MAMMOTH GEOLOGICAL LTD.

612 Noowick Road Mill Bay, B.C. Canada VOR 2P4

2004/2005 GEOCHEMICAL ASSESSMENT REPORT BLUE HAWK PROJECT

Phone: (250) 743-8228 Fax: (250) 743-8228

email: mammothgeo@shaw.ca

Vernon Mining Division Okanogan District, B.C.

TRIM 082E093 Lat: 49 59 02 Long: 119 31 10

FOR

Southern Pacific Development Corp. 1270 - 1130 West Pender Street Vancouver, B.C. V6E 4A4

> By; R.Tim Henneberry, P.Geo. June 1, 2005

-2-SUMMARY

The Blue Hawk property of Southern Pacific Development Corp. is being explored for its copper-gold potential. The elevated phosphorous located during the 2005 soil survey program raises the possibility of phosphate potential as well. The 12 claims comprising the property were converted to one map claim under the map staking provisions of the Mineral Tenure Act. The claims have been sold to Southern Pacific subject to a NSR royalty. The Blue Hawk property is road accessible, 11 kilometres northwest of Kelowna in the Vernon Mining Division.

The Blue Hawk project lies within the Intermontane Belt of the Canadian Cordillera at the extreme south end of the Quesnel Terrane. The area is underlain by Harper Ranch Group sediments and volcaniclastics intruded by a small diorite stock. A large NW trending fault zone bisects the present property.

Two main target areas were identified during the initial property review (Henneberry, 2004): the copper-gold bedrock mineralization located by Dawood Mines in the early 1970's and the northwest fault, especially proximal to the Okanogan intrusions. While the copper-gold bedrock mineralization is a higher priority target, the limited budget combined with the pressing assessment requirements necessitated directing a soil survey over the northwest end of the northwest fault. The soil geochemical survey showed the entire grid to be anomalous in phosphorous and the south end of the grid to be anomalous in copper.

The existing soil grid now needs to be extended a minimum of 600 metres to the south to establish the southern limit of the anomalous copper values. The copper and gold anomalies identified in the survey need to be followed up by hand trenching. The elevated phosphorous values need to be followed up by mapping and hand trenching.

Upon conclusion of the follow up work on the soil grid, the following mineralization areas on the property will require 50 hours of excavator trenching, followed by 3500 feet of diamond drilling. These areas are (in order of priority):

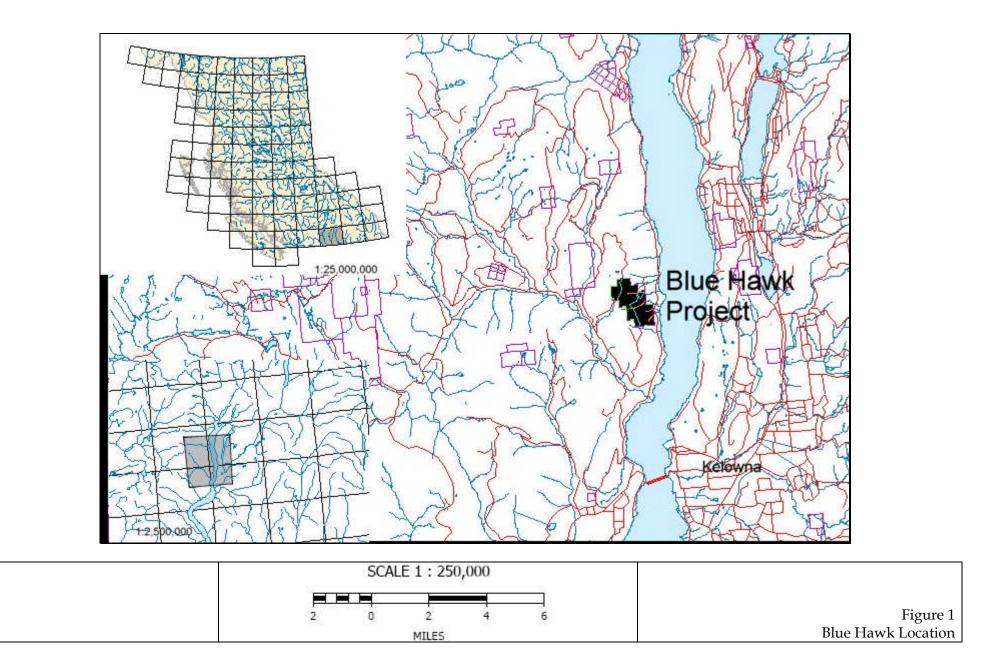
- 1. The Dawood copper-gold bedrock mineralization Fox (1974; 1974b), as discussed in Henneberry (2004).
- 2. Anomalous copper and/or gold areas from the soil survey and follow up mapping and hand trenching.
- 3. Anomalous phosphorous areas from the soil survey and follow up mapping and hand trenching.

Grid Extension and Hand Trenching	\$ 15,290
Excavator Trenching	\$ 39,550
Drilling	\$ 189,500
Blue Hawk 2005 Budget	\$ 244,340

The soil sampling program cost was \$11,766.48.

-3-TABLE OF CONTENTS

INTRODUCTION	4
PROPERTY DESCRIPTION AND LOCATION	6
PROPERTY HOLDINGS	8
PREVIOUS EXPLORATION	9
REGIONAL GEOLOGY	11
Blue Hawk Area Geology	11
Blue Hawk Property Geology	13
DEPOSIT TYPES	14
MINERALIZATION	16
MAY 2005 SAMPLING PROGRAM	17
INTERPRETATION AND CONCLUSIONS	19
RECOMMENDATIONS	21
REFERENCES	
STATEMENT OF QUALIFICATIONS	24
COST ESTIMATES	25
STATEMENT OF COST	27
LIST OF FIGURES	
Figure 1. Location Map	
Figure 2. Claim Map	
Figure 3. Regional Geology	
Figure 4. Preliminary Property Geology	
Figure 5. Anomalies and Exploration Targets	15
APPENDICIES	
Rock Sample Description	
Figure 6a. Soil Geochemistry Au ppb	
Figure 6b. Soil Geochemistry Cu ppm	
Figure 6c. Soil Geochemistry P ppm	
Figure 6c. Soil Geochemistry Sr ppm	
Assay Certificate	33


-4-INTRODUCTION

The purpose of this report is to document the recently completed soil geochemical survey for assessment credits. The second purpose is to review this geochemical data and recommend further exploration.

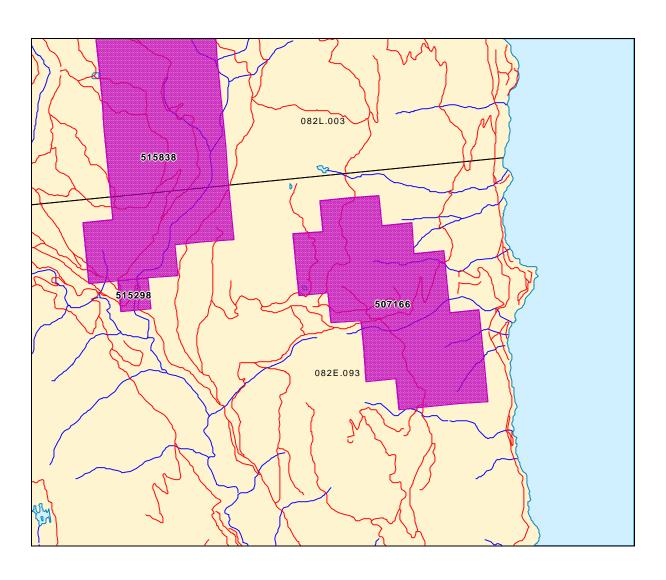
This report was commissioned by Ms. Laara Shaffer, a director of Southern Pacific Development Corp., the property optioners.

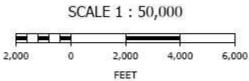
The Blue Hawk property has a long exploration history. The original discovery was made in the 1930's, with subsequent exploration activity in the period from the early 1970's through to the mid 1990's. There are two primary targets on the property: precious metal sulfide quartz veins associated with a NW trending normal fault and copper-gold associated with a Jurassic dioritic plug.

This exploration program focused on the northwest trending fault, in order to complete a short program for assessment credits. A 1200m by 600m grid was established over the suspected strike projection of the fault. Soil samples were taken at 50 metre intervals along each cross line. Outcrop exposures along the existing roads were also examined.

-6-PROPERTY DESCRIPTION, LOCATION, ACCESSIBILITY

The Blue Hawk project lies within the southern interior approximately 11 kilometres northwest of Kelowna. The project is accessible by the Bear Creek logging mainline and spur roads.


The claims lie on TRIM sheet 082E093 in the Vernon Mining Division. The geographic center of the property is approximately 49 59 15 N latitude and 119 31 05 W longitude. Elevations range from 600 metres in the southeast corner of the property to 1140 metres in the northwest corner of the claim group.


The logistics of working in this part of the province are excellent. Supplies and equipment can for the most part be obtained in Kelowna, as can heavy equipment, fuel and lodging.

The southern interior of the province has a generally temperate climate. The summer field season is generally warm and dry and runs from late-April to early-May through to late-October. Winters can be cold for short periods with moderate snow accumulations.

Water for diamond drilling may be a problem later in the summer, though there is a small lake within the western half of the property.

At this stage of the exploration of the Blue Hawk property, the only permitting required would be for trenching and diamond drilling. These permits are generally readily obtainable contingent on the posting of small (\$5,000 to \$10,000) reclamation bonds. The drilling permit has been obtained and the bond has been posted.

BLUE HAWK PROJECT Claim Location (082E093)

Figure 2

-8-PROPERTY HOLDINGS

The Blue Hawk project lies on claim sheet 082E093 in the Vernon Mining Division, covering an area of 540.185 hectares. The previous Quail 1-12 two post claims were converted under the new map staking provisions of the Mineral Tenure Act on February 15, 2005.

Name	Numbers	Anniversary Date
	507166	May 23, 2010 *

^{*} pending approval of 2005 assessment credits.

Claim 507166 is registered in the name of Southern Pacific Development Corp. (FMC 200782). Southern Pacific purchased the claim from Armac Investments Ltd. of Vancouver, B.C. under the following terms:

- 1) A cash payment of \$25,000 upon signing.(paid)
- 2) A second payment of \$25,000 subject to favourable results
- 3) Southern Pacific will carry out systematic exploration of the claims. If after two years from the signing of the agreement Southern Pacific feels the property is neither worthy of further work not a feasibility study, Southern Pacific will return the claims to Armac Investments with a minimum of one year of assessment filed for the claims
- 4) Armac Investments will retain a 2 percent Net Smelter Return royalty. Southern Pacific retains the option to purchase one percent of the NSR for \$1,000,000 at any time during the first 5 years of this agreement.

-9-PREVIOUS EXPLORATION

The Blue Hawk property has a long exploration history. The property was first discovered in the 1930's. Exploration work consisted of surface trenching and pits and two adits. A small shipment of 5 tons was made in the late 1930's, returning 5 ounces of silver and 18 ounces of silver. (MMAR, 1938).

Dawood Mines Ltd. actively explored the property in the late 1960's through to the mid 1970's. They undertook programs of soil sampling and ground geophysics, followed by surface trenching. Dawood identified a large copper-gold soil anomaly on the east side of the property. Trenching to bedrock uncovered mineralized bedrock in several areas within this zone. This mineralization was not tested further. (Read, 1969; Fox, 1972; Fox 1974; Fox 1974b).

N.C. Lenard held the property through much of the early 1980's, completing limited prospecting, mapping and sampling programs, essentially enough work to maintain the property. (Lenard, 1980; 1981; 1981b; 1984).

Tillicum Gold Mines evaluated the existing surface and underground showings, sampling most of the known showings. George and Krueckl (1984) found the gold values to be significant but erratically distributed.

Pinewood Resources obtained the property in the late 1980's and completed several exploration programs over the next few years. Dasler (1989) directed a program of excavator trenching of existing vein systems, followed by mapping and sampling (only for Au and Ag). At same time, Mark and Cruickshank (1988) completed IP and resistivity surveys. A strong linear anomaly of over 1000 metres paralleling Jennie Creek was identified as were several smaller individual anomalies thought to correlate with known mapped zones of shearing. Diamond drilling and trenching was recommended to test the linear anomaly and the area of the existing workings.

The drilling and trenching directed at the linear anomaly proved graphitic sediments and volcaniclastics to be the source of the anomaly. The volcanic units carried pyrite and pyrrhotite while the granodiorite carried only minor amounts of sulphides. These mineralized areas were generally not sampled. (Macfarlane, 1990).

Pinewood Resources then completed further soil sampling (for Au only) further to the north of the existing grid (Devlin and Smith, 1991). Finally, Pinewood completed a 5 hole drill program in the area of the existing adit. Vein mineralization consisted of pyrite, with minor chalcopyrite and rare pyrrhotite. Narrow alteration zones (to 3 metres) were noted around the veins. Analysis was only for gold and returned values to 565 ppb Au. The diorite was locally mineralized with disseminated pyrite and chalcopyrite (Smith, 1994) but was never sampled.

Southern Pacific Developments Corp. completed a preliminary property examination and a compilation of existing data in May 2004. Four samples were taken during the examination with one grab sample from the area of the northwest fault returning 2390 ppm copper. This resulted in the soil geochemistry program that is the focus of this report. (Henneberry, 2004).

