DIAMOND DRILLING REPORT

on the

KNEB PROPERTY

Tenure Number 502980

Revelstoke Mining Division

NTS: 82M/10E

BCGS Map Sheet: 082M.057

Latitude: 51° 32.4' N; Longitude 118° 42.5' W

UTM: NAD 83, Zone 11; 5 710 600N; 381 250 E

Owner: Selkirk Metals Holdings Corp.

Author: Jim Miller-Tait, P.Geo.

December 15, 2005

TABLE OF CONTENTS

	Section	Title	Page
A	Report	Introduction	3
		Property	3
		Location and Access	3
		Climate, Topography and Vegetation	4
		History	4
		Regional Geology	4
		Property Geology	5
		2005 Diamond Drilling Program	5
		Conclusions	6
	· · · · · · · · · · · · · · · · · · ·	Recommendations	7
		List of References	8
		Statement of Qualifications	9
	Tables: 1	2005 Drill Hole Summary	6
В	Property	Schedule of Mineral Claims	10
C	Expenditures	Statement of Expenditures	11
D	Analytical Reports	Acme Analytical Laboratories Ltd.:	13
		- Certificates of Analysis (1 report)	
		- Statement of Analytical Procedures (1 data sheet)	
E	Drill Hole Logs	Drill Hole Record	
		Drill Hole Number KB-05-01	
		Drill Hole Number KB-05-02	<u> </u>
F	Illustrations		
	Plan Number	Title	Scale
	KB-05-1 (after p.3)	General Location Plan	1:250 000
	KB-05-2 (after p.3)	Location Plan	1:50 000
	KB-05-3 (after p.3)	Mineral Claims	1:50 000
	KB-05-4 (in pocket)	Regional Geology	1:25 000
	KB-05-5 (in pocket)	Drill Hole Plan	1:20 000
	KB-05-6 (in pocket)	Drill Section – KB-05-01	1:500
	KB-05-7 (in pocket)	Drill Section – KB-05-02	1:500

SECTION A: REPORT

INTRODUCTION:

Selkirk Metals Holdings Corp. ("Selkirk" or "the Company") owns a 100% interest in the Kneb Property. The property was initially acquired by Cross Lake Minerals Ltd. ("Cross Lake") in September 2003 following a review of prospective areas in British Columbia for stratabound massive sulphide deposits. It was assigned to Selkirk in June 2005 as a result of a Plan of Arrangement. It was originally staked to cover an area which Cominco Ltd. explored in 1998 and 1999. The Kneb Property is located 70 km northwest of Revelstoke in the Ratchford Range of the Monashee Mountains on the west side of Liberty Creek in the Revelstoke Mining Division. This report summarizes the program of NQ diamond drilling that was carried out by the Company in September 2005. The work was conducted on Tenure Number 502980 with two drill holes totaling 396.8 m being completed.

PROPERTY:

The Kneb Property is comprised of one cell claim containing 63 cells and covering 1266.659 hectares. This claim is the result of the conversion in January 2005 of the original two 4 post claims that totaled 36 claim units and originally covered an area of 900 hectares. The mineral claim is situated in the Revelstoke Mining Division. The Property is registered in the name of Selkirk Metals Holdings Corp. It was originally acquired by Cross Lake by staking on September 30, 2003. The claim is shown on Plan Numbers KB-05-1, KB-05-2 and KB-05-3. A Schedule of Mineral Claims is appended in Section B and lists the original legacy claims and the converted cell claim as well as the UTM coordinates of the exterior claim boundary. The expiry date therein is based on the Statement of Work filed on September 27, 2005 (Event #4049716) and assumes that this drilling report will be accepted for assessment purposes. The cell claim has not been surveyed.

LOCATION AND ACCESS:

The Property is located on the west side of the Columbia River Valley some 70 km northwest of Revelstoke. It is situated in the Ratchford Range of the Monashee Mountains on the west side and near the headwaters of Liberty Creek. The claims are located on BCGS map sheet 82M.057 and NTS map sheet 82M/10E. Geographic co-ordinates at the centre of the property are 51° 32.4' North latitude; 118° 42.5' West longitude and UTM coordinates are 5710600N and 381750E in Zone 11, NAD 83.

3

Access to the property is by helicopter from Revelstoke. A staging area for the drilling equipment along Highway 23 north of Revelstoke was used in order to reduce the helicopter travel time to the property which is about 14 km west of the highway.

CLIMATE, TOPOGRAPHY AND VEGETATION:

The Kneb area has cold, high snowfall winters and warm, damp summers. The property is for the most part in alpine terrain with topography ranging from moderately steep to extremely steep. The lowest elevation is 1080 metres near the northeast corner of the property along Liberty Creek while the high point is 2600 m along the southern boundary of the claim. A significant portion of the property is covered by glacier and snowfields.

HISTORY:

Cominco Ltd. staked the property in 1998 after discovering a gossanous stratabound copper sulphide showing, named the Kneb, in the course of geological investigations. The showing was around 500 m long and up to 7 m thick and composed of limonitic and silicified marble containing significant pyrrhotite and chalcopyrite. Samples produced 1-4% Cu and up to 500ppm Pb and/or Zn. While prospecting numerous high-grade massive sulphide boulders consisting of sphalerite and galena were discovered to the north of the showing at the toe of a glacier suggested a source under the glacier to the east as the glacier striations on bedrock are in a direction of 310 degrees.

In May 1999 Cominco Ltd. carried out a geophysical program comprised of UTEM and magnetics in an attempt to locate the source of the high-grade zinc-lead boulders under the glacier. The showing, and the projection of the showing under the ice, proved to be non-conductive, with minor flanking magnetic responses. The survey did, however, identify a significant conductor further to the north with a high magnetic signature. It was traced for over 800 m though the eastern limit was not defined due to steep terrain. No further work was carried out on the property by Cominco.

Cross Lake Minerals Ltd. acquired two 18 unit mineral claims over the property when the ground came open in 2003.

<u>REGIONAL GEOLOGY:</u>

The Kneb Property is situated along the northwestern margin of Frenchman Cap Dome on the eastern margin of the Shuswap Complex. The stratigraphic succession comprises a heterogeneous package of generally thin-bedded quartzite, marble, calcareous gneiss and pelitic schist. This section, referred to as

4

the "autochthonous cover rocks" (Brown 1980), overlies "core gneiss" of the dome which consists dominantly of feldspar augen orthogneiss, pelitic gneiss, hornblende gneiss and amphibolite of probable Aphebian age (Hoy, 1987). The Precambrian to Paleozoic-aged autochthonous cover rocks are separated from an overlying package of metasedimentary rocks of Monashee decollement, a west-dipping reverse fault (Read and Brown, 1981). The autochthonous cover rocks include quartz feldspar paragneiss, micaceous quartzite, amphibolite and calc-silicate gneiss that have been extensively invaded by granitic gneiss and pegmatite (Wheeler, 1965).

