOSITION	AND MULTI ELEMENT SIGN HORIZON, DEVELOPMENT	TABLE GSC2 (CON'T): ATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
<u>161+00N, W-E</u>													
59993250 L51N, 47+21É	SILT, FINE SD, HETRO FRAGS 50% SILT, 40% FINE SD, 10% HETRO FRAGS	STONEY B GOOD	BANK 25 CM, BRN SILT-FRAGS	GOOD>SW MV2, 1	HETRO FRAGS IN HOLE MAINLY BX; ALT BX OC TO N	0. 06 7	2.2	86	36	217	187	5	1.5
59993380 L51N, 47+37E	SILT, FINE SD, HETRO FRAGS 50% SILT, 40% FI SD, 10% HETRO FRAGS	STONEY B FAIR	BANK 25 CM, BRN SILT-FRAGS	GOOD>SW MV2, 1	HETRO FRAGS IN HOLE MAINLY BX; ALT BX OC TO N	0.045	1.9	90	43	245	215	<5	1.7
59993580 151N, 47+62E	SD, GRAVEL 70% FI-CO SD, 30% HETRO FRAGS	STONEY B FAIR	BANK 15 CM, BRN F⊢FRAGS	GOOD>8 MV2, 1	ARG, BX, OX FRAGS IN HOLE; ALT BX OC ABOUT 50 M TO N	0.038	1.1	87	33	219	182	6	1.7
699936SO L51N, 47+87E	SILT, HETRO FRAGS 90% SILT, 5% ORG, 5% FRAGS	STONEY B POOR	12 CM, BRN SILT-FRAGS	GOOD>W MV2, 1	BX FRAGS IN HOLE	0.035	1.5	69	32	213	165	<5	1.8
59993750 L51N, 48+00E	SILT, SD 70% SILT, 20% FINE SD, 10% ORG	STONEY B FAIR	25 CM, BRN SILT-FI	GOOD>W MV2, 1	ARG FRAGS IN HOLÉ	0.166	0.8	55	38	180	168	5	0.7
59993880 L51N, 48+12E	SILT, FRAGS 90% SILT, 5% FRAGS, 5% ORG	STONEY B FAIR	25 CM, YEL/LIGHT BRN SILT-FRAGS	GOOD>S MV2, 1	HETRO FRAGS - ARG, BX IN HOLE	0.054	1.4	76	40	187	212	<5	0.7
59993930 L51N, 48+42E	SILT, SD, GRAV 30% SiLT, 40% SD, 30% GRAV C/W HETRO FRAGS - ARG, MYLONITE	B Good	BANK 3M, BRN SILT-FRAGS	GOOD>W MV2, 1	ARG & MYLONITE IN HOLE	0.048	1.7	93	46	246	185	9	1.7
599901SO L51N, 50+25E	SILT, SD. ORG 40% SILT, 40% SD, 30% ORG	ABC, HETRO BLDRS POOR	15 CM, BRN FI-MED SD SILT-CO	POOR >S MV2	NO OC; HETRO BLDRS, MAINLY OX BX	0.006	0.7	40	13	91	94	<5	<0.5
599902SO L51N, 50+37E	CL, SILT, SD, ORG 15% CL, 85% SILT, 10% SD, 10% ORG	B GOOD	20 CM, BRN CL-CO	GOOD>S MV1, 2	NO OC; MINOR BLDRS: 60% BX, 40% ARG	<0.005	0.6	36	28	56	60	<5	<0.5
59990350 L51N, 50+50E	SILT, ORG 70% SILT, 30% ORG	AB POOR	20 CM, BRN/ORGE - BRN SILT	GOOD>S MV1	NO OC; HETRO BLDRS	0.010	0.8	28	15	73	122	<5	<0.5
59990480 L51N, 50+62E	CL, SILT, ORG 10% CL, 80% SILT, 10% ORG	AB GOOD	25 CM, ORGE/BRN CL-SILT	GOOD>S MV1, 3	NO OC	<0.005	<0.5	23	8	29	<5	<5	<0.5
59990580 L51N, 50+75E	SILT, SD, ORG, OX 40% SILT, 45% SD, 5% ORG 10% OX ARG	STONEY B BANK SAMPLE	15 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1, 3	NO OC; SOME OX ARG BLDRS	0.005	1.1	28	18	65	120	<5	<0.5
59990780 L51N, 50+87E	CL, SILT, ORG 5% CL, 70% SILT, 25% ORG	AB POOR	20 CM, ORGE/BRN CL-S&T	GOOD>S MV1, 2	NO OC OR BLDRS	<0.005	0.6	20	6	27	11	<5	<0.5
599908SO L51N, 51+00E	CL, SILT, ORG 5% CL, 70% SILT, 25% ORG	AB POOR	20 CM, ORGE/BRN CL-SILT	GOOD≻S MV2	NO OC OR BLDRS	<0.005	<0.5	20	6	41	15	<5	<0.5

•

, , , , ,

			TABLE GSC2 (CON'T):										
	POLY SOIL SAMPLE DESCRIPTIONS	AND MULTI ELEMENT S	BIGNATURE ANALYTICAL RESULTS										
NUMBER, LOCATION	NAME, COMPOSITION	HORIZON, DEVELOPMENT	DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
599909SO	SILT, SD, ORG	в	20 CM, BRN/BLK	GOOD>S	NO OC OR BLDRS	0.008	0.7	26	15	59	130	5	<0.5
L51N, 51+12E	15% CL, 75% SILT, 5% SD, 5% ORG	GOOD	CL-SD	MV2									
59991080	SILT, SD, GRY FRAGS, ORG	STONEY B	15 CM, BRN/ORGE - BRN	GOOD>S	FEW QM BLDRS	<0.005	0.8	33	18	73	39	<5	<0.5
L51N, 51+25E	40% SILT, 50% SD, 5% GRAY FRAGS 5% ORG	GOOD	SILT+RAGS	MV∡									
6999118O	SILT, SD, HETRO FRAGS	B	40 CM	GOOD>S	QM BLDRS	0.009	0.6	49	19	108	65	7	<0.5
L51N, 51+37E	40% SILT, 50% SD, 10% HETRO FRAGS	GOOD	SILT-FRAGS	MV1, 2									
5999128O	SILT, SD, FRAGS	STONEY B	15 CM, BRN	GOOD>S	ARG + QM FRAGS IN HOLE	0.013	0.6	32	23	102	151	6	<0.5
L51N, 51+50E	60% SILT, 30% SD, 10% FRAGS	GOOD	SILT-FRAGS	MV1, 2									
51991380	SILT, SD, FRAGS	STONEY B	30 CM BANK SAMPLE	GOOD>S	OX BX, ARG FRAGS IN HOLE	0.009	0.9	39	23	124	188	7	<0.5
L51N, 51+62E	60% SILT, 30% SD, 10% HETRO FRAGS	GOOD	W BANK DRY CRK SILT-FRAGS	MVI, 2	UP TO 10 CM								
59991480	CL, SILT, ORG	AB	15 CM, ORGE/BRN	GOOD>S	BX FRAGS IN HOLE	<0.005	1.5	33	13	52	7	<5	<0.5
L51N, 51+75E	20% CL, 70% SILT, 10% ORG	POOR	CL-SILT	MV2									
59991580	CL, SILT, ORG	STONEY B	15 CM, BRN/ORGE	FAIR>S	OX & FRESH ARG FRAGS IN	0.008	0.6	20	17	68	82	<5	<0.5
L51N, 51+87E	20% CL, 70% SILT, 10% ORG	POOR	CL - SILT	MV2	HOLE								
59991680	SILT, SD	В	20 CM, BRN/BLK	FAIR>S	HETRO FRAG TO BCM - ARG,	0.005	<0.5	25	19	127	74	5	0.6
L51N, 52+00E	60% SILT, 30% SD, 10% FRAGS	FAIR	SILT-FRAGS	MV2	QM; QM BLDRS								
59991780	SILT, SD	STONEY B	20 CM, BRN	FAIR>S	HETRO, MAINLY ARG BLORS	<0.005	1.0	30	21	148	144	5	0.8
L51N, 52+12E	60% SILT, 30% SD	GOOD	SILT-CO	MV2									
59991850	CL, SILT, ORG, FRAGS	в	20 CM, BRN	FAIR>S	OX ARG& BX, HETRO	0.007	0.5	52	19	109	87	<5	0.7
L51N, 52+25E	5% CL, 65% SILT, 10% ORG & FRAGS	GOOD	CL-FRAGS	MV2	FRAGS IN HOLE								

			TABLE GSC2 (CON'T):										
	POLY SOIL SAMPLE DESCRIPTION	S AND MULTI ELEMENT SIGN	NATURE ANALYTICAL RESULTS										
NUMBER,	NAME,	HORIZON,	DEPTH, COLOUR,	DRAINAGE,	GEOLOGY	Au	Ag	Cu	Pb	2n	As	Sb	Cd
LOCATION	COMPOSITION	DEVELOPMENT	GRAIN SIZE	VEGETATION		ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm
													•••
5999198O	SILT, SD	B	20 CM, ORGE/BRN	GOOD>SW	STEEP HILL, QM	0.033	0.8	117	18	174	82	<5	<0.5
L51N, 52+50E	30% SILT, 70% SD	GOOD	SILT-CO	MV1, 2	TERRAIN, HETRO								
					FRAGS IN HOLE								
59953180	SILT FHCO SD	в	BANK 20 CM GRY/BLK	GOOD>SW	W EDGE OM OC	<0.005	<0.5	36	16	40	18	<5	<0.5
L51N 52+75E	40% SILT 60% SD	GOOD	SIL-CO	MVI.2			0.0						.0.0
5999308O	CL, SILT, SD, ORG	AB,	25 CM, ORGE/BRN	GOOD>W	N/A	0.024	0.5	47	21	63	20	<5	<0.5
L51N, 53+00E	10% CL, 60% SILT, 20% SD,	GOOD	CL-FI	MV1, 2									
	10% ORG												
								_	_			_	
59992980	SILT, SD, ORG, FRAGS	STONEY B, AB	BANK 20 CM	GOOD>W	QM FRAGS IN HOLE	0.032	<0.5	71	15	114	43	5	<0.5
L51N, 53+25E	20% SILT, 60% SD, 10% ORG,	GOOD	SILT-FRAGS	MV2									
	10% FRAGS OF QM												
69992680	CL SILT FLSD ORG	в	20 CM, BRN/YEL BRN	GOOD>SW	OM BLORS OC	0.045	06	93	27	242	60	<5	10
L51N 53+50F	5% CL 75% SILT 15% SD	GOOD	CL-FI	MV2						- /-		-	
	15% ORG												
599927SO	SILT, SD, ORG	в	20 CM, ORGE/BRN	GOOD>S	N/A	<0.005	<0.5	32	14	43	5	<5	<0.5
L51N, 53+75E	80% SILT, 10% SD, 10% ORG	GOOD	CL-SILT	MV2									
	AL AN 7 0500 000		05 0M 0005 00M	0000-0				••		•••			
5999285U	CL, SILT, PEBS, ORG	AH	25 CM, ORGE/BRN	GOOD>S	ARG FRAGS IN HOLE	<0.005	<0.5	39	12	69	33	<5	<0.5
L51N, 54+00E	25% CL, 50% SILT, 10% FRAGS,	GOOD	CL-FRAGS	WV2									
	15% ORG												
59992580	SILT. SD. ORG	STONEY B, AB	12 CM	GOOD>S	LARGE HETRO BLDRS OF	<0.005	0.8	36	7	41	40	<5	<0.5
L51N, 54+25E	50% SILT, 30% SD, 20% ORG	POOR	SILT-FI	MV2	ARG, QM & BX								
·													
5999238O	CL, SILT, FINE SD, ORG	AB	30 CM, ORGE/BRN	GOOD>SE	NA	<0.005	<0.5	31	6	32	5	<5	<0.5
L51N, 54+50E	5% CL, 70% SILT, 15% SD,	GOOD	CL-FI	MVI, 2									
	10% ORG												
******	0 × 7 00 000	b		0000-0		0.007			_	~-	-		-0.5
0VVV2280	SILI, SU, OKG	5	25 UM, BKN-BLK	GUUD>S	NA	0.007	0.6	56	7	35	5	<5	<0.5
L97N, 54+75E	70% SILI, 15% SD, 10% ORG	GOOD		WVI, Z									
59992130	SUT SD ORG FRAGS	в	25 CM BRN-BLK	GOOD>S	NA	0.010	<0.5	58	21	73	29	<5	<0.5
L51N 55+00E	60% SHT 25% SD 15% ORG	GODD	SILT-FI	MVI.2		0.010	-0.0	~~				-0	-0.0
				······································									

NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTION NAME, COMPOSITION	IS AND MULTI ELEMENT SIGI HORIZON, DEVELOPMENT	TABLE G\$C2 (CON'T): NATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cđ ppm
<u>1.52+00N, W-E</u>													
599941SO L52N, 47+75E	SILT, SD, FRAGS 50% SILT, 45% FI SD, 5% LIM ANG FRAG SCHIST	B GOOD	BANK 20 CM, ORGE/BRN SILT-FRAGS	FAIR>SE MVI	ALT BX (CHL SCHIST) AT 47+60E IN CLIFF FACE	0.009	<0.5	80	17	99	42	<5	<0,5
80935650 L52N, 53+25E	SILT, SD, ORG 60% SILT, 30% SD, 10% ORG	AB, LOTS OF ROOTS FAIR	10CM, BX SILT-FI	GOOD>S MV1, 2	BASE OF GM CLIFF	0.028	0.6	26	25	128	12	<5	0.7
80935580 L52N, 53+50E	SILT, SD, ORG 60% SILT, 30% SD, 10% ORG	AB, LOTS OF ROOTS POOR	10 CM, BX SILT-FI	GOOD>S MV2	MINOR FRAGS QM	0.005	0.7	13	14	47	16	5	<0.5
60935480 L52N, 53+75E	SILT, FI-CO SD 20% SILT, 80% SD	B GOOD	10 CM, GRY SILT TO CO SD	GOOD>S MV3, 1	NA	<0.005	<0.5	9	23	38	11	6	<0.5
60936380 L52N, 54+00E	SILT, FI SD, ORG 30% SILT, 60%I SD, 10% ORG	AB, ROOTY B GOOD	20 CM, BRN SILT-FI	GOOD>S MV3, SOME MV1	NA	0.018	0.8	41	15	48	24	5	<0.5
80935280 L52N, 54+25E	CL, SILT, ORG 15% CL, 80% SILT, 5% ORG	B GOOD	20 CM, RD/BRN CL-SILT	GOOD>S MV1	NA	NSS	<0.5	25	10	34	5	<5	<0.5
60935180 L52N, 54+50E	SILT, FI -CO SD, GRY FRAGS 80% SILT, 35% FI-CO SD, 5% QM FRAGS	STONEY B POOR	BANK 20 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1, 2, 3	QM FRAGS IN HOLE	0.014	0.6	79	18	91	23	6	<0.5
59994030 L52N, 54+75E	SILT, FI-CO SD 60% SILT, 40% SD	AB POOR	BANK 10 CM, ORGE/BRN SILT-CO	GOOD>S MV3	SD DERIVED FROM QM	0.007	<0.5	61	20	76	27	6	<0.5
L53+00N, W-E													
60936880 L53N, 47+00E	SILT, FI SD, OX ARG FRAGS 70% SILT, 25% SD, 5% OX ARG FRAGS	B Good	BANK 20 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1	OX ARG FRAGS IN HOLE	0.007	0.6	108	12	79	43	<5	<0.5
60936980 L53N, 47+12E	CL, SILT, ORG 40% CL, 55% SILT, 5% ORG	8 GOOD	BANK 30 CM, BRN/ORGE BRN CL-SILT	FAIR>S MV1	N/A	NSS	<0.5	33	8	40	<5	<5	<0.5
80937080 L53N, 47+25E	SILT, FI SD, OX ARG FRAGS 70% SILT, 25% SD, 5% OX ARG FRAGS	B GOOD	BANK 25 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1	OX FRAGS, MOSTLY ARG, SOME BX FRAGS (OX) IN HOLE	0.005	<0.5	53	11	47	39	<5	<0.5
60937180 L53N, 47+37E	SILT, FI-CO SD, ORG 40% SILT, 50% SD, 10% ORG	B GOOD	25 CM, BRN - ORGE/BRN SILT-CO	GOOD>S MV1	HETRO FRAGS IN HOLE	<0.005	0.5	52	10	49	19	<5	<0.5
60937280 L53N, 47+50E	CL, SILT, ORG/OX FRAGS 10% CL, 80% SILT, 10% ORG/OX FRAGS	AB POOR	BANK 15 CM, BRN - ORGE/BRN CL-FRAGS	GOOD>S MVI	AREA OF SHEAR ZONE C/W SLABS CHL SCHIST; ORG BX FRAGS TO 3CM IN HOLE	NSS	<0.5	35	7	38	8	<5	<0.5

a se e e e e e

NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTIONS / NAME, COMPOSITION	AND MULTI ELEMENT SIGNA HORIZON, DEVELOPMENT	TABLE GSC2 (CON'T): NTURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
60937380 153N, 47+67E	SILT, ORG 90% SILT, 10% ORG	AB, THICK A GOOD	BANK 30 CM, ORGE/BRN SILT	GOOD>S MV1	N/A	NSS	<0.5	12	6	15	<5	<5	<0.5
60937480 L53N, 47+75E	SILT, SD, ORG 60% SILT, 30% 8D, 10% ORG	B FAIR	BANK 25 CM, GRY SILT-CO	GOOD>S MV1	OX ARG FRAGS IN HOLE	0.005	1.2	70	10	33	12	<5	<0.5
60937680 L53N, 47+87E	SILT, SD, ORG 60% SILT, 30% SD, 10% ORG	B FAIR	30 CM, GRY SILT-CO	GOOD>S MV1	OX ARG FRAGS IN HOLE	<0.005	<0.5	37	13	47	22	<5	<0.5
60937780 153N, 48+00E	SILT, SD, ORG, ARG 70% SILT, 25% SD, 5% ORG/ARG	B GOOD	BANK 30 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1	OX ARG FRAGS IN HOLE	<0.005	0.8	34	16	78	30	<5	<0.5
60937880 L53N, 48+12E	SILT, FI SD, ORG, ARG 50% SILT, 45% SD, 5% ORG/ARG	B GOOD	BANK 30 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1	ARG FRAGS IN HOLE	0.005	0.5	36	16	56	49	<5	<0.5
80937980 L53N, 48+25E	SILT, FI SD, ORG, ARG 50% SILT, 45% SD, 5% ORG/ARG	B GOOD	BANK 20 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1, 2	ARG FRAGS IN HOLE	<0.005	0.8	20	5	23	<5	<5	<0.5
60938080 L53N, 48+37E	SILT, FI SD, ORG, ARG FRAGS 45% SILT, 45% SD, 10% ORG/ARG	B GOOD	BANK 30 CM, ORGE/BRN SILT-FI	GOOD>S MV1, 2	ARG FRAGS IN HOLE	<0.005	0.9	40	5	34	<5	<5	<0.5
60938180 L53N, 48+50E	SILT, FI SD, ARG FRAGS 70% SILT, 25% SD, 5% ARG FRAGS	STONEY B GOOD	BANK 30%, ORGE BRN SILT-FRAGS	GOOD>S MV1, 2	FRAGS, LIM ARG TO 4CM, IN HOLE	<0.005	2.5	65	18	69	20	<5	0.6
60935230 L53N, 48+62E	SILT, FI SD, ARG FRAGS 70% SILT, 25% SD, 5% ARG FRAGS	STONEY B GOOD	BANK 30 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1, 2	TOP OF STEEP SLOPE HETRO FRAGS C/W PY ARG	0.005	1.6	48	12	50	20	<5	0.6
60938380 L53N, 48+75E	SILT, FI SD, FRAGS 50% SILT, 45% FI SD, 5% FRAGS	ROCKY B FAIR	10 CM, BRN SILT-FRAGS	GOOD>S MV2	OX ARG FRAGS IN HOLE	<0.005	1.8	49	14	54	24	≺5	0.5
60936730 L53N, 52+25E	SILT, FI-CO SD, FRAGS 60% SILT, 35% SD, 5% FRAGS FROM QM	B GOOD	BANK 20 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV2	QM BLDRS IN AREA QM FRAGS IN HOLE	<0.005	<0.5	16	16	56	15	<5	<0.5
60936680 L53N, 52+75E	SILT, SD, QM FRAGS 40% SILT, 55% SD, 5% FRAGS	STONEY B GOOD	BANK 25 CM, YEL/BRN SILT-FRAGS	GOOD≻S MV2	QM BLDRS IN AREA QM FRAGS IN HOLE	<0.005	<0.5	14	14	58	17	<5	<0.5
60936530 L53N, 53+25E	SILT, SD, FRAGS FROM QM 70% SILT, 25% SD, 5% FRAGS	B GOOD	BANK 25 CM, GRY/BRN SILT-FRAGS	GOOD>NE ISLAND MV1, 2 MV2 CRST HILL 53+05E	CO QTZ & FELD FRAGS FROM QM	<0.005	<0.5	13	13	4 1	26	<5	<0.5

		TABLE GSC2 (CON'T):										
POLY SOIL SAMPLE DESCRIPTION	S AND MULTI ELEMENT S	GNATURE ANALYTICAL RESULTS	5									
NAME,	HORIZON,	DEPTH, COLOUR,	DRAINAGE,	GEOLOGY	Au	Ag	Cu	Pb	Zn	As	SÞ	Cd
COMPOSITION	DEVELOPMENT	GRAIN SIZE	VEGETATION		ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm
SILT, SD, FRAGS	STONEY B	25 CM, GRY/BRN	GOOD>N	MAINLY ARG & QM FRAGS	<0.005	<0.5	19	11	38	19	<5	<0.5
60% SILT, 30% SD, 10% FRAGS	GOOD	SILT-FRAGS	MV2									
SILT, SD, FRAGS	STONEY B	BANK 25 CM	GOOD>NE	NO OC; OX ARG & FRESH ARG	<0.005	0.6	19	16	51	16	<5	<0.5
60% SILT, 30% SD, 10% FRAGS	GOOD	SILT-FRAGS	MV2	FRAGS								
CL. SILT, FI SD, FRAGS	В	20 CM, RD-BRN/GRY	FAIR/POOR	NO OC; OX MAT, SOME HEM,	<0.005	<0.5	26	14	33	15	<5	<0.5
30% CL, 50% SILT, 15% SD,	GOOD	CL-FRAGS	MV1, EDGE MV2	SOME LIM, SOME ARG, SOME								
				QM								
CL, SILT, SD, FRAGS	8	18 CM, ORGE-BRN/BLK	FAIR/POOR>SW	QM FRAGS - SOME LIM	0.015	<0.5	29	22	91	15	<5	<0.5
10% CL, 40% SILT, 40% SD, 10%	GOOD	CL-FRAGS	LOW FLOW CK	QM TERRAIN								
QM FRAGS			ABUNDANT FERNS									
			MV1									
SILT, FI-CO SD, QM FRAGS	в	25 CM, ORGE/BRN	POOR	QM FRAGS - SOME LIM	<0.005	0.7	20	13	56	11	<5	<0.5
40% SILT, 55% SD, 5% FRAGS	GOOD	SILT-FRAGS	MV1	QM TERRAIN		-					-	
SILT, FI-CO SD, QM FRAGS	В	25 CM, ORGE/BRN	POOR	QM FRAGS - QM TERRAIN	<0.005	<0.5	16	10	39	12	<5	<0.5
40%SILT, 55% SD, 5% FRAGS	GOOD	SILT-FRAGS	MV1									
SILT, FI-CO SD, QM FRAGS	в	25 CM, ORGE/BRN	POOR	QM FRAGS - QM TERRAIN	0.020	<0.5	13	14	57	14	<5	<0.5
40%SILT, 55% SD, 5% FRAGS	GOOD	SILT-FRAGS	MV1									
	POLY SOIL SAMPLE DESCRIPTION NAME, COMPOSITION SILT, SD, FRAGS 60% SILT, 30% SD, 10% FRAGS SILT, SD, FRAGS 60% SILT, 30% SD, 10% FRAGS CL, SILT, SD, FRAGS 30% CL, 50% SILT, 15% SD, CL, SILT, FI SD, FRAGS 10% CL, 50% SILT, 15% SD, CL, SILT, SD, FRAGS 10% CL, 40% SILT, 40% SD, 10% QM FRAGS SILT, FI-CO SD, QM FRAGS 40% SILT, 55% SD, 5% FRAGS SILT, FI-CO SD, QM FRAGS SULT, FI-CO SD, QM FRAGS SILT, FI-CO SD, GM FRAGS SILT, FI-CO SD, GM FRAGS SILT, FI-CO SD, GM FRAGS SULT, FI-CO SD, GM FRAGS	POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT S NAME, COMPOSITIONHORIZON, DEVELOPMENTSILT, SD, FRAGSSTONEY B GOODSILT, SD, FRAGSGOODSILT, SD, FRAGSSTONEY B GOODCL, SILT, FI SD, FRAGSB GOODCL, SILT, FI SD, FRAGSB 	TABLE GSC2 (CON'T): POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULT: NAME, HORIZON, DEPTH, COLOUR, COMPOSITION DEVELOPMENT GRAIN SIZE SILT, SD, FRAGS STONEY B 25 CM, GRY/BRN 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS 60% SILT, 50, FRAGS B BANK 25 CM 60% SILT, 50, FRAGS B DEVELOPMENT GRAIN 25 CM 60% SILT, 50, FRAGS B BANK 25 CM GOOD SILT-FRAGS CL, SILT, FI SD, FRAGS B 20 CM, RD-BRN/GRY GOOD CL-FRAGS CL, SILT, SD, FRAGS B 18 CM, ORGE-BRN/BLK GOOD CL-FRAGS OW CL, 40% SILT, 40% SD, 10% GOOD CL-FRAGS GOOD SILT-FRAGS SILT, FI-CO SD, QM FRAGS B 25 CM, ORGE/BRN SULT-FRAGS 40% SILT, 55% SD, 5% FRAGS GOOD SILT-FRAGS SULT-FRAGS SILT, FI-CO SD, QM FRAGS B 25 CM, ORGE/BRN SULT-FRAGS <th< td=""><td>TABLE GBC2 (CONT): POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS DRAINAGE, NAME, DEVELOPMENT DEPTH, COLOUR, DRAINAGE, COMPOSITION DEVELOPMENT GRAIN SIZE DRAINAGE, SILT, SD, FRAGS STONEY B 25 CM, GRY/BRN GOOD>N 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS MV2 SILT, SD, FRAGS STONEY B BANK 25 CM GOOD>NE 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS MV2 CL, SILT, FI SD, FRAGS B 20 CM, RD-8RN/GRY FAIR/POOR 30% CL, 50% SILT, 15% SD, GOOD CL-FRAGS MV1 CL, SILT, SD, FRAGS B 18 CM, ORGE-BRN/BLK FAIR/POOR>SW CL, SILT, SD, FRAGS B GOOD CL-FRAGS LOW FLOW CK QM FRAGS B 25 CM, ORGE/BRN POOR ABUNDANT FERNS WV1 SILT, FLOO SD, QM FRAGS B 25 CM, ORGE/BRN POOR 40% SILT, FLOO SD, QM FRAGS B 25 CM, ORGE/BRN POOR 40% SILT, FLOO SD, QM FRAGS B 25 CM, ORGE/BRN MV1 <td>TABLE 8022 (CONT):POLY SOIL SAMPLE DESCRIPTIONS MULTI ELEMENT SIGNATURE ANALYTICAL RESULTSNAME, COMPOSITIONHORIZON, DEVELOPMENTDEPTH, COLOR, GRAIN SIZEDRAINAGE, VEGETATIONGEOLOGYSILT, SD, FRAGSSTONEY B GOOD25 CM, GRY/BRN SILT-FRAGSGOOD>N MV2MAINLY ARG & QM FRAGSSILT, SD, FRAGSSTONEY B GOODBANK 25 CM SILT-FRAGSGOOD>NE MV2NO OC; 0X ARG & FRESH ARG FRAGS60% SILT, 30% SD, 10% FRAGSSTONEY B GOODBANK 25 CM SILT-FRAGSGOOD>NE MV2NO OC; 0X ARG & FRESH ARG FRAGScl, SILT, SD, FRAGSB GOOD20 CM, RD-BRN/GRY CL-FRAGSFAIR/POOR MV1, EDGE MV2NO OC; 0X MAT, SOME HEM, SOME LIM, SOME ARG, SOME QMcl, SILT, SD, FRAGSB GOOD20 CM, RD-BRN/GRY CL-FRAGSFAIR/POOR>SW QM V1, EDGE MV2OM FRAGS - SOME LIM QM FRAGS - SOME LIM QM FRAGScl, SILT, SD, FRAGSB GOOD18 CM, ORGE-BRN/BLK CL-FRAGSFAIR/POOR>SW QM FRAGS - SOME LIM QM FRAGSQM FRAGS - SOME LIM QM FRAGSSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - SOME LIM QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGS</td><td>TABLE GB22 (CONT): POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS DRAINAGE, GEOLOGY Au NAME, HORIZON, DEVELOPMENT GRAIN SIZE VEGETATION GEOLOGY Au SILT, SD, FRAGS STONEY B 25 CM, GRY/BRN GOOD>N MAINLY ARG & QM FRAGS <0.005</td> 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS GOOD>N MAINLY ARG & QM FRAGS <0.005</td> 8LT, SD, FRAGS STONEY B BANK 25 CM GOOD>N NO OC; OX ARG & FRESH ARG <0.005</th<>	TABLE GBC2 (CONT): POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS DRAINAGE, NAME, DEVELOPMENT DEPTH, COLOUR, DRAINAGE, COMPOSITION DEVELOPMENT GRAIN SIZE DRAINAGE, SILT, SD, FRAGS STONEY B 25 CM, GRY/BRN GOOD>N 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS MV2 SILT, SD, FRAGS STONEY B BANK 25 CM GOOD>NE 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS MV2 CL, SILT, FI SD, FRAGS B 20 CM, RD-8RN/GRY FAIR/POOR 30% CL, 50% SILT, 15% SD, GOOD CL-FRAGS MV1 CL, SILT, SD, FRAGS B 18 CM, ORGE-BRN/BLK FAIR/POOR>SW CL, SILT, SD, FRAGS B GOOD CL-FRAGS LOW FLOW CK QM FRAGS B 25 CM, ORGE/BRN POOR ABUNDANT FERNS WV1 SILT, FLOO SD, QM FRAGS B 25 CM, ORGE/BRN POOR 40% SILT, FLOO SD, QM FRAGS B 25 CM, ORGE/BRN POOR 40% SILT, FLOO SD, QM FRAGS B 25 CM, ORGE/BRN MV1 <td>TABLE 8022 (CONT):POLY SOIL SAMPLE DESCRIPTIONS MULTI ELEMENT SIGNATURE ANALYTICAL RESULTSNAME, COMPOSITIONHORIZON, DEVELOPMENTDEPTH, COLOR, GRAIN SIZEDRAINAGE, VEGETATIONGEOLOGYSILT, SD, FRAGSSTONEY B GOOD25 CM, GRY/BRN SILT-FRAGSGOOD>N MV2MAINLY ARG & QM FRAGSSILT, SD, FRAGSSTONEY B GOODBANK 25 CM SILT-FRAGSGOOD>NE MV2NO OC; 0X ARG & FRESH ARG FRAGS60% SILT, 30% SD, 10% FRAGSSTONEY B GOODBANK 25 CM SILT-FRAGSGOOD>NE MV2NO OC; 0X ARG & FRESH ARG FRAGScl, SILT, SD, FRAGSB GOOD20 CM, RD-BRN/GRY CL-FRAGSFAIR/POOR MV1, EDGE MV2NO OC; 0X MAT, SOME HEM, SOME LIM, SOME ARG, SOME QMcl, SILT, SD, FRAGSB GOOD20 CM, RD-BRN/GRY CL-FRAGSFAIR/POOR>SW QM V1, EDGE MV2OM FRAGS - SOME LIM QM FRAGS - SOME LIM QM FRAGScl, SILT, SD, FRAGSB GOOD18 CM, ORGE-BRN/BLK CL-FRAGSFAIR/POOR>SW QM FRAGS - SOME LIM QM FRAGSQM FRAGS - SOME LIM QM FRAGSSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - SOME LIM QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGS</td> <td>TABLE GB22 (CONT): POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS DRAINAGE, GEOLOGY Au NAME, HORIZON, DEVELOPMENT GRAIN SIZE VEGETATION GEOLOGY Au SILT, SD, FRAGS STONEY B 25 CM, GRY/BRN GOOD>N MAINLY ARG & QM FRAGS <0.005</td> 60% SILT, 30% SD, 10% FRAGS GOOD SILT-FRAGS GOOD>N MAINLY ARG & QM FRAGS <0.005	TABLE 8022 (CONT):POLY SOIL SAMPLE DESCRIPTIONS MULTI ELEMENT SIGNATURE ANALYTICAL RESULTSNAME, COMPOSITIONHORIZON, DEVELOPMENTDEPTH, COLOR, GRAIN SIZEDRAINAGE, VEGETATIONGEOLOGYSILT, SD, FRAGSSTONEY B GOOD25 CM, GRY/BRN SILT-FRAGSGOOD>N MV2MAINLY ARG & QM FRAGSSILT, SD, FRAGSSTONEY B GOODBANK 25 CM SILT-FRAGSGOOD>NE MV2NO OC; 0X ARG & FRESH ARG FRAGS60% SILT, 30% SD, 10% FRAGSSTONEY B GOODBANK 25 CM SILT-FRAGSGOOD>NE MV2NO OC; 0X ARG & FRESH ARG FRAGScl, SILT, SD, FRAGSB GOOD20 CM, RD-BRN/GRY CL-FRAGSFAIR/POOR MV1, EDGE MV2NO OC; 0X MAT, SOME HEM, SOME LIM, SOME ARG, SOME QMcl, SILT, SD, FRAGSB GOOD20 CM, RD-BRN/GRY CL-FRAGSFAIR/POOR>SW QM V1, EDGE MV2OM FRAGS - SOME LIM QM FRAGS - SOME LIM QM FRAGScl, SILT, SD, FRAGSB GOOD18 CM, ORGE-BRN/BLK CL-FRAGSFAIR/POOR>SW QM FRAGS - SOME LIM QM FRAGSQM FRAGS - SOME LIM QM FRAGSSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - SOME LIM QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGSB GOOD25 CM, ORGE/BRN SILT-FRAGSPOOR MV1QM FRAGS - QM TERRAINSILT, FI-CO SD, QM FRAGS	TABLE GB22 (CONT): POLY SOIL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS DRAINAGE, GEOLOGY Au NAME, HORIZON, DEVELOPMENT GRAIN SIZE VEGETATION GEOLOGY Au SILT, SD, FRAGS STONEY B 25 CM, GRY/BRN GOOD>N MAINLY ARG & QM FRAGS <0.005	TABLE GSC2 (CONT): TABLE GSC2 (CONT): POLY SOL SAMPLE DESCRIPTIONS AND MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS NAME, DEVELOPMENTDEPTH, COLOUR, GRAIN SIZEDRAINAGE, VEGETATIONGEOLOGYAu AppmAg ppmSILT, SD, FRAGS 60% SLT, 30% SD, 10% FRAGSSTONEY B GCOD25 CM, GRY/BRN SILT-FRAGSGOOD>NMAINLY ARG & OM FRAGS<0.005	TABLE GSC2 (CONT): TOLS AND NULTI ELEMENT SIGNATURE ANALYTICAL RESULTS NAME, OPCY SOIL SAMPLE DESCRIPTIONS AND NULTI ELEMENT SIGNATURE ANALYTICAL RESULTS NAME, DEVELOPMENTDEPTH, COLOUR, ORAIN SIZEDRAINAGE, VEGETATIONGEOLOGY:AuAg ppmCuSILT, SD, FRAGS 6000STONEY B 000025 CM, GRY/BRN SILT, FRAGSGOOD>N MV2MAINLY ARG & QM FRAGS<0.005	POLY SOIL SAMPLE DESCRIPTIONS AND MULT ELEMENT SIGNATURE ANALYTECA. RESULTS MAME, DEVELOPMENTDEPTH, COLOUR, GRAIN SZEDRAINAGE, VEGETATIONGEOLOGYAuAg pmCuPpSILT, SD, FRAGS 60% SILT, 30% SD, 10% FRAGSSTONEY B GOOD25 CM, GRY/BRN SILT-FRAGSGOOD>N MV2MAINLY ARG & QM FRAGS<0.005	TABLE GSC2 (CONT):POLY SOIL SAMPLE DESCRIPTIONS AND MUTTE LEMENT BIGNATURE ANALYTICAL RESULTSNAME, COMPOSITIONHORIZON, DEVELOPMENTDEPTH, COLOUR, GRAIN SIZEDRAINAGE, VEGETATIONGEOLOGYAu ppmAg ppmCu ppmPpmPpmSILT, SD, FRAGS 60% SILT, 30% SD, 10% FRAGSSTONEY B GOOD25 CM, GRYBRN SILT FRAGSGOOD>N MV2MAINLY ARG & QM FRAGS<0.05	TABLE GBC2 (COMT): POLY SOLE SAMPLE DESCRIPTIONS AND BUTLE LEMENTS BIGHATURE ANALYTICAL RESULTS NAME, COMPOSITION DAU DEVELOPMENT DEPTH, COLOUR, GRAIN SIZE DRAIMAGE, VEGETATION GEOLOGY Au Ag Cu Pb Zn Aa COMPOSITION DEVELOPMENT GRAIN SIZE VEGETATION GEOLOGY Au Ag Cu Pb Zn Aa SULT, SD, FRAGS STONEY B 25 CM, GRYJBRN GOOD>N MAINLY ARG & GM FRAGS <0.005	TABLE GSC2 (CONT): POLY SOIL SAMPLE DESCRIPTIONS AND BULTELEMENT IGNATURE ANALTINGLA RESULTS NAME. DEPTH. COLOUR, ORAINAGE. DEPTH. COLOUR, GRAINAGE. DEPH. COLOUR, GRAINAGE. DEPTH. COLOUR, GRA

, , , · · · · · · ·

			TABLE GSC2 (CON'T):										
NUMBER, LOCATION	POLY SOL SAMPLE DESCRIPTIONS NAME, COMPOSITION	BAND MULTI ELEMENT SIGN, HORIZON, DEVELOPMENT	ATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
<u>1.53+50N, W-E</u>													
186190SO L53+50N, 49+00E	CL, SILT 20% CL, 60% SILT	B GOOD	BANK, BRN - ORGE/BRN CL-SILT	GOOD>E MV1	ANG BLDRS OF SIL BX TO 0.8 M	0.006	0.6	207	26	215	22	<5	<0.5
1 86192SO L53+50N, 49+50E	SILT, GEN FI SD, HETRO FRAGS (MOSTLY ARG & BX) 50% SILT, 40%, 10% HETRO FRAGS, MINOR ORG	STONEY B GOOD	15 CM SILT-FRAGS	GOOD>E MV1	ARG & BX FRAGS IN HOLE	0.023	0.8	45	25	69	52	<5	<0.5
18619380 L53+50N, 49+75E	SILT, GEN FI SD, HETRO FRAGS (MOSTLY ARG & BX) 50% SILT, 40% SD, 10% HETRO FRAGS, MINOR ORG	STONEY B POOR	15 CM SILT-FRAGS	GOOD>S MV1	ARG BLDRS	0.040	<0.5	51	35	112	174	<5	<0.5
18618580 L53+50N, 50+85E	SILT, SD, GRAVEL 10% SILT, 80% SD, 10% HETRO FRAGS	STONEY B GOOD	20 CM SILT-FRAGS	GOOD>S MV1	ABRUPT CHANGE TO BX BLDRS ON FLATTER GROUND FRAGS OF ARG, OX BX, QTZ C/W ASPY	0.021	0.8	51	23	150	159	5	<0.5
186184SO L53+50N, 51+00E	SILT, GEN FI SD, ORG, HETRO FRAGS DER FROM QM & ARG 45% SILT, 45% SD, 5% ORG, 5% HETRO FRAGS	B GOOD	BANK 35 CM, BRN/BLK SILT-FRAGS	GOOD>S MV2, 4, 1	QM AND ARG FRAGS IN HOLE	<0.005	<0.5	35	15	63	23	<5	<0.5
18618380 L53+50N, 51+25E	SILT, FI-CO SD, HETRO FRAGS ANG ARG, OX MAT, QM	STONEY B C/W QM BLDR FAIR	BANK 25 CM, BRN SILT-FRAGS	GOOD>S MV1	SOME QM BLDRS HETRO FRAGS IN HOLE	0.007	0.7	31	16	72	26	<5	<0.5

.

