GEOLOGICAL AND GEOCHEMICAL REPORT AY GEMSTONE PROPERTY KOOTEN

NELSON MINING DIVISION, BC MAPSHEETS: 082F.017/026/036 CENTRED AT LATITUDE 49º15'N; LONGITUDE 116º51'E

for

CREAM MINERALS LTD 1400 - 570 GRANVILLE STREE VANCOUVER, BC APR 2 0 2005 Gold Commissioner's Office VANCOUVER, B.C. V6C 3P1

by

JARROD BROWN, M.Sc, P.Geo. and LINDA DANDY, P.Geo. **Consulting Geologists**

March 2005

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

SUMMARY

The Kootenay Gemstone Property, containing several coloured beryl occurrences, is located near the towns of Salmo and Creston in southeastern British Columbia. The property lies predominantly within Cretaceous Shaw Creek granites, which intrude older sedimentary rocks of the Middle Aldridge Formation and the LaFrance Creek Group. Beryl occurrences occur within pegmatite dykes, which cross both rock types and appear to generally be more concentrated in the vicinity of the contact.

1

١

Few historic references to beryllium occurrences in this region are found, however no previous systematic exploration work has been documented.

This report covers work completed from July to November 2003, and July to September 2004. Due to the widespread occurrences of coloured beryl crystals found during the 2003 and previous field programs, an expanded exploration program was undertaken in summer of 2004. The 2003 and 2004 programs consisted of prospecting, grid emplacement for soil sampling, detailed geological mapping and beryl specimen collecting.

Results from the exploration program on the Kootenay Gemstone Property has defined several beryl occurrences and has led to the definition of areas with potential for additional occurrences. Several brilliant blue gem quality beryl (aquamarine) crystals have been found. The majority of the beryl crystals located by prospecting are pale to medium blue in colour and often opaque with occasional clear (gemmy) crystals or clear patches within the crystals. Many pale olive-green or blue-green beryl (emerald/aquamarine) crystals have also been found, as have minor clear, white and yellow (heliodor) coloured beryls. Soil and rock sample results have shown areas of elevated beryllium consistent with the occurrence of beryl-bearing pegmatite dykes. Also of importance, soil and rock samples with high chromium values have been obtained, indicating areas with higher potential for green emerald crystals.

Due to the success of the prospecting programs conducted to date on this large property, additional prospecting throughout the claim block is recommended. Estimated cost for this Phase I detailed prospecting, mapping, specimen collecting program is \$75,000. To follow up results generated by the prospecting program a second recommended phase consisting of excavator or blast trenching and specimen collecting from the best "showings" identified in the initial phase. Estimated cost for Phase II is \$150,000.

SUMMARY	
TABLE OF CONTENTS	
TABLES	3
FIGURES	4
1) INTRODUCTION	5
2) LOCATION AND ACCESS	5
3) PHYSIOGRAPHY	5
4) HISTORY	6
5) WORK DONE BY CREAM MINERALS LTD. IN 2003 AND 2004	6
6) CLAIM INFORMATION	
7) GEOLOGY	
REGIONAL GEOLOGY (after Reesor 1996, and Brown et al, 1994)	
PROPERTY GEOLOGY (after Brown, 2004)	
ECONOMIC GEOLOGY (modified after Brown, 2004)	
OMG Claims	
Cultas Claims	17
Rusty Claims	18
Significance of Host Rock and Pegmatite Character in the Northern Claim Areas .	
Toby Claims (Topaz Grid, Figure 5)	
Columbian and Topaz Claims	
8) GEOCHEMISTRY	
LITHOGEOCHEMISTRY	
Lithogeochemistry in Relation to Beryl Mineralization and Gem Quality	
SOIL SAMPLING	
OMG Grid Soil Results	34
Reconnaissance Soil Results	35
9) CONCLUSIONS	43
OMG ZONE	43
TOPAZ ZONE (HUMMM, Topaz, Columbian)	43
RECCONAISSANCE MAPPING AND SAMPLING	
10) RECOMMENDATIONS	44
Specific Recommendations (from north to south)	44
11) REFERENCES	46
12) COST STATEMENT	47
15) QUALIFICATIONS	48

APPENDICES

APPENDIX I – ROCK SAMPLE RESULTS – CERTIFICATES OF ANALYSES
APPENDIX II – SOIL SAMPLE RESULTS – CERTIFICATES OF ANALYSES

2

TABLES

TABLE I – Claim Information	Page 6
TABLE II – Analytical Packages Used for Soil, Grab and Chip Samples Collecte July 2003	d in 21
TABLE III – Analytical Packages Used for Soil, Grab and Chip Samples Collect 2003 and 2004	ed in 22
TABLE IVa – Rock Samples Collected in 2003	23
TABLE IVb – Rock Samples Collected in 2004	25
TABLE V – Select Rock Sample Results	27
TABLE VI – Mean Beryllium Contents of Common Rock Forming Minerals in Pegmatite	27
TABLE VII – Quality Index (Q.I.) Scoring System for Beryl Occurrences	29
TABLE VIII – Statistics for Select Elements of Sample Sets With or Without Beryl	30
TABLE IX – Query Return of Entire Sample-Set Based on Suggested Range Crit Table VIII	
TABLE X – Locations and Orientations of Reconnaissance Soil Lines	34

ŧ

FIGURES

FIGURE 1 – Location Map	7
FIGURE 2a – Claim Maps with South Claims in Detail	10
FIGURE 2b – Claim Maps with North Claims Detailed	11
FIGURE 3 – Regional Geology	12
FIGURE 3b – Regional Geology Legend	13
FIGURE 4 – OMG Claims (Laib Creek) Geology	15
FIGURE 5 – Toby Claims (Topaz Creek) Geology	16
FIGURE 6a – Whole Rock Geochemistry X-Y Plots – Rb (ppm) vs. K ₂ O (wt. %)	32
FIGURE 6b - Whole Rock Geochemistry X-Y Plots – K/Rb vs. Cs (ppm)	32
FIGURE 6c - Whole Rock Geochemistry X-Y Plots – Nb (ppm) vs. Ta (ppm)	32
FIGURE 6d - Whole Rock Geochemistry X-Y Plots – K/Rb vs. Ta/Nb	32
FIGURE 6e - Whole Rock Geochemistry X-Y Plots – Be (ppm) vs. Ta (ppm)	32
FIGURE 6f - Whole Rock Geochemistry X-Y Plots – Be (ppm) vs. Ta (ppm)	32
FIGURE 7a – Laib Grid Soil Geochemistry – Beryllium (ppm)	36
FIGURE 7b – Laib Grid Soil Geochemistry – Rubidium (ppm)	37
FIGURE 7c – Laib Grid Soil Geochemistry – Cesium (ppm)	38
FIGURE 7d – Laib Grid Soil Geochemistry – Lithium (ppm)	39
FIGURE 7e – Laib Grid Soil Geochemistry – Molybdenum (ppm)	40
FIGURE 7f – Laib Grid Soil Geochemistry – Niobium (ppm)	41
FIGURE 7g – Laib Grid Soil Geochemistry – Chromium (ppm)	42

1) INTRODUCTION

The Kootenay Gemstone Property, containing a number of coloured beryl occurrences, is located between the towns of Salmo and Creston in southeastern British Columbia. The claims were acquired by Cream Minerals Ltd. from vendor Lloyd Addie in early 2003. Prior to Cream's option, Lloyd Addie had located several coloured beryl occurrences in pegmatite dykes within intrusive and sedimentary host rocks.

During 2003 and 2004, prospecting located many additional beryl occurrences throughout this large property. Soil and rock sampling returned elevated values for key elements indicative of the presence of both aquamarine and emerald crystals. The results of the prospecting, geological mapping and geochemical surveys are the subject of this report.

2) LOCATION AND ACCESS

The Kootenay Gemstone Property is located on the west and south sides of Kootenay Lake, in the Nelson Mining Division of southeastern British Columbia (Figure 1). The northwestern corner of the property is located 30 kilometres east of Salmo and the southeastern corner of the property is 12 kilometres west of Creston. The claims cover an area of approximately 5800 hectares and are centred at latitude 49°15'N and longitude 116°51'E within mapsheets 82F.017, 026, 036.

Access to the northern portion of the Kootenay Gemstone Property is via Highway 6, north from Salmo for 8 kilometres, then easterly on the Porcupine Forest Service Road for 35 kilometres. The southern part of the claim block can be accessed from Highway 3 10 kilometres west of Creston, then north and west on the Topaz Creek Forest Service Road for 21 kilometres. Numerous logging roads cross the claim block.

3) PHYSIOGRAPHY

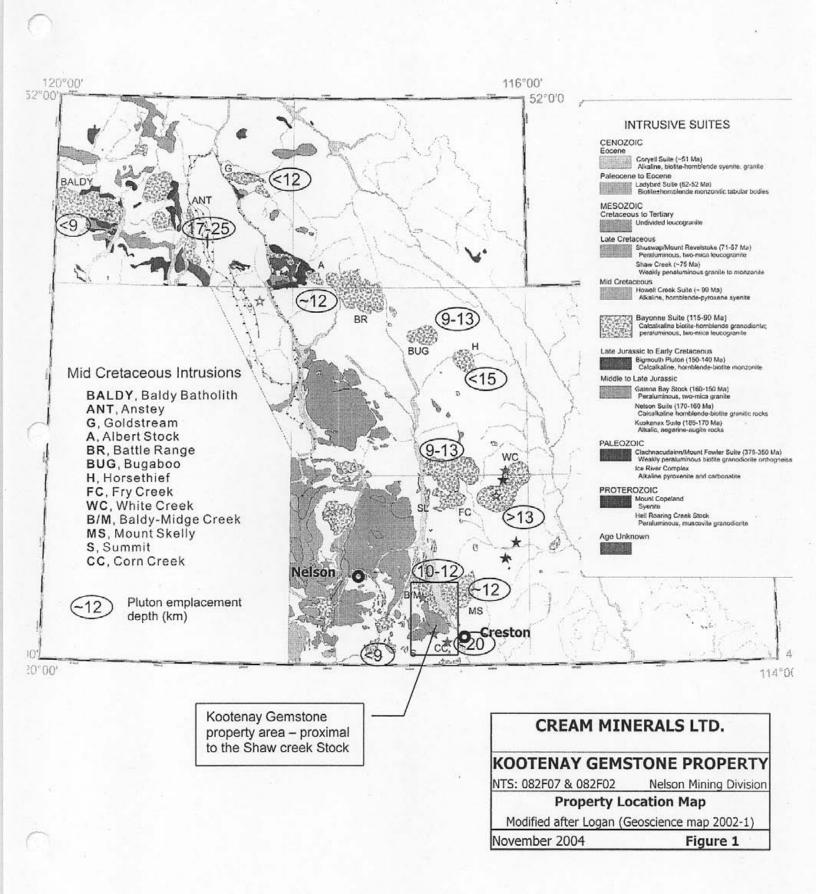
The Kootenay Gemstone Property is located in an area of rugged terrain. Topography on the property is steep with elevations ranging from 532 metres at Kootenay Lake to 2,285 metres on the peak of Iguana Mountain in the south central portion of the claim area. Outcrop is somewhat limited on the property generally confined to steep creek gullies or road cuts, with more prevalent outcrops on ridges and steeper slopes.

Several portions of the claim area have been recently logged, with the remainder being covered with first and second growth forest consisting of balsam, fir, spruce, hemlock, cedar and occasional white pine and larch. Thick growths of alder and devil's club are found along creek gullies.

4) HISTORY

Very little historic information can be found on the beryl mineralization in this region. Rice (1941) reported the occurrence of blue-green beryl crystals, with garnet, tourmaline and magnetite in pegmatite dykes south of Midge Creek (MINFILE 082FSE091). In 1999-2000, separate BC Ministry of Energy and Mines Prospectors' Grants were awarded to Mark Colbaba and Bob Bourdon, who searched for beryl mineralization proximal to the Bayonne Batholith. In 2001, Lloyd Addie received a BC Ministry of Energy and Mines Prospector's Grant and explored the Bayonne Batholith for aquamarine, emerald and rare earths (Assessment Report 26966).

5) WORK DONE BY CREAM MINERALS LTD. IN 2003 AND 2004


Work completed on the Kootenay Gemstone Property in 2003 and 2004 consisted of prospecting, geological mapping, soil and rock sampling. Most of the soil and rock sampling and geological mapping were conducted on grids emplaced on the OMG and Toby claim areas. In addition, several prospecting expeditions were undertaken, that concentrated on the Cultas and Rusty claims to the north, and the Toby, Topaz and Columbian claims to the south.

Work was conducted by a 3 to 4 person crew working out of the towns of Nelson and Salmo, BC, and was supervised by the authors.

6) CLAIM INFORMATION

The Kootenay Gemstone Property is located within the Nelson Mining Division and consists of 12 modified grid and 61 two post claims to total 269 units (Figure 2). The claims cover an area of approximately 5800 hectares and are centred at latitude 49°15'N and longitude 116°51'E within mapsheets 82F.017, 026, 036. The claims have all been common dated to an anniversary date of April 29.

ţ

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V15 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

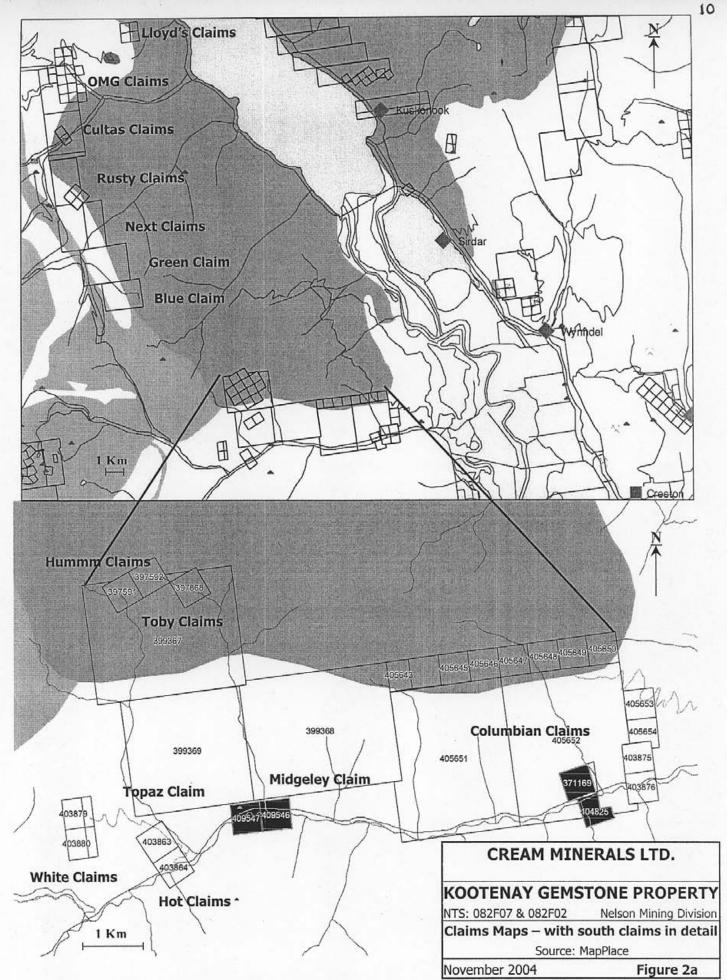
TABLE I CLAIM INFORMATION

Claim Name	Units	Record#	Claim Name	Units	Record#
MINE	1	388173	COLUMBIAN 2	1	403877
LLOYDS	1	388174	COLUMBIAN 3	1	403878
LLOYDS MINE	1	388233	COLUMBIAN 4	1	404824
LLOYDS MINE 2	1	388234	COLUMBIAN 5	1	404825
OMG 1	1	389233	COLUMBIAN 7	1	405643
OMG 2	I	389234	COLUMBIAN 8	1	405644
OMG 3	1	389235	COLUMBIAN 9	1	405645
OMG 4	1	389236	COLUMBIAN 10	1	405646
OMG 5	1	390068	COLUMBIAN 11	1	405647
OMG 6	1	390069	COLUMBIAN 12	1	405648
OMG 7	1	390070	COLUMBIAN 13	1	405649
OMG 8	1	390071	COLUMBIAN 14	1	405650
OMG 9	1	390159	COLUMBIAN 15	20	405651
OMG 10	1	390160	COLUMBIAN 16	20	405652
OMG 11	1	390737	COLUMBIAN 17	1	405653
OMG 12	1	390738	COLUMBIAN 18	1	405654
OMG 13	1	391019	HOT I	1	403863
OMG 14	1	391020	HOT 2	1	403864
OMG	20	399362	TOBY 1	1	396326
OMG 20	1	406209	TOBY 2	1	396327
OMG 21	1	406210	TOBY 3	1	396328
OMG 22	1	406211	TOBY 4	1	396329
CULTUS I	1	391021	TOBY 5	1	396330
CULTUS 2	1	391022	TOBY 6	1	396331
CULTUS	20	399363	TOBY 7	1	397591
RUSTY*	1	395794	TOBY 8	1	397592
RUSTY 2	1	395795	BANGER 1	1	396332
RUSTY 3	1	395796	BANGER 2	1	396333
RUSTY 4	1	395797	TOBY	20	399367
RUSTY*	15	399364	MIDGELEY	20	399368
NEXT	15	399365	TOPAZ*	1	397868
BURNETT	10	399366	TOPAZ 2	1	397869
GREEN	20	405641	TOPAZ*	16	399369
BLUE	12	405642	HUMMM	1	396868
COLUMBIAN	1	403875	HUMMM 2	1	396869
COLUMBIAN 1	1	403876	WHITE	1	403879
			WHITE 2	1	403880

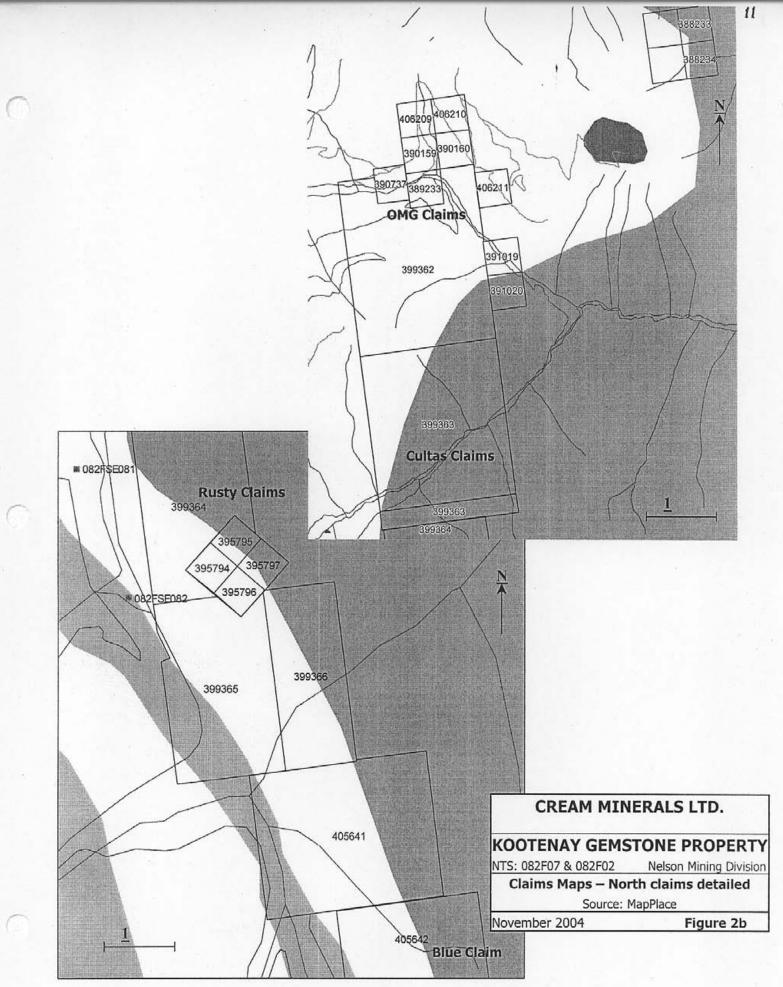
An original 36 claims (totaling 36 units) were optioned from Lloyd Addie, but later staking by Cream has expanded this claim block. Table I lists the original and expanded staked claims. As of fall 2004, several of the original 2-post claims listed above have been absorbed into larger 4-post claim blocks (Figures 2a, 2b). All the newly staked claims are within the area clause so are included in the original option agreement. By 2007, upon making payments of \$100,000 cash and 500,000 shares to the optioner, these claims will be held 100% by Sultan subject to a 2% NPR (Net Product Returns). Cream can purchase one half of the NPR for \$1,000,000.

8

ļ


7) GEOLOGY

REGIONAL GEOLOGY (after Reesor 1996, and Brown et al, 1994)


The Shaw Creek stock is a late Cretaceous, 130 square kilometre intrusion composing the central to southern one-third of the middle to late Cretaceous multiphase Bayonne Batholith (Figure 3). The stock is typically light grey to pinkish-grey biotite +/- hornblende granite with abundant K-feldspar megacrysts averaging 2 to 3 centimetres. Leucoquartz monzonite is locally abundant.

Along the southern and southeastern margins, the Shaw Creek stock is in contact with the Proterozoic Aldridge Formation. Semipelites of the Aldridge Formation in this area have been metamorphosed to amphibolite facies (sillimanite-kyanite-staurolite), an expression of the deformation related to the formation of the Kootenay Arc. The western and southwestern limits of the stock are in contact with grey siltites and black argillites of the La France Creek Group, dolomite and argillite of the Mt. Nelson Formation, and polymict conglomerate of the Windermere Group Toby Formation.

Other intrusions in the area include biotite-hornblende-epidote granodiorite of the Jurassic Mine Stock to the southwest, and biotite-muscovite leucomonzogranite of the mid-Cretaceous Steeple Mountain stock to the east. Eocene Coryell stocks, less than 1 square kilometre, intrude surrounding lithologies approximately 5 kilometres west and northeast of the northernmost extent of the Shaw Creek stock. Lamprophyre dykes are also noted in the region.

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

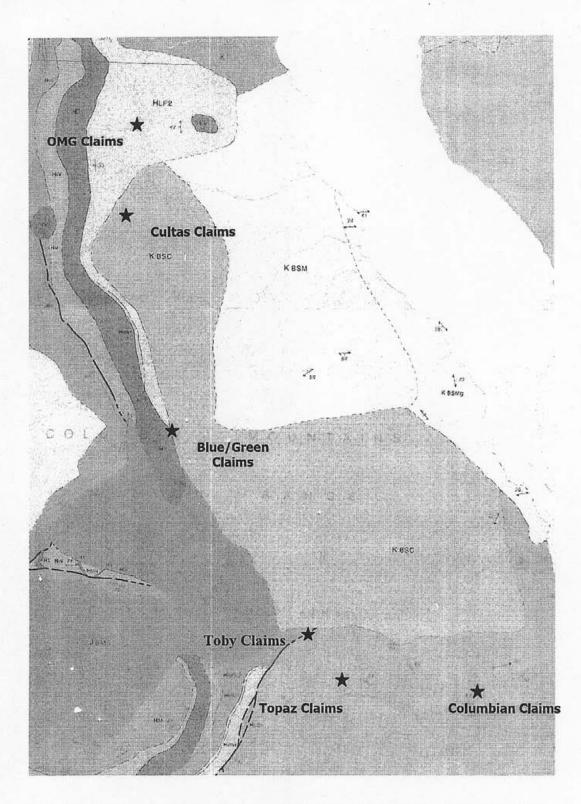


Figure 3 Regional geology – after Ressor (1996). Kootenay Lake (upper right) is approximately 5 km wide.

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

CRETACE	OUS AND JURASSIC BAYONNE GRANITIC SUITE (JBMS - KBMS)	
KBMS	MOUNT SKELLY PLUTON Biotile (homblende) monzografitte with megeorysts of cotasseum levisger	
Квмс	MIDGE CREEK STOCK Biotite-muscovite-epidote leucogranodiorite	19
Freedoment		- 81
Квнс	HEATHER CREEK PLUTON Blotite-muscovite leucogranodiorite; pegmatite	
КВОР	DREWRY POINT INTRUSION Leucocratic biotite-epidote granodiorite; garnet-bearing epite and pegmatite	1
KBSM	STEEPLE MOUNTAIN INTRUSION Biotite-musaovite leucomonzogranite, granodiorite and tonalite, commonly Ioliated; pegmatite and aplite KBSMg biotite-muscovite leucotonalite gnelss	19 P. 10 J. 20 P. 10 P.
Kesc	SHAW CREEK INTRUSION Biolite leucogranodiorito, locally with megacrysts of polessium feldspar	ΥE
JBWS	WALL STOCK Biolite-homblende-epidole granodionile	
JBMS	MINE STOCK Biotile-homblende-epidote granodiorite	Tool of the local data
JURASSIC	(?)	
	NELSON GRANITIC SUITE (JNB - JNP)	C
The shares and the state	PROCTOR INTRUSIONS	12

HADRYNIAN

ННЗ

HH31

HILTON

HHSC

JNP

WINDERMERE SUPERGROUP (HT-HH3) HORSETHIEF CREEK GROUP

Forested homolende leucogranodiothe

and plotte apidole leucomonzogranite

Phyllite and schist; interbedded quartzite, pebble and cobble conglomerate; grey limestone Grey limestone and marbla; dolomite

Pebble conglomerate: quartzile; and dapar clasts Cabbia conglomerate

HH2

Siliceous, massive white quartzite; pebbly quartzite; HH2a cobbie and boulder conglomerate indicated by pattern

Phyllite: siltite; carbonate

HHI

IRENE VOLCANIC FORMATION: massive to schistose greenstone, malic tull; phyllite

TOBY FORMATION: polymict conglomerate: pebble and cobble conglomerate: guartzite and grit; phyllite

HELIKIAN

HELLROARING CREEK INTRUSIONS Granite, pegmalite

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

HI	٧N
6	IMN
ŀ	MN
	IMN
ī	IMN

HLE

HLF2

HLE1

PURCELL SUPERGROUP (HA - MMN) MOUNT NELSON FORMATION: undivided

Dolomile, white to dark grey, buff to brown weathering

Black ergillite, grey siltstone, thinly interbedded

Dolomite, dolomitic siltstone, argillite

Quartzile, thick bedded, white to green

LA FRANCE CREEK GROUP Undivided

UPPER: Interbedded grey siltite and black argillite. thin to thick bedded LOWER: thinly interbedded black argilite and grey siltite

MOYIE INTRUSIONS: metadiorite, metaquartz diorite

COPPERY CREEK GROUP

UPPER: dolomite, thin to thick beaded, while to grey, with interbedded white quartzite MIDDLE: thinly laminated black argillite and grey slitstone LOWER: doiomite, dolomitic siltstone, green and black argitlite; light grey sillite and quartzite; HCCta grey carbonate member

Undwided UPPER: light and dark green arglilite and slittle; deep green siltite, purple arglilite and siltite M:DDLE: purple lined or purple mottled gray silite or fine quartzite; black to deep purple argilitte; white. medium grained quartzite LOWER: thin to thick bedded sittite; think interbadded argillite and silitite, characterized by wavy bedding, mud-cracks, and cut-and-fill features; Hote mud-cracked member

CRESTON GROUP

ALDRIDGE GROUP Undivided

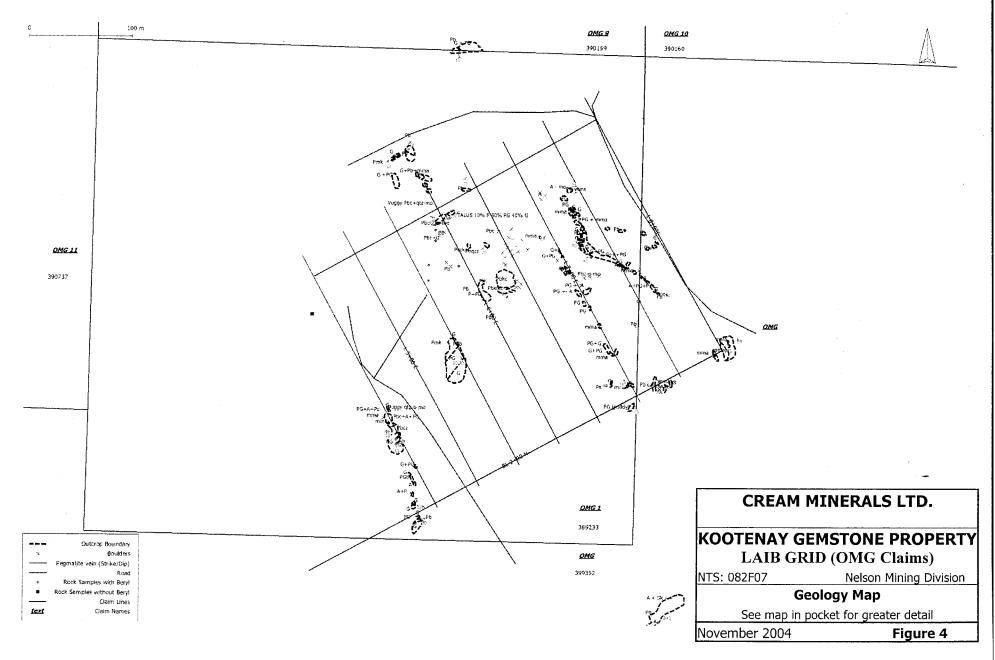
UPPER: rusty weathering black argillite and silty argilite, characterized by fine parallel laminac of white sittle

MIDDLE: light grey weathering, grey sillite and fine quartzite in beds up to 1 m; interbeds of dark srginite and successions of thinty interbedded black arguinte

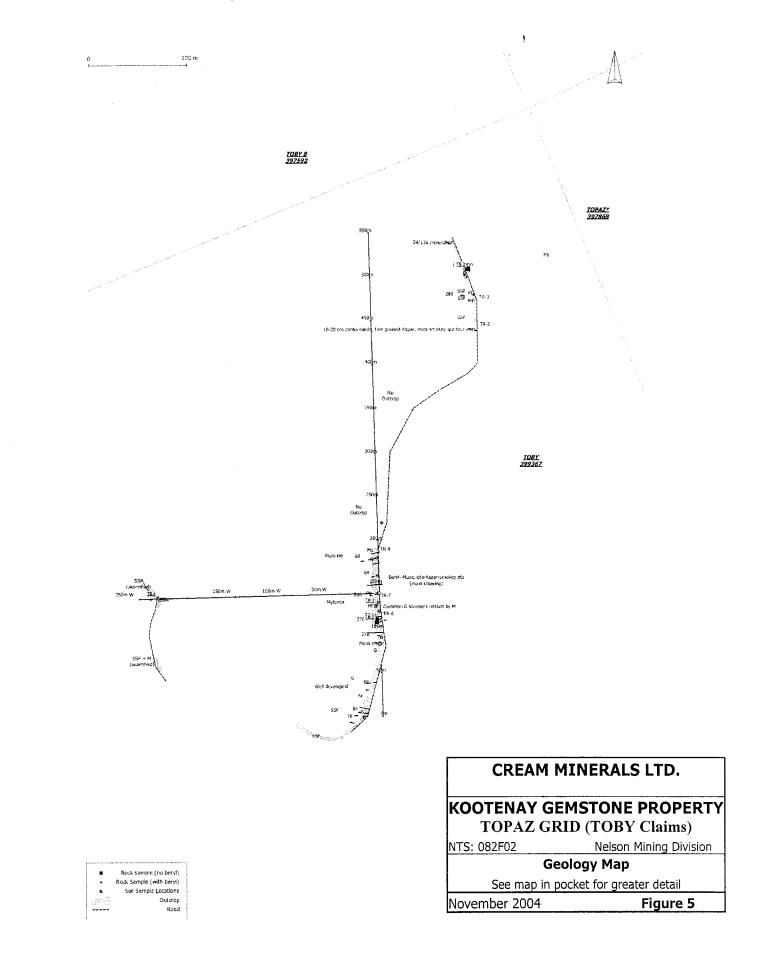
and grey sillstone LOWER, rusty weathering, laminated or prosscepse quartzite, arglillite and silty arglillite

Figure 3b Regional geology legend-(Ressor, 1996).

13


0	
N	
0	2
\$	
ш	
Σ	

PROPERTY GEOLOGY (after Brown, 2004)


The OMG claims, in the Laib Creek area, are underlain by a previously unrecognized several square kilometre lobe of the Shaw Creek stock. Six different rock types are recognized within the property area (Figure 4). In order of abundance they are: biotite +/- muscovite granite (G), K-feldspar-muscovite pegmatitic granite (PG), micaceous meta-arkose (mma) with subordinate interlayered amphibole-bearing metapelite, garnetiferous sodic aplite (A), medium- to coarse-grained K-feldspar +/- muscovite +/- beryl pegmatite (P), and K-feldspar megacrystic granite (Gk). Textural and cross-cutting relationships suggest the following temporal sequence from oldest to youngest: mma – Gk – G – A – PG – P.

The claim groups at or near the southern margin of the Shaw Creek stock (Toby, Topaz, Columbian) were prospected and mapped to outline beryl mineralization. The most significant beryl crystals were found on the Toby claims (Topaz Grid, Figure 5), which straddle the contact between the Shaw Creek stock and the Mount Nelson Formation. Preliminary mapping on these claims, discerned five rock types. In order of abundance they are biotite granite (G), schistose semi-pelite (SSP), a mylonitic to cataclastic mafic intrusion or gabbro (M), pegmatitic granite or pegmatite (P), and aplite (A). Textural and cross-cutting relationships suggest the following temporal sequence from oldest to youngest: SSP – M – G – PG – A – P. In the area of the best mineralization, pegmatite and granite dykes are hosted in a 50 metre wide zone comprising dominantly dark grey mylonitic and cataclastic gabbro dykes.

Pegmatite dykes at the Topaz and Columbian claims are hosted predominantly within metamorphosed sediments of the Middle Aldridge Formation. Medium grey quartzo-feldspathic biotite-muscovite schists with rare kyanite are most common. Lesser volumes of dark grey biotite-amphibole +/-garnet schists may be interlayered with the above. On the Topaz #3 claim, pegmatite and quartz dykes crosscut a well foliated 10 metre wide exposed gneissic granitoid.

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., VIS 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

ECONOMIC GEOLOGY (modified after Brown, 2004)

OMG Claims

Known pegmatites in the northern claim units (OMG, Cultas) predominantly occur as dykes, pods, and schlieren within leucoquartz monzonites, and K-feldspar megacrystic granites of the Shaw Creek stock. Less commonly, beryl mineralization has been found in pegmatite dykes that extend outward into surrounding sedimentary lithologies.

Beryl crystals at the OMG claims (Figure 4) are most commonly found in the coarser grained pegmatite (P) unit, with rare occurrences in the finer grained pegmatitic granite (PG) unit. Beryl abundance is generally less than 1%, however volumes greater than 5% have been noted. Beryl crystals in the pegmatite are pale to medium ice-blue to greenishblue in colour and range up to 20 centimetres in diameter. Some of the best quality aquamarines are found within or along the margin of quartz cores within surrounding coarse-grained pegmatite.

At two known locations, 10 to 30 centimetre wide quartz veins appear to extend out of the quartz cores, through the host coarse-grained pegmatite, and into surrounding aplite and/or sedimentary lithologies. These veins comprise 90% light-grey to smokey quartz with subordinate K-feldspar, trace beryl and molybdenite, and up to 5% vugs, lined with rhimes of very fine-grained micas and/or clays, and occasionally beryl crystals. Several gemmy ice-blue, translucent to transparent, euhedral aquamarine crystals, to 6 millimetres in diameter, have been found in this vein type. Molybdenite occurs as sparse, yet coarse disseminations up to 1.5 centimetres. Smokey quartz is most prevalent in and around vuggy sections of the veins.

Cultas Claims

Beryl crystals located on the Cultas claims occur as light to medium (brilliant) blue, opaque to translucent euhedral crystals, hosted in simple, centimetre to 10's of centimetre wide K-feldspar-quartz (+/- smokey) pegmatitic dykes and veins. Most of the beryl crystals in the area have been found in boulders in an extensive talus field at the 1280 to 1400 metre level (AMSL), on the SE aspect below the 2010 metre mountain peak, separating the OMG and Cultas claim areas. The boulders have obviously fallen from large bluffs directly above the talus slopes. The bluffs comprise K-feldspar phyric quartz monzonite, and minor veins and dykes of aplite, equigranular granite, and pegmatite (with or without beryl). At least three boulder trains containing significant quantities of beryl-bearing pegmatite have been identified in the area. Good quality beryl crystals have also been found insitu, in the bluffs above the western- and eastern-most boulder trains. In terms of colour and clarity, the best aquamarine found so far, on the Kootenay Gemstone property, was found in the eastern boulder train (see sample PB-20, Table IVb). Much prospecting could still be done around and above the bluffs, in order to i) locate the source of the beryl-rich boulder trains, and ii) trace out known pegmatite systems northwards and westwards towards the contact, with the hopes that beryl mineralization exists in contact with potential Cr-enriched host country rock.

ţ

Rusty Claims

Two significant beryl showings have been located within the Rusty claims. The original showing, located approximately 3 kilometres south of the Cultas showings, is characterized by trace amounts of blue, opaque, subhedral beryl and trace pyrite in simple, narrow quartz-feldspar pegmatite veins oriented 048/44SE. Along the ridgeline, approximately 200 metres east of this showing is a rusty clearing, from which the claim group gets its name. The rusty zone is underlain by a gossanous actinolite bearing skarn, and minor pyroxenite float. Limited prospecting in the area has revealed only poor quality beryl specimens. However, the showing is unique and of interest from a mineralogical point of view, as it is hosted in dolomitic limestone. The presence of pyroxenite is also of interest as a potential chromium source.

The second showing within the Rusty claim group is located approximately 2 kilometres south of the Cultas showings, on and just west of the ridge, 1 kilometre west of Mount Burnett. This showing is casually being called "Jarrod's showing", by field personnel. It is characterized by a sparse swarm of fine grained pegmatite veins and narrow dykes, containing 90% feldspar, 8% grey quartz, and minor muscovite. Rare to occasional beryls occur as white to blue, opaque to transleucent, euhedral crystals up to 1.5 centimetres in diameter. Two or three specimens were collected from this locale. The host is entirely K-feldspar phyric quartz monzonite. It appears that the showing is located a significant but unknown distance from the country rock contact. Quality of the beryls (aquamarines) in this area is encouraging. More work should be done to determine the extent of the beryl mineralization and to locate the contact in this area along strike of the known beryl occurrences.

Significance of Host Rock and Pegmatite Character in the Northern Claim Areas Pegmatite veins and dykes at the OMG claims are predominantly hosted within the fineto medium-grained, equigranular, leuco-quartz-monzonite (unit G). To date, this phase of the Shaw Creek Stock, has only been observed in the OMG claim area. This phase appears to comprise the northwestern limit of the Shaw Creek Stock, with approximate maximum dimensions of 300 x 300 metres. Its southeastern limit, close to the Linda Showing at approximate grid coordinate 0+00N 6+00E, trends approximately 060°. Here it is in contact with the pre-eminent and extensive K-feldspar megacrystic biotite monzonite (unit Gk).

In the OMG grid area, pegmatites occur in both phases of the Stock (G and Gk). There are however some distinct differences, in terms of pegmatite texture and beryl mineralogy, between pegmatites found in the G-phase as opposed to the Gk-phase. Pegmatites mapped within the OMG grid, are all hosted in the G-phase (with exception to the Linda vein). The coarsest and most chemically fractionated pegmatites found on the entire property are located within this area. Beryl crystals, where present, can attain diameters in excess of 20 centimetres. Crystals this large are extremely rare elsewhere. On the downside however, blue colouration of aquamarines within the OMG grid area, are on average, less intense than aquamarine crystals in pegmatites hosted in the Gk-phase. The best colour blue crystals, found to date, are found at the Linda Vein and at the Cultas claims, both of which are hosted in the Gk phase.

)

Pegmatites of the northern claim units normally occur in swarms. At the OMG grid, the percentage of P and PG within unit G is relatively high, perhaps as much as 10% by volume of the total volume of intrusive. This is in contrast to a significantly lower density of pegmatites everywhere else in the northern claim areas. Pegmatites at the Cultas and Rusty claims generally occur within distinct structural corridors, perhaps limited to 50 to 100 metres wide. What controls the distribution of these pegmatite-rich corridors in the area is still not understood. More detailed prospecting and mapping of the contact in this area would begin to address this question.

At the OMG grid, however, there is also a high density pegmatite swarm, *coinciding with the contact* between the G and Gk phases. The Linda vein is a prime example of this phenomenon. This contact can also be observed approximately 300 metres ENE (azimuth 060°) of the Linda vein on the slab face on the north side of Laib Creek. Here, the density of pegmatite dykes is high, but the beryl composition is unfortunately low. Moving uphill (north) another 200 meters or so, brings us to the terminal contact of the Shaw Creek Stock in this area (see samples D 208054, 208055, JB3-L10). Good road cut exposure of the contact here, reveals a swarm of granite and pegmatite dykes that extend outward into the metasedimentary country rock. The dyke swarm here is approximately 80 metres wide, and is comprised of several parallel dykes (steeply dipping on ~azimuth 060°). Beryl mineralization is sparse in these dykes, with generally light blue and opaque crystals. The pegmatite density appears to taper off rapidly away from the contact, but exposure along strike greater than 100 metres north of the road cut is severely hampered by overburden.

In summary, beryl mineralization in the northern claim areas (OMG, Cultas, Rusty) has been observed in four different scenarios:

- 1. in densely populated pegmatite swarms hosted in the equigranular leucogranite (monzonite) = unit G. Aquamarines can be large, but have limited colour intensity = Laib Creek Grid;
- 2. in sparsely populated pegmatite swarms within limited structural corridors hosted in the K-feldspar porphyritic (megacrystic) monzonite = unit Gk. On average, aquamarines are smaller than in the above situation, but may have excellent blue saturation;
- 3. in densely populated pegmatite swarms at the contact between units G and Gk. Aquamarines have similar characteristics as 2); and
- 4. in moderately dense pegmatite swarms emanating out of the Gk unit into surrounding metasedimentary country rock. Beryl quality is generally poor. However, systematic prospecting is very limited for pegmatite dykes beyond 20 to 50 metres outside of the Shaw Creek stock. To adequately assess the emerald potential in the area, an expanded prospecting and geochemistry program is recommended.

19

Toby Claims (Topaz Grid, Figure 5)

On the Toby claims, the beryl-bearing unit is a fine to medium grained K-feldsparmuscovite-biotite pegmatite with a light grey to smokey quartz matrix. The main showing contains bluish-green beryls, some with significant gemmy sections. The largest beryl collected to date is a euhedral, hexagonal, translucent crystal with dimensions of 4.0 by 0.8 centimetres.