The property is located about 12 km northeast of the Cottonbelt and Bass lead-zinc-silver deposits which occur on the west limb of the Mount Grace syncline and the Complex/McLeod on the east limb. The regional geology is shown on Plan No. KB-05-4.

PROPERTY GEOLOGY:

The underlying rocks of the Kneb property are similar to the other neighbouring deposits with mineralization occurring in a limonitic marble unit between kyanite-sillimanite schist and calc-silicate gneiss. The stratabound sulphide Kneb showing has been traced for an approximate strike distance of 500 m and the thickness up to 7 m is composed limonitic and silicified marble containing significant pyrrhotite and chalcopyrite. The favorable host unit strikes at 070° and dips north at 30°. A nunatak a short distance northeast along strike of the favorable host contained sphalerite and galena boulders in addition to chalcopyrite and pyrrhotite boulders. Glacial striations of the bedrock in this area are to the northwest at 310°. This suggests a metal zonation in the favorable silicified marble host from copper to zinc-lead to the east and south under the glacier.

2005 DIAMOND DRILLING PROGRAM:

The 2005 exploration program included the construction of a single drill platform and two diamond drill holes totaling 396.8 m. The objective of the drill program was to drill test the strongest UTEM conductor outlined in 1999 by the previous operator and owner of the claims, Cominco Ltd. The location of the drilling is approximately 1,200 m east of the zinc-lead-silver boulders and 1,300 m east of the Kneb copper showing. The location of the two drill holes is shown on Plan Numbers KB-05-4 and KB-05-5. A drill hole record and descriptive drill logs are appended in Section E and individual drill hole cross sections (Plan Nos. KB-05-6 and KB-05-7) are in Section F of the report. A summary of the drilling is set out below in Table 1.

F. Boisvenu Drilling Ltd. of Delta B.C. was contracted to carry out the drilling program which ran between September 6 and 12, 2005. They employed a Hydrocore 3000 drill to carry out the work. Drill crews and geological personnel were accommodated in a camp set up near the drill site. All equipment and supplies had to be transported by helicopter from a staging area along Highway 23. Selkirk Mountain Helicopters was engaged to provide the transportation.

The NQ drill core was logged and split on the Property and the boxed core is covered and stored on pallets on the property at UTM coordinates, NAD 83, 5710332N, 381004E, elevation 2300 m. One-half of the core was shipped to Acme Analytical Laboratories Ltd. in Vancouver, B.C. for primary analysis for 23 elements by the ICP-ES procedure (Acme Group 7AR Multi-Element Assay). The analytical certificates are appended in Section D.

Hole	UTM: NAD	83, Zone 11	Elevation	Azimuth	Dip	Length
Number	North	East	(m ASL)			(metres)
KB-05-01	5 710 351	381 001	2297	180°	-70°	206.3
KB-05-02	5 710 351	381 001	2297	270°	-50°	190.5
Total						396.8

Mineralization intersected in drill holes consisted of disseminated, fine-grained pyrrhotite, pyrite, magnetite and trace chalcopyrite in a fine grained gneiss in both holes. The values were negligible in base or precious metals. This unit is the source of the UTEM anomaly. This gneiss was observed in outcrop approximately 200 m south of the drill collars where the unit strikes east-west and dips north at approximately 25°. This unit is a prominent gossan at the toe of the glacier and is easily traceable.

CONCLUSIONS:

The Kneb copper showing in a siliceous marble unit is of interest because of the presence of high-grade sphalerite-galena boulders discovered northeast of the showing which may be indicating a metal zonation. The geology of the area indicates that the Kneb stratigraphic host may be the source of the zinc-lead-silver boulders.

The drilling intersected uneconomic pyrrhotite, pyrite, magnetite and trace chalcopyrite gneiss horizon that is the conductor outlined by earlier completed UTEM survey by Cominco Ltd. This was the best conductor in their survey. The location of the drilling is approximately 1,200 m east of the zinc-lead-

silver boulders and 1,300 m east of the Kneb copper showing. In hindsight the sphalerite-galena mineralization is probably a weaker conductor than the copper or pyrrhotite.

The gneiss that was intersected in the drilling with the sulphides correlates well with the gossanous gneiss located approximately 200 m south of the hole collars.

RECOMMENDATIONS:

The source of the massive sulphide boulders consisting of sphalerite and galena contain significant values in zinc-lead and silver. The averages of seven samples of the massive sulphide boulders taken by Cominco are 6.9% Zinc, 6.8% Lead and 109.5 g/t Silver.

The 2005 drilling was completed 1,200 m east of the boulder cluster into the strongest UTEM conductor and intersected pyrrhotite, pyrite, magnetite and trace chalcopyrite. In hindsight, a weaker conductor will be the best target for the source of the sphalerite-galena due to the poorer conductance, if any, of sphalerite and galena. The glacial striations in the area of the massive sulphide boulders are in a direction going 310° so the source or target area should be at 130° from the boulders.

A program of detailed mapping and prospecting, including ice direction examinations, around the glacier should be completed in July and August. In conjunction with the mapping, the UTEM survey should be studied by a geophysical consultant with samples of the sphalerite and galena to target favorable areas for drilling.

Respectfully Jim Mil

LIST OF REFERENCES:

Holroyd, Robert, W. (July, 1999): 1999 Assessment Report, Kneb Property, Reconnaissance Ground Geophysical Surveys; for Cominco Ltd.; NTS 82M/10E; B.C. Assessment Report #26090

Hoy, Trygve (1987): Geology of the Cottonbelt Lead-Zinc-Magnetite Layer, Carbonatites and Alkalic Rocks in the Mount Grace Area, Frenchman Cap Dome, Southeastern British Columbia; B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 80; ISSN 0226-7497

Read, P.B. and Brown, R.L. (1981): Columbia River Fault Zone: Southeastern Margin of the Shuswap and Monashee Complexes, Southeastern British Columbia; Canadian Journal of Earth Sciences, Volume 18, No.7, pages 1127-1145

Wheeler, J.O. (1965): Big Bend Map Area, British Columbia, Geological Survey of Canada, Paper 64-32, 37.

STATEMENT OF QUALIFICATIONS:

For: Jim Miller-Tait of 828 Whitchurch Street, North Vancouver, B.C. V7L 2A4

I graduated from the University of British Columbia with a Bachelor of Sciences Degree in Geology (1987);

I have been practicing my profession as a geologist in mineral exploration and mining continuously since 1987;

I am a fellow in good standing with the Geological Association of Canada;

I am a registered member in good standing as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia;

The observations, conclusions and recommendations contained in the report are based on field examinations, personal surveying and the evaluation of results of the exploration program completed by the operator of the property.