LEGEND

QUATERNARY

QL Lambley Creek basalt

MIOCENE TO PLIOCENE

MiPiCvb Chilcotin Group - basaltic volcanic rocks

EOCENE

Penticton Group

EPemk undivided volcanic rocks

EPeK Kettle River Formation – fine clastic seds.

EPevc volcaniclastics rocks

Egr granite, alkali feldspar granite

ECsy Coryell Intrusions – syenite to monzonite

JURASSIC

MJOgd Okanogan batholith - granodiorite

MJgd granodiorite

EJP Pennask batholith – quartz diorite

TRIASSIC to JURASSIC

LTrJgd granodiorite

TrJN Nicola Group - calc-alkaline volcanics

PERMIAN

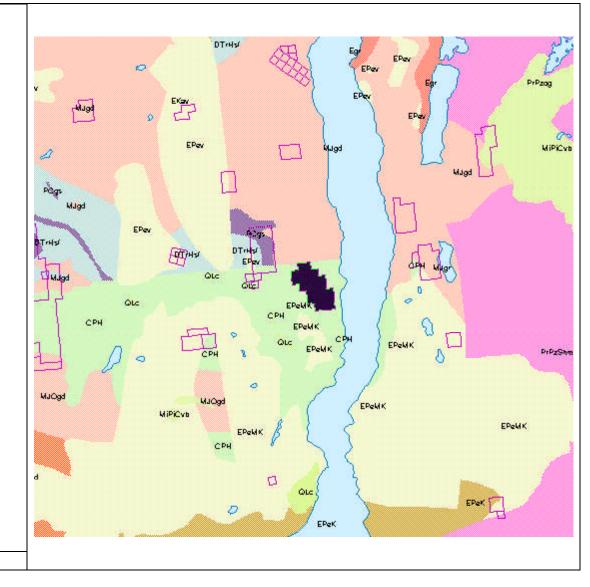
PCgs Chapperon Group - greenstone, greenschist

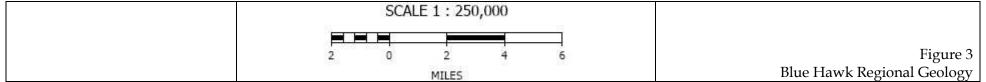
metamorphic rocks

CARBONIFEROUS TO PERMIAN

CPH Harper Ranch Group - volcaniclastics rocks

DEVONIAN TO TRIASSIC


DTrHsf Harper Ranch and (?) Nicola Groups


Fine clastic sedimentary rocks

PROTEROZOIC

PrM Monshee Complex -metamorphics

from MAPPLACE

-11-REGIONAL GEOLOGY (summarized from MAPPLACE)

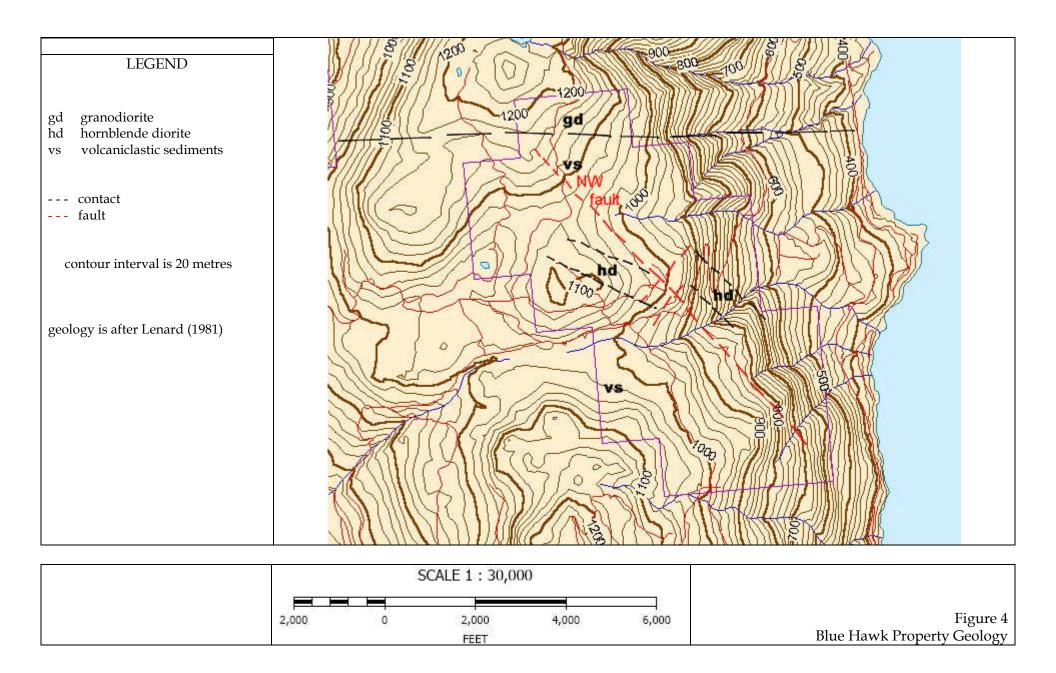
The Blue Hawk property lies within the Intermontane Belt of the Canadian Cordillera. This area lies at the extreme south end of the Quesnel terrane.

The regional geology is characterized by Devonian to Triassic volcanic and sedimentary rocks intruded by a series of predominantly Jurassic plutonic rocks. These rocks are locally overlain by Eocene and earlier sediments and volcanics, and locally intruded by small Eocene stocks. Finally, glacial till and alluvium forms thin veneers to locally thicker deposits.

The Monashee Complex of undivided metamorphic rocks lies on the eastern edge of the map area. Devonian to Triassic fine clastic sediments believed to correlate with the Harper Ranch and/or Nicola Groups lie within the west central section of the map area. The Carboniferous to Permian Harper Ranch Group volcaniclastics rocks appear to overlie the Devonian to Triassic clastic sediments. These rocks are overlain in turn by greenstones and greenschist metamorphic rocks of the Permian Chapperon Group.

Aside from the aforementioned volcanics and sediments, the western half of the map area is dominated by Jurassic granodiorites to quartz diorites, including the Okanogan and Pennask batholiths.

The Eocene Penticiton Group forms a large Tertiary outlier through the centre of the map area. Penticton group rocks include fine clastic rocks, volcaniclastic rocks and undivided volcanic rocks. Chilcotin basaltic volcanics lie on the extreme eastern edge of the map area. Small Tertiary stocks outcrop in the northern half of the map area.


Thin veneers and locally thicker accumulations of till and alluvium outcrop along the east side of Okanogan Lake.

Structurally, the map area is transected by a series of generally north trending normal faults and associated splay faults that appear to be associated with the Tertiary outliers.

Blue Hawk Area Geology (summarized from MINFILE and MAPPLACE):

The Blue Hawk deposit lies in an area underlain by the Harper Ranch Group. Harper Ranch rocks consist of argillites, cherts and limestones along with island arc derived clastic and volcaniclastic rocks, including sandstone and conglomerate. These rocks are intruded in the map area by sills, dykes and plugs related to the Okanogan batholith.

Structurally, the area is dominated by a northwest trending normal fault that strikes through the long axis of the present Blue Hawk property. The presently known mineralization on the Blue Hawk property appears to be associated with this fault.

Blue Hawk Property Geology:

The Blue Hawk property is underlain by Harper Ranch Group metasediments and volcanics, intruded by a small diorite plug related to the Okanogan batholith. A thin veneer of glacial till masks the geology over much of the property.

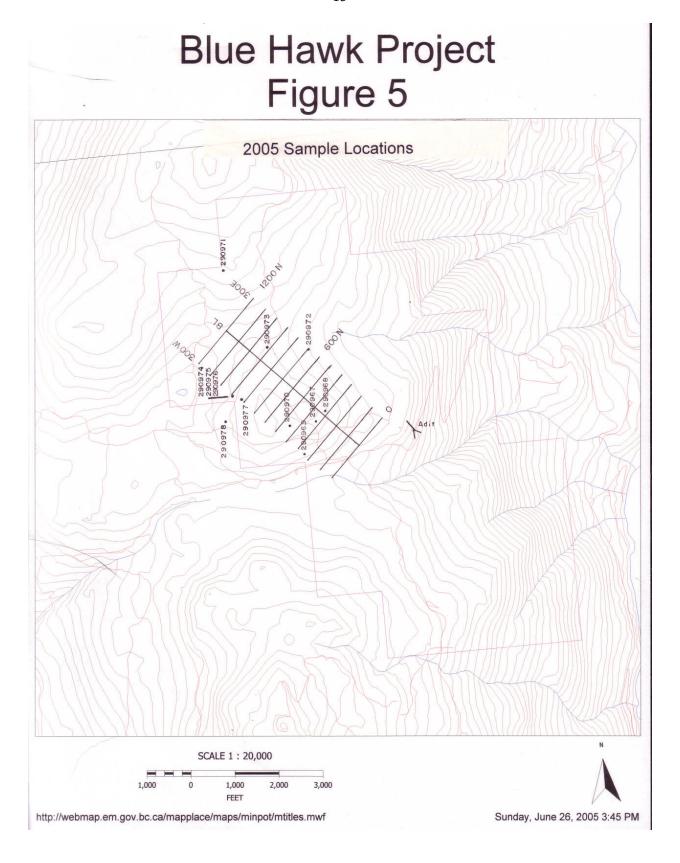
Diamond drilling in the area of Jennie Lake shows that section of the claim group to be underlain by locally graphitic, chloritic andesite. The andesite is a grey black, fine grained, massive, competent rock. The unit carries pyrite and pyrrhotite in concentrations up to 5%-7%, as blebs, stringers, veinlets and disseminations. The andesite was intruded by sills and dykes of grey, fine-grained, chloritized granodiorite carrying \pm 1% disseminated pyrite (Macfarlane, 1990).

The area on lower Jennie creek below the Blue Hawk workings was trenched and found to be underlain by dark grey, silty graphitic shale/slate, with local sandy and silty horizons and by grey-green andesite. (Macfarlane, 1990).

Diamond drilling showed the area to the north of the Blue Hawk workings is underlain by andesite to andesitic sedimentary rocks with cherty bands and diorite. The andesite is dark green to blackish green in fresh sections to blue-grey to grey-green in highly altered sections. The diorite is dark green in color and hosts numerous xenoliths of andesite, local patches of disseminated pyrite and chalcopyrite. (Smith, 1994).

Outcropping located during the soil sampling program consisted primarily of metamorphosed volcaniclastic sediments, with occasional zones of hornsfelsing, usually closely related to the large batholith immediately to the north of the property.

-14-DEPOSIT TYPES


There are at least two distinct styles of mineralization on the Blue Hawk property. The first is precious metal-sulfide quartz veins associated with a NW trending normal fault. The Blue Hawk adit and the majority of the surface trenching were directed toward these targets. A grab sample taken along the strike projection of this fault to the NW returned 2390 ppm Cu, indicating the fault may be mineralized through its length.

The veins in the workings area are hosted in a hornblende diorite that according to Lenard (1984) has some affinities with the geological setting of the Bridge River and Cadillac gold camps: gold quartz genetically related to albitite veins and pods. The hornblende diorite wallrock is partially albitized, while the veins themselves are pyritized, sericitized and partially calcitized.

The second type of mineralization is copper-gold associated with a Jurassic diorite plug. Early soil sampling by Dawood Mines (Fox, 1972; Fox, 1974) located a large NE trending copper-gold soil anomaly 60 metres by 215 metres on the east side of the present Southern property. Random rock chip sampling within this zone by Dawood Mines returned copper values ranging from 0.12% to 0.30% and gold values ranging from 0.005 to 0.05 ounces per ton. Despite the fact further exploration was recommended, it appears this zone was not followed up.

This copper-gold zone appears to be associated with a hornblende diorite plug in Harper Ranch Group andesites and volcaniclastics. A large granodiorite related to the Jurassic Okanogan Intrusions lies within a kilometre to the north, suggesting a possible setting for porphyry copper mineralization.

The 2005 soil sampling survey has shown the Blue Hawk property to be elevated in phosphorous. The mode of occurrence and the concentrations of phosphate ($^{\circ}$ P₂O₅) has yet to be ascertained and will be one of the focuses of the next phase of the exploration program.

-16-MINERALIZATION

The precious metal – sulfide quartz veins on the Blue Hawk property have been developed by two adits and several surface pits and trenches over a strike length in excess of 180 metres. A small shipment of 5 tons was shipped from the property in the 1930's. This shipment contained 5 ounces of gold and 18 ounces of silver. (Read, 1969)

The veins trend westerly to north-westerly along fractures and shears in the hornblende diorite. They range from narrow fractures to 1.2 metres thick and are generally en-echelon and are separated by shears, which also run parallel to the veins. Mineralization consists of pyrite, minor galena and dark oxidation products. Traces of chalcopyrite, sphalerite and arsenopyrite are also noted in the veins. (MINFILE 082ENW002)

The surface exposures have been repeatedly sampled through the 1970's to the 1990's, with the most recent sampling completed by Pinewood Resources (Dasler, 1989). Though values in excess of 3.4 grams per tonne were obtained from each of the veins, the distribution tended to be erratic. Dasler's best zone was Trench #1, where the average assay of 10 channel samples, all of which assayed greater than 0.013 opt gold, was 0.237 opt gold and 0.92 opt silver over an average width of 42 centimetres. Gold assays appeared to correlate well with sulphides, especially pyrite.

