GEOCHEMICAL SAMPLING REPORT (2004 Phase 2)

NTS: 94C/03确
 BCGS Map Sheet: 094C.005, 094C.015 ${ }^{\circ}$ Latitude: $56^{\circ} 6.5^{\prime} \mathrm{N}$; Longitude $125^{\prime} 1.5^{\prime} \mathrm{W}$

TABLE OF CONTENTS

Section		Title	Page
A	Report	Introduction	3
		Property	3
		Location and Access	4
		Climate, Topography and Vegetation	4
		History	4
		Regional Geology	7
		Property Geology	8
		2004 Geochemical Sampling (Phase 2)	9
		Conclusions	11
		Recommendations	12
		List of References	14
		Statement of Qualifications	15
B	Property	Schedule of Mineral Claims	16
C.	Expenditures	Statement of Expenditures	18
D	Analytical Reports	Acme Analytical Laboratories Ltd.:	19
		- Certificates of Analysis (3 reports)	
		- Statement of Analytical Procedures: - Data sheet for ICP-MS Analysis	
E	Illustrations		
	Plan Number	Title	Scate
	WA-05-1 (after p.4)	General Location Plan	1:250000
	WA-05-2 (after p.4)	Mincral Claims	1:50000
	WA-05-3 (in pocket)	Mineral Claims	1:20000
	WA-04-4b (in pocket)	Sample Locations	1:20000
	WA-04-5b (in pocket)	Soil, Silt \& Rock Sample Locations	1:10000
	WA-04-6b (in pocket)	Soil \& Rock Gcochemistry: Cd ppm	1:10000
	WA-04-7b (in pocket)	Soil \& Rock Geochemistry: Cu ppm	1:10000
	WA-04-8b (in pocket)	Soil \& Rock Gcochemistry: Pb ppm	1:10000
	WA-04-9b (in pocket)	Soil \& Rock Gcochemistry: Zn ppm	1:10000
	WA-04-10b (in pocket)	Soil \& Rock Gcochemistry: Ag ppm	1:10000

SECTION A: REPORT

INTRODUCTION:

Selkirk Metals Holdings Corp. ("Sclkirk" or "the Company") owns a 100% interest in the Wasi Creck Property. The property was initially acquired by Cross Lake Minerals Ltd. ("Cross Lake") in July 2000 following a revicw of prospective areas in British Columbia for carbonate-hosted zinc-lead-silver deposits. It was assigned to Selkirk in June 2005 as a result of a Plan of Arrangement. It was originally staked to cover the area previously known as the Par Property which Cominco Ltd. extensively explored from 1990 to 1995. The Wasi Creek Property is located 150 kilometres northwest of Mackenzie on the south side of the Osilinka River adjacent to Wasi Lake in the Omineca Mining Division. This report summarizes the second phase of the 2004 geochemical sampling program that was carried out by Cross Lake in Scptember 2004 along the northwest and southeast flank of the Wasi Creek drainage on the former OSI, OSI 2 and OSI 3 mineral claims, now converted Tenure Nos. 511313, 512685 and 512686. 5,725 lincar metres were sampled on intervals of $25 \mathrm{~m} ; 4,250 \mathrm{~m}$ on the northwest side of Wasi Creek and $1,475 \mathrm{~m}$ on the southcast side. A total of 212 soil samples, 4 silt samples and 5 rock samples were taken.

PROPERTY:

The Wasi Creek Property is comprised of seven cell claims containing an aggregate of 134 cells and covering 2417.457 hectares. These claims represent the conversion in January, April and May 2005 of 11 contiguous legacy mineral claims, three 4 post and eight 2 post, totaling 66 claim units and covering an area of 1650 hectares. The claims are all situated in the Omineca Mining Division. The Property is registered in the rame of Sclkirk Metals Holdings Corp. It was originally acquired by Cross Lake by staking on four occasions between July 2000 and October 2001 (see Plan Numbers WA-05-2 and WA-053). A Schedule of Mineral Claims is appended in Section B and lists the original legacy claims and the converted cell claims as well as the UTM coordinates of the exterior claim boundary. The expiry dates therein are based on the Statement of Work filed on July 26, 2005 (Event \#4043345) and assume that the work contained in this report will be accepted for assessment purposes. None of the cell claims has been surveyed.

By agreement dated September 1, 2004 as amended, Cross Lake granted Bard Ventures Ltd an option to cam a 50% interest in the Property by incurring aggregate exploration expenditures of $\$ 800,000$ on or before December 31, 2006. This agreement was assigned to Selkirk by Cross Lake in accordance with the aforcmentioned Plan of Arrangement.

LOCATION AND ACCESS:

The Property is located on the south side of the Osilinka River some 150 kilometres northwest of Mackenzie and 43 kilometres north-northwest of Germansen Landing. The claims are on BCGS map shects 94C005 and 94C015 and NTS map sheet 94C/3E. Geographic co-ordinates at the centre of the property are $56^{\circ} 6.5^{\prime}$ North latitude; $125^{\circ} 1.5^{\prime}$ West longitude and UTM coordinates are 6220000 N and 374000 E in Zone 10 , NAD 83.

Access to the property is excellent due to extensive logging operations that have been carried out around and on the claims. The easiest access is by using Highway \#97 north of Prince George to a small community named Windy Point, 12 kilometres north of McLeod Lake. From Windy Point one drives on the main haulage logging road located on the west side of Williston Lake, north for 170 kilometres and then west for 22 kilometres to the junction of the Osilinka and Wasi Lake Forest Access roads. The Wasi Creek Property is reached by traveling another 18 kilometres along the south side of the Osilinka River on the Wasi Lake Forest access road. There are several secondary forest access roads crossing the claims all of which are navigable with a four wheel drive vehicle.

CLIMATE, TOPOGRAPHY AND VEGETATION:

The Wasi Lake area has cold, high snowfall winters and warm, damp summers. The topography of the property is moderately steep. The lowest elcvation is 830 metres on the northern boundary of the property along Wasi Crcek near its confluence with the Osilinka River while the high point is 1460 metres on the ridge located along the eastern boundary of the claims. The slopes are heavily timbered by pine and spruce. In the clear cuts deciduous willows and poplars predominate.

HISTORY:

The earliest recorded work located in the area was in the Annual Report of the Minister of Mines in 1930 documenting the Weber Prospect, located near the northern edge of the present Wasi Creck Property. The report describes the Weber mineralization as disseminated galena, zinc and pyrite in siliceous dolomite of which a 5.18 metre channel sample assayed 3.6% zinc, 1.6% lead, lozton silver and 0.02 oz ton gold.