HOVINCE ÔF M. MILLER TAIT CHITISH V15/05 Jim Miller-Tait, P.Ged

KNE	B PROPE	RTY	SCHEDULE	OF MINE	ERAL CLAI	MS
PROVI	NCE: British	Columbia	CLAIMS: 1	CELLS: 6	3 AREA: 1	266.659 ha
MININ	G DIVISION	: Revelstoke	NTS: 82M/10E		BCGS: 82M05	7
LOCA'	FION: 70 km	northwest of Revelstoke	LATITUDE: 51°	32.4'	LONGITUDE	:118° 42.5'
in the F	Ratchford Ran	ige on the west side of Liberty	UTM: NAD 83	ZONE 11	5 710 600 N	381 250 E
Creek.	and an an and a second second		PROPERTY INT	EREST:		
MAP	1:250 000	82M Seymour Arm	Selkirk Metals Ho	oldings Corp	100%	
	1:50 000	82M/10 Hoskins Creek				
	1:20 000	82M.057 Liberty Creek				
ACDE	T:20 000	In the second				

AGREEMENT SUMMARY:

October 10, 2003: Letter Agreement between Cross Lake Minerals Ltd. and Gold Giant Ventures Inc. whereby a 50:50 joint venture was constituted.

December 8, 2003: Cross Lake acquired Gold Giant's 50% interest following a Plan of Arrangement between Cross Lake and Gold Giant.

June 16, 2005: Assignment Agreement between Cross Lake Minerals Ltd. and Selkirk Metals Holdings Corp. whereby Cross Lake assigned a 100% interest in the Kneb Property to Selkirk.

CLAIM NAME	TENURE NUMBER	CELLS/ UNITS	GROSS AREA (hectares)	RECORD DATE (yyyy-mm-dd)	GOOD TO DATE (yyyy-mm-dd)	ANNUAL WORK \$	RECORDED OWNER / REMARKS
Legacy C	laims;	Units					
K1	405655	18	450.000	2003-09-30	2005-09-30	1800.00	Converted to 502980
K 2	405656	18	450.000	2003-09-30	2005-09-30	1800.00	Converted to 502980
		36	900.000			3600.00	
Cell Clair	ns:	Cells					
-	502980	63	1266.659	2005-01-13	2010-11-01	10133.27	Selkirk Metals Holdings Corp.
1		63	1266.659			10133.27	

CLAIM BOUNDAR	RY COORDINATES	UTM: NAD 83, ZON	E 11	
Corner No.	Cell ID	Cell Corner	Easting	Northing
1	082M10B056D	NE	382 915.816	5 712 334.610
2	082M10B026A	SE	382 830.079	5 708 627.538
3	082M10B029A	SW	379 794.781	5 708 698.728
4	082M10B029A	NW	379 805,786	5 709 162.124
5	082M10B029C	SW	379 372.215	5 709 172.423
6	082M10B059C	NW	379 449.556	5 712 416.215

Note: Property corners are numbered in a sequence starting at the NE corner of the property and proceeding in a clockwise direction.

ASSESSMENT WORK SUMMARY

Date of Filing (yyyy-mm-dd)	Work Filed S	New Work Applied S	PAC Credits Applied	PAC Credits Saved	Total PAC Credits	Date of Approval (yyyy-mm-dd)	Event Number
2003-10-09	3600.00	3600.00	GPS Credits				320998
2005-09-27	79500.00	33439.80	-	46060.20			4049716

SECTION C: EXPENDITURES (Kneb - 2005 Drill Program)

Item	Work Performed	Quantities / Rates	Amount
Diamond Drilling: F. Boisvenu Drilling Ltd.	Mobilization / demobilization NQ2 drilling: Moving, acid tests and extra labour costs (incl. camp setup)	396.8 metres @ \$95.96/m	\$38,076.51
	Drilling materials including core boxes		
Transportation: Selkirk Mountain Helicopters Ltd.	Transport of crew, camp and drill equipment utilizing a Bell 206L4 Period: Aug 26 to Sep 14	31.28 hrs plus fuel \$1358.88/hour	42,505.81
Project Geologist: J. Miller-Tait, P.Geo. Sikanni Mine Development Ltd.	Project supervision and on site camp and drill pad preparation Period: Sep 1-13	7 days @ \$450.00	3,150.00
Accommodation and Meals: Jim Miller-Tait	Expenditures for lodging and meals: Period: Sep 1-13		755.42
Transportation:	4x4 pickup truck:	5 days @ \$75.00	375.00
Vancouver to property, onsite and return	Period: Sep 1-13	Fuel	<u>300.00</u> 675.00
Project Geologist; Geoff Goodall, P.Geo. Global Geological Services Inc.	On site drill supervision, core logging Period: Sep 4-9, 2005	6 days @ \$450.00	2,700.00
Field Supervisor: Craig Ellis Mountain Guiding	Camp construction, drill platform construction, equipment move in and move out, drill moves, gear storage Period: Aug 26- Sep14, 2005	11 days @ \$375.00	4,125.00
Field Assistant: Taylor Carlile-Grubb	Camp setup, core splitter, drill platform construction Period: Sep 7-11, 2005	5 days @ \$175.00	875.00
Field Assistant: David Marra	Camp tear down Sep 14 2005	1 day @ \$250.00	250.00
Cook: Fiona Abraham	Camp cook: Sep 2-13, 2005 Expenses	12 days @ \$250.00	3,000.00
Camp Supplies: Fiona Abraham	Food provisions and camp supplies Period: Sep 2-13, 2005		997.81
Field Supplies: Global Geological Services Inc.	Construction materials, fuel, hardware, sample bags, shipping sacks		3,263.12
Expediter: Kruger's Expediting	Camp supplies, expediting services, equipment haulage Period: Sep 3-14, 2005		\$2,132.15
Equipment Rentals and Supplies: Global Geological	Camp equipment, handheld radios, satellite telephone, chainsaws. Period: Sep 2-14, 2005		2,445.00

Item	Work Performed	Quantities / Rates	Amount
Freight:	Transport of drill core samples	400 kg	408.87
Greyhound Express	from Revelstoke to Vancouver		
Analytical Services:	Assaying of drill core:	81 samples	1,238.22
Acme Analytical	Group 7AR analytical procedure		
Laboratories Ltd.			
Project Geologist:	Data Compilation, Analysis and	2 days @ \$450.00	900.00
J. Miller-Tait, P.Geo.,	Report Preparation		
Sikanni Mine			
Development Ltd.			
Drill Log Entry:	Data entry for descriptive drill logs	1.5 hrs @ \$12.00	18.00
Brynna Phipps			
Drafting:	Base map preparation, drill hole	4.0 hours @ \$60.00	240.00
Mike Davies	plans and sections		
Printing:	Map reproduction		50.00
Total			\$107,805.91

Expenditure Apportionment:

Mineral Tenure	Work	Work Quantities	Expenditure
502980	Diamond drilling	396.8 m NQ2 drilling	\$107,805.91
		Unit Cost per Metre:	\$271.69

SECTION D: ANALYTICAL RESULTS

- 1. Analyses carried out by Acme Analytical Laboratories Ltd. of Vancouver, B.C.
 - Certificate of Analysis #A505903 dated October 11, 2005
 - Statement of Analytical Procedures: Group 7AR, Multi-Element Assay by ICP-ES

