

November 14, 2005

Table of Contents

#3,1++

-

-

,---

~

....

.....

.....

· · · ·

.....

....

....

....

1.0	Summ	ary	1
2.0	Proper	ty Description and Location	2
3.0	Access	s, Climate, Infrastructure, Physiography	2
4.0	Histor	y and Previous Work	4
5.0	Region	nal Geology	5
	5.1	Stratigraphy	5
	5.2	Intrusive Rocks	6
	5.3	Structure	7
6.0	Proper	ty Geology	8
7.0	2005 E	Exploration Program	10
	7.1	Geochemical Results	10
	7.2	Gold Geochemistry	11
	7.3	Silver Geochemistry	11
	7.4	Copper Geochemistry	11
	7.5	Lead Geochemistry	12
	7.6	Zinc Geochemistry	12
	7.7	Molybdenum, Tungsten, Antimony, Arsenic, Barium Geochem.	12
8.0	2005	Mineralization Summary	12
9.0	Summ	ary and Conclusions	15
9.0		mendations	15

List of Figures

after Page

1	Project Location Map	1
2	Claim Location Map	2
3	Historical Work	4
4	Regional Geology	7
5	Property Geology	9
6	2005 Rock Geochemistry; Sample Locations	10
7	2005 Rock Geochemistry; Gold ppb	11
8	2005 Rock Geochemistry; Silver ppm	11
9	2005 Rock Geochemistry; Copper ppm	11
10	2005 Rock Geochemistry; Lead ppm	12
11	2005 Rock Geochemistry; Zinc ppm	12
	2 3 4 5 6 7 8 9 10	 Claim Location Map Historical Work Regional Geology Property Geology 2005 Rock Geochemistry; Sample Locations 2005 Rock Geochemistry; Gold ppb 2005 Rock Geochemistry; Silver ppm 2005 Rock Geochemistry; Copper ppm 2005 Rock Geochemistry; Lead ppm

Page

List of Tables

After Page

Table I	Geochemical Highlights		1
Table II	Breccia Property; Claim Statu	s	2
Table III	Breccia-Claw Historical Work		4
Table IV	2004 Rock Sample Description	ns	10

List of Appendices

2005 Rock Assay Certificates
2005 Statement of Expenditures
Recommendations; Cost Estimate
Statement of Qualifications

Appendix V References

~ -

-

•----

.....

_• · •

er 94

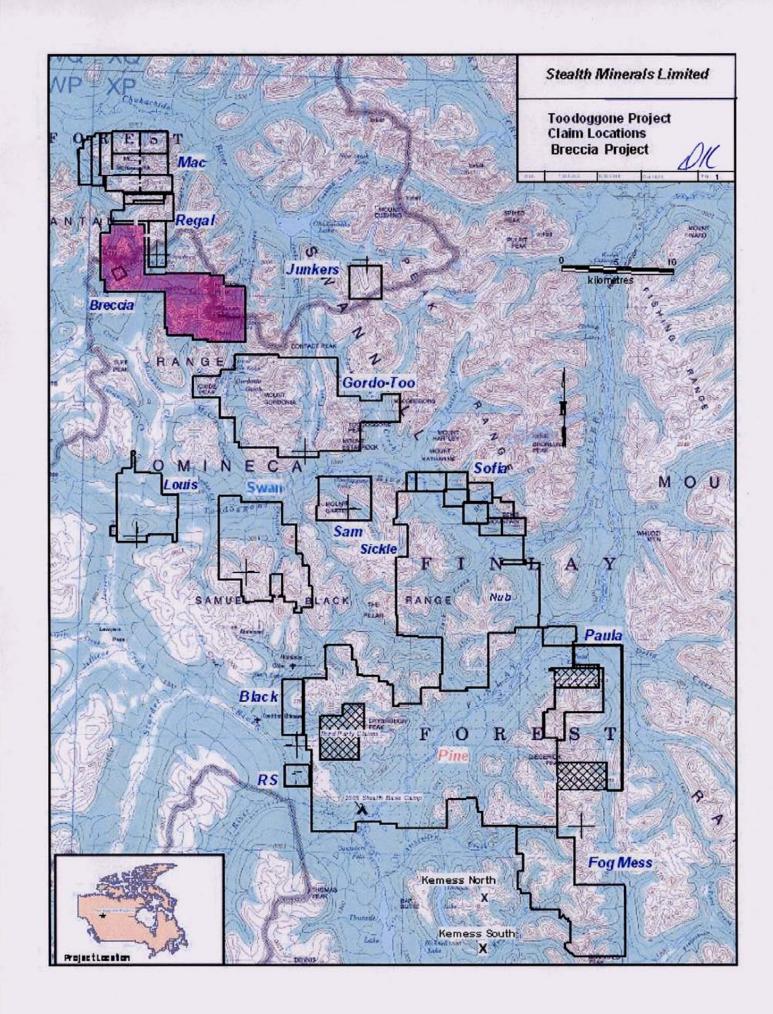
...

.....

...

.

1.0 Summary


The Breccia-Claw Claims are one of 10 properties explored as part of the 2005 program by Stealth Minerals on its Toodoggone Project. The Toodoggone Project is located in north central British Columbia approximately 430 kilometers northwest of Prince George (Figure 1). Stealth Minerals and its wholly owned subsidiary, Cascadero Copper, control 305 mineral claims (109,605 ha) in the Toodoggone District, Omineca and Liard Mining Divisions.

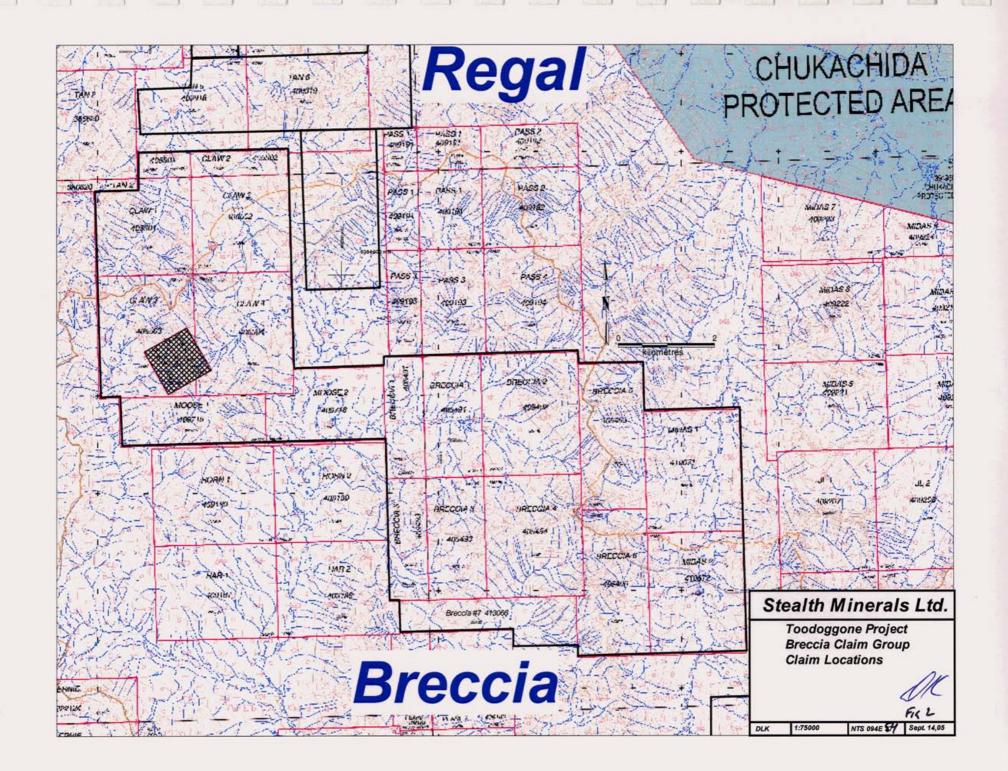
The subject of this report, the Breccia-Claw claims, are made up of the Breccia 1-7, Claw 1-4, Moose 1-2 and Midas 1-2. The Breccia-Claw Claim group consists of 15 contiguous mineral claims covering approximately 7125 ha (Figure 2). Stealth Minerals holds a 100% interest in the Breccia-Claw Claims.

Exploration during the 2005 season resulted in a total of 37 surface rock samples for geochemical analysis on the Breccia Claims as follow up 2004 results and further exploration of the large claim group. Geological mapping over a portion of the Breccia claims was completed at 1:20,000 scale.

Element	Rock Sample
Gold	820 ppb
Silver	90.5 ppm
Copper	12.8%
Lead	1.04%
Zinc	6.63%

Table I Geochemical Highlights

The Toodoggone district lies within the eastern margin of the Intermontane Tectonic Belt in the Stikinia and in part, the Quesnellia Terrane. These Terranes consist mainly of island-arc volcanic, plutonic and sedimentary rocks of Late Triassic to Early Jurassic age with a Lower Permian aged basement represented by the Asitka Group.


Granitoid members of the Jurassic Black Lake Intrusive Suite have intruded the Triassic and older rocks and are coeval with the Jurassic Volcanic rocks. Regional northnorthwest trending high-angle normal and strike-slip faults cut through the Toodoggone Project area and conjugate high-angle faults cut and displace northwest trending structures, and may control in part, intrusive and hydrothermal activity.

2.0 **Property Description and Location**

The Breccia-Claw claims are located 15 km north east of Alberts Hump, 8 km southwest of the Chuckachida Lake, straddling Moosehorn creek as it flows south from Moosehorn Lake (Figure 1). These claims are only accessibly by helicopter. The Midas 1 and 2 Claims are located in the Liard Mining Division UTM NAD 83 Zone 9 6,379,000m North and 613,000m East on map sheet 094E.055. The Moose 1-2, Claw 1-4 and Breccia 1-7 Claims are located in the **Omineca** Mining Division UTM NAD 83 Zone 9 6,381,000m North and 606,000m East on map sheets 094E.054 and 094E.055. The property consists of 15 mineral claims containing 285 units or as cell claims 7125 ha (Figure 2). Breccia-Claw claim information is summarized in Table II. The Claims have not been legally surveyed. The claims are owned 100% by Stealth Minerals.