The Weber Prospect was restaked and worked at intermittent intervals with the next documented description occurring in the 1954 Gcological Survey of Canada Memoir 274, by E.F. Roots entitled "Geology and Mineral Deposits of Aiken Lake Map-Area, British Columbia". He describes the showing as pyrite-galena-sphalerite-barite replacement body in limestone that strikes north 30 degrees west and

SELKIRK METALS HOLDINGS CORP. WASI CREEK PROPERTY

Omineca Minling Division, B.c.
general location plan

UTM: NAD 27 ZONE 10	SCALE: $1: 250000$
BCGS: $94 \mathrm{C} .005,015$	NTS: 94 CO 03 E
DATE: AUG 2005	TOPOGRAFHY: EMR
FILE:	FIGURE: WA-05-01

dips 80 degrees northeast. A grab sample assayed gold trace; silver $2.00 z$ ton; lead 10.24% and barite 4.06\%.

An inventory of the numerous carbonate-hosted stratabound zinc, lead, silver and barite showings in the Wasi Creck arca is well described in British Columbia Department of Mines Open File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", (94C/3, 4, 6) by F.Ferri, S. Dudka and C. Rees.

In 1990 Cominco Ltd. completed a reconnaissance silt and soil geochemical survey on the stratigraphic extensions of the Lower Cambrian to Middle Devonian carbonates that host the known mineral occurrences. The area around the Weber Prospect was highly anomalous so Cominco staked their first two claims covering this prospect and the anomalous areas. Cominco then completed contour and grid soil sampling and outlined a large, highly anomalous area 1.0 by 4.5 kilometres in size in lead, zinc, iron and silver and staked five additional claims.

Cominco Ltd. completed an intense exploration program during 1991. The exploration program consisted of geological mapping, soil sampling, airbome electromagnetic and magnetometer surveys, ground geophysical surveys including HLEM, magnetometer, Induced Polarization and VLF surveys. A trenching program was completed on the target area of the large soil geochemical anomaly and the coincident conductors. There were seven trenches excavated with the best mineralization discovered in trench \#3 that assayed 8.4% zinc, 3.5% lead and $14.2 \mathrm{~g} / \mathrm{t}$ silver over a width of 17.2 metres.

In 1992 Cominco Ltd completed 16 diamond drill holes totaling 1,346 metres in the area of the trenching. The strike length explored is approximately 2.0 kilometres along a fault controiled base metal mineralized structure, on the east side of Wasi Creek. The work was not filed for assessment credit so there are no records of the results in the provincial data base.
In 1993 Cominco drilled four holes on the north side of the Osilinka River on a separate area and one hole in the Wasi Creek area in the vicinity of the 1992 drilling. The drill hole was collared near the Duncan Showing and was successful in intersecting two mineralized horizons that assayed 6.9% zinc, 1.6% lead and $18.4 \mathrm{~g} / \mathrm{t}$ silver over a width of 4.5 metres and 3.1% zinc, 3.2% lead and $32.0 \mathrm{~g} / \mathrm{t}$ silver over a width of 3.1 metres.

In 1994 Cominco constructed more drill access roads and sites and completed four holes totalling 1,164 metres, including two vertical holes drilled possibly to complete stratigraphic sections on either side of the fault controlled mineralization.

Cross Lake Minerals Ltd. acquired a 20 unit mineral claim over the property when the ground came open in 2000 and in 2001 added an additional 46 units. The Company carried out a program of gcological mapping, stream sediment sampling and trenching in 2001 and in 2002 completed a soil geochemical survey.

One of the main reasons that Cross Lake Minerals Ltd. staked the Wasi Creek Property was to explore for the source of high grade massive sulphide boulders which were discovered during Cominco's trenching program in 1991. The sulphide boulders, 70 cm in size and angular, consist of layered massive sulphides contain galena, sphalerite and pyrite. Cross Lake assayed two of these angular boulders with the following results:

Sample Number	$\mathbf{Z n}$ $(\%)$	Pb $(\%)$	$\mathbf{A g}$ $(\mathrm{g} / \mathbf{t})$
$\mathrm{W}-\mathbf{1}$	26.30	25.98	96.3
$\mathrm{~W}-2$	8.46	42.43	384.8

None of the drilling or trenching to date has intersected mineralization similar to the high grade boulders.

Stream sediments in the Wasi Creek area were sampled by the British Columbia Geological Survey in 1991 and the results are detailed in Open File 1992-11. Four samples were collected in the Wasi Creek Property area (SS-018, SS-130, SS-203, and SS-304) and had the highest in indicator and base metal clements minerals for the entire survey area. The base metal source for the three anomalous samples, SS018, 130 and 203, are most likely the Duncan and Par mineralized horizons on the east side of Wasi Creek. Stream sediment sample SS-018, the highest in base metal clements of all of the strcam sediment samples, was collected from a stream on the west side of Wasi Creek and south of any known mineralization. In July 2002, Cross Lake Minerals Ltd. sampled the same drainage in order to verify the earlier result. The new sample (WS-1) was taken approximately 750 metres upstream, and to the west, of the B.C. government sample site location SS-018 on the OSI 2 mineral claim at approximate NAD 27 UTM coordinates $6219053 \mathrm{~N}, 371988 \mathrm{E}$ at an elevation of 967 metres. The sample was lower in base metal values than the B.C. govenment sample.

The 2002 soil sampling program was designed to test both sides of an unnamed stream that was highly anomalous in base metal elements when sampled previously by the B.C. Gcological Survey. Thercforc, two east-west lines, designated Line \#1 and \#4, parallel to and approximately 100 metres on either side of the creck were sampled at 25 metre intervals. Two additional lines, designated Line $\# 2$ and \#3 were sampled in a southerly and northerly direction from where the creek meets the main Wasi Creek drainage valley, again at 25 metre sample intervals. A total of 55 soil samples were collected and the total length of the grid line surveyed was 1350 metres.

The sampling program was successful in delineating two areas of anomalous base metal clements. The first area was located on the Line \#2 with samples clevated in zinc, lead, copper, molybdenum, silver and cadmium. This anomaly remains open to the south. The second area, with the highest values in base metai signature, is located on the Linc \#3 with samples being highly anomalous in zinc, lead, copper, nickel, cadmium, calcium and boron. This anomaly remains open to the north. The details of this 2002 program were set out in the "Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mincral Claims" by Jim Miller-Tait, P.Geo. dated January 10, 2003, B.C Assessment Report \#27,032.

Additional soil sampling programs were carried out on the property in two phases during the summer of 2004. Details of the 2004 Phase 1 program completed in June was titted "Geochemical Sampling Report on the Wasi Creek Property" by Calvin Church, P.Geo. dated October 28, 2004, B.C. Assessment Report \#27532. The program was regional in scope and consisted mainly of a series of road traverses transecting the boundaries of the property. A total of 137 soil samples were collected from road cuts at 100 metre intervals along roughly 13 km of logging road. Anomalous results from the Phase 1 program werc located approximately one kilometre east of the main Par showings on the east half of the OSI claim. Phase 1 results are uniquely identified and plotted with Phase 2 results in the maps accompanying this report. The Phase 2 geochemical soil sampling program was carried out in September 2004 and is the subject of this report.

