
ASSESSMENT REPORT

REDHAWK RESOURCES, INC.

REMAC ZINC PROPERTY

2004 DRILL PROGRAM REPORT

Work carried out on Crown Grants 13471 and 13472

PEND D'OREILLE RIVER AREA

NELSON MINING DIVISION, BRITISH COLUMBIA, CANADA

NTS Map Sheets: 82F4/E & 82F3/W TRIM Map Sheets: M082F003 & M082F004

> LATITUDE: 49° 01' N LONGITUDE: 117° 23' W

DRILLING PERFORMED: October 18 - November 3, 2004

PROPERTY OWNER & OPERATOR: Redhawk Resources, Inc., Vancouver, BC

REPORT AUTHOR: George Gorzynski, P.Eng.

DATE SUBMITTED: June 10, 2005

GEOLOGICAL SURVEY BRANCH ASSESSMENT REPORT

EXECUTIVE SUMMARY

INTRODUCTION

The Remac property is in the heart of a prolific mining district with a long history of base metal sulphide production. The property is located 25km southeast of Trail in south-central British Columbia. The area is marked by very good infrastructure including a good transportation network, local heavy industry services, two major electrical power dams just south and west of the property, and the Cominco zinc smelter at Trail.

The property is a conglomeration of 164 contiguous mineral claim units comprising several properties owned or held under option by Redhawk Resources, Inc. of Vancouver, British Columbia, Canada.

The former Reeves-MacDonald Mine is located on the eastern part of the property. It operated between 1949-77 and processed 7, 254,000 tons with recovered grades of 3.50% zinc, 1.39% lead and 8 g/t silver. Many other zones of zinc mineralization were tested by underground workings and drilling since the 1920's.

GEOLOGY AND MINERALIZATION

The Remac property lies within the Kootenay Arc of south-central British Columbia. The Arc is a belt of Lower Paleozoic formations that in broad terms comprise basal quartzites overlain by a variety of shales. Two distinct Cambrian limestone/dolostone units within this package, the Nelway Formation and the Reeves Member, each host extensive zinc+lead mineralization.

Zinc mineralization at Remac occurs in the Reeves Member as a series of deformed carbonate-hosted zinc sulphide and oxide zones traced over a distance of four kilometers on an ENE trend. This mineralized trend is referred to as the Reeves-Redbird corridor in this report. The zinc zones are elongate lozenges typically 100-200m long, 5-25m wide and have been traced over 1000m down plunge (before faulting). Historical mining records from the Reeves Zone report extraordinary continuity of size and grade over these dimensions. In total there are four known zones of mineralization typically striking east to ENE, dipping 50-60°S and plunging 45-60°W. These have been offset by a number of east-dipping normal faults that repeat the four zones several times to produce the series of zinc prospects labeled 'A' to 'Z'. The sulphide deposits are overlain by zinc oxide zones that were last explored in 2000.

2004 REMAC DRILL PROGRAM REPORT

2004 DRILL PROGRAM CONCLUSIONS

- 1. The main objective of the 2004 drill program was to test the depth and strike extents of the Zone A zinc mineralization. Drilling demonstrated that Zone A becomes narrow and low grade at shallow depth and does not appear to have significant tonnage potential.
- 2. Drill hole 2004-A5 intersected 4.6m of high grade lead+zinc mineralization in gouge of the Redbird Creek Fault. Nearby drill hole 2004-A4 stepped over to the south side of the fault and discovered Reeves Formation limestone at relatively shallow depth. These discoveries open the potential for finding new zinc+lead deposits at relatively shallow depths on the south side of the Redbird Creek Fault on this part of the property.
- Many other known zones of zinc mineralization remain to be tested on the property.

TABLE OF CONTENTS

-

.

*****---

.

.

-

•

-

-

-

Exe	cutive summary	ray: i
1.0	 Background information 1.1 Introduction 1.2 Location and access 1.3 Land tenure 1.4 History 1.5 Physiography and Climate 	1 1 3 6 6
2.0	Geology 2.1 Regional geology 2.2 Property geology	7 10
3.0	Mineralization 3.1 Regional mineralization 3.2 Property mineralization	1 2 14
4.0	Sampling procedures and assay methods 4.1 Sampling procedures 4.2 Assay and analytical methods	16 1 6
5.0	2004 Drill program results and interpretation	17
6.0	Conclusions	19
7.0	Cost Statement	20
8.0	References	21
Auti	hor's certificate	23

Page

. _____

· -- ·· ·

Table of Contents (continued) Page

TABLES

÷

-

.

.

1.	Remac property land tenure	4
2.	Selected Kootenay Arc carbonate-hosted zinc+lead deposit	
	production statistics	13
З.	Average historical grades of Remac sulphide deposits	14

FIGURES

1.	Location map	2
2.	Claim map	5
3.	Regional geology and zinc deposits	8
4.	Stratigraphic column	9
5.	Property geology	11
6.	Schematic longitudinal section	15
7.	Surface plan - Zone A – 2004 Drill Hole Map	18

APPENDICES

1.

- -

2004 drill logs with assays Geochemical assay and analytical certificate 2.

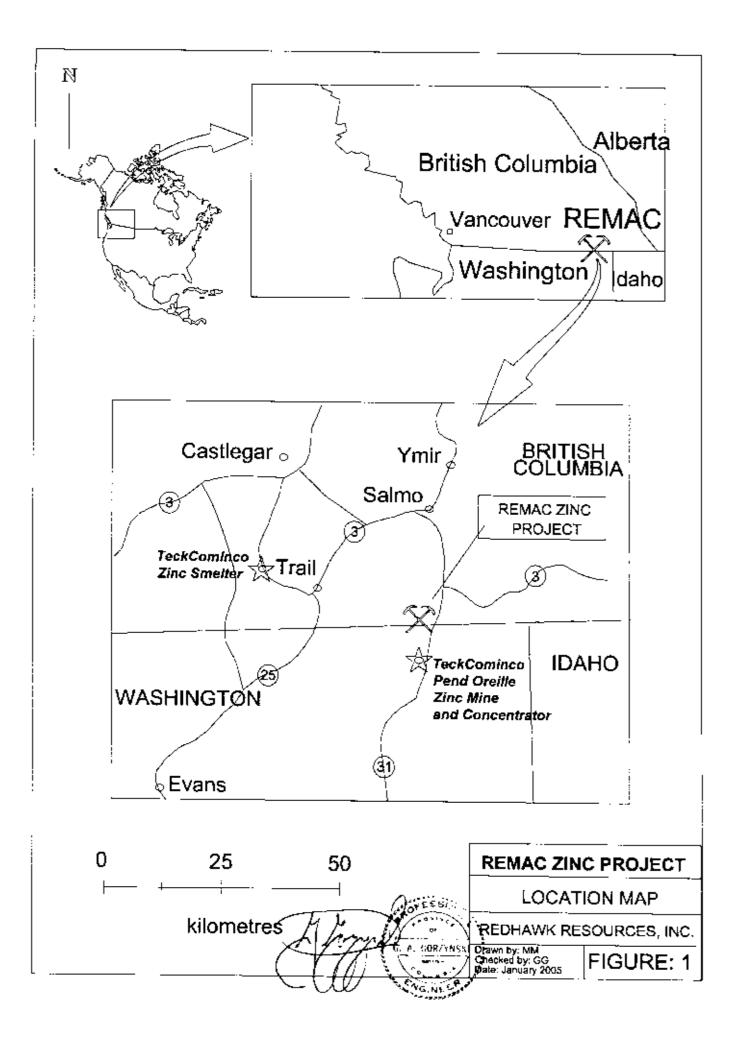
REMAC ZINC PROJECT, BRITISH COLUMBIA, CANADA 2004 DRILL PROGRAM REPORT

by George Gorzynski, P.Eng.

1.0 BACKGROUND INFORMATION

1.1 INTRODUCTION

The Remac property is a conglomeration of 164 contiguous mineral claim units comprising several properties owned or held under option by Redhawk Resources, Inc. of Vancouver, British Columbia, Canada.


A total of 346.3m was drill in eight BTW core holes during the 2004 program. The main objective of the program was to test zinc-lead mineralization exposed in a trench in the Zone A area on the western part of the property. Program results demonstrated a lack of depth extent to the Zone A mineralization but discovered new mineralization in a fault zone further west.

This report describes work carried out, results obtained and conclusions drawn from the 2004 drill program on the property. It was written by and the work program carried out under the intermittent supervision of the author at the request of Redhawk Resources. The day to day management of the program was carried out by Victor Guinet of Redhawk Resources, and independent geologist Bob Yorston. Aggressive Drilling of Kelowna BC was the drill contractor.

1.2 LOCATION AND ACCESS

NTS Map Sheets: 82F4/E & 82F3/W TRIM Map Sheets: M082F003 & M082F004 Latitude: 49°00' to 49°02' N Longitude: 117° 20' to 117° 28' W UTM Coordinates: 5 427 400 to 5 431 300 mN, 465 700 to 475 700 mE Zone 11 (Datum NAD83)

The Remac property is located in the Nelson Mining Division about 25 kilometers southeast of Trail, the site of TeckCominco's major zinc-lead smelter and about 10km north of TeckCominco's Pend Oreille Zinc Mine and Concentrator in Washington State, USA. The property is about 400km east of Vancouver, British Columbia, Canada (Figure 1). The southern property boundary is marked by the United States border.

2004 REMAC DRILL PROGRAM REPORT

The property is cut by the Pend d'Oreille River and access to each side of the property is provided by different routes. The eastern part of the property is readily accessed by the former Reeves MacDonald Mine road, a good two lane gravel road that connects with provincial Highway 6 some seven kilometers to the east at Nelway just north of the USA border. The western part of the property where the 2004 drilling was carried out is connected to the town of Trail by 41 km of bush road. From Trail Highway 22A connects with the Pend D'Oreille River road, a paved 13km road to the Seven Mile Dam. Crossing the river on the Seven Mile Dam, a 15km bush road leads to the various zinc prospects on the western side of the property. There is also a rough 11km gravel road that runs along the north shore of the Pend d'Oreille River and connects the Seven Mile Dam with the former Reeves MacDonald Mine road and the eastern part of the property.

1.3 LAND TENURE

The Remac property is a conglomeration of 164 contiguous mineral claim units covering approximately 3,092 hectares (7,635 acres) and comprising several historical properties now owned by or held under option by Redhawk Resources (Figure 2). Traditionally the property has been divided into the western Redbird property and the eastern Reeves property. The units that comprise the Redbird property are now all owned outright by Redhawk Resources with only some subject to production royalties to former owners. On February 15, 1999 Redhawk acquired an option to earn a 100% interest in the Reeves property from Reeves MacDonald Mines Limited. Included in the Reeves option are surface rights to approximately 295 hectares (725 acres) covering possible mill and tailings disposal areas. The 2004 drill program was carried out by Redhawk entirely on the Redbird property and specifically on Crown Grants 13471 and 13472 (see Figures 2 and 7).

The Remac claims are listed in Table 1. They comprise a mix of crown granted mineral rights, crown granted surface rights, fee simple surface titles and modified grid mineral titles. The Grouse claims shown on Figure 2 are also controlled by Redhawk Resources but are not the subject of this report.

Page 3

, ,

4

.

.