3.0 Access, Climate, Infrastructure, Physiography

Access to a new Stealth Minerals main Exploration camp at the junction of the Finlay River and Firesteel River is currently by the all-weather Omineca Resource Access Road, approximately 410 kilometers north of Windy Point, B.C., to the Kemess Mine gate, and approximately 22 kilometers of summer access road to the camp. Travel time from

Stealth Minerals Limited

Table II Claim Status

Tenure Number	Claim Name	Owner	Map Number	Good To Date	Status	Mining Division	Area	Tag Number
405491	BRECCIA 1	140187 (100%)	094E055	2006/SEP/24	GOOD		500	245503
405492	BRECCIA 2	140187 (100%)	094E055	2006/SEP/24	GOOD	OMINECA	500	245504
405493	BRECCIA 3	140187 (100%)	094E055	2006/SEP/24	GOOD	OMINECA	500	245505
405494	BRECCIA 4	140187 (100%)	094E055	2006/SEP/24	GOOD	OMINECA	500	245506
405495	BRECCIA 5	140187 (100%)	094E055	2006/SEP/24	GOOD	OMINECA	450	204874
405496	BRECCIA 6	140187 (100%)	094E055	2006/SEP/24	GOOD	OMINECA	450	204875
413066	BRECCIA #7	140187 (100%)	094E054	2007/SEP/24	GOOD	OMINECA	400	246522
405501	CLAW 1	140187 (100%)	094E054	2006/SEP/24	GOOD	OMINECA	500	115967
405502	CLAW 2	140187 (100%)	094E054	2006/SEP/24	GOOD	OMINECA	500	117249
405503	CLAW 3	140187 (100%)	094E054	2006/SEP/24	GOOD	OMINECA	500	229737
405504	CLAW 4	140187 (100%)	094E054	2006/SEP/24	GOOD	OMINECA	500	229738
409715	MOOSE 1	140187 (100%)	094E054	2007/SEP/24	GOOD	OMINECA	450	245388
409716	MOOSE 2	140187 (100%)	094E054	2007/SEP/24	GOOD	OMINECA	375	245389
410671	MIDAS 1	140187 (100%)	094E055	2007/SEP/24	GOOD	LIARD	500	243852
410672	MIDAS 2	140187 (100%)	094E055	2007/SEP/24	GOOD	LIARD	500	243854
						Total	7125	Ha

1

j

Prince George is approximately 10 hours, or 7 hours from Mackenzie. Access to the Breccia-Claw Property is via helicopter north from the Stealth camp, a distance of 46 km which represents a 35-45 minute flight. An 8 person temporary camp was constructed during the 2004 season on the Gordo property, located 5km south-east of the Breccia-Claw claims which represents only a 5 minute helicopter flight. The southwest boundary of the Breccia Claim is 5 km northeast of the road to Alberts Hump. Future road access could be developed to the Breccia-Claw claims via this route. Airstrips are in place at the Kemess South Mine and Sturdee Valley approximately 20 and 30 kilometres south and north, respectively of the Stealth camp.

A new access road connecting with the deep-sea port of Stewart is proposed, and would significantly reduce future costs associated with development and operation of new mining ventures in the Toodoggone. Dominant economic products from the Toodoggone district are gold and silver, and more recently copper-gold concentrate.

The Breccia-Claw claims cover an area of mountainous terrain of moderate relief ranging from 1400 m ASL in the central north-south Moosehorn valley to 2200m ASL on the main Claw, Harmon and Breccia peaks located on either side of this valley. The central, south flowing stream follows an alpine glacial valley and is covered by variable till covered by talus slides at higher elevations. Vegetation ranges from wide spaced Jack pine and spruce in the valley bottom through stunted balsam and willows at tree line at 1500m to barren rock with patchy balsam and sedges at higher elevation.

Seasonal temperatures vary from -35° C in winter and over 30° during the 4 months of summer. The mean daily temperatures for July and January are approximately 14° C and -15° to -20° C, respectively. Precipitation between 50 and 75 centimeters occurs annually, with most during the winter months as snow cover of approximately 2 meters. The optimal time for surface exploration on the Breccia-Claw property is between mid-late June and mid-October.

4.0 History and Previous Work

The Breccia-Claw Property is located in the northwest portion of Stealth Mineral's Toodoggone Project. Figure 3 shows the locations of the recorded historical assessment reports and Minfile occurrences within the claim group. Table III lists the reports and summarizes past work on Figure 3. Mineral exploration in the Toodoggone area dates back to the early 1930's when high-grade gold veins were discovered. The remoteness and fixed gold prices made these prospects uneconomic at that time. In the late 1960's copper and gold were sought after commodities and exploration in the district led to the eventual discovery of the past producing Lawyers, Baker and Shasta low sulphidation epithermal style vein deposits in the 1980s. The Kemess South porphyry gold copper deposit is in production at a nominal 50,000 tonnes per day rate.

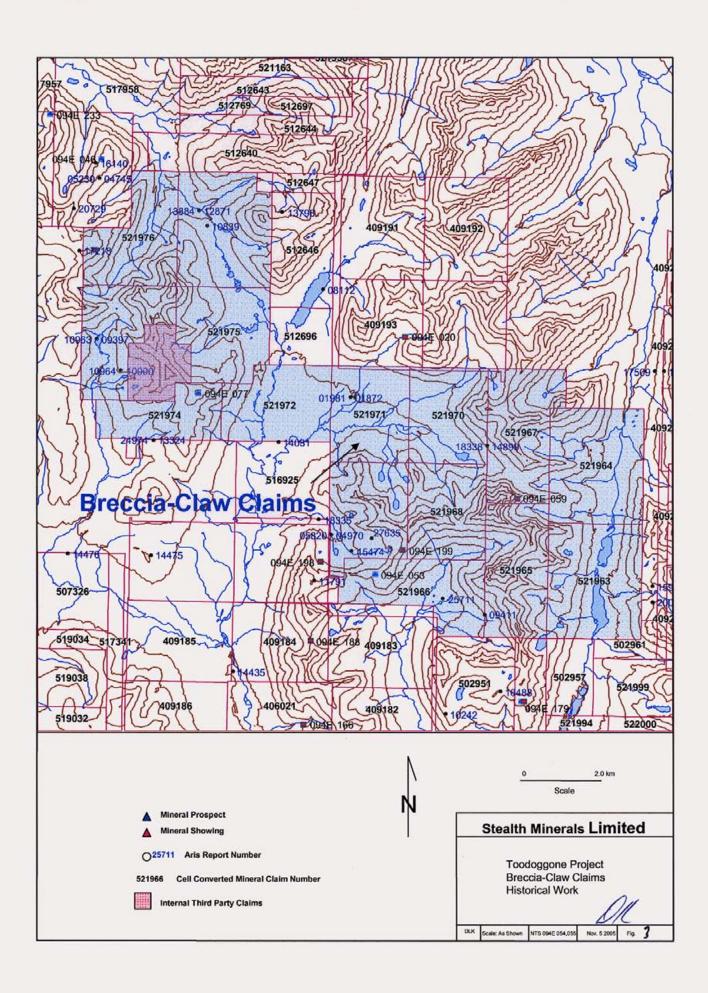
Exploration on the area covered by the Breccia-Claw claims has been the subject of several exploration efforts between 1968 and 1996 prior the 2005 Stealth program. Government records indicate that in the order of \$368,600 has been spent on the claim areas. These exploration activities have identified several mineralized areas, as seven Minfile occurrences are located on the claims (Figure 3). Historical discoveries include a 1.0m quartz-carbonate stockwork in the drill core in the Golden Lion (Minfile 094E 077) returning up to 4.11 gpt Au and 629.69 gpt Ag. Drilling returned up to 1.1 gpt Au/48 m. The Golden Lion is located near the western boundary of the Claw claims and remains the only drilling conducted in the claim area. A malachite stained quartz vein on the Yellow Dog (Minfile 094E 041) showing reported 50 gpt Au and 84 gpt Ag. The Gord Davies East (Minfile 094E 199) and Gord Davies West (Minfile 094E 198) showings as well as the Har (Minfile 094E 053) prospect all located in the southwestern corner of the Breccia 7 claim are Au, Ag, Pb, Zn mineralized quartz-carbonate±barite veins. Historical work on the Har quartz-carbonate vein recovered 20.5gpt Au. The Gord Davies East quartz-carbonate vein over 0.2m recovered 1.05gpt Au and 19.5gpt Ag. A 0.2-1.0m wide siliceous zone on the Gord Davies west showing recovered 5.14gpt Ag and 0.137gpt Au.

;

· :

