

on the

STAR CLAIMS

OMINECA MINING DIVISION

N.T.S. 94-C-5E, 94-C-12E and 94-C-12W

January, 2006

Table of Contents

1.0	Introduction	1
2.0	Location and Access	2
3.0	Claim Data	2
	History	5
	Regional Geology	5
	Property Geology	10
•••	6.1 General	10
	6.2 Dunite	11
	6.3 Peridotite	11
	6.4 Olivine Clinopyroxenite	12
	6.5 Pyroxenite	12
	6.6 Amphibolite	12
	6.7 Diorite	13
	6.8 Feldspar (Hornblende) Pegmatite	13
	6.9 Diabase	13
	6.10 Granite	14
	6.11 Gabbro	14
	6.12 Feldspar-Hornblende-Quartz	14
	Pegmatite (FHQ)	
	6.13 Lamprophyre	14
	6.14 Tuff	15
	6.15 Sediments	15
70	Mineralization	16
1.0	7.1 General	16
	7.2 Olivine Clinopyroxenite	17
	7.2a Queen Zone	17
	7.2b GL Zone	17
	7.2c Ridge Zone	18
	7.2d Haslinger B	18
	7.3 Pyroxenite	19
	7.3a Haslinger A and C	19
	7.3b Jewel Box Zone	19
	7.4 Metasomatic/Metamorphic Pyroxenite	20
	7.5 Amphibolite	20
	7.6 Diorite	20
	7.7 Feldspar +/- Hornblende Pegmatite	20
	7.8 Listwanites	21
	7.9 Other	21
8.0	Alteration	21
9.0		23
10.0	5	24
11.0	Geophysics	31
T T•O	11.1 Purpose	31
	11.2 Method/Procedure	31
12.0	Results	33
T7.0	12.1 Geophysics	33
	12.2 Sampling	33
13.0	Conclusions	37
14.0	Recommendations	37
T-1+O		- •

<u>Page</u>

,

.

Table of Contents

<u>Page</u>

.

15.0	References	38
16.0	Statement of Costs	40
17.0	Statement of Qualifications	42

<u>Figures</u>

ć

ł

•

Figure 1:	Location Map Star Claims	3
Figure 2:	Claim Map	4
Figure 3:	Regional Feology	6
Figure 4:	Geology of the Polaris Ultramafic	9
	Complex	
Figure 5:	IP Survey HB Zone (1:2000)	in pocket
Figure 6:	IP Survey HB Zone - Inversion	in pocket
	(1:2000)	
Figure 7:	HB Grid: Chargeability (mv/V)	in pocket
	Samples (1:1000)	
Figure 8	HB Grid: Geology (1:1000)	in pocket
Figure 9:	IP Survey - Cauldron Zone	in pocket
	(1:2000)	
Figure 10:	Cauldron Line 0+00E -	in pocket
	Chargeability (mv/V) -	
	(1:1000)	
Figure 11:	Cauldron Line 0+00E -	in pocket
	Geology (1:1000)	

<u>Maps</u>

Map 1:	Location Map, West Half Star Claims, 1:10000	in pocket
Map 2	Location Map, East Half Star Claims, 1:10000	in pocket
Мар 3:	HB Zone Sampling and IP Line (1:5000)	in pocket
Map 4:	Cauldron and Orion Zones - Sampling and IP Line	in pocket
Map 5:	Queen and GL Zones - Sampling	in pocket
Map 6:	661 Creek, 661 Ridge and 202 Creek - Sampling	in pocket
Map 7:	661 Ridge, 201 Creek - Sampling	in pocket

<u>Appendix</u>

Analytical Results

1.0 Introduction

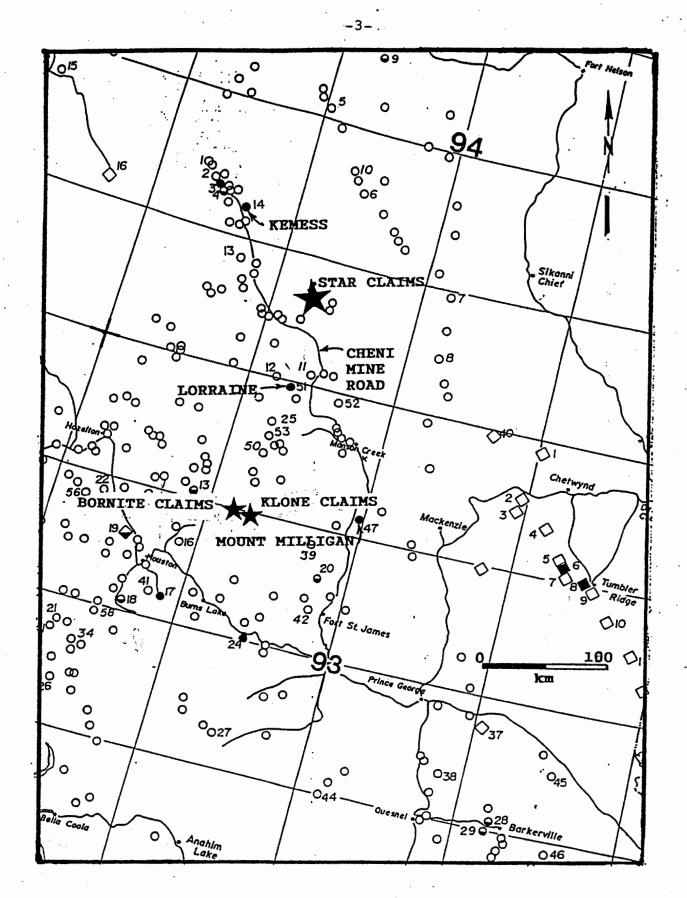
In 2005, three trips were made to the Star claims, in June, September and October.

In June, 37 rock samples and 11 soil samples were collected and analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES. In addition, 9 rock samples collected previously were analysed for (1F) 26 elements by ICP, (4A) 14 element whole rock analyses by ICP mass spectometer and (4B) 28 elements by ICP-MS.

In September, 61 rock samples and 2 soil samples were collected and analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES. In addition, 4.2 km of picketed grid lines were placed on the HB Zone, the Queen Zone and the Cauldron Zone with stations every 25 meters in preparation for an IP survey. Nine hundred twenty-five meters on one line was picketed over the HB Zone, 1.225 km on one line was picketed over the Queen Zone and 2.05 km was picketed on three lines over the Cauldron Zone.

In October, an IP survey was attempted and an additional line was picketed in the Cauldron area. Eleven hundred meters of line was picketed with stations every 25 meters. Chargeability and resistivity surveys were conducted on line HB from 6+00S to 2+75N totalling 875 meters and on one line C 0+00E from 1+00S to 7+75N totalling 875 meters. Inclement weather terminated the remainder of the IP survey.

2.0 Location and Access

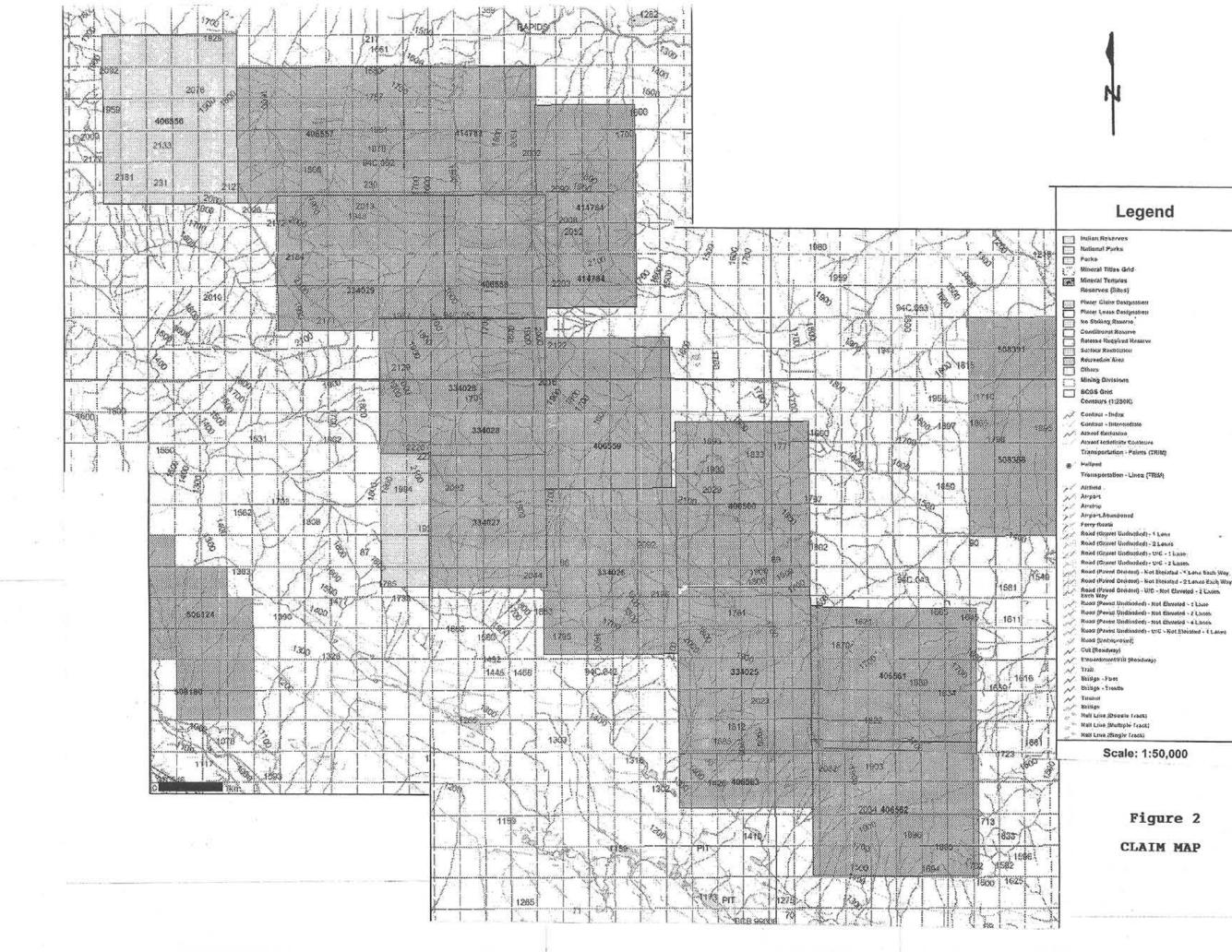

The Star claims, which are located on map sheets 94-C-5E, 94-C-12E and 94-C-12W, are 13 km northeast of Aiken Lake and 100 km almost due north of Germansen Landing. The property is located at co-ordinates 56° 29'N and 125° 40'W.

Access to the property is by helicopter from Fort St. James approximately 300 km due south. The Cheni Mine Road (Omineca Forestry Road) and the Kemess power line pass within 8 km of the property boundary. Logging roads reach the outer periphery of the property.

3.0 Claim Data

The Star property consists of fifteen 4-post claims totalling 278 units. The property is located in the Omineca Mining Division.

Claim Name	Record Number	No. of Units
Star 1	334025	20
Star 2	334026	20
Star 3	334027	20
Star 4	334028	20
Star 5	334029	20
Star 6	406556	20
Star 7	406557	20
Star 8	406558	16
Star 9	406559	20
Star 10	406560	20
Star 11	406561	20
Star 12	406562	20
Star 13	406563	8
Star 14	414783	16
Star 15	414784	18



ŝ

LOCATION MAP : STAR CLAIMS BORNITE CLAIMS AND KLONE CLAIMS

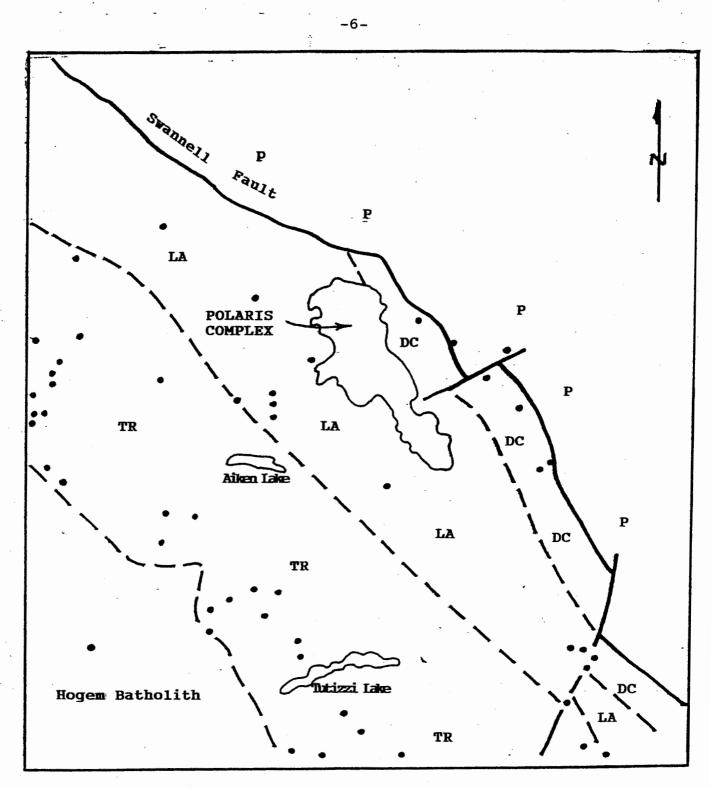
2

Figure 1

4.0 History

The area of the Polaris Complex has been examined by R. G. McConnell in 1894, V. Dolmage in 1927, D. Lay in 1939 and J. E. Armstrong in 1945. The first mapping of the Polaris Complex was done by E. F. Roots in 1946, 1947 and 1948.

No geological activity is recorded until 1968 when T. N. Irvine made petrologic studies of the Polaris Complex. The area remained idle until 1974 when T. N. Irvine and F. H. Foster mapped the Polaris Complex in some detail.


In 1986, a small portion of the Polaris Complex was staked by Equinox Resources who conducted an extensive silt and rock sampling program in a search for Pt and Pd. In 1987, Lacana Mining Corporation and Esso Minerals also staked portions of the Polaris Complex. In 1988 and 1989, the Polaris Complex was mapped and petrologically studied by the BCDM as part of a Pt-chromite study.

The Star 1 - 5 claims were staked in February, 1995 to cover known mineralization, soil/rock anomalies and favourable lithologies outlined by previous exploration.

In late October 2003, Minterra Resource Corp. optioned the Star 1 to 5 claims. In early November 2003, 8 additional claims were staked (Star 6 - 13) and a small IP (chargeability, resistivity) and SP survey was conducted over portions of the HA, HC and GL zones. The Star 14 and 15 claims were staked in October 2004. The option was terminated in December 2005. The Star claims were briefly optioned to Aumega Discoveries in 2005 but the option has been terminated.

5.0 Regional Geology

The Polaris Complex is located in the Omineca Crystalline Belt which is bounded on the west by Upper Triassic to Lower Jurassic Takla Group volcanics and sediments. The volcanics consist of andesitic flows and breccias, basaltic tuff and agglomerate. Sediments consist of shale, conglomerate and limestone. The eastern side of the

- TR Triassic Takla Group
- LA Middle Pennsylvanian to Permian Lay Range Assemblage DC Devonian to Cambrian P Proterozoic Ingenika Group

FIGURE 3

REGIONAL GEOLOGY

km 5

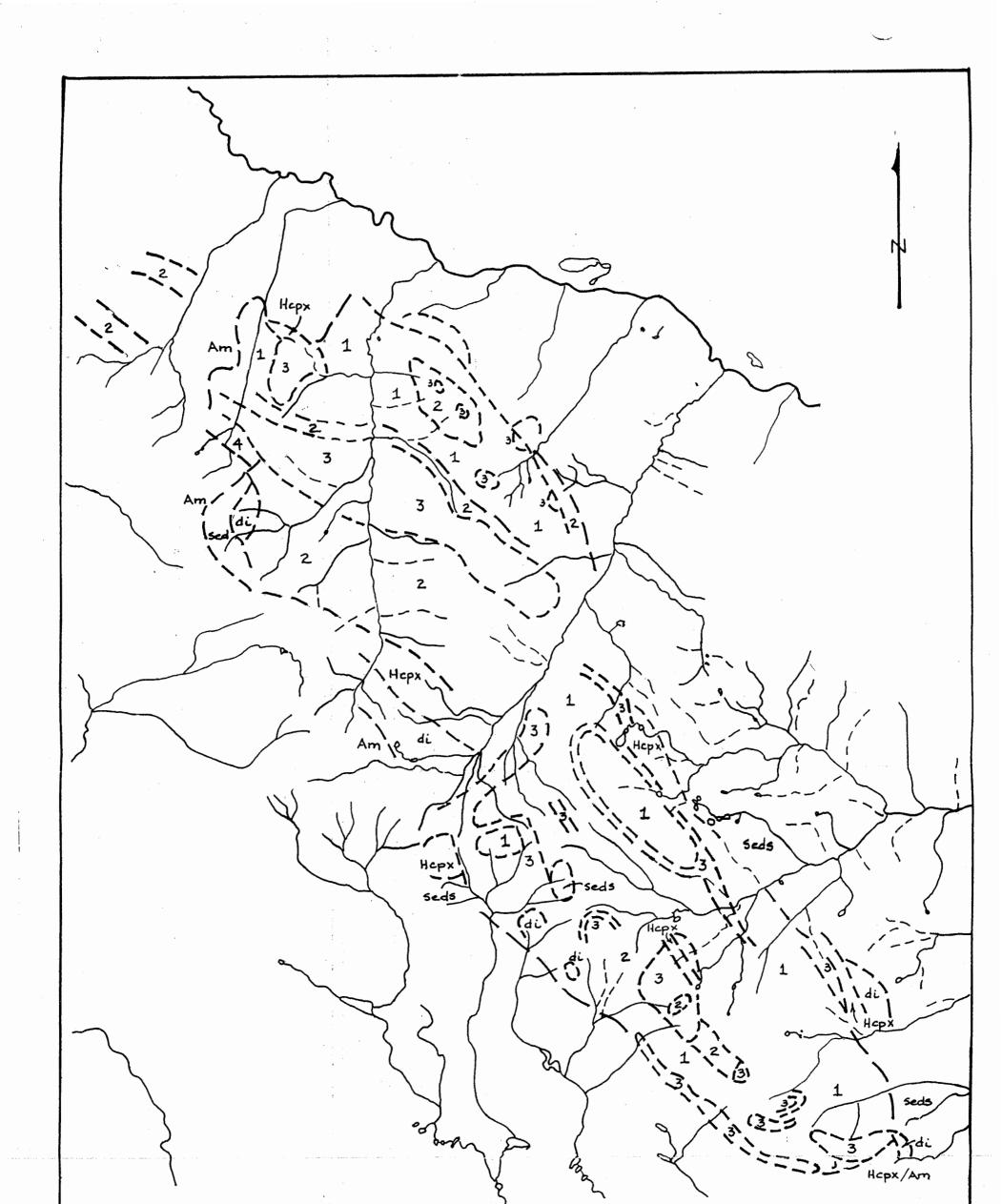
Mineral Occurrence

(modified from Armstrong, 1945, Roots 1946, 1947, 1948 and Ferri et al, 1993) Omineca Crystalline Belt is marked by the Swannell Fault which separates Lower Cambrian to Mississippian-Permian units from the Upper Proterozoic Ingenika Group and the Wolverine Metamorphic Complex which consists of sediments, metasediments, schists and gneisses.

