2004 DIAMOND DRILLING PROGRAMME, VAULT EPITHERMAL Au-Ag PROPERTY, **OSOYOOS MINING DIVISION,** SOUTH-CENTRAL BRITISH COLUMBIA (82E/5 or 82E.032 and 82E.033) RECEIVED JUL 0 5 2005 Gold Commissioner's Office VANCOUVER, B.C. Volume 1 of 2 BRANCH GEOLOGICAL SURVEY Latitude: 49°21'54"N Longitude: 119°38'11"W **Ecstall Mining Corporation** Owner: **Geotex Consultants Limited** Consultants: Author: Peter B. Read June 29, 2005 Date:

L

1

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

TABLE OF CONTENTS

1. IN		1
2. LO	CATION	3
3. GE	OLOGICAL MAPS AND SECTIONS	4
4. 200	4 DIAMOND DRILL HOLES	5
5. STF	RUCTURE	6
 3. GEOLOGICAL MAPS AND SECTIONS 4. 2004 DIAMOND DRILL HOLES 5. STRUCTURE 6. MINERALIZATION 6.1. INTRODUCTION 6.2. LOWER MARAMA SEDIMENTS (units Emilh, Emfl, Emsl and Ems) 6.3. MARRON FORMATION (North Vein). 	7 7 7 8	
APPEN	DICES	
Α		A-1
В	DRILL LOGS OF 2004 DRILL PROGRAMME	B-1
C	ASSAYS FROM 2004 DRILL PROGRAMME	C-1
D	DRILL LOGS OF 2001 DRILL PROGRAMME	D-1

E	NORTH VEIN ORIENTATIONS, ASSAYS AND	
	TRUE WIDTHS	E-1

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

.

.

.

....

LIST OF ILLUSTRATIONS

FIGURES

r

٢

-

-

Figure 1	Claim map showing the location of the Vault Property	2
MAPS		

Map 1Vault Project, Detailed Geology 1:2 000 scale in pocket

SECTIONS

XSG 200W	Vault Project, Geology, 1:2 000 scale	in pocket
XSA 200W	Vault Project, Assay, 1:2 000 scale	in pocket
XSG 150W	Vault Project, Geology, 1:2 000 scale	in pocket
XSA 150W	Vault Project, Assay, 1:2 000 scale	in pocket
XSG 300E	Vault Project, Geology, 1:2 000 scale	in pocket
XSA 300E	Vault Project, Assay, 1:2 000 scale	in pocket
XSG 350E	Vault Project, Geology, 1:2 000 scale	in pocket
XSA 350E	Vault Project, Assay, 1:2 000 scale	in pocket
XSG 500E	Vault Project, Geology, 1:2 000 scale	in pocket
XSA 500E	Vault Project, Assay, 1:2 000 scale	in pocket
XSG 550E	Vault Project, Geology, 1:2 000 scale	in pocket
XSA 550E	Vault Project, Assay, 1:2 000 scale	in pocket
XSG 750E	Vault Project, Geology, 1:2 000 scale	in pocket
XSA 750E	Vault Project, Assay, 1:2 000 scale	in pocket
		-

Peter B. Read June 29, 2005

5. INTRODUCTION

This assessment report results from 15 days of geological mapping within the Vault property and 25 days of office work developing geological maps, sections and a three-dimensional model of the geology and mineralization of the Vault Property. Incorporated in this report are the results of nine diamond-drill holes on the Vault Property, totaling 1415.08 m, which were drilled in 2004, logged by B. Mawer, M. Rasmussen, C. Graf and M. Morrison, and sampled for assay by D. Bishop.

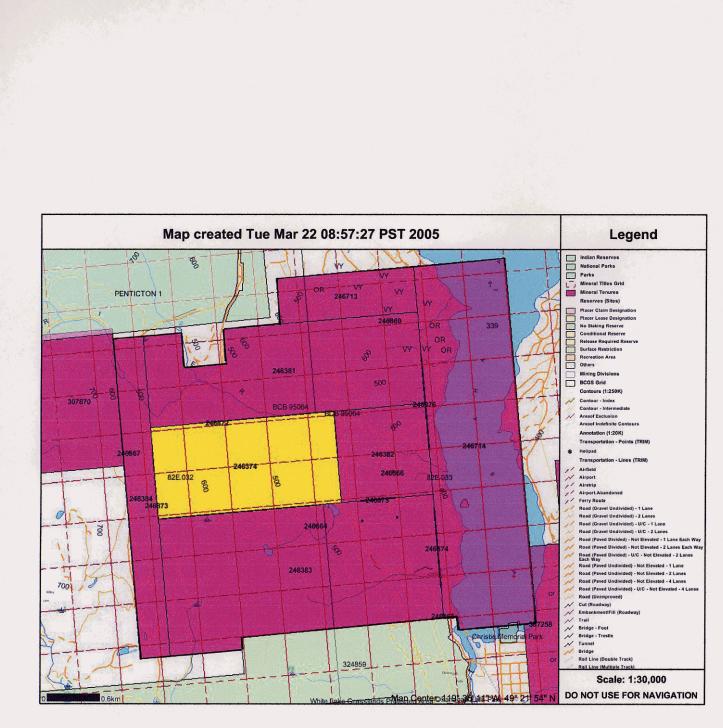


Figure 1: Claim map of Vault Property

2

Contraction of the local division of the loc

6. LOCATION

The Vault Property consists of the following claims and fractions (Figure 1 and Table 1):

Claim Name	Tenure #	Expiry Date	Map #
Vault 1	246374	21-Mar-15	82E.032
Vault 2	246381	21-Mar-15	82E.032
Vault 3	246382	21-Mar-16	82E.033
Vault 4	246383	21-Mar-15	82E.032
Vault 5	246384	21-Mar-15	82E.032
Vault 6	246713	21-Mar-15	82E.033
Vault 7	246714	21-Mar-15	82E.033
Vault 8	246865	21-Mar-16	82E.033
Vault 9	246866	21-Mar-16	82E.033
Vault 10	246864	21-Mar-15	82E.032
Vault 11	246867	21-Mar-15	82E.032
Vault 12	246868	21-Mar-15	82E.033
Vault 13	246869	21-Mar-15	82E.033
Vault 14 fraction	246872	21-Mar-15	82E.032
Vault 15 fraction	246873	21-Mar-15	82E.032
Vault 16 fraction	246874	21-Mar-15	82E.033
Vault 17 fraction	246875	21-Mar-15	82E.033
Vault 18 fraction	246876	21-Mar-15	82E.033

Table 1: Vault Prope

These claims straddle the southwestern edge of the Trans Provincial Highway 3A/97 with the southeast corner of the claims less than 0.5 km north of the village of Okanagan Falls. East of the highway to the west side of Skaha Lake, the Old Kaleden Road permits access to the east portion of the property. To the west of Highway 3A/97, a network of old logging roads allows easy entry to the rest of the property. Except for the flat fields with no outcrop to the east of Highway 3A/97, low hills up to 750 m elevation cover the rest of the property. West of the highway, cliff-forming dacite flows cap most of the hills. On the grass-covered and pine-forested slopes beneath the dacite caps are sparsely scattered exposures. However, exposures of the contacts between rock units are rare.

GEOLOGICAL MAPS AND SECTIONS

The topographic base map for the Vault Property comes from a 1:5000-scale map with 10 m contour interval. The NAD 27 UTM Zone 11 grid on this map was incorrectly position 22 m south of its actual location on the ground. This error has been corrected on the maps in this report. All of the surveyed holes drilled before 2004 were surveyed using an assumed elevation of 490.0 m at station 0+00mN, 9+00mE on the Vault Grid. By locating, occupying and using a hand-held GPS unit at the original surveyed stations on lines 0+00mN and 9+00mE, the positions of these lines and the original survey stations were transferred onto the 1:5000scale topographic base. This permitted regeneration of the original Vault Grid on the topographic base. Plotting of all the drill holes, using Vault Grid coordinates, onto the topographic base yielded a correction for the elevations of the drill collars. For unsurveyed and surveyed drill collars, the elevation corrections for the collars ranged up to 97.5 m. The new elevations (corrected) and the old elevations (uncorrected) are in Appendix A with the new elevations used throughout the geological (Map 1) and sections (200WXSG to 650EXSG and 200WXSA to 650EXSA) and appendices in this report.

7. 2004 DIAMOND DRILL HOLES

Of the nine holes totaling 1415 m drilled in 2004, four penetrated the Main Zone between sections 550E and 650E and the other five short holes, totaling 218.58 m, penetrated the West Zone between sections 150W and 200W (Table 2). The collar locations were surveyed using a Lasercraft XLRic with back sights to known surveyed drill collars.

DDH	Easting	Northing	Elevation	Azimuth	Dip	Lengths(m)
V-04-01	632.00	151.00	477.20	155.00	-52.00	105.50
V-04-01A	647.00	159.00	477.20	155.00	-49.00	453.20
V-04-02	526.00	68.00	480.20	155.00	-53.00	355.00
V-04-03	324.00	-7.00	510.70	160.00	-50.00	282.80
V-04-04	-165.00	-152.00	540.90	330.00	-45.00	43.60
V-04-05	-167.00	-150.00	540.70	0.00	-90.00	39.63
V-04-06	-166.00	-151.00	540.80	330.00	-67.00	28.35
V-04-07	-183.00	204.00	542.10	330.00	-45.00	43.90
V-04-08	-183.00	-204.00	542.10	330.00	-67.00	63.10
- 4	······································		• <u>•• •• • •• •• •• •• •• •• •• ••</u>		TOTAL	1415.08

Some of these holes were down-hole-surveyed using a Sperry-Sun instrument. The results of these surveys are in Table 3;

DDH	Length	Azimuth	Dip	Туре
V-04-01	0.00	155.00	-52.00	Layout
V-04-01	53.30	155.00	-52.00	Sperry-Sun
V-04-01	100.90	155.00	-52.00	Sperry-Sun
V-04-01A	0.00	155.00	-49.00	Layout
V-04-01A	106.60	156.00	-49.00	Sperry-Sun
V-04-01A	264.30	157.00	-46.00	Sperry-Sun
V-04-01A	436.90	159.00	-40.00	Sperry-Sun
V-04-02	0.00	155.00	-53.00	Layout
V-04-02	181.36	155.00	-53.00	Sperry-Sun
V-04-02	285.90	159.00	-51.00	Sperry-Sun
V-04-02	349.91	159.00	-50.00	Sperry-Sun
V-04-03	0.00	160.00	-50.00	Layout
V-04-03	111.25	160.00	-49.00	Sperry-Sun
V-04-03	264.57	160.00	-50.00	Sperry-Sun

 Table 3: Down Hole Survey Results for the 2004 Holes

The logs of the holes and the assays are in appendices B and C respectively. Because the lithology logging of the 2001 holes employed some units not used by any other loggers, the lithology has been re-interpreted (Appendix D).

> GEOTEX Consultants

Limited CONSULTING GEOLOGISTS

8. STRUCTURE

From the point of view of mineralization, the most important structures on the Vault property are the Vault fault and the synchronously developed Vault Syncline. This growth fault provided the channel for the mineralizing fluids and controlled the development of the coarse fragmental host rocks which host the mineralization. The intersection of this fault and the coarse clastic host rocks plunges at $\sim 20^{\circ}$ to the east. The mineralized zone may extend as far to the east as the east-dipping Lime Springs fault of uncertain, but presumed postmineralization age. Because movement on the growth fault ceased at the beginning of the deposition of the White Lake Formation, surface exposures of the formation give no hint of the underlying extension of Vault syncline in the undrilled area from Highway 97 to the trace of Lime Springs fault.

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

6. MINERALIZATION

6.1. INTRODUCTION

At the Vault property, the study of the mineralization was the responsibility of M. Rasmussen. His observations combined with those of earlier workers are the basis for this section.

6.2. LOWER MARAMA SEDIMENTS (units Emlh, Emfl, Emsl and Ems)

On the northern limb of the Vault Syncline, some of the lahar (Emlh), felsite (Emfl) and sandstone (separately defined as Emss in the logs) host white through grey to black quartz/chalcedony veins of differing ages and silicacemented quartz breccias composed of quartz/chalcedony vein clasts. These are locally colloform and typically accompanied by up to 15%, very finely disseminated pyrite and/or marcasite with the greatest sulphide concentration at the vein and clast margins.

The assays from the 2004 drill programme (Appendix C) combined with those from earlier drill programmes show in sections SXA300W to SXA1100E (in pockets). Typically they outline a westerly elongate volume of mineralized rock which extends down the dip of the north limb of Vault Syncline in the lahars lying in the hanging wall of Vault Fault. Vault Fault truncates the mineralized volume which does not extend into the Marron trachyte and trachyandesite of the footwall. The 1 ppm Au-contour outlines this volume which encloses local volumes of 5 ppm Au. The orientation of the quartz veins and quartz breccia zones within this volume is unknown and they cannot be projected among drill holes or sections.

Surface samples assayed in 2004 corroborate this distribution of mineralization (Table 4).

Sample	Easting		Northing		Au in ppb	Notes	
0-1	-65	W	-96	S	354	angular boulder 10x30 cm, siliceous fragments (<1-2 cm) in siliceous matrix, limonitic, sample chip across boulder	
0-2	-72	W	-96	S	960	outcrop? 40x20 cm, siliceous argillite fragments (<1-2 cm) in highly siliceous matrix, limonitic, sample grab pieces	
O-3	-75	W	-96	S	228	float? angular 20x30 cm boulder, siliceous fragments (<1-2 cm) in siliceous matrix, limonitic, 0.3 cm chalcedony veinlet; sample chip across boulder	
0-4	-75	W	-94	S	1060	boulder angular to subrounded; siliceous fragments (<1-5cm) in black siliceous matrix, limonitic; sample grab pieces	
O-5	-79	W	-96	S	280	float? Angular siliceous fragments (up to 8 cm) in highly siliceous matrix; sample grab pieces	
O-6	-83	W	-96	S	580	highly siliceous tuff, limonitic; sample grab pieces	
0-7	-75	w	-100	S	1040	outcrop 0.7x1 m, highly siliceous fragments (<0.2-3 cm) in highly siliceous matrix; 1 m vertical chip	
O-8	-180	w	-220	s	2200	outcrop? 10x20 cm, banded white to grey quartz vein; sample grab	

GEOTEX

CONSULTANTS LIMITED CONSULTING GEOLOGISTS

Table 4: Vault Surface Samples, Location and Assays

O-9	-181	w	-221	S	352	outcrop, siliceous fragments (0.3-2 cm) in siliceous matrix, hematitic; sample 0.7 m vertical chip
O-10	-184	W	-222	S	720	outcrop 2x0.8 m, siliceous fragments (subrounded-angular, vein (<1-6 cm) in siliceous matrix, hydrothermal breccia; sample 0.8 m vertical chip
O-11	-190	W	-225	S	1474	float/outcrop? Angular boulders over a 3x5 m area, siliceous fragments (0.2-3 cm) some white banded quartz veins in highly siliceous matrix, limonitic/hematitic; sample grab of 11 boulders
0-12	-195	w	-228	S	112	outcrop 1.5 m long by 1.0 m high; highly siliceous fragmental, hematitic; sample chip over face
0-13	-197	W	-228	S	206	outcrop 0.7x0.3 m, highly siliceous tuff? Fragments/matrix, silicified with fragments 0.2-0.5 cm, limonitic, hydrothermal; breccia; sample chip over 0.3 m
O-14	-205	W	-232	S	1052	outcrop 0.7x0.5 m; siliceous fragments, many of quartz veins in siliceous matrix, limonitic, hydrothermal breccia; sample grab pieces over face of outcrop
O-15	-230	W	-190	S	800	outcrop, highly siliceous breccia, quartz/chalcedony veins; sample 1.4 m vertical chip
O-16	-234	W	-190	S	1100	outcrop; highly silicified fragmental, fragments <1 cm-3 cm; sample vertical 1.2 m chip

6.3. MARRON FORMATION (North Vein)

Slightly north of 300N, a continuous quartz-feldspar-carbonate vein up to 1.5 m in width was mapped at 1:100-scale, and trenched and assayed every 2 m for 366 m between 75W to 85E and 291E to 547E (Groeneweg 1989). The vein contains up to 5% pyrite and an equal amount of an unidentified dark metallic mineral. The assay results of the trenches are not available, but the assays from the vein intersections from 59 diamond drill holes vein are in Appendix J. The intersections show that North Vein extends from 150W to 900E for a strike length of 1050 m.

From a combination of the trenching data and drill hole intersections, the general attitude from a triangulation model of North Vein is 090/73.5S. The vein is open to depth and to the east, but dies out west of section 150W. The vein hosts some of the best assays on the property and the trenching shows that it persists along strike, but the drill intersections indicate that its true width is highly variable (Appendix E).

7. REFERENCES

Groeneweg, W.

1989: 1:100 scale geological maps of North Vein trenched area; unpublished maps.

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

CERTIFICATE OF QUALIFICATIONS

- 1. I, Peter Read, am a consulting geologist specializing in structural geology with an office located at #1200 -100 W. Pender Street, Vancouver, B.C., V6B 1R8.
- 2. I am a graduate of the University of British Columbia (BASc, 1957; MASc, 1960) and the University of California, Berkeley (PhD Geology, 1966).
- 3. I have practiced my profession as a geologist continuously for 43 years as a researcher and structural geology consultant to the federal (Canada) and provincial (British Columbia) governments, and to the engineering and mining communities.
- 4. I am a member of the Geological Association of Canada (Fellow 1746).
- 5. This report depends upon geological studies conducted by myself, and a review of data provided by Ecstall Mining Corporation. I conducted surface mapping on the Vault Property and the adjoining Dusty Mac Property over a period of 21 days during April to June 2004 during which time I collected field data.

Limited CONSULTING GEOLOGISTS

CONSULTANTS

6. I have no direct, indirect or contingent interest in either Ecstall Mining Corporation or the property described in this report, or any other mining properties in this region.

ECSTALL MINING CORPORATION VAULT PROPERTY 2004 EXPLORATION AND DRILLING EXPENSES

COST STATEMENT

DESCRIPTION	AMOUNT		
ASSAYS:			
Teck Cominco	\$ \$	8,796.35	
	\$	8,796.35	
	۴	400.044.04	
Falcon Drilling	\$ \$	139,944.84	
	\$	139,944.84	
EQUIPMENT RENTAL:			
Big Valley Drylog	\$	1,600.35	
JC Office Trailers	Ψ \$	3,688.20	
Pothier Enterprises	↓ \$	4,520.08	
	\$	9,808.63	
	Ψ	0,000.00	
GEOLOGICAL CONSULTING F	EE	S:	
AB Mawer	\$	11,721.81	
C Graf	\$	30,000.00	
Don Bishop	\$	5,460.42	
Geotex Cons	\$	41,009.39	
Mike Rasmussen	\$	9,519.60	
Myron Osatenko	\$	200.00	
Robert Adams	\$	1,440.00	
	\$	99,351.22	
LICENSES & FEES:			
Annette Glover- access	\$	2,000.00	
BC Min of Finance	\$	8,740.24	
	\$	10,740.24	
MAPS & DRAFTING:	•	4 47 66	
Steven Buzkiweich	\$	147.00	
Terracad	\$	25,414.37	
	\$	25,561.37	
ROOM & BOARD:			
Cactus Grill	\$	2,785.10	
South Shore Motel	э \$	3,098.00	
	<u>ֆ</u> \$	5,883.10	
	φ	5,005.10	
Grand Total	\$	300,085.75	
	Y		

APPENDIX A

VAULT PROPERTY: CORRECTED DRILL COLLAR LOCATIONS AND ORIENTATIONS

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

Ł

[

ł

i

DDH	UTM_E	UTM_N	Mine Grid			New	-	Azimuth	Dip
	NAD 27	NAD 27	Easting	Northing	Elev	Elev	in m		
38897	310126.79	5470929.63	242	-570		583	321.6	0	-90
38898	310762.53	5471364.93	863.77	-114.96		478	457	0	-90
38899	310762.53	5471364.93	863.77	-114.96		478	227	230	-45
38900	310744.15	5471405.02	844.15	-75.46		478	105	305	-44.5
72401	310744.15	5471405.02	844.15	-75.46		478	320	305	-70
72402	310562.95	5471392.02	663.44	-94.15	467.4	477	201.8	305	-50
72403	310762.15	5471510.11	858.84	30.14	480.1	486	141.43	0	-90
72404	310741.95	5471482.96	839.5	2.37	473.7	479	301	0	-90
72405	310741.95	5471482.96	839.5	2.37	473.7	479	202.39	325	-45
72406	310633.04	5471731.31	722.85	247.18	481.8	486	10.36	0	-90
72407	310633.04	5471731.31	722.85	247.18	481.8	486	193.55	325	-48
72408	310665.45	5471268.55	769.77	-214.33	469.5	476	477.62	0	-63
72414	310770.69	5471234.72	876.01	-244.85	463.5	469	425.6	1	-63
72415	310666.63	5471213.26	772.68	-269.56	485.9	490	428.35	357	-62
72416	310567.63	5471267.99	672.01	-217.96	488.7	494	337.2	2	-62
72417	310668.44	5471119.15	777.44	-363.57	501.4	500	483.54	356	-58
72418	310763.09		873.41	-404	483.4	490	442.4	356	-60
72419	310716.4	5471248.57	821.32	-232.71	465	471	366.77	355	-63
72420	310100.28	5471337.91	202.7	-162.75	490	497	166.2	180	-50
72421	310530.6	5471621.64	623.9	134.35	469.4	477	282.12	360	-55
72422	310530.48		623.9	130.75	469.4	477	425.47	180	-53
72423	310616.6	5471267.84	720.96	-216.57	486.4	487	344.42	360	-56
72424	310369.13	5471568.51	464.18	76.18	491.5	495	409.96	360	-50
72425	310373.91	5471472.03	471.99	-20.11	478.7	485	255.73	180	-60
72426	310860.32	5471328.99	962.64	-147.81	497	505	428.85	360	-60
72427	310696.12	5470214.41	833.5	-1267	489.5	587	148.74	0	-90
72428	310851.67	5470037.94	994.5	-1438.5	606	605	246.28	0	-90
72429	310890.26	5471238.63	995.4	-237.19	493.3	496	200.25	360	-60
72430	310681.37	5470557.03	808	-925	612	613	352.65	0	-90
72431	310890.25	5471238.24	995.41	-237.58	493.3	496	501.4	360	-70
72432	310681.37	5470557.03	808	-925	612	613	255.73	215	-60
72433	310489.27	5471560.79	584.5	72.23	469.9	477	445.31	180	-55
72434	310697.23	5471692.11	788.24	210.02	495.3	500	637.5	180	-53
72435	310534.71	5471720.84	624.9	233.63	483.5	486	614.17	180	-53
72436	310745.18	5471656.5	837.28	175.92	498	501	485.55	180	-55
72437	310489.99	5471594.94	584.15	106.39	469.6	476	498.35	180	-55
72438	310580.15	5471675.87	671.72	190.1	470.7	479	197.82	180	-50
72439	310580.15	5471675.87	671.72	190.1	470.7	479	555.96	180	-45
72440	310648.8	5471702.1	739.52	218.48	494.2	497	555.96	180	-45
72441	310785.83	5471671.91	877.43	192.6	480.9	484	746.76	180	-57
72442	310674.08	5471702.28	764.78	219.45	494.1	497	586.74	180	-50
72443	310824.91	5471647.91	917.24	169.84	472.2	479	567.89	180	-57
72444	310621.65	5471691.89	712.7	207.43		495	562.05	180	-46
72445	310530.48	5471618.05	623.9	130.75	469.4	477	12.9	180	-46
72446	310530.48	5471618.1	623.9	130.8	469.3	477	470.61	180	-46
72447	310466.1	5471542.78	561.9		471.5	476	15.24	180	-55
72448	310466.1	5471542.78	561.9		471.5	476	13.41	180	-55
72449		5471559.67	558.5		472.1	476	461.77	180	-53
72450		5471481.89	196.2		530.1	531	379.17	180	-49
72451	The second se	5471482.65			454.9		425.81	0	-90

[

Γ

-

L

•

DDH	UTM_E	UTM_N		Mine Grid	Old	New	Length	Azimuth	Dip
			Easting	Northing	Elev	Elev	inm		
72452	311145.69	5470400.39	1277	-1067	461	468		0	-90
72453	310959	5470254.18	1095	-1219		531	373.38	360	-62
72457	310676.97	5471382.28	777.7	-100.3	471	477	367.59	0	-90
72458	310354.46	5471384.3	455.3	-108.4	484	488	157.89	0	-90
72459	310407.87	5471386.83	508.6	-104.2	478.4	482	194.46	0	-90
72460	310448.52	5471358.84	550.1	-130.9	477.5	480	288.95	0	-90
72461	310498.97	5471388.67	599.6	-99.5	468.7	474	307.24	0	-90
72462		5471412.81	639.1	-74.1	467.9	476	268.83	0	-90
72463	310579.16	5471383.95	679.9	-101.7	467.7	477	328.57	0	-90
72464	310620.03	5471356.76	721.6	-127.6	466.7	475	389.53	0	-90
72465	310695.03	5471432.04	794.2	-50	469.9	477	319.4	0	-90
72466	310752.12	5471325.8	854.6	-154.4	471.1	475	441.4	0	-90
72467	310702.02	5471329.27	804.4	-152.5	465.6	473	444.09	0	-90
72468	310848.72	5471374.89	949.6	-102.3	493.9	502	474.9	0	-90
72469	310423.02	5471346.73	525	-143.8		490	296.57	0	-90
72470	310448.77	5471284.1	552.7	-205.6		497	362.1	0	-90
72471	310992.09	5471381.29	1092.7	-91.4	455.6	462	561.75	0	-90
82701	310100.37	5471340.66	202.7	-160	490	496	108.05	90	-60
82702	310100.37	5471340.66	202.7	-160	490	496	303.28	90	-55
82703	310381.14	5471505.19	478.17	13.27		486	147.52	270	-40
82704	310383.97	5471505.1	481	13.27	477.9	486	44.5	270	-75
82705	310250.52	5471508.31	347.51		508.4	505	156.36	270	-40
82706	310158.37	5471510.8	255.33		519.4		147.22	270	-40
82707	309789.08	5471671.56	-118.81	160.98		522	163.07	360	-45
82708	309790.22	5471753.3	-120.25	242.72	538.6	539	138.68	360	-45
82709	310320.58	5471327.74	423.2	-165.99		487	248.72	270	-70
82710	310474.05	5471337.24	576.3	-151.69		484	358.14	0	-90
82711	310474.05	5471337.24	576.3	-151.69		484	315.77	360	-83
82712		5471337.24	576.3	-151.69		484	340.16	270	-84
82713	310474.05	5471337.24	576.3	-151.69	478.7	484	370.64	90	-84
82714	310505.41	5471102.83	615	-385	515	513	541.32	90	-75
82715	309742.11	5471748.51	-168.17	236.42	524.3	524	62.18	360	-45
82716	309742.04	5471747.54	-168.22	235.45	524.3	524	127.1	360	-70
82717	309688.84		-221.21	227.81		513	92.66	360	-40
82718		5471740.61	-221.21	226.85		513	the second s	360	-60
82719	309790.22	5471753.3	-120.25	242.72		539		360	-64
82720	A REAL PROPERTY AND ADDRESS OF TAXABLE PROPERTY ADDRES	5471759.63	-24.78	252.05		556	77.42	360	-40
82721		5471758.97	-24.78	251.39		556	114	360	-65
82722		5471261.81	385.77	-233.14		496		90	-61
82723		5471776.94	-82.32	267.55		556.5	65.23	360	-45
82724		5471776.94	-82.32	267.55		556.5	90.53	360	-66
82725		5471777.58	24.56	271.54	552.5	555	62.79	360	-45
82726	The second s	5471776.71	24.56	the second se	552.5	555	105.46	360	-45
82727		5471756.56	73.5	The second s	548.6	551	80.77	360	-40
82728		5471755.48	73.5	the second s	548.6	551	131.37	360	-66
82729		5471759.77	125.16		563.5	567	71.63	360	-00
82730		5471759.77	125.16		563.5	567	135.94	360	-45
82731		5471710.84	174.61		558.2	560	126.49	360	-70
82732		5471709.66	174.61	فببر المتخببة ساقت ساحماه الأوج ببالباليان	558.2	560	165.81	360	-40
82733	310131.74	5471724	222.03	224.14	550	554	123.44	360	
02100	510101.74	04/1/24	222.03	224.14	000	554	123.44	300[-40

Constant of

- and

[

.

DDH	UTM_E	UTM_N		Mine Grid	Old	New	-	Azimuth	Dip
00704	240424 70	E 474700 0	Easting	Northing	Elev	Elev	in m		
82734	310131.72	5471723.2 5471778.99	222.03		550	554	157.28	360	-60
82735	310186.77			280.83		539	83.82	360	-50
82736	310186.58	5471777.68	275.15	279.51	525	539	120.7	360	-75
82737	310234.27	5471766.67	323.16	270.01	519.5	525	71.63	360	-45
82738	310235.44	5471766.64	324.34	270.01	519.5	525	89.92	360	-75
82739	310288.09		376.92	272.89		517.5	63.55	360	-45
82740	310287.82	5471766.44	376.7	271.46	514.5	517.5	135.94	360	-78
82741	310336.12	5471772.45	424.79	278.98	510.1	512	59.13	360	-45
82742	310336.15	5471771.02	424.86	277.55	510.2	512	89	360	-75
82743	310395.72	5471777.75	484.19	286.15		507	47.85	360	-45
82744	310395.69	5471776.4	484.2	284.8	504.2	507	75.29	360	-77
82745	310434.37	5471778.62	522.79	288.23	501.7	504	39.62	360	-45
82746	310434.09	5471777.21	522.56	286.81	501.7	504	69.19	360	-77
82747	310483.7	5471751.45	572.95	262.62		494	77.11	360	-44
82748	310483.5		572.8	261.14		494	114.91	360	-80
82749	310534.73		624.86	235.34		485	96.01	360	-45
82750	310534.6		624.76	234.55		485	132.89	360	-75
82751		5471641.97	570.75	153.02	The second se	480	260.91	360	-64
82752	310580.44		671.93	192.7		478	134.11	360	-54
82753	310580.44		671.93	192.7	470.6	478	187.76	360	-67
82754	310621.2	5471689.42	712.33	204.94	491.9	495	151.18	360	-65
82755	310621.2	5471689.42	712.33	204.94	491.9	495	172.82	360	-75
82756	310674.39		765.11	218.77	494.2	497	145.08	360	-69
82757	310674.39	5471701.59	765.11	218.77	494.2	497	176.17	360	-81
82758	310745.43	5471657.26	837.51	176.69	498	498	218.24	360	-55
82759	310745.43	5471657.26	837.51	176.69	498	498	198.12	360	-70
82760	310423.5	5470565.12	550	-925	597	598	307.85	90	-60
82761	310787.82	5471674	879.35	194.75	481.6	484	194.46	360	-73
82762	310515.96	5470387.15	648	-1100	590	590	215.19	90	-65
82763	310451.32	5471678.17	542.89	188.36	490.7	495	172.52	360	-61
82764	310340.38	5471678.29	432	185	524	531	233.48	360	-64
82765	310629.35	5471600.52	723.27	116.35	519.2	527	361.8	360	-66
82766	310250.96	5471665.86	343.01	169.77	504.8	508	239.57	360	-60
82767	310149.92	5471663.69	242.09	164.44	535.7	536	230.43	360	-60
82768	310726.68	5471603.84	820.44	122.71			276.45	360	-66
82769	310057.66	5471664.93	149.84	162.78	548.1	548	309.68	360	-64
82770	310823.87	5471590.61	918	112.54	470.1		288.34	360	-64
82771		5470338.13	2210	-1100	450	450	74.98	360	-90
82772	312076.68	5470338.15	2209.5	-1100	450	450	383.44	360	-90
82773		5470728.73	2185	-710	449	446	72.24	270	-70
82774		5470728.73	2185	-710	449	446	504.44	270	-80
82775		5471298.45	2185	-140	441	443	497.43	360	-90
82776		5471340.49	208	-160	490	497	162.15	270	-70
82777	and the second	5471388.75	422	-105	488	487	154.53	270	-70
82778		5471364.91	385	-130	493	494	172.82	270	-70
82779		5471367.58	300	-130	497	503	160.02	270	-70
82780	310005.5		106.83	-129.63		509	97.84	270	-70
82781		5471307.04	0	-123.03	548	548	154.53	270	-70
82782	the second s	5471579.27	880	-200	491	485	359.97	360	-70
VE1 VE		5471579.27	775	100	511	513	444.3	300	-75

L

Γ

Γ

Γ

Γ

, , ,

.....

-

,-----

ł

.

DDH	UTM_E	UTM_N		Mine Grid		New		Azimuth	Dip
			Easting	Northing	Elev	Elev	in m		
82784	310247.48		350	-164	487	487	203	360	-66
82785	310247.48		350	-164	487	487	197.21	360	-77
82786	309805.97	5471610.02	-100		520	516	355.09	360	-57
82787	309955.9		50		527	527	324.6	360	-55
138-1	310130.61	5471425.7	230.26	-74.04		532	91.4	360	-50
138-2	310130.61	5471425.7	230.26	-74.04	534.2	532	71.9	360	-90
138-3	310230.72	5471432.89	330.09	-63.72	514.2	515	59.7	360	-45
138-4	310241.59	5471397.11	342.08	-99.14	504.8	507	96	360	-45
138-5	310005.5	5471374.01	106.83	-129.63	513.2	509	64.9	360	-45
138-6	310327.41	5471440.32	426.5	-53.26	480.2	488	78	360	-50
138-7	310458.15	5471503.25	555.2	13.75	470.1	477	96.6	360	-60
83-1	310248.06	5471347.53	350.1	-148.5	483.5	488	213.5	350	-60
83-2	310100.38	5471341.06	202.7	-159.6	490	496	100	350	-55
83-3	310290.63	5471301.17	394.1	-193.5	481.6	487	189.28	0	-90
83-4	310322.81	5471380.1	423.8	-113.6	479.1	484	129.6	360	-50
PDH-1	309966.94	5471458.29	65.64	-46.6	538.8	542	91.5	150	-82
PDH-2	310067.31	5471430.88	166.82	-70.86	544.1	546	91.5	270	-90
PDH-3	310179.85	5471452.96	278.62	-45.26	524	524	67.1	270	-90
PDH-4	309966.94	5471458.29	65.64	-46.6	538.8	542	22.9	215	-57
PDH-85-1	310322.81	5471380.1	423.8	-113.6	479.1	487	57.91	0	-90
PDH-85-2	310433.13	5471362.81	534.6	-127.4	478.5	482	73.15	0	-90
PDH-85-3	310041.67	5470672.16	165	-830	525	567	76.2	0	-90
PDH-85-4	310199.86	5470612.17	325	-885	565	594	64	0	-90
PDH-85-5	310366.95	5470516.88	495	-975	556	599	64	0	-90
PDH-85-6	310453.77	5470414.09	585	-1075.01	548	598	48.77	0	-90
PDH-85-7	310093.52	5470730.57	215	-770	537	562	88.39	o	-90
V-01-1	309788.79	5471317.41	-108	-193	556.5	546	66.4	310	-70
V-01-2	309718.26	5471269.6	-177	-243	558	546	69.5	301	-70
V-01-3	309675.3	5471207.93	-218	-306	560	549	76.2	291	-70
V-01-4	309646.34	5471113.79	-244	-401	572	558	66.4	286	-70
V-01-5	309610.24	5471015.87	-277	-500	574	564	84.7	279	-70
V-04-01			632	151		477.2	105.50	155	-52
V-04-01A			647	159		477.2	453.20	155	-49
V-04-02			526	68			355.00	155	-53
V-04-03			324	-7		510.7		160	-50
V-04-04			-165	-152		540.9	43.60	330	-45
V-04-05			-167	-150		540.7	39.60	0	-90
V-04-06			-166	-151		540.8	28.35	330	-67
V-04-07	····		-183	-204		542.1	43.90	330	-45
V-04-08			-183	-204		542.1	63.10	330	-67

[

[

[

•

APPENDIX B

DRILL LOGS OF 2004 DRILL PROGRAMME

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

F

ì

1

-

.