Pegmatite veins in the area occur as moderately dense swarms, that are oriented subparallel to a mylonitized contact zone that comprises carbonaceous schist country rock, crosscut by quartz-biotite monzonite, which is in turn crosscut by 2 to 10 metre wide gabbro dykes. Narrow beryl-bearing pegmatite veins (2 to 20 centimetres in width) have been observed crosscutting all of the above lithologies (see samples TB-1 to TB-4). The veins of greatest importance are those that intrude into the gabbro dykes, as these have the greatest potential for elevated chromium contents. This area has the best emerald potential on the property, as all of the raw materials required for this gemstone are present. Access to the showing is excellent by forest service road. The mylonitic contact could easily and cheaply be exposed and trenched.

There is second similar showing located on the forest service road approximately 2 kilometres east-southeast of the Topaz Grid (see samples TN 7 and 8). At this location, there are at least two medium- to coarse-grained pegmatite dykes with smokey quartz and tournaline. Similar to the Topaz grid area, the pegmatites are also hosted adjacent to a weakly mylonitized zone with gabbro dykes. To date, no beryl crystals have been observed in these dykes; however, their similarities in terms of pegmatite mineralogy and texture, and structural setting to the Topaz grid area are strongly indicative of good emerald potential. The location, 2 kilometres east of the main showing, highlights the potential extent of the area with good emerald potential. This area includes most of the area comprising the headwaters of Topaz creek: a 3×3 kilometre area. Prospecting of this area has been very limited, relegated to road-cuts only, along the minimal road network. Follow-up prospecting in this area is warranted.

Cursory prospecting northwards up the ridge from the Topaz Grid area towards Hulme Peak revealed insignificant beryl mineralization. The traverse covered the southern contact of the Shaw Creek Stock in this area. Exposure is good, revealing several PG, P and aplite dykes. Only one insitu occurrence of light blue opaque beryl was noted. Additionally, several blue transleucent, hexagonal aquamarines have been noted in boulders beside the forest service road, approximately 500 metres northwest of the Topaz grid.

Columbian and Topaz Claims

On the Columbian and Topaz Claims, pegmatite mineralogy consists of feldspar with significant quartz and muscovite, occasional red garnet and black tourmaline, and trace white to yellow and rarely pale blue beryl.

On the Columbian claims, 1 to 1.5 metre wide pegmatite sills (commonly boudined) are hosted in high metamorphic grade garnet-biotite-muscovite schists. Light bluish-white

ş

and yellowish white, opaque beryls are the most common, while translucent beryl crystals up to 5 centimetres long are noted occasionally.

On the Topaz claims, beryl occurs as subhedral to euhedral, white, opaque crystals hosted in pegmatite sills and dykes similar to those on the Columbian claims. White opaque beryls, 1 to 3 centimetres wide, were also found on a 50 by 100 metre bluff comprising pegmatitic granite and subordinate fine to medium grained pegmatite. Quartz-illmenite veins occur locally along the margins of the pegmatoid units.

8) GEOCHEMISTRY

LITHOGEOCHEMISTRY

Rock samples were collected during the course of mapping, predominantly in the two detailed grid areas (OMG and Toby). Rock samples collected in the field consist of chip samples across selected outcrops or grab samples where selected mineral types were to be analysed. Chip samples were collected as continuous rock chips of about golf ball size taken across a specified width along an outcrop, usually perpendicular to geological orientations. Grab samples consist of two to three fist size pieces of rock representing a certain lithology or mineralization style. Sample sites were marked in the field with labelled flagging tape or spray paint. Samples were put into correspondingly labelled plastic bags and shipped to the laboratory for analyses.

Rock samples were shipped from site, directly to ACME Labs Ltd. in Vancouver, BC by trucking company. All sample preparation was done at the laboratory by their staff. In the laboratory, rock samples were initially jaw crushed and a 250 gram sub sample was riffle split out of the original sample. This sub sample was further crushed to -200 mesh, sieved, and analysed for elements listed in Tables II and III. For the main elements of interest, namely Be, Rb, Cs, Ta, and Nb, it appears that the analytical procedures outlined in Table III, are superior to those in Table II. Group 1F is partial digestion only for Be, Li, Nb, Rb, Sn, Ta and Cs.

TABLE II

Analytical Packages Used for Soil, Grab and Chip Samples Collected in July 2003. Analyses by Acme Labs (<u>http://www.acmelab.com/cfm/index.cfm</u>).

Package	Elements
Group 1F: ICP-ES&MS Rocks: 30 g Soils: 15 g	Mo,Cu,Pb,Zn,Ag,Ni,Co,Mn,Fe,As,U,Au,Th,Sr,Cd,Sb,Bi ,V,Ca,P,La,Cr,Mg,Ba,Ti,B,Al,Na,K,W,Sc,Ti,S,Hg,Se,Te ,Ga,Cs,Ge,Hf,Nb,Rb,Sn,Ta,Zr,Y,Ce,In,Re,Be,Li
Group 1D: ICP-ES Toby soils only: 0.5 g	Mo,Cu,Pb,Zn,Ag,Ni,Co,Mn,Fe,As,U,As,Th,Sr,Cd,Sb,Bi, W,Co,P,La,Cr,Mg,Be,Tl,B,Al,Na,K,W

<u>Table III</u>

Analytical Packages Used for Soil, Grab and Chip Samples Collected in 2003 and 2004. Samples analyzed in 2003 did not include package 'Group 4A'. Analyses by Acme Labs (http://www.acmelab.com/cfm/index.cfm).

Package	Elements
Group 4A:	Al ₂ O ₃ ,Fe ₂ O ₃ ,MgO,CaO,Na ₂ O,K ₂ O,TiO ₂ , P ₂ O ₅ ,MnO,Cr ₂ O ₃ ,Ba,Ni,Sc.
0.200 g	$F_2 U_5, W H U, C F_2 U_3, D a, N1, S C.$
Group 4B:	Be,Co,Cs,Ga,Hf,Nb,Rb,Sn,Sr,Ta,Th,U,V,W,Zr,Y,La,Ce, Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er, Tm,Yb,Lu
ICP-MS - 5g	F(,Nd,SII),EU,GU,TD,DY,HO,EI,TIII,TD,LU
Group 1DX: ICP-MS - 0.5g	Mo,Cu,Pb,Zn,Ni,As,Cd,Sb,Bi,Ag,Au,Hg,TI,Se

Rock sample descriptions and corresponding locations are listed in Table IV. Analyses of interest are listed in Table V. All rock analyses, and ACME Labs Certificates of Analyses are found in Appendix I. A handful of analyses are mapped as station locations on the detailed geology maps (Figures 4 and 5). However, most samples were collected during prospecting and are off-grid.

All known beryl occurrences in the claim areas are found within fine- to coarse-grained pegmatite, or are intimately associated with pegmatite (e.g. quartz-molybdenite veins with beryl at Laib Creek). For emerald mineralization to occur, a suitable Cr (V)-rich source (host rock) must also be present, proximal to the beryl-bearing pegmatites. In the simplest terms, the suite of rocks collected so far was selected to define how much Be and Cr is present in pegmatites and host rocks respectively. Select examples and averages are listed in Table V.

The amount of beryl mineralization is extremely variable within a given area; in other words there is a pronounced nugget effect at hand-sample to outcrop scales. Beryl may contain up to 12-14 wt % BeO (Mulligan, 1968). Other rock forming minerals contain relatively little Be (Table VI).

ŧ

<u>Table 1 Va</u>

Rock Samples Collected in 2003. Samples marked with an astrix were collected and analyzed in July for elements listed in Table II. All others were analyzed for elements listed in Table III. See Appendix I for results.

Sample	Easting	Northing	Claim	Description
JB3-C2	507949	5461659	Cultas	seds: biotite rich mma (siltstone) raft attached to aplite boulder in beryl-bearing PG in talus slope.
JB3-L11	509495	5465234	OMG-22	seds: massive to weakly foliated dirty micaceous quartzite proximal (in contact) to samp L10
JB3-L5	508524	5464347	OMG-S	seds: biotite - musc schist (mma) outcrop on skidder rd near soil sample LP 1+00N. 50m uphill of samp L4
JB3-L6	508428	5464515	OMG-N	seds on road. Bedding 160/64, foliation 170/55
JB3-L8	507946	5465580	OMG-N	seds (mma) proximal to samp L7. sed bedding 185/30. sed foliation 165/48
JB3-L9	508508	5466081	OMG-22	seds (mma) cut by several proximal G and PG dykes
JB3-R1	508904	5454148	Blue/Green	sed: dark grey siliceouw siltstone = hard hornfelsed biotite schist ~200m? From Jurassic bte granodiorite.
JB3-T2	516312	5444782	Hummm#1	sed:massive, hornfelsed, It puplish grey qtzo-feldspathic siltstone. Sig qtz veining around (not sampled)
JB3-T4	516573	5444647	Hummm#1	sed: tourmaline-musc-biotite schist host to sample T3. Fol: 292/64
JB3-T5	517096	5444368	Hummm#1	sed: dark grey graphitic mudstone with rusty qtz stringers proximal to silic sltstn.
TR-3*			TOPAZ-grid	Sed: schistose semipelite
JB3-U11	523544	5443414	Columbian	seds: amphibolite schist (black) with 30% white. Host to 1m feld-qtz-musc PG. High hopes for Cr.
JB3-U6	523349	5444804	Columbian	sed: buff-grey musc-bte schist outcrop in draw near top of trav from 11km on Topaz FSR to highway 3A
JB3-U7	523324	5444507	Columbian	sed: buff-grey musc-bte schist with minor qtz rich boudins. Fol: 060/75
LG-14a*	508502	5465506	OMG-grid	seds: amphibolite mma-altered
ТМК-2*	507829	5465390	OMG-grid	seds:amphibolite
JB3-U3	523008	5443253	Columbian	gabbro or sed?: dark grey amphibolitic-bte-garnet +/-Kyanite schist in contact with samp U2.
JB3-T6	517212	5444274	Hummm#1	gabbro: fine grained with well dev. Min lineation. Large 25m exposure on ridge.
TR-4*			TOPAZ-grid	gabbro intrusion, coarse grained
TR-6*			TOPAZ-grid	gabbro intrusion, fine grained
JB3-U5	523989	5445846	Columbian	lamprophyre??: bte phyric, magnetic large dyke adjacnt to K-granite on Topaz FSR. CC relations uncertain.
JB3-U4	523709	5443366	Columbian	mafic: pistacio green talcy schist proximal to bery-bearing boudined pegmatite dyke.

Sample	Easting	Northing	Claim	Description
	NAD 83 U	TM zone 11	area	Samples collected by JB, LA, JD Oct 19 to Oct 27, 2003 and mid July*
JB3-U9	523364	5444047	Columbian	aplite or fine grained G sill with crosscutting coarse qtz-feld veins in bte-musc schist.
JB3-T1	516002	5444896	Hummm#1	granite - micro proximal to silstone host. Check for Be potential
TR-5*			TOPAZ-grid	Aplite assoc, with pegmatitic granite
TR-7*			TOPAZ-grid	granite
LG-15a*	508702	5464941	OMG-grid	aplite
LG-17a*	508300	5465100	OMG-grid	aplite-loyds
TMK-3a*	508600	5465360	OMG-grid	aplite bould
ЈВЗ-ТЗ	516573	5444647	Hummm#1	peg: musc-kspar-qtz (lots of musc) with minor white opaque beryl .5x.3cm on 037/78
JB3-T7	517251	5444183	Hummm#1	qtz-cassiterite vein in contact with beryl-bearing feld-musc-qtz peg, all hosted by gneissic granite.
JB3-T8	517251	5444183	Hummm#1	peg: feld-musc-qtz-beryl. Beryl is white, opaque to semi-transleucent. Gneissic host above looks ~Proterozoic
TR-1*			TOPAZ-grid	Peg: 25 cm chip across main pegmatite showing
TR-2*			TOPAZ-grid	Pegmatic granite, with tourmaline
JB3-U1	523398	5443360	Columbian	peg: feld-qtz-musc ; fresh boulder in ditch beside Highway 3A.
JB3-U2	523008	5443253	Columbian	peg: feld-qtz-musc;boudined sill with pale clear to yellowish-green beryls to 5mm diam. Host in high grade (U3)
JB3-U8	523445	5444202	Columbian	pegmatitic granite sill in schistose silliceous seds - fol: 010/49
JB3-C1	509406	5462504	Cultas	pegmatite: smokey qtz + kspar w/ 10% blue-grey soft euhedral trigonal min (apatite??) and 1-2% ox. Minor Mo
JB3-L1	508749	5465910	OMG-crys-ck	pegmatite: feld-qtz-rust musc-beryl +/- garnet. Proximal interfingering mma
JB3-L10	509495	5465234	OMG-22	pegmatite - beryl bearing. Kspar-musc-qtz-be peg (dyke orient 240/60). Beryl is It blue, opaque, up to 2x6cm; in contact with aplite, PG and quartzite(samp L11)
JB3-L2	508716	5465989	OMG-crys-ck	pegmatite, coarse, zoned: kspar-qtz-musc-beryl. Up to footall size beryl. Proximal to qtz core
JB3-L3	508567	5464211	OMG-S	pegmatite, beryl bearing float
JB3-L4	508545	5464349	OMG-S(fallen tree)	pegmatite: felds(wht)-qtz(smokey)-musc(silv) with nice ice blue beryls. Beryls cut out on oct27.
JB3-L7	507946	5465580	OMG-N	pegmatite: feld-musc-qtz dyke (1.5m wide) in mma of samp L8 oriented 218/75.
LG-17q*	508300	5465100	OMG-grid	qtz-mo-be greisen

Table IVb

Rock Samples Collected in 2004. Q.I. refers to quality index of beryl (see explanation in text). Highlighted values are 75th percentile or greater. See Appendix I for results.

Sample	Reference	East	North	Beryl	Description	Strike	Dip	Q.I.
D 208054		509519	5465236	У	P - 3 m wide, 80% feldspar, 20% qtz, minor musc	60	80	0.53
D 208055		509484	5465282	n	P- 30 cm wide, 50% feldspar, 50% qtz, minor musc. no beryl			
D 208056	lynx j	508441	5465121	У	P- 5 m wide zoned, 50% feldspar, 50% qtz, minor musc. gemmy aquamarines	60	90	0.66
D 208057	lynx j	508441	5465116	y y	P - similar area as above. 80% feldspar, 20% qtz, lots of opaque beryl	60	90	0.50
D 208058	roadcut	508357	5465246	n	P-50 cm, 90% feld, 10% qtz, lots of tiny red grnts, minor aplite and muscovite.	•		
D 208059	roadcut	507911	5465200	n	P-50 cm cutting sediments, 90% feld, 10% qtz		<30	1
D 208060		507755	5465199	n	P-50 cm cutting sediments, 80% feld, 20% qtz	125	30	
D 208061		508106	5464940	n	P-50 cm cutting sediments,70% feld, 30% qtz	130	40	
D 208062	windfall JB3-L4	508547	5464368	y	P- feldspar (wt), quartz (smky), musc (silver) with nice blue-green aquas. Cut out	•		0.60
PB 1	near PN1	509424	5462480	y	P feld-qtz minor musc in porphyritic granite. Pale blue gemmy beryl to 2x5cm	272	70	0.42
PB 2	Linda vein	508701	5464940	-	P 30 chip in midst of best beryls = med-fn grnd Feld>qtz>musc	228	90	0.60
PB 3	Linda vein	508715	5464929	ý	P as per PB2 w more aplite, less beryl, minor grnt			0.50
PB 4	Linda vein	508706	5464931	ý	P as per PB2 w more aplite, less beryl, minor grnt			0.48
PB 5	lg-5	508633	5465304	ý	P- cse to v. cse K-qtz-musc-grnt-be P. Beryl is It powder blue	256	90	0.42
PB 6	lg-5	508633	5465304	ý	P - K-qtz-musc-grnt, 2x50 cm chip with aplite	60)	0.45
PB 7	Main -east	508550	5465264	ý	P- v. cse K-qtz-musc-beryl+-tr tour. PB 7,8,9 part of same vein			0.58
PB 8	PB7	508550	5465264	ý	p-as above beryl in all =0.5-2 cm diam, It grn grey to aquamarine bl			0.58
PB 9	PB7	508550	5465264	ý	p-as above beryl in all =0.5-2 cm diam, It grn grey to aquamarine bl			0.54
PB 10	Main -west	508546	5465267	y	P - 60-90 cm of zoned, med-cse grnd K-smky qtz-beryl-musc, min. grnt. 5% Be core.	65	63	0.65
PB 11	PB10	508546	5465267	ý	P - 60-90 cm of zoned, med-cse grnd K-smky qtz-beryl-musc, min. grnt. 5% Be core.	65	63	0.65
PB 12	PB12	508502	5465295	ÿ	P-v. cse K-qtz-musc with pop can sized opaque, It grn beryls			0.52
PB 13	PB13	508472	5465295	ý	P-v. cse K-qtz-musc with good gemmy beryls cutout of boulder			0.61
PB 14	PB13	508472	5465280	ý	P- 50 cm chip across cse core of PB15. Beryl opaque with trnslucnt sect.	•		0.53
PB 15	PB14	508472	5465280	ý	P & apl 4m chip inc. PB14 of Kspar-musc-qtz-Be, med- v. cse.	1		0.52
PB 16	LG-12	508479	5465331	ý	P cse to v. cse K-qtz-musc-Be-Mo with core of vuggy cse. qtz-K-musc	65	i	0.47
PB 17		508494	5459280	y	P 5 cm wide, zoned with 75% feld, 20% qtz (10%=smokey), minor musc + grnt.	110	55	0.54
PB 18		508492	5459282	y	P as previous, 5m NW on same vein. No zoning.			0.35
PB 19	1	508487	5459287	y	P as previous, 10m NW on same vein. No zoning.			0.35
PB 20	Cultas-CJ	508362	5462041	ý	P med-fine K-qtz-musc-bte+-tour in sml boulder w best gemmy beryl to date	•		0.70
PB 21	CIC	508335	5462173	ý	P Kspar rich w qtz-musc+-grnt, and mod abnt powder blue beryl to 3x10 cm	343	3	0.47
PB 22	cic	508355	5462153	ý	P segregated cse-v. cse K-qtz-musc from centre of 5m wide aplite dyke	343	5	0.45
PB 22A	CIC	508355	5462153	ý	APL grey with musc and grnt= host to PB22	343	,	

PB 23	PN10	508375	5462072	у	P grab of intersection of PB-21(vert) and PN-8 (contouring)			0.58
PB 24	PB24	508307	5461929	ý	P med to cse Kspar-qtz-musc-apl with 1.5x5cm ice blu beryl			0.61
PB 25	PB25	508193	5461813	ý	P med to very cse K-qtz-musc with pop can sized powder blue beryl			0.56
PB 26	lloyd Pb20			ý	P - 15 cm wide, 80% feld, 20% qtz, lots of orange grnt, minor aplite, opaque beryl	I	•	0.35
PN 1	new rd	509444	5462480	'n	P feld-qtz minor musc in porphyritic granite	225	20	
PN 2	CB 2+00 soil	<u>508824</u>	5461868	n	P - 70 cm cse, Feldspar≄qtz, minor musc		1	
PN 3		509763	5463857	n	P - cse , feld (60%), qtz (35%)-musc 5%, hosted in fine grn granite	247	50	
PN 4	lg-5	508623	5465326	n	P-1.5 m chip, m-cse grnd, K-qtz-musc. Grnt in Apl margins only. Blky Kspar core.	72	78	
PN-5	lg-5	508633	5465304	n	P-poorly zoned Kspar-qtz-musc-gnt +-py,cpy found small beryl late	140	30	
PN-6	pb-16	508479	5465320	n	P Kspar-qtz-musc and tiny crappy beryl			
PN 7A	lloyd-Jarro	4508515	5429446	n	Aplite with minor musc and 2% orange garnet			
PN 8	PB23	508375	5462072	n	P K-rich with minor gry qtz tr. musc and possible apl in FW. Int. with PB23	•		
PN 10	PN10	508375	5462078	n	P med-cse, crudely zoned Kspar-qtz-musc-grnt	238	60	
PN 11	PN10	508390	5462090	n	P med, unzoned Kspar-qtz-musc, likely onstrike with PN10	238	60	
PN 12	PN10	508375	5462097	n	P med-cse, crudely zoned Kspar-qtz-musc w minor apl. Sim to prev but cse w apl.	60	75	
PN 13	PN12	508378	5462099	n	P med-cse, crudely zoned Kspar-qtz-musc w minor apl. Sim to prev but cse w apl.	•		
TB 1	Topaz main	516331	5447158	v	P-Med grained Kspar-qtz-musc-bte-grnt & tr. aquamarine/emerald in monzonite	250	46	0.57
TB 2	on strike	516331	5447158	ý	P-Med grained Kspar-qtz-musc-bte-grnt & tr. aquamarine/emerald in monzonite	270	44	0.57
TB 3	ore pile	516331	5447158	ÿ	P-Med grained Kspar-qtz-musc-bte-grnt & tr. aquamarine/emerald in monzonite	•		
TB 4	on strike?	516108	5447165	ý	P-Med grnd Kspar-qtz-musc-bte at granite/skarn +/-gab cntct. 200m on strk w. TB1			0. 40
TN 1	Topaz main	516331	5447143	n	PG - Kspar-gry&smky qtz-rare bte-minor aplite at granite/gabbro contact			
TN 2	TR-5	516331	5447141	n	PG (reverse) tour-musc-grnt aplite grading out to Feld-qtz PG			
TN 3	TN3	516425	5447500	n	PG in seds in mapped area ≈ Feld-musc-qtz	294	54	
TN 4	Skarn	516459	5445093	n	PG&P rusty Kspar with oikocrysts of qtz-bte-po hosted in skarn	254	85	
TN 5	Skarn	516459	5445093	n	PG&apl core in grnt-tremolite-fluorite skarn. Rusty margins with py.	<	<30	
TN 6	N of prev	516459	5445130	n	PG 10 cm vein of Blue feldspar-qtz-musc, possible beryl (white), hosted in schist	253	52	
TN 7	TN7	518106	5446098	n	P- med-cse grnd Kspar-qtz-musc-bte+tr. tour-grnt. no beryl			
TN 8	TN7	518126	5446098	n	P- parall dyke to previous. Kspar (60%), qtz 30% smokey!, chicken-foot bte.	203	63	-
UB 1	Jack	523020	5443245	у	P - 2m dyke+ feldspar-qtz(30%) with minor musc+grnt + wht beryl. Schist host	314	60	0.20
UB 2	Jack	523707	5443359	ý	P - bouden in sed schinst. = med. grnd feld (50%)-qtz(50%), w sig musc. Opaque, pale	green beryl		0.32
UB 3	Jack	523614	5443428	ý	P- flat lying, fine-med Fspar(60%)-qtz(40%), minor musc and grnt, & pale green Beryl			0.40
UN 1	UB-2	523678	5443366	'n	P- boudin 2m med. grnd Fspar(70%)-qtz(30%), minor musc and grnt			
UN 2	Jack	523526	5443390	n	P- boudin 2m med. grnd Fspar(60%)-qtz(40%), minor musc and grnt	340	50	
UN 3	Jack	517330	5444488	n	P- 3m med. grnd Fspar(60%)-qtz(40%), minor musc and grnt	340	80	

	Be	Rb	Cs	Ta	Nb	Мо	Cr ₂ O ₃
APLITE	ppm	ppm	ppm	ppm	ppm	ppm	%
TMK-3a*	0.3	13	0.38	<.05	0.39	7.73	.003
JB3-T1	4	196.8	20	0.9	20.2	0.3	0.003
JB3-U9	7	357.4	41.1	29.3	3 26.5	0.6	0.008
Aplite average**							
<u>n=5</u>	48.25	29.75	8.65	9.85	29.75	6.68	-
PEGMATITE							
JB3-L1	324						<.001
JB3-T3	243		36.9				<.001
JB3-U1	353	393	16.7	9.2	32.5	0.3	0.001
Shaw-N average**					75 00	o 40	
1'' '	96.86	403.3	14.40	51.71	75.30	8.16	.004
Shaw-S average**	170.6	364.96	16.96	10.40	36.82	2.04	.001
11-5	170.0	304.90	10.90	10.40	30.02	2.04	.001
SEDIMENTS	ļ						
JB3-L6	1	247	18.5	1.8	22.7	0.5	0.008
JB3-U6	7	202.4	16.8	1.2	16.9	0.6	0.008
Shaw seds avg.**							
n=15	5.80	278.77	32.07	2.93	25.05	.78	.006
GABBRO							
JB3-T6	2	92.7	29.2	1.3	22.9	0.8	0.018
TR-6*	0.7	84.7	9.15	<.05	0.24	0.7	.03

<u>Table V</u>	
Select Rock Samp	le Results

*Samples collected and analyzed in July 2003 for elements listed in Table II. **average values from Brown (2004)

 Table VI

 Mean Beryllium Contents of Rock-Forming Minerals in Pegmatite (after Evensen and London, 2002).

Mineral	Be (ppm)
K-feldspar	7
Albite	18.1
Quartz	2.2
Muscovite	14
Biotite	5.2
Garnet	11.5
Hornblende	8.6
Cordierite	
(metamorphic)	35
Cordierite	
(magmatic)	>4000

When using geochemistry to locate beryl mineralization it is advisable to use a multielement approach because beryl mineralization is spotty, and by far, the majority of Be in granitic systems is contained within beryl. Brown (2004) verified that pegmatites in the East and West Kootenay regions of British Columbia, have classic behaviour with respect to geochemical evolution in granite-pegmatite systems (e.g. Cerny, 1991, 1992). Beryllium contents of pegmatites and associated intrusives proximal to the Shaw Creek Stock show moderate to good positive correlations with Rb, Cs, Nb, Ta, and Li. In a general sense Mo does not correlate well with Be; however, it may prove useful in locating late (secondary?) vuggy, molybdenite-bearing, quartz-beryl veins, such as those discovered at the OMG grid (Figure 4).

All pegmatite samples observed to date, contain elevated contents of these elements relative to run-of-the-mill granites, and should prove useful when searching for Beenriched pegmatites. Of the eight field areas studied by Brown (2004), the pegmatite samples from the OMG claim area have the highest average Ta and Nb contents and highest Ta/Nb ratio. This indicates that the area has the highest relative degree of chemical fractionation, presently known in the Kootenay Region.

Crosscutting relationships in the Laib and Topaz creek areas indicate that aplite formation occurs just prior to, or during pegmatite consolidation. Significant areas of the OMG grid (Figure 4) are underlain by aplite, so it is useful to know local aplite compositions. Textural relationships agree with the geochemistry of the aplite, which is intermediate in composition (i.e. Be, Rb, Cs, Ta, Nb) relative to pegmatite and granite (Table V).

Pegmatites generally have pronounced alteration haloes, which may be detectable by sampling surrounding host rocks (e.g. Shearer et al., 1986). In this respect, the 16 sediment samples listed in Table IV represent the beginnings of a database for future reference. Rubidium and Cesium contents are surprisingly high and potentially overlap with values recorded in pegmatites from the same area. In contrast, Ta and Nb are quite low in value relative to the pegmatite examples. It is well known that Rb and Cs are highly mobile relative to Ta and Nb. The above example suggests that Rb and Cs enrichment has occurred in the sediments presented (Tables IV, V, Appendix 1). Almost all sediments analyzed, came from strata in close proximity to known pegmatites. For good geochemical calibration it is recommended that distal sediment samples be collected and analysed with the results compared to the proximal altered sediments.

Lithogeochemistry in Relation to Beryl Mineralization and Gem Quality

Samples collected in 2004, were done so with the following specific tasks in mind:

- I) to discern if there are multi-element variations in geochemistry between pegmatite bodies with visible beryl, and those without, and
- II) to determine if there are any relationships between gem quality and geochemistry in those samples which do contain beryl.

ł

In order to compare geochemistry to gem quality, a semi-quantitative value was calculated for each beryl occurrence. This value is referred to as the *Quality Index* (Q.I.) of beryl, and is derived using the scoring system outlined in Table VII.

Descriptive	Subjective range	Weighted	Max score	
Colour	1-5	1	5	
Size	1-5	1	5	
Clarity	1-5	1	5	
Fracture	1-5	0.8	4	
Density	1-5	0.6	3	
		TOTAL:	22	

TABLE VII

Quality Index (Q.I.) Scoring System for Beryl Occurrences

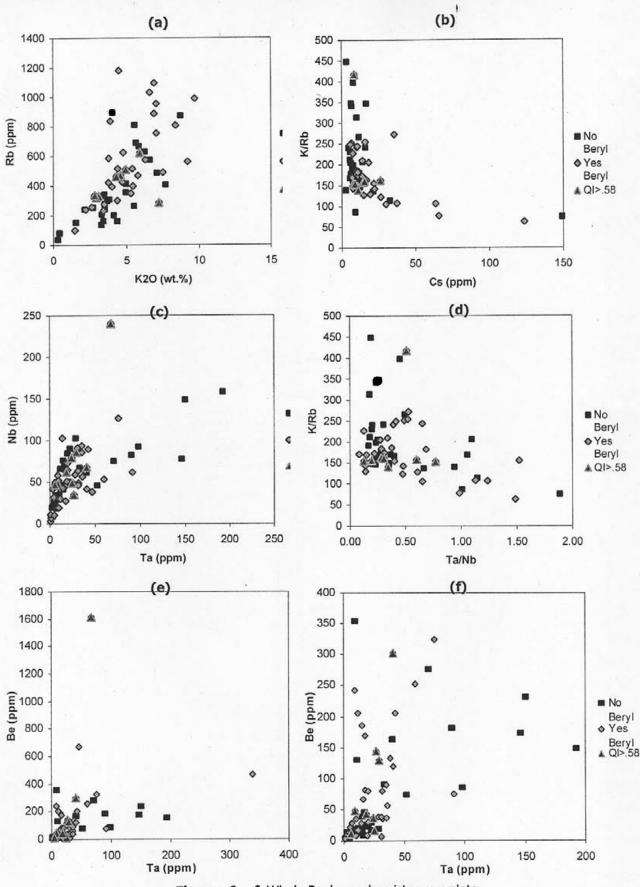
Each sample containing beryl was judged on the relative basis of colour, size, clarity, degree of fracturing of the crystals, and the density of beryl crystals in the vein or dyke. Each descriptive could have a maximum value of 5, with 5 being the best quality, and 1 the worst. Fracture and density were deemed by the author as having secondary importance to the overall quality of the crystals, and thus were weighted less than the other 3 categories. The weighted values were summed up for each sample, and then normalized to the maximum possible score of 22. The lowest possible Q.I score is 0.2, while the highest is 1.0. A total of 43 samples were judged with a resultant average score of 0.49 (see Table VIII). For a comparison of high quality gem-bearing pegmatites, to low quality beryl-bearing pegmatites, a set of statistics were calculated for the set of samples that have a Q.I. score greater than the 75th percentile, or Q.I.>0.58. Nine samples had a Q.I. score that exceeded this level. Statistics for this set are at the bottom of Table VIII.

Table VIII lists statistics for a list of elements and element ratios that the author considers pertinent to the exploration for beryl (gemstone) mineralization. On average, the beryl-bearing pegmatites (in contrast to the pegmatites devoid of VISIBLE beryl) contain marginally to significantly elevated K_2O , Rb, Cs (see also Figures 6a and 6b), Be (Figures 6e and 6f) and Mo. Tantalum (Figure 6c) is significantly lower, while Na₂O, W, and Sn are marginally lower.

The Be versus Ta (Figures 6e and 6f) plots seem particularly useful at discriminating between samples containing visible beryl, in contrast with those that do not. On average, it appears that beryl-bearing samples have high Be content and low Ta contents, whereas samples containing high Ta typically do not contain beryl.

The element ratios K/Rb (Figure 6b) and Ta/Nb (Figure 6d) are common ratios used to asses the degree of chemical fractionation in granitic systems. The significant variation in average K/Rb suggests that the beryl-bearing pegmatites are more chemically evolved than the non-beryl bearing pegmatites. However, the average Ta/Nb values are equivalent and do not suggest a significant difference.

ţ


Table VIII

Statistics For Select Elements of Sample Sets with 1) No Beryl, 2) Beryl Present, 3) Beryl Present with Quality Index Greater than 0.58. *Suggested ranges* are derived from 3) and x-y plots (Figures 6a to 6f); see text for details.

	K₂O N	Na₂O	Be f)s	Та	Nb	Fe ₂ O ₃	MnO	 Mo۱	W	Sn	K/Rb	Γa/Nb	Quality Index
1)No Beryl	%	%	ppm p	ppm p	pm	ppm	ppm	%	%	ppm j	ppm	ppm			(Q.I.)
Max	8.72	8.53	353.00	894.00	149.20	192.40	158.20	2.16	0.49	9.30	37.90	157.00) 448	1.89	N/A
Min	0.31	1.32	4.00	36.90	2.60	1.60	8.80	0.36	0.01	0.10	0.50	1.00) 75	0.12	N/A
Average	4.28	3.70	70.56	375.59	15.04	36.19	59.70	0.85	0.08	1.05	3.85	16.00	216	0.48	N/A
S. Dev.	2.00	1,49	89.92	240.34	25.73	48.20	36.32	0.36	0.10	1.80	6.72	33.73	93	0.42	2. N/A
75th %ile	5.58	4.46	99.75	508.10	14.08	35.08	78.68	1.03	0.10	0.80	2.93	12.75	5 248	0.54	N/A
n	28	28	32	32	32	32	<u>3</u> 2	28	28	32	32	32	<u>2</u> 8	32	N/A
2)Yes Beryl															
Max	9.70	5.48	1609.00	1179.60	123.50	339.70	240.20	1.50	0.45	30.10	6.00	84.00) 418	1.52	2 0.70
Min	1.47	0.80	4.00	98.00	5.70	0.90	3.10	0.36	0.01	0.10	0.10	1.00) 63	0.08	3 0.20
Average	5.06	3.38	135.15	509.78	19.17	31.89	60.84	0.80	0.10	3.27	2.28	9.90) 175	0.47	0.49
S. Dev.	1.94	1.14	258.05	259.24	20.48	50.50	44.71	0.30	0.10	6.99	1.33	17.14	64	0.34	0.11
75th %ile	6.53	4.09	141.25	612.55	18.93	35.50	66.78	1.00	0.12	1.65	3.08	10.00	200	0.60) 0.58
n	38	38	46	<u>4</u> 6	46	46	46	38	38	46	46	46	<u>38</u>	46	43
3) Yes Beryl	at 75th pe	ercentile	Q.I.					·							
Max	7.23	5.39	1609.00	622.70	26.10	67.80	240.20	1.14	0.34	19.80	4.80	5.00) 418	0.78	3 0.70
Min	2.83	1.74	12.00	287.40	7.80	5.90	34.70	0.54	0.01	0.20	1.00	1.00) 140	0.13	3 0.60
Average	4.48	3.36	259.89	415.60	12.01	27.62	79.12	0.78	0.12	3.40	2.04	2.25	5 188	0.38	3 0.63
S. Dev.	1.55	1.17	514.23	109.77	5.98	18.35	62.63	0.22	0.11	6.29	1.27	1.28	3 93	0.21	0.04
75th %ile	5.19	3.97	144.00	469.90	14.30	29.60	79.20	0.87	0.16	3.20	2.00	2.25	5 161	0.51	0.65
n	8	8	9	9	9	9	9	8	8	9	9	9	8	9	9
4) Suggested	> 2.5	х	>10	260-	5-	< 50	> 30	> 0.5	> 0.05	> 0.2	< 10	< 10	130-	0.1-	
Range		x		650	30							<u> </u>	170	0.8	

TableXQuery Return of Entire Sample-Set Based on BOLD (4) Suggested Range Criteria in Table VIII

Sample	Beryl?	Solour	Size (Diarity	Q.I.	K ₂ O]	Na ₂ O	Be	Rb	Cs	Ta	Nb .	Fe ₂ O ₃	MnO	Mo	W	Sn	K/Rb	Ta/Nb
D 208058	0					3.48	5.44	39	339.8	6	15.1	40.9	0.65	0.2	4.7	1	1	170	0.37
D 208059	0					3.24	4.68	24	331.1	7.6	20.3	84.8	0.72	0.18	1.3	1.7		162	0.24
JB3-U1	0							353	393	16.7	9.2	32.5			0.3	3.8	21		0.28
PN 10	0		het			3.68	3.88	17	297.7	5.9	22.6	90.1	0.74	0.07	0.4	2.2	3	205	0.25
PN 11	0					3.51	4.89	20	275.1	5.3	11.7	65.7	0.6	0.03	0.5	1.4	2	212	0.18
PN 13	0.5					4.96	3.7	21	414	7.6	19.8	84.3	0.68	0.06	0.5	1.8	1	199	0.23
TN 3	0			*		5.51	1.32	25	263.2	16.5	17.9	72.6	1.16	0.02	0.2	5.1	17	348	0.25
UN 2	0					7.08	2.64	129	486.3	15.8	10.6	34.9	0.86	0.08	0.2	2.2	16	242	0.30
D 208054	1	2.0	3.0	3.0	0.53	4.77	3.92	133	622.3	14.8	38.7	63.4	0.54	0.03	3.1	2	1	127	0.61
D 208056	1	3.5	2.0	4.0	0.66	2.94	1.74	144	319,3	8.2	26.9	34.7	1.14	0.03	19.8	1.4	1	153	0.78
D 208062	1	3.5	3.0	3.5	0.60	5.92	2.68	302	622.7	14.3	40.8	67.6	0.54	0.01	0.4	1		158	0.60
PB 1	1	2.0	2.5	2.0	0.42	4.37	2.81	82	300.2	10.1	17.6	44.8	0.46	0.01	0.2	1.9	3	242	0.39
PB 11	1	3.0	3.0	3.0	0.65	3.1	4.1	48	330.8	7.9	9.3	47.5	0.66	0.13	2.2	1.3	2	156	0.20
PB 13	1	3.0	5.0	2.0	0.61	4.3	3.2	12	463.5	8.9	5.9	46.6	0.54	0.02	3.2	1.6	2	154	0.13
PB 2	1	3.5	3.5	1.5	0.60	4.94	3.68	36	509.9	15.3	24.3	79.2	0.77	0.2	0.3	2	2	161	0.31
PB 20	1	4.0	3.0	4.0	0.70	7.23	2.17	16	287.4	8.5	25.1	48.8	1.06	0.34	0.6	1.3	2	418	0.51
PB 21	1	2.5	3.5	1.0	0.47	5.39	3.81	30	514.2	11.1	20	64.3	0.64	0.1	0.4	1.9	2	174	0.31
PB 24	1	3.5	3.5	3.5	0.61	2.83	3.92	129	336.6	11.1	29.6	85.8	0.8	0.07	0.2	3.5	5	140	0.34
PB 25	1	2.5	5.0	1.5	0.56	5.44	2.83	12	398.2	7.4	6.2	49.2	0.97	0.04	0.4	3.2	11	227	0.13
PB 3	1	3.5	2.5	1.5	0.50	4.71	4.49	17	425.8	11.3	11.9	42	0.68	0.26	0.3	0.8		184	0.28
PB 4	1	3.5	2.0	2.0	0.48	4.39	4.52	39	513.9	22.1	28.2	58.6	0.67	0.09	0.1	2.2	4	142	0.48
PB 6	1	2.0	2.0	3.0	0.45	6.29	2.16	35	573.7	10.8	31.6	45.9	0.36	0.01	0.7	1		182	0.69
PB 7	1	2.0	4.0	2.0	0.58	4	5	22	393.2	7.1	4.7	31.7	0.72	0.22	1.2	1	1	169	0.15
PB 8	1	2.0	4.0	2.0	0.58	2.8	5.48	28	324.9	7.6	6.4	46.6	0.76	0.12	1.5	1.3	1	143	0.14
JB3-L2	1	2.0	4.5	1.0	0.44			57	331.9	10.1	36.1	56.2			23.2	2	1	, , , , , , , , , , , , , , , , , , ,	0.64
JB3-L4	1	3.5	3.0	3.5	0.60			43	400.3	7.8	18.9	61.7			0.4	1.5	3		0.31
JB3-L10	1	3.0	3.0	1.0	0.45			90	535.8	11.3	35.5	93.5			30.1	3.2	3		0.38
JB3-T8	1	1.0	2.0	2.5	0.38			66	275	13.2	15.6	42.6			0.1	6	50		0.37
JB3-U2	1	1.5	2.0	3.0	0.42			186	306.5	13.9	14.9	42.4			0.2	3.1	21		0.35
TB 1	1	4.0	2.0	3.0	0.57	5.78	3.56	79	468.1	18.1	20	72.8	1.01	0.09	0.4	2	6	205	0.27
TB 2	1	4.0	2.0	3.0	0.57	3.47	4.65	38	274.8	13.7	30.8	90.9	1.01	0.19	0.4	2.1	7	210	0.34
max		4.0	5.0	4.0	0.70	7.23		353.00		22.10	40.80	93.50	1.16	0.34	30.10	6.00	50.00		0.78
min		1.0	2.0	1.0	0.38	2.80	1.32		263.20	5.30	4.70	31.70	0.36	0.01	0.10	0.80		127.24	0.13
average		2.8	3.0	2.5	0.54	4.57	3.65		397.72	11.16	20.20	58.79	0.75	0.10	3.15	2.15		195.17	0.35
stdev		0.9	1.0	1.0	0.09	1.29	1.13		107.09	4.12	10.22	19.11	0.21	0.09	7.27	1.20		65.43	0.17
75th %tile		3.5	3.5	3.0	0.60	5.44	4.52	86.00	<u>477.</u> 20	14.10	27.55	72.70	0.86	0.18	1.40	2,20	6.50	209.61	0.39

Figures 6 a-f Whole Rock geochemistry: x-y plots

P&L Geological Services, Box 5036, Lac Le Jeune, B.C., V1S 1Y8 Phone: 250-828-0522 Fax: 250-828-0512

In considering the subset of high quality beryl-bearing samples (Q.I.>0.58) some interesting differences in average elemental values are evident. Not surprisingly, average Be is higher in the high-quality Beryl samples; MnO and Mo are also marginally higher. MnO correlates weakly but significantly with perceived quality of beryl colour and clarity. What is also surprising is that the alkali elements (K, Rb, Cs) and corresponding ratio K/Rb have values that are intermediate between the no-beryl sample set and the yesberyl sample set. This suggests that an *intermediate* degree of alkali chemical fractionation (not necessarily *high*) is somehow correlative to good gem quality. Another surprising observation is the high average Nb (and corresponding low Ta/Nb ratio) for the high-quality beryl subset in comparison to the other two categories. Ta, W and Sn exhibit the lowest average values in the high-quality subset.

The above observations are tabulated in Table VIII in section 4) labelled *Suggested Range*. Based on the statistics presented and examination of the various x-y plots, the suggested ranges represent the ideal range of chemistry for samples containing good quality aquamarines. These values can be used as a comparative predictive tool to assess other dykes in the area that may or may not have visible beryl. In order to test this, I applied a query using the bolded values in Table VIII section 4) to the full pegmatite sample dataset in Table IV. The query result is tabulated in Table IX. The query captured 24 of the best Q.I. samples, out of a total of 46 beryl-bearing samples, as well as 8 of the 32 no-visible-beryl samples. It is recommended that these 8 sample locations receive further study.