Table III Historical Work

		l		Table III Historical Work I	Braccia-Claw Property			
			· ··· - -·			1	•	
Aris Rpt #	Year	Property	Operator	Author	Title	Work Type	Minfile No	CostYr\$
18335	1989	Gord Davis	Western Horizons Resources Ltd.	Gower, S.	Geological and Geochemical Report on the Gord Davies 1 Group	Geo, Geoch	094E 053	\$15,250.00
15474	1987	Gord Davis	Western Horizons Resources Ltd.			Geoch	094E 053	\$9,774.00
5820	1975	Har	Kennco Explorations (Canada) Limi	Ryback-Hardy, V.	Geochemical report on the Har claim group, Toodoggone River area	Geoch		\$800.00
4970	1973	Har	Conwest Exploration Company Limi	Stevenson, R.; Gower, S.	Geochemical report on the Har claim group, Moosehorn creek, Toodoggone Area	Geoch	;	
18338	1989	Bear	Cove Energy Corporation	Adamec, D.	Geochemical Report on the Eagle, Bear and Cougar Claims	Geo, Geoch	• • • • • • • • • • • • • • • • • • • •	\$31,055.95
14899	1986		Cove Energy Corporation	Crocker, G.		Geophys		Same as 18338
8112	1979	Moose	Young, Seamus	Reinke, D.	Prospecting Report of the Moose #1-4 Claims, East of Moosehom Lake	Geoch, Pros		\$9,138.00
13324	1984	Golden Lion	Newmont Ex. of Can.	McLaren, G.	· · · · · · · · · · · · · · · · · · ·	Drilling, Geoch	094E 077	Same as 24974
11330	1983	Golden Lion	Newmont Ex. of Can.	MLimion, H.; Leask, D.	i	Geophys, Physical	L,	\$35,678.00
10900	1982	Golden Lion	Newmont Ex. of Can.	Visagie, D.		Geoch, Geo, Geophys	Trench	Same as 11330
1981	1969	Harmon Peak	Kennco Explorations (Canada) Limi	Bell, R.; Fountain, D.	Report on the Induced Polarization & Resistivity Survey on the Harmon Peak Property	Geophys		\$2,800.00
1872	1968	Harmon	Kennco Explorations (Canada) Limi	Stevenson, R.	Geochmeical Report on Harmon No. 1 and No.2 Groups, Chukachida Lake, BC	Geoch		Same as 1981
17218	1988	Expeditor	Expeditor Resource Group Ltd	Adamec, D.	Geological, Geochemical and Geophysical Report on the Expeditor Resource Group Claims	Geoch, Geo, Geophys		\$81,025.00
10963	1982	Adoo, Chuck	Newmont Ex. of Can.	Visagie, D.		Geoch, Geo, Geophys	·	\$10,066.00
10839	1981	QBQ	Golden Rule Resources Ltd.	Fox, M.		Geoch, Geo	•	\$22,950.00
24974	1996	Golden Lion	Entourage Mining Ltd.	Poloni, J.	Geological, Geophysical, Rock Sampling & Prospecting Report on the Lion, Age and Ent Claims	Geo, Geophys, Physic	094E 077	\$85,085.55
9411	. 1981	i	Serem	Came, J.; Crawford, S.	· · · · · · · · · · · · · · · · · · ·	Geoch, Geo	 	\$8,279.00
27635	2004	Claw-Breccia	Stealth Minerals Ltd	Kuran D, Barrios, A	Geochemical Report on th Claw-Breccia Claims	Props,Geochem	•	\$56,696.00
	·				1 +		1	
	†					Total \$ in year of expe	ndature	\$368,597.50
Minfile #	Names	Status	Commodities	Deposit Type	Comments	Location	Mining Division	
094E 053	Har	Prospect	Pb, Zn, Au, Ag, Cu	Vein	Qtz-Carb vein 20.57gpt Ag	6376863N 608071E	Omineca	
094E 199	Gord Davies (east)	Showing	Au, Ag, Pb	Vein	0.2m Qtz-Carb vein 1.05gpt Au, 19.5gpt Ag	6377467N 608704E	Omineca	
094E 198	Gord Davies (west)	Showing	Au, Ag, Pb, Zn	Vein	0.2-1.0m wide siliceous zone; 5.14gpt Ag, 0.137gpt Au	6377106N 606750E	Omineca	off claim??
094E 059	Stone, Eagle, Cougar	Showing	Au, Ag, Cu	Porphyry Cu ± Mo ± Au	Malachite stained fractures; 2.4gpt Au, 3.2gpt Au, 1.79%Cu	6378839N 611379E	Omineca	
094E 077	Golden Lion	Showing	Au, Ag, Zn, Pb, Cu	Epi Vein	1m drill core qtz-carb stockwork 529.59gpt Ag, 4.11gpt Au	6381048N 603670E	Omineca	•
094E 020	Moose, Harmon, Bear, Cougar	Showing	Cu	Porphyry Cu ± Mo ± Au	Malachite, Azurite staining; 0.36%Cu, 2.7gpt Ag	6382630N 608549E	Omineca	
094E 041	Yellow Dog	Showing	Au, Ag	, <u>+</u>	Malachite stained qtz vein; 50gpt Au, 84gpt Ag	6384416N 601025E	Liard	
		•		• •	· · · · · · · · · · · · · · · · · · ·	1		•
	1	I		,	· • • • • • • • • • • • • • • • • • • •	1		
	i	• •		, 				,
		·			÷			
				: ;	· · · · · · · · · · · · · · · · · · ·			,
								t


Nov.5 05

.

1

ł

]

Exploration by Stealth Minerals in 2004 discovered new extensions to the Gord Davies veins which returned up to 82.67 gpt Au

5.0 Regional Geology

The Toodoggone project area lies within the eastern margin of the Intermontane Tectonic Belt (Figure 4). The Intermontane Belt is made up of four unique Terranes and the project areas lay within the Stikinia and, in part the Quesnellia Terranes. The Stikinia and Quesnellia Terranes consist mainly of island-arc volcanic, plutonic and sedimentary rocks of Late Triassic to Early Jurassic age with a Lower Permian basement represented by the Asitka Group (Diakow and Metcalfe, 1997). To the east older metamorphosed Precambrian and younger strata (clastic and chemical sedimentary rocks) of the Cassiar Terrane (Omineca Belt) is separated from the Intermontane Belt by a regional system of transcurrent faults (Diakow, Panteleyev and Schroeter, 1993). The Toodoggone regional geology is shown on Figure 4, being taken from the BCDM web site MapPlace. As seen, the Toodoggone area consists of a series on NW trending volcanic belts some 90 km long and 40 km wide. The stratigraphy is fairly monoclinal with generally NW striking shallowly west dipping upright stratigraphy and therefore youngs to the west. This NW trend is common to the faulting, stratigraphy, plutonism, major mineralizing events and accreting of terrains implies major crustal activity along this trend. Overlying younger stratigraphic intervals such as the Sustut Group of conglomerates and sediments covered the then mineralized and altered Jurassic volcanics and plutons, therefore protecting them from erosion and glaciations. This results in whole mineralizing sequences ranging from the causative gold-copper porphyry systems up through the undeformed stratigraphy which hosts the upwardly evolving low to high sulphidation epithermal systems with their attendant clay rich alteration caps still intact

5.1 Stratigraphy

Lithology in the Toodoggone area are Permian to Cretaceous in age and are comprised, in order from oldest to youngest, of Asitka Group, Stuhini Group, Toodoggone Formation and Sustut Group (Diakow and Metcalfe, 1997).

Lower Permian aged rocks of the Asitka Group consist of andesite, dacite and rhyolite volcanic rocks with locally prominent sections of inter-bedded marine sedimentary rocks consisting of limestone and chert at the top of the section (Diakow, pers comm., 2003). These rocks may reflect a submergent island arc sequence.

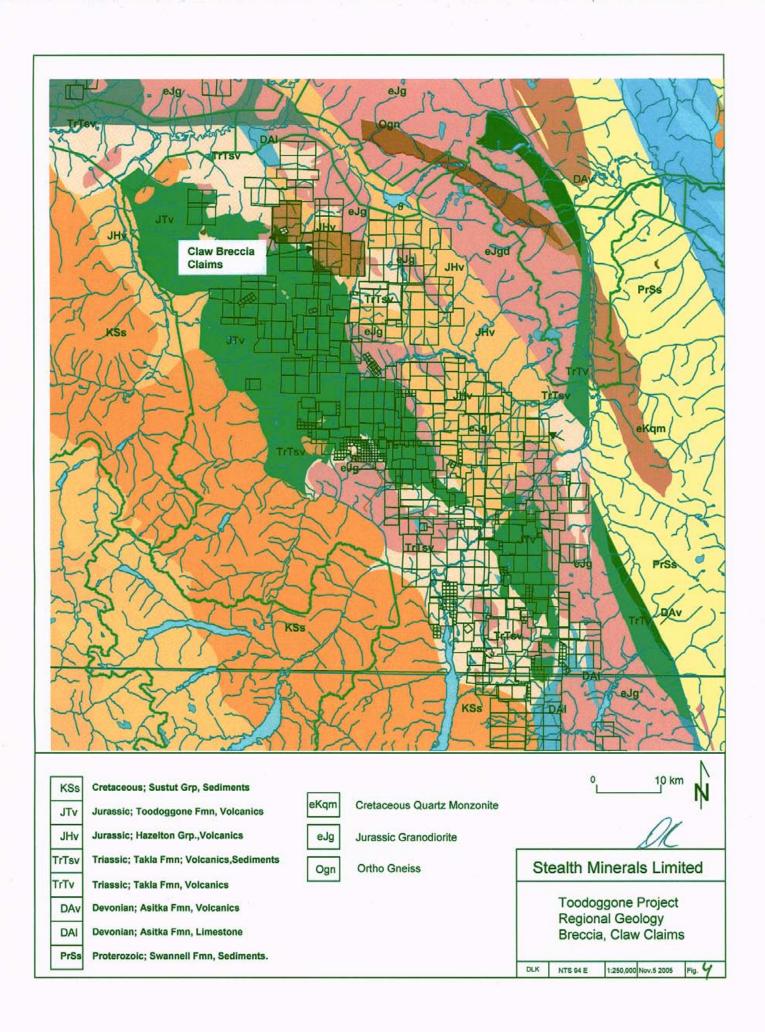
Upper Triassic rocks of the Stuhini Group (also referred to as Takla Group) unconformably overlie the Asitka Group. Stuhini Group rocks are more widespread and characterized by clinopyroxine-bearing basalt, andesite, and associated epiclastic rocks, and locally appear similar to Paleozoic rocks. These rocks may reflect an emergent submarine to sub aerial island arc sequence. Locally, Lower Jurassic Toodoggone Formation (Hazelton Group) volcanic fragmental rocks of dacite-andesite composition lie in non-erosional, gently dipping unconformity with Stuhini Group rocks.

Minor basalt lava flows and rare rhyolite flows and breccias occur in the Toodoggone Formation (Diakow, 2004 pers comm.). Bi-modal volcanism is associated with lowsulphidation epithermal gold-silver deposits on a worldwide scale; however its relationship with the Toodoggone epithermal deposits remains unclear.

Upper Cretaceous Sustut Group consists of conglomerates, sandstones and siltstones with minor felsic tuff and occurs in unconformable contact with Takla/Stuhini and Hazelton Group rocks.

5.2 Intrusive Rocks

Early-middle Jurassic Black Lake Intrusive Suite calc-alkaline plutons are apparently coeval with the Toodoggone Formation volcanic rocks and development of an elongated