Hole V-	-04-01	Bearing: 155°		Dip: 52°	Hole Started: 04/30/04 Page 1 Of 1				
JITH	DLOG	Y			Vault Claim				
From (m)	To (m)	UNIT	SYMBOL	SUB U	UB UNITS AND DESCRIPTION				
0.0	3.0	Casing	Ca	casing					
3.0	23.2	Overburden	OB	23.16 m: Ov	verburden				
23.2	105.5	Andesite	Emvt	broken fract	ures generally at 50° TCA, few mud seams @ 5.8m and brecciated altered seams to 5 cm thick @ 8.0 m				
				6.0 m: beco	ming more porphyritic, few fractures @ 10° TCA				
				9.0 m: incre	asing hematitic sections				
				15.6-17.2 m	partly fragmental, partly altered with dense hematitic patches @ 16.2-16.3 m				
				few scattere	d calcite (dense white) filled fractures, about 90° TCA (scattered); random clean fractures 50° TCA				
				18.0 m: few	highly altered fragments, hematitic to yellowish to 20.1 m. Only box 4 core becoming more competent,				
	······································			but all core	to some degree is altered				
		Acid Test		48-49.4 m: o	ore hematized in irregular patches and brecciated fragments 48.8-49.3 m, all core hematized				
		Dip @ 53.3m - 52°		54.17-60.5 r	n: varying degrees of alteration and brecciation from fine fragments to large clasts in muddy				
				friable matri	x				
				60.5-61.1 m	fragmental, but all silicified, light grey color, fault contact @ 10° to core. This silicified section has				
				fragments of	colloform silica and hematite, very fine lams with very fine pyrite				
				65.8 m: faul	t slip @ 30° TCA, little dissemination, fine pyrite in this alteration				
				67.0 m:cont	act with less altered rock 30° TCA (fault zone 54.17-67.0 with siliceous rock in centre)				
				70.5-71.0 m	a few grey chalcedony sections with black rims irregular pattern				
				86.0 m: scat	tered chalcedony veinlets patchy throughout, hematitic alteration, core generally porphyritic; where				
		Acid Test		alteration re-	aches light green-grey, porphyritic texture disappears				
		Dip @ 100.9m - 52°	· · · ·	93.0-105.5 n	n: extensive hematization (probably fragmental, some brecciation) few strings of chalcedony				
105.5	105.5	End of Hole	EOH	End Of Hole	: 105.5 metres				
					······································				
					** * **********************************				
				····	· · · · · · · · · · · · · · · · · · ·				
			· · · · · · · · · · · · · · · · · · ·						
		I							
	Logo	ged By: A.B.Ma	awer		Date				

.

Γ

ſ

Γ

Γ

ſ

F L

Hole V	-04-01-A		Bearing: 155°	Dip: 49°	Hole Started: 04/02/04 Page 1 Of 8		
JTH	OLOG	Y	Sample #		Vault Claim		
From (m)	To (m)	UNIT		SUB (JNITS AND DESCRIPTION		
0.0	3.0	Overburden	ОВ				
3.0	44.5	Andesite	Emvt	3.0-8.2 m:	core broken and partly few amygdules and random fracturing, minor fine Py.		
		1		11.3 m: 4c	m of silica cemented bx, minor py. Note pyrite is quite common near or along borders of		
				fractures or	silica veinlets		
				16.5-16.7 n	n: heavily hematized @ 16.0 m some sections look tuffaceous; all core altered and		
				hematized	to some degree		
				30.2-31.0 n	n: several light green talc seams to lumpy 4 cm sections generally at low angle to core		
				axis 10° +/-	TCA, slight hematite alterations		
				36.0 m: tal	cose fracture at 10° TCA		
				38.7 m: inc	reasing hematization, core all altered with fragmental and tuffaceous looking sections		
				44.5 m: fau	lt contact brecciated and gouge extensive hematization between 38.7 and 44.6 m		
44.5	45.6	Fault	Fit	44.6-45.6 n	n: fault brecciated and gougy material		
45.6	60.4	Andesite	Emvt	47.9 m: sm	all block with porphyritic texture, evident to 51.9 m, irregular hematitic altered patches		
				52.0 m: fau	It gouge and fine brecciation, 5cm thick @ 10° TCA		
				53.25-53.7	7 m: lightly silicified brecciated texture evident, one small chalcedony fragment with black		
				rimming fir	ne pyrite throughout section		
				58.0-60.0 n	n: scattered calcite fragments, lumps and thin veins @58.4 m increasing lightly, altered		
				to soft gree	nish/grey rock, fine disseminating pyrite		
				58.4 m: Sa	mpled and assayed interval starts		
60.4	60.5	Fault	Fit	60.45 m: fa	ult contact, 15cm bx and gouge, few chalcedony fragments, movement on fault later		
				than last sil	icification		
60.5	70.9	Slicified Zone	Qbx	dark green	stone, bx completely silicified abundant blue opalescent silica in small ring patches		
				abundant v	ery fine colloform textures in some fragments. Note 62.9-63.1 m: this piece of core does		
				not belong	in this section, probably from the section before this silica zone		
				do not sam	ole. abundant and fine dark sulphides? And very fine xlline py in colloform possibly		
				marcasite, a	bundant light yellowish alteration mineral in the colloform and randomly scattered,		
				some sectio	ns of complete silicification with ghosty fragment outlines		
				62.6 m: late	siliceous veining @ 30° TCA, also at 61.45 m some vein @ 61.60 m appears to be a		
				brecciated p	viece. This late stage veining does not have pyrite or other sulphides		
70.9	71.2	Fault	Fit	70.9-71.2 m: fault bx of silicified rock			
71.2	73.0	Andesite	Emvt	71.2-75.0 m	broken faulted silicified, fine stone bx has seams and apple green alterations, mineral probably talc		

Į

I

[

ĺ

т Б —

Hole V-	-04-01-A	Bearing: 155°		Hole Started: 04/02/04 Page 2 Of 8						
LITH	OLOGY	/		Vault Claim						
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION						
73.0	74.1	Fault	Fit	73.0-73.6 m: fault gouge, light green grey						
74.1	189.0	Andesite	Emvt	73.6-74.1 m: fault bx and grey gouge						
				1 174.4 m: Sampied and assayed interval ends						
				74.5 A 1-2 cm thick talcose band with little pyrite @15° TCA, @72.35 m: small cluster of reddish metallic						
				mineral, very fine grained, Rod Lube						
				brecciated and highly altered, few black silica vienlets						
				78.3 m: becoming less altered some ghosty phenocrysts, few talcose sections						
		* <u>************************************</u>		82.2 m: silica-calcite vein 1cm @ 50° TCA, all core fairly competent 74.5 m down						
				83.5 m: increasing hematization						
				84.0-90.5 m: (extensive) intensive hematization, ghosty porphyroblasts						
				90.5-92.0 m: altered to light greenish rock, some calcite						
		Acid Test		109.0-110.0 m: broken core, @109.2 m: 3 cm silicification with pyrite @ 60° TCA						
		Dip @106.6 - 49°		122.3 m: a 3cm silicified band with fine disseminated pyrite @ 60° TCA (126.3 m is end of box)						
			128.0 m: fractured at 45° TCA, start more intense alteration, a 0.5 cm dark silica vein @ 10° TCA							
				129.0 m: fault gouge, fine bx fragments in fine green and grey (medium) gouge, to 129.77 m siliceous calcite						
				at 10° TCA on contact with more competent rock, contact is siliceous for about 4cm						
				133.6-134.7 m: intensive hematitic alteration decreasing down hole towards 139.1 m						
				141-145 m: few thin quartz-calcite veinlets						
				145.4 m: beginning of intense hematization to 148.4 m						
	· · · · · · · · · · · · · · · · · · ·		155.6 m: Sampled and assayed interval starts							
				155.6-156.0 m: two light grey siliceous bands 2-3 cm thick @ 45° TCA; very fine disseminated pyrite.						
				these are different from the random white quartz-calcite veinlets						
		<u></u>	1	156.4 m: Sampled and assayed interval ends						
			1	161.7-165.3 m: random hematization then light greenish altered core. Fine bx sealed by white quartz at low						
	 	······································	1	angle to core						
		· · · · · · · · · · · · · · · · · · ·	1	169.8-170.0 m: random quartz veinlets in fault bx, fine disseminated pyrite						
	├─── ├	·· ····· ···· ··· ··· ··· ··· ····	1	169.0-182 m: lightly hematized, all core has ghostly porphyroblasts						
189.0	190.0	Fault	Fit	189.0-190.0 m:fault bx and talcose gouge						
190.0	272.7	Andesite	Emvt	191.3 m: increasing light hematization to 195.2 m						
		/ 1140310		195.5 m: 2 cm thick gouge which extends to 195.7 m (late fault)						
			1	198.0-199.0 m: fracturing with ground up core and drill mud						
		·····	+	209.9 m: thin fractures @ 50° TCA						

i i

- . .

-

.

226.7 m: fault breecia and goage 228.0.235 0 m: a lot of broken core @ 230.7 m fault bx with thin(1 cm) alice-hematite vening, contact @ 10° TCA 28.0.235 0 m: a lot of broken core @ 230.7 m fault bx with thin(1 cm) alice-hematite vening, contact @ 10° TCA 28.0.235 0 m: light to dkk greenish section with tale and goage in steps at 10° TCA. 28.0.235 0 m: light to dkk greenish section with tale and calcite 28.0.235 0 m: light to dkk greenish section with tale and calcite 28.0.235 0 m: light to dkk greenish section with tale and calcite 28.0.235 0 m: light to dkk greenish section with tale and calcite 28.0.235 0 m: light to dkk greenish usually in a small amount of disseminated pyrite 27.1 2 F40 Fault Zone PH 272.727.40 m: broken core, goagy material, fault zone 27.0 Fault Zone FH 27.1 2 F7.40 Fault Zone FH 27.2 77.40 Fault Zone FH 27.7 3 FN 5 Fault contact at 10° TCA 270 Fault contact at 10° TCA 28.0 Silicified Fault FH 278 0 Fault contact at 10° TCA 28.0 Silicified Fault FH 278 0 Fault contact at 10° TCA, broken in part slight pinkish cast altered hemattic rock 29.7 Lahar Emcg 283 0 - 285 0 m: fault creak zone disclined 10° TCA, broken in part slight	e V-	04-01-A	Bearing: 155°		Dip: 49°	Hole Started: 04/02/04 Page 3 Of 8			
Lin Link 226.7 m: fault brocks and gouge 2 228.0-235.0 m: a lot of broken core @ 230.7 m fault be with thin(1em) alies-bernatite veining, contact @ 10° TCA 2 2 228.0-235.0 m: a lot of broken core @ 230.7 m fault be with thin(1em) alies-bernatite veining, contact @ 10° TCA 2 2 2 2 2 0.7 m: balt to dark greenish section with tale and gouge in steps at 10° TCA 2 2 2 2 2 0.7 m: balt to dark greenish section with tale and gouge in steps at 10° TCA 2 4 2 2 2 0.0 m: obuident anygoluer filled with alice and colorie 2 4 2 2 0.0 m: obuident anygoluer filled with alice and colorie 2 7 2 100 more yithic bernatic 2 2 0 Acid Test 2 0.0 more yithic bernatic 2 7 2 4 2 0.0 more yithic bernatic 2 7 2 4 2 100 more yithic bernatic 100 more yithic bernatic 2 7 2 7 2 100 more yithic bernatic 100 more yithic bernatic 2 7 10 more stapelion	ITHO	DLOG	Y			Vault Claim			
228.0-235.0 m: a lot of boken core @ 230.7 m fault bo with thin(1em) silica-hematile veining, contact @ 10° TCA 228.0-239.0 m: light to dark greenish section with talc and goage in steps at 10° TCA 246.0-248.0 m: shundant amygdules filled with silica and calcite 233.4 m: shuttered core 230.0 Dip @ 264.3 - 46° 268.0-271.0 m: very little hematite 0.00 @ 264.3 - 46° 274.0 Fault Zone Pit 272.7-274.0 Image: Pit Interesting Pit Interesti	From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION				
core is hematitic 238.0-2390 m: light to dark greensh section with iale and gouge in steps at 10° TCA 246.8 m: 3 cm of quartz-calcite band @ 10° TCA 246.8 m: 3 cm of quartz-calcite band @ 10° TCA 246.9 m: 3 cm of quartz-calcite band @ 10° TCA 246.9 m: 3 cm of quartz-calcite band @ 10° TCA 246.9 m: 3 cm of quartz-calcite band @ 10° TCA 250.0 2210 m: wry little bematite Dip @ 264.3 - 46° 257.7 274.0 Fault Zone Fit 272.7 274.0 m: Sampled and saxyed interval starts 278.0 Andesite 278.0 Andesite 278.0 Silicified Fault 278.0 Fit 278.0 Silicified lise to the chalce doory fine disseminated pyrite, slight pinktsh cast altered hematitic rock 279.9 m: increasing hematization 279.5 -288.0 m fault rank zone contact (0 10° TCA, torken in part silicified, dark brownish rock and mixed 30 cm section of quartz-calcite a torts with black slicified bic, to rot approximately 281.0 291.7 Lahar Emcg 283.0 m beginning abarystone fragmented in black file grain material (mud) silicens, some fragments not slicified since multered porphyritic andesite 292.1 m: Sampled and assayed interval s					226.7 m: fa	ult breccia and gouge			
238.0-239.0 m: light to dark greenish section with tale and gouge in steps at 10° TCA. 246.8 m.3 cm of quartz-salcite band @ 10° TCA. 246.8 m.3 cm of quartz-salcite band @ 10° TCA. 246.0-280.0 m: abundent anygdules filled with silica and calcite 233.4 m: abutered core 234.4 m: abutered core 277.0 Dip @ 264.3 - 46* 288.0 Acid Test 289.0 Andesite 277.0 Fault Zone FH 277.0 To were in light greenish saveling is a small amount of disseminated pryrise 278.0 Andesite 277.0 To m Sampled and asayed interval starts 278.0 Z83.0 Silicified Fault FH 278.0 Fault context at 10° TCA 278.0 Lance FH 278.0 Fault context at 10° TCA 278.0 Lance FH 278.0 Fault context at 10° TCA 278.0 Lance FH 278.0 Fault context at 10° TCA 278.0 Lance FH 278.0 Fault context at 10° TCA 278.0 Lance FH 278.0 Fault context at 10° TCA, broken in part silicified, dark brownish rock and mixed 20 cm 278.0 Lance 283.0 m: fault context and context @ 10° TCA, broken in part silicified, dark brownish rock and mixed 20 cm 283.0 291.7 Lanker Earce 283.0 m: brain subarton fagmented in black fine grain material (mad) silicous, some fingments not 10 b					228.0-235.0	m: a lot of broken core @ 230.7 m fault bx with thin(1cm) silica-hematite veining; contact @ 10° TCA			
246 8 m 3 cm of quartz-salcite band @ 10° TCA 246 8 m 3 cm of quartz-salcite band @ 10° TCA 246 8 m 3 cm of quartz-salcite band @ 10° TCA 253 4 m shattered core 274 0 Fault Zone 274 0 Fault Zone 274 0 278 0 Andesite 277 0 Beginning light greenish alteration 278.0 278.0 283.0 Silicified Fault PH 278.0 Fault contact at 10° TCA 278.0 Fault contact at 10° TCA 278.0 Fault contact at 10° TCA 278.0 Silicified Fault PH 278.0 Silicified silica tick (to chalacdory) fine disseminated pyrite, slight pinkish cast altered hematitic rock 278.0 Silicified altica to (to chalacdory) fine disseminated pyrite, slight pinkish cast altered hematitic rock 278.0 Silicified altica to (to chalacdory) fine disseminated pyrite, slight pinkish cast altered hematitic rock 278.0 Silicified nucl tow Pince					core is hem	atitic			
246.0-248.0 m. abundant anygelules filled with silica and calcite 253.4 m. shattered core 253.4 m. shattered core 250.0-271.0 m. very little hematite 272.7 274.0 Fault Zone FR 277.0 Fault Zone 278.0 Andesite 277.0 Fault Zone 278.0 Andesite 278.0 Andesite 278.0 Silicified Fault 78 T27.0 Results Cone 278.0 Silicified Fault 78 T27.0 Results Cone ore: gouge material, fault zone 278.0 Silicified intex to the Cone ore: gouge material, fault zone 278.0 Silicified intex to the Cone ore: gouge material, fault zone 278.0 Silicified intex to the Cone ore: gouge material, fault zone 278.0 Silicified intex to the Cone ore: gouge material starts 278.0 Silicified intex to the Cone ore: gouge material starts 278.0 Silicified intex to the Cone ore: fault starts 278.0 Silicified intex to the Cone ore: fault starts 278.0 Silicified intex to the Cone ore: fault starts 282.0 Silicified contat at 10° TCA, brokm in part silicified, dark known					238.0-239.0	m: light to dark greenish section with talc and gouge in steps at 10° TCA			
253.4 m: shatered core 261.4 m: small shater zone; where core is light greenish usually is a small amount of disseminated pyrite 272.7 274.0 Fault Zone Fit 272.7.27.0 mini shater zone; where core is light greenish usually is a small amount of disseminated pyrite 272.7 274.0 Fault Zone Fit 272.7.27.0 mini shater zone; where core is light greenish usually is a small amount of disseminated pyrite 272.7 274.0 Fault Zone Fit 272.7.27.0 mini shater zone; where core is light greenish lateration 274.0 278.0 Andesite Errort 277.0 mini shater zone; where core is light greenish lateration 278.0 283.0 Silicified Fault Fit 278.0 Fit 278.0 hateration 278.0 283.0 Silicified Sauth Fit 278.0 Fit 276.0 hateration 279.9 minereasing hematization 279.5 279.9 minereasing hematization 270.0 sauth cruck and mixed 30 cm 283.0 291.7 Lahar Emrog 283.0 mitered partyritic andesite 281.7 Sauther Emrog 283.0.295.7 mitered material light grey					246.8 m: 3	cm of quartz-calcite band @ 10° TCA			
Acid Test 250-271.0 m. very little hematite Dip @ 264.3 - 46* 268.1 m. small shater zone; where core is light greenish usually is a small amount of disseminated pyrite 272.7 274.0 Fault Zone Fit 277.7240 m. broken core; gougy material, fault zone 274.0 278.0 Andesite Emvt 277.0 Beginning light greenish alteration 278.0 278.0 Silicified Fault Fit 277.717 m. Smappled and assayd interval starts 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10* TCA 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10* TCA 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10* TCA 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10* TCA 278.0 283.0 Silicified som in part silicified, dark brownish rock and mixed 30 em isseeminated parts on figurents at altered hematilie rock 279.5 -288.0 m. inall enual rout zone contact @ 10* TCA, broken in part silicified, one wantered aperts at the silicified back, silicified back, all contact at 10 empty fit andesite 283.0 291.7 Lahar Emcg 283.0 m. beginning sharpstone figurented in black fails astrings, lower contact is irregular twick antered material light gr				1	246.0-248.0	m: abundant amygdules filled with silica and calcite			
Dip @ 264.3 - 46' 268 1 m. small shatter zone, where core is light greenish usually is a small amount of disseminated pryrite 227.7 274.0 Fault Zone Fit 272.7.274.0 m. broken core, gougy material, fault zone 227.0 278.0 Andesite Emvt 277.0 Beginning light greenish alteration 278.0 283.0 Silicified Fault Fit 278.0 Fault confact at 10° TCA 278.0 283.0 Silicified Fault Fit 278.0 Fault confact at 10° TCA 278.0 283.0 Silicified Fault Fit 278.0 Fault confact at 10° TCA 278.0 Internation 279.9 m. increasing hematization 279.9 m. increasing hematization 283.0 291.7 Lahar Emcg 283.0 m. leginning sharpstone fingmented in black file fault must allow the contact (@ 10° TCA, broken in part silicified, some infagments not 211.7 293.7 Gouge Fit broken altered porphyritic andesite 229.7 Gouge Fit broken altered material light gree 229.7 Gouge Fit broken altered material light gree 229.7 Gouge Fit broken altered material light gree 229.7 Gouge Fit br					253.4 m: sh	attered core			
272.7 274.0 Fault Zone Fit 227.7.24.0 m broken core, gougy material, fault zone 274.0 278.0 Andesite Emvt 277.0 Beginning light greenish alteration 278.0 283.0 Silicified Fault Fit 278.0 broken core, gougy material, fault zone 278.0 283.0 Silicified Fault Fit 278.0 broken core, gougy material, fault zone 278.0 283.0 Silicified Fault Fit 278.0 broken core, gougy material, fault zone 278.0 283.0 Silicified Fault Fit 278.0 broken core, gougy material, fault zone 279.0 micreasing hematization 279.9 m: increasing hematization 279.9 m: increasing hematization 283.0 291.7 Lahar Emcg 283.0 m: beginning sharptone fragmented in black fine grain material (mud) siliceous, some fragments not 10110ffcd, some unaltered porphyritic andesite 283.7 Gouge Fit 291.7 Lahar Emcg 293.0 cost.57.m: light green altered porphyritic andesite 292.7 293.7 Gouge Fit roken altered material light grey 293.7 Andesite block? Emcg 293.0-cost.57.m: light green altered porphyritic andesite			Acid Test		250.0-271.0	m: very little hematite			
2740 278.0 Andesite Emvt 277.0 Beginning light greenish alteration 274.0 278.0 Andesite 277.0 m: Sampled and assayed interval starts 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10° TCA 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10° TCA 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10° TCA, broken in part silicified, dark brownish rock and mixed 30 em 279.5 288.0 m: fault crush zone contact @ 10° TCA, broken in part silicified, dark brownish rock and mixed 30 em section of quartz-calcite at contact with black silicified bx, 10 em of gouge @ 10° TCA approximately 283.0 291.7 Lahar Emcg 283.0 m: beginning sharptone fragmented in black fine grain material (mud) silicous, some fragments not 281.7 Sampled and assayed interval ends 283.0 m: beginning sharptone fragmented in black fine grain material (mud) silicous, some fragments not 282.0 291.7 Lahar Emcg 283.0 m: beginning alarptone fragment in black silici fine during in material 291.7 Lahar Emcg 293.0 -295.7 m: light green altered porphyritic andesite 282.0 293.7 Andesite block? Emcg 293.0 -295.7 m: light g			Dip 🕲 264.3 - 46°		268.1 m: sn	nall shatter zone; where core is light greenish usually is a small amount of disseminated pyrite			
200 200 200 277.0 m: Sampled and assayed interval starts 278.0 283.0 Silicified Fault Fit 278.0 Fault contact at 10° TCA 278.0 283.0 Silicified Fault Fit 278.0 Silicified silica bx (bx chalcedony) fine disseminated pyrite, slight pinkish cast altered hematitic rock 279.0 279.5.288.0 m: fault crush zone contact @ 10° TCA, broken in part silicified, dark brownish rock and mixed 30 cm 283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not 283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented porphyritic andesite 283.0 291.7 Gouge Fit broken altered material light grey 281.0 283.7 Gouge Fit broken altered material light grey 292.7 293.7 Gouge Fit broken altered material light grey 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg 290.0-295.7 m: light green altered porphyritic andesite 298.0 303.4 Silicified mud flow Emcg 290.0-295.7 m: light green	272.7	274.0	Fault Zone	Fit	272.7-274.0	m: broken core, gougy material, fault zone			
283.0 Silicified Fault Fit 278.0 Fault contact at 10° TCA 278.0 283.0 Silicified Fault 278.0 Silicified silica tx (bx chalcedony) fine disseminated pyrite, slight pinkish cast altered hematitic rock 279.0 279.0 Silicified silica tx (bx chalcedony) fine disseminated pyrite, slight pinkish cast altered hematitic rock 279.5.288.0 m: fault crush zone contact @ 10° TCA, broken in part silicified, dark brownish rock and mixed 30 cm 283.0 291.7 Lahar Emcg 283.0 291.7 Lahar Emcg 283.0 291.7 Lahar Emcg 283.7 Gouge Fit broken altered norphyritic andesite 291.7 293.7 Gouge Fit broken altered material light grey 291.7 293.7 Gouge Fit broken altered material light grey 291.7 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 292.0 Lahar Emcg 293.0-295.7 m: light green altered porphyritic andesite 292.0 Lahar Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.0 293.7 Andesite block? Emcg <	274.0	278.0	Andesite	Emvt	277.0 Begir	ning light greenish alteration			
2000 Onlined of and Th 278.0 Silicified silica bx (bx chalcedony) fine disseminated pyrite, slight pinkish east altered hematitic rock 279.9 m: increasing hematization 279.9 5-288.0 m: fault crush zone contact @ 10° TCA, broken in part silicified, dark brownish rock and mixed 30 cm 283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not 281.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not 291.7 Sange Fit broken altered material light grey 292.0 293.7 Gouge Fit broken altered material light grey 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.7 299.0 Lahar Emcg 300.6 m: 10-15 cm of grey					277.0 m: S	ampled and assayed interval starts			
279.9 m: increasing hematization 279.5-288.0 m: fault crush zone contact @ 10° TCA, broken in part silicified, dark brownish rock and mixed 30 cm 283.0 291.7 Lahar Emcg 283.6.286.4 m: partly altered porphyritic andesite 283.7 Gouge Pitt broken altered material light grey 293.7 Gouge 293.7 Andesite block? 293.7 Emcg 293.7 Andesite block? 293.7 Emcg 293.7 Norme altered material light grey 293.7 293.0 293.7 Emcg 293.8 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg 293.8 293.0-295.7 m: light green altered porphyritic in material 298.8 299.0 m: Sampled and assayed interval starts 299.0 Lahar Emcg 298.8 299.0 m: Sampled and assayed interval starts 299.0 Silicified mud flow Emcg 299.0 Silicified mud flow Emcg 303.4 Silicified mud flow Emcg	278.0	283.0	Silicified Fault	Fit	278.0 Fault	contact at 10° TCA			
Image: Section of Quartz-calcite at contact @ 10° TCA, broken in part silicified, dark brownish rock and mixed 30 cm Section of Quartz-calcite at contact with black silicified bx, 10 cm of gouge @ 10° TCA approximately 283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) silicoous, some fragments not 283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) silicoous, some fragments not 291.7 293.7 Gouge Fit broken altered porphyritic andesite 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg 100 start is 45° TCA 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 Silicified mud flow Emcg 300.6 m: 10-15 cm of grey chalcedony veintes with black 2-3 mm borders (pyrite and very fine black material) 303.4 304.0 Chalcedony					278.0 Silici	fied silica bx (bx chalcedony) fine disseminated pyrite, slight pinkish cast altered hematitic rock			
section of quartz-calcite at contact with black silicified bx, 10 cm of gouge @ 10° TCA approximately 283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not 283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not 291.7 293.7 Gouge Fit broken altered porphyritic andesite, upper area has few black silica strings, lower contact is irregular 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.0 293.7 Andesite block? Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.0 293.7 299.0 Lahar Emcg (iiiified) contact is 45° TCA 299.0 303.4 Silicified mud flow Emcg (iiiiified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 Silicified mud flow Emcg 300.6 m: 10-15 cm of grey chalcedony, it appears to be a large fragment 303.4 304.0 Chalcedony Vein QV 303.4-3.0 m: grey chalc					279.9 m: in	creasing hematization			
283.0 291.7 Lahar Emcg 283.0 m: beginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not silicified, some unaltered porphyritic andesite 283.0 291.7 293.7 Gouge Fit broken altered material light grey 291.7 293.7 Gouge Fit broken altered material light grey 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg 293.8-299.0 m:very fine mud @ 85° TCA 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg 300.6 m: 10-15 cm of grey chalcedony veinlets with black 2-3 mm borders (pyrite and very fine black material) 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony veinlets with black border (silicified) 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 304.0 309.4 Silicified mud flow					279.5-288.0	m: fault crush zone contact @ 10° TCA, broken in part silicified, dark brownish rock and mixed 30 cm			
2910 Data Silicified, some unaltered porphyritic andesite 2917 293.7 Gouge Fit broken altered material light grey 291.7 293.7 Gouge Fit broken altered material light grey 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 Silicified mud flow Emcg (solicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 Solicified mud flow Emcg (solicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 Solicified mud flow Emcg (solicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 304.0 Chalcedony Vein QV 303.4 m: tor 1.3 cm thick chalcedony veinlets with black 2.3 mm borders (pyrite and very f					section of q	uartz-calcite at contact with black silicified bx, 10 cm of gouge @ 10° TCA approximately			
291.7 293.7 Gouge Fit Proken altered material light grey 291.7 293.7 Gouge Fit Proken altered material light grey 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.0 303.4 Silicified mud flow Emcg [silicified] contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg [silicified] contact is 45° TCA, 2 cm of fine layered gouge 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: rey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 304.1 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.1 304.2 Silicified mud flow	283.0	291.7	Lahar	Emcg	283.0 m: be	ginning sharpstone fragmented in black fine grain material (mud) siliceous, some fragments not			
291.7 293.7 Gouge Fit broken altered material light grey 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony veinlets with black 2.3 mm borders (pyrite and very fine black material) 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-caleite					silicified, so	ome unaltered porphyritic andesite			
200.1 200.1 <td< td=""><td></td><td></td><td></td><td></td><td>285.6-286.4</td><td>m: partly altered porphyritic andesite, upper area has few black silica strings, lower contact is irregular</td></td<>					285.6-286.4	m: partly altered porphyritic andesite, upper area has few black silica strings, lower contact is irregular			
293.0 293.7 Andesite block? Emcg 293.0-295.7 m: light green altered porphyritic andesite 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 298.8-299.0 m.very fine mud @ 85° TCA 299.0 299.0 303.4 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 Sold.0 mode fragmented 300.6 m: 10-15 cm of grey chalcedony, it appears to be a large fragment 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 301.3 313.0 Fragmental Silicified Emcg mud to fine particulate	291.7	293.7	Gouge	Fit	broken alter	ed material light grey			
Correction Correction Correction Correction Correction 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 30.6 m: 10-15 cm of grey chalcedony, it appears to be a large fragment 303.0 m: two 1-3 cm thick chalcedony veinlets with black 2-3 mm borders (pyrite and very fine black material) 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 301.3 313.0 Fr					292.0m: Sa	mpled and assayed interval ends			
293.7 299.0 Lahar Emcg mud supported fine sharpstone fragments, fine pyrite in material 293.7 299.0 Lahar Emcg 298.8-299.0 m.very fine mud @ 85° TCA 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 209.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: two 1-3 cm thick chalcedony veinlets with black 2-3 mm borders (pyrite and very fine black material) 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 311.3 313.0 Fragmental Silicif	293.0	293.7	Andesite block?	Emcg	293.0-295.7	m: light green altered porphyritic andesite			
298.8-299.0 m:very fine mud @ 85° TCA 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 209.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge 303.4 breccia fragmented 300.6 m: 10-15 cm of grey chalcedony, it appears to be a large fragment 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 311.3 313.0 Fragmental Silicified Emcg mud to fine particulate supported, mixed lithologies	293.7	299.0	Lahar		mud suppor	ted fine sharpstone fragments, fine pyrite in material			
299.0 303.4 Silicified mud flow Emcg (silicified) contact is 45° TCA, 2 cm of fine layered gouge breccia fragmented 300.6 m: 10-15 cm of grey chalcedony, it appears to be a large fragment 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 301.3 313.0 Fragmental Silicified Emcg mud to fine particulate supported, mixed lithologies			······································		298.8-299.0	m:very fine mud @ 85° TCA			
Sector Sincineer meet need need need need need need need n					299.0 m: S	ampled and assayed interval starts			
breccia fragmented 300.6 m: 10-15 cm of grey chalcedony, it appears to be a large fragment 303.0 m: two 1-3 cm thick chalcedony veinlets with black 2-3 mm borders (pyrite and very fine black material) 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 311.3 313.0	299.0	303.4	Silicified mud flow	Emca	(silicified) c	contact is 45° TCA, 2 cm of fine layered gouge			
303.0 m: two 1-3 cm thick chalcedony veinlets with black 2-3 mm borders (pyrite and very fine black material) 303.4 304.0 Chalcedony Vein QV 303.4-304.0 m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains 304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 311.3 313.0 Fragmental Silicified Emcg mud to fine particulate supported, mixed lithologies					300.6 m : 10	-15 cm of grey chalcedony, it appears to be a large fragment			
304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 311.3 313.0 Fragmental Silicified Emcg mud to fine particulate supported, mixed lithologies					303.0 m: tw	o 1-3 cm thick chalcedony veinlets with black 2-3 mm borders (pyrite and very fine black material)			
304.0 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 309.4 Silicified mud flow Emcg quartz-calcite veinlet with colloform and irregular black border (silicified) 309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 311.3 313.0 Fragmental Silicified Emcg mud to fine particulate supported, mixed lithologies	303.4	304.0	Chalcedony Vein	ον	303.4-304.0	m: grey chalcedony vein, few floating fragment contacts both sides at 10° TCA, this contains			
State Construct integration Construct integration State State State									
309.4 311.3 Andesite block? Emcg (large block or flow?) both contacts approximately 45° TCA. altered 311.3 313.0 Fragmental Silicified Emcg mud to fine particulate supported, mixed lithologies		000.4			<u>.</u>				
Bit is a state of the state	309 ∡	311.3	Andesite block?						
			·····						
311.4 m: Sampled and assayed interval starts	<u>,</u>	515.0	raymonal oncoded						

Ĺ

(m) Hrom (m) 313.0	E COGY	UNIT Fragmental not Silicified Fragmental Silicified	Emcg	Vault Claim SUB UNITS AND DESCRIPTION 313.6-313.8 m: a block of purple andesite, then mixed abundant coaly flakes, few thin chalcedony veinlets 314.7 m: Sampled and assayed interval ends 316.2 m: two chalcedony veinlets at 45° TCA 318.0 m: Sampled and assayed interval starts
813.0	е 318.0 I	Fragmental not Silicified	Emcg Emcg	313.6-313.8 m: a block of purple andesite, then mixed abundant coaly flakes, few thin chalcedony veinlets 314.7 m: Sampled and assayed interval ends 316.2 m: two chalcedony veinlets at 45° TCA
313.0			Emcg	314.7 m: Sampled and assayed interval ends 316.2 m: two chalcedony veinlets at 45° TCA
318.0	343.3	Fragmental Silicified	Emcg	316.2 m: two chalcedony veinlets at 45° TCA
318.0	343.3	Fragmental Silicified		
				318.0 m: Sampled and assayed interval starts
				319.4-320.0 m: fining upward sections of fragments, only vague banding (tops uphole)
				[320.0 m: Sampled and assayed interval ends
				320.0-320.2 m: very fine siliceous and laminated black-tan mudstone, appears to flow around fragments
				1321.0 m: Sampled and assayed interval starts
				322.3 m: 2 cm quartz veinlet at 45° TCA
				327.5-327.9 m: few 1-2 cm chalcedony veinlets
				323.7 m: the fine breccia appears to be injected into altered andesite on very sharp irregular contacts,
				mud matrix is always siliceous but the fragments or large blocks are not
				327.0-327.3 m: block of light greenish andesite
				327.4 m: 5 mm chalcedony vein at 30° TCA
				331.0 m: a 2 mm quartz veinlet at 45° TCA
				330.1-330.2 m: a long diagonal streak of very fine pyrite with patches of pyrite at the upper (uphole) contact,
				trend is wavy not planar 10° TCA
				331.3 m: 1 cm quartz vein, very little colloform
				331.5 m: 5 cm quartz-chalcedony vein, light greenish with black borders; pyrite, hematite, irregular in center of vein
				335.0 m: 4 cm wide light greenish chalcedony vien, few black flecks and thin layers on contact
				336.2-336.3 m: two chalcedony veinlets approximately 1 cm thick @ 40° TCA
				Note: the matrix material has a slight reddish color from 328.0 m on down the hole
				336.3 m: an irregular patchy chalcedony
				337.4-340.0 m: mostly large pieces of partly altered porphyritic andesite, minor siliceous mud-chip in breccia
				342.0 m: 2 cm thick vein of chalcedony @ 10° TCA
				342.8-343.1 m: three chalcedony stringers 1-2 cm thick @ 45° TCA
343.3	344.2	Chalcedony Veining		343.3-344.2 m: abundant chalcedonic colloform veining. Broken pieces of colloform chalcedony in silica mudchip breccia
344.2	345.0	Fragmental silicified		344.2 m: fault gouge 3-4 cm thick
				344.3-344.7 m: 2 chalcedony veins 1-2cm thick @ 45° and 10° TCA
345.0	345.1	Chalcedony Vein		345.0-345.1 m: chalcedony vein, white with black colloform borders
345.1	348.2	Fragmental silicified	Lineg	346.6-349.4 m: large block partly altered andesite
348.2	348.5	Chalcedony Vein	<u> </u>	348.2-348.5 m: chalcedony vein, white/light grey @ 15° TCA
348.5	349.1	Fragmental silicified	Emcg	348.9-349.0 m: chalcedony irregular bleb 349.1-349.2 m: chalcedony vein, thin blackish contacts @ 45° TCA