-

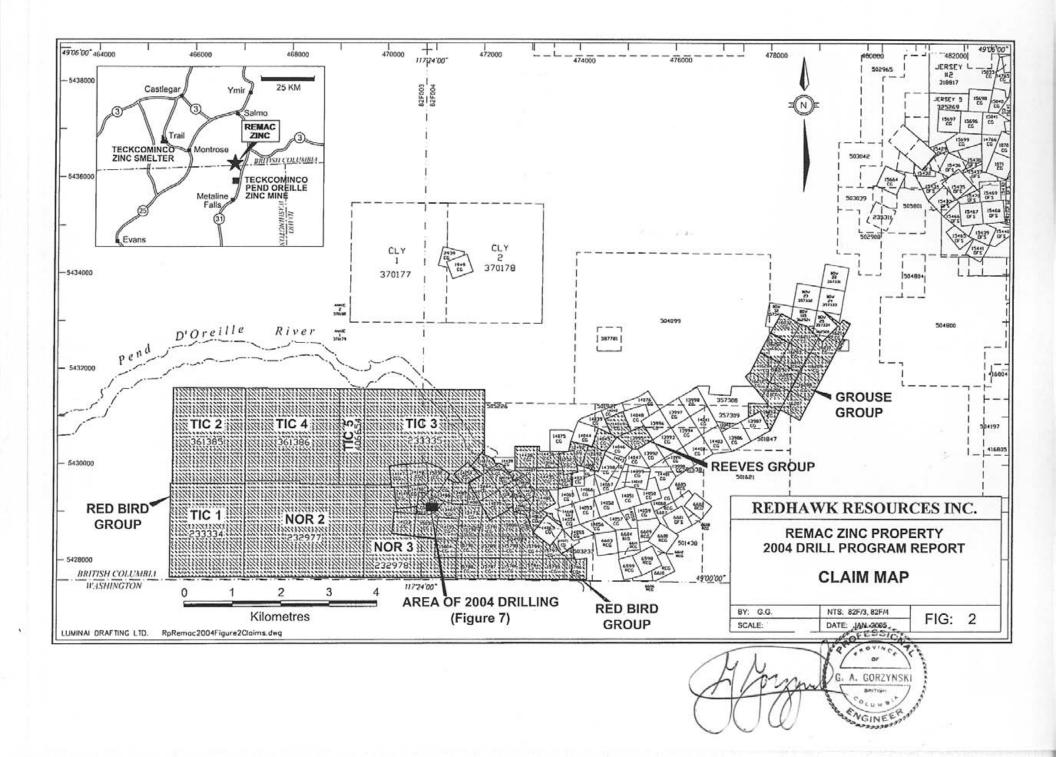
_

-

-

.

•


~

a.

.

TABLE 1:	REMÁĊ	PROPER	TY LAND TENUR	Ë		N	TS 82F	/03W & /04E		31-Dec-04
Claim	Туре	Lot No.	Claim	Туре	PID	C	laim	Expiry	Type To	enure
Name			Name				ame			umber
REEVES PROPE	RTY	·· - ··································				न्न	EDBIR	D PROPERT	<u> </u>	
	<u>, , , , , , , , , , , , , , , , , , , </u>								·	
MINERAL CROW	/N GRAN	ITS	SURFACE RIG	<u>HTS</u>		M	ODIFIE	D GRID MIN	ERAL CI	<u>"AIMŞ</u>
Drumlumia	C.G.	12076	Gertrude MC	C.G.	015-497-228	т	IC 1	2011.05.24	M.G.	23333
Juliette	C.G.	13463	Drumlumin Fr	C.G.	016-497-309	TI TI	IC 2	2011.05.24	M.G.	36138
Gertrude	C.G.	13464	Annex No. 1	C.G.	016-497-261	! т	ЮЗ	2011.05.24	M.G.	23333
Dreadnaught	C.G.		Annex No. 2	C.G.	016-497-252		IC 4	2011.05.24		36136
Tunnel Fraction	C.G.		River Fraction		016-497-350		IC 5	2005.05.24		40665
River	C.G.		River No, 1		016-497-325		OR 2	2011.05.24		23297
River No. 1	Ç.G.		River M.C.		016-497-244		OR 3	2012.05.24		23297
					1	իտ	ON J	2012.00.24	m.c.	23237
River Fraction Annex No. 2	C .G.	14062	Juliette	Ç.G.	016-497-295					
Fraction	C.G.	14069	Fee Simple Lot	C.G.	D15-960-251	M	IINERA	L CROWN G	RANTS	
Annex No. 1	C.G.		Fee Simple Lot		015-960-242		laim		Type	Lot No.
Drumlumin	0.0.			\$. \$.	010 000 012				.,	22110
Fraction	C .G.	14074	Fee Simple Lot	C G	016-520-246		aviar	No.1	C.G.	651193
			Fee Simple Lot		1		aviar			
A Fraction	CG				016-520-262			No. 2	C.G.	652093
RM	C.G.		Fee Simple Lot		016-520-297	I I	aviar	Na. 3	C.G.	652193
RMS	C.G.		Fee Simple Lot		016-520-424	-	aviar	Na. 4	C.G.	652923
RM2	C.G.		Fee Simple Lot		016-520-441	I I	aviar	Na. 5	C.G.	652393
RM3	Ç.Ģ.		Fee Simple Lot	C.G.	016-520-475	C	aviar	No. 6 Fr	C.G.	652493
Highland	C.G.		Fee Simple Lot		016-520-483		aviar	No. 7 Fr	C.G.	652593
Empire	C.G.	13462	Fee Simple Lot	C.G.	016-520-505	L	ead Pot	1	CG.	484761
Blue Bell	C.G.	:4032	Fee Simple Lot	C.G.	016-520-530	L	ead Cu	P	C.G.	484861
International	C.G.	12692	Fee Simple Lot	C.G.	016-520-548	R	loyal		C.G.	247359
Salmon Fraction	C.G.		Fee Simple Lot		016-520-581		dna		C.G.	484951
Riverside	C.G.		Fee Simple Lot		016-520-556		nnie		C.G.	485061
V.B. Fraction	C.G.		Fee Simple Lot		016-520-564		lcGee		Ç.G.	629083
International						_		_		
Lead No. 2	C.G.	12492	Fee Simple Lot		016-520-572		errude	! Fr	C.G.	485161
			Fee Simple Lot	C.G.	015-960-927		lo. 1		C.G	247459
			Fee Simple Lot	C.G.	015-960-935	R	ed Top		C.G.	247559
			Fee Simple Lot International	C.Ģ.	023-687-444		lo. 2		C.G	247659
			Lead No 1	C.G	016-497-571	a l	led Mtn		C.G.	247759
			Salmon Fraction			I I'	ատեր	-	C.G.	376660
			Riverside		016-497-848		lomesta	who 2	C.G.	485261
			V.B. Fraction		016-497-945		loyal Fr		C.G.	48526
			International	Q.Q.	010-497-940		uyai er		Q.Q.	30/00
			Lead No. 2	C G	016-497-503	կ եր	ough G	iaing Fr	C.G.	629283
1			Fee Simple Lot		016-520-181	• •	ough N		C.G.	629183
			Fee Simple Lot		016-520-220		al	No. 1	C.G.	651293
							ai /ai	No. 2		
TOTALS	ה		Fee Simple Lot	Ç.Q.	016-520-271				CG.	651393 Set 401
			1				fal An	No. 3	C.G.	651493
M:neral claims:	164						ai	No. 4 Fr	C.G.	651593
approx		hectares	4				/al	No. 5	Ç.Ģ.	651693
Surface rights:	35						/al	No. 6 Fr	C.G.	651793
corqqe	295	hectares				V	/al	No. 7 Fr	C.G.	651893
			_			եր	/al	No. 8 Fr	C .G.	651993
							arch	No. 3 Fr.	ĊĠ.	65269

.....

1.4 HISTORY

The first mineral discovery in the district is credited to men of the Hudson's Bay Company who in 1865 attempted to recover gold from the Salmo River near its junction with the Pend d'Oreille River (Walker, 1934) on the present-day Remac property.

Most of the present day property claims were staked between 1910-34 during which time various surface and underground exploration work was carried out. Little work is then reported until the Reeves MacDonald Mine began production in 1949. The nearby Annex Mine began production in 1970. All production ceased in 1975 with the introduction of a high mining tax regime in the province.

Since the 1970's most work (mainly drilling) has been carried out on the property by Redhawk Resources and predecessor companies in programs designed to expand the known zones of mineralization (Klein, 1998, 1999).

Detailed property history can be found in Gorzynski (2000) available at <u>www.sedar.com</u> under Redhawk Resources.

1.5 PHYSIOGRAPHY AND CLIMATE

The Remac property is marked by rounded mountains with steep slopes and deeply incised drainage valleys. Elevations range between 545m (1800 ft) and 1585m (5200 ft). The central portion of the property is cut by the wide Pend d'Oreille River which has been dammed for electrical power generation.

Much of the property is covered by variably thick glacial deposits of till and kame terraces. Thick fluvial gravel deposits cover Pend d'Oreille River valley bottom. Outcrops in the more important mineralized areas of the property are mainly limited to local exposures in drainages and along some steep hillsides.

Most of the property is heavily forested although much of this is second growth semi-mature pine, fir, cedar, hemlock and larch. Parts of the property have been logged leaving grassy slopes especially in the vicinity of the former Reeves MacDonald Mine surface facilities (now almost all removed).

The climate of the region is typical of southcentral British Columbia with hot dry summers (June to August) and mild winters (November to April). Snow accumulations at higher elevations typically range up to depths of one meter (Klein, 1998).

June 10, 2005

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

LOWER PALEOZOIC

The geology of the Salmo zinc+lead district, which includes the Remac Property, is described in detail by Fyles and Hewlett (1959) from which much of the following information is taken.

The Salmo zinc+lead district lies within the southern part of the Kootenay Arc, a north-south trending, curvilinear belt of distinctive Lower Paleozoic rocks which extends over 400km from Colville, Washington to the vicinity of Revelstoke, BC (Figure 3). The Arc lies between the Proterozoic Purcell Belt metasediments to the east and the Shuswap Metamorphic Complex and Nelson Batholith to the west. The Kootenay Arc includes Lower Cambrian carbonate rocks which host all the significant zinc+lead deposits of the Arc.

The principal zinc+lead deposits in the Remac region all occur within the Reeves Member of the Lower Cambrian Laib Formation (Figure 4). The Reeves Member mainly consists of fine- to medium-grained limestone, which has been locally altered to dolostone. This timestone characteristically displays grey, black and white layering typically a few centimetres in width. The dolostone often weathers buff, is poorly banded or massive, and is normally finer grained than the limestone. Large masses of light grey dolostone are exposed in complex folds immediately south of the Salmo River Anticline near the Remac Mine. Black, vaguely banded dolostone is also exposed in the vicinity of the Remac Mine.

The Truman Member of the Lower Laib Formation underlies the Reeves Member. It is a thin sequence of interbedded phyllites and limestones. The Truman Member overlies micaceous quartzites of the Reno Formation which in turn overlie massive quartzites of the Quartzite Range Formation.

Black phyllites and schists of the Emerald Member overlie the Reeves Member. Upper Laib Formation phyllites with lesser intercalated micaceous quartzites and limestones overlie the Emerald Member.

The Laib Formation is overlain by the Nelway Formation, a second unit of limestones and dolostones that also hosts zinc+lead deposits including TeckCominco's Pend Oreille Mine orebodies in Washington State. Black argillite and slate of the Ordovician Active Formation overlie the Cambrian rocks normally across a fault contact.

Rocks exposed within the southern Kootenay Arc show a very complex structural history, involving at least three episodes of folding, major regional low angle faults and multiple smaller faults (Jennings, 1991; Macdonald, 1973, Fyles and Hewitt, 1959).

