

ASSESSMENT REPORT

ON THE

2005 GROUND MAGNETOMETER SURVEY AND FIELD WORK

ON THE

CHUCHI MINERAL CLAIMS

OMINECA MINING DIVISION

NTS LOCATION: 93N/1,2,7,8

LATITUDE: 55 15' NORTH LONGITUDE: 124° 32' WEST

OWNED AND OPERATED BY: HIGH RIDGE RESOURCES INC.

PREPARED BY:
Jos Hantelmann, Geologist
FAIRBANK ENGINEERING LTD.
Suite 901, Granville Street
Vancouver, B.C.
V6C 1T2

January 2006

TABLE OF CONTENTS

1.0 INTRODUCTION
1.1 SUMMARY 1
1.2 LOCATION AND ACCESS
1.3 CLAIM STATUS
1.4 HISTORY 4
2.0 GEOLOGY
2.1 REGIONAL GEOLOGY
2.2 PROPERTY GEOLOGY
2.3 MINERALIZATION
3.0 ROAD WORK
4.0 GEOPHYSICAL WORK
4.1 GRID PREPARATION
4.2 MAGNETIC SURVEY 8
5.0 CONCLUSIONS
6.0 REFERENCES 10
LIST OF FIGURES
FIGURE 1. Project Location Map
FIGURE 2. Chuchi Property Location and Access Map, Scale 1:20,000
FIGURE 3. Chuchi Property Geology
FIGURE 4. Index Map of Survey Grid and Road Work Modifications, Scale 1:20,000
FIGURE 5. Survey Grid, Scale 1:5,000
FIGURE 6. Total Field Magnetics, Scale 1:5,000

LIST OF TABLES

TABLE 1	. High Ridge	Resources Inc.	Chuchi Property	Claims		. 2
---------	--------------	----------------	-----------------	--------	--	-----

APPENDICES

APPENDIX I: STATEMENT OF COSTS

APPENDIX II: SCINTREX ENVI-MAG TECHNICAL SPECIFICATIONS

APPENDIX III: TOTAL FIELD MAGNETICS - RECORDED DATA SETS

APPENDIX IV: STATEMENT OF QUALIFICATIONS

1.0 INTRODUCTION

1.1 SUMMARY

During the 2005 field season High Ridge Resources Inc. (HRR) conducted an exploration and physical development program, involving line-cutting, road work and a ground magnetometer survey on their Chuchi property, located at 55° 16' latitude north and 123° 32' longitude west. The 7359 hectare Chuchi claim group consists of 20 individual contiguous claims.

The property is comprised of Upper Triassic to Lower Jurassic volcanic and sedimentary rocks, intruded by a series of Early Jurassic stocks and plugs. Copper-gold porphyry type mineralization related to the intrusions occurs within the Chuchi project area.

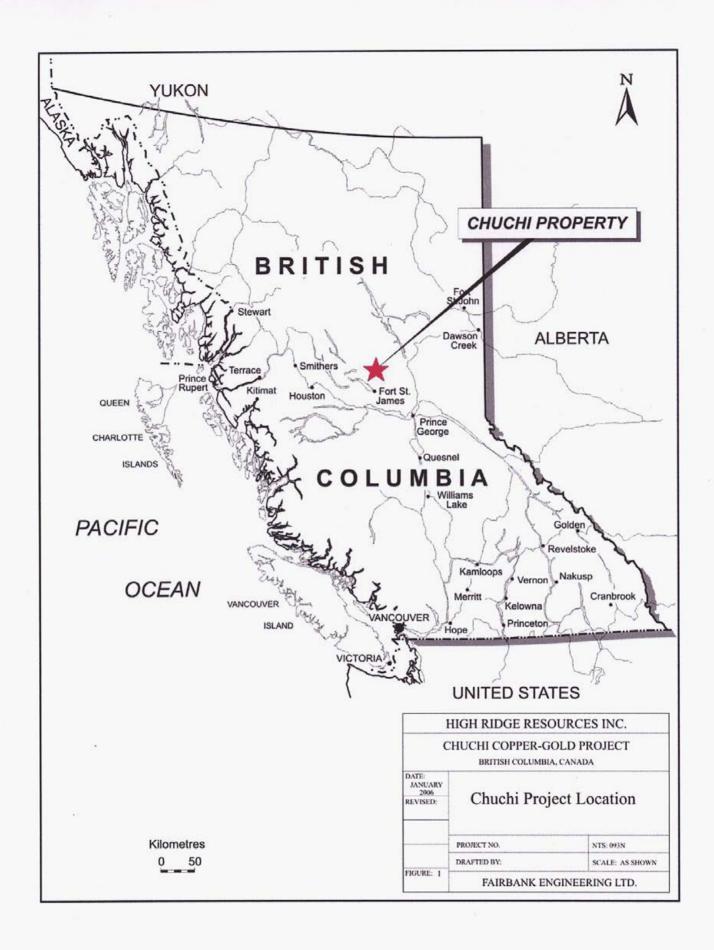
Between August and October 2005, HRR contracted Hat Creek Logging Ltd. to improve approximately a 7km stretch of access road into the property using a D-6 caterpillar bulldozer. In addition to the road work, 18.1 line-km of grid line-cutting, by CJL Enterprises Ltd and 16.8 line-km of ground magnetometer survey over the grid by Fairbank Engineering Ltd. was carried out.

1.2 LOCATION AND ACCESS

The Chuchi property is located in north-central British Columbia (NTS 93N/1,2,7,8), approximately 90km north of Fort St. James. Access to the claims is achieved via a 7km 4x4 gravel road from a turn-off 12km along the Germansen-Indata forestry service road and 102km north along the all-weather Germansen Landing north road from Fort St. James (Figure 1).

Topography is moderate, from rolling glacial hills to mountainous terrain, where slopes rarely exceed 30° and elevations range from approximately 900m to 1650m. Steeper slopes and higher elevations are commonly covered with rock outcrops. Vegetation coverage is fairly dense forests consisting of spruce, balsam, pine and alder, with some marshy areas. Clear-cutting is currently active in the area, further west on the Germansen-Indata forestry service road, west and south-west of the Chuchi claims.

1.3 CLAIM STATUS


The Chuchi claim group consists of 20 individual adjoining claims covering 7359 hectares, owned and operated by High Ridge Resources Inc. (Table 1). The claims are centered about an area 6km north of Chuchi Lake and extend south down to the shore of the lake (Figure 2).

In October 2004 High Ridge Resources Inc. acquired the rights to tenures # 514590 and 514591 through an option agreement with Loren B. Warren, John M. Mirko and Donna Luck. In January 2005, 18 additional claims were staked by HRR.

The geophysical ground magnetometer survey along with the grid establishment, as identified in this report, was carried out exclusively on tenure # 514590. The physical development road work was preformed the following tenures # 514590, 513265, 513266 and 513309. A total of \$79,254 has been applied to all the contiguous claims.

TABLE 1: High Ridge Resources Inc. Chuchi property claims.

Tenure Number	Claim Name	Owner	Map Number	Good To Date	Mining Division	Area (ha)
501116	chuc 3	146826 100%	093N	2008/JAN/12	OMINECA	442.194
501120	CHUC 5	146826 100%	093N	2008/JAN/12	OMINECA	442.347
501151	chuc 6	146826 100%	093N	2008/JAN/12	OMINECA	424.129
501191	chuc 8	146826 100%	093N	2008/JAN/12	OMINECA	442.75
501208	Chuc 4	146826 100%	093N	2008/JAN/12	OMINECA	221.096
501220	chuc 11	146826 100%	093N	2008/JAN/12	OMINECA	442.748
501254	Chuc 12	146826 100%	093N	2008/JAN/12	OMINECA	442.823
501283	Chuchi 4	146826 100%	093N	2008/JAN/12	OMINECA	184.322
501307	chuc 13	146826 100%	093N	2008/JAN/12	OMINECA	442.91
501338	CHUC 14	146826 100%	093N	20 <u>08/JAN/12</u>	OMINECA	92.264
501360	chuc14	146826 100%	093N	2008/JAN/12	OMINECA	443.07
501377	CHUC 15	146826 100%	093N	2010/JAN/12	OMINECA	18.428
501390	chuc 16	146826 100%	093N	2008/JAN/12	OMINECA	443.254
501427	chuc 17	146826 100%	093N	2010/JAN/12	OMINECA	18.439
501451	CHUC 17	146826 100%	093N	2010/JAN/12	OMINECA	92.143
513265	CHUCHI 0501	146826 100%	093N	2009/JAN/12	OMINECA	442.658
513266	CHUCHI 0502	146826 100%	093N	2009/JAN/12	OMINECA	295.107
513309	CHUCHI 0503	146826 100%	093N	2009/JAN/12	OMINECA	461.091
514590		146826 100%	093N	2010/JAN/12	OMINECA	1013.88
514591		146826 100%	093N	2010/JAN/12	OMINECA	553.055

1.4 HISTORY

Within and adjacent to the present Chuchi project area, intermittent periods of work have been conducted by various companies since the mid 1960's; however, there has not been any work preformed on the current claim group since 1991.

In 1971 Serem Ltee' staked claims north of Chuchi lake and conducted a soil sampling program that consisted of 520 soil samples on a grid approximately 2.6 km north of Chuchi lake.

In 1972 Noranda Mines Ltd. staked claims south of Klawdetelle Lake and established a soil geochemical grid which lays within the current claim boundaries.

In 1983 the Phil 13 and 14 claims were staked by Selco Inc., later to become BP Resources Canada Limited (BP). In 1984 a property wide geochemical survey was conducted using a 100m x 200m sampling grid and geological mapping was carried out at a 1:5,000 scale. In 1985, BP added the Chuchi 1 and 2 claims to the project area and continued work with a trenching, soil sampling and mapping program centered on the copper-gold geochemical anomaly as previously identified during the 1984 exploration program. In 1989, BP through a joint venture with Digger Resources Inc. conducted 150 line-km of aeromagnetic survey, 41 line-km of Induced Polarization survey, 30 line-km of ground magnetometer survey, followed by six diamond drill holes totalling 763.2m to test a multi-element soil geochemical and conductive IP anomaly. Drilling intersected zones of significant copper and gold mineralization. In 1990, BP continued to drill completing an additional 5315.7m through 29 holes.

In 1988 and 1989, Noranda completed a property wide soil survey and geological mapping, two small ground magnetometer surveys and an electro-magnetic /resistivity/magnetic/VLF-EM survey. A large copper large soil copper anomaly was then further explored with 619.9m of diamond drilling in 6 holes.