The observations so far indicate there is potential for using geochemistry to locate gemquality beryls in pegmatites in the south central Kootenays. Under normal circumstances pegmatites are chemically zoned, in a predictable manner, at a variety of scales. Presumably, the observations made so far with respect to rock samples should also be applicable to soil geochemistry. Based on the statistics presented in this report the explorationist should be looking for Be-highs with elevated Nb, in combination with Talows, and moderate (not high!) Rb, Cs, and K/Rb. The tight clustering of K/Rb values (130 < x < 170) from the high quality beryl-bearing samples seems to be a particularly precise indicator of which samples have good gem-beryl potential. K/Rb values higher than this range are geochemically primitive (too hot, not fractionated enough); values lower than this likely indicate a pegmatite that has evolved through beryl saturation (i.e. too distal).

It should be noted that the method presented above (i.e. using geochemistry to locate gem quality beryl crystals) is based solely on an empirical, statistical modelling approach. The author (Brown) has discussed this method with Dr. Lee Groat at the University of British Columbia and has done preliminary literature research. Results conclude that there are no analogous precedents to this approach for beryl-gemstone exploration. To date there are no comprehensive published papers with regards to geochemistry for the emerald explorationist. The validity of this approach will be dependent on continued research.

SOIL SAMPLING

During the 2003 exploration program, a total of 140 samples were collected from the two grid areas plus 4 reconnaissance lines. Soil samples were collected from the OMG Grid along lines spaced 50 metres apart with samples collected at 50 metre intervals along the lines. In the Topaz area, a single line was put in along the roadcut, with soil samples collected along this line at variable 10 to 40 metre spacings. The 4 reconnaissance soil lines were sampled at 25 metre spacings. Table X lists locations and orientations of the reconnaissance lines.

Station	Area	UTM East	UTM North	Azimuth	To station
HIC 0+00	Columbian Hwy	523772	5443371	@300az	HIC 2+00
CB 0+00	Cultas claim creek	509021	5461959	@240az	CB 2+00
DP 0+00	Dianna Pass (Laib)	508563	5465598	@330az	DP 4+00
LP 0+50N	Lynx Pass	508548	5464316	@330az	LP 3+50N

 Table X

 Locations and Orientations of Reconnaissance Soil Lines.

Samples were taken from the 'B' soil horizon whenever possible and were collected using a mattock or shovel. Sample sites are labelled with fluorescent flagging with the station number recorded on it, and soil was placed in correspondingly labelled Kraft soil bags. All soil samples were shipped to ACME Labs Ltd. in Vancouver for analyses. In the laboratory samples were dried, sieved to -80 mesh and the fine fraction analyzed. Samples from the Laib and Topaz grids were analyzed as in Table II. Samples from the reconnaissance soil lines were analyzed as in Table III. ACME Labs Ltd. *Certificates of Analyses* for the soil geochemical survey can be seen in Appendix II.

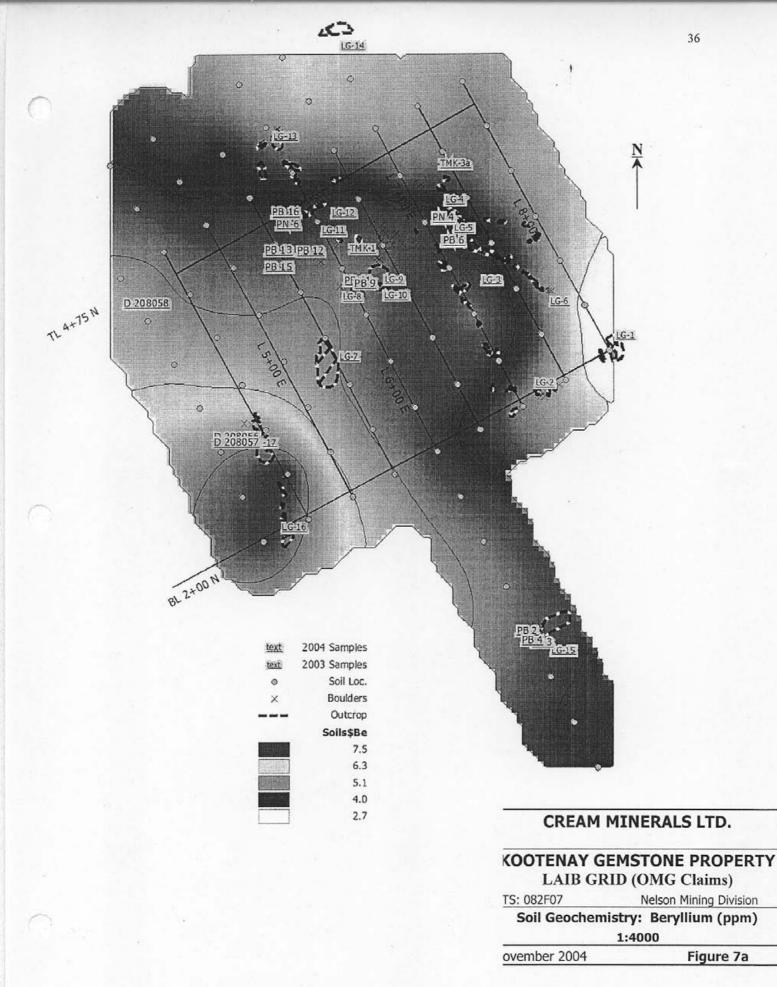
OMG Grid Soil Results

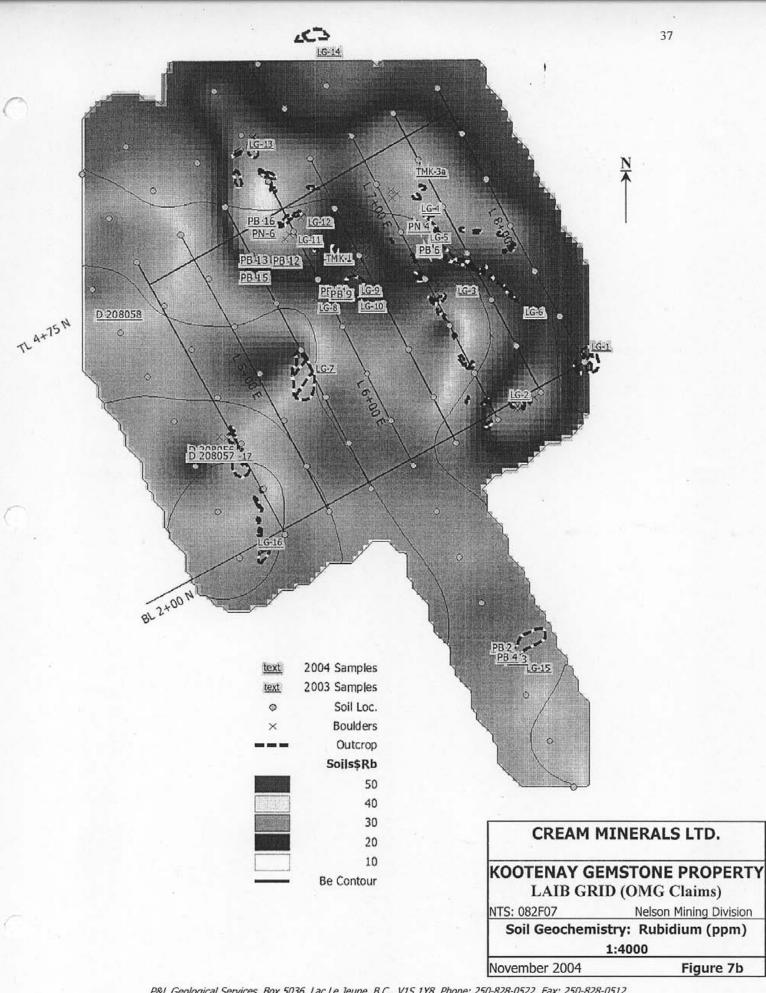
Figures 7a to 7g show soil values for significant elements of the OMG Grid area.

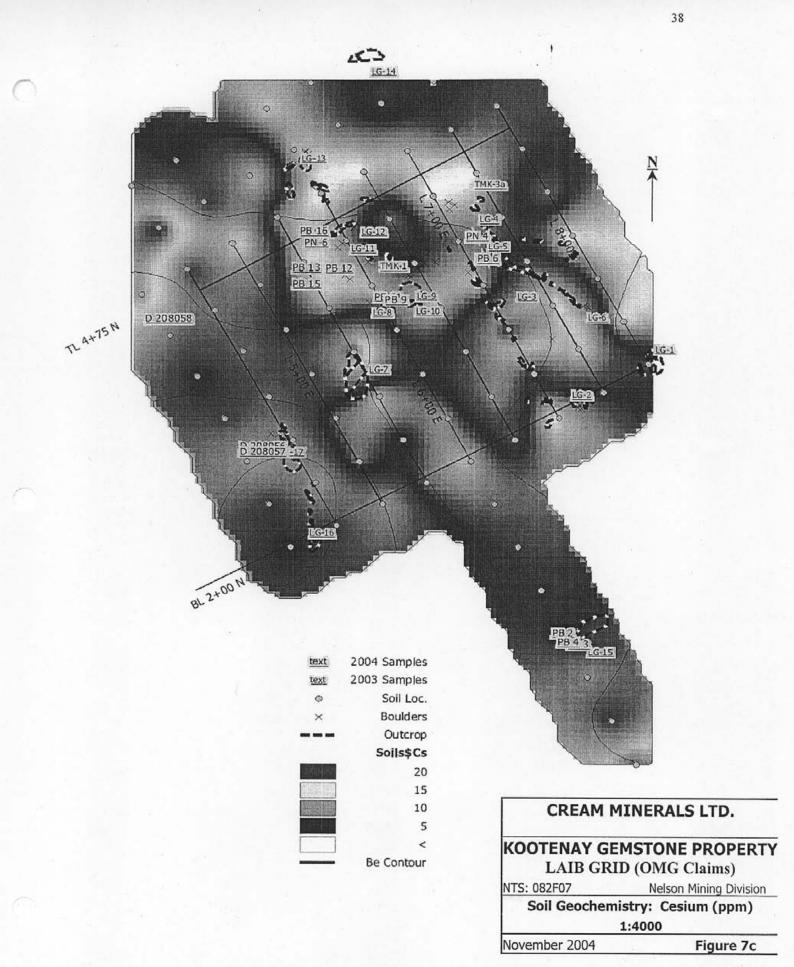
Individual Beryllium values (Figure 7a) are spotty, however, there is a moving average towards higher Be values towards grid south. Highest values are near pegmatitic granite (PG) outcrop at L4+50E/2+50N (George's showing) and near PG outcrop at L7+00E/3+50 N.

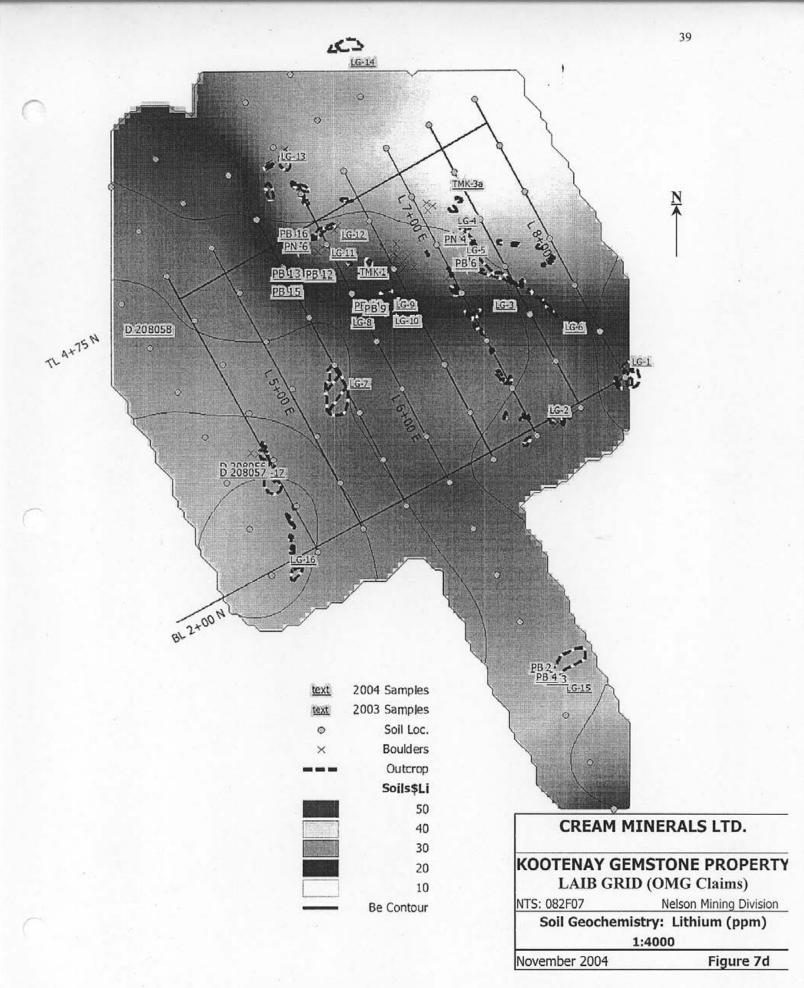
In contrast, spatial variations in Rb, Cs, and Li contents (Figures 7b to 7d) are evident. Elevated corridors of these elements begin at about L7+00E/3+00N and extend along a dogleg to station LG-7 at L5+50E. From there, moving grid-west and north, there are consistent elevated values that continue off-grid.

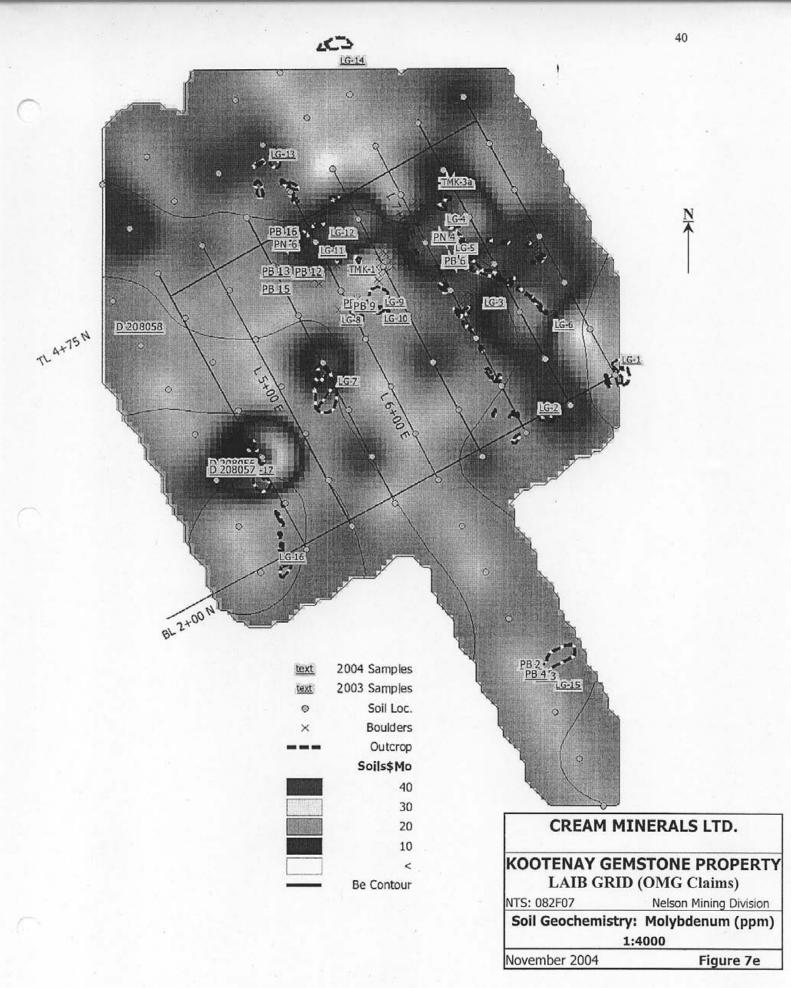
Molybdenum (Figure 7e) shows spotty values as well. Most high values cluster in the area of grid-NE, generally close to aplite units with known molybdenite mineralization. Notably, the highest value occurs at L4+50E/3+00N, near a vuggy quartz-molybdenite-beryl bearing vein containing good quality aquamarines that formed in the vugs.

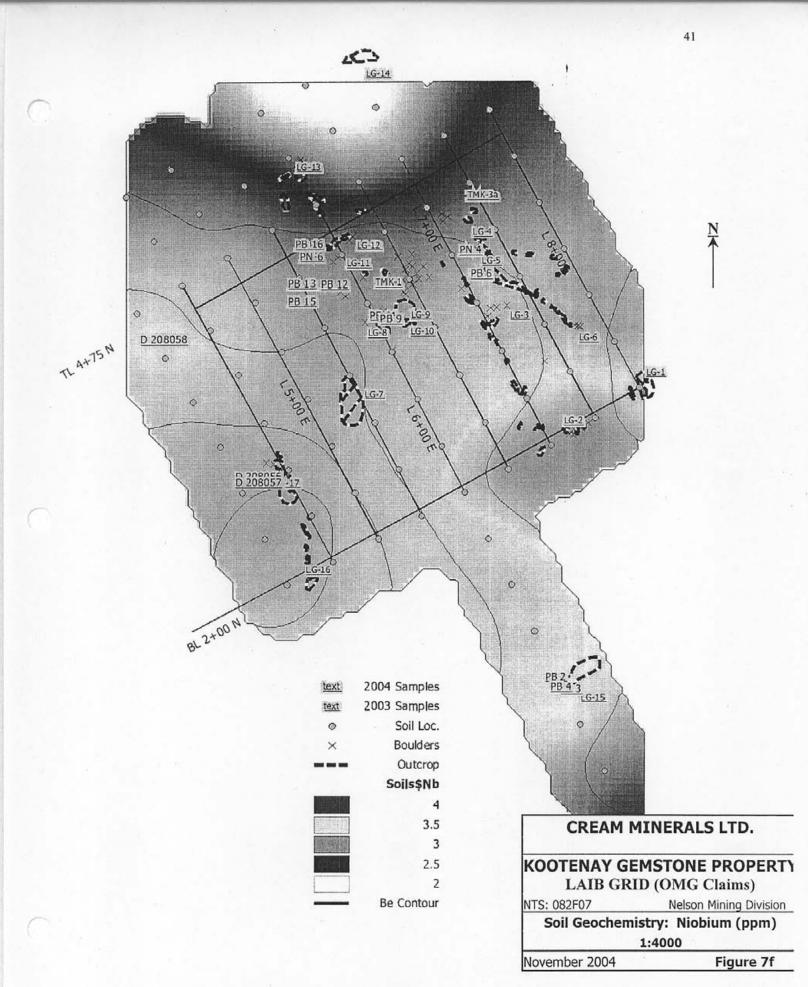

Niobium (Figure 7f) exhibits a fairly even and broad distribution of values. There is a notable trend of increasing Nb towards grid-west. Interestingly, Cs, Li and Nb all show high values at the southern-most limit of the grid on L6+00E.

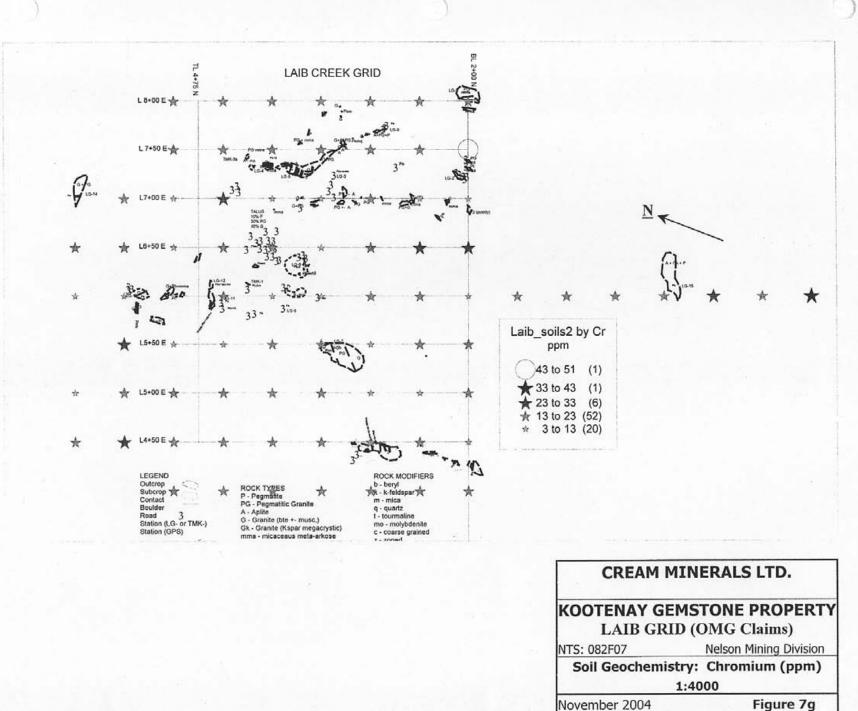

Chromium (Figure 7g) is included for completeness. The highest value occurs along the baseline at L7+50E in an area with abundant sedimentary rafts and xenoliths. No significant conclusions can be drawn here as all or most of the grid is underlain by granitoid rocks.


Reconnaissance Soil Results


Several stations along the CB and DB soil lines (Table VII) exhibit coherent multielement anomalies that suggest follow up work is needed to define the anomalies.


The abundance of coherent multi-element anomalies in most areas suggests that soil geochemistry is a viable tool for locating beryl rich pegmatites and is recommended for future work on the property.





November 2004

9) CONCLUSIONS

The Kootenay Gemstone Property contains numerous occurrences of beryl mineralization located proximal to the northern, western, and southern contacts of the Shaw Creek Stock. The cumulative length of this highly prospective contact area is in excess of 30 kilometres. Work completed to date has covered only a fraction of this area.

Known pegmatites in the northern claim units (OMG, Cultas) predominantly occur as dykes, pods, and schlieren within leucoquartz monzonites and K-feldspar megacrystic granites of the Shaw Creek Stock. Less commonly, beryl mineralization has been found in pegmatite dykes that extend outward into surrounding sedimentary lithologies.

At the Topaz Grid, the beryl-bearing unit is a fine to medium grained K-feldsparmuscovite-biotite pegmatite with a light grey to smokey quartz matrix. The main showing contains bluish-green beryls (aquamarine), some with significant gemmy sections. Of particular interest to emerald exploration at this location is the presence of Cr-rich gabbroic host rocks that contain up to 364 ppm Cr. This value falls well within average Cr values of mafic host rocks proximal to emerald mineralization at Regal Ridge in the Finlayson District of southeast Yukon (Groat et al., 2002).

In the southern claim units (Topaz, Columbian), 1 to 1.5 metre wide pegmatite sills are most common, hosted in biotite-muscovite schists of the Middle Aldridge Formation. Light bluish-white and yellowish white, opaque beryls are the most common, while translucent beryl crystals up to 5 centimetres long have been noted.

Work done by Cream Minerals Ltd. has led to the following conclusions:

OMG ZONE

The OMG Zone lies in the northern portion of the Kootenay Gemstone Property near Laib Creek. Geological mapping shows that 6 rock types occur in this area. Pegmatite, pegmatitic granite and late vuggy quartz-molybdenite veins host significant coloured beryl crystals. Rock and soil geochemistry results indicate that coherent multi-element anomalies, as pathfinders for beryl mineralization, do exist. Several targets within the grid area require follow-up, as do the open soil geochemistry results heading off-grid towards grid-NW. More detailed mapping and sampling of the Shaw Creek Stock in this area is required.

TOPAZ ZONE (HUMMM, Topaz, Columbian)

Beryl mineralization in the Topaz Zone is hosted in pegmatite dykes and sills intruded into country rock of varying lithologies. To date, the volume and quality of beryl gemstones has not been as impressive as those found in the OMG zone. However, significant beryl mineralization is present over a large under-prospected area. Most importantly, host rocks in contact with the pegmatites in these areas have good potential for high Cr contents.

RECCONAISSANCE MAPPING AND SAMPLING

Reconnaissance mapping and soil sampling in the Laib Creek and Cultas Creek areas have successfully outlined beryl mineralization associated with multielement soil geochemical anomalies.

Work done on the property to date has demonstrated that the Shaw Creek Stock, and immediately surrounding country rock, is highly prospective for beryl mineralization. It has also been demonstrated that lithogeochemistry and soil geochemistry techniques are successful at defining potential targets for beryl mineralization. Due to these facts, and that the Shaw Creek Stock is relatively unexplored, additional work is warranted on the Kootenay Gemstone Property.

10) RECOMMENDATIONS

Due to the success of the prospecting programs conducted to date on this large property, additional prospecting throughout the claim block is recommended. Estimated cost for this Phase I detailed prospecting, mapping and specimen collecting program is \$75,000. To follow up results generated by the prospecting program a second phase, consisting of excavator or blast trenching and specimen collecting from the best "showings" identified in the initial phase, is recommended. Estimated cost for Phase II is \$150,000.

During the general Phase I and Phase II recommended programs, the following specific targets areas will be followed up.

Specific Recommendations (from north to south)

- 1. Continued prospecting, sampling and mapping (particularly with respect to the contact), of the large area between the OMG (Laib) grid, and the Cultas Claims (approximately 6 square kilometres).
- 2. Trenching of the vuggy quartz-molybdenite-beryl veins at the George showing (vicinity of sample LG-17).
- 3. Follow-up prospecting, sampling and mapping of the contact on the Rusty Claims, particularly focussing on the westerly extension of the Jarrod showing (i.e. samples PB-17, 18, 19).
- 4. Reconnaissance prospecting and stream sediment sampling along the western margin of the Shaw Creek Stock south of the Rusty Claims. This work is to include follow-up traverses of up to a kilometre west of the contact in an attempt to detect pegmatites outside of the stock intruding potential Cr-enriched country rock.
- 5. Prospecting, mapping and sampling of the headwaters area of Topaz creek bounded by samples TN-7 and 8 on the east, TN-3 on the north, Toby Creek on the west, and TN-4 on the south (approximately 2.5 x 2.5 kilometres).
- 6. Excavator trenching of the mylonite zone at the Topaz grid area between samples TB-1 and TB-4 (200 metres at azimuth 255°). This area hosts the best emerald potential.

7. Reconnaissance prospecting of the White and Hot claims along new 2004 forest service roads.

Suggested priority sequence for specific target follow-up: 6,2,5,1,3,4,7.

Respectfully submitted,

ESSIO MICHAR OF J. A. BROWN #29239 BIRTIDH COLUMB 7 SCIEN

Jarrod Brown, M.Sc., P.Geo.

ESSIO ROVINCE L. DANDY BRITISH Linda Dandy

11) REFERENCES

- Brown, D.A., T.P. Doughty and P. Stinson, 1994. Preliminary Geology of the Creston Map Area, Southeastern British Columbia. *Geological Fieldwork 1994*, Paper 1995-1. pp. 135-155.
- **Brown, J.A.**, 2004. Mineralogy and Geochemistry of Beryl and Rare-Metal Bearing Granitic Pegmatites in the Kootenay Region of Southeastern British Columbia. *Geological Fieldwork 2003*, Paper 2004-1. pp. 167-184.
- Cerný, P., 1991. Rare-element granitic pegmatites, Part I: Anatomy and internal evolution of pegmatite deposits. *Geosci. Can. (Ore Deposit Models series)* 18: 49-67.
- Cerný, P., 1992. Geochemical and petrogenetic features of mineralization in rareelement granitic pegmatites in the light of current research. *Applied Geochemistry* 7: 393-416.
- **Evensen, J.M., and David London**, 2002. Experimental silicate mineral/melt partition coefficients for beryllium and the crustal Be cycle from migmatite to pegmatite. *Geochimica et Cosmochimica Acta*, 66(12): 2239-2265.
- Geoscience Map 2002-1: Intrusion Related Mineral Occurrences of the Cretaceous Bayonne Magmatic Belt, Southeast British Columbia, 1: 500 000. Compiled by James Logan (BCGS).
- Groat, L.A., D. Marshall, G. Giuliani, D.C. Murphy, S.J. Piercey, J.L. Jambor, J.K. Mortensen, T.S. Ercit, R.A. Gault, D. P. Mattey, D. Schwarz, H. Maluski, M. Wise, W. Wengzynowski, and D. W. Eaton, 2002. Mineralogical and geochemical study of the regal ridge emerald showing, Southeastern Yukon. *Can. Min.* 40: 1313-1338.
- Mulligan, R., 1968. Geology of Canadian Beryllium deposits. GSC, *Economic geology report*, No. 23. pp. 61-62.
- Reesor, J.E., 1996. Geology of Kootenay Lake, B.C.; Geological survey of Canada, Map 1864-A.
- Rice, H. M. A., 1941. Nelson map area, east half, British Columbia; Geological Survey of Canada, Memoir 228.
- Shearer, C.K., J.J. Papike, and S.B. Simon, 1986. Pegmatite-wallrock interactions, Black Hills, South Dakota: Interaction between pegmatite-derived fluids and quartz-mica schist wallrock. *Am. Min.*, 71: 518-539.

12) COST STATEMENT Kootenay Gemstones Property 1 June to 31 December 2004

Geology and Geochemistry Survey

Salaries and Wages: 4 Pers., 57.5 mdays @ \$279.13 Benefits @ 20%		\$16,050.00 3,210.00
Food & Accommodation, 4 pers., 57.5 mdays @ \$4.49		258.03
Rentals		
4wd PUs 29.5 days @ \$50.34	\$ 1,485.00	
Rock Saw 7 days @ \$35	245.00	
Blades	160.18	
Field Office	300.00	2,190.18
Supplies & Sundry		260.19
Fuel		227.00
Canadian Diamonds & Gems Consulting Ltd.		793.22
Assays & Analyses - ACME LABS		
66 Rocks for Au & 30el and		
2 Rocks for Au,Pt,Pd & 30el	\$ 1,475.40	
66 Pulps for Whole Rock & 47el	1,886.11	3,361.51
Shipments:		61.59
Report Preparation		4,475.00
Total Geology and Geochemistry Survey Expenditures		\$30,886.72

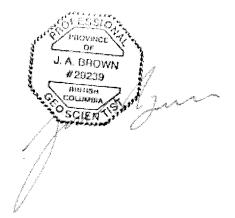
+ .

15) QUALIFICATIONS

I, Linda Dandy, hereby certify that:

- 1. I am an independent Consulting Geologist with P&L Geological Services having an office at 3728 Ridgemont Road, Lac Le Jeune, British Columbia, V1S 1Y8.
- 2. I am a graduate of the University of British Columbia with the degree of Bachelor of Science in Geology (1981).
- 3. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia (Registration No. 19236) and a Fellow of the Geological Association of Canada (Membership No. F5201).
- 4. I have practiced my profession in North America since 1981, having worked as an employee and consultant for Major Mining Corporations and Junior Resource Companies.
- 5. This report is based upon a personal examination of all available company and government reports pertinent to the subject property, and upon fieldwork undertaken on the property from May to October 2003 and June to September 2004.

Consulting Geologist


March 24, 2005 Lac Le Jeune, BC Ì

I, Jarrod Brown, hereby certify that:

- 1. I am an independent Consulting Geologist having an office at 6660-A Harrop-Procter Road, Nelson, BC, V1L 6R1.
- 2. I am a graduate of the University of Manitoba with the degree of Master of Science in Geology (2001).
- 3. I am a graduate of Simon Fraser University with the degree of Bachelor of Science in Physical Geography (1997).
- 4. I am a member of the Association of Professional Engineers and Geoscientists of British Columbia, as a Professional Geoscientist (P.Geo. License No. 29239).
- 5. I have practiced my profession in North America since 1998, having worked as a consultant for various Junior Resource Companies, and government surveys.
- 6. This report is based upon a personal examination of all available company and government reports pertinent to the subject property, and upon fieldwork undertaken on the property during the months of August to October 2003 and June to October 2004.

March 24, 2005 Nelson, BC

Jarrod A. Brown, P.Geo. Consulting Geologist

APPENDIX I

١

ROCK SAMPLE RESULTS

CERTIFICATES OF ANALYSES

ACME		'iC ∍002	AL L Acc			1 Co	.)	eam		.nei	GE ral	I. HAS OCHE <u>s In</u> anville	MICA	AL Z	ina : JEC'	LYS F B	AYO	CEI	RTI E	FI(Fi	A 1R6 CATE le # d by:	A	302	666			253-	•315	58 FAX	:(6r	253		16 A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm		Fe %	As ppm	U ppm	Au Th ppb ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm p	V opm	Ca %	Р % (La opm	Cr ppm	Mg %	Ba ppm	Ti %	B opm	A1 %	Na %	K X	W S ppm pp	: TI n ppm	S F K pt		e Te Ga Il ppm ppm
IR-1 fR-2 IR-3 fR-4 IR-5	.46 1.66 2.04 1.25 .48	19.41 13.68	3.85 3.15 2.82 1.75 2.29	5.0 3.0 70.4 65.5 1.9	23 13 13 12 16	8.7 6.9 25.0 5.0 6.9	1.5 10.2 13.7	199 226 3 452 3		.3 <.1 .1	2.7 4.1 1.9 .7 2.5	.7 2.8 .5 3.8 .7 6.6 <.2 .5 <.2 4.9	172.9	<.01	.03 <.02		<2 24 107 1	.01 . .02 . .54 .	004 3 011 19	3.1	6.1 22.3 1 8.9 1	.03 .32 .57	18.4 20.3 78.0 684.1 10.5	. 005 . 221 . 293	1 12 13	.40 .28	.035 1 .146 1		1.6 <.1 1.4 2. <.1 4. 1.8) .97· 7 .32·	01 - 01 - 01 -	5. 5.	<.02 1.3 ≺.02 1.3 2 .07 6.5 <.02 9.7 2<.02 1.0
FR-6 FR-7 FMK-2 FMK-3a _G-14a	.70 .35 1.34 7.73 3.25	30.80 2.12	2.06	39.2 57.0 108.8 4.7 100.7	11 12 9	6.1 22.4 1.7	7.3 21.5 .2	363 2. 690 2. 606 4. 207 711 3.	.82 .56 .23		.4 .5 .4 15.4 1.5	<.2 .6 .2 1.1 2.7 .6 .3 2.4 .8 5.7	66.2 16.3 .8	<.01 .03 <.01	. 03	.04 2.49 .06	41 124 <2	.61 . .05 .	101 3 029 2	3.8 2.0 : 2.3	125.0 1	.92 .95 .01	302.6 553.5 3.6<	. 242 . 351	<1 2 <1 2	.70 .84 .17	.045 1 .146 1 .127 1 .067 .034 1	. 18	<.1 2. 1.0 1. 106.6 9. 2.4 .6 3.	L .34- 3 .97-	<.01 - <.01 - <.01 -	5. 5.	3<.02 6.6. 1<.02 6.4 2 .04 9.9 1<.02 .7 2<.02 7.5
_G-15a RE_LG-15a .G-17a .G-17q STANDARD_DS5	.53 .58 14.94 77.89 12.88 1	.67 7.91	1.63 1.68 2.76 .47 25.60	1.5 1.5 1.1 .7 131.4	3 5 12 5 272	2.3 2.1 .8 2.9 23.7	.3 .2 .1 .2 11.9	81	. 23 . 41 . 61	.1 .1 .3	2.6 2.6 1.7 .1 6.4	<.2 2.2 .6 2.3 .2 3.4 1.2 .1 44.0 2.7	2.3 2.7 <.5	<.01 <.01 <.01 <.01 5.70	.05	.06 .11 .25	<2 <2 <2 <	.01 .	008 024	1.0 1.1 1.4 <.5 1.4 1	5.2 5.6 9.5 <	.01	7.4<	.001 .001	<1 <1	.16 .03	.043 .004	.17 .17 .15 .02 .13	0.0	2 .09 2 .07 2 .09 1 <.02 1 1.02	.05 <	5. 5.	1<.02 1.1 1<.02 1.0 2<.02 1.2 2<.02 .2 9 .84 6.5

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data

ACME AN TICAL	LABORAT	ORTES	trp.	852	E. HAST	TNGS	डगाःः नि	ICOUVE:	R BC	V6A 1R	6	PHONE (6	04125	3-3158	FAX (C)	253-1716
	ccredite	đ Co.)	ream 1	(Minera	JEOCHEM als Inc Granville	IICAL	ANALY	SIS (BAYON	SERTII	FICATI	I A302	666	(b)		AA
SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Zr ppm	Y mqq	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm	Tot Wt gm
TR - 1 TR - 2 TR - 3 TR - 4 TR - 5	$ \begin{array}{r} 1.37\\.80\\10.41\\7.54\\.77\end{array} $	<.1 <.1 .2 <.1	.05 .10 <.02 .08 <.02	1.41 1.31 .30 .34 .63	18.410.4123.364.97.8	$^{1.3}_{.7}$	<.05 <.05 <.05 <.05 <.05 <.05	1.1 2.2 .4 1.2 .5	3.48 8.12 3.01 9.00 3.89	5.7 6.7 36.1 6.4 12.8	<.02 <.02 .02 .02 <.02	<1 <1 <1 1	.8 .4 .9 .2	4.3 2.6 43.9 34.4 1.2	30 30 30 30 30	$ \begin{array}{r} 1600 \\ 1200 \\ 500 \\ 800 \\ 1300 \end{array} $
TR-6 TR-7 TMK-2 TMK-3a LG-14a	9.15 2.33 33.95 .38 69.86	.21.41.2	.06 <.02 .03 .04 .02	.24 .60 .27 .39 .39	$84.7 \\ 79.2 \\ 175.2 \\ 13.0 \\ 344.0$.3 3.3 .2	<.05 <.05 <.05 <.05 <.05	1.0	3.06 2.76 7.08 2.14 3.85	$\begin{array}{r} 4.6 \\ 6.7 \\ 5.1 \\ 4.8 \\ 23.4 \end{array}$	<.02 <.02 .03 <.02 .03	<1 <1 <1 <1	.7 .4 1.7 .3 1.5	48.6 70.5 195.1 3.9 238.7	30 30 30 30 30	$1000 \\ 1600 \\ 1000 \\ 900 \\ 500$
LG-15a RE LG-15a LG-17a LG-17g STANDARD DS5	.56 .54 .82 .10 5.96	.1 <.1 <.1 <.1	.02 .02 <.02 <.02 <.02 .05	.24 .23 .62 .07 1.60	14.1 14.5 23.0 2.6 14.2	.2 .2 .2 .2 .2 6.4	<.05 <.05 <.05 <.05 <.05	.4 .3 .4 .2 3.5	.30 .32 .55 .02 5.79	1.7 1.8 2.1 .1 21.8	<.02 <.02 <.02 <.02 <.02 1.31	<1 <1 <1 <1 <1	.9 .7 .5 .2 1.4	1.7 1.6 7.3 .8 15.7	30 30 30 30 30	400 400 1500

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML Z-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C TOTAL WEIGHT FOR ROCK SAMPLES. <u>Samples beginning 'RE' are Rerung and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: JUL 17 2003 DATE REPORT MAILED: July 30/03

 $_{\rm Data} N_{\rm FA}$

	YTICA JOO2						TD.	•	352 I Ge	і. Ш ЮСН									6A 1 ICAT			PHC	NE (604)	253	-31	58	FAX ((6(25	3-17 A	16
		<u>C</u> 1	:ea	m M	line	era.	.s Ir 140		<u>PRC</u> 570 Gr										ile ed by					P	age	1	(a))			Ĺ	
AMPLE#	Ва ррт		Cs ppm						Sr ppm	Ta ppm	Th ppm	U mqq	۷ ppm	W ppm	Zr ppm	Y ppm	La ppm	Ce ppm	Pr ppm	Nd ppm	Sm ppm			Tb ppm	Dy ppm		Er ppm	Tm ppm		Lu ppin		Cr20
183-C1 183-C2 183-L1 183-L2 183-L2	531.8 28.2 56.7	11.4 <.5 <.5	26.6 11.4 10.1	5 15.4 24.8 31.2	4 6.2 3 <.9 2 26.0	2 11. 5 126. 5 56.	3 247.8 274.1 5 417.8 2 331.9 1 116.6	3 <1 1	65.2 66.5 14.9 34.9 119.0	.7 75.9 36.1		3.6 5.3 35.0	66 <5 <5	.6 4.0 2.0	187.6 5.7 81.1	19.1 1.9 4.2	29.3 1.1 7.7	64.6 2.5 13.6	1.25 6.77 .28 1.08 8.58	25.2 .8 2.4	5.3 .3 .6	.96 <.05 <.05	4.01 .36 .29	.62 .06 .08	3.79 .40 .48	.72 <.05 .13	1.97 .13 .36	.27 <.05 .07	1.97 .12 .60	.32 .01	324 < 57 <	.00 00.>
83-L4 83-L5 83-L6 83-L7 83-L8	1013.3 51.2	9,2 <.5	25.6 18.5 38.5	5 20.6 5 29.6 5 43.8	574 8.9	18. 22. 5158.	7 400.3 2 259.8 7 247.0 2 772.9 7 665.4	2 5 3	29.7 69.6 44.5 19.9 64.6	1.8 192.4	14.1 22.1 4.8	3.8 5.2 24.8	62 85 <5	3.9 8.6 3.0	297.2 62.4	44.2 60.0 1.2	46.8 54.2 .7	101.1 116.4 1.5	.52 11.27 12.89 .16 11.72	42.8 49.3 .6	8.5 10.0 .1	1.40 1.80 .06	8.80 .20	1.14 1.46 .03	7.16 8.98 ,22	1.49 1.99 <.05	4,74 6.02 ,12	.72 .94 <.05	6.02 .13	.66 .95 .02	1 147 •	. 00 . 00
93-19 33-110 33-111 33-R1 33-T1	36.1 222.5 425.1	<.5 2.9 45.3	11.3 18.4 24.1	8 42.6 8.2 21.5	5.6 2.6.9 5.4.5	5 93. 9 8. 5 17.	3 270.5 5 535.8 2 110.8 5 92.4 2 196.8	3 3 2	84.9 26.9 159.6 216.7 628.3	35.5 .8 .9	14.2 2.3 8.7 1.9 4.4	3.7 2.5 .7	<5 25 365	3.2 .3 1.2	7.0 247.1 160.1	1.0 22.3 31.0	1.8 22.5 16.1	3.1 52.9 43.7	11.86 .30 5.68 5.43 2.69	.8 20.1 23.8	.3 4.0 5.9	<.05 .68 1.73	.24 3.23 5.95	.03 .62 1.05	.19 3.47 6.03	<.05 .74 1.27	.08 2.33 3.23	<.05 .39 .49	2.59 2.62	.02 .41	90 • 8 3	00. 00. 00. 00. 01. 00.
33-T2 33-T3 33-T4 33-T5 33-T6	524.8 45.7 988.6 150.3 157.6	1.7 7.9 4.4	36.9 162.9 5.1	27.8 27.3 16.9	3.8 3.9.1 9.6.6	8 57. 19. 6 8.		84 186 7	116.8 30.5 41.6 88.3 286.9	9.2 1.9	15.5	5.2 4.7 2.9	<5 62 70	4.4 11.6 2.1	26.6 306.1 208.4	2.0 63.5 34.4	5.4 56.2 27.7	8.3 132.5 64.6	8.98 .67 14.78 7.13 6.51	2.2 57.8 28.4	.4 11.3 5.5	.14 1.45 1.14	.43 9.87 4.67	.07 1.63 .81	.37 10.25 5.11	.07 2.24 1.17	.20 6.61 3.26	<.05 1.05 .56	.16 6.63 3.31	.97 .46	243 < 24 2	00. 00.> 00. 00.
33-77 33-78 33-78 33-01 33-02	33.8 33.5 195.0	.5 1.1 .7	13.2 13.2 16.7	23.4 22.7 15.9	4 1.(7 1.() .{) 41. 3 32.	L 38.6 5 275.0 4 272.6 5 393.0 4 306.5	50 49 21	35.2 13.8 13.5 97.0 16.0	15.6 12.2 9.2	.1 .2 1.5	3.9 3.3	<5 <5 <5	6.0 5.8 3.8	149.9 15.5 15.0 20.7 39.3	1.8 1.5 2.8	1.0 .8 4.2	24.5 1.5 1.5 7.8 1.3	. 15	.6 <.4 2.3	.1 <.1	.15 .17 .10	.15 .17	.03 .04 .09	.24 .24 .48	.06 <.05 .11	.15 .17 .27	<.05 <.05 <.05	.17	.03 .03 .03	208 66 58 353 186	<.00 <.00 00,
33-U3 33-U4 33-U5 33-U6 33-U7	92.2 1335.2 603.6	7.3 29.0 9.8	114.1 4.9 16.8	. 15.8 23.3 24.4	3 4.8 3 3.2 4 7.1	8 8. 2 21. 16.	5 307.3 5 522.8 2 59.8 9 202.4 5 183.3	39 2 7	97.6 28.0 828.8 64.8 40.9	.7 1.1 1.2	2.0 10.8 4.9 16.1 15.6	2.4 1.8 4.3	56 307 76	.9 2. 5.0	167.2 105.7 207.6	40.5 34.1 48.8	30.7 33.4 51.3	71.9 75.9 114.4	.79 8.04 10.08 13.09 14.45	32.1 44.4 48.7	8.0 9.3 9.8	1.48 2.51 1.57	7.93 7.53 8.02	1.23 1.11 1.34	6.91 6.24 8.06	1.40 1.30 1.68	3.90 3.44 4.96	.65 .46 .73	3.93 2.90 4.82	.64 .39 .68	41 < 15 <1 . 7 5_	.00 .00
33-UB 33-U9 TANDARD SO-17		7.8	41.1	. 27.1		26.	3 122.1 5 357.4 7 23.1	13	132.6 47.5 307.2	29.3		6.1	82	2.6	228.3	44.1	58.1	127.5		58.0	10.9	1.54	8.56	1.47	7.86	1.61	4,50	. 68	1.22 4.11 2.88	.62	7	<.00 .00 .43

GROUP 4B - REE - 0.200 GM BY LIBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: ROCK R150 60C Samples beginning (RE) are Reruns and (RRE) are Reject Reruns.