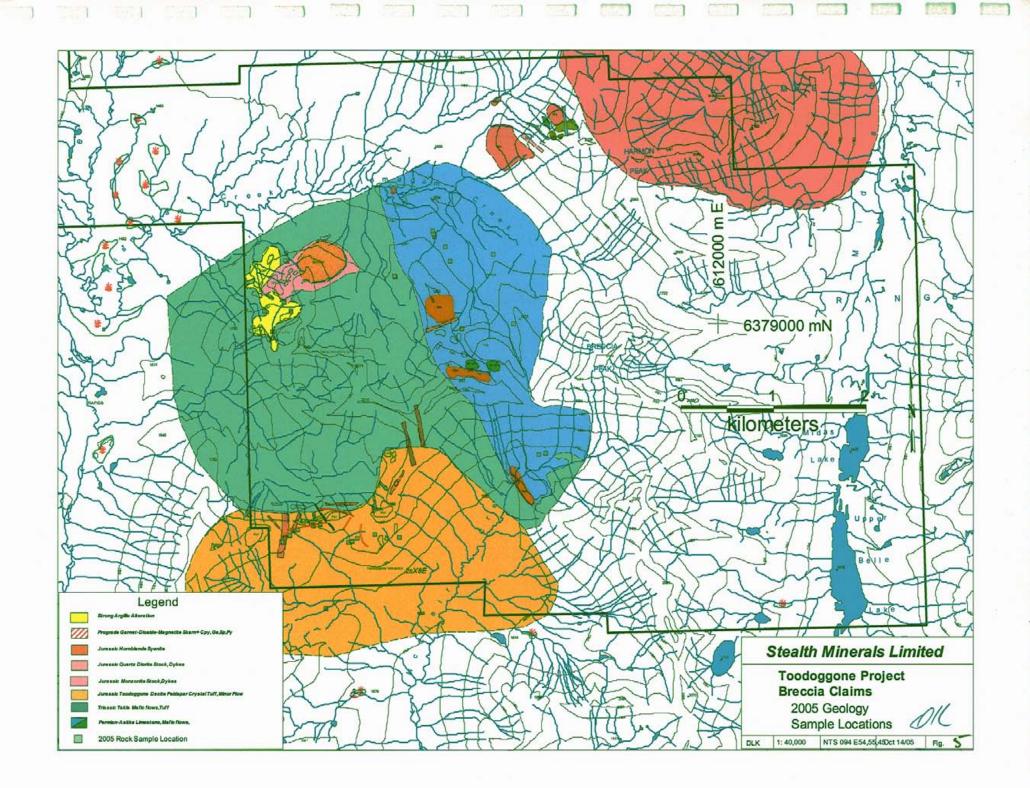

volcano-tectonic depression that is endowed with numerous precious metal-bearing occurrences (Diakow and Metcalfe, 1997). The composite Black Lake Intrusive Suite is generally medium grained and grades from granodiorite to quartz monzonite. This intrusive suite includes the Black Lake pluton (granodiorite to quartz monzonite, diorite), Geigerich/Duncan Lake plutons (hornblende-biotite granodiorite, monzonite, quartz monzonite, quartz diorite) and Sovereign pluton (quartz-hornblende-biotitegranodiorite/tonalite). Dykes and dyke swarms of quartz monzonite are locally proximal to and associated with copper-gold mineralization as at the Brenda occurrence. These dyke sets are usually following the NW trending structural breaks that trace several of the mineralizing events within the Toodoggone Camp. Dikes and sills of trachyandesite to latite and minor basalt cut previous lithology. Late Triassic Alaska-type ultramafic intrusions were regionally mapped east of Kemess North and possible occurrences southwest of the Mex prospect as well as on the Pil prospects located northwest of the main Stealth Camp.

5.3 Structure

A system of high-angle normal and possibly contraction faults trend between 120 degrees and 150 degrees in azimuth and occurs locally with secondary faults trending from 20 to 40 degrees, and 60 to 80 degrees in azimuth. These structures may impart primary control of high-level co-magmatic plutons and deposition of the Toodoggone Formation rocks.

Regional-scale, northwest trending structures include the Saunders, Wrich, Black and Pil faults that cut the Toodoggone Project area, and occur over a distances of more than 80 kilometres. Parallel faults also display dip-slip movement, locally placing Stuhini Group in contact with Toodoggone Formation as at Kemess North (Diakow, 1997) and Asitka Group rocks adjacent to intrusive plutons.

Northeasterly trending high angle faults cut and displace northwest trending structures, tilting and rotating monoclinal strata (Diakow, 1986). The presence of high level


epithermal mineralization at Goat-Wrich Hill, and at the Electrum prospect at substantially lower elevations to the north, may suggest a post-mineral, north side down displacement along a northeast trending fault system in the Finlay River valley (Blann, 2001). North trending, right-lateral strike slip faults are prominent along the eastern margin of the Geigerich Pluton, and are Cretaceous and Early Tertiary in age; these faults may cut Toodoggone aged and older rocks to the west.

6.0 Property Geology

The central part of the Breccia claims was mapped at a scale of 1:20,000 in 2005 (Figure 5). The Breccia claims are underlain by volcanic and sedimentary rocks of the Asitka, Takla and Hazelton-Toodoggone groups. A small area of granitic rocks underlies the northeastern part of the claims, and dykes are common, but not abundant. A previously unmapped diorite-syenite intrusive complex was located in the northern portion of the claims where it intrudes mafic volcanic flows of the Triassic Takla Group of marine volcanics. The Takla volcanics overly a thick section of Permian aged Asitka Group limestone with lesser mafic flows and skarns. Jurassic Toodoggone volcanic rocks are found in the southwest portion of the claims near the Gord Davies showing. The geologic section on the Breccia claims is represented by a generally northwesterly striking, southwesterly dipping structural panel with the oldest stratified and granitic

rocks underlying the eastern part of the claims.

The presence of the Asitka group is documented by two, northwesterly trending, 0-500m thick lenses of limestone exposed in the central and southeastern part of the claims. The internal structure of the limestone varies from thick bedded (>20 m) to laminated, thin-bedded units, commonly with lenses and layers of fine white, grey to black chert. Locally, large blocks of limestone breccia were noted, possibly representing slump blocks. Interbeds of greenstone volcanic were noted at the base, and were noted to occur below the limestone. Prograde diopside-garnet-marble skarns and iron gossans occur widely within the carbonate unit. Skarns are variable mineralized by pyrite, chalcopyrite, sphalerite and galena. Gossanous zones are up to 60x100m and contain local fracture

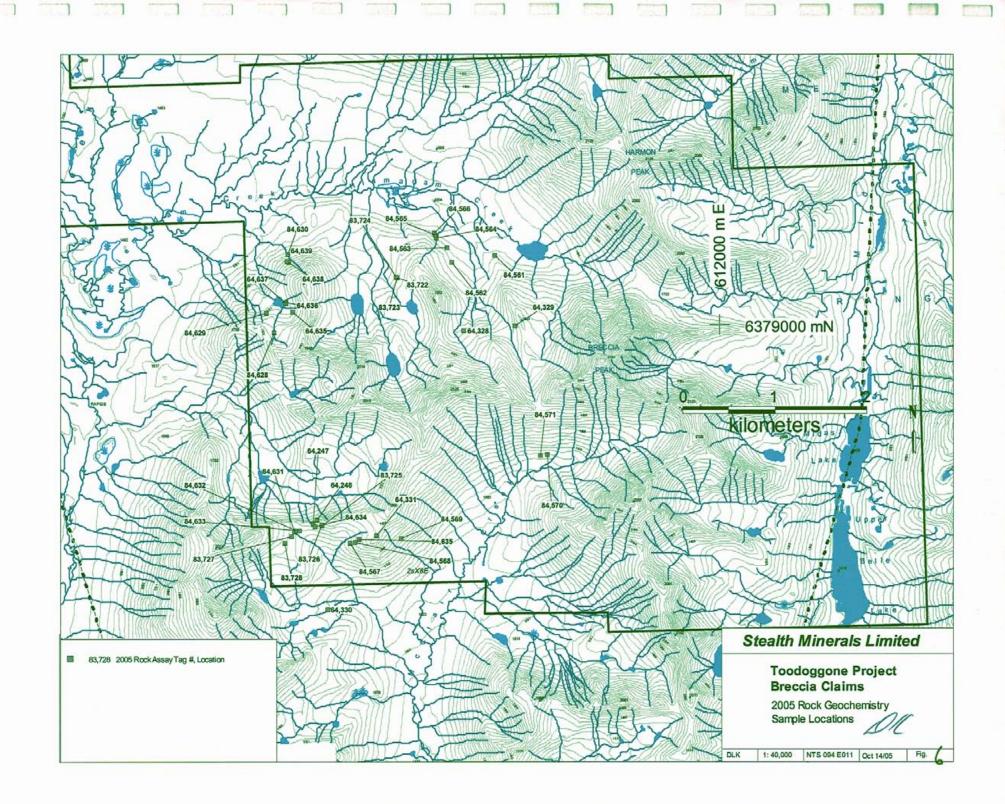
intersections or pods of high grade sulphide mineralization. The gold content is usually low, in the order of 100-300 ppb Au, although galena rich specimens may contain up to 90 gpt silver.

Flow banded rhyolite with andesitic/basaltic fine-grained volcanics were noted to the east towards Belle Lakes, underlying the limestone units. The Takla Group, of unknown thickness overlies the Asitka and its presence was indicated by dark green volcanic rocks with augite phenocrysts and proximal float of bladed feldspar porphyry. In the central portion of the Breccia 1 claim, south of Hiamadam Creek a newly mapped diorite-syenite intrusive complex was mapped. A 500-600m diameter plug of coarse grained, orange weathering, weakly hornblende porphyritic syenite with steep intrusive contact margins is seen intruding the surrounding fine –medium grained quartz diorite. A strong propyllitic alteration halo extends up to 200 m out from the diorite into the Takla volcanics and is surrounded on the west by a strong argillic alteration assemblage consisting of quartz-sericite and disseminated and fracture controlled pyrite. No

The western to south-western part of the Breccia claim is underlain by andesite and dacite fine to medium grained lapilli tuffs of the Hazelton-Toodoggone group. The Gord Davies structurally controlled epithermal quartz-carbonate-barite veins carrying galena, chalcopyrite and sphalerite with high grade gold and silver values lies at the flat southwest dipping Takla Toodoggone contact. The veins may occupy a flat fault or sheared contact as it dips shallower than the south slope of the hill and outcrops and subcrops along its strike on the south facing slope. Sampling in 2004 returned up to 83 gpt Au from the down dip sub cropping exposure. Due to the flat dip, the vein was traced around the hill to the southeast where several float samples were taken from silica/base metal vein style mineralization which returned up to 840 ppb Au.

Granodiorite and quartz monzonite intrude hornfelsed volcanics in the northeast part of the claims. Dykes of pink monzonite and quartz monzonite feldspar-biotite porphyry cut all the units and are more common in the eastern part of the claims. Dykes of monzonite porphyry cut the limestone. Many of these dykes trend northwesterly.

7.0 2005 Exploration Program


The 2005 field program completed on the Breccia claims by Stealth Minerals consisted of rock sampling and mapping sampling by prospectors and geologists for a total of 20 man A statement of expenditures for the 2005 field program is summarized in days. Appendix I. A total of 37 surface rock samples were taken as float or outcrop samples so as to represent the mineralization encountered during each traverse. Each sample was placed in a plastic sample bag with a unique assay tag number. The sample site was flagged with the corresponding assay sample tag number and the location recorded by hand held GPS units. A representative hand sample was also taken and retained at the main camp as a further check when an assay for that sample was received. Samples were sorted and bagged in the field camp and flown to the main camp where they were securely stored and shipped by Canadian Freightways from main camp to Kamloops once per week. The helicopter supported field crew was based in the Gordo Fly Camp located 15 km to the southeast of the 2005 work area on the Breccia claims. Interior Helicopters of Ft. St. James was contracted to complete the flying utilizing a Bell 206 helicopter. Logistics and supplies were run out of the main Stealth Minerals main road accessible camp on the Finlay River.