				1	<u> </u>		-1	
AGE	FORMATIC	NC	LITHOLOGY		FORMATION	MEMBER	LITHOLOGY	MINERALIZATION (Schematic)
						EMERALD (E)	Black Phyllites	
ORDOVICIAN	ACTIVE (A)	40 4	Black shales		AIB	REEVES (R)	Limestones Dolostones	ANNEX WEST ANNEX
	NELWAY	(N)	Limestones Zn, Pb		~			REEVES
CAMBRIAN	LAIB	LOWER UPPER (U)	Phyllites Quartzites Zn; Pbi		LOWER LAIB	TRUMAN (T)	Green Phyllites Limestones	REDBIRD
	RENO (2	<u>_) [</u>	Quartzites		RENO		Quartzites	
					H	G. A. CORZY	(NSKI 2004	HAWK RESOURCES INC. REMAC ZINC PROPERTY DRILL PROGRAM REPORT ATIGRAPHIC COLUMN FIG: 4

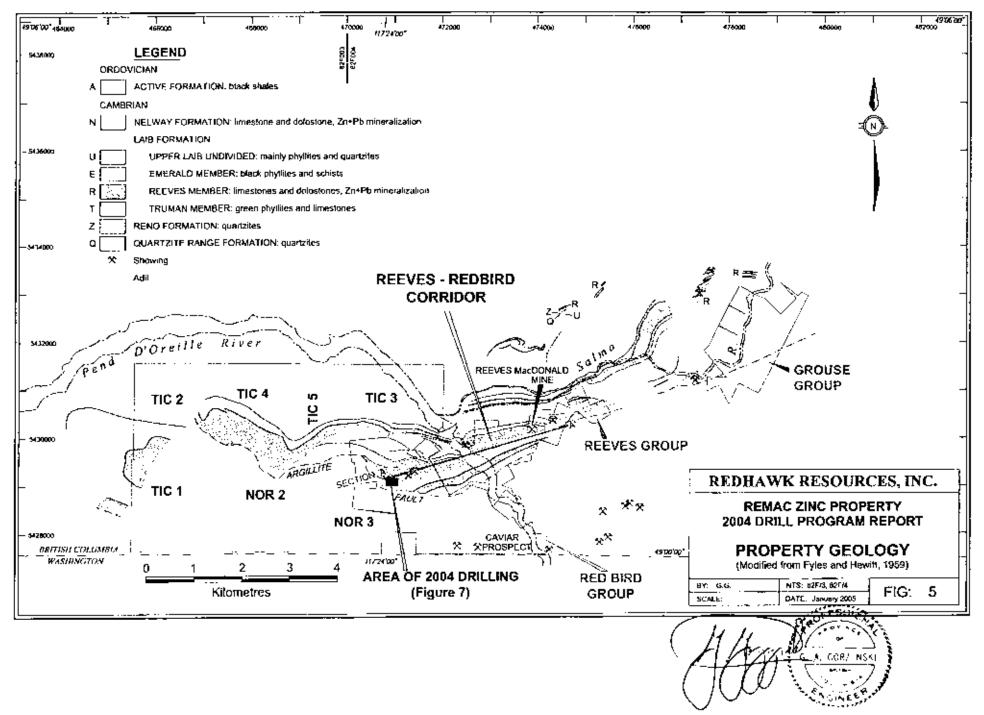
LATE PLEISTOCENE

٤

Most of the Riemac riegion is clovered with Late P leistocene de posits mainly related to the Fraser glaciation event which correlates with Late Wisconsian continental glaciation elsewhere in North America. The Fraser glaciation event in southern British Columbia occurred between 30,000 - 10,000 years B.P. and peaked in the Remac area about 14,000 years B.P. (Clague, 1991).

Retreat of the Fraser icesheet was accompanied by rapid mass-wasting and glacial outwash (Clague, 1991) that probably deposited much of the valley fill sediments in the Pend d'Oreille River valley. Kame terrace sediment deposits at Remac (for example overlying Zone B, Figure 5) and elsewhere in the district are evidence of retreating icesheet stagnation.

Recent surface materials include alluvium, colluvium and organic soils developed since the last glaciation.


2.2 PROPERTY GEOLOGY

The geology of the immediate area around the Remac property is shown on Figure 5.

Three regional-scale structural packages of rocks cross the property (Fyles and Hewitt, 1959) - the Mine Belt on the north, the Black Argillite Belt (Active Formation) on the south and the Eastern Belt (Nelway Formation) along the southeastern edge of the property. The Mine Belt and the Black Argillite Belt are separated by the major shallowly south-dipping Argillite Fault. Deep drilling has demonstrated the continuation of the Reeves-Redbird corridor of the Mine Belt (and potential for other zinc deposits) beneath the Active Formation to the west (Westervelt, 1999).

Most of the known zinc+lead mineralization in the district occurs in the Mine Belt. On the property the Mine Belt encompasses Laib, Reno and Quartzite Range Formations (see section 2.1). Mine Belt rocks on the property typically strike WSW and dip steeply to moderately to the south.

Within the Mine Belt, all significant zinc+lead mineralization occurs in the Reeves Member carbonates of the Lower Cambrian Laib Formation (Figure 4). Three Reeves Member units cross the property (Figure 5 & Plate 2). These were thought to be fold repetitions of the same Reeves horizon (Fyles and Hewitt, 1959, p.141) but the highly different character of the three units suggest they may represent three different Reeves Member horizons (G. Klein, pers. communication, 2000). The northern Reeves horizon is an extensive unit of massive to bedded limestones that appears to be devoid of base metal

.

. .

٠

1

· ·

1

1

mineralization. The central Reeves horizon (referred to as the Reeves-Redbird corridor) is host to all the past zinc+lead production and the majority of other known zinc+lead mineralization on the property. The southern Reeves horizon is named the Prospect Dolomite and is host to scattered zones of zinc+lead mineralization.

A variety of late lamprophyre dikes cut all the formations on the property and commonly mark the locations of faults. They are typically dark green to black with biotite phenocrysts.

Rocks of the Reeves-Redbird corridor are deformed by two major westsouthwesterly trending, isoclinal folds - the Salmo River Anticline and Reeves Syncline. These folds have moderate to steep southerly-dipping axial planes.

The corridor is also cut by a series of north-northeasterly trending normal faults. These faults dip 45° to 60° to the east, and have resulted in a down-faulted repetition of the stratigraphic sequence eastward in a number of separate fault blocks (Figure 6). One of the better defined of these normal faults is the Beer Bottle Creek Fault which offsets Zone B mineralization down to the east to continue as Zone C. This fault was noted in the Redbird Tunnel No. 1 workings (Sorensen, 1942).

3.0 MINERALISATION

3.1 REGIONAL MINERALISATION

Carbonate-hosted zinc+lead deposits occur along the entire length of the Kootenay Arc, from the Bonanza and Van Stone deposits in northeastern Washington to the Mastodon deposit in the vicinity of Revelstoke (Figure 3). The largest deposits occur in the vicinity of Salmo (including Remac) and Metaline Falls (Table 2 and Figure 3) on either side of the International Border. Other Kootenay Ar c dep osits h ave been des cribed in det ail by F yles and H ewlett (1959), and were also summarised by Jennings (1991).

Zinc+lead mineralisation in the Kootenay Arc occurs in both the Reeves Member of the Lower Cambrian Laib Formation and the Middle Cambrian Nelway Formation (Figure 4). All significant deposits in the Salmo area are hosted by dolomitized limestone of the Reeves Member. The deposits are often characterised by considerable Lateral continuity (locally exceeding 1, 000m at Reeves and Jersey A), stratabound to stratiform morphology, and fine-scale, parallel sulphide layering. Sulphide mineralization mainly occurs as lenses and parallel layers of sphalerite with pyrite and lesser galena. Variable oxidation of sulphides to zinc-enriched limonite gossans occurs most notably on the Remac property and form significant mineral zones in their own right (Gorzynski, 2000). Theories on the origin of the Salmo district base metal deposits are several. They include comparisons to epigenetic replacement deposits in favourable dolomitized limestone horizons (Fyles and Hewitt, 1959) and Irish-type "sedex" deposits now highly deformed into elongated lozenges or "megamullions" in fold noses (Jennings, 1991; MacDonald, 1973). The tack of easy comparisons to deposits elsewhere prompted Sangster (1970) to coin the term Remac-type deposits to describe them as a group. Consensus on the origin of these deposits is still lacking.

TABLE 2: SELECTED KOOTENAY ARC CARBONATE-HOSTED ZINC+LEAD DEPOSITS PRODUCTION STATISTICS

(From Westervelt, 1999)

SALMO AREA DEPOSITS

	PRODUCTION TONNAGE	<u>%Zinc</u>	<u>%Lead</u>	<u>%Cd</u>	<u>opt Silver</u>
Duncan (reserves)	8,165,000	2.90	2.70		
HB	7,283,000	4.45	0.93	0.013	0.120
Jersey	6,256,000	7.19	1.85	0.030	0.096
Reeves MacDonald*	7,254,000	3.50	1.39	0.020	0.238

METALINE AREA DEPOSITS

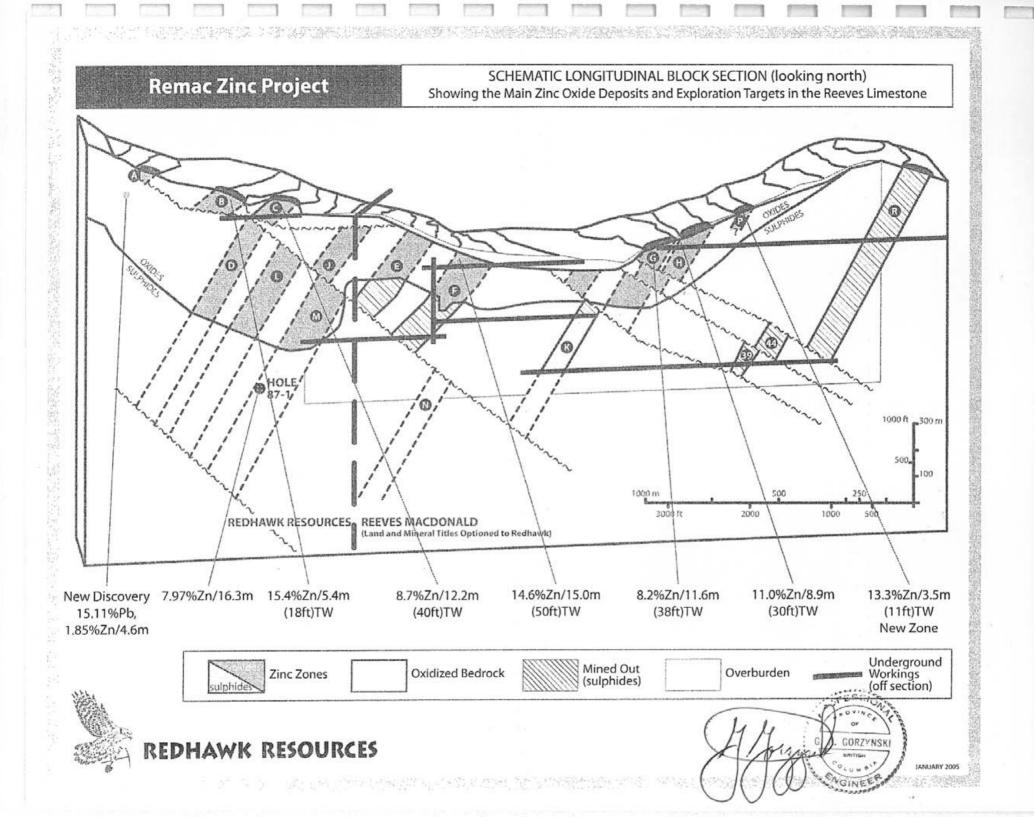
DEPOSIT	PRODUCTION TONNAGE TO 1956	<u>%Zinc</u>	<u>%Lead</u>	<u>%Cd</u>	opt Silver
Pend D'Oreille** Grandview	5, 451,000 2,348,000	2.58 2.96	1.33	0.002 0.003	0.047
	, ,		1.37		0.032
Metaline	431,500	4.28	1.20	0.0005	0.022
Monarch-	744.000	6 .00	C 00		
Kicking Horse	744,000	8.85	5.63	-	

*The Reeves MacDonald mining cut off was 3% Zn but with "adequate grade control procedures, the central core areas of the deposits could have been selectively mined at significantly higher grades" (G. Klein, pers. communication, 1996 quoted in Westervelt, 1998)

**Total production at the Pend d'Oreille Mine from 1935 to the mine closure in 1977 was 14,000,000 tons averaging 3.0% Zn and 1.3% Pb (Westervelt, 1999). The Pend Oreille Mine was reopened by TeckCominco in 2000 and continues to operate today.