· · · ·

				TABLE GSC2 (CON'T):										
NUMBEI	r, On	POLY SOIL SAMPLE DESCRIPTION NAME, COMPOSITION	8 AND MULTI ELEMENT SIGN HORIZON, DEVELOPMENT	NATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
1 561828 L53+50N	io 1, 51+50E	SILT, FI SD, ORG 75% SILT, 15% SD, 10% ORG	B GOOD	BANK 25 CM, ORGE/BRN SILT-FI	GOOD>S MV2	SOME BX FRAGS IN HOLE	<0.005	0.9	21	11	55	21	<5	<0.5
1 861815 L53+50N	i 0 i, 51+75E	SILT, FI-CO SD, FRAGS FROM QM, ARG, ORG 35% SILT, 60% SD, 5%ORG	B GOOD	BANK 25 CM, GRY SILT-FRAGS	GOOD≻S MV2	QM, ARG FRAGS IN HOLE	<0.005	1.2	19	18	50	16	<5	<0.5
1861808 L53+50N	iO I, 52+00E	SILT, FI-CO SD; ANG FRAGS QM 40% SILT, 50% SD, 10% FRAGS	B GOOD	30 CM, GRY-BRN SILT-FRAGS	GOOD>S MV2	QM FRAGS IN HOLE	<0.005	<0.5	16	22	68	14	<5	<0.5
1861793 L53+50N	i 0 I, 52+25E	SILT, FI-CO SD; ANG FRAGS QM 40% SILT, 50% SD, 10% FRAGS	B GOOD	30 CM, GRY-BRN SILT-FRAGS	GOOD>SE MV2	LIM QM, ARG FRAGS IN HOLE	<0.005	<0.5	15	10	42	11	<5	<0.5
1 861788 L53+50N	0 , 52+50E	SILT, FI-CO SD, HETRO FRAGS ARG & QM 30% SILT, 65% SD, 5% FRAGS	B FAIR	25 CM, BRN - ORGE/BRN SILT-FRAGS	GOOD>E MV2	LIM QM, ARG FRAGS IN HOLE	<0.005	<0.5	11	16	55	13	<5	<0.5
1 861778 153+50N	0 I, 52+75E	SILT, SD (FI-CO FROM QM), ORG 30% SILT, 65% SD, 5% ORG	B GOOD	20 CM, GRY - BLK SILT-CO	GOOD>NE MV2	W END BEAR VALLEY QM SD IN HOLE	<0.005	0.6	16	20	42	7	<5	<0.5
1561768 L53+50N	0 , 53+00E	SILT, SD, ORG 20% SILT, 30% SD, 50% ORG	AB, THICK A FAIR	30 CM, GRY - BRN SILT-CO	GOOD≻E MV1	ANG QM & ARG FRAGS IN HOLE	<0.005	0.5	23	17	28	<5	<5	<0.5
1861768 L53+50N	0 , 53+25E	SILT, FI-CO SD, OX FRAGS QM	B GOOD	25 CM, BRN - ORGE BRN SILT-CO	GOOD>E MV1, 2	OX QM FRAGS IN HOLE	<0.005	1.4	32	19	37	13	<5	<0.5
1861748(L53+50N	0 , 53+50E	CL, SILT, ORG MUCK 10% CL, 60% SILT, 30% ORG	B GOOD	30 CM, BLK-BRN CL-SILT	FAIR-POOR MV1 C/W FERNS	NA	NSS	<0.5	18	19	37	10	<5	<0.5
1861738 L53+50N	0 , 53+75E	CL, SILT, ORG MUCK 10% CL, 60% SILT, 30% ORG	B GOOD	30 CM, BLK-BRN CL-SILT	FAIR-POOR MV1 C/W FERNS	NA	<0.005	<0.5	8	15	24	<5	<5	<0.5
1661728 L53+50N,	0 , 54+00E	SILT, ORG MUCK 80% SILT, 20% ORG	B FAIR	25 CM, BRN - BLK SILT	FAIR/POOR MV1	BOGGY GROUND	<0.005	<0.5	29	38	93	6	<5	2.3

· · · ·

	POLY SOIL SAMPLE DESCRIPTION	AND MULTI ELEMENT SIGN	TABLE GSC2 (CON'T): ATURE ANALYTICAL RESULTS										
NUMBER, LOCATION	NAME, COMPOSITION	HORIZON, DEVELOPMENT	DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
<u>154+00N. W-E</u>													
18620280 L54N, 47+25E	SILT, SD, ORG 60% SILT, 30% FI SD, 10% ORG	B GOOD	20 CM, ORGE BRN SILT-FI	GOOD>E MV1	BX TERRAIN	<0.005	<0.5	161	15	136	7	<5	<0.5
18820380 L54N, 47+50E	811, SD, ORG 60% S11, 30% FI SD, 5% ORG, 5% LIM, CHL, BX FRAGS	B Good	20 CM, ORGE BRN SILT-FRAGS	GOOD>E MV3	BX TERRAIN	<0.005	0.6	40	23	58	57	<5	<0.5
18620480 L54N, 47+75E	81LT, SD, ORG 80% SILT, 30% FI SD, 5% ORG, 5% Lim, CHL, BX FRAGS	8 Good	20 CM, ORGE BRN SILT-FRAGS	GOOD>E MV1	BX TERRAIN	<0.005	2.5	29	21	90	12	<5	1.0
18620580 L54N, 48+00E	81LT, 8D, ORG 60% 81LT, 30% FI SD, 5% ORG, 5% LIM, CHL, BX FRAGS	B GOOD	20 CM, BRN-ORGE BRN SILT-FRAGS	GOOD>E MV2	BX TERRAIN	0.007	1.3	35	25	96	46	<5	<0.5
1 8620680 L54N, 48+25E	SILT, SD, ORG 70% SILT, 30% FI-CO SD	B GOOD	20 CM, ORGE BRN SILT-CO	MV2	ALT BX TERRAIN	<0.005	1.1	33	19	85	43	<5	<0.5
18620780 L54N, 48+50E	SILT, SD, ORG 70% SILT, 30% FI-CO SD	B GOOD	20 CM, ORGE BRN SILT-CO	GOOD>E MV1	ALT BX TERRAIN	0.006	1.5	258	308	1435	11	7	0.9
80951480 L54N, 48+75E	SILT, FI-CO SD, ORG & FRAGS 30% SILT, 60% SD, 10% ORGS ORG & FRAGS	B GOOD	BANK 10 CM, ORGE/BRN SILT-FRAGS	GOOD>SE MV1	CHL SCHIST DERIVED FROM ALT BX; SUBCROP NEAR SHEAR ZONE - 48+92E - OC CHL SCHIST	<0.005	0.9	56	13	66	50	<5	<0.5

,

.

NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTIONS NAME, COMPOSITION	I AND MULTI ELEMENT SIGN HORIZON, DEVELOPMENT	TABLE GSC2 (CON'T): NATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Си ppm	Pb ppm	Zn ppm	As ppm	Sb PPM	Cd ppm
60951580 L54N, 49+00E	SILT, FI-CO SD, FRAG 30% SILT, 65% SD, 5% FRAGS OX SCHIST	B GOOD	BANK 30 CM, YEL/BRN SILT-FRAGS	GOOD>S MV1/MV2	FRAGS OF OX, CHL SCHIST IN HOLE	<0.005	<0.5	118	13	97	18	<5	<0.5
80951380 154N, 52+00E	SD, ORG 70% SD, 30% ORG	B, THICK A GOOD	40 CM, GRY FI	GOOD>N MV2	OX QM FRAGS TO 2.5 CM IN HOLE	<0.005	<0.5	11	7	38	13	<5	<0.5
80951280 L54N, 52+25E	SILT, FI-CO SD, ORG, FRAGS 10% SILT, 80% SD, 10% ORGS & FRAGS	ROOTY A/B GOOD	BANK 25 CM, GRY/BRN Silt-FRAGS	GOOD>N MV2	QM TERRAIN, FRAGS OF QTZ & FELDSPAR AS CO COMPONENT OF SAND	<0.005	1.4	38	15	34	15	<5	<0.5
60951180 L54N, 52+50E	SILT, FI-CO SD, ORG, FRAGS 10% SILT, 80% SD, 10% ORGS & FRAGS	ROOTY A/B GOOD	BANK 25 CM, BRN SILT-FRAGS	GOOD>N MV2		<0.005	<0.5	18	16	35	14	<5	<0.5
60960980 L54N, 53+00E	CL, SILT, ORG, QM FRAGS 40% CL, 45% SILT, 10% ORG, 5%QM FRAGS	B GOOD	BANK 30 CM, GRY/BLK SILT-FRAGS	POOR MV1	QM FRAGS & SD IN HOLE	<0.005	0.5	31	21	68	6	<5	1.6
60950680 L54N, 53+50E	SILT, FI SD, FRAGS FROM QM 70% SILT, 25% SD, 5% FRAGS	B Good	BANK 30 CM, ORGE/BRN SILT-FRAGS	GOOD>S MV1	QM FRAGS & SD IN HOLE	<0.005	<0.5	21	6	62	7	<5	0.9
60950780 1.54N, 53+75E	CL, SILT, ORG 40% CL, 50% SILT, 10% ORG	B GOOD	30 CM, GRY/BLK CL-SILT	POOR MV1	QM BLDRS	NSS	<0.5	41	75	58	7	<5	1.9
60950680 L54N, 54+00E	CL, SILT, FRAGS OF QM 20% CL, 40% SILT, 40% QM FRAGS	STONEY B GOOD	BANK 20 CM, BRN-YEL/BRN CL-FRAGS	FAIR>S; BOGGY MV1	LRG QM BLDRS TO 6X4 M	<0.005	<0.5	17	18	100	14	<5	<0.5
60950580 L54N, 54+25E	CL, SILT, ORG 40% CL, 50% SILT, 10% ORG	B GOOD	BANK 25 CM, GRY/BLK CL-SILT	POOR MV1	LRG QM BLDRS TO 3M SD DERIVED FROM QM	NSS	1.1	29	18	51	8	<5	<0.5
60950480 L54N, 54+50E	SILT, FI-CO SD, 70% SILT, 30% SD	B GOOD	BANK 25 CM, BRN SILT-CO	GOOD>S MV1	SD DERIVED FROM QM FELD & QTZ IN CO	0.008	<0.5	20	24	38	16	<5	<0.5
60950380 L54N, 54+75E	SILT, FI-CO SD, 70% SILT, 30% SD	B GOOD	BANK 25 CM, BRN SILT-CO	GOOD>S MV1	SD FROM QM, QM FRAGS IN HOLE	0.015	<0.5	19	18	59	19	<5	<0.5
60950280 L54N, 55+00E	CL, SILT, FI-CO SD 20% CL, 40% SILT, 30% SD	B GOOD	BANK 30 CM CL-CO	GOOD>S MV1	ANG QM FRAGS IN HOLE	NSS	<0.5	20	17	33	13	<5	<0.5

			TABLE GSC2 (CON'T):										
NUMBER, LOCATION	Poly soil sample descriptions NAME, Composition	AND MULTI ELEMENT SI HORIZON, DEVELOPMENT	GNATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
L54+60N. W-E													
59988830** L54+50N, 47+90E	SILT, SD 60% SILT, 30% SD, 10% ORG	B GOOD	30 CM, RD-8LK Silt-fi	GOOD>S MV1	LARGE BLKS ALT VOL (CHL, CARB)	0.020	1.0	77	12	34	<5	<5	<0.5
59988780** L54+50N, 48+17E	SILT, SD 40% SILT, 50% SD, 10% ORG	A-B, THICK A FAIR	30 CM, BRN-BLK SILT-FI	FAIR≻S MV1, 2, 4	ARG BLDRS	0.010	1.5	44	15	49	25	10	<0.5
59968680** L54+50N, 48+50E	CL, SILT, SD 5% CL, 60% SILT, 35% SD	B GOOD	30 CM, BLK-ORGE- BRN CL -F I	GOOD>E MV1, 4	ARG BLDRS	0.030	1.1	69	18	81	25	<5	<0.5
59988530** L54+50N, 48+75E	CLAY, SILT, ORGS 10% CL, 40% SILT, 50% ORGS	A-B, THICK A GOOD	40 CM, RD-BLK CL-SILT	GOOD>S MV1	NA	0.020	0.8	43	11	4 1	9	<5	<0.5
69956380** L54+50N, 49+00E	CLAY, SILT, SD 10% CL, 80% SILT, 20% SD 2% ORGS, 8% ANG FRAGS ARG	B GOOD	BANK, 30 CM; ORGE- BRN CL-FRAGS	GOOD>SE MV1	ARG FRAGS IN HOLE	0.010	0.6	60	23	102	60	11	<0.5
59986280** L54+50N, 49+12E	SILT, SD 40% SILT, 30% SD, 30% ORG	A-8, THICK A GOOD	40 CM, ORGE BRN - BRN SILT-FI	GOOD>SE MV1	NA	0.020	0.6	37	11	54	<5	<5	<0.5
69986150** L54+50N, 49+25E	SILT, SD 60% SILT, 35% SD, 5% ORG	B GOOD	BANK, 20 CM; BRN-BLK Silt-Fi	GOOD>S MV1	SHEARED BX ON WEST SIDE OF CREEK (HISTORIC 785 SAMPLE)	0.140	1.7	57	58	87	53	<5	<0.5
59985030* L54+50N, 49+50E	CL, SILT, SD 5% CL, 60% SILT, 25% SD, 5% ORGS, 5% HETRO FRAGS - ARG, BX, QTZ	B GOOD	BANK, 35 CM; BRN CL-FRAGS	GOOD>SE MV1	MAINLY ARG BLDRS	0.080	1.1	59	29	110	20	<5	<0.2
59985980 L54+50N, 49+67E	CL, SILT, SD 5% CLAY, 60% SILT, 25% SD, 5% ORGS, 5% HETRO FRAGS - ARG, BX, QTZ	STONEY B FAIR	25 CM; ORGE-BRN CL-FRAGS	GOOD>S MV1	MAINLY ARG BLDRS	0.060	0.9	48	33	126	83	<5	<0.2
59955330* L54+50N, 49+75E	CL, SILT, SD 5% CL, 60% SILT, 25% SD, 5% ORGS, 5% HETRO FRAGS - ARG, BX, QTZ	STONEY B FAIR	25 CM; ORGE-BRN CL-FRAGS	GOOD>S MV1	LIM AGR & BX BLDRS	0.220	1.4	58	44	162	94	<5	<0.2
59988780* L54+50N, 49+87E	CL, SILT, SD 5% CLAY, 60% SILT, 25% SD, 5% ORGS, 5% HETRO FRAGS - ARG, 8X, QTZ	STONEY B FAIR	35 CM; BRN CL-FRAGS	GOOD>S MV1	LIM AGR & BX BLDRS	0.070	1.4	73	41	145	97	<5	<0.2

* IPL Au ICP Values **IPL Au, CHEMEX ICP Values

			TABLE GSC2 (CON'T);										
	POLY SOIL SAMPLE DESCRIPTIONS	AND MULTI ELEMENT SIG	INATURE ANALYTICAL RESULTS										
NUMBER,	NAME,	HORIZON,	DEPTH, COLOUR,	DRAINAGE,	GEOLOGY	Au	Ag	Cu	РЬ	Zn	As	8ь	Cd
LOCATION	COMPOSITION	DEVELOPMENT	GRAIN SIZE	VEGETATION		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
59987050*	SILT, SD	STONEY B	20 CM; BRN	GOOD>S	ARG BLDRS PREDOMINATE	0.020	0.7	36	16	70	8	<5	<0.2
L54+50N, 50+12E	40% SILT, 30% SD, 25% ORG, 5% ARG FRAGS	FAIR	SILT-FRAGS	MV1						-	-	·	
5998718O**	CL, SILT, SD	STONEY B	12 CM; BRN	GOOD>S	BX BLORS C/W QTZ VN &	0.070	1.9	62	24	150	209	5	0.6
L54+50N, 50+25E	5% CLAY, 60% SILT, 30% SD, 5% ORGS	POOR	CL-CO	MV1	LIM ARG BLDRS								
59967280**	CL, SILT, SD	STONEY B	12 CM; BRN	GOOD>S	BX BLORS CAV QTZ VN	0.020	1.0	50	18	124	141	<5	<0.5
L54+50N, 50+37E	5% CLAY, 60% SILT, 30% SD, 5% ORGS	FAIR	CL-CO	MV1	C/W PY; LARGE ARG BLK								
59987380**	SILT, SD	STONEY B	15 CM; BRN	GOOD>S	SIL BX BLDRS	0.040	1.0	63	23	201	184	6	1.4
L54+50N, 50+50E	20% SILT, 75% SD, 5% ORG, CO SD GRAINS OF HETRO FRAGS - ARG, BX	FAIR	SILT-FRAGS	MV1								-	
59987480**	SILT, SD	STONEY B	15 CM; BRN	GOOD>S	ARG, BX BLDRS	0.030	1.1	83	27	146	178	5	<0.5
L54+50N, 50+62E	20% SILT, 75% SD, 5% ORG, CO SD GRAINS OF HETRO FRAGS - ARG, BX	FAIR	SILT-FRAGS	MV1									
59987680*	SILT, SD	A-B, STONEY B,	25 CM, BRN	GOOD>S	ARG BLDRS	0.020	0.6	28	5	63	37	<5	<0.2
L54+50N, 51+25E	40% SILT, 55% SD, 5% ORG	GOOD	SILT-CO	MV3									
59987780**	SILT, SD	B	25 CM; YEL-BRN	GOOD>S	SOME QM BLDRS	0.010	0.6	29	22	89	31	7	<0.5
L54+50N, 51+37E	30% SILT, 65% SD, 5% FRAGS - LIM BX & ARG	GOOD	SILT-FRAGS	MV1									
69987580**	SILT, SD	в	25 CM; YEL-BRN	GOOD>S	QM BLORS IN AREA	0.010	0.9	40	18	58	26	<5	<0.5
L54+50N, 51+50E	30% SILT, 65% SD, 5% FRAGS - LIM BX, ARG & FRIABLE QM	GOOD	SILT-FRAGS	MV1									
59987980**	SILT, SD	STONEY 8	25 CM; YEL-BRN	GOOD>S	ROUNDED OM BLORS, ARG	0.010	0.5	40	20	109	36	<5	<0.5
L54+50N, 51+62E	40% SILT, 55% SD, 5% FRAGS - ARG, FRIABLE QM, OX MAT	GOOD	SILT-FRAGS	₩ V1	BLDRS								
59988080**	SILT, SD	STONEY B	25 CM; YEL-BRN	GOOD>S	ROUNDED QM BLORS, ARG	0.010	<.5	71	27	159	29	5	0.7
L54+50N, 51+75E	40% SILT, 55% SD, 5% FRAGS - ARG, FRIABLE QM, OX MAT	GOOD	SILT-FRAGS	MV1, 2	BLDRS								

* IPL Au ICP Values **IPL Au, CHEMEX ICP Values

	POLY SOIL SAMPLE DESCRIPTIONS	AND MULTI ELEMENT SIGN	TABLE GSC2 (CON'T): ATURE ANALYTICAL RESULTS										
NUMBER, LOCATION	NAME, COMPOSITION	HORIZON, DEVELOPMENT	depth, colour, Grain Size	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	РЬ ррил	Zn ppm	As ppm	Sb ppm	Cd ppm
59988180** L54+50N, 51+87E	CL, SILT, SD 5% CLAY, 70% SILT, 20% SD, 5% ORGS	B GOOD	35 CM, YEL-BRN CL-CO	GOOD>S MV1	QM FRAGS IN HOLE	<0.01	0.7	81	27	116	<5	<5	0.6
59968250** L54+50N, 52+00E	CL, SILT, SD 5% CL, 50% SILT, 35% SD, 10% ORGS; SD DERIVED FROM QM	A-8, THICK A GOOD	35 CM, GREY BLK CL-CO	GOOD>S MV3	LARGE BLDRS QM	0.010	0.7	50	31	60	13	<5	<0.5
59988380** 1.54+50N, 52+25E	CL, SILT, SD 5% CL, 50% SILT, 35% SD, 10% ORGS; SD DERIVED FROM QM	A-B, THICK A GOOD	35 CM, GREY BLK CL-CO	GOOD>S MV3, 1	LARGE BLDRS QM	0.010	1.3	61	25	46	6	<5	<0.5
59988480** L54+50N, 52+50E	CL, SILT, SD 5% CL, 50% SILT, 35% SD, 10% ORGS; SD DERIVED FROM QM	A-B, THICK A GOOD	25 CM, GREY BLK CL-CO	GOOD>S MV2	LARGE BLORS QM	0.010	1.6	85	21	78	<5	<5	1. 2
59968380** L54+50N, 52+75E	SILT, SD 40% SILT, 55% SD, 5% ORG CO SD GRAINS OF QM MAT	B FAIR	25 CM, GREY BLK SILT-CO	GOOD>S MV2	QM CLIFF AT 52+90E	0.010	<.5	15	15	42	13	7	<0.5
69988680** L54+50N, 52+93E	SILT, 8D 30% SILT, 65% SD, 5% ORG CO 8D GRAINS OF QM MAT - 50% LIM	B FAIR	25 CM, GREY- ORGE BLK SILT-CO	GOOD>S MV3	QM CLIFF AT 52+90E	0.010	<.5	14	16	41	11	<5	<0.5

· · · · · ·

۱

* IPL Au ICP Values ** IPL Au, CHEMEX ICP Values

			TABLE GSC2 (CON'T):										
NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTIONS NAME, COMPOSITION	AND MULTI ELEMENT S HORIZON, DEVELOPMENT	IGNATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
155+00N, W-E													
13665430 155N, 48+12E	CL, SILT, ANG FRAGS, SHEARED OX SCHIST (LIM) 5% CL, 85% SILT, 10% ANG FRAGS	B GOOD	20 CM, BRN - ORGE/BRN CL-FRAGS	GOOD>S MV1	2X1.5M GRY CHL BX SHEARED, FUCHSITE VEINS TO 1/3 CM C/W ASPY & PY	<0.005	<0.5	108	10	72	24	<5	<0.5
13665680 L55N, 48+25E	CL, SILT, ANG FRAGS, SHEARED OX SCHIST (LIM) 5% CL, 85% SILT, 10% ANG FRAGS	STONEY B GOOD	BANK 20 CM, BRN - ORGE/BRN CL - FRAGS	GOOD>S MV1	ALT BX BLDRS IN AREA	<0.005	<0.5	154	7	88	18	<5	<0.5
1 8665750 L55N, 48+50E	SILT, FI SD. ORG 70% SILT, 25% SD, 5% ORG	ROCKY B GOOD	15 CM, ORGE/BRN SILT-FI	GOOD>SE MV1	LIM SHEARED BX BEDROCK	<0.005	1.0	114	10	105	61	<5	<0.5
18666880 L55N, 48+75E	SILT, FI SD, FRAGS LIM BX 70% SILT, 25% SD, 5% FRAGS	ROCKY B GOOD	BANK 30 CM, LIGHT BRN SILT-FRAGS		ANG FRAGS SHEARED BX	<0.005	0.5	134	6	107	68	<5	<0.5
18665930 L55N, 48+87E	CL, SILT, OX BX FRAGS 50% CL, 45% SILT, 5% OX BX FRAGS	B GOOD	BANK 40 CM, BRN CL-FRAGS	GOOD>S MV1	FRAGS ALT BX MOD TO STRONGLY SHEARED	<0.005	1.0	100	16	41	27	<5	<0.5
1 8666080 L55N, 49+00	SILT, FI-CO SD, ORG, FRAGS SHEARED PYROCLASTIC 30% SILT, 65% SD, 5% ORG & FRAGS	B GOOD	BANK 30 CM, ORGE/BRN SILT-FRAGS	GOOD>SE MV3, 1	CHL BX FRAGS IN HOLE	<0.005	1.0	28	20	63	43	<5	<0.5
1 8668180 L55N, 49+12E	SILT, FI SD, ALT FRAGS, ORG 30% SILT, 60% SD, 10% FRAGS, ORG	STONEY B GOOD	30 CM, LIGHT BRN Silt-FRAGS	GOOD>E MV3	HETRO FRAGS IN HOLE	<0.005	2.0	64	20	63	52	5	<0.5
1 8665380 L55N, 52+25E	SILT, FI-CO SD, ORG 40% SILT, 50% SD, 10% ORG	STONEY B GOOD	25 CM, BRN SILT-CO	GOOD>S MV1	QM BLDRS TO 1 M	<0.005	1.8	79	21	35	18	<5	<0.5
18685280 L55N, 52+50E	SILT, FI-CO SD, ORG 40% SILT, 50% SD, 10% ORG	STONEY B GOOD	25 CM, BRN SILT-CO	GOOD>S MV1, 3	BLDRS QM TO 15CM, FAIRLY FRESH; SOME MINOR ARG	<0.005	0.7	26	20	87	13	<5	<0.5
<u>1.56+00N, W-E</u>													
1 8667480 L56N, 52+65E	SILT, FI-CO SD, OX FRAGS QM & ARG 30% SILT, 70% FRAGS	STONEY B GOOD	BANK 10 CM, LIGHT - ORGE/BRN SILT-FRAGS	S MV2	HETRO FRAGS IN HOLE QM TERRAIN?	<0.005	<0.5	14	17	84	24	<5	<0.5
18867380 L56N, 53+00E	SILT, FI-CO SD, OX FRAGS QM 40% SILT, 55% SD, 5% OX FRAGS QM OX FRAGS QM	B GOOD	BANK 35 CM, ORGE/BRN SILT-FRAGS	S MV2, 4	LIM QM FRAGS IN HOLE, C/W MINOR PY AND BIOTITE QM TERRAIN	<0.005	<0.5	19	16	62	27	<5	<0.5
18667280 L56N, 53+37E	SILT, FI-CO SD (CO FROM QM) 70% SILT, 30% SD	B GOOD	BANK 22 CM, GRY - ORGE/BRN SILT-FI	GOOD>S MV1	QM BLDRS & OC	<0.005	<0.5	11	14	43	24	<5	<0.5

NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTIONS & NAME, COMPOSITION	AND MULTI ELEMENT SIGNA HORIZON, DEVELOPMENT	TABLE GSC2 (CON'T): TURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	
L58+07N. W-E													
13666430 L56+07N, 48+50E	SiLT, SD, ORG 40% SiLT, 45% SD, 5% ORG	ROCKY B, AB SAMP GOOD	BANK 25 CM, LIGHT BRN SILT-CO	GOOD>SE MV1	SHEARED ARG - SAMPLE 18662R FRAGS BX IN HOLE, MINOR ARG	0.005	0.5	147	10	108	70	<5	<0.5
18666630 L56+07N, 48+62E	CL, SILT, ORG 40% CL, 55% SILT, 5% ORG	AB GOOD	BANK 30 CM, ORGE/BRN - BLK CL-SILT	GOOD>SE MV1	CHL ARG FRAGS IN HOLE	NSS	<0.5	68	5	26	<5	5	<0.5
18666680 156+07N, 48+75E	SILT, SD, ORG 60% SILT, 35% SD, 5% ORG	B GOOD	BANK 30CM, ORGE/BRN SILT-FI	GOOD>S MV2, 3	N/A	<0.005	0.5	89	9	73	24	<5	<0.5
18666780 156+07N, 48+87E	SILT, SD, ORG 40% SILT, 50% SD, 10% ORG	8 GOOD	BANK 24 CM, GRY SILT-CO	GOOD>S MV1	NA	<0.005	3.6	119	21	63	31	<5	<0.5
18666880 156+07N, 49+00E	SILT, GEN FI SD, OX BX & ARG FRAGS 30% SILT, 60% SD, 10% FRAGS	AB FAIR	BANK 25 CM SILT-FRAGS	GOOD>E MV3, 2	STEEP HILL DOWN TO E OX BX & ARG FRAGS IN HOLE	0.045	2.1	47	18	61	48	<5	<0.5
18666980 L56+07N, 49+12E	SILT, FI SD, ANG FRAGS, ORG 35% SILT, 60% FI SD, 5% FRAGS & ORG	STONEY B FAIR	30 CM, BRN SILT-FRAGS	GOOD>E MV1, 3, 4	STEEP HILL FRAGS LIM, BX TO 3CM	0.006	1.8	60	23	76	71	<5	<0.5
1 86670280 L56+07N, 49+25E	CL. SILT, SD, FRAGS OX BX, ORG 5% CL, 80% SILT, 30% SD, 5% FRAGS & ORG	STONEY B FAIR	30 CM, ORGE/BRN CL-FRAGS	GOOD>E MV1	STEEP, ALT BX IN HOLE, CHL MOD SIL SHEARED WEAK TO MOD LIM	0.015	1.5	39	17	54	57	<5	0.5
18667180 L56+07N, 49+37E	SILT, SD, LIM ALT BX FRAGS 70% SILT, 25% SD, 5% FRAGS	B GOOD	35 CM, BRN - ORGE/BRN SILT-FRAGS	GOOD>SE MV1	ALT BX FRAGS IN HOLE	<0.005	2.3	59	10	47	63	<5	<0.5

.

			TABLE GSC2 (CON'T):										
	POLY SOIL SAMPLE DESCRIPTIONS	AND MULTI ELEMENT SIGNA	TURE ANALYTICAL RESULTS										
NUMBER, LOCATION	NAME, COMPOSITION	HORIZON, DEVELOPMENT	DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	
167+80N. W-E													
59985380 L57+50N, 50+00E	SD, SILT 20% SILT, 65% SD, 10% HETRO FRAGS OX BX & ARG	B Good	15 CM, ORGE/ BRN SILT-FRAGS	GOOD>\$ MV3	BX, AGR FRAGS IN HOLE	0.007	0.6	33	25	90	31	<5	<0.5
599852SO L57+50N, 50+25E	SILT, CL 20% CL, 70% SILT, 10% ORG	B FAIR	15 CM, RED/BRN CL-SILT	GOOD>S MV1	BX BLDRS NEAR MIDDLE CR	<0.005	0.6	41	4	34	<5	<5	<0.5
60952480 L57+50N, 50+60E	SILT, ORG 80% SILT, 20% ORG	AB FAIR	25 CM, BANK SAMPLE SILT	GOOD>S MV1	ALT BX BLDRS BX IN HOLE, CHL LIM; ALT BX TERRAIN	<0.005	1.3	32	11	60	48	<5	0.7
80952680 L57+50N, 50+75E	SILT, ORG, CHL SCHIST 85% SILT, 10% ORG, 5% CHL SCHIST	B GOOD	BANK 25 CM, BLK SILT-FRAGS	S MV1, 3	ALT BX FRAGS, LIM, IN HOLE	NSS	1.3	22	8	31	6	<5	<0.5
59985680 L57+50N, 51+25E	SILT, SD, CL 40% SILT, 40% SD, 10% OX HETRO FRAGS ARG TO BX; 10% ORG	AB POOR	15 CM, BRN SILT-FRAGS	GOOD>S MV1	FRAGS ARG & BX	<0.005	0.8	33	18	69	43	<5	<0.5
59985580 L57+50N, 51+50E	SILT, SD, CL 60% SILT, 20% SD, 10% CL, 10% ORG: OX FRAGS	B GOOD	15 CM, BRN CL-FRAGS	GOOD>SE MV1	NA	0.010	1.0	33	17	102	46	5	1.2
59985450 L57+50N, 51+64E	SILT, SD, CL 60% SILT, 20% SD, 10% CL, 10% ORG	AB FAIR	15 CM, BRN CL-CO	GOOD>E MV3	NA	<0.005	1.3	39	15	49	45	<5	<0.5

т н **Т**

NUMBER, LOCÁTION	POLY SOIL SAMPLE DESCRIPTIONS / NAME, COMPOSITION	AND MULTI ELEMENT SIGNA HORIZON, DEVELOPMENT	TABLE GSC2 (CON'T): ATURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	
159+00N. W-E													
18669880 L59N, 50+00E	SILT, FINE SD, ORG 30% SILT, 50% FI SD, 20% ORG	AB, B POOR	15 CM, LIGHT BRN SILT-FI	MV1, 3	OC SIL BX	<0.005	0.8	39	17	33	22	<5	<0.5
60951680 L59N, 50+25E	CL, SILT, MINOR ORG 25% CL, 70% SILT, 5% ORG	B GOOD	BANK 30 CM, BLK CL-SILT	GOOD>S MV1	N/A	NSS	5.0	40	138	85	970	10	<0.5
80951780 L59N, 50+50E	CL, SILT, MINOR ORG 25% CL, 70% SILT, 5% ORG	B GOOD	BANK 20 CM, BRN - ORGE/BRN CL-SILT	GOOD>S MV1	N/A	0.015	3.1	55	21	201	257	<5	<0.5
60951850 L59N, 50+78E	SILT, FI SD, ORG 25% SILT, 25% FI SD, 50% ORG	AB, STONEY B POOR	30 CM, ORGE/BRN SILT- FI	GOOD>S MV1	LARGE BLDRS ALT BX TO 0.5 M	<0.005	0.6	24	2	53	6	<5	<0.5
18669780 BL51E, 59+00N	SILT, FHMED SD, OX FRAGS BX 25% SILT, 70% SD, 5% OX BX FRAGS	B GOOD	BANK 25 CM, LIGHT BRN SILT-FRAGS	GOOD>S MV1	STEEP AREA AT CRK OX VOL FRAGS, SOME CHL IN HOLE; HETRO FRAGS IN CRK	0.010	3.3	67	12	97	281	<5	0.5
1 8689680 L59N, 51+25E	SILT, FI-CO SD, ORG, FRAGS 15% SILT, 80% SD, 5% ORGS, FRAGS	STONEY B FAIR	20 CM, LIGHT BRN SILT-FRAGS	GOOD>S MV1	NA	0.007	1.1	59	18	97	467	<5	<0.5
18669580 L59N, 51+50E	CL, SILT, ORG 5% CL, 85% SILT, 10% ORG	B GOOD	35 CM, ORGE/BRN CL-SILT	GOOD>S MV1	NA	<0.005	<0.5	12	5	13	<5	<5	<0.5
18669480 L59N, 51+75E	CL, SILT, ORG 8% CL, 80% SILT, 12% ORG	B GOOD	35 CM, ORGE/BRN CL-SILT	GOOD>S MV1	NA	NSS	<0.5	16	5	41	5	<5	<0.5
186693SO L59N, 51+95E	CL, SILT, ORG 8% CL, 82% SILT, 10% ORG	B GOOD	40 CM, ORGE/ BRN CL-SILT	GOOD>S MV1	NA	<0.005	<0.5	19	9	38	52	<5	<0.5

)

			TABLE GSC2 (CON'T):										
NUMBER, LOCATION	POLY SOIL SAMPLE DESCRIPTIONS / NAME, COMPOSITION	AND MULTI ELEMENT SIGNA HORIZON, DEVELOPMENT	ITURE ANALYTICAL RESULTS DEPTH, COLOUR, GRAIN SIZE	DRAINAGE, VEGETATION	GEOLOGY	Au ppm	Ag ppm	Cu ppm	Pb ppm	Žn ppm	As ppm	Sb ppm	
<u>BL51+00E, \$-N</u>													
18667680 BL51E, 56+25N	SILT, FI SD, ORG 60% SILT, 30% SD, 10% ORG	AB GOOD	BANK 30 CM SILT-FI	GOOD≻S MV1	NA	<0.005	1.0	42	9	26	29	<5	<0.5
18667780 BL51E, 56+50N	SILT, ORG 60% SILT, 40% ORG	ROOTY AB POOR	15 CM, ROOTY SILT	GOOD>S MV2	NA	<0.005	0.8	23	3	38	14	<5	<0.5
18667830 BL51E, 56+75N	SILT, FINE SD, HETRO FRAGS 70% SILT, 20% FINE SD, 10% HETRO FRAGS	STONEY B FAIR	BANK 12 CM, LIGHT BRN SILT-FRAGS	GOOD>SW INTO CREEK MV1	; LARGE HETRO BLDR, MAINLY GRY SIL BX: C/W / 1-2% ASPY; MINOR ARG BLDRS	0.031	2.9	83	15	245	363	<5	0.5
186681SO BL51E, 57+00N	SILT, SD, OX HETRO FRAGS 60% SILT, 35% SD, 5% FRAGS	B GOOD	BANK 20 CM, ORGE/BRN SILT-FRAGS	GOOD>E TO CREEK MV1	ARG, BX FRAGS IN HOLE	0.011	1.5	65	12	121	198	<5	<0.5
18668450 BL51E, 57+50N	CL, SILT, OX FRAGS ANG BX 5% CL, 90% SILT, 5% OX FRAGS	B GOOD	BANK 12 CM, BRN/-BLK CL- FRAGS	GOOD>S TO CREEK	HETRO FRAGS IN CREEK; OX BX FRAGS IN HOLE	0.014	1.7	50	13	84	210	5	<0.5
80952380 BL51E, 57+75N	CL, SILT, ORG, FRAGS 10% CL, 80% SILT, 10% ORG	B GOOD	BANK 25 CM, BLK CL-SILT	GOOD>S MV1	LG ALT BX FRAGS IN HOLE, SIL, CHL MOD LIM	<0.005	1.1	31	12	59	142	5	<0.5
60952280 BL51E, 58+00N	CL, SILT, ORG, CHL LIM BX FRAGS 10% CL, 75% SILT, 10% ORG, 5% CHL FRAGS	B GOOD	BANK 30 CM, BLK CL-FRAGS	GOOD>S MV1	N/A	0.006	5.5	48	20	128	350	8	<0.5
60952180 BL51E, 58+25N	CL, SILT, ORG 10%C L, 80% SILT, 10% ORG	B GOOD	BANK 22 CM, BLK CL-SILT	GOOD>S MV1	N/A	NSS	3.0	56	24	142	407	10	<0.5
609520SO BL51E, 58+50N	CL, SILT, ORG 15% CL, 70% SILT, 15% ORG	B GOOD	BANK 35 CM, ORGE/ BRN CL-SILT	GOOD>SE MV1	N/A	<0.005	1.1	23	7	47	10	<5	<0.5
60951930 BL51E, 58+75N	CL, SILT, ORG 15% CL, 80% SILT, 5% ORG	B GOOD	BANK 25 CM, ORGE/BRN CL-SILT	GOOD>S MV1	MINOR FRAGS, SHEARED BX	NSS	7.2	29	14	76	206	7	<0.5

.