The regional geology map shows a large, northwest trending fault structure striking through the heart of the present Southern Pacific property. The Blue Hawk adit and associated workings appear to lie within this zone. The bulk of the exploration and development completed to date has concentrated in a small section of the strike projection of this fault, with the majority relatively unexplored. A grab sample of rusty, oxidized material taken from the fault during the property visit/examination returned a value of 2390 ppm Cu.

The work completed by Dawood Mines in the early 1970's concentrated on the copper-gold potential of the property. Dawood (Fox, 1972; Fox, 1974) undertook soil geochemical surveys over the mineralized area, expanding the grid to the north and to the east and west. They were successful in located a broad somewhat linear zone of copper-gold mineralization extending to the northeast from the known vein showings. Limited trenching by Dawood (Fox, 1974b) found intensely altered sediments mineralized with low-grade chalcopyrite, pyrite and gold. Fox reported values ranging from 0.12% to 0.30% copper and 0.005 to 0.05 opt gold from rock chip sampling within the zone.

Pinewood Resources also undertook an induced polarization and resistivity survey of 7.1-line kilometres in the area, concentrating to the north and west of the known showings. A linear EW anomaly with a strike length in excess of 1 kilometre was located. Trenching at the extreme east end of the anomaly found graphitic schist, thought to be the cause. Limited drilling at the western end of the anomaly intersected locally, graphitic, chloritic andesites and chloritized granodiorite. The andesites carried 5%-7% pyrite and pyrrhotite as blebs, stringers, veinlets and disseminations. The granodiorite carried $\pm 1\%$ disseminated pyrite. (Macfarlane, 1990)

-17-MAY 2005 SAMPLING PROGRAM

The 2005 soil sampling program consisted of a grid 1200 metres by 600 metres over the suspected strike extension of the Northwest Fault. Lines were established at 100 metre intervals along the baseline. Sample stations were established at 50 metre intervals along each of the cross lines. This resulted in 169 soil samples. All soil samples were analyzed by ALS Chemex at their North Vancouver facility for gold and 27 element ICP.

The samples were taken from the "B" soil horizon and placed in kraft soil sample bags prenumbered with the grid coordinates. Sampling was done by W.A. Morris and R.T. Henneberry, with the assistance of B. McEwen on the first day of sampling. All samples were sorted into grid order and stored in R.T.Henneberry's vehicle. Upon completion of the program the samples were boxed and delivered to W.A. Morris in Chilliwack who then delivered them to ALS Chemex.

The soil samples were weighed, dried and dry-sieved to –180 micron (80 mesh). Gold was determined by fire assay and AAS with a 30 gram sample. The 27 element analysis was completed by first dissolving the sample in HF-HNO₃-HClO₄, followed by a HCl leach and finally an ICP-AES analysis.

A total of 12 rock samples were taken by R.T.Henneberry. They were all grab samples unless otherwise indicated. The storage and delivery procedure was identical to that of the soil samples.

The rock samples were weighed, dried, and crushed to 70% –2 mm. A 250g samples was split off and pulverized to 85% passing 75 micron. Gold was determined by fire assay and AAS with a 30 gram sample. The 27 element analysis was completed by first dissolving the sample in HF-HNO₃-HClO₄, followed by a HCl leach and finally an ICP-AES analysis.

Soil Survey Results

Sample results were plotted for gold and copper, the main targets of the exploration program. Sample results were also plotted for phosphorous and strontium as these as these elements were significantly above average crustal abundances.

Element	Maximum	Weak	Moderate	Strong
Au (ppb)	57	6-12	13-18	+18
Cu (ppm)	176	22-45	46-70	+70
P (ppm)	3900	1147-1710	1711-2275	+2275
Sr (ppm)	592	411-460	461-511	+511

The gold geochemistry values ranged from less than 5 ppb to 57 ppb. Three weakly anomalous zones were identified as a result of the sampling. The first runs from 300N 150E to 600N 50E with a possible extension to 1100N 50W with values ranging from 10-57 ppb. The second appears to run from 0N 50W to 400N 300W with values ranging from 21-37 ppb. The third is a spot anomaly at 0N 300W.

The copper values ranged from 5 ppm to 176 ppm. The south part of the grid appears to be anomalous in copper, perhaps suggesting the underlying bedrock itself is elevated in copper. A grid NW (292°) trending medium to strongly anomalous core runs from 0N BL to 200W through to 400N 50W to 150W. Anomalous values through this zone range from 24 ppm to 176 ppm. The north part of the grid contains only two spot anomalies at 1220N 100W (28 ppm) and 1200N 250W (63 ppm).

The concentration of phosphorous in the grid was unexpected. 95 of the 169 samples returned values in excess of 1000 ppm. Anomalous vales are found throughout the grid suggesting the underlying bedrock may be anomalous in phosphorous. Two loosely defined linear anomalies were highlighted. The first runs from 100N 200E to 1000N BL and ranges from 50-150 metres in width. The second runs from 700N 250E to 1000N 150E. There is also a concentration of anomalous values on the western edge of the grid between line 500N and 800N.

The concentration of strontium was also unexpected. 80 of the 169 samples were anomalous in strontium. Anomalous values are found throughout the grid, suggesting the underlying bedrock may be anomalous in strontium. There does not appear to be a specific pattern to the strontium values.

Rock Sample Results

A total of 12 rock samples were taken during the sampling program, 5 from the grid and 7 from outcrops along the roads. Four the samples returned anomalous values: one in gold, two in copper and one in phosphorous.

Sample 290977 returned an Au value of 121 ppb and an Ag value of 24.1 ppm from quartz float or subcrop in the area of the Pinewood (Dasler, 1989) trenching. The white quartz showed rusty oxides and limonite along with minor weathered sulfides.

Samples 290974 and 290975 were taken from a 2 metre wide fault zone (095/80N) in Harper Ranch Group volcaniclastic sediments. The fault zone consisted of vuggy, heavily oxidized sediments with pods of altered and weathered sulfides comprising up to 5 percent of the rock mass. The two metre wide zone ran 38 ppb Au and 815 ppm Cu.

Sample 290972 returned a phosphorous value of +10000 ppm. This sample was then assayed and returned 2.04% P₂O₅. The rock looked to be a schistose amphibolite exhibiting abundant biotite and fracture oxides. No visible mineralization was noted.

-19-INTERPRETATION AND CONCLUSIONS

Northwest Fault Soil Grid

The gold results from the soil sampling have to be described as a little disappointing. Only 9 of the 169 samples were anomalous. Three weakly anomalous zones were highlighted, requiring follow up by hand trenching. The strongly anomalous core of the copper anomaly also requires follow up by hand trenching to sample bedrock. At this stage copper values argue for expansion of the grid to the south, by another 600 to 1000 metres. This will also cover the area of the Dawood copper-gold bedrock mineralization.

Phosphorous

The elevated phosphorous values need to be explained. The British Columbia Ministry of Energy and Mines Industrial Minerals Geologist, George Simandl, was consulted for his opinion on the phosphorous results. He offered three possible explanations:

- A paleo-regolith in proximity of an igneous apatite
- An organic-rich (anaerobic) shale, possibly indicated by the presence of graphite
- Apatite as a minor or major component in magmatic deposits

The geological setting suggests either one or a combination of both of the first two scenarios may explain the Blue Hawk values. Macfalane (1990) reported graphitic sediments in his trenching program following up geophysical results on the south past of the present property. Bedrock consists of fine to medium clastic volcaniclastic sediments suggesting these sediments could include apatites from the weathering of the paleo-regolith.

An igneous source could also be the explanation. Previous exploration (Dasler, 1989; Macfarlane, 1990) has shown the presence of alkali -stocks, dykes and sills in the Blue Hawk map area. These could carry magnetite/apatite rich horizons within the intrusions.

Phosphorous is one of the key ingredients in fertilizers (i.e. P-K-N fertilizers). Phosphorous in mined from either sedimentary rocks (phosphorites) or from igneous carbonatites or nepheline syenite. There is one such mine in Canada, the Agrium Kapuskasing Phosphate operation, mining a carbonatite.

An examination of Harpers Ranch Group rocks shows these rocks are generally elevated in phosphorous. The ARIS index of the British Columbia Ministry of Energy and Mines was consulted searching for geochemical programs in Harper Ranch Group rocks. Three widely dispersed projects were examined:

Property	Location	P range	Rock Type	Reference
Blue Hawk	082E13	320 to 3900 ppm	hornfels, sediments	this report
Barnes Creek	082L01	700 to 4500 ppm	argillaceous siltstone	Augsten, 2004
Dobbin	082L04 / 082E13	600 to 4400 ppm	hornfels, pyroxenite	Kikauka, 2001
Gold Cutter	092P01/092P08	100 to 1500 ppm	syenite	Bilquist, 2003

This examination could draw no concrete conclusions as to the mode of occurrence in the Harpers Ranch group. Further exploration is required to ascertain the mode of occurrence and to assess the phosphorous potential of the Blue Hawk property. The next step should be to conduct some hand trenching in the immediate area of the stronger values in order to ascertain rock type and to assess the concentration of phosphate (% P_2O_5) in the underlying bedrock.

Upon completion of the soil sampling and hand trenching phase, excavator trenching and diamond drilling should be directed at the following areas (as outlined in Henneberry, 2004):

- 1. The area of high copper values in bedrock as first located by Fox (1974; 1974b). This area was discussed in Henneberry (2004).
- 2. The area of elevated copper values found in the 2004 survey
- 3. The area of elevated phosphorous found in the 2004 survey.

-21-RECOMMENDATIONS

The Blue Hawk project of Southern Pacific Development Corp. requires further exploration. Two main target areas were identified during the initial property review (Henneberry, 2004): the copper-gold bedrock mineralization located by Dawood Mines in the early 1970's and the northwest fault, especially proximal to the Okanogan intrusions. The limited budget combined with the pressing assessment requirements necessitated directing a soil survey over the northwest end of the northwest fault. The soil geochemical survey showed the entire grid to be anomalous in phosphorous and the south end of the grid to be anomalous in copper.

The next stages of the systematic exploration of the Blue Hawk property will first focus on the new soil grid and then on the copper-gold bedrock mineralization.

The existing soil grid needs to be extended a minimum of 600 metres to the south to establish the southern limit of the anomalous copper values. The copper and gold anomalies identified in the survey need to be followed up by hand trenching. The elevated phosphorous values need to be followed up by mapping and hand trenching.

Upon conclusion of the follow up work on the soil grid, the following mineralization areas on the property will require 50 hours of excavator trenching, followed by 3500 feet of diamond drilling. These areas are (in order of priority):

- 1. The Dawood copper-gold bedrock mineralization Fox (1974; 1974b), as discussed in Henneberry (2004).
- 2. Anomalous copper and/or gold areas from the soil survey and follow up mapping and hand trenching.
- 3. Anomalous phosphorous areas from the soil survey and follow up mapping and hand trenching.

Grid Extension and Hand Trenching	\$ 15,290
Excavator Trenching	\$ 39,550
Drilling	\$ 189,500
Blue Hawk 2005 Budget	\$ 244,340

The soil sampling program cost was \$11,766.48.

-22-REFERENCES

Augsten, B. (2004). 2003 Soil Geochemistry Report on the Barnes Creek Property. British Columbia Ministry of Energy and Mines Assessment Report 27421.

Bilquist, R. (2003). Assessment Report on the Prospecting Survey of the Gold Cutter Property. British Columbia Ministry of Energy and Mines Assessment Report 27243.

Dasler, P.G. (1989). Report on the Kurtis Property. Report for Prospectus for Pinewood Resources Ltd.

Devlin, J.A. and Smith, F.M. (1991). Assessment Report on the Kurtis Property. British Columbia Ministry of Energy and Mines Assessment Report 22110.

Fox, P.E. (1972). Geochemical Report on the Hill and RJ Claims. British Columbia Ministry of Energy and Mines Assessment Report 3934.

Fox, P.E. (1974). Geochemical Report on the Hill and RJ Claims. British Columbia Ministry of Energy and Mines Assessment Report 5303.

Fox, P.E. (1974b). Blue Hawk Gold Prospect. Letter Summary to Dawood Mines Ltd. .

George, J.W. and Krueckl, G.P. (1984). Prospecting Report on the Dawn #100 Claims. British Columbia Ministry of Energy and Mines Assessment Report12732.

Henneberry, R.T. (2004). Geological Report Blue Hawk Project. British Columbia Ministry of Energy and Mines Assessment Report 27447.

Kikauka, A. (2001). Geological, Geophysical and Geochemical Report on the Dobbin Claim Group. British Columbia Ministry of Energy and Mines Assessment Report 26560.

Lenard, N.C. (1980). Reconnaissance Geology and Prospecting Report on the Gold-Silver Potential of the Bear Group Claims. British Columbia Ministry of Energy and Mines Assessment Report 9074.

Lenard, N.C. (1981). Geological – Geophysical Evaluation of the OK1 – OK5 Claims. British Columbia Ministry of Energy and Mines Assessment Report 9414.

Lenard, N.C. (1981b). Geochemical Soil Report on Bear 2 and Bear 3 Claims. British Columbia Ministry of Energy and Mines Assessment Report 9969.

Lenard, N.C. (1984). Economic Geology of the Gold Quartz Vein System of the Bluehawk Gold Mine (Bear 3 Claim). British Columbia Ministry of Energy and Mines Assessment Report 12519.