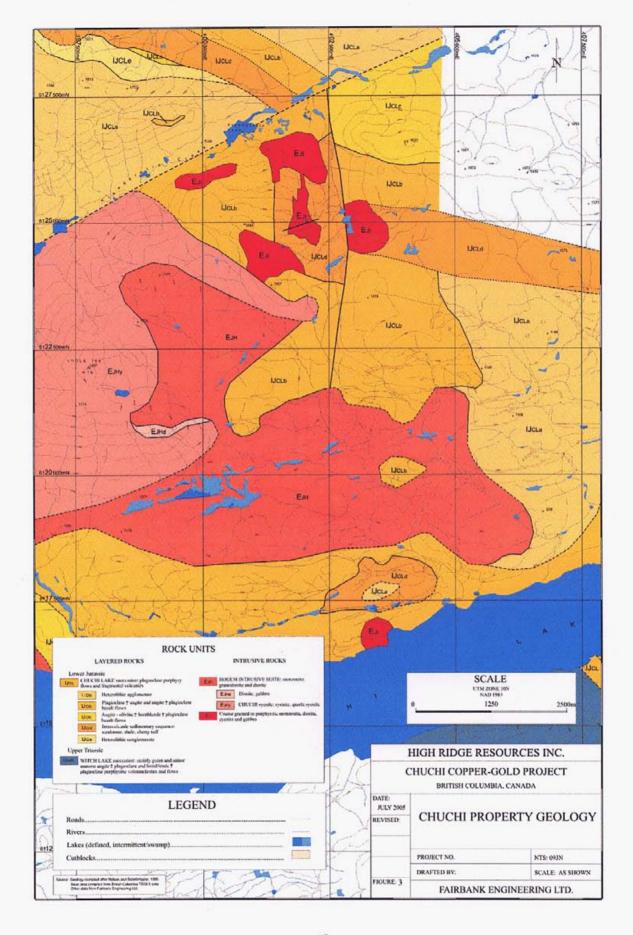
In 1988, Westmin Mines Ltd. staked the Klawli property, adjoining the north side of BP's Phil and Chuchi claim blocks, the claims were then optioned by Rio Algom Exploration Inc. who then added additional claims. Work completed by Rio in 1989 included, soil sampling for a geochemical analysis, 190 line-km of airborne magnetic and VLF-EM surveys, which identified large copper and gold anomalies. In 1990 further soil geochemical sampling was preformed along with 25.25 line-km of IP survey and five diamond drill holes totalling 691.7m. Rio continued with nine diamond drill holes, totalling 1052.5m in 1991 to further test IP anomalies previously identified.

A significant amount of exploration within the vicinity of Chuchi Lake resulted in the discovery of the Mount Milligan copper-gold porphyry deposit, located approximately 30km east of the HRR Chuchi claims. Mount Milligan, with a current estimated reserve of 156 MT of 0.5g/T Au and 0.198% Cu is owned and operated by Placer Dome.

2.0 GEOLOGY

2.1 REGIONAL GEOLOGY

The Chuchi project area is located within the central north-northwest trending Quesnel Trough, within the Intermontane Tectonic Belt of the Canadian Cordillera. The Quesnel Trough assemblage consists primarily of volcanic and sedimentary rocks of the Upper Triassic Takla Group, subdivided into the Inzana and Witch Lake successions, and the Lower Jurassic Chuchi Lake Succession, as well as an Early Jurassic intrusive suite (Nelson and Bellefontaine, 1996).


The Inzana Lake Succession consists of mixed and variable volcanic derived sediments of fine to coarse epiclastic, pyroclastic and argillite. There is an apparent upward sequence from epiclastic to volcanic facies. This unit stratigraphically underlies and interfingers with the Witch Lake Succession. The Witch Lake Succession is predominantly an augite +/- plagioclase +/- hornblende porphyry suite including a variety gradational porphyritic volcaniclastic sediments and flows, basaltic to andesitic in composition. The Chuchi Lake Succession, transitionally overlying the Witch Lake Succession, is made up of the variable plagioclase +/- augite porphyry flows and heterolithic fragmental volcanics, totalling approximately 1650m.

Numerous igneous intrusions are scattered throughout both the Upper Triassic and Lower Jurassic volcanic units. This Early Jurassic intrusive suite is collectively known as the Omineca intrusions, the primary unit identified as the Hogem Batholith along with a complex of smaller intrusions are predominately comprised of texturally and compositionally heterogeneous porphyritic syenite to diorite rocks. The igneous/volcanic rock compositions are similar to that of the calc-alkaline typical of island-arc volcanism.

2.2 PROPERTY GEOLOGY

The Chuchi copper-gold porphyry style deposit occurs within the Chuchi Lake Succession and the Omineca intrusive complex, where mineralization appears to be related to these intrusive stocks (Figure 3). Rebagliati (2005) describes the intrusive rocks are predominantly heterogeneous porphyritic monzonite, but variable in composition and texture, ranging from sparsely to strongly porphyritic porphyries. A typical porphyritic monzonite contains 1 to 2mm plagioclase phenocrysts +/- hornblende +/- biotite +/- augite touching in a fine-grained matrix of plagioclase, K-feldspar, mafic and oxide minerals. Magnetite-rich intrusions, comprising of between 2 and 5% of whole rock composition have made magnetic exploration surveys a preferred method for discovering potential intrusive bodies concealed by the overburden. The volcanic derived sedimentary units of fine siltstones, sandstones and tuffs grade downwards to massive, coarse lapilli tuffs and agglomerates. Much of the project area is covered by unconsolidated glacial till.

Rebagliati (2005) has noted strong pervasive biotite hornfels overprint within the sedimentary rocks and subsequent variable potassic and propylitic alteration. An extensive set of alteration halos, totalling 10km by 2km area are present, trending northnorthwest across the project area.

Locally, there are a series of apparent faults present. A northeast trending fault is inferred to run along Klawdetelle Creek. Another fault running roughly north-south is inferred, physiographically identified by the creek flowing north through the survey grid; this fault is apparently truncated to the north by the Klawdetelle Creek fault. A smaller, near vertical, central fault trending 70° is recognized in the area BP has drilled. This fault appears to be post-mineralization with a displacement between 200 and 400m (Wong, 1991).

The Chuchi copper-gold porphyry type mineralization and geologic setting is similar to that of the Mount Milligan deposit, located 30km to the east. Discovered in 1987, the Mount Milligan mineralization is centered around two intrusive porphyritic monzonites, called the MBX and Southern Star stocks. Previous drilling on the Chuchi property by BP has revealed grades of up to 0.37% Cu and 0.21g/T Au over 88m.

2.3 MINERALIZATION

Mineralization is predominantly in the form of fracture controlled pyrite and pyrrhotite, with minor chalcopyrite; occurring as fine-grained disseminations or fracture filling and coatings. According to Rebagliati (2005), sulphide mineralization averages about 2% and ranges up to 10% by volume. Chalcopyrite is present within the pervasive propylitic zones, but the most significant mineralization generally occurs along the intrusive-sedimentary contacts, associated with potassic alteration.

3.0 ROAD WORK

The main access road into the project area was previously accessible only by quad due to heavily overgrown brush and land slumps. In order to improve the access, Hat Creek Logging Ltd., operating out of Fort St. James, BC was contracted to rehabilitate and modify the existing road, using a D-6 caterpillar bulldozer. There was minimal physical disturbance, as most of the road widening only required the clearing of invading brush and dead fall. The main access road was re-established to allow for 4x4 trucks and other heavy machinery to access the current project area under focus, see Figure 4.

A total of 45 hours (6 man-days) were spent on the road rehabilitation work, including mobilization, travel time to site and operator time, preformed between the 25th of October, 2005 and the 28th of October, 2005.

4.0 GEOPHYSICAL SURVEY

4.1 GRID PREPARATION

A survey grid was prepared in order to complete a ground magnetometer survey over an area of interest within the Chuchi claim group (Figure 4). As the last significant exploration activity on the property was back in 1991 the main access road was heavily

overgrown and obstructed by deadfall. Light road clearing was necessary in order to gain access to current exploration target area.

18.1 line-km grid of line-cutting, station flagging and picketing was preformed by CJL Enterprises Ltd. operating out of Smithers, BC. The survey grid consists of a 1.3km East-West baseline and 14 North-South tie-lines at 1.2km each. Tie-lines were spaced 100m apart, stations were flagged every 25m along the tie-lines with 50m stations picketed along the baseline (Figure 5).

The starting position on the grid was located using a Garmin GPS 76CS unit, where the main access road through the property crosses 6125500mN. Lines were initially flagged, positioned accurately by using both a compass and GPS. Tie-lines were then tight-chained along the baseline. Line-cutting followed, where the extent of line clearing was minimal, restricted to dangerous dead fall and dense underbrush. Stations were then marked every 25m using a hip-chain along the cleared tie-lines.

A total of 1016 hours (125 man-days) was spent establishing the survey grid; this time includes mobilization, travel time and operating hours. Work commenced on the 3rd of August, 2005 and continued until the 28th of August, 2005.

4.2 MAGNETIC SURVEY

A ground magnetometer survey was centered over an area of interest where previous drilling programs encountered the most significant mineralization. The survey covers an area that has not been previously fully explored and has been identified as a primary exploration target, as recommended by Rebagliati Geological Consulting Ltd. (2005).

The magnetic survey was completed using a SCINTREX ENVI-MAG unit; a portable proton-precession magnetometer; conducted by Fairbank Engineering Ltd., operating out of Vancouver, BC. The total field magnetic intensity was recorded, units measured in nanoTeslas (nT) or gammas (γ), where $1nT = 1\gamma$. Technical specifications for the noted magnetometer unit used are listed in Appendix II. Results, both raw and corrected data, are listed in Appendix III.

A base station setup at the same location throughout the survey period measured the total magnetic field every 30 seconds throughout the day and was use to correct against the recorded field data for diurnal variation. The two magnetometer units, the base station and field units were synchronized to effectively correct for diurnal effects.

A total of 16.8 line-km of magnetometer survey was conducted. The total field magnetic intensity was recorded at each station along the grid, at a 25m interval along each of the 1.2km tie-lines. All data was downloaded to a laptop field computer at the end of each day in three different sets: a raw data set from the field magnetometer unit, a data set from the base station, and one set with the corrected field data (field measurements compared against the base station). The corrected data is acquired automatically by connecting the field magnetometer unit to the base station. The corrected magnetic data

set was plotted and contoured using ArcGIS 9 software. Contouring was achieved through minimum curvature gridding, where a geographic weighted regression is applied to the data set. No other corrections to the data have been preformed. The total field magnetic map of corrected data is presented as Figure 6.