POLY PROPERTY

LIST OF ABBREVIATIONS – SOIL SAMPLES

alt - altered/alteration ang – angular ank - ankerite arg – argillite aspy - arsenopyrite assoc - associated ave - average bldrs - boulders blu – blue blk - black brn – brown brec -- brecciated bx - volcanic breccia c/w – complete with carb – carbonate CA - core axis chl – chlorite cl - clay co-coarse comp - composition conj – conjugate cpy – chalcopyrite crk - creek CT – crystal tuff deg – degree dir - direction diss - disseminated dk – dark ea – each epi – epidote euhed - euhedral fi-fine fracts - fractures fuch – fuchsite grav - gravel grn – green gry-grey hem - red hematite

irreg – irregular irrid - iridescent LC - lower contact lim – limed lt – light MV1 - tag alders, devils club vegetation MV2 - fir, birch, fern vegetation MV3 - grass vegetation mat - material Mn - manganese num – number oc -- outcrop org - organic orge - orange peb - pebbles po – pyrrhotite prev - previous py – pyrite QM – quartz monzonite qtz – quartz rnd - round sd - sand sect - section sil - silicified stwk - stockwork spec - specular hematite str – strong sulf-sulfides text – texture tr - traceUC – upper contact vol – volcanic vn – vein wh-white wk – weak xtals - crystals yel - yellow
The 2004 soil analytical results have identified some interesting MES anomalies on the new grid lines and extensions of historic lines. The soil anomalies tend to confirm the importance of many of the JVX IP anomalies, which are discussed below in Section 8.B.4. They also provide evidence that the main exploration targets extend over a 1.1 km strike length and remain open to the south, south east and to the north of the current grid.

For example, the anomalous MES (Table GSC 2; Maps GCS 2-9) is often moderate to strong and often fairly complete for soil samples on

- a) L48N in the vicinity of Target T-6, IP Zone C and the IP anomaly farther to the east (Map GP 1);
- b) L49+50N on the east flank of Target T-5, IP Zone C and possibly indicative of another target, near the east end of L49+50N in apparent quartz monzonite terrain;
- c) the west end of L49+85N, along strike of the southern projection of IP Zone A from L51N (Map GP 1); on L49+85N, associated with IP Zone C;
- d) the west end of L51N across IP Zone A and the IP anomaly further to the west;
- e) L51N on the east flank of IP Zone C; on L53+50N, associated with Target T-12, IP Zone B; on L54N, associated with IP Zone A;
- f) L54+50N, associated with Target T-8 and Target T-7, IP Zone B; on BL51E between 56+75N to L59N, where BL51E ends; and, on L59N for some soil samples.

Based on the integration of the 2004 soil samples with the historic samples taken in 2000 and 2002, it is concluded that:

- a) A B-horizon soil geochemical anomaly with an anomalous MES that often includes Au, Ag, Cu, Pb, Zn, As, Sb and Cd, has been delineated on the Poly Grid. The signature remains open to the north, south and southeast (Table GCS 2; Maps GCS 2-9).
- b) The areas of IP Zones A, B and southern part of the C (Map GP 1) have moderate to good development of the B soil horizon. The middle and upper part of the IP Zone C (Maps GP 1) is generally covered with boulder terrain associated with the various channels of East and Middle Creeks. The resulting, often poor to moderate soil horizon development is thought to account for the lack of a stronger MES over parts of the upper and middle IP Zone C.
- c) Arsenic (Map GSC 8) is one of the best indicators of gold and polymetallic mineralization on the Poly Grid. Most areas of the IP zones have direct correlation with anomalous arsenic values. The arsenic signature remains open to the north and south,

particularly to the north, in the Upper Middle Creek area.

- d) Most areas of the IP Zones have some direct correlation with weak to strong gold anomalies (GSC Map 3). IP Zone B, the southern areas of IP Zones A and C and the area of Target T-7, IP Zone C on L54+50N generally have the best correlations with the strongest soil gold values.
- e) Anomalous silver values are fairly wide spread (Map GSC 4), but the highest values are fairly concentrated in their distribution: in the area of the Upper Middle Creek Grid; along IP Zones A and B; and, in the vicinity of some of the IP Zone C anomalies i.e., Target T-9 on L55N, which remains open to the north, into the Upper Middle Creek Grid; Target T-7 on L54+50N and Target T-11 on L53N.
- f) Anomalous cadmium values are rather specific in their distribution (Table GSC 2), with the highest values often associated with the higher zinc values e.g., with IP Zone C and the eastern IP anomaly on L48N; with IP Zone C, L49+50N; with the west end of L49+85E, possibly on the southern extension of IP Zone A from L51N; across IP Zone A to the west end of L51N.
- g) Anomalous soil copper values (Map GSC 5) generally are associated with the gold values. IP Zones A and B and the southern and northern parts of IP Zone C generally have direct correlation with the strongest soil copper values.
- h) Lead (Map GSC 6) is often a key indicator that is often used by Geofine to further prioritize anomalies. Most areas of the IP Zones are associated with some anomalous lead values. IP Zones A, B and the southern part of IP Zone C have direct correlation with the strongest soil lead values.
- i) Zinc anomalies (Map GCS 7) are more limited in their extent. Generally IP Zones A, B and the southern part of IP Zone C have direct correlation with the strongest soil zinc values. Based on Geofine's experience in the Stewart Camp, zinc, lead and cadmium anomalies often halo gold-copper mineralization.
- j) Anomalous antimony soil values (Map GSC 9) are rather sparse and weak on the Poly Grid. The historic analytical methods and databases are subject to a variety of detection limits and not all the samples have been analysed for antimony. There is some weak antimony association with IP Zone C on L48N; a broad association with Target T-5, IP Zone C on L49+50N and with the east flank of the IP anomaly on the on the west end of L49+50N; some weak association with IP Zone C on L49+85N and broad association with west end of L49+85N, possibly indicative of the south eastern extension of IP Zone A from L51N; weak association with IP Zone C and some association with IP Zone A on L51N; some weak association with IP Zones C and A on L52N; some weak association with IP Zones C and B on L53N; some weak association with Target T-2, IP Zone C on L55N; and, some weak association with the Upper Middle Creek Shear Zone on BL51E between 57+75N and 58+75N.

Based on the integrated soil analytical database, it is concluded that the MES is often indicative of the importance of many of the IP anomalies, particularly IP Zones A, B and the northern and southern areas of IP Zone C. Targets T-2, T-5, T-6, T-7 and T-9, IP Zone C and Targets T-3 and T-8 have the best correlation with the strongest MES.

The database also indicates the signature on the Poly Grid remains open and requires further detailed follow-up to the north of L56N, to the south of L48N and to the southeast e.g., on the western extensions of L49+85N and L49+50N. In southeast area of the Hwy Zone Creek, the database also suggests that the MES signature follows the warp in the southwest area of Hwy Zone Creek i.e., the inflection in the Hwy Zone Creek fault interpreted by Geofine (Map GR 2) and by JVX (Map GP1). In this interpretation, IP Zone B would be projected southwest along the creek/fault to follow the signature i.e., to extend through IP Zone A on L52N and to the westernmost IP anomalies on L51N. As discussed in Section 8.B.4. below, the latter anomalies may be weak since the IP survey may be running parallel to them.

8.B.2.c. ROCK GEOCHEMICAL SURVEYS:

The 2004 rock geochemical survey continued the historic activities regarding the collection, classification and analysis of mineralized float rock and in situ mineralization in order to further define the main mineralization target types and to facilitate the location and the prioritization of drill targets on them. The fifty-five 2004 rock samples (Tables GR 2, 2A; Map GR 2) were collected mainly in Upper Middle Creek (UMCA); Lower Hwy Zone Creek; and, in Upper Hwy Zone Creek in the vicinity of the Hwy Zone Creek Showing (HZCS). The mineralized samples were located mainly on the new grid lines, on the Middle Creek Control Line (MC CL) and on the extension of the Hwy Zone Creek Control Line (HZC CL). In view of the sparse outcrop on the Lower Poly Grid i.e., on or south of L56+07N, only one in situ sample was taken and the remaining 17 were from angular float rock. Of the 37 samples taken on the Upper Poly Grid, 13 were in situ and the remainder were from angular float rock.

The samples are described in Table GR 2 and shown in Table GR 2A and on Map GR 2, along with the MES values. All the analytical results are included on the Certificates of Analyses in Appendices A.1 and A.2. The Cannet Standards submitted with the rock samples are shown in Table 5 and the additional analytical quality assurance that was carried out is summarized in Table 5B. The mineralized samples were classified according to the four principal types of mineralization identified in the 2002 Poly exploration program:

Mineralization Type:

Type 1: pyrite, arsenopyrite, sphalerite, chalcopyrite, galena : Type 2: pyrite, arsenopyrite: Type 3: pyrrhotite +/-chalcopyrite: Type 4: specular hematite or spec:	Au, Ag, Cd, Cu, Pb, Zn, As, Sb Au, Ag, As, Sb +/- Cu, Pb, Zn Cu +/- Au, Ag, As
Type 4: specular hematite or spec:	+/- Au, Cu

Elemental Signature:

			TABLE GF	21					
			OFCULT		TODIC AND				-
	LOWER, UPPER HWY ZONE CR	EEK, MIDD	LE CREEK	AND EAS	T CREEK AF	ZU04 HIGHE	ANOMALOU	SVALUES**	. S* ,
	SHOWN IN ITALICS:								
			40						
LOCATION (S TO N): YEAR	TYPES****	AU (a/t)	AG (o/t)	(dom)	(nnm)	P8	ZN (nnm)	AS (nom)	SB (nnm)
			(8-7		(ppm)	(Phul)	(PPm)	(ppn)	(bbui)
609535RF; L48N, 54+43E; 2004	QV IN H3, TYPE 2	3.14	NA	NA	NA	NA	NA	NA	NA
86999RF; BL50E, 50+25N; 2004		2.43	30.3	2.1	244	499	318	1415	15
38343RF CL50+30N 35F 1992	H6 TYPE 1	10.45	170.10	68.4	2044	327	4243	1177	48
686751RF; CL51+10N; 2000	QVM, SMS, TYPE 1	33.70	5895.00	153.5	14200	4500	11900	10000	9700
686752RF; CL51+10N; 2000	QVM, TYPE 2	9.90	41.20	4.0	251	166	404	10000	48
38415RF; CL51+90N; 1992	QVM, TYPE 1	56.85	520.00	22.5	5964	968	1867	512	125
599942RF; L52N, 48+81E; 2004	QV, OX MAT; TYPE 1	7.55	816.00	241.0	10800	209	19800	3020	78
686852RF: CL52+60N: 2004	OVM. TYPE 1	3.64	45.50	79	478	239	403	1715	1
38999RF; CL52+70N; 1992	QVM; TYPE 1	26.80	13.00	100.0	10030	3525	49300	622	177
38425RF; CL52+85N; 1992	QCARBVM, TYPE 1	2.21	117.80	38.8	600	2100	11500	10000	27
683943RF; CL52+88N; 2002	QVM, TYPE 1*****	7.05	209.00	30.8	869	406	2460	590	111
6837820F CL52+90N 1992		8.90	462.00	71.9	6190	1300	6500	482	80
38428RF: CL54+25N: 1992	OVM TYPE 1	17 70	30.40	100.0	497	335	17600	539	198
38430RF; CL54+88N; 1992	QCARBVM, TYPE 1	14.90	271.00	0.1	2981	1024	568	6119	80
38432RF; CL55+05N; 1992	QCARBVM, TYPE 1	2.76	29.00	14.6	186	325	1352	323	8
39021RF; CL55+25N; 1992	S1, QVM, TYPE 1	5.69	63.70	2.1	830	301	878	2605	4
38992RF: CL55+55N: 1992		18.90	0.10	0.3	40	143	2719	248	1
609851RF; MCL, 56+00N; 2004	QVM, TYPE 1	3.11	37.50	0.1	439	252	320	40/0	- 22
186679RF; BL51E, 57N; 2004	QVM, H3; TYPE 2	3.75	237.00	4.8	1925	96	196	7160	64
609858RF; CL58+19N; 2004	QVM, TYPE 1******	7.84	259.65	0.9	998	268	690	407	103
186685RF; MCL, 58+25N; 2004		7.51	151.00	1.1	85	463	122	9170	84
683795RF; CL58+59N; 2002		4.01	126.00	205.0	419	3030	3920	1175	
683793RF; CL58+64N; 2002	QVM, TYPE 1	14.75	791.00	218.0	4070	444	15200	3310	368
609790RF; CL58+92N; 2004	QVM, TYPE 1******	9.18	353.90	30.6	2901	290	2124	1276	113
609787RF; CL59+80N; 2004	QVM, TYPE 1*****	40.50	812.30	21.7	8745	1652	1703	645	109
609788RF; CL59+80N; 2004	WR, S1, TYPE 1	6.67	187.15	0.1	1403	140	273	189	12
609866RF; CL59+85N; 2004	OVM. TYPE 2*****	6.87	33.00	2.4	423	172	139	485	35
39360R; CL59+97N, 03W; 1992	QVM, TYPE 1	123.30	1897.00	100.0	8467	57900	4692	3964	565
39354R; CL59+98N, 05W; 1992	QVM IN \$1, TYPE 1	5.81	2980.00	100.0	3821	1023	7439	5141	136
39356R; CL59+98N, 03W; 1992	QVM IN S1, TYPE 1	22.50	465.00	43.0	5579	14900	2082	3753	136
39213R; CL59+99N, USW; 1992 39417R; CL59+99N, 03W; 1992	OCARBUM TYPE 1	17.45	9980.00	100.0	17400	1725	20600	10000	5030
39352R; CL60+26N, 03W; 1992	QVM IN S1. TYPE 1	14.60	194.80	30.8	6531	203	1208	6155	37 38
609869R; CL60+27N, 02E; 2004	QVM, TYPE 1*****	6.44	48.50	63.1	488	463	7215	763	1
39415R; CL60+27N, 04W; 1992	QVM, TYPE 1	4.56	217.00	100.0	1205	6100	26100	6686	81
3934/R; CL60+28N, 02W; 1992		4.28	132.10	100.0	1474	554	14600	3465	71
609789R* CL60+29N, 02E; 2004		2.13	75.10	0.1	223	395	307	1859	1
609785RF CL60+30N; 2004	QVM, TYPE 1	8.62	266.80	25.6	1390	761	1991	4406	74
609780R; CL60+31N, 03W; 2004	QVM, TYPE 1	9.05	447.67	11.4	2465	350	641	2208	56
609781R; CL60+31N, 03W; 2004	WR, S1, TYPE 1******	6.45	155.90	0.1	1414	274	271	1441	21
609782R; CL61+00N, 2004	QVM IN S1, TYPE 1	2.13	18.5	16.6	212	1145	938	1905	12
	TOTALS	636.48	29729.47	2172.9	134309	115751	255334	144745	18022
								144,45	10022
	MULTI ELEMENT SIGNATURE	13.26	632.54	46.23	2857.64	2462.79	5432.65	3079.68	383.44
	VALUES								
* Au grades over 2 g/t used: IPL IC	Presults used if Chemex ICP result	ts not availa	hle					<u>.</u>	
					T		1		
**ANOMALOUS VALUES BASED	ON GEOFINE REGIONAL THRESH	OLD CRIT	ÉRIA					1	
OF 10 ppb Au, 0.4 ppm Ag, 0.7 pp	m Cd, 45 ppm Cu, 15 ppm Pb, 130	ppm Zn, 24	ppm As, 4	ppm Sb					
(For Cd values shown, $0.1 = < 0.5$	ppm; for As, 1 = <5 ppm; for Sb, 1 =	= <5 ppb.)				· ·	·		
*** ABBREVIATIONS:	*****MINERALIZATION TYPES	<u> </u>	***** AVER		L D VALUE CA				
			FRC	M CHEME	X ANALYTIC	AL RESULTS			
RF: ROCK FLOAT	TYPE 1: PY, ASPY, SPHAL, CPY,	GAL							
H2: CRYSTAL TUFF	TYPE 2: PY, ASPY	·	AVEI	RAGE GOL	D VALUE CA	LCULATED			
H4: ASH TUFF	TYPE 4: SPEC	····	FRU	MIPLANA	LY IICAL RE			· · · · · · · · · · · · · · · · · · ·	
H6: RHYOLITE, DACITE	TYPE 5: PY, PO	<u> </u>	AVE	RAGE GO		ER VALUES	t		
S1: ARGILLITE			CAI	CULATED	FROM IPL A	NALYTICAL	1		
WR: WALL ROCK			RE	SULTS					
RF: ROCK FLOAT				I COLOR				1.	
OVM: QUARTZ VEIN MATERIAL		+	AV			VER VALUES		<u> </u>	
QCARBVM: QUARTZ-CARBONA	TE VEIN MATERIAL			SULTS		ANALT		<u> </u>	
SMS: SEMI MASSIVE SULFIDES		1				1		1	
CL: HWZ ZONE CREEK CONTRO				1					
INCL: MIDDLE CREEK CONTROL	LINE	1.	1	1		1	1		1

.

TABLE GR 2" MINERALIZED ROCK SAMPLE DESCRIPTIONS AND SELECTED MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS:

SELECTED ANALYTICAL RESULTS

*IPL ANALYTICAL RESULTS USED WHERE CHEMEX RESULTS NOT AVAILABLE. WHERE BOTH CHEMEX AND IPL RESULTS AVAILABLE, CHEMEX RESULTS USED.

NUMBER REP. NO., LOCATION, SIZE, SHAPE	NAME, MINERALIZATION TYPE, COMPOSITION	COLOUR (WEATHERED, FRESH)	GRAIN SIZE, Téxture	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
BL50E														
86999RF "NUGGET SAMPLE BL50E, 50+25N 10X5X4 CM ROUNDED BO	TYPE 1 * QTZ VN MAT QTZ 50%, OX MAT 40%, PY 3-4%, SPHAL 5%	W:ORGE/BRN - GRYWH - BLK F: WH - ORGE/BRN - BLK	APHAN-FI; SUGARY QTZ, SOME BX TEXT; VUGGY	5% MASSIVE SPHAL PATCH 5 CM X 4 CM X 1.5 CM ON QTZ VN MAT; VUGQY EUHED PY TO MM SCALE, FINE DISS PY LENSES AND NARROW BX QTZ VEINS ASSOC WITH OX MAT WELL OX, SULF	2.43		30.3		244	499	318	1415	15	2.1
<u>L48N</u>														
609532RF L48N, 53+87.5 14X12X8 CM ANG BO	TYPE 2 ALT BX CAV QTZ VN 70% QTZ, 20% FELD, 5% ASPY, 5% OX MAT	W:ORGE/BRN F:GRN/GRY	APHAN-CO; SUGARY QTZ	ANG FRAGS GRY QTZ TO 4CM, PINK K SPAR, CUT BY GREY QTZ VNS C/W CO ASPY TO 1/4 CM & F! DISS ASPY MOD LIM; MOD SULF; WELL SIL	0.017		NA		NA	NA	NA	NA	NA.	NBA
609636RF L48N, 54+43E 20X12X8 CM ANG BO	TYPE 2 BX C/W Q1'Z VN 70% Q1'Z, 20% FELD, 6% \ ASPY, 4% OX MATERIAL	W:ORGE/BRN - GRY/WH F:ORGE/BRN - GRY/WH-PINK/ RED	APHAN-CO; SUGARY QTZ, VUGGY	SIL BX FRAGS 10 7CM, QV TO 2CM; VUGS C/W QTZ XTALS TO 3 CM; F(ASPY IN GRY SIL VNS TO 1CM, 8-8% ASPY; WELL SULF, MOD OX (LIM, MN)	3.14		NA		NA	NA	NA	NA	NA	NA
L51N														
599924RF L51N, 54+50E 20X10 CM ANG BO	TYPE 2 ALT BX 70% SIL MATRIX, 10% FELD, 10% ANG FRAGS, 3-5% SULFS 5% OX	W:Orge/Brn F:Grn/MH -Gry/Brn	APHAN-CO; VUGGY, FRACT SUGARY QTZ	WELL LIM ON FRACT, FI SUGARY MATRIX; VUGS C/W FI PY; SOOTY PY STRINGERS & NARROW VEINS TO 3-4% OVERALL; WELL OX, MOD SULF, MOD FRACT	0.037		NA		NA	NA	NA	NA	NA	NA
L52N														
599942RF L52N, 48+81E 10X8 CM ANG BO	TYPE 1 HYDROTHERMAL BX VN 80% OX; 30 SIL BX FRAGS, 8% SULFS, 2% SER	W:ORGE/BRN F:ORGE/BRN -GRY/WH	APHAN-CO; EARTHY, VUGGY	BLEBBY CPY TO 0.5 CM, BLEBBY SPHAL TO 0.5 CM, FI DISS PY & PATCHES, STRINGERS VNS TO 0.5 CM; WH QTZ VEINS TO 0.5 CM; VUGGY LIM MATRIX; OX, SIL FRAGS; 84% SULES: 1.2% CPY/SPHAL, 6% PY	7.55		816.0		10600	209	19600	3020	78	241.0

WELL OX, SULF; WK FRACT

	MINERALIZED ROCK SAMPLE	DESCRIPTIONS AND SELECTED A	TABLE GR 2 (CON'T) I ULTI ELEMENT SIGNATUR	E ANALYTICAL RESULTS:		SELE	ECTED AN	IALYTICA	L RESULT	s				
NUMBER REP. NO., LOCATION, SIZE, SHAPE	NAME, MINERALZATION TYPE, COMPOSITION	COLOUR (WEATHERED, FRESH)	GRAIN ŠIZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
L54+50N														
609777RF* L54+50N, 49+50E 15X12X10 CM ANG BO	TYPE 3 QTZ VN MAT 75% QTZ, 1-2% CPY 15% GRY MET PLATY MIN 5% OX, 3-5% FIBEROUS MIN	W: ORGE/BRN - GRN/GRY- SILVER MET F: GRY/WH - ORG/BRN, GRN/ GRY, SILVER MET, PK/GRN IRRID	APHAN-CO; PLATY SILVER MET MIN FORMS NET TEXT AROUND QTZ GRAINS; SUGARY QTZ; FIBROUS	15% SILVER GRY MET MIN WITH GRN, PK IRRID, WK MAG - PLATY MASS PO? WITH ASSOC 1-2% DISS CPY WELL SULF, MOD OX	0.12		2.2		1484	<2	40	38	<5	<0.2
609776RF* L54+50N, 49+60E 15 X 12 CM ANG BO	TYPE 3 QTZ VN MAT 85% FI WH-GRY QTZ 3% MAG, 8% OX 3% PO, 1% PY, TR CPY	W:ORGE/BRN - BLK MET F:ORGE/BRN - WH - BLK MET	APHAN-CO PLATY MIN; SUGARY QTZ; FRACT, VUGGY	VUGGY CAV 8% OX (MN/JAR/AL/LIM); STR MAG PO AS FRACT FILLINGS; IRRID PO IN VUGS; SOME EUHED TARNISHED & SOOTY PY, TR CPY WELL OX; MOD SULF	0.01		0.6		115	<2	20	<5	<5	<0.2
809873RF" L54+50N, 50+12E TO 3X2 CM FRAGS IN SOIL HOLE 599870SO	TYPE 2 BX 5 75% QTZ, 10% FELD, 10-15% ASPY, 3-5% PY, 5% QX, TR CPY	W: ORGE/BRN F: GRY/WH - ORGE BRN	APHAN-CO; SUGARY QTZ	FI-CO DISS ASPY, EUHED PY; TR DISS CPY; SIL FRAGS TO 2CM; WELL SULF, OX (LIM, MN)	0.02		0.7		45	8	102	<5	<5	<0.2
609773RF* L54+60N, 50+30E 15X10 CM ANG BO	TYPE 2 QTZ VN 85% QTZ, 7% OX MAT, 5% BLK TOURMALINE, 2% CARE, 1% SULFS	W: ORGE/BRN - GRY/WH F: WH - GRY/WH	APHAN-FI; SUGARY QTZ; SOME LADDER TEXT	TOURMALINE AS FRACT FILLINGS & DISS, LADDER VEINS IN QTZ-CARB VNS TO 5 CM; DISS PY LOCALLY TO 2%	0.01		0.5		70	3	27	<5	<5	<0.2
809874RF* L54+50N, 50+50E 6X4X2 CM ANG BO	TYPE 3 SIL BX 60% GTZ, 5% FELD, 10% LIM, 2% CHL, 3% BLK MIN, MINOR PY	W: ORGE/GRN FR: GRN/GRY-MET BLK	APHAN-CO; GEN MASS - SOME VUGGY, SOOTY	WK MAG BLK PO AS VUG, FRACT FILLINGS; MINOR DISS PY WELL OX (LIM, MN), SIL; WK CHL	0.01		0.9		223	3	58	<5	<5	<0.2
186655RF 155N, 48+12.5E 2X1.5 M ANG BO	TYPE 2 CHL BX SIL 60%, CHL 30%, OX 5%, SULFS 3-5%	W:GRN/GRY - BRN F:GRN/GRY	APHAN-FI; SCHISTOSE, FRACT	FRACT WITH GRN QTZ VN TO 3 MM; DISS PY, ASPY TO 3% WELL - MOD OX; WELL CHL; MOD SULF	<0.005		<0.5		126	7	23	<5	7	<0.5
L56+07N														
186682R 56+11N, 48+50E COMPOSITE	TYPE 2 FAULT GOUGE 95% OX, CHL MAT 5% ARG FRAGS	W & F: ORGE/BRN - GRN/GRY	FI-CO; SCHISTOSE	SHEAR ZONE IN DRY CREEK 380/85E OX, CHL SHEARED ARG - GRN FUCH VEINS TO 1CM, MINOR DISS PY, GOUGE ZONE IIN CENTRE SHEAR	<0.005		0.8		40	36	108	100	<5	4.5

.

>

1

	MINERALIZED ROCK SAMPLE	DESCRIPTIONS AND SELECTED M	TABLE GR 2 (CON'T)	RE ANALYTICAL RESULTS:		SEL	ECTED AN		LRESULT	s				
NUMBER REP. NO., LOCATION, SIZE, SHAPE	NAME, MNERALIZATION TYPE, COMPOSITION	COLOUR (WEATHERED, FRÉSH)	GRAIN SIZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
BL51E (MIDDLE C	REEK AREA)													
809872RF* IN MIDDLE CRK 25 M S OF L55+75N, 50+85E 25X16 CM ANG BO	TYPE 1 BANDED ARG C/W QTZ VNS 50% ARG, 10% OX, 30% QTZ, 2-3% TETRA, 3-4% REM EUHED PY, TR SPHAL	W: ORGE/BRN - GRY/WH - BLK F: SAME & BLU/WH	APHAN-CO; SUGARY, BANDED, VUGGY, EARTH	ARG BANDS TO 2.5 CM; QTZ VNS TO 1 CM; WELL LIM; MOD SULF, NO CARB: GRY/BLK DISS TETRA, VUGS TO 5 MM C/W IRRID EUHED PY; REM EUHED PY XTALS	0.47		2.3		26	97	703	1356	12	5.1
609851RF" L56N, 50+88E AT MIDDLE CRK 30X12X15 CM ANG BO	TYPE 1 12 CM QTZ VN 75-80% WH QTZ, 12-15% PY, 2% OX MAT, 3-4% CARB, 3-5% CHL, TR SPHAL, CPY; PATCHY PO TO <1%	W: GRY/BLK - ORGE/BRN - GRY/WH - YEL GRN MET F: WH - GRY/WH - GRY/BLK - YEL MET	APHAN-FI BANDED; SUGARY QTZ	BANDING: WH QTZ TO 2 CM, CHL BANDS TO 1 CM; SULF BANDS TO 2 CM WELL SULF, MOD CARB, CHL, FRACT	2.98	3.24	37.5		439	252	320	379	<5	<0.2
185679RF BL51E, 57+00N MIDDLE CRK 15X12X8 CM ANG BO	TYPE 2 ALT BX 40% (TZ-CARB VNS, 50% SIL MATRIX, 5-7% SULFS, 3% OX & CHL	W:BRN - ORGE/BRN - YEL F:CREAMY WH - LIGHT GRN, GRYWH - MET LIGHT YEL YEL	APHAN-CO; POCKY, VUGGY, EARTHY, SUGARY QTZ	5-7% SULFS, MOSTLY ASPY WITH SOME PY "MILL ROCK"; BANDED: SULF VNS TO 1/2 CM, 1/2 CM GRY WH GTZ VN, GRY BLK BLK CHL VN, WH QTZ SULF TO 1CM WELL SULF, FRACT; MOD OX (LIM, JAR/AL); WK CHL	3.75		237.0		1925	96	196	7160	64	4.8
186652RF BL51E, 57+25N 60x70x50 CM ANG BO	TYPE 3 ALT BX 45% SIL MATRIX, 45% SIL, OX FRAGS, 3-5% CHL, 3-5% SULF	W:ORGE/BRN F:GRY/GRN, ORGE/BLK, YEL/ RED IRIDESCENT PATCHES	APHAN-CO VUGGY, EARTHY CL VUGGY, EARTHY,	WH QTZ LENSES & VNS TO 1/2CM, PATCHES SULF IN CHL (PO), FINE DISS ASPY IN SIL MATRIX, SIL BX FRAGS TO 3X5 CM. WELL OX (LIM, JAR/AL), SIL; MOD SULF; WK MAG	0.028		<0.5		114	10	141	<5	<5	<0.5
186685RF 51+10E, 58+25 N 15X10X8 CM ANG BO	TYPE 2 OX, CHL ROCK C/W QTZ VN 25% OX (LIM, JAR/AL), 30% CHL, 40% QTZ; 3-5% SULF	W:ORGE/BRN - YEL/GRY F:WH/GRY - ORGE/BRN - GRY/ GRN	APHAN-FI; VUGGY, EARTHY, SHEARED	ROTTEN, OX CHL ROCK C/W SLICKENSLIDES & DISS & BLEBS PY & QTZ VNS TO 3 MM; EUHED PY IN QTZ C/W OX RIMS WELL OX, CHL; MOD SULF	7.51		151.0		85	463	122	9170	84	1,1
136686R BL51+10E, 58+35N	TYPE 2 ALT ARG FROM SHEAR ZONE 25% CHL MATRX, 25% QTZ, 40% ARG, 5% CARB,	W:YEL/BRN - ORGE/BLK F:WH - ORGE/BRN - YEL/BRN - BLK	APHAN-CO; FRAG, SUGARY QTZ, EARTHY REM	FRAGS ANG ARG, WHITE BARITE, QTZ CARB; QTZ VEINING TO 1/2CM OX CHL MATRIX 5% OX PY REMS	0.114		1.0		19	16	167	732	13	<0.5

n

5% OX SULF

	MINERALIZED ROCK SAMPLE	DESCRIPTIONS AND SELECTED M	TABLE GR 2 (CON'T) IULTI ELEMENT SIGNATUR	RE ANALYTICAL RESULTS:		SELI	ECTED AN		L RESULT	s				
NUMBER REP. NO., LOCATION, SIZE, SHAPE	NAME, MINERALIZATION TYPE, COMPOSITION	COLOUR (WEATHERED, FRESH)	GRAIN SIZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
BL51E (MIDDLE CI	REEK AREA CON'T)													
186659R 58+50N, 51+10E COMPOSITE FROM SHEAR ZONE IN MIDDLE CRK	TYPE 2 ALT ARG; GRUNGE ROCK FROM OX ZONE (OX CHL QTZ VN MAT) IN CRK 78% CHL & OX MAT, 18% QTZ, SULF TO 2%, 2% CARB	W: ORGE/BRN - GRN/GRY, F:ORGE/BRN - GRN/GRY	APHAN-FI; VUGGY, EARTHY, GLASSY, SHEARED, OX	DISS PY TO 1-2% IN CHL, OX MAT AROUND QTZ VN; FI PY DISS AROUND 1.5 CM CARB PATCH; ROTTEN ROCK FROM CHL OX X CUT SHEAR ZONE 2.5 M WIDE, 290/86S WELL OX, CHL, WK CARB, SULF	0.022		0.7		21	7	63	59	19	<0.5
186890RF 58+70N, 51+10E 16X10X10 CM ANG BO	TYPE 2 ALT BX 90% QTZ, 5% OX, 5% SULFS	W:GRY/BLK - ORGE/BRN - YEL F:GRY/BLK - WH - MET - YEL/BRN	APHAN-FI; SOOTY, EARTHY VUGGY; SUGARY QTZ	OX VUGS C/W CUBES & GRAINS PY, SOME CUBES TO 1/3 CM; SIL PY MATRIX CUT BY WH QTZ VNS TO 1 CM & BY PY VNS TO 5 MM TO PRODUCE BANDING; WELL OX, SULF, SIL	0.175		2.9		32	40	94	506	14	1.0
186691RF BL51+10E, 58+60N 15X10X8 CM	TYPE 2 QTZ VN MAT 90% QTZ, 5% OX, 2-3% SULFS, 2% OX, 1% CHL	W:ORGE/BRN - GRY/BLK - ORGE/YEL F:GRY/ WH BANDED	APHAN-FI; SUGARY QTZ	FINE DISS, PATCHES, NEEDLES ASPY; SER PACHES; BANDING: WH QTZ, GREY QTZ TO 5 MM; WELL OX, MOD SULF	0.007		0.6		58	21	152	8	<5	1.7
186692RF BL51+10E, 58+90N 20X15 CM ANG BO	TYPE 2 QTZ VN MAT 80% QTZ, 2-3% CARB, 2-3% OX MAT, 2-3% CHL, 2-3% PY	W:ORGE/BRN - YEL/BRN, GRY/ WH F:GRN/GR - WH - BLK MET - ORGE/BRN - YEL/BRN	APHAN-CO VUGGY, GLASSY- SUGARY QTZ	VUGS FILLED WITH WH CARB, SOME OX; SOME FILLED WITH MM EUHED QTZ XTALS; FI DISS ASPY & PY VNS IN QTZ - VNS ARE IRREG & DISCONT; SOME BLEBBY PY TO 1CM; CO EUHED PY TO 3 MM; SOME PATCHES FI - CO PY ASSOC WITH CHL LENSES; MOD - WK CARB, SULF, OX, CHL	<0.005		<0.5		7	3	94	31	10	<0.5

.