SIGNED BY ...

DATE RECEIVED: OCT 29 2003 DATE REPORT MAILED: NOV 17/03

REVISED COPY add Cr

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACHE ANALYTICAL		C	irea	am M	fine	eralı	a I	Inc.	PI	ROJE	CT	ко	OTE	NAY	GEI	MST	ONE	F	ILE	#	A30	534	9		Pa	ge	2	(a)	AC		TICAL.
SAMPLE#	Ba ppm	 Cs ppm	Ga ppm	Hf ppm	Nb ppm			Sr ppm		Th ppm	U mqq	•	W ppm	Zr ppm	•	La ppm	Ce ppm	•••			Eu ppm			-,					Lu ppn j		r203 %
JB3-U11 STANDARD SO-17						153.5 22.7																								3	.008
				Sampl	e ty	pe: ROC	K R1	50 60	с.																						

REVISED COPY add Cr

Data LFA

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	JB3-C2 JB3-L1 JB3-L2 JB3-L3 JB3-L4 JB3-L5 JB3-L6 JB3-L7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.0	4.9		<.1					<u> </u>	<u> </u>	сс	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	JB3 - L5 JB3 - L6 JB3 - L7	.4 2.4	2.2 4	$ \begin{array}{ccc} 2 & 1.1 \\ 1 & 6.1 \end{array} $	<5 <5	<.1 <.1	<.1 <.1	$.1 \\ 17.5 \\ 1.6$	<.1 <.1 <.1	.6 <	.01 .01 .01	$1.3 \\ .1$	<	
$ \begin{array}{c} JB3-T2\\ JB3-T3\\ JB3-T4\\ JB3-T4\\ JB3-T6\\ JB3-T8\\ RE JB3-T8\\ JB3-T8\\ JB3-T8\\ JB3-T8\\ JB3-U1\\ JB3-U2\\ JB3-U2\\ JB3-U2\\ JB3-U4\\ JB3-U5\\ JB3-U6\\ JB3-U6\\ JB3-U6\\ JB3-U6\\ JB3-U8\\ \end{array} $		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.0 1.7 5 3.7 4 2.1 2 1.2 7	$\begin{array}{cccc} 3 & 1.1 \\ 6 & 13.8 \\ 9 & 17.9 \\ 2 & .6 \\ 2 & 7.1 \end{array}$	۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰	<.1 <.1 .3	<.1 <.1 <.1 <.1	<.1 .1 15.3 .5	<.1 <.1	<.5	.01 (.01	.1 .7 .5 .2 1.3	۰ ۰ ۰	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JB3-L10 JB3-L11 JB3-R1	30.1 3.7	6.6 3 3.1 2.3 3 4.1 6 6.6 8	5 7.0 2 .7 7 4.4 1 37.9 3 7.0	1.2 <.5 <.5 .6	<.1 <.1	<.1 <.1	.7 .7 .4 .3	.1 <.1 <.1 <.1	<.5	.01 .01 .01	.61567		
JB3-U3 .3 2.4 3.1 4 .4 1.4 <.1	JB3 - T3 JB3 - T4 JB3 - T5	$\begin{array}{cccc} .7 & 10.7 \\ .3 & 4.0 \\ .4 & 5.9 \\ .5 & 12.4 \\ .8 & 21.6 \end{array}$	1.9 4 2.5	$\begin{array}{ccccccc} 1 & 3.3 \\ 9 & 1.0 \\ 9 & 8.1 \\ 7 & 1.9 \\ 7 & 13.0 \end{array}$	<.5 <.5 <.3 1.5 <.5	.1 .1 <.1 .1	<.1 <.1 <.1 <.1	.1 .1 .3 10.4 .7	<.1 <.1 <.1	<.5 .9 <	.01 .01 .01	.2 2.2 1 .5	۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰ ۰	
JB3-U5 .1 27.2 1.5 73 2.7 <.5	JB3-T8 RE JB3-T8 JB3-U1	$\begin{array}{cccc} .4 & 1.7 \\ .1 & 1.7 \\ .2 & 1.6 \\ .3 & 3.7 \\ .2 & 5.3 \end{array}$	$\begin{array}{ccc} 1.4 & 1 \\ 3.0 \\ 3.1 \\ 4.1 \\ 4.3 \\ \end{array}$	3.8 4.7 4.5 6.7 5.1.4	<5 5 5 5 5	.1	<.1 <.1	.1 1.1 1.1 .5 .1	<.1 <.1 <.1	<.5 .5 <	.01 .01 .01	.1 .1 .1	< 	
JB3-U8 9.3 1.7 10.2 4 1.4 .8 <.1 <.1 .2 .1 <.5 .01 <.1 <.5	JB3-U4 JB3-U5 JB3-U6	$\begin{array}{ccccccc} .3 & 2.4 \\ .1 & 1.1 \\ .1 & 27.2 \\ .6 & 21.2 \\ .3 & 12.3 \end{array}$	$\begin{array}{cccc} 3.1 \\ 2.3 & 14 \\ 1.5 & 7 \\ 4.6 & 5 \\ 2.4 & 4 \end{array}$	$\begin{array}{cccc} 4 & .4 \\ 7 & 5.4 \\ 3 & 2.7 \\ 6 & 6.6 \\ 12.7 \end{array}$	1.4 <.5 <.6	.2 .1	<.1 <.1 <.1	.1 .1 .3 .5	<.1 <.1		:.01 .01 :.01	<.1 3.1 .5 .5	55555 •••555 •••	
JB3-U9 .6 10.3 2.2 69 11.3 .7 <.1 <.1 .4 <.1 1.3 <.01 1.2 <.5 STANDARD DS5 11.8 139.7 23.9 132 25.7 18.8 5.3 3.5 6.0 .3 41.3 .18 1.0 4.8		$\begin{array}{rrrr} 9.3 & 1.7 \\ .6 & 10.3 \\ 11.8 & 139.7 \end{array}$	10.2 2.2 6 23.9 13	$\begin{array}{rrr} 4 & 1.4 \\ 9 & 11.3 \\ 2 & 25.7 \end{array}$.8 .7 18.8	<.1 <.1 5.3	<.1	.4	<.1	1.3 <	:.01	1.2	<.5 <.5 4.8	

CHE ANALYTICAL SAM	Cream PLE#	Miner Mo	als In Cu	PR	OJECI Zn	Ni	ENAY	Cd	Sb	Bi				Page T1		ACHE ANALYTICAL
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm				T1 ppm		
JB3 STA	-U11 NDARD DS5	12.7	$\begin{array}{r} 81.3\\ 142.0 \end{array}$	$3.0 \\ 23.7$	91 138	27.5 24.0	.7 19.1	5.5	3.5	.3 6.0	<.1	<.5 38.4	<.01 .16	1.0	<.5 4.9	
				Sam	ple t	vpe:	ROCK	R150	60C.							
				Dam		1001	<u></u>		000.							
																-

Data_____FA____

ME A' NYTICAL (I. 9002 Ac						ſD.			2 E. Gec											SA 11 CAT			PHO	NE (604)	253	3-315	8 F2	AX (6		253-	1716
允	Cr	<u>ea</u> :	<u>m]</u>	<u>Mir</u>	<u>ier</u>	<u>al</u>	8] 1400	<u>Enc.</u> • 570	PF	loj:	ЕСТ	' K	ООЛ	'EN	ΊΑY	GE	'MS'	ION	ΙE	Fil	e #	l A da D	405 andy	54	9	Pa	ıge	1				
SAMPLE#								Mn ippm					Th ppm						Ca %		La ppm			Ba ppm	Ti %	B ppm	Al %				Au** gm/mt	
SI PB 1 PB 2 PB 3 PB 4	<1 <1 <1	<1 2 6 1 <1	<3 <3	5 4 2	<.3 <.3	1 1 <1	<1 <1 <1	<2 47 191 280 97	.05 .22 .26 .18 .18	4 53 2	<8	<2 <2 <2	3 2	2 1 1	<.5 <.5 <.5	⊲ ⊲ ⊲	<3 3 <3	<1 <1 1	.02 .02		1 1 1	2 1 2	<.01 .01 <.01 <.01 <.01	33 3 2	<.01 <.01 <.01 <.01 <.01	<3 <3 <3	.14 .16	.04 .05 .06	.10 .12	<2 <2 <2	<.01 <.01 .01 .01 .01	
PB 5 PB 6 PB 7 PB 8 PB 9	<1	4 1 <1 3 <1	<3	2 4 6	<.3	1 <1 1	<1 <1 <1	78 25 260 165 81	.32 .23 .33 .37 .29	4 9	<8 <8	<2 <2 <2		1 2 2	<.5 <.5	<3 <3 <3	<3 <3 <3	<1 <1 1	.03 <.01 .01 .02 .01	.003 .007	<1 1 2	3 1 3	<.01 <.01 <.01 <.01 <.01	6 7 7	<.01 <.01 <.01 <.01 <.01	<3 <3 <3	.14 .16	.05 .04 .06 .07 .06	.10	<2 <2 <2	<.01 .01 <.01 .01 <.01	
PB 10 PB 11 PB 12 PB 13 PB 14	3 2 8 3 6	1 2 1 1 2	5 <3 <3 3 <3	3 4 4	<.3 <.3	1 1 <1	<1 <1 4	330 178 154 43 68	.33 .31 .36 .24 .38	3 3	<8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2	1 1 1	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	<1 <1 <1	.03 .03 .01 .01 .01	.019 .017 .009 .005 .010	1 1 <1	3 3 1	<.01 <.01 <.01 <.01 <.01	6 8 3	<.01 <.01 <.01 <.01 <.01	<3 <3 <3	.17 .13 .19 .15 .29	.07 .05 .05 .04 .03	.12 .09 .19 .13 .26	<2 <2 <2	<.01 <.01 .01 .01 .01	
PB 15 PB 16 PB 17 PB 18 PB 19	2 26 <1 <1 <1	<1 2 1 1	5 4 <3 <3 <3	3 38 9	<.3 <.3 <.3	<1 1 1	<1 2 <1	71 22 206 161 156	.20 .45 .54 .40 .24	<2 4 <2	<8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5	4 6 7		<3 <3 <3	<3 <3 <3	<1 · 5 2	<.01 .15 .07	.006 .008 .071 .032 .087	<1 9 2	1	.11 .05	11		<3 <3 <3	.38	.05 .04 .03 .06 .04	.29	<2 <2 <2	<.01 <.01 <.01 <.01 <.01	
PB 20 RE PB 20 PB 21 PB 22 PB 22A	1 <1 <1 <1 <1		3 <3 7 <3 3	6 5 2	<.3 <.3 <.3 <.3 <.3	1 1 1	<1 <1 <1	560 589 231 92 161	-46 -48 -26 -27 -24	3 2 <2	23 <8	<2	2 2	3 2 1	<.5 <.5 <.5 <.5 <.5	<3 <3 <3	<3 <3 <3	<1	.03	.014 .013 .011 .008 .022	3 3 1 1 6	4 3 2	<.01	5		<3 <3 <3	.25 .18 .17	.05	.15	<2 <2 <2	<.01 <.01 <.01 <.01 <.01	
PB 23 PB 24 PB 25 PB 26 PN 1	<1	5 2	<3 3 <3 6 3	6 4 18	<.3 <.3 <.3 <.3 <.3	<1 1 <1	<1 <1 <1	805 80 80 130 44	.46 .22 .28 .28 .28	<2 <2 <2	<8	<2 <2 <2	2 <2 8	1 1 7	<.5	<3 <3 <3	<3 <3 28	<1 <1 1	.02 .02 .19	.005 .008 .007 .091 .004		2 2 2	.01 <.01 .01 .01 <.01	6 11 41	<.01 <.01 <.01 <.01 <.01	<3 <3 <3	.24 .36	.05 .05 .04 .04 .04	.12 .19	<2 <2 <2	<.01 <.01 <.01 <.01 <.01	
PN 2 PN 3 PN 4 PN 5 PN 6	<1 1 1		3 <3 <3	3 2 4	<.3 <.3	1 <1 <1	<1 <1 <1	39 88 76 74 29	.20 .42	<2 <2 <2	<8 <8 <8	<2 <2	2 <2 <2	1 <1 1	<.5 <.5 <.5	<3 <3 <3	<3 <3 <3	<1 <1 · <1	.03 <.01 .01	.003 .007 .002 .005 .005	1 <1 <1	4 2 1	<.01 <.01 <.01 <.01 <.01	4 3 4	<.01 <.01 <.01 <.01 <.01	<3 <3 <3	20 14 18	.04	.12 .15 .15	<2 <2 <2	<.01 <.01 <.01 <.01 <.01	
STANDARD DS5/AU-1	MPLE	LEAC	HED	WIT	13	ML 2	2-2	HCL-H	N03-I	120 A	T 95	DEG	i. C	FOR	ONE	HOUR	, DI	LUTE	о то	10 ML.	ANA	LYSEI	р ву	ICP-	ES.		2.13		.15	4	3.39	7
>) CONCENTRATION EXC U** BY FIRE ASSAY FR SSAY RECOMMENDED FOR SAMPLE TYPE: ROCK R Ata W FA	om 1 Rock 150 6	A.T. AND OC	SAM COR	IPLE. ES/	MPL les	ES I begi	- CU hnin		AS : are	> 1%, <u>Rer</u> u	AG Ins a	> 30 nd /	PPM RRE1	& A are	\U ≻ e Rej	1000 <u>ect</u>	PPB Reru		GRA	7/04	, sam	FLES	UAN	LIMI	IAU	SULU	181 11 1	HCON	J.M.B	C	.L.	

of the analysis only

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A405549 Page 2

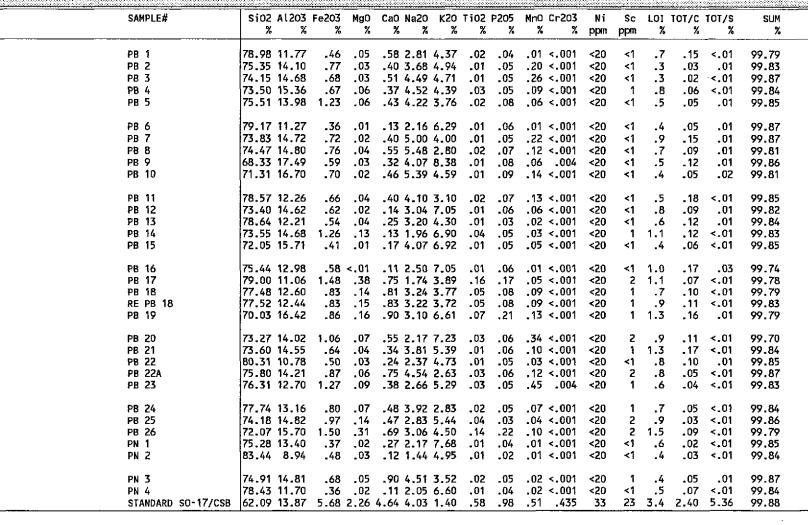
ACHE ANALYTICAL

Data WEFA

		earniche
SAMPLE#	to Cu Pb Zn Ag Ni Co Mn. Fe As. U Au Th Sr Cd Sb Bi V. Ca. P La Cr Mg Ba Ti B. Al. Na. K. W. Au** m ppm ppm ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm % % ppm ppm % ppm % % % ppm gm/mt	
PN 7A PN 8 PN 10 PN 11 PN 12	c1 5 <3	
PN 13 UN 1 UN 2 UN 3 UB 1	x1 x3 2 x3 x2 x2 1 x5 x3 x1 .03 .005 1 2 x.01 11 x.01 x3 .17 .06 .13 x2 x.01 x1 1 12 20 x3 x1 x1 x1 x2 y2 x2 x2 x1 x1 x1 x1 x1 x2 y2 x2 x1 x1 x1 x1 x1 x1 x2 y2 x2 x1 x1 x1 x1 x1 x1 x2 y2 x2 x1 x1 x1 x1 x1 x1 x2 y2 x2 x1 x1 x1 x1 x1 x1 x2 x2 x2 x1 x1 x1 x1 x1 x2 x2 x2 x1 x1 x1 x1 x1 x2 x2 x2 x1 x1 x1 x1 x1 x1 x1 x2 x2 x1 x1 x1 x1 x1 x1 x1	
UB 2 UB 3 TB 1 TB 2 TB 3	1 <1	
TB 4 RE TB 4 TN 1 TN 2 TN 3	x1 x2 x2 x2 x2 x1 x1 x1 x1 x1 x1 x1 x2 x2 x2 x1 x1 x1 x1 x1 x1 x1 x2 x2 x2 x2 x1 x1 x1 x1 x2 x2 x2 x1 x1 x1 x1 x1 x2 x1 x2 x1 x2 x1 x2 x1 x1 x2 x1 x1 x2 x1 x1 x2 x1 <td< td=""><td></td></td<>	
TN 4 TN 5 TN 6 TN 7 TN 8	x1 37 x3 99 x.3 13 6 651 1.09 x2 x8 x2 3 4 1.0 x3 17 8 1.29 .322 12 10 .11 18 .04 x3 .90 .10 .07 28 x.01 x1 11 x3 36 x.3 1 1 281 .54 x2 x8 x2 2 1 x.5 x3 10 x1 x1 0.01 x3 .28 .00 .06 11 x.01 x1 15 11 6 x.3 6 3 40 .38 x2 2 3 x3 x1 .21 .114 7 3 .01 23 x.01 x3 .50 .04 .21 x2 .01 x1 13 x3 x3 x3 x3 x1 .21 .114 7 3 .01 23 .01 .35 .04 .21 x2 .01 x1 x3 x3	
D 208054 D 208055 D 208056 D 208057 D 208058	3 4 5 <.3	
D 208059 D 208060 D 208061 D 208062 STANDARD DS5/AU-1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

NY YTICAL LABORATORIES LTD. 11 9002 Accredited Cc.)


WHOLE ROCK ICP ANALYSIS

NCOUVER BC V6A 1R6

Oct zzloy

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE File # A405549R 1400 - 570 Granville St., Vancouver BC V6C 3P1 Submitted by: Linda Dandy

852 E. HASTINGS ST.

GROUP 4A - 0.200 GM SAMPLE BY LIBO2 FUSION, ANALYSIS BY ICP-ES. LOI BY LOSS ON IGNITION. TOTAL C & S BY LECO. (NOT INCLUDED IN THE SUM) - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

PHONE (604) 253-3158 FAX (67

Page 1

253-1716

Data (. FA _____

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

DATE RECEIVED: OCT 9 2004 DATE REPORT MAILED:

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A405549R Pa

Page 2

SAMPLE#	sio2 %		Fe203 %							MnO Cr203				101/C	•	SUM	· · · · · · · · · · · · · · · · · · ·
	6	/6	/6	%	%	%	%	%	%	% %	ррт	ppm	%	%	%	%	
PN-5	73.35	14 QU	1 08	07	31	3 65	5 85	.02	05	.05 <.001	<20	<1	.5	,04	.02	99.83	
PN-6	70.92			.01				.01	.06	.01 <.001		<1	.6	,07	.01	99.81	
PN 7A	72.51			<.01				<.01		.49 <.001		<1	.5	.13		99.75	
PN 8	74.54			.06				.02		.05 <.001		2	.5	.10	.01	99.82	
PN 10	76.71		.74		.57				.03	.07 <.001		<1	.6	.07		99.79	
14 10	10.11	13.45			• • •	3.00	5.00	. 02	.05	101 11001	120	~1	.0	.07		77.17	
PN 11	74.53	14.99	.60	.04	.67	4.89	3.51	.02	.03	.03 <.001	<20	<1	.5	.12	.01	99.81	
	77.66		.69				2.71			.15 <.001		1	.6	, 13		99.83	
PN 13	75.61		.68				4.96		.04	.06 <.001		<1	.5	.07		99.79	
UN 1	75.10				. 19					.07 .005		<1	.7	,05	.01	99.80	
UN 2	72.03		.86				7.08		.44	.08 <.001		<1	.7		<.01	99.81	
										100 1001	-20		••				
UN 3	73.31	14.84	.85	.03	. 15	3.61	5.55	.01	.34	.03 <.001	<20	<1	1.1	. 14	<.01	99.82	
	73.59		.94		. 19					.12 <.001		<1	.9		<.01	99.84	
	77.88		.53		.21					.01 <.001		<1	.7		<.01	99.82	
UB 3	76.07				.35					.03 <.001		<1	1.7		<.01	99.82	
	71.45									.09 <.001		ź	.8		<.01	99.83	
												-					
тв 2	72.84	15.87	1.01	.10	.92	4.65	3.47	.03	.03	.19 <.001	<20	2	.7	,02	<.01	99.81	
TB 3	79.73	11.99	.85	.11	1.13	3.89	1.47	.02	<.01	.11 <.001	<20	2	.5	.01	<.01	99.81	
ТВ 4	72.41	15,09	.39		.27				.02	.02 <.001	<20	<1	.5	.01		99.73	
RE T8 4	72.00	15.16								.01 <.001		<1	.7	.01	.01	99.77	
TN 1	74.37				1.24					.04 <.001		1	1.1	.04	.02	99.85	
TN 2	74.45	14.98	1.06	.20	-94	3.89	3.31	.04	.04	.09 .001	<20	3	.8	.02	<.01	99.80	
TN 3	74.03	15.28	1.16	.26	.72	1.32	5.51	.09	-03	.02 <.001	<20	5	1.4	.02	<.01	99.82	
TN 4	57.19	22.90	2.16	.28	8.51	5.60	.31	.27	.76	.18 .002	21	4	1.6	.09	.03	99.77	
	75.16									.14 .004	<20		1.1		<.01	99.80	
TN 6	75.20	14.73	1.02							.01 <.001			1.8		<.01	99.75	
TN 7	73.05	15.26	1.37	.29	1.47	3.56	3.41	.09	.18	.02 <.001	<20	3	1.1	.01	<.01	99.80	
TN 8	72.56									.04 <.001			4.3	. 02	<.01	99.79	
	75.58			.03						.03 <.001			.7		<.01	99.82	
	73.09	15.78								.03 <.001			1.1	.01		99.83	
	85.66	7.39								.03 <.001		<1	.7	.05	.04	99.81	
				_													
D 208057	71.59	15.29	.43	<.01	. 10	2.24	9.70	<.01	.06	.01 <.001	<20	<1	.4	.05	.02	99.83	-
D 208058	74.22	15.16	.65	.01	.36	5.44	3.48	.01	.08	.20 <.001	<20	<1	.2	.07	<.01	99.81	
STANDARD SO-17/CSB	61.74	14.00	5.85	2.29	4.55	4.12	1.40	.59	.99	.52 .435	29	23	3.4	2.40	5.39	99.89	
	-			.,													

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A405549R Page

ACKE ANALYTICAL

SAMPLE#	\$i02 %	Al203 %	Fe203 %										Sc ppm		TOT/C %	TOT/S %	SUM %	
D 208059	75.41	14.85	.72	.02	.28	4.68	3.24	.01	.06	. 18	<.001	<20	<1	.5	.02	<.01	99.95	
																	99.92	
D 208061	79.08	12.55	1.04	.10	.32	3.52 (2.15	.04	.08	.06	<.001	<20	1	1.0	.01	< 01	99.94	
D 208062	77.46	12.38	.54	.02	.22	2.68	5.92	.01	-09	.01	<.001	<20	<1	.6	.07	<.01	99.93	
STANDARD SO-17/CSB	61.27	14.13	5.74	2.35	4.62	4.18	1.41	.60	.98	.52	.435	40	23	3.4	2.42	5.40	99.65	

Sample type: ROCK PULP,

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_ 🖡 FA

LC				. Mi			Inc. 1400	570	Gran	ville	St.,	Vanco	uver	BC V	SC 3P1	Su	bmitt	ed by	: Lin	da Da	ndy			<u>де</u>		<u></u>				L	Ľ
SAMPLE#		Co ppm	Cs ppm	Ga ppm	Hf ppm	Nb ppm	Rb ppm	Sn ppm	Sr Ippm	Ta ppm		U ppm	-	W ppm	Zr ppm		La ppm					Eu ppm		ть ррп	Dу ррп		Er ppm j		урл р Yb		Ba ppm
PB 1 PB 2 PB 3 PB 4 PB 5	36 17 39	<.5 <.5 <.5	15.3 11.3 22.1	23.5 35.7	2.9 2.8 2.3	79.2 42.0 58.6	300.2 509.9 425.8 513.9 421.8	2 <1 4	34.7 33.7 33.4	24.3 11.9 28.2	2.2 2.3 2.3	4.0 9.3 3.6	<5 <5 <5	2.0 .8 2.2	30.2 30.0 27.9	5.1 9.1 8.1	1.9 1.5 2.7	3.7 2.8 5.1	.34 .25 .52	1.2 1.0 1.8	.5 .3 .6	<.05 .06 <.05	.44 .39 .71	.10 .13 1 .16 1	.69 .15 .07	.13 .25 .23	.94 .59	.08 .20 1 .11 1	.72 . .75 .	. 12 . 32 . 15	80.9 50.7 54.0
PB 6 PB 7 PB 8 PB 9 PB 10	22 28	<.5 <.5 <.5	7.1 7.6 13.8	24.9 28.5 27.7	1.5 1.1 .6	31.7 46.6 6.8	573.7 393.2 324.9 807.3 469.9	1 1 <1	19.1 28.7 37.2	31.6 4.7 6.4 1.5 67.8	1.2 1.6 .8	4.5 5.8 1.6	<5 <5 <5	1.3 .5	20.1 21.8 9.4	14.4 11.5 5.0	3.5 1.4	2.4 6.1 2.4	.20 .54 .23	.5 1.9 .8	.2 .4 .2	<.05 <.05	.36 .43 .18	.13 1 .14 1 .05	.58 .40 .52	.37 .31 .12	1.16 1.06 .51	.28 2 .28 2 .12 1	.71 . .49 . .27 .	.41 .38 .19	30.8 59.4 85.8
PB 11 PB 12 PB 13 PB 14 PB 15	205 12 29	.6 2.7 <.5	26.4 8.9 19.2	29.8 23.0 43.5	.6 <.5 .7	89.3 46.6 102.7	330.8 955.1 463.5 886.9 1095.4	3 2 6	22.3 12.0	9.3 42.5 5.9 14.4 31.8	1.6 .5 1.3	2.0 10.0	<5 <5 <5	2.2 1.6 3.9	7.9 3.4 11.2	.8 1.0 2.0	1.2 .7	1.4 .8 2.8	.12 .08 .29	<.4 <.4 1.0	<.1 <.1 .2	<.05 <.05 <.05	.11 .08 .24	.03 .02 .04	.12< .13< .28	.05 .05 .06	.06<. .17<.	.05 .05 .05	.13 .	.02 .01 .03	55.5 29.0 58.8
PB 16 PB 17 PB 18 RE PB 18 PB 19		2.0 .8 .7	66.0 37.5 38.6	21.9 19.9 20.6	2.4 1.2 1.1	41.5 52.9 56.5	753.6 835.9 583.3 592.4 1032.3	16 1 10 1 10 1	205.8 237.8 236.2	41.0 59.8 63.4	8.5 5.2 5.5	5.9 9.3 10.5	17 <5 6	2.8 2.1 1.6	77.5 29.2	8.4 6.2 6.5	7.5 7.7	39.2 12.6 13.2	3.87 1.30 1.34	13.4 4.3 4.6	2.1 .8 .8	.46 .30 .29	1.37 .74 .57	.23 1 .12 .11	.22 .73 .82	.27 .18 .20	.72 .59 .54	.13 .11 .12	.76 .	.11 6 .11 3 .11 4	54_1 93.2 23.9
PB 20 PB 21 PB 22 PB 22A PB 23	16 30 8 11 7	.5 .5	11.1 10.4 6.3	26.1 17.8 25.1	1.9 1.5 2.3	64.3 50.7 41.5	287.4 514.2 422.7 256.1 349.2	2 3 7	42.2 18.9 17.8	20.0 19.1 3.4	2.9 1.8 7.8	5.4 4.7 7.3	<5 <5 <5	1.9 1.5 2.0	21.6 18.2 39.8	6.7 4.1 20.5	2.5 1.5 7.4	3.9 2.7 16.2	.46 .31 1.76	1.5 .9 7.0	.6 .4 2.2	.07 <.05 .10	.46 .42 2.34	.15 .12 .52 3	.91 .59 .07	.17 .10 .63 1	.46 .30< 1.63	.10 .05 .27 2	.79 . .44 . .36 .	. 13 . 05 . 31	94.3 41.2 27.7
PB 24 PB 25 PB 26 PN 1 PN 2	12 75 5	.8 2.3	7.4 123.5 10.0	37.1	1.0 3.0 <.5	49.2 61.4 9.0	336.6 398.2 1179.6 406.8 355.7	11 12 <1	55.5 168.1	6.2	1.4 10.3 .9	5.8 10.2 .7	<5 15 <5	3.2 2.3 .5	11.2 69.4 3.0	6.4 6.7 6.7	1.8 21.9 1.8	3.7 39.8 2.6	.40 3.94	1.5 13.8 1.0	.5 2.0 .3	.09 .40	.68 1.51 .35	.15 .25 1 .11	.98 .26 .74	.16 .25 .17		. 10 . 09 . 08	.63 . .58 .	.11 1 .10 4 .06 1	45.5 91.3 96.3
PN 3 PN 4 Standard SD-17		.5 <.5 18.5	6.9		<.5	26.4	243.2 573.5 24.3	<1	15.4	4.4	.4	.6	<5	.8	4.0	1.1	.6	1.0	.12	.4	.1	<.05	.11	.03	.12<	- 05	.08<	.05	.18<.	.01	38.0
Data [FA _			DAI	'E RI	- s <u>San</u>	UP 4B - AMPLE T Iptes be	ΥΡΕ: ginn	ROCK ing 'R	PULP <u>E'are</u>	e Reru	ins an	<u>id 'R</u> j	<u>RE'a</u>	re Rej			z/o	4	•					δI . L ence	Leo		A DAN			

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A405549R Page 2 (a)

	<u>.</u>																													alme ana	
SAMPLE#	Be ppm	Co Mag	Cs	Ga ppm	Hf ppm	Nb ppm	Rb ppm	Sn	Sr ppm	Ta moo	Th ppm	U ppm	V	W maa	Zr	Y		Ce ppm			Sm	Eu	Gd ppm	tb mca	Dy	Ho ppm	Er ppm		Yb ppm	uJ mqq	Ba ppm
								· · · · · ·								••	.,		<u> </u>		••						.,		<u>.</u> .		
PN-5	22					71.6				16.5																		<.05			=, 10
PN-6	8					18.2							5		3.6													<.05			145.6
PN 7A	231	<.5				148.6				150.1							-					<.05									5.1
PN 8	10	.5				33.9			62.1						34.3																
PN 10	17	<.5	5.9	28.2	1.7	90.1	297.7	3	101.1	22.6	1.7	8.1	<5	2.2	33.7	6.5	2.8	2.4	.42	1.5	.3	.12	.43	.13	.75	.17	.50	.10	1.02	.15	191.3
PN 11	20	<.5	5.3	24.8	<.5	65.7	275.1	2	79.9	11.7	2.1	2.6	<5	1.4	11.3	2.5	3.1	4.5	.54	1.7	.6	.12	.37	.10	.41	.06	.18	<.05	.33	.05	166.7
PN 12	18	.5	6.1	27.4	1.2	102.5	252.9	2	36.6	28.8	3.2	6.1	<5	1.9	18.0	13.7	4.4	5.2	.84	2.5	1.0	.06	1.07	.29	1.79	.32	.95	.20	2.10	.29	64.6
PN 13	21	.5	7.6	25.7	.6	84.3	414.0	1	47.9	19.8	2.4	2.5	<5	1.8	10.7	5.6	2.5	3.8	.45	1.5	.5	.06	.60	.13	.76	.13	.42	.09	.99	. 14	122.4
UN 1	181	<.5	13.9	19.1	1.9	82.2	307.9	14	15.7	90.2	.4	11.7	<5	1.7	23.2	.8	.5	.6	.08	<_4	.1	<.05	.11	.02	-11	<.05	<.05	<.05	.10	-02	31.7
UN 2	129	.7	15.8	18.1	<.5	34.9	486.3	16	44.2	10.6	.6	2.8	<5	2.2	7.0	1.6	1.1	2.3	. 25	.7	.3	.12	.27	.06	.21	.05	.13	<.05	-19	.02	310.4
UN 3	73	.5	32.6	23.8	.5	45.7	809.6	31	19.1	52.5	.4	9.2	<5	2.7	6.8	.7	.8	1.6	.17	.7	.1	<.05	. 17	.02	- 12	<.05	<.05	<.05	<.05	<.01	24.9
UB 1			10.4			27.2				17.8																					46.3
UB 2	7					10.1				5.3		11.6			6.8	.6		1.0										< 05			61.6
UB 3	206					29.8									32.5													06			59.3
TB 1						72.8				20.0																					
тв 2	38	.6	13.7	26 7	3.0	90.9	274.8	7	56.1	30.8	4.0	16.4	<5	2.1	35.2	25.1	6.1	14.1	1.60	5.9	2.2	.16	2.62	.52	2.95	.64	1.07	. 44	3.44	.46	50.1
TB 3	37					85.3				35.5																					
TB 4			35.5			19.4				10.3					7.3													< 05			783.1
RE TB 4	1					14.7			233.8			4.9	<5																		801.0
TN 1						50.0				22.7																					
TN 2	on	1.3	11.4	31.0	1.8	66.9	206.7	0	183.3	33.2	7.1	4.7	<5	3.8	25.5	38.9	9.0	18.6	2.12	7.7	2.7	. 18	2.60	.66	4.66	.99	3.32	.70	4.82	-69	78.4
TN 3						72.6																									
ITN 4		7.8				75.0																									
TN 5		1.1				92.6																									40.4
TN 6						77.5																									
11 0	113	3.,	(1) IL	50.7	/		0/110		,	140.1		/			E-411			0.0	1150	••••	•••			••••	• • •				••••		
TN 7	18	.9	6.2	20.6	1.1	23.6	162.7	8	208.4	6.2	11.5	6.8	6	2.6	24.8	73.8	18.1	38.4	4.62	16.6	5.4	.75	5.80	1.43	9,28	2,24	6.98	1.21	7.93	1.10	195.6
TN 8	9					24.2	200.5	8	148.8	5.7	9.3	5.0	6	2.9	38.2	30.7	15.6	34.9	3.65	14.2	3.0	.54	2.71	.61	4.31	.86	2.88	.55	3.58	.53	240.0
D 208054	133	.6	14.8	30.4	.8	63.4		1	27.9	38.7	1.6	5.1	<5	2.0	8.2	1.4	1.0	2.0	.21	.6	.3	<.05	.25	.05	.22	.05	. 11	<.05	- 13	.01	51.7
D 208055	9	.6	12.0	35.5	<.5	65.3	628.4	3	28.1	15.9	5.0	26.9	<5	2.1	3.7	2.9	2,1	3.4	.48	1.6	.4	.08	.47	.10	.52	.08	.18	<.05	.37	. 05	60.0
D 208056	144	<.5		17.5		34.7		1	18.5	26.9	1.0	1.5																			64.1
D 208057	7	< 5	16.7	21.0	<.5	3.1	989.5	<1	38.5	0	.2	1.0	<5	.1	2.2	7	.5	.8	.06	<.4	<.1	<.05	-06	.01	. 14	<.05	<.05	< .05	- 10	<.01	119.0
D 208058		< 5				40.9		1	15 7	15.1																					
STANDARD SO-17	1					23.6																									
		10.0		.0.0											337.0						<u>.</u>	,	2019			** 1	2.03				

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🔓 FA

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A405549R Page 3 (a)

Hole Hole Hole Hole		· · · · · · · · · · · · · · · · · · ·													·																	AL.
SAMPLE#	Be	Co	Cs	Ga	Яf	Nb	Rb	Sn	Sr	Ta	Th	U	۷	W	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu	Ba	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pbw b	pm	ppm p	pm	bbu b	p m	ppm	
D 208059	24	<.5	7.6	26.9	2.1	84.8	331.1	<1	7.3	20.3	1.6	7.2	<5	1.7	23.2	1.0	1.0	2.1	.23	1.1	.2 <	<.05	.44	.07	.15<.	.05	<.05<.1	05	.14 .	03	26.0	
D 208060	162	1.2	21.2	34.3	1.7	61.0	688.3	<1	39.7	40.7	2.1	3.1	<5	2.1	12.2	1.5	1.7	3.2	.31	<.4	.2	.20	.39	.07	.22	06	.08<.0	05	.09 .	02 1	55.1	
D 208061	45	1.2	9.7	25,5	1.9	46.3	239.8	<1	53.7	16.4	2.8	3.7	<5	2.5	25.2	6.9	3.0	6.7	.65	1.3	.6	.14	.76	.21	1.00	.20	.60 .1	11-1	.03 .	16 1	07.0	
D 208062	302	.8	14.3	19_1	.6	67.6	622.7	<1	29.8	40.8	1.2	1.3	<5	1.0	6.7	2.9	2.2	3.3	.28	<.4	.3	.06	. 35	.11	.49	.08	.16<.0	05	.09 .	03	60.7	
STANDARD SO-17	<1	18.1	4.0	19.1	11.8	25.0	23.0	10	307.5	4.2	10.7	11.8	129	10.6	348.8	26.7	11.4	24.2	3.01	13.5	3.4 1	1.08	3.59	.72	4.38	.9 0 (2.83 .4	41 2	2.80 .	46 4	24.9	

Sample type: ROCK PULP.