Macfarlane, H.S. (1990). Diamond Drilling Assessment Report on the Kurtis Property. British Columbia Ministry of Energy and Mines Assessment Report 20003.

Mark, D.G. and Cruickshank, P. (1988). Geophysical Report on IP and Resistivity Surveys over a portion of the Kurtis Property. British Columbia Ministry of Energy and Mines Assessment Report 17501.

MMAR (1933; 1934; 1935; 1938). Ministry of Energy and Mines Annual Report for 1933 – A196, 1934 – A24, D34, 1935 – D13, 1938 – D36.

Read, W.S. (1969). Geochemical – Geophysical Report Tower Group. British Columbia Ministry of Energy and Mines Assessment Report 1894.

Smith, F.M. (1994). Assessment Report on the Kurtis Property. British Columbia Ministry of Energy and Mines Assessment Report 23811.

-24-CERTIFICATE OF QUALIFIED PERSON

I, R.Tim Henneberry, P.Geo. do hereby certify that:

I am the Qualified Person of:

Southern Pacific Development Corp. 1270 - 1130 West Pender Street

Vancouver, B.C. V6E 4A4

I earned a Bachelor of Science Degree majoring in geology from Dalhousie University, graduating in May 1980.

I am registered with the Association of Professional Engineers and Geoscientists in the Province of British Columbia as a Professional Geoscientist.

I have practiced my profession continuously for 25 years since graduation.

I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

I am responsible for the preparation of the technical report titled "2004/2005 Geochemical Assessment Report Geological Report Blue Hawk Project" and dated June 1, 2005, relating to the Blue Hawk property. I supervised and helped conduct the geochemical survey described in this report from May 3 to May 6, 2005.

I have not had prior involvement with the property that is the subject of the Technical Report.

I am not aware of any material fact or material change with respect to the subject matter of the Technical report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

I am a director of Southern Pacific Development Corp. I do not own any shares of Southern Pacific Development Corp., but I have 200,000 options.

I have read NI 43-101 and Form 43-101F, and the Technical Report has been prepared in compliance with that instrument and form.

I consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible to the public, of the Technical report.

Dated this 1st day of June, 2005.		
R.Tim Henneberry, P.Geo		

-25-COST ESTIMATES

Grid Extension and Hand Trenching

Extend existing grid 600m to 1000m to the south

Establish 600 m cross lines every 100 m, sample every 50 m

Hand trench anomalous areas to bedrock

Soil sample for Au and 27 element ICP

Rock sample for Au and 27 element ICP

Map property

Geologist	5 days	@	\$ 450	/day	\$ 2,250
Prospector	5 days	@	\$ 400	/day	\$ 2,000
Room & Board	10 days	@	\$ 150	/day	\$ 1,500
Vehicle + Fuel	5 days	@	\$ 200	/day	\$ 1,000
Analysis - rock	50 sample	@	\$ 30	/sample	\$ 1,515
Analysis - soil	125 sample	@	\$ 27	/sample	\$ 3,375
Travel					\$ 1,000
Sundries					\$ 150
Report					\$ 2,500

Grid Extension and Hand Trenching Budget

\$ 15,290

Excavator Trenching

Trench area of copper-gold mineralization

Trench soil grid anomalies

Rock sample for Au and 27 element ICP

Geologist	7 days	@	\$ 450	/day	\$ 3,150
Prospector	7 days	@	\$ 250	/day	\$ 1,750
Room & Board	14 days	@	\$ 150	/day	\$ 2,100
Vehicle + Fuel	14 days	@	\$ 200	/day	\$ 2,800
Equipment mob					\$ 2,500
Cat dozer	30 hours	@	\$ 200	/hour	\$ 6,000
Excavator	50 hours	@	\$ 200	/hour	\$ 10,000
Analysis	175 sample	@	\$ 30	/sample	\$ 5,250
Travel					\$ 1,500
Sundries					\$ 500
Report					\$ 4,000

Excavator Trenching Budget

\$ 39,550

Mammoth Geological Ltd.

Blue Hawk Project

May 2005 Assessment Report

-26-COST ESTIMATES (Continued)

Drilling

Diamond drilling - 3500 feet

Geologist	35 days	@	\$ 450	/day	\$ 15,750
Prospector	35 days	@	\$ 250	/day	\$ 8,750
Room & Board	70 days	@	\$ 150	/day	\$ 10,500
Equipment mob					\$ 2,500
Cat dozer	50 hours	@	\$ 200	/hour	\$ 10,000
Equipment mob					\$ 5,000
Diamond	3500 feet	@	\$ 25	/foot	\$ 87,500
Vehicle + Fuel	35 days	@	\$ 200	/day	\$ 7,000
Analysis	1000 sample	@	\$ 30	/sample	\$ 30,000
Travel					\$ 3,000
Sundries					\$ 1,500
					-
Report					\$ 8,000

Diamond Drilling

\$ 189,500

-27-STATEMENT OF COSTS (May 3 to May 6, 2005)

Soil Grid over NW Fault in area of high copper sample

Establish 1200 metre baseline along NW fault
Establish 600 m cross lines every 100 m, station every 25 m
Soil sample at 50 m intervals on every cross line
Soil sample for Au and 27 element ICP
Rock sample for Au and 27 element ICP
Map grid as sampling property

Tim Henneberry	4 days	@	\$	450	/day	\$ 1,800
Bill Morris	3 days	@	\$	400	/day	\$ 1,200
Brent McEwen	1 days	@	\$	160	/day	\$ 160
Room & Board						\$ 628
Vehicle + Fuel	3 days	@	\$	50	/day	\$ 150
Vehicle + Fuel	2 days	@	\$	75	/day	\$ 150
Analysis - rock	12 sample	@	\$ 3	32.84	/sample	\$ 394.08
Analysis - soil	169 sample	@	\$ 2	25.58	/sample	\$ 4,323.02
Travel						\$ 255
Sundries						\$ 206
Report						\$ 2,500

Property mapping, sampling total

\$11,766.48

BLUE HAWK SAMPLE DESCRIPTIONS

Sample	UTM (NA Northing	AD 83) Easting North	GRID ing Easting	Description	m width	ppb Au	ppm Ag	ppm Cu	ppm ppm	ppm Pb	ppm Sr	ppm Zn
290967	5540081	318976 300N	80W	white quartz - limonite, oxides with vuggy, heavily oxidized rusty volcanics. NVM	grab	9	0.6	49	500	37	234	23
290968	5540141	319035 315N	10E	white quartz - vuggy, limonite, oxides. NVM	grab	19	1.3	32	80	6	116	2
290969		225N	300W	Silicious epidote quartz pods, limonite, oxides. NVM	grab	6	0.5	62	1110	8	398	78
290970	5540055	318760 415N	275W	Green, grey silicious sediments - rusty oxides, manganese. NVM	grab	72	0.5	58	940	6	399	42
290971	5541158	318415		Diorite - abundant hematite and oxides on fractures. NVM	grab	5	0.5	9	1110	17	406	58
290972	5540582	318947		Schistose amphibolite grade sediments with abundant biotite - fracture oxides. NVM	grab	5	0.5	29 ⁻	10000	18	1955	129
290973	5540596	318667		Grey black sediments - rusty fractures, 1% to 2% disseminated pyrite	grab	5	0.5	40	410	17	170	150
290974	5540324	318399		Fault zone 095/80N - vuggy heavily oxidized sediments with pods of altered and weathered sulfides upto 5% of rock mass (0-1 m)	1	17	0.8	801	900	7	279	88
290975	5540324	318399		Fault zone 095/80N - vuggy heavily oxidized sediments with pods of altered and weathered sulfides upto 5% of rock mass (1-2 m)	1	60	1.2	829	780	7	163	84

Sample	UTM (NAD 83) Northing Easting North	GRID ning Easting	Description	m width	ppb Au	ppm Ag	ppm Cu	ppm ppm	ppm Pb	ppm Sr	ppm Zn
290976	5540324 318399		Vuggy, rusty oxidized sedimnets, 4 m in FW of fault	grab	5	0.5	63	470	9	276	33
290977	5540304 318466		White quartz - limonite, oxides, minor weathered sulfides	grab	121	24.1	29	150	606	54	10
290978	5540149 318309		black fine grained sediments - vuggy, limonite, oxides. NVM	grab	6	0.5	34	370	7	87	87
290972			P2O5 assay - 2.04%								

	1200N	1100N	1000N	900N	800N	700N	600N	500N	400N	300N	200N	100N	0N
300E	5	5	5	5	5	5	5	5	5	5	5	5	5
250E	5	5	5	5	5	5	5	5	5	5	5	5	5
200E	5	5	5	5	5	5	5	5	5	5	5	5	7
150E	5	5	5	5	5	5	5	5	5	29	5	5	5
100E	5	5	5	5	5	5	5	5	10	5	5	5	5
50E	5	5	5	5	5	5	57	5	5	5	5	5	5
0	5	5	5	5	5	5	5	5	5	5	5	5	34
50W	5	11	5	5	5	5	5	5	5	5	5	5	21
100W	5	5	5	5	5	5	6	5	5	5	5	5	5
150W	5	9	5	5	5	5	5	5	5	5	5	5	5
200W	5	5	5	5	5	5	5	5	5	5	5	5	5
250W	7	5	5	5	5	5	5	5	5	5	5	5	11
300W	5	5	5	5	5	5	5	5	37	5	5	10	28
	Mean Stand Dev	6 6			Strongly A Mod Anom Anomalous	nalous	+18 13-18 6-12						

Blue Hawk Soil Survey Visual Plot of gold (ppb) Figure 6a

	1200N	1100N	1000N	900N	800N	700N	600N	500N	400N	300N	200N	100N	0N
300E	7	10	11	7	14	11	12	10	21	13	16	27	45
250E	8	8	14	9	10	20	11	9	53	20	21	37	33
200E	7	9	10	8	10	6	9	14	19	14	56	83	176
150E	5	9	9	5	11	10	8	15	14	17	35	18	40
100E	7	10	8	9	11	10	12	10	12	15	36	18	76
50E	10	12	11	12	12	10	20	23	15	50	107	19	62
0	11	11	13	11	11	14	17	17	21	93	89	16	78
50W	14	12	16	10	12	11	21	21	51	22	29	18	27
100W	28	14	12	9	9	18	19	12	16	55	17	19	37
150W	10	11	13	8	9	11	12	10	168	24	17	16	50
200W	10	11	18	16	14	11	11	15	16	38	31	14	36
250W	63	9	12	17	18	16	11	17	26	36	28	23	24
300W	21	11	9	10	15	16	9	17	38	16	22	16	28
	Mean Stand Dev	22 24			Strongly A Mod Anom Anomalous	nalous	+70 46-70 22-45			DI II	1.0.1		

Blue Hawk Soil Survey Visual Plot of copper (ppm) Figure 6b

	1200N	1100N	1000N	900N	800N	700N	600N	500N	400N	300N	200N	100N	0N
300E	400	1200	1750	600	810	1040	480	1240	1550	1300	560	960	620
250E	1100	930	1960	1240	1380	3900	590	1240	2250	2930	900	820	340
200E	800	1310	1130	740	1600	790	660	1620	1640	1360	3010	2400	1550
150E	630	890	1920	670	960	770	740	2270	1760	1440	1320	920	570
100E	640	820	1060	1371	1820	1270	830	1830	1200	1760	1020	780	610
50E	1240	1170	1980	900	1620	1020	1720	1060	1660	1310	1310	650	840
0	1520	530	2460	700	1800	2020	420	1160	1120	1220	700	600	1220
50W	1600	1220	1070	1630	1810	1790	1320	1170	550	680	470	420	390
100W	1460	610	570	1110	1180	1370	1520	870	660	780	370	310	810
150W	740	500	1080	1300	810	1050	1260	1120	1240	690	530	530	840
200W	1190	1050	820	320	1940	1800	1940	1220	1260	930	470	590	1150
250W	1240	680	1570	360	1680	1660	1380	1540	690	1490	1740	480	320
300W	930	810	650	1630	1330	1950	920	1560	740	490	850	800	1740
	Stand Dev 564		Strongly Anomalous +2275 Mod Anomalous 1711-227 Anomalous 1147-171										

Blue Hawk Soil Survey Visual Plot of phosphorous (ppm) Figure 6c

	1200N	1100N	1000N	900N	800N	700N	600N	500N	400N	300N	200N	100N	0N
300E	435	463	349	483	397	453	396	394	346	338	454	345	274
250E	488	473	365	450	403	513	443	389	432	442	374	375	268
200E	462	464	470	424	424	496	385	385	419	417	352	320	337
150E	592	384	400	530	457	440	517	380	438	424	386	369	360
100E	523	372	489	394	436	458	388	357	440	418	370	399	350
50E	393	370	380	384	420	431	375	473	399	368	412	450	332
0	451	318	404	390	437	370	418	346	431	347	412	394	341
50W	407	440	393	415	418	429	419	444	445	466	366	434	447
100W	374	382	432	479	422	472	394	414	458	377	465	494	370
150W	390	403	367	399	430	375	404	514	393	394	435	433	389
200W	371	384	352	424	489	377	405	458	424	484	471	409	334
250W	496	388	430	398	434	458	408	402	403	388	464	469	377
300W	339	333	352	404	431	420	395	395	423	361	446	320	391
	Mean 411 Stand Dev 50				Strongly Al Mod Anom Anomalous	alous	+511 461-511 411-460						

Blue Hawk Soil Survey Visual Plot of strontium (ppm) Figure 6d

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com TO TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST **VANCOUVER BC V6E 4A4**

Page: 1 Finalized Date: 15-MAY-2005

Account: TARMAN

CERTIFICATE VA05036000

Project: Blue Hawk

P.O. No.:

This report is for 169 Soil samples submitted to our lab in Vancouver, BC, Canada on 9-MAY-2005.