The magnetic survey was completed in 240 hours (30 man-days) between the 17th of October, 2005 and the 31st of October, 2005.

5.0 CONCLUSIONS

The ground magnetometer survey identifies anomalous high total field magnetic values over outcropping rock in the south-western portion of the survey grid with variable minor magnetic lows. The source of the series of minor relative magnetic lows are dispersed through the predominantly magnetic high anomaly in the south-west corner of the survey are uncertain; these juxtapositions may be the result of an unapparent localized geologic contacts in the subsurface. The central fault shows a very weak but apparent, magnetic low anomaly cutting across the intrusive magnetic highs. An inferred fault running roughly north-south through the survey grid parallel to and delineated by the valley and creek is further enhanced by a linear relative magnetic low feature, interpreted to represent a structural break. This magnetic low splits south and east in the south-eastern area of the survey grid which may indicate a conjunction of fault planes. Magnetic highs appear to show good correlation with known and mapped intrusive bodies; therefore, potentially identifying other intrusive units, porphyries or mineralization previously not mapped.

6.0 REFERENCES

- BARRIE, C. T., BINNS, J. B., CRAIGIE, E. R. and WONG, R. H., 1991: Assessment Report of Linecutting, Geologic Mapping, IP-Resistivity Surveying and Diamond Drilling on the KLAW 2 to 12 and NORN Claims. BC Geological Branch Assessment Report # 21,807.
- CAMPBELL, E. A., 1990: Klawli Option Geology, Geophysics and Geochemistry 1989. BC Geological Branch Assessment Report # 19,719.
- CAMPBELL, E. A., 1991: Klawli Option Diamond Drilling 1991. BC Geological Branch Assessment Report # 22,034.
- CAMPBELL, T., 1990: Report of Diamond Drilling on the KLAW 1 and 2 Claim Groups. BC Geological Branch Assessment Report # 20,314.
- CAMPBELL, T., 1990: Airborne Geophysical Report on the Chuchi B Group of Claims. BC Geological Branch Assessment Report # 20,865.
- CAMPBELL, T. and BRADISH, L., 1990: Geological, Geophysical and Geochemical Report on the Chuchi B Group. BC Geological Branch Assessment Report # 19,582.
- REBAGLIATI, C. M., 2005: Unpublished Company Report. Summary Report on the Chuchi Property for High Ridge Resources Inc., Rebagliati Geological Consulting Ltd., Technical Report NI 43-101.
- MEYERS, R. E., REBAGLIATI, C. M. and GRAVEL, J. L., 1985: Assessment Report fo the 1985 Geological, Geochemical and Trenching Program on the Phil 13 Claim Group. BC Geological Branch Assessment Report # 14,381.
- NELSON, J. L. and BELLEFONTAINE, K. A., 1996: The Geology and Mineral Deposits of North-Central Quesnellia; Tezzerone Lake to Discovery Creek, Central British Columbia. Bulletin 99. BC Ministry of Employment and Investment, Energy and Minerals Division, Geological Survey Branch. November, 1996.
- WONG, R. H., 1989: Assessment Report of the 1989 Topographic Mapping and Airborne Geophysical Program on the Phil 13 Claim Group. BC Geological Branch Assessment Report # 19,024.
- WONG, R. H.. 1990: Assessment Report of the 1989 Ground Geophysical and Diamond Drilling Program on the Phil 13 Claim Group. BC Geological Branch Assessment Report # 20,018.
- WONG, R.H. and BARRIE, C.T., 1991: Assessment Report of the 1990 Diamond Drilling Program on the Chuchi A Claim Group, BC Geological Branch Assessment Report # 21,113.

APPENDIX I

STATEMENT OF COSTS

Labour		
	Grid Preparation Line Cutting: Foreman: 32 man days @ \$350/day	\$ 29,420.00
	Experienced operator: 22 man days @ \$320/day	
	Helpers: 43 man days @ \$260/day	
	Company field operator: 30 man days @ \$300/day	\$ 9,000.00
	Magnetic Survey: 2 Field operators: 30 man days @ \$200/man/day	\$ 6,400.00
Transpor	tation	
•	Vehicle Rental	\$ 2,458.48
	Line Cutters truck rental: \$600/week @ 4 weeks + \$0.46/km @ 1550km	\$ 3,113.00
	2 Quad rentals: \$500/week @ 3 weeks	\$ 3,000.00
	Fuel	\$ 1,023.33
	Insurance	\$ 1,151.00
	D6R Mobilization: \$150/hr @ 10hrs.	\$ 1,500.00
	Cat operator travel: \$40/hr @ 13.5hrs.	\$ 540.00
Equipme	nt	
	Chainsaw Operating costs: \$40/day @ 37 days	\$ 1,480.00
	D6R cat operating: \$145/hr @ 21.5hrs.	\$ 3,117.50
	Magnetometer rental	\$ 912.71
	trailer rental	\$ 500.00
	field equipment (i.e. computer, GPS, Sat phone)	\$ 784.52
	All other equipment	\$ 3,163.78
Room & I	Board	
	114 man days @ \$85/man/day	\$ 9,690.00
Report P	reparation	
	Geologist: 5 days @ \$200/day	\$ 1,000.00
	Drafting: 40hrs. @ \$25/hr.	\$ 1,000.00
Total Cos	st .	\$ 79,254.32

APPENDIX II

SCINTREX ENVI-MAG technical specifications

Total field range:	20,000 to100,0	000 nT	
Total field absolute accuracy:	+/-1 nT		
Sensitivity:	0.1 nT at 2 seco other reading tin	_	reduced at
Sensor spacing: (Gradiometer)	0.5 metre		
Tuning:	Fully solid state. Manual or autom	atic; keyboard se	electable.
Reading period:	0.5 sec 1 sec 2 sec		
Cycle time:	Internal: The mining reading period, n		•
Cycle time: (Base Station)	External: Any, as period and is init 232 interface.	long as it exceed iated by a comma	_
Cycle delay:		letermined by the od; max. 8 s, in 1	
Display:	8 lines by 40 cha Super-twist LCD	nracters, 64 x 24 lisplay, with heat	
Keyboard:	17 keys, membra Main mode is Fur secondary mode		
Note Entry:	of	and 5 user pre-deach, for quick-ent	
Audio:	Beeper to acknown reading to act as	wledge key-press s a pacer.	, start of
Clock:	riogi birrio brook i	vith date and tim /- 1 second stabi	0. 1 0000110
	Mode	Standard	Expanded
	Base Station:	143,000 rdgs.	748,000 rdgs.
	Portable mode	26,000 rdgs.	139,000 rdgs.
	Gradiom. mode	20,000 rdgs.	108 000 rdgs.
.	WALKMAG (Tot.)	36,000 rdgs.	188,000 rdgs.*
Data memory:	WALKGRAD (Grad.)	26,000 rdgs.	135,000 rdgs.

Data presentation:	Present and three previous readings in numerical form. Up to 178 readings in graphic form. Display shifts 34 screen when full.
Data output interface:	RS-232C interface, 600 to 57600 Baud, 7 or 8 data bits, 1 start, 1 stop bit, no parity format. Selectable carriage return delay (0-999 ms) to accommodate slow peripherals. Handshaking is done by X-On/X-Off.
Data output format:	Data dump of all acquired data in memory or on a mode by mode and line by line basis in XYZ or printer listing format. Separate dump for "Notes".
Analog Output:	O to 999 mV full scale output voltage with keyboard selectable range of 1, 10, 100, 1000 or 10000 nT full scale.
Data Recall:	On the LC Display in graphic format. Based on time for the base station, on line and station basis for other modes. Bi-directional scan.
Power supply:	12 V at 0.65 A for magnetometer. 1.2 A for gradiometer. 2.3 Ah Lead-acid battery. Approximate battery life is 40000 readings as a WALKMAG at 25 degree C. External input for base station operation.
Battery charger:	110 V - 230 V 50/60 Hz
Environmental Range:	-40 to 60 degree C. Humidity 0 -100% Fully sealed. Easy to exchange desiccant cartridge.
Console dimensions:	250 mm x 152 mm x 55 mm 300 mm x 152 mm x 82 mm overall.
Console weight:	2.45 kg
Sensor dimensions:	70 mm diameter x 140 mm 70 mm diameter x 175 mm overall, total field. 70 mm diameter x 675 mm overall, gradiometer.
Sensor weight:	1.0 kg total field; 1.15 kg gradiometer.
Staff dimensions:	25 mm diameter x 2 m in 4 sections.
Staff weight:	0.8kg

APPENDIX III

Total Field Magnetics – Recorded Data Sets

Line No.	Station No.	Easting	Northing	Corrected TFM (nT)	Raw TFM (nT)
117	6000	401700	6126000	56865	56854.5
117	5975	401700	6125975	56784.5	56775.3
117	5950	401700	6125950	56824.7	56815.9
117	5925	401700	6125925	56873.3	56863.6
117	5900	401700	6125900	56802.5	56793.7
117	5875	401700	6125875	56846.8	56838.7
117	5850	401700	6125850	56941	56827.7
117	5825	401700	6125825	56809.5	56799.1
117	5800	401700	6125800	56770.4	56761.6
117	5775	401700	6125775	56747.4	56738.4
117	5750	401700	6125750	56799.2	56790.4
117	5725	401700	6125725	56816.5	56808.4
117	5700	401700	6125700	56801.4	56793.5
117	5675	401700	6125675	56894.2	56885.4
117	5650	401700	6125650	56852.8	56844.9
117	5625	401700	6125625	56956.4	56948.6
117	5600	401700	6125600	57002.3	56994.5
117	5575	401700	6125575	56798.1	56790.5
117	5550	401700	6125550	56939.2	56931.2
117	5525	401700	6125525	56942.9	56935.2
117	5500	401700	6125500	57184.7	57178.6
117	5475	401700	6125475	56999	56992.7
117	5450	401700	6125450	57081.1	57074.6
117	5425	401700	6125425	57198.5	57192.4
117	5400	401700	6125400	57251.4	57245.2
117	5375	401700	6125375	57227.1	57221.5
117	5350	401700	6125350	57468.9	57463.1
117	5325	401700	6125325	57677.3	57671.8
117	5300	401700	6125300	57948.8	57943.2
117	5275	401700	6125275	58484	58478.1
117	5250	401700	6125250	58622.1	58616.6
117	5225	401700	6125225	58765.8	58759.8
117	5200	401700	6125200	57830.5	57824.8
117	5175	401700	6125175	57720.7	57715.4
	† · · · · · · · · · · · · · · · · · · ·				
117	5150	401700	6125150	57646.9	57641.5
117	5125	401700	6125125	57591.7	57585.9
117	5100	401700	6125100	57647.5	57642.7
117	5075	401700	6125075	57781.2	57777.4
117	5050	401700	6125050	57971.1	57966.3
117	5025	401700	6125025	57954.2	57949.2
117	5000	401700	6125000	58353	58348.7
117	4975	401700	6124975	58343.4	58339.6
117	4950	401700	6124950	58898	58894.5
117	4925	401700	6124925	58872.5	58868.1
117	4900	401700	6124900	58972.7	58968.5
117	4875	401700	6124875	58064.7	58059
117	4850	401700	6124850	57849.1	57843.6
117	4825	401700	6124825	57663.8	57657.4