REGIONAL GEOLOGY:

The following regional geological description has been compiled from papers in the British Columbia Geological Survey Branch Reports of Geological Fieldwork in 1989 and 1991. The Wasi Creek Property is located in an area that straddles the boundary between the Intermontane and Omineca tectostratigraphic belts of the Canadian Cordillera. The Western Intermontane Superterrane is represented by the Slide Mountain and Quesnel terranes. Together with the castern autochthonous North American stratigraphy,
these rocks form part of a southwest-dipping homoclinal sequence. This sequence has been cut by a series of normal faults, which trend northeasterly. With the exception of the eastern pericratonic strata all of the rocks have been weakly metamorphosed.

The Wasi Creek Property is underlain by the pericratonic North American rocks of primarily carbonates and siliciclastics of miogeoclinal origin. These rocks include the Upper Proterozoic Ingenika Group consisting of impure quartzite, schist, phyllite, limestone, feldspathic wacke and arkosic sandstone. Overlying this Group is the Lower Cambrian to Middle Devonian Atan, Razorback, Echo Lake and Otter Lake Groups. These Groups consist of limestone, dolomite, shale, quartzite, and argillaceous limestone. The Lower Cambrian to Middle Devonian limestone and dolomite host the zinc, lead and silver mincralization on the Wasi Creck Property.

PROPERTY GEOLOGY:

The Wasi Creek Property geology is a compilation from Cross Lake's 2001 exploration work, Cominco's 1990-1995 exploration programs and mapping completed by the British Columbia Geological Survey as described in File Paper 1992-1. The paper is named "Geology of the Usilika Lake Area, Northern Quesnel Trough, B.C.", ($94 \mathrm{C} / 3,4,6$) by F.Ferri, S. Dudka and C. Rees. The geological stratigraphy underlying the property are all Paleozoic in age ranging from Lower Cambrian to Mississippian.

The oldest rock units exposed in the claim area are the Lower Cambrian to Middle Devonian carbonates. The oldest is the Lower Cambrian Mount Kison Formation of the Atan Group. Overlying this unit are the Cambrian and Ordovician Razorback, Middle Ordovician to Lower Devonian Echo Lake Group and Middle Devomian Otter Lakes Group. This entire carbonate package consists of limestone, dolomite, lesser shale, quartzite and argillaceous limestone. The Atan, Razorback, and Echo Lake Groups are host to the mineralization on the Wasi Creek Property. Overlying the carbonates is the Upper Devonian to Lower Mississippian aged Big Creek Group. This Group consists of dark grey to blue grey shales, argillites and minor siltstones and siltite. The next oldest unit, the only major volcanic rock unit observed on the claims, is the Lower Mississippian-aged Dacitic Tuff Unit of the Lay Range Assemblage. This thick unit is only exposed on the northwest side of a major geological structure which is postulated to occur in the valley bottom of Wasi Lake and Wasi Creek. The rest of the Lay Range Assemblage is absent in the Wasi Creek Area.

Across Wasi Creek Valley, on the southeast side of the northeast trending Wasi structure, is the youngest, Pennsylvanian-aged, Mount Howell Formation. This Formation consists of argillite, chert, gabbro and minor basalt, wacke and felsic tuff.

There are numerous carbonate-hosted zinc-lead-silver showings on the Wasi Creek Property but only the main showings, with the largest amount of exploration work will be discussed in this report. Three of the showings, the Duncan, Par and the Weber, that comprise the Par mineralization which was the main focus of Cominco Ltd. are located from south to north over a two kilometre strike length. These showings are located along a fault structure, which may be the conduit of the mineralizing solutions and which strikes at approximately 330 degrees and dips east at 70 degrees. The fault and the three showings are all located on the east side of a major northeast trending structural lineament located along the valley bottom of Wasi Creek and Lake. Cominco Ltd. completed the bulk of their exploration work in this area by completing the airborne and ground surveys, seven excavator trenches and 21 diamond drill holes exploring these mineralized structures. The mincralization is stratabound with most primary features obliterated by deformation. The sulphides consist of sphalerite, galena, pyrite and traces of tetrahedrite and grain size varies from fine grained at the Duncan showing to coarsc-grained.

The Carrie 2 showing is located on the west side of the Wasi Valley structure near the northwest edge of the property. The showing was hand trenched, mapped and sampled by Cross Lake Minerals Ltd. during 2001. The mineralization consists of hydrozincite stained, oxidized, disseminated, fine-grained sphalerite, galcna and pyrite hosted in brecciated dolomite and limestone with carbonate in-filling of fractures and open spacc.

2004 GEOCHEMICAL SAMPLING PROGRAM (Phase 2):

The second phase of the 2004 soil sampling program was designed to expand on the program completed in June 2004 and test prospective host lithologies and structures. Anomalous $\mathrm{Pb} / \mathrm{Zn}$ soil geochemistry had been effective in outlining trenching targets and mineralized carbonate breccia subcrop by Cominco on this property in previous exploration programs (Mawer 1991, Westcott and Pawwells 1992). Detailed contour soil sampling traverses were completed along the banks of Wasi Creek above the valley fill; $4,250 \mathrm{~m}$ of line on the west side of Wasi Creek and $1,475 \mathrm{~m}$ on the east side. Five rock samples were taken along one traverse (Line W5) which crossed extensive arcas of outcrop and four silts were collected from streams draining the east slopes of the Wasi Creek Valley.

The sample line designations, sample numbers and quantities are set out in Table 1 below and are illustrated on Plan Numbers WA-04-4b and WA-04-5b which is appended in Section E. The soil, silt and rock geochemical results for $\mathrm{Cd}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ and Ag are set out on individual drawings Section E (see Plan Nos. WA-04-6b to WA-04-10b).

Table 1 Line Number	Summary of 2004 Sampling Program - Phase 2							
	Length of Sampling (m)	Soil Samples		Silt Samples		Rock Samples		Total
		Stations	No.	Stations	No.	Stations	No.	
LINE WI	1300	0+900 to 13+00	49	-		-		49
LINE W2	1525	$0+00$ to 15+25	61	-		-		61
LINE W3	675	$0+90106+75$	28	-		-		28
LINE W4	750	$0+00$ to $7+50$	31	-		-		31
LINE W5	1475	0+00 10 14+75	43	B175451-175454	4	B175455-175459	5	52
	5725		212		4		5	221

A total of 212 soil samples were collected at 25 metre intervals along contour traverses above Wasi Creck. Sample locations were marked on flagging and control points were recorded periodically and at the end of lines by GPS for plotting purposes. Each soil sample was collected by shovel from the Bhorizon at an average depth of approximately 20 to 30 cm and the sample placed in standard paper Kraft soil sample bags and delivered to Acme Analytical Laboratories in Vancouver, B.C. for analyses by the ICP-MS analytical process. The analytical reports and laboratory methods and specifications are appended in Section D.