TABLE GR 2 (CON'T)

MINERALIZED ROCK SAMPLE DESCRIPTIONS AND SELECTED MULTI ELEMENT SIGNATURE ANALYTICAL RESULTS:

SELECTED ANALYTICAL RESULTS

Т

NUMBER REP. NO., LOCATION, SIZE, SHAPE	NAME, MINERALIZATION TYPE, COMPOSITION	Colour (Weathered, Fresh)	GRA N S ZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
HWY ZONE CH DISTANCE UP	REEK (S-N) CREEK MEASURED TO NO	DRTH FROM L56+07N												
609975RF NEAR L52 IN CRK 15X10X8 CM ANG BO	TYPE 1 QTZ BX VN 77% QTZ MATRIX, 15% OX, 3% SULF 5% FIBROUS TREM?	W: PATCHY ORG/BRN F: GRN/GRY - GRY/WH	APHAN-CO; PLATY, FIBROUS, SUGARY QTZ	LOC BLEBS & PATCHES CPY, <1%; <1% GRY PLATY MET SPHAL & IN PATCHES	NA		NA		NA	NA	NA	NA	NA	NA
686853RF HWY ZONE CRK, 52+50N 12X10X8 CM ANG BO	TY PE 3 ALT BX 85% SIL, 7% OX, 2-3% SULFS 5% QTZ FRAGS	W: ORGE/BRN - YEL/BRN F: GRN/GRY - ORGE - BRN	APHAN-CO VUGGY, EARTHY; SUGARY QTZ	WK MAG, VUGGY, SUGARY WH GTZ CAW BLEBBY & TARNISHED IRRID (RED, BLU, GRN) PO IN PATCHES TO 3 MM; SIL FRAGS TO 2CM WELL OX, MOD SULF	16.65		3.2		143	239	69	7	<5	<0.5
656652RF HWY ZONE CRK, 52+60N 22X15X8 CM ANG BO	TYPE 1 QTZ VN IN ALT BX 90% SIL, 5% SULF, 5% OX MAT	W: ORGE/BRN-GRY/WH F: GR/WH - EARTHY BRN	APHAN-CO VUGGY, EARTHY; BANDED	BLEBS SULF TO 1CM: PY IN WH QTZ VN WITH MINOR SPHAL: SOM PY TARN - YELL GRN; GRYJ WH QTZ IN 2CM BANDS; SPHAL? ON VUGGY MARGINS OF VN; 3-5% PY OVERALL, < 1% SPHAL. WELL SULF, OX (LIM, JAR/AL)	3.64		45.5		478	419	403	1715	19	7.9
609779RF* HWY ZONE CRK, 52+80M 15X10X8 CM ANG BO	TYPE 3 QTZ VN MAT 8% PLATY MET MINERAL; 80% QTZ, 10% PO? 5% OX MAT, 3% FIBEROUS TREM? 2% CHL AS PATCHES	W: ORGE/BRN-GRY/WH F: GRY/WH - GRY BLK	APHAN-CO PLATY, FRIBROUS SUGARY QTZ	PATCHES OF MAG MASS PO & ASPY & AS FRACT FILL, OFTEN ASSOC WITH FIBROUS BLK MIN - TREM ACT? WELL SULF, OX; WK CHL	<0.01		0.6		244	<2	22	<5	<5	<0.2
609852RF* CL @23 M UP HWY ZONE CRK 10X20X12 CM ANG BO	TYPE 3 QTZ VN MAT C/W PO + CPY 85% QTZ, 2-3% LIM 1-2% CARB IN MM FRACT C/W 2% CHL & PO; 8% PO, 2% CPY	W: ORGE/BRN - GRN/GRY F: GRY/WH - GRN & BLU/YELL/ PK MET	APHAN-FI SUGARY WH QTZ, FRACT	STR MAG; IRRID PO GRAN TO PLATY TARNISHED PATCHES TO 1X3 CM CPY RIMMING PO WK CARB, CHL; MOD LIM; STR SULF	0.03		2.3		1315	4	41	<5	<5	<0.2
609884RF* CL @ 193 M IN HWY ZONE CRK 18X14X8 CM ANG BO	TYPE 3 QTZ VN MAT 85% QTZ, 7-8% SOOTY & FI-CO PY, 3-4% LIM, 1-2% BLK MET; 2 % CHL, TR CPY, ASPY	W: ORGE/BRN - GRY/WH - BLACK MET F: GRY/WH - ORG/BRN - MET IRRID	APHAN-CO BANDED, SUGARY QTZ	BANDING: WH QTZ, GRY QTZ & SULF BANDS TO 1.5 CM C/W YEL TO GRN IRRID EUHED PY; DARKER BANDS C/W TARNISHED BLK MET PLATY PO TO 5 MM.	0.01		1.0		207	6	17	<5	<5	<0.2
809855RF* CL @ 195 M IN HWY ZONE CRK 40X20X10 CM ANG BO	TYPE 3 BLU/GRY QTZ VN 80% QTZ, 5-7% OX (LIM, MN) 3-4% SULFS: 3% WH ASPY, 1% PO; 2-3% MN, 5-7% TREM,	W: ORGE/BRN - GRY/BLK F: GRY/WH - ORGE/BRN/YEL - BRASSY IRRID	APHAN-CO VUGGY, EARTHY, BANDED, SUGARY QTZ	BANDED: 1 CM BANDS OF WH & GRY QT2; MM SCALE CHL BANDS; SULFS IN DARKER BANDS C/W BLEBBY TO EUHED IRRID XTALS: 3% WH ASPY, 1% PO, LOCALLY STR MAG BUT GEN NON MAG; WELLOX, MOD SULF, NO CARB	0.02		0.9		201	5	17	<5	<5	<0.2

MINERALIZED ROCK SAMPL	E DESCRIPTIONS AND SELECTE	TABLE GR 2 (CON D MULTI ELEMENT SIGN	'T) ATURE ANALYTICAL RESULTS:		SEL	ECTED AN	IALYTICA	L RESULI	s				
NAME, MINERALIZATION TYPE, COMPOSITION	COLOUR (WEATHERED, FRESH)	GRAIN SIZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm

LOCATION, SIZE, SHAPE	COMPOSITION													
609856RF* CL @ 212M IN HWY ZONE CRK 1 M X0.5M X15CM ANG BO	TYPE 2 QTZ VNS IN SER SCHIST 40% SER, 30% OX, 5-7% ASPY, 2-3% QTZ,	W:ORGE/BRN - GRY/BLK F: GRN-GRY	FI-CO EARTHY, SILKY	WH QTZ VNS TO 0.5 CM, WELL OX, FI ASPY, NO CARB, WELL OX (LIM, MN, JAR/AL)	0.02	N/A	0.9		85	5	10	<5	<5	<0.2
809857RF* CL @ 219M IN HWY ZONE CRK 12X12X8 CM ANG BO	TYPE 3 3X3 CM QTZ VN IN BX PO IN QTZ VN 80% QTZ, 8-10% PO, 3-5% CARB, 5-7% LIM	W: ORGE/BRN - GRY/BLK F: GRN/GRY - ORGE/WH	APHAN-FI SUGARY QTZ, MM FRACT; PLATY-MET PO; GRAN; VUGGY	3X3 CM PATCHES C/W MET PLATY IRRID PO; PO RIMMING 1X2 CM BX FRAGS; WELL CARB, OX (LIM & MN), SULF	0.03	N/A	0.7		322	<2	48	<5	<5	<0.2
6098568F CL @ 219M IN HWY ZONE CRK 30X10X15 CM ANG BO	TYPE 1 PY IN VUGGY QTZ VN 12-15% QX MAT 3-5% SULF, 80% QTZ	W: ORG/BRN - YEL BRN-BLK F: GRY/WH - GRY/BRN - BLK MET	APHAN-CO EARTHY, VUGGY	WELL OX (LIM, MN, JAR/AL) VUGS C/W QTZ XTALS; BANDED: OX MAT TO 1.5 CM; SULF BANDS TO 0.5 CM; WH QTZ TO 2.5 CM; SERICITE SULF BANDS C/W EUHED PY & WH ASPY, SULFS TO 1CM	7.48	8.19	258.4	260.9	998	268	690	407	103	0.9
809859RF CL @ 235M IN HWY ZONE CRK 12X15X4 CM ANG BO	TYPE 1 QTZ VN MAT 90% WH - GRY QTZ 2-3% LIM, 5-7% SULF	W: ORGE/BRN - GRN/GRY - YEL/WH - BRASSY F: ORGE/BRN, WH, GRY, YEL - BRASSY	APHAN-CO; BANDED; SUGARY QTZ, VUGGY, EARTHY	LIM, BLEBBY CO GAL, PY, SHPAL; CO BLEBS TO EUHED XTALS, SULF ON FRACT SURFACES; PLATY PY UP TO 2X1 CM; FI PY IN VUGS: BANDING: SULF BANDS TO 5 MM, ORGE/WH QTZ BANDS TO 1 CM, WH QTZ TO 1 CM	4.01		49.9		419	3030	3920	1175	17	205.0
609860RF* CL @ 292M IN HWY ZONE CRK ANG BO	TYPE 1 QTZ VN & ARG WALL ROCK 20% ARG, 80% QTZ C/W 5-7% SULF, 3-4% OX	W: ORGE/BRN - GRY/GRN- BRASSY - BLK MET F: ORGE/BRN - GRY/GRN- BRASSY- BLK MET	APHAN- CO EARTHY, VUGGY BANDED	WH QTZ VN, PY IN VUGS & RIMMING XTALS; EARTHY-SOOTY IRRID, FI-CO EUHED PY; TARNISH BLU, GRN, YEL,GRY/8LK WELL PY, MOD - WELL OX UP TO 5 MM WIDE ARG BANDS IN QTZ; SOME ARG LADDER TEXT TO 3 MM	0.04		1.8		434	22	63	<5	<5	<0.2
609790RF* CL @ 292M IN HWY ZONE CRK 30X20X10 CM ANG BO	TYPE 1 VUGGY QTZ VN 85% QTZ, 5% OX, 5-7% PY, 3% CHL, TR SPHAL	W: ORGE/BRN - YEL/BLK F: ORGE/BRN - GRY/WH - BRASS, GRY MET.	APHAN-CO VUGGY, EARTHY	WELL OX, MN, WELL FRACT, SULF; LOCALLY STR CARB, ARG WALLROCK; SOMEWHAT BANDED: WH/GRY QTZ TO 3 CM; CHL BANDS, MM SCALE; OX BANDS TO 0.5 CM GRY GRN, GRY WH QTZ BANDS TO 3 CM, SULF BANDS TO 1 CM; SULF (PY, TR SPHAL) IRREG PATCHES & IN FRACTS & AS VUG FILLINGS; CO DISS SULF IN QTZ (BLEBBY PY, TR SPHAL)	8.96	9.4	376.7	331.1	2901	290	2124	1276	113	30.6

.

NUMBER

REP. NO.,

	MINERALIZED ROCK SAMPLI	E DESCRIPTIONS AND SELECTED M	TABLE GR 2 (CON'T)	RE ANALYTICAL RESULTS:		SEI	ECTED A	NALYTICA	L RESUL	TS				
NUMBER REP. NO., Location, Size, Shape	NAME, MINERALIZATION TYPE, COMPOSITION	COLOUR (WEATHERED, FRESH)	GRAN SIZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au Ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
50996228* CL @ 335M IN HWY ZONE CRK E SIDE 30X30 CM COMPOSITE	TYPE 3 QTZ VN & LENS 80% GRYWH QTZ 10% CT WALL ROCK 3-4% CHL, 1-2% OX, 1% EUHED PY, 1% PATCHES MAG, IRRID & DISS PO	W: ORGE/BRN - GRY/BLK F: GRN/GRY - ORG/BRN - GRY/WH	APHAN-CO; FRACT, SUGARY	STR MAG, CHL ON FRACT, MOD LIM. MN STAIN; WK SULF, FRACT	0.03	N/A	0.8		84	11	49	<5	<5	<0.2
609863R* CL @ 329M IN HWY ZONE CRK 351/80E COMPOSITE E SIDE	TYPE 2 QTZ VNS & ARG WALL ROCK 55% GRY-WH FI APHAN QTZ, 20% ARG, 20% OX, 2-3% CHL, 2% PY	W: ORGE/BRN - BLK F: ORGE/WH - BLK - GRN/GRY	APHAN-CO; VUGGY, SUGARY QTZ	PY AS FI DISS, TARNISHED, IRRID, MINOR EUHED REMS, BLEBS IN VUGS; WELL OX (LIM, MN); WK SULF, CHL; MINOR CARB	0.01	N/A	0.5		111	3	62	<5	<5	<0.2
809864R* CL @ 337M IN HWY ZONE CRK 329/80W W SIDE	TYPE 3 SHEARED ARG C/W GRY QTZ LENS 20X30 CM 8-10% SULF, 2-3% OX <1% CPY	W & F: ORG/BRN - GRY/WH, GRY/ØLK MET	APHAN-CO SHEARED, FRACT SUGARY QTZ	HOST: SHEARED ARG STR MAG, PATCHY IRRID & SOOTY FI PO; TR CPY, PO FRACT FILLINGS & MM STRINGERS & VN TO 0.3 CM	0.02	N/A	0.9		1455	3	44	<5	<5	<0.2
609768RF CL @ 380M IN HWY ZONE CRK 17X50X55 CM ANG BO	TYPE 1 ARG WALLROCK YO SAMPLE 809787RF 90% ARG, 3% CARB, 2% OX. 2-3% SULF	W: ORGE/BRN - GRY/BLK F: GRY/BLK - ORGE/GRY/WH SOME BRASSY MET.	APHAN-CO BANDED, WELL FRACT	UP TO 5% FI PY ON FRACT & IN QTZ VNS 3 MM SULF BANDS OF 30-40% CO PY MOD-STR OX, WK-MOD PY; WELL CARB	8.21	5.13	199.3	175	1403	140	273	189	12	<0.2
609787RF CL @ 380M IN HWY ZONE CRK COMPOSITE 17x50x55 CM ANG BO	TYPE 1 5 CM QTZ VN IN ARG 30% ARG, 52% QTZ 15% SULF, 3% OX	W: ORGE/BRN - GRY/BLK F: GRY/WH - ORGE/BRN/BRASSY MET	APHAN-CO; VUGGY-EARTHY, BANDED	MOD-STR LIM, MN STAIN, FI DISS PY, CO PY; OX, EUHED PY IN VUGS WITH EUHED QTZ; PY COATINGS C/W OX MAT; CO PY BANDS WITH CPY IN & RIMMING QTZ XTALS; GRYC/W QTZ BANDS TO 0.5 CM C/W DISS PY, LOCALLY 30% SULF WELL SULF, NO CARB	36.3	44.7	1373.4	251.2	8745	1652	1703	645	109	21.7
609865RF* CL @ 384M IN HWY ZONE CRK 12X10X8 CM ANG BO	TYPE 1 SULF QTZ VN 60% QTZ, 20% CHL, 5-7% CARB, 12-15% SULF 1-2% PO LOC	W: GRY/WH - GRN/GRY- BRASSY MET F: GRY/BLK - GRN-GRY- BRASSY MET	APHAN-CO; BANDED; CHL SLICKENSLIDES, VUGGY	GEN NON MAG, LOCALLY STR MAG WELL CARB, SULF, CHL WITH QTZ; MOD BREC: WK OX; WELL BANDED: 3 CM CO SULF (MAINLY PY) BAND: WH QTZ BAND TO 1 CM; CHL AS SALVAGES ON WH QTZ BANDS; PO IN LENS & CHL BANDS	15.9	16	219,5	226.3	2208	560	986	485	35	2.4
609866RF* CL @ 385M IN HWY ZONE CRK 8X12X15 CM ANG BO	TYPE 2 VUGGY QTZ VN 80% QTZ, 5-7% SULFS, 2-3% CHL, 5% OX, TR CARB 5% ARG	W & F: GRY/BLK - ORGE/BRN - GRY/WH	APHAN-CO; VUGGY, SUGARY QUARTZ	SULF VN TO 5 MM, FI-MED & EUHED CO PY W/ VUGS; AS 609790? WELL SULF, MOD OX (LIM), WK CHL MINOR CARB	6.69	7.04	33.0		423	172	139	3227	<5	<0.2

	MINERALIZED ROCK SAMPLE	DESCRIPTIONS AND SELECTED M	TABLE GR 2 (CON'T) IULTI ELEMENT SIGNATI	URE ANALYTICAL RESULTS:		SEL	ECTED A	NALYTICA		rs				
NUM BER REP. NO., LOCATION, SIZE, SHAPE	NAME, MINERALIZATION TYPE, COMPOSITION	COLOUR (WEATHERED, FRESH)	GRAN SIZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au pom	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
809867RF CL @ 410M IN HWY ZONE CRK 10X8X15 CM ANG BO	TYPE 3 QTZ C/W PO IN BX 80% QTZ, 10% WALL ROCK 2-3% CHL, 2-3% CARB, 2-3% PO	W&F: ORGE/BRN - GRY/WH/ BLK-BRASSY MET	FI-CO; FRACT, PLATTY; SUGARY QTZ	PO AS PLATY PATCHES & FRACT FILLINGS & FI DISS ASSOC W/ CHL MAT; STR MAG; WK CARB, FRACT, SULF	0.07		1.0		167	7	22	<5	<5	<0.2
609668R CL @ 423M IN HWY ZONE CRK COMPOSITE	TYPE 1 PY ARG; FOOTWALL 90% ARG, 3% PY, TR SPHAL 2-3% OX, 1-2% MN, 2-3% QTZ	W & F: ORGE/BRN - GRY/BLK	APHAN-CO; VUGGY, FRACT	APHAN - FI ARG, FI DISS PY; <1 CM QTZ LENSES C/W IRRID PY; FRACT FILLINGS TO TO 5 MM C/W UP TO 10% EUHED PY; SOOTY PY ON FRACT & IN 2X0.5 CM VUGS; TR SPHAL WITH PY	0.36		6.6		202	66	5693	125	<5	55.0
609869R* CL @ 427M IN HWY ZONE CRK 340/80W 8 CM COMPOSITE	TYPE 1 ARG C/W QTZ VN ARG 25%, QTZ 50%, 5% CHL, OX 10%, 2-3% CARB, 8-10% SULF (50% PY, 50% SPHAL, TR CPY)	W: ORGE/BRN - GRN/GRY F: ORGE/WH - GRN/GRY BRASSY	APHAN-CO; VUGGY, EARTHY BANDED; SUGARY QTZ	WELL OX (LIM, MN), SULF; WK CHL, CARB; 2 CM WIDE WH QTZ VN WITH BLEBBY CO EUHED PY; SULF BAND C/W CO PY-SHPAL; 1 CM ARG BAND; QTZ SULF BAND TO 0,5 CM. LENSES, PATCHES SPHAL, TR GAL;	6.18	6.69	48.5		488	463	7215	763	<5	63.1
609870R* CL @ 429M IN HWY ZONE CRK SAME VN AS 609899R COMPOSITE	TYPE 1 10 CM VN IN ARG 82% QTZ, 5% OX 2-3% CARB, 10% PY <1% SPHAL	W: ORGE/BRNGRY/BLK F: GRY/WH-BRASSY MET	APHAN-CO; VUGGY; BANDED	BANDING: VUGGY WH QTZ, ARG, SEMI MASS SULFS, BLU GRY QTZ HW SIDE INTENSE SULF, 5MM SEMI MASSIVE CO PY VN, SULF VNS VUGGY & INTENSE OX; FRACT FILLINGS OF CO EUHED PY IN QTZ; BLU/GRY QTZ MORE MASSIVE WK DISS PY 2-3%; HW MM ARG BANDS & PY BANDS TO 3MM. MOD OX, CARB; WELL SULF, FRACT	7.12	7.74	75.1		799	395	307	1859	<5	<0.2
609789R* CL @ 429M IN HWY ZONE CRK WALL ROCK TO 609870R COMPOSITE	TYPE 1 ARG WALL ROCK CM WH QTZ VNS TO 2 CM; 45% QTZ, 25% ARG, 1-2% SER, 3-5% CHL 5-7% CARB, 12% OX MAT 5-7% SULF	W: BLK - ORGE/BRN - GRY/WH - BRASSY F: ORGE/BRN - GRYWH - BRASSY CW LOC GRN IRRID	APHAN-CO; SOOTY, EARTHY, BANDED	VUGGY VNS CW SOOTY PY & EUHED QTZ XTALS; BANDING :SULF BANDS CW CO PY, QTZ XTALS; BLU GRY QTZ BANDS TO 2 CM. MOD-STR OX LIM, MN; LOC WELL PY, CHL; WELL CARB	2.18	2.48	26.0		223	279	512	385	<5	<0.2
609785RF* CL @ 430M IN HWY ZONE CRK 35X10X20 CM ANG BO	TYPE 1 GTZ VN IN ARG 50% QTZ, 30% ARG, 7% OX, 6% CHL, 5-7% SULF (5% PY, 1-2% SPAL, <1% CPY), TR GAL	W: ORGE/BRN - GRY/BLK/YEL F: WH/GRY- BRASSY MET	APHAN-CO SUGARY, GLASSY QTZ	ARG BANDS TO 3.5 CM, WH QTZ BAND TO 2 CM; GEN CO PY AS PATCHES, BLEBS, IN VUGS; CO SPHAL PATCHES TO 5MM & ASSOC CPY - SPHAL OFTEN INCL IN PY GRAINS NO CARB, WELL OX, SULF; MOD CHL	8.99	8.25	286.8	246.8	1390	761	1991	4406	74	25.6

•

	MINERALIZED ROCK SAMPLE	DESCRIPTIONS AND SELECTED M	TABLE GR 2 (CON'T) ULTI ELEMENT SIGNATUR	E ANALYTICAL RESULTS:		SEL	ECTED AN	IALYTICA	L RESULT	s				
NUMBER REP. NO., LOCATION, SIZE, SHAPE	NAME, MINERALIZATION TYPE, COM POSITION	Colour (Weathered, Fresh)	GRAIN SIZE, TEXTURE	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
609780R 609780AR 609780BR (3 SPLITS)	TYPE 1	W: GRY/BL - ORGE/BRN	APHAN-CO;	QTZ VN IN ARG WALLROCK, LIM, MN STAIN;	9.05 (AVE OF 3 METALLIC SCREENS)	I	447.7 (AVE OF 3.	ANALYSE	2465 BREFERE	356 NCED IN T	641 ABLES GR 1	2208 & GR 1A AN	56 ID IN REP	11.4 ORT)
CL @ 431M 175/70E TO 175/82W 20 CM X 2.5 M VN EXPOSED - WIDER TO SW	QTZ VN C/W CPY IN ARG 85% QTZ, 10% ARG, 3-5% CARB, 2-3% OX 15-17% SULF AS 609871	F: GRY/WH - ORGE/BLK - BRASSY MET	BANDED; SUGARY QTZ, VUGGY CO PY BANDS	BANDS OF SULF IN FI APHAN QTZ, BANDS TO 1.5 CM OF WH/GRY QTZ NO SULFS; ARG BANDS, ARG BREC FRAGS TO 10X3 CM IN QTŽ; INTENSELY PY AS CO STRIATED EUHED & BLEBS; WELL CARB VUGGY PY VNS; WK OX	k.									
S09731R* W SIDE OF HWY ZONE CRK AT CL @ 431M 20X20X10 CM COMPOSITE	TYPE 1 ARG WALL ROCK TO 609780R 60% ARG, 25% QTZ, 10% PY, 3% OX, 1-2% CARB, 1% CPY, SPHAL	W: ORGE/BRN - BLK F: ORGE/WH - GRY/WH/BRASSY	APHAN-CO; VUGGY, EARTHY; SUGARY QTZ; PEPPERY SULFS	WH EUHED QTZ XTALS TO 1.5 CM IN VUGS; SULFS IN VUGS - MAINLY CPY CAV BLU IRRID; SOME BORNITE & SOME RESINOUS BLK SPHAL FI PY IN CHL BANDS & AS DISS EUHED CO XTALS TO 10% IN ARG, OFTEN TARNISHED WELL SULF; MOD - WK CARB, OX	6.21	6.69	145.8	166	1414	274	271	1441	21	<0.2
609871R* CL @ 451M 340/80E COMPOSITE	TYPE 2 QTZ-CARB VN IN ARG WALL ROCK 75% QTZ-CARB, 20% WALLROCK, 3% CHL, 2% FI DISS PY	W: WK OX GRY/MH - BLK F: GR/MH - GRY/BLK	APHAN-FI; SUGARY-GLASSY QTZ; BANDED	BANDED QRY QTZ/CARB & BLK ARG & CHL BANDS TO 5 MM; FI DISS PY WK SULF, CHL; STR CARB	0.04	N/A	0.5		38	7	46	<5	<5	<0.2
609783RF* CL @ 489M AT BASE OF SHEAR ZONE 348/81E 20X30 CM ANG BO	TYPE 1 PY, OX TALUS OF SHEARED ARG C/W QTZ VNS (WALL ROCK) 50% SIL, 5-7% SULF, 10% FELD, 2% CARB, 18% OX, 12% CHL	W: ORGE/BRN - YEL/BRN-GRN/ GRY F: ORG/BRN-GRY/GRN, WH MET	APHAN-CO VUGGY, EARTHY WELL FRACT	WELL PY & OX (LIM, JAR/AL, MN); FROM BASE OF 12 M WIDE SHEAR ZONE OF ARG C/W QTZ VNS TO 12 CM PARALLEL TO STRIKE XCUTTING VNS @ 15/25E, 5/ 15 W, 36/72E WK CARB, WELL OX WITH LIM, ALJAR, CHL; CO PY & WH ASPY AS FRACT FILL TO 1 CM. TR CPY, SPHAL	1.1	1.2	23.0		339	173	1320	796	<5	21.7
609784R* CL @ 470M IN HWY ZONE CRK 20X10X10 CM ANG BO	TYPE 2 10 CM QTZ VN (08"/76"E IN ARG 78% QTZ, 15% ARG, 3% PY 1% OX MAT, 2-3% CHL	W: ORGE/BRN - BLK F: ORGE/WH - GRY/WH/BRASSY	APHAN-CO; VUGGY, EARTHY; SUG QTZ	WH EUHED QTZ XTALS TO 1.5 CM IN VUGS; MIN OX SULFS IN VUGS - MAINLY PY FI PY IN CHL BANDS & AS OX PATCHES IN ARG MOD SULF, CHL; WK OX,	0.05	N/A	0.6		24	15	34	11	<5	<0.2

	TABLE GR 2 (CON'T) MINERALIZED ROCK SAMPLE DESCRIPTIONS AND SELECTED MULTI ELEMENT SIGNA			URE ANALYTICAL RESULTS:			SELECTED ANALYTICAL RESULTS							
NUMBER REP. NO., LOCATION, SIZE, SHAPE	NAME, MINERALIZATION TYPE, Composition	COLOUR (WEATHERED, FRESH)	grain Size, Texture	MINERALIZATION TYPE, ALTERATION, COMMENTS	Au ppm	Au ppm	Ag ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Cd ppm
609791RF* CL @ 470M IN HWY ZONE CRK 30X20 CM ANG BO	TYPE 3 CHL, PO QTZ VN 50% QTZ, 30% CHL, 5% OX, 5-7% CARB, 3-4% SULF (PO, MINOR PY, TR CPY)	W: ORGE/BRN/BLK - GRY/WH BRASSY MET F: GRY/WH - GRY/BLK/GRN	FI-APHAN; VUGGY, EARTHY	IRRID PO AS PATCHES, FRACT FILLING - STR MAG; SOME SOOTY PY CHL ON FRACT, WELL CARB, GRY/WH APHAN QTZ WELL CARB, OX; MOD SULFS	1.2	1.03	13.4		175	302	552	196	6	2.9
609782R* CL @ 500M IN E SIDE OF HWY ZONE CK 140/70W COMPOSITE OVER 20 CM	TYPE 1 10 CM QTZ VN IN ARG 78% QTZ, 5% OX MAT, 10% ARG, 5% SULF 2% CARB	W: ORGE/BRN - GRY/WH F: GRY/WH - ORGE/BRN- BRASSY MET	APHAN-CO, VUGGY, EARTHY NET TEXT OF SOOTY PY SOME BANDED	MOD-WELL LIM, WH QTZ VN WK LIM TO 3 MM. WIDER APHAN QTZ BANDS <1% SULF; GRY/WH QTZ VNS C/W ARG BANDS HAVE LOCALLY 10% GEN CO PY, SOME IRRID MAT; SOME ZONING OF PY AROUND QTZ GRAINS; TR SPHAL; WK CARB, MOD SULF, WELL OX	2.13		18.5		212	1145	938	1905	12	16.6

.

· · · ·

POLY PROPERTY

LIST OF ABBREVIATIONS – ROCK SAMPLES

alt - altered/alteration ang – angular ank - ankerite aphan – aphanitic arg – argillite aspy - arsenopyrite assoc – associated ave - average bldrs – boulders blu – blue blk - blackbo – boulder brn-brown brec - brecciated bx – volcanic breccia carb -- carbonate c/w – complete with CA – core axis chl - chlorite cl - clav co - coarsecomp - composition conj – conjugate cpy - chalcopyrite crk – creek CT - crystal tuff deg - degree dir - direction diss - disseminated dk – dark ea – each epi – epidote euhed - euhedral f: fresh surface feld – feldspar fi – fine fracts - fractures frags – fragments fuch - fuchsite gal – galena gran – granular grav - gravel

grn – green gry – grey hem - red hematite irreg – irregular irrid - iridescent jar/al - jarosite/alunite LC – lower contact lim – limed lt – light loc - locallyMV1 - tag alders, devils club vegetation MV2 – fir, birch, fern vegetation MV3 - grass vegetation Mag – magnetic Mass – massive mat - material Mn – manganese Met - metallic Min – mineral num – number oc - outcroporg - organic ox - oxidized orge – orange peb - pebbles pk – pink po – pyrrhotite prev – previous py - pyrite QM - quartz monzonite qtz – quartz qv – quartz vein rem – remnant rnd – round sd - sand sect – section ser - sericite sil - silicified sphal - sphalerite stwk - stockwork spec – specular hematite str-strong

sulf – sulfides tetra – tetrahedrite text – texture tr – trace trem act – tremolite actinolite UC – upper contact vol – volcanic

....

vn – vein w: weathered surface wh – white wk – weak xtals – crystals yel – yellow Type 1 mineralization comprises 44% of the 2004 samples; Type 2, 33%, and, Type 3, 23% (Table GR 2). Forty percent of the samples have gold contents or average gold contents ranging from 2.13 to 40.5 g Au/t and 77% of these values come from Type 1 mineralization, 18% from Type 2 and 5% from Type 3.

When these values are entered into Table GR 1 with the historic samples that have gold contents of at least 2 g Au/t (Table GR 1A; Map GR 1), the importance of Type 1 mineralization becomes most apparent: it constitutes 85% of the 48 samples, relative to 13% for Type 2 and 2% for Type 3. Results for the Type 1, 2004 mineralization range up to 40.5 g Au/t, 812 g Ag/t (based on the average of 2 Au and 2 Ag assays), 0.87% Cu, 0.16% Pb and 0.17% Zn for the large, angular rock float sample 609787RF (Photo 4) of quartz-coarse sulfide vein material collected on the HZC CL at 59+80N, south of the HZCS. Types 2 and 3 should not be overlooked since they can have significant gold contents e.g., up to 7.51 g Au/t and 151 g Ag/t from Type 2 mineralization in sample 186685RF, located on the MZC CL at 58+25N. Type 3 mineralization in sample 686853RF that was collected on the HZC CL at 52+50N returned 16.65 g Au/t.

The aforementioned mineralization types constitute a high-grade exploration target with a strong MES: the 48 higher grade samples referenced Tables GR 1 and on Map GR 1 have an average grade of 13.26 g Au/t, 632.54 g Ag/t, 0.29% Cu, 0.25% Pb, 0.54% Zn, 0.31% As, along with 383.44 ppm Sb and 46.23 ppm Cd. The samples listed in Tables GR 1 and 1A have been found on the Poly Grid from L48N to station 61N on the Upper HZC CL i.e., over a strike length of about 1.3 km.

Table GR 1 is somewhat definitive of the principal of the principal exploration target areas: 90% of the higher-grade samples have been collected in the Upper and Lower Hwy Zone Creek Area; 6% in the Upper Middle Creek Area; 2% in the Lower East Creek Area and 2% in the Highway 37A Showing Area (L48N). There is some bias with these numbers, since most of the historic work including the evaluation of the historic HZCS was carried out in the vicinity of Hwy Zone Creek. The Hwy Zone Creek channel is generally well defined and has facilitated access for much of the historic work. The Hwy Zone Creek Fault, which is the apparent host for much of the mineralization, is postulated to be relatively near surface in the Lower Hwy Zone Creek Area. In contrast, the surveys in the Upper Middle Creek Area surveys were only initiated in August 2004. The Lower East Creek Area comprises wide boulder channels, usually with underground drainage, while Upper East Creek Valley often remains snow filled for much of the field season. Strong MES values i.e., gold, silver, copper, arsenic and antimony in rock float samples were located in East Creek in 2002 (Molloy) that require detailed follow-up.

The higher-grade mineralization in Hwy Zone Creek has been collected over a 900 m strike length. Historic surveys located the HZCS (Maps GR 1, 2), which consists of mainly of quartz-ankerite veins and stock works mineralized with chalcopyrite, galena and sphalerite. The 1992 samples returned up to 9.85 g Au/t, 1163 g Ag/t, 0.33% Cu, 0.54% Pb and 0.33% Zn across a 3 m width in chip samples (Map 4; Kennedy, 1992). Selective sampling over a 15 cm width of a sulfide rich section of a quartz vein returned 123.3 g Au/t; 1897 g Ag/t; 0.85% Cu, 5.79% Pb and 0.47% Zn.

PHOTO 2: TYPE'1 MINERALIZATION IN 431 VEIN: QTZ-CARBONATE- SULFIDE BRECCIA VEIN IN ARGILLITE @ STN 431 M N UP HWY ZONE CRK CONTROL LINE I.E., ABOUT 431 M NORTH OF L56+07N. — 1 X .2 M AREA OF VEIN REMOVED & SAMPLED: COMPOSITE SAMPLE 609780 RETURNED 6.02 G AU/T (AVERAGE OF TWO ORIGINAL ASSAYS) AND, AS CALCULATED IN TABLE 5B, 447.67 G AG/T, 2465 PPM CU, 356 PPM PB, 641 PPM ZN, 56 PPM SB, 11.4 PPM CD. — AN ~ 1 X 10 CM AREA OF WALL ROCK (COMPOSITE SAMPLE 609781R), WITH 2 AU & 2 AG ASSAYS, AVERAGED 6.45 G AU/T, 155.9 G AG/T, 1414 PPM CU, 274 PPM PB, 271 PPM ZN, 1441 PPM AS, 21 PPM SB, <0.2 PPM CD. 3 ADDITIONAL SAMPLES OF THE 431 VEIN MATERIAL (609780, 609780A & 609780B) HAVE AVERAGE AU CONTENTS OF 9.47 G/T. BASED ON METALLIC SIEVING, THE 3 ADDI-TIONAL SAMPLES HAVE AVERAGE AU CONTENTS OF 9.05 PPM (TABLE 5B). THE VEIN IS LOCATED IN THE NORTHERN AREA OF THE HISTORIC HWY ZONE CREEK SHOWING.

1

0

PHOTO 3: CLOSE UP OF 431 VEIN IN PHOTO 2, SHOWING ANGULAR ARGILLITE BRECCIA FRAGMENTS TO 10X3 CM AND COARSE, VUGGY PYRITE BANDS.

1

0

PHOTO 5: SAMPLE 609865RF - TYPE 1 MINERALIZATION: QTZ-CARB-SULFIDE BRECCIA VEIN IN ANGULAR ROCK FLOAT AT STN 380 M N ON HWY ZONE CRK CONTROL LINE: 16 PPM AU, 222.9 PPM AG, 2208 PPM CU, 560 PPM PB, 986 PPM ZN, 485 PPM AS, 35 PPM SB, 2.4 PPM CD (WITH RESULTS OF 2 AU & 2 AG ANALYSES AVERAGED). THE SAMPLE & THE SAMPLE SHOWN BELOW (609787RF) ARE THOUGHT TO HAVE COME FROM THE AREA OF THE HISTORIC HWY ZONE CREEK SHOWINGS (~380 - 430 M N).

PHOTO 4: SAMPLE 609787RF - TYPE 1 MINERALIZATION: QTZ-SULFIDE VEIN IN ANGU-LAR ROCK FLOAT AT STN 380 M N ON HWY ZONE CRK CONTROL LINE: 40.5 PPM AU, 812.3 PPM AG, 8745 PPM CU, 1652 PPM PB, 1703 PPM ZN, 645 PPM AS, 209 PPM SB, 21.7 PPM SB (WITH RESULTS OF 2 AU & 2 AG ANALYSES AVERAGED). Although the area sampled in 1992 was mainly water and rubble covered in August 2004, there is ample evidence of the mineralization as shown in Table GR 1 and on Map GR 1. The area of the HZCS is located approximately between 59+90N and 60+40N on the HZC CL. A sample of quartz-coarse sulfide vein ("431 Vein"; 609780R; Photos 2, 3) located on the CL at 60+31N returned 6.02 g Au/t (based on 2 original Au assays) and, as calculated in Table 5B, 447.7 g Ag/t, 0.25% Cu, 0.036% Pb and 0.064% Zn over 25 cm. A 10 cm sample of the argillite wall rock (609781R) contained 6.45 g Au/t, 155.9 g Ag/t (based on the average of 2 Au and 2 Ag assays), 0.14% Cu, 0.027% Pb and 0.027% Zn.

As indicated in some of the 2002 samples, there is more evidence of a sulfide nugget effect. For example, 3 additional samples (609780, 609780A, 609780B) of the 609780R vein material had average gold contents of that range between 5.51 to 14.2 g Au/t and average 9.47 g Au/t (Table 5B). Metallic sieve analyses were done on the 3 additional samples and the results range between 6.12 to 12.0 g Au/t and average 9.05 g Au/t. The results confirm the sulfide nugget effect, since the coarse fractions have significant gold contents (Table 5B – Chemex Certificate of AnalysisVA04063552).

Other in situ evidence of the HCZS mineralization is provided by samples 609869R and 609870R, located at 60+29N on the HZC CL (Photos 11). The composite samples of the 10 cm quartz-coarse sulfide vein returned 6.44 g Au/t (based on the average of 2 gold assays), 48.5 g Ag/t, 0.05% Cu, 0.05% Pb and 0.72% Zn; and, 7.43 g Au/t (based on the average of 2 gold assays), 75.10 g Ag/t, 0.08 ppm Cu, 0.04 ppm Pb and 0.03 ppm Zn, respectively. A 10 cm sample (609789R) of argillite wall rock with minor quartz-sulfide veining (Photo 12) returned 2.33 g Au /t (based on the average of 2 gold assays), 26 g Ag/t, 0.02% Cu, 0.03% Pb and 0.05% Zn.

One of the more interesting samples (609782R) of in situ material (a 10 cm quartz-sulfide vein) is located about 50 m north of the HZCS. The sample returned 2.13 g Au/t), 18.5 g Ag/t, 0.02% Cu, 0.12% Pb, and 0.09% Zn. Although the values are not substantial, the results are considered indicative of the continuance of the Upper Hwy Creek target area to the north, particularly in view of the strong As (1905 ppm), Sb (12 ppm) and Cd contents (16.6 ppm) of the sample.

The 2004 rock float samples provide additional evidence of the importance of the Upper Hwy Creek exploration target. As referenced above, rock float sample 609787RF located on the HZC CL at 59+80N, just south of the HZCS, returned 40.5 g Au/t, 812 g Ag/t (based on the average of 2 Au and 2 Ag assays), 0.87% Cu, 0.16% Pb and 0.17% Zn (Photo 4). The Type 1 mineralization is very similar to that of the 431 Vein. A nearby rock float sample (609865RF) of Type 1 quartz-carbonate-coarse sulfide mineralization and located at on the CL at 59+84N returned 15.95 g Au/t, 222.8 g Ag/t, (based on the average of 2 Au and 2 Ag assays), 0.22% Cu, 0.06% Pb and 0.1% Zn (Photo 5). Another float rock sample (609790RF) of Type 1 quartz-coarse sulfide vein material located at 58+94N on the CL contained 9.18 g Au/t, 353.9 g Ag/t (based on the average of 2 Au and 2 Ag assays), 0.29% Cu, 0.03% Pb and 0.21% Zn. Rock float sample 609859RF (Photo 13), located at 58+35N on the CL comprised Type 1 mineralization in quartz-coarse sulfide vein material and returned 4.01 g Au/t, 49.90 g Ag/t, 0.04% Cu, 0.30% Pb, and 0.39% Zn. Rock float sample 609858RF, located at 58+19N on the CL comprised Type 1

1

1

P

[]

F

[

PHOTO 11: 429 VEIN AT 60+29N ON HZC CL. AREA OF SAMPLES 609869R AND 609870R WITH TYPE 1 QTZ-SULFIDE MINERALIZATION: 6.44 G AU/T (BASED ON THE AVERAGE OF 2 GOLD ASSAYS), 48.5 G AG/T, 0.05% CU, 0.05% PB AND 0.72% ZN; AND, 7.43 G AU/T (BASED ON THE AVERAGE OF 2 GOLD ASSAYS), 75.10 G AG/T, 0.08 PPM CU, 0.04 PPM PB AND 0.03 PPM ZN, RESPECTIVELY.

PHOTO 12: CLOSE UP OF 429 VEIN: SAMPLE 609789R OF ARGILLITE WALL ROCK WITH MINOR QUARTZ-SULFIDE VEINING RETURNED 2.33 G AU /T (BASED ON THE AVERAGE OF 2 GOLD ASSAYS), 26 G AG/T, 0.02% CU, 0.03% PB AND 0.05% ZN.

