2005 GEOCHEMICAL, GEOLOGICAL, PROSPECTING AND TRENCHING REPORT MERIT PROPERTY (Tenure nos. 511682, 511707, 506068, 518712)

Nicola Mining Division, British Columbia NTS: 92I/3; BCGS: 092I005/015 Latitude 50°07'N, Longitude 121° 05'W UTM Zone 10: 637000E, 5553000N (NAD 83)

West Vancouver, BC, V7T 1Z1

TABLE OF CONTENTS

. _.._

1.0	SUMMARY AND CONCLUSIONS	Page 1	
2.0	RECOMMENDATIONS		
3.0	 INTRODUCTION 3.1 Location, Access, Physiography and Climate 3.2 Claim Data 3.3 History 3.4 2005 Exploration Program 	4 5 6 7	
4.0	 GEOLOGIC SETTING 4.1 Regional Geology and Mineral Deposits 4.2 Property Geology, Alteration and Mineralisation 	8 8 9	
5.0	 GEOCHEMISTRY 5.1 Introduction 5.2 Sampling and Analytical Procedures 5.2.1 Quality Control 5.3 Stream Sediment and Soil Geochemical Results 5.3.1 Stream Sediments 5.3.2 Reconnaissance Soil Samples 5.3.3 Grid Soil Samples – Sullivan Ridge Grid 5.3.4 Grid Soil Samples – Main Grid 5.4 Prospecting and Reconnaissance Rock Geochemical Results 	12 12 13 14 14 15 16 17 18	
6.0	PHYSICAL WORK6.1Hand Trenching6.1.1Trench SRT05-1 Results6.1.2Trench SRT05-2 Results6.1.3Trench SRT05-3 Results6.1.4Trench SRT05-4 Results6.1.5Trench SRT05-5 Results6.1.6Trench WZT04-1, 2 Results6.1.7Trench WZT04-3 Results	20 20 21 21 21 21 21 22 22	
7.0	PERSONNEL AND CONTRACTORS	23	
8.0	STATEMENT OF COSTS	24	
9.0	STATEMENTS OF QUALIFICATIONS	25	
10.0	REFERENCES	27	

TABLES

<u>Page</u>

Table 1	Mineral Claim Summary	5
Table 2	Geochemical Sample Summary	12
Table 3	Trench Summary	20

1

.....

FIGURES

	Ē	Following Page
Figure 1	Property Location and Regional Geology Map	3
Figure 2	Claim Map and Work Distribution	7
Figure 3	Soil Sample Histograms – Au, As, Sb	16
Figure 4	Soil Sample Histograms – Hg, Mo	16
Figure 5A	Sullivan Ridge Grid GOLD Soil Geochemistry	16
Figure 5B	Sullivan Ridge Grid ARSENIC Soil Geochemistry	16
Figure 5C	Sullivan Ridge Grid ANTIMONY Soil Geochemistry	16
Figure 5D	Sullivan Ridge Grid MERCURY Geochemistry	16
Figure 5E	Sullivan Ridge Grid MOLYBDENUM Soil Geochemis	try 16
Figure 6A	Sullivan Ridge Zone Trench SRT05-1 Plan	20
Figure 6B	Sullivan Ridge Zone Trench SRT05-2 Plan	21
Figure 6C	Sullivan Ridge Zone Trench SRT05-3 Plan	21
Figure 6D	Sullivan Ridge Zone Trench SRT05-4 Plan	21
Figure 6E	Sullivan Ridge Zone Trench SRT05-5 Plan	21
Figure 7A	West Zone Trench WZT04-1, 2 Plan	22
Figure 7B	West Zone Trench WZT04-3 Plan	22

APPENDICES

Appendix A	Merit Area Pre-Staking Recon Sample Summary Table
	& Acme Analytical Geochemical Certificates

Appendix B Merit Area Post-Staking Recon Sample Summary Table & Acme Analytical Geochemical and Assay Certificates

PLATES

(in pockets)

1

		<u>Scale</u>
Plate 1	Compilation Map	1:15,000
Plate 2A	Reconnaissance Stream Sediment and Soil Sample	
	Locations	1:15,000
Plate 2B	Reconnaissance Stream Sediment and Soil Sample	
	Gold Results	1:15,000
Plate 3A	Reconnaissance Rock Sample Locations	1:15,000
Plate 3B	Reconnaissance Rock Sample Gold Results	1:15,000
Plate 4A	SULLIVAN RIDGE Geology & Rock Sample Locations	1:1,500
Plate 4B	SULLIVAN RIDGE ZONE Detailed Geology & Rock	
	Sample Locations	1:500
Plate 5A	Main Grid GOLD soil Geochemistry	1:15,000
Plate 5B	Main Grid ARSENIC Soil Geochemistry	1:15,000
Plate 5C	Main Grid ANTIMONY Soil Geochemistry	1:15,000
Plate 5D	Main Grid MERCURY Soil Geochemistry	1:15,000
Plate 5E	Main Grid MOLYBDENUM Soil Geochemistry	1:15,000

1.0 SUMMARY AND CONCLUSIONS

Between 2002 and 2004 Almaden Minerals Ltd. personnel explored a parcel of ground underlain by the Cretaceous Spenses Bridge Group volcanic assemblage west of Spius Creek and south of Highway 8, near Merritt, BC. The target was low sulphidation epithermal gold deposits. Encouraging results from prospecting, reconnaissance stream sediment, soil and rock sampling led to the staking of the MERIT property in late 2004. The property has been covered with a relatively coarse soil grid (1077 samples), and the main zone of mineralisation and alteration (now Sullivan Ridge) has been geologically mapped and explored with a soil grid (105 samples), additional rock grab samples and five short hand trenches which were mapped and channel sampled. The West Zone has also been explored by limited hand trenching with related mapping and rock sampling.

All stream sediment and soil samples were analysed for 36 elements by ICP-MS. The results show that the As, Sb, Hg and Mo results correlate variably well with the Au results. Five of the stream sediment samples collected on or around the property returned gold results >10ppb. Re-sampling of three of these failed to replicate the original results. Four major (including Sullivan Ridge) and numerous minor gold-in-soil anomalies were defined, with associated As, Sb and Hg anomalies. In general, elevated arsenic values coincide with and extend beyond anomalous gold results; anomalous antimony results coincide with gold anomalies, but may be more or less extensive; higher mercury values tend to flank gold anomalies. Molybdenum correlates well with gold only on Sullivan Ridge.

All rock samples, reconnaissance (115 samples) and trench (45 samples), were also analysed for 36 elements using ICP-MS, but only the gold values have been studied statistically and displayed. Sixty two (53.9%) of the reconnaissance rocks returned >100ppb Au, and 19 (16.5%) reported over 1000ppb Au. The highest value is 7916.4ppb Au. Most of the reconnaissance rock samples comprised angular pieces of loose country rock containing quartz veins or clasts, or visible quartz-iron carbonate alteration. On Sullivan Ridge, at the north end of which a one to two metre wide quartz zone has been traced for 80m, 22 reconnaissance rock samples were taken. Of these, 11 reported above 100ppb Au, and 5 returned >1000ppb Au. Fifty-seven of the reconnaissance rock samples were taken on or south of Discovery Hill, an exposure of hematitic silica-altered andesite located over two kilometres to the SSW of Sullivan Ridge. Of these, 34 returned >200ppb Au and 11 yielded >1000ppb Au. Six of the seven highest values are from this latter group.

Of the 45 samples taken from eight trenches, 22 (48.9%) yielded >100ppb Au and 5 (11.1%) gave over 1000ppb Au. The highest value was 11,523ppb Au, which on assay gave 14.94g/t Au. Five of the trenches were dug on Sullivan Ridge, and the four over the quartz zone at the north end of this ridge are responsible for all the high values. The best mineralised interval encountered to date at **Sullivan Ridge** occurs in **trench SRT05-5**, where three contiguous channel samples yielded **7.24g/t Au averaged over a true width of 1.8m**. Two of the trench samples were grab samples of broken material exposed while trenching in the West Zone; the remainder were channel samples, 0.28m to 1.15m in length, taken with a hammer and chisel. The sample weights varied from 3 to 12kg. The West Zone trench samples returned only low gold values.

The work conducted during 2004 and 2005 led to the discovery of one goldmineralised quartz zone on Sullivan Ridge, a second quartz zone 1.5 km to the west (West Zone), and a large area containing gold-bearing quartz cobbles in the southeast corner of the property. The presence of four well defined high gold soil anomalies, one of which corresponds with Sullivan Ridge, indicates very prospective ground. The strong association of arsenic, antimony and mercury with gold, the presence of abundant chalcedony and silicious iron carbonate alteration are typical of a low sulphidation epithermal gold environment. The characteristic trace element geochemistry and classic mineral textures observed to date, including quartz pseudomorphs of lattice-bladed calcite, are indicative of the upper portions of an epithermal system. This implies only shallow erosion of the source deposit(s). A prime target area is the gold anomaly east of Discovery Hill.

Further exploration on the MERIT claims is definitely warranted, and is strongly recommended.

2.0 RECOMMENDATIONS

The following program is recommended for the MERIT property:

- 1) Detailed grids, with lines 50m apart and sample stations at 25m intervals, should be established and soil sampled in all areas where the Main Grid soil sampling results indicate a soil gold anomaly.
- 2) The Sullivan Ridge Grid should be extended to the north by 200m, and soil sampled at 50m x 25m spacing.
- 3) Trench SRT05-5 should be extended to the west by 40m. This will require the use of a small trenching machine.
- 4) Assuming success, additional 40m long trenches should be excavated 20m north and south of trench SRT05-5. These trenches could lead to additional trenching for definition of drill targets.
- 5) All gold soil anomalies should be vigorously prospected.
- 6) The mineralised float cobbles found south and east of Discovery Hill should be traced. It is suspected that Gold Anomaly C is the source area.

Respectively submitted

E.A. Balon, P. Geo

3.0 INTRODUCTION

This report describes the results of exploration work conducted during the initial (2004/05) anniversary year on the MERIT claim group, to substantiate the related expenditures applied for assessment credits.

3.1 Location, Access, Physiography and Climate (Figures 1 & 2)

In straight line distance the MERIT property is centered 21.6km west of the city of Merritt, at latitude 50°07'N and longitude 121°05'W (UTM Zone 10: 637000E, 5553000N) in NTS map area 92I/3. Good ground access is afforded via Provincial Highway #8 from Merritt, 18km west to the old community of Canford, then 7.6km southwesterly via the Sunshine Valley/Spius Creek – Prospect Creek gravel forestry road system, then 3.6km west and northwest via old logging spurs into the east central property area at the common Legal Corner Post (LCP) of the former MERIT 1 (#414111) and MERIT 2 (#414112) legacy claims. From near this point, the old and partly serviceable logging trail networks extend farther into the central and southern property areas. The northern portion of the claim group is accessible by several branch trails off the Edgar Creek Forestry Road.

The MERIT claims are situated within the Intermontane physiographic region of rolling upland terrain on the southern Interior (Thompson) Plateau, near the southeast end of the more locally defined Nicoamen Plateau. Topography is moderate to locally steep, with elevations ranging from between 800m and 900m (2,625ft to 2,950ft) above sea level along the east property boundary to a high of nearly 1,340m (4,400ft) along the west boundary.

The deeply incised canyon of Spius Creek, with a floor elevation of 550m to 600m, is located about 3km east of the claim group. The property covers four drainages which flow generally eastwards into Spius Creek, which in turn flows northward into the Nicola River. From north to south, these drainages are James Creek, Roberts Creek, Richardson Creek and August Creek. The northwestern property area is drained by Edgar Creek which passes northward and eastward into Nuaitch Creek, another tributary of the Nicola River.

Soil and glacial till cover is extensive and generally shallow, but includes locally deep mounds (to >5m thickness) particularly in the southeast quarter of the claim block. Overall bedrock exposure is moderate to locally abundant in road cuts and in some of the stream gullies, as well as on steep upper slopes and ridge tops. Glacial striae have not been observed to date in outcrop on the property; however, the local ice flow direction is shown as southerly in the published literature (Ref GSC Paper 79-25, Figure 12, p 13).

The climate is semi-arid, with commonly hot dry summers having temperatures in the 25^oC to 35^oC range at Merritt. All areas of the property are generally free of snow from late May or early June through October.

Vegetation consists mainly of widely spaced lodgepole pine, Ponderosa pine and Douglas fir changing to more dense balsam fir, spruce and cedar along creek valleys. Dense brush consisting of alder and grey/red willow is common along most of the stream gullies and road cuts, and in swales between topographic highs. Approximately 50% of the property area has been logged (pre 1960?). Cattle grazing is currently common throughout the area, and the most northeasterly portion of the claim group overlaps private land held by the James Creek Ranch.

3.2 Claim Data

The present property consists of four contiguous mineral claims with an aggregate land area of 1906.557 hectares (~19 km²) in the Nicola Mining Division, BCGS map areas 0921005/015. An initial group of two 4-post claims (MERIT 1 & 2, Tenure Nos. 414111 & 414112) was acquired by physical staking during September 08-13, 2004; four 2-post (physical) claims (MERIT 3-6, Tenure Nos. 414113-414116) were added on September 16, 2004 and an additional three 2-post claims (MERIT 7-9, Tenure Nos. 416223-416225) were added on November 29, 2004.

Following implementation of the Mineral Titles Online (MTO) electronic acquisition system, a new BCGS grid cell claim – MRT 1, Tenure No. 506068 – was acquired on February 7, 2005. The MERIT 1-9 legacy claims described above were converted into cell claims (Tenure Nos. 511682 & 511707) on April 26, 2005, and an additional cell claim – MRT 2, Tenure No. 518712 – was acquired on August 04, 2005.

Locations of the current claims are shown on Figure 2 and the respective claim data are summarized in Table 1. The expiry dates as listed in the table are subject to approval of the work filed in conjunction with this report (Event No. 4047557). All of the claims are 100% owned by Almaden Minerals Ltd. (FMC #144134).

Table 1:Mineral Claim Summary – as at January 1, 2006.

<u>Tenure No.</u>	<u># Cells</u>	<u>Area, ha</u>	Expiry Date
511682	25	518.272	2010/Dec 31
511707	39	808.071	2010/Dec 31
506068	20	414.386	2010/Dec 31
518712	8	165.828	2010/Dec 31
	<u>Tenure No.</u> 511682 511707 506068 518712	Tenure No.# Cells5116822551170739506068205187128	Tenure No.# CellsArea, ha51168225518.27251170739808.07150606820414.3865187128165.828

3.3 History

There are no published records of any prior mineral exploration work in the area covered by the MERIT property, and there are no previously documented mineral occurrences for this locality in the BC Minfile database. No old claim posts have been found to date, however a few very old (apparent) prospect pits are discernible on Sullivan Ridge.

In 1981 a federal-provincial government Regional Geochemical Survey was carried out over the entire Ashcroft (NTS 92I) map area. The initial results of this survey were published in 1982 as BC RGS 8/GSC Open File 866. In 1994 the sample pulps were re-analyzed by improved techniques and for additional elements, including gold. The new data were published as BC RGS 40/GSC Open File 2666 which identified two moderate gold-in-silt anomalies (both 7ppb) located in the August Creek and Richardson Creek drainages, represented by sample sites numbered 811070 and 811072, respectively.

During the summers of 2002 and 2003, Almaden personnel (Balon, Jakubowski) conducted regional exploration which included two brief stages of prospecting and follow-up geochemical sampling within the above drainages as well as in Roberts, James and Edgar Creeks to the north. Totals of 17 stream sediment, 15 reconnaissance soil and four reconnaissance rock grab samples were collected for multi-element analysis by Acme Analytical Laboratories Ltd. (Acme) of Vancouver, BC. The results of this work confirmed the anomalous gold content in Richardson Creek and generated two new gold-in-silt anomalies in Roberts and Edgar Creeks (10.1 and 13.6ppb Au, respectively). A large quartz-carbonate boulder was noted along a road between Richardson and August Creeks. Iron-rich carbonate alteration and yellow-orange soil colour anomalies were noted elsewhere within and peripheral to the present claims area.

During the summer of 2004, prior to claim staking, Almaden personnel (Balon, Sullivan) carried out more intensive exploration of the area, particularly in the August and Richardson Creek drainage basins. The program included detailed road cut and stream gully prospecting in conjunction with further geochemical sampling. An additional 34 stream sediment, 13 reconnaissance soil and 68 rock grab samples were collected and analysed by Acme for 36 elements. The 2004 work resulted in the identification of numerous significant gold-bearing quartz float occurrences and of a local strongly altered and brecciated outcrop carrying anomalous multi-element values (Discovery Hill). This prompted the staking of the initial MERIT claims. More extensive alteration and mineralisation, called the Sullivan Ridge Zone, was found during claim line location.

All of the 2002 – 2004 (pre-staking) sample locations, descriptions and selected analytical data are included in this report as Appendix A.

3.4 2005 Exploration Program

Post-staking fieldwork in the autumn of 2004 and during 2005 consisted of grid soil geochemical sampling surveys (1,182 samples), further prospecting and reconnaissance geochemical sampling (1 stream sediment, 8 soil, 43 rock samples), geological mapping of the Sullivan Ridge area, and limited hand trenching with related bedrock mapping/sampling in two mineral zones (45 trench rock samples). All of the samples were delivered to Acme in Vancouver, BC, for 36-element geochemical analysis plus a few selected gold/silver assays.

The great majority of this program was conducted on the conversion claims with Tenure Nos. 511682 and 511707 prior to their first anniversary dates of September 11 and 13, 2005, respectively. Minor prospecting was carried out on Tenure No. 518712 after its August 4, 2005, acquisition date and minor additional trenching was done at the Sullivan Ridge Zone on Tenure No. 511707 on November 1, 2005. The work was conducted by one company employee and four contract personnel, all based at the Douglas Motel in Merritt, BC. The company employee acted as overall supervisor and Qualified Person (QP) for the project. All UTM grid locations were initially recorded in NAD 27 using Garmin 12XL handheld GPS receiver units; these readings were later converted to NAD 83 for presentation purposes. The work types and distribution are shown on Figure 2.

The 2004 – 2005 post-staking reconnaissance sample locations, descriptions and selected analytical data are tabled in Appendix B.

4.0 GEOLOGY

4.1 Regional Geology

The regional bedrock geology is shown on Figure 1. This figure covers part of the southern Intermontane Tectonic Belt of the Canadian Cordillera; it was compiled and simplified from GSC Maps 42-1989 (Ashcroft, by J.W.H. Monger and W.J. McMillan, 1989) and 41-1989 (Hope, by J.W.H. Monger, 1989).

Lithologies within the Figure 1 map area include successions of Mesozoic to Tertiary volcanic and sedimentary rocks which have been intruded by plutons of various compositions and ages from Late Triassic and/or Jurassic to Miocene(?). Locally thick deposits of Pleistocene and Recent glacial drift and alluvium are commonly found in all of the major creek and river valleys. Much of the region was overridden during the last Pleistocene glaciation by ice moving generally southeastwards, but more directly southwards in the MERIT – PROSPECT VALLEY area (Nicoamen Plateau; Ryder, 1975).

The dominant rock assemblage underlying the MERIT property is the Cretaceous Spius Creek Formation, a basaltic andesite unit (KSBs). This is the upper sequence of the Spences Bridge Group (KSB / KSBs) which is a broad northwest-trending thick sequence of gently folded volcanics with lesser sediments, dipping shallowly to the northeast. This assemblage includes intermediate, locally felsic and mafic flows and pyroclastics with some sandstone, shale and conglomerate (KSB). The upper division was formerly called the Kingsvale Group by earlier government geologists (Rice, 1947; Duffell and McTaggart, 1952; and others before Thorkelson, 1985).

The Spences Bridge Group unconformably overlies older plutonic rocks, mainly granodiorite to diorite/gabbro of the Triassic-Jurassic Mount Lytton Complex (TrJgd) 5km southwest of the property. The Spences Bridge Group is unconformably overlain by Eocene Princeton/Kamloops Group (EP, EK) mafic and felsic volcanics. The GSC mapping indicates that the southwest corner of the property is covered with Eocene (EP) rocks, but their contact with the Spenses Bridge Group has not been traced in the field. Small Miocene(?) intrusions of intermediate composition (Ti) have been found in contact with EP, KSBs, and older rocks.

The major structural features in the region are steeply dipping normal faults. The Spius Creek Fault, 1 - 2km east of the property, appears to be the southern continuation of the Lornex (Big Divide) Fault which transects the Guichon Batholith north of the MERIT property. The Spius West Fault is parallel to the Spius Fault and lies along the east boundary of the property. These faults are parallel to subparallel to the Fraser River Fault System. Although faults have been mapped with a variety of attitudes, the dominant trends are north-south and $140^{\circ} - 150^{\circ}$ (Monger, 1981). It has been postulated that the rocks of the Spences Bridge Group formed as a chain of stratovolcanoes associated with subsiding, fault bounded basins (Souther, 1991 and Thorkelson, 1985).

Low sulphidation type epithermal gold mineralisation hosted by quartz veins and breccia in carbonate altered Spences Bridge volcanics has been found from the MERIT to the SKOONKA CREEK (formerly SAM) properties, a distance of 40 kilometres (Figure 1). Major producers and past-producers in the area include the Highland Valley Mine, Bethlehem Copper and Lornex (all large volume porphyry copper deposits), and Craigmont, a copper-iron skarn deposit northwest of Merritt.

4.2 **Property Geology, Alteration and Mineralization** (Plates 4A, 4B)

No effort has been made to date to geologically map the entire MERIT property in a systematic manner. Sullivan Ridge and the Sullivan Ridge Zone were mapped at 1:1000 scale during August, 2005 (Plates 4A, 4B). The Sullivan Ridge trenches (Figures 6A to 6E) were mapped and sampled at the same time. West Zone trenches (Figures 7A, 7B) were sketch mapped in October, 2004, then expanded and re-mapped during August, 2005.

Sullivan Ridge is a prominent ridge of andesitic rocks. On the west the rocks are dark grey-green, fine to medium grained unaltered pyroxene andesites (AV). One small subcrop of weakly silicious, ankeritic andesite breccia (JH-25) was seen in this horizon, and two small outcrops of weakly altered andesite (JH-27, 34) were noted nearby. Slightly porphyritic andesite (PV) with 1mm x 3mm phenocrysts of white feldspar were seen in a couple of locations. Moving easterly to the top of the ridge weakly vesicular andesites (VV) are present. Vesicles comprise 5% to 10% of the rock, and locally are filled with white calcite. This belt appears to vary from 20m to 85m in thickness.

Adjoining the vesicular volcanics on the east is a narrow horizon of variably altered (silica, ankerite) andesitic volcanics (AVa) which grade into a more intensely altered andesite breccia (VBa). Clasts within the breccia are predominantly silicified andesite in a variably silicious and ankeritic matrix with an increasing quantity of clasts of silica/ankerite altered andesite, quartz and chalcedony to the east. The colour of this unit varies from pale yellowish on the west through yellow-orange to rusty orange on the east. The VBa unit hosts the quartz veins exposed in trenches SRT05-1, 2, 3 & 5.

East of the breccia horizon is a belt of intensely carbonate altered and silicified rusty orange AV(?) or VBa(?) of undetermined width. Outcrops of this resistant material (SI/AK) form a line of knobs across the rubble-covered hillside down slope from the quartz horizon. The contact between VBa and SI/AK strikes 000° and dips 90° . The minimum thickness of the SI/AK horizon is 2m (JH-41). The eastern contact of the SI/AK is covered by overburden.

The predominant alteration assemblage in the area is quartz-carbonate flooding of brecciated andesite. The carbonate is believed to be ankerite due to the yellowish orange colour. The intensely altered rock is rusty orange and brittle (SI/AK), and clasts of this material occur in the VBa, SI in the trench exposures.

In the trenches, the most abundant mineral is quartz, as narrow to wide veins and as clasts in breccia. In many cases the quartz is chalcedonic. Sulphides are conspicuous by their absence, and native gold has not seen, either with a hand lens or a microscope. Hematite was observed locally, i.e., trench SRT05-5, and variable limonite after primary hematite in the AV host rock is widespread in the altered zones.

The quartz "vein" exposed in trench SRT05-1 appears to have formed by replacement of the host VBa. Poorly defined clasts of SI/AK occur in the VBa. The attitude of the west contact of the vein is 005⁰/90⁰. In trench SRT05-2, the quartz zone is 80% to 100% replacement of VBa by white and chalcedonic quartz. The western contact is a steeply dipping to vertical shear.

The vein in trench SRT05-3 is very similar to those exposed in the first two trenches, but the north end is truncated by a fault $(312^{0}/90^{0}-85^{0}NE)$. In trench SRT05-4 at the southern end of the ridge the quartz vein has a well defined eastern contact against the AVa at $010^{0} - 012^{0}/90^{0} - 80^{0}W$. The quartz "vein" in trench SRT05-5 has a well defined contact with the hanging wall AVa $(348^{0}/90^{0})$, whereas the footwall contact is gradational from AVa to SI/AK to quartz vein, and locally is very hematitic. This contact zone is estimated to be at $000^{0}/85^{0}W$. Within the vein is a second transitional zone of incompletely replaced SI/AK with quartz stringers.

Within the context of the limited trench-exposed mineralisation, the gold content is highly variable. Visually, the quartz seen in trenches SRT05-1, 2, 3 and 5 is very similar, yet the gold content of the quartz varies from only 20ppb in trench SRT05-3 to nearly 15g/t in trench SRT05-5. A cursory examination of the 36 element analytical results from the trench samples indicates a strong positive correlation between arsenic and gold, and possibly a weak negative correlation between iron and gold.

Faults have been postulated for the creation of three gullies in VV on the west side of the mapped area, but no offsets were seen. Joints and fractures have a generally northwesterly strike and dip steeply east to west. Faults with gouge were mapped in trenches SRT05-2 and 3, and in WZT04-3.

The El Gordo feature (Plate 1) is a prominent linear alteration zone that is intermittently traceable on the ground between the north end of Sullivan Ridge and Discovery Hill, a distance of 2.7km at an average azimuth of 201° . This feature is also readily discernible on the BC MapPlace digital elevation model (DEM) hillshade image of the area. On the ground, prospecting on a compass line run along the trend confirmed the presence of locally strong clay and iron-rich carbonate alteration, silicification and brecciation in float and small patches of subcrop. Discovery Hill is a narrow, low ridge (60m long x 10-25m wide) underlain by AVa with similar but much stronger alteration characteristics. This includes patchy intense hematitic silica replacement-type mineralisation carrying weakly elevated gold values (up to 88.8ppb); anomalous copper, arsenic and antimony; and strongly anomalous barium (up to 1688ppm) and mercury (to 3.51ppm).

A large number of float fragments containing quartz were found south and east of Discovery Hill. Their provenance has not been determined. Of thirty samples taken, twenty-two yielded analyses between 309ppb and 7,916ppb gold. Several pieces of lattice-textured bladed calcite with quartz pseudomorphs were found at two separate localities in this area. This texture is considered characteristic of boiling at the upper level of the precious metal deposition zone in an epithermal system.

In the West Zone the quartz vein has well defined contacts with the host andesite. Alteration of the andesite is predominantly silicification with minor ankerite, and sparse disseminated pyrite was noted in the AVa in trench WZT04-1. The gold content of the quartz in the three trenches varied between 5ppb and 395ppb.

5.0 GEOCHEMISTRY

5.1 Introduction

Geochemical sampling on and surrounding the present MERIT property area between 2002 and 2005 included the collection of stream sediment, soil and rock samples in a number of localities. Table 2 lists the sample types, sample numbers and number of samples collected pre- and post-staking.

Table 2:Geochemical	Sample Summary
---------------------	----------------

Sample type	Sample number series	Number of samples
Stream sediments	MC-xxx	51
Soils, recon	MC-Sxxx	28
Rocks, recon	MC-Rxxx	72
Stream sediments	MC-xxx	1
Soils, recon	MC-Sxxx	8
Soils, SR Grid	Grid coordinates	105
Soils, Main Grid	Grid coordinates	1077
Rocks, recon and	MC-Rxxx	43
Trench	MC-Rxxx	45

Notes: Pre-staking samples are indicated by italics. SR Grid indicates the Sullivan Ridge Grid.

All samples were analysed for 36 elements. Complete results for these samples are listed on the Acme Analytical Laboratories Ltd. (Acme) Geochemical Analysis Certificates contained in Appendix A (Pre-Staking) and Appendix B (Post-Staking).

Also included are the Acme Assay Certificates for the selected rock samples submitted for assay. Tables in these Appendices list the samples, their UTM coordinates, brief descriptions and selected analytical results. Stream sediment and reconnaissance soil sample locations and numbers are plotted on Plate 2A; rock sample locations and numbers are shown on Plates 3A, 4A and 4B, and Figures 6A to 6E, 7A and 7B.

5.2 Sampling and Analytical Procedures

Sample locations were marked in the field in two ways. Stream sediment, recon rock and Sullivan Ridge Grid sample locations were indicated using pink flagging and labelled Tyvek tags. The Main Grid soil sample locations were marked with blue and orange flagging plus labelled Tyveck tags. UTM coordinates were determined for stream sediment and recon rock sample locations using a handheld GPS instrument. To locate soil samples on the Sullivan Ridge Grid, GPS readings were taken on the baseline and at the ends of each cross line. Intermediate stations were interpolated. The start position of each Main Grid cross line was determined with a GPS instrument, intermediate readings were taken on each line at approximately 500m intervals, and the intervening sample locations calculated by interpolation. All readings were taken using the NAD 27 datum; these were later converted to the NAD 83 datum for presentation. The samples were shipped to Acme in Vancouver, BC, for 36-element analysis by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS).

Soil samples on the Sullivan Ridge Grid were collected at 25m intervals using a hip chain on ESE – WNW ($110^{\circ} - 290^{\circ}$) flagged compass lines spaced 100m apart. The sample spacing on the Main Grid was 50m, and the lines were nominally 200m apart. Soil sample holes were dug with a mattock or rock hammer, and about 0.5 kg of material collected. In most cases the B horizon was sampled, but in a few rocky locations the C or combined B/C horizon was sampled. Stream sediment samples (about 0.5kg) were collected from the finest silt/sand material available in the active channel, with minimum organic matter. Both types of sample were placed in labelled 10cm x 15cm Kraft paper bags and shipped to the laboratory. Sample preparation there involved drying at up to 60°C and sieving up to 100 grams from each sample to -80 mesh. Depending on the amount of -80 mesh material obtained, a 7.5, 15 or 30 gram subsample was cut and then leached with 180ml of 2-2-2 HCI-HNO₃-H₂O solution at 95°C for one hour, followed by dilution to 600ml and ICP-MS analysis.

Rock sample individual weights varied from <1 - 3kgs for float samples to 2.5 - 10 kgs for bedrock (continuous chip or channel) samples. Float samples consisted of chips taken from one or two larger cobbles, or of several smaller fragments collected from an area of a few square metres. Individual samples were placed in labelled plastic bags, with a label also placed within the bag, and shipped to the Acme laboratory in Vancouver. At the lab each rock sample was crushed to 70% passing 10 mesh followed by pulverizing a 250gm split to 95% passing 150 mesh. A 30gm subsample of each was digested and analysed as above.

5.2.1 Quality Control Measures

All of the soil sampling was conducted by very experienced samplers, with spot field checks by the Qualified Person (QP). Stream sediment and rock samples were collected by or under the direct supervision of the QP. All samples were accounted for, packed with due diligence and personally delivered to the Acme laboratory by the QP.

One stream sediment sample site (MC-128) was resampled (MC128-3) in an effort to replicate the original gold result. This was unsuccessful. At the time each of four sites (MC-127, -128, -136 and -138) was sampled, a bulk sample (~5kg) was also taken over 5 - 10m of stream bed and wet-sieved in order to collect more abundant fines for later (laboratory) generation of a -230 mesh subsample. These field-sieved samples (denoted with an S suffix in the sample

number) were handled and analysed in the same fashion as the conventional smaller sized (unsieved) samples from which only -80 mesh subsamples were generated. At two locations (MC-127S, 2.3ppb Au; MC-138S, 11.8ppb Au) the gold results from the -230 mesh fractions were markedly better than those from the regular samples (MC-127, 1.1ppb Au; MC-138, 1.7ppb Au). At the other two locations the gold results for the field-sieved samples (-230 mesh fractions) were markedly lower. The additional time/cost of field sieving samples mitigated against using this technique on a regular basis.

One of several soil stations on the Sulivan Ridge Grid which had returned very high gold results from initial sampling in October 2004 was resampled during 2005. The resample from this site (00S – 50W) returned a gold analysis of 317.1ppb versus 301.9ppb from the original (2004) sample. The resample values of other elements of interest – Ag, As, Sb, Hg, and Mo – also compared very closely with those from the original sample.

Acme runs standards and provides re-samples at varying intervals for each sample shipment analysed. A re-sample consists of analysing a second cut (subsample) from the same sample pulp (or occasionally reject portion), and is reported as a rerun (RE) or reject rerun (RRE) on the analysis certificate. In most cases there has been good reproducibility of results between the original subsamples and re-samples, with the exception of gold at the lower end of the detection range in some stream sediment and soil samples.

5.3 Stream Sediment and Soil Geochemical Results (Plates 2A, 2B, 5A-5E, Figures 5A-5E)

5.3.1 Stream Sediments (Plates 2A, 2B)

Interest in this area was aroused when the gold-in-sediment results for two Government Regional Geochemical Survey samples were published (92I811070 and 92I811072, each 7ppb Au, August Creek and Richardson Creek, respectively). Eight sites were stream sediment sampled during the initial follow-up in 2002, from August, Richardson, Roberts, James and Edgar Creeks (MC-126 to MC-128, MC-136 to MC-140). At four of these stations, a second sample was taken by wet sieving stream sediment to achieve a --230 mesh component (MC-127S, 128S, 136S and 138S). Using 2ppb Au as a threshold, the results for MC-126 (10.1ppb Au), MC-127S (2.3ppb Au), MC-128 (13.6ppb Au), MC-128S (2.2ppb Au), MC-136 (4.5ppb Au), and MC-138S (11.8ppb Au) are of interest (Plate 2B). The RGS anomaly of 7ppb Au in August Creek was not explained. The south fork of Richardson Creek, Roberts Creek, James Creek and Edgar Creek warranted further work. Four of the samples taken had slightly elevated Hg values (threshold = 0.03ppm Hg); only one of these had interesting Au (MC-126).

Five stream sediment samples were taken during 2003. Two of these were obtained a couple of kilometres upstream of MC-126 on Roberts Creek. Neither had elevated Au, although MC126-1 returned significant Hg (0.22ppm). The remaining three were taken one to two kilometres upstream of MC-128 on Edgar Creek. Sample MC-152, closest to MC-128, was the only one above the 2ppb Au threshold (2.7ppb Au).

During 2004 thirty-four stream sediment samples were taken before the property was staked, and one after (MC128-3). The latter was a resample of the MC-128 site. The sampling along Edgar Creek showed nothing of interest. There were two high values towards the western end of James Creek (MC-243, 67.2ppb Au andMC-266, 203.2ppb Au), but neither could be replicated. Two values immediately above site MC-126 on Roberts Creek were above threshold (MC126-3, 2.8ppb Au and MC126-4, 5.0ppb Au) and one west of MC-266 (MC-238, 3.4ppb Au); the remainder upstream were below threshold value. Four Au values one to 1.5 kilometres upstream from MC-138 on Richardson Creek were similarly just above threshold. The three additional samples from August Creek were all below 2.0ppb Au; the source for the 7.0ppb Au in stream sediment was not indicated.

Three areas of potential interest were indicated by the gold results from the stream sediment sampling programs between 2002 and 2004. These are west of the James Creek Ranch, the lower reaches of Roberts Creek and 1.5 kilometres west of MC-138 on Richardson Creek.

5.3.2 Reconnaissance Soil Samples (Plates 2A, 2B)

Prospecting and reconnaissance soil sampling were carried out concurrently with stream sediment sampling. A soil grab sample was commonly taken from patches of soil or scree derived from altered rock. Any alteration noted in road cuts was similarly sampled. Twenty eight reconnaissance soil samples were taken before the property was staked. Twelve of these were taken from a road cut colour anomaly northwest of the present property, and the gold results were insignificant. A soil sample (MC-S96) was taken from iron-rich carbonate altered scree north of Richardson Creek about one kilometre west of MC-138. This returned a high antimony value, 11.6ppm. During the subsequent follow-up, a small ridge of altered rock was noted. It is underlain by very hematitic, silicareplaced volcanic rock with clay and carbonate altered andesite on the flanks. Seven soil samples were taken at 10m spacing along this ridge; the results vary from 0.7ppb Au to 17.5ppb Au. Some of these samples had anomalous values in As, Sb, Hg or Mo. This ridge is called Discovery Hill. The remaining nine soil samples were taken at various places on and off the present property. Only one is anomalous in gold; MC-S49, 10.3ppb Au, west of the property.

While the MERIT claims were being staked the Sullivan Ridge Zone was discovered in the northeast corner of the property. This zone appeared to be on

strike with Discovery Hill, and a reconnaissance line of four soil samples was run between the two places in late 2004. Two of the four samples collected on this rough line returned above threshold gold values; they were taken from rusty soil derived from carbonate altered rocks. Another sample to the north of these, MC-S127, was collected during 2005 near the south end of the top of Sullivan Ridge in trench SRT05-04 and returned 106.4ppb Au. Two samples of altered soil were taken from the West Zone during 2005. One of these, MC-S126, 780.8ppb Au, was of soil from trench WZT04-3.

5.3.3 Grid Soil Samples – Sullivan Ridge Grid (Figures 5A-5E)

An 800m x 200m area of Sullivan Ridge was soil sampled during October, 2004. The 800m baseline was oriented at an average of 200° from a point 105m northeast of the northerly quartz knob (Trench SRT05-1) so as to follow the visible silica/ankerite alteration trend. The baseline followed approximately the break in slope on the east side of the ridge. Samples collected east of the baseline were from predominantly talus covered soils. Sample lines were run perpendicular to the baseline for 100m east and west, and soil samples collected at 25m intervals, slope corrected. Although each sample was analysed for 36 elements, gold and four pathfinder elements (As, Sb, Hg and Mo) were chosen for display. These elements, with Ag, are commonly associated with gold in low sulphidation epithermal gold deposits. Silver is present in varying amounts, but no positive correlation with Au was found. Anomalous levels for As, Sb, Hg and Mo were determined for this report using the statistics for the population of results for each element from the Main Grid (Figures 3 & 4). The elemental levels are shown on each figure (Figures 5A-5E). Samples collected along the baseline are anomalous to strongly anomalous in all five elements, and there is a very strong correlation between gold values and the values of the pathfinder elements.

The higher gold values are at the northern end of the grid (Figure 5A). The highest value, 306.7ppb Au, is at station 00E - 125S, immediately down slope from Trench SRT05-2 which had some significant gold results from channel samples – to 2.07g/t Au. The second highest value, 301.9ppb Au, at 00S - 50W, is on the north facing slope of the ridge in what appears to be relatively deep overburden. Prospecting and mapping in the immediate area did not find either outcrop or float that could explain this value or the adjacent ones, although an angular piece of quartz vein-bearing float (MC-R283, 724.5ppb Au) was found 28m to the SSE. Gold results are considered anomalous for all but five samples collected on the baseline. The widest part of the gold anomaly is on line 00S, and it appears to taper back to line 100S. There is another wide section in the anomaly between lines 400S and 500S.

Of the pathfinder elements, the arsenic anomaly (Figure 5B) has the greatest areal extent, and is considerably broader than the gold anomaly. Its western limit remains to be defined. The elevated molybdenum results (Figure 5E) also form a

Merit Grid Au				
Au ppb	Frequency	Cumulative %		
0.25	273	25.37%		
0.5	67	31.60%		
0.75	131	43.77%		
1	157	58.36%		
1.5	161	73.33%		
2.2	106	83.18%		
3.2	49	87.73%		
4.6	38	91.26%		
6.7	29	93.96%		
9.6	20	95.82%		
14	13	97.03%		
20	11	98.05%		
30	11	99.07%		
42	5	99.54%		
72	4	99.91%		
More	1	100.00%		

Au Histogram 300 120.00% 250 100.00% 80.00% 200 Frequency 150 60.00% Frequency Cumulative % 40.00% 100 20.00% 50 .00% 0 020 010 10 10 20 01 10 30 12 Au ppb

Merit Grid As

As ppm	Frequency	Cumulative %
0.25	50	4.65%
1	173	20.72%
2	417	59.48%
3	215	79.46%
4	105	89.22%
5	47	93.59%
6	15	94.98%
7	14	96.28%
10	25	98.61%
15	9	99.44%
20	4	99.81%
30	2	100.00%
More	0	100.00%

Merit Grid Sb

(

Au oob	Erequency	Cumulative %
0.05	25	2 25%
0.05	35	3.23%
0.1	413	41.64%
0.2	353	74.44%
0.3	128	86.34%
0.4	49	90.89%
0.5	36	94.24%
0.6	18	95.91%
0.7	7	96.56%
0.9	14	97.86%
1.2	13	99.07%
1.6	4	99.44%
2.5	4	99.81%
More	2	100.00%

Figure 3: Soil Sample Histograms - Au, As, Sb

Merit Grid Hg

٠

Hg ppm	Frequency	Cumulative %	
0.005	18	1.67%	
0.01	367	35.78%	
0.02	364	69.61%	
0.03	194	87.64%	
0.04	78	94.89%	
0.05	33	97.96%	
0.06	6	98.51%	
0.08	10	99.44%	
0.1	2	99.63%	
0.3	4	100.00%	
More	0	100.00%	

Merit Grid Mo

Mo ppm	Frequency	Cumulative % .19%	
0.1	2		
0.2	90	8.55%	
0.3	333	39.50%	
0.4	388	75.56%	
0.5	196	93.77%	
0.6	45	97.96%	
0.7	11	98.98%	
0.8	6	99.54%	
0.9	0	0 99.54%	
1.2	2 99.72%		
1.6	2 99.91%		
More	1	100.00%	

wide anomaly, although more restricted than the arsenic. High values of antimony (Figure 5C) and mercury (Figure 5D) more or less mirror the elevated gold results.

5.3.4 Grid Soil Samples - Main Grid (Plates 5A-5E)

A coarse grid soil sampling program over a large part of the property was included in the 2005 exploration program. Twenty-eight east-west lines at 200m spacing were soil sampled at 50m intervals, and 1077 soil samples were collected. All were prepared as described in subsection 5.2, and analysed for 36 elements. The results for gold and the four chosen pathfinder elements are shown on Plates 5A to 5E. On these Plates, within the area marked Sullivan Ridge Grid, the element-in-soil values for Au, As, Sb, Hg and Mo received for the Sullivan Ridge Grid samples were included with the Main Grid results for contouring purposes, but the Sullivan Ridge Grid results were not included when the sample statistics were calculated. Histograms showing the distribution of Au, As, Sb, Hg and Mo were drawn using the analytical data from the 1077 Main Grid samples (Figures 3, 4).

Four large discrete gold-in-soil anomalies can be defined (Anomalies A, B, C and Sullivan Ridge, Plate 5A), and a number of smaller anomalous areas are indicated. The four large anomalies are elongate, 0.8 to 1.3km in length, 100 to 200m in width, and trend approximately north-south. With the exception of the Sullivan Ridge Anomaly they have relatively broad aureoles of lower value Au results. It is noteworthy that the West Zone quartz vein trend occupies a trough of low gold values, and that the Discovery Hill Zone is only weakly anomalous. The Sullivan Ridge Anomaly is the least of the four in size. The smaller anomalies are centered on 5554000N, 636850E; 5553800N, 637300E; 5553200N, 636850E; and 5550800N, 636900E. Anomalies A and B and the somewhat sub-anomalous zone in the southwest corner of the Main Grid have a 008^o trend; the Discovery Hill to Sullivan Ridge trend (El Gordo structure/alteration trend) is 020^o; and the strike of anomaly C is 000^o. These trends are all approximately parallel to the Spius Creek and Spius West Faults.

High arsenic values cluster in three anomalous gold areas. Over Sullivan Ridge, the anomalous arsenic values have a wider surface extent than the anomalous gold values. A second anomalous arsenic area is coincident with gold Anomaly B, but again is broader. The third arsenic anomaly is on the west flank of gold Anomaly A. The West Zone is in an area of medium to low arsenic values, while medium arsenic values overlie the Discovery Hill area.

There are four discrete antimony anomalies. The largest coincides with gold Anomaly B, and it extends twice as far to the west. There is an antimony anomaly overlying Sullivan Ridge; it coincides with the gold anomaly, but is more restricted in area. The third antimony anomaly is centered on 5553100N, 637150E. It is coincident with a low-grade arsenic anomaly, and a single station

high gold value lies about 300m to the west. The fourth anomaly is a small one near the south boundary of the property.

.

Mercury values are reported by Acme in ppm, but were converted to ppb for presentation purposes. There are three areas with elevated mercury values. Discovery Hill to Sullivan Ridge is marked by an elongate series of mercury "highs". A broad zone of mixed mercury values occupies the northwest corner of the Grid. The north end of gold Anomaly A is flanked by higher mercury values, and a one station mercury anomaly coincides with the West Zone. Gold Anomaly C has peripheral mercury anomalies to the north, northwest and southwest.

With the exception of over Sullivan Ridge, elevated molybdenum results are generally spotty and peripheral to gold and mercury anomalies. One molybdenum anomaly lies between gold Anomaly A and the West Zone. In the southern part of the Main Grid, elevated molybdenum values mark the continuation of the El Gordo trend from Sullivan Ridge to well beyond Discovery Hill.

5.4 Prospecting and Reconnaissance Rock Geochemical Results (Plates 3A, 3B)

Seventy-two reconnaissance rock samples were collected before the property was staked. They were collected along Roberts Creek and James Creek or on road traverses, wherever quartz-bearing float or outcrop was seen. Close to 80% were collected on the southern half of the property, and almost 50% returned greater than 300ppb gold. The highest value was 7916.4ppb gold, returned by a composite sample of four pieces of quartz vein found over a 30m interval north of August Creek. Ten more samples returned over 1g/t gold. The vast majority of the material sampled was sub-angular to sub-rounded float fragments containing quartz.

Main Grid soil sample results from this area are generally very low. One rock sample (MC-R147) was collected from within the soil gold anomaly at 5550800N, 636900E; it returned 984.6ppb gold. Reconnaissance rock samples collected along Roberts Creek returned encouraging results (up to 1.8g/t Au) whereas the results of analyses of samples from James and Edgar Creeks were low.

Since the property was staked another 43 reconnaissance rock samples were taken, mostly in the Sullivan Ridge and West Zone areas. Eighteen (42%) returned above 300ppb Au, and eight yielded above 1g/t Au. Five of these eight are from Sullivan Ridge, including one with the highest gold analysis, 5180ppb

Au (subsequent assay – 6.71g/t Au). One was from near the West Zone, and other two are from the southeast area. They were taken in the vicinity of the sample that returned 7916.4ppb Au. In most cases the material sampled was angular to sub-angular float fragments with quartz veins or clasts. The results from Sullivan Ridge and the West Zone are much more variable than the results from the southeast quarter.

.

6.0 PHYSICAL WORK

6.1 Hand trenching

Physical work since the claims were staked in 2004 consisted of hand trenching. Eight trenches were excavated, five on Sullivan Ridge and three in the West Zone. The relative locations of these trenches are shown on Plates 1, 4A and 4B, and individually in greater detail on Figures 6A-6E and 7A-7B. Each of the trenches was excavated to bedrock. The exposures were thoroughly cleaned using whisk brooms and mapped before sampling. The sample intervals were determined from the geology of each exposure. A profile was drawn of each trench, after the sample intervals were decided, and the horizontal length of each sample determined. Each sample was taken using a hammer and moil or chisel to create a channel 5 - 7cm wide and up to 6cm deep for the length of each sample. Sample weights varied from 2.5kg to over 10kg. The physical work involved is summarised in Table 3. The analytical results for samples taken from each trench are listed on the drawing for each trench.

Table 3:Trench Summary

	Slope	Average	Average	_	# Rock
Trench No.	Length, m	Width, m	Depth, m	Volume, m ³	Samples
SRT05-01	4.4	0.95	0.20	0.84	5
SRT05-02	8.5	1.45	0.20	2.46	10
SRT05-03	9.6	1.73	0.25	4.15	6
SRT05-04	2.0	0.80	0.40	0.64	2
SRT05-05	3.7	0.65	0.25	0.60	4
WZT04-01	2.5	1.20	0.25	0.75	4
WZT04-02	2.3	2.00	0.25	1.15	5
WZT04-03	<u> </u>	1.50	0.30	2.48	7
Total	38.5			13.07	43

6.1.1 Trench SRT05-1 Results (Figure 6A)

Three small knobs of quartz were found during the reconnaissance phase of the 2004 exploration program. Trench SRT05-1 was dug to expose the hanging wall and footwall of the most northerly exposure. Textures in the quartz zone indicate that it is an extensively silicified and carbonate altered andesite breccia. The principal alteration minerals appear to be silica and ankerite. Locally there is 100% quartz. The west or hanging wall is altered andesite, with rusty orange-yellow ankerite the principal alteration mineral. The immediate footwall of the quartz zone is probably a breccia, almost totally replaced by silica and ankerite. To the east this grades into a breccia with silica/ankerite and altered andesite clasts. Three channel samples were cut across the intensely altered zone; the gold results of these average 366ppb Au over 2.35m.

6.1.2 Trench SRT05-2 Results (Figure 6B)

Trench SRT05-2 was dug on a second quartz knob 20m south of Trench SRT05-1. The rocks in the hanging wall and footwall are similar to those exposed in Trench SRT05-1, with ankeritic andesite and narrow quartz veins on the west side, and silicified andesite breccia on the east. A shear marks the contact between the altered andesite and the quartz zone (80% - 100% quartz). As the shear is approached from the west the quantity of silica in the andesite increases. The samples taken either side of the shear (R263, R264, Figure 6B) average 1.72g/t Au over 1.4m.

The quartz zone is intermittently visible 3 – 4m north of the channel sampled section. Two channel samples were taken in this area (R269, R270). Each of these returned in excess of 600ppb Au.

6.1.3 Trench SRT05-3 Results (Figure 6C)

This trench was dug on the third quartz knob, 20m south of Trench SRT05-2. Both the hanging wall and footwall rocks of the quartz zone are silica/ankerite altered andesite breccia, with the footwall being very silicious. The quartz zone is truncated on the north by a 10 - 30cm wide shear zone. None of the five samples returned encouraging results.

6.1.4 Trench SRT05-4 Results (Figure 6D)

This small trench was located to explore in the vicinity of a large rotated block of brecciated quartz vein. Chip/channel sample MC-R221 (407ppb Au) was taken in 2004. The trenching exposed a 30cm wide, north trending quartz-carbonate vein with altered andesite on the east side. The western contact is hidden by a large tree root. A second sample, MC-R292 (10ppb Au), was taken from another rotated block of brecciated quartz-calcite vein material. A composite soil sample (MC-S127) was obtained; this yielded a strongly anomalous gold value of 106ppb.

6.1.5 Trench SRT05-5 Results (Figure 6E)

During the prospecting and mapping program on Sullivan Ridge a number of occurrences of quartz chips and silica/ankerite alteration were noted north of Trench SRT05-1. Six samples of this material were taken (MC-R271 – R276, Plate 4B); three returned gold results in excess of 1g/t Au (R272, 1.37g/t Au; R 275, 1.47g/t Au; R276, 6.71g/t Au). Late in the season, Trench SRT05-5 was dug adjacent to sample R276, 38m north of Trench SRT05-1. The hanging wall and footwall rocks exposed are less silica/ankerite altered than those to the south, but they are more hematitic. Two quartz zones were revealed, with

ł

intermediate transition zones of extensive silica/ankerite +/- quartz veins +/hematite alteration. Three samples returned over 1g/t Au – R322, 1.23g/t Au; R323, 5.56g/t Au; and R 324, 14.94g/t Au. The average of these is **7.24g/t Au over 1.8m**. The final sample on the footwall side gave 0.44g/t Au over 0.7m.

6.1.6 Trench WZT04-1, 2 Results (Figure 7A)

A large patch of carbonate-altered scree was noted while staking in the northwest corner of the property. Prospecting in this area after the staking was complete led to the discovery of two resistant knobs, which when investigated were found to be underlain by quartz. Trenches WZT04-1 and 2 were dug on the more prominent of these, which are believed to mark a quartz vein continuous over 9.5m and varying where exposed from 0.8m to 1.5m in width. Unfortunately, only one channel sample of the vein material returned over 100ppb Au. This is a strong structure, as angular quartz rubble has been traced for 150m to the north and an equal distance to the south, with a better gold value of 881ppb generated from a grab sample (MC-R243) along this trend.

6.1.7 Trench WZT04-3 Results (Figure 7B)

A third resistant knob was found 37m south of Trench WZT04-1 while tracing the trend of the quartz vein in Trenches WZT04-1 and -2. This was trenched and a strong quartz vein exposed. This vein is probably the continuation of the exposures to the north. The northern 3m are highly disturbed, with minor offsets to the northeast. The hanging wall and footwall rocks are mildly altered andesite. Five channel samples were cut in the vein, two tabular quartz boulders found west of the vein were sampled, and a soil grab was taken from the south end of the vein. The soil grab (S126) returned the highest Au value, 781ppb. One of the boulder samples (R294) gave 395ppb Au, and a 0.8m channel sample across the vein (R297) returned 354ppb Au. All but one of the remaining samples contain between 100ppb and 300ppb Au.

7.0 PERSONNEL & CONTRACTORS

.

.

;

.....

Company Personnel	Work Period	Field Time – Days (Includes travel)
E.A. Balon, P.Geo North Vancouver, BC Project Manager (QP) Prospector/Sampler	Sep 14-18, 2004 Oct 20-30, 2004 Aug 08-30, 2005	2.50 5.25 21.50
Contract Personnel		
B.W. Sullivan (Bare West Enterprises Ltd.) Vancouver, BC Prospector/Sampler	Sep 14-18, 2004	3.00
J.L. Tindle Whistler, BC Sampler/Prospector	Oct 20-30, 2004 Aug 08-24, 2005	7.25 16.00
E.N. MacKenzie Vancouver, BC Sampler/Prospector	Aug 09-30, 2005	20.00
J.J. Hylands, P.Eng (Hylands Geol. Services Ltd.) West Vancouver, BC Consulting Geologist	Aug 21-27, 2005	<u>6.00</u>
TOTAL		81.50 days

8.0

STATEMENT OF COSTS

(All items rounded to the nearest dollar; expenditures incurred for the assessment period September 14, 2004 to September 13, 2005.)

SALARY AND BENEFITS \$7,31 (E.A. Balon)	2
CONTRACT FIELD SERVICES75Bare West Enterprises Ltd.75Hylands Geological Services Ltd.1,8Eric MacKenzie.5,0Jan Tindle.5,6	50 00 00 67
SAMPLE PREPARATION & GEOCHEMICAL ANALYSES (Acme Analytical Laboratories Ltd.)17,8	36
TRUCK RENTALS, FUEL & MISCELLANEOUS TRAVEL EXPENSES	50
ACCOMMODATION & FOOD)82
COMMUNICATIONS (Telephone & Courier)	172
GENERAL FIELD SUPPLIES	933
MAPS, PHOTOS & REPRODUCTIONS	78

TOTAL EXPENDITURES \$49,780

(Exclusive of Report Preparation)

9.0 STATEMENT OF QUALIFICATIONS

I, Edward A. Balon, of North Vancouver, British Columbia, hereby certify that:

- 1. I am a prospector and geological/mining technician residing at 501-250 West First Street, North Vancouver, BC, and am employed by Almaden Minerals Ltd. of 1103-750 West Pender Street, Vancouver, British Columbia, V6C 2T8.
- 2. I am a graduate of Northern College Haileybury School of Mines, Haileybury, Ontario (1970), with a diploma in Mining Engineering Technology (integrated Geology, Mining and Metallurgy)
- 3. I have attended numerous Continuing Education Courses in Geoscience since 1970, including Exploration Geochemistry at the University of British Columbia, Vancouver, BC, in 1984/1985.
- 4. I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), license number 20265, since 1993.
- 5. I have worked continuously in mineral exploration for thirty-six years in British Columbia, Yukon, Northwest Territories, USA and Mexico.
- 6. I am a co-author and the editor of this report, and I have been the supervisor (Qualified Person) for all of the fieldwork performed to date on the MERIT property.

ALMADEN MINERALS LTD.

Edward A. Balon, P.Geo

9.0 STATEMENT OF QUALIFICATIONS

I, James J. Hylands, of West Vancouver, British Columbia, hereby certify that:

- I am a consulting geologist residing at 1430 Inglewood Avenue, West Vancouver, BC, V7T 1Z1, and am employed by Hylands Geological Services Ltd. of the same address.
- 2. I am a graduate of Northern College Haileybury School of Mines, Haileybury, Ontario (1958), with a diploma in Mining Engineering Technology (integrated Geology, Mining and Metallurgy)
- 3. I am a graduate of the University of British Columbia, Vancouver, BC, (1966) with a degree in Geological Engineering (BASc).
- 4. Between 1966 and 1970 I attended Stanford University, Palo Alto, California, and undertook post-graduate studies in geochemistry.
- 5. I have attended Continuing Education Courses in Geoscience since 1970, at the University of British Columbia, McGill University and various colloquia.
- 6. I have been a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (APEGBC), license number 8177, since 1972.
- 7. I have worked continuously in mineral exploration and mining, including summer employment, since 1956 in Quebec, Ontario, British Columbia, Yukon, Northwest Territories, USA, Philippines, Jamaica and Tanzania.
- 8. I was employed by Almaden Minerals Ltd., 1103-750 West Pender Street, Vancouver, BC, V6C 2T8, during the period August 21 27, 2005, to geologically map a portion of the MERIT property.
- 9. I am a co-author of this report.

10.0 REFERENCES

BALON, E.A.

- 2005: 2004 Geochemical, Prospecting and Physical Work Report, SAM Property (SAM 1-10 Claim Group), Kamloops Mining Division, BC. (BCGS AR 27672)
- 2004: 2003 Geochemical and Geophysical Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27425)

BALON, E.A. AND JAKUBOWSKI, W.J.

2003: 2002 Geochemical and Trenching Report, Prospect Valley (PV) Property, Nicola Mining Division, BC. (BCGS AR 27048)

BRITISH COLUMBIA MAPPLACE website:

www.em.gov.bc.ca/Mining/Geolsurv/MapPlace

DUFFEL, S. AND MCTAGGART, K.C.

- 1952: Ashcroft Map-Area, British Columbia (BC); Geological Survey of Canada (GSC) Memoir 262, pp. 52-58 (Spenses Bridge Group and Kingsvale Group)
- 1951: GSC Map 1010A; Ashcroft, BC; scale 1:253,440

HOLLAND, S.S.

1950: Placer Gold Production of British Columbia; BCMEMPR Bulletin 28, reprinted 1980.

JACKAMAN, W. AND MATYSEK, P.F.

1994: British Columbia Regional Geochemical Survey, NTS 92I – Ashcroft, (BC RGS 40/GSC OF 2666), Stream Sediment and Water Geochemical Maps & Data.

MONGER, J.W.H. AND MCMILLAN, W.J.

1989: Geology, Ashcroft, BC; GSC Map 42-1989, sheet 1, scale 1:250,000

MONGER, J.W.H.

- 1989: geology, Hope, BC; GSC Map 41-1989, sheet 1, scale 1:250,000
- 1985: Structural Evolution of the Southwestern Intermontane Belt, Ashcroft and Hope, Map Areas, in Current Research, Part A, GSC Paper 85-1A, pp. 349-358.
- 1981: Geology of Parts of Western Ashcroft Map Area, Southwestern BC; in Current Research, Part A, GSC Paper 81-1A, pp. 185-189.

RICE, H.M.A.

1947: Geology and Mineral Deposits of the Princeton Map-Area, BC; GSC Memoir 243.

RYDER, J.M.

1975: Quaternary Geology – Terrain Inventory, Lytton Map-Area, BC (92I/SW): in Current Research, Part A, GSC Paper 75-1A.

SOUTHER, J.G.; GABRIELSE, H AND YORATH, C.J. (ed.)

1991: Volcanic Regimes, Chapter 14 <u>in</u> Geology of the Cordilleran Orogen in Canada, Geology of Canada, no.4, pp.457-490 (<u>also</u> Geological Society of America, The Geology of North America, v. G-2).

THORKELSON, D.J.

1985: Geology of the Mid-Cretaceous Volcanic Units near Kingsvale, Southwestern BC; in Current Research, Part B, GSC Paper 85-1B, pp.333-339.

APPENDIX A

.

ant .

MERIT AREA **Pre-Staking** RECON SAMPLE SUMMARY TABLE & ACME ANALYTICAL GEOCHEMICAL CERTIFICATES

MERTI PROPERTY AREA Pre-Stating (2002-2004) RECONNAISSANCE SAMPLE SUMMARY Name: Mol 31 Note: Sample: Source Sample: Summary Sample: Source Sample: So															
Damping Entropy Number House House House Binds Entropy Status Binds					MERI	T PR	OPE	RTY	AREA	A Pre-3	Stak	ing (2	002-	2004) RECONNAISSANCE SAMPLE	SUMMARY
Column Column<	Sample Number	Easting NAD 83	Northing NAD 83	Moppm I	Pb ppm Z	Zn Dom A		Asport	Sb ppm	Bappm H	la pom	Av ppb (Cu ppm	Rock Type	Notes
Bit 2000 5551164 2.5 3.7 4.1 11 0.01 2.4 11 0.01 2.4 11 0.01 2.4 11 0.01 2.4 11 0.01 2.4 11 0.01 2.4 11 0.01 2.4 11 0.01 2.4 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.01 11 0.0											4				••••••••••••••••••••••••••••••••••••••
00.2473 0.9787 0.95164 0.2 1 0.1 <t< td=""><td>Rock Sam</td><td>pies 634306</td><td>6664906</td><td>25</td><td>27</td><td></td><td>0.1</td><td>2</td><td>0.1</td><td></td><td>0.01</td><td>2.4</td><td>10.4</td><td>Mercine and drum OZ voice, equity filling in PV</td><td>Ching takes along and the DM sea frickle and fresh and</td></t<>	Rock Sam	pies 634306	6664906	25	27		0.1	2	0.1		0.01	2.4	10.4	Mercine and drum OZ voice, equity filling in PV	Ching takes along and the DM sea frickle and fresh and
Mich? Stikes Stikes </td <td>MC-R72</td> <td>637697</td> <td>5551044</td> <td>2.5</td> <td>3.7 1 B</td> <td>101</td> <td>.0.1</td> <td>37</td> <td>-0.1</td> <td>11</td> <td>0.01</td> <td><u>∡.+</u> 1.1</td> <td>16</td> <td>Massive and druzy uz veris, cavity tilling in ov.</td> <td>Crips taken along road Tom, by very maple and tractured, Rounded orange weathering motified gray techered AV2 40x40x70em</td>	MC-R72	637697	5551044	2.5	3.7 1 B	101	.0.1	37	-0.1	11	0.01	<u>∡.+</u> 1.1	16	Massive and druzy uz veris, cavity tilling in ov.	Crips taken along road Tom, by very maple and tractured, Rounded orange weathering motified gray techered AV2 40x40x70em
MC4TR2 63703 555618 0.0 1.0 7.7 Calcing of the submit of th	MC-R79	634438	5556866	2.6	29.8	92	0.3	3.2	0.2	50	0.22	10	38.5	OZ pod and silicified BV	Trouined orange weathering money grey replaced My : 40,40,000
MCR103 G17964 555/70 10.5 7.1 47.7 7.2 7.2 0.2 0.91 111.5 27.3 Clock of the public science of the publi	MC-R132	635703	5556138	0.0	1.8	70	-0.1	5.6	0.2	150	0.06	1.9	17.7	Calcite-dolomite stringers in carb alt'd AV/BV	Soil profile in roadbank is vel-orng & very clay-rich
MACHES 63734 554367 1 <	MC-R133	637684	5554797	30.6	7.1	47	1.7	79.2	0.8	999	0.03	1811.5	37.3	CB-QZ vn 7-8cm TW in dk purpley gy-brn mottled BV(?).	Vein trend 360 - 010/dip mod steep to W.
WGR155 67111 65356 0.4 2.2 10 1.6 5 0.6 2.7 2.44 2.5 C/V Arright submay 5.6.5 x Start. Local masked with a V backet. W6116 65050 2.2 2.3 3.0 0.0 0.0 1.0	MC-R134	637304	5554307	1.8	15.6	36	5.3	28	21.6	70	9.15	191.8	94.4	QV- single subang pc 5X7X10cm.	In part semi-chalced.
With His 64401 6544011 6544011 6544	MC-R135	637111	5553965	0.4	3.2	10	11.6	5	0.6	24	0.72	344.4	25	QV- single subang pc 5 X 6.5 X 8cm.	Local massive AV bedrock exposures.
UN-1158 ESSED ESSED ESSED ESSED Second Se	MC-R136	634301	5554512	3.2	2.5	9	0.1	3.5	0.1	59	0.06	7.5	5.6	QV/BX-one piece w/alt'd AV clasts.	2 pcs 75m apart. Rnded 4x4x8cm, angular 1.5x2x3cm
Michael Stratus Stratus <t< td=""><td>MC-R138</td><td>638237</td><td>5551067</td><td>34.2</td><td>3.9</td><td>42</td><td>0.5</td><td>9.4</td><td>0.2</td><td>180</td><td>0.04</td><td>10.1</td><td>18.6</td><td>Intensely QZ-CB all'd AB w/ It & dk gy silicic clasts</td><td>Angular fragment 7x8x18cm</td></t<>	MC-R138	638237	5551067	34.2	3.9	42	0.5	9.4	0.2	180	0.04	10.1	18.6	Intensely QZ-CB all'd AB w/ It & dk gy silicic clasts	Angular fragment 7x8x18cm
Michelet String Part P Part	MC-R139	637376	5551040	22.1		<u>1</u> 2	3.7	147.0		15	0.13	501.1	20.0	(1) chalcadopic OZ (2) CC w/skalatal OZ	Possibly minor sidente(7)
MCR-140 ST371 ST50292 10 3 14 2.7 13 10.2 14 action Tp: definition Tp: definition Tp: definition MCR-140 ST373 S550372 1 3.8 7 2.2 3.8 7.7 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.8 7.0 2.0 3.0 7.0 1.0 3.8 7.0 1.0 3.8 1.0	MC-R141	637336	5551127	28.7	11.2	7	44	75.5	0.3	25	0.19	3322.7	227	15 OV/BX chins - handed chalcedonic OZ	15 nos along 350m. Largest no. 3 5x4x5cm
MCR:H4 637364 555762 1.4 8.8 25 0.5 1.7 1.7 2.2 0.28 3.8 7.7 1.7 1.7 1.7 1.7 1.3 1.5 5.5 1.7 1.3 5.5 1.7 1.3 5.5 1.7 1.3 5.5 1.7 1.3 3.2 2.8 6.4 3.3 2.9 1.5 4.3 2.9 1.5 4.3 2.9 2.5 2.7 1.5 6.4 3.3 2.9 2.5 2.9 1.3 2.0 1.4 2.5 2.5 2.5 2.7 2.5 2.7 2.5 2.7 2.6 2.7 2.8 1.1 4.6 2.5 2.7 2.8 1.5 2.7 2.8 2.7 2.8 2.7 2.8 2.7 2.8 2.7 2.8 2.6 2.2 2.1 1.8 2.5 2.7 2.8 2.5 2.7 2.8 2.6 2.2 2.1 1.8 2.6 2.7 <t< td=""><td>MC-R142</td><td>637351</td><td>5550932</td><td>18.1</td><td>3</td><td>14</td><td>2.7</td><td>156.9</td><td>4.1</td><td>85</td><td>1.13</td><td>802.8</td><td>54.1</td><td>4 pcs QV & QZ-CB all'd AV float</td><td>t oc 4x6x10cm; 4 ocs over 8 mtrs. Base of till bank.</td></t<>	MC-R142	637351	5550932	18.1	3	14	2.7	156.9	4.1	85	1.13	802.8	54.1	4 pcs QV & QZ-CB all'd AV float	t oc 4x6x10cm; 4 ocs over 8 mtrs. Base of till bank.
MCR-144 53731 5550832 0.7 1.8 69 0.9 1.2 1.9 3.0 1.0 1.9 1.0 1.0 1.5 1.0 <t< td=""><td>MC-R143</td><td>637364</td><td>5550762</td><td>1.4</td><td>3.8</td><td>25</td><td>0.5</td><td>197.9</td><td>3.7</td><td>22</td><td>0.28</td><td>339.6</td><td>7.7</td><td>QV It blu-gy chert hostrock [7] some and formate in white vn.</td><td>{1} 5x6x7cm subang.{2} submd base of till bank</td></t<>	MC-R143	637364	5550762	1.4	3.8	25	0.5	197.9	3.7	22	0.28	339.6	7.7	QV It blu-gy chert hostrock [7] some and formate in white vn.	{1} 5x6x7cm subang.{2} submd base of till bank
MC4146 53737 550563 0.5 1.1 10 0.1 42.8 0.2 135 0.04 7.7 2.1 39 3.0 Most Price Sector 2 Action Places over 2.5.4 for the dual MC416 53745 5550157 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	MC-R144	637331	5550832	0.7	1.8	68	0.5	19.2	3.5	29	1.65	43.9	30.9	QZ matrix BX stockwork veinlats	{1} 5x5.5x7ang {2} 3.3x5x7ang {3} 5x6x7 mded base of till bank.
Mic 4+6 637056 555097 1.3 3.4 2.9 1.7 10.6 0.7 6.4 0.16 0.2 2.2 Mail and give mark boards (a.w.) (1) 4.2/1 form, 21) 4.5540(m) 11.3 7.0 0.5 0.46 1.5 1.0	MC-R145	637371	5550634	0.5	1	10	0.1	42.8	0.2	135	0.04	71.7	1.9	3 QV float fragments all angular	 4.5x7x9cm (2) 2x3x4cm Pieces over 25m of road cut
Miker Hild Basses Description Description <thdescripion< th=""> Descripion <thdes< td=""><td>MC-R146</td><td>637056</td><td>5550597</td><td>1.3</td><td>3.4</td><td>29</td><td>1.7</td><td>10.6</td><td>0.7</td><td>54</td><td>0.18</td><td>40.6</td><td>22.7</td><td>4pcs, silica flooded. Almost vein</td><td>(1) 4x7x15cm. (2) 4x6x9cm. Tabular ang, within 5m radius</td></thdes<></thdescripion<>	MC-R146	637056	5550597	1.3	3.4	29	1.7	10.6	0.7	54	0.18	40.6	22.7	4pcs, silica flooded. Almost vein	(1) 4x7x15cm. (2) 4x6x9cm. Tabular ang, within 5m radius
Miler Heig Sold 2001 <	MC-R14/	636861	5550/17	0.6	1.5	. 15	0.5	14./	1.9	115	0.65	984.6	15	VVnite epitnermal qtz.w/ empty boxwork cavs.	(1) 3.5x4x8cm (2) 2.5x3.5x4cm (3) 7x7.5x8cm 60m stretch of trail.
MRCH15 0.55 0.2 8 0.1 1.5 1.5 0.5 37 0.03 112 2.2 Number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. May be what we number of the winds promittic) 02 Ang pC OV Notal Shadoon. Numod (D Shadoon Notal Shadoon Notal Shadoon Notal Shad	MC-R149	636821	5551042	0.5	19	20	0.1	23.0	6.0	287	2.05	9.7 59.2	42.0	Vior (semi-chalced) (77/07 BX	A sing angular oxox toom. 16.8 Sy11y12cm subpro-submd
MCR191 50534 5551895 0.9 1.1 4 0.2 1.7 7 0.06 4.92 3.8 (1) 565 551864 (1) 565 551864 (1) 565 551864 (1) 565 551864 (1) 565 551864 (1) 565 551864 (1) 565 551864 (1) 565 551864 (1) 565 551864 (1) 555 55186 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 (1) 555 5518 <td>MC-R150</td> <td>636613</td> <td>5551819</td> <td>0.5</td> <td>0.7</td> <td>6</td> <td>-0.1</td> <td>15.9</td> <td>0.5</td> <td>37</td> <td>0.03</td> <td>18.2</td> <td>2.2</td> <td>Massive oink while (hematitic) QZ</td> <td>And pc QV float 6x10x10cm. May be intrusive related</td>	MC-R150	636613	5551819	0.5	0.7	6	-0.1	15.9	0.5	37	0.03	18.2	2.2	Massive oink while (hematitic) QZ	And pc QV float 6x10x10cm. May be intrusive related
MCR151 63666 5551864 1.3 0.7 3 0.2 6.21 0.5 79 0.07 525.1 2.3 2.5 2.7 7 0.4 32 0.01 4.3 0.01 7.5 0.04 4.3 0.01 7.5 7.5 0.4 32 0.02 4.3 0.01 7.5 7.5 0.4 32 0.02 4.3 0.01 7.5 7.5 7.5 7.5 0.4 32 0.01 7.5 0.01 7.5 0.04 4.3 0.01 7.5 0.01 <	MC-R151	636534	5551868	0.9	1.1	4	0.2	170.2	1	17	0.08	439.2	3.6	White-It blue/gray chalced QZ w/ intergrown CC-AK	(1) 5x8.5x10cm angular (2) 5x7x9cm subrid
MCR151 639476 5551892 0.5 1.3 4 0.3 192.8 1.4 2.0 0.4 300 0.7 7 0.4 300 0.7 7 0.4 300 0.7 7 0.4 300 1.3 4.3 0.00 at 12 1.3 1.3 V for the table stress of table stres of ta	MC-R152	636506	5551864	1.3	0.7	3	0.2	62.1	0.5	79	0.07	525.1	2.9	Epithermal QZ intergrown QZ-CC	(1) 4x7x9cm (2) 6x7.5x11cm all angular
MCR1516 537.484 5551031 2.5 7 0.4 30 0.7 17 0.4 430 11.1 QV field EV 8X figurits. Mar while chalced QZ (1) 5.55.86 (1) 45.55.86 (1) 45.55.86 (1) 45.55.86 (1) 45.55.86 (1) 45.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (1) 55.55.86 (2) <th(2)< th=""> <th(2)< th=""> (2)</th(2)<></th(2)<>	MC-R153	636476	5551892	0.5	1.3	4	0.3	192.9	1.4	32	0.03	308.9	4.3	Quartz vein	7.5x13x15cm ang-subang
MC4115 b351046 1.5 5.1 B 1.7 94.5 0.7 32 0.05 389.1 1.1 [1] V chp. Pale Megmodiaced Q2 (1) 5.50000m imreg-ubmed (2) 22.5300m basis of thm ith bank. MC4156 63256 5551364 1.39 5.6 25.0 0.1 1.5.7 2.6.2 Bitol AVV Q2 with stockwork. 657.422.0 Stockword Q1 Stockword Q	MC-R154	637484	5551031	25.1	2.7	7	0.4	30	0.7	17	0.04	435	12.3	QV float BV BX fgmnts. Msv white chalced QZ	(1) 4x7x9cm subang (2) 4x5x9cm quite ang.
Micht 16 B3/249 B3/24	MC-R155	637416	5551046	1.5	5.1	8	1.7	94.5	0.7	32	0.05	389.1	11.1	QV chip. Pale blue-gm chalced QZ.	(1) 5.5x6x8cm irreg-submd (2) 2x2.5x3cm base of 5m till bank
Michael Solution Link	MC-R150	636990	5551070	13.9	5.6	20	0.4	27.3	1.3	127	0.11	0.0 492 1	23.0	UZ-UB allicic AV W/ UZ whit stockwork.	ox/x12cm.submd, large drusy cavities up to 1x3cm
MCR159 837476 5551732 1.1 2.6 1.6 0.01 1.5 1.7 0.015 0.01	MC-R158	636883	5551070	2.2	1.5	57	0.1	21.6	26	12	0.01	18.4	3.Z	OZ_CB all d AV feilice finaded/centered)	13 5x10x13cm submund (2) 7 - 8cm munded
MC-R160 6337616 5537612 5.7 2.6 11 0.3 1432 0.6 83 0.22 930.6 224 0.4 <th0.4< th=""> 0.4 0.4<td>MC-R159</td><td>637476</td><td>5551732</td><td>1.1</td><td>26</td><td>14</td><td>1</td><td>7.3</td><td>0.5</td><td>80</td><td>0.01</td><td>9.9</td><td>7.5</td><td>OV/BX float. Msw whit semi -transp OZ chalced & non-chalced</td><td>(1) 5x10x13cm submet (2) 7 - 8cm rounded</td></th0.4<>	MC-R159	637476	5551732	1.1	26	14	1	7.3	0.5	80	0.01	9.9	7.5	OV/BX float. Msw whit semi -transp OZ chalced & non-chalced	(1) 5x10x13cm submet (2) 7 - 8cm rounded
MC-R161 6537162 17 1.5 6 1.3 11.4 1.5 16 0.00 175.8 7 2 Buey-fay chalced to cherty type QZ. Soft 10 pcs. Soft 0.17 at 5.5 Soft	MC-R160	637616	5550162	5.7	2.8	11	0.3	143.2	0.6	83	0.22	390.8	22.4	QV fragment	13x25x33cm subrounded
MCR182 637866 5550677 3.8 1.5 10 0.6 123 0.1 743.6 7.2 QZ-BX may with chalced QZ Composite 10pcs. 6x10x12cm & 558x13cm rounded 1 side.other subeng. MCR184 637866 555060 555070 1.5 3 14 0.5 16.9 0.2 19 0.01 16.1 42.2 CB att AV with y ang chalcedonic QV fgmmts. 6t13500m submd(2) 9x10x15cm aug. MCR165 63561 5550077 0.6 2.4 0.2 2.2 2.5 1.31 7.4 20.8 Silic GB attG AV cobble. May semi-glassy QZ. 5t12170m submd. dissam PV MCR166 63561 5550071 2.2 3.6 1.0 9.02 1.9 2.04 174.38 2.2 0.2/Wite Xite GB attG AV dissam PV dissam PV MCR166 637056 5550370 4.4 7.5 0.2 1.9 2.6 0.7 7.5 7.7 1 1.7 7.6 4 7.7 2.1 3.5 7 3.7 2.7 Mite Aim banded chalcedony. Alis MMC. Alis MMC. Alis MMC. Alis MMC. Alis MMC.	MC-R161	637616	5550162	17	1.5	6	1.3	111.4	1.5	16	0.06	1758.9	7.4	Bluey-gry chalced to cherty type QZ.	5x7x10cm subrounded.
MC-R18 637600 5550622 0.5 1 50 0.1 36.4 9.7 11 1.04 19.3 78.3 102-CB atf d AV It gr ang chalcedonic QV fgmmts. (1) f4xd5200m submd (2) 9x10x15cm ang. MC-R166 633661 5550817 2.2 3.8 10 0.9 10352 22.2 11 1.1	MC-R162	637586	5550677	3.8	1.5	10	0.6	150.9	0.8	123	0.1	743.8	7.2	QZ-BX msv whit chaiced QZ.	Composite 10pcs. 6x10x12cm & 5x8x13cm rounded 1 side.other subang.
MC-R164 637846 552192 13.5 3 14 0.5 16.9 0.2 19 0.01 16.1 42.2 0.2 AK afd AV cobble. Max semiglassy 0.2 (bit System cobble MC-R166 636149 5550017 0.4 2.4 0.2 24.2 5.2 2.5 1.1 0.4 128.0 8 Sitic 240 0.01 15.1 42.2 0.24 2.8 1.4 0.01 15.1 42.2 0.24 1.5 1.6 1.7 1.6 3.4 1.6 2.7 2.8 1.6 1.1 1.7 7.0 1.7 1.6 1.7 1.6 1.4 1.9 2.6 1.6 1.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 <td>MC-R163</td> <td>637600</td> <td>5550622</td> <td>0.5</td> <td>1</td> <td>50</td> <td>0.1</td> <td>36.4</td> <td>9.7</td> <td>11</td> <td>1.04</td> <td>19.3</td> <td>78.3</td> <td>QZ-CB att'd AV it gy ang chalcedonic QV fgmnts.</td> <td>[1] 14x45x20cm submd (2) 9x10x16cm ang.</td>	MC-R163	637600	5550622	0.5	1	50	0.1	36.4	9.7	11	1.04	19.3	78.3	QZ-CB att'd AV it gy ang chalcedonic QV fgmnts.	[1] 14x45x20cm submd (2) 9x10x16cm ang.
ML-R1b 639351 5550/71 0.6 2 24 0.2 24.2 5.2 1.3 7.4 208 Bline CB all of AV. 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.7 7.5 7.5 7.7 7.5 7.5 7.7 7.5 7.7 7.5 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5 7.7 7.5	MC-R164	637846	5552192	13.5	3	14	0.5	16.9	0.2	19	0.01	16.1	42.2	QZ-AK altd AV cobble. May semi-glassy QZ	8x15x20cm cobble
Mic-Rito Good Page Description List and coded, write-in gin AV(1) write a singler's 0.501 Issem Pri Mic-Rito G30565 5552677 1.4 2.3 0.1 2.2 0.1 Since incoded, write-in gin AV(1) write a singler's 0.501 Issem Pri Mic-Rito G30565 5552677 1.5.3 5.6 2.7 19 2.9.6 10.2 277.8 2.2.5 (V/R)X. Write-in-usby-ong-joll-egy banded chalecedony. T/8.6 \$x100m uton 0 n 1 side-otherwise angular. Mic-Rito G307466 5552977 1.7 2 20 1.4 34.0 2.2.5 7.5 57 Write 8 tan banded chalecedonic QZ Also More and the Pol frace/cavity fillings Mic-Rito G38916 5552977 1.7 2 20 1.4 34.0 2.5 2.7 V/V/R More Gausta banded chalecedony. T/8.6 \$x100m uton 0 n 1 side-otherwise angular. Mic-Rito G38966 5552977 1.7 2 20 1.4 34.0 2.5 7.2 5.7 V/V/R More Gausta banded chalecedony. Gausta banded chalecedony. How State S	MU-R165	636561	5550077	0.6	2	24	0.2	24.2	5.2	25	1.31	/4.4 1080.6	20.8	Silic US all'd AV.	7.5X12x1/cm submd.
MiC-R167 G30030 G30346 S552457 I.S. G.S. I.F. Z.S. G.S. G.S. L.S. G.S. L.S. G.S. L.S. G.S. G.S. <thg.s.< th=""> <thg.s.< th=""> G.S. G.S.S</thg.s.<></thg.s.<>	MC-R100	636049	5550017	2.2	3.0	10	10.9	1035.∡ 02.4	22.2	111	0.4	1200.0	20.1	Silica nooded, white-it gm Av(7) w/ some stringers<0.5cm.	dissem Pr
MC-R169 637096 5552632 7.5 3.7 10 1.7 7.06 4 7.7 2.15 356.7 57 White & tan bended chaleed only out with one details. Also MnO. MC-R170 638916 5552937 1.7 2 20 1.4 34.2 0.9 29 0.14 1190.7 12.6 Quartz win float subangular. Grainy QZ wi abund FeO fracs/cavity fillings MC-R172 636896 5553832 3.5 2.2 17 3.4 89.3 5.5 120 2.78 244.4 75.6 QV/BX float Grainy QZ wi abund FeO fracs/cavity fillings 8x12x15cm - triangular. MC-R173 636436 5553827 1.3 3.9 17 15.2 2.0.5 3.4 4.8 2.72 633.8 49.8 5pcs. QV/BX float Bio McArt win float subangular. Bix12x15cm - triangular MC-R175 636436 5553827 11.3 4.2 35 5.3 40.2 15.1 33 12.12 802.9 141.1 5pcs.QV/BX float.QZ/CB alt'd AV rubble [1] 4x4x7cm (2] 4x4.5x5.5cm (3] 5x6x12cm subang MC-R176 636446 555195	MC_R168	637446	5552457	15.3	56	27	19	29.6	10.7	19	2.06	343	92.8	Msy white & clear semi-classy O7 - minor chalcedony.	17x8 5x10cm submund on 1 side-otherwise accular
MC-R170 636916 5552977 1.7 2 20 1.4 34.2 0.9 29 0.14 1190.7 12.6 Quartz vein floet Grainy QZ w/ abund FeO fracs/cavity fillings MC-R171 636896 5553827 2.9 1.6 13 1.9 38.4 3.5 37 3.07 267.1 52.7 Quartz vein floet subangular. Some banded MC-R172 636896 5553827 3.5 2.2 17 3.4 89.3 5.5 120 2.78 244.4 75.6 QV/PK float 8xt Some banded 8xt 8xt Some banded 8xt 8xt Stress 49.8 Spcs. QV/BX. QV/It stockwork. Whit & gy banded chalcedony. {1} 3x5x6cm subang {2} 3x3.5x8cm subang {3} 4x5x9cm {1} 3x5x6cm subang {2} 3x3.5x8cm subang {3} 4x5x9cm {1} 3x5x6cm subang {3} 4x5x9cm {1} 3x5x6cm subang {2} 3x3.5x8cm subang {3} 4x5x9cm {1} 3x5x6cm subang {2} 3x3.5x8cm subang {3} 4x5x9cm {1} 3x5x6cm subang {3} 4x5x9cm {1} 3x5x6	MC-R169	637056	5552632	7.5	3.7	10	1.7	70.6	4	77	2.15	356.7	57	White & tan banded chalcedonic QZ	Also MnO.
MC-R171 636556 5553837 2.9 1.6 13 1.9 38.4 3.5 37 3.07 267.1 52.7 Quartz vein float subangular. Some banded MC-R172 636456 5553832 3.5 2.2 17 3.4 89.3 5.5 120 2.78 24.4 75.6 QV/BX float 8x12x15cm - triangular 8x12x15cm - triangular MC-R173 636456 5553826 0.8 4.3 55 0.4 92.5 0.9 30 0.4 85.6 42.8 Silic piece, QZ-CB ait'd AV rubble (1) 3x5x6cm subang (2) 3x3.5x8cm subang (3) 4x5x9cm MC-R175 636436 5551852 11.3 4.2 35 5.3 40.2 15.1 33 12.12 802.9 141.1 5 pcs QV/BX float. QZ/CB ait'd AV w/ 1-1.5cm.chalced vein. {11 4x4x7cm (2) 4x4.5x5.5cm {3} 5x6x12cm subang-2 submd MC-R176 636446 5551952 1.9 1.4 8 0.2 18.1 1.1 50 0.18 22.5 5.2 5pcs QV float subangular. {11 5x7x8cm {2} 6x7x6cm {11 5x7x8cm {2} 6x7x8cm {11 5x7x8cm {2} 6x7x8cm {11 5x7x8cm {2} 6x7x8cm {	MC-R170	636916	5552977	1.7	2	20	1.4	34.2	0.9	29	0.14	1190.7	12.6	Quartz vein float	Grainy QZ w/ abund FeO fracs/cavity fillings
MC-R172 636996 5553822 3.5 2.2 17 3.4 89.3 5.5 120 2.78 24.4 7.5 6 QV/BX float 8x12x15cm - thengular MC-R173 636456 5553826 1.9 3.9 17 15.2 20.5 3.5 46 2.72 653.8 49.8 5pcs. QV/BX (Vnit stockwork. Wht & gy banded chalcedony. [1] 3x5x6cm subang (2] 3x3.5x8cm subang (3] 4x5x9cm MC-R175 636176 5553827 11.3 4.2 35 5.3 40.2 15.1 33 12.12 802.9 141.1 5 pcs. QV/BX float. Q2/CB alt'd AV w/ 1-1.5cm.chalced vein. {1} 4x4x7cm (2) 4x4.5x5.5cm {3} 5x6x12cm subang (2] 3x3.5x8cm MC-R176 636446 5551872 5.4 2.6 106.3 1 31 0.24 956.2 15.6 8 pcs QV/BX float. White, in part hematitic epithermal QZ {1} 8x10x13cm (2) 6x7x7cm 6 subang-2 submd MC-R176 636446 5551952 1 0.6 0.1 8.12 1.5 2.1 23.5 3 Ms vm t& cgr xline CC w/ 10% skaletal wht-pale gy QZ {1} 5x7x8cm (2) 6x7x7cm 6 subang-2 submd {1} 5x7x8cm (2) 6x7x7cm 6 subang-2 submd {1} 5x7x8cm (2) 6x7x7cm 6 subang-2 submd {1	MC-R171	636556	5553837	2.9	1.6	13	1.9	38.4	3.5	37	3.07	267.1	52.7	Quartz vein float subangular.	Some banded
MC-R173 636456 5553826 1.9 3.9 17 15.2 20.5 3.5 46 2.72 653.8 49.815pcs. QV/BX. QV/It stockwork. Whit & gy banded chalcedony. {1} 3x5x6cm subang {2} 3x3.5x8cm subang {3} 4x5x9cm MC-R174 636436 5553826 0.8 4.3 55 0.4 92.5 0.9 39 0.34 85.6 42.8 Silic piece, QZ-CB all'd AV rubble {1} 4x4x7cm (2) 4x4.5x5.5cm {3} 5x6x12cm submd MC-R176 636446 5551872 5.4 2.8 13 6.6 106.3 1 31 0.24 956.2 15.6 8 pcs QV/Bxt. White, in part hematitic epithermal QZ {1} 4x4x7cm (2) 4x4.5x5.5cm {3} 5x6x12cm submd MC-R177 636446 5551952 1.9 1.4 8 0.2 17.1 1 50 0.18 225 5.2 5pcs QV float subangular. {1} 5x70cm (2) 6x7x7cm 6 subang-2 submd {1} 5x70cm (2) 6x7x8cm MC-R179 636476 5551922 0.5 0.7 8 0.1 6 1.8 1521 1.51 2.1 2.1 Silicic AV hostrock purple-red-bm 15x20x2cm tabular angular {1} 5x20x2cm tabular angular {1} 5x20x2	MC-R172	636896	5553822	3.5	2.2	17	3.4	89.3	5.5	120	2.78	244.4	75.6	QV/BX float	8x12x15cm - triangular
MC-R174 636436 5553825 0.8 4.3 55 0.4 92.5 0.9 39 0.34 85.6 42.8 Silic piece, Q2-CB aird AV rubble (1) 4x4x7cm (2) 4x4.5x5.5cm (3) 5x6x12cm submd MC-R175 636176 5553827 11.3 4.2 35 5.3 40.2 15.1 33 12.12 B02.9 141.1 5 pcs QV/BX float. Q2/CB aird AV w/1-1.5cm.chalced vein. {1} 4x4x7cm (2) 4x4.5x5.5cm (3) 5x6x12cm submd MC-R177 636341 5551962 1.9 1.4 8 0.2 181.7 1.1 50 0.18 225 5.2 5pcs QV float subangular. {1} 5x7x8cm (2) 4x4.5x5.5cm (3) 5x6x12cm submd MC-R178 636344 5551955 1 0.6 6 0.1 85.2 0.3 28 0.02 253.5 3 Msv wht & cgr xline CC w/ 10% skeletal wht-pale gy QZ 15x20x2cm tabular angular {1} 5x20x2cm tabular angular MC-R179 636476 5551952 0.7 8 0.1 6.2 0.2 86 0.1 10.9 12.5 G2-CB ait'd rusy org AV float 10x11x22cm tabular angular MC-R181 63776 555432	MC-R173	636456	5553836	1.9	3,9	17	15.2	20.5	3.5	46	2.72	653.8	49.8	5pcs.QV/BX. QVnit stockwork. Wht & gy banded chalcedony.	[1] 3x5x6cm subang [2] 3x3.5x8cm subang [3] 4x5x9cm
MC-R175 5351672 54 2.6 13 64 10.1 535 12.1 502.9 14.1 15 15.1 14.1 15 14.1 15 14.1 15 14.1 15 14.1 15 14.1 15 15.1 14.1 15 15.1 14.1 <td>MC-R174</td> <td>636436</td> <td>5553826</td> <td>0.8</td> <td>4.3</td> <td>55</td> <td>0.4</td> <td>92.5</td> <td>0.9</td> <td>39</td> <td>0.34</td> <td>85.6</td> <td>42.8</td> <td>Sliic piece, QZ-CB all'd AV (UDDie 6 non OWRY floot, OZICE all'd Alf wild 1 fam shaland win</td> <td>111 AutoTam (O) Aut EVE Eam (O) EventCom automat</td>	MC-R174	636436	5553826	0.8	4.3	55	0.4	92.5	0.9	39	0.34	85.6	42.8	Sliic piece, QZ-CB all'd AV (UDDie 6 non OWRY floot, OZICE all'd Alf wild 1 fam shaland win	111 AutoTam (O) Aut EVE Eam (O) EventCom automat
MC-R178 G36541 G551952 1.9 1.4 6 0.2 1.8 1.1 50 0.18 2.5 50 0.10 0.1 6 0.1 8.2 5.5 1.0.5 0.5 0.5 0.10 0.1	MC-R175	636446	5551872	5.4	4.2 2.8	13	5.5	106.3	15.1	33	0.24	956.2	141.1	5 pcs QV/DA float. Q2/CD alto AV w/ 1-1.3chi.chalced valh. B pcs QV float. White, in part bernatitic epithermal Q7	(1) 4x4x/cm (2) 4x4.ax5.acm (3) 5x0x12cm Subind
MC-R178 636348 5551955 1 0.6 6 0.1 85.2 0.3 28 0.02 25.3 3 Msv wht & cgr xlline CC w/ 10% skeletal wht-pale gy QZ MC-R179 636348 5551952 0.5 0.7 8 0.1 6 1.8 1521 1.51 2.1 23.1 Silicic AV hostrock purple-red-bm 15x20x22cm tabular angular MC-R180 635541 55555252 11 3 35 0.1 62 0.2 26 0.1 10.9 12.5 02-CB att on usty orig AV float 10x11x2cm. Quite rounded. MC-R181 637576 5555492 0.9 4 83 0.2 7.3 0.7 56 0.46 4 19.1 QZ-CB att d visty orig AV float [1] %7x14cm (2] 3.5x8.5x11cm. Both subang MC-R182 637676 5553432 0.9 4 83 0.2 7.3 0.7 56 0.46 4 19.1 QZ-CB att d AV, 8x11x15cm ang. MC-R183 637571 5551138 7.4 2 7 4.9 56.1 0.8 17 0.06 7916.4	MC-R177	636341	5551962	19	1.4	8	0.2	181 7	11	50	0.18	225	52	Spes OV float subangular	(1) 5x7x8cm (2) 6x7x8cm
MC-R179 636476 5551922 0.5 0.7 8 0.1 6 1.8 1521 1.51 2.1 23.1 Silicic AV hostrock purple-red-bm 15x20x22cm tabular angular MC-R180 6358476 5555052 11 3 35 0.1 6.2 0.2 86 0.1 10.9 12.5 02Z-CB alt'd rusty ong AV float 10x11x22cm. Quile rounded. MC-R181 637776 5552549 1.3 0.6 5 0.8 37 0.04 970.2 15.7 2 pcs.QV float [1 j6x7x14cm (2) 3.5x8.5x11cm. Both subang MC-R182 637496 5553432 0.9 4 83 0.2 7.3 0.7 56 0.46 4 19.1 Q2-CB alt'd rusty ong AV float [1 j6x7x14cm (2) 3.5x8.5x11cm. Both subang MC-R183 637571 5551138 7.4 2 7 4.9 56.1 0.8 17 0.06 7916.4 8.9 4 pieces QV float [1] 4.5x6.5x8.5cm {2} 4x4.5x8cm. 2 ang, 1subang, 1submd [1] 4.5x6.5x9x14cm submd (2) 5x59cm subang [1] 6.5x9x14cm submd (2) 5x59cm subang [1] 6.5x9x14cm submd (2) 5x59cm subang [1] 6.5x9x14cm submd (2) 5x59cm subang <	MC-R178	636348	5551955	1	0.6	6	0.1	85.2	0.3	26	0.02	253.5	3	Msy wht & cgr xlline CC w/ 10% skeletal wht-pale gy QZ	
MC-R180 635841 5555052 11 3 35 0.1 6.2 0.2 86 0.1 10.9 12.5 QZ-CB att'd rusty orng AV float 10x11x22cm. Quite rounded. MC-R181 63776 5552549 1.3 0.6 5 0.6 37 0.04 970.2 15.7 2 pcs. QV float [1] 6x7x14cm (2] 3.5x8.5x11cm. Both subang MC-R182 637496 555432 0.9 4 83 0.2 7.3 0.7 56 0.46 4 19.1 QZ-CB att'd AV. 8x11x15cm ang. MC-R183 637571 5551136 7.4 2 7 4.9 56.1 0.8 17 0.06 7916.4 8.9 4 pieces QV float over 30 m distance. {1} 4.5x6.5x8.5cm {2} 4x4.5x8cm. 2 ang.1subang. 1submd {1} 4.5x6.5x9.5cm {2} 4x4.5x8cm. 2 ang.1subang. 1submd MC-R184 636716 5550972 2.4 2.2 5 4 9.5 7.7 3 2.91 37.8 2.55 Good epithermal QV float {1} 6.5x9x14cm submd {2} 5x5x9cm subang Page 1 Rene 1	MC-R179	636476	5551922	0.5	0.7	B	0.1	6	1.8	1521	1.51	2.1	23.1	Silicic AV hostrock purple-red-bm	15x20x22cm tabutar angular
MC-R181 637776 5552549 1.3 0.6 5 0.6 37 0.04 970.2 15.7 2 pcs.QV float [1] 6x7x14cm (2] 3.5x8.5x11cm. Both subang MC-R182 637496 6553432 0.9 4 83 0.2 7.3 0.7 56 0.46 4 19.1 QZ-CB alt/d AV, 8x11x15cm ang. MC-R183 637571 5551138 7.4 2 7 4.9 56.1 0.8 17 0.06 7916.4 8.9 4 pieces QV float over 30 m distance. [1] 4.5x6.5x8.5cm {2} 4x4.5x8cm. 2 ang.1subang, 1submd MC-R184 636716 5550972 2.4 2.2 5 4 9.5 7.7 3 2.91 37.8 25.5 Good epithermal QV float {1} 6.5x9x14cm submd {2} 5x5x9cm subang Pene 1	MC-R180	635841	5555052	11	3	35	0.1	6.2	0.2	86	0.1	10.9	12.5	QZ-CB alt'd rusty orng AV float	10x11x22cm. Quite rounded.
MC-R182 63/496 555432 0.9 4 83 0.2 7.3 0.7 56 0.46 4 19.1 Q2-CB all'd AV. 8x11x15cm ang. MC-R183 637571 5551138 7.4 2 7 4.9 56.1 0.6 17 0.06 7916.4 8.9 4 pieces QV float over 30 m distance. {1} 4.5x6.5x8.5cm {2} 4x4.5x8cm. 2 ang.1subang.1subang.1submd MC-R184 636716 5550972 2.4 2.2 5 4 9.5 7.7 3 2.91 37.8 2.5 Good epithermal QV float {1} 6.5x9x14cm submd {2} 5x5x9cm subang Page 1	MC-R181	637776	5552549	1.3	0.6	5	0.8	3.4	0.6	37	0.04	970.2	15.7	2 pcs.QV float	[1]6x7x14cm (2] 3.5x8.5x11cm. Both subang
MC-R184 636716 5550972 2.4 2.2 5 4 9.5 7.7 3 2.91 37.8 25.5 Good epithermal QV float [1] 4.5x6.5x8.5cm (2) 4x4.5x80x1 2 ang,1subang, 1submd [2] 5x5x9cm subang	MC-R182	637496	5553432	0.9	4	83	0.2	7.3	0.7	56	0.46	4	19.1	QZ-CB alfd AV,	8x11x15cm ang.
	MC-R183	636746	5550072	/.4 ว.4	2	/ E	4.9	56.1 o.e	U.8	1/	2.05	7916.4 37.4	0.9 26 4	4 pieces uv noat over 30 m distance. Cond enithermal OV finat	[1] 4.5x5.5x8.5cm {2} 4x4.5x8cm, 2 ang,1subang, 1submd [1] 6 5x9x1.4cm, submd [2] 5x5x9cm, subseq.
	m0-0104	030710	3330arz	2.4	2.2	J	7	9.0	1.1	5	2.91	51.0	20.0	Fores abuiltontien 64 most	Tri olovovinom additid (z) ovovadin addeng Done 1

.

