ASSESSMENT REPORT

Geological, Geophysical and Soil Geochemical report on the

Cu King Property

Mineral Tenures 507749 and 507751

NTS 93 B/9 52° 33' North Latitude 122° 11' West Longitude Cariboo Mining Division British Columbia

Prepared for Copper Ridge Explorations Inc. Gold Commission 500 - 625 Howe Street Vancouver, BC Canada V6C 2T6

By

Arcana Consulting Inc. 5216 Worthington Rd. Victoria, BC V8Y 2T8

> David R. Melling B.Sc., M.Sc., P.Geo. December 4, 2005

OMICE

.....

ŗ

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
LOCATION AND ACCESS	2
CLAIM STATUS	3
TOPOGRAPHY AND VEGETATLON	
HISTORY	
REGIONAL GEOLOGY	5
Gibraltar Mine Geology	6
2005 EXPLORATION PROGRAM	8
Property geology and mapping	8
Soil geochemistry	9
Geophysics	9
RECOMMENDATIONS	10
ITEMIZED COST STATEMENT	11
STATEMENT OF QUALIFICATIONS	12
REFERENCES	

LIST OF TABLES

TABLE 1.	Claim data	3

LIST OF FIGURES

After page

FIGURE 1.	Location Map2
FIGURE 2.	Copper King Claim Map3
FIGURE 3.	Regional Geology Map5
FIGURE 4.	Copper King property geology map8
FIGURE 5.	Copper King grid – geological mapping, rock and soil9 geochemistry results for copper.
FIGURE 6.	Copper King grid – geological mapping, rock and soil9 geochemistry results for zinc.
FIGURE 7.	Copper King grid – geological mapping, rock and soil9 geochemistry results for molybdenum.
FIGURE 8.	Copper King grid – geological mapping, rock and soil9 geochemistry results for gold.
FIGURE 9.	Copper King grid – geological mapping, rock and soil9 geochemistry results for arsenic.

APPENDICES

- APPENDIX I. Copper King property- rock and soil sample assay certificates, descriptions, locations.
- APPENDIX II. Logistical report induced polarization and magnetometer surveys Copper King Claims, McLeese Lake area, BC.

SUMMARY AND CONCLUSIONS

The Copper King property consists of two contiguous mineral tenures totaling 2399 ha located about 4 km northeast of the Gibraltar porphyry copper deposit. The tenures are owned 100% by Copper Ridge Explorations Inc.

Exploration work was completed between September 28 and October 8, 2005 and included locating and re-establishing a portion of the 1998 Copper King north gridded area, mapping and prospecting, soil sampling and completion of induced polarization and magnetometer surveys. Most of this work was completed on mineral tenure 507749.

The western parts of the property are underlain by massive tonalite of the Late Triassic – Early Jurassic Granite Mountain Batholith. The eastern parts of the property are underlain by intermediate volcanic and volcanclastic rocks of the Late Triassic – Early Jurassic Nicola – Takla Group. In the central part of the property there is a rectangular fault bounded panel of quartz diorite interpreted as a border phase of the Granite Mountain Batholith.

A total of 63 soil samples and 2 rock samples were collected from the property. The soil sampling results indicate that several, weak isolated anomalies occur on the Copper King property. Copper values range from 5.8 ppm to 225.3 ppm. Zinc values range from 31 ppm to 262 ppm. Based on the data available the most prospective area appears to coincide with a mapped unit of massive, fine-grained intermediate tuff traversing the southwestern part of the survey area. Within this area soil sampling yielded several isolated anomalous values for gold and arsenic. The highest copper value (225.3 ppm) also contained anomalous zinc (156 ppm, sample CK049). Previous work by Payne (1999) indicates the presence of a north-northeast trending, 1400 m X 75 m Zn anomaly in soils in this area.

A total of 3.0 km of induced polarization and magnetometer surveys were completed on two widely spaced grid lines on October 5 and 6, 2005. The surveys were performed by Scott Geophysics Ltd of Vancouver BC (Appendix II).

Results from the induced polarization survey suggest that sulphides are not abundant in the underlying rocks, however, several areas were outlined which require further investigation. Follow up work is warranted on these targets. One zone of increased resistivity and increased magnetics appears to correlate directly with a zinc soil geochemical anomaly.

INTRODUCTION

This report describes the exploration program and results of grid establishment, geological mapping/prospecting and geophysical work carried out on the Copper King property. The program was completed on behalf of Copper Ridge Exploration Inc. between September 28 and October 8, 2005, utilizing the services of one consulting geologist, two line cutters / soil samplers and a 5 man geophysical crew from Scott Geophysics Ltd. The objective of the work was to explore the mine potential of the Copper King property.

LOCATION AND ACCESS

The Copper King property is located in central British Columbia approximately 370 km north of Vancouver, British Columbia (Figure 1). Road access to the property from Williams Lake is excellent and gained by driving 45 km north on Highway 97 to McLeese Lake, then east on Beaver Creek road (Gibraltar Mine road) for 3.3 km, then 9.0 km east on the Beaver Lake road and north 10.7 km on forest access road 609 to the gridded area of the property. Numerous secondary roads and trails traverse the property making most areas of the property easily accessible.

Williams Lake (586 m elevation) has a local population 12,000 while the region hosts some 36,000 residents. The city has evolved into a modern commercial centre and transportation hub. Train and bus service are available, and a commercial airport situated 14 km north of the city is served by Central Mountain Air and Pacific Coastal Airlines which both provide several daily flights to Vancouver and other British Columbia destinations. Summer temperatures at the Williams Lake airport (940 m) average 15.5°C in July, winter temperatures average -8.7°C in Jan. The average yearly rainfall is 27 cm and snowfall is 1.95 m.

The natural resource industry is the main economic driver in the region, with four major lumber manufacturing companies, one major remanufacturing company, three valueadded manufacturing facilities, and numerous smaller producers located in Williams Lake. Mining also plays a significant role in the region's economy. Two major mines, Gibraltar (Taseko Mines Ltd.) and Mt. Polley (Imperial Metals Corporation) employ over 580 people when fully operational producing copper, molybdenum and gold.

Agriculture represents one of the earliest primary industries to evolve in the region since the Gold Rush days, and today is still an integral part of the local economy. The beef sector forms the backbone of the agriculture industry. Over 50% of agricultural enterprises are beef operations followed by specialty livestock and crops, mixed livestock operations, dairy, horticultural crops, poultry and swine operations. The majority of ranches are highly dependent on Crown range which provides about 40% of the annual forage requirements of the industry. These cattle ranches account for 20% of the provincial beef cattle population. The tourism industry's contribution to the local and

Figure 1: Location Map.

0

regional economy is substantial. The accommodation, food and beverage industry is the third largest employer in the region.

CLAIMS STATUS

The Copper King property consists of two mineral tenures located about 4 km northeast of the Gibraltar porphyry copper deposit. The tenures are contiguous and comprise an irregular block is about 5 km long towards the north and 5 km wide (Figure 2). totaling 2399 ha) 100% owned by Copper Ridge Explorations Inc. The pertinent claims data for the property are summarized in Table 1.

Table 1. Copper King property claim data.

Tenure Number	Name	Map Number	Good To Date	Status	Mining Division	Area
507749	COPPER KING	093B060	05/09/2005	CONV 2005/FEB/23	CARIBOO	1100.686
507751	COPPER KING	093B060	05/09/2005	CONV 2005/FEB/23	CARIBOO	1297.970

TOPOGRAPHY AND VEGETATION

The Copper King property is located about 4 km to the northeast of the producing Gibraltar Mine and is bisected by an east-west trending valley that drains the tailings pond area. Elevations range from 945 m (3100 ft) in the valley floor to 1320 m (4330 ft) towards the north (Fraser Plateau), and 1130 m (3710 ft) towards the south on the northeast facing flank of Granite Mountain. The northern and western parts of the property have been recently clear cut and logging is active in the south central part of the property. Vegetation on the property consists of pine, fir, cedar and balsam. Outcrop exposure is abundant on the southeast facing slopes on the northern half of the property and on the hills to the southwest. Outcrops are rare in the lower wooded areas to the southeast.

HISTORY

Most historical exploration work in the area concentrated on the Gibraltar Mine property located about 4 km southwest of the Copper King property (Hendry and Wallis, 2005). The original discovery of copper mineralization was made in 1927. In 1957, Kimaclo Mines Ltd. drove an adit into the high grade shear zones of the Gibraltar West zone. The Gibraltar property was then sold to Major Mines Ltd. in 1958 and allowed to lapse. In 1964, Gibraltar Mines Ltd. (Gibraltar) acquired a group of claims in the McLeese Lake area from Malabar Mining Co. Ltd. In 1966, Cominco Ltd. and Mitsubishi Metal Mining Co. Ltd. optioned the property and spent approximately \$229,000 before relinquishing the option in December 1967.

Figure 2. Copper King claim map

Canadian Exploration Limited (Canex), at that time a wholly-owned subsidiary of Placer Development (Placer), and Duval Corporation (Duval) had been exploring the Pollyanna claim group which they had acquired adjacent to Gibraltar's claims. In 1969, Gibraltar, Canex and Duval entered into an agreement providing for the commingling of Gibraltar's claims with the Pollyanna Group and for the expenditure by Canex-Duval of \$2,500,000 on exploration of Gibraltar's claims. Canex subsequently acquired 27/29ths of Duval's interest in the commingled claims that it subsequently transferred to Gibraltar. In 1971, Gibraltar acquired Duval's remaining interest in the property.

Preliminary development of the mine began in October 1970 and on April 1, 1971 construction commenced. The concentrator commenced production on March 8, 1972 and was fully operational by March 31, 1972. Initial Mining Reserves at a 0.25% Cu cut-off were reported to be 300 million tons at 0.37% Cu at a 2.15:1 strip ratio. These historical reserves (pre-mining) are not compliant with NI 43-101 and are presented for reference only.

In 1980, an in-pit crusher and a conveyer system were installed in the Gibraltar East pit to reduce operating costs during the mining of Stage II of that pit. The Gibraltar East pit conveyor system was partially relocated and extended in 1992 to accommodate the mining of Stage III of this pit. Mining and milling operations were suspended in December, 1993 due to low copper prices and recommenced in September 1994 following the increase in copper prices.

A cathode copper plant design with a capacity of 4,535 tonnes of copper (10 million lbs) annually of market-ready copper metal began operation in October 1986. The plant recovered copper through the leaching of three waste dumps containing low-grade material. In September 1993, the SX/EW plant began recovering copper from oxidized and supergene sulphide ore placed on a heap leach pad. To date, some 38,430 tonnes (84.7 million lbs) of electrowin copper have been produced from this facility. The SX/EW plant was shut down in October 1998 due to low feed solution grades. Prior to 1986 and more recently since the SX/EW plant was shut, water from the dumps and other mine drainage water were collected in ponds and neutralized prior to release in the tailings pond. Since February 1999, these waters have been discharged into the completed Gibraltar East pit.

In October 1996, Westmin Resources Limited (Westmin) acquired 100% control of Gibraltar and in December 1997, Boliden acquired Westmin. In March 1998, Boliden announced that it would cease mining operation at Gibraltar Mine at the end of 1998. The total production history, to the end of 1998, amounts to 845,800 tonnes (1,860 million lb.) of copper, 8,900 tonnes (19.7 million lb.) of molybdenum and 38,400 tonnes (84.7 million lb.) of cathode copper from 305 million tonnes (336 million short tons) milled

Taseko Mines Limited acquired its interest in the assets of Gibraltar in a transaction with Boliden in July 1999. After a 4 month preproduction mining and mill/plant refurbishment period, operations were restarted with copper milling in October 2004.