Line Station			Corrected TFM		
No.	No	Easting	Northing	(nT)	(nT)
		101000	242222	50077.4	50000 5
118	6000	401800	6126000	56977.1	56969.5
118	5975	401800	6125975	57030.4	57021.6
118	5950	401800	6125950	56718.9	56707
118	5925	401800	6125925	56699.2	56690.1
118	5900	401800	6125900	56365.6	56360.6
118	5875	401800	6125875	56824.6	56815.3
118	5850	401800	6125850	56766.2	56766.4
118	5825	401800	6125825	56780.8	56773.1
118	5800	401800	6125800	56785.7	56778.3
118	5775	401800	6125775	56851.3	56844.1
118	5750	401800	6125750	56800.6	56792.8
118	5725	401800	6125725	56694.5	56684.8
118	5700	401800	6125700	56698.1	56700
118	5675	401800	6125675	56727.4	56719.5
118	5650	401800	6125650	56749.1	56742.1
118	5625	401800	6125625	56953.9	56948.2
118	5600	401800	6125600	56833.1	56827
118	5575	401800	6125575	56963.5	56956.4
118	5550	401800	6125550	57096.1	57087.9
118	5525	401800	6125525	57069.8	57056.5
118	5500	401800	6125500	57095.1	57090.4
118	5475	401800	6125475	56964.7	56957.6
118	5450	401800	6125450	56945.1	56938.4
118	5425	401800	6125425	56987.9	56980.9
118	5400	401800	6125400	56989.2	56983
118	5375	401800	6125375	57245.1	57249
118	5350	401800	6125350	57622.6	57615.3
118	5325	401800	6125325	57885	57878.2
118	5300	401800	6125300	58000.9	57990.8
118	5275	401800	6125275	58260.9	58256.1
118	5250	401800	6125250	58527.6	58529.6
118	5225	401800	6125225	57492.3	57486.3
118	5200	401800	6125200	57443.1	57437
118	5175	401800	6125175	57797.4	57789.8
118	5150	401800	6125150	57917.4	57905.5
118	5125	401800	6125125	57326.9	57320.8
118	5100	401800	6125100	60616	60608.8
118	5075	401800	6125075	58731.7	58724
118	5050	401800	6125050	58736.6	58705.2
118	5025	401800	6125025	58770.1	58759
118	5000	401800	6125000	58233.1	58227.8
118	4975	401800	6124975	58055.4	58048.8
118	4975	401800	6124975	58419.7	58412.6
118	4930	401800	6124930	58324.7	58313.9
118	4925	401800	6124925	58158.7	58153.3
					60809.3
118	4875	401800	6124875	60812.9	
118	4850	401800	6124850	60073	60058.9

Line	Station			Corrected TFM	Raw TFM
No.	No.	Easting	Northing	(nT)	(nT)
					,
119	6000	401900	6126000	56909.9	56913.6
119	5975	401900	6125975	56926.9	56972.3
119	5950	401900	6125950	56986.2	56902.3
119	5925	401900	6125925	56916.2	56842.2
119	5900	401900	6125900	56856.1	56900.1
119	5875	401900	6125875	56913.9	56778.5
119	5850	401900	6125850	56794	56876.1
119	5825	401900	6125825	56891.6	56758.2
119	5800	401900	6125800	56773.2	56763
119	5775	401900	6125775	56794.4	56818.2
119	5750	401900	6125750	56848.4	56688.4
119	5725	401900	6125725	56724.2	56756
119	5700	401900	6125720	56796.3	56782.5
119	5675	401900	6125675	56798.3	56846.8
119	5650	401900	6125650	56862.7	56669.1
	5625	401900	 	56690.9	56742.6
119			6125625		56778.6
119	5600	401900	6125600	56772.9	
119	5575	401900	6125575	56794.9	56992.3
119	5550	401900	6125550	57008.7	57269.6
119	5525	401900	6125525	57304.3	57396.7
119	5500	401900	6125500	57416.1	57584.4
119	5475	401900	6125475	57603.8	57510.4
119	5450	401900	6125450	57529.8	57511.5
119	5425	401900	6125425	57531.1	57515.1
119	5400	401900	6125400	57534.9	57542.8
119	5375	401900	6125375	57562.8	57475
119	5350	401900	6125350	57494.9	57326.6
119	5325	401900	6125325	57351.3	57225.8
119	5300	401900	6125300	57250.4	57092.4
119	5275	401900	6125275	57113.1	57073.8
119	5250	401900	6125250	57095	56958.4
119	5225	401900	6125225	56979.8	56940.7
119	5200	401900	6125200	56962.3	56718.2
119	5175	401900	6125175	56740.1	56737.8
119	5150	401900	6125150	56760.2	56731.6
119	5125	401900	6125125	56753.6	56850.3
119	5100	401900	6125100	56873.1	56880.6
119	5075	401900	6125075	56904.2	58261.7
119	5050	401900	6125050	58286.9	58994.5
119	5025	401900	6125025	59017.9	57778.3
119	5000	401900	6125000	57801.9	59699.4
119	4975	401900	6124975	59723.1	59660.9
119	4950	401900	6124950	59713.8	54490.1
119	4900	401900	6124900	59827.8	59802.8
119	4875	401900	6124875	58183.3	58158
119	4850	401900	6124850	56888.6	56863.1
119	4825	401900	6124825	59166	59140.3
119	4800	401900	6124800	59699.3	59674

.

Line	Station	F==4!	Nameth !	Corrected TFM	Raw TFM
No.	No.	Easting	Northing	(nT)	(nT)
120	6000	402000	6126000	56944.6	56882.7
120	5975	402000	6125975	56841.9	56826.7
120	5950	402000	6125950	56920	56909.6
120	5925	402000	6125925	56883.3	56872.7
120	5900	402000	6125900	56881.3	56872.1
120	5875	402000	6125875	56947.5	56927.6
120	5850	402000	6125850	56922.6	56914.9
120	5825	402000	6125825	56904.5	56896.9
120	5800	402000	6125800	56871.6	56864.9
120	5775	402000	6125775	56237.9	56230.3
120	5750	402000	6125750	56804.2	56797.1
120	5725	402000	6125725	56836.3	56796.4
120	5700	402000	6125700	56826.3	56818.7
120	5675	402000	6125675	56792.7	56784.5
120	5650	402000	6125650	56740.7	56731.9
120	5625	402000	6125625	56755.3	56746.9
120	5600	402000	6125600	56746.8	56725.7
120	5575	402000	6125575	56845.1	56834.6
120	5550	402000	6125550	56943.3	56932.9
120	5525	402000	6125525	57071.6	57047.2
120	5500	402000	6125500	57165.9	57155.5
120	5475	402000	6125475	57275.2	57252.6
120	5450	402000	6125450	57468.6	57457.2
120	5425	402000	6125425	57486.9	57475.4
120	5400	402000	6125400	57656.7	57645.4
120	5375	402000	6125375	57603.7	57592.9
120	5350	402000	6125350	57326.1	57314.7
120	5325	402000	6125325	57150.2	57138.4
120	5300	402000	6125300	56859.6	56847.9
120	5275	402000	6125275	56557.9	56546.2
120	5250	402000	6125250	56917.6	56906.1
120	5225	402000	6125225	57270.3	57259,4
120	5200	402000	6125200	57341.4	57330.1
120	5175	402000	6125175	57287.4	57275.2
120	5150	402000	6125150	57831.8	57819.5
120	5125	402000	6125125	57809.8	57797.4
120	5100	402000	6125100	57427.9	57415
120	5075	402000	6125075	57249.9	57236.7
120	5050	402000	6125050	56907	56893.6
120	5025	402000	6125025	57921.4	57908
120	5000	402000	6125000	57613.3	57599.6
120	4975	402000	6124975	58605.4	58591.4
120	4950	402000	6124950	56297.2	56283.9
120	4925	402000	6124925	56075.9	56062.2
120	4900	402000	6124900	56350.4	56336.6
120	4875	402000	6124875	56814.5	56800.1
120	4850	402000	6124850	57468.4	57454.1
120	4825	402000	6124825	57741.9	57728.2
120	4800	402000	6124800	58710.5	58674.4

.

