

Gold Commissioner's Office VANCOUVER, B.C.

> 2005 Geological and Geochemical Report on the Troitsa Property, West-Central British Columbia

> > Omineca Mining Division NTS 93E/11E Latitude: 53° 34' N Longitude: 127° 04' W

Paget Resources Corporation 2080-777 Hornby Street Vancouver, B.C.C

John Bradford, M.Sc, P.Geo

December, 2005

Table of Contents

-

-

~

-

.....

1	Introduction	4
2	Property Title	4
3	Location, Access, and Geography	5
4	Exploration History	5
5	Regional Geology and Metallogeny	6
	5.1 Porphyry Copper-Molybdenum	7
	5.2 Epithermal Gold-Silver	8
6	Property Geology	8
	6.1 Hazelton Group	
	6.1.1 Telkwa Formation	
	6.1.2 Smithers Formation	8
	6.2 Bowser Lake Group	9
	6.2.1 Ashman Formation	
	6.3 Ootsa Lake Group	9
	6.4 Structural Geology	10
7	Mineralization and 2005 Sampling Results	. 10
	7.1 Moraine Zone	. 11
	7.2 Wolverine and Ice Zones	. 16
	7.3 Cummins Creek Vein System	. 18
	7.4 Blitz Knob	
	7.5 Cummins Creek Porphyry	
8	Interpretation and Recommendations	
9	References	

List of Tables

Table 2.1 Mineral claim data, Troitsa Property	4
Table 7.1 Historical (1982) rock chip sampling, Moraine Zone	11
Table 7.2 Rock sampling, hydrothermal breccia, Moraine Zone	12
Table 7.3 Rock chip sampling, silica-pyrite altered fault structure, Moraine Zone	12
Table 7.4 Rock sampling, chalcedonic silica, Moraine Zone	13
Table 7.5 Rock sampling, altered tuffs, Moraine Zone	13
Table 7.6 Rock sampling, oxidized hydrothermal breccia, Moraine Zone	13
Table 7.7 Rock chip sampling, quartz veins, Moraine Zone	13
Table 7.8 Locations and main lithologies intersected in 1987 drill holes, Alpine	
Exploration Corp. (Lambert, 1987; drill hole locations from 2005 mapping)	
Table 7.9 2005 core sampling of 1987 drill holes	15
Table 7.10 Rock chip sampling, Ice Zone	
Table 7.11 Rock chip sampling, Wolverine Zone	
Table 7.12 Historical (1982) float sampling, Cummins Creek area	18
Table 7.13 Historical (1982) rock sampling, Cummins Creek area	18
Table 7.14 Rock chip sampling, Cummins Creek veins	20
Table 7.15 Rock chip sampling, Blitz Knob Zone	21

Table 7.16 Rock chip sampling, Blitz North Zone	21
Table 7.17 Rock chip sampling, Porphyry Zone	

List of Figures

Figure 1	Troitsa Property Location
Figure 2	Troitsa Property Claim Outline and Tenure Numbers
Figure 3	Troitsa Property Regional Geology
Figure 4	Troitsa Property Geology
Figure 5	Troitsa Property Local Geology
F (C 1

- Figure 6Geology and Sample Locations (in pocket)
- Figure 7 Moraine Zone Sample and Drill Hole Locations

List of Appendices

Appendix A: Rock sample descriptions and analyses, Troitsa Property

Appendix B: Author's Certificate

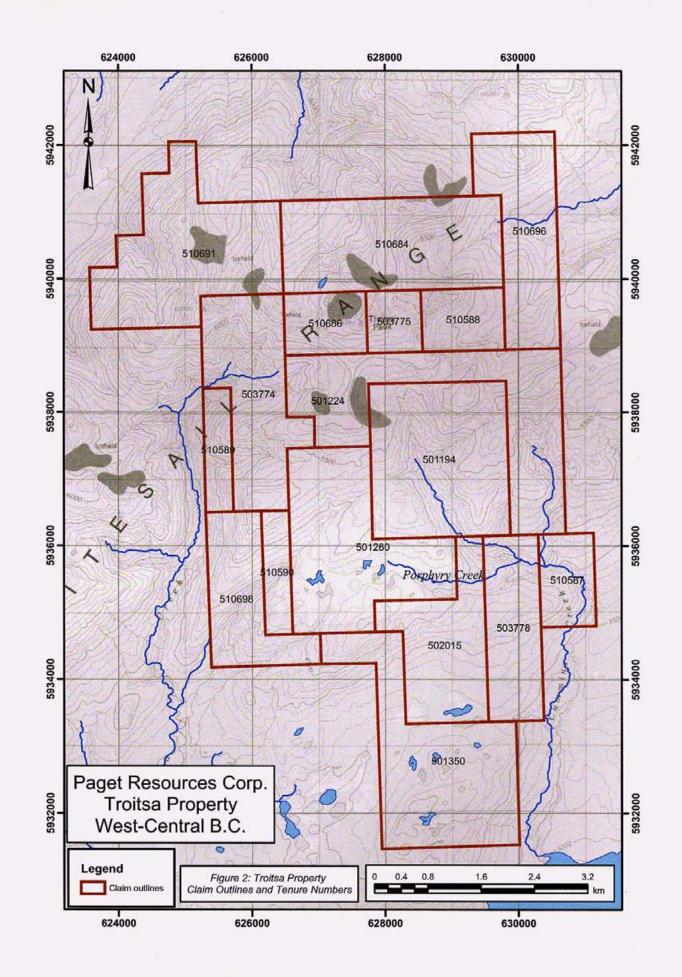
~

Appendix C: Statement of Expenditures

2005 Geological and Geochemical Report on the Troitsa Property, West-Central British Columbia

1 Introduction

The Troitsa Property, located 90 kilometres south of Houston in the Interior Plateau of Central B.C., covers a number of epithermal and porphyry-style precious and base metal showings in the Tahtsa Lake Porphyry Belt. Paget Resources Corporation acquired the property in 2005 and initiated an initial reconnaissance work program between August 1-7, 2005. This report summarizes the results of prospecting, geological mapping and rock geochemical sampling carried out on the property, and recommends further work to be carried out in 2006.


2 **Property Title**

The Troitsa property consists of 17 contiguous mineral claims totalling 4820 hectares (Figure 2). The claims are located in the Omineca Mining Division, centred near 53° 34' North latitude and 127° 04' West longitude, on NTS Map Sheet 93E/11E.

The mineral claims are 100% owned by Paget Resources Corporation and are listed in Table 2.1.

Tenure			Good To			
Number	Claim Name	Owner Number	Date	Status	Area	Owner Name
501194	Troitsa 1	201036 100%	2006/JAN/12	GOOD	480.075	Paget Resources Corp.
501224	Troitsa 2	201036 100%	2006/JAN/12	GOOD	480.004	Paget Resources Corp.
501260	Troitsa 3	201036 100%	2006/JAN/12	GOOD	460.996	Paget Resources Corp.
501350	Troitsa 4	201036 100%	2006/JAN/12	GOOD	480.532	Paget Resources Corp.
502015	Troitsa 5	201036 100%	2006/JAN/12	GOOD	288.214	Paget Resources Corp.
503774	Troitsa 6	201036 100%	2006/JAN/15	GOOD	345.568	Paget Resources Corp.
503775		201036 100%	2006/JAN/15	GOOD	76.775	Paget Resources Corp.
503778	Troitsa 8	201036 100%	2006/JAN/15	GOOD	230.56	Paget Resources Corp.
510587	TROITSA A	201036 100%	2006/APR/12	GOOD	115.163	Paget Resources Corp.
510588	TROITSA B	201036 100%	2006/APR/12	GOOD	115.163	Paget Resources Corp.
510589	TROITSA C	201036 100%	2006/APR/12	GOOD	76.808	Paget Resources Corp.
510590	TROITSA D	201036 100%	2006/APR/12	GOOD	76.838	Paget Resources Corp.
510684	TROITSA E	201036 100%	2006/APR/13	GOOD	460.537	Paget Resources Corp.
510686	TROITSA F	201036 100%	2006/APR/13	GOOD	115.162	Paget Resources Corp.
510691	TROITSA G	201036 100%	2006/APR/13	GOOD	479.724	Paget Resources Corp.
510696	TROITSA H	201036 100%	2006/APR/13	GOOD	307.017	Paget Resources Corp.
510698	TROITSA I	201036 100%	2006/APR/13	GOOD	230.533	Paget Resources Corp.

3 Location, Access, and Geography

The Troitsa Property (NTS 93E/11E) is located 90 kilometres south of Houston or 130 kilometres south of Smithers (see Figure 1) in the Nechako Plateau of west-central British Columbia. All-season gravel roads provide access from Houston, on Highway 16, to the Huckleberry copper-molybdenum mine on the north side of Tahtsa Reach (Whitesail Lake), 11 kilometres northwest of the property. Logging road access is possible from the Houston – Huckeberry mine road to a barge landing on Whitesail Lake, and the lake crossing may be made seasonally by barge to the logging road network on the south side of Tahtsa Reach. This logging road network presently extends to within two kilometres of the Property, and may be extended to the west side of the Cummins Creek in 2006 or 2007. Helicopter access to the property is possible from either Houston or Smithers. Alternate access from Burns Lake is by 60 kilometres of pavement to Ootsa Landing and then by an all-weather gravel road to the Alcan boat launch at Andrew Bay, 31 kilometres to the west. Shallow draught boats afford access to the rest of Whitesail Lake.

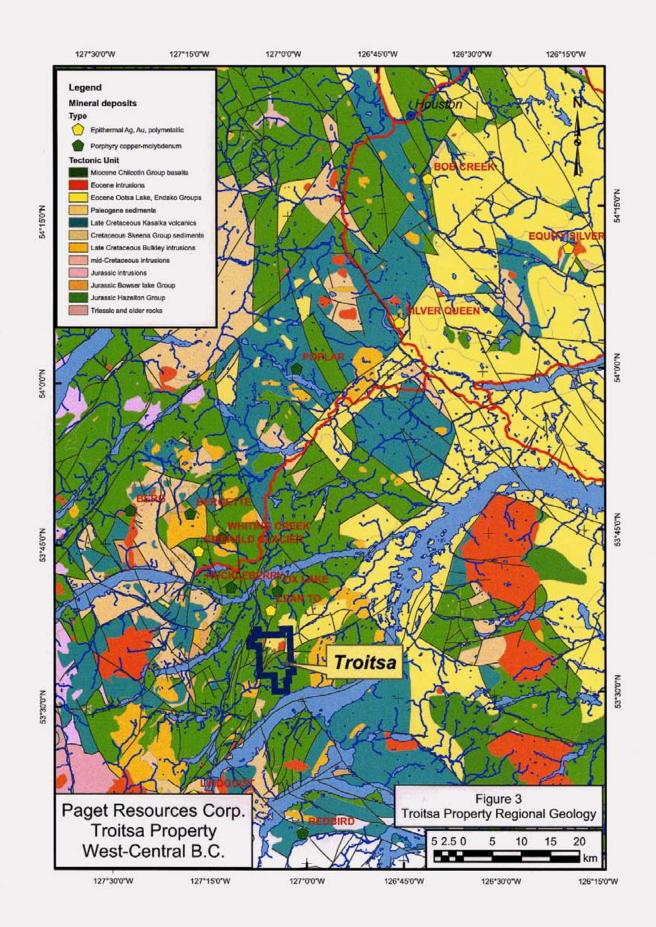
Summer and winter temperatures are moderate, with mean temperatures of -10 °C in January and 14 °C in July. Annual precipitation averages about 70 cm, with snow accumulations exceeding 40 cm in January. Fieldwork on the property is possible from the middle of June until the middle of October. Drilling and geophysical surveys could begin in May and continue into November, if not later

Troitsa is located within a large alpine massif called the Whitesail Range, which is isolated from the rest of the Tahtsa Ranges (Hazelton Mountains) by Whitesail Lake and Tahtsa Reach, two arms of the Nechako Reservoir. Elevations on the property range from about 900 metres in the south near Whitesail Lake, to 2081 metres at Troitsa Peak, the highest summit in the Whitesail Range. Outcrop is extensive above treeline, where alpine conditions prevail. Small remnants of alpine glaciers remain on ridges extending from Troitsa Peak, the flanks of which are locally covered by morainal deposits. At elevations below 1450 to 1500 metres, Quaternary gravel is extensive, and outcrops are rare. Most of the lower areas on the claims are well forested, with subalpine fir, Englemann spruce, and locally, pine and hemlock.

4 Exploration History

Regional exploration for porphyry copper deposits in the Whitesail Lake area by Kennco, Bethlehem Copper and others dates back to the 1950's. This work resulted in the discovery of the Huckleberry copper-molybdenum deposit in 1962. In 1968, American Smelting and Refining Company (ASARCO) and Silver Standard Mines discovered the Ox Lake porphyry copper deposit, just nine kilometres north of Troitsa Peak (Sutherland-Brown, 1969). Detailed exploration on the south side of Troitsa Peak area began in the early 1980's (Cawthorn, 1982). Following an initial program of prospecting in 1981, Union Carbide Canada Ltd. in 1982 initiated a comprehensive program of geological mapping, rock and grid controlled soil sampling, on the Troitsa Peak North and South claim groups. This work resulted in the discovery of eight showings, including the Cummins Creek, Moraine, Wolverine, Ice and Blitz Knob showings described in this report. Mineralized quartz veins and quartz float in Cummins Creek returned spectacular assays of up to 1.34 ounces/ton gold (45.9 g/t Au) and 292.9 ounces/ton silver (10,042 g/t Ag). Petrographic examination of the vein material revealed the presence of native silver and argentite as well as a form of molybdenum sulfide (jordisite). After the success of this program, Canamax Resources optioned the property in 1983 and completed follow-up soil geochemical surveys (Cawthorn, 1983), focusing on the Cummins Creek area.

Limited prospecting and rock sampling by Marley Mines in the southern part of the property between 1984 and 1986 resulted in the discovery of the Camp Creek, Root and Straight Creek gold-silver zones on the Play claim group. These discoveries extended the area of known mineralization a further 4.5 kilometres south of the previously described Cummins Creek veins.


Tom Richards and Alpine Exploration Corp. carried out several prospecting and silt and rock sampling programs in the 1980's. In 1987 Alpine Exploration Corp. completed a limited program of rock and silt sampling and geological mapping in the Moraine Zone area, followed by a small VLF survey and drill program later in the year (Harrivel, 1987; Lambert, 1988). The drill program included 12 diamond drill holes totalling 921 metres.

In 1990 and 1991 reconnaissance programs of prospecting and rock sampling were carried out by Richards on the Discovery Zone, east of Troitsa Peak, and in the Cummins Creek area (Richards, 1990, 1991). The 1991 program resulted in the discovery of quartz veins about 300 metres north of Cummins Creek with up to 2757 ppm molybenum as well as anomalous gold and silver. The most recent exploration carried out on the property was in 1995, when Alpine Exploration completed mapping and a small soil survey south of outcropping porphyry-style mineralzation in Porphyry Creek, an east-flowing tributary of Cummins Creek (L'Orsa, 1995). The soil survey delineated a molybdenum anomaly in an overburden covered area south of the main Cummins Creek veins.

5 Regional Geology and Metallogeny

Duffell (1959) published the first regional synthesis of the Whtesail Lake area. The Whitesail Range was subsequently mapped at 1:50,000 by the B.C. Geological Survey in 1986-1988 (Diakow and Mihalnyuk, 1987a, 1987b).

The Troitsa Property is located along the west side of the Intermontane Belt in westcentral B.C. The oldest rocks in the area are the Early to Middle Jurassic Hazelton Group

calc-alkaline arc volcanics and sedimentary rocks (Figure 3). Hazelton Group forms the upper part of a pre-accretionary mid-Paleozoic to Jurassic volcanic arc assemblage called Stikine Terrane. In the Smithers-Hazelton area, Hazelton Group has been subdivided into the predominantly volcanic Telkwa and mainly sedimentary Smithers Formations. Hazelton Group is unconformably overlain by a marine successor basin, the Bowser Lake Group, which in the Troitsa area is represented by a small exposure of Ashman Formation sedimentary rocks.

The Jurassic sequence is overlain with angular discordance by Eocene continental volcanics of the Ootsa Lake Group. Extensional faults delimit downdropped blocks that locally preserve thick sections of upper Hazelton Group sediments and overlying Ootsa Lake Group volcanics. The northern part of the Property encompasses a dissected Ootsa Lake Group volcanic complex (Troitsa Complex) centred north of Troitsa Peak (Figure 4).

The Troitsa Property is located within the Tahtsa Lake district, a significant belt of porphyry copper-molybdenum deposits related to Late Cretaceous to Tertiary intrusions. This belt includes the Berg, Whiting Creek, Huckleberry and Ox Lake copper-molybdenum deposits (Figure 3). Epithermal to transitional gold-silver(-base metal) deposits are also significant regionally.

5.1 Porphyry Copper-Molybdenum

The Berg deposit, 30 kilometres northwest of the Troitsa Property, has the largest published "indicated" resource in the Tahtsa District, which includes 238 Mt (million tonnes) of 0.390% copper, 0.031% molybdenum, and 2.84 g/t silver. This published resource was calculated in 1980 prior to National Instrument 43-101, and is based on 93 drill holes at a 0.25 per cent copper cut-off (Morin, 1987). The Huckleberry deposit, owned 50% by Imperial Metals and 50% by the "Japan Group" (a consortium of Mitsubishi Materials Corporation, Marubeni Corporation, Dowa Mining Co. Ltd., and Furukawa Co.) is presently in production. Based on a 1995 feasibility study by H.A. Simons Ltd., total mineable reserves for the Main and East Zone deposits were calculated to be 90,372,500 tonnes grading 0.513% copper, 0.062g/t gold, 2.812 g/t silver, and 0.014% molybdenum. This resource includes proven and probable reserves, calculated at 0.3% Cu cutoff grade (B.C. Geological Survey MINFILE database Inventory Report). Between 2001 and 2004, 28.7 Mt of ore averaging 0.514% copper and 0.014% molybdenum were mined at Huckleberry. Probable mineral reserves in the East Zone at the end of 2004 were 19.435 Mt averaging 0.529% Cu, 0.015% Mo, and 2.982 g/t Ag (Imperial Metals, Annual Information Form 2004).

Porphyry copper-molybdenum deposits of the Tahtsa Lake district are related to two intrusive suites. The Bulkley Intrusions are Late Cretaceous in age, and include small to moderate sized stocks and dykes ranging in composition from intermediate to very felsic. Uranium-lead dating of the mineralized Bulkley suite intrusive rocks at Huckleberry has produced a date of 83.5 Ma (million years). The younger Nanika intrusive suite consists of small stocks of quartz monzonite, which have been dated at about 50-53 Ma. This suite

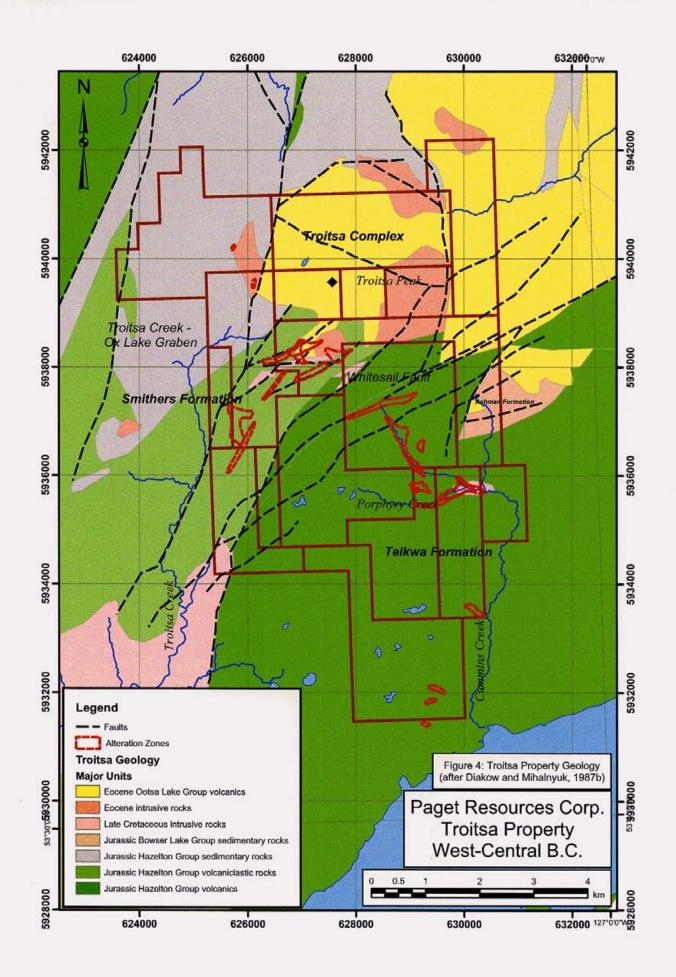
includes the host rocks of the Berg deposit (Jordan and Thompson, 2005). The Nanika suite is part of a widespread series of Eocene magmatic events in central B.C., which includes the Babine intrusions, hosts to the Bell and Granisle copper deposits, the Endako Group volcanic rocks, and the Ootsa Lake Group (Grainger et al., 2001).

5.2 Epithermal Gold-Silver

Past exploration on the Troitsa property has focused primarily on the epithermal quartz veins, which are widely distributed, and which have yielded sporadic high gold and silver grades in previous sampling. Regionally, epithermal veins have been mined at the Emerald Glacier lead-zinc-silver deposit, 22 kilometres northwest of the property, and the Silver Queen silver-gold mine, located 57 kilometres to the north.

6 Property Geology

6.1 Hazelton Group


The Jurassic Hazelton Group on the Troitsa Property is dominated by intermediate flows and pyroclastic and volcaniclastic rocks of the Telkwa Formation, which is overlain or in fault contact with Smithers Formation, which consists mainly of maroon and green volcaniclastic sedimentary rocks and lesser mafic flows.

6.1.1 Telkwa Formation

The Telkwa Formation underlies most of the southern half of the Property, and consists mainly of andesitic flows intercalated with subaerial andesitic lapilli tuff and tuff breccia. The andesitic volcanic flows are typically green or maroon and have variably developed fracture controlled and matrix chlorite, epidote, calcite and laumontite. Flows range from massive aphanitic andesite to andesite flow breccias to plagioclase and hornblende phyric variants.

6.1.2 Smithers Formation

In the western part of the Property, augite phyric, magnetic, submarine mafic flows are present on Blitz Knob and in outcrops along Blitz Creek, overlying a well bedded, moderately west-dipping section of Smithers Formation volcaniclastics. This section is in probable fault contact with Telkwa Formation andesites further to the east. The upper part of the Smithers Formation south of Troitsa Peak consists of about 800 metres of well-bedded maroon and green lapilli tuff. These rocks overlie more typical Smithers Formation feldspathic sandstone and pebble conglomerate, which crops out further to the west. Lapilli are angular to subrounded and include abundant mafic fragments. The tuffs consist mainly of massive beds 0.5-10 metres thick, but locally thinly laminated and graded beds with accretionary lapilli have been noted (Diakow and Mihalnyuk, 1987a).

The volcaniclastic sequence is intruded by fine-grained equigranular diorite sills, and unconformably overlain by Ootsa Lake Formation felsic volcanics.

The Smithers Formation volcaniclastic succession on the Troitsa Property appears to be local, and may represent proximity to an early Jurassic volcanic center. Intercalated siltstone beds in the lower sedimentary part of the Smithers succession contain a Toarcian-Callovian faunal assemblage, including ammonites (Diakow and Mihalnyuk, 1987a).