ACME AN YTICAL LABORATORIES LTD. 852 E. HASTINGS ST. NCOUVER BC V6A 1R6 9002 Accredited Co.) (I)

2.2

9.4

3.6 1.9

2.5 2.8

3.2 3.0 1.7

7.3 3.5 2.4

1.7 1.6 2.3

PB 11

PB 12

PB 13

PB 14

PB 15

GEOCHEMICAL ANALYSIS CERTIFICATE

		<u></u>	<u>accer</u>		<u></u>		<u></u>	<u></u>		<u></u>				•	<u></u>		<u></u>
SAMPLE#	Mo	Cu	Pb	Zn	Ní	As	Cd	Sb	Bi	Ag	Au	Hg	11	Se	ł	8*	
 	ppm	ppm	ppm	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ррь	ррп	ppm	ppm	ppm	ppm	
PB 1	.2	3.8	2.5	3	.7	4.6	<.1	.1	.3	.1	<.5	.01	<.1	<.5	70	<1	
PB 2	.3	7.7	1.1	2	.8	51.2	<.1	.4	<.1	<.1	2.3	<.01	.1	<.5	240	1	
PB 3	.3	3.4	.9	2	.6	1.7	<.1	.1	<.1	.1	<.5	.01	.1	<.5	60	<1	
PB 4	.1	2.7	1.2	2	-4	2.7	<.1	< 1	.1	<.1	<.5	<.01	.1	<.5	570	3	
PB 5	1.5	6.2	2.0	2	.9	15.0	<.1	.1	.1	<.1	<.5	<.01	. 1	<.5	510	1	
PB 6	.7	2.0	3.5	<1	.7	<.5	<.1	<.1	.1	<.1	<.5	<.01	.1	<.5	190	10	
P8 7	1.2	2.0	2.2	2	.4	1.7	<.1	<.1	.4	< 1	.8	<.01	.1	<.5	40	6	
PB 8	1.5	4.4	2.1	2	1.0	8.5	<.1	.1	.1	<.1	<.5	<.01	_1	<.5	220	8	
PB 9	.9	2.4	2.9	1	.9	<.5	<.1	< 1	.2	<.1	<.5		.1	<.5	20	<1	
PB 10	3.5	2.4	4.3	5	.5	1.3	<.1	<.1	.1	<.1	<.5		.1	<.5	20	<1	

.9 5.5

1

3

1

<.1

2 1.0 < 5 < 1 < 1

<.1

.4 <.5 <.1 <.1 .2 <.1 <.5 <.01 .1 <.5 150

.1 <.1

.4 .8 <.1 <.1 <.1 <.1 <.5 .01

.8 4.1 <.1 .1 .8 <.1 <.5 .01

<.5 <.01

<.5 .01

.1 <.5

.1 <.5 150

.1 <.5 180

.2 <.5 980

PB 16	25.2	2.5	3.4	1	.5	.7	<.1	<.1	.2	<.1	<.5	01	.1	<.5	20	<1	
PB 17	.6	3,6	1.3	40	1.4		<.1	- 1	.1	<.1	<.5 <.	01	.6	<.5	850	6	
PB 18	.6	3.1	1.4	7	1.2	<.5	<.1	< 1	.5	<.1	<.5 <.	01	.2	<.5	240	5	
RE PB 18	.5	3.3	1.5	7		<.5	<.1	<.1	.5	<.1	<.5 <,	.01	.3	<.5	240	4	
PB 19	.3	2.2	1.8	6		<.5					<.5 <			<.5		6	
PB 20	.6	3.5	2.1	6	1.5	2.6	<.1	.1	.2	<.1	<.5 <.	.01	.1	<.5	40	<1	
PB 21	.4	2.3	3.7	- 4	.9	<.5	.1	<.1	<.1	<.1	<.5 <.	.01	.1	<.5	230	8	
PB 22	.3	1.2	1.6	1	.6	<.5	<.1	< 1	.3	<.1	<.5 <.	.01	.1	<.5	90	9	
PB 22A	.3	1.5	1.0	2	.9	1.4	<.1	<.1	<.1	<.1	<.5	01	<.1	<.5	3 90	8	
PB 23	6.	1.9	2.1	3	1.6	<.5	<.1	<.1	<.1	<.1	<.5 <.	.01	.1	<.5	90	2	
PB 24	.2	1.0	.7	3	.4	<.5	<.1	<.1	<.1	<.1	<.5 <.	.01	.1	<.5	190	4	
PB 25	.4	6.8	2.1	3	1.0	1.4	<.1	<.1	<.1	<.1	<.5 <,	01	.1	<.5	260	2	
PB 26	.4	4.3	2.7	16	1.0	<.5	<.1	<.1	25.5	<.1	<.5 <.	.01	.4	<.5	2000	13	
PN 1	.2	1.0	2.6	1	.7	<.5	<.1	<.1	.5	<.1	<.5 <.	.01	<.1	<.5	70	3	
PN 2	.5	2.5	1.1	1	1.6	1.4	<.1	<.1	.1	<.1	<.5 <.	01	. 1	<.5	70	6	
PN 3	.4	1.6	1.9	1	1.0	<.5	<.1	<.1	.2	<.1	<.5 <.	.01	.1	<.5	130	11	
PN 4	.4	.9	1.7	1	.4	<.5	<.1	<.1	<.1	<.1	<.5 <.	01	.1	<.5	90	13	
STANDARD DS5/C3/LIB-10	13.2	139.8	24.4	133	25.5	18.6	5.5	3.5	6.2	.3	40.9	.17	1.1	5.1	440_	2050	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILI B* BY NA202 FUSION, AMALYSIS BY ICP-ES. F GROUP 2A FUSION, ANALYSIS BY SPECIFIC ION ELECTRODE. - SAMPLE TYPE: ROCK PULP Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

DATE RECEIVED: OCT 9 2004 DATE REPORT MAILED:

Clarence Leon

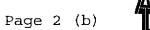
PHONE (604) 253-3158 FAX (6'

3

1

<1

17


13

140

253-1716

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A405549R Pa

ACHE ANALYTICAL																		ACME ANALYTICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd	Sb		Ag	Au ppb	Hg		Se	F	B*		
	1				····								PP:0				· · · · · · · · · · · · · · · · · · ·	
PN-5		10.9		3		1.2					1.6			<.5	460	4		
PN-6	3.0	1.4		1	.9	.5	<.1	<.1			<.5				130	4		
PN 7A	.1	6.3	.8	7	.3						<.5					2		
PN 8	.3	1.2		10	.6	.7	<.1	<.1			<.5		.1	<.5	70	7		
PN 10	.4	1.8	2.7	2	1.1	1.4	<.1	<.1	<.1	<_1	<.5	<.01	. 1	<.5	200	<1		
PN 11	.5	1.8	2.3	2	1.1	<.5	<.1	<.1	<.1	<.1	1.0 •	<.01	.1	<.5	150	<1		
PN 12	.2	1.1		3	.5	.7					<.5		<.1	<.5	190	<1		
PN 13	.5	1.8	2.0	2	.9	1.0					<.5			<.5		<1		
UN 1	.6	3.5	11.5	21	.9	.9	.4	.1	21.8	. 1	2.3	.01	. 1	<.5	130	5		
UN 2	.2		8.4	7	.8	.7	.1	< 1	.9	.1	<.5 ·	<.01	_1	<.5	290	10		
UN 3		55	777	17	1 2	1 4		- 1	4.4	. 1	< E .	- 01	4	~ F	520	4.4		
UB 1	.4	5.5			1.4 2.1			.1			<.5 ·			<.5		11		
UB 2	.4	24.4 2.4			1.1	.5	.1 <.1				<.5 · 1.0			<.5 <.5		11		
UB 3	.2		1.3	3	.6	<.5	.1	<.1			1.2			<.5		19 14		
TB 1	.4		2.7	4		1.1				<.1				<.5		18		
		2.5	2.1		.,		``	~. 1	- 1	` .'	.,		• •	 ,	1.10	10		
TB 2	.4	3.0				<.5					<.5			<.5	120	12		
TB 3	.5					<.5				<.1		.01		<.5	60	7		
TB 4	.2	1.3		2		<.5						<.01		<.5	60	5		
RE TB 4	.2	1.4		2		<.5						<.01		<.5	60	.7		
TN 1	.3	6.7	5.8	3	2.1	.9	<.1	<.1	•4	<.1	./ ·	<.01	•1	<,5	70	13		
TN 2	.4	6.9	2.5	2	8.7	<.5	<.1	<.1	4.9	<.1	.8 -	<.01	.1	<.5	40	275		
TN 3	.2	2.0			1.6	.5					1.1			<.5		22		
TN 4	.3	35.8		100	12.8	.9	.7				2.8			<.5		16		
TN 5	.4	12.2	1.9	34	2.4	<.5	.3	<.1	10.5	.1	3.5	<.01	.1	<.5	160	6		
TN 6	.2	15.8	9.7	5	6.6	<.5	.1	<.1	1.5	.1	1.9	<.01	.3	<.5	740	32		
TN 7	7	э г	27	17	4 4	~ F	. 1	- 1	,			- 01	2		(20	•		
TN 8	.3		2.7			<.5					1.1			<.5		9		
D 208054	, ^{, 2}	2.6	2.6			<.5				< 1				<.5		6		
D 208054 D 208055	3.1		3.6		1.0			<.1			1.1			<.5		14		
D 208055	.8 19.8	2.8	6.3 2.3		1.4	.8 <.5			11.9		4.0 · 1.5 ·			<.5 <.5		3		
	17.6	1.4	2.3	2	1.6	5.3	5.1	N . (.2	N . 1	1.2 4		• 1	5.0	210	<1		
D 208057	4.6	1.6	4.5	1	.4	<.5	<.1	<.1	.1	<.1	<.5 •	<.01	.1	<.5	80	<1		 .
D 208058	4.7	2.6	3.0		1.0	.5	.2	<.1	21.8		2.4		.1	<.5	200	3		
STANDARD DS5/C3/LIB-10	12.5	140.1	24.2	139 (24.7	18.8	5.7	3.6	6.0	.3	44.3	. 18	1.0	5.2	470	2060		

Sample type: ROCK PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data | FA

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A405549R Page 3 (b)

SAMPLE#	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au	Нg	тι	Se	F	B*	
	þþín	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	
D 208059	1.3	1.7	2.9	4	1.0	<.5	< 1	<.1	14.8	<.1	2.1	<.01	.1	<.5	260	5	
D 208060		3.1														16	
D 208061	1.9	3.4	10.6	21	1.9	<.5	. 1	<.1	6.6	<.1	.7	<.01	.1	<.5	450	5	
D 208062	.4	2.8	2.1	3	1.1	<.5	< 1	<.1	.3	<.1	1.3	<.01	.1	<.5	150	<1	
STANDARD DS5/C3/LIB-10	12.3	141.2	25.6	138	23.4	18.2	5.5	3.7	6.0	.3	43.0	. 19	1.1	4.9	420	2060	

Sample type: ROCK PULP.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

	Mo C ppm pp	u Pb m ppm		-									h Sr m ppm					Ca %			ı Сг ippni	Mg %	Ba ppm		B Ppm	Al %	Na %	K %		Au** gm/mt		Pd** gm/mt
SI D 208051 D 208052 STANDARD	2 5	<1 < 3 50 4 21 5 5 24	53 · 31 ·	<.3 <.3 1	62 113	26 (35 3	625 320	2.65	2 5 5	2 <8 5 <8	3 <2 3 <2	29	2 2 9 100 2 76 3 48	0 <.5 5 <.5	53	<3 <3	94 99	1.30 1.55	.30 .22	6 41 0 17	84 429	.03 2.58 2.98 .69	707 1724	.24	10 6	.03 1.19 2.04 2.11	.06 .06		<2 <2	<.01 <.01	<.01	<.01
Standard GROUP 1D (>) CONC AU** PT* ASSAY RE - SAMPLE	- 0.50 ENTRATI * & PD* COMMEND TYPE:) GM SA ION EXC ** BY A DED FOA ROCK A	AMPLE CEEDS FIRE R ROCI R150 (E LEAC UPPE ASSAY CK AND 60C	CHED ER LI Y FRO D COF	IMIT: IOM 1 DRE S	S. S. S. SAMPLI	SOME SAM SAM	MINE IPLE. CU	RALS PB Z	S MAY	Y BE S > '	PART 1%, A	TIALL AG >	.Y AT 30 Pi	TACKI PM &	ED. AU >	REFRA	PPB	AND	GRAPi) ML, A HITIC S OY	NALYSI	ED BY 5 Can	ICP- Limi	ES. TAUS		ци. 5Тδ	70	PA-		
Data 🖌 🖊	FA _		i	DATE	ΞR.	ECE	IVE	SD :	SEP	· 20	2004	4]	DATE	E RI	EPOI	RT 1	MAII	ED:	<u>~.</u>	<i></i>	••			TELES		L ince L				
																																-

APPENDIX II

ŧ

SOIL SAMPLE RESULTS

CERTIFICATES OF ANALYSES

		CAL : 2 Ac				, ,)	ean	Mir	852 G <u>era</u> 570 G	EOCI 1s	HEM. Lnc	CAI	AI ROJI	VAL ECT	BA	S CI YONI	ert: <u>ve</u>	IFIC Fi]	Le	Constanti Anna Constanti	026	65	(604)	253	- 1 7 2	8 F.	ΥΥ (Β)	25	4	716 LA
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppri	Ni ppm	Со ррт	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	۷ mqq	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B B	Al %	Na %	К %	Ppm W
G-1	2	3	6	44	<.3	5	4	559	2.01	<2	8	<2	4	89	<.5	<3	<3	40	.60	.078	10	22	.49	232	.13	<3	1.06	. 12	.57	3
T-0	<1	18	5	50	.3	15	6	487	2.70	2	<8	<2	2	7	<.5	<3	<3	42	.06	.096	8	23	1.02	77	. 18	<3	2.32	.01	.19	<2
T-90	<1	13	8	50	<.3	13	4	301	2.75	5	<8	<2	2	9	<.5	<3	<3	45	.07	.109	5	23	.36	97	. 15	<3	3.15	.01	. 10	<2
T-110	<1	14	9	43	<.3	35	7	274	2.21	<2	<8	<2	2	8	<.5	<3	<3	35	.09	.082	5	47	.54	117	.14	<3	2.85	.01	.12	<2
T-120	<1	16	4	44	.3	39	8	226	2,29	<2	<8	<2	3	9	<.5	<3	<3	37	.08	.068	5	52	.69	131	. 15	<3	4.00	.01	. 14	<2
T-130	<1	14	8	45	<.3	18	5	312	2,53	2	<8	<2	2	8	<.5	<3	<3	37	.09	.129	5	30	.56	89	.15	<3	3.41	.01	.13	<2
т-140	<1	12	5	53	.3	13	6	305	2,35	<2	<8	<2	2	10	<.5	<3	<3	34	.11	.121	4	19	.58	155	.13	<3	4.05	.01	.18	<2
T-160	<1	16	7	53	<.3	11	5	296	2.63	4	<8	<2	2	10	<.5	<3	<3	41	.14	.323	4	20	.64	110	.15	<3	4.42	.01	. 16	<2
T-180	<1	16	7	52	۲.>	11	8	244	2,58	3	<8	<2	<2	18	<.5	<3	<3	51	.43	.467	4	15	.66	138	.13	<3	2.84	.01	.15	<2
RE T-180	<1	15	6	50	<.3	11	8	230	2.46	<2	<8	<2	<2	18	<.5	<3	<3	49	.43	.453	4	14	.65	134	.12	<3	2.72	.01	.15	<2 -
7-220	<1	14	9	64	<.3	12	6	287	2,20	2	<8	<2	2	8	<.5	<3	<3	33	.10	.105	7	19	.68	105	. 14	<3	2.21	.01	.11	<2
T-500	1	13	7	67	<.3	10	7	322	2.95	- 4	<8	<2	3	9	<.5	<3	3	41	.10	.076	ġ	15	.63	94	.17	<3	2.95	.01	.18	<2
STANDARD DS5	12	143	24	130	<.3	24	12	761	2,88	19	13	<2	3	49	5.5	4	6	59	72	095	12	191	.63	138	09	15	2.02	04	.13	3

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>.

Data

ACME AN'		AL L Acc					۲D.									ICOL							рно	DNE (604) 25	3 - 3 :	158	FAJ	C (60	7	534	171	6
AA		<u>C</u> .	rear	<u>n M</u> 1	lne	ral			. P	RO	IEC'	ΤĿ	00	TEN	<u>IAY</u>	GEM BC V6C	STC) <u>NE</u>	F	ile	# 1				P	age) 1	(<i>e</i>	1)					
SAMPLE#	Мо ррт	Cu ppm				Ni ppm		Mn ppm		As ppm						Sb { ppm pf				La ppm	Cr ppm		Ba ppm		B ppm	A1 %	Na %			с Т прр				Te Ga pm ppm
LC L4+00E 5+00N LC L4+00E 4+50N LC L4+00E 4+00N LC L4+00E 3+50N LC L4+00E 3+00N	5.70 1.92 2.82	82.10 18.96 20.06	20.59 15.18 12.53	84.5 74.9 81.4	769 194 318	22.0 14.0 13.9	7.7 9.7 9.8	421 2 869 2 789 2	2.68 2.36 2.40	3.2 3.1 2.8	9.8 1.5 2.3	.9 .9 4.3	1.8 2.4 2.1	16.2 11.2 6.1	.73 .29 .31	.21 3.4 .23 3.2 .25 1.2 .16 1.3 .12 3.7	26 3 26 3 37 3	3 .15 3 .13 2 .07	.051 .095 .095	13.5 10.0 9.3	15.5 17.9 17.9	. 25 . 39 . 41	170.0 123.3 101.9	.137 .108 .099	1 1 1 2 <1 2	.,56 .11 .07	.014 .013 .010	.11 2 .15 1 .16 1	.01. .52. .02.	8 1 1 2 1 2	8 .02 4 .02 4 .01	98 98 89	.6. .6.	04 9.2 02 11.6 02 7.5 02 7.4 03 6.6
C L4+00E 2+50N C L4+00E 2+00N C L4+50E 6+00N C L4+50E 5+50N C L4+50E 5+00N	2.54 9.61 12.77	11.58 20.29 29.16	11.80 10.26 17.21	107.8 63.0 128.1	200 146 212	12.6 14.5 27.5	10.2 7.8 14.7	364 2 288 2 2168 3	2.35 2.51 3.07	4.2 2.3 3.9	2.3 11.3 9.2	<.2 .4 .6	2.8 1.3 1.4	12.0 16.9 20.9	.19 .22 .75	.09 1.9 .20 2.2 .10 1.9 .36 3.8 .11 2.6	23 3 55 3 38 3	2.12 4.18 9.20	.151 .044 .097	7.1 12.9 14.1	13.8 19.1 28.2	.24 .41 .41	133.6 83.1 205.2	.126 .081 .128	12 21 12	2.94 40 2.15	.014 .008 .011	.09 .10 .19	.8 1. .6 1. .7 1.	9.1 7.1 8.3	9<.01 5 .01 4 .04	107 61 100	.6. .5.	05 9.9
C L4+50E 4+50N C L4+50E 4+00N C L4+50E 3+50N C L4+50E 3+50N C L4+50E 3+60N C L4+50E 2+50N	3.14 4.96 42.43	17.85 20.26 40.88 25.21 12.33	11.00 12.00 12.06	78.5 61.5 66.9	132 372 116	15.5 16.4 6.3	13.9 9.4 2.5	568 3 351 2 290 3	3.23 2.93 3.41	3.7 3.2 3.6	2.3 6.5 3.4	.2 .3 .5	3.6 2.3 2.4	7.8 7.2 7.0	. 23 . 27 . 09	.16 2.2 .21 1.4 .15 1.3 .11 1.4 .22 2.8	41 3 72 3 46 3	8.08 5.06 7.05	.072 .041 .646	11.1 11.5 4.6	21.1 18.0 14.0	.42 .37 .16	110.4 104.3 76.8	.157 .125 .121	1 2 1 2 1 1	2.32 2.07 99	.010 .013 .009	.13 1 .13 2 .10	.62. .02. .51.	5.2 1.2	5<.01 5 .01 2 .01	88 92 72	.7. .6.	02 9.9 04 11.0 04 9.4 05 11.1 03 8.7
C L4+5DE 2+00N E LC L4+50E 2+00N C L5+00E 6+00N C L5+00E 5+50N C L5+00E 5+00N	5.91 4.44 4.94	18.26 15.12 13.53	15.31 11.75 9.08	119.0 64.3 80.9	158 196 257	8.1 9.0 11.3	6.3 8.8 8.0	1002 673 315	2.34 2.12 2.65	5.8 2.0 3.3	15.1 1.7 2.2	<.2 .2 1.1	3.5 1.2 3.1	5.9 9.6 5.0	. 32 . 20 . 27	.41 1.6 .38 1.6 .11 1.4 .21 2.7 .24 5.9	54 3 40 3 71 3	4 .06 0 .07 7 .04	.440 .066 .081	4.4 8.2 9.1	10.7 11.9 17.6	.13 .14 .34	86.9 134.4 66.7	.143 .123 .120	23 11 11	3.86 38 62	.015 .014 .008	.05 .06 .10 1	.42. .41. .61.	0.1	5 .02 2 .01 8<.01	2 118 61 74	1.0 . .5 . .6 .	02 11.9 02 11.6 02 10.7 05 7.6 05 11.0
C L5+00E 4+50N C L5+00E 4+0DN C L5+00E 3+50N C L5+00E 3+0DN C L5+00E 2+50N	1.67 1.21 6.24	14.03 9.73	11.38 7.99 15.22	60.2 71.0 88.2	71 167 137	14.7 17.1 5.6	15.9 8.6 4.0	1019 237 184	3.07 2.72 2.11	3.5 2.5 2.8	.7 1.0 1.2	.2 <.2 <.2	3.8 4.3 2.7	6.2 6.6 4.9	.09 .13 .15	.16 1.9 .24 1.4 .12 1.1 .22 2.0 .16 2.1	46 4 12 3 51 3	1 .06 9 .08 3 .05	.116 .041 .194	10.5 12.3 6.8	22.9 21.6 10.4	.42 .53 .15	95.3 128.5 77.3	.115 .138 .137	1 1 <1 2 1 1	61 2.44 37	.010	.12 1 .16 1 .07	3 1. 5 2. .3 1.	9 .2 5 .2 2 .1	4 .01 5 .01 2 .01	44 96 67	.4. .5.	
C L5+00E 2+00N C L5+50E 5+50N C L5+50E 5+00N C L5+50E 4+50N C L5+50E 4+00N	8.75 4.60 4.99	12.62 51.98 10.94 8.45 11.75	5.50 8.40 11.58	92.8 28.4 26.6	191 78 100	24.3 5.1 4.7	11.8 2.2 2.4	420 70 56	2.71 2.09 2.14	2.5 2.9 2.7	7.6 2.5	.8 <.2 .2	4.2 3.0 2.6	4.7 4.2 5.1	.21 .10 .09	.21 1.9 .15 2.3 .17 1.3 .14 1.4	34 3 79 3 41 4	3 .08 2 .04 1 .04	.089 .070 .084	14.3 4.9 5.2	23.1 11.5 10.3	.60 .08 .06	100.1 62.2 84.2	.108 .089 .124	<12 13 12	2.10 3.50 2.85	.006 .012 .012	.16 .03 .03	.62. .61. .81.	7.3 7.1 6.1	1 .03 0 .02 0 .02	80 2 65 2 71	.5. .6. .5<.	02 6.0 02 8.4 02 11.7
C L5+50E 3+50N C L5+50E 3+00N C L5+50E 2+50N C L5+50E 2+50N TANDARD DS5	5.23 8.70 2.34	12.05 70.23 12.06	10.29 15.96 9.26	70.3 67.2 70.7	148 613 199	7.2 16.9 10.7	9.3 14.9 6.5	479 719 291	2.85 2.29 2.30	5.7 2.8 4.2	1.8 15.9 1.0	,2 ,8 ,5	3.0 2.5 2.4	6.1 14.2 10.2	.20 .48 .30	.27 4.0 .38 1.4 .19 2.1 .24 .9 3.86 6.0	42 4 16 3 98 3	1 .07 0 .12 2 .10	. 346 . 058 . 302	3.3 14.6 4.6	10.2 14.2 14.2	.08 .23 .24	61.6 120.3 79.4	.173 .133 .123	1 5 1 2 1 2	5.60 2.03 2.61	.014 .015 .011	.03 .09 1 .08 1	.42. .52. .71.	0 .0 1 .2 7 .1	8 .04 0 .03 4 .04	198 3 94 78	1.0 . .7 . .7 .	02 13.6 04 10.1 02 8.3
UPPE		TS - A	IG, AU	, HG,	U.	CC T	с т	L CA	C M	- 10	0 001	м. м	n r	0 rr	1 68	EG. C H , Bl, 1 E <u>/ are</u>	ru i		⊸ ວ່∩		M - CU	1015	1 71	61 F	MM	AC	V 1.	A C1	D - 1	0,000) PPM	1.		
DATE RE	CEIVI	SD :	OCT 9	2003	Ð	ATE	REI	PORT	МА	ILE	D: ()c	tz	27.	201	7 3 51	gne	DB		ſŊ.	V.j	D	. TOY	E, C.	LEON	G, J	. WAM	NG; C	ERTI	FIED	B.C.	ASS	AYERS	
														·					/													7		

Data______FA

Page 2 (a)

ACHE ANALYTICAL	· · · · · · · · · · · · · · · · · · ·																														ACME AN	ALYTICAL
	SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni Co) Mn	Fe	45 U	I Au	Th	S-	cd si	b 8	H V	Са	P La	ı (r	Mg Ba	Τſ	B Al	Na	к (⊣ Sc	τı	s	Hg !	5e	Te Ga		
		ppm	ppm	ppm	pom	ppb p	naq niki	ppa	٤ ا	nga ma	i ppb	ppn	ppm p	iqiq inq	nt pp	n ppm	8	≹ ppa	n ppn	≹ ppπ	% p	pm \$	8	۶ ppr	n ppm	ppm	¥ p	iqb pi	pm p	ipin ppin		
	LC L6+00E 6+00N																			.26 42.9												
	LC L6+00E 5+50N																			.16 22.2 .												
	LC L6+09E 5+00N																			.03 41.3												
	LC L6+00E 4+50N																			.07 37.5 .												
	LC L6+00E 4+00N	3.7)	14.31	9.29	70.6	134 9	078	407	1.91	2.9 2.6	5.3	3.1	6.5 .	19 .1	7 ,7	0 29	.06	.134 6.9	9 12.4	.12 116.3	130	1 4.13	.018 .	03 .:	7 3.4	.11	.02	86	.5 -	02 8.9		
	LC L6+00E 3+50N	5.32	9.37	11.87	44.3	243 5	2 4.8	552	2.20	3.0 2.5	i .3	24	5.3	24 2	3 1 8	16 36	04	183 5 2	2 30 0	.09 112.7 .	104	<1.2.77	010	05 /	A 1 A	16	02 1	122	6	03 10 9		
	LC L6+00E 3+00N																			.26 114.9 .												
	LC L6+00E 2+50N																			18 122.8 .												
	LC L6+00E 2+00N																			.11 103.4 .												
	LC L6+00E 1+50N																			.28 141.3 .												
	CC 10-001 1-300	0.10	10.07	0.74	155.5	100 10		, ,,4			4				J ,1	4 27	.15	.121 0.0	, 14.7	.20 141.5 .	. 100	-1 0.00			0 2.1	. 10	.05 1	.,,,		02 9.0		
	LC L6+00E 1+00N	2.61	15.70	9.24	105.0	135-11	.0 9.1	1611	2.43 :	3.7 1.1	.7	2.4	6.5 .	46 .2	5 1.2	8 30	.08	.165 7 1	1 15.6	.27 101.5	107	1 1.68	.010 .	10 1.4	4 1.7	. 15	.04	89	.5.	04 7.8		
	LC L6+00E 0+50N	6.07	96.14	16.44	32.4	612 24	.9 5.2	281	2.30	2.3 86.2	1.6	.9.1	9.5	75.1	2 1.7	5 29	. 19	.052 25.5	5 13.2	.14 101.7 .	102	<1 2.02	.014	09 .!	5 2.6	. 14	.07	93	.7 .	03 9.7		
	LC L6+00E 0+00	2 46	13.12	14.07	53.0	143 8	.8 4.7	233	2.53	2.7 4.7	<.2	3.3	6.1	11 .1	2 1.3	30 41	.05	.141 11.2	2 15.6	.22 83.2 .	349	<1 1.38	.010 .	08 1.0	0 18	. 15	.02	58	.4 .	03 12.0		
	LC L6+00E 0+50S	3.02	41.66	14.58	71.I	305 23	.6 9.7	531	2.33	2.2.23.9	1.4	1.1.2	2.1 .	35 .1	1 3.0.	12 33	. 23	.064 13.8	24.8	.55 178.9 .	104	1 2.54	.015	26 .	5 2.6	. 32	.05	90	.6.	02 9.2		
	LC L6+00E 1+005																			.26 110.8 .												
		4 10	104 44	10.10	6 3 7	763.46														(* * * * *				~~ .					_			
	LC L6+00E 1+50S																			.68 226.2 .	~								-			
	RE LC L6+00E 1+50S																			.67 224.9 .												
	LC L6+5DE 6+00N																			.43 48.7 .												
	LC L6+50E 5+50N																			.20 31.5 .												
	LC L6+50E 5+00N	. 64	9.9/	4.45	29.2	31 9	.9 6.9	239	1.52	1.5 .5	1.8	3.3	3.8 .	07 .0	9.3	21 00	.07	.079 10.7	/ 12.7	.27 33.4 .	.040	<1 1.18	.003 .1	04 .4	4 1.4	.07	.01	47	.4 <.	02 2.6		
	LC 16+50E 4+50N	19.25	31.29	10.77	60.2	170 8	.9 6.1	193	2.25	3.1 26.5	5 2.0	4.0	6.4	20 .).	8 7.7	5 31	.06	.050 12.3	1 14.0	.35 62.1	.096	<1 2.20	.012 .	10 .:	5 2.2	.24	.01 1	L20	.5.	05 7.7		
	LC L6+50E 4+00N																			.41 91.3 .												
	LC L6+50E 3+50N	4.64	6.93	16.87	102.1	179 6	.8 9.3	1319	2.91	6.5 8.0	<.2	3.8.1	5.1 .	57 .3	6 4.0	19 37	. 17	.619 3 5	5 10.1	.09 119.4 .	210	1.5.54	017 .	04 .:	3 2.0	. 14	.04 1	148	.9.	03 17.4		
	LC L6+50E 3+00N																			.44 96.2 .												
	LC L6+50E 2+50N																			.57 129.2							-					
	LC L6+50E 2+00N	8.09	20.36	17.72	73.5	158 15	.0 12.6	390	4.93	4.0 1.4	.4	3.3 1	0.7 .	37 . 1	6 2.3	7 54	.10	.054 7.9	28.7	.32 112.9 .	154	<1 2.32	. 009	11 1.6	5 2.5	.17	.04]	10	.7 .	04 11.7		
	LC L7+00E 5+50N																			.44 58.4												
	LC L7+00E 5+00N																			.22 28.7												
	LC L7+008 4+50N																			.45 60.5 .												
	LC L7+00E 4+00N																			.12 79.8												
																															-	
	LC L7+00E 3+50N	7.84	12.19	10.54	39 6	89 5	.6 3.6	396	2.48	6.7 19.1	. 4	3.5	4.9	27 .3	5 15.6	5 0 36	.08	.332 3.5	5 10.2	.09 35.3 .	159	1 5.63	016 .	03 .:	3 2.1	. 10	.05 1	172	.8.	03 12.8		
	LC L7+00E 3+00N	7.96	21.87	10.84	197.1	115 18	.9 21.0	501	2.54	2.9 2.9	<.2	3.1	6.6 .	36 . 1	2 6	i2 32	.06	.042 9.3	3 15.8	.33 158.0 .	156	<1 3.55	012	16 .:	3 2.7	.51	.02	80	.7 <.	02 7.1		
	LC 17+00E 2+50N																			.12 60.6												
	LC L7+00£ 2+00N	5.98	7.98	14.87	46.1	74 4	.9 2.8	145	2.58	5.0 6.3	<.2	2.9	4.1	12 . 2	98	4 42	.04	.145 3.3	2 9.1	.05 62.7 .	188	1 5.20	.016 .	02 .:	2 1.6	.04	.04	66	.6 <.	02 15.9		
	STANDARD 055																			.68 133.1 .												

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L

Page 3 (a)

																																MALTITLAL
SAMPLE#	Мо ррп	Си		-						As l opin ppr	-	Au Th pb ppm	-	Cd ppm	Sb ppm	Bi pom pj	V Ca	a P % %	P La E ppm	Cr ppm	Mg %	Ва ррт		В ррт	A1 %	Na %	K %	W Sc ppm ppm	T1 ppm	SH¢ %tpp	ig Se bppmp	Te (ppm pp
					<u> </u>			<u> </u>	`					<u> </u>	<u> </u>										····		·					<u> </u>
LC L7+50E 5+00N	4.94	19.08	4.16	30.2	33	11.0	6.3 ⁻	127 2.	.25 3	1.4 4.6	.6 1	.4 2.5	4.9	.06	.03 '	1.62	27 .0	5 .017	15.6	17.5	.43	46.4	.093	<1 !	1.30	.005	.08 -	1.0 1.8	.15	.02 34	4.4	.03 5.
LC L7+50E 4+50N	12.01	15.10	8.81	41.6	127	10.2	6.41	124 2	.45 2	2.5 10.0	.0	.9 3.7	5.6	.28	.12	.45	29.0	6 .03E	5 10.8	19.8	. 27	52.1	.077	<1.2	2.04	.006 .	.04	.5 2.3	.07	.02 124	4.6.	.02 5.
LC L7+50E 4+00N			12.78	40.0	140	7.5	4.91	152 3.2		5.8 24.1		.7 3.0		.24	.26 1		43 .0					58.2					.04	.5 1.6		.02 160		.02 14.
LC 17+50E 3+50N		13.89						230 2.4		3.9 7.8		.5 3.3		.23	.38 1		38 .0		5 8.6								.07	.6 1.8				
_C L7+50E 3+00N	24.06							893 2.1	-	1.8 32.4				.55	.15 1			2.067									07	.3 1.6		.04 93		
	27.00	40.24	20.47	00.0 /	204	19.2 .	JI./ U		10 1	,0 02	·	0 1.7	14.0	.00	. 10 1		24 . 1	L	11.5	10.2		.1/.0	.100			.010 .	. 07	.0 1.0				,00 3.
LC L7+50E 2+50N	11 03	13.14	15 50	93.3	52	14 5	7.83	363-2	67 /	4.3 68.7	7	.9 2.8	12 4	.19	.33	.87 (37 1	.1 .127	1 8 5	16.6	28	97.8	147	1 1	2.60 .	.014 .	.07	.4 1.9	.14	.04 89	<u>а</u> 5	.02 10
LC L7+50E 2+00N			18.31			21.0		237 3.8		$5.2 \ 16.2$.4 3.3		.26			49 .2			-								.4 1.9				
LC L8+00E 5+00N								113 2.4		2.6 12.8		.4 3.5		.20			33 .0		2 0.3 9 11.1													
														.30	.14					14.6								.62.5		.02 136		.03 10.
LC L8+00E 4+50N								103 2.3		2.2 6.5		.3 3.6		.05	.10		32 .0											.4 2.0				<.02 6.
LC L8+00E 4+00N	4.28	24.27	11.06	49.3	68	12.2	6.11	139 2.7	.73 3	3.2 3.4	4 I.	.1 3.2	3.9	.17	.21	.89 (35 .04	4 .070) 10.1	18.3	. 37	59.7	.100	<11	1.39	.006 .	.11	.5 1.7	.18	.03 61	4	.05 6.
C 10,005 31000	13 03	70.00	13 07	20.0	74	с 7	E 0	05 3		2.0.51	0	0 2 7	2 4	77	15	41			11 0	12.0	10	20.2	100	-1	1 10	010	00	c	07	07.10	~ ^	- 00 11
LC L8+00E 3+50N	13.02	38.90					5.8			3.9 51.8		.9 3.7					28 .0			10.0		39.2						.5 2.8		.03 186		<.02 11.
LC L8+00E 3+00N	14.22	11.90						991 2.1		3.7 15.3		.9 1.5		.17		.52			3 9.1	13.0							.05	.3 1.1		.02 48		.03 6.
RE LC L8+00E 3+00N			=					993 2.1	· · · · ·	3.8 15.2		.6 1.5		.17	.12		30 .1										.05	.31.0				.04 6.
LC L8+00E 2+50N		A					7.62			2.0.7		.4 2.9		.12				6.083	-	15.9	.36	52.7	.057	<1)	1.55 .	.003 .	.05	.2 1.9	.07<	<.01 43	3.3	.03 4.
LC L8+00E 2+00N	2.62	23.34	10.38	59.5	77	9.5	4.11	155 2.1	.72 4	4.2 8.3	.3 .	.5 3.8	3.9	.11	.14	.79	38 .0)4 .201	10.1	15.9	. 21	78.8	. 153	<13	3.92	.012 .	.08	.6 3.6	. 20	.04 173	3.9	.04 10.
TINDIDD DCC	10.00	5.45 OF	04 60	100 0	010	0F 0	10 F	746 0	07 1/	~ 1 ~	2 41				2.04	- 10					.	- ^ ~ 7	202	10	1 00						- · -	/
STANDARD DS5	12.82	145.35	24.68	139.3	272	25.Z	12.5 /	745 2.1	.97 19	7.1 b.	.2 41.1	.6 2.7	46.2	J.0U	3.84 r	3.18	57 .7	1.096	∍ 12.0 -	183.4	.64)	130.7	.093	- 18 J	r'88 -	. 034	.13 0	4.6 3.3	1.03	.03 172	4.5 ک	.81 6

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_

<u>Cream Minerals I</u>	nc.	PRO	JECT	<u>r ko</u>	OTEN	JAY_	GEM	(STO)	JE I	7ile	# A	304	929	I	Page 1	(b)	4
	100 · 57	<u>9603.896</u>)		0.030.000		122.5.2.63	<u></u>			<u></u>							
SAMPLE#	Cs ppm	Ge ppm	Hf ppm	ND ppm	Rb ppm	Sn ppm	Ta ppm	Zr ppm	Y mqq	Ce ppm	nI mgg	Re ppb	Be ppm	Lī ppm	Sample gm		
LC L4+00E 5+00N	17.90	<.1	.06	4.35	64.0	1.7	<.05	2.5	6.21	27.0	.03	<1	1.2	25.8	15		
LC L4+00E 4+50N	10.57			4.81					7.99		.04			23.6	15		
LC L4+00E 4+00N	6.82			3.24				6.9	3.94		.03	1		38.7	15		
LC L4+00E 3+50N	8.84			2.55				5.0	3.67		.03			40.7	15 15		
LC L4+00E 3+00N	14.41	<.1	.12	3.39	71.0	1.1	<.05	6.9	4.51	22.7	.02	1	1.1	65.6	15		
LC L4+00E 2+50N LC L4+00E 2+00N	8.28			2.02 3,92			<.05	7.2	3.43 3.69		.03			40.3	15 15		
LC L4+50E 2+00N	9.88			2.08			<.05	1.8	7.56		.03 .03			41.8 35.6	15		
LC L4+50E 5+50N	21.18			4.21				3.3	6.90		.05			50.8	15		
LC L4+50E 5+00N	8.29			3.24				6.3	3.16		.03			21.0	15		
LC L4+50E 4+50N	10.76	<.1	.25	4.11	39.6	1.3	<.05	13.8	3.17	15.1	.03	1	1.2	34.2	15		
LC L4+50E 4+00N	10.40			3.81					4.48		.03			46.4	15		
LC L4+50E 3+50N	10.07		.12	3.47	43.6	1.5	<.05	8.0	6.47	21.8	.03	<1	1.4	36.2	15		
LC L4+50E 3+00N	11.51			3.86				9.9	1.26		.03			18.6	15		
LC L4+50E 2+50N	13.68	<.1	.17	3.67	62.1	1.3	<.05	8.5	1.86	15.7	.04	<1	.7	42.5	15		
LC L4+50E 2+00N	9.14			3.41					2.72		.04			22.2	15		
RE LC 14+50E 2+00N	8.32			3.44					2.81	9.9	- 05			23.0	15		
LC L5+00E 6+00N LC L5+00E 5+50N	7.37			2.65 3.58				5.7 5.5	2.75 1.90		.02 .03	1		17.0 25.8	15 15		
LC 15+00E 5+00N	16.90			4.89					3.25		.03			48.3	15		
LC L5+00E 4+50N	10.02	< 1	1 14	२ 0 2	45 2	1 3	< 05	<u>45</u> 0	5.73	18.6	.04	1	1 6	37.1	15		
LC L5+00E 4+00N	7.40			2.59				2.1	2.02		.04	i		43.6	15		
LC L5+00E 3+50N	9.25			3.40					3.11		.03	<1		52.8	15		
LC L5+00E 3+00N	5.47		.22	3.14	34.3	1.7	<.05	10.1	1.27	12.3	.02	<1	.5	20.6	15		
LC L5+00E 2+50N	5.13	<.1	.22	3.76	24.8	1.6	<.05	12.5	2.10	12.2	.03	<1	.9	23.5	15		
LC L5+00E 2+00N	12.85			3.63					3.50		.03			40.6	15		
LC 15+50E 5+50N	15.40			3.26			<.05	4.4	6.12		.03			74.3	15		
LC L5+50E 5+00N	4.68			3.12					2.31		.03			23.5	15		
LC L5+50E 4+50N LC L5+50E 4+00N	3.23			3.25				29.7 23.2	3.13 2.16	10.9	.02 .04			12.3 23.0	15 15		
LC L5+50E 3+50N	20 77									20.0					45		-
LC L5+50E 3+50N LC L5+50E 3+00N	20.73			4.20					6.18 2.53	29.8	.03 .05			51.3 14.1	15 15		
LC L5+50E 2+50N	7.67								10.39		.03			27.8	15		
LC 15+50E 2+00N	5.71								1.74		.03			26.6	15		
STANDARD DS5	6.14		.05	1 66	13.0	6.1	< 05	3 6	6.16	23 6				16.1	15		

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 9 2003 DATE REPORT MAILED:

OCT22/2003 SIGNED BY. A. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data 🖊

44

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A304929

Page 2 (b)