The following have access to data associated with this certificate:

TIM HENNEBERRY

JOAN PURDY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
SCR-41	Screen to -180um and save both

DESCRIPTION	INSTRUMENT
Au 30g FA-AA finish	AAS
27 element four acid ICP-AES	ICP-AES
/	Au 30g FA-AA finish

To: TARMAC MANAGEMENT LTD. ATTN: TIM HENNEBERRY 612 NOOWICK RD RR 1 MILL BAY BC VOR 2P4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Photocological Signature:

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.
212 Brooksbank Avenue

North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4 Page: 2 - A Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005 Account: TARMAN

Project: Blue Hawk

										ERTIFI	CATE	OF ANA	LYSIS	VA050	36000	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
ON BL		0.18	0.034	<0.5	7.06	<5	670	1.2	5	1.90	0.6	16	38	78	3.67	1.48
0N 50W		0.16	0.021	<0.5	7.41	<5	850	1.4	2	1.77	<0.5	10	28	27	3.19	2.19
0N 100W		0.14	<0.005	<0.5	7.26	7	720	1.3	<2	1.83	<0.5	12	30	37	3.63	1.65
0N 150W		0.16	<0.005	<0.5	7.80	<5	730	1.4	4	1.80	<0.5	13	38	50	4.03	1.71
0N 200W		0.22	<0.005	<0.5	6.74	<5	720	1.3	<2	1.66	<0.5	10	26	36	2.76	1.57
0N 250W		0.16	0.011	<0.5	7.16	<5	710	1.3	<2	1.65	<0.5	9	28	24	3.03	1.64
0N 300W		0.20	0.028	< 0.5	7.61	<5	800	1.4	<2	1.76	< 0.5	9	26	28	2.98	1.64
0N 50E		0.12	< 0.005	<0.5	7.81	<5	760	1.3	2	1.67	< 0.5	12	38	62	3.76	1.44
0N 100E		0.12	< 0.005	<0.5	7.40	<5	720	1.2	<2	1.75	<0.5	12	39	76	3.90	1.62
0N 150E		0.12	<0.005	<0.5	7.37	14	740	1.2	2	1.72	<0.5	8	42	40	3.70	1.56
0N 200E		0.14	0.007	<0.5	8.41	<5	690	1.2	<2	1.87	<0.5	25	43	176	5.66	1.25
0N 250E		0.14	<0.005	<0.5	6.55	<5	580	1.0	<2	1.37	< 0.5	9	38	33	2.98	1.27
0N 300E		0.16	<0.005	<0.5	6.83	9	630	1.1	3	1.38	<0.5	11	45	45	3.23	1.28
BL-100N		0.22	< 0.005	<0.5	7.21	<5	770	1.3	2	1.76	<0.5	7	19	16	3.01	1.72
100N 50W		0.22	<0.005	<0.5	7.47	<5	760	1.7	<2	1.78	<0.5	12	32	18	3.38	2.28
100N 100W		0.24	<0.005	<0.5	7.66	<5	860	1.4	4	1.96	<0.5	8	27	19	3.35	2.08
100N 150W		0.20	< 0.005	<0.5	7.25	9	740	1.3	2	1.80	<0.5	7	22	16	2.87	1.79
100N 200W		0.14	<0.005	<0.5	6.98	<5	710	1.3	3	1.71	< 0.5	7	20	14	2.98	1.70
100N 250W		0.18	0.005	<0.5	7.71	<5	820	1.5	5	1.88	<0.5	9	25	23	3.51	1.96
100N 300W		0.18	0.010	<0.5	7.01	<5	650	1.3	3	1.40	0.5	7	15	16	2.33	1.58
100N 50E		0.16	<0.005	<0.5	7.59	<5	990	1.5	4	1.88	0.5	9	31	19	3.19	2.17
100N 100E		0.14	<0.005	<0.5	7.39	<5	870	1.4	2	1.61	< 0.5	7	26	18	2.74	1.94
100N 150E		0.16	< 0.005	<0.5	7.61	<5	730	1.4	2	1.52	<0.5	8	22	18	3.05	1.60
100N 200E		0.14	< 0.005	<0.5	7.05	<5	800	1.2	3	1.64	1.1	15	49	83	3.20	1.36
100N 250E		0.18	<0.005	<0.5	7.55	<5	780	1.4	3	1.42	<0.5	8	56	37	3.19	1.76
100N 300E		0.14	<0.005	<0.5	7.40	5	840	1.3	3	1.45	0.5	8	42	27	2.98	1.58
BL-200N		0.18	< 0.005	<0.5	8.47	<5	850	1.4	3	1.95	< 0.5	15	38	89	4.37	1.91
200N 50W		0.22	< 0.005	<0.5	7.24	<5	870	1.4	3	1.56	< 0.5	8	33	29	2.99	1.84
200N 100W		0.22	< 0.005	< 0.5	7.77	<5	920	1.5	<2	1.74	< 0.5	7	28	17	2.86	2.12
200N 150W		0.22	<0.005	<0.5	7.75	<5	810	1.5	3	1.73	<0.5	8	27	17	3.10	1.95
200N 200W		0.32	<0.005	<0.5	7.71	<5	820	1.5	<2	1.78	<0.5	10	31	31	3.56	2.06
200N 250W		0.20	< 0.005	<0.5	8.20	<5	800	1.6	<2	2.11	< 0.5	13	28	28	4.30	1.80
200N 300W		0.22	< 0.005	<0.5	7.81	8	840	1.5	2	1.98	<0.5	10	28	22	3.39	1.88
200N 50E		0.16	< 0.005	<0.5	8.22	<5	920	1.5	2	2.01	1.0	16	43	107	4.54	1.83
200N 100E		0.12	<0.005	<0.5	7.36	6	850	1.4	2	1.61	<0.5	10	27	36	2.96	1.70
200N 150E		0.14	<0.005	<0.5	7.91	<5	810	1.5	<2	1.57	<0.5	9	38	35	3.54	1.68
200N 200E		0.16	< 0.005	< 0.5	6.88	<5	940	1.2	3	2.03	0.6	18	90	56	3.62	1.45
200N 250E		0.14	< 0.005	< 0.5	7.52	7	830	1.4	<2	1.68	<0.5	9	21	21	2.59	1.81
200N 300E		0.18	< 0.005	<0.5	8.16	6	1000	1.6	<2	1.83	< 0.5	9	26	16	2.77	2.23
BL-300N		0.14	< 0.005	0.5	8.16	<5	1080	1.5	2	1.68	0.6	14	32	93	4.41	1.80

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST **VANCOUVER BC V6E 4A4**

Page: 2 - B Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

Project: Blue Hawk

										ERTIFI	CATE	OF ANA	LYSIS	VA050	36000
	Method Analyte Units	ME-ICP61 Mg %	ME-ICP61 Mn	ME-ICP61 Mo	ME-ICP61 Na %	ME-ICP61 Ni	ME-ICP61	ME-ICP61	ME-ICP61 S %	ME-ICP61 Sb	ME-ICP61 Sr	ME-ICP61	ME-ICP61	ME-ICP61 W	ME-ICP61 Zn
ample Description	LOR	0.01	ppm 5	ppm 1	0.01	ppm 1	ppm 10	ppm 2	0.01	ppm 5	ppm 1	% 0.01	ppm 1	ppm 10	ppm 2
ON BL		0.96	1520	<1	1.64	32	1220	15	0.03	<5	341	0.33	94	<10	132
0N 50W		0.81	773	2	2.01	12	390	14	0.02	<5	447	0.43	96	<10	66
ON 100W		0.79	1455	1	1.71	18	810	8	0.02	<5	370	0.41	93	10	112
ON 150W		0.86	819	1	1.84	27	840	12	0.02	<5	389	0.42	110	<10	108
ON 200W .		0.64	1250	2	1.61	22	1150	8	0.02	<5	334	0.30	65	10	130
N 250W		0.66	576	1	1.90	12	320	12	0.01	<5	377	0.35	73	<10	64
N 300W		0.64	778	1	1.97	14	1740	12	0.01	<5	391	0.33	67	<10	95
N 50È		0.87	1165	2	1.63	24	840	12	0.02	<5	332	0.36	88	<10	114
N 100E		0.98	769	1	1.74	23	610	11	0.02	<5	350	0.35	95	<10	92
ON 150E		0.94	1170	2	1.72	18	570	11	0.02	<5	360	0.37	100	<10	101
N 200E		1.41	1295	1	2.35	23	1550	9	0.03	<5	337	0.45	140	<10	131
ON 250E		0.73	541	3	1.43	14	340	12	0.02	<5	268	0.29	85	<10	52
ON 300E		0.78	789	1	1.45	22	620	13	0.02	<5	274	0.30	92	10	78
BL-100N		0.60	823	1	1.78	9	600	13	0.01	<5	394	0.42	66	<10	96
100N 50W		0.66	684	<1	1.95	15	420	14	0.01	<5	434	0.58	96	<10	109
100N 100W		0.63	670	1	2.16	11	310	15	0.01	<5	494	0.48	83	<10	80
100N 150W		0.58	632	1	1.90	10	530	11	0.01	<5	433	0.41	66	<10	116
100N 200W		0.56	765	1	1.80	10	590	10	0.01	<5	409	0.44	64	<10	87
100N 250W		0.65	501	<1	2.03	14	480	7	0.01	<5	469	0.49	84	<10	70
100N 300W		0.46	697	1	1.88	9	800	12	0.01	<5	320	0.31	44	<10	67
00N 50E		0.75	1050	1	1.93	15	650	13	0.02	<5	450	0.37	84	<10	111
100N 100E		0.58	1015	2	1.78	13	780	12	0.01	<5	399	0.34	64	<10	135
100N 150E		0.60	679	1	1.73	14	920	10	0.01	<5	369	0.40	64	10	104
100N 200E		0.85	1375	2	1.68	36	2400	9	0.03	<5	320	0.32	78	<10	196
100N 250E		0.77	426	1	1.84	26	820	12	0.01	<5	375	0.33	99	<10	77
100N 300E		0.68	1025	2	1.74	24	960	16	0.02	<5	345	0.29	78	<10	119
BL-200N		0.99	952	1	1.84	24	700	15	0.02	<5	412	0.42	120	<10	111
200 N 50W		0.67	742	<1	1.70	20	470	13	0.01	<5	366	0.32	81	<10	108
200N 100W		0.63	538	<1	2.08	14	370	10	0.01	<5	465	0.39	79	<10	72
200 N 150W		0.64	734	<1	1.93	13	530	11	0.01	<5	435	0.43	75	<10	100
200N 200W		0.70	495	1	2.10	13	470	14	0.01	<5	471	0.52	100	<10	66
200N 250W		0.84	899	<1	2.18	14	1740	16	0.01	<5	464	0.66	106	<10	130
200 N 300W		0.68	986	1	1.98	21	850	11	0.01	<5	446	0.43	77	<10	103
200N 50E		1.08	1795	2	1.97	25	1310	18	0.04	<5	412	0.36	114	<10	165
200 N 100E		0.66	1120	1	1.66	16	1020	17	0.03	<5	370	0.31	75	<10	117
200N 150E		0.76	642	1	1.83	22	1320	14	0.01	<5	386	0.36	102	10	108
200N 200E	Ī	1.10	2710	2	1.40	61	3010	15	0.03	<5	352	0.33	80	<10	293
200N 250E		0.58	917	1	1.82	21	900	19	0.02	<5	374	0.33	64	<10	87
200N 300E		0.60	501	<1	2.17	18	560	16	0.01	<5	454	0.38	88	<10	82
BL-300N		0.89	1140	3	1.88	27	1120	14	0.06	<5	347	0.40	100	<10	188

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4 Page: 3 - A Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