6.2 Bowser Lake Group

6.2.1 Ashman Formation

Medium to thick bedded siltstone, chert, pebble conglomerate, sandstone and shale, interpreted as Ashman Formation of the Bowser Lake Group, are preserved in a small graben (see Figure 4) in the eastern part of the property. Although these sedimentary rocks resemble Smithers Formation, they were assigned to Ashman Formation on the basis of a Bathonian-Callovian faunal assemblage (Diakow and Mihalnyuk, 1987a). The Bowser Lake Group is a widespread middle Jurassic marine basinal succession located mainly north of the Skeena Arch, a northeast trending belt of early Jurassic intrusions between Terrace and Babine Lake. The Troitsa Property is located approximately 100 kilometres south of the axis of the arch.

6.3 Ootsa Lake Group

Ootsa Lake Group underlies the northern part of the Property, resting with variable angular discordance on Jurassic rocks of the Hazelton Group. The Eocene volcanics and intrusive rocks occupy a partly fault-bounded, 3×4 kilometre subcircular feature called the Troitsa Complex by Cawthorne (1982). Cawthorne interpreted this feature as a volcanic caldera (Figures 4 and 5).

The Troitsa Complex is a lithologically diverse sequence consisting of felsic pyroclastics, flows and hypabyssal intrusive rocks (cryptodomes), biotite-bearing andesite flows, columnar jointed dacite flows, and megacrystic dark green plagioclase porphyry dacite sills and plugs. Pinkish feldspar-biotite porphyry granite with miarolitic cavities has also been mapped in the northern part of the Complex (Cawthorn, 1982).

South of Troitsa Peak, the lower section of Ootsa Lake volcanics consists of a thin rhyolite ash-flow tuff, with dark grey chloritic fiamme, which rests with angular discordance on maroon volcaniclastics of the Smithers Formation. The tuffs are overlain by flaggy rhyolite flows, biotite andesite flows, and a distinctive rhyolite clast andesitic lapilli tuff to tuff-breccia. This pyroclastic unit is distributed widely south and east of Troitsa Peak, and appears to thicken toward a felsic center underlying the Moraine Zone. The Moraine Zone is spatially related to a small (200 metre wide), strongly brecciated and altered aphanitic rhyolite cryptodome. The rhyolite clast fragmental unit may be the

product of the explosive disintegration of part of this dome, together with the incorporation of fragmented andesitic country rocks into a heterolithic airfall tuff. Outcrops of the rhyolite clast fragmental have been mapped up to 1.5 kilometres from the Moraine Zone rhyolite. Similar rhyolite flow-dome autoclastic breccias have been mapped 2.0 kilometres east-northeast of the Moraine Zone, and probably represent a separate felsic center.

East of Troitsa Peak, a grey polymictic tuff-breccia unit was originally mapped by Cawthorn as a possible diatreme. Although lithologically distinctive, this unit appears to be flat-lying, and steeper contacts were not seen; it may instead represent a chaotic debris-flow or pyroclastic flow.

6.4 Structural Geology

Bedding in Smithers Formation dips moderately to steeply to the west and southwest, while overlying Ootsa Lake Group rocks are approximately flat-lying. The Troitsa Property is situated at the intersection between a north-northeast trending graben and the northeast trending Whitesail Fault system. The graben is a downdropped block of Smithers Formation volcaniclastic sediments, about four kilometres wide, and can be traced for at least 30 kilometres from Whitesail Lake in the south to north of Tahtsa Reach in the north (see Figure 4). The Ox Lake and Seel porphyries, and the Troitsa Complex are located along the eastern margin of the graben. South of the Troitsa property, the eastern graben margin fault bisects a pluton, suggesting an early phase of dextral offset.

The Whitesail Fault (Figure 4) is a broad zone of faulting and brittle shearing accompanied by extensive zones of iron carbonate alteration. It trends east-northeasterly across the property, and forms the northern limit of the Cummins Creek vein system. The fault exhibits minor sinistral offset of the north-northeast trending graben bounding fault, compatible with east-west extension during formation of the graben. This is also compatible with the dominant north-south trend of extensional epithermal quartz veins across the property. The intersection of the graben margin and the Whitesail Fault is the locus for the formation of the Troitsa Complex, indicating that graben formation, vein formation, and the intrusion of the volcanic-intrusive complex are part of the same Eocene extensional event.

7 Mineralization and 2005 Sampling Results

Numerous discrete mineralized zones have been documented in previous exploration work on the Troitsa Property. Not all of these were investigated during the 2005 work program. A total of 76 rock samples were taken from outcrop and float on the Troitsa Property during the 2005 work program. An additional 9 core samples were also taken.

Float samples are either grab or select samples of float boulders, while outcrop samples are either grab samples selected as typical of the zone sampled, or chip samples across a

measured interval within or through the zone. Samples were collected in plastic samples bags, labelled, tagged and sealed in the field. Sample locations were recorded by GPS and marked by a labelled aluminium tag and orange flagging tape. All rock samples were analyzed for gold by fire assay as well as 34 other elements by ICP.

Five principal zones or target areas are described here. They are located on Figure 5.

7.1 Moraine Zone

The Moraine Zone is a conspicuous zone of intense sericite-quartz-pyrite alteration exposed in a cirque on the west side of the ridge 1.4 kilometres southwest of Troitsa Peak (Figure 6). The zone is exposed at elevations between 1740 and 1850 metres, and extends downslope into areas covered by extensive moraine and talus. It was discovered in 1981 when two grab samples of quartz veins returned assays of 1.2 g/t Au and 16.6 g/t Ag (Cawthorn, 1982). The zone was described by Cawthorn as:

"an extensive area of intense hydrothermal argillic alteration and silica addition. The full extent of the zone is not known as there is extensive talus and moraine cover in the area, however, it is seen to extend at least 500 m in a northeast-southwest direction and 300 m in a northwest-southeast direction. The alteration zone is developed in an area of chaotic breccia, which obviously acted as a conduit for the hydrothermal solutions" (Cawthorn, 1982, p. 30).

Rock chip sampling of the zone in 1982 returned several samples with highly anomalous precious metal values (Table 7.1; Cawthorn, 1982).

Sample	Au (oz/t)	Au (g/t)	Ag (oz/t)	Ag (g/t)	Rock Type
WS229R	0.136	4.66	0.37	12.69	2-3 cm wide quartz veinlet
WS202R	0.056	1.92	0.67	22.97	Silicified tuff
WS203R	0.028	0.96	0.45	15.43	Quartz veinlet
SP4R	0.112	3.84	3.09	105.94	1 channel sample of quartz vein

Soil sampling by Canamax/Union Carbide in 1983 outlined a 950 metre long anomaly centred on the cirque, with up to 8.6 ppm Ag, 6500 ppm Pb, 2500 ppm Zn, 120 ppb Au and 450 ppm Mo (Cawthorn (1983a).

Paget's 2005 geological evaluation of the Moraine Zone indicates that alteration is focused on a rhyolite cryptodome which intrudes the base of the Ootsa Lake Group (Figure 6). The partly snow and ice-covered rhyolite is exposed in a cirque on the west side of the ridge extending south from Troirsa Peak, above two lateral moraines bracketing a small ice-melt tarn. Brecciated, flow-banded and massive rhyolite also crops out about 150 meters to the north of the lowermost part of the cirque in a flat area, which is mainly covered by glacial debris. This rhyolite flow was intersected in the eight 1987 drill holes collared in this area (Figure 7). Very similar flaggy weathering rhyolite

also crops out on the ridge, 300 metres to the southeast of the lower outcrops and 100 metres higher in elevation. This suggests the possibility that a northeast-trending normal fault separates the unaltered rhyolite flows intersected in drilling from the similar rhyolite on the ridge as well as the intensely altered rhyolite dome in the circue.

The dome is associated with a suite of autoclastic and pyroclastic breccias, ranging from in situ, jigsaw fit autoclastic flow-dome breccias and hydrothermal breccias, to proximal mantling tuff-breccias with angular rhyolite clasts up to one metre, to more distal flanking heterolitihic lapilli tuffs with minor rhyolite clasts. It is in part overlain and flanked by probably cogenetic extrusive rhyolite flows and ash flow tuff, and in part by andesite flows and breccia, and by an Ootsa Lake Group megacrystic feldspar porphyry dacite sill.

Autoclastic monomictic flow-dome breccias and hydrothermal breccias are pervasively sericitized, and generally have a matrix of fine-grained grey quartz and variable amounts of fine-grained to sooty pyrite. A grab sample of mineralized hydrothermal breccia returned elevated Au, Ag, Pb and Zn (Table 7.2).

Table 7.2 Rock sampling, hydrothermal breccia, Moraine Zone

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386213	626966	5938182	0.110	29.4	44	30	9	170	7	464
Values in	nnm									

values in ppm

The intensely brecciated rhyolite is cut by a conspicuous mineralized fault structure trending 015/65 SE; this zone is flooded by fine-grained silica and up to 10% pyrite, and can be traced across the outcrop for 100 metres, open at both ends. It is locally associated with zones of early chalcedonic silica, which is brecciated and flooded by clear to black fine-grained quartz and sulfides. Three chip samples across this structure returned strongly anomalous molybdenum values, as well as anomalous Au, Ag, Pb and Zn (Table 7.3).

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386210	626889	5938276	0.644	10.0	14	16	228	311	8	103
B386239	626847	5938248	0.214	13.2	259	74	193	791	10	676
B386240	626847	5938248	0.129	22.0	259	46	1075	586	22	294
Values in	Values in ppm									

values in ppin

About 70 metres west of this zone, intensely chlorite-epidote altered andesitic tuffs are cut by stratabound (?) zones of black and white banded chalcedonic silicification, locally with vugs containing very coarse, late euhedral quartz. A sample from this zone returned the highest molybdenum analysis from the 2005 program (Table 7.4).

Table 7.4 Rock sampling, chalcedonic silica, Moraine Zone

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386209	626776	5938246	0.361	2.7	65	88	1280	122	22	2
Values in ppm										

This zone of anomalous molybdenum continues to the southwest for another 320 metres, where soil sampling by Canamax defined strongly anomalous Mo in soils on two lines, with values of 12, 19, 19, 36 and 450 ppm (Cawthorn, 1983a).

Mineralization also occurs in tuffs flanking the rhyolite, where pervasive silica-pyrite alteration is accompanied by variable pyrite, galena and sphalerite as stringers and clots. A float sample of this type of mineralization from the northern lateral moraine returned highly anomalous Pb and Zn values (Table 7.5).

Table 7.5 Rock sampling, altered tuffs, Moraine Zone

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386238	626973	5938433	0.058	5.1	121	32	10	3100	3	1685
Values in ppm										

Oxidized hydrothermal breccias were found on the top of the ridge in flaggy rhyolite flows overlying eastern projection of the rhyolite dome. These distinctive breccias contain angular silicified rhyolite fragments cemented by quartz and iron oxides, with abundant angular open spaces between fragments lined with drusy quartz. One grab sample of this breccia contained high Ag values and anomalous Au, As and Pb (Table 7.6).

Table 7.6 Rock sampling, oxidized hydrothermal breccia, Moraine Zone

Sample	Easting	Northing	Au	Ag	As	Cu	Mo	Pb	Sb	Zn
B386235	627011	5938087	0.217	81.7	433	68	38	441	50	79
Values in	ı ppm									

Several high-level epithermal quartz veins are found up to 700 metres north of the cirque alteration zone. Shallow trenches 150 and 450 metres northeast of the dome expose crustiform banded epithermal quartz veins, which also occur as float trains in moraines and felsenmeer across the flat basin area northwest of the cirque Two of these veins returned anomalous gold and silver values from chip samples (Table 7.7).

Table 7.7 Rock chip sampling, quartz veins, Moraine Zone

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386252	627011	5938468	0.360	9.7	53	71	81	206	5	118
B386253	627374	5938707	2.320	15.2	58	9	111	32	2	28

Values in ppm

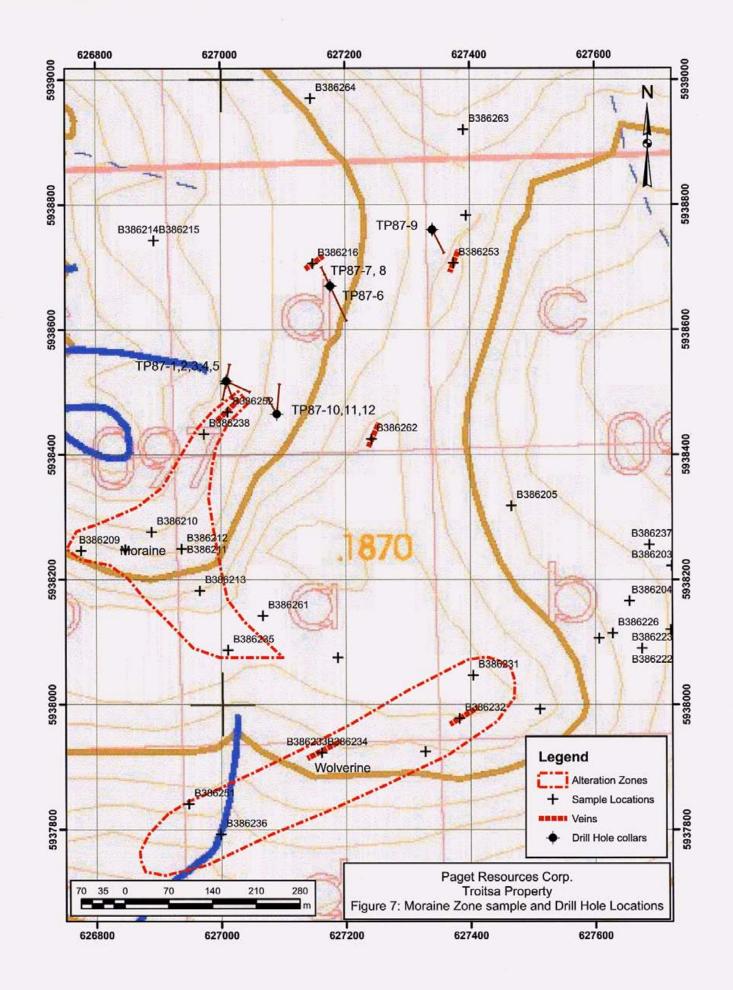
In summary, the Moraine Zone is characterized by an extensively brecciated rhyolite center with strong molybdenum values, anomalous gold and silver values, and associated lead and zinc. Copper and arsenic values tend to be low. The associated epithermal veins are sulfide-poor, and also have anomalous molybdenum values.

Drilling was carried out in the northeastern extension of the Moraine Zone from four setups (Lambert, 1987; Table 7.8; Figure 7). The drill setups were located in the field during the 2005 program, and found to all lie in a flat area downslope from the 1982 soil anomaly and outcropping alteration zone.

Five drill holes (TP87-1, 2, 3, 4 and 5) were drilled in various directions from a setup 50 metres north of a trench exposure of a mineralized quartz vein (sampled in 2005: sample B386252; Table 7.7), and 200 metres northeast of the cirque outcrops. Three additional holes (TP87-10, 11 and 12) were collared 90 metres southeast of the first setup. All of these drill holes intersected southeast-dipping flow-banded rhyolite, overlain to the east by rhyolite ash flow tuff. Although zones of structurally controlled silicification were intersected, the mineralized vein was not. The rhyolite in these drill holes is variably brecciated, but alteration is much weaker than in the intensely altered cirque exposures.

Three holes (TP87-6, 7 and 8) were collared about 220 metres northeast of the first setup, and intersected Ootsa Lake Group ash flow tuff unconformably overlying Smithers Formation maroon and green lapilli tuff. This indicates that the rhyolite flow unit pinches out between the first two setups and these drill holes. Drill hole TP87-9 was collared 400 metres northeast of the first setup and remained in the ash flow tuff unit for the length of the hole. This hole is notable in intersecting two silicified zones with fluorite veinlets, which were not reported from the other drill holes. None of the drill holes intersected significant mineralization; the highest Au assay was 150 ppb (Lambert, 1987).

DDH	EASTING	NORTHING	Azimuth	Dip	Length	ÓВ	Bedrock	Comment
	607000	5000549	445				Flow-banded	
TP-87-1	627009	<u>5938518</u>	115	-45	82.9	5.0	rhyolite	All OLG rhyolite
TP-87-2	627009	5938518	160	-45	60.6	5.8	Flow-banded rhyolite	All OLG rhyolite
TP-87-3	627009	5938518	191	-45	60.7	5.8	Flow-banded rhyolite	All OLG rhyolite
TP-87-4	627009	5938518			75.6		Flow-banded rhyolite	All OLG rhyolite
TP-87-5	627009						Flow-banded rhyolite	Smithers Fm graded sst/cong at 19.9m
TP-87-6	627176	5938670	155	-45	122.9		Rhy ash flow tuff	Smithers Fm grn/maroon lap tuf at 48.5m
TP-87-7	627176	5938670	335	-45	41.2	4.3	Rhy ash flow tuff	All OLG
TP-87-8	627176	5938670	335	-60	99.5		Rhy ash flow tuff	Smithers Fm grn/maroon lap tufi at 42.9m
TP-87-9	627340	5938760	153	-45	82.9	4.6	Rhy ash flow tuff	All OLG
TP-87-10	627090	5938465	330	-50	72.6	4.0	Rhy ash flow tuff	Flow-banded rhy at 58.4m
TP-87-11	627090	5938465	330	-60	78.9	4.6	Rhy ash flow tuff	Fit at 30-37; flow-banded rhy at 65.3m
TP-87-12	627090	5938465	5	-50	96.6	4.3	Rhy ash flow tuff	Massive rhy at 94.2m


Table 7.8 Locations and main lithologies intersected in 1987 drill holes, Alpine Exploration
Corp. (Lambert, 1987; drill hole locations from 2005 mapping)

The drill core remains on the property and was briefly examined in the field in 2005. Much of the core was unsplit and not assayed. Nine representative rock samples were taken from wide intervals of unsplit core from the brecciated rhyolite flow. These samples demonstrated that significant alteration and mineralization is not present, with only one sample (B386242) returning weakly anomalous Ag.

Sample	DH	From (m)	To (m)	Lithology	Alteration	Mineralization	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
	87-1												_	
B386215		2	15	rhy brx		py matrix to 2%	-0.005	0.3	7	4	16	16	-2	14
B386241	87-1	21	24	rhy brx	qtz str	tr-1% py	0.006	0.8	11	5	28	19	-2	19
B386242	87-1	30	32	rhy brx	qtz brx matrix	tr-1% py	-0.005	3.3	4	7	16	14	-2	25
B386243	87-1	47	50	rhy brx	qtz brx matrix	tr-1% py	-0.005	0.3	14	4	14	4	-2	19
B386214	87-1	64	77	rhy brx		py matrix to 2%	0.005	0.4	15	7	16	22	-2	25
B386244	87-2	52	54	flow-banded QP rhy		qtz-py str	-0.005	0.2	28	4	7	8	-2	10
B386245	87-3	20	23	rhy brx	qtz brx matrix		-0.005	0.2	6	3	10	6	-2	15
B386246	87-4	23	24	rhy brx		qtz-py str	-0.005	0.2	7	2	5	5	-2	5
B386247	87-4	30	43	flow-banded rhy		qtz-py str	0.006	0.3	15	2	12	5	-2	27

Table 7.9 2005 core sampling of 1987 drill holes

brx=breccia, qtz=quartz, py=pyrite, rhy= rhyolite, str=stringers

and the state of t

7.2 Wolverine and Ice Zones

The Wolverine and Ice Zones (Cawthorn, 1982) are part of a series of altered and mineralized zones which appear to be localized along an 060° trending brittle fault zone cutting Smithers Formation tuffs and the basal part of the Ootsa Lake Group (Figure 6). The Wolverine Zone is located about 400 metres southeast of the top of the Moraine Zone cirque. The 060° structure, which parallels the main Whitesail Fault, can be traced intermittently for a distance of over two kilometres, from the upper basin of Cummins Creek to Blitz Creek, a tributary of Troitsa Creek,.

The Ice Zone was originally described as consisting of float samples of "disseminated galena, sphalerite and chalcopyrite... in argillic altered chaotic breccia", (Cawthorn, 1982, p. 35). The mineralized float was believed to be sourced from beneath a small glacier on the east side of the ridge projecting south from Troitsa Peak, opposite the Moraine Zone. Mineralized outcrop at the edge of the glacier found in 2005 is located about 500 metres east of the Moraine Zone at about the same elevation, between 1740 and 1780 metres. Initial sampling of the Ice Zone by Union Carbide in 1982 returned silver values in float up to 1.35 oz/t (46 g/t Ag).

The Wolverine Zone is located about 400 metres southwest of the Ice Zone. It was originally mapped in 1983, and described briefly by Cawthorn (1983a) as a zone of silicification and bleaching of lapilli tuffs. Initial sampling results for the zone included one 10 metre long rock chip sample running 0.022 oz/t Au (0.75 g/t Au) and 0.21 oz/t Ag (7.2 g/t Ag).

The Wolverine and Ice zones were traced by reconnaissance mapping and rock chip sampling in 2005 (Figure 6). The Ice Zone is a diffuse zone of alteration in felsenmeer, transported moraine, subcrop and outcrop, which extends over a 150 x 350 metre area below a small residual alpine glacier. It is possible that, because of retreating ice, there is significantly more exposure of the zone in 2005 than there was in 1982 when the initial exploration of the zone was carried out. Nevertheless, exposure of the zone is intermittent because of the thin mantle of glacially mobilized material. Mineralization is characterized mainly by silicified hydrothermal breccias in Ootsa Lake Group felsic tuffs. The breccias are commonly cut by drusy quartz veinlets, and locally contain patchy galena, sphalerite and chalcopyrite.

Geochemically, the Ice Zone is characterized by locally anomalous silver and base metals, with low arsenic, antimony, and gold values (Table 7.10). The anomalous lead and zinc is similar to the Moraine Zone; however, the Ice Zone has on average much higher copper and lower molybdenum values, with an average Cu/Mo ratio about 28, compared with less than 1 for the Moraine Zone. If, as Cawthorn (1982) suggested, there is a genetic link between the two zones, this change in tenor could reflect a metal zonation around the Mo-enriched rhyolite center.

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn	Au*1000/Ag	Туре
B386201	628013	5938186	0.025	23.5	18	556	9	1460	6			Float
B386202	627807	5938268	0.027	4.1	54	146	12	1985	8	640	6.6	Fels
B386203	627723	5938222	0.011	2.3	159	91	24	636	7	293	4.8	Sc
B386204	627655	5938166	0.006	2.8	58	15	1	19	3	65	2.1	Fels
B386205	627466	5938318	0.007	2.8	28	310	2	911	3	534	2.5	Oc
B386206	628058	5938464	0.010	1.3	24	8	9	30	-2	47	7.7	Oc
B386219	627906	5938181	0.011	0.6	79	61	5	192	-2	21	18.3	Float
B386220	627798	5938116	-0.005	0.7	17	70	1	6	-2	27	3.6	Float
B386221	627721	5938120	0.013	0.8	77	11	5	19	-2	34	16.3	Oc
B386222	627675	5938090	0.017	16.2	29	6	1	26	-2	45	1.0	Float
B386223	627675	5938090	0.005	3.1	35	6	3	9	-2	29	1.6	Float
B386226	627628	5938114	-0.005	2.6	60	16	1	12	-2	12	1.0	Float
B386237	627687	5938256	0.014	1.9	52	28	11	788	-2	4500	7.4	Float
Average			0.010	4.8	53	102	6	469	1	530	5.7	

 Table 7.10 Rock chip sampling, Ice Zone

Values in ppm

The Wolverine Zone also contains hydothermal breccias, which near the top of the ridge above 1820 metres elevation are cut by 1 centimetre wide clear quartz veinlets as well as brown chalcedony veinlets and irregular replacements. The main zone of strong silicification and quartz veining is about 3 meters wide. Along strike 200 meters to the southeast, the zone is about 1 meter wide, and contains early chalcedonic veinlets cut by clear quartz stringers and later pyrite-arsenopyrite stringers. Barite veinlets 1-2 centimeters wide are also spatially associated with the structure. About 200 metres further southeast, the zone cuts Smithers Formation maroon andesitic tuffs, which are intruded by a felsic dyke. The dyke is moderately silicified, with pervasive silicification cut by hairline quartz stringers and vuggy quartz veinlets with 1% pyrite-arsenopyrite.