3.2 PROPERTY MINERALIZATION

The following information is compiled from a number of sources listed in the bibliography, various mine plans, and personal observations of the author.


The main mineralisation of interest on the Remac property occurs in a series of carbonate-hosted base metal deposits and prospects (Zones 'A' to 'Z' on Figures 5 & 6) exposed over a distance of about four kilometres referred to in this report as the Reeves-Redbird corridor (Figure 5). The former Reeves-MacDonald Mine processed ore from several of these zones between 1949 and 1975. In total 5.8 million tonnes of sulphide ore grading 3.50% Zn and 1.39% Pb was mined from the Reeves Mine (Zone R), the Annex Mine (Zones E & F), Zone K and some small ore blocks between Zones K and R (Figure 6). Other nearby base metal zones were tested by surface and underground exploration at various times since the 1920's.

Most significant mineralisation on the property is hosted by dolomitized limestone of the Reeves Member of the Lower Cambrian Laib Formation (Figure 4). The base metal zones take the form of elongate lozenges typically 100-200m long, 5-25m wide and, where documented in the Reeves Mine (Zones R to K), over 1000m down plunge (before faulting). Historical mining records from the Reeves Mine report extraordinary continuity of size and grade over these dimensions (G. Klein, pers. communication, 2000). In total there are four (possibly five) known zones of mineralization, typically striking east to ENE, dipping 50-60°S and plunging 45-60°W. These four zones are the Reeves, Annex, Annex West and Redbird. Zone A at the west end of the corridor may or may not represent a new zone. Each of these zones are marked by typical and distinct metal ratios (Table 3; G. Klein, pers. communication, 2000). These four zones have been offset by a number of east-dipping normal faults, that repeat them several times to produce the series of distinct zinc deposits and prospects tabelled Zones 'A' to 'H' on Figure 6.

TABLE 3: AVERAGE HISTORICAL IN-PLACE GRADES OF REMAC SULPHIDE ZONES

(From Westervelt (1999); modified from Price (1987) and Jennings (1991))

	<u>Reeves</u>	<u>Annex</u>	Annex West
Zn	4.5-6.2%	8.0-12.9%	3.5-5.0%
Pb	1.6%	1.0-4.3%	3.5-5.0%
Cd	0.02%	0.09%	0.02%
Ag	0.3-0.5 opt	2.5-3.6 opt	1.0 opt
Zn/Pb	3.3	3.9	1.0

Primary sulphide mineralization at the Reeves-MacDonald Mine consists of laminations and lenses of massive and disseminated pyrite, honey-coloured sphalerite, galena and trace chalcopyrite. The sulphide bodies are structurally conformable and stratabound, often contain a high grade central core, and typically feather out along strike. Extensive 'barren' pyritic zones are not known to occur.

The sulphide bodies are typically contained within dolostone envelopes, some of which extend for considerable distances along strike. The dolostones tend to be finer grained and more massive than nearby limestone. They commonly have a textured or tweedy pattern of irregular fine carbonaceous films thought to be the product of deformation (Fyles and Hewitt, 1959). Similar dolostones are also known to occur in areas of no known mineralization (G. Klein, pers. communication, 2000).

The upper portions of most of the zinc zones have been oxidized to zinc-rich limonitic gossans or soils. Oxidation is known from underground workings and drillholes to extend to depths ranging from very shallow (Zones Q and R) to some 450m meters below surface (Zone D, Figure 6). The transition from fresh sulphide to totally oxidized material is often abrupt, frequently occurring over only a few meters (G. Klein, pers. communication, 2000). A trenching and RC drilling program was carried out in 2000 to evaluate some of these oxide zones (Gorzynski, 2000).

4.0 SAMPLING PROCEDURES AND ASSAY METHODS

4.1 SAMPLING PROCEDURES

All drilling was carried out by Aggressive Drilling of Kelowna BC with a JKS-Boyles Super 300 drill. Half core samples of mineralized sections were collected on site u sing a standard impact core splitter, placed in a numbered plastic sample bag and locked with a plastic cable tie. Samples were kept in a secure location in camp and shipped in one batch at the end of the drill program. Samples were collected by geologist Bob Yorston, and samples and sampling methods were checked by the author on site. Several blind blank samples were included in the shipment. No duplicates or standards were included.

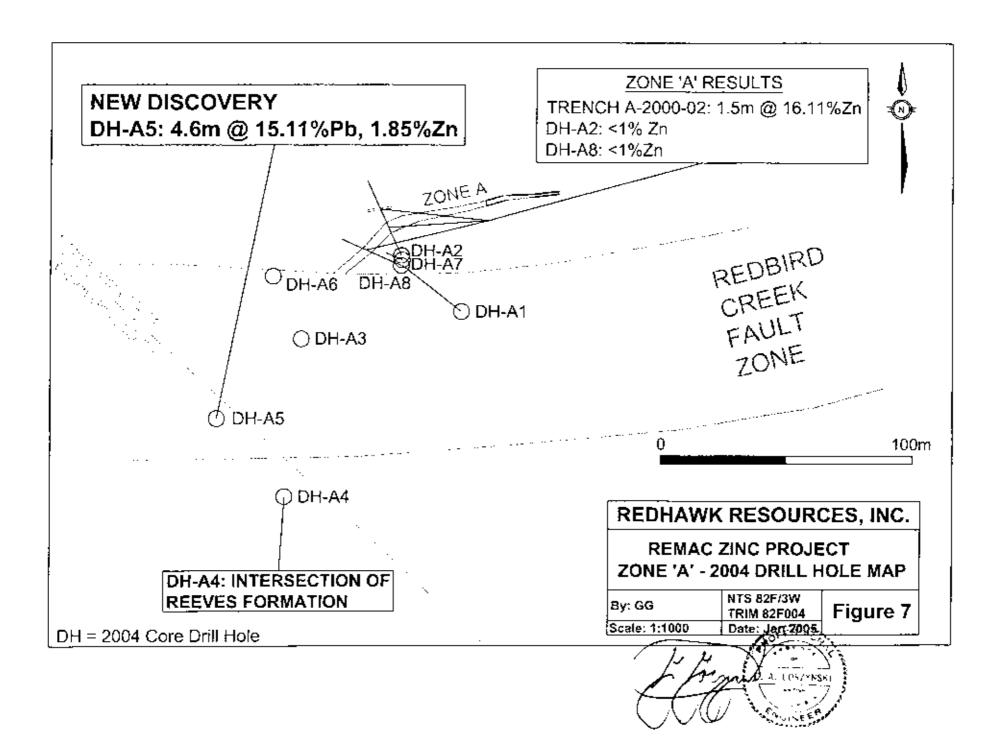
4.2 ASSAY AND ANALYTICAL METHODS

All drill core samples were sent to the Global Discovery Laboratories in Vancouver. All reported zinc and lead values were assayed by classical wet chemical assay with an atomic absorption finish. Silver was done by aqua regia acid digestion with an atomic absorption finish. Assay certificate for all samples is in Appendix 2.

5.0 2004 DRILL PROGRAM RESULTS AND INTERPRETATION

The objective of the 2004 drill program was to test extensions Zone A zinc mineralization b eyond the main t rench ex posure on the w estern p art of the Remac Property. In total eight BTW-size holes were drilled for a total of 346.3m.

Zone A is a historically known zone of mineralization (Emendorf, 1927) which was exposed in a large bulldozer trench in 2000 (Figure 7). In the trench Zone A was exposed over a strike length of 10m and returned an average of 16.11% Zn / 1.5m from a series of six vertical channel samples in gossanous zinc oxides (Gorzynski, 2000).


Four holes were attempted beneath the trench of which only two (DH-2004-A2 and DH-2004-A8) succeeded in testing the immediate downdip extension of the trench mineralization (Figure 7); two were lost in overburden. The two completed holes demonstrated that the mineralization exposed in the trench pinched rapidly below surface and returned low grades of less than 1% Zn. Two other holes (DH-2004-A3 and DH-2004-A6) attempted to test the projected western rake of the Zone A trench mineralization; both were lost in overburden.

The four lost holes outlined a deep overburden gully that marks the probable trace of the Redbird Creek Fault in this area. It had been previously thought that the Redbird Creek Fault passed through this area further to the east (Gorzynski, 2000).

Drillhole 2004-A5 drilled through 14.3m of overburden and cored fault gouge in the Redbird Creek Fault. It intersected 4.6m grading 15.11% lead and 1.85% zinc at the bottom of the vertical hole which ended at 111.3m. This intersection was mineralized clay gouge in the Redbird Creek Fault and had poor recovery of about 20%.

Hole 2004-A4 was drilled across the gully to the south side of the fault. The upper part of the hole was in black schist and at 44.8m passed through a fault gouge and into Reeves Formation Limestone and then was lost at 54.9m due to the depth capacity of the drilling machine. Although not mineralized the presence of Reeves Formation, host rock to the Remac zinc deposits further east on the property, at such a shallow depth opens the possibility of discovering new zones of zinc mineralization in this area at relatively shallow depths.

This new discovery could have a significant impact on the scope of the Remac Zinc Project from both the oxide and sulphide projects perspectives. Past work had suggested that potential for zinc-lead deposits in this western portion of the property lay at great depth which discouraged exploration. These new drill results indicate that in fact the potential for zinc-lead deposits lies at relatively shallow depths here and the new high grade intersection in the fault may indicate a nearby deposit.

٦.

6.0 CONCLUSIONS

- 1. The Remac property is in the heart of a prolific old mining district with a long history of base metal sulphide production and zinc oxide deposits.
- 2. The main objective of the 2004 drill program was to test the depth and strike extents of the Zone A zinc mineralization. Drilling demonstrated that Zone A becomes narrow and low grade at shallow depth and does not appear to have significant tonnage potential.
- 3. Drill hole 2004-A5 intersected 4.6m of high grade lead+zinc mineralization in gouge of the Redbird Creek Fault. Nearby drill hole 2004-A4 stepped over to the south side of the fault and discovered Reeves Formation limestone at relatively shallow depth. These discoveries open the potential for finding new zinc+lead deposits at relatively shallow depths on the south side of the Redbird Creek Fault on this part of the property.
- 4. Many other known zones of zinc mineralization remain to be tested on the property (see Gorzynski, 2000).

7.0 COST STATEMENT

1

-

.