CERTIFICATE OF	ANAI YSIS	VA05036000
----------------	-----------	------------

				Action to the distance of the second							CATE				36000	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
300N 50W		0.14	<0.005	<0.5	8.71	10	1020	1.6	<2	1.98	<0.5	12	23	22	3.46	2.08
300N 100W		0.22	< 0.005	<0.5	8.82	<5	950	1.6	<2	1.78	0.5	15	52	55	4.20	1.96
300N 150W		0.16	<0.005	<0.5	8.16	9	970	1.5	<2	1.74	<0.5	9	30	24	3.11	1.88
300N 200W		0.22	<0.005	<0.5	8.24	6	1120	1.6	<2	2.05	<0.5	11	31	38	3.47	2.39
300N 250W		0.22	<0.005	<0.5	8.72	7	820	1.5	<2	1.80	1.7	25	41	36	4.48	1.75
300N 300W		0.22	<0.005	<0.5	6.80	<5	760	1.3	<2	1.60	0.5	11	20	16	2.61	1.69
300N 50E		0.18	<0.005	<0.5	7.43	<5	920	1.4	<2	1.64	<0.5	11	24	50	2.95	1.64
300N 100E		0.10	< 0.005	<0.5	7.17	11	940	1.4	<2	1.76	< 0.5	7	19	15	2.46	1.96
300N 150E		0.12	0.029	<0.5	7.02	<5	900	1.4	<2	2.02	< 0.5	8	21	17	2.60	1.78
300N 200E		0.14	<0.005	<0.5	7.29	<5	960	1.4	<2	1.82	<0.5	8	20	14	2.44	1.88
300N 250E		0.14	<0.005	<0.5	7.98	7	1080	1.5	<2	1.88	<0.5	14	31	20	3.02	1.74
300N 300E		0.08	< 0.005	<0.5	5.92	5	810	1.1	<2	1.58	<0.5	7	18	13	2.03	1.51
BL-400N		0.22	<0.005	<0.5	7.86	5	940	1.5	<2	1.75	<0.5	9	20	21	2.65	1.83
400N 50W		0.22	<0.005	<0.5	8.66	12	830	1.5	<2	1.98	<0.5	11	29	51	3.50	1.87
400N 100W		0.20	<0.005	< 0.5	8.23	<5	950	1.5	<2	1.91	<0.5	8	24	16	2.96	1.92
400N 150W		0.16	<0.005	0.5	8.15	<5	840	1.4	<2	1.89	<0.5	22	27	168	4.32	1.69
400N 200W		0.18	<0.005	<0.5	7.27	<5	940	1.4	<2	1.86	<0.5	8	19	16	2.40	1.96
400N 250W		0.20	<0.005	<0.5	7.60	6	870	1.4	<2	1.66	<0.5	9	29	26	3.01	1.76
400N 300W		0.18	0.037	<0.5	8.56	<5	940	1.5	<2	1.73	<0.5	10	30	38	3.70	1.76
400N 50E		0.12	<0.005	<0.5	7.59	<5	940	1.4	<2	1.66	<0.5	8	21	15	2.63	1.75
400N 100E		0.10	0.010	<0.5	7.77	<5	900	1.5	<2	1.82	<0.5	9	19	12	2.79	1.95
400N 150E		0.12	<0.005	<0.5	7.49	5	890	1.4	<2	1.86	<0.5	7	19	14	2.65	1.93
400N 200E		0.14	<0.005	<0.5	7.66	6	990	1.5	<2	1.75	<0.5	9	22	19	2.50	1.92
400N 250E		0.12	0.005	0.6	7.77	10	1220	1.3	<2	2.13	0.8	18	23	53	3.81	1.53
400N 300E		0.08	<0.005	<0.5	6.70	10	870	1.2	<2	1.61	<0.5	9	23	21	2.39	1.48
BL-500N		0.20	<0.005	<0.5	7.73	<5	940	1.5	<2	1.81	<0.5	8	19	17	2.56	1.94
500N 50W		0.20	<0.005	<0.5	7.89	7	880	1.5	<2	1.82	<0.5	9	17	21	2.73	1.82
500N 100W		0.20	<0.005	<0.5	7.70	<5	850	1.5	<2	1.74	<0.5	8	19	12	2.46	1.96
500N 150W		0.20	<0.005	<0.5	8.15	7	1060	1.6	<2	1.79	<0.5	5	26	10	2.10	2.45
500N 200W	20 200 101 5	0.22	<0.005	<0.5	7.65	5	920	1.5	<2	1.84	<0.5	7	20	15	2.45	2.10
500N 250W		0.20	<0.005	<0.5	7.28	<5	850	1.4	<2	1.64	<0.5	8	19	17	2.50	1.82
500N 300W		0.16	<0.005	<0.5	7.43	7	830	1.4	<2	1.62	< 0.5	8	19	17	2.53	1.75
500N 50E		0.16	<0.005	<0.5	8.37	<5	1000	1.6	<2	1.90	<0.5	10	26	23	3.21	1.92
500N 100E		0.10	<0.005	<0.5	6.06	12	790	1.1	<2	1.54	<0.5	5	17	10	2.10	1.60
500N 150E		0 12	<0.005	<0.5	6.79	11	840	1.3	<2	1.56	<0.5	8	21	15	2.52	1.68
500N 200E		0.12	<0.005	<0.5	6.71	8	790	1.4	<2	1.61	<0.5	6	17	14	2.50	1.60
500N 250E		0.14	< 0.005	<0.5	6.77	23	710	1.2	<2	1.58	<0.5	6	18	9	2.37	1.60
500N 300E		0.14	<0.005	<0.5	6.68	7	730	1.3	<2	1.60	<0.5	5	17	10	2.37	1.64
BL-600N		0.14	<0.005	<0.5	7.12	16	740	1.3	<2	1.67	<0.5	6	20	17	2.41	1.84
600N 50W		0 18	< 0.005	<0.5	7.16	14	800	1.3	<2	1.72	<0.5	9	23	21	2.90	1.61

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4 Page: 3 - B Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

d Date: 15-MAY-2005 Account: TARMAN

CERTIFICATE OF ANALYSIS VA0503600	CFRTIFIC	:ATF	OF A	ANAI YSIS	VA0503600
-----------------------------------	----------	------	------	-----------	-----------

												71 7117	L 1 010	V 7000	
Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
300N 50W		0.69	646	<1	2.20	19	680	17	0.01	<5	466	0.48	88	<10	101
300N 100W		1.07	1240	1	1.90	49	780	15	0.04	<5	377	0.46	122	<10	135
300N 150W		0.72	596	<1	1.96	21	690	15	0.01	<5	394	0.39	82	<10	117
300N 200W		0.75	704	1	2.17	17	930	14	0.02	<5	484	0.45	100	<10	81
300N 250W		0.91	890	1	1.75	75	1490	16	0.07	<5	388	0.41	128	<10	278
300N 300W		0.51	794	1	1.66	26	490	13	0.01	<5	361	0.36	62	<10	107
300N 50E		0.64	1170	1	1.85	17	1310	16	0.02	<5	368	0.34	74	<10	108
300N 100E		0.53	1145	<1	1.86	14	1760	17	0.01	<5	418	0.35	57	<10	130
300N 150E		0.56	1230	1	1.80	16	1440	19	0.03	<5	424	0.38	61	<10	150
300N 200E		0.53	1180	<1	1.88	10	1360	15	0.02	<5	417	0.36	57	<10	124
300N 250E		0.65	2220	<1	1.93	33	2930	15	0.03	<5	442	0.38	71	<10	221
300N 300E		0.45	1205	1	1.51	10	1300	13	0.02	<5	338	0.28	47	<10	117
BL-400N		0.57	502	<1	2.12	16	1120	13	0.01	<5	431	0.38	69	<10	93
400N 50W		0.85	511	<1	2.20	20	550	11	0.02	<5	445	0.44	95	<10	100
400N 100W		0.62	422	<1	2.17	22	660	13	0.01	<5	458	0.41	76	<10	89
400N 150W		0.95	978	1	1.92	28	1240	11	0.03	<5	393	0.41	110	<10	164
400N 200W		0.49	848	<1	1.98	14	1260	16	0.01	<5	424	0.37	60	<10	87
400N 250W		0.62	623	1	1.88	24	690	14	0.03	<5	403	0.38	84	<10	88
400N 300W		0.76	450	<1	2.03	30	740	11	0.07	<5	423	0.41	100	<10	116
400N 50E		0.55	992	<1	1.85	16	1660	17	0.02	<5	399	0.37	64	<10	121
400N 100E		0.55	586	1	2.37	9	1200	14	0.01	<5	440	0.43	68	<10	109
400N 150E		0.58	757	<1	2.00	10	1760	14	0.01	<5	438	0.38	62	<10	98
400N 200E		0.56	866	<1	2.07	15	1640	14	0.01	<5	419	0.34	62	<10	127
400N 250E		0.87	2400	1	1.97	20	2250	19	0.03	<5	432	0.39	84	<10	257
400N 300E		0.56	1330	<1	1.61	15	1550	18	0.02	<5	346	0.31	54	<10	139
BL-500N		0.52	625	<1	2.14	12	1160	14	0.01	<5	444	0.38	64	<10	79
500N 50W		0.54	703	<1	2.06	17	1170	15	0.01	<5	414	0.39	66	<10	82
500N 100W		0.50	495	<1	2.18	12	870	15	0.01	<5	427	0.39	61	<10	60
500N 150W		0.52	333	<1	2.33	9	1120	19	0.01	<5	514	0.42	64	<10	56
500N 200W		0.50	493	<1	2.16	11	1220	14	0.01	<5	458	0.38	61	<10	75
500N 250W		0.53	632	<1	1.94	13	1540	16	0.01	<5	402	0.37	62	<10	112
500N 300W		0.53	668	<1	1.99	15	1560	15	0.01	<5	395	0.36	62	<10	120
500N 50E		0.72	664	<1	2.13	16	1060	16	0.01	<5	473	0.42	90	<10	92
500N 100E	1	0.43	1325	<1	1.65	6	1830	15	0.01	<5	357	0.30	45	<10	101
500N 150E		0.54	973	<1	1.79	12	2270	12	0.01	<5	380	0.32	52	<10	128
500N 200E	1	0.52	900	<1	1.76	7	1620	13	0.01	<5	385	0.34	55	10	84
500N 250E		0.48	633	<1	1.83	7	1240	13	0.01	<5	389	0.34	50	<10	128
500N 300E		0.47	713	<1	1.86	5	1240	15	0.01	<5	394	0.35	49	<10	77
BL-600N	İ	0.50	590	<1	2.05	8	430	19	0.01	<5	418	0.35	53	<10	68
600N 50W		0.61	861	<1	1.88	15	1320	13	0.01	<5	419	0.39	68	<10	96

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST **VANCOUVER BC V6E 4A4**

Page: 4 - A Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

(CERTIFI	CATE C	F ANA	LYSIS	VA050	36000	
-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICF
Bi	Ca	Cd	Co	Cr	Cu	Fe	K
ppm	%	ppm	ppm	ppm	ppm	%	%
2	0.01	0.5	1	1	1	0.01	0.01

								L			CAIL			V AU30		
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm '	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
600N 100W		0.16	0.006	<0.5	7.08	10	770	1.4	<2	1.60	<0.5	9	20	19	2.60	1.62
600N 150W		0.20	<0.005	<0.5	6.77	7	780	1.3	<2	1.58	<0.5	6	18	12	2.25	1.78
600N 200W		0.18	<0.005	<0.5	6.82	5	790	1.3	<2	1.56	<0.5	6	17	11	2.27	1.74
600N 250W		0.18	<0.005	<0.5	7.05	12	760	1.3	<2	1.60	<0.5	6	16	11	2.54	1.72
600N 300W		0.20	<0.005	<0.5	7.06	17	710	1.3	<2	1.58	<0.5	5	16	9	2.49	1.68
600N 50E		0.12	0.057	<0.5	6.84	22	750	1.3	<2	1.58	<0.5	8	20	20	2.67	1.51
600N 100E		0.08	<0.005	<0.5	6.71	<5	730	1.3	<2	1.62	<0.5	6	17	12	2.46	1.66
600N 150E		0.16	< 0.005	<0.5	7.39	<5	910	1.5	<2	1.79	<0.5	6	25	8	2.70	2.17
600N 200E		0.08	<0.005	<0.5	6.36	8	680	1.2	<2	1.61	<0.5	5	23	9	2.06	1.65
600N 250E		0.10	<0.005	<0.5	6.82	<5	770	1.4	<2	1.72	<0.5	6	24	11	2.37	1.99
600N 300E		0.12	<0.005	<0.5	6.83	17	680	1.3	<2	1.69	<0.5	6	21	12	2.25	1.80
BL-700N		0.16	< 0.005	<0.5	6.54	<5	760	1.2	<2	1.63	<0.5	8	19	14	2.50	1.52
700N 50W		0.18	<0.005	<0.5	6.85	14	850	1.3	<2	1.75	< 0.5	5	16	11	2.39	1.80
700N 100W		0.16	< 0.005	<0.5	8.16	15	870	1.5	<2	1.76	<0.5	9	20	18	3.10	1.91
700N 150W		0.14	<0.005	<0.5	6.64	12	700	1.3	<2	1.51	<0.5	5	18	11	2.28	1.72
700N 200W		5.00	<0.005	<0.5	6.37	20	710	1.2	<2	1.62	0.5	6	15	11	2.27	1.57
700N 250W		0.16	<0.005	<0.5	7.57	7	870	1.5	<2	1.81	< 0.5	7	19	16	2.67	1.95
700N 300W		0.16	<0.005	<0.5	7.49	10	820	1.4	<2	1.76	<0.5	6	18	16	2.61	1.80
700N 50E		0.14	< 0.005	<0.5	7.32	13	800	1.4	<2	1.82	<0.5	7	15	10	2.53	1.96
700N 100E		0.16	<0.005	<0.5	7.50	9	810	1.4	<2	1.91	<0.5	7	17	10	2.58	2.10
700N 150E		0.16	<0.005	<0.5	7.52	11	780	1.4	<2	1.74	<0.5	6	18	10	2.58	2.07
700N 200E		0.18	<0.005	<0.5	8.17	14	1000	1.7	<2	2.28	<0.5	6	16	6	3.13	2.42
700N 250E		0.12	<0.005	<0.5	7.70	22	1120	1.5	<2	1.98	<0.5	8	24	20	2.88	1.95
700N 300E		0.12	<0.005	<0.5	7.57	11	860	1.4	<2	1.72	0.5	6	21	11	2.48	2.04
BL-800N		0.16	<0.005	<0.5	7.53	23	800	1.4	<2	1.66	<0.5	7	19	11	2.63	1.81
800N 50W		0.12	<0.005	<0.5	7.10	9	780	1.4	<2	1.81	<0.5	5	15	12	2.55	1.78
800N 100W		0.16	<0.005	<0.5	6.82	5	750	1.3	<2	1.73	<0.5	5	16	9	2.39	1.77
800N 150W		0.16	<0.005	<0.5	7.05	8	770	1.4	<2	1.68	<0.5	6	15	9	2.38	1.82
800N 200W		0.14	<0.005	<0.5	7.56	<5	850	1.4	<2	1.92	<0.5	9	22	14	3.37	1.83
800N 250W		0.12	< 0.005	<0.5	7.38	<5	960	1.5	<2	1.92	<0.5	8	19	18	2.68	1.81
800N 300W		0.16	<0.005	<0.5	7.47	7	910	1.5	<2	1.85	<0.5	9	18	15	2.74	1.80
800N 50E		0.14	<0.005	<0.5	7.51	<5	880	1.5	<2	1.80	<0.5	8	19	12	2.57	1.84
800N 100E		0.12	< 0.005	<0.5	7.02	<5	930	1.4	<2	1.78	<0.5	7	21	11	2.55	1.76
800N 150E		0.12	<0.005	<0.5	7.52	<5	910	1.6	<2	1.83	<0.5	6	19	11	2.58	2.08
800N 200E		0.10	<0.005	<0.5	7.18	<5	830	1.5	<2	1.82	<0.5	6	20	10	2.26	1.89
800N 250E		0.14	<0.005	<0.5	7.27	<5	810	1.5	<2	1.74	<0.5	7	18	10	2.42	1.79
800N 300E		0.10	< 0.005	<0.5	6.56	<5	780	1.4	<2	1.89	<0.5	7	21	14	2.34	1.82
BL-900N		0.18	<0.005	<0.5	7.10	<5	860	1.4	<2	1.72	<0.5	10	23	11	2.64	1.70
900N 50W		0.10	<0.005	<0.5	7.07	<5	800	1.3	<2	1.62	<0.5	7	19	10	2.45	1.77
900N 100W		0.14	< 0.005	<0.5	7.65	13	840	1.4	<2	1.91	< 0.5	5	17	9	2.68	1.90