7.1 Geochemical Results

The rock samples were ground shipped to Eco Teck Labs of Kamloops, BC for geochemical analysis. Analysis for gold in rock chips was by 15 gram fire assay followed by atomic absorption reading finish. Silver and the values of 29 other elements were determined by analyzing a 0.5gram sample by dissolving it in aqua regia and determinations read via ICP-MS technology. Standards and duplicates were inserted at the lab and any deviation from acceptable analytical error resulted in the whole batch being re-assayed from a new split. Geochemical overlimits were resplit and wet assayed for exact values. Figure 6 shows the location and sample number of all rock samples from the Breccia property taken in 2005. The rock geochemical results for Au, Ag, Cu, Pb, Zn and Ba are shown in Figures 7-11. Sample rock descriptions and abbreviated assay

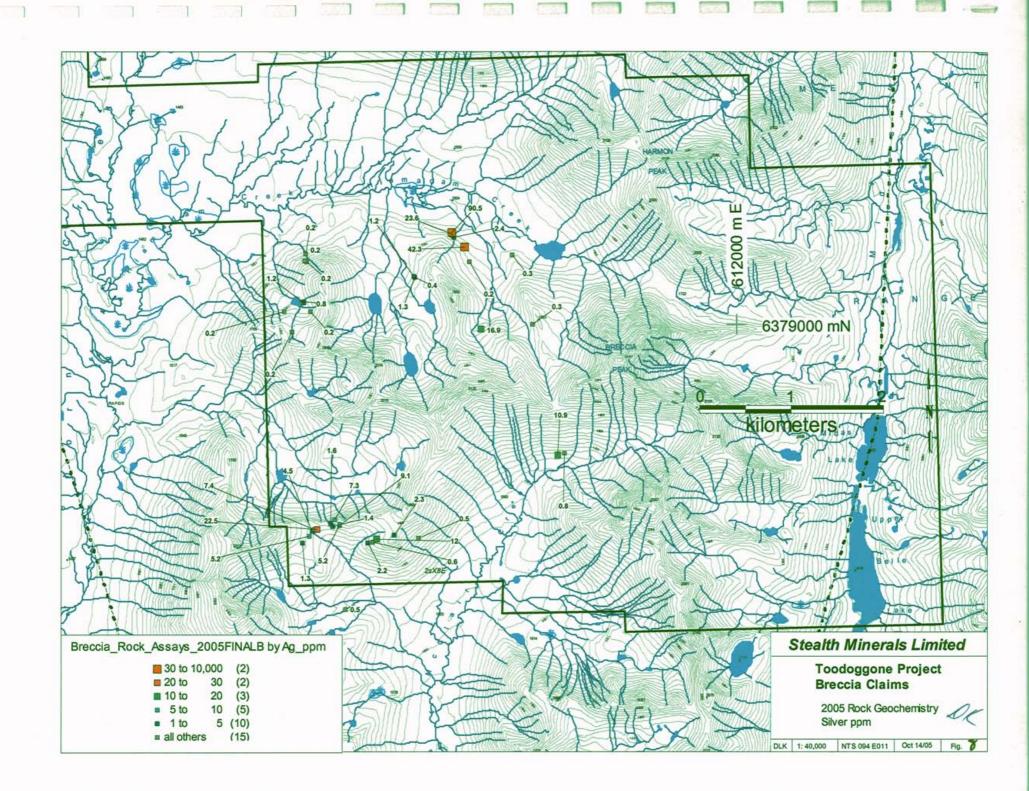
Table IV 2005 rock Descriptions

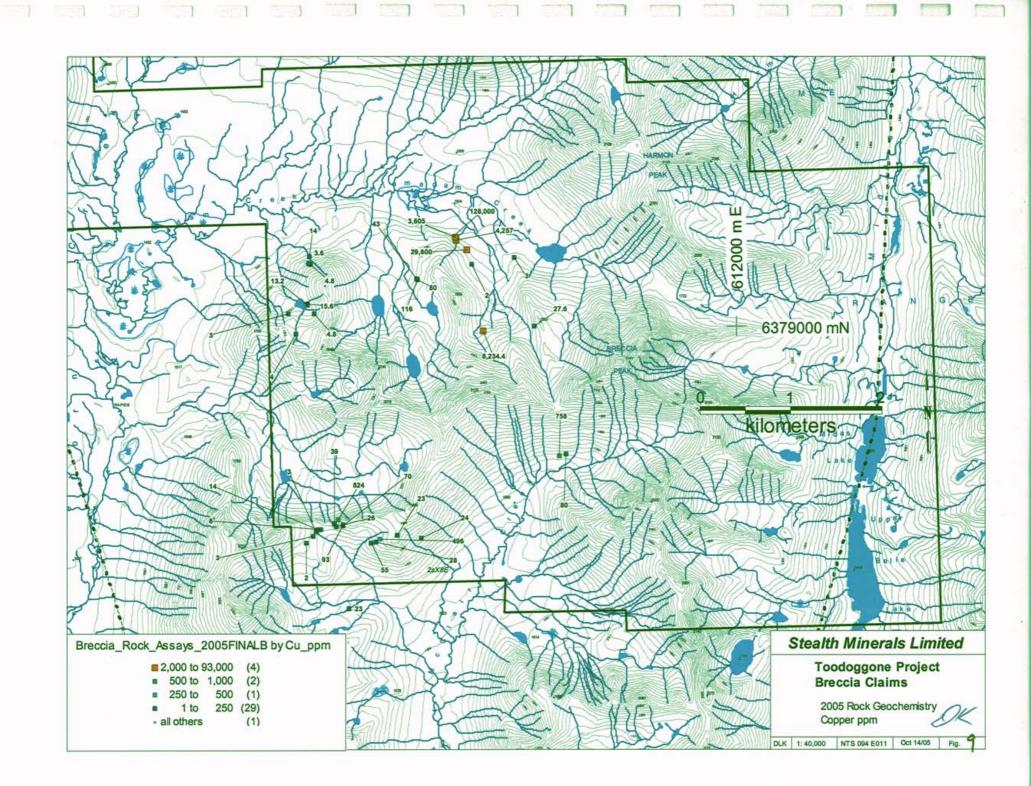
un .	Sample #	UTHE		Area	Spl Type	Ingth	Rock Type	Calour	Tavt 1	Text 2	Altra 1	Occur	Mio/%	Comments	Me ppm	Cuppm	Pb.ppm	Zn ppm	Ag pom	Fe %	As pom	Be pom	Au ppb
	64328	609261	6378950	Breccia	арн тү ре а	, Lugui .	THE PARTY PROPERTY PROFESSION		fa fa	NO NO	si Im	occur	2 Cov	Siliceous pod or pinched very exposed on N face of O/c.	40	8234	168		16.9	10.00	5	25	170
	64329	609820	6379003	Breccia	2 2	•		R.	:ла :лю	Dery	su kn	Derv	3 Pv	Bleached silicaous tuff, with trace diss Py from 25x75m gossen.	3	28	18		23	1.97	5	30	5
Gary	64247	.607629	6376844	Breccia	ac.	3m zone	2dogg	blk.rd.or		ma	51	diss	4 py,mT	Silver py might be pyrrhotite	5	39	504	678	16	5 96	55	35	20
Gary	64248	607674	6376867	Breccia	80	2m	atz carb yn		fa		si.caro	wk diss		right at the loo of the ridge. Few other larger boulders around	2	824	2816	1700	7.3	0.01	10	25	165
Lester	84628	607207	6376927	Breccia	0	1.5 m	fids p		1a		-,	1		bieached volcanic by	2	4	16	89	5.2	4.85	5	165	5
Lesie	84629	607123	6379141	Breccia	f			vo	-1				20	sulphides		3	26	54	0.2	5.29	5	55	5
Lesier	84630	607354	6379775	Breccia	r.			ov				1		smoky ctz banded	4	14	2	·7	0.2	0 57	5	65	5
Lesier	84631	607428	6376760	Breccia	c	50 cm	Qtz	wt				vn		qiz cerb		3	26	46	4.5	1.93	5	1665	-5
Lesle	84632	507454	6376778	Breccia	c	40 cm	Otz	wi				งก		gtz carb		14	74	55	7.4	0.67	5	1450	5
Lester	84633	607477	6376778	Breccia	c	70 cm	Qtz	wt				vn		qtz carp	4	6	36	35	22.5	1.32	5	1530	5
Lesie	84634	507649	6376812	Breccia	f		Qtz	wt				vn		minor galena barte	2	26	2238	110	14	0.25	5	1.95	460
Lester	84635	508132	6376677	Breccia	f	1	1		fg	shear				gtz carb sphl, mai	13	496	8196	10700	12	0.01	10	750	110
Pet	64635	507408	6379:51	Bx	g		and	gy	ng		prop, arg		3-5 py	near spherhtic dhy contact	1	5	14	182	0.2	5 64	15	25	5
Pat	64636	607329	6379249	Bx	f		and	97	τış	vugg	arg.si	Qz Bx	lim		1	16	12	65	0.8	3.18	30	85	15
Pet	64637	607333	:6379248	Bx	f		Intrusive dio	яv	TIG,VUGS	fcl	ргар	8x Oz vn s	5 py	dissipy.py on fots	1	13	20	83	1.2	5 82	45	30	30
Pat	64638	507365	6379687	8×	r		do	gy,wh.yo	тg	fol, vugg	arg,si	Gz vnis	3-5 pv	ja, in	51	5	16	21	02	5.08	5	105	10
Pat	64639	607345	6379693	Bx	c		dio	gry, yo	тıg		py_r		5-10% py	patay sheared dio	14	4	10	6	02	301	20	25	25
Ron	83722	608536	6379516	Breccia	chip	.75m	fids p	gy.gn					py 5	rusly ir opy	6	80	598	176	04	6 52	5	80	5
Ron	83723	608540	6379521	Breccia	talus		fkds p	gy,gh					py 1	irusiy tricpy, triba	7	116	1.20	460	13	7 32	5	70	5
Ron	83724	608528	6379527	Breccia	6C		fids p	gy,gn	i				py 2	rusty triga	8	43	3'42	81	1.2	6 4 5	35	65	5
Ran	63725	507726	6376830	Gord Dav-es	sc			¥	msv	vn		vn	ga 1	qtz cc-baj ir ça	1	70	2418	2265	91	· 33	5	425	50
Ron	63726	607729	6376833	Gord Davies	t			wt	msv	vn		vn	ga 1	giz co-ba, ir ga	.1	92	10400	1735	5.2	0.01	5	225	420
Ron	63727	607397	6376712	Gord Dav es	r			w	mav	vn		vn	ba	gtz co-ba	1	з	78	32	5.2	106	5	1330	5
Ron	63728	607325	6376637	Gord Dav-es	chip	5m		×	msv	vn		vn	ba	qiz cc-ba	1	2	28	121	13	141	5	1755	5
Terry	84561	609569	6379760	Breccia	a/c		Tuff	gn		rep	sil		0.01	Si leffed tuff ateration with pyrite	1	з	6	66	03	2.73	5	90	5
Terry	84562	609132	6379687	Breccia	3		marble	w:	x					Monzon te/marble contact alteration with velocits	1	2	4	19	02	0.08	5	5	5
Төтү	84563	609088	6379846	Breccia	3		marbie	w:					0.01	Limestone marble, marachite, pynie galena, quartz veins	, 1	29500	560	56300	42 3	5.14	45	5	145
Төтү	84564	608970	5379953	Braccia	1		Olz	gn	x	perv .	chi	:	0.01	Chlorite a teration/quartz vein silicified with pyrite malachite.jarosite	74	4257	·42	573	24	4.19	5	40	85
Тегуу	84565	608958	6379983	Breccia	1		Qiz	w:	×		spec		0.01	Quartz brecc a with malachite,spec,pynte and limestone	49	3505	688	48500	23.6	2.08	5	20	110
Төтү	84566	608945	5380009	Breccia	o/c		limestone	bn	L		ру		1	20 m skam gossan massive pyrte malachte,azunte	11	128000	948	42500	90.5	10.00	25	.10	305
Terry	84567	608036	6376636	GD	1		barile	w:		L				Barite with fine gran voicanics	2	55	675	156	2.2	0.46	5	960	165
Төтү	84568	608080	6376643	GD	1	_		bn	la	reç.	sil		1	S-licified alteration with jarosite pyrite and limestone	9	28	374	323	06	2	10	520	15
төтү	84569	608585	6376685	GD	1		fxt	bn	1	diss	PY		0.5	Fxt slic.5ec with pyrite_arosite	3	24	270	138	05	5.05	40	15	5
Terry	84570	6:0176	6377604	GD	1		-5	γa	x	rep	sil			Limestone skam alkolfed with gameta	1	80	20	B1	80	S 37	20	25	•5
төтү	84571	610100	6377585	GD	o/c		s	w:	×	perv	chi			Marole skarn,chiorite,pyrite	10	758	788	8943	10,9	0.01	15	30	30
DC	64330	607788	6375916	GD	c	0.5m	xt	l pink	<u>π</u> 2		ank, s	wk	Tr Py	Taken from the sould side of creek at base of waterfail.	3	23	14	183	05	3.46	40	: 150	5
DC	6433	608315	6376717	GD	ŀ		att	bri-wh	mg		si, argilic	wk		3m below ridge line, melon sized	41	23	975	312	23	2.59	5	1120	820