			1	MERI	T PR	OPEF	RTY	AREA	Pre-S	Staki	ng (2	002-2	2004) RECONNAISSANCE SAMPLE	SUMMARY
Sample Number	Easting NAD 83	Northing NAD 83	Mo ppm P	boom Z	n coorni A	Ag ppm J	As ppm	Sb ppm	Bapom ⊦	lg ppm -	Au ppb	Cuppm	Rock Type	Notes
Rock San	ples							<u> </u>						
MC-R185	637304	5551822	0.7	0.6	4	-0.1	1.6	0.1	612	0.05	16.1	4.1	In situ QV trending 040 dip steep SE	Vein hosted in dult grey-bm rubble AV/BV{?}
MC-R199	635806	5556202	0.8	45.8	72	-0.1	1.6	0.1	2022	-0.01	-0.5	58	1 ang piece CB (w/ minor qtz) vn float	Dolomite
MC-R200	637589	5550502	1.1	1.B	21	0.2	150.3	1.2	21	0,12	498.7	7.6	Opaque whit semi-clear & it gy chalcedonic QZ.	1 piece 5-8x10x13cm submd ragged on edges
MC-R201	637596	5550419	9.2	1.6	14	0.7	158.9	1.1	49	0.08	410.1	7.4	QV float wht-clear & It gy chalcedony w/ tiny cavities.	Single tabular pc 5-7x8x9cm
MC-R202	637570	5550282	3.5	0.6	5	2.2	62.1	1	31	0,14	2148.8	4.8	QV blue - gy chalcedony wht & It gy banding.	1 pc ang 9.5x7.5x3cm. 9 smaller ang pieces.
MC-R203	637578	5550290	2.3	2.1	13	0.4	243	0.6	369	0.04	574.3	9.2	QZ-CC white-semi-clear & It gy QZ w/ trace PY.	Fe carb.
MC-R204	637591	5550252	2.2	0.9	8	0.1	91.1	0.3	998	0.02	309.3	4.3	Msv-opaque white fgr QZ.	1 piece round float 9x12x16cm.
MC-R205	637651	5550095	1.9	0.7	6	0.4	101.5	1	56	0.1	789.3	3.7	9 pcs QV float may whit to it gy epithermal QZ.	Largest pc 5x6x9cm, 1 with silic wallrock attached
MC-R206	637659	5550103	0.6	0.6	6	0.1	64.9	0.5	105	0.03	63	3	Msv wht & semi-clear chalced w/ CC core	2 pieces angular float 6x6x9cm & 6x6x10cm
MC-R207	637606	5550067	12.3	1.1	9	1.4	63.6	0.9	54	0.08	2092.9	8.1	QV/BX wht-tan & it gy chalced. Some banding.	7 med & 9 small pieces (1) 3x/x10cm (2) 4xbxbcm.
MC-R208	637251	5549837	1.2	3	31	1.4	13.3	0.6	89	0.02	17.3	18.9	QV/BX w/ some internal CC/AK.	Sparse MY
MC-R209	63/661	5550032	3.9	0.3	4	0.1	5.9	0.3	349	0.06	311	5.¥	UV fice: banded opaque whit & it gy chalced.	1 Single tabular angular piece 7 XX (2cm.
MC-R210	63/666	5549887	0.8	U.6	4	1.2	(0.4	0.7	19	0.05	3073.4	5.0	Light grey brown slike Av{7} hostrock.	Proton automa autolia. NE bank of strong auto
MC-K211	636890	0001940	0.3	1.4	101	-0.1	0.0	4./ 6.7	1921	2.0	25.2	154	Co-uz allo pulple-grey Av. Nemotivis eilise ell'd AV	Choload massas
MC R212	636046	5551907	0.5	21	00	0.3	34.3	87	772	0.76	20.0	282.7	Hemetitic silic ridge of alt'd AV	Chalced masses
MC-R213	636952	5551006	0.3	2.1	33	0.0	27.2	5.8	1688	0.70	88.8	48.8	Dark red brown hematilia it ov chelced	Broken n/bble from O/C stringers <5mm wide & microbx
111 <u>1111111</u>		1 0001000	0.5	2.2		<u>U.1</u>		0.0	1000			40.0		
Soil Sam	ples	6666666					40.7	0.0	07	0.04		40		Energy temps the width Bood aut subscen
MC-548	635661	0000992	0.5	4.0	21	0.1	12.7	0.2	93	0.04	1.4	40	DV BV sheller zonn, SIC in road out, (See MC B72)	Graha event 2 Am over 10m width along base of eventure
MC-349	634206	5554690	0.5	5.5	01 60	0.1	3.3	0.4	70	0.12	9.7	42.0	Blocky baselitic subvolcenic and fishle BV	Frothy dra inclusion in BV w/ MnO
MC-504	634373	5556909	1 0.3	J.9 57	39	0.1	2.41 AB	0.1	797	0.02	13	31.5	BV D/C dark howo frishle	Plab faids nomb at ion of O/C
UC-905	634300	6556917		3.1	88	0.1	46	0.4	87	0.06	11	37.1	BV nearby FP dyke/2) contact	Comp sample, several grabs along 6m of mad cut
MC 957	624307	5556926	- 0.8	47	60	0.1		0.4	78	0.06	0.5	40.3	Gro on BV cut by tan oron CB vein 5cm	10 orahs over 8m
MC-331	634404	5555825	0.5	4.2	81	0.1	21	0.1	80	0.00	-0.5	30.1	Green grev BV	
MC-850	634411	55568/5	0.3	4.8	66	0.1	2.2	0.1	98	0.04	-05	28.9	Green grey BV	
MC-S60	634418	5556854	0.7	4.5	76	0.1	1.8	01	128	0.03	-0.5	28.3	Green grey BV	
MC-S61	634425	5556863	11	4	52	01	24	01	152	0.07	1	29.2	Green arev BV.	
MC-S62	634432	5556872	41	5	49	-0.1	1.6	0.1	182	0.1	0.5	29.5	Green grey BV.	
MC-S63	634441	5556879	0.4	4.6	67	0.1	1.3	0,1	164	0.02	-0,5	28.3	Green grey BV.	
MC-S64	634451	5556890	0.5	4.9	67	0.1	1.4	0.1	118	0.03	-0.5	26.4	Green grey BV.	
MC-S65	634634	5557118	04	4.6	60	0.1	1.3	0.1	117	0.09	-0.5	28	Maroon and grey BV	Taken at 3 points over 3m
MC-\$66	634458	5556910	1.1	4.4	52	0.1	2.1	0.1	120	0.12	1	37,5	Marcon and grey BV	Taken at 3 points over 5m
MC-S89	637291	5554275	1.1	6.2	129	0.1	8	0.2	265	0.07	4.8	58.1	CB alt'd PV	5 grabs over 7.5m. Dk gy-bm B/C transitional soil.
MC-\$90	637306	5554205	0.5	6.1	155	0.2	6.3	0.4	387	0.04	2.1	53.5	CB alt'd PV	Single point grab over subcrop. Dk red-orng soil.
MC-S93	637155	5551364	0.4	2.7	44	-0.1	1.6	0.1	193	0.51	-0.5	30.7	Decomp/sheared basaltic AV(?)	Dull rusty orng.soit grabs. 6 across 6-7m.
MC-S94	636670	5550092	0.4	4	91	-0.1	9.5	-0.1	138	0.02	-0.5	42.7	Light gy-brn to olive grn basaltic AV{?} bedrock{?}	Soil grabs over 1.5m
MC-S95	637346	5553232	0.6	5.5	81	0.1	5.6	0.2	164	0.05	3.1	34,8	Abund carb-alt'd AV rubble & probable S/C	6 points over 5x10m
MC-S96	636906	5551942	0.7	3.8	144	-0.1	14	11.6	113	0.07	-0.5	28.1	Strongly CB att'd AV.	7 grabs over 10 meters
MC-S110	636926	5551956	0.5	4.2	174	-0.1	10.5	12.3	262	0.04	1.2	24.1	CB aird angular rubble	20cm pit on 20deg slope. B honzon.
MC-5111	636930	5551965	0.5	3.8	189	0.1	4.2	4.5	323	0.02	0.7	9.3	CB alt'd angular rubble	15cm pit, B horizon, 10m @ 25deg.from S110. Top of hogsback.
MC-S112	636934	5551974	0.6	6.6	143	0.5	4.5	1.6	821	80.0	3.4	34.3	Up all o large angular rocks.	20cm pit, B nor, 10m @ 250eg from \$111, 10p of hogsback.O/C
MC-S113	636938	5551984	0.5	5.6	170	0.3	9.7	1.4	529	0.11	4.2	26.6	CB aird large angular rocks.	12Ucm pit, B nor, 10m @ 25deg.troin 5112. Top of hogsback.Orc
MC-8114	636942	5551993	0.8	4.8	1/3	0.6	30.7	3.2	1200	0.2	9.0	131.2	UB and large angular rocks.	15cm pit, B hor, 10m @ 25deg from 5 115 on bedrock.
MG-8115	636946	5552002	0.6	7.3	200	0.7	07.4	3.1	1109	0.10	3.2	444.2	Large angular hematitic Q2. Top of O/C	15cm pit, AVB hor, 10m @ 200eg from S114 on bedrock.
MU-5116	1 030354	1 2221999	1 1.2	0.0	231	<u> </u>	27.1	(.3	1281	0.00	17.5	144.3	เปลาสูง สะญังเล่า เพิ่มไฟมีแห่ นั่ว, เปลร์เซ็นรูช บา 0/0,	Train pit, we not, toking round ground at to unbeaudok.
Stream S	ediment Sa	mples 1 5554624	1.03	37	52	0.1	2.6	<u> </u>	109	0.08	10.1	22.6	Dom BV, some AV S/C in pearby road cut (NE)	Sand & gravel base Mod flow. Clean active seds
MC126.1	635807	5553725	0.0	4.7	52	01	2.6	0.2	123	0.22	0.9	26.2	BV. some DI. some GB	Chan 1.5m, boulder cobble sand silt base, good flow. Mod grade
MC126-2	635876	5553768	04	43	49	01	27	0.4	104	0.08	0.8	40.6	BV dominant: (local outcrops ~20m East).	Side br. Gryl/pebble base, gentle flow, boggy slopes, danse veg
MC126-3	637249	5554259	0.3	37	52	01	2.4	02	104	0.07	2.8	28.7	Dom mded AV-BV float, Local Q/C msv dk volc & it ov PV flow(?)	Main br. 1-1.5m wide, gentle flow, Boaav and w/ sand-arvi sections.
MC126-4	636938	5553824	04		54	0.1	2.7	0.2	119	0.08	5	26.9	Dom md BV O/C in stream channel & banks.	Main br. <1-2.0m wide, mod flow. Grvl/cobble base.
MC 126-5	636538	5553835	0.5	4.3	54	0.1	2.9	0.3	125	0.08	1.9	28.4	Dom red-bm & dull gy BV/AV. QV chips	<1-1.5m.gentle flow

Page 2

×.

-

			N	IERIT I	PRO	PERTY	AR	EA P	re-	Stakir	ıg (2	002-2	2004) RECONNAISSANCE SAMPLE	SUMMARY
Sample Number	Easting NAD 83	Northing NAD 83	Moppm Pb	ppm_Zn p	om Agip	pm_As ppr	n Sb r	pm Baj	opm _	Hg ppm /	u pob	Cu ppm	Rock Type	Notes
Stream Se	diment Sam	ples												······
MC126-6	636255	5553815	0.4	4.1	53	0.1 2	.3	0.2	125	0.06	0.8	26.9	Dk gy volc flow O/C. Gy-brn & red-brn volc float	Braided channel 0.5-1.25m, gentle flow
MC-127	637004	5555311	0.4	3.9	55	-0.1 2	2	0.2	76	0,1	1.1	22.1	Dominantly BV	Sand gravel base. Mod flow. Clean active seds.
MC-1275	637004	5555311											Dominantly BV	Sand gravel base. Mod flow, Clean active seds, Sieved to -230 mesh.
MC-128	637098	5556626	0.3	3.9	59	0.1 1	.3	0.1	64	0.04	13.6	19.5	Dominantly BV	Sand gravel base, Gentle flow, Clean active seds,
MC-128S	637096	5556626					1						Dominantly BV	Sand gravel base. Mod flow. Clean active seds. Sieved to -230 mesh.
MC128-1	636921	5556460	0.3	3.3	55	-0.1 1	.4	0.1	60	0.03	1	16.6	Dom red-brn BV pebbles- some agate.	Main br. 0.5-1.0m wide, gentle flow. Sand/gravel base.
MC128-2	636658	5556572	0.3	3.5	60	-0.1 1	5	0.1	66	0.03	1	18.2	Local dk gy BV-AV O/C. Some QD subang float.	Main br. 1-1.5m, mod flow, gravel/cobble base,
MC-136	637934	5552784	0.3	3.8	43	-0.1 2	.7	0.3	76	0.03	4.5	18.3	Basaltic AV	Chan 2x0.2m, mod flow, send silt bed.
MC-1365	637934	5552784											Basaltic AV	Chan 2x0.2m, mod flow, sand silt bed. Wet sieved to -230 mesh
MC-137	637896	5552832	0.4	4.3	44	0.1 4	2	0.2	109	0.04	1.2	32.2	Dominantly BV, some light gray-gm AV floal.	Intermittent trickle, isolated pockets of clean seds on organic mat base.
MC-138	637803	5552151	0.3	4.2	48	-0.1 3	.4	0.5	81	0.03	1.7	21.6	Dominantly BV, some light gray-gm AV float.	Sand-gravel base. Mod flow. Clean active seds.
MC-138S	637803	5552151											Dominantly BV, some light gray-gm AV float.	Sand-gravet base. Mod flow. Clean active seds. Sieved to -230 mesh.
MC-139	637671	5550862	0.3	3.5	39	0.1 3	.9	0.4	86	0.09	1.2	47.3	Dominantly BV, some light gray-gm AV float.	Local clean sand-gravel pockets on org mat/rocky base. Gentle flow,
MC-140	637657	5550896	0.4	3.5	38	0.1 3	.5	0.6	106	0.08	1.2	39.6	Basallic AV	Chan 1x0.2m, intermittent-low flow, organic gravel sand bed
MC-152	636483	5556426	0.6	3.3	50	0.1 2	.7	0.2	81	0.04	1.3	23.9	Maroon BV	Chan 40cm, sand sill base, good flow. Boggy drainage.
MC-153	635815	5556361	0.4	4.2	50	-0.1 1	.5	0.2	56	0.04	0.5	23.7	BV dominant float.	Sand/gravel base, mod grad/flow, 0.5-1.0m wide.
MC-154	635815	6556393	0.2	4.2	41	0.1 1	.3	0.1	59	0.05	0,7	33.4	Maroon BV, some Di	Channel 30cm, gravel sand sill base, good Row. Mod grade
MC-236	635506	5554792	0.3	3.8	56	0.1 1	.7	0.1	81	0.1	1	28.2	Dom gy-bm & red-bm basaltic pebbles/cobbles	Near jcl. MC-237(main) 1-1.5m shallow channel.
MC-237	635452	5554815	0.4	4	59	-0.1	2	0.1	73	0.11	0.9	25.5	Dom gy-bm & red-bm basaltic pebbles/cobbles	Main, above MC-236, 1-3m wide, gentle flow
MC-238	635441	5554952	0.3	3.9	56	-0.1 1	.9	0.1	82	0.04	3.4	17.6	No sizable float	Side branch. 0.5-1.5m braided trickler on boggy bench.
MC-239	535146	5554255	0.6	4.5	5/	0.2 1	8	0.2	88	0.12	1.6	38.8	Pebble/cobble - Dominantly gry-brn HV	Side pup boggy trickler 0.75m heavy gravelly worganics
MC-240	635134	5554276	0.4	4.3	D2	Q.1 1	.9	0.1	10	0.13	0.7	33.9	Dominantly gry-orn BV	Side branch jct. W MC-239 1.25m more major channel.
MIC-241	030030	5554843	0.3	4.5 4.4	40	0.1 3	.a 	u.2	76	0.00	~Q.5	¢ 1.1	Grave/Coddie pase of BV/AV 735	Different stream <0.5m good seas/minor orgs.
MC-242	824177	6664460	0.5	4.4	61	0.1 2		0.2	09	0.00	87.2	33.0	Basalic pea graver - lines or mon-ling) organic content. Basalic fical dull au hes 2 red hes combiners/bidge	Usic charact 1.6.2.0m intermittant papella flow
MC-243	634177	5554460	0.5	4.2	-60 -60	0.1 2	*	0.1	00	0.03	07.2	20	Desalic figet, dull guilter & red bre complexyators	Main channel 1.5-2.0m shemiltent genne tow
MC 243-1	634353	6564490	0.5	36	53 64	-0.1 2	2	0.1	70	0.04	.0.5	20	Pasalic roat - uuli gy-piri a teu-piri coopiesiolais	V nully Ornanic malibase 0.35m was choked shannol, bergy trickles
MC 245	634333	6554430	0.4	3.0	60	0.1 2	1	0.1	83	0.04	-0.5	28.0	Basalic gares + Reibs cours	Chancel 3m dry sobble/bldry
MC-246	635160	6654774	0.4	37	62	0.1 2	Ŕ	0.1	A1	0.00	1.6	20.0	AV.BV/2) cobbies	1.3m imag windex channel
MC 247	635116	5554902	0.5	37	47	0.1 2	1	0.6	62	0.1	0.7	47.1	AV BV ashblar	c0.5.1.0m Larger of 3.3 brancher. Cott four shallow and and anti four
MC.248	635164	5554882	0.3	77	49	01 8		0.0	72	0.04	12	16.2	AV-BV nebbles	Bonny trickler 0 35m
MC-256	638158	5550812	0.0	12	18	-0.1 0	1	0.1	31	0.1	-0.5	R 1	Calcareous multihase	Side brench Veg choked 0 5m changel
MC.257	638050	5550897	04	3.5	51	0.1 2	8	0.1	G4	0.00	1.5	41.9	Mixed voic nebbles/cobbles	Dry channel 0.75-1 5m wide 2 points 50m apart
MC.258	636984	5550832	0.3	33	46	01 1	2	6.2	87	0.06	0.6	45.3		Dry channel 0.75-1.0m wide, some omanic black mud
MC.259	636105	5552107	0.4	37	59	-01 5	9	0.7	100	0.03	14	25.2	Red.hm & ov BV nehbles, OZ chins anatev	>1 0m rhannet Moderate flow
MC-260	636026	5552137	0.4	31	41	01 3	ă –	0.4	104	0.04	0.5	20.8		<0.5m aton omanic mat, honov braided trickler
MC.261	636426	5551017	0.0	3.4	48	-01	3	0.5	91	0.03	3.6	17	OV chips	1 D-2 0m wide. Gentle flow
MC.262	636589	5551652	0.2	37	48	01 2	a l	66	65	0.03	21	23.6	a compo	<0.5m channel gentle flow Very boson section w/ 2 heaver ponds
MC-263	636866	5551727	0.4	34	44	-01 6	9	0.0	68	0.03	5.3	18.6	Basaltic nebbles dominate	0.3.1 0m Gentle flow
MC-264	637442	5552036	0.4	3.8	52	-01 3	7	0.5	80	0.12	11	22.3	AV/BV float	0.4.0 8m width. Good moderate velocity stream
MC-265	636656	5551932	0.3	3.7	50	-0.1 4	2	0.8	92	0.05	3,6	20.6	Grey & red-brn voic float - very small QZ chips	<1-3m wide shallow channel.
MC-266	635787	5554911	0.4	3.5	53	0.2	2	0.2	69	0.07	203.7	26 7	Dominantly red-brn & dull/dk grey basattic float	1-1.1m wide, gentle flow
MC-267	636187	5555122	0.5	3.7	57	0.1 2	1	0.2	73	0.08	4.2	27.5	Dominantly red-brn & dull/dk grey basaitic float	1-1.5m wide, gentle flow
MC-268	637086	5551872	0.3	3.8	50	-0.1	5	0.4	74	0.02	0.5	20.2		0.5m channel genue flow from beaver ponds
MC-269	637079	5551888	0.3	3.7	50	-0.1	3	0.8	86	0.03	0.8	22	Red-bm & rusty-orange AV/BV pebbles + some fine QZ	1-1.5m wide channel, gentle flow

Page 3

.

ACME	Al	T	CAL	LABO	RATO	RIES	LTI).	8 !	52	E. }	IAST	ING	S S	ST.	C	OUVE	R BC	٧6	5A 1R	6	P	HONE	(604	253	-31	58 1	FAX	(60	53	-171	6
		3 90	JZ A	ccred	iteo	. co.)			GI	EOCI	HEM	IICA	L	ANA:	LYS:	IS C	ERT	IFI	CAT	2								• • • •	÷	A	A ¹²²
4 4 4 4	A					AJ	mad	len	Min	era	als	Lt	d.	PR	OJE	CT	BCRC	2-1	F	lile	# 1	A20	1860	5							4	
								1103	- 750	₩.	Pende	r St	., Va	ncol	uver B	C V6C	218	Subm	itted	by: W	. Jak	ubows	ski					· · · · ·			L	
SAMPLE#	Mo ppm	Cu Ppin	Pb ppm	Zn Ag ppni pp	g Ni m ppn	Co Ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd pan p	Sb 8 ppm pp	ī V nppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	ті % р	B A pm	1 N. %	a K K %	(W (ppm	Hg ppm	Sc ppm	Tl ppm	S Ga Xippr	Au* ppb
SI MC-R71	.3	16.1 18.7	.4 2.8	12 . 46 <.	1 1.0 1 <u>47.2</u>) .2 ! 11.9	16 525	.16 2.24	<.5 1.0	<.1 4_	2.7	<.1 1.2	2 < 165 <	.1 .1 •	.6 . <.1 <u><.</u>	1 <1 1_65	.09 1.03	.001 ,088	<1 10	2.2 39.9	.01 1.06	3<. 74	.001 .258	1 .0 <u>1 1.4</u>	1.309 <u>8.10</u> 4	9<.01 4 <u>.09</u>	.4	<.01 <.01	<.1 3.4	<.1<.(<u><.1<.</u> {)5 <1)5 5	4.1
MC-R72 V	2.5	18.1	3.7	41.	1 22.7	8.9	339	1.93	3.0	.7	2.4	1.9	504 < 55 <	.1 .	<u><.1 <.</u> .1 <.	<u>1 57</u> 1 52	2.49	.075	11	27.2	.52	<u>111</u> .	225	5 3.2	4 . 25	5.08 7.08	2.0	.01	4.3	<.1<.0)5 8 15 5	2.5
MC-R74	3.0	12.8	2.7	26 .	1 9.2	6.2	364	1.67	1.1	.2	<.5	.5	49	.1	.2 <.	1 33	1.09	.050	6	28.6	.49	460 .	007	7.7	5 .03	2.11	4.1	<.01	2.0	<.1<.0	is 4	1.0
MC-R75 ∨ Standard	9.0 9.0	1.6 119.7	1.8 32.2	101 <. 149	1 65.4 3 35.6	21.4	1510 835	4.82	3.7 28.0 !	.5 5.6	1.1 20.8	.1 3.9	259 28 5	.3 .3 4	.1 <. 4.9 5.	1 68 5 74	17.82	.009	1	10.2 184.2	6.90 .58	11 . 151 .	.001 .096	3 .2 1 1.6	2 .044	4<.01 2.16	.4	.04 .22	2.5 3.4	<.1<.0 1.1<.0)5 1)5 6	1.1 20.7
Standard	is ST	ANDARI) DS3. GROUP	1DX -	0.50	GM SAI	APLE I	EACHE	ס אודו	H 3 I	ML 2-	2-2	KCL-H	NO3-	- H20 A	T95 I	DEG. C	FOR (ONE H	OUR. D	ILUTE	ото	10 ML	. ANAL	(SED 8	3Y 1C	P-MS					
			UPPER	LIMIT: PLE TY	S - AG PE: RC	, AU, ICK R15	HG, N 50	i = 10 AU*	IGNIT	; MO ED B	, CO, EFORE	CD, ACI	SB, D LEA	BI, CH,	TH, U ANALY	& B ZE BY	= 2,00 ICP-M	0 PPM; \$. (30	; CU,) gm)	PB, Z	N, NI	, MN,	AS,	V, LA,	CR =	10,0	100 PI	РМ.				
		127171	مع			-		משחת			en.().	0	0	1	C 1	C'11177	1 DV	C.	.L		њ. т <i>.</i>								cc.		
DATE	. REC	.E.I.VI	2D :	JUN 21	2002	DA	IC F	EPUI	(1 1914	4.I.D.		//	uy .	٢ ،	102	ופ	LGIAGI	, pr.				p. 11	JTE, C	LEUNG	, J.	WANG;	, CER	11111	ЕО В.	C. AS:	SATERS	i
											-		•								1											
Allr	esult	аге	consi	dered t	he co	nfider	tial	prope	rtv of	the	clie	ent.	Acme	assi	umes t	he li	abilit	ies f	ог ас	tual c	osto	f the	e anal	vsis o	nlv.				Da	ta K	FA	

ACM A		و م	TICAL	LA CCT	BOR edi	ATO ted	RIES Co. <u>Al</u>	LTE) mad). len 1103	8 <u>Min</u> - 750	52 I GE era W. F	C. H CCI 1s Pende	IAST IEM Lt. r St.	ING IC2 d.	IS S AL PR ancou	T. AN OJI	ALY ECT BC V	COU SIS BC 6C 2	IVEF SC CRO 18	BC ERT <u>2-1</u> Subm	V6 IFI F itted	A 1 CA il by:	IR6 TE e # W. Ja	A2(akuboi	PHO D18 wski	NE (6 (6 7)4)253	-315	8 FAX	(60	.	3-171 A	6
SAMPLE#		Mo	Cu DOM	Pb	2n pom	Ag mag	N i pom	o) nog	Mn DDM	Fe X	As pom	U Maga	Au dag	Th	Sr ppm	Cd ppm	Sb	Bi DDM	V	Ca %	P X	La Dom	n) mqq	Mg X	Ba ppm	Ti %r	B Al	Na X	K W Xidom	Hg DDM	Sc DDM	TL Dom	S Ga X DOM
G-1 MC-S45 MC-S46 MC-S47		1.5	2.8 28.7 30.6 50.0	2.7 8.3 7.0 4.2	42 70 70 74	<.1 .1 .1	5.0 56.1 76.4 114.0	4.3 18.5 22.6 28.2	550 1035 1119 904	1.75 3.21 3.67 6.10	<.5 1.3 1.3 3.8	2.2 .7 .7 .3	<.5 1.8 1.2 .7	5.4 1.7 2.2 1.0	84 102 69 43	<.1 .1 .1 .1	<.1 .1 .1 .1	.1 .1 .1 .1 <.1	39 89 94 122	.53 .87 .78 .60	.087 .054 .057 .102	9 15 13 22	31.0 44.5 53.6 84.2	.53 1.17 1.50 .40	227 84 62 101	.127 .353 .313 .017	1 .91 3 2.98 2 2.79 2 1.19	.078 .029 .035 .009	.46 1.1 .11 .1 .08 .1 .05 <.1	<.01 .03 .02 .02	2.3 6.9 8.4 16.8	.3<.0 <.1<.0 <.1<.0 <.1<.0	5 4 5 9 5 8 5 4
MC-S48 MC-S49	\checkmark	.5 .5	40.0 42.8	4.6 5.5	57 61	.1 .1	43.3 51.5	20.8 21.1	790 657	3.39 4.21	12.7 3.5	.5 1.0	1.4 10.3	1.8 2.7	129 297	.1 .1	.2 .2	.1 .1	82 : 111	3.40 1.26	.092	15 15	43.1 57.7	.56 1.49	93 93	.037	5 1.42	.033	.08 <.1 .09 .1	.04 .12	7.4 12.1	<.1<.0 <.1<.0	5 4 5 10
MC-S50 MC-S51 MC-S52 STANDARC	053	2.2 .4 .5 9.4	44.6 27.1 32.6 126.1	75.8 11.1 4.1 34.5	193 65 74 155	.3 .1 .1 .3	25.6 22.6 62.3 38.9	14.8 13.6 24.4 13.3	1655 851 1062 865	3.02 3.01 4.81 3.16	7.2 4.5 3.0 30.8	.5 1.0 .5 6.7	14.0 1.7 <.5 20.7	1.4 1.7 1.6 4.1	50 101 90 31	1.6 .2 .1 5.9	.6 .3 .1 4.8	.5 .1 <.1 6.0	57 77 103 74	.72 .96 .86 .51	.064 .070 .111 .088	24 24 15 19	28.6 39.8 62.4 186.1	.66 1.02 1.03 .58	393 412 66 146	.040 .117 .149 .095	1 2.58 2 2.57 2 2.56 1 1.70	.015 .024 .042 .034	.13 <.1 .10 .1 .09 .1 .15 3.8	.05 .03 .03 .23	4.8 9.0 12.7 3.6	1<.0. 1<.0. 1<.0<> 1.2<.0	5 B 5 B 5 7 5 6

GROUP 1DA - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

CLAR TRACK CONTRACTOR STREET, STREET, STREET, ST. 75

ACME AN. AICAL LABORATORIES LTD. 852 E. HASTINGS ST. JOU (ISO 9002 Accredited Co.)	JVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604 3-1716
Almaden Minerals Ltd. PROJECT BC 1103 - 750 W. Pender St., Vancouver BC V&C 2	<u>CR02-1</u> File # A201868
SAMPLE#	Au* ppb
G-1 MC-110S MC-111S MC-112S MC-112S MC-113S	.3 1.7 3.7 2.2 2.0
MC-114S MC-115S MC-116S <u>MC-125S</u> MC-127S	$ \begin{array}{c} 1.4 \\ 46.3 \\ 17.7 \\ 2.0 \\ \hline 2.3 \\ \end{array} $
MC-128S MC-129S MC-130S RE MC-125S MC-134S	$ \begin{array}{c} 2.2 \\ \hline 13.7 \\ 71.4 \\ 1.6 \\ 156.3 \end{array} $
<u>MC-135S</u> ✓ MC-136S ✓ MC-138S MC-141S MC-142S	$ \begin{array}{c} $
MC-143S MC-144S STANDARD DS3	.4 .9 19.5
AU* BY ACID LEACHED, ANALYSIS B - SAMPLE TYPE: STREAM SED. Samples beginning 'RE' are Reru DATE RECEIVED: JUN 21 2002 DATE REPORT MAILED: JUN 8/02 SIG	IY ICP-MS. (10 gm) <u>uns and 'RRE' are Reject Reruns.</u> BNED BY
	1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ł

Data AFA

and the second secon

.

ACME AN	-	FICAI	LA	BOR	ATC	RIE	S L:	FD.		852	E.	HAS	TI	IGS	ST.	.	20	DUVI	RB	C \	76A	1R6		PHO	ONE (604)	253	-31	58.1	FAX	(60		\$3-17	16	
	لا ن ا	002 2	Accr	edi	ted	Co	•)				GEO	CHE	MI	CAL	AN	IAL	YSI	[S	CER	TIF.	'IC7	\TE			e Sel ^a e Se e est								Ā	Â	
					<u>A</u>	lma	<u>der</u>	<u>n M</u> ; 11	ine: 03	<u>cal</u> 750 w	<mark>g L</mark> . Per	td. der S	Pl it.,	<u>ROJ</u> Vanc	EC1 ouver	BC	<u>CR(</u> v6c	<u>)2 -</u> 218	1 Sut	Fil	e ‡ ed by	‡ A2 ; V.	018 Jakub	69. owski	I	Page	a 1				i Çisel		T		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppr) Mn ippm	Fe %	As ppm	U ppm	Au ppt	i Th ppn	ı Sr ıppml	Cd ppm	Sb ppm	Bi ppm	۷ مرم	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	K X	W ppm	Hg Hg	Sc xpm:p	TL S xpm 7	Ga Ga	
G-1 MC-104 MC-105 MC-106 MC-107	1.3 .7 .5 .6 .4	2.9 41.8 32.1 44.7 32.5	2.6 6.0 6.5 6.2 5.5	38 49 45 47 46	<.1 .2 .2 .3 .2	4.4 41.8 36.8 39.1 37.6	4.1 15.0 13.4 15.2 13.1	498 488 363 637 370	1.69 3.00 2.73 2.84 2.59	.5 4.0 3.3 3.5 3.2	1.8 1.1 1.1 1.1 1.2	1.4 1.6 .5 2.2	4.8 1.5 1.0 1.5 1.2	8 88 223 158 177 167	<.1 .2 .1 .2 .1	<.1 .3 .2 .5 .3	.1 .1 .1 .1	38 92 81 86 81	.54 1.35 1.32 1.50 1.26	.087 .080 .082 .075 .077	9 18 16 16 14	26.5 44.1 42.6 42.6 39.7	.51 1.20 1.08 1.21 1.12	212 176 121 211 124	.126 .204 .177 .215 .209	1 4 2 2 2 4 2 3 2	.90 .29 .41 .54 .23	.070 .040 .040 .041 .045	.45 .08 .06 .08 .07	1.0< .1 .1 .1 .1	.01 2 .05 5 .08 5 .04 6	.0 .7 .9 .7	.3<.05 .1<.05 .1<.05 .1<.05	5 7 5 7 8 7 8 7	
MC-108 MC-109 MC-110 MC-111 MC-111 MC-112	.5 .5 .5 1.0 .3	42.2 31.9 29.2 40.9 51.8	17.4 24.6 4.7 5.4 4.7	67 65 57 49 45	.5 .3 .1 .2 .2	38.6 35.7 45.0 53.7 40.8	15.7 14.5 15.3 15.8 12.1	809 589 507 507 710 363	3.22 2.84 2.92 3.06 2.27	6.5 6.6 2.0 3.5 1.8	1.0 .7 1.4 3.9 3.2	59.9 70.7 1.4 1.4	1.6 1.3 1.7 1.5	143 139 136 148 112	.2 .2 .1 .2 .1	1.3 .8 .1 .2 .2	.3 .2 <.1 .1 <.1	91 108 82 88 62	1.23 1.13 1.19 1.67 1.29	.077 .085 .080 .107 .088	15 14 17 33 18	41.8 40.1 48.0 49.5 43.1	.95 1.01 1.23 1.27 .98	214 113 89 88 64	.196 .219 .269 .228 .207	52 41 32 53 42	.18 .85 .84 .55 .62	.038 .044 .053 .040 .055	.11 .08 .06 .08 .08	<.1 .1 .1 .1	.05 5 .04 4 .03 7 .08 9 .07 6	.9 < .9 < .0 < .3 <	- 1<.05 - 1<.05 - 1<.05 - 1<.05 - 1<.05	7 6 8 10 7	
MC-113 MC-114 MC-115 MC-116 MC-117	.6 .4 .5 .4 .3	35.2 34.8 31.4 32.3 44.7	4.6 4.5 5.8 4.2 5.0	56 51 55 50 55	.1 .1 .1 .2	43.0 36.6 42.6 42.9 45.1	15.5 13.2 16.6 14.8 13.2	491 482 586 405 344	3.56 2.98 3.50 2.97 2.88	.9 1.4 3.7 1.2 2.2	.6 .3 .6 .6 2.1	14.0 1.5 10.2 1.3 1.7	2.0 1.8 1.7 1.3 1.4	118 116 171 139 108	.1 .1 .1 .2	.1 .1 .3 .2 .2	.1 .1 <.1 <.1 .1	134 107 135 113 68	.92 1.01 1.50 1.23 1.49	.057 .039 .096 .057 .064	12 12 14 10 27	51.3 45.9 48.4 46.1 47.0	1.07 .93 1.30 1.17 1.11	77 95 83 70 66	.281 .195 .273 .240 .211	2 2 4 1 2 2 4 1 4 3	. 19 . 75 . 30 . 84 . 42	.065 .047 .069 .070 .034	.11 .09 .09 .09 .09	.1 <.1 .1 <.1	.01 6 .02 5 .03 5 .03 4 .08 9	.2 < .4 < .2 < .8 <	.1<.05 .1<.05 .1<.05 .1<.05	6 6 7 5 10	
MC-118 MC-119 MC-120 RE MC-120 MC-121	.6 .5 .4 .4 .5	60.8 32.9 27.8 29.4 54.1	6.5 4.4 6.8 6.6 4.5	63 51 50 52 47	.2 .1 .1 .1	48.6 40.5 35.3 35.7 45.5	15.2 16.0 13.8 13.8 13.6	628 581 434 450 551	3.21 3.18 3.27 3.34 2.85	2.5 1.9 3.1 3.3 2.9	1.1 .5 .6 .7 1.9	2.0 .8 8.8 5.6 1.6	1.6 1.6 1.3 1.3	123 163 124 123 142	.2 <.1 .1 .1	.2 .2 .5 .4 .3	<.1 <.1 .1 .1 <.1	78 135 141 143 124	1.73 1.24 1.06 1.04 1.51	.073 .090 .085 .085 .085	28 13 11 11 21	46.1 46.5 48.1 48.4 46.3	1.21 1.13 1.00 1.05 1.14	47 93 79 79 56	.224 .292 .215 .216 .232	63 31 31 41 102	.44 .85 .64 .68 .30	.043 .069 .059 .061 .051	.09 .07 .07 .07 .07	.1 .1 .1 .1	.09 8 .02 4 .08 4 .04 4 .06 6	.9 < .9 < .5 <	.1<.05 .1<.05 .1<.05 .1<.05	10 7 5 6 7	
MC-122 MC-123 MC-124 MC-125	.4 .4 .4 .2	34.4 44.6 35.3 25.5	5.1 4.7 7.8 <u>4.6</u> 3.7	50 47 49 30	.1 .3 .1	42.0 51.2 37.1 <u>19.9</u> 36 8	15.1 15.4 12.2 8.3	495 468 395 165 528	3.04 3.19 2.71 2.13 3.00	2.4 2.6 3.5 <u>1.4</u> 2.6	.6 1.2 .8 1.0	2.1 1.7 15.5 2.1	1.5 1.6 1.2 1.8	171 141 140 133 134	.1 .1 .1 <.1	.2 .2 .4 .1	.1 <.1 .1 .1	121 87 85 85 113	1.28 1.27 1.18 1.21 1.01	.088 .067 .073 .072	14 19 12 12 11	45.4 45.0 40.2 51.7	1.14 1.34 .90 .68	132 78 171 86 109	.286 .252 .213 .295	3 1 5 3 4 1 1 2	.93 .04 .95 .46	.071 .047 .041 .052	.07 .08 .06 .04	.1 .1 .1 .1	.03 5 .04 8 .04 5 .03 7	.1 < .0 < .1 < .0 <	.1<.05 .1<.05 .1<.05 .1<.05	6 8 6 9	
MC-127 MC-128	.4	22.1	3.9 3.9	55 59	< 1 1	34.6 29.2	14.2	475 597	3.03	2.2	.5 .5	1.1 13.6	1.5	146	<.1 <.1	.2	<.1 <.1	134 100	.99	.070	11 8	47.2	1.00	76 64	.196	21	.64	.081	.08	< 1 < 1	.10 4 .04 4	.8 <	.1<.05	5 L	/
MC-129 MC-130 MC-131	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																																		
MC-132 MC-133 MC-134 MC-135 STANDARD DS3	$\begin{array}{c} c_{-129} \\ c_{-130} \\ c_{-130} \\ c_{-131} \\ c_{-131} \\ c_{-131} \\ c_{-131} \\ c_{-131} \\ c_{-132} \\ c_{-132} \\ c_{-131} \\ c_{-132} \\ c_{-131} \\ c_{-132} \\ c_{-132} \\ c_{-131} \\ c_{-132} \\ c_{-132} \\ c_{-132} \\ c_{-131} \\ c_{-132} \\ c_{-132} \\ c_{-132} \\ c_{-132} \\ c_{-131} \\ c_{-132} \\ c_{-132} \\ c_{-132} \\ c_{-131} \\ c_{-$																																		
		GROU UPPE - SA	P 1D/ R LIN MPLE	A - 3 AITS TYPE	0.0 - Ag : St	GM SA , AU, REAM	AMPLE , HG, SED.	LEAC W =	CHED W 100 F Sampt	ITH PM; I es b	180 M 10, C eginn	L 2-2 0, CD ing /	-2 H , SB <u>RE'</u>	CL-H) , BI, are F	103-H TH, terur	120 A U & 15 an	17 95 8 = 1 <u>d 1</u> R	DEG 2,0 RE*	. C F 00 PP are R	OR ON M; CU Leject	IE HOI J, PB Repu	UR, D) , ZN, <u>yns.</u>	LUTEI N1, ł) TO (IN, A)	600 M s, v,	L, AN/ LA, (ALYSE CR =	D BY 10,0	ICP- 00 Pf	MS. M.					
DATE RE	CEIV	ÆD:	JUN	21	2002	DI	ATE	REP	ORT	MAI	LED	:))	nl	y :	3 /0	2	SI	GNE	D B	<u>.</u> .C.	.L		·].».	TOYE	, C.L	EONG,	ا دل	WANG;	CER	TIFI	ED 8.	C. A	SSAYEF	ts	
All result	ts ar	e cons	ider€	ed th	e co	nfide	entia	i pro	operty	of	the c	lient	. Ac	me as	sume	s th	e lia	abil	ities	for	actua	al cos	of	the a	analys	sis on	aly.				Da	ata <u>/</u>	(FA		

				_		<u> </u>								_		=															=	`		
ACHE ANALYTICAL					2	Alm	adeı	n M:	ine:	ral	s I	itd.	. P	RO	JEC	T I	BCF	202	-1	FI	LE	# A	201	869)			Pag	ge :	2		ACHE		CAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Ų	Au	Th	SΓ	Cd	Sb	ßi	v	Ca	Р	La	Cr	Mg	Ba	Ti	B /	L N	a	K W	Hg	Sc	тι	S Ga	3 E
	ррл	ppm	ppm	ppm	ppm	ppm	ppm	ppm	<u>×</u>	ppm	ррп	_pbp	ppm	ppm	ppm	ppm	ррп	ррт	%	%	ppm_	ppm	<u>×</u>	ppm	%	ppm	%	Χ	% ppm	ppm	ppm	ppm	% ppn	л
MC-136 MC-137 MC-138 MC-139 MC-140	.3 .4 .3 .3 .4	18.3 32.2 21.6 47.3 39.6	3.8 4.3 4.2 3.5 3.5	43 44 48 39 38	<.1 .1 <.1 .1 .1	26.9 23.4 31.3 28.8 31.3	11.3 11.1 12.6 11.7 11.4	519 805 460 328 732	2.79 2.27 3.36 2.43 2.60	2.7 4.2 3.4 3.9 3.5	.5 .3 .7 .4 .6	4.5 1.2 1.7 1.2 1.2	1.1 .9 1.2 .9 .8	96 177 108 165 140	<.1 .1 .1 .1	.3 .2 .5 .4 .6	<.1 <.1 <.1 <.1	106 73 127 82 99	.82 3.90 .95 2.70 2.41	.050 .067 .047 .078 .053	7 9 7 11 12	43.5 35.7 49.7 35.6 34.0	.85 .66 .96 .96 .92	76 109 81 86 106	.185 .163 .207 .121 .102	2 1.4 8 1.4 3 1.4 6 1.4 5 1.4	6 .04 8 .03 3 .05 7 .05 7 .05	5.0 5.1 5.0 5.0 5.0	7 <.1 1 _1 9 <.1 7 <.1 8 <.1	.03 .04 .03 .09 .08	4.2 3.8 4.8 4.3 4.2	<.1<.(<.1<.(<.1<.(<.1<.(<.1<.(05 5 05 5 05 5 05 5 05 5	3 3 3 5
MC-141 MC-142 MC-143 MC-144 RE MC-143	.3 .3 .3 .3 .3	27.7 41.5 35.5 36.5 37.2	3.8 4.0 4.3 3.9 4.3	42 45 42 46 45	.1 .1 .1 .1 .1	38.3 41.1 37.4 47.2 39.3	12.5 13.4 12.2 14.7 12.8	385 570 427 456 455	2.74 2.60 3.18 2.88 3.33	1.6 1.8 1.4 1.7 1.4	.3 .5 .3 .8 .3	<.5 2.2 .7 <.5 <.5	.7 1.0 .9 1.1 1.0	112 125 111 100 118	.1 .1 .1 .1 .1	.1 .2 .1 .1 .1	<.1 <.1 .1 <.1 <.1	95 75 102 80 105	1.44 1.12 1.02 1.08 1.12	.060 .070 .045 .052 .048	9 9 11 12 11	42.4 42.0 50.4 44.2 51.0	.92 .99 .82 1.12 .90	69 95 91 66 94	.156 .169 .171 .218 .181	4 1.! 3 1.! 4 1.0 2 2.0 5 1.3	1 .04 9 .05 8 .04 1 .05 7 .04	7.0 2.0 3.0 3.0 6.0	6 <.1 7 <.1 7 .1 6 <.1 7 <.1	.04 .04 .03 .03 .04	4.3 3.9 4.5 5.8 5.0	<.1<.(<.1<.(<.1<.(<.1<.(<.1<.)	05 5 05 5 05 5 05 6 05 6	5 5 5
MC-145 MC-146 MC-147 MC-148 MC-148	.5 .3 .4 .3 .3	39.6 19.4 30.1 21.4 28.7	3.9 3.0 4.2 3.6 3.7	37 47 53 60 43	.1 .1 .1 .1	36.5 33.0 43.7 39.5 38.3	10.0 11.7 14.4 13.1 12.4	277 397 529 885 422	2.24 2.30 2.74 2.59 2.73	2.3 1.3 1.7 1.8 1.6	1.1 .5 .7 .5 .4	.6 <.5 .6 <.5 <.5	.5 .9 1.1 1.0 .7	210 82 98 109 120	.2 <.1 .1 .1	.3 .1 .1 .1 .2	<.1 <.1 <.1 <.1 <.1	70 94 100 100 84	1.73 .86 1.24 1.10 1.28	.069 .052 .063 .070 .058	10 7 10 8 8	36.4 45.7 45.0 45.5 43.1	.78 .83 1.05 .98 .96	100 53 76 79 78	. 104 . 198 . 195 . 202 . 168	10 1.4 2 1.3 3 1.4 3 1.4 4 1.4	4 .04 3 .05 1 .05 0 .06 4 .04	3 .0 4 .0 1 .1 6 .0 9 .0	6 .1 6 <.1 0 <.1 7 <.1 6 <.1	.05 .02 .03 .02 .04	3.7 2.9 4.5 3.3 3.8	<.1 .(<.1<.(<.1<.(<.1<.(<.1<.(09 4 05 4 05 6 05 5 05 5	555
MC-150 STANDARD DS3	.3 8.9	29.9 122.2	3.8 32.7	37 145	.1 .3	27.6 36.4	9.6 12.5	1105 824	2.10 3.07	3.5 28.4	.3 5.9	<.5 19.7	.5 3.9	208 29	.1 5.4	.2 5.1	<.1 5.5	64 70	4.82 .55	.073 .091	7 17	31.5 194.8	.69 .60	104 143	.119 .104	8 1.2 2 1.7	3 .03 9 .02	5.0° 9.18	7 <.1 8 3.7	.04 .23	2.9 3.0	<.1 .(1.1<.{	06 4 05 6	s I

CONTRACTOR STREET

and the second strategy

Data AFA

Sample type: STREAM SED., Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

										****																				¥		
ł .	ACME AN	LIL L		LABC	RAT		ES I	TD.	la sejat Se sua	85	2 E.	HA	STIN	GS S	ST	C	OUVI	CR B	C V	76A	1R6	ar Tali da t	PHO	NE (6)	04)2	53-31	58	FAX (6	153-	1716	
	AA	3002	2 AC	crec	iice		8.) <u>Alm</u>	<u>ade</u>	<u>n M</u> 110	(<u>ine</u> 3 -	GEO eral 750 W.	CHI <u>s</u> I Pëna	EMIC <u>itd.</u> der St	'AL <u>PF</u> ., Ve		ALYS ECT ver BC	IS BCR V6C	CER 03- 218	TIF <u>1</u> Subm	IC Fi	ATE le ‡ d by:	‡A €d €	3023 Ialon	90			· · · · ·		· · · ·	1	a a	
· <u> </u>	SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe لا	As ppm p	U pm	Au ppb p	Th S prnppi	r Cd n.ppn	Sb B ppm pp	i V nppm	Ca %	P X	La ppm	Ĉr ppm	Mg %	Ва ррт	fi B ≴ppmr	A1 %	Na K %%	W ppm	Hg S ppm pp	Sc T1 om ppm	S X p	Ga Se pm ppm	<u></u>
	SI <u>MC-R78</u>	.4 _ <u>15.3</u> 2.6	.6 <u>12.2</u> 38.5	5.7 293.9 29.9	8 470	<.) 2.0 3	.5	.1	5 27	.04 .77	2.0 < 140.0	.1 .1 (.5 < 572,2 10 0 1	.1	2 <.1 8 2.0	.1 <. <u>1.5 <.</u> 2 <	1 1 1 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7	.11• .04 .92	<.001 .011	<1 2 7	1.6 < 4.9	<.01 .01	4 .0 81 .0	$\frac{1}{1}$.01 . . <u>12 .</u> 1 71	464 .01 010 .05 213 .06	.2 <.1	.02 .	1 < 1 4 < 1 9 < 1	.11 .13	<1 <.5 <1 <.5 4 < 5	./
	MC-R80 MC-R81	16.3 15.3	7.8	92.5 23.2	138 45	1.1 1.6	4.3	2.8	132 179	1.13 1.32	120.0 161.0	.1 11 .1 32	10.01 194.7 222.3	.2 .3	8.5 8.2	.7 <. .8 <.	i 12 1 2	.08	.019 .017	2	16.3 16.1	.12 .02	49 .00 45 .00	$\frac{1}{1} < 1$ $\frac{1}{1} < 1$.30 .	006 .06 003 .05	<.1 4.6	.20 . .10 .	7 < 1 3 < 1	.06	1 <.5 <1 <.5	<u>v</u>
	MC - R82 MC - R83 MC - R84 MC - R85 MC - R85	7.1 1.4 1.2 69.7 18.8	6.8 3.6 8.7 162.3 4.5	26.9 9.1 25.5 18.9 46.9	53 35 31 30 63	.4 .1 .7 180.0 .6	18.0 2.8 1.3 21.2 5.0	8.5 .4 .5 7.2 1.8	470 1707 24 245 17	1.80 .73 .33 2.02 .82	36.0 5.1 8.7 < 178.0 13.0 <	.1 .1 .1 66	36.0 17.0 < 17.0 < 31.1 6.0	.4 2. .1 23 .1 3 .5 2 .1 3	3 .2 9 .2 3 .2 2 <.1 3 .2	.6 < .1 < .2 < 4.1 < .4 <	1 38 1 3 1 2 1 691 1 8	1.28 19.38 .08 .27 .06	.050 .004 .006 .037 .012	8 3 <1 3 1	37.8 6.7 2 7.3 49.2 16.1	.53 2.42 .01 .74 .02	35 .00 13 .00 15 .00 53 .00 19 .00	01 1 03 1 01 <1 01 1 01 <1	.86 . .06 . .06 . .90 .	001 .10 007 .01 004 .02 009 .11 001 .03	<.1 1.4 <.1 2.3 (<.1	.05 2. .03 . .04 . 3.15 2. .09 .	1 <.3 3 <.1 2 <.1 5 .1 4 <.1	.21 .13 .22 .19 .51	3 <.5 <1 <.5 <1 <.5 3 .9 <1 <.5	
	MC - R87 MC - R88 MC - R89 MC - R90 RE MC - R90	5.3 51.4 154.0 2.8 2.9	5.5 7.1 9.4 15.4 14.7	4.1 9.1 14.4 10.7 10.9	11 17 16 36 35	.1 2.1 6.0 .3 .3	8.7 3.9 2.7 21.5 17.5	2.1 1.5 1.5 6.3 5.8	114 43 15 324 335	2.40 .96 1.07 : 1.43 1.47	7.2 78.6 194.0 50.0 48.6	.4 .1 2 .1 40 .1	4.0 268.0 009.7 41.0 59.0	.1 9 .2 2 .2 3 .5 3	5.1 2<.1 7<.1 1.1 0.1	.3 <. 1.2 <. 1.1 <. .3 <. .3 <.	1 59 1 12 1 7 1 22 1 23	.14 .04 .07 1.25 1.28	.010 .010 .013 .042 .045	2 3 3 12 12	17.0 18.2 4.4 41.6 39.7	. 14 . 03 . 03 . 56 . 57	1879 .00 150 .00 13<.00 19<.00 19<.00	04 3 01 <1 01 <1 01 <1 01 <1	.25 . .14 . .23 . .83 . .84<.	010 .04 003 .10 002 .07 001 .07 001 .08	4.4 3.4 <.1 2.3 2.1	.08 1. .11 . .08 . .03 1. .03 2.	1 <.1 6 .4 6 .1 9 <.1 2 <.1	. 09 . 16 . 26 . 08 . 13	1 <.5 <1 <.5 1 .6 3 <.5 3 <.5	
	MC - R91 MC - R92 MC - R93 MC - R94 MC - R95	3.0 1.7 .6 1.5 .5	13.1 9.0 82.5 5.8 28.0	12.4 8.3 22.1 6.3 19.1	29 14 119 39 163	.1 .1 .1 .1	2.4 1.2 45.0 2.1 27.1	3.5 2.2 20.9 3.7 22.4	239 2 112 1516 4 449 1 1177 4	2.58 .61 4.24 1.67 4.48	4.0 9.5 3.2 8.0 5.9	.4 .7 .3 .2 .3	3.0 1 32.1 3 14.8 1 10.3 5.4	.3 64 .5 10 .0 104 .7 20 .9 100	4 .1 6 <.1 4 .2 0 .1 0 .3	1 .1 <. .1 <. .2 <. .4	3 15 1 4 1 92 1 17 1 82	.43 .06 2.93 .50 3.21	.032 .008 .139 .041 .130	19 13 18 17 16	3.6 3.4 38.8 7.1 23.5 1	. 13 . 06 . 95 . 07 1. 33	185 .00 69 .00 133 .00 26 .00 191 .00)1 4)4 1)1 6)2 1)1 4	1.04 . .22 . .63 . .27 . .44 .	042 .19 038 .06 026 .10 031 .04 019 .08	<.1 <.1 <.1 .5 <.1	.02 2. .03 2. .04 9. .01 1. .04 7.	4 1 4 < 1 6 < 1 9 < 1 7 < 1	.10 <.05 .09 .16 .61	3 .7 1 <.5 3 <.5 1 <.5 1 <.5	
	MC-R96 MC-R97 STANDARD DS5	7.3 42.0 12.4	4.7 75.0 140.8	8.8 5.6 23.8	51 20 131	.1 .1 .3	1.8 .7 23.2	2.4 5.9 11.9	464 416 770	1.76 1.41 2.89	25.5 10.0 17.9 5	.6 .1 .8	10.0 2 9.2 40.5 2	.0 10 .4 24 .6 42	B.1 4.2 75.5	.4 <. .5 3.7 5.9	1 18 1 11 9 60	.77 2.31 .73	.058 .028 .095	21 4 13 1	6.4 4.5 L77.0	.06 .33 .67	16 .00 14 .00 136 .10)2 1)1 1)1 17	.39. .25. 2.06.	022 .06 013 .05 035 .13	.5 .1 4.8	.02 2. .06 4. .16 3.	9 <.1 5 <.1 5 .9	.13 .50 <.05	1 <.5 1 .6 6 4.7	

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK R150 60C

DATE RECEIVED:

a da anticipa de la seconomia de la seconomia de la seconomía de la seconomía de la seconomía de la seconomía d

Data.

ACME	AN		AL	LAB		TOR	IES	LTI).		852	Е.	HAS	FIN	S S	T.)	COU	VER	BC	V6.	A 1R	6		PHON	VE (604)	253	-31!	58 I	PAX (6	¥53-	171	6
4 4	150	002	, AU	.cre		eu	<u>A1</u>	, mac	len	<u>Mi</u> 1103	G ner - 750	EOC als	HEN Lt	4IC. <u>-d.</u> r st.	AL PR , Vai	ANA OJI ncouv	ALY: ECT ver B	SIS BC c vác	C1 <u>R0:</u> 218	2RT: <u>3 - 1</u> 5 - 5(LFI F ubmit	CATI ile ted by	3 # /: Ec	A30 I Bal)23: on	91				· .				
SAMPLE#	Мо ррлі	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	p X	La ppm	Сг ppm	Mg ∦	Ba ppm	Ti %	BAT ppm %	Na X	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	SG Xpp	ia Se mi ppm
G-1 MC-S54 MC-S55 MC-S56 MC-S57	2.5 .3 1.1 .8 .5	3.6 31.3 34.1 37.1 40.3	3.1 5.9 5.7 4.2 4.2	49 59 41 66 60	<.1 .1 .1 .1	4.9 39.7 24.4 37.3 34.2	4.6 17.2 14.4 21.7 17.8	636 714 470 1100 854	2.06 3.44 3.61 3.89 3.75	<.5 2.4 48.0 4.6 3.0	2.3 2.7 1.0 1.0 .8	.5 2.7 1.3 1.1 .5	4.8 1.3 1.9 1.4 1.4	89 80 112 223 273	<.1 .1 <.1 .1 <.1	.1 .1 .4 .2 .1	.2 .1 <.1 .1 .1	43 124 94 111 109	.74 1.35 1.39 1.87 1.81	.081 .107 .052 .063 .062	10 13 10 13 10	22.1 51.3 53.3 74.1 70.1	.65 1.41 1.23 1.73 1.60	286 79 97 82 78	. 161 . 351 . 023 . 284 . 285	1 1.26 2 2.02 <1 3.89 1 4.72 1 4.64	.172 .082 .044 .159 .148	. 56 . 06 . 09 . 09 . 08	5.4 .1 .1 .1	<.01 .02 .11 .06 .06	3.3 8.9 8.0 11.7 11.5	.4 <.0 <.1 <.0 .2 <.0 .1 <.0 .1 <.0	5 5 5 1 5 1 5 1	6 <.5 7 <.5 0 <.5 3 <.5 2 <.5
MC-S58 MC-S59 MC-S60 MC-S61 MC-S62	.5 .3 .7 1.1 4.1	30.1 28.9 28.3 29.2 29.5	4.7 4.8 4.5 4.0 5.0	81 66 76 52 49	.1 .1 .1 .1 <.1	31.2 33.1 30.4 28.1 22.6	14.4 14.5 12.9 11.7 10.8	695 473 435 280 258	3,17 3,66 3,31 3,72 4,10	2.1 2.2 1.8 2.4 1.8	.7 .7 .6 .8 .9	<.5 <.5 <.5 1.0 .5	1.2 1.5 1.4 1.6 1.8	137 213 308 365 311	.1 <.1 <.1 <.1 <.1	.1 .1 .1 .1	.1 .1 <.1 .1	87 107 95 106 106	1.00 1.27 1.21 1.27 1.27 1.19	.082 .056 .088 .091 .062	9 9 9 10 13	53.8 62.3 56.7 62.0 52.9	1.25 1.50 1.20 1.20 1.55	80 98 128 152 182	. 245 . 339 . 279 . 229 . 173	2 4.39 1 4.34 1 4.42 <1 4.30 1 4.58	.073 .090 .062 .057 .054	.11 .09 .15 .10 .08	.1 .1 <.1 <.1	.04 .04 .03 .07 .10	8.1 10.0 8.5 10.1 10.7	.1 <.{ .1 <.(.1 <.(.1 <.(.2 <.{	5 1 5 1 5 1 5 1 5 1	2 <.5 .2 <.5 .1 <.5 .0 <.5
MC-S63 MC-S64 MC-S65 MC-S66 MC-S67	.4 .5 4 <u>1.1</u> 1.6	28.3 26.4 28.0 37.5 29.3	4.6 4.9 4.6 4.4 4.9	67 67 60 52 87	.1 .1 .1 .1 .8	30.8 30.2 52.8 30.9 53.5	15.0 15.8 16.8 14.7 14.9	736 589 425 469 871	3.48 3.72 3.92 3.54 3.11	1.3 1.4 1.3 2.1 58.3	.7 .8 .7 <u>1.1</u> .2	<.5 <.5 <.5 1.0 164.5	1.6 1.7 1.6 1.6 .8	248 136 185 268 91	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 <.1 .1	102 107 91 112 180	1.23 1.08 1.21 1.51 .61	.073 .076 .107 .048	9 9 11 8 3	60.0 55.5 52.3 59.1 67.5	1.65 1.42 2.09 <u>1.42</u> 1.18	164 118 117 120 118	.242 .301 .163 .188 .032	1 4.83 1 5.19 1 4.46 <u>1 3.73</u> 1 3.32	.060 .060 .045 .070	.10 .07 .13 .06 .08	.1 < .1 .1 < .1	.02 .03 .09 .12 .06	9.9 9.7 10.9 12.2 5.0	.1 <.0 .1 <.0 .1 <.0 .1 <.0 .1 <.0	5 1 5 1 5 1 5 1	1 < 5 2 < 5 0 < 5 9 < 5 10 < 5
MC-S68 RE MC-S68 MC-S69 MC-S70 MC-S71	1.9 2.0 1.5 8.1 20.4	45.0 42.8 40.7 47.1 342.1	6.6 6.4 3.4 5.1 16.0	79 77 59 53 74	.1 .1 <.1 .1 .2	30.1 29.1 14.7 24.6 23.2	14.0 13.1 11.3 10.5 22.8	343 327 569 184 793	3.89 3.65 5.29 5.43 6.84	16.9 16.7 14.9 62.1 18.9	1.0 .9 1.0 .5 .4	53.1 .6 .9 1.7 15.4	2.0 1.9 1.6 1.0 1.3	22 23 36 259 114	.1 <.1 <.1 <.1 .4	16.1 16.3 .3 .6 4.7	.1 .1 .1 .1 .2	120 116 132 145 86	.16 .16 .59 1.26 3.22	.052 .051 .091 .119 .086	6 6 9 9 11	41.1 38.7 40.9 57.6 44.7	.17 .17 .69 1.15 .78	148 145 56 94 63	. 057 . 057 . 009 . 043 . 044	3 1.14 3 1.15 4 1.87 4 4.50 5 1.15	.005 .006 .012 .072 .075	.04 .04 .05 .09 .11	<.1 <.1 <.1 <.1 <.2	.89 .88 .02 .06 .06	10.9 11.1 14.5 13.0 14.3	.1 <.0 .1 <.0 .1 <.0 .7 <.0 .1 1.6	15 15 15 15 19	5 < 5 5 < 5 7 < 5 0 < 5 4 1.4
MC-S72 MC-S73 MC-S74 MC-S75 STANDARD DS5	1.0 1.6 2.4 2.5 13.1	17.3 35.9 29.8 35.9 141.2	5.6 9.8 15.8 8.6 25.5	58 94 83 67 138	.1 .1 <.1 <.3	3.5 7.9 5.0 7.1 24.5	7.5 10.2 8.5 10.3 12.0	913 2111 1059 1278 794	2.12 2.70 2.88 2.59 3.01	9.7 4.4 7.2 8.8 18.1	.4 .9 1.0 .5 6.3	3.1 3.1 2.4 4.6 44.0	1.8 2.2 1.3 1.4 2.9	59 171 80 69 50	.1 .6 .3 .2 5.5	.4 .1 .1 .1 3.8	<.1 .1 .2 .1 6.1	34 45 28 31 61	4.00 6.62 3.30 3.93 .82	.070 .140 .091 .068 .095	16 39 27 27 13	4.2 10.6 5.5 10.7 194.7	.35 .35 .29 .40 .68	25 263 96 55 144	.021 .015 .006 .003 .119	4 1.80 18 .94 8 .67 2 .83 17 2.13	.022 .011 .006 .006 .036	.06 .25 .20 .11 .15	< 1 < 1 1 1 4 7	.04 .02 .01 .01 .16	4.4 3.4 2.2 3.4 3.8	.1 <.0 <.1 <.0 <.1 .0 <.1 .0 <.1 <.0	5 5 8 5 5	8 <.5 4 .8 2 2.2 4 <.5 7 4.6

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns</u>.

July 18/03

DATE RECEIVED: JUL 4 2003 DATE REPORT MAILED: (

Data

and the second sec

ACME	AN	17 00	CAL 2 Ad	LAB	ORA dit	TOR	IES Co.)	LTD	•	85	2 E	. HJ	AST	ING	s s	T.	·. ·	'COT	JVER	BC	ve	A 1F	6		PHON	E(60	4)2	53 -	3158	8 FA	X (6		¥53-	1716	
	\		· · ·		-					e el C. (d. 1919 - 1919) - 1919 - 1919 - 1919	GE	OCH	EM.				ALS	SI	S C	ERT.	IFI	CAT	E	0.00		n seige Seites Die	~~~		····		in egy ei Anter A			A A	Å
						All	nad	en .	<u>Mine</u> 110	era. 13 -	L8 750 W	LCO Per	ider	St.	, Var	<u>CT</u> ncou	Ner.	BC V	<u>3 - L</u> 6C 2T	B St	1⊥E Jonit	 ted b	A 3 U y: Ed	∠.3: Bal	≠∠ on	Ра	ge	. L	• . 						
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	l W Pa mac	ig : m p	Sc prn p	TL S Span S	S Ga (ppm	Se ppm
G-1 MC-126-1 MC-126-2	, 2.6 .3 .4	3.7 26.2 40.6	2.9 4.3 4.3	49 52 49	<.1 .1 .1	5.8 41.4 40.0	4.7 14.8 14.9	641 643 589	2.17 2.95 2.93	<.5 2.6 2.7	2.2 1.2 2.0	<.5 .9 .8	5.0 1.6 1.6	101 116 133	<.1 .1 .1	<.1 .2 .4	.2 <.1 .1	45 91 113	.68 1.04 1.32	.084 .076 .081	10 13 15	21.0 49.8 41.7	.65 1.21 1.27	305 123 104	.148 .117 .125	1 1 2 1 3 1	.39 .73 .88_	.150 .061 .078	.60 4 .10 -	4.4<.0 <.1.2	01 2 22 7 08 7	.8 .1 < .9 <	.4<.0	5 5 5 6	<.5 <.5 V .6
MC-129-1 MC-130-1	.7	31.8 30.1	4.3	49 59	.1 .1	48.8 80.3	17.0 17.9	1578 659	3.05 3.52	4.3 3.9	1.4 .8	2.5 4.8	1.2 1.0	121 180	.1 .1	.2 .3	.1	95 111	1.54 1.42	.097 .078	15 12	38.2 64.6	1.43 1.72	88 85	.110 .113	4 1 3 2	.81 .34	.056 .096	.06 .05	<.1 .0 .1 .1	08 6 11 7	.8 < .1 <	.1<.0 .1<.0	5 5 6	.6 <.5
MC-130-2 MC-130-3 MC-130-4 MC-130-5 MC-130-6	.3 .6 .4 .5 .4	27.6 46.1 26.0 38.5 30.7	4.4 4.1 4.8 6.1 5.3	54 49 58 56 59	.1 .2 .1 .4 .2	38.4 33.3 35.3 34.2 32.5	16.2 15.0 15.0 12.7 15.7	596 692 572 767 766	3.24 2.91 3.11 2.90 3.13	4.9 8.2 5.1 3.5 3.7	.8 1.0 1.1 1.2 1.2	<.5 1.4 .6 1.5 2.1	1.6 1.0 1.3 1.1 1.3	139 168 144 129 103	.1 .1 .2 .2	.3 .5 .2 .3 .1	.1 .1 .1 .1	97 112 94 72 94	1.11 1.51 1.21 1.60 1.18	.064 .059 .078 .069 .069	13 10 15 30 20	38.3 48.7 35.2 34.3 30.9	1.27 1.09 1.23 1.03 1.26	100 77 117 114 153	.133 .159 .118 .100 .096	2 2 3 2 1 2 3 2 1 2	.33 .00 .30 .93 .66	.065 .050 .057 .035 .041	.07 .07 .07 .08 .08	.1 .1 .1 <.1 <.1	13 8 12 6 12 8 11 10 19 10	.3 < .8 < .0 < .4 .7	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	6 6 6 8 7	<.5 .9 .5 <.5 <.5
MC-130-7 MC-130-8 MC-130-9 MC-131-1 MC-134-1	.5 .6 .3 .3 .3	28.3 26.4 25.7 71.5 27.6	5.2 5.1 3.3 5.4 4.3	61 57 72 45 49	2 .1 .6 .1	40.9 35.6 72.8 33.8 37.2	15.9 16.0 20.3 12.3 12.0	596 657 1151 611 546	3.17 3.06 3.51 3.18 2.62	6.8 6.9 5.2 6.3 1.3	1.2 1.3 .8 1.0 1.9	<.5 .6 <.5 5.0 <.5	1.1 1.3 1.2 1.5 1.2	190 112 164 106 118	.2 .1 .1 .1	.1 .1 .2 .3 .1	<.1 .1 <.1 .1 .1	95 92 106 69 71	1.37 1.25 1.28 1.42 1.26	.096 .081 .090 .053 .070	16 17 13 25 17	34.6 35.8 56.5 44.8 42.7	1.31 1.22 1.56 1.02 1.08	132 102 96 89 84	.095 .117 .110 .084 .181	3 2 2 2 2 2 2 3 3 2	.40 .26 .37 .79 .59	.058 .063 .105 .021 .046	.08 .08 .04 .10 .05	<.1 . <.1 . <.1 .(.1 .(.1 .(10 8 17 9 06 6 06 10 05 9	.3 < .1 < .9 < .2 < .4 <	.1<.09 .1<.09 .1<.09 .1<.09	7 6 6 9 7	.7 .5 <.5 <.5 .5
MC-152 MC-153 MC-154 MC-155 MC-156	/ .6 .4 .2 .4 .6	23.9 23.7 33.4 26.8 21.1	3.3 4.2 4.2 4.1 4.7	50 50 41 59 58	.1 <.1 .1 .1 .1	27.9 34.5 25.2 74.3 48.2	13.0 13.9 10.3 20.9 18.1	1098 565 412 706 985	2.35 2.74 2.41 3.46 3.25	2.7 1.5 1.3 1.3 7.0	1.5 .9 1.5 .6 .9	1.3 .5 .7 <.5 <.5	1.2 1.2 1.0 1.0 1.1	169 144 120 144 109	.1 .1 .1 .1 .2	.2 .2 .1 .1 .1	<.1 <.1 <.1 <.1 <.1	96 97 81 93 112	1.55 1.49 1.34 1.02 1.02	.090 .066 .039 .086 .096	11 11 10 12 14	31.5 31.3 35.3 51.0 43.2	.97 1.00 .82 2.01 1.37	81 56 59 103 117	.179 .209 .196 .151 .113	4 1 6 1 4 1 1 2 1 2	.57 .45 .72 .37 .20	.079 .075 .069 .125 .089	.05 .06 .06 .07 .07	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	04 6 04 5 05 6 03 7 04 6	.3 < .7 < .2 < .2 <	.1 .2 .1<.0 .1<.0 .1<.0 .1<.0	5 4 5 5 6 6	<.5 .7 .7 <.5 <.5
MC-157-1 MC-157-2 MC-157-3 MC-158 MC-159	.6 1.5 .9 .5	18.1 17.8 13.5 24.3 29.0	5.7 4.8 3.0 6.2 5.9	53 50 51 58 57	.1 .1 .1 .1	31.5 32.7 25.2 42.2 43.3	13.1 13.5 8.5 16.7 17.2	1149 1617 503 691 815	2.93 3.28 2.57 3.30 3.32	3.0 6.8 5.8 2.2 2.7	.8 .8 1.1 .7 .7	<.5 <.5 <.5 1.9 .9	.7 .4 .5 1.5 1.4	106 113 88 184 147	.1 .2 .1 .1 .1	-1 -7 -1 -2 -2	.1 <.1 <.1 .1 .1	94 81 77 93 90	.90 1.54 1.13 1.14 1.05	.069 .093 .096 .100 .102	17 13 10 13 14	37.3 35.6 29.3 42.1 45.4	.89 .67 .55 1.48 1.43	206 346 187 98 104	.076 .040 .042 .174 .148	2 2 6 1 3 1 4 1 3 1	.20 .61 .24 .91 .89	.047 .045 .052 .159 .094	.05 .04 .03 .07 .07	<.1 .0 <.1 .0 <.1 .0 .1 .0 .1 .0	04 7 15 6 06 4 02 6 03 7	.0 < .3 .8 < .8 < .3 <	.1<.05 .1 .08 .1 .14 .1<.05	5 6 3 4 3 3 5 6 5 6	<.5 .8 .6 <.5 <.5
MC-160 RE MC-160 MC-161 MC-162 MC-163	.4 .4 .4 .6 .3	24.8 24.6 26.9 27.7 31.0	4.1 3.9 4.1 4.1 3.1	59 61 59 61 49	.1 <.1 .1 .1 .1	51.4 52.3 39.1 22.3 47.4	19.5 19.2 18.5 18.1 15.4	788 800 875 1552 431	3.52 3.54 3.41 3.77 2.74	5.1 5.4 5.7 4.5 1.2	.7 .7 .9 .7	.6 .9 <.5 <.5 .7	1.3 1.4 1.2 1.7 1.0	121 124 97 100 179	.1 .1 .1 .1 <.1	.2 .2 .3 .1 .2	<.1 .1 .1 .1 <.1	100 101 88 94 88	.90 .91 .90 .93 2.45	.103 .103 .102 .107 .072	14 14 13 18 11	48.4 48.5 41.1 28.0 42.1	1.51 1.53 1.40 .81 1.32	96 98 104 174 67	. 130 . 131 . 103 . 066 . 164	4 2 3 2 4 2 4 1 8 1	. 13 . 16 . 09 . 60 . 64	.112 .117 .080 .045 .084	.06 .06 .07 .07 .04 .06	. 1 .(.1 .) . 1 .) . 1 .) . 1 .()2 7)2 7)2 8)2 7)2 7)3 5	.2 < .4 < .0 < .2 .0 <	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 5 5 5 5 5 5 5 5 5	<.5 <.5 <.5 <.5 .6
MC-164 MC-165 MC-166 MC-166 MC-167 MC-168	.3 .4 .4 .5 .9	25.1 26.4 23.2 37.3 88.0	5.4 6.4 3.0 3.8 3.5	50 51 47 49 47	.1 .1 <.1 .1 .1	39.3 35.7 51.9 40.9 16.6	14.4 14.7 15.6 12.9 8.9	441 478 442 370 382	2.82 2.96 2.70 2.75 3.09	1.9 2.6 .5 1.0 2.8	.7 .7 .6 .9 2.5	5.5 1.1 2.8 1.7 1.2	1.3 1.3 1.7 .8 1.0	124 130 104 136 64	<.1 <.1 <.1 <.1 .1	-3 -4 -1 -2 -2	.1 .1 <.1 <.1 <.1	87 88 75 88 118	1.03 1.09 .93 1.60 1.04	.074 .077 .066 .078 .090	11 11 11 10 8	36.8 37.2 34.4 49.9 26.6	1.19 1.15 1.42 1.18 .47	87 94 89 47 88	.159 .176 .122 .193 .063	3 1 4 1 3 1 11 1 5 1	.65 .82 .45 .90 .10	.083 .073 .119 .078 .025	.06 .06 .08 .08 .06 .07	<.1 .(.1 .(<.1 .(.1 .(.1 .(02 5 03 6 01 6 05 5 06 3	.6 < .2 < .0 < .4 <	.1<.05 .1<.05 .1<.05 .1<.06	5 6 6 6 6 6 6 6	<.5 <.5 <.5 .5 1.1
STANDARD	12.7	144.7	25.6	137	.3	24.2	12.1	794	2.96	18.4	6.2	42.0	2.6	50	5.6	3.7	6.2	60	.73	.095	12	179.2	.68	138	.095	17 2	.06	.032	.13	4.7.	17 3	.4 1	.0<.0	i 7	4.9
Standard i	S STAN	IDARD ((1	DS5. GROUP JPPER - SAMI	10X LIMI 'LE T	- 30 TS - YPE:	.O GM AG, STRE	1 SAMI AU, 1 EAM SI	PLE LI HG, W ED.	EACHED = 100 <u>Sar</u>	WITH PPM; ples	180 MO, begi	ML 2 CO, nning	-2-2 CD, <u>'RE</u>	нсь sв, <u>' аг</u>	HNO BI, <u>e Re</u>	03-H TH, erun	20 A U& <u>s an</u>	T 95 B = d <u>(R</u> F	DEG. 2,000 ₹E′ai	C FOR) PPM; <u>e Rej</u>	CU,	HOUR, PB, 2 Reruns	, DILU ZN, NI <u>8.</u>	JTED], MM	TO 60 1, AS,	10 ML, V, L	ANA A, C	lysed r = 1	ΒΥ 3 0,000	ICP-M D PPM	5.				
DAT	E RE	CEIV	ED:	JUL	. 4 2	2003	DA:	FE R	EPOR	TM	AILE		1	N.	1 "	8/0)] 		GNEL	BY		h		-p.	TOYE,	C.LEC	ONG,	J. W	ANG;	CERTI	FIED	B.C Det	. ASSA	YERS	
	esults	are (CONSIC	ered	the	cont	riden	ual	proper	ty of	the	сч С	11.	ACME	ass	une	s the	2 (12	וטונו	ies f	or a	ciuai	cost	<u>pr t</u>	ane an	arysis	son	• 9 •				vat		<u> </u>	لـــــــ

ACME	ANA (ISO		CAL 2 AC	LAB cre	ORA dit	TOR: ed	IES Co.)	LTD.	•	8!	52 1 GE	I.H	ast Iem	ING ICA	s s L	T. AN2	ALY	cot si;	JVER S C	BC ERT	V6 IFI	A 11 CAT	е Е		PHO.	NE ()	504)	253	-31	58 I	XA	(60		3-1	716	
SAMPLE#	Mo	UJ mqq	Pb	Žn ppm	Ag	Ni ppm	Ali Co ppm	Mn ppm	<u>en 1</u> 11(Fe %	Ain 03 - As ppm	<u>era</u> 750 ບ ppm	LB J. Pe Au ppb	Lt nder Th ppm	st. Sr ppm	PR Vai Cd ppm	OUI ncour Sb ppm	ver B Bi ppm	Pbu N BC N B(CR0 6C 21 Ca %	<u>3≁6</u> 3 S P %	ubmiit La ppm	tted b Cr	ff Ny: E Mg %	A.3 d Ba Ba ppm	048 lon Ti %	79 B ppm	Al %	Na %	K %	Ppm (Hg ppm	Sc ppm	Tl ppm	S %	Ga : ppm p	Se (Pm
SI MC-R132 \ STANDARD	.1 .8 12.3	.3 17.7 136.3	.3 1.8 23.9	<1 70 131	<.1 <.1 .2	.1 37.6 24.4	<.1 17.2 11.9	<1 1005 762	.04 3.89 2.92	<.5 5.6 18.0	<.1 .2 5.8	<.5 1.9 42.3	<.1 1.9 2.8	2 106 46	<.1 .1 5.4	<.1 .2 3.6	<.1 <.1 6.0	<1 120 58	.11• 7.00 .72	.001 .119 .092	<1 13 11	1.2 90.4 179.6	<.01 .79 .65	2 150 128	.001 .015 .093	<1 4 17	.01 .67 2.04	.410 .005 .032	.01 .01 .13	<.1 <.1 4.8	.01 .06 .17	<.1 12.4 3.4	<.1 <.1 .9	<.05 <.05 <.05	<1 < 2 < 7 4	.5 .5 .9

Standard is STANDARD DS5.