Data 🖌

ACHE ANALYTICAL												,					ACME ANALYTICAL
	SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sn	Ta	Zr	Ŷ	Ce	In	Ře	8e	Łi	Sample	
		ppn	ppm	ppm	ppn	ррп	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
	LC L6+00E 6+00N	3.34	< 1	02	1.03	9.7	.4	< 05	.7	2.23	14.5	<. 02	1	.6	14.6	15	
	LC L6+00E 5+50N	3.77				15.9			1.0	1.30		<.02	<1	.1	6.0	15	
	LC L6+00E 5+00N	2.65		<.02			1.8		.2	1.20	15.8	<.02	<1	.2	2.9	15	
	LC L6+00E 4+50N			1.26					48.9	1.92	6.7	.04	1	.7	7.9		
	LC L6+00E 4+00N	3.19				14.5			45.4	5.01		.03	<1	1.6		15	
		3.17	•••	• • • •	C.C4	14.5		.	43.4	2.01		.05	- (1.0	22.7		
	LC L6+00E 3+50N	6.51	<.1	.43	3.49	25.6	1.6	<.05	19.1	2.14	10.3	.03	<1	1.0	20.6	15	
	LC L6+00E 3+00N	7.04	<.1	.60	2.80	58.6	.9	<.05	26.4	4.00	19.0	.04	<1	1.9	43.8	15	
	LC L6+00E 2+50N	4.48	<.1	.64	3.43	29.9	1.1	<.05	31.4	5,26	20.2	.04	1	1.4	29.5	15	
	LC L6+00E 2+00N	3.43	<.1	.49	4.11	15.9	1.1	< 05	24.4	7.07	20.1	.04	<1	1.6	12.8	15	
	LC L6+00E 1+50N	5.48	<.1	-09	2.64	37.3	1.1	<.05	5.5	3.31	17.1	.03	<1	1.1	32.3	15	
				~ ~ ~			_										
	LC L6+00E 1+00N	6.38			2.45		.9		3.0	1.73		.03	<1		32.3	15	
	LC L6+00E 0+50N	6.99				23.8			5.7	20.00	39.6	.03	1		19.7		
	LC L6+00E 0+00	6.89				32.4			5.2		19.7	.02	1		22.5	15	
		12.07				57.3			1.8	6.92		.03		1.6		15	
	LC L6+00E 1+00S	7.73	<.1	.04	5.88	37.2	1.4	<.05	2,6	6.81	23.6	.02	1	1.1	28.8	15	
	LC L6+00E 1+50S	19.19	-1	.51	5.82	57.7	1.5	<.05	23.5	34.34	92.0	.05	<1	4.5	81.3	15	
		19.45	.1			56.3				33.87		.05		5.1			
	LC L6+50E 6+00N	5.37			1.81			<.05	7.5		21.0	.02	1		26.2		
	LC L6+50E 5+50N	5.35			2.29			<.05	2.2	1.48	18.5	.03	<1		17.7		
	LC L6+50E 5+00N	2.62			1.16			< 05	3.3	2.21		<.02	<1		17.7	15	
	LC L6+50E 4+50N	10.49	<.1	.16	4.24	28.7	1.2	<.05	7.3	5.49	21.7	.02	1	1.8	40.6	15	
	LC L6+50E 4+00N	7.01	<.1	.03	2.31	52.5	1.0	<.05	1.7	1.85	18.1	.03	1	,5	45.9	15	
	LC L6+50E 3+50N	3.46	<.1	.64	4.98	9.3	2.0	<.05	31.6	2.98	7.9	.05	1	1.8	18.4	15	
	LC L6+50E 3+00N	9.19	<.1	.04	2.69	40.2	.9	<.05	1.9	3.66	20.8	<.02	<1	1.0	48.3	15	
	LC L6+50E 2+50N	12.14	<.1	. 19	3.62	68.8	.9	<.05	8.9	2.45	19.0	.03	1	.8	66.6	15	
														_			
	LC L6+50E 2+00N	8.67				41.0			10.2		14.9	.05	<1		33.3	15	
	LC L7+00E 5+50N	8.17	.1		1.38			<.05	.9	4.38	28.1	<.02	<1		43.3	15	
	LC L7+00E 5+00N	3.69			1.85			<.05	2.9	1.62		<.02	<1		13.1	15	
	LC L7+00E 4+50N	2.70			1.94			<.05	3.3	2.11	23.1	.03	<1	.4	23.2	15	
	LC L7+00E 4+00N	5.71	<.1	.14	3.33	13.2	1.5	<.05	8,0	10.80	22.5	.04	1	1.9	14.5	15	
	LC L7+00E 3+50N	7 24	. 1	02	7 00	07	1 1	~ ^5	(n n	3 80	77	n /			0 1	45	·
		3.26			3.98				40.9	2.89	7.7	.04	<1		9.1	15	
		20.65			2.67				25.6	5.17	25.8	.02	<1		53.8	15	
	LC L7+00E 2+50N	6.81				13.1				3.50	11.8	.03	<1	1.1		15	
	LC L7+00E 2+00N	2.90		1.00			1.5			2.68	6.8	.04	1		11.6	15	
	STANDARD DS5	6.18	<.1	.05	1.71	13.5	0.4	<.U>	3.6	6.11	23.5	1.24	<1	1.3	15.9	15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data NFA

Page 3 (b)

SAMPLE#	Cs	Ge	Нf	NÞ	Rb		a Zr	Ŷ	Ce	In	Re	Be		ample		
	ppm	ppm	ppm	ppm	ppm	ppm pp	m ppm	ppm.	ppm	ppm	ррь	ppm	ppm	gm	 	
LC L7+50E 5+00N	6.05	<.1	.02	2.42	16.5	.6 <.0	5 1.7	4.42	26.6	.02	<1	.6	26.5	15		
LC L7+50E 4+50N	2.50			2.79			5 8.1			.03	1		15,1	15		
LC L7+50E 4+00N	5.67						5 16.3			.04	1	1.3	13.6	15		
LC L7+50E 3+50N							5 10.6			.03	<1		25.5	15		
							5 3.8	•		.03		2.2		15		
LC L7+50E 2+50N	16 75	< 1	15	4 37	26 6	1221	5 10.1	1. 27	26.8	.05	-1	1 र	64.4	15		
LC L7+50E 2+00N							5 31.4			.06			39.8	15		
LC L8+00E 5+00N				3.76			5 15.2			.03	1	1.1		15		
LC L8+00E 4+50N	6.07						5 9.4			.02	<1		20.3	15		
LC L8+00E 4+00N				3.08			5 3.2			.02	<1		25.7	15		
	7.37	N . I	.01	5.00	2.5	.0	5 5.2	2.37	17.0	.02		.,	23.1	12		
LC L8+00E 3+50N	2.48	<.1	.78	4.61	6.4	1.2 <.0	5 43.5	7.44	19.6	.04	<1	1.7	9.1	15		
LC L8+00E 3+00N	5.74	< 1	.02	1.94	20.8	.7 <.0	5 1.7	3.56	17.2	.02	1	.6	16.6	15		
RE LC L8+00E 3+00N	5,99	<.1	,02	1.83	19.7	.7 <.0	5 1.6	3.46	17.2	.03	1	.5	17.2	15		
LC L8+00E 2+50N	3.17	<.1	.10	1.28	15.9	.4 <.0	5 4.8	2.88	15.9	.02	<1	.4	18.9	15		
LC L8+00E 2+00N	8.49	.1	.69	3.80	28.8	1.2 <.0		7.96		.04	<1		27.7	15		
STANDARD DS5	6.15	. 1	.05	1.65	13.4	6.3 < 1	5 3.9	5 98	22 1	1 24	<1	12	16.2	15		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

SAMPLE#	Be ppm
LC L4+00E 5+00N LC L4+00E 4+50N LC L4+00E 4+00N LC L4+00E 3+50N LC L4+00E 3+50N LC L4+00E 3+00N	8 4 8 5 8
LC L4+00E 2+50N LC L4+00E 2+00N LC L4+50E 6+00N LC L4+50E 5+50N LC L4+50E 5+50N LC L4+50E 5+00N	5 11 3 5 8
LC L4+50E 4+50N LC L4+50E 4+00N LC L4+50E 3+50N LC L4+50E 3+00N LC L4+50E 2+50N	3 3 6 9 19
LC L4+50E 2+00N RE LC L4+50E 2+00N LC L5+00E 6+00N LC L5+00E 5+50N LC L5+00E 5+50N LC L5+00E 5+00N	7 9 3 <1 2
LC L5+00E 4+50N LC L5+00E 4+00N LC L5+00E 3+50N LC L5+00E 3+00N LC L5+00E 3+00N LC L5+00E 2+50N	4 4 4 6 3
LC L5+00E 2+00N LC L5+50E 5+50N LC L5+50E 5+00N LC L5+50E 4+50N LC L5+50E 4+00N	6 9 4 5 6
LC L5+50E 3+50N LC L5+50E 3+00N STANDARD SO-17	8 2 3
GROUP 4B - REE - 0.200 GM BY LiBO2 FUSION, - SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are Reruns and 'RRE'	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_

Page 2

Data AFA

		ACME ANALYTICAL
SAMPLE#	Be ppm	
LC L5+50E 2+50N LC L5+50E 2+00N LC L6+00E 6+00N LC L6+00E 5+50N LC L6+00E 5+00N	5 3 3 2 2 2	
LC L6+00E 4+50N LC L6+00E 4+00N LC L6+00E 3+50N LC L6+00E 3+00N LC L6+00E 2+50N	3 8 6 <1 6	
LC L6+00E 2+00N LC L6+00E 1+50N LC L6+00E 1+00N LC L6+00E 0+50N LC L6+00E 0+00	1 4 6 6 6	
LC L6+00E 0+50S LC L6+00E 1+00S LC L6+00E 1+50S RE LC L6+00E 1+50S LC L6+50E 6+00N	4 <1 5 7 2	
LC L6+50E 5+50N LC L6+50E 5+00N LC L6+50E 4+50N LC L6+50E 4+00N LC L6+50E 3+50N	1 4 7 7 1	
LC L6+50E 3+00N LC L6+50E 2+50N LC L6+50E 2+00N LC L7+00E 5+50N LC L7+00E 5+00N	2 7 1 4 2	
LC L7+00E 4+50N LC L7+00E 4+00N STANDARD SO-17	<1 7 1	_

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

Data AA

		ACME ANALYTICAL
SAMPLE#	Be ppm	
LC L7+00E 3+50N LC L7+00E 3+00N LC L7+00E 2+50N LC L7+00E 2+00N LC L7+50E 5+00N	14 4 2 <1 3	
LC L7+50E 4+50N LC L7+50E 4+00N LC L7+50E 3+50N LC L7+50E 3+00N LC L7+50E 2+50N	2 5 6 3 7	
LC L7+50E 2+00N RE LC L7+50E 2+00N LC L8+00E 5+00N LC L8+00E 4+50N LC L8+00E 4+50N LC L8+00E 4+00N	2 4 6 <1 4	
LC L8+00E 3+50N LC L8+00E 3+00N LC L8+00E 2+50N LC L8+00E 2+00N STANDARD SO-17	2 7 <1 <1 2	
	LC L7+00E 3+50N LC L7+00E 3+00N LC L7+00E 2+50N LC L7+00E 2+50N LC L7+50E 5+00N LC L7+50E 4+50N LC L7+50E 3+50N LC L7+50E 3+50N LC L7+50E 2+50N LC L7+50E 2+50N LC L7+50E 2+00N RE LC L7+50E 2+00N RE LC L7+50E 2+00N LC L8+00E 5+00N LC L8+00E 4+50N LC L8+00E 3+50N LC L8+00E 3+50N LC L8+00E 2+50N LC L8+00E 2+50N LC L8+00E 2+50N LC L8+00E 2+50N	ppm LC L7+00E 3+50N 14 LC L7+00E 3+00N 4 LC L7+00E 2+50N 2 LC L7+00E 2+50N 2 LC L7+50E 2+00N <1

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANI (ISO	TICAL		edi	teđ	Co	•)	era.		(Inc	SEC	CHI ROL	JEC'	<mark>CAL</mark> <u>r k</u>	1A 1000	ialy 'ENA	SI V (IVER SCE <u>GEMS</u> 3P1	RTI TON	FIC <u>e</u>	File	≅ #	А3)25:	3-31 (a)		FAX	(60		53-1 4	.716 LA
SAMPLE#	Ba	Со	Cs	Ga	Hf	Nb	Rb	Sn	Sг	Та	Th	U	V	W	Žr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Be	Cr203
<u>-</u>	ppm	ppm	ppm	ррпа	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ppm	*
HS-1	546.4	9.9	6.7	14.2	6.6	18.0	76.0	32	30.7	1.3	13.3	5.6	66	11.7	229.3	44.6	45.9	92.2	11.05	45.0	9.0	1.80	7.21	. 22	7.55	1.46	4.47	. 64	3.97	.57	<1	.005
HS-2	926.8	6.3	5.3	17.0	8.8	35.9	78.7	4 5	88.9	2.2	15.0	6.3	63	1.9	326.5	48.3	73.1	142.7	16.57	62.7	11.6	2.65	9.39 1	36	7.83	1.48	4.50	.67	4.08	.64	5	.005
HS-3	460.2	5.9	7.9	13.8	11.0	17.1	89.1	5 2	242.7	1.3	21.0	6.0	56	2.5	400.7	66.7	72.2	152.3	17,81	69.2	13.9	2.50	11.35 1	.91 1	10.90	2.22	6.62	. 99	5.98	. 90	12	.004
HS-4	371.4	6.2	5.4	11.9	11.6	19.5	66.2	4 2	230.6	1.8	22.4	6.9	62	2.0	411.1	81.3	74.7	158.1	18.75	71.9	13.5	2.50	11.64 1	1.87 1	11.78	2.59	8.04	1.23	7.47	1.04	6	.004
HS-5	706.3	14.8	4.7	19.1	7.5	37.8	74.3	4 5	80.9	5.0	12.8	14.0	80	1.7	271.4	53.0	56.9	121.3	14.57	58.7	11.3	2.70	9.74 1	.50	8.72	1.78	5.17	. 78	4.78	.73	3	.004
HS-6	1048.5	8.3	3.2	19.0	16.8	61.4	58.5	48	84.9	3.7	29.6	6.9	90	1.1	644.8	81.8	138.1	277.9	32.32	123.6	21.4	4.80	16.56 2	2.49 1	13.65	2.69	7.98	1.24	7.35	1.10	8	.005
HS-7	828.7	5.1	4.2	16.3	9.9	42.3	67.6	4 6	26.2	2.7	20.9	4.3	50				84.3												5.61	.78	3	.003
STANDARD SO-17	398.9	18.2	3.9	19.6	11.9	25.4	22.7	11 3	05.2	4.2	11.7	11.1	125	10.1	358.0	27.5	10.7	23.8	3 03	14 1	3.3	1 03	3.68	64	4 20	91	2.83	.44	2 84	43	2	.446

GROUP 4B - REE - 0.200 GM BY LIBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: SILT SS80 60C

Data AFA

ACMF AN (IS)	'TICAL LABORATORI		. 8			igs st. Cal An	8. <i> 19</i> 23	UVER B S CER			Pho	NE (604) 253-3	158 FA	<u>x (6C</u>	253-1716
TT	<u>Cream</u>	Miner	<u>als In</u> 1400 + 5	c. PR 70 Granv'	OJECI Ile St.,	KOOT	<u>ENAY</u> er BC V60	GEMST : 3P1 s	<u>ONE</u> ubmitted	File by: Lind			(b)		TT
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
	HS-1 HS-2 HS-3 HS-4 HS-5	.54 .39 .99	15.0 9.6 8.5 8.3 10.0	7.4 4.5 5.5 4.6	55 47 39 34 37	10.4 9.4 8.3 7.4 8.0	1.4 1.3 2.2 2.4 1.3	.2 .1 .1 .1	<.1 <.1 <.1 <.1 .1	.3 .2 .2 .2	.1 <.1 <.1 <.1	.5 <.5 <.5 1.3	.04 .01 <.01 <.01 .01	.2 .2 .2 .2		
	HS-6 HS-7 STANDARD DS5	.3 .1 12.7	$7.8 \\ 4.3 \\ 138.0$	$2.7 \\ 2.2 \\ 25.2 \\ 25.2 \\ 100 \\ 10$	30 20 130	8.7 6.6 23.0	.6 .5 19.4	<.1 <.1 5.3	<.1 <.1 3.7	.1 .1 6.2	<.1 <.1 .4	<.5 <.5 42.0	<.01 .01 .17	.1 .1 1.0	<.5 <.5 4.8	
DATE RECI	GROUP 1DX - 0.50 GM UPPER LIMITS - AG, - SAMPLE TYPE: SILT EIVED: OCT 29 2003	AU, KG, W SS80 60C	≃ 100 PPM	; MO, CO	, CD, SB	, B1, TH,	U&B =	2,000 PF	M; CU, P	B, ZN, N	I, MN, A	S, V, LA,	, CR = 10	,000 PPM.		. ASSAYERS
						1				J	1					
								·								

Data AFA

		<u>Cr</u>	<u>ea</u>	<u>n M</u>	ine	<u>era</u>	<u>ls]</u> 1	<u>nc.</u> 400 -	<u>PR</u> 570 (OJ) Iran	<u>ECT</u> /ille	<u>KC</u> St.,) <u>OTI</u> Van	<u>ENA</u> couv	<u>Y (</u> er BC	<u>3EM</u> : v6c	<u>STO</u> 3P1	<u>VE</u> \$ubr	Fi nitte	le : a by:	‡ A Lind	305 a Dar	351. Idy		Pag	e 1	. (e	1)				Ľ
SAMPLE#						Nb I ppm		Sn DDM			Th			W			Y La			Nd		Eu		Tb		Но		Tm				
	ррш	ppn	ppin	ррп	- ppii	ppiii	ppin	рри	ppn	ppin	ppiir	ppm	ppn	ррп	ppr	n pp	n ppm	ppm		n ppm	ppm	- ppn	ррп	рря	ppm	ppm	ppm	ppn		phu	ppm	*
HIC 2+00W							121.2																		6.10						6	.005
H1C 1+75W	812.4								92.3	2.2	29.5	7.1	62	4.1	432.3	3 61.4	4 87.6	186.9	20.11	. 78.0	14.1	2.70	11.31	1.80	10.29	2.08	5.96	.86 5	5.59	.82	4	.006
4IC 1+50W	931.7																								10.66						1	.007
HIC 1+25W	451.1																								5.03						6	.004
HIC 1+DOW	445.6	6.3	3.8	15.1	6.4	16.5	69.3	22	83.2	1.2	10.2	2.5	58	1.5	249.2	2 28.	7 40.1	80.7	8.68	33.5	6.3	1.33	4.91	.89	4.83	. 94	2.74	.42 2	2.66	.43	2	.004
4IC 0+75W	571.5	10 4	54	19.0	79	18 4	93 4	3 2	99 A	14	12 4	27	71	1 0	278	5 35 1	A 43 0	80 A	9 77	39.7	7 A	1 48	5 80	Q R	5.59	1 12	3 30	53 3	2 12	52	<1	.005
41C 0+50W	786.4							4 7	17 2	1 9	14 6	31	70	2.5	290 0	9 40 T	7 49 N	101 6	11 15	12 0	81	1 66	6 36	1 12	6.15	1 22	3.85	60 3	3 60	60		.005
HIC 0+25W	748.7																								7.02							.005
HIC 0+00	1060.2																								6.69							.005
CB 2+00W	811.6																								5.44							.008
CB 1+75W	760 5	11 6	c ^	17 7	ت 0	10.0	05.0		75 0	1 0	10.0		F 7	1 4	201		5 ar 4	71 -	4 44	- 00 - 0					0.00			<u></u>		00		
.B 1+50W	758.5 623.2																								3.92							.009
CB 1+25W	623.2 785.1																								6.26							.012
LB 1+25W C8 1+00W	785.1 870.6							-																	4.67							.005
CB 0+75W	672.6																								7.21 5.03					.55 .50		.007
0.000	F 40 F	00 0	10 1	a	11 -	nc (15.4.4																									
CB 0+50W	542.5																								6.17							.009
CB 0+25W	598.3							32	72.0	2.3	15.2	3.4	12	4.2	262.4	4 23.1	2 34.2	85.0	/.68	3 29.2	5.2	1.11	4.32	.72	4,00	.88	2.25	.35 2	2.28	. 34	•	.009
CB 0+00	600.9																								4.19							.008
RE CB 0+00 DP 4+00N	622,6 590,8						96.7																		4.07 4.85							.009
																															~1	.004
)P 3+75N)P 3+50N	600.0																								5.37						<1	
)P 3+50N)P 3+25N	610.8							22	18.2	2.3	12.0	2.1	/0	2.3	242.0	U 26.	5 28.9	02.b	0.85	20.6	5.0	1.0/	4.24	./1	4.33	.92	2.69	.42 2	2.39	.40		.005
DP 3+25N DP 3+00N	607.1																								4.29							.004
)P 2+75N	590.3 648.2											3.0													3.76 7.38							.003
л <u>с'</u> 700	040.2	10.4	L7.U	20.0	1.1	17.5	701.1	52	10.4	1.0	19.0	3.0	01	3.3	250.0	5 00.	1 42.4	80.2	9.20	1 30.8	0.0	1.33	5.91	1.12	7.38	1.04	4./3	./5 4	+.01	.80	1	.007
DP 2+50N	509.2							21	71.1	2.7	17.9	4.0	78	4.4	263.3	3 48.3	7 44.6	95.3	10.47	42.5	7.6	1.45	7.11	1.22	7.28	1.69	4.62	.71 4	1.55	.77	7	.008
)P 2+25N	527.8							31	0.08	3.3	14.5	5.6	66	4.8	240.2	2 55.4	3 36.2	77.0	8.25	5 31.9	6.1	1.17	5.75	1.12	7.55	1.83	5.60	.87 5	5.60	.88	10	.008
DP 2+00N	597.2							31	92.3	1.9	13.0	4.9	111	3.3	247.5	5 52.0	5 40.0	91.7	9.58	37.8	7.4	1.46	6.82	1.23	8.11	1.82	5.26	.81 5	5.28	.85	8	.009
OP 1+75N	492.5							31	91.9	1.6	18.5	6.7	102	2.9	299.3	3 55.9	9 46.3	109.6	11.52	2 43.8	9.0	1.72	8.04	1.56	8.77	2.03	5.72	.88 5	5.30	.83	3	.008
DP 1+50N	477.7	24.3	20.8	19.8	7.6	17.9	145.6	31	90.3	3.1	14.7	7.6	103	2.6	273.5	5 37.4	4 39.3	92.5	9.87	39.7	8.0	1.59	6.70	1.16	6.59	1.39	3.78	.56-3	8.48	. 57	4	_008
DP 1+25N	485.0	14.0	19.4	18.1	7.5	16.8	150.3	31	62.4	1.6	17.3	4.9	89	27 7	267 4	4.38	7 42 2	100 Q	10.62	39.6	7 Q	1 30	6.38	1 10	6.39	1 50	4 01	56 3	1 97	61	4	.008
OP 1+00N	614.7							3 2	21.4	1.3	15.3	3.6	81	3.7	254	4 32 6	5 35.6	82.5	8.66	33.4	6.4	1.31	5.40	.91	5.36	1,19	3.35	53 3	3 27	52		.006
STANDARD SO-17	399.9							12 3	17.0	4.3	11.9	11.8	125	10.9	360 0	27	3 31 3	24 3	2 90	13 6	3.3	1 63	3 80	68	4,25	95	2 80	43 2	2 83	43		.438

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA ____

REVISED COPY add Cr

Page 2 (a)

Data An

HE ANALYTICAL											·														·····				. <u></u>		ACM	E ANALYT
SAMPLE#	Ba ppm	Co ppm		Ga ppm		Nb ppm	Rb ppm	Sn ppm	Sr ppm	Ta ppm	Th ppm	U ppm	V ppm	W ppm	Zr ppm	Y ppm	La ppm	Ce ppm	Pr ppm	Nd ppm	Sm ppm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	Ho ppm	Er ppm	Tm ppm	Yb ppm	Lu ppm	Be (ppm	Cr2O3 %
OP 0+75N	508.8	12 8	11 7	22 4	67	15.0	114 2	3	205.2	12	a a	2.6	86	3.1	218.3	27 0	25.4	54 7	6 16	23.8	49	1 07	4 11	74	4 09	.87	2 63	39	2.54	41	5	.005
DP 0+50N	473.2							-	191.7						271.6										4.19	.87		.41		37	2	.005
DP 0+25N	609.9					-			222.2						273.8			65.6							4,20			.37		.35	3	.005
LP 3+50N	563.5								190.5						222.2													.55		.48	- Ă	.008
LP 3+25N	597.9							-	186.2						241.3													.62	3.82	.56	<1	.007
LP 3+00N	559.9	12.4	17.1	20.3	6.3	15.8	143.1	3	155.7	1.2	11.5	5.9	97	3.2	230.3	35.4	37.7	80.7	9.34	37.2	7.6	1.69	6.40	1.08	5.96	1.17	3.25	.51	3.14	. 49	5	.009
LP 2+75N	587.7	12.3	20.5	21.8	7.8	17.5	162.8	3	168.9	1.4	15.8	8.2			267.6													.95 (6.01	.85	4	.008
LP 2+50N	555.6	14.5	18.1	22.9	6.9	15.8	157.1	7	149.8	1.9	15.8	8.2			223.6													.62	3.55	.52	3	.008
LP 2+25N	514.4								158.4						280.9													.71	4.14	.59	4	.007
LP 2+00N	596.7	12.9	14.0	20.1	8.5	16.2	144.1	4	200.8	1.6	16.2	8.3			300.2								. –					.57	3.19	.56	6	.006
LP 1+75N	597.0	32.9	17.3	22.8	6.9	17.9	139.0	4	219.5	1.8	13.8	15.0	76	2.2	247.2	29.5	33.1	81.2	B.60	32.1	7.1	1.68	6.12	1.02	5.88	1.10	3.39	.46	2.97	.44	5	.006
LP 1+50N	607.0	24.2	19.4	21.4	7.8	17.7	148.0	3	166.3	1.3	13.7	4.1	88	3.4	266.5	35.0	37.8	91.5	9,52	36.8	7.5	1.39	6.32	1.00	5.92	1.22	3.57	.57	2.99	.46	9	.008
RE LP 1+50N	635.0	22.7	19.3	22.0	7.7	18.1	156.4	3	167.7	1.6	13.9	3.7	90	3.2	269.8	34.0	35.5	84.7	8.65	30.9	6.4	1.40	6.16	.96	5.59	1.10	3.49	.52	3.05	. 48	6	.008
LP 1+25N	674.6	32.2	26.8	26.1	5.7	17.1	178.0	3	159.9	1.3	10.3	6.9	106	3.2	197.9	26.5	25.7	64.9	6.35	25.4	5.3	1.15	4.64	.75	4.69	.93	2.65	.43	2.36	.35	7	.010
LP 1+00N	609.8	16.5	15.1	21.8	7.7	18.9	142.1	3	202.7	1.6	13.7	4.1	90	2.9	287.6	43.1	40.0	85.3	9.46	36.5	7.5	1.52	6.45	1.07	6.86	1.35	4.15	.63	3.97	. 60	5	.008
LP 0+75N	570.6	17,2	17.3	20.8	7.8	18.1	138.7	4	159.5	1.8	10.8	6.2	92	3.3	280.0	39.4	42.3	88.1	10.11	37.6	8.2	1.66	6.98	1.13	6.47	1.25	3.66	.56	3.44	. 53	2	.009
LP 0+50N	544.8	12.9	10.2	17.7	9.3	22.1	112.6	3	167.6	2.7	16.4	4.1	86	3.0	357.0	53.3	51.1	104.4	12.23	48.5	9.4	1.93	8.82	1.33	8,46	1.68	5.23	.77	4,43	.70	6	.008
LP 0+25N	557.2	12.9	11.1	19.4	9.3	17.6	120.1	з	151.7	1.3	13.1	3.7	95	3.3	332.9	45.5	44.4	90.0	10.50	42.5	8.5	1.74	7.44	1.17	7.13	1.41	4.43	.67	4.13	. 59	5	.007
LP 0+00	628.5	13.0	9.3	18.7	9.6	19.2	122.5	3	196.0	1.8	18.4	4.0	80	3.4	378.8	68.2	56.5	117.5	13.58	54.2	10.6	1.89	9.31	1.61	10.36	2.17	6.82	1.03	5.74	. 88	8	.008
STANDARD SO-17	391.3	18.2	3.9	19.6	11.9	25.4	22.7	11	296.3	4.2	11.7	11.1			-														• • •	43	2	.446

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

REVISED COPY add C-

ACME ANA... FICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

GEOCHEMICAL ANALYSIS CERTIFICATE

852 E. HASTINGS ST. V. COUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604 53-1716

Cream Mir	nerals	<u>Inc.</u> 1400 - 5	PROJE 70 Granv	CT KC	OTENA Vancouv	Y GEM	STONE 3P1 s	Fil ubmitted	e # A by: Lind	30535 la Dandy	1 P	age 1	(b)		A4
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
HIC 2+00W HIC 1+75W HIC 1+50W HIC 1+25W HIC 1+00W	.5 .4 .4 .1 .1	10.010.916.38.85.9	9.9 5.5 7.8 3.3 3.4	79 48 102 21 30	$16.6 \\ 15.0 \\ 20.9 \\ 7.4 \\ 7.9$	2.0 1.5 2.4 .9 1.0	.1 .4 <.1 <.1	.1 .2 <.1 <.1	.4 .4 .1 .1	.1 <.1 <.1 <.1	<.5 .9 .5 <.8	.02 .02 .04 <.01 .01	.2 .3 .1 .1	<.55 <.55 <.55 <.55	
HIC 0+75W HIC 0+50W HIC 0+25W HIC 0+00 CB 2+00W	.2 .2 .2 .4 .5	13.39.716.17.019.4	$6.0 \\ 5.2 \\ 5.9 \\ 7.4 \\ 14.2$	35 42 53 94 140	13.210.514.212.822.2	1.1 .8 1.2 1.6 7.3	<.1 <.1 <.1 .2	.1 <.1 <.1 .1 .2	.3 .2 .3 1.0	.1 <.1 .1 .2	<.5 <.5 <.5 <.5	.01 .01 .01 .02 .10	.2 .2 .2 .3	<	
CB 1+75W CB 1+50W CB 1+25W CB 1+00W CB 0+75W	.3 .3 .7 .9 1.0	10.6 10.2 15.2 14.7 12.3	7.8 7.1 15.6 10.9 11.8	113 68 106 128 81	$16.2 \\ 14.1 \\ 11.8 \\ 11.5 \\ 8.8$	3.0 1.9 3.1 2.5 3.5	.2 .1 .2 .2 .1	.1 .1 .2 .2 .1	.44.5	.1 .1 .1 .1	1.4 1.1 .8 .6 <.5	.04 .03 .03 .04 .02	.1 .1 .3 .3		
CB 0+50W CB 0+25W CB 0+00 RE CB 0+00 DP 4+00N	.76666	27.5 23.6 12.2 13.4 15.0		62	18.0 29.9 15.7 15.9 16.9	2.6 3.7 3.7 2.7	.1 .1 .1 .2	.3 .1 .2 .1 .1	.3 .5 .4 .7	<.1 .1 .1 .2	.6 1.4 1.2 1.4 .6	.02 .05 .06 .07 .06	.5 .1 .1 .2	۰۰۰ ۱۰۰۰ ۱۰۰۰ ۱۰۰۰	
DP 3+75N DP 3+50N DP 3+25N DP 3+00N DP 2+75N	.7 .6 .7 1.1 2.1	14.4 9.3 14.1 13.7 26.3	11.814.110.710.910.7	127 125 91 68 54	18.9 15.7 22.9 17.7 31.2	2.5 3.9 2.4 2.6	.1 .2 .2 .1 <.1	.2 .3 .1 .3	.8 .8 .5 .7 1.5	.1 .2 .1 .1	<.5 1.3 1.3 1.6 .6	.07 .11 .06 .10 .05	.2 .1 .1 .3	555555555555	
DP 2+50N DP 2+25N DP 2+00N DP 1+75N DP 1+50N	2.2 4.4 2.4 2.5 2.9	17.0 15.0 20.5 29.6 29.2	9.9 12.4 12.8 8.9 7.9	58 80 167 75 81	20.6 16.2 28.2 18.2 20.1	1.9 3.2 2.6 2.2 3.0	<.1 .3 .1 .2	.1 .2 .1 .1 .1	2.2 3.1 4.0 1.4 1.8	.1 .2 .1 .1	.9 1.0 .6 2.0 1.5	.02 .04 .06 .04 .09	.465.44	<	-
DP 1+25N DP 1+00N STANDARD DS5	$4.3 \\ 1.5 \\ 12.4$	$29.4 \\ 16.5 \\ 148.0$	9.0 10.2 25.2	101 107 138	21.5 17.7 24.8	2.9 2.6 19.7	.1 .2 5.7	.1 .1 3.7	1.8 1.3 5.9	.1 .1 .3	1.3 2.3 43.1	.04 .04 .19	.4 .3 .9	<.5 <.5 5.1	M. M. J

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 29 2003 DATE REPORT MAILED: NOV 13/03

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

Page 2 (b)

. *1 L*.

																ALME ANALYTICAL
S	AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
	P 0+75N P 0+50N P 0+25N P 3+50N P 3+25N	1.6 1.1 .8 1.1 1.5	16.0	12.8 12.0 10.8 10.8 11.4	80 63 60 71	15.5 14.1 17.2 20.2 22.2	3.6 4.9 3.1 1.8 2.8	.1 .1 .2 .2	.2 .3 .1 .1	1.3 1.1 1.0 .9 1.0	.1 .1 .2 .1	1.3 1.5 1.6 .7 .9	.08 .08 .04 .03 .04	.2.2.2.2	< < < < < < < < < < < <	
	P 3+00N P 2+75N P 2+50N P 2+25N P 2+00N	1.4 1.2 1.2 .9 .9	27.8 35.6 43.2 25.7 17.2	$12.6 \\ 13.1$	62 58 52 46 81	18.621.425.29.713.6	1.9 2.5 2.3 1.6 2.5	.232.32	.1 .1 .1	.9 1.1 1.0 1.0 .8	.22.23.2	<.5 .9 1.4 2.2 1.2	.02 .03 .07 .03 .06	.2.3.2.2	<	
	P 1+75N P 1+50N E LP 1+50N P 1+25N P 1+00N	$ \begin{array}{c} 3.1\\ 1.0\\ 1.1\\ 1.7\\ .8 \end{array} $	31.3 22.2 23.0 42.4 15.1	15.6 12.1 12.5 14.3 9.7	91 103 104 109 82	15.5 25.8 26.2 44.8 19.9	3.2 2.4 2.7 2.8 2.5	.3 .1 .2 .2	.1 .2 .1 .1	2.8 1.5 1.6 1.6 1.1	.3 .1 .1 .1	$4.2 \\ .7 \\ 1.3 \\ 1.2 \\ 1.0$.11 .04 .04 .06 .05	.4 .3 .4 .2	<	
	P 0+75N P 0+50N P 0+25N P 0+00 TANDARD DS5	1.0 .5 .6 12.7	20.1 12.4 19.7 9.8 138.0	13.410.17.77.725.2	47 63 51 67 130	14.0 13.2 17.4 10.2 23.0	2.4 2.3 1.8 1.2 19.4	.1 .1 .1 5.3	.2 .2 .1 .2 3.7	1.1 .8 .6 .7 6.2	.1 .1 .1 .1	<.5 2.0 <.5 <.5 42.0	.06 .05 .04 .04 .17	.2 .2 .2 .2 .2 1.0	<.55 <.55 <.4.8	
Samp	le type: SOI	L SS80	60C.	Samp	les b	peginr	iing '	RE'a	re Re	runs	and '	RRE'	are R	eject	Reru	18.

ACME AN' (IS)	TICAL LABORATORIES LTD. 852 E. HASTINGS ST. VCOUVER BC V6A 1R6 PHONE(604)253-3158 FAX(6(253- 002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE	-1716
<u> </u>	Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE File # A305349 Page 1 (a) 1400 - 570 Granville St., Vancouver BC V6C 3P1 Submitted by: Linda Dandy	T T
SAMPLE#	Ba Co Cs Ga Hf Nb Rb Sn Sr Ta Th U V W Zr Y La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu B ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm	Be Cr2O3 pm %
JB3-C1 JB3-C2 JB3-L1 JB3-L2 JB3-L3	531.8 11.4 26.6 15.4 6.2 11.7 274.1 3 66.5 .7 9.3 3.6 66 .6 187.6 19.1 29.3 64.6 6.77 25.2 5.3 .96 4.01 .62 3.79 .72 1.97 .32 28.2 <.5	13 <.001 8 .006 24 <.001 57 <.001 4 .004
183-L4 183-L5 183-L6 183-L7 183-L7	694.3 8.5 25.6 20.6 7.4 18.2 259.8 2 69.6 1.2 14.1 3.8 62 3.9 242.0 44.2 46.8 101.1 11.27 42.8 8.5 1.40 7.22 1.14 7.16 1.49 4.74 .72 4.78 .66 1013.3 9.2 18.5 29.0 8.9 22.7 247.0 5 44.5 1.8 22.1 5.2 85 8.6 297.2 60.0 54.2 116.4 12.89 49.3 10.0 1.80 8.80 1.46 8.98 1.99 6.02 .94 6.02 .95 51.2 <	43 <.00 1 .00 1 .00 47 <.00 8 .00
]B3-L9 JB3-L10 JB3-L11 JB3-R1 JB3-R1 JB3-T1	36.1 <.5	5 .00 90 <.00 8 .00 3 .01 4 .00
183-T2 183-T3 183-T4 183-T5 183-T6	45.7 1.7 36.9 27.8 .8 57.8 728.2 84 30.5 9.2 1.7 5.2 <5 4.4 26.6 2.0 5.4 8.3 .67 2.2 .4 .14 .43 .07 .37 .07 .20 <.05 .16 .03 24 988.6 7.9 162.9 27.3 9.1 19.6 1155.1 186 41.6 1.9 19.2 4.7 62 11.6 306.1 63.5 56.2 132.5 14.78 57.8 11.3 1.45 9.87 1.63 10.25 2.24 6.61 1.05 6.63 .97 2 150.3 4.4 5.1 16.9 6.6 8.4 28.0 7 88.3 .8 15.5 2.9 70 2.1 208.4 34.4 27.7 64.6 7.13 28.4 5.5 1.14 4.67 .81 5.11 1.17 3.26 .56 3.31 .46	2 .00 43 <.00 24 .00 2 .00 2 .01
83-T7 83-T8 E JB3-T8 83-U1 83-U2	33.8 .5 13.2 23.4 1.0 42.6 275.0 50 13.8 15.6 .1 3.9 <5 6.0 15.5 1.8 1.0 1.5 .17 .6 .1 .15 .15 .03 .24 .06 .15 <.05 .21 .03 6 33.5 1.1 13.2 22.7 1.0 41.4 272.6 49 13.5 12.2 .2 3.3 <5 5.8 15.0 1.5 .8 1.5 .15 <.4 <.1 .17 .17 .04 .24 <.05 .17 <.05 .17 .03 5	08 .01 66 <.01 58 <.01 53 .01 86 <.01
183-U3 183-U4 183-U5 183-U6 183-U7	92.2 7.3 114.1 15.8 4.8 8.5 522.8 39 28.0 .7 10.8 2.4 56 .9 167.2 40.5 30.7 71.9 8.04 32.1 8.0 1.48 7.93 1.23 6.91 1.40 3.90 .65 3.93 .64 1 1335.2 29.0 4.9 23.3 3.2 21.2 59.8 2 828.8 1.1 4.9 1.8 307 .2 105.7 34.1 33.4 75.9 10.08 44.4 9.3 2.51 7.53 1.11 6.24 1.30 3.44 .46 2.90 .39 < 603.6 9.8 16.8 24.4 7.1 16.9 202.4 7 64.8 1.2 16.1 4.3 76 5.0 207.6 48.8 51.3 114.4 13.09 48.7 9.8 1.57 8.02 1.34 8.06 1.68 4.96 .73 4.82 .68	41 <.00 15 .00 <1 .00 7 .00 5 .00
JB3-U8 JB3-U9 STANDARD S0-17	714.6 7.8 41.1 27.1 7.0 26.5 357.4 13 47.5 29.3 20.6 6.1 82 2.6 228.3 44.1 58.1 127.5 15.15 58.0 10.9 1.54 8.56 1.47 7.86 1.61 4.50 .68 4.11 .62	5 <.00 7 .00 3 .43

- SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

SIGNED BY TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data AF/

DATE RECEIVED: OCT 29 2003 DATE REPORT MAILED: NOV 17/03

REVISED COPY add cr

SAMPLE#

Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE FILE # A305349 Page 2 (a)₽r 8a Co Cs Ga Нf Nb Rb Sn Sr Ta Th U v W ZΓ Y La Ce Nd Sm Eu Gd Τb Dv Ho Er Tm Yb Lu Be Cr203 ppm ppm mag mag maa mag mag IDDI DOM mag maa maa maa maa maa maa maa maa DDM mag nad anda maa maa DDM mqq ngq ppm DDM maa maa %

 JB3-U11
 226.1
 41.3
 44.0
 22.9
 5.3
 13.0
 153.5
 7
 148.4
 1.0
 5.7
 1.8
 374
 2.7
 193.8
 48.5
 21.2
 49.6
 6.80
 32.0
 8.2
 2.10
 8.38
 1.35
 8.19
 1.71
 4.85
 .73
 4.09
 .60
 3
 .008

 STANDARD S0-17
 398.9
 18.2
 3.9
 19.6
 11.9
 25.4
 22.7
 11
 305.2
 4.2
 11.7
 11.1
 125
 10.1
 358.0
 27.5
 10.7
 23.8
 3.03
 14.1
 3.3
 1.03
 3.68
 .64
 4.20
 .91
 2.83
 .44
 2.446

Sample type: ROCK R150 60C.