PHOTO 13: ROCK FLOAT SAMPLE 609859RF AT 58+35N ON THE HZC CL WITH TYPE 1 MINERALIZATION IN QUARTZ-COARSE SULFIDE VEIN MATERIAL: 4.01 G AU/T, 49.90 G AG/T, 0.04% CU, 0.30% PB, AND 0.39% ZN.

0

0

1

[

T

[

[

F

PHOTO 14: ROCK FLOAT SAMPLE 609851RF OF TYPE 1 QUARTZ-SULFIDE VEIN MATERIAL TAKEN OVER IP ZONE C ON THE MC CL AT L56N: 3.11 G AU/T (BASED ON THE AVERAGE OF 2 GOLD ASSAYS), 37.5 G AU/T, 0.04% CU, 0.03% PB AND 0.03% ZN.

mineralization in quartz-sulfide vein material and returned 7.84 g Au/t, 259.65 g Ag/t, 0.10% Cu, 0.03% Pb, 0.07% Zn and 103 ppm Sb.

Initial samples taken from the Upper Middle Creek area are considered indicative of the exploration potential of the Middle Creek Shear Zone and of the postulated extension of the IP Zone C to the north along the shear zone. For example, a rock float sample (609851; Photo 14; Maps GR 1, 2) of Type 1 quartz-sulfide vein material taken over IP Zone C on the MC CL at L56N returned 3.11 g Au/t (based on the average of 2 gold assays), 37.5 g Au/t, 0.04% Cu, 0.03% Pb and 0.03% Zn. A rock float sample (186679RF, Map GR 1, 2) of Type 2 mineralization in altered, banded volcanic breccia taken on the MC CL at 57N contained 3.75 g Au/t, 237 g Ag/t, 0.19% Cu, 0.01% Pb, 0.02% Zn and 0.72% As. Rock float sample 186685RF located at 58+25N on the MC CL with Type 2 mineralization in altered volcanic breccia with quartz veining returned 7.51 g Au/t, 151 g Ag/t, 0.01% Cu, 0.05% Pb, 0.01% Zn and 0.92% As. As shown in Table GR 2A, 3 additional samples have strongly anomalous gold values, including in situ sample 186686R of altered argillite from the Middle Creek Shear Zone, which returned 114 ppb Au, 732 ppm As and 13 ppm Sb. Two additional rock float samples have weakly anomalous gold contents. Of the 10 samples taken on the MC CL, 6 have strong anomalous arsenic contents (up to 0.92%) and 7 have anomalous Sb contents (up to 84 ppm).

Other 2004 rock float with elevated gold values samples are of interest, since they are located in proximity to some of the IP Zones discussed in Section 8.B.4 below. For example, sample 609535RF was collected on L48N between IP Zone C and the eastern most IP anomaly (Table GR 1; Maps GR 1, 2). It consists of Type 2 mineralization in quartz-sulfide veins in altered volcanic breccia. Only the gold value, 3.14 g Au/t is currently available.

Rock float sample 599942RF is located at 48+81E on L52N and is regarded as rather significant: it is located on the east flank of IP Zone A and is another example of the stronger Type 1, polymetallic mineralization that has been found historically in the area (Table GR 1). As indicated in Table GR 2, the sample consists of well sulfidized hydrothermal quartz breccia vein material that returned 7.55 g Au/t, 816 g Ag/t, 1.06% Cu, 0.02% Pb and 1.96% Zn, 0.30% As and 78 ppm Sb. As shown in Table GR 1 and on Map GR 1, some of the highest-grade, Type 1 mineralization on the property has been located in angular float rocks in this area of the Poly Grid i.e., from about 50+30N to about 53N in the vicinity of the inflection in the Hwy Zone Creek Fault. In Geofine's interpretation of the structural fabric and the IP anomalies, IP Zone B would be projected along the fault to the southwest to the furthermost IP anomaly on L55N (Maps GR 2, GP 1).

Based on the integrated rock geochemical database, higher-grade mineralization i.e., with at least 2 g Au/t, has been found in rock float and in situ samples over a 1.3 km strike length on the Poly Grid. The elevated values have been found to date mainly in the area of Hwy Zone Creek and Upper Middle Creek and are mainly associated with Type 1 and Type 2 mineralization in quartz vein material. The mineralization generally consists of coarse-grained pyrite +/- chalcopyrite, sphalerite and galena. There is often a strong association of base metals with the highest-grade Type 1 mineralization, which to date has been located in situ at the HZCS in Upper Hwy Zone Creek and currently appears to have another source area in the vicinity of the warp in the

southwest area of Lower Hwy Zone Creek. Other areas of the grid, including the East Creek Area and the Highway 37A Showing Area have yielded rock samples with strong MES values that require detailed follow-up.

No apparent large surfaces of the target mineralizations have been located to date. However, the mainly coarse grained sulfides are regarded as an excellent target for delineation by Spectral IP surveying. The IP anomalies often referenced in the sections above and discussed in detail in Section 8.B.4 below, do appear to offer sizable drill targets that have considerable strike lengths.

8.B.2.d. VEGETATION SURVEYS:

The historic vegetation surveys were continued on the expanded 2004 grid and the integrated results are shown on Map GR 2. The classification of vegetation types for mapping purposes is shown in the following table:

VEGETATION TYPES, POLY GRID:

TYPE: COMPOSITION:

MV1	tag alders with devil's club, berry bushes, ferns
MV2	large poplar +/- fir trees, with some tag alters, ferns
MV3	grass, fireweed, devil's club and ferns in creek beds
MV4	cottonwoods, grass, wet, boggy

The main vegetation type associated with strongest soil MES on the central and northern part of the grid is MV1 (mainly tag alders and devil's club). To the east and west, beyond the soil anomalies, MV2 (large poplar and fir trees) generally dominate (Photos 8, 16), along with some MV3 (grass, fireweed).

The prominence of the MV1 Type is somewhat explained by the structural controls of the mineralization: MV1 is located near the drainage channels where larger vegetation would generally not survive the seasonal runoffs and snow slides. However, the MV1 often appears stunted and growth inhibited, perhaps by the postulated near surface sulfide environments associated with the structures, along which it growths. On the southern area of the grid where the sulfide target is interpreted to be much deeper, MV2 and MV4 (cottonwoods and poplar) predominate.

8.B.3. 2004 GEOLOGICAL SURVEY:

The results of the historic and 2004 geological surveys are integrated on Map GR 2. Based on the entire database, it is concluded that:

- 1. The main exploration target is located on the west margin of the Eocene Strohn Creek quartz monzonite pluton. The intrusion generally has a rather uniform composition of coarse greywhite quartz, pink to brown feldspar and minor amounts of yellow-gold mica. Other than some minor oxidation due to minor sulfide content, the rock is usually unaltered, hard and massive, entailing some steep terrains.
- 2. The west contact of the pluton is often overburden covered but can be somewhat defined by geological information provided from the few outcrops and the composition of rock fragments and soil particles in the soil holes and in the stream sediments. The pluton is further delineated by its topographic relief and via information provided by the IP chargeability/resistivity and magnetic geophysical survey results, which are summarized on Map GP 1 and discussed below in Section 4.

The western contact, as interpreted by Geofine is shown on Map GR 2. In the southeast area of the Poly Grid, near the top of BL53+75N, this contact continues to the south, such that IP Zone C (Map GP 1) is apparently hosted by pyroclastic rocks of the Hazelton Group. There is also some evidence in the geophysical data that, as shown on Map GR 2, the contact may extend to the east of the top end of BL 53+75E.

- 3. The pluton has intruded crystal tuff and coarse volcanic breccia of the Jurassic Hazelton Group, which include some thin interbeds of argillite. A well-developed orthogonal fabric comprised of north trending structures and their conjugates has been developed in the pyroclastic rocks, which are generally propylitically altered. In the vicinity of the main structures, the rocks are, to varying degrees chloritized, silicified, sulfidized, carbonatized and oxidized.
- 4. The main structures control the drainage channels (i.e., Hwy Zone Creek, Middle Creek and East Creek Faults, Map GR 2) and appear to be hosted by the pyroclastic rocks (Photos 15-18,) or located at or near the contact of the volcanic breccia and argillite (Photos 19, 20). They appear to have considerable strike extent and depth persistence e.g., the difference in elevation between drill holes spotted on L48N and L55N is about 175 m. The structures have a near vertical dip, which can vary from steep east to steep west. The orthogonal and sub-orthogonal structures also have near vertical dips, although flat structures have been observed in Upper East Creek (Photo 18). The orthogonal fabric is conducive for the development of plunging ore shoot morphologies.

As referenced in the historic work (Molloy, 2002) and as shown on Maps GR 2, there is a warp in the southwest area of Hwy Zone Creek that is interpreted via the geochemical (Section 8.B.2.) geological (Map GR 2) and geophysical information (Section 8.B.4) as an inflection in the Hwy Zone Creek Fault. Based on the soil and rock geochemical results and on the Spectral IP anomalies, the flexure is interpreted to have been favorable deposition environment for sulfides.

[

T

[

E

E

F

[

F

ſ

ſ

PHOTO 15: ALTERED CRYSTAL TUFF BRECCIA BOULDER, EAST CREEK, POLY GRID

[

1

[

[

PHOTO 16: LOOKING NORTH AT POLY GRID AREA NORTH OF OLD HWY 37A. NOTE CYRSTAL TUFF BRECCIA OUTCROP IN THE UPPER TARGET AREA: HWY ZONE CREEK ON LEFT, EAST CREEK ON RIGHT. NOTE LIMONITIZED, SILICIFIED CRYSTAL TUFF BRECCIA NEAR HWY ZONE CREEK SHOWING (IN GOLD) AND ABOVE ICE SHOWING (IN RED) IN EAST CREEK. ALSO NOTE DOMINANT MVI VEGETATON IN MAIN TARGET AREA BETWEEN THE CREEKS, WITH FLANKING MV2 VEGETATION TO EAST IN LOWER RIGHT, ON QUARTZ MONZONITE TERRAIN

[

[

F

[

T

[

T

F

Γ

F

F

T

РНОТО 17

ALTERED CRYSTAL TUFF BRECCIA, AREA OF UPPER ICE 2 SHOWING, EAST CREEK

[

[

Ē

6

[

PHOTO 18

QUARTZ-FUCHSITE VEINS IN FRACTURES AND CONJUGATES IN ALTERED CRYSTAL TUFF BRECCIA WALL ROCKS OF ICE SHOWING AREA, EAST CREEK

PHOTO 19: LOOKING SOUTH-EAST FROM 431 VEIN IN ARGIL-LITE DOWN HWY ZONE CREEK TOWARDS ALTERED CRYSTAL TUFF BRECCIA IN PHOTO 16.

8

[

1

[

[

[

E

PHOTO 20: LOOKING SOUTH-EAST FROM ABOUT 60N ON CL FROM QTZ CARB VEINS IN AR-GILLITE IN HWY ZONE CREEK TOWARDS ALTERED CRYSTAL TUFF BRECCIA IN PHOTO 16, WITH STROHN CREEK VALLEY AND HWY 37A IN BACK-GROUND.

- 1. The target mineralization mainly comprises Types 1 and 2 described in Section 8.B.2.c above and is generally hosted by epithermal to mesothermal quartz-sulfide-ankerite-fuchsite veins. The veins can be strongly brecciated, with large inclusions of wall rock and sulfide grains. The veins are often banded, indicative of multiphase hydrothermal activity. They are associated with a favorable structural fabric, which includes generally sub-parallel, vertical to steeply dipping main structures, inflections in them and their conjugate structures. The main structures trend from northwest to northeast and the majority of their dips appear to be steeply east (Map GR 1).
- 2. The target mineralization is mainly associated with coarse-grained sulfides including pyrite, pyrrhotite arsenopyrite, chalcopyrite, bornite, galena and sphalerite. Sphalerite is often found riming other sulfides and chalcopyrite often occurs as inclusions within and rims around pyrrhotite grains. Sulfides often rim the quartz-carbonate veins and fill fractures and vugs within the veins. The pyrrhotite mineralization often has some weak to strong Cu association but generally has weak gold contents. However, as noted above in Section 8.B.2.c, some samples of Type 3 mineralization do have very significant gold contents. Type 3 mineralization can be locally strongly magnetic. However, as indicated below, the IP anomalies do not generally have a strong magnetic signature and are interpreted to be mainly associated with coarse-grained Type 1 and Type 2 sulfide mineralization.

8.B.4. JVX GEOPHYSICAL SURVEYS:

In view of the favorable geological environment, high-grade target mineralization and excellent infrastructure, JVX Spectral IP and magnetic surveys were carried out on the Poly Grid as an attempt to locate priority drill targets, with apparent tonnage potential. The separate JVX report on the geophysical surveys is attached to this report in Appendix C and is summarized below.

8.B.4.a. SPECTRAL IP SURVEY:

The IP survey was successful in delineating a number of moderate to extremely strong IP chargeability anomalies, many of which JVX has interpreted as high-priority drill targets. JVX has grouped the anomalies into three (3) zones labelled A to C on the compilation Map GP 1 and described below:

ZONE A:

Zone A extends from at least L51N to at least L54N near the western limit of the grid. On L53N and L54N, the chargeable source is well-defined with peak chargeabilities on L53N exceeding 30 mV/V. Spectral MIP values are high with long Tau, suggesting that the source is coarse-grained sulfides. South of L53N, the zone is poorly defined and appears to be depth limited.

ZONE B:

This zone trends north-south and extends from L53N to at least L56N. It exhibits a strong correlation with Hwy Zone Creek west of the BL50E. It is on strike with the HZCS 300 m north of L56N. The majority of the anomalies are strong with a very strong response (>40 mV/V) on L56E. Zone B

coincides with a weak resistivity low. On L55N it flanks the east edge of a deep (n=5) resistivity high. The zone also correlates with a weak, narrow magnetic high. Spectral MIP values are high (400 to 500 mV/V) with corresponding long Tau's suggesting moderate to high concentrations of coarse-grained sulphide mineralization. There is also a strong association with anomalous geochemical values. Drilling is recommended with several targets outlined in Section 4 below.

Geofine's current interpretation of IP Zones A and B is somewhat similar to JVX's. However, as described in the 2002 report on the Entrance Peak Project (Molloy, 2002), it is postulated that there is a flexure in the southeast area of the Hwy Zone Creek Fault. Geofine would thus extend IP Zone B southeast along Hwy Zone Creek through the IP anomalies on the west end of L52N. These anomalies would not be fully evaluated i.e., the IP survey was run somewhat parallel to them and IP Zone B thus remains open to the west IP Zone A appears to be associated with a cross-cutting structure to the Hwy Creek Fault and remains open to the south, west of the west end of L49+85N.

ZONE C:

Zone C contains the strongest chargeability responses on the grid. The zone extends for at least 800 m from the south boundary on L48N to L56N. North of Line 52N, the zone trends north-south and contains several very strong chargeability anomalies occurring at or near the surface. These anomalies are associated with a strong, well-defined resistivity low, high to very high Spectral MIP's and long Tau's. They also occur in the vicinity of several creeks including the East Creek. From L52N to L48N, Zone C trends northwest-southeast. The chargeability zones are not as strong and generally occur at moderate depths (n=2 to n=4) in association with moderate resistivity lows. MIP values are high with corresponding long Tau's.

Zone C is associated with low magnetic values apart from a weak magnetic high between L53+50N and L55N. In the south section, near Highway 37A, the zone does occur along the west flank of a broad magnetic high. The Strohn Creek Pluton is the interpreted source of the magnetic anomaly.

8, B.4, b. RESISTIVITY AND MAGNETIC SURVEYS:

Apparent resistivity is variable over the survey area. High values (>10,000 ohm-m) occur only on the east side of the grid and are associated with the Strohn Creek Pluton. Weak resistivity highs occur on Lines 51N and L52N between the Baseline (BL50E) and 51E and on L53N to L55N west of 49E. A broad resistivity low is observed along the south and southwest boundary of the grid. A well-defined resistivity low occurs between L53N and L56N at 51E. This low exhibits a strong association with strong to very strong chargeability highs.

Magnetic relief over the grid is moderate. The deep-seated Strohn Creek Pluton at the east edge of the survey produces a strong west to east gradient in the magnetic field. The highest magnetic value occurs on L51N east of 53E. A 1st Vertical Derivative of the Magnetic Field was generated to enhance near-surface features. Several weak magnetic trends have been identified. Some of these correlate with strong chargeability anomalies. Structural features have also been interpreted including two (2) north-northeast/south-southwest faults (F-1 and F-2) that appear to correlate with the Hwy Zone and East Creeks, respectively.

8.B.4. c. DRILL TARGETS:

Based on the geophysical, geochemical and geological information referenced above, JVX has identified 12 high priority drill targets. Most of the specific targets have been further interpreted from the 2D IP inversion results and are shown on the compilation Map GP 1. As shown in the following tables, JVX has designed a six-hole, Phase 1 drill program to test IP Zones B and C; and, a follow-up six (6) hole, Phase 2 program, if favorable results are obtained from Phase 1. Specifications of the drill holes are provided in the following tables:

PHASE 1								
Target #	Location	Azimuth (Deg.)	Dip (Deg.)	Length (m)				
1	5400N/5050E	90	-45	125				
2	5500N/5025E	90	-45	125				
3	5500N/4915E	90	-45	125				
4	5200N/5050E	90	-45	125				
5	4950N/5160E	90	-45	175				
6	4800N/5235E	90	-45	175				

Table 1: Specifications for the Phase 1 Drill Program

	PHASE 2									
Target #	Location	Azimuth (Deg.)	Dip (Deg.)	Length (m)						
7	5450N/5025E	90	-45	125						
8	5450N/4900E	90	-45	125						
9	5600N/5050E	90	-45	125						
10	5600N/4935E	90	-45	100						
11	5350N/5060E	90	-45	100						
12	5350N/4935E	90	-45	100						

Table 2: Specifications for the Phase 2 Drill Program

8.B.5. 2004 DIAMOND DRILL PROGRAM:

In view of the positive 2004 exploration results described above, a 600 m diamond drill program was initiated in late October. Parts of BL50E and the grid lines were restored; six drill holes were spotted (Photos 19-24) and six drill sites were prepared; pad materials were mobilized onto the property; two drill pads (Photo 19) were constructed; topographic surveys carried out and drill sections prepared (Sections DDHP04-1 to 6; Appendix C).

In view of specific adverse topographic conditions at three of the drill sites initially recommended by JVX (i.e., a steep hillside at DDHP04-02; a swamp at DDHP04-05; and, a creek and swamp at DDHP04-06), the holes were turned around in consultation with JVX and located the same distance back on the reverse side of the target (Table GP 1; Sections DDHP04-02, 05, 06; JVX Plates with 2D IP Inversions for L55N, L49+50N and L48N. The relocation of the drill sites is deemed feasible in view of the interpreted near vertical dip of the host structure of the target mineralization.

A Britton Bros. drill was mobilized to the property on November 4 in view of favorable snow conditions anticipated by government avalanche authorities in Stewart: a major rain storm on November 3 was predicated to remove most of early, generally light to moderate snow accumulation in the Stewart area. However, the heavy rain that in the fell in the Stewart area fell as snow on the Poly Property, such that snow accumulations quickly exceeded avalanche danger thresholds.

With the continuance of heavy snow, the program was terminated on November 4 before the drill was mobilized onto the first drill pad. On November 5 snow accumulations in the area of the first drill hole exceeded 3 meters and snow slides were occurring down East Creek and Hwy Zone Creek across the site of the planned drill pump station and near the drill pads on L55N (Photos 24, 25). The conditions are considered early and unusual – in 2003, snow conditions are reported to have been amenable to working on the Poly Property all winter long.

PHOTO 21: LOOKING EAST ON DRILL SITE PO4-01: IP TARGET T-2; DRILL SITE PO4-02 IS LOCATED TO THE EAST, JUST BEYOND SECOND LUMBER PILE.

PHOTO 22: LOOKING EAST ON DRILL SITE DDHP04-02: IP TARGET T-3.

PHOTO 23: LOOKING EAST ON DRILL SITE PO4-03: IP TARGET T-1.

-

PHOTO 24: LOOKING EAST ON DRILL SITE DDHP04-04: IP TARGET T-4.

PHOTO 25: LOOKING WEST ON DRILL SITE PO4-05: IP TARGET T-5.

F

F

-

PHOTO 26: LOOKING WEST ON DRILL SITE DDHP04-06: IP TARGET T-6

PHOTO 27: LOOKING NORTH ON NOV. 5, 2005 FROM HWY 37A ON POLY GRID BETWEEN HWY ZONE CREEK AND EAST CREEK WITH SNOW SLIDES — COMING DOWN BOTH CREEKS IN UPPER GRID AREA NEAR DRILL PADS •.

PHOTO 28: LOOKING NORTHEAST UP EAST CREEK FROM HWY 37A ON NOV. 5, 2005, WITH SNOWSLIDES COMING DOWN EAST CREEK ______, HWY ZONE CREEK ______ AND THE STROHN CREEK PLUTON ______.

Appendix IX

	,				· · ·	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	· · · · · · · · · · · · · · · · · · ·	
			TABLE GP 1					<u></u>
		PROPOSED	PHASE 1, 2005	DDH PROGI	RAM			· · · · · · · · · · · · · · · · · · ·
2004 JVX	2005							
TARGET	GEOFINE	IP		LOCATIO		-		
<u>NO.</u>	<u>DDH NO.</u>	TARGET	LINE	STATION	ELEVATION	AZIMUTH		LENGIH
				··· = ··· = ·····				
	P05-01	Т-2	155+00N	50+25E	535 M	90°	-45	125 M
£	100-01	· · · · ·	200.0011	00-202	000 111			
3	P05-02	T-3	L55+00N	BL50+00E	537.5 M	270°	-45	125 M
1	P05-03	T-1	L54+00N	50+50E	497.5 M	90°	-45	125 M
4	P05-04	T-4	L52+00N	50+50E	444 M	90°	-45	125 M
5	P05-05	T-5	L49+50N	52+82E	392 M	270°	-45	<u>175 M</u>
	DOE 08	те	1.49+001	52±85E	265 6 M	270%	45	175 M
Ö	PUD-06	1-0	L40TUUN	00700E	100.5 M	210	-40	

9. CONCLUSIONS, RECOMMENDATIONS:

9.A. CONCLUSIONS:

High priority drill targets for gold and silver and associated base metal mineralization have been outlined on the Poly Grid by geological, geochemical and geophysical surveys. The targets have been delineated over an 800 m strike length that remains open to the south and appears to extend at least another 300 m to the north (Maps GR 1, 2; Map GP 1).

The grade and composition of the target mineralization is indicated by 48 historic and 2004 rock samples that have gold contents of at least 2 g Au/t (Table GR 1). The samples have an average grade of 13.26 g Au/t, 632.54 g Ag/t, 0.29% Cu, 0.25% Pb, 0.54% Zn and are mainly comprised of coarse-grained pyrite and arsenopyrite +/- chalcopyrite, galena and sphalerite. The mineralization is hosted by epithermal to mesothermal quartz-ankerite breccia veins in a favorable orthogonal structural fabric that is interpreted to be conducive to the development of plunging oreshoot morphologies.

The Spectral IP survey has outlined a number of moderate to extremely strong chargeability anomalies that have been interpreted by JVX as being associated with coarse sulfides (Map GP 1: JVX Report, Appendix C). The widths of the mineralized zones have been estimated to be up to over 25 m. The target mineralization has a strong multielement signature, which the soil geochemical surveys have delineated over many of the IP anomalies.

<u>9.B. RECOMMENDATIONS:</u>

JVX has interpreted 12 high priority drill targets and recommended that a Phase 1 program to include 6 of these targets (Map GP 1). Attempts to implement that program in 2004 were curtailed by early and severe winter conditions. It is thus recommended that the program now be carried out early in the summer of 2005. Since topographic conditions are not conducive to some of the of the drill sites proposed by JVX, the respective drill sites were repositioned and hole directions were reversed in consultation with JVX (Table GP 1).

If the Phase 1 program is successful, the six Phase 2 holes recommended by JVX become high-priority drill targets. Many other priority drill targets would also become immediately apparent along the strike extent of the IP Zones B and C.

It is recommended that such a Phase 2 program also include provision for additional geophysical surveying. Additional IP, geochemical and geological surveys are recommended in the southwest area of the Poly Grid, where some of the highest-grade mineralization on the property has been found in float boulders in the vicinity of the flexure in the Hwy Zone Creek Fault. At least 2 IP lines run across i.e., perpendicular to the flexure, should delineate some additional, high priority drill targets.

The apparent southern extension of IP Zone C is on relatively flat ground under and beyond the Stewart Power Line Corridor. Any drill targets defined there by IP surveying should remain accessible throughout most of the winter. Additional IP surveying is also recommended in the Upper Middle Creek area. The work there would entail 12.5 m station spacing and would proceed slowly, as permitted by the challenging topography.

The estimated budgets for the proposed 2005 Phase 1 and Phase 2 drill programs are shown in Tables S1 and S2, respectively. The Phase 1 800 m drill program, including helicopter support, is estimated at about \$278,000, subject to contractor bids. A Phase 2, 1200 m drill program, along with the recommended geophysical program, is estimated at about \$447,000.

Appendix X

TABLE S1: POLY PROPERTY:

PROPOSED PHASE 1 BUDGET, 2005 FINAL WORK PROGRAM: 800 M DIAMOND DRILLING PROGRAM (BASED ON BRITTON BROS. 2004 BID):

<u> 1 TEM</u>

_-- --

ESTIMATED COST

		(\$)
i)	Property, assessment work research	4 - 4 4
11)	Project permitting, planning, gov't bond	1200
111)	Geochemical signature analyses	
1V)	Property compensation	
V)	mag mang	
wi)	Field equipment supp incl standards coresplit	2500
vii)	Mob-demob	5500
viii)	Ground transport shipping	6000
ix)	Analyses assays 200 @ \$40	8000
x)	Linecutting	0000
xi)	Geophys surveys:	
xii)	Land surveys	
xiii)	Food, sustenance, accommodation	5000
xiv)	Communications - in field (sat phone, fax)	1500
xv)	Compilations, drafting, reporting, assess. rpts,	, 8500
	quality assurance	
	Government filing fees	4500
xvi)	Land acquisition payments, option payments	
xvii)	Legal fees	
xviii)	Licences	
xix)	Salaries: local labour, geological crew	24000
	Workers Comp Ins.	
	\$1000/day @ 24 days;	
xx) D:	iamond drilling:800m @210/m,incl pads, heli i mob/demob	168000
xxi) Co	ontingency:	20000
	Subtotal	255000
	Tasfina Aronhard 029	7500
$\mathbf{X}\mathbf{X}11$	Geoline Overnead 03%	1500
XXIII)	921	10000
	ESTIMATED PHASE 1 POLY BUDGET*	278000
		2,0000

*Subject to Contractor Bids and Permit Requirements.

TABLE S2: POLY PROPERTY:

PROPOSED PHASE 2 BUDGET, 2005 FINAL WORK PROGRAM: GEOPHYSICAL SURVEYS, 1200 M DIAMOND DRILLING PROGRAM (BASED ON BRITTON BROS. 2004 BID):

<u>ITEM</u>

•

ESTIMATED COST

		(\$)
i)	Property, assessment work research	
ii)	Project permitting, planning, gov't bond	
iii)	Geochemical signature analyses	
iv)	Property Compensation	
V)	Structural fabric studies, airphotos,	
	mag maps	
vi)	Field equipment, supp incl standards, coresplit	7500
vii)	Mob-demob	7500
viii)	Ground transport, shipping	7500
ix)	Analyses, assays 250 @ \$40	10000
xii)	Linecutting	7500
xiii)Geophys surveys:10 days, travel mob, report	30000
xii)	Land surveys	
xiii)	Food, sustenance, accommodation	7500
xiv)	Communications - in field (sat phone, fax)	2500
xv)	Compilations, drafting, reporting, assess. rpts	, 9500
	quality assurance	
	Government filing fees	
xvi)	Land acquisition payments, option payments	
xvii)	Legal fees	
xviii)	Licences	
xix)	Salaries: local labour, geological crew	36000
	Workers Comp Ins.	
	\$1200/day @ 30 days;	
XX) I	Diamond drilling: 1200m @210/m	252000
	mob/demob	
xxi) Co	ontingency:	33000
		410500
	Subtotal	410500
	appling Granhand 028	12000
XXII) (George Overnead wow	25000
XX111)	691	2000
	ESTIMATED PHASE 2 POLY BUDGET*	447500

*Subject to Contractor Bids and Permit Requirements.

Appendix XI

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley -Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

BARRETT, T. J., SHERLOCK, R. L. (1996): Geology, Lithogeochemistry and Volcanic Setting of the Eskay Creek Au-Ag-Cu-Zn Deposit, Northwestern British Columbia; in: Explor. Mining Geol., Vol. 5, No. 4, p 339-368, 1996.

BARRICK GOLD LTD. (2003): Annual Report: What we said. What we did. What's next.

BC MINISTRY OF ENERGY & MINES (2005): Exploration And Mining in British Columbia 2004.

BC MINISTRY OF ENERGY & MINES (2004): Exploration And Mining in British Columbia 2003.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April 1990.

GREIG, C. J., MCNICOLL, V. J., ANDERSON, P. H., DAUBENY, P. H., HARAKAL, J. E., RUNKLE, D. (1995): New K-Ar and U-Pb dates for the Cambria Icefield area, northwestern British Columbia; in: Current Research, 1995-A; Geological Survey of Canada, p. 97-103.

REFERENCES (CON'T):

GREIG, C. J., ANDERSON, P. H., DAUBENY, BULL, K. F., HINDERMAND, T. K. (1995): Geology of the Cambria Icefield: regional setting for Red Mountain gold deposit, northwestern British Columbia; in: Current Research, 1994-A; Geological Survey of Canada, p. 45-46.

GROVE, E. W. (1982): Unuk River-Salmon Sheets, BCMEMPR Maps, Scale 1:100,000.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

HEMLO GOLD MINES INC. (1988): Annual Report.

KENNEDY, D. R., (1992): Report on the Hugh, Ken And Pam Claims: Phase 1 B Reconnaissance and Phase 2 Detailed Follow-up Programs, Skeena Mining Division, Northwestern British Columbia, BC Ministry of Employment and Investment, Assessment Work File.

KENNEDY, D. R., (1993): Report on the Hugh, Ken And Pam Claims: Phase 3A Detailed Follow-up and Phase 3B Drill Programs, Skeena Mining Division, Northwestern British Columbia, BC Ministry of Employment and Investment, Assessment Work File.

KENNEDY, D. R., (2000): Report on the Poly 1-7 Claims, 2000 Entrance Peak Project, Skeena Mining Division, Northwestern British Columbia, BCMEMPR Assessment Work Report.

LEWIS, P. D. (1992): Structural Evolution of the Iskut River Area: Preliminary Results: in Metallogenesis of the Iskut River Area, Northwestern B.C., Annual Technical Report – Year 2, Mineral Deposits Research Unit, The University of British Columbia, pages 2.1-1.23.

MCDONALD, D. (1988): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

MOLLOY, D. E. (1999): Report On The Poly 1-4 Mineral Claims, Entrance Peak Project: Initial 1999 Geochemical and Geological Surveys Carried Out To Prioritize Detailed Follow-up Targets, Entrance Peak Area, Skeena Mining Division, Northwestern British Columbia: BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2000): Report on the 2000 Prospectors Assistance Program: Followup Geochemical and Geological Surveys on the Bitter Creek, Entrance Peak, Mount Strohn, Bowser Lake, White River, Meziadin Lake Exploration Projects Delineated by a 1999 Regional Stream Sediment and Geological Evaluation of Hazelton and Covered Hazelton Group Lithologies in the Stewart Gold Camp, Skeena Mining Division, Northwestern British Columbia, BCMEMPR Assessment Work Report.

REFERENCES (CON'T):

MOLLOY, D. E. (2002): Report on the 2002 Entrance Peak Project, Poly Property, Stewart Gold Camp, Skeena Mining Division, Northwestern British Columbia, BCMEMPR Assessment Work Report.

MOLLOY, D. E. (2004): Report on the 2004 Diamond Drill Program on the Todd Creek Property, Skeena Mining Division, Stewart Gold Camp, Northwestern British Columbia, BCMEMPR Assessment Work Report.

MONGER, J. W. H., PRICE, R. A., TEMPELMAN-KLUIT, D. J. (1982): Tectonic accretion and the origin of the two major metamorphic and plutonic welts in the Canadian Cordillera. Geology 10, p. 70-75.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak-Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous West-vergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

SEABRIDGE GOLD INC. (2004): Red Mountain Project, British Columbia, June 24, 2004 Press Release, Seabridge Website.

TEUTON RESOURCES CORP. (2004): Teuton & Lateegra Report Del Norte Silver-Gold Drill Results. October 20, 2004 Press Release, Teuton Website.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Roundup "Spotlight Session".

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991, p.9.14.

I, David E. Molloy P.Geo. of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am President of Geofine Exploration Consultants Ltd. with a business address at 49 Normandale Road, Unionville, Ontario, L3R 4J8.
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practiced my profession in mineral exploration continuously for the past 32 years, including 14 years as a consultant; 10 years with St. Joe Canada Inc./Bond Gold Canada Inc./LAC Minerals Ltd. as Regional Geologist, Exploration Manager, Vice President and as Senior Vice President, Canadian Exploration; and, 8 years with Beth-Canada Mining Company as a Regional Geologist;
- iv. I am a Fellow of The Geological Association of Canada;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy; of the Association of Exploration Geochemists; and, of the BC Yukon Chamber of Mines;
- vi. I am a member of the Association of Professional Geoscientists of Ontario and the Association of Professional Engineers and Geoscientists of BC;
- vii. I have supervised the fieldwork and the preparation of this report entitled "Report On the 2004 Entrance Peak Project: Poly Property, Skeena Mining Division, Stewart Gold Camp, Northwestern British Columbia", for Lateegra Resources Corp., by Geofine Exploration Consultants Ltd.;
- viii. The recommendations herein are solely the responsibility of Geofine Exploration Consultants Ltd.

David & Milloy P. GO. David E. Molloy, P. Goo.,

President

Dated at Unionville, Ontario, this 28th day of February, 2005.

<u>11.</u>

Т

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 3 (A - B) Date: 13-JUL-2004 Account: KIV

.,

.

Project: Poly

.

CERTIFICATE OF ANALYSIS VA04040708

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-łCP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01
186208		0.40	<0.5	7.05	31	730	1.0	2	0.72	<0.5	17	86	78	4.35	1.66	1.34
186209		0.58	<0.5	7.79	49	680	1.5	3	1.32	0.6	21	47	140	5.04	2.00	1.37
186210		0.54	0.6	7.98	73	1050	1.3	<2	1.34	0.9	19	54	94	5.25	2.38	1.40
186211		0.58	<0.5	8.68	86	850	1.3	2	1.64	1,1	32	43	277	6.84	2.25	1.98
186212		0.62	<0.5	9.13	96	690	1.3	3	1,96	0.8	33	34	295	7.12	1.71	2.28
186213		0.88	<0.5	7.09	28	780	1.1	<2	0.31	0.9	23	111	65	4.32	1.53	1.21
186214		0.62	0.8	7,35	29	690	1.1	2	0.46	<0.5	18	94	89	4,58	1.42	1.22
186215		0.64	0.5	7.26	37	750	1.0	<2	0.49	<0.5	18	90	104	4.47	1.54	1.30
186216		0.38	<0.5	5.63	57	540	0.6	2	0.85	<0.5	11	29	67	5.78	1.33	1.28
186217		0,64	<0.5	6.28	82	630	1.1	<2	1,11	<0.5	7	98	27	3.58	1.62	0.94
186218	·	0.80	<0.5	7.21	31	720	1.5	<2	1.05	<0.5	8	55	25	2.91	2.03	0.81
186219		0.54	0.5	6.41	172	590	1.1	2	0.92	<0.5	14	124	42	4.81	1.39	1.24
186220		0.40	0.8	6.54	187	610	1.0	<2	0.95	<0.5	11	124	41	4.82	1.34	1.26
186221		0.54	<0.5	6.64	139	640	1.1	2	0.94	<0.5	9	110	40	4.51	1.54	1.16
186222		1.42	<0.5	6.95	23	740	1.6	<2	1.09	<0.5	. 16	45	16	2.55	2.12	0.71
186223		0.62	0.5	7.01	148	650	1.2	<2	1.35	<0.5	20	124	54	4.71	1,46	1.39
186224		0.28	0.7	6.48	144	610	1.1	<2	1.00	<0.5	19	118	49	4.50	1.40	1.30
186225		0.44	<0.5	4.16	<5	350	0.8	<2	8.96	<0.5	5	23	7	2.88	1.20	2.52
186226		0.32	0.5	5.73	160	560	1.0	<2	1,19	<0.5	17	116	45	4.44	1.27	1.18
186227		0.34	0.9	7.26	192	620	1.4	<2	1.32	<0.5	31	138	58	5.37	1.36	1.48
186228		0.50	0.7	5.87	109	610	0.8	2	1.08	<0.5	6	122	21	4.22	1.28	1.03
186229		0.32	1.1	6.44	91	630	1.0	2	1.24	<0,5	9	110	30	4.51	1.38	1.02
186230		0.58	<0.5	5.50	128	640	0.7	<2	0.74	<0.5	6	132	23	4.59	1.38	0.98
186231		0.06	<0.5	6,96	<5	2040	3.4	<2	4.80	<0.5	24	143	100	5.17	3.37	2.94
609384		0.36	0.6	5.66	38	500	0,9	3	0.96	<0.5	14	25	128	4.37	1.26	1.08
609385		0.44	0.5	6.75	34	580	1.2	<2	1.12	<0.5	20	44	140	4.80	1.46	1.33
609386		0.38	0.5	6.34	50	530	0.9	<2	1.06	<0.5	18	28	102	5.97	1.52	1.34
609387		0.54	<0.5	8.08	51	650	1.6	2	1.24	<0.5	31	56	188	6.01	1.66	1.59
609388		0.56	<0.5	7.31	40	600	1.3	<2	1.56	<0.5	25	44	164	5.37	1.51	1.45
609389		0.56	<0.5	7.15	29	620	1.8	<2	1.09	<0.5	10	38	50	3.37	2.28	0.73
609390		0.58	<0.5	4.36	5	390	0.8	<2	9.47	<0.5	5	20	7	2.21	1.29	2.53
609500 A		80.0	<0.5	6.80	144	160	0.8	<2	4.06	<0.5	23	200	110	7.56	1.74	2.61
609501		0.40	<0.5	4.34	5	380	0.8	<2	9.55	<0.5	5	19	8	2.05	1.32	2.57
609502		0.38	<0.5	4.64	13	580	0.9	<2	0.66	<0.5	2	48	20	1.84	1.39	0.28
609503		0.50	<0.5	5.47	19	590	1.2	<2	0.70	<0.5	4	57	19	2.66	1,48	0.48
609504		0.62	<0.5	3.86	16	460	0.7	<2	0.59	<0.5	2	47	20	1.96	1.06	0.30
609505		0.48	1.1	5.46	8	440	0.9	<2	0.49	<0.5	7	55	29	2.91	0.97	0.40
609506		0.64	<0.5	6.45	14	640	1.4	<2	0.92	<0.5	6	83	17	3.73	1.50	0.75
609507		0.36	<0.5	2.17	7	140	1,7	<2	2.40	1.9	1	18	41	0.39	0.17	0.12
609508		0.38	<0.5	6.22	7	110	1.4	<2	0.15	0.9	31	31	21	0.75	0.17	0.03

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 2 - B Total # Pages: 3 (A - B) Date: 13-JUL-2004 Account: KIV

1

· 1

Project: Poly

CERTIFICATE OF ANALYSIS VA04040708

.