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 60C

OCT 9 2003 DATE RECEIVED:

Data

	ACME A	7TIC 9002	AL J AC	LAB(cred	ORA dit	TOR ed	IES Co.	LT))	D.		852	E. SEO	HA CHI	STI EMI		s s L	T. ANA	Itys	COUV	er Ce	BC RTI	V6 FI	A 1 CA'	.R6 Fe		P	HONE (604)	253	1-3:	158	FAX ((<u>6</u> 1	.53-	1716 A A	
	ŤŤ						<u>A]</u>	<u>.mac</u>	len	<u>Mi</u> 1103	<u>ne)</u> • 75	<u>cal</u> 0 w.	<mark>B]</mark> Peni	<u>utć</u> der	<u>l.</u> st.,	<u>PR</u> Var	<u>OJE</u> Icouv	<u>CT</u> sr BC	BCI	<u>204</u> 218	<u>+ 1</u> su	F bmit	'ile ted	∋ ‡ by:	‡ A Ed I	404 Balor	1031 1								ÛÜ	•
	SAMPLE#	Мо ррл	Cu ppm	Pt ppr) Zn n ppm	Ag Ippm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb E ppon pp	i i mppi	V (n	a X	PLa %tppn	ı p	Cr opm	Mg X p	Ba opm	Ti % p	BA1 open \$2	Na X	K X	W ppna p	Hg So Sprin ppr	c Ti nppm	S Xtp	Ga Se : pm ppm	Sample gm	
	G-1 MC126-3 MC126-4 MC128-1 MC128-2	2.1 .3 .4 .3 .3	3.6 28.7 26.9 16.6 18.2	3.0 3.7 4.0 3.2 3.1) 49 7 52) 54 3 55 6 60	<.1 .1 .1 .1 .1	4.9 35.6 36.7 25.4 26.3	4.4 12.6 12.6 11.1 11.2	559 409 483 553 754	1.98 2.86 2.88 2.47 2.52	.7 2.4 2.7 1.4 1.5	2.0 .9 .7 .5 .6	<.5 2.8 5.0 1.0 1.0	4.2 1.2 1.3 .9 1.0	86 115 107 113 111	<.1 · .1 .1 .1 <.1	<.1 . .2 <. .2 . .1 <. .1 <.	1 40 1 80 1 80 1 70 1 80	2 .9 0 .9 7 .9 8 .8 5 .9	i9 .07 16 .09 18 .00 18 .00 18 .04	76 10 58 11 52 11 16 7 55 8) 19 . 49 . 53 ? 33 } 35	9.4 9.0 1 3.9 1 3.7 5.6	.62 2 .00 1 .03 1 .80 .82	264 . 104 . 119 . 60 . 66 .	163 137 142 214 223	2 1.15 6 1.37 5 1.57 4 1.14 3 1.29	. 223 . 069 . 069 . 077 . 083	.60 .07 .09 .05 .05	3.8< .1 <.1 .1 <.1	.01 3.9 .07 5.8 .08 6.9 .03 4.7 .03 5.0	9 :4< 8 <.1 9 <.1 7 <.1 0 <.1<	.05 .07 .07 .07 .07	6 < 5 5 .5 5 .6 4 < 5 5 < 5	30.0 30.0 30.0 30.0 30.0	
	MC-236 MC-237 MC-238 MC-239 MC-239	.3 .4 .3 .6 .4	28.2 25.5 17.6 38.8 33.9	3.8 4.6 3.9 4.9	8 56) 59 9 56 5 57 8 62	.1 <.1 <.1 .2 .1	37.5 34.0 24.2 40.9 41.9	13.5 13.7 13.1 13.1 13.1 17.1	470 538 476 548 617	3.08 3.30 2.64 3.14 3.60	1.7 2.0 1.9 1.8 1.9	1.1 .8 .7 2.0 1.0	1.0 ,9 3.4 1.6 .7	1.5 1.6 1.3 1.3 1.7	101 126 105 89 109	.1 .1 .1 .1	.1 <. .1 <. .1 <. .2 <. .1	1 97 1 128 1 83 1 107 1 107	7 1.0 8 1.1 3 .9 7 1.3 7 1.0	14 .09 16 .07 11 .02 10 .09 17 .09	51 12 77 13 24 8 57 18 57 13	2 40 57 39 41 43).4 7.8).5 1.3 3.4 1	.99 .94 .71 .96 .12	81 . 73 . 82 . 88 . 75 .	174 202 244 151 207	4 1.56 4 1.53 5 1.25 6 1.89 3 2.00	.084 .086 .073 .075 .086	.07 .08 .07 .08 .08 .07	<.1 . .1 . <.1 . .1 .	.10 7.9 .11 6.6 .04 5.6 .12 9.0 .13 8.6	5 <.1< 5 <.1 5 <.1< 0 <.1 5 <,1<	.05 .06 .05 .10 .05	6 < 5 5 < 5 5 .5 6 < 5 6 < 5	30.0 30.0 30.0 15.0 30.0	
	MC-241 MC-242 MC-243 MC-244 MC-244	.3 .5 .5 .4 -4	21.1 33.5 30.0 29.6 28.8	3.9 4.4 3.7 3.6 3.8	5 46 4 63 7 61 5 64 3 59	.1 .1 .1 .1 <.1	28.7 40.7 39.2 42.9 36.1	12.5 15.2 14.8 16.9 14.9	1005 620 632 621 624	2.42 3.01 3.23 3.10 3.18	3.3 1.9 2.4 2.0 2.1	1.3 1.1 .7 1.1 .8	<.5 3.0 67.2 <.5 1.0	1.0 1.3 1.4 1.4 1.7	112 151 127 126 140	<.1 .1 .1 .1	.2 <. .2 <. .1 <. .1 <. .1 <.	1 80 1 107 1 113 1 99 1 107	$\begin{array}{c} \cdot \\ 5 & 1.2 \\ 7 & 1.6 \\ 3 & 1.6 \\ 5 & 1.2 \\ 1 & 1.6 \end{array}$	25 .09 10 .08 16 .07 14 .08 18 .07	53 6 52 13 78 13 51 13 78 12	44 59 62 62 48	1.4 9.2 1. 2.8 1. 2.5 1. 3.4 1.	.83 .03 .10 .09 .04	66 . 75 . 88 . 79 . 83 .	187 131 167 176 191	4 1.38 8 1.47 5 1.55 5 1.69 4 1.63	.079 .077 .078 .072 .078	.05 .07 .07 .06 .06	.1. <.1. <.1. <.1.	05 4.9 06 7.0 05 6.4 04 6.6 05 7.3	9 <.1 5 <.1< 4 <.1< 5 <.1 3 <.1<	.06 .05 .05 .07 .05	5 .7 5 1.4 6 <.5 5 .7 5 <.5	15.0 15.0 30.0 15.0 30.0	
-	MC-246 MC-247 MC-248 MC-249	.5 .3 .3 .2	27.5 17.1 16.2 27.6	3.7 3.7 3.7	7 62 7 47 7 49 5 48	.1 <.1 <.1	38.0 23.5 22.4 33.7	15.2 10.4 10.6 11.8	570 298 1487 359	3.46 2,50 2.17 2.52	2.6 2.1 8.4 1.1	.9 1.1 .7 .9	1.6 .7 1.2 <.5	1.5 .9 .9 .9	130 114 110 86	.1 <.1 .1 .1	.2 <. .6 <. .4 <. .1 <.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 1.1 0 .9 7 1.2 1 1.3	3 .07 6 .04 2 .03 4 .03	78 13 14 7 16 7 18 11	55 49 29 37	5.8 1. 9.7 9.5	.01 .67 .69 .98	81 . 62 . 72 . 40 .	184 224 196 289	5 1.46 5 1.36 5 1.14 8 1.57	.087 .082 .074 .091	.07 - .05 - .06 -	<.1 . <.1 . <.1 .	10 6.7 02 4.3 10 5.1 02 5.7	7 <.1< 3 <.1< 1 <.1 7 <.1	.05 .05 .08 .07	5.5 4.8 <u>4.5</u> 6.7	30.0 30.0 <u>30.0</u> 30.0	
	MC-250 RE MC-250 MC-251 MC-252 MC-253 MC-254	.3 .4 .5 .3 .3	20.3 21.4 30.2 41.3 61.0 35.0	3.6 3.6 3.9 3.8 3.8 4.6 5.1	60 62 7 87 87 87 87 87 87 87 87 87 87 87 87 8	.1 .1 .1 .2 .1	29.3 31.5 41.4 30.1 37.5 28.0	12.1 12.7 15.2 10.2 12.9 12.4	662 729 591 373 484 673	2.54 2.73 3.39 2.44 2.99 3.16	1.4 1.6 1.8 1.2 1.2 .7	.5 .4 1.0 1.3 .7	.5 1.0 1.3 .9 2.3 .7	1.0 1.1 1.3 .6 1.2 1.5	123 134 101 100 102 78	.1 .1 .1 .2 .2	.1 <. .1 <. .1 <. .4 <. .2 .1	1 84 1 89 1 101 1 88 1 89 1 86	1.2 1.2 1.2 1.2 2.1 3.2.0 3.1.6 1.2	27 .05 29 .06 29 .06 29 .04 23 .04 23 .04	56 8 51 9 53 11 53 11 5 15 75 18	40 46 56 45 48 48 48	5.0 5.9 1 5.2 3.2 1 2.7	.89 .97 .12 .85 .00 .85	63 . 71 . 74 . 39 . 52 . 64 .	248 269 235 217 228 240	5 1.52 5 1.54 7 1.86 11 1.43 7 2.42 4 2.16	.082 .098 .070 .064 .052 .051	.06 < .07 < .11 < .06 < .07 .13 <	<.1 . <.1 . <.1 . <.1 . .1 .	03 6.0 03 6.0 03 7.5 06 5.9 07 8.4 03 8.6) <.1) <.1< 5 <.1< 9 <.1 1 <.1< 3 <.1<	.08 .05 .05 .06 .05 .05	4 <.5 5 .5 6 <.5 5 1.9 8 .9 6 <.5	15.0 15.0 15.0 15.0 15.0 15.0	X
	MC-255 MC-256 MC-257	.4	39.1 8.1 41.8	4.2	2 57 2 18 5 51	.2	30.7 8.6 33.5	12.3 6.0 12.9	525 1400 472	2.77 1.01 3.14	1.0 2.1 2.8	.8 .4 .4	<.5 <.5 1.5	1.6 .1 1.0	99 758 144	.1 .1 .1	.2 . .1 <. .4	$\frac{1}{1}$ $\frac{91}{27}$ $\frac{1}{1}$ $\frac{91}{27}$	$\frac{1.2}{721.6}$	7.05 8.05 3.04	$\frac{5}{3}$ $\frac{15}{3}$ $\frac{3}{2}$ $\frac{3}{13}$	42 13 40	2.8 1. 3.9 . 3.3 1.	. <u>12</u> .59 .09	<u>63</u> . 31. 94.	223 041 121	<u>4 2.74</u> 17 .49 6 1.53	.062 .039 .062	.08 .02 <	<u>.1</u> . <.1.	<u>08 9.6</u> 03 1.3 07 6.5	$\frac{5 < .1 <}{5 < .1}$.05 .32 .09	8 <.5 2 2.2 5 .8	30.0 15.0 15.0	
	MC-258 MC-259	.3	45.3 25.2	3.3 3.7	3 46 7 53	.1 .1 <.1	30.8 33.3	10.2 15.3	325 824	1.95 3.13	1.2 5.9	1.1 1.2	.6 1.4	.6 1.3	115 115	.1 .1	.2 < .7 <	1 8 1 9	5 1.6	2 .06 5 .06	52 9 59 11	32 55	2.5	.98 .10 1	87 . 100 .	105 136	6 1.14 3 1.45	.073	.07 < .10 <	<.1 . <.1 .	06 4.5 03 6.7	5 <.1 7 <.1	.16 .06	3.6 5.5	15.0 30.0	
	MC-260 MC-261 STANDARD DS	.5 2, 5 12.4	20.8 17.0 146.2	3.1 3.4 25.4	1 41 4 48 4 139	.1 <.1 .3	28.6 28.9 25.6	12.1 11.1 11.8	979 365 795	2.41 2.63 3.02	3.9 3.0 17.9	1.1 .8 6.4	<.5 3.6 42.0	.8 ,9 2.7	104 117 46	.1 <.1 5.8	.4 <. .5 <. 3.9 6.	1 79 1 84 1 64	5 1.3 4 .8 4 .7	15 .06 10 .04 12 .09	67 9 67 7 94 12	35 51 191	5.7 1.4 1.2	.96 1 .97 .72 1	LO4 . 91 . L34 .	110 154 110	6 1.24 3 1.50 16 2.06	.054 .049 .034	.08 < .10 < .14 {	<.1 . <.1 . 5.0 .	04 4.5 03 5.4 19 3.6	5 <.1 1 <.1< 5 1.1<	.06 .05 .05	4 .5 4 <.5 7 5.0	7.5 30.0 30.0	
	GROUP 1DX (>) CONCEN	- 30.0 TRATIO) GM : N EXCI	SAMPI EEDS	le li Uppi	EACH ER L	ED W IMIT	ITH 1 S. S	80 ML OME M	. 2-2- IINER/	-2 H(ALS J	CL-HI MAY 1	IO3-H BE PA	120 / RTT/	AT 9 ALLY	5 DE ATT	G. C ACKED	FOR R	ONE H EFRAC	OUR,	D1LL AND	ITED GRAI	ТО <i>(</i> Рніті	600 1C S	ML, AMPL	ANAL' Es ci	YSED BY AN LIMI	'ICP- TAU	MS. SOLU	BILI	τ۲.	at 5	٢ŏ	TàZ	C.F.	

Data / FA

TO REPORT AND INCOMENTATION

طيعتك

1.15

A	CME		YTI 900	CAL 2 A	L	AB(rec	ORA lit	TOP	IE Co	s .)	LTC	•		85	2 E	. н	AST	ING	s s	sr.	<u>च</u> 	NCO	UVF	RB	c	V6A	1R6		I	рнор	1E (604)	253	-31	58	FAX	(6	53	-171	6
Æ	A								<u>A</u>	In	nad	<u>en</u>	<u>Mj</u>	<u>ine</u> - 7	GE(<u>ra</u>]	CH Ls Pe	IEM Lto	IC7 <u>1.</u> st		AN,	ALS ECJ	YSI <u>F</u> E	:S <u>BCR</u> /60 2	CER 04- '18	ТТ <u>1</u> Sub	FIC Fi	ATE le	# 1 Fd	\40 8a∣r	40.	32								A /	
5	AMPLE#		Mo ppm	C PP	່. ເນ ຫ	Pb ppn	Zn ppm	Ag ppm	۸ PF	Vi om	Co ppm	Mn ppm	Fe ۶	. А ; рр	us U mi ppm	A pp	u Th bppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm p	V ppm	Ca %	P %	L.a ppm	Сг ррт	Mg X	Ba ppm	Ti %	B opm	Al %	Na X	К % р	W H <u>e</u> pm ppn	g ' n pj	Sc Ti pan ppan	S % p	Ga Se opm ppm	Sample gn	
0 M M	i-1 IC-S09 IC-S90		2.2 1.1 .5	3. 58, 53.	0 1 5	2.9 6.2 6.1	45 129 155	<.1 .1 .2	4. 59. 116.	3 21 13	4.4 9.5 10.2	539 935 1049	2.02 2.97 4.68	8. 6.	62.1 0.2 <u>3.3</u>	<. 4. 2.	54.5 8.7 1.8	83 113 171	<.1 .3 .2	<.1 .2 .4	.1 .1 .1	38 55 1 86 1	.64 1.82 1.66	.076 .299 .295	11 16 13 1	24.4 45.3 133.7	.60 .34 .43	275 . 265 . 387 .	132 040 041	11 14 92	. 09 . 98 . 36	.139 .015 .019	.61 3 .20 .21	.6<.03 .1 .07 .1 .04	1 3 7 8 4 13	.2 .3< .3 <.1 . <u>3 <.1</u> <	<.05 .10 <.05	5 <.5 3 <.5 6 .5	30 15 15) 5 5
X ^M	IC-S91 IC-S92 TANDARI) 055	.4 .5 12.6	40. 28.	5 8 4 2	4.0 5.8 5.0	55 93 135	.1 <.1	42. 41. 23	91 81 81	4.5 9.9 2.7	428 1204 747	3.95 4.09 3.14) 1.) 1. 19.	8.9 6.9 66.5	41	82.1 51.7 42.8	97 87 48	.1 .1 6.2	.1 .1 3.8	<.1 .1 6.2	101 1 96 61	.94	.080 .082	17 12 1 14 1	52.1 (135.7 (177.0	1.05	62 . 53 . 144 .	281 322 098	12 13	. 19 . 57 97	.054 .050 .035	.11 .19 .14 4	.1 .01 .1 .02 7 17	1 12 2 11 7 3	.9 <.1< .3 <.1<	<.05 <.05 < 05	7 <.5 11 <.5	15 30 30	X
	GROUP (>) CO - SAMP	1DX NCEN	- 30. FRATI	0 GM ON E) SOIL	SAI (CEI SSI	MPLE EDS 80 (E LE UPF SOC	ACHE PER L	D W.	ITH	180 SC	ML ME M	2-2-	2 H	CL-HN MAY	03-1 BE f	H2O A PARTI	.7 95 ALLY	5 DEG	G. C	FOR ED.	ONE	HOU	R, DI ORY A	LUTI	ED TO GRAPHI	600 1TIC	ML, SAMP	ANAL	YSED CAN	BY	ICP-I T AU	MS. SOLU	IBILI1	τΥ.					ح ــــــــــــــــــــــــــــــــــــ
	Data _.	ŀ	FA				I	DATI	E R	EC	EIV	ED:	: /	AUG I	3 200	4	DAT	EF	REPO	ORT	MA	ILF	ED:	H	ŗy.	10	/0-	ť			(, Z arenc				045		
	•																																							

		. 90	ICAL 02 A	LA CCI	BOR ed1	ATO ted	RIE Co <u>A</u>	s 11 .) 1ma	rD. Ider	<u>1 M</u> 110	852 (ine: 3 • 75	E. GEC cal	HAS CHE B L Pende	TIN MIC Ed.	GS S AL / <u>PR(</u> ., Var	T. ANA: <u>DJE(</u> couve	TC LYS <u>CT</u> TBC	OUV IS BC V6C	7ER CE <u>R04</u> 278	BC RT: -1 Si	V6 IFI F Jomit	A 11 CAT ile ted t	R6 'E 3 # 59: E	1 A4 (d Balo	2 HO 940 95	NE (6 33	04):	253-3	158	FAX	(6,)53-1 /	716 AA	
	SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Со ppm	Mn ppm	Fe %	As ppm j	U ppm	Au ppb	Th ppm po	Sr Cd pm ppm	Sb ppm	Bi ppm p	V vpm	Ca %	Բ % բ	La opm	Cr ppm	Mg Xap	Bai T pm	i Յ % թթո	8 A1 1 %	Na X	K N %Ippr	vi Hg n ppm	Sc ppm p	T1 S pm &	Ga Se ppm ppm	Sample kg	<u></u>
	SI MC-R133 MC-R134 MC-R135 MC-R136	<.1 30.6 1.8 .4 3.2	.6 37.3 94.4 25.0 5.6	1.1 7.1 15.6 3.2 2.5	1 47 36 10 9	<.1 1.7 5.3 11.6 .1	.1 28.1 4.6 5.0 3.9	<.1 17.1 2.7 1.8 1.4	<1 1417 185 278 111	.04 3.83 .93 1.00 .77	<.5 · 79.2 28.0 · 5.0 · 3.5 ·	<.1 .3 1 <.1 <.1 <.1	.6 811.5 191.8 344.4 7.5	<.1 .3 1 <.1 <.1 .1 3	3 <.1 12 .3 8 .4 12 .3 16 <.1	<.1 .8 21.6 .6 .1	<.1 <.1 <.1 .6 <.1	<1 51 9 9 14 16	.14<. .56 . .52 . .56 . .40 .	001 055 003 014 009	<1 7 1 <1 1 1	<1 5.2 3.6 4.1 5.2	.01 .36 9 .07 .25 .10	3<.00 99 .00 70 .00 24<.00 59 .01	$ \begin{array}{ccc} 1 & <1 \\ 2 & 2 \\ 1 & 1 \\ 1 & 1 \\ 5 & <1 \end{array} $	01 2 .51 04 08 62	.619 .003 .003 .002 .002	.01 < .05 < .01 < .01 < .06 <	1 <.01 1 .03 1 9.15 1 .72 1 .06	<.1 < 3.4 < .4 < .4 < 1.2	.1 .06 .1 .18 .1 .10 .1<.05 .1<.05	<1 <.5 1 <.5 <1 <.5 <1 <.5 1 <.5 1 <.5	1.62 .51 .44 .35	
<u>×</u>	MC-R137 MC-R138 MC-R139 MC-R139 MC-R140 MC-R141	.4 34.2 22.1 .7 28.7	18.6 18.6 25.5 5.4 22.7	4.1 3.9 2.2 1.3 11.2	45 42 12 4 7	<.1 .5 3.7 .8 4.4	36.1 27.4 5.1 4.4 5.1	13.9 13.8 2.8 1.7 3.0	566 831 620 925 152	2.57 2.91 .92 .71 1.14	,5 9.4 102.6 147.9 75.5	7 2 11 < 1 1 3	1.9 10.1 .075.0 501.1 3322.7	1.53 .4 .24 .11 .1	18 .1 76 .1 43 .1 47 .1 9 <.1	.1 .2 1.0 .9 .7	<.1 <.1 <.1 <.1 .1	84 1 51 3 30 8 12 8 15	.11 . .40 . .75 . .95 . .11 .	085 061 024 014 023	15 2 9 3 3 3 3	21.3 33.4 1 5.9 3.6 8.6	.93.1 .17 1 .11 .06 .07	52 .22 80 .00 15 .00 22 .00 25 .00		2 1.46 .49 .16 .12 .19	.103 .009 .002 .002 .002 .004	.18 .02 <. .02 <. .02 <. .05 <.	1 .03 1 .04 1 .13 1 .13 1 .13 1 .19	5.4 < 4.6 .9 .8 .7	.1<.05 .2 .12 .3 .12 .1 .14 .1 .11	5 <.5 2 <.5 1 .6 <1 <.5 1 <.5	.51 1.30 1.41 .97 .58	
	MC-R142 MC-R143 MC-R144 RE MC-R144 MC-R145	18.1 1.4 .7 .8 .5	54.1 7.7 30.9 30.1 1.9	3.0 3.8 1.8 1.9 1.0	14 25 68 68 10	2.7 .5 .6 .1	15.4 5.4 31.4 31.1 2.9	5.9 2.5 13.2 13.1 1.1	207 98 713 717 926	2.00 .90 3.57 3.60 .86	156.9 197.9 19.2 18.7 42.8	.1 .2 .2 <.1	802.8 339.6 43.9 55.0 71.7	.2 .3 .7 .7 <.1	30 <.1 6 <.1 26 .2 33 .2 43 .1	4.1 3.7 3.5 3.8 .2	<.1 <.1 <.1 <.1 <.1	34 9 96 93 3 5	.06 . .07 . .06 . .06 . .15 .	030 006 031 035 014	2 1 4 3 4 3 1	.5.1 5.3 30.5 30.2 2.5	.02 .01 .02 .03 .06 1	85 .00 22 .00 29 .00 32 .00 35 .00	2 1 1 1 2 2 2 2 1 <]	. 26 . 16 2 . 46 2 . 50 . 08	.002 .001 .001 .001 .001	.03 < .02 < .01 < .02 < .01 <	1 1.13 1 .28 1 1.65 1 1.80 1 .04	1.7 .7 9.4 < 9.6 < .3 <	.1<.05 .4 .36 .1<.05 .1<.05 .1<.05	1 <.5 <1 1.1 1 <.5 1 <.5 <1 <.5	1.28 1.07 .82 .73	
	MC-R146 MC-R147 MC-R148 MC-R149 MC-R150	1.3 6 3 5 5	22.7 15.0 42.8 32.1 2.2	3.4 1.5 9.0 1.9 .7	29 15 71 20 6	1.7 .5 .1 .3 <.1	19.9 12.2 46.2 13.4 3.2	10.8 6.1 24.7 3.7 1.8	427 219 1095 96 326	2.04 1.05 4.58 1.43 .53	10.6 14.7 23.8 31.3 15.9	.2 .2 .3 .1 <.1	40.6 984.6 9.7 59.2 18.2	.3 .3 .6 .1 <.1	27 .2 33 .1 64 .2 88 <.1 15 <.1	.7 1.9 .8 6.8 .5	<.1 <.1 .2 1 <.1 <.1	46 31 27 5 40 6	.06 . .35 . .67 . .05 . .03 .	026 016 033 017 007	3 2 3 1 7 3 1 1 <1	25.7 7.8 34.0 2 18.3 6.7	.03 .02 .44 1 .02 2 .05	54 .00 7 .00 15 .00 87 .00 37 .00	3 1 3 2 3 1 2 1 1 <1	. 28 2 .34 .46 .48 .10	.002 .001 .007 .002 .002	.02 <. .02 <. .01 <. .02 <. .02 <.	1 .18 1 .65 1 .42 1 2.05 1 .03	4.3 < 1.8 < 7.6 < 2.5 < .4 <	.1 .09 .1<.05 .1 .77 .1 .06 .1<.05	1 <.5 1 .7 2 .8 1 <.5 <1 <.5	1.13 2.96 1.13 1.30 1.74	
	MC-R151 MC-R152 MC-R153 STANDARD DS5	.9 1.3 .5 12.3	3.6 2.9 4.3 144.8	1.1 .7 1.3 25.8	4 3 3 4 141	.2 .2 .3 .3	4.5 3.6 2.8 24.6	1.3 1.2 .7 11.4	221 493 151 787	.74 .59 .66 3.01	170.2 62.1 192.9 18.0	<.1 <.1 <.1 6.2	439.2 525.1 308.9 42.0	.1 <.1 1 <.1 2.7	19 <.1 70 <.1 53 <.1 50 5.6	1.0 .5 1.4 3.6	<.1 <.1 <.1 5.8	81 55 4 61	.16 . .81 . .26 . .76 .	009 009 004 091	2 2 <1 12 17	7.3 4.8 6.2 8.2	.08 .04 .02 .69 1	17<.00 79 .00 32 .00 33 .10	1 1 1 <1 1 <1 3 16	10 15 10 5 2.02	.003 .002 .001 .034	.02 <. .03 <. .03 <. .14 4.3	1 .08 1 .07 1 .03 8 .16	.3 < .4 < .2 < 3.3 1	.1 .15 .1 .07 .1<.05 .1<.05	<1 <.5 <1 <.5 <1 <.5 7 5.0	1.36 1.03 2.34	

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data / FA

.

DATE RECEIVED: AUG 3 2004 DATE REPORT MAILED: AUg 14/04

and a set of the set o

.

ACME AI	TT 100	CAL 2 AC	LAB	OR/ dit	TOR	IES Co.	 Lit	D.		852	e.	HAST	INC	s s	т.		cou	VER	BC	V61	1 R6	5	P	HON	e (6	04)	253	-3158	FA	<u>x (60</u>		3-1	716
										G	EOC	HEM	IC.	AL .	AN/	ΥГХ	SIS	CE	RTI	FIC	CATE											1	
									<u>A1</u>	mad	<u>en</u> 110	<u>Min</u> 5 - 7	er 50 W	als . Pen	니 der	zd. st.,	E Vanc	1⊥€ ouver	# BC V	A4 (/6C 2)459 18	9											
SAMPLE#	Мо ррт	Си ррт	Pb ppm	Zn ppm	Ag ppm	N1 ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppan	Au ppb	Th ppm	Sr (ppm pj	Coli pm p	Sb E Sprn pg	3ni N xnippn	/ C 1	a P XX	La ppm	Cr ppm	Mg X	Ba ppm	Ti گړ	B Spm	A1 %	Na X	К W Хррт	Hg ppr	j Sc ippm p	т1 рт	S Ga % ppm	Se ppm
SI MC-R154 MC-R155 MC-R156 MC-R157	.1 25.1 1.5 13.9 2.2	28.9 12.3 11.1 23.5 5.2	1.2 2.7 5.1 5.8 1.5	3 7 8 25 3	<.1 .4 1.7 .9 .1	.5 8.9 1.9 14.3 3.8	.2 2.5 1.4 9.7 1.9	9 70 1045 196 165	.10 .79 .57 2.88 .67	1.1 30.0 94.5 27.3 189.7	<.1 .1 <.1 .2 <.1	<.5 435.0 389.1 5.5 482.1	<.1 .2 .1 .2 .1	5 < 24 < 258 47 5 <	.1 .1 .1 .2 .1	.1 <. .7 <. .7 . .3 . .4 <.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 .1 5 12.7 .0 .4	3<.001 2 .011 7 .006 4 .019 0 .007	<pre><1 2 1 2 2 2 2 2</pre>	1.4 21.7 10.6 34.2 18.5	.01 .15 .10 .02 .04	9 17 32 127 75	.001 .016 .002 .005 .001	2 1 2 1	.02 .22 .07 .36 .10	.912 .021 .004 .001 .004	.01 <.1 .02 .1 .02 1.1 .02 <.1 .02 <.1 .01 2.4	<.01 .04 .05 .11 .01	 <.1 .7 .6 4.2 .3 	.1 <.0 .1 <.0 .1 .0 .1 .0	5 <1 5 1 9 <1 5 1 9 <1 9 <1	<.5 <.5 <.5 .5 <.5
MC-R158 MC-R159 MC-R160 MC-R161 MC-R162	.4 1.1 5.7 17.0 3.8	41.2 7.5 22.4 7.4 7.2	1.8 2.6 2.8 1.5 1.5	67 14 11 6 10	.1 1.0 .3 1.3 .6	45.2 8.5 8.6 5.1 6.7	18.7 4.4 3.6 1.6 3.7	355 373 196 271 343	3.54 1.18 1.19 .78 .87	21.6 7.3 143.2 111.4 150.9	.2 .1 .1 <.1 1 .1	18.4 9.9 390.8 758.9 743.8	.6 .3 .2 .1 .2	21 24 7 5 < 46	.1 2 .5 .1 .1 1 .1 1	2.6 <. .5 <. .6 <. 1.5 <. .8 <.	$\begin{array}{cccc} 1 & 85 \\ .1 & 16 \\ .1 & 22 \\ .1 & 29 \\ .1 & 13 \end{array}$.1 .7 .1 .0 .0 .2.4	3 .065 7 .042 3 .016 5 .012 3 .017	6 4 3 4	37.1 18.2 14.8 17.8 22.1	.04 .26 .04 .03 .04	12 80 83 16 123	.002 .002 .003 .002 .002	2 <1 <1 <1 <1	.68 .29 .25 .14 .18	.004 .002 .006 .002 .002	.01 <.1 .02 1.0 .01 <.1 .04 2.7 .03 1.4	.13 .01 .22 .06 .10	8.8 < 2.0 < 1.3 < .7 .8 <	.1 <.0 .1 .0 .1 <.0 .2 .0 .1 .0	52 61 51 91 61	<.5 <.5 2.1 <.5
MC-R163 MC-R164 MC-R165 MC-R166 MC-R167	.5 13.5 .6 2.2 44.5	78.3 42.2 20.8 20.1 22.5	1.0 3.0 2.0 3.8 2.3	50 14 24 10 8	.1 .5 .2 .9 10.9	30.1 21.8 17.8 3.4 4.5	9.9 8.6 6.0 1.9 2.1	315 290 133 18 72	2.78 1.64 1.61 2.30 .89	36.4 16.9 24.2 1035.2 92.4	.2 .1 .2 .3 1 <.1 2	19.3 16.1 74.4 280.6 778.3	.3 .2 .1 1.2 .1	43 < 6 < 65 < 76 < 7 <	.1 9 .1 .1 9 .1 22 .1 1).7 <. .2 <. 5.2 <. 2.2 <. 2.2 <.	1 80 1 33 1 41 1 21 1 16	0.0 3.2 .0 .0	4 .028 3 .028 2 .009 7 .073 4 .009	2 4 1 13 1	33.9 35.5 22.5 18.4 14.4	.05 .04 .01 .05 .02	11 19 25 111 23	.003 .001 .003 .004 .002	1 3 1 4 <1	.49 .23 .41 .32 .13	.001 .002 .001 .014 .003	.01 .1 .06 .9 .01 .5 .36 <.1 .03 .3	1.04 .01 1.31 .40 .24	8.4 2.2 < 4.4 < 2.8 .7	.1 <.0 .1 .2 .1 <.0 .2 .5 .5 .0	5 1 1 1 5 1 3 1 8 <1	<.5 <.5 3.4 .7
MC-R168 RE MC-R160 MC-R169 MC-R170 MC-R171	15.3 15.9 7.5 1.7 2.9	92.8 94.4 57.0 12.6 52.7	5.6 5.4 3.7 2.0 1.6	27 25 10 20 13	19.0 19.9 1.7 1.4 1.9	6.4 6.0 7.8 9.0 5.8	1.9 1.9 4.6 3.4 2.5	101 103 105 334 156	.64 .64 1.17 1.25 .81	29.6 29.1 70.6 34.2 38.4	<.1 <.1 .1 1 <.1	343.0 324.6 356.7 190.7 267.1	<.1 <.1 .1 .1	71 71 18 6 5	.1 10 .1 10 .1 4 .1 .1 3).7 <.).5 <. 1.0 <. 1.9 <. 3.5 <.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.4 .4 .0 .0	5 .003 7 .003 3 .008 5 .019 3 .005	1 <1 1 1	21.8 23.6 25.1 28.1 13.1	.07 .07 .01 .04 .03	19 19 77 29 37	.001 .001 .001 .002 .001	1 <1 <1 2	.11 .12 .13 .12 .12 .11	.007 .008 .001 .002 .003	.02 1.2 .02 1.2 .03 .3 .03 2.4 .03 .2	2.06 2.14 2.15 .14 3.07	.4 < .4 1.1 < .9 < 1.6	.1 <.0 .1 .0 .1 .1 .1 .1 .1 .0	5 <1 7 <1 2 <1 2 <1 8 <1	<.5 <.5 <.5 <.5 <.5
MC-R172 MC-R173 MC-R174 MC-R175 MC-R176	3.5 1.9 .8 11.3 5.4	75.6 49.8 42.8 141.1 15.6	2.2 3.9 4.3 4.2 2.8	17 17 55 35 13	3.4 15.2 .4 5.3 6.6	10.5 8.9 30.2 15.2 5.7	4.1 3.3 21.8 6.4 3.1	181 148 925 204 263	1.22 1.07 3.79 1.76 .86	89.3 20.5 92.5 40.2 106.3	.1 <.1 .2 .3 .1	244.4 653.8 85.6 802.9 956.2	.1 <.1 .9 .1 .2	22 21 95 17 23	.1 5 .5 3 .1 .2 15 .6 1	5.5 <. 3.5 <. .9 . 5.1 <.	1 27 1 14 1 82 1 32 1 11	.2 .0 4.9 .1	1 .005 5 .007 7 .061 4 .012 2 .012	1 1 8 2 3	38.5 23.6 37.7 16.5 20.8	.06 .02 2.11 .09 .06	120 46 39 33 31	.001 .001 .001 .001 .001	2 <1 7 <1 1	.17 .14 .57 .26 .36	. 002 . 003 . 007 . 002 . 004	.03 2.1 .02 .2 .07 .3 .07 .1 .05 .8	2.78 2.72 .34 12.12 .24	2.1 < 1.3 < 7.3 1.9 < .8 <	.1 .0 .1 .0 .1 .7 .1 .1 .1 <.0	9 1 6 <1 1 1 2 1 5 1	<.5 <.5 1.1 <.5 <.5
MC-R177 MC-R178 MC-R179 MC-R180 MC-R181	1.9 1.0 .5 11.0 1.3	5.2 3.0 23.1 12.5 15.7	1.4 .6 .7 3.0 .6	8 6 8 35 5	.2 .1 .1 .1 .8	5.3 3.7 6.2 30.3 3.7	3.6 1.5 2.3 21.6 1.3	415 870 75 1005 49	.89 .45 .85 3.59 .61	181.7 85.2 6.0 6.2 3.4	<.1 <.1 .1 .2 <.1	225.0 253.5 2.1 10.9 970.2	.2 .1 .6 .9 <.1	43 167 < 51 < 37 < 25	.1 1 .1 .1 1 .1 .1	1 <. .3 <. 8 <. .2 . .6 <.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.6 9.6 .1 3.8	9 .018 3 .007 1 .027 0 .077 3 .003	2 1 3 11 <1	13.4 14.1 17.4 40.5 11.1	.03 .03 .01 .60 .01	50 28 1521 86 37	.001 .001 .008 .002 .001	1 <1 1 2 <1	.17 . .08 . .40 . .50 .	.001 . .001 . .002 . .016 . .007 .	.04 .1 .01 1.1 .01 .1 .06 .5 .01 .1	.18 .02 1.51 .10 .04	.7 < .5 < 1.2 < 6.5 < .5 <	.1 <.0 .1 <.0 .1 <.0 .1 1.2 .1 <.0	5 1 5 <1 5 1 8 2 5 <1	<.5 <.5 2.8 <.5
MC-R182 MC-R183 MC-R184 MC-R185 STANDARD DS5	.9 7.4 2.4 .7 12.6	19.1 8.9 25.5 4.1 141.0	4.0 2.0 2.2 .6 24.4	83 7 5 4 138	.2 4.9 4.0 <.1 .3	46.9 3.4 3.1 4.9 24.3	21.1 1.2 .5 1.7 11.8	913 52 33 855 792	4.17 .82 .43 .64 3.01	7.3 56.1 9.5 1.6 17.4	.3 <.1 7 <.1 .3 5.9	4.0 916.4 37.8 16.1 41.4	.6 .1 <.1 .1 2.7	56 4 5 25 44 5	.1 .1 .1 7 .2 .1 3	.7 <. .8 <. .7 <. .1 <. 3.8 5.	1 102 1 8 1 3 1 8 7 60	3.1 .0 1.3 .7	L .032 5 .010 4 .003 4 .025 5 .087	3 1 <1 2 12	40.3 15.5 23.6 7.7 185.8	.14 .03 .01 .13 .68	56 17 3< 612 132	.002 .001 .001 .002 .101	1 1 <1 <1 17 1	.70 .13 .06 .18 .99	.001 .001 .010 .003 .034	.01 .2 .05 .2 .01 1.7 .03 .1 .14 5.1	.46 .06 2.91 .05 .17	9.4 < .5 .3 < .6 < 3.5 1	2.1 <.0 .1 <.0 2.1 <.0 2.1 <.0 .0 <.0	52 51 5<1 51 56	<.5 <.5 <.5 <.5 4.8
GROUP 1DX (>) CONCEN - SAMPLE T	- 30. TRATIO YPE:	00 GM DN EX Rock I	SAMP CEEDS R150	LE L UPP 60C	EACH PER L	ED Wi IMIT: Samp	ITH 1 S. S les b	80 MI COME I Degini	2-2 HINER	-2 HCL Als M/ <u>'RE' a</u>	-HNO Y BE are Ro	3-H2O PART eruns	AT IALL and	25 DE 1 ATT 1 RRE	G. C ACKE <u>'ar</u>	FOR D. 1 e Re	ONE REFRA ject	HOUR, CTORY <u>Rerur</u>	DILU AND	ITED GRAPI	TO 600 HITIC	ML, Sampi	ANAL Les c	YSED AN LI	BY 1 MIT	ICP-N AU S	45. SOLUB	ILITY.		NE.	67	à7	

Data WRFA DATE RECEIVED: AUG 16 2004 DATE REPORT MAILED: Spt. 2/04. Assay recommend for An 7/000 ppb All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME	Al (ISO	.TI 900	2AL 2 AC	LAB Cre	ORA dit	TOR	IES Co.)	LTI).	8	52 Gl	E. H EOCH	ast (EM	ING IC2	s s Ali	T. AN/	ATX	cot si	JVER S C	BC ERT	V6 IFI	ia 15 Cat	(6 E	j	PHON	IE (6	04)2	253-	315)	8 FJ	• X (6	ō	53-1	716
										<u>Aln</u>	<u>ad</u>	<u>en M</u> 1103	(<u>in</u> • 75	ere 10 W	118 Pen	<u>L</u> der	<u>:d.</u> st.,	Var	Fil	e # nr BC	A4 v6c	046 218	00										1	
SAMPLE#	Ma	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	ĩh	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	к	W	∦g	Sç Ti	S	Ga Se
	ppm	ippm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	Ppm p	⊳pmrp	prn ppn	1 %	ppm ppm
G-1 MC-126-5 MC-126-6 MC-262 MC-263 MC-264 MC-265	1.5 .5 .4 .3 .4 .4	3.8 28.4 26.9 23.6 18.6 22.3 20.6	2.3 4.3 4.1 3.7 3.4 3.8 3.8	46 54 53 48 44 52 50	<.1 .1 .1 <.1 <.1	5.1 38.5 38.0 28.8 26.2 31.3 30 5	4.3 14.1 14.1 11.4 12.1 13.3 12.7	596 624 534 622 693 670	1.90 3.31 3.10 2.39 3.04 3.19 2.96	1.1 2.9 2.3 2.9 6.9 3.7 4.2	1.8 .8 .8 1.8 .7 .8 1.0	.5 1.9 .8 2.1 5.3 1.1 3.6	3.6 1.4 1.4 .9 .9 1.0 1.0	78 117 116 98 99 107 124	<.1 .1 <.1 <.1 <.1	<.1 .3 .2 .6 .4 .5	.1 .1 <.1 <.1 .1	41 96 83 98 99 96 89	.53 1.08 1.11 1.25 1.09 1.01	.075 .067 .057 .050 .065	8 13 12 9 8 7 8	51.1 58.6 57.4 46.7 42.1 51.2 55.1	.58 1.10 1.06 .89 .84 1.03 1.04	243 125 125 65 68 80 92	.112 .121 .120 .130 .127 .137 .133	1 4 3 2 2 3 2	.95 1.94 1.86 1.57 1.61 1.66 1.63	.069 .071 .073 .066 .072	.48 .09 .09 .05 .06 .06	1.5<. <.1 . <.1 . <.1 . <.1 .	.01 2 .08 7 .06 6 .03 5 .03 5 .03 5	.0 .3 .1 < 1 .6 < 1 .2 < 1 .5 < 1 .8 < 1	<.05 <.05 <.05 <.05 <.05 <.05	5 <.5 6 .5 5 .8 5 <.5 5 .5 6 < 5
MC-266	.4	26.7	3.5	53	.2	35.4	13.8	699	2.99	2.0	.7	203.2	1.4	120	.1	.2	<.1	99	1.23	.069	12	48.8	1.00	69	.116	-4	1.74	.076	.07	<.1 .	07 6	4 < 1	<.05	5 <.5
RE MC-266	.5	26.7	3.6	54	.1	34.6	14.3	673	2.99	2.4	.8	.7	1.4	125	.1	.2	<.1	104	1.19	.076	12	48.8	1.02	68	.137	4	1.82	.083	.07	<.1 .	06 6	1 < 1	<.05	6 <.5
MC-267	.5	27.5	3.7	57	.1	34.6	14.1	637	3.30	2.1	.7	4.2	1.3	139	.1	.2	<.1	119	1.27	.073	12	58.6	.96	73	.151	4	1.74	.083	.08	<.1 .	08 6	.6 < 1	<.05	5 <.5
MC-268	.3	20.2	3.8	50	<.1	30.5	12.9	691	3.32	5.0	.5	.5	.9	91	.1	.4	<.1	107	1.08	.040	7	46.0	.96	74	.146	2	1.78	.070	.07 ·	<.1 .	.02 6	.1 <.1	<.05	5 <.5
MC-269	.3	22.0	3.7	50	<.1	33.5	13.6	663	3.06	3.0	.9	.8	1.0	120	.1	.6	<.1	92	.97	.040	7	55.0	1.12	86	.155	2	1.79	.079	.10 ·	<.1 .	.03 6	.4 <.1	<.05	6 < .5
STANDARD	12.3	143.3	25.8	135	.3	25.5	11.7	772	2.87	18.0	6.2	43.5	2.9	51	5.3	3.8	6.0	62	.77	.087	14	187.1	.68	137	.097	18	2.15	.034	.15 ·	4.7 .	.17 3	.5 1.1	<.05	7 5.2

Standard is STANDARD DS5.

GROUP 10X - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: S.SED. SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA

DATE RECEIVED: AUG 16 2004 DATE REPORT MAILED:

ACM	E AN	្ត្រី សេខភព	ICAL	LA	BOR edi	ATO ted	RIES Co.	LT)	D,		852	E.	HA	STIL	NGS	ST.		20	uvei	C BC	v	6A 1	R6		PHO	ne (604)	253	-31	58	FAX	(60	र च	}3-1	716	
A										A 1	C mac)EO Ien	CHE Mi	MI(CAI ral	iai Bi	NAL Led	YS1	'S C F11	ERJ	TF Ł A	1 CA] 4046	:е :01													
												11	03 ·	750	W. F	'ende	r St.	., Va	ncouv	er BC	V6C	218														
SAMPLE#	Mo ppm	Cu ppm	dq mqq	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	u Inqq	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg7	g 18a Kippm	Ti %	8 ppm	A(%	Na %	К %	W ppm	Hg ppm	Sc ppm	TL ppm	5 %	Ga ppm p	Se pm
G-1 MC-593 MC-594 MC-595 MC-596	1.5 .4 .4 .6 .7	2.4 30.7 42.7 34.8 28.1	2.3 2.7 4.0 5.5 3.8	47 44 91 81 144	<.1 <.1 <.1 .1 <.1	5.1 27.9 76.8 45.0 67.1	4.5 12.5 20.8 17.4 13.8	619 251 584 661 543	1.97 3.39 3.93 4.37 3.85	<.5 1.6 9.5 5.6 14.0	1.9 .5 1.0 .7 .4	<.5 <.5 <.5 3.1 <.5	4.2 2.7 3.1 1.6 1.1	86 62 84 64 53	<.1 <.1 .1 .2 .1	<.1 .1 <.1 .2 11.6	.1 .1 <.1 .1	42 72 118 100 133	.63 .67 .90 1.03 .45	.077 .101 .142 .085 .097	8 19 26 31 7	51.7 23.8 70.4 55.9 72.8	.59 1.38 .63 .59 .27	257 3 193 3 138 5 164 2 113	.126 .003 .043 .075 .104	<1 <1 <1 6 4	1.00 3.47 4.02 2.10 1.42	.080 .015 .043 .016 .017	.55 .14 .07 .10 .10	.8< <.1 <.1 .1 <.1	.01 .51 .02 .05 .07	2.3 6.7 15.5 12.8 14.2	.4 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 < 9 < 10 < 7 < 5 <	.5 .5 .5
STANDARD	12.3	143.3	25.8	135	.3	25.5	11.7	772	2.87	18.0	6.2	43.5	2.9	51	5.3	3.8	6.0	62	.77	.087	14	187.1	.6	8 137	.097	18	2.15	.034	.15	4.7	.17	3.5	1.1	<.05	75	.2
Standard GRO (>) - S Dat	is STJ UP 10: CONC AMPLE a	ANDARD (- 30 ENTRAT TYPE: _FA	DS5. .00 G ION E SOIL	M SAM XCEE(SSB(LEAC PPER TE	HED WI	ITH S. S	180 MI SOME F	AUG	-2 HC	CL-HN AAY B	03-H E PA	20 AI RTIAL	I 95 LLY A REP(DEG.	C FC KED. MAI	DR ON REF		R, DI RY AN	alute D gr		500 I C S/	AL, AA AMPLES	WALYSI S CAN	EC B)	T AU	MS. SOLUI					A CONTRACTOR OF			

.

ACME AN (ISC.	.002	L L Acc	ABO red	RATC	DRI 1 C	<u>es</u> 1 0.) <u>Alm</u>	JTD.	<u>en]</u> 11	8 <u>Mir</u> 03 -	52 F GE 1013	. н ОСІ <u>1в</u> 1. Ре	IASTI HEMI Ltc nder	ING ICA 1.	S S: I 7 <u>PR(</u> Van	Г. XNZ ДДІ соц	- ALYS ECT Ver Bi	IOU SIS BC V60	VER E CEI <u>R04</u> · 218	20 20 20 20 20 20 20 20 20 20 20 20 20 2	V6A FIC Fi mitt	ATE ATE le ed by	; #; ; Ed	P A40 Balo	HONI 530	e (6) 5	04)	253	-315	8 FA	<u>X (60)</u>	. בן ו	-1716 AA	
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb B	1 V	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	K	W Hg	Sc T1	S I	Ga Se	<u></u>
	ppm	ppm	ppm	ppm p	pm	ррп	ppm	ppm	Z	ppm	ppm	aqq	ррш	ppm p	bw 1	pm pp	прра	<u>ته ا</u>		ppm	ррт	<u>7</u>	ррт	δ	ppm	λ	Ā	r bl	m ppm	ppm ppm	۶p	pm ppm	
SI	.1	.4	. 4	<1 <	.1	.2	<.1	1	.02	.5	<.1	<.5	<.1	2 <	:,1 ·	<.1 <.	1 <1	.07	.001	<1	1.3	<.01	3<	.001	2	.01	.323<	.01 <.	1 .01	.1 <.1	.06	<1 <.5	
MC-R199	.8	58.0	45.B	72 <	.1	2.1	2.3	3572	1.07	1.6	.3	<.5	.7	247 1	.2	.1 .	1 15	12.58	.021	9	1.8	.23	2022	.001	2	.17	.015	.06	4 <.01	1.6 < 1	.14	1.6	
MC-R200	1.1	7.6	1.8	21	.2	4.2	2.2	226	. 66	150.3	<.1	498.7	.1	11 <	.1	1.2 <.	1 9	.61	.009	2	6.9	.05	21	.003	<1	.17	.005	.01 .	1 .12	.7 <.1	.19	<1 < 5	
MC-R201	9.2	7.4	1.6	14	.7	8.4	3.4	137	.96	158.9	.1	410.1	.3	6 <	1.	1.1 <.	1 25	.11	.020	4	9.3	.02	49	.001	1	.22	.002	.02 <.	1 .08	1.4 <.1	.18	1.8	
MC-R202	3,5	4.8	.6	52	.2	5.2	2.2	231	.58	62.1	<.1 2	148.8	.1	8	.1	L.O <.	1 9	.05	.012	2	17.5	.02	31	.002	1	.13	.002	.03 .	2.14	.6.1	.10	1.7	
MC-R203	2.3	9.2	2.1	13	.4	10.8	6.2 [.]	617	1.50	243.0	.1	574.3	.3	80	.1	.6 <.	1 16	5.08	.027	5	4.9	.26	369	.001	1	. 19	.003	.03 <.	1.04	1.4 <.1	.35	1.5	
MC-R204	2.2	4.3	.9	8	.1	6.8	3.1	245	.77	91.1	.1	309.3	.2	20 <	:.1	.3 <.	18	.45	.015	4	15.8	. 06	998	.003	<1	.17	.002	.01 .	2.02	.7 <.1	.13 -	<1 <.5	
MC-R205	1.9	3.7	.7	6	.4	4.4	2.0	287	. 59	101.5	<.1	789.3	.1	15 <	.1 .	L.O <.	18	. 80	.013	2	5.9	.09	56	.002	1	.12	.002	.02 <	1.10	.5 <.1	.11	<l <.5<="" td=""><td></td></l>	
MC-R206	.6	3.0	.6	6	.1	6.9	3.1	953	.65	64.9	.1	63.0	.2	30	.1	.5 <.	1 . 11	1.42	.013	- 4	13.1	. 09	105	.009	<1	.28	.005	.03 .	2.03	1.1 <.1	.09	1 <.5	
MC-R207	12.3	8.1	1.1	91	.4	6.1	2.8	1055	.84	63.6	.1 2	2092.9	.1	12	.2	.9 <.	1 19	.14	.017	3	8.4	.10	54	.005	1	.26	.006	.04 <.	1.08	1.4 .2	.06	1.6	
MC-R208	1.2	18.9	3.0	31 1	.4	22.5	9.4	844	2.52	13.3	.2	17.3	.7	28	.1	.6 <.	1 42	1.02	.068	15	30.5	.24	89	.002	2	.33	.001	.03 <.	1.02	4.2 <.1<	.05	1.5	
MC-R209	3.9	5.2	.3	4	.1	5.4	1.2	317	. 61	5.9	<.1	311.0	<.1	I1 <	:.1	.3 <.	14	1.34	.004	1	39.5	.03	349	.005	3	.10	. 008	.01 .	8.06	.4 <.1<	-05 ·	<1 <.5	
MC-R210	.8	5.6	.6	41	.2	4.6	2.2	240	1.28	70.4	<.1 3	073.4	.1	5 <	:.1	.7 <.	1 10	.17	.008	2	7.7	.02	19	.002	1	.13	.005	.02 <.	1.05	.6 <.1	. 11	1.5	
MC-R211	.3	15.4	1.4	101 <	.1 1	01.5	42.8	1779 4	4.60	6.5	.2	1.3	.5	108	.3 4	1.7 <.	1 96	9.84	.048	7	58.7	3.11	1421	.027	3	.62	.005<	.01 <.	1.73	8.2 <.1<	.05	2.5	
MC-R212	.5	151.0	3.0	58	.3	25.3	5.3	105 4	4.17	14.8	.2	25.2	.2	62 <	.1 (5.7.	1 163	.04	.035	1	38.2	.02	1563	.003	5	.91	.001	.04 <.	1 3.80	8.3 <.1	.08	21.4	
RE MC-R212	.7	147.1	2.5	55	.3	24.5	5.2	95	4.06	14.4	.1	39.9	.2	59 <	.10	5.4 .	1 159	.04	.032	1	38.4	.01	1500	.003	1	.85	.001	.04 <.	1 3.51	8.6 <.1	.11	2 1.3	
MC-R213	.5	282.7	2.1	94	.8	64.7	20.6	521	5.76	34.3	.3	29.9	-2	49	,1 1	3.7	1 194	.04	.018	1	30.5	.02	772	.003	3	.74	.001	.03 <.	1.76	15.2 <.1<	.05	2.7	
MC-R214	.3	48.8	2.2	33	.2	24.2	6.2	151 3	2.21	27.2	.2	88.8	.2	155 <	.1	5.8 <.	1 48	.04	.028	1	26.0	.01	1688	.003	3	.78	.001	.02 <.	1.34	4.6 <.1<	.05	2 <.5	
STANDARD DS5	12.3	147.1	25.1	136	.3	24.4	11.9	786	3.03	17.8	5.8	42.2	2.6	47 5	4	3.5 5.	8 61	76	.088	12	187.1	. 68	135	. 098	17 2	.04	.035	.14 4.	9.17	3.4 1.1<	.05	6 5.2	

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data FA ____ DATE RECEIVED: SEP 9 2004 DATE REPORT MAILED: Sep 24/2004

	acme AAA	<u>а</u> (15.	TI JOO	CAL 2 Ac	LAI Cre	SORA Sdit	TOR:	IES Co.) <u>Alr</u>	LTD	• <u>•n</u>] 11(85 Mine 03 - 1	2 E GE ara 750 k	, ң ОСН 1 <i>в</i> . ^{Рег}	AST EM Lto nder	ING ICA 1. St.,	SS L <u>PR(</u> Var	T. ANA DJE	LY <u>CT</u> 9r B(COU SIS BC C V60	VER C: <u>'R0</u> 2 211	BC ERT <u>4 - 4</u> 8 s	V6 IFI F ubmit	A 1R CAT ile	.6 E # /: E	I A4C J Balo	7 HON 1530	e (6)6	04):	253-	315	8 FAX (6(53 .	•171 A	.6 A
Ĩ	SAMPLE#	Mo ppm	Cu ppm	Pib ppm	Zn ppm	Ag ppm	Nī ppm	Co ppm	Min ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	, Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	К %	W Hg ppm ppm	Sc ppm	Tl ppm	S Ga % ppa	a Se mippmi
	G-1 MC-s109	1.1	2.3 31.9	1.9 2.6	44 55	<.1 <.1	5.2 33.0	4.0 13.6	559 481	1.87 3.69	<.5 3.2	1.8	.7 2.3	3.9 1.4	74 60	<.1 <.1	<.1 .1	.1 <.1	39 88	.50 .64	.083 .084	7 24	43.3 44.9	.61 .51	251 61	.117 .010	<1 6	.89 1.51	.066 .008	.51 .03	.3<.01	2.2 9.5	.3<.0 <.1<.0	15 ! 15 !	5 <.5 5 <.5
1	MC-S110 MC-S111 MC-S112	.5 .5 .6	24.1 9.3 34.3	4.2 3.8 6.6	174 189 143	<.1 .1 .5	86.2 30.3 17.4	13.5 6.1 4.0	430 452 865	4.51 1.86 1.62	10.5 4.2 4.5	.2 .2 .2	1.2 .7 3.4	.8 .7 .8	49 37 33	.1 .1 .1	12.3 4.5 1.6	<.1 <.1 .1	159 46 46	.37 .23 .22	.089 .102 .141	5 3 3	71.9 29.0 16.1	.21 .18 .15	262 323 821	.093 .081 .075	2 1 2	1.37 1.26 1.14	.014 .017 .016	.09 .08 .04	.1 .04 .1 .02 .1 .08	12.6 2.7 1.9	<.1<.0 <.1<.0 .1<.0	15 15 15	5 <.5 5 <.5 5 <.5
	MC-S113 MC*S114 MC-S115 MC-S116	.5 .8 .6 1.2	26.6 137.2 65.7 144.3	5.6 4.8 7.3 8.8	170 173 288 231	.3 .6 .7 1.1	17.9 33.9 23.9 21.3	4.1 16.4 14.7 18.6	739 2324 2128 4205	1.39 2.52 1.93 1.98	9.7 30.7 8.7 27.1	.2 .3 .3 .3	4.2 9.8 3.2 17.5	.7 .4 .6 .2	49 95 59 83	.1 .3 .4 .6	1.4 5.2 3.1 7.3	.1 .2 .1 .1	35 88 41 48	.26 .85 .43 .61	.113 .162 .436 .271	3 4 3 4	12.4 23.6 18.9 17.4	.13 .15 .13 .12	529 1256 1169 1391	.064 .047 .055 .034	<1 2 <1 2	1.03 1.06 1.24 .91	.018 .008 .012 .008	.06 .07 .05 .07	<.1 .11 .1 .20 <.1 .18 .1 .85	1.3 5.7 2.8 2.6	.1<.0 .1 .0 .1<.0	15 4 16 4 15 1	4 <.5 4 .5 5 <.5 4 1.3
+	STANDARD	13.1	146.4	25.7	142	.3	23.0	11.8	787	3.08	18.5	6.3	44.3	2.9	50	5.6	4.0	5.9	62	.72	.095	13	190.0	.69	137	.097	19	1.98	.034	. 15 !	5.1.17	3.4	1.0<.0	15	7 4.9

Standard is STANDARD DS5.

Data 🖌 FA ____

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

- SAMPLE TYPE: SOIL SS80 60C

Sept 24/04 DATE RECEIVED: SEP 9 2004 DATE REPORT MAILED:

and the second second size of a second se

ACME AL	- 3.	FIC 2002	L L Acc	ABO red	RAT 1te	COR ad	IES Co.)	. מי		85	2 E Ge	. нл осн	st EM:	INC IC2	is i AL	st. An	- AL	3 IYS	OUV IS	er Ce	BC RT:	V6 CFI	A 1 CAT	R6 'E		PHON	E (6	04):	253-	-31	58 I	'AX (60	53	-1716	
							<u>A</u>]	lma	de	1 M. 1103	ine • 7	ra 50 W	18 . Per	Lt. der	d. St.	PF , Va	2OJ Incol	EC Iver	'T BC	BCI V6C	204 218	<u>+4</u> Si	F ubmit	ile ted l	9 # 997 E	A4 d Ba	053(lon)7									•
SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppn	i C n pp	o Mm m ppm	Fe 1 %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	Bi prn p	V ppm	Ca ሄ	P X	La ppm	Cr ppm	Mig 1	Ba ppm	Ti X	B/ ppm	A] N \$	la K X X	W ppm	Hg ppm	Sc ppm p	T1 pm	S Gá Xippr	a Se : n ppm	Sample gm	<u></u>
G-1 MC243-1	\checkmark	1.3 .5	2.6 28.0	2.0 4.3	45 59	<.1 <.1	4.4 40.5	4 4. 5 15.	6 586 1 600	2.04 3.32	.6 2.8	1.8 .6	<.5 .9	4.0 1.4	81 134	<.1 .1	.1 .1	.2 .1	46 111	.54 1.09	.084 .079	8 12	50.3 61.1	.62 1.07	267 82	. 121 . 141	$\begin{array}{c} 1 & .9 \\ 1 & 1.7 \end{array}$	94 .06 77 .07	6 .55 4 .09	.4< .1	<.01 .03	2.3 6.2 <	.4 <.0 .1 <.0)5 ()5 5	5 <.5 5 .6	30.0 30.0 L	/
MC243-2 MC243-3 MC243-4		.5 .5 .5	32.0 36.6 29.7	3.1 4.3 4.0	66 48 59	<.1 .1 .1	55.7 38.3 39.9	7 15. 3 14. 9 16.	2 450 0 588 0 679	2.99 3.26 3.41	1.2 2.4 4.0	.3 1.2 .8	.6 .5 .9	.9 1.2 1.5	105 133 125	.1 .1 .1	<.1 - .1 .1	.1 .1 .1	108 97 98	.70 1,27 1.09	.089 .056 .084	-11 13 15	121.9 51.6 55.7	1.16 1.08 1.12	53 79 117	.103 .134 .106	<1 1. 6 2. 2 1.9	17 .07 33 .06 94 .05	7 .05 6 .07 67 .09	<.1 .1 <.1	.01 .10 .06	3.5 < 7.3 < 7.7 <	.1 <.0 .1 <.0 .1 <.0)5 5)5 7)5 6	5 <.5 7 .5 5 <.5	30.0 15.0 30.0	
MC243-5 MC243-6 MC243-7 MC243-8		.7 .4 .5 .4	35.3 28.9 28.3 36.7	4.3 3.9 4.2 5.3	60 54 59 63	.1 .1 .1 .1	44.0 43.9 47.3 47.8) 17.) 16. 3 15. 3 17.	4 737 0 645 9 768 6 641	3.46 3.22 3.26 3.33	2.3 4.3 4.4 4.2	.6 1.1 .7 5.3	1.6 .7 .7 .9	1.8 1.9 1.4 1.6	207 87 132 115	.1 <.1 .1 .2	.2 .1 < .2 < .1	.1 :.1 :.1	99 92 91 104	1.43 .92 1.19 .97	.079 .082 .093 .079	14 15 15 18	44.9 56.2 50.8 66.2	1.31 1.18 1.16 1.20	92 101 132 96	.176 .066 .101 .091	2 2.3 2 1.9 4 2.3 2 2.4	33 .07 20 .04 11 .05 18 .05	2 .11 7 .07 8 .09	.1 .1 .1 <.1	.09 .06 .08 .35	7.7 < 7.8 < 7.2 < 8.2	.1 <.0 .1 <.0 .1 <.0 .1 <.0)5 ()5 ()5 ()5 (7 <.5 5 .8 5 .7 7 1.2	15.0 30.0 15.0 15.0	
MC243-9 MC243-10 RE MC243 MC243-11	-10	.4 .5 .3 .5	27.0 28.4 26.6 31.9	4.0 4.2 3.9 4.1	61 64 63 56	.1 .1 .1 .1	46.0 51.6 48.7 44.9) 16. 5 17. 7 16. 9 15.	3 746 2 751 9 710 7 738	3.27 3.57 3.38 3.63	3.4 3.7 3.8 3.8	1.5 1.2 1.1 .9	1.1 .5 44.3 1.4	1.3 1.5 1.5 1.4	113 124 118 142	.1 .1 .2 .1	• 1. • 1. • 1. • 2.	:.1 :.1 :.1	88 91 88 118 62	.98 1.08 1.03 1.03 72	.077 .081 .074 .066	13 14 13 16	47.6 50.0 47.5 59.6	1.30 1.42 1.36 1.06	89 92 93 105	.120 .128 .120 .142	<1 2.2 2 2.5 2 2.2 <1 2.3	24 .05 50 .06 27 .06 37 .06	9 .11 1 .12 0 .12	.1 <.1 <.1 .1	.04 .21 .04 .04	7.1 < 8.0 < 7.7 < 7.9 <	.1 <.0 .1 <.0 .1 <.0 .1 <.0)5 ()5 7)5 7)5 7	5 <.5 7 .5 7 .5 7 <.5	30.0 15.0 15.0 30.0	

GROUP 1DX - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: STREAM SED. <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data $\mathcal{N}_{\mathrm{FA}}$

APPENDIX B

. . . .

MERIT AREA **Post-Staking** RECON SAMPLE SUMMARY TABLE & ACME ANALYTICAL GEOCHEMICAL and ASSAY CERTIFICATES

				MERI	r pro	PEI	RTY A	AREA	A Post	t-Stak	ing (2	2004	-2005) RECONNAISSANCE SAM	MPLE SUMMARY
Sample Number	Easting NAD 83	Northing NAD 83	Mo ppm	Poppan Zi	n opm Ag	ppm	As ppm	Sb ppm	Ba opm	Hg ppm	Au ppb	Cu ppm	Rock Type	Notes
Rock Sam	ples													
MC-R215	637048 637858	5552196 5554354	0.4	2.4	51	-0.1	10 143 7	0.4	46 15	-0.01	-0.5	23.	Carb-altd dk purply bro to gy-blk AV/BV.	Whit & semi-clear combilext QZ-microbx hostrock figments in veins.
MC-R217	637854	555432B	15	1.3	14	13	80.4	17	20	0.04	718	24	Angular QV/BX rubble	China across 4/2D-34cm (by) bldrs. Base of large talus slope.
MC-R218	637836	5554324	19,8	2.4	11	2	92.6	4.3	37	0.35	1721.1	77.	Angular QV/BX rubble.	Chips across 30cm (tw) bidr. Base of large talus slope.
MC-R219	637826	5554322	9.3	4.8	30	1	19.7	0.9	24	0.04	31	11.	Angular QV/BX rubble	Chips from numerous pieces.
MC-R220	637721	5554112	1	3	39	1	4	0.1	69	0.01	5.7	10	Angular QV/BX rubble.	In part hematitic.
MC-R225	637593	5553762	3.9	15.9	33	54,4	39.5	1.8	48	0.1	1452.7	22.	5 Totally silica flooded (replaced) AV	Taken over ~6m of fall line
MC-R226	637899	5555020	4.6	0.5	16	0.1	0.9	-0.1	18	0.07	3.2	4.	Lt gm-gy to tan rhyolitic (?) rock	Float in till w/ cobbles of various compositions.
MC-R227	636953	5552015	1.3	2.4	57	0.3	54.8	12.5	516	2.04	13.3	134.	Silic AV, very hematitic.	1.25m (tw) continuous sample in sc, N and Discovery Hill.
MC-R228	636386	5551935	1.3	1.1	5	0.2	174.5	0.4	39	0.03	439.8	4.1	Coarse massive CC.	~25cm chip ecross one and or 20x30x43cm bidr
MC-R229	636434	6553022	12	1.0	16	0.2	103.6	3.1	100	1.06	270.1	03.	Dk nisty orgability all d AV	∼TUTE SE & TUTE N ULMC-K220. Subara 0ost -8/16/30cm
MC-R242	636174	5554030	86	31	30	2.9	60.9		245	2 29	121.9	102	Dk rusty on gott and AV.	Random chins over 0.6m
MC-R243	636251	5554292	8,1	5	43	29.9	14.3	2.2	550	3.67	880.6	31.	Rusty orng frac msy chalced QV material- locally wht	From 2 sites 5m apart
MC-R244	636526	5553797	3	2.4	12	2.2	501.8	10.3	1191	2.26	883.8	14	90% QV; vfgr chalced QZ- while, tan, It-dk gy	Ang piece 7.5x11x15cm
MC-R245	636909	5553368	5.5	2.7	8	0.5	235.1	6.1	84	0.17	243.4	6.	90% QV; vfgr chalced QZ - white, tan, It-dk gy	Floel fragment 8x12x18cm
MC-R246	635684	5555998	0.3	0.3	8	-0.1	13.3	1.1	592	0.21	4.8	3.3	Altered AV/BV.	Ok rusty-orng weathering. Old spur rdcut near MC-S48.
MC-R247	635732	5555923	12	32.3	146	0.3	24	3.3	170	0.27	48.2	12	2 QV mtrl; may white w/ It gy patches & vaguely banded.	3 subang pcs largest 7x7.5x12cm.
MC-R248	636420	5553954	2.6	2.2	12	<u>0.8</u>	896.4	2.8	263	0.82	888.6	4	QV float - It gy massive chalcedony.	Ang piece 6.5x10x17cm.
MC-R249	636253	5554109	0.8	1.6	18	0.2	299	3.6	9/9	E 0.00	14	26.	QZ float - white, tan massive chalcedony.	Chips from several ang pcs - to 12x15x25cm.
MC-R250	636461	5553910	0.3	0.2	2	0.4	115.3	0.4	500	0.06	1330.6	1.2	QUV float, 1 piece, mass vigr white	Single and piece 5.5x8x10cm.
MC-R251	636101	5353677	4.2	1.0	14	1.0	209.7	2.3	320	0.44	27.2	130.	I DX rusty orange strongly C6 all 0 AV	Q2-05 stringers, and total 12/25/25cm.
MC-D255	636368	5553972	11	4.5	7	0.4	67.2	0 0 5	10	0.05	717.6		I OV mass chateedonic OZ abundant inclusions AK	FaO/MoO in drusy covities
MC-R271	617848	5554446	25	47	47	14	27.3	12	19	0.08	24.9	50	AV, altered orange red. OZ as blebs and quasi vns	Taken from small old oit?
MC-R272	637843	5554440	5.8	1.6	15	1.2	34	1.1	42	0.03	1010.1	11.	QV?, highly sil - 85 - 90% QZ, rusty grange bm	From 2m stretch of rubble.
MC-R273	637840	5554436	1.6	2.4	66	0.5	27.5	2	70	0.06	496.3	19.	VB, teached, +/- SI rims on clasts	Matrix locally porphyritic.
MC-R274	637835	5554427	3.7	1.8	49	1.1	77.7	0.9	62	0.1	630.4	22.9	QV, 2.5cm wide, in silicic bx, chalcedony clasts	Rusty brown coatings.
MC-R275	637828	5554417	6.7	3.2	32	1.7	95.3	1.7	49	0.08	1195.5	23	Narrow QV in SVAK chips	Occni vna have comb texture
MC-R276	637819	5554405	9.8	1.8	18	6.2	52.3	2.8	19	0.03	5180.4	19.	QV, angular pieces. S/C?	
MC-R277	637857	5554422	0.2	1.5	86	0.2	5.6	0.8	6	0.05	31.5	10.1	SVAK, yellow orange, vfgr-fgr, 80-100%S1	
MC-R278	637733	5554192	6.6	4.9	28	3.5	20.2	1.2	72	0.09	31.2	23.3	VB?, earthy ferruginous patches	Minor red coatings on frx.
MC-R279	637655	5553980	0.4	2	33	0.7	18.2	1.1	53	0.18	13.3	15.	QV tragments amid blocks of dk gm mildty VV	Some blocks have AK +/- SI, cut by dilational QV
MC-R280	637806	5554090		07	40	3.4	14.1	2.0	18	0.44	10.3	40.	OZ float white w/ SVAK altered AV	2Y2Y3cm to 3v6v8cm (ragments
MC-R201	637661	5553076	0.1	19	73	0.0	J.1 74	0.3	537	0.03	n q	Q.	SI/AK altered AV or bm	Immediately unbill from MI 1 5755, 40 ppb Au
MC-R283	637814	5554462	27.1	32	, š	22	109.4	0.0	27	0.04	724.5	4	BOV in SI/AK, several // 1-1 5cm, minor comb fexture	Float block 15x15x18cm
MC-R284	637799	5554300	4.8	2.4	40	4.8	32.7	2.3	45	0.07	69	13	SVAK bx w/ QZ clasts, rusty or & red-bm	15cm chip + grab.
MC-R285	637785	5554257	1.1	2.8	29	0.7	20.4	0.5	150	0.09	6.1	12.	AV, SVAK, QZ stringers to QZ matrix - bx?	
MC-R293	637627	5553929	0.2	94	60	54.4	12.1	1	129	1.65	219.3	108.1	QV/BX rubble, QZ cleats in SVAK matrix	Chips/comp grab from several blocks
MC-R299	637577	5551130	1	0.7	21	0.9	191.3	2.2	115	0.22	1014.5	95.	Chalcedonic QZ	One piece, 8x15x17cm
MC-R300	637572	5551143	4.5	2.1	6	3.3	56.6	0.7	18	0.11	1509.4	1	Chalcedonic QZ	Composite of 8 QV float fragments
MC-R326	637792	5554399	28.7	3.1	16	3.9	209.9	1.6	138	0.03	841.2	11.	2 AV, SI/AK, QZ stringers to 4cm wide	QZ rubble over ~10m.
Soil Sampl	es 637619	5553493	0.5	3.0	46	01	26	02	107	0.05	23	22		Forest & O/B covered area along 201deg proj of zone trend
MC-S120	637451	5553272	0.5	38	83	-0.1	5.8	0.1	98	0.00	-0.5	18	Ok bm to slightly red-bm B soil	On people E facing slope to SW of O/C
MC-8122	637332	5552952	0.5	4	58	0.1	7.5	0.2	71	0.04	3.3	37.	Orng-brn clayey-silt B soil	From 2 spots ~3m apart on shallow bank next to guily
MC-S123	637008	5552092	0.5	3.5	73	0.1	10.9	1.1	71	0.02	1.8	27.	Dk bm clay-silt w/ rusty orng rk chips	Taken from 4 sites over 10m along line at 202deg
MC-\$124	636953	5552012	1.1	4.5	143	0.6	28.4	9.8	362	0.25	17.1	51.	Rusty orange soil from roots of blowdown	3m @ 330deg from MC-R227
MC-\$125	636366	5554046	0.4	5.4	104	0.1	76.9	0.2	45	0.01	0.9	42.5	Dk red-bm clay-silt	20cm depth
MC-S126	636197	5554119	210	24.2	649	3.7	1739.7	221.5	514	8.15	780.8	2198.	Rusty-orange soil	From above vein material
MC-S127	637656	5553962	1.7	10.6	206	2.8	36.9	2.6	349	0.77	106.4	72.	I [B/C soil, rusty grange,	From two locns above MCR221
Stream Se	diment San	nples												
MC128-3	637096	5556626	0.3	3.4	52	-0.1	1	0.1	61	0.02	0.9	15.	Dominantly AV/BV float peobles.	0.5-0.8m sand/grvl base; gentle flow. Good fine sed grabs over 10-15m.

. . . .
ACME ANA (150 AA	LYTI 0	CAL 2 Ac	LABOR credi	ATO ted	Co.)) ma	D. den 1	<u>Mi</u> : 103	852 G <u>ner</u> • 750	Е. ЕО <u>al</u> V.	HAST CHEM s Lt Pender	IN IC d.	gs Al P	ST Al RO-	. V NA. JEC	ANC J TT BC	OUV IS MRT V6C	ER CE <u>C</u> E 218	BC IRT 	V IF	6A 1 ICAT File	R6 FE 2 # by:	A4 Ed Ba	PH 105	one () 683	504)	253	-31	58 1	'AX ((504	253-1		
SAMPLE#	Мо ррял	Cu ppm	Pb Zn ppm ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sid Pipin F	Bi xpm pp	V Diff	Ca %	P ا %	La ppm	Cr ppm	Mg X	Ba ppm	<u>۲</u> ۱ ۲۱	BA pm	l Na K X	K X	W Ppm	Hg ppm p	Sc T1 pan ppan	S X	Ga Se pomrpom	Sample kg	<u></u>
SI MC-R215 MC-R216 MC-R217 MC-R218	.1 .4 16.6 15.0 19.8	.8 23.4 33.3 24.4 77.1	.1 1 2.4 51 1.8 12 1.3 14 2.4 11	<.1 <.1 1.5 1.3 2.0	.1 19.1 8.8 7.8 9.8	.1 15.7 4.7 3.1 4.3	5 1643 3 121 1 125 103 1	.06 .39 .05 1 .85 .03	<.5 10.0 43.7 80.4 92.6	<.1 .3 .1 <.1 <.1	<.5 <.5 151.2 718.0 1721.1	<.1 .6 <.1 .1 .1	3 100 25 21 21	<.1 · .2 .1 · .1 ·	<.1 < .4 < 1.4 < 1.7 < 4.3 <	 1 1 1 1 1 1 	<1.)1 6. 1 . 9 . 10 .	10 . 85 . 36 . 72 . 23 .	001 065 007 007 006	<1 8 <1 1 <1	<1 < 19.4 2 11.0 9.8 13.1	<.01 2.11 .07 .15 .03	3. 46. 15. 20. 37.	001 015 001 001 001 001	$\begin{array}{cccc} 1 & .01 \\ 3 & .42 \\ 1 & .11 \\ 1 & .12 \\ < 1 & .12 \\ < 1 & .12 \end{array}$	L .555 2 .008 L .004 2 .002 2 .001	.01 .04 .03 .02 .03	<.1 <.1 <.1 <.1 <.1	< 01 < 01 7 .07 .04 .35	.1 <.1 .2 <.1 .9 .1 .8 .1 .8 .1	.09 .09 .11 .09 .11	<1 <.5 1 <.5 <1 <.5 <1 <.5 <1 <.5 <1 <.5	1.29 1.37 2.50 1.24	_
MC-R219 MC-R220 MC-R221 STANDARD DS5	9.3 1.0 .5 12.3	11.4 10.0 22.6 152.0	4.8 30 3.0 39 9.4 62 24.5 139	1.0 1.0 74.8 .3	14.0 13.6 28.1 25.7	5.1 6.7 9.9 12.8	180 1 345 1 746 2 788 3	.41 .49 .41 .00	19.7 4.0 7.8 18.2 (<.1 .1 .1 5.1	31.0 5.7 406.9 44.0	.1 .3 .1 2.8	30 56 63 47	.2 .2 1.6 5.6	9 < 1 < 7 < 3.9 5	:.1 1 :.1 3 :.1 4 :.9 6	L5 .1 34 1.1 41 5.1 52 .1	64 . 84 . 65 . 76 .	017 037 015 095	1 6 3 13	14.8 19.4 10.8 2 188.0	.07 .65 2.03 .69	24 . 69 . 125 . 137 .	002 001 001 098	1 .20 3 .24 1 .21 16 2.11	0 .002 4 .003 5 .007 1 .034	.02 .02 .01 .15	<.1 <.1 <.1 4.9	.04 1 .01 2 1.53 2 .18 3	.3 <.1 .8 <.1 .4 <.1 .6 1.0	.11 .26 .12 <.05	<1 <.5 1 <.5 1 <.5 7 5.4	1.99 2.13 2.22	·

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C

Data KFA ____ DATE RECEIVED: SEP 20 2004 DATE REPORT MAILED: Out 12/04

a second s

SAMPLE# No. Current bit bit bit bit bit bit bit bit bit bi	ACME AN	AT V	TCA	- L	ABO red	RAT 1te	ORI 1 C	ES 1 5.)	TD.		8!	52	B. H	AST	INGS	S	T. **	NC	OUVE	R B(4	V6A	1R	6	P	HON	B (6	04)	253-3	158 FAX(6))*' 953- :	.716	
Almadem Minezale Lidd. PROMIST MRTO4-2 File # A4066821 SAMPLE# Mo Cu Pbin Opm Opm Opm Opm Ag Ni Co No Ferdensit. Yennoviven IC V62 total Submitted by: Id Ediator SMPLE# Mo Cu Pbin Opm Opm Opm Pinn Opm Pinn Opm Sin Sin Sin Ci Ni K W Hg Sin Sin <th>AA</th> <th></th> <th>GI</th> <th>eoch</th> <th>EM</th> <th>ICAI</th> <th></th> <th>ana</th> <th>"S</th> <th>IS (</th> <th>'ER</th> <th>TI</th> <th>FIC</th> <th>AT'E</th> <th>5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	AA											GI	eoch	EM	ICAI		ana	"S	IS ('ER	TI	FIC	AT'E	5									
SAMPLE# Mo Cu Pb Zn Ag N1 Co Mn Fe As U Au Th S Bit A T B Ai Na K W Pgm ppm ppm <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Alm</th> <th><u>ade</u></th> <th>1 1</th> <th><u>Min</u> 103 -</th> <th>er 750</th> <th>als W. Per</th> <th>L E ider</th> <th><u>d.</u> st.,</th> <th>P<u>R</u> Var</th> <th><u>OJEC</u> Kouver</th> <th>T BC</th> <th>MRT(V6C 2</th> <th>)<u>4 -</u> 18</th> <th>2 Subi</th> <th>Fi. nitte</th> <th>le d by</th> <th># : Ed</th> <th>A40 Bato</th> <th>682 1</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th>ĽT.</th>								Alm	<u>ade</u>	1 1	<u>Min</u> 103 -	er 750	als W. Per	L E ider	<u>d.</u> st.,	P <u>R</u> Var	<u>OJEC</u> Kouver	T BC	MRT(V6C 2) <u>4 -</u> 18	2 Subi	Fi. nitte	le d by	# : Ed	A40 Bato	682 1	1					ĽT.	
SI <1	SAMPLE#	Mo	Cu	Pb	Zn ממת	Ag	Ni nom	Co	Mn Domi	Fe	As	U maa	Au nah	Th	Sr C	d m	Sb Bi Dom opm	¥ ارتم	Ca X	P X	La	Cr	Mg %	8a Dom	Ti ¥	B	A]	Na X	K W	Hg Sc Ti	S Ga Se	Sample ka	
$ \begin{array}{c} \text{SI} \\ \text{MC-R226} \\ \text{MC-R226} \\ \text{MC-R226} \\ \text{MC-R226} \\ \text{A} \begin{array}{c} 1 & 1 & 1 & 2 & 1 & 1 & 1 & 3 & 0 & 4 & 5 & 5 & 1 & 45 & 7 & 2 & 43 & 7 & 16 & 1 & 10 & 0 & 1 & 4 & 1 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 10 & 0 & $		phin	- Phil	_ <u>ppm</u>	Phil	ppm	2 Phil	- ppm	PPm	~		PPm		Phin.	Phu Ph		phu phu	P.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~0	ppin	Phil		- PPii	~	ppm	~	~	s hhu		v bhu bhu	<u>ky</u>	
$ \begin{array}{c} MC-R225 \\ MC-R226 \\ R226 \\ L \\ R \\ \mathsf$	\$I	<.1	3.5	. 4	1	<.1	.1	.1	3	.04	<.5	<.1	<.5	<.1	2 <.	1	<.1 <.1	<1	.10	.001	<1	<1•	<.01	3	.001	1	.01	.400	.01 <.1	<.01 .1 <.1<.	05 <1 <.5	-	
$ \begin{array}{c} MC-R226 & 4.6 & 4.4 & 6.5 & 16 & 1.2 & 10.5 & 188 1.98 & 9 9 -1 & 3.2 & 2.9 & 9 -1 & 1.1 & 14 & 1.9 & 0.9050 & 1 & 6.0 & 72 & 18 & 0.02 & 1 & 7.2 & 0.37 & .03 -1 & 0.7 & 3.4 -1.06 & 3.5 & 1.57 \\ MC-R228 & 1.3 & 4.6 & 1.1 & 6 & 2 & 5.1 & 2.9 & 778 & 6.3 & 1746 6.1 & 4398 & 1.155 5.1 & 1.4 -1.1 & 10 & 10.909 & 2 & 8.5 & 0.03 & 39 & 001 & -1 & 1.11 & 001 & 0.2 2.1 & 0.03 & 0.5 5.1 & 0.06 & -1 c.5 & 1.55 \\ 1.31 & MC-R229 & 1.2 & 5.7 & 1.3 & 7 & 2.7 5.2 1.370 & .70 & 194.2 c.1 & 275.1 & 1.1 & 60 c.1 & 1.7 c.1 & 10 & 2.35 & 0.12 & 1 & 30.3 & 0.4 & 41 & 10.02 & 1 & 1.6 & 0.02 & 0.02 2.7 & 0.8 & .7 c.1 & 0.6 & 1 c.5 & 2.63 \\ MC-R230 & 1.2 & 2.2 2.1 2.3 1.3 & 1.1 & 2.3 1.2 & 1.1 & 10.0 & 2.1 166 0.02 10 2.2 & 1.0 0.3 1.0 0.3 1.6 0.5 1.6 1.6 1.1 1.6 1$	MC-R225	3.9	22.5	15.9	33	54.4	24.0	9.1	324 2	2.10	39.5	.1	1452.7	. 2	43.	7	1.8 .1	33	1.48	. 030	3	31.8	. 53	48	. 002	2	. 34	.005	.02 1.0	.10 3.3 <.1 .	09 1 <.5	2.06	
MC-R227 1.3 1.3 1.4 8.4 6.7 7.3 3.3 7 9.7 234 2.5 5.4 9.7 1.3 1.4 6.1 6 2.5 9.78 6.3 174 6.1 1.6 2.5 1.3 9.78 6.3 174.6 6.1 1.55 1.7 2.7 1.1 1.00 1.02 1.01 0.02 2.1 1.00 0.01 2.1 1.00<	MC-R226	4.6	4.4	.5	16	.1	2.0	15.2	188 1	. 98	.9	<.1	3.2	.2	9 <.	1	.1 .1	14	. 09	.050	1	6.0	.72	18	.002	1	.72	. 037	.03 <.1	.07 3.4 <.1 .	06 3 <.5	1.97	
MC-R229 1.3 4.6 1.1 6 2 5.1 2.9 7.7 6.3 174.6 4.9 1.155 1.4 4.1 4.10.16 0.09 2 8.5 .03 39 0.01 <1 1.1 0.01 .02 <1 .03 .5 <1 .06 <1 .5 1.3 MC-R229 2.7 5.7 1.3 7 2.7 5.2 1.3 1.0 2.2 2.3 .01 2.1 1.6 .02 1.0 0.02 2.30 .002 .04 .1 1.4 1.2 2.05 .01 2.15 2.05 .02 2.44 .00 .03 .1 .4.5 1.5 5.83 MC-R231 1.2 2.4 1.1 1.1 0.105 2.44 .00 0.05 2.44 .01 0.03 2.4 1.4 1.4 1.2 2.25 1.3 1.4 1.4 1.2 1.2 1.3 1.4 1.5 1.3 1.4 1.5 1.3 1.3 1.4 1.3 1.4	MC-R227	1.3	134.8	2.4	57	.3	33.7	9.7	234 2	1.52	54.8	.2	13.3	.1	72 <.	11	2.5 .1	62	.03	.022	1	28.1	.02	516	.002	2	.44	.003	.04 .5	2.04 5.1 <.1<.	05 1 <.5	2.59	
Mc-R229 2.7 5.7 1.3 7 2 7.5 2.1 370 .70 194.2 .1 60 1 7.7 1 10 2.35 .102 1 30.3 .04 41 .002 12 .032 .7 .106 1 .5 .85 Mc-R230 1.2 93.2 3.5 16 811.4 7.1 105 1.43 103.6 1 7.7 2 7.6 2.1 105 3.1 104 2 18.6 0.20 109 0.02 2 30.00 .04 41.00 3 81.96 2.6 4.1 1.5 2.03 1.6 5.4 135 1.4 9.2 26 1.3 1.4 1.0 105 3.3 1.0 10.5 105 103 1.5 2.00 1.4 40.01 0.3 8.1 9.2 1.5 1.33 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3 1.4 1.4	MC-R228	1.3	4.6	1.1	6	.2	5.1	2.9	778	.63	174.6	<.1	439.8	.1	155 <.	1	.4 <.1	4	10.16	.009	2	8.5	.03	39	.001	<1	.11	.001	.02 <.1	.03 .5 <.1 .	06 <1 <.5	1.31	
HC-R230 1.2 93.2 3.5 16 8 11.4 7.1 105 1.4 31.0 1.6 7.2 25 1.1 1.2 3.1 1.1 23 1.1 0.14 2 186 0.02 2 30.002 0.4 1 1.46 1.2 1.5 2.03 MC-R231 2.2 2.3 2.7 2.3 2.7 2.3 1.2 1.6 5.4 1.3 1.44 9.2 2.6 1.0 1.6 5.0 3 1.5 0.2 1.6 0.01 0.3 1.7 2.7 2.6 1.3 4.4 9.2 2.6 2.1 3.4 1.3 2.6 1.4 1.0 1.6 5.2 1.4 1.5 5.33 MC-R233 1.1 8.4 3.9 37 8.2 1.4 8.0 1.5 5.4 1.5 1.4 1.5 5.5 1.4 1.5 5.5 1.4 1.6 1.4 1.2 1.4 1.4 1.2 0.0 3 1.6 0.0 1.3 0.0 1.3	MC-R229	2.7	5.7	1.3	7	.2	7.5	2.1	370	.70	194.2	<.1	275.1	.1	60 <.	1	1.7 <.1	10	2.35	.012	1	30.3	.04	41	.002	1	. 16	.002	.03 2.7	.08 .7 <.1 .	06 1 < 5	.85	
M_{c} -R231 2.2 27.0 2.3 27 2 16.6 5.4 135 1.54 29.0 2 14.7 2 78< 1 2.3 1 10 0.056 3 31.5 0.02 2 .44 0.01 .03 8 1.96 2.6 1.0 1.5 5.83 MC-R233 1.1 88.4 3.9 37 8 2.4 80 10 5.5 5 14.0 3 66 -1 42 .06 .071 3 38.7 .02 482 .03 2 .00 .01 .03 -1 9.01 2.3 -1.0 1.52 .00 .01 .03 -1 9.01 2.3 -1.2 -06 .03 2 2.37 .02 627 .02 1 .33 .001 .03 -1 -04 .03 .04 .00 .03 .01 .03 .02 .001 .03 .02 .001 .03 .01 .03 .01 .03 .01 .03 .01 .03 .01	MC-R230	1.2	93.2	3.5	16	.8	11.4	7.1	105 1	.43	103.6	.1	67.9	.2	25 <.	ī	3.1 .1	23	.11	.014	2	18.6	.02	109	.002	2	.30	.002	.04 <.1	1.46 1.2 <.1<	05 1 <.5	2.03	
MC-R232 1.0 32.3 2.4 31 1.2 16.9 5.1 117 1.96 35.1 3 44.9 2 68 .1 32 .05 .047 2 28.1 .02 1529 .002 1 .40 .001 .03 .1 2.4 <.1 5 5.83 MC-R233 1.1 88.4 3.9 37 .8 21.4 8.0 105 2.66 5.1 1.72 .06 .035 2 23.7 .02 627 .002 1 .33 .01 .03 .1 .1 .1 .2 .5 1.4 .2 .91 .2 .20 .01 .2 .01 .02 .21 .03 .02 .02 .1 .33 .01 .03 .1 .48 .1 .2 .91 .3 .22 .91 .3 .22 .91 .3 .22 .91 .3 .22 .91 .3 .22 .91 .3 .22 .91 .3 .22 .91 .3 .25 <	MC-R231	2.2	27.0	2.3	27	.2	16.6	5.4	135 1	. 54	29.0	.2	14.7	.2	78 <.	1	2.3 <.1	24	.10	.056	3	31.5	.02	1687	.002	2	.44	.001	.03 .8	1.96 2.6 <.1	10 1 <.5	6.03	
MC-R233 1.1 88.4 3.9 37 .8 21.4 8.0 105 2.64 5.4 5.5 1.40 .3 62 < 1 5.5 < 1.42 .08 .071 3 38.7 .02 482 .001 .04 .3 3.68 3.7 < 1.1 1.3 2 < 5 1.72 MC-R234 15.2 38.0 2.6 24 2.7 14.0 5.1 86 1.5 1.9 2.1 2.5 1.4 75 1.9 9.1 2.2 2.07 .02 627 .002 1 .33 .001 .03 .1 9.01 2.3 .1.24 1 .5 2.5 2.00 1.6 1.6 1.5 1.53 1.53 2.2 .001 .02 .01 .03 .01 .03 .01 .03 .1 .62 .001 .04 .1 .1 .04 .1 .1 .04 .1 .1 .29 .1 .06 .03 2 .25 .00 .01 .03 .06 .04 .22 .001 .02	MC-R232	1.0	32.3	2.4	31	1.2	16.9	5.1	117 1	96	35.1	.3	44.9	.2	68 <.	1	3.4 < 1	32	.05	.047	2	28.1	.02	1529	.002	1	. 40	.001	.03 <.1	2.70 2.4 <.1<.	05 1 <.5	5.83	
MC-R234 15.2 38.0 2.6 24 2.7 14.0 5.1 86 1.54 33.7 4 218.2 2 50 <1 4.8<<<1.1 27 .06 .035 2 23.7 .02 627 .002 1 .33 .001 .03 <1 9.01 2.3 <1 .25 1.53 MC-R235 1.3 13.2 1.7 50 1.26.3 9.5 294 1.82 8.4 .2 5.1 .4 75 1 .9<	MC-R233	1.1	88.4	3.9	37	.8	21.4	8.0	105 2	2.64	54.5	.5	14.0	.3	62 <.	1	5.5 <.1	42	.08	.071	3	38.7	. 02	482	.003	2	. 60	.001	.04 .3	3.68 3.7 <.1	.13 2 <.5	1.72	
HC-R234 15.2 38.0 2.6 2.4 2.7 1.4 0.5 1.4 0.5 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 1.2 0.0 0.3 0.2 0.2 0.0 0.3 0.2 0.0 0.3 0.2 0.0 0.3 0.2 0.0 0.3 0.2 0.0 0.3 0.2 0.2 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.2 0.1 0.3 0.2 0.1 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 <th0.3< th=""> 0.3 0.3</th0.3<>	NC 0234	16.0	30 0	26			14.0	F 1	06 1		22.7		210.2	•	E0 2	1	40~1	77	06	025	2	1 2 7	03	697	002	1	22	001	02 - 1	0 01 2 2 4 1	24 1 5	1.60	
MC-R236 1.3 <	MC 0225	15.2	12 2	2.0	24 50	2.7	26.2	0.1	204 1		33.7	.4	210.Z	. <u>,</u>	50 N.	1	4.0 \.1	27	.00	.035	27	20.7	.02	1617	.002	3	.00	.001	.03 ~.1		05 7 - 5	2.00	
MC-R230 1.0 40.0 1.0	MC-0236	1.0	10.2	1.7	26	1.	11 0	5.0	155 1	202	16 7	. 2	50 A	1	75 . AA	1	. 3 ~.1 2 9 < 1	20	- 22	020	2	25.0	.04	896	003	~1	22	004	02 < 1	1.64 + 9 < 1<	05 2 ~ 5	1 78	
MC-R238 1.8 74.6 2.6 23 4.7 1.3 3.6 21.2 1.3 3.6 21.2 1.1 1.0.2 1.1 1.0.3 1.0.3 1.0.2 2.1 1.0.3 1.0.3 1.0.3 1.0.2 2.1 1.0.3 1.0.2 2.1 1.0.3 1.0.2 2.1 1.0.3 1.0.2 2.1 1.0.3 1.0.2 2.1 1.0.3 1.0.2 1.1 1.0.3 1.0.3 2.1 1.1 1.0.3 1.0.3 2.1.4 1.0.3 1.0.2 2.1 1.0.3 0.03 2 5.0 0.02 0.6 5 1.1.75 1.5 1.5 1.5 2.10 1.0.3 1.0.2 1.1 1.0.3 0.03 2 5.0 0.02 0.6 5.1 1.0.5 1.1.5 1.1.5 1.1.5 1.1.5 1.1.5 1.1.5 1.1.5 1.1.5 1.1.5	MC_R230	2 1	122 4	2.8	61	1.0	38 1	15.5	382 3	23	40.7	.1	20.0	3	37	1	2.7 < 1 2 7 < 1	41	13	067	Ā	32.9	05	414	003	2	53	006	07 4	25631 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <	05 1 < 5	2 11	
MC-R239 1.8 57.5 3.0 73 4 48.4 17.6 43.1 .3 17.8 .3 46 .2 2.1 .10 100 <t< td=""><td>MC-R238</td><td>1 8</td><td>74 6</td><td>2.6</td><td>23</td><td><u>4</u>7</td><td>13.9</td><td>3.8</td><td>94 1</td><td>67</td><td>42 4</td><td>1</td><td>221 2</td><td>.0</td><td>.35</td><td>1 P</td><td>02<1</td><td>19</td><td>03</td><td>038</td><td>1</td><td>26.3</td><td>.02</td><td>861</td><td>002</td><td>2</td><td>24</td><td>001</td><td>05 < 1</td><td>117515 < 1</td><td>06 1 < 5</td><td>2 90</td></t<>	MC-R238	1 8	74 6	2.6	23	<u>4</u> 7	13.9	3.8	94 1	67	42 4	1	221 2	.0	.35	1 P	02<1	19	03	038	1	26.3	.02	861	002	2	24	001	05 < 1	117515 < 1	06 1 < 5	2 90	
MC-R239 1.8 57.5 3.0 73 .4 48.4 17.6 473 4.04 43.1 .3 17.8 .3 46 .2 2.1 $c1$ $c2$ $c1$ $c2$ $c1$ $c2$ $c1$ $c1$ $c1$ $c2$ $c1$ <td>110 11200</td> <td>1.0</td> <td>74.0</td> <td>2.0</td> <td>20</td> <td>т.,</td> <td>10.5</td> <td>0.0</td> <td><i>.</i></td> <td></td> <td>4614</td> <td>••</td> <td>harta di + ta</td> <td>••</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>001</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4.50</td>	110 11200	1.0	74.0	2.0	20	т.,	10.5	0.0	<i>.</i>		4614	••	harta di + ta	••							-			001								4.50	
MC-R240 8.0 73.1 3.9 21 7 9.3 3.1 78 1.97 115.7 2 124.0 3 37< 1 1 18 .08 .024 3 21.6 .02 415 .001 1 .37 .001 .07 <.1 1.39 1.2< <.1 .05 2.78 RE MC-R240 7.7 71.1 4.0 21 .7 9.0 3.2 72 1.92 114.0 .2 124.7 .3 33<< <th><.1</th> 2.1 1 18 .08 .024 3 22.6 .02 411 .001 2 .33 .001 .07 <.1 1.36 1.2 <.1 .05 1.4 .15 .012 2 20.9 .04 501 .01 1 .23 .001 .07 .1 .34 1.2 <.1 .05 .15 .15 .1 .15 .012 2 .029 .04 .01 1 .23 .001 .07 .1 .34 1.2 <.1 .05	<.1	MC-R239	1.8	57.5	3.0	73	.4	48.4	17.6	473 4	1.04	43.1	.3	17.8	.3	46.	2	2.1 <.1	62	.12	.078	4	39.6	.04	720	003	2	. 50	.002	.06 .5	1.67 4.1 < 1<.	05 1 < 5	1.35
RE MC-R240 7.7 71.1 4.0 21 .7 9.0 3.2 72 1.92 114.0 .2 124.7 .3 33<<1 2.1 1 18 .08 .024 3 22.6 .02 411 .001 2 .33 .001 .07 <.1 1.36 1.2 <.1 .05 1.4 .15 .012 2 20.9 .04 501 .001 1 .23 .001 .07 <.1 1.36 1.2 <.1 .05 1.4 .15 .012 2 20.9 .04 501 .001 1 .23 .001 .07 <.1 .136 1.2 <.1 .10 1.5 .12 2 20.9 .04 .001 1 .23 .001 .07 .1 .341 1.2 <.1 .10 .10 .22 .33 .001 .13 .10 .22 .10 .23 .001 .1 .23 .001 .07 .1 .341 1.2 .1 .1 .54 .008 .1	MC-R240	8.0	73.1	3.9	21	.7	9.3	3.1	78 1	.97	115.7	.2	124.0	.3	37 <.	1	2.1.1	18	. 08	.024	3	21.6	.02	415	.001	1	.37	.001	.07 <.1	1.39 1.2 <.1<	.05 1 <.5	2.78	
MC-R241 8.5 169.2 3.9 16 12.9 9.4 3.4 96 1.4 255.7 2 312.5 2 21 3 9.8< 14 .15 .012 2 20.9 .04 501 .001 1 .23 .001 .07 1.1 3.41 1.2 .10 1 .5 .44 MC-R242 8.6 102.7 3.1 30 2.9 19.2 7.6 203 1.71 60.9 .3 121.9 .2 23 .2 9.0 < 1 29 .88 .010 3 22.2 .31 245 .001 1 .23 .002 .06 < 1 .2.9 2.0 < 1 .14 1 < .5	180.6 < 1 11.0 2.2 .19 .54 .008 < 1 30.6 .22 550 .001 < 1 .11 .001 .02 .1 .16 .16 < <td>RE MC-R240</td> <td>7.7</td> <td>71.1</td> <td>4.0</td> <td>21</td> <td>.7</td> <td>9.0</td> <td>3.2</td> <td>72 1</td> <td>. 92</td> <td>114.0</td> <td>.2</td> <td>124.7</td> <td>.3</td> <td>33 <.</td> <td>1</td> <td>2.1 .1</td> <td>18</td> <td>. 08</td> <td>.024</td> <td>3</td> <td>22.6</td> <td>.02</td> <td>411</td> <td>.001</td> <td>2</td> <td>. 33</td> <td>.001</td> <td>.07 <.1</td> <td>1.36 1.2 <.1<.</td> <td>05 1 <.5</td> <td>-</td>	RE MC-R240	7.7	71.1	4.0	21	.7	9.0	3.2	72 1	. 92	114.0	.2	124.7	.3	33 <.	1	2.1 .1	18	. 08	.024	3	22.6	.02	411	.001	2	. 33	.001	.07 <.1	1.36 1.2 <.1<.	05 1 <.5	-
MC-R242 8.6 102.7 3.1 30 2.9 19.2 7.6 203 1.71 60.9 3 121.9 2 23 2 9.0 <1 29 .88 .010 3 22.2 .31 245 .001 1 .23 .002 .06 <1 2.29 2.0 <1 .14 1 <.5 1.58 MC-R243 8.1 31.2 5.0 43 29.9 8.1 2.4 180 .66 14.3 <1	MC-R241	8.5	169.2	3.9	16	12.9	9.4	3.4	96 1	. 41	255.7	.2	312.5	.2	21.	3	9.8 <.1	14	.15	.012	2	20.9	. 04	501	.001	1	.23	.001	.07 1.1	3.41 1.2 <.1	10 1 <.5	5.44	
MC-R243 8.1 31.2 5.0 43 29.9 8.1 2.4 180 .66 14.3 <.1	MC-R242	8.6	102.7	3.1	30	2.9	19.2	7.6	203 1	71	60.9	.3	121.9	.2	23.	2	9.0 <.1	29	- 88	.010	3	22.2	. 31	245	.001	1	. 23	.002	.06 <.1	2.29 2.0 <.1	.14 1 <.5	1.58	
MC-R244 3.0 144.0 2.4 1.0	WC 03/3	Q 1	21.2	Б Л	12	70 0	01	24	190	69	14 2	- 1	890 A	c 1	21 1	n	77 I	٥	54	009	دا	30 G	22	550	100	دا	11	001	04 2 7	3.67 B.≤ 1	06 <1 < 5	1 64	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MC_0244	30.1	144 0	2 4	40	27.7	0.1	2.4	101 1	00	501 P	1	883 8	1	45	11	03<1	20		000	1	10.0		1101	001	<1	11	1001	02 < 1	2 26 1 6 < 1	11 <1 < 5	1 38	
	MC_D245	5.0	1.44.V A A	2.4	21	<u>۲.۲</u>	12.7	2.7	107	77	226 1	1	242.4	3	11 <	1	61<1	10	11	016	3	29.2	02	84	001	2	14	001	04 2 9	17 7 4<	05 1 < 5	1.65	
	STANDARD DSA	11 7	124 2	30 /	147	.0	25 A	10.0	680 2	A7	22 0	6 7	44.7	28	30 5	à	3548	55	84	071	14	186 5	50	171	078	16 1	82	069	15 3 5	24 3 4 1 7<	05 643	1.00	

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

ACMB	E ANA (ISC	י ידו י ז 03	CAL AC	LAB STe	ORA' dit	TOR ed (ies Co.)	LTD		8!	52 1 Ge	с. н Юсн	ast Iem:	ING ICZ	is s NL	it. Ani	۷* ۲ مىلم	COUV SIS	er Ce	BC RTI	V6A Fic	1re Late	i I	P	HONE (604)	253	-31	58	Fax	(60	4' *	53 -	1710	5
							AL	made	<u>on 1</u> 11	<u>Min</u> 93 -	<u>era</u> 750 (<u>la</u> J. Pe	<u>Lt.</u> nder	<u>d.</u> st.	PR , Vai	OJ) ncou	ECT ver 8	BCI c V6c	<u>204</u> 218	<u> 6</u> Sut	F1 mitte	le aby	# 1 : Ed	A40(Balor	5759 I										
SAMDI E#	Mo	Cu	Ph	7n	An	Ni	Co	Mn	Fe	Åe		Å11	Th	Sr	Сd	sh	Bi	v	Ca	Ρ	La	Cr	Ma	Re	TI R	AI	Na	ĸ	Ū	Ha	Sc	TI	5	Ga	Se
	ppm	ppm	ppm	opin (ррпп	ppm	ppm	ppm	%	ppm	ррт	ppb	ppm	ppin	ppm	ppm	bbw k	pm	%	% р	pm	ppm	<u>%</u> p	pm	% ppm	%	%	%	ppm	ppm	ppm	ppm	% [opm p	- max

Standard is STANDARD DS5.