REVISED COPY add cr

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data KFA

ACME ANA **YTICAL LABORATORIES LTD.** 852 E. HASTINGS ST. ' NCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (6 253-1716 (IS 002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE File # A305349 Page 1 (b) 1400 - 570 Granville St., Vancouver BC V6C 3P1 Submitted by: Linda Dandy SAMPLE# Mo Pb Zn Cd SbTl Cu Ni As Bi Au Hq Se Αq ppm ppmppm ppm ppm mqq ppm ppm ppm ppm ppb maq ppm ppm .2 .2 .2 23.2 JB3-C1 5.4 4.0<.5 <.1 <.1 <.1 <.5 <.01 <.1 <.5 <.1 1.5 1.9 2.2 2.3 19.0 <.5 JB3-C2 69 <.5 .1 1.3 <.1 <.1 <.1 .6 <.01 <.5 3 2 JB3-L1 . 7 <.1 <.1 17.5 <.1 .1 <.5 <.01 $1.1 \\ 6.1$ JB3-L2 <.1 <.5 .1 <.5 <.1 1.6 <.1 .01 :5 1.1 **4**.0 41 <.1 . 9 <.5 JB3-L3 <.5 <.1 .1 .4 .01 $2.4 \\ 11.6$ 2.0 1.7 3.7 <.5 <.5 <.5 <.1 <.1 <.5 <.5 JB3-L4 4 3 1.1 1.3 :1 7 <.1 <.1 <.1 .01 13.8 <.1 . ī JB3-L5 1.2 56 <.1 <.5 .01 17.9 15.3 .5 <.1 .3 <.1 .5 .2 1.3 JB3-L6 .5 6.1 49 <.1 <.5 <.01 <.5 <.1 $\frac{1}{2}$ 3.6 7.3 22 72 <.5 <.5 <.1 <.1 1.6 JB3-L7 .6 <.1 12.0 <.01 <.5 JB3-L8 1.7 7.1 1.1 <.5 <.1 <.01 $^{44.9}_{3.7}$ 1.2 <.5 <.5 .7.7 JB3-L9 <.1 <.1 .61567 .5 2.7 6.6 35 7.0 .1 <.1 . 8 <.01 <.1 JB3-L10 $3\overline{0}.1$ 3.1 $\overline{2}$. Ť <.5 <:5 .01 <.1 $\bar{2}.\bar{3}$ <.1 8.4 37 JB3-L11 4.4 <.1 <.1 <.5 <.5 .01 4.1 6.6 < 5 .1 .4 .3).5 <.5 JB3-R1 100.6 37.9 <.1 .1 1.0 61 <.01 83 <.1 24.6 7.0 .5 JB3-T1<.1 <.1 <.01 <.5 <.01 <.5 <.5 :1 <.1 <.1 .1 .2 .2 2.2 JB3-T2 10.7 4.1 21 3.3 <.5 <.1 2.8 1.0 JB3-T3 .3 4.0 9 <.1 <.5 49 7 < 5 ī.9 8.1 .1 .3 <.5 .4 .5 5.9 JB3-T4 <.1 <.1 .01 <.5 JB3-T5 12.4 2.5 1.9 <.1 <.1 <.1 10.4 <.1 .9 .7 .1 < 5 <.01 .5 JB3-T6 . 8 $\bar{2}\bar{1}.\bar{6}$ 1.9 ЗŻ 13.0 <.5 <.5 <.01 1.71.71.63.75.3 $1.4 \\ 3.0$:8 :7 <.5 .3 JB3-T7 .1 <.5 .4 13 <.1 <.01 .2 <.5 <.1 .1 .2 .3 .2 1.1 .1 .1 .1 .1 **JB3-T8** 4 <.1 <.1 <.5 .01 <.5 3.1 .5 .7 5 <.1 <.5 RE JB3-T8 4 <.1 1.1 <.1 .01 <.5 4.1 4.3 <.5 <.5 .5 <:5 6 JB3-U1 .5 <.01 <.1 <.1 JB3-U2 5 1.4 <.1 <.1 . 8 <.5 <.1 <.01 .3 2.41.1 27.2 $3.1 \\ 2.3$ <.1 .2 .11355 JB3-U3 4 .4 1.4 .5 <.01 <.5 <.1 <.1 <.1 5.4 JB3-U4 .1 147 <.5 .8 <.01 3.1 < 5 <.1 <.1 $\frac{1.5}{4.6}$ 2.7 <.5 73 56 <.5 <.5 .1 .1 .5 JB3-U5 <.1 <.1 .01 $\frac{1}{21}$ $\frac{1}{2}$ $\frac{1}{3}$ JB3-U6 <.1 .6 <.1 <.1 <.01 $\bar{2}$.4 12.7 <.1 <.5 .5 JB3-U7 .3 46 <.1 <.01 .6 <.1 .8 .7 .2 JB3-U8 9.3 1.7 10.2 4 .01 <.5 1.4 <.1 <.5 <.1 .1 <.1 10.3 2.2 69 11.3 JB3-U9 .6 <.1 <.1 . 4 <.1 1.3 <.01 1.2 <.5 11.8 139.7 23.9 132 25.7 5.3 3.5 STANDARD DS5 18.8 6.0 .3 41.3 .18 1.0 4.8 GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. SIGNED BY DATE REPORT MAILED: $\sqrt{0}\sqrt{3}/03$ DATE RECEIVED: OCT 29 2003 WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 📈 FA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se	ACM
JB3-U11 STANDARD I		81.3 142.0			27.5 24.0		<u>pp</u> 5.5	.1 3.5	.3 6.0		<.5 38.4		.8 1.0	ppm <.5 4.9	
SIANDARD L	12.1	142.0								. ა	38.4	.10	1.0	4.9	
			Sam	<u>ple t</u>	ype:	ROCK	R150	60C.							
															7

ACME ANAT (ISO	TICAI 02 I		edi	ted	Co)			(Inc	JEO P	CHI ROL	MIC	CAL	оот	IALY 'ENA	SI:	JVER S CE GEMS 3P1	RTI TON	FIC E		e #	A	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1)253	8-31 (a	58	FAX	(60			L716 AA
SAMPLE#	Ba ppm	Co ppm	Cs ppm	Ga ppm	Hf ppm	Nb ppm	Rb ppm	Sn ppm	Sr ppm	Та ррт	Th ppm	U ppm	۷ ppm	W ppm	Zr ppm	Y ppm	La ppm	Ce ppm	Pr ppm	Nd ppm	Sm ppm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	Но ррт	Er ppm	Tm ppm	Yb ppm	Lu ppm	Ве ррл	Cr203 %
HS-1	546.4	9 9	6.7	14 2	6.6	18.0	76.0	3.2	30.7	1 3	12.2	5.6	66	11 7	229 3	44 6	45.9	92.2	11 05	45 0	 	1.80	7 21	1 22	7 55	1 46	A 47	64	3.97	57	<1	.005
HS-2	926.8								88.9						326.5					62.7	-				7.83				4.08	64	5	.005
HS-3	460.2							5 2	42.7	1.3	21.0	6.0	56	2.5	400.7	66.7	72.2	152.3										99	5.98	.90	12	.004
HS-4	371.4	6.2	5.4	11.9	11.6	19.5	66.2	42	30.6	1.8	22.4	6.9	62	2.0 -	411.1	81.3	74.7	158.1	18.75	71.9	13.5	2.50	11.64	1.87	11.78	2.59	8.04	1.23	7.47	1.04	6	.004
HS-5	706.3	14.8	4.7	19.1	7.5	37.8	74.3	4 5	80.9	5.0	12.8	14.0	80	1.7	271.4	53.0	56.9	121.3	14.57	58.7	11.3	2.70	9.74	1.50	8.72	1.78	5.17	. 78	4.78	.73	3	.004
HS-6	1048.5	8.3	3.2	19.0	16.8	61.4	58.5	48	84.9	3.7	29.6	6.9	90	1.1	644.8	81.8	138.1	277.9	32.32	123.6	21.4	4.80	16.56	2.49	13.65	2.69	7.98	1.24	7.35	1.10	8	.005
HS-7	828.7	5.1	4.2	16.3	9.9	42.3	67.6	46	26.2	2.7	20.9	4.3	50	3.6	359.9	62.3	84.3	171.0	20.38	78.0	14.8	3.23	11.48	1.76	10.03	2.04	6.06	.90	5.61	.78	3	003
STANDARD SO-17	398.9	18.2	3.9	19.6	11.9	25.4	22.7	11.3	05.2	42	11 7	11 1	125	10.1	358 0	27 5	10.7	22.8	3 03	14.1	33	1 03	3 68	64	4 20	91	2.83	44	2.84	43	2	. 446

GROUP 4B - REE - 0.200 GM BY LIBO2 FUSION, ICP/MS FINISHED.

REVISED COPY add Cr

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data (M

ACME ANAI "TICAL LABORATORIES LTD. 852 E. HASTINGS ST. V^{*}COUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60/ ?53-1716)02 Accredited Co.) (ISC GEOCHEMICAL ANALYSIS CERTIFICATE Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE File # A305350 (b) 1400 - 570 Granville St., Vancouver BC V6C 3P1 Submitted by: Linda Dandy SAMPLE# Мо Cu Pb Zn Ni Cd As Sb Bi Ag Au Hq Tl Se ppm ppb ppm ppm ppm HS-1 HS-2 55 47 15.0 7.4 10.4 . 5 1.4 .2 .1 <.1 .5 <.5 .55 .55 .55 .55 .55 .1.04 .22.22.2 .32222 .4339 9.6 8.5 8.3 4.1 6.5 5.5 4.6 9.4 8.3 7.4 8.0 1.3 2.2 2.4 1.3 .01 HS-3 ŝģ ·.5 <.5 1.3 <.1 <.1 <.01 HS-434 <.1 <.01 HS-5 10.0 37 .1 <.1 .01

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT SS80 60C

.6 <.5 19.4 <.1 <.1 5.3 <.1 <.1 3.7 .1 .1 6.2

<.1

<.1

.4 42.0

<.5 <.01 <.5 .01

.17

 $.1\\.1$

1.0

<.5 <.5

4.8

.3

12.7

HS-6

HS-7

STANDARD DS5

2.72.2 25.2 30 20

130

8.7

23.0

 $7.8 \\ 4.3$

138.0

DATE RECEIVED: OCT 29 2003 DATE REPORT MAILED: NOV 13/03 SIGNED BY.... TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME AN'	'TICA 002		- A - A - A - A - A - A - A - A - A - A						D.		85	1491	$\mathcal{A}_{d} \in$		TIN MIC							2.4	0.57	1R ATI		P	HON	3 (60	14)23	53-1	3158	FA	X(6'	2	53	1716
		<u>C</u> :	rea	am	M	ine	era	<u>al s</u>											GEN SC V6							305 a Dar	351 Idy		Pag	e	L (a	a)				Ľĺ
SAMPLE#		Co ppr			Ga ppm	Нf ppn	t pp			Sn ppm		Sr Sm p		Th ppm	U ppm	۷ ppm			Zr pm p	Y pm p		Ce ppm	Pr ppm		Sm ppm	Eu ppm	Gd ppin	Tb ppm	•	Ho ppm			Yb ppm	Lu ppm		Cr203 %
HIC 2+00W HIC 1+75W HIC 1+50W HIC 1+25W HIC 1+00W	986.9 812.4 931.7 451.1 445.6	9.9 12.8 7.9	5 11 3 15 5 4	.72 .92 .21	20.0 22.8 5.4	11.9 8.7 7.9) 32. 19. 18.	6 1 2 1 1	30.1 69.1 75.7	5 4 3	392 226 299	.3 2 .6 1 .9 1	.2 2 .4 2 .3 1	9.5 6.2 1.9	3.3 7.1 4.8 2.7 2.5	62 64 64	4.1 3.6 1.5	432 308 280	.3 61 .4 65 .6 31	.4 87 .0 83 .0 40	6 18 8 19 4 8	6.9 2 1.4 1 2.3	20.11 19.83 9.01	78.0 75.3 36.9	14.1 15.3 6.8	2.70 2.54 1.47	11.31 11.60 5.62	1.80 1.96 .94	10.29 10.66 5.03	2.08 2.13 1.02	5.96 6.28 3.00	.86 .89 .44	3.52 5.59 5.49 2.79 2.66	.82 .85 .45	4 1 6	.005 .006 .007 .004 .004
HIC 0+75W HIC 0+50W HIC 0+25W HIC 0+00 CB 2+00W	571.5 786.4 748.7 1060.2 811.6	7.8 8.4 9.5	38 47 714	.62 .42 .52	20.4 20.1 23.8	7.7 9.1 8.3	22. 20. 23.	1 1 4 1 4 1	26.7 18.8 51.8	4 4 5	317. 336. 302.	2 1 6 1 1 3	.9 1 .4 1 .9 1	4.6 4.3 6.4	2.7 3.1 4.0 3.5 17.5	70 75 71	2.5 2.3 4.3	290 302 302	.9 40 .6 42 .7 43	.7 49 .8 54 .2 50	0 10 0 10 0 10	1.6 : 7.0 : 7.1 :	L1.13 L2.10 L1.36	42.0 49.3 44.3	8.1 8.8 8.0	1.66 1.82 1.71	6.36 7.19 6.60	1.12 1.14 1.15	6.15 7.02 6.69	1.32 1.37 1.43	3.85 4.11 4.13	.60 .60 .64	3.12 3.69 3.91 3.98 2.62	.60 .61 .65	5 2 5	.005 .005 .005 .006 .008
CB 1+75W CB 1+50W CB 1+25W CB 1+00W CB 0+75W	758.5 623.2 785.1 870.6 672.6	11.6 12.9 13.6	55 99 510	.61 .62 .12	6.7 23.2 24.7	15.6 8.7 14.3	5 23. 7 38. 8 41.	2 11 51	96.1 43.9 90.3	2 4 4	275. 276. 270.	22 73	.6 1 .6 1 .6 3	9.0 6.8 7.5	3.9 5.0 7.3 11.6 7.0	62 60 59	1.8 2.5 2.8	546 333 477	.6 43 .5 28 .6 39	.2 64 .5 54 .5 98	4 12 2 11 8 19	8.9 2.4 8.5	12.99 10.43 19.35	48.9 38.6 66.6	7.9 6.5 11.1	1.64 1.25 1.51	6.62 5.09 8.37	1.05 .80 1.37	4.67 7.21	1.42 .90 1.33	4.51 2.62 3.61	.70 .40 .55	2.38 4.74 2.45 3.38 2.84	.39 .55	2 7	.009 .012 .005 .007 .006
CB 0+50W CB 0+25W CB 0+00 RE CB 0+00 DP 4+00N	542.5 598.3 600.9 622.6 590.8	16.0 13.0 11.8	57 55 35	.6 1 .7 1 .9 1	19.1 19.5 19.7	7.4 10.5 10.4	21 24 23	.8 1 .4 .0	01.4 81.8 81.2	3 2 2	272 263 259	.0 2 .0 1 .7 2	.3 1 .6 1 .3 1	5.2 9.3 4.3	5,4 3,4 3,9 3,7 3,6	72 69 67	4.2 1.9 2.3	262 387 393	.4 23 .3 23 .7 24	.2 34 .7 47 .0 42	28 310 28	5.0 0.8 8.7	7.68 10.05 8.82	29.2 37.7 33.0	5.2 6.4 5.7	1.11 1.22 1.18	4.32 4.76 4.58	.72 .84 .76	6.17 4.00 4.19 4.07 4.85	. 88 . 83 . 83	2.25 2.30 2.23	. 35 . 37 . 35	2.28 2.25 2.29	. 56 . 34 . 39 . 37 . 49	6 2 2	.009 .009 .008 .009 .009
DP 3+75N DP 3+50N DP 3+25N DP 3+00N DP 2+75N	600.0 610.8 607.1 590.3 648.2	14.8 16.9 15.9	3 12 5 9 0 9	.9 1 .6 2 .4 2	9.9 21.3 21.1	6,9 6,4 6,4) 17. 1 12. 1 12.	.61 .3 .1	10.0 99.6 83.5	2 2 2	218 284 256	.22 .0 .0	.3 1 .9 1 .8 1	2.0 1.2 0.7	6.4 2.7 2.7 3.0 3.8	70 61 61	2.3 2.2 2.2	242 221 2222	.0 26 .2 26 .3 23	.8 28 .8 28 .2 22	.96 .97 .96	2.5 1.6 0.3	6.85 6.58 5.21	26.6 25.3 22.1	5.0 4.6 4.2	1.07 .99 .91	4.24 4.32 3.53	.71 .67 .62	3.76	.92 .92 .81	2.69 2.50 2.19	.42 .39 .32		.34	3 <1 4	.007 .005 .004 .003 .007
DP 2+50N DP 2+25N DP 2+00N DP 1+75N DP 1+50N	509.2 527.8 597.2 492.5 477.7	10.3 24.9 20.1	2 21 9 23 6 16	.9 1 .0 2 .2 1	19.2 24.2 18.4	6.6 6.9 8.2	5 23. 9 22. 2 18.	.83 .22 .31	05.7 03.9 32.1	3 3 3	180 192 191	.0 3 .3 1 .9 1	1.3 1 9 1 6 1	4.5 3.0 8.5	6.7	66 111 102	4.8 3.3 2.9) 240 3 247 9 299	.2 55 .5 52 .3 55	.8 36 .6 40 .9 46	.2 7 .0 9 .3 10	7.0 1.7 9.6	8.25 9.58 11.52	31.9 37.8 43.8	6.1 7.4 9.0	1.17 1.46 1.72	5.75 6.82 8.04	1.12 1.23 1.56	7.55 8.11 8.77	1.83 1.82 2.03	5.60 5.26 5.72	.87 .81 .88	4.55 5.60 5.28 5.30 3.48	. 88 . 85 . 83	10 8 3	008. 008. 009. 008. 008.
DP 1+25N DP 1+00N STANDARD SO-17	485.0 614.7 7 399.9	13.	7 14	.5 2	22.0	6.9	9 16	.4 1	42.8	3	221	4]	.31	5.3		81	3.7	254	.4 32	.6 35	.6 8	2.5	8.66	33.4	6.4	1.31	5.40	.91	5.36	1.19	3.35	. 53	3.97 3.27 2.83	.52	1	. 008 . 006 . 438

GROUP 4B - REE - 0.200 GM BY LiBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data_/FA

REVISED COPY add Cr

Page 2 (a)

Data 🖉

ALME ANALY ITAL																															AUA	HE ANALYLICAL
SAMPLE#	Ba ppm	Co ppm	Ĉs ppm	Ga ppm	Hf ppm	Nb ppm	Rb ppm	Sn ppm	Sr ppm	Та ррт	Th ppm	U ppm	V ppm	W ppm	Zr ppm	ү ррл	La ppm	Се ррл	Pr ppm	Nd ppm	Sm ppm	Eu ppm	Gd ppm	Tb ppm	Dy ppm	На ррт	Er ppm	Tm ppm	Yb ppm	Lu ppm	Be ppm	Cr2O3 %
DP 0+75N	508.8	12.8	11 7	22 4	6.7	15.0	11/1 2	3.2	05 2	1.2	0 0	2.6	86	3 1	218.3	27 0	25 /	54.7	6 16	23.8	1 0	1 07	4 11	7/	4 00	87	2.63	.39	2 54	.41	6	.005
DP 0+50N	473.2								-	1.3	-				-			60.1	-								2.74	. 41		37	2	.005
DP 0+25N	609.9									1.3								65.6							4.20		2.55		2.56	35	2	.005
LP 3+50N	563.5				-		-			1.8			-					88.3		_					-				3.26	.00	1	.003
LP 3+25N	597.9									1.2								81.5											3.82	.56	<1	.008
LP 3+00N	559.9	12.4	17.1	20.3	6.3	15.8	143.1	3 1	55.7	1.2	11.5	5.9	97	3.2	230.3	35.4	37.7	80.7	9.34	37.2	7.6	1.69	6.40	1.08	5.96	1.17	3.25	.51	3.14	. 49	5	.009
LP 2+75N	587.7	12.3	20.5	21.8	7.8	17.5	162.8	31	68.9	1.4	15.8	8.2	98	3.7	267.6	63.2	45.3	94.4	11.56	45.5	9.4	2.13	8.78	1.57	9.35	2.06	6.08	.95	6.01	.85	4	.008
LP 2+50N	555.6	14.5	18.1	22.9	6.9	15.8	157.1	71	49.8	1.9	15.8	8.2	94	3.5	223.6	39.8	46.1	98.6	11.16	43.7	9.2	1.96	8.02	1.35	7.81	1.44	4.01	.62	3.55	.52	3	.008
LP 2+25N	514.4	16.8	12.5	18.1	8.4	15.4	124.0	31	.58.4	2.9	12.8	6.6	68	3.1	280.9	45.3	41.4	91.2	10.34	39.4	7.9	1.82	7.42	1.26	7.10	1.54	4.50	.71	4.14	.59	4	.007
LP 2+00N	596.7	12.9	14.0	20.1	8.5	16.2	144.1	4 2	200.8	1.6	16.2	8.3	66	2.7	300.2	35.7	42.4	104.8	10.94	43.6	8.3	1.88	7.16	1.23	6.73	1.29	3.46	.57	3.19	.56	6	.006
LP 1+75N	597.0	32.9	17.3	22.8	6.9	17.9	139.0	4 2	219.5	1.8	13.8	15.0	76	2.2	247.2	29.5	33.1	81.2	8.60	32.1	7.1	1.68	6.12	1.02	5.88	1.10	3.39	.46	2.97	. 44	5	.006
LP 1+50N	607.0	24,2	19.4	21.4	7.8	17.7	148.0	31	66.3	1.3	13.7	4.1	88	3.4	266.5	35.0	37.8	91.5	9.52	36.8	7.5	1.39	6.32	1.00	5.92	1.22	3.57	.57	2.99	.46	9	.008
RE LP 1+50N	635.0	22.7	19.3	22.0	7.7	18.1	156.4	31	67.7	1.6	13.9	3.7	90	3.2	269.8	34.0	35.5	84.7	8.65	30.9	6.4	1.40	6.16	.96	5.59	1.10	3.49	. 52	3.05	.48	6	.008
LP 1+25N	674.6	32.2	26.8	26.1	5.7	17.1	178.0	31	59.9	1.3	10.3	6.9	106	3.2	197.9	26.5	25.7	64.9	6.35	25.4	5.3	1.15	4.64	.75	4.69	. 93	2.65	. 43	2.36	.35	7	.010
LP 1+00N	609.8	16.5	15.1	21.8	7.7	18.9	142.1	32	202.7	1.6	13.7	4.1	90	2.9	287.6	43.1	40.0	85.3	9.46	36.5	7.5	1.52	6.45	1.07	6.86	1.35	4.15	.63	3.97	.60	5	.008
LP 0+75N	570.6				-					1.8								88.1											3.44	.53	2	.009
LP 0+50N	544.8							31	67.6	2.7	16.4	4.1						104.4											4.43	.70	6	.008
LP 0+25N	557.2							3 1	151.7	1.3	13.1	3.7			-			90.0												.59	5	.007
LP 0+00	628.5	13.0	9.3	18.7	9.6	19.2	122.5	31	196.0	1.8	18.4	4.0	80	3.4	378.8	68.2	56.5	117.5	13.58	54.2	10.6	1.89	9.31	1.61	10.36	2.17	6.82	1.03	5.74	.88	8	.008
STANDARD SO-17	391.3	18.2	3.9	19.6	11.9	25.4	22.7	11 2	296.3	4.2	11.7	11.1	125	10.1	358.0	27.5	10.7	23.8	3.03	14.1	3.3	1.03	3.68	.64	4.20	. 91	2.83	. 44	2.76	.43	2_	. 446

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

REVISED COPY add Cr

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm
HIC 2+00W HIC 1+75W HIC 1+50W HIC 1+25W HIC 1+25W HIC 1+00W	.5 .4 .4 .1 .1	10.0 10.9 16.3 8.8 5.9	9.9 5.5 7.8 3.3 3.4	79 48	16.6 15.0 20.9 7.4 7.9	2.0 1.5 2.4 .9 1.0	.1 .1 .4 <.1 <.1	.1 .1 .2 <.1 <.1	.4 .4 .4 .1 .1	.1 <.1 <.1 <.1 <.1	<.5 .9 .6 <.5 .8	.02 .02 .04 <.01 .01	.2 .3 .3 .1 .1	<.5 <.5 <.5 <.5 <.5
HIC 0+75W HIC 0+50W HIC 0+25W HIC 0+00 CB 2+00W	.2 .2 .2 .4 .5	13.3 9.7 16.1 7.0 19.4	6.0 5.2 5.9 7.4 14.2	35 42 53 94 140	13.210.514.212.822.2	1.1 .8 1.2 1.6 7.3	<.1 <.1 <.1 .1 .2	.1 <.1 <.1 .1 .2	.3 .2 .3 1.0	.1 <.1 .1 .2	<5 <5 <5 <5	.01 .01 .01 .02 .10	.22	۲. ۲. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳. ۳.
CB 1+75W CB 1+50W CB 1+25W CB 1+00W CB 0+75W	.3 .7 .9 1.0	10.6 10.2 15.2 14.7 12.3	7.8 7.1 15.6 10.9 11.8	68 106	$16.2 \\ 14.1 \\ 11.8 \\ 11.5 \\ 8.8 \\ 8.8 \\ $	3.0 1.9 3.1 2.5 3.5	.2 .1 .2 .2 .1	.1 .2 .2 .1	.4.55.5	. 1 . 1 . 1 . 1	1.4 1.1 .8 .6 <.5	.04 .03 .03 .04 .02	.1 .3 .3 .4	< < < < <
CB 0+50W CB 0+25W CB 0+00 RE CB 0+00 DP 4+00N	.76.66	27.5 23.6 12.2 13.4 15.0	8.3 8.4 10.2 10.2 10.8	72 62	18.0 29.9 15.7 15.9 16.9	2.6 3.7 3.7 2.7	.1 .1 .1 .2	.3 .1 .2 .1 .1	.35 .44 .7	<.1 .1 .1 .2	.6 1.4 1.2 1.4 .6	.02 .05 .06 .07 .06	.5 .1 .1 .2	<
DP 3+75N DP 3+50N DP 3+25N DP 3+00N DP 2+75N	.7 .6 .7 1.1 2.1	14.4 9.3 14.1 13.7 26.3	10.9	127 125 91 68 54	18.9 15.7 22.9 17.7 31.2	2.5 3.9 2.4 4.7 2.6	.1 .2 .1 <.1	.2 .3 .1 .3	.8 .8 .5 .7 1.5	.1 .2 .1 .1	<.5 1.3 1.3 1.6 .6	.07 .11 .06 .10 .05	.2 .2 .1 .1 .3	<
DP 2+50N DP 2+25N DP 2+00N DP 1+75N DP 1+50N	2.2 4.4 2.4 2.5 2.9	17.0 15.0 20.5 29.6 29.2	9.9 12.4 12.8 8.9 7.9	58 80 167 75 81	20.6 16.2 28.2 18.2 20.1	1.9 3.2 2.6 2.2 3.0	<.1 .3 .3 .1 .2	.1 .2 .1 .1 .1	2.2 3.1 4.0 1.4 1.8	.1 .2 .1 .1	.9 1.0 2.0 1.5	.02 .04 .06 .04 .09	.4 .5 .4 .4	5555 - 55555 5555
DP 1+25N DP 1+00N STANDARD DS5	4.3 1.5 12.4	$29.4 \\ 16.5 \\ 148.0$	$9.0 \\ 10.2 \\ 25.2$	101 107 138	$21.5 \\ 17.7 \\ 24.8$	2.9 2.6 19.7	.1 .2 5.7	.1 .1 3.7	$1.8 \\ 1.3 \\ 5.9$.1 .1 .3	$1.3 \\ 2.3 \\ 43.1$.04 .04 .19	.4 .3 .9	<.5 <.5 5.1
GROUP 1DX - 0.50 GM UPPER LIMITS - AG,	AU, HG, V	J = 100 PP	M; MO, CO	, CD, SE	3, BI, TH	, U & B =	2,000 PF	M CU P	B, ZN, N					
UPPER LIMITS - AG, - SAMPLE TYPE: SOIL TE RECEIVED: OCT 29 2003	. SS80 600	Samp	les begin	ning (<u>R</u> E	<u>'are Re</u>	runs_and	'RRE' ar	e Reject	Reruns.					FIED B.C.

Data FA

Mo ppm 1.6 1.1 .8	Cu ppm 14.1 16.0	Pb ppm 12.8	Zn ppm 80	Ni ppm	As ppm	Cd ppm	Sb ppm	Bi ppm	Ag ppm	Au ppb	Hg ppm	Tl ppm	Se ppm	
$1.1 \\ .8$	14.1	12.8	80											
$1.1 \\ 1.5$	$14.7 \\ 36.7$	$12.0 \\ 10.8 \\ 10.8 \\ 11.4$	63 60 60	15.5 14.1 17.2 20.2 22.2	3.6 4.9 3.1 1.8 2.8	.1 .1 .1 .2 .2	.2 .3 .1 .1 .1	1.3 1.1 1.0 .9 1.0	.1 .1 .2 .1	1.3 1.5 1.6 .7 .9	.08 .08 .04 .03 .04	.2 .2 .2 .2 .2	<.5 <.55 <.55 <.55 <.55	
1.4 1.2 1.2 .9 .9	35.6 43.2 25.7	13.1 12.6 13.1	62 58 52 46 81	21.4 25.2 9.7	1.9 2.3 1.6 2.5	.2 .3 .2 .2 .2	.1 .1 .1 .1	.9 1.1 1.0 1.0 .8	.2 .2 .2 .3 .2	<.5 .9 1.4 2.2 1.2	.02 .03 .07 .03 .06	.2 .2 .3 .2	<.5 <.55 <.55 <.55	
3.1 1.0 1.1 1.7 .8	$22.2 \\ 23.0$	12.1 12.5 14.3	103 104 109	25.8 26.2 44.8	3.2 2.4 2.7 2.8 2.5	.3 .1 .2 .2	.1 .2 .1 .1	2.8 1.5 1.6 1.6 1.1	.3 .1 .1 .1 .1	$\begin{array}{c} 4.2 \\ .7 \\ 1.3 \\ 1.2 \\ 1.0 \end{array}$.11 .04 .04 .06 .05	.4 .3 .4 .2	<5 <5 <5 <5	
1.0 .5 .6 12.7 1	$12.4 \\ 19.7 \\ 9.8$	$10.1 \\ 7.7 \\ 7.7 \\ 7.7$	47 63 51 67 130	$13.2 \\ 17.4 \\ 10.2$	2.4 2.3 1.8 1.2 19.4	.1 .1 .1 5.3	.2 .2 .1 .2 3.7	1.1 .8 .6 .7 6.2	.1 .1 .1 .1 .4	<.5 2.0 <.5 <.5 42.0	.06 .05 .04 .04 .17	.2 .2 .2 .2 1.0	<5 <5 <8 4.8	
	1.5 1.42299 3.0178 1.566	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

1400 · 570 Granville St., Vancouver BC V6C 3P1	Be
SAMPLE#	ppm
LC L4+00E 5+00N LC L4+00E 4+50N LC L4+00E 4+00N LC L4+00E 3+50N LC L4+00E 3+50N LC L4+00E 3+00N	8 4 8 5 8
LC L4+00E 2+50N LC L4+00E 2+00N LC L4+50E 6+00N LC L4+50E 5+50N LC L4+50E 5+50N LC L4+50E 5+00N	5 11 3 5 8
LC L4+50E 4+50N	3
LC L4+50E 4+00N	3
LC L4+50E 3+50N	6
LC L4+50E 3+00N	9
LC L4+50E 2+50N	19
LC L4+50E 2+00N	7
RE LC L4+50E 2+00N	9
LC L5+00E 6+00N	3
LC L5+00E 5+50N	<1
LC L5+00E 5+00N	2
LC L5+00E 4+50N	4
LC L5+00E 4+00N	4
LC L5+00E 3+50N	4
LC L5+00E 3+00N	6
LC L5+00E 2+50N	3
LC L5+00E 2+00N LC L5+50E 5+50N LC L5+50E 5+00N LC L5+50E 5+00N LC L5+50E 4+50N LC L5+50E 4+00N	6 9 4 5 6
LC L5+50E 3+50N	8
LC L5+50E 3+00N	2
STANDARD SO-17	3
GROUP 4B - REE - 0.200 GM BY LIBO2 FUSION, - SAMPLE TYPE: SOIL PULP Samples beginning 'RE' are Reruns and 'RRE' ATE RECEIVED: OCT 17 2003 DATE REPORT MAILED: Oct 22/2003 SIGNED	are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

Page 2

		ACME ANALYTIC
SAMP	PLE#	Be ppm
LC L LC L LC L	15+50E 2+50N 15+50E 2+00N 16+00E 6+00N 16+00E 5+50N 16+00E 5+00N	5 3 3 2 2
LC L LC L LC L LC L	6+00E 4+50N 6+00E 4+00N 6+00E 3+50N 6+00E 3+00N 6+00E 3+00N 6+00E 2+50N	3 8 6 <1 6
LC L LC L LC L	06+00E 2+00N 06+00E 1+50N 06+00E 1+00N 06+00E 0+50N 06+00E 0+00	1 4 6 6 6
LC L LC L RE L	6+00E 0+50S 6+00E 1+00S 6+00E 1+50S C L6+00E 1+50S 6+50E 6+00N	4 <1 5 7 2
LC L LC L LC L	6+50E 5+50N 6+50E 5+00N 6+50E 4+50N 6+50E 4+00N 6+50E 3+50N	1 4 7 7 7 1
LC L LC L LC L	6+50E 3+00N 6+50E 2+50N 6+50E 2+00N 7+00E 5+50N 7+00E 5+00N	2 7 1 4 2
LC L	7+00E 4+50N 7+00E 4+00N DARD SO-17	<1 7 1

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data AFA

Page 3

Data AFA

	ACME ANALY1
SAMPLE#	Be ppm
LC L7+00E 3+50N LC L7+00E 3+00N LC L7+00E 2+50N LC L7+00E 2+00N LC L7+50E 5+00N	14 4 2 <1 3
LC L7+50E 4+50N LC L7+50E 4+00N LC L7+50E 3+50N LC L7+50E 3+00N LC L7+50E 3+00N LC L7+50E 2+50N	2 5 6 3 7
LC L7+50E 2+00N RE LC L7+50E 2+00N LC L8+00E 5+00N LC L8+00E 4+50N LC L8+00E 4+50N LC L8+00E 4+00N	$2 \\ 4 \\ 6 \\ < 1 \\ 4$
LC L8+00E 3+50N LC L8+00E 3+00N LC L8+00E 2+50N LC L8+00E 2+00N STANDARD SO-17	2 7 <1 <1 2

Sample type: SOIL PULP. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

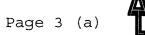
T T		<u>C</u> 7	<u>rea</u>	<u>m Mi</u>	<u>.ne</u>	<u>ra</u>]	<u>L8</u>	<u>Inc</u> 1400	2. P - 570	<u>'RO</u> 0 Gr	<u>JEC</u> anvil	<u>'T</u> le S	<u>КОС</u> t.,)TEN Vanco	<u>VAY</u> Suver	GE BC V	<u>MST</u> 60 31	<u>'ON</u> 21	<u>E</u> Subr	Fi nitte	le d by	#] : Lir	A30 Ida £	492 andy	9	P	age	≥ 1	(a)				Ľ	Ê
MPLE#	Mo ppm			-	n Ag mippb) Mn i ppm		As ppm	U mqq i	Au ppb	Th ppm	i Sr i ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm		Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K % p	W Sc opm ppm	T1 ppm		Hg ppb p		
L4+00E 5+00N L4+00E 4+50N L4+00E 4+00N L4+00E 3+50N L4+00E 3+00N	5.70 1.92 2.82	45.98 82.10 18.96 20.06 26.56	20.59 15.18 12.53	9 84.5 8 74.9 3 81.4	5 769 3 9 194 4 318	22.0 14.0 13.9	7.7 9.7 9.8	421 869 789	2.68	3.2 3.1 2.8	2 9.8 1.5 3 2.3	.9 .9 4.3	9 1.8 9 2.4 3 2.1	16.2 11.2 6.1	.73 .29 .31	.23 .25 .16	3.26 1.26 1.37	33 . 33 . 32 .	15 .0 13 .0	051 1 095 1 095	.3.5 .0.0 9.3	15.5 17.9 17.9	.25 .39 .41	170.0 123.3 101.9	.137 .108 .099	11 12 <12	.56 .11 .07	.014 . .013 . .010 .	.11 2 .15 1 .16 1	2.0 1.8 1.5 2.1 1.0 2.1	. 18 . 24 . 24	.02 .02 .01	98 98 89	.6. .6. .6.	02 11 02 7 02 7
C L4+00E 2+50N C L4+00E 2+00N C L4+50E 6+00N C L4+50E 5+50N C L4+50E 5+00N	2.54 9.61 12.77	17.78 11.58 20.29 29.16 12.60	11.80 10.26 17.21	0 107.8 6 63.0 1 128.1	8 200 0 146 1 212 .	12.6 14.5 27.5	i 10.2 i 7.8 i 14.7	2 364 288 2168	2.35 2.51 3.07	4.2 2.3 3.9	2 2.3 3 11.3 9 9.2	<.2 .4 .6	2 2.8 4 1.3 5 1.4	12.0 16.9 20.9	. 19 . 22 . 75	.20 .10 .36	2.23 1.55 3.88	32 . 34 . 39 .	.12 .1 .18 .0	151 044 1 097 1	7.1 2.9 4.1	13.8 19.1 28.2	.24 .41 .41	133.6 83.1 205.2	.126 .081 .128	12 21 12	.94 .40 .15	.014 . .008 . .011 .	. 09 . 10 . 19	.8 1.9 .6 1.7 .7 1.8	.19< .15 .34	<.01 .01 .04	107 61 100	.6 . .5 . .7 .	.03 .02 .05
C L4+50E 4+50N C L4+60E 4+00N C L4+50E 3+50N C L4+50E 3+00N C L4+50E 2+50N	3.14 4.96 42.43	17.85 20.26 40.88 25.21 12.33	5 11.00 8 12.00 . 12.06	0 78.5 0 61.5 6 66.9	5 132 5 372 9 116	15.5 16.4 6.3	5 13.9 9.4 8 2.5	568 351 290	3.23 2.93 3.41	3.7 3.2 3.6	2.3 6.5 3.4	.2 .3 .5	2 3.6 3 2.3 5 2.4	7.8 7.2 7.0	.23 .27 .09	.21 .15 .11	1.41 1.72 1.46	38 . 35 . 37 .	.08 .0 .06 .0 .05 .0	072 1 041 1 646	1.1 1.5 4.6	21.1 18.0 14.0	.42 .37 .16	110.4 104.3 76.8	.157 .125 .121	12 12 11	.32 .07 .99	.010 . .013 . .009 .	.13 1 .13 2 .10	1.6 2.5 2.0 2.1 .5 1.4	. 25* . 25 . 22	:.01 .01 .01	88 92 72	.7 . .6 . .6 .	04] 04 05]
C L4+50E 2+00N RE LC L4+50E 2+00N C L5+00E 6+00N C L5+00E 5+50N C L5+00E 5+00N	5.91 4.44 4.94	18.44 18.26 15.12 13.53 22.59	5 15.31 2 11.75 3 9.08	1 119.0 5 64.3 8 80.9	0 158 3 196 9 257	8.1 9.0 11.3	6.3 8.8 8.0	1002 673 315	2 2.34 3 2.12 5 2.65	5.8 2.0 3.3	3 15.1) 1.7 3 2.2	<.2 .2 1.1	2 3.5 2 1.2 1 3.1	5.9 9.6 5.0	.32 .20 .27	.38 .11 .21	1.64 1.40 2.71	34 . 30 . 37 .	.06 .4 .07 .1 .04 .1	440 066 081	4.4 8.2 9.1	10.7 11.9 17.6	.13 .14 .34	86.9 134.4 66.7	.143 .123 .120	23 11 11	.86 .38 .62	.015 . .014 . .008 .	.05 .06 .10	.4 2.0 .4 1.4 1.6 1.7	.15 .12 .18•	.02 .01 .01	118 1 61 74	1.0 . .5 . .6 .	02 02 05
C L5+00E 4+50N C L5+00E 4+00N C L5+00E 3+50N C L5+00E 3+00N C L5+00E 3+00N C L5+00E 2+50N	1.67 1.21 6.24	15.76 14.36 14.03 9.73 9.25	5 11.38 3 7.99 3 15.22	8 60.2 9 71.0 2 88.2	2 71 0 167 2 137	14.7 17.1 5.6	7 15.9 . 8.6 5 4.0) 1019 5 237 1 184) 3.07 / 2.72 2.11	3.5 2.5 2.8	5 .7 5 1.0 8 1.2	.2 <.2 <.2	2 3.8 2 4.3 2 2.7	6.2 6.6 4.9	.09 .13 .15	.24 .12 .22	1.46 1.12 2.61	41 . 39 . 33 .	.06 .1 .08 .0	116 1 041 1 194	.0.5 .2.3 6.8	22.9 21.6 10.4	.42 .53 .15	95.3 128.5 77.3	.115 .138 .137	1 1 <1 2 1 1	.61 .44 .37	.007 . .009 . .010 .	.12 1 .16 1 .07	L.3 1.9 L.5 2.5 .3 1.2	.24 .25 .12	.01 .01 .01	44 96 67	.4 . .5 . .5 .	03 02 02
LC L5+00E 2+00N LC L5+50E 5+50N LC L5+50E 5+00N LC L5+50E 4+50N LC L5+50E 4+00N	8.75 4.60 4.99	12.62 51.98 10.94 8.45 11.75	3 5.50 1 8.40 5 11.58	0 92.8 0 28.4 8 26.6	8 191 4 78 6 100	24.3 5.1 4.7	3 11.8 2.2 2.4	420 70 56) 2.71) 2.09 5 2.14	2.5 2.9 2.7	5 7.6 9 2.5 7 2.8	.8 <.2 .2	3 4.2 2 3.0 2 2.6	2 4.7 4.2 5 5.1	.21 .10 .09	.15 .17 .14	2.34 1.79 1.41	33 . 32 . 41 ,	.08 .0 .04 .0 .04 .0	089 1 070 084	4.3 4.9 5.2	23.1 11.5 10.3	.60 .08 .06	100.1 62.2 84.2	.108 .089 .124	<12 13 12	.10 .50 .85	.006 . .012 . .012 .	.16 .03 .03	.6 2.7 .6 1.7 .8 1.6	.31 .10 .10	.03 .02 .02	80 65 71	.5 . .6 . .5<,	02 02 02
LC L5+50E 3+00N LC L5+50E 2+50N LC L5+50E 2+00N	5.23 8.70 2.34	40.69 12.05 70.23 12.06 145.36	5 10.29 3 15.96 5 9.26	9 70.3 6 67.2 6 70.7	3 148 2 613 7 199	3 7.2 3 16.9 9 10.7	2 9.3 9 14.9 7 6.5	8 479 9 719 5 291	2.85 2.29 2.30	5.7 2.8 4.2	7 1.8 3 15.9 2 1.0	.2 .8 .5	2 3.0 3 2.5 5 2.4) 6.1 5 14.2 10.2	. 20 . 48 . 30	. 38 . 19 . 24	1.42 2.16 .98	41 . 30 . 32 .	.07 .3 .12 .4 .10 .3	346 058 1 302	3.3 4.6 4.6	10.2 14.2 14.2	.08 .23 .24	61.6 120.3 79.4	.173 .133 .123	15 12 12	.60 .03 .61	.014 .015 .011	. 03 . 09 . 08	.4 2.0 1.5 2.1 1.7 1.7	.08 .20 .14	.04 .03 .04	198 1 94 78	1.0 . .7 . .7 .	.02 .04 .02

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C Samples beginning (RE) are Reruns and (RRE) are Reject Reruns.