Iole V-	-04-01-A	Bearing: 155°		Dip: 49°	Hole Started: 04/02/04 Page 5 Of 8			
ITH	OLOG	Y			Vault Claim			
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION				
349.2	364.8	Fragmental silicified	Emcg	350.4 m: a :	2cm chalcedony vein, colloform contacts @ 30° TCA			
				351.0-351.9	9 m: 5 chalcedony veins up to 3 cm thick, the veins are offset by late cross fracturing			
				NOTE: the	core is now light tan colored and has faint lineation, looks like alteration of the phreatic breccia			
				but possibly	y is the material referred to as felsite, probably is a degree of alteration			
				356.5-357.1	m: a very silicified chalcedony bx and colloform veining of previous breccia grey to light brownish			
				357.5 m: S	ampled and assayed interval ends			
				357.5-357.7	m: similar material in vein @ 45° TCA or irregular patch, appears to brecciated			
		Silicified Breccia 349.5		357.7-357.9	9 m: a thin 1-4 cm pyrite seam in part, offset by late cross fractures			
				358.0 m: S	ampled and assayed interval starts			
				358.6 m: a 2	2-3 cm thick chalcedony vein, brownish borders @ 45° TCA			
				358.7 m: in	regular thin bands and patches of very fine pyrite-marcasite			
				359.4-359.6	5 m: pyrite-marcasite in irregular patches, appears to be open space filling in fractured silicified altered core			
				359.7 m: 2-	3 cm grey chalcedony (fractured) in mud chip breccia			
				360.4-360.6	m: irregular patches, random orientation of marcasite up to 1 cm thick			
				361.0 m: a t	thin irregular colloform chalcedony veinlet			
				361.6 m: a 3	3 cm thick quartz-calcite vein @ 45° TCA, slight pinkish color			
				361.8 m: gr	ey chalcedony filled late fractures			
				362.6-362.8	m: a thin 1 cm irregular fracture with chalcedony marcasite and little hematite @ 10° TCA			
				364.7 m: 1.:	5 cm chalcedony vein @ 50° TCA			
364.8	365.4	Chalcedony Vein	QV	364.8 m: 20) cm chalcedony vein with contacts and colloform texture, light brownish color @ 45° TCA to 366.4 m			
365.4	367.3	Fragmental silicified		15% chalced	dony veins generally @ 45° TCA; few fine marcasite-pyrite patches to 367.0 m			
367.3	367.8	Chalcedony breccia	Qbx	367.3-367.8	m: 40% chalcedony infilling around fragments and or broken vein material			
67.8	374.5	Fragmental silicified		368.5 m: lig	ht grey/white chalcedony vein, core appears slightly hematitic			
				369.3 m: 2 t	thin chalcedony vein 0.5-1 cm thick @ 20° TCA			
				376.0-376.8	m: abundant black siliceous mud around fragments, few chalcedony veins			
				377.4 m: gre	ey chalcedony irregular patches			
74.5	379.4	Chałcedony Vein	QV	white to gre	y colloform in part, few fragments of andesite			
379.4	391.6	Siliceous muddy breccia		379.5-381.5	m: thin 1 cm irregular chalcedony vein approximately 10° TCA			
				382.1 m: pa	tches of chalcedony on side of core			
				383.3-385.0	m: relatively fresh andesite block, has chalcedony vein @ 384.0 @ 20° TCA			
					uddy breccia, light tan, fine grained at andesite contact			
				295.2 m. ah	alcedony healed brecciated breccia			

ole V-	04-01-A	Bearing: 155°		Dip: 49°	Hole Started: 04/02/04 Page 6 Of 8			
ITH	DLOG	Y			Vault Claim			
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION				
				Note: Upper	muddy breccia contact is irregular as if the marcasite-chalcedony is injected into the fractures			
				385.5-390.0	m: muddy breccia with a few blocks of andesite 20-30 cm; few random thin 1 cm chalcedony veins some			
				chalcedony of	occurs as fragments and others clearly cut. At 396.0 m andesite block with chalcedony vein appears			
				to be cut by	muddy breccia with some of the pieces of vein material as fragments in the muddy breccia			
				390.5-390.8	m: chalcedony veining 2-3 cm thick offset by late cross fractures			
391.6	392.0	Chalcedony Vein	QV	391.6-392.0	m: three chalcedony veins up to 7 cm thick @ 45° TCA, traces of pyrite			
392.0	393.9	Andesite block?	Emcg	a large block	? partly altered light green, little pyrite not silicified			
				397.7 m: cha	alcedony vein 2-3 cm thick brecciated on one side; andesite partly penetrated down one side with muddy bx			
				392.8 m: cor	ntact with muddy breccia @ 95° TCA, thin 5 mm chalcedony vein on contact small offesets by x-fracturing			
				393.0 m: irre	gular chalcedony along and around andesite block with muddy breccia on the offside			
393.9	407.6	Muddy Breccia	Emcg	siliceous mir	nor pyrite not disseminated			
				394.0-394.2	m: two chalcedony veins @ 45° TCA, 1 cm thick @ 394.0 m: a few tuffaceous looking frags			
				394.8-395.0	m: chalcedony vein; one 10 cm thick @ 45° TCA			
				395.7-395.9	m: few chalcedony veins; one 10cm thick			
				396.0 m: Sa	mpled and assayed interval ends			
				398.9-401.0	m: several chalcedony veins, some colloform in texture			
				398.7-399.9	m: 1-2 mm pyrite-filled fractures in an andesite block, fractures almost parallel to core			
				399.5 m: Sa	mpled and assayed interval starts			
				401.0 m: Sa	mpled and assayed interval ends			
				403.4 m: 6 c	m chalcedony vein contacts, brownish/green in color			
				403.4 m:Sa	mpled and assayed interval starts			
				403.6 m: Sa	mpled and assyayed interval ends			
				404.3 m: a fe	ew coaly fragments			
				405.3 m: Sa	mpled and assayed interval starts			
				406.34-406.5	m: chalcedony vein contacts @ 10° TCA; small 1 cm parallel vein			
				407.4 m: wh	ite colloform textured veinlets with black borders			
407.6	414.5	Tuffaceous mudstone	Emsl	light grey vei	ry fine-grained rock with few small clasts. Is this a degree of alteration or few fine-grained mud protolith?			
		siliceous		at the lower	contact with muddy breccia, a few fragments of this material are in the muddy dike, few ghosty outlines			
				407.8 m: pyr	ite-marcasite in fine fractures and irregular blocks @ 45° TCA; fractures also at 408.1 m			
				408.5 m: 2 cr	m chalcedony vein @ 90° TCA; @ 408.6 m: a 4cm chalcedony vein @ 45° TCA			
				412.0 m: fine	e pyrite-marcasite in fractures and small blebs			
				412.0-412.3	m: 10% pyrite-marcasite in fractures (hairline) little chacedony with the pyrite-marcasite			
				413.2 m: 2-4	cm wide section of core with pyrite-marcasite			
				413.4 m: blad	sk silica outlining chalcedony and pyrite-marcasite, a few andesite fragments showing up			
				413.7 m: a 5	cm chacedony vein @ 45° TCA			
414.5	418.7	Siliceous muddy breccia	Emcg	4150 m [·] 4 cr	n band of irregular chalcedony with irregular band of pyrite-marcasite on the contacts			

Hole V	-04-01-A	Bearing: 155°		Dip: 49°	Hole Started: 04/02/04 Page 7 Of 8
LITH	OLOG	Y			Vault Claim
From (m)	To (m)	UNIT	SYMBOL		SUB UNITS AND DESCRIPTION
			••••••••••••••••••••••••••••••••••••••	416.5 m: and	desite block with thin sliver of muddy breccia which is very silicified
				416.7 m: mu	idstone matrix becoming dark grey to black
				417.0 m: ine	egular pyrite-marcasite 15%. 417.4 m: patch of irregular pyrite-marcasite, mostly andesite fragments
418.7	420.7	Chalcedony Vein	QV	white to ligh	t grey, some fragments, very siliceous, leached fragments, in part colloform, but not well
420.7	425.3	Muddy Breccia	Emcg	developed d	ark grey in part to highly altered fine-grained material with a few small ghosty fragments
				421.0 m: pat	tchy pyrite-marcasite (10%). At 421.2 m: 2 cm grey chalcedony vein at 45° TCA
				422.5 m: a 2	-3 cm irregular band of fine pyrite with little hematite
				422.6 m: pyr	rite-marcasite in breccia. At this point one sees the light colored, fine-grained rock material
				filling the fa	ults with few fragments
				423.7 m: dar	k grey irregular chalcedony patch 6-7 cm wide
				424.4 m: thi	n 0.5 cm chalcedony vein
				425.0-425.3	m: very siliceous
				425.0-425.3	m: the very silicified muddy breccia contains fragments of fine fragmental black/white/green almost
				salt/pepper to	exture, previously referred to as volcanic conglomerate. Rip up clasts from underlying rock units
425.3	426.7	Fragmental fine Fragments	Emcg	2-3 mm size	black/white/green usually angular equidimensional, few large black silica, very fg.siliceous clasts
				426.4 m: inte	erbanded black silica rock with fine fragmental, looks like bedded contact about 50° TCA,
				but it is a lar	ge (5 cm) fragment
				426.6 m: fau	lt gouge
				426.7 m: fine	e fragment material squeezed around black silica fragments, very sharp, irregular around contacts
				426.9 m: 4 c	m chalcedony vein at 90° TCA
				427.0 m: few	v black silica whisps usually with pyrite-marcasite
426.7	429.5	Muddy Breccia Lahar	Emcg	mudstone ma	atrix with fine clasts surrounding or supporting large clasts, due to the alignment of
				black whispy	v layers (pyritic) still contains large clasts. There is some flowage of the lineation around
				some of the o	
				429.0 m: 4 cr	m chalcedony vein @ 50° TCA
429.5	431.6	Chalcedony Vein	QV	white/grey so	ome fragments (large) of fine brecciated fragmental light tan color in some sections
				431.6 m: Sa	mpled and assayed interval ends
431.6	434.1	Fragmental	Emcg	fine clasts in	fragments, few large black siliceous clasts some pyrite
434.1	434.3	Chalcedony Vein	QV	434.1-434.3 1	m: chalcedony vein, lower contact, very fine-grained black clasts with wispy veins of pyrite(dendritic)
434.3	435.3	Fragmental		fine clasts in	fragments, few large black siliceous clasts some pyrite
				434.6 m: Sa	mpled and assayed interval starts
435.3	442.5	Muddy Breccia	Emcg	Light tan clas	sts, very siliceous to 436.0 m
				436.3 m: Sa	mpled and assayed interval ends
				438.6 m: whi	ite-tan chalcedony vein @ 45° TCA
				439.70 m: S	ampled and assayed interval starts
				439.7-440.7 1	m: numerous chalcedony veins
				440.7 m: Sa	mpled and assayed interval ends
442.5	443.6	Mudstone/ash/tuff	Emsl	black fine lan	ninated, some bands with relatively fresh feldspar, very siliceous in part @ 45°TCA,
		1		some 4-5 cm	clasts of andesite, fine wispy to dendritic pyrite, one 2cm band of fine fragmental

.

Γ

Γ

F

[

Γ

-

Γ.

none v-		Dearing: 1559	1	Din: 400	Hale Stated: 04/02/04 Dave & Cf. 2		
		Bearing: 155°		Dip: 49°	Hole Started: 04/02/04 Page 8 Of 8		
LITHOLOGY					Vault Claim		
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION			
443.6	453.2	Muddy Breccia Lahar	Emcg	black very	siliceous fine matrix with fragments of black mudstone/ash/tuff, a lot of fine fragments, large		
				blocks of a	ndesite with sharp angular shapes, abundant sub-rounded fragments		
				450.2 m: ii	rregular filled brecciated veinlets @ 453.2 m, chalcedony filled breccia,		
				Note: mude	ly matrix always siliceous, fragments not		
				Note: cool,	wetting core turns to ice		
453.2	453.2	End of Hole	EOH	End Of Ho	e 453.2 metres		
				ļ			

the second se

-

-

Hole V-04-02 Bearing: 155°				Dip: 53°	Hole Started: Page 1 Of 7
LITH	OLOG	Y			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNI	TS AND DESCRIPTION
0.0	18.3	Overburden	ОВ	rubble-sand	
18.3	34.5	Muddy Breccia or Lahar	Emcg	high degree of alt	teration, core is soft to almost mushy in part. Appears to be mostly porphyritic andesite
				with some muddy	v breccia as thin seams and sections up to 20 cm long
				few random black	chalcedony sections and 1-2 cm veins
				23.0 m: mostly m	uddy breccia with few andesite clasts all intensely altered; random chalcedony veins @ 45° TCA
34.5	40.6	Fault	Fit	34.5 m: fault cont	tact @ 10° TCA. 30 cm of clay alteration of muddy breccia core at contact
				fine mud, gouge f	fault breccia, some pieces to 10-15 cm of silicified, with some chalcedonic colloform banding
				40.6 m: Sample	d and assayed interval starts
40.6	41.4	Siliceous Muddy Breccia	Emcg	fine stone, siliceo	ous, partly altered
				41.1 m: black den	ise siliceous mudstone, blebby marcasite
41.4	41.8	Fault	Fit	41.4-41.8 m: faul	t breccia and gougy material
41.8	42.5	Siliceous Muddy Breccia	Emcg	42.0 m: dark grey	thin stringers chalcedony around black mudstone fragments
				42.2-42.3 m: 10-1	5% dendritic marcasite
42.5	42.8	Fault	Fit	42.5-42.8 m: alter	red and gougy section, contact @ 45° TCA
42.8	67.6	Siliceous Muddy Breccia	Emcg	42.4 m: fine clast	s muddy breccia (injected into black siliceous mudstone), major marcasite in contacts
				with blocks	
				43.7-44.0 m: alter	red andesite block with seams of fine sulphides
				44.6-44.7 m: very	fine marcasite-pyrite in late thin seams and patches. Appears to be two stages: first marcasite,
				then later fine pyr	ite, all core extensively silicified (the muddy breccia is silicified but the clasts are not usually)
				48.4-48.6 m: a hig	thy altered fragment with light green (has ghosty fragmented outlines)
				similar block at 4	9.0-49.2 m; the light greenish color is probably due to maraposite
				49.3 m: a large cla	ast has lots of marcasite
				52.3 m: thin strea	ked out sulphide on bit cut
				66.6 m: Sampleo	and assayed interval ends
				67.2-67.4 m: brok	en core; large highly altered andesite clast
67.6	69.2	Mudstone	Emsi	black, very fine-	grained, very siliceous in part sulphidic with marcasite. Has a few sandstone clasts
69.2	71.5	Sandstone	Emsl	light grey fine- to	medium-grained contact @ 45° TCA
				69.2-69.5 m: very	silicified and fragmented; matrix is grey and appears to be same material
				at times, the bedd	ing is parallel to the core axis (0° TCA)
				70.7-71.0 m: blac	k siliceous sulphidic mudstone, contact with sandstone, irregular @10° TCA, looks like
				sandstone is fillin	g partly open fractures in the mudstone
71.5	75.4	Muddy Breccia	Emcg	grey to black in pa	art silicified, most fragments are sandstone, core is somewhat friable
				72.5-72.8 m: sand	stone clast?
75.4	75.6	Fault	Fit	breccia and gouge	, looks like sandstone

Hole V-04-02 Bearing: 155°				Dip: 53*	Hole Started: Page 2 Of 7		
LITHOLOGY					Vault Claim		
From (m)	From (m) To (m) To (m)		SYMBOL		SUB UNITS AND DESCRIPTION		
75.6	76.3	Sandstone	Emsl	grey mediu	m-grained, at low contact, few black mudstone fragments		
76.3	77.6	Mudstone	Emsl	black, very	fine grained, in part fractured		
77.6	80.7	Muddy Breccia	Emcg	black silice	ous matrix, small fragments		
				78.2-78.9 n	n: light green/grey altered volcanic rock? interbedded @ 90° TCA; both contacts not siliceous		
				79.0 m: cor	tact is light brown and very siliceous		
				79.6-79.8 n	n: similar as to 78.2 m		
80.7	82.0	Mudstone	Emsl	black very	fine grained, siliceous broken core		
				81.0-81.5 n	h: fractured with approximately 20% fine marcasite.		
82.0	92.0	Sandstone	Emsl		redium-grained fine wisps of marcasite		
			and FOT		n: conglomerates finestone few large clasts, contact @ 45° TCA		
					tact with finer material at 10° TCA		
				84.7-92.0 m	h: interbedded mixture of sandstone and finestone conglomerate, individual beds show graded bedding		
					rds; a few wispy marcasite layers; soft sediment deformation at contacts between fine and coarser		
					ediments (tops uphole)		
92.0	95.3	Mudatana Siliaasua Sulahidia	Emal		to black with the brownish not siliceous		
92.0	95.5	Mudstone Siliceous Sulphidic	Emsi		y fine marcasite section, few fragments, some opaline fragments, bedding-laminations @ 45° TCA		
05.0		Conditions Front	F 14	mashed san			
95.3	96.7	Sandstone Fault	Fit		cm of mud then altered rock (like at 78.2 m) At 96.7 m: contact @ 45° TCA		
					which were the grained, few sections with coarse (1-2 mm) opaline clasts, a fine conglomerate?,		
96.7	99.1	Mudstone Siliceous Sulphide	Emsi		ns of fine-grained laminated marcasite		
					ained very dense tan colored mudstone sections (ash)?		
99.1	106.0	Sandstone	Emsi				
					in size coarsening downward into finestone conglomerate (tops uphole)		
					w black clasts, very siliceous		
106.1	112.4	Mudstone	Emsl		ry, very fine-grained almost talcose alteration, very dense, few silty interlams 1-2 mm thick @ 30° TCA		
	-				s, rounded, elongated, 1x3 cm, bottom contact 5 cm of fine sandstone then 5 cm altered andesite clasts		
112.4	115.3	Muddy Breccia Siliceous	Emcg		d matrix, mixed fine fragments to large clasts of andesite		
	-				ampled and assayed interval starts		
113.0	113.3	Chalcedony Vein	QV		m: a chalcedony vein, fractured grey chalcedony, some muddy breccia with abundant marcasite-pyrite.		
					mpled and assayed interval ends		
113.3	115.3	Muddy Bfreccia Siiceous	Emcg	one clot 3x4	cm then tan colored muddy breccia, partly siliceous, few sedimentary fragments @ 114.2-114.5 m		
115.3	116.4	Mudstone Siliceous	Emsi	brownish bl	ack, few fragments muddy breccia at top contact; marcasite stringers		
				116.4 m: S	ampled and assayed interval starts		
116.4	117.6	Muddy Breccia Siliceous	Emcg	finestone, li	ght grey when dry, larger angular fragments to 3-4 cm or larger, minor black siliceous bands or seams		
117.6	117.9	Chalcedony Vein	QV	117.6-117.9	m: chacedony vein, light green colloform and fractured in part in center of vein,		
117.9	146.4	Muddy Breccia Siliceous	Erncg	abundant m	arcasite-pyrite in center portion of vein		
		.ogged By: A.B.Mawe			Date		

1

l

•

Hole V-04-02 Bearing: 155°				Dip: 53* Hole Started: Page 3 Of 7
JTH	DLOG	Y		Vault Claim
From (m)	To (m)	UNIT	SYMBOL	L SUB UNITS AND DESCRIPTION
117.9	146.4	Siliceous Muddy Breccia	Emcg	118.0 m: fossil forms (opalized cellular structure) in muddy breccia which is silicified to 128.0 m
		(continued)		118.0 m: Sampled and assayed interval ends
_				123.4 m: 4 cm wide chalcedony vein with marcasite-pyrite colloform borders fractured, brecciated and re-silicified
				119.0-122.0 m: matrix black siliceous sulphidic mudstone; in breccia; most fragments have altered contacts
				123.0 m: Sampled and assayed interval starts
				124.0 m: Sampled and assayed interval ends
				128.0-141.0 m: matrix is brownish with darker to black patchy silification; most large fragments are andesite
146.4	152.1	Muddy Breccia Lahar	Emcg	144.8 to 148.5 m: muddy breccia matrix, light reddish brown due to hematite; not siliceous
				151.8 m: Sampled and assayed interval starts
152.1	152.2	Chalcedony Vein	QV	152.1-151.2 m: black chalcedony vein with white borders
152.2	154.4	Muddy Breccia Lahar	Emcg	154.0-154.2 m: 2cm black chalcedony vein
154.4	154.5	Chalcedony Vein	QV	154.4 to 154.5 m. black chalcedony vein with black siliceous sulphide layers
154.5	159.4	Muddy Breccia Lahar	Emcg	156.0-161.1 m: random black siliceous veins (chalcedony); andesite breccia
				158.2 m: 3cm chalcedony vein with marcasite-pyrite @ 45° TCA
159.4	159.5	Chalcedony Breccia	Qbx	159.4-159.5 m: silicified chalcedony breccia
159.5	179.1	Muddy Breccia Lahar	Emcg	160.2-160.5 m: chalcedony (white) filled brecciated andesite on one side of core
				161.1-162.2 m: irregular chalcedony veining forming 60% of core
				167.5 m: Sampled and assayed interval ends
				171.0 m: Sampled and assyaed interval starts
				171.3 m: 4cm black chalcedony vein with marcasite blebs
				171.5 m: Sampled and assayed interval ends
179.1	179.2	Fault	Fit	179.1-179.2 m: fault gouge
179.2	203.8	Muddy Breccia Lahar	Emcg	182.4 m: 1-3mm pyrite-marcasite veinlet, minor grey chalcedony muddy breccia is part hematitic
				190.0-194.0 m: black siliceous sulphidic muddy breccia occurs around some of the fragments
				191.5 m: 2 cm chalcedony veinlet - actually a fragment in breccia
				194.4 m: black siliceous sulphidic mudstone; fragments becoming silicified
				202.8 m: Sampled and assayed interval starts
203.8	204.0	Chalcedony Vein	QV	203.8-204.0 m: chalcedony vein black contacts, skimming side of core 2º TCA, the muddy breccia
204.0	207.2	Muddy Breccia Lahar	Emcg	infilling becoming very siliceous with a few narrow chalcedony veinlets at 45-50° TCA
207.2	207.4	Chalcedony Vein	QV	207.2-207.4 m: chalcedony vein skimming along side of core at 0° TCA
207.4	208.0	Muddy Breccia Lahar	Emcg	
208.0	209.0	Chalcedony Vein	QV	208.0-209.0 m: chalcedony vein, contacts @ 10° TCA; vein is 4-5cm thick and wanders down the length,
209.0	217.0	Muddy Breccia Lahar	Emcg	grey with black colloform borders
				209.5 m: Sampled and assyed interval \ends
				212.0 m: 5cm fault gouge
217.0	218.0	Fault	Fit	brecciated broken gougy core of muddy breccia
218.0	231.6	Muddy Breccia Lahar	Emcg	tan to light grey, some black siliceous sulphidic muddy breccia, some clasts have stringy alteration rims
				disseminated pyrite in the muddy breccia phase; muddy breccia is very fine fragments in a grey/black
				siliceous sulphidic matrix
				220.0 m: thin fault gouge @10° to core

Hole V-04-02 Bearing: 155° JITHOLOGY				Dip: 53°	Hole Started: Page 4 Of 7			
					Vault Claim			
(III) III III III IIII IIII IIII IIIII IIIIII		SYMBOL	SUB UNITS AND DESCRIPTION					
218.0	231.6	Muddy Breccia Lahar	Emcg	221.0-222.0) m: broken core, some gouge, muddy breccia matrix, black siliceous, sulphidic with areas of			
		(continued)		fine crystal	line pyrite			
				223.0 m: se	ctions of core completely silicified			
				223.2 m: S	ampled and assayed interval starts			
				230.0 m: a	very fine (cherty) appearing matrix			
				231.0 m: cc	re is highly altered with narrow black chalcedony veinlets			
				231.5 m: br	ecciation and gouge			
231.6	233.1	Chalcedony Vein	QV	black to wh	ite, all core highly fractured, in part vuggy open spaces; lower contact @ 35°-45° TCA			
233.1	233.4	Volcanic Sandstone	Emsi	light grey, fine-grained to very fine-grained, coarse to fine down hole (rotated block?) or is it				
				a volcanic s	and with reverse graded bedding?			
233.4	233.5	Chalcedony Vein	QV	233.4-233.5	m: chalcedony vein @ 50° TCA			
233.5	233.7	Volcanic Sandstone	Emsl					
233.7	243.8	Muddy breccia Lahar	Emcg	light pinkis	h, completely silicified fragments, all intensely altered before silicification			
				235.0 m: da	rk grey mudstone to medium grey, medium sized clasts			
				236.0-238.5	m: start of very dense black silicified sulphidic mudstone, finely fractured fillings and cross-cutting			
				veinlets in l	arge highly altered andesite clasts			
				238.5 m: m	uddy breccia light greyish, medium sized clasts, some chalcedony clasts			
				240.1 m: ch	alcedony clasts 4x5 cm in size			
				242.3 m: sn	nall clasts altered to a clay substance			
243.8	244.1	Quartz Vein	QV	243.77-244.	1 m: white quartz vein with relict calcite vugs			
244.1	246.0	Muddy Breccia Lahar	Emcg	245.5 m: qu	artz-chalcedony veinlets with faint amethyst colorings			
246.0	247.0	Quartz-Chalcedony Breccia	Qbx	246.0-247.0	m: fragmented quartz-chalcedony vein material, broken core to box end			
247.0	254.4	Muddy Breccia Lahar		247.1 m: 5c	m clasts of fine laminated mud (ash, tuff)			
				248.4-251.5	m: matrix is black to dark grey			
				250.0 m: tw	o large clasts of chalcedony			
				251.1 m: ev	idence of brecciation of an earlier breccia phase			
				251.5 m: co	ntact with light colored muddy breccia @ 45° TCA			
				252.0 m: 3 d	rm band of dense black very fine grained mudstone normal 90° TCA			
				252.9 m: da	rk siliceous matrix, several large fragments chalcedony, core is completely silicified			
				253.6-253.8	m: 10-15% fine pyrite as clasts and discontinuous layers			
				254.1-254.2	m: 20% pyrite, a very fine-grained black mineral is often seen along the edges of the pyrite seams			
254.4	255.0	Chalcedony Vein	Qv	254.4-255.0	m: colloform chalcedony vein @ 10° TCA; some pyrite in fractures around breccia clasts			
255.0	256.4	Muddy Breccia Lahar	Emcg	255.0 m: a l	ight green clay mineral alteration on fracture			
				255 1 m ar	i irregular chalcedony vein around a clast within a black sliliceous mudstone			

Hole V-04-02 LITHOLOG		Bearing: 155°		Dip: 53°	Hole Started: Page 5 Of 7			
		Y			Vault Claim			
Line (III) (IIII) (III)			SYMBOL					
255.0	256.4	Muddy Breccia Lahar	Emcg	255.6 m: 4	5 cm patch of chalcedony white greenish to dark grey on other side of core			
		(continued)		256.1 m: si	liceous black veinlets 30° TCA			
256.4	256.6	Chalcedony Vein	QV	256.4 m: si	liceous black and white veinlets next to 10 cm chalcedony vein			
256.6	256.8	Muddy Breccia Lahar	Emcg	256.6 m: si	liceous b lack and white veinlets; the matrix between the fracture fillings is light brown			
256.8	257.3	Chalcedony Breccia	Qbx	256.8-257.3	m light violet chalcedony with abundant sharpstone fragments, looks like crackle breccia			
257.3	258.0	Muddy Breccia Lahar	Emcg					
258.0	258.2	Quartz-Chalcedony Vein	QV	258.0-258.2	m: quartz-chalcedony vein, 10 mm black border lower contact @ 30° TCA;			
258.2	260.8	Muddy Breccia Lahar	Emcg	few small clasts in muddy breccia				
				258.2 m : n	nuddy breccia with numerous quartz chalcedony veins @ 10° and 45° TCA,			
				258.4 m: 1	cm pyrite-rich breccia vein cuts across quartz-chalcedony veins			
				259.4 m: pa	tch irregular pyrite filling fractures			
				260.0 m: bl	ack siliceous mudstone			
				260.4 m: la	rge clast of quartz-chalcedony			
260.8	261.2	Quartz-Chalcedony Vein	QV	260.8-261.2	m: white to light grey colloform quartz-chalcedony vein approximately 20° TCA			
261.2	271.1	Muddy Lahar Breccia	Emcg	261.4-261.5	m: wavy banded (crenulated) sediment or ash band			
				261.6-261.9	m: quartz-chalcedony vein vuggy porosity 20° TCA, core is broken			
				263.5 m: 3	cm quartz-chalcedony vein, some hematite, lower contact with muddy breccia, has 30% pyrite for 10 cm			
				263.9-264.1	m: light grey, very fine dense mudstone matrix			
				264.1-265.8	m: finestone muddy breccia; silicified only a few thin black siliceous stringers, little pyrite			
				disseminate	d and in fragments, few large alterations and fragments not silicified			
				265.8-266.4	m: thin black sulphide veinlet @ 10° TCA			
				266.5 m: m	arcasite veinlet lumpy in thin vuggy quartz veinlet @ 90° TCA			
				268.0-269.3	m: abundant marcasite as blebby infillings around clasts, one thin late marcasite veinlet			
					m: broken core			
271.1	271.3	Chalcedony Veins	QV	271.1-271.3	m: grey chalcedony veining, some open lattice @ 30° TCA			
271.3	272.4	Muddy Lahar Breccia	Emcg	271.9 m: bl	ack chalcedony veining @ 80° TCA, hematitic alterations to 272.4 m			
272.4	272.9	Quartz-Chalcedony Veins			m: extensive quartz-chalcedony veins and large clasts, contact is @ 50° TCA. The veins are cut by			
272.9	275.1	Muddy Lahar Breccia	Emcg	thin black c	ross fractures			
					uddy breccia with various clasts, some are quartz-chalcedony and others are quartz-chalcedony			
			· · · · · · · · · · · · · · · · · · ·		open bladed lattices			
					m: quartz-chalcedony, large clast altered tuff			
					n low angle chalcedony vein			
275.1	275.3	Quartz-Chalcedony Vein	QV	275.1 m: thi	in 1-3 mm marcasite veinlet on the upper contact of a quartz-chalcedony vein 20 cm thick			

Hole V-04-02 Bearing: 155°				Dip: 53°	Hole Started: Page 6 Of 7
LITHOLOGY					Vault Claim
From (m) To (m) Annu		SYMBOL	SUB UNITS AND DESCRIPTION		
275.7	276.2	Quartz-chalcedony Vein	QV	275.7-276.2	2 m: quartz chalcedony vein with dark grey boundaries with marcasite and a center section of white
276.2	278.4	Muddy Breccia Lahar	Emcg	276.9 m: ve	ry siliceous grey colored core, fine tiny vugs
				277.2 m: 2	mm marcasite band, vein @ 50° TCA
				277.7 m: 4	cm thick quartz-chalcedony vein @ 30° TCA, lower contact has a marcasite band 1 to 15 mm thick, the
				dark grey si	liceous core has abundant open space texture (lattice) few veinlets and clasts of marcasite to 278.2 m
278.4	279.2	Quartz-chalcedony Vein	QV	278.4-279.2	2 m: contact of quartz-chalcedony vein
279.2	279.6	Muddy Breccia Lahar	Emcg	279.2-279.6	5 m: silicified clasts or fragments of quartz-chalcedony, black siliceous mudstone; some marcasite
279.6	280.4	Quartz-chalcedony Vein	QV	279.6-280.4	m: chalcedony-quartz vein, upper contact is 30° TCA, lower part is shattered and veined with
280.4	285.8	Muddy Breccia Lahar	Emcg	black silice	ous material and mudstone
				280.4 m: m	udstone breccia matrix is dark to black with some marcasite, clasts or short irregular veins to 283.2 m,
				matrix becc	ming lighter with few thin black siliceous veinlets, predominant set @ 45° TCA
				282.0-283.9	m: muddy breccia light colored with 20% black veins, very siliceous mudstone, contacts @ 45° TCA
285.8	285.9	Chalcedony Vein	QV	285.8-285.9	m: black/white chalcedony vein, some marcasite
285.9	286.5	Felsite tuff	Emfl	285.9-286.5	m highly altered volcanic felsic tuff, upper contact is fractured and veins are penetrated by
				muddy brec	cia and chalcedonic quartz
				286.0 m: S	ampled and assayed interval ends
286.5	295.4	Muddy Breccia Lahar	Emcg	291.7-292.1	m: light greenish, porphyroblasts, tiny spots jasper, upper contact with muddy breccia sharp @
				45º TCA, b	ottom contact is also sharp and @ 45° TCA, but in the opposite direction
				292.9-293.1	m: black siliceous mudstone and black chalcedony
				294.7 m: S	ampled and assayed interval starts
				295.4 m: S	ampled and assayed interval ends
295.4	296.1	Felsite	Emfl	295.4-296.1	m: light colored, highly altered felsic rock, few small fragments
296.1	298.4	Muddy Breccia Lahar	Emcg	muddy brec	cia lahar as described above
				298.0 m: S	ampled and assayed interval starts
298.4	299.4	Soft Mudstone	Emsi	298.7 m: lig	ht colored (tan/grey) green very fine volcanic sediment, few intercalated fine grit layers @ 45° TCA,
				top penetrat	ed by black siliceous mudstone, at bottom contact a few clasts of muddy breccia then to mudstone
				299.0 m: S	ampled and assayed interval ends
299.4	300.0	Muddy Breccia siliceous	Emcg	no descripti	on given in log
300.0	302.4	Soft Mudstone	Emsi	greeny grey	soft, very fine-grained, interlams of fine grit, coarsing downwards into a grit to fine conglomerate
				(tops uphole	3)
				302.0 m: S	ampled and assayed interval starts
302.4	303.3	Mudstone silicified volcanic tuff	Emsi	light grey, v	ery fine-grained (ash, tuff)
303.3	324.5		Emsi	coarsening c	lownhole to welded tuff, random marcasite (tops uphole)
				304.5 m: m	arcasite stringers, few black chalcedony veins, has a few clasts of darker material @ 305.0 m
				308.2 m: 3 c	m quartz-chalcedony vein @ 45° TCA, stringers of marcasite
				308.8 m: 2 c	m black chalcedony vein, black contacts
					% chalcedony veins, black/white irregular and colloform
					Impled and assayed interval ends
					m: slightly hematitic