GROUP 1DX - 30.0 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HHO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: ROCK R150 60C

Nov 24/04 Data / FA ____ DATE RECEIVED: NOV 1 2004 DATE REPORT MAILED:.

ACME AA	NAJ 30	"ICA 01	L L2 Acci	BOR edi	AT te	ORI d Co	es 1 9.)	JTD.		8:	32 1	:. Ш	STI	ING	5 S'I	. v	بر لر	OUVE	R B	1	V6A	1R6		P	HON	E (6	04)	253-	3158	i fa	X (60	4 ` ^5	3-1	/16
AA					2	<u>lm</u>	ade	<u>n 1</u>	<u> 4in</u>	era	GE ls	Ltd	EM3	.CA PRO	l A Jec	IAN T Ì	11 S [RT	15 (05-:	:er }	rii Fi:	rici .e i	a'I'E ∦ A	505	571	5	P	age	1						
								3.87 X](03 -	750 1	l, Pen	der	st.,	Vanc	ouvei	- BC	V6C 2	r8	Subr	itte	d by:	Ed	Balor	1				Č. j. j.		ŝ :-			
SAMPL.E#	Мо ррт	Cu ppm	Pb ppm	Zn ppm p	Ag pm	Ni ppm	Co ppm	Mn ppm	Fe گ	As ppm	U moqq	Au ppb	Th ppm	Sr ppm j	Cd S Spm pp	Sb Bi xnippn	V Ippmi	Ca X	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti گا	B ppm	A1 %	Na X	K %∦pp	wl Hg n ppm	i Sc i ppm	זד mqq	S Ga ¥rppmn	Se S ppm	ample kg
MC-R248 MC-R249 MC-R250 MC-R251 MC-R252	2.6 8 3 8 4.2	47.0 25.9 1.2 135.1 38.1	2.2 1.6 .2 1.8 4.9	12 18 2 54 14 1	.8 6 .2 2 .4 .6 1 .9	576.8 237.9 93.1 188.9 39.8	17.7 6.3 2.0 20.7 2.5	143 89 47 798 92	1.43 1.34 .22 3.07 .56	896.4 299.0 115.3 209.7 64.8	.6 .3 .1 .4 .1	888.6 14.0 1330.6 6.0 27.2	.2 <.1 .8 <.1	24 61 6 119 7	.1 2. <.1 3. <.1 . .2 2. .1 9.	.85.0 61.5 4.6 .3.9	29 22 1 105 7	.04 .04 .22 4.96 .06	.017 .040 .005 .045 .009	1 2 <1 8 1	20.8 23.5 8.0 65.6 14.1	.03 .02 <.01 2.14 .03	263 979 9 520 124	. 001 . 002 . 001 . 002 . 002 . 001	1 1 2 <1	.24 .32 .03 .52 .07	.004 .002 .002 . .005 . .005 .	05 <. 03 <. 01 . 01 <. 02 <.	1 .82 1 3.00 1 .06 1 .44 1 1.45	2.5 1.8 .1 10.5 .4	<.1 .1 <.1<.0 <.1<.0 <.1 .1 <.1<.0	1 1 5 1 5 <1 4 1 5 <1	.6 <.5 <.5 <.5	.81 1.23 .70 1.15 .81
RE MC-R252 MC-R253 MC-R254 MC-R255 MC-R255 MC-R256	4,2 1,5 2,7 1,1 5,4	36.0 17.7 22.3 5.1 68.4	4.9 1.7 2.0 .7 6.2	14 1 10 1 23 7 94 1	.8 .0 4 .2 .4 .3 1	40.7 423.1 97.7 17.5 108.2	2.4 7.6 6.7 2.1 33.5	91 41 88 64 1179	.56 1.03 1.59 .54 5.68	65.5 454.1 118.0 57.2 188.7	.1 .3 .2 <.1 .7	25.3 58.5 20.1 717.6 49.6	.1 .2 .1 1.8	7 63 55 3 96	.2 9. <.1 2. <.1 1. <.1 . .4 8.	0.3 11.7 3.4 5.1 6.2	7 11 21 12 131	.05 .04 .08 .03 4.59	.008 .022 .015 .008 .080	1 1 1 1 12	14.7 20.2 21.9 17.8 87.6	.03 .01 .04 .04 .46	119 762 613 10 89	.001 .001 .002 .001 .003	1 <1 1 3	.07 .32 .26 .11 .70	.001 . .002 . .001 . .001 .	02 <. 02 <. 03 <. 04 <. 04	1 1.45 1 2.28 1 .80 1 .05 1 .37	6 1.1 1.4 5 12.4	<.1<.0 <.1 .1 <.1 .1 <.1<.0 .3<.0	5 <1 0 1 3 1 5 1 5 1	<.5 <.5 <.5 <.5	.79 .91 1.32 1.11
MC-R257 MC-R258 MC-R259 MC-R260 MC-R261	9.8 18.0 17.4 5.3 3.3	28.7 54.7 24.3 26.1 41.9	2.7 2.7 2.8 3.0 3.7	13 1 19 2 23 1 47 1 86	.9 .1 4 .5 .6 .9	34.5 409.6 74.7 61.4 48.6	7.4 13.5 7.8 14.2 23.5	140 207 310 691 727	1.29 1.48 1.47 2.78 4.60	165.2 611.9 178.0 74.0 67.0	.1 .3 .1 .2 .6	358.2 538.7 248.5 41.8 38.0	.1 .1 .5 1.6	27 29 40 50 44	.1 1. .2 3. .1 2. .2 1. .2 4.	.8 .1 .7 1.9 .1 .3 .6 .2 .2 .1	15 22 23 57 76	.33 .20 1.70 3.32 1.48	.007 .008 .008 .019 .088	1 1 4 10	18.3 12.0 18.8 31.7 57.1	.05 .04 .67 .79 .66	42 27 28 38 30	002 001 001 001 001	2 1 2 3 2	. 19 . 15 . 19 . 34 . 66	.001 . .001 . .002 . .002 . .002 .	03 <. 04 <. 03 <. 02 <. 05 .	1 .11 1 .28 1 .12 1 .09 1 .32	1.2 1.6 1.5 4.4 7.3	.1<.0 .1<.0 .1<.0 .1<.0 .2<.0	5 <1 5 <1 5 1 5 1 5 1 5 1	< 5 < 5 < 5 < 5 < 5	1.33 4.15 2.17 3.95 3.71
MC-R262 MC-R263 MC-R264 MC-R265 MC-R266	21.6 50.5 61.3 50.3 21.2	39.4 56.1 78.0 26.9 93.6	4.8 6.0 3.3 5.0 2.4	75 1 35 4 37 5 18 1 31 1	.8 .3 .0 .5 .4	92.0 38.2 31.9 34.6 30.3	25.7 20.1 13.0 7.6 10.3	466 284 333 209 357	4.20 3.38 2.21 1.48 1.94	297.4 505.9 291.5 128.5 73.0	.5 .4 .2 .1	224.9 1431.2 1898.0 417.5 53.3	1.6 .9 .3 .1 .3	59 33 33 26 29	.1 5. .2 4. .3 6. .2 2. .2 9.	5 .3 3 .1 6 .1 6 .1 4 .1	78 51 39 19 38	.73 .15 1.04 .49 .37	.080 .046 .017 .008 .034	9 5 2 1 3	50.9 32.6 15.8 18.3 26.7	.15 .04 .07 .08 .12	652 57 77 45 81	002 002 002 002 002	3 3 2 2 2	.58 .51 .28 .24 .30	.001 . .001 . .001 . .001 . .001 .	06 07 < 05 < 03 03 <	L .34 L .28 L .31 L .09 L .46	6.6 4.4 2.7 1.8 3.1	.2<.0 .4<.0 .3<.0 .2<.0 .1 .1	5 1 5 1 5 1 5 <1 6 1	< 5 < 5 < 5 < 5 < 5	5.66 4.53 4.79 5.22 5.41
MC-R267 MC-R268 MC-R269 MC-R270 MC-R271	2.9 13.7 16.2 16.5 2.5	81.7 20.8 35.3 22.2 50.5	1.0 2.6 2.6 1.9 4.7	54 29 1 20 1 14 1 47 1	.3 .2 .9 .3 .4	53.7 38.4 19.5 19.4 35.7	15.9 10.9 8.3 4.5 13.6	582 412 213 119 696	3.10 2.01 1.65 1.04 2.96	36.2 49.6 190.0 116.8 27.3	.2 .1 .1 .2	135.9 46.6 748.3 623.2 24.9	.6 .2 .3 .1	34 34 33 24 96	.1 1. .1 1. .2 2. .1 2. .3 1.	5 <.1 1 .1 8 <.1 1 .1 2 <.1	71 43 24 12 54	.50 .58 .79 .50 3.86	.063 .014 .022 .008 .052	6 2 2 1 6	52.4 27.1 22.0 19.3 35.1	.18 .11 .08 .11 1.31	73 . 55 . 77 . 38 . 19 .	002 001 002 001 001	3 2 2 1 2	.47 .27 .26 .16 .46	.001 . .001 . .001 . .001 . .015 .	03 < . 03 < . 04 < . 03 < . 02 < .	L .06 L .08 L .15 L .11 L .08	5.5 3.6 1.9 1.2 3.7	<.1<.0 .1<.0 .2<.0 .1<.0 <.1 .1	5 1 5 1 5 1 5 <1 2 1	<.5 <.5 <.5 <.5	4.29 4.53 4.81 4.85 .61
MC-R272 MC-R273 MC-R274 MC-R275 MC-R276	5.8 1.6 3.7 6.7 9.8	11.4 19.4 22.9 22.0 19.5	1.6 2.4 1.8 3.2 1.8	15 1 66 49 1 32 1 18 6	.2 .5 .1 .7 .2	11.0 49.1 31.1 20.7 18.7	4.7 20.2 11.7 8.9 4.5	308 1400 597 290 248	.92 3.53 2.23 1.71 1.10	34.0 27.5 77.7 95.3 52.3	.2 .3 .2 .1	1010.1 496.3 630.4 1195.5 5180.4	.1 .5 .2 .1	31 63 117 34 41	.1 1. .2 2. .2 . .1 1. .4 2.	1 < 1 0 .1 9 < 1 7 < 1 8 < 1	14 76 44 29 12	1.53 6.18 5.81 .19 1.32	.009 .026 .016 .021 .012	1 5 2 2 2	17.6 38.1 22.5 29.6 18.5	.65 .70 2.16 .09 .55	42 . 70 . 62 . 49 . 19 .	001 002 001 002 002	1 2 2 2 1	.18 .54 .27 .32 .17	.003 . .004 . .028 . .001 . .001 .	02 < 02 < 02 < 04 < 02 <	L .03 L .06 L .10 L .08 L .03	13 67 25 25 15	.1<.0 <.1<.0 <.1 1 <.1<.0 <.1<.0	5 <1 5 1 0 1 5 1 5 1	<.5 <.5 <.5 <.5	.55 .44 .63 .69 .51
MC-R277 MC-R278 MC-R279 MC-R280 STANDARD DS6	.2 6.6 .4 1.0 11.5	10.7 23.3 15.5 40.6 121.5	1.5 4.9 2.0 3.0 30.4	86 28 3 33 46 3 142	.2 .5 .7 .4 .3	51.4 33.4 24.4 31.1 24.5	18.6 15.5 8.3 8.2 10.7	1111 513 313 587 701	3.87 3.42 1.76 2.00 2.80	5.6 20.2 18.2 14.1 21.0	.5 .2 .1 .2 6.8	31.5 31.2 13.3 15.3 48.0	2 6 3 2 3 0	219 15 35 1 36 1 40 6	.2 .2 1 .4 1 .3 2 5.0 3	8 <.1 2 <.1 1 .1 8 <.1 6 5.1	84 28 26 26 54	14.77 .20 1.91 3.92 .85	.024 .045 .024 .035 .078	2 5 2 4 14	28.0 30.6 22.4 25.4 186.1	4.99 .07 .11 .60 .57	6 . 72 . 63 . 60 . 165 .	001 004 003 002 080	3 2 2 17 1	. 36 . 37 . 29 . 30 . 90	045 . 001 . 001 . 002 . 072 .	01 <.1 02 <.1 02 <.1 01 <.1 14 3.9	L .05 L .09 L .18 L .44 5 .23	3.9 4.3 3.3 2.8 3.2	<.1<.0 <.1.0 <.1<.0 .1<.0 1.8<.0	5 1 8 1 5 1 5 <1 5 6	<.5 .6 <.5 <.5 4.2	. 66 . 49 . 59 . 65 -
GROUP 1D (>) CONC ~ SAMPLE /	X - 30 Entra Type:	0.0 GM TION E ROCK	I SAMI Exceei (R15)	PLE L DS UP D	EAC PER <u>Sa</u>	HED \ LIMI mple:	WITH ITS. s beg	180 SOM	ML 2 E MII ng /1	-2-2 H Verals R <u>e'ar</u>	ICL-H MAY e Re	NO3-H2 BE PA runs a	20 AT ARTIA and 1	95 111 RRE4	DEG. ATTAI are	C FO CKED. <u>Reje</u>	R ON RE	E HOUR FRACTO	, DII IRY AI	LUTE ND G	D TO RAPHI	600 M TIC S	AL, A SAMPL	NALY .es c.	SED I An L'	BY I Imit	CP-MS AU S	OLUB I		MAL	1	<u>1</u> 8	202	
Data 🔨	/ Fa		-	DA	TE	REC	CEIV	ED:	A	JG 30	2005	DA	TE	REF	ORT	MAI	LEI):.~	Ţ.	Y	/		••						동	$\dot{\tau}$	laren			

Page 2

Data / FA

Hare Hane I Hane			_																								<u> </u>				·			
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Мл	Fe ¥	As	U	Au	Th	Sг	Cd	Sb	8i pom	¥ الاص	Ca Y	P Y	La	Cr	Mg	8a	Ti 9	8	A1	Na 97	K W	Hg	Sc T1	S 9 r	Ga Se S	Sample
				PP.	phu	- PPII		PPiii		- Phun	phin.	- 44	Phin	PPIII	PP	Phu:	ppm	PP			PP:::	- Phil		ppin		- mag	~	•	a hhii	- ppin	bhu bhu		han hhun	Ky
MC-R281	1.1	10.1	.7	10	.6	3.9	.7	103	. 41	5.1	<.1	3.0	<.1	8	.4	.3	<.1	3	. 80	. 004	1	12.4	.12	18<	.001	1	.07	.002<	.01 <.1	. 03	.3 <.1	<.05	<1 <.5	. 55
MC-R282	.1	9.9	1.9	73	.1	49.3	14.6	921	3.41	7.4	.1	.9	.4	137	.2	.8	<.1	79	7.40	.020	3	70.6	2.89	537	. 002	2	. 52	.023<	01 < 1	. 07	7.7 < 1	<.05	1 < 5	.61
MC-R283	27.1	4.8	3.2	9	2.2	11.6	6.1	165	. 99	109.4	.1	724.5	.3	18	.1	.6	< 1	20	. 33	024	3	19.2	.14	27	.002	1	.14	.003	.07 .1	.04	1.3 .1	< 05	<1 < 5	1 53
MC-R284	4.8	13.4	2 4	40	4.8	32 1	11 8	396	2 07	32.7	2	69.0	2	25	1	23	< 1	53	2 03	032	3	25.3	ng	45	002	1	22	001	02 < 1	07	1.0 < 1.	05	1 6	1 66
	1 1	12.0	20	20	7.0	20 2	14 1	166	7 76	20.4	.5	C 1		20	.2	E.0	~ 1	40	2.50	002	7	22.0	.05	160	002	5	. 22	001	02 - 1	.07	A A ~ 1	42	1 .5	1.00
110-14200	1.1	12.0	2.0	29	. '	30.2	14.1	400	2.70	20.4	. 2	0.1	. J	50	. 4	. 5	~.±	40	2.10	. 002		33.4	. 30	100	. 002	2	. 37	.002	.02 \.1	.05	4.4 ~.1	.42	0. I	1.45
MC-R286	14 8	11 /	17	20	1 0	19.2	7 3	214	1 46	22.2	1	45 2	2	27	ł	13	< 1	23	17	017	2	25 1	06	24	602	2	24	001	02 < 1	04	$21 < 1_{2}$	c 05	<1 < 5	3 75
MC_D297	14 1	7 0	1 0	10	1.0	10 6	7.0	170	1 46	20.7	1	10 6	1	24	1	1 1	~ 1	16	24	014	1	22.2	.00	En	002	~1	20	001	02 1	04	1 6 < 1	05	-1 - 5	5 11
NG D200	10.1	7.0	1.5	10		10.0	12.0	(0)	1.40	20.7	.1	19.0	. 1	07	. 1	2.1	>.1	10	1 5 2 4	.014	-	22.2	.04	10	.002	~1	.20	001	.02 ~.1	.04	1.0 - 1	<.VJ	1.5	0.11
MU-R288	4.8	05.1	1.5	53	.4	45.7	13.0	063	2.77	29.1	. 2	8.9	.5	3/		3.3	<u></u>	20	1.55	.00/	5	44.8	. 10	19	.002	1	.49	.001	.03 .1	.42	4.5 <.1	UD	1 < 5	3.98
MC+R289	9.2	19.5	1.9	35	.6	26.8	9.7	550	2.17	23.9	.2	19.5	.2	41		1.4	<.L	45	2.71	0.30	3	31.2	.17	37	.002	L	. 31	100.	.02 <.1	. 11	3.6 < 1	<.05	1 <.5	4.59
MC-R290	5.1	43.9	1.4	- 33	.3	28.0	9.4	374	1.94	25.2	.1	6.9	.3	37	.1	3.8	<.1	34	. 80	.036	3	35.4	.23	13	. 001	1	. 30	.001	.03 <.1	. 33	2.7 <.1	.17	1 <.5	1.89
MC-R291	1.9	6.9	1.9	95	.3	56.7	18.3	1214	3.99	9.9	.2	5.6	.3	195	.3	.4	<.1	121	11.52	.030	3	29.2	3.55	53	. 001	1	. 33	.037	.01 <.1	.08	4.8 < .1	<.05	1 <.5	4.52
RF_MC-R291	1.8	6.2	1.8	91	.2	55.9	18.6	1206	3.88	9.9	.2	5.0	.3	193	.3	.4	<.1	121	11.28	.029	3	29.1	3.52	55	.002	1	.34	036	.01 .1	.08	4.9 < 1.9	< .05	1<.5	-
MC-R292	3	10.7	3.8	142	2	57 6	18 7	1838	5 29	46	Ŧ	97	1	169	10	2	< 1	41	17 65	009	5	10 0	7 14	598	002	1	21	021	01 < 1	10	22<1	06	1<5	1.83
MC_R203	.0	108.0	0.0	60	51 1	24 B	8 2	743	1 78	12 1	1	210 1	1	101	21	1 0	< 1	16	6 88	010	ž	7 6	2 00	120	001	1	16	002	01 < 1	1 65	0 < 1	08	<1 < 5	2.05
NC 0204	16 0	100.3	5.4 116 6	- CO	10 0	11 0	1.2	100	1.70	40.7	. 1	213.0	- 1	101	1 1	14.4	~ 1	10	0.00	.015	1	10.7	12	123	001	1	. 10	000	07 - 1	4 20		.00	~1 ~ 5	2.00
MC-K294	20.0	91.3	110.0	02	10.9	11.9	4.0	133	.74	40.7	. L	394.0	~ .1	10	1.1	14.4	∼. ⊥	9	. 34	.009	Ŧ	19.7	.12	42	. 001	Ţ	. 11	.001	.02 5.1	4,30	.0 .1	.00	~1 ~ . 5	3.79
No paor	2.0	44.5	10.1	20		<i>~</i> 7		175	c 0	17.0	- 1	114 0	ب 1	10	1 0	11 3	- 1	~	~	010	~1	20.7		21.	0.01	~1	00	0.01	00 - 1	0.00	2 - 1	07	.1 . 5	1 71
ML-K295	3.9	44.7	12.1	29	11.0	0./	2.2	1/5	.00	1/.0	<. L	114.2	·	10	1.0	11.3	<.1	0	. 02	.010	~1	20.7	. 20	315	.001	~1	.00	100.	.02 <.1	2.00	.3 <.1	.07	~1 ~ . 5	1./1
MC-R296	16.4	311.7	5.2	- 27	2.7	20.1	8.2	217	2.4/	300.6	.3	155.Z	.6	45	.1	4.2	-1	3/	.08	.026	5	33.4	.04	254	100.	2	. 38	.001	.10 <.1	5.71	3.7 .1	.40	1./	3.93
MC-R297	18.6	100.1	4.2	19	16.7	9.5	4.6	160	1.04	172.7	.2	353.8	.2	12	. 2	10.4	<.1	14	. 05	.015	2	20.1	. 02	175	. 001	1	.18	.001	.07 <.1	6.84	.8 .1	<.05	1 <.5	4.85
MC-R298	8.8	116.0	4.9	-53	. 4	41.0	19.6	516	2.99	54.8	.3	16.8	.4	37	.1	4.5	.1	62	.49	.013	2	48.4	.10	168	.001	2	. 54	.001	.08 <.1	1.41	5.6 .1	.13	2 <.5	3.17
MC-R299	1.0	95.4	.7	21	. 9	18.3	7.0	606	.74	191.3	.1	1014.5	<.1	12	.1	2.2	<.1	12	.03	.008	1	17.6	.01	115	.001	<1	.13<	.001	.01 < .1	.22	.7 .14	<.05	<1 < 5	1.33
	5.15		•••										-		_	. –	_	-			_					_		–				. –		
MC-R300	4.5	31 0	21	6	3.3	67	7	45	.53	56.6	<.1	1509 4	.1	5	.1	.7	<.1	6	.02	.008	1	18.6	.03	18	001	<]	.10	.001	.04 < 1	11	.2 < 1	< 05	<1.9	. 65
STANDARD DCA	11 5	121 4	20 1	างา้	2.0	24.9	10 7	702	2 80	21 2	6.8	AQ R	31	Δĭ	6 ถิ่	36	5 î	55	85	077	14	185.4	57	165	082	19 1	1 Qn	073	15 3 4	23	3217	< 05	648	
טכט שארשארוכ	11.3	****	00.1	141	.0	4-7.U	10.7	702	2.00	61.6	0.0	0.7	0.1	71	0.0	0.0	J.1		.00		1-	100.4		. 100		<u> </u>	1.50		.10 0.4	. 20	U.C I./	00	0.4.0	

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

ACME ANA ^{+ U} TICAL LABORATORIES LTD. 952 B. (IS(\01 Accredited Co.)	HASTINGS ST. V""COU ASSAY CELLIFI	VER BC V6A 1R6 CATE	PHONE (604) 253-3158 PAX (604)	3-1716
LL <u>Almaden Minerals</u> 1103 - 750 W.	Ltd. PROJECT MRT Pender St., Vancouver BC V6	<u>CO5-3</u> File # A5 C 278 Submitted by: Ed	05715R Balon	ŤŤ
	SAMPLE#	Au** gm/mt		
	MC-R250 MC-R263 MC-R264 MC-R272 MC-R275	1.33 1.37 2.07 1.37 1.47		
	MC-R276 MC-R299 MC-R300 STANDARD OxL34	6.71 1.37 1.95 5.76		
GROUP 6 - PRECIOUS METALS BY - SAMPLE TYPE: Rock Pulp	FIRE ASSAY FROM 1 A.T. SAMPL	E, ANALYSIS BY ICP-ES.		
Data JFA DATE RECEIVED: SEP 28 2005	DATE REPORT MAILED:	V C 6/05		
	, · · · · · · · · · · · · · · · · · · ·		Clarence Leong	

ACME ANA (IS	LYTI 00	CAL 1 Ac	LAB Cre	OR/	TOR	ies Co.	9 LJ .)	œ.		853	2 B Ge	, has ochei	TIN Atc	gs :Al	ST. ANA	VAN	cou Sis	ver 5 C	BC BRI	V TF	'6A Ica	lr6 .TE		Þ	HONE (604)2	53-3	158	FAX	(60	4) 253	-1716	
ĽŤ						<u>A</u> :	<u>1ma</u>	de	<u>n M</u> 110	<u>ine</u> 5 · 7	<u>ra</u> 50 W	<u>ls L</u> (. Pende	:d. St	P ., V	ROJE ancouv	ICT er B	MF C V6	<u>RTO</u> C 27	5+4 8 s	submi	Fil itted	e by:	# 7 Ed	450' Balor	7194									
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Со	Mn	Fe	As	U	Au	Th	Sr	Cd Sb	B1	۷	Ca	Р	La	Cr	Mg	Ba	Ti	B A1	Na	a	K W	Hg S	ic Ti	S	Ga Se	Sample	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	X	ppm	ppm	рро	ppm	ppm	ppm ppm	ppm	ррт		<u> </u>	ppm	ppm	X	ppm	% [opm z		<u> </u>	t ppm	ppm pp	m ppm	2	ppm ppm	kg	
G-1	.2	2.1	3.9	45	.3	4.0	3.9	523	1.80	16.5	1.6	5.2	3.4	52	<.1 .9	.4	33	.43	.070	6	8.3	.57	200	.103	1.92	.049	9.5	.1<	.01 1.	8.3	<.05	5 <.5	-	
MC-R322	10.1	72.2	5.7	53	2.9	67.9	24.2	638	3.66	192.5	.5	1098.4	.6	44	.3 5.5	.1	81	.54	.018	4	59.3	.07	57	. 006	3.54	.001	1.04	4 < 1	.17 7.	6.2	.07	2 <.5	2.94	
MC-R323	35.3	45.3	3.8	24	6.5	30.1	11.4	316	1.97	235.1	.2	4780.7	.2	27	.2 3.1	.1	35	.44	.017	3	24.3	.10	25	.004	2.35	.002	2.0	5 <.1	.12 2.	8.2	.07	1 <.5	4.00	
MC-R324	12.3	36.9	2.9	22	10.7	27.1	10.3	259	1.67	232.3	.2	11523.4	.2	37	.2 3.9	.1	26	.26	.011	2	26.2	.11	26	.003	2 28	.002	2.04	4 <.1	.06 2.	.1 .2	.11	1 <.5	4.54	
MC-R325	3.9	62.2	4.7	45	2.3	59.3	18.6	520	3.30	313.8	.2	366.2	.5	59	.1 3.1	.1	66 :	1.06	. 039	5	48.2	.38	32	.002	3.52	.002	2.04	4 < 1	.10 5.	8.1	. 11	1.6	3.50	
NC 0000	<u></u>		. 1	16			<i>с</i> 1					~ ~ ~ ~						<i></i>																
ML-KJZD	28.7	122 0	3.1	10	3.9	1/./	5.I	249	2.00	209.9	1.	841.2	.3	35	.11.6	.1	20	.62	.048	4	14.8	.23	138	.002	2 .19	.002	2.0	9 <.1	.03 1.	6 .1	<.05	1 < .5	2.90	2
 STANDARD 030	11.7	122.0	30.9	142	. 3	24.2	10.7	/05	2.82	21.3	0.8	47.0	3.1	42	0.1 3.0	5.2	50	.96	.080	14	186.3	.5/	164	.083	18 1.91	.0/5	5 .L	/ 3.5	.23 3.	31.8	<.05	/ 4.5	-	

GROUP 1DX - 30 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: Rock R150

Data fr FA

and the second second

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. "ANCOUVER BC V6A 1R5 PHONE (604) 253-3158 FAX (60 253-1716 9001 Accredited Co.) (7 ASSAY CHATIFICATE Almaden Minerals Ltd. PROJECT MRT05-4 File # A507194R 1103 - 750 W. Pender St., Vancouver BC V6C 278 Submitted by: Ed Balon SAMPLE# Ag** Au** gm/mt gm/mt <2 4 9 G-1 MC-R322 $1.23 \\ 5.56$ MC-R323 14.94 5.84 MC-R324 12 156 STANDARD R-2a/OxL34 GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: Rock Pulp DATE RECEIVED: DEC 1 2005 DATE REPORT MAILED: Dec 1/05 Data fr FA All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

A CONTRACTOR OF A CONTRACTOR OF

5 1.0 16- NO 81 20.0 Ag** Au** gm/mt gm/mt SAMPLE# G-1 MC-R325 STANDARD R-2a/OxL34 .44 5.78 15Ē GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, AMALYSIS BY ICP-ES. - SAMPLE TYPE: Rock Pulp DEC 15 2005 DATE REPORT MAILED: Jun 28 05 Data 14 FA DATE RECEIVED; Leona ខ All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Ъ.

(ISO	LYTIC	CAL I Acc	LAB(Tec)RA 11te	FOR ed	ies Co.	LT)	0 .		85:	2 B. Gec	HA CHI	STT BMI	ngs Cai	ist La	'. \ NA	'ANG G	20U 2 S	rer Ce	BC RTI	V6 EFI	a 1 Ca:	R6 FE		PH	IONE	(60	4)2	53 -	315	8 F	AX (604) 25	3-1)	716	
					<u> </u>	mad	en	Mi	ne: 1103	cal • 7	<u>ə I</u> 50 W.	itd Pen	. P der s	RO.	<u>JEC</u> Venc	T ouve	MR'I Ir BC	<u>04</u> v6c	<u>-2</u> 218	F: St	lle bmit	# ted	A4 by: I	068 d 8	322 Ston		Pa	ge	1								
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm (Ag ppm	Ni ppm	Со ррп	Mn ppr	Fe 1	e A Kippi	s U nippmi	Aı ppl	u Th bippmi	Sr ppm	Cd ppm (Sb ppnnp	B1i print p	V C pm	a X	P Laa ≵ppmn	С РР	Cr 1 Min	Mg Ba %ippi	a T n	і Харра	B 4	N 1.	ak XX	{¥ ¢ppm	Hg ppm	Sc ppm	T1 ppm	S % p	Ga S pm pp	ie Sau m	mple gm	
G-1 MC-S120 MC-S121 MC-S122 MC-S123	1.4 .5 .4 .5 .5	3.0 22.4 18.2 37.6 27.6	2.1 3.9 3.8 4.0 3.5	47 46 83 58 73	<.1 .1 <.1 .1 .1	3.8 25.9 15.0 40.5 25.6	4.3 10.8 8.7 18.7 7.4	584 423 329 1301 262	1.92 2.83 3.24 4.12 3.52	2 <. 3 2. 4 5. 2 7. 2 10.	51.7 6.5 8.5 5.5 9.8	1.1 2.3 <.8 3.3 1.8	1 3.9 3 1.5 5 1.6 3 1.5 8 1.5	77 59 26 57 47	<.1 < .1 .1 .1 <.1	<.1 .2 .1 .2 1.1	.1 .1 .1 .1 .1 .1	45 .5 85 .6 78 .2 99 .7 14 .4	5.08 6.03 9.05 4.10 5.05	0 7 8 13 8 11 1 17 7 11	12. 47. 25. 42. 37.	5 4 1 1	55 25 54 10 39 9 58 7 33 7	4 .13 7 .16 8 .04 1 .05 1 .10	2 4 6 7	2 .9 2 1.9 3 1.2 4 1.6 3 1.1	5 .06 4 .02 1 .00 0 .01 8 .01	8 .58 4 .12 9 .16 6 .09 2 .12	1.2 <.1 <.1 <.1 <.1	<.01 .05 .01 .04 .02	2.1 6.2 4.8 8.9 7.2	3 < 1 < 1< < 1< < 1< < 1<	.06 .06 .05 .05 .05	5 < 5 < 5 < 6 < 3 <	5 5 5 5 5	30.0 30.0 30.0 30.0 30.0	· .
MC-S124	1.1	51.5	<u>4.5</u>	143	.6	91.6	47.0	1232	7.18	<u>3_28.</u>	4 .4	17.	1.4	96	.2 9	9.8 <	:. <u>1 2</u>	30.7	7.20	06	45.	1 .	<u>17 36</u>	2 .02	9	6.5	<u>9.00</u>	6.1) .1	. 25	<u>19.6</u>	.1	. 08	3	7	30.0	
ACMB ANA (180 AA	LYTI 900	CAL 1 Ac	LAB cre	ora dit	TOI ed	CO. CO.	i ij) Lma	D. <u>de</u> r	<u>1 M</u> 110	85 (ine 3 •	2 E GE 273 750 W	. ні ЭСН <u>Le</u> . Per	AST: EMJ Ltc ider	ECA 1. st.,	s s' L ; <u>PR(</u> Van	T. ANA DJE	VAN LLY CT	ICOU SIE MI SC Vé	VER 3 C 2 <u>710</u> 5 211	BC ERT 5-3 1 5	V IF: Ibmi	6A ECA F11 tted	IR6 TE e by:	‡A Ed 8	P .50 Salo	110N 57] n	е (б .4	94)	253	-31	58	FAX	(60	4)2	53-		
SAMPLE#	Mo ppm	C pp	u P m pp	b Zr mippm	n Aç nippn	a f	łi om p	Co pan p	Mn pan	Fe X	As ppr	; U ippmi	Aı ppt	u Th ppn	sr Sr	Cđ ppm	S. ppi	b Bi nippni	V ppm	Ca \$	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti Z	B ppm	A] %	Na %	К % р	W Hpm	Hg ppm	Sc ppm	T1 ppm	S X F	Ga Sa Sprrippi	; ; n
G-1 MC-5125 MC-5126 MC-5127 SRG 005-50W	.6 _4 210.0 1.7 1.1	1. 42. 2198. 72. 16.	9 2. 9 5. 5 24. 1 10. 2 3.	5 47 4 104 2 649 6 206 4 94	7 <.1 4 .1 9 3.7 5 2.8 4 .2	L 7. L 70. 7 179. 3 121. 2 21.	4 4 7 19 1 57 2 36 9 6	.6 5 .3 3 .2 26 .7 14 .0 3	86 1 98 4 13 16 76 10 04 2	1.84 1.90 5.55 1.68 2.63	<.5 76.9 1739.7 36.9 10.1	2.3 .3 2.0 .4 .2	< 5 780.8 106.4 317.1	5 3.6 9 2.3 3 1.3 4 1.9 1 .8	57 37 43 46 24	<.1 .1 4.6 .6 .1	<. 221.9 2.0	1 .1 2 .1 5 .1 6 .1 5 .1	38 115 450 234 59	.45 .49 .59 1.23 .27	.081 .123 .375 .101 .069	7 20 6 22 5	82.3 79.3 72.8 74.3 35.4	.64 .18 .22 .52 .17	255 45 514 349 108	.127 .012 .034 .067 .061	1 1 8 1 3 1 7 1 3 1	.00 .71 .57 .96 .08	.069 .005 .006 .012 .012	.58 .10 < .08 .15 < .10	.1 < .1 .1 8 .1 .1 <	.01 .01 1 .15 1 .77 2 .01	2.3 5.1 6.2 2.0 3.6	.4 < <.1 < 1.0 < .2 < <.1 <	.05 .05 .05 .05 .05 .05	5 <. 6 <. 6 . 4 <.	5
standard DS6	11.8	126.	4 28.	5 145	5.3	3 25.	2 10	.97	10 2	2.87	21.5	6.5	46.0	3.0	40	6.1	3.9	5 4.9	57	. 86	.079	14	188.8	. 59	164	.083	17 1	. 94	072	.16 3	.5	.22	3.3	1.8 <	. 05	6 4.	\$
GROUP 1DX (>) CONCEN	- 30.0 TRATIC)0 GM)N EXC SOIL S	SAMP EEDS	LE LI UPPI	EACH ER L	IED W	ITH S. S	180 M Some	IL 2- Mine	2-2 RALS	HCL-1 MAY	INO3- Be p	H2O / ARTI/	AT 9! ALLY	5 DEC	G. C ACKEI	FOR	one Refr/	HOUR ACTOR	, DII Y ANI	LUTEC) gr/	O TO APHII	600 600	MĹ, AMPL	ANAL Es c	.ysed :an l	BY 1 IMIT	CP-N AU S	is . Solue	ILIT	Υ.						

ACME ANA (ISO	5.VTTC 91	'AL L Acc	ABOR/ redit	ATOR ced	(IES Co.)	LTD	••••	85	2 E. GEC	HA CHE	STIN	ngs Cal	ST. AN	۷×۷ А.	COU SIS	ver Ci	BC TRT	V6. IFI(A 1R Cat	.б Е		PHON	B (6)	94):	253	-315	3 FA	X (60	4* 253	-17	16
11					<u>Alı</u>	nad	en 11	<u>Mine</u> 03 - 7	eral 50 W.	<u>s</u> Penc	itd. Jer St	. <u>P</u>] t., V	<u>ROJ</u> ancou	ECT iver B	<u>MR</u> c v6c	<u>T05</u> 218	<u>5 - 3</u> Si	F	ile ted by	# /: E(A5(d Bal)57: on	.4								
 SAMPLE#	Мо ррп	Cu ppm	Pb Z ppm pp	n Ag nappm	N1 ppm	Co ppm	Мn ppm	Fe %	As ppm	U ppm	Au ppb į	Th S ppm pp	Sr Co om ppm	d St n ppn	o Bī nippmi	V ppm	Ca %	Pt %pp	La pm p	Cr I pm	Mg Ba ≵ppnr	ti %	B ppm	A1 %	Na %	K V Xippi	l Hg 1 ppm	Sc ppm p	T1 S pm \$	Ga ppm	Se ppm
G-1 MC-S125 MC-S126 MC-S127 SRG 00S-50W	.6 .4 210.0 : 1.7 1.1	1.9 42.9 2198.5 72.1 16.2	2.5 4 5.4 10 24.2 64 10.6 20 3.4 9	7 <.1 4 .1 9 3.7 6 2.8 4 .2	7,4 70,7 179,1 121,2 21,9	4.6 19.3 57.2 36.7 6.0	586 398 2613 1476 304	1.84 4.90 16.55 1 10.68 2.63	<.5 76.9 739.7 36.9 10.1	2.3 .3 2.0 7 .4 1 .2 3	 <.5 (.9 2) 80.8 1 .06.4 1 817.1 	3.6 5 2.3 3 1.3 4 1.9 4 .8 2	57 <.1 37 .1 43 4.6 46 .6 24 .1	l <.1 l .2 5 221.5 5 2.6 L .5	1 .1 2 .1 5 .1 5 .1 5 .1	38 115 450 234 1 59	.45 .49 .59 .23 .27	081 123 2 375 101 2 069	7 82 20 79 6 72 22 74 5 35	.3 . .3 . .8 . .3 . .4 .	64 255 18 45 22 514 52 349 17 108	.127 .012 .034 .067 .061	11 81 31 71 31	.00 . .71 . .57 . .96 . .08 .	069 005 006 012 012	.58 .1 .10 <.1 .08 .1 .15 <.1 .10 .1	. <.01 01 . 8.15 77 . <.01	2.3 15.1 < 16.2 1 22.0 3.6 <	.4 <.05 .1 <.05 .0 <.05 .2 <.05 .1 <.05	5 5 6 6 4	<.5 <.5 .5 <.5
 GROUP 1DX (>) CONCEN - SAMPLE T	11.8 - 30.00 TRATIO	126.4 D GM S V EXCE DIL SS	28.5 14 AMPLE L EDS UPP 80 60C	5 .3 Leach Per L	25.2 ED WIT	10.9 (H 180 Sof	710 0 ml. Me mi	2.87 2-2-2 NERALS	21.5 HCL-HM MAY E	6.5 NO3-H BE PA	46.0 3 20 AT RTIAL	3.0 4 95 c 1y at	10 6.1 Deg. (L 3.5	ONE REFRA	57 HOUR, CTOR	.86 . , DIL Y AND	UTED GRAP	14 188 TO 60 PHITIC	8 10 ml : Sam	59 164 ., ANA IPLES	.083 Lysei Can I	17 1 BY 1	.94 . ICP-N AU S	.072 15. SOLUB	.16 3.9	22	3.3 1	.8 <.05	<u>i 6</u>	4.5
Data (FA		DAT	re r	ECEI	VED	: A	UG 30	2005	DA	TE R	REPO	RT 1	MAIL	BD: .		pt.	27	10 5			ALCON.	JUB!		all ence	Leon	TRUE TO THE TO THE TRUE TO THE TO T				

and a strength of the second second

+

CME ANALY (ISO	TTC2 02	li Acc	ABOI red:	RAT Lte	DRI 9 C	85 0.)	ltd	•		852 (e e. Gec	. н осн	ast" [em]	ing: LCA	5 S L	it. Anf	VAN L	couv Jis	er i Cei	9C RTJ	V64 FIC	lı Tat	re 'E		PHC)ne (604)25	3-3	158	Fax	(604	1) 25)-171 A
Ť						Alı	nad	en,	<u>Mi</u> 103	<u>ne:</u> - 75	ral 0 V.	8 Per	<u>Lto</u> sder	1. St.,	PR Ver	<u>OJF</u> ncouv	<u>ZCT</u> ver Bl	BC) C V6C	204 218	<u>- 6</u> su	Fi bmitt	lle ed b	: # 57: E	A4 d Be	06' lon	760								Ľ
Sample#	Mo ppm	Cu ppm	Pb ppm	Zn ppm p	Ag pm	Ni ppm	Co ppm p	Min pim	Fe گ	As ppm	U ppm	Au ppb	Th ppm j	Sr opm p	Cd ppm p	Sb 8 prin pp	31i V omrppnm	Ca \$	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	A1 %	Na ¥	K %pp	w H m ppi	9 Sc nppm	T1 ppm	S Ga %ippn	a Se: nppmi	Bample gm
1C-128-3 1C-311 1C-312 1C-313 1C-314	.3 .4 .6 .4 .3	15.5 28.3 44.9 34.1 26.6	3.4 3.5 4.1 3.0 3.4	52 < 47 52 45 < 47 <	$\frac{.1}{.1}$	6.5 1 7.9 1 3.5 1 3.8 1 6.6 1	0.7 4.6 5.5 3.0 5.6 5.6	31 2 69 2 54 3 55 2 516 2	2.70 2.85 3.41 2.59 2.72	1.0 2.4 2.9 .9 1.5	.5 1.0 .6 .4 .7	.9 1.2 12.0 1.0 .6	1.0 1.2 1.2 .6 1.4	116 < 96 86 181 113	•.1 .1 .1 .1 .1	.1 <. .2 <. .2 <. .3 <. .1 <.	1 87 1 91 1 95 1 75 1 73	.95 1.03 1.22 4.74 .78	.049 .095 .091 .104 .078	7 12 15 9 10	44.3 54.8 59.2 43.9 50.2	.80 1.14 1.23 1.17 1.17	61 97 115 84 109	.188 .108 .100 .073 .110	4 1 4 1 8 1 9 1 4 1	1.23 . 1.35 . 1.96 . 1.10 . 1.35 .	064 056 050 062 061	.05 <. .11 <. .08 <. .06 <. .10 <.	$ \frac{1}{1} \frac{.0}{.0} \frac{1}{1} \frac{.0}{.0} \frac{1}{1} \frac{.0}{.0} $	2 4.2 4 6.2 5 8.2 4 4.2 4 5.4	<. <u>1<.(</u> <.1<.(<.1<.(<.1).1 <.1<.()5 4)5 4)5 6 15 3)5 4	4 <.5 4 <.5 5 .5 3 1.9 4 <.5	30 30 15 30 30
MC-315 Standard OS6	.4 11.8 1	29.2 26.9	3.5 29.5	47 × 146	.1 3 .3 2	7.5 1 4.8 1	.5.3 6 1.0 7	i37 3 23 2	3.08 2.97 2	2.2 22.0	.7 6.7 4	1.7 48.4	1.3 2.9	91 < 37 6	≤.1 5.1 3	.2 <.	.1 101 .8 52	. 88	. 095 . 088	11 12 1	60.8 184.8	1.18	100 170	.117 .075	2 1 18 1	1.55 . 1.82 .	056 066	.09 <. .16 3.	1.0 5.2	26.2	<.1<.(05 4 05 6	4 <.5 5 4.4	30 30
- SAMPLE TYP	E: STR	EXCEI REAM \$	EDS U SED.	PPER	LI	ITS.	SO	MEM	INER	ALS I	MAY	BE P	PARTI	ALLY	ATT	ACKE	D. R	REFRAC	TORY	and /	GRAPI	HITI) /.	C SAI	MPLES	S CAN	N LIM:	IT AU	SOLI	JBIL	114.				
SAMPLE TYP	ATION E: STR	EXCEI	EDS U	DA	LII FE	REC	SO EIV	RD:	INER.	ALS I	200	BE P	DAT	ALLY ER	EPC	ORT	MAI	LED	. TORY		GRAPI	#111 #/0	с sai У	MPLES	S CAN	I LIM	IT AU							

GRID SOIL SAMPLES (Geochemical Analysis Certificates)

.

•

1⁻¹-

ACME ANALYTI	CAL 2 AC	LABO Sred	RAT ite	ORI d C	E 5 [0.]	LTI).	8	52 1	e. n	AST	ING	s s:	r.	VAN	icot	IVEI	BC	ve	A 1	R6		PHON	B (6	04):	253-	315	8 F.	AX (604) 25	i-1'	716	
AA					<u>A1</u>	mad	<u>en</u>	Mir	GE	ioch 1 <u>8</u>	вм. <u>Lt</u>	1CA	ь / <u>PR(</u>	ANA DJE	L ICT	MI MI	з с <u>кто</u>	ERT <u>4 - 1</u>	TET	CA:	: E : #_	A4()568	14								4		
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co Co	Mn ppm	Fe X	As ppm	ncer U ppm	St Au ppb	van Th ppm	Sr ppm	Cd	Sb ppm p	Bi Dominip	v C pm	a X	PLa Kippin	py: Ed Cr ppm	orelaat Mg ∦rp	Ba ⊺ pm	i (%ppr	3 A1 n %	Na X	K %	W Q mqq	Hg pm	Sc ppm p	T1 mqr	S G	a Se Mippon	
G-1 ML1-00 ML1-25S ML1-50S ML1-50S ML1-75S	1.2 1.0 .8 1.3 1.9	2.4 48.4 40.4 33.6 56.2	2.0 7.1 8.3 9.0 12.7	40 144 164 185 212	<.1 .5 1.2 .1 .3	4.3 64.6 80.0 79.0 109.5	3.5 19.3 24.9 30.6 45.8	496 964 1486 2091 2866	1.74 5.22 7.48 7.43 9.19	.5 24.5 26.4 32.8 58.1	1.9 .4 .5 .4 .4	<.5 35.0 44.9 5.5 61.7	4.1 1.1 1.7 1.7 1.6	76 49 65 56 50	<.1 .2 .3 .3 .4	<.1 1.5 2.1 1.3 2.2	.1 4 .1 1 .1 1 .1 1 .1 2	40 .5 32 .8 32 1.2 73 .8 08 .8	3 .08 7 .06 7 .09 2 .09 8 .11	5 8 3 21 3 21 5 19 5 24	48.6 62.5 78.2 76.2 93.7	.48 1 .27 1 .49 1 .33 2 .46 2	91 .10 00 .04 05 .10 44 .09 71 .06	9 2 2 6 16 8 15 11 51 8	2 .76 5 1.54 3 1.89 1 2.10 3 2.09	.075 .012 .015 .013 .009	.41 .07 .17 .27 .25	.2<. .1 . .1 . .1 . .1 . .2 .	01 08 1 14 2 05 1 07 2	1.9 2.6 0.1 4.6 0.5	.3 <.(.1 <.(.2 <.(.2 <.(.3 <,()5)5)5)5)5	4 <.5 5 .5 5 .9 6 .5 6 .7	
ML1-100S ML1-125S ML1-150S ML1-175S ML1-200S	3.2 11.6 1.1 .5 .6	45.9 75.9 19.1 23.1 26.4	10.8 7.6 5.4 4.9 4.2	175 131 70 63 128	.4 .6 .3 .1 .1	71.7 65.2 32.7 25.4 34.8	30.0 23.6 8.3 9.7 8.7	2014 879 179 430 379	7.01 6.13 3.09 3.30 3.00	76.8 156.9 9.3 4.7 5.3	.3 .2 .5 .3	55.6 306.7 .7 2.8 <.5	1.4 1.2 1.1 1.6 1.1	79 53 45 56 47	.4 .2 .1 .1 .1	2.1 4.8 .5 .3 .4	.1 1(.1 1; .1 (.1 (.1 (58 1.1 22 .7 56 .5 02 .5 57 .5	7 .10 2 .06 1 .07 4 .03 2 .09	3 21 7 13 5 9 5 11 3 14	75.4 68.8 34.6 54.4 40.1	.37 2 .29 3 .23 2 .43 1 .22 1	45 .06 45 .09 19 .10 37 .29 46 .07	i6 9 i2 7 i1 (i9 3 i9 (9 1.74 7 1.84 5 1.82 3 1.74 5 1.47	.012 .011 .021 .028 .017	.26 .22 .14 .14 .16	.1 . .1 . .1 . .1 . .1 .	10 1 09 1 03 02 03	6.5 2.0 5.5 7.3 < 6.0	.3 <.0 .5 <.0 .1 <.0 .1 <.0 .1 <.0)5)5)5)5)5	5 <.5 5 <.5 6 <.5 6 <.5 5 <.5	
ML1-225S ML1-250S ML1-275S ML1-300S ML1-325S	.7 1.0 1.2 .8 .8	31.5 53.3 71.2 29.3 53.8	4.9 5.1 8.4 5.2 8.2	86 143 206 86 265	.4 .3 1.1 .1 .5	49.1 78.9 96.0 39.2 103.2	15.6 22.9 30.0 12.9 32.1	576 1049 1592 521 1725	4.66 6.75 7.63 3.69 8.49	8.5 10.7 25.4 4.1 15.6	.4 .4 .7 .2	184.8 3.5 25.5 2.2 31.1	1.6 1.8 1.5 1.7 1.3	41 49 61 72 85	.2 .2 .4 .1 .5	.6 1.1 2.6 .3 1.8	.1 1 .1 1 .1 1 .1 1 .1 1	22 .6 60 .7 81 .8 93 .7 75 1.0	1 .05 5 .10 9 .13 4 .06 5 .15	5 23 3 28 5 17 3 16 4 13	65.3 88.0 90.3 53.1 68.2	.30 1 .26 1 .30 3 .56 1 .44 4	44 .09 74 .00 76 .06 72 .20 59 .06	10 8 36 7 38 8 30 9 52 6	5 1.78 7 1.90 8 1.77 5 2.29 5 1.75	.015 .011 .013 .027 .014	.10 .12 .12 .15 .13	<.1 . .1 . .1 . .1 . .1 .	07 1 11 1 12 1 04 09 1	1.4 < 5.2 4.6 9.1 2.4	<.1 <.1 ,1 <.1 ,1 <.1 ,1 <.1 ,1 <,1	05 05 05 05 05	5.5 5.5 6.8 7<.5 5<.5	
ML1-350S ML1-375S ML1-400S RE ML1-400S ML1-425S	.6 1.2 .6 .9	29.4 54.9 45.4 47.0 52.9	6.0 11.5 9.2 9.6 9.7	163 222 199 208 176	.3 .5 .2 .2	80.8 98.9 93.2 97.0 86.4	24.6 34.9 37.8 38.5 30.8	1174 2458 2174 2282 1452	6.33 7.21 6.27 6.51 6.89	10.5 18.3 11.8 12.2 20.0	.3 .3 .3 .3 .3 .3	6.8 41.0 7.5 9.2 26.9	1.1 1.4 1.4 1.5 1.4	50 54 61 62 97	.3 .5 .2 .3 .2	.9 1.7 .8 .9 1.4	.1 1 .1 1 .1 1 .1 1 .1 1 .1 1	40 1.1 58 .9 39 1.1 50 1.1 59 .8	2 .09 2 .13 0 .10 7 .11 7 .12	l 16 2 13 8 19 0 19 1 22	69.5 79.6 75.7 78.9 80.9	.38 3 .40 3 .34 4 .36 4 .30 3	56 .00 30 .09 67 .08 65 .09 58 .04	56 7 12 7 19 8 19 8 10 9	7 1.71 7 1.95 3 1.81 0 1.82 9 1.75	.015 .015 .015 .016 .016	.13 .25 .25 .26 .26	.1 . .1 . .1 . .1 . .1 .	06 1 13 1 06 1 07 1 09 1	4.7 4.2 3.3 4.5 5.8	.1 <.0 .2 <.0 .2 <.0 .2 <.0 .3 <.0)5)5)5)5)5	5<.5 5.6 6.5 6.6 5.5	
ML1-450S ML1-475S ML1-500S ML1-525S ML1-550S	.4 .6 .8 1.0	29.1 38.1 53.7 40.5 26.3	5.1 7.1 7.8 9.1 11.7	87 125 169 221 267	.1 .1 .2 .1 .1	48.3 67.4 83.7 108.7 99.0	15.2 24.0 29.3 40.5 36.2	466 1066 1122 2180 2549	4.39 5.69 5.69 8.58 9.97	5.8 11.8 11.5 19.0 14.7	.3 .3 .2 .3 .2	3.9 4.4 3.5 6.1 9.2	1.3 1.7 1.3 1.7 1.7 1.0	40 53 76 58 74	.1 .3 .4 .7	.5 .9 1.0 1.4 1.0	.1 1 .1 1 .1 1 .1 1 .1 2 .1 1	11 .5 32 .7 52 .7 20 1.2 98 1.4	0 .04 1 .07 1 .09 5 .10 9 .15	8 18 4 21 4 16 4 21 1 7	57.1 75.6 67.2 95.4 128.3	.28 2 .31 1 .35 6 .37 4 .55 2	24 .07 92 .07 35 .07 35 .00 84 .04	7 (7 (7 (1) 10 (1) 13 (1)	3 1.68 5 1.97 2 2.43 0 1.83 1 1.17	.017 .013 .016 .013 .012	.14 .19 .24 .19 .10	.1 . .1 . .1 . .1 . .1 .	04 1 06 1 05 1 07 2 18 1	0.9 4.6 4.6 1.1 4.1	.1 <.0 .2 <.0 .2 <.1 .3 <.1 .2 <.1)5)5)5)5)5	3<.5 5.5 7<.5 6.6 4.6	
ML1-575S ML1-600S ML1-625S ML1-650S ML1-675S	2.2 .6 .8 .6 .9	89.7 30.2 38.8 33.8 73.0	7.1 5.8 4.5 4.6 4.9	200 159 94 81 146	1.0 .1 .2 .1 .8	135.7 80.0 51.5 38.4 83.0	33.4 20.1 15.7 14.1 22.9	1343 812 584 615 904	10.11 6.57 4.82 3.85 5.87	39.1 8.8 10.1 7.5 12.3	.2 .2 .5 .4	39.6 1.7 5.2 3.3 32.9	i 1.3 1.2 1.4 1.4 1.3	61 48 58 58 66	.4 .2 .1 .1 .1	4.5 .6 .9 .7 1.9	.1 2 .1 1 .1 1 .1 1 .1 1	18 1.3 35 .4 12 .5 95 .5 35 .5	1 .05 1 .06 6 .05 9 .04 9 .06	1 8 7 11 4 16 8 17 3 11	146.4 91.0 72.7 56.8 86.1	.50 4 .29 3 .44 2 .51 2 .48 4	67 .04 19 .09 63 .12 12 .14 11 .10	12 1 53 4 21 1 15 5	5 1.33 4 1.89 2 1.97 3 1.89 2 2.22	.011 .014 .025 .030 .021	.07 .16 .17 .15 .17	.1 . .1 . .1 . .1 . .1 .	22 2 04 1 04 1 04 12 1	0.5 1.8 1.4 9.5 5.0	.3 <.1 .1 <.1 .1 <.1 .1 <.1 .1 <.1)5)5)5)5)5	5.6 5<.5 6<.5 6<.5 7.6	
ML1-700S ML1-725S ML1-750S ML1-775S ML1-800S not received	.6 .5 .4 .6	69.0 33.6 28.2 29.5	5.4 4.2 4.1 4.7	200 79 76 82	1.0 .1 .1 .1 -	98.5 46.6 34.8 33.6	33.0 15.2 12.5 13.6	1601 661 525 774	7.56 4.11 3.46 3.51	10.5 5.2 2.9 4.0	.2 .3 .5 .5	23.9 8.8 1.1 5.7	1.1 1.2 1.3 1.4	90 64 66 55	.2 .1 .1 .1	.7 .5 .3 .3	.1 1 .1 1 .1 .1	76 1.0 04 .6 89 .5 91 .6	8 .08 1 .05 4 .04 0 .04	3 17 7 15 3 13 3 14	106.1 62.1 58.7 57.5	.51 3 .52 1 .54 1 .55 1	01 .07 48 .13 06 .11 02 .15	76 32 31 59	6 2.19 3 1.79 2 1.88 3 1.67	.019 .028 .032 .030	.21 .20 .19 .22	.1 . .1 . <.1 . <.1 .	08 1 06 02 04 -	8.8 9.9 7.9 < 8.0 <	.1 <.! .1 !<br .1 !<br .1 !<br -	05 05 05 05	5 .6 5 <.5 6 <.5 6 <.5	
GROUP 10X - 30. (>) CONCENTRATI	12.4 00 GM 0N EXC	141.4 SAMPLI	25.4 E LEA UPPEI	ACHE R LI	.3 D WI MITS	24.3 TH 18 . SC	30 ML	789 2-2-2 INERA	3.04 2 HCL LS MA	17.9 -HNO3- (BE F	6.3 H20 PART I	42.4 AT 9 ALLY apd	5 DEC ATT	49 G. C ACKEI	FOR FOR	3.8 6 ONE REFR	5.2 HOU ACTO	61 .7 R, DI RY AN	4 .09 Luted D gra	5 12 TO 6	189.2 500 Mi C SAM	.69 1 ., AN/ MPLES	35 .10 Alysei Can I)0 14 0 BY .IMIT	8 1.97 ICP-N AU S	' .036 IS. Iolub:	<u>.1</u> 4 ILITY	4.8 .	17	3.4 1	1.1 <.I	05 C	6 5.0	
Data No FA		D	ATE	soné	CE:	IVEI):	SEP 2	0 200	4 D.	ATE	RE	POR	r M		ED:		20	for a		<u>.</u>	• of (he er	alve	ie on	l v		CH CO			- L	Lec	Ing	New Start
	Jonard						6, 46																								1			<u> </u>

ACME	ANALY (IS' \	TICAI 002	, LABO	RATO	RIES Co.)	LTD.		852 B	і. нл Ост	STIN	ge si at a	:. V2	NCOUN	7BR 1	3C V6.	A 1Re	5	PHONE ((604)	253-3	158 F2	X(604)2!	53-1716	
					<u>Alme</u>	den	<u>Mir</u> 1103	015 1eral • 750 k	BL I. Pen	<u>td.</u> der St.	<u>PROJ</u> ., Vant	ECT	MRT BC V6C	04	L Fi Submit	le # tecrby	A40! Ed Bat	5684A on						
SAMPLE#	Mo ppm	Cu ppm	Pb Z ppm pp	n Ag mippm	Ni ppnn p	Co Mr pra ppra	n Fe n %	As ppm pp	U At m ppl	u Th bppmp	Sr Col xpm ppm	(Sb)ppm	Bi V ppm ppm	Ca %	P La %ippm	Cr ppm	Mg Ba % ppm	Ti %pp	BAL m%	Na %	K W %ppmp	Hg Sc Tl pmippmippm	S Ga Se % ppm ppm	A
ML1-800S	.4 5 12.7	24.8 142.7	3.6 5 24.8 13	9.1 4.3	28.4 10 25.2 12	.2 412 ,4 796	2 3.06	2.6 . 17.8 6.	5 1.3 4 44.0	71.5 02.8	49 .1 48 5.5	.3 3.8 (.1 93 6.3 62	.50 . .76 .	037 14 088 13	49.5 186.1	.54 81 .67 137	.165 .091 1	2 1.54 7 2.05	.028	.15 .1 . .14 4.9 .	02 7.0 <.1 19 3.3 1.1	<.05 5 <.5 <.05 7 4.9	
GROUF (>) (- SAM Data) 1DX - 3 CONCENTR/ IPLE TYPE aF	60.0 GM 1110N E 1: SOIL A	SAMPLE XCEEDS SS80 6	LEACHI UPPER OC DAT	ED WITH Limits. E REC	180 M Some EIVE	IL 2-2- E MINER D: (-2 HCL-H Rals May DCT 5 20	NO3-H2 BE P/ 04 I	20 AT 9 ARTIALL	5 DEG. Y ATTA REPOI	C FOI CKED. RT M2	R ONE HI REFRA		AND GRAF	0 600 HITIC	ml, anai samples 9./.2	LYSED BY CAN LIM ZOC	ICP-MS IT AU S	S. SOLUBII	.ITY.		·	
									•															
<i></i>																								
															·						A REAL	OTO Acky Wan		
ALL	esults a	re cons	idered	the co	nfident	ial pi	roperty	y of the	clie	nt. Acm	né assu	imes ti	he liab	ilitie	es for ac	tual c	cost of	the anal	ysis or	nly.				

And the second second

ACME ANAL	יייע נ	CAL 2 Ac	LAI	SOR/	TOF	RIES Co.) LT	5.		852	В.	HA.	STI	NGS	S:	r, 1	7 3 1 1	COU	ive;	R B	C	V6A	1R	6		PHONI	6(60)4)2	:53.	-315	8 F2	AX (6	04)->-	5 3-	1716	
A A					Al	mad	len	Mi	ner	ale	FEO 1 L	CHE td.	мт Р	CAI ROI	J 7 JE(NA T	1 MR'	3TS 704	3 C 1-2	2er)	TI Fi	FIC le	ATI # 7	5 40	682	12	Pa	IOP	٦						AA.	
B u Bu									1103	• 75) W.	Penc	er S	t.,	Vari	OUV	er B	c ve	ic 2	T 8	Sub	mitte	ed by	: Ed	l Bal	'n									╘╘	
SAMPLE#	Mo ppm	Си ррп	P P P	b Zn πppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe ۲	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	Bi pm p	V pm	Ca %	۹ ۴ ا	La opm	Cr ppm	Mg %	Ba ppm	Ti %	B / ppm	x 1	Na %	K k % ppm	l Hg 1 ppm	Sc ppm p	T1 opm	SGa ≭p-pnnp	Se S opmi	ample gm	
G-1 MC-S120 MC-S121 MC-S122 MC-S123	1.4 .5 .4 .5	3.0 22.4 18.2 37.6 27.6	2. 3. 4. 3.	1 47 9 46 8 83 0 58 5 73	<.1 .1 <.1 .1 .1	3.8 25.9 15.0 40.5 25.6	4.3 10.8 8.7 18.7 7.4	584 423 329 1301 262	1.92 2.83 3.24 4.12 3.52	<.5 2.6 5.8 7.5 10.9	1.7 .5 .5 .8	1.1 2.3 <.5 3.3 1.8	3.9 1.5 1.6 1.5 1.5	77 59 26 57 47	<.1 .1 .1 .1 <.1	<.1 .2 .1 .2 1.1	.1 .1 .1 .1 .1 1	45 . 85 . 78 . 99 . 114 .	55. 66. 29. 74. 45.	080 038 058 101 057	7 13 11 17 11	12.5 47.4 25.4 42.1 37.1	.55 .54 .39 .58 .33	254 107 98 71 71	.132 .164 .046 .050 .107	2 .9 2 1.9 3 1.2 4 1.6 3 1.3	95 .06 94 .02 91 .00 90 .01 98 .01	68 .5 24 .1 09 .1 16 .0 12 .1	8 1.2 2 <.1 6 <.1 9 <.1 2 .1	2<.01 .05 .01 .04 .02	2.1 6.2 4.8 8.9 7.2	.3 .0 =.1 .0 <.1<.0 <.1<.0 <.1<.0	6 5 < 6 5 < 5 5 < 5 6 < 5 3 <	5 5 5 5	30.0 30.0 30.0 30.0 30.0 30.0	
MC-S124 00S 100W 00S 75W 00S 50W 00S 25W	1.1 .3 .8 1.3 .7	51.5 7.7 18.0 23.2 23.9	4 2. 3. 3. 4.	<u>5 143</u> 9 110 7 72 8 75 7 99	.6 .1 .2 .2 .2	91.6 13.4 25.5 26.5 46.5	47.0 4.1 7.2 7.7 16.3	1232 207 193 202 379	7.18 1.43 2.99 2.99 4.03	28.4 2.2 9.9 16.1 10.6	.4 .2 .3 .3 .3	<u>17.1</u> 3.2 83.5 301.9 10.3	.4 .6 1.2 1.0 1.3	96 23 36 24 42	.2 .1 .1 .1 .1	9.8 < .1 .4 .6 .3	<u>1 2</u> 1 1 1 1	2 <u>30</u> 37 70 78 84	77 . 28 . 40 . 25 . 79 .	200 052 089 070 057	6 8 7 21	45.1 20.8 40.5 41.6 51.6	.17 .15 .26 .16 .22	362 120 101 76 94	.029 .081 .095 .063 .015	6 .5 2 1.0 2 1.6 1 .8 4 1.3	i9 .00 14 .01 16 .01 18 .00 18 .01	06 .1 15 .0 12 .1 09 .0 12 .1	0 .1 7 <.1 1 .1 9 .1 0 .1	.25 .02 .01 .02 .03	19.6 1.8 4.4 4.6 7.5	.1 .0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	8 <u>3</u> 5 <u>4</u> 55 53 53 54	.7 .5 .5 .5	30.0 30.0 30.0 30.0 15.0	
00S 25E 00S 50E 00S 75E 00S 100E RE 00S 100E	.8 .7 .3 .5 .4	28.7 119.1 12.5 33.8 33.2	7 8 4 4 4	0 193 6 200 2 124 4 102 3 103	.3 <.1 <.1 <.1 <.1	107.4 65.5 21.6 26.4 25.4	26.8 28.2 7.8 12.4 12.2	1081 1122 206 577 553	7.39 8.40 2.28 3.22 2.94	14.8 12.6 3.8 9.6 9.5	.2 .3 .2 .2	2.5 3.7 6.1 1.7 2.1	1.3 1.3 1.1 .8 .8	57 45 27 45 43	.2 .4 <.1 .1 .1	1.3 .7 .3 .6 .5	.1 1 .1 2 .1 .1 .1	156 206 58 62 62	74 . 82 . 39 . 71 . 62 .	108 140 040 111 105	16 37 9 15 14	90.7 109.4 33.9 45.0 43.4	.37 .31 .21 .17 .18	150 341 205 283 287	.051 .070 .087 .025 .023	8 2.2 4 1.4 3 1.7 9 1.1 7 1.0	23 .01 16 .0(11 .01 14 .0(19 .0(11 .1 08 .1 18 .1 09 .3 08 .3	8.1 5.2 1.1 4.1 0.2	L .03 2 .05 L .02 L .03 2 .02	12.2 30.0 4.2 6.0 5.6	.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	56< 55 55< 53< 54<	-5 -6 -5 -5 -5	30.0 15.0 30.0 7.5 7.5	
100S 100W 100S 75W 100S 50W 100S 25W 100S 50E	.6 .6 .8 .6 .8	19.6 30.0 31.2 53.4 27.9	5. 4 6. 12. 4	0 75 6 87 1 97 0 281 7 66	.1 .1 .2 .1 .1	22.6 38.8 61.6 112.6 32.1	8.7 10.5 17.2 41.1 14.5	314 397 395 2086 308	2.78 3.94 4.88 9.66 2.88	3.1 9.2 23.4 29.9 6.0	.6 .3 .4 .2 .4	1.1 1.9 8.3 7.6 .7	1.5 1.3 2.1 1.6 .9	57 49 48 81 44	.1 .1 .2 .1	.2 .4 .5 .6 .1	.1 .1 1 .1 1 .1 3 .1	87 . L07 . L35 . 331 . 79 .	60 . 43 . 58 . 75 . 67 .	036 071 080 181 059	11 14 24 30 25	41.4 52.7 68.8 113.4 44.0	.38 .30 .29 .26 .18	141 166 247 713 393	.227 .114 .105 .047 .044	1 1.6 5 1.4 3 1.9 6 2.0 3 1.9	67 .02 18 .01 12 .01 11 .00 10 .01	23 .1 15 .1 16 .1 09 .2 10 .1	3 .1 2 .1 1 .1 3 .1 2 .1	.03 .02 .02 .02 .05 .05	5.6 7.0 14.8 21.9 7.9	<.1<.0 .1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 5 < 5 4 < 5 5 < 5 6 < 5 4 <	5 5 5 5	15.0 30.0 30.0 30.0 15.0	
100S 75E 100S 100E 200S 100W 200S 75W 200S 50W	.3 .5 .3 .4	21.3 10.6 21.4 45.2 37.0	4. 3. 6. 5. 5.	3 100 7 42 6 95 1 125 5 108	.1 .1 .1 .1	26.8 11.7 42.7 53.2 43.1	11.1 4.8 12.7 15.9 12.5	260 153 672 544 358	3.49 2.06 4.53 4.14 3.77	5.4 1.4 7.6 9.4 4.9	.2 .2 .3 .4	.6 3.3 2.8 1.0 1.6	.9 .7 1.3 1.4 1.7	44 33 51 59 50	.1 <.1 .1 .1 .1	.1 .1 .8 .4 .3	.2 .1 .1 .1 .1	71 55 96 92 106	55 . 32 . 69 . 68 . 59 .	055 016 067 085 065	12 4 13 13 17	50.6 27.9 38.7 47.9 46.9	.25 .21 .33 .17 .34	146 93 298 292 174	.034 .119 .102 .023 .115	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i7 .01 15 .01 12 .01 13 .01 13 .01	12 .2 19 .1 18 .0 11 .1 18 .1	1 <.1 0 <.1 8 .1 4 .1 1 <.1	.03 .02 .03 .03 .03 .03	9.6 2.7 7.1 8.2 10.1	.1<.0 <.1<.0 .1<.0 .1<.0 .1<.0 <.1<.0	5 6 < 5 3 < 5 5 < 5 4 < 5 5 <	-5 -5 -5 -5 -5	30.0 30.0 15.0 15.0 30.0	
2005 25W 2005 25E 2005 50E 2005 75E 2005 100E	.4 .4 .6 .5	35.9 38.0 17.4 22.4 23.0	4. 4. 3. 6.	6 112 4 126 7 82 1 66 9 80	.1 .4 .1 .1 <.1	39.5 46.2 30.6 20.7 25.9	12.2 12.3 8.4 10.9 16.0	399 621 252 376 933	4.21 3.25 2.85 3.16 3.82	4.7 8.3 3.7 5.1 4.7	.3 .2 .6	.7 2.2 1.0 4.1 <.5	1.4 .9 1.0 1.3 1.0	51 58 39 42 35	.1 .1 .1 .1	.5 .6 .3 .2 .1	.1 1 .1 .1 .1 .1	100 . 87 . 75 . 87 . 75 .	55 . 75 . 49 . 62 . 92 .	080 142 046 069 072	16 9 8 9 17	50.0 37.3 44.4 51.5 89.9	.27 .24 .30 .60 1.54	147 223 169 179 337	.084 .054 .103 .212 .137	$ \begin{array}{c} 3 & 1.6 \\ 5 & 1.0 \\ 6 & 1.7 \\ 3 & 2.1 \\ 3 & 3.3 \\ \end{array} $	53 .01 19 .01 72 .01 17 .02 32 .01	17 .1 19 .0 19 .1 21 .1 12 .2	3.1 7.1 0.1 0.1 2<.1	L .02 L .04 L .01 L .02 L .03	10.1 6.5 6.4 5.6 7.3	<.1<.0 <.1<.0 .1<.0 <.1<.0 <.1<.0	5 5 < 5 4 < 5 6 < 5 6 < 5 10 <	<.5 <.5 <.5 <.5	30.0 30.0 30.0 30.0 15.0	
300S 100W 300S 75W 300S 50W 300S 25W STANDARD DS6	.3 .3 .6 .5 11.7	36.1 29.4 16.0 18.7 124.2	4. 3. 3. 5. 28.	0 78 9 92 6 84 1 77 6 145	.1 <.1 <.1 <.1 .3	38.5 50.8 29.3 39.2 23.2	13.1 12.7 8.6 10.5 10.4	360 331 333 369 725	3.80 5.32 3.36 4.11 2.86	6.2 7.2 3.0 3.9 22.0	4 3 2 4 6.6	<.5 <.5 <.5 .6 48.0	1.2 1.6 1.0 1.5 2.9	29 35 34 44 38	.1 <.1 .1 .1 6.1	.2 .2 .2 .4 3.4	.1 .1 .1 .1 1.8	92 . 131 . 89 . 108 . 57 .	45 . 31 . 39 . 47 . 87 .	.082 .124 .079 .057 .079	20 24 15 11 14	55.4 86.1 45.6 55.5 183.0	.26 .15 .19 .35 .55	84 69 96 119 173	.025 .005 .076 .173 .073	5 1.8 5 1.2 4 1.1 1 1.6 18 1.8	51 .01 22 .00 15 .03 53 .02 38 .00	12 .1 09 .0 13 .1 22 .0 65 .1	2 <.1 7 <.1 1 <.1 8 <.1 7 3.5	1 .03 1 .02 1 .02 1 .02 1 .02 5 .23	8.0 11.7 5.9 8.3 3.4	<.1<.0 <.1<.0 <.1<.0 <.1<.0 1.7<.0	5 5 < 5 4 < 5 4 < 5 5 < 5 6 4	<.5 <.5 <.5 <.5	15.0 15.0 30.0 15.0 30.0	
GROUP 1DX - (>) CONCENT - SAMPLE TY Data	30.0 RATIC PE: S FA	IGM INEX IOIL	SAMP Ceed SS80	LE LI S UPI 60C I	EACHE PER 1	ED WIT IMITS Samp S RE	TH 18 S. S Les b	0 ML OME M egint VED:	2-2- IINER ning	2 HCL ALS M 'RE' OV 1	-HNC IAY B are 2004	I3-H2 E PA <u>Reru</u> D	D AT RTIA <u>ns a</u> ATE	95 LLY nd /	DEG. ATTA <u>RRE (</u> SPO)	, C F ACKED <u>' are</u> R T]	OR (). <u>e Re</u>	ONE REFR, ject	KOUF ACTO <u>Rer</u> D::.	R, DI DRY A runs.		ED TO GRAPH	600 1111C	ML, SAM	ANAL PLES	YSED I Can Li	BY IC Imit	XP-MS AU S	OLUB	11.111			ð.L	ò/	E	

Data / FA

l

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

RECON.