Line	Station			Corrected TFM	Raw TFM
No.	No.	Easting	Northing	(nT)	(nT)
140.	110.	Lasang	Horamig	\ \····/\	V/
121	6000	402100	6126000	56929.7	56918.3
121	5975	402100	6125975	56978.8	56901.8
121	5950	402100	6125950	56996.1	56984.9
121	5925	402100	6125925	56954.8	56943.1
121	5900	402100	6125900	56860	56848
121	5875	402100	6125875	56889.5	56877.8
121	5850	402100	6125850	56932.5	56919.9
121	5825	402100	6125825	56859.1	56846.5
121	5800	402100	6125800	56820	56808
121	5775	402100	6125775	56798.7	56786.9
121		402100	6125750	56760.1	56748.2
	5750			56882.3	56869.8
121	5725	402100	6125725		
121	5700	402100	6125700	56718.6	56687.8
121	5675	402100	6125675	56777.1	56764.6
121	5650	402100	6125650	56738.5	56726
121	5625	402100	6125625	56803.4	56777.6
121	5600	402100	6125600	56805	56781.9
121	5575	402100	6125575	56849.3	56833.9
121	5550	402100	6125550	57040.6	56980.9
121	5525	402100	6125525	57037.2	56945.2
121	5500	402100	6125500	57074.1	56990.7
121	5475	402100	6125475	57120.4	57093.2
121	5450	402100	6125450	57189	57176.2
121	5425	402100	6125425	57165.5	57152.7
121	5400	402100	6125400	57395.2	57378.9
121	5375	402100	6125375	57510.8	57489.9
121	5350	402100	6125350	57870.9	57706.9
121	5325	402100	6125325	57783.3	57766.4
121	5300	402100	6125300	57917.5	57902.4
121	5275	402100	6125275	57893.1	57878.7
121	5250	402100	6125250	57967	57953.1
121	5225	402100	6125225	57807.1	57793.1
121	5200	402100	6125200	57594.2	57580
121	5175	402100	6125175	57797	57783
121	5150	402100	6125150	57175.7	57161.7
121	5125	402100	6125125	57385.3	57371.2
121	5100	402100	6125100	57576.2	57554.6
121	5075	402100	6125075	57312.9	57298.3
121	5050	402100	6125050	57185.9	57172
121	5025	402100	6125025	56859	56845.2
121	5000	402100	6125000	57001.3	56987.1
121	4975	402100	6124975	56862.6	56849.6
121	4950	402100	6124950	56679.8	56666.6
121	4925	402100	6124925	56437.7	56424
121	4900	402100	6124900	56501.2	56487.8
121	4875	402100	6124875	56380.1	56362.9
121	4850	402100	6124850	56591.6	56560.6
121	4825	402100	6124825	56709.5	56695.9
121	4800	402100	6124800	57065.5	57052.4

Line	Station No.	Easting	Northing	Corrected TFM (nT)	Raw TFM (nT)
No.	NO.	Lasung	Horuing	<u> </u>	(111)
122	6000	402200	6126000	56990.5	56951.6
122	5975	402200	6125975	57002	56989.1
	5950	402200	6125975	56965.9	56951.1
122					56884.2
122	5925	402200	6125925	56932.5	
122	5900	402200	6125900	56852.4	56841.9
122	5875	402200	6125875	56918.8	56894.5
122	5850	402200	6125850	56851.8	56841.7
122	5825	402200	6125825	56968.4	56958.7
122	5800	402200	6125800	57081	57067
122	5775	402200	6125775	56845.8	56793.2
122	5750	402200	6125750	56869	56859.8
122	5725	402200	6125725	56776.8	56768.1
122	5700	402200	6125700	56776.1	56764.5
122	5675	402200	6125675	56840.7	56831.4
122	5650	402200	6125650	56854.2	56844.7
122	5625	402200	6125625	56863	56804.9
122	5600	402200	6125600	56816.8	56807
122	5575	402200	6125575	56928.5	56918.6
122	5550	402200	6125550	57008.8	56999.6
122	5525	402200	6125525	57018.1	57007.8
122	5500	402200	6125500	57085.1	57075.8
122	5475	402200	6125475	57246.5	57237.4
122	5450	402200	6125450	57313.4	57304.9
122	5425	402200	6125425	57394.4	57357.9
122	5400	402200	6125400	57421.3	57401.5
122	5375	402200	6125375	57608.1	57600.3
122	5350	402200	6125350	57685.8	57677.7
122	5325	402200	6125325	57738.5	57730.3
122	5300	402200	6125300	57923.7	57915.7
122	5275	402200	6125275	57872.1	57864.5
122	5250	402200	6125250	57787.2	57779.1
122	5225	402200	6125225	57934.1	57926.1
122	5200	402200	6125200	57940.3	57932.6
122	5175	402200	6125175	58048.1	58031.3
122	5150	402200	6125150	58221.4	58166.5
122	5125	402200	6125125	57986.2	57977.8
122	5100	402200	6125100	57738.9	57709.4
122	5075	402200	6125075	57526.9	57518.7
122	5050	402200	6125050	57594.7	57586.3
122	5025	402200	6125025	57258.3	57250.2
122	5000	402200	6125000	57469.4	57461.4
122	4975	402200	6124975	57308.4	57300.4
122	4950	402200	6124950	57314.3	57306.3
122	4925	402200	6124925	57345.4	57336.6
122	4900	402200	6124900	57363.3	57331.9
122	4875	402200	6124875	57092.7	57069
122	4850	402200	6124850	57024.9	56984.5
122	4825	402200	6124825	57163.5	57156.2
1		702200	0124020	0, 100.0	U. 100.2

,

Line	Station			Raw TFM	
No.	No.	Easting	Northing	Corrected TFM (nT)	(nT)
				<u> </u>	
123	6000	402300	6126000	57176.9	57146.1
123	5975	402300	6125975	56827.2	56796.1
123	5950	402300	6125950	56943.8	56913.7
123	5925	402300	6125925	56993	56962
123	5900	402300	6125900	57040.5	57010.1
123	5875	402300	6125875	57006.8	56976.2
123	5850	402300	6125850	57067.4	57037.5
123	5825	402300	6125825	56958.7	56928.6
123	5800	402300	6125800	56967.3	56938.1
123	5775	402300	6125775	56905.6	56876
123	5750	402300	6125750	56936.5	56907.5
123	5725	402300	6125725	56858.2	56828.7
123	5700	402300	6125700	56903	56875.2
123	5675	402300	6125675	56928.6	56899.6
123	5650	402300	6125650	56917	56887.8
123	5625	402300	6125625	56970.5	56941.3
123	5600	402300	6125600	57041.3	57012.3
123	5575	402300	6125575	57027.4	56998.1
123	5550	402300	6125550	57172.1	57142.9
123	5525	402300	6125525	57229.1	57199.9
123	5500	402300	6125500	57381.7	57315.4
123	5475	402300	6125475	57454.8	57426.1
123	5450	402300	6125450	57693.4	57664.9
123	5425	402300	6125425	57822.3	57792.6
123	5400	402300	6125400	58017	57988
123	5375	402300	6125375	58124.9	58096.7
123	5350	402300	6125350	58215.1	58186.3
123	5325	402300	6125325	58127.7	58098.5
123	5300	402300	6125300	58115	58085.9
123	5275	402300	6125275	57957.5	57928
123	5250	402300	6125250	58028.1	57998.9
123	5225	402300	6125225	58040.3	58011.9
123	5200	402300	6125200	58118	58089.1
123	5175	402300	6125175	57733.7	57704.4
123	5150	402300	6125150	57718.4	57689.3
123	5125	402300	6125125	57833.2	57802.9
123	5100	402300	6125100	57743.1	57713.1
123	5075	402300	6125075	57691.6	57662.4
123	5050	402300	6125050	57534	57504.3
123	5025	402300	6125025	57284.8	
123	5000			57284.8	57256.6
123	4975	402300 402300	6125000 6124975	57232.5	57202.9
					57192.2
123	4950	402300	6124950	57283.1	57254.3
123	4925	402300	6124925	57622.5	57592.9
123	4900	402300	6124900	57294	57266.3
123	4875	402300	6124875	57380.6	57351.8
123	4850	402300	6124850	57775.9	57747.6
123	4825	402300	6124825	57951.2	57923.6
123	4800	402300	6124800	57941.1	57913.2

Line	Station		Γ	Corrected TFM	Raw TFM
No.	No.	Easting	Northing	(nT)	(nT)
				. , ,	
124	6000	402400	6126000	57265	57233.1
124	5975	402400	6125975	57209.2	57178.3
124	5950	402400	6125950	57198.7	57166.3
124	5925	402400	6125925	57213.7	57182.6
124	5900	402400	6125900	56910.3	56879
124	5875	402400	6125875	56784	56752.5
124	5850	402400	6125850	56913.1	56880.3
124	5825	402400	6125825	56769.2	56737.5
124	5800	402400	6125800	56875.7	56842.7
124	5775	402400	6125775	56857.4	56824.8
124	5750	402400	6125750	56901.2	56869.1
124	5725	402400	6125725	56911.8	56879.1
124	5700	402400	6125700	57001.7	56968.5
124	5675	402400	6125675	56554	56521.5
124	5650	402400	6125650	56967	56934.2
124	5625	402400	6125625	56693.6	56660.8
124	5600	402400	6125600	57092.2	57060.1
124	5575	402400	6125575	56685.7	56652.1
124	5550	402400	6125550	57019.9	56987.4
124	5525	402400	6125525	56883.3	56850.7
124	5500	402400	6125500	57129.1	57097.6
124	5475	402400	6125475	57252.9	57221.2
124	5450	402400	6125450	57349.7	57317.4
124	5425	402400	6125425	57396.9	57365
124	5400	402400	6125400	57488.6	57457.1
124	5375	402400	6125375	57417	57386.3
124	5350	402400	6125350	57736.2	57705.4
124	5325	402400	6125325	57433.4	57402.2
124	5300	402400	6125300	57178.5	57147.2
124	5275	402400	6125275	57220.6	57189.4
124	5250	402400	6125250	57446	57414.6
124	5225	402400	6125225	57449.9	57419.5
124	5200	402400	6125200	57287.5	57256.3
124	5175	402400	6125175	57547.2	57516.2
124	5175	402400	6125150	57461.8	57430.6
124	5130	402400	6125130	57359.6	57329.2
124	5100	402400	6125125	57398	57366.7
124	5075	402400	6125075	57311.7	57280.5
124	5050	402400	6125050	56985.8	56955
124	5025	402400	6125025	57111.9	57081.1
124	5000	402400	6125025	5711.9	57108.4
	4975	402400	6124975	57139.6	56980.6
124	4975	402400	6124975	56932.3	56901.2
124					
124	4925	402400	6124925	57086.2	57055.3
124	4900	402400	6124900	57248.6	57218
124	4875	402400	6124875	57260.9	57230.7
124	4850	402400	6124850	57025.3	56993.4
124	4825	402400	6124825	56811.2	56780.1
124	4800	402400	6124800	57138.2	57107.3