In the area of the Copper King property limited exploration work has been carried out intermittently since the 1960s. Gunn Mines Ltd. carried out magnetometer, induced polarization and 12 diamond drill holes totaling 1,068.6 m in the area of the claims between 1967 and 1971. In 1970, Primac Exploration Services Ltd. completed geological, magnetometer and soil geochemical surveys to the south of the Copper King property (Payne, 1998).

In 1998, 28.4 km of grid (North Grid) was established, 562 soil samples taken and 26.4 km of ground magnetometer and VLF-EM surveys were completed on the property (Payne, 1999). In addition, 17 km of grid (Mid Grid) was established, 333 soil samples taken and 26.4 km of ground magnetometer and VLF-EM surveys completed on the property (Payne, 1998). This work was carried out by Crest Geological Consultants Ltd. on behalf of United Gunn Resources Ltd. This work identified an area of anomalous copper in soils located in the northeast corner of the property. Prospecting discovered a zone of epidote-chlorite altered lapilli tuff mineralized with pyrite and chalcopyrite disseminations and stringers/. One rock sample yielded 13,967 ppm copper in this area (Payne, 1999). In addition a north-northwest trending 1400 m by 75 m zinc in soil anomaly was also identified.

REGIONAL GEOLOGY

The most recent regional geological synthesis of the area was completed by Ash et al., 1999 and 2000) and reference to this work is made here rather than repeatedly throughout the text. The Copper Ace property is underlain by the Granite Mountain Batholith (Figure 3). This is a Late Triassic (215 ± 0.8), medium to very coarse-grained quartz diorite to tonalite intrusion that has been variably deformed, metamorphosed and hydrothermally altered. Primary compositional and textural changes are mappable within the batholith. These are indicated by a progressive increase northward across the batholith in quartz content (15-20% to 35-40%) and grain size (2-3 mm up to 1 cm), accompanied by a reduction in the mafic mineral content (35 to 10%). A late, volumetrically minor leucocratic dike phase with minimal mafic minerals (1-2%) intrudes the batholith in the Gibraltar mine area.

Primary contact relationships of the batholith with surrounding lithologies are poorly constrained. To the east and west it is most likely bordered by faults which juxtapose it with Late Paleozoic oceanic Cache Creek rocks. These rocks consist of disrupted chert argillite deposits that range from broken formation to melange with blocks or lenses of limestone and basalt.

The southern margin of the batholith is in part faulted against, and in part separated from, the Late Cretaceous Sheridan stock along a broad, low-angle, north-dipping shear zone. The Sheridan stock (108.1 \pm 0.6 Ma) is a medium-grained, massive to locally strongly foliated, predominantly leucocratic quartz diorite. The shear zone is dominated by chlorite-rich schists with mylonitic fabrics that are locally well developed. A

Figure 3. Regional geology map.

characteristic feature of this unit is veining from several cm up to 1 m in thickness, consisting of quartz, chlorite, carbonate or epidote, or some combination of these minerals. Protoliths are interpreted to include both melanocratic phases of the Granite Mountain Batholith and most likely basaltic volcanics from the Cache Creek terrane.

To the north, the pluton is juxtaposed against a variably deformed succession of epiclastic and volcaniclastic rocks. These have been interpreted as Quesnellia, arc-derived clastic rocks and correlated with the latest Early Jurassic Hall Formation (Wheeler and McFeely, 1991). The nature of the contact is unknown.

Gibraltar Mine Geology

The Gibraltar Cu-Mo deposit is hosted within the Granite Mountain Batholith. The geology of the Gibraltar mine is exposed in four open pits that include Gibraltar West, Gibraltar East, Pollyanna and Granite Lake (Figure 3). These all occur between 900 and 1200 m elevation on the west-facing slope of Granite Mountain and extend from 100 to 300 m below the surface, the deepest being Gibraltar East.

The four pits lie in a zone of greenschist facies, hydrothermally altered, veined, deformed and recrystallized rock. Where undeformed, it is medium to coarse-grained, equigranular rock and displays a relatively uniform grain size and mineralogical composition throughout the mine area. All primary minerals excluding quartz are partially to completely replaced by alteration assemblages reflecting greenschist facies metamorphism which is characteristic of the batholith as a whole. It consists of 35-40% (relict) plagioclase, 25-30% quartz, 20-25% epidote and zoisite, 15-20% chlorite, 5-10% sericite and trace amounts of sphene, zircon, apatite, iron oxides, carbonate and sulphides. Weathered surfaces are light grey to buff white and commonly display a distinctive splash of disseminated pistachio-green epidote.

Deformation of the Gibraltar mine was localized along discrete high-strain zones in a relatively massive and unfoliated tonalite. No extensive or pervasive foliations were recognized in the mine. The intensity of folding of veins and planar fabrics generally varies as a function of scale. On the regional scale, folds are open warps. At the local scale, in particular in proximity to discrete high deformation zones, folds are tight to transposed. The majority of folds plunge shallowly to the southeast. The orientation of mineral stretching lineations on foliation and shear surfaces varies from shallowly to moderately plunging to the southeast.

A late, major northeast-trending, steeply northwest dipping, brittle fault cuts across the Gibraltar East pit. It is characterized by a distinctive purplish-red stain and it cross-cuts all map units and consists of hematite-rich incoherent clay gouge zones from 5 to 15 cm wide. Zones of hematite-rich alteration and minor hematite-stained fractures and faults marginal to the main gouge zones range from several dm to over 1 m wide. Fault surfaces have horizontal to obliquely-plunging slickensides, which suggest strike-slip to oblique-slip movement on the faults. Although no obvious offsets were observed there is

a subtle change in character in the rocks on either side of the fault. In the hanging wall, strongly deformed and sericite altered rocks appear to be more prevalent than in the footwall.

On the basis of structural style, morphology and relative age relationships, three generations of veining are recognized at the Gibraltar Mine. The earliest are random stockwork to weakly planar quartz veins that are locally restrictive and largely unmineralized. The second generation includes two types of heterogeneously developed sub-parallel, sheeted veins and veinlets that pervade the mine area. The thicker sericiteenveloped, Fe-sulphide-rich, banded quartz veins contain concentrations of molybdenite. Cu-sulphide minerals are less conspicuous. Both of these generations of veins appear to be prekynematic and formed prior to development of any penetrative foliation fabrics within the batholith. The sericite enveloped, sheeted veins have accommodated significant amounts of later shearing but this is also largely non-penetrative and restricted to vein marginal shears. The third generation of veining is compositionally distinct from earlier vein types containing quartz, chlorite, carbonate, and abundant Cu-sulphide minerals. These are syn to late kynematic and associated with and developed along highstrain deformation zones. No molybdenite mineralization was noted in these veins. The general schistose character of high-grade copper ore at the Gibraltar mine resulted in its ease of crushing and milling or low work index.

The synkinematic high-strain, sub-vertical shear zone controls the overall geometry and setting of copper ore in the Gibraltar East pit. It is mimicked on the mine and regional scale. The shear zone which localizes high-grade ore in the northwestern portion of the Gibraltar East pit is also well defined at the western end of the Pollyanna pit. Towards the southeast, this northwesterly-trending shear zone bends to the east and is consistent with a comparable change in orientation of all planar (sheeted veins) and linear (fold hinges and mineral stretching lineations) structural elements at both the mine and regional scale. Two distinct sub-vertical parallel zones are attributed to ore control, a northerly zone related to ore at the Gibraltar East and Pollyanna pits and a southern zone controlling mineralization at the Gibraltar West and Granite Lake pits. A similarity oriented shear zone with associated schistose quartz diorite and tonalite along the southern margin of the Granite Mountain Batholith is associated with Cu-mineralization at the Sawmill Zone. The overall trend of these zones is also consistent with the orientation of contacts between specific phases of the pluton.

Copper ore at the Gibraltar mine is structurally controlled. Ore grade mineralization is localized along high-strain shear zones that are associated with significant sericite enrichment. Two major parallel northwest to east-trending sub-vertical shear zones control the distribution of copper mineralization at the mine. Regionally, similar parallel zones appear to control occurrences of anomalous Cu mineralization.

In 1995, remaining proven and probable sulphide mineral reserves were estimated at 148.3 million tonnes (163.5 million short tons) grading 0.313% Cu and 0.010% Mo. Proven and probable oxide mineral reserves were estimated at 15 million tonnes (16.5 million short tons) grading 0.148% Cu. In addition, the Gibraltar Mine property hosts

significant mineral resources. As of February 2004, Gibraltar reported a total Measured Resource of 402 million tones (443 million tons) grading 0.286% Cu and 0.008% Mo, and an Indicated Resource of 195 million tones (215 million tons) grading 0.269% Cu and 0.008% Mo (Hendry and Wallis, 2005).

2005 EXPLORATION PROGRAM

The exploration program was completed between September 28 and October 8, 2005 utilizing the services of one consulting geologist, two independent cutters / soil samplers and a 5 man geophysical crew from Scott Geophysics Ltd. The objective of the work was to explore the mine potential of the Copper King property.

The work completed included locating and re-establishing a portion of the 1998 gridded area, mapping and prospecting, soil sampling and completion of ground induced polarization and magnetometer surveys. Most of this work was completed on the Copper King mineral tenure 507749.

Property Geology and Mapping

The property is underlain by 3 major rock types (Figure 4). The western parts of the property are underlain by massive tonalite of the Late Triassic – Early Jurassic Granite Mountain Batholith. The rocks are equigranular, leucocratic and buff white in colour. They are locally very coarse grained and quartz porphyritic. Quartz ranges from 35-65% and up to 1 cm locally. Moderate to intense, northwest trending foliation fabrics are common and epidote-chlorite altered shear zones are developed locally.

The eastern parts of the property are underlain by intermediate volcanic and volcanclastic rocks of the Late Triassic – Early Jurassic Nicola – Takla Group. The rocks are andesitic to dacitic in composition and consist of lapilli ash tuffs, ash tuffs and flow breccias. Interbeds of limestone and tuffaceous limey mudstone occur locally. Rare cherty beds are also present.

In the central part of the property there is a rectangular fault bounded panel of quartz diorite interpreted as a border phase of the Granite Mountain Batholith. The rocks are typically massive, undeformed and texturally variable ranging from fine to coarse-grained. Sub angular zenoliths of epidote-altered volcanics and fine-grained quartz-diorite occur locally.

Mapping and prospecting efforts were focused on the volcanic rocks underlying the northeast portion of the property. Much of this area has been recently clear cut and several areas of extensive outcrop occur. The volcanic rocks comprise units of massive quartz phyric lapilli tuff, massive intermediate ash tuff, and interbedded mafic flow breccias and intermediate tuff. In addition, minor cherty beds, limey tuffs and heterolithic epiclastic units occur locally. Where measured, the rocks strike to the north-northwest and dip moderately towards the northeast. Mapping by Ash et al., (1999a)

Figure 4. Copper King property geology map.

1.

suggests the rocks are folded and dip reversals common. There are several northwest trending faults that cut the volcanic rocks. The strata are locally foliated in proximal to these structures. Epidote alteration is commonly observed on the property but rarely associated with sulphide concentrations. Two samples of pervasive epidote altered rock were taken. These samples were crushed with 1 kg, up to 70%, passing 10 mesh, and a 250 g split was then pulverized to 95% passing 150 mesh. A 15 g pulp was then analyzed for 36 elements by ICP-MS (Group 1DX) by ACME Analytical Laboratories Limited of Vancouver. The assay certificates, results, sample locations and descriptions are listed in Appendix I and illustrated in Figures 5, 6, 7, 8, and 9.

Soil Geochemistry

The purpose of the soil geochemical survey was to define anomalous areas indicative of economic concentrations of base and or precious metals in the underlying rock.