Consistently anomalous soil geochemical anomalies for lead and zinc were retumed from traverses below Carrie Mountain (Line W1 and Line W2). These lines were planned to cover arcas to the south of the well documented Carric \#2 showing which retumed peak values up to $22,400 \mathrm{ppm} \mathrm{Zn}$ in soil when it was discovered in 1992. Of the 111 samples taken below Carric Mountain in this survey 48% had values exceeding 1000 ppm Zn and 28% had values between $400-1000 \mathrm{ppm} \mathrm{Zn}$. Anomalous lead values ($>100 \mathrm{ppm} \mathrm{Pb}$) tend to track well with anomalous zinc values although second order zinc anomalies ($<1000 \mathrm{ppm} \mathrm{Zn}$) are less likely to correlate with an anomaly in lead. The predominant lithologies underlying these areas of anomalous soil geochemistry are limestone and dolomites units of the Rosella Fm. High metal values in soils could indicate potential stratiform mineralization associated with the inferred contact between Rosella Fm Limestone and the Lower Phyllite unit. Alternatively downslope accumulations of talus may have resulted in a transported anomaly and could be responsible for the abundance of anomalous $\mathrm{Pb} / \mathrm{Zn}$ values in this arca.

Southwest of Carrie Mountain, on the west half of the OSI 2 claim, sporadic zinc soil geochemical anomalies occur with weak lead anomalies along Line W3 and Line W4. This area is underlain by variably calcareous shales of the Road River Gp that lie stratigraphically between the Rosella Fm and Sandpile Gp carbonates. The highest values for zinc ($>1000 \mathrm{ppm} \mathrm{Zn}$) appear to occur intermittently along both these lines with no clear concentration of anomalies. Lead values do not exceed $50 \mathrm{ppm} \mathbf{P b}$ in this area. The lack of outcrop over these recessive weathering shales has hindered surface exploration where the contact with underlying Rosella lithologies represents a prospective target.

Rock geochemical samples were collected along Line W5 due to the scarcity of available soil and clearly reflect background levels of base metals in the surrounding soils. The bedrock samples are typically medium grey to white limestone and siliceous dolomites mapped as Rosella Fm on the property. The four geochemical silt samples collected from streams draining the area southeast Line W5 did not retum any anomalous results.

CONCLUSIONS:

- The Wasi Creek Property, owned 100% by Selkirk Metals Holdings Corp., covers an extensive belt of Lower Cambrian to Middle Devonian limestone and dolomite which is the host to several base metal showings.
- Access to the property is excellent due to the extensive logging that has occurred on and around the claims.
- There are three mineralized showings on the east side of Wasi Creek. The valley bottom of the creek hosts a major geological structure.
- The three showings from south to north, named Duncan, Par and Weber, are all on the same mineralized fault controlied structure which strikes at approximately 330 degrees and dips east at 70 degrees.
- This area was the focus of Cominco Ltd.'s extensive exploration programs from 1990 to 1995. The trenching and drilling intersected the favorable base metal horizon with promising results.
- The Cominco trenching discovered angular float boulders of exceptional grade in zinc, lead and silver of which the source has not been found.
- The British Columbia Geological Survey completed a stream sediment sampling program in the area and the four highest sediment values in base metal elements were collected from drainages in the Wasi Creek Property area.
- The source of three of the stream sediment samples is concluded to have been the known mineralized horizon on the east side of the Wasi Creek structure.
- One of the highest stream sediment samples was collected from a tributary on the west side of Wasi Creek, the opposite side of the Wasi Creek structure near a volcanic tuff unit contact, a favorable geological environment for base metal deposition.
- The source of the stream sediment anomaly has not been discovered and it is upstream and up-ice of the extremely high grade angular massive sulphide boulders discovered in Cominco's trenching program of which the source has yet to be found.
- The soil sampling completed in 2004 Phase 2 program has confirmed anomalous areas west of Wasi Creek below Carrie Mountain. Geochemical soil anomalies indicate the mineralization could be stratabound mineralized horizon or brecciated unit within Rosella Fm carbonates. The source of the anomaly is from nearby mineralized bedrock or from transported talus directly upslope.

RECOMMENDATIONS:

The Wasi Creek Property covers a favorable geological environment for the possibility of a discovery of a significant carbonate-hosted zinc-lead-silver deposit. The property covers a large area with targets at different stages of exploration.

The Carrie 2 showing should have a road constructed to it and the showing extensively trenched up and down the slope. Once the geometry of the mineralization is verified the base metal target should be diamond drilled.

An airbome electrmagnetic survey (AEM) should be flown to cover the property and its periphery. Cominco completed a similar survey in 1991, covering parts of the same property, which successfully outlined conductors, defined stratigraphy, and helped locate future ground geophysical and geochemical surveys.

The main two kilometre long Duncan, Par and Weber horizon should be explored on its west side, closer to the structure along the bottom of Wasi Creek valley. A grid should be constructed across the valley and a geophysical survey completed to determine hidden mineralization that may occur beneath the valley fill. There should be drilling completed in a westerly direction under Wasi Creek to test if this Wasi Creek structure is mineralized as is the fault controlling the Duncan, Par and Weber mineralization.

Soil geochemical sampling in the 2004 exploration program was successful in confirming stratiform leadzinc mineralization on the southeast slopes of Carrie Mountain. A program of additional soil sampling, prospecting and geological mapping is recommended up-slope from the contour soil lines at the base of the slope (Line WI and Line W2). This would help delineate the size of the anomalies which should then be trenched

Respectfully submitted,

Calvin Church, P. Geo.

LIST OF REFERENCES:

Church, C., (2004): Geochemical Sampling Report on the Wasi Creek Property, OSI, OSI 2, OSI 3, TM 2 and TM 3 Mincral Claims, for Cross Lake Minerals Ltd.; NTS 94C/03E; B.C. Assessment Report \#27532

Ferri F., Dudka S., Rees C., (1992): Geology of the Usilika Lake Area, Northem Quesnel Trough, B.C. (94C/3, 4, 6). British Columbia Geological Survey Geological Fieldwork 1991, Paper 1992-1.

Ferri F., Dudka S., Rees C., Meldrum D., Willson M., (1992): Geology, Geochemistry and Mineral Occurrences of the Usilika Lakc Area, B.C. (94C/3, 4 and 6). British Columbia Geological Survey Open File 1992-11.

Gabrielse, H.: Unpublished GSC Map of the Mcsilinka Map Area, 94C.

Mansy, J.L. and Gabrielse, H., (1978): Stratigraphic Terminology and Corrclation of Upper Protcrozoic Rocks in Omineca and Cassiar Mountains, North-Central B.C., GSC Paper 77-19.

Melville D.M. (1990): Carbonate-Hosted Lead-Zinc Occurrences in the Germansen Landing and End Lake Areas ($94 \mathrm{C} / 2,93 \mathrm{~N} / 15$). British Columbia Gcological Ficldwork Exploration in British Columbia 1989, Pages 193 to 196.