Hole V-04-02 Bearing: 155°				Dip: 53* Hole Started: Page 7 Of 7				
				Vault Claim	*** 744+24-24-24-24-34-34-34-3 -3			
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION				
				313.4-314.0 m: several quartz-chalcedony veins, also black siliceous dense material or fractured fil	lings			
324.5	331.6	Fragmented volcanic tuff	Emcg	beginning a distinctive black and white speckled appearance, volcanic unit fine fragments with larg	e 10-15 cm			
				ragments with distinctive altered rings, clasts supported, very little matrix, mixed lithology of the	fragments			
				some former fragmental bands, lower contact @ 45° TCA, becoming less siliceous nearing lower of	ontact			
331.6	333.9	Volcanic tuff	Emsl	plack colored fine-grained siliceous near contact, grading down to softer rock with fine clasts, brok	en core,			
				some gouge				
				333.9 m: Sampled and assayed interval starts				
333.9	334.1	Chalcedony	QV	333.9-334.1 m: mostly chalcedonic material				
334.1	336.9	Muddy Breccia Silicified	Emcg	light greyish colored, highly altered, matrix dark grey to blackish some hematite				
				334.4 m: Sampled and assayed interval ends				
				334.4 m: Sampled and assayed interval ends 335.6 m: 3-4 cm quartz-chalcedony vein @ 10° TCA, distinctive sharp bladed growths inward from contacts,				
				very siliceous				
				35.6 m: Sampled and assayed interval starts				
				336.0 m: Sampled and assayed interval ends				
336.9	337.1	Chalcedony Vein	QV	36.9-337.1 m: chalcedony vein white colored				
337.1	342.9	Muddy Breccia Silicified	Emcg	38.0 m: mudstone matrix becoming very black siliceous and sulphidic, some black siliceous clasts	with			
				vispy shapes				
				40.8 m: broken and healed chalcedony vein 3-4 cm thick				
				42.0 m: chalcedony vein irregular width up to 6 cm @ 10° TCA, then soft greenish highly altered	rock,			
				with relict phenocrysts				
				42.0 m: Sampled and assayed interval starts				
342.9	344.3	Chalcedony Vein	QV	42.9-344.3 m: chalcedony vein with black siliceous bladed texture, contact @ 30° TCA				
				i44.3 m: Sampled and assayed interval ends				
344.3	348.9	Muddy Breccia Lahar	Emcg	44.3-344.5 m: interbedded black tan laminated mudstone @ 344.3 m with some marcasite 10-159	6			
				47.0-348.9 m: interbeded laminated fine mudstone (black and tan) with interbeds of muddy brecc	a			
				48.3 m: note: piece of wood looking growth rings				
348.9	349.7	Mudstone	Emsi	48.9-349.7 m: all fine volcanic sediment black and tan laminations				
349.7	355.0	Muddy Breccia Lahar	Emcg	51.0 m: core becoming only partly silicified, large andesite clast at 352.7-353.4 m				
355.0	355.0	End of Hole	EOH	55.0 m: End Of Hole				
					· · · ·			
				unanden an yn en werden en werden en werden af werden en werden en de seren en werden en werden en werden en we				

ſ

[

Land

-

[

•

Hole V-04-03 Bearing: 160°				Diamond Drill Log Sheet
LITHOLOGY				Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.0	112.2	······································	Nolog	no log
				31.0 m: Sampled and ssayed interval starts.
				32.4 m: Sampled and assayed interval ends
				42.0 m: Sampled and assayed interval starts
				45.6 m: Sampled and assayed interval ends
				53.6 m: Sampled and assayed interval starts
				54.5 m:Sampled and assayed interval ends
		······································		56.0 m: Sampled and assayed interval starts
	├			60.9 m: Sampled and assayed interval ends
	ļ	****		78.5 m: Sampled and assayed interval starts
	ļ			85.5 m: Sampled and assayed interval ends
112.2	114.2	Muddy Breccia	Emcg	silicified muddy breccia; grey cl;asts of sedimentary rock in sections
				112.2 m: Sampled and assayed interval starts
114.2	116.2	Hydrothermal Breccia	Emcg	hydrothermal breccia (cm scale sedimentary clasts in a silicified muddy matrix
	-			116.2 m: Sam;led and assayed interval ends
116.2	118.3	Muddy Breccia	Emcg	silicified muddy breccia with 5% white quartz clasts
				118.3 m: Sampled and assayed interval starts
118.3	119.3	Hydrothermal Breccia		hydrothermal breccia with 50% quartz clasts
119.3	120.3	Hydrothermal Breccia	Emçg	hydrothermal breccia with 30% white quartz clasts and 10% grey quartz clasts
				120.0 m: vuggy testure
120.3	121.3	Breccia	Emcg	strongly silicified sedimentary rock; brecciated, clast-suported, angular to subangular cm-scale clasts
121.3	122.3	Breccia		low angle, opaque grey stringers 40% quartz overall
122.3	123.3	Hydrothermal Breccia	Emcg	hydrothermal breccia, small clasts of grey quartz and silicified wall rock with a 5 cm clasts of andesitic
				porphyry; 40% quartz
123.3	124.4	Hydrothermal Breccia		strongly silicified hydrothermal breccia with highly kaolinized fractures cutting at low angle TCA
124.4	125.4	Hydrothermal Breccia	Emcg	hydrothermal breccia rebrecciated in <10% yellow limonitic matrix, mostly clast-supported, 50% quartz hydrothermal breccia as above rebrecciated with a strong network of quartz stringers at a low TCA
125.4	126.5	Hydrothermal Breccia		yellow-tan silicified breccia of rounded altered volcanic clasts with grey quartz
126.5	127.8	Breccia Ouertz Vein	Emfi QV	grey white banded quartz vein cutting the felsic breccia described above
127.8 128.9	128.9	Quartz Vein		felsic breccia
128.9	129.3 130.5	Felsic Breccia Quartz Vein	Emfi QV	quartz vein with 45° TCA
129.5	130.5	Quartz Veins	QV	quartz veins 20-40° TCA; with 80% quartz in the interval
132.2	134.2	Breccia		breccia in strongly altered rock, probably hydrothermal breccia with little matrix; contains clasts with
102.2		UIGOAD	6-1174 <u>1</u>	bright green spots from leaching mafic material from clasts
134.2	136.2	Breccia	Emcg	same as above with 10 cm grey quartz vein banded
136.2	137.9	Eruptive Breccia		eruptive breccia, matrix of reddish silicic rock material, clasts are angular, tan to white to pale
				green, cm-scale clasts more like dacite than andesite; matrix equals 35%
137.9	138.9	Eruptive Breccia	Emcg	same as above with 0.5 m grey quartz vein, banded with bladed calcite texture; quartz = 70% of interval

Side and

1

.

.

•

Hole V		Bearing: 330°	1	On Diamond Drill Log Sheet [Dip: -45° [Hole Started: Page 2 of 2
	OLOG			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	· · · · · · · · · · · · · · · · · · ·
138.9	139.9	Volcanic Breccia	Emcg	coarse volcanic breccia with two quartz veinlets at 30-45° TCA
139.9	141.9	Hydrothermal Breccia	Emcg	irregular hydrothermal breccia, squiggty light grey quartz stringers inwhitish volcanic rock cut by
				and partly replaced by soft yellow-tan argillic (illite and alunite) material
141.9	143.1	Hydrothermal Breccia	Emcg	same as above but with more quartz included darker grey banded vein at 75° TCA
				142.4 m: dark brown alteration band
143.1	145.1	Volcanic Breccia	Emcg	pinkish brown volcanic breccia with variably silicified matrix transitional to a hydrothermal
				breccia cut by grey quartz stringers
145.1	146.1	Volcanic Breccia	Emcg	same as above but with no stringers
146.1	147.1	Quartz Vein	QV	quartz vein with low TCA; banded quartz = 80%
147.1	149.2	Volcanic Breccia	Emcg	volcanic breccia, light tan/grey, bleached quartz = 5%
149.2	151.1	Quartz Vein	QV	Quartz vein in volcanic breccia with upper border at 25° TCA and lower border at 50° TCA; quartz
				mainly grey with fine bands of white quartz and green laminae and lenses
151.1	153.1	Lithic tuff	Emsi	bedded, small lithic tuff at moderate angle TCA, grades to ash tuff downhole, black quartz
				stringers and scattered clasts of black quartz
153.1	154.1	Siltstone	Emsi	grey-green fine sediment host massive medium grey quartz = 45% black/white banding high in inter
154.1	155.3	Quartz Vein	QV	continued opaque grey massive quartz in variable degrees TCA
155.3	157.3	Sandstone	Emsi	grey, fine-grained sandstone faintly bedded at 25° TCA, taken for block to complete hydrothermal z
				157.3 m: Sampled and assayed interval ends
157.3	172.1	Tuffaceous Sediment	Emei	tuffaceous sediment with sparse quartz stringers
				172.1 m: Sampled and assayed interval starts
172.1	173.1	Siltstone	Emsi	fine pale tan siltstone to ash tuff; quartz = 3-4%
173.1	174.1	Siltstone	Emsi	same sediment with 10% grey quartz stringers
174.1	175.3	Tuff	Emel	coarser volcanic tuff with 20% quartz in hydrothermal breccia
175.3	176.4	Tuff	Emsi	fine-grained, pale tan tuff with 5% quartz stringers
176.4	177.7	Tuff	Emsi	same as above with 25% quartz as matrix in breccia
177.7	179.7	Volcanic Breccia	Emcg	porphyritic volcanic rock andesite), coarsely brecciated with dark quartz 5-10%
179.7	181.7	Violcanic Breccia	Emcg	same as above with dark grey quartz 5% supported angular clasts
				181.7 m: Sampled and assayed interval ends
181.7	202.9		Nolog	no log
202.9	219.0		Nolog	volcanic includes dark grey andesite
219.0	220.0		Nolog	Fragmented rock
220.0	238.0		Nolog	no log
238.0	250.0	Tuff	Emsi	various fragmented lithic tuffs
250.0	255.0	Tuff	Emsi	pale grey ash tuff with silicified fiamme
255.0	259.0	Tuff	Emsi	black matrix, lithic tuffs
259.0	273.0	Mudstone	Emsi	silicified mudstone and siltstone
273.0	273.0	End of Hole	EOH	End of hole

Γ

Γ

Γ

[

Γ

Γ

.....

.

Hole V-	04-04	Bearing: 330°		Dip: -45° Hole Started: Page 1 of 1
_	DLOG	Y		Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	3.04	Casing	ОВ	casing
3.04	3.85	Augite Andesite Lahar	Emih	(could be flow) clasts or breccia fragmetns uo tp 20 cm; highly fractured; 10% smoky quartz
				veinlets at 40, 70 and 75° TCA; should be sampled
3.85	13.25	Tuff	Emtf	very fine tuff, highly brecciated, 80% replaced with silica and multiphase stockwork quartz veining
				20% of the rock is 70-80% replaced with silica; 5% limonite microveinlets; late quartz veins
				at 70-80° TCA dominantly
				4.57 m: Sampled and assayed interval starts
				11.85-12.40 m: good late pyrite veins, 5% pyrite locally
				13.07 m: Sampled and assayed interval ends
13.25	13.71	Tuff	Emtf	very fine tuff, brecciated, limonite, not silicified
13.71	16.10	Fault	Fit	some tuff, very broken core and gouge, two silicified zones not sampled
16.10	16.76	Fault	Fit	some tuff, very broken, mostly light green gouge with 1% limonite microveinlets
16.76	43.60	Trachyandesite Porphyry	Emvt	Marron Formation composed of trachyandesite porphyry
				25.91 m: Sampled and assyed interval starts
				25.91-30.27 m: 3% late quartz veinlets at 70 to 80° TCA dominantly; some veins with pyrite selvages,
				some irregular quartz veins, weak alteration near quartz veins
				30.41 m: Sampled and assayed interval ends
43.60	43.60	End of Hole	EOH	End of Hole at 43.6 m
	······			
	·			
			ļ	

.

ſ

.....

lole V-	04-05	Bearing: 000°		Dip: -90° Hole Started: Page 1 of 1
ITHO	DLOGY	Y		Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	2.44	Casing	OB	casing
2.44	11.40	Augite Andesite Lahar	Emlh	augite andesite lahar altered to light green and white with silica replacement, minor 10-30 cm
				gouge zones, 5% limonite, 5% grey quartz veining - much of it is irregular (around clasts) and
				some late veins at 50° TCA
				2.44-8.80 m: much of the rock is soft and moderately altered, 5% highly silicified near quartz
				veining
				2.5 m: Sampled and assayed interval starts
				8.80-10.61 m: 30% silica replacement, 5% pyrite as 0.3-1.0 cm irregular veins around clasts
				10.61-11.40 m: three late well fractured zones 10-20 cm, barren
11.40	16.00	Tuff	Emtf	very fine-grained tuff in which purple tuff is 70% silicified and white tuff is 100% silicified,
				5% pyrite veinlets, 0.2% talc, 3% limonite, late quartz veins at 30-40°TCA, but very irregular
				and disrupted
16.00	35.50	(Felsite)	(Emfi)	16.00-21.65 m: 95% white, 100% silica replaced, 10% smoky quartz veins, highly irregular
		Tuff	Emtf	19.90-21.65 m: late cemented breccia zone with 10% black matrix silica
				21.20 m: 2 cm black veins and breccia zone at 45°TCA
				21.65-23.05 m: fine-grained tuff, highly brecciated and silicified with 30-50% pyrite as clasts
				and matrix
				23.05-24.33 m: fine-grained tuff, highly brecciated and silicified, 30% late breccia zones with
				black, grey and white silica
				24.33-27.40 m: extremely (100% silica) replaced, light grey and white silicia clasts cemented
				with a black silica matrix
				27.40-29.16 m: very fine-grained tuff white (70% silica replacement), 5% grey late quartz veins
				irregular, 5% limonite
				29.16-33.74 m: very fine-grained tuff, 70% silica replacement, light grey to white, >70% silica
				near veins, 5% grey silica zones and veins
				33.74-35.50 m: very fine-grained tuff, but only 20% silica replacement, 5% limonite
35.50	37.50	Fault	FLT	some very fine-grained tuff very broken to clay gouge
37.50	38.15	Quartz Breccia	QBX	Cemented grey silica breccia zone, 100% silica matrix, 20% tuff clasts in zone, moderately
				clay altered
38.15	39.63	Trachyandesite Porphyry	Emvt	moderately altered to brown, 3% quartz-pyrite veins, mostly irregular, one at 40°TCA
				39.5 m: Sampled and assayed interval ends
39.63	39.63	End of Hole	EOH	end of hole at 39.63 m

[

[

Γ

Hole V-	04-06	Bearing: 330°		Dip: -87° Hole Started: Page 1 of 1
LITHO)LOG	ľ į		Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	3.05	Casing	OVB	casing
3.05	6.70	Augite Andesite Lahar	Emih	augite andesite lahar in which 80% of the rock is replaced with grey to white silica; 5% late grey and
				white quartz veins, some irregular, some at 65-80° TCA; 5% limonite microveinlets
				4.0 m: Sampled and assayed interval starts
6.70	6.85	Quartz Breccia	QBX	grey and white brecciated silicified zone on top of tuff at 80° TCA
6.85	9.99	Tuff	Emtf	very fine-grained tuff, purple to grey to white, highly silica replaced (90%), with white 100%,
				10% augite andesite clasts in tuff, 5% late grey, irregular smoky quartz veins, some with
9.99	10.15	Quartz Vein	QV	white and grey, brecciated quartz vein, lower contact at 35° TCA, but could be disrupted very fine-grained tuff, purple to grey to white, highly silica replaced (90%), with white 100%,
10.15	10.70	Tuff	Emtf	10% augite andesite clasts in tuff, 5% late grey, irregular smoky quartz veins, some with
				Iso% pyrite
10.70	10.80	Quartz Vein	QV	5 cm white and grey brecciated quartz vein at 45° TCA
10.80	19.60	Tuff	Emtf	very fine-grained tuff, purple to grey to white, highly silica replaced (90%), with white 100%,
				10% augite andesite clasts in tuff, 5% late grey, irregular smoky quartz veins, some with
				50% pyrite
			i	11.28-12.07 m: highly silicified late brecciated and recemmted with white and grey silica
				10 cm clast of augite andesite
				12.07-13.85 m: very fine-grained tuff highly broken core, clay altered gouge
				13.85-14.95 m: very fine -grained tuff, brecciated purple and white, late brecciation
			1	cemented by 5% late quartz veins which are highly irregular
				14.95-17.17 m: 90-100% silica replacement, white, grey, purple
				17.17-19.60 m: very fine-grained tuff, 10% augite andesite clasts to 5 cm; 30% grey silicified
				zones, elsewhere soft, moderately clay altered, 5% limonite microveinlets
19.60	23.50	Fault	FLT	very fine-grained tuff, soft, clay altered, very broken core
23.55	28.35	Trachyandesite Porphyry	Emvt	purple trachyandesite porphyry of the Marron Formation 25.0 m: Sampled and assayed interval ends
00.05		End of Male		End of Hole
28.35	28.35	End of Hole	EOH	
		·····		
		·····		
		· · · · · · · · · · · · · · · · · · ·		

		·····		

_

L. . .

Hole V-	-04-07	Bearing: 330°		Dip: -45° Hole Started: Page 1 of 2
LITH	DLOG	Y		Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	3.05	Casing	Ca	casing
3.05	3.80	Granite cobbles	OVB	granite cobbles
3.80	7.92	Porphyritic Andesite	Emva	andesite porphyry flow, grey purple, locally altered to brown in fractured zones, 10% black
				augite phenocrysts 0.2-0.5 mm, 10-15% white plagioclase pheoncrysts 0.2-0.7 mm; the flow
				is generally fresh
				4.00-4.88 m: well fractured limonite plus many stained fractures; 5% silica replacement zones
				with smoky quartz and late drusy quartz on fractures with himonite staining
				4.88-6.50 m: generally fresh, joints 25, 60 and 70° TCA with 80% core recovery
				5.20-5.50 m: moderately fractured, limonite plus manganese on fractures
				6.50-7.92 m: same andesite but highly fractured, brecciated, altered to light green and brown,
				limonite staining on fractures
7.92	13.00	Fault	Fit	same andesite, fault zone, highly brecciated, green with chlorite plus clay, soft, original rock
				hardly recongnizable; 1% limonite on fractures
				7.92-10.98 m: 60% core recovery; 9-10 m broken 50% recovery; 11-12 m 10% recovery;
				120-13.0 m: 60% recovery
13.00	18.45	Porphyritic Andesite	Emva	andesite porphyry flow, grey purple, locally altered to brown in fractured zones, 10% black
				augite phenocrysts 0.2-0.5 mm, 10-15% white plagioclase pheoncrysts 0.2-0.7 mm; the flow
				is generally fresh
				13.00-14.85 m: same andesite, much less fractured with 60% core recovery
				14.85-18.45 m: highly altered green andesite, could be flow breccia or lahar, very fine-grained
				groundmass altered to light green, 2% limonite on fractures; local zones of recemented breccia
				could have been brecciated flow rock
				16.00-18.00 m: local zones (30 cm) with 1% very fine-grained pyrite
				17.50-17.80 m: 1% quartz veinlets 1-2 mm at 30° TCA
18.45	21.42	(Felsite)	(Emfi)	lahar with andesite clasts, buff to white, highly clay altered, 4% limonite microveinlets at
		Andesite Lahar	Emih	35, 45 and 50° TCA
*****				18.55 m: 7 cm breccia zone, grey silica matrix, 5% quartz, trace of pyrite
			· · · · · · · · · · · · · · · · · · ·	19.15-19.20 m: 0.5 cm cherty black veins with 20% quaretz, 1% pyrite
				18.00-20.00 m: 90% core recovery
21.42	21.50	Quartz Breccia	QBX	8 cm breccia zone recemented with black silica
21.50	33.70	(Feisite)	(Emfi)	lahar with andesite clasts, buff to white, highly clay altered, 4% limonite microveinlets at
		Andesite Lahar	Emih	35, 45 and 50° TCA
				23.16 m: 2 cm breccia zone; light green with white clay
				23.50-23.55 m: breccia zone; light green with white clay
				24.00 m: 10% limonite microveinlets at 50° TCA
	<u></u>			24.55-24.70 m: breccia zone; light green with white clay
				24.90-25.15 m: breccia zone; hight green with white clay
				25.00-27.50 m: chalky white kaolinitized, altered with 5% limonite microveinlets
				26.21 m: 3 cm zone with 20% silica replacement
				26.80-27.05 m: 1% irregular quartz veinlets with black borders, trace of pyrite

1

.

[

-

LITHOI E E 21.50 33.70	LOGY (II) °L 33.70	UNIT Feisite (Andesite Lahar)	SYMBOL Emfi (Emlh)	Vault Claim SUB UNITS AND DESCRIPTION lahar with andesite clasts, buff to white, highly clay altered, 4% limonite microveinlets at
21.50		Felsite	Emfi	lahar with andesite clasts, buff to white, highly clay altered, 4% limonite microveinlets at
	33.70			
33.70		(Andesite Lahar)	(Emlh)	
33.70				27.70-28.40 m: 10% black silica recementing small breeccia zones, 1% white quartz with black
33.70				silica zones
33.70				29.65-30.00 m: breccia zone very clay altered
33.70				30.30-30.55 m: moderately silicified
33.70	1	······································		32.00-33.70 m: 5-15 cm andesite clasts in tuffaceous lahar, 20% very fine-grained matrix
33.70				between clasts, 2-5 cm zones highly silificied; 0.25-0.5% very fine-grained disseminated pyrite
	40.26	(Felsite)	(Emfl)	very fine-grained tuff, locally brecciated, 10% well silicified, 0.5-2% very fine-grained pyrite
		Tuff	Emtf	adjacent to 5% black silica veinlets 2-5 mm thick at 25, 30 and 50° TCA, most are disrupted,
				with the best pyrite near these zones
				34.75 m: 3 cm black silica vein disrupted
				36.50-37.55 m: recemented breccia zone in same tuff with 10% grey silica cement, generally
				well silicified throughout; trace of very fine-grained pyrite
				37.55-38.30 m: same tuff with 10% black silica and white quartz stockwork veining, 0.1-3 mm
				veinlets; 2% pyrite with some altered to hematite
				38.30-38.95 m: less veinlets, no silicification, trace of pyrite, 3% limonite
İ.		·····		38.95-39.20 m: same tuff with 10% black silica and white quartz stockwork veining, 0.1-3 mm
				39.20-40.26 m: same very fine-grained tuff, brecciated 0.2-3 cm clasts; 30% white calcite-quartz
				matrix, soft, no veining or pyrite
				39.75-40.15 m: brecciated, soft, gougy, light green, no pyrite
				40.15-40.26 m: highly silicified fine breccia
40.26	41.41	Breccia/regolith?	FLT?	breccia zone or regolith?, purple hematitic mostly very fine-grained tuff and mudstone clasts;
				foliation 70° TCA
41.41	43.89	Trachyandesite	Emvt	Trachyandesite of the Marron Formation
				41.41-41.80 m: chalky white, brecciated, clay altered trachyandesite
				41.70 m: 1.5 cm chalky calite/quartz vein at 70° TCA
				41.80-43.89 m: moderately fractured trachyandesite with orthoclase phenocrysts altered to
		·····		chalky white
43.89	43.89	End of Hole	EOH	end of hole
				3.80-8.20 m: Box 1
				8.20-14.02 m: Box 2
				14.02-18.55 m: Box 3
				18.55-22.88 m: Box 4 22.88-27.50 m: Box 6
				22.88-27.50 m: Box 6
				27.50-51.90 m; Box 6 31.90-36.24 m; Box 7
				36.24-40.90 m: Box 8
				40.80-43.89 m: Box 9
	+			то,ооу то,оу Ш. DOA 7

1

L . t . . t

ŧ

Hole V-0	4-08	Bearing: 330°		Dip: -87° Hole Started: Page 1 of 3
LITHO	LOGY	ζ		Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	2.74	Casing	Ca	casing
2.74	5.18	Gravel	ОВ	boulder till
5.18	9.90	Porphyritic Andesite	Emva	grey to green porphyritic augite (10%, 0.2-0.5 mm)/plagioclase (0.2-0.7 mm, 10-15%) and esite
				which is altered to brown where fractured; many zones of intense brecciation & clay alteration
				5.18-6.45 m: generally fairly fresh andesite flow
				5.60-5.80 m: fractured zone, weak limonite on fractures; joints at 60° TCA
				6.06-6.80 m: fractured zone, weak limonite on fractures; could be flow breccia
				6.95-9.90 m:brecciated zone, some slickensides, soft clayey gouge, purple hematitic
				9.75-9.85 m: small zone of recognizable andesite
9.90	23.30	Lahar	Emih	Lahar
				9.90-18.80 m: green chloritic & purple hematitic clasts of augite/plagioclase porphyritic andesite
				10.95-11.30 m: highly fractured and chloritic - 20% core recovery
				14.00 m and beyond: slightly more clay altered, lighter grey, phenocrysts less distinct
				14.00-18.80 m: more green, less purple andesite lahar, soft with clay alteration; 2% calcite
				zones, 1% limonite on fractures; same mixed clasts as above; 17-18 m: 90% core recovery
				17.37-17.75 m: fractured zone, soft broken core, more chloritic
				18.80-25.66 m: fine clast (1-2 cm) lahar with andesite clasts, generally dark purple with local
				light green or grey alteration
23.30	23.70	Fault	FLT	grey clay gouge, 30% recovery; elsewhere 19-32 m 100% recovery
23.70	29.55	(Lahar)	(Emih)	Lahar
23.70	41.60	Lahar	Emih	25.66-26.65 m: lahar clast of prophyritic andesite
				26.65 m-28.20 m: medium-sized clast lahar (0.5 to 7 cm) with most in the 1-3 cm size, dark purple
				same alteration only 1% limonite o n fractures throughout
				28.20-30.50 m: lahar (looks like lapilli tuff) 0.2-2 cm clasts within finer matrix, some clasts to
				4 cm , dark purple with some green chalky clay altered clasts, 2% limonite microveinlets
				29.40-29.55 m: light green, well clay altered andesite clasts
29.55	41.60	(Felsite)	(Emfl)	30.50-31.50 m: lahar with larger clasts (5-15 cm) moderate clay altered to green and grey, 2%
				limonite stockwork microveinlets; no pyrite
				30.80-31.15 m: light green, well clay altered andesite clast
				31.50-32.45 m: lahar, larger clasts (5-20 cm) andesite, moderate clay alteration to grey and green;
				3% limonite microveinlets, some clasts more altered but a general increase in alteration down
				32.45-33.10 m: lahar, small; clasts (0.3-1 cm) with 2% limonite stockwork microveinlets
				33.10 - 38.00 m: lahar, mostly large clasts clay altered and some black silicified zones (<1%)
				3% limonite microveinlets
				33.35-34.75 m: 0.5-1% finely disseminated pyrite with best pyrite 1-10 cm from silicified zones
				3% limonite microveinlets
				34.10-34.20 m: 20% black silicified zones
				34.50-34.58 m: clay and chlorite altered gouge zone in matrix between large clasts
				34.75-35.07 m: clay and chlorite altered gouge zone in matrix between large clasts
				35.43-35.52 m: clay and chlorite altered gouge zone in matrix between large clasts

 $\overline{}$

[

[

ł

L

[.....

-

ole V-0	4-08	Bearing: 330°		Dip: -67° Hole Started: Page 2 of 3
JTHO	LOGY	·		Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
23.30	41.60	(Felsite)	(Emfi)	lahar (continued)
		Lahar	Emih	35.95-36.00 m: clay and chlorite altered gouge zone in matrix between large clasts
				36.38-36.50 m: clay and chlorite altered gouge zone in matrix between large clasts
				36.90-37.65 m: dark purple gougy
		<u> </u>		37.65-38.00 m: light green gougy, 2% limonite microveinlets
			ļ	38.00-47.06 m: chalky white, moderate to highly clay altered large clast (5-20 cm) lahar;
			ļ	most of the rock is soft and silicified over small zones adjacent to quartz veinlets; 1% black
			ļ	and white quartz veinlets 0.1-0.5 mm, black is coused by very finely disseminated pyrite
				with up to 0.5% pyrite in lahar next to black veinlets; 3-5% limonite (some red hematite)
		·····		microveinlets; black and white quartz veinlets are irregular and disrupted with some
				having up to 10% pyrite (possible felsite zone)
		····		38.70-39.00 m: broken chalky core
				41.00-41.60 m; very finely disseminated pyrite (with ghosts of augite in highly altered andesite)
41.60	42.80	Quartz Veinlets	QV	black and grey silica veins 10-20° TCA but irregular and disrupted, 2% pyrite, 5% limonite
42.80	43.60	(Felsite)	(Emfl)	lahar
r		Lahar	Emih	43.40-43.45 m; grey and white silicified zone at 45° TCA
43.60	43.80	Quartz Veins	QV	0.3-0.5 cm grey quartz veins with 20% pyriteat 50° TCA
43.80	47.06	(Felsite)	(Emfi)	lahar
		Lahar	Emlh	44.60 m: 0.5 cm grey and white quartz vein at 50° TCA
				44.80-45.30 m: altered to green chlorite and clayey gouge with the bottom of zone at 65° TCA
 -				45.65-46.08 m: highly fractured, chloritic almost gouge zones
				46.00-47.06 m: trace of very finely disseminated pyrite
				46.12-46.30 m: highly fractured, chloritic almost gouge zones
				46.60-46.70 m: highly fractured, chloritic almost gouge zones
47.06	53.00	(Felsite)	(Emfi)	very fine-grained tuff with 5% augite andesite clasts up to 7 cm; the tuff is generally soft, has
		Tuff	Emtf	small silicified zones near veins, <1% pyrite overall, 3-5% limonite; hematite near veins
-+				47.06-49.00 m: 3-5% black and white disrupted quartz veins with a few up to 50% pyrite, some
				at 50-60° TCA
 				49.00-49.70 m: soft and gougy
				49.07-53.00 m: very fine-grained tuff with 2% black quartz veinlets 0.2-4 mm thick, highly
		_		disrupted, much less pyrite than above, a few cm-sized silicified zones; 5% limonite veinlets
53.00	53.35	Breccia Zone	FLT	mended breccia zone with mixed clasts, well silicified with 1% finely dissemniated pyrite
53.35	53.75	Gouge Zone	FLT	muddy gouge zone with 50% core recovery
53.75	60.05	Trachyandesite	Emvt	trachyandesite
				53.90-55.85 m: very broken core with gouge zones, chalky altered to light green
				54.15-54.55 m: gougy
				55.10-55.85 m: gougy with 0.25-1% finely disseminated pyrite
+				55.65-55.72 m: 8 cm light grey 100% silica replacement, no pyrite
				55.82-55.85 m: 2 cm light grey 100% silica replacement; no pyrite; lower contact at 60° TCA

.

ŗ

[]

Γ

lole V-(4-08	Bearing: 330°		Diamond Drill Log Sheet [Dip: -87" Hole Started: Page 3 of 3
ITHO	LOGY			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
53.75	60.05	Trachyandesite	Emvt	trachyandesite (continued): all gouge zones in the Marron are chalky, light green. 1% quartz
				and calcite veinlets throughout Marron, 3% limonite in purple trachyandesite which alters to
				brown near fractured and gougy zones
			<u> </u>	57.00 m: 2 cm gouge zone
				57.30-57.40 m: gouge zone at 70° TCA
			}	57.70-58.50 m: very broken core, gougy
				59.53-59.67 m: tan moderate altered with 3% white quartz blebs (replacement)
60.05	60.05	End of Hole	EOH	
				Corps Resource: 100%/ from 22 to 60 m quanti
			+	Core Recovery: 100% from 32 to 60 m except: 38-39 m: 90%
				44-45 m: 90%
		- <u> </u>		53-54 m: 80%
			1	55-56 m: 85%
				57-58 m: 90%
				58-59 m: 80%
				Box #1: 5.18-9.00 m
				Box #2: 9.00-14.66 m
				Box #3: 14.55-18.80 m
				Box #4: 18.80-23.30 m
				Box #5: 23.30-27.94 m
		····-		Box #6: 27.94-32.70 m
				Box #7: 32.70-36.95 m
				Box #8: 36.95-41.68 m
		······		Box #9: 41.68-46.00 m
<u>_</u>		·		Box #10: 46.00-50.45 m
				Box #11: 50.45-55.15 m
				Box #12: 55.15-59.62 m
	<u>+</u>			Box#13: 59.62-60.05 m
+				
		······		
+				· · · · · · · · · · · · · · · · · · ·
+	L.			

~

Γ

[

.

.

.

-

-

APPENDIX C

ASSAYS FROM 2004 DRILL PROGRAMME

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

Γ

l

Γ.

í.

1

ŧ

.