	SAMPLE#	Mo %	Cu %	Pb %		Ag gm/mt	Ni %	Co %	Mn %	Fe %	As %		Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	K %	W %		Sample kg	
	50101 50102 50103 50104 50105	<.001	.003 .002 .003	<.01 <.01 <.01 <.01 <.01	.02 .02 .01	<2 <2 <2	.007 .007 .006	.002 .002 .001	.04 .03 .03	3.76 4.80 4.10	<.01 <.01 <.01	.009< .024<	.001< .001< .001<	.001 .001 .001	<.01 <.01 <.01	1.35 .81 3.24		.006 .007 .006	.86 .97 .78	2.43 3.40 2.93 5.70 6.95	.37 .27 .33	.91 1.10 .86	<.001 <.001 <.001	<.001 <.001 <.001 <.001 <.001 <.001	4.56 3.89 4.17 4.22 4.09	
	50106 50107 50108 50109 50110	.001 .001 .002	.003 .004 .004	<.01 <.01 <.01 <.01 <.01	.01 .01 .01	<2 <2 <2	.005 .005 .004	.001 .001 .001	.02 .02 .01	3.00 3.04 1.99	<.01 <.01 <.01	.015< .016< .012<	.001< .001< .001<	.001 .001 .001	<.01 <.01 <.01	2.84 2.03 1.90		.004 .004 .002	.77 .81 .45	6.31 4.53 3.85 2.56 2.69	.12 .16 .04	.81 .82 .32	<.001 <.001 <.001	<.001 <.001 <.001 <.001 <.001	3.98 4.07 3.72 3.90 3.18	
	50111 50112 50113 50114 50115	.003 .005 .003	.003 .007 .004	<.01 <.01 <.01 <.01 <.01	.01 .04 .01	<2 <2 <2	.003 .006 .005	.001 .001 .002	.01 .02 .01	2.28 2.14 3.66	<.01 <.01 <.01	.025< .020 .023<	.001< .001< .001<	.001 .001 .001	<.01 <.01 <.01	3.91 4.83 2.96	.054 .025 .103 .015 .035	.002 .003 .004	.64 .62 1.26	1.41 2.95 2.43 4.08 3.46	.21 .09 .27	.24 .14 .76	<.001 <.001 <.001	<.001 <.001 <.001 <.001 <.001	3.21 3.76 3.24 4.17 4.21	
<i>5- </i>	50116 50117 50118 50119 50120	.003 <.001 <.001	.004 .002 .002	<.01 <.01 <.01 <.01 <.01	<.01 .01 .01	<2 <2 <2	.004 .004 .004	.001 .002 .002	.02 .04 .03	1.84 4.09 4.22	<.01 <.01 <.01	.030< .019< .015<	.001<. .001<. .001	.001 .001 .001	<.01 <.01 <.01	5.23 3.14 2.45		.002 .008 .008	.49 1.89 1.85		.29 .34 .27	.33 2.07 2.11	<.001 <.001 <.001	<.001 <.001 <.001 <.001 <.001	4.25 4.31 4.26 4.34 4.19	
	RE 50120 RRE 50120 50121 50122 50122 50123		.002 .003 .004	<.01	<.01 .01 .01	<2 <2 <2	.003 .004 .004	.001 .002 .002	.02 .03 .03	1.51 3.97 4.43	<.01 <.01 <.01	.030< .025< .018<	.001<. .001<. .001<.	.001 .001 .001	<.01 <.01 <.01	5.49 3.64 2.49	.049 .048 .041 .103 .060	.007 .008	.53 1.43 1.90	5.97	.33 .23 .41	.28 1.66 2.17	<.001 <.001 <.001		- 4.22 3.76 3.96	
	50124 50125 50126 50127 50128	4.001	.004 .003 .004	<.01 <.01 <.01	01. 01. 01.>	<2 <2 <2		.002 .001 .001	.03 .03 .03	4.09 3.90 4.41	<.01 <.01 <.01	.029< .031< .029<	.001< .001 .001<	.001 .001 .001	<.01 <.01 <.01	4.50 4.46 3.67	.076	.008 .008 .009	1.69 1.60 1.84	6.97 7.20 7.23	.41 .49 .40	1.93 1.82 2.15	<.001 <.001 <.001	<.001 <.001	4.11 4.59 3.32 4.35 4.11	
↓ ↑ 05-Z	50129 50130 50131 50132 STANDARD R-2a	<.001 <.001 <.001 <.001 <.001 .049	.004 .001 .002	<u><.01</u> <.01 <.01	.01 <.01 <.01	<2 <2< <2	.001< .002	.002 .001 .001	.02 .04 .02	4.40 .89 3.56	<.01 <.01 <.01	.029<. .015<. .003<.	.001<. .001<. .001<.	.001 .001 .001	<.01 <.01 <.01	4.69 5.13 1.08	.051 .045 .035 .125 .095	.008 .002 .003	1.99 .17 1.04	6.67 .61 2.38	.35 .15 .07	2.34 .16 .94	<.001 <.001 <.001	<.001	4.26 4.05 2.16 4.12	
					00 GM DRILL												ANALYS are R					MBIA	10		ERT	