The area immediately east of the Polaris Complex is underlain by the Lower Cambrian Atan Group of limestone, shale, siltstone and quartzite, the Cambrian to Devonian Razorback Group, Echo Lake Group and the Cooper Ridge Group of shale, argillite, wacke, sandstone, felsic tuff, and minor limestone.

The area immediately west of the Polaris Complex is underlain by the Middle Pennsylvanian to Permian Lay Range Assemblage which has also been called the Harper Ranch Group and the Slide Mountain Group by various authors. The lithologies consist of volcanics, siltstone, argillite, limestone, greywacke and conglomerate. The sediments of the Lay Range are dominantly thin-bedded, grey to black, rusty-weathering carbonaceous argillites. Lense-like bodies of massive limestone and interbedded, chloritized, amphibolitized flows, tuffs, breccias and agglomerates of andesitic or basaltic composition are also found in the sedimentary package. The volcanics of the Lay Range Assemblage are green in colour and consist of very altered flows, breccias, andesitic to basaltic tuffs and agglomerate. The flows contain hypersthene, diopside and amphibole phenocrysts in a groundmass which is altered to an aggregate of amphibole, chlorite, epidote, clinozoisite, sericite and calcite. Occasionally, the flows are leucoxene rich. All lithologies have a regional trend of N27°W to N33°E/45°S.

The Polaris Complex is a crudely zoned and layered ultramafic massif approximately 15 km long and 3 to 4 km wide. The core of the Polaris Complex is olivine-rich lithologies of dunite, peridotite and wehrlite. The ultramafic becomes progressively more pyroxene-rich towards the outer periphery and the lithologies range from olivine clinopyroxenite to pyroxenite to hornblendemagnetite pyroxenite. Previous authors also indicate the presence of metamorphosed and metasomatized volcanics and sediments at the contact of the Polaris Complex. Recent sampling and mapping indicate that the "thermal halo" which is reported to be up to 2500 meters wide is of limited extent and will be discussed under amphibolites in the section on property geology.


The Polaris Complex and the surrounding areas have been intruded by Upper Jurassic to Cretaceous monzonite, quartz monzonite, syenite, granodiorite, granite and diorite of the Hogem Intrusive Complex. Potassium argon dating of biotite forming a potassic halo around one intrusive in the Polaris Complex yielded ages of 167+/-9 Ma and 156+/-15 Ma. More recent dating using U/Pb on zircons from a quartz-hornblende-plagioclase pegmatite pod yielded dates of 186+/-2 Ma.

Mineral occurrences in the region of the Polaris Complex are predominantly found in the Takla Group belt which hosts numerous copper-gold showings such as the Croydon with auriferous chalcopyrite in quartz-filled shear zones in a diorite, the Porphyry Creek showing with vein and disseminated pyrite, chalcopyrite, molybdenite associated with quartz in a hornblende diorite, and the Granite Basin occurrence with auriferous pyrite bands in Takla volcanics and sediments and a porphyritic hornblende diorite. In addition, several lead-copper showings are found near Tutizzi Lake with galena-chalcopyrite occurring in quartz veins in a medium grained diorite cutting a coarse grained hornblendite and pyroxenite.

Mineralization in the Lay Range Assemblage consists of the Jupiter Group with quartz +/- carbonate veins in shears which are mineralized with chalcopyrite, galena and sphalerite and the Polaris Group which has two types of mineralization. The mineralization consists of ramifying gold-bearing quartz-carbonate veinlets in argillite near a quartz-biotite porphyry stock and also pyrrhotite, pyrite and chalcopyrite in argillite-amphibolite near a fine grained biotite-feldspar porphyry stock. Here the mineralization occurs as seams and semi-massive to massive sulphide lenses up to 8 meters wide and 150 meters long.

Other mineral occurrences in the region include the Orion Group with irregular bodies of galena in quartz veins in the Upper Proterozoic Ingenika Group, Jim May Creek with ruby silver-bearing quartz veins and silicified zones, a placer gold occurrence, the Lil claims with ruby silver in quartz-carbonate zones and also several shale-hosted zinc-lead occurrences.

Until recently, the only known mineral occurrences in the Polaris Complex were a chromite ball showing and some corundum-bearing dykes.

1 dunite 2 peridotite 3 olivine clinopyroxenite

AmamphibolitedidioriteHcpxpyroxenitesedssediments

and the second second

(modified from Irvine, 1976 and Nixon, 1993)

GEOLOGY OF THE POLARIS ULTRAMAFIC COMPLEX

FIGURE 4

9

6.0 Property Geology

6.1 General

The Star claims are underlain by numerous lithologies including dunite, peridotite, wehrlite, olivine clinopyroxenite and pyroxenite in the Polaris Complex ultramafic massif proper. Also within the Complex and occasionally peripheral to the ultramafic complex are metasomatized and metamorphic equivalents of the ultramafic consisting of porphyritic pyroxenite, porphyritic hornblendite, metapyroxenite/metahornblendite, amphibolite, hornblendite and hornblendite with considerable feldspar +/- quartz. Tuff, siltstone with lesser amounts of andesitic volcanics and limestone are also found within the ultramafic complex. The Polaris Ultramafic Complex has been intruded by diorite occurring as stocks of varying sizes and also as dykes. Feldspar pegmatite, feldspar-hornblende pegmatite also occur as dykes of varying size. Minor amounts of granite and gabbro also occur as dykes. A lamprophyre which occurs as a pipe has also been seen in the Polaris Ultramafic Complex.

The Polaris Ultramafic Complex is a crudely zoned and layered ultramafic massif with a central core of dunite, the predominant lithology, which grades to peridotite, wehrlite, olivine clinopyroxenite and pyroxenite as the periphery of the ultramafic is approached. Generally, the ultramafic units are relatively flat-lying except for the western and eastern ends of Capricorn Ridge. Here the layers trend 320° and are steeply to vertically dipping. Recent mapping has shown that the ultramafic units at the eastern contact are also steeply dipping in an easterly direction.

The ultramafic has been intruded by diorite stocks, digrite dykes, feldspar pegmatite dykes with or without hornblende, and minor gabbro and granite dykes. The contacts of the diorites are marked by a metamorphic and metasomatized assemblage of porphyritic hornblendite, porphyritic hornblenditeporphyritic pyroxenite and porphyritic pyroxenite. The contacts of the diorite stocks and occasionally some of the feldspar pegmatite dykes are marked by the development of listwanite.

Sediments and volcanics have been seen in several areas on the Star claims. On Star 1, argillite is in direct contact with the ultramafic. On Star 2, flat-lying interbedded siltstone and chert are in fault contact with dunite and probably forms a roof pendant over the ultramafic. On Star 3, a limestone body with a vent-like appearance has been noted. The limestone forms an ovoid on surface and is exposed in a cliff face showing it to be vertical. An object which resembles heliophylum was found in the limestone. On Star 5, siltstones are in contact with pyroxenite of the HC and HA zones. Tuffs appear to Tuffs appear to form a pendant over the pyroxenite in another area. Minor limestone has also been noted on the Star 5 claim. On the Star 6, the ultramafic appears to abruptly end at limestone, argillite and jasper of the Lay Range Assemblage. On the Star 7, substantial amounts of siltstone are found on the ridge between Aries and Taurus Creeks. The siltstone appears to form a roof pendant over the ultramafic.

6.2 Dunite

Dunite is the predominant lithology on the Star claims. Yellow to orange weathering, the dunite is black on fresh surface. The dunite is fine grained. Occasionally the dunite contains very coarse grained (2.5 cm) flakes of phlogopite, biotite or muscovite which can form up to 25% of the dunite. Thin section analysis suggests that the mica is of secondary origin.

The dunite typically forms layers, generally flatlying, but steeply dipping at the eastern contact of the Polaris Complex. However, dunite has also been found to form "pipe-like" structures and dykes which cross-cut olivine pyroxenite/pyroxenite units.

6.3 Peridotite

Peridotite is the second most abundant lithology on the Star claims and is usually blackish in colour, fine grained, dense and fresh in appearance. Peridotites are found adjacent to the dunite core. Occasionally pyroxene crystals up to 2.5 cm are observed. The peridotites also occasionally contain phlogopite, biotite or muscovite flakes up to 2.5 cm which can form up to 25% of the rock.

6.4 Olivine Clinopyroxenite

Olivine clinopyroxenite forms a somewhat discontinuous zone adjacent to the peridotite and is often separated from the peridotite by wehrlite. This unit ranges from fine grained to coarse grained. In the vicinity of a diorite stock on the Star 2 claim, pyroxene crystals up to 1 cm in length and porphyroblasts of olivine up to 7 mm have been seen.

6.5 Pyroxenite

There are two types of pyroxenite. The primary form of pyroxenite is part of the ultramafic suite of rocks and is found adjacent to the olivine clinopyroxenite. The pyroxenite is generally coarse grained and contains variable amounts of feldspar ranging from trace amounts to 20%. The feldspar occurs as interstitial fillings between the pyroxene crystals.

A second type of pyroxenite is formed from metamorphism and metasomatism of the ultramafic, particularly the dunites and is related to granitic activity. On Capricorn Ridge and elsewhere, pyroxenitic haloes were seen forming around diorite dykes which intruded dunite. The haloes are gradational and vary from fine grained felted pyroxenite to unaltered dunite. A larger diorite stock on the Star 3 claim has also produced a pyroxenite halo with pyroxene phenocrysts up to 5 cm in length. The pyroxenite grades to amphibolite as the diorite is approached and grades to unaltered peridotite away from the diorite contact.

6.6 Amphibolite

The amphibolite is black and ranges from fine grained felted material to porphyritic with hornblende crystals up to 15 cm in length. Occasionally, the amphibolite contains minor amounts of white feldspar as an interstitial component. The amphibolite is a metamorphic and metasomatic halo associated with granitic activity. The amphibolite has been previously reported to be a thermal and metasomatic halo of the Polaris Complex occurring only at the outer contact of the ultramafic lithologies. However, it was noted during the 2004 sampling that amphibolite is conspicuously absent from numerous ultramafic-country rock contacts. The major amount of amphibolite occurs on the Star 3 and Star 4 claims and is always associated with numerous fine grained diorite stocks and dykes.

6.7 Diorite

Diorite is found as stocks of variable size and as dykes. Diorite is particularly abundant on the western side of the Polaris Complex. Diorite ranges from fine grained to medium grained and is relatively fresh in appearance with minor local areas of K-spar veining, carbonate veining or pervasive epidote alteration. Hornblende comprises 30% of the diorite. The large diorite stock on the Star 3 claim is medium grained except near the contact with the ultramafic. Here the diorite is fine grained, dark grey with both augite and hornblende. It also has dark grey fragments of presumably ultramafic. The contacts of the diorite stocks are frequently marked by listwanite.

6.8 Feldspar (Hornblende) Pegmatite

Feldspar pegmatite dykes range in width from 0.3 to 10 meters and also range in composition from total feldspar to a combination of feldspar and hornblende. When composed totally of feldspar the dykes are white. Orthoclase, plagioclase and sanidine are the only minerals in these dykes. Variable amounts of hornblende is found in the feldspar-hornblende (FH) dykes where hornblende crystals can reach 15 cm in length. The feldspar pegmatite dykes on Capricorn Ridge seem to form a parallel swarm of dykes which can be traced for 6 km. The dykes appear to be controlled by lithological/chemical changes within the ultramafic. Occasionally, the dykes have metasomatic haloes of fine grained metapyroxenite or listwanite.

6.9 Diabase

Diabase has only been seen in drill holes and appears to be gradational to feldspathic pyroxenite. Diabase is composed of 80% black pyroxene and 20% white saussuritized feldspar. In part, this unit may be contaminated diorite where the surrounding ultramafic may have been incorporated into diorite magma.

6.10 Granite

A small granite dyke and granite talus were found on the Star 5 claim. The granite dyke is pink in colour whereas the granite talus was intensely pervasively replaced by epidote.

6.11 Gabbro

One dyke of gabbro was located south of Capricorn Ridge. The east-west trending dyke is black with minor white interstitial feldspar. The dyke has formed a well developed metamorphic, metasomatic halo of porphyritic pyroxenite and porphyritic amphibolite in the dunite which the dyke intrudes.

6.12 Feldspar-Hornblende-Quartz Pegmatite (FHQ)

It is unclear whether this unit is a primary lithology or an alteration feature. Unlike the feldspar pegmatite mentioned in section 6.8, the FHQ does not form dykes. The FHQ was first noted on Stinky Creek in 2002. Mapping in 2003 located numerous areas of FHQ along the upper contact of the Haslinger C (HC) pyroxenite. Generally, the FHQ is intensely oxidized due to considerable pyrrhotite. When broken the FHQ resembles diorite but on cut surface the pegmatitic texture is plainly visible. The cut surface shows white ovoid patches of feldspar and quartz up to 15 cm in length in a matrix of dark greenish grey to black pyroxenite which has considerable amounts of white interstitial feldspar. Within the larger feldsparquartz-filled ovoids, hornblende crystals emanate from the walls of the ovoid. The hornblende is greenish black, euhedral and reach 5 cm in length. The FHQ appears to be gradational into pyroxenite/ olivine clinopyroxenite.

6.13 Lamprophyre

This new lithology was discovered in 2005 on the Star 7 claim and is tentatively identified as a lamprophyre as it occurs as a pipe with possible rafts of very altered pyroxenite and dunite. The lamprophyre is black, aphanitic and very fresh in appearance.

6.14 Tuff

Several areas of tuff have been found on the Star 5 and Star 7 claims. The tuff is located at the upper contact of the Haslinger C zone and also forms roof pendants on the Star 5 and Star 7 Tuff has also been seen on the GL Zone, claims. occurring as large rounded boulders and also as talus on the Star 3 claim. The tuff is a very fine grained, pale beige, dense, generally textureless and frequently rusty weathering. Occasionally, bands of dark grey layering can be observed suggesting that the tuff could be an alteration product, probably potassic, associated with nearby diorite intrusives. The tuff can be shattered into angular pieces and also shows cobweb-like fractures suggesting that the tuff was a hot ash deposited in an aquagene environment.

6.15 Sediments

Sediments consisting of siltstone and limestone have been noted on the Star 2, 3 and 5 claims. Flat-lying, interbanded siltstone and chert which forms a cap over olivine clinopyroxenite was located on the Star 2 claim south of Capricorn Ridge. The northern contact is in sharp fault contact with micaceous dunite.

The siltstone on the Star 5 claim has been seen in several areas, the HC grid at 3+00S/4+50E and the HA grid at 1+00N/1+00W. The HC siltstone forms an extensive vertically dipping outcrop which appears to be sandwiched between pyroxenite and amphibolite. The siltstone shows signs of thermal metamorphism in that former argillaceous areas have been altered to schlieren of black biotite.

The HA siltstone appears to be a westerly-dipping unit of unknown dimensions. The siltstone also appears to be sandwiched between pyroxenite and amphibolite. The siltstone also shows signs of thermal metamorphism in that it is biotite-rich.

Siltstone was also noted on the Star 11 claim located at the southeast end of the Polaris Complex. The siltstone is locally highly metamorphosed containing abundant disseminated magnetite. Three areas of limestone have been noted. On the Star 3 claim a white limestone body is exposed in a cliff face. The limestone appears to be a vertical pipe which forms an ovoid on surface. An object which resembles heliophyllum was found in the limestone.

A second small outcrop of limestone was located on the Star 5 claim on a ridge above the HA grid. The small outcrop protrudes through the surrounding tuff and is in contact with peridotite. The limestone has the typical grey, mottled appearance of the Cache Creek Group limestones.

Limestone is also found on the Star 6 claim and forms the westerly limits of the Polaris Ultramafic Complex. The limestone is buff or white in colour, frequently cut by white carbonate veinlets and carbonate-filled tension gashes. Occasionally, the limestone is brecciated with limestone fragments in a limestone matrix. Minor chert is also present.

Argillite has been seen in two areas. On the Star 11 claim it forms the southeastern limits of the Polaris Ultramafic Complex. On the Star 6 claim argillite forms part of the sedimentary package forming the westerly limits of the Polaris Complex.

7.0 Mineralization

7.1 General

Mineralization of economic significance consists of magmatic Pt-Pd+/-Au-bearing chalcopyrite with pyrrhotite, pentlandite, pyrite and trace amounts of bornite and primary covellite. To date, the best values for Cu, Pt and Pd have been found in olivine clinopyroxenite and magmatic pyroxenite.

Several areas of significant mineralization have been located and in order of importance are:

Queen Zone, GL Zone, Haslinger A, B, C Zones, Ridge Zone, Grid Zone and Jewel Box Zone. Three new zones were briefly examined in 2005 and are the 661 Zone, the Virgo Zone and the Cauldron. Although termed zones, all of the above zones are layers, generally flat-lying, of either olivine clinopyroxenite or magmatic pyroxenite.