VAULT #651-670

Date: 19 APR 2004

Job V 04-0192R

ł

LAB NO	FIELD	From	То	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	κ	La	Mg	Mn	Mo	Na	Ni	Ρ	Pb	Sb	Sr	Th	Ti	U	V	W	Sn	Y	Zn
	NUMBER	m	m	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm

Drill Hole V-04-01

R0406017	651	59.7 60.4	<.4 0.9	3 7	2 <0.001	-	31	<5 2.14	<1	9	10	22 6.08	0.34	116 0.48	701	10 0.13	6 0.230	30	5	430	-	<.01	-	26	2	<2	9	74
R0406018	652	60.4 61.1	1.4 0.1	8 12	8 0.35	-	6	<5 2.15	<1	2	163	4 1.30	0.05	23 0.06	421	9 0.05	6 0.072	5	<5	112	_	<.01	-	19	<2	<2	3	29
R0406019	653	61.1 62.1	0.4 0.7	8 6	9 0.05	-	20	<5 1.69	<1	9	12	13 5.07	0.29	106 0.43	497	4 0.13	6 0.207	27	<5	376	1	<.01	-	22	<2	<2	10	64

Drill Hole V-04-01A

R0406020	654	58.4	59.4	<.4	0.66	50	0.02	I	27	<5	3.76	<1	6	17	11 4.88	0.21	98 0	.49	876	2 0.11	7 0.151	44	<5	377	-	<.01	-	21	<2	<2	7	53
R0406021	655	59.4	60.4	<.4	0.67	65	<0.001	-	26	<5	5.63	<1	6	18	8 4.23	0.25	90 0	.40 1	1030	9 0.09	4 0.183	26	<5	492	-	<.01	1	19	<2	<2	8	44
R0406022	656	60.4	61.4	1.4	0.29	308	0.246	1	7	<5	1.24	<1	1	119	13 3.57	0.07	17 0	.21	409	15 0.05	6 0.108	5	6	127	-	<.01	1	47	<2	<2	5	58
R0406023	657	61.4	62.4	1.5	0.40	895	0.22	-	7	<5	0.98	1	<1	79	8 8.61	<.01	70	.51	563	23 0.04	9 0.134	<4	20	117	-	<.01	-	58	<2	<2	16	122
R0406024	658	62.4	63.4	0.9	0.27	118	0.19	-	9	<5	2.62	<1	1	135	6 2.28	0.07	28 0	.23	523	15 0.05	5 0.077	4	5	182	-	<.01	I	31	<2	<2	4	31
R0406025	659	63.4	64.4	0.5	0.09	178	0.124	-	<5	<5	1.30	<1	<1	156	9 1.85	<.01	50	.14	212	8 0.04	5 0.020	<4	11	80	-	<.01	-	34	3	<2	4	148
R0406026	660	64.4	65.4	0.8	0.12	140	0.12	-	<5	<5	1.07	<1	1	158	2 1.92	<.01	60	.19	160	8 0.04	7 0.022	<4	7	77	1	<.01	I	38	5	<2	4	89
R0406027	661	65.4	66.4	1.0	0.17	110	0.116	-	<5	<5	1.05	<1	1	125	6 2.13	<.01	6 0	.19	210	27 0.05	5 0.066	<4	<5	87	-	<.01	I	50	<2	<2	4	48
R0406028	662	66.4	67.4	1.4	0.10	84	0.39	I	<5	<5	1.82	<1	1	139	7 0.98	0.02	90	.07	228	15 0.04	4 0.020	<4	<5	101	ł	<.01	-	25	<2	<2	2	35
R0406029	663	67.4	68.4	1.1	0.09	76	0.28	-	<5	<5	1.94	<1	<1	153	2 0.89	0.03	12 0	.09	245	15 0.05	6 0.017	<4	<5	113	-	<.01	-	19	2	<2	3	34
R0406030	664	68.4	69.4	0.7	0.15	170	0.1	1	5	<5	2.24	<1	2	138	6 1.28	0.06	21 0	.08	243	38 0.05	9 0.024	<4	6	139	1	<.01	-	19	<2	<2	7	193
R0406031	665	69.4	70.4	1.0	0.15	166	0.18	-	<5	<5	2.71	<1	2	150	14 1.25	0.06	21 0	.07	375	23 0.05	7 0.023	<4	8	148	-	<.01	-	23	2	<2	3	62
R0406032	666	70.4	71.4	1.6	0.34	240	0.28	١	16	<5	4.24	<1	5	94	4 2.65	0.11	47 0	.33	561	41 0.06	8 0.092	10	8	247	-	<.01	-	17	2	<2	7	63
R0406033	667	71.4	72.4	1.7	0.48	255	0.28	-	21	<5	3.91	4	6	65	6 3.54	0.16	70 0	.42	663	39 0.08	8 0.147	17	7	259	-	<.01	1	27	<2	<2	9	94
R0406034	668	72.4	73.4	1.3	0.70	340	0.16	١	21	<5	2.50	<1	8	37	8 4.42	0.22	80 0	.59	593	48 0.08	7 0.206	25	11	281	I	<.01	-	29	<2	<2	8	65
R0406035	669	73.4	74.4	0.6	0.82	66	0.02	-	24	<5	3.02	<1	9	22	7 4.15	0.31	108 0	.55	660	17 0.12	6 0.194	25	5	413	-	<.01	-	25	2	<2	8	55
R0406036	670	155.6	156.4	<.4	1.74	<2	< 0.001	_	146	<5	0.85	<1	9	31	9 3.23	0.38	98 1	.29	654	<2 0.13	2 0.166	9	<5	235		0.02	_	53	<2	<2	11	72

VAULT #651-670

Job: V 04-0192R

Report date: 08 APR 2004

 	فله ويه هار دين جو بعد اعد جه ديد هيد جه عيد هد جو اورا چو هد هد خار اور در	والدجالة فالتركية فتناجلوا سندحاك تجزر الزيد متدخوك متكر من

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ррь	gram	g/t

Drill Hole V-04-01

L

1

1

È

R0406017	651	59.7	60.4	<10	5	<0.034
R0406018	652	60.4	61.1	350	5	0.417
R0406019	653	61.1	62.1	50	5	0.038

Drill Hole V-04-01A

R0406020	654	58.4	59.4	20	5	< 0.034
R0406021	655	59.4	60.4	<10	5	< 0.034
R0406022	656	60.4	61.4	246	5	0.289
R0406023	657	61.4	62.4	220	5	0.232
R0406024	658	62.4	63.4	190	5	0.203
R0406025	659	63.4	64.4	124	5	0.139
R0406026	660	64.4	65.4	120	5	0.141
R0406027	661	65.4	66.4	116	5	0.127
R0406028	662	66.4	67.4	390	5	0.474
R0406029	663	67.4	68.4	280	5	0.325
R0406030	664	68.4	69.4	100	5	0.131
R0406031	665	69.4	70.4	180	5	0.225
R0406032	666	70.4	71.4	280	5	0.334
R0406033	667	71.4	72.4	280	5	0.326
R0406034	668	72.4	73.4	160	5	0.204
R0406035	669	73.4	74.4	20	5	< 0.034
R0406036	670	155.6	156.4	<10	5	< 0.034

I=Insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS Wt Au The weight of sample taken to analyse for gold (geochem) Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

2001-12 /0671-750

Date: 22 Apr 2004

Job V 04-0194R

		I	· · · · · · · · · · · · · · · · · · ·	<u> </u>		1		-			· · · · ·				·						_										
LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Mo	Cr	Bi	Sb	l v	Sn	w	Sr	l v	La	Mn	Ma	т	Δι	<u> </u>	Na	ĸ	
	NUMBER					[]	-														1				•	1		, Va	110	n	
	NUMBER	n n	m	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	%	i ppm	ppm	ppm	%	%	8	%	I % I	%	ppm								
																							••••								

Drill Hole V-04-01A

R0406050	671	277.0	278.0	12	17	57	<.4	27	35	<1	8	5	3.62	<2	33	<5	<5	29	2	<2	230	9	85	533	0.81	<.01	0.57	1.24	0.07	0.19	2015
R0406051	672	278.0	279.0	10	12	33	0.5	29	163	<1	4	4	3.12	33	79	<5	<5	30	<2	<2	258	5	55	481	0.83	<.01	0.53	2.04	0.08	0.14	1642
R0406052	673	279.0	280.0	6	13	46	0.4	37	66	<1	6	5	3.83	34	79	<5	<5	45	<2	<2	169	6	56	468	0.68	<.01	0.61	0.95	0.05	0.16	1958
R0406053	674	280.0	281.0	11	10	53	0.6	33	90	<1	8	6	3.80	2	62	<5	<5	34	<2	<2	193	8	76	450	0.81	<.01	0.56	1.16	0.06	0.17	1798
R0406054	675	281.0	282.0	13	11	43	10.0	64	108	<1	5	7	3.92	44	81	<5	<5	52	<2	<2	665	4	34	461	1.13	<.01	0.67	1.82	0.06	0.13	1339
R0406055	676	282.0	283.0	12	10	51	30.1	88	206	1	8	22	3.61	8	71	<5	<5	35	<2	<2	756	4	48	485	1.45	<.01	0.69	3.53	0.07	0.16	655
R0406056	677	283.0	284.0	13	21	40	0.9	299	42	3	11	16	3.10	11	49	<5	7	30	<2	<2	292	5	64	241	0.73	<.01	0.42	1.29	0.07	0.17	1018
R0406057	678	284.0	285.0	9	19	44	1.2	327	44	3	11	14	3.32	19	64	<5	13	34	<2	<2	181	6	64	225	0.58	<.01	0.37	1.00	0.06	0.17	1279
R0406058	679	285.0	286.0	14	16	63	0.8	213	51	2	11	18	3.15	24	50	<5	6	42	2	<2	162	7	69	243	0.51	<.01		1.06	0.06	0.15	1451
R0406059	680	286.0	287.0	13	22	57	0.6	235	44	1	12	14	2.91	30	47	<5	6	26	<2	<2	152	9	82	160	0.40	<.01	0.39	0.66	0.07	0.20	1505
R0406060	681	287.0	288.0	12	19	50	3.0	238	35	2	12	18	3.00	289	63	<5	9	62	<2	<2	143	7	60	220	0.50	<.01	0.49	0.72	0.07	0.18	1614
R0406061	682	288.0	289.0	12	17	35	5.4	422	39	1	11	15	3.38	831	76	<5	10	47	<2	<2	147	5	52	193	0.42	<.01	0.45	0.84	0.06	0.20	1592
R0406062	683	289.0	290.0	15	12	44	9.1	557	33	1	9	28	3.09	1621	103	<5	12	53	2	<2	143	5	42	169	0.35	<.01	0.51	1.15	0.06	0.17	2456
R0406063	684	290.0	291.0	10	11	80	7.4	405	18	1	11	31	2.37	810	85	<5	9	42	<2	<2	133	4	39	103	0.23	<.01	0.49	0.72	0.07	0.20	2088
R0406064	685	291.0	292.0	16	19	207	<.4	281	55	1	19	40	3.21	31	32	<5	5	32	<2	<2	256	6	52	232	0.53	<.01	0.63	0.83	0.09	0.24	1522
R0406065	686	299.0	300.0	25	15	76	1.7	109	118	1	11	30	3.81	7	81	<5	<5	56	4	<2	290	6	56	461	0.87	<.01	0.91	1.15	0.05	0.15	1473
R0406066	687	300.0	301.0	18	10	53	2.5	65	77	<1	9	25	1.90	90	122	<5	<5	33	<2	<2	106	4	33	233	0.49	<.01	0.62	0.76	0.04	0.11	1018
R0406067	688	301.0	302.0	23	16	75	5.6	79	57	1	12	40	5.27	387	86	<5	<5	113	<2	<2	163	6	55	620	1.66	<.01	1.80	0.93	0.04	0.13	1328
R0406068	689	302.0	303.0	20	8	37	4.1	93	44	1	9	29	2.12	230	117	<5	<5	34	<2	<2	99		32	242	0.52	<.01	0.54	0.80	0.04	0.13	1022
		•																							0.02	-101	0.04	0.00	0.04	0.11	1022

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,siit) or hot Aqua Regia(rocks).

LAB NO	FIELD	From	Te		-			. 1						_																	
	NUMBER	From	To	Cu	РЬ	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Mo	Cr	ВІ	Sb	v	Sn	w	Sr	Y	La	Mn	Mg	TI	AI	Ca	Na	к	Р
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%	%	%	*	%	%	ppm										
												******								_											
Drill Hole	V-04-01A																														
R0406069	690	303.0	304.0	12		-																_									
R0406070	691	303.0	304.0	_		26	34.1	62	158	<1	5	24	1.26	676	120	<5	<5		2	<2	134	<2	15	154	0.34	<.01	0.22	0.94	0.04	0.09	651
R0406071	692	305.0		17		58	3.2	49	208	<1	10	32	2.58	214	98	<5	<5	30	<2	<2	212	3	36	345	0.78	<.01	0.48	1.32	0.05	0.13	834
R0406072	693	306.0	306.0 307.0	18		78	1.1	105	69	1	15	35	2.95	10	102	<5	<5	46	<2	<2	102	5	46	295	0.68	<.01	0.86	0.67	0.05	0.15	1022
R0406072	693 694	307.0	307.0	17		75	1.4	71	62	<1	13	40	2.96	22	105	<5	<5	47	<2	<2	153	6	54	308	0.76	<.01	0.74	0.92	0.05	0.17	1226
R0406074	695	307.0		11	11	228	1.6	139	49	2	30	82	2.41	26	118	<5	7	48	<2	<2	94	4	38	205	0.50	<.01	0.47	0.59	0.05	0.13	1063
R0406075	696	309.0	309.0	15		125	2.0	67	64	<1	14	33	2.82	48	106	<5	6	49	<2	<2	152	6	36	336	0.77	<.01	0.53	1.08	0.05	0.13	1221
R0406076	697	311.4	309.4	19		66	3.9	99	50	1	10	33	4.26	273	109	<5	<5	86	<2	<2	121	6	50	432	1.24	<.01	1.34	0.81	0.05	0.11	1632
R0406077	698	312.0	312.0 313.0	15		41	2.0	63	28	<1	10	26	3.29	168	110	<5	<5	84	<2	<2	75	6	40	396	1.08	<.01	1.31	0.67	0.05	0.12	2016
R0406078	699	313.0	313.0	13 18	10	52	1.0	70	24	<1	9	26	2.99	43	79	<5	<5	77	<2	<2	80	5	45	376	1.02	<.01	1.26	0.46	0.05	0.12	1129
R0406079	700	313.0			15	51	2.1	49	101	<1	11	29	2.82	183	97	<5	<5	74	<2	<2	100	5	43	375	1.05	<.01	1.22	0.64	0.06	0.14	1266
R0406080	700	314.0	314.7	14	13	36	0.9	60	31	<1	12	28	2.21	42		<5	<5	48	<2	<2	83	5	37	293	0.86	<.01	0.98	0.62	0.05	0.13	1245
R0406081	701	319.0	319.0 320.0	19	15	89	0.5	57	44	<1	15	41	2.69	11	98	<5	<5	55	<2	<2	86	6	46	549	1.18	<.01	1.30	0.72	0.05	0.12	1755
R0406082	702	321.0	320.0	21 26	17	71	0.6	47	29	<1	15	49	2.51	11	113	<5	<5	55	<2	<2	73	4	41	535	1.17	<.01	1.29	0.61	0.05	0.14	1004
R0406083	703	321.0	323.0	20	18	87	0.5	22	32	<1	14	54	3.14	<2	127	<5	<5	54	3	<2	93	7	50	616	1.49	<.01	1.61	0.76	0.05	0.14	1664
R0406084	705	323.0	323.0	37	15	74	0.8	46	26	<1	15	49	3.20	8	110	<5	<5	71	<2	<2	75	5	49	622	1.60	<.01	1.71	0.54	0.06	0.13	1288
R0406085	706	324.0	325.0	36	19 19	61	4.1	73	29	<1	17	39	3.37	154	111	<5	<5	81	<2	<2	67	10	61	473	1.37	<.01	1.46	0.62	0.05	0.13	1755
R0406086	707	325.0	326.0	24	13	77	1.1	47	28	<1	16	38	3.61	3	108	<5	<5	89	2	<2	69	9	66	604	1.70	<.01	1.73	0.61	0.06	0.13	1588
R0406087	708	326.0	327.0	29	15	97	0.6	38	26	<1	16	43	3.47	<2	104	<5	<5	80	2	<2	77	8	61	691	1.69	<.01	1.76	0.63	0.06	0.13	1489
R0406088	709	327.0	328.0	23	20	75	0.9	22	28	<1	15	41	4.03	2	103	<5	<5	85	<2	<2	78	9	72	727	1.98	<.01	2.02	0.56	0.06	0.13	1565
R0406089	710	328.0	329.0	23	20 18	83	0.8	41	22	1	15	34	4.32	- 4	106	<5	<5	83	<2	<2	85	10	64	781	2.31	<.01	2.35	0.60	0.06	0.12	1889
R0406090	711	329.0	330.0	17	10	83 66	<.4	39	19		13	33	3.98	4	98	<5	<5	81	<2	<2	81	8	66	736	2.12	<.01	2.05	0.54	0.06	0.11	1428
R0406091	712	330.0	331.0	23	22	90	1.4	84	25	<1	15	39	2.53	12	98	<5	<5	66	<2	<2	72	8	44	427	1.22	<.01	1.17	0.65	0.05	0.11	1441
R0406092	713	331.0	332.0	23	17	87	0.8	58 153	29	<1	18	44	4.54	4	105	<5	<5	88	<2	<2	114	11	83	791	2.52	<.01	2.40	0.91	0.06	0.13	1935
R0406093	714	332.0	333.0	20	16	80	0.7		24	1	- 14	34	3.68	41	110	<5	<5	91	<2	<2	79	7	60	544	1.65	<.01	1.54	0.63	0.05	0.11	1617
R0406094	715	333.0	334.0	24	17	63	0.7	78	23	<1	16	39	2.84	<2	104	<5	<5	75	<2	<2	83	7	56	525	1.34	<.01	1.33	0.63	0.05	0.14	1346
R0406095	716	334.0	335.0	24	14	57		109	25	1	16	41	2.96	<2	123	<5	<5	57	<2	<2	69	5	45	577	1.30	<.01	1.32	0.50	0.05	0.13	1182
R0406096	717	335.0	336.0	21	14		2.3	62	24	<1	15	39	2.86	4	119	<5	<5	56	<2	<2	71	6	43	526	1.28	<.01	1.28	0.59	0.05	0.13	1194
R0406097	718	336.0	337.0	24	20	77	0.9	56	33	<1	13	34	3.47	7	102	<5	<5	73	<2	<2	86	9	58	625	1.67	<.01	1.61	0.64	0.06	0.13	1505
R0406098	719	337.0	338.0	19	17	98	1.8	185	20	1	23	61	2.63	3	127	<5	<5	78	<2	<2	58	4	39	379	1.14	<.01	1.16	0.39	0.05	0.10	1092
R0406099	720	338.0	339.0	25	17	78	0.8	56	21	<1	14	36	3.81	<2	92	<5	<5	65	<2	<2	111	9	69	749	1.62	<.01	1.53	0.81	0.06	0.13	1501
110-100000	/20	330.0	338.0	20	16[87	0.5	40	23	<1	13	35	3.81	<2	94	<5	<5	61	<2	<2	102	9	66	763	1.67	<.01	1.62	0.76	0.06	0.13	1423

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	NI	Fe	Mo	Cr	Bi	Sb	V	Sn	w	Sr	Y	La	Mn	Mg	ті	AI	Ca	Na	ĸ	Р
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm	%	*	%	*	%	*	ppm										
																															<u> </u>
		-																						**~~~~							
	V-04-01A						_																								
R0406100	721	339.0	340.0	29	18	74	0.4	21	50	<1	16	36	4.40	<2	96	<5	<5	61	<2	<2	146	10	76	669	1.82	<.01	1.92	0.79	0.07	0.13	1543
R0406101	722	340.0	341.0	29	19	86	<.4	21	52	<1	15	43	4.32	<2	95	<5	<5	82	<2	<2	114	9	76	740	2.05	<.01	2.06	0.66	0.07	0.13	1543
R0406102	723	341.0	342.0	21	16	62	1.3	75	25	<1	11	30	2.66	<2	104	<5	<5	42	<2	<2	102	7	52	464	0.95	<.01	0.89	0.75	0.05	0.14	1089
R0406103	724	342.0	343.0	25	12	80	0.5	36	22	<1	13	34	3.94	<2	114	<5	<5	86	<2	<2	104	8	58	615	1.86	<.01	1.71	0.72	0.05	0.10	1346
R0406104	725	343.0	344.0	22	12	62	2.6	117	24	<1	10	23	2.49	13	112	<5	<5	49	<2	<2	85	6	42	289	0.91	<.01	0.81	0.56	0.05	0.12	1046
R0406105	726	344.0	345.0	26	16	83	1.3	176	22	1	14	31	3.88	3	94	<5	<5	67	<2	<2	99	8	71	497	1.33	<.01	1.25	0.65	0.05	0.12	1597
R0406106	727	345.0	346.0	15	12	71	1.6	97	47	<1	11	33	3.08	5	97	<5	5	47	<2	<2	175	8	57	552	1.30	<.01	0.48	1.31	0.06	0.11	1163
R0406107	728	346.0	347.0	21	11	61	0.5	47	41	<1	11	27	2.46	<2	81	<5	<5	37	<2	<2	85	6	46	396	0.80	<.01	0.40	0.47	0.04	0.13	1054
R0406108	729	347.0	348.0	27	17	78	<.4	4	20	<1	13	31	4.88	<2	74	<5	<5	66	<2	<2	109	10	80	870	1.77	<.01	1.37	0.63	0.06	0.11	1491
R0406109	730	348.0	349.0	16	11	52	3.5	21	17	<1	10	21	3.40	5	92	<5	<5	47	<2	<2	85	6	50	514	1.02	<.01	0.66	0.52	0.04	0.09	1048
R0406110	731	349.0	350.0	22	16	59	4.1	228	24	2	18	36	4.08	7	75	<5	5	46	<2	<2	89	6	41	420	0.88	<.01	0.34	0.49	0.04	0.12	1006
R0406111	732	350.0	351.0	10	29	53	4.2	169	69	1	11	30	2.25	23	80	<5	<5	15	<2	<2	95	5	47	192	0.55	<.01	0.34	0.48	0.05	0.22	757
R0406112	733	351.0	352.0	7	19	48	3.0	213	57	<1	7	20	1.60	25	84	<5	7	11	<2	<2	85	3	37	105	0.33	<.01	0.28	0.39	0.04	0.23	514
R0406113	734	352.0	353.0	6	20	61	2.6	334	56	1	9	25	1.83	15	62	<5	5	12	<2	<2	85	3	46	110	0.32	<.01	0.31	0.37	0.05	0.24	584
R0406114	735	353.0	354.0	10	21	65	4.1	359	46	1	14	36	1.46	15	71	<5	17	6	<2	<2	66	3	39	70	0.18	<.01	0.26	0.28	0.05	0.23	571
R0406115	736	354.0	355.0	5	14	47	1.5	163	61	1	8	22	0.85	5	68	<5	5	5	<2	<2	73	5	42	67	0.19	<.01	0.25	0.32	0.04	0.22	449
R0406116	737	355.0	356.0	<1	8	27	1.5	108	100	1	4	14	0.80	5	94	<5	<5	4	<2	<2	58	5	25	56	0.14	<.01	0.21	0.35	0.04	0.17	667
R0406117	738	356.0	356.5	3	<4	17	1.0	47	73	<1	2	10	0.65	3	151	<5	<5	<2	<2	<2	60	3	15	47	0.13	<.01	0.16	0.44	0.03	0.13	462
R0406118	739	356.5	357.5	22	34	59	16.0	1001	27	2	12	48	3.91	26	98	<5	29	12	<2	<2	93	4	44	74	0.18	<.01	0.23	0.37	0.04	0.15	941
R0406119	740	358.0	359.0	5	7	22	1.2	87	49	<1	3	11	0.66	4	99	<5	<5	6	<2	<2	64	4	30	49	0.17	<.01	0.19	0.35	0.04	0.18	271
R0406120	741	359.0	360.0	7	9	20	1.6	105	59	1	6	17	88.0	3	106	<5	7	6	<2	2	57	5	27	57	0.13	<.01	0.21	0.28	0.04	0.17	634
R0406121	742	360.0	361.0	10	10	24	3.5	160	82	1	5	20	1.52	<2	111	<5	<5	10	<2	<2	58	5	28	72	0.17	<.01	0.22	0.38	0.03	0.16	769
R0406122	743	361.0	362.0	23	17	24	6.4	242	59	1	7	27	1.96	22	112	<5	6	10	<2	<2	50	6	31	57	0.14	<.01	0.20	0.34	0.04	0.16	693
R0406123	744	362.0	363.0	7	6	39	2.4	125	73	1	7	19	0.91	3	103	<5	<5	5	<2	<2	48	5	25	45	0.10	<.01	0.21	0.35	0.04	0.18	841
R0406124	745	363.0	364.0	4	6	33	1.8	120	45	1	7	22	0.89	3	105	<5	<5	8	<2	<2	49	6	28	65	0.15	<.01	0.23	0.37	0.04	0.19	1007
R0406125	746	364.0	365.0	8	8	29	2.2	80	57	<1	5	16	0.96	21	120	<5	<5	12	<2	<2	67	5	27	74	0.18	<.01	0.24	0.50	0.04	0.17	829
R0406126	747	365.0	366.0	2	9	42	3.5	78	76	<1	4	15	0.96	70	105	<5	<5	13	2	<2	69	5	24	81	0.21	<.01	0.22	0.50	0.04	0.16	866
R0406127	748	366.0	367.0	7	12	35	2.1	125	39	1	8	22	1.15	37	97	<5	<5	10	<2	<2	61	6	35	86	0.25	<.01	0.26	0.44	0.04	0.19	970
R0406128	749	367.0	368.0	6	11	39	2.2	60	85	<1	4	14	0.76	6	118	<5	<5	6	<2	<2	58	4	27	51	0.13	<.01	0.22	0.38	0.03	0.16	816
R0406129	750	368.0	369.0	7	12	34	1.8	41	48	<1	3	14	0.95	2	108	<5	<5	10	<2	<2	63	5	33	56	0.19	<.01	0.22	0.59	0.04	0.18	1558

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,siit) or hot Aqua Regia(rocks).

2001-12 /0671-750

Datet: 23 APR 2004

ŧ.

Ì

1

~

V 04-0194R

Job:

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t

	0528008000000	 	 ***********
Drill Holo	V-04-01A		

Drill Hole	V-04-01A					
R0406050	671	277.0	278.0	42	5	
R0406051	672	278.0	279.0	36	5	
R0406052	673	279.0	280.0	32	5	
R0406063	674	280.0	281.0	22	5	
R0406054	675	281.0	282.0	4140	5	4.301
R0406055	676	282.0	283.0	10220	5	11.491
R0406056	677	283.0	284.0	22	5	
R0406057	678	284.0	285.0	48	5	
R0406058	679	285.0	286.0	44	5	
R0406059	680	286.0	287.0	42	5	
R0406060	681	287.0	288.0	182	5	
R0406061	682	288.0	289.0	364	5	
R0406062	683	289.0	290.0	936	5	
R0406063	684	290.0	291.0	746	5	
R0406064	685	291.0	292.0	48	5	
R0406065	686	299.0	300.0	78	5	
R0406066	687	300.0	301.0	186	5	
R0406067	688	301.0	302.0	178	5	
R0406068	689	302.0	303.0	268	5	
R0406069	690	303.0	304.0	9420	5	9.196
R0406070	691	304.0	305.0	258	5	
R0406071	692	305.0	306.0	34	5	
R0406072	693	306.0	307.0	92	5	
R0406073	694	307.0	308.0	144	5	
R0406074	695	308.0	309.0	1714	5	0.487
R0406075	696	309.0	309.4	82	5	
R0406076	697	311.4	312.0	74	5	
R0406077	698	312.0	313.0	58	5	
R0406078	699	313.0	314.0	24	5	
R0406079	700	314.0	314.7	32	5	
R0406080	701	318.0	319.0	22	5	
R0406081	702	319.0	320.0	<10	5	
R0406082	703	321.0	322.0	<10	5	
R0406083	704	322.0	323.0	36	5	
R0406084	705	323.0	324.0	698	5	
R0406085	706	324.0	325.0	22	5	
R0406086	707	325.0	326.0	<10	5	
R0406087	708	326.0	327.0	206	5	
R0406088	709	327.0	328.0	42	5	

Insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS Wt Au The weight of sample taken to analyse for gold (geochem)

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	កា	m	ppb	gram	g/t

Drill Hole V-04-01A

1

È.

I

-

_

	1-04-V IA					
R0406089	710	328.0	329.0	<10	5	
R0406090	711	329.0	330.0	32	5	
R0406091	712	330.0	331.0	<10	5	
R0406092	713	331.0	332.0	1652	5	1.327
R0406093	714	332.0	333.0	<10	5	
R0406094	715	333.0	334.0	<10	5	
R0406095	716	334.0	335.0	722	5	
R0406096	717	335.0	336.0	58	5	
R0406097	718	336.0	337.0	486	5	
R0406098	719	337.0	338.0	32	5	
R0406099	720	338.0	339.0	22	5	
R0406100	721	339.0	340.0	<10	5	
R0406101	722	340.0	341.0	<10	5	
R0406102	723	341.0	342.0	64	5	
R0406103	724	342.0	343.0	126	5	
R0406104	725	343.0	344.0	1498	5	1.426
R0406105	726	344.0	345.0	256	5	
R0406106	727	345.0	346.0	82	5	
R0406107	728	346.0	347.0	<10	5	
R0406108	729	347.0	348.0	<10	5	
R0406109	730	348.0	349.0	2440	6	2.343
R0406110	731	349.0	360.0	1046	5	0.956
R0406111	732	350.0	351.0	762	5	
R0406112	733	351.0	352.0	266	5	
R0406113	734	352.0	353.0	<10	5	
R0406114	735	353.0	354.0	18	5	
R0406115	736	354.0	355.0	22	5	
R0406116	737	355.0	356.0	136	5	
R0406117	738	356.0	356.5	138	5	
R0406118	739	356.5	357.5	1228	5	1.150
R0406119	740	358.0	359.0	46	5	
R0406120	741	359.0	360.0	<10	5	
R0406121	742	360.0	361.0	98	5	
R0406122	743	361.0	362.0	672	5	
R0406123	744	362.0	363.0	64	5	
R0406124	745	363.0	364.0	62	5	
R0406125	746	364.0	365.0	192	5	
R0406126	747	365.0	366.0	526	5	
R0406127	748	366.0	367.0	58	5	
R0406128	749	367.0	368.0	488	5	
R0406129	750	368.0	369.0	218	5	

i=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS Wt Au The weight of sample taken to analyse for gold (geochem)

0751-0811

Date: 23 APR 2004

Job: V 04-0201R

LAB NO	FIELD	From	To	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fə	Mo	Cr	Bi	Sb	V	Sn	W	Sr	Y	La	Mn	Mg	TI	Al	Ca	Na	К	P
	NUMBER	m	m	ppm	%	ppm	%	%	%	%	%	%	ppm																		

Drill Hole V-04-01A

Drill Hole	V-04-01A																				50	-	29	64	0.17	<.01	0.21	0.34 0.03	0.18	618
R0406352	751	369.0	370.0	10	7	29	2.3	55	42	<1	4	15	0.81	18	135	<5	<5	14	<2	<2	58	-				<.01	0.21	0.19 0.04	0.20	277
R0406353	752	370.0	371.0	9	5	21	1.4	47	37	<1	3	11	0.74	4	97	<5	<5		<2	<2	46	- 4	32	63	0.16	<.01	0.22	0.36 0.04	0.20	
R0406354	753	371.0	372.0	5	6	43	1.6	68	46	1	4	15	1.02	<2	92	<5	<5	15	<2	<2	59	- 4	37	84			0.22	0.54 0.04	0.19	1150
R0406355	754	372.0	373.0	8	5	74	1.6	48	72	1	4	17	1.46	2	123	<5	<5	17	<2	<2	80		35	123	0.31	<.01	0.19	0.41 0.05	0.19	563
R0406356	755	373.0	374.0	3	<4	42	2.0	92	83	1	5	14	0.75	8	130	<5	<5	15	<2	<2	62	-4	28	56	0.18	<.01			0.18	1540
R0406357	756	374.0	375.0	6	4	42	2.4	66	66	<1	3	12	0.86	6	106	<5	<5	18	<2	<2	76	4	29	76	0.18	<.01	0.24	0.51 0.04		564
R0406358	757	375.0	376.0	6	12	60	1.0	85	44	1	5	16	1.31	2	94	<5	<5	23	<2	<2	62	5	37	114	0.25	<.01	0.26	0.28 0.05	0.18	1336
R0406359	758	376.0	377.0	7	8	168	2.3	124	40	1	11	34	1.73	5	107	<5	<5	26	<2	<2	79	5	38	133	0.32	<.01	0.30			238
R0406360	759	377.0	378.4	2	<4	23	8.7	21	74	<1	1	9	0.54	<2	176	<5	<5	6	<2	<2	66	<2	8	45	0.12	<.01		0.51 0.04	0.08	219
R0406361	760	378.4	379.2	4	<4	19	6.5	8	37	<1	3	10	1.07	2	224	<5	<5	13	<2	<2	121	<2	10	147	0.36	<.01	0.21	0.37 0.04	0.07	902
R0406362	761	379.2	380.0	17	6	54	2.1	41	63	1	10	32	4.05	<2	114	<5	<5	52	<2	<2	126	4	36	667	1.22		0.47	0.72 0.04		1084
R0406363	762	380.0	381.0	15	6	51	2.0	47	25	<1	11	32	3.63	<2	113	<5	<5	48	<2	<2	106	4	39	649	1.14		0.60	0.72 0.04	0.11	
R0406364	763	381.0	382.0	16	12	59	1.0	45	25	<1	12	34	4.63	<2	128	<5	<5	73	<2	<2	77	5	52	762	1.37	<.01	1.34	0.53 0.05	0.12	1209
R0406365	764	382.0		17	13	69	1.5	33	21	1	12	37	4.06	<2	135	<5	<5	79	<2	<2	76	7	60		1.78		1.76	0.54 0.05		1408
R0406366	765	383.0		19	15	80	0.8	34	25	<1	15	38	4.36	<2	113	<5	<5	85	<2	<2	115	8	75	650	2.31		2.03	0.82 0.05		1653
R0406367	766	384.0		20	14	72	0.6	47	28	<1	15	32	4.10	<2	110	<5	<5	81	<2	<2	89	9	75	625	1.97	<.01	1.81	0.75 0.05		
R0406368	767	385.0			10	47	1.0	53	25	<1	11	31	3.11	17	139	<5	<5	83	<2	<2	60	4	40		1.35	<.01	1.37	0.49 0.05		1068
R0406369	768	386.0			12	59	0.9	34	25	<1	11	30	3.66	<2	122	<5	<5	74	<2	<2	68	5	51	654	1.38	<.01	1.49	0.61 0.05	0.11	1288

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

																													·····		
LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	NI	Fe	Mo	Cr	Bi	Sb	v	Sn	w	Sr	Y	La	Mn	Mg	TI	AI	Ca	Na	ĸ	P
	NUMBER	m	m	ppm	%	ppm	%	%	%	%	%	%	ppm																		
Drill Hole	V-04-01A																														
R0406370	769	387.0	388.0	18	11	53	2.5	48	21	<1	11	32	4.01	_<2	135	<5	<5	80		<2	62	- 6	54	780	1.46	<.01	1.64		0.04	0.11	1408
R0406371	770	388.0	389.0	28	7	60	1.2	58	27	1	13	38	4.03	<2	132	<5	<5	75	<2	<2	74	6	52	712	1.57	<.01	1.65		0.05	0.13	1349
R0406372	771	389.0	390.0	21	10	59	1.1	54	25	1	13	33	3.65	<2	141	<5	<5	70	<2	<2	76	6	55	570	1.63	<.01	1.62		0.05	0.12	1326
R0406373	772	390.0	391.0	11	7	41	5.0	55	27	1	10	25	2.52	4	166	<5	<5	55	<2	<2	62	4	36	363	1.05	<.01	1.08		0.05	0.13	1153
R0406374	773	391.0	392.0	23	10	96	2.0	38	132	1	9	26	2.65	3	156	<5	<5	57	<2	<2	59	4	33	389	1.13	<.01	1.13	0.47	0.05	0.12	972
R0406375	774	392.0	393.0	30	19	86	1.3	37	36	<1	17	37	4.96	<2	92	<5	<5	91	<2	<2	74	9	85	744	2.12	<.01	2.33	0.60	0.05	0.15	1641
R0406376	775	393.0	394.0	21	12	109	2.1	16	24	<1	14	33	4.18	<2	132	<5	<5	72	<2	<2	67	7	68	541	1.71	<.01	1.76	0.59	0.05	0.14	1349
R0406377	776	394.0	395.0	12	9	51	1.3	34	32	<1	10	28	2.77	<2	149	<5	<5	62	<2	<2	61	4	43	412	1.37	<.01	1.28	0.59	0.05	0.12	956
R0406378	777	395.0	396.0	14	9	49	2.1	51	23	<1	10	28	2.86	<2	129	<5	<5	60	<2	<2	52	4	46	458	1.45	<.01	1.37	0.44	0.05	0.13	1072
R0406379	778	399.5	400.0	16	10	60	2.0	68	24	1	11	34	3.19	18	138	<5	<5	70	<2	<2	63	6	49	530	1.71	<.01	1.57	0.61	0.05	0.12	1341
R0406380	779	400.0	401.0	13	11	62	1.6	58	27	<1	13	26	3.32	4	108	<5	<5	70	<2	<2	62	6	49	582	1.72	<.01	1.58	0.68	0.05	0.13	1516
R0406381	780	403.4	403.6	6	<4	35	2.1	17	15	<1	5	19	1.88	<2	171	<5	<5	45	<2	<2	34	2	25	357	0.82	<.01	0.89	0.26	0.05	0.09	598
R0406382	781	405.3	406.0	15	7	48	7.5	34	15	<1	8	22	3.34	<2	123	<5	<5	43	<2	<2	53	3	34	593	0.91	<.01	1.15	0.44	0.04	0.10	770
R0406383	782	406.0	407.0	17	15	75	1.6	80	15	1	12	33	5.12	<2	79	<5	<5	69	<2	<2	73	6	53	751	1.39	<.01	1.84	0.53	0.05	0.14	1318
R0406384	783	407.0	408.0	8	12	58	3.6	254	44	3	9	23	2.49	4	78	<5	<5	27	<2	<2	68	4	32	174	0.40	<.01	0.54	0.46	6 0.05	0.20	797
R0406385	784	408.0	409.0	6	11	80	4.6	527	42	1	5	17	1.82	13	71	<5	6	8	<2	<2	48	3	34	52	0.12	<.01	0.25	0.38	3 0.04	0.23	504
R0406386	785	409.0	410.0	6	9	64	2.3	103	290	1	3	11	0.85	14	83	<5	<5	10	<2	<2	90	5	41	88	0.21	<.01	0.31	0.59	0.05	0.23	401
R0406387	786	410.0	411.0	6	11	102	3.5	171	55	1	6	18	0.90	74	90	<5	7	12	<2	<2	42	5	40	65	0.16	<.01	0.35	0.29	0.05	0.23	613
R0406388	787	411.0	412.0	6	12	81	1.2	169	27	<1	7	21	1.10	2	73	<5	6	13	<2	<2	42	5	50	85	0.19	<.01	0.43	0.29	0.05	0.24	593
R0406389	788	412.0	413.0	7	14	61	1.0	215	45	<1	7	18	1.24	3	61	<5	<5	12	<2	<2	46	4	56	79	0.19	<.01	0.49	0.31	0.05	0.28	574
R0406390	789	413.0	414.0	11	14	137	2.0	790	28	1	9	24	2.26	9	90	<5	27	18	<2	<2	42	4	38	76	0.19	<.01	0.47	0.34	0.04	0.23	640
R0406391	790	414.0	415.0	12		56	1.0	83	53	1	5	20	1.78	2	97	<5	<5	35	<2	<2	48	5	52	164	0.44	<.01	0.81	0.45	5 0.05	0.23	831
R0406392	791	415.0	416.0	14	22	162	2.1	252	90		17	44	2.55	<2	91	<5	<5	34	<2	<2	68	11	59	175	0.49	<.01	0.89	0.60	0.05	0.22	1782