A total of 63 soil samples were collected from the B horizon at depths ranging from 15 to 30 cm, every 50 m along two northeast oriented grid lines spaced about 400 - 500 m apart. All samples were placed in kraft bags and labeled with unique sample numbers. The soil samples were dried at 60°C and up to 100 g sieved to -80 mesh (SS80). A 15 g fraction was analyzed for 36 elements by ICP-MS (Group 1DX) by ACME Analytical Laboratories Limited of Vancouver. The assay certificates, results, sample locations and descriptions are listed in Appendix I and illustrated in Figures 7, 8, 9, 10 and 11.

The soil sampling results indicate that several, weak isolated anomalies occur on the Copper King property. Copper values range from 5.8 ppm to 225.3 ppm. Zinc values range from 31 ppm to 262 ppm. Molybdenum values range from 0.3 ppm to 1.9 ppm. Gold values range from < 0.5 ppb to 22.9 ppb. Arsenic values range from 1.1 ppm to 17.6 ppm. Given the wide line spacing and limited number of samples taken it is difficult define discrete anomalous zones. Based on the data available the most prospective area appears to coincide with a mapped unit of massive, fine-grained intermediate tuff traversing the southwestern part of the survey area. Within this area soil sampling yielded several isolated anomalous values for gold and arsenic. The highest copper value (225.3 ppm) also contained anomalous zinc (156 ppm, sample CK049). Work by Payne (1999) indicates the presence of a north-northwest trending, 1400 m by 75 m Zinc anomaly in soils in this area.

Geophysics

A total of 3.0 km of induced polarization and magnetometer surveys were completed on two widely spaced grid lines on October 5 and 6, 2005. The surveys were performed by Scott Geophysics Ltd of Vancouver BC (Appendix II).

Results from the IP survey suggest that sulphides are not abundant in the underlying rocks. Several areas however were outlined which require further investigation. The highest priority target that was encountered occurred on L9800N between stations

Figure 5. Copper King grid - geological mapping, rock and soil geochemistry results for copper.

Figure 6. Copper King grid - geological mapping, rock and soil geochemistry results for zinc.

Figure 7. Copper King grid - geological mapping, rock and soil geochemistry results for molybdenum.

Figure 8. Copper King grid - geological mapping, rock and soil geochemistry results for gold.

10450E and 10550E. In this area the response is approximately three times background and is associated with a zone of increased resistivity and increased magnetics. Follow up work is warranted on this target as the anomaly appears to correlate with a zinc soil geochemical anomaly.

Two well defined resistivity targets occur on L10200N. The first is located between stations 10200E to 10300E. This zone correlates with a well defined magnetic high anomaly but with a very weak, poorly defined IP response. A second well defined resistivity target occurs on L10200N between stations 11350E and 11400E. This zone is associated with a strong, sharp magnetic response but no increase in chargeability. Both areas should be field checked.

Further work is required to aid with interpretation and line to line correlation of geophysical anomalies.

RECOMMENDATIONS

The Copper King claims represent a property of merit and further exploration work is warranted. There are two soil anomalies which require follow up work and much of the property remains under explored. In addition, the property is strategically located proximal to the Gibraltar Mine. Outcrop exposure is excellent in many areas of the property and access is easily afforded. A geological mapping, prospecting and rock sampling program should be completed over the entire property and additional gridding, soil sampling and geophysical surveys completed in areas of highest mine potential. In many areas of the property to follow up on existing and new anomalies. Previously completed exploration work and data should be compiled into a suitable computer based, GIS software package such as MapInfo.

ITEMIZED COST STATEMENT

Total		\$ 2	22,078
Report and Map preparation	-	\$	3,462
Field supplies		\$	405
Satellite phone		\$	174
Accommodations		\$	562
Analytical work	2 rocks @ \$16.73 63 soils @ \$13.54	\$ \$	33 853
Geophysical surveys	3.0 km IP + Mag	\$	6,219
Gridding, soil sampling	2 men + truck + saw rental	\$	5,745
Truck Rental	4.5 days	\$	484
Project management Consulting Geologist	2.5 days @ \$550/day 4.5 days @ \$450/day + expenses	\$ \$	1,375 2,767

STATEMENT OF QUALIFICATIONS

I, David R. Melling of 5216 Worthington Rd., B.C., Canada, V8Y 2T8 do certify that:

- 1. I am a Professional Geoscientist engaged as an exploration geologist on a full time basis since graduation in 1986 except for the period 2000 to 2003 when on parental leave.
- 2. I am presently a Consulting Geologist with Arcana Consulting Inc.
- 3. I am a graduate of Carleton University in Ottawa, Ontario with degrees in Geology, B.Sc. (1983) and M.Sc. (1986).
- 4. I am a registered member of the Association of Professional Geoscientists of Ontario, Membership # 1038.
- 5. I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia, License # 18999.
- 6. I am a Fellow of the Geological Association of Canada (F4493).
- 7. I am the author of this report entitled "Geological, Geophysical and Soil Geochemical report on the Copper King Property, Cariboo Mining Division, British Columbia".

Dated at Victoria, British Columbia, Canada this 4^{sr} day of December, 2005.

avid R. Melling, B.Sc., M.Sc

REFERENCES

Hendry J.W. and Wallis C. S. (2005): Technical report on the Gibraltar Mine, British Columbia prepared for Taseko Mines Limited; unpublished 43-101 report by Roscoe Postle Associates Inc., 96 pages.

Ash, C.H. and Riveros, C.P. (2001): Geology of the Gibraltar copper-molybdenite deposit east-central British Columbia (93B/9). *B.C. Ministry of Energy and Mines*, Paper 2001-1, p. 119-131.

Ash, C.H., Panteleyev, A., MacLennan, K.L Payne, C.W. and Rydman, M.O. (1999a): Geology of the Gibraltar mine area (93B/8&9), B.C. Ministry of Energy and, Mines, Open File 1999-7,1:50 000 scale map.

Ash, C. H., Rydman, M.O., Payne, C.W., Panteleyev, A. (1999b); Geological setting of the Gibraltar mine south central British Columbia (93B/8, 9), *B.C. Ministry of Energy and Mines*, Exploration and Mining in British Columbia, pages A1-A15.

Bysouth, GD., Campbell, K.V., Barker, GE. and Gagnier, GK. (1995): Tonalitetrondhjemite fractionation of peraluminous magma and the formation of syntectonic porphyry copper mineralization, Gibraltar mine, central British Columbia; *in* Porphyry Deposits of the Northwestern Cordillera of North America, T.G Schroeter, Editor, *Canadian Institute of Mining and Metallurgy*, Special Volume 46, p. 201-213.

Drummond, A.D., Tennant, S.J. and Young, R. J. (1973): The interrelationship of regional metamorphism, hydrothermal alteration and mineralization at the Gibraltar mines copper deposit in BC; *Canadian Institute of Mining and Metallurgy*, Bulletin 66, No. 730, p. 48-55.

Drummond, A.D., Sutherland Brown, A., Young, RJ. and Tennant, S.J..(1976): Gibraltar - regional metamorphism, mineralization, hydrothermal alteration and structural development; *in* Porphyry Deposits of the Northwestern Cordillera of North America, A. Sutherland Brown, Editor, *The Canadian Institute of Mining and Metallurgy*, Special Volume 15, p. 195-205.

Eastwood, G.E.P. (1970): McLeese Lake, geology of the Granite Mountain Stock; in Geology, Exploration and Mining in British Columbia 1969, B.C. Ministry of Energy, Mines and Petroleum Resources, p. 162-172.

Orchard, M. J. (2000): Report on conodonts and other microfossils, Quesnel (93B); *Geological Survey of Canada*, Internal Report No. MJO-2000-9, 2 pages.

Panteleyev, A. (1977): Granite Mountain project; In Geological Fieldwork, 1976, British Columbia Ministry of Mines and Petroleum Resources, p. 39-42.

COPPER KING PROJECT

Payne, C.W. (1988): Geophysical and soil geochemical report on the Copper King property; British Columbia Assessment Report No. 25682.

Payne, C.W. (1989): Geophysical and soil geochemical report on the Copper King property; British Columbia Assessment Report No. 25793.

Raffel (1999): Structure, deformation and element mobility of the Gibraltar Mine, south central British Columbia; *unpublished B.Sc. Thesis*, University of British Columbia, 70 pages.

Scott, A. (2005): Logistical report – induced polarization and magnetometer surveys Copper King Claims, McLeese Lake area, BC; unpublished report by Scott Geophysics Ltd.

Simpson, R.Y. (1970): Geology of the Gibraltar -Pollyanna copper deposit; unpublished B.Sc. thesis, *The University of British Columbia*, 43 pages.

Sutherland Brown, A. (1957): Williams Lake, McLeese-Cuisson lakes area, British Columbia Minister of Mines, Annual Report 1957, p. 14-16.

Sutherland Brown, A. (1966): Geology of the Granite Mountain-Cuisson lakes area, in Minister of Mines Annual Report 1966, B.C. Ministry of Energy, Mines and Petroleum Resources, p. 121-125.

Sutherland Brown, A. (1974): Gibraltar Mine (93B-12,13), Geology, exploration and mining in British Columbia 1973, B.C. Department of Mines and Petroleum Resources, p. 299-318.

Wheeler, J.O. and McFeely, P (1991): Tectonic assemblage map of the Canadian cordillera and adjacent parts of the United States of America: *Geological Survey of Canada*, Map 1712A, scale 1:2,000,000.

APPENDIX I.

COPPER KING PROPERTY – ROCK AND SOIL SAMPLE ASSAY CERTIFICATES, DESCRIPTIONS, LOCATIONS.

Sample ID	Field ID	Sampler	Date	UTM East	UTM North	General Area	Sample Type	Lab	Method	Description	Mo (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	Ag (ppm)
C115859	W-003	DRM	6-Oct-05	556085	5823432	Cu King	Grab	Acme	Group 1DX	Pervaisively ep altered mafic flow breccia, no sulphides	6.2	63.3	2.2	8	<.1
C115860	W-007	DRM	6-Oct-05	556123	5823384	Cu King	Grab	Acme	Group 1DX	Pervaisively ep altered mafic volcanic, no sulphides	1.2	141.7	3.7	29	<.1

Copper King property rock sample locations, descriptions and results.