1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL

Selkirk Metals Holdings Ltd. FILE # A505903

Page 2

ACME ANALYTICAL

	SAMPLE#	Mo %				Ag gm/mt		Co %	Mn %	Fe %		Sr %	Cd %	Sb %	Bi %	Ca %	P %	Cr %	Mg %	Al %	Na %	К %	W %	Hg %	Sample kg	
<u> </u>	50133	001	< 001	<.01	< 01	<2.	<.001<	.001	<_01	. 86	<.01	.001<	.001<.	.001	<.01	- 04	.004	.002	.01	.06	.02	.01	<.001	<.001	4.01	· · · - · - · ·
	50134			<.01			<.001<						.001<.				.004	.002	.02		.02		<.001			
	50135			< .01			<.001<						.001<.				.004	.002	.03		<.01		<.001		3.29	
	50136			<.01			<.001<						.001<.				.014	.002	<.01	.12	<.01	.10	<.001	<.001	3.32	
	50137			<.01			.001						.001<.				. 195	.002		1.41	<.01	.61	<.001	<.001	3.27	
	50138	.001	.001	<.01	<.01	<2	.001	.001	.04	2.08	<.01	.008<	.001 .	001	<.01	4.12	.077	.004	.54	3.11	.35	.50	<.001	<.001		
	50139	.001	.003	<.01	<.01	<2	.004	.002	.06	4.14	<.01	<.001<	.001 .	001	<.01	.14	.037	.006	1.11				<.001			
	50140	.001	<.001	<.01	<.01											1.97		.006		3.50			<.001			
	50141	.001	<.001	<.01	<.01	<2	.001<	.001	.03	1.04	<.01	.026<	.001<.	001	<.01	4.97		.002		1.92			.001			
	50142	.001	.003	<.01	.01	<2	.005	.002	.04	4.77	<.01	.002<	.001<.	001	<.01	.21	.042	.007	1.02	2.97	.11	1.67	<.001	<.001	4.61	
	50143 •	.001	.002	<.01	.01					5.45							.025		1.20				<.001			
	50144			<.01						5.70							.039						<.001		3.81	
	50145			<.01						5.42							.028		1.14				<.001			
	50146			<.01						4.72							.058	.007		2.30			<.001		3.97	
0.01	RE 50146	.001	.003	<.01	-02	<2	.006	.002	.02	4.68	<.01	.002<	.001<.	001	<.01	- 18	.055	.007	.89	2.25	.06	1.19	<.001	<.001	-	
B-05-Z	RRE 50146			<.01						4.72							.055	.007		2.28			<.001		-	
	50147			<.01		_				4.90							.077	.006		2.07			<.001			
	50148			<.01						3.62							.048	.006		1.97			<.001			
	50149			<.01						5.00							.047	.007		2.62			<.001			
	50150	.001	.003	<.01	.01	<2	.006	.001	.03	4.48	<.01	.017<	.001<.	001	<.01	1.96	.039	.005	.81	4.19	.35	.72	<.001	<.001	3.85	
	50151			<.01			.006									3.88		.006		6.35			<.001			
	50152			<.01												7.01		.007		6.47			<.001		4.23	
	50153	.001	.003	<.01	.02	<2	.007	.001	.02	3.09	<.01	.018<	.001<.	001	<.01	3.90	.041	.007		5.49			<.001			
	50154			<.01												2.20		.004		4.05			<.001			
	50155	.001	.003	<.01	.01	<2	.006	.001	.02	3.08	<.01	.013<	.001<.	001	<.01	1.98	.032	.004	.85	3.82	.14	.63	<.001	<.001	4.01	
	50156	.002	.004	<.01	.02											1.65		.002		1.12			<.001			
	50157	.003	.005	<.01	.01	<2	.004	.001	.02	2.73	<.01	.017<	.001<.	001	<.01	2.68	.034	.002		.59			<.001			
	50158	.003	.004	<.01	.01											2.65		.002		1.20			<.001			
	50159	.004	.006	<.01	.03											2.23		.002		1.22			<.001			
	50160	.003	.003	<.01	.01	<2	.004	.001	.01	2.32	<.01	.024<	.001 .	001	<.01	3.40	.042	.003	.70	3.41	.15	-29	<.001	<.001	4.33	
	50161	.003	.003	<.01	.01	<2	.004	.001								3.71		.003		2.85			<.001			
	50162	.003	.005	<.01	.02		.006			3.39							.084		1.13				<.001		4.41	
	50163	.003	.003	<.01	.01	2	.005	.001	.01	2.66	<.01	.022<	.001 .	001 ·	<.01	3.63	.029	.004		4.11			<.001			
•	50164	.003	.004	<.01	.01	<2	.004	.001	.01	2.54	<.01	.026<	.001<.	001 ·	<.01	4.21	.028	.002		3.23			<.001		4.27	
		.047	.552	1.46	4.28	157	.352	.044	.20	22.67	.21	.162	.029 .	128	<.01	2.32	.082	.070	1.61	1.35	.17	.50	.064	.173	-	

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Selkirk Metals Holdings Ltd. FILE # A505903

Page 3

ACME ANALYTICAL								···																		ACME ANALYTICAL
	SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Sr	Cd	Sb	Bi	Ca	Р	Cr	Mg	Al	Na	К	W		Sample	
		%	%	%	%	gm/mt	%	%	%	%	%	%	%	%		%	%	%	%	%	%	%	%	%	kg	
	50165	002	.004	< 01	< 01	<2	.004	.001	.03	2.87	<.01	.029<.	.001	.001	<.01	5.21	.037	.003	. 86	3.64	.22	.49	<.001	<.001	4.25	
	50166		.002			-		.002				.016<					.028			5.06				<.001	3.81	
	50167	1			<.01	_						.005<.					.037	.007	1.84	3.49	.05	1.72	<.001	<.001	3.87	
	50168				<.01	-	-					.014<.					.040	.005	1.75	2.60	<.01			<.001	4.52	
	50169				.01	_		.001				.012<.					.033	.005	1.58	3.52	.12	1.26	<.001	<.001	3.82	
				- 4					~ (4 70			004			2 70	075	000	4 03	F 07	20	4 04	. 001	- 001	/ 47	
	50170		.002									.016<.					.035							<.001		
	50171				.01							.009<.					.039	.008	2.00	5.03		2.29			4.25	
KB-05-2	50172				<.01	_						.016<.					.034	.008	1.69	5.91		2.00			4.46	
	50173	4.001	.002	<.01	<.01	_						.009<.					.030	.008		5.09				<.001	4.61	
	50174	4.001	.002	<.01	.01	<2	.004	.002	.03	4.62	<.01	.008<.	.001	.001	<.01	1.42	.028	.008	1.84	4.92	.22	2.18	<.001	<.001	4.48	
	50175	1 001	.002	<.01	<.01	<2	.005	.002	.03	4.62	<.01	.011<.	.001<	.001	<.01	1.78	.026	.008	2.09	5.17	.35	2.14	<.001	<.001	4.51	
	50176				<.01	_						.025<.					.036	.002	.45	2.94	.31	.40	<.001	<.001	3.92	
	50177				.02							.016<					.041	.008	1.91	5.65	.31	1.61	<.001	<.001	4.22	
	50178		.005					.002				.016<.					.029	.007			.48	1.97	<.001	<.001	4.03	
	RE 50178		.004			_						.017<.					.026		1.77		.40	1.96	<.001	<.001	-	
								~~~								4 00		0.07	4 7/	F 74	10	1 05	4 001			
	RRE 50178		.004			_		.002				.016<.					.029	.007	1.76	5.71				<.001	7 05	
	50179	1	.003									.019<.				2.58	.030	.007	1.58		.39			<.001	3.85	
	50180		.003									.020<.					.041	.008	1.66					<.001	4.21	
	50181		.003					.002				.018<.				2.46	.034	.008	1.71	5.91	.41			<.001	4.66	
	STANDARD R-2a	1.047	.560	1.46	4.27	156	.350	.044	.20	22.94	.22	.170 .	030	.131	<.01	2.28	.087	.069	1.58	1.31	.15	.55	.067	. 181	-	

.

Sample type: DRILL CORE R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.





## METHODS AND SPECIFICATIONS FOR ANALYTICAL PACKAGE GROUP 7AR - MULTI-ELEMENT ASSAY BY ICP-ES • AQUA REGIA DIGESTION



### Comments

### **Sample Preparation**

All samples are dried at 60°C. Soil and sediment are sieved to -80 mesh (-177 µm). Moss-mats are disaggregated then sieved to yield -80 mesh sediment. Vegetation is pulverized or ashed (475°C). Rock and drill core is jaw crushed to 70% passing 10 mesh (2 mm), a 250 g riffle split is then pulverized to 95% passing 150 mesh (100 µm) in a mild-steel ring-and-puck mill. Pulp splits of 1 g are weighed into 100 mL volumetric flasks.