-

_

Costs submitted f or as sessment credits f rom the 20 04 drill program on the Remac property are as follows. This work was performed entirely on crown grant lot numbers 13471 and 13472.

orge Gorzynski - bert Yorston - Gumet ation ad meals (couver to Castlega	11.5 days @ \$ <between 27<br="" september="">28 days @ \$ <october -="" 1="" 1<br="" november="">39 days @ \$ <september -="" 15="" novemi<br="">52 mdays@\$</september></october></between>	310.53/day 15, 2005 with breaks> 258.78/day	8,694.84 10,092.23	23,847.07
Sumet <u>ation</u> ad meals (28 days @ \$ <october -="" 1="" 1<br="" november="">39 days @ \$ <september -="" 15="" novemb<br="">52 mdays@\$</september></october>	310.53/day 15, 2005 with breaks> 258.78/day ber 15, 2005 with brea	8,694.84 10,092.23	
Sumet <u>ation</u> ad meals (<october -="" 1="" 1<br="" november="">39 days @ \$ <september -="" 15="" novemi<br="">52 mdays@\$</september></october>	15, 2005 with breaks> 258.78/day ber 15, 2005 with brea	10,092.23	
ation ad meals (39 days @ \$ <september -="" 15="" noveml<br="">52 mdays@\$</september>	258.78/day ber 15, 2005 with brea	10,092.23	
ation ad meals (<september -="" 15="" novemi<br="">52 mdays@\$</september>	ber 15, 2005 with brea		
nd meals (52 mdays@\$		aks≻	
nd meals (61.00 /day		0 474 04
·		61.00 /day		A / 7 / A/
couver to Castlega	r roturo)			3.171.96
couver to Castlega	r roturo)			
	ir return)		1,130.82	
ick #1 (26 days @3	S50/day)			
ick #2 and Camper	(28 days @ \$50/day)			
at (2 days @ \$50/d	lay)			
ad (21 days @ \$50)/day)			
ntal vehicle from ai	rport (5 days @ \$71.82/da	y)		
el etc for all vehicle	S		5,368.14	6,498.9
s Global Di	iscovery Laboratories (Van	icouver)		374.0
	•			
	•	Ni @ \$6.25		
		_		
+	· -	ge		
ntract excavator/bi	ulldozer (Impact Equipmen	t of Trail BC)		16,439.2
		-	ort)	
ontract meterage o	osts (8 holes / 346.3m plus	s ancillary charges)		65,109.1
greesive Drilling of	f Kelowna BC>			
oment				840.4
				240.0
		AL COSTS 4		116,520.6
	11 drill co (Rock pro Zn & Pb Ag wet cl <i>Plus sam</i> htract excavator/bu ad building, const intract meterage c greesive Drilling of	11 drill core samples (Rock prep @ \$4.50, AA Zn/Pb/Ag/ Zn & Pb wet chemical assays @ \$8 Ag wet chemical assays @ \$4.50) <i>Plus sample shipping costs & stora</i> htract excavator/bulldozer (<i>Impact Equipmen</i> ad building, construction of drill pads, movin intract meterage costs (8 holes / 346.3m plus greesive Drilling of Kelowna BC>	11 drill core samples (Rock prep @ \$4.50, AA Zn/Pb/Ag/Ni @ \$6.25 Zn & Pb wet chemical assays @ \$8 each Ag wet chemical assays @ \$4.50) <i>Plus sample shipping costs & storage</i> htract excavator/bulldozer (<i>Impact Equipment of Trail BC</i>) ad building, construction of drill pads, moving of drill, bush transpo intract meterage costs (8 holes / 346.3m plus ancillary charges) greesive Drilling of Kelowna BC>	11 drill core samples (Rock prep @ \$4.50, AA Zn/Pb/Ag/Ni @ \$6.25 Zn & Pb wet chemical assays @ \$8 each Ag wet chemical assays @ \$4.50) Plus sample shipping costs & storage htract excavator/bulldozer (Impact Equipment of Trail BC) ad building, construction of drill pads, moving of drill, bush transport) intract meterage costs (8 holes / 346.3m plus ancillary charges) greesive Drilling of Kelowna BC>

8.0 REFERENCES

- Clague, J.J. (1991). Quaternary glaciation and sedimentation. Chapter 12 in Geology of t he Co rdilleran O rogen in Ca. nada, H. Gabrielse and C. J. Yorath (eds.); Geological Survey of Canada, No. 4, p. 419-434 (also Geological Society of America, The Geology of North America, vol. G-2).
- Emendorf, W.J. (1927). Report on the property of Red Bird Mining Company. Private company report. 7p.
- Fyles, J.T. and Hewlett, C.G. (1959). Stratigraphy and Structure of the Saimo Lead-Zinc area. British Columbia Department of Mines Bulletin No. 41, 162p., 20 figures.
- Gorzynski, G. (2000). Remac Zinc Project, 2000 Summary Report, Trenching and Drilling Program. NI 43-101 report available on sedar.com under Redhawk Resources, Inc. 49 pages, 5 tables, 10 figures, 2 plates, 8 appendices.
- Jennings, D.S. (1991). Redbird lead-zinc project, Salmo Geological overview and property evaluation. Annex Exploration Corp. company report. 23p., 11 figures, 2 appendices.
- Klein, G. H. (1988). Diamond Dirilling Rieport, Ried Bird Piroject, Rieport for Golden Eye Minerals Ltd. 5p., 5 figures, 2 appendices.
- Klein, G. H. (1999). 1998 Work Program, Remac Project, Redbird Property. Redhawk Resources Inc. Company Report. 32p., 6 figures, 2 appendices.
- Macdonald, A. S. (1973). The Salmo Lead-Zinc deposits; A Study of their Deformation and Metamorphic Features. Ph.D. Thesis, University of British Columbia. 196p., 19 tables, 51 figures, 5 appendices.
- MinFile (2001). British Columbia Ministry of Energy and Mines online Mineral Inventory and mineral property information files at <u>www.gov.bc.ca/em</u>.
- Price, B. J. (1987). Geological Summary, Red Bird Exploration Project. Report for Golden Eye Minerals Ltd. 18p., 15 figures, 4 appendices.
- Sangster, D.F. (1970). Metallogenesis of some Canadian lead-zinc deposits in carbonate rocks. Proceedings of the Geological Association of Canada, vol. 22, pages 27-36.
- Sorensen, R.E. (1942). Red Bird Mine sample and geologic map. Scale 1"=40', dated October 20, 1942. Private company plan map.

2004 REMAC DRILL PROGRAM REPORT

.

.

- Walker, J. F. (1934). Geology and Mineral Deposits of Salmo Map-area, British Columbia. Geological Survey of Canada Memoir 172, 102p., 1 map.
- Westervelt, R.D. (1998). A summary review report on the Remac zinc project. Report by Westervelt Engineering Ltd., 33p., 4 tables, 7 figures.
- Westervelt, R. D. (1999). Summary Review Report on the Remac Zinc Project. Report by Westervelt Engineering Ltd. 40p., 6 tables, 8 figures, 1 appendix.

AUTHOR'S CERTIFICATE

I, GEORGE GORZYNSKI, of 2483 Belloc Street, North Vancouver, British Columbia, Canada, do hereby certify:

(1) I am a Consulting Geological Engineer registered since 1987 with the Association of Professional Engineers and Geoscientists of the Province of British Columbia, Canada, with Registration No. 15783, and I am a Qualified Person in the meaning of National Instrument 43-101.

(2) I am a graduate of the University of Toronto with a B.A.Sc. (Honours) in Geological Engineering - Mineral Exploration (1978) and with a M.A.Sc. from the University of British Columbia in Economic Geology (1986).

(3) I have practiced my profession in North America and overseas for 25 years.

(4) This report on the Remac property has been prepared in compliance with the British Columbia Mineral Tenure Act - Part C as applicable to a report of this nature and as those regulations are understood by the author. The work program carried out under the intermittent supervision of the author who checked the drill logs, procedures and sampling of the core in the field.

(5) As a consultant to Redhawk Resources I hold options for shares of the company and may benefit materially from these holdings in the future. I have no direct or indirect interest in the Remac Property itself.

(6) I give permission to Redhawk Resources to use this report in support of assessment filings with the appropriate British Columbia gold commissioner's office or for other purposes in accordance with applicable government regulations.

Dated this 10th day of June 2005, in Vancouver, British Columbia, Canada.

CORIVERSE Jeorad Go Rèa Mà

Association of Professional Engineers and Geoscientists of the Province of British Columbia

APPENDIX 1

[

.

.

•

-

•

-

•

e.

-

2004 PROGRAM DRILL LOGS WITH ASSAYS

		COR	E DRILLING	G STATIST	TICAL SUMM	IARY		Compiled by: C	George Gorzynski, P.)	Eng.
DRILL HOLE No. DH-2004-A-	ZONE	DATES START (2004)	FINISH (2004)	AZIMUTH	I COLLAR DIP	Core Size	UTM (NAD83 Dat Northing (mN) E		TOTAL DEPTH m	CASING m
RILL HOLE S	TATISTICS]								
01	А	19-Oct-04	20-Oct-04	335	-60	8TW	5429094	470950	15.2	12
02	А	20-Oct-04	22-OcI-04	340	-60	BTW	5429110	470933	47.2	4
03	West of Zone A	23-Oct-04	25-Oct-04		-90	BTW	5429087	470906	22.9	5
04	West of Zone A	25-Oct-04	27-Oct-04		-90	BTW	5429043	470901	54.9	3
05	West of Zone A	27-Oct-04	30-Oct-04		-90	BTW	5429065	470883	111.3	14
06	West of Zone A	30-Oct-04	31-Oct-04		-90	BTW	5429104	470898	45.7	1
07	A	31-Oct-04	01-Nov-04	300	-60	BTW	5429108	470934	12.5	5
~ ~	А	01-Nov-04	02-Nov-04	•••	-90	BTW	5429107	470933	36.6	ł
08										

AREA: Zone A COLLAR LOCATION: Northing (mN) Easting (mE) Elevation (m) Elevation (m) SAMPLED BY: Collar Azimuth: 3.3.5 HOLE: Collar Azimuth: S.3.5 Collar Azimuth: Basting (mE) Elevation (m) Costar Inclination: - Co ² Costar Size B.T. W Cassing Size Costar Inclination: Stickup: cm Cassing: 12.2.2.m Hole: 15.2.m DOWNHOLE SURVEY DATA: Drillstem Depth (m) Azimuth Inclination 0.0 Significant Assays Sections SUMMARY LOG Significant Assays Sections FROM TO (m) 101 UPP Archardwar 0.0 Significant Assays Sections TO (m) LITHOLOGY MINERALIZATION (m) TO (m) LITHOLOGY 0.15.2 Core bardwar Internation Internation Intereleeeeeeeeeeeeeeeeeeeeeeeeeeeeeee	REDHA	WK RESO	URCES, INC.			REMAC PRO.				HOLE No .:	DDHOH-AI
COLLAR LOCATION: Northing (mN) Easting (mE) Collar Azimuth: Belevation (m) SAMPLED BY: Collar Azimuth: 335 HOLE: Collar Azimuth: Collar Azimuth: 335 Collar Azimuth: 335 Collar Azimuth: 335 Collar Inclination: - & 0' Core Size 13 T W Casing Size Stickup: DEPTH: Overburden: Deverburden: 15. 2 m Hole: 15. 2 m DOWNHOLE SURVEY DATA: Drillstem Depth (m) Azimuth Inclination 0.0 Brunton Compass SUMMARY LOG MINERALIZATION FROM TO (m) LITHOLOGY MINERALIZATION INTERVAL ESTIMATED SIGNIFICANT ASSAYS SECTIONS TRUE WIDTH (m) Zn % 0.0 INTERVAL						CORE DRILL	LHOLE LOG				
DOWNHOLE SURVEY DATA: Drillstem Depth (m) Azimuth Inclination Type of Test 0.0 0.0 Brunton Compass SUMMARY LOG INTERVAL EST/MATED SIGNIFICANT ASSAYS SECTIONS FROM TO (m) LITHOLOGY MINERALIZATION (m) TRUE WIDTH (m) Zn % Pb % Ag (g/t 0.0 i.5 2 Over burblem Inclination To (m) Inclination Compass	COLLAR I HOLE; C C DEPTH: C	Collar Azimu Collar Inclina Core Size Casing Size Stickup: Dverburden: Casing:	Northing (mN) Easting (mE) Elevation (m) th: <u>33</u> tion: <u>60</u> <u>15.2</u> 12.2	, s , , , , , , , , , , , , , , , , , ,				LOGGED BY: SAMPLED BY: COLLAR SURVEY CONTRACTOR: RIG TYPE: CORE STORED A	FINISHED: R. Yor BY: AGGRE ST KS	ESANIE SUPER-	300
FROM TO (m) LITHOLOGY MINERALIZATION (m) TRUE WIDTH (m) Zn % Pb % Ag (g/t) 0.0 i.5.2 Orechurclen	DOWNHO	DLE SURVEY				Drillstem D	0,0			Brunton Com	pass
0.0 is 2 Overburden				·	MIN		-				
				nden					2(176		

and the second s

REDHAWK RESOURCES, INC.

.