	Method Analyte Units	ME-ICP61 Mn ppm	ME-ICP61 Mo ppm	ME-ICP61 Na %	ME-ICP61 Ni ppm	ME-łCP61 P ppm	ME-ICP61 Pt o ppm	ME-ICP61 S %	ME-ICP61 Sb ppm	ME-ICP61 Sr ppm	ME-ICP61 Ti %	ME-ICP61 V ppm	ME-ICP61 W ppm	ME-ICP61 Zn ppm	
Sample Description	LOR	5	1	0.01	1	10	2	0.01	5	1	0.01	1	10	2	
186208		1265	3	1.50	55	1130	22	0.04	<5	162	0.37	147	10	148	
186209		1445	5	1.85	28	1470	32	0.04	6	260	0.39	156	10	182	
186210		1500	5	1.61	38	1370	33	0.03	5	248	0.40	160	10	221	
186211		1895	6	1.76	32	1750	40	0.03	6	312	0.47	217	10	280	
186212		1960	6	1.66	32	1610	48	0.03	7	343	0.50	236	20	278	
186213		1685	2	1.48	73	1070	23	0.02	6	120	0.35	143	<10	171	
186214		1325	4	1.38	57	1180	26	0.04	5	135	0.36	146	<10	149	
186215		1240	3	1.46	5/	1020	21	0.03	<5	147	0.36	149	<10	100	
186216		827	/	1,14	15	2890	22	0.10	<5	194	0.40	190	10	99	
186217		660	3	1.01	30	940	20	0,04	-	212	0.30	103	×10	/6	
186218		683	5	2.26	35	680	17	0.02	5	264	0.29	87	<10	86	
186219		1060	3	1.31	54	1290	25	0.06	9	184	0.31	113	10	115	
186220		822	3	1.21	56	1010	29	0.06	<u>′</u>	181	0.30	118	<10	114	
186221		837	4	1.46	49	840	22	0.06	/ F	196	0.31	107	10	105	
186222		8//	4	2.30	36	670	14	0.01	D	261	0.29	/8	10	73	
186223		1165	3	1.32	101	1040	21	0.04	8	212	0.30	117	<10	160	
186224		1245	2	1.20	73	1270	25	0.08	6	183	0.29	110	<10	132	
186225		740	<1	1.33	5	610	10	0.01	<5	311	0.43	64	<10	42	
186226		1080	3	1.00	72	1420	25	0.11	8	168	0.27	108	<10	142	
186227	<u> </u>	1685	4	1.25	104	1290	28	0.06	10	203	0.32	124	10	1/1	
186228		595	4	1.22	32	680	14	0.04	8	178	0.29	116	<10	69	
186229		689	3	1.42	42	940	20	0.07	7	202	0.30	114	<10	84	
186230		672	2	1.05	34	2340	21	0.07	6	141	0.36	129	<10	66	
186231		1035	14	2.32	62	2260	29	0.31	<5	1595	0.36	162	<10	95	
609384		1035	1	1.21	15	1500	21	0,11	<5	200	0.33	132	10	124	
609385		1345	10	1.50	24	1400	43	0.06	<5	226	0.38	153	<10	159	
609386		1255	8	1.42	13	1680	23	0.09	<5	230	0.42	181	10	146	
609387		1965	11	1.56	34	1360	69	0.03	<5	228	0.44	179	10	212	
609388		1455	7	1.56	28	1420	40	0.05	<5	251	0.42	162	20	196	
609389		773	4	2.33	23	940	23	0.01	<5	246	0.32	94	<10	93	
609390		662	<1	1.44	6	500	10	0.01	<5	332	0.35	47	<10	41	
609500 A		1520	3	0.68	81	850	23	0.77	<5	99	0.19	163	10	244	
609501		636	1	1.44	6	540	13	0.02	<5	334	0.35	43	<10	41	
609502		274	14	1.48	9	1380	17	0.10	<5	164	0.24	53	<10	33	
609503		388	14	1.59	18	1450	18	0.10	<5	191	0.25	68	<10	59	
609504		249	19	1.16	12	1160	24	0.14	<5	144	0.21	54	<10	38	
609505		761	22	0.90	16	1810	18	0.13	<5	108	0.22	70	<10	51	
609506		500	29	1.47	29	1300	18	0.06	<5	166	0.38	111	<10	100	
609507		217	19	0.15	29	2010	75	0.48	<5	126	0.06	21	<10	58	
609508		5450	86	0.14	20	2910	6	0.24	<5	23	0.05	19	<1U	62	

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

,

.

Page: 3 - A Total # Pages: 3 (A - B) Date: 13-JUL-2004 Account: KIV

1

1

· 7

1

Project: Poly

.

CERTIFICATE OF ANALYSIS VA04040708

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-łCP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01
609509		0.46	0.5	6.23	6	610	1.6	<2	1.36	1.6	8	51	31	2.05	1.56	0.40
609510		0.38	<0.5	5.18	18	380	2.3	<2	1.36	1.1	17	32	17	1.27	0.90	0.33
609511		0.50	<0.5	5.21	14	590	1,0	<2	0.61	<0.5	3	56	18	2.68	1.46	0.29
609512		0.52	1.4	4.91	15	610	0.6	<2	0.37	<0.5	3	63	38	2.15	1.18	0.21
609513		0.32	<0.5	4.06	13	550	0.5	<2	0.52	<0.5	3	42	11	1.33	1.06	0.18
609514		0.50	0,9	5.15	50	470	0.5	<2	0.74	<0.5	10	53	56	6.56	1.21	0.75
609515		0.58	<0.5	7.66	18	250	0.8	<2	1.62	<0.5	13	33	118	6.92	0.64	1.31
609357 A		0.08	2.3	6.11	9	900	3.1	<2	4.24	<0.5	22	132	96	4.54	4.27	2.58
609357		0.40	<0.5	5.99	14	620	1.4	<2	0.89	<0.5	4	59	13	2.69	1.76	0.49
609358		0.58	<0.5	4.78	12	530	1.0	<2	0.69	<0.5	3	49	16	2.29	1.40	0.35
609359		0.46	0.7	4.77	11	470	1.1	3	0.52	<0.5	5	49	20	2.20	1.28	0.37
609360		0.82	<0.5	6.53	15	660	1.5	<2	0.80	<0.5	10	62	29	3.01	1.69	0.69
609361		1.06	<0.5	6.83	19	650	2.0	<2	1.40	0.6	12	62	18	3.24	1.64	0.68
609362		0.56	<0.5	5.66	15	620	1.1	<2	0.58	<0.5	3	47	26	2.35	1.60	0.24
609363		0.64	0.6	5.38	16	430	0,6	<2	0.29	<0.5	5	92	19	5.00	0.83	0.49
609364		0.48	<0.5	4.80	19	620	0.5	<2	0.20	<0.5	3	112	19	2.66	1.18	0.24
609365		0.58	<0.5	5.05	26	480	0,5	<2	0.25	<0.5	3	76	13	3.46	0.98	0.27
609366		0.28	<0.5	6.21	17	520	1.0	<2	0.49	<0.5	4	66	14	3.86	1.24	0.42
609367		0,76	<0.5	5.93	15	560	0.7	<2	0.42	<0.5	4	67	16	3.86	1.18	0.34
609368		0.32	0.6	6.58	43	460	1.0	<2	0.83	<0.5	17	44	108	4.72	1.09	1.04
609369		0.50	<0.5	0.59	<5	80	<0.5	<2	0.35	<0.5	2	6	33	0.42	0.13	0.09
609370		0.34	<0.5	4.24	39	540	0.5	<2	0.89	<0.5	8	42	53	5.92	1.26	0.70
609371		0.36	0.5	3.75	19	480	0.5	<2	0.87	<0.5	4	35	52	3.10	1.01	0.38
609372		0.46	<0.5	3.87	8	620	0.6	<2	0.87	<0.5	3	33	35	1.98	1.31	0.45
609373		0.40	<0.5	0.27	<5	80	<0.5	<2	0.62	<0.5	<1	3	12	0.21	0.09	0.05
609374		0.32	1.2	4.33	12	890	0.5	<2	0.65	<0.5	2	45	70	2.33	2.12	0.30
609375		0.60	<0.5	4.46	7	390	0,9	<2	9.49	<0.5	5	23	7	2.23	1.29	2.54
609376		0.58	<0.5	3.69	22	580	0.5	<2	0.68	<0.5	4	39	37	2,93	1.49	0.32
609377		0.44	0,8	4.22	30	500	0.5	4	0.45	<0.5	7	68	34	7.14	1.16	0.72
609378		0.38	0.5	4.54	49	710	0.6	<2	0.27	<0.5	2	83	36	4.96	1.52	0.42
609379		0.36	0.8	0.38	<5	100	<0.5	<2	0.13	<0.5	1	4	20	0.33	0.13	0.06
609380		0.38	0.9	1.57	<5	240	<0.5	<2	0.51	<0.5	2	7	40	1.06	0.43	0.20
609381		0.54	2.5	5.44	20	520	0.7	<2	0.43	0.6	5	52	65	4.17	1.07	0.46
609382		0.36	1.6	3.96	20	570	0.5	<2	0.34	0.6	3	47	48	3.65	1.19	0.32
609383		0.32	1.8	4.27	24	570	0.5	2	0.30	0.5	4	58	49	3.74	1.24	0.38
609383 A		0.08	0.5	6.58	<5	1900	3.2	<2	4.29	<0.5	21	132	92	4.61	3.24	2,68
	·			<u> </u>							··					

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

т в э. в., к

Page: 3 - B Total # Pages: 3 (A - B) Date: 13-JUL-2004 Account: KIV

,

Project: Poly

CERTIFICATE OF ANALYSIS VA04040708

Sample Description	Method Analyte Units LOR	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
609509		1305	30	1.64	22	1980	21	0.09	<5	211	0.38	78	10	68	
609510		977	9	0.96	42	1620	12	0.21	<5	170	0.15	45	10	113	
609511		543	4	1.37	10	680	16	0.03	<5	152	0.49	120	<10	35	
609512		267	3	1.29	15	640	15	0.03	<5	124	0.42	111	<10	34	
609513		263	3	1.20	7	420	7	0.05	<5	126	0.36	81	<10	38	
609514		1020	4	0.96	23	2000	13	0.09	<5	112	0.44	209	<10	66	
609515		667	2	2.18	14	1820	13	0.08	<5	290	0.47	205	<10	97	
609357 A		862	75	1.47	61	1660	242	1.27	<5	1105	0.24	170	10	66	
609357		484	13	1.95	13	1520	14	0.08	<5	238	0.26	70	<10	57	
609358		357	12	1.56	12	1860	10	0.10	<5	181	0.25	60	<10	39	
609359		341	12	1.24	17	1690	13	0.15	<5	144	0.26	62	<10	56	
609360		868	28	1.81	28	1660	22	0.09	<5	220	0.27	82	<10	91	
609361		2250	28	1.93	29	1130	13	0.06	<5	241	0.38	93	<10	141	
609362		291	12	1.62	13	660	14	0,04	<5	178	0.46	105	<10	33	
609363		472	6	1,09	19	830	16	0.05	<5	102	0.34	120	<10	51	
609364		244	4	1.01	9	870	11	0.02	<5	93	0.51	139	<10	38	
609365		281	4	1,11	11	670	13	0.02	<5	98	0.49	157	<10	41	
609366		594	4	1.54	16	900	14	0.02	<5	148	0.42	122	<10	58	
609367		506	3	1.40	11	660	16	0.02	<5	134	0.42	126	<10	56	
609368		1275	2	0.87	26	1320	12	0.08	<5	166	0.34	146	<10	/9	
609369		247	2	0.10	8	440	8	0.22	<5	33	0.03	11	<10	40	
609370		737	2	0.91	13	3040	11	0.09	<5	143	0.54	213	<10	47	
609371		527	2	0.83	13	1980	10	0,16	<5	146	0.31	104	<10	49	
609372		404	2	0.93	11	710	7	0.08	<5	124	0.37	104	10	38	
609373		54	<1	0.06	5	390	6	0.24	<5	42	0.02	7	<10	15	
609374		551	3	0.83	13	1040	10	0.06	<5	128	0.61	99	10	33	
609375		669	<1	1.44	6	560	10	0.01	<5	336	0.38	50	10	42	
609376		706	4	0.88	14	1460	13	0.11	<5	88	0.43	118	<10	47	
609377		944	4	0.62	20	1820	16	0.10	<5	80	0.49	200	<10	78	
609378		450	3	0.75	17	1860	16	0.05	<5	83	0.54	205	<10	56	
609379		43	<1	0.06	3	600	5	0.24	<5	23	0.03	10	<10	23	
609380		128	<1	0.39	7	740	5	0.21	<5	74	0,13	43	<10	34	
609381		698	2	0.93	18	1160	18	0.08	<5	119	0.38	136	<10	69	
609382		375	2	0.75	16	980	12	0.07	<5	83	0.42	139	<10	50	
609383		441	2	0.89	19	1240	14	0.08	<5	90	0.36	129	<10		· · · · · · · · · · · · · · · · · · ·
609383 A		951	12	2.23	61	2110	22	0.29	<5	1525	0.35	157	10	90	

1

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 2 (A - B) Date: 16-JUL-2004 Account: KIV

1

Project: Stewout-Poly

CERTIFICATE OF ANALYSIS VA04040275

Rock

Y

Sample Description	Method Analyte Units LOR	WE1-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
186655		0.88	<0.005	<0.5	10.30	<5	890	1.4	<2	3.64	<0.5	21	23	126	5.63	5.89
186662		0.72	<0.005	0.8	3.15	100	410	1.1	<2	0.91	4.5	15	83	40	2.46	0.89
186679 -		2.44	3.75	>100	3.71	7160	220	0.9	59	0.09	4.8	7	20	1925	5,15	1.50
186682		1.36	0.028	<0.5	7.39	<5	260	0.9	<2	8.81	<0.5	22	20	114	7.23	0.67
186685		0.84	7,51	>100	2.98	9170	360	0.5	48	0.04	1.1	1	16	85	4.85	1.34
186686		1.22	0.114	1.0	6.83	732	1120	1.7	<2	0.13	<0.5	5	23	19	2.35	3.07
186688		1.04	0.022	0.7	5.20	59	570	1.7	<2	0.35	<0.5	7	24	21	3.09	1.85
186690		1.14	0.175	2.9	2.99	506	230	1.0	2	0.04	1.0	12	29	32	3.56	1.10
186691		0.88	0.007	0.6	6,86	8	370	1.0	<2	6.25	1.7	6	25	58	3.53	1.10
186692		1.50	<0.005	<0.5	4.70	31	620	1.2	<2	1.74	<0.5	7	18	7	4.06	1.90
86998 86999		0.08 0.36	0.256 2.43	30.3	0.14	1415	30	<0.5	4	0.14	2.1	6	1	244	30.7	0.05

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

.

Page: 2 - B Total # Pages: 2 (A - B) Date: 16-JUL-2004 Account: KIV

٠

Ŋ.

Project: Stewout-Poly

ı

CERTIFICATE OF ANALYSIS VA04040275

٦

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-{CP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-AA62 Ag ppm 1
186655		0.97	1090	<1	0.87	9	1160	7	0.47	7	286	0.67	314	<10	23	
186662		0.35	3280	3	0.40	22	2340	36	0.04	<5	72	0.37	119	<10	108	
186679		0.22	282	8	0.05	19	410	96	4.36	64	24	0.15	44	10	196	237
186682		2.88	3100	3	1.26	11	1490	10	1.08	<5	448	1.00	374	10	141	
186685		0.07	68	24	0.04	2	530	463	1.60	84	9	0.11	112	10	122	151
186686		0.45	221	7	0,40	16	470	16	0.07	13	56	0.33	134	40	167	
186688		0.89	1875	1	0.39	20	500	7	0.35	19	48	0.15	66	<10	63	
186690		0.27	279	2	0.20	29	160	40	2.75	14	26	0.11	75	<10	94	
186691		0.85	1370	23	0.61	38	860	21	1.42	<5	254	0.32	196	<10	152	
186692		0.91	3920	3	0.08	17	5860	3	1.00	10	94	0.27	80	10	94	
86998 86999		0.19	>10000	1	0.01	11	10	499	>10.0	15	20	<0.01	6	<10	318	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 2 - A Total # Pages: 3 (A - B) Date: 16-JUL-2004 Account: KIV

Project: Poly

CERTIFICATE OF ANALYSIS VA04040707

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 F o % 0.01
186663		0.90			<0.5	7 74	67	520	11	<2	2 94	<0.5	19	18	125	5.14
186680		0.64			2.1	6.67	260	500	1.6	<2	0.82	1.3	40	61	67	4.17
186683		0.96			1.0	6.30	186	560	1.1	<2	0.73	0.8	19	89	54	4,50
186687		0.76			1.0	6,97	320	480	2.1	<2	1.26	1.8	36	50	57	4.88
186689		0.88			1.6	5.94	448	530	1.5	<2	1.40	1.0	32	52	56	4.72
186699		0.08	>10.0	16.75												
609526		0.06	3.29													
609516		0.34			5.0	3.73	970	820	<0.5	<2	0,78	<0.5	3	20	40	4.18
609517		0.18			3.1	4.34	257	410	<0.5	<2	0,66	<0.5	8	36	55	5.10
609518		0.20			0.6	0.82	6	140	<0.5	<2	0.43	<0.5	2	6	24	0.94
609519		0.24			7.2	1.76	206	250	<0.5	<2	0.27	<0.5	1	14	29	2.08
609520		0.30			1.1	0.24	10	70	<0.5	<2	0.32	<0.5	1	4	23	0.24
609521		0.26			3.0	2.93	407	680	<0.5	<2	0.47	<0.5	2	15	56	3.95
609522		0.40			5.5	2.45	350	430	<0.5	<2	0.52	<0,5	3	21	48	3.61
609523		0.34			1.1	2.14	142	380	<0.5	<2	0.45	<0.5	1	18	31	2.53
609524		0.20			1.3	1.22	48	150	<0.5	<2	0.22	0.7	2	10	32	1.42
609525		0.26			1.3	0.79	6	160	<0.5	<2	0.22	<0.5	<1	8	22	0.67
186202		0.22			<0.5	7.75	7	370	1.2	<2	1.57	<0.5	26	12	161	6.87
186203		0.24			0.6	4.25	57	580	<0.5	<2	0.20	<0.5	7	75	40	6.44
186204		0.16			2.5	7,99	12	180	1.7	<2	0.55	1.0	49	26	29	2.47
186205		0.18			1.3	6,38	46	490	0.8	<2	0.26	<0.5	8	71	35	5.54
186206		0.20			1,1	6.26	43	520	0.5	<2	0.23	<0.5	7	78	33	6.96
186207		0.14			1.5	8.67	11	310	0.9	<2	2.26	0.9	27	9	258	6.90
186651		0.34			<0.5	4.32	<5	360	0,8	<2	8.92	<0.5	5	26	9	2.62
186652		0.28			0.7	4.82	13	610	0.8	<2	0.80	<0.5	5	53	26	2.65
186653		0.44			1.8	5.25	18	680	1.0	<2	0.57	<0.5	2	54	79	2.14
186654		0.48			<0.5	6.64	24	210	0.6	<2	1.31	<0.5	15	15	108	4.98
186656		0.52			<0.5	7.87	18	320	0.9	<2	1.69	<0.5	19	16	154	5.80
186657		0.62			1.0	7.96	61	330	0.9	<2	1.60	<0.5	20	16	114	6.16
186658		0.26			0.5	8.24	68	480	1.1	<2	2.92	<0.5	21	17	134	5.50
186659		0.28			1.0	4.78	27	610	0.5	<2	0.93	<0.5	5	22	100	4.22
186660		0.26			1.0	4.16	43	330	<0.5	<2	0.25	<0.5	7	130	28	6.82
186661		0.30			2.0	5.07	52	590	<0.5	<2	0.34	<0.5	6	63	64	4,94
186664		0.20			0.5	8.71	70	510	1.2	<2	2.54	<0.5	20	24	147	5.85
186665		0.32			<0.5	1.16	<5	120	<0.5	<2	0.53	<0.5	1	4	68	0.81
186666		0.34			0.5	5.24	24	370	0.7	<2	1.70	<0.5	15	21	89	3,71
186667		0.24			3.6	4.89	31	900	0.5	<2	0.45	<0.5	3	54	119	3.08
186668		0.36			2.1	5.74	48	460	0.5	<2	0.34	<0.5	6	56	47	5.21
186669		0.34			1.8	5.65	71	590	0.5	<2	0.34	<0.5	7	66	60	7.28
186670		0.26			1.5	4.56	57	600	<0.5	<2	0.28	0.5	6	55	39	7.26

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Lld. 212 Brooksbank Avenue

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

.

Page: 2 - B Total # Pages: 3 (A - B) Date: 16-JUL-2004 Account: KIV

1

t

Project: Poly

CERTIFICATE OF ANALYSIS VA04040707

,

¥

Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
186663		1.04	1.44	1195	1	2.17	17	1940	17	0,07	<5	564	0.43	183	<10	112
186680		1.03	0,75	2430	5	0.72	71	1510	19	0.12	7	126	0.26	96	<10	317
186683		1.20	0.87	1510	4	0.91	58	1160	15	0.09	5	134	0.31	115	<10	226
186687		1.53	0.98	2960	4	0.43	73	1270	24	0.16	14	130	0.26	93	<10	347
186689		1.34	0.91	2310	5	0.54	75	1250	20	0.17	13	164	0.29	102	<10	268
186699																
609526											-			_		_
609516		1.24	0.53	482	5	0.61	8	1320	138	0.19	10	148	0.22	87	<10	85
609517		0.76	0.48	788	12	0.38	17	2150	21	0.20	<5	112	0.23	129	<10	201
609518		0.27	0.10	127	1	0.08	4	980	2	0.22	<5	35	0.07	22	<10	53
609519		0,72	0.21	172	9	0.10	6	890	14	0.15	7	30	0.13	111	<10	76
609520		0.08	0.04	146	1	0.02	9	530	7	0.23	<5	27	0.01	4	<10	47
609521		1.54	0.28	505	13	0.29	8	2210	24	0.20	10	71	0.27	108	<10	142
609522		1.01	0.27	408	12	0.28	10	2130	20	0.20	8	57	0.22	101	<10	128
609523		0.73	0.20	369	7	0.25	9	1500	12	0.24	5	58	0.19	60	<10	59
609524		0.23	0.08	126	4	0.15	10	1330	11	0.29	<5	31	0.06	28	<10	60
609525		0.29	0,09	242	8	0.10	4	1000	8	0.26	<5	26	0.06	20	<10	31
186202		0.99	1.39	2270	2	1.69	12	2290	15	0.06	<5	379	0.47	234	<10	136
186203		1.36	0.40	635	3	0.61	15	3230	23	0.07	<5	66	0.41	197	<10	58
186204		0,21	0.09	>10000	7	0.11	17	3630	21	0.18	<5	- 47	0,06	29	<10	90
186205		1.16	0.65	561	2	1.03	27	930	25	0.04	<5	94	0.34	130	<10	96
186206		1.06	0.65	475	2	0.86	25	810	19	0.03	<5	99	0.38	156	<10	85
186207		0.86	1.06	1605	<1	2.72	9	1940	308	0.14	7	442	0.50	237	<10	1435
186651		1.27	2.49	671	<1	1.36	8	590	14	0.02	<5	340	0,36	56	<10	55
186652		1.38	0.38	1370	3	1.30	18	1240	20	0.07	<5	170	0.29	81	<10	87
186653		1.62	0.21	275	8	1.41	26	710	21	0.03	<5	172	0.37	100	<10	35
186654		0.76	1.20	906	1	1.92	8	3390	10	0.12	<5	360	0.41	165	<10	72
186656		1,24	1.37	1055	1	2.17	13	2720	7	0.09	<5	460	0.46	203	<10	88
186657		1.04	1.48	998	1	1.94	13	2890	10	0.08	<5	471	0.50	216	<10	105
186658		1.10	1.56	1175	1	2.19	13	2010	6	0.05	<5	600	0.48	199	<10	107
186659		1.36	0.58	500	4	1.25	7	4650	16	0.08	<5	223	0.46	123	<10	41
186660		0.70	0.88	799	2	0.70	40	1760	20	0.07	<5	79	0.41	172	<10	63
186661		1.20	0.49	474	2	0.85	24	2400	20	0.05	5	100	0.42	149	<10	63
186664		1.32	1.62	1240	1	2.28	15	2070	10	0.07	<5	601	0.50	213	<10	108
186665	<u> </u>	0.19	0.17	182	12	0.32	7	710	5	0.20	5	77	0.08	24	<10	26
186666		0.80	0.80	1135	3	1.12	19	1900	9	0.15	<5	286	0.30	122	<10	73
186667		1.65	0.27	397	3	0.88	25	960	21	0.04	<5	100	0.53	134	<10	63
186668		0.90	0.64	539	2	0.66	25	1650	18	0.10	<5	87	0.31	128	<10	61
186669		1.23	0.78	617	2	0.70	27	2020	23	0.07	<5	88	0.45	199	<10	76
186670		1.41	0.59	686	2	0.46	22	3030	17	0.10	<5	63	0.46	195	<10	54

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 3 - A Total # Pages: 3 (A - B) Date: 16-JUL-2004 Account: KIV

ŧ

Project: Poly

CERTIFICATE OF ANALYSIS VA04040707

Sample Description	Method Analyte Units LOR	WEJ-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP61 Ag ppm 0.5	ME-ICP61 Ai % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cđ ppm 0.5	MÉ-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01
186671		0.30			2.3	3.97	63	410	<0.5	<2	0.65	<0.5	6	32	59	3.56
186672		0.40			<0.5	5.69	24	590	0.8	<2	0.48	<0.5	3	72	11	3.67
186673		0,52			<0.5	6.10	27	440	1.0	<2	0.44	<0.5	4	80	19	5.81
186674		0.62			<0.5	6.79	24	520	1.6	<2	0.75	<0.5	11	57	14	4.95
186676		0.36			1.0	1.66	29	270	<0.5	<2	0.31	<0.5	1	16	42	1.22
186677		0.26			0.8	0.39	14	90	<0.5	<2	0.22	<0.5	1	4	23	0.34
186678		0.32			2.9	7.59	363	430	1,0	<2	0.45	0.5	10	65	83	4.71
186681		0.42			1.5	6.97	198	470	0.9	<2	0.45	<0,5	13	87	65	5.12
186684		0.32			1.7	4.02	210	440	0.5	<2	0.51	<0.5	4	54	50	4.20
186693	,,	0.36			<0.5	2.88	52	420	<0.5	~2	0.26	<0.5	1	80	19	3.07
186694		0.40			<0.5	0.21	5	100	<0.5	<2	0.74	<0.5	1	4	16	0.17
186695		0.22			<0.5	0.23	<5	80	<0,5	<2	0.63	<0.5	1	3	12	0.15
186696		0.22			1.1	5.02	467	370	0.7	<2	0.41	<0.5	13	100	59	4.18
186697		0.26			3.3	3.41	281	280	0.5	<2	0.39	0.5	6	20	67	3.49
186698		0.22			0.8	4.74		910	0.5	< <u></u>	0.60	×0,5	3			0.39

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

· · ·

Page: 3 - B Total # Pages: 3 (A - B) Date: 16-JUL-2004 Account: KIV

Project: Poly

.

CERTIFICATE OF ANALYSIS VA04040707

•

Sample Description	Method Analyte Units LOR	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-1CP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Nì ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
186671		0.71	0.59	451	2	0.72	16	1760	10	0.20	<5	136	0.27	104	<10	47
186672		1.22	0.35	405	4	1.34	12	420	14	0.03	<5	138	0.46	140	<10	43
186673		1.03	0.47	410	4	1.14	21	710	16	0.06	<5	124	0.32	100	<10	62
186674		1.63	0.64	922	5	1.70	25	840	17	0.04	<5	169	0.35	96	<10	84
186676		0.58	0.11	194	2	0.30	7	980	9	0.20	<5	47	0.16	36	<10	26
186677		0.15	0.05	186	1	0.05	12	650	3	0.27	<5	23	0.04	9	<10	38
186678		0.92	0.64	991	7	0.54	40	1560	15	0.12	<5	83	0.28	104	<10	245
186681		0.99	0.72	1035	7	0,69	43	1420	12	0.11	<5	92	0.31	115	<10	121
186684		0.92	0.46	714	6	0,57	22	1620	13	0.20	5	84	0.26	95	<10	84
186693		0.91	0.41	260	4	0.44	24	1080	9	0.11	<5	56	0.35	125	<10	38
186694		0.08	0.06	144	3	0.03	18	470	5	0.24	<5	43	0.01	4	<10	41
186695		0.08	0.06	44	<1	0.03	13	610	5	0.25	<5	43	0.01	3	<10	13
186696		0.75	0.59	640	4	0.47	57	1520	18	0.16	<5	82	0.27	92	<10	97
186697		0.77	0.34	512	10	0.25	17	2240	12	0.27	<5	57	0.19	73	<10	97
186698		1.12	0.40	559	2	0.65	4	2390	17	0.21	<5	124	0.16	85	<10	33
186700		1.33	2.43	650	1	1.48	10	540	9	0.01	<5	349	0.34	54	<10	41

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

ALS Canada Ltd.

212 Brooksbank Avenue

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 3 (A) Finalized Date: 30-JUL-2004 Account: KIV

'n

Project: Poly

CERTIFICATE OF ANALYSIS VA04045822

Sample Description	Method Analyte Units LOR	Au-AA23 Au ppm 0.005
186663 186680 186683 186687 186689		<0.005 0.020 0.010 0.010 0.023
609516 609517 609518 609519 609520		NSS 0.015 <0.005 NSS <0.005
609521 609522 609523 609524 609525		NSS 0.006 <0.005 <0.005 NSS
186202 186203 186204 186205 186206		<0.005 <0.005 <0.005 0.007 <0.005
186207 186651 186652 186653 186654		0.006 <0.005 <0.005 <0.005 <0.005
186656 186657 186658 186659 186660		<0.005 <0.005 <0.005 <0.005 <0.005
186661 186664 186665 186666 186667		<0.005 0.005 NSS <0.005 <0.005
186668 186669 186670 186671 186672		0.045 0.006 0.015 <0.005 <0.005

Comments: NSS is non-sufficient sample.

_

1

٢

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

,

Page: 3 - A Total # Pages: 3 (A) Finalized Date: 30-JUL-2004 Account: KIV

Project: Poly

CERTIFICATE OF ANALYSIS VA04045822

.

Method Analyte Units Sample Description LOR	Au-AA23 Au ppm 0.005
186673 186674 186676 186677 186678	<0.005 <0.005 <0.005 <0.005
186681 186684 186693 186694	0.011 0.014 <0.005 NSS <0.005
186696 186697 186698 186700	0.007 0.010 <0.005 <0.005

Comments: NSS is non-sufficient sample.

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 3 (A) Finalized Date: 31-JUL-2004 Account: KIV

۱

3

.

Project: Poly

CERTIFICATE OF ANALYSIS VA04045823

	Method	Au-AA23	Au-GRA21					
	Analyte	Au	Au					
Sample Description	Units	ppm	ppm					
	LON	0.005	0.05					
186208		0.013						
186209		0.017						
186210		0.022						
186211		0.047						
186212		0.038						
186213		<0.005				 	·····	
186214		0.008						
186215		0.010						
186216		<0.005						
186217		0.007						
186218		0.011						
186219	1	0.023						
186220		0.019						
186221		0.012					•	
186222		<0.005		 _				
186223		0.012						
186224		0.012						
186225		<0.005						
186226		0.012						
186227		0.011		 				
186228		<0.005						
186229		<0.005						
186230		<0.005						
186231		3.27						
609384		0.018		 				
609385		0.016						
609386		0.039						
609387		0.019						
609388		0.211						
609389	_	0.005			 			
609390		<0.005				 		
609500 A		0.236						
609501		<0.005						
609502		NSS						
609503		0.015						
609504		0.008					· · · · · · · · · · · · · · · · · · ·	
609505	(NSS						1
609506		<0.005						
609507		NSS						
609508		<0.005						

Comments: NSS is non-sufficient sample.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 3 - A Total # Pages: 3 (A) Finalized Date: 31-JUL-2004 Account: KIV

٦

٦

•

Project: Poly

CERTIFICATE OF ANALYSIS VA04045823

1

Sample Description	Method Analyte Units LOR	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	
609509 609510 609511 609512 609513		<0.005 NSS <0.005 <0.005 <0.005		
609514 609515 609357 A 609357 609358		<0.005 <0.005 >10.0 0.020 <0.005	17.75	
609359 609360 609361 609362 609363		<0.005 0.015 <0.005 <0.005 <0.005		
609364 609365 609366 609367 609368		<0.005 <0.005 <0.005 <0.005 <0.005 0.007		
609369 609370 609371 609372 609373		NSS 0.005 <0.005 NSS NSS		
609374 609375 609376 609377 609378		0.005 <0.005 <0.005 <0.005 0.005		
609379 609380 609381 609382 609383		<0.005 <0.005 <0.005 0.005 <0.005 <0.005		
609383 A		2.91		

Comments: NSS is non-sufficient sample.

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

• .