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

Date: 23 APR 2004

Job: V 04-0201R

Date:	23	APR	2004	

Job: V 04-0201R

LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Mo	Cr	Bi	Sb	×	Sn	W	Sr	Y	La	Mn	Mg	TI	AI	Ca	Na	К	P
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	%	ppm	%	%	%	%	%	%	ppm										
																												•			-

Drin	Hole	V-04-01	

Drill Hole	V-04-01A																													
R0406393	792	416.0	417.0	12	9	244	13.9	270	31	1	8	27	2.07	492	111	<5	<5	41	<2	<2	47	6	35	162	0.49	<.01	0.78	0.46 0.05	0.16	1388
R0406394	793	417.0	418.0	12	24	3290	12.9	890	27	2	14	47	3.43	373	82	<5	36	39	<2	<2	58	4	35	194	0.49	<.01	0.87	0.36 0.06	0.17	687
R0406395	794	418.0	418.7	11	12	778	20.3	273	47	1	6	22	2.05	994	147	<5	8	51	<2	<2	53	2	26	184	0.45	<.01	0.63	0.62 0.05	0.12	1019
R0406396	795	418.7	419.7	8	<4	33	8.0	42	28	<1	<1	6	1.19	145	187	<5	<5	53	<2	<2	59	<2	9	132	0.37	<.01	0.39	0.88 0.04	0.05	810
R0406397	796	419.7	420.7	7	<4	27	1.9	38	82	<1	2	7	0.53	8	213	<5	<5	11	<2	5	45	<2	6	62	0.08	<.01	0.15	0.66 0.04	0.05	442
R0406398	797	420.7	422.0	7	12	346	3.2	164	85	1	6	24	1.09	35	113	<5	9	13	<2	<2	61	<2	37	98	0.23	<.01	0.47	0.45 0.05	0.20	369
R0406399	798	422.0	423.0	5	7	257	2.0	53	142	1	4	16	1.01	3	81	<5	<5	19	<2	<2	58	2	38	136	0.36	<.01	0.58	0.41 0.05	0.22	392
R0406400	799	423.0	424.0	6	5	201	1.8	32	421	1	2	17	1.60	7	81	<5	<5	40	<2	<2	104	5	41	237	0.63	<.01	0.86	0.53 0.06	0.20	712
R0406401	800	424.0	424.4	18	22	199	2.0	82	62	1	11	28	1.15	9	103	<5	<5	22	<2	<2	105	7	43	88	0.21	<.01	0.66	0.28 0.07	0.27	432
R0406402	801	424.4	425.4	8	6	82	6.4	34	43	1	5	16	1.14	34	159	<5	<5	20	<2	<2	111	6	28	134	0.19	<.01	0.50	1.13 0.06	0.18	415
R0406403	802	425.4	426.0	13	12	96	2.8	20	40	<1	4	17	1.60	<2	87	<5	<5	15	<2	<2	96	5	42	143	0.26	<.01	0.77	0.54 0.07	0.26	833
R0406404	803	426.0	427.0	8	12	115	3.1	50	25	1	6	20	1.61	4	115	<5	<5	12	<2	<2	91	2	29	111	0.18	<.01	0.59	0.62 0.07	0.17	445
R0406405	804	427.0	428.0	8	22	124	2.1	45	55	<1	8	24	2.59	3	107	<5	<5	35	3	<2	70	4	38	273	0.36	<.01	0.84	0.79 0.07	0.14	664
R0406406	805	428.0	429.0	10	5	92	2.3	18	25	<1	11	36	3.14	<2	119	<5	<5	44	<2	<2	37	3	29	322	0.46	<.01	1.10	0.34 0.06	0.10	678
R0406407	806	429.6	429.6	13	13	69	5.5	41	27	1	9	34	4.12	<2	99	<5	<5	63	<2	<2	47	4	32	474	0.52	<.01	0.96	0.44 0.06	0.09	894
R0406408	807	429.6	430.6	2	<4	14	6.0	53	44	1	<1	6	0.75	5	208	<5	<5	7	<2	<2	48	<2	6	69	0.05	<.01	0.10	0.69 0.04	0.05	94
R0406409	808	430.6	431.6	1	<4	36	14.6	62	105	1	4	16	1.01	5	176	<5	<5	4	<2	<2	82	<2	10	101	0.05	<.01	0.15	1.00 0.04	0.08	88
R0406410	809	434.0	434.8	11	16	196	5.6	246	34	3	9	35	2.74	12	125	<5	<5	25	<2	<2	91	2	25	186	0.32	<.01	0.76	0.85 0.06	0.14	171
R0406411	810	435.3	436.3	14	6	78	2.8	25	38	<1	14	38	2.16	2	116	<5	<5	40	<2	<2	72	<2	28	230	0.38	<.01	0.87	0.58 0.04	0.14	389
R0406412	811	439.7	440.7	19	6	43	5.6	50	32	<1	8	13	3.44	10	97	<5	<5	73	<2	<2	91	6	43	380	0.90	<.01	1.45	0.97 0.06	0.18	2718

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ź

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

ECSTALL MINING-X04 0751-0811

Date: 23 APR 2004

و وی خور هم هوا خور وی هوا جزء هی هار خور سه عام هی هو مور برا کود برند باند سه از نه ماه برای اسا ها ماه در ا

Job: V 04-0201R

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t

Drill Hole	V-04-01A					
R0406352	751	369.0	370.0	350	5	
R0406353	752	370.0	371.0	220	5	
R0406354	753	371.0	372.0	400	5	
R0406355	754	372.0	373.0	240	5	
R0406356	755	373.0	374.0	744	5	
R0406357	756	374.0	375.0	990	5	
R0406358	757	375.0	376.0	<10	5	
R0406359	758	376.0	377.0	160	5	
R0406360	759	377.0	378.4	3800	5	4.158
R0406361	760	378.4	379.2	3540	5	3.097
R0406362	761	379.2	380.0	444	5	
R0406363	762	380.0	381.0	520	5	
R0406364	763	381.0	382.0	120	5	
R0406365	764	382.0	383.0	280	5	
R0406366	765	383.0	384.0	80	5	
R0406367	766	384.0	385.0	10	5	
R0406368	767	385.0	386.0	180	5	
R0406369	768	386.0	387.0	80	5	
R0406370	769	387.0	388.0	200	5	
R0406371	770	388.0	389.0	100	5	
R0406372	771	389.0	3 9 0.0	120	5	
R0406373	772	390.0	391.0	1900	5	2.025
R0406374	773	391.0	392.0	620	5	
R0406375	774	392.0	393.0	282	5	
R0406376	775	393.0	394 .0	560	5	
R0406377	776	394.0	395.0	446	5	
R0406378	777	395.0	396 .0	632	5	
R0406379	778	399.5	400.0	380	5	
R0406380	779	400.0	401.0	188	5	
R0406381	780	403.4	403.6	756	5	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

Date: 23 APR 2004

_

_

Job:

V 04-0201R

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t
Drill Hole	V-04-01A	***	و الله الله الله الله الله الله الله الل			
R0406382	781	405.3	406.0	944	5	
R0406383	782	406.0	407.0	20	5	
R0406384	783	407.0	408.0	454	5	
R0406385	784	408.0	409.0	1020	5	1.204
R0406386	785	409.0	410.0	240	5	
R0406387	786	410.0	411.0	592	5	
R0406388	787	411.0	412.0	20	5	
R0406389	788	412.0	413.0	140	5	
R0406390	789	413.0	414.0	580	5	
R0406391	790	414.0	415.0	64	5	
R0406392	791	415.0	416.0	20	5	
R0406393	792	416.0	417.0	1760	5	1.867
R0406394	793	417.0	418.0	620	5	
R0406395	794	418.0	418.7	660	5	
R0406396	795	418.7	419.7	3260	5	3.768
R0406397	796	419.7	420.7	1464	5	1.269
R0406398	797	420.7	422.0	252	5	
R0406399	798	422.0	423.0	404	6	
R0406400	799	423.0	424.0	320	5	
R0406401	800	424.0	424.4	296	5	
R0406402	801	424.4	425.4	1696	5	2.039
R0406403	802	425.4	426.0	1290	5	1.287
R0406404	803	426.0	427.0	1260	5	1.375
R0406405	804	427.0	428.0	556	5	
R0406406	805	428.0	429.0	784	5	
R0406407	806	429.0	429.6	680	5	
R0406408	807	429.6	430.6	2400	5	2.136
R0406409	808	430.6	431.6	8640	5	8.423
R0406410	809	434.0	434.8	1450	5	1.465
R0406411	810	435.3	436.3	832	5	0.834
R0406412	811	439.7	440.7	5800	5	6.274

Iminsufficient sample Xmsmall sample Emexceeds calibration Cmbeing checked Rerevised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

0812-0905

Date: 27 APR 2004

Job: V 04-0208R

				÷																											
LAB NO	FIELD	From	То	Cu	Pb	Zn	Aa	As	Ba	Cd	Co	NI	Fe	Mo	Cr	Bi	Sb	v	Sn	w	Sr	V	1.	Mn	Mg	TI	A1	6	No	ĸ	
															Ο.			•	0		3				my		A1	l ca	i na i	n	
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	mag	ppm	mag	mag	%	mag	ppm	mag	mag	naa	ppm	nom	nom	nnm	ppm	mag	%	%	%	۰/	04	•4	ppm
								FF	FF		PP	PP		PPIL			P.P.I.		- ppilli	Ph	ppin	Phin			70	//	/0		70	78	ppin

Drill Hole V-04-02

R0406619	812	40.60	41.60	7	13	29	<.4	578	8	<1	8	30	1.96	30	75	<5	25	4	<2	<2	144	6	18	107	0.28	<.01	0.24	0.34 0.07	0.14	65
R0406620	813	41.60	42.60	8	8	32	0.4	1506	14	1	7	25	4.43	64	120	<5	48	23	<2	<2	86	7	13	179	0.41	<.01	0.21	0.42 0.05	0.06	
R0406621	814	42.60	43.60	8	10	62	0.4	1026	22	<1	8	26	3.42	37	114	<5	19	9	<2	<2	118	6	35	90	0.27	<.01	0.30	0.40 0.06	0.17	114
R0406622	815	43.60	44.60	10	16	284	0.6	1327	50	1	10	22	7.59	31	122	<5	17	67	<2	<2	212	8	40	458	1.15	<.01	0.60	1.28 0.06	0.12	1380
R0406623	816	44.60	45.60	5	14	427	<.4	1626	36	1	6	20	7.83	35	138	<5	11	63	<2	<2	179	6	22	391	0.95	<.01	0.54	0.98 0.06	0.07	751
R0406624	817	45.60	46.60	8	17	148	0.4	1151	34	1	10	24	6.45	36	136	<5	13	73	<2	<2	147	5	39	383	0.85	<.01	0.52	0.84 0.05	0.12	1143
R0406625	818	46.60	47.60	13	23	228	0.5	1456	41	2	13	39	7.44	44	136	<5	32	79	<2	<2	177	8	64	478	1.19	<.01	0.52	1.26 0.04	0.12	1433
R0406626	819	47.60	48.60	8	19	70	<.4	588	52	1	13	27	6.17	20	127	<5	13	86	<2	<2	171	8	53	549	1.15	<.01	0.54	1.07 0.05	0.13	1331
R0406627	820	48.60	49.60	10	19	67	<.4	608	59	1	12	27	5.31	23	126	<5	12	76	<2	<2	169	7	55	498	1.07	<.01	0.51	0.99 0.04	0.15	1399
R0406628	821	49.60	50.60	17	17	74	<.4	602	70	1	17	45	5.26	13	129	<5	14	74	<2	<2	198	13	137	568	1.27	<.01	0.49	1.26 0.05	0.15	1618
R0406629	822	50.60	51.60	14	20	47	<.4	669	85	1	14	42	4.21	4	137	<5	22	56	2	<2	158	7	70	433	0.98	<.01	0.42	1.00 0.04	0.15	1145
R0406630	823	51.60	52.60	8	13	70	<.4	544	67	<1	11	24	4.18	6	141	<5	19	60	<2	<2	201	7	65	432	1.04	<.01	0.44	1.17 0.05	0.14	1160
R0406631	824	52.60	53.60	7	14	45	<.4	498	60	<1	7	13	3.57	32	103	<5	10	42	<2	<2	171	4	39	283	0.66	<.01	0.48	0.91 0.05	0.13	1432
R0406632	825	53.60	54.60	6	12	38	<.4	589	52	<1	6	12	3.64	16	107	<5	10	37	2	<2	122	4	27	258	0.59	<.01	0.39	0.58 0.06		925
R0406633	826	54.60	55.60	9	20	54	<.4	521	74	<1	16	17	4.51	7	93	<5	10	65	<2	<2	145	10	57	413	0.95	<.01	0.55	0.90 0.05	0.15	1645
R0406634	827	55.60	56.60	6	18	66	<.4	332	69	<1	14	17	4.96	12	86	<5	7	70	<2	<2	145	10	67	534	1.16	<.01	0.62	0.92 0.05	0.13	1915
R0406635	828	56.60	57.60	12	18	46	<.4	573	42	<1	10	22	5.14	29	93	<5	17	55	<2	<2	208	6	65	506	1.32	<.01	0.57	1.11 0.05	0.17	1559
																				~	200			500	1.02	01	0.07		v.17	1008

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

27 APR 2004 Date:

Job: V 04-0208R

1

								Bu'					*									******									* + + + + + + + + + + +
LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Мо	Cr	Bi	Sb	v	Sn	w	Sr	Y	La	Mn	Mg	Ti	AI	Ca	Na	к	Р
	NUMBER	m	m	ppm	%	ppm	ppm	ppm	%	%	%	%	%	%	ppm																
	 																			_											
Drill Hole	V-04-02																			_											
R0406636	829	57.60	58.60	11	12	90	0.4	348	56	<1	9	16	3.68	34	104	<5	7	47	<2	<2	161	6	44	340	0.90	<.01	0.47	0.79	0.05	0.15	1084
R0406637	830	58.60	59.60	11	20	61	<.4	442	66	<1	12	20	4.53	17	88	<5	18	61	<2	<2	217	8	64	453	1.25	<.01	0.60	1.07	0.05	0.15	1553
R0406638	831	59.60	60.60	5	14	94	0.5	444	39	<1	9	14	2.92	37	99	<5	18	33	<2	<2	153	5	38	249	0.65	<.01	0.39	0.59	0.05	0.13	657
R0406639	832	60.60	61.60	5	14	37	0.5	297	58	<1	9	19	3.59	16	110	<5	8	41	<2	<2	201	4	31	384	1.03	<.01	0.46	0.76	0.05	0.11	835
R0406640	833	61.60	62.60	10	16	83	0.5	321	52	<1	9	16	4.53	22	75	<5	8	51	<2	<2	223	8	55	477	1.32	<.01	0.64	0.71	0.05	0.18	1036
R0406641	834	62.60	63.60	15	20	80	<.4	146	91	<1	11	18	5.73	9	84	<5	<5	65	<2	<2	209	11	77	629	1.71	<.01	0.67	0.85	0.05	0.15	1620
R0406642	835	63.60	64.60	6	15	156	0.6	245	111	<1	8	20	3.00	17	109	<5	10	31	<2	<2	200	6	42	317	0.98	<.01	0.40	0.76	0.05	0.11	522
R0406643	836	64.60	65.60	16	22	228	0.4	638	42	<1	13	37	2.78	28	90	<5	22	15	2	<2	157	9	56	178	0.60	<.01	0.38	0.54	0.05	0.18	463
R0406644	837	65.60	66.60	8	12	482	0.4	381	42	<1	9	22	3.71	28	82	<5	<5	30	2	<2	169	16	79	316	1.05	<.01	0.51	0.53	0.07	0.17	963
R0406645	838	113.00	113.50	4	11	45	0.7	981	20	<1	4	12	5.65	86	88	<5	8	38	<2	<2	147	4	41	422	0.68	<.01	0.70	1.61	0.06	0.11	3807
R0406646	839	116.40	117.50	6	17	77	<.4	509	35	<1	12	20	3.88	13	71	<5	11	62	<2	<2	98	10	67	281	0.56	<.01	1.06	0.75	0.06	0.20	2353
R0406647	840	117.50	118.00	2	10	38	1.0	731	28	<1	8	14	3.90	174	100	<5	18	56	<2	<2	89	7	40	260	0.51	<.01	0.96	1.07	0.05	0.15	4068
R0406648	841	123.00	124.00	7	18	56	0.5	459	30	<1	12	18	4.22	71	84	<5	7	66	2	<2	96	8	66	282	0.63	<.01	1.28	0.87	0.06	0.17	2316
R0406649	842	151.80	152.80	<1	12	47	1.9	374	34	<1	6	6	3.29	287	103	<5	<5	50	<2	<2	101	6	43	239	0.58	<.01	1.28	1.07	0.06	0.21	2214
R0406650	843	152.80	153.80	12	23	79	<.4	185	24	<1	10	5	6.29	12	36	<5	<5	60	<2	<2	156	11	91	502	1.21	<.01	2.63	0.76	0.08	0.22	2065
R0406651	844	153.80	154.80	6	16	57	1.6	541	42	<1	11	8	4.57	266	69	<5	<5	68	2	<2	105	9	62	318	0.75	<.01	1.58	1.00	0.06	0.20	2570
R0406652	845	154.80	155.80	9	16	39	0.4	189	49	<1	10	9	4.21	19	58	<5	<5	51	<2	<2	122	10	60	292	0.65	<.01	1.61	0.77	0.07	0.22	2295
R0406653	846	155.80	156.80	15	29	81	0.8	456	22	<1	15	6	7.48	131	49	<5	15	87	<2	<2	139	14	58	548	1.26	<.01	2.79	0.87	0.08	0.17	3133
R0406654	847	156.80	158.00	7	22	81	0.7	439	29	<1	14	5	6.21	70	44	<5	<5	87	<2	<2	141	13	68	516	1.21	<.01	2.50	0.75		0.18	2379
R0406655	848	158.00	159.00	4	20	59	1.6	427	48	<1	11	5	5.67	223	50	<5	<5	90	<2	<2	118	13	62	474	1.13	<.01	2.11	0.91		0.17	2736
R0406656	849	159.00	160.00	6	13	67	4.9	263	18	<1	11	6	6.07	710	70	<5	5	137	3	<2	135	10	48	591	1.46	<.01	2.49	1.45		0.12	4905
R0406657	850	160.00	161.00	7	19	58		284	36	<1	13	6	5.33	185	67	<5	<5	83	<2	<2	135	11	54	506	1.24	<.01	2.10	0.91		0.17	2287

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

د ج ط ط ط ک تاریخ ه ه م ف ف :								*******													ود بنه سر نند سر گر گ										
LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	NI	Fe	Мо	Cr	BI	Sb	V	Sn	w	Sr	Y	La	Mn	Mg	τι	AI	Ca	Na	к	P
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm
																	••••••												4	-	
																									به دو بب مد عد عد خد 4					يور مي چه چو څو څو غير د.	
Drill Hole	<u>V-04-02</u>				·							_																			
R0406658	851	161.00	162.00	<1	9	29	1.1	58	136	<1	6	5	3.15	74	88	<5	<5	57	<2	<2	99	5	17	293	0.81	<.01	1.66	1.25	0.06	0.47	1025
R0406659	852	162.00	163.00	6	18	60	0.7	102	27	<1	12	5	5.70	28	53	<5	<5	69	<2	<2	132	10	59	498	1.40	<.01	2.51	0.60	0.08	0.20	1800
R0406660	853	163.00	164.00	5	15	45	0.6	411	21	<1	10	8	4.97	28	47	<5	<5	62	<2	<2	118	8	53	407	1.14	<.01	1.94	0.58	0.08	0.19	1497
R0406661	854	164.00	165.00	4	16	87	0.7	646	17	<1	9	7	4.66	93	35	<5	<5	63	3	<2	146	11	46	332	0.90	<.01	1.90	0.55	0.08	0.34	1871
R0406662	855	165.00	166.00	6	13	66	0.9	651	16	<1	9	5	5.36	256	36	<5	<5	86	<2	<2	140	10	50	372	1.01	<.01	2.10	0.75	0.08	0.29	2773
R0406663	856	166.00	167.00	<1	15	52	5.5	611	19	4	8	6	6.16	750	51	<5	8	131	2	<2	127	8	38	500	1.53	<.01	2.51	1.40	0.07	0.18	4385
R0406664	857	167.00	167.50	8	18	65	2.6	593	14	<1	13	9	6.34	215	42	<5	<5	92	<2	<2	165	9	74	510	1.41	<.01	2.68	1.04	0.08	0.26	3508
R0406665	858	171.00	171.50	16	15	44	4.2	777	13	<1	8	5	5.32	1103	51	<5	7	104	<2	<2	162	8	47	314	1.00	<.01	2.00	0.81	0.07	0.28	3089
R0406666	859	202.80	203.80	10	17	59	1.5	156	22	<1	8	7	4.65	24	58	<5	<5	97	<2	<2	107	9	62	394	1.07	<.01	1.67		0.06	0.18	1546
R0406667	860	203.80	204.00	2	20	75	1.0	107	30	<1	12	8	4.60	24	48	<5	<5	91	<2	<2	99	10	72	397	1.04	<.01	1.57		0.06	0.20	1714
R0406668	861	204.00	205.00	9	14	95	0.6	32	29	<1	10	7	4.28	<2	41	<5	<5	63	2	<2	141	10	68	386	0.91	<.01	1.58	0.70	0.07	0.29	1747
R0406669	862	205.00	206.00	12	20	49	1.0	118	48	<1	11	8	3.62	<2	56	<5	<5	61	<2	<2	114	9	73	330	0.78	<.01	1.15		0.06	0.26	1671
R0406670	863	206.00	207.00	1	12	45	1.7	109	52	<1	7	6	2.28	50	107	<5	<5	46	<2	<2	85	4	32	211	0.62	<.01	0.67		0.04	0.13	874
R0406671	864	207.00	208.00	1	<4	21	1.7	45	32	<1	3	5	1.54	26	164	<5	<5	22	<2	<2	73	2	17	147	0.39	<.01	0.37		0.03	0.10	442
R0406672	865	208.00	209.00	8	15	66	0.6	85	21	<1	9	7	5.08	17	56	<5	<5	88	<2	<2	99	8	57	447	1.08	<.01	1.56		0.04	0.18	1476
R0406673	866	209.00	209.50	2	12	52	1.4	281	124	<1	8	7	4.36	14	50	<5	<5	64	<2	<2	603	8	54	346	1.47	<.01	0.67		0.05	0.19	1512
R0406674	867	223.20	224.00	11	18	53	0.8	232	33	<1	10	8	4.90	<2	48	<5	<5	69	<2	<2	299	7	76	296	0.94	<.01	0.65		0.05	0.23	1603
R0406675	868	224.00	225.00	12	23	58	2.0	505	51	<1	11	8	4.42	65	83	<5	8	62	<2	<2	225	9	61	220	0.72	<.01	0.48		0.04	0.16	2094
R0406676	869	225.00	226.00	8	22	55	1.0	375	36	<1	16	11	4.78	28	71	<5	5	72	<2	<2	140	11	67	286	0.84	<.01	0.60		0.04	0.20	2398
R0406677	870	226.00	227.00	8	24	59	2.0	673	42	<1	17	11	5.16	45	66	<5	6	66	<2	<2	158	11	62	258	0.77	<.01	0.56		0.04	0.20	2400
R0406678	871	227.00	228.00	10	15	62	1.4	164	38	<1	14	29	3.93	53	95	<5	<5	62	<2	<2	182	8	66	329	1.01	<.01	0.74		0.04	0.25	1714
R0406679	872	228.00	229.00	10	19	48	1.5	174	58	<1	14	39	3.57	5	105	<5	<5	59	2	<2	192	9	72	301	1.20	<.01	0.59		0.04	0.23	1695

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

27 APR 2004 Date:

Job: V 04-0208R

Date: 27 APR 2004

Job: V 04-0208R

LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	NI	Fe	Mo	Cr	Bi	Sb	V	Sn	w	Sr	Y	La	Mn	Mg	т	AI	Ca	Na	к	Р
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%		%	•
																								····	76				_%		ppm
Drill Hole	V-04-02																														
R0406680	873	229.00	230.00	10	24	59	0.9	205	25	<1	15	40	3.79	10	88	<5	<5	59	2	<2	168	10	76	292	1.03	<.01	0.66	A 95	0.05	0.07	0005
R0406681	874	230.00	231.00	10	19	54	1.1	104	44	<1	12	36	3.28	3	117	<5	<5	47	<2	<2	150	8	62	252	0.97	<.01	0.46		_	0.27	2025
R0406682	875	231.00	232.00	8	10	49	1.8	54	44	<1	11	27	3.27	<2	119	<5	<5	45	<2		304	6	51	323	0.97			0.80		0.17	1640
R0406683	876	232.00	233.10	<1	<4	7	3.3	89	52	<1	1	6	0.71	37	174	<5	<5	<2	<2		136	<2				<.01	0.47	0.69		0.13	1213
R0406684	877	233.10	234.10	4	11	38	4.6	63	88	<1	6	19	1.96	3	154	<5	<5	24	<2		130	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		60	0.39	<.01	0.08	_	0.03	0.03	55
R0406685	878	234.10	235.10	12	14	64	0.9	81	50	<1	10	33	4.02	<2	95	<5	<5	49	<2		126		36	238	0.61	<.01	0.28	0.55		0.11	932
R0406686	879	235.10	236.10	6	14	41	1.2	99	55	<1	5	13	2.01	0	95	<5	<5	24	<2	<2	283	- 1	67	536	1.29	<.01	0.50	0.71		0.14	1604
R0406687	880	236.10	237.10	7	9	47	2.2	128	61	<1	6	18	2.16	109	131	<5	<5	37	<2	<2			34	187	0.43	<.01	0.37	0.39		0.14	931
R0406688	881	237.10	238.10	5	7	32	4.4	150	30	<1	6	19	2.05	253	138	<5	<5	49	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2	165		38	180	0.55	<.01	0.31	0.52		0.13	1107
R0406689	882	238.10	239.10	5	6	29	2.7	94	90	<1		14	1.47	163	133	<5	<5	30	3		115		33	151	0.45	<.01	0.35	0.76		0.12	2545
R0406690	883	239.10	240.10	5	6	22	2.4	75	78	<1			0.94	67	171	~5	<5	 11	<2	<2 <2	199		18	121	0.41	<.01	0.26	0.49		0.10	807
R0406691	884	240.10	241.10	3	<4	21	3.4	88	74	<1	2	10	1.27	117	188	<5			2		163	<2	10	59	0.18	<.01	0.16	0.26		0.06	199
R0406692	885	241.10	242.10	3	<4	10	3.4	70	34	<1			1.50	63	170	~5		19 37	<2	<2	177	<2	16	109	0.34	<.01	0.21	0.34		0.06	530
R0406693	886	242.10	243.10	<1	5	20	1.6	94	54	<1			1.02	23	170	<5 <5	<5	3/	4	<2	199	<2	9	110	0.29	<.01	0.21	0.40	-	0.03	1135
R0406694	887	243.10	243.77	3	4	12	2.3	107	48	<1			0.66	18	176	<5	-0	13	<2	<2	81	<2	13	72	0.16	<.01	0.15	0.19		0.07	217
R0406695	888	243.77	244.10	<1	<4	4	3.2	15	21	<1			0.46	- 10	216	<5		- 0	<2	<2	102	<2		33	0.06	<.01	0.11	0.10		0.05	157
R0406696	889	244.10	245.00	<1	<4	13	3.1	31	33	<1			0.54			-	<5	<2	<2	<2	63	<2	5	51	0.29	<.01	0.07	0.64		0.01	25
R0406697	890	245.00	246.00	<1	<4	14	2.2	26	93	<1		5	0.62	<2	171 199	<5 <5	<5 <5	<2	<2	<2	102	<2	10	39	0.09	<.01	0.11	0.19		0.05	125
R0406698	891	246.00	247.00	2	4	12	1.6	38	39	<1			0.02		201			3	<2	<2	107	<2	3	48	0.15	<.01	0.12	0.26		0.05	137
R0406699	892	247.00	248.00	<1	<4	13	1.5	32	265	<1			0.71		180	<5	<5	<2	<2	<2	132	<2	5	55	0.20	<.01	0.14	0.39	_	0.05	169
R0406700	893	248.00	249.00	3	11	20	5.7	127	200	<1		40		<2		<5	<5	4	<2	<2	178	<2	5	64	0.18	<.01	0.15	0.18		0.05	145
R0406701	894	249.00	250.00	-		20	4.4	181	35	<1	- 2	18	1.68	212	164	<5	<5	19	<2	<2	108	3	19	96	0.32	<.01	0.21	0.33		0.09	484
			200.00		<u> </u>	<u> </u>		101	35		0	19	1.87	236	154	<5	6	28	<2	<2	115	3	24	115	0.37	<.01	0.23	0.34	0.03	0.09	669

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

27 APR 2004 Date:

Job: V 04-0208R

1

_		-										_																				
Γ	LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	NI	Fe	Мо	Cr	Bi	Sb	V	Sn	W	Sr	Y	La	Mn	Mg	Ti	AI	Ca	Na	κ	Р
		NUMBER	m	m	ppm	%	ppm	%	%	%	%	%	%	ppm																		
									_																							

Drill Hole	٧.	-04	-0
------------	----	-----	----

Drill Hole	V-04-02																_		_											
R0406702	895	250.00	251.00	<1	6	20	3.5	213	94	<1	5	14	1.75	133	137	<5	8	28	2	<2	115	2	18	108	0.32	<.01	0.20	0.31 0.03	0.08	497
R0406703	896	251.00	252.00	6	12	30	5.5	162	63	<1	8	22	2.29	283	117	<5	7	40	2	<2	110	4	29	144	0.52	<.01	0.24	0.37 0.03	0.11	943
R0406704	897	252.00	253.00	8	11	32	3.1	204	60	<1	9	18	2.89	58	109	<5	<5	47	<2	<2	99	4	34	161	0.53	<.01	0.27	0.38 0.03	0.12	974
R0406705	898	253.00	254.00	5	14	46	7.5	683	29	<1	9	9	4.47	50	93	<5	16	57	<2	<2	88	5	21	191	0.64	<.01	0.28	0.40 0.03	0.09	1078
R0406706	899	254.00	255.00	7	18	68	10.1	1330	14	<1	9	8	7.40	79	70	<5	20	99	<2	<2	82	7	28	286	0.93	<.01	0.38	0.57 0.03	0.09	1645
R0406707	900	255.00	256.00	7	12	50	4.5	362	74	<1	8	8	3.88	146	101	<5	5	80	2	<2	92	8	27	236	0.74	<.01	0.36	0.59 0.03	0.10	1824
R0406708	901	256.00	257.00	<1	11	49	2.9	388	47	<1	8	7	4.26	100	82	<5	6	87	2	<2	121	9	42	272	0.81	<.01	0.46	0.71 0.03	0.14	2291
R0406709	902	257.00	258.00	7	19	87	4.0	566	44	<1	11	6	5.72	103	62	<5	5	93	<2	<2	134	12	47	355	1.10	<.01	0.64	0.94 0.03	0.17	3409
R0406710	903	258.00	259.00	2	11	33	5.5	335	44	<1	6	7	3.16	68	121	<5	8	50	<2	<2	155	5	21	188	0.60	<.01	0.35	0.51 0.03	0.12	1583
R0406711	904	259.00	260.00	7	18	97	3.0	686	31	<1	14	9	5.11	166	70	<5	9	88	<2	<2	143	10	44	279	0.94	<.01	0.47	0.76 0.03	0.13	2700
R0406712	905	260.00	261.00	4	7	29	4.2	273	45	<1	4	6	2.64	59	132	<5	5	61	<2	<2	108	4	19	147	0.48	<.01	0.29	0.50 0.03	0.10	1659

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

0812-0905

Date: 28 APR 2004

È

٢

Job: V 04-0208R

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t

Drill Hole	V-04-02					
R0406619	812	40.60	41.60	<10	5	
R0406620	813	41.60	42.60	30	5	
R0406621	814	42.60	43.60	40	5	
R0406622	815	43.60	44.60	20	5	
R0406623	816	44.60	45.60	30	5	
R0406624	817	45.60	46.60	40	5	
R0406625	818	46.60	47.60	82	5	
R0406626	819	47.60	48.60	40	5	
R0406627	820	48.60	49.60	20	5	
R0406628	821	49.60	50.60	20	5	
R0406629	822	50.60	51.60	10	5	
R0406630	823	51.60	52.60	10	5	
R0406631	824	52.60	53.60	<10	5	
R0406632	825	53.60	54.60	<10	5	
R0406633	826	54.60	55.60	10	5	
R0406634	827	55.60	56.60	10	5	
R0406635	828	56.60	57.60	<10	5	
R0406636	829	57.60	58.60	<10	5	
R0406637	830	58.60	59.60	<10	5	
R0406638	831	59.60	60.60	<10	5	
R0406639	832	60.60	61.60	<10	5	
R0406640	833	61.60	62.60	10	5	
R0406641	834	62.60	63.60	<10	5	
R0406642	835	63.60	64.60	<10	5	
R0406643	836	64.60	65.60	<10	5	
R0406644	837	65.60	66.60	<10	5	
R0406645	838	113.00	113.50	160	5	
R0406646	839	116.40	117.50	24	5	
R0406647	840	117.50	118.00	220	5	
R0406648	841	123.00	124.00	62	5	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

|--|

Ĭ

Ĺ

í.

ţ

_

.....