CORE DRILL LOG

and the second second

DRILLHOLE C-2004- A1

-

DEPTH (m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAY	S	
FROM	TO INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	Pb%	Ag g/t
0 12	2.2 12.2	Casing, Cored whend at	-						
<u>.</u>		Lasing Pieces of Linester							4
· [and dolomite. Agreed to	· · · · · · ·					 	
╘━━━━━┥╼─		terminate hale since it.	·	-		 			┟━──
.		the drill. Core precity of	houlders?					•···	{
.12.2 15	1 3.0	Still in orechurden?							
·			_						
-								I	
·	···		<u> </u>			<u></u>		<u> </u>	+
·		······································	· • · · · · · · · · · · · · · · · · · ·	┥╾╸┥		·	┍╀───╼╸		†-
		· · · · · · · · · · · · · · · · · · ·				<u></u>			<u> </u>
· /			· · · · · · · · · · · · · · · · · · ·	- 					
·	<u> </u>				<u></u> .		·		↓ . <u>—</u> -
-			· · · ·				+ 1		
									[
·		·							¦
· .	_			┼╴╶╸╽	· -		┼━━ᠠ┤		
╘━━───┤╌╺╼╸	—		·						
· · · · · ·	<u> </u>		├─── ─────────────────────────────────				1		
				++ !					
		······································	<u> </u>	<u> </u>		•••• •	+		L
<u></u>				<u>+</u>			- <u> </u>		
·	· 			╺┼──╍╌╌╶┦				·	<u>∤</u> ·

REDHAWK RESOURCES, INC.	REMAC PRO.	IECT 2004			HOLE No .:	DDH 04-A2
	CORE DRILI	HOLE LOG		<u> </u>		
AREA: Zone COLLAR LOCATION: Northing (mN) Easting (mE) Elevation (m) HOLE: Collar Azimuth: 3 4 0 ° Collar Inclination: - 60 ° Core Size B T W Casing Size Stickup: cm DEPTH: Overburden: 4 .3 m Hole: 47.2 m			CONTRACTOR:	BY: R. Y. 3m @ 29 	2° Grom	A1
DOWNHOLE SURVEY DATA:	Drillstem O	0.0		Inclination	Brunton Com	
SUMMARY LOG FROM TO (m) LITHOLOGY	MINERALIZATION	INTERVAL	ESTIMATED TRUE WIDTH (m)	SIGNIFICANT Zn %	FASSAYS SE Pb %	
10 (m) ППОСОВТ 0.0 4.3 САЯЛАС 4.3 20.4 DOLUSTONC 20.4 21.7 LAMPROPINE TRIKE 21.7 32.0 DOCUSTONE 32.0 47.2 LIMPSTONE 47.2 EOH 47.2 EOH		(m)				<u>Ag (g/t)</u>
NOTES: 1,						

المسبة السبية السبية البنية البنية البنية البنية البنية التناك المناك المناك الماك

ļ

REDHAWK RESOURCES, INC.

CORE DRILL LOG

en la completa de la

DRILLHOLE C-2004- A2

DEPTH (m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAY	'S	
FROM TO	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	Pb%	Ag g/t
0 4.3	4.3	Casing	ļ	_	 		- 		
.4 <u>.</u> 3. <u>17</u> .1	12.8	bands and streake Sema		N/L - L 0 N		· · · · · · · · · · · · · · · · · · ·		·	
		fractures healed by calcite, dolow quartz and suderite 2.1 m lost are to 10 m depth.						· · · · ·	
·	3.3	2.1 lost core to 10m depth. 14.3-17.4 has 1.4m lost core Start of huff colouration in dolostone. Mottled locking piece			-610	· · · · · · · · · · · · · · · · · · ·			
		dologtone. Mattled locking press with subaryular indistract da clasts Barcola Hailine tructures recussionally react to.			1 			 	
· · · · · · · · · · · · · · · · · · ·		7 4 - 20 - has show last com			mæl		+	 · ···- ·- ·- ·- ·- ·-	
·		5 cm gruge and Feo -ine at 20.2 Guloweed by 20 cm of strong alteration above dyke Samples 17,1 - 18.6 18.6 - 20.4				· · ·			
		Samples 17,1 - 18:6		<i></i>	· ·	<u>1225</u> 1226		<0.01 0.02	
20.4 21.7	1.3	Camprophyre dyke		_					
21.7.32.0 /		Mottled Tooking pression as about Poundary with paster linestone is at 40° to C.A. with minor youge		NIL	<u>دور</u> ا			 	·
· · · · · · · · · · · · ·		at the to c.A. with minor youge and alteration. Sample: 21.7-23.5				1227	0.26	30.01	2.1

REMAC ZINC PROJECT

October 2004

REDHAWK RESOURCES, INC.

1 1 1 1 1 1 1 1 1 1 1 7 7

:

CORE DRILL LOG

1

····

DRILLHOLE C-2004- A2.

DEPTH (m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAY	S	
FROM	I.O. INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	Pb%	Ag g/t
	1.2 15.2	Grey limestone and a	do iomite	100	nil		1		
		Marsive to Einely in wat promise phyllic specularite on part	techedded		-			· · · · · · · · · · · · · · · · · · ·	
·									
								-	┟╺───╴
							<u> </u>		-
									F
					·				
				I			Ļ		
		···· •· •· •· •· ••·					┦━╍╌┈┥		
	- 1						<u>+</u> i		
				·	~	, ·	* * * -+		<u> </u>
		 					<u>[]</u>		
	<u>F</u>	├ ─ ─ ────		─ ╴ ┥╸╸╴┊			· 		·
		······			——		+		
	—; —;	│ ───		<u>_</u>			<u>↓</u>		·,
······] " — • —+		
		·							
		·							
					1		ļĪ		

REMAC ZINC PROJECT

October 2004

REDHAWK RESOURCES, INC.	REMAC PROJECT 2			HOLE No.:	04 - A3
	CORE DRILLHOLE	.0G			
AREA: Zone COLLAR LOCATION: Northing (mN) Easting (mE) Elevation (m) HOLE: Collar Inclination: Core Size Part W Casing Size DEPTH: Overburden: Hole: 22.9		DATE: LOGGED BY: SAMPLED BY: COLLAR SURVE <u>At locate</u> CONTRACTOR: RIG TYPE: CORE STORED SAMPLES ANAL	Y BY: 13.7 .m A2. AGGA2	ORSTON	5 04
DOWNHOLE SURVEY DATA:	Drillstern Depth (m	0.0		Type Brunton Com	
Sommary Los FROM TO (m) LITHOLOGY 0.0 4.0 D vietz (SURIZON) 4.0 [1:6 LIMESTONE 11.6 22.9 FAULT (GUUGE) 22.9 FAULT (GUUGE) 10.0 10.0 11.0 10.0	MINERALIZATION (m	1		P5 %	Ag (g/t)

فسنبه السبية الاست الاست الاست الارتيان والتراثين والتراثين والتراثين والتراثين والترا

CORE DRILL LOG

سه الاستية الاستية الانتيارين الاللالا والارار

DRILLHOLE C-2004- A 3

DEPTH	(m)	1	DESCRIPTION	RALIZATION T	ESTS	i	SAMPLES	ASSAYS	3	
FROM	10	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	Pb%	₩9 9Å
4.0	11.6	7.6	Casing to 5.2m. Grey	4	4 Aion-	NIL				
			limetone - delectore with this	N	100.					
			Lighter and darker banding							
•		ļ 	5.2-82 has then last asne					 		
			R 2-11.3 has 1,2 m last care			:				
	77 51	11 3	E it man dia and hair				<u> </u>			
<u>, 11.69</u>	<u> 42.7</u>		Faultzme. Gauge and briken							
			nebbles. 11.3-14.2 has 2.7 m lest core						İ	
			- dalostone pieces							
			At 14.3 is 15 cm at disrite dyfa					i		
			followed by gange					┝_ _ ╡		
·			14.3 - 17.4 has 2.7 m 105+ cere.		•		_	└───┤		
		·	17.7 - 20 4 hos 2.7 m OST core	32115 11000	 			<u>┤──</u> ╵ ── ─┤		
. <u> </u>			20.4-22.9 has 2. In lost race					├──── · - I		
-			14.3 - 17.4 has 2.1 m lost core 17.4 - 20 4 has 2.7 m lost core - gauge and black phyllite preses 20.4 - 22.9 has 2.4 m lost core - regrand diarite? and pieces of brown phyllite? - prarty, te and phyllite?		_					
			brown phyllite ?? or reground							
			unartzite and physilite?		<u> </u>		__	 		
					į					
·			Hole abandoned. Driller cannot proceed without driving deep casing.	·	- <u> </u>				 	
			deviling deep caliment		, 		, _, _, zz, zz,			
	_ 			·						
			with the presence of disrife and							
			a small piece of black phyllite noth				,,,			
			querty it is pessible the half may			···───				
·			with the presence of disrote and a small piece of black phyllite nath quarty it is pessible the hole may be coving through a thick talks				n n	• ••••• ••	· · · · · · · + ·	· · ·
			-pus:			!		i	i	

REMACIZINC PROJECT

October 2004

REDHAWK RESOURCES, INC.	REMAC PROJ	IECT 2004				
	CORE DRILL	HOLELOG]		
AREA: Zone COLLAR LOCATION: Northing (mN) Easting (mE) Elevation (m) HOLE: Collar Azimuth: Collar Inclination: - 4 c Core Size Casing Size DEPTH: Overburden: 3:7 m Hole: 5 4 A			SAMPLED BY: COLLAR SURVEY	<u>+ 145" </u> ⊊, <u>A</u> GGQQ T:	Det :	<u>5 '04</u> <u>17 '.04</u> Ins A3 site
DOWNHOLE SURVEY DATA:	_Drillstern D	epth (m) 0.0	Azimuth ESTIMATED	Inclination	Type Brunton Com	
FROM TO (m) LITHOLOGY 0.0 3.7 CASING 3.7 11.3 ARGILLITE 11.3 18.6 LIMISTONCE TOUCSTONE 18.6 44.8 ARGILLITE 44.8 54.9 LIMESTONESTONESTONE 54.9 EOLT		(<u>m</u>)	<u>TRUE WIDTH (m)</u>	<u>Zn %</u>	Po %	

CORE DRILL LOG

and the second sec

DRILLHOLE C-2004- A 4

٦

7 F

DEPTH	(m)		DESCRIPTION	MINERALIZATION	TESTS	l	SAMPLES	ASSAY	S	_
FROM	10	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%a	Pb%	Ag gA
0	37	3.7	Casing				· · · · ·	.		
. 3.7	11.3	7.6	Black schistere argillite	4						
	<u></u>	<u> </u>	5.2-8.2 her im lost core						- -	
			4.2-11.3 has zim lost core	· · · · · · · · · · · · · · · · · · ·						
			rie boundary with the lower				ļ	┥──		
· - · ·			artomate is proken		<u> </u>					
11.3	18 6	1.3	Minor buff to more bresher oney		LOU	NIL				
			limestore. More viliceone delestor	ع						
			Jown hole Some nation brinden	; ;					Ĺ	
			60" to C.A.	<u>ار</u>						
,			11.3 - 14.3 has 1.8 m lost core.					ļ	·	
·			14.3 -17.4 has 1.5 m lost core.				· · · · · · · · · · · · · · · · · · ·	÷		
12.6	44 9	26.2	Black schistose argillite	+						
		<u> </u>	Braken at woundary with upper							
			unit. Some minor quarte leases							
			20.4-234 has 1.5 m lust core				=	¶ ∎		
			23.4 - 26.5 has bin lost core	ļ			· 			
	· 	· · · ·	356 35.7 has 1 in fost core					!		
·			- 30.1 - 41.7 has 1.8. just come	·				·		
نـــــ	<u></u>		41.1 - TT.D Mas , UM DST 6202]				·· _u	
44.8	54.4	10.1	Start of Reeves carbonate.			Nic	•			
			boundary with schust is all		NUL					
			broken dieus with bust to reall	<u>sh</u>	····			<u></u> ;		
<u>. </u>			atteration and intermittant class	└ ┆──── ────────────────────────────────			 _			
].	[or gauge to 46.9 m	<u> </u>	!			·		