Sample	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	D (%)	La	Cr	Mg	Ba	Ti	в	AI	Na	к	W
ID	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	F (70)	(ppm)	(ppm)	(%)	(ppm)	(%)	(ppm)	(%)	(%)	(%)	(ppm)
C115859	1.5	2.6	326	1.47	2.7	0.1	7.6	<.1	135	0.1	0.5	<.1	81	1.87	0.07	1	13.3	0.11	14	0.28	3	1.12	0.007	<.01	0.1
C115860	13.6	34.7	371	3.15	3.3	0.1	5.9	<.1	221	0.1	0.4	<.1	89	1.69	0.05	1	29.2	0.66	5	0.31	3	1.56	0.008	<.01	<.1

Sample ID	Hg (ppm)	Sc (ppm)	TI (ppm)	S (%)	Ga (ppm)	Se (ppm)
C115859	<.01	5.3	<.1	<.05	5	<.5
C115860	<.01	5.4	<.1	<.05	5	0.7

-

ACMB	ANA (190	1711 900	CAL 1 At	1AP ICT 6	OR/ id1 t	tor ed	Co.))	.		852 G	B. BOC	has Hed	EIN CEC	os (Al	AN	VAN ALY	COU	/BR CI	BC IRT	V6 LFI	а 1 Сат	R6 PB		ъно	NE (C	\$04)	253	-31	58	¥AX	(604	.) 2!	13-1	716	
								- <u>(</u>	Cop	per 500	<u>R:1</u> • 62	<u>dae</u> 1 How	E) e St.	cpl , Ve	OT a incour	i <u>ti</u> ver B	212 IC V61	Inc 216	s1	F1. utmit	le ted	# 2 by: [150(Iyan (i43 :0e	6										۷ ، N	
Sample#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppr	Co Co	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppn	Bi ppm	V ppm	Ca X	P 1	La ppm	Cr PPI	Mg 1 X	8a ppn	T1	8 ppm	A1 X	Na, X	K X	W ppm	Hg ppm	Sc ppm	T1 ppr	S S	Ga pp#	Si pp
C115851 C115852 C115853 C115854 RE C115854	13.7 4.2 5.2 3.6 3.4	144.7 10.8 2948.7 82,5 76.4	1.2 .9 .6 .3 .3	80 78 51 34 33	.1 <.1 7.1 .3	8.4 6.7 3.0 3.0 2.8	13.2 11.1 6.4 1.7 1.7	601 647 555 339 334	2.24 1.88 2.00 .99 .99	.8 .7 1.1 .6 .6	.3 .3 .1 <.1 <.1	33.4 2.8 101.1 8.1 7.5	1.0 .7 .3 < 1 <.1	49 39 25 . 3 3	<.1 .1 .3 .1 <.1	.1 .2 < 1 <.1	<.1 <.1 <.1 <.1 <.1	24 23 10 4 4	.71 .55 .83 .11 .11	.054 .054 .033 .003 .003	3 3 1 <1 <1	7.3 5.8 8.3 11.1 11.3	1.34 1.22 .40 .31	103 106 43 13 13	.114 .112 .051 .004 .004	* 2 1 2 1 1	1.77 1.48 .60 .36 .36	.050 .038 .024 .007 .007	.14 .11 .06 .01 .01	<.1 <.1 <.1 2.9 2.8	.01 <.01 .05 <.01 <.01	1.8 1.5 1.0 .3 .4	<.1 <.1 <.1 <.1 <.1	<.05 <.05 .24 <.05 <.05	4 4 2 1 1	~ ~ ~ ~ ~ ~
C115855 C115856 C115857 C115858 C115859	1.8 1.6 14.3 .8 6.2	30.1 51.4 18.5 67.5 63.3	.9 .9 .8 .6 2.2	154 484 400 67 8	<.1 <.1 <.1 <.1 <.1	9.2 6.2 6.3 7.3 1.5	2 15.4 2 9.4 3 12.6 3 11.6 5 2.6	1011 1714 1711 562 326	2.79 2.47 2.29 2.03 1.47	.6 .6 .7 <.5 2.7	.2 .3 .4 .2 .1	3.4 1.4 3.7 .9 7.6	.6 .6 1.2 .5 <.1	51 59 49 43 135	<.1 .4 .3 <.1 .1	.1 .1 .1 .1	<.1 <.1 <.1 <.1	31 26 26 31 81	.88 .94 .98 .53 1.87	.058 .051 .046 .052 .073	3 2 2 2 1	6.9 5.4 5.4 13.3) 1.61 1.29 1.16 1.20 1.20	65 78 90 99 14	.101 .123 .096 .120 .278	1 1 2 1 3	2.05 1.80 1.58 1.56 1.12	.061 .038 .044 .036 .007	.09 .10 .10 .28 <.01	.1 .1 <.1 .1	<.01 <.01 <.01 <.01 <.01	2.3 2.1 1.8 2.3 5.3	<.1 <.1 <.1 .1 <.1	<.05 <.05 .07 <.05 <.05	5 4 4 5	v v v v v
C115860 C115861 STANDARD DS6	1.2 1.0 11.5	141.7 17.1 122.1	3.7 3.0 29.7	29 33 140	<.1 <.1 .3	13.6 17.1 24.3	534.7 7.0 10.8	371 187 698	3.15 1.30 2.79	3.3 .6 21.0	.1 .6 6.5	5.9 1.0 46.2	<.1 2.4 3.0	221 72 40	.1 < 1 6.0	.4 .1 3.6	< 1 < 1 5 0	89 31 55	1.69 .70 .84	.053 .095 .078	1 6 13	29.2 24.8 184.1	2 . 66 3 .51 	5 85 161	.307 .135 .079	3 1 18	1.56 1.02 1.88	.008 .055 .071	< .01 .15 .14	<.1 <.1 3.4	<.01 <.01 .22	5.4 1.3 3.3	<.1 <.1 1.7	< .05 < .05 < .05	5 3 6	<. 4.
Data	<u> </u>	FA			DA1	5185 1	RECE	IVE	D:	OCT	12 20	05	DAT	e Ri	epoi	8T B	SAIL	RD:	C	A	2	7. 0	<u>ب</u>			COT THE	HE			Leor Leor				•		
																				- - - - -																
																									·											

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.

....

		Sample					Way	UTEM	UTEM	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th
Sample ID	Sampler	Туре	Lab	Method	Grid X	Grid Y	Point	East	North	(ppm)	(%)	(ppm)	(ppm)	(ppb)	(ppm)							
CK 001	JB/RC	Soil	Acme	Group 1DX	L98	10000	186	555476	5822128	0.5	19.3	4	31	0.05	25.1	8.5	181	1.89	4.3	0.3	2	2
CK 002	JB/RC	Soil	Acme	Group 1DX	L98	10050	187	555509	5822158	0.5	14.4	3.9	33	0.05	18.2	6.7	165	1.89	4	0.2	1.3	1.5
CK 003	JB/RC	Soil	Acme	Group 1DX	L98	10100	188	555556	5822201	0.4	16.4	3.5	36	0.05	21.6	5.7	155	1.55	2.9	0.3	9.2	1.5
CK 004	JB/RC	Soil	Acme	Group 1DX	L98	10150	189	555589	5822260	0.6	17	4.2	37	0.1	23.5	7.2	171	2.12	4.3	0.3	2.2	1.8
CK 005	JB/RC	Soil	Acme	Group 1DX	L98	10200	190	555626	5822267	0.6	17.3	3.2	80	0.05	15.2	9	268	2.98	2.6	0.2	1.9	1
CK 006	JB/RC	Soil	Acme	Group 1DX	L98	10250	191	555649	5822302	1.5	23.2	2.1	39	0.05	16	12	312	3.05	5.5	0.2	1.9	0.6
CK 007	JB/RC	Soil	Acme	Group 1DX	L98	10300	192	555670	5822322	0.5	21.7	5	42	0.05	15.7	5.6	377	1.81	3.9	0.6	1.9	1.9
CK 008	JB/RC	Soil	Acme	Group 1DX	L98	10350	193	555716	5822386	0.3	14.5	3.5	81	0.05	17.1	6.6	285	1.48	2.8	0.3	5.1	1.6
CK 009	JB/RC	Soil	Acme	Group 1DX	L98	10400	194	555747	5822409	0.6	22.3	4.3	74	0.2	23.8	9	199	2.32	3.6	0.3	0.8	1.2
CK 010	JB/RC	Soil	Acme	Group 1DX	L98	10450	195	555771	5822434	0.6	22.3	7.5	262	0.2	15	8	300	2.17	3.1	0.2	5.4	1.1
CK 011	JB/RC	Soil	Acme	Group 1DX	L98	10500	196	555801	5822466	0.8	31.3	5.2	186	0.05	15.1	23.8	1201	3.48	3	0.3	3.2	0.5
CK 012	JB/RC	Soil	Acme	Group 1DX	L98	10550	197	555831	5822493	0.7	10	3.9	121	0.05	7.9	6.9	531	2.05	2.9	0.2	1.9	1
CK 013	JB/RC	Soil	Acme	Group 1DX	L98	10600	198	555885	5822537	0.6	15.5	3.3	78	0.05	14.1	8.5	390	2.01	2.6	0.2	1.8	1
CK 014	JB/RC	Soil	Acme	Group 1DX	L98	10650	199	555917	5822573	0.5	17.4	3.5	112	0.05	19.4	9.2	443	2.18	2.2	0.2	0.7	1.2
CK 015	JB/RC	Soil	Acme	Group 1DX	L98	10700	200	555948	5822612	0.5	13.8	3.1	86	0.05	18.7	9.6	298	2.49	2.8	0.2	1.2	1
CK 016	JB/RC	Soil	Acme	Group 1DX	L98	10750	201	555981	5822653	0.8	14.9	3.5	94	0.05	19.2	12.1	1465	2.86	2.1	0.2	0.25	0.9
CK 017	JB/RC	Soil	Acme	Group 1DX	L98	10800	202	556016	5822684	0.4	14.6	2.3	42	0.05	18.1	6.9	216	1.73	3.1	0.2	22.9	1
CK 018	JB/RC	Soil	Acme	Group 1DX	L98	10850	203	556049	5822719	0.7	10.6	3.2	45	0.05	23.2	7.6	203	2.06	3.7	0.2	1.1	1.1
CK 019	JB/RC	Soil	Acme	Group 1DX	L98	10900	204	556085	5822758	0.6	13.7	3.2	104	0.1	19.5	9.8	214	2.62	3.7	0.2	0.7	1.2
CK 020	JB/RC	Soil	Acme	Group 1DX	L98	10950	205	556117	5822789	0.6	11.5	3.5	83	0.05	18	7.3	183	1.83	2.8	0.2	1.6	1.3
CK 021	JB/RC	Soil	Acme	Group 1DX	L98	11000	206	556147	5822822	0.6	18.3	3.8	47	0.05	20.6	7.3	170	1.84	4.2	0.3	0.25	1.6
CK 022	JB/RC	Soil	Acme	Group 1DX	L98	11050	207	556186	5822866	0.4	16.1	2.6	75	0.05	9.8	5.7	203	1.41	2	0.2	3.2	0.9
CK 023	JB/RC	Soil	Acme	Group 1DX	L98	11100	208	556226	5822897	0.6	20.2	3.4	129	0.05	10.2	8.1	458	1.86	1.3	0.2	0.6	0.9
CK 024	JB/RC	Soil	Acme	Group 1DX	L98	11150	209	556244	5822936	0.7	18.5	4.8	205	0.1	18.2	10.2	262	3.13	4.6	0.2	0.6	1.4
CK 025	JB/RC	Soil	Acme	Group 1DX	L98	11200	210	556286	5822974	0.8	46.2	4.2	77	0.1	20	9.1	309	2.25	2.6	0.3	1.2	1.1
CK 026	JB/RC	Soil	Acme	Group 1DX	L98	11250	211	556317	5823004	0.5	16.1	3	90	0.05	15.5	6.8	218	1.84	1.6	0.2	0.8	1
CK 027	JB/RC	Soil	Acme	Group 1DX	L98	11300	212	556347	5823045	0.7	37.3	3.3	48	0.05	18.4	7.9	165	2.12	2.1	0.3	0.6	1.2
CK 028	JB/RC	Soil	Acme	Group 1DX	L98	11350	213	556367	5823081	0.8	20.5	4.8	98	0.05	35.7	12.4	330	2.04	1.6	0.2	0.25	1.3
CK 029	JB/RC	Soil	Acme	Group 1DX	L98	11400	214	556390	5823105	0.9	30.7	4.8	83	0.05	24.3	9.9	206	2.69	2.6	0.2	1.7	1.2
CK 030	JB/RC	Soil	Acme	Group 1DX	L98	11450	215	556433	5823157	0.8	7.8	5.9	80	0.05	14.4	11.8	440	2.73	2	0.2	1.2	0.9
CK 031	JB/RC	Soil	Acme	Group 1DX	L98	11500	216	556456	5823181	0.4	9.2	3.3	46	0.05	9.6	7.5	144	2.13	1.3	0.2	0.25	0.9
CK 032	JB/RC	Soil	Acme	Group 1DX	L102	11600	217	556169	5823712	1.4	23.1	8.9	74	0.05	14.8	6.9	273	2.97	3.2	0.3	0.6	1.2
CK 033	JB/RC	Soil	Acme	Group 1DX	L102	11550	218	556150	5823673	0.6	16.6	4.1	54	0.05	29.5	9.7	223	1.93	1.9	0.2	0.7	1.3
CK 034	JB/RC	Soil	Acme	Group 1DX	L102	11500	219	556122	5823636	0.4	15.7	3.7	74	0.05	19.6	7.9	371	1.79	1.8	0.3	2.6	1.4
CK 035	JB/RC	Soil	Acme	Group 1DX	L102	11450	220	556096	5823590	0.4	33.7	4.5	50	0.05	28.1	10.6	543	1.93	2.5	0.6	1.2	1.7
CK 036	JB/RC	Soil	Acme	Group 1DX	L102	11400	221	556067	5823553	0.5	40.5	5.8	52	0.05	35.3	9.8	341	2.64	5.7	0.6	3	2
CK 037	JB/RC	Soil	Acme	Group 1DX	L102	11350	222	556037	5823498	0.4	10.1	3.3	59	0.05	16.7	7.1	168	1.77	1.3	0.2	51	1.2