7.2 Olivine Clinopyroxenite

Mineralization in this unit consists of 3 to 10% very fine grained to fine grained, magmatic, disseminated chalcopyrite and pyrite with lesser amounts of pyrrhotite, bornite and primary covellite. The sulphides show some remobilization near granitic dykes and stocks and form thin sulphide-filled fractures. There is no associated gangue with the sulphides. The sulphides are not accompanied by any discernible alteration.

7.2a Queen Zone

The Queen Zone was discovered in 2001 and is exposed on the north-facing cliff face of Capricorn Ridge. The Queen Zone appears as a slightly rusty weathering layer which is relatively flat-lying and has a gentle southerly dip. The Queen Zone can be traced for 500 meters and is at least 20 meters thick. The Queen Zone probably exceeds 20 meters in thickness but is covered by talus. Mineralization in the Queen Zone consists of very fine grained to fine grained, disseminated, magmatic chalcopyrite, pyrite with Sulphide lesser amounts of pyrrhotite and bornite. content ranges from 3 to 10%. No visible alteration is present. Some results obtained from the Queen Zone include:

11811 ppm	Cu	174	ppb	Au	46	ppb	Pt	109	ppb	Pd
1405 ppm	Cu	166	ppb	Au	581	ppb	Pt	1552	ppb	Pd
4552 ppm	Cu	123	ppb	Au	62	ppb	Pt	152	ppb	Pd

There is only sporadic nickel and cobalt values associated with sulphides in this zone.

7.2b GL Zone

The GL Zone is located approximately 1 km north of the Queen Zone. The GL Zone consists of rusty weathering, sporadic outcrops and float found over an area of 500 meters by 200 meters. The GL Zone is in part a rather flat-lying layer but drilling has shown it is more complex than first thought being complicated by folding and faulting. In addition, numerous intrusions of feldspar pegmatite have resulted in metasomatic alteration resulting in the formation of pegmatitic pyroxenite which effectively has removed any pre-existing mineralization. The main GL Zone outcrop and ddh GL-04-02 indicate that the GL Zone is approximately 20 meters thick. The mineralized olivine clinopyroxenite layer is generally overlain by a dunite layer. Mineralization consists of very fine grained to fine grained, magmatic, disseminated chalcopyrite, pyrite, pyrrhotite with minor bornite and primary covellite. The GL Zone appears to have more pyrrhotite than the Queen Zone. Sulphide content ranges from 3 to 15% and is not accompanied by any discernible alteration. Some results obtained from the GL Zone include:

7677 ppm Cu 2474 ppm Ni 833 ppm Co 55 ppb Au 59 ppb Pt 91 ppb Pd 2729 ppm Cu 1647 ppm Ni 77 ppm Co 60 ppb Au 268 ppb Pt 435 ppb Pd 3457 ppm Cu 468 ppm Ni 60 ppm Co 28 ppb Au 347 ppb Pt 488 ppb Pd

Surface geology and an IP survey suggests that the GL and Queen Zones, although disrupted by faulting were originally one mineralized layer.

7.2c Ridge Zone

The Ridge Zone consists of interbedded olivine clinopyroxenite and peridotite. Mineralized olivine clinopyroxenite has been traced for approximately 500 meters. The layers appear to be gently southerly dipping. The entire ridge appears to overlay a massive diorite plug. Some values obtained from the Ridge Zone include:

3020	ppm	Cu	39	ppb	Au	277	ppb	Pt	254	ppb	Pđ
6687	ppm	Cu	43	ppb	Au	54	ppb	Pt	45	ppb	Pd
725	ppm	Cu	848	ppb	Au	221	ppb	\mathtt{Pt}	168	ppb	Pd

7.2d Haslinger B

The Haslinger B Zone is located on a southwesterly trending ridge between Libra and Aries Creeks. The ridge is underlain by layers of peridotite, olivine clinopyroxenite and pyroxenite which have a northeasterly dip. Some values obtained from the olivine clinopyroxenite are:

1838	ppm	Cu	795	ppb	\mathtt{Pt}	1109	ppb	Ρđ			
237	ppm	Cu	280	ppb	Pt	368	ppb	Pd			
3054	ppm	Cu	303	ppb	Ρt	328	ppb	Pd			
892	ppm	Cu	1320	ppb	Pt	1822	ppb	Pđ	6.7	ppb	Rh

7.3 Pyroxenite

Primary pyroxenite is locally well mineralized with pyrrhotite, chalcopyrite, pentlandite and pyrite. The sulphides are of magmatic origin and range in content from 0 to 40%. The sulphides are generally coarse grained and form as disseminations and ovoid clots up to 2.5 cm in diameter. In some areas, a second stage of sulphide mineralization is present and occurs as mainly pyrite forming rims around pyroxene crystals and chalcopyrite grains. The second stage of sulphide mineralization is believed to be from either remobilization or pre-existing magmatic sulphides by nearby granitic dykes or stocks or from the granitics themselves as they are occasionally well mineralized with pyrite and lesser amounts of chalcopyrite =/- bornite.

7.3a Haslinger A and C

The Haslinger A and C (HA, HC) Zones are composed completely of coarse grained pyroxenite. Sulphides which range from 1 to 30% consist of pyrrhotite, chalcopyrite, pentlandite and pyrite and are generally fine grained except for several specimens from Stinky Creek which is part of the HC Zone. Cut surfaces show magmatic clots, occasionally solid chalcopyrite, of up to 1 cm in diameter. Some values obtained from the HA and HC Zones include:

 8700 ppm Cu
 1800 ppm Ni
 118 ppb Au
 408 ppb Pt
 834 ppb Pd

 4221 ppm Cu
 1770 ppm Ni
 72 ppb Au
 443 ppb Pt
 608 ppb Pd

 1334 ppm Cu
 100 ppb Pt
 105 ppb Pd

7.3b Jewel Box Zone

The pyroxenite of the Jewel Box Zone is mineralized with coarse grained pyrite and chalcopyrite which can form up to 40% of the rock. The Jewel Box sulphides are geochemically distinct from the Queen Zone, the GL Zone, the Haslinger Zones in that they are highly anomalous in cobalt and silver which probably reflects the secondary sulphide mineralization related to granitic activity in the area. The best value obtained from the Jewel Box Zone is:

2697 ppm Cu 94 ppb Pt 84 ppb Pd

7.4 Metasomatic/Metamorphic Pyroxenite

Pyroxenite of metamorphic, metasomatic origin is generally unmineralized but where sulphides do occur, they are coarse grained and consist dominantly of pyrite with minor chalcopyrite. Nickel, cobalt, silver and gold are absent from this unit. Generally Pt and Pd are less than 20 ppb combined. The best values obtained from this lithology include:

975	ppm	Cu	35	ppb	Pt	50	ppb	Pd
138	ppm	Cu	46	ppb	Pt	50	ppb	Pd

7.5 Amphibolite

Although locally well mineralized with pyrite and minor chalcopyrite, this unit contains relatively low Pt and Pd values. The sulphides are coarse grained and disseminated throughout the rock when present. The sulphides show remobilization occurring as wormy streaks. Total sulphide content may reach up to 40% of the rock. The best value obtained from this unit is:

2692 ppm Cu 28 ppb Pt 52 ppb Pd

7.6 Diorite

The diorites are locally well mineralized with coarse grained pyrite, minor chalcopyrite and some bornite. Sulphides occur as disseminations and on fracture surfaces. The sulphides also occur as massive fracture fillings with no gangue and rarely in quartz veinlets. On the Star 2 claim, shear zones within the diorite are well mineralized with pyrite and minor chalcopyrite. The best values from the diorite are:

1840 ppm Cu 10 ppb Pt 14 ppb Pd

7.7 Feldspar +/- Hornblende Pegmatite

Drill core has shown that the F+/-H pegmatite is occasionally mineralized with coarse clots of pyrrhotite +/- chalcopyrite. The FHQ pegmatite of Stinky Creek is also well mineralized with pyrrhotite which forms up to 20% of the rock. The best values obtained from this unit are:

1133	ppm	Cu	51	ppb	\mathtt{Pt}	35	ppb	Pd
299	ppm	Cu	125	ppb	Pt	173	ppb	Pd

7.8 Listwanites

The listwanites are host to minor very fine grained pyrite and occasionally arsenopyrite. Gold values in the listwanites range from nil to 110 ppb but are usually nil. A soil sample of residual material from a listwanite returned a value of 8631 ppb Au. The listwanites also occasionally have weak Pt and Pd values the best being 72 ppb Pt.

Drill core in several holes show that the listwanite (actually carbonate alteration) are often mineralized with native arsenic.

7.9 Other

The dunites and peridotites are host to very fine grained nickel sulphides, minor chromite and in several areas chalcopyrite. Generally Pt and Pd values are only in trace amounts in both the dunite and the peridotite. Sporadically, the chromites contain Pt values, the best being 785 ppb Pt. A sample of chalcopyrite-bearing dunite returned a value of 2143 ppm Cu, 30 ppb Pt and 13 ppb Pd.

Sediments are generally devoid of any mineralization. Siltstones on rare occasions have up to 10% disseminated pyrite but have returned no significant values of any kind.

8.0 Alteration

The most extensive alteration on the Star claims is the porphyritic hornblendite and porphyritic pyroxenite metamorphic and metasomatic halo surrounding the diorite stocks. Hornblende crystals commonly reach 15 cm in length but are generally 10 cm long. Memoir 274 reports that hornblende crystals up to 1 meter in length were found. Pyroxene crystals average 5 cm in length. Porphyritic hornblendite occurs immediately adjacent to the contact of diorite stocks whereas the porphyritic pyroxenite is more distal from the diorite contact. The porphyritic hornblendite and the porphyritic pyroxenite are separated by a zone of both porphyritic hornblendite and porphyritic pyroxenite intermized. Metamorphic and metasomatic haloes are found near the contact of feldspar +/- hornblende pegmatite dykes. The alteration halo varies from the development of pegmatitic pyroxenite, the growth of pegmatitic phlogopite in altered pyroxenite to the development of a black hornblendemagnetite selvage in pyroxenite.

The most obvious alteration is the red-orange weathering carbonate listwanite zones which are located at the contact of the diorite stocks and dykes, occasionally at the contacts of the feldspar pegmatite dykes and also along fault zones. Several listwanites also appear to form along lithological changes within the ultramafic. The largest listwanite zone found to date is the Ruby Zone which measures 500 meters in length and 50 meters in width. The Ruby Zone listwanite is composed dominantly of carbonate with minor guartz and mariposite.

Several zones of carbonate alteration were encountered in drill holes. The carbonate is different from the orangered weathering listwanites in that they are dominantly calcite and do no contain quartz or mariposite. They do however form at the contacts of diorite frequently.

Coarse grained phlogopite, biotite and muscovite occur in dunites, peridotite and occasionally pyroxenites in close proximity to diorite intrusives and feldspar +/- hornblende pegmatite dykes. The mica which composes up to 25% of the rock is commonly 1 cm in diameter but reaches up to 2.5 cm on occasion. Phlogopite is particularly abundant in drill hole GL-04-01 forming pegmatitic veinlets and also replacing pyroxene crystals.

Other than the presence of mica, most ultramafic lithologies seen on surface appear to be fresh save for small areas of weak serpentinization. Several drill holes on the HC Zone show very strong serpentinization which is probably related to the presence of a diorite intrusive and numerous FH pegmatite dykes.

Alteration of the diorites and granite intrusives range from fresh to intensely pervasively epidotized. A thin section examination of one altered diorite places the alteration as typical greenschist assemblage. Minor potassic alteration and rare carbonate and quartz veinlets are occasionally present. 9.0 Work Program

In 2005, three trips were made to the Star claims, in June, September and October.

In June, 37 rock samples and 11 soil samples were collected and analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES. In addition, 9 rock samples collected previously were analysed for (1F) 26 elements by ICP, (4A) 14 element whole rock analyses by ICP mass spectrometer and (4B) 28 elements by ICP-MS.

In September, 61 rock samples and 2 soil samples were collected and analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES. In addition, 4.2 km of picketed grid lines were placed on the HB Zone, the Queen Zone and the Cauldron Zone with stations every 25 meters in preparation for an IP survey. Nine hundred twenty-five meters on one line was picketed over the HB Zone, 1.225 km on one line was picketed over the Queen Zone and 2.05 km was picketed on three lines over the Cauldron Zone. Minor mapping was done along line CO+OOE.

In October, an IP survey was attempted and an additional line was picketed in the Cauldron area. Eleven hundred meters of line was picketed with stations every 25 meters. Chargeability and resistivity surveys were conducted on line HB from 6+00S to 2+75N totalling 875 meters and on one line in the Cauldron Zone, C0+00E from 1+00S to 7+75N totalling 875 meters. Inclement weather terminated the remainder of the IP survey.

In addition, 11 pulps were analysed for Ni/Ox by ammonium citrate ICP-ES.

10.0 Sample Descriptions

Location: 661 Ridge, Star 10

Sample Number	Description	Cu ppm	Pt ppb	Pd ppb
158772	Brownish weathering dark greenish black, c.g. pyroxen- ite; highly serpentinized; NVS; non-magnetic	3	-	-
158773	Dominantly light brownish weathering dark greenish black c.g. serpentinized pyroxenite with irregular patches of peridotite? NVS in pyroxenite; vvfg silvery white metallic in peridotite; pyroxenite non to weakly magnetic; peridotite very strongly magnetic	2	-	· _
158774	Light brownish weathering dark greenish black serpent- inized c.g. pyroxenite; tr to 0.5% vvfg diss'd sulphide; weakly magnetic	2	23	4
158775	Dark greenish black ol cpx with vcg 1 cm black pyx xls; serpentinized; some rusty stain on surface; tr vvfg diss'd sulphide; non- magnetic	-	-	-
158776	Slightly rusty weathering dark greenish black, serpent- inized ol pyx-wehr with mg to cg (0.5 cm) black pyx xls; tr vvfg diss'd sulph; non-mag	1	3	1
158777	Brownish weathering,dark brownish black serpentinized wehr? pdt? with mg to cg pyx phenos; tr vvfg diss'd pyr; non-mag except for black magnetite-rich streak - very magnetic	1	12	2
158778	Knobby weathering dark brownish black serpentinized wehr with mg pyx phenos; tr vvfg diss'd sulph; non to weakly magnetic	1	4	1

-

Sample Number	Description	Cu ppm	Pt ppb	Pd ppb
158779	Very rusty, hackly weather- ing serpentinized brown dunite and mg wehr; tr vvfg sulph in wehr; dunite weakly magnetic; wehr non-mag	1	11	2
779 158780	Soil; Reddish brown weathering fol'd dark grey dunite; tr vvfg diss'd sulph; weakly to moderately magnetic	15 2	24 4	14 -
158781	Brownish weathering dark greenish black fg pdt; fresh looking; tr to 0.5% diss'd sulph; mod. magnetic	2	15	4
158782	Hackly weathering dark greenish black mg ol pyx; weakly serp'd; o,5% vvfg diss'd sulph; non-mag	1	8	5
158783	Dark greyish black cg ol pyx; weakly serp'd; tr vvfg diss'd sulph; non-mag	-	7	9
158784	Cauldron: dark greenish black mg ol pyx-pdt?; weakly serp'd; tr vvfg diss'd sulph; non-mag	209	32	47
158785	202 Creek: dark greenish black cg ol pyx; pyx phenos to 1 cm long; weakly serp'd; tr vvfg diss'd sulph; non-mag	1	1	1
785	Soil from breccia zone; breccia a black cg serp'd pyx with numerous rusty brown fragments	38	9	7
785+10	Soil;	89	9	11
158786	Brownish weathering dark greyish black cg ol pyx; weakly serp'd; tr vvfg diss'd sulph; non-mag	1	2	2
158787	Slightly brownish weathering dark greyish black vfg pdt; fresh; tr vvfg diss'd sulph; non-mag	65	8	8

Sample Number	Description	Cu ppm	Pt ppb	Pd ppb
158788	Weakly reddish brown weathering dark greyish black vcg ol pyx; av. xl size 0.5 cm; weakly serp'd; tr vvfg diss'd sulph; non-mag	-	3	2
158789	Hackly weathering cg dark greyish black ol pyx; weakly serp'd; tr vvfg diss'd sulph; non-mag	5	3	2
158790	Slightly brownish weather- ing dark greyish black vfg ol pyx; tr vvfg diss'd sulph; occ brown fg phlogo flake; non-mag	4	7	8
158791	Slightly brownish weathering med greenish black mg ol pyx; mod serp'd; tr vvfg diss'd sulph; silvery metallic; also black xls - looks like magnetite but non-mag	2	5	5
158792	Hackly weathering dark greyish green sucrosic friable dunite; mod serp'd; NVS; non-mag	2	4	2
201-1	Soil	30	19	10
201-2	Soil	19	12	6
158793	Red brown weathering black fresh-looking vfg pdt; NVS; non-mag	2	4	2
158794	Dark grey slightly brownish weathering fresh vfg pdt with frags of hackly weathering vcg dark greenish v serp'd ol pyx; pdt cut by magnetite-rich seam; NVS; variable mag - generally non except for mag-rich seam	3	8	3
158795	Med greenish grey cg ol pyx; highly serp'd; NVS; non-mag	5	9	9
158796	Medium greyish green vcg wehr; mod serp'd; NVS; mag variable generally non to locally very strong	4	14	12
796+10	Soil	89	10	10
796+20	Soil	31	12	8
796+30	Soil	33	21	9
158797	Hackly weathering dark greyish green cg ol pyx; mod serp'd; tr vvfg diss'd sulph;	-	194	24