Miller-Tait, J. (January 2002): Geological Report on the Wasi Creek Property, OSI Mineral Claim, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Assessment Report \#26,827

Miller-Tait, J. (January 2003): Soil Geochemical Report on the Wasi Creek Property, OSI 2 and 3 Mineral Claims, for Cross Lake Minerals Ltd.; NTS 94C/3E; B.C. Asscssment Report \#27,032

Roots, E.F., (1954): Geology and Mineral Deposits of the Aiken Lake Map Area, B.C., GSC Memoir 274.

STATEMENT OF QUALIFICATIONS:

For: Calvin Church, 1733 Napier Street, Vancouver, B.C. V5L 2N1.

1 graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining intermittently since 1987;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Gcoscicntists of British Columbia;

The observations, conclusions and recommendations contained in the report are based on field examinations, personal sampling, and the evaluation of results of the exploration programs completed by past operators.

EXP $15,2 \cos$
Calvin Church, P.Geo.

SECTION B: PROPERTY

WASI CREEK			SCHEDULE OF MINERAL CLAIMS			
PROVINCE: British Columbia			CLAIMS: 7	CELLS: 134 AREA:		7.457 ha
MINING DIVISION: Omineca			NTS: 94C/03E		BCGS: 094C.005, 015	
LOCATION: on the south side of the Osilinka River near Wasi Lake some 150 km northwest of Mackenzie, $\mathbf{2 0 0} \mathbf{~ k m}$ northeast of Smithers and 43 km north-northwest of Germansen Landing			LATITUDE: 56 ${ }^{\circ} 7.5$		LONGITUDE: $\mathbf{1 2 5}^{\circ} \mathbf{0 1}$	
			UTM NAD 83	ZONE 10	6221500 N	374500 E
			PROPERTY INTEREST: Selkirk Metals Holdings Corp. - 100\% Bard Ventures Ltd. - 0\%			
MAP	$\begin{aligned} & 1: 250000 \\ & 1: 5000 \\ & 1: 20000 \\ & 1 ; 20000 \\ & 1: 20000 \\ & 1: 20000 \\ & \hline \end{aligned}$	94C Mesilinka River 94C/03 Uslika Lake 94C005 Conglomerate Mtn. 94C006 Mount Howell 94C015 Tenakihi Range 94C016 End Lake				
AGREEMENT SUMMARY:						
September 1, 2004: Letter Option Agreement between Cross Lake Minerals Ltd. and Bard Ventures Ltd. whereby Bard may earn a 50% interest in the Property by incurring aggregate exploration expenditures of $\$ 800,000$ by December 31, 2006.						
November 19, 2004: Letter amendment whereby first and second work periods combined.						
June 16, 2005: Assignment Agreement between Cross Lake Minerals Ltd. and Selkirk Metals Holdings Corp. whereby Cross Lake assigned a 100% interest in the Wasi Creek Property to Selkirk.						

CLAIM SUMMARY:							
CLAIM NAME	TENURE NUMBER	$\begin{aligned} & \hline \text { CELLS/ } \\ & \text { UNITS } \end{aligned}$	GROSS AREA (hectares)	$\begin{gathered} \hline \text { RECORD } \\ \text { DATE } \\ \text { (yyyy-mm-dd) } \end{gathered}$	$\begin{gathered} \text { GOOD TO } \\ \text { DATE } \\ \text { (yyy-mm-dd) } \end{gathered}$	$\begin{gathered} \text { ANNUAL } \\ \text { WORK } \\ \$ \end{gathered}$	RECORDED OWNER /REMARKS
Legacy Claims:		Units					
OSI	379604	20	500.000	2000-07-25	2005-08-01	4000.00	Converted to 512686
TM 1	386919	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533
TM 2	386920	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533
TM 3	386921	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533
TM 4	386922	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533
TM 5	386923	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533
TM 6	386924	1	25.000	2001-05-28	2006-08-01	200.00	Converted to 503533
C1	387799	1	25.000	2001-07-01	2006-08-01	200.00	Converted to 512684
C2	387800	1	25.000	2001-07-01	2006-08-01	200.00	Converted to 511316
OSI 2	390515	18	450.000	2001-10-19	2005-08-01	3600.00	Converted to 516685
OSI 3	390516	20	500.000	2001-10-19	2005-08-01	4000.00	Converted to 511313
MT Online:		Cells					
-	503533	17	306.732	2005-01-14	2007-11-01	1226.93	Selkirk Metals Holdings Corp.
W 1A	511312	14	252.471	2005-04-21	2007-11-01	1009.88	
-	511313	42	758.063	2005-04-21	2007-11-01	3032.25	"
-	511316	4	72.151	2005-04-21	2007-11-01	288.60	"
-	512684	2	36.070	2005-05-16	2007-11-01	144.28	"
-	512685	17	306.698	2005-05-16	2007-11-01	1226.79	
-	512686	38	685.272	2005-05-16	2007-11-01	2741.09	"
7		134	2417.457			9669.83	

CLAIM BOUNDARY COORDINATES		UTM: NAD 83, ZONE 10		Northing
Corner No.	Cell 1 D	Cell Corner	Easting	
1	$094 \mathrm{CO2E} 070 \mathrm{~B}$	NE	376003.631	6223164.687
2	094C02E020C	SE	375869.890	6218528.222
3	$094 \mathrm{C03H012D}$	SW	374314.861	6218573.307
4	$094 \mathrm{C03A092C}$	SE	374260.697	6216718.756
5	$094 \mathrm{C03A095C}$	SW	371538.227	6216799.039
6	094 C 03 H 055 C	NW	371718.036	6222826.295
7	094 C 03 H 054 D	NE	373271.567	6222780.246
8	$094 \mathrm{CO} 3 \mathrm{H063B}$	NW	373285.236	6223243.888

Property corners are numbered in a sequence starting at the NE corner of the property and procceding in a clockwise direction.

SECTION C: EXPENDITURES - Wasi Creek Property-2004 Geochem - Phase 2

Item	Work Performed	Quantities / Rates	Amount
Project Geologist: Calvin Church, P.Geo. Caledonia Geological Inc.	Sampling and mapping. Period: Sep 23-27, 2004	5 days @ \$375.00	\$1875.00
Field Assistants: Henry Guglielmin Scan Bradwell	Sampling: Period: Sep 23-27, 2004	$\begin{aligned} & 3 \text { days }(\$ 200.00 \\ & 4 \text { days @ } \$ 150.00 \end{aligned}$	$\begin{array}{r} \$ 600.00 \\ \underline{600.00} \\ 1200.00 \\ \hline \end{array}$
Transportation: Vancouver to property, onsite and retum	4x4 pickup truck: Period: Sep 23-27, 2004	5 days @ $\$ 75.00$ Fuel and repairs	$\begin{array}{r} 375.00 \\ \frac{456.28}{831.28} \end{array}$
Accommodation and Meals	Abitibi Consolidated Omineca Camp: Scp 24-26 Other travel expenses	3 persons/3 days	$\begin{array}{r} 1050.00 \\ \underline{241.95} \\ \mathbf{1 2 9 1 . 9 5} \end{array}$
Field Supplies: Deakin Equipment	Survey materials and sampling supplies:		474.01
Analytical Services: Acme Analytical Laboratories Ltd.	ICP-MS 35 element analyses	221 samples	2945.96
Map Preparation: L. Erdman, P.Geo	Base Map Preparation, Data Plotting and Geological Map Preparation	21 hours @ \$ $\$ 0.00$	1050.00
Project Geologist: Calvin Church, P.Geo. Caledonia Geological Inc.	Data Analysis and Report Preparation:	3 days @ 375.00	1125.00
Printing:	Map reproduction		50.00
Total			\$10843.20