results are found in Table IV and rock assay certificates in Appendix II. Figures 7-11 showing interpreted anomalous statistical thresholds for gold, silver, copper, lead, zinc and barium will be discussed by element.

7.2 Gold Geochemistry

Gold-in-rock has an anomalous >90% threshold at 500ppb and range from 20ppb to 820 ppb (Figure 6). One samples recorded values with over 0.5gpt Au, located in the eastern extension of the Gord Davies vein. Several subcropings and outcrop samples were taken from shallow hand trenched of mineralized quartz-carbonate-barite veins on the south slope of the hill but these failed to return significant silver or gold values. Gold values outside of the high grade zone located in 2004 faied to return significant values. No zones of anomalous gold values were yet discovered on the Claw/Moose claims.


7.3 Silver Geochemistry


Figure 7 shows silver-in-rock for the Breccia Claims. A seen, anomalous silver values are mainly associated with fracture/veined and breccia hosted base metal sulphides within the limestone package. These are mainly short strike length narrow veins. Sample 84566 is a grab sample from a 20 meter wide gossanous skarn zone that also carries high copper, lead and zinc. Silver values from this skarn area range from 23.6-90.6. The other anomalous silver value came from the Gord Davies vein and returned 22.5 gpt Ag.

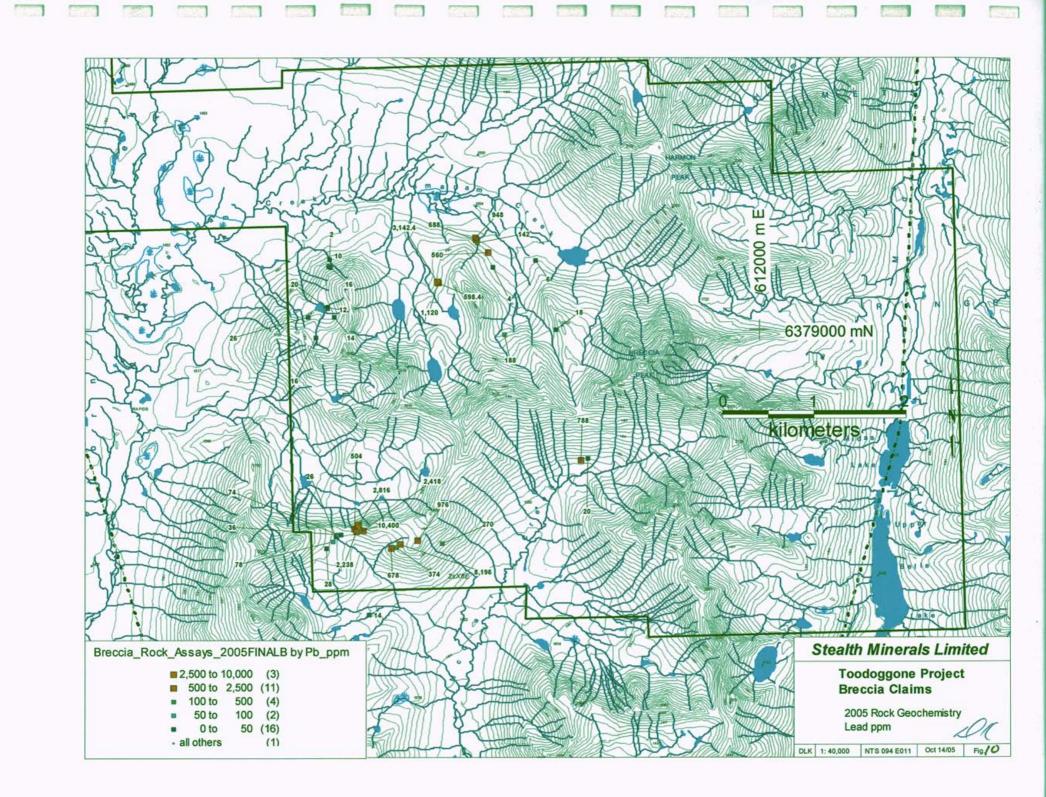
7.4 Copper Geochemistry

Copper values were most significant in the carbonate hosted mineralization (Figure 8). These areas recorded 5 samples from both quartz-carbonate-barite veins and skarn mineralized zones which assayed >2,000 ppm Cu, from both outcrop and float samples. These samples are all grabs samples from outcrop and range in copper content from 0.36% Cu to 12.8% Cu. This style of mineralization has a 1.0 km x 3.5 km area distribution.

7.5 Lead Geochemistry

Lead-in-rock had a maximum value of 10,400 ppm shown in Figure 9. Two areas of high geochemistry are noted. The first is the Gord Davies area with seven samples returning >500 ppm. These samples are from the continuation of a vein which subcrops along the southerly slope of the hill and is interpreted to be the continuation n on the veins located in the cliff face on the steep north face of the cliff. The other anomalous area lies to the north where six samples returned > 500 ppm Pb. These samples are grabs from high grade veins and replacements of base metals within the Asitka carbonate stratigraphy and are of low economic significance. As seen previously although these lead values correlated with silver and gold, the precious metal content is low.

7.6 Zinc Geochemistry


Zinc values on the Breccia claims correlate with the lead values in distribution. Zinc values range from 19 ppm to 6.63 %. The highest zinc values again report to the replacements of limited extent within the carbonate stratigraphy. Zinc values are shown of figure 10.

7.7 Molybdenum, Tungsten, Antimony, Arsenic and Barium Geochemistry

Anomalous molybdenum values are low ranging from 1-74 ppm, the highest comes from the carbonate replacements. Tungsten, antimony and arsenic are all low with no exploration significance. The barium values range from 5-1665 ppm and are mainly associated with the Gord Davies quartz-carbonate-barite breccia veins and are part of the low sulphidation epithermal system apparently focused at the Takla-Toodoggone lithological contact.

8.0 2005 Mineralization Summary

Mineralization is widely scattered on the Breccia claims and includes epithermal vein and breccia (low sulphidation), skarn, and mesothermal contact veins. Veins with low

sulphidation affinities occupy the southwestern part of the claims (Gordon Davies showing). Skarn mineralization is associated with the limestone bodies. Along the eastern part of the claims, copper and gold mineralization is locally associated with veins and breccias within and proximal to granitic bodies. Most of the prominent gossans, including the prominent gossan on the Breccia 1 claim appeared to be the result of weathering of pyritic and early argillic altered volcanic rocks adjacent to the diorite-syenite intrusive with little or no development of silica and devoid of obvious significant economic mineralization.

The Gordon Davies (Breccia) showing located just north of the south boundary of the Breccia 3 mineral claim includes three minfile sites (Gordon Davies West, Gordon Davies East and Har). The most interesting showing is the Har that is shown as being located near the center of the south Breccia claim line. Anomalous gold and silver mineralization is known for about 1.5 km, including the above showings and mineralized float noted to the immediate west of the claims. The most significant zone of mineralization appears to occur in a 300+ metre zone. The veins comprise quartz, quartz-calcite and calcite with variable amounts of galena, sphalerite, barite and subordinate chalcopyrite and pyrite.

Float in the talus slide below the Har "vein" consists of very large (3 - 5 ton) mineralized boulders, presumed to be sourced from the 1 to 2 metre wide vein in the cliff upslope to the south. The boulders are quartz-carbonate (calcite) and barite with occasional massive sphalerite and galena. Copper mineralization as stains and chalcopyrite is subordinate. Values of multi-gram gold (3 - 5 gpt Au) with very high silver (300-1000 gpt Ag) were derived from analysis.

The vein, as it is in the cliff face, has not been measured accurately but appears to be from 1 to 2 meters in width. An approximate estimate of the strike would be about northwest with the dip being between 30 and 45 degrees southwest. Following the talus

float, and the vein "system" to the southeast, the vein seems to decrease in silica and becomes more of a calcite breccia with masses (and clasts) of sphalerite and galena. Further to the southeast the "vein" seems to blow out into a quartz-carbonate stockwork with occasional abundant sphalerite and galena. Values from the float in the talus of all of this material are anomalous in both gold and silver. Where the "vein system" cuts the south ridge the veining appears to have weakened and narrowed out. The volcanics the veins are hosted in at this point are only weakly altered. The horizontal distance between where the vein system cuts the ridge to where the large mineralized boulders are, directly below the vein in the cliff face, is 463 meters. The large angular boulders south of the ridge, along the north claim line for Breccia 7, are a horizontal distance of about 300 meters from the vein in the cliff.