Geochemistry of the Wolverine zone shows order of magnitude increases in arsenic, gold and Au/Ag ratio, and significant decreases in base metals and silver, versus the adjacent Ice Zone.

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn	Au*1000/Ag
B386231	627404	5938047	0.016	0.6	274	7	4	3	-2	16	26.7
B386232	627382	5937978	1.430	2.5	6080	5	110	11	23	20	572.0
B386233	627161	5937923	0.243	7.2	1365	47	4	33	6	272	33.8
B386234	627161	5937923	0.009	0.6	132	14	2	11	-2	48	15.0
B386236	626999	5937793	0.157	4.2	708	65	65	156	20	328	37.4
B386251	626948	5937841	0.058	1.9	710	6	1	7	5	59	31
Average			0.319	2.83	1545	24	31	37	8	124	119

Table 7.11 Rock chip sampling, Wolverine Zone

Values in ppm

Sampling along the Wolverine Zone - Ice Zone trend demonstrates that the style and tenor of mineralization changes systematically from northeast to southwest, from Agbase metal to Au-As to As-Sb-(Au) in the Blitz North zone (Section 7.4). This may in part reflect lateral variations along the controlling 060° structure, and metal zonation with respect to the rhyolite centre underlying the Moraine Zone.

7.3 Cummins Creek Vein System

The Cummins Creek vein system consists of numerous quartz veins and proximal vein float boulders over an area of 1 x 3 kilometres in the central part of the Troitsa property. Veins are up to 1 metre wide, and locally occur in zones of parallel veins with intervening wallrock up to 2.5 metres wide. The veins can be traced along strike for about 100 metres, striking 330-350 degrees. Alteration is subtle, consisting of narrow bleached or silicified envelopes within larger zones of weak to moderate calcite-chlorite. Veins crop out primarily in Cummins Creek and along its steep-sided creek gully between 1200 and 1400 metres elevation. Due to extensive overburden cover along the valley sides away from the creek, there is a reasonable likelihood that many veins beyond the creek are not exposed.

The Cummins Creek vein system first documented in the early 1980's. High-grade float samples found by Union Carbide in 1982 were trace to a supposed source at 1290 metres elevation in the creek bed, where a banded, vuggy quartz vein was located. Highly anomalous precious metal values were obtained from grab samples of this vein (Table 7.12).

Sample	Au (oz/t)	Au (g/t)	Ag (oz/t)	Ag (g/t)
PS147R	0.068	2.33	6.27	215
TR141R	0.070	2.40	48.27	1655
TR143R	0.328	11.25	63.15	2165

A second, similar vein was located below this at 1260 m elevation, where it crops out along the creek bed.

At 1080 metres elevation, a zone of narrower quartz veins cropping out over a 10-metre wide zone yielded grab samples with much higher gold and lower silver values (Table 7.13).

Sample	Au (oz/t)	Au (g/t)	Ag (oz/t)	Ag (g/t)
CS21R	0.572	19.61	1.02	35
CS22R	0.386	13.23	0.81	28

The higher gold/silver ratio in the veins 210 metres below the upper vein may be of exploration significance.

The upper vein was resampled in 1987, returning a value of 4.29 g/t Au and 2605 g/t Ag (Harrivel, 1987). Prospecting the area south of the creek resulted in discovery of several float boulders of vein quartz, which assayed 377, 857 and 1062 g/t Ag and up to 3.29 g/t Au.

Prospecting north of the creek in 1991 resulted in the discovery of an area of subcrop with samples returning up to 0.74 g/t Au and 76.6 g/t Ag (Richards, 1990). In addition, samples were very anomalous in Mo, with values of 640 and 2757 ppm. This area is just south of a 1983 copper soil anomaly (anomaly B; Cawthorn, 1983b).

Work completed in 2005 on the Cummins Creek vein system consisted of reconnaissance mapping and prospecting to trace the veins through float and outcrop (Figure 6). The work succeeded in locating float and outcrop of very similar banded white to grey, locally sulphide bearing veins along a north-south trend from Porphyry Creek in the south to a landslide area located 1.5 km due north along the west side of Cummins Creek. Further north the trend is obscured by cover up to Chalco Creek, a tributary east of upper Cummins Creek. Exposures in this creek do not host veins similar to those in Cummins Creek suggesting that the vein system does not extend that far north. Some veins striking east-northeast were observed further to the west in the same drainage but they consist of cryptocrystalline grey quartz and are differ in both style and orientation from the veins in Cummins Creek.

The Cummins Creek veins are best exposed in the main drainage, from a prominent bend in the creek near sample B386227 to the veins exposed in a landslide area 750 meters further north near sample B386316 (Figure 6). Host rocks consist of green to maroon and green volcaniclastic rocks and massive green andesite of the Telkwa Formation. The veins are white to grey with prominent banding. Quartz is dominantly coarsely crystalline with some very coarse drusy quartz crystal from several mm to 3 cm long. Minor to locally significant grey sulphide bands are present (B386227, B386313, B386316) as well as some chalcopyrite and grey sulphosalts (B 386311, B386322).

The veins strike from 315° to 355° and dip 50-70° to the northeast. The overall trace of the vein system is more north-south, suggesting an en-echelon pattern of veining may be present with individual veins striking 30-50° counter clockwise to the overall vein zone. Alteration is restricted to narrow quartz-sericite-pyrite selvages 10-80 cm wide. Very similar vein float was mapped and sampled in Porphyry Creek and on a hill located between the main branch of Cummins Creek and the Porphyry Creek tributary, suggesting that the vein zone continues southwards as far as the north bank of Porphyry Creek.

Rock sampling consisted of both float samples and outcrop samples within the main exposed vein area. Gold values are generally very low, with a high of 1.835 g/t Au, and silver is generally low, with only one sample carrying greater than 100 ppm Ag

(B386311: 0.6 g/t Au and 291 g/t Ag). Base metals and arsenic are variable from low to significant. Low antimony values suggests the absence of sulphosalts.

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn	Au*1000/ Ag
B386227	629180	5936100	0.078		32	68	191	69	6	31	4
B386228	629040	5936240	0.036	2.8	70	15	20	5	-2	21	13
B386229	629040	5936240	0.051	21.6	37	120	251	17	6	14	2
B386230	628934	5936454	0.084	10.6	66	56	507	54	6	23	8
B386260	629180	5936100	1.835	6.7	432	23	97	16	3	77	274
B386306	629083	5935468	0.349	63.7	79	22	17	82	39	7	5
B386308	629371	5935436	0.019	1.1	20	4	48	8	5	12	17
B386311	629137	5936235	0.620	291.0	26	3530	43	1725	8	2040	2
B386312	628985	5936374	0.040	2.8	144	13	276	28	4	21	14
B386313	628865	5936625	-0.005	3.8	1020	40	433	120	5	27	-1
B386314	628827	5936876	0.100	3.9	56	3	20	16	3	3	26
B386315	628950	5936823	0.012	0.5	60	4	10	12	3	13	24
B386316	628948	5936852	0.069	0.8	659	11	70	23	8	22	86
B386322	629730	5935784	0.048	21.2	7	343	6	290	-2	166	2
Average			0.238	32.1	193	304	142	176	7	177	34
All values i	in ppm										

Table 7.14 Rock chip sampling, Cummins Creek veins

The vein textures and the vein chemistry suggest that these veins are part of a deeply eroded vein system. The high Ag and Au grades previously reported appear to be sporadic or of limited extent.

7.4 Blitz Knob

The Blitz Knob Zone follow the crest of a north-northeast trending hill at 1700-1760 metres, about 1.8 kilometres southeast of the Moraine Zone (Figure 6). The zone was described (Cawthorn, 1983a) as a silicified zone up to 3 metres wide and 700 metres long following a fault and series of aplitic dykes in Smithers Formation grey and red tuffs. The zone contains disseminated to massive pods of arsenopyrite, stibnite and marcasite.

Mapping in 2005 around the Blitz Knob showing indicates that the area is underlain by northeast striking and southeast dipping mafic flows with interbedded volcaniclastic rocks. The flows are cut by an 015° trending zone of strong iron carbonate alteration, which locally hosts dark siliceous breccias with pyrite, fine needles of arsenopyrite and unidentified dark sulphide. The zone can be traced for 900 metres to the limits of mapping in both directions and remains open in both directions (Figure 6).

Five rock samples were collected from mineralized rock along the strike of the zone. The sampling failed to define any significant gold or silver mineralization, returning only very

high arsenic and antimony. This zone is of restricted width and appears to lack significant precious metals.

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386301	625753	5936217	0.011	0.9	4420	59	1	10	94	104
B386302	625884	5936449	<0.005	0.3	804	8	1	23	28	219
B386303	626014	5936765	<0.005	0.5	10000	33	1	20	450	83
B386304	626017	5936795	<0.005	0.4	10000	9	7	26	9760	83
B386305	626064	5936863	0.060	0.6	10000	52	2	6	160	57
Average			0.036	0.5	7045	32	2	17	2098	109
All values	in ppm									

Table 7.15 Rock chip sampling, Blitz Knob Zone

The along-strike projection of the Blitz Knob structure to the north, the Blitz North zone, is characterized by similar high As and Sb values. The Blitz Knob and Wolverine/Ice trends meet in Blitz Creek around 1600 metres elevation, where very intense silica-pyrite-arsenopyrite flooding crops out (sample B386225). The zone here is about 240 metres below the highest point of the Wolverine Zone. Creek float downstream from this point includes quartz vein breccia material with 2-5% pyrite-arsenopyrite. Further to the north, the Moraine Zone is cut by a strongly mineralized 015° trending fault that may represent the same structure. This would make the overall strike length of the mineralized structural trend about 3 kilometres.

Table 7.16 Rock chip sampling, Blitz North Zone

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386207	626659	5937880	0.036	2.1	8910	31	12	12	248	54
B386258	626159	5937538	0.623	6.9	10000	19	4	56	200	134
B386259	626326	5937458	0.090	1.0	8290	22	2	19	144	46
B386225	626384	5937503	0.096	1.0	10000	28	20	31	275	183
Average			0.211	2.75	9300	25	10	30	217	104

Values in ppm

7.5 Cummins Creek Porphyry

Previous exploration work completed by Canamax (Cawthorn, 1983b) and Alpine Exploration Corp (L'Orsa, 1995) defined a zone of copper mineralization in feldspar porphyry and quartz feldspar porphyry around 1200 metres elevation in an east-west tributary of Cummins Creek (Porphyry Creek). Soil sampling by Canamax/Union Carbide (Cawthorn, 1993b) highlighted the mineralized zone with a 500 metre long copper-molybdenum soil anomaly, with Cu up to 1000 ppm, and Mo values up to 37 ppm. In 1993, Alpine Exploration Limited completed a small soil grid in the same area

between the Cummins Creek veins and the Porphyry Creek exposures. This work defined a 100 x 250 metre Mo anomaly (up to 34 ppm Mo), open to the west. Rock sampling of altered feldspar porphyry in Porphyry Creek produced a composite sample with 400 ppm Cu, and grab samples ran up to 0.016 oz/t gold and 1.6 oz/t Ag.

Mapping and rock sampling were completed in the area of the porphyry zone in 2005 (Figure 6). Excellent exposures in both the main branch of Cummins Creek and its east-west tributary, Porphyry Creek, consist of green andesitic volcanic rocks intruded by both quartz feldspar porphyry and a very crowded or equigranular monzonite. The quartz feldspar porphyry (QFP) contains 2-5% quartz eyes to 7 mm, set in a pale aphanitic groundmass. The outcrops are rusty, and the rock contain <1% disseminated pyrite. This rock is clearly a 060° trending dyke 5-10 metres wide. The crowded porphyry is a very crowded rock with only minor quartz and ambiguous altered mafic minerals. The rock contains 1-2% disseminated combined pyrite and lesser chalcopyrite. The crowded porphyry also contains local clear quartz veinlets with no significant sulphide.

The volcanic rocks along the north side of the QFP dyke are very rusty with two distinct alteration assemblages. In the eastern part of the creek, chlorite altered rocks contain abundant disseminated and fracture controlled pyrite. Further west, the outcrop consists of strong quartz-sericite-pyrite alteration, with both disseminated and fracture-controlled pyrite. Multi-metre wide zones of strong quartz sericite pyrite alteration continue to the NE in the main fork of Cummins Creek. These zones commonly include zones of dark silica-sulphide in stockwork and tabular silica-rich zones striking northeast.

Chalcopyrite varies from trace to 2% in the crowded porphyry, but was not observed in any other rock types. Alteration appears to consist of minor chlorite-magnetite-pyritechalcopyrite. Good exposure of unaltered volcanic and diorite in Cummins Creek east of the altered zone and very sparse outcrop of fresh volcanics on a ridge 200-500 m south of the altered zone limit the porphyry style mineralization to the south and east. A lack of mapping to the NE and till cover to the SW leave the chalcopyrite zone open in both directions. This appears to be a limited zone of mineralization either related to NE striking dykes or a structurally controlled zone of mineralization. The ground south and west of the Porphyry Zone remains unexplored and the presence of other known vein showings further south suggest that further exploration is warranted in this part of the property.

Rock sampling in 2005 consisted of one chip sample from local talus of the chalcopyritepyrite mineralization (sample B386309) and two chip samples of quartz-sericite-pyrite with grey silica-sulphide stockwork. The chalcopyrite bearing sample contained significant but weak copper (680 ppm) while the one of the grey stockwork samples (B386310) carried significant molybdenum and some weak silver.

Sample	Easting	Northing	Au	Ag	As	Cu	Мо	Pb	Sb	Zn
B386307	629198	5935455	0.005	0.5	47	36	32	36	<2	66
B386309	629963	5935750	0.007	0.5	12	680	3	21	<2	96
B386310	629971	5935812	0.039	4.5	32	53	134	13	<2	26
Average			0.017	1.8	30	256	56	23	<2	63
All values	in ppm									

Table 7.17 Rock chip sampling, Porphyry Zone

8 Interpretation and Recommendations

Results from the brief 2005 exploration program suggest that there are four distinct areas of mineralization with different chemical signatures, mineralization styles and target types:

- 1. The **Blitz Knob-Blitz North Zones** define a 1900 meter long, 015° trending zone of silica-sulphide breccia with strong arsenic and antimony values. The same structural trend extends as far north as the Moraine zone, where an 015° trending silica-sulfide flooded fault cuts the altered rhyolite cryptodome. The total strike length of this mineralized structure is therefore on the order of about 2.4 kilometres. The Wolverine-Ice Zones define a similar zone of silica sulphide breccia but striking 060°, parallel to the Troitsa Fault, and lacking high antimony values.
- 2. The Moraine Zone consists of strong quartz-sericite-pyrite alteration within a rhyolite volcanic-intrusive centre cut by chalcedonic to fine grained silica, with some strong sulphide mineralization in silicified structures and stratabound zones. Limited rock chip sampling of the zone as well as soil surveys completed by Union Carbide/Canamax in 1983 suggest that the Moraine Zone contains potentially economic molybdenum and anomalous silver. Slightly higher silver and gold grades occur in oxidized breccias at higher elevations to the south.
- 3. The **Cummins Creek Vein System** is a north-south trending zone of quartz veins filling a probable en-echelon pattern. The veins are banded, crustiform and drusy with local concentrations of sulphides with significant base metals but low arsenic and antimony. These appear to be deeply eroded epithermal veins, perhaps spatially related to the porphyry style mineralization described below.
- 4. The **Cummins Creek Porphyry Zone** is a small zone of crowded feldspar porphyry with disseminated pyrite and chalcopyrite typical of a porphyry system. The small size of the showing, the high pyrite/chalcopyrite ratio, the lack of strong Mo values, quartz stockwork and/or magnetite suggests that this may be a peripheral occurrence reated to a larger unexposed porphyry system.

Further exploration work is recommended for three areas.

- 1. The Moraine Zone has been explored as a epithermal vein gold target, but the combination of some samples with >0.1% Mo, and the presence of a rhyolitic centre with mineralized hydrothermal breccias suggest that this target warrants evaluation as a Mo-Ag target with a possible buried molybdenum rich porphyry at depth. The surface extent of the zone should be tightened up by additional rock chip and talus fines sampling, followed by two inclined drill holes 200-350 meters in length testing the area of anomalous Mo-Ag.
- 2. The Cummins Creek porphyry is an intrusive hosted copper showing with characteristics of the peripheral phyllic zone of a porphyry system. Considering the proximity to a producing Cu-Mo porphyry deposit at Huckleberry, a significant resource at Berg and interesting drill results from the adjoining Seel property to the north, further exploration is recommended on the south-central part of the claim block. This area warrants detailed (1:2,000 scale) mapping, stream sediment sampling, prospecting and soil sampling. Airborne magnetics would also help in interpreting subsurface geology in areas with poor exposure.
- 3. The Cummins Creek vein system failed to return potentially economic grades in gold and silver. The veins are relatively narrow and have both the chemistry and the physical characteristics of a deeply eroded vein system. No further work is warranted in the area mapped in 2005, but Cawthorn (1982) reported higher grades at lower elevations in Cummins Creek around the 1080 metre elevation. This area should be evaluated.

9 **References**

Carter, N.C. (1976): Regional setting of porphyry deposits in west-central British Columbia; in Porphyry Deposits of the Canadian Cordillera, A. Sutherland-Brown, Editor. The Canadian Institute of Mining and Metallurgy, Special Volume 15, pages 227-238.

Carter, N.C. (1981): Porphyry copper and molybdenum deposits, west-central British Columbia; British Columbia Ministry of Energy, Mines and Petroleum Resources, Bulletin 64, 150 pages.

Cawthorn. N.G. (1982): Geological and Geochemical Survey of the Troitsa Peak North and Troitsa Peak South Claim Groups, B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 10875.

Cawthorn. N.G. (1983a): Geological and Geochemical Survey of the Troitsa Peak North and Troitsa Peak South Claim Groups, B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 11512.

Cawthorn. N.G. (1983b): Geological and Geochemical Survey of the Troitsa Peak North and Troitsa Peak South Claim Groups, B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 11709.

Cooke, D.R. and Simmons, S.F. (2000): Characterisitics and genesis of epithermal gold deposits. In Gold in 2000; Reviews in Economic Geology, Volume 13; S.F. Hagemann and P.E.Brown, eds., pages 221-244.

Duffell., S. (1959): Whitesail Lake Map area. B.C. Geological Survey of Canada, Memoir 299, 119 pages.

Diakow L. and Mihalynuk, M. (1987a): Geology of Whitesail Reach and Troitsa Lake Map Areas (93E/10W, 11E) B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 1988, pages 134-136.

Diakow L. and Mihalynuk, M. (1987b): Geology of Whitesail Reach and Troitsa Lake Map Areas (93E/10W, 11E) B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1987/4.

Friedman, R. (2005): Geochronology of igneous rocks associated with mineralization in central British Columbia. Published electronically on the Mineral Deposits Research Institute (MDRU) website at <u>http://www.mdru.ubc.ca/rp/mag/bc.html.</u>

Galloway. J.D. (1916): A Reconnaissance of a Portion of the Eastern Contact of the Coast Range, B.C. Ministry of Energy, Mines and Petroleum Resources, Annual Report, pages 134-136.

Grainger, N.C., Villeneuve, M.E., Heaman, L.M., and Anderson, R.G. (2001): New U-Pb isotopic age constraints on the timing of Eocene magmatism, Fort fraser and Nechako River map area, central British Columbia. Canadian Journal of Earth Sciences, v. 38, pages 679-696.

Harivel, Colin (1987): 1987 Exploration Program on the Cummins Creek Vein System. B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 17654.

Heberlein, D.R. (1995): Geology and supergene processes: Berg copper-molybdenum porphyry, west-central British columbia. *In* Porphyry Deposits of the Northwestern Cordillera o North America, T.G. Schroeter, ed. Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, pp. 304-312.

Imperial Metals (2005): Annual Information Form, March 17, 2005. Published electronically on SEDAR.

Jackson, A. and Illerbrun, K. (1995): Huckleberry porphyry copper deposit, Tahtsa Lake district, west-central British columbia. *In* Porphyry Deposits of the Northwestern Cordillera o North America, T.G. Schroeter, ed. Canadian Institute of Mining, Metallurgy and Petroleum, Special Volume 46, pp. 313-321.

Jordan, S. and Thompson, J. (2005): Relationships Between Intrusions and Mineralization in the Northern Tahtsa Lake District, West-Central British Columbia. Published electronically on the Mineral Deposits Research Institute (MDRU) website at http://www.mdru.ubc.ca/rp/mag/huckleberry.html.

Kao, L-S, Peacor, D.G., Coveney, R.M., zhao, G., Dungey, K.E., Curtis, D.M. and Penner-Hahn, J.E. (2001): A C/MoS2 mixed-layer phase (MoSC) occurring in metalliferous black shales from southern China, and new data on jordisite. American Mineralogistm v. 86, pp. 852-861.

Lambert, Ellen (1988): Drilling Report on the Troitsa Peak Property. B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 17792.

L'Orsa, A. (1995): Geological and Geochemical surveys, Cummins Creek Prospects. B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 24387.

MacIntyre, D.G. (1985): Geology and Mineral Deposits of the Tahtsa Lake District, West Central B.C., B.C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 75. 82 pages

Marshall, J.R. (1925): Eutsuk Lake Area, Coast District, B.C. Ceological Survey of Canada, Summary Report, MA, pages 144-154.

Morin, J.A. (ed.) (1987): Mineral deposits of the northern cordillera. CIM Special Volume 37. Montreal: Canadian Institute of Mining and Metallurgy.

Richards, G. (1976): Ox Lake. In Porphyry deposits of the Canadian Cordillera, A. Sutherland Brown, ed. Canadian Institute of Mining and Metallurgy Special volume 15, pp. 286-290.

Richards, T. (1990): Geochemical Report on the Troitsa 1 Claim. B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 20817

Richards, T. (1991): Prospecting Report on the Tar Group. B.C. Ministry of Energy Mines and Petroleum Resources. Assessment Rept. 21720.

Sutherland-Brown, A. (1960): Ox (Ox Lake Property). Geology, Exploration and Mining in British Columbia, 1969, pages 93-97.

Tipper, H.W. and Richards, T..4. (1976): Jurassic Stratigraphy and History of Northcentral B.C., Geological Survey of Canada. Bulletin 270, 73 pages.

Woodsworth. G.J. (1979): Geology of Whitesail Lake Map Area, B.C., Geological Survey of Canada, Paper 79-1A. pages 25-29.