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 18-AUG-2004 Account: KIV

٦

1

1

1

Project: Poly 05-04

CERTIFICATE OF ANALYSIS VA04052345

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	
1-86151B N609319 N609527B N609532 N609535		0.08 0.08 0.08 1.16 0.70	2.89 0.247 >10.0 0.017 3.14	16.20	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

١

Project: Poly

CERTIFICATE OF ANALYSIS VA04052344

and the second second

Sample Description	Method Analyte Units LQR	WEI-21 Recvd Wt, kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICÞ61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	MÉ-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-1CP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01
N599901		0.44	0.7	5.04	94	530	0.8	<2	0.82	<0.5	10	98	40	3,58	1.18	1.00
N599902		0.50	0.6	3.14	60	420	<0.5	<2	0.50	<0.5	3	78	36	2.57	0.94	0.47
N599903		0.44	0,8	4.00	122	420	0.6	<2	0.60	<0.5	5	80	28	3.08	0.95	0.65
N599904		0.66	<0.5	0.40	<5	100	<0.5	<2	0.21	<0.5	1	3	23	0.21	0.12	0.03
N599905		0.58	1.1	5.04	120	460	0.8	<2	0.69	<0.5	9	118	28	4.40	1.13	0.96
N599906		0.40	<0.5	4.33	<5	370	0.9	<2	9,32	<0.5	6	24	8	2.66	1.16	2.70
N599907		0.40	0.6	1.26	11	210	<0.5	<2	0.28	<0.5	2	13	20	0.54	0.44	0.10
N599908		0.50	<0.5	1.73	15	290	<0.5	<2	0.38	<0,5	3	25	20	0.78	0.63	0.17
N599909		0.48	0.7	4.64	130	540	0.8	<2	0.56	<0.5	4	85	26	3.39	1.34	0.59
N599910		0.52	0.8	6.05	39	600	1.2	<2	0.74	<0.5	10	71	33	3.45	1.50	0.68
N599911		0.54	0.6	6.06	65	610	1.3	<2	0.75	<0.5	11	87	49	3.73	1.58	0.81
N599912		0.38	0.6	5.53	151	540	1.0	<2	0.80	<0.5	12	106	32	4.13	1.30	1.04
N599913		0.72	0.9	6.11	188	580	1.0	<2	0,90	<0.5	16	124	39	4,94	1.36	1.23
N599914		0.52	1.5	0.73	7	160	<0.5	<2	0.33	<0.5	3	11	33	0.44	0.24	0.08
N599915		0.50	0.6	4.97	82	530	0.8	<2	0.82	<0.5	5	91	20	2.80	1.20	0.78
N599916		0.64	<0.5	6.70	74	710	1.4	<2	1.13	0.6	19	85	25	3.75	1.39	0.99
N599917		0.60	1.0	6.66	144	660	1.2	<2	1.10	0.8	30	130	30	4.52	1.37	1.29
N599918		0.56	0.5	6.72	87	610	1.8	<2	0.95	0.7	22	96	52	3.87	1.27	1.06
N599919]	0.50	0.8	6.57	82	500	0.8	<2	0.94	<0.5	21	22	117	7.20	1.23	1.80
N599920		0.42	<0.5	4.33	5	380	0.9	<2	9.89	<0.5	6	27	8	3.07	1.26	2.87
N599921		0.34	<0.5	6.21	29	730	1.1	<2	1.00	<0.5	6	22	56	4.69	1,64	0.74
N599922		0.46	0.6	2.16	5	350	<0.5	<2	0.48	<0.5	2	10	58	1.12	0.97	0.18
N599923		0.50	<0.5	0.49	5	150	<0.5	<2	0.46	<0.5	1	2	31	0.31	0.20	0.05
N599925		0.42	0,8	1.98	40	330	<0.5	2	0.61	<0.5	4	15	36	1.82	0.85	0.34
N599926		0.46	<0.5	3.99	33	510	0.6	<2	0.95	<0.5	7	20	39	2.93	1.08	0.80
N599927		0.44	<0.5	0.15	5	80	<0.5	<2	0.41	<0.5	1	1	32	0.12	0,19	0.06
N599928		0.34	0.6	6.87	60	930	1.0	2	1.61	1.0	31	23	93	6.29	1.61	1.70
N599929		0.32	<0.5	5.16	43	490	0.7	<2	1.18	<0.5	15	21	71	5.96	1.30	1.49
N599930		0,56	0.5	2.64	20	360	<0.5	<2	0.69	<0.5	6	16	47	2.51	0,91	0.62
N599931		0.40	<0.5	4.29	18	460	1.0	<2	0.55	<0.5	3	21	36	2,05	1.54	0.19
N599932		0.46	2.2	7.66	187	740	1.2	<2	1,99	1.5	20	51	86	5.11	1.94	1.42
N599933		0.72	1.9	7.88	215	830	1.2	<2	1.85	1.7	21	44	90	5.42	2.00	1.39
N599934		0.32	<0,5	4.28	<5	370	0.9	<2	9.37	<0.5	6	22	12	2.41	1.32	2.58
N599935		0.72	1.1	8.06	182	810	1.2	<2	2.00	1.7	19	43	87	5.07	2.00	1.34
N599936		0.28	1.5	6.53	165	620	1.0	<2	2.13	1.8	16	38	69	4.22	1.51	1.11
N599937		0.38	0.8	7.37	168	700	1.2	<2	2.15	0.7	19	45	55	4.84	1.69	1.28
N599938		0.24	1.4	8.18	212	680	1.3	<2	1.92	0.7	22	46	76	5.51	1.72	1.50
N599939		0.66	1.7	7.91	185	780	1.3	<2	1.99	1.7	22	44	93	5.38	2.10	1.44
IND99940		0.28	<0.5	5,31	27	4/0	1.2	<2	0.73	<0.5	5	21	61	3.98	1.64	0.60
11099941		0.42	<0.5	6.50	42	610	0.9	<2	1.06	<0.5	11	47	80	3.82	1.44	0.99

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 2 - B Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

5

Project: Poly

CERTIFICATE OF ANALYSIS VA04052344

	Method	ME-ICP61													
	Analyte	Mn	Mo	Na	Ni	₽	Pb	S	Sb	Sr	Ti	v	w	Zn	
	Units	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
Sample Description	LOR	5	1	0.01	1	10	2	0.01	5	1	0.01	1	10	2	
N599901		817	2	0.99	54	1340	13	0.12	<5	145	0.25	93	<10	91	
N599902		362	2	0.60	21	1600	28	0.16	<5	84	0.25	78	<10	56	
N599903		469	2	0.83	35	1200	15	0.13	<5	120	0.22	81	. <10	73	
N599904		52	1	0,06	21	580	8	0.25	<5	25	0.02	5	<10	29	
N599905		791	2	1.04	42	1330	18	0.10	<5	140	0.25	104	<10	65	
N599906		699	<1	1.43	11	490	11	0.02	<5	328	0.37	58	<10	44	
N599907		191	1	0.30	12	610	6	0.19	<5	47	0.08	19	<10	27	
N599908		279	1	0.44	18	630	6	0.19	<5	65	0.13	31	<10	41	
N599909		512	3	1.05	26	1570	15	0.11	5	128	0.30	99	30	59	
N599910		885	10	1.52	39	1060	18	0.08	<5	176	0.31	94	<10	73	
N599911		801	13	1.43	69	1070	19	0.08	7	172	0.31	101	<10	108	
N599912		930	3	1.12	56	1070	23	0.09	6	156	0.25	98	<10	102	
N599913		1110	2	1.12	63	1410	23	0.11	7	164	0,29	115	<10	124	
N599914		197	1	0.16	30	750	13	0.29	<5	35	0.04	11	<10	52	
N599915		528	2	1.17	31	1100	17	0.10	<5	164	0.26	89	<10	68	
N599916		1395	2	1.80	47	1190	19	0.06	5	222	0.29	99	<10	127	
N599917		2020	3	1.38	57	1270	21	0.07	5	195	0.31	118	<10	148	
N599918		1670	12	1.44	45	1240	19	0.06	<5	194	0.30	105	<10	109	
N599919		1430	8	1.22	17	1260	18	0.09	<5	242	0.47	245	<10	174	
N599920		787	1	1.40	10	700	14	0.01	<5	325	0.43	69	<10	49	
N599921		1035	20	1.79	13	2510	21	0.06	<5	229	0.44	150	<10	73	
N599922		202	15	0.64	9	710	7	0.16	<5	83	0.16	38	<10	35	
N599923		184	8	0.13	6	570	6	0.23	<5	45	0.03	7	<10	32	
N599925		486	4	0.58	7	1500	7	0.21	<5	101	0.24	59	<10	41	
N599926		544	3	1.17	10	820	12	0,13	<5	184	0.31	111	10	69	
N599927		137	1	0.02	8	450	14	0.23	<5	22	0.01	3	<10	43	
N599928		6430	4	1.51	21	1440	27	0.07	<5	299	0.51	217	<10	242	
N599929		1720	7	1.28	15	950	15	0.10	5	220	0.45	198	<10	114	
N599930		485	4	0.69	10	1360	21	0.19	<5	116	0.29	90	<10	63	
N599931		264	3	1.47	5	1300	16	0.10	<5	146	0.22	57	<10	40	
N599932		1740	1	1.44	44	1420	36	0.07	5	292	0.37	147	<10	217	
N599933		1770	2	1.42	41	1460	43	0.06	<5	301	0.33	153	<10	245	
N599934		645	4	1.44	15	670	9	0.01	<5	328	0.37	58	<10	44	
N599935		1675	1	1.47	46	1530	33	0.07	6	302	0.36	144	<10	219	
N599936		1375	3	1.18	29	1340	32	0.10	<5	265	0.31	122	<10	213	
N599937		1740	2	1.32	31	1600	38	0.08	5	287	0.35	138	<10	180	
N599938		1910	2	1.36	41	1400	40	0.04	<5	296	0.37	152	<10	187	
N599939		1720	2	1.42	43	1640	46	0.06	9	313	0.37	150	<10	246	
N599940		967	9	1.49	8	1840	20	0.09	6	168	0.34	114	<10	76	
N599941		686	1	1.33	29	1290	17	0.08	<5	179	0.34	130	<10	99	
		£											A.A		· · · · · · · · · · · · · · · · · · ·

Т

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

3

Page: 3 - A Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

٦

Project: Poly

CERTIFICATE OF ANALYSIS VA04052344

!

ŧ

,

Method	WEI-21	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61
Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	Mg
Units	kg	ppm	%	ppm	ppm	pom	ppm	%	ppm	ррт	ppm	ppm	%	%	%
LOR	0.02	0.5	0.01	5	10	0.5	2	0.01	0.5	1	1	1	0.01	0.01	0.01
	0.28	0.8	5.26	23	650	0.9	<2	0.92	<0.5	8	23	79	3.78	1.54	1.00
	0.40	<0.5	0.22	5	110	<0.5	<2	0.32	<0.5	1	3	25	0.15	0.10	0.05
	0.28	0.8	3,94	24	500	0.6	<2	0.84	<0.5	6	21	41	2.58	1.22	0.49
	0.54	<0.5	6.09	11	530	1.5	<2	0.74	<0.5	7	17	9	3.45	2.44	0.24
	0.22	0.7	5.20	- 16	600	0.9	<2	0.53	<0.5	4	47	13	1.76	1.59	0.21
	0.50	0.0	5.01	12	000	1.2		0.03	0.7	13	37	20	2.20	1.40	U.31
	Method Analyte Units LOR	Method Analyte Units LOR 0.02 0.28 0.40 0.28 0.54 0.22 0.50	Method Analyte Units LOR WEI-21 Recvd Wt. 4g ME-ICP61 0.02 0.5 0.02 0.5 0.28 0.8 0.40 <0.5	Method Analyte Units Units WEI-21 Kg ME-ICP61 ME-ICP61 0.02 0.5 0.01 0.02 0.5 0.01 0.28 0.8 5.26 0.40 <0.5	Method Analyte LOR WEI-21 Rocvd Wt. ME-ICP61 Ag ME-ICP61 Al ME-ICP61 As ME-ICP61 As ME-ICP61 As ME-ICP61 As 0.02 0.5 0.01 5 0.02 0.5 0.01 5 0.28 0.8 5.26 23 0.40 <0.5	Method Analyte LOR WE-ICP61 ME-ICP61 ME -ICP61	Method Analyte Network WE-LCP61 ME-LCP61 ME-LCP6	Method Units LOR WEL211 Recvd Wt. 0.02 ME-ICP61 0.02 ME-ICP61 0.05 ME-ICP61 0.01 ME-ICP61 Ppm <	Method Units LOR WEL/21 Record Wt. kg ME-ICP61 ME-ICP61 ME-ICP61 As ME-ICP61 Bs <td>Meth-20 ME-ICP61 ME-ICP61</td> <td>Method Marthis Marthis WE-LCPE1 ME-LCPE1 ME-LCPE</td> <td>Methods WEL21 MELCP61 MELCP61</td> <td>Matchade Netlocal Native Nati Nati Native Native Native Native Native Native Native</td> <td>Method Units Ion WE-21 (0 ME-CPC91 (0 ME-CPC91 (0</td> <td>Mathod Mathor Units WEL-21 Mathor Kg MEL-CP51 MEL-CP51 MEL-CP51 MEL-CP51</td>	Meth-20 ME-ICP61	Method Marthis Marthis WE-LCPE1 ME-LCPE1 ME-LCPE	Methods WEL21 MELCP61	Matchade Netlocal Native Nati Nati Native Native Native Native Native Native Native	Method Units Ion WE-21 (0 ME-CPC91 (0	Mathod Mathor Units WEL-21 Mathor Kg MEL-CP51 MEL-CP51

Т

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 . Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 3 - B Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

Ŧ

Project: Poly

CERTIFICATE OF ANALYSIS VA04052344

.

٩

Sample Description	Method Analyte Units LOR	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
N609351		1175	3	1.43	13	1310	18	0.10	6	198	0.43	137	<10	91	·
N609352		184	3	0.04	7	540	10	0.25	<5	26	0.01	4	<10	34	
N609353		478	4	1.26	7	1450	15	0.13	5	180	0.35	101	<10	48	
N609354		3130	1	2.20	4	1060	23	0.04	6	219	0,31	78	<10	38	
N609355		638	3	1.70	10	700	14	0.04	5	159	0.35	94	<10	47	
N609356		3720	10	1.46	15	1730	25	0.06	<5	178	0.32	77	<10	128	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

.

•

Page: 2 - A Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

•

Project: Poly 05-04

CERTIFICATE OF ANALYSIS VA04052346

. .

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	МЕ-ICP61 Ва ррт 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-łCP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01
186151		0.44	<0.5	7.00	38	700	1.5	<2	1.12	<0.5	11	67	34	3.40	1.86	0.91
186152		0.40	<0.5	6.03	53	600	1.2	<2	0.87	<0.5	9	71	25	2.99	1.66	0.79
186153		0.32	0.8	5.61	175	500	0.9	<2	0.75	<0.5	15	113	40	4.45	1.24	1.14
186154		0.28	0.9	5.46	131	480	0.9	<2	0.77	<0.5	11	103	45	4.11	1.19	1.01
186155		0.36	0.5	4.58	63	460	0.8	<2	0.60	<0.5	7	71	36	2.90	1.11	0.69
186156		0.30	1.0	4.64	201	420	0.7	<2	0.56	<0.5	7	111	42	4.45	0.91	0.88
186157		0.56	0.5	6.66	50	620	1.4	<2	0.81	<0.5	12	86	36	3.75	1.58	0.85
186158		0.40	<0.5	6.36	63	610	1.3	<2	0.75	<0.5	15	82	35	3.75	1.57	0.83
186159		0.30	0.5	4.62	82	490	0.6	<2	0.53	<0.5	6	95	31	3.56	1.04	0.81
186160		0.36	<0.5	5.88	54	640	0.9	<2	0.55	<0.5	11	105	39	3.59	1.37	1.07
186161		0,50	<0.5	6.45	51	680	0.9	<2	0.51	<0.5	12	115	37	3.80	1.53	1.24
186162		0.54	<0.5	6.96	44	750	1.0	<2	0.41	<0.5	12	118	42	3.92	1.54	1.30
186163		0.40	1.5	8.24	164	770	1.3	<2	1.95	0.7	17	49	67	5.07	1.96	1.34
186164		0.48	1.2	8.10	190	810	1.3	<2	1.98	1.4	16	51	63	5.14	1.90	1.34
186165		0.34	1.4	7.76	190	710	1.3	<2	1.71	<0.5	22	91	67	5.23	1,58	1.46
186166		0.70	1.0	7.41	162	750	1.2	<2	1.55	<0.5	18	102	60	5.02	1.60	1.40
186167		0.32	<0.5	5.45	143	560	0.7	<2	0.91	<0.5	10	46	36	4.42	1.37	0.92
186168		0.34	1.8	7.56	162	620	1.1	<2	1.07	0.5	21	49	74	4.87	1.53	1.18
186169		0.34	0.8	6.40	114	630	1.0	<2	0.98	<0.5	18	97	52	4.20	1.53	1.22
186170		0.58	0.5	6.71	99	700	1.1	<2	0.89	<0.5	21	118	46	4.28	1.64	1.32
186171		0.32	<0.5	3.67	5	300	0.8	<2	13.05	<0.5	5	18	11	1,95	1.28	4.12
N609301		0.28	<0.5	4.29	<5	390	0.8	<2	9.48	<0.5	5	22	6	2.37	1,36	2.40
N609302		0.32	<0.5	0.58	<5	110	<0.5	<2	0.93	1.0	1	3	12	0.29	0.12	0.07
N609303		0.28	0.6	6.52	38	540	1.4	<2	0.70	<0.5	18	39	88	4.97	1.58	0.68
N609304		0.24	0.8	3.87	17	410	1.0	<2	0.62	<0.5	6	17	36	2.29	1.42	0.31
N609305		0.26	0.5	7.55	22	640	1.9	2	1.09	0.5	12	20	110	3.94	2.35	0.90
N609306		0.42	0.6	1.70	<5	250	<0.5	<2	0.37	<0.5	1	20	27	0.68	0.53	0.08
N609307		0.22	0.5	7.14	42	510	1.4	<2	1.29	<0.5	18	20	105	5.28	1.42	1.54
N609308		0.32	0.7	6.89	72	600	1.2	2	1.51	<0.5	20	30	131	5.34	1,70	1.40
N609309		0.48	1.0	7.89	47	620	1.8	<2	1.28	<0.5	25	31	113	6.68	1.54	1.85
N609310		0.26	0.5	7.68	56	590	1.5	<2	1.66	1.3	23	28	130	5.86	1.63	1.73
N609311		0.40	0.6	6.06	28	670	1.3	<2	1.03	<0.5	11	45	55	4.09	1.52	0.88
N609312		0.30	0.9	5.06	42	520	0.8	2	1.31	0.6	17	18	80	4.12	1.27	1.18
N609313		0.22	<0.5	4.51	49	440	0.7	<2	1.15	0.7	13	21	103	3.81	1.13	1.02
N609314		0.44	0.9	1.10	<5	200	<0.5	<2	0.62	0.5	3	10	47	0.85	0.44	0.19
N609315		0.34	1.0	0.90	<5	160	<0.5	<2	0.31	<0.5	2	4	72	0.38	0.35	0.06
N609316		0.30	0.6	2.45	19	290	<0.5	<2	0.62	<0.5	5	12	58	1.90	0,71	0.36
N609317		0.30	0.6	0.32	<5	80	<0.5	<2	0.33	<0,5	1	2	33	0.24	0.13	0.06
N609318		0.26	0.8	2.47	19	280	<0.5	<2	0.67	0.7	8	11	74	2.06	0.71	0.50
N609527		0.78	0.8	5.98	75	800	1.0	<2	1.62	13.0	42	27	129	6.55	1.52	1.12

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD **UNIONVILLE ON L3R 4J8**

.

Page: 2 - B Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

· · · ·

Project: Poly 05-04

CERTIFICATE OF ANALYSIS VA04052346

.

Sample Description	Method Analyte Units	ME-ICP61 Mn ppm	ME-ICP61 Mo ppm	ME-ICP61 Na %	ME-ICP61 Ni ppm	ME-ICP61 P ppm	ME-ICP61 Pb ppm	ME-ICP61 S %	ME-ICP61 Sb ppm	ME-ICP61 Sr ppm	ME-ICP61 Ti %	ME-ICP61 V ppm	ME-ICP61 W ppm	ME-ICP61 Zn ppm	
	LON	5	1	0.01	1	10	2	0.01	5	1	0.01	1	10	2	
186151		1225	4	1.94	46	1020	22	0.04	8	228	0.32	102	<10	102	
186152		773	5	1.74	36	980	14	0.06	5	200	0.28	88	<10	75	
186153		1005	2	1.06	53	1560	16	0,10	5	150	0.29	109	<10	108	
186154		836	2	1.06	50	1420	22	0.12	<5	148	0.27	100	<10	92	
186155		468	3	1.10	38	1200	18	0.14	<5	134	0.23	79	<10	68	
186156		614	2	0.89	46	1230	28	0.13	6	118	0.26	106	<10	90	
186157		1010	9	1.62	50	1120	17	0.06	<5	182	0.33	108	<10	98	
186158		1015	10	1.56	47	1100	22	0.06	<5	174	0.33	105	<10	91	
186159		607	3	0.96	39	1480	13	0.13	<5	109	0.27	101	<10	71	
186160		876	2	1.20	61	1060	16	0,07	6	129	0.32	118	<10	106	
186161		1055	1	1.44	68	1100	21	0.04	<5	135	0.34	130	<10	118	
186162		1165	1	1.52	75	900	18	0.03	<5	130	0.36	136	<10	126	
186163		1405	2	1.58	39	1300	30	0.03	5	331	0.37	146	10	209	
186164		1675	4	1.56	37	1260	40	0.03	7	323	0.36	149	<10	211	
186165		1525	3	1.41	86	1220	29	0.04	5	262	0.35	137	<10	184	
186166		1165	3	1.38	81	1220	23	0.03	5	242	0.34	132	<10	185	
186167		964	2	0.99	27	1250	24	0.11	9	178	0.35	135	<10	91	
186168		2010	3	1.14	39	1440	35	0,07	<5	208	0.32	123	<10	170	
186169		1230	3	1.20	70	1140	19	0,06	<5	170	0.30	116	10	134	
186170		1200	2	1.36	96	1160	22	0.04	6	170	0.32	122	<10	154	
186171		617	<1	1.11	9	440	12	0.02	<5	316	0.23	42	<10	49	
N609301		679	1	1.43	9	430	12	0.01	<5	333	0.34	52	<10	37	
N609302		36	12	0.08	5	1050	10	0.61	<5	69	0.03	8	<10	20	
N609303		3290	13	1.59	14	570	24	0.04	<5	186	0.38	148	10	95	
N609304		589	19	1.17	9	1030	18	0.15	<5	142	0.24	67	10	49	
N609305		1070	27	2.19	11	1160	28	0.04	<5	270	0.34	112	10	124	
N609306		113	13	0.55	7	590	11	0,19	<5	64	0.10	25	<10	28	
N609307		1175	28	1.67	16	1260	15	0.07	<5	307	0.41	176	<10	147	
N609308		1445	12	1.52	15	2080	21	0.08	<5	269	0.42	170	<10	170	
N609309		2600	18	1.66	15	1610	14	0,04	<5	313	0.45	196	<10	148	
N609310		2140	11	1.68	17	1590	16	0.05	<5	314	0.43	186	10	199	
N609311		1120	17	1.60	17	1640	25	0.08	<5	225	0.33	126	<10	106	
N609312		1270	6	1.16	13	1580	27	0.13	<5	224	0.33	140	<10	156	
N609313	Ì	840	6	0.96	15	1160	18	0.14	<5	176	0.29	124	<10	118	
N609314		188	8	0.24	13	610	9	0.18	<5	55	0.10	33	<10	39	
N609315		182	3	0.25	8	430	8	0.17	<5	42	0.06	14	<10	35	
N609316		287	4	0.64	8	1120	13	0.19	<5	104	0.16	59	<10	61	
N609317		103	1	0.07	6	540	13	0.23	<5	24	0.02	6	<10	39	
N609318		575	4	0.55	12	1060	13	0.18	<5	99	0.15	63	<10	96	
N609527		965	20	1.34	44	2030	32	1.18	6	228	0.30	134	<10	465	

۲

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 3 - A Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

.

Project: Poly 05-04

CERTIFICATE OF ANALYSIS VA04052346

NB08228 0.36 1.0 7.80 46 810 1.2 <22	Sample Description	Method Analyte Units LOR	WEł-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01
Ne09529 0.64 0.7 7.30 72 780 1.1 <2 170 2.9 28 32 N609530 0.56 0.8 714 82 700 1.1 <2	N609528		0.36	1.0	7.80	46	810	1.2	<2	2.20	1.2	22	28	177	6.18	1.72	1.88
N600530 0.56 0.8 7.14 82 700 1.1 <2 1.55 1.7 28 31 N600531 0.48 2.6 4.93 55 480 0.5 <2	N609529		0.64	0.7	7.30	72	780	1.1	<2	1.70	2.9	28	32	203	6.24	1.90	1.77
Ne00931 0.48 2.6 4.93 55 480 0.5 <2 0.80 0.6 17 35 N600534 0.50 0.5 0.30 <5	N609530		0.56	0.8	7.14	82	700	1.1	<2	1.55	1.7	28	31	219	6.22	1.82	1.79
N609533 0.50 0.55 0.30 <5 80 <0.5 <22 0.28 <0.5 2 2 N609534 0.40 0.8 8.07 82 660 1.1 3 1.71 1.0 31 32 N609536 0.44 0.6 8.10 89 740 1.2 4 1.88 2.4 33 37 N609536 0.56 0.6 7.03 55 590 1.1 -2 1.30 0.9 19 32 N609536 0.56 0.6 7.03 55 590 1.1 -22 0.46 -0.5 2 3 N609539 0.48 0.7 7.81 87 770 1.3 -22 0.46 +0.5 2 3 N609541 0.44 0.6 7.82 47 700 1.3 -22 0.43 +0.5 1.4 4 2.02 2.6 27 43 N609543	N609531		0.48	2.6	4.93	55	480	0.5	<2	0.80	0.6	17	35	81	5.64	1.16	1.20
N609534 0.40 0.8 8.07 82 660 1.1 3 1.71 1.0 31 32 N609536 0.34 0.6 8.10 89 740 1.2 4 188 2.4 33 37 N609537 0.38 0.5 7.84 95 680 1.2 2 1.70 1.4 34 38 N609538 0.56 0.6 7.03 55 590 1.1 <2	N609533		0.50	0.5	0.30	<5	80	<0.5	<2	0.28	<0.5	2	2	38	0.22	0.11	0.05
N609535 0.44 0.6 8.10 89 740 1.2 4 1.88 2.4 33 37 N609537 0.38 0.5 7.84 95 690 1.1 -2 1.30 0.9 19 32 N609539 0.48 0.7 7.81 87 770 1.3 <2	N609534		0.40	0.8	8.07	82	660	1.1	3	1.71	1.0	31	32	226	6,79	1.67	2.04
N609537 0.38 0.5 7.84 95 680 1.2 2 1.70 1.4 34 36 N609536 0.66 0.67 7.03 55 590 1.1 <2	N609536		0.44	0.6	8.10	89	740	1.2	4	1.88	2.4	33	37	255	6.88	1.90	2.10
N609538 0.56 0.6 7.03 55 590 1.1 <2 1.30 0.9 19 32 N609539 0.48 0.7 7.81 87 770 1.3 <2	N609537		0.38	0.5	7.84	95	690	1.2	2	1.70	1.4	34	36	259	6.87	1.90	2.07
N609539 0.48 0.7 7.81 87 770 1.3 <2 2.01 1.8 3.2 31 N609540 0.26 0.8 0.42 <5	N609538		0.56	0.6	7.03	55	590	1.1	<2	1.30	0.9	19	32	159	5,61	1.54	1.62
N609540 0.26 0.8 0.42 <5 150 <0.5 <2 0.46 <0.5 2 3 N609541 0.40 1.7 0.58 <5	N609539		0.48	0.7	7.81	87	770	1.3	<2	2.01	1.8	32	31	277	7,10	2.25	2.16
N609541 0.40 1.7 0.58 <5 170 <0.5 <2 0.45 <0.5 1 4 N609542 0.34 0.7 7.25 47 700 1.3 <2	N609540		0.26	0.8	0.42	<5	150	<0.5	<2	0.46	<0.5	2	3	29	0.30	0.18	0.09
N609542 0.34 0.7 7.25 47 700 1.3 <2 1.57 1.8 26 42 N609543 0.44 0.6 7.82 55 750 1.4 4 2.02 2.6 27 43 N609544 0.34 <0.5	N609541		0,40	1.7	0,58	<5	170	<0.5	<2	0.45	<0.5	1	4	29	0.32	0.18	0.07
N609543 0.44 0.6 7.82 55 750 1.4 4 2.02 2.6 27 43 N609544 0.34 <0.5	N609542		0.34	0.7	7.25	47	700	1.3	<2	1.57	1.8	26	42	173	5,73	1.92	1.72
N609544 0.34 <0.5 0.35 <5 110 <0.5 <2 0.33 <0.5 <1 3 N609545 0.32 <0.5	N609543		0.44	0.6	7.82	55	750	1.4	4	2.02	2.6	27	43	190	5.84	1.88	1.82
N609545 0.32 <0.5 0.62 <5 110 <0.5 <2 0.49 <0.5 2 4 N609546 0.66 0.5 7.54 42 610 1.5 3 0.83 <0.5	N609544		0.34	<0.5	0.35	<5	110	<0.5	<2	0,33	<0,5	<1	3	50	0.22	0.12	0.06
N609546 0.66 0.5 7.54 42 610 1.5 3 0.83 <0.5 17 62 N609547 0.74 <0.5	N609545		0.32	<0.5	0.62	<5	110	<0.5	<2	0.49	<0.5	2	4	35	0.38	0.17	0.08
N609547 0.74 <0.5 7.12 32 590 1.8 <2 0.79 <0.5 15 49 N609548 0.36 0.9 7.78 52 820 1.7 2 1.15 2.3 25 94 N609549 0.62 <0.5	N609546		0.66	0.5	7.54	42	610	1.5	3	0.83	<0.5	17	62	98	4.32	1.55	1.02
N609548 0.36 0.9 7.78 52 820 1.7 2 1.15 2.3 25 94 N609549 0.62 <0.5	N609547		0.74	<0.5	7.12	32	590	1.8	<2	0.79	<0.5	15	49	55	4.85	1.88	0.76
N609549 0.62 <0.5 4.55 17 440 1.7 2 1.58 2.5 14 42 N609550 0.44 <0.5	N609548		0,36	0.9	7.78	52	820	1.7	2	1.15	2.3	25	94	92	4.63	1.77	1.32
N609550 0.44 <0.5 4.26 5 370 0.9 <2 9.49 <0.5 6 24	N609549		0.62	<0.5	4.55	17	440	1.7	2	1.58	2.5	14	42	57	2.89	0.90	0.69
	N609550		0.44	<0.5	4.26	5	370	0.9	<2	9.49	<0.5	6	24	9	2.59	1.26	2.64

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 3 - B Total # Pages: 3 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

۲

1

•

Project: Poly 05-04

CERTIFICATE OF ANALYSIS VA04052346

,

.

Sample Description	Method Analyte Units LOR	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zл ррт 2	
N609528		2420	. 8	1.68	22	1740	26	0.08	<5	309	0 44	192	10	278	·····
N609529		2100	9	1.44	25	1680	40	0.07	5	264	0.43	192	<10	306	i
N609530		1980	9	1.33	30	1620	35	0.06	<5	249	0.42	198	10	279	
N609531		1200	6	0.76	18	1740	56	0.12	<5	126	0.34	173	<10	160	
N609533		235	2	0.05	7	430	8	0.22	<5	20	0.02	6	<10	37	
N609534		1910	7	1.37	27	1660	49	0.05	5	269	0,45	218	10	300	
N609536		2130	7	1.53	34	1660	41	0.04	<5	295	0,46	223	20	314	
N609537		2160	7	1.48	27	2020	30	0.05	6	283	0.46	222	20	299	
N609538		1385	8	1.41	23	1460	23	0.08	5	255	0.41	188	10	186	
N609539		1725	9	1.73	29	1860	33	0.03	<5	337	0.47	226	10	299	
N609540		124	2	0.07	9	630	7	0.25	<5	39	0.03	9	<10	43	
N609541		82	2	0.14	6	590	6	0.23	<5	38	0.04	10	<10	28	
N609542		1335	13	1.60	33	1700	27	0.05	5	268	0.41	180	20	240	
N609543		1285	15	1.77	35	1770	33	0.06	<5	320	0.43	196	<10	275	
N609544		152	2	0.07	7	530	7	0.22	<5	29	0.02	6	<10	38	
N609545		123	3	0.16	7	630	6	0.25	<5	38	0.04	11	<10	31	
N609546		1040	4	1.63	38	1660	20	0.05	<5	193	0,33	130	<10	135	
N609547		942	4	1.89	31	1290	25	0.03	<5	190	0.32	130	<10	108	
N609548		2190	5	1.41	80	1420	31	0.06	<5	186	0.35	151	<10	260	
N609549		1500	9	0.98	40	1580	14	0.18	<5	203	0.20	80	<10	140	
		102	·	1.00	10		5	0.01		000	0.37				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

,

Project: Stewart

.

CERTIFICATE OF ANALYSIS VA04053798

.

.

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0,01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cđ ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
186172		0.38	<0.005	<0.5	3.03	6	340	1.1	<2	1.26	23	4	28	29	1.06	0.58
186173		0.34	<0.005	<0.5	0.34	<5	150	<0,5	<2	3.21	<0.5	2	4	8	1.40	0.08
186174		0.26	NSS	<0.5	3,99	10	200	0.6	<2	0.29	<0.5	3	26	18	1.45	0.43
186175		0.52	<0.005	1.4	5.97	13	600	1.2	<2	0.61	<0.5	4	54	32	2.22	1.66
186176		0.38	<0.005	0,5	6.54	<5	690	1.5	<2	0.98	<0.5	2	31	23	0.96	1.94
186177		0.36	<0.005	0.6	6.89	7	500	1.6	2	1.22	<0.5	2	31	18	1.70	1.49
186178		0.42	<0.005	<0.5	5.42	13	480	0.6	<2	0.39	<0.5	3	77	11	2.84	0.90
186179		0.56	<0.005	<0.5	4.67	11	570	0.6	<2	0.40	<0.5	3	66	15	1.42	1.08
186180		0.60	<0.005	<0.5	6.22	14	560	1.1	<2	0.58	<0.5	5	64	16	4.18	1.50
186181		0.38	<0.005	1.2	5.04	16	680	0.7	<2	0.57	<0.5	3	56	19	2.10	1.28
186182		0.26	<0.005	0.9	3.73	21	450	0.5	<2	0.41	<0.5	5	59	21	2.90	0.86
186183		0.40	0.007	0.7	5.89	26	560	1.2	2	0.65	<0.5	9	66	31	3.66	1.38
186184		0,48	<0.005	<0.5	5.09	23	510	0.9	<2	0.53	<0.5	5	61	35	3.17	1.32
186185		0.54	0.021	0.8	5.84	159	540	1.2	<2	1.06	<0.5	23	118	51	4.50	1.30
186186		0.22	0.005	<0.5	4.60		400	0.9	~2	10.90	<0.5	<u>ь</u>	27	12	2.72	1.32
186187		0.44	0.032	0.9	6.34	178	580	1.1	<2	1.10	<0.5	20	128	64	5,06	1.32
186188		0.20	0.028	<0.5	4,52	11	410	0,9	<2	11.35	<0.5	6	26	12	2.61	1.40
186189		0.48	0.018	1.1	6.29	280	590	1.1	<2	1.12	<0.5	33	126	69	5.12	1.27
186190		0.50	0.006	0.0	6.04	154	440 600	1.0	<2	1.54	<0.5	28	30	207	6.40	1.23
100191		0.40	0.314	1.4	0.51	104		1.0	~2	1,00	1.0	21	40	75	4,94	1.00
186192	1	0.32	0.023	0.8	3.29	52	360	0.5	<2	0.82	<0.5	6	21	45	2.51	0.73
186193		0.48	0.040	<0.5	0.23	174	570	0.7	<2	1.02	<0.5	10	51	51	5.56	1.42
100 190 NI500852		0.00	1.310	2.5	0.70	100	40	<0.5	~2	4.43	<0.5	224	29	9000	12.00	0.55
N599853		0.20	0.000	0,0	6.64	31	560	~0.5 0.8	<2	0.25	<0.5	7	3 90	41	4.81	1.00
N500854		0.40	<0.007	1.0	4.49	45	470	0.0	~2	0.04	-0.5		00		2.47	0.05
N599855		0.24	<0.005 0.010	1.3	4.10	40	470	0.3	~2	0.29	<0.5	5	90	39	3.47	0.65
N599856		0.28	<0.010	0.8	4.85	40	510	0.5	<2	0.73	<0.5	6	114	33	4.45	0.86
												·				

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 2 - B Total # Pages: 2 (A - B) Finalized Date: 20-AUG-2004 Account: KIV

1

1

,

.

Project: Stewart

CERTIFICATE OF ANALYSIS VA04053798

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-1CP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 \$ % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
186172		0.24	466	29	0.61	22	2140	38	0.47	<5	124	0.13	35	<10	93	
186173		0.09	288	81	0.06	6	720	15	0.48	<5	157	0.02	8	<10	24	
186174		0.21	181	25	0,44	17	1680	19	0.20	<5	55	0.10	36	<10	37	
186175		0.20	288	4	1.78	14	440	19	0.02	<5	188	0.53	116	<10	37	
186176		0.15	353	2	2.34	7	390	17	0.02	<5	276	0.37	52	<10	28	
186177		0.31	504	4	2.38	10	1390	20	0.03	<5	280	0.43	73	<10	42	
186178		0.31	309	3	1.48	17	620	16	0.02	<5	133	0.43	136	<10	55	
186179		0.18	250	2	1.26	12	310	10	0.02	<5	120	0.46	104	<10	42	
186180		0.50	510	2	1.71	19	960	22	0.03	<5	174	0.39	108	<10	68	
186181		0.31	403	3	1.40	15	560	18	0.03	<5	158	0.37	104	<10	50	
186182		0.37	387	2	0.85	21	780	11	0.09	<5	108	0.26	82	<10	55	
186183		0,58	726	9	1.45	41	990	16	0.07	<5	164	0.32	93	<10	72	
186184		0.51	437	4	1.42	31	1020	15	0.07	<5	149	0.28	79	<10	63	
186185		1.11	1190	3	1.10	85	1470	23	0.10	5	172	0.29	102	10	150	
186186		3.12	//5	1	1.42	13	690		0,02	<u></u>	344	0.44	58	<10		
186187		1.39	1160	3	1.10	102	1440	28	0,10	5	182	0.29	108	<10	152	
186188		3.13	704	1	1.40	12	620	85	0.02	<5	352	0.35	54	<10	56	
186189		1.33	1405	3	1.07	106	1500	32	0.10	6	180	0.30	112	<10	170	
186190		1.72	1/65	1	1.50	20	2210	20	0.07	<5	231	0.50	207	<10	215	
100191		1.04	1000	3	0.97		1000		0,12		220	0.29	113	<10	- 170	
186192		0.42	422	4	0.65	18	1620	25	0.20	<5	134	0.16	56	<10	69	
186193		1.18	1045	3	1.02	24	1510	35	0.10	<5	209	0.35	146	<10	112	
180195 NE00950		2.62	1000	5	1.00	91	180	6	2.03	<5	28	0.18	105	<10	34	
N599652 N500853		0.06	612	3	1.04	35	440	4 25	0.21	<5	30 114	0.01	106	<10	90	
140398000		0.73					1020		0.00		70	0.01	440			
N599854		0.38	369	4	0.75	31	1100	15	0.09	<o< td=""><td>78</td><td>0.37</td><td>110</td><td><10</td><td>49</td><td></td></o<>	78	0.37	110	<10	49	
N299800		0.90	600	3	1,40	09 42	1220	19	0,09	5	152	0.32	90	<10	60	
		0.04		5	0.00							0.00				

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 22-AUG-2004 Account: KIV

n

· · · ·

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

Project: Poly

CERTIFICATE OF ANALYSIS VA04052343

.

· .

Rock

٦

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-1CP61 K % 0.01
N599924 N599942		1.56 0.54	0.037 7.55	>100	1.20	3020	70	0.5	12	0.25	241	10	92	>10000	24.8	0.57
							1									

r

ŝ

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 22-AUG-2004 Account: KIV

Project: Poly

CERTIFICATE OF ANALYSIS VA04052343

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	Ag-AA62 Ag ppm 1
N599924 N599942		0.47	>10000	1	0.02	21	90	209	>10.0	78	19	0.02	33	<10	>10000	816
																2 T
															,	

.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 22-AUG-2004 Account: KIV

,

Rock

1

.

, , ,

CERTIFICATE OF ANALYSIS VA04052343

-

.

Sample Description	Method Analyte Units LOR	Cu-AA62 Cu % 0.01	Zn-AA62 Zn % 0.01	
N599924 N599942		1.06	1.96	

ι

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 3 (A) Finalized Date: 23-AUG-2004 Account: KIV

Project: Poly

CERTIFICATE OF ANALYSIS VA04054886

Ţ

M Ar Sample Description	ethod nalyte Units LOR	Au-AA23 Au ppm 0.005
N599901 N599902 N599903 N599904 N599905		0.006 <0.005 0.010 <0.005 0.005
N599906 N599907 N599908 N599909 N599910		<0.005 <0.005 <0.005 0.008 <0.005
N599911 N599912 N599913 N599914 N599915		0.009 0.013 0.009 <0.005 0.008
N599916 N599917 N599918 N599919 N599920		0.005 <0.005 0.007 0.033 <0.005
N599921 N599922 N599923 N599925 N599926		0.010 0.007 <0.005 <0.005 <0.005
N599927 N599928 N599929 N599930 N599931		<0.005 0.045 0.032 0.024 <0.005
N599932 N599933 N599934 N599935 N599936		0.067 0.045 <0.005 0.038 0.035
N599937 N599938 N599939 N599940 N599941		0.166 0.054 0.048 0.007 0.009

.

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 3 - A Total # Pages: 3 (A) Finalized Date: 23-AUG-2004 Account: KIV

n

1

.

Project: Poly

CERTIFICATE OF ANALYSIS VA04054886

Sample Description	Method Analyte Units LOR	Au-AA23 Au ppm 0.005
N609351 N609352 N609353 N609354 N609355		0.014 NSS 0.018 <0.005
N609356		0.028
,		

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 3 (A) Finalized Date: 2-SEP-2004 Account: KIV

N

1

Λ.

.

Project: Poly 05-04

CERTIFICATE OF ANALYSIS VA04058071

	Method	Au-AA23
Comula Description	Units	AU ppm
Sample Description	LOR	0.005
186151		0.010
186152		0.008
186153		0.015
186155		
196156		0.015
186157		<0.005
186158		0.005
186159		0,009
186160		0.007
186161		0.011
186162		<0.005
186163		0.098
186164		0.067
186165		0.042
186166		0.041
186167		0.042
186168		
186170		0.021
186171		<0.002 <0.005
N609301		<0.003
N609302		NSS
N609303		0.014
N609304		<0.005
N609305		0.013
N609306		<0.005
N609307		0.045
N609308		0.047
N609309		0.014
N609310		0.080
N609311		0.009
N609312		0.016
N009313 N609314		0.027
N003014		
N609315 N609316		
N609317		<0.000
N609318		0.008
N609527		0.019

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 3 - A Total # Pages: 3 (A) Finalized Date: 2-SEP-2004 Account: KIV

Project: Poly 05-04

CERTIFICATE OF ANALYSIS VA04058071

Sample Description	Method Analyte Units LOR	Au-AA23 Au ppm 0.005
N609528 N609529 N609530 N609531 N609533		0.029 0.032 0.052 0.023 <0.005
N609534 N609536 N609537 N609538 N609539		0.038 0.038 0.073 0.026 0.039
N609540 N609541 N609542 N609543 N609544		<0.005 <0.005 0.040 0.035 <0.005
N609545 N609546 N609547 N609548 N609549		<0.005 0.016 0.011 0.012 0.005
N609550		<0.005

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 16-SEP-2004 Account: KIV

•

Project: Stewart	IPL Soi	1 Rerun	
CERTIFI	CATE OF A	NALYSIS	VA04060215

•

.