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t
Drill Hole	V-04-02					
R0406649	842	151.80	152.80	300	5	
R0406650	843	152.80	153.80	20	5	
R0406651	844	153.80	154.80	156	5	
R0406652	845	154.80	155.80	20	5	
R0406653	846	155.80	156.80	80	5	
R0406654	847	156.80	158.00	120	5	
R0406655	848	158.00	159.00	304	5	
R0406656	849	159.00	160.00	128	5	
R0406657	850	160.00	161.00	326	5	
R0406658	851	161.00	162.00	484	5	
R0406669	852	162.00	163.00	140	5	
R0406660	853	163.00	164.00	80	5	
R0406661	854	164.00	165.00	76	5	
R0406662	855	165.00	166.00	100	5	
R0406663	856	166.00	167.00	624	5	
R0406664	857	167.00	167.50	104	5	
R0406665	858	171.00	171.50	226	5	
R0406666	859	202.80	203.80	394	5	
R0406667	860	203.80	204.00	256	5	
R0406668	861	204.00	205.00	20	5	
R0406669	862	205.00	206.00	116	5	
R0406670	863	206.00	207.00	702	5	
R0406671	864	207.00	208.00	992	5	0.96
R0406672	865	208.00	209.00	114	5	·····
R0406673	866	209.00	209.50	98	5	
R0406674	867	223.20	224.00	86	5	******
R0406675	868	224.00	225.00	218	5	
R0406676	869	225.00	226.00	98	5	
R0406677	870	226.00	227.00	182	5	
R0406678	871	227.00	228.00	46	5	· · · ·
R0406679	872	228.00	229.00	42	5	
R0406680	873	229.00	230.00	44	5	· · · · · ·
R0406681	874	230.00	231.00	76	5	
R0406682	875	231.00	232.00	766	5	· · ·
R0406683	876	232.00	233.10	1668	5	1.965

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

Job: V 04-0208R

LAB NO	FIELD NUMBER	From m	To m	Au ppb	Wt Au	Au(4)
					gram	g/t
Drill Hole					ه ه ن ن م م م م م به بند بن م	ین بن ور جا بنده ه بند بن بن
R0406684	V-04-02 877	233.10	234.10	1798		4.054
					5	1.959
R0406685	878	234.10	235.10	42	5	
R0406686	879	235.10	236.10	262	5	
R0406687	880	236.10	237.10	158	5	
R0406688	881	237.10	238.10	608	5	
R0406689	882	238.10	239.10	472	5	
R0406690	883	239.10	240.10	1118	5	0.890
R0406691	884	240.10	241.10	1564	5	2.227
R0406692	885	241.10	242.10	966	5	1.141
R0406693	886	242.10	243.10	738	5	· · · · · •
R0406694	887	243.10	243.77	764	5	
R0406695	888	243.77	244.10	728	5	
R0406696	889	244.10	245.00	1078	5	1.238
R0406697	890	245.00	246.00	796	5	
R0406698	891	246.00	247.00	678	5	
R0406699	892	247.00	248.00	622	5	
R0406700	893	248.00	249.00	676	5	
R0406701	894	249.00	250.00	466	5	
R0406702	895	250.00	251.00	524	5	
R0406703	896	251.00	252.00	124	5	
R0406704	897	252.00	253.00	352	5	
R0406705	898	253.00	254.00	752	5	
R0406706	899	254.00	255.00	1058	5	0.750
R0406707	900	255.00	256.00	792	5	
R0406708	901	256.00	257.00	482	5	
R0406709	902	257.00	258.00	296	5	••••••••••••••••••••••••••••••••••••••
R0406710	903	258.00	259.00	1728	5	2.098
R0406711	904	259.00	260.00	316	5	
80406712	905	260.00	261.00	1186	5	1.585

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

- Au Aqua regia decomposition / solvent extraction / AAS
- Wt Au The weight of sample taken to analyse for gold (geochem)
- Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

ł.

ĩ

F

Ĺ

i.

0906-921

Date: 27 APR 2004

Job: V 04-0213R

LAB NO	FIELD	From	То	Ag	Al	As	Au	в	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	к	1.	Ma	Ma	Ma	Ne	NI												
	NUMBER	m	m	ppm	%	ppm	ppm	maa	ppm	ppm	%			ppm	ppm	%		nnm	•/			rta		P	Pb	Sb	Sr	Th	TI	U	×	w	Sn	Υ	Zn
						<u> </u>					~		÷		tion t	~	%	ppm	76	ppm	ppm	70	ppm	76			ppm					ppm			
R0406750	906	261.00	262.00	4.4	0.31	361	0.814	_	35	<5	0.50	<1	8	122	4	2.98	0.10	24	0.45	166	79	0.03	6	0.169	1		70		- 04						
R0406751	907	262.00	263.00	1.0	0.41	197	0.068		47	<5	0.52	<1	9	73	4	3.88	0.18	60	0.89	249	32	0.03					79	-	<.01		68	<2	< <u>2</u>		28
R0406752	908	263.00	264.00	2.5	0.39	408	0.166	_	43	<5	0.61	<1	11	77	7	3.92	0.15	55	0.80	256	100	0.03	<u> </u>	0.159 0.184	22	<5	/9	-	<.01	-	67	<2	<u></u>		39
R0406753	909	264.00	265.00	5.3	0.50	446	0.422	_	29	<5	0.67	<1	9	62	5	5.62	0.13	64	1.09	355	_	0.03		0.104	10	<5	91	-	<.01		- 76	<2	<u>2</u>		44
R0406754	910	265.00	266.00	3.3	0.38	474	1.718	-	36	<5	0.52	<1	9	67	10	4.52	0.12	51	1.03	290	97	0.04	7	_	17	8	83		<.01	-	123	<2	<u> <2</u>	-7	74
R0406755	911	266.00	267.00	3.0	0.29	564	0.388	-	30	<5	0.54	<1	- 9	90	7	3.73	0.12	43	0.47	148	190	0.03		0.163	22 28	<5	- 12	-	<.01		95	<2	<2	6	50
R0406756	912	267.00	268.00	1.0	0.38	294	0.064	-	39	<5	0.54	<1	12	64	11	4.63	0.15	59	0.93	264	61		10		+	14	63	-	<.01	-+	63	<2	<2	-7	44
R0406757	913	268.00	269.00	1.2	0.32	487	0.102	-	45	<5	0.61	<1	12	62	10	3.39	0.18	60	0.73	173	49	0.04	10	0.156	20	<5	64	-	<.01	-+	80	<2	<2		52
R0406758	914	269.00	270.00	3.6	0.34	517	0.372	-	33	<5	0.51	<1	10	83	4	4.40	0.14	53	0.65	204	186	0.03	3	0.169	14	<5	-/1	-	<.01		48	<2	<2	6	30
R0406759	915	270.00	271.00	2.3	0.17	152	0.516	-	57	<5	0.19	<1	5	163	6	1.65	0.09	19	0.25	83		0.03	3		13	-4	57	-	<.01	-	50	<2	<2	-7	69
R0406760	916	271.00	272.00	2.2	0.11	129	1.188	-	54	<5	0.14	<1		186	1	1.10	0.04	5	0.14	46	21	0.03	15	0.052	0	<5	43	-	<.01		21	<2	<2	2	28
R0406761	917	272.00	273.00	3.7	0.08	109	4.180	-	51	<5	0.11	<1	<1	217		0.77	0.03	2	0.06	27	47	0.03	• 	0.037	<4		65	-	<.01		9	<2	<2	<2	15
R0406762	918	273.00	274.00	2.0	0.09	120	1.022	-	15	<5	0.07	<1	- 1	210	4	0.76	0.06	6	0.05	25	16	0.03	0	0.026		<5	58	-	<.01	-+	12	<2	<2	-<2	13
R0406763	919	274.00	275.00	1.3	0.31	104	0.504	-	48	<5	0.45	<1	8	132	8	2.51	0.13	44	0.03	151	15	0.02	20	0.012	4	<5	31		<.01		<2	<2	<2	<2	34
R0406764	920	275.00	276.00	2.8	0.17	576	1.322	-	24	<5	0.25	<1	4	177	1	2.20	0.08	15	0.00	69	30	0.03	29	0.118	9	<5	69	-	<.01	-+	- 44	<2	<2	6	37
R0406765	921	276.00	277.00	3.6	0.07	70	3.060	-	6	<5	0.30	<1		205	<1	0.76	0.03		0.12	35	30	0.03	10	0.049	6	38	53		<.01	-+	24	<2	3	2	20
									- 1				•			0.10]	0.02		0.12		30	0.02	5	0.024	<4	<5	69	-	<.01	-	5	<2	2	<2	11

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

0906-921

Date: 28 APR 2004

Ĩ.

í

Job: V 04-0213R

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t
	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			

····

Drill	Hole	V-04-02

R0406750	906	261.00	262.00	814	5	
R0406751	907	262.00	263.00	68	5	
R0406752	908	263.00	264.00	166	5	
R0406753	909	264.00	265.00	422	5	
R0406754	910	265.00	266.00	1718	5	0.642
R0406755	911	266.00	267.00	388	5	
R0406756	912	267.00	268.00	64	5	
R0406757	913	268.00	269.00	102	5	
R0406758	914	269.00	270.00	372	5	
R0406759	915	270.00	271.00	516	5	
R0406760	916	271.00	272.00	1188	5	1.244
R0406761	917	272.00	273.00	4180	5	4.012
R0406762	918	273.00	274.00	1022	5	1.069
R0406763	919	274.00	275.00	504	5	0.523
R0406764	920	275.00	276.00	1322	5	1.204
R0406765	921	276.00	277.00	3060	5	3.195

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

0922-933

Date: 03 MAY 2004

Job: V 04-0217R

LAB NO	FIELD	From	То	C.,	Dh	7.0	Aa	٨٠	Ba	5	6	Mi	Ea	14	Cr	DI.	e h	V	- Cn	w	e,	v		Mn	Ma	TI	AL	0	No	ĸ	
	TIELD		10	U UU	1		~9	~3	Da	- Cu		141	LA	1 40		DI	00	v	311		31			10111	my	11		va	na	n	-
	NUMBER	m	m	nnm	nom	nnm	nom	nnm	nnm	nnm	nnm	nnm	%	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	nnm	%	%	%	%	%	%	P ppm
				Ppin	PPIII	PPIII	PPIII	PPIII	Ph	PP.III	PPIII	PPIII	70	PP '''	PPIII	PPIII	P PIII	Phili	Ph.		PP ^m	Phin	Phin.	PPIII	/0		~	//		/•	[PPIII]

Drill Hole V-04-02

Dilliniole	V-V-VL																														-
R0406835	922	277.00	278.00	2	<4	8	3.9	405	5	<1	<1	5 1	1.28	13	191	<5	35	5	<2	3	69	<2	<2	19	0.07	<.01	0.08	0.15	0.03	0.02	2 164
R0406836	923	278.00	279.00	3	<4	9	3.5	83	5	<1	<1	4 (0.62	16	203	<5	9	5	2	<2	24	<2	<2	22	0.07	<.01	0.06	0.26	0.03	0.01	11
R0406837	924	279.00	280.00	11	22	47	4.1	264	46	<1	13	36 3	3.26	108	144	<5	8	55	<2	<2	54	6	43	180	0.73	<.01	0.31	0.43	0.04	0.13	1315
R0406838	925	280.00	281.00	13	24	58	3.6	245	47	<1	16	45 3	3.46	28	113	<5	8	47	<2	<2	48	6	54	186	0.79	<.01	0.35	0.48	0.04	0.15	5 1462
R0406839	926	281.00	282.00	21	22	42	3.1	266	52	<1	15	48 3	3.72	8	106	<5	10	46	<2	<2	64	6	54	192	0.83	<.01	0.34	0.51	0.04	0.14	1370
R0406840	927	282.00	283.00	12	14	49	4.5	444	30	<1	15	45 3	3.02	76	146	<5	14	33	<2	<2	73	4	38	120	0.48	<.01	0.26	0.55	0.03	0.11	1422
R0406841	928	283.00	284.00	2	<4	14	2.3	206	9	<1	1	5 1	1.08	16	240	<5	13	4	<2	<2	47	<2	<2	30	0.09	<.01	0.11	0.17	0.03	0.03	3 48
R0406842	929	284.00	285.00	13	12	57	2.2	166	65	<1	12	33 3	3.44	117	155	<5	7	72	<2	<2	99	6	48	224	0.87	<.01	0.47	0.41	0.04	0.15	5 1335
R0406843	930	285.00	286.00	17	20	71	2.3	396	101	<1	13	35 3	3.92	63	141	<5	12	67	<2	<2	118	5	47	232	0.93	<.01	0.47	0.43	0.04	0.16	1259
R0406844	931	294.70	295.40	11	17	64	1.2	158	83	<1	10	32	2.94	21	156	<5	8	50	<2	3	94	6	44	179	0.74	<.01	0.36	0.56	0.03	0.13	3 1260
R0406845	932	298.00	299.00	6	10	47	1.2	76	46	<1	6	22 3	3.41	<2	127	<5	5	47	<2	<2	74	3	36	277	0.89	<.01	0.43	0.57	0.03	0.09	1423
R0406846	933	302.00	303.00	5	23	46	1.3	680	37	<1	11	60 4	4.10	53	79	<5	23	17	<2	<2	66	3	32	150	0.50	<.01	0.28	0.32	0.04	0.16	3 737

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

و هې شد هه چو خل ونه خل چه خو خه ه

Ľ

_

_...

0922-933

Date: 28 APR 2004

Job: V 04-0217R

· · · · · · · · · · · · · · · · · · ·						
LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t

فقوا جين جرون جروان توران في جرم بالوارد مايون ما واب

R0406835	922	277.00	278.00	2780	5	2.810
R0406836	923	278.00	279.00	1002	5	1.064
R0406837	924	279.00	280.00	256	5	
R0406838	925	280.00	281.00	202	5	
R0406839	926	281.00	282.00	52	5	
R0406840	927	282.00	283.00	144	5	• • • • • • • •
R0406841	928	283.00	284.00	1322	5	1.834
R0406842	929	284.00	285.00	94	5	· · · · · · · · · · ·
R0406843	930	285.00	286.00	382	5	
R0406844	931	294.70	295.40	278	5	
R0406845	932	298.00	299.00	1418	5	0.862
R0406846	933	302.00	303.00	242	5	

I=Insufficient sample X=small sample E=exceeds calibration C=being checked R*revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

- Au Aqua regia decomposition / solvent extraction / AAS
- Wt Au The weight of sample taken to analyse for gold (geochem)
- Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

ECSTALL MINING-X04 #0934-0945

Date: 03 MAY 2004

Job: V 04-0220R

				1				T																											
LAB NO	FIELD	From	To	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ιĸ	112	Ma	Mn	Mo	No	MI	Ð	Dh	6 h	0.	Th	TI	11	V	14/	-	0	
				-													l	–	l			140	141	F		90	or	in j	- 11			AA .	Zn	Sn	1 1 1
	NUMBER	m	m	ppm	%	ppm	ppm	mag	pom	mag	1 %	ppm	ppm	ppm	n nga	%	%	nng	8	nnm	nnm	94	nnm	٩٢	n nm				۰.						ppm

Drill Hole V-04-02

R0406898	934	303.00	304.00	2.8	0.31	313	0.172	-	71	<5	0.50	<1	5	93	6	2.67	0.19	2	9 0.36	98	64 0.0	4	37 0.126	21	14	63	_	<.01	- 1	18	2	29	<2	3
R0406899	935	304.00	305.00	2.7	0.29	474	0.5	-	55	<5	0.37	<1	4	83	8	2.8	0.20	3	1 0.31	86	100 0.0	+	16 0.095	19	18	84	-	<.01	_	25	~	54	<2	-
R0406900	936	305.00	306.00	2.4	0.29	320	0.16	-	53	<5	0.47	<1	5	70	8	2.40	0.20	4	3 0.28	82		<u> </u>	19 0.141	13	14	76	-	<.01	_	20	<2	79	<2	
R0406901	937	306.00	307.00	2.3	0.26	335	0.564	-	24	<5	0.55	<1	5	102	2	1.97	0.16		4 0.23		38 0.0	-	17 0.180		15	79	_	<.01	_	22	<2	49	<2	-
R0406902	938	307.00	308.00	1.0	0.26	246	0.08	-	58	<5	0.45	<1	6	95	4	1.81	0.21		9 0.27	75		-	20 0.088	12	7	69	-	<.01	_	22	- 22	40	<2	一
R0406903	939	308.00	309.00	1.7	0.29	249	0.212	-	35	<5	0.35	<1	5	89	9		0.20		B 0.33		75 0.0		19 0.088	13	16	77	_	<.01	_	24	~2	66	<2	
R0406904	940	309.00	310.00	2.8	0.37	168	3.6	_	21	<5	0.39	<1	4	86	4	3.24	0.18	_	5 0.63		17 0.0	-	23 0.065	11	15	98		<.01	_	24	~2	71	<2	
R0406905	941	333.90	334.40	1.5	0.75	117	0.564	-	38	<5	0.60	<1	15	103	_	 	5 0.16		3 0.76	314	· · ·	-	25 0.146	15	- 8	78	_	<.01	_	62	<2	67	<2	
R0406906	942	335.60	336.00	2.4	0.33	37	2.4	-	37		0.59	-	4	155		-	0.10		4 0.21	102			14 0.045			50		<.01	_	27		22		<u>_</u>
R0406907	943	342.00	342.80	1.2	0.68	58	0.714	_	21		0.51	<1	11	105			0.17		1 0.49	-		· · · ·	19 0.159	16	-	90			_	40	<2		<2	
R0406908	944	342.80	343.40		0.45		1.512	_	20		0.35	<1	12			—	0.16		B 0.33	144		-	28 0.104	13		41	_	<.01	_	40	<2	45	- 2	
R0406909	945	343.40	344.30	_	0.46		0.9	_	17	-	0.30			128		<u> </u>	0.16		7 0.27		8 0.0	-	56 0.066	12		51		<.01		31	<2	25	<2	-
L											10.00				10	1.01	10.10		10.21	1 14	0.0	2	000.000	12	5	51		<.01	_	18	5	40	2	3

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

#0934-0945

Date: 03 MAY 2004

Job:

V 04-0220R

LAB NO	FIELD	From	То	Wt Au	Au(4)
	NUMBER	m	m	gram	g/t

Drill Hole V-04-02

Ł

......

Dilli Holo	V-VV.				
R0406898	934	303.00	304.00	5	
R0406899	935	304.00	305.00	5	
R0406900	936	305.00	306.00	5	
R0406901	937	306.00	307.00	5	
R0406902	938	307.00	308.00	5	
R0406903	939	308.00	309.00	5	
R0406904	940	309.00	310.00	5	4.508
R0406905	941	333.90	334.40	5	0.234
R0406906	942	335.60	336.00	5	3.241
R0406907	943	342.00	342.80	5	0.998
R0406908	944	342.80	343.40	5	1.762
R0406909	945	343.40	344.30	5	0.929

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

#951-999/2051-56/2099-100

Date: 10 JUN 2004

...........

Job: V 04-0282R

													_																		
LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Мо	Cr	Ві	Sb	V	Sn	w	Sr	Y	La	Mn	Mg	Ti	AI	Ca	Na	к	Р
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%	%	%	%	%	%	ppm										
,																															
Drill Hole	<u>V-04-03</u>									_																		·			
R0408989	951	31.00	32.40	8	<4	39	<.4	108	21	<1	3	9	2.66	4	139	<5	<5	33	<2	<2	75	2	10	220	0.82	<.01	0.19	0.79	0.03	0.06	410
R0408990	952	42.00	43.00	9	<4	111	1.0	288	40	<1	4	9	1.81	8	115	<5	7	13	2	<2	31	<2	8	49	0.21	<.01	0.13	0.21	0.02	0.08	18
R0408991	953	43.50	44.00	7	5	193	2.3	304	34	<1	4	9	2.19	3	125	<5	9	18	<2	<2	38	2	9	63	0.27	<.01	0.17	0.19	0.03	0.09	34
R0408992	954	44.00	45.60	8	<4	35	1.0	108	85	<1	3	8	1.58	6	139	<5	<5	18	2	<2	79	2	15	118	0.48	<.01	0.16	0.53	0.03	0.07	98
R0408993	955	53.60	54.50	9	8	133	0.6	246	28	<1	5	8	2.46	23	92	<5	24	7	<2	<2	122	2	42	58	0.27	<.01	0.17	0.55	0.02	0.13	76
R0408994	956	56.00	57.00	7	10	169	0.5	130	37	<1	7	13	2.64	17	55	<5	13	17	2	<2	150	5	58	167	0.52	<.01	0.26	0.60	0.03	0.16	448
R0408995	957	57.00	58.00	7	12	190	0.6	86	39	<1	7	12	2.33	15	82	<5	8	12	3	<2	127	3	56	106	0.34	<.01	0.23	0.38	0.03	0.16	446
R0408996	958	58.00	59.00	8	14	238	0.5	117	53	<1	7	11	1.79	24	62	<5	7	16	<2	<2	131	2	67	126	0.47	<.01	0.25	0.48	0.03	0.17	99
R0408997	959	59.00	60.00	8	8	52	0.5	227	60	1	5	7	1.84	52	77	<5	14	23	<2	<2	111	2	34	199	0.58	<.01	0.24	0.41	0.03	0.11	169
R0408998	960	60.00	60.90	11	4	37	0.9	289	54	<1	6	8	1.53	102	74	<5	12	15	3	<2	87	2	31	118	0.41	<.01	0.19	0.34	0.03	0.11	82
R0408999	961	78.50	79.50	11	8	288	0.8	428	35	<1	6	16	2.94	32	78	<5	44	18	<2	<2	163	3	38	192	0.66	<.01	0.24	0.91	0.03	0.12	228
R0409000	962	79.50	80.50	7	4	96	0.5	358	41	<1	2	10	2.09	67	130	<5	50	14	2	<2	88	<2	19	98	0.53	<.01	0.16	0.85	0.03	0.07	39
R0409001	963	80.50	81.50	4	<4	73	0.7	287	50	<1	2	8	1.75	26	144	<5	51	12	<2	<2	76	<2	20	75	0.40	<.01	0.16	0.68	0.03	0.06	38
R0409002	964	81.50	82.50	6	<4	18	0.5	66	245	<1	1	6	0.71	12	153	<5	8	6	3	<2	61	<2	7	48	0.24	<.01	0.11	0.43	0.03	0.03	22
R0409003	965	82.50	83.50	<1	<4	31	1.2	115	156	<1	1	6	1.12	24	149	<5	17	15	2	<2	64	<2	3	82	0.33	<.01	0.11	0.52	0.03	0.02	21
R0409004	966	83.50	84.50	8	<4	53	0.9	627	30	<1	1	9	2.60	85	156	<5	56	16	2	<2	49	<2	8	56	0.23	<.01	0.12	0.33	0.02	0.04	27
R0409005	967	84.50	85.50	6	<4	40	0.9	1245	15	<1	1	8	4.42	75	135	<5	119	14	<2	<2	75	<2	7	61	0.28	<.01	0.13	0.42	0.03	0.04	46
R0409006	968	112.20	114.20	5	<4	24	1.9	121	73	<1	3	9	1.43	38	136	<5	<5	17	3	<2	122	<2	10	85	0.27	<.01	0.17	0.32	0.03	0.04	125
R0409007	969	114.20	116.20	7	<4	67	10.9	98	139	<1	1	10	3.87	68	121	<5	<5	56	<2	<2	429	<2	<2	207	0.68	<.01	0.32	0.45	0.03	0.03	400

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

#951-999/2051-56/2099-100

10 JUN 2004 Date:

Job: V 04-0282R

LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	NI	Fe	Mo	Cr	Bi	Sb	V	Sn	w	Sr	Y	La	Mn	Mg	TI	AI	Ca	Na	к	Р
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%	%	%	%	%	%	ppm										
																*															
Drill Hole	V-04-03																											_			
R0409009	971	118.30	119.30	3	<4	51	16.7	48	55	<1	<1	4	1.33	55	128	<5	<5	22	3	<2	56	<2	<2	89	0.36	<.01	0.15	0.22	0.03	0.03	120
R0409010	972	119.30	120.30	- 4	<4	101	8.1	36	35	<1	<1	7	1.27	87	129	<5	<5	19	<2	<2	38	2	<2	105	0.36	<.01	0.14	0.14	0.03	0.02	118
R0409011	973	120.30	121.30	8	<4	14	2.9	65	58	<1	2	8	1.22	44	124	<5	<5	15	<2	<2	83	<2	5	67	0.18	<.01	0.14	0.15	0.02	0.03	363
R0409012	974	121.30	122.30	4	<4	68	2.0	80	33	<1	<1	8	2.60	15	123	<5	5	38	<2	<2	97	3	10	170	0.45	<.01	0.23	0.27	0.03	0.02	656
R0409013	975	122.30	123.30	9	<4	33	1.4	71	35	1>	3	10	2.57	12	117	<5	5	36	<2	<2	106	3	15	228	0.61	<.01	0.28	0.29	0.02	0.06	787
R0409014	976	123.30	124.40	4	<4	25	1.5	68	25	<1	1	8	3.24	9	118	<5	<5	47	<2	<2	148	2	5	228	0.68	<.01	0.27	0.38	0.03	0.02	843
R0409015	977	124.40	125.40	10	<4	43	3.4	87	15	<1	2	8	2.85	84	128	<5	<5	38	<2	<2	67	4	7	217	0.72	<.01	0.25	0.29	0.03	0.03	635
R0409016	978	125.40	126.50	7	<4	16	5.3	73	27	<1	<1	9	1.62	120	159	<5	<5	22	3	<2	68	2	4	111	0.33	<.01	0.16	0.20	0.03	0.03	448
R0409017	979	126.50	127.80	9	12	55	1.6	161	39	<1	10	10	4.03	15	71	<5	5	49	4	<2	81	7	43	404	1.42	<.01	0.37	0.46	0.02	0.14	1384
R0409018	980	127.80	128.90	7	5	49	3.2	100	42	<1	5	8	2.80	85	122	<5	<5	39	<2	<2	78	6	24	243	0.79	<.01	0.30	0.36	0.03	0.10	941
R0409019	981	128.90	130.50	7	<4	21	2.3	80	20	<1	2	9	2.71	87	140	<5	<5	39	<2	<2	67	3	16	193	0.57	<.01	0.28	0.37	0.03	0.06	1128
R0409020	982	130.50	132.20	7	<4	63	5.5	87	22	<1	2	9	2.17	130	132	<5	<5	32	<2	<2	47	4	7	157	0.48	<.01	0.22	0.22	0.03	0.04	467
R0409021	983	132.20	134.20	15	9	48	1.2	89	71	<1	10	7	4.01	10	55	<5	6	55	2	<2	50	8	42	443	1.59	<.01	0.45	0.57	0.03	0.18	1690
R0409022	984	134.20	136.20	8	9	49	2.5	142	35	<1	10	8	4.16	43	82	<5	<5	60	<2	<2	48	7	37	393	1.26	<.01	0.39	0.51	0.03	0.14	1439
R0409023	985	136.20	137.90	8	10	58	0.9	94	49	<1	. 9	7	3.35	13	54	<5	<5	59	<2	<2	55	7	43	394	1.17	<.01	0.35	0.50	0.03	0.15	1351
R0409024	986	137.90	138.90	5	<4	52	5.0	81	44	<1	5	6	2.60	81	90	<5	<5	52	<2	<2	54	5	28	271	0.87	<.01	0.25	0.37	0.03	0.11	874
R0409025	987	138.90	139.90	8	8	57	4.6	81	30	<1	10	14	3.35	62	86	<5	<5	50	<2	<2	69	5	30	358	1.09	<.01	0.30	0.39	0.03	0.12	900
R0409026	988	139.90	141.90	6	5	38	0.9	34	30	<1	6	8	2.77	10	70	<5	<5	39	<2	<2	54	4	39	380	1.41	<.01	0.29	0.42	0.03	0.09	757
R0409027	989	141.90	143.10	8	5	44	1.4	54	41	<1	8	11	2.95	6	71	<5	<5	42	3	<2	72	5	33	405	1.19	<.01	0.30	0.37	0.03	0.13	813
R0409028	990	143.10	145.10	13	7	36	1.4	69	37	<1	10	9	2.88	12	64	<5	<5	50	2	<2	78	6	35	314	0.91	<.01	0.30	0.41	0.03	0.15	1122
R0409029	991	145.10	146.10	14	7	65	1.3	75	65	<1	8	7	3.61	3	56	<5	<5	64	2	<2	63	7	32	443	1.53	<.01	0.31	0.57	0.03	0.12	1305
R0409032	994	149.20	151.10	8	<4	37	9.8	92	15	<1	2	7	3.09	192	141	<5	<5	89	<2	<2	40	2	12	341	1.07	<.01	0.58	0.31	0.02	0.05	723
		149.20	151.10	ŏ	<4	37	<u> </u>	92	15	<1	2		3.09	192	141	<5	<5	89	<2	<2	40	2	12	341	1.07	<.01	0.58	0.31	0.02	0.05	_

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

#951-999/2051-56/2099-100

Date: 10 JUN 2004

Job: V 04-0282R

0.56

0.44

0.37

0.60

0.68

0.58

0.81

0.75

0.85

0.86

0.03

0.03

0.02

0.03

0.03

0.03

0.02

0.02

0.02

0.02

0.08

0.09

0.18

0.16

0.13

0.08

0.12

0.08

0.10

0.10

906

680

1193

1689

1707

1563

1558

2163

2035

2497

LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Mo	Cr	Bi	Sb	V	Sn	w	Sr	Y	La	Mn	Mg	TI	AI	Ca	Na	к	Р
	NUMBER	m	m	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm						
Drill Hole	V-04-03																														
R0409033	995	151.10	153.10	16	12	48	2.3	83	24	<1	11	14	3.86	76	77	<5	<5	69	2	<2	59	7	36	446	1.46	<.01	0.39	0.47	0.03	0.12	128
								1		_			_		<u>.</u>							-						••••			

140409033	990	151.10	153.10	16	12	48	2.3	83	24	<1	11	14	3.86	76	77	<5	<5	69	2	<2	59	7	36	446	1.46	<.01	0.39
R0409034	996	153.10	154.10	10	<4	41	2.5	66	27	<1	7	12	3.44	78	114	<5	<5	69	2	<2	83	4	22	421	1.23	<.01	0.52
R0409035	997	154.10	155.30	8	<4	37	3.9	131	25	<1	4	11	2.67	187	120	<5	6	62	<2	<2	70	4	23	319	0.90	<.01	0.68
R0409036	998	155.30	157.30	35	11	50	1.6	74	18	<1	12	16	3.57	26	49	<5	<5	60	2	<2	60	8	37	449	1.59	<.01	
R0409037	999	172.10	173.10	68	9	53	1.3	97	29	<1	13	15	4.89	37	67	<5	<5	60	<2	<2	76	9	47	663	1.86	<.01	
R0409038	2051	173.10	174.10	57	5	49	3.2	149	53	<1	10	13	4.92	165	65	<5	<5	70	<2	<2	91	7	41	659	1.64		0.53
R0409039	2052	174.10	175.30	8	6	42	12.2	123	42	<1	7	11	4.67	267	85	<5	<5	69	<2	<2	106	6	27	763	1.42	<.01	0.47
R0409040	2053	175.30	176.40	8	7	42	1.1	84	114	<1	8	8	4.21	51	71	<5	<5	61	2	<2	347	5	25	747	1.60	<.01	0.42
R0409041	2054	176.40	177.70	10	20	51	2.7	193	30	<1	7	8	6.58	283	58	<5	6	87	12	<2	108	7	39	1063	1.83	<.01	0.62
R0409042	2055	177.70	179.70	10	10	48	1.2	128	29	<1	8	6	6.38	51	43	<5	<5	63	2	<2	102	- 6	50	1174	1.95	<.01	
R0409043	2056	179.70	181.70	8	33	63	1.6	111	32	<1	10	5	6.55	45	48	<5	<5	100	20	<2	93	10	64	817	1.94		2.25

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

if requested analyses are not shown, results are to follow

ANALYTICAL METHODS

#951-999/2051-56/2099-100

Date: 01 JUN 2004

Ī

_

N 2004

Job: V 04-0282R

LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t

Drill Hole V-04-03

DIII HOIE	V-04-03					
R0408989	951	31.00	32.40	24	5	
R0408990	952	42.00	43.00	108	5	
R0408991	9 53	43.50	44.00	484	5	
R0408992	954	44.00	45.60	120	5	
R0408993	955	53.60	54.50	80	5	
R0408994	956	56.00	57.00	10	5	
R0408995	9 57	57.00	58.00	44	5	
R0408996	958	58.00	59.00	30	5	
R0408997	959	59.00	60.00	40	5	
R0408998	960	60.00	60.90	62	5	
R0408999	961	78.50	79.50	80	5	
R0409000	962	79.50	80.50	100	5	
R0409001	963	80.50	81.50	82	5	
R0409002	964	81.50	82.50	64	5	
R0409003	965	82.50	83.50	224	5	
R0409004	966	83.50	84.50	146	5	
R0409005	9 67	84.50	85.50	134	5	
R0409006	968	112.20	114.20	160	5	
R0409007	96 9	114.20	116.20	2000	5	
R0409008	970	116.20	118.30	1060	5	
R0409009	971	118.30	119.30	2920	5	
R0409010	972	119.30	120.30	1460	5	
R0409011	973	120.30	121.30	112	5	
R0409012	974	121.30	122.30	200	5	
R0409013	975	122.30	123.30	120	5	
R0409014	976	123.30	124.40	82	5	
R0409015	977	124.40	125.40	620	5	
R0409016	978	125.40	126.50	540	5	
R0409017	979	126.50	127.80	50	5	
R0409018	980	127.80	128.90	240	5	
R0409019	981	128.90	130.50	180	5	
R0409020	982	130.50	132.20	940	5	
د بردا میرد ها، ها خان هی خان ها این آن خان خان خان خان : بردا میرد ها، ها، خان هی خان ها						

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

ECSTALL MINING-X04

#951-999/2051-56/2099-100

ł

Ĩ

Date:	01 JUN 2004			Job:	V 04-02	282R
LAB NO	FIELD	From	То	Au	Wt Au	Au(4)
	NUMBER	m	m	ppb	gram	g/t
Drill Hole	e V-04-03			، ها ها ها ها ها ها ها ها ها	مر عارض من اعا الله علي ال	
R0409021	983	132.20	134.20	40	5	
R0409022	984	134.20	136.20	162	5	
R0409023	985	136.20	137.90	30	5	
R0409024	986	137.90	138.90	1470	5	
R0409025	987	138.90	139.90	320	5	
R0409026	988	139.90	141.90	10	5	
R0409027	989	141.90	143.10	40	5	
R0409028	990	143.10	145.10	40	5	
R0409029	991	145.10	146.10	20	5	
R0409030	992	146.10	147.10	1590	5	
R0409031	993	147.10	149.20	192	5	
R0409032	994	149.20	151.10	1620	5	
R0409033	995	151.10	153.10	76	5	
R0409034	996	153.10	154.10	202	5	
R0409035	997	154.10	155.30	444	5	
R0409036	998	155.30	157.30	<10	5	
R0409037	999	172.10	173.10	40	5	
R0409038	2051	173.10	174.10	152	5	
R0409039	2052	174.10	175.30	3400	5	
R0409040	2053	175.30	176.40	44	5	
R0409041	2054	176.40	177.70	206	5	
R0409042	2055	177.70	179.70	40	5	
R0409043	2056	179.70	181.70	40	5	
R0409044	2099			10	5	
R0409045	2100			<10	5	

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

Au(4) Fire Assay-Lead Collection/AA Finish (low level) 1 A.T.