Clarence Leon

4,

.

and the second second

Page 2

Data 🖊 FA

	·· ·· ·																											a				<u></u>	KIME ANALYTICAL
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V Cá	3	ΡLa	C	r Ho) Ba	Τi	B A1	Na	K	W	Hg	Sc	T1 S	Ga Se	Sample
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	*	ppm p	pm	ppb	opm p	ipm p	pm p	ibau b	opm pp	m 3	5 	% ppm	pp	¥ m	s ppm	*	ppm %	*	*	ppm p	pm p	opm p	pm \$	spon ppm	ġm.
G-1 300S 25E 300S 50E 300S 75E 300S 100E	1.6 2.0 .8 .8 .4	3.7 40.5 27.8 33.0 31.2	1.9 6.2 10.5 15.8 7.1	44 116 130 98 98	<.1 .5 <.1 .1 .1	4.4 100.8 31.6 26.5 31.0	4.4 25.6 30.3 28.0 15.9	597 658 2166 1752 697	1.81 6.82 3.83 3.25 3.61	<.5 1 14.4 6.4 6.0 2.9	.5 .2 .3 .6 .7	.5 (9.1) <.5) 1.0 .5 (3.5 1.3 1.2 .9 1 1.2	70 < 44 40 102 56	•.1 < .1 .3 .4 .1	.1 .8 .1 .1 .1	.1 4 .1 15 .1 7 .1 8 .1 8	4 .53 9 .87 6 .58 0 1.20 8 .98	3 .0 7 .1 3 .1 3 .1 3 .0	79 6 02 21 11 25 28 13 86 14	12 77 82 69 97	8 .50 1 .35 8 1.00 5 1.20 2 1.40) 261 328) 255) 401) 322	.127 .072 .055 .186 .229	3 .88 8 1.98 3 2.71 3 3.24 3 3.17	.061 .012 .010 .009 .011	.67 .18 .17 .27 .18	1.4<. .1 . .1 . .1 .	01 2 05 13 04 6 09 5 02 7	2.0 3.4 1.1 5.9 7.7 <	.4 .06 .1 .17 .1<.05 .1 .09 .1<.05	5 <.5 6 <.5 10 <.5 9 .8 10 <.5	30.0 15.0 30.0 30.0 15.0
400S 100W 400S 75W 400S 50W 400S 25W 400S 25E	.5 .5 .4 2.0	33.2 52.2 13.2 32.6 64.3	5.5 3.0 3.3 4.6 10.5	77 81 65 98 184	.2 <.1 <.1 .1 .3	29.5 66.3 26.6 48.8 106.2	14.8 16.1 6.1 16.4 32.5	657 316 200 516 1632	4.00 5.60 3.20 4.47 6.46	9.2 6.7 7.4 6.7 25.9	.3 .3 .2 1 .4 .3 1	2.4 1 .5 1 1.9 2.3 1 4.8 1	L.1 L.6 .9 L.5 L.3	31 38 < 32 < 36 90	.1 .1 .1 .1 .3 1	.3 .3 .1 .3	.1 10 <.1 14 .1 11 .1 11 .1 16	2 .50 6 .58 2 .27 8 .71 5 .99) .0 3 .0 7 .0 1 .1 5 .1	76 21 85 29 91 15 56 21 65 20	45. 96. 52. 67. 92.	6 .19 5 .31 7 .09 0 .30 4 .31) 106 101 115 183 423	.031 .019 .018 .025 .065	5 1.19 5 1.60 6 .96 4 1.47 10 1.82	.008 .009 .010 .010 .010	.09 .10 .04 .12 .33	<.1 . .1 . .1 . <.1 . .1 .	02 E 01 17 01 7 03 12 04 19	1.5 < 1.1 < 1.1 < 1.8	.1<.05 .1<.05 .1<.05 .1<.05 .1.06 .2<.05	4 <.5 5 <.5 4 <.5 7 <.5 5 <.5	15.0 15.0 15.0 30.0 30.0
400S 50E 400S 75E 400S 100E 500S 100W 500S 75W	1.0 .6 .3 .6	23.6 28.9 19.0 27.1 30.7	7.4 11.7 5.4 5.2 3.9	81 92 74 62 91	.1 .1 .1 .1	29.7 27.1 24.4 45.8 44.5	17.0 17.8 10.1 16.9 15.1	1101 2034 590 346 731	3.24 3.30 2.65 4.73 3.43	3.4 5.7 1.7 5.1 3.7	.3 .6 .5 .3 .3	<.5 1.3 .6 1.2 <.5	.8 1.5 1.3 1.4 1.3	45 57 60 36 56	.2 .3 .1 .2	.2 .1 .2 .3	.1 7 .1 7 .1 5 .1 11 .1 8	4 .79 8 .83 7 .80 2 .49 0 .74	9 .0 3 .1 9 .0 9 .0	79 19 10 11 74 9 49 21 86 14	56. 73. 57. 57. 66.	5 .90 9 .77 9 .51 7 .19 5 .63) 161 / 255 178 140 148	.044 .157 .140 .032 .105	4 2.00 3 3.49 6 2.48 3 1.16 2 1.97	.012 .011 .023 .009 .027	.20 .18 .16 .09 .15	.1 . .1 . .1 . .1 . <.1 .	04 6 06 7 02 5 04 10 03 8	5.7 < 2.7 5.9 < 0.4 < 8.8 <	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	6 <.5 10 <.5 8 <.5 4 <.5 6 4 <.5 6 <.5	15.0 30.0 30.0 30.0 30.0 30.0
500S 50W 500S 25W 500S 25E 500S 50E 500S 50E 500S 75E	.7 .4 1.0 .7	49.3 21.1 41.8 15.8 18.0	6.4 5.7 6.4 3.9 3.8	98 84 115 46 43	.1 .1 .1 .1	65.3 40.8 54.7 19.2 23.3	21.2 11.8 23.1 9.1 11.2	566 351 1271 432 570	5.88 3.97 5.52 2.58 2.56	10.8 5.7 16.4 3.1 2.1	.3 .3 6 .2 .3 .5 1	2.7 57.5 3.3 .8 .6.3	L.5 L.4 L.0 L.1 L.1	56 34 55 43 42	.1 .1 .2 1 .1 .1	.6 .8 .4 .3 .2	.1 15 .1 9 .1 12 .1 8 .1 6	5 .71 1 .57 0 .7(0 .5(4 .6(L .0 7 .04 0 .1 0 .0 0 .0	93 28 84 19 33 13 39 10 33 13	70. 47. 63. 39. 45.	4 .29 6 .22 1 .22 8 .33 1 .51) 337 2 151 2 243 3 100 108	.034 .052 .023 .150 .117	6 1.33 5 1.37 7 1.13 1 1.04 2 1.32	.011 .014 .008 .020 .019	.08 .10 .36 .17 .19	.1 . .1 . .1 . .1 . <.1 .	04 17 05 10 05 10 05 10 02 5 04 5	7.0).0).4 5.6 <	.1 .08 .1<.08 .1<.08 .1<.08 .1<.08	4 .6 5 <.5 4 <.5 3 <.5 4 <.5	15.0 15.0 30.0 30.0 15.0
500S 100E RE 500S 100E 600S 100W 600S 75W 600S 50W	.5 .5 .3 .4	19.8 23.0 21.1 31.1 38.0	3.5 3.9 4.3 3.9 6.3	44 51 71 70 106	.1 .1 .1 <.1	23.5 23.4 26.1 37.2 54.2	11.4 11.6 9.6 13.2 26.0	548 537 427 375 1088	2.67 2.59 3.05 4.13 5.80	2.0 1.8 3.0 5.4 9.0	.6 .5 .3 .4 .2	<.5 .7 <.5 <.5 6.8	1.2 1.2 1.3 1.3	59 59 36 31 24	.1 .1 .1 .1 .2	.2 .2 .3 .3	.1 5 .1 5 .1 7 .1 9 .1 12	8 .9(9 .85 6 .43 3 .43 2 .63	0 .0 5 .0 8 .0 2 .0 8 .1	34 15 35 16 44 14 66 17 20 23	56. 60. 39. 54. 65.	5.72 2.76 7.29 1.38 6.26	2 116 5 114 9 92 9 91 5 77	102 110 125 045 .008	3 1.45 <1 1.51 2 1.21 1 1.44 4 .96	.016 .016 .016 .013 .007	.19 .20 .16 .11 .13	<.1 . .1 . .1 . .1 . <.1 .	03 6 03 6 02 6 02 8 03 13	5.7 < 5.8 < 5.2 1.8 < 3.2 <	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 .6 6 <.5 4 <.5 6 <.5 5 < .5	7.5 7.5 30.0 30.0 15.0
600S 25W 600S 25E 600S 50E 600S 75E 600S 100E	.5 .7 .6 .6	35.3 32.1 33.9 22.7 19.7	4.0 4.0 3.6 4.3 4.1	59 79 85 53 51	.1 .1 <.1 .1 <.1	43.3 36.7 32.1 25.2 23.8	16.5 16.9 13.8 12.2 10.3	514 878 746 619 501	4.40 4.89 3.69 2.94 2.82	5.3 9.9 4.2 3.1 2.4	.3 .3 .4 .5 .5	4.0 2.0 1.0 2.4 .6	1.3 1.1 1.1 1.2 1.3	28 42 46 43 42	.1 .1 .1 .1 .1	.2 .4 .3 .2 .2	.1 10 .1 8 .1 7 .1 7 .1 7	8 .41 9 .52 1 .62 8 .55 6 .52	L .0 2 .0 7 .1 5 .0 2 .0	78 26 90 15 02 17 42 12 40 13	42. 58. 46. 43. 47.	8 .20 1 .37 8 .33 9 .44 2 .49) 113 7 152 3 204 9 97 9 99	.025 .036 .050 .141 .160	2 1.00 5 1.47 5 1.44 1 1.36 5 1.64	.007 .013 .014 .024 .023	.12 .17 .22 .22 .23	.1 . <.1 . .1 . <.1 . <.1 .	04 9 02 10 03 7 02 6 01 6).4).5 /.5 < 5.5 < 5.3	.1<.08 .1<.08 .1<.08 .1<.08 .1<.08	5 3 <.5 5 5 <.5 5 5 <.5 5 5 <.5 5 5 <.5	15.0 15.0 30.0 15.0 15.0
700S 100W 700S 75W 700S 50W 700S 25W STANDARD DS6	.4 .5 .3 11.6	15.9 23.0 32.9 39.8 125.9	4.1 4.7 3.8 5.1 29.4	60 64 76 98 136	.1 <.1 <.1 .3	23.7 26.4 41.4 64.8 24.5	9.5 10.4 14.6 22.1 11.2	472 545 578 940 721	2.68 3.14 4.03 5.63 2.89	1.9 2.0 3.7 4.1 22.5 (.3 .5 .4 .2 5.4	3.1 .9 .6 1.4 7.8	1.2 1.4 1.2 1.5 2.9	36 49 39 31 37 6	.1 .1 .1 .2 5.2 3	.1 .2 .2 .1	.1 6 .1 7 .1 9 .1 11 .1 11	4 .54 8 .80 6 .50 4 .99	4 .0 3 .0 3 .0 5 .1 7 .0	43 12 39 19 92 20 26 29 83 13	41. 48. 57. 92. 176.	7 .65 8 .55 1 .63 7 .56 9 .55	5 114 3 103 3 122 5 160 5 172	.113 .118 .051 .014 .074	1 1.63 2 1.94 2 1.60 10 1.48 17 1.83	.018 .019 .013 .010 .068	.09 .18 .17 .26 .17	<.1 . <.1 . <.1 . .1 . 3.4 .	.02 9 .03 7 .01 8 .03 19 .23 3	5.8 < 7.4 < 3.3 5.7 3.2 1	.1<.05 .1<.05 .1<.05 .1<.05 .1<.05	5 6 <.5 5 7 <.5 5 7 <.5 5 8 <.5 5 6 4.5	30.0 15.0 30.0 15.0 30.0

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

Data_AFA

AGE BIOCHTONE																	_																	
SAMPLE#	Мо ррп	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm j	Sr opmip	Cd S pm pr	Sb Bi xn ppr	V noppmr	Ca %	P %	La ppm	Cr p p n	Mg Ba Xippn	Ti 1 %	B ppm	A1 %	Na %	K %	W Ppm p	Hg pm p	Sc 11 pm ppm	S 1 %	Ga Se ppm ppm	Sample gm	- <u></u> -
G-1 700S 25E 700S 50E 700S 75E 700S 100E	1.8 .4 .5 .5 .6	2.5 25.2 25.2 27.6 25.7	1.9 3.5 5.0 3.5 4.0	40 55 69 50 60	<.1 <.1 <.1 .1 <.1	4.2 25.5 27.5 30.7 27.1	4.3 10.8 12.5 13.0 13.0	505 1 440 3 752 3 558 3 640 3	.83 .34 .35 .47 .37	<.5 3.7 3.3 3.3 3.4	1.5 .4 .4 .4 .5	<.5 5.3 <.5 1.1 <.5	3.5 1.3 1.2 1.2 1.3	73 < 51 < 48 42 < 51	<pre>.1 <. .1 <. .1</pre>	.1 .1 .3 .1 .3 .1 .3 .1 .3 .1	41 90 90 84 89	.46 .57 .58 .52 .53	.080 .054 .055 .041 .060	6 13 14 15 13	13.6 52.5 51.8 49.8 52.1	.53 240 .40 136 .42 129 .45 100 .48 96	,122 ,136 ,115 ,115 ,115 ,140	2 4 3 2 4	.92 1.53 1.44 1.53 1.48	.062 .027 .022 .024 .024	.50 .16 .22 .19 .19	1.6<. <.1 . .1 . .1 .	01 2 01 8 02 7 02 7 01 7	.0 .3 .0 <.1 .4 <.1 .8 <.1 .5 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 4 <.5 4 <.5 5 <.5 4 <.5	30.0 30.0 30.0 30.0 30.0 30.0	
8005 100W 8005 75W 8005 50W 8005 25W 8005 25E	.3 .4 .5 .4	29.8 30.1 28.0 18.8 24.9	4.1 5.6 5.0 4.8 3.9	62 62 46 50 74	.1 .1 .1 .1 .1	30.2 27.9 27.5 24.1 27.3	13.7 15.7 13.3 11.6 11.8	572 3 1047 3 746 3 678 2 584 3	.38 .32 .15 .68 .10	4.1 2.9 2.9 2.0 3.0	.5 .6 .3 .3 .5	1.1 <.5 1.5 1.1 <.5	1.4 1.6 1.5 1.2 1.3	53 59 67 55 66	.1 .2 .1 .1	.3 .1 .2 .1 .2 .1 .2 .1 .2 .1	93 80 71 70 92	.58 .96 .87 .63 .54	.060 .070 .029 .044 .048	15 14 17 12 14	49.9 48.9 48.5 43.0 52.1	.54 121 .61 191 .71 154 .55 129 .49 113	.135 .138 .103 .120 .120	3 5 7 2 3	1.65 1.96 1.83 1.35 1.58	.025 .023 .023 .022 .022 .027	. 18 . 26 . 20 . 20 . 20 . 24	<.1 . .1 . <.1 . .1 . <.1 .	02 8 02 8 02 8 02 5 02 7	.1 <.1 .1 <.1 .0 <.1 .8 <.1 .5 <.1	<.05 <.05 <.05 <.05 <.05	6 <.5 7 <.5 6 <.5 4 <.5 5 <.5	30.0 15.0 15.0 15.0 30.0	
800S 50E 800S 75E 800S 100E RE 800S 100E STANDARD DS6	.4 .5 .5 11.5	23.7 24.0 24.1 22.7 123.1	3.9 4.1 3.9 3.9 28.6	56 69 60 58 141	<.1 .1 <.1 .1 .3	29.2 27.6 28.5 26.1 24.1	12.7 13.9 11.8 11.2 10.7	614 3 759 2 711 3 626 2 702 2	.13 .95 .00 .98 .88	2.5 2.7 2.8 2.7 21.3	.5 .5 .4 .5 6.5	6.2 <.5 <.5 1.0 46.9	1.3 1.3 1.2 1.2 2.8	53 < 65 49 53 36 5	.1 .1 .1 .1 .9 3	.2 <.1 .2 <.1 .2 <.1 .2 <.1 .4 4.1	84 76 82 84 53	.54 .62 .59 .57 .85	.052 .050 .056 .056 .085	12 14 13 13 12	53.8 51.9 53.7 54.7 188.3	.49 101 .53 133 .42 99 .44 102 .57 164	.131 .129 .124 .137 .073	4 4 2 3 18	1.58 1.69 1.37 1.65 1.86	.025 .022 .024 .025 .067	. 27 . 23 . 16 . 15 . 16	.1. .1. <.1. .1. 3.7.	01 6 01 7 01 7 02 7 23 3	.7 <.1 .0 <.1 .4 <.1 .3 <.1 .2 1.6	< 05 < 05 < 05 < 05 < 05	4 <.5 5 <.5 5 <.5 4 <.5 6 4.5	30.0 30.0 7.5 7.5 30.0	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACM	I ANA (IS	• •	FIC/	LL L Acc	ABC red	RA'	ror ed	IE Co	8, I .)	TD.		8	52	K . 1	LAST	ING	8 9 T	Ť. 1	/* NC	OUV	BR	BC	¥62	1 1 R	5	F	HON	E (6()4):	259-	315	8 F.	AX (604 [•]	75	3-17	16	
							<u> </u>	ma	<u>de</u>	<u>n)</u>	<u>tin</u>	era	Gr 18 750	Lt.	160 1. 1.	PRC)JE(ANA CT	MRI	15 <u>'05-</u>		RLL Fi	1e	# 2	1 150:	164 Balo	5	Pa	nge	1						3) 		
Sample#	P	Mo pin	Cu ppm	Pb ppm	Zn ppm	A PP	g m p	Ni pm	Co ppnr	Mn ppm	Fe %	As ppra	U ppm	Au ppb	Th	Sr ppm	Cđ ppm	Sb ppm	B1 ppm	vote V ppm	Ca X	P X	La ppm	Cr ppm	Mg t	Barco Ba ppm	Ti X	B ppm	A1 X	Na X	K S	W ppm	Hg ppm	Sc ppm	T1 ppm	S X	Ga ppm	Se ppm
G-1 15000N 6000E 15000N 6050E 15000N 6100E 15000N 6150E	1	.0 .3 .4 .5	2.9 20.8 12.5 27.9 12.6	3.3 3.6 4.5 5.2 4.2	46 53 37 56 58	V V V V	1 8 1 23 1 14 1 26 1 13	1.1 1.5 1 1.2 1.0 1	4.2 10.7 7.5 11.6 6.5	512 408 281 799 405	1.82 2.98 2.19 2.97 2.15	.5 2.2 .9 1.7 .7	2.0 .5 .4 .9 .3	<.5 1.5 <.5 .8 1.1	4.2 1.5 1.2 1.7 1.1	71 84 48 90 46	<.1 .1 <.1 .1 <.1	<.1 .2 .1 .2 .1	.1 .1 .1 .1	36 85 65 78 63	.53 .66 .40 .90 .36	.077 .037 .012 .033 .036	8 12 6 18 4	106.3 43.1 32.7 44.1 30.6	.61 .62 .38 .67 .36	231 74 64 105 78	.125 .142 .147 .146 .161	1 1 1 1 <1 1 2 2 1 1	1.32 1.43 1.21 2.18 1.13	. 192 . 029 . 033 . 031 . 024	.67 .18 .07 .14 .15	.3 <.1 <.1 <.1 <.1	<.01 .18 .03 .05 .03	7.3 6.9 4.6 7.5 4.2	.4 <.1 <.1 <.1 <.1	<.05 <.05 .06 <.05 <.05	5 4 3 5 3	<.5 <.5 <.5 <.5 <.5
15000N 6200E 15000N 6250E 15000N 6300E 15000N 6350E 15000N 6400E		.4 .4 .3 .4	10.9 13.3 12.8 19.1 15.5	5.5 6.0 5.2 4.2 3.6	99 63 60 60 37	くくくく ・	1 17 1 17 1 18 1 24 1 17	.7 .9 .6 .7 1 .9	7.3 7.2 7.4 10.2 7.6	702 466 353 388 281	2.16 2.29 2.54 3.27 2.55	1.1 .9 .6 1.0 1.3	.3 .4 .4 .5 .4	1.0 1.1 <.5 1.2 .6	1.3 1.6 1.5 2.0 1.4	50 65 67 90 97	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1 .1	58 60 74 97 74	.34 .37 .40 .58 .79	.048 .036 .028 .033 .044	4 6 5 13 9	31.8 31.6 38.8 47.5 39.9	.35 .43 .40 .60 .40	108 92 86 68 63	.177 .170 .208 .215 .199	<1 2 2 1 1 1 1 1 3 1	2.02 1.75 1.84 1.94 1.32	.020 .021 .027 .034 .044	.12 .10 .12 .13 .24	<.1 <.1 <.1 <.1 <.1	.02 .07 .03 .06 .03	4.1 4.7 5.1 8.8 5.7	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 4 5 4	<.5 <.5 <.5 <.5 <.5
15000N 6450E 15000N 6500E 15000N 6550E 15000N 6600E 15000N 6650E		.4 .3 .3 .3 .4	22.0 23.6 13.0 14.0 13.3	4.8 4.1 3.7 4.7 5.2	81 58 110 71 67	· · · · · · · · · · · · · · · · · · ·	1 26 1 23 1 13 1 17 1 16	.8 1 .4 1 .7 .9	1.9 1.9 6.3 7.5 7.7	724 569 579 544 449	2.98 3.10 2.39 2.26 2.61	1.0 1.8 1.5 .8 .7	.4 .4 .2 .3	.6 .8 .8 <.5 .5	1.7 1.0 .7 1.0 1.4	105 90 45 72 78	.1 .1 <.1 .1 .1	.1 .1 .1 .1	.1 <.1 .1 .1	79 86 59 55 69	.94 .89 .35 .47 .42	.112 .096 .095 .091 .045	8 9 4 4 4	44.6 38.8 27.8 32.0 36.3	.60 .78 .29 .44 .45	105 94 142 134 111	.149 .145 .141 .163 .201	5 1 4 1 1 1 4 1 1 1	1.92 1.86 1.64 1.94 1.66	.035 .031 .023 .024 .026	.21 .11 .13 .15 .16	<.1 <.1 <.1 <.1 <.1	.03 .05 .01 .02 .02	7:6 6.2 3.8 4.0 5.0	<.1 <.1 <.1 <.1 <.1	.07 <.05 <.05 <.05 <.05	5 5 4 5 5	<.5 <.5 <.5 <.5 <.5
15000N 6700E 15000N 6750E 15000N 6800E 15000N 6850E 15000N 6900E		.4 .2 .4 .3	11.1 14.1 48.5 17.9 26.3	4.8 4.0 4.7 4.2 4.0	65 34 39 36 46	<.	1 14 1 16 2 25 1 19 1 24	.2 .1 .0 .1	5.3 8.1 9.4 9.5 10.6	293 269 425 420 520	2.26 2.66 2.60 2.60 2.94	.8 1.0 1.4 .9 1.7	.3 .3 .2 .3 .3	<.5 <.5 18.3 7.7 <.5	1.1 1.1 1.2 1.4 1.4	67 88 140 106 124	.1 <.1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1 .1	63 75 58 80 84	.40 .43 1.52 .71 1.06	.050 .039 .038 .016 .046	3 7 17 9 11	31.8 35.8 37.8 39.4 39.9	.34 .38 .89 .44 .64	74 84 101 90 78	.185 .188 .122 .204 .197	2 1 2 1 12 2 5 1 5 1	1.68 1.53 2.18 1.56 1.89	.022 .033 .031 .046 .042	.19 .11 .09 .10 .12	<.1 <.1 <.1 <.1 <.1	.02 .03 .04 .03 .03	3.9 5.0 6.7 5.8 6.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 .07 <.05 <.05	4 6 4 5	<.5 <.5 <.5 <.5 <.5
15000N 6950E 14800N 6000E 14800N 6050E 14800N 6150E 14800N 6150E		.4 .3 .4 .4	26.4 17.3 13.3 15.3 16.9	4.3 4.0 4.7 4.8 3.9	44 49 57 59 61		1 21 1 21 1 17 1 16 1 19	.9 .2 .3 .4	9.7 9.4 8.0 7.9 9.0	541 356 344 581 454	2.55 3.07 2.72 2.62 2.79	1.7 1.4 1.2 1.2 1.2	.3 .4 .3 .3	<.5 .6 <.5 3.4 3.2	1.0 1.5 1.1 1.0 1.4	135 70 56 73 68	.1 .1 <.1 .1 .1	.1 .2 .1 .1 .1	.1 .1 .1 .1 <.1	68 88 82 79 78	1.26 .49 .40 .52 .48	.049 .037 .056 .058 .046	11 8 4 4 7	36.4 45.5 39.6 37.5 42.7	.56 .59 .41 .41 .51	74 69 76 97 80	.150 .195 .204 .224 .175	7 1 1 1 <1 1 1 1 1 1	1.69 1.63 1.54 1.43 1.42	.033 .033 .028 .030 .031	.13 .09 .14 .14 .15	<.1 <.1 <.1 <.1 <.1	.04 .06 .03 .04 .04	5.7 7.2 4.7 4.6 6.3	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 5 4 4	<.5 <.5 <.5 <.5 <.5
14800N 6200E 14800N 6250E RE 14800N 62 14800N 6300E 14800N 6350E	50E	33333	21.6 14.4 14.9 16.2 24.4	4.5 4.8 5.0 4.1 3.8	44 68 73 61 81		1 18 1 19 1 19 1 19 1 35	1.3 1.5 1.6 1.1 1.5 1	8.4 7.2 7.2 8.8 15.2	465 323 320 451 816	2.86 2.57 2.61 2.92 3.22	1.3 1.5 1.5 1.6 2.3	.5 .3 .4 .4	1.7 .9 .6 <.5 5.4	1.3 1.3 1.3 1.2 1.1	84 62 64 78 82	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1 <.1	76 68 66 78 63	.81 .44 .45 .50 .76	.031 .070 .072 .077 .188	10 4 5 12	38.4 38.5 37.9 40.0 38.8	.45 .43 .43 .54 1.10	75 94 96 103 251	.165 .179 .182 .160 .048	2 1 <1 2 1 2 1 1 1 2	1.79 2.08 2.17 1.93 2.56	.033 .022 .024 .026 .013	.09 .15 .16 .12 .16	<.1 <.1 <.1 <.1 <.1	.04 .04 .09 .04 .05	5.6 4.7 4.6 5.6 6.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	5 6 5 8	<.5 <.5 <.5 <.5 <.5
14800N 6400E 14800N 6450E 14800N 6500E 14800N 6550E 14800N 6600E		.3 .3 .4 .4	15.4 22.6 13.2 16.7 17.6	4.7 3.5 4.4 3.8 4.3	48 56 49 72 60		1 14 1 24 1 14 1 24 1 24	.1 .0 .8 .6 .2	8.0 10.2 7.3 9.6 9.6	418 323 259 417 782	2.66 3.46 2.87 3.06 2.42	1.4 2.2 1.4 2.1 1.8	.4 .5 .3 .3	<.5 .8 <.5 <.5 <.5	1.1 1.4 1.1 1.2 1.1	60 89 52 81 75	<.1 .1 .1 .1	.1 .1 .2 .1	.1 <.1 .1 .1 .1	74 100 74 83 58	.53 .56 .40 .60 .54	.033 .060 .026 .051 .206	7 9 4 8 7	34.0 44.2 36.3 43.1 40.3	.44 .70 .37 .56 .58	94 87 75 131 191	.169 .163 .171 .165 .134	1 1 1 2 2 1 2 1 3 1	1.59 2.00 1.22 1.66 1.98	.029 .028 .024 .030 .022	.12 .13 .13 .15 .09	<.1 <.1 <.1 <.1 <.1	.03 .12 .03 .03 .03	4.7 7.6 4.4 6.3 4.8	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	5 6 4 5 6	<.5 <.5 <.5 <.5 <.5
STANDARD DSG GROL (>) - SA	JP 1DX CONCEN AMPLE T	. 3 1 - 1! ITRA YPE	.25.4 5.00 TION : SOI	29.6 GN S EXCE	146 AMPL EDS 80 6	E LE Uppe Oc	3 24 Each Er L	IED ¹ IMI Sam	WITH TS. ples	688 90 50M beg	2.89 ML 2 E MII Innii	21.0 -2-2 NERAL	6.6 HCL-I SMA E'a	48.2 HNO3- Y BE re Re	2.9 H2O A PARTI runs	38 AT 95 ALLY and	6.1 DEG ATT 'RRE	3.5 . C F ACKED ' are	4.9 OR OF Reje	55 IE HO EFRAC	.82 UR, I TORY erun	.075 DILUT AND	13 ED T GRAP	182.9 0 300 HITIC	.58 ML, SAMP	163 ANAL	.077 Ysed Can L	<u>17 1</u> By IC Imit	1.95 :P-NS AU S	.074 5. Solubi		3.6	.23	3.3 2 .1	1.7 Č	<.05		4.1
Data All r	esults	FA ar	e cor	ns i de	D red	DAT! the	B R	EC	BIV enti	BD:	A	UG 16 •ty o	20 0 f th	5 I ecli	ATE	RE Acme	POR	T MJ	the l	D: D:		79.U es fo	3 	tual d	ost -	of ti	ne and	alysi	s on	ly.	4			rence	e Le			<i>?</i>

AA
ACHE ANALYTICAL

AMPLE#	Mo	Cu	Pb DDM	Zn opm	Ag	Ni	Co DOM	Mri Dom	Fe X	As	U maa	Au daa	Th Thorn	Sr DDM	Cd 1700	Sb DDM	Bi DOM	V	Ca %	P \$	La	Cr DDM	Mg X	Ba DDM	Ti X	B	A]	Na X	K	W	Hg	Sc	T]	S 2	Ga	Se
4800N 6650E 4800N 6700E 4800N 6750E 4800N 6800E 4800N 6850E	.4 .3 .3 .4 .3	14.5 16.6 23.7 9.1 13.0	4.8 5.3 4.8 3.6 4,1	80 66 77 75 93	.1 .1 .1 <.1 <.1	75.3 48.5 67.1 20.3 30.4	21.0 14.7 20.3 6.3 9.1	632 620 647 475 482	3.83 2.91 3.99 1.43 2.13	2.2 2.8 1.8 1.2 1.0	.4 .6 .3 .3	<.5 1.4 56.5 2.2 1.1	.9 1.2 1.1 .8 1.1	31 87 46 54 72	.1 .1 .1 .2 .1	.2 .3 .3 .1 .1	.1 .1 .1 .1 .1	93 75 96 37 46	.61 .81 .91 .50 .57	.071 .096 .066 .081 .187	7 8 11 4 6	156.3 90.6 126.6 31.4 31.4	2.22 1.87 2.99 .71 1.05	64 88 58 74 113	.281 .301 .352 .139 .130	2 2 3 2 1 3 3 1 4 2	.86 .95 .56 .62 .57	.012 .014 .014 .015 .016	.05 .09 .09 .07 .08	.1 .1 .1 .1 .1 .1	.02 .02 .02 .02 .02 .02 .03	8.0 7.0 8.5 3.2 3.6	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05 <.05	11 10 13 6 8	<.5 <.5 <.5 <.5 <.5 <.5
4800N 6900E 4800N 6950E 4800N 7000E E 14800N 7000E 4600N 6000E	.5 .3 .4 .5	20.3 22.9 36.6 37.1 11.4	5.5 4.8 7.5 7.8 4.2	68 47 91 95 71	.1 .1 .1 .1 .1	25.5 25.2 69.1 66.3 8.5	11.8 8.8 20.7 21.3 4.2	808 439 1584 1611 573	2.96 2.66 3.56 3.59 1.90	1.5 1.3 3.1 3.1 .7	.6 .5 .6 .2	<.5 1.6 .9 .8 1.0	1.5 1.2 1.8 1.7 .5	71 66 181 189 39	.2 .1 .2 .2 .1	.1 .2 .1 .1	.1 .1 .1 .1	92 80 74 77 1 57	.66 .71 .95 .00 .28	.041 .036 .110 .113 .038	13 11 13 13 2	50.3 46.1 68.4 70.1 31.2	.77 .55 1.46 1.56 .21	97 73 100 104 98	.218 .207 .167 .168 .140	1 2 2 2 2 5 2 5 1 1	.30 .08 .22 .65 .12	.027 .028 .017 .018 .031	.15 .10 .15 .16 .09	.1 .1 .1 <.1	.02 .03 .05 .05 .03	7.5 5.2 8.5 8.5 2.8	<.1 <.1 .1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	7 6 15 15 4	<.5 <.5 <.5 <.5 <.5
4600N 6050E 4600N 6100E 4600N 6150E 4600N 6200E 4600N 6250E	.5 .4 .6 .4	10.6 12.0 17.0 22.5 13.5	5.9 5.6 5.1 4.5 4.3	77 60 87 53 72	<.1 .1 .1 .1	14.9 16.1 23.3 26.6 18.3	6.7 7.3 10.7 12.5 8.4	535 254 751 654 476	2.37 2.40 3.07 3.32 2.73	1.4 1.4 2.1 1.8 1.3	.3 .3 .4 .5 .3	<.5 1.1 1.6 .7 .8	.9 1,1 1.4 1.5 1.1	53 50 78 113 46	<.1 .1 .1 .1	.2 .3 .2 .2	.1 .1 .1 .1	63 65 85 90 77	.33 .34 .60 .77 .43	.053 .047 .068 .064 .049	2 3 6 12 5	34.6 42.4 52.8 57.0 42.7	.42 .53 .72 .86 .55	119 97 117 174 144	.160 .183 .173 .161 .154	1 2 1 1 2 2 4 2 2 1	. 16 . 79 . 11 . 37 . 82	.020 .021 .025 .036 .024	.09 .07 .23 .14 .15	<.1 <.1 <.1 <.1 <.1	.03 .03 .04 .03 .03	3.5 4.2 6.6 7,4 5.0	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 6 7 5	<.5 <.5 <.5 <.5 <.5
4600N 6300E 4600N 6350E 4600N 6400E 4600N 6450E 4600N 6500E	.5 .4 .4 .4	19.2 15.3 17.3 14.8 25.5	4.8 4.5 4.6 4.2 3.5	57 49 66 87 96	.1 .1 <.1 <.1 <.1	26.6 19.9 33.6 23.9 48.0	11.0 8.8 11.3 8.4 12.0	523 355 376 351 376	3.20 3.01 3.67 3.19 4.46	1.9 1.3 2.1 2.8 20.0	.5 .4 .5 .3	9.0 <.5 .5 2.7 <.5	1.3 1.1 1.2 .9 1.5	93 63 54 33 33	.1 .1 <.1 .1	.1 .2 .2 .4	.1 .1 .1 .1	88 86 103 85 98	.67 .54 .46 .34 .48	.068 .035 .039 .041 .085	9 8 5 4 17	49.8 44.9 61.9 55.4 70.4	.76 .61 .93 .54 .24	127 75 109 107 137	. 165 . 176 . 218 . 141 . 021	52 11 12 21 71	. 21 . 81 . 28 . 49 . 80	.034 .033 .022 .023 .011	.13 .07 .08 .06 .12	<.1 <.1 <.1 <.1	.03 .03 .03 .03 .03 .02	6.2 5.5 6.3 3.9 11.0	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	7 6 8 5 6	<.5 <.5 <.5 <.5 <.5
4600N 6550E 4600N 6600E 4600N 6650E 4600N 6700E 4600N 6750E	.5 .4 .5 .2	14.5 24.9 38.0 16.5 8.8	5.0 4.1 5.5 5.3 4.0	91 129 94 83 61	<.1 .1 .1 <.1	30.8 36.1 29.5 38.7 20.0	8.8 10.8 12.3 11.9 6.8	413 775 1100 610 303	3.18 3.50 2.96 2.54 1.94	3.6 9.5 5.8 2.2 .9	.3 .5 .4 .3	6.6 .5 .5 4.4 <.5	.9 1.3 1.0 1.0 .6	33 41 84 70 27	.1 .1 .8 .4 .1	.3 .3 .2 .1	.1 .1 .1 .1	91 69 67 74 54	.40 .56 .54 .56 .31	.028 .106 .191 .087 .029	9 14 17 6 3	43.6 57.7 69.5 45.5 34.5	.37 .40 .84 1.05 .66	210 143 187 109 73	.126 .091 .052 .232 .170	21 52 62 23 12	.68 .02 .12 .04 .01	.021 .017 .012 .016 .018	.05 .19 .16 .09 .06	<.1 <.1 .1 .1 <.1	.03 .02 .05 .02 .02 .01	5.2 9.3 7.7 5.2 3.9	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	5 6 7 9 6	<.5 <.5 <.5 <.5 <.5
4600N 6800E 4600N 6850E 4600N 6900E 4600N 6950E 4600N 7000E	.3 .3 .4 .5	26.1 25.2 32.7 20.3 18.8	5.3 9.7 6.8 4.2 6.5	83 106 91 46 89	.1 .1 .1 .1 <.1	43.6 39.6 42.8 23.4 30.8	16.3 14.6 14.7 8.5 12.6	567 1276 1535 351 1364	3.71 3.07 2.46 2.80 3.16	2.1 2.1 3.8 1.8 1.5	.9 .7 .4 .5	25.1 3.4 12.8 7.2 <.5	1.3 1.3 1.2 1.1 1.4	60 65 247 74 67	.1 .2 .2 .1 .2	.2 .2 .1 .2	.1 .1 .1 .1	99 1 79 53 1 89 103	1.07 .89 1.55 .72 .62	.084 .100 .237 .087 .051	10 11 10 7 10	113.4 80.4 61.8 48.2 63.9	1.57 1.38 1.07 .59 .65	87 139 150 74 140	.317 .255 .139 .189 .248	4 3 6 3 10 3 2 1 2 2	. 92 . 52 . 24 . 94 . 52	.014 .019 .016 .030 .016	.17 .19 .20 .12 .12	.1 .1 <.1 <.1 <.1	.02 .04 .09 .03 .03	9,5 7.6 5.3 5.2 6.7	<.1 .1 .1 <.1 .1	<.05 <.05 <.05 <.05 <.05	13 11 9 5 7	<.5 <.5 <.5 <.5 <.5
4400N 6000E 4400N 6050E 4400N 6100E 4400N 6150E TANDARD DS6	.3 .3 .3 11.8	20.4 17.1 14.7 15.6 124.7	4.4 5.6 5.4 5.0 29.7	95 72 75 92 149	.1 .1 <.1 <.3	29.2 22.3 27.2 28.5 24.9	12.9 9.2 16.2 16.3 10.7	615 424 523 521 708	3.16 2.92 3.81 3.92 2.78	2.0 2.4 3.1 71.9 21.3	.6 .7 .7 .5 6.8	2.0 .6 1.2 .9 46.5	1.5 1.6 1.5 1.2 3.1	86 62 68 43 37	.1 <.1 .1 .1 6.2	.2 .1 .1 3.8	.1 .1 .1 5.1	79 84 118 110 56	.60 .56 .68 .56 .84	.088 .047 .041 .044 .085	10 10 8 5 14	63.8 50.9 68.2 71.7 181.4	1.04 .68 1.56 1.63 .61	115 123 89 105 169	.148 .187 .346 .235 .074	3 2 3 2 3 2 <1 2 15 2	. 41 . 21 . 56 . 59 . 03	.023 .034 .015 .018 .076	.23 .10 .08 .12 .16	<.1 <.1 <.1 3.7	.03 .03 .01 .01 .24	6.7 6.3 10.2 8.5 3.5	<.1 <.1 <.1 <.1 1.7	<.05 <.05 <.05 <.05 <.05	7 6 9 6	<.5 <.5 <.5 <.5 4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data LFA

Page 2

Page 3

																																		CINCAL	
Sample#	Mo ppm	Cu ppm	РЬ ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca រ	P \$	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B / ppm	1 Na X 2	1 K	W ppm	Hg ppm	Sc ppm	T1 ppm	S #	Ga ppm	Se ppm
14400N 6200E 14400N 6250E 14400N 6300E 14400N 6350E 14400N 6400E	.3 .3 .3 .3	11.7 8.0 16.6 10.4 15.6	4.0 4.1 4.0 4.5 4.6	116 96 74 95 80	.1 .1 <.1 <.1 <.1	18.1 10.6 24.2 21.4 28.7	9.8 5.2 10.2 8.0 10.5	652 421 587 581 526	2.49 2.24 3.11 2.29 3.04	1.3 1.5 1.8 1.0 2.2	.3 .2 .5 .3 .4	1.0 .9 .7 .8 2.1	1.0 .7 1.3 .7 1.1	36 43 71 30 41	.1 .2 .1 .2 .1	.1 .1 .1 .1	.1 .1 .1 .1 .1	69 62 92 60 74	.61 .37 .62 .39 .48	.069 .057 .051 .077 .052	6 3 9 4 6	35.8 31.5 44.7 42.6 60.3	.93 .36 .90 .75 .98	166 101 108 117 99	.086 .141 .200 .104 .112	1 2.1 <1 1.9 <1 2.6 1 2.0 1 2.2	1 .016 59 .025 55 .024 95 .016 25 .016	. 13 . 10 . 09 . 09 . 13	< 1 < 1 < 1 < 1 < 1	.01 .02 .03 .02 .03	4.5 3.2 7.2 4.0 4.9	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	7 4 7 7 8	<.5 <.5 <.5 <.5 <.5
14400N 6450E 14400N 6500E 14400N 6550E 14400N 6600E 14400N 6650E	.5 1.4 1.0 .5 .3	15.3 18.7 29.4 18.5 21.0	3.2 4.6 4.0 5.5 6.7	80 57 80 47 102	<.1 <.1 .1 .1	20.2 32.9 39.4 23.2 30.9	5.7 11.4 15.3 10.2 17.5	249 266 357 568 940	2.75 4.06 5.07 2.66 3.43	8.7 19.2 9.8 2.3 3.3	.2 .2 .4 .6	4.2 1.0 6.2 1.0 1.7	.7 .6 1.7 1.1 1.2	22 26 30 69 62	.1 .1 .1 .2	.2 .5 .2 .1 .1	.1 .1 <.1 .1 .1	67 103 120 69 103	.34 .19 .54 .95 .83	.069 .036 .095 .043 .064	4 5 36 11 12	51.5 50.4 47.5 43.0 43.7	.15 .20 .48 .74 1.64	107 81 175 107 77	.019 .040 .010 .134 .274	2 .9 1 .9 3 1.8 3 2.3 1 3.7	96 .008 97 .010 99 .009 97 .022 73 .014	.09 .05 .09 .13 .12	<.1 <.1 <.1 .1 <.1	.01 .02 .03 .05 .04	3.7 3.7 14.9 5.8 8.6	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	4 3 6 13	<.5 <.5 <.5 <.5 <.5
14400N 6700E 14400N 6750E 14400N 6800E 14400N 6850E 14400N 6900E	.4 .3 .2 .3	27.8 30.2 21.1 22.2 13.3	11.3 5.8 5.1 5.0 3.6	148 100 77 54 74	.1 .1 .1 .1	34.1 60.7 46.6 31.1 23.2	21.3 19.8 15.2 10.4 7.1	2344 1040 607 322 269	4.03 4.17 3.21 2.57 1.82	4.3 3.5 1.9 1.2 1.4	.7 .6 .5 .3	9.8 4.5 4.4 26.7 .8	1.4 1.6 1.2 1.7 1.3	80 86 92 82 67	.4 .2 .1 .2 .1	.3 .2 .2 .1 .1	.1 .1 .1 .1	104 107 84 60 42	.35 .81 .94 .66 .58	.119 .082 .059 .108 .209	18 14 11 8 6	55.9 85.3 77.9 58.4 39.6	2.17 2.01 1.48 1.11 .64	141 104 74 121 96	.244 .244 .219 .162 .117	1 4.2 1 3.6 2 3.6 1 3.0 4 2.1	28 .009 54 .018 56 .022 56 .022 14 .024 10 .021	. 18 24 15 06 07	<.1 <.1 <.1 .1	.05 .05 .03 .01 .02	10.2 9.5 7.8 5.8 3.9	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	13 12 11 9 7	<.5 <.5 <.5 <.5
14400N 6950E 14400N 7000E 14400N 7050E 14400N 7100E 14400N 7150E	.4 .5 .5 .4	13.1 14.8 19.9 22.5 50.9	3.9 4.7 5.6 5.3 6.3	54 66 81 83 76	.1 <.1 <.1 <.1	16.6 28.0 41.1 61.4 66.6	7,4 9,1 11.8 15,3 16,5	538 467 736 680 1187	2.44 2.58 2.88 3.50 3.54	1.4 1.3 1.4 1.1 2.2	.4 .4 .5 .5	<.5 17.6 3.0 1.1 .9	1.0 1.0 1.3 1.2 1.8	54 53 74 66 83	.1 <.1 .2 .1 .2	.1 .1 .1 .2	.1 .1 .1 .1	77 82 83 100 95	.57 .55 .63 .66 .02	.046 .050 .074 .037 .042	6 6 7 11 40	40.3 55.6 69.7 122.6 98.4	.42 .65 .90 1.34 1.09	79 121 102 94 74	. 199 . 236 . 250 . 277 . 221	2 1.6 1 2.4 2 3.0 <1 2.8 1 3.1	50 .027 16 .018 19 .014 16 .019 .3 .021	· . 13 · . 06 · . 10 · . 11 · . 12	<.1 <.1 .1 .1 <.1	.03 .02 .02 .02 .02	4.9 4.8 5.4 6.7 8.5	<.1 .1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 7 9 9 10	<.5 <.5 <.5 <.5
14400N 72DDE 14400N 7250E 14400N 730DE 14400N 7350E 14400N 7400E	.3 .4 .4 .8	25.1 12.5 12.3 15.2 18.2	4.6 4.3 5.0 4.9 3.7	80 62 68 52 48	.1 <.1 <.1 <.1 <.1	62.3 14.8 13.5 15.2 16.6	15.8 5.9 5.6 8.1 7.3	432 421 349 600 522	3.26 2.19 2.07 2.15 2.37	1.4 1.1 .9 1.1 1.1	.4 .3 .3 .4	B.0 2,3 1.1 3.8 6.5	1.1 1.0 .9 1.1 1.1	87 51 44 58 53	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .1 .1	69 69 63 65 72	.76 .46 .41 .54 .48	.189 .040 .036 .036 .039	11 4 3 6 6	84.9 37.8 34.1 34.7 37.1	1.24 .36 .32 .39 .39	107 100 90 100 89	. 130 . 217 . 212 . 195 . 191	5 2.7 2 1.4 2 1.4 1 1.3 1 1.3	3 .016 8 .026 5 .027 9 .030 8 .031	. 16 . 15 . 14 . 16 . 17	.1 <.1 <.1 <.1	.03 .02 .02 .03 .02	4.9 3.9 3.7 4.3 5.0	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	9 4 4 4	<.5 <.5 <.5 <.5 <.5
14400N 7450E 14400N 7500E RE 14400N 7500E 14400N 7550E 14400N 7600E	.3 .4 .3 .2	24.1 17.1 16.9 9.6 14.8	3.5 5.0 5.4 5.0 4.9	53 74 77 60 84	.1 <.1 <.1 <.1 <.1	36.0 22.6 23.5 29.0 39.1	14.6 8.0 8.5 8.4 11.2	525 445 448 320 343	3.15 2.41 2.41 2.27 2.91	3.5 1.2 1.2 .8 1.1	.7 .4 .4 .5	2.1 1.4 3.0 1.5 22.0	1.5 .9 1.0 .8 .9	110 37 37 25 30	.1 .1 .1 .1 .1	.2 .2 .1 .3	<.1 .1 .1 .1	93 64 65 54 82	.93 .42 .41 .39 .57	.062 .054 .054 .028 .028	11 4 5 5 6	54.3 37.9 39.2 50.6 76.3	1.21 .53 .53 .77 1.09	111 92 96 83 87	. 141 . 217 . 215 . 180 . 315	2 1.9 2 2.6 <1 2.6 1 1.9 1 2.6	05 .076 52 .021 57 .020 57 .017 53 .014	. 06 . 08 . 08 . 13 . 13	<.1 <.1 <.1 <.1	.05 .02 .02 .01 .01	7.1 4.4 4.3 4.0 5.9	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 7 7 6 8	<.5 <.5 <.5 <.5
14400N 7650E 14400N 7700E 14400N 7750E 14400N 7800E 5TANDARD DS6	.2 .4 .3 .4 11.7	17.8 14.6 16.6 10.4 121.4	5.8 4.3 4.0 3.8 29.6	103 61 67 105 142	.1 <.1 .1 .1 .3	63.2 17.2 25.7 13.7 23.7	17.3 6.7 9.4 5.0 10.7	1131 272 386 340 689	3.25 2.52 2.74 1.92 2.78	1.5 1.5 1.3 1.0 21.2	.7 .3 .2 6.6	<.5 1.5 2.3 1.0 51.0	1.2 1.0 1.1 .9 3.2	47 44 39 31 37	.2 .1 .1 .1 6.1	.4 .2 .1 .1 3.5	.1 .1 .1 .1 5.0	87 81 72 47 55	.82 .41 .47 .36 .85	.077 .045 .042 .042 .042 .083	11 4 7 3 14	125.8 41.2 42.8 27.5 179.8	2.14 .33 .45 .27 .61	174 98 177 120 166	.253 .232 .152 .132 .077	2 2.9 1 1.6 2 2.2 2 1.4 18 2.0	91 .010 54 .029 20 .028 18 .021 12 .073	. 11 . 06 . 12 . 11 . 16	<.1 <.1 <.1 <.3.8	.04 .01 .02 .01 .23	8.2 4.0 5.0 3.1 3.5	<.1 <.1 <.1 <.1 1.7	<.05 <.05 <.05 <.05 <.05	10 5 6 4 6	<.5 <.5 <.5 <.5 4.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

ACHE ANALYTICAL SAMPLE# Cu Pb Co Mn Fe As Th Cđ Sb Bi Р Cr Mag Ti Na κ W Sc Ga Мо Zn Aq Ni U Au Sr ٧ Ca La Ba В AT Hg - 11 S Se DDM ppm ppm ppm ppm ppm 2 DDU ppm ppb ppm ppm ppm ppm DDM ppn 8 * ppm ppm 2 ppm 2 DDM 2 2 % ppm ppm ppm 2 DDM ppm ppm **DD** 14400N 7850E .2 51 < 1 8.7 3.8 256 1.54 1.1 .2 1.2 .5 32 .1 .1 .1 45 .33 .039 2 25.1 .21 69.170 2 1.12 .023 .10 <.1 .02 2.5 <.1 <.05 4 <.5 7.7 3.7 14400N 7900E 280 1.69 1.0 .2 1.0 .8 34 .1 .1 .1 40 .39 .047 3 32.3 . 41 88.118 2 1.66 .015 .01 2.8 <.1 <.05 .2 8.7 4.1 62 <.1 14.3 4.9 .11 <.1 5 <.5 14400N 7950E 103 <.1 13.2 5.7 818 2.05 1.6 .3 .7 45 .1 .1 .43 .032 . 30 108 .197 2 1.16 .023 .02 3.8 <.1 <.05 .4 12.2 3.9 .6 .1 64 4 36.0 .14 < 1 4 <.5 .3 78 .44 .053 . 30 .02 6.8 <.1 <.05 14400N 8000E .6 18.0 3.5 56 < 1 21.3 7.9 294 2.87 11.5 .4 .5 1.3 44 <.1 .1 10 46.0 77 .142 4 1.43 .023 .21 .1 4 <.5 14200N 6000E .5 24.0 4.2 58 <.1 29.8 13.0 550 3.24 3.5 .5 1.5 1.3 62 .1 .2 .1 89 .62 .048 12 56.2 .81 127 .130 2 2.18 .024 .10 .1 .04 7.1 <.1 <.05 6 <.5 .5 14200N 6050E .4 23.3 3.7 103 .1 47.1 17.0 605 3.82 4.6 .9 1.4 .36 .1 .1 .1 89 .45 .089 12 96.5 1.32 172 .044 2 2.62 .011 .10 <.1 .02 8.8 <.1 <.05 9 <.5 .3 2.3 .9 40 .1 .1 .38 .050 3 46.1 .52 120 .137 2 1.62 .018 .11 <.1 .04 4.4 <.1 <.05 14200N 6100E .5 13.4 3.7 82 < 1 20.2 8.7 520 2.79 2.3 .1 77 5 <.5 133 .106 28 .1 .34 .039 1 1.53 .015 14200N 6150E .3 12.9 3.9 58 < 1 19.9 8.7 339 2.41 1.3 .3 11.8 .8 .1 .1 64 5 45.7 .62 .10 <.1 .02 3.7 <.1 <.05 6 <.5 14200N 6200E .3 12.5 5.9 78 < 1 25.4 10.9 507 2.62 1.3 .6 .5 1.0 28 .1 .1 .1 81 .43 .030 5 60.6 1.02 89.248 <1 2.01 .015 .08 <.1 .02 6.4 <.1 <.05 7 <.5 14200N 6250E 35 .1 .1 .33 .022 2 1.29 .022 .10 <.1 .01 3.3 <.1 <.05 .3 9.7 3.5 87 < 1 15.0 5.9 346 2.30 1.1 .2 3.1 .6 .1 62 3 44.3 . 40 73 .140 4 <.5 14200N 6300E .08 <.1 .4 14.7 3.3 62 <.1 23.8 7.7 260 3.09 4.2 . 2 .6 .7 27 .1 .1 .1 86 .36 .033 5 58.7 . 31 92 .075 3 1.01 .011 .02 4.0 <.1 <.05 4 <.5 14200N 6350E .4 11.2 6.5 152 < 1 19.5 6.4 448 2.94 3.1 .3 <.5 .7 25 .2 .3 .1 90 .29 .046 4 49.4 .32 138 .114 3 1.12 .014 .05 <.1 .02 3.4 <.1 <.05 5 <.5 14200N 640DE .5 10.2 3.2 96 <.1 22.5 7.4 463 2.98 3.4 .2 <.5 .7 39 .1 .2 .1 77 .35 .078 64.0 .39 92.089 3 1.07 .011 .07 <.1 .02 4.1 <.1 <.05 4 4 <.5 14200N 6450E .8 30.9 8.9 127 .1 54.2 18.7 785 3.83 8.9 .3 .7 1.2 52 .3 .4 .2 96 .96 .120 17 50.7 .28 215 .064 4 1.92 .013 .13 <.1 . 10 9.5 .1 <.05 6 <.5 14200N 6500E .1 26.8 12.0 635 3.48 3.9 .4 .5 1.1 52 .1 .2 .1 93 .57 .040 8 46.2 .57 262 .125 2 1.87 .017 .05 <.1 .03 6.6 <.1 <.05 .5 18.4 3.9 73 6 <.5 14200N 6550E 76 <.1 21.8 8.7 386 3.14 1.7 .3 .8 1.2 50 .1 .1 93 .45 .038 7 46.1 .51 87 .154 2 1.45 .023 .10 <.1 .02 6.1 <.1 <.05 5 <.5 .3 15.1 3.6 .1 14200N 6600E .3 11.6 3.5 109 <.1 15.3 6.4 384 2.67 1.6 .2 1.4 .8 42 .1 .1 .1 75 .36 .031 4 38.4 .35 72 .159 2 1.19 .022 .11 <.1 .02 4.2 <.1 <.05 4 <.5 .3 .1 107 .76 .043 1 2.52 .012 14200N 6650E .3 21.6 4.2 105 <.1 33.3 19.6 1051 4.24 3.1 .7 25.8 1.6 41 .1 14 62.7 1.51 76.265 .20 <.1 .01 10.1 <.1 <.05 10 <.5 14200N 6700E 99 <.1 41.7 25.1 1102 4.80 3.1 .8 36.0 1.6 104 .1 .4 <.1 129 1.40 .084 18 48.5 2.05 72 .337 <1 4.60 .021 .24 .1 .02 10.6 <.1 <.05 .4 30.5 5.9 15 <.5 14200N 6750E 92 <.1 33.6 20.1 906 3.95 2.5 .7 4.3 1.4 93 .1 .2 .1 117 1.09 .067 15 38.1 1.45 73.317 2 3.57 .016 .15 <.1 .03 8.6 <.1 <.05 11 <.5 .4 26.1 7.6 14200N 6800E .3 30.0 4.3 138 1 57.5 20.7 883 3.71 3.0 .6 12.2 1.3 102 .1 .1 .1 90 1.05 .119 15 65.0 1.79 115 .251 3 3.62 .013 .13 <.1 .02 10.3 <.1 <.05 13 <.5 .1 29.3 10.7 393 2.60 2.3 .4 2.3 1.4 74 .1 .1 .1 68 .67.068 8 53.5 .94 63.202 3 2.40 .019 .08 .1 .01 6.0 <.1 <.05 14200N 6850E .3 16.5 4.0 62 8 <.5 .1 8 50.8 .92 62.208 3 2.32 .024 .01 5.9 <.1 <.05 RE 14200N 6850E .4 16.2 3.8 1 27.6 10.3 376 2.55 2.2 .5 2.6 1.3 71 .1 .1 69 .65 .065 .08 .1 8 <.5 60 14200N 6900E 90 < 1 33.9 14.0 856 3.13 2.1 .6 9.6 1.3 54 .1 .2 .1 85 .70 .035 9 67.7 1.11 81.262 3 2.23 .015 .14 <.1 .02 7.6 <.1 <.05 8 <.5 .2 17.3 4.2 .1 .06 <.1 .01 3.6 <.1 <.05 14200N 6950E .2 9.6 4.0 125 <.1 33.2 7.2 249 1.37 1.3 .2 1.3 .9 41 .1 .1 32 .32 .137 5 25.5 .21 190 .082 2 1.13 .015 4 <.5 .2 .48 .037 72.209 3 1.42 .024 .16 < 1 .02 4.6 < 1 < 05 5 <.5 14200N 700DE .3 11.9 3.5 57 < 1 20.8 7.3 233 2.75 2.0 .3 1.2 .8 47 .1 .1 85 4 51.7 .43 6 49.2 .43 128 .162 3 1.34 .020 14200N 7050E .5 15.5 3.9 70 <.1 22.7 7.6 632 2.23 1.6 .3 2.3 .9 40 .1 .1 .1 58 .46 .034 .12 <.1 .01 4.4 <.1 <.05 4 <.5 14200N 7100E .4 28.2 4.8 100 .1 51.7 14.9 786 3.49 2.6 .5 4.0 1.2 67 .1 .2 .1 96 .76 .073 10 90.4 .94 150 .261 3 2.60 .020 .13 .1 .03 7.2 <.1 <.05 8 <.5 .2 .1 7 <.5 14200N 7150E .4 26.2 5.1 72 .1 39.6 13.3 861 3.08 2.2 .5 .5 1.5 82 .1 80 .82 .057 12 82.7 .93 193 .224 4 2.54 .024 .18 <.1 . 02 7.3 <.1 <.05 14200N 7200E .3 39.5 4.4 .1 36.3 11.2 594 2.88 2.8 .4 3.3 1.5 96 .1 .2 .1 72 .96 .032 15 59.3 . 80 186 .190 3 2.31 .027 .08 <.1 .03 7.4 <.1 <.05 7 <.5 51 14200N 7250E .3 38.4 4.6 48 .1 28.5 10.3 530 2.91 1.8 .3 7.6 1.6 100 .1 .2 .1 74 .91 .047 16 49.7 .62 138 .200 5 2.18 .029 .08 <.1 .03 6.6 <.1 <.05 6 <.5 32.1 14200N 7300E .3 11.2 4.5 88 .1 10.7 4.6 453 1.93 .9 .2 .9.8 49 .1 .1 .1 58 .43 .035 3 .24 90.195 2 1.06 .024 .17 <.1 .01 3.6 <.1 <.05 4 <.5 .59.055 3 1.69 .028 .23 <.1 .03 6.6 <.1 <.05 5 <.5 .1 20.3 9.9 739 2.76 1.2 .4 <.5 1.5 69 .1 .1 65 7 40.6 .52 113 .172 14200N 7350E .4 20.8 5.2 90 .1 .1 37.8 13.9 521 3.01 3.2 .9 2.8 1.3 129 .1 .2 .1 90 1.62 .064 12 59.0 1.15 111 .125 6 1.88 .064 .08 <.1 .08 7.6 <.1 .06 6 <.5 14200N 7400E .4 30.1 3.8 49 STANDARD DS6 .3 24.2 10.6 683 2.76 21.0 6.3 49.5 3.1 37 6.1 3.7 4.8 56 .84 .078 14 177.0 .60 161 .080 17 1.97 .076 .16 3.6 .22 3.4 1.7 <.05 6 4.5 11.4 121.8 29.8 146

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Page 4

Page 5

AUTE ANALYTICAL																_	_												ACHE ANALYTICAL
SAMPLE#	Мо	Си	Pb	Zn /	Ag N	i Co	Min	Fe	As	U	Au TI	ı Sr	Cd	Sb	Bi	٧	Ca	P	a	Cr	Mg Ba	Ti	B A1	Na	K W	Hg	Sc T	1 9	5 Ga Se
	ppm	ppm	ppm	ppm pp	om pp	m ppm	ppm	x	ppm pj	pm	ppb ppr	і ррт	ppm	ppm (opm p	ppm	*	≰р	but t	opm	* ppm	*	opm X	z	% ppm	ppm	ppm pp	៣ ដ	s ppm ppm
14200N 7450E 14200N 7500E 14200N 7550E 14200N 7600E 14200N 7650E	.4 .4 .3 .6 .3	17.2 25.3 16.6 19.9 25.5	4.4 5.2 3.8 4.4 3.6	91 < 86 68 < 55 99 <	.1 20. 1 39. 1 29. 1 19. 1 19.	8 8.3 4 13.5 3 9.5 1 8.6 6 16.1	575 861 436 621 738	2.70 3.06 2.79 2.38 3.85	.8 1.5 1.3 1.1 1.9	.3 .5 .3 .5	.8 1.3 .9 1.4 1.0 1.1 1.0 1.3 5.5 1.6	55 74 44 117 5 36	.1 .2 .1 .1	.1 .2 .1 .1 .1	.1 .1 .1 .1	79 78 74 62 83	48 79 44 71 75	.039 .066 .045 .034 .101	7 46 13 52 7 54 9 41 16 67	5.9 2.9 1.8 1.5 7.9 1	.47 125 .96 217 .64 123 .43 153 .13 166	.201 .207 .162 .145 .081	2 1.72 2 2.18 1 1.93 2 1.83 3 2.92	.026 .017 .020 .023 .014	.14 <.1 .13 .1 .16 .1 .10 <.1 .26 <.1	.02 .03 .02 .03 .02	5.7 <. 5.9 <. 5.2 <. 5.4 <. 10.0 <.	1 <.09 1 <.09 1 <.09 1 <.09 1 <.09	5 5 <.5 5 7 <.5 5 6 <.5 5 5 <.5 5 10 <.5
14200N 7700E 14200N 7750E 1420DN 7800E 14200N 7850E 14200N 7850E 14200N 7900E	.3 .5 .3 .4 .7	19.5 37.5 12.4 19.8 14.7	2.2 5.7 4.1 5.0 5.9	68 < 112 < 97 < 145 < 164 <	1 32. 1 53. 1 20. 1 36. 1 64.	2 13.2 2 18.5 0 5.9 0 11.8 8 16.5	360 594 276 359 574	3,45 4.70 2.44 3.76 5.69	1.7 10.3 2.3 2.4 12.5	.2 .3 .2 .2	1.3 1.3 1.8 1.5 4.7 _9 1.5 1.4 1.7 1.4	24 45 26 45 45 32	<.1 .1 <.1 .1 .1	.1 .9 .3 .2 1.6	.1 .1 .1 .1	75 116 64 91 131	44 . 57 . 28 . 58 . 50 .	.051 .078 .039 .065 .072	6 72 14 72 5 34 9 54 13 80	2.2 1 2.5 1.4 1.0).9	.22 72 .26 246 .20 119 .30 243 .28 211	.033 .017 .117 .133 .094	2 1.95 5 1.76 2 1.30 3 1.73 2 1.93	.012 .010 .017 .018 .014	.07 <.1 .14 .1 .12 .1 .17 .1 .12 .1	.01 .02 .01 .01 .01	5.8 <. 12.1 . 3.4 <. 7.9 <. 13.0 .	1 < .05 1 < .05 1 < .05 1 < .05 1 < .05	5 9 <.5 5 5 <.5 5 4 <.5 5 5 <.5 5 5 <.5
14200N 7950E 14200N 8000E 14000N 6000E 14000N 6050E 14000N 6100E	8.1 .5 .4 .5 .3	53.8 30.8 24.8 23.7 15.3	11.0 7.1 4.0 3.6 4.1	193 188 < 75 64 < 70 <	.3 87 .1 47. .1 35. .1 31. .1 22.	4 30.7 7 20.3 9 10.5 1 12.0 0 8.6	1637 1071 383 416 381	7.55 4.74 3.71 3.68 2.95	138.0 7.2 6.7 4.6 1.2	.35 .1 .3 .3 .3	3.4 1.3 <.5 .8 4.7 1.4 2.0 1.4 1.2 1.0	8 65 8 73 8 38 8 41 9 41	.3 .2 .1 .1	3.0 .1 .1 .1 .2	.1 .3 .1 .1 .1	167 99 87 98 98 91	68 78 47 45 36	.139 .163 .077 .063 .029	18 94 18 81 21 64 17 57 4 54	4.8 1.3 1.3 7.6 1.7	.24 387 .25 555 .23 126 .42 124 .59 104	.037 .039 .018 .060 .184	11 1.85 13 2.00 3 1.19 2 1.42 2 1.60	.008 .009 .011 .016 .026	.38 .1 .32 <.1 .12 <.1 .09 <.1 .10 <.1	.05 .03 .03 .03 .03	15.5 . 10.9 . 8.3 <. 8.5 <. 4.6 <.	5 < .09 1 < .09 1 < .09 1 < .09 1 < .09 1 < .09	5 5 <.5 5 6 <.5 5 4 <.5 5 5 <.5 5 5 <.5
14000N 6150E 14000N 6200E 14000N 6250E 14000N 6300E 14000N 6350E	.3 .4 .3 .4 .4	16.0 14.8 17.5 12.3 12.1	5.1 4.5 4.2 5.0 4.4	83 < 68 < 81 < 94 < 79 <	1 26. 1 22. 1 34. 1 16. 1 16.	69.9 38.3 78.0 66.3 45.9	541 366 223 469 408	3.03 3.08 4.06 2.44 2.55	1.4 .9 15.1 1.4 1.1	.4 .3 .4 .2 .3	1.3 1.2 1.2 1.3 1.5 1.7 <.5 .7 2.6 .8	2 40 3 46 7 22 7 36 3 42	.1 .1 .1 .1 .1	.2 .1 .4 .2 .1	.1 .1 .1 .1	89 95 92 75 81	42 35 25 33 37	.035 .030 .081 .027 .029	8 63 4 53 13 78 4 35 3 41	3.4 3.8 3.8 5.6 1.8	.73 121 .55 99 .19 62 .32 143 .35 173	.185 .202 .042 .160 .196	1 2.03 1 1.75 6 1.16 2 1.28 2 1.25	.019 .026 .007 .028 .025	.14 <.1 .11 <.1 .09 <.1 .07 <.1 .11 <.1	.03 .02 .01 .12 .02	5.8 <. 4.7 <, 10.1 <. 3.8 <. 3.8 <.	1 <.09 1 <.09 1 <.09 1 <.09 1 <.09	5 6 <.5 5 6 <.5 5 4 <.5 5 4 <.5 5 4 <.5
14000N 6400E RE 14000N 6400E 14000N 6450E 14000N 6500E 14000N 6550E	.4 .4 .5 .4	14.4 14.3 20.4 20.0 28.7	3.7 3.7 4.4 4.8 6.0	90 <. 91 <. 101 . 57 <. 215 <.	1 22. 1 22. 1 27. 1 27. 1 28. 1 45.	9 8.0 5 8.6 0 9.8 9 11.5 1 13.3	411 428 571 517 444	3.10 3.20 3.35 3.64 3.73	3.8 3.8 4.3 8.7 11.0	.2 .3 .3 .3 .2	1.8 1.(<.5 1.(.7 1.2 <.5 1.3 <.5 1.7	30 30 41 44 33	.1 .1 .1 .1 .1	.2 .2 .3 .2	.1 .1 .1 .1 1 .1	89 94 94 100 78	28 . 29 . 41 . 51 . 56 .	037 036 052 052 081	7 48 7 52 9 56 17 47 18 48	3.8 2.3 5.5 7.9 3.1	.37 91 .38 92 .43 113 .26 120 .27 243	.120 .123 .126 .041 .055	2 1.13 4 1.16 5 1.26 5 1.16 5 1.91	.019 .020 .020 .011 .014	.08 <.1 .08 <.1 .13 <.1 .09 <.1 .13 <.1	.01 .02 .02 .04 .01	5.2 <. 5.5 <. 5.4 <. 8.2 <. 11.4 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	5 <.5 5 5 <.5 5 5 <.5 5 4 <.5 5 7 <.5
14000N 6600E 14000N 6650E 14000N 6700E 14000N 6750E 14000N 6800E	.4 .3 .2 .2	15.4 14.3 14.0 11.7 11.0	4.4 4.1 3.5 3.8 3.9	82 <, 92 <, 81 112 <, 110	1 31 1 25 1 23 1 23 1 27 1 36	1 8.7 8 10.4 7 9.0 7 7.4 3 7.4	230 563 298 293 258	3.14 2.95 3.02 3.14 2.84	7.0 2.4 3.4 3.5 3.1	.2 .5 .3 .4 1 .4	<.5 1.3 .9 1.3 <.5 1.2 2.6 1.0 3.1 1.0	3 32 3 31 2 21 3 30 31	<.1 .1 .1 .1	.2 .2 .1 .6 .2	.1 .1 .1 .1	76 88 85 60 61	40 . 46 . 51 . 39 . 42 .	057 041 058 065 054	11 46 8 50 10 58 7 62 7 57	5.1).4 3.8 2.7 7.5	.21 152 .71 111 .66 108 .35 147 .40 192	.057 .169 .055 .140 .134	5 1.23 2 1.60 4 1.45 4 1.16 4 1.56	.012 .014 .009 .012 .016	.13 <.1 .09 <.1 .07 <.1 .14 <.1 .11 .1	.01 .01 .02 .01 .02	6.6 <. 5.5 <. 6.9 <. 4.3 <. 4.9 <.	1 <.05 1 <.05 1 <.05 1 <.05 1 <.05	5 4 <.5 5 6 <.5 5 7 <.5 5 4 <.5 5 5 <.5
14000N 6850E 14000N 6900E 14000N 6950E 14000N 7000E STANDARD DS6	.4 .5 .3 12.0	24.1 17.7 26.7 12.5 125.9	4.3 3.9 4.1 2.8 30.3	50 48 98 87 < 150	.1 61. .1 24. .1 35. .1 17. .3 25.	6 14.8 2 9.2 8 12.2 4 4.6 8 11.0	487 471 776 254 727	3.86 2.68 2.84 2.11 2.90	3.6 1.7 2.9 2.1 22.2 6	.7 .4 .4 .1 .8 5	1.1 1.2 1.0 1.2 3.9 1.1 3.4 .4 2.3 3.1	49 53 57 26 37	.1 .1 .2 .1 6.4	.2 .1 .3 .5 3.6	.2 1 .1 <.1 <.1 5.1	115 84 73 52 58	63 . 64 . 77 . 39 . 88 .	037 031 061 034 081	L5 63 L0 49 L0 52 3 47 L5 183	3.6 9.7 2.3 7.2 3.9	.42 145 .57 122 .49 207 .16 143 .60 169	.129 .227 .160 .115 .079	4 1.53 4 1.74 3 2.01 5 .77 18 1.94	.016 .029 .021 .018 .075	.08 <.1 .15 <.1 .13 <.1 .13 <.1 .13 <.1 .16 3.5	.02 .02 .03 .02 .24	11.7 <. 6.4 <. 6.7 <. 3.3 <. 3.6 1.	1 < 0 1 < 0 1 < 0 1 < 0 1 < 0 8 < 0	5 5 <.5 5 5 <.5 5 6 <.5 5 3 <.5 5 6 4.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_KFA

Page 6

AGE AGETTIGAL	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~																															ALAR MAN	TILLAL
SAMPLE#	Мо	Cu	Pb	Zn	Aq	Nī	Со	Mn	Fe	As	U	Au 1	h Sr	Cđ	Sb	Bí	٧	Са	Р	La	Cr	Ma	8a	Ti	8 A1	Na	K	W Ha	Sc	T 1	S	Ga Se	
	ppm	ppm	ppm	ppm r	opm	ppm	ррт	ppm	2	ppm p	open	ppb pp	т орп	і ррт	ppm p	opm p	nqq	2	2	ppm	ppm	ž	PM	\$ p	xm 🕺	2	Х р	om ppm	ррп	ppm	× F	nog mg	
14000N 7050E 14000N 7100E 14000N 7150E 14000N 7250E 14000N 7250E	.4 .4 .3 .5	20.6 21.0 26.7 27.0 40.7	4.5 4.2 4.1 4.2 4.5	100 43 88 48 129	.1 .1 .1 .1 .1	33.6 35.3 45.2 32.0 45.4	11.5 11.9 13.4 11.1 15.4	824 620 642 650 724	3.18 2.99 3.33 3.02 3.38	2.1 2.9 1.8 2.2 2.7	.4 .5 .5 .5	1.5 1. 1.0 1. 1.2 1. 5.7 1. .5 1.	4 51 4 64 6 61 5 81 9 99	.2 .1 .2 .1 .2	.3 .2 .2 .2 .2	.1 .1 .1 .1 .1	84 82 82 80 72	.68 .65 .61 .73 .89	.053 .034 .099 .051 .107	10 12 12 12 12 12	67.9 72.9 125.5 70.9 61.4	.62 2 .76 1 1.12 1 .78 1 1.24 1	25 51 65 42 37	179 213 161 232 180	3 2.16 2 2.05 3 2.59 1 2.35 4 2.77	.024 .030 .022 .034 .032	.16 < .10 < .17 < .10 < .17	.1 .02 .1 .03 .1 .02 .1 .02 .1 .02 .1 .03	6.9 6.6 7.5 6.5 6.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	6 < 5 6 < 5 8 < 5 6 < 5 7 < 5	
14000N 7300E 14000N 7350E 14000N 7400E 14000N 7450E 14000N 7450E	.4 .4 .4 .4	38.6 33.6 24.5 16.9 35.6	4.1 3.9 3.6 5.1 5.1	70 55 53 < 146 101 <	.1 .1 <.1 .1	46.6 42.4 28.3 40.6 47.4	16.9 15.3 9.3 11.1 14.8	738 567 199 1188 902	3.40 2.99 3.28 2.36 3.41	2.4 1 3.0 1 3.6 1.3 2.2	L.0 L.3 .4 .3 .4	1.1 2. 1.3 1. .7 1. 9.4 . .5 1.	1 108 6 118 3 72 9 39 4 42	.1 .1 <.1 .3 .2	.2 < .2 < .3 .2	<.1 <.1 .1 .2 .1	83 83 1 88 49 81	.90 .33 .52 .55 .69	. 105 . 082 . 033 . 059 . 085	16 14 7 8 16	66.7 64.2 46.3 84.7 72.0	1.19 1 1.27 1 _44 1 _81 1 _95 1	.33 . 23 . 27 . 94 .0	149 125 146 077 148	2 2.09 4 2.07 2 1.98 3 1.39 4 2.46	.051 .056 .040 .013 .020	.19 < .10 < .07 < .09 < .20 <	.1 .03 .1 .06 .1 .03 .1 .02 .1 .03	8.4 7.5 6.9 4.1 9.5	<_1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 <.5 6 <.5 6 <.5 5 <.5 8 <.5	
14000N 7550E 14000N 7600E 14000N 7650E RE 14000N 7650E 14000N 7700E	.3 .5 .4 .5 .3	15.9 22.6 16.2 15.9 28.2	3.6 6.5 4.5 4.8 5.5	116 < 119 < 41 < 42 < 136 <	<.1 <.1 <.1 <.1 <.1	27.6 32.4 20.1 20.8 45.4	8.3 12.6 8.5 8.5 14.7	494 1174 465 480 628	2.64 3.18 2.45 2.58 3.70	1.4 2.8 1.6 1.6 4.9	.3 .6 .4 .5 .3	<.5 1. <.5 1. .7 1. .7 1. 1.4 1.	0 39 6 64 3 51 3 54 4 53	.1 .2 <.1 .1	.1 .2 .1 .1	.1 .1 .1 .1	56 85 72 74 85	.41 .55 .51 .55 .58	.061 .107 .020 .022 .153	9 12 8 9 16	43.8 63.6 43.5 44.5 60.2	.31 1 .68 1 .50 .52 .28 3	.82 .0 .96 .1 .95 .1 .98 .1 .98 .1	088 176 187 192 085	2 1.70 3 2.56 1 1.72 1 1.74 7 2.09	.018 .015 .025 .025 .025	12 < 18 < .08 < .09 < .26	.1 .02 .1 .02 .1 .02 .1 .02 .1 .02 .1 .02	4.2 6.5 5.0 5.3 7.4	<.1 <.1 <.1 <.1 .1	<.05 <.05 <.05 <.05 <.05	5 <.5 7 <.5 5 <.5 5 <.5 6 <.5	
14000N 7750E 14000N 7800E 14000N 7850E 14000N 7900E 14000N 7950E	.4 .6 1.4 .8 .3	30.4 42.6 44.4 30.1 18.5	4.6 4.5 6.2 8.0 4.3	127 < 65 126 124 76 <	<.1 .1 .2 1 .1 <.1	61.3 52.5 103.6 32.0 26.6	17.7 15.6 25.1 18.3 11.4	554 512 642 2159 433	5.62 4.29 6.77 3.05 3.13	7.1 4.3 13.0 6.4 1.8	.2 .8 .4 .5	<.5 2. 3.8 2. 8.7 1. <.5 1. .7 1.	5 34 3 107 8 69 0 64 0 36	.1 .1 .3 .1	.6 .4 1.0 .2 .1	.11 .11 .11 .11 .1	126 123 146 69 50	.43 .90 .78 .63 .57	.135 .049 .104 .218 .082	31 23 22 9 12	96.6 76.2 96.0 85.6 90.2	.15 .99 2 .50 3 .88 2 1.06 2	83 .0 96 .2 96 .2 96 .0	013 267 138 142 035	3 1.12 4 3.12 7 3.00 2 3.12 2 2.89	.009 .038 .019 .013 .011	.08 .09 .27 .08 .25 <	.1 .02 .1 .04 .1 .03 .1 .04 .1 .01	15.8 13.4 15.8 4.9 5.0	<.1 <.1 .1 .1 <.1	<.05 <.05 <.05 <.05 <.05	4 <.5 8 <.5 8 <.5 10 <.5 8 <.5	
14000N 8000E 13800N 6000E 13800N 6050E 13800N 6100E 13800N 6150E	.5 .3 .4 .3 .3	20.7 19.8 16.3 13.2 14.1	5.3 5.1 3.8 4.1 4.3	107 < 73 < 73 43 < 54 <	<.1 <.1 <.1 <.1	28.7 32.9 22.9 17.3 20.8	12.6 12.1 9.6 7.3 8.0	965 431 485 290 312	3.15 3.18 3.02 2.74 3.07	2.1 3.6 1.6 1.4 1.9	.7 .7 .4 .5	.91. 1.51. 4.91. .51. 2.81.	6 53 3 59 3 52 1 52 2 50	.2 .1 .1 .1 <.1	.2 .1 .2 .3	.1 .1 .1 .1 .1	83 89 89 86 94	.52 .57 .38 .40 .36	.066 .076 .041 .022 .028	11 7 8 6 4	71.5 64.9 52.5 50.0 55.6	.75 1 1.09 .56 .45 .58	44 . 73 . 83 . 90 . 79 .	190 186 172 183 211	<pre><1 2.78 1 2.19 2 1.65 1 1.48 2 1.61</pre>	.017 .019 .032 .024 .027	.11 .14 < .14 < .08 < .10 <	.1 .02 .1 .01 .1 .01 .1 .03 .1 .02	6.8 6.3 5.7 4.2 4.6	.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	9 < 5 8 < 5 5 < 5 5 < 5 5 < 5	
13800N 6200E 13800N 6250E 13800N 6300E 13800N 6350E 13800N 6400E	.3 .4 .3 .4 .4	12.2 11.6 13.6 13.6 12.6	4.4 4.0 3.7 4.0 3.7	60 < 45 < 66 < 70 < 61 <	<.1 <.1 <.1 <.1 <.1	18.6 16.0 19.3 15.7 17.4	7.3 6.3 7.7 7.2 7.3	286 258 386 395 307	2.78 2.43 2.69 2.60 2.76	1.2 2.0 2.7 1.5 2.3	4.3.3	.7 1. 1.1 . .9 1. .6 1. .7 1.	0 40 9 41 0 46 2 49 0 44	<.1 .1 .1 .1 <.1	.2 .3 .2 .3	.1 .1 .1 .1 .1	82 69 74 78 82	. 31 . 42 . 42 . 39 . 37	.051 .019 .028 .021 .031	3 8 7 6 5	49.6 40.8 45.9 43.4 46.3	.53 .36 1 .33 1 .40 1 .34	92 . 24 . 54 . 16 . 95 .	178 130 119 181 171	1 1.42 1 1.23 2 1.23 3 1.37 3 1.11	.019 .019 .017 .032 .022	.11 < .07 < .12 < .09 < .12 <	.1 .01 .1 .04 .1 .02 .1 .02 .1 .04	3.2 3.7 4.0 4.2 4.3	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 4 <.5 4 <.5 4 <.5 4 <.5	
13800N 6450E 13800N 6500E 13800N 6550E 13800N 6600E STANDARD DS6	.4 .3 .4 .4 11.7	17.3 9.0 15.3 14.8 128.4	4.1 2.9 4.0 4.0 30.9	72 < 88 < 75 < 78 < 146	<.1 <.1 <.1 <.1 <.1	25.9 11.3 21.8 23.4 24.6	8.8 3.9 8.5 9.2 10.9	321 306 350 469 708	3.07 2.11 2.65 3.00 2.84	5.1 2.3 2.8 2.2 21.9 (.4 .2 .3 .6 8.4	16.4 1. 5.1 <.5 1. 1.4 1. 47.9 3.	4 37 6 28 2 42 3 46 8 40	.1 .1 <.1 .1 .1 6.4	2 2 2 3.5 9	.1 .1 .1 .1 5.3	88 58 67 82 56	34 23 32 44 86	.048 .031 .052 .029 .080	10 4 4 6 14	52.1 33.5 42.5 44.8 183.9	.38 1 .23 .60 .80 .59 1	06 79 85 78 67	098 103 140 232 080	4 1.30 3 .90 2 1.86 3 1.79 17 1.93	.020 .016 .019 .021 .073	.12 < .10 < .08 < .12 < .15 3	.1 .02 .1 .01 .1 .01 .1 .01 .1 .01 .5 .23	6.1 2.6 4.3 5.6 3.3	<.1 <.1 <.1 <.1 <.1 1.7	<.05 <.05 <.05 <.05 <.05	4 <.5 3 < 5 6 <.5 6 <.5 6 4.6	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data LFA

ΔΔ
TT
ACHE ANALYTICAL

ACHE ANALYTICAL																																		ACHE AN	UVTICAL	.]
SAMPLE#	Мо	Cu	Pb	Zn	Ag	NI	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Cr	Mg	Ba	Ti	B	A1	Na	ĸ	W	Hig	Sc	T1	S	Ga	Se
	ppm	ppm	ppm	ppm	ppm	ppm	t ppm	ppm	2	ppm	ppm	ppb	ppm	ppm	ррп	ppm	ppm	ppm	2	8	ppm	ppm	ž	ррт	8	ррп	z	2	2	ррп	ppm	ppm	ppm	*	ppm	ppm
																						40.10									- 4					
13800N 6650E	.3	22.2	7.3	99	<.1	45.2	17.9	601	3.87	5.0	1.2	3.0	1.9	47	.1	.3	.1	109	.73	.049	11	49.5	1.66	63	. 353	23	.08	.017	.08	<.1	.01	9.0	<.1 •	<.05	10	<.5
13800N 6700E	.3	17.4	5.2	82	<.1	32.0	12.5	488	3.45	2.6	.8	1.5	1.3	33	.1	.4	.1	102	.50	.035	11	62.7	1.05	73	.238	21	.74	.013	.09	<.1	.01	7.7	<.1 *	<.05	6	<.5
13800N 6750E	.2	9.8	3.9	96	<.1	19.1	6.1	296	2.57	1.5	.3	1.5	.8	28	.1	.4	.1	69	.29	.023	5	50.5	. 31	121	.147	11	.19	.016	.09	< 1	.01	3.6	<.1 •	<.05	4	<.5
13800N 6800E	.3	36.3	4.3	95	<.1	66.1	14.2	419	4.08	8.9	.5	1.9	1.4	32	.1	.8	1.	/9	.66	.081	23	113.0	.43	169	.039	51	.49	.009	.19	<.1	.02 :	10.8	<.1 •	<.05	5	<.5
13800N 6850E	.3	21.7	3.7	75	<.1	24.4	7.0	258	3.40	5.4	.3	4.6	.7	-29	.1	.4	.1	62	. 36	.048	1	56.8	. 21	100	.097	4	.82	.013	.10	.1	.01	4.0	<.1 <	<.05	3	<.5
13800N 6000F	2	11 7	22	01	c 1	12.1	5.0	241	2 36	24	2	23 R	5	15	< 1	2	< 1	26	15	032	4	54 1	10	70	076	2	64	010	08	< 1	61	21	< 1 ·	< 05	2	~ c
13900N 6050E	, <u>,</u>	15 5	3 5	82	 - 1 	24 0	80	211	2 72	1.9		37		32	1	. 2	1	64	38	033	à	52.2	29	1/0	116	21	20	017	11	< 1	01	1 B	< 1	< 05	Ā	22
13900N 7000F	. 3	10.0	3.6	60	- 1	36.0	11 1	272	3 17	23		16.7	3 0	24	1	. 2	.7	50	20	033	á	RAQ	56	RS	112	<11	36	015	08	< 1	.01	A 7	< 1	< 15	ç	26
13900N 7050E	. J R	28.9	12	78	< 1	AA 0	10 8	202	3 55	2.6	5	3 1	1 3	56	< 1	.0	1	04	58	058	11	69.4	58	80	101	A 1	02	028	10	1	02	77	< 1	< 05	6	2.5
13800N 7100E	.0	39 1	15	16	1	10 0	92	366	2 52	1 3		1 2	1 1	48	1	.0	1	72	. 30	034	<u>,</u>	40.3		77	191	21	52	024	10	< 1	02	5 1	< 1	< 05	ς.	22
1000011 71002	. •	10.1	7.0	40	• •	13.2	0.2	000	LIUL	1.0		1.0	1.1	40	••	. 6		, 2	. 40		Ũ	-2.0	• + 1			• •		.024	. 10	•••		•••				
13800N 7150E	.3	36.5	4.4	95	.1	79.4	20.0	934	3.70	1.6	.5	1.3	.8	51	.2	.2	.1	68	.77	. 101	12	133.6	1.73	123	.127	32	.50	.010	.12	<.1	.03	6.3	<.1 ·	<.05	9	<.5
13800N 7200E	.3	20.3	5.6	58	.1	26.3	10.4	702	2.44	1.6	.5	1.1	1.0	64	.1	.2	.1	62	. 60	.068	7	53.9	. 58	124	. 190	31	.69	.024	.16	< 1	.03	4.8	<.1	<.05	6	<.5
13800N 7250E	.3	37.2	4.3	72	.2	44.2	13.2	453	3.55	1.4	.5	1.8	1.3	58	.2	.1	.1	72	.94	.100	18	59.8	1.17	92	.046	42	.48	.018	.16	<.1	.03	9.2	<.1	<.05	8	<.5
13800N 7300E	.4	38.1	5.1	123	.1	65.5	15.3	401	3.61	4.4	.3	21.7	1.3	59	.1	.2	.1	79	.73	.089	10	56.8	.61	241	.128	42	.25	.024	.14	<.1	.04	11.0	<.1 ·	<.05	6	<.5
13800N 7350E	.4	34.0	4.4	99	<.1	31.4	11.6	516	2.87	1.5	.8	1.3	1.8	71	.1	.1	.1	70	. 55	. 047	12	54.8	. 82	109	. 150	21	.69	.038	.20	<.1	.02	7.5	<.1	<.05	5	<.5
																														_						
13800N 7400E	.3	50.0	4.3	75	.1	39.4	13.4	507	2.74	2.3	1.3	.8	1.1	124	.1	.1	.1	64	1.18	.106	17	48.5	.96	108	.096	41	.60	.033	.22	<.1	. 05	7.0	<.1 ·	<.05	4	<.5
13800N 7450E	.3	55.6	4.9	83	.1	56.2	12.4	312	4.22	13.9	.4	12.1	1.6	62	.1	.6	.1	83	. 56	.056	14	70.9	. 49	83	.069	51	.64	.015	.11	.1	.05	12.2	<.1 ·	<.05	5	.5
13800N 7500E	. 5	19.3	3.7	116	<.1	27.3	10.2	397	3.19	1.4	. 5	.9	1.7	50	.1	.1	.1	59	.41	.050	11	31.4	.57	83	.135	11	96	.024	.11	<.1	.01	5.3	<.1 ·	<.05	5	<.5
13800N 7550E	.3	26.2	6.6	143	<.1	39.1	16.9	916	3.79	3.6	.6	1.4	1.5	49	.2	.3	.1	68	61	.090	14	71.5	1.11	181	.139	32	.86	.014	.15	<.1	.03	8.6	.1 •	<.05	10	<.5
13800N 7600E	.4	30.1	4.8	69	<.1	32.2	10.2	342	3.45	2.9	.5	1.0	1.4	40	.1	.3	.1	84	.51	.045	16	54.6	. 30	117	.087	21	.47	.016	.09	<.1	.02	7.8	<.1 <	<.05	5	<.5
13800N 7650F	5	45 3	73	132	3	50 5	15 3	614	A AA	4 5	4	0	16	59	2	Δ	1	106	64	090	26	64 1	27	231	078	4 2	ng	013	10	1	03	12.9	1 /	< 05	5	< 5
13800N 7700E	5	53.2	7.8	148	< 1	60 0	26.2	1415	6 10	8 0	3	2.6	1 4	43	2	3	1	138	50	128	27	109 9	47	205	011	51	52	007	12	< 1	02	14 1	1	06	6	< 5
13800N 7750E	5	32.7	8.8	100	1	18 1	16.6	686	A 52	7 2		55	1 6	52	2	1 2	1	116	75	057	17	61 5	20	317	114	31	87	015	16	1	03	11 0	1.	< 65	Š	< 5
RE 13800N 7750E	.5	21 1	8.4	105	< 1	45.4	16.0	680	4 30	7 0	5	22	1.6	51	1	1.3	1	113	75	055	17	58.7	29	315	112	4 1	79	015	16	1	03	11.8	1 -	< 05	5	< 5
13800N 7800F	.0	48 0	8.0	176	1	67 6	23.5	1119	6 27	12.3	.3	19.3	1 3	64	3	14	1	146	77	102	16	71 8	30	238	054	71	69	012	30	ĩ	.04	13.9	.1	< 05	5	< 5
		-0.0	0.0	1.0	• 1	07.0	, 20.0		0.21	10.0		10.0	1.0	0.		-	••	1.0			10	12.0		200	,					•-			•		•	
13800N 7850E	.6	22.6	5.5	60	.1	21.0	10.4	636	2.60	2.2	.6	.5	1.3	46	.1	.2	.1	72	.50	. 028	11	47.1	.43	99	.172	31	.52	.022	.17	<.1	.03	5.7	<.1	<.05	4	<.5
13800N 7900E	.4	10.7	4.8	46	<.1	10.7	4.9	301	1.79	1.0	. 3	<.5	.7	38	.1	°.1	-1	54	. 29	.043	3	32.6	.25	73	.178	21	.01	.022	.10	<.1	.01	2.9	<.1 ·	<.05	3	<.5
13800N 7950E	. 4	24.6	7.6	129	<.1	31.2	15.1	1493	2.71	2.0	1.0	2.6	1.6	78	.3	.1	.1	67	. 95	.053	12	71.5	1.70	117	.231	33	.67	.018	.16	<.1	. 02	10.2	<.1	< 05	11	<.5
13800N 8000E	. 3	8.4	5.3	38	.1	8.4	3.6	124	1.47	.6	.3	<.5	.8	35	.1	.1	.1	39	. 32	.014	3	30.5	. 25	58	. 155	<1 1	.10	.022	.06	<.1	.01	2.9	<.1 ·	<.05	3	<.5
13600N 6000E	.4	18.8	5.0	72	<.1	22.7	10.1	457	2.91	1.2	.4	1.0	1.0	69	.1	.1	.1	81	.55	.033	5	43.2	. 80	82	. 206	22	.03	.028	.11	<.1	.01	6.3	<.1	<.05	7	<.5
	-							405					• •			•		~~	00			40.4			177		74	0.75	1.4	. 1	01	4 2		- 0F	-	
13600N 6050E	.4	1/.0	5.4	86	<.1	18.2	6.7	405	2.38	1.1	.4	<.5	1.0	53	.1	.2	.1	60	36	.044	4	42.4	.44	94	.1//	21	/4	.025	.14	<.1	10.	4.3	<.1	S.U5	5	<.5
13600N 6100E	. 5	37.3	4./	93	.1	32.0	13.1	/4/	3.46	2.5	.5	1.3	1.4	80	1.	.2	.1	83	./4	.153	9	5/.4	.90	120	.151	32	.15	.026	.14	<.1	.02	1.2	<.1 '	5.05	/	<.5
113600N 6150E	.4	21.4	5.9	64	.1	25.6	10.2	311	3.15	1.8	.6	1.3	1.5	11	.1	.2	.1	6/	. 53	.050	6	50.4	. 58	96	. 165	12		.025	.15	<.1	.03	5.6	<.1	5.U5	6	<.5
13600N 6200E	.4	14.8	5.0	59	.1	18.4	6.2	234	2.35	1.1	.4	6	.8	52	<.1	1.	1	64	. 35	.033	3	41.1	.43	6/	.1/5	11		.023	.0/	<.1	10.	3.8	<.1 '	<.05	5	<.5
STANDARD DS6	n.7	128.1	37.2	146	.3	24.8	5 11.0	697	2.82	21.4	8.1	53.5	3.1	40	6./	4.0	5.2	5/	. 85	.0/9	14	181.1	. 58	164	.081	181	. 92	.073	.15	3.4	.23	3.3	1.7	5.05	6	4.8

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

Contraction of the second s

Page 7

and the second secon

Data <u>A</u>FA

Page 8

																	-																	ALL AL	ACTINUAL	
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N1 ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cđ ppm	Sb ppm	B1 ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti X	B ppm	A1 \$	Na %	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S %	Ga ppm	Se ppm
3600N 6250E 3600N 6300E 3600N 6350E 3600N 6400E 3600N 6450E	.4 .4 .3 .4	20.7 14.2 37.3 22.2 18.0	4.0 3.8 4.4 3.9 4.5	70 97 71 81 60	<.1 .1 .1 .1	25.7 19.1 34.5 25.7 21.9	9.7 8.0 13.5 9.8 8.8	480 623 660 531 559	3.04 2.55 3.45 2.98 2.39	2.0 1.7 3.1 2.8 3.5	.5 .3 .4 .3 .4	.5 <.5 1.0 <.5 <.5	1.6 .8 1.5 .9 .9	80 37 87 49 71	.1 .1 .1 .1	.2 .2 .3 .2 .2	.1 .1 .1 .1 .1	82 67 89 82 61	. 61 . 35 . 94 . 44 . 63	.055 .127 .065 .114 .098	10 4 13 5 5	45.9 41.4 56.8 49.3 39.3	. 61 . 39 . 89 . 57 . 50	80 116 110 117 123	.156 .146 .133 .145 .098	4 1 2 1 4 2 3 1 4 1		.033 .024 .033 .021 .018	.18 .08 .14 .07 .11	<.1 <.1 <.1 <.1 <.1	.03 .01 .05 .02 .03	6.6 4.3 8.0 5.0 4.2	<.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	5 5 6 6 6	<.5 <.5 <.5 <.5
3600N 6500E 3600N 6550E 3600N 6600E 3600N 6650E 3600N 6700E	.3 .4 .5 .4 .4	12.3 16.2 9.7 13.1 12.7	4.4 4.4 4.1 4.7 4.0	70 87 132 64 97	<.1 <.1 .1 .1 <.1	16.8 24.3 15.2 20.1 17.1	6.8 8.5 5.0 8.3 7.1	342 435 453 427 519	2.23 2.84 1.48 2.75 2.18	2.1 2.1 1.5 1.9 1.8	.3 .3 .2 .3 .2	<.5 <.5 <.5 .9 .5	.8 .9 .9 1.0 .8	43 58 33 50 45	.1 .1 .1 .1	.1 .2 .1 .2 .1	.1 .1 .1 .1	60 72 33 69 56	.34 .49 .29 .40 .27	.055 .054 .097 .047 .044	3 5 3 4 4	34.0 46.7 22.4 39.7 33.8	.42 .58 .29 .54 .46	91 94 113 94 97	.131 .126 .094 .151 .111	2 1 2 1 2 1 2 1 1 1	63 88 54 85 57	.017 .024 .019 .022 .026	.08 .12 .10 .08 .06	<.1 <.1 <.1 <.1 <.1	.02 .02 .01 .02 .03	3.4 4.5 2.7 4.4 3.9	<.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	5 6 5 5 5	<.5 <.5 <.5 <.5
E 13600N 6700E 3600N 6750E 3600N 6800E 3600N 6850E 3600N 6900E	.3 .4 .3 .5 .4	12.4 13.8 24.1 34.3 15.8	4.0 4.1 4.6 3.5 3.6	97 40 104 65 88	<.1 <.1 <.1 <.1 <.1	17.4 17.9 22.7 37.4 15.3	7.2 6.9 8.9 14.1 6.2	538 311 496 464 450	2.17 2.43 2.58 3.57 2.21	1.8 1.8 2.9 3.8 1.5	.3 .5 .5 .3	<.5 <.5 .8 3.0 .8	.8 .9 1.3 1.4 .9	48 51 62 64 49	.1 <.1 .3 .1 .1	.1 .2 .3 .2	.1 .1 .1 .1	55 68 62 95 61	.27 .36 .92 .54 .42	.045 .039 .073 .082 .035	4 4 10 10 4	33.1 38.8 40.1 65.2 36.6	.47 .40 .44 .83 .36	99 80 89 87 81	.112 .163 .131 .210 .159	1 1 1 1 4 1 2 1 3 1		. 027 . 026 . 029 . 029 . 026	.07 .11 .12 .13 .15	<.1 <.1 <.1 .1 <.1	.03 .02 .04 .02 .02	4.1 3.6 5.7 7.6 3.9	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	5 4 5 6 4	<.5 <.5 5 5 5 5 5 5
3600N 6950E 3600N 7000E 3600N 7050E 3600N 7100E 3600N 7150E	.5 .4 .3 .5	49.5 17.9 12.1 17.3 12.9	3.3 3.5 4.3 4.1 4.5	64 86 70 62 67	.1 <.1 .1 <.1	35.8 22.4 17.9 23.9 15.8	14.1 9.0 6.7 8.7 6.5	529 468 349 375 594	3.14 2.78 2.29 2.90 2.24	2.7 2.2 1.6 2.2 1.3	.5 .3 .4 .3	.7 1.1 <.5 <.5 .5	1.5 .8 1.0 1.4 .8	94 54 54 72 55	.1 .1 <.1 <.1	.3 .3 .1 .2 .2	.1 .1 .1 .1	80 83 56 77 67	.96 .51 .38 .47 .37	. 083 . 056 . 044 . 039 . 038	13 4 4 7 3	54.2 51.1 36.2 45.9 41.4	.80 .51 .44 .56 .38	101 79 85 90 117	.184 .222 .154 .170 .201	2 1 3 1 3 1 <1 2 1 1	98 23 87 07 57	.031 .026 .030 .036 .023	.10 .11 .14 .14 .12	.1 <.1 <.1 <.1 <.1	.03 .02 .02 .03 .01	6.6 4.5 4.2 5.8 3.7	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	6 4 5 5	<.5 <.5 <.5 <.5 <.5
3600N 7200E 3600N 7250E 3600N 7300E 3600N 7350E 3600N 7400E	.5 .3 .5 .5	23.0 20.7 26.4 20.5 30.9	4.5 6.3 4.7 4.6 4.3	44 138 65 102 54	.1 <.1 <.1 .1 .1	26.4 36.3 39.6 35.6 26.3	9.9 14.8 15.6 11.3 10.6	388 1126 589 535 442	2.53 3.13 3.45 2.65 2.67	1.9 1.9 3.8 3.4 1.8	1.0 .7 .5 .5	.7 <.5 .5 29.8 11.0	1.5 1.2 1.5 1.1 1.6	72 61 149 66 69	.1 .2 .1 .2 .1	.2 .2 .1 .2 .2	.1 .1 <.1 .1 .1	63 92 85 1 73 62	.66 .67 .35 .72 .73	031 122 098 074 097	13 9 14 8 13	49.2 63.0 7 73.4 58.3 45.4	.59 1.16 .98 .67 .49	83 189 95 104 90	.176 .284 .179 .209 .136	2 2 3 3 10 3 5 2 4 1	. 57 . 39 . 13 . 59 . 99	. 023 . 014 . 017 . 019 . 028	.06 .11 .23 .20 .10	.1 .1 <.1 .1 .1	.02 .02 .05 .02 .02	6.3 6.5 7.6 5.7 6.1	<.1 < .1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	7 11 10 8 6	<.5 <.5 <.5 <.5
3600N 7450E 3600N 7500E 3600N 7550E 3600N 7600E 3600N 7650E	.4 .5 .6 .5 .4	20.4 23.9 24.9 24.9 24.9 26.0	3.9 4.0 4.0 5.2 4.4	36 51 50 75 87	<.1 .1 <.1 <.1	24.0 27.8 22.5 29.5 33.9	9.9 11.5 10.4 12.8 10.6	424 635 737 790 383	2.59 2.83 2.69 3.24 3.96	1.7 2.2 2.3 2.9 8.0	.5 .4 .5 .3	.5 7 10.4 .7 <.5	1.2 1.4 1.3 1.6 1.3	71 63 69 49 39	.1 .1 .2 .1	.2 .2 .5 .3 .4	.1 .1 .1 .1	73 69 75 96 99	.58 .67 .62 .60 .36	. 042 . 037 . 026 . 050 . 077	9 15 13 15 16	48.2 53.3 46.1 57.3 54.2	.52 .59 .49 .64 .26	92 89 118 136 107	.180 .148 .147 .186 .064	3 1 3 1 5 1 2 1 5 1	.50 .88 .63 .92 .43	.029 .026 .029 .030 .012	. 15 . 19 . 14 . 16 . 14	.1 <.1 <.1 <.1 <.1	.02 .02 .03 .03 .01	5.2 7.7 6.7 7.4 8.1	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	5 5 6 5	<.5 <.5 <.5 <.5
3600N 7700E 3600N 7750E 3600N 7800E 3600N 7850E TANDARD DS6	.5 .4 .6 .5 11.7	34.6 29.2 24.0 31.0 29.0	4.6 3.9 3.9 5.3 29.5	89 67 61 64 147	.1 <.1 < 1 1 .3	44.8 32.8 27.5 29.9 25.1	16.8 12.2 12.3 13.0 11.0	797 548 693 781 707	3.90 3.56 3.04 3.02 2.87	4.0 4.1 3.3 2.6 21.8	.4 .4 .6 7.0	3.1 1.8 2.3 1.7 49.7	1.3 1.3 1.4 1.6 3.2	67 51 58 79 41	.2 .1 .1 .2 6.4	.5 .4 .2 .2 4.4	.1 .1 .1 5.3	102 88 82 75 57	.57 .56 .60 .89 .87	.067 .055 .051 .046 .080	13 14 13 15 15	64.0 60.1 55.3 54.4 186.5	.51 .41 .52 .73 .59	112 118 118 106 169	. 158 . 142 . 148 . 168 . 082	3 1 1 1 4 1 3 2 18 1	.71 .57 .64 .13 .95	.025 .025 .028 .030 .030	.27 .21 .27 .24 .15	.1 <.1 <.1 .1 3.5	.02 .04 .02 .03 .23	8.7 8.6 7.4 7.5 3.4	.1 < <.1 < <.1 < <.1 < <.1 < 1.8	<.05 <.05 <.05 <.05 <.05	5 5 6 6	<.5 <.5 <.5 <.5 4.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