.

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
599861 599864		0.02 0.02	0.024 0.007	1.7 1.5	4.81 7.93	53 47	460 630	0.5 1.4	<2 <2	0.52 2.61	<0.5 1.4	8 16	46 38	57 100	3,80 4,66	1.04 1.31

۲ (

٦

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - B Total # Pages: 2 (A - B) Finalized Date: 16-SEP-2004 Account: KIV

γ.

ì

Project: Stewart

CERTIFICATE OF ANALYSIS VA04060215

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-1CP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	МЕ-ІСР61 РЪ ррті 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
599861 599864		0.66 1.22	545 1630	2 2	0.79 2.29	24 25	1580 1750	58 15	0.17 0.06	<5 <5	123 482	0.28 0.42	103 163	<10 <10	87 130	

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 16-SEP-2004 Account: KIV

Project: Stewart	(PL	Rerun	Soil	
CERTIFIC	CATE	OF ANA	LYSIS	VA04060217

a second s

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Ba ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
609859		0.74	4.01	47.9	0.52	1175	40	<0.5	<2	0.06	205	2	137	419	2.76	0.24
		-														

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - B Total # Pages: 2 (A - B) Finalized Date: 16-SEP-2004 Account: KIV

,

3

Project: Stewart

CERTIFICATE OF ANALYSIS VA04060217

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-1CP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	
609859		0.03	166	7	0.01	5	30	3030	2.96	17	7	0.02	13	<10	3920	
1																

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

MEJCR64

Page: 2 - A Total # Pages: 2 (A - C) Finalized Date: 17-SEP-2004 Account: KIV

MEJC061

MEJCD61

.

(ALS)

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

ME 10864

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

- ----

MEL 04

Project: Stewart
CERTIFICATE OF ANALYSIS VA04060214

 \sim

MEJCRA4 MEJCRA4 MEJCRA4 MEJCRA4

Rock

ME ICR64

Sample Description	Analyte Units LOR	Recvd Wt. kg 0.02	Au ppm 0.005	Ач ppm 0.05	Ag ppm 0.5	AI % 0.01	As ppm 5	Ba ppm 10	Be ppm 0,5	Bi ppm 2	Ca % 0.01	Cd ppm 0.5	Co ppm 1	Cr ppm 1	Cu ppm 1	Fe % 0.01
609780 609780A 609780B 609782		4.06 9.64 9.48 2.18	5.51 >10.0 8.71 2.13	14.20	>100 >100 >100 18.5	4.16 1.86 1.29 1.48	1915 3490 1220 1905	200 90 60 110	1.2 0.6 <0.5 0.7	17 6 5 2	0.67 1.40 1.68 1.44	13.7 9.6 10.9 16.6	7 6 5 10	140 116 130 156	2860 2580 1955 212	12.15 19.45 17.50 5.30
								۰.								

MC.ICD64

ME ICBC1

ME IChes

т

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - B Total # Pages: 2 (A - C) Finalized Date: 17-SEP-2004 Account: KIV

3 1

•

Project: Stewart

CERTIFICATE OF ANALYSIS VA04060214

Sample Description	Method Analytø Units LOR	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
609780 609780A 609780B 609782		1.91 0.87 0.60 0.69	0.71 0.86 0.67 0.24	>10000 >10000 >10000 3780	<1 2 2 7	0.05 0.02 0.02 0.04	36 18 15 8	420 160 120 190	291 337 439 1145	4.34 >10.0 >10.0 3.00	63 48 56 12	49 125 150 112	0.08 0.04 0.03 0.04	62 34 22 23	<10 10 <10 <10	862 406 656 938

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

· ·

.

Page: 2 - C Total # Pages: 2 (A - C) Finalized Date: 17-SEP-2004 Account: KIV

1

н с с **н**

Project: Stewart

CERTIFICATE OF ANALYSIS VA04060214

,

Sample Description	Method Analyte Units LOR	Ag-AA62 Ag ppm 1		
609780 609780A 609780B 609782		864 237 242		

EXCELLENCE IN ANALYTICAL CHEMISTRY

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 24-SEP-2004 Account: KIV

٦

3

.

,

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

IPL - Soil Recon CERTIFICATE OF ANALYSIS VA04064226

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	ME-ICP61 Ag ppm 0.5	ME-ICP61 Ai % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	MË-ICP61 Fe % 0.01	ME-ICP61 K % 0.01	ME-ICP61 Mg % 0.01
599862		0.02	0.6	0.23	<5	70	<0.5	2	0.48	<0.5	1	5	37	0.19	0.08	0.05
599863		0.02	0.6	7.08	60	510	0.7	<2	0.91	<0.5	8	67	60	5.72	1.02	0.78
599865		0.02	0.8	0.47	9	90	<0.5	2	0.43	<0.5	1	12	43	0.30	0.13	0.07
599866		0.02	1.1	4.99	25	500	0.5	<2	0.52	<0.5	7	54	69	5.77	1.12	0.60
599867		0.04	1.5	4.32	25	760	0.6	<2	0.25	<0.5	3	54	4 4	1.91	1.54	0.26
599868		0.02	1.0	0.58	<5	140	<0.5	2	0.24	<0.5	1	5	77	0.32	0.17	0.06
599869		0.04	<0.5	3.03	<5	260	0.6	<2	13.30	<0.5	3	27	16	1.35	1.10	3.78
599875		0.06	<0.5	3.17	<5	270	0,7	<2	14.35	<0.5	3	35	14	1.29	1,17	3.75
599877		0.06	0.6	6.56	31	560	1.4	<2	0.63	<0.5	9	69	29	3.79	1.50	0.69
599878		0.02	0.9	5.07	- 26	510	1.0	<2	0.66	<0.5	6	64	40	2.77	1.35	0.56
599879		0.06	0.5	6.75	36	630	1.6	<2	0.76	<0.5	15	72	40	3.58	1,60	0.75
599880		0.06	<0.5	6.62	29	640	1.6	<2	0.75	0.7	13	66	71	3.31	1.74	0.69
599881		0.04	0.7	2.81	<5	320	<0.5	<2	0.26	0.6	1	29	81	1.44	0.58	0.19
599882		0.04	0.7	4.94	13	650	1.1	<2	0.75	<0.5	2	43	50	1.04	1.44	0.19
599883		0.04	1.3	4.58	6	620	1.1	Z	0.58	<0,5	2	43	61	1.22	1.44	0.16
599884		0.04	1.6	5.60	<5	1020	1.3	<2	1.04	1.2	3	39	85	0.85	2.44	0.14
599885		0.06	<0.5	6.11	13	750	1.3	<2	0.69	<0.5	3	46	15	1.84	2.06	0.26
599886		0.04	<0.5	4.82	11	530	1.1	2	0.54	<0.5	2	38	14	2.20	1.50	0.25

.

٦

ALS Chemex

,

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218

To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

· · · · ·

Page: 2 - B Total # Pages: 2 (A - B) Finalized Date: 24-SEP-2004 Account: KIV

CERTIFICATE OF ANALYSIS VA04064226

1 N T 1

Samelo Deceription	Method Analyte Units	ME-ICP61 Mn ppm	ME-ICP61 Mo ppm	ME-ICP61 Na %	ME-ICP61 Ni ppm	ME-ICP61 P ppm	ME-ICP61 Pb ppm	ME-ICP61 S %	ME-ICP61 Sb ppm	ME-ICP61 Sr bpm	ME-ICP61 Ti %	ME-ICP61 V ppm	ME-ICP61 W ppm	ME-ICP61 Zn ppm	
Sample Description	LOR	5	1	0.01	1	10	2	0.01	5	1	0.01	1	10	2	· · ·
599862		42	1	0.05	6	530	11	0.24	<5	26	0.01	4	<10	54	
599863		717	4	1.05	28	3400	23	0.07	11	161	0.33	148	<10	102	
599865		104	2	0.09	3	510	11	0.23	<5	40	0.02	8	<10	41	
599866		586	2	1.02	23	1560	18	0.08	<5	130	0.40	165	<10	81	
599867		299	2	0.72	14	730	15	0.06	10	/4	0.45	130	10	49	
599868		243	1	0.07	7	450	12	0.17	<5	25	0.04	11	<10	34	
599669		492	<1	0.89	17	450	17	0.03	<0 5	288	0.17	32	<10	40	
599675		403	12	0.94	48	430	20	0.05	7	323	0.15	30	<10	89	
599878		503	7	1.36	30	1550	18	0.00	<5	162	0.27	82	<10	58	
500870		1015	11	1.63	85	960	20	0.05	<5	186	<u> </u>	0.8	<10	109	
599880		1020	10	1.00	55	910	20	0.05	5	198	0.32	95	<10	159	
599881		141	3	0.49	16	2420	27	0.25	<5	70	0.10	33	10	116	
599882		231	2	1.69	11	600	31	0.10	<5	224	0.22	49	<10	60	
599883		193	4	1.42	20	900	25	0.10	<5	178	0.23	50	<10	46	
599884		248	<1	1.73	25	360	21	0.05	<5	294	0,21	41	<10	78	
599885		387	5	2.11	11	950	15	0.05	7	247	0.31	80	<10	42	
599886		317	17	1.56	10	1110	16	0.08	<5	174	0.29	78	<10	41	
599887															
}															
l															

.

1

٦

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8 Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 16-SEP-2004 Account: KIV

,

,

•

,

Project: Stewart	IPL	Soil	Rerun	
CERTIFICATE OF	- ANA	LYSIS	VA04060218	

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
599871 599872 599873 599874		0.04 0.06 0.04 0.02	0.015 0.019 0.036 NSS	1.9 1.0 1.0 1.1	6.09 5.28 6.18 6.28	209 141 184 178	600 600 540 530	0.9 0.8 1.2 1.2	<2 <2 <2 <2	0.68 0.80 0.87 1.01	0.6 <0.5 1.4 <0.5	8 8 24 30	82 96 84 126	62 50 63 83	4.67 3.75 4.23 5.02	1.28 1.28 1.16 1.24

F

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

2

,

Page: 2 - B Total # Pages: 2 (A - B) Finalized Date: 16-SEP-2004 Account: KIV

1

۲

1

Project: Stewart

-

CERTIFICATE OF ANALYSIS VA04060218

1

1

•

Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 8.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	:
599871 599872 599873 599874		0.86 0.84 0.94 1.34	897 635 1490 1460	6 5 4 3	0.94 1.01 1.00 1.06	39 43 73 108	2190 1470 1410 1500	24 18 23 27	0.16 0.17 0.12 0.12	6 <5 5 5	132 162 158 180	0.32 0.28 0.28 0.29	120 117 104 111	<10 <10 <10 <10	150 124 201 146	
		- 														

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd. 212 Brooksbank Avenue North Vancouver BC V7J 2C1 Canada Phone: 604 984 0221 Fax: 604 984 0218 To: GEOFINE EXPLORATION CONSULTANTS LTD. 49 NORMANDALE RD UNIONVILLE ON L3R 4J8

CERTIFICATE OF ANALYSIS VA04063552

Page: 2 - A Total # Pages: 2 (A) Finalized Date: 26-SEP-2004 Account: KIV

•

1

· •

Project: Stewart

Sample Description	Method Analyte Units LOR	Au-SCR21 Au Total ppm 0.05	Au-SCR21 Au (+) F ppm 0.05	Au-SCR21 Au (-) F ppm 0.05	Au-SCR21 Au (+) m mg 0.001	Au-SCR21 WT. • Fr 9 0.01	Au-SCR21 WT Fr 9 0.1	Au-AA25 Au ppm 0.01	Au-AA25D Au ppm 0.01	
609780 609780A 609780B		6.12 12.00 9.02	76.5 90.5 94.8	4.87 9.75 8.34	1,353 2,649 0,789	17.69 29.27 8.32	999.2 1022.0 1039.5	4.81 9.34 8.50	4.93 10.15 8.17	

APPENDIX A.2

IPL CERTIFICATES OF ANALYSIS

CERTIFICATE OF ANALISIS iPL 04H1741

2(____blumb.__bet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Website www.ipl.ca

INTERNATIONAL PLASMA LABS LTD. ISO 9001:2000 CERTIFIED COMPANY

Client : Geofine Project: AAP132KIV-04Q	Ship#	76 3	Sample	s 39=Rock	6=Pu	lp 4	=Repeat	1=S	t [1741]	15:36:27	7:400902	04:003]	Ou [.] In	t: Sep (: Aug 2	02, 2004 26, 2004		Page Section	1 of 3 1 of 2
Sample Name	Туре	Au g/mt	Au g/mt	Ag g/mt	Ag ppm	Cu ppm	Pb ppm	Zri ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	iN ppm	Ba ppm
599857 599858 599859 599860 599861	Soil Soil Soil Soil Soil	0.07 0.22 0.06 0.08 0.14			1.4 1.4 0.9 1.1 1.2	73 58 48 59 53	41 44 33 29 41	145 162 126 110 81	97 94 83 20 <5	<5 <5 <5 <5 <5 <5	<3 <3 <3 <3 <3 <3 <3	6 7 5 5 4	<10 <10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	17 18 16 15 8	24 28 22 20 21	131 98 96 91 93
599862 599863 599864 599865 599866	Soil Soil Soil Soil Soil	0.02 0.01 0.05 0.02 0.03			0.4 0.9 1.2 0.8 1.3	28 52 95 31 66	3 15 9 3 16	43 88 115 25 69	<5 <5 <5 <5 <5	<5 <5 <5 <5	ଏ ସ ସ ସ ସ	1 8 5 2 7	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	1 11 18 2 8	9 19 24 6 21	50 126 211 60 67
599867 599868 599869 599870 599871	Soil Soil Soil Soil Soil	0.01 0.02 0.01 0.02 0.07	 		1.6 1.2 0.1 0.7 1.7	39 76 16 36 59	8 4 6 16 17	37 34 37 70 138	<5 <5 8 118	<5 <5 <5 <5 <5	ଏ ୧୯ ୧୯ ୧୯	4 2 4 8	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	5 2 5 10 10	12 11 7 10 37	42 88 16 159 84
599872 599873 599874 599875 599876	Soil Soil Soil Soil Soil	0.02 0.04 0.03 0.01 0.02	 	 	1.4 1.4 1.6 0.5 0.6	51 60 80 13 28	15 18 26 12 5	119 179 133 42 63	91 102 83 <5 37	<5 <5 <5 <5 <5	<୨ ୧୨ ୧୨ ୧୨ ୧୨	8 7 6 5 2	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2	12 27 34 4 8	43 65 95 7 31	113 97 147 18 173
599877 599878 599879 599880 599881	Soil Soil Soil Soil Soil	0.01 0.01 0.01 0.01 <0.01			0.6 0.7 0.6 0.6 0.8	32 39 30 28 18	18 14 16 17 7	83 52 95 89 22	<5 <5 <5 <5	<5 <5 <5 <5 <5	ଏ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ	15 9 15 14 5	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2	13 9 17 15 3	47 28 64 54 17	64 59 72 57 38
599882 599883 599884 599885 599886	Soil Soil Soil Soil Soil	0.01 0.01 0.01 0.01 0.01			0.6 1.0 1.3 0.1 0.2	28 45 74 13 15	18 15 7 11 10	29 25 69 32 37	<5 <5 <5 <5	<5 <5 <5 <5 <5	~ ~ ~ ~ ~ ~ ~ ~	4 5 2 8 22	<10 <10 <10 <10 <10	<2 2 <2 <2 <2 <2	<0.2 <0.2 0.6 <0.2 <0.2	2 4 3 4 5	10 18 27 9 14	52 94 212 55 58
599887 609775 609776 609777 609777 609778	Soil Rock Rock Rock Rock Rock	2.91 0.03 0.01 0.12 0.01	3.24 — — —		0.6 1.3 0.6 2.2 0.5	101 1254 115 1484 70	20 <2 <2 <2 3	83 31 20 40 27	<5 <5 38 <5	<5 <5 <5 <5 <5	ଏ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ ସ	16 4 3 6 5	<10 <10 <10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	27 62 10 73 11	57 40 8 5 9	382 26 7 11 48
609779 609780 609781 609782	Rock Rock Rock Rock	<0.01 5.36 6.21 2.20	6.67 6.69 2.27	793.0 145.8 	0.6 0.2m 0.2m 15.4	244 2844 1414 235	<2 248 274 1255	22 930 271 964	<5 1625 1441 1914	<5 18 21 6	<3 <3 <3 <3	6 7 7 10	<10 <10 <10 <10	<2 <2 <2 <2	<0.2 <0.2 <0.2 10.0	28 11 10 12	<1 29 12 5	26 26 17 14
Minimum Detection Maximum Detection Method ——=No Test Ins=Insufficient Say	51 nple Del=Delay M	0.01 000.00 50 FA/AAS I Iax=No Estin	0.07 000.00 AGrav nate Rec=	0.3 9999.0 1 FAGrav =ReCheck	0.1 .00.0 1 ICP m=x1000	1 10000 1 1CP 0 %=Es	2 10000 10 ICP timate %	1 0000 1 ICP NS=No	5 10000 ICP Sample	5 2000 1 ICP	3 0000 ICP	1 1000 1 ICP	10 1000 ICP	2 2000 2 ICP	0.2 2000.0 10 ICP	1 0000 ICP	1 10000 10 ICP	2)000 ICP

INTERNATIONAL PLASMA LABS LTD.

CERTIFICATE OF ANALYSIS iPL 04H1741

2(_____)lumb.____jet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Website www.ipl.ca

ISO 9001:2000 CERTIFIED COMPANY															<u> </u>	we we	ebsite www.ipl.ca
Client : Geofine Project: AAP132KIV-04Q	Sł	nip#	76	Samp 31=Soil	les 39=Rocl	k 6	=Pulp	4 = Rep	eat 1	=St [174	115:36:2	7:4009020	04:003]	Out: In :	Sep 02, Aug 26,	2004 2004	Page 1 of 3 Section 2 of 2
Sample Name	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	Al X	Ca %	Fe لا	Mg X	K X	Na %	P %	
599857 599858 599859 599860 599861	<5 <5 <5 <5 <5	32 33 30 26 28	89 92 94 72 69	1133 1256 1262 1287 411	5 4 4 4 4	66 48 45 49 19	1 1 1 1	4 4 3 2 2	0.10 0.10 0.06 0.06	2.33 2.85 2.47 2.55 1.99	0.48 0.42 0.32 0.32 0.11	4.89 4.88 4.65 4.04 3.40	1.06 1.11 1.04 0.87 0.59	0.32 0.33 0.35 0.32 0.27	0.06 0.06 0.05 0.06 0.03	0.13 0.14 0.11 0.14 0.12	
599862 599863 599864 599865 599866	<5 <5 <5 <5 <5	4 44 19 6 31	3 114 108 5 121	46 650 1357 103 465	<2 5 7 2 5	24 38 55 22 10	<1 6 3 1 3	<1 4 5 <1 2	<0.01 0.09 0.14 0.01 0.11	0.12 4.12 2.36 0.18 1.72	0.47 0.56 0.92 0.38 0.08	0.22 5.51 3.68 0.29 5.52	0.05 0.74 0.93 0.06 0.48	0.04 0.21 0.42 0.07 0.15	0.03 0.03 0.05 0.02 0.02	0.06 0.29 0.14 0.05 0.09	
599867 599868 599869 599870 599871	<5 <5 <5 <5 <5	14 3 20 28 56	52 6 13 65 79	136 259 358 552 641	6 2 9 4 7	8 16 137 36 16	1 1 3 1 1	<1 <1 2 3 3	0.04 0.01 0.02 0.07 0.07	0.38 0.24 0.30 1.42 2.53	0.08 0.22 13% 0.44 0.16	1.63 0.31 0.83 3.72 4.37	0.08 0.04 3.76 0.72 0.76	0.05 0.06 0.05 0.38 0.23	0.02 0.02 0.04 0.04 0.03	0.05 0.05 0.04 0.13 0.17	
599872 599873 599874 599875 599876	<5 <5 <5 <5 <5	64 57 98 28 60	74 68 81 13 36	513 1262 1312 381 389	5 7 6 9 3	22 29 31 158 29	1 1 3 1	4 4 2 2	0.07 0.07 0.11 0.02 0.05	1.82 2.54 2.44 0.37 0.90	0.18 0.27 0.26 13% 0.33	3.77 3.95 4.74 0.91 2.15	0.76 0.81 1.24 3.62 0.58	0.31 0.20 0.41 0.06 0.34	0.04 0.03 0.04 0.04 0.03	0.13 0.11 0.13 0.04 0.10	
599877 599878 599879 599880 599881	<5 <5 <5 <5 <5	50 50 49 41 19	61 54 61 54 19	595 388 918 893 104	19 12 19 22 18	7 7 12 7 7	3 1 2 2 1	3 2 3 2 <1	0.09 0.08 0.08 0.08 0.01	2.47 1.25 2.29 1.84 1.40	0.10 0.08 0.19 0.11 0.07	3.80 2.75 3.50 3.15 1.46	0.60 0.47 0.66 0.57 0.16	0.14 0.17 0.15 0.13 0.07	0.02 0.02 0.02 0.02 0.02	0.05 0.14 0.07 0.07 0.22	
599882 599883 599884 599885 599885 599886	<5 <5 <5 <5 <5	16 19 15 18 24	15 17 12 39 55	77 56 158 253 226	7 16 8 8 11	12 9 66 11 10	<1 1 1 1	<1 1 <1 <1 <1	0.03 0.03 0.02 0.04 0.06	0.34 0.46 0.27 0.41 0.72	0.08 0.06 0.48 0.09 0.11	0.77 1.04 0.69 1.66 2.44	0.05 0.03 0.05 0.10 0.15	0.05 0.05 0.05 0.09 0.07	0.03 0.03 0.03 0.03 0.03 0.03	0.05 0.08 0.04 0.07 0.09	
599887 609775 609776 609777 609778	<5 <5 <5 <5	125 59 142 95 183	113 32 3 6 22	972 1010 459 326 232	44 2 <2 <2 2	1076 250 42 54 63	10 3 2 4 2	10 2 1 1 1	0.13 0.05 0.01 <0.01 0.03	1.59 1.30 0.33 0.21 0.88	4.03 6.31 1.19 1.71 0.44	4.39 6.88 3.74 12% 2.26	2.71 0.29 0.04 0.07 0.40	0.84 0.11 0.02 0.02 0.16	0.06 0.17 0.06 0.03 0.09	$\begin{array}{c} 0.21 \\ 0.05 \\ 0.01 \\ 0.03 \\ 0.05 \end{array}$	
609779 609780 609781 609782	<5 <5 <5 <5	177 84 120 160	18 9 8 4	377 1.5% 9307 3954	3 2 <2 2	79 43 128 108	3 2 3 2	1 2 1 1	0.03 <0.01 <0.01 <0.01	1.14 0.32 0.17 0.17	0.83 0.62 1.34 1.36	5.77 10% 13% 5.30	0.24 0.67 0.58 0.22	0.07 0.23 0.13 0.12	0.08 0.02 0.02 0.03	0.03 0.04 0.02 0.02	
Minimum Detection Maximum Detection Method	5 1000 ICP	1 10000 ICP	1 10000 ICP	1 10000 ICP	2 10000 1 ICP	1 0000 ICP	1 10000 ICP	1 10000 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP	

----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

CERTIFICATE OF ANALYSIS iPL 04H1741

150 400 1:2000 ATIFICA IN

١. 2000 Jolumbia Univert Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

ICP

INTERNATIONAL PLASMA L ISO 9001:2000 CERTIFIED C													l	Intertek	Fax Webs	:1604) 87 ite www.i	9-7898 ol.ca		
Client : Geofine Project: AAP132KIV-04Q	Ship	76 #	Sampl 31=Soil	es 39=Rock	6=Pu	lp 4	4=Repeat	1=5	St [1741	15:36:2	7:40090	204:003]	Ou Ir	ut: Sep n : Aug	02, 2004 26, 2004		Page Section	2 of 1 of	3 2
Sample Name	Туре	Au g/mt	Au g/mt	Ag g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	
609783 609784 609785 609786 609786 609787	Rock Rock Rock Pu1p Rock	1.10 0.05 8.99 2.83 36.30	1.20 8.25 2.95 44.70	286.8 1373.4	23.0 0.6 0.2m 0.9 0.3m	339 24 1390 96 8745	173 15 761 27 1652	1320 34 1991 88 1703	796 11 4406 <5 645	<5 <5 74 <5 109	<3 <3 <3 <3 <3	10 2 4 16 11	376 <10 <10 <10 <10	<2 <2 4 <2 <2	21.7 <0.2 25.6 <0.2 21.7	12 3 14 27 14	<1 9 21 51 19	29 5 17 314 16	
609788 609789 609790 609791 609792	Rock Rock Rock Rock PuTp	8.21 2.18 8.96 1.20 0.26	5.13 2.48 9.40 1.03	199.3 376.7	0.2m 26.0 0.3m 13.4 0.6	1403 223 2901 175 106	140 279 290 302 19	273 512 2124 552 222	189 385 1276 196 44	12 <5 113 6 <5	ସ ସ ସ ସ ସ	6 6 3 7 7	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.2 <0.2 30.6 2.9 <0.2	16 12 8 25	38 <1 6 21 71	38 16 10 18 <2	
609850A 609851 609852 609853 609854	Pulp Rock Rock Rock Rock Rock	8.38 2.98 0.03 0.02 0.01	8.30 3.24 		1.9 37.5 2.3 0.9 1.0	117 439 1315 54 207	24 252 4 11 6	77 320 41 106 17	<5 379 <5 5 <5	<5 <5 <5 <5	<3 <3 <3 <3 <3	51 8 3 5 5	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2 <0.2	29 8 66 15 32	63 <1 9 26 8	83 15 6 153 18	
609855 609856 609857 609858 609858 609859	Rock Rock Rock Rock Rock	0.02 0.02 0.03 7.48 3.80		 258.4	0.9 0.9 0.7 0.3m 42.0	201 85 322 998 396	5 5 <2 268 2869	17 10 48 690 4087	<5 <5 <5 407 1127	<5 <5 <5 103 15	<3 <3 <3 <3 <3	4 5 7 8	<10 <10 <10 <10 <10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.2 <0.2 <0.2 0.9 195.7	22 22 18 6 4	4 20 3 1 4	25 28 20 18 4	
609860 609861 609862 609863 609864	Rock Pu1p Rock Rock Rock	0.04 0.26 0.03 0.01 0.02			1.8 0.3 0.8 0.5 0.9	434 111 84 111 1455	22 19 11 3 3	63 221 49 62 44	<5 37 <5 <5 <5	<5 <5 <5 <5 <5	<3 <3 <3 <3 <3	4 7 3 4 5	<10 <10 <10 <10 <10	~? ~? ~? ~?	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	9 25 9 16 163	15 74 8 23 55	53 2 46 95 27	
609865 609866 609867 609868 609868 609869	Rock Rock Rock Rock Rock Rock	15.90 6.69 0.07 0.36 6.18	16.00 7.04 6.69	219.5 	0.2m 33.0 1.0 6.6 48.5	2208 423 167 202 4 88	560 172 7 66 463	986 139 22 5693 7215	485 3227 <5 125 763	35 <5 <5 <5 <5	<3 <3 <3 <3 <3	7 6 2 3 4	<10 <10 <10 <10 <10	~? ~? ~? ~?	2.4 <0.2 <0.2 55.0 63.1	10 13 19 12 13	<1 3 33 4 5	15 10 32 40 22	
609870 609871 609872 609873 609874	Rock Rock Rock Rock Rock	7.12 0.04 0.47 0.02 0.01	7.74	 	75.1 0.5 2.3 0.7 0.9	799 38 26 45 223	395 7 97 8 3	307 46 703 102 58	1859 <5 1356 <5 <5	<5 <5 12 <5 <5	ସ ସ ସ ସ ସ	6 4 5 5	<10 <10 <10 <10 <10	<2 <2 <2 <2 <2 <2	<0.2 <0.2 5.1 <0.2 <0.2	17 9 4 18 64	7 22 12 5 99	5 42 20 30 22	
609875 609876 RE 599857 RE 599876	Pulp Pulp Repeat Repeat	7.90 8.58 0.11 0.01	8.74 8.94 	- - -	1.8 2.3 1.4 0.6	117 118 73 28	24 24 38 7	71 71 137 59	<5 <5 95 27	<5 <5 <5 <5	<3 <3 <3 <3	48 49 6 3	<10 <10 <10 <10	<2 <2 <2 <2 <2	<0.2 <0.2 <0.2 <0.2	27 27 17 8	59 64 22 28	81 80 135 189	
Minimum Detection Maximum Detection		0.01 5000.00	0.07	0.3 9999.0	0.1 100.0	1 10000	2 10000	1 10000	5 10000	5 2000	3 10000	1 1000	10 1000	2 2000	0.2 2000.0 1	1 0000	1 10000 10	2 0000	

ICP

ICP

ICP

ICP

ICP

ICP

ICP

ICP

Maximum Detection Method

FA/AAS FAGrav FAGrav ICP ICP ICP ICP ICP ----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

CERTIFICATE OF ANALYSIS iPL 04H1741

*

7

2Loc Solumbra Guidet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Website www.ipl.ca

INTERNATIONAL PLASMA LABS LTD. ISO 9001:2000 CERTIFIED COMPANY																We	bsite www.i	ol.ca	
Client : Geofine Project: AAP132KIV-04Q	Sh	nip#	76 3	Samp 1=Soi 1	les 39=Ro	ick (6=Pulp	4≕Rep	eat 1	l=St [174	115:36:2	7:400902	04:003]	Out: In :	Sep 02, Aug 26,	2004 2004	Page Sectior	2 of 1 2 of	3 2
Sample Name	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 *	Ca X	Fe لا	Mg オ	K X	Na X	P X			
609783 609784 609785 609786 609787	<5 <5 <5 <5 <5	63 85 174 124 87	9 10 8 111 10	2.5% 1301 505 947 6059	2 7 3 43 2	16 825 35 1080 167	3 1 2 10 3	3 2 1 10 2	<0.01 0.01 <0.01 0.13 <0.01	0.23 0.46 0.21 1.55 0.23	0.51 10% 0.35 3.97 1.87	14% 1.47 3.09 4.31 12%	0.76 0.36 0.08 2.66 0.60	0.16 0.05 0.17 0.82 0.18	0.02 0.02 0.02 0.06 0.02	0.05 0.03 0.05 0.21 0.03		<u> </u>	
609788 609789 609790 609791 609792	<5 <5 <5 <5 <5	24 44 122 90 114	12 10 8 8 44	3348 5850 2618 7435 1518	4 2 2 2 2	257 233 40 235 62	2 3 2 1 4	3 2 3 8	<0.01 <0.01 <0.01 <0.01 <0.01	0.46 0.33 0.19 0.27 1.99	3.55 3.07 0.53 3.86 3.64	4.83 9.38 5.91 6.33 6.36	1.38 0.48 0.22 0.77 2.43	0.36 0.25 0.11 0.16 0.04	0.02 0.03 0.02 0.02 0.02	0.10 0.06 0.03 0.03 0.08			
609850A 609851 609852 609853 609853 609854	<5 <5 <5 <5	111 117 150 89 106	91 7 19 80 21	1078 2384 341 874 127	25 <2 <2 5 3	932 59 16 84 47	8 3 2 3	11 1 5 1	0.04 <0.01 <0.01 0.10 0.06	1.21 0.16 0.40 2.45 0.50	4.66 1.57 0.35 1.41 0.52	4.54 10% 6.79 3.75 5.34	3.15 0.12 0.27 1.10 0.07	0.47 0.10 0.03 0.60 0.14	0.05 0.02 0.02 0.13 0.04	0.20 0.01 0.01 0.10 0.12			
609855 609856 609857 609858 609858 609859	<5 <5 <5 <5	77 33 167 188 174	22 8 18 10 3	123 70 668 639 150	4 2 2 2 <2	79 20 60 13 5	3 2 2 1	1 1 2 <1	0.07 0.07 0.01 <0.01 <0.01	0.75 0.53 0.79 0.13 0.06	0.70 0.29 1.02 0.10 0.05	4.85 4.09 6.20 6.48 2.84	0.05 0.07 0.30 0.03 0.01	0.18 0.20 0.04 0.09 0.05	0.06 0.03 0.06 0.02 0.02	0.14 0.08 0.02 0.03 <0.01			
609860 609861 609862 609863 609864	<5 7 <5 <5 <5	178 124 64 164 130	43 47 47 88 54	152 1531 524 385 264	2 2 3 4 2	19 63 64 77 65	2 5 2 3	5 8 3 5 3	0.07 <0.01 0.07 0.14 0.07	0.91 2.11 0.71 1.38 0.89	0.19 3.68 1.50 0.63 0.44	2.74 6.51 2.52 3.21 11%	0.38 2.52 0.68 0.65 0.39	0.38 0.04 0.12 0.67 0.27	0.06 0.02 0.07 0.12 0.10	0.03 0.08 0.10 0.09 0.05			
609865 609866 609867 609868 609868 609869	<5 <5 11 <5 <5	72 94 136 28 65	13 7 24 8 8	3543 7785 344 1.0% 1.1%	2 2 2 3 <2	105 27 125 112 95	3 2 2 1 2	2 3 2 2 2	<0.01 <0.01 0.04 <0.01 <0.01	0.61 0.30 1.01 0.42 0.32	5.64 0.41 1.86 2.44 1.66	12% 9.59 2.34 6.16 11%	0.15 0.31 0.40 0.54 0.48	0.15 0.24 0.12 0.36 0.23	0.02 0.02 0.17 0.02 0.02	0.03 0.04 0.04 0.09 0.05			
609870 609871 609872 609873 609874	<5 <5 <5 <5	96 62 163 88 228	7 36 13 49 63	1239 1238 407 459 352	<2 7 3 5 4	37 1820 19 148 51	3 1 2 3 2	1 4 2 2 6	<0.01 0.06 <0.01 0.11 0.15	0.28 1.87 0.38 1.94 1.42	0.37 15% 0.28 1.64 0.46	9.91 1.76 2.05 4.55 4.57	0.06 0.75 0.10 0.31 0.80	0.25 0.30 0.14 0.13 0.67	0.02 0.18 0.02 0.25 0.13	0.05 0.06 0.02 0.15 0.04			
609875 609876 RE 599857 RE 599876	<5 <5 <5	110 106 31 55	92 88 87 34	1012 1025 1093 367	29 26 6 2	889 893 67 27	7 8 1 1	10 10 4 2	0.04 0.04 0.10 0.05	1.21 1.18 2.29 0.85	4.38 4.40 0.49 0.31	4.35 4.31 4.73 2.02	2.98 3.00 1.04 0.53	0.48 0.46 0.32 0.33	0.04 0.04 0.06 0.02	0.19 0.19 0.13 0.10			
Minimum Detection Maximum Detection Method	5 1000 ICP	1 10000 ICP	1 10000 ICP	1 10000 ICP	2 10000 ICP	1 10000 ICP	1 10000 ICP	1 10000 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 10.00 ICP	0.01 5.00 ICP			

UERTIFICATE OF ANALYSIS iPL 04H1741

2.... Solumble of eet Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Website www.ipl.ca ٦

INTERNATIONAL PLASMA LABS LTD. ISO 9001:2000 CERTIFIED COMPANY

Client : Geofine Project: AAP132KIV-04Q	Ship#	76 3	Sample: 1=Soil	s 39=Rock	6=Pul	p 4	=Repeat	1=S	t [1741]	15:36:27	7:400902	204:003]	Out In	t: Sep : Aug	02, 2004 26, 2004		Page Section	3 of 1 1 of	3 2
Sample Name	Туре	Au g/mt	Au g/mt	Ag g/mt	Ag ppm	Cu ppm	Pb ppm	Zn ppm	As ppm	Sb ppm	Hg ppm	Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba ppm	
RE 609783 RE 609859 FA_STDGS10 FA_STDGS10 REF	Repeat Repeat Std iPL Std iPL	1.23 4.15 0.80 0.82	0.82		23.0 48.9	328 403 	152 2875	1279 4110	759 1116 	<5 13 —	<3 <3 	11 9 —	<10 <10 	<2 <2 —	<0.2 196.6	12 	<1 4 —	32 6 	

 $\begin{smallmatrix} 2 & 0.2 & 1 & 1 & 2 \\ 2000 & 2000.0 & 10000 & 10000 & 10000 \\ \end{smallmatrix}$ 10 1000 0.07 3 5 1 Minimum Detection 0.01 2000 10000 1000 5000.00 5000.00 Maximum Detection ICP ICP FA/AAS FAGrav FAGrav ICP Method ----=No Test Ins=Insufficient Sample Del=Delay Max=No Estimate Rec=ReCheck m=x1000 %=Estimate % NS=No Sample

INTERNATIONAL PLASMA LABS LTD.

CERTIFICATE OF ANALYSIS iPL 04H1741

: · · · · · ·

2000 Columbia Surget Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898 Website www.ipl.ca ٦

ISO 9001:2000 CERTIFIED COMPANY	ISO 9001:2000 CERTIFIED COMPANY															e We	ebsite www.ipl.ca	
Client : Geofine Project: AAP132KIV-04Q	Sht	p#	76 S	Sample I=Soil	es 39=Roc	:k 6=	=Pulp	4=Rep	eat 1=	-St [174]	15:36:27	7:4009020	4:003]	Out: : In : :	Sep 02. Aug 26.	2004 2004	Page 3 of Section 2 of	f 3 f 2
Sample Name	W ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 %	Ca %	Fe X	Mg X	K X	Na X	Р %		
RE 609783 RE 609859 FA STDGS10	<5 <5 —	65 190	10 3	2.5% 163	3 <2	16 5	3	3 <1	<0.01 <0.01	0.25 0.07	0.49 0.05	14% 2.92	0.76 0.02	0.18 0.05	0.02	0.04 <0.01		
FA_STDGS10 REF		—	—	—	_		—	—		—		—	—		_			

Minimum Detection	5	1	1	1	2	1	1	1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Maximum Detection	1000	10000	10000	10000	10000	10000	10000	10000	10.00	10.00	10.00	10.00	10.00	10.00	10.00	5.00
Method	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
	Del=D	elav Ma	ax=No Es	timate l	Rec=ReCl	heck m=	=x1000	%=Estima	ate % NS	=No Sample	3					