2057 - 2090

Date: 16-Jun-04

Job: V 04-0303R

<u> </u>	r				_		r	· · · · · ·								<u> </u>															
LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Mo	Cr	Bi	Sb	V	Sn	W	Sr	Y	La	Mn	Mg	Ti	AI	Ca	Na	K	
	NUMBER	m	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm

	[1														_													1	1	
R0410270	2057	4.57	6.07	9	8	33	0.90	185	16	<1	10	63	2.15	27	144	<5	<5	31	<2	<2	126	4	19	155	0.35	<.01	0.34	0.57	0.02	0.14	1438
R0410271	2058	6.07	7.57	26	5	40	1.10	285	27	<1	11	73	2.73	13	184	<5	<5	44	<2	<2	138	6	23	201	0.80	<.01	0.48	0.72	0.02	0.16	2361
R0410272	2059	7.57	9.07	17	<4	31	1.10	181	29	<1	8	38	1.94	16	140	<5	8	24	2	<2	142	3	12	162	0.53	<.01	0.32	0.44	0.02	0.13	944
R0410273	2060	9.07	10.57	12	13	50	1.80	670	35	<1	8	27	4.43	140	66	<5	24	51	<2	<2	230	7	30	299	0.42	<.01	0.63	0. 6 3	0.02	0.22	2104
R0410274	2061	10.57	12.07	8	13	54	0.80	355	26	<1	10	11	3.77	18	46	<5	20	62	<2	<2	91	9	68	402	0.67	<.01	0.69	0.60	0.02	0.26	2135
R0410275	2062	12.07	13.07	8	14	49	0.70	357	61	<1	9	8	3.87	26	67	<5	33	72	<2	<2	153	9	55	403	0.77	<.01	0.63	0.67	0.03	0.22	2189
R0410276	2063	25.91	27.41	6	14	58	0.70	22	55	<1	8	3	3.09	<2	39	<5	6	31	<2	<2	160	7	87	468	1.21	<.01	0.61	0.88	0.03	0.20	1616
R0410277	2064	27.41	28.91	4	10	52	0.80	25	41	<1	8	3	2.77	<2	33	<5	<5	28	3	<2	180	8	93	384	0.92	<.01	0.61	1.05	0.04	0.23	1584
R0410278	2065	28.91	30.41	5	12	51	0.70	13	53	<1	8	4	2.65	<2	38	<5	<5	26	2	<2	211	8	91	413	0.98	0.01	0.64	1.54	0.03	0.23	1593

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ECSTALL MINING-X04 2057 - 2090

Date: 10 JUN 2004 Job: V 04-0303R

LAB NO	FIELD	From	То	Au	Wt Au
	NUMBER		m	ppb	gram

ſ

٢

V-04-04				
2057	4.57	6.07	124	5
2058	6.07	7.57	162	5
2059	7.57	9.07	458	5
2060	9.07	10.57	326	5
2061	10.57	12.07	122	5
2062	12.07	13.07	138	5
2063	25.91	27.41	<10	5
2064	27.41	28.91	<10	5
2065	28.91	30.41	<10	5
	2057 2058 2059 2060 2061 2062 2063 2064	2057 4.57 2058 6.07 2059 7.57 2060 9.07 2061 10.57 2062 12.07 2063 25.91 2064 27.41	2057 4.57 6.07 2058 6.07 7.57 2059 7.57 9.07 2060 9.07 10.57 2061 10.57 12.07 2062 12.07 13.07 2063 25.91 27.41 2064 27.41 28.91	2057 4.57 6.07 124 2058 6.07 7.57 162 2059 7.57 9.07 458 2060 9.07 10.57 326 2061 10.57 12.07 122 2062 12.07 13.07 138 2063 25.91 27.41 <10

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

ECSTALL MINING	2_204

2057 - 2090

Date: 16-Jun-04

```
Job: V 04-0303R
```

	*																														
LAB NO	FIELD	From	То	Cu	Pb	Zn	Ag	As	Ba	Cd	Co	Ni	Fe	Mo	Cr	Bi	Sb	V	Sn	w	Sr	Y	La	Mn	Mg	Ti	AI	Ca	Na	к	Р
	NUMBER		m	ppm	ppm	n ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	%	%	%	%	ppm

Drill Hole	V-04-05				-																										
R0410279	2066	2.5	4.0	16	1	1 5	0.50	346	37	<1	11	39	3.99	31	96	<5	5	79	<2	<2	34	9	66	389	1.11	<.01	1.55	0.71	0.02	0.20	1900
R0410280	2067	4.0	5.0	13	1	3 4	0.80	218	32	<1	12	35	3.76	17	83	<5	<5	66	<2	<2	58	8	61	446	0.99	<.01	1.08	0.80	0.02	0.16	1634
R0410281	2068	5.0	6.5	15	1	1 6	0.60	124	26	<1	12	37	3.87	21	116	<5	<5	72	2	<2	105	9	77	497	0.96	<.01	1.03	1.09	0.02	0.17	1861
R0410282	2069	6.5	8.0	14	1	1 4	0.70	211	17	<1	11	34	3.13	21	75	<5	<5	43	<2	<2	77	8	59	337	0.63	<.01	0.67	0.77	0.02	0.21	1499
R0410283	2070	8.0	9.5	12	1	1 5	0.70	446	19	<1	11	33	4.00	55	76	<5	17	68	<2	<2	81	10	60	411	0.81	<.01	0.81	0.79	0.02	0.27	1999
R0410284	2071	9.5	11.0	16		9 4	0.90	960	37	<1	9	30	4.15	40	82	<5	59	62	2	<2	117	8	45	337	0.62	<.01	0.67	0.97	0.02	0.26	1876
R0410285	2072	11.0	12.5	17		9 3	2 2.50	940	20	<1	13	60	3.90	73	99	<5	49	41	<2	<2	451	6	37	149	0.42	<.01	0.56	0.52	0.01	0.23	1444
R0410286	2073	12.5	14.0	9	1	0 2	1.00	247	23	<1	9	52	1.94	37	72	<5	10	29	5	<2	372	3	27	154	0.59	<.01	0.46	0.33	0.03	0.21	785
R0410287	2074	14.0	15.5	12	1	1 3	1.30	478	38	<1	13	80	3.07	110	118	<5	12	43	<2	<2	577	4	19	201	0.68	<.01	0.53	0.42	0.02	0.19	1270
R0410288	2075	15.5	17.0	14		7 4	0.90	200	53	<1	11	65	2.69	62	109	<5	<5	40	<2	<2	253	5	32	249	1.00	<.01	0.47	0.63	0.02	0.18	1238
R0410289	2076	17.0	18.5	8		5 4	0.80	232	41	<1	9	33	2.86	99	91	<5	8	41	<2	<2	88	7	49	258	1.06	<.01	0.44	0.58	0.02	0.17	1411
R0410290	2077	18.5	20.0	36	1	4 5	2 0.80	152	52	<1	9	27	2.98	31	89	<5	<5	41	2	<2	92	8	57	286	1.20	<.01	0.45	0.62	0.02	0.16	1494
R0410291	2078	20.0	21.5	7	1	0 3	1.10	498	47	<1	5	30	2.89	95	84	<5	5	42	<2	<2	384	4	24	194	0.76	<.01	0.55	0.52	0.02	0.21	1563
R0410292	2079	21.5	23.0	9		7 6	2 1.70	2299	16	1	7	60	7.60	137	108	<5	192	52	<2	<2	351	3	16	227	0.77	<.01	0.39	0.42	0.02	0.10	947
R0410293	2080	23.0	24.5	9	<	4 7	2 3.50	2065	16	1	5	47	7.11	572	136	<5	186	45	<2	<2	475	2	9	202	0.63	<.01	0.38	0.47	0.02	0.09	1075
R0410294	2081	24.5	26.0	5	<	4 1	6.40	217	54	<1	6	38	1.79	482	170	<5	<5	17	<2	<2	517	<2	8	134	0.35	<.01	0.31	0.30	0.02	0.08	648
R0410295	2082	26.0	27.5	11		6 1	6 12.40	54	76	<1	3	17	1.27	465	144	<5	6	19	6	<2	240	<2	10	164	0.44	<.01	0.29	0.38	0.02	0.10	288
R0410296	2083	27.5	29.0	4		4 3	5 4.60	127	68	<1	7	10	2.77	472	90	<5	<5	33	<2	<2	486	3	22	369	0.84	<.01	0.48	0.47	0.02	0.18	796
R0410297	2084	29.0	30.5	8	1	0 4	3 1.30	76	92	<1	9	9	3.29	39	80	<5	<5	44	4	<2	536	5	33	488	1.20	<.01	0.63	0.62	0.03	0.23	1109
R0410298	2085	30.5	32.0	4		6 4	0.80	90	29	<1	10	6	3.77	6	57	<5	<5	53	<2	<2	558	7	36	685	1.44	<.01	0.83	0.66	0.02	0.29	1401
R0410299	2086	32.0	33.5	11		9 5	0.80	118	45	<1	13	7	3.69	14	46	<5	<5	53	<2	<2	611	5	40	700	1.33	<.01	0.82	0.75	0.03	0.30	1236
R0410300	2087	33.5	35.0	9		7 5	2 0.80	68	139	<1	10	7	3.52	44	54	<5	7	50	<2	<2	732	4	34	733	1.36	<.01	0.74	0.78	0.02	0.26	752
R0410301	2088	35.0	36.5	8		9 5	3 1.00	140	110	<1	12	10	3.63	62	26	<5	<5	41	2	<2	608	4	36	633	1.41	<.01	0.63	1.17	0.03	0.25	713
R0410302	2089	36.5	38.0	8		4 5	3 <.4	70	364	<1	10	15	3.11	5	53	<5	<5	32	<2	<2	501	5	39	546	1.75	<.01	0.55	1.74	0.03	0.22	474
R0410303	2090	38.0	39.5	9	1	3 5	0.50	37	75	<1	7	5	2.65	<2	72	<5	<5	26	<2	<2	168	5	74	309	1.21	<.01	0.44	0.79	0.03	0.16	1247
		1 00.01		<u> </u>	<u> </u>						L	<u> </u>	2.00				-9		<u>``</u>		100	<u>_</u>	14		1.41	01]	(+++.v	0.13			

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse aqua regia (soil,silt) or hot Aqua Regia(rocks).

ECSTALL MINING-X04

Ì

ł

Î.

Ì.

Ĺ

Ť.

ſ

_

2057 - 2090

Date: 10 JUN 2004 -----

Job: V 04-0303R

LAB NO	FIELD	From	То	Au	Wt Au
	NUMBER	m	m	ppb	gram
Drill Hole	V-04-05				
R0410279	2066	2.5	4.0	194	
R0410280	2067	4.0	5.0	206	
R0410281	2068	5.0	6.5	104	
R0410282	2069	6.5	8.0	152	(
R0410283	2070	8.0	9.5	178	
R0410284	2071	9.5	11.0	182	(
R0410285	2072	11.0	12.5	596	(
R0410286	2073	12.5	14.0	108	(
R0410287	2074	14.0	15.5	242	ę
R0410288	2075	15.5	17.0	146	5
R0410289	2076	17.0	18.5	108	5
R0410290	2077	18.5	20.0	78	6
R0410291	2078	20.0	21.5	466	5
R0410292	2079	21.5	23.0	288	6
R0410293	2080	23.0	24.5	878	6
R0410294	2081	24.5	26.0	2840	5
R0410295	2082	26.0	27.5	6140	5
R0410296	2083	27.5	29.0	1322	5
R0410297	2084	29.0	30.5	236	5
R0410298	2085	30.5	32.0	66	5
R0410299	2086	32.0	33.5	68	5
R0410300	2087	33.5	35.0	62	5
R0410301	2088	35.0	36.5	142	5
R0410302	2089	36.5	38.0	24	5
R0410303	2090	38.0	39.5	78	5

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS Wt Au The weight of sample taken to analyse for gold (geochem)

2091-98/2101-06

Date: 05 JUL 2004

Job: V 04-0305R

LAB NO	FIELD	From	То	Ag	AI	As	Au	В	Ba	BI	Ca	Cd	Co	Cr	Cu	Fe	к			Mn	Mo	Na	Ni	Ρ	Pb	Sb	Sr	Th	TI	U	V	w	Zn	Sn	Y
	NUMBER	m	m	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
																									_										

Drill Hole V-04-06

					_													_															
R0410354	2091	4.0	5.5	0.7	0.60	174	0.170	1	17	<5 0.56	<1	10	94	16	2.54 0	.17	49	0.44	243	17 0.	02 3	1 0.12	12	<5	41	-	<.01	1	25	<2	42	<2	7
R0410355	2092	5.5	7.0	1.6	0.45	91	0.546	-	21	<5 0.66	<1	10	116	25	2.81 0	.15	46	1.18	296	12 0.)2 3	5 0.142	2 7	<5	70	-	<.01	1	30	2	47	<2	7
R0410356	2093	7.0	8.5	1.6	0.40	2 9 1	0.580	-	31	<5 0.49	<1	12	141	14	2.47 0	.15	21	0.58	159	30 0.	02 7	3 0.14	4	13	246	-	<.01	I	31	<2	30	<2	5
R0410357	2094	8.5	10.0	1.1	0.51	134	0.176	-	24	<5 0.82	<1	15	109	34	3.20 0	.17	44	0.88	325	14 0.	02 8	3 0.17	3 24	<5	219	-	<.01	-	41	<2	48	14	7
R0410358	2095	10.0	11.5	8.8	0.36	260	3.800	1	40	<5 0.41	<1	11	148	14	2.28 0	.13	15	0.50	170	36 0.	02 7	4 0.13 [.]	33	8	212	-	<.01	-	27	<2	31	24	4
R0410359	2096	11.5	13.0	0.8	0.41	180	0.208	-	60	<5 0.46	<1	8	109	14	2.55 0	.15	19	0.84	283	10 0.	02 2	9 0.12	7	<5	371	-	<.01	-	33	<2	33	<2	4
R0410360	2097	13.0	14.5	1.2	0.63	870	0.160	ļ	37	<5 0.67	1	12	53	10	4.88 0	.24	36	0.94	452	139 0.	02 1	9 0.20	5 10	50	401	-	<.01	-	56	<2	50	<2	8
R0410361	2098	14.5	16.0	1.0	0.42	104	0.410	1	27	<5 0.38	<1	7	135	9	1.82 0	.14	17	0.52	186	17 0.	02 3	0 0.09	7 4	<5	307	-	<.01	-	25	<2	24	4	3
R0410362	2101	16.0	17.5	1.5	0.41	372	0.420	-	77	<5 0.37	<1	7	137	19	2.98 0	.13	11	0.70	223	70 0.	02 2	7 0.10	6 6	6	338	1	<.01	-	31	<2	27	<2	3
R0410363	2102	17.5	19.0	0.8	0.83	264	0.100	1	40	<5 1.27	<1	10	78	7	3.81 0	.27	38	1.22	481	69 0.	02	5 0.29	5 7	<5	439	-	<.01	-	64	<2	41	2	7
R0410364	2103	19.0	20.5	0.5	0.62	115	0.052	-	249	<5 1.09	<1	6	114	5	2.50 0	.19	24	1.02	370	31 0.	03	7 0.13	5 6	<5	688	-	<.01	-	41	<2	31	<2	4
R0410365	2104	20.5	22.0	0.6	0.96	87	0.042	-	106	<5 0.74	<1	14	33	10	3.29 0	.39	48	1.19	474	2 0.	03	8 0.14) 14	<5	610	-	<.01	-	36	<2	49	<2	8
R0410366	2105	22.0	23.5	0.7	0.88	9	0.172	-	105	<5 1.57	<1	13	42	15	3.42 0	.35	67	1.57	687	<2 0.	03	8 0.15	3 10	<5	538	-	<.01	1	38	<2	65	<2	9
R0410367	2106	23.5	25.0	<.4	0.79	9	<0.001	-	202	<5 3.10	<1	13	28	14	3.86 0	.29	77	2.16	865	<2 0.	03	7 0.14	3 9	<5	517	-	<.01	1	38	<2	70	<2	9

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Date:

i.

٢

Sec. 1

_

2091-98/2101-06

17 JUN 2004

LAB NO	FIELD	From	To	Au	Wt Au
	NUMBER	m	m	daa	gram

Job: V 04-0305R

Drill Hole V-04-06

R0410354	2091	4.0	5.5	170	5
R0410355	2092	5.5	7.0	546	5
R0410356	2093	7.0	8.5	580	5
R0410357	2094	8.5	10.0	176	5
R0410358	2095	10.0	11.5	3800	5
R0410359	2096	11.5	13.0	208	5
R0410360	2097	13.0	14.5	160	5
R0410361	2098	14.5	16.0	410	5
R0410362	2101	16.0	17.5	420	5
R0410363	2102	17.5	19.0	100	5
R0410364	2103	19.0	20.5	52	5
R0410365	2104	20.5	22.0	42	5
R0410366	2105	22.0	23.5	172	5
R0410367	2106	23.5	25.0	<10	5

I=insufficient sample X=small sample E=exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Au Aqua regia decomposition / solvent extraction / AAS

Wt Au The weight of sample taken to analyse for gold (geochem)

APPENDIX D

DRILL LOGS OF 2001 DRILL PROGRAMME

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

L

Hole V		Bearing: 310°		tion Diamond Drill Log Sheet [Dip: -70° Hole Started: Page 1 of 1
LITH	OLOGY			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	6.10	Casing	CA	casing
6.10	11.60	Till, Sand, Gravel	ОВ	till, sand, fine gravel, some cobbles
11.60	16.80	Clay; minor gravel	OB	grey kaolinite clay with minor fine gravel
16.80	23.80	Argillite±Siltstone	Emsl	Argillite: black, brown or grey argillite with thin interbeds of brown to grey siltstone. Argillite
				unaltered, siltstone strongly altered to clay. Zones of pure kaolinite occur within the argillite
				16.8-17.7 m: black argillite (50%) with trace of disseminated pyrite and grey siltstone (50%) with
				strong argillic alteration; trace of quartz veinlets
				17.7-20.7 m: black argillite (95%) with interbedded light grey siltstone (5%); moderate argillic
				alteration
				20.7-23.8 m: grey argillite (90%) with interbedded light grey siltstone (10%) with moderate
				argillic alteration; trace of quartz veinlets
23.80	29.90	Argillite±Siltstone	Emsl	fault zone? (P. Read: probably continuation of the mudstone-rich zone)
				23.8-26.8 m: black and brown argillite (70%) with interbedded grey siltstone (30%) with strong
			1	argillic alteration; 70% brown and grey clay washed from interval
				26.8-29.9 m: black argillite (60%) with interbedded light grey silotstone (30%) with strong argillic
				alteration; 80% grey kaolinite clay washed from the interval
29.90	48.20	Tuff	Emtf	very fine-grained dacitic(?) tuff; light green or red and locally altered to white, grey or pink; moderate
				to strong argillic alteration; slight to strong silica replacement; generally minor pyrite and quartz veinlets
		······································	1	29.9-36.0 m: light green tuff with moderate argillic alteration and moderate silica replacement
				(20-30%); trace of pyrite
				36.0-39.0 m: light green tuff (80%) moderate argillic alteration and strong silica replacement
				(20-50%); quartz/pyrite veinlets 2 to 5 mm equal to 2-3%; black argillite (20%) unaltered
			1	39.0-42.1 m: as above except no quartz/pyrite veinlets and only 1% disseminated pyrite;
				no argillitde
				42.1-45.1 m: green and red tuff with moderate argillic alteration; no pyrite
				45.1-48.2 m: green and red tuff with moderate argillic alteration; trace of pyrite
48.20	51.20	Basalt	Emvb	48.2-51.2 m: dark green tuff (90%) with moderate argillic alteration; 10% of interval with strong
				argillic alteration; 3% quartz veinlets, trace of pyrite (P.Read: probable basalt tuff
				which earlier loggers called "ultrabasic")
51.20	66.40	Felsite	Emfi	light green and white tuff with moderate argillic alteration
				51.2-60.4 m: fault zone? 70% clay washed out of this interval
		· · · · · · · · · · · · · · · · · · ·		51.2-54.3 m: 3% disseminated pyrite
				54.3-66.4 m: slight silica replacement (10?); trace of pyrite
				60.4-63.4 m: trace of quartz veinlets
66.40	66.40	End of Hole	EOH	end of hole at 66.4 m

.....

NAL SIL

Lanna B

Hole V-	-01-2 Be	aring: 301°		Dip: -70° Hole Started: Page 1 of 1
LITH	DLOGY			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	3.00	Casing	CA	casing
3.00	69.50	Tuff	Emtf	very fine-grained dacitic(?) tuff, green or pink, but generally altered to light green, grey or white and
				locally stained purple with hematite; slight to strong argillic alteration and slight to strong silica
				replacement; minor quartz veinlets with local low pyrite content
				2.4-4.0 m: tuff(?) strong limonite staining
				4.0-5.5 m: tuff(?) strong silica replacement (50%); 5% pyrite
				5.5-8.5 m: grey tuff, slight argillic alteration and slight silica replacement (10%)
				8.5-14.6 m: green and grey tuff, moderate argillic alteration and slight silica replacement (10%?),
				trace of quartz veinlets and pyrite
				14.6-20.7 m: same as above but all grey tuff
				20.7-23.8 m: grey tuff, moderate argillic alteration and moderate white and pink silica replacement
				(15%?), 2% white quartz veinlets
				Fault zone? 90% grey kaolinite clay washed out of sample interval
				26.9-29.9 m: light green and pink tuff, moderate argillic alteration and silica replacement (30%?),
				2% white quartz veinlets
				29.6-36.0 m: lightr green and pink tuff, moderate argillic alteration, slight silica replacement (10-15%?)
				36.0-45.1 m: light green and minor pink tuff, slight argillic alteration and slight silica replacement
				(10%?), trace of pyrite
				45.1-48.2 m: light green (80%) and purple (20%) tuff, slight argillic alteration and slight silica
				replacement (10%), trace of pyrite
				48.2-54.3 m: light green (80%) and purple (20%) tuff, slight to moderate argillic alteration
				54.3-57.3 m: light green and white tuff, strong argillic alteration and moderate silica replacement
				(20%?), 2% quartz veinlets, trace of very fine disseminated pyrite
				57.3-60.4 m: light green and white tuff, strong argillic alteration, strong silica replacement (50%?),
				trace of very fine disseminated pyrite
				60.4-63.4 m: light green and pink tuff, strong argillic alteration; moderate to strong white and pink
				silica replacement (40%?), trace of very fine disseminated pyrite
		<u> </u>		63.4-66.4 m: light green (50%) and hematitic purple (50%) tuff, moderate argillic alteration, moderate
				silica replacement (30%?) of the light green tuff only; 90% of the interval is clay which was washed
				from the sample
				66.4-69.5 m: light green (80%) and hematitic purple (20%) tuff, moderate argillic alteration and
				slight silica replacement (10%?), 90% of the interval equals clay which was washed from the sample
69.50	69.50	End of Hole	EOH	end of hole
		····		
1				

Γ

Γ

.

L

Hole V-	01-3 E	Bearing: 291°		Dip: -70° Hole Started: Page 1 of 1
LITHO	DLOGY			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	6.10	Casing	CA	casing
6.10	23.80	Till	ОВ	compacted clay, sand and pebble till
23.80	32.90	Argillite±Siltstone	Emsi	dark brown to black argillite with minor interbeds of light brown or grey silstone slightly altered to clay
				zones of pure kaolinite clay occur within the argillite
				23.8-26.8 m: dark brown argillite (90%) with interbedded light brown and grey siltstone (10%);
				slight argillic alteration; 50% of grey clay washed out of sample interval
				26.8-29.9 m: as above but without strong clay zones
				29.9-32.9 m: black argiilite, 30% grey clay washed out of sample interval; severe downhole
				contamination equals 90% of sample collected
32.90	69.50	Tuff	Emtf	very fine-grained dacitic(?) tuff, green to pink, but locally altered to light green, light grey or
				grey, slight to moderate argillic alteration and slight to very strong silica replacement; very
		·	Emsi	minor quartz veinlets and very weak pyrite.
				32.9-36.0 m: light green and pink tuff; slight argillic alteration and slight silica replacement
			1	(10%); trace of pyrite; downhole contamination equals 50% of sample
				36.0-39.0 m: as above (90%) plus 10% interbedded dark brown argillite. Downhole
				contamination equals 20% of sample
				39.0-42.1 m: light grey tuff 90% moderate argillic alteration and moderate silica replacement (20%?)
		······································		with interbedded dark brown argillite (10%); downhole contamination equals 10% of sample
				42.1-45.1 m: green tuff (90%) with interbedded black argillite (10%), 1% quartz veinlets and
				trace of pyrite. Downhole contamination equals 10% of sample
				45.1-48.2 m: light green tuff, moderate argillic alteration and slight siloica replacement (5%?).
				50% grey clay washed out of sample interval. Downhole contamination equals 50% of sample
				45.1-60.4 m: light green to grey tuff, moderate argillic alteration, trace of pyrite. Downhole
		******		contamination equals 30-90% of sample
				45.1-51.2 m: 50% contamination (mixed gravel)
				51.2-57.3 m: 30% contamination (mixed gravel)
				57.3-60.4 m: 90% contamination (mixed gravel)
				60.4-69.5 m: lightr green to grey tuff, moderate argillic alteration and silica replacement (30%),
				trace of pyrite. Downhole contamination equals 50-60% of sample
60.50	76.20	Felsite	Emfi	light grey tuff, very strong silica replacement (90%?), no pyrite
				69.5-75.6 m: downhole contamination equals 90% of sample collected
				75.0-76.2 m: fault zone? with water
			1	75.6-76.2 m: downhole contaminatikon equals 90% of sample (mixed gravel)
76.20	76.20	End of Hole	EOH	end of hole; abandoned in fault zone? with water
	<u> </u> _			

l t

L.

5

,----

Ecs		Bearing: 286°		Dip: -70° Hole Started: Page 1 of 1
LITHO	DLOGY			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	0.30	Casing	CA	casing
0.30	41.10	Till, sand, gravel, clay	OB	0.3-8.4 m: clayey boulder till, some large boulders
				8.4-14.6 m; fine brown sand
				14.6-20.7 m: fine gravel
				20.7-41.1 m: fine gravel in compact grey clay
41.10	48.20	Tuff	Emtf	very fine-grained green dacitic(?) tuff, moderate argillic alteration and slight to moderate silica
				replacement, trace of pyrite
				41.1-42.1 m: green tuff, moderate argillic alteration, slight silica replacement (10%?), trace of
				pyrite. Downhole contamination equals 70% of sample
				42.1-48.2 m: as above but moderate silica replacement (20%?). Downhole contamination equals
				60% of sample
48.20	66.40	Conglomerate	Emcg	comprised predominantly of green, red and purple clasts of andesite and trachyte and 5% white quartz
				clasts or veins, unaltered, trace of disseminated pyrite throughout
66.40	66.40	End of Hole	EOH	end of hole
		Morrison; Interpr		Read Date: October 26-27, 2001; Interpretation: June 14, 200

Lane -

.....

Hole V-	01-5 B	learing: 279°		Dip: -70° Hole Started: Page 1 of 1
JTH	DLOGY			Vault Claim
From (m)	To (m)	UNIT	SYMBOL	SUB UNITS AND DESCRIPTION
0.00	0.30	Casing	CA	casing
0.30	34.40	Silt, clay, gravel	OB	silt, clay and gravel
				0,3-8.5 m: brown silt
				8.5-14.6 m: brown silt and fine gravel
				14.6-22.3 m: grey clay and gravel
				22.3-29.9 m: gravel, 1-3 cm
				29.9-34.4 m: grey compacted clay with coarse sand and fine gravel
34.40	71.90	Conglomerate	Emcg	the conglomerate is comprised predominantly of green, red and purple volcanic clasts of andesite
				and trachyte and 5% white quartz veins or clasts. Very fine-grained tuff interbeds are moderately
				clay altered
				45.1-48.2 m: slight argillic alteration of fine-grained matrix
				48.2-51.2: downhole contamination equals 90% of sample
				51.2-54.3 m: 10% tuff, moderate argillic alteration; 10% downhole contamination
				54.3-57.3 m: 15% tuff, moderate argillic alteration; 20% downhole contamination
				57.3-60.4 m: 10% tuff, moderate argillic alteration; 40% downhole contamination
				60.4-63.4 m: 10% tuff, moderate argillic alteration; 80% downhole contamination
				63.4-69.5 m: 10% tuff, moderate argillic alteration; 60% downhole contamination
				69.5-71.9 m: 20% tuff, moderate argillic alteration; 40% downhole contamination
71.90	84.70	Felsite	Emfi	chalky white, highly altered, very fine-grained tuff, strong silica replacement (60%?), trace of
				very fine-grained pyrite; downhole contamination equal 50% of sample
84.70	84.70	End of Hole	EOH	end of hole; abandoned due to severe uphole caving
		<u> </u>		

Γ

[

1

APPENDIX E

NORTH VEIN ORIENTATIONS, ASSAYS AND TRUE WIDTHS

GEOTEX CONSULTANTS LIMITED CONSULTING GEOLOGISTS

Ì

l

NORTH VEIN: DDH INTERSECTIONS, COMPOSITED ASSAYS AND TRUE WIDTHS

Sectio	on/DDH	X (Easting)	Y (Northing)	Z (Elevation)	Depth (m)	TCA (°) Stk/Dip	Stk/Dip	Length (m)	φ(°)	True Width (m)	Assay (g/t)
900E	Star and	2004 A.									
	82761	877	240	334	157.76	60-70 090/43S		1.90	25.5	1.71	2.333
	82770	915	221	247	253.51	50-60 090/60S	090/10N	0.62	35.0	0.51	1.720
850E											
	82758	835	255	383	176.84	60 090/65S	090/05N	0.08	30.5	0.07	3.534
	82759	835	237	330	178.25	40 090/70S	090/30N	0.29	50.0	0.19	
	82782	873	191	172	325.67	30 090/77S	090/43N	0.48	59.8	0.24	3.341
800E											
	82768	817	222	277	249.78	40 090/74S	090/26N	1.29	50.5	0.82	
	82783	784	193	107	417.18	? ?	?	0.34	?	?	2.382
750E				Lan anna anna anna anna anna anna anna							
	82756	765	260	385	118.51	75 090/36S	090/06N	1.87	14.9	1.81	2.027
	82757	766	245	335	163.92	35-40 090/63S	090/42N	1.30	52.9	0.78	12.130
	82765	730	231	240	309.98	30 <mark>090/81S</mark>	090/40N	0.52	60.4	0.26	1.006
700E						A A A A A A A A A A A A A A A A A A A					
	72407	690	288	424	76.25	65 090/47S	090/30N	0.35	24.9	0.32	4.400
	82754	711	263	367	140.36	40 090/75S	090/25N	1.10	50.0	0.71	14.364
	82755	710	247	332	168.02	40 090/65S	090/35N	2.51	50.0	1.61	15.113
650E	Sec. Sec.		and the second second								and the second
	82752	669	264	379	121.84	30 090/84N	090/25N	1.05	60.0	0.52	7.642
						55 090/71S	090/01S	1.05	35.0	0.86	
	82753	673	251	340	149.55	30-35 090/81S	090/34N	0.42	57.8	0.22	7.997
600E											
	72421	611	251	317	198.55	60 090/66S	090/065	0.70	30.2	0.60	26.500
	82749	623	284	435	68.72	80 090/55S	090/35S	0.35	10.0	0.34	4.096
	82750	624	263	373	115.65	30-40 090/70S	090/40N	0.96	55.0	0.55	14.65
550E											
	82747	572	301	455	54.18	50 090/865	090/06S	0.18	38.0	0.14	4.578
	82748	572	276	404	78.00	35 090/65S	090/45N	2.24	55.0	1.28	2.940
	82763	542	260	361	152.20	40 090/78S	090/22N	0.68	49.5	0.44	23.352
					1.00	55 090/79S	090/22N	0.68	49.5	0.44	23.352
500E		And the second					and the second second				
	82743	484	314	476	37.20	90 090/50S	090/40S	0.64	5.0	0.64	1.972
	82744	484		and the second se	64.45	75 090/38S	090/12N	0.11	25.0	0.10	5.850
	82745	523	and the second se	and the second se	30.48	90 090/50S		the second	5.0	0.64	
	82746	523			67.81	45 090/58S			45.0	0.13	3 3.854

Stk/Dip = red lettering indicates attitude selected Stk/Dip = black lettering indicates attitude NOT SELECTED

5:02 PM 30/06/2005

E-1

NORTH VEIN: DDH INTERSECTIONS, COMPOSITED ASSAYS AND TRUE WIDTHS

450E			With a scholar of all control of a scholar of the							AND DESCRIPTION OF THE OWNER OF T		
Sec. Sec.	72424	467	255	281	278.83	55	090/765	090/065	0.18	35.5	0.15	2.505
	82764	428	273	341	208.86	40	090/74S	090/26N	1.32	50.0	0.85	15.916
400E												
	82739	377	303	486	44.23	?	?	?	0.13	?	?	4.835
	82740	378	293	408	111.23	40	090/62S	090/38N	0.71	50.0	0.46	27.592
	82741	424	312	478	49.10	70	090/65S	090/255	0.18	20.0	0.17	2.298
	82742	424	297	436	78.13	55-60	090/47S	090/17N	1.11	32.0	0.94	18.605
350E												
	82766	339	279	316	221.69	45	090/75S	090/15N	0.46	45.0	0.33	23.775
300E					a second a				13.5			All free of the second s
	82737	322	303	491	47.81	70-75	090/62S	090/285	0.42	17.0	0.40	8.595
	82738	322	288	453	74.52	40	090/65S	090/35N	0.45	50.0	0.29	10.507
250E								Selection of the select				
	82735	274	312	500	47.02	65-75	090/605	090/205	0.42	20.0	0.39	10.819
	82736	274	297	472	69.40	45	090/605	090/30N	0.40	45.0	0.28	7.067
	82767	239	272	348	217.53	?	?	?	0.20	?	?	17.081
200E	an extended to	S. M. Frances	Sector Contractor		The local sector		and a start of the second s					
	82733	220	297	491	97.28	23894	090/78S	090/225	0.41	28.0	0.36	19.052
	82734	219	293	421	142.72	30	090/905	090/30N	0.43	60.0	0.22	10.492
150E		St. R.										
	82731	171	298	485	117.38	60-70	090/75S	090/255	0.22	25.0	0.20	8.570
	82732	172	285	425	155.08	55	090/65S	090/05N	0.28	34.8	0.23	73.771
	82769	145	275	316	257.13	33	090/81S	090/33N	0.24	57.0	0.13	0.709
100E		and the second second									and a second	
	82729	123	300	523	61.75	80	090/55S	090/355	0.45	10.0	0.44	10.140
	82730	124	297	455	118.15	20	090/905	090/50N	1.33	70.0	0.45	14.303
50E											and the second secon	
	82727	71	304	506	69.19	50	090/905	090/105	0.32	40.0	0.25	22.330
	82728	71	293	451	108.93	45	090/695	090/21N	0.20	45.0	0.14	38.240
	82787	50	275	267	313.85	45	090/785	090/12N	0.09	44.7	0.06	1.234
	2.2					80	090/435	090/245	0.09	10.0	0.09	1.234
000E				and the supervision of the super					and the second second second			
	82725	23	308	518	53.00	50	090/855	090/055	0.88	40.0	0.67	7.322
	82726	23	301	469	91.25			090/35N	0.45	55.0	0.26	20.710
50W												
	82720	-27	303	512	68.02	?	?	2	0.89	?	?	16.026

Stk/Dip = red lettering indicates attitude selected Stk/Dip = black lettering indicates attitude NOT SELECTED

5:02 PM 30/06/2005

E-2

NORTH VEIN: DDH INTERSECTIONS, COMPOSITED ASSAYS AND TRUE WIDTHS

82721	-26	290	472	93.10	40	090/75S	090/25N	0.40	50.0	0.26	18.260
100W				States Lange			and the second				
82707		No	intersection			10.30			The second se		
82708	-121	295	486	72.82	45	090/89S	090/01N	2.22	44.6	1.58	13.222
82719	-121	283	454	95.13	?	?	?	0.73	?	?	6.189
82723	-84	304	519	52.19	60	090/75S	090/15S	1.54	30.0	1.33	5.196
82724	-83	295	482	69.93	45	090/69S	090/21N	2.57	45.0	1.82	20.107
82786		No	intersection			and a start of the					
150W			The second second		- 14 M		lana an				
82715	-168	277	483	57.33	45	090/90S	-	0.23	45.0	0.16	32.968
82716	-168	274	418	112.39	55	090/55S	090/15N	1.51	35.0	1.24	1.602

E-3