		Sample					Way	UTEM	UTEM	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th
Sample ID	Sampler	Туре	Lab	Method	Grid X	Grid Y	Point	East	North	(ppm)	(%)	(ppm)	(ppm)	(ppb)	(ppm)							
CK 038	JB/RC	Soil	Acme	Group 1DX	L102	11300	223	556007	5823470	0.5	26.7	4.1	59	0.05	35.8	10.3	236	2.53	2.9	0.4	1.5	1.6
CK 039	JB/RC	Soil	Acme	Group 1DX	L102	11250	224	555979	5823428	0.5	25.8	4.3	48	0.05	24.5	10.3	294	2.22	3.3	0.3	1	1.7
CK 040	JB/RC	Soil	Acme	Group 1DX	L102	11200	225	555952	5823390	0.4	23.1	4.8	65	0.05	24.3	8.7	247	2.25	1.3	0.4	1.5	1.8
CK 041	JB/RC	Soil	Acme	Group 1DX	L102	11150	226	555922	5823357	0.4	59.4	5.4	49	0.05	29.2	9	318	2.42	3.4	0.7	1.8	2.2
CK 042	JB/RC	Soil	Acme	Group 1DX	L102	11100	227	555898	5823309	0.5	11.8	4.8	92	0.05	23.2	9.2	221	2.31	2.1	0.2	0.25	1.6
CK 043	JB/RC	Soil	Acme	Group 1DX	L102	11050	228	555870	5823267	0.4	13.6	3.6	75	0.05	32.2	9.3	159	2	3.7	0.3	0.8	1.6
CK 044	JB/RC	Soil	Acme	Group 1DX	L102	11000	229	555841	5823239	0.4	16.1	3.8	46	0.05	21.2	6.8	183	1.89	2.2	0.3	3.2	1.7
CK 045	JB/RC	Soil	Acme	Group 1DX	L102	10950	230	555817	5823188	0.6	16.6	4.1	65	0.05	35.8	10.3	186	2.3	2.5	0.3	0.7	1.6
CK 046	JB/RC	Soil	Acme	Group 1DX	L102	10900	231	555789	5823148	0.5	10.8	4.7	57	0.1	13.6	4.9	143	1.98	2.8	0.2	0.25	1.5
CK 047	JB/RC	Soil	Acme	Group 1DX	L102	10850	232	555755	5823109	0.8	17.6	4.1	68	0.2	31.8	9.1	164	2.48	2.7	0.3	0.5	1.6
CK 048	JB/RC	Soil	Acme	Group 1DX	L102	10800	233	555723	5823068	0.4	8.3	3.5	42	0.05	12.2	5.1	141	1.53	1.4	0.2	0.6	1.3
CK 049	JB/RC	Soil	Acme	Group 1DX	L102	10750	234	555700	5823032	0.5	225.3	3	156	0.05	16.9	16.5	1144	4.5	1.8	0.3	2.1	0.3
CK 050	JB/RC	Soil	Acme	Group 1DX	L102	10700	235	555675	5822999	0.5	10.7	3.8	56	0.05	14.1	6	200	1.66	2.2	0.3	1.1	1.4
CK 051	JB/RC	Soil	Acme	Group 1DX	L102	10650	236	555646	5822952	0.4	6.1	4	31	0.05	7.6	3.7	162	1.28	1.2	0.2	1.3	1.3
CK 052	JB/RC	Soil	Acme	Group 1DX	L102	10600	237	555588	5822868	0.5	10.5	4.2	43	0.05	9.9	6.1	301	1.3	1.2	0.2	1	1.3
CK 053	JB/RC	Soil	Acme	Group 1DX	L102	10550	238	555560	5822833	0.4	13	3.2	66	0.05	14.9	6.1	250	1.55	1.6	0.3	0.6	1.3
CK 054	JB/RC	Soil	Acme	Group 1DX	L102	10500	239	555542	5822800	0.4	26.3	2.5	211	0.05	12.6	9.2	726	2.92	1.3	0.2	8.4	0.8
CK 055	JB/RC	Soil	Acme	Group 1DX	L102	10450	240	555506	5822751	0.4	5.8	2.1	101	0.05	7.6	10.4	705	4.48	1.1	0.1	0.5	0.6
CK 056	JB/RC	Soil	Acme	Group 1DX	L102	10400	241	555504	5822750	0.5	40.4	6	62	0.05	28.7	9.7	406	2.37	6.3	0.4	3.7	2.1
CK 057	JB/RC	Soil	Acme	Group 1DX	L102	10350	242	555478	5822708	0.5	16.1	3.7	56	0.05	16.9	6.4	314	1.75	2.4	0.3	1.4	1.4
CK 058	JB/RC	Soil	Acme	Group 1DX	L102	10300	243	555454	5822669	0.5	20.2	4.1	41	0.05	16.6	7.3	340	2	4.5	0.3	4.3	1.9
CK 059	JB/RC	Soil	Acme	Group 1DX	L102	10250	244	555425	5822625	0.8	25.7	4.5	88	0.1	20.4	11	1072	2.19	1.2	0.2	0.25	1.1
CK 060	JB/RC	Soil	Acme	Group 1DX	L102	10200	245	555398	5822585	0.8	24.7	3.2	79	0.05	8.3	9.4	1285	3	1.1	0.2	0.25	0.6
CK 062	JB/RC	Soil	Acme	Group 1DX	L102	10100	247	555339	5822503	1.9	45.8	5.6	50	0.2	33.9	15.4	804	5.89	17.6	0.7	1.4	2.2
CK 063	JB/RC	Soil	Acme	Group 1DX	L102	10050	248	555309	5822464	0.9	27.2	3.9	62	0.05	28.7	11.7	574	2.36	4.3	0.5	1.1	1.4
CK 064	JB/RC	Soil	Acme	Group 1DX	L102	10000	249	555280	5822423	0.8	19	5.1	85	0.2	29.4	7.6	367	3.3	6.2	0.3	0.8	1.5

	Sr	Cd	Sb	Bi		Ca		La	Cr	Mg	Ba		в	AI	Na		w	Hg	Sc	TI		Ga	Se
Sample ID	(ppm)	(ppm)	(ppm)	(ppm)	V (ppm)	(%)	P (%)	(ppm)	(ppm)	(%)	(ppm)	Ti (%)	(ppm)	(%)	(%)	K (%)	(ppm)	(ppm)	(ppm)	(ppm)	S (%)	(ppm)	(ppm)
CK 001	16	0.1	0.5	0.1	52	0.27	0.06	8	39.6	0.35	66	0.098	1	1.23	0.008	0.05	0.1	0.04	3.2	0.05	0.03	3	0.25
CK 002	16	0.1	0.4	0.1	49	0.25	0.08	7	33.8	0.29	99	0.07	1	1.08	0.006	0.03	0.1	0.01	2	0.05	0.03	4	0.25
CK 003	20	0.2	0.3	0.1	43	0.28	0.04	9	29.6	0.31	90	0.08	1	1.08	0.007	0.03	0.1	0.01	2.2	0.05	0.03	4	0.25
CK 004	16	0.1	0.4	0.1	53	0.26	0.06	7	41.4	0.34	80	0.09	1	1.59	0.007	0.04	0.1	0.03	2.6	0.05	0.03	4	0.25
CK 005	13	0.3	0.3	0.1	65	0.25	0.11	4	29.9	0.46	112	0.046	0.5	1.68	0.007	0.04	0.05	0.03	2.6	0.05	0.03	6	0.25
CK 006	27	0.1	0.3	0.1	70	0.44	0.02	4	28.3	0.78	135	0.081	0.5	1.55	0.008	0.06	0.1	0.02	2.8	0.1	0.03	5	0.25
CK 007	25	0.05	0.3	0.1	47	0.53	0.05	8	36.2	0.43	90	0.094	1	1.24	0.009	0.05	0.05	0.01	3.6	0.05	0.03	4	0.25
CK 008	24	0.5	0.3	0.1	42	0.41	0.06	9	29.5	0.33	63	0.099	2	0.91	0.009	0.06	0.1	0.01	2.5	0.05	0.03	3	0.25
CK 009	15	0.3	0.3	0.1	50	0.29	0.08	6	39.2	0.47	86	0.056	1	1.53	0.008	0.04	0.1	0.03	2.8	0.05	0.03	5	0.25
CK 010	13	0.8	0.2	0.1	50	0.35	0.04	5	27.5	0.51	74	0.061	0.5	1.54	0.006	0.05	0.1	0.02	2.4	0.05	0.03	5	0.25
CK 011	15	0.8	2.8	0.1	80	0.24	0.06	4	45	0.61	102	0.02	1	1.68	0.006	0.05	0.05	0.02	3.1	0.1	0.03	6	0.25
CK 012	9	0.2	0.3	0.1	48	0.17	0.13	5	20.7	0.33	94	0.076	1	1.17	0.007	0.07	0.1	0.01	2.2	0.1	0.03	6	0.25
CK 013	15	0.2	0.3	0.1	48	0.3	0.09	5	26.9	0.41	106	0.071	1	1.13	0.006	0.05	0.05	0.005	2.4	0.05	0.03	4	0.25
CK 014	16	0.2	0.3	0.1	49	0.23	0.1	5	31.7	0.49	196	0.064	1	1.4	0.006	0.05	0.1	0.02	2.5	0.05	0.03	6	0.25
CK 015	17	0.2	0.3	0.1	51	0.29	0.14	4	28.6	0.51	160	0.076	1	1.42	0.007	0.1	0.1	0.02	2.3	0.05	0.03	5	0.25
CK 016	13	0.1	0.3	0.1	66	0.23	0.07	4	30.2	0.55	186	0.099	1	1.98	0.007	0.08	0.05	0.03	3.4	0.1	0.03	6	0.25
CK 017	13	0.1	0.4	0.05	41	0.24	0.04	4	25.9	0.42	102	0.088	1	1.03	0.006	0.05	0.05	0.01	2.2	0.05	0.03	3	0.25
CK 018	11	0.2	0.3	0.1	51	0.19	0.13	4	32.8	0.23	59	0.049	1	1.26	0.004	0.05	0.1	0.01	1.7	0.05	0.03	4	0.25
CK 019	11	0.2	0.4	0.1	57	0.24	0.21	4	37.6	0.37	102	0.062	1	1.56	0.005	0.04	0.1	0.04	2.6	0.05	0.03	5	0.25
CK 020	15	0.2	0.3	0.1	41	0.27	0.16	5	30.5	0.28	94	0.057	1	1.2	0.006	0.05	0.05	0.02	2.3	0.05	0.03	3	0.25
CK 021	20	0.1	0.4	0.1	48	0.34	0.08	8	40	0.4	74	0.082	1	1	0.007	0.04	0.1	0.01	2.3	0.05	0.03	3	0.25
CK 022	11	0.2	0.3	0.05	34	0.24	0.06	4	19.3	0.29	103	0.049	1	0.82	0.005	0.05	0.05	0.02	1.6	0.05	0.03	3	0.25
CK 023	13	0.2	0.2	0.1	43	0.27	0.09	4	21.7	0.46	139	0.063	1	1.21	0.008	0.06	0.05	0.02	2.4	0.1	0.03	4	0.25
CK 024	16	0.3	0.3	0.1	62	0.27	0.32	5	33.5	0.46	183	0.063	1	2.15	0.008	0.06	0.1	0.04	3.3	0.1	0.03	7	0.25
CK 025	12	0.2	0.3	0.1	53	0.2	0.08	5	31.1	0.36	77	0.068	1	1.57	0.007	0.04	0.1	0.02	2.5	0.1	0.03	4	0.25
CK 026	10	0.2	0.3	0.1	44	0.2	0.06	5	24.6	0.38	100	0.068	1	1.32	0.006	0.04	0.05	0.02	2.1	0.05	0.03	5	0.25
CK 027	16	0.1	0.4	0.1	57	0.25	0.04	6	30.3	0.44	78	0.055	1	1.4	0.006	0.02	0.05	0.02	2.7	0.1	0.03	4	0.25
CK 028	13	0.1	0.3	0.1	49	0.24	0.04	6	36.5	0.38	148	0.066	1	1.99	0.007	0.04	0.05	0.02	2.2	0.1	0.03	5	0.25
CK 029	12	0.1	0.4	0.1	66	0.2	0.06	5	38.2	0.48	90	0.07	1	1.98	0.005	0.07	0.05	0.03	3.1	0.1	0.03	6	0.25
CK 030	17	0.1	0.3	0.1	63	0.33	0.04	5	28.3	0.38	116	0.057	1	1.55	0.008	0.05	0.05	0.04	2.4	0.1	0.03	6	0.25
CK 031	17	0.1	0.2	0.1	40	0.36	0.11	4	22.6	0.4	83	0.027	0.5	1.29	0.006	0.05	0.05	0.02	2.2	0.05	0.03	4	0.25
CK 032	11	0.1	0.2	0.2	67	0.17	0.16	6	31.8	0.3	77	0.081	1	1.97	0.009	0.03	0.1	0.05	2	0.1	0.03	11	0.25
CK 033	15	0.1	0.3	0.1	49	0.23	0.04	6	37.7	0.37	112	0.079	1	1.81	0.007	0.04	0.05	0.02	2.4	0.1	0.03	5	0.25
CK 034	21	0.2	0.3	0.1	48	0.34	0.03	8	37.2	0.35	108	0.096	2	1	0.009	0.05	0.05	0.01	2.7	0.1	0.03	3	0.25
CK 035	26	0.2	0.4	0.1	51	0.52	0.01	11	52.1	0.48	97	0.103	0.5	1.25	0.012	0.06	0.1	0.03	5.2	0.1	0.03	4	0.25
CK 036	31	0.1	0.6	0.1	64	0.48	0.04	12	67	0.63	97	0.127	1	1.56	0.018	0.1	0.1	0.03	6	0.1	0.03	5	0.25
CK 037	17	0.1	0.2	0.1	44	0.27	0.05	7	32.2	0.32	92	0.079	1	1.03	0.007	0.04	0.05	0.005	2.2	0.05	0.03	4	0.25