Expenditure Apportionment:

Claim Tenure No.	Samples	\% of Total	Expenditure
511313	19	8.6	$\$ 932.51$
512685	124	56.1	6083.04
512686	78	35.3	3827.65
Total	$\mathbf{7 2 1}$	$\mathbf{1 0 0 . 0}$	$\mathbf{\$ 1 0 8 4 3 . 2 0}$

SECTION D: ANALYTICAL RESULTS

1. Analyses carried out by Acme Analytical Laboratories Ltd. of Vancouver, B.C.

- Certificate of Analysis \#A405952 dated October 25, 2004
- Certificate of Analysis \#A405953 dated October 20, 2004
- Certificate of Analysis \#A405954 dated October 20, 2004
- Statement of Analytical Procedures: Data sheet for ICP-MS Analysis

ACME ANALYTICAL LABORATORIES LTD.
 B52 E. HASTINGS ST. VANCOUVER BC VGA ARG

 (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY ARD GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY SAMPLE TYPE: SOIL SS80 6OC

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.
Data $/$ FA \qquad DATE RECEIVED: SEP 292004
DATE REPORT MAILED

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only

[^0]

Sample type: SOlL SSB0 60C. Samples beginning 'RE' are Rerunt and 'RRE' are Reject Reruns.

Sample type: SOIL SS80 60C. Samples beginning 'RE', are Reruns and 'RRE' are Reject Rerurs.

G. 1

W3 $5 * 50$
W3 $5+75$
W3 $6+00$
W3 $\quad 6+25$
W3 $6+50$
w $36+75$
W4 $0+00$
W4 0+25

14 $0+75$ W4 $1+00$ W4 $1+25$ W4 1+50 W4 $1+75$

W4 $2+00$ W4 $2+25$ $\begin{array}{ll}W 4 & 2+50 \\ W 4 & 2+75\end{array}$ W4 $3+00$

| 1.2 | 2.6 | 2.1 | $42<.1$ | 4.7 | 4.3 | 543 | 1.77 | $<.5$ | 1.7 | $<.5$ | 3.0 | 71 | $<1<1$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | $\begin{array}{llllllllllllllllllll}1.2 & 2.6 & 2.1 & 42 & <.1 & 4.7 & 4.3 & 543 & 1.77 & <.5 & 1.7 & <.5 & 3.0 & 71 & <1 & <1\end{array}$ $\begin{array}{lllllllllllllllll}1.2 & 2.6 & 2.1 & 42 & <.1 & 4.7 & 4.3 & 543 & 1.77 & <.5 & 1.7 & <.5 & 3.0 & 71 & <.1 & <.1 & 2\end{array} 37$ $\begin{array}{llll}2.3 & 15.9 & 11.6 & 519\end{array}$ $\begin{array}{lllll}2.5 & 13.3 & 15.2 & 352 \\ 6.1 & 89.3 & 26.6 & 1172\end{array}$ $\begin{array}{llll}1.9 & 17.5 & 9.2 & 248\end{array}$

$\begin{array}{lllllllllllll}76.4 & 7.4 & 310 & 1.87 & 3.9 & .6 & 2.3 & 2.0 & 33 & 6.0 & 9 & 2 & 57\end{array}$ | .5 | 244.7 | 10.0 | 667 | 2.57 | 11.5 | 2.3 | 2.6 | 2.2 | 74 | 24.1 | 2.3 | .2 | 74 | .50 | 160 | 17 | 30.5 | .49 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| .1 | 29.5 | 6.9 | 364 | 1.72 | 3.5 | .5 | .8 | 2.0 | 46 | 10.6 | .7 | .1 | 48 | .50 | .078 | 11 | 18.9 | .29 | $\begin{array}{rlllllllllllllllll} \\ 28.4 & 9.2 & 329 & 2.87 & 3.9 & .6 & 2.3 & 2.0 & 33 & 6.0 & .9 & .2 & 57 & .46 & .075 & 7 & 12.5 & .62 \\ 227 & 13 & 23.8 & 34 & 182 & .044\end{array}$

.3	37.0	9.5	$5 B 2$	1.97	4.4	.6	2.1	1.6	38	4.7	.8	.1	56	.37																					
.2	27.6	7.1	733	1.64	2.3	.4	.5	1.0	50	18.9	.6	.1	49	.5																					
.2	14.8	7.3	236	2.04	2.3	.4	12.2	1.7	24	1.3	.4	.1	66	.32																					
.2	14.6	7.3	260	2.01	2.3	.4	1.2	1.5	26	1.8	.5	.1	67	.33		1	30.9	8.9	340	2.29	6.0	1.0	3.7	2.5	33	1.8	.5	.1	67	.33	.063	11	24.4	.28	165
---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:	---:																
.04	.047																																		

1.69

| .81 .007 | .06 | $1.3<.01$ | 2.0 | $.3<.05$ |
| ---: | ---: | ---: | ---: | ---: | ---: |

\qquad

| 2.6 | 19.5 | 11.7 | 252 | .3 |
| :--- | :--- | :--- | :--- | :--- | $\begin{array}{rrrrr}1.7 & 16.8 & 9.5 & 279 & .2 \\ 1.3 & 9.7 & 8.5 & 139 & .2\end{array}$ $\begin{array}{rrrrr}1.4 & 10.1 & 8.2 & 144 & .2 \\ 2.6 & 34.2 & 9.6 & 70 & .1\end{array}$