### **Sample Digestion**

A 30 mL aliquot of modified agua regia solution (equal parts ACSgrade HCl and HNO3 acids and de-mineralized H2O) is added and heated in a hot water bath (~95°C) for 1 hour. After cooling for 3 hours the solutions are transferred to 100 mL volumetric flasks and made to volume with 5% HCI. Very high grade samples may require a 1 g per 250 mL or 0.25 g per 250 mL sample to solution ratio for through digestion and accurate determination.

### Sample Analysis

Solutions aspirated into a Jarrel Ash Atomcomp model 800 or 975 ICP atomic-emission spectrometer are analysed for a 23 element package comprising: Ag, Al, As, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, W and Zn.

### **Quality Control and Data Verification**

An Analytical Batch (1 page) comprises 33 samples. QA/QC protocol incorporates a sample-prep blank (SI or G-1) carried through all stages of preparation and analysis as the first sample, a pulp duplicate to monitor analytical precision, a prep duplicate from the -10 mesh rejects to monitor sub-sampling variation (drill core only), two reagent blanks to measure background and aliquots of in-house Standard Reference Materials like STD R-2 to monitor accuracy.

Raw and final data undergo a final verification by a British Columbia Certified Assayer who signs the Analytical Report before it is released to the client. Chief Assayer is Clarence Leong, other certified assayers are Leo Arciaga, Ken Kwok, Marcus Lau, Dean Toye and Jacky Wang.

Date: Mar 22, 2004

Prepared By: J. Gravel

## SECTION E: DRILL HOLE LOGS

•

Drill Hole Record Drill Hole Log: Hole No. KB-05-01 Drill Hole Log: Hole No. KB-05-02 1

SELKIRK METALS HOLDINGS CORP.			К	NEB PF	ROPERT	Y	DRII	Dec 06 2005		
Hole	Date	Zone	Zone	Length	OB	Dip	Bearing	Co-ordinate	es: UTM NAD	Remarks
Number	Completed		(metres)	(m)	•	(azimuth)	North	East	Elevation (m ASL)	
2005 Diamon	d Drilling Progr	am (NQ2 C	ore)				· · · · · · · · · · · · · · · · · · ·	Contractor:	F. Boisvenu l	Drilling Ltd.
KB-05-01	Sep 09 2005		206.3	0.0	-70°	180°	5 710 351	381 001	2297	Claim 502980
KB-05-02	Sep 11 2005		190.5	0.0	-50°	270°	5 710 351	381 001	2297	Claim 502980
Total 2005	Holes: 2	`	396.8							
· · · · · · · · · · · · · · ·										
			· · · · · ·		·····					
					·····					
							· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
					<u> </u>					• • • • • • • • • • • • • • • • • • •
										······································
				<u></u>					 	
TOTAL	HOLES: 2		396.8		···					

c:\SLK\kneb\drill hole record

	SELKIRK		HOLDINGS CORP DRILL HOLE LOG					HOLE: Page#	KB-05-1 1 of 1		
		-	Azimuth Dip Depth Azimuth Dip Comments S#'s 50101-50130 und, multiple 10 foot runs. :: UTM 5710332N, 381004E, 2300m.	PROPERTY: ZONE: UTM: EASTING: NORTHING: ELEVATION: AZIMUTH: DIP:	KNEB NAD 83, ZONE 11 381001 5710351 2300m 180° 20		Date Be Date Fir Logged Depth: Core siz	hished: by:	September 7, 2005 September 9, 2005 Geoff Goodall 206.3m NQ2		
					-70					Assays	_
	L				1 10		<del></del>	11	ICP		ICP
From	То	Unit	DESCRIPTION	SAMPLE#	Recovery	From	To	Length (m)	Cu (%)	Pb (%)	Zn (%)
n)	<u>(m)</u>		Casing	50104	98%	96.6	98.1	1.5	0.003	<.01	0.02
0.2	4.90		Felsic intrusive rock - light grey to white coloured very fine to fine grained matrix, feldspar to 25	6 <u>50101</u> 50102	98%	102.7	104.2	1.5	0.003	<.01	0.02
		···	trace chlorite 2-5% homblende, weak, fractured and foliated at 45* to CA	50102	98%	102.7	104.2	1.5	0.003	<.01	0.02
4.90	15.70		Biotite Gamet Gneiss - dark green, to bronze biotite local feity patches and rare stals to 1cm	50103	96%	108.3	111.3	1.5	0.002	<.01	0.02
			2 to 8% coarse grained mercon to red coloured garnet foliation varies from 60-80% to CA Quartzite - while to light grey, very fine to fine grained groundmass massive, weakly to	50104	98%	111.3	112.8	1.5	0.003	<.01	0.01
15.70	29.70			50106	98%	112.8	114.3	1.5	0.003	<.01	0.02
	I		ractured - dominantly at 60* to CA 20.2m - 6cm wide zone of 100% muscovite? - possible fault gouge replacement - contact at 45		98%	114.3	115.8	1.5	0.003	<.01	0.02
			20.2m - ocm whe zone of 100% muscoviner - possible ladin googe replacement - connect at 45 Biotie-Gamet Gneiss - 8-15% coarse grained gamet foliation 80° to CA, 1mm to 3mm bedding	50108	98%	115.8	117.3	1.5	0.004	<.01	0.01
29.70	96.20		Biote-Gamer Gneiss - 5-15% coarse grained gamer tollation of to CA, immit to simil bedoing 78.4 to 50.5m granite intrusive unit sharp contacts 80* to CA	50109	98%	117.3	118.8	1.5	0.004	< 01	0.01
			73.4 to 50.5m grantie intrusive unit sharp contacts 60 to CA Gneiss - very fine grained groundmass - graduational contact over 1m with abouve unit 80%	50110	98%	118.8	120.3	1.5	0.006	<.01	0.01
96.20	130,50		Cheiss - very time grained groundmass - graduational contact over 111 with aboute unit 60% biotite trace to 5% gamet trace to 1% pyrite on bedding planes 80° to 90° to CA	50111	98%	120.3	121.8	1.5	0.003	<.01	0.02
	<b>↓</b>		tionie trace to 5% gamet made to 1% prime on becomy planes to 10 so to CA 105.6 - 105.7 = 7w, qtz vein barren at 60 ⁴ to CA 119.7m - aggregates of fine grained pyrite to	50112	98%	121.8	123.3	1.5	0.003	<.01	0.01
	┟╍╍╌╺━━╋		105.5 - 105.7 = /W, diz vein barren at our to CA 119.7/ii - aggregates of the grained pyne to 109.8 - 130.5 - fine grained 1mm grains more sx up to 10-15% local po/py along bedding place		98%	123.3	124.8	1.5	0.007	<.01	0.04
	<b>├───</b>			50114	98%	124.8	126.3	1.5	0.004	<.01	0.01
	<u> </u>		Trace cpy in pc/py and in narrow < 11mm veinlets	50115	98%	126.3	127.8	1.5	0.003	<.01	0.02
			locally strongly magnetic, mainly moderately Biolite gamet gneiss; fine grained 3-5% gamets up to 0.5cm in size - bedding 85* to CA 142.0-	50116	98%	127.8	129.3	1.5	0.004	<.01	0.02
130.5	206.3		Biome gamet gneiss; me gnamed 3-3% gamets up to 0.3cm in size - bedding 35 to CA 142.0- line grained bedded gneiss - 140.8 - 147 - quartz flooded gneiss minor chlorite - po 3-5% , min		98%	129,3	130.5	1.2	0.004	<.01	<.01
	<b></b> +		ine grained bedded gneiss - 140.0 - 147 - quanz kooded gneiss makor chionie - po 3-3 a , mine	50118	98%	130.5	132.0	1.5	0.002	<.01	0.01
	I		strongly magnetic - 1% magnetite mixed with the po, all fine grained.	50119	98%	136.3	137.8	1.5	0.002	<.01	0.01
	<b>↓</b>		EOH	50120	98%	142	143.5	1.5	0.002	<.01	<.01
				50120	98%	146.7	148.2	1.5	0.002	<.01	0.01
	╉━━━━╋			50122	98%	154.6	156.1	1.5	0.004	<.01	0.01
	I I			50123	98%	160.7	162.2	1.5	0.003	<.01	0.01
	┨.────┼			50123	98%	167	168.5	1.5	0.004	<.01	0.01
	┝━━┥			50124	98%	172.9	174.4	1.5	0.004	<.01	0.01
	┥──┤			50125	98%	179	180.5	1.5	0.003	<.01	0.01
				50120	98%	1/9	183.5	1.5	0.003	<.01	<.01
	$ \downarrow  \downarrow $			50127	98%	188.1	189.6	1.5	0.004	<.01	<.01
	┟────┤			50128	98%	194.1	195.6	1.5	0.003	<.01	<.01
	┟────┼			50129	98%	201.8	203.3	1.5	0.003	<.01	0.01
	1				3070	241.0	203.3	1.5	0.004		
								1			┿
	ļ	<u> </u>					+		<u> </u>		+
	┢━━━━╋			- <del> </del> *				1	<u> </u>		+
<del></del>	ļ						<u> </u>			<u> </u>	+
	<u> </u>								╂━────	<u> </u>	+
	<u> </u>					···	<u> </u>	<u> </u>	<u> </u>		
	┝────┤						<u> </u>	<u>{</u>	<u> </u>	┥	┽────
	┟────┤				· <b> </b> ·	<u> </u>	+	<b>.</b>	<u> </u>	<u> </u>	╅────
	ļ						+	<u> </u>	┨──────		┼────
							<b></b>	<b> </b>	<u> </u>	<u> </u>	┼───-
							<b></b>	<b> </b>		<u> </u>	<u> </u>
							<u> </u>	<u> </u>		<u> </u>	
							1	L	L	I	1
	1 1						ł	ł	ļ	1	1