	Sr	Cđ	Sb	Bi		Ca		La	Cr	Mg	Ba		В	Al	Na		W	Hg	Sc	TI		Ga	Se
Sample ID	(ppm)	(ppm)	(ppm)	(ppm)	V (ppm)	(%)	P (%)	(ppm)	(ppm)	(%)	(ppm)	Ti (%)	(ppm)	(%)	(%)	K (%)	(ppm)	(ppm)	(ppm)	(ppm)	S (%)	(ppm)	(ppm)
CK 038	23	0.1	0.3	0.1	63	0.31	0.05	8	47.9	0.53	101	0.13	1	1.55	0.012	0.07	0.05	0.02	3.1	0.1	0.03	5	0.25
CK 039	27	0.1	0.4	0.1	58	0.39	0.04	9	45.4	0.5	73	0.139	1	1.13	0.01 2	0.07	0.05	0.01	3.1	0.05	0.03	4	0.25
CK 040	27	0.2	0.3	0.1	58	0.38	0.02	9	47.2	0.42	87	0.151	1	1.35	0.02	0.05	0.05	0.01	3.5	0.1	0.03	5	0.25
CK 041	37	0.1	0.4	0.1	60	0.55	0.04	12	59.6	0.54	100	0.136	2	1.6	0.023	0.07	0.1	0.03	6.5	0.1	0.03	5	0.25
CK 042	26	0.2	0.2	0.1	52	0.35	0.11	7	44.3	0.33	135	0.108	1	1.44	0.015	0.08	0.1	0.01	2.7	0.05	0.03	5	0.25
CK 043	19	0.2	0.3	0.1	47	0.37	0.15	7	42	0.31	101	0.079	2	1.44	0.009	0.08	0.1	0.03	2.7	0.05	0.03	4	0.25
CK 044	26	0.2	0.3	0.1	50	0.34	0.05	9	40.4	0.41	74	0.118	1	1.19	0.011	0.05	0.1	0.01	2.6	0.05	0.03	4	0.25
CK 045	23	0.2	0.3	0.1	54	0.37	0.07	8	45.7	0.37	95	0.1	1	1.58	0.01	0.05	0.05	0.02	2.7	0.1	0.03	5	0.25
CK 046	22	0.2	0.3	0.1	50	0.34	0.11	8	35.6	0.23	124	0.071	0.5	1.05	0.006	0.05	0.1	0.03	2.1	0.05	0.03	5	0.25
CK 047	17	0.2	0.3	0.1	54	0.24	0.09	7	46.5	0.33	74	0.086	1	1.92	0.01	0.05	0.1	0.04	2.9	0.1	0.03	6	0.25
CK 048	24	0.1	0.2	0.1	41	0.4	0.05	7	28.8	0.23	65	0.088	1	0.91	0.009	0.07	0.1	0.01	2	0.05	0.03	3	0.25
CK 049	48	0.3	0.2	0.05	89	1.03	0.04	3	36.1	1.29	115	0.139	0.5	2.38	0.011	0.05	0.1	0.03	5.3	0.05	0.03	9	0.25
CK 050	25	0.1	0.3	0.1	45	0.4	0.06	8	31.3	0.27	69	0.082	1	1.02	0.008	0.05	0.05	0.02	2.1	0.05	0.03	4	0.25
CK 051	22	0.1	0.2	0.1	41	0.35	0.03	9	23.1	0.2	43	0.093	1	0.89	0.008	0.03	0.05	0.01	1.9	0.05	0.03	4	0.25
CK 052	23	0.1	0.2	0.1	40	0.33	0.03	9	24.1	0.24	61	0.088	1	0.98	0.009	0.05	0.05	0.03	2.2	0.1	0.03	4	0.25
CK 053	19	0.1	0.3	0.1	42	0.32	0.02	8	27.4	0.35	70	0.097	1	1.15	0.007	0.05	0.1	0.02	2.7	0.1	0.03	4	0.25
CK 054	20	0.2	0.3	0. 05	68	0.38	0.04	6	23.1	0.65	169	0.17	0.5	1.46	0.01	0.13	0.05		4.2	0.1	0.03	6	0.25
CK 055	23	0.3	0.2	0. 0 5	70	0.47	0.06	3	11.2	0.97	123	0.203	0.5	1.92	0.008	0.29	0.05	0.02	4.7	0.1	0.03	7	0.25
CK 056	35	0.1	0.7	0.1	59	0.55	0.06	12	50.8	0.58	111	0.109	2	1.43	0.011	0.12	0.1	0.06	5.6	0.1	0.03	4	0.25
CK 057	27	0.1	0.3	0.1	50	0.41	0.03	10	32.2	0.4	78	0.111	2	1.08	0.01	0.07	0.05	0.02	2.7	0.05	0.03	4	0.25
CK 058	28	0.1	0.4	0.1	51	0.48	0.05	10	32.5	0.57	60	0.113	1	1.23	0.008	0.08	0.05	0.02	3.2	0.1	0.03	4	0.25
CK 059	13	0.2	0.2	0.1	51	0.24	0.08	5	54.1	0.48	65	0.098	0.5	1.89	0.007	0.04	0.05	0.04	2.2	0.1	0.03	7	0.25
CK 060	18	0.2	0.1	0.1	88	0.32	0.06	4	22.9	0.67	56	0.144	1	1.61	0.008	0.05	0.05	0.05	4.2	0.1	0.03	8	0.25
CK 062	43	0.3	0.5	0.1	10 5	0.62	0.04	17	64.2	0.45	167	0.071	1	1.84	0.012	0.1	0.05	0.03	5.2	0.1	0.03	6	0.25
CK 063	33	0.2	0.6	0.1	53	0.48	0.05	11	49.3	0.51	112	0.068	1	1.42	0.014	0.08	0.1	0.03	3.9	0.1	0.03	4	0.25
CK 064	19	0.3	0.4	0.1	73	0.28	0.13	7	49	0.29	130	0.086	1	2.08	0.007	0.06	0.1	0.03	3	0.1	0.03	8	0.25