-

_

÷

.

.

.

ł

.

-

سعو

-

.

Sample	Datum	Easting	Northing	Area	Туре	Samp Type	Length	Au	Ag	AI %	As	в	Ba	Be	81	Ca %
B386201	NAD83	628013	5938186	lce	float	Grab		0.025	23.5	1.24	18	-10	420	-1	18	0.0
3386202	NAD83	627807	5938268	lce	fels	Grab		0.027	4.1	1.27	54	-10	170	-1	-2	0.0
3386203	NAD83	627723	5938222		sc	Chip	2.5	0.011	2.3	1.18	159	-10	220	-1	-2	0.1
3386204	NAD83	627655	5938166		fels	Grab		0.006	2.8	0.86	58		140	-1	-2	0.0
3386205	NAD83	627466	5938318		00	Grab		0.000	2.8	1.68	28	-10	300		-2	0.1
	1															-
3386206	NAD83	628058	5938464		00	Grab		0.010	1.3	1.19	24		190	-1	-2	0.1
3386207	NAD83	626659		Wolverine	00	Grab		0.036	2.1	0.64	8910		80	-1	-2	0.1
3386208	NAD83	626562	5937836	Wolverine	OC	Grab		0.011	0.3	0.59	108	-10	110	-1	-2	0.0
3386209	NAD83	626776	5938246	Moraine	oc	Grab		0.361	2.7	0.33	65	-10	60	-1	-2	0.1
3386210	NAD83	626889	5938276		oc	Grab		0.644	10.0	0.76	14	-10	90	-1	-2	0.1
3386211	NAD83	626937	5938249		oc	Grab		0.036	0.5	0.71	35	-10	160	-1	-2	0.
B386212	NAD83	626937	5938249		OC	Grab		-0.005	0.9	0.94	37	-10	90		-2	0.
								-								
B386213	NAD83	626966	5938182		oc	Grab		0.110	29.4	0.71	44		100	-1	-2	0.
3386216	NAD83	627148	5938706		trench	L		0.015	0.3	0.48	9		90	-1	-2	0.
B386217	NAD83	629176	5939514	Discovery	moraine	Grab		0.015	-0.2	1.05	1385	-10	80	-1	-2	0.
B386218	NAD83	629022	5938726	Discovery	oc	Grab		-0.005	0.3	0.90	20	-10	130	-1	-2	0.
B386219	NAD83	627906	5938181	<u>, , , , , , , , , , , , , , , , , , , </u>	float	Grab		0.011	0.6	0.72	79	-10	1150	-1	-2	0.
B386220	NAD83	627798	5938116		float	Grab		-0.005	0.0	0.77	17	-10	120	-1	-2	0.
							;		(
B386221	NAD83	627721	5938120		OC	Grab	:	0.013	0.8	0.64	77	-10	430	-1		0.
B386222	NAD83	627675	5938090		float	Grab	į	0.017	16.2	0.90	29	_	290	-1	-2	0.
3386223	NAD83	627675	5938090	lce	float	Grab	l	0.005	3.1	0.48	35	-10	220	-1		0.
3386224	NAD83	625903	5937566	Blitz Creek	float	Grab		0.010	0.5	0.06	34	-10	340	-1	-2	0.
3386225	NAD83	626384		Blitz Creek	00	Grab		0.096	1.0	0.40	10000	-10	30	-1	-2	0.
3386226	NAD83	627628	5938114		float	Grab		-0.005	2.6	0.24	60		180	-1	-2	0.
											32			-1	-	0.
3386227	NAD83	629180		Cummins Crk	OC	Grab		0.078	18.6	0.45			70	-	-2	
3386228	NAD83	629040		Cummins Crk	oc	Grab		0.036	2.8	0.66	70		50	-1	-2	0.
3386229	NAD83	629040		Cummins Crk	oc	Grab		0.051	21.6	0.23	37	-10	40	-1	-2	2.
3386230	NAD83	628934	5936454	Cummins Crk	oc	Grab		0.084	10.6	0.23	66	-10	50	-1	-2	0.
3386231	NAD83	627404	5938047	Wolverine	oc	Grab		0.016	0.6	0.55	274	-10	40	-1	-2	0.
3386232	NAD83	627382		Wolverine	OC OC	Grab		1.430		0.34	6080		100	-1		
3360232	11000	02/302	0901910	WOIVEIIIIE		Giab		1.430	2.0	0.34	0000	-10	100			
3386233	NAD83	627161		Wolverine	oc	Grab		0.243	7.2	1.72	1365		90	-1	-2	0.
3386234	NAD83	627161	5937923	Wolverine	00	Grab		0.009	0.6	0.83	132	-10	110	-1		0.
B386235	NAD83	627011	5938087	Wolverine	oc	Grab		0.217	81.7	0.44	433	-10	380	-1	-2	0.
B386236	NAD83	626999	5937793	Wolverine	oc	Grab	1	0.157	4.2	0.43	708	-10	620	-1	-2	0.
B386237	NAD83	627687	5938256		float	Grab		0.014	1.9	0.41		_	70	-1	-2	0.
B386238	NAD83	626973		Moraine	moraine	Grab		0.058	5.1	0.75		-10	30	-1	+	-
							0.5									_
B386239	NAD83	626847		Moraine	oc	Chip	0.5		13.2	1.53		·	30	-1	-2	
B386240	NAD83	626847		Moraine	oc	Grab		0.129					20	-1	-2	
B386251	NAD83	626948	5937841	Wolverine	oc	Grab		0.058	1.9	1.13	710	-10	140	-1	-2	0.
B386252	NAD83	627011	5938468	Moraine	trench	Grab		0.360	9.7	0.25	53	-10	60	-1	-2	0
B386253	NAD83	627374	5938707	Moraine	oc	Grab		2.320	15.2	0.37	58	-10	430	-1	-2	0
B386254	NAD83	627741		Discoverv	oc	Chip	+	-0.005	+	1.50	+	+	150	-1	-	
				Discovery	1		·	+				_			-	+
B386255	NAD83	629134			oc .	Chip		0.021	1.2	0.76		-	80	-1	_	0
3386256	NAD83	629202		Discovery	moraine	Chip		0.024	2.0	0.63			100	-1	-	0
B386257	NAD83	625993		Blitz Creek	oc	Chip	0.15		0.4		708		290	-1		0.
3386258	NAD83	626159	5937538	Biltz Creek	oc	Grab		0.623	6.9	0.94	10000	-10	10	-1	-2	0
3386259	NAD83	626326		Blitz Creek	float	Grab	1	0.090						-1		
3386260	NAD83	629180		Cummins Crk	OC	Grab	+	1.835	1		-	-				
						+	·		• •					-1	t É	
3386261	NAD83	627067		Cummins Crk	SC	Chip		0.009						-1	-	
3386262	NAD83	627242			00	Chip	0.5	-				_		-1	_	
B386263	NAD83	627390	5938920	Cummins Crk	oc	Chip	3	-0.005	-0.2	0.90	33	-10	90	1	-2	0
B386264	NAD83	627145	5938970	Cummins Crk	oc	Chip	3.5	0.011	0.4	0.57	104	-10	110	1	-2	Ó
B386301	NAD83	625753		Blitz Knob	oc	Chip	0.6		+	1	-	+ · ·		1	+	
B386302	NAD83	625884		Blitz Knob	sc	Grab		-0.005				_		1	_	
		020004	0000-10			1	1	0.000		J.20	004			•		
3386303	NAD83	626014	5028785	Blitz Knob	en	1	1	-0.005	0 =	0.00	10000	. 10	70		-2	0
					sc	0	+							-1		+
3386304	NAD83	626017	5936795	Blitz Knob	oc	Chip	0.5	-0.005	0.4	0.17	10000	-10	40	-1	-2	0
3386305	NAD83	626064	5936863	Blitz Knob	float	Grab		0.060	0.6	0.17	10000	-10	50	-1	-2	0
B386306	NAD83	629083	5935468	Cummins Crk	float	Grab		0.349	63.7	0.05	79	-10	10	-1	-2	0
B386307	NAD83	629198	:	Cummins Crk		Chip	1	0.005		0.31						
									1		i					
B386308	NAD83	629371	5935436	Cummins Crk	float	Grab		0.019	<u>1.1</u>	0.14	20	-10	20	-1	-2	: 0

-

ł

į

ł

ł

í

.____

~

-

						Samp										
Sample	Datum	Easting	Northing	Area	Туре	Туре	Length	Au	Ag	AI %	As	В	Ba	Be	Bł	Ca %
B386201	NAD83	628013	5938186		float	Grab		0.025	23.5	1.24	18	-10	420	-1	4 ··· · · · ·	0.07
B386202	NAD83	627807	5938268		fels	Grab		0.027	4.1	1.27	54	-10	170	-1	-2	0.04
B386203	NAD83	627723	5938222	lce	SC	Chip	2.5	0.011	2.3	1.18	159	-10	220	-1	-	0.10
B386204	NAD83	627655	5938166	lce	fels	Grab		0.006	2.8	0.86	58	-10	140	-1	-2	0.08
B386205	NAD83	627466	5938318	lce	00	Grab		0.007	2.8	1.68	28	-10	300	-1	-2	0.16
B386206	NAD83	628058	5938464	lce	00	Grab		0.010	1.3	1.19	24	-10	190	-1		0.12
B386207	NAD83	626659	5937880	Wolverine	00	Grab		0.036	2.1	0.64	8910	-10	80	-1	-2	0.20
B386208	NAD83	626562	5937836	Wolverine	00	Grab		0.011	0.3	0.59	108	-10	110	-1	-2	0.04
B386209	NAD83	626776	5938246	Moraine	00	Grab		0.361	2.7	0.33	65	-10	60	-1	_	0.02
B386210	NAD83	626889	5938276		oc	Grab		0.644	10.0	0.76	14	-10	90	-1	-2	0.01
B386211	NAD83	626937	5938249		00	Grab	1	0.036	0.5	0.71	35	-10	160	-1	-2	0.14
B386212	NAD83	626937	5938249	Moraine	oc	Grab	1	-0.005	0.9	0.94	37	-10	90	•1	-2	0.35
B386213	NAD83	626966	5938182	Moraine	00	Grab		0.110	29.4	0.71	44	-10	100	-1	-2	0.42
B386216	NAD83	627148	5938706	Moraine	trench			0.015	0.3	0.48	9	-10	90	-1	-2	0.05
B386217	NAD83	629176	5939514	Discovery	moraine	Grab		0.015	-0.2	1.05	1385	-10	80	-1	-2	0.01
B386218	NAD83	629022	5938726	Discovery	oc	Grab		-0.005	0.3	0.90	20	-10	130	-1	-2	0.06
B386219	NAD83	627906	5938181	lce	float	Grab		0.011	0.6	0.72	79	-10	1150	-1	-2	0.02
B386220	NAD83	627798	5938116	Ice	float	Grab		-0.005	0.7	0.77	17	-10	120	-1	-2	0.06
B386221	NAD83	627721	5938120	Ice	oc	Grab		0.013	0.8	0.64	77	-10	430	-1	-2	0.02
B386222	NAD83	627675	5938090		float	Grab		0.017	16.2	0.90	29	-10	290	-1	-2	0.05
B386223	NAD83	627675	5938090		float	Grab	1	0.005	3.1	0.48	35	-10	220	-1	-	0.04
B386224	NAD83	625903		Biitz Creek	float	Grab	1	0.010	0.5	0.06	34	-10	340	-1	-2	0.01
B386225	NAD83	626384		Blitz Creek	oc	Grab	1	0.096	1.0	0.40	10000	-10	30	-1		0.23
B386226	NAD83	627628	5938114		float	Grab	†	-0.005	2.6	0.24	60	•	180	-1		0.04
B386227	NAD83	629180		Cummins Crk	oc	Grab		0.078	18.6	0.45	32		70	-1		0.88
B386228	NAD83	629040		Cummins Crk	oc	Grab		0.036	2.8	0.66	70	-	50	-1	-2	0.11
B386229	NAD83	629040		Cummins Crk	oc	Grab		0.051	21.6	0.23	37	-10	40	-1	-2	2.26
B386230	NAD83	628934		Cummins Crk	00	Grab		0.084	10.6	0.23	66		50	-1	-2	0.09
000200	INAD05	020304	3930434	Cummuns Cix	00	Giab	1	0.004	10.0	0.23		-10	30	-1	2	0.03
B386231	NAD83	627404	E029047	Wolverine		Grab	1	0.010	0.6	0.55	074	-10	40		-2	0.00
		627382			00			0.016		0.55	274		40	-1		0.02
B386232	NAD83	02/302	0931910	Wolverine	oc	Grab		1.430	2.5	0.34	6080	-10	100	-1	-2	0.01
0000000	1.4000	007404	5003000	147 - h		0				4 70						
B386233	NAD83	627161		Wolverine	oc	Grab		0.243	7.2	1.72	1365	<u> </u>	90	-1		0.04
B386234	NAD83	627161		Wolverine	oc	Grab		0.009	0.6	0.83	132		110	-1		0.05
B386235	NAD83	627011		Wolverine	00	Grab		0.217	81.7	0.44	433		380	-1	-	0.01
B386236	NAD83	626999		Wolverine	oc	Grab		0.157	4.2	0.43	708	<u> </u>	620	-1		0.01
B386237	NAD83	627687	5938256		float	Grab		0.014	1.9	0.41	52		70	-1	_	0.05
B386238	NAD83	626973	5938433		moraine	Grab		0.058	5.1	0.75	121	-10	30	-1		0.82
B386239	NAD83	626847	5938248		00	Chip	0.5		13.2	1.53	259	-10	30	-1	-	0.03
B386240	NAD83	626847	5938248		oc	Grab		0.129	22.0	1.16	259		20	-1		0.02
B386251	NAD83	626948		Woiverine	oc	Grab		0.058	1.9	1.13	710	-10	140	-1	-2	0.02
B386252	NAD83	627011	5938468	Moraine	trench	Grab		0.360	9.7	0.25	53	-10	60	-1	-2	0.04
B386253	NAD83	627374	5938707	Moraine	oc	Grab		2.320	15.2	0.37	58	-10	430	-1	-2	0.05
B386254	NAD83	627741	5938710	Discovery	oc	Chip		-0.005	0.5	1.50	156	-10	150	-1	6	0.11
B386255	NAD83	629134		Discovery	oc	Chip		0.021	1.2	0.76	35	-10	80	-1	-2	0.25
B386256	NAD83	629202	5938546	Discovery	moraine	Chip		0.024	2.0	0.63	44	-10	100	-1	-2	0.17
B386257	NAD83	625993		Blitz Creek	ос	Chip	0.15	0.054	0.4	0.81	708	-10	290	-1	-2	0.09
B386258	NAD83	626159	5937538	Blitz Creek	oc	Grab		0.623	6.9	0.94	10000	-10	10	-1	-2	0.02
	NAD83	626326		Blitz Creek	float	Grab	1	0.090			8290			-1		0.09
B386260	NAD83	629180	-	Cummins Crk	oc	Grab		1.835	1		432			-1	-	-
B386261	NAD83	627067		Cummins Crk	sc	Chip		0.009			62			-1	-	
B386262	NAD83	627242		Cummins Crk		Chip	0.5	1	0.4		38		130	-1		;
B386263	NAD83	627390		Cummins Crk	oc	Chip	3		}		<u>.</u>		90	1	_	
B386264	NAD83	627145		Cummins Crk	oc	Chip	3.5	1	1		104	,				
B386301	NAD83	625753		Blitz Knob	00	Chip	0.6	t	0.9		1	-				
B386302	NAD83	625884		Blitz Knob	sc	Grab	0.0	-0.005	1		804			1	-	
		220004	0000170		1.2	1	+	1 0.000		0.20		1.0		'	+ -2	1.4.00
B386303	NAD83	626014	5936765	Blitz Knob	sc	i i		-0.005	0.5	0.30	10000	-10	70	-1	-2	0.16
B386304	NAD83	626014		Blitz Knob	oc	Chip	0.5					+			-	+
0000004	1000	020017	030130		~		0.0	-0.005	0.4	0.17	10000	- 10	40	-1	-2	0.09
B386305	NAD83	626064	5020000	Blitz Kach	floot	Grah	i.	0.000		A 4-	40000			.	_	0.00
000000	11000	020004	0300003	Blitz Knob	float	Grab	i	0.060	0.6	0.17	10000	-10	50	-1	-2	0.04
000000	NADOS	000000	5005400		R a a b	0	i									
B386306	NAD83	629083	5935468	Cummins Crk	noat	Grab	<u>i</u>	0.349	63.7	0.05	79	-10	10	-1	-2	0.03
							· .		I .]			1.	
B386307	NAD83	629198	5935455	Cummins Crk	00	Chip	1	0.005	0.5	0.31	47	-10	30	-1	-2	0.09
							1				l	1			1	
B386308	NAD83	629371	5935436	Cummins Crk	float	Grab		0.019	1.1	0.14	20	-10	20	-1	-2	0.07
										1		i		ł	1	
B386309	NAD83	629963	5935750	Cummins Crk	talus	Chip	3	0.007	0.5	0.73	12	-10	110	-1	-2	1.44

_

-

				· ·	1	Samp										
Sample	Datum	Easting	Northing	Area	Туре	Туре	Length	Au	Ag	Al %	As	B	Ba	Be	Bł	Ca %
B386310	NAD83	629971	5935812	Cummins Crk	ос		1.5	0.039	4.5	0.38	32	-10	10	-1	-2	0.05
B386311	NAD83	629137	5936235	Cummins Crk	ос	Chip	0.5	0.620	291.0	0.07	26	-10	10	-1	-2	0.05
B386312	NAD83	628985	5936374	Cummins Crk	float	Grab		0.040	2.8	0.29	144	-10	30	-1	-2	0.06
B386313	NAD83	628865	5936625	Cummins Crk	float	Grab		-0.005	3.8	0.04	1020	-10	30	-1	-2	3.80
B386314	NAD83	628827	5936876	Cummins Crk	ос	Chip	1	0.100	3.9	0.25	56	-10	60	-1	-2	0.05
B386315	NAD83	628950	5936823	Cummins Crk	ос	Chip	0.8	0.012	0.5	0.28	60	-10	190	-1	-2	0.03
B386316	NAD83	628948	5936852	Cummins Crk	oc	Chip	0.25	0.069	0.8	0.15	659	-10	90	-1	-2	0.10
B386317	NAD83	629089	5937123	Cummins Crk	oc	Chip	2	0.019	0.4	0.25	74	-10	110	-1	-2	0.01
B386318	NAD83	629012		Chaico Crk	fioat	Grab		-0.005	-0.2	0.02	10		220	-1	-2	0.65
B386319 B386320	NAD83 NAD83	629025 629247		Chaico Crk Chaico Crk	oc fioat	Chip Grab	1.6	-0.005	-0.2	0.02	7 388	-10 -10	40 10	-1 -1	-2 -2	0.16
B386321	NAD83	629294		Chaico Crk	sc	Chip	3	-0.005	-0.2		19			-1		
B386322	NAD83	629730	5935784	Cummins Crk	float	Grab		0.048	21.2	0.10	7	-10	40	-1	-2	1.41
B386323	NAD83	627195	5935221	Diakow Zone	float	Grab		0.014	4.2	0.31	74	-10	80	-1	-2	0.02
B386324	NAD83	628189		Cummins Crk	oc	Chip	1	0.251	1.3	0.34	10000	-10	40	-1	-2	0.04
	DH	From (m)			İ									ļ		
B386215	TP87-1	2		Moraine	Core			-0.005	0.3		7		60		-2	0.09
B386241	TP87-1	21	·	Moraine	Core			0.006	0.8		11	-10	40		-2	0.06
B386242	TP87-1	30		Moraine	Core			-0.005	3.3	0.44	4	-10	30		-2	0.06
B386243	TP87-1	47		Moraine	Core			-0.005	0.3		14	-10	20		-2	0.06
B386214 B386244	TP87-1 TP87-2	64 52		Moraine	Core			0.005	0.4	0.54	15		60		-2	0.13
B386244 B386245	TP87-2	20		Moraine Moraine	Core	i		-0.005	0.2		28	-10 -10	40 50		-2	
B386245 B386246	TP87-3	20		Moraine	Core Core	-+		-0.005	0.2	-	6	-10	50		-2	
B386247	TP87-4	23		Moraine	Core	_		0.005			15				-2	

-

ŧ

.

P

.

.

.

•

•

-

,

-

				1		Samp										
Sample	Datum	Easting	Northing	Area	Туре	Туре	Length	Au	Ag	AI %	As	в	Ba	Be	Bl	Ca %
B386310	NAD83	629971	5035812	Cummins Crk	00		1.5	0.039	4.5	0.38	32	-10	10	-1	-2	0.05
0000010	INADOS	023311	0000012	Continuits Of K			1.0	0.009		0.00	52	-10	10	-1	-2	0.05
B386311	NAD83	629137	5936235	Cummins Crk	oc	Chip	0.5	0.620	291.0	0.07	26	-10	10	-1	-2	0.05
B386312	NAD83	628985	5936374	Cummins Crk	fioat	Grab		0.040	2.8	0.29	144	-10	30	-1	-2	0.06
B386313	NAD83	628865	5936625	Cummins Crk	float	Grab		-0.005	3.8	0.04	1020	-10	30	-1	-2	3.80
B386314	NAD83	628827	5936876	Cummins Crk	ос	Chip	1	0.100	3.9	0.25	56	-10	60	-1	-2	0.05
B3863 15	NAD83	628950	5936823	Cummins Crk	ос	Chip	0.8	0.012	0.5	0.28	60	-10	190	-1	-2	0.03
B386316	NAD83	628948	5936852	Cummins Crk	ос	Chip	0.25	0.069	0.8	0.15	659	-10	90	-1	-2	0.10
B386317	NAD83	629089	5937123	Cummins Crk	ос	Chip	2	0.019	0.4	0.25	74	-10	110	-1	-2	0.01
B386318	NAD83	629012		Chalco Crk	float	Grab		-0.005	-0.2	0.02	10			-1	-2	0.65
B386319	NAD83	629025		Chalco Crk	oc	Chip	1.6	-0.005	-0.2	0.02	7	-10	40		-2	0.16
B386320	NAD83	629247	5938056	Chalco Crk	float	Grab		-0.005	0.2	0.19	388	-10	10	-1	-2	7.65
B386321	NAD83	629294	5938162	Chalco Crk	sc	Chip	3	-0.005	-0.2	0.31	19	-10	210	-1	-2	0.05
B386322	NAD83	629730	5935784	Cummins Crk	float	Grab		0.048	21.2	0.10	7	-10	40	•1	-2	1.41
B386323	NAD83	627195	5935221	Diakow Zone	fioat	Grab	• • • • • • • • • • • • • • • • • • •	0.014	4.2	0.31	74	-10	80	•1	-2	0.02
B386324	NAD83	628189		Cummins Crk	oc	Chip	1	0.251	1.3	0.34	10000	-10	40	-1	-2	0.04
B386215	DH TP87-1	From (m)	To (m)	Moraine	Core			-0.005	0.3	0.72	7	-10	60	-0.5	-2	0.09
B386215 B386241	TP87-1	21		Moraine	Core			0.005	0.3	0.72	7		40			
B386242	TP87-1	30		Moraine	Core	-		-0.005	3.3		4	-10	30			
B386243	TP87-1	47		Moraine	Core	-		-0.005	0.3		14	-10				
B386214	TP87-1	64		Moraine	Core			0.005	0.3	0.54	15		60			
B386244	TP87-2	52		Moraine	Core			-0.005			28					
B386245	TP87-3	20		Moraine	Core		1	-0.005	0.2		6	-10				
B386246	TP87-4	23		Moraine	Core			-0.005	0.2	0.21	7	-10			<u>. </u>	
B386247	TP87-4	30		Moraine	Core	+		0.006	0.3		15				1 -	

~

,....