Line	Station			Corrected TFM	Raw TFM	
No.	No.	Easting	Northing	(nT)	(nT)	
		100500	1 010000	570.40.5		
125	6000	402500	6126000	57048.5	57017.3	
125	5975	402500	6125975	57047.6	57016.8	
125	5950	402500	6125950	57055.7	57025.2	
125	5925	402500	6125925	56928.7	56897.4	
125	5900	402500	6125900	56870.3	56840	
125	5875	402500	6125875	56727.9	56697.7	
125	5850	402500	6125850	56707.7	56677.4	
125	5825	402500	6125825	56642.4	56612.7	
125	5800	402500	6125800	56739.9	56710.5	
125	5775	402500	6125775	56682	56653.2	
125	5750	402500	6125750	56726.7	56696.7	
125	5725	402500	6125725	56863.5	56834.3	
125	5700	402500	6125700	56810.9	56780.3	
125	5675	402500	6125675	56797	56767.8	
125	5650	402500	6125650	56670.6	56641.5	
125	5625	402500	6125625	56627.1	56597.2	
125	5600	402500	6125600	56622.4	56592.6	
125	5575	402500	6125575	56696	56667.1	
125	5550	402500	6125550	56580.3	56551.6	
125	5525	402500	6125525	56698.4	56670.2	
125	5500	402500	6125500	56688	56658.9	
125	5475	402500	6125475	56776.4	56747	
125	5450	402500	6125450	56565.3	56536.2	
125	5425	402500	6125425	56991.8	56962.8	
125	5425					
125	5375	402500	6125400	56929	56898.8	
		402500	6125375	57268.2	57238.6	
125	5350	402500	6125350	57174.1	57144	
125	5325	402500	6125325	57171.9	57141.5	
125	5300	402500	6125300	57059.2	57028	
125	5275	402500	6125275	56819.2	56788.2	
125	5250	402500	6125250	56812.6	56780.5	
125	5225	402500	6125225	57111	57080	
125	5200	402500	6125200	56973.9	56942.7	
125	5175	402500	6125175	56752	56719.1	
125	5150	402500	6125150	56751.8	56719.5	
125	5125	402500	6125125	56681.7	56648.3	
125	5100	402500	6125100	56825.6	56792.5	
125	5075	402500	6125075	57015	56982.3	
125	5050	402500	6125050	57234.1	57245.5	
125	5025	402500	6125025	57340.6	57313.9	
125	5000	402500	6125000	56922.8	56778.2	
125	4975	402500	6124975	56663.4	56890.4	
125	4950	402500	6124950	56777.3	56630.7	
125	4925	402500	6124925	56979.3	56745	
125	4900	402500	6124900	56987.7	56948.1	
125	4875	402500	6124875	57193.4	56956.1	
125	4850	402500	6124850	57038.1	57162	
125	4825	402500	6124825	57101.8	57006.7	
123	4800	402500	6124800	57171.6	57008.7	

Line	Station			Corrected TFM	Raw TFM
No.	No.	Easting	Northing	(nT)	(nT)
126	6000	402600	6126000	56572.3	56545.5
126	5975	402600	6125975	56604.6	56578.2
126	5950	402600	6125950	56468.1	56441.1
126	5925	402600	6125925	56559.1	56532
126	5900	402600	6125900	56562.9	56536.9
126	5875	402600	6125875	56669.7	56643.2
126	5850	402600	6125850	56580.4	56553.8
126	5825	402600	6125825	56404.3	56377.3
126	5800	402600	6125800	56501.4	56475.3
126	5775	402600	6125775	56473.8	56446.3
126	5750	402600	6125750	56419.6	56392.6
126	5725	402600	6125725	56435.3	56407.6
126	5700	402600	6125700	56450.7	56427.6
126	5675	402600	6125675	56529.3	56501.4
126	5650	402600	6125650	56535.1	56508.1
126	5625	402600	6125625	56558.2	56531.6
126	5600	402600	6125600	56549.3	56522.5
126	5575	402600	6125575	57050.1	57023.6
126	5550	402600	6125550	56621.2	56594.9
126	5525	402600	6125525	56607.2	56581.3
126	5500	402600	6125500	56607.8	56581.5
126	5475	402600	6125475	56633.3	56606.8
126	5450	402600	6125450	56692	56665.3
126	5425	402600	6125425	56668.7	56642.1
126	5400	402600	6125400	56611.2	56584.3
126	5375	402600	6125375	56670.5	56644.4
126	5350	402600	6125350	56713.3	56686.2
126	5325	402600	6125325	56742.6	56714.6
126	5300	402600	6125300	56756.5	56729.7
126	5275	402600	6125275	56722.3	56694.6
126	5250	402600	6125250	56743.3	56717.1
126	5225	402600	6125225	56770.7	56745.6
126	5200	402600	6125200	56758.9	56734.1
126	5175	402600	6125175	56610.5	56585.5
126	5150	402600	6125175	56618.5	56594.2
126	5125	402600	6125125	56709.7	56685.8
126	5100	402600	6125100	56752	56726.2
126	5075	402600	6125075	56715.9	56691.5
126	5050	402600	6125050	56753.2	56727.9
126	5025	402600	6125025	56948.3	56923.8
126	5000	402600	6125000	57193.9	57169
126	4975	402600	6124975	57298	57273.5
126	4975	402600	6124975	57298 57151.6	
126					57126.9
	4925	402600	6124925	57173.9	57149.8
126	4900	402600	6124900	57105.8	57083.1
126	4875	402600	6124875	57247	57223.9
126	4850	402600	6124850	57212.6	57189.9
126 126	4825 4800	402600 402600	6124825	57224.4	57201.2
		403600	6124800	57299.9	57278.1

**

Line No.	Station No.	Easting	Northing	Corrected TFM (nT)	Raw TFM (nT)
	T		1		
127	6000	402700	6126000	57108.2	57081.3
127	5975	402700	6125975	56996.5	56970
127	5950	402700	6125950	56898.7	56871.6
127	5925	402700	6125925	57169.7	57142.9
127	5900	402700	6125900	56882.7	56856
127	5875	402700	6125875	56926.8	56900.2
127	5850	402700	6125850	56689	56662.8
127	5825	402700	6125825	56900.9	56874.3
127	5800	402700	6125800	56747.4	56721.7
127	5775	402700	6125775	56541.8	56515.9
127	5750	402700	6125750	56642.7	56617.1
127	5725	402700	6125725	56545.8	56519.7
127	5700	402700	6125700	56616.4	56590.6
127	5675	402700	6125675	56468.5	56443.3
127	5650	402700	6125650	56344	56318.8
127	5625	402700	6125625	56267.2	56242
127	5600	402700	6125600	56375.6	56350.7
127	5575	402700	6125575	56160.3	56135.5
127	5550	402700	6125550	56335.8	56310.6
127	5525	402700	6125525	56548.3	56523.6
127	5500	402700	6125500	56601	56576.5
127	5475	402700	6125475	56601.7	56577.4
127	5450	402700	6125450	56453.1	56429.1
127	5425	402700	6125425	56404.6	56380.7
127	5400	402700	6125400	56566	56542.2
127	5375	402700	6125375	56475	56451.2
127	5350	402700	6125350	56621.9	56597.6
127	5325	402700	6125325	56674.4	56650.4
127	5300	402700	6125300	56671.1	56647.1
127	5275	402700	6125275	56743.4	56719.6
127	5250	402700	6125250	56741.1	56717.8
127	5225	402700	6125225	56776.5	56752.1
127	5200	402700	6125200	56761.7	56737.9
127	5175	402700	6125175	56722.9	56698.6
127	5150	402700	6125150	56652.9	56628.6
127	5125	402700	6125125	56569.2	56545.8
127	5100	402700	6125100	56566.4	56542.5
127	5075	402700	6125075	56850.7	56826
127	5050	402700	6125050	56943.2	56919.3
127	5025	402700	6125025	56777.9	56753.6
127	5000	402700	6125000	56811.9	56787.6
127	4975	402700	6124975	56879.7	56855.1
127	4975	402700	6124970	56867.5	56842.8
127	4930	402700	6124930	56850.3	
127				56831.8	56825.1
	4900 4875	402700	6124900		56807.6
127		402700	6124875	57119.9	57095
127	4850	402700	6124850	56992	56967.3
127	4825	402700	6124825	56941.7	56917.5
127	4800	402700	6124800	56930.7	56905.5