	SELKIR	METALS	HOLDINGS CORP DRILL HOLE LOG	Comments		KNEB			HOLE: Page#	KB-05-2 1 of 2		
	· ·	-	Azimuth Dip Depth Azimuth Dip bund, multiple 10 foot runs. h: UTM 6710332N, 381004E, 2300m.	PROPERTY: ZONE: UTM: EASTING: NORTHING: ELEVATION: AZIMUTH: DIP:	ONE 11 Date Begun: Date Finished: Logged by: Depth: Core size:		ished: by:	September September Jim Miller- 190.5m NQ 2				
				1		-50					Assays	
	L			4					ICP	ICP	ICP	
From	To	Ünit	DESCRIPT	SAMPLE#	Recovery	From	To	Length (m)	Cu (%)	Pb (ppm)	Zn (ppm)	
m)	(m)		NO Casing					<u> </u>		- 004	L	
0.00	3.32		Interbedded giz ( white with traces fine grained py - s	lightly oxid.) and light green felsic intrusive	50131	98%	3.2	4.2	1.5	<.001 0.002	<.01	<.01 <.01
			rock bedding at 60* to CA		50132 50133	98% 98%	7.6 19.8	9.1 21.3	1.5	<.001	<.01	<.01
3.20	4.20		light green felsic intrusive rock 5-10% amphibole - cc fine grained biotite gamet gneiss, slightly magnetic p	maci as begging 12 out to CA	50133	98%	22.9	24.4	1.5	<.001	<.01	<.01
4.20	16.50		tine grained biotite garnet gneiss, slightly magnetic p at 60* to CA garnets up to max 0.3cm	o or magneme, very me gramed bedding	50134	98%	24.4	25.9	1.5	<.001	<.01	<.01
10 50	33.00		at 60° to CA gamets up to max 0.3cm quarzite white to oxidized especially on fractures - co	ntact and badding at 60* to CA - fine	50135	98%	30.4	31.9	1.5	<.001	<.01	<.01
16.50	33.00		grained massive groundmass - 22.0m - 80% muscov	rite for 10cm at 60* to CA overall 1-3% pv -	50137	98%	35.1	36,6	1.5	0,001	<.01	<.01
			non magnetic at 19.8 - 20.8 3% py as blebs in fractu	re - fillings up to 0.5cm in size	50138	98%	47.2	48.7	1.5	0.001	<.01	<.01
33.00	144.80		Biotit - garnet gneiss, medium grained garnets pink-	up to .5cm in size - fine bands 80% approx	50139	98%	56.4	57.9	1.5	0.003	<.01	<.01
33.00	144.00		1-5mm in width, 20% bands up to 2cm - all at 60* to	CA - muscovite along fractures	50140	98%	71.6	73.1	1,5	<.001	<.01	<.01
•			Not as foliated from 66.7 - 77.7 - more of a greeish g		50141	98%	80.8	82,3	1.5	<.001	<.01	<.01
			More intensely foliated is slightly magnetic, the rest n	ot, magnetic or fine grained - po,	50142	98%	102.1	103.6	1.5	0.003	<.01	0.01
•	1		disseminated, 60.4 - 61.3 - light med. Grained felsic	nt, dyke - non magnetic and barren.	50143	98%	108.2	109.7	1.5	0.002	<.01	0.01
	1		128 - 129 - 7% po with magnetite 1-2% in quartz floo	ded area.	50144	98%	109.7	111.2	1.5	0.002	<.01	0.01
148.00	183.00		Gneiss - very fine grained laminated at 60% to CA - r	nedium - strong in patches mainly po up	50145	98%	114.3	115.8	1.5	0.002	<.01	0.01
140100		<u> </u>	to 20% , 5% overall, Trace cpv? Laminated bands va	ry from 1mm to 1cm in width from gray to	50146	98%	123.5	125	1.5	0.003	<.01	0.02
			dark gray, no gamets - py disseminated fine grained	2-3% overall	50147	98%	128	129	1	0.003	<.01	0.01
183.00	190.50		Biotite Gneiss		50148	98%	132.6	134.1	1.5	0.002	<.01	0.01
			Medium grained at 60% to CA 1-2% po slightly magn	etic	50149	98%	140.3	141.8	1,5	0.003	<.01	0.01
			EOH		50150	98%	141.8	143.3	1.5	0.003	<.01	0.01
					50151	98%	143.3	144.8	1,5	0.003	<.01	0.02
					50152	98%	144.8	146.3	1.5	0.002	<.01	0.02
					50153	98%	146.3	147.9	1.6	0,003	<.01	0.02
				<u> </u>	50154	98%	147.9	149.4	1.5	0.004	<.01	0.02
	1				50155	98%	149.4	150.9	1.5	0.003	<.01	0.01
					50156	98%	150.9	152.4	1.5	0.004	<.01	0.02
					50157	98%	152.4	154	1.6	0.005	<.01	0.01
					50158	98%	154 155.5	155.5	1.5 1.5	0.004	<.01	0.01
					50159	98%	105.5	158.5	1.5	0.003	<.01	0.03
					50160	98%	158.5	156,5	1.5	0.003	<.01	0.01
	<u> </u>		······································		50162	98%	156.5	161.5	1.5	0.005	<.01	0.02
	┝───┥				50163	98%	161.5	163.1	1.6	0.003	<.01	0.02
				· · · · · · · · · · · · · · · · · · ·	50163	98%	163.1	164.6	1.5	0.003	<.01	0.01
					50165	98%	164.6	166.2	1.6	0.004	<.01	<.01
	<u>├</u>				50166	98%	166.2			0.002	<.01	<.01
	┟╴╴╍╼╼┨			······································	50167	98%	167.7		1,5	0.002	<.01	<.01
	<u> </u>		· · · · · · · · · · · · · · · · · · ·		50168	98%	169.2	170.7	1.5	0.002	<.01	<.01
<u> </u>	╏─────┤				50169	98%	170.7	172.3	1.6	0.002	<.01	0.01
	┼╌╴┈┥		and the second		50170	98%	172.3	173.8	1.5	0.002	<.01	<.01
	┟┈╌╌╼┥				50171	98%	173.8	175.3	1,5	0.002	<.01	0.01
	┨────┥				50172	98%	175.3	176.8	1.5	0.001	<.01	<.01
	┼───┤				50173	98%	176.8	178.3	1.5	0.002	<.01	<.01
	<del>(</del>				50174	98%	178.3	179.8	1.5	0.002	<.01	0.01