Sample Number	Description	Cu ppm	Pt ppb	Pd ppb
158798	Hackly weathering dark greyish black cg ol pyx; mod serp'd; tr vvfg diss'd sulph; mag variable - non to locally weak	1	14	5
158799	Cauldron: orange brown, hackly weathering cg wehr; weakly serp'd ol more so than pyx; tr vvfg diss'd sulph; strongly mag	4	12	4
158800	Cauldron: hackly weathering dark greenish black cg wehr; fresh; tr vvfg diss'd sulph; non-mag	3	2	1
158801	Cauldron: hackly weathering dark greyish black cg wehr; mod serp'd; tr vvfg diss'd sulph; non-mag	_	3	4
158802	Cauldron: red brown hackly weathering; dom black vfg dun; fresh; NVS; strongly mag; band or frag of dark greenish black cg ol pyx with	11	8	4
158803	tr vvfg diss'd sulph; non-mag Cauldron: hackly weathering dark olive green cg wehr; tr vvfg diss'd sulph; non-mag	3	10	6
158804	Cauldron: deep red brown hackly weathering; dom brownish black vfg wehr; fresh; NVS; non-mag; frag or band of black fresh cg wehr; tr vvfg diss'd sulph;	3	3	2
804	non-mag Soil	27	15	7
ED 1 ED 2	Soil Soil	13 216	124 20	23 19
158805	Hackly weathering med greyish green cg wehr; black 1 cm patches of altered pyx phenos; highly serp'd; NVS; mod mag	16	-	1
158806	Med greyish green highly serp'd peg ol pyx with black remnant patches of pyx phenos up to 2 cm long; tr vvfg diss'd sulph; black patches strongly mag; greyish green non	8	5	3

-

Sample Number	Description	Cu ppm	Pt ppb	Pd ppb
158807	Dark greenish grey cg wehr; mod serp'd; tr vvfg diss'd sulph; variably mag from mod to strong	17	7	-
158808	Dark greenish black cg ol pyx; fresh; tr vvfg diss'd sulph; strongly mag	6	5	3
72700	158683: HC Zone	4221	443	608
70701		4956		657
72701	R 2: GL Zone	3680		242
72702	158574 - Stinky Creek	167 652	14 6	12 5
12102	150574 - Stinky Cleek	682	-	10
72703	GL 1: 158505	2830	81	106
		1078	4	10
72704	R 1: Capricorn Ridge	25	2	10
72705	HC 4-5 from outcrop near drill drill holes HC 4 and HC 5	158	8	10
72706	Standard			
72707	Standard			
72708	GL 2: 158505	2830	81	106
		5222	51	62

				Star Property Prospecting notes due diligence work September 20-22, 2005 for Aumega Discoveries	Cu	, PE	Pd
Sample	Easting	Northing	Zone	Notes	ppm	ppb	' pp
						, . .	
STJ-05-01		6262282		Pyroxenite? Possible Pt + Cu Proximal float - talus	522,	45	. 54
STJ-05-02		"		Dunite? Lighter in composition/weathering than 01, proximal float-talus		82	, 47
STJ-05-03			Queen	Pyroxenite with chalco + trace Pyrrhotite area of grab samples to 1% Cu, foot of talus slope sample is quite rusty	2042	9	, 25
STJ-05-04		6262312	Queen	Pyroxenite with good Malachite staining, Possible good Pt sample, proximal float- talus	4552'	62	<u>, 152</u>
STJ-05-05		"	Queen	Large angular rusty bolder with trace Chalco	1607	48	, 81
STJ-05-06		6262641	Gueen GL	Heavity leached Peroxinite with Malachite and Chalco, sample from outcrop re of 158526	3457	347	and the second sec
STJ-05-07		6262625	Queen GL	Re Sample of 158525 previous sample ran .45% CU 930 NL 436 Co	2899	141	, 120
STJ-05-08		6262593	Gueen GZ	Re Sample of 158521 dun	249	50	, 84
STJ-05-09		6262730	Guoon GL	Re Sample of 158505 (good Cu)	2308	, 55	, 115
STJ-05-10		6262/4/	GueenGL	Sheared Pyroxenite Float rubble - no visible sulfides	1348	42	, 47
STJ-05-11		6262245	Cap Ridge	Dunite, float, possible Ni rock 1674 Ni 138 Co			
STJ-05-12				Pyroxenite? No visible sulfides leached	<u></u> ,	35,	
STJ-05-13	the second s	6262160	Cap Ridge	Outfile side and to 2004 with Chalco Dwrite 14 Dwrite the From both too 2175 and 2100 on sideo ID line 11/2/	616	7	, 17
STJ-05-14		6262158	Cap Ridge	Sulfide rich rock to 20% with Chalco, Pyrite +/- Pyrrhotite. From between 2+75 and 3+00 on ridge IP line wchr	37	, 14	
STJ-05-15			Cap Ridge	Sulfide rich rock with good chalco, sample between 4+25 and 4+00 on IP line wehr	3835		36
STJ-05-16		6262094		Sub-Crop with good Malachite, heavily leached/weathered rock.	1783	70	
STJ-05-17		0000004		Sulfide rich rock (heavy) with minor Malachite. Fine black stringers x cut rock Peroxinite ? No visible sulfides		90	<u>' 140</u>
STJ-05-18			Cap Ridge		46 728	23 179	; 26 ; 394
STJ-05-19	337042			Black rock 64 Au pyx	+ 120,	NS	, 217
STJ-05-20 STJ-05-21	the second s	6262060	Cap Ridge	Adjacent to narrow feldspar dyke (1m) trace chalco. (not same dyke as 05-20)	8	~~	
STJ-05-21 STJ-05-22			Cap Ridge	Dunite? Supposed good Ni sample 2421 Ni 121 Co		4	4
STJ-05-22 STJ-05-23		6262035	Cap Ridge	Trace Chalco + unidentified sulfides	13	7	16
STJ-05-23			STINKY CR	Pegmatite, Subcrop, Minor sulfides, lightly magnetic. /5854/	862	3	4
STJ-05-25			STINKY CR	Pyroxenite 25m down stream from last sample, Chalco, Pyrrhotite, Pyrite, Re of 548541	581	48	42
STJ-05-26				Same rock as last sample 25m downstream	206	94	98
STJ-05-27		6266418	STINKY CR	Sulfide rich rock, Chalco, Pyrite. Possible contact with dyke. Ni/Cu?	519	4	4
STJ-05-28				Sub-Crop 25m from last sample Re of 158676	1334	100	105
STJ-05-29				Out crop with abundant sulfides	673	28	.31
STJ-05-30				Lighter colored rock possible Ni. Dunite?	11.	15	/ /3
STJ-05-31				Same rock as last sample with visible sulfides 0+25 on HB IP line	28	35'	
STJ-05-32	334176			More mafic than 31+30. Fine disseminated sulfides.	_ 28 '	12	16
STJ-05-33				Last point Ursula sample on ridge. Ni rock?	3'	1	1
STJ-05-34	334217			Residual dirt near 2+00 0n HB line	105	34	2/
STJ-05-35	the subscription of the local division of th			Listwanite rep with good Maraposite + Sulfides	11	4	4
STJ-05-36	333949	6267555	HB	Adjacent to large Listwanite zone. Chalco + fine disseminated sulfides of PYX 36 Au	1838	124	127
STJ-05-37		6267540	HB	Hi sulfide rock, Chalco 2-3%, at 1+50 on HB line of pyx 115 Au	3054	303	328
STJ-05-38	333934			Re of 158535 pdt	48	<u> </u>	12
STJ-05-39				Trace Chalco + unidentified sulfides	27 '	, 68'	71
STJ-05-40	333679	6267259	HB	Alteration zone in contact with Gabbro dyke	20	23	20
575-0					13	. 9.	11

Nippon, Coppin, Au ppb

N

				Star Property Prospecting notes due diligence work September 20-22, 2005 for Aumega Discoveries] Cu	2th	PA.
Sample	Easting	Northing	Zone	Notas	Ppm	, ppe	ppe
43	and the second second			58 Au	1576	107	112
STJ-05-44	333747	6267655	HA	Bottom of large talus field 50m+/- from last sample 44 Arc	8.92'	1320	1822
STJ-05-45		6267649	HA	Same rock as 43+44, good Chalco Part 14 Au	891	97	108
STJ-05-46	333729			Lighter in composition Dunite? Ni?	17	14	10
STJ-05-47	332803			Pyroxenite with large well formed pyroxenes re sample of 132521	106	83	86
STJ-05-48	334553			New zone. Trace to good Chalco possible covellite	276	15'	25
STJ-05-49	334554			Same rock as 48	1300'	18	2/
STJ-05-50	334557			Same rock as 48+49	319	13'	23
STJ-05-51	334545			Residual Mineral soil, possible weathered diorite dyke, frags of serpentine occur in the soil. (green soil patch) 3 RL.	5	14	10
STJ-05-52	334533			other side of green soil patch from 05-50. Dunite? Ringing rock!		4'	1
STJ-05-53	334498	6260170	Virgo	Pyroxenite dyke cutting dunite?	304'	12'	16
STJ-05-54	334509			Possible source of green soil. Location of Virgo 1 + 2 samples for thin section	18	,	12
STJ-05-55	339767	6259702	Caldron	Arms of big X dyke. Dyke apears to be dunite cuting pyroxenite	/0 ′	13	4
STJ-05-56	н	H	Caldron	Pyroxenite wall rock	Э	42	12
STJ-05-57	340114	6259596	Caldron	Sheared crumbly dog poop rock	3,	15	es.f
STJ-05-58	340085			Breccia. Large frags of Pyroxenite cemented with dunite?	II.	19	5
STJ-05-59	_ 340075	6259868	Caldron	Breccia pipe? Circular plug/pipe like body	2	8	2
STJ-05-60	340157	6260352	Caldron	Taken on C-0+00E line @ 7+00N trace chalco	2′	- '	
STJ-05-61	340149			Pyroxenite with Chalco	1		2
STJ-05-62	340749	6259841	Caldron	Dunite rep. Vicitity of start of 700E line	3'	<i>L'</i>	4
STJ-05-63	340770	6259828	Caldron	Pyroxenite underlying dunite bolder field	17'	5'	/ .
STJ-05-64	340773	6260148	Caldron	Taken on 7+00E @ 4+65+/-	2	57	2
						/	1997 To 1997 To 1997 To 1997 To 1997

Au ppb. Rh ppb

11.0 Geophysics

11.1 Purpose

An induced polarization (IP) survey of chargeability and resistivity was carried out on two picketed lines one on the HB Zone and one on the Cauldron area.

The purpose of the HB IP survey was to correlate geology, significant mineralization with the IP survey. Drilling in 2004 targeted chargeability highs with coincident resistivity lows. The drilling showed that the chargeability highs were sulphide induced some of which carried no significant economic values. It was hoped that by testing the HB Zone with known geology and mineralization a clearer picture would be made as to what chargeability highs are more prospective for economic mineralization. Eight hundred seventy five meters of line was surveyed.

The Cauldron area was selected for an IP survey as sampling in June 2005 showed the area, although presently mapped as dunite, to be underlain by pyroxenite/olivine pyroxenite. Dunite is present as "pipes" and dykes and occasionally as larger pods or lenses or as disrupted layers. The configuration of the dunite indicates much disrupted layering which is believed to be caused by sulphide-rich pyroxenite/olivine pyroxenite which overlies the dunite. Eight hundred and fifty meters of line was surveyed.

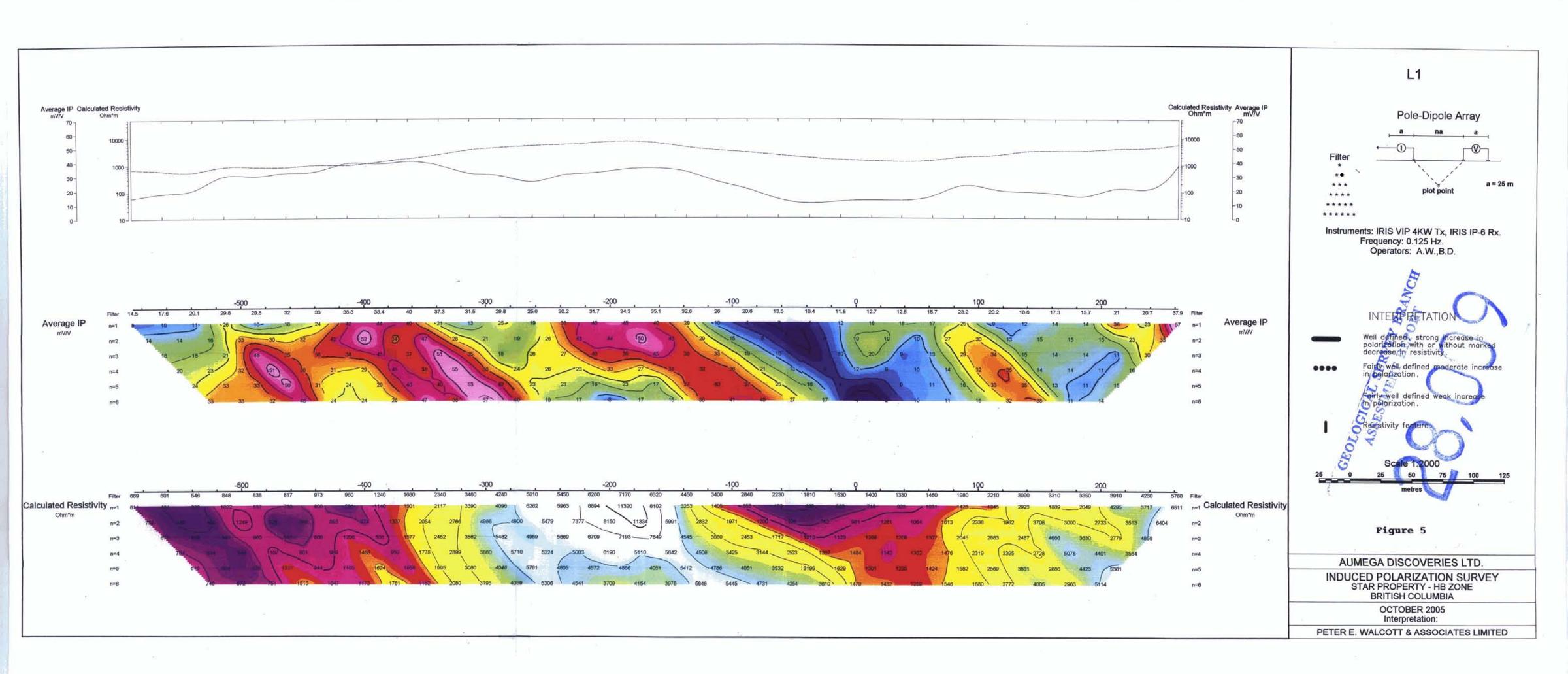
11.2 Method/Procedure

The following (page 32) is from Alex Walcott of Peter E. Walcott and Associates who performed the IP survey on the HB and Cauldron lines.

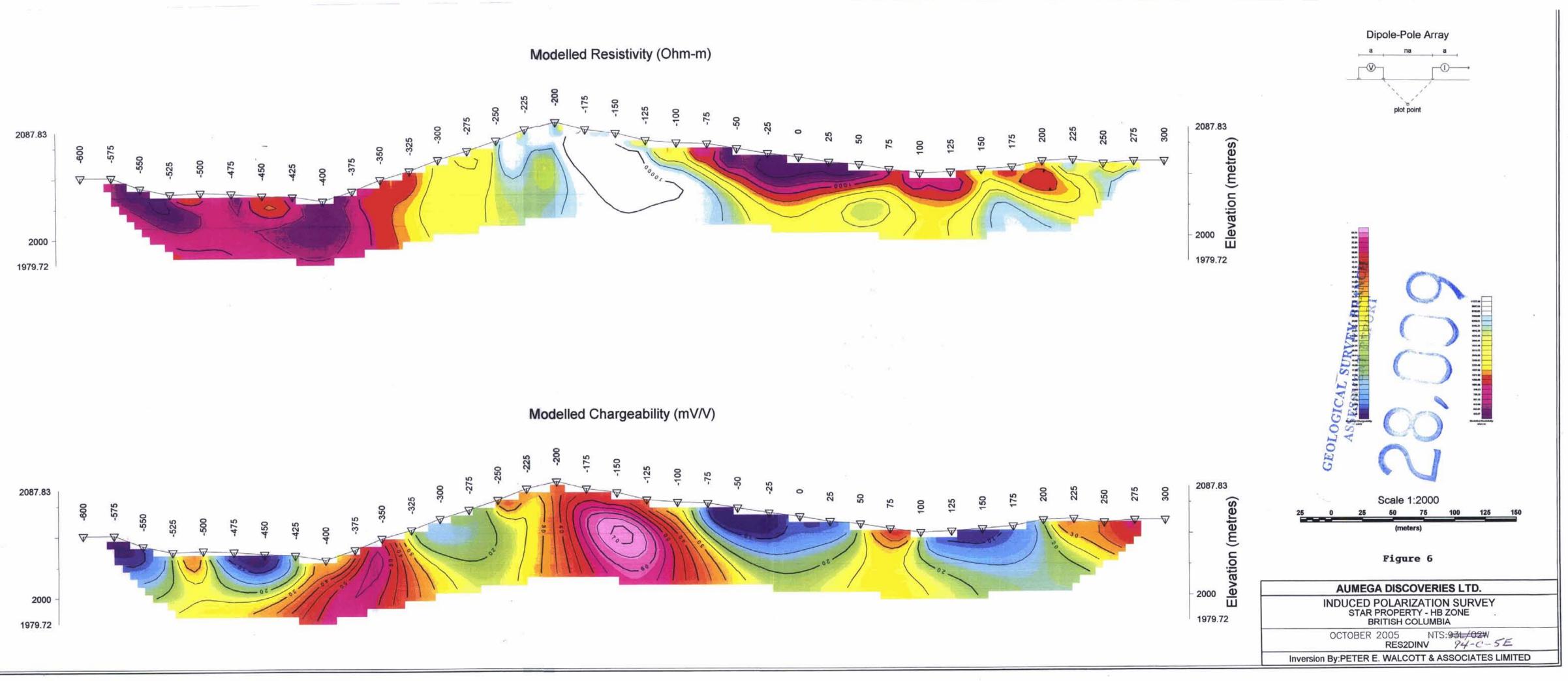
Induced Polarization Surveying.

The induced polarization (I.P.) survey was conducted using a pulse type system, the principal components of which are manufactured by Iris Instruments of Orleans, France.