$\begin{array}{llll}4.7 & 60.1 & 11.5 & 8\end{array}$
$\begin{array}{llllllllll}.4 & 39.2 & 13.4 & 620 & 2.94 & 8.8 & 2.0 & 4.3 & 3.0 & 38\end{array}$

| 36 | 4 |
| :--- | :--- | $\begin{array}{llllll}3.4 & 43.5 & 12.4 & 94 & .3\end{array}$ $\begin{array}{rrrr}.9 & 7.0 & 7.5 & 100 \\ 5.4 & 39.8 & 18.6 & 410\end{array}$ $\begin{array}{llll}5.4 & 39.8 & 18.6 & 410 \\ 5.8 & 46.1 & 20.2 & 459\end{array}$ $\begin{array}{llllllllllll}.2 & 12.6 & 4.3 & 142 & 1.94 & 1.3 & .3 & .9 & 1.2 & 26 & 1.7 & .3\end{array}$ $\begin{array}{lllllllllllllll}3 & 64.8 & 8.4 & 392 & 2.09 & 9.6 & 1.4 & 7.2 & 1.9 & 53 & 6.9 & 1.7 & .1 & 69\end{array}$ $\begin{array}{llllllllllllllllllll}3 & 69.9 & 9.7 & 579 & 2.19 & 9.6 & 1.5 & 2.6 & 2.2 & 53 & 7.8 & 1.7 & 1 & 65\end{array}$ $\begin{array}{lllllllllllllllll}1.5 & 26.2 & 10.8 & 282 & .6 & 42.4 & 9.5 & 501 & 2.22 & 3.5 & .6 & 2.6 & 1.9 & 43 & 6.8 & 7\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrr}1.5 & 26.2 & 10.8 & 282 & .6 & 42.4 & 9.5 & 501 & 2.22 & 3.5 & .6 & 2.6 & 1.9 & 43 & 6.8 & .7 & .1 \\ 1.6 & 17.6 & 8.2 & 33 B & .2 & 49.8 & 8.7 & 313 & 2.19 & 4.0 & .5 & 1.7 & 2.2 & 30 & 4.0 & .6 & .1\end{array}$ $\begin{array}{lll}1 & 59 & .5 \\ 1 & 62 & .4 \\ 1 & 62 & .4 \\ 1 & 55 & .4 \\ 1 & 69 & .4\end{array}$.54

.42
.41
.45
.46 $\begin{array}{lllllll}3 & 15 & 25.7 & 36 & 423 & .043\end{array}$ $\begin{array}{rllllllllllllllll}1.7 & 18.4 & 8.0 & 357 & .2 & 52.0 & 8.5 & 328 & 2.13 & 4.0 & .5 & 6.9 & 2.2 & 32 & 4.2 & .6 & .1\end{array}$ $\begin{array}{llll}4.1 & 22.7 & 11.9 & 837\end{array}$ $\begin{array}{lllllllllll}1 & 110.9 & 11.9 & 408 & 2.68 & 10.7 & 1.0 & 11.5 & 1.9\end{array}$

W4 $3+25$
RE W4 3+25
RE W4
W4 $3+50$
W4 $3+50$
W4 $3+75$
W4 $3+75$
W $4+00$
W4 4+25 W4 $4+50$ W4 4+75
W4 $5+00$
14
$5+25$
(14 $5+50$
$\begin{array}{llll}4.8 & 15.9 & 6.4 & 202\end{array}$ $\begin{array}{llll}5.0 & 29.5 & 6.4 & 1528\end{array}$ $\begin{array}{rrrr}14.1 & 61.2 & 30.5 & 7269 \\ 4.1 & 11.3 & 5.9 & 190\end{array}$ $\begin{array}{lllll}4.1 & 29.1 & 6.7 & 1449\end{array}$
$14.1 \quad 61.531 .12268$ $\begin{array}{llll}4.3 & 60.7 & 32.0 & 2244 \\ 5.3 & 39.2 & 27 & 0\end{array}$ $\begin{array}{llll}5.3 & 39.2 & 27.0 & 916 \\ 2.7 & 19.8 & 6.2 & 295\end{array}$ $\begin{array}{llll}2.7 & 19.8 & 6.2 & 295 \\ 4.6 & 14.1 & 6.1 & 180\end{array}$ $\begin{array}{llll}4.4 & 7.4 & 6.2 & 500\end{array}$ $4.4 \quad 25$. $4.9 \quad 25.1 \quad 5.81209$ $5.8 \quad 40.014 .1125$ $\begin{array}{llll}3.5 & 26.0 & 7.1 & 620\end{array}$ -
$\begin{array}{lllllllllllllllllll}5 & 310.9 & 11.5 & 832 & 2.78 & 10.5 & 2.3 & 1.4 & 1.0 & 51 & 7.2 & 3.1 & .2 & 64 & .94 & .203 & 13 & 25.7 & .50 \\ 312 & .028\end{array}$ $5310.911 .58322 .8010 .82 .2 \quad 2.11 .0$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrr}.3 & 91.4 & 6.0 & 363 & 1.44 & 4.5 & 3.2 & 2.0 & .6 & 60 & 16.5 & 2.5 & .1 & 52 & 1.61 & .120 & 8 & 19.0 & .38 & 459 & .022 \\ 1 & 28.6 & 8.6 & 326 & 2.46 & 3.7 & .8 & 4.7 & 2.1 & 29 & 3.3 & .5 & .1 & 64 & .45 & .109 & 11 & 30.9 & .47 & 182 & .046\end{array}$ $\begin{array}{llllllllllllllllllllll}1 & 28.6 & 8.6 & 326 & 2.46 & 3.7 & .8 & 4.7 & 2.1 & 29 & 3.3 & .5 & .1 & 64 & .45 & 109 & 11 & 30.9 & .47 & 182 & .046\end{array}$ $\begin{array}{lllllllllllllll}.2 & 19.2 & 6.5 & 200 & 2.36 & 3.0 & .5 & 3.9 & 1.8 & 26 & 2.2 & .5 & .1 & 69\end{array}$
$\begin{array}{lllllllllllllllllllll}.1 & 27.8 & 6.4 & 235 & 1.97 & 2.2 & .3 & <.5 & 1.7 & 25 & 2.6 & .4 & .1 & 59 & .35 & .067 & 12 & 22.9 & .30 & 176 & .034\end{array}$ $\begin{array}{lllllllllllllllllll}1 & 162.3 & 8.7 & 358 & 2.47 & 4.6 & 1.3 & .5 & 2.4 & 31 & 2.1 & .5 & 1 & 67 & .50 & .076 & 13 & 34.9 & .62 \\ 155 & 062\end{array}$

$\begin{array}{lllllllllllllllllll}2 & 20.5 & 6.9 & 232 & 2.47 & 3.1 & .5 & 24.5 & 1.9 & 29 & 2.4 & .5 & .1 & 69 & .41 & .066 & 10 & 29.4 & .40 \\ 206 & .044\end{array}$

| 10.9 | 232 | 2.47 | 3.1 | .5 | 24.5 | 1.9 | 29 | 2.4 | .5 | .1 | 69 | .41 | .066 | 10 | 29.4 | .40 | 206 | .044 | 1 | 1.01 | $.00 B$ | .08 |
| :--- |

2	.98	.006	.06	$.1<.01$	2.2	$.1<.05$	4	$<.5$	15.0
3	1.42	.010	.16	2	.06	4.4	$.2<.05$	4	2.2
1	.65	.005	09	1	.02	1.0			

$\begin{array}{llllllll}.51 & .095 & 16 & 35.0 & .51 & 397 & .063 & 2\end{array}$ $\begin{array}{llllllll}50 & .093 & 15 & 29.4 & .49 & 347 & .063 & 2\end{array}$ $\begin{array}{lllllll}31.029 & 11 & 22.9 & 19 & 163 & .048\end{array}$ $\begin{array}{llllll}22.069 & 14 & 23.3 & .37 & 369 & .027\end{array}$ $\begin{array}{lllllll}50 & .072 & 15 & 25.3 & .36 & 424 & .028\end{array}$

341

4	1	
7	3	
5	1	.