For up to 500 m to the south of the cliffs hosting the mineralized veins, proximal float of quartz, quartz-calcite and calcite, some with minor galena and sphalerite have been noted. This intermittent float train in part confirms the southwesterly dip of the main vein system and may indicate the presence of further veins. Prospecting in the 2005 season located the surface extension to the vein and has revealed low exploration potential.

Skarn Zone: central part of Breccia claim proximal to Limestone

Two prominent limestone bodies underlie the central and southcentral parts of Breccia 4, and extend a short distance into Breccia 2. Skarn mineralization is associated with both lenses, although of only minor significance in association with the most southern body. The northern limestone body represents a lense, approaching 1 km in length and up to 100 metres in thickness. It appears to wedge out to the north and possibly is faulted out to the south. Along its western margin, copper mineralization associated with quartz veins and epidote was noted to carry moderately anomalous silver (up to 90.5 gpt Ag,) and negligible gold. Intermittent mineralization was noted along the length of the eastern contact of the limestone. Here, northerly trending monzonite dykes were noted cutting the limestone in a few localities. Skarn minerals noted include magnetite, actinolite,

garnet, calcite, epidote, chlorite, quartz, specularite and possibly ilvaite. Mineralization noted includes lenses, pods veins and proximal float of magnetite, magnetite-pyrite-chalcopyrite; calcite-actinolite-garnet-sphalerite-galena \pm pyrite and pyrite-quartz \pm chalcopyrite.

Near the eastern contact of the limestone and extending some 500-700 metres to the east, quartz breccia in float was noted from at least four localities. These rocks comprise veinlets, stockworks and breccia fillings of fine-grained to finely vuggy quartz hosted in bleached (clay-sericite) altered fine-grained porphyry. Minor chalcopyrite has been reported. This zone was not seen in outcrop but from the extent of the intermittent float train suggests a very proximal nature.

Numerous gossanous areas in proximity to the limestones proved to be mainly pyritic altered bleached volcanic rocks.

9.0 Summary and Conclusions

The Breccia Property was one of 10 properties explored by Stealth Minerals during the 2005 field season. Field work in 2005 was confined to the central Breccia claims. The southwest corner of the Breccia claims, in the vicinity of the Gord Davies East and West showing and the Har prospect resulted in the highest gold, silver, lead and zinc values with limited strike and width potential. This area is known as an epithermal quartz-carbonate (calcite) and barite vein system with occasional massive sphalerite and galena. Historical (2004) highlights from the Gord Davies area were gold values up to 82.7gpt and silver values up to 1460gpt. This area was also considerable rich in lead and zinc however, was low in copper. Limestone lenses that extend over 1km in length and 100m in thickness through the Breccia 4 and Breccia 2 claims have resulted in skarn mineralization, and elevated copper and zinc values.

10.0 Recommendations

Further work on the Breccia-Claw claims should include further prospecting and mapping around the monzonite stock located in the northeast corner of the claims.

Further channel sampling of the skarn mineralization with the highest silver values appear to be trending towards this intrusive contact. A 500 m x800m strong airborne magnetic anomaly is centered over the Asitka carbonate package in the area of elevated base metals and skarn/gossans and may indicate the presence of a buried mineralized intrusive. Detailed mapping of alteration facies and distribution of mineralized fractures may help with this interpretation that would require diamond drilling to test. The northeast area of the Claw 1-2 claims should be detail prospected and mapped to locate the quartz-hematite-gold style of mineralization recently located on adjacent stealth claims. This work would include contour soil sampling to identify this style of mineralization in shallowly covered areas. Appendix III shows the costs of such a recommended program.

Appendix I

2005 Rock Assay Certificates

[]	A	B		υ	— E	۶	- G [H I	J	. к ј	L	MN	UFI	Q	K S	i i	Ŭ .	νT	W	×T	Y I Z A			AE
1		12-Sep-05							+		+		· +											÷
2	FCO TEC	H LABORA	TORY I TD	·			+			ICP CF	RTIF	CATE OF AN	ALYSIS AK	2005-96		··		: ··			Stealth Mineral	5	••	;
4		llas Drive		+		+.										···	·	· ,			301-260 W. Esp			!
		PS, B.C.	· + • • • •	:					+				· <i>·</i> · ·				· -				North Vancouv	er, BC		
6	V2C 6T4		·								+	+						·			V7M 3G7			
7	Obere: 2	EA 573 5700	. <u>.</u>				·														Attention: Bill	McWilliar	ne	<u> </u>
9	FHORE, Z	50-573-5700				+				+	+		·		·····		•			· · · · ·				·
10									· ·•	· ··· - ···			· · · · · · · · · · · · · · · · · · ·	÷									· • ·	·
	Fax : 2	50-573-4557	+														·	· · · · •				····		
12			·	+														· + -	·		No. of samples		37	
13 14				·· ·	•••••	· +	+												·		Sample Type: R Submitted by:Da			• ·
15	Values ir	n ppm unles	s otherwise	report	ed	+															Project #:Mac, F		·	·
16										~+														
17		T #	A		A1 0/					~~~		C E . W			Ne Ne 9/		P		Ch.	6.0	C. T: 0/	u v	WY	7
18 19	<u>Et #.</u>	Tag # 64234	Au(ppb) 475	<u>Ag</u> 4.7	Al %	<u>As</u> <5	<u>Ba</u> 40	Bi Ca %	<u>Cd</u> <1	<u>Co</u> 87	<u>Cr</u> 46	Cu Fe % 4130 5.69	La Mg %	168	Mo Na %	<u>Ni</u>	300	<u>Pb</u> 6	Sb <5	<u>Sn</u> <20	<u>Sr Ti %</u> 20 0.03 <		<u>W Y</u> <10: <1	Zn 21
20	2	64234	<u>4/5</u> <5	<0.2		<5	10	<5 0.18	<1	4.	96	<u>4130 5.69</u> 510 1.21		372			<10	<2		<20	2 < 0.01 <		<10 2	
21	3	64236	5	<0.2	0.07	<5	5	<5 1.21	<1	<1	45	7 0.22		107	<1 0.04		210	<2	<5	<20	4 0.01 <	0 2	<10 16	<1
22	4	64237	390	>30	1.10	<5	60	<5 3.55	2	19	12	<1 3.27	<10 0.86	1191	<1 <0.01	6 >10		46		<20	21 < 0.01 <		20 <1	94
23		64238	<5	0.6	0.62	<5 <5	45 55	<pre><5 0.52 <5 0.13</pre>	3	32 54	<u>11</u> 4	<u>98 >10</u> 299 >10	<10 0.47	<u>339</u> 367	<u>4 0.02</u> 9 0.01	12 9	890 160	<u>8</u> 8		<20 <20	<u>54 0.04 < </u> 5 0.01 <		<10 <1 <10 <1	
24 25	6	<u>64239</u> 64240	<5	<u>1.5</u> <0.2	0.67	<5	20	5 0.13	2	30	- <u>- 4</u> .	6 6.07		510	<1 0.03		330	<2		<20	18 0.06 <		<10 <1	53
26	8	64241	<5	<0.2	0.67	<5	10	<5 0.43	<1	6	99	497 1.84	<10 0.65	631		16	50	<2		<20	2 0.01 <		<10 2	56
27	9	64242	>1000	1.7	0.80	<5	180	<5 0.02	1	4	44	1030 5.84	<10 0.41	405	5 <0.01	3	<10	<2		<20	1 <0.01 <		<10 <1	48
28	10	64243	55	<0.2	0.09		20	<5 0.01	1	3	44 53	34 6.87	<10 <0.01 <10 0.19	49 288	4 <0.01	4 3	<10 <10	<2 6		<20 <20	<u><1 <0.01 <1</u> <1 <0.01 <1		<u><10_<1</u> <10_<1	10 41
29 30	<u>11</u> 12	64244 64245	>1000 >1000	<u>13.8</u> 0.5	0.45	<u><5</u> <5	70 55	<pre><5 0.01 <5 0.01</pre>	<1 <1	6	<u> </u>	112 4.59 72 6.50		200 90	5 < 0.01	3	<10	4		<20	1 < 0.01 <		<10 <1	20
31	13	64246	40	0.8	0.10		1095	<5 < 0.01	<1	<1	40	5 2.96		18		3	130	2		<20	12 < 0.01 <		<10 <1	7
32	14	64315	<5	<0.2	0.21	<5	25	<5 0.18	<1	<1	44	2 0.37		171		2	190	<2		<20	4 0.02 <		<10 11	17
33	15	64316	5	0.8	0.33	<5	20	<5 0.10	<1.	2	<u>63</u>	1186 0.76		92	4 0.02	2	90	<2		<20	3 < 0.01 <	• • •	<10 4	9 36
34 35	16 17	64317 64318	5	<0.2 1.2	0.82	<5 <5	<u>10</u> 410	_<5_0.07_ <5_0.97	<u><1</u> 30	9 <1	105 80	769 1.89 882 0.83		419 527	<1 <0.01 1 <0.01	<u>19</u> 4	60 100	<u><2</u> 864		<20 <20	<u><1</u> 0.01 < 24 <0.01 <	· · · · · · · · · · · · · · · · · · ·	<u><10 <1</u> <10 3	1259
36	18	64319	935	2.3	1.02	10	45	<5 0.98	29	14	25	478 4.14	<10 0.69	1403	26 0.01	2	780 >1			<20	9 0.02 <	_	<10 4	2080
37	19	64320	5	0.2	0.08	<5	30	<5 <0.01	<1	13	41	5 3.60	<10 <0.01	28	14 < 0.01	2	50	16		<20	<1 <0.01 <	-	<10 <1	9
38	20	64321	5	1.4	1.02	<5	30	5 0.28	<1	14	21	13 6.69	· · · ·	680	5 0.02		320	26		<20	4 < 0.01 <	_	<u><10 <1</u>	69
39 40	21 	64322 64323	5	0.2	0.38	<u><5</u> <5	<u>30</u> 40	<pre><5' 0.16 <5 0.45</pre>	<u><1</u> <1	7 ⁻	15 65	20 4.50	<10 <u>0.25</u> <10 0.19	<u>435</u> 987	<u>13 <0.01</u> 8 <0.01	3 1 4	1300 250	<u>6</u> 4		<u><20</u> <20	<u>4 <0.01 < </u> 3 <0.01 <		<u><10_<1</u> <108	38 32
41	23	64324	>1000	15.9	0.05	25	25	10: 0.01	- <1	79	67	202 7.18	<10 <0.01	13	10 < 0.01	6	<10	10	· — — •	<20	2 < 0.01 <		<10 <1	
42	24	64325	125	2.0	0.43	<5	20	<5 0.08	<1	19	43	2040 2.59		290	1 0.03	5	310	6		<20	1 0.01 <		<10 <1	23
43	25	64326	515	15.4	0.06	<5	40	<5 < 0.01		19	61	565 4.07	<10 < 0.01	16	15 < 0.01	4	<10	<u>8</u> <2		<20 <20	2 <0.01 <		<u><10 <1</u> <10 <1	5 25
44 45	<u>26</u> 27	64327 64328	<u>180</u> 70	<u>2.1</u> 16.9	0.48	<u><5</u> <5	15 25	<5 0.04	<u><1</u> 6	32 96	60 78	2196 4.47 8234 >10	<pre><10 0.26 <10 <0.01</pre>	281 45	4 0.03	4 16	260 <10	188		<20	2 0.03 <		<10 <1 <10 <1	
46	28	64329	<5	0.3	0.12	<5	30	<5 0.04	<1	3	34	· · · · · · · · · · · · · · · · · · ·	<10 0.02	46	3 0.02	2	310	18		<20	2, 0.02 <	· · · ·	<10 1	16
47	29	64604	<5			<5	25	<5 2.91	<1	14	41		<10 1.11	1025	<1 0.02		760	<2		<20	22 0.04 <	_	<10 <1	
48	30	64605			0.08	<5		<5 <0.01	<1	1	59		<10 < 0.01	27		3	20	<u>2</u> 4		<20	<pre><1 <0.01 < 12 0.05 <</pre>		<u><10 7</u> <10 <1	•
49 50	<u>31</u> 32	64606 64607	<5 <5		0.98	<5 <5		<5 1.21 <5 0.90	_ <1 _ <1	12 <1	25 76		<pre><10 0.96 <10 <0.01</pre>		<1 0.02		770 120	4			23 < 0.05 <		<10 <u><1</u> <10 2	
51	33	64608	<5		0.09	20	1165	<5 0.11	1	<1	41	·	<10 < 0.01	121	<1 0.01	3	390	176	35	<20	114 < 0.01 <	0 10	<10 5	16
52	34	64609	<5	10.3	0.09	<5	1285	<5 0.10	<1	<1	39	24 0.81	<10 <0.01	67	<1 <0.01	2	380	18	<5	<20	113 < 0.01 <	0 13	<10 5	
53	35	64610	<5		0.37			<5 0.19	<1	4	37		<10 0.17		<1 0.03		780	<2		<20 <20	23 0.07 < 5 0.01 <		<u><10 <1</u> <10 7	
54 55	<u></u>	64611 64612	<u> </u>		0.38	- 5		<pre><5 0.08 <5 0.04</pre>	<u><1</u> <1	2 <1	32 39		<pre><10 0.11 10 <0.01</pre>	116 221			40 130	<u>4</u> 36		<20	5 < 0.01 <		<10 7	
56	38	64613	>1000	4.7		10		<5 0.22	<1	7	25		<10 0.63		37 0.02	4	900	14	<5	<20	14 0.08 <	0 55	<10 <1	55
57	39	64614	20	<0.2	0.56	<5	40	<5 0.26	<1	6	35	24 2.48	<10 0.28	246	<1 0.02		760	<2		<20	26 0.08 <	0 29	<10 <1	25
58	40	64615	30		0.85	10		<5 0.13	<1		15		<10 0.46	407			1010	4		<20	29 0.15 <		<10 <1	
59 60	 	64616 64617				60 <5		< <u>5</u> 0.76 < <u>5</u> 0.11	<u></u> 		15 63		<10 1.05	1003	9 0.02 <1 0.03	<u>72</u> 4	2200 60	<2 <2	•	<20 <20	48 0.05 < 4 0.04 <		<u><10 <1</u> <10 1	
61		Tag #	Au(ppb)		AI %	As		Bi Ca %	Cd		Cr		La Mg %		Mo Na %	· · · •	P.	Pb			Sr Ti%		WY	
62	43	64618	50		0.69	<5		<5 >10		64	4		<10 0.42				510	<2			37 0.02 <		<10 89	62