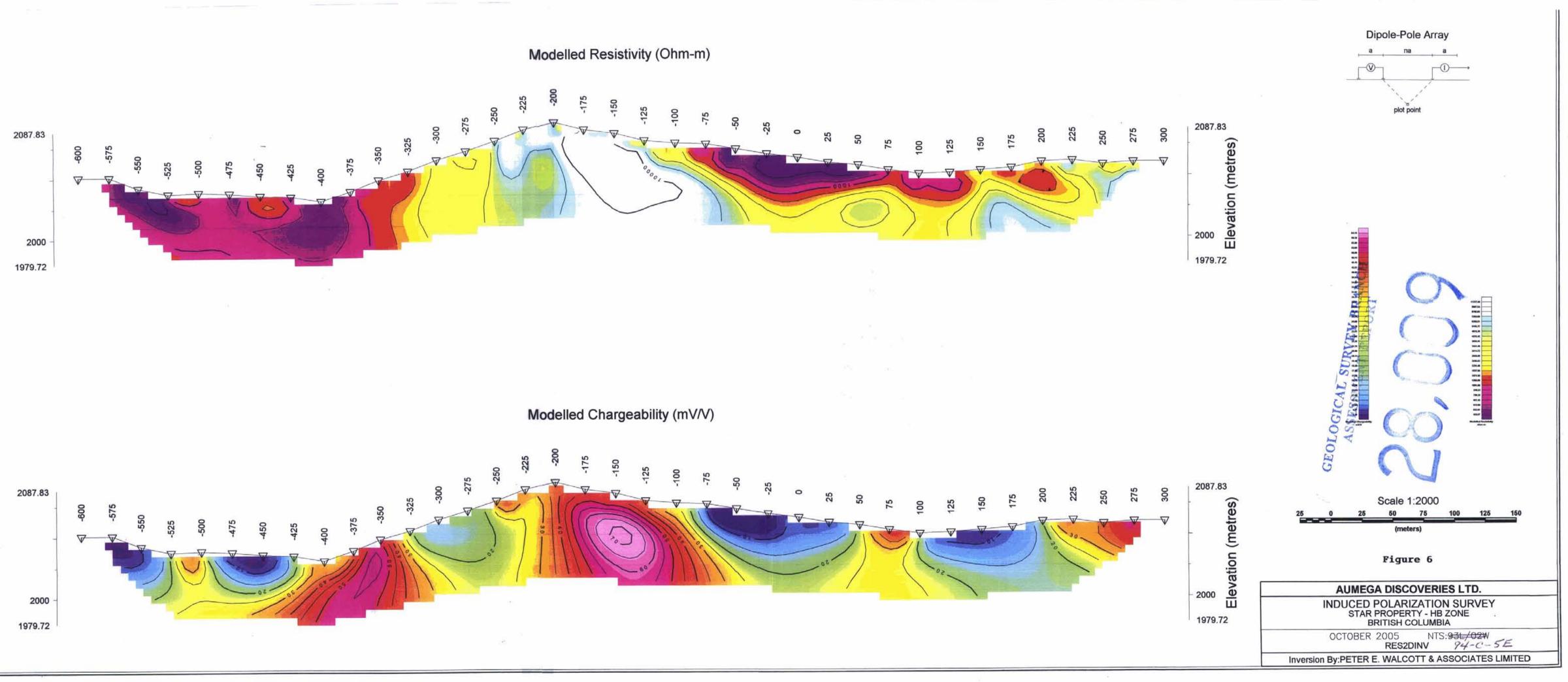
The system consists basically of three units, a receiver (Iris), transmitter (Iris) and a motor generator (Honda). The transmitter, which provides a maximum of 4.0 kw d.c. to the ground, obtains its power from a 6.5 kw single phase alternator driven by a gasoline engine. The cycling rate of the transmitter is 2 seconds "current-on" and 2 seconds "current-off" with the pulses reversing continuously in polarity. The data recorded in the field consists of careful measurements of the current (I) in amperes flowing through the current electrodes C_1 and C_2 , the primary voltages (V) appearing between any two potential electrodes, P_1 through P_7 , during the "current-on" part of the cycle, and the apparent chargeability, (M_a) presented as a direct readout in millivolts per volt using a 120 millisecond delay and a 900 millisecond sample window by the receiver, a digital receiver controlled by a micro-processor – the sample window is actually the total of ten individual windows of 90 millisecond widths.


The apparent resistivity (\int_a) in ohm metres is proportional to the ratio of the primary voltage and the measured current, the proportionality factor depending on the geometry of the array used. The chargeability and resistivity are called apparent as they are values, which that portion of the earth sampled would have if it were homogeneous. As the earth sampled is usually inhomogeneous the calculated apparent chargeability and resistivity are functions of the actual chargeability and resistivity of the rocks.

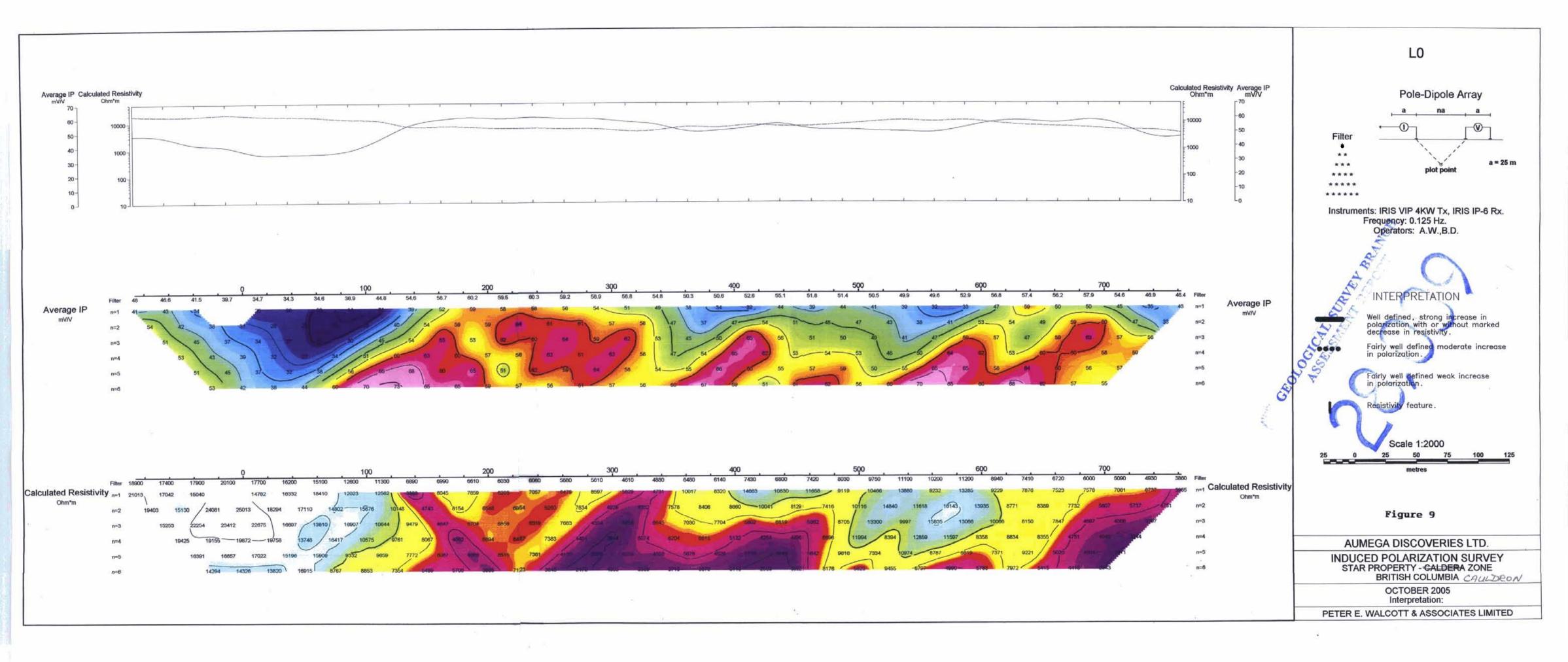
The survey was carried out using the "pole-dipole" method of surveying. In this method the current electrode, C_1 , and the potential electrodes, P_1 through P_7 , are moved in unison along the survey lines at a spacing of "a" (the dipole) apart, while the second current electrode, C_2 , is kept constant at "infinity". The distance, "na" between C_1 and the nearest potential electrode generally controls the depth to be explored by the particular separation, "n", traverse.

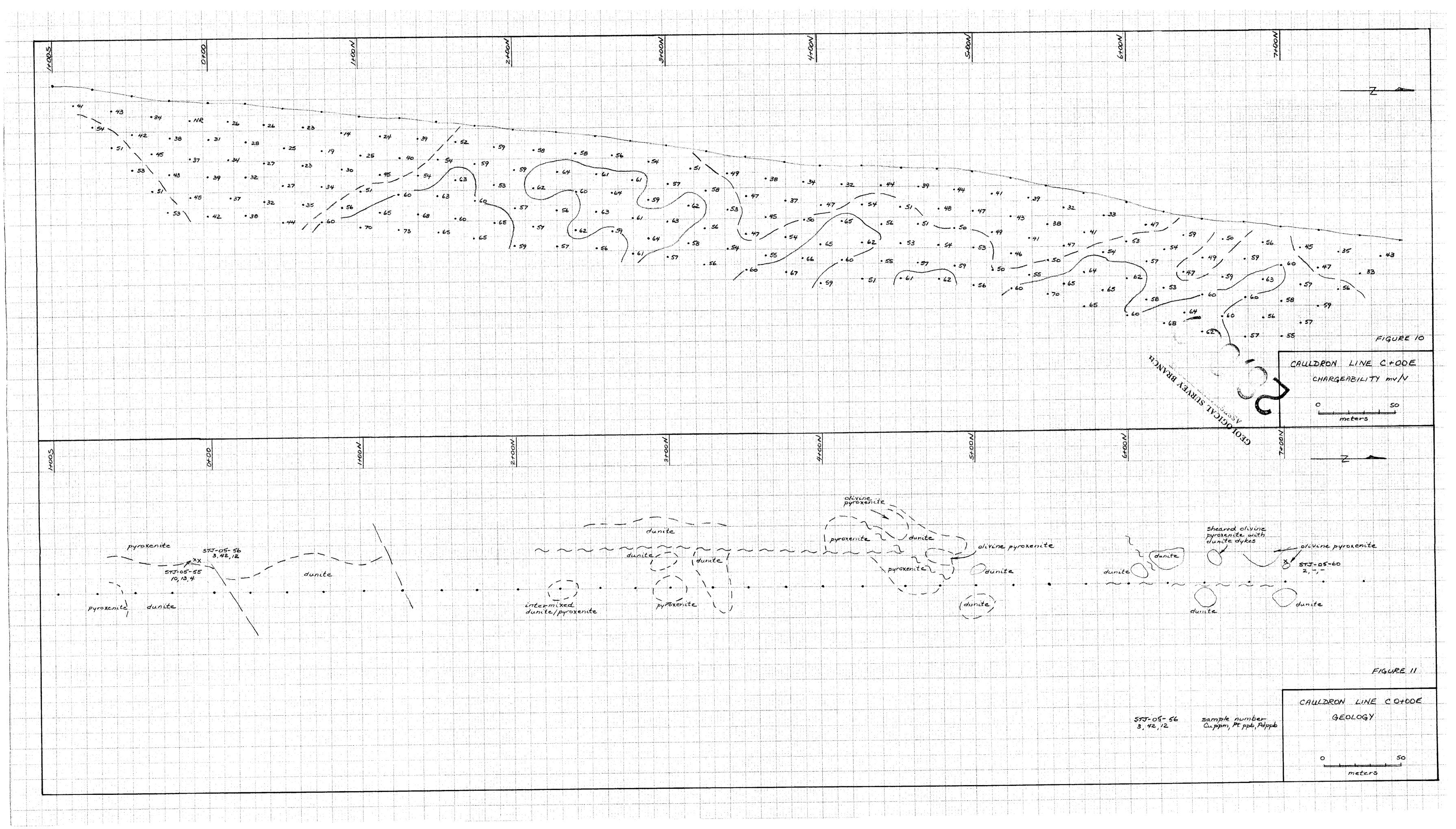

On this survey a 25 metre dipole was employed and first to sixth separation readings were obtained.

Data Presentation.


The I.P. data were presented as individual pseudo-section plots of apparent chargeability and resistivity at a scale of 1:2000.

THE REAL CONTRACTOR CONTRACTOR





		1 1 <th>7,885 7,895 7,895 7,205 21,7-05 21</th> <th></th>	7,885 7,895 7,895 7,205 21,7-05 21	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 - 14 - 36 - 23 - 57 - 15 - 15 - 23 - 33 8 - 14 - 11 - 16 3 - 11 - 14 - 16 - 11 - 14 - 18 - 19 - 11 - 14 - 18 - 19 - 1
		OLIVINE PYROXENITE	Webrlite WITE	DE GEOLOGICAL SURVEY BRANCH
Cg GABERO		PYROXENITE	TION SERVICE	HB G GEOLO

••••• FIGURE7 IV) - SAMPLES ومرادية والمحمد ومؤجول والمراجع والمراجع والمراجع والمحمد المحمول والمراجع والمحمد والمحمد المحمد BUNITE : ? ? DUNITE FIGURE 8 GRID ology 50 meters .

12.0 Results

12.1 Geophysics

Three chargeability anomalies were outlined on the HB grid. Anomaly A shows an excellent correlation between chargeability highs ranging from 30 to 50 mv/V and significant mineralization. The anomaly is underlain by mineralized olivine pyroxenite which has returned values of:

3054 ppm Cu303 ppb Pt328 ppb Pd892 ppm Cu1320 ppb Pt1822 ppb Pd

Anomaly A ranges from 30 to 80 meters wide and is at least 130 meters deep.

Anomaly B has virtually no outcrop and is present as a chargeability high approximately 100 meters wide with values ranging from 30 to 57 mv/V.

Anomaly C is a down dropped block of Anomaly B.

The Cauldrom has highly anomalous chargeability values from 1+00N to 7+00N and reach up to 70 mv/V. Limited mapping indicates a fairly good correlation between pyroxenite and chargeability values between 50 and 60 mv/V. The line and area have received only limited sampling. The chargeability profile shows numerous apophyses with chargeability values of 60 to 73 mv/V which are believed to reporesent high-sulphide targets.

12.2 Sampling

Sampling near the 661 Creek produced no Cu values and only weak Pt and trace amounts of Rh. The anomalously low Fe and Cu content suggests that the rock is leached. Serpentinization may have also removed the Fe and Cu. The 661 area sampled is underlain by pyroxenite with numerous pipes and disrupted layers of dunite. Sampling of the 661 Ridge showed it to be underlain by wehrlite-peridotite and minor olivine pyroxenite which occasionally occurs as fragments within the wehrlite. No significant Cu and anomalously low Fe values indicate leaching and/or serpentinization. Only one significant result was obtained of 193.9 ppb Pt and 23.5 ppb Pd.

One sample with anomalous Cu, Pt, and Pd was collected from the Cauldron South area. The area is deceptive in that numerous fresh dunite boulders blankets deeply weathered subcrop boulders of pyroxenite. Dunite forms as disrupted layers and pipes.

The 202 Creek area is underlain by layers of olivine pyroxenite and dunite which are separated by brecciated, serpentinized olivine pyroxenite. Fragments of partially assimilated peridotite occur in the dunite indicating a flow. No significant values other than slightly anomalous Cu in the dunite were obtained.

The 201 Creek area is underlain by very leached wehrlite and disrupted dunite layers. No significant values were obtained.

The Cauldron area is underlain by highly disrupted dunite and pyroxenite layers which appear like breccia blocks often accompanied by shearing. It would appear that the dunite cuts the pyroxenite. No significant Cu and generally low Fe values were obtained. One residual soil returned a value of 123.8 ppb Pt and 22.6 ppb Pd.

The Orion Zone is underlain by serpentinized wehrlite and olivine pyroxenite. Typically of serpentinized rock only low Cu and Fe values were obtained. The rocks of this area are also considerably leached as open fractures once filled by sulphides have been found.

As part of terms of an option agreement due diligence samples were collected from the Queen, GL, HC, HB, HA, Taurus, Virgo and the Cauldron Zones.

Sampling of the Queen Zone continues to show the presence of Cu, Pt and Pd. However samples 158526 (collected in 2001) and STJ-05-06 indicate that mineralization may not be as homogenous as thought. Both samples are from the same rock and returned the following values:

 Sample 158526
 Sample STJ-05-06

 7677 ppm Cu
 3457 ppm Cu

 2474 ppm Ni
 468 ppm Ni

 833 ppm Co
 60 ppm Co

 59 ppb Pt
 347 ppb Pt

 91 ppb Pd
 488 ppb Pd

Another observation made from the sampling is that generally Pt-Pd values are associated with better Cu values. However, the following comparison is made:

Sample STJ-05-04	Sample STJ-05-19
4552 ppm Cu	728 ppm Cu
62.0 ppb Pt	178.5 ppb Pt
151.6 ppb Pd	393.5 ppb Pd
123 ppb Au	64 ppb Au

Samples from the GL Zone show the Cu-Pt-Pd relationship but also indicate highly anomalous Co. Duplicate samples collected in 2005 and 2001 show variability in Cu, Pt and Pd values and only minor variability in Ni and Co.

Sample 158525	Sample STJ-05-07
4794 ppm Cu	2899 ppm Cu
1127 ppm Ni	930 ppm Ni
393 ppm Co	436 ppm Co
33 ppb Pt	141 ppb Pt
69 ppb Pd	120 ppb Pd
Sample 158521	STJ-05-08
2729 ppm Cu	249 ppm Cu
1647 ppm Ni	2079 ppm Ni
77 ppm Co	147 ppm Co
268 ppb Pt	50 ppb Pt
452 ppb Pd	84 ppb Pd
Sample 158505	Sample STJ-05-09
2830 ppm Cu	2308 ppm Cu
394 ppm Ni	312 ppm Ni
202 ppm Co	195 ppm Co
81 ppb Pt	55 ppb Pt
106 ppb Pd	115 ppb Pd

Sample STJ-05-28 taken on the HC Zone shows the Cu-Pt-Pd relationship. Other high Cu values are associated with either substantial leaching or a relatively unmineralized pyroxenite unit that is not part of the mineralized lithologies. Duplicate samples show major variability in Cu and less so in Pt and Pd.