	SELKIR	K METALS	HOLDING						<u></u>				HOLE: Page#	KB-05-02 2 of 2			
	Tests:	Depth	Azimuth	Dip	Depth	Azimuth	Dip	Comments	PROPERTY: ZONE: UTM: EASTING: NORTHING: ELEVATION: AZIMUTH: DIP:	KNEB NAD 83, ZO 381001 5710351 2300m 270° -50	NE 11	Date Be Date Fin Logged Depth: Core si	hished: by:	September 9, 2005 September 11, 2005 Jim Miller-Tait 190.5m NQ 2		5	
														ICP	ICP	IC	
rom	To	Unit				DE	SCRIPTIO	N	SAMPLE#	Recovery	From	To	Length (m)	Cu (%)	Pb (%)	Zn (	
2	(m)															$\vdash$	
									50175	98%	179.8	181.4	1.6	0.002	<.01	<.(	
									50176	98%	181.4	182.9	1.5	0.003	<.01 <.01	<.(	
			l						<u>50177</u> 50178	98% 98%	182.9 184.5	184.5 186	1.6 1.5	0.004	<.01	0.0	
			<b>├</b> ────						50178	98%	186	187.5	1.5	0.003	<.01	0.0	
			<b> </b>						50179	98%	187.5	189	1.5	0.003	<.01	- <u>0</u> .	
									50180	98%	189	190.5	1.5	0.003	<.01	0.	
										30 /0	103	130.0	<u> </u>	0.000		+	
			<u> </u>									┼┈───	1			<u>+</u>	
						·											
	·									-			1			<u> </u>	
			<u> </u>						·····	1							
			1					<u> </u>				1				1	
								· · · · · · · · · · · · · · · · · · ·									
			t									1				1	
													1	·····		1	
												T					
						Ŧ											
												1					
													L			ļ	
													ļ			<b>_</b>	
					<u></u>								ļ			L	
								······				ļ				<b> </b>	
			L							4		<b> </b>	l			┟───	
										- <b> </b>		<b> </b>	<b> </b>			<u> </u>	
			<u>↓</u>										<b> </b>			┼──	
					<u></u>			······································				<u> </u>	<u> </u>			<del> </del>	
													<u> </u>			t	
												<u>                                      </u>	<u> </u>		·····	t	
			<u> </u>										<u> </u>		<u>_</u>	t	
										·			<u> </u>			<u> </u>	
			<u> </u>					· · · · · · · · · · · · · · · · · · ·					<u> </u>			<u>├</u> ────	
			[				·····						t			<u> </u>	
			<u> </u>					<u></u>		1		<u> </u>	t			<u> </u>	
			<u> </u>					· · · · · · · · · · · · · · · · · · ·		1						<u> </u>	
	(									1			<u> </u>			†	
			1							1			1			<u> </u>	
			<u> </u>							11							
			1					······································								<u> </u>	
								······································								r	
												·	+			h	

and the second second

## SECTION F: ILLUSTRATIONS

Plan Number	Title	Scale
KB-05-1 (after p.3)	General Location Plan	1:250 000
KB-05-2 (after p.3)	Location Plan	1:50 000
KB-05-3 (after p.3)	Mineral Claims	1:50 000
KB-05-4 (in pocket)	Regional Geology	1:25 000
KB-05-5 (in pocket)	Drill Hole Plan	1:20 000
KB-05-6 (in pocket)	Drill Section – KB-05-01	1:500
KB-05-7 (in pocket)	Drill Section – KB-05-02	1:500



Orthogneiss – augen gneiss, granitic gneiss, amphibolite
SYMBOLS
Geological Contact (defined, approximate, assumed)
Bedding (tops known, unknown)
تور محمل Foliation (P1, P2)
Lineation (P1, P2, P3) ①/ /
Minor Fold – Axial Plane (P1, P2, P3)
– Axis (P1, P2, P3)
Antiform (phase designated)
Synform (phase designated)
Syncline (overturned)
Fault - Normal
- Thrust (approximate, assumed)
Mineral Prospect Pb
Diamond-drill Hole
Glacier
Contours in feet 3500