October 2004

1

CORE DRILL LOG

DRILLHOLE C-2004- A4

DEPTH (m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAY	s	
TO M	INTERVAL			10% HCI RXN	Zh-ZAP RXN	TAG No.	%uZ	Pb%	Ag g/t
		Below boundary alteration is Light grey line stone-dolomite with multiple fine charle grey Swirls as opposed to hereing Drurnhele rock is more regular hunded at 70-by to G.A. 100% vecovery through Roeves							
·									

REMAC ZINC PROJECT

October 2004

i

REDHAWK RESOURCES, INC.	REMAC PROJECT 2004		HOLE No .: 04 - A5
	CORE DRILLHOLE LOG		
AREA: Zone COLLAR LOCATION: Northing (mN) Easting (mE) Elevation (m)		DATE: STARTED: FINISHED: LOGGED BY: R Yours SAMPLED BY:	01 27 04 01 30 04
Collar Azimuth: HOLE: Collar Inclination: Core Size Casing Size		COLLAR SURVEY BY: At previous A CONTRACTOR: RIG TYPE:	3 site
DEPTH: Overburden: Casing: /4.3 m Hole: 1/1.3 m		CORE STORED AT: SAMPLES ANALYSED AT:	l
DOWNHOLE SURVEY DATA:	Drillstem Depth (m) 0.0	Azimuth Inclination	Type of Test Brunton Compass
SUMMARY LOG	INTERVAL	ESTIMATED SIGNIFICANT	ASSAYS SECTIONS
FROM TO (m) LITHOLOGY 0.0 14 3 CASING	MINERALIZATION (m)	TRUE WIDTH (m) Zn %	Pb % Ag (g/t)
14.3 111.3 FAULT Gouge	105.8-111.3 5.5	<u>?</u> /.85	15.09 <0.4
NOTES: 1.			

ويسيح فسنه فسنه فسنه فنبيه فنبيه فبنيه فبنيه فينب فرران بالراب الراب الاراب الاراب

' ' I

CORE DRILL LOG

السبيع الإسبية الاسبية الاسبية الارزيال المرازيا المراز المراز

DEPTH	(m)	1		MINERALIZATION	TESTS		SAMPLES	ASSAY	S	
FROM	10	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	%u∑	%qd	Ag g/t
Ũ	14.3	14.3	Casina						L	<u> </u>
	27.1	/2.8	Very decemposed, brownish clayer Preserved musicilite and some slight blackish preservation 14.3-17.4 has 2.4 m lost core 17.4-20.4 has 2.9 m lost core 20.4-23.5 has 2.4 m lost core	1						
. <u>27.1</u>	33.2	£.[23,5 - 26.5 has 2.3 m lost rore_ Abrupt change to black silice schiftese argillite. All broken preces. Some Buch Scottons of							· · · · · · · · · · · · · · · · · · ·
. 33, 2	35.4	2.7	Soft clanger material. 26.5 - 29.6 has 1.5 in last sore 29.6 - 32.6 has ign lost core Granger - brown clay 31.6 - 35 7 has 1.8 m lost core		NIL.	NiL			· · · · · · · · · · · · · · · · · · ·	
.35,9	38.7		32.6 4357 has 1.8 m lost and Greyish clay, Minur grants pieces. 35.7 - 38.7 has 2.1 m lost core			·				
· 36.7	44, S		Mainly dark an laceons pieces some preyish eling and about 5% quarty pieces 35.7-41.7 has 7 m lost core 41.7-44.8 has 1.5 m lost core			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
. 44.5	44.8	0.3	Crangey - herden chang		İ	NIL				

.

CORE DRILL LOG

المسبة الاستة الاستة الاستاد الانتار والتارين والترارين والترارين

DEPTH	(m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAY	\$	
FROM	5	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	Pb%	1/6 6V
44.8	47.8	3.0	Pieces of argilite and quarty		[•	1	<u> </u>	i — —
		- <u>-</u>	44.8 - 47.8 has 2.9 m last core					1	1	Į
-	• • •		<u> </u>			— —				
.47.8	81.4	33.6	Durk grayish altered pieces of		NIL_	NIL.				
		1	Durk grey sh altered pieces of anhistoria argillite. Some strong Feo for 20 cm at 53.6 Rove wave				"			
		· · ·	Feo for 20 cm at 53.6 Kare wade	_			<u></u>		 	
		┠	then quarty musicvite banding at		-		}	<u> </u>	<u> </u>	
			50.9 - 53.9 has lien lost core						_	i
-		†	53.9-56.9 has been lost core							
-			56.9 - 60.0 hus 2.4 m lost core							
		}	From 60.0 - 65.5 is grey to aronger.				_	Ļ	 	
·			brown clay.		_					·
· .			40.0-63.1 has 2.4 m lost core	- .				↓		
			63.1-66.1 has litten lost core			_ 		╡─╾╼╌╌	-	_
:		 r	66.1 - 69.2 has 1.4 in lost care		·		· · · · · ·	!		
<u></u>		<u></u>	69.2 - 72.2 has 2.4 m lost come			-	·			······································
			72.2 - 75.3 has 2.4m /ost core					<u> </u>		
·			75.3 - 78.3 has 2.7 m lest cone 78.3 - 81.4 has l.E.m. lost cone			· ••••	····	+	-	
		_ · · · · · · · · · · · · · · · · · · ·			MIL	NIL		<u> </u>		· <u> </u>
81.4	111.3	29.9	All extreme clay alteration. Varies			-		¦		
			from tem to greenish arey to orma							
-			from tem to greenish grey to nomice	Cample 10	5 <u>8 - ill</u>	-3	1228	1.85	15.09	-0.4
			hottom 7 m et hole. Some preserve medigveined musicevite From 97.0							
·			medigined musicivite From 97.01					[
			102.7 is come accessional neces of	1				 		·· • •
<u> </u>			phyllite to schestere questa ite.	· · · · · · · · · · · · · · · · · · ·				L	·····	
·]			phyllite to schistese quarty te.					_		

CORE DRILL LOG

سواهيت الاستواليين الانتراك والتراك وال

DEPTH (m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAY	S	
FROM TO	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	%qd	Ag g/t
contid.		81.4-84.4 has 2.4 m lost care							
		84.4 - 87.5 has 2.5 m lost core							
· · · · · · · · · · · · · · · · · · ·		87.5 - 40.5 has 2.7 m lost core							
ŀ ł j	-	190.5 - 93.6 has 2.4 m lost core	<u>. </u>		_	 .			
<u></u>	_	93.6 - 96.6 has 2.4m lost core					+		<u> </u>
		98.1 - 99.7 has i.8 m lost core 99.7 - 102.7 has im lost core	•			l			<u> </u>
		int to total has i and letter and		╺┥╸╌╼╾┤			<u> </u>		
		105.8 -111.2 has 4.6m lost core.	Rustu_						ļ
<u>.</u>					-		ļ		
·			<u></u>	ļļ			ļi		!
			P				·[i		
				-}			<u> </u>		
				i – †		-	1		
-									
╞━──┥━╍──┥				ļ į			├ ──-		
· /		· · · · · · · · · · · · · · · · · · ·		┤╾╌──┤					
·	<u></u>		·	<u>i</u> –		· · · ·	├ ──		
i. 1		·		† †			ļ	j	
							[
·						• . 			
·									
·				┥╼──┤					
				÷		·	ţ		
├───┤────┤				╏───━━┤			·		
· ! .	Į								

REDHAWK RESOURCES, INC.	REMAC PROJ				HOLE No .:	04- A6	
	CORE DRILL	HOLE LOG					
AREA: Zone COLLAR LOCATION: Northing (mN) Easting (mE) Elevation (m) Elevation (m) Collar Azimuth: HOLE: Collar Inclination: 90 Core Size Casing Size DEPTH: Overburden: m Hole: 4.5 m			DATE: STARTED: Oct 30 '0' FINISHED: Oct 31 0' LOGGED BY: R. V0:25TOA/ SAMPLED BY: COLLAR SURVEY BY: NOCSTOA/ 21 m at 340° From heir A3 CONTRACTOR: RIG TYPE: CORE STORED AT: SAMPLES ANALYSED AT:				
DOWNHOLE SURVEY DATA:	Drillstem D	0.0	Azimuth	Inclination	Brunton Com		
SUMMARY LOG		INTERVAL	ESTIMATED		ASSAYS SE		
FROM TO (m) LITHOLOGY 0.0 1.5 CASING 1.5 45.7 U COR BURDOW PASSING INTO PASSING INTO AT DEPTH 45.7 COL 47 DEPTH 45.7 COL 45.7 COL 47 DEPTH 45.7 COL 45.7 COL		(m)	TRUE WIDT <u>H</u> (m)	Zn %	Pb %	<u>Ag (g/t)</u>	
NOTES: 1. HOLE LOST @45.74			· _ · · · · · · · · · · · · · · · · · ·				

المستقالاسينية الاستنة الاستنة الاستنة الاستراق الأرابا الالا الاردار الاردار

1

CORE DRILL LOG

الاشتبال الاستية الاستية الاستية الاستية الاستية الاستية الاستار الماليا والمرارية

DRILLHOLE C-2004-A6

DEPTH	(m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAYS	3	
FROM	10	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	Pb%	Ag g⁄t
0	1.5		Casing							
								·		
. 1.5	26.5	25.0	All broken chunks und pebble siz	<u>e</u>	 _					
[:	· · · · ·		pieces of black argulite and	<u>.</u>				ii		
-			M (NOC CILLE, T^{-1}) $U \in C \subseteq C$ (BY40) 13 CM	· · · · · · · · · · · · ·	· _	·	·····	┝╌─ <i>─</i> ─┥		_
·			1.5 - 5,2 has 4.6 m lost whe		ŀ					
-			5.2 - B.2 has 2.4 m lost core		[·:					.
			B.2 - 11.3 has I.S.M lost core							
<u> </u>		· · · ·	11.3 - 14.3 has 2.4m lost core		· .					
-			143-17.4 has 2.9 m lost core							
<u> </u>		 	17.4 - 20.4 how 2.E.n lost come	l				--		
ŀ			20.4 - 23.4 has 2.4m lost cure 23.4 - 26.5 has 2.4m lost cure		<u> </u>	<u> </u>	<u> </u>			
·			20.4 - 20.0 Kay 2.4m 105,5 2014		1			<u>├</u> i		
265	45.7		Mainly decomposed area stay with		NiL	NIL		 		
			Mainly decomposed grey clay with some preserved muscocity Minor							
,			sections of black expillite							
		i	publics and quartz. "					 		
					┇			!		
·	_ .				÷					
ŀ					<u> </u> i			<u>ب</u>		
<u>├</u> ───					╪╍╴╴╴┫	—				
i t					+	·				
					╞──╾┅╃				-·	
							•••••••••••••••••••••••••••••••••••••••			
i								(
					!			!		

October 2004

REDHAWK RESOURCES, INC.	REMAC PROJ			HOLE No .: 04 - A7
	CORE DRILL	HOLELOG		
DEPTH: Overburden: Casing: <u>5.18</u>	cm m m	DATE: LOGGED BY: SAMPLED BY: COLLAR SURVEY CONTRACTOR: RIG TYPE: CORE STORED A SAMPLES ANALY	T:	0ct 31 04 NOV 1 04 12 STON 2 A2 site.
DOWNHOLE SURVEY DATA:	Drillstem D	epth (m) Azimuth 0.0	Sign/FiCAN	Type of Test Brunton Compass
FROM TO (m) LITHOLOGY 0.0 5.18 CASING 5.18 12.5 IDecesto 12.5 E014		(m) TRUE WIDTH (m)		Pb % Ag (g/t)

الهيسة السبية السبية السبية السبية الارزيان المراري والماليان المراري المسته السبية المسته المسته المسته المسته

!