DATE RECEIVED: OCT 9 2003 DATE REPORT MAILED

Data 🔨

Page 2 (a)


ACME ANALYTICAL				· · · •																														 AUME ANALYTIC
· · · · · · · · · · · · · · · · · · ·	SAMPLE#	۲o	Ċu	Pb	źn	Ag N	n Co	Mn	Fe	As L	J Au	Th	Sr	Cd	Sb	Bi	۷ (Ca F	ہے د	Ûr.	Mg	Ba	Ti	3 A1	Na	к	ĸ	S¢ T	1 :	s hy	- Se	e Te	Ge	 ·
		ppm	ppm	ppm	ppm	ррб ра	м рря	ppm	X p	рот ррп	п роб	ррл	ррп р	opm p	pn p	ррл ор	70	8 8	≹ ppm	pan	8	pon	\$ p;	<u>۶</u> ار	ż	*	pom p	рл рр	A 3	- s ppb	рол	і рри	ppn	
}																														_				
	LC 16+00E 6+0CN	5.95	27.20	6.27	21 1	37 7.	6 4.2	106 1	. 29	.9 7.3	8 1.5	1.7	3.8	07.	DS 1.	.25 2	21 .(04 025	888	9.9	26 4	2.9.0	53 <	-1 .81	.004	.04	.7 1		6 .0;	2 24	.3	.02	3.6	
	LC L6+00E 5+50N	B.53	10.15	8.79	20.6	23 5.	5 2.8	90-1	.71 2	2.4 .6	6. 6	2.6	3.0	.03 .	09 1.	.78 4	18 .0	02 .032	2 8.9	10.0	.16 2	2.2.1	19	1 .56	.004	.04	1.8	.9 .1	£ .0	1 23	.3	3 . 06	7.6	
	LC L6+00E 5+00N	6 24	9-17	16.50	17.0	148 1.	2 6	43	.34	.9 1.3	l <.2	1.0	3.3	. 11 .	29 3.	.17 2	. 2	02 .017	7 9.2	3.8	.03 4	1.3.0	30	1 .82	.010	.04	<.1	.5 .1	1 .0.	2 36	.3	s <.02	7.3	
	LC L6+00E 4+50N	13.25	13.80	13.36	18.9	129 3.	1 1.2	57.3	.31)	7.9 2.7	78	3.6	3.5	. 25 .	41 5.	.89 6	50 .0	04 .379	9 3.9	13.2	.67 3	7.5.1	35	1 5.48	.010	.05	.5 2	.1 .0	6 .0	5 111	.6	.03	13.7	
	LC L6+CDE 4+DON	3.71	14.31	9.29	70.6	134 9.	0 7.8	407 1	91 2	2.9 2.6	5.3	3.1	6.5	. 19	17 .	.70 Z	. 9	06 .134	6.9	12.4	.12 13	6.3.1	30	1 4.13	.018	. 03	.7 3	4.1	1 .0;	2 86	.5	<.02	8.9	
	LC L6+C0E 3+50N	5.32	9.37	11.87	44.3	243 5.	2 4.8	552-2	. 20 - 3	3 0 2.5	5 3	2.4	5.3	.24 .	23 1.	.86 3	36 .(04 .183	3 5.2	10.0	.09 11	2.7.1	04 <	=1 2 77	.010	. 05	.8 1	.8.1	5 .0;	2 122	6	03	10.9	
1	LC 16+00£ 3+00N	1.60	13 02	8.72	88.5	187-14.	2 12.4	239-2	.42 :	3.2 1.0	.2	3.2	6.9	. 18 .	13 1.	.09 3	35.0	07 .063	3 6.9	17.2	.26 11	4.9.1	30	1 4.03	.012	. 10	1.9 2	.92	1 .0-	1 121	.6	5 .02	7.4	
	LC L6+00E 2+50N	1.97	14.53	9.80	72.8	178 12.	7 10.6	345-2	2.28 (3.7 2.2	28	3.21	2.8	. 20 .	23	72 3	31 .:	15 .116	5 8.3	13.7	. 18-12	2.8.1	33	1 4.16	.015	07	1.8 2	.6 .1	8.0-	4 143	.7	.02	9.5	
	LC L6+00E 2+00N	4.06	21-10	9.11	38.5	535 8.	4 4 9	110-2	.43 🕻	3.1 7.3	.4	2.6]	4.5	. 39	13 .	.63 2	25 .:	12 .058	3 11.3	12.4	.11-10	3.4.1	39	1 3.98	020	.04	1.1 2		1 .0	5 183	.8	8 <.02	10.7	
	LC L6+00E 1+50N	3 13	15-39	8.94	133.5	180-13.	3 8 4	994-2	2.14 🔮	3.6 1.0	3.4	1.7.1	4.2	. 52 .	25 .	.74 Z	. 9	13 .123	1 8.8	14.7	.28 14	1.3.1	C8 •	<1 3.03	.013	. 08	.8 2	.1.1	8 .0:	3 178	.7	.02	9.3	
	LC L6+00E 1+00N	2.61	15.70	9.24	105.0	135-11.	0 9.1	1011-2	.43 ;	3.7 1.1	l .7	2.4	6.5	.46 .	25 1.	.28 3	1. 05	08 .165	5 7.1	15.6	.27 10	1.5 .1	07	1 1.68	.010	. 10	1.4 1	7 .1	5 .04	4 89	.5	.04	7.8	
	LC L6+00E 0+50N	6.07	95.24	16.44	32.4	612 24.	952	281 2	1.30 - 3	2.3 86 2	2 1.6	.9 1	19.5	.75 .	12 1	.75 2	29	19 .052	2 25.5	13.2	. 14 - 13	1.7 .1	.02 -	<1 2.02	.014	. 69	.5 2	6 .1	۵. ۲	7 93	.7	.03	9.7	
	10 L6+00E 0+00	2.46	13.12	14.57	53.0	143 8.	8 4.7	233-2	2.53 2	2.7 4.	<.2	3.3	6.1	.11	12 1	.30 4	42 .0	05 .141	1 11.2	15.6	.22 8	3.2.1	49 -	4 1.38	.010	. 68	1.0 I		5 .0.	2 58	.4	.03	12.0	
	LC L6+0CE 0+50S	3.02	41.66	14.58	71.1	306-23.	.6 9.7	531-2	2.33 2	8.2.23.9	9 1.4	112	2.1	. 35	11 3	02 3	33	23 .064	4 13.8	24.8	.55 17	8.9.1	.04	1 2.54	.015	. 26	.5 2	6 3	2.0	5 90	6	.02	9.2	
	CC 16+00E 1+00S	3.69	31.67	34.30	44.1	283-16.	4 5.9	275 2	. 65 - 2	2.6 7.9	5.7	161	10.9	. 79	15 2	46 4	15 .	10 .040	0 15.3	17.4	. 26 11	0.8.1	35	1 1.68	.012	.16	1.0 2	1.2	1 .0	5 68	.5	.03	10.5	
	LC L6+00E 1+56S									5.0 48.3																								
1	RE LC (6+00E 1+50S																																	
	LC 15+50E 6+00N									1.9 .6																								
	LC 16+50E 5+50N									2.9 .9																								
	LC L6+50E 5+00N	.64	9.97	4.45	29.2	31 9.	.9 6.9	239 1	52 .	1.8 .9	5 1.8	3.3	3.8	.07 .	09 .	.30 2	21 .0	07 .079	9 10.7	17.7	.27 3	3.4 .0	40 -	<1 1.18	.003	.04	.4 1	.4 .0	17 .Q	1 4/	.4	. <.02	7.6	
	LC L6+50E 4+50N	.o. 26	31.00	10 77	40.0	170 0		102.2		3.1 26.5				20	10 7	75 7		ne	. 10.1	14.0	25 (or .	<1.5.10	010	10				. 150			~ ~	
	LC L6+50E 4+50N									3.3 .)																								
l l	LC L6+501 3+50N									6.5 8.(
	LC 16+50E 3+004									0.5 B.0 2.0 3.5																								
	LC L6+50E 2+50N									3.7 1.9																								
	EC ED-DEI 2-00M	2.74	20.00	5/	101.5	110 64.		040 2		J.7 I		- .2.	0.7		-0 1	.4/ 4	+1 .1	vo .032	2 10.2	27.1				•1 2.90	. 607	. 19	1.4 3	.U Q	·+ .v	2 132	/	. 46	1.0	
	LC L5+50E 2+00N	8 69	20, 36	17 72	73.5	158-15	0.26	390.4		4.0 1 4	4 A	3 2 1	10.7	37	15 2	37 F	-4	10 04/	4 7 9	29.7	32 11	201	R4 -	-1 2 32	000	11	. 6 0	. 5 1	7 0	4 110	7		13.7	
	LC L7+00E 5+50N									1.8 5.0																								
4	LC L7+00E 5-00N									4.1 .1																								
	LC L7+00E 4-50N									2.8																								
	LC L7+00E 4-00N									4.1 51.2																								
	EC EFTODE HTODA	20.05	20.14	10.00	41.9	101 0.		117 2			0	1.7	u		25 2.				J 11.4	9.9	.16)	2.0.1	-92	1 2.14	.022	100		•• •1	0	U 105	/	.04	10.4	
	LC L7+0DE 3+50N	7 84	12 19	10 54	30 A	go s	6 30	396 3	248	6.7 19.	; a	3 5	4 9	21	35 15	60 3	86 1	08 32:	2 3 5	11.2	0 9 -	15 7 1	51	15.63	016	03	3 3	י וי	0 0	5 172		× n ع	12.8	-
	LC L7+00E 3+00N									2.9 2 .9																								
	LC L7+00E 2+50N									2.7 2.1 3.4 10.1																								
	LC 17+00E 2+00N									5.0 6.																								
	STANDARD DS5									5.0 6. 8.8 5.8																								
	JIANDAND DOD	10.12	140.17	23.39	U. 10	2/0/24.	.4 12.7	101 3	S. O.I. 13	9.0 9.0 ————————————————————————————————————	2 91.L	2.1.4	17.1 3	.ug g.	.U4 D.	.77 0	. 10	14 .09	+ 12.I	100.4	.00 1.	J	97	1/ 2.00	.000	.13	9 L C	- * 1.d	ω.U	J 1/2		O.3	0.1	

Sample type: SONLISS80-600. Samples beginning [RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data K_{FA}

Data KFA

ACME ANALYTICAL																																		ICME ANALY	ILAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm p	V mqc	Ca %	Р % р	La opm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	A1 %	Na %	K %	W Sc ppm ppm	T1 ppn		S Hg K ppb	Se T ppm pp	
C L7+50E 3+50N	8.43	19.08 15.10 19.81 13.89 45.24	8.81 12.78 13.44	30.2 41.6 40.0 52.9 86.6	127 140 124	10.2 7.5 8.1	6.4 4.9 4.6	124 2 152 3 230 2	2.45 3.22 2.47	1.4 2.5 5.8 3.9 1.8	10.0 24.1 7.8	.9	3.7 3.0 3.3	4.9 5.6 6.2 5.7 14.6	.06 .28 .24 .23 .55	.03 .12 .26 .38 .15	.45 1.06 1.44	29 . 43 . 38 .	06 . 07 . 07 .).8 5.8 5.6	19.8 13.3 17.4	.27 .16 .18	52.1 58.2 78.7	.077 .151 .091	<1 <1 <1	2.74 1.99	.006 .011	.04 .04 .07	1.0 1.8 .5 2.3 .5 1.6 .6 1.8 .3 1.6	.07 .12 .18	. 02 . 02 . 05	2 34 2 124 2 160 5 124 4 91	.7 .0. .6 .0	3 5.7 2 5.6 2 14.4 3 9.5 3 9.9
C L7+50E 2+50N C L7+50E 2+00N C L8+00E 5+00N C L8+00E 4+50N C L8+00E 4+50N	12.91 10.32 5.05	10.10	18.31 9.89 7.10	103.7 58.0 41.4	87 134 62	8.7	11.1 5.3 6.2	237 3 113 2	3.89 2.46 2.30		16.2 12.8 6.5	.4 .4 1.3	2.8 3.3 3.6 3.6 3.2	24.7 7.5	.19 .26 .30 .05 .17	.33 .20 .14 .10 .21	1.91 .86 .43	49 . 33 . 32 .	22 . 07 . 05 .	127 8 092 6 059 11 038 9 070 10	5.3 1 9.9	50.7 14.6 16.9	.21 .22 .36	157.9 70.0 39.7		1 <1 <1	1.73	.015 .007 .005	.07	.4 1.9 .4 1.9 .6 2.5 .4 2.0 .5 1.7	.12	. 03 . 02 . 02	4 89 3 144 2 136 2 55 3 61	.6.0 .7.0	2 10.0 2 16.9 3 10.7 2 6.6 5 6.0
LC L8+00E 3+50N LC L8+00E 3+00N RE LC L8+00E 3+00N LC L8+00E 2+50N LC L8+00E 2+50N	14.22 13.52 .82		7.73 7.42 4.64	29.8 50.0 48.4 55.3 59.5	40 38 29	5.7 9.5 9.0 11.4 9.5	8.5 7.9 7.6	991 2 993 2	2.13 2.14 1.93	2.0		3.9 .6 1.4	1.5 1.5 2.9	3.8 11.5 11.5 3.8 3.9	.23 .17 .17 .12 .11	.15 .13 .12 .05 .14	. 52 . 52 . 45	31 . 30 .	12 . 12 . 06 .	028 9 028 9).1).2 }.9	13.0 14.0	.23 .23 .36	75.5 79.5 52.7	.082	<1 <1 <1	1.06 1.02	.007 .007 .003	.05 .05 .05	.5 2.8 .3 1.1 .3 1.0 .2 1.9 .6 3.6	.11 .11 .07	. 02 . 03 < . 01	3 45	.5.0 .5.0 .3.0	6.7
STANDARD DS5	12.82	145.35	24.68	139.3	272	25.2	12.5	745 2	2.97	19.1	6.2	41.6	2.7	46.2	5.60	3.84	6.18	57.	71.	096 12	2.0 1	83.4	.64	130.7	.093	18	1.99	.034	.13	4.6 3.3	1.03	. 03	3 173	4.5.8	6.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANY 'TICAL LABORATORIES LTD. (ISC 002 Accredited Co.)

852 E. HASTINGS ST. ' 'COUVER BC V6A 1R6 PHONE(604)253-3158 FAX(60

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1 (b)

..D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data 🖊 🗛

253-1716

	(LSC	002	AC
A	A		
			(
			29.02

<u>Cream Minerals Inc. PROJECT KOOTENAY GEMSTONE</u> File # A304929 1400 - 570 Granville St., Vancouver BC V6C 3P1 Submitted by: Linda Dandy

SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sn Ta ppm ppm	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm		
LC L4+00E 5+00N LC L4+00E 4+50N LC L4+00E 4+00N LC L4+00E 3+50N LC L4+00E 3+00N	17.90 10.57 6.82 8.84 14.41	<.1 <.1 <.1	.16 .10 .08	4.81 3.24 2.55	43.5 44.4 48.4	1.7 <.05 1.8 <.05 1.1 <.05 1.9 <.05 1.1 <.05	2.5 10.1 6.9 5.0 6.9	6.21 7.99 3.94 3.67 4.51	23.6 22.0 19.9	.03 .04 .03 .03 .02	<1 <1 1 <1 1	1.2 1.8 .9 .9 1.1	25.8 23.6 38.7 40.7 65.6	15 15 15		
LC L4+00E 2+50N LC L4+00E 2+00N LC L4+50E 6+00N LC L4+50E 5+50N LC L4+50E 5+00N	8.28 7.39 9.88 21.18 8.29	<.1 <.1 <.1	.23 .02 .06	2.08 4.21	42.8 25.0 63.6	.8 <.05 1.3 <.05 .8 <.05 1.6 <.05 1.5 <.05	7.2 13.4 1.8 3.3 6.3	7.56	15.3 31.7	.03 .03 .03 .05 .03	1 1 <1 <1	.8 1.4 1.5 2.4	40.3 41.8 35.6 50.8 21.0	15 15 15		
LC L4+50E 4+50N LC L4+50E 4+00N LC L4+50E 3+50N LC L4+50E 3+00N LC L4+50E 2+50N	10.76 10.40 10.07 11.51 13.68	<.1 <.1 <.1	.19 .12 .17	3.81 3.47 3.86	47.1 43.6 38.2	1.3 <.05 1.4 <.05 1.5 <.05 1.4 <.05 1.3 <.05		3.17 4.48	15.1	.03 .03 .03 .03 .03	1	1.2 1.0 1.4	34.2 46.4 36.2 18.6 42.5	15 15 15		
LC L4+50E 2+00N RE LC L4+50E 2+00N LC L5+00E 6+00N LC L5+00E 5+50N LC L5+00E 5+00N	9.14 8.32 7.37 8.14 16.90	<.1 <.1 <.1	- 68 - 58 - 08 - 09	3.41 3.44 2.65 3.58	19.9 20.3 29.5 40.9	1.5 <.05 1.4 <.05 1.4 <.05 1.1 <.05 1.5 <.05	29.3 27.3 5.7 5.5	2.72 2.81 2.75 1.90	10.5 9.9 15.2	.04 .05 .02 .03 .04	<1 1 1 <1	2.0 1.8	22.2 23.0 17.0	15 15 15 15		
LC L5+00E 4+50N LC L5+00E 4+00N LC L5+00E 3+50N LC L5+00E 3+00N LC L5+00E 2+50N	10.02 7.40 9.25 5.47 5.13	<.1 <.1 <.1	1.14 .03 .23 .22	3.92 2.59 3.40 3.14	45.2 52.6 67.2 34.3	1.3 <.05 1.1 <.05 1.1 <.05 1.7 <.05 1.6 <.05	45.0 2.1 12.1 10.1	5.73 2.02 3.11 1.27	18.6 21.2 23.2	.04 .04 .03 .02 .03	1 1 <1 <1 <1	1.6	37.1 43.6 52.8	15 15 15		
LC L5+00E 2+00N LC L5+50E 5+50N LC L5+50E 5+00N LC L5+50E 4+50N LC L5+50E 4+00N	12.85 15.40 4.68 3.23 4.02	<.1 .1 <.1 <.1	.39 .09 .81 .66	3.63 3.26 3.12 3.23	52.0 40.9 12.2 11.8	1.2 <.05 .8 <.05 1.1 <.05 1.5 <.05 1.1 <.05	18.3 4.4 31.2 29.7	3.50	15.6 25.3 9.4	.03 .03 .03 .02 .04	<1 1 1 <1	1.3 2.2 1.1	40.6	15 15 15 15		
LC L5+50E 3+50N LC L5+50E 3+00N LC L5+50E 2+50N LC L5+50E 2+00N STANDARD DS5	20.73 3.21 7.67 5.71 6.14	<.1 <.1 <.1 <.1	- 05 - 95 - 14 - 26	3.07 4.20 3.42 3.73	84.6 10.9 33.5 37.5	1.3 <.05 1.4 <.05 1.4 <.05 .9 <.05 6.1 <.05	3.7 38.7 9.1 14.9	6.18 2.53 10.39 1.74 6.16	29.8 7.7 25.8 12.0	.03 .05 .03 .03	3	2.4 1.2		15 15 15	-	-

GROUP 1F15 - 15.00 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

OCT 9 2003 DATE REPORT MAILED: OLT 2/2003 SIGNED BY. DATE RECEIVED:

Page 2 (b)

Data FA

	Sample	Li	Be	Re	In	Ce	Y	Zr	Sn Ta	Rb	Nb	Hf	Ge	Cs	SAMPLE#	
	gm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm ppm	ppm	ppm	ppm	ppm	ppm		
	15	14.6	.6	1	< 02	14.5	2 23	.7	.4 <.05	9.7	1.03	. 02	<.1	3.34	LC L6+00E 6+00N	
	15	6.0	.1	<1		16.4	1.30	1.0	1.1 <.05		2.89			3.77	LC L6+00E 5+50N	
	15	2.9	.2	<1	<.02		1.20	.2	1.8 <.05					2.65	LC L6+00E 5+00N	
		7.9		1	.02	6.7			1.1 <.05					4.62	LC L6+00E 4+50N	
	15			-1			5.01		1.1 <.05					3.19	LC L6+00E 4+00N	
	15	22.9	1.6	<1	.03	17.9	5.01	42.4	1.1 <.05	14.5	2.24	. 77	` .	5.19	LC L0+00E 4+00N	
	15	20.6	1.0	<1	.03	10.3	2.14	19.1	1.6 <.05	25.6	3.49	.43	<.1	6.51	LC L6+00E 3+50N	
	15		1.9		.04	19.0		26.4			2.80		<.1	7.04	LC L6+00E 3+00N	
	15		1.4		.04		5.26		1.1 <.05				<.1	4.48	LC L6+00E 2+50N	
	15		1.6		.04		7.07		1.1 <.05				<.1	3.43	LC L6+00E 2+00N	
	15	32.3	1.1		.03		3.31	5.5	1.1 <.05	37.3	2.64	.09		5.48	LC L6+00E 1+50N	
		32.3		• •	.05		5.51			5.10						
	15	32.3	.9	<1	.03	14.3	1.73	3.0	.9 <.05		2.45			6.38	LC L6+00E 1+00N	
	15	19.7	2.1	1	.03	39.6	20.00	5.7	1.5 <.05	23.8	3.07	.11	<.1	6.99	LC L6+00E 0+50N	
	15	22.5	.6	1	.02	19.7	2.34	5.2	1.6 <.05	32.4	3.55	.10	<.1	6.89	LC L6+00E 0+00	
	15	58.4	1.6	<1	.03		6.92	1.8	1.2 <.05	57.3	2.59	.03	<.1	12.07	LC L6+00E 0+50S	
	15	28.8	1.1	1	.02	23.6	6.81	2.6	1.4 <.05	37.2	3,88	.04	<.1	7.73	LC L6+00E 1+00S	
	45	04 7	, -		05	02.0	7/7/	07 F	1 5 < 05	F7 7	E 02	E 1	1	10 10	LC L6+00E 1+50S	
	15		4.5		.05				1.5 <.05				.1	19.19 19.45	RE LC L6+00E 1+50S	
	15		5.1		.05		33.87						.1			
	15	26.2		1	.02	21.0		7.5	.4 <.05		1.81			5.37	LC L6+50E 6+00N	
	15	17.7		<1	.03		1.48	2.2	.6 <.05		2.29			5.35	LC L6+50E 5+50N	
	15	17.7	.2	<1	<.02	19.1	2.21	3.3	.2 <.05	11.1	1.16	.09	<.1	2.62	LC L6+50E 5+00N	
	15	40.6	1.8	1	.02	21.7	5.49	7.3	1.2 <.05	28.7	4.24	. 16	<.1	10.49	LC L6+50E 4+50N	
	15	45.9		i	.03	18.1		1.7	1.0 <.05					7.01	LC L6+50E 4+00N	
	15		1.8		.05	7.9	2.98		2.0 <.05					3.46	LC L6+50E 3+50N	
	15		1.0		<.02			1.9	.9 <.05		2.69			9.19	LC L6+50E 3+00N	
	15	66.6		1	.03		2.45	8.9	.9 < .05		3.62			12.14	LC L6+50E 2+50N	
		00.0	.0	•	.05	17.0	2.42	0.7	.,	0010	5102	• • • •				
	15	33.3	.7	<1	.05	14.9	2.06	10.2	1.2 <.05	41.0	5.74	.27	<.1	8.67	LC L6+50E 2+00N	
	15	43.3		<1	<.02	28.1		.9	.4 <.05		1.38		.1	8.17	LC L7+00E 5+50N	
	15	13.1		<1		18.5		2.9	.6 <.05		1.85		<.1	3.69	LC L7+00E 5+00N	
	15	23.2		<1	.03	23.1		3.3	.5 <.05		1.94			2.70	LC L7+00E 4+50N	
	15				.04	22.5			1.5 <.05					5.71	LC L7+00E 4+00N	
·				•												
-	15	9.1	1.4	<1	.04	7.7	2.89		1.1 <.05		3.98		<.1	3.26	LC L7+00E 3+50N	
	15	53.8	1.5	<1	.02	25.8	5.17	25.6	.9 <.05	92.8	2.67	.57	<.1	20.65	LC L7+00E 3+00N	
	15	22.1	1.1	<1	.03	11.8	3.50	33.8	1.2 <.05	13.1	3.30	.73	<.1	6.81	LC L7+00E 2+50N	
	15		.9	1	.04	6.8	2.68	43.4	1.5 <.05	5.4	4.12	1.00	<.1	2.90	LC L7+00E 2+00N	
	15		1.3	<1	1.24		6.11	3.6	6.4 <.05	13.5	1.71	.06	<.1	6.18	STANDARD DS5	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3 (b)

Data N FA

	•••						-									
SAMPLE#	Cs	Ge	Яf	ΝЬ	Rb	Sn	Τa	Zr	Y	Ce	In	Re	Be	Li	Sample	
	ppm	ppm	ррп	ррп	ppm	ppm	ppm	ppn	ppm	ppm	ppm	ррь	ррп	ppm	gm	
LC L7+50E 5+00N	6.05	<.1	.02	2.42	16.5	.6 <	. 05	1.7	4.42	26.6	.02	<1	.6	26.5	15	
LC 17+50E 4+50N		<.1				.6 <			4.57	18.0	.03	1		15.1	15	
LC L7+50E 4+00N		<.1			17.2					10.4	.04	i		13.6	. –	
LC L7+50E 3+50N					20.5						.03	<1		25.5		
LC L7+50E 3+00N					25.8				6.39		.03	1		32.1	15	
LC L7+50E 2+50N	16.75	<.1	.15	4.37	26.6	1.2 <	.05	10.1	4.27	24.8	.05	<1	1.3	64.4	15	
LC L7+50E 2+00N	6.96	<.1	.59	6.09	14.8	1.8 <	.05	31.4	4.05	18.7	.06	1	1.5	39.8	15	
LC L8+00E 5+00N	5.81	<.1	.28	3.76	28.5	.9 <	. 05	15.2	5.33	17.0	.03	1	1.1	18.3	15	
LC L8+00E 4+50N	6.07	<.1	.16	2.25	20.4	.6 <	.05	9.4	4.10	18.2	.02	<1	.6	20.3		
LC L8+00E 4+00N	9.59	<.1			25.3				2.39			<1		25.7	15	
LC 18+00E 3+50N	2.48	<.1	.78	4.61	6.4	1.2 <	.05	43.5	7.44	19.6	.04	<1	1.7	9.1	15	
LC L8+00E 3+00N	5.74	<.1	.02	1.94	20.8	.7 <	. 05	1.7	3.56	17.2	.02	1	.6	16.6	15	
RE LC L8+00E 3+00	N 5.99	< 1	.02	1.83	19.7	.7 <	.05	1.6	3.46	17.2	.03	1	.5	17.2	15	
LC L8+00E 2+50N	3.17	< 1	.10	1.28	15.9	.4 <	.05	4.8	2.88	15.9	.02	<1	.4	18.9	15	
LC L8+00E 2+00N	8.49				28.8						.04		1.1	27.7		
STANDARD DS5	6.15	_ 1	.05	1.65	13.4	6.3 <	.05	3.9	5.98	22.1	1.24	<1	1.2	16.2	15	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME A A	ANI (ISC		AL L Acc			l Co	•)	am	<u>Mi</u> : 400	ner	GE(al	. HAS OCHEN s Inc	AICA	L P	NAI	LYS F B	IS AY(DNN	RTI	Fi Fi	le :	е # А		666	e (604		8-31	58 FAX(60	253-	1716 AA
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au Th ppb ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B A ppm	1 Na % %	K %	W Sc ppm ppm	T1 ppm	S Hg % ppb	Se Te Ga ppm ppm ppm
TR-1 TR-2 TR-3 TR-4 TR-5	.46 1.66 2.04 1.25 .48	19.41 13.68	3.85 3.15 2.82 1.75 2.29	5.0 3.0 70.4 65.5 1.9	23 13 13 12 16	25.0	1.5 10.2	199 . 226 3. 452 3.		.3 <.1 .1	2.7 4.1 1.9 .7 2.5	.7 2.8 .5 3.8 .7 6.6 <.2 .5 <.2 4.9	172.9	.02 .01 <.01 .02 <.01	.03 <.02	2.79 1.49 .29	<2 <2 24 107 1 <2	.01 .02 .54	.006 .004 .011 .312 .005	3.0 19.6 3.1	5.2 6.1 22.3 8.9 7.6		20.3 78.0 684.1	.221 .293	1 2.2	0 .038 8 .035 0 .146	.11 1.33 1.40	1.6 .4 <.1 .5 1.4 2.9 <.1 4.7 1.8 .3	.10 .05<. .97<. .32<. .04<.	01 <5 01 <5 01 <5	.1<.02 1.3 .1<.02 1.3 .2 .07 6.5 .1<.02 9.7 .2<.02 1.0
TR-6 TR-7 TMK-2 TMK-3a LG-14a	.70 .35 1.34 7.73 3.25	6.95 5.44 30.80 2.12 11.56	1.28 2.06 1.85 .88 1.70	39.2 57.0 108.8 4.7 100.7	11 12 9	6.1 22.4 1.7	7.3 21.5 .2	363 2. 690 2. 606 4. 207 . 711 3.	.82 .56 .23	.3 .1 <.1 .1 1 .2	.5 .4 5.4	<.2 .6 .2 1.1 2.7 .6 .3 2.4 .8 5.7		<.01 .03 <.01	.03	.04 2.49 .06	41	.57 .61 .05	.101 .029	3.8 2.0 2.3	11.6 125.0 4.7	.92 1.95 .01	252.8 302.6 553.5 3.6< 146.9	.242 .351 .001	<1 2.7 <1 2.8	7.067	1.18 1.76	<.1 2.3 1.0 1.1 106.6 9.3 2.4 .3 .6 3.8	.46<. .34<. .97<. .06<. 2.39	01 <5 01 <5 01 <5	.3<.02 6 6 .1<.02 6.4 .2 .04 9.9 .1<.02 .7 .2<.02 7.5
LG-15a RE LG-15a LG-17a LG-17q STANDARD DS5	.53 .58 14.94 77.89 12.88	2.24 2.27 .67 7.91 140.28	1.63 1.68 2.76 .47 25.60	1.5 1.5 1.1 .7 131.4	3 5 12 5 272	2.3 2.1 .8 2.9 23.7	.3 .2 .1 .2 11.9	86 81 33 31 759 2	.23 .23 .41 .61 .88 1	.1 .1 .3	2.6 1.7 .1	<.2 2.2 .6 2.3 .2 3.4 1.2 .1 44.0 2.7	2.3 2.7 <.5	<.01 <.01 <.01 <.01 5.70	.05	.06 .11 .25	<2 <2 <2 <	.04 :.01	.008 .024 .004	1.4 <.5	5.5 5.2 5.6 9.5 187.6	.01 .01 .01 <.01 .64	7.6 7.4< 21.3 1.8< 130.9	.001 .001 .001	<1 .1 <1 .1	.9 .050 .9 .049 .6 .043 03 .004 00 .034	.17 .15 .02		.07 . .09 . <.02 .	02 <5 05 <5 02 <5	.1<.02 1.1 .1<.02 1.0 .2<.02 1.2 .2<.02 .2 4.9 .84 6.5

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data 🖌 📕 FA

	LABORAT(d Co.)	<u>:eam 1</u> 140	(<u>linera</u>	E. HAST GEOCHEM als Inc Granville	ICAL	ANALY	SIS C BAYON	ERTII	ICATE	⊈ ‡ A302	666	504)25 (よ)	3-3158	FAX (60 : :	253-1716 ÅA
SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sn ppm	Ta ppm	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm	
TR-1 TR-2 TR-3 TR-4 TR-5	$ \begin{array}{c c} 1.37 \\ .80 \\ 10.41 \\ 7.54 \\ .77 \\ \end{array} $	<.1 <.1 .2 <.1	.05 .10 <.02 .08 <.02	1.41 1.31 .30 .34 .63	$18.4 \\ 10.4 \\ 123.3 \\ 64.9 \\ 7.8$.2 1.3 .7	<.05 <.05 <.05 <.05 <.05	$2.2 \\ .4 \\ 1.2$	3.48 8.12 3.01 9.00 3.89	5.7 6.7 36.1 6.4 12.8	<.02 <.02 .02 .02 <.02	<1 <1 <1 2 1	.8 .49 .25	4.3 2.6 43.9 34.4 1.2	30 30 30 30 30	1600 1200 500 800 1300
TR-6 TR-7 TMK-2 TMK-3a LG-14a	9.15 2.33 33.95 .38 69.86	.2 .1 .4 .1 .2	.06 <.02 .03 .04 .02	.24 .60 .27 .39 .39	84.7 79.2 175.2 13.0 344.0	.3 3.3 .2	<.05 <.05 <.05 <.05 <.05	1.0 .6	3.06 2.76 7.08 2.14 3.85	$\begin{array}{r} 4.6 \\ 6.7 \\ 5.1 \\ 4.8 \\ 23.4 \end{array}$	<.02 <.02 .03 <.02 .03	<1 <1 <1 <1 <1	.7 .4 1.7 .3 1.5	48.6 70.5 195.1 3.9 238.7	30 30 30 30 30	1000 1600 1000 900 500
LG-15a RE LG-15a LG-17a LG-17g STANDARD DS5	.56 .54 .82 .10 5.96	.1 <.1 <.1 <.1 .1	.02 .02 <.02 <.02 <.02 .05	.24 .23 .62 .07 1.60	$14.1 \\ 14.5 \\ 23.0 \\ 2.6 \\ 14.2$.2 .2 .2	<.05 <.05 <.05 <.05 <.05	.4 .34 .2 3.5	.30 .32 .55 .02 5.79	$\begin{array}{c} 1.8\\ 2.1 \end{array}$	<.02 <.02 <.02 <.02 <.02 1.31	<1 <1 <1 <1	.9 .7 .5 .2 1.4	1.7 1.6 7.3 .8 15.7	30 30 30 30 30	400 400 1500

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C TOTAL WEIGHT FOR ROCK SAMPLES. <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject</u> Reruns.

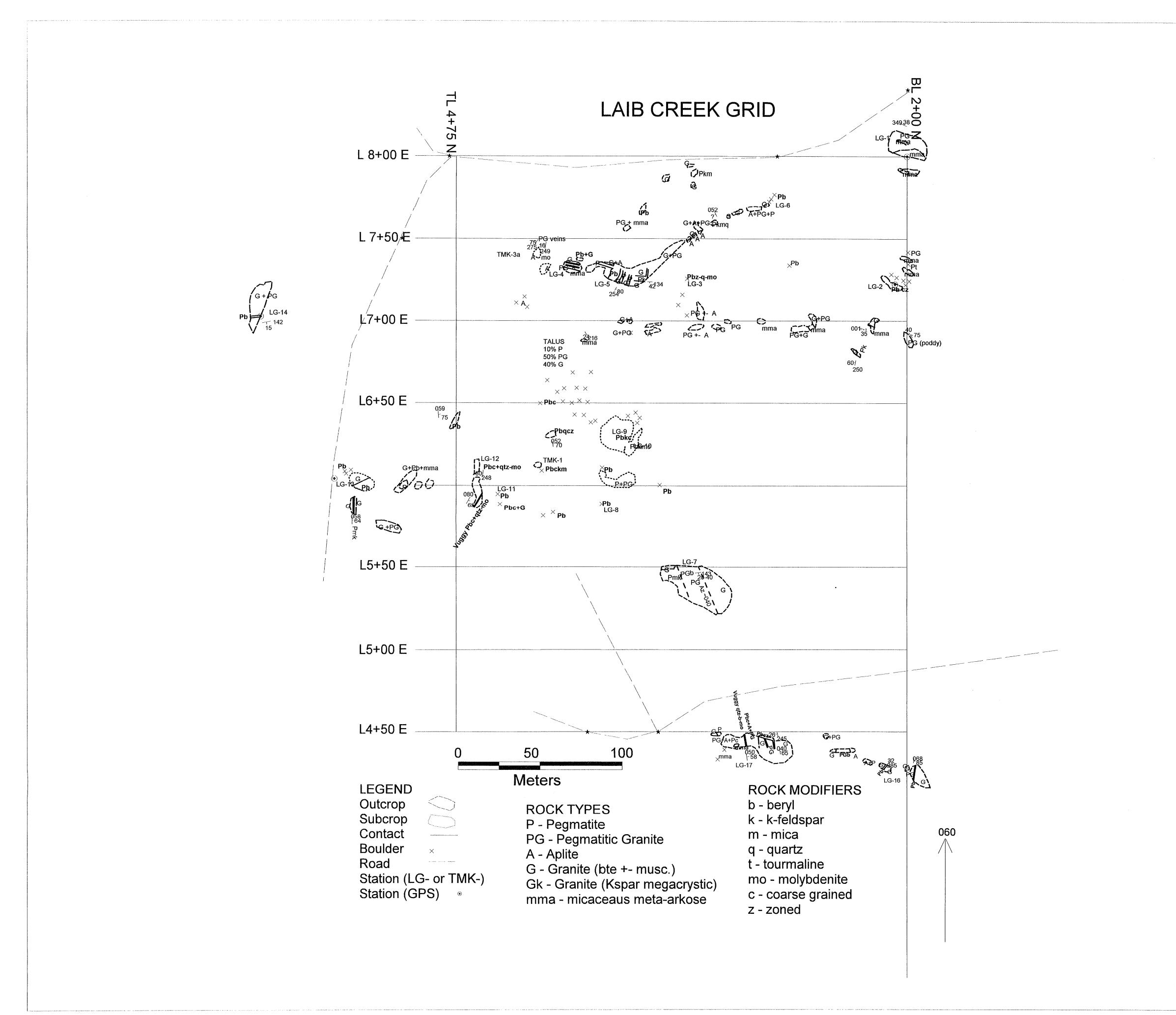
DATE RECEIVED: JUL 17 2003 DATE REPORT MAILED: July 30/03

Data N F

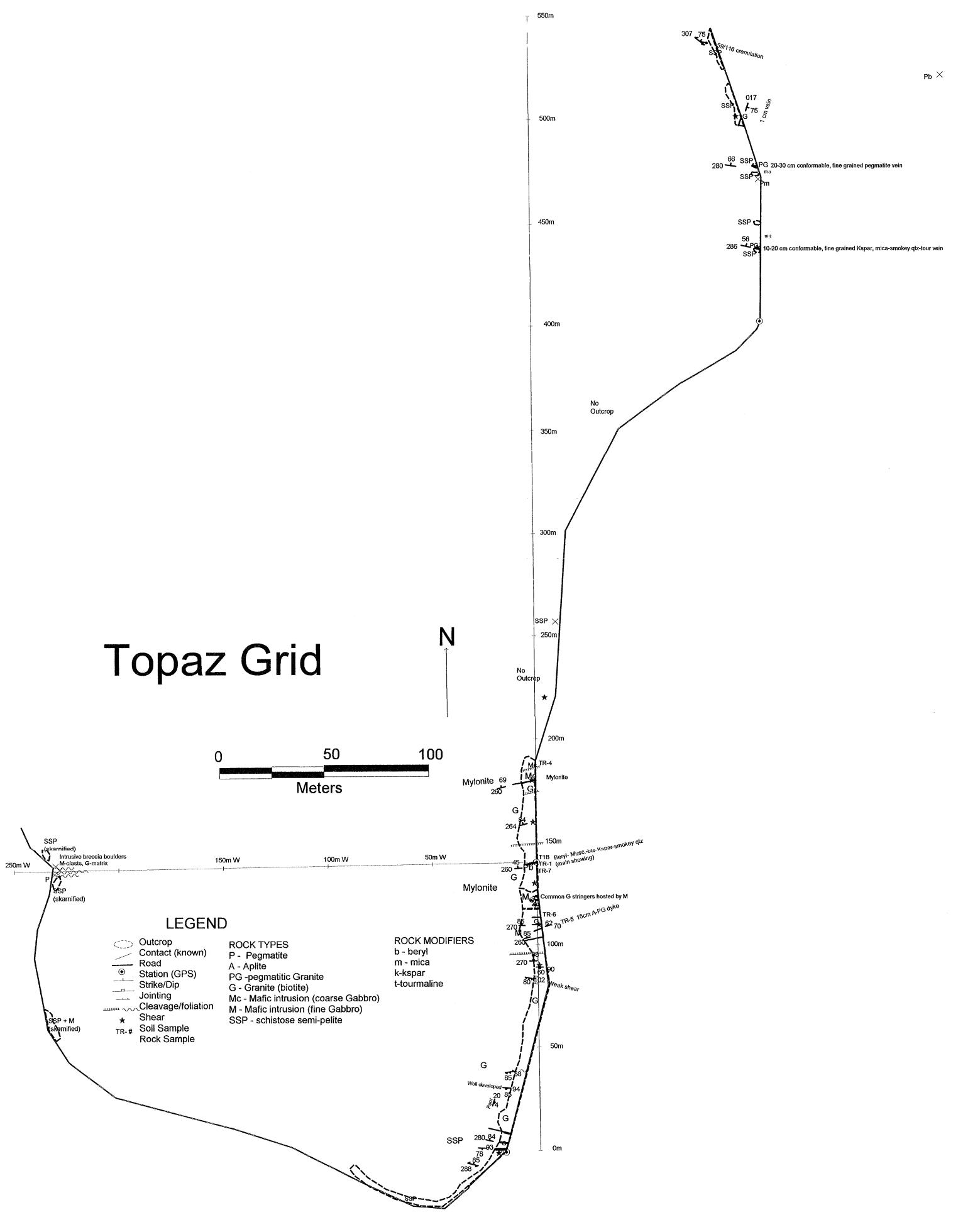
ACME ANA' TICAL LABORATORIES LTD. (IS()02 Accredited Co.) 852 E. HASTINGS ST. WINCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (60 253-1716

Data


GEOCHEMICAL ANALYSIS CERTIFICATE

Cream Minerals Inc. PROJECT BAYONNE File # A302665 1400 - 570 Granville St., Vancouver BC V6C 3P1 Submitted by: Linda Dandy


																						-		_						
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Са	P	٤a	Сг	Mg	Ba	Ti	В	Al	Na	K	W
:	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	%	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm								
G-1	2	3	6	44	<.3	5	4	559	2.01	<2	8	<2	4	89	<.5	<3	<3	40	.60	.078	10	22	.49	232	.13	<3	1.06	. 12	.57	3
T-0	<1	18	5	50	.3	15	6	487	2,70	2	<8	<2	2	7	<.5	<3	<3	42	.06	.096	8	23	1.02	77	.18	<3	2.32	.01	.19	<2
T-90	<1	13	8	50	<.3	13	4	301	2.75	5	<8	<2	2	9	<.5	<3	<3	45	.07	.109	5	23	.36	97	.15	<3	3.15	.01	.10	<2
T-110	<1	14	9	43	<.3	35	7	274	2.21	<2	<8	<2	2	8	<.5	<3	<3	35	- 09	.082	5	47	.54	117	.14	<3	2.85	.01	.12	<2
T-120	<1	16	4	44	.3	39	8	226	2.29	<2	<8	<2	3	9	<.5	<3	<3	37	.08	.068	5	52	.69	131	.15	<3	4.00	.01	.14	<2
т-130	<1	14	8	45	<.3	18	5	312	2.53	2	<8	<2	2	8	<.5	<3	<3	37	.09	.129	5	30	.56	89	.15	<3	3.41	.01	.13	<2
T-140	<1	12	5	53	.3	13	6	305	2.35	<2	<8	<2	2	10	<.5	<3	<3	34	.11	.121	4	19	.58	155	.13	<3	4.05	.01	.18	<2
T-160	<1	16	7	53	<.3	11	5	296	2.63	4	<8	<2	2	10	<.5	<3	<3	41	.14	.323	4	20	.64	110	.15	<3	4.42	.01	.16	<2
T-180	<1	16	7	52	<.3	11	8	244	2.58	3	<8	<2	<2	18	<.5	<3	<3	51	.43	.467	4	15	.66	138	.13	<3	2.84	.01	.15	<2
RE T-180	<1	15	6	50	<.3	11	8	230	2.46	<2	<8	<2	<2	18	<.5	<3	<3	49	.43	.453	4	14	.65	134	.12	<3	2.72	.01	.15	<2
т-220	<1	14	0	64	<.3	12	6	287	2.20	2	<8	<2	2	8	<.5	<3	<3	33	.10	.105	7	19	.68	105	.14	<3	2.21	.01	.11	<2
T-500	1	13	7	67	<.3	10	7	322	2.95	4	<8	<2	3	9	<.5	<3	3	41	.10	.076	9	15	.63	94	.17	<3	2.95	.01	.18	<2
STANDARD DS5	12		24	130		24	12		2.88	19	13	<2	3	49	5.5	4	6	59	.72	.095	12	191	.63	138	.09	15	2.02	.04	.13	3

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C Samples beginning <u>'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: JUL 17 2003 DATE REPORT MAILED: July 28/03 SIGNED BY.

Pb LG-15 GEOLOGICAL SURVEY BRANCH Kootenay Gemstones Property OMG Claims (Laib Creek) Geology Base/Line (2+00), Runs Az 060 Figure #4 NTS 082F036 J. Brown March 2005