~

~

Sample	Cd	Co	<u> </u>		Fe %		Hg	κ%	La	Mg %		Mo	<u> </u>	NI	Р	Pb	s %	Sb		Sr	TI %	TI	ບ	v	w
B386201	4	3		556	2.38	-10	-1	0.32	10	0.33	675	9	0.01	3	570		0.26	6	3	8		-10		24	_
B386202	3	2	-	146	2.77	-10	3	0.25	10	0.30	470	12	-0.01	3	420	1985	0.35	8	3	4		-10	-10	29	+
3386203	2	2	+	91	2.67	-10	-1	0.43	20	0.21	463	24	0.02	1	830	636	0.68	7	3	8	-	-10	-10	22	
3386204	-1	3		15	3.46	-10	-1	0.33	-10	0.15	235	1	0.09	1	710	19	1.66	3	4	8		-10	-10	19	-
3386205	3	8	4	310	3.51	-10	-1	0.34	10	0.34	1025	2	0.02	2	710	911	0.73	3	4	9	-0.01	-10	-10	31	-
3386206	-1	4	9	8	3.09	-10	-1	0.53	10	0.19	281	9	0.01	3	1380	- 30	1.11	-2	2	7	-0.01	10	-10	16	- 1
3386207	-1	4	2	31	4.18	-10	1	0.31	20	0.08	102	12	0.01	5	1500	12	1.77	248	2	8	-0.01	-10	-10	- 38	
3386208	-1	1	31	8	1.00	-10	-1	0.16	10	0.05	100	1	0.11	3	270	5	0.02	-2	1	4	-0.01	-10	-10	5	i .
3386209	-1	1	13	88	0.57	-10	1	0.14	-10	0.01	35	1280	-0.01	1	30	122	0.09	22	1	3	-0.01	20	-10	55	; .
3386210	1	1		16	0.63	-10	-1	0.45	20	0.04	53	228	-0.01	-1	260	311	0.08		1	_	ł	-10		26	+
3386211	-1	-1	-	19	0.90	-10	-1	0.39	30	0.02	65	13	0.05	1	370	53	0.29	-2	1		1	-10		1	+-
3386212	-1	1	-	2	2.45	-10	1	0.42	20	0.32	446	3	0.04	2	330	22	2.14	-2	1	23	÷	-10		1	+
3386213			+			_						-		_					· · · · ·		1				+
	2	-1		30	1.26	-10	-1	0.43	20	0.07	263	9	0.02	1	270	170	0.96	7	1	18		-10	-10	1	+
3386216	-1	-1		8		-10	-1	0.26	10	0.05	74	16	-0.01	3	510	5	0.29	-2	1	9	-	-10		19	+
3386217	-1	2	10	8	1.98	-10	-1	0.02	-10	0.01	62	14	-0.01	2	90	5	1.39	21	3			-10	-10	17	
3386218	-1	-1	19	13	2.14	-10	-1	0.14	20	0.19	320	2	0.10	1	760	138	0.07	-2	2	15	-0.01	-10	-10	8	
3386219	-1	1	8	61	2.25	-10	-1	0.31	-10	0.12	246	5	0.02	2	290	192	0.20	-2	3	19	0.01	-10	-10	24	Ļ
3386220	-1	2	75	70	1.12	-10	-1	0.29	10	0.11	312	1	0.01	3	350	6	0.01	-2	2	4	-0.01	-10	-10	12	
3386221	-1	1		11	3.26	-10	-1	0.11	10	0.16	396	5	0.05	2	440	19	0.46	-2	3			-10		16	-
3386222	-1	-1	29	6	3.04	-10	-1	0.26	-10	0.17	226	1	0.11	- 1	540	26	0.09	-2	4			-10	-	16	-
3386223	1	-1	2	6	3.35	-10	-1	0.12	-10	0.11	191	3	0.03	1	630	9	0.03	-2	2			-10	-10	6	+
3386224	-1	2	-	25	0.81	-10	-1	-0.01	-10	0.01	66	4	-0.03	2	10	4		-2	-1	466		-10	-10		-
			-	-											L	· · · · · · ·	0.17							4	-
3386225	1	15	-	28	4.73	-10	-1	0.07	-10	0.11	1930	20	-0.01	7	130	31	2.28	275	9			10	-10	70	-
3386226	-1	1	-	16	1.64	-10	-1	0.09	-10	0.02	82	1	0.04	1	290	12	0.70	-2	1	11		-10	-10	2	-
3386227	1	6	+ · ·	68	1.40	-10	-1	0.09	-10	0.36	286	191	-0.01	15	360	69	0.63	6	1	32	-0.01	-10	-10	15	-
3386228	-1	4	15	15	2.03	-10	-1	0.12	-10	0.43	236	20	-0.01	5	520	5	0.52	-2	1	5	-0.01	-10	-10	26	
3386229	-1	3	13	120	1.26	-10	-1	0.11	-10	0.09	256	251	-0.01	4	220	17	0.83	6	1	38	-0.01	-10	-10	9	-
3386230	1	6	9	56	1.75	-10	-1	0.16	10	0.03	43	507	-0.01	6	290	54	1.52	6	-1	6	-0.01	-10	-10	8	Ē
			1													1				-	f				t
3386231	-1	-1	7	7	1.20	-10	-1	0.13	-10	0.05	47	4	0.05	1	230	3	0.03	-2	2	5	-0.01	-10	-10	7	
3386232	-1	-1	+ · ·	5	2.25	-10	-1	0.23	-10	0.02	70	110	-0.01	1	340	11	0.12	23	3	<u> </u>		-10	-	6	-
JJ00232				5	2.20	-10		0.23	-10	0.02	70	110	-0.01		340	11	0.12	23	3	4	-0.01	-10	-10		╀
												.						_		l _					
3386233	-1	11	21	47	4.94	10	-1	0.16	-10	0.98	824	4	0.01	8	500	33	0.76	6	10	7		-10	-	119	+
3386234	-1	6	-	14	1.82	-10	-1	0.20	10	0.24	249	2	-0.01	9	200	11	0.01	-2	3	5	-0.01	-10	-10	23	i.
3386235	-1	-1	5	68	4.12	-10	-1	0.12	-10	0.03	84	38	0.02	1	540	441	0.10	50	1	26	-0.01	-10	-10	10	ł
3386236	1	2	4	65	1.93	-10	4	0.25	10	0.01	516	65	0.01	1	290	156	0.16	20	2	13	-0.01	-10	-10	7	1
3386237	29	4	8	28	1.68	-10	~1	0.09	10	0.11	190	11	0.01	2	390	788	0.66	-2	1	5	-0.01	-10	-10	11	Γ
3386238	11	17	7	32	4.10	-10	-1	0.17	10	0.35	730	10	0.01	3	760	3100	2.23	3	1	15	-0.01	-10	-10	23	ſ
3386239	3	<u> </u>	-	<u> </u>	6.05	10	-1	0.14	10	1.15	1155	193	-0.01	3	400	791	3.43	10	5		<u>; </u>	-10	-10	109	-
3386240	1		+	i	5.63	10	-1	0.12	10	1.04	857	1075	-0.01	7	290	586	4.44	22	4			-10	-	89	+
3386251	1		3		2.88	-10	-1	0.12	10	0.17	188	1073	0.03	1	370	l	0.03	5	7	÷		-10	-10	17	-
		_	+											· · · ·		7			1		-	<u> </u>	í –	-	+
3386252	1	1	8		1.54	-10	-1	0.12	10	0.08	126	81	-0.01	2	240	206	0.62	5	1	4	-0.01	-10	-	10	-
3386253	-1	-			1.24	-10	-1	0.17	10	0.08	129	111	-0.01	2	330	32	0.06	2	1	10	-0.01	-10	-10	23	i
3386254	1	4	8	79	5.67	10	-1	0.12	-10	0.84	1355	1	0.03	3	1020	29	0.99	-2	7	7	0.01	-10	-10	57	
3386255	1	5	2	37	3.14	-10	-1	0.25	- 30	0.37	321	14	0.01	1	1480	800	1.31	-2	1	14	-0.01	-10	-10	20	1
3386256	-1	3	4	4	1.40	-10	-1	0.19	20	0.23	290	49	0.01	2	790	10	0.38	-2	1	10	-0.01	-10	-10	13	ιT
3386257	-1	1	1	6	2.63	-10	-1	0.22	10	0.24	259	4	-0.01	1	290	24	0.19	9	3	15	-0.01	-10	-10	11	t
3386258	1	44	5	19	16.40	10	-1	0.04	-10	0.33	350	4	-0.01	15	170	56	10.00	200	7	2		10	·	58	_
3386259	-1				2.84	-10		0.19	-10		154	2		3		19	1.32	144	4			-10		36	-
3386260	-1		-		6.02	10		0.02	-10		395	97	-0.01	70		16		3	2			10	·	70	-
3386261		-	+				ļ —	1		· · · · ·	-		+							ł			1		+
	-1	<u></u>	-		1.78	-10		0.16	-10		139	2	1	-		-		-2	2		<u> </u>	-10	<u> </u>	5	-
3386262	-1	-	-			10	£	0.18	20		653	9				+		-2	2	<u> </u>		-10			-
3386263	-1		4		3.04	-10	(· ·	0.16	40		331	2		3			0.04	-2	2		<u>+</u>	-10	(12	
3386264	•1	-			2.17	-10	ŧ —	0.27	20		118	25		1	880		0.04	-2	1	13	-0.01	-10	-10	6	4
3386301	1		-	-	6.06	-10	-1	0.14	-10	5.08	2850	1	0.01	5	400	10	3.09	94	15	253	-0.01	-10	-10	142	:[
3386302	-1	29	-1	8	7.22	-10	-1	0.10	-10	6.59	3150	1	0.04	8	90	23	3.20	28	6	200	-0.01	10] -10	91	ſ
										I							[1	1	[· · · ·			Ţ
3386303	-1	10	3	33	4.00	-10	2	0.23	-10	0.05	189	1	-0.01	5	170	20	1.98	450	4	10	-0.01	10	-10	54	d.
3386304	-1	÷	-	1	4.36	-10		0.13	-10	-	71	7		6		+	3.57	9760	4		-	20	•	73	+
	1	<u> </u>	1	۲					5		¹	<u>⊦ · · · '</u>	0.01	Ľ	<u> </u>		0.01	0.00		<u> </u>	1 2.01	20	1 10	+ ⁷³	+
2386305	1.	4.	1 40		200	40		0.00	40	0.00		<u> </u>	0.04		00		0.4-	100	^ ا	-	0.04	40	1	-	
3386305	-1	12	19	52	3.23	-10	-1	0.10	-10	0.03	68	2	-0.01	6	80	6	2.17	160	3	5	-0.01	-10	-10	35	4
	1		1			1	l			1			l			1									
3386306	-1	-1	14	22	0.54	-10	-1	0.03	-10	0.01	59	17	-0.01	1	30	82	0.02	- 39	-1	2	-0.01	-10	-10	1	-
			1																						ſ
3386307	1	2	4	36	1.54	-10	-1	0.11	20	0.07	273	32	0.02	2	100	36	0.82	-2	1	6	-0.01	-10	-10	3	\$
		1	1		· · ·		Ē	1 · · · 1							T	1	1			<u> </u>	1				t
3386308	-1	1	17	4	0.94	-10	-1	0.08	-10	0.03	83	48	-0.01	8	210	8	0.45	5	-1	4	-0.01	-10	-10	5	5
	1		1.7	'			<u>ا</u>		<u> </u>		· •••			Ť	1	†		⊢ ĭ	⊢ '		0.01	<u> </u>	<u>,,,</u>	<u> </u>	+
		1	1	!	1	1		1	1	i		1	1		1	i	1	1		1	+	1			1

'

-

\$

ţ

e

Sample	Cd	Co	Cr	Cu	Fe %	Ga	Hg	к%	La	Mg %	Mn	Мо	Na %	NI	Р	РЪ	s %	Sb	Sc	Sr	TI %	ті	U	v	w
B386201	4	3	10	556	2.38	-10	-1	0.32	10	0.33	675	9	0.01	3	570	1460	0.26	6		8		-10	-10	24	-10
B386202	3	2	87	146	2.77	-10	3	0.25	10	0.30	470	12	-0.01	3	420	1985	0.35	8		-	-0.01	-10	-10	29	-10
B386203	2	2	7	91	2.67	-10	-1	0.43	20	0.21	463	24	0.02	1	830	636	0.68	7	3			-10	-10	22	-10
B386204	-1	3	16	15	3.46	-10	-1	0.33	-10	0.15	235	1	0.09	1	710	19	1.66	3	-	8	-0.01	-10	-10	19	-10
B386205	3	8		310	3.51	-10	-1	0.34	10	0.34	1025	2	0.03	2	710	911	0.73	3				-10	-10	31	-10
												_									1 1				
B386206	-1	4	9	8	3.09	-10	-1	0.53	10	0.19	281	9	0.01	3	1380	30	1.11	-2	2		-0.01	10	-10	16	-10
B386207	-1	4	_	31	4.18	-10	1	0.31	20	0.08	102	12	0.01	5		12	1.77	248	2			-10	-10	38	-10
B386208	-1	1	31	8	1.00	-10	-1	0.16	10	0.05	100	1	0.11	3	270	5	0.02	-2	1	4	-0.01	-10	-10	5	
B386209	-1	1	13	88	0.57	-10	1	0.14	-10	0.01	35	1280	-0.01	1	30	122	0.09	22	1	3	-0.01	20	-10	55	-1€
B386210	1	1	21	16	0.63	-10	-1	0.45	20	0.04	53	228	-0.01	-1	260	311	0.08	8	1	3	-0.01	-10	-10	26	-10
B386211	-1	-1	2	19	0.90	-10	-1	0.39	30	0.02	65	13	0.05	1	370	53	0.29	-2	1	17	-0.01	-10	-10	1	-10
B386212	-1	1	12	2	2.45	-10	1	0.42	20	0.32	446	3	0.04	2	330	22	2.14	-2	1	23	-0.01	-10	-10	1	-10
B386213	2	-1	2	30	1.26	-10	-1	0.43	20	0.07	263	9	0.02	1	270	170	0.96	7	1	18	-0.01	-10	-10	1	
		-1				-10	-				74	16		3	510		_	-2		9		-10	-10	19	-10
B386216	-1		81	8	1.46		-1	0.26	10	0.05			-0.01			5	0.29		-		· · · · · ·				
B386217	•1	2		8	1.98	-10	-1	0.02	-10	0.01	62	14	-0.01	2	90	5	1.39	21	3		-	-10	-10	17	-10
B386218	-1	-1	19	13	2.14	-10	-1	0.14	20	0.19	320	2	0.10	1	760	138	0.07	-2	2			-10	-10	8	-10
B386219	-1	1	8	61	2.25	-10	-1	0.31	-10	0.12	246	5	0.02	2	290	192	0.20	-2	3	19	0.01	-10	-10]	- 24	-10
B386220	-1	2	75	70	1.12	-10	-1	0.29	10	0.11	312	1.	0.01	3	350	6	0.01	-2	2	4	-0.01	-10	-10	12	-10
B386221	-1	1	6	11	3.26	-10	-1	0.11	10	0.16	396	5	0.05	2	440	19	0.46	-2	3	4	-0.01	-10	-10	16	-1(
B386222	-1	-1	29	6	3.04	-10	-1	0.26	-10	0.17	226	1	0.11	1	540	26	0.09	-2		+ ·		-10	-10	16	-10
B386223	-1	-1	23	6	3.35	-10	-1	0.12	-10	0.11	191	3	0.03	1	630	20	0.03	-2	2	4 4		-10	-10	6	-10
																			-						
B386224	-1	2	<u> </u>	25	0.81	-10	-1	-0.01	-10	0.01	66	4	-0.01	2	10	4	0.17	-2	-1	466	-	-10	-10	4	-1(
B386225	1	15	-	28	4.73	-10	-1	0.07	-10	0.11	1930	20	-0.01	7	130	31	2.28	275	9			10	-10	70	-1(
B386226	-1	1	6	16	1.64	-10	-1	0.09	-10	0.02	82	1	0.04	1	290	12	0.70	-2	-	11	-0.01	-10		2	-1(
B386227	1	6	30	68	1.40	-10	-1	0.09	-10	0.36	286	191	-0.01	15	360	69	0.63	6	1	32	-0.01	-10	-10	15	-10
B386228	-1	4	15	15	2.03	-10	-1	0.12	-10	0.43	236	20	-0.01	5	520	5	0.52	-2	1	5	-0.01	-10	-10	26	-10
B386229	-1	3	13	120	1.26	-10	-1	0.11	-10	0.09	256	251	-0.01	4	220	17	0.83	6	1	38	-0.01	-10	-10	9	-10
B386230	1	6	<u> </u>	56	1.75	-10	-1	0.16	10	0.03	43	507	-0.01	6	290	54	1.52	6	-1	6	-0.01	-10	-10	8	-10
3000200		⊢Ť	Ť		1.10		•	0.10		0.00		007	0.01	Ť			1.02		\vdash	-					
B386231	4	1	7	7	1 20	40	4	0.13	-10	0.05	47	4	0.05	4	230	3	0.02		1 -	5	-0.01	-10	-10	7	10
	-1	-1	7		1.20	-10	-1							1			0.03	-2	2				↓	7	-10
B386232	-1	-1	5	5	2.25	-10	-1	0.23	-10	0.02	70	110	-0.01	1	340	11	0.12	23	3	4	-0.01	-10	-10	6	-1(
																			1 '			ļļ			l
B386233	-1	11	21	47	4.94	10	-1	0.16	-10	0.98	824	4	0.01	8	500	33	0.76	6	10	7	-0.01	-10	-10	119	-10
B386234	-1	6	3	14	1.82	-10	-1	0.20	10	0.24	249	2	-0.01	9	200	11	0.01	-2	3	5	-0.01	-10	-10	23	-10
B386235	-1	-1	5	68	4.12	-10	-1	0.12	-10	0.03	84	38	0.02	1	540	441	0.10	50	1	26	-0.01	-10	-10	10	-10
B386236	1	2	4	65	1.93	-10	4	0.25	10	0.01	516	65	0.01	1	290	156	0.16	20	2	13	-0.01	-10	-10	7	-10
B386237	29	4	8		1.68	-10	-1	0.09	10	0.11	190	11	0.01	2	390	788	0.66	-2	-	5	-	-10		11	-10
B386238	11	17	7	32	4.10	-10	-1	0.03	10	0.35	730	10	0.01	3	760	3100	2.23	-2		<u> </u>	-	-10		23	-10
			<u> </u>			1			-						<u> </u>			-		+	<u> </u>	-			
B386239	3	12	5		6.05	10	-1	0.14	10	1.15		193	-0.01	3	400	791	3.43	10				-10	÷	109	-10
B386240	1	15	5	-	5.63	10	-1	0.12	10	1.04	857	1075	-0.01	7	290	586	4.44	22				-10	↓ →	89	-10
B386251	-1	-1	3	6	2.88	-10	-1	0.11	10	0.17	188	1	0.03	1	370	7	0.03	5		<u> </u>		-10	-10	17	-10
B386252	1	1	8	71	1.54	-10	-1	0.12	10	0.08	126	81	-0.01	2	240	206	0.62	5	1	4	-0.01	-10	-10	10	-10
B386253	-1	1	8	9	1.24	-10	-1	0.17	10	0.08	j 129	111	-0.01	2	330	32	0.06	2	1	10	-0.01	-10	-10	23	-10
B386254	1	4	8	79	5.67	10	-1	0.12	-10	0.84	1355	1	0.03	3	1020	29	0.99	-2	7	7	0.01	-10	-10	57	-10
B386255	1	5	<u>+</u>	+	3.14	-10	-1	0.25	30	0.37	321	14	0.01	1	1480	800	1.31	-2	-	1		-10		20	
B386256	-1	3		4	1.40	-10	-1	0.19	20	0.23	290	49	0.01	2	790	10	0.38	-2		10		-10		13	-
B386257	-1	1	+	6	2.63	-10	-1	0.19	+	0.23	259	49	-0.01	1	290	24	· · · ·	-	-	-	÷			11	,
		-	<u> </u>	-		1		-	10	<u> </u>	-						0.19	-		-		-10	-	í – I	
B386258	1	+			16.40		-1	0.04	- · · · ·	÷	350			15		56	10.00	+	<u> </u>	+	1 0.01	10	-	58	<u> </u>
B386259	-1	9			2.84		-1	0.19		1	154			3		19	1.32	-		-	+	-10		í	
B386260	-1	26			6.02		-1	0.02			395	<u> </u>	-0.01		+ · · · · · · · · · · · · · · · · · · ·	16	<u> </u>	-	•	-	-	10		70	+
B386261	-1	1	4	19	1.78	-10	-1	0.16	-10	0.12	139	2	0.05	2	310	30	0.70	-2	2	13	-0.01	-10	-10	5	-1(
B386262	-1	4	4	6	4.07	10	-1	0.18	20	0.42	653	9	0.03	3	1600	38	0.64	-2	2	16	-0.01	-10	-10	37	-1(
B386263	-1	2	-	7	3.04	4	-1	0.16	_		-	2		3		8	0.04	-2	÷		1	-10	+	12	_
B386264	-1	-1			2.17	-10	-1	0.27	20		118			1	880	15	0.04	-2				-10	-		+
B386301	1	14			6.06		-1				-			5	-	10	3.09	-	÷			-10	-	-	-
			+	1	· · · · · · · ·	-	_		+										+		+	_			+
B386302	-1	29	-1	8	7.22	-10	-1	0.10	-10	6.59	3150	1	0.04	8	90	23	3.20	28	6	200	-0.01	10	-10	91	-1
	1										i .	!										1			
B386303	-1		<u> </u>		4.00		2	+	+ • • • •	ŧ		+	+	5	+	ŧ	1.98	-	-		+	10		-	-
B386304	-1	16]	8	9	4.36	-10	2	0.13	-10	0.04	71	7	-0.01	6	50	26	3.57	9760	4	7	-0.01	20	-10	73	-1
	I		1	1		[ſ	1	[i						Г <u> </u>	T	I	1			[
B386305	-1	12	19	52	3.23	-10	-1	0.10	-10	0.03	68	2	-0.01	6	80	6	2.17	160	3	5	-0.01	-10	-10	35	-1
	†		1.7			<u> </u>	<u>'</u>	1	+	1-1-0	<u> </u>		1	1	1	Ē	1	<u> </u>	<u> </u>	†	1	<u>† </u>	<u> </u>		t í
B386306			4.	00	0.54	40	.4	0.00	40	0.01	=	47	.0.04	1	30	60	0.02	39			-0.04	.40	40	1	8
000000	-1	- 1	14	22	0.54	-10	-1	0.03	-10	0.01	59	17	-0.01	<u> '</u>	30	82	0.02	39	1.1	2	-0.01	-10	-10	1	⊢°
000007	1	.	.			1	1.				<u>ــــ</u>		.	١.	; ;		.								
B386307	1	2	4	36	1.54	-10	-1	0.11	20	0.07	273	32	0.02	2	100	36	0.82	-2	1	6	-0.01	-10	-10	3	-1
	1	l I			1	1				l	1					1			í i				1		1
						1 40	1 4	1 0 00	-10	0.03	83	48	-0.01	8	210	8	0.45	5	-1	4	-0.01	1 40	امد د	5	-10
B386308	-1	4	17	4	0.94	-10	-1	0.08	-10	0.00	03	40	-0.01	10	210		0.45	1	<u> </u>		-0.01	-10	-10		
B386308	-1	4	17	4	0.94	-10	-1	0.08	-10	- 0.03	03	40	-0.01		210		0.43	<u>+</u>	H		-0.01	-10	-10		†

.....