ACHE MALYTICAL

Copper Ridge Exploration Inc. FILE # A506437

ACHE ANALYTICAL SAMPLE# Мо Cu Pb Zn Ag Ni Co Mn P La Na K W Hg Sc TL Fe As U Au Th Sr Cd Sb Bi V TI BAL Са Cr Mg Ba S'Ga Se * pom ppm ppb ppm ppm ppm ppm ppm ppm and and and more may may may X % ppm % X ppm % ppm ppm % ppm % ppm ppm ppm ppm % ppm ppm CK 034 .4 15.7 3.7 74 <.1 19.6 7.9 371 1.79 1.8 .3 2.6 1.4 21 .2 .3 .1 48 .34 .030 8 37.2 .35 108 .096 2 1.00 .009 .05 <.1 .01 2.7 .1 <.05 .4 33.7 4.5 50 <.1 28.1 10.6 543 1.93 2.5 .6 1.2 1.7 26 .2 .4 .1 51 .52 .011 11 52.1 .48 97 .103 <1 1.25 .012 .06 .1 .03 5.2 .1 <.05 3 <.5 CK 035 4 <.5 CK 036 .5 40.5 5.8 52 <.1 35.3 9.8 341 2.64 5.7 .6 3.0 2.0 31 .1 .6 .1 64 .48 .038 12 67.0 .63 97 .127 1 1.56 .018 .10 .1 .03 6.0 .1 <.05 5 <.5 CK 037 .4 10.1 3.3 59 <.1 16.7 7.1 168 1.77 1.3 .2 51.0 1.2 17 .1 .2 .1 .44 .27 .050 7 32.2 .32 92 .079 1 1.03 .007 .04 <.1<.01 2.2 <.1 <.05 4 <.5 CK 038 .5 26.7 4.1 59 <.1 35.8 10.3 236 2.53 2.9 .4 1.5 1.6 23 .1 .3 .1 63 .31 .046 8 47.9 .53 101 .130 1 1.55 .012 .07 <.1 .02 3.1 .1 <.05 5 <.5 CK 039 .5 25.8 4.3 48 <.1 24.5 10.3 294 2.22 3.3 .3 1.0 1.7 27 .1 .4 .1 58 .39 .035 9 45.4 .50 73 .139 1 1.13 .012 .07 <.1 .01 3.1 <.1 <.05 4 <.5 CK 040 .4 23.1 4.8 65 <.1 24.3 8.7 247 2.25 1.3 .4 1.5 1.8 27 .2 .3 .1 58 .38 .018 9 47.2 .42 87 .151 1 1.35 .020 .05 <.1 .01 3.5 .1 <.05 5 <.5 CK 041 .4 59.4 5.4 49 <.1 29.2 9.0 318 2.42 3.4 .7 1.8 2.2 37 .1 .4 .1 60 .55 .044 12 59.6 .54 100 .136 2 1.60 .023 .07 .1 .03 6.5 .1 <.05 5 <.5 CK 042 .5 11.8 4.8 92 <.1 23.2 9.2 221 2.31 2.1 .2 <.5 1.6 26 .2 .2 .1 52 .35 .105 7 44.3 .33 135 .108 1 1.44 .015 .08 .1 .01 2.7 <.1 <.05 5 <.5 CK 043 .4 13.6 3.6 75 <.1 32.2 9.3 159 2.00 3.7 .3 .8 1.6 19 .2 .3 .1 47 .37 .147 7 42.0 .31 101 .079 2 1.44 .009 .08 .1 .03 2.7 <.1 <.05 4 <.5 CK 044 .4 16.1 3.8 46 <.1 21.2 6.8 183 1.89 2.2 .3 3.2 1.7 26 .2 .3 .1 50 .34 .045 9 40.4 .41 74 .118 1 1.19 .011 .05 .1 .01 2.6 <.1 <.05 4 <.5 CK 045 16.6 4.1 65 <.1 35.8 10.3 186 2.30 2.5 .3 .7 1.6 23 .2 .3 .1 54 .37 .071 8 45.7 .37 95 .100 1 1.58 .010 .05 <.1 .02 2.7 .1 <.05 5 <.5 .6 CK 046 .5 10.8 4.7 57 .1 13.6 4.9 143 1.98 2.8 .2 <.5 1.5 22 .2 .3 .1 50 .34 .113 8 35.6 .23 124 .071 <1 1.05 .006 .05 .1 .03 2.1 <.1 <.05 5 <.5 .8 17.6 4.1 68 .2 31.8 9.1 164 2.48 2.7 .3 .5 1.6 17 .2 .3 .1 54 .24 .086 CK 047 7 46.5 .33 74 .086 1 1.92 .010 .05 .1 .04 2.9 .1 <.05 6 <.5 CK 048 .4 8.3 3.5 42 <.1 12.2 5.1 141 1.53 1.4 .2 .6 1.3 24 .1 .2 .1 41 .40 .046 7 28.8 .23 65 .088 1 .91 .009 .07 .1 .01 2.0 <.1 <.05 3 <.5 CK 049 .5 225.3 3.0 156 <.1 16.9 16.5 1144 4.50 1.8 .3 2.1 .3 48 .3 .2 <.1 89 1.03 .039 3 36.1 1.29 115 .139 <1 2.38 .011 .05 .1 .03 5.3 <.1 <.05 9 <.5 CK 050 .5 10.7 3.8 56 <.1 14.1 6.0 200 1.66 2.2 .3 1.1 1.4 25 .1 .3 .1 45 .40 .057 8 31.3 .27 69 .082 1 1.02 .008 .05 <.1 .02 2.1 <.1 <.05 4 <.5 CK 051 .4 6.1 4.0 31 <.1 7.6 3.7 162 1.28 1.2 .2 1.3 1.3 22 .1 .2 .1 41 .35 .030 9 23.1 .20 43 .093 1 .89 .008 .03 <.1 .01 1.9 <.1 <.05 4 <.5 CK 052 .5 10.5 4.2 43 <.1 9.9 6.1 301 1.30 1.2 .2 1.0 1.3 23 .1 .2 .1 40 .33 .032 9 24.1 .24 61 .088 1 .98 .009 .05 < 1 .03 2.2 .1 < .05 4 <.5 RE CK 052 .4 10.1 4.2 42 <.1 9.5 6.0 302 1.28 1.2 .2 .8 1.3 22 .1 .2 .1 39 .33 .032 9 23.6 .24 59 .088 1 .96 .009 .05 <.1 .01 2.3 .1 <.05 4 <.5 CK 053 .4 13.0 3.2 66 <.1 14.9 6.1 250 1.55 1.6 .3 .6 1.3 19 .1 .3 .1 42 .32 .023 8 27.4 .35 70 .097 1 1.15 .007 .05 .1 .02 2.7 .1 <.05 4 <.5 .4 26.3 2.5 211 <.1 12.6 9.2 726 2.92 1.3 .2 8.4 .8 20 .2 .3 <.1 68 .38 .036 6 23.1 .65 169 .170 <1 1.46 .010 .13 <.1 .02 4.2 .1 <.05 CK 054 6 <.5 .4 5.8 2.1 101 <.1 7.6 10.4 705 4.48 1.1 .1 .5 .6 23 .3 .2 <.1 70 .47 .061 3 11.2 .97 123 .203 <1 1.92 .008 .29 <.1 .02 4.7 .1 <.05 CK 055 7 <.5 CK 056 .5 40.4 6.0 62 <.1 28.7 9.7 406 2.37 6.3 .4 3.7 2.1 35 .1 .7 .1 59 .55 .055 12 50.8 .58 111 .109 2 1.43 .011 .12 .1 .06 5.6 .1 <.05 4 <.5 CK 057 .5 16.1 3.7 56 <.1 16.9 6.4 314 1.75 2.4 .3 1.4 1.4 27 .1 .3 .1 50 .41 .033 10 32.2 .40 78 .111 2 1.08 .010 .07 <.1 .02 2.7 <.1 <.05 4 <.5 .5 20.2 4.1 41 <.1 16.6 7.3 340 2.00 4.5 .3 4.3 1.9 28 .1 .4 .1 51 .48 .049 10 32.5 .57 60 .113 1 1.23 .008 .08 <.1 .23 .1 <.05 4 <.5 CK 058 CK 059 .8 25.7 4.5 88 .1 20.4 11.0 1072 2.19 1.2 .2 <.5 1.1 13 .2 .2 .1 51 .24 .082 5 54.1 .48 65 .098 <1 1.89 .007 .04 <.1 .04 2.2 .1 <.05 7 <.5 .8 24.7 3.2 79 <.1 8.3 9.4 1285 3.00 1.1 .2 <.5 .6 18 .2 .1 .1 88 .32 .062 4 22.9 .67 56 .144 CK 060 1 1.61 .008 .05 <.1 .05 4.2 .1 <.05 8 <.5 1.9 45.8 5.6 50 .2 33.9 15.4 804 5.89 17.6 .7 1.4 2.2 43 .3 .5 .1 105 .62 .039 17 64.2 .45 167 .071 1 1.84 .012 .10 <.1 .03 5.2 .1 <.05 CK 062 6 <.5 CK 063 .9 27.2 3.9 62 <.1 28.7 11.7 574 2.36 4.3 .5 1.1 1.4 33 .2 .6 .1 53 .48 .045 11 49.3 .51 112 .068 1 1.42 .014 .08 .1 .03 3.9 .1 <.05 4 <.5 CK 064 .8 19.0 5.1 85 .2 29.4 7.6 367 3.30 6.2 .3 .8 1.5 19 .3 .4 .1 73 .28 .129 7 49.0 .29 130 .086 1 2.08 .007 .06 .1 .03 3.0 .1 <.05 8 <.5 STANDARD 11.6 124.4 29.5 144 .3 24.9 10.7 700 2.80 21.1 6.7 47.2 3.1 41 6.2 3.6 5.0 57 .87 .079 16 185.7 .59 165 .083 18 1.95 .074 .17 3.5 .23 3.4 1.8 < .05 6 4.6