.72.007.09 .54005 .09 $\begin{array}{lllll}2 & .79 & .007 & .067 & .1 \\ 2 & 86 & .009 & .07 & .1\end{array}$

$\begin{array}{lll}.02 & 2.0 & .1<.05 \\ .0216 & 1<.05\end{array}$ $\begin{array}{llll}.02 & 1.6 & .1<.05 & 3 \\ . & .5\end{array}$ | 012.0 | $1<.05$ | 3 | .6 |
| :--- | :--- | :--- | :--- |
| 1 | 18 | | | | 01 | 1.9 | $1<05$ |
| :--- | :--- | :--- |
| | $4<5$ | | 15.0

15.0 $\begin{array}{lllllll}0.07 & 1 & .01 & 1.9 & .1<.05 & 4<5 & 15.0\end{array}$ $\begin{array}{lllllllll}95 & 009 & 12 & .1 & .13 & 5.6 & .1<.05 & 4 & 7\end{array}$.85 .010 .09 $\begin{array}{lllllllll}.010 & .09 & 1 & 11 & 3.7 & .1<.05 & 3 & .8 & 15.0\end{array}$ $\begin{array}{lllllllll}.60 & 046 & .07 & 1 & .01 & 1.7 & .1<.05 & 4<5 & 15.0\end{array}$ $\begin{array}{lllllllll}.95 & .007 & .07 & 1 & .05 & 2.6 & 2<.05 & 3 & 1.6\end{array} 15.0$ $\begin{array}{llllll}1 & 05 & 2.8 & .1<.05 & 41.7 & 15.0\end{array}$

.96	.008	.10	.1	.02	2.7	$.1<.05$	4	.5	15.0
.96	.008	.06	.1	.02	2.6	$.1<.05$	$4<.5$	15.0	

5.0

.94	.008	.07	1	.03	2.5	$1<.05$	$4<.5$	15.0
.85	.007	.07	1	.02	2.3	$1<.05$	$3<.5$	15.0

.05	.007	.07	.1	.02	2.3	$.1<.05$	3	$<.5$
.007	.08	2	.03	2.5	$1<.05$	4	.7	7.5

$\begin{array}{llll}090 & 13 & 26.2 & 44 \\ 213 & 051\end{array}$.95 .007

5.0

[^1]

[^2]

Sample type: SOIL SSAO 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

s* lard is STANDARD DS5
GROUP 10 X - 15.00 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML , ANALYSED BY ICP-MS.
(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: ROCK R150 60C

Data $\{\operatorname{des}$ \qquad DATE RECEIVED: SEP 292004 DATE REPORT MAILED: Mt 20/04.

RROUP IDX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-qNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED EY ICP-MS.
(>) CONCENTRATION EXEEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKEO. gEFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: SHLT SS80 60C

Data $\sqrt[N_{C A}]{ }$ \qquad DATE RECEIVED: SEP 292004 DATE REPORT MAILED:..

Methods and Specifications for Analytical Package GRoup 1D \& 1DX -ICP \& ICP-MS ANALYSIS - AQUA REGIA

Analytical Process

Comments

Sample Preparation

All samples are dried at $60^{\circ} \mathrm{C}$. Soll and sediment are sieved to -80 mesh $(-177 \mu \mathrm{~m})$. Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed ($475^{\circ} \mathrm{C}$). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh ($100 \mu \mathrm{~m}$) in a mild-steel ring-andnpuck mill. Pulp splits of 0.5 g are weighed into test tubes, 15 and 30 g splits are weighed into beakers.

Sample Digestion

A modifed Aqua Regia solution of equal parts concentrated ACS grade HCl and HNO_{3} and de-mineralised $\mathrm{H}_{2} \mathrm{O}$ is added to each sample to leach for one hour in a hot water bath $\left(>95^{\circ} \mathrm{C}\right)$. After cooling the solution is made up to final volume with $5 \% \mathrm{HCl}$. Sample weight to solution volume is 1 g per 20 mL .

Sample Analysis

Group 10: solutions aspirated into a Jarrel Ash AtomComp 800 or 975 ICP emission spectrometer are analysed for 30 elements: $\mathrm{Ag}, \mathrm{Al}, \mathrm{As}, \mathrm{Au}, \mathrm{B}, \mathrm{Ba}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mn}$, $\mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Sb}, \mathrm{Sr}, \mathrm{Th}, \mathrm{Ti}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Zn}$.

Group 10X: solutions aspirated into a Perkin Eimer Elan6000 ICP mass spectrometer are analysed for 36 elements: $\mathrm{Ag}, \mathrm{Al}, \mathrm{As}$, $\mathrm{Au}, \mathrm{B}, \mathrm{Ba}, \mathrm{Bi}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Co}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ga}, \mathrm{Hg}, \mathrm{K}, \mathrm{La}, \mathrm{Mg} . \mathrm{Mn}, \mathrm{Mo}$, $\mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{S}, \mathrm{Sb}, \mathrm{Sc}, \mathrm{Se}, \mathrm{T}, \mathrm{Sr}, \mathrm{Th}, \mathrm{Ti}, \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{Zn}$.

Quatity Control and Data Verification

An Analytical Batch (1 page) comprises 34 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a -10 mesh rejects duplicate to monitor sub-sampling variation (drill core onty), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD DS5 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Marcus Lau, Ken Kwok, Dean Toye and Jacky Wang.

SECTION E: ILLUSTRATIONS

Plan Number	Title	Scale
WA-05-1 (after p.4)	General Location Plan	$1: 250000$
WA-05-2 (after p.4)	Mineral Claims	$1: 50000$
WA-05-3 (in pocket)	Mincral Claims	$1: 20000$
WA-04-4b (in pocket)	Samplc Locations	$1: 20000$
WA-04-5b (in pocket)	Soil, Silt \& Rock Sample Locations	$1: 10000$
WA-04-6b (in pocket)	Soil \& Rock Geochemistry: Cd ppm	$1: 10000$
WA-04-7b (in pocket)	Soil \& Rock Geachemistry: Cu ppm	$1: 10000$
WA-04-8b (in pocket)	Soil \& Rock Geochemistry: Pb ppm	$1: 10000$
WA-04-9b (in pocket)	Soil \& Rock Geochemistry: Zn ppm	$1: 10000$
WA-04-10b (in pocket)	Soil \& Rock Geochemistry: Ag ppm	$1: 10000$

[^0]: Sample type: SOIL SSBO 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^1]: Sample type: Shil 5S日0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

[^2]: Sample type: SOLA. SS80 60C. Samples beginning 'RE' are Reruns ond 'RRE' are Reject Rerums.