Sample 158541	Sample STJ-05-25
1383 ppm Cu	581 ppm Cu
382 ppm Ni	194 ppm Ni
97 ppm Co	104 ppm Co
403 ppb Pt	48 ppb Pt
248 ppb Pd	42 ppb Pd
Sample 158676	Sample STJ-05-28
227 ppm Cu	1334 ppm Cu
115 ppb Pt	100 ppb Pt
103 ppb Pd	105 ppb Pd

Sample STJ-05-37 taken on the HB Zone shows the Cu-Pt-Pd relationship returning values of 3054 ppm Cu, 303 ppb Pt and 328.4 ppb Pd. A duplicate sample shows that Pt and Pd values can be very variable.

Sample 158535	Sample STJ-05-38
80 ppm Cu	48 ppm Cu
458 ppm Ni	740 ppm Ni
59 ppm Co	93 ppm Co
230 ppb Pt	13 ppb Pt
162 ppb Pd	12 ppb Pd

Sampling on the HA Zone shows the Cu-Pt-Pd relationship but sample STJ-05-44 which has the highest Pt and Pd values (1319.6 ppb Pt, 1822.1 ppb Pd) collected from the property to date has a relatively low Cu value (892 ppm). This relationship has been noted previously particularly in core from the 2004 drilling suggesting two phases of Pt-Pd mineralization one associated with copper and one with low copper values which would appear to form a halo around the higher copper-bearing layers.

Samples collected from the Taurus Zone are relatively low in copper and show Pt-Pd to be very variable.

Sample 132521	Sample STJ-05-47
277 ppm Cu	106 ppm Cu
638 ppb Pt	83 ppb Pt
684 ppb Pd	86 ppb Pd

The newly discovered Virgo Zone shows no relationship between Cu and Pt-Pd.

No significant results were obtained from the Cauldron Zone sampling. The low iron content suggests substantial leaching. Samples analysed by Anglo American Exploration that were collected previously also show that copper can be very variable as in the case of 72708.

13.0 Conclusions

Drilling in 2004 tested several chargeability anomalies outlined in a 2003 IP survey. Drilling showed that the chargeability highs were sulphide induced. A 2005 IP survey over the HB Zone has also shown that the chargeability anomalies are sulphide induced. The Cauldron chargeability anomaly presents an interesting exploration target because of its continuity and strength.

Areas of highly contorted dunite and pyroxenite would appear to be good indicators for additional sampling and geophysics.

14.0 Recommendations

The limited amount of IP surveys has produced numerous chargeability highs most of which have not been tested. Since there does not appear to be, at this point in time, any way of predicting the quality of sulphide producing the chargeability anomaly drilling is required.

In addition, the discovery of substantially more favourable lithologies for bearing mineralization than is presently mapped requires additional sampling and more IP surveys. 15.0 **References**

- Armstrong, J. E., Aiken Lake (South Half) British Columbia, GSC Paper 46-11, 1946.
- Armstrong, J. E. and Roots, E. F., Geology and Mineral Deposits of Aiken Lake Map Area, British Columbia, GSC Paper 48-5, 1948.
- Ferri, F. et al, Preliminary Geology of the Aiken Lake and Osilinka River Areas (NTS 94-C/2, 3, 5, 6 and 12), BCDM Open File 1993-2.
- Foster, F. H., History and Origin of the Polaris Ultramafic Complex in the Aiken Lake Area of North-Central British Columbia, B. Sc. Thesis, U.B.C., 1974.
- Irvine, T. N., Petrologic Studies of Ultramafic Rocks in the Aiken Lake Area, British Columbia (94-C West Half), GSC Paper 68-1, Part A, p. 110, 1968.
- Irvine, T. N., Ultramafic and Gabbroic Rocks in the Aiken Lake and McConnell Creek Map Areas, British Columbia, GSC Paper 74-1A, pp. 149 - 152, 1974.
- Irvine, T. N., Alaskan-type Ultramafic-Gabbroic Bodies in the Aiken Lake, McConnell Creek and Toodoggone Map-Areas, GSC Paper 76-1A, pp. 76 - 81, 1976.
- Jackaman, W., Mesilinka River Stream Sediment and Water Geochemical Map Booklet, BC Regional Geochemical Survey 47, July 1998.
- Lay, R., Aiken Lake Area, North-Central British Columbia, BCMEMPR Bulletin 1, 1932.
- Nixon, G. et al, Preliminary Geology and Noble Metal Geochemistry of the Polaris Mafic-Ultramafic Complex, Open File 1989-17, 1989.
- Nixon, G. et al, Geology of the Polaris Ultramafic Complex, Open File 1990-13, 1990.
- Nixon, G. et al, Geology and Platinum-Group-Element Mineralization of Alaskan-type Ultramafic Complexes in British Columbia, BCDM Bulletin 93, 1997.

Roots, E. F., Geology and Mineral Deposits of Aiken Lake Map Area, British Columbia, GSC Memoir 274, 1954.

- Assessment Report 15955, Report on a Geochemical Survey of the Polaris Property Consisting of the Polaris Claim, Pole 1 and Pole 2 Claims, by Jay W. Page, 1986.
- Assessment Report 16236, Report on Geological and Geochemical Work, "Lay" Claims, Aiken Lake, by D. Johnson, 1987.
- Assessment Report 16628, Report on Prospecting and Sampling Work, Lay Property, Aiken Lake, by R. J. Johnson, 1987.
- Assessment Report 24300, Geologic Report on the Star Claims, by U. Mowat, P. Geo., February 1996.
- Assessment Report 25002, Geochemical and Petrographic Report on the Star Claims, by U. Mowat, P. Geo., February 1997.
- Assessment Report 25488, Geochemical Report on the Star Claims, by U. Mowat, P. Geo., April 1998.
- Assessment Report 25873, Sampling on the Star Claims, by U. Mowat, P. Geo., March 1999.
- Assessment Report 26198, Mapping and Sampling on the Star Claims, by U. Mowat, P. Geo., March 2000.
- Assessment Report 26524, Mapping and Sampling on the Star Claims, by U. Mowat, P. Geo., April 2001.
- Assessment Report 26844, Mapping and Sampling on the Star Claims, by U. Mowat, P. Geo., May 2002.
- Assessment Report 27117, Sampling on the Star Claims, by U. Mowat, P. Geo., March 2003.
- Assessment Report 27394, Mapping, Sampling and a Geophysical Survey on the Star Claims, by U. Mowat, April, 2004.

Assessment Report 27617, Drilling and Sampling on the Star Claims, by U. Mowat, P. Geo., December 2004. 16.0 Statement of Costs

Analyses 9 rock samples analysed for (1F) 26 elements by ICP, (4A) 14 elements whole rock by ICP and (4B) 28 elements by ICP-MS at \$45.85/	\$412.65
sample 7 rock preps at \$4.45/sample 7 rock Xdry at \$0.50/sample GST	\$ 31.15 \$ 3.50 <u>\$ 31.31</u> \$478.61
<pre>111 rock samples analysed for 30 elements by ICP and Au, Pt, Pd, Rh by ICP-ES at \$20.93/ sample</pre>	\$2323.23
98 rock preps at \$4.86/sample 13 silt preps at \$1.49/sample GST	\$476.28 \$ 19.37 <u>\$197.32</u> \$3016.20
<pre>11 pulps analysed for Ni/Ox (Group 8) by ammonium citrate by ICP-ES at \$18.45/sample GST</pre>	\$202.95 \$_14.21
	\$217.16
Helicopter 7.8 hours at \$800.00/hour 639.2 liters at \$1.05/liter 100 liters at \$1.20/liter 150 liters at \$1.30/liter GST	\$6240.00 \$671.16 \$120.00 \$195.00 <u>\$505.83</u> \$7731.99
7.5 hours at \$825.00/hour 855 liters at \$1.40/liter GST	\$6187.50 \$1197.00 <u>\$516.92</u> \$7901.42
10.5 hours at \$750.00/hour 99 liters at \$1.15/liter 1045 liters at \$1.50/liter GST	7875.00 113.85 1567.50 \$668.95 10225.30

Wages 1 man for 22 days at \$450.00/day 1 man for 5 days at \$500.00/day	\$ 9900.00 <u>\$ 2500.00</u> \$12400.00
Truck Rental 5 days at \$50.00/day 1186 km at \$0.50/km	\$ 250.00 <u>\$ 593.00</u> \$ 843.00
2 days at \$175.95/day	\$ 351.90
Accommodation 5 nights at \$64.40/night 2 rooms for 1 night camp: 8 man days at \$50.00/day camp: 2 men for 5 days at \$117.70/ day	\$ 322.00 \$ 135.70 \$ 400.00 \$ 1177.00 \$ 2034.70
Meals	\$ 534.26
Airfare	\$ 1197.51
Bus	\$ 39.30
Taxi	\$ 145.00
Freight	\$ 130.17
Courier	\$ 31.75
Supplies	\$ 801.49
Reproduction	\$ 250.24
Phone	\$ 23.58

÷

.

TOTAL \$48353.58

-

17.0 Statement of Qualifications

- 1.0 I am a graduate of the University of British Columbia having graduated in 1969 with a Bachelor of Science in Geology.
- 2.0 I have practiced my profession since 1969 in mineral exploration, oil and gas exploration and coal exploration.
- 3.0 I am a registered member of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4.0 I have a direct interest in the Star Claims.

Usula win

Ursula G. Mowat, P. Geo.

Dated this 6th day of Game 2006 at Vancouver, B. C.

Appendix I

ACME	ANA' (ISO		AL L Acc					D.			осн	EMI	CAL	AN	ALY	SIS	CE		FIC.	ATE		PH	ONE	(604)	253-	315	8 FA	X (6))/	53-1	1716
	I :							14		<u>owat</u> 1933 R											e l sula M	lowat									
 SAMPLE#		Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	i N mqq	Co ppm	Mn ppm	Fe %		U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sp ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B bbw	At %	Na %	K %	W ppm
158772 158773 158774 158775 158776	VIII	<1 <1 <1 <1 <1 <1	3 2 2 <1 1	ব্য ব্য ব্য ব্য	6 12 13 7 14	<.3 <.3 <.3 .3 <.3	85 170 293 110 360	17 31 40 20 44	339 375 227	1.31 2.17 2.44 1.53 2.73	<2 2 <2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2	4 5 2 2 2	<.5 <.5 <.5 <.5 <.5	3 7 3 3 5	<3 <3 <3 <3 3	12 16 8 19 6		.001		295 87 353	2.19 3.76 4.69 2.37 5.22	4 5 3 3 4	.02 .02 .01 .02 .01	3 6 5 6 <3	.20	.01 .01 .01 <.01 <.01	.01	<2 <2 <2 <2 <2
158777 158778 158779 158780 158781	661	1 <1 <1 <1 1	1 1 2 2	<3 <3 <3 5 10	19 21 33 58 35	.3 .4 .3 <u>1.2</u> 1.1	303 383 624 1130 802	81 128	515 924 1555	2.97 3.26 5.85 9.17 7.60	3 2 2 4 2	<8 <8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 2 2	2 1 1 <1	<.5 <.5 <.5 .6 <.5	4 6 7 7 11	ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଏ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ ଓ	12 13 10 8 38	.19 .13 .06		<1 <1 <1	253 219 196	5.14 5.39 9.60 16.74 11.31	2 1 -	.01 .01 .01 .01 .02	6 <3 3	.09 .04 .03	<.01 <.01 <.01 <.01 <.01	<.01 <.01 <.01	<2 <2 <2 <2 <2
158782 RE 1587 158783 158784 158785	182 2 2 2 182 2 2 2 10 10	<1 <1 <1 <1 <1 <1	1 1 <1 209 1	<3 <3 <3 <3 <3	14 14 12 8 11	.3 .5 .3 <.3 <.3	178 178 131 115 166	35 35 28 19 29		2.36 2.38 2.07 1.62 2.08	3 2 2 <2 2	<8 <8 <8 8 8 <8		<2 <2 <2 <2 <2 <2	1 2 2 8 2	<.5 <.5 <.5 <.5 <.5	4 6 4 <3 4	ব্য ব্য ব্য ব্য	12 12 15 27 10	.24 .28 .47	.003 .002 .002 .004 .001	<1 <1 <1 <1 <1	132 123	3.49 3.49 2.66 1.93 3.18	3 3 4 6 5	.01 .01 .92 .04 .01	4 5 <3 <3 <3	.11 .10 .31	<.01 <.01 <.01 .03 <.01	.01 <.01 .02	<2 <2 <2 <2 <2
158786 <u>158787</u> 158788 158789 158790	K	<1 <1 <1 <1 <1 <1	1 65 <1 5 4	<3 <3 <3 <3 <3	9 43 6 20 21	<.3 .5 <.3 .4 .4	230 <u>1342</u> 73 296 227		<u>1020</u> 156 486	1.57 6.01 1.12 2.91 3.14	<2 <2 <2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	1 2 1 1	<.5 .5 <.5 <.5 <.5	<3 <3 <3 6 4	3 3 3 3 3 3	5 17 8 7 10	.28 .17	.002 .007 .001 .002 .002	<1 <1 <1 <1 <1	164 104 187	3.33 <u>14.44</u> 1.81 5.50 4.79	1 3 2 2 2	.01 .01 .01 .01 .01		.10	<.01 .01 <.01 <.01 <.01	.01 .01 <.01	<2 2 <2 <2 <2 <2
158792 158793 158794	0 0 2 4 2 4	<1 <1 <1 1 1	2 2 3 5	<3 <3 7 5 <3	6 73	<.3 <.3 1.2 1.0 .5	164 62 847 1034 181	<u>11</u> 158	107 1867 1326	1.97 .79 10.82 8.38 2.12	<2 <2 8 2 <2	<8 <8 <8 <8 <8	<2 <2 2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	1 2 1 2 2	<.5 <.5 .9 .7 <.5	4 <3 8 10 4	ব্য ব্য ব্য ব্য ব্য		.33		<u><1</u> <1 <1	150 204 447	3.22 1.35 17.48 12.22 3.17	5 2 2 8 4	.01 .01 <.01 .02 .02	< <u>3</u> <3 7	.12 .02 .07	.01 <.01 <.01 <.01 <.01	<.01 <.01	<2 <2 <2 <2 <2 <2
	Cent Rib	<1 <1 <1 1 <1	4 <1 -1 -4 -3	<3 <3 <3 <3 <3	19 13 15 27 8	.5 .3 .3 .7 .3	290 162 212 519 168	<u>42</u> 62	323 431 718	2.47 2.25 2.57 4.37 1.19	2 2 ~2 ~2 ~2 ~2	9 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	<u>2</u> 1	<.5 <.5 <.5 <.5 <.5	4 6 4 9 3	5 <3 4 <3 <3		.20		<1 <1 <1	148 64 269	4.47 3.12 4.24 6.66 2.31	6 5 3	.01 .02 .01 .01 .01	4 	.14 .11 .09	<.01 <.01 <.01 <.01 <.01	<.01 <.01 <.01	<2 <2 <2 <2 <2 <2
158801 158802 158803 158804 STANDAR	ガイアダン D D 56	1 <1 1 <1 11	<1 11 3 3 120	<3 <3 <3 <3 27	9 46 7 65 142	<.3 1.2 <.3 1.5 .4	149 945 96 1381 25	126 12 142	1382 150 1717	1.25 8.36 .94 10.44 2.90	<2 5 <2 3 23	<8 <8 <8 <8 8	<2 3 2 2 2 2 2 2	<2 <2 <2 2 3	2 1 1 <1 40	<.5 .7 <.5 .7 6.3	<3 10 4 <3 5	<3 <3 4 <3 6	14 11 7 9 58	.09 .29 .04	.002 .004 .002 .004 .004	<1 <1 <1	222 135	2.16 13.73 1.49 17.86 .58	2 3	.02 .01 .01 <.01 .08	6	.02 .07 .01	<.01 <.01 <.01 <.01 <.01	<.01 .01 <.01	<2 <2 <2 <2 3

(>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Clarence Leon

DATE RECEIVED: JUL 4 2005 DATE REPORT MAILED: July 15/05 Data 116 FA

								м	iowat	E, 1	Jrsı	ıla]	FIL	E #	A5	0313	37							Pag	je 2	;		L	
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ва ррп	Tī %	8 1019	A1 %	Na %	K %	W ppm
158805 158806 158807 158808	<1 <1 <1 <1	16 8 17 6	<3 <3 <3 <3	22 14 21 27	<.3 <.3 <.3 <.3	176 132 254 291	33 21 34 39		2.74 1.61 2.41 2.68	<2 <2 <2 <2	<8 <8 <8 8	<2 <2 <2 <2	<2 <2 <2 <2	13 9	<.5	<3 <3 <3 <3	<3 4 <3 <3	47 32 24 30		.018 .009 .011 .011	1 <1 1 1	589 318 285 414	3.08 2.14 3.97 4.40	14 12 11 11	.06 .05 .03 .04	6 6 8 14	.79 .67 .42 .51	.05 .04 .03 .03	.03 .02 .02 .02	<2 <2 <2 <2 <2
STANDARD DS6	12	126	27	139	<.3	24	10		2.74	20	<8	<2	z	38	5.8	5	6	53	.84	.080	12	177	.58	160	.07	16	1.93	.07	. 15	3

Sample type: ROCK R150 60C.