Sample	Cđ	Co	Cr	Cu	Fe %	Ga	Hg	K%	La	Mg %	Mn	Мо	Na %	NI	P	Pb	s %	Sb	Sc	Sr	ті %	π	ບ	v	w
B386310	-1	8	4	53	2.28	-10	-1	0.14	-10	0.02	99	134	-0.01	2	410	13	1.20	-2	3	2	-0.01	-10	-10	13	-1
0000010	- 1				2.20	-10	-1	0.14	-10	0.02			-0.01	-	410		1.20		_`	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 0.01		1.0		<u> </u>
B386311	167	2	12	3530	0.99	-10	-1	0.03	-10	0.04	102	43	-0.01	2	50	1725	0.63	8	-1	2	-0.01	-10	-10	2	-1
B386312	1	4	7	13	1.99	-10	-1	0.12	10	0.11	78	276	-0.01	3	280	28	1.64	4	-1	3	-0.01	-10	-10	5	-1
B386313	3	29	11	40	1.80	-10	1	-0.01	-10	0.21	1950	433	-0.01	4	10	120	1.47	5	1	187	-0.01	10	-10	1	-1
B386314	-1	1	8	3	0.44	-10	-1	0.17	-10	0.02	31	20	-0.01	1	60	16	0.06	3	1	6	-0.01	-10	-10	6	-1
B386315	-1	-1	6	4	0.58	-10	-1	0.14	10	0.02	43	10	-0.01	1	70	12	0.06	3	-1	7	-0.01	-10	-10	2	-1
														İ –	•						İ				1
B386316	•1	2	10	11	2.82	-10	-1	0.08	-10	0.02	38	70	-0.01	2	590	23	1.99	8	-1	15	-0.01	-10	-10	2	-1
B386317	-1	-1	5	25	1.60	-10	-1	0.02	10	-0.01	69	2	0.04	2	20	9	0.07	23	1	5	-0.01	-10	-10	3	-1
B386318	-1	1	21	11	0.53	-10	-1	-0.01	-10	0.02	442	4	-0.01	1	10	5	0.05	-2	-1	10	-0.01	-10	-10	1	-1
B386319	-1	1	21	18	0.80	-10	-1	-0.01	-10	0.02	1215	3	-0.01	2	20	8	0.05	-2	-1	4	-0.01	-10	-10	1	-1
B386320	-1	4	6	22	7.78	-10	1	0.02	-10	2.14	1830	<u> </u>	0.01	5	130	25	8.85	5	3	412	-0.01	-10	-10	23	-1
B386321	-1	1	1	4	2.66	-10	-1	0.15	30	0.01	63	_5	0.03	1	1140	22	0.28	-2	1	13	-0.01	-10	-10	5	-1
B386322	13	1	8	343	0.87	-10	-1	0.05	-10	0.03	297	6	-0.01	2	160	290	0.16	-2	-1	17	-0.01	-10	-10	4	-1
B386323	3	8	9	349	4.05	-10	-1	0.16	-10	0.06	112	91	0.01	9	440	616	2.47	3	1	7	-0.01	-10	-10	6	-1
B386324	-1		Í	16				0.13		0.05	22	5	-0.01	5		:	1	239	1	38	-0.01	-10	-10	5	-1
DODODLY		ľ	ľ		2.00		- '	0.10		0.00			0.01	Ť	000		1.00	200			0.01				 '
B386215	-0.5	-1	2	4	0.82	-10	1	0.33	30	0.07	86	16	0.05	1	340	16		-2	1	9		-10		2	1
B386241	-0.5	1	4	5	0.90	-10	-1	0.13	30	0.09	120	28	0.04	1	320	19	0.27	-2	1	6	-0.01	-10	-10	4	i -1
B386242	-0.5	-1	5	7	1.01	-10	1	0.10	20	0.18	196	16	0.03	2	270	14	0.24	-2	1	5	-0.01	-10	-10	5	
B386243	-0.5	-1	5	4	1.02	-10	-1	0.09	20		64	14	0.05	1	300		0.47	-2		5			-10	2	
B386214	-0.5	-1	52	7	1.22	-10	-1	0.32	30		399	16		2			0.90	-2		11		-10		4	
B386244	-0.5	-1	7	4	0.98	-10	-1	0.13	20	0.05	97	7	0.04	1	370	8	0.65	1		5	-0.01	-10	-10	2	: -
B386245	-0.5	-1	7	3	1.02	-10	-1	0.15	40	0.05	91	10	0.03	1	270	6	0.67	-2	-1	6	-0.01	-10	-10	1	-
B386246	-0.5	-1	6	2	0.59	-10	-1	0.13	20	0.01	20	5	0.04	1	290	<u> </u>		-2		6	-0.01	-10] -10	-1	-
3386247	-0.5	1	5	2	0,95	-10	-1	0.12	- 30	0.07	110	12	0.03	1	300	5	0.47	-2	-1	5	-0.01	-10	-10	2	

Appendix A: Troitsa Property

C

All analyses in ppm unless stated otherwise

Sample	Cd	Co	Cr	Cu	Fe %	Ga	Ha	к%	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	s %	Sь	Sc	Sr	Ti %	ті	υ	v	w
B386310	-1	8	4	53	2.28	-10	-1	0.14	-10	0.02	99	134	-0.01	2	410	13	1.20	2	3	2	-0.01	-10	-10	13	-10
B386311	167	2	12	3530	0.99	-10	~1	0.03	-10	0.04	102	43	-0.01	2	50	1725	0.63	8	-1	2	-0.01	-10	-10	2	-10
- B386312	1	4	7	13	1.99	-10	-1	0.12	10	0.11	78	276	-0.01	3	280	28	1.64	4	-1	3	-0.01	-10	-10	5	-11
															1										Ì
B386313	3	29	11	40	1.80	-10	_1	-0.01	-10	0.21	1950	433	-0.01	4	10	120	1.47	5	1	187	-0.01	10	-10	1	-10
B386314	-1	1	8	3	0.44	-10	-1	0.17	-10	0.02	31	20	-0.01	1	60	16	0.06	3	1	6	-0.01	-10	-10	6	-1
B386315	-1	-1	6	4	0.58	-10	-1	0.14	10	0.02	43	10	-0.01	1	70	12	0.06	3	-1	7	-0.01	-10	-10	2	-1
B386316	-1	2	10	11	2.82	-10	-1	0.08	-10	0.02	38	70	-0.01	2	590	23	1.99	8	-1	15	-0.01	-10	-10	2	-1
	<u> </u>	_	1.0				-	4,64						F											
B386317	-1	-1	5	25	1.60	-10	-1	0.02	10	-0.01	69	2	0.04	2	20	9	0.07	23	1	5	-0.01	-10	-10	3	-1
B386318	-1	1	21	11	0.53	-10	-1	-0.01	-10	0.02	442	4	: -0.01	1	10	5	0.05	2	-1	10	-0.01	-10	-10	1	-1
B386319	-1	1	21	18	0.80	-10	-1	-0.01	-10	0.02	1215	3	-0.01	2	20	8	0.05	-2	•1	4	-0.01	-10	-10	1	-1
B386320	-1	4	6	22	7.78	-10	1	0.02	-10	2.14	1830	1	0.01	5	130	25	8.85	5	3	412	-0.01	-10	-10	23	-1
B386321	-1	1	1	4	2.66	-10	-1	0.15	30	0.01	63	5	0.03	1	1140	22	0.28	-2	1	13	-0.01	-10	-10	5	-1
B386322	13	1	8	343	0.87	-10	-1	0.05	-10	0.03	297	6	-0.01	2	160	290	0.16	-2	-1	17	-0.01	-10	-10	4	-1
B386323	3	8	9	349	4.05	-10	-1	0,16	-10	0.06	112	91	0.01	9	440	616	2.47	3	1	7	-0.01	-10	-10	6	-1
	Ť	F.	<u> </u>	0.10			-	- 4,10	- 10	0.00			0.01	-			2.,,,			-	0.01		10		·
B386324	-1	3	5	16	2.60	-10	-1	0.13	-10	0.05	22	5	-0.01	5	350	13	1.58	239	1	38	-0.01	-10	-10	5	-1
B386215	-0.5	-1	2	4	0.82	-10	1	0.33	30	0.07	86	16	0.05	1	340	16	0.35	-2	1	9	-0.01	-10	-10	2	-1
B386241	-0.5	1	4	5	0.90	-10	-1	0.13	30	0.09	120	28	0.04	1	320	19	0.27	-2	1	6	-0.01	-10	-10	4	-1
B386242	-0.5	-1	5	7	1.01	-10	1	0.10	20	0.18	196	16	0.03	2	270	14	0.24	-2	1	5	-0.01	-10	-10	5	-1
B386243	-0.5	-1	5	4	1.02	-10	-1	0.09	20	0.04	64	14	0.05	1	300	4	0.47	-2	1	5	-0.01	-10	-10	2	† - '
B386214	-0.5	-1	52	7	1.22	-10	-1	0.32	30	0.06	399	16	0.07	2	270	22	0.90	-2	1	11	-0.01	-10	-10	4	
B386244	-0.5	-1	7	4	0.98	-10	-1	0.13	20	0.05	97	7	0.04	1	370	8	0.65	-2	-1	5	-0.01	-10	-10	2	-
B386245	-0.5	-1	7	3	1.02	-10	-1	0.15	40	0.05	91	10	0.03	1	270	6	0.67	-2	-1	6	-0.01	-10	-10	1	-
B386246	-0.5	-1	6	2	0.59	-10	-1	0.13	20	0.01	20	5	0.04	1	290	5	0.25	-2	-1	6	-0.01	-10	-10	-1	-
3386247	-0.5	1					-1	0.12	30		110	12	0.03	1	300		0.47	-2	-1			1 -10		2	_

,

Sample		Lithology/Description	Mineralization
3386201	648	polymictic volc brx	clear qtz str, py-cp-sp-gn pods
3386202	640	dac tuff	gn, cp tr-0.5%
3386203	293	dac tuff	drusy qtz vnlets, tr py
3386204	65	dac tuff	py to 10% diss, loc drusy qtz
3386205		lap tuff	py-cp 5% diss, qtz str, MnOx
3386206		rhy clast brx	py 3% diss, FeOx stkwk
3386207		voic	
			py-aspy, qtz-py str
3386208		tuff	sheeted clear qtz str/hyd brx, 0.5% py diss
3386209		and tuff	
3386210	103		py diss
3386211	81	rhy brx	py to 10% brx matrix, qtz, chalced vniets
3386212		rhy brx	py to 10% brx matrix, qtz, chalced vniets
3386213	464	rhy brx	py to 10% brx matrix
3386216		rhy clast brx	drusy qtz vniets, tr py
3386217	44		chalced qtz brx, clear qtz-py-aspy
3386218		rhy flow brx	tr py
	0/		
3386219		rhy tuff/QP	bladed ba, drusy qtz
3386220		lap tuff/tuff brx	chalced vn/repl, drusy qtz
3386221		felsic dyke	qtz str, FeOx voids, drusy qtz, 0.5% py diss
3386222		feisic dyke	qtz str, FeOx voids, drusy qtz, 0.5% py diss
3386223	29	feisic dyke	qtz str, FeOx voids, drusy qtz, 0.5% py diss
3386224		FQP felsic int?	Ba-py-sp-qtz vn
3386225		and tuff	py-aspy diss/str to 10%
3386226		tuff?	vuggy qtz vns
3386227		and tuffs, flows	qtz vn to 1.5 m, loc sx bands
3386228		and tuffs, flows	multple qtz vn set over 2 m, tr py
3386229		and tuffs, flows	subsidiary qtz vn w/ thin sx seams
3386230	23	and tuffs, flows	4 qtz vns over 10 m, 5-25 c thick
			irreg chalced repl zones, hairline qtz str, py
3386231	16	rhy clast brx/polymictic tuff	1% diss
3386232		rhy clast brx/polymictic tuff	1 cm qtz str, FeOx fct, tr py
3386233	070	and tuff	gtz vn zone 1 m wide, ba vns
3386234		and tuff	brn chalced vns
3386235		rhy flow	drusy qtz vnlets, brx, FeOx, realgar?
B386236		maroon and lith lap tuff/dac dyke	hairline qtz str, loc vuggy qtz vnlets, tr py
3386237	4500	felsic tuff	clear/ameth qtz vns, loc sp, py, gn blebs
B386238	1685	and tuff?	py to 5%, tr gn, sp
B386239	676	rhy brx	1 m wide zone py-sil flooding
B386240		rhy brx	1 m wide zone py-sil flooding
3386251		maroon and lith lap tuff/FP dac dyke	gtz(-adul/clay?) str
B386252		rhy clast brx	banded gtz-chaiced vn 1 m wide
		rhy clast bix	
B386253			drusy/coxcomb qtz/celad vns, tr py
3386254		maroon and lith lap tuff	2% py diss
3386255	137	FP dac tuff/ FP dac dyke	tr-1% py, qtz str, druses
3386256	31		banded qtz vn 0.3 m thick
3386257		FQP felsic int?	qtz vns, tr py
3386258		felsic dyke/and tuff	semimass sx-qtz vn 20% py-aspy
3386259		and	vuggy qtz vn, 2-3% py
3386260		and tuffs, flows	lam'd qtz-sx vn 15 cm
B386261	1	dac por	
	1		2% py diss
B386262	95		vuggy qtz vn 0.5 m, minor py
B386263		dac tuff, rhy clast brx	qtz pods, tr py
B386264		rhy clast brx	str py, realgar?
3386301	104	Silicified brecciated Fe carb with 15% py, scorodite	
3386302	219	Soc rubble Very strong white Fe carb cut by late py stockwork	
•	1		
3386303	83	Soc near trench Very strong Fe carb with py overprint Rusty corodite	
3386304		Rubble in shallow trench Qtz py grey sulphides scorodite	1
5000004	- 03	Local float Siliceous breccia with disseminated py aspy grey sulphide	· · ·
	1		1
B386305	57	Fragments 90% silicified	
		Creek float Boulder 50 cm wide banded vein with fg white qtz bladed	
B386306	7	qtz clear coxcomb qtz	
		Otc Buff to pink altered rocks with diss py py stockwork and some dark	
3386307	66	grey silica sulphide veinlets to 3 mm	1
	1	Creek Float Vein 30 cm wide Sulphidized wallrock fragments with grey	· · · · · · · · · · · · · · · · · · ·
3386308	40	gtz veinlets in late white guartz	, ;
	12	Taius chip Crowded porphyry or equigranular monzonite with chl	<u>.</u>
		I Lauus Chio Crowded Dorodyry or equidranular monzonite with chi	1

~

Sample	Zn	Lithology/Description	Mineralization
B386201	648	polymictic volc brx	clear qtz str, py-cp-sp-gn pods
B386202	640	dac tuff	gn, cp tr-0.5%
B386203	293	dac tuff	drusy qtz vniets, tr py
B386204	65	dac tuff	py to 10% diss, loc drusy qtz
B386205	534	lap tuff	py-cp 5% diss, qtz str, MnOx
B386206	47	rhy clast brx	py 3% diss, FeOx stkwk
B386207	54	voic	py-aspy, qtz-py str
B386208	14	tuff	sheeted clear gtz str/hyd brx, 0.5% py diss
B386209	2	and tuff	
B386210		rhy	py diss
B386211	81	rhy brx	py to 10% brx matrix, qtz, chalced vnlets
B386212	49	rhy brx	py to 10% brx matrix, qtz, chalced vnlets
B386213	464	rhy brx	py to 10% brx matrix
B386216	11	rhy clast brx	drusy qtz vniets, tr py
B386217	44		chalced qtz brx, clear qtz-py-aspy
B386218	87	rhy flow brx	tr py
B386219	21	rhy tuff/QP	bladed ba, drusy qtz
B386220	27	lap tuff/tuff brx	chalced vn/repl, drusy qtz
B386221	34	felsic dyke	gtz str, FeOx voids, drusy gtz, 0.5% py diss
B386222		felsic dyke	qtz str, FeOx voids, drusy qtz, 0.5% py diss
B386223		felsic dyke	qtz str, FeOx voids, drusy qtz, 0.5% py diss
B386224	20	FQP felsic int?	Ba-py-sp-qtz vn
B386225	183	and tuff	py-aspy diss/str to 10%
B386226	12	tuff?	vuggy qtz vns
B386227	31	and tuffs, flows	gtz vn to 1.5 m, loc sx bands
B386228	21	and tuffs, flows	multple gtz vn set over 2 m, tr py
B386229	14	and tuffs, flows	subsidiary qtz vn w/ thin sx seams
B386230	23	and tuffs, flows	4 gtz vns over 10 m, 5-25 c thick
			irreg chalced repl zones, hairline gtz str, py
B386231	16	rhy clast brx/polymictic tuff	1% diss
B386232	20	rhy clast brx/polymictic tuff	1 cm qtz str, FeOx fct, tr py
B386233	272	and tuff	gtz vn zone 1 m wide, ba vns
B386234		and tuff	brn chalced vns
B386235		rhy flow	drusy qtz vnlets, brx, FeOx, realgar?
B386236		maroon and lith lap tuff/dac dyke	hairline qtz str, loc vuggy qtz vnlets, tr py
B386237		felsic tuff	clear/ameth gtz vns, loc sp, py, gn blebs
B386238		and tuff?	py to 5%, tr gn, sp
B386239		rhy brx	1 m wide zone py-sil flooding
B386240		rhy brx	1 m wide zone py-sil flooding
B386251		maroon and lith lap tuff/FP dac dyke	gtz(-adul/clay?) str
B386252		thy clast brx	banded qtz-chalced vn 1 m wide
B386253		rhy clast brx	drusy/coxcomb gtz/celad vns, tr py
B386254		maroon and lith lap tuff	2% py diss
B386255		FP dac tuff/ FP dac dyke	tr-1% py, qtz str, druses
B386256	31		banded gtz vn 0.3 m thick
B386257		FQP felsic int?	gtz vns, tr py
B386258		felsic dyke/and tuff	semimass sx-gtz vn 20% pv-aspv
B386259	1	and	vuggy qtz vn, 2-3% py
B386260		and tuffs, flows	lam'd qtz-sx vn 15 cm
B386261		dac por	2% py diss
B386262	95		vuggy qtz vn 0.5 m, minor py
B386263		dac tuff, rhy clast brx	qtz pods, tr py
B386264	-	thy clast bix	str py, realgar?
B386301		Silicified brecciated Fe carb with 15% py, scorodite	ou py, realgais
B386302		Soc rubble Very strong white Fe carb cut by late py stockwork	·
5000 <u>00</u> 2	<u> ₹18</u>	ooo rabbie very scong white he carb out by fate by stockwork	
B386303	0.0	Soc near tranch Vany strong Eo oarh with ny overarint Bucht and die	
B386304		Soc near trench Very strong Fe carb with py overprint Rusty corodite Rubble in shallow trench Qtz py grey sulphides scorodite	
0300304	83	Local float Siliceous breccia with disseminated py aspy grey sulphide	
030630E			
B386305	57	Fragments 90% silicified	· · · · · · · · · · · · · · · · · · ·
D 000000	_	Creek float Boulder 50 cm wide banded vein with fg white qtz bladed	
B386306	7	qtz clear coxcomb qtz	
		Otc Buff to pink altered rocks with diss py py stockwork and some dark	
B386307	66	grey silica sulphide veinlets to 3 mm	
		Creek Float Vein 30 cm wide Sulphidized wallrock fragments with grey	
B386308	12	qtz veiniets in late white quartz	
		Talus chip Crowded porphyry or equigranular monzonite with chi	
B386309	00	altered matics and 2% py>>cpy	

Sample	Zn	Lithology/Description	Mineralization
		Otc Strong qtz-ser-py with 040/50SE zones of dark silica sulphide to	
B386310	26	10 cm wide	
		Vein 0.8m wide Coarse white to clear coxcomb qtz with bands fine	
B386311	2040	white qtz with cpy and grey sulphide	
		Creek float Banded white to dark grey vein with very strong pyrite grey	
B386312	21	sulphide. 20 cm wide	
		Creek float Banded cryptocrystalline black and white quartz vein 15	
B386313	27	cm wide	
		Stockwork veins in very strong qtz-ser-py Clear to white coxcomb	
B386314	3	quartz locally grey qtz along vein margins 150/90	
		Stockwork vein with coxcomb clear to fine grained white qtz and very	
B386315	13	strong alteration Minor grey qtz 355/50E	
		Very nice sulphide rich vein Both cubic py and grey qtz-sulphide cut by	
B386316	22	late clear coxcomb qtz 315/50 NE	
		Early Fe carb silicified and cut by stockwork of clear qtz veinlets Rusty	
B386317	17	diss py 200/75 NW	
		Large boulder White to grey chalcedonic qtz vein with minor pyrite in	
B386318		late x cutting fractures	
B386319		Chalcedonic white to grey qtz vein Minor leached carbonate	
B386320	27	Small float. Partially silicified sed (Ist?) with very strong fg pyrite	
		Soc Fragmental with strong qtz-ser-py and late hydrothermal qtz	
B386321	12	stockwork breccia	
		Qtz vein float boulder. Fine to coarse white qtz with < 1% cpy grey	
B386322	166	sulphide	
		Very local float. Quartz vein with cpy gal in strong qtz ser py with up to	
B386323	150	10% py	
		Strong qtz ser py with patchy zones fine silica py and late clear	
B386324	13	coxcomb veinlets	
B386215	14	rhy brx	py matrix to 2%
B386241	19	rhy brx	tr-1% py
B386242	25	rhy brx	tr-1% py
B386243	19	rhy brx	tr-1% py
B386214	25	rhy brx	py matrix to 2%
B386244	10		gtz-py str
B386245	15	rhy brx	
B386246	5	rhy brx	qtz-py str
B386247	27	flow-banded rhy	gtz-py str

.