يقيق الأستارة الجراب المتنقا كتستديدها الالتكاريد

ACHE ANNLYTICAL				Al	ma	de	n M	ine	era:	ls	Lt	d.	PR	OJ)	ECT	M	RT	05	-1	F	LE	: #	A5(046	45			•	P	age	9				ICAL
SAMPLE#	Мо ррт	Cu ppnt	Pb ppm	Zn ppm p	Ag opm	N1 ppm	Co ppm	Mn ppm	Fe ž	As ppm	U ppm	Au ppb	Th ppm	Sr ppm p	Cd ppm p	Sb i pm pi	Bî prn pj	V pm	Ca X	P X	La ppm	Cr ppn	Mg X	Ba ppm	Ti \$	8 ppm	A1 \$	Na X	K N ≵ppn	vl Hg nppm	Sc ppm/p	T1 pm	S Ga X⊺ppn	a Se nippmi	
13600N 7900E 13600N 7950E 13600N 8000E 13400N 6000E 13400N 6050E	.4 .5 .3 .3	18.0 36.2 52.5 14.2 13.4	4.4 5.1 6.0 4.7 4.3	60 < 75 • 88 < 67 64 <	<.1 <.1 -1 -1	20.6 53.0 73.5 14.8 13.1	8.9 18.8 25.3 8.4 8.0	365 832 1763 411 408	2.74 3.78 4.37 2.25 2.48	1.6 2.4 2.7 5.3 2.4	.4 .5 .4	1.0 <.5 <.5 <.5 <.5	1.5 1.5 1.2 1.0	49 102 88 83 86	.1 .1 .2 .1 .1 1	.2 .3 .8 .0	$\begin{array}{cccc} .1 & (\\ .1$	80 90 04 60 69	.48 1.18 .99 .40 .40	.030 .093 .070 .188 .031	9 14 13 3 3	51.5 85.3 101.7 19.8 26.6	.45 1.08 1.67 .61 .59	72 91 61 62 87	. 199 . 211 . 230 . 144 . 172	11 33 23 <12 <11	. 35 . 54 . 48 . 65 . 92	.028 .034 .038 .019 .018	.20 < .24 .15 < .06 .10 <	i .01 1 .04 1 .03 1 .02 1 .02	5.5 < 10.0 < 11.4 < 4.2 < 4.2 <	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 4 5 9 5 1 5 8 5 6	4 <.5 9 <.5 1 <.5 8 <.5 6 <.5	
13400N 6100E 13400N 6150E 13400N 6200E 13400N 6250E 13400N 6300E	.2 .3 .4 .3 .3	16.0 26.2 18.0 13.0 7.5	4.4 4.6 4.2 4.4 4.4	64 < 69 57 < 81 < 65 <	1 1 1 1 1	13.9 23.6 20.3 17.1 10.5	6.4 9.4 8.4 6.1 3.7	358 482 469 313 212	2,21 2,82 2,64 2,28 1,32	2.1 2.9 1.7 1.3 1.2	.4 .6 .3 .3 .2	2.9 <.5 <.5 <.5 <.5	1.2 1.4 1.1 .9 .6	38 58 44 40 22	.1 .1 .1 .1	.2 .3 .2 .1	.1 (.1 (.1) .1 (.1)	57 69 72 59 32	.44 .64 .53 .35 .17	.031 .043 .046 .052 .052	8 11 8 3 2	31.7 43.1 43.2 37.6 19.7	. 39 . 60 . 49 . 37 . 22	53 73 85 85 83	. 128 . 124 . 148 . 148 . 148 . 092	<1 1 <1 2 3 1 2 1 1 1	.57 .16 .48 .49 .17	.031 .033 .028 .026 .018	.06 < .06 < .09 < .13 < .05 <	L .01 L .04 L .01 L .01 L .01 L .01	4.0 < 5.5 < 4.3 < 3.3 < 1.8 <	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 5 5 6 5 5 5 4 5 4	5 <.5 6 <.5 5 <.5 5 <.5 4 <.5	
13400N 6350E 13400N 6400E 13400N 6450E 13400N 6550E 13400N 6550E	.2 .4 .3 .5 .4	18.0 14.0 10.6 33.3 16.1	4.5 4.5 4.0 5.9 5.0	65 < 43 < 61 < 117 76	<.1 <.1 <.1 .1	24.1 17.2 16.2 62.0 26.1	11.0 8.2 6.5 21.8 9.9	395 346 327 796 546	2.72 2.55 2.16 3.94 2.72	3.4 2.3 2.0 3.9 2.7	4 .3 .6 .4	1.6 .9 <.5 <.5 <.5	1.3 1.1 .7 2.0 1.3	41 47 57 103 61	.1 .1 .1 .1	.2 .2 .1 .1	$ \begin{array}{cccc} .1 & (.1) \\ .1 & (.$	64 67 53 87 66	.42 .46 .40 .69 .45	. 050 . 024 . 037 . 140 . 062	5 5 3 8 4	50.7 41.6 36.7 62.9 45.0	.91 .49 .50 1.82 .64	71 79 112 163 94	. 112 . 136 . 126 . 155 . 143	1 2 1 1 1 1 3 4 <1 2	. 19 . 45 . 68 . 27 . 41	.017 .024 .022 .021 .026	.13 <. .09 <. .10 <. .07 .13 <.	L .01 L .02 L .02 L .02 L .02 L .02	5.0 < 4.3 < 3.3 < 6.8 < 4.6 <	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 8 5 9 5 9 5 12 5 12	8 <.5 5 <.5 5 <.5 2 <.5 6 <.5	
13400N 6600E 13400N 6650E 13400N 6700E 13400N 6750E 13400N 6800E	.5 .3 .3 .3 .3	14.6 15.4 17.3 13.1 27.1	5.5 6.8 7.9 3.9 7.6	90 - 102 119 - 70 - 44	< 1 < 1 < 1 < 1	24.4 29.8 48.6 18.2 26.1	9.3 14.0 18.5 6.6 10.1	650 688 1332 263 505	2.59 3.47 4.37 2.50 2.63	1.2 1.5 1.3 1.6 5.4	.4 1.0 .9 .3 .7	<.5 .5 .7 1.2	1.2 1.4 1.4 1.0 1.1	63 148 100 51 115	.1 .1 < .2 .1 .2	.2 .1 .2 .2	$\begin{array}{c} .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 $	70 97 17 65 74	.43 .75 .61 .41 1.21	.039 .037 .047 .042 .100	4 11 10 4 9	41.3 87.0 91.4 40.5 42.0	.56 1.32 1.79 .52 .63	124 139 116 64 72	. 166 . 317 . 287 . 163 . 111	<1 2 <1 2 <1 2 1 1 6 1	.42 .67 .70 .63 .89	. 026 . 021 . 020 . 030 . 033	.10 < .09 .10 < .13 < .09 <	L .01 L .01 L .01 L .01 L .04 L .06	4 4 < 8 9 < 9 0 < 4 5 < 5.6 <	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 6 5 9 5 9 5 9	6 <.5 9 <.5 9 <.5 5 <.5 6 <.5	
13400N 6850E 13400N 6900E 13400N 6950E 13400N 7000E 13400N 7050E	3 .4 .3 .4 .3	15.4 20.9 13.6 9.7 16.7	4.6 4.6 4.2 3.7 6.1	85 98 58 48 126	< 1 < 1 < 1 1	24.2 29.7 18.1 14.1 31.6	8.9 10.5 7.0 5.9 11.0	423 551 256 279 596	2.81 2.93 2.32 2.14 2.95	2.7 2.7 1.5 1.4 1.2	.3 .4 .3 .6	1.1 .8 <.5 .6 1.3	1.0 1.3 .9 .8 1.3	54 56 40 41 52	.1 .1 .1 .1 .2	.2 .2 .2 .2 .3	$\begin{array}{c} .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 $	68 72 63 58 78	.42 .46 .37 .36 .56	.055 .111 .047 .036 .053	4 5 4 3 6	46.3 47.2 41.8 37.1 53.0	.62 .62 .38 .33 .75	96 100 58 82 124	. 128 . 134 . 177 . 167 . 236	<12 12 11 <11 22	.11 .54 .63 .36 .73	. 020 . 023 . 024 . 024 . 024 . 017	.09 < .13 < .07 < .08 < .11 <	L .03 L .02 L .01 L .01 L .01 L .01	4.1 < 5.5 < 3.6 < 3.3 < 5.7 <	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	5 (5 7 5 9 5 9 5 1	6 <.5 7 <.5 5 <.5 4 <.5 8 <.5	
13400N 7100E 13400N 7150E 13400N 7200E 13400N 7250E RE 13400N 7250E	.3 .2 .2 .3	12.8 13.8 15.1 29.1 29.8	4.8 6.1 6.0 6.3 6.5	82 - 112 - 112 - 102 - 105 -	< 1 < 1 < 1 < 1 < 1	24.6 28.6 29.7 49.5 49.3	8.8 9.7 10.8 19.6 20.0	465 744 620 644 632	2.10 2.56 2.20 3.81 3.73	1.2 1.3 .8 1.7 1.6	.4 .4 .4 1.0 1.0	<.5 2.7 <.5 .6 2.5	1.0 1.3 1.1 2.0 2.1	25 40 37 96 96	.1 .2 .2 .2 .2	.3 .2 .1 .2 .2	.1 .1 (.1 .1 1 .1 1	53 65 54 06 04	.28 .41 .46 1.10 1.08	.066 .086 .072 .104 .102	4 7 13 14	40.1 51.2 38.9 98.2 95.4	.53 .51 .70 1.36 1.37	139 137 219 152 157	. 151 . 171 . 138 . 351 . 337	32 32 22 44 34	. 28 . 74 . 02 . 38 . 41	.015 .018 .016 .013 .013	.08 <.: .10 . .11 <. .13 . .13 .	L .01 L .02 L .02 L .02 L .02 L .02	3.5 4.4 4.7 9.3 < 8.9	.1<.0 .1<.0 .1<.0 .1<.0 .1<.0	15 1 15 1 15 1 15 1	7 <.5 8 <.5 7 <.5 3 <.5 3 <.5	
13400N 7300E 13400N 7350E 13400N 7400E 13400N 7450E STANDARD DS6	.3 .3 .3 .3 11.6	18.5 17.8 63.8 135.3 128.1	5.1 4.7 1.8 2.5 30.3	82 - 110 22 35 147	< 1 .1 .2 .3	29.6 32.0 14.2 25.7 25.0	12.9 12.5 2.4 5.1 11.1	457 545 549 382 706	3.40 3.02 .50 1.34 2.85	1.4 1.5 1.8 1.8 21.5	.7 .6 1.0 .8 6.9	2.9 8.5 1.3 1.5 49.5	1.6 1.0 .1 .5 3.2	54 47 531 465 41	.1 .1 .3 .3 6.2 3	.2 .2 .4 < .2 < .7 5	.1 .1 .1 .1 .2	87 81 33 2 39 1 57	.65 .61 23.10 .6.29 .85	.046 .074 .157 .222 .078	9 5 4 29 15	70.5 63.7 14.1 26.2 184.1	.91 .92 .46 .60 .59	107 79 28 86 169	.207 .236 .017 .052 .085	2 2 3 2 28 22 1 18 1	.51 .34 .59 24 96	.013 .011 .022 .040 .073	.10 < .18 . .03 <. .05 . .16 3.	1 .01 1 .01 1 .04 1 .07 3 .23	6.4 < 5.9 < .7 < 2.9 < 3.5 1	.1<.0 .1<.0 .1 .1 .1 .1 	15 1 15 1 15 1 15 1 15 1 15 1	8 <.5 8 <.5 2 1.5 3 1.4 6 4.5	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

i

Almaden Minerals Ltd. PROJECT MRT05-1 FILE # A504645

Page 10

Data A FA

				· · ·			_	-						· · · ·	-			_		<u> </u>														MACTICAL
Sample#	М	0	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	8i	۷	Ca	P	La	Cr	Mg	Ba	Ti	B A1	Na	ĸ	W He	i Sc	T1	S Ga	Se
	pp	m	ppn	ррт	ppm	ррт	ppm	ppm	ppm	*	ррт	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	2		ppm	ppa	Х р	pm	\$ pp	m 🕱	2	z	ppm ppr	i ppm	nqq	X ppm p	i)m
13400N 7500E 13400N 7550E	_!	53	36.5 37.2	4.8 4.3	52 48	.1 .1	28.9 28.9	12.4 11.5	686 632	2.72 2.62	2.5 3.3	1.0 .8	.9 1.7	1.5 1.0	80 73	.1 .2	.2 .2	.1	64 73	. 97 . 83	.040 .054	13 14	44.7 49.1	.63 1 .64 1	17 . 13 .	132 118	4 1.94 2 1.80	.024 .022	.11 .10	.1 .0	6.5	<.1<.0	5 6 < 5 5 <	.5
13400N 7600E	-	29	97.4	2.9	36	.1	26.4	4.9	170	1.31	1.4	.8	1.6	.8	481	.2	.1	.1	40	12.83	.210	17	24.3	.72 2	30.0	057 2	0 1.37	.033	.04	.1.02	3.4	<.1 .1	0 4	.6
13400N 7050E		3 5	51.0 55.8	4.3 6.2	52 49	.1	25.6	11.0	343	2.35	2.0	.0 .9	1.0	1.5	254 123	.1	.2 .2	.1	57 46	5.30 1.48	.036	23 14	37.9 33.4	.81 1	53 .1 29 .1	106	4 2.08	.035	.10	<.1 .02 .1 .03	5.7	<.1 .0 <.1<.0	8 6< 5 5<	.5
13400N 7750E		54	1.0	5.1	60 64	.1	27.1	11.7	586 645	2.67	3.1	.7	1.9	1.4	88	.2	.2	.1	68 66	.94	.052	13	39.3	.64 1	21.1	26	5 1.79	-024	.19	.1 .03	6.5	<.1<.0	5 5 <	.5
13400N 7850E		5 5	20.8	5.0	67	.1.	20.1	10.7	684	2.00	2.0	.0	.0 8	1.4	78	.2	.0	.1	72	1.20	.030	12	30.3 AE 7	.09 1	29.J	LI/ (0 1.93	.034	.10	.1.00	0.0	∿.1≦.U ∠ 1∠ 0	5 5 5 5 5 -	.5
13400N 7900F		4 3	13.4	4 8	51	1	25.9	11 3	624	2 90	3.0	6	1.0	1 6	95	1	1	1	75	.70	145	14	44.0	.5/ 1	10 .1 12 1	160 J	4 1 77	020	20	1 03	60.0	< 1< 0	3 3 X 5 5 Z	
13400N 7950E	- *	4 2	20.6	4.3	66	<.1	27.7	10.2	476	2.83	1.2	.5	.6	1.2	69	î	.2	.1	72	.60	.059	10	49.0	.68	91 .1	.03	4 1.99	.033	.20	.1 .03	6.9	<.1<.0	5 5 <	.5
13400N 8000E	.,	4 3	34.0	4.2	73	<.1 9	53.0	18.0	551	3.78	1.6	.5	1.8	1.2	52	.1	.2	.1	88	.63	.045	13	83.3	1.49	58.1	81 <	1 2.79	.020	.13	.1 .02	7.8	<.1<.0	58<	.5
13200N 6000E		22	26.9	5.1	80	.1	31.0	20.7	858	4.54	23.1	.8	.7	1.9	84	.1	.3	.1	74	1.09	.060	14	29.5	1.61	78.2	44	1 3.01	.063	.07	.1 .02	13.3	<.1<.0	5 8 <	.5
13200N 6050E		3 1	16.2	5.4	8/	.1.	11.2	9.4	112	2.84	10.0	.4	./	1.1	58	.1	.1	.1	53	.47	.035	4	20.2	. 45	90.2	33 <	1 1.50	.021	.06	<.1 .01	5.5	<.1<.0	5 4 <	.5
13200N 6100E		31	0.8	5./	83	.1	9./	6.2	586	1.99	2.0	.4	.5	./	6/	.1	<.1	.1	55	.3/	.029	3	13.5	.49 1	04.2	218	1 1.64	.019	.05	<.1 .0	. 3.8	<.1<.0	5 5 <	.5
13200M 0150E		3	9.4	5.4	81 .	<.1	12.2	0.4	420	2.04	1.5	.3	.5	./	49	.1	.1	.1	50	. 34	.035	3	19.4	.46 1	13	// <	1 1.96	.023	.05	<.1 .01	3.2	<.1<.0	5 5 <	.5
13200N 6200E	.:	32	26.7	6.9	96	.1 3	31.1	20.2	1236	3.87	4.7	.7	<.5	1.1	108	.3	.3	.1	95	. 89	.088	11	42.2	1.72 1	25.2	215	2 3.60	.041	.08	.1 .03	10.0	<.1<.0	5 10 <	.5
13200N 6250E		32	26.6	5.3	85	.1 :	29.8	16.8	530	4.08	4.4	.8	1.1	1.3	74	.1	.6	.1	106	.75	.057	9	53.0	1.63 1	03.2	32	12.72	.023	.13	<.1.02	10.4	<.1<.0	59<	.5
13200N 6300E		4 1	8.1	5.1	54	<.1	18.9	9.4	469	3.02	3.1	.4	1.1	1.0	60	.1	.3	.1	86	.59	.027	6	37.2	.56 1)6 .1	.66	2 1.48	. 028	.08	<.1 .02	4.5	<.i<.0	5 4 <	.5
13200N 0350E		5 2	25.2	3.7	94 .	<.1 7	26.1	9.1	4/0	3.64	9.8	.3	11.9	1.3	3/	1.	.8	.1	80	.44	.056		27.2	.15 1	19.0	22	3 1.09	.010	.11	<.1 .02	6.5	< 1<.0	5 3 <	.5
13200N 0400E	- 4	2 3	53.9	3.8	00	.1.	30,2	15.0	434	3.91	1.0	.5	0.5	1.9	68	.1	.3	1.	96	.61	.051	11	62.7	1.3/	58 .U	55	2 2.58	.010	.10	<.1 .0	10.0	<.1<.0	5 9 <	.5
13200N 6450E		33	85.9	8.1	107	.1 ;	36.1	17.8	975	4.04	6.2	1.1	2.5	1.6	117	.3	.5	.1	122	1.00	.053	12	33.6	1.60 1	l6 .3	66 ;	3 3.61	.020	.09	<.1 .03	9.7	<.1<.0	5 12 <	.5
13200N 6500E		23	35.7	5.7	67 ·	<.1 :	35.1	17.9	462	3.69	6.7	1.1	1.0	2.2	155	.2	.4	.1	99	1.37	.035	15	32.6	1.61	39.2	283 2	23.86	.045	.12	<.1 .01	9.7	< 1<.0	5 13 <	.5
13200N 6550E		52	26.9	6.0	80	.1 ;	28.9	13.5	815	3.05	7.8	.9	.7	1.8	103	.2	.4	.1	78	.92	.064	11	29.3	1.36	35.2	33	2 2.86	.019	.07	.1 .01	7.8	< 1<.0	5 9 <	.5
13200N 6600E		32	23.8	6.3	79	.1	28.0	11.3	473	3.20	6.0	.6	1.9	1.6	75	.1	.3	.1	81	.63	.051	7	37.2	.91	33.2	18	2 2.52	.022	.11	<.1 .01	6.8	< 1<.0	5 7 <	.5
13200N 0050E		3 Z	3.1	5.6	108	.1 ;	31.7	9.6	267	2.73	3.Z	.4	1.1	1.6	61	.1	.2	.1	61	43	. 187	5	39.8	.70 1	13 .1	.41 3	2 3.02	.020	.10	.1 .01	5.1	<.1<.0	59<	.5
13200N 6700E	.:	21	5.3	5.6	91	<.1 3	22.5	7.1	393	2.49	1.5	.4	<.5	1.3	60	.1	.1	.1	60	.44	. 054	4	34.2	.47 1	03.1	.50	1 2.22	.024	.11	<.1 .02	4.4	<.1<.0	56<	.5
13200N 6750E		42	22.8	5.8	- 84 -	<.1	30.8	12.0	560	3.07	2.2	.6	1.8	1.7	85	.2	.2	.1	82	.65	.054	7	40.8	.87 1	J2 .1	.67	12.48	.026	.09	<.1 .03	6.3	< 1< 0	56<	.5
RE 13200N 6/5	SUE .4	4 2	3.1	6.2	.83	<.1	32.0	12.4	569	3.16	2.4	.5	.8	1.7	86	.1	.Z	.1	83	.64	.054	7	42.9	.85 1]2 .]	.77 :	1 2.61	.028	.09	<.1 .02	6.5	< 1 <.0	5 7 <	.5
13200N 6600E		5 2	25.3	4.4	14/	<.1 4	40.0	13.7	897	3.15	1./	.5	2.7	1.9	92	.3	.1	1	91	.65	.099	10	38.1	.92 1	30.1	.56	4 2.76	.027	.12	<.1 .02	5.8	<.1<.0	5 7 <	.5
1920AN 0820F	.:	5 2	(4.4	4.9	00	.1	30.0	13.1	482	3.19	2.1	.0	1.2	1.0	84	.1	.2	.1	84	.12	.063	10	46.0	1.03 I	13.1	./3	1 2.52	.02/	.12	<.1.02	7.6	<.1<.0	5 / <	.5
13200N 6900E		31	5.0	7.3	97 ·	<.1 !	57.9	20.0	1180	4.22	2.1	.6	1.1	1.2	78	.2	.4	.1	105	.82	.046	9	72.5	1.37 2)3 .2	278 2	2 2.87	.015	.09	.1 .02	9.6	<.1<.0	57<	.5
13200N 6950E	. 1	2 1	.7.4	5.6	97	.1	49.7	16.7	620	3.52	1.3	.5	1.2	1.2	65	.2	.7	.1	96	.56	.035	9	63.1	1.35 1	21.2	251 3	2 3.04	.017	.06	.1 .01	9.5	<.1<.0	58<	.5
13200N 7000E		31	8.8	5.8	69 ·	<.1	46.0	15.2	463	3.35	1.6	.5	.7	1.0	77	.1	.2	.1	95	.62	. 024	6	55.2	1.12 1	19.2	265	2 2.88	.016	.10	<.1 .01	9.4	<. i <.0	58<	.5
13200N 7050E		42	28.8	6.6	149	.2	37.3	12.3	1913	2.16	3.2	.4	<.5	.9	147	.5	.4	.1	51	1.12	.265	7	31.3	.83 2	19.1	.07	3 2.97	.013	.11	.1 .0	5.8	<. <u>1</u> <.0	5 11 <	.5
STANDARD US6	11.0	5 12	:/.4	30.5	146	.3	24.0	10.9	698	2.83	21.5	6.9	47.2	3.1	41	0.4	4.0	5.3	56	. 85	.079	13	182.9	.59 1	s/ .(1/9 1	/ 1.92	.072	.14	3.6.23	3.2	1.7<.0	5 64	.6

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 11

Data AFA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm p	B1 pm j	v V	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	A1 \$	Na X	К %р	W H pm pp	a t	Sc T ppm pp	l S n %	Ga pomip	Se pm
13200N 7100E 13200N 7150E 13200N 7200E 13200N 7250E 13200N 7250E 13200N 7300E	.4 .4 .5 .2 .5	39.3 16.2 29.1 15.0 20.7	7.2 5.8 7.2 5.6 6.6	111 77 80 85 116	.1 <.1 <.1 .1 .1	55.6 29.1 50.0 25.0 47.0	18.4 10.9 18.3 9.6 17.6	1156 548 767 339 829	3.77 3.08 4.12 2.66 3.72	3.6 2.0 4.5 1.8 2.6	.8 .5 .8 .7 .7	1.4 1.3 1.5 1.3 1.5	1.5 1.1 1.6 .9 1.4	87 54 94 45 58	.4 .2 .2 .1 .2	.8 .2 .3 .4 .4	.1 .1 .1 : .1 .1	98 87 117 74 99	1.18 .49 1.19 .55 .61	.092 .049 .055 .048 .205	20 5 13 5 7	75.2 58.5 83.1 55.2 90.8	.89 .63 1.13 .72 1.07	88 90 95 76 135	.242 .223 .352 .259 .228	4 4 4 2 3 3 5 2 3 3	.45 .44 .73 .80 .84	019 020 021 016 015	.11 .11 < .13 .08 .10	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	4 11 2 9 3 11 2 6 2 7	1.8 5.9 <. 1.6 <. 6.3 <. 7.3 <.	l<.05 l<.05 l<.05 l<.05 l<.05 l<.05	13 < 7 < 11 < 9 < 14 <	.5 .5 .5 .5 .5
13200N 7350E RE 13200N 7350E 13200N 740DE 13200N 7450E 13200N 7500E	.3 .3 .2 .5 .4	21.4 21.7 65.3 25.7 29.6	5.3 5.4 1.8 4.3 4.4	46 46 18 84 69	<.1 <.1 .2 .1	36.6 34.3 15.9 27.0 27.9	14.0 13.2 3.5 11.6 10.6	388 382 417 564 572	3.39 3.34 .79 2.93 2.72	2.1 2.0 1.3 2.5 2.4	.6 .7 .8 .5	3.6 1.5 3.1 .8 .8	1.6 1.7 .1 1.5 1.0	80 83 497 97 80	.1 .1 .3 .1 .2	.4 .5 .2 .2	.1 .1 .1 .1 .1	87 83 31 73 69	.76 .75 23.59 .77 .84	.051 .048 .184 .098 .078	11 11 9 10 9	69.1 68.9 18.5 47.1 47.2	.85 .82 .42 .71 .56	75 73 29 99 94	. 187 . 188 . 023 . 145 . 150	43 33 24 52 61	. 16 . 02 . 71 . 36 . 86	025 024 018 032 034	.07 < .07 < .03 .20 .16 <	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	2 2 5 3 2 2	7.7 < 7.6 < .9 6.7 < 5.6 <	L<.05 L<.05 L .13 L .06 L<.05	9 < 10 < 2 1 6 < 6	.5 .5 .5 .5
13200N 7550E 13200N 7600E 13200N 7650E 13200N 7700E 13200N 7750E	.5 .4 .3 .4	44.0 53.1 18.5 11.0 19.1	5.0 4.9 3.7 3.8 6.0	60 53 62 84 125	.1 .1 <.1 <.1 <.1	38.2 29.6 18.4 14.5 18.3	15.3 11.7 7.1 6.1 8.0	587 921 504 620 694	3.57 2.53 2.32 2.19 2.44	3.2 2.1 1.4 .9 1.3	.6 .6 .3 .3	2.0 9.1 1.2 <.5 .7	2.0 1.0 1.0 .8 1.3	101 117 53 35 50	.2 .2 .1 .1 .2	.3 .2 .2 .2	.1 .1 .1 .1 .1	87 60 67 65 62	1.05 1.86 .50 .37 .58	.042 .061 .038 .031 .078	14 12 6 3 9	65.7 44.7 42.4 42.2 36.2	1.05 .85 .42 .35 .48	131 140 102 78 193	.174 .120 .164 .180 .142	42 92 51 11 11	. 61 . 03 . 39 . 26 . 92	054 038 030 030 030 024	.12 .11 .25 < .11 < .14 <	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9	9.0 <. 5.8 <. 4.6 <. 3.6 <. 4.7 <.	L<.05 L .09 L<.05 L<.05 L<.05 L<.05	8 6 < 4 < 6 <	.5 .5 .5 .5
13200N 7800E 13200N 7850E 13200N 7900E 13200N 8000E 13200N 6000E	.4 .5 .5 .4	21.8 31.4 42.4 26.1 37.8	6.2 6.9 5.1 4.5 9.3	86 85 50 80 76	.1 .1 .1 .1	15.8 20.3 34.8 28.4 44.8	10.6 13.4 11.8 11.3 20.5	667 934 484 582 1292	2.71 2.93 2.82 3.07 4.00	2.5 3.5 2.4 1.7 2.8	.4 .5 .6	.5 1.8 .6 1.9	1.1 1.5 1.2 1.3 1.8	55 99 114 81 236	.1 .2 .2 .1 .2	.2 .3 .2 .2 .4	.1 .1 .1 .1 .1	61 59 64 84 105	.76 1.01 1.50 .77 .91	.075 .128 .068 .080 .062	9 16 15 11 13	25.6 33.9 58.2 61.0 71.8	.73 .72 .89 .65 1.56	158 169 82 78 158	. 131 . 086 . 122 . 205 . 317	12 62 42 72 13	.36 .33 .70 .26 .80	024 017 030 037 032	.12 < .29 < .12 < .24 < .14 <	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0	3 4 5 (4 (2 7 3 1)	4.9 6.1 6.6 <. 7.5 <. 1.2	L<.05 L<.05 L<.05 L<.05 L<.05 L<.05	7 < 7 < 6 < 14 <	.5 .5 .5 .5 .5
13000N 6050E 13000N 6100E 13000N 6150E 13000N 6200E 13000N 6250E	.4 .3 .5 .2	14.2 36.9 20.2 33.5 18.2	4.7 5.8 4.2 5.2 5.0	66 80 98 59 109	<.1 .1 .1 .1	20.0 44.8 38.0 25.5 23.8	8.1 17.4 10.7 12.2 16.2	302 1205 432 505 1423	2.58 3.97 3.10 3.73 3.54	1.4 3.8 4.2 4.2 1.4	.4 1.2 .7 1.9 .3	.7 1.2 .6 <.5	.9 2.4 1.5 1.7 1.0	104 144 87 65 76	.1 .2 .1 .3	.2 .3 .7 .5 .3	.1 .1 .1 .1 .1	68 99 80 93 85	.50 1.10 .67 1.29 .82	.049 .060 .130 .034 .091	4 20 6 24 8	36.5 72.4 45.5 44.3 41.5	.63 1.44 .99 .86 1.06	127 115 82 62 188	.210 .239 .267 .125 .123	<1 2 1 3 2 2 3 2 2 2	.33 .31 .76 .85 .78	023 032 028 042 059	.12 < .15 < .10 < .05 < .12 <	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0	1 4 3 1] 2 8 3 9 2 8	4.3 <. 1.9 . 8.5 <. 9.1 <. 8.3 <.	L<.05 L<.05 L<.05 L<.05 L<.05 L<.05	8 < 11 < 9 < 9 < 8 <	.5 .5 .5 .5
13000N 6300E 13000N 6350E 13000N 6400E 13000N 6450E 13000N 6500E	.3 .4 .5 .3	12.3 27.2 25.5 17.1 34.0	2.3 4.2 3.6 4.0 6.2	70 142 74 93 117	< 1 <.1 <.1 <.1 .1	13.3 25.8 21.8 19.3 32.5	8.6 12.7 10.9 9.0 17.1	494 887 376 539 1107	2.47 3.62 3.60 2.34 3.11	1.2 7.6 4,9 2.9 7.5	.3 .4 .5 .4 .8	<.5 2.4 1.5 .7 .8	.8 1.7 1.3 .8 1.1	44 43 78 56 67	.1 .1 .1 .1 .2	.2 .5 .3 .3 .3	<.1 .1 .1 .1 .1	57 80 100 65 86	.49 .74 .71 .48 .82	.029 .083 .045 .066 .215	5 12 7 4 7	33.0 48.1 34.0 24.0 27.7	.67 .80 .63 .71 1.26	63 244 90 127 95	.112 .081 .186 .196 .279	11 62 52 42 33	.53 .42 .44 .43 .96	045 039 071 025 014	.09 < .09 < .09 < .09 < .08 <	.1 .0 .1 .0 .1 .0 .1<.0 .1<.0		6.4 <. 9.4 <. 7.4 <. 4.4 <. 6.6 <.	L<.05 L<.05 L<.05 L<.05 L<.05 L<.05	5 < 7 < 7 < 8 < 16 <	.5 .5 .5 .5 .5
13000N 6550E 13000N 6600E 13000N 6650E 13000N 6700E STANDARD DS6	.5 .4 .3 .2 11.5	11.4 19.5 28.3 29.0 124.4	4.3 6.4 5.8 7.4 30.3	92 103 93 101 144	<.1 <.1 <.1 <.3	18.4 39.1 51.7 55.4 24.8	7.5 14.1 18.1 20.1 10.8	391 816 865 964 697	3.02 3.68 4.03 4.21 2.82	.9 3.0 3.9 3.0 21.0	.4 .8 1.0 .9 6.8	.7 ,9 1.2 1.8 49.0	1.4 1.4 1.9 2.2 3.2	46 55 92 52 42	.1 .2 .2 .2 6.0	.1 .1 .1 3.7 (.1 .1 .1 .1 .1	93 105 102 115 56	.40 .62 .97 .86 .83	.025 .046 .044 .038 .077	3 9 17 14 15	21.7 45.0 49.4 46.9 182.0	.47 1.01 1.42 1.66 .58	55 90 105 85 169	.201 .304 .342 .407 .085	21 32 63 33 171	.94 .60 .27 .58 .95	.033 .016 .028 .019 .071	.04 < .04 < .12 .10 .15 3	.1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .4 .2	1 (1 (1 (1 (1 (1 (1 (1 (1 (3 (3 (1 (4.8 <. 6.4 <. 0.5 <. 0.3 <. 3.3 1.	1<.05 1<.05 1<.05 1<.05 1<.05 7<.05	6 < 10 < 11 < 11 < 6 4	.5 .5 .5 .5 .8

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 12

																				-			
SAMPLE#	Mo Ci	u Pb	Zn A	g Ni	Со	Mn Fe	As	€ Au	Th S	Sr Cd	Sb	Bi V	Ca	P	La	Cr	Mg Ba	Ti	B A	1 Na	K W Hg	Sc T1	S Ga Se
	ppm ppn	n ppm	ppm pp	m ppm	ppm	ppm 3	pbu bt	n ppb	da waa	om ppm	bbu t	inde met	7	×	ррп	ppm	≭ ppm	2	ppm	z z	≭ppnn ppnn	ppm ppm	≵ppn ppm
13000N 6750E 13000N 6800E 13000N 6850E 13000N 6900E 13000N 6950E	.5 15.8 .5 10.1 .4 12.0 .4 13.6 .4 25.5	8 5.1 1 5.2 3 4.5 5 5.4 5 4.6	74 78 <. 83 <. 87 63	1 20.6 1 14.0 1 22.3 1 18.8 1 40.2	8.0 5.8 8.5 7.2 13.2	473 2.32 764 1.99 488 2.30 666 2.27 537 3.12	2.4 1.6 2.0 1.8 2.3	5 <.5 3 <.5 5 .6 4 <.5 6 30.6	1.3 .8 1.1 1.0 1.6	51 .1 53 .1 42 .1 55 .1 37 .1	.2 .1 .2 .2	.1 64 .1 53 .1 58 .1 64 .1 81	.45 .42 .48 .49 .65	.059 .029 .037 .042 .062	5 3 5 4 9	36.5 29.5 26.7 31.1 46.9 1	.51 99 .34 102 .70 57 .50 101 .02 89	.153 .140 .210 .161 .162	1 1.8 2 1.2 4 1.6 2 1.5 3 2.3	9 .022 9 .018 7 .015 3 .017 2 .027	.12 .1 .02 .09 <.1 .03 .11 .1 .01 .09 <.1 .03 .14 <.1 .03	4.6 <.1<. 2.9 <.1<. 5.4 <.1<. 3.9 <.1<. 7.4 <.1<.	.05 6 <.5
13000N 7000E 13000N 7050E 13000N 7100E 13000N 7150E 13000N 7150E	.3 25.9 .3 111.5 .4 28.9 .3 38.8 .3 34.8	9 5.5 5 4.2 9 6.0 8 6.4 8 5.0	49 30 52 < 58 80	1 25.3 2 51.5 1 41.0 1 44.6 1 62.3	11.6 16.0 15.0 16.9 19.8	493 2.70 430 2.37 526 2.96 767 3.26 808 3.31	2.8 5.01. 1.9 3.5 5.6	9 .9 5 3.0 6 <.5 6 .5 8 <.5	1.5 (.7 10 1.2 11 1.6 12 1.2 10	35 .2 55 .1 10 .2 29 .2 17 .1	.2 .3 .4 1.0 .8	.1 62 .1 64 .1 86 .1 87 .1 87	.93 2.19 1.14 1.45 1.12	.042 .109 .052 .049 .229	12 19 12 14 12	54.6 55.1 1 45.8 57.1 1 61.0 1	.72 81 .10 59 .84 89 .02 79 .16 98	.136 .091 .230 .211 .231	5 2.2 8 2.2 4 2.4 6 3.2 5 4.1	3 .028 7 .032 3 .030 3 .035 1 .011	.13 <.1 .03 .03 <.1 .05 .12 .1 .03 .11 .1 .04 .14 .1 .03	7.0 <.1<. 7.2 .1 . 7.9 <.1<. 8.9 <.1<. 10.5 <.1<.	05 6 .5 11 6 1.7 05 7 <.5 05 8 <.5 05 13 .5
13000N 7250E 13000N 7300E RE 13000N 7300E 13000N 7350E 13000N 7400E	.4 21.0 .3 21.2 .3 22.3 .4 32.0 .4 32.9) 5.7 2 4.8 3 4.6) 6.1 5 4.5	60 < 44 45 104 46	1 40.5 1 31.8 1 33.7 1 53.2 1 33.6	13.6 11.4 11.9 17.8 12.6	1024 2.63 544 2.69 544 2.76 1167 3.45 528 3.08	3.9 4.0 4.1 2.6 4.4	6 <.5 6 2.0 6 .9 7 <.5 5 1.9	.8 12 1.3 9 1.3 9 1.1 12 1.6 8	21 .2 94 .1 99 .1 14 .2 33 .1	.5 .7 .7 .8 .3	.1 65 .1 72 .1 73 .1 90 .1 89	1.35 .95 1.02 1.05 .79	.067 .044 .046 .079 .087	10 12 12 12 13	50.4 46.9 48.9 89.3 1 56.3	.86 94 .72 62 .73 63 .18 107 .93 173	.188 .156 .175 .162 .128	6 2.3 5 1.9 6 2.2 4 3.1 <1 2.2	2 .017 4 .022 1 .025 1 .012 1 .012 1 .024	.14 <.1 .03 .07 .1 .04 .08 <.1 .04 .18 <.1 .03 .06 .1 .02	6.7 <.1< 6.4 <.1< 6.9 <.1< 8.5 <.1< 7.3 <.1<	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
13000N 7450E 13000N 7500E 13000N 7550E 13000N 7600E 13000N 7650E	.5 18.3 .4 16.0 .3 87.6 .3 59.1 .7 29.7	3 4.1 3 4.1 5 1.2 1 4.5 7 3.9	52 < 48 < 26 44 56	1 20.4 1 16.6 1 12.8 1 34.2 1 24.4	8.3 7.7 2.0 12.2 11.5	567 2.27 387 2.17 281 .39 459 2.90 860 2.44	1.8 . 1.3 . 1.0 . 4.0 . 2.2 .	5 .9 4 .9 8 1.2 6 .8 5 <.5	1.2 (1.1 5 .1 5 1.6 1(1.2 (52 .1 54 <.1 39 .3 08 .1 59 .2	.2 .2 .3 < .3 .2	.1 66 .1 63 .1 24 .1 81 .1 62	.54 .47 23.81 1.31 .71	.038 .045 .284 .030 .070	9 6 5 17 11	43.9 37.1 10.4 51.5 45.0	.43 102 .34 93 .48 186 .78 127 .49 112	.145 .163 .012 .140 .134	3 1.4 1 1.1 29 .4 6 2.1 3 1.6	2 .020 7 .020 2 .020 2 .037 2 .023	.11 .1 .01 .18 <.1 .01 .03 .1 .04 .09 .1 .03 .19 .1 .02	4.8 <.1< 3.8 <.1< .4 <.1 7.3 <.1 6.0 <.1<	05 4 < .5
13000N 7700E 13000N 7750E 13000N 7800E 13000N 7850E 13000N 7900E	.3 39.8 .2 41.0 .4 27.1 .4 16.5 .3 64.6	3 4.8) 3.3 L 4.1 5 3.6 5 1.5	71 48 57 78 < 26 <	1 31.5 1 26.1 1 25.3 1 17.1 1 7.2	17.4 11.8 9.8 7.8 1.1	685 3.53 317 2.76 415 2.90 535 2.22 139 .27	1.4 , 1.9 , 2.5 , 1.8 , .8 1.	4 1.9 6 <.5 4 2.3 3 1.2 0 1.5	L.5 9 L.3 11 L.3 6 .9 8 .1 104	93 .2 19 .1 55 .1 57 .1 17 .2	.2 .2 .1 .1 <	.1 81 .1 66 .1 79 .1 62 .1 37	1.30 1.43 .70 .52 25.38	.027 .051 .047 .042 .228	15 13 11 6 3	70.3 1 61.7 1 50.7 40.8 7.1	.54 122 .04 142 .58 99 .44 100 .52 114	.124 .092 .149 .149 .015	7 2.6 5 2.1 5 1.6 4 1.2 30 .3	9 .031 0 .025 1 .028 0 .022 5 .025	.16 <.1 .02 .15 <.1 .02 .18 .1 .03 .21 <.1 .02 .02 .1 .02	10.1 <.1< 7.1 <.1< 6.2 <.1< 4.1 <.1< .5 <.1	05 8 < .5
13000N 7950E(empty) 13000N 8000E 12800N 6000E 12800N 6050E 12800N 6100E	.5 29.0 .2 33.6 .3 30.3 .4 24.2	4.2 4.8 3 5.4 2 7.7	90 63 < 66 < 91 <	 1 30.6 1 39.3 1 36.5 1 30.6	12.7 16.6 16.5 14.1	621 3.20 542 4.05 587 3.76 983 3.36	1.8 3.1 1. 2.7 1. 2.6	6 1.2 1 1.4 2 1.3 9 1.4	L.2 7 L.8 61 L.8 18 L.7 17	72 .1 18 .1 34 .1 70 .3	- .6 .6 .4	.1 83 .1 111 .1 109 .1 96	.79 1.23 1.03 .72	.070 .046 .045 .078	14 15 17 13	- 62.1 68.0 1 64.2 1 43.4	.77 136 .52 167 .17 83 .78 116	.207 .308 .371 .322	- 3 2.2 2 2.8 1 2.8 1 3.2	 3 .023 3 .032 0 .046 0 .027	.25 <.1 .02 .14 <.1 .02 .10 .1 .03 .19 <.1 .02	7.3 <.1<, 11.0 .1<, 11.4 .1<, 7.5 .1<,	05 6 <.5 05 11 <.5 05 10 <.5 05 10 <.5
12800N 6150E 12800N 6200E 12800N 6250E 12800N 6300E STANDARD DS6	.2 15.9 .2 23.6 .5 18.9 .4 14.9 11.6 126.8	5 5.0 5 4.4 9 6.0 9 4.6 3 30.9	64 < 110 . 108 < 65 < 146	1 22.1 1 33.1 1 23.6 1 20.0 3 24.7	7.9 13.6 1 10.6 1 9.4 10.7	383 2.36 1165 3.12 1125 2.73 780 2.91 700 2.83	1.8 2.2 2.7 2.6 21.6 8	7 .8 7 1.0 6 .6 5 .6 3 48.2	L.2 12 L.2 19 L.2 14 .9 5 3.1 4	24 .1 93 .2 91 .3 97 .1 90 6.2	.3 .4 .4 .5 4.5 5	.1 65 .1 90 .1 75 .1 85 .3 56	.56 .75 .71 .45 .86	.049 .075 .081 .041 .079	9 11 8 4 14 1	32.8 53.2 1 44.8 44.6 82.5	.61 119 .10 159 .76 174 .64 120 .59 167	.232 .224 .235 .165 .081	1 2.6 2 2.3 2 1.7 1 1.6 16 1.9	2 .026 1 .021 5 .017 1 .015 5 .075	.10 .1 .01 .15 <.1 .02 .13 .1 .01 .08 <.1 .02 .15 3.5 .23	5.6 .1< 8.4 <.1< 6.0 <.1< 4.2 < 1< 3.4 1.8<	05 8 < .5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

Page 13

																													AURE A	NALYTICA
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn / ppm pi	Ag Ni pan ppi	i Co m ppm	Min ppm	Fe X	As ppm p	U pm	Au ppb p	Th : prin pi	Sr (om pp	cd S om pp	b Bi nippri	i V nippm	Ca X	P %	La ppm	Cr ppm	Mg E % pp	a Ti m 18	В ppm	A1 %	Na \$	K W Hg Stippnippni	Sc. ppm	T1 : ppm :	6 Ga Se Kippmippr	 2 N
12800N 6350E 12800N 6400E 12800N 6450E 12800N 6550E 12800N 6550E	.6 .3 .4 .4 .4	17.3 24.4 15.1 15.1 22.2	3.8 5.2 4.4 6.2 5.6	72 <. 68 <. 60 <. 178 < 91 <	.1 11. .1 24. .1 15. .1 15. .1 17. .1 28.	5 6.2 6 14.8 0 8.1 4 9.4 1 13.8	735 546 423 1840 520	2.66 3.92 3.10 2.61 3.77	7.0 13.2 4.5 4.5 3.8	.3 .7 .4 .3 4 .5	<.5 1.01 1.0 6.6 6.01	.7 \ .5 (.8 (.7 (.1 (57 50 57 57 50 59	1 2. 1 2. 3 . 1 .	5 .1 3 .1 5 .1 5 .1 6 .1	l 60 L 95 L 88 L 72 L 98	. 39 . 68 . 40 . 39 . 55	.037 .039 .028 .089 .053	4 13 4 3 5	24.4 34.3 1 33.2 28.9 45.8 1	.18 20 .19 6 .55 7 .63 18 21 8	6 .083 3 .216 8 .173 2 .128 8 .191	4 3 1 1 2	.91 2.73 1.29 2.15 2.57	.018 .015 .021 .025 .018	.14 <.1 .01 .16 .1 .02 .14 <.1 .01 .07 <.1 .02 .10 <.1 .01	4.0 8.9 4.2 4.3 6.4	<.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	5 3 <.! 5 10 <.! 5 5 <.! 5 7 <.! 5 9 <.!	5
12800N 6600E 12800N 6650E 12800N 6700E 12800N 6750E 12800N 6800E	.4 .4 .3 .4 .4	12.8 11.8 19.8 24.0 17.9	5.1 5.9 5.4 4.9 5.1	60 <, 102 <, 65 <, 96 <, 84 <	1 16.0 1 17.1 1 25.1 1 24.0 1 30.1	6 6.0 7 6.3 3 11.8 0 12.4 7 10.6	376 669 378 606 470	2.30 1.81 3.19 2.51 3.21	2.1 2.1 2.4 9.5 1.5	.3 .3 .8 .7 .6	4.9 <.5 .91 1.01 <.51	.7 ! .9 ! .0 ! .1 !	50 . 59 . 57 . 76 . 54 .	$ \begin{array}{c} 1 \\ $	2 .1 1 .1 1 .1 1 .1 1 .1	l 66 L 47 L 98 L 77 L 93	. 38 . 44 . 68 . 77 . 57	.030 .101 .033 .164 .041	3 4 5 6 8	34.7 18.2 28.0 19.7 32.5	.41 7 .33 11 .94 9 .95 6 .96 8	9.172 5.128 5.339 1.273 0.288	1 : 1 : 1 : 2 : <1 :	1.49 2.53 2.91 3.22 2.37	.023 .037 .019 .016 .030	.09 <.1 .02 .07 <.1 .02 .05 <.1 .01 .04 .1 .01 .04 <.1 .01	3.4 2.9 6.4 5.2 6.7	<.1<.0 .1<.0 <.1<.0 <.1<.0 <.1<.0	5 <.! 7 <.! 5 9 <.! 5 13 <.! 5 7 <.!	5
12800N 6850E 12800N 6900E 12800N 6950E 12800N 7000E 12800N 7050E	.6 .4 .5 .5	23.7 24.8 11.1 29.3 16.1	6.3 5.6 4.4 5.2 4.4	89 58 < 64 < 63 < 49 <	.1 39.1 .1 39.1 .1 15.2 .1 40.1 .1 21.	7 14.5 3 14.8 5 5.9 6 14.3 3 9.6	813 398 338 609 613	3.37 4.09 2.32 3.54 2.72	5.1 2.3 1.4 2.9 1.7	.6 .7 .3 .5 .4	.6 1 3.5 2 1.1 1.2 1 .6	.5 .1 .8 .5 .9	75 . 32 . 58 . 95 . 74 .	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	2 .1 3 .1 1 .1 2 .1 2 .1	80 116 64 100 71	.94 .75 .43 .73 .60	.067 .039 .033 .065 .042	9 15 3 11 5	42.7 1 56.4 1 35.1 58.8 44.8	20 10 15 9 .39 7 .96 8 .51 8	0 .304 9 .256 9 .176 8 .177 8 .160	3 <1 1 1 1 1	3.17 2.76 1.61 2.36 1.81	.020 .037 .032 .042 .032	.08 .1 .02 .06 <.1 .02 .11 <.1 .03 .12 <.1 .03 .11 <.1 .03	8.4 9.9 3.8 8.2 4.5	<.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	5 10 <.8 5 9 <.8 5 5 <.8 5 7 <.8 5 6 <.8	5
12800N 7100E 12800N 7150E 12800N 7200E 12800N 7250E 12800N 7300E	.2 .5 .5 .4	34.7 44.2 13.7 29.5 36.4	5.6 6.1 4.5 4.2 6.7	40 84 < 88 < 52 < 89	.1 53.0 .1 85.9 .1 23.1 .1 52.0 .1 71.0	0 17.6 9 29.0 2 7.7 8 17.7 4 21.7	574 1292 639 535 1063	3.48 5.10 2.45 3.60 4.25	2.7 2.1 1.2 2.5 2.3	.6 .6 .3 .8 .7	.71 <.51 1.3 1.01 .71	.5 13 .2 19 .8 0 .4 7 .3 10	37 . 51 . 59 . 79 .	1 2 2 1 2 2.	3 .1 3 .1 2 .1 5 .1 5 .1	90 150 66 98 121	1.76 1.52 .57 .93 1.28	. 034 . 092 . 058 . 047 . 067	13 14 4 14 15	119.0 1 82.9 2 43.0 70.8 1 107.4 1	18 6 2.36 13 .48 12 20 7 40 15	8 .173 0 .345 0 .194 8 .284 3 .333	5 1 1 4 3 1 2 4 3 1	2.91 4.12 1.88 2.81 3.75	.040 .043 .028 .037 .031	.07 <.1 .02 .13 <.1 .06 .18 <.1 .02 .15 <.1 .02 .20 .1 .04	9.5 15.6 4.7 10.8 12.2	<.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	5 7 . 5 12 <. 5 5 <. 5 8 <. 5 11 <.	5
12800N 7350E 12800N 740DE 12800N 7450E 12800N 7500E 12800N 7550E	.6 .4 .3 .3	21.1 28.5 18.9 13.4 12.9	5.0 4.3 4.6 8.3 4.5	117 85 <. 88 <. 94 75 <	1 30. 1 43.1 1 20.4 1 15. 1 15.	7 9.2 8 14.3 4 9.9 1 11.4 4 8.5	989 507 609 1285 621	2.33 3.81 3.02 2.26 2.39	2.0 3.0 1.5 1.5 .8	.4 .6 .5 .4	2.0 1.0 1 .5 1 <.5 1 <.5 1	.9 (.5 7 .3 4 .0 5	53 . 79 . 49 . 53 . 34 .	2 .0 1 .1 2 . 1 .	5 .1 5 .1 2 .1 L .1 L .1	57 1110 69 43 53	.78 .71 .53 .82 .38	.071 .063 .064 .059 .043	7 10 7 12 5	48.3 72.3 44.0 28.5 33.2	.54 13 .90 14 .53 20 .79 22 .52 13	2 .140 4 .194 0 .130 6 .024 2 .110	4 <1 5 1 1	1.96 2.73 1.79 1.86 1.46	.023 .037 .021 .010 .019	.12 <.1 .04 .10 <.1 .02 .21 <.1 .01 .14 <.1 .03 .11 <.1 .01	5.6 9.4 5.6 6.1 4.5	<.1<.0 <.1<.0 <.1<.0 <.1<.0 <.1<.0	5 6 <.! 5 8 <.! 5 6 <.! 5 5 <.!	5
12800N 7600E 12800N 7650E 12800N 7700E RE 12800N 7700E 12800N 7750E	.4 .4 .3 .3 .4	60.9 48.9 34.1 32.9 21.6	5.1 6.9 4.3 3.9 4.1	48 92 81 78 < 56	1 37. 1 35. 1 25. 1 25. 1 24. 1 18.	5 13.8 3 14.0 3 12.4 2 12.3 6 7.7	944 1111 535 510 485	3.05 3.21 3.41 3.26 2.57	3.9 2.3 1.8 1.8 1.3	.6 .4 .5 .5 .4	1.3 1 .6 1 1.0 1 1.2 1 .8 1	.7 10 .2 10 .2 6 .2 6 .2 6	00 . 02 . 51 . 51 . 51 .	1 2 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	l 78 l 86 l 98 l 94 l 73	1.15 1.11 .66 .66	.031 .055 .041 .042 .034	16 12 11 11 9	53.3 59.8 1 62.8 61.1 47.6	.79 17 .00 15 .96 8 .95 8 .42 9	9 .160 4 .166 4 .208 3 .203 5 .183	4 2 5 2 2 2 1 2 <1 2	2.33 2.07 2.12 2.12 1.45	.038 .038 .035 .041 .038	.15 <.1 .04 .20 <.1 .04 .19 <.1 .02 .19 <.1 .02 .19 <.1 .02 .17 <.1 .02	7.9 7.7 8.9 8.5 5.6	<.1<.09 <.1<.09 <.1<.09 <.1<.09 <.1<.09	5 7 <.9 7 <.9 7 <.9 7 <.9 5 7 <.9 5 <.9	
12800N 7800E 12800N 7850E 12800N 7900E 12800N 7950E STANDARD DS6	.5 .3 .2 .5 11.5	21.8 26.8 80.9 33.6 126.7	4.6 5.2 .9 3.3 29.9	70 36 11 < 94 < 146	.1 21.0 .1 23.0 .1 9.0 .1 51.1 .3 24.	6 8.3 0 10.1 0 1.0 5 17.2 5 10.9	546 358 214 820 698	2.52 2.51 .31 4.44 2.83	2.4 1.7 <.5 1.4 21.5 6	.4 .5 .9 .6 .8 4	.9 1 1.3 1 1.4 1.5 1 9.2 3	.0 (.5 7 .1 98 .5 9	55 74 39 95 41 6	1 . 1 . 2 . 1 . 2 4.	2 .1 2 .1 2 <.1 1 .1 1 5.3	1 74 70 42 105 56	.65 .74 26.07 .87 .86	.057 .022 .183 .079 .079	8 12 2 17 14	48.0 48.5 7.1 104.7 1 181.6	.53 9 .53 9 .46 14 .17 13 .59 16	5 .170 6 .179 6 .015 7 .109 8 .081	2 2 21 2 17	1.63 1.80 .33 3.32 1.94	.034 .045 .027 .030 .074	.17 .1 .03 .10 <.1 .02 .01 .1 .02 .27 <.1 .02 .15 3.5 .23	5.4 6.5 .6 10.6 3.3	<.1<.0 <.1<.0 <.1 .1 <.1<.0 1.8<.0	5 5 <.! 5 6 <.! 9 1 1.1 5 10 <.! 5 6 4.7	5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

٢

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

TT	L
ACHE ANALYTIC	AL

Cu Pb

ppm ppm ppm ppm

.4 19.8 3.8

.3 32.8 4.5

.3 24.3 6.5

.3 18.7 5.3

.3 17.4 4.7

.3 16.0 4.3

.4 14.7 3.8

.3 17.2 4.0

.4 19.7 3.7

.5 13.5 4.1

.5 24.2 4.3

.5 14.5 4.8

.3 36.3 5.9

20.4 4.3

28.5 6.4

Mo

.3

.8

ppm

Zn Ag

51

52

63

60

82

75

65

60

90

Ni

ppm

SAMPLE#

12800N 8000E

12600N 6000E

12600N 6050E

12600N 6100E

12600N 6150E

12600N 6200E

12600N 6250E

12600N 6300E

12600N 6350E

12600N 6400E

12600N 6450E

12600N 6500E

12600N 6550E

12600N 6600E

12600N 6650E

Almaden Minerals Ltd. PROJECT MRT05-1 FILE # A504645

ACHE ANALYTICAL Со Mn Fe As υ Au Th Sr Cd Sb Bi ٧ Ca Ρ La Cr Mg Ba T1 В A1 Na Κ W Hq Sc T1 5 Ga Se \$ 8 2 2 2 ppm mag % ppm ppm ppb ppm ppm ppm ppm ppm ppm x ppm ррл ppm ppm K ppm ppm ppm ppm 8 DDM DDM .62 .056 63 <.1 21.4 8.7 446 2.83 1.4 .9 1.1 .2 84 8 57.1 .50 79 .186 1 1.76 .035 .4 69 .1 .1 .14 <.1 .02 5.8 <.1 <.05 5 <.5 .5 .1 16 75.1 1.59 111 .240 72 < 1 41.8 17.0 606 4.00 2.2 .8 <.5 2.0 174 .1 102 1.01 .070 1 2.99 .028 .16 <.1 .02 10.3 .1 <.05 12 <.5 .1 29.9 13.0 445 3.55 2.2 .7 1.2 1.6 518 .1 .5 .1 105 .85 .029 15 59.9 1.02 178 .288 <1 3.21 .040 .08 <.1 .03 9.4 .1 <.05 11 <.5 74 <.1 31.7 12.8 774 3.36 1.9 .6 1.8 230 .2 .5 .71 .050 13 51.5 .68 147 .246 1 3.69 .035 .10 <.1 .02 8.0 .7 ,1 94 .1 <.05 11 <.5 64 <.1 25.8 10.6 452 2.86 1.7 .9 1.4 217 76 .78 .037 .7 .1 .4 .1 8 45.0 .76 124 .283 <1 2.90 .027 .11 <.1 .02 6.8 <.1 <.05 9 <.5 .1 22.2 8.4 249 2.80 1.8 .9 1.5 79 .71 .042 7 43.B .63 119 .259 <1 2.26 .023 .19 <.1 .01 6.4 <.1 <.05 .7 197 .1 .3 .1 7 <.5 .2 .1 21.5 7.3 287 2.51 1.5 .5 .9 1.2 123 .1 .1 68 .46 .038 5 41.8 .56 129 .212 <1 2.13 .023 .10 <.1 .01 4.9 <.1 <.05 7 <.5 62 .45 .026 1 1.58 .020 78 <.1 17.7 7.4 405 2.39 1.5 .4 .8 1.1 83 .1 .6 .1 4 38.3 . 59 94 .139 .19 <.1 .01 5.0 <.1 <.05 6 <.5 .39 .027 92.149 <1 1.29 .030 <.1 17.0 7.6 350 3.06 2.5 .4 <.5 1.1 74 <.1 .5 .1 85 5 40.3 .48 .13 <.1 .02 5.5 <.1 <.05 5 <.5 83 79 <.1 17.0 7.5 416 3.06 4.0 .4 .7 1.1 61 .1 .7 .1 .40 .044 8 40.6 .41 115 .136 3 1.44 .027 .14 <.1 .01 5.6 <.1 <.05 5 <.5 .1 14.9 7.2 439 2.68 4.7 .3 4.5 69 .36 .041 34.5 .52 83 .127 1 1.53 .023 .10 <.1 .01 3.8 <.1 <.05 5 <.5 .7 48 .1 1.1 .1 3 .55 87.116 .1 21.3 10.4 567 3.11 15.4 .4 46.5 1.2 55 .1 1.0 .1 76 .50 .036 8 39.0 3 1.68 .021 .15 <.1 .02 5.6 .2 <.05 5 <.5 .1 20.9 9.9 280 3.68 9.8 79.139 5 <.5 .4 16.1 1.4 56 .1 1.1 .1 97 .37 .045 5 41.7 .48 2 1.50 .020 .12 <.1 .01 5.4 <.1 <.05 31.5 . 49 <.1 17.6 8.4 269 2.75 4.4 .3 <.5 1.0 53 <.1 .6 .1 69 .37 .080 3 86 .137 1 1.70 .013 .06 <.1 .01 3.7 <.1 <.05 6 <.5

8 37.8 1.23

94 .265

12600N 6700E .2 32.1 5.5 .1 25.4 16.2 594 3.56 6.5 .9 1.0 1.6 107 .1 1.2 .1 109 1.37 .062 8 31.6 1.21 84 .307 1 4.04 .023 .14 <.1 .01 8.8 <.1 <.05 13 <.5 -77 .9 2.7 1.6 108 RE 12600N 6700E .2 32.5 5.6 81 .1 25.1 16.3 603 3.56 6.6 .1 1.2 .1 108 1.42 .062 8 32.0 1.24 82 .315 1 4.12 .023 .14 <.1 .01 9.1 <.1 <.05 13 <.5 .2 .1 106 .61 .060 4 37.0 .91 94 .294 2 2.80 .018 .07 <.1 .01 6.8 <.1 <.05 12600N 6750E 21.1 6.2 .1 28.5 12.5 482 3.47 3.0 .6 1.7 1.2 88 .1 9 <.5 .3 74 96 12 33.7 1.34 82.234 1 2.95 .032 .04 <.1 .02 7.7 <.1 <.05 12600N 6800E 34.7 7.3 90 .1 39.0 14.5 716 3.56 1.3 .6 .6 1.5 84 .1 .2 .1 .68 .037 9 <.5 .2 12600N 6850E .2 45.0 7.1 78 .1 46.9 16.7 561 3.82 2.0 .8 1.2 2.1 110 .1 .1 .1 106 1.09 .063 18 39.1 1.70 67 .246 1 3.05 .043 .06 <.1 .01 9.7 <.1 <.05 10 <.5 .2 80 .45 .034 38.9 .54 71 .211 1 1.67 .019 .05 <.1 .01 4.2 <.1 <.05 5 <.5 12600N 6900E .3 14.2 5.4 59 <.1 21.4 8.3 361 2.80 1.7 .4 1.3 .9 54 .1 .1 4 43 <.1 18.1 6.6 252 2.45 1.1 .3 .5 1.0 39 <.1 .1 .1 58 .37 .023 4 32.8 .38 58 .211 1 1.49 .020 .03 <.1 .01 4.5 <.1 <.05 5 <.5 12600N 6950E 8.7 4.4 .3 .4 2.0 1.1 <.1 .2 .1 87 .42 .024 4 49.2 .49 78.229 <1 1.43 .026 .08 <.1 .01 4.3 <.1 <.05 4 <.5 12600N 7000E .5 16.6 4.5 44 <.1 23.4 10.3 245 2.85 1.4 59 5 <.5 12600N 7050E .4 11.5 4.6 42 <.1 17.5 7.2 210 2.38 1.2 .4 .6 .8 47 .1 .2 .1 72 .35 .043 3 39.6 .42 88 .192 <1 1.53 .019 .06 <.1 <.01 3.3 <.1 <.05 .2 .1 85 .215 <1 1.45 .028 .1 24.2 9.0 320 2.89 1.4 .7 1.1 56 .1 85 .47 .026 6 49.0 .54 .08 <.1 .01 5.7 <.1 <.05 5 <.5 12600N 7100E .4 17.2 4.1 49 .4 .32 .042 3 33.2 .40 79.141 2 1.43 .024 .09 <.1 .01 3.6 <.1 <.05 4 <.5 12600N 7150E 67 <.1 17.7 6.4 368 2.08 1.2 .3 1.0 .9 46 .1 .1 .1 56 .5 11.7 3.8 .79 .056 11 74.6 1.05 110 .270 .11 <.1 .03 9.2 <.1 <.05 .1 47.4 15.9 573 3.74 2.7 .6 .9 1.4 90 .1 .3 .1 109 <1 2.98 .026 8 <.5 12600N 7200E .4 28.3 5.4 72 12600N 7250E 21.1 6.7 134 <.1 35.4 14.7 2013 3.25 1.8 .4 1.2 1.3 72 .3 .2 .1 91 .58 .061 10 50.8 .78 146 .195 1 2.56 .025 .12 <.1 .04 6.6 .1 <.05 8 <.5 .7 .7 1.1 1.4 145 71.316 <1 4.77 .056 .12 .1 .01 13.4 <.1 <.05 .1 78.7 23.8 652 4.21 1.9 .6 <.1 122 1.88 .055 12 95.1 1.79 13 <.5 12600N 7300E .2 35.3 3.7 82 .1 12600N 7350E .6 17.6 4.9 99 .1 31.9 10.6 676 2.64 3.0 .4 4.3 1.2 56 .1 .2 .1 62 .45 .182 6 46.9 .63 163 .115 2 2.66 .018 .12 .1 .01 5.3 <.1 <.05 8 <.5 10 <.5 .1 24.7 17.5 638 3.38 2.9 12600N 7400E .3 17.4 5.4 65 .6 1.0 1.4 77 <.1 .2 .1 84 .70 .036 10 50.3 1.55 67 .264 1 2.76 .015 .11 <.1 .02 8.3 <.1 <.05 8 <.5 12600N 7450E .3 19.7 5.1 69 <.1 23.2 16.6 465 3.39 1.8 .6 1.1 1.4 55 .1 .1 .1 79 .61 .039 10 48.0 1.38 113 .202 <1 2.82 .032 .11 <.1 .01 7.2 <.1 <.05 .2 79.329 <1 3.59 .022 .16 <.1 .02 7.8 .3 22.9 7.6 108 <.1 28.1 20.6 1108 3.64 3.7 .7 .9 1.3 60 .1 .1 82 .69 .071 11 56.1 1.63 .1 <.05 11 <.5 12600N 7500E 12600N 7550E .3 23.7 5.8 73 <.1 29.0 14.8 513 3.72 2.5 .7 1.5 1.6 72 .1 .1 .1 96 .63 .040 12 55.9 1.02 80 .282 2 2.78 .028 .13 <.1 .02 8.1 <.1 <.05 8 <.5 STANDARD DS6 11.5 124.7 30.4 143 .3 25.0 10.8 695 2.81 21.2 6.8 48.1 3.2 41 6.1 3.3 5.2 56 .84 .077 14 182.4 .58 166 .082 17 1.92 .071 .14 3.3 .23 3.3 1.7 <.05 6 4.2

.1 98 .96 .100

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.1 27,1 16.4 832 3.44 8.7

.8 3.4 1.4

97

.2 1.4

Data AFA

Page 14

1 3.92 .024 .10 <.1 .02 8.0 <.1 <.05

13 <.5

																	·									<u></u>							<u> </u>		
ACHE ANNLYTIC	AL					Al	.mad	len	Mi	ner	ale	; Lt	d.	PR	OJI	CT	MR	T05	5-1	F	ILF	5 #	A5(046	45			Pa	age	15		- I			
Sample#	Мо ррт	Cu ppr	ı Pb ⊧ppm	Zn ppm	Ag ppm	N1 ppr	í Co n ppr	h Mi	n Fe n %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P \$	La ppm	Cr ppm	Mg %	Ba ppm	Ti X	B A1 ppm %	Na Z	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S X	Ga ppm	Se ppm
12600N 7600E 12600N 7650E 12600N 7700E 12600N 7750E 12600N 7800E	.4 .4 .4 .5 _4	14.4 27.4 23.8 34.6 32.4	4.5 9.4 5.8 5.1 4.2	116 158 64 66 51	.1 .1 <.1 .1 .1	16.9 23.3 22.9 25.2 32.2	9 8.8 3 12.8 9 11.0 2 12.4 2 12.3	8 41: 3 1624 9 647 9 647 9 510	3 2.41 4 3.16 7 3.08 2 3.07 5 3.32	2.4 2.6 1.8 3.5 3.7	,4 .5 .4 .5	.6 .9 18.0 <.5 1.9	1.3 1.2 1.2 1.0 1.5	63 115 64 77 88	.1 .2 .1 .2 .1	.1 .2 .3 .3	.1 .1 .1 .1	54 76 83 78 100	.60 .73 .59 .90 .73	.112 .168 .052 .083 .053	7 9 10 15 14	25.4 38.1 43.0 40.0 51.2	.68 .97 .65 .72 .73	56 151 84 107 108	.154 .147 .165 .125 .178	4 2.53 4 3.34 2 2.05 4 2.02 2 2.18	. 022 . 021 . 022 . 020 . 021	.09 .12 .16 .16 .11	.1 <.1 <.1 .1	.02 .03 .03 .03 .03	5.2 6.3 6.5 6.5 8.0	<.1 < .1 < .1 < <.1 < <.1 <	.05 .05 .05 .05 .05	8 10 6 6 6	<.5 <.5 <.5 <.5 <.5
12600N 7850E 12600N 7900E 12600N 7950E RE 12600N 7950 12600N 8000E	.3 .4 .5 E .5 .4	143.4 47.6 40.8 41.3 31.8	3.6 5 5.2 3 4.6 3 4.7 3 4.5	32 46 101 102 59	.2 .1 .1 .1	32.7 25.0 32.9 32.8 29.1	7 9.3 0 13.7 9 12.2 8 12.2 1 11.5	620 479 620 649 649	0 2.22 9 3.24 8 3.09 9 3.15 0 3.07	3.0 2.8 2.7 3.0 2.8	.4 .4 .6 .6	2.2 1.4 1.1 2.3 2.3	.5 1.7 1.6 1.6 1.5	219 82 84 86 88	.2 .1 .2 .3 .1	.3 .2 .3 .2	.1 .1 .1 .1	57 78 76 79 86	5.71 1.02 .73 .76 .76	.157 .033 .073 .078 .053	19 11 13 14 14	35.9 39.1 48.6 51.0 49.1	.57 .82 .63 .67 .64	118 101 143 144 104	.074 .181 .162 .174 .182	16 1.67 3 2.44 5 2.06 5 2.20 3 2.10	.035 .030 .023 .025 .033	.07 .15 .26 .27 .17	.1 < 1 1 .1 1	.08 .03 .02 .02 .02	4.7 6.0 7.1 7.5 7.8	.1 .1 < .1 < .1 < <.1 <	.09 .05 .05 .05 .05	4 6 6 6	1.1 .6 <.5 <.5 <.5
12400N 6000E 12400N 6050E 12400N 6100E 12400N 6150E 12400N 6250E	.3 .3 .4 .4	12.3 15.8 28.8 24.4 16.7	3 4.3 3 3.4 3 7.9 1 8.5 7 5.4	69 65 83 90 88	<.1 <.1 <.1 .1	28.1 28.3 39.2 32.0 19.4	1 9.2 3 10.7 2 16.7 0 14.6 4 8.1	2 440 369 933 5 1449 580	0 2.23 5 2.60 2 3.53 9 3.21 8 2.85	1.8 1.9 4.1 3.5 3.4	.4 .5 1.1 .8 .4	.7 <.5 1.1 .6 5.9	1.1 .9 1.6 1.7 1.0	87 121 81 192 91	.1 .1 .2 .1	.3 .5 1.1 .6 .5	<.1 .1 .1 .1	49 71 111 86 83	.38 .48 1.63 1.00 .47	.035 .051 .051 .058 .058	3 4 17 16 4	70.2 48.5 68.0 57.9 42.6	.76 1.02 1.44 .98 .50	97 124 73 132 108	.242 .146 .364 .235 .180	2 1.64 <1 2.23 1 4.44 1 3.53 1 1.84	.027 .021 .017 .021 .021	.20 .16 .24 .17 .09	<.1 <.1 <.1 <.1 <.1	.01 .01 .03 3 .03 .01	4.6 5.5 12.0 8.4 4.3	<.1 < <.1 < .1 < .1 < <.1 <	.05 .05 .05 .05 .05	5 8 15 11 6	<.5 <.5 <.5 <.5 <.5
12400N 6250E 12400N 6300E 12400N 6350E 12400N 6400E 12400N 6450E	.3 .3 ,5 .4 .3	13.6 16.4 21.3 15.3 9.1	5 3.8 4.1 3 3.9 3 3.4 1 3.4	51 74 135 85 62	<.1 .1 <.1 <.1	13.0 20.2 26.1 13.0 8.2	6 6.0 2 7.8 1 9.8 6 6.2 7 3.8	222 333 335 3732 2424 314	7 2.60 5 2.63 7 2.95 4 2.24 4 1.71	3.0 4.5 4.0 3.6 1.9	.3 .4 .3 .2	.5 .6 <.5 1.0 1.7	.8 1.1 1.2 .8 .5	86 49 113 62 33	<.1 .1 .1 .1	.5 .5 .5 .3	.1 .1 .1 .1	73 66 72 57 50	.35 .40 .54 .38 .29	.035 .035 .055 .033 .022	3 4 7 4 2	36.3 42.6 37.7 27.1 20.9	. 35 . 56 . 86 . 41 . 25	97 98 158 111 59	.135 .089 .129 .115 .135	1 1.21 1 1.54 2 2.05 2 1.16 1 .92	.018 .016 .019 .016 .016	.09 .11 .16 .14 .12	<.1 <.1 <.1 <.1 <.1	.01 .01 .02 .01 .01	3.4 4.1 5.6 3.5 2.5	<.1 < <.1 < <.1 < <.1 < <.1 <	.05 .05 .05 .05 .05	4 6 8 4 3	<.5 <.5 <.5 <.5 <.5
12400N 6500E 12400N 6550E 12400N 6600E 12400N 6650E 12400N 6700E	.4 .4 .3 .2 .5	14.7 14.7 22.5 21.6 10.0	7 3.4 7 3.9 5 5.2 3 5.4) 2.8	55 92 68 108 62	.1 <.1 <.1 <.1 <.1	13.8 15.8 21.8 23.0 19.3	8 6.2 5 7.0 5 12.€ 6 15.2 2 7.3	2 38: 591 5 471 2 69: 3 201	1 2.46 8 2.58 6 3.80 5 3.77 6 3.07	3.7 8.8 4.3 2.6 .8	.3 .3 .8 .8 .3	7.3 3.7 1.5 <.5 .5	.8 .7 1.3 1.2 1.5	44 54 99 364 57	.1 .1 .1 <.1	.4 .9 .5 .1	.1 .1 .1 .1 <.1	71 77 121 101 90	.41 .40 .67 .60 .38	.033 .040 .030 .050 .033	5 4 7 7 4	28.2 37.0 28.1 16.9 19.4	.40 .61 .98 1.34 .51	73 80 75 81 46	.154 .189 .304 .216 .081	2 1.14 1 1.61 2 2.67 1 3.34 1 1.80	.019 .019 .025 .018 .033	.11 .07 .08 .10 .03	<.1 .1 <.1 <.1 <.1	.01 .01 .02 .01 .01	4.2 5.6 8.7 7.9 4.7	<.1 < .1 < <.1 < <.1 < <.1 <	.05 .05 .05 .05 .05	4 6 9 13 5	<.5 <.5 <.5 <.5 <.5
12400N 6750E 12400N 6800E 12400N 6850E 12400N 6900E 12400N 6950E	.4 .4 .6 .3	8.: 9.2 23.2 9.4 20.1	3 4.3 2 4.1 7 6.6 4 4.2 3 6.7	73 78 80 80 76	<.1 <.1 <.1 <.1 <.1	13.2 13.0 33.0 12.9 40.0	2 5.0 6 5.3 0 14.3 9 5.8 0 16.0) 291 3 341 3 530 3 279 9 80	8 2.09 5 2.39 6 3.63 9 2.67 0 3.97	.9 .9 1.1 .6 .8	.5 .3 .7 .3 .7	.5 .6 .6 .5	.8 .7 1.4 .9 1.4	41 39 130 47 76	.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 .2 .1 .1	65 73 98 77 110	.41 .34 .76 .42 .81	. 030 . 034 . 049 . 031 . 080	4 3 11 4 16	14.7 22.4 20.9 14.5 23.3	.37 .35 1.16 .41 1.42	55 62 92 54 71	.259 .211 .254 .190 .261	3 1.63 1 1.37 1 3.08 1 1.49 1 2.69	.017 .017 .017 .026 .024	.06 .07 .08 .07 .07	.1 .1 .1 <.1	.01 .01 .02 .01 .02	4.4 3.6 6.9 4.2 8.0	<.1 < <.1 < <.1 < <.1 < <.1 <	.05 .05 .05 .05 .05	5 5 12 5 10	<.5 <.5 <.5 <.5 <.5
12400N 7000E 12400N 7050E 12400N 7100E 12400N 7150E STANDARD DS6	.3 .4 .3 .6 11.3	15.4 17.3 15.0 48.9 125.3	4 6.3 2 4.7 3 4.1 5 3.7 2 30.1	72 56 33 49 142	<.1 <.1 <.1 <.1 .3	25. 25. 18. 46. 24.	3 9.3 9 8.6 1 7.8 3 15.1 5 10.8	3 33 5 32 3 36 1 107 3 70	3 3.35 8 2.85 4 2.33 9 3.68 0 2.83	.8 1.8 1.6 5.4 21.5	.6 .5 .6 6.8	1.9 1.7 .7 2.3 48.4	1.8 1.3 1.1 1.7 3.1	72 76 59 113 40	.1 .1 .1 6.3	.1 .3 .2 .4 4.3	.1 .1 <.1 <.2	94 81 64 111 56	.69 .61 .63 1.03 .86	.031 .047 .037 .084 .079	12 9 7 17 14	27.3 37.2 49.7 58.1 180.0	.71 .58 .41 1.06 .59	86 81 57 125 166	.274 .172 .144 .179 .080	1 2.09 2 1.66 3 1.37 2 2.46 17 1.92	.023 .027 .023 .050 .074	.05 .07 .08 .07 .15	<.1 .1 <.1 .1 3.5	.01 .02 .02 .03 .22	7.0 5.7 4.8 10.0 3.3	<.1 < <.1 < <.1 < <.1 < 1.7 <	.05 .05 .05 .05 .05	7 5 4 7 6	<.5 <.5 <.5 <.5 4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

	V	
ACHE	AMAL	YTICAL

ALTE AUGUITICAL												~~~~						<u>.</u>															'		ACTINAL	<u> </u>
sample#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Min	Fe	As	U DOM	Au	Th	Sr	Cd	Sb	81 000	¥ مەم	Ca ¥	р ¥	La	Cr	Mg	Ba	T1 Y	8	A1 *	Na	K	W	Hg	Sc	T]	\$	Ga	Se
		Phil	hhu	- Phil	- Phil		Ppm	Phil		ppin	ppm	PPO	PPm	Phil	P.P.	PPm	PPiii	- Phill		~~~~	- PP-III	- PPui		ppin		PP.		~ ~		ppin	- Phil	Phin	- Phu		рри	- phu
12400N 7200E	.3	33.5	4.3	79	<.1	55.7	17.9	548	4.11	1.2	.7	1.1	1.8	81	.1	.2	.1	89	. 88	. 048	15	64.8	1.13	98	. 268	5 2	2.70	.051	.20	<.1	.02	10.2	<.1 •	<.05	8	<.5
12400N 7250E	.2	38.9	3.6	68	<.1	62.5	21.2	531	4.75	.7	.5	1.5	1.2	84	.1	.2	.1	122	.78	.047	11	108.7	1.67	59	.175	3 (3.33	.075	. 11	<.1	.01	12.2	<.1 •	<.05	10	<.5
12400N 7300E	.3	25.8	4.6	50	.1	38.7	13.0	526	3,58	1.7	.6	.5	1.4	80	<.1	.3	.1	99	.79	.045	11	67.5	. 92	73	.254	5 3	2.48	.063	.16	<.1	.02	9.7	<.1 <	<.05	7	< 5
12400N 7350F	4	20.5	5.2	43	1	19.9	10.3	576	2.70	1.9	.5	6.0	1.2	99	.1	.2	.1	70	. 85	.050	8	38.8	.61	81	138	4	1.95	036	.08	< 1	03	5.2	< 1 •	< 05	6	< 5
2400N 7400F	3	24 7	5 2	74	1	24 0	16.5	574	3 65	3.5	ģ	< 5	1.9	90	1	2	1	99	82	041	11	49.9	1 34	82	309	3	3 15	043	08	< 1	02	96	< 1 -	< 05	ă	25
12-1001 / 4002		64.7	J.2		••	6.4.0		0/1	0.00	4.0				24			••					12.2		Ű.								5.0				~· J
12400N 7450E	.3	20.4	7.5	34	.1	15.6	8.2	388	2.58	1.7	.7	.9	1.4	78	.1	.2	.1	66	.75	.022	10	40.7	.50	71	. 197	4 1	1.81	.046	.08	<.1	.02	6.1	<.1 <	<.05	5	<.5
12400N 7500E	.5	23.6	5.1	68	.1	24.7	11.4	647	3.28	2.3	.7	1,1	1.6	76	.1	.2	.1	89	. 67	.063	12	53.8	.70	113	.224	2 2	2.39	.040	.17	<.1	.02	7.8	<.1 •	<.05	6	<.5
12400N 7550E	.4	33.0	6.6	73	.1	27.2	16.8	827	4.18	4.4	1.0	2.0	2.1	93	.1	.3	.1	109	. 90	.037	16	62.8	1.02	83	.334	2 ;	3.14	.038	.14	<.1	.03	10.3	<.1 ·	<.05	9	< 5
12400N 7600E	.2	42.0	5.9	82	2	29.4	20.1	496	4.70	3.7	1.0	.7	2.1	112	.1	.3	.1	99	.95	.045	14	66.9	1.79	68	.297	3 3	3.51	043	.14	<.1	.01	10.2	<.1 <	<.05	11	< 5
12400N 7650F	3	26.7	4 6	54	1	23.1	11 0	261	3 72	3.6	.7	9.8	1.4	80	.1	4	1	101	73	032	11	54.2	97	77	275	4 :	2 46	053	11	1	03	7.9	1.	< 05	7	< 5
		20	4.0		••				Q., C	0.0	.,	5.0			•-	• •						01.2							•••							
12400N 7700E	.3	22.2	4.1	38	<.1	20.7	8.4	322	2.97	1.9	.5	2,2	1.4	76	.1	.2	.1	89	.64	.036	9	52.0	.47	80	. 225	4 :	1.70	.058	.08	<.1	.01	6.4	<.1 <	<.05	5	<.5
RE 12400N 7700E	.4	21.8	3.9	39	.1	21.0	8.1	314	2.91	1.9	.5	.7	1.3	76	.1	.2	.1	89	.62	.035	9	51.1	.47	79	.225	3 1	1.70	.061	.08	<.1	.01	6.3	<.1 ·	<.05	5	<.5
12400N 7750E	.4	37.1	5.2	69	.1	26.8	10.9	668	2.87	3.5	.7	.8	1.4	96	.2	.2	.1	70	1.13	.069	13	44.8	.62	128	.143	5 2	2.34	.037	.16	<.1	.03	6.8	<.1 ·	<.05	7	<.5
12400N 7800E	4	16.1	4.3	92	< 1	18.3	7.1	615	2.54	.9	.4	<.5	1.2	63	.1	.1	.1	60	.43	.039	5	38.1	.51	116	.159	3 2	2.19	033	.14	<.1	.03	4.8	.1 •	<.05	6	< 5
12400N 7850F	4	20.6	45	103	< 1	24 3	10 1	538	3 40	12	5	32	1.8	84	.1	2	1	85	57	043	Ř	50 4	71	123	183	3	2 76	051	12	< 1	02	7.5	1.	< 05	Ř	< 5
	• •	20.0	7.0	100		64.6	. 10.1	000	0.10	1.6	.0	0.6	1.0		•••	•=	• •	00			•			100	. 100								• -		Ŭ	
12400N 7900E	.3	51.3	5.8	62	.1	26.0	9.3	408	2.96	3.2	.7	1.8	1.9	85	.1	.2	.1	62	1.07	.068	14	42.2	. 54	79	.138	63	2.75	.037	. 08	<.1	.04	6.4	.1 •	<.05	7	.5
12400N 7950E	.5	23.7	5.1	76	<.1	25.8	11.9	735	3.28	2.0	.6	1.1	1.6	75	.1	.3	.1	92	. 59	.062	9	60.1	. 65	109	. 216	3 2	2.56	.031	.12	<.1	.02	7.1	.1 •	<.05	7	<.5
12400N 8000E	.6	35.1	5.5	54	1	30.3	13.1	609	3.31	1.9	.6	.6	1.9	100	.1	.2	.1	81	1.02	.040	13	52.9	.76	111	.214	5 3	2.35	.053	.21	<.1	.07	8.0	<.1 -	<.05	7	<.5
STANDARD DS6	11.3	127.3	31.1	144	3	23.5	10.7	677	2.87	19.4	7.3	46.8	3.9	42	6.5	3.7	5.6	58	.81	.070	16	172.5	.62	162	.086	17	1.93	074	.15	3.0	.23	3.4	1.8 .	< 05	6	4.3
	*				••										_ / •			54																		

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 16

	ACME	ANATA IS	/TIC)01	AL Ac	LA CT	BO) ed	AT te	ORI d (es 20	I.A	D.		8	52	E . 1	iast	INC	1 8 8	T.	V-4	cour	78R	BC	¥6.	A 11	6		RON	B (6)	04).	253.	315	8 T	AX (604	1	3-17	16	
					F		,	4.1 m	a d	len	M	in.	ere	GI 1a	10C Df	нем 4	IC) Pr(AL DJE	ANA CT	MR'	SIS POS	- Ce - 2	RTI Fi	FI)	CAT H	е 250	494	6	D:	iσe	. 7							A	
							•					11	13 -	750	W. P	ender	St.	, Va	ICOUN	er Bi	C V60	278	Su	binî ti	ted b	y: Ed	Balc	n	**	190	*							L	
Sample#		Mo ppm	Ci ppn	л рр	m t P	Zn opm	Ag ppm	N ppr	i n p	Co pm (Min opm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppir	Bi ppm	V I ppm	Ca t	P X	La ppm	Cr ppn	Mg 1 X	Ba ppm	Ti \$	8 ppm	A1 \$	Na X	K X	W ppm	Hg ppm	Sc ppm	ד המק	5 \$	Ga ppm	Se
G-1 12200n 12200n 12200n 12200n 12200n	6000E 6050E 6100E 6150E	.6 .2 .3 .3 .3	2.2 31.4 15.6 11.9 18.5	2 2. 1 4. 5 3. 9 4. 5 4.	4 6 8 2 0	38 71 61 97 73	<.1 <.1 <.1 <.1	6.4 69.0 30.9 22.0 48.0	4 3 5 24 5 9 9 8 0 15	.5 4 .7 9 .6 4 .0 0	179 126 126 103 155	1.61 3.53 2.71 2.00 3.04	<.5 6.8 2.1 1.6 3.3	2.3 .7 .5 .3	<.5 <.5 1.2 <.5 <.5	3.7 1.7 1.4 _9 1.7	50 215 119 104 149	<.1 .1 .1	<.1 .8 .4 .3	.1 <.1 <.1 <.1	29 73 58 46 63	. 42 . 87 . 61 . 43 . 62	.074 .045 .052 .056 .175	7 11 8 2 3	79.2 147.4 81.9 53.4 91.4	2.24 2.24 .79 .65 1.25	170 116 78 112 126	.102 .263 .237 .214 .242	1 2 2 1 1	.85 1.80 1.47 1.56 2.77	.072 .027 .026 .026 .026 .030	.43 .16 .27 .21 .32	.2 <.1 <.1 <.1 <.1	<.01 .01 .01 .02 .01	2.1 8.2 6.7 3.4 5.9	.3 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 9 6 5 8	<.5 <.5 <.5 <.5 <.5
12200N 12200N 12200N 12200N 12200N 12200N	6200E 6250E 6300E 6350E 6350E 6400E	.4 .4 .2 .4	9.2 12.6 17.0 10.7 30.6	2 3. 5 3. 9 3. 9 3. 5 4.	5 4 1 8 8 8	46 107 56 25 70	<.1 .1 .1 .1	10.0 10.7 17.4 17.0 27.2	54 75 47 010 213	.7 2 .4 8 .7 3 .0 9	292 313 378 516 307	2.10 1.99 2.83 2.56 3.31	2.1 2.0 4.6 13.7 9.4	.2 .2 .5 .4	<.5 7.3 2.1 1.6 20.3	.6 .6 1.1 .9 1.4	46 47 71 144 84	.1 .2 .1 .1	.3 .3 .5 .4	.1 .1 .1 <.1	59 57 83 58 83	.28 .29 .50 2.95 .76	.027 .048 .046 .036 .059	2 2 8 5 12	26.7 26.5 37.2 33.6 43.2	.26 .28 .49 .77 .71	70 107 86 44 84	. 147 . 134 . 155 . 101 . 132	1 1 3 9 5	1.02 1.00 1.35 1.58 2.11	.020 .020 .020 .037 .027	.08 .10 .15 .03 .10	<.1 <.1 <.1 <.1	.01 .01 .02 .01 .02	2.4 2.8 5.3 5.2 7.1	<.1 <.1 <.1 .1	<.05 <.05 <.05 .07 <.05	4 5 5 6	<.5 <.5 <.5 <.5 <.5 <.5
12200N 12200N 12200N 12200N 12200N 12200N	6450E 6500E 6550E 6600E 6650E	.3 .4 .2 .2	12.9 10.4 15.0 40.5 19.3	4. 4. 4. 5 3. 8 4.	0 2 1 1 9 6	73 64 01 68 60	.1 <.1 <.1 <.1 <.1	13.1 12.5 17.6 24.6 19.2	1 6 5 5 5 8 3 17 2 11	.0 3 .3 4 .4 6 .0 7 .1 3	340 31 596 716 394	2.39 2.09 3.02 3.37 3.28	3.3 2.4 3.2 2.6 3.7	.3 .2 .4 .9	16.7 1.4 2.2 .5 <.5	.8 .7 .9 1.5 1.1	44 40 62 118 63	.1 .1 .1 .1 <.1	.3 .2 .4 .3	.1 .1 .1 .1	68 55 92 101 83	. 38 . 34 . 48 1 . 10 . 57	.044 .041 .036 .023 .022	3 3 5 12 5	30.5 25.8 33.4 23.1 23.8	.40 .31 .60 2.00 .98	70 74 89 52 79	.177 .160 .218 .291 .333	2 2 3 2 1	1.29 1.28 1.63 2.61 2.61	.021 .018 .026 .056 .029	.09 .13 .15 .08 .04	<.1 <.1 <.1 .1	.01 .01 .01 <.01 <.01	3.6 3.0 5.2 9.1 7.5	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 5 9 8	<.5 <.5 <.5 <.5 <.5
12200N 12200N 12200N 12200N 12200N	6700E 6750E 6800E 6850E 6900E	.2 .3 .3	28.3 20.9 20.9 10.8 17.7	3 3. 4. 4. 3. 4. 4.	5 0 2 5 9	58 61 67 62 41	.1 <.1 <.1 <.1 <.1	18.1 18.0 28.8 20.3 21.8	1 10 9 9 3 11 3 6 3 9	.7 4 .7 3 .4 4 .1 2	193 168 114 197 179	3.21 2.62 3.49 2.44 3.42	1.6 1.8 .9 <.5 1.1	.6 .6 .3 .6	<.5 <.5 <.5 <.5	1.1 1.3 1.4 1.0 1.5	72 147 94 45 96	<.1 .1 .1 .1 <.1	.1 .1 .1 .1	.1 .1 .1 .1	85 66 100 63 102	.78 .81 .71 .38 .57	.034 .033 .043 .023 .024	9 8 10 4 7	24.2 20.2 33.3 28.8 38.9	1.28 1.04 1.05 .35 .64	51 67 61 48 84	. 282 . 253 . 273 . 215 . 289	1 2 2 2 2	2.84 2.89 2.67 1.34 1.92	.037 .041 .046 .039 .030	.05 .05 .09 .07 .05	<.1 <.1 <.1 <.1 <.1	.01 .01 <.01 .01 .01	8.1 6.6 7.6 4.7 6.6	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	9 9 8 4 5	<.5 <.5 <.5 <.5 <.5
12200N 12200N 12200N 12200N 12200N 12200N	6950E 7000E 7050E 7100E 7150E	.3 .5 .5 .2	14.6 17.3 26.7 31.1 32.4	5. 4. 5. 3. 5.	0 6 3 6 8 1	48 89 65 61 14	<.1 <.1 .1 .1 <.1	23.0 28.3 33.1 63.9 76.8) 8 3 10 1 11 9 19 3 23	.6 2 .1 3 .5 6 .2 5 .0 13	93 198 12 12 130	3.25 3.25 3.16 4.28 4.01	.9 1.3 2.1 .5 1.4	.5 .4 .6 .5	18.8 <.5 1.9 .5 <.5	1.2 1.4 1.3 1.6 1.1	63 66 90 112 108	<.1 .1 .1 .1	.2 .1 .2 .1	.1 .1 .1 .1	99 86 90 88 105	.46 .54 .89 1.01 1.20	.019 .074 .051 .048 .085	6 7 12 21 11	44.2 26.8 41.8 59.7 63.9	.51 .70 .85 1.30 1.51	83 81 81 92 95	. 254 . 195 . 214 . 135 . 286	1 3 2 3 5	1.65 2.82 2.18 3.64 4.01	.023 .028 .026 .053 .040	.05 .07 .13 .20 .14	<.1 <.1 <.1 <.1 <.1	.01 .02 .03 .03 .03	5.4 5.2 7.6 15.4 10.9	<.1 <.1 <.1 <.1 <.1	<.05 <.05 .06 <.05 <.05	5 8 6 10 12	<.5 <.5 <.5 <.5 <.5
12200N 12200N 12200N 12200N 12200N 12200N	7200E 7250E 7300E 7350E 7350E 7400E	.3 .3 .4 .3	41.8 9.2 15.3 15.8 20.1	3. 3. 4. 4. 4.	3 9 4 4 7	72 78 65 48 69	.1 <.1 <.1 <.1 <.1	79.7 15.6 28.1 26.6 30.4	7 23 5 6 1 9 5 11 4 14	.7 9 .2 4 .2 2 .2 4 .6 4	60 198 12 61 81	4.44 2.11 2.49 2.98 3.59	1.4 .9 1.7 1.7 1.7	.6 .3 .4 .6	.9 3.5 1.0 <.5 1.7	1.2 .6 1.3 1.0 1.1	133 38 49 56 71	.1 .1 .1 .1 <.1	.2 .2 .1 .1	< 1 1 1 1	124 62 59 87 99	1.74 .42 .42 .64 .66	.063 .027 .094 .024 .061	12 3 4 7 9	77.9 30.7 35.4 39.5 45.2	1.78 .41 .59 .85 1.17	58 74 122 74 96	. 315 . 216 . 167 . 245 . 207	3 - 1 - 1 - 1 - 1 -	4.16 1.29 2.42 2.45 3.30	.058 .020 .023 .026 .018	.15 .09 .09 .06 .07	.1 <.1 <.1 <.1 <.1	.02 .01 .01 .01 .01	13.3 3.8 4.8 6.1 6.6	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	12 4 6 8 10	<.5 <.5 <.5 <.5 <.5
12200N RE 1220 12200N 12200N 12200N	7450E ON 7450 7500E 7550E 7600E	.4 E.3 .5 .4 .4	22.8 22.5 22.2 26.9 17.1	5. 5. 6. 5. 4.	8 7 2 3 3	86 85 69 91 44	.1 .1 .1 .1 <.1	27.2 28.3 28.7 23.6 16.8	2 13 3 13 7 14 5 11 3 9	.6 7 .4 7 .0 10 .8 14 .6 6	72 90 21 81 19	3.19 3.18 3.18 2.57 2.35	2.2 1.9 2.7 2.0 1.4	.6 .6 .4 .5 .4	3.3 1.4 .6 1.3 .6	1.2 1.2 1.5 .9 .7	75 72 72 74 73	.1 .1 .2 .1	.1 .1 .1 .1	.1 .1 .1 .1	83 83 76 57 61	.87 .86 .88 .94 .73	.081 .080 .054 .109 .040	13 12 15 18 7	38.6 37.0 40.6 31.7 28.0	1.16 1.15 .92 .70 .61	97 99 188 192 103	.216 .207 .134 .063 .182	2 2 3 1 3	2.99 3.00 2.55 2.33 1.61	.019 .019 .024 .011 .015	.10 .10 .20 .14 .09	<.1 <.1 <.1 <.1 <.1	.03 .04 .04 .05 .02	6.9 6.7 7.0 5.5 4.4	.1 <.1 <.1 <.1	<.05 <.05 <.05 .06 <.05	10 9 7 6 5	<.5 <.5 <.5 <.5 <.5
STANDAR	D DS6	11.9	126.2	30,	1 1	46	.3	25.5	5 11	.1 7	26	2.89	21.3	6.7	46.6	3.1	40	6.3	3.5	5.1	57	. 86	.079	14	189.7	.60	167	.082	17	1.97	.075	. 16	3.4	.24	3.4	1,8	<.05	7	4.5
	GROUP (>) CC - SAMP	1DX - DNCENTR PLE TYP	15.00 ATION E: SO	GM Exc	SAM EED	PLE S UI	LEA Pper C	ACHEC 2 1 <u>5</u> 4) WI HITS ampl	TH S . S .es b	NO M SOME Degi	IL 2- MIN <u>nnin</u>	2-2 ERAL g <u>'R</u>	HCL-I S MA' <u>E' a</u>	HNO3- Y BE <u>re R</u> e	H20 A Parti runs	ALLY and	DEG ATT	. C I ACKEI <u>/ ar</u> (FOR O). R <u>e Rej</u>	NE HI EFRA	OUR, CTORY <u>Rerur</u>	DILUT AND	'ED T Grap	0 300 HITIC	ML, Samp	ANAL	YSED Can l	BY IC Imit	:P-MS AU S	S. Solubi	LIŢY	(JH	al A	1	ľò,	79		
l I	Data	k ##				DA	TE	RE	CE	IVE	D:	AL	IG 22	200	5 E	ATE	RE	POR	тm	AILI	< د:05	Z	et.	.!?,	los	- 							й т	<u>(</u>	<u> </u>				
	Alt res	uits a	re co	nsid	ere	d tł	ne c	:onfi	iden	tial	pr	oper	ty o	f th	e cli	ent.	Acme	e ass	umes	the	liabi	iliti	es fo	r ac	tual	cost	of t	ie an	alysi	s on	ıly.		Q					ET?	