(ISO 01 Accredited Co.)	승규는 그 방법에 걸려 물건이 잘 걸렸을까? 것 같아요. 이렇는 것이다.	NE(604)253-3158 FAX(60 53-1716
	OUS METALS ANALYSIS ile # A503137 Page 1	
LL <u>MOWAL, DIBUIA</u> 1405 - 1933 Robson St., Vancouver	r BC V6G 1E7 Submitted by: Ursula Mowat	
SAMPLE#	Au Pt Pd Rh ppb ppb ppb ppb	
158772 158773 158774 158775	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
158776 158777 158778	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	661 CK
158779 158780 158781	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
158782 RE 158782 158783	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1 RIDGE
<u> </u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CAULDRON SOUTH
158786 158787 158788	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	EO2 CREEK
158789 158790	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201 CREEK
158791 158792 158793	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
158794 158795 158796	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	661 RIDGE
158797 158798 158799 158800	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AND AND AN
158800 158801 158802 158803 158804 STANDARD FA-10R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CHULDRON
GROUP 3B-MS - FIRE GEOCHEM AU PT PD RH - 30 GM SAMPLE FUSIO		-MS.
Data 12 FA DATE RECEIVED: JUL 4 2005 DATE REPORT	T MAILED:	
Data Lig FA DATE RECEIVED: JUL 4 2005 DATE REPOR Semi-grantitative for Rh		
All results are considered the confidential property of the client. Acme assum	nes the liabilities for actual cost of the a	analysis only.

ETTE # A503137 Mourst Ilroula

Page 2

Mowat, Ursula FILE # A503137	Page 2
 SAMPLE# Au Pt Pd ppb ppb pb p	Rh opb
158805 2 .1 .9 .9 158806 <1	
Sample type: ROCK R150 60C.	

			LAB ccre			ES I		1405	G	lowa	HEM	IICA Urs		Ē	. YSI 7il€	≥ #	ERI A50	'IFI)313	8				(604):	253-	3158	FA	(60	75	3-17 A	4
SAMPLE#	Mo ppm	Cu ppm	РЪ ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sp ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm
G-1	<1	2	4	42	.6	6	4	521	1.74	2	<8	<2	4	56	<.5	5	3	35	.41	.071	6	67	.55	247	.12	<3	1.07	.13	.62	<2
201-1	<1	30	<3	31	1.1	373	56	616	4.13	4	<8	<2	<2	8	<.5	6	<3	65	.41	.021	1	429	5.82	29	.07	9	.86	.01	.02	<2
201-2	<1	19	<3	24	.6	368	47	523	3.72	2	<8	<2	<2	10	<.5	<3	<3	64	.48	.021	1	385	5.84	19	.06	5	.67	.01	-02	<2
779	<1	15	<3	25	.7	421	56	605	4.29	4	<8	<2	<2	- 6	<.5	5	<3	50	.32	.015	1	264	6.16	16	.05	8	.41	.01	.01	<2
RE 796+10	<1	56	<3	20	.6	363	41	426	3.24	4	<8	<2	<2	6	<.5	<3	<3	79	.48	-015	<1	495	5.00	16	.09	4	.77	.01	.01	<2
785	1	38	5	18	<.3	338	37	429	2.65	<2	<8	<2	<2	5	<.5	<3	<3	43	.30	.015	<1	287	4.44	14	.05	<3	.56	.01	.01	<2
785+10	<1	89	<3	26	.6	401	52	564	4.51	3	<8	<2	<2	19	<.5	<3	<3	167	1.09	.032	<1	573	4.94	22	.18	<3	1.28	.02	.02	<2
796+10	2	57	<3	20	.5	362	42	430	3.28	<2	<8	<2	<2	7	<.5	<3	<3	78	.49	.014	<1	494	5.00	17	.09	4	.77	.01	.01	<2
796+20	<1	31	<3	29	.8	669	65	687	4.62	<2	<8	<2	<2	4	<.5	4	<3	69	.43	.014	<1	508	8.27	16	.08	9	.67	.01	.01	<2
796+30	<1	33	<3	25	.4	463	49	519	3.76	<2	<8	<2	<2	4	<.5	<3	<3	80	.45	.015	<1	530	5,81	19	.10	<3	.78	.01	.01	<2
804	<1	27	<3	67	1.0	451	71	1285	4.79	4	<8	<2	<2	5	<.5	<3	<3	48	.23	.066	2	403	5.20	43	.05	3	.56	.02	.02	<2
ED1	<1	13	<3	33	1.1	366	69	715	3.93	<2	<8	<2	<2	2	<.5	<3	<3	20	.15	.025	<1	197	5.92	19	.02	5	.31	.01	.01	<2
ED2	<1	216	<3	74	1.8	1148	124	1622	11.19	4	<8	3	<2	6	<.5	5	<3	112	.31	.022	1	673	13.67	30	.06	11	.46	.01	.01	<2
STANDARD DS6	11	118	27	138	.3	24	10	681	2.81	22	<8	<2	4	36	5.8	4	4	55	.83	.080	14	184	.57	159	.07	16	1.86	.07	.16	3

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: SOIL SS80 60C

ACME ANY "ICAL LABORATORIES LTD. (ISC J01 Accredited Co.)

GEOCHEM PRECIOUS METALS ANALYSIS

852 E. HASTINGS ST.

<u>Mowat, Ursula</u> File # A503138 1405 - 1933 Robson St., Vancouver BC V6G 1E7 Submitted by: Ursula Mowat

COUVER BC V6A 1R6

SAMPLE#	Au ppb	Pt ppb	Pd ppb	Rh ppb	Sample gm	
G-1 201-1 201-2 779 RE 796+10	<1 <1 <1 <1 3	.3 19.0 12.2 24.4 22.6	$ \begin{array}{r} .6\\ 10.1\\ 6.3\\ 13.9\\ 9.1 \end{array} $	1.07 1.46 .12 .06 .25	30 15 30 30 15	
785 785+10 796+10 796+20 796+30	1 <1 2 1	$8.9 \\ 9.4 \\ 10.3 \\ 11.9 \\ 21.1$	6.9 10.7 10.3 8.1 8.9	.06 <.05 <.05 .08 .14	30 30 30 30 30	
804 ED1 ED2 STANDARD FA-100S	4 3 3 49	$14.9 \\ 123.8 \\ 20.2 \\ 48.4$	18.5	.10 1.49 <.05	15 15 30 30	

GROUP 3B-MS - FIRE GEOCHEM AU PT PD RH - 30 GM SAMPLE FUSION, DORE DISSOLVED IN ACID, ANALYZED BY ICP-MS. - SAMPLE TYPE: SOIL SS80 60C <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

Data 🚫 FA ____ DATE RECEIVED: JUL 4 2005 DATE REPORT MAILED:

PHONE (604) 253-3158 FAX (60

153-1716

		:			<u>A</u>	une			cove - 157				h Van									age								L
MPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	ti %	B ppm	Al %	Na %	к %	N Bbu
J-05-01 J-05-02 J-05-03 J-05-04 J-05-04 J-05-05	<1	522 33 2042 4552 1607	6 <3 <3 8 <3	34 30 11 17 11	<.3 <.3 <.3 2.4 <.3	83 584 170 218 232	31 67 181 44 94	811 375 555	7.81 5.15 7.10 4.20 5.65	3 <2 2 2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	67 5 3 12 2	.7 <.5 .6 <.5 <.5	8 4 3 <3 3	<3 <3 3 7 <3	385 29 130 53 121	3.12 .22 .27 .43 .23	.205 .007 .002 .013 .002	<1 <1 <1	194 511 209 132 318	3.10 7.26 2.33 3.75 2.48	41 8 2 8 3	.26 .03 .06 .05 .06	16 8 <3 9 12	2.91 .23 .19 .39 .16	.17 .01 .01 .04 .01	.13 .02 .01 .03 <.01	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
J-05-06 J-05-07 J-05-08 J-05-09 J-05-10	2 2 <1	3457 2899 249 2308 1348	6 8 55 6 <3	9 23 89 11 6	<.3	468 930 2079 312 189	436 147 195	505 2341 308	3.06 9.74 12.50 6.54 4.18	<2 <2 4 3 <2	<8 <8 21 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 2 <2 <2 <2	1 3 1 2 1	<.5 <.5 <.5 <.5 <.5	<3 <3 <3 5 <3	<3 <3 <3 <3 4	8 21 30 15 9	.19 .28 .05 .17 .20	.002 .002 .007 .002 .002	<1 <1 <1 <1 <1	95 79 543 65 61	3.83 3.35 19.96 2.69 2.61	3 6 2 2 4	.01 .01 .01 .01 .01	4 23 22 13 6	.11 .05 .10	<.01	<.01 <.01 <.01	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
J-05-11 J-05-12 J-05-13 J-05-14 J-05-14 J-05-15	<1 1 <1 <1 1	9 24 616 37 1404	5 <3 <3 3 4	19 12 6 46 30	<.3	1674 130 123 591 517	26 91 72	1323 270 211 1096 826	6.66 2.49 3.24 6.41 5.60	<2 <2 <2 <2 <2 <2 <2	<8 <8 <8 8 12	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	4 9 2 9 5	<.5 <.5 <.5 <.5 <.5	<3 3 3 6 4	4 <3 <3 <3 <3	1 46 5 58 53	.10 .58 .21 .28 .24	.005 .011 .002 .007 .006	<1 <1 <1 <1 <1	53 225 52 591 519	21.38 2.46 2.75 7.38 6.08	2 11 5 12 8	<.01 .07 .01 .05 .03	35 <3 3 21 9	.72	<.01 .03 <.01 .02 .01	<.01 .02 .01 .02 .01	<2 <2 <2 <2 <2 <2 <2 <2
ST J-05-15 J-05-16 J-05-17 J-05-17 J-05-18 J-05-19	<1 1	1357 3835 1783 46 728	3 5 3 5 3 5 3	29 11 4 45 14	.6 2.6 2.0 <.3 .3	503 197 80 727 288		803 336 167 1570 513	5.39 2.67 1.50 9.27 4.09	2 2 2 2 2 2 2 2 2 2 2	12 <8 <8 23 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	5 3 2 2	<.5 <.5 <.5 <.5 <.5	6 4 8 3	<3 <3 <3 <3 <3	51 26 28 55 93	.23 .29 .38 .11 .23	.006 .002 .002 .005 .003	<1 <1 <1 <1	505 86 116 823 398	5.82 2.95 1.45 11.03 3.28	9 6 3 4	.03 .04 .04 .04 .06	16 9 <3 15 <3	.15 .27 .23 .11 .18			<2 <2 <2 <2 <2 <2
J-05-21 J-05-22 J-05-23 J-05-24 J-05-24 J-05-25	<1 <1 2 2 1	8 11 13 862 581	<3 <3 <3 <3 5	7 24 15 24 32	<.3	144 2421 147 17 194	121 38 29	293 1311 554 439 245	1.99 6.68 7.69 4.51 11.17	<2 3 <2 4 2	<8 <8 <8 <8 8	<2 <2 <2 <2 <2 <2	<2 <2 <2 5 <2	4 5 55 15	<.5 <.5 .5 <.5	<3 <3 <3 3 4	ব্য ব্য ব্য ব্য	18 4 313 156 594	.23 .05 .33 2.48 .63	.003 .004 .002 .456 .017	4	323 42 375 5 406	3.13 21.75 2.31 1.31 1.78	7 41	.02 <.01 .25 .16 .17	<3 15 <3 4 20		<.01 <.01 .01 .16 .05	< 01	<2 <2 <2 <2 <2 <2 <2 <2
J-05-26 J-05-27 J-05-28 J-05-29 J-05-30		519 1334 673	<3 4 7 <3 <3	38 26 26 25 27	<.3 <.3 <.3 <.3 <.3	85 130 104 80 823	39 46 59 79 83	688 208 226	10.37 4.80 8.64 8.06 5.80	4 <2 5 8 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2	34 36 22 21 1	.6 <.5 .5 <.5 <.5	<3 3 3 3 9	ব্য ব্য ব্য ব্য ব্য		1.12 3.61 .91 .94 .11	.012 .427 .015 .015 .003	5 <1 <1	136 35 62 100 482	1.46 2.83 1.12 1.33 9.56	17 21 39 21 2	.36 .18 .37 .34	<3 7	1.16 3.52 .99 <u>1.13</u> .15	.10 .08 .08 .09 <.01	.07 .04 .07 .06 <.01	<2 <2 <2 <2 <2 <2
J-05-31 J-05-32 J-05-33 J-05-35 ANDARD DS6	<1 <1 <1 1 1	3 11	<3	21 41 2	<.3	102 1502 788	20 106 59	435 1223 1013	6.05 3.20 6.95 4.95 2.93		21 <8 <8 8 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 3	2 26	<.5 <.5 <.5 <.5 6.1	8 <3 8 18 5	<3 <3 <3 <3 5	13 27	.18 1.63 .15 3.54 .81	.004	1 <1 <1			12	.03 .21 .01 .01 .08	27 7		<.01 .02	.12 <.01 .02	<2 <2 <2 <2 <2 2
GROUP 1D (>) CONCEN ASSAY RECO - SAMPLE T	NTRAT :	ON EX	CEEDS R ROC	UPPE K AND	R LIM	HITS. SAMP	SOME	MINE F CU	RALS M PB ZN	AY BE As >	PART 1%, A	IALLY G > 3	ATTA	CKED. & AU	REF > 10	RACTO 00 PPI	RY AN							OLUBI		JUMB		513	79	

ACME AN (ISU	TICAL LABORATO			ASTINGS ST. EM PRECIOU			YGA 1 Analysi		PHONE (604	4)253-3158	PAX (61	?53-1716
行		Aumega I 2nd	Discoveries Floor - 157 Chadwic	PROJECT S	<u>STAR</u> uver BC	File v7M 3K2	# A50f Submitted	5239 і by: т.	Page 1 Johnson			
			SAMPLE#		Au ppb	Pt ppb	Pd ppb					
			STJ-05-01 STJ-05-02 STJ-05-03 STJ-05-04 STJ-05-05	2 3 4	<1 <1 123 8	44.7 81.8 8.8 62.0 48.0	47.2	<.05 <.05		Çue	EN	a de la companya de s
			STJ-05-06 STJ-05-07 STJ-05-08 STJ-05-09 STJ-05-10	7 8 9	28 6 8 4 5	$141.4 \\ 50.0$	$\begin{array}{r} 487.7 \\ 119.6 \\ 83.9 \\ 114.7 \\ 47.4 \end{array}$	<.05 <.05		.; 4	•	
• .			STJ-05-11 STJ-05-12 STJ-05-13 STJ-05-14 STJ-05-15	2 3 4	2 1 <1 2 22	3.0 34.7 7.1 13.6 25.2	$19.3 \\ 17.0 \\ 18.1$	<.05 <.05 <.05 <.05 <.05 <.05		CAPRI	CCKN I JUEEN	CIDGE
			RE STJ-05 STJ-05-16 STJ-05-17 STJ-05-18 STJ-05-19	6 7 8	22 30 12 <1 64	90.2	36.2 112.5 139.9 26.3 393.5	<.05 <.05		(0	ICEEN,)
			STJ-05-21 STJ-05-22 STJ-05-23 STJ-05-24 STJ-05-24 STJ-05-25	2 3 4	2 5 3 <1 4	<.1 3.8 6.9 2.5 48.0	3.6	<.05 <.05 <.05 <.05 <.05				
			STJ-05-26 STJ-05-27 STJ-05-28 STJ-05-29 STJ-05-30	7 8 9	4 2 19 5 3	93.5 4.2 99.8 28.2 14.6	104.8	<.05 <.05 1.14 1.12 .13		<i></i>	/C	
			STJ-05-31 STJ-05-32 STJ-05-33 STJ-05-33 STJ-05-35 STANDARD	2 3 5	33	.9 3.7	15.4.8	<.05		H	'B	
Data (- SAMPLE TYPE	E: ROCK R150	AU PT PD RH - 30 GM <u>Samples beginning</u> D: OCT 3 2005 D	M SAMPLE FUSION, g 'RE' are Rerur	<u>ns and '</u> f	<u>RRE' are l</u>	IN ACID, A Reject Rer 172	NALYZED E	BY ICP-MS. 2005	HEON	Jacky	Wang Je

SAMPLE#

Mo Cu Pb Zn Ag Ni Co Mn

mada wada wada wada wada wada wada

Aumega Discoveries PROJECT STAR FILE # A506239

% ppm ppm ppm ppm ppm ppm ppm ppm ppm

Cd Sb Bi

v

Са

%

Au Th Sr

Fe As

U

23	9				Pa	ge 2	2		ACME A	
P	La	Cr	Mg	Ba	τi	В	Al	Na	κ	¥
%	ppm	ррп	%	ppm	%	ppm	%	%	%	ppm
002	<1	212	5.16	6	.01	7	.11	<.01	<.01	<2
002	<1	238	5.98	4	.01	<3	.10	<.01	<.01	<2