Sample	Zn	Lithology/Description	Mineralization
	Î	Otc Strong qtz-ser-py with 040/50SE zones of dark silica sulphide to	
B386310	26	10 cm wide	
		Vein 0.8m wide Coarse white to clear coxcomb gtz with bands fine	
B386311	2040	white qtz with cpy and grey sulphide	
		Creek float Banded white to dark grey vein with very strong pyrite grey	
B386312	21	sulphide. 20 cm wide	
		Creek float Banded cryptocrystalline black and white quartz vein 15	
B386313	27	cm wide	
		Stockwork veins in very strong qtz-ser-py Clear to white coxcomb	
B386314	3	quartz locally grey qtz along vein margins 150/90	
		Stockwork vein with coxcomb clear to fine grained white qtz and very	
B386315	13	strong alteration Minor grey qtz 355/50E	
		Very nice sulphide rich vein Both cubic py and grey qtz-sulphide cut by	
B386316	22	late clear coxcomb qtz 315/50 NE	
		Early Fe carb silicified and cut by stockwork of clear qtz veinlets Rusty	
B386317	17	diss py 200/75 NW	
	1	Large boulder White to grey chalcedonic qtz vein with minor pyrite in	
B386318		late x cutting fractures	
B386319		Chalcedonic white to grey qtz vein Minor leached carbonate	
B386320	27	Small float. Partially silicified sed (lst?) with very strong fg pyrite	
		Soc Fragmental with strong qtz-ser-py and late hydrothermal qtz	
B386321	12	stockwork breccia	
	{	Qtz vein float boulder. Fine to coarse white qtz with < 1% cpy grey	
B386322	166	sulphide	
		Very local float. Quartz vein with cpy gal in strong qtz ser py with up to	ļ
B386323	150	10% py	
		Strong qtz ser py with patchy zones fine silica py and late clear	
B386324	13	coxcomb veinlets	
B386215		rhy brx	py matrix to 2%
B386241	-	rhy brx	tr-1% py
B386242		rhy brx	tr-1% py
B386243		rhy brx	tr-1% py
B386214		rhy brx	py matrix to 2%
B386244	_	flow-banded QP rhy	qtz-py str
B386245	_	rhy brx	
B386246		rhy brx	qtz-py str
B386247	27	flow-banded rhy	qtz-py str

-

-

~

-

-

-

-

.

Sample	Alteration	Structure
Sample B386201	sit	Guuciais
B386202	sil, hyd brx, chalced	+
B386203	polyphase hyd brx/sil	
B386204	loc sil	
B386205	variably sil	
B386206	str arg to chl-py	
B386207	str sil-py	
B386208	sil	str zone 145
B386209	bik/white banded chalced/clay	
B386210	chalced sil, hyd brx	
B386211	hyd brx, sil-py	
B386212 B386213	hyd brx, sil-py hyd brx, sil-py	
B386216	perv sil	
B386217		
B386218	mod-str sil	
B386219	mod sil	1
B386220	chaiced sil	1
B386221	brx, sii	
B386222	brx, sil	
B386223	brx, sii	
B386224		
B386225	intense sil-py	fit? 030
B386226	mod sil	
B386227	perv cal-chi	vn 330/80 NE
B386228	perv cal-chi	vn 345/85 NE
B386229 B386230	perv cal-chi wk cal-chi	vn 204/85 W
B300230	wk cai-chi	VII 204/65 VV
B386231	patchy chalced	
B386232	loc perv sil	qtz str zone 060
DOODLOL		gtz vn zone 063/78
B386233	strct cont sil, loc perv chalced	SE; ba vn 300/40 N
B386234	strct cont sil, loc perv chalced	chai vn 210/82 W
B386235	loc sil	
B386236	loc mod sil	
B386237	sil	
B386238	perv sil-py	
B386239	perv sil-py	vn 015/55 SE
B386240	perv sil-py	vn 015/55 SE
B386251 B386252	sil	
B386252 B386253	1	vn 245/75NwW
B386253	perv sil	
B386255	loc sil	dyke 145
B386256		
B386257		vn 175/75 W
B386258	1	
B386259		fit
	perv cal-chi	fit vn 355/85 E
B386259	perv cal-chl mod sil	
B386259 B386260 B386261 B386262		
B386259 B386260 B386261 B386262 B386263	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264	mod sil	
B386259 B386260 B386261 B386262 B386263 B386264 B386301	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264 B386301 B386302	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264 B386301 B386302 B386303	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264 B386301 B386302	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264 B386301 B386302 B386303	mod sil str sil, loc py, brx	
B386259 B386260 B386262 B386262 B386263 B386264 B386301 B386302 B386303 B386304	mod sil str sil, loc py, brx	
B386259 B386260 B386262 B386262 B386263 B386264 B386301 B386302 B386303 B386304 B386305	mod sil str sil, loc py, brx	
B386259 B386260 B386262 B386262 B386263 B386264 B386301 B386302 B386303 B386304 B386305	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264 B386301 B386302 B386303 B386304 B386305 B386306 B386307	mod sil str sil, loc py, brx	
B386259 B386260 B386261 B386262 B386263 B386264 B386301 B386302 B386303 B386304 B386305 B386306	mod sil str sil, loc py, brx	

Appendix A: Troitsa Property

-

:

į

,

•

ł		
Sample	Alteration	Structure
B386201	sil	
B386202	sil, hyd brx, chaiced	
B386203	polyphase hyd brx/sil	
B386204	loc sit	
B386205	variably sil	
B386206	str arg to chi-py	
B386207	str sil-py	
B386208	sil	str zone 145
B386209	blk/white banded chalced/clay	
B386210	chalced sil, hyd brx	
B386211	hyd brx, sil-py	
B386212	hyd brx, sil-py	
B386213	hyd brx, sil-py	
B386216	perv sil	
B386217		
B386218	mod-str sil	
B386219	mod sil	
B386220	chalced sil	
B386221	brx, sil	
B386222	brx, sil	
B386223	brx, sil	
B386224		
B386225	intense sil-py	fit? 030
B386226	mod sil	
	perv cai-chi	vn 330/80 NE
B386228	perv cai-chi	vn 345/85 NE
B386229	perv cai-chi	
B386230	wk cal-chi	vn 204/85 W
	ļ	
	patchy chalced	
8386232	loc perv sil	qtz str zone 060
	1	gtz vn zone 063/78
B386233	strct cont sil, loc perv chaiced	SE; ba vn 300/40 N
B386234	strct cont sil, loc perv chalced	chai vn 210/82 W
B386235	loc sil	
B386236	loc mod sil	
B386237	sil	
B386238	perv sil-py	
B386239	perv sil-py	vn 015/55 SE
B386240	perv sil-py	vn 015/55 SE
B386251		
B386252	sil	vn 245/75NwW
B386252 B386253	perv sil	vn 245/75NwW
B386252 B386253 B386254	perv sil perv sil	
B386252 B386253 B386254 B386255	perv sil	vn 245/75NwW dyke 145
B386252 B386253 B386254 B386255 B386256	perv sil perv sil	dyke 145
B386252 B386253 B386254 B386255 B386256 B386257	perv sil perv sil	
B386252 B386253 B386254 B386255 B386256 B386257 B386258	perv sil perv sil	dyke 145 vn 175/75 W
B386252 B386253 B386254 B386255 B386256 B386257 B386258 B386259	perv sil perv sil loc sil	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386256 B386257 B386258 B386259 B386260	perv sii perv sii loc sii perv cal-chi	dyke 145 vn 175/75 W
B386252 B386253 B386254 B386255 B386256 B386257 B386257 B386258 B386259 B386260 B386261	perv sil perv sil loc sil	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386256 B386257 B386258 B386259 B386260 B386261 B386262	perv sil perv sil loc sil perv cal-chi mod sil	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386258 B386259 B386260 B386260 B386261 B386262 B386263	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386259 B386259 B386260 B386260 B386261 B386262 B386263 B386264	perv sil perv sil loc sil perv cal-chi mod sil	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386258 B386259 B386260 B386261 B386261 B386262 B386263 B386264 B386264 B386301	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386259 B386259 B386260 B386260 B386261 B386262 B386263 B386264	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386258 B386259 B386260 B386261 B386262 B386264 B386264 B386301 B386302	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386258 B386259 B386260 B386261 B386262 B386264 B386263 B386263 B386264 B386301 B386302 B386303	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386258 B386259 B386260 B386261 B386262 B386264 B386264 B386301 B386302	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386258 B386259 B386260 B386260 B386261 B386262 B386264 B386301 B386302 B386303 B386304	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386258 B386259 B386260 B386261 B386262 B386264 B386263 B386263 B386264 B386301 B386302 B386303	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386258 B386259 B386260 B386260 B386261 B386262 B386264 B386301 B386302 B386303 B386304	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386258 B386259 B386260 B386260 B386261 B386262 B386264 B386301 B386302 B386303 B386304	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386258 B386259 B386260 B386261 B386264 B386264 B386301 B386302 B386303 B386304 B386305 B386306	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386256 B386257 B386258 B386259 B386260 B386260 B386260 B386261 B386262 B386264 B386301 B386302 B386303 B386304 B386305	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386257 B386258 B386259 B386260 B386261 B386262 B386264 B386301 B386301 B386302 B386303 B386305 B386306 B386307	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386258 B386259 B386260 B386261 B386264 B386264 B386301 B386302 B386303 B386304 B386305 B386306	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386256 B386257 B386259 B386260 B386260 B386261 B386262 B386264 B386301 B386302 B386303 B386304 B386305 B386306 B386307 B386308	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit
B386252 B386253 B386254 B386255 B386255 B386257 B386257 B386259 B386260 B386261 B386262 B386263 B386264 B386301 B386302 B386303 B386304 B386305 B386306 B386307	perv sii perv sii loc sii perv cal-chi mod sii str sii, loc py, brx	dyke 145 vn 175/75 W fit

.

-

Sample	Alteration	Structure
B386310		
5300310	· · · · · · · · · · · · · · · · · · ·	
B386311		
B386312		
B386313		
B386314		
B386315		
B386316		
B386317		
B386318		r
B386319		
B386320		
B386321		
B386322		
B386323		
B386324		
B386215		
B386241	qtz str	
B386242	qtz brx matrix	
B386243	qtz brx matrix	
B386214		
B386244		
B386245	qtz brx matrix	
B386246		
B386247	1	

1

Sample	Alteration	Structure
B386310		
B386311		
B386312		
B386313		
B386314		
B386315		
B386316		
B386317		
B386318		
B386319		
B386320		
B386321		
B386322		
B386323		
B386324		
B386215		
B386241	qtz str	
B386242	qtz brx matrix	
B386243	qtz brx matrix	
B386214		
B386244		
B386245	qtz brx matrix	
B386246		
B386247		

Appendix B Authors Certificate

I, John Bradford, P.Geo., certify that:

1. I am a geologist employed as a consultant for Paget Resources Corp., with a business address located at:

2080-777 Hornby Street Vancouver, B.C.

- 2. I am a member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 3. I graduated from the University of British Columbia in 1985 with a Bachelor of Science in Geology and from the University of British Columbia in 1988 with a Master of Science in Geology.
- 4. Since 1986 I have been continuously employed in exploration for base and precious metals in North America, South America and China. As a result of my experience and education, I am a qualified person as defined in National Instrument 43-101 (NI 43-101).
- 5. I participated in the 2005 exploration program from August 1st to August 8th, 2005 and am therefore personally familiar with the geology of the Troitsa Property and the work conducted in 2005. I have prepared all sections of this report with the assistance of Paget Resources consultants.

Dated this 13th Day of December, 2005

Mubridgel Monature

John Bradford, M.Sc

Appendix C: Statement of Expenditures

Professional Fees and Wages		
Da	ys Rate/day	Amount
Henry Marsden	5 \$600.00	\$ 3,000.00
John Bradford	9 \$500.00	\$ 4,500.00
John Fleishman	9 \$400.00	\$ 3,600.00
Equipment Rental		
Satellite Phone		\$ 192.87
Rental Truck		\$ 802.77
Hand-held radios		\$ 78.66
Expenses		
Geochemical Analyses		\$ 2,545.04
Food (incl mob in)		\$ 603.38
Accomodation (incl mob in)		\$ 269.10
Automotive fuel		\$ 523.09
Material and Supplies		\$ 1,856.88
Helicopter		\$ 4,532.46
Air fare		\$ 324.93
Taxi		\$ 48.00
Freight		\$ 181.45
Report, drafting	2 \$500.00	\$ 1,000.00
Subtotal		\$ 24,058.63
Management/Project Supervision		\$ 2,405.86
Total		\$ 26,464.50

t. N . •

Chemex ALS **EXCELLENCE IN ANALYTICAL CHEMISTRY**

Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 1 Finalized Date: 25-AUG-2005 This copy reported on 26-AUG-2005 Account: PAGRES

Project: Paget 2005

P.O. No.:

This report is for 85 Drill Core samples submitted to our lab in Vancouver, BC, Canada on 10-AUG-2005.

The following have access to data associated with this certificate:

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

JOHN BRADFORD

HENRY MARSDEN

ARMSTRONG SIMPSON

1

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI-21	Received Sample Weight
LOG-22	Sample login - Rcd w/o BarCode
CRU-31	Fine crushing - 70% <2mm
SPL-21	Split sample - riffie splitter
PUL-31	Pulverize split to 85% <75 um

ANALYTICAL PROCEDUR	ES
DESCRIPTION	INSTRUMENT
34 Element Aqua Regia ICP-AES	ICP-AES
Ore grade Ag - aqua regia/AA	AAS
Au 30g FA-AA finish	AAS
	DESCRIPTION 34 Element Aqua Regia ICP-AES Ore grade Ag - aqua regia/AA

To: PAGET RESOURCES ATTN: ARMSTRONG SIMPSON 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature: Resel Con

1

1

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

×...

٦

• • •

1

1

Page: 2 - A Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

Project: Paget 2005

CERTIFICATE OF ANALYSIS VA05066021

1

· ·]

•

1

······································							_									
	Method	WEI-21	Au-AA23	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Recvd Wt.	Au	Ag	Ai	As	В	Ba	Be	Bi	Ca	Cđ	Co	Cr	Çu	Fe
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%
ample Description	LOR	0.02	0.005	0.2	0.01	2	10	10	0.5	2	0.01	0.5		1	1	0.01
B386201		2.38	0.025	23.5	1.24	18	<10	420	<0.5	18	0.07	3.7	3	10	556	2.38
B386202		2.06	0.027	4.1	1.27	54	<10	170	<0.5	<2	0.04	2.9	2	87	146	2.77
B386203		2.02	0.011	2.3	1.18	159	<10	220	<0.5	<2	0.10	1.8	2	7	91	2.67
B386204		1.70	0.006	2.8	0.86	58	<10	140	<0.5	<2	0.08	<0.5	3	16	15	3.46
205		3.18	0.007	2.8	1.68	28	<10	300	<0.5	<2	0.16	2.5	8	4	310	3.51
ь.o6206		2.78	0.010	1.3	1.19	24	<10	190	<0.5	<2	0.12	<0.5	4	9	8	3.09
B386207		2.08	0.036	2.1	0.64	8910	<10	80	<0.5	<2	0.20	<0.5	4	2	31	4.18
B386208		1.80	0.011	0.3	0.59	108	<10	110	<0.5	<2	0.04	<0.5	1	31	8	1.00
B386209		1.68	0.361	2.7	0.33	65	<10	60	<0.5	<2	0.02	<0.5	1	13	88	0.57
B386210		2.66	0.644	10.0	0.76	14	<10	90	<0.5	<2	0.01	0.5	1	21	16	0.63
B386211		1.42	0.036	0.5	0.71	35	<10	160	<0.5	<2	0.14	<0.5	<1	2	19	0.90
B386212		1.90	<0.005	0.9	0.94	37	<10	90	<0.5	<2	0.35	<0.5	1	12	2	2.45
B386213		1.94	0.110	29.4	0.71	44	<10	100	<0.5	<2	0.42	1.5	<1	2	30	1.26
B386214		0.76	0.005	0.4	0.54	15	<10	60	<0.5	<2	0.13	<0.5	<1	52	7	1.22
B386215		0.86	<0.005	0.3	0.72	7	<10	60	<0.5	<2	0.09	<0.5	<1	2	4	0.82
B386216		1.70	0.015	0.3	0.48	9	<10	90	<0.5	<2	0.05	<0.5	<1	81	8	1.46
B386217		1.66	0.015	<0.2	1.05	1385	<10	80	<0.5	<2	0.01	<0.5	2	10	8	1.98
B386218		1.56	<0.005	0.3	0.90	20	<10	130	<0.5	<2	0.06	<0.5	<1	19	13	2.14
B386219		1.26	0.011	0. 6	0.72	79	<10	1150	<0.5	<2	0.02	<0.5	1	8	61	2.25
B386220		2.80	<0.005	0.7	0.77	17	<10	120	<0.5	<2	0.06	<0.5	2	75	70	1.12
B386221		2.74	0.013	0.8	0.64	77	<10	430	<0.5	<2	0.02	<0.5	1	6	11	3.26
B386222		2.24	0.017	16.2	0.90	29	<10	290	<0.5	<2	0.05	<0.5	<1	29	6	3.04
B386223		1.78	0.005	3.1	0.48	35	<10	220	<0.5	<2	0.04	<0.5	<1	2	6	3.35
B386224		1.92	0.010	0.5	0.06	34	<10	340	<0.5	<2	0.01	<0.5	2	8	25	0.81
\$225		1.68	0.096	1.0	0.40	>10000	<10	30	<0.5	<2	0.23	0.8	15	18	28	4.73
226 د		1.86	<0.005	2.6	0.24	60	<10	180	<0.5	<2	0.04	<0.5	1	6	16	1.64
B386227		1.30	0.078	18.6	0.45	32	<10	70	<0.5	<2	0.88	1.3	6	30	68	1.40
B386228		1.22	0.036	2.8	0.66	70	<10	50	<0.5	<2	0.11	<0.5	4	15	15	2.03
B386229		2.54	0.051	21.6	0.23	37	<10	40	<0.5	<2	2.26	<0.5	3	13	120	1.26
B386230		1.88	0.084	10.6	0.23	66	<10	50	<0.5	<2	0.09	0.7	6	9	56	1.75
B386231		2.48	0.016	0.6	0.55	274	<10	40	<0.5	<2	0.02	<0.5	<1	7	7	1.20
B386232		2.10	1.430	2.5	0.34	6080	<10	100	<0.5	<2	0.01	<0.5	<1	5	5	2.25
B386233		1.10	0.243	7.2	1.72	1365	<10	90	<0.5	<2	0.04	<0.5	11	21	47	4.94
B386234		2.04	0.009	0.6	0.83	132	<10	110	<0.5	<2	0.05	<0.5	6	3	14	1.82
B386235		2.22	0.217	81.7	0.44	433	<10	380	<0.5	<2	0.01	<0.5	<1	5	68	4.12
B386236		1.70	0.157	4.2	0.43	708	<10	620	<0.5	<2	0.01	1.4	2	4	65	1.93
B386237		2.04	0.014	1.9	0.41	52	<10	70	<0.5	<2	0.05	28.8	4	8	28	1.68
B386238		2.56	0.058	5.1	0.75	121	<10	30	<0.5	<2	0.82	11.1	17	7	32	4.10
B386239		1.78	0.214	13.2	1.53	259	<10	30	<0.5	<2	0.03	3.1	12	5	74	6.05
B386240		1.72	0.129	22.0	1.16	259	<10	20	<0.5	<2	0.02	1.0	15	5	46	5.63

Comments: Additional Au assay values for sample B386253 are 1.760 and 1.435 ppm.

ALS Chemex

1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

]

]

}

1

1

To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

}

Page: 2 - B Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

Project: Paget 2005

CERTIFICATE OF ANALYSIS VA05066021

.

1

١

T 1

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hig ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
B386201		<10	<1	0.32	10	0.33	675	9	0.01	3	570	1460	0.26	6	3	8
B386202		<10	3	0.25	10	0.30	470	12	<0.01	3	420	1985	0.35	8	3	4
B386203		<10	<1	0.43	20	0.21	463	24	0.02	1	830	636	0.68	7	3	8
B386204		<10	<1	0.33	<10	0.15	235	1	0.09	1	710	19	1.66	3	4	8
205		<10	<1	0.34	10	0.34	1025	2	0.02	2	710	911	0.73	3	4	9
ັບພວຍີ206		<10	<1	0.53	10	0.19	281	9	0.01	3	1380	30	1.11	<2	2	7
B386207		<10	1	0.31	20	0.08	102	12	0.01	5	1500	12	1.77	248	2	8
B386208		<10	<1	0.16	10	0.05	· 100	1	0.11	3	270	5	0.02	<2	1	4
B386209		<10	1	0.14	<10	0.01	35	1280	<0.01	1	30	122	0.09	22	1	3
B386210		<10	<1	0.45	20	0.04	53	228	<0.01	<1	260	311	80.0	8	1	3
B386211		<10	<1	0.39	30	0.02	65	13	0.05	1	370	53	0.29	<2	1	17
B386212		<10	1	0.42	20	0.32	446	3	0.04	2	330	22	2.14	<2	1	23
B386213		<10	<1	0.43	20	0.07	263	9	0.02	1	270	170	0.96	7	1	18
B386214		<10	<1	0.32	30	0.06	399	16	0.07	2	270	22	0.90	<2	1	11
B386215		<10	1	0.33	30	0.07	86	16	0.05	1	340	16	0.35	<2	1	9
B386216		<10	<1	0.26	10	0.05	74	16	<0.01	3	510	5	0.29	<2	1	9
B386217		<10	<1	0.02	<10	0.01	62	14	<0.01	2	90	5	1.39	21	3	28
B386218		<10	<1	0.14	20	0.19	320	2	0.10	1	760	138	0.07	<2	2	15
B386219		<10	<1	0.31	<10	0.12	246	5	0.02	2	290	192	0.20	<2	3	19
B386220		<10	<1	0.29	10	0.11	312	1	0.01	3	350	6	0.01	<2	2	4
B386221		<10	<1	0.11	10	0.16	396	5	0.05	2	440	19	0.46	<2	3	4
B386222		<10	<1	0.26	<10	0.17	226	1	0.11	1	540	26	0.09	<2	4	7
B386223		<10	<1	0.12	<10	0.11	191	3	0.03	1	630	9	0.02	<2	2	3
B386224		<10	<1	<0.01	<10	0.01	66	4	<0.01	2	10	4	0.17	<2	<1	466
F \$225		<10	<1	0.07	<10	0.11	1930	20	<0.01	7	130	31	2.28	275	9	13
226	-	<10	<1	0.09	<10	0.02	82	1	0.04	1	290	12	0.70	<2	1	11
B386227	1	<10	<1	0.09	<10	0.36	286	191	<0.01	15	360	69	0.63	6	1	32
B386228		<10	<1	0.12	<10	0.43	236	20	<0.01	5	520	5	0.52	<2	1	5
B386229		<10	<1	0.11	<10	0.09	256	251	<0.01	4	220	17	0.83	6	1	38
B386230		<10	<1	0.16	10	0.03	43	507	<0.01	6	290	54	1.52	6	<1	6
B386231		<10	<1	0.13	<10	0.05	47	4	0.05	1	230	3	0.03	<2	2	5
B386232		<10	<1	0.23	<10	0.02	70	110	<0.01	1	340	11	0.12	23	3	4
B386233		10	<1	0.16	<10	0.98	824	4	0.01	8	500	33	0.76	6	10	7
B386234		<10	<1	0.20	10	0.24	249	2	<0.01	9	200	11	0.01	<2	3	5
B386235		<10	<1	0.12	<10	0.03	84	38	0.02	1	540	441	0.10	50	1	26
B386236		<10	4	0.25	10	0.01	516	65	0.01	1	290	156	0.16	20	2	13
B386237		<10	<1	0.09	10	0.11	190	11	0.01	2	390	788	0.66	<2	1	5
B386238		<10	<1	0.17	10	0.35	730	10	0.01	3	760	3100	2.23	3	1	15
B386239		10	<1	0.14	10	1.15	1155	193	<0.01	3	400	791	3.43	10	5	5
B386240		10	<1	0.12	10	1.04	857	1075	<0.01	7	290	586	4.44	22	4	2

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 2 - C Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

Project: Paget 2005

									CERTIFICATE OF ANALYSIS	VA05066021
Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1		
B386201		<0.01	<10	<10	24	<10	648		······································	··· · · · · ·
B386202		<0.01	<10	<10	29	<10	640			
B386203		<0.01	<10	<10	22	<10	293			
8386204		<0.01	<10	<10	19	<10	65			
6205		<0.01	<10	<10	31	<10	534			
ь <i>ა</i> 86206		<0.01	10	<10	16	<10	47		·····	
B386207		<0.01	<10	<10	38	<10	54			
B386208		<0.01	<10	<10	5	<10	14			
B386209		<0.01	20	<10	55	<10	2			
B386210		<0.01	<10	<10	26	<10	103			
B386211		<0.01	<10	<10	1	<10	81			
B386212		<0.01	<10	<10	1	<10	49			
B386213		<0.01	<10	<10	1	<10	464			
B386214		<0.01	<10	<10	4	<10	25			
B386215		<0.01	<10	<10	2	<10	14			
B386216		<0.01	<10	<10	19	<10	11			
B386217		<0.01	<10	<10	17	<10	44			
B386218		<0.01	<10	<10	8	<10	87			
B386219		0.01	<10	<10	24	<10	21			
B386220		<0.01	<10	<10	12	<10	27			
B386221		<0.01	<10	<10	16	<10	34			
B386222		<0.01	<10	<10	16	<10	45			
B386223		<0.01	<10	<10	6	<10	29			
B386224		<0.01	<10	<10	4	<10	20			
186225		<0.01	10	<10	70	<10	183			
86226 د.		<0.01	<10	<10	2	<10	12		· · · · · · · · · · · · · · · · · · ·	
B386227		<0.01	<10	<10	15	<10	31			
B386228		<0.01	<10	<10	26	<10	21			
B386229		<0.01	<10	<10	9	<10	14			
B386230		<0.01	<10	<10	8	<10	23			
B386231		<0.01	<10	<10	7	<10	16			
B386232		<0.01	<10	<10	6	<10	20			
B386233		<0.01	<10	<10	119	<10	272			
B386234		<0.01	<10	<10	23	<10	48			
B386235		<0.01	<10	<10	10	<10	. 79			
B386236		<0.01	<10	<10	7	<10	328			
B386237		<0.01	<10	<10	11	<10	4500			
B000000			- 40		00		4005			

Comments: Additional Au assay values for sample B386253 are 1.760 and 1.435 ppm.