AC	ŧ A	WAL YI	ICA

Page 2

Data KFA

- N 7 -

A CANADA AND A CANADA

ALTE ANALTIJLAL																																		AUNEA	NALYTICA	4
sample#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	В ррт	A7 \$	Na X	K X	W ppm	Hg ppm	Sc ppm	ז mqq	S X	Ga ppm	Se ppm
12200N 7650E 12200N 7700E 12200N 7750E 12200N 7800E 12200N 7850E	.4 .4 .5 .3 .4	14.4 20.8 22.7 35.4 20.6	4.0 4.3 4.8 6.4 4,0	77 66 67 98 71	<.1 .1 <.1 .1	16.0 20.3 36.8 27.1 28.3	7.1 10.6 13.1 17.7 8.2	602 512 379 769 393	2.26 2.70 2.75 3.73 2.50	1.1 1.3 2.5 3.1 1.0	.3 .4 .3 .3 .4	<.5 1.4 2.2 .6 1.3	.9 .8 1.2 .7 1.4	46 43 111 135 303	.1 .1 .1 .1	1 .1 .1 .2 .1	.1 .1 .1 .1 .1	60 66 52 73 50	.42 .46 .50 .85 .66	.032 .051 .133 .136 .041	5 6 5 8 9	35.6 33.6 35.2 34.3 85.5	.43 .87 .94 1.27 .57	107 76 98 72 117	.149 .151 .098 .143 .109	2 1 2 2 2 2 3 3 4 2	1.55 2.33 2.82 3.01 2.27	.025 .017 .027 .017 .017 .021	.11 .09 .06 .11 .14	<.1 <.1 <.1 <.1 <.1	.03 .02 .02 .03 .02	3.8 4.9 3.1 5.2 6.0	<.1 <.1 <.1 .1	<.05 <.05 <.05 <.05 <.05 <.05	5 8 9 7	<.5 <.5 <.5 <.5 <.5
12200N 7900E 12200N 7950E 12200N 800DE 12000N 6000E 12000N 6050E	.4 .4 .3 .2	21.3 23.6 49.8 17.7 23.6	6.0 4.9 3.9 5.1 4.3	115 76 38 61 54	.1 .1 <.1 <.1	30,6 24,8 35,4 30,8 37,9	14.8 10.3 14.0 11.3 13.4	944 485 831 449 383	3.13 2.61 2.71 3.59 3.79	1.4 1.7 4.3 1.6 1.7	.3 .4 3.0 .5 .6	1.2 .6 2.4 1.8 1.0	.9 1.2 1.2 1.7 2.1	105 61 129 93 108	.2 .1 <.1 <.1	.1 .5 .5	.1 .1 .1 .1	61 56 113 96 89	.68 .65 2.00 .53 .63	.107 .108 .101 .047 .032	7 8 16 8 17	36.2 35.2 77.3 66.1 75.1	1.10 .66 .76 .85 1.01	100 88 109 96 87	.126 .102 .102 .141 .102	3 2 3 2 5 1 2 2 1 2	2.87 2.19 1.54 2.15 2.44	.014 .019 .038 .044 .046	.13 .19 .08 .16 .15	.1 <.1 <.1 <.1 <.1	.03 .02 .07 .02 .02	3.9 4.0 5.9 6.7 9.3	.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	9 7 5 6 7	<.5 <.5 .7 <.5 <.5
12000N 6100E 12000N 6150E 12000N 6200E 12000N 6250E 12000N 6300E	.4 .2 .3 .3	9.7 14.9 13.5 17.4 23.4	3.3 4.1 4.2 3.6 4.4	70 52 63 72 64	<_1 <_1 <_1 <_1 <_1	10.8 27.0 24.3 27.6 29.1	4.8 9.3 9.5 9.2 13.4	398 322 525 667 576	1.85 2.71 2.51 2.62 3.24	1.1 1.5 1.8 4.2 5.5	.2 .3 .4 .5	<.5 .6 <.5 1.4 5.6	.6 1.0 1.2 1.1 1.4	68 89 95 59 99	<.1 <.1 <.1 <.1 .1	1.0 2.1 2.2 1.2 .8	.1 <.1 <.1 <.1	46 68 63 62 84	.30 .38 .42 .45 .58	.037 .025 .026 .029 .040	2 3 4 5 8	36.0 62.6 64.4 68.6 57.3	. 25 . 69 . 64 . 81 . 76	86 86 93 77 112	.079 .190 .128 .082 .165	1 1 1 1 1 1 2 1 2 1	1.12 1.77 1.56 1.71 1.71	.021 .041 .034 .026 .038	.18 .13 .22 .16 .23	<.1 <.1 <.1 <.1 <.1	.01 .01 .02 .03 .03	2.5 4.2 4.1 4.9 6.1	<.1 <.1 <.1 .1	<.05 <.05 <.05 <.05 <.05 <.05	3 5 5 5 5	<.5 <.5 <.5 <.5 <.5
12000N 6350E 12000N 6400E 12000N 6450E 12000N 6550E 12000N 6550E	.5 .5 .4 .3	16.8 15.1 18.8 17.8 13.5	3.8 4.6 4.5 4.5 3.7	40 71 70 55 47	<.1 .1 .1 .1	20.0 20.1 29.7 20.3 11.2	9.3 8.3 12.5 8.3 6.4	338 467 493 288 235	2.93 3.04 3.56 3.38 2.66	3.7 4.2 5.2 4.0 3.7	.4 .3 .5 .3	3.4 6.0 1.1 4.8 1.3	.8 .7 .9 1.0 .7	53 64 70 58 81	.1 .1 .1 .1 <.1	.3 .6 .5 .5 1.0	.1 .1 .1 .1	90 76 88 104 66	.51 .42 .52 .47 .35	. 021 . 036 . 048 . 035 . 035	4 3 4 4 3	45.4 36.2 41.9 40.7 24.1	.52 .55 .77 .51 .33	63 85 78 75 80	.248 .183 .228 .226 .119	1 1 2 1 2 1 2 1 2 1 2 1	L.30 L.37 L.93 L.48 L.47	.026 .018 .027 .031 .029	.10 .10 .12 .09 .08	<.1 <.1 <.1 <.1 <.1	.01 .01 .01 .01 .01	4.6 4.1 6.1 4.8 3.7	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	4 5 6 5 4	<.5 <.5 <.5 <.5 <.5
12000N 6600E 12000N 6650E 12000N 6700E 12000N 6750E 12000N 6750E 12000N 6800E	.2 .2 .3 .5	30.5 26.5 32.4 22.9 15.1	3.5 4.5 3.5 4.3 4.0	60 61 60 53 64	<.1 <.1 <.1 <.1	44.8 58.8 92.1 55.5 39.0	17.2 22.9 23.0 16.4 12.2	454 484 576 505 376	3.78 3.76 4.10 3.74 3.04	1.0 1.4 .7 .8 .9	-4 .3 .6 .4	.6 .7 .6 .8 1.0	1.2 1.2 1.7 1.8 1.1	77 73 50 90 64	<.1 <.1 .1 .1 .1	.1 .1 .1 .1	.1 .1 <.1 <.1 .1	76 77 75 86 75	.71 .77 .94 .99 .56	. 031 . 064 . 036 . 043 . 040	7 3 11 16 3	49.8 34.9 36.9 46.9 36.6	1.37 1.71 2.12 1.07 .83	67 98 42 89 77	.146 .268 .256 .265 .242	1 3 2 3 1 2 2 2 1 2	3.41 3.79 2.16 2.70 2.25	.064 .057 .061 .052 .031	.23 .19 .09 .11 .09	<.1 <.1 .1 <.1	.01 .01 .01 .01 .01	11.1 8.8 9.5 9.1 4.9	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	9 10 7 8 6	<.5 <.5 <.5 <.5 <.5
12000N 6850E 12000N 6900E 12000N 6950E Re 12000N 6950E 12000N 7000E	.5 .4 .3 .2	13.2 15.9 13.2 13.2 30.6	5.1 4.8 4.5 4.5 3.9	53 58 57 59 6 6	<.1 <.1 <.1 <.1	19.3 22.3 14.6 15.1 24.1	8.0 9.3 6.5 6.4 12.0	316 327 260 263 407	3.05 3.23 2.43 2.53 3.63	1.1 1.2 1.0 .9 .6	.4 .5 .4 .7	1.4 1.4 .9 1.1 1.2	.9 1.1 .9 1.0 1.8	61 84 60 61 147	.1 <.1 <.1 <.1	.2 .2 .1 .1 <.1	.1 .1 .1 .1 .1	95 104 70 73 95	.44 .55 .48 .49 1.09	. 025 . 031 . 024 . 025 . 043	4 4 3 3 14	38.6 39.5 27.5 28.3 28.1	.43 .53 .42 .44 1.05	71 79 76 76 60	.252 .273 .227 .232 .266	1 1 2 1 1 1 1 1 2 2	L.69 L.96 L.78 L.85 2.93	.029 .038 .036 .038 .038 .107	.04 .06 .06 .07 .20	<.1 <.1 <.1 <.1 <.1	.01 .01 .01 .01 .01	4.5 5.0 4.1 4.1 9.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 5 5 9	<.5 <.5 <.5 <.5 <.5
12000N 7050E 12000N 7100E 12000N 7150E 12000N 7200E STANDARD DS6	.4 .3 .5 .4 11.7	8.2 33.6 28.1 15.3 124.1	3.8 4.0 4.1 5.4 29.3	71 95 55 63 143	<.1 <.1 <.1 <.1	12.4 77.0 35.0 27.2 25.4	4.9 23.6 18.5 12.7 10.9	482 794 1118 389 708	2.06 4.75 3.23 3.04 2.87	.9 1.1 4.9 2.4 20.9	.2 .7 .3 .6	.9 .5 1.1 46.7	.6 1.3 1.4 .9 3.1	36 72 66 35 41	<.1 .1 .1 6.0	.1 .2 .1 3.4	.1 <.1 .1 .1 4.9	57 138 85 86 58	.36 1.15 .98 .71 .87	.027 .049 .037 .040 .078	3 13 11 6 15	31.7 97.8 38.4 28.4 189.4	.27 1.95 .92 1.08 .59	62 96 128 58 166	.171 .318 .063 .364 .085	2 1 2 2 9 2 2 3 16 1	L.30 4.08 2.13 3.28 L.98	.029 .040 .027 .021 .075	.11 .13 .14 .13 .17	<.1 <.1 <.1 .1 3.4	.01 .03 .08 .01 .23	2.9 12.7 7.8 7.1 3.3	<.1 <.1 <.1 <.1 1.8	<.05 <.05 <.05 <.05 <.05 <.05	4 12 7 10 6	<.5 <.5 .6 <.5 4.4

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Page 3

ACHE ANALYTICAL																																#	che anal	YTICAL	
sample#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V ppm	Ca %	Р Х	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	BA1 ppm X	Na %	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S X p	Ga opm p	Se
12000N 7250E 12000N 7300E 12000N 7350E 12000N 7350E 12000N 7400E 12000N 7450E	.4 .3 .4 .3 .4	22.8 14.1 21.7 18.9 39.3	5.7 5.6 8.8 4.5 5.4	142 96 103 98 80	.1 <.1 <.1 <.1 .1	31.0 21.5 30.1 25.3 25.6	14.1 10.6 16.7 11.2 12.8	1056 468 1609 746 819	3.03 2.45 3.24 2.76 2.96	2.8 2.0 1.4 1.8 1.8	.6 .6 .3 .3	5.0 .5 .6 .7	1.1 1.1 1.4 1.0 1.2	66 33 58 36 62	.2 .1 .2 .1 .2	.2 .1 .1 .1 .1	.1 _1 .1 .1 .1	78 71 74 68 61	.96 .42 .65 .54 1.04	.172 .098 .051 .069 .182	7 6 17 11 23	30.2 27.7 36.4 33.3 35.3	1.13 .82 1.04 .89 .95	116 82 231 277 318	.256 .238 .097 .051 .030	3 3.51 1 2.58 1 2.33 1 2.08 4 2.08	.012 .016 .013 .015 .013	.14 .07 .17 .14 .26	1 < 1 < 1 < 1 1 1	.03 .01 .03 .02 .04	7.4 6.0 5.7 5.2 6.2	<.1 < <.1 < <.1 < .1 < .1 <	.05 .05 .05 .05 .05 .05	12 < 9 < 7 < 7 < 7 <	<.5 <.5 <.5 <.5 <.5
12000N 7500E 12000N 7550E 1200DN 7600E 12000N 7650E 12000N 7700E	.3 .2 .5	54.2 45.9 22.2 25.8 28.1	4.7 3.8 3.7 6.0 6.7	41 47 73 99 80	.1 .1 <.1 <.1	26.6 41.8 33.2 21.1 25.7	10.5 15.8 15.4 14.5 18.5	741 259 427 1513 1340	2.86 2.84 3.25 3.06 4.11	4.1 3.2 1.2 1.9 1.7	.6 1.7 .4 .3 .5	1.5 1.8 <.5 <.5 .6	.9 1.4 .9 .8 1.1	97 133 42 48 77	.2 .1 .2 .2	.2 .4 .1 .1	.1 .1 .1 .1	68 187 74 67 87	1.59 1.62 .46 .54 .65	.042 .075 .076 .070 .065	19 14 7 8 12	36.2 68.3 45.8 30.7 50.9	.70 1.18 1.21 .98 1.32	128 131 97 187 104	.070 .131 .067 .081 .205	5 2.09 3 2.00 <1 2.76 1 2.50 <1 3.16	.020 .062 .012 .015 .014	.09 .04 .06 .09 .13	.1 <.1 <.1 <.1 <.1	.05 .04 .01 .02 .02	6.5 7.6 5.3 4.6 7.3	<.1 < <.1 < .1 < .1 < <.1 <	.05 .05 .05 .05 .05	6 < 6 < 9 < 8 <	<.5 .9 <.5 <.5 <.5
12000N 7750E 12000N 7800E 12000N 7850E 12000N 7900E 12000N 7950E	.2 .5 .5 .5	43.5 14.1 11.1 19.1 19.5	5.5 4.6 5.3 4.3 3.9	77 66 75 108 54	.1 .2 <.1 .1 .1	50.2 16.7 12.2 15.5 22.7	25.8 7.3 6.4 6.6 10.0	1141 501 1046 1357 529	5.19 2.15 1.46 1.57 2.70	1.0 1.7 1.3 1.5 2.1	.6 .2 .2 .2	2.0 .6 <.5 <.5 .9	.8 .6 .4 .7 1.0	75 58 61 60 58	.2 .2 .3 .2 .1	.1 .2 .1 .1 .2	<.1 .1 .1 .1	93 61 35 35 79	1.12 .71 .66 .67 .53	.073 .050 .056 .071 .053	15 3 4 4 5 7	125.2 31.2 18.0 19.4 49.0	1_93 .45 .37 .32 .54	69 73 109 141 95	.277 .159 .086 .078 .169	2 3.28 2 1.46 2 1.11 4 1.34 2 1.53	.011 .017 .013 .017 .024	.15 .12 .08 .11 .19	.1 <.1 <.1 <.1 <.1	.02 .03 .03 .04 .02	7.7 3.4 2.1 2.7 4.7	<.1 < <.1 < <.1 < <.1 < <.1 <	. 05 . 05 . 05 . 05 . 05	10 < 5 < 4 < 5 <	<.5 <.5 <.5 <.5
12000N 8000E 11800N 6000E 11800N 6050E 11800N 6100E RE 11800N 6100E	4 3 3 4 4	11.1 15.8 21.3 14.0 13.0	4.1 5.4 3.9 4.0 3.7	53 51 54 56 56	<.1 <.1 <.1 <.1 <.1	16.6 19.6 24.0 16.6 15.3	6.0 8.7 9.6 7.9 7.4	250 393 495 383 374	2.15 2.55 2.82 2.20 2.08	.9 .6 <.5 <.5 <.5	.3 .3 .3 .3 .3	<.5 <.5 1.1 <.5 <.5	.7 1.2 1.5 1.0 .9	38 65 53 64 61	.1 .1 < 1 < 1	.1 < 1 < 1 .1	.1 .1 <.1 .1 .1	60 70 73 61 57	.34 .36 .47 .32 .31	.025 .043 .041 .023 .022	3 3 6 3 3	35.4 35.3 42.7 32.8 30.0	.40 .42 .72 .36 .33	75 126 56 129 126	.176 .172 .206 .152 .144	1 1.39 1 1.69 <1 1.92 <1 1.48 <1 1.37	.019 .033 .047 .043 .037	.13 .12 .09 .08 .07	<.1 <.1 <.1 <.1 <.1	.01 .02 .01 .01 .02	3.2 3.8 6.6 3.9 3.5	<.1 < <.1 < <.1 < <.1 < <.1 <	.05 .05 .05 .05 .05	4 < 5 < 4 <	<.5 <.5 <.5 <.5 <.5
11800N 6150E 11800N 6200E 11800N 6250E 11800N 6300E 11800N 6350E	.5 .4 .3 .5 .7	8.3 11.7 35.7 15.0 19.1	4.8 4.2 3.9 4.2 4.3	79 50 57 58 83	<.1 <.1 <.1 <.1 .1	10.3 15.4 44.7 18.1 21.9	4.6 7.9 15.4 8.6 10.3	430 287 483 457 613	1.42 2.12 3.34 2.85 2.80	.5 <.5 1.2 3.0 2.8	.2 .2 .6 .4 .4	<.5 .8 1.9 9.0 38.8	.5 .9 2.3 .8 .9	34 44 87 50 54	.1 .1 .1 .1	<.1 <.1 .1 .5 .3	.1 .1 .1 .1	34 50 85 88 82	.20 .30 .77 .48 .57	.108 .051 .066 .036 .067	2 2 20 4 5	17.2 31.4 54.9 38.6 40.6	.15 .31 .29 .48 .53	103 73 103 75 100	.105 .131 .144 .229 .213	<1 1.27 1 2.09 1 1.93 1 1.32 1 1.60	.021 .040 .049 .023 .023	.08 .15 .16 .12 .12	< 1 < 1 < 1 < 1 < 1 1	.01 .01 .03 .01 .01	1.6 2.7 8.8 4.4 4.7	<.1 < <.1 < <.1 < <.1 < <.1 <	. 05 . 05 . 05 . 05 . 05	4 < 5 < 6 < 5 <	<.5 <.5 <.5 <.5 <.5
11800N 6400E 11800N 6450E 11800N 6500E 11800N 6550E 11800N 6600E	.5 .3 .4 .3 .4	14.1 16.3 26.6 19.3 18.9	4.3 4.0 5.0 4.9 4.5	50 68 64 58 91	<.1 <.1 <.1 <.1	17.3 24.0 51.5 34.3 21.2	8.0 9.3 16.7 11.7 9.9	345 384 530 342 595	2.38 2.75 4.43 3.66 3.38	1.7 5.7 6.3 2.5 6.1	.4 .3 .6 .4 .4	2.5 9.9 1.7 .8 1.5	.8 .9 1,3 1.0 1.1	75 72 99 111 70	.1 .1 .1 .1	2 1.0 4 3 1.0	.1 .1 .1 .1	65 65 98 95 89	.38 .48 .75 .60 .58	.029 .049 .035 .028 .064	2 3 9 4 7	40.6 52.9 44.6 38.3 32.7	.51 .65 1.13 .79 .62	101 95 91 91 87	. 168 . 107 . 324 . 294 . 191	1 1.44 1 1.92 3 2.69 2 1.92 2 1.94	.036 .022 .031 .032 .025	.09 .17 .09 .10 .11	<.1 <.1 <.1 <.1 <.1	.02 .02 .02 .01 .01	3.5 4,4 9.6 6.3 6.4	<.1 < <.1 < <.1 < <.1 < <.1 <	. 05 . 05 . 05 . 05 . 05	4 < 6 < 9 < 6 <	*.5 *.5 *.5 *.5 *.5
11800N 6650E 11800N 6700E 11800N 6750E 11800N 6800E STANDARD DS6	.4 .3 .4 11.8	12.0 17.6 42.0 13.7 125.3	3.6 4.1 3.3 4.0 29.4	92 67 56 47 144	.1 <.1 <.1 <.1 .3	12.9 29.2 87.3 19.7 25.2	5.7 9.9 24.7 7.6 10.9	344 300 657 301 712	2.57 3.19 4.25 2.81 2.86	3.2 1.8 2.0 1.4 21.3	.3 .4 .5 .4 6.7	6.9 <.5 2.0 2.0 47.0	.6 1.0 1.3 1.0 3.1	53 80 92 63 40	.1 .1 .1 .1 6.1	.8 .3 .1 .2 3.6	.1 <.1 <.1 5.0	66 78 88 1 85 57	.39 .54 1.11 .53 .86	.029 .041 .058 .024 .079	3 6 13 5 15 1	25.6 34.4 43.6 31.7 189.9	.40 .78 2.24 .48 .59	70 67 68 67 165	. 146 . 233 . 199 . 231 . 082	2 1.26 3 1.99 3 3.04 2 1.59 17 1.97	.024 .028 .071 .038 .074	.08 .14 .30 .10 .16	<.1 <.1 <.1 <.1 3.5	.02 .01 .01 .01 .23	3.7 6.3 13.0 5.4 3.4	<.1 < <.1 < <.1 < <.1 < 1.8 <	. 05 . 05 . 05 . 05 . 05	4 < 6 < 9 < 5 < 6 4	<.5 <.5 <.5 <.5 4.7

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🔥 FA

Almaden Minerals Ltd. PROJECT MRT05-2 FILE # A504866

																																				•
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	A1 %	Na %	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S \$	Ga ppm	Se
1800N 6850E 1800N 6900E 1800N 6950E 1800N 7000E 1800N 7050E	.3 .4 .5 .4 .3	10.8 26.8 16.2 27.9 29.9	4.2 4.9 4.9 5.5 4.0	52 43 47 64 49	<.1 .1 .1 .1	14.4 28.5 23.4 35.7 36.6	5.6 13.3 9.1 12.8 14.2	296 675 404 657 330	2.26 2.83 2.90 3.26 2.98	1.2 2.9 1.8 2.2 3.9	.3 1.1 .5 .6 1.6	.6 1.5 .9 6.4 1.3	.9 1.5 1.2 1.6 1.3	51 105 79 114 132	.1 <.1 .1 .1	.1 .2 .2 .2	.1 .1 .1 <.1 <.1	67 109 96 91 95	.44 .99 .63 1.00 1.35	.030 .038 .050 .061 .066	4 32 7 14 11	21.3 41.5 30.9 40.3 60.2	.37 .75 .60 .91 1.17	59 77 62 90 74	.211 .203 .255 .222 .161	2 : 3 1 3 : 6 : 6 :	1.35 1.98 1.67 2.25 1.84	.032 .041 .039 .038 .063	.12 .08 .11 .22 .10	<.1 .1 <.1 .1 .1	.01 .04 .01 .04 .04	4.0 7.1 5.5 8.9 7.0	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	4 5 5 6 5	<.5 <.5 <.5 <.5
1800N 7100E 1800N 7150E 1800N 7200E 1800N 7250E 1800N 7300E	.3 .4 .3 .5 .3	30.6 29.3 28.8 22.5 27.5	4,4 3.7 3.8 3.9 4.3	57 47 55 70 36	.1 <.1 <.1 .1	42.1 36.8 32.7 41.4 36.4	15.6 14.4 11.1 14.9 15.4	732 652 420 623 805	3.53 3.14 3.13 3.14 3.14 3.48	3.1 3.7 2.2 1.3 3.6	1.1 1.3 1.2 .5 1.7	.7 1.3 .6 .5 .7	1.8 1.4 1.5 1.0 1.6	98 101 62 114 104	.1 .1 .1 .1	.2 .3 .2 .3	.1 .1 .1 .1	87 90 83 82 99	1.04 .97 .54 .78 1.23	.051 .046 .066 .080 .080	13 13 11 9 11	61.7 55.4 56.0 43.2 66.6	1.11 1.03 .76 1.25 1.05	91 83 80 89 125	.198 .173 .185 .131 .147	5 2 4 1 2 2 4 2 5 2	2.64 1.96 2.18 2.40 2.21	.039 .042 .029 .030 .043	.26 .13 .09 .13 .14	<.1 <.1 <.1 <.1	.03 .03 .01 .03 .03	10.3 7.8 8.2 8.3 8.9	< 1 < < 1 < < 1 < < 1 < < 1 <	<.05 <.05 <.05 <.05 <.05	7 6 7 6	<.5 <.5 <.5 .6
1800N 7350E 1800N 7400E 1800N 7450E 1800N 7500E 1800N 7550E	.4 .3 .2 .3	31.5 39.2 22.8 14.7 18.8	4.3 4.3 4.5 3.8 4.7	65 67 39 48 64	.1 < 1 < 1 < 1 .1	45.4 50.7 31.0 20.7 21.1	15.7 19.5 13.2 8.4 9.2	684 651 447 251 490	3.52 4.07 3.26 2.60 2.41	3.4 5.0 2.1 1.6 1.4	.6 .7 .6 .4 .3	1.6 7.3 1.5 1.5 3.1	1.7 2.0 1.4 1.2 .8	128 127 110 53 49	.1 .1 .1 .1	.2 .3 .2 .1	.1 .1 .1 .1	87 98 82 68 67	1.13 .94 .97 .44 .56	.161 .125 .054 .060 .055	14 16 12 6 6	48.9 57.7 54.5 35.2 30.6	1.11 1.27 1.04 .51 .62	115 99 102 95 117	.130 .122 .162 .156 .115	4 2 3 2 4 1 3 1 1 2	2.69 3.03 1.89 1.75 1.73	.035 .035 .055 .029 .017	.19 .21 .15 .13 .13	<.1 .1 <.1 <.1 <.1	.04 .07 .04 .02 .02	9.0 11.1 8.6 4.6 3.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	7 8 6 5 6	<.5 <.5 <.5 <.5
1800N 7600E 1800N 7650E 1800N 7700E 1800N 7750E 1800N 7800E	.3 .5 .4 .5 .4	20.3 19.5 15.0 11.1 26.7	4.1 4.6 5.0 3.7 8.7	53 76 98 38 94	<.1 .1 <.1 .1 .1	26.9 25.2 20.9 15.6 23.0	12.0 11.2 9.1 7.1 13.4	236 720 1317 372 1673	3.05 2.61 2.29 2.04 2.62	1.3 1.3 1.0 1.2 1.5	.4 .4 .3 .2 .3	.9 .8 .9 .9 1.6	.9 .9 .6 .9	61 53 62 43 53	.1 .2 .1 .3	.1 .1 .1 .2	.1 .1 .1 .1	82 66 59 56 62	.50 .60 .40 .44 .77	.052 .039 .073 .033 .033	6 10 6 3 10	38.8 32.9 30.7 30.4 30.7	.88 .64 .50 .46 .77	94 169 161 73 213	.176 .142 .160 .141 .145	1 2 2 1 2 2 2 1 2 2	2.53 1.96 2.43 1.34 2.01	.018 .017 .021 .017 .013	.07 .13 .16 .12 .14	<.1 <.1 <.1 <.1 <.1	.01 .02 .02 .01 .05	4.5 4.3 3.6 2.9 4.0	<.1 < .1 < .1 < <.1 <	<.05 <.05 <.05 <.05 <.05	7 6 7 5 6	<.5 <.5 <.5 <.5
1800N 7850E 1800N 7900E 1800N 7950E 1800N 8000E 1600N 6000E	.4 .6 .1 .5 .2	37.0 37,9 52.3 27.1 12.1	5.5 5.1 5.3 4.0 4.3	54 71 50 48 46	.3 .1 .1 .1 <.1	27.9 24.4 34.0 38.2 19.0	13.0 12.6 13.7 12.7 7.5	586 774 330 469 372	3.19 2.73 2.59 3.35 2.33	4.8 7.5 2.0 2.7 <,5	.4 .6 .4 .5 .3	6.6 1.9 1.8 1.2 .8	1.2 1.4 1.4 1.0 1.1	60 63 271 59 66	.1 .2 .2 .1 .1	.3 .2 .2 .1	.1 .1 .1 .1	82 66 50 82 43	.81 .73 2.50 .58 .45	.069 .058 .067 .045 .056	11 11 14 12 3	40.0 37.5 52.7 70.3 31.7	. 95 . 58 . 95 . 90 . 35	70 125 140 109 142	.156 .124 .117 .177 .137	2 2 3 2 12 2 2 1 <1 2	2.18 2.13 2.13 1.99 2.07	.021 .019 .035 .023 .035	.15 .21 .11 .11 .11	.1 <.1 <.1 <.1 <.1	.02 .01 .02 .03 .01	5.4 5.7 6.9 5.8 3.4	.1 < .1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	7 6 6 5	<.5 <.5 <.5 <.5
1600N 6050E 1600N 6100E 1600N 6150E 1600N 6200E E 11600N 6200E	.3 .4 .3 .5 .4	6.9 9.1 12.9 14.8 13.9	3.3 2.7 3.4 3.9 3.8	56 48 42 73 71	<.1 <.1 <.1 <.1 <.1	8.7 9.3 14.5 16.8 16.5	3.9 5.1 6.7 5.5 5.8	364 320 347 389 403	1.26 1.53 2.09 2.21 2.24	<.5 <.5 <.5 <.5 <.5	.2 .2 .3 .2 .2	.5 <.5 .6 .7 1.4	.5 .9 .9	39 63 114 48 48	.1 .1 <.1 <.1	<.1 <.1 <.1 .1	.1 <.1 <.1 <.1 .1	24 29 46 56 58	.20 .31 .39 .36 .35	.034 .039 .031 .041 .042	2 2 3 3 3	17.2 22.3 28.3 37.4 37.6	.17 .21 .37 .29 .29	109 126 187 74 75	.097 .096 .138 .154 .147	11 <11 11 11 11	1.16 1.13 1.54 1.47 1.43	.028 .034 .042 .039 .036	.09 .11 .14 .12 .12	<.1 <.1 <.1 <.1	.01 .01 .01 .01 .01	1.7 2.1 3.6 3.0 3.1	<.1 < <.1 < <.1 < <.1 < <.1	<.05 <.05 <.05 .20 .21	4 4 4 4	<.5 <.5 <.5 <.5
1600N 6250E 1600N 6300E 1600N 6400E 1600N 6450E TANDARD DS6	.5 .5 .2 .3 11.5	15.4 23.8 32.8 36.7 122.5	3.7 3.7 3.8 4.1 29.4	70 46 72 52 142	<.1 <.1 .1 .2 .3	15.6 29.3 28.6 26.4 24.6	6.8 10.9 11.7 11.1 10.8	519 431 820 823 696	2.23 2.80 2.93 2.57 2.82	.5 .9 2.7 2.7 21.0	.2 .5 .7 .9 6.5	.5 1.1 1.2 1.2 46.0	.8 1.8 1.2 1.3 3.0	61 87 64 68 39	.1 .1 .1 6.2	.1 .3 .3 3.5	.1 <.1 .1 .1 5.0	61 73 83 61 1 55	.40 .79 .97 1.06 .85	.044 .062 .032 .064 .077	3 12 12 13 13	31.5 45.0 41.3 49.5 185.1	.32 .72 .88 .78 .58	100 103 62 65 164	.145 .138 .183 .141 .078	1 1 2 1 2 2 3 2 17 1	L.24 L.84 2.35 2.07 L.92	.042 .046 .037 .031 .072	.13 .11 .06 .13 .15	<.1 <.1 <.1 <.1 3.5	.02 .03 .02 .04 .22	3.2 7.5 7.5 7.1 3.2	<.1 < <.1 < <.1 < <.1 < 1.8 <	<.05 <.05 <.05 <.05 <.05	4 5 7 6 6	<.5 <.5 <.5 <.5 4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

40 A CO

ACHE ANALYTICAL SAMPLE# Pb Cd Sb Ρ Мо Cu Zn Aq Ni Со Mn Fe As U Au Th Sr Bi ٧ Са La Cr Mg Ba Ti В A1 Na К W Ha Sc **T**] Ga S. Se ppn DDM DDM DDM DDM Trade made and made the ppm ppm ppm ppm % ppm DDM ž. DOM X ppm 2 2 nog ngg ppm 2 \$ ppm Domi domi domi 2 DDM DDM 11600N 6500F .3 12.8 3.6 74 <.1 17.1 6.6 516 2.29 3.7 .2 <.5 . 7 59 .1 .7 .1 51 .38 .043 2 37.3 .49 89.076 1 1.40 .022 .15 <.1 .01 3.1 <.1 <.05 5 <.5 11600N 6550E .1 .3 17.0 3.9 69 <.1 29.1 11.5 618 3.22 6.7 .4 .6 1.5 83 .1 .9 74 .56 .038 11 58.1 .79 95 .080 1 1.81 .025 .15 <.1 .03 6.3 <.1 <.05 6 <.5 .1 11600N 6600E .1 36.6 13.2 817 2.98 7.1 .4 .8 1.2 77 .1 .8 .3 19.0 4.1 76 70 .74 .068 9 64.5 1.10 82 .076 2 1.79 .026 .15 <.1 .04 6.4 <.1 <.05 6 <.5 11600N 6700E .5 20.8 4.2 41 .1 21.9 10.0 531 2.75 5.0 .5 <.5 1.2 88 .1 .7 .1 70 .74 .062 9 31.7 .56 92 .118 3 1.58 .026 .18 <.1 .04 5.9 <.1 <.05 5 <.5 .1 22.0 10.0 541 2.49 2.8 11600N 6750E .2 .7 19.2 4.7 54 .5 .5 . 9 68 .3 .1 76 .71 .052 6 30.3 .53 82 .183 3 1.39 .023 .16 .1 .02 4.4 <.1 <.05 4 <.5 11600N 6800E .4 18.1 4.2 54 .1 21.6 8.3 319 2.91 2.6 .5 .8 1.2 77 .1 .3 .1 98 .56 .044 6 34.6 .55 65 .230 2 1.50 .028 .08 .1 .01 5.3 <.1 <.05 5 <.5 11600N 6850E .5 11.7 3.8 54 <.1 15.7 6.9 478 2.39 1.7 .3 <.5 .9 44 .1 .1 .1 75 .44 .044 4 29.3 .37 77 .211 2 1.24 .030 .09 .1 .02 4.2 <.1 <.05 4 <.5 .1 11600N 6900E .3 42.2 4.2 42 .1 43.2 13.7 179 2.57 1.9 .4 <.5 1.7 83 .3 .1 89 1.39 .034 14 48.0 .84 76 .160 2 1.87 .040 .05 <.1 .03 6.9 <.1 <.05 6 <.5 11600N 6950E 64 <.1 15.9 6.2 461 2.47 1.1 . 8 42 78 .41 .029 .3 9.3 4.6 .3 <.5 .1 .1 .1 3 29.4 .33 61 .243 2 1.42 .030 .07 <.1 .01 4.1 <.1 <.05 4 <.5 11600N 7000E .1 13.9 5.4 405 2.25 1.5 53 .2 .4 10.7 4.4 60 .3 5.5 .8 .1 .1 69 .46 .039 3 25.7 .31 63 .223 3 1.31 .022 .14 .1 .01 3.6 <.1 <.05 4 <.5 11600N 7050E .3 23.4 4.3 49 .1 30.8 14.1 695 2.96 7.1 1.1 <.5 .9 76 .1 .4 .1 102 1.20 .052 8 44.1 .85 63 .124 4 1.57 .042 .05 <.1 .04 6.5 <.1 <.05 5 <.5 11600N 7100E .4 22.3 3.7 68 .1 43.8 15.2 525 2.66 1.8 .4 <.5 .9 67 .1 .1 .1 66 .77 .099 13 27.4 1.48 76 .090 1 2.69 .014 .07 .1 .03 6.0 <.1 <.05 10 <.5 25 11600N 7150E .5 8.1 3.5 59 <.1 16.2 6.6 480 1.89 1.1 .3 <.5 . 6 <.1 <.1 .1 47 .28 .034 2 18.1 .58 58 .137 2 1.29 .019 .09 <.1 .01 3.0 <.1 <.05 5 <.5 11600N 7200E 63 <.1 63.6 17.5 560 3.28 3.1 .8 <.5 1.7 .1 .1 .87 .029 99.365 7 .1 15.2 6.0 566 .1 68 10 42.0 1.53 2 2.19 .023 .19 <.1 .01 8.3 <.1 <.05 <.5 11600N 7250E .1 34.3 13.5 523 3.32 2.1 61 .2 .1 .4 25.3 4.0 64 .6 <.5 1.4 .1 89 .65 .054 11 40.7 .96 110 .139 2 2.29 .021 .17 <.1 .02 7.2 <.1 <.05 7 <.5 RE 11600N 7250E .3 25.4 4.1 65 .1 33.2 13.2 524 3.33 2.1 .5 <.5 1.4 60 .2 .63 .054 11 41.2 .97 107 .139 .17 <.1 .03 7.1 <.1 <.05 7 <.5 .1 .1 89 2 2.27 .023 11600N 7300E .3 26.3 4.4 64 < 1 35.2 18.9 755 3.77 2.1 .6 <.5 1.7 <.1 .1 .1 100 .39.062 41 18 36.8 1.55 119 .039 1 3.64 .018 .08 <.1 .03 7.0 <.1 <.05 11 <.5 11600N 7350E .6 18.4 4.3 74 <.1 25.0 13.9 940 2.91 1.7 .1 .4 <.5 1.0 39 .1 .1 69 .48 .057 8 25.8 .89 190 .023 1 2.17 .015 .22 <.1 .03 3.9 <.1 <.05 7 <.5 11600N 7400E .5 24.8 6.9 101 <.1 29.2 17.1 1782 3.45 2.3 .5 1.4 1.5 .1 .1 .56 .093 1 2.73 .013 .18 <.1 .04 7.1 <.1 <.05 36 .1 83 17 35.1 1.24 212 .019 9 <.5 81 <.1 22.8 12.2 539 2.99 1.3 11600N 7450E .3 16.8 3.3 .4 <.5 1.3 43 .1 .1 <.1 66 .48 .059 .33 <.1 .01 5.8 <.1 <.05 11 31.5 1.02 160 .032 3 2.34 .016 8 < 5 11600N 7500E ,5 17.8 5.6 100 <.1 40.3 16.7 1107 3.31 1.1 .5 .9 1.6 85 .60 .053 10 45.5 1.21 120 .219 2 3.19 .036 .11 <.1 .02 8.9 <.1 <.05 9 <.5 63 .1 .1 .1 .5 11600N 7550E 70 <.1 25.5 10.5 525 2.94 .7 40 .1 .3 .1 89 .44 .026 8 40.5 .87 73 .193 1 1.84 .022 .13 <.1 .01 6.7 <.1 <.05 .3 14.1 4.4 .7 1.0 7 <.5 11600N 7600E .4 26.7 4.1 69 < 1 26.5 13.7 490 3.35 1.4 .3 <.5 .9 35 .1 .1 .1 82 .54 .058 16 34.3 1.14 250 .022 1 2.37 .016 .27 <.1 .02 5.7 .1 <.05 8 <.5 51 .1 11600N 7650E 77 <.1 26.0 13.7 744 3.13 .8 .3 <.5 .9 .1 .1 69 .86 .089 16 34.9 1.13 241 .059 3 2.32 .012 .41 <.1 .02 6.2 <.1 <.05 8 <.5 .2 28.2 4.8 11600N 7700E .4 18.0 3.7 57 <.1 24.9 11.5 571 2.78 1.9 .4 1.4 1.1 68 .1 .1 .1 59 .71 .052 11 36.2 .78 154 .060 2 2.05 .018 .16 <.1 .02 4.9 <.1 <.05 7 <.5 11600N 7750E 74 <.1 24.9 12.9 519 2.91 3.7 .9 31 .3 74 .45 .060 10 31.1 .86 150 .142 1 1.94 .013 .11 <.1 .01 4.2 .1 <.05 7 <.5 .4 20.2 4.7 .4 1.1 .1 .1 2 11600N 7800E .2 13.9 4.6 79 <.1 46.4 16.0 558 3.18 . 9 .4 .6 .9 30 .1 .1 59 .62 .044 10 47.4 1.33 98.221 2 2.07 .013 .15 <.1 .02 4.8 <.1 <.05 7 <.5 .1 .2 11 54.4 .87 146 .141 7 <.5 11600N 7850E .4 29.1 4.7 75 .2 34.2 12.3 374 3.04 1.9 .6 86.4 1.5 93 .1 80 .64 .078 2 2.42 .023 .15 <.1 .02 5.6 <.1 <.05 .2 40.1 16.3 957 3.54 2.7 .3 2.1 1.2 167 .2 .2 68 1.50 .084 16 47.6 1.12 129 .101 5 2.62 .019 .24 <.1 .04 6.7 <.1 <.05 11600N 7900E .4 56.5 6.2 82 .1 8 <.5 11600N 8000E .7 28.5 4.9 50 .1 29.2 13.0 553 2.78 1.9 .6 <.5 1.5 69 .1 .2 .1 79 .65 .027 12 50.0 .68 124 .207 1 1.83 .021 .14 <.1 .02 6.2 <.1 <.05 6 <.5 11400N 6000E 8.2 4.9 56 < 1 14.2 5.0 314 1.61 < 5 .2 .5 .8 32 · .1 .1 .1 37 .26 .064 2 21.5 .22 108 .121 1 1.83 .022 .07 .1 .01 2.1 <.1 <.05 5 <.5 .4 11400N 6050E 67 <.1 19.4 6.8 536 2.32 .7 .4 .5 1.1 66 .1 .2 .1 60 .44 .076 4 34.6 .42 116 .131 1 1.82 .027 .11 <.1 .02 4.1 <.1 <.05 5 <.5 .3 14.7 4.1 11400N 6100E 55 <.1 28.2 10.8 484 2.70 <.5 .4 .5 1.8 84 .1 <.1 .1 48 .67 .049 8 39.7 .87 115 .123 1 2.19 .047 .17 <.1 .02 6.5 <.1 <.05 .2 23.7 4.8 6 <.5 .4 12.0 3.9 62 <.1 12.6 5.4 370 2.19 <.5 .2 1.0 .9 64 < .1 .1 .1 63 .35 .028 3 31.8 .28 98.161 1 1.22 .041 .11 <.1 .01 3.6 <.1 <.05 3 <.5 11400N 6150E STANDARD DS6 .3 25.1 11.0 706 2.85 21.1 6.6 48.7 3.0 39 6.2 3.5 5.0 56 .86 .078 13 187.3 .59 164 .079 17 1.94 .073 .15 3.6 .23 3.3 1.7 <.05 11.7 124.8 29.2 144 6 4.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

	\mathbf{V}	
-7	-	
and a	ANA	TICAL
PALTIC	70444	1 ILLING

				_						_											-													AUTE AN	ALTITUAL	. P
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Min ppm	Fe \$	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb	B1 ppm	V Incici	Ca X	Р Х	La	Cr ppm	Mg X	Ba ppm	TI X	B ppm	A1 *	Na X	K %	W MQQ	Hg DDM	Sc ppm	T1 DDM	S X	Ga	Se
1400N 6200E 11400N 6250E 11400N 6350E 11400N 6350E 11400N 6350E 11400N 6400E	.3 .5 .2 .2	11.3 14.0 14.5 18.3 23.8	4.2 4.1 3.4 3.6 3.4	47 41 53 36 23	<.1 <.1 <.1 <.1 <.1	14.4 14.6 14.3 14.2 19.2	5.7 6.9 7.1 7.2 7.0	240 282 323 310 176	2.24 2.16 2.12 2.07 1.47	.8 1.2 <.5 .6 1.3	.3 .3 .3 .4 6.6	.5 <.5 .7 .6 2.0	.8 _7 1.1 _8 _8	58 50 48 48 62	<.1 < 1 .1 < 1 .1	.1 .1 <.1 .1 .3	.1 .1 .1 .1 .1 <.1	60 59 41 42 86	.35 .36 .38 .47 1.25	.042 .093 .039 .064 .028	3 3 3 2 6	34.4 32.1 35.4 73.9 120.1	.29 .29 .43 .43 .58	103 81 96 74 62	.151 .125 .121 .120 .077	1 1 2 1 1 1 2 1 2 1 2 1	. 70 . 52 . 37 . 47 . 14	036 036 057 056 068	.09 .08 .18 .13 .05	<.1 <.1 <.1 <.1 <.1	.01 .02 .03 .01 .04	3.0 3.0 4.3 3.6 4.3	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 .06	5 5 4 5 3	<.5 <.5 <.5 <.5 1.0
11400N 6450E 11400N 6500E 11400N 6550E 11400N 6600E 11400N 6650E	.2 .4 .5 .5	15.2 51.8 21.5 25.2 20.6	2.9 4.1 4.5 4.5 5.1	40 55 58 55 89	<.1 .1 <.1 .1 .1	18.0 43.1 26.2 32.4 31.0	10.3 17.5 10.9 12.7 8.4	295 1006 355 359 473	2.25 3.40 3.42 3.71 2.40	<.5 4.3 2.2 2.3 3.3	.8 3.5 .5 .6 .4	.8 2.4 .9 2.5 <,5	1.3 1.5 1.1 1.4 1.1	42 129 86 94 58	<.1 .1 <.1 .1 .1	.1 .4 .3 .2 .2	<.1 <.1 .1 .1 .1	51 108 111 124 64	.66 1.73 .63 .71 .53	.030 .070 .037 .047 .192	6 15 5 7 4	48.8 50.4 42.1 48.3 31.9	.54 1.30 .68 .82 .49	66 71 62 77 99	.134 .183 .279 .294 .159	2 1 2 2 2 1 2 2 3 2	.64 .52 .70 .13 .29	.068 .083 .042 .046 .033	.09 .07 .07 .10 .13	< 1 < 1 < 1 < 1 < 1 < 1	.01 .04 .01 .01 .02	5.1 8.8 6.2 6.9 4.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 8 5 6 7	<.5 <.5 <.5 <.5 <.5
11400N 6700E 11400N 6750E 11400N 680DE 11400N 6850E 11400N 6900E	.5 .4 .5 .4	35.5 34.4 27.4 29.6 43.7	4.4 3.4 3.8 4.7 4.1	60 66 63 53 53	.1 <.1 .1 <.1	38.4 40.3 33.7 35.7 46.7	13.5 17.6 12.6 13.0 15.7	427 503 481 457 539	3,46 3,78 3,01 3,75 4,02	2.4 2.2 3.0 2.3 4.9	.6 .6 .7 .8	2.7 .5 .7 <.5 2.2	1.4 1.5 1.4 1.5 1.7	100 95 94 102 153	.1 <.1 <.1 <.1	.2 .1 .2 .2 .2	.1 <.1 .1 .1 <.1	106 105 88 120 125	.83 .69 .99 .84 1.36	.089 .073 .117 .052 .111	9 12 11 14 18	46.0 44.8 37.8 48.3 54.2	.96 1.16 .86 .91 1.35	77 84 70 77 82	.238 .077 .207 .263 .222	2 2 1 2 3 2 2 2 2 3	. 33 . 01 . 15 . 42 . 11	039 026 047 049 073	.12 .09 .18 .12 .11	< 1 < 1 < 1 < 1 < 1 < 1	.02 .01 .02 .01 .02	7.2 8.2 6.8 8.3 11.2	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	7 6 6 7 9	<.5 <.5 <.5 <.5 <.5
1400N 6950E 1400N 7000E 11400N 7050E 11400N 7100E 11400N 7150E	.7 .5 .3 .3	16.8 16.6 37.6 17.7 29.2	3.7 3.3 4.3 3.3 4.5	104 85 90 97 62	.1 <.1 <.1 <.1	14.7 30.8 56.6 31.3 44.6	5.0 11.7 21.5 11.6 15.5	904 763 963 682 360	1.86 3.40 4.19 3.04 3.94	2.4 1.2 4.8 1.7 1.9	.2 .5 .8 .4 .8	<.5 <.5 .9 <.5 1.0	.7 1.2 1.5 .9 1.8	43 45 53 48 86	.1 .1 .1 .1	.1 .1 <.1 <.2	.1 .1 .1 .1 .1	50 89 115 76 106	. 49 . 53 . 83 . 50 . 71	.049 .039 .089 .043 .043	3 7 12 6 22	20.7 36.8 39.2 29.4 50.4	.21 1.20 1.91 1.14 1.14	180 81 103 139 121	.090 .177 .233 .086 .173	5 1 3 2 3 3 2 2 1 3	. 19 . 09 . 02 . 27 . 12	.035 .047 .022 .043 .038	.15 .15 .09 .09 .12	< 1 < 1 < 1 < 1 < 1	.01 .01 .01 .02 .05	3.3 7.4 10.5 6.4 9.6	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	3 7 12 7 8	<.5 <.5 <.5 <.5 <.5
RE 11400N 7150E 1400N 7200E 11400N 7250E 11400N 7350E 11400N 7350E 11400N 7400E	.4 .4 .3 .4	29.4 17.5 23.5 18.3 25.2	4.7 4.1 4.2 4.3 5.2	64 72 68 105 103	.1 <.1 .1 .1	45.2 25.7 31.5 23.8 34.6	15.9 8.5 11.7 8.6 12.7	364 341 565 666 956	3.95 3.03 3.05 2.59 3.28	1.9 1.6 2.3 1.8 2.2	.8 .4 .5 .4 .5	1.6 1.5 .8 .5 11.2	1.8 1.1 1.3 1.0 1.4	88 64 119 58 77	.1 .1 .1 .1	.1 .1 .1 .2	.1 .1 .1 .1	104 80 83 64 78	.71 .55 .69 .54 .70	.050 .043 .066 .083 .069	23 6 9 6 9	51.4 36.5 39.7 36.7 43.3	1.15 .63 .77 .51 .81	126 86 141 161 137	. 170 . 149 . 142 . 126 . 149	2 3 2 1 3 2 2 2 3 2	.16 .97 .18 .07 .48	037 040 045 026 033	.12 .13 .11 .16 .16	<.1 <.1 <.1 <.1 <.1	.02 .02 .02 .02 .03	9.9 6.1 5.8 4.8 7.1	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	8 6 6 7	<.5 <.5 <.5 <.5
1400N 7450E 1400N 7500E 11400N 7550E 11400N 7600E 11400N 7650E	.3 .4 .4 .2	24.5 18.2 20.5 36.3 52.6	3.9 4.1 5.0 4.1 3.9	77 80 95 61 44	.1 <.1 <.1 .1 .1	32.0 31.7 32.7 29.1 32.3	9.8 15.4 14.1 11.7 12.3	377 443 622 580 456	3.12 3.64 3.54 2.80 3.43	2.2 1.4 2.1 3.1 5.0	.5 .5 .5 .5	2.0 <,5 .5 .5 1.9	1.5 1.1 1.3 1.1 1.5	70 35 48 124 152	.1 <.1 .1 .2 .1	.2 .1 .2 .1 .2	.1 .1 .1 .1	75 93 88 61 71	.58 .37 .52 1.12 1.06	.062 .054 .060 .101 .082	9 8 9 15 20	45.0 38.1 45.7 34.0 43.1	.67 1.06 .96 .69 .78	121 126 201 189 156	. 164 . 055 . 112 . 076 . 066	3 2 1 2 1 2 4 2 5 2	.65 .45 .69 .23 .41	.036 .020 .020 .026 .027	.13 .14 .13 .16 .14	<.1 <.1 <.1 <.1 <.1	.01 .01 .02 .02 .03	7,4 5.9 5.7 5.7 7,3	<.1 < <.1 < .1 < <.1 <	<.05 <.05 <.05 <.05 <.05	7 8 8 6 7	<.5 <.5 <.5 <.5 <.5
11400N 7700E 11400N 7750E 11400N 7800E 11400N 7850E 5TANDARD DS6	.3 .4 .2 .4 11.8	31.7 60.0 32.0 34.2 124.5	4.4 4.5 3.4 5.0 29.4	49 46 86 74 145	.1 .1 .1 .3	32.1 33.2 57.7 30.8 25.4	12.7 12.7 18.8 11.9 11.1	526 568 613 748 709	3.08 2.81 3.80 2.95 2.87	3.3 3.8 1.6 2.4 21.1	.4 1.3 .4 .4 6.7	2.9 1.6 41.6 .9 47.7	1.1 .8 .8 1.1 3.2	105 195 34 86 41	.1 .2 .1 .1 6.0	.1 .2 .1 .2 3.6	.1 .1 .1 5.0	63 72 67 67 59	.67 1.65 .50 .74 .87	.062 .065 .105 .093 .078	14 15 18 12 15	38,4 36,7 88,9 42,8 190,1	.78 .89 1.54 .81 .59	125 154 120 141 166	.090 .062 .054 .099 .086	2 1 5 1 1 2 4 1 16 2	.94 .64 .45 .99	022 035 013 022 075	.17 .09 .15 .26 .17	<.1 <.1 <.1 <.1 3.3	.02 .04 .02 .02 .23	5.2 5.1 5.9 5.1 3.3	<.1 <.1 <.1 <.1 1.7	<.05 .06 <.05 <.05 <.05	6 5 9 6 6	<.5 .6 <.5 <.5 4.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____FA

Page 7

Sample#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag ppm	N [.] ppr	i Co n ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	B1 ppm	V ppm	Ca X	р Х	La ppm	Cr ppm	Mg X	8a ppm	Ti X	B ppm	A1 %	Na X	K X	₩ mqq	Hg ppm	Sc ppm	T1 ppm	S X	Ga ppm	Se
11400N 7900E 11400N 7950E RE 11400N 7950E 11400N 8000E 11200N 6000E	.5 .5 .4 .3	49.6 33.5 33.5 36.4 8.9	5.3 5.5 5.5 5.2 4.4	50 51 53 76 85	.1 .1 .1 .1 <.1	26.4 32.0 31.9 30.0 11.9	4 12.8 5 14.2 5 15.0 14.3 9 4.5	679 515 516 762 227	2.83 3.00 3.07 3.24 1.34	2.1 2.3 2.5 3.4 .7	.4 .6 .4 .2	1.9 1.0 8.9 1.4 <.5	1.6 1.4 1.3 1.2 .6	172 83 82 66 41	.2 .1 .1 .2 .1	.2 .2 .2 .2 .1	.1 .1 .1 .1 .1	66 79 79 66 30	1.23 .79 .78 .84 .31	.085 .041 .042 .132 .094	12 12 13 17 2	38.4 43.9 44.4 40.2 16.2	.59 .85 .87 .76 .25	173 111 115 156 98	.146 .168 .165 .118 .097	7 : 2 : 3 : 3 : 2 :	2.06 2.20 2.16 2.27 1.67	.023 .026 .025 .016 .016	.18 .12 .11 .16 .09	.1 .1 .1 .1	.03 .02 .03 .03 .01	6.1 6.5 6.2 5.7 1.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	6 6 6 7 6	<.5 <.5 <.5 <.5 <.5
11200N 6050E 11200N 6100E 11200N 6150E 11200N 6200E 11200N 6250E	,4 .5 .3 .2 .2	15.3 13.7 24.3 18.2 10.2	4.4 4.6 4.1 3.8 2.9	58 34 55 85 32	<.1 .1 <.1 .1 <.1	23.1 14.9 32.1 17.2 15.4	9.0 7.1 10.7 7.5 6.4	278 220 331 386 235	2.58 2.63 2.62 1.86 2.09	1.2 2.0 .8 .8	.3 .3 .5 .8 .3	< 5 .8 < 5 < 5 < 5	.9 .6 2.2 1.3 1.0	74 70 76 78 61	<.1 <.1 .1 .1	.2 .3 .1 <.1	.1 .1 .1 <.1	65 82 56 41 38	.31 .32 .63 .63 .43	.074 .045 .103 .253 .040	3 3 12 5 3	36.6 32.4 39.8 37.1 26.3	.40 .33 .82 .46 .33	175 110 95 145 64	.162 .180 .120 .106 .089	1 2 2 2 2 2 1 1	2.55 1.54 2.07 1.64 1.73	.030 .021 .044 .029 .055	.08 .05 .15 .19 .11	< 1 < 1 .1 < 1 < 1	.02 .02 .02 .02 .02	3.6 3.1 7.3 4.9 3.2	<.1 <.1 <.1 <.1 <.1	< 05 < 05 < 05 < 05 < 05 < 05	7 5 6 5 4	<.5 <.5 <.5 <.5 <.5
11200N 6300E 11200N 6350E 11200N 6400E 11200N 6450E 11200N 6500E	.4 .5 .5 .4	12.4 15.8 11.2 14.0 25.8	4,4 4.1 2.5 4.0 4.0	107 74 51 66 42	.1 <.1 <.1 <.1	18.8 12.7 16.2 18.7 42.2	3 7.2 7 6.2 2 6.1 7 7.7 2 14.2	678 687 333 430 233	2.16 1.97 2.07 2.70 3.07	1.3 1.0 .6 1.9 1.1	.3 .2 .2 .4 1.1	<.5 <.5 <.5 <.5	.9 .8 .7 .8 1.4	52 55 90 68 124	.1 .1 .1 <.1	.2 .1 .3 .1	.1 .1 .1 .1 .1	51 50 63 84 76	.38 .45 .37 .46 .97	.144 .048 .044 .056 .052	3 3 3 4 10	29.2 27.5 28.2 35.4 99.0	.34 .27 .42 .43 1.18	142 128 124 84 90	.121 .126 .107 .209 .134	1 1 1 1 1 1 3 1 2 2	L.72 L.23 L.67 L.51 2.10	.027 .031 .027 .027 .027	.14 .13 .10 .11 .05	< 1 < 1 < 1 < 1 < 1	.03 .02 .01 .01 .01	3.1 3.0 3.3 4.6 6.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 4 5 6	<.5 <.5 <.5 <.5 <.5
11200N 6550E 11200N 6600E 11200N 6650E 11200N 6700E 11200N 6750E	.3 .4 .4 .4	19.5 15.9 28.4 21.6 34.0	4.3 4.2 4.3 5.7 4.4	55 52 55 94 53	.1 .1 .1 .1	18.9 20.6 32.1 26.1 36.9	8.3 8.5 12.7 9.5 15.1	555 290 413 825 622	2.31 2.77 3.30 2.49 3.34	2.3 5.1 3.5 1.8 2.6	1.0 .3 .6 .3 .7	<.5 .9 2.2 <.5 1.9	1.1 .9 1.4 1.1 1.4	64 72 93 84 111	.1 .1 .1 .1	.2 .5 .3 .2 .2	.1 .1 .1 .1	66 79 103 63 103	.68 .46 .70 .80 1.09	.050 .065 .062 .197 .071	6 3 11 4 12	36.3 40.0 44.7 39.4 50.6	.50 .52 .88 .43 1.01	74 87 79 133 77	.163 .133 .215 .145 .206	2 1 1 1 1 2 4 2 3 2	L.57 L.72 2.28 2.28 2.29	.038 .024 .038 .037 .055	.08 .10 .11 .14 .09	< 1 < 1 < 1 < 1 < 1	.02 .02 .02 .03 .04	5.2 4.0 7.7 4.6 8.2	<.1 <.1 <.1 <.1 <.1	< 05 < 05 < 05 < 05 < 05	5 5 7 6	<.5 <.5 <.5 <.5 <.5
11200N 6800E 11200N 6850E 11200N 6900E 11200N 6950E 11200N 7000E	.4 .8 .3 .3	19.7 31.5 13.1 31.6 47.6	4.5 3.7 3.7 4.1 4.2	69 50 55 46 39	.1 .1 .1 .1	25.7 29.9 15.3 33.3 35.5	10.9 9.9 6.1 12.9 12.9	500 3849 299 570 1568	2.80 2.52 2.35 3.11 2.49	2.3 3.1 1.7 3.0 4.1	.5 1.1 .3 .6 2.1	9.7 1.4 1.6 .6 2.5	1.3 1.0 .8 1.5 .8	81 90 59 104 88	.1 .2 .1 .2 .1	.3 .2 .3 .4	.1 .1 .1 .1 <.1	74 100 68 93 97	.58 1.21 .43 1.35 1.93	.096 .043 .048 .091 .070	7 8 3 12 11	46.1 37.3 33.3 41.5 50.6	. 62 . 61 . 38 . 79 . 90	103 106 58 72 81	. 160 . 186 . 181 . 212 . 121	2 1 3 1 2 1 7 2 5 1	1.89 1.65 1.55 2.06 1.77	.032 .049 .030 .042 .052	.16 .06 .12 .15 .05	.1 <.1 <.1 .1 <.1	.02 .02 .02 .03 .05	5.6 5.4 3.8 7.5 6.0	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 5 5 5 5	<.5 .8 <.5 <.5 1.4
11200N 7050E 11200N 7100E 11200N 7150E 11200N 7200E 11200N 7250E	.5 .4 .3 .4 .4	27.7 19.9 23.9 17.5 14.0	4.3 5.2 4.3 4.3 4.0	55 94 71 57 78	<.1 <.1 <.1 <.1 < 1	34.2 45.9 50.9 20.9 15.0	2 13.6 9 19.0 9 19.7 5 13.3 9 6.9	489 964 711 393 580	3.36 3.67 3.66 2.95 2.48	3.0 1.7 3.5 <.5 .6	1.0 .5 .7 .5 .4	2.0 <.5 <.5 <.5 1.0	1.6 1.4 1.6 2.2 1.7	63 47 54 74 40	.1 .1 .1 .1 .1	.2 .1 .1 <.1 .1	.1 .1 .1 <.1 .1	98 91 91 81 75	.79 .44 .74 .63 .42	.079 .100 .066 .045 .034	12 9 13 15 6	38.5 37.3 39.3 24.1 17.9	.84 1.72 1.63 .62 .27	129 173 185 72 107	.116 .089 .169 .221 .146	3 2 3 3 1 2 1 2 1 1	2.32 3.54 2.93 2.10 1.63	.033 .021 .035 .063 .037	.20 .26 .15 .16 .20	<.1 <.1 <.1 <.1 <.1	.03 .02 .03 .02 .02	6.4 6.6 8.7 8.5 5.2	<.1 .1 .1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 10 9 5 4	<.5 <.5 <.5 <.5 <.5
11200N 7300E 11200N 7350E 11200N 7400E 11200N 7450E 5TANDARD DS6	.4 .3 .3 .4 11.7	17.0 13.5 12.6 26.1 122.7	3.7 4.3 4.2 4.4 29.2	69 69 106 83 143	<.1 <.1 <.1 <.1 .3	17.1 22.0 29.2 33.9 25.0	8.5 9 8.7 2 13.4 9 17.6 9 10.7	451 348 404 673 703	2.58 2.60 3.58 3.93 2.84	.8 1.1 <.5 4.4 20.8	.4 .3 .5 .6 6.6	<.5 <.5 <.5 <.5 47.5	1.6 1.1 1.3 1.6 3.0	45 58 34 47 40	.1 <.1 <.1 .1 6.0	.1 .1 .2 3.4	.1 .1 .1 .1 5.0	67 67 90 91 56	.52 .48 .47 .63 .85	.030 .054 .051 .058 .077	9 4 9 15 14	19.9 32.7 32.6 33.8 187.0	.37 .60 .80 1.03 .58	109 90 102 157 163	.067 .150 .014 .008 .081	1 1 2 2 <1 2 1 3 17 1	.81 2.01 2.93 3.00 1.92	.029 .028 .014 .011 .073	.20 .14 .14 .17 .15	<.1 <.1 <.1 <.1 3.5	.01 .01 .01 .02 .23	5.0 4.7 5.7 8.5 3.3	<.1 <.1 .1 <.1 1.7	<.05 <.05 <.05 <.05 <.05 <.05	5 6 9 6	<.5 <.5 <.5 <.5 4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

																										· · · · ·			1997 Barrier (1997 Barrier)			~/ %	*D*****	- 4 APC 1-2	
ACHE ANALYTICAL						Alı	mad	en	Miı	lera	als	Lt	d.	PR	.OJE	ICT	MR	т05	i-2	F	ILE	3 #	A5(048	66		<u> </u>	₽a	age	8			ACHE AN	A L	
SAMPLE#	Mo ppni	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	8a ppm	Ti X	BA1 ppm %	Na X	K X	W mqq	Hg ppm	Sc ppm	۲٦ ppm	S \$	Ga ppm	Se
11200N 7500E 11200N 7550E 11200N 7600E 11200N 7650E 11200N 7700E	.3 .3 .4 .4 .3	13.2 19.9 14.7 47.4 19.4	3.7 4.4 3.3 6.0 4.4	76 78 64 81 56	<.1 <.1 <.1 .1	25.9 38.0 27.8 40.7 34.3	10.2 17.7 11.0 16.1 14.1	397 435 400 1534 567	2.74 4.17 2.90 3.45 3.40	1.3 1.4 1.4 .8 2.5	.2 .5 .3 .5	<.5 1.8 <.5 <.5 <.5	.9 1.1 .7 1.0 1.0	36 26 32 53 65	.1 .1 .3 .1	.1 .1 .1 .1	.1 .1 .1 .1	62 87 66 92 64	40 .45 .34 1.07 .49	.045 .085 .040 .111 .083	4 12 6 20 12	31.7 40.5 35.4 43.0 34.3	.79 1.40 .81 1.02 .98	154 200 178 496 147	.059 .025 .056 .012 .069	1 2.16 1 2.70 1 2.02 1 2.49 2 1.89	.015 .011 .015 .010 .011	.13 .11 .12 .14 .14	<.1 <.1 <.1 <.1 <.1	.02 .02 .01 .05 .01	3.4 4.2 3.9 8.9 3.9	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	6 9 7 8 6	<.5 <.5 <.5 <.5 <.5
11200N 7750E 11200N 7800E 11200N 7850E 11200N 7900E 11200N 7950E	.3 .2 .3 .4 .3	12.1 21.2 24.3 37.8 12.5	4.2 3.4 3.5 4.8 2.9	56 76 94 60 73	<.1 <.1 <.1 .1 <.1	29.3 49.9 32.4 35.0 18.4	12.4 18.3 15.1 15.4 9.2	431 643 793 647 602	3.24 3.74 3.24 3.46 2.22	1.1 .5 1.7 3.9 <.5	.5 .3 .4 .2	<.5 1.3 32.1 1.6 9.1	1.0 .9 1.0 1.2 .7	34 37 46 83 39	.1 .1 .1 .1	.1 .1 .2 .1	.1 .1 .1 .1	59 70 64 85 50	. 36 . 38 . 53 . 83 . 35	.049 .059 .080 .068 .050	7 13 14 14 5	33.5 49.3 36.8 48.6 28.7	1.02 1.40 1.07 1.03 .57	100 129 111 116 114	.059 .013 .059 .111 .071	1 1.85 1 2.44 1 2.22 3 2.37 1 1.64	.010 .012 .016 .030 .016	.09 .14 .20 .15 .18	<.1 <.1 <.1 <.1	.02 .01 .02 .03 .01	3.4 4.8 4.7 6.5 3.2	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 9 7 7 5	<.5 <.5 <.5 <.5 <.5
11200N 8000E 11000N 6000E 11000N 6050E 11000N 6100E 11000N 6150E	.2 .4 .2 .3	13.6 19.9 37.3 14.3 10.8	2.8 4.6 4.7 4.3 5.7	116 51 65 68 93	<_1 1 <_1 <_1	22.3 33.1 44.7 24.6 19.7	9.8 12.7 20.8 7.1 5.9	329 306 606 363 471	2.43 3.15 3.24 2.26 1.87	.7 .8 <.5 1.2 .7	.2 .4 .6 .3 .3	<.5 <.5 <.5 <.5 <.5	.6 1.4 2.5 .8 .8	25 68 114 61 57	.1 .1 .1 .1	.1 .1 .2 .1	.1 .1 .1 .1	61 79 73 52 34	.31 .29 .89 .38 .35	.039 .116 .072 .100 .080	4 3 18 3 3	28.8 48.5 51.1 33.0 23.0	.67 .48 1.97 .39 .28	102 154 135 128 136	.050 .185 .147 .129 .120	1 1.92 1 3.64 1 2.39 1 2.47 1 2.23	020 038 061 024 029	.12 .14 .23 .12 .09	<.1 <.1 <.1 <.1 <.1	.01 .02 .03 .02 .01	3.4 3.9 10.1 3.1 2.7	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 8 6 7 7	<.5 <.5 <.5 <.5 <.5
11000N 6200E 11000N 6250E 11000N 6300E 11000N 6350E 11000N 6400E	.4 .3 .4 .3	14.0 18.3 12.5 8.1 12.9	3.5 3.9 3.4 3.5 3.8	70 64 48 69 45	<.1 <.1 <.1 <.1	16.3 23.5 11.8 8.0 19.1	7.1 9.7 6.6 3.7 7.6	403 545 531 985 332	2.44 2.66 1.98 1.19 2.30	<.5 <.5 <.5 <.5 .6	.3 .4 .2 .3	<.5 .8 1.1 <.5 .8	1.0 1.4 .7 .4 1.1	71 91 62 50 68	<.1 .1 .1 .1	<.1 .1 <.1 <.1 .1	.1 .1 <.1 <.1 .1	50 53 43 26 50	.55 .62 .36 .30 .42	.045 .059 .043 .041 .058	3 6 3 2 4	30.5 40.3 20.1 13.6 30.5	.35 .56 .22 .16 .41	99 124 116 108 103	.112 .140 .102 .079 .132	1 1.86 2 2.60 <1 1.34 <1 1.11 1 2.41	.063 .051 .053 .043 .038	.15 .17 .15 .09 .12	<.1 <.1 <.1 <.1	.01 .02 .01 .01 .01	3.8 5.8 2.5 2.0 3.6	< 1 < 1 < 1 < 1 < 1 < 1	<.05 <.05 <.05 <.05 <.05	5 6 3 3 6	<.5 <.5 <.5 <.5 <.5
11000N 6450E 11000N 6500E 11000N 6550E 11000N 6600E 11000N 6650E	.3 .4 .4 .5	23.2 18.4 18.4 10.8 10.6	3.8 3.7 2.8 4.0 4.2	49 51 59 84 52	<.1 <.1 <.1 <.1	39.4 25.6 27.6 11.2 11.9	12.9 10.3 10.4 4.1 4.8	324 339 596 392 369	3.46 2.92 2.98 1.60 1.71	1.5 1.3 <.5 .5 .6	.9 .4 .3 .2 .2	.7 <.5 <.5 .6 2.0	2.1 1.3 1.4 .6 .8	116 101 79 46 57	.1 .1 .1 .1	.1 .2 .1 .1	<.1 <.1 .1 .1 .1	95 77 77 35 36	.72 .55 .57 .29 .36	.083 .041 .034 .093 .046	18 6 9 3 4	53.7 45.5 50.4 21.8 21.7	1.17 .67 .65 .22 .27	105 117 137 88 106	.141 .138 .112 .107 .115	1 2.47 <1 2.18 2 1.81 1 1.54 1 1.67	.065 .057 .048 .035 .042	.16 .08 .21 .08 .10	<.1 <.1 <.1 .1 <.1	.03 .01 .02 .02 .02	8.7 5.5 5.2 2.3 2.7	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 5 5 4	<.5 <.5 <.5 <.5 <.5
11000N 6700E 11000N 6750E 11000N 6800E 11000N 6850E 11000N 6900E	.3 .5 .6 .3 .4	15.2 11.4 9.6 14.1 15.0	3.4 4.1 3.7 3.3 4.2	39 110 51 53 69	<.1 <.1 <.1 <.1	19.5 13.7 10.4 16.2 21.7	6.6 4.9 5.6 6.6 7.9	247 301 322 252 342	2.63 1.94 1.72 2.30 2.75	<.5 1.1 .9 .9 1.9	.3 .3 .2 .3 .3	.6 21.8 <.5 <.5 1.1	.8 .7 .5 .9 1.0	84 49 38 47 55	.1 .1 .1 .1	.1 .2 .6 .4	.1 .1 .1 .1 .1	68 57 47 67 76	.44 .35 .33 .35 .44	.030 .051 .040 .034 .032	3 3 2 3 4	41.8 27.1 24.4 33.5 37.7	.39 .32 .29 .34 .53	88 77 77 97 83	.176 .174 .129 .170 .201	<1 2.06 2 1.49 3 1.24 <1 1.42 2 1.88	. 059 . 032 . 036 . 044 . 040	.09 .10 .08 .11 .12	<.1 <.1 <.1 <.1 <.1	.02 .05 .01 .01 .02	4.0 3.0 2.2 3.3 4.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 5 4 6	<.5 <.5 <.5 <.5 <.5
RE 11000N 6900E 11000N 6950E 11000N 7000E 11000N 7050E 5100N 7050E STANDARD DS6	.3 .3 .5 .4 11.9	15.4 8.5 17.9 17.7 125.4	4.2 3.6 4.8 4.0 29.5	68 73 64 53 146	<.1 <.1 <.1 <.1 .3	22.4 11.6 23.7 21.9 25.5	8.0 4.1 9.0 9.8 11.0	349 245 502 397 710	2.77 1.73 2.79 2.74 2.86	1.9 .8 1.8 1.6 21.0	.3 .2 .4 .4 6.7	<.5 .6 1.2 2.1 52.8	1.0 .5 1.1 1.1 3.1	55 35 76 67 40	<.1 .1 .1 6.0	.3 .2 .3 .2 3.6	.1 .1 .1 .1 4.9	77 48 86 84 58	.45 .28 .52 .51 .87	.032 .029 .045 .041 .078	4 2 6 6 14	38.2 22.8 38.9 33.7 189.2	.55 .25 .53 .55 .59	83 67 106 107 166	.203 .159 .213 .212 .082	1 1.95 1 1.38 1 1.98 2 1.64 18 1.96	.043 .035 .042 .031 .074	.13 .06 .10 .12 .17	<.1 <.1 <.1 <.1 3.4	.01 .01 .02 .02 .23	4.8 2.5 4.9 5.7 3.4	<.1 <.1 <.1 <.1 1.8	<.05 <.05 <.05 <.05 <.05 <.05	5 4 5 6	<.5 <.5 <.5 <.5 4.5

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data L FA

																														-				ANK ANK ANK
ACHE ANALYTICAL						Al	mađ	en	Miı	nera	als	Lt	d.	PF	ROJI	ECT	MR	.T05	5-2	F	ILE	s #	A5(048	66			Pa	зge	9		-	ACHE AN	A
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppri	Co ppm	Min ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppn	Cd ppn	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg \$	Ba ppm	Ti X	BA1 ppm \$	Na X	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S X	Ga Se ppm ppm
11000N 7100E 11000N 7150E 11000N 7200E 11000N 7250E 11000N 730DE	.6 .5 .4 .3	19.3 16.8 17.1 27.5 17.1	3.7 4.6 3.6 3.5 4.2	70 64 72 89 61	<.1 <.1 <.1 <.1	27.6 22.1 20.2 28.9 18.4	10.3 9.6 8.0 10.8 8.6	411 661 410 542 429	3.06 2.87 2.56 2.97 2.71	1.7 1.9 1.3 3.2 1.7	.5 .3 .4 .4 .4	1.2 <.5 <.5 2.2	1.4 1.2 1.4 1.5 1.3	42 52 47 90 55	<.1 <.1 <.1 .1	.3 .3 .1 .2 .2	.1 .1 .1 .1 .1	72 75 66 75 78	.41 .40 .49 .83 .49	.035 .043 .033 .072 .031	8 4 8 11 7	29.7 31.0 31.9 36.9 33.6	.56 .43 .40 .72 .44	164 120 124 140 102	.073 .117 .093 .121 .141	2 1.78 2 1.53 2 1.86 4 2.04 1 1.51	.025 .027 .033 .040 .025	.17 .15 .14 .20 .13	<.1 <.1 <.1 <.1 <.1	.02 .03 .28 .13 .05	5.3 4.0 5.5 6.8 5.1	.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 <.5 5 <.5 5 <.5 6 <.5 5 <.5
11000N 735DE 11000N 7400E 11000N 7450E RE 11000N 7450E 11000N 7500E	.6 .4 .5 .5	15.7 9.5 32.0 31.3 11.9	5.1 3.6 3.5 3.2 3.4	96 83 54 54 83	<.1 <.1 .1 .1 <.1	20.3 14.2 28.5 28.2 15.8	9.8 4.9 14.6 14.0 5.6	821 480 514 489 588	2.55 1.75 3.93 3.85 2.16	2.0 1.7 3.1 3.0 1.4	.3 .2 .5 .2	<.5 <.5 <.5 <.5 3.9	1.2 7 2.2 2.1 6	58 44 71 67 51	.1 .1 <.1 <.1 .1	.1 .1 .1 .2	.1 .1 .1 .1	64 40 70 69 66	.52 .42 .70 .70 .39	.032 .044 .075 .074 .019	6 4 18 18 3	27.6 21.3 21.2 20.9 27.9	.49 .35 .50 .49 .32	107 85 104 102 88	.099 .092 .005 .005 .147	2 1.62 2 1.43 <1 2.62 <1 2.56 2 1.24	.033 .020 .014 .014 .031	.26 .12 .18 .17 .14	< 1 < 1 < 1 < 1 < 1 < 1	.03 .02 .03 .02 .02	4.3 3.2 7.7 7.4 3.4	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 4 <.5 7 <.5 6 <.5 4 <.5
11000N 7550E 11000N 7600E 11000N 7650E 11000N 7700E 11000N 7750E	.4 .2 .3 .3	19.7 13.8 21.2 20.4 16.3	4.4 3.5 4.3 4.0 2.8	83 71 98 66 84	<.1 <.1 <.1 <.1	27.8 29.1 34.2 32.9 30.0	10.6 12.6 16.6 16.7 13.8	541 408 690 522 396	3.11 3.18 3.47 3.54 3.23	1.4 1.4 .9 1.6 .7	.5 .3 .4 .3 .4	<.5 .8 <.5 .7 2.5	1.5 .9 1.3 1.1 1.0	67 44 33 33 30	.1 <.1 <.1 <.1 <.1	.3 .1 .1 .1	.1 .1 .1 .1	86 76 64 69 71	.47 .47 .51 .46 .45	.037 .034 .054 .040 .043	10 7 16 15 10	44.7 41.3 49.6 39.0 43.2	.60 1.01 1.29 1.21 1.13	130 162 210 208 200	.167 .031 .009 .006 .025	2 1.96 1 2.27 1 2.85 1 2.61 1 2.41	.037 .017 .014 .011 .013	.22 .19 .17 .19 .15	<.1 <.1 <.1 <.1 <.1	.01 .02 .02 .02 .02	6.5 5.2 4.6 3.8 4.3	.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 <.5 7 <.5 9 <.5 8 <.5 8 <.5
11000N 7800E 11000N 7850E 11000N 7900E 11000N 7950E 11000N 8000E	.3 .4 .3 .4 .5	28.9 30.2 18.5 16.4 19.5	3.3 3.7 3.5 4.6 4.7	122 70 98 96 64	.1 <.1 <.1 <.1	30.7 32.7 32.9 22.8 23.9	14.8 14.8 17.8 9.2 10.0	829 587 576 684 405	3.24 3.54 3.54 2.60 2.84	1.2 2.5 .8 1.1 1.5	.4 .5 .3 .4	2,2 18.1 4.6 3.5 1.5	1.0 1.0 .9 1.1 1.3	52 56 25 52 55	.2 .1 .1 .1	.1 .1 .2 .1 .2	.1 .1 <.1 .1 .1	64 76 82 73 82	.77 .69 .38 .45 .49	.139 .079 .077 .031 .034	16 16 9 7 9	40.7 44.8 34.2 40.4 45.9	.85 .97 1.18 .51 .56	322 161 167 132 86	.025 .037 .012 .200 .238	2 2.00 1 2.53 1 2.49 1 2.01 1 1.89	.012 .014 .014 .025 .034	.28 .18 .30 .15 .16	<.1 <.1 <.1 <.1 <.1	.02 .02 .02 .02 .02	4.8 5.5 6.0 4.7 5.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	7 <.5 8 <.5 8 <.5 6 <.5 6 <.5
10800N 6000E 10800N 6050E 10800N 6100E 10800N 6150E 10800N 6200E	.4 .5 .2 .6	10.4 11.8 57.7 29.5 10.8	4.3 4.9 3.4 3.3 2.1	47 98 84 60 68	<.1 <.1 <.1 .1 <.1	14.6 21.7 77.9 46.8 17.1	5.5 6.6 30.1 18.3 6.5	214 708 861 479 335	1.71 1.83 2.96 3.17 2.31	.8 1.3 .6 1.7 .5	.2 .2 .7 .7 .2	.8 1.3 <.5 3.9 <.5	.5 .8 1.6 2.1 .7	46 37 465 1048 84	<.1 <,1 .1 .1 <.1	.1 .1 .2 <.1	.1 .1 <.1 .1 <.1	40 44 92 55 74	.26 .25 .99 1.28 .36	.084 .108 .056 .051 .045	2 2 11 18 3	24.1 25.5 51.6 52.8 42.1	.23 .28 2.62 1.68 .34	96 117 275 385 66	.114 .132 .124 .197 .092	1 1.87 1 2.06 1 2.94 1 3.16 1 1.68	.022 .023 .034 .062 .040	.08 .11 .35 .24 .08	<.1 <.1 <.1 <.1	.02 .01 .02 .03 .02	2.0 2.6 11.0 10.8 3.3	<.1 <.1 <.1 .1 <.1	<.05 <.05 <.05 <.05 <.05	5 <.5 6 <.5 9 <.5 7 <.5 4 <.5
10800N 6250E 10800N 6300E 10800N 6350E 10800N 6400E 10800N 6450E	.3 .4 .3 .4	8.9 22.2 18.0 48.1 19.7	3.4 3.7 4.8 3.7 4.5	45 55 74 58 55	<.1 <.1 .1 .1 <.1	10.7 25.2 24.6 54.3 25.8	4.4 9.4 9.5 20.1 9.8	214 336 397 727 259	1.79 2.90 2.71 3.79 3.14	.8 1.0 1.4 3.2 2.4	.2 .4 .5 .7 .4	5.9 1.2 1.3 4.6 .6	.5 1.4 1.2 2.1 .9	61 70 68 134 114	<.1 .1 <.1 <.1	.2 .1 .2 .2 .4	.1 .1 .1 <.1 .1	49 69 74 95 100	.28 .49 .48 1.05 .57	. 021 . 084 . 094 . 089 . 089 . 059	2 6 4 18 4	24.0 39.9 34.5 60.9 40.6	.24 .64 .53 1.65 .57	79 81 114 117 110	.150 .149 .202 .151 .242	1 1.24 1 2.12 2 2.01 2 2.71 1 2.24	.032 .040 .043 .062 .038	.09 .14 .12 .13 .09	.1 <.1 <.1 <.1 <.1	.01 .02 .01 .04 .02	2.4 6.3 4.4 11.6 5.1	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 <.5 6 <.5 6 <.5 8 <.5 6 <.5
10800N 6500E 10800N 6550E 10800N 6600E 10800N 6650E STANDARD DS6	.6 .6 .7 .5 11.7	35.0 31.4 37.1 14.0 124.3	3.9 6.8 4.1 3.4 29.5	53 58 65 65 144	<.1 <.1 <.1 <.1	49.5 35.7 38.6 11.8 25.1	18.5 14.8 14.7 5.1 10.9	2147 1006 1130 431 709	3.68 3.01 2.96 1.75 2.85	5.5 4.8 2.4 1.0 21.0	.7 1.1 .7 .3 6.6	3.7 1.4 <.5 .5 46.9	1.9 1.1 1.2 .7 3.1	117 103 82 51 40	<.1 .1 .2 .1 6.1	.2 .1 .1 3.6	.1 .1 .1 .1 5.0	102 83 72 48 57	1.06 1.41 .94 .41 .87	.089 .106 .052 .036 .078	15 11 13 3 14	62.0 45.6 44.9 24.5 189.0	1.33 .85 .79 .26 .59	114 103 102 103 165	.172 .118 .135 .139 .080	2 2.51 6 1.92 3 2.08 2 1.10 18 1.94	.072 .042 .040 .034 .074	.09 .17 .12 .15 .15	.1 <.1 <.1 <.1 3.4	.06 .04 .03 .02 .23	10.1 6.4 7.4 2.8 3.3	<.1 <.1 <.1 <.1 <.1 1.8	<.05 <.05 <.05 <.05 <.05	7 <.5 5 <.5 6 <.5 3 <.5 6 4.7