CORE DRILL LOG

(1) 1 3 (1) 1 3 1 (1)

DEPTH (m)		DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAY	S	
FROM TO	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%a	Pb%	Ag gh
0 5.18	5.18	Casing							ŀ
. <u>5 (8</u> 11.3	<u> </u>	Light to med grey delamite son irregular desk and light thin banking. Some breaction with accounts cementing.	۷ ۲		NIL				
									<u> </u>
- 11.3 12.5 		Light grey dolomite more alter and without honding. E.O.H. Bit lost in hole.							

REDH/	AWK RESC	URCES, INC.		REMAC PRO	JECT 2004			HOLE No.:.	DH 04-A8
				CORE DRIL	LHOLE LOG	· · ·			
AREA: COLLAR	ZONE A	Zone Northing (mN)	•	7		DATE:	STARTED: FINISHED:	Nov	104
		Easting (mE) Elevation (m)				LOGGED BY: SAMPLED BY:	R. Yor	GICAL	
HOLE:	Collar Azimu Collar Incline	ition: <u>VERT(</u> (AL			COLLAR SURVEY			
	Core Size Casing Size	BTY				CONTRACTOR: RIG TYPE:	AGGRO	<u>591ve T/n</u> 5010n <u>5</u>	CICLING DO
DEPTH:	Stickup: Overburden: Casing: Hole:	с п п	<u>) </u>			CORE STORED A SAMPLES ANALY	SED AT: 🕻 🕻 🖉	BITE BAL DUCO ICOUVER	VGKG (ABS
DOWNH	OLE SURVE	Y DATA:		Drillstem D	epth (m)	Azimuth	Inclination	Туре	of Test
					0.0			Brunton Comp	pass
SUMMA	RYLOG				INTERVAL	ESTIMATED	SIGNIEICAN	TASSAYS SE	CTIONS
FROM	TO (m)	LITHOLOGY		MINERALIZATION	(m)	TRUE WIDTH (m)	Zn %	Pb %	Ag (g/t)
0.0 B-Z	<u> </u>	CASING DOLOMIT	<u>ک</u>						
174 20.0	20.0 20.4	DOLONITE 1	HRUST .	RUSTY	2.6				
20.4	21.9 74.4	DOLOMITE DOLOMITE DOLOMITE			1-5				·
24.4 24.4 32.9	32.9	TRUMPAL VIE	ISBOUGA_	4,75					
	36.6	ECH	,						
NOTES:	1.	REDRICC O	or PH-O	1-A7					

المستعالمسته الاستعالات الارتيان الترتيان التنابي التنابي المستعام ستعاد التنابي التنابي المستعا مستعا مستعا مستعا

CORE DRILL LOG

•

DEPTH (m)			DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAYS			
FROM	то	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	%uZ	Pb%	Ag g/t	
0	8.2	62	Casing			ļ					
. <u>8, 2</u>	20.0	11,8	Broken pieces of grey dolomite with rehaled fractures show	inci	NIL	₽ ┥────── ╆╴────					
			eff setting of this gray banding. R.B. 12 start of weak In react	<u></u>	·	<u>ura</u> k		<u> </u>		۰. ـ _ 	
·			on tracture planes and some		1			ļ			
		- 0	2-11.3 has 1.5 in tout core	Somple 8.8-11.	3 0/1/-	in zie el <u>e</u>	1229	12.119	0.01	Kad	
· · · · ·			11.3-143 More eltered lighter	- Sengle 11.3-14	3	1.742			-0.01		
i			coloured, clayer 1.2 m lost	· · · · ·		 		I			
<u>}. </u>			14.3-17.4 at 14.3 is light grey clay muck for 30 cm fallow		NIL	medi					
· · · · · · · · · · · · · · · · · · ·			by med grey dolomite. Not high a Hered and non banded. 1.5	1y Sangle 14.3.	17.4_	<u>2000</u>	(231	0.53	200	1.9	
			11.4. 20.0 1. ght cream coloured p Very fractured and attered Q 19.8 is so cm of reddish-br	eces	Nil	mod	· · · · · · · · · · · · · · · · · · ·	n			
- 			colourstion ibm lost core	Songle 17.4	20.0		1231	0.88	0.0	2.6	
. 20.0	<u>Zc.4</u>	,따	Lemprophyse.		1						
20,4	24.4	4.0	- 20,4 - 21,9 @ 20,4 15 30 cm of a redd, ch. birnon colouration and 20,7 - 21,4 is light colouration and	Sie-	<u> "М</u> "Ц	5 ton	· · · · · · · · · · · · · · · · · · ·			····	
<u> </u>	·		2014-21.9 has 15 cm lost some	Sample_	20.4-	21.9	1233	0.49	0.04	×0.4	

.

CORE DRILL LOG

المسيم الاستماد الاستمالات الالت الالتابات المتناف المتناف والمناف المناف المناف المناف

DEPTH (m)	1	DESCRIPTION	MINERALIZATION	TESTS		SAMPLES	ASSAYS					
FROM	INTERVAL			10% HCI RXN	Zn-ZAP RXN	TAG No.	Zn%	Pb%	Ag git			
- 20 + 24.4	4.0	-21.9-23 5 light and going dolomits with streaks 15 cm 10	visor		very neek	_1234	0.11	-0,01				
·		-23.5-24.4 med grey which wispy streaks lost core. The botto has ouldish brown	m to come		<u>+1-44</u>	? 			/			
·		The much was not	thing back									
. <u>24.</u> 4 <u>32.4</u> 		Light coloured mottles breach ?? or strong end recrystallization	d looking		<u>וא</u>							
329 36 6		Broken preces of doe. Tight good in estime w promise phyllitic play Thin interfects of phyll	the and	MINES	N:/_	· · · · · · · · · · · · · · · · · · ·		 				
· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			

APPENDIX 2

ſ

ſ

ſ

Γ

ſ

ſ

-

۲ ۱

-

-

_

.

.....

-

_

_

-

GEOCHEMICAL ASSAY AND ANALYTICAL CERTIFICATES

REDHAWK RESOURCES -X04

#1225-1235

Global Discovery Labs

	Report dat	Job V 04-0872R			
LAB NO	FIELO NUMBER	Pb(A)	Zn(A)	Ag(2)	
		*	%	g/t	
R0434778	1225	<0.01	0.18	0.6	
R0434779	1226	0.02	0.30	0.6	
R0434780	1227	<0.01	0.26	2.1	
R0434781	1228	15.09	1.85	<0.4	
R0434782	1229	0.01	0.09	<0.4	
R0434783	1230	<0.01	0.13	1.7	
R0434784	1231	<0.01	0.53	1.9	
R0434785	1232	0.10	0.88	2.6	
R0434786	1233	0.04	0.49	<0.4	
R0434787	1234	<0.01	0.11	<0.4	(Frank)
R0434788	1235	0.43	32.15	<0.4 🗠	> SAMPLE OF DOULDER
R0434482 rpt	1229 rpt			<0.4	SAMPLE OF BOULDON NEAR TRENCH A.
R0434779 rpt	1226 rpt	0.02	0.31		
R0434786 rpt	1233 rpt	0.04	0.49		

(=insufficient sample X≖small sample E≖exceeds calibration C=being checked R=revised If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

Pb(A) Assay

Zo(A) Assay

Ag(2) Acid decomposition / AAS

Steve Clark, Certified B.C. Assayer-Teck Cominco G.D.L.

- -

teckcominco

Global Discovery Labs

1

ł

REDHAWK RESOURCES -X04	
#1225-1235	

Report date: 25 NOV 2004											Job V 04-0872R																		
LAB NÔ	FIELD Number	Ըս քքու	95 ppm	Zo. ppm	Ag ppm	As ppm	Ba ppm	Çd ppm	Ço ppm	NI PPM	7∎ %	Mo ppm	Cr Ppm	Bi ppm	S5 ppm	V eem	Sn ppm	W pom	Sr ppm	Y mqq	L∎ ppm	Mn 99m	Mg %	п %	AI %	Ce %	Na %	ĸ	р рот
R0434778	1225	11	4	1592	2.0	69	24	14	<1	<1	0.59	<2	44	¢	<5	6	2	25	127	<2	<2	251	12.86	<.01	0.01	19.46	D.07	<.01	26
	1226	1	246	3148	1.2	22	28	102	<1	4	2.52	5		<5	<5	10	3	13	63	-7	<2	267	10.61	<.01	0.01	19.17	0.02	<.01	205
80434780	1227	<1	14	2949	0. Ş	<2	39	- 44	<1	2	0.52	<2	- 4	5	<5	9	<2	11	157	-2	<2	268	13.22	<.01	0.03	19.87	0.02	<01	17
R0434781	1228	108	39870	19460	15.1	162	368	413	19	264	30.29	33	45	12	79	364	2	<2	52	29		2732	0.15	<.01	0.56	2.45	0.04	0.05	30210
R0434782	1229	6	150	764	0.6	<2	43	10	<1	- 4	0.26		- 44	t0	<5	3	з	11	142	<2	<2	198	12.72	<.01	0.02	19.82	0.05	<.01	55
80434783	1230	6	34	1123	0.9	<2	191	15	<1		0.35	<2	- 4	<5	<5	2	<2	10	94	з	<2	225	10.27	<.01	0.03	22.00	0.02	0.01	217
R6434784	1231	1	\$9	5895	10.2	<2	20	50	<1	4	0.68	э	<4	- 6	<\$	6	<2	14	63	₹2	<2	237	11.75	<.01	0.01	19.08	D.D2	< 01	148
R6434765	1232	12	837	9952	3,9	26	-50	\$ 5	<1	7	9.52	5	- 4	7	<5	11	<2	4	93	-7	<7	209	9.66	<.01	0.03	15.84	0.02	<.01	605
£0434788	1233	<1	351	5352	1.7	5	30	173	<1	2	4.99	<2	-		<\$	10	3	5	111	<2	<2	238	t0.22	<.01	0.03	18.40	0.02	<.61	265
R0434787	1234	<1	19	819	0.6	-2	49	36	<1	2	0.34	<2	-44	<5	~5	7	3	7	91	<2	<2	209	12.07	<.01	0.05	10.04	0.02	0.01	41
R0434788	1235	<1	3818	278200	10.9	-2	23	1946	з	٩D	2.65	-2		<5	~5	7	<2	9	10	<2	<2	255	3.67	<.01	0.05	8.71	0.02	<.01	140
R0434779 cpt	1226 ml	<1	262	3498	1.2	3	28	110	~1	4	2,75	5	<4	5	<5	6	<2	8	66	<2	<2	275	11.02	<.01	0.02	19.84	0.02	<.01	227
R0434764 rpt	1231 rpt	3	65	5464	5.3	<2	22	49	<1		0,74	-2	-4	5	<5	5	<2	24	73	<2	<2	Z4D	12.27	<.01	0.02	19.95	0.05	<.01	160
Rot. Value	STD: DA	120	217	698	6.9	59	477	- 4	13	43	3.59	5	44	<5	-5	57	2	5	37	9	13	637	0.56	0.10	2.18	0.54	0.07	0.13	1050

~

1

٦

٦

۲.

.

. .

.

Ininsufficient sample Xesmall sample Seexceeds calibration. Cobing checked: Rerevised

.

If requested analyses are not shown, results are to follow

ANALYTICAL METHODS

ICP PACKAGE : 0.5 gram sample digested in hot reverse squa regia (soil,siit) or hot Aque Regia(rocks).

1

Alice Kwan, Chemist-Teck Cominco G.D.L.

Teck Cominco Ltd. Clobal Discovery Labs: 1486 East Pender Street: Vancouver, B.C. Canada VSL 1V8 Phone: (604) 685-3032 Fax: (604) 644-2686