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST **VANCOUVER BC V6E 4A4**

Page: 4 - B Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

CEDTIEICATE	OF ANALYSIS	VANENSENIN
CERTIFICATE	UF ANAL 1515	VAUSUSBUUU

											OAIL	, , , , , , ,	L 1 010	V 7000	
Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
600N 100W		0.54	838	<1	1.85	13	1520	12	0.01	<5	394	0.35	57	<10	102
600N 150W		0.50	680	<1	1.87	6	1260	14	0.01	<5	404	0.34	48	<10	95
600N 200W		0.46	819	<1	1.90	8	1940	16	0.01	<5 .5	405	0.34	47	<10	104
600N 250W 600N 300W		0.49 0.50	731 553	<1 <1	1.98 1.94	10 7	1380 920	14 15	0.01 0.01	<5 <5	408 395	0.38 0.36	54 51	<10 <10	102 79
													·		
600N 50E		0.53	1295	<1	1.78	21	1720	12	0.02	<5	375	0.36	58	10	102
600N 100E		0.50	707	<1	1.87	6	830	15	0.01	<5	388	0.35	54	<10	71
600N 150E		0.50	356	<1	2.27	8	740	17	0.01	<5	517	0.42	66	10	44
600N 200E		0.43	842	<1	1.75	7	660	17	0.02	<5	385	0.30	43	10	77
600N 250E		0.51	723	<1	1.95	8	590	16	0.01	<5	443	0.35	51	<10	75
600N 300E		0.49	907	<1	1.87	8	480	14	0.02	<5	396	0.32	47	<10	74
BL-700N		0.53	1510	<1	1.67	12	2020	16	0.02	<5	370	0.33	52	10	114
700N 50W		0.46	883	1	1.96	6	1790	17	0.01	<5	429	0.36	49	<10	87
700N 100W		0.62	791	<1	2.19	11	1370	17	0.01	<5	472	0.43	70	<10	95
700N 150W		0.47	641	<1	1.77	7	1050	18	0.01	<5	375	0.31	47	10	72
700N 200W		0.45	911	<1	1.71	9	1800	14	0.02	<5	377	0.33	49	10	87
700N 250W		0.55	853	<1	2.34	10	1660	15	0.01	<5	458	0.40	59	10	89
700N 300W		0.52	985	<1	2.02	12	1950	17	0.01	<5	420	0.37	55	10	89
700N 50E		0.50	805	<1	2.04	8	1020	15	0.02	<5	431	0.39	51	<10	83
700N 100E		0.51	824	<1	2.15	8	1270	15	0.01	<5	458	0.40	53	<10	80
700N 150E		0.51	532	<1	2.17	10	770	16	0.01	<5	440	0.40	54	<10	67
700N 200E		0.60	442	<1	2.50	4	790	14	0.01	<5	596	0.53	77	<10	45
700N 250E		0.59	2090	1	2.10	13	3900	20	0.02	<5	513	0.42	59	<10	212
700N 300E		0.52	787	<1	2.15	7	1040	17	0.01	<5	453	0.38	52	<10	79
BL-800N		0.51	684	<1	2.11	10	1800	13	0.01	<5	437	0.40	56	<10	109
800N 50W		0.51	908	<1	1.91	8	1810	19	0.02	<5	418	0.37	51	<10	92
800N 100W		0.49	944	<1	1.95	7	1180	12	0.02	<5	422	0.35	49	<10	65
800N 150W		0.48	643	<1	2.03	8	810	14	0.01	<5	430	0.36	51	<10	64
800N 200W		0.64	1115	<1	2.14	10	1940	18	0.01	<5	489	0.48	77	10	118
800N 250W		0.56	1330	1	2.12	14	1680	20	0.02	<5	434	0.40	64	<10	128
800N 300W		0.56	1030	1	2.07	10	1330	16	0.01	<5	431	0.44	66	<10	106
800N 50E		0.53	716	1	2.15	10	1620	14	0.01	<5	420	0.41	56	<10	102
800N 100E		0.53	913	1	2.15	11	1820	14	0.01	<5	436	0.41	57	<10	106
800N 150E		0.53	504	1	2.00	10	960	15	0.01	<5	457	0.42	60	<10	80
800N 200E		0.53	1010	<1	1.99	4	1600	13	0.01	<5	424	0.42	48	<10	90
															· · · · · · · · · · · · · · · · · · ·
800N 250E 800N 300E		0.50	625	1	1.98	8 9	1380	15	0.01	<5 <5	403	0.37	49	<10	78
		0.56	1035	1	1.86		810	18	0.02	<5 -5	397	0.36	48	<10	98
BL-900N		0.54	866	2	1.93	18 9	700	14	0.01	<5 -5	390	0.41	60	<10	126
900N 50W		0.52	899	<1 <1	2.03	9 5	1630	15 17	0.01	<5 <5	415	0.37	51 52	10	104
900N 100W		0.51	816	< 1	2.24	э	1110	17	0.01	<5	479	0.41	52	10	71

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4 Page: 5 - A Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

zed Date: 15-MAY-2005 Account: TARMAN

CERTIFICATE	OF ANALYSIS	VA05036000
-------------	-------------	------------

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
•							-									
900N 150W		0.16	<0.005	<0.5	6.87	12	720	1.4	<2	1.63	< 0.5	5	16	8	2.31	1.84
900N 200W		0.18	<0.005	<0.5	7.59	<5	650	1.3	<2	1.95	<0.5	6	24	16	2.83	1.72
900N 250W		0.18	<0.005	<0.5	7.43	<5	670	1.3	<2	2.11	<0.5	5	21	17	2.70	1.66
900N 300W		0.12	<0.005	<0.5	6.88	<5	780	1.3	<2	1.70	<0.5	6	16	10	2.43	1.73
900N 50E		0.16	<0.005	<0.5	6.95	13	760	1.3	<2	1.62	0.7	9	25	12	2.58	1.68
900N 100E		0.18	<0.005	<0.5	7.14	9	770	1.3	<2	1.58	<0.5	5	16	9	2.43	1.70
900N 150E		0.18	< 0.005	<0.5	7.99	7	970	1.4	<2	1.98	<0.5	4	17	5	2.86	2.07
900N 200E		0.18	<0.005	<0.5	6.53	21	780	1.2	<2	1.69	<0.5	5	17	8	2.47	1.72
900N 250E		0.12	<0.005	<0.5	7.02	<5	790	1.4	<2	1.70	<0.5	6	18	9	2.41	1.92
900N 300E		0.08	<0.005	<0.5	7.11	9	830	1.4	<2	1.79	<0.5	4	20	7	2.23	2.10
BL-1000N		0.16	<0.005	<0.5	7.21	24	740	1.3	<2	1.67	0.7	7	18	13	2.65	1.69
1000N 50W		0.14	<0.005	<0.5	6.81	8	750	1.3	<2	1.57	< 0.5	9	31	16	2.80	1.64
1000N 100W		0.14	< 0.005	<0.5	7.38	17	820	1.4	<2	1.75	<0.5	9	27	12	2.60	1.91
1000N 150W		0.16	<0.005	<0.5	6.91	9	710	1.3	<2	1.45	<0.5	9	19	13	2.52	1.60
1000N 200W		0.16	<0.005	<0.5	7.05	<5	720	1.2	<2	1.51	1.1	8	30	18	2.86	1.60
1000N 250W		0.18	<0.005	<0.5	7.25	<5	880	1.4	<2	1.85	<0.5	6	19	12	2.78	1.86
1000N 300W		0.12	<0.005	<0.5	6.60	<5	790	1.2	<2	1.61	1.7	6	16	9	2.52	1.49
1000N 50E		0.12	< 0.005	<0.5	7.28	<5	650	1.4	<2	1.71	<0.5	7	20	11	2.82	1.58
1000N 100E		0.14	< 0.005	<0.5	7.48	<5	870	1.4	<2	1.90	<0.5	8	18	8	2.75	2.02
1000N 150E		0.12	<0.005	<0.5	6.96	<5	720	1.3	<2	1.70	<0.5	6	16	9	2.61	1.66
1000N 200E		0.14	<0.005	<0.5	7.44	8	820	1.5	<2	1.86	<0.5	7	19	10	3.03	2.12
1000N 250E		0.12	< 0.005	<0.5	6.55	17	700	1.3	<2	1.76	<0.5	7	18	14	2.39	1.60
1000N 300E		0.16	< 0.005	<0.5	6.96	<5	680	1.3	<2	1.64	<0.5	5	17	11	2.48	1.60
BL-1100N		0.14	< 0.005	<0.5	6.88	20	540	1.2	<2	1.44	<0.5	7	18	11	2.36	1.41
1100N 50W		0.18	0.011	<0.5	7.08	17	810	1.3	<2	1.78	<0.5	8	28	12	2.81	1.86
1100N 100W		0.20	<0.005	<0.5	6.71	17	720	1.3	<2	1.62	<0.5	9	25	14	2.54	1.77
1100N 150W		0.18	0.009	<0.5	6.73	19	780	1.2	<2	1.58	<0.5	8	30	11	2.66	1.75
1100N 200W		0.24	< 0.005	<0.5	6.84	10	730	1.3	<2	1.65	<0.5	7	21	11	2.52	1.66
1100N 250W		0.20	<0.005	<0.5	6.90	5	760	1.3	<2	1.52	< 0.5	7	19	9	2.42	1.70
1100N 300W		0.14	<0.005	<0.5	6.45	<5	740	1.1	<2	1.38	<0.5	6	18	11	2.25	1.41
1100N 50E		0.12	<0.005	<0.5	6.36	6	640	1.2	<2	1.57	<0.5	6	18	12	2.43	1.50
1100N 100E		0.14	< 0.005	<0.5	6.88	5	650	1.3	<2	1.54	<0.5	7	21	10	2.58	1.56
1100N 150E		0.18	< 0.005	<0.5	6.29	13	700	1.2	<2	1.54	< 0.5	4	14	9	2.11	1.67
1100N 200E		0.10	< 0.005	<0.5	7.17	<5	840	1.3	<2	1.86	<0.5	6	16	9	2.70	1.82
1100N 250E		0.10	<0.005	<0.5	7.23	20	810	1.4	<2	1.77	<0.5	5	17	8	2.56	1.96
1100N 300E		0.10	<0.005	<0.5	7.37	6	810	1.4	<2	1.86	<0.5	7	19	10	2.99	1.90
BL-1200N		0.18	< 0.005	<0.5	7.48	<5	800	1.4	<2	1.81	<0.5	7	16	11	2.92	1.80
1200N 50W		0.18	< 0.005	<0.5	7.20	11	780	1.4	<2	1.85	1.0	8	23	14	2.85	1.70
1200N 100W		0.14	< 0.005	< 0.5	6.42	13	790	1.2	<2	1.69	1.8	12	22	28	2.58	1.50
1200N 150W		0.18	< 0.005	<0.5	6.51	14	740	1.3	<2	1.54	0.9	7	22	10	2.34	1.76