Standard is STANDARD DS6. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

Page 2

ACMB	ANAL ISO	YTIC 9001	AL I Aco	LAB Ste	ORA dit	TORI ed (188 10.)	.TD.		85	2 8	HA	STI	NGE	81	¢., 1	VAN	cou	VBR	BĊ	Ve	A 1)	26		PHO	NE (504)	253	-31	58	PAX	(60	4)2	53-	1716	
							Co	ppe	r R	1dg	e i	ixd Exd	lor Lor	CA.	l J Loi	ina i I	LY: nc	916	Fi	ert. le	1 F 1 # 2	CA1	в 43'	7	Pa	qe	1									
									5()0 - 0	5 25 H	owe	1.7	Varic	OUVE	ir Bl	2 960	216		t hndu:	ted	by: R	yan (Soe												
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppn	î M pom	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppna	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V: ppm	Ca X	P X	La ppm	Cr ppm	Mg %	Ba ppm	ті Х	B ppm	Al X	Na %	K %	W mqq	Hg ppm	Sc ppm	TI ppm	s %	Ga ppm	Se ppm
CK 001 CK 002 CK 003 CK 004 CK 005	.5 .5 .4 .6	19.3 14.4 16.4 17.0 17.3	4.0 3.9 3.5 4.2 3.2	31 33 36 37 80	<.1 <.1 <.1 .1	25.1 18.2 21.6 23.5 15.2	8.5 6.7 5.7 7.2 9.0	181 165 155 171 268	1.89 1.89 1.55 2.12 2.98	4.3 4.0 2.9 4.3 2.6		2.0 1.3 9.2 2.2 1.9	2.0 1.5 1.5 1.8 1.0	16 16 20 16 13	.1 .2 .1 .3	.5 .4 .3 .4 .3	.1 .1 .1 .1	52 49 43 53 65	.27 .25 .28 .26 .25	.060 .077 .037 .064 .106	8 7 9 7 4	39.6 33.8 29.6 41.4 29.9	.35 .29 .31 .34 .46	66 99 90 80 112	.098 .070 .080 .090 .046) 1 1 1 1 <1	1.23 1.08 1.08 1.59 1.68	.008 .006 .007 .007 .007	.05 .03 .03 .04 .04	11 11 11 11 <.1	.04 .01 .01 .03 .03	3.2 2.0 2.2 2.6 2.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	3 4 4 4 6	<.5 <.5 <.5 <.5 <.5
CK 006 CK 007 CK 008 CK 009 CK 010	1.5 .5 .3 .6 .6	23.2 21.7 14.5 22.3 22.3	2.1 5.0 3.5 4.3 7.5	39 42 81 74 262	<.1 <.1 <.1 .2	16.0 15.7 17.1 23.8 15.0	12.0 5.6 6.6 9.0 8.0	312 377 285 199 300	3.05 1.81 1.48 2.32 2.17	5.5 3.9 2.8 3.6 3.1		1.9 1.9 5.1 .8 5.4	.6 1.9 1.6 1.2 1.1	27 25 24 15 13	.1 <.1 .5 .3 .8	.3 .3 .3 .2	.1 .1 .1 .1	70 47 42 50 50	.44 .53 .41 .29 .35	.020 .049 .060 .075 .043	4 8 9 6 5	28.3 36.2 29.5 39.2 27.5	.78 .43 .33 .47 .51	135 90 63 86 74	.081 .094 .099 .056 .061	<1 1 2 1 <1	1.55 1.24 .91 1.53 1.54	.008 .009 .009 .008 .008	.06 .05 .06 .04 .05	.1 <.1 .1 .1	.02 .01 .01 .03 .02	2.8 3.6 2.5 2.8 2.4	.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 4 3 5 5	<.5 <.5 <.5 <.5 <.5
CK 011 CK 012 CK 013 CK 014 CK 015	.8 .7 .6 .5 .5	31.3 10.0 15.5 17.4 13.8	5.2 3.9 3.3 3.5 3.1	186 121 78 112 86	<.1 <.1 <.1 <.1	15.1 7.9 14.1 19.4 18.7	23.8 6.9 8.5 9.2 9.6	1201 531 390 443 298	3.48 2.05 2.01 2.18 2.49	3.0 2.9 2.6 2.2 2.8		3.2 1.9 1.8 .7 1.2	.5 1.0 1.0 1.2 1.0	15 9 15 16 17	.8 .2 .2 .2	2.8 .3 .3 .3 .3	.1 .1 .1 .1	80 48 48 49 51	.24 .17 .30 .23 .29	.059 .130 .085 .104 .142	4 5 5 5 4	45.0 20.7 26.9 31.7 28.6	.61 .33 .41 .49 .51	102 94 106 196 160	.020 .076 .071 .064 .076	1 1 1 1	1.68 1.17 1.13 1.40 1.42	.006 .007 .006 .006 .007	.05 .07 .05 .05 .10	<.1 .1 <.1< .1	.02 .01 .01 .02 .02	3.1 2.2 2.4 2.5 2.3	.1 .1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 6 4 5	<.5 <.5 <.5 <.5 <.5
CK 016 CK 017 CK 018 CK 019 CK 020	.8 .4 .7 .6 .6	14.9 14.6 10.6 13.7 11.5	3.5 2.3 3.2 3.2 3.5	94 42 45 104 83	<.1 <.1 <.1 .1	19.2 18.1 23.2 19.5 18.0	12.1 6.9 7.6 9.8 7.3	1465 216 203 214 183	2.86 1.73 2.06 2.62 1.83	2.1 3.1 3.7 3.7 2.8		<.5 22.9 1.1 .7 1.6	.9 1.0 1.1 1.2 1.3	13 13 11 11 15	.1 .1 .2 .2	.3 .4 .3 .4 .3	.1 <.1 .1 .1	66 41 51 57 41	.23 .24 .19 .24 .27	.068 .035 .134 .212 .161	4445	30.2 25.9 32.8 37.6 30.5	.55 .42 .23 .37 .28	186 102 59 102 94	.099 .088 .049 .062 .057	1 1 1 1	1.98 1.03 1.26 1.56 1.20	.007 .006 .004 .005 .006	.08 .05 .05 .04 .05	<.1 <.1 .1 .1 <.1	.03 .01 .01 .04 .02	3.4 2.2 1.7 2.6 2.3	.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	63 453	<.5 <.5 <.5 <.5 <.5
CK 021 CK 022 CK 023 CK 024 CK 025	.6 .4 .6 .7 .8	18.3 16.1 20.2 18.5 46.2	3.8 2.6 3.4 4.8 4.2	47 75 129 205 77	<.1 <.1 <.1 .1	20.6 9.8 10.2 18.2 20.0	7.3 5.7 8.1 10.2 9.1	170 203 458 262 309	1.84 1.41 1.86 3.13 2.25	4.2 2.0 1.3 4.6 2.6	.2.2.2.2.3	<.5 3.2 .6 .6 1.2	1.6 .9 .9 1.4 1.1	20 11 13 16 12	.1 .2 .2 .3 .2	.4 .3 .2 .3 .3	.1 <.1 .1 .1	48 34 43 62 53	.34 .24 .27 .27 .20	.084 .060 .088 .316 .083	8 4 5 5	40.0 19.3 21.7 33.5 31.1	.40 .29 .46 .46 .36	74 103 139 183 77	.082 .049 .063 .063 .068	1 1 1 1	1.00 .82 1.21 2.15 1.57	.007 .005 .008 .008 .008	.04 .05 .06 .06 .04	.1 <.1 <.1 .1 .1	.01 .02 .02 .04 .02	2.3 1.6 2.4 3.3 2.5	<.1 <.1 .1 .1	<.05 <.05 <.05 <.05 <.05	3 3 4 7 4	<.5 <.5 <.5 <.5 <.5
CK 026 CK 027 RE CK 027 CK 028 CK 029	.5 .7 .7 .8 .9	16.1 37.3 37.6 20.5 30.7	3.0 3.3 3.1 4.8 4.8	90 48 50 98 83	<.1 <.1 <.1 <.1	15.5 18.4 18.7 35.7 24.3	6.8 7.9 8.3 12.4 9.9	218 165 167 330 206	1.84 2.12 2.13 2.04 2.69	1.6 2.1 2.1 1.6 2.6	.2 .3 .2 .2	.8 .6 1.8 <.5 1.7	1.0 1.2 1.3 1.3 1.2	10 16 15 13 12	.2 .1 .1 .1	.3 .4 .3 .3 .4	.1 .1 .1 .1	44 57 57 49 66	.20 .25 .26 .24 .20	.064 .039 .039 .043 .064	5 6 6 5	24.6 30.3 30.8 36.5 38.2	.38 .44 .45 .38 .48	100 78 81 148 90	.068 .055 .057 .066 .070	1 1 1 1	1.32 1.40 1.44 1.99 1.98	.006 .006 .006 .007 .005	.04 .02 .02 .04 .07	<.1 <.1 <.1 <.1 <.1	.02 .02 .02 .02 .03	2.1 2.7 2.8 2.2 3.1	<.1 .1 .1 .1	<.05 <.05 <.05 <.05 <.05	5 4 4 5 6	<.5 <.5 <.5 <.5 <.5
CK 030 CK 031 CK 032 CK 033 STANDARD	.8 .4 1.4 .6 11.7	7.8 9.2 23.1 16.6 124.7	5.9 3.3 8.9 4.1 29.7	80 46 74 54 141	<.1 <.1 <.1 <.1 <.1	14.4 9.6 14.8 29.5 24.7	11.8 7.5 6.9 9.7 10.6	440 144 273 223 702	2.73 2.13 2.97 1.93 2.80	2.0 1.3 3.2 1.9 21.3	.2 .2 .3 .2 6.7	1.2 <.5 .6 .7 47.0	.9 .9 1.2 1.3 3.1	17 17 11 15 40	.1 .1 .1 .1 6.1	.3 .2 .2 .3 3.6	.1 .1 .2 .1 5.0	63 40 67 49 56	.33 .36 .17 .23 .85	.044 .112 .157 .040 .078	5 4 6 14	28.3 22.6 31.8 37.7 188.9	.38 .40 .30 .37 .58	116 83 77 112 164	.057 .027 .081 .079 .080	1 <1 1 1 17	1.55 1.29 1.97 1.81 1.91	.008 .006 .009 .007 .072	.05 .05 .03 .04 .15	<.1 <.1 <.1 <.1 3.6	.04 .02 .05 .02 .23	2.4 2.2 2.0 2.4 3.3	.1 <.1 .1 .1 1.8	<.05 <.05 <.05 <.05 <.05	6 4 11 5 6	<.5 <.5 <.5 <.5 4.7
Standard i GROUF (>) C - SAN Data	S STAN 1DX ONCENT IPLE TY	IDARD 15.0 (RATIO (PE: S	DS6. GM S N EXC oil S	AMPL EEDS S80	E LE UPP 60C DAT	ACHED ER LI S	WITH MITS. ample: SCEI	90 M SOM <u>s beg</u> VED :	L 2-2 E MIN innin OC	-2 HC ERALS <u>8 'Re</u> T 12	L-HNC MAY <u>are</u> 2005	D3-H2 BE P Rer D4	O AT ARTII Uns (95 (ALLY and 4 REI	DEG. ATT/ YRRE POR!	CF ACKE <u>'ar</u> I'M	OR OI D. I <u>e Re</u> AIL	NE HO REFR/ Ject	DUR, ACTOI		TED 1 D GR/		UNL, IC SAU	ANAI MPLES	LYSED S CAN	BY I Limi	CP-M	S. Solu	BILI	H CON	Ma		81 . L			ALL ALL
All re	sults	are c	onsid	erec	l the	conf	ident	iel p	roper	ty of	the	clie	nt./	Acme	8550	umes	the	liat	oilii	ties	for a	/	COS	t of	the a	analy	Bis	only.		¥.	(A)	Z			Ľ	ALL'

and the second secon

APPENDIX II.

LOGISTICAL REPORT INDUCED POLARIZATION AND MAGNETOMETER SURVEYS COPPER KING CLAIMS, MCLEESE LAKE AREA, BC.

LOGISTICAL REPORT

INDUCED POLARIZATION AND MAGNETOMETER SURVEYS

COPPER KING CLAIMS, MCLEESE LAKE AREA, B.C.

on behalf of

COPPER RIDGE EXPLORATIONS INC. 500 – 625 Howe Street Vancouver, B.C. V6C 2V6

Surveys performed: October 5 and 6, 2005

by

Alan Scott, Geophysicist SCOTT GEOPHYSICS LTD. 4013 West 14th Avenue Vancouver, B.C. V6R 2X3

October 11, 2005

TABLE OF CONTENTS

1	Introduction	page 1
2	Survey coverage and procedures	1
3.	Personnel	1
4.	Instrumentation	1

£

(

Appendix

Statement of Quali	fications	rear	of report
GPS Coordinates	(NAD 83 datum)	rear	of report

Accompanying Maps

		map pocket
Chargeability/Resistivity Pseudosections with M Lines 9800N and 10200N	1agnetometer Profiles (1:5000 scale) a=50/n=1-5	ī
	u 50/11 1 5	-
Plan Maps with Idealized Grid Coordinates (1:5	000 scale)	
Magnetometer profiles		2
Magnetometer data postings		2
Accompa	mying Data Files	
One (1) compact disk with all survey data		3

1. INTRODUCTION

Induced polarization (IP) and magnetometer surveys were performed at the Copper King Claims, McCleese Lake Area, B.C., on October 5 and 6, 2005.

The surveys were performed by Scott Geophysics Ltd. on behalf of Copper Ridge Explorations Inc. This report describes the instrumentation and procedures, and presents the results of the surveys.

2. SURVEY COVERAGE AND PROCEDURES

A total of 3.0 km of IP and magnetometer survey was performed at the Copper King Claims.

The pole dipole array was used for the IP survey at an "a" spacing of 50 metres and "n" separations of 1 to 5 (a=50/n=1-5). The on line current electrode was located to the west of the potential electrodes.

The chargeability and resistivity results are presented on the accompanying pseudosections. The magnetometer survey results are presented as profiles at the top of the pseudosections, and as profile and data posting plans.

3. PERSONNEL

Ken Moir was the crew chief on the survey on behalf of Scott Geophysics Ltd. Dave Mellings was the representative on site on behalf of Copper Ridge Explorations Inc.

4. INSTRUMENTATION

A Scintrex IPR12 receiver and a TSQ4 transmitter were used for the IP survey. Readings were taken in the time domain using a 2 second on/2 second off alternating square wave. The chargeability values plotted on the accompanying pseudosections and plan maps is for the interval 690 to 1050 msecs after shutoff.

A Scintrex ENVI was used for the magnetometer survey. All data was corrected for diurnal drift with reference to a Scintrex ENVI base station cycling at 10 second intervals.

A Garmin eTrex GPS receiver was used for the GPS survey. The UTM locations were measured using NAD 83as the datum.

Respectfully Submitted,

Alan Scott, Geophysicist

Statement of Qualifications

for

Alan Scott, Geophysicist

of

4013 West 14th Avenue Vancouver, B.C. V6R 2X3

I, Alan Scott, hereby certify the following statements regarding my qualifications and involvement in the program of work on behalf of Copper Ridge Explorations Inc. on the Copper King Claims, McLeese Lake Area, B.C., as presented in this report of October 11, 2005.

The work was performed by individuals sufficiently trained and qualified for its performance.

I have no material interest in the property under consideration in this report.

4 14

I graduated from the University of British Columbia with a Bachelor of Science degree (Geophysics) in 1970 and with a Master of Business Administration in 1982.

I am a member of the Association of Professional Engineers and Geoscientists of the Province of British Columbia.

I have been practicing my profession as a Geophysicist in the field of Mineral Exploration since 1970.

Respectfully submitted,

Alan Scott, P.Geo.

H SOFTWARE NAME & VERSION GPSU 4.04 REGISTERED to 'Lorne stewart' Τ S DateFormat=dd/mm/yyyy S Units=M,M S SymbolSet=2 H R DATUM NAD83 066 0.000000E+00 -1.6434840E-11 0 0 0 ΜE H COORDINATE SYSTEM U UTM UPS F ID----- Zne Easting Northing Symbol----- T O Alt(m) Comment