• •

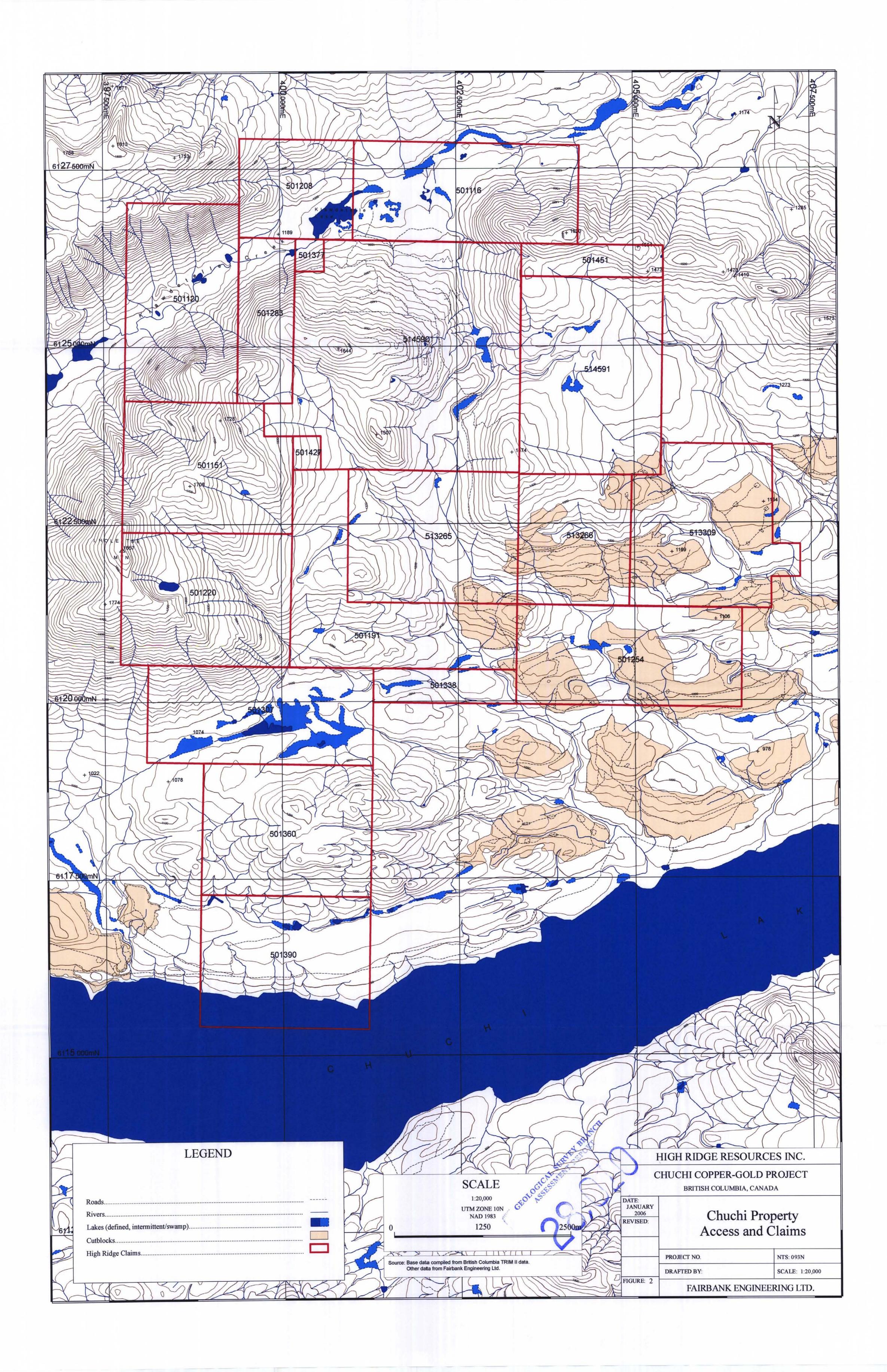
Line	Station			Corrected TFM	Raw TFM
No.	No.	Easting	Northing	(nT)	(nT)
	<u> </u>				
128	6000	402800	6126000	56911.3	56881.8
128	5975	402800	6125975	57018.3	56988.7
128	5950	402800	6125950	57095.4	57065.7
128	5925	402800	6125925	56978.1	56948.4
128	5900	402800	6125900	56945.2	56915.7
128	5875	402800	6125875	56970.5	56940.7
128	5850	402800	6125850	56976.9	56947.1
128	5825	402800	6125825	56981.4	56951.5
128	5800	402800	6125800	56992.2	56962.5
128	5775	402800	6125775	56884.4	56854.3
128	5750	402800	6125750	56915.1	56884.9
128	5725	402800	6125725	57019.1	56989.2
128	5700	402800	6125700	56902.4	56872.3
128	5675	402800	6125675	57088.4	57058.4
128	5650	402800	6125650	57179.6	57149.2
128	5625	402800	6125625	57077.2	57047
128	5600	402800	6125600	57115.4	57084.7
128	5575	402800	6125575	57228.2	57197.6
128	5550	402800	6125550	57385.8	57355.4
128	5525	402800	6125525	57439.5	57408.6
128	5500	402800	6125500	57101.5	57070.9
128	5475	402800	6125475	56881.2	56850.7
128	5450	402800	6125450	56833.4	56802.9
128	5425	402800	6125425	56769.4	56738.7
128	5400	402800	6125400	56768.5	56737.8
128	5375	402800	6125375	56853.3	56822.7
128	5350	402800	6125350	56749.9	56719.3
128	5325	402800	6125325	56536	56505.2
128	5300	402800	6125300	56479	56448.2
128	5275	402800	6125275	56650.7	56619.8
128	5250	402800	6125250	56641.3	56610.6
128	5225	402800	6125225	56615.6	56585
128	5200	402800	6125200	56641.7	56610.6
128	5175	402800	6125175	56614.2	56582.9
128	5150	402800	6125150	56594.6	56563.4
128	5125	402800	6125125	56837	56806.1
128	5100	402800	6125100	56802.9	56771.6
128	5075	402800	6125100	56782.7	56751.6
128	5075	402800	6125050	56782.3	56751.6
128	5025	402800	6125025	56745.4	56714.2
128	5000	402800	6125025	56783.1	56751.5
128	4975	402800	6124975		56774.1
128	4975	402800	6124975	56805.6 56861.9	56830.6
128	4930	402800	6124930	56835.1	56803.3
128		402800			
128	4900	402800	6124900	56850.2	56818.5
	4875		6124875	56924.7	56893.3
128	4850	402800	6124850	56921.8	56889.8
128	4825	402800	6124825	56879.2	56847.2
128	4800	402800	6124800	56889	56857.2