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4

Page: 5 - B Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

CFR	TI	IFI	C	Δ	TF	0	F	Δ	N	Δ	L	Y	S	1	S	1	V	Δ	n!	5().?	16	n	O	O	

											CAIE	, , , , , , ,		V AUSU	
Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
900N 150W		0.47	561	<1	2.00	6	1300	16	0.01	<5	399	0.38	46	<10	83
900N 200W		0.68	514	<1	2.17	6	320	16	0.02	5	424	0.47	56	<10	53
900N 250W		0.61	361	<1	2.11	8	360	16	0.06	<5	398	0.43	49	<10	61
900N 300W		0.48	1050	1	1.89	4	1630	20	0.02	<5	404	0.35	48	10	100
900N 50E		0.56	1020	<1	1.85	33	900	15	0.02	<5	384	0.34	56	<10	183
900N 100E		0.48	877	<1	1.95	10	1370	15	0.01	<5	394	0.37	48	<10	102
900N 150E		0.60	561	<1	2.43	5	670	18	0.01	<5	530	0.41	61	10	89
900N 200E		0.46	757	<1	1.88	6	740	13	0.01	<5	424	0.39	52	<10	78
900N 250E		0.47	654	<1	2.08	6	1240	12	0.01	<5	450	0.37	49	<10	67
900N 300E		0.49	657	<1	2.21	6	600	16	0.01	<5	483	0.38	49	<10	54
BL-1000N		0.54	1070	<1	2.00	11	2460	13	0.02	5	404	0.37	51	<10	141
1000N 50W		0.63	866	<1	1.79	22	1070	13	0.02	<5	393	0.36	64	<10	132
1000N 100W		0.59	842	<1	2.08	19	570	15	0.01	<5	432	0.38	59	<10	117
1000N 150W		0.51	744	<1	1.91	20	1080	14	0.02	<5	367	0.36	56	<10	99
1000N 200W		0.58	943	1	1.65	25	820	17	0.03	<5	352	0.36	86	<10	158
1000N 250W		0.55	950	<1	2.02	12	1570	18	0.01	<5	430	0.42	61	10	130
1000N 300W		0.52	1200	<1	1.65	9	650	14	0.03	<5	352	0.32	57	<10	193
1000N 50E		0.56	737	<1	1.98	8	1980	15	0.02	<5	380	0.42	53	<10	82
1000N 100E		0.52	806	<1	2.20	8	1060	18	0.01	<5	489	0.44	59	10	83
1000N 150E		0.49	855	<1	1.89	9	1920	13	0.02	<5	400	0.39	52	<10	79
1000N 200E		0.67	705	<1	2.08	5	1130	16	0.02	<5	470	0.43	67	<10	65
1000N 250E		0.50	1260	1	1.74	11	1960	23	0.03	<5	365	0.34	49	10	111
1000N 300E		0.53	1110	<1	1.82	7	1750	19	0.02	<5	349	0.33	45	<10	78
BL-1100N		0.50	532	<1	1.71	9	530	18	0.01	<5	318	0.32	43	10	70
1100N 50W		0.58	842	<1	1.99	15	1220	16	0.01	<5	440	0.40	62	<10	116
1100N 100W		0.57	1050	<1	1.81	23	610	17	0.01	<5	382	0.34	58	<10	194
1100N 150W		0.58	763	<1	1.79	16	500	14	0.01	<5	403	0.39	69	<10	104
1100N 200W		0.53	951	<1	1.85	13	1050	16	0.01	5	384	0.35	54	<10	112
1100N 250W		0.51	1080	<1	1.89	11	680	16	0.01	<5	388	0.34	53	<10	112
1100N 300W		0.49	879	<1	1.68	12	810	15	0.01	<5	333	0.28	46	<10	127
1100N 50E		0.49	1090	<1	1.69	6	1170	19	0.02	<5	370	0.34	47	10	88
1100N 100E		0.49	980	<1	1.78	8	820	13	0.01	<5	372	0.36	48	<10	75
1100N 150E		0.44	615	<1	1.80	3	890	14	0.01	<5	384	0.30	43	<10	57
1100N 200E		0.53	862	<1	2.10	7	1310	15	0.01	<5	464	0.39	54	<10	87
1100N 250E		0.50	659	<1	2.11	7	930	17	0.01	<5	473	0.41	57	<10	84
1100N 300E		0.56	939	<1	2.00	10	1200	16	0.01	<5	463	0.45	63	<10	124
BL-1200N		0.51	822	<1	2.11	6	1520	15	0.01	<5	451	0.42	58	10	88
1200N 50W		0.59	1270	<1	1.86	17	1600	12	0.02	<5	407	0.38	62	<10	196
1200N 100W		0.55	2270	<1	1.66	22	1460	16	0.03	<5	374	0.33	58	<10	190
1200N 150W		0.50	918	<1	1.78	11	740	13	0.02	<5	390	0.31	56	<10	132

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue
North Vancouver BC V7J 2C1
Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4 Page: 6 - A Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

CERTIFICATE OF ANALYSIS VA050	วบระ	งบบบ
-------------------------------	------	------

											CATE	JF ANA	L 1 313	VAUSU	30000	
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 AI % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0 01	ME-ICP61 K % 0.01
1200N 200W 1200N 250W 1200N 300W 1200N 50E		0.14 0.12 0.18 0.12	<0.005 0.007 <0.005 <0.005	<0.5 <0.5 <0.5 <0.5	6.54 3.79 7.39 6.79	8 <5 9 7 <5	730 380 680 740	1.3 0.7 1.1 1.3	<2 <2 <2 <2	1.48 9.34 1.62 1.54	0.6 2.1 0.5 <0.5	6 4 9 6	19 9 31 15	10 63 21 10	2.28 1.12 3.13 2.22	1.60 1.24 1.46 1.72
200N 100E 200N 150E 200N 200E 200N 250E 200N 300E		0.12 0.26 0.18 0.14 0.16	<0.005 <0.005 <0.005 <0.005 <0.005	<0.5 <0.5 <0.5 <0.5 <0.5	7.57 7.63 7.11 7.28 6.55	<5 <5 <5 21 15	1000 1040 830 900 750	1.5 1.6 1.4 1.4 1.3	<2 <2 <2 <2 <2 <2	1.94 1.76 1.79 1.69	<0.5 <0.5 <0.5 <0.5 <0.5	6 5 6 5	19 19 16 16 16	7 5 7 8 7	2.54 2.39 2.41 2.39 2.33	2.32 2.67 1.98 2.03 1.82

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4 Page: 6 - B Total # Pages: 6 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

CERTIFIC	ATF OF	ANAI YSIS	VA05036000

								<u> </u>		EKIIFI	CATE	JF ANA	LISIS	VAUSU	30000
Sample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
1200N 200W 1200N 250W 1200N 300W 1200N 50E 1200N 100E		0.53 0.39 0.66 0.46 0.52	951 845 1255 737 1030	<1 <1 <1 <1 <1	1.77 1.11 1.84 1.95 2.21	10 29 14 8 7	1190 1240 930 1240 640	15 9 12 14 17	0.01 0.12 0.02 0.01 0.01	<5 <5 <5 <5 <5	371 496 339 393 523	0.31 0.14 0.35 0.31 0.38	48 24 73 45 57	<10 10 <10 <10 10	128 38 176 69 83
1200N 150E 1200N 200E 1200N 250E 1200N 300E	•	0.51 0.48 0.50 0.49	589 758 713 800	<1 <1 <1 <1	2.48 2.03 2.17 1.91	5 5 6 7	630 800 1100 400	15 12 14 12	0.01 0.01 0.01 0.01	<5 <5 <5 <5	592 462 488 435	0.35 0.37 0.37 0.36	63 52 53 50	<10 <10 <10 10	49 89 99 57

ALS Chemex **EXCELLENCE IN ANALYTICAL CHEMISTRY**

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST **VANCOUVER BC V6E 4A4**

Page: 1 Finalized Date: 15-MAY-2005

Account: TARMAN

CERTIFICATE VA05036001

Project: Blue Hawk

P.O. No.:

This report is for 12 Rock samples submitted to our lab in Vancouver, BC, Canada on 9-MAY-2005.

The following have access to data associated with this certificate:

TIM HENNEBERRY

JOAN PURDY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffle splitter
PUL-31	Pulverize split to 85% <75 um

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME-ICP61	27 element four acid ICP-AES	ICP-AES
Au-AA23	Au 30g FA-AA finish	AAS

To: TARMAC MANAGEMENT LTD. ATTN: TIM HENNEBERRY 612 NOOWICK RD RR 1 MILL BAY BC V0R 2P4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: The Com-

EXCELLENCE IN ANALYTICAL CHEMISTRY

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4

Page: 2 - A Total # Pages: 2 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

									(CERTIF	CATE	F ANA	LYSIS	VA050	36001	
ample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME-ICP61 Al % 0.01	ME-ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 K % 0.01
B290967 B290968 B290969 B290970 B290971		1.00 0.78 0.66 0.94 1.46	0.009 0.019 0.006 0.072 <0.005	0.6 1.3 <0.5 <0.5 <0.5	3.50 5.67 8.47 7.47 8.20	10 15 <5 9 10	490 60 300 320 1080	<0.5 0.7 0.9 1.3 1.7	<2 <2 <2 <2 <2 <2	2.45 0.32 1.41 1.88 1.15	0.5 <0.5 <0.5 <0.5 <0.5	6 6 28 8 6	152 77 51 64 94	49 32 62 58 9	2.81 2.20 8.77 3.80 2.65	0.69 0.22 0.55 1.06 2.95
B290972 B290973 B290974 B290975 B290976		0.98 1.06 1.44 1.74 1.44	<0.005 <0.005 0.017 0.060 <0.005	<0.5 <0.5 0.8 1.2 <0.5	6.44 7.25 6.38 4.16 8.27	11 15 22 <5	2940 580 430 300 820	3.4 1.2 0.8 0.5 1.4	<2 <2 <2 <2 <2	6.09 1.11 4.39 3.44 1.30	<0.5 1.3 <0.5 <0.5 <0.5	25 14 24 9 9	117 136 73 46 101	29 40 801 829 63	5.18 4.42 15.20 20.3 3.29	5.66 2.15 1.22 1.20 1.86
B290977 B290978		0.86 1.08	0.121 0.006	24.1 <0.5	0.97 8.73	9 <5	90 760	<0.5 1.3	37 <2	0.80 0.46	<0.5 <0.5	4 10	200 107	29 34	1.03 3.98	0.22 3.06

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4

Page: 2 - B Total # Pages: 2 (A - B) Finalized Date: 15-MAY-2005

Account: TARMAN

CERTIFICATE OF ANALYSIS	VA05036001

										CERTIFI	CATE	OF ANA	LYSIS	VA050	36001
ample Description	Method Analyte Units LOR	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sr ppm 1	ME-ICP61 Ti % 0.01	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2
B290967 B290968 B290969 B290970		1.20 0.03 2.72 1.19	473 22 1255 530	1 1 <1 1	1.02 4.25 2.26 2.19	9 2 19 10	500 80 1110 940	37 6 8 6	0.06 0.98 0.44 0.19	<5 <5 <5 <5	234 116 398 399	0.23 0.19 0.97 0.35	120 5 353 163	<10 <10 <10 <10	23 2 78 42
B290971 B290972 B290973 B290974 B290975		0.70 3.79 1.41 1.66 0.98	808 324 1540 1150	1 <1 3 2 3	2.21 1.22 1.47 1.52 1.02	11 108 59 13 3	1110 >10000 410 900 760	17 18 17 7 7	0.03 0.04 1.60 0.29 1.75	<5 <5 <5 <5	406 1955 170 279 163	0.25 1.17 0.29 0.33 0.23	77 135 357 138 120	10 <10 <10 10 <10	58 129 150 86 84
B290976 B290977 B290978		0.76 0.21 0.82	281 206 237	5 17 1	2.50 0.32 1.05	9 25	470 150 370	9 606 7	0.18 0.14 0.09	<5 <5 <5	276 54 87	0.30 0.04 0.38	23 249	10 10 <10	33 10 87

ALS Chemex EXCELLENCE IN ANALYTICAL CHEMISTRY

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

ALS Canada Ltd.

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST **VANCOUVER BC V6E 4A4**

Page: 1 Finalized Date: 27-MAY-2005

Account: TARMAN

CERTIFICATE VA05039213

Project: Blue Hawk

P.O. No.:

This report is for 12 Pulp samples submitted to our lab in Vancouver, BC, Canada on 19-MAY-2005.

The following have access to data associated with this certificate:

212 Brooksbank Avenue North Vancouver BC V7J 2C1

TIM HENNEBERRY JOAN PURDY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
FND-02	Find Sample for Addn Analysis

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
P-ICP62	P - Four Acid / ICP	ICP-AES

To: TARMAC MANAGEMENT LTD. ATTN: TIM HENNEBERRY 612 NOOWICK RD RR 1 MILL BAY BC VOR 2P4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Theod Com

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: TARMAC MANAGEMENT LTD. 1270 - 1130 W. PENDER ST VANCOUVER BC V6E 4A4 Page: 2 - A Total # Pages: 2 (A)

Finalized Date: 27-MAY-2005

Account: TARMAN

			CERTIFICATE OF ANALYSIS	VA05039213
Sample Description	Method Analyte Units LOR	P-ICP62 P2O5 % 0.01		
B290972		2.04		