<10

<10

<10

23

109

89

<10

<10

<10

<10

<10

<10

1685

676

294

<0.01

< 0.01

<0.01

B386238

B386239

B386240

Page: 2 - C

1

ALS Chemex

1

1

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 3 - A Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

}

Project: Paget 2005

CERTIFICATE OF ANALYSIS VA05066021

-			Au. A 407					115 100 14								
	Method	WEI-21 Recyd Wt.	Au-AA23 Au	ME-ICP41 Ag	ME-ICP41 Ai	ME-ICP41 As	ME-ICP41 B	ME-ICP41 Ba	ME-ICP41 Be	ME-ICP41 Bi	ME-ICP41 Ca	ME-ICP41 Cd	ME-ICP41 Co	ME-ICP41 Cr	ME-ICP41	ME-ICP41
	Analyte Units			-	%						Са %				Cu	Fe
Sample Description	LOR	kg 0.02	ppm 0.005	ppm 0.2	0.01	ррт 2	ррт 10	ppm 10	ррт 0.5	ppm 2	70 0.01	ррт 0.5	ppm 1	ppm 1	ppm 1	% 0.01
		1.00	0.006	0.8	0.39	11	<10	40	<0.5	<2	0.06	<0.5		4	5	
B386242		1.22	<0.005	3.3	0.39	4	<10	40 30	<0.5		0.06		<1	4 5	5	0.90
		1.02	<0.005		0.44	-4 14	<10	20		<2		<0.5	•	5 5		1.01
B386243		1.12		0.3 0.2	0.26	28	<10	<u>∠0</u> 40	<0.5	<2	0.06	<0.5	<1	5 7	4	1.02
B386244			<0.005 <0.005	0.2	0.25	28 6	<10 <10	40 50	<0.5	<2	80.0	<0.5	<1 <1	7	4	0.98
6245		1.22							<0.5	<2	0.07	<0.5	•	•	3	1.02
B386247		1.00	<0.005 0.006	0.2	0.21 0.28	7 15	<10 <10	50 40	<0.5	<2	0.04 0.06	<0.5 <0.5	<1 1	6 5	2	0.59
B386251	1		0.008	0.3	1,13	710	<10	40	<0.5 <0.5	<2	0.06	<0.5 <0.5	۱ <1	3	2 6	0.95
B386252		1.20	0.058	1.9 9.7	0.25	53	<10	60		<2			<1 1	-	-	2.88
B386253		1.90	2.32	9.7 15.2	0.25	53 58	<10	430	<0.5 <0.5	<2 <2	0.04 0.05	0.6 <0.5	1	8 8	71 9	1.54
	<u> </u>						-									1.24
B386254		1.72	<0.005	0.5	1.50	156	<10	150	<0.5	6	0.11	0.6	4	8	79	5.67
B386255		1.14	0.021	1.2	0.76	35	<10	80	<0.5	<2	0.25	0.5	5	2	37	3.14
B386256		1.42	0.024	2.0	0.63	44	<10	100	<0.5	<2	0.17	<0.5	3	4	4	1.40
B386257		1.58	0.054	0.4	0.81	708	<10	290	<0.5	<2	0.09	<0.5	1	1	6	2.63
B386258		2.70	0.623	6.9	0.94	>10000	<10	10	<0.5	<2	0.02	0.6	44	5	19	16.4
B386259		1.78	0.090	1.0	0.75	8290	<10	60	<0.5	<2	0.09	<0.5	9	6	22	2.84
B386260		1.48	1.835	6.7	1.80	432	<10	50	<0.5	<2	0.27	<0.5	26	35	23	6.02
B386261	[1.22	0.009	0.8	0.40	62	<10	90	<0.5	<2	0.09	<0.5	1	4	19	1.78
B386262		1.48	0.021	0.4	0.98	38	<10	130	<0.5	<2	0.21	<0.5	4	4	6	4.07
B386263		1.76	<0.005	<0.2	0.90	33	<10	90	0.5	<2	0.05	<0.5	2	1	7	3.04
B386264		2.16	0.011	0.4	0.57	104	<10	110	0.6	<2	0.04	<0.5	<1	1	7	2.17
B386301		2.40	0.011	0.9	0.26	4420	<10	20	0.5	<2	11.50	1.2	14	2	59	6.06
B386302	ļ	2,44	<0.005	0.3	0.28	804	<10	10	0.5	<2	14.9	<0.5	29	<1	8	7.22
B386303		1.08	<0.005	0.5	0.30	>10000	<10	70	<0.5	<2	0.16	<0.5	10	3	33	4.00
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		2.16	<0.005	0.4	0.17	>10000	<10	40	<0.5	<2	0.09	<0.5	16	8	9	4.36
<b>d6305</b>		2.04	0.060	0.6	0.17	10000	<10	50	<0.5	<2	0.04	<0.5	12	19	52	3.23
B386306		2.00	0.349	63.7	0.05	79	<10	10	<0.5	<2	0.03	<0.5	<1	14	22	0.54
B386307		1.68	0.005	0.5	0.31	47	<10	30	<0.5	<2	0.09	0.7	2	4	36	1.54
B386308		1.72	0.019	1.1	0.14	20	<10	20	<0.5	<2	0.07	<0.5	4	17	4	0.94
B386309	ļ	1.58	0.007	0.5	0.73	12	<10	110	<0.5	<2	1.44	0.5	9	5	680	2.00
B386310		2.26	0.039	4.5	0.38	32	<10	10	<0.5	<2	0.05	<0.5	8	4	53	2.28
B386311		1.12	0.620	>100	0.07	26	<10	10	<0.5	<2	0.05	166.5	2	12	3530	0.99
B386312		1.72	0.040	2.8	0.29	144	<10	30	<0.5	<2	0.06	0.5	4	7	13	1.99
B386313	ļ	2.14	<0.005	3.8	0.04	1020	<10	30	<0.5	<2	3.80	2. <del>9</del>	29	11	40	1.80
B386314		1.88	0.100	3.9	0.25	56	<10	60	<0.5	<2	0.05	<0.5	1	8	3	0.44
B386315		1.96	0.012	0.5	0.28	60	<10	190	<0.5	<2	0.03	<0.5	<1	6	4	0.58
B386316		2.00	0.069	0.8	0.15	659	<10	90	<0.5	<2	0.10	<0.5	2	10	11	2.82
B386317		1.58	0.019	0.4	0.25	74	<10	110	<0.5	<2	0.01	<0.5	<1	5	25	1.60
B386318		1.18	<0.005	<0.2	0.02	10	<10	220	<0.5	<2	0.65	<0.5	1	21	11	0.53
B386319		1.52	<0.005	<0.2	0.02	7	<10	40	<0.5	<2	0.16	<0.5	1	21	18	0.80

1

1

· ] ····]



ALS Chemex

ALS Canada Ltd.

EXCELLENCE IN ANALYTICAL CHEMISTRY

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

Page: 3 - B Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

Project: Paget 2005

CERTIFICATE OF ANALYSIS VA05066021

1

	Method	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41	ME-ICP41
	Analyte	Ga	Hg	ĸ	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	nqq	ppm	ppm
ample Description	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
B386241		<10	<1	0.13	30	0.09	120	28	0.04	1	320	19	0.27	<2	1	6
B386242		<10	1	0.10	20	0.18	196	16	0.03	2	270	14	0.24	<2	1	5
B386243	1	<10	<1	0.09	20	0.04	64	14	0.05	1	300	4	0.47	<2	1	5
B386244		<10	<1	0.13	20	0.05	97	7	0.04	1	370	8	0.65	<2	<1	5
6245		<10	<1	0.15	40	0.05	91	10	0.03	1	270	6	0.67	<2	<1	6
		<10	<1	0.13	20	0.01	20	5	0.04	1	290	5	0.25	<2	<1	6
B386247		<10	<1	0.12	30	0.07	110	12	0.03	1	300	5	0.47	<2	<1	5
B386251		<10	<1	0.11	10	0.17	188	1	0.03	1	370	7	0.03	5	7	3
B386252		<10	<1	0.12	10	0.08	126	81	<0.01	2	240	206	0.62	5	1	4
B386253		<10	<1	0.17	10	0.08	129	111		22	330	32	0.06	2	1	10
B386254		10	<1	0.12	<10	0.84	1355	1	0.03	3	1020	29	0.99	<2	7	7
B386255		<10	<1	0.25	30	0.37	321	14	0.01	1	1480	800	1.31	<2	1	14
B386256		<10	<1	0.19	20	0.23	290	49	0.01	2	790	10	0.38	<2	1	10
B386257	-	<10	<1	0.22	10	0.24	259	4	<0.01	1	290	24	0.19	9	3	15
B386258		10	<1	0.04	<10	0.33	350	4	<0.01	15	170	56	>10.0	200	7	2
B386259		<10	<1	0.19	<10	0.23	154	2	<0.01	3	380	19	1.32	144	4	5
B386260		10	<1	0.02	<10	2.17	395	97	<0.01	70	250	16	3.79	3	2	8
B386261		<10	<1	0.16	<10	0.12	139	2	0.05	2	310	30	0.70	<2	2	13
B386262		10	<1	0.18	20	0.42	653	9	0.03	3	1600	38	0.64	<2	2	16
B386263		<10	<1	0.16	40	0.12	331	2	0.02	3	1420	8	0.04	<2	2	6
B386264		<10	<1	0.27	20	0.04	118	25	<0.01	1	880	15	0.04	<2	1	13
B386301		<10	<1	0.14	<10	5.08	2850	1	0.01	5	400	10	3.09	94	15	253
B386302		<10	<1	0.10	<10	6.59	3150	1	0.04	8	90	23	3.2	28	6	200
B386303		<10	2	0.23	<10	0.05	189	1	<0.01	5	170	20	1.98	450	4	10
986304		<10	2	0.13	<10	0.04	71	7	<0.01	6	50	26	3.57	9760	4	7
<u>,⊰6305</u>		<10	<1	0.10	<10	0.03	68	2	< 0.01	6	80	6	2.17	160	3	5
B386306		<10	<1	0.03	<10	0.01	59	17	<0.01	1	30	82	0.02	39	<1	2
B386307		<10	<1	0.11	20	0.07	273	32	.0.02	2	100	36	0.82	<2	1	6
B386308		<10	<1	0.08	<10	0.03	83	48	<0.01	8	210	8	0.45	5	<1	4
B386309		<10	1	0.24	10	0.39	397	33	0.03	4	560	21	1.43	<2	1	28
B386310		<10	<1	0.14	<10	0.02	99	134	<0.01	2	410	13	1.20	<2	3	2
B386311		<10	<1	0.03	<10	0.04	102	43	<0.01	2	50	1725	0.63	8	<1	2
B386312		<10	<1	0.12	10	0.11	78	276	<0.01	3	280	28	1.64	4	<1	3
B386313		<10	1	<0.01	<10	0.21	1950	433	<0.01	4	10	120	1.47	5	1	187
B386314		<10	<1	0.17	<10	0.02	31	20	<0.01	1	60	16	0.06	3	1	6
B386315		<10	<1	0.14	10	0.02	43	10	<0.01	1	70	12	0.06	3	<1	7
B386316		<10	<1	0.08	<10	0.02	38	70	<0.01	2	590	23	1.99	8	<1	15
B386317		<10	<1	0.02	10	<0.01	69	2	0.04	2	20	9	0.07	23	1	5
B386318		<10	<1	<0.01	<10	0.02	442	4	<0.01	1	10	5	0.05	<2	<1	10
B386319		<10	<1	<0.01	<10	0.02	1215	3	<0.01	2	20	8	0.05	<2	<1	4

] ] ] ] To: **PAGET RESOURCES** 

1

1

١

1

Phone: 604 984 0221 Fax: 604 984 0218 www.aischemex.com

**ALS Chemex** 

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1

**EXCELLENCE IN ANALYTICAL CHEMISTRY** 

2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4 Page: 3 - C Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

1

1

1

Project: Paget 2005

CERTIFICATE	OF ANALYSIS	VA05066021

١

1

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	
B386241		<0.01	<10	<10	4	<10	19		
B386242		<0.01	<10	<10	5	<10	25		
B386243		<0.01	<10	<10	2	<10	19		
B386244		<0.01	<10	<10	2	<10	10		
3245		<0.01	<10	<10	1	<10	15	_	
bod6246		<0.01	<10	<10	<1	<10	5		
B386247		<0.01	<10	<10	2	<10	27		
B386251		<0.01	<10	<10	17	<10	59		
B386252		<0.01	<10	<10	10	<10	118		
B386253		<0.01	<10	<10	23	<10	28		
B386254		0.01	<10	<10	57	<10	176		
B386255		<0.01	<10	<10	20	<10	137		
B386256		<0.01	<10	<10	13	<10	31		
B386257		<0.01	<10	<10	11	<10	42		
B386258		<0.01	10	<10	58	<10	134		
B386259	1	<0.01	<10	<10	36	<10	46		
B386260		<0.01	10	<10	70	<10	77		
B386261		<0.01	<10	<10	5	<10	36		
8386262		<0.01	<10	<10	37	<10	95		
B386263		<0.01	<10	<10	12	<10	48		
B386264		<0.01	<10	<10	6	<10	29		
B386301		<0.01	<10	<10	142	<10	104		
B386302		<0.01	10	<10	91	<10	219		
B386303		<0.01	10	<10	54	<10	83		
36304		<0.01	20	<10	73	<10	83	÷	
		<0.01	<10	<10	35	<10	57		
B386306		<0.01	<10	<10	1	80	7		
B386307	•	<0.01	<10	<10	3	<10	66		
B386308		<0.01	<10	<10	5	<10	12		
B386309		<0.01	<10	<10	14	<10	96		
B386310		<0.01	<10	<10	13	<10	26		
B386311		<0.01	<10	<10	2	<10	2040	291	
B386312		<0.01	<10	<10	5	<10	21		
B386313		<0.01	10	<10	1	<10	27		
B386314		<0.01	<10	<10	6	<10	3		
B386315		<0.01	<10	<10	2	<10	13		
B386316		<0.01	<10	<10	2	<10	22		
B386317		<0.01	<10	<10	3	<10	17		
B386318		<0.01	<10	<10	1	<10	7		
B386319		<0.01	<10	<10	1	<10	22		

Comments: Additional Au assay values for sample B386253 are 1.760 and 1.435 ppm.



ALS

ALS Chemex

ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschernex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

-----**-**

er 11

Page: 4 - A Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

1

Project: Paget 2005

T

CERTIFICATE OF ANALYSIS VA05066021

T

· · ]

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	ME-ICP41 Ag ppm 0.2	ME-ICP41 Al % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1	ME-ICP41 Fe % 0.01
B386320 B386321 B386322 B386323 6324		1.66 1.64 1.40 2.16 1.74	<0.005 <0.005 0.048 0.014 0.251	0.2 <0.2 21.2 4.2 1.3	0.19 0.31 0.10 0.31 0.31	388 19 7 74 ≻10000	<10 <10 <10 <10 <10	10 210 40 80 40	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 <2 <2 <2 <2 <2	7.65 0.05 1.41 0.02 0.04	<0.5 <0.5 12.9 3.1 <0.5	4 1 1 8 3	6 1 8 9 5	22 4 343 349 16	7.78 2.66 0.87 4.05 2.60
							<b></b> ,									
		- - - -														
	-															
		- - -														
Commonto: Additional (				1	<del></del>											

1 To: PAGET RESOURCES ALS Chemex 2080-777 HORNBY STREET **EXCELLENCE IN ANALYTICAL CHEMISTRY** 

1

1

VANCOUVER BC V6Z 1S4

Page: 4 - B Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com

1

1

Project: Paget 2005

1

CERTIFICATE OF ANALYSIS VA05066021

1

1

1

1

1

Sample Description	Method Analyte Units LOR	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Ma ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Ръ ррт 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1	ME-ICP41 Sr ppm 1
B386320 B386321 B386322 B386323 6324		<10 <10 <10 <10 <10	1 <1 <1 <1 <1	0.02 0.15 0.05 0.16 0.13	<10 30 <10 <10 <10	2.14 0.01 0.03 0.06 0.05	1830 63 297 112 22	1 5 6 91 5	0.01 0.03 <0.01 0.01 <0.01	5 1 2 9 5	130 1140 160 440 350	25 22 290 616 13	8.85 0.28 0.16 2.47 1.58	5 <2 <2 3 239	3 1 <1 1 1	412 13 17 7 38



1

1

Т

]

ALS Canada Ltd.

1

ALS

ALS Chemex

EXCELLENCE IN ANALYTICAL CHEMISTRY ALS Canada Ltd.

212 Brooksbank Avenue North Vancouver BC V7J 2C1 Phone: 604 984 0221 Fax: 604 984 0218 www.alschemex.com To: PAGET RESOURCES 2080-777 HORNBY STREET VANCOUVER BC V6Z 1S4

1

** * ¶

• •

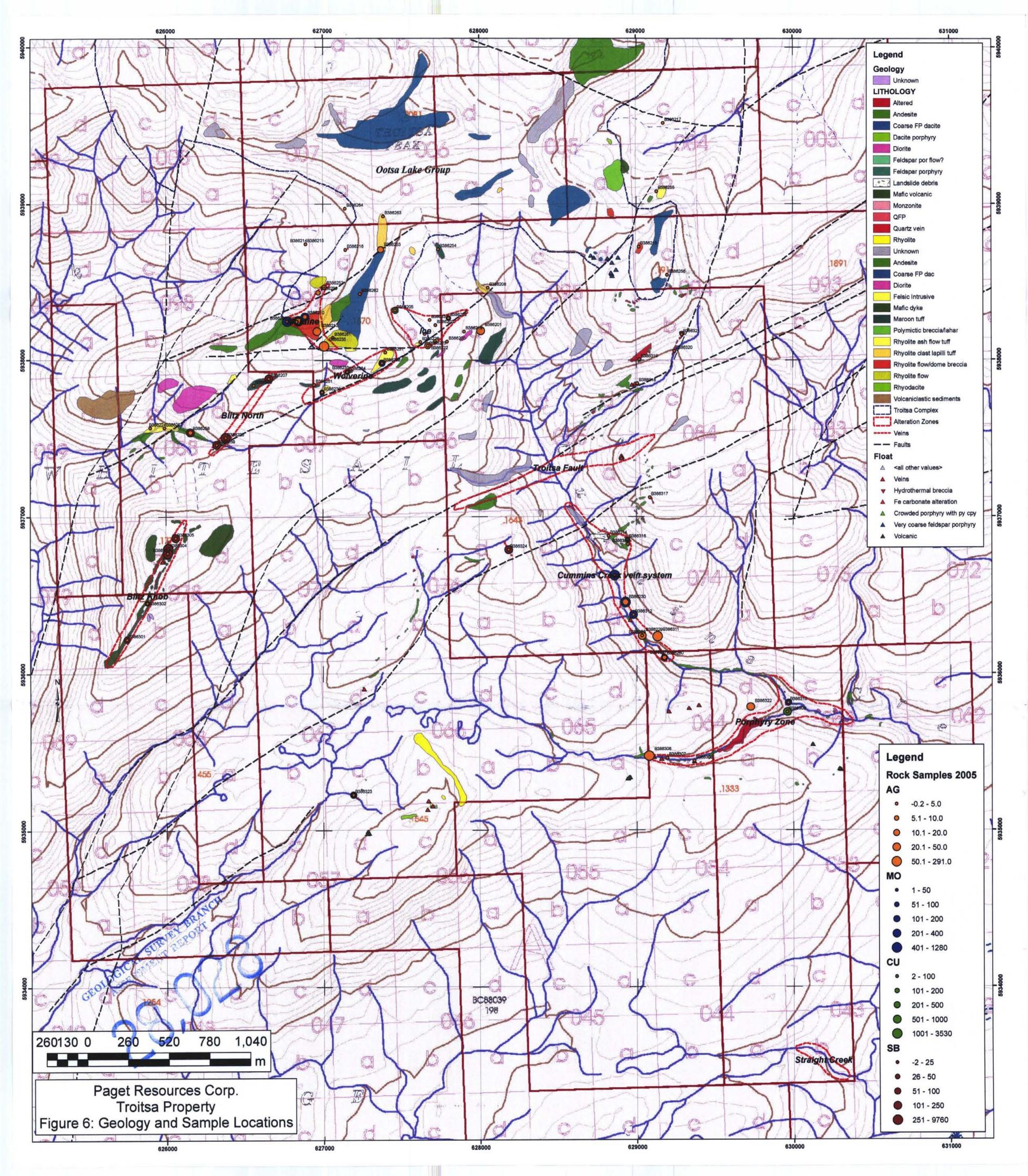
Э

> Page: 4 - C Total # Pages: 4 (A - C) Finalized Date: 25-AUG-2005 Account: PAGRES

1

ł

Project: Paget 2005


CERTIFICATE OF ANALYSIS VA05066021

•

1

1

Sample Description	Method Analyte Units LOR	ME-ICP41 Ti % 0.01	ME-ICP41 Ti ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag-AA46 Ag ppm 1	
B386320 B386321 B386322 B386323 6324		<0.01 <0.01 <0.01 <0.01 <0.01	<10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <10	23 5 4 6 5	<10 <10 <10 <10 <10 <10	27 12 166 150 13		
		-							
	:								