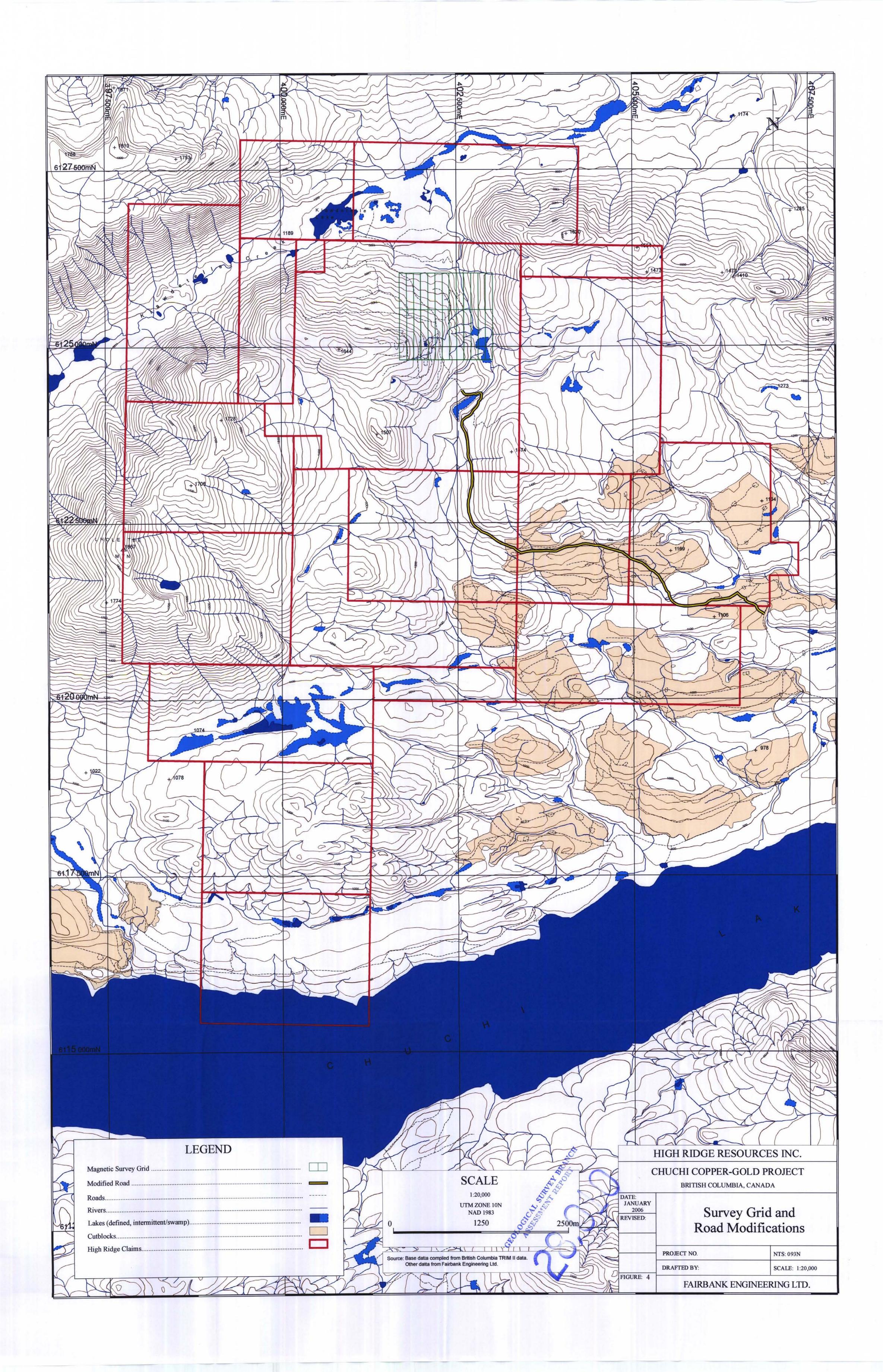
•

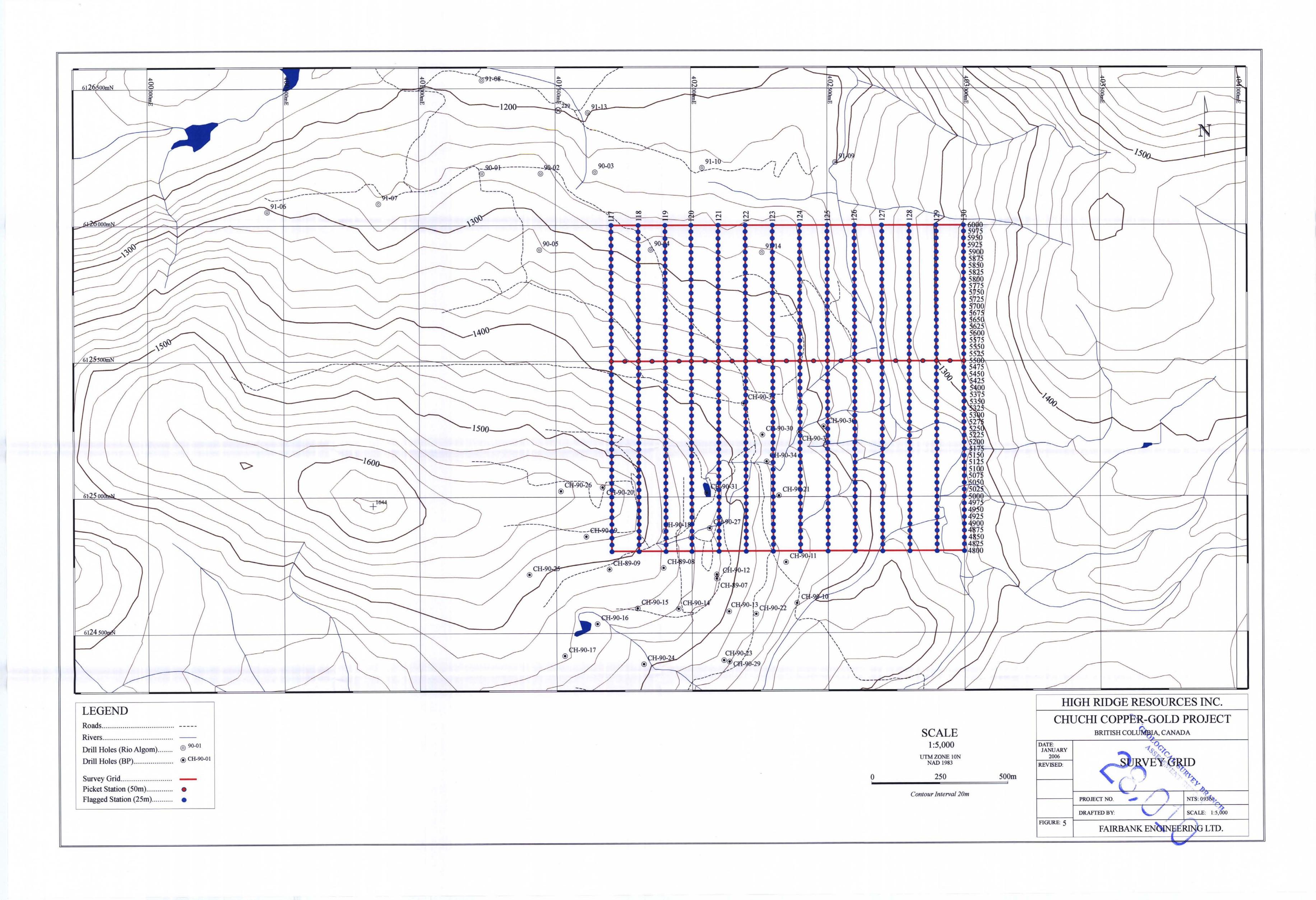
Line Station				Corrected TFM	Raw TFM
No.	No.	Easting	Northing	(nT)	(nT)
129	6000	402900	6126000	58417.5	58384.7
129	5975	402900	6125975	58085.7	58053.2
129	5950	402900	6125950	58013.7	57980.7
129	5925	402900	6125925	58088	58055.1
129	5900	402900	6125900	57879	57846.3
129	5875	402900	6125875	57701	57668
129	5850	402900	6125850	57629.5	57597.2
129	5825	402900	6125825	57454.9	57422.1
129	5800	402900	6125800	57337.3	57304.1
129	5775	402900	6125775	57282	57248.7
129	5750	402900	6125750	57602.8	57569.9
129	5725	402900	6125725	57606.6	57573.8
129	5700	402900	6125700	57552.8	57519.7
129	5675	402900	6125675	57381	57347.9
129	5650	402900	6125650	57298.2	57265.3
129	5625	402900	6125625	57163.8	57130.4
129	5600	402900	6125600	57300	57266.1
129	5575	402900	6125575	57306.4	57272.5
129	5550	402900	6125550	57269.6	57235.9
129	5525	402900	6125525	57274.4	57240.5
129	5500	402900	6125500	57332.1	57297.9
129	5475	402900	6125475	57299.1	57266
129	5450	402900	6125450	57454	57420.1
129	5425	402900	6125425	57001.9	56967.7
129	5400	402900	6125400	57048.3	57014.2
129	5375	402900	6125375	57067.4	57033.3
129	5350	402900	6125350	57144.3	57109.9
129	5325	402900	6125325	56713.7	56679.8
129	5300	402900	6125300	56229.6	56195.8
129	5275	402900	6125275	56651.5	56617.4
129	5250	402900	6125250	56240.2	56205.9
129	5225	402900	6125225	56496.7	56462.6
129	5200	402900	6125200	56533.2	56499.4
129	5175	402900	6125175	56470.6	56436.5
129	5150	402900	6125150	56794.6	56760.6
129	5125	402900	6125125	56551.4	56517.9
129	5100	402900	6125100	56726.8	56693.1
129	5075	402900	6125075	56712.5	56678.6
129	5050	402900	6125050	56682.6	56648.5
129	5025	402900	6125025	56774.3	56740.6
	5000	402900	6125020	56868.6	56834.7
129		402900	6124975	56763	56729.2
129	4975	402900	6124975	56835.6	56802
129	4950		6124930	56874.7	56841.5
129	4925	402900		56892.8	56859.5
129	4900	402900	6124900		
129	4875	402900	6124875	56905.1	56872.3
129	4850	402900	6124850	56969.8	56936.9
129	4825	402900	6124825	57016.6	56983.5 57014

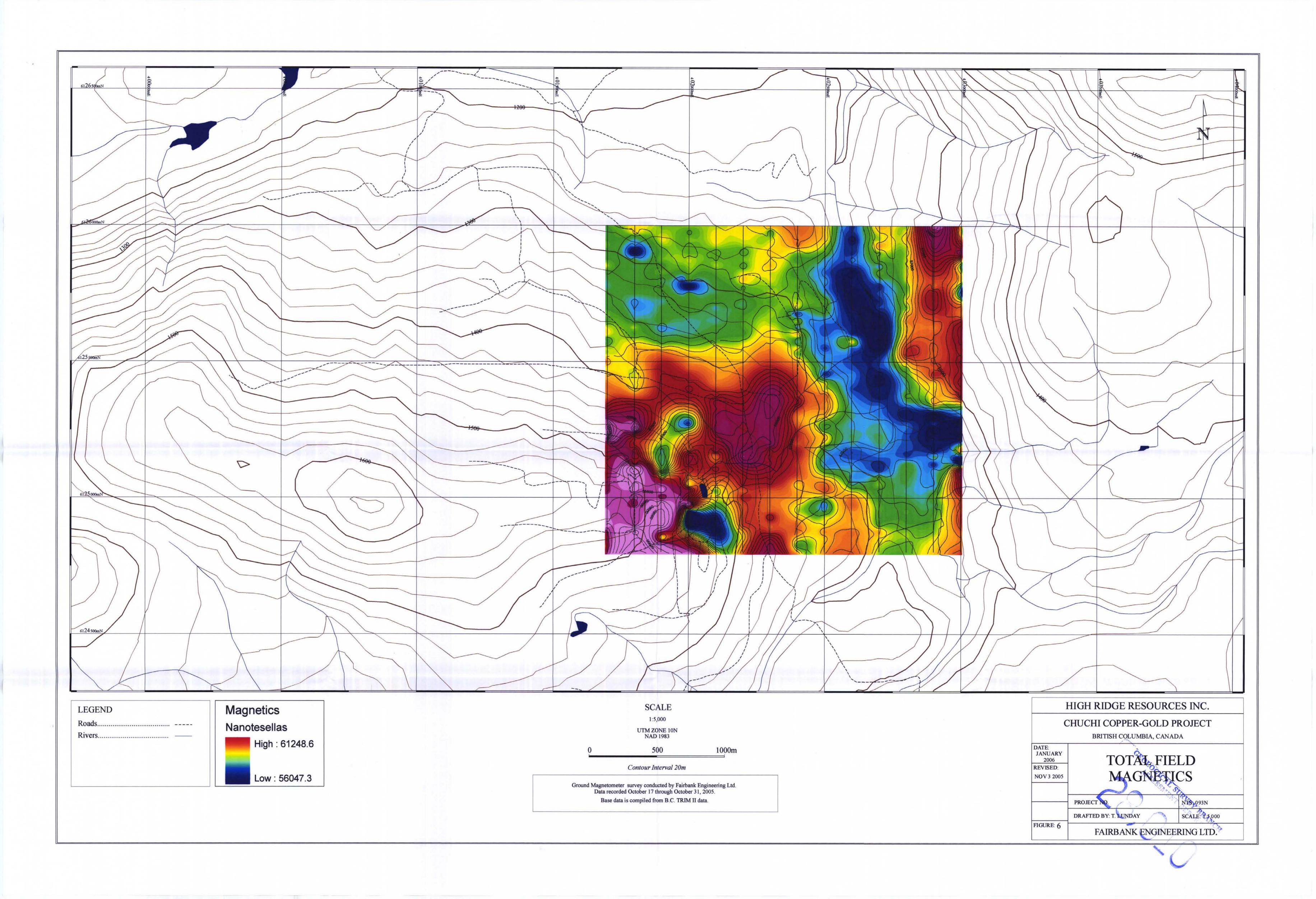
No.	No.	- 41			
		Easting	Northing	(nT)	(nT)
130	6000	403000	6126000	57186.7	57155
130	5975	403000	6125975	56975.5	56943.3
130	5950	403000	6125950	57315.5	57283.8
130	5925	403000	6125925	57564.5	57532.4
130	5900	403000	6125900	57980.2	57948.7
130	5875	403000	6125875	57073.8	57043.3
130	5850	403000	6125850	56835.4	56803.9
130	5825	403000	6125825	57000.6	56969.3
130	5800	403000	6125800	57042.9	57012
130	5775	403000	6125775	56748.6	56717.7
130	5750	403000	6125750	56589.4	56558.2
130	5725	403000	6125725	56971.6	56939.9
130	5700	403000	6125700	57262.5	57231.2
130	5675	403000	6125675	57183.8	57152.5
130	5650	403000	6125650	57507.6	57476.8
130	5625	403000	6125625	57673.8	57643
130	5600	403000	6125600	57671.1	57640.1
130	5575	403000	6125575	57707.1	57676.5
130	5550	403000	6125550	57597.7	57566.7
130	5525	403000	6125525	57499.5	57468.1
130	5500	403000	6125500	57642.7	57611.3
130	5475	403000	6125475	57550.8	57520.1
130	5450	403000	6125450	57581.8	57551.1
130	5425	403000	6125425	57696.2	57665.5
130	5400	403000	6125400	57549.3	57518.7
130	5375	403000	6125375	57574.9	57544.6
130	5350	403000	6125350	57062.4	57031.3
130	5325	403000	6125325	56746.6	56716
130	5300	403000	6125300	56640.7	56610.5
130	5275	403000	6125275	56161	56129.9
130	5250	403000	6125250	56190.6	56160
130	5225	403000	6125225	56341.7	56311.1
130	5200	403000	6125200	56769.6	56739.1
130	5175	403000	6125175	57182.7	57151.3
130	5150	403000	6125150	56482.5	56451.9
130	5125	403000	6125125	56412.7	56384
130	5100	403000	6125100	57887.8	57859.4
130	5075	403000	6125075	57818.3	57789.9
130	5050	403000	6125050	57724.3	57695.7
130	5025	403000	6125025	57656.1	57628.4
130	5000	403000	6125000	57362.6	57335.1
130	4975	403000	6124975	57362.1	57334.6
130	4950	403000	6124950	57357.3	57329.8
130	4925	403000	6124925	57392.4	57364.6
130	4900	403000	6124920	57366.4	57338.3
130	4875	403000	6124900	57300.4	57336.3
130	4850	403000	6124850	57277.7	
130	4825	403000	6124825		57167.2
130	4825	403000	6124825	57224.1 57349.3	57197.1 57322.4

APPENDIX IV


Statement of Qualifications


I, Jos J. Hantelmann, of 2757 East 28th Ave, Vancouver, British Columbia, do hereby certify that:


- 1. I graduated with a B.Sc. with Honours in Geology from the University of Alberta, Edmonton, Canada in 2000.
- 2. I have been actively employed in the geological sciences field for more than 2 years.
- 3. I am responsible for the preparation of this Assessment Report and participated in the exploration activity described herein.


Jos Hantelmann Geologist

January, 2006 Vancouver, BC.