Sample type: SOIL SS80_60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

ŤŤ		A
		4.
	_	
		iin -

Page 10

ACHE ANALYTICA

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppni	Ag ppm	N i ppr	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca ¥	P X	La ppm	Ćr ppm	Mg X	Ba ppm	Ti X	B ppm	Al X	Na X	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S *	Ga ppm	Se
10800N 6700E 10800N 6750E 10800N 6800E 10800N 6850E 10800N 6850E 10800N 6900E	.3 .2 .5 .6	12.3 30.8 27.5 25.2 13.5	3.5 3.5 4.1 4.0 3.5	61 61 89 58 73	<.1 .1 .1 .1 <.1	13.2 38.3 32.4 23.7 12.3	2 5.0 12.2 12.4 10.8 5.2	355 429 651 697 721	1.82 3.02 3.11 2.69 1.86	.5 <.5 5.0 3.4 1.7	.2 .9 .5 .2	<.5 1.3 1.5 1.1 1.9	.8 2.5 1.5 1.1 .6	58 251 95 64 49	<.1 .1 <.1 .1	.1 <.1 .4 .3 .2	.1 <.1 .1 .1 .1	51 63 78 70 54	. 32 . 76 . 78 . 63 . 37	.019 .044 .091 .092 .066	3 18 10 8 3	31.5 48.4 51.8 39.9 27.0	.23 1.06 .84 .56 .26	126 178 125 117 113	.145 .122 .126 .141 .138	1 1 3 2 3 2 2 1 2 1	1.13 2.32 2.26 1.97 1.21	.036 .050 .029 .036 .030	.13 .40 .19 .14 .12	<.1 <.1 <.1 <.1	.01 .02 .03 .03 .02	2.6 10.4 7.0 5.2 2.7	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	3 6 6 4	<.5 <.5 <.5 <.5
10800N 7000E 10800N 7100E 10800N 7150E 10800N 7200E 10800N 7250E	.4 .3 .4 .3	14.8 12.6 14.4 13.3 18.2	3.8 3.8 4.0 3.9 3.6	66 71 50 79 80	<.1 <.1 <.1 <.1	17.6 14.5 17.9 15.5 18.5	57.0 5.3 7.0 5.7 5.7 58.7	349 427 339 348 443	2.45 2.13 2.37 2.18 2.82	1.9 1.7 1.4 1.4 1.0	.3 .3 .3 .3 .3	1.3 .7 4.0 1.8 .8	1.0 .8 .9 1.0 1.0	56 57 56 52 68	.1 <.1 .1 .1 .1	.3 .2 .2 .2 .1	.1 .1 .1 .1	71 60 65 61 84	.41 .42 .46 .42 .55	.038 .027 .030 .043 .036	4 3 4 5	34.2 30.9 35.4 33.1 40.3	.41 .33 .42 .34 .50	84 88 79 89 90	. 160 . 146 . 167 . 163 . 152	1 1 2 1 1 1 2 1 1 1	L.51 L.46 L.46 L.39 L.67	.033 .039 .037 .034 .054	.11 .15 .15 .17 .14	<.1 <.1 <.1 <.1 <.1	.01 .02 .02 .02 .02	4,2 3,5 4,2 3,6 5,9	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 4 4 5	<.5 <.5 <.5 <.5 <.5
10800N 7300E 10800N 7350E 10800N 7400E 10800N 7450E 10800N 7450E	.3 .4 .3 .4 .4	57.6 25.1 27.7 23.5 23.0	3.7 3.9 4.7 4.6 4.2	45 65 62 58	.1 <.1 <.1 <.1 <.1	34.9 32.4 32.4 28.5 31.8	14.4 12.1 13.2 11.1 12.2	656 601 704 626 432	3.33 3.33 3.34 3.15 3.40	1.9 4.7 2.5 3.7 2.4	.5 .5 .5 .4	1.0 .5 1.4 1.3 <.5	1.4 1.4 1.6 1.4 1.5	112 94 86 102 67	.1 .1 .1 .1	.2 .4 .2 .4 .2	.1 .1 .1 .1	89 1 88 95 83 86	. 66 . 67 . 71 . 62	.024 .080 .057 .066 .055	16 10 13 10 10	44.1 45.6 46.7 44.5 41.9	.94 .82 .73 .70 .76	131 106 112 108 86	.134 .117 .141 .121 .110	5 2 1 1 1 2 2 1 <1 2	2,43 1,88 2,10 1,93 2,31	.074 .045 .043 .034 .032	.12 .23 .18 .20 .16	<.1 <.1 <.1 <.1 <.1	.04 .03 .02 .03 .03	8.0 6.8 7.6 6.5 7.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 6 6 7	<.5 <.5 <.5 <.5
10800N 7550E 10800N 7600E 10800N 7600E 10800N 7650E 10800N 7700E 10800N 7750E	.3 .5 .4 .2	16.7 19.7 16.7 22.4 14.4	3.9 4.4 4.1 4.5 3.0	64 72 87 89 58	<.1 <.1 <.1 <.1 <.1	22.6 30.8 27.2 32.7 23.9	6 8.8 14.8 9.9 13.4 10.4	419 671 491 642 244	2.76 3.42 2.77 3.41 2.81	1.3 2.4 1.4 1.9 .6	.4 .4 .5 .3	<.5 .8 .7 .8 .7	1.1 1.2 1.2 1.3 .9	67 49 49 60 30	.1 .1 <.1 <.1 <.1	.2 .1 .1 .2 .1	.1 .1 .1 .1 <.1	76 85 71 92 66	. 50 . 48 . 43 . 47 . 34	.033 .030 .045 .044 .034	9 13 6 11 6	38.0 46.0 41.5 50.8 39.0	.52 .98 .67 .96 .85	88 157 135 230 193	.147 .033 .119 .077 .037	1 1 <1 2 <1 2 1 2 1 2	l.61 2.58 2.49 2.71 2.05	.042 .018 .026 .023 .015	.19 .30 .15 .16 .22	<.1 <.1 <.1 <.1 <.1	. 02 . 01 . 02 . 02 . 01	5.5 6.1 5.4 6.2 4.6	<.1 .1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 8 7 8 7	<.5 <.5 <.5 <.5 <.5
10800N 7800E 10800N 7850E 10800N 7900E 10800N 7950E 10800N 7950E 10800N 8000E	.3 .3 .3 .3	28.8 28.3 16.2 19.7 21.4	4.2 4.8 4.0 4.0 3.9	75 64 55 76 74	.1 <.1 <.1 <.1	32.6 29.5 19.7 25.1 27.8	13.5 13.6 7.4 11.9 13.3	502 257 292 405 358	3.31 3.53 2.56 2.98 3.11	1.3 1.2 .9 1.3 1.3	.6 .5 .4 .5	<.5 .8 <.5 <.5 .6	1.3 1.3 1.2 1.0 1.0	50 41 53 40 35	.1 <.1 <.1 <.1 <.1	.3 .2 .2 .2 .1	.1 .1 .1 .1	85 88 78 81 74	.55 .48 .42 .52 .49	.052 .039 .027 .039 .039 .043	15 14 6 12 14	48.2 34.7 42.0 35.5 34.3	1.03 .90 .46 .81 .98	180 227 88 130 143	.063 .036 .184 .177 .110	1 2 1 2 1 1 <1 2 1 2	2.53 2.37 1.53 2.12 2.23	.019 .017 .028 .019 .019	.15 .13 .14 .19 .22	<.1 <.1 <.1 <.1 <.1	.02 .02 .01 .01 .01	5.8 6.0 4.5 5.3 5.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	7 7 4 7 7	<.5 <.5 <.5 <.5 <.5
10600N 6000E 10600N 6050E 10600N 6100E 10600N 6150E RE 10600N 6150E	.4 .2 .5 .5	12.0 9.3 19.1 18.5 17.6	4.9 3.6 4.8 4.7 4.7	44 35 52 66 67	<.1 <.1 <.1 .1	15.9 11.6 22.7 22.1 21.7	7.5 3.1 7.8 8.1 7.9	306 236 263 459 459	2.38 1.18 2.40 2.49 2.42	.5 <.5 1.3 2.2 2.0	.3 .3 .4 .3 .3	<.5 <.5 <.7 4.0	.7 .7 1.1 .8 .9	74 49 71 75 75	<.1 .1 <.1 .1 <.1	.1 .1 .3 .3	<.1 .1 .1 .1	61 31 65 73 71	.30 .31 .39 .45 .45	.032 .014 .062 .066 .064	2 7 4 4 4	34.3 18.6 34.8 33.7 32.7	.31 .23 .46 .48 .46	140 71 113 109 110	. 161 . 091 . 152 . 155 . 151	<1 2 <1 1 1 2 <1 1 1 1	2.03 1.40 2.21 1.77 1.80	.039 .040 .027 .026 .031	.08 .05 .10 .12 .12	<.1 <.1 <.1 <.1 <.1	.02 .02 .02 .01 .02	2.6 3.0 3.8 3.7 3.5	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	5 3 6 5 5	<.5 <.5 <.5 <.5 <.5
10600N 6200E 10600N 6250E 10600N 6300E 10600N 6350E 5TANDARD DS6	.4 .3 .4 .5 11.7	14.8 38.2 36.7 17.6 123.8	5.0 3.7 4.2 5.0 29.4	65 53 58 52 144	.1 .1 .1 .3	20.6 44.6 37.1 26.4 24.9	8.5 16.0 15.0 9.9 10.9	374 423 512 321 706	2.47 3.66 3.44 3.34 2.86	2.1 1.7 3.1 1.4 20.9	.3 .8 .5 6.6	1,9 4,2 1.8 .6 50.8	.9 2.2 1.6 1.0 3.1	59 138 118 72 40	<.1 .1 <.1 <.1 6.0	.2 .2 .3 .3 3.4	.1 <.1 .1 .1 5.0	69 92 100 108 57	.40 .72 .78 .52 .86	.086 .060 .072 .039 .078	3 23 12 5 14	32.7 60.6 49.7 41.6 188.5	.43 1.40 1.13 .62 .59	116 153 112 93 165	.176 .120 .177 .291 .082	1 2 1 3 1 2 2 1 18 1	2.03 3.02 2.56 1.83 1.95	.029 .053 .047 .029 .075	.15 .13 .14 .07 .16	<.1 <.1 <.1 <.1 3.3	.01 .05 .03 .02 .23	3.5 11.9 8.6 5.7 3.3	<.1 <.1 <.1 <.1 1.7	<.05 <.05 <.05 <.05 <.05 <.05	6 8 7 5 6	<.5 <.5 <.5 <.5 4.3

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

44
ACHE ANALYTICAL

ACHE ANALYTICAL kampi F# Sb Min Fe As U Au Th Sr Cd Bí V Ca Ρ La Cr Ma Ba Ti В A1 SC T1 Mo Cu Pb Zn Ag Ni Co Na ĸ W Ho Ga S Se ppm opm ppm D DATI ррт ppm ppm ppm ppm \$ ppm ppm ppb ppm ррт ppm ppm DOM 2 8 ppm ppm 2 ppm 2 ppm Ż 2 X ppm ppm DDM DDM X DOM DOM 10600N 6400E .2 .42 .050 . 39 82 .178 1 1.58 .019 .10 <.1 .5 12.0 5.4 94 .1 18.6 6.8 703 2.21 1.0 .3 <.5 .7 40 .2 .1 63 3 26.4 .01 3.6 <.1 <.05 5 <.5 10600N 6450E .4 11.0 3.5 48 <.1 12.1 5.6 349 1.92 .7 .2 .8 .6 52 .1 .1 .1 56 .40 .032 3 26.8 .28 71 .161 1 1.06 .032 .13 <.1 .01 3.1 < .1 < .053 <.5 10600N 6500E .1 24.6 12.6 977 2.23 2.3 1.3 .1 62 1.23 .025 .52 79.146 4 1.40 .038 .07 <.1 .3 20.7 4.5 36 1.0 .4 86 .1 .1 9 33.2 .03 4.8 <.1 <.05 4 <.5 .6 1.4 60 1.36 .048 1:0600N 6550E .4 33.3 4.4 64 .1 34.7 13.8 1954 2.68 1.3 -8 90 .1 .1 .1 16 45.8 .82 106 .122 4 1.78 .045 .12 <.1 .04 7.5 <.1 <.05 5 <.5 10600N 6600E 42 <.1 11.5 5.6 202 2.07 .7 .4 <.5 .8 81 .1 .1 .1 62 .54 .022 4 27.0 .32 72 .193 1 1.19 .040 .10 <.1 .01 4.0 <.1 <.05 .3 11.8 3.5 3 <.5 10600N 6650E .1 20.1 8.2 280 2.53 1.4 .6 2.2 1.2 94 .1 .2 <.1 71 .59 .088 5 34.6 .54 87 .190 1 1.75 .045 .10 <.1 .03 5.9 <.1 <.05 5 <.5 .3 18.0 4.0 65 10600N 6700E <.5 1.5 51 .56 .035 34.9 .80 132 .112 1 1.88 .034 .26 <.1 .02 .3 17.2 3.4 .1 21.2 9.4 411 2.61 <.5 .5 .1 <.1 <.1 7 6.1 <.1 <.05 5 <.5 55 136 .2 .2 76 1.27 .059 .67 89.126 10600N 6750E .3 41.9 3.7 82 .1 35.9 13.0 765 2.76 2.2 .9 <.5 1.4 91 .1 14 39.2 4 1.73 .036 .16 <.1 .02 6.9 <.1 <.05 5 <.5 10600N 6800E .6 39.0 4.0 64 .1 35.3 13.8 774 2.79 6.1 .8 .7 .8 82 .2 .3 .1 78 1.14 .085 12 41.4 .71 91 .092 4 1.90 .027 .21 <.1 .03 6.3 <.1 <.05 5 <.5 10600N 6850E .6 29.2 4.9 57 .1 26.2 11.8 705 2.57 5.6 .4 .9 81 .2 .5 .1 70 1.05 .073 9 38.1 .58 114 .100 5 1.54 .024 .19 .03 5.1 <.1 <.05 <.5 .1 5 <.5 RE 10600N 6850E 71 1.06 .075 37.7 .59 109 .101 5 1.60 .024 .19 <.1 .03 4.8 <.1 <.05 30.0 4.7 .1 27.4 11.8 717 2.60 5.7 .5 1.4 1.0 82 .5 9 5 <.5 .7 57 .1 .1 35.0 2 1.64 .028 10600N 6900E .4 19.9 4.7 81 .1 20.1 8.7 692 2.48 2.1 .3 1.6 1.0 81 .1 .3 .1 64 .68 .052 6 .48 165 .138 .16 <.1 .02 4.9 <.1 <.05 5 <.5 10600N 6950E .6 20.1 4.0 74 .1 21.1 8.3 651 2.23 3.2 .4 21.7 1.0 57 .1 .2 .1 51 .59 .116 6 33.4 .46 127 .104 2 1.79 .020 .17 <.1 .02 4.2 <.1 <.05 5 <.5 10600N 7000E .1 19.6 7.6 495 2.73 3.1 .3 24.0 1.0 59 .1 .3 .1 73 .45 .065 4 37.4 .48 109 .149 2 1.91 .026 .14 <.1 .02 4.8 <.1 <.05 5 <.5 .4 16.1 3.8 85 .1 10600N 7050E .1 27.4 10.7 683 2.73 2.9 .5 <.5 1.4 75 .2 .1 70 .93 .068 9 40.4 .60 112 142 4 1.89 .030 .22 <.1 .03 6.0 <.1 <.05 .5 27.6 4.0 54 5 <.5 10600N 7100E .6 23.2 4.3 46 .1 22.3 10.5 695 2.59 3.2 .5 <.5 .9 72 .1 .2 .1 68 1.05 .061 7 37.4 .54 86 .131 6 1.63 .030 .18 <.1 .03 5.2 <.1 <.05 5 <.5 3 1.82 .030 10600N 7150E 35.8 4.3 89 .1 29.1 13.2 691 2.78 3.1 .3 16.0 1.0 70 .3 .3 .1 71 .87 .066 7 39.8 .58 94 .133 .11 <.1 .05 5.8 <.1 <.05 5 <.5 .4 .1 25.5 10.0 534 2.63 2.5 10600N 7200E **25.4 4.**1 62 .4 <.5 1.4 59 .1 .3 .1 67 .56 .134 7 36.6 .52 126 .132 4 1.79 .026 .17 <.1 .02 5.3 <.1 <.05 5 <.5 .4 10600N 7250E .6 21.2 3.7 75 .1 21.6 8.6 626 2.21 2.9 .3 <.5 1.0 58 .2 .3 .1 56 .65 .087 6 34.3 .50 100 .110 4 1.58 .025 .19 <.1 .03 4.9 <.1 <.05 4 <.5 10600N 7300E .5 17.4 3.7 .1 18.3 6.5 555 1.88 2.3 .3 <.5 .7 51 .1 .1 .1 42 .52 .102 4 24.4 .37 142 .098 3 1.63 .020 .16 <.1 .02 3.3 <.1 <.05 90 5 <.5 10600N 7350E .2 68 1.07 .055 14 35.7 .68 105 .105 4 2.12 .032 .16 <.1 .03 7.8 <.1 <.05 .1 31.9 13.1 643 2.80 3.2 .6 <.5 1.7 78 .1 .1 6 <.5 .6 35.3 4.0 48 .1 26.3 11.0 524 2.72 2.3 .2 34.1 .59 111 .117 4 1.79 .029 .21 <.1 .02 5.6 <.1 <.05 10600N 7400E 24.9 4.1 .4 <.5 1.1 75 .1 .1 68 .80 .085 8 5 <.5 .5 46 .2 68 10 38.0 .72 129 .123 4 1.90 .031 .26 <.1 .02 6.9 <.1 <.05 6 <.5 10600N 7450E .5 30.5 3.9 61 <.1 30.0 12.4 642 2.81 1.8 .4 <.5 1.3 76 .1 .1 .73 .086 .2 66 7 40.0 1.03 107 .122 3 1.95 .032 .15 <.1 .02 8.2 <.1 <.05 10600N 7500E .1 45.2 15.4 679 2.82 1.9 .3 <.5 1.1 72 .1 .1 .70.054 6 <.5 .5 28.8 3.4 62 6 1.65 .049 .1 .2 .1 .08 <.1 .04 5.7 <.1 <.05 10600N 7550E .3 92.9 3.4 .2 31.8 10.1 438 2.30 2.4 .5 <.5 .9 112 54 1.43 .041 17 29.3 .73 97 .082 4 .5 28 .09 <.1 .08 6.4 <.1 <.05 5 <.5 10600N 7600E .1 27.5 12.2 657 2.57 2.7 .6 <.5 1.2 100 75 1.37 .045 13 27.3 .71 98 .087 4 1.92 .038 .3 39.0 5.3 48 .1 .2 .1 <.5 1.5 .2 96 .77 .054 12 40.8 1.00 105 .127 2 2.51 .044 .15 <.1 .05 8.5 <.1 <.05 7 <.5 10600N 7650E .3 39.0 4.2 70 .1 35.8 14.3 539 3.35 3.2 .5 82 .1 .1 .2 76 .67 .051 9 36.4 .72 89 .102 3 1.79 .034 .18 <.1 .03 7.0 <.1 <.05 10600N 7700E 24.4 3.1 56 <.1 28.6 11.2 502 2.94 2.4 .4 <.5 1.4 81 .1 .1 5 <.5 .4 .1 34.5 13.0 374 3.12 1.9 .2 85 .70 .041 .88 122 .134 3 2.37 .044 .11 <.1 .02 7.3 <.1 <.05 6 <.5 10600N 7750E 59 .4 <.5 1.6 117 .1 .1 11 38.6 .2 33.5 4.0 10600N 7800E .3 18.3 3.9 53 <.1 18.7 8.1 357 2.64 1.5 .3 5.6 1.2 68 <.1 .2 .1 64 .49 .097 6 33.8 .43 114 .130 4 1.69 .032 .19 <.1 .02 5.5 <.1 <.05 5 <.5 90 .50 .042 11 44.2 2 1.85 .031 .26 <.1 5 <.5 10600N 7850E .4 23.2 3.7 76 <.1 29.2 10.4 419 3.18 2.5 .5 5.1 1.5 69 <.1 .3 .1 .68 96 .140 .03 7.4 <.1 <.05 98 .46 .043 9 45.9 .65 80 .151 2 1.83 .029 .17 <.1 .01 7.1 <.1 <.05 6 <.5 10600N 7900E .4 21.6 4.1 54 < 1 26.8 10.9 291 3.33 2.5 .5 <.5 1.5 70 .1 .4 .1 68 <.1 24.5 9.8 373 2.88 1.1 .5 2.3 1.3 63 <.1 .2 88 .49 .030 9 42.4 .59 88.194 1 1.76 .034 .15 <.1 .02 6.5 <.1 <.05 5 <.5 10600N 7950E .3 21.2 4.3 .1 10600N 8000E 66 <.1 30.2 11.0 473 3.04 2.1 .5 <.5 1.4 75 .1 .2 .1 87 .57 .040 10 45.0 .71 80.183 1 1.78 .029 .19 <.1 .04 7.3 <.1 <.05 5 <.5 .5 22.9 3.7 40 6.0 3.6 4.9 56 .85 .078 13 187.2 .58 163 .080 17 1.93 .073 .15 3.6 .23 3.3 1.8 <.05 STANDARD DS6 11.7 122.0 29.2 143 .3 25.2 10.8 704 2.86 20.9 6.5 47.1 3.1 6 4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA

THE REPORT OF A DESCRIPTION OF A DESCRIP

A	× A
4	
	▖▙
ACHE /	ANALYTICAL

Page 12

and the second secon

																																				ال
SAMPLE#	Мо	Cu	Pb	Zπ	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	٧	Ca	P	La	Сг	Mg	Ba	Ťi	В	A1	Na	K	W	Hg	Sc	TÌ	S	Ga	Se
	ppm	ppm	ppm	ppm	ppm	ppn	ppm	ррт	*	ppm	ppm	ppb	ppm	ррт	ррля	ppm	ppm	ppm	*	*	ppm	ppm	X	ppm	*	ppm	8	1		ppm	ppm	ppm	ррт	2	ррт	ppm
10400N 6000F	.4	10.4	42	52	< 1	14.2	5.8	427	2.04	9	.3	2.2	.6	53	.1	2	.1	57	.29	.036	2	27.3	.31	117	.147	1 1	63	.018	.09	< 1	.01	2.3	<.1	< 05	5	< 5
10400N 6050F	4	15.8	45	71	ī	21 6	74	513	2 09	ġ	3	6	10	52	1	1	1	48	31	066	3	28.6	30	157	126	<1 2	41	020	12	< 1	02	27	< 1	< 05	Ē	< 5
10400N 6100E		21 0	1.3	46	1	25.3	05	227	2 90	29	.0	7 6	1 1	87	1		.,	RA	4	068	Ĕ	38 1	61	137	168	1 2	25	024	18	< 1	.02	A 6	< 1	< 05	6	2.21
10400N 6150E	5	07	1 0	53	1	16.0	6.2	233	2 04	1 3	2	10	6	30	1		1	52	26	102	2	25 3	30	102	137	11	95	016	07	< 1	01	25	< 1	< 05	Ä	2.5
10400N 6200E		14.0	4.5	70	. 1	10.9	7 6	279	2.04	1 0	. С.	6.0	.0	67	1		1	70	. 20	071	2	20.0	12	105	105	1 1		010	.v/	~ 1	01	2.5	~ 1	< 05	6	23
	.4	14.0	4,3	79	`. 1	19.9	7.5	210	2.33	1.9	.4	0.0	.0	07	. 1	.0	.1	19	.40	.0/1	0	34.4	.40	100	.155	11		,013	.05	~.I	.01	0.0	~.1	<.00	U	`. э
10400N 6250E	.5	14.3	4.7	70	.1	17.4	6.7	456	2.27	1.3	.3	2.6	.7	58	.1	.2	.1	66	.37	.060	3	27.4	.36	123	. 181	1 3	. 85	.020	.09	.1	. 02	3.0	<.1	<.05	5	<.5
10400N 6300E	.5	18.6	4.5	63	.1	19.5	8.3	736	2.51	1.4	.3	<.5	.9	79	.1	.2	.1	76	.52	.055	5	35.8	.46	100	.179	2 1	.91	.031	.11	< 1	.01	4.3	<.1	< 05	5	<.5
10400N 6350F	.5	17.2	3.3	65	<1	16.6	6.9	559	2.20	1.1	3	< 5	1.0	72	.1	.1	.1	61	.58	100	4	31.7	35	116	155	31	.32	030	.14	<.1	.02	4.1	<.1	< 05	4	< 5
10400N 6400F	4	33.0	4.3	75	ĩ	28.6	13.6	1067	2 73	1.5	9	5	1.5	87	2	1	1	70	1 06	073	10	54.3	62	152	150	6 1	.72	047	16	< 1	.02	6.6	<.1	< 05	5	< 5
10400N 6450F	2	33.2	4 4	76	1	31 9	15.3	1038	2 60	1 7	12	< 5	16	76	2	1	1	78	1 17	025	11	51 4	76	108	164	4 1	93	047	06	< 1	02	6.5	< 1	< 05	5	< 5
	. 5	00.2	7.7		.1	01.5	10.0	1000	2.00	±.,/			1.0		. 4	• •	. 4	70	4.41	. 020	41	91.4		100	. 104	ч. -		. 047	- 00	•••	. OE	0.0	-	1.00		·
10400N 6500E	.3	12.5	4.2	58	.1	15.5	5.4	293	2.09	.9	.3	.7	.9	54	.1	.1	.1	59	.43	.047	3	27.8	. 30	86	. 169	3 1	. 33	. 026	. 12	<.1	. 02	3.1	<.1	< 05	4	<.5
10400N 6550E	.5	32.2	4.7	63	.1	31.9	13.1	508	3.23	2.1	.8	2.1	1.6	101	.1	.2	.1	89	.76	.052	11	50.7	.77	105	. 191	2 2	2.10	.043	. 15	< 1	.03	7.9	<.1	<.05	6	<.5
10400N 6600E	.5	33.8	4.8	58	.1	28.4	11.4	623	2.79	2.1	.7	.9	1.4	120	.1	.2	.1	79	1.13	.073	11	42.7	.63	155	. 157	5 1	.92	.038	.12	<.1	.03	6.4	<.1	< 05	5	<.5
10400N 6650E	.4	18.9	5.6	76	.1	21.0	8.4	839	2.45	2.2	.4	2.0	.9	85	.1	.2	.1	69	.73	.114	5	34.2	.44	136	. 156	3 3	.88	.029	.10	<.1	.04	4.2	<.1	< 05	6	<.5
10400N 6700E	.4	19. 0	4.5	47	.1	19.7	8.7	538	2.43	2.1	.5	<.5	1.0	89	.1	.2	.1	72	. 67	.068	6	35.4	. 45	106	. 144	3 1	.61	. 032	. 10	<.1	.01	4.1	<.1	< .05	5	<.5
10400N 6750F	r	21.2		50	1	24.2		66 A	2 64	1 0	F	2 6		00	1	•	1	70	60	102	7	26 7	E 4	117	141	2 1	en	020	12	1	0.0		~ 1	~ 0E	c	~ =
10400N 0730E	. D	21.3	4.4	20	.1	24.3	9.9	334	2.04	1.9	.3	3.5	1.1	100	.1	.4	.1	70	1 51	.100	22	30.1	.04	117	110	<u> </u>	03	.029	-12	.1	.02	4.4	~ .1	< 00	- D	<u>``?</u>]
10400N 0000E	.2	99.5	3.5	40	1.	44.7	10.1	440	2.03	2.1	1.0	1.1	1.0	140	.2	.2	· L	/3	1.01	.05/	23	37.0	.01	140	101	21		.030	.00	2.1	.04	0.3	.1	S.UD	5	:말
10400M 0850E	.2	35.1	4.2	08	Ţ.	27.8	10.8	450	2.52	1.2	د.	< 5	1.0	142	. ა	1.	. 1	52	1.13	.243	0	35.2	.48	210	.121		. 10	.028	.10	<. <u>1</u>	.02	5.1	<.I	<.UD	0	<- 2
LU4UON 6900E	.2	130.9	3.5	41	.2	54.6	10.8	300	2.33	1.7		1.0	1.1	128	.3	- 2	.1	61	1.55	.057	23	37.3	.79	138	.100	61	./4	.062	.07	<.1	.05	0.2	. 1	<.05	4	-8
10400N 6950E	.3	28.6	3.7	52	<.1	26.7	10.0	431	2.35	1.3	.4	.6	1.2	100	1.	.1	.1	51	. 95	. 189	8	32.0	. 56	128	.0/1	31	97	.026	.11	<.1	.02	4.6	<.1	<.05	5	<.5
0400N 7000F	3	13.1	4 T	68	1	13.9	59	412	1.94	.6	.2	1.2	.7	54	.1	<.1	.1	46	.36	.082	3	29.6	.29	96	. 121	2 1	. 66	.030	. 09	< 1	.01	2.4	<.1	< .05	5	<.5
10400N 7050E	4	32.6	3 9	37	1	28.4	11 9	415	2 83	18	5	< 5	11	107	1	ĩ	1	79	.97	079	Ř	41 6	62	110	126	4 1	.82	039	.08	< 1	04	5.3	< 1	< .05	5	< 5
10400N 7300E	3	38.4	4 4	50	1	28.8	11 6	549	2 62	1.8	5	1 0	12	103	2	1	1	67	96	070	Ř	37 5	71	120	122	4 1	85	041	14	< 1	03	5.5	< 1	< 05	5	< 5
16400N 7156E	.0	32 4	4 1	57	.1	25.0	12.0	505	3 20	3.3	5	1 7	1 5	03	1	- 2		Őn.	80	088	13	47 8	QQ.	110	132	22	14	031	15	< 1	05	77	< 1	< 05	ĕ	< 5
10400N 7200E	. 7	7/ 0	4.1	65	.1	20 6	11 0	003	2 /0	2.0	.5	1.7 6	1.5	121	.1	.2	1	76	1 /10	055	23	30.2	72	130	.102 .002	61	an	034	10	< 1	.00 na	5 7	< 1	< 05	š	<u> </u>
10400N 7200E	.0	/4.0	4.2	05	.1	29.3	11.0	000	6.43	2.0	. 9	.0	1.4	101		- 4	.1	70	1.43	.000	20	00.E	.12	100	.052	0.3		. 004	.00	1	.04	0.7	1	~.00	5	
10400N 7250E	.4	36.0	3.9	63	.1	33.7	13.4	894	2.83	3.6	.5	2.5	1.2	120	.Z	.3	.1	66	1.25	.205	10	40.9	.73	211	.111	4 2	2.26	. 025	. 18	<.1	,03	6.2	<.1	<.05	6	<.5
10400N 7300E	.4	23.0	3.4	60	.1	31.3	11.0	447	2.86	3.0	.4	<.5	1.1	91	.1	.3	.1	74	.74	.108	6	36.4	.72	119	.158	4 2	2.31	.029	.16	<.1	.01	5.9	<.1	<.05	6	<.5
RE 10400N 7300E	.4	23.0	3.6	57	.1	30.6	5 11.0	445	2.80	3.5	.4	1.2	1.0	88	.1	.3	.1	73	.74	.109	6	36.3	.70	119	. 162	4 3	2.34	.030	.16	<.1	.02	5.9	<.1	<.05	6	<.5
10400N 7350F	.3	122.7	3.8	34	2	43.1	12.2	546	2.81	6.6	1.0	3.5	1.3	141	.1	.4	.1	83	1.41	.047	27	43.2	.80	164	.117	4 2	2.10	.039	.07	<.1	.07	7.0	<.1	<.05	6	1.1
10400N 7400E	.3	31.5	3.4	32	.1	36.0	14.0	1671	2.77	9,6	.4	.6	1.2	232	.2	.2	.1	97	2,11	.060	13	34.5	.83	360	.092	8 1	.65	.036	.11	<.1	.03	5.9	<.1	<.05	4	.9
									_						_	_	_	<i></i> -			_		•	<i></i>		_				_			-		_	_
L0400N 7450E	.3	17.0	4.1	80	.1	20.8	8.9	453	2.68	2.4	.4	<.5	1.1	73	.1	.2	.1	69	.52	.055	4	35.5	.52	91	.173	2 1	77	.033	-13	<.1	.01	4.8	<.1	<.05	5	<.5
L0400N 7500E	.4	24.8	4.2	72	.1	30.7	11.5	453	3.12	4.2	.5	2.1	1.5	86	.1	.4	.1	80	.62	.066	8	44.3	.75	108	. 155	3 2	.22	. 032	.19	<.1	.04	7.1	<.1	<.05	6	<.5
10400N 7550E	.4	9.7	4.0	58	<.1	13.0	4.6	235	1.81	1.2	.2	.6	.6	35	<.1	.2	.1	43	. 32	.030	2	25,0	.31	65	.129	11	42	. 026	. 11	<.1	.01	2.7	<.1	<.05	4	<.5
10400N 7600E	.3	12.5	3.8	48	<.1	17.2	6.1	203	2.04	1,6	.3	.5	.8	58	.1	.2	.1	51	. 34	.033	3	30.3	.46	79	.131	11	54	. 022	.09	<.1	.01	3.3	<.1	<.05	5	<.5
Standard DS5	11.5	121.7	29.2	141	.3	24.7	10.8	690	2.81	20.9	6.5	47.8	3.0	40	6.0	3.6	4.9	56	.84	.077	13	186.3	.57	161	.078	18 1	90	.072	. 14	3.4	.23	3.2	1.8	<.05	6	4.6
					-																															

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data A FA

ÅÅ
LL
ACHE ANALYTICA

Page 13

																																	_	AUTE AN		· //
SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	บ	Au	Th	Sr	Cd	Sb	B1	۷	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Hg	Sc	τì	S	Ga	Se
	ppm	ppm	ppm	ppm	ppra	ррп	1 ppm	ppm		_ppm	ppm	ppp	ppm	ppm	ppm	ppm	ppm	ppm	ž	2	ppm	ppm	ž	ppm	ž.	ppm	*	X.	X	ррт	ppm	ppm	ppm	z	ppm	ppm
10400N 7650E	.4 1	10.5	4.2	61 57	<.1	15.3	6.3	369 690	1.91	1.4	.2	1.2	.9	45	.1	.1	.1	48 65	.28	.033	3	25.6	.43	83	.111	<11	.37	.020	.10	<.1	.01	2.8	<.1	<.05	4	<.5
10400N 7750E		16 1	1.9	92	e 1	20.5	12.2	679	2.00	1 /	- 2	×.5 5	4.C R	47	- 1	1	1	67	27	.002	10	33.0 33.4	.00.	114	100	1 2	. 73	025	.17	~ 1	.03	3.7	×.1 ·	~ 05	5	<.5
10400N 7800F		17 8	3.5	67	< 1	21 3	10.7	325	2 61	1 2	.0	< 5	. O	50	< 1	1	1	65	.0/	054	5	30.2	.00	114	162	12	.U/ EA	020	.07	~.1	.02	4.0	~1	~.UJ ~ nc	4	5.5
10400N 7850F		19.6	15	70	21	24 0	10.7	160	3 06	1 7	.0	J 6	1.2	60	1		1	01	.40	042	5	JU.Z	.13	100	120	1 2	.04	025	.0/	>.1	.01	5,3 E A	×.1 ×	05		<.5
	. 4	10.5	7.5	16	~.1	24.0	10.4	4 09	0.00	1.7	.4	.0	1.6	03	. 4	. 2	. 1	31	. 52	. 042	5	40.7	.00	105	. 100	~1 2	. 02	.025	.11	~.1	.02	5.4	<.1 ·	4.UQ	6	<.5
10400N 7900E	.5	19.3	4.3	99	.1	24.1	9.4	647	2.71	1.9	. 4	.5	1.3	73	.1	.1	.1	69	.67	.070	8	38.8	.66	97	.114	22	.28	. 026	.17	.1	.03	6.3	<.1 -	<.05	6	< 5
10400N 7950E	.3	27.8	3.2	24	.1	21.1	9.0	583	2.24	2.0	.2	8.2	1.1	125	.1	.2	.1	51	4.80	043	10	28.2	43	68	075	81	.72	027	14	<1	04	5.4	< 1.	< 05	š	
10400N 8000E	.3	26.0	4.2	57	<.1	28.5	12.8	261	3.46	2.2	.5	2.7	1.3	69	.1	.4	1	100	61	037	10	54 6	1 02	75	210	12	B 1	030	11	< 1	04	8.0	< 1	< 05	Ř	2.5
10200N 6000E	.3	13.1	5.1	65	< 1	17.5	7.7	417	2.43	.9	.3	3.8	g	54	1	2	1	66	30	051	3	32.4	.30	124	167	<11	83	024	08	< 1	01	28	< 1	< 05	5	2.5
10200N 6050E	.4	17.2	4.8	76	<.1	23.8	9.0	352	2.59	1.3	.3	1.6	1.1	50	1	2	1	70	32	070	3	34.9	44	130	157	<1 2	34	017	11	< 1	01	3.2	< 1	< 85	6	2.6
							•••									-					•			200		• •				•		0.6	••			
10200N 6100E	.5	11.3	4.2	52	<.1	15.7	6.4	444	2.21	1.1	.3	.6	.7	55	<.1	.2	.1	66	.29	. 029	3	27.9	. 32	125	. 162	<11	. 64	. 021	. 07	<.1	.01	2.7	<.1 •	<.05	5	<.5
10200N 6150E	.5	16.2	4.9	94	.1	28.9	8.9	378	2.57	2.0	.4	<.5	1.3	47	.1	.2	.1	63	. 32	. 181	3	32.4	.44	183	. 130	12	.73	. 019	.12	.1	.01	3.5	<.1 ·	<.05	8	<.5
10200N 6200E	.6	15.0	5.0	76	.1	17.1	7.6	764	2.17	1.6	.2	<.5	.8	47	.2	.1	.1	58	. 32	.145	3	28.2	. 29	113	.137	11	. 69 .	. 024	.09	<.1	.02	2.7	<.1 ·	<.05	5	<.5
10200N 6250E	.4	7.8	3.1	64	<.1	8.7	3.7	331	1.57	.8	.2	1.2	.6	40	<.1	.1	.1	48	. 27	.029	2	20.6	. 19	78	.129	1	. 99 .	. 026	. 08	<.1	.01	2.0	<.1 ·	<.05	3	<.5
10200N 6300E	.4	8.1	3.1	76	<.1	9.7	3.9	321	1.66	.7	.2	<.5	.5	37	.1	.1	.1	48	.26	.034	2	21.5	. 19	75	. 130	11	. 08 .	.023	.08	.1	.01	2.1	<.1 ·	<.05	3	<.5
10200N 6350F	4	14 4	35	57	< 1	14 6	6.2	418	2 15	1 0	2	я	R	61	1	2	1	63	46	035	3	28 Q	31	96	146	21	22	020	14	æ 1	02	2 1	- 1 .	~ 05		~ =
10200N 6400E	.5	11.9	4.0	76	1	13.0	5.3	386	1.86		.4	< 5		39	< 1	1	i	52	.32	042	3	23.9	27	qq	132	11	30	034	. 14	< 1	02	2.6	< 1.	< 05	Å	2.21
10200N 6450F	2	38.5	3.8	47	i.	32 0	12 6	634	2 64	13	้ด่	< 5	1 6	103	.1	1	1	71	1 10	050	13	A5 A	60	283	137	11	72	046	17	< 1	07	6 1	< 1.	< 05	Ē	<u>`.</u>]
10200N 6500F	.3	46.9	4.3	28	2	49 5	14 6	449	2 47	1 7	6	< 5	11	161	2	2	1	63	60	057	27	34 4	.00	174	.107	22	20	040		< 1	.05	6.3	e 1 .	< 05	, E	13.2
10200N 6550F	5	10.5	5.8	49	< 1	15 3	5.3	289	1 71	< 5			7	49	1	< 1	1	30	29	048	2	27 3	18	120	127	<11	. 20 . 77	026	11	21	.03	20	21.	< 05	6	221
			0.0			10.0	0.0	205		••							••	•••			-	27.0		100				. 020			.01	2.0	-	UQ	5	·
10200N 6600E	_4	15.2	4.9	49	.1	20.9	8.2	288	2.49	1.4	.4	<.5	.9	59	<.1	.2	.1	73	.38	.077	4	34.2	.47	135	.169	<11	. 94	025	.07	<.1	.02	3.8	<.1 <	<.05	5	<.5
10200N 6650E	.4	18.4	5.8	78	.1	27.6	9.2	503	2.53	1.3	.4	1.3	1.1	60	.1	.2	.1	62	.43	.108	4	40.1	.44	193	.141	12	. 97 .	023	.11	<.1	.02	4.0	<.1 •	<.05	7	<.5
RE 10200N 6550E	.4	11.4	5.7	52	<.1	17.1	5.3	289	1.76	<.5	.2	.7	.7	51	.1	<.1	.1	41	.31	.049	2	28.4	.19	133	.138	11	. 93	028	.11	<.1	.01	2.3	<.1 •	<.05	5	<.5
10200N 6700E	.4	14.8	3.9	68	<.1	23.0	7.8	370	2.64	1.2	.4	.8	1.1	51	.1	.1	.1	62	. 39	. 044	4	42.1	. 55	135	.139	12	.14 .	025	.13	<.1	.01	4.5	.1 •	<.05	6	<.5
10200N 6750E	.5	21.5	4.6	52	.1	44.5	16.5	854	3.32	.7	.6	1.4	1.3	71	.1	.1	.1	68	.76	. 052	10	61.1]	.11	191	.073	12	.10 .	029	.13	<.1	.02	7.5	<.1 •	<.05	6	<.5
100000 00000	-										•			~ ~			_				_									-						
10200N 6800E	.5	22.1	4.9	/9	.1	21.9	8.8	753	2.39	1.0	.3	1.4	1.0	61	.1	.1	.1	57	.55	.037	7	36.5	.50	150	.116	21	.54 .	.032	.09	<.1	.02	4.5	<.1 •	<.05	4	<.5
10200N 6850E	.5	33.1	4./	63	1.	34.1	13.7	/3/	3.19	8.1	1.0	1.2	1.5	92 66	.2	1.	.1	81	.86	.073	12	41.5	./4	173	. 151	32	.29 .	039	.13	<.1	.03	1.2	<.1 •	.05	6	<.5
TUZUUN 6900E	.6	29.3	4.2	44	<.1	18.2	12.9	695	2.91	9	.4	<.5	.9	66	.1	.1	<.1	85	.58	.031	5	26.4	.79	70	.200	21	.83.	.059	.13	<.1	.01	6.3	<.1 •	<.05	5	<.5
10200N 6950E	.4	24.8	4.6	52	1.	24.0	11.9	615	2.90	1.4	.4	.5	1.1	83	1.	1.	1.	82	.6/	.068	/	38.7	. 66	116	.155	31	.99 .	039	. 16	<.1	.02	5.4	<.1 •	<.05	5	<.5
10200N 7000E	.3	55.8	4.6	53	.1	36.9	14.4	//6	3.24	1.1	.5	.b	1.7	101	.2	.2	.1	81	. 95	. 024	18	45.8	.77	158	. 128	52	.17.	.047	.08	<.1	.02	8.1	<.1 <	<.05	6	.5
10200N 7050E	.4	10.3	5.9	48	.1	17.7	5.0	187	1.66	.8	.2	<.5	.7	48	.1	<.1	.1	35	.35	. 150	2	22.4	.27	135	118	1 2	14	024	14	< 1	01	2.1	< 1 •	< 05	8	< 5
10200N 7100E	4	18.2	4.6	114	1	28.4	8.4	292	2.73	.8	.3	.5	1.0	74	.1	1	- î	58	50	237	3	38.5	57	163	123	12	96	032	17	< 1	01	41	< 1 <	< 05	ă	< 6
10200N 7150E	1	9.6	3.4	0 1	< 1	10.9	4.1	341	1.54	<.5	.2	<.5	.5	35	1	< 1	.1	33	25	111	ž	22.9	21	105	093	11	33	0.27	10	< 1	01	21	< 1 4	< 05	ă	< 5
10200N 7200E	5	9.0	4.0	104	1	10.9	5.4	681	1.54	<.5	2	< 5	.5	39	2	< 1	ī	34	29	066	2	22 1	22	94	104	21	.31	025	11	< 1	02	1 9	< 1 <	< 05	4	< 5
STANDARD DS6	11.8	126.0	29.2	145	3	25.6	11.0	715	2.89	21.3	6.6	46.9	3.1	41	6.1	3.6	5.0	57	.87	080	14	190.3	59	167	083	17 1	98	075	17	3 4	23	3.4	184	< 05	6	4 9
	44.9	*=0.0		140		20.0	**.*				0.0					5.0					17 ·			101		11 1				<u></u>		<u></u>	T.U.			7.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

Ä		
		Ľ
ACHE	ANAL	YTICAL

Page 14

ALTE ANALTITUAL																																		ALME AN	ALYTICAL	. II
SAMPLE#	Мо	Cu	Pb	Žn pom	Ag	Ni	Co	Mn	Fe	As	U nom	Au	Th	Sr	bC Mag	Sb	B1 DDm	V	Ca	P X	La	Cr	Mg	8a DDM	Ti X	B	A1 X	Na %	K	₩ mon	Hg	Sc	T] DOM	S ¥	Ga	Se
						15.0														050										, 1			- 1			
10200N 7250E	.3	15.3	3.5	68		15.8	5 6.3	315	2.38	.5	.3	, D	1.3	12	.1	<.1	1.	53	.41	.050	4	38.7	.33	87	.155	21	.51	.038	.12	<.1	.01	4.2	<.1 ·	<.05	4	<.5
10200N 7300E	.4	12.3	3.5	39	<.1 <1	10.0	5.5	240	2.13	1.0	. ა	~.p	1.0	24	.1	- 1	.1	24 66	.00	0/1	0	A1 2	. 34	00	159	2 1	JO 	029	12	~ 1	.01	3.3	· · · · · ·	<.U5	4	<u></u>
LUZUUN 733UC	.4	22.0	4.3	60	∼.⊥ 1	19.7	0.9	390	2.00	1.0	.0	.0 5	1.0	90	.1	1	, <u>1</u> 1	00	.00	051	11	91.2	.00	167	.100	× 1	14.	020	- 12	21	.UI D2	4.0	21	<.UD	4	5.5
10200N 7450E	.3	16.9	3.8	73	<.1	43.5 30.4	10.2	503	3.01	3.1	.4	.7	1.5	72	<.1	.6	.1	78	.51	.025	9	59.4	.78	72	.157	$\frac{1}{1}$. 84	.033	.10	< 1	.01	6.8	<.1	<.05	6	<.5
RF 10200N 7250F	4	14.8	35	68	1	16 7	6.6	321	2 42	.6	.3	.7	1.3	74	:1	.1	.1	64	.41	.053	4	39.1	.33	86	.158	11	.56	.041	.13	<.1	.02	4.1	<.1	< 05	4	< 5
10200N 7500E	.4	10.7	3.8	48	< 1	13.8	5.8	295	2.11	1.6	.2	2.0	.7	50	<.1	.3	.1	57	.33	.039	2	26.1	.35	70	.155	21	.29	021	.11	<.1	.01	3.1	<.1	< 05	4	< 5
10200N 7550E	.3	12.7	4.7	56	<.1	19.2	7.0	230	2.55	1.6	.3	.7	11	60	.1	.3	.1	67	.39	.025	3	31.3	43	70	.201	11	.74	.029	.06	< 1	.01	4.3	<.1	< .05	5	<.51
10200N 7600E	.5	19.3	5.6	91	< 1	20.8	8.4	441	2.97	2.3	.3	5	1.3	68	.2	.2	.1	79	.48	.061	5	36.6	47	85	.183	21	.94	034	.11	<.1	.02	5.4	<.1	< 05	5	< 5
10200N 7650E	.4	17.2	4.0	70	<.1	24.3	9.7	417	2.79	3.5	.3	1.6	1.2	77	.1	.4	.1	75	.47	.044	4	40.5	.64	79	.172	21	.78	.027	.14	<,1	.02	5.3	<.1	<.05	5	<.5
10200N 7700E	.5	13.2	4.3	44	<.1	17.5	9.6	272	2.82	1.4	.3	<.5	1.0	81	<.1	.2	.1	76	. 35	.029	4	34.4	.55	70	.145	11	.52	.034	.10	<.1	.01	4.4	<.1	<.05	5	<.5
10200N 7750E	.5	21.4	5.9	106	<.1	27.5	5 12.8	1183	3.21	1.9	.4	,6	1.3	76	.1	.2	.1	94	.55	.061	9	45.2	. 59	170	.150	12	. 31	.026	.19	<.1	.02	6,1	<.1	<.05	6	<.5
10200N 7800E	.5	37.4	4.0	59	<.1	27.3	3 12.8	375	3.65	2.7	.6	< 5	1.7	84	.1	.2	.1	94	.59	.075	12	57.5	.74	111	.128	22	. 93	.023	.16	<,1	.03	8.6	<.1	<.05	8	<.5
10200N 7850E	.5	30.7	3.6	88	<,1	27.0	16.3	802	3.87	1.8	.5	.5	1.0	74	.1	.8	.1	106	.78	.078	12	57.5	1.06	107	. 101	22	. 95	.033	.12	<.1	.03	8.5	<.1	< 05	9	<.5
10200N 7900E	.3	13.7	3.9	87	<.1	19.3	10.5	406	2.90	1.4	.3	.7	.7	46	.1	.2	.1	78	.54	.035	3	36.8	.94	58	.216	22	.40	.031	.12	<.1	.01	4.9	<.1	<.05	7	<.5
10200N 7950E	.6	14.3	4.6	91	<.1	16.4	8.0	547	2.41	1.2	.3	.6	.9	46	.1	.2	.1	64	.43	.034	3	28.5	.50	96	. 183	11	. 78	.026	.10	<.1	.05	4.7	<.1	<.05	5	<.5
10200N 8000E	.2	23.9	4.0	159	.1	31.6	5 15.5	496	3.42	2.5	.4		.8	82	.1	.2	.1	97	.79	.070	7	65.5	1.32	92	.247	34	. 08	.024	.09	<.1	.01	8.2	<.1	<.05	13	<.5
10000N 6000E	.3	9.4	3.3	52	<.1	11.3	4.7	268	1.74	.7	.2	30.4	.6	46	.1	.1	.1	50	.28	.036	2	22.6	.26	87	.143	11	.21	.026	.06	<.I	.01	2.3	<.1	<.05	4	<.5
10000N 6050E	.6	15.7	3.8	60	<.1	19.6	8.2	370	2.82	.9	.3	.5	.9	/1	<.1	.2	.1	95	.37	.028	3	44.7	.39	- 96	.236	11	.51	.038	.08	<.1	.01	4.0	<.1	<.05	4	<.5
10000N 6100F	.5	10.7	4.3	73	<.1	14.7	5.9	512	1.94	-6	.2	1./	.7	43	.1	.1	.1	54	.27	.043	2	28.0	.27	101	.168	11	.61	.023	.09	<.1	.01	2.4	<'T .	<.05	4	<.5
10000N 6150E	.4	12.9	4.0	60	<.1	14.9	6.6	357	2.35	.8	.3	7.4	.8	67	.1	.1	.1	66	.33	.034	3	29.9	.34	120	.178	11	.43	.026	.09	<,1	.01	3.0	<.1	<.05	4	<.5
10000N 6200E	.4	10.5	3.3	85	<.1	12.7	4.8	393	1,80	.5	.2	2.7	./	- 34	<.1	.1	.1	48	.26	.033	z	25.9	.25	104	.14/	11	. 34	.025	.11	< 1	.01	2.8	<.1	<.05	4	<u></u>
LOODON 6250E	.3	14.6	3.9	65	.1	18.9	6.5	289	2.17	1.0	.3	<.5	.9	51	1.	.1	-	61	. 35	.094	3	29.4	.31	12E	. 164	11	.79	.025	.14	<.1	. UI	3.1	<.1	< 05	5	<.5
LOODON 6300F	.3	10.8	3.3	62	<.1	11.7	4.8	238	1.91	.5	.2	<.5	.0	45	<.1	.1	1.	55	.28	.029	2	25.8	.23	99	.159	11	.33	.029	.09	<,1	.01	2.5	<.1 ·	<.05	4	5.5
10000N 6350E	.4	14.0	4.0	52	<.i	19.0	1 7.6	369	2.51	.8	.3	1.0	1.0	58	- 1	- 1	.1	69	.37	.030	5	30.3	.48	96	. 156	11	. 32	.023	.12	<.1	.02	3.8	<.1	<.05	4	<.5
10000N 6400E	.4	9.4	4.4	52	<.1	14.5	5.6	352	1.98	.6	. 3	<.5	.7	43	<.1	.1	.1	55	.28	.030	3	25.7	.32	118	.162	11	.78	.020	.07	<.1	.01	2.9	<.1	<.05	5	<.5
10000N 6450E	.4	12.9	5.6	52	<.1	19.4	7.2	357	2.45	1.0	.3	5.8	1.0	57	.1	.2	.1	67	.33	.039	4	34.9	.40	117	.196	<1 2	.49	.020	- 05	<,1	.02	3.4	<.1	< 05	6	<.5
10000N 6500E	.5	12.4	2.8	85	<,1	33.2	13.2	1014	2.99	<.5	.2	.5	1.0	49	.1	.1	.1	77	.36	.041	4	51.0	.44	121	.193	11	.43	.034	.10	<.1	.02	5.4	<.1	<.05	4	<.5
10000N 6550E	.4	13.2	6.0	59	<.1	14.9	10.4	377	2.73	<.5	.5	1.0	1.3	57	<.1	<.1	.1	67	.41	.038	4	37.0	. 62	59	.172	<11	. 97	.040	.10	<.1	.01	4.7	<.1	<.05	5	<.5
10000N 6600E	.3	14.6	5.1	45	<.1	17.8	6.9	242	2.40	.9	.3	1.5	1.1	66	.1	.2	.1	68	.34	.031	3	36.6	. 35	131	. 187	11	. 80	.034	.10	<.1	.01	3.7	<.1	<.05	5	<.5
10000N 6650E	.4	14.6	4.0	55	<.1	17.1	6,8	414	2.37	1.1	.3	3.4	.8	54	.1	.2	.1	76	. 38	.030	3	32.9	. 35	143	.198	<1 1	.46	.027	.07	<.1	.01	3.7	<.1	<.05	4	<.5
LOODON 670DE	.4	15.6	3.9	64	<.1	17.2	7.3	339	2.46	1.1	.3	.7	1.0	50	.1	.2	.1	78	.35	.040	3	33.3	.40	111	.195	11	.53	.029	.09	<.1	.01	4.1	<.1	<.05	4	<.5
10000N 6750E	.4	12.2	3.9	67	<.1	14.3	6.1	500	2.09	.8	. 3	1.9	.7	47	.1	.1	.1	68	.33	. 026	3	27.4	.34	113	.168	11	. Z2	.025	.07	<.1	.02	3.2	<.1	<.05	4	<.5
10000N 6800E	.4	9.8	3.8	47	<.1	10.5	5.2	357	1.78	.5	.2	2.0	.7	35	.1	.1	.1	53	.25	.025	2	23.8	.22	99	.148	1	.98	.022	.07	<.1	.01	2.5	<.1	<.05	3	<.5
STANDARD DS6	11.7	124.1	29.3	144	.3	25.4	10.8	707	2.84	21.0	6.6	47.9	3.1		6.0	3.5	5.0	56	.85	.078	13	186.8	.58	165	.078	16 1	. 91	.073	.14	3.5	.23	3.3	1.8	<.05	6	4.7

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data & FA

and the second second

5

ACHE ANALYTICAL						Al	mad	.en	Mi	nera	als	: Lt	d.	PF	20J]	ECT	MF	RT05	5-2	T	TLE	S #	A5	048	66			₽	age	15	5		ACHE AN		
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	eA ppm	Ni ppr	Co ppm	Min ppm	Fe X	As pprn	ย ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B/	NI Na 8 2	a K	₩ ppm	Hg ppm	Sc ppm	T1 ppm	s *	Ga ppm	Se. ppm
10000N 6850E 10000N 6900E RE 10000N 6900E 10000N 6950E 10000N 7000E	.4 .3 .4 .4	13.2 16.6 16.4 10.2 13.4	4.6 5.2 5.1 3.5 3.1	92 71 72 90 79	< 1 < 1 < 1 < 1 < 1	23.5 41.5 41.4 14.8 18.8	8.8 14.1 14.1 6.0 6.5	736 416 427 665 605	2.12 2.90 2.89 1.68 1.73	<.5 <.5 <.5 <.5 <.5	.3 .6 .2 .2	1.2 1.2 .7 2.4 .8	1.0 2.0 2.0 .8 .7	28 39 40 24 29	.1 <.1 <.1 <.1 <.1	.1 <.1 <.1 <.1 <.1	.1 .1 .1 .1 <.1	53 69 67 39 39	.22 .38 .37 .18 .27	.054 .038 .039 .038 .038	3 11 11 2 2	32.6 60.5 59.1 30.5 30.5	.32 .82 .84 .33 .34	140 131 135 82 78	.171 .160 .157 .120 .110	1 1.8 1 2.0 1 2.0 1 .9 2 .9	34 .020 07 .028 08 .028 03 .026 01 .032) .10 3 .15 3 .15 5 .09 2 .16	< 1 < 1 < 1 < 1 < 1 < 1	.01 .02 .01 <.01 <.01	3.1 8.4 8.4 2.9 3.4	<.1 <.1 <.1 <.1 <.1 <.1	< 05 < 05 < 05 < 05 < 05 < 05	5 5 6 3 3	<.5 <.5 <.5 <.5 <.5
100DON 7050E 10000N 7100E 10000N 7150E 10000N 7200E 10000N 7250E	.5 .3 .4 .5 .4	14.4 9.6 29.8 31.5 13.4	4.7 3.9 4.9 4.8 3.7	65 59 113 115 66	<.1 <.1 <.1 <.1	16.8 7.1 70.8 84.9 18.6	7.5 3.9 17.0 24.1 7.3	568 324 1049 1490 384	2.02 1.62 4.01 3.42 2.36	<.5 <.5 <.5 .8 1.1	.2 .2 .4 .3	.9 1.0 2.1 .6 .7	1.1 .6 1.5 1.7 .9	26 44 60 59 74	<.1 .1 .2 .1	.1 <.1 .1 .3	.1 <.1 .1 .1 .1	46 50 84 81 61	.24 .35 .54 .66 .35	.037 .027 .047 .039 .034	2 1 11 17 3	32.7 14.5 58.1 61.5 39.6	.38 .19 1.35 1.45 .47	77 60 158 179 106	.148 .191 .176 .173 .155	1 1.3 1 1.0 3 2.7 3 2.0 1 1.5	2 .031 9 .060 4 .031 8 .034 2 .027	.10 .11 .11 .15 .13	<.1 <.1 <.1 <.1	.01 .01 .02 .02 .01	3.3 2.5 10.1 10.1 3.6	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	4 3 7 6 4	<.5 <.5 <.5 <.5 <.5
10000N 7300E 10000N 7350E 10000N 7400E 10000N 7450E 10000N 7500E	.3 .2 .4 .3	10.0 12.5 10.4 17.6 8.8	3.4 2.9 3.4 3.0 3.2	54 79 97 54 60	< 1 < 1 < 1 .1 < 1	11.5 12.0 9.9 26.3 10.3	4.9 4.8 3.7 9.3 4.0	287 365 326 328 245	1.71 1.83 1.40 3.03 1.56	<.5 <.5 .5 <.5 <.5	.2 .2 .4 .2	.8 1.6 <.5 1.5 .9	.8 .9 .6 1.7 .6	52 46 47 81 49	.1 .1 .2 .1	.1 <.1 .1 <.1	.1 <.1 .1 .1	41 39 33 81 37	. 32 . 32 . 32 . 49 . 31	.042 .031 .050 .043 .044	2 3 2 7 2	25.1 25.7 18.8 47.1 23.8	.24 .26 .22 .63 .21	88 84 97 90 72	.124 .113 .102 .146 .120	<1 1.4 1 1.1 1 1.1 1 1.2 1 1.2	2 .031 5 .034 2 .032 7 .047 6 .033	.08 .17 .09 .12 .11	<.1 <.1 <.1 <.1	.01 .01 .01 .02 .01	2.3 3.2 2.0 6.5 2.2	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	4 3 4 5 4	<.5 <.5 <.5 <.5 <.5
10000N 7550E 10000N 7600E 10000N 7650E 10000N 7700E 10000N 7750E	.3 .3 .6 .3	10.4 11.1 7.6 23.7 28.3	3.5 3.8 3.7 4.6 4.1	58 75 70 64 56	<.1 <.1 <.1 <.1	24.1 16.4 10.1 22.5 35.7	6.6 5.1 3.4 14.8 12.2	295 387 209 386 347	2.04 2.11 1.33 3.88 3.42	.5 .9 1.6 1.6 4.4	.1 .2 .4 .5	1.6 .8 .6 2.2	.6 .8 .6 1.3 1.6	37 38 32 59 124	<.1 .1 .1 .1	<.1 .1 .2 .1 .7	.1 .1 .1 .1	42 51 31 105 98	.36 .29 .20 .44 .68	. 023 . 020 . 042 . 044 . 049	2 2 1 7 9	24.3 30.2 17.2 52.5 55.5	.26 .31 .22 1.02 .93	48 72 62 89 111	.086 .149 .101 .154 .164	<1 1.2 <1 1.4 1 1.1 <1 2.7 1 2.3	0 .037 2 .032 1 .021 2 .040 8 .027	/ .08 2 .11 1 .10 1 .13 7 .12	<.1 <.1 <.1 <.1	.01 .01 .01 .01 .02	3.1 3.9 1.9 6.9 7.6	<.1 < <.1 < <.1 < <.1 < <.1 <	<.05 <.05 <.05 <.05 <.05	3 4 7 7	<.5 <.5 <.5 <.5 <.5
10000N 7800E 10000N 7850E 10000N 7900E 10000N 7950E 10000N 8000E	.7 .4 .5 .4 .4	8.4 9.6 16.9 27.1 20.1	3.8 2.6 4.2 3.8 4.4	76 74 88 65 67	<.1 <.1 <.1 <.1	9.2 9.1 22.0 24.9 25.4	4.0 4.3 10.3 12.0 9.2	569 278 663 397 504	1.48 1.64 2.91 3.54 3.08	.8 .8 1.0 2.6 2.0	.1 .1 .3 .4 .4	5 .8 <.5 2.4 1.1	.6 .5 1.1 1.1 1.4	41 36 63 96 61	.1 .1 .1 .1	.2 .1 .5 .2	.1 <.1 .1 .1	38 36 71 94 83	. 30 . 29 . 55 . 86 . 58	.017 .041 .040 .062 .049	2 2 6 9 8	18.6 23.5 33.7 56.1 40.7	.23 .28 .67 .96 .61	81 52 71 52 73	.117 .078 .172 .193 .157	1 1.1 1 1.3 2 2.6 3 2.5 2 2.0	1 .024 7 .033 1 .044 9 .047 3 .032	.07 .09 .11 .20 .20	<.1 <.1 <.1 <.1	.01 <.01 .01 .02 .04	2.2 3.0 6.7 9.9 7.1	<.1 <.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	3 4 8 6	<.5 <.5 <.5 <.5 <.5
standard DS6	11.6	124.4	29.4	143	.3	24.9	10.9	706	2.84	21.2	6.6	49.9	3.0	40	6.1	3.5	5.0	56	. 85	.078	14	187.4	. 58	163	.080	18 1.9	1.073	.15	3.5	.23	3.3	1.8	<.05	6	4.4

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖌 FA

ACMB (ANAL ISO	עדדע 11	'AL Ac	LAB	ORA dit	TOR. ed (IBS 20.)	LTD).	8	152	E.	HAS'	CIN (TC	GB (ST. Ant	VAN	COU	VER	BC 2DT	V6 TRT	а 1) Сат	R6		PHO	NE (6	04)	253	31	58 1	TAX	(604	• • •	3-1	716	
						<u>Alı</u>	<u>nad</u>	<u>en </u>	<u>Mir</u> 1	103 +	118 750	<u>Lt</u> W. P	<u>d.</u> ender	PR St	<u>OJE</u> ., Va	ICT ncou	<u>MR</u> ver B	<u>T05</u> c v60	<u>-3</u> : 218	E. F. St	ile Jomit	ted b	ы А50 у: Ес)57 1 Bal	13 on	P	age	9 I						А 	V.	L L
SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppn	Mn ppm	i Fe	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	Ві ppm	V ppm	Ca %	P 2	La ppm	Cr ppm	Mg Z	Ba ppm	Ti %	B ppm	A1 لا	Na X	K X	W ppm	Hg ppm	Sc ppm	T1 ppm	S X	Ga ppm	Se ppm
9800N 6000E 9800N 6050E 9800N 6100E 9800N 6150E 9800N 6150E 9800N 6200E	.4 .4 .5 .6	10.8 22.9 14.8 20.5 35.5	3.2 4.3 3.7 3.3 2.9	37 55 42 83 75	<.1 <.1 <.1 <.1	13.6 27.2 13.6 24.3 50.6	5.6 10.5 7.0 8.2 16.9	274 482 398 426 790	1.94 3.04 2.46 2.86 3.76	<.5 1.0 .7 .9 1.1	.3 .5 .3 .4 .4	5.0 2.2 .8 1.5 1.2	.7 1.4 .8 1.2 .9	51 94 76 75 193	.1 .1 .1 .1	<.1 .2 .1 .1	.1 .1 .1 .1	51 91 74 79 93	.26 .47 .45 .50 1.21	.028 .025 .026 .045 .085	2 11 4 8 14	29.8 47.8 31.1 39.5 47.9	.22 .48 .30 .54 1.57	109 130 104 106 108	.152 .194 .161 .185 .198	1 1 1 1 1 1 1 1 2 3	1.42 1.83 1.31 1.96 3.81	.040 .042 .035 .033 .038	.11 .11 .08 .16 .16	<.1 <.1 <.1 <.1 <.1	<.01 .02 .01 .01 .01	2.2 6.3 4.0 5.4 9.6	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	4 5 4 6 11	<.5 <.5 <.5 <.5 <.5
9800N 6250E 9800N 6300E 9800N 6350E 9800N 6400E 9800N 6450E	1.1 .4 .3 .5	13.9 10.5 14.6 11.4 16.9	3.3 3.3 3.7 3.6 4.3	84 50 69 63 59	.1 <.1 <.1 <.1 <.1	17.2 11.8 15.9 14.6 20.8	6.3 4,5 6.5 6.6 8,6	931 290 381 489 413	1.69 1.75 2.19 2.04 2.69	1.0 .6 .7 .5 1.3	.2 .3 .2 .4	<.5 2.1 1.5 .9 1.1	.6 .6 .8 .8 1.1	67 48 56 45 82	.1 <.1 <.1 <.1	.1 .1 .1 .2	1 1 < 1 1	39 49 63 61 84	. 50 . 30 . 35 . 35 . 60	.074 .040 .037 .020 .052	4 3 3 4 6	22.9 23.6 31.8 32.6 35.3	.37 .25 .33 .33 .48	104 91 113 85 128	.121 .145 .162 .155 .200	2 1 1 1 1 1 1 1 2 1	1.64 1.27 1.37 1.08 1.77	.023 .029 .036 .037 .035	.12 .10 .13 .12 .12	<.1 <.1 <.1 <.1 <.1	.02 .01 .01 .01 .01	3.5 2.5 3.3 3.2 4.8	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	5 4 3 5	<.5 <.5 <.5 <.5 <.5
RE 9800N 6450E 9800N 6500E 9800N 6550E 9800N 6600E 9800N 6650E 9800N 6650E	.4 .2 .3 .2 .4	17.2 14.9 17.1 10.9 22.7	4.5 4.6 4.4 4.2 6.0	60 50 80 57 57	<,1 ,1 <,1 <,1 <,1	21.1 12.6 17.2 9.9 29.7	8.5 6.5 8.4 5.8 10.0	432 352 413 318 414	2.80 1.88 2.61 1.72 2.83	1.4 .5 .7 .5	.4 .2 .4 .4	.7 .5 1.8 <.5 .6	1.1 .9 1.2 .9 1.8	86 41 54 49 92	.1 <.1 .1 .1	.2 .1 .1 <.1	.1 .1 .1 .1	86 50 66 40 75	. 65 . 32 . 47 . 41 . 51	.054 .033 .093 .024 .040	6 7 5 11 6	36.6 27.8 35.1 23.6 56.3	.50 .29 .51 .28 .44	130 73 151 117 160	.209 .142 .167 .114 .178	2 1 <1 1 2 2 <1 1 <1 2	1.83 1.71 2.02 1.36 2.03	.037 .038 .031 .047 .039	.13 .09 .14 .08 .16	<.1 <.1 <.1 <.1 <.1	.02 .01 .01 .01 .01	5.0 3.7 4.6 3.8 6.9	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 5 6 4 6	<.5 <.5 <.5 <.5 <.5
9800N 6700E 9800N 6750E 9800N 6800E 9800N 6850E 9800N 6850E 9800N 6900E	.4 .5 .4 .4	11.1 25.2 20.8 20.0 11.2	3.7 4.1 4.5 4.8 3.7	51 75 93 89 77	<.1 <.1 <.1 <.1 <.1	12.3 73.0 62.0 49.5 25.7	5.0 21.4 19.0 18.8 9.0	343 806 685 704 369	1.96 3.68 4.01 3.43 2.53	.7 <.5 .5 <.5	.3 .5 .7 .6	<.5 1.0 1.2 .8 <.5	.8 1.7 1.6 1.6 1.2	38 59 49 61 39	.1 .1 .1 .1 <.1	.1 <.1 <.1 .1 <.1	1 < 1 .1 .1	59 81 87 79 68	. 27 . 71 . 52 . 51 . 30	.029 .125 .058 .051 .027	3 16 12 16 6	27.5 57.8 75.3 57.6 46.6	.27 1.55 1.10 .69 .39	123 103 122 170 107	.163 .175 .180 .171 .176	1 1 <1 2 <1 2 1 2 1 2	1.31 2.04 2.55 2.44 1.28	. 025 . 060 . 044 . 040 . 042	.08 .09 .14 .14 .10	<.1 <.1 <.1 <.1 <.1	.01 .01 .01 .02 <.01	3.0 7,8 11.2 8.5 5.3	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	4 6 7 7 4	<.5 <.5 <.5 <.5 <.5
9800N 6950E 9800N 7000E 9800N 7050E 9800N 7100E 9800N 7150E	.5 .4 .3 .3	21.7 34.0 31.6 17.3 17.4	3.8 3.8 3.2 3.7 3.9	98 86 107 67 52	.1 .1 <.1 <.1 <.1	35.2 60.6 31.5 19.8 23.0	12.4 17.7 19.9 8.2 8.9	733 569 934 418 305	2.57 3.58 4.38 2.73 2.91	.9 3.0 1.2 1.3 1.8	.5 .6 .4 .4	<.5 <.5 .6 .9	1.0 1.5 1.0 1.0 1.2	59 79 106 62 67	.1 .2 .1 .1	<.1 3.0 .1 .2 .2	.1 .1 .1 .1	54 77 124 85 89	.55 .81 .91 .50 .49	.064 .085 .069 .031 .033	9 17 12 6 6	42.2 70.2 58.7 37.9 41.9	.54 .52 1.53 .47 .55	195 242 111 80 94	.115 .075 .081 .196 .184	3 1 4 1 2 3 3 1 2 1	1.57 1.99 3.42 1.47 1.56	.028 .041 .096 .038 .034	.18 .16 .15 .16 .12	<.1 <.1 <.1 <.1 <.1	.01 .04 .03 <.01 .01	6.5 11.2 12.6 5.0 5.6	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05 <.05	5 5 9 5 5	<.5 <.5 <.5 <.5 <.5
9800N 7200E 9800N 7250E 9800N 7300E 9800N 7350E 9800N 7350E 9800N 7400E	.4 .4 .4 .4	16.0 9.1 12.5 16.2 13.3	4.1 3.6 3.9 3.7 3.7	70 55 66 68 60	.1 <.1 <.1 <.1 .1	19:6 11.3 16.8 19.0 16.6	8.2 5.1 7.1 8.9 6.4	360 292 270 531 290	2.72 1.88 2.36 2.50 2.14	1.9 .8 1.2 .7 1.2	.3 .2 .3 .3	.9 .5 .8 <.5 .7	1.0 .6 1.0 1.2 .8	76 39 47 89 46	<.1 .1 <.1 .2 .1	.2 .1 .1 .2	.1 .1 .1 .1	77 53 64 59 54	.42 .29 .34 .50 .37	.044 .026 .037 .046 .034	4 3 3 4 3	42.0 24.9 32.5 34.0 33.5	. 46 . 28 . 40 . 47 . 46	137 97 107 204 81	.183 .143 .154 .148 .134	1 2 1 1 1 1 2 1 2 1	2.04 1.37 1.78 1.64 1.56	.032 .025 .029 .054 .029	.13 .07 .10 .17 .12	<.1 <.1 <.1 <.1 <.1	.01 <.01 .01 .02 .01	4,4 2.6 3.5 4.5 3.3	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	6 4 5 5 5	<.5 <.5 <.5 <.5 <.5
9800N 7450E 9800N 7500E 9800N 7550E 9800N 7600E STANDARD DS6	.3 .3 .4 .4 11.6	16.8 17.3 20.0 22.2 124.8	3.4 3.4 3.7 3.2 29.5	56 44 74 63 145	.1 <.1 .1 .3	19.9 20.3 19.4 27.3 25.1	8.1 9.9 8.0 10.9 10.9	504 493 841 575 708	2.45 2.52 1.93 2.82 2.86	1.5 1.4 1.1 .8 21.0	.4 .3 .2 .4 6.7	.7 1.4 .9 <.5 47.0	1.2 .9 .9 1.4 3.2	80 48 95 106 40	.1 <.1 .2 .1 6.0	.2 .1 .1 <.1 3.6	.1 <.1 <.1 5.0	64 67 46 67 55	. 55 . 46 . 70 . 60 . 86	.035 .027 .058 .053 .078	6 6 10 14	37.8 35.3 28.1 43.1 187.7	.54 .58 .41 .72 .59	109 93 161 105 165	.145 .113 .103 .138 .081	1 1 2 1 5 1 2 1 17 1	1.56 1.28 1.36 1.90 1.93	.036 .033 .036 .054 .074	.15 .17 .23 .18 .16	<.1 <.1 <.1 <.1 3.4	.02 <.01 .03 .02 .23	5.4 4.3 3.8 6.4 3.3	<.1 <1 <1 <1 1.8	<.05 <.05 <.05 <.05 <.05	5 4 4 5 7	<.5 <.5 <.5 <.5 4.3

 The second s second s second seco

T

Clarence Leon

GROUP 1DX - 15.0 GM SAMPLE LEACHED WITH 90 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 300 ML, ANALYSED BY 1CP-MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY.

Data 🖉 FA 🔜

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Page 2

.

															·····																			HUTL	MALTI	
SAMPLE#	Mo DDM	Cu Dom	Pb DDM	Zn	Ag	N i DO9	Co 1 DDm	Mņ	Fe ۲	As	U Maa	Au	Th	Sr	Cd	Sb	Bi	V	Ca ¥	P ¥	La	Cr	Mg ¥	Ba	Ti	B	A1 ¥	Na v	K	W	Hg	Sc	T1	S ¥	Ga	Se
				ppin				PP///	~~~~~	PPII		- 440	ppiii	PPin	- PPill	ppin		- Phil	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Phil	ppin		ppm		ppin		<i>*</i> 0		ры	phu	hhu	рри		ppm	ppm
9800N 7650E	.5	23.3	4.9	81	< 1	16.0	96	534	3.20	8	4	< 5	10	51	1	1	1	115	39	027	5	24 5	46	64	268	1	1 7/1	066	10	< 1	01	5 8	< 1	< 05	c	
9800N 7700E	.4	14.6	4.7	55	< 1	10 2	62	322	2 33	12	2	.5	1 0	45	1	3	1	63	.05	029	1	26.2	. 40	56	177	2	1 50	0.000	10	< 1	01	3.6	~ 1	<.05	0	<.5 < r
9800N 7750F	5	26.3	4 1	79	1	25 7	14 6	542	3 80	2.3	5	.0	1 3	60	1	.0	1	103	.00	052	11	50.2	.05 Q/	02	115	2	2 57	040	20	~ 1	.01	3.0	~ 1	<.05 < 0E	4	<.5 . r
9800N 7800F	.0	28.2	4 3	117	1	28 4	17.9	1099	4 02	1 7	.3	< 5	1.0	64	1	< 1	.1	110	55	215	10	10 1	. 94	08	207	1 4	2.06	.030	. 20	~ 1	.01	0.0	►.1 ∠ 1	05		<.5
9800N 7850E	.0	21 4	43	70	< 1	24 3	127	577	3 25	2 1	.0	5	1 0	60	.1	1	1	110	. 55	070	10	25 1	.07	47	105	2 1	5.00	.0/0	.09	1	.01	0.0 7 c	>.1 2 1	<.US	8	<.5
	. 4	21.7	4.0	70	1	24.0	, 12.7	5//	0.23	2.1	.0	.0	1.0	09	.1	.1	. 1	00	.04	.070	0	55.1	.0/	4/	. 105	2 0	2.04	.000	.09	\.1	.01	/·.5	~.1	<.05	/	<.5
9800N 7900F	5	20.9	36	64	< 1	21 2	11 4	464	3 24	15	٨	1 /	Q	54	1	1	< 1	82	58	033	a	<i>4</i> 5 0	93	56	126	2	1 05	020	17	- 1	01	7 2	~ 1	< 0E	~	. r
9800N 7950E	.5	20.9	37	70	< 1	25 0	10 5	576	3 08	21	.4	1.4	1 2	60	.1	.1	<. I 1	70	. 50	.033	2	40.0	.00	01	162	2.	2 04	.030	.1/	>.1	.01	7.2	2.1	<.05	b C	<.5
DRUUN BUUUE	.5	20.0	3.7	61	×.1 1	12 6	10.5 E 1	262	1 05	11	.4	20	1.2	25	.1	· . 1	. 1	79	.04	.055	9	35.7	.00	70	.103	2 4	2.04	.042	. 18	<.1	.04	7.0	<.1	<.05	6	<.5
DEUDIN EUDOE	.4	22 1	3.7	46	.1	12.3	0 0.1	202	1.00	1.1	. ა	2.0	.0	00	<.1 1	.1	.1	50	. 30	.029	10	27.9	. 32	19	. 152	2	1.21	.025	.09	<.1	.01	2.8	<.1	<.05	4	<.5
DECON COLOR		12 5.4	3.9	45	.1.	34.4	11.9	300	4.01	.0	.5	2.2	1.5	88	.1	.1	.1	12	.80	.031	18	55.1	.63	105	. 350	1.	L.98	.033	. 10	. 1	. 01	9.0	<.1	<.05	6	<.5
BOUNN BUSUE	.3	13.5	4.0	42	<.1	19.7	8.8	415	3.74	<.5	. 3	.7	1.2	4/	.1	.1	. 1	61	.29	.015	/	42.9	. 36	72	. 193	1 3	. 12	. 029	. 08	<.1	.01	4.8	<.1	.06	4	<.5
0600N 6100F	2	11 6	2 Е	67	- 1	15.2		241	2 24	F	2	<u> </u>	0	45	<i>-</i> 1	1	1		20	000		33 7	- 11	104	100		1	000	10		1				-	-
	.0	11.0	3.5	57	>.1 2 1	10.0		041	2.34	.5	. ა	2.2	.9	45	<.1	1.	.1	60	. 29	.033	4	33.7	.31	104	.166	1 1	1.01	.026	.10	<.1	<.01	3.6	<.1	<.05	5	<.5
9000N 0150E	.4	12.2	3.1	53	5.1	12.9	5.3	240	2.14	.5	. ა	<.5		43	.1	1.	. 1	62	.27	.026	3	31.0	.27	8/	. 162	1	L.40	.029	.11	<.1	<.01	3.1	<.1	<.05	4	<.5
POUUN DZUUE	.3	13.6	3.9	48	<.1	16.3	6.0	290	2.39	.9	.3	./	1.1	61	.1	.2	. 1	/1	. 34	.02/	4	33.5	.28	110	.198	1]	l.56	.038	.13	<.1	<.01	4.0	<.1	<.05	4	<.5
9600N 6250E	.4	21.2	3.7	56	<.1	21.7	9.3	/03	2.46	1.1	.4	<.5	1.2	61	.1	.1	.1	71	. 52	. 051	9	37.7	. 42	125	. 155	3 1	1.66	.034	. 20	<.1	. 01	5.5	<.1	<.05	5	<.5
9600N 6300E	.4	38.5	3.7	51	.1	31.2	12.3	662	2.50	2.4	.8	.7	1.1	158	.2	.1	.1	71	1.19	. 055	13	38.1	.75	93	.104	4 3	L. 83	.038	. 12	<.1	. 04	6.2	<.1	. 07	5	.5
DEDON ESEDE	2	24 4	· · ·	79	- 1	27 2	10.0	500	0 70	1 0	r	7	1 2	<u> </u>		~	,	71	40	0.01	•	40.0	~	100	100										_	_
DEDON 6400	. 3	24.4	3.3	12	5.1	2/.3	10.0	520	2.73	1.0	. 5	./	1.3	62	.1	. 2	. 1	/1	.48	.061	9	43.0	.61	102	.139	3 1	1.72	.032	.1/	<.1	.01	6.2	<.1	<.05	5	<.5
BOUUN O4UUE	./	20.2	3.0	55	<.1	19.8	9.7	615	2.12	1.1	.9	<.5	1.0	66	.1	.1	.1	58	. 54	.042	8	32.6	.48	118	.122	21	1.61	.030	. 18	<.1	.02	4.8	<.1	<.05	4	<.5
9000N 6450E	. 3	37.1	3.5	46	.1	49.0	13.5	385	3.66	1.8	.8	2.1	2.0	103	.1	.2	<.1	96	./0	.068	16	68.4	1.09	123	.171	23	3.28	.047	. 15	<.1	.03	12.7	<.1	<.05	8	<.5
9600N 6500E	.5	13.3	4.1	76	<.1	22.5	9.1	744	2.22	<.5	.3	<.5	1.1	31	<.1	.1	<.1	62	.29	. 024	4	35.2	. 54	69	. 209	1 1	.10	.047	.13	<.1	<.01	4.8	<.1	<.05	3	<.5
9600N 6550E	.2	13.5	3.8	65	<.1	22.9	11.1	395	2.76	<.5	.4	<.5	1.2	42	.1	.1	.1	56	. 38	. 039	5	44.8	. 90	117	.138	12	2.00	.045	.13	<.1	. 01	5.7	<.1	<.05	5	<.5
DEDUN EEDUE	2	10 1	2 5	76	~ 1	77 2	10.7	100	2 05	7	٤	~ E	1 2	EO	1	1	1	74	F 1	0.27	10	40.2	70	07	1.05	- 1		0.05	10	. 1		7 0			~	
DEDON CEEDE		20.1	3.5	75	1.	21.0 E2.6	10.7	400	2.90	. /	. 5	`. 5	1.0	59	.1	.1	.1	/4	. 51	.03/	10	49.3	./8	9/	. 105	21	94	.035	. 10	<.1	.02	1.8	<.1	<.05	6	<.5
DEDON COOL	.4	22.4	4.5	72	.1	23.0	19.0	/00	3.52	.0	./	.5	1.9	00	.1	<.1	.1	83	.00	.030	13	53.0	1.29	111	.220	11	99	.046	.12	<.1	.01	10.1	<.1	<.05	6	<.5
POUUN DIUL	.5	22.4	4.8	/3	.1	33.0	11.2	510	2.78	1.1	.4	.9	1.4	64	.1	. 1	.1	/3	.53	.066	9	48.8	.6/	128	.180	22	2.08	.038	.15	<.1	.02	6.4	<.1	<.05	6	<.5
POUUN 6/SUE	.5	15.0	4.8	105	<.1	20.0	6./	665	2.15	1.1	.3	./	.9	4/	.1	.1	.1	60	. 35	.048	- 3	33.8	.37	148	. 167	21	88	. 029	.15	<.1	<.01	3.4	<.1	<.05	6	<.5
RE 9600N 6/50E	.6	15.5	4.6	110	<.1	21.0	7.1	684	2.20	1.3	.3	<.5	.9	48	.1	.2	.1	61	. 35	. 047	3	33.8	. 37	148	. 168	2 1	88	.028	.15	<.1	.01	3.4	<.1	<.05	6	<.5
DE00N 6900E	4	20.7	27	50	1	00 4	20 0	607	2 25	1 0	1 4	0	1 2	147	1	1	- 1	05	1 40	050	10	CO O	1 11	000	070		00	000	10	. 1		0.5		0.0	~	~
	.4	30.7	3.7	50	.1	09.4	20.0	007	0.20	1.2	1.4	.0	1.2	14/	.1	1.	<.1 1	95	1.40	.050	18	50.0	1.21	206	.0/3	4 1		.038	.12	<.1	.04	9.5	.1	.06	5	.6
DOUNN DOOUL	.4	30.3	3.7	4/	.1	50.9	15.9	05/	2.8/	1.5	1.4	<.5	1.2	118	.2	.1	1.	12	1.18	.046	15	55.9	.8/	164	.080	5 2	2.01	.032	. 15	<.1	.03	8.3	<.1	<.05	6	.8
ADDAM DADAF	.4	26.9	5.5	106	. 1	78.5	19.5	/60	4.02	<.5	.5	<.5	2.1	/9	.1	.1	. 1	94	.88	.069	19	6/.1	.88	143	.041	54	1.09	.018	.27	<.1	. 02	11.9	.1	<.05	11	<.5
9600N 6950E	.6	16.6	3.6	65	.1	39.8	12.9	443	3.18	.7	.5	<.5	1.3	54	<.1	.5	<.1	92	. 52	. 033	13	59.8	. 56	78	. 109	21	89	.047	. 11	<.1	.01	7.6	<.1	<.05	5	<.5
9600N 7000E	.6	27.5	2.5	45	<.1	67.0	16.7	434	3.87	<.5	.4	<.5	1.4	67	<.1	.3	1	95	.66	. 026	17	83.4	1.03	58	. 108	22	2.02	.073	.13	<.1	.01	11.0	.1	<.05	5	<.5
DE00N 70505	6	17 1	2 0	00	. 1	00 1	• •	0(1	2 50	7	•	r	7		1	- 1	,	62	40	050		44 1	50	107			50		• •							
POUUN /USUE	.6	1/.1	2.8	80	<.1	22.1	8.9	861	2.50	./	-2	.5	./	50	1.	<.1	.1	63	.42	.056	4	44.1	.53	127	.090	11	50	.034	.14	<.1	.01	4.4	<.1	<.05	4	<.5
APDON VIONE	.5	8.9	2.9	44	<.1	12.5	6.4	409	2.06	.6	.1	<.5	.6	39	<.1	.1	.1	56	. 36	. 023	2	33.7	. 33	69	.104	11	26	.022	.10	<.1	.01	2.9	<.1	<.05	4	<.5
9600N 7150E	.4	15.5	4.0	50	<.1	21.4	8.0	238	2.87	1.6	.4	<.5	1.2	63	.1	.2	.1	89	. 42	.043	7	43.7	. 46	101	. 190	11	72	. 025	.16	<.1	. 02	5.1	<.1	<.05	5	<.5
9600N 7200E	.4	10.4	2.9	80	<.1	23.2	6.4	476	2.16	.7	.2	1.5	.7	30	<.1	.1	.1	66	.24	. 025	3	79.7	. 34	76	.134	11	43	. 031	.10	<.1	.01	3.2	<.1	<.05	4	<.5
STANDARD DS6	11.5	124.8	29.1	144	.3	24.9	10.8	709	2.86	20.9	6.6	46.8	3.1	39	6.0	3.6	5.0	55	. 85	.078	13	186.7	. 58	163	. 080	16 1	92	.074	.15	3.6	.23	3.3	1.8	<.05	6	4.7
																						-														

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data AFA

ACHE ANALYTICAL SAMPLE# Cu Pb Zn Aq Ni Со Mn Fe As U Au Th Sr Cđ Sb Bi ۷ Ca Р La Cr Ma Ba Τi B A1 Na κ W Hor Sc Мо T1 S Ga Se ppm 8 DDM DDM 2 DOM ppm ppb ppm ррл ppm Юрл ppm z ppm DDM \$ DDM 2 DDU 2 X מכום הפכים הפכים א % ppm ppm DDW ppm ppm ppm ppn DDM ppm .28 .023 9600N 7250E .2 3.6 32 51 2 21.2 .27 1 .96 .021 .10 <.1 8.6 3.5 61 <.1 9.8 5.0 336 1.75 1.1 .7 .1 .1 .1 76 .124 .02 2.2 <.1 <.05 3 <.5 .4 32 .25 .027 3 23.7 . 32 9600N 7300E .4 10.0 3.3 60 <.1 11.2 5.5 344 1.99 1.2 .2 1.3 .6 .1 .1 .1 58 85.125 1 1.02 .021 .11 <.1 .01 2.5 < 1 < 05 3 <.5 9600N 7350E <.1 9.4 4.8 280 1.77 1.2 .2 .7 .5 29 <.1 .1 51 .23 .030 2 22.1 .27 84 .120 <1 .96 .022 .3 8.5 3.0 58 .1 .13 <.1 .01 2.2 <.1 <.05 3 <.5 2 1.04 .023 9600N 7400E .1 15.2 7.3 435 2.26 1.7 .2 2.1 1.1 41 .1 60 .41 .027 4 28.6 78.108 .4 13.1 3.3 51 .1 .1 .44 .16 <.1 .02 3.4 <.1 <.05 4 < 5 9600N 7450E .4 12.0 3.7 87 <.1 10.8 3.6 433 1.70 .8 .2 1.0 .7 22 <.1 .1 <.1 46 .20 .020 2 26.2 .23 69.140 1 .79 .031 .11 <.1 .01 2.5 <.1 <.05 3 <.5 Ð600N 7500E 49 <.1 13.5 5.9 230 2.13 .6 .2 .9 1.0 52 .1 .1 <.1 62 .32 .021 4 32.2 .31 77 .147 1 1.12 .041 .14 <.1 .01 3.7 <.1 <.05 3 <.5 .3 13.5 3.3 9600N 7550E .4 13.5 2.8 .2 .9 .8 49 40 .28 .048 3 22.9 .26 93 .108 1 1.15 .031 59 .1 11.0 4.1 228 1.67 .8 .1 .1 <.1 .16 < 1 .01 3.1 < 1 < 05 3 <.5 62 .50 251 .238 9600N 7600E .6 27.5 6.0 159 <.1 31.5 15.5 2038 3.72 1.7 .4 1.0 1.2 .2 <.1 .1 107 .48 .070 8 29.8 2 2.75 .047 .17 <.1 .02 7.2 .1 <.05 7 <.5 9600N 7650E .5 23.2 3.8 84 <.1 24.0 14.4 626 3.76 2.0 .4 <.5 1.3 64 <.1 <.1 <.1 101 .60 .060 10 51.8 .92 95.154 2 2.64 .046 .17 <.1 .01 8.0 <.1 <.05 7 <.5 9600N 7700E 94 6 .57 69.201 1 1.84 .053 .4 19.4 4.9 66 <.1 16.4 10.5 381 3.14 1.7 .4 1.2 1.3 56 .1 .1 .44 .026 42.8 .14 <.1 .01 5.3 <.1 <.05 .1 5 <.5 9600N 7750E 66 <.1 17.4 7.7 448 2.85 1.2 .3 .42 .019 6 33.4 1 1.78 .039 .4 13.0 4.5 .6 1.2 59 .3 85 .44 73 .163 .08 <.1 .01 5.3 < 1 < 05 5 <.5 <.1 .1 .2 1.0 .29 .031 9600N 7800E .3 8.5 3.3 68 <.1 10.4 4.2 168 1.80 1.0 .5 35 .1 .1 .1 47 2 20.8 .27 50.120 1 1.46 .026 .09 <.1 .01 2.6 <.1 <.05 4 <.5 9600N 7850E .4 37.5 4.0 71 <.1 28.1 14.3 441 3.61 1.8 .5 1.8 1.4 83 .1 .2 .1 92 .64 .053 10 38.6 .85 86 .135 1 2.42 .055 .18 <.1 .02 8.5 <.1 <.05 7 <.5 77 9600N 7900E .1 21.9 8.4 222 2.63 1.7 .3 7.8 .9 55 .1 .2 .38 .031 4 41.1 .55 80.168 <1 1.53 .025 .09 <.1 .4 16.6 3.5 47 .1 .01 4.5 <.1 <.05 5 <.5 RE 9600N 7900E .3 2.2 1.0 .2 78 79.170 .4 16.5 3.6 47 <.1 21.0 8.4 219 2.60 1.6 55 <.1 .1 .38 .031 4 41.3 .54 1 1.54 .023 .09 <.1 .01 4.4 <.1 <.05 4 <.5 9600N 7950E .5 12.1 3.1 58 <.1 14.3 6.5 425 1.97 1.3 .2 2.2 .7 42 <.1 .1 .1 52 .39 .024 4 29.8 .37 88 .130 2 1.12 .021 .09 <.1 .01 3.5 <.1 <.05 4 <.5 9600N 8000E .6 12.4 3.2 80 .1 13.9 5.8 395 1.94 .9 .7 41 .1 .1 <.1 53 .38 .032 4 30.7 .35 75.144 2 1.12 .022 .15 <.1 .01 3.4 <.1 <.05 .2 .9 4 < 556 19 1.92 .073 .15 3.6 .24 3.3 1.8 <.05 STANDARD DS6 11.7 125.5 29.1 145 .3 25.5 11.0 712 2.88 21.3 6.7 47.5 3.1 40 6.1 3.6 5.1 .86 .079 14 189.0 .59 166 .081 6 4.6

Page 3

Data NFA

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

1.