ÄÄ

STJ-05-36 STJ-05-37 STJ-05-38 STJ-05-39 STJ-05-40	<1 1838 1 3054 1 48 1 27 <1 20	 <3 13 8 21 7 27 <3 21 <3 5 	.7 699 1.3 972 <.3 740 <.3 438 <.3 41	634443.62795374.47939215.99596584.80112241.69	6 7 5	<8 < <8 < <8 <	2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2	2 <.5 1 <.5 3 <.5 2 <.5 30 <.5	3 3 5 3 3 3	<3 17 <3 16 <3 22 <3 45 <3 83	.16 .16 .14 .18 1.44	.002 .002 .006 .004 .026	<1 212 <1 238 <1 400 <1 429 <1 240	5.16 5.98 9.70 5.30 1.34	6 .01 4 .01 4 .02 7 .04 16 .12	7 <3 10 <3 <3	.11 <.01 <.01 .10 <.01 <.01 .16 <.01 <.01 .22 <.01 <.01 .98 .08 .07	2 3 2 3 2 3 4 3 4 <p< th=""></p<>
STJ-05-41 STJ-05-42 STJ-05-43 STJ-05-44 STJ-05-45	<1 13 <1 53 <1 1576 1 892 1 891	<3 8 3 9 <3 8 <3 15 8 34	<.3 35 <.3 58 .5 561 <.3 622 .3 1065	9 176 1.34 17 203 3.95 44 296 2.45 68 568 4.16 133 1052 7.36	6 8 14	20 < <8 < <8 <	2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2	21 <.5 18 <.5 2 <.5 1 <.5 2 <.5	<3 <3 <3 <3 <5 6	<3 64 <3 260 <3 16 <3 11 <3 20	.99 1.04 .18 .11 .10	.024 .020 .002 .003 .004	1 107 <1 259 <1 189 <1 188 <1 302	1.10 1.31 3.70 6.37 10.60	21 .10 20 .16 3 .01 3 .01 6 .01	<3 <3 <3 7 11	1.00 .03 .03 .84 .08 .05 .12 <.01 <.01 .08 <.01 <.01 .12 <.01 .01	२ २ २ २ २ २ २
STJ-05-46 STJ-05-47 STJ-05-48 STJ-05-49 STJ-05-50	<1 17 1 106 <1 276 <1 1300 <1 319	4 29 4 19 4 6 3 8 3 6	< <u>.3 1119</u> < <u>.3 149</u> < <u>.3 58</u> <u>.4 110</u> < <u>.3 59</u>	87 937 5.95 48 570 4.34 53 224 8.56 24 216 2.48 15 167 2.00	6 6 2	8 21 <8	2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2	3 <.5 29 <.5 20 .6 12 <.5 20 <.5	3 <3 <3 <3 <3	<3 11 <3 89 <3 578 <3 76 <3 71	.15 .78 .71 .60 .75	.004 .009 .009 .011 .015	<1 339 <1 132 <1 216 <1 104 <1 90	11.89 3.69 1.10 1.60 1.27	5 .01 11 .08 14 .18 12 .07 33 .07	12 3 3 3 3 3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<2 <2 <2 <2 <2 <2 <2 <2
STJ-05-52 ¥ STJ-05-53 ¥ STJ-05-54 STJ-05-55	<1 11 1 304 1 18 2 10	4 36 3 20 5 2 <3 44	<.3 1255<.3 30	106 1162 7.05 18 369 6.17 9 128 1.23 100 1035 7.43	2 <2 6	29 - <u><8 -</u> <8 -	2 2 2 <2 2 <2 2 <2 2 <2	6 <.5 56 .5 18 <.5 2 <.5	<3 <3 <3 4	<3 9 <3 380 <3 59 <3 40	.14 1.81 .87 .16	.009 .085 .016 .004	<1 266 1 97 <1 41 <1 655	14.69 1.45 <u>1.01</u> 10.38	9 .01 74 .18 <u>9 .08</u> 4 .03	23 <3 <3 <3	.11 .01 .01 1.68 .25 .13 .66 .08 .04 .14 <.01 <.01	2 2 2 2 2
STJ-05-56 RE STJ-05-56 STJ-05-57 STJ-05-58 STJ-05-59	<1 3 <1 4 1 3 1 11 1 2	<3 11 <3 34 <3 14	<.3 309	40 364 2.85 39 357 2.79 45 421 2.98 94 1076 7.12 43 492 3.40	4 3 6 3	<8 < <8 < <8 <	2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2	3 <.5 3 <.5 1 <.5 1 <.5 2 <.5	<3 <3 <3 5 <3 5 <3	<3 30 <3 30 <3 6 <3 14 <3 22	.43 .42 .12 .09 .24	.004 .004 .003 .004 .002	<1 178 <1 176 <1 126 <1 254 <1 185	4.44 4.37 6.09 11.33 5.08	4 .04 4 .04 2 .01 2 .01 2 .02	3 3 3 3 3 3 3 3 3 3	.29 <.01 <.01 .29 <.01 <.01 .08 <.01 <.01 .06 <.01 <.01 .17 <.01 <.01	<
STJ-05-60 STJ-05-61 STJ-05-62 STJ-05-63 STJ-05-64 STANDARD DS6	<1 2 2 1 1 3 <1 17 1 2 11 120	 <3 9 3 4 7 21 <3 20 5 7 29 140 	<.3 239	25 276 1.82 24 214 1.45 130 1261 6.96 43 544 3.81 36 358 2.34 10 655 2.88	<2 4 2 2	<8 < <8 < <8 <	2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 2 <2 3 3	1 <.5 1 <.5 3 <.5 4 <.5 1 <.5 39 5.6	<	<3 7 <3 5 <3 2 <3 33 <3 7 5 58	.17 .18 .09 .28 .16 .78	.002 .002 .005 .003 .003 .072	<1 194 <1 183 <1 100 <1 125 <1 158 13 182	3.47 3.63 21.98 4.55 5.37 .54	4 .01 2 .01 2 <.01 3 .03 2 .01 145 .08	<3 <3 9 <3 3 16	.08 <.01 <.01 .06 .01 <.01 .04 <.01 <.01 .16 .01 .01 .08 <.01 <.01 1.89 .07 .14	<2 <2 <2 <2 <2 <2 <2 <2 <2 <3

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Aumega Discoveries PROJECT STAR FILE # A506239

Page 2

Data_____FA

ACME ANALYTICA:						ACHE ANALYT
	SAMPLE#	Au ppb	Pt ppb	Pd ppb	Rh ppb	
	STJ-05-36 STJ-05-37 STJ-05-38 STJ-05-39 STJ-05-40	36 115 2 4 1	124.1 303.0 13.2 68.2 22.9	127.2328.411.670.720.3	<.05 <.05 <.05	HB
	STJ-05-41 STJ-05-42 STJ-05-43 STJ-05-44 STJ-05-45	1 58 44 14	8.6 12.3 106.6 1319.6 96.8	11.2 30.0 111.5 1822.1 107.6	<.05	HA
. −0.05 – 00000 –0000 kullenter och 1000 – 0000 kullenter och 1000 – 0000 kullenter och 1000	STJ-05-46 STJ-05-47 STJ-05-48 STJ-05-49 STJ-05-50	1 <1 1 6 3	13.9 82.5 14.7 17.6 12.6	86.3	<.05 <.05 <.05 <.05 <.05	V:REO
	STJ-05-52 STJ-05-53 STJ-05-54 STJ-05-55 STJ-05-56		$\begin{array}{r} 4.3 \\ 11.7 \\ 13.2 \\ 13.4 \\ 42.1 \end{array}$	3.8	<.05 <.05 <.05 <.05 <.05	
	RE STJ-05-56 STJ-05-57 STJ-05-58 STJ-05-59 STJ-05-60	<1 1 1 1	44.9 15.1 18.7 8.1 <.1	17.9 3.8	<.05 <.05 <.05 <.05 <.05 <.05	CAULDRON
	STJ-05-61 STJ-05-62 STJ-05-63 STJ-05-64 STANDARD FA-10R	1 <1 <1 498	<.1 5.7 5.0 1.8 493.3	3.6	<.05 <.05 <.05 <.05	

Sample type: ROCK R150. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

	2001	L Aco	red	lited	1 Co	A	ume 2nd F	ga loor	Disc	cov	HEMI erie wick, N	s P	ROJ	ECT	STA	ξI	rile	#	A506	241	3	(604)							
SAMPLE#		Cu ppm				Ni ppm		Mn ppm	Fe %					Sr Co opm ppr			V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	8 ppm	Al %	Na %	К %	¥ ppm
G-1 STJ-05-34 STJ-05-51 STANDARD DS6	<1	2 105 5 121		17	<.3	278	121 33	594 1 1541 8 281 2 741 2	3 .33 2 . 51	<2 7 <2 22	9 · 33 ·		<2 <2	54 < 6 < 8 < 42 6.1	5 <3 5 4	<3	55 37	.31	.075 .034 .020 .077	<1 <1	69 540 926 185	12.05 3.83	220 22 26 165	.09	<3 <3 <3 16	.95 .66 1.99 1.92	.01 .01	.01 .01	<2 <2 <2 2
- SAMPLE T	FA _			DAT	re r:	ECEI		: 00	T 3 2	2005	DATE	RE	PORT	' MAII	'ED : .					(A LE	C. Clarer		eong					

Aumega Discoveries PR 2nd Floor - 157 Chadwick, North V	CIOUS METALS ANALYSIS <u>COJECT STAR</u> File # A506240 Vancouver BC V7M 3K2 Submitted by: T. Johnson
SAMPLE#	Au Pt Pd Rh ppb ppb ppb ppb
G-1 STJ-05-34 STJ-05-51 STANDARD FA-100	3 <.1 1.8 <.05 <1 33.6 21.1 <.05 2 14.2 9.8 2.81 50 46.8 48.9 -
GROUP 3B-MS - FIRE GEOCHEM AU PT PD RH - 30 GM SAMPLE FUS - SAMPLE TYPE: SILT SS80 60C Data <u>/</u> FA DATE RECEIVED: OCT 3 2005 DATE REPO	Out Alas
Servi-quantitative for Rh	Clarence Leong

.

ACME AL FICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST.

(a)

GEOCHEMICAL ANALYSIS CERTIFICATE

Anglo American Exploration (Canada) Ltd. PROJECT 2005MOW001 File # A501199 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Phil Smerchanski

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb	Ni ppm	Co ppm	Mn ppm	As ppm	Au ppb	Cd ppm	Sb ppm	Bi ppm	Cr ppm	B ppm	T l ppm	∦g ppb	Se ppm	Te ppm	
MOWR72700 MOWR72701 MOWR72702 MOWR72703 MOWR72704	.25 .93 .49 .49 .07	4955.57 166.69 681.68 1078.20 24.95	1.41 2.52 1.19		116 203	1584.7 43.3 23.3 111.4 549.2	59.8 15.5 48.1 66.3 93.8	439 293	.4 2.4 .3 3.8 .8	1.9 1.4 2.0	.04 .06 .08	1.08 .38 1.29	.03 .07	438.5 70.7 4.6 60.8 384.7	<1 1	<.02 <.02 <.02 <.02 <.02	16 41	10.1 1.5 1.3 4.8	.37 .02 .32 .07 <.02	
MOWR72705 MOWR72706 OREAS 14P MOWR72707 OREAS 13P MOWR72708 STANDARD DS6	.45 2.95 2.61 .36 11.85	157.76 >10000 2499.61 5221.53 121.98	1.11 9.44 9.01 .38	23.9 64.8 43.4 17.2	76 1445 628 450	2 3.3 >10000	22.3 819.5 64.9	341 308 363 230	.3 <.1 <.1 <.1		.03 .91 .25 .08	.09 .07 .09 .02	.02 .44 .23 .03	29.8 46.2 60.7 99.6	<1 <1 2		<5 <5 24	1.4 69.0 5.0 8.1 4.2	1.30 .53 .03	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: Rock R150 DRY PULPS @ 105 DEG. C OVERNIGHT.

105 Data / FA DATE RECEIVED: APR 1 2005 DATE REPORT MAILED

ΔΔ				WI	HOLE	RO	CK	ICP	AN	ALY:	SIS									
LL <u>Anglo American Ex</u>	plo1 800	<u>ati</u> 700	<u>on (</u> W. Perw	<u>Cana</u> ler St	<u>ida)</u> ., Van	Lt couve	<u>d.</u> • BC \	<u>PRO</u> /6C 10	<u>JEC'</u> 38 \$	<u>F 2</u> ubmit	005M ted by	<u>IOWO</u> : Ph1	<u>01</u> L Smer	Fil chans	e ‡	A5	0119	99	(c)	T
SAMPLE#	sio2		Fe203							MnO %	Сг203 %	Ba ppm	Ni ppm		LOI %	TOT/C %	TOT/S X	SUM %		
MOWR72700	46.25	3.24	12.10	17.48	16.76	-40	.17	.41	.03	.17	. 175	15	2059		2.0		1.61	99.46		
MOWR72701 MOWR72702	40.81	3.92	13.78 14.26	6 25	0.00	.25	1.86	1 63	2 12	.15	.048	39 621	126 31		2.4 3.8		1.15 2.85	99.88 99.77		
MOWR72703	44.17	8.82	17.30	11.51	11.02	1.65	.54	1.62	.05	.20	.035	104	130		2.8		2.23			
			10.19									5	627	8	6.9	.05	.97	99.89		
MOWR 72705	44.35	11.17	15.29	9.62	12.18	2.14	.49	1.59	.37	.20	.015	127	41	46	2.4	.11	1.04	99.84		
MOWR72706 OREAS 14P	19.86	4.43	50.70	.39	1.42	.78	1.09	.43	.15	.07	.007	350	20992		17.0		22.90	99.02		
MOWR72707 OREAS 13P	46.59	19.37	10.85	5.84	9.82	2.64	.57	.56	.18	.13	.020	239	2381		2.7		1.51			
MOWR72708 STANDARD SO-17/R-2a/CSB	42.42	13 8/	13.04	2 35	4 66	4 17	1 43	- 21	08	- 53	. 456	407	4037		3.9		3.10	100.33		
Data FA DATE RECEI	IVED:	APF	1 200	5 DA	TE R	EPOR	T MJ	LE		tp	<u>.</u> [.(9/0	5			ALL COLOR	Clar	ence Le	the state	A

ACME AL TICAL LABORATORIES LTD. 852 E. HASTINGS ST. NCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (60., 253-1716 (ISU 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE Anglo American Exploration (Canada) Ltd. PROJECT 2005MOW001 File # A501199 (b)800 · 700 W. Pender St., Vancouver BC V6C 108 Submitted by: Phil Smerchanski SAMPLE# Ge Re Be Li Pt Sample In Pd ppm ppmppb ppmppm ppb dqq gm 2.9 3.4 7.1 3.4 11.4 .2 .1 .2 .1 .02 MOWR72700 <:1 <1 657 338 30.0 MOWR72701 MOWR72702 <1 3 2 12 30.0 14 .1 <.1 <.1 <10 .03 3 30.0 MOWR72703 .03 <10 4 2 30.0 MOWR72704 .4 <.02 <1 <10 30.0 MOWR72705 1.1 1.1 .2 <.1 .02 $\frac{1}{.7}$ $3.4 \\ 3.6 \\ 8.7$ 30.0 7.5 7.5 8 1 <10 16<u>8</u> 5 197 63 3Ğ 31 MOWR72706 OREAS 14P . 04 MOWR72707 OREAS 13P . 4 <.1 2.5 MOWR72708 <1 5 62 51 30.0 <.02 STANDARD DS6 2.01 <1 16.4 46 164 30.0

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. (>) CONCENTRATION EXCEEDS UPPER LIMITS. SOME MINERALS MAY BE PARTIALLY ATTACKED. REFRACTORY AND GRAPHITIC SAMPLES CAN LIMIT AU SOLUBILITY. - SAMPLE TYPE: Rock R150 DRY PULPS @ 105 DEG. C OVERNIGHT.

Data 🥢 FA

ACME AN CTICAL (150 9002 A Angl	ccre	dit	eđ C	lo.)	xpl		Ģ	EOC	HEN lana	IICA	L A Lt	NAI	NCO YSI PRO V6C 10	s C Jec	ERT T 2	IFI 005	CAT	E 001	F	ile		4) 25 A50				(60~- d)	253	-171 A/	5 L
SAMPLE#	Cs	Ga	Hf	NÞ	Rb	Sn	Sr	Та	Th	U	v	W	Zr	Ŷ	La	Ce	Pr	Nď	Sm	Eu	Gd	Tb	Dy	Ko	Er	Tm	YЬ	Lu	
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	bbu	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
MOWR72700 MOWR72701		5.4 9.7	<.5	•••	2.3	<1 <1	95.7 101.3	<.1 <.1	<.1 .3	<.1 1	172 465	.3	9.5 14.6		.9 1.4	3.2 3.8		3.9 3.3	1.4		1.89		1.86	.37	.92	- 14 - 09	.84	.12	
MOWR72702	1	18.5		4.2			435.0	.3	1.4	.5	482	.3	58.3								5.86		5.19		2.41		2.00		
MOWR72703	<.1	12.5	2.0		4.2		116.9	.2	.8	.3	515	.2	46.7					13.6	4.9		6.37		6.37		3.31		2.93		
MOWR72704	.5	4.2	<.5	<.5	7.9	<1	70.8	<.1	<.1	.1	45	<.1	.9	.9	<.5	.7	.09	.4	.1	.09	.20	.02	.13	<.05	.07	<.05	.11	.01	
MOWR72705	3	15.9				<1	247.3	.2	1.2	.5	450						2.10			1.06			4.21		2.06		1.93		
MOWR72706 OREAS 14P		7.5				1	85.9	.4	7.9	.6	65		194.5								4.90		4.50		2.18		2.17		
MOWR72707 OREAS 13P		16.8			14.6	1	341.1	-1	1.8	.3	95	2.6	80.2	17.1			3.09		3.6		3.47		3.38				1.58		
MOWR72708 STANDARD SO-17		2.6 19.6		<.5 25.0	.6 22.6	<1 11	44.5	<.1 4.2	<.1 11.3	<.1 11.0	128 129	<.1 9.9	3.5 350.3	3.4 26.5	<.5 11.2	1.0 24.1	.21 2.98	1.2 13.8	3.3	.17 1.01	.78 3.75	. 14	.70 4.18	.14	.35 2.68	<.05 .43	.32 2.84		

GROUP 48 - REE - 0.200 GM BY LIBO2 FUSION, ICP/MS FINISHED. - SAMPLE TYPE: Rock R150 DRY PUPLS @ 105 DEG. C OVERNIGHT.

Data / FA ____ DATE RECEIVED: APR 1 2005 DATE REPORT MAILED: April 19/05

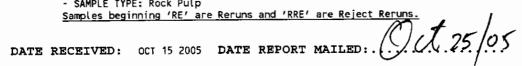
٠

ACME AN	TICAL	LABORATOR	RIES LTD.
(ISU	9001 Ad	credited	Co.)

ICOUVER BC V6A 1R6 852 E. HASTINGS ST.

PHONE (604) 253-3158 FAX (6

.


ASSAY CERTIFICATE

Aumega Discoveries PROJECT STAR File # A506239R 2nd Floor - 157 Chadwick, North Vancouver BC V7M 3K2 Submitted by: T. Johnson

		and a second	
SAMPLE#	Ni/Ox		
STJ-05-02 STJ-05-10 STJ-05-11 STJ-05-14 STJ-05-23	.007 .007 .036 .007 .003		
STJ-05-27 STJ-05-30 STJ-05-33 STJ-05-46 RE STJ-05-46	.002 .013 .017 .016 .016		
STJ-05-52 STJ-05-62 STANDARD R-2a	.022 .029 .033		
NI/OX - 1.000 GM SAMPLE DIGEST WITH AMMONIUM CITRATE, #	ANALYZE BY ICP-ES.		

- SAMPLE TYPE: Rock Pulp

Data (FA