Гт	<u> </u>	BI		TE I	Ē	GIHT	11	J	к і –	L	мТ	NI	<u>о</u> тр	ιā		रा डा ा	U	vТ	W I × T	YIZ AA		AE I
63	44	64619	95 4	8 0.24	35	25 <5	0.07	<1	20	38	1342	9.54	<10 0.0	2	62	4 < 0.01 8	90	6	<5 <20	1 0.01 <10	46 <10 <1	19
64	45	64620	85 (0.9 1.85	10	30 <5	0.48	<1	66	57	6833	>10	<10 1.	0 15	583	4 0.01 53	990	<2	<5 <20	4 0.04 <10	128 <10 <1	131
65	46	64621	25 <(0.2 0.78	10	30 <5	0.04	<1	7	15	46	5.91	<10 0.	6 2	240	<1 0.08 3	1160	4	<5 <20	32 0.12 <10	71 <10 <1	42
66	47	64622	25 <(0.2 1.02	20	40 <5	0.21	<1	10	14	86	4.43	<10 0.	3 2	296	5 0.02 5	1060	6	<5 <20	6 0.09 <10	44 <10 <1	37
67	48	64623	15 <(0.2 1.41	10	20 <5	0.30	<1	166	8	7775	8.60	<10 0.8	4 14	48	3 0.02 13	2060	<2	<5 <20	8 0.06 <10	89 <10 5	93
68	49	64624	55 0	0.2 0.90	10	35 <5	0.39	<1	7	20	23	3.73	<10 0.	9 2	231 •	<1 0.02 5	1100	4	<5 <20	38 0.10 <10	29 <10 <1	30
69	50	64625	15 <0	0.2 1.18	30		0.12	<1	15	55		4.37			379	4 < 0.01 4	310	4	<5 <20	7 0.02 <10	37 <10 <1	81
70	51	64626		1.3 0.99	10		0.27	<1	14	24	2238		<10 0.0		527	3 0.02 5	1080	4	<5 <20	3 0.03 <10	85 <10 <1	57
71	52	64627	An end of the second seco	0.7 0.25	15		0.02	<1	6	72		3.70		_	88	9 < 0.01 4	60	6	<5 <20	2 <0.01 <10	18 <10 <1	22
72	53	64628	• • • • • • • • • • • • • • • • • • • •	0.2 1.09	5		0.04	<1	13	25		7.86	· ·	· +		22 < 0.01 4	<10	6	<5 <20	1 <0.01 <10	20 <10 <1	67
73	54	64629	*	1.6 0.48	15		0.02	<1	13	59		6.02				20 < 0.01 4	<10	36	<5 <20	2 <0.01 <10	15, <10 <1	45
74	55	64630	+	0.2 0.13		<u>1085 <5 <</u>			_<1	48			<10 <0.0		64	2 < 0.01 2	180	4	<5 <20	17 <0.01 <10	2 <10 3	
75	56	64631		1.9 0.12	5	60 <5 <		<1	3	54			<10 <0.0			12 < 0.01 3	150	20	<5 <20	1 <0.01 <10	17 <10 <1	16
76	57	64632	Annual and and and a first a fairful the West of the fair and	0.2 0.38	<5		0.02	<1	6	22			<100.0 <10_<0.0		111 309	7 < 0.01 7	<10	<u>6</u>	<pre><5 <20 <5 <20</pre>	<u><1 <0.01 <10</u> <1 <0.01 <10	<u>92 <10 <1</u> 25 <10 <1	_29
77 78	58	64633	•	0.2 0.09	<u><5</u> 10	70 <5 15 <5 <	0.01	<u><1</u> <1	2	82			<10 <0.0			4 < 0.01 4	<u><10</u> 100	··· 2	<5 <20	<1 <0.01 <10	6 <10 <1	_ 15
79	<u>59</u>	64634 64635		0.2 0.10 0.2 1.21	15	25 <5		1	2	11		5.84	+			<1 0.03 <1	870	<u></u> . 14	<5 <20	13; 0.11 <10	49 <10 <1	182
80	61	64636	+	0.8 0.53	30		0.03	<1	4	55	· •		<10 0.1			<1 0.02 4	640	12	<5 <20	6 0.15 <10	88 <10 <1	65
81	62	64637	 .	1.2 0.67	45	30 <5		<1	15	19		5.82				<1 0.02 5	80	20	<5 <20	12 0.21 <10	en al la companya a successive de la companya de la	83
82	63	64638		0.2 0.22	5		0.02	<1	2	25			<10 0			51 0.03 2	580	16	<5 <20	20 <0.01 <10	18 <10 <1	21
83		64639	+ +	0.2 0.11	20		0.05	<1	8	39			<10 <0.0			14 < 0.01 4	310	10	<5 <20	3 0.05 <10	5 <10 <1	6
84	65	83701	+	0.6 0.26	10		0.11	<u>-</u>	2	94			<10 0			1 < 0.01 5	90	1576	<5 <20	37 < 0.01 < 10	16 <10 3	67
85	66	83702		0.11	<5		0.44	<1	<1	11			<10 0.0		-	<1 <0.01 <1	60	4		1172 < 0.01 < 10	6 <10 2	33
86	67	83703		0.2 0.67	15		0.05	<1	57	106		4.71	+			10 < 0.01 8	30	8	<5 <20	15 0.01 <10	41 <10 <1	26
87	68	83704	<5 (0.2 0.35	5	115 <5	0.04	<1	1	134	467	1.20	<10 0.	1 2	23	<1 <0.01 5	210	<2	<5 <20	5 0.02 <10	11 <10 <1	37
88	69	83705	<5 2	2.6 2.01	30'	105 <5	0.04	<1	12	90	7102	5.23	<10 2.0	8 9	61	2 < 0.01 12	1240	<2	<5 <20	5 0.02 <10	65 <10 <1	104
89	70	83706	່ 5 6	5.2 0.53	10	170 <5	0.64	<1	2	76	4480	1.79	<10 0.	1 4	03	2 0.02 4	970	<2	<5 <20	11 < 0.01 < 10	6 <10 5	39
90	71	83707	40	1.5 0.50	45	175 <5	0.03	<1	4	88	85	2.59	<10 0.	4 3	66, 1	11 < 0.01 3	260	6	<5 <20	4 < 0.01 < 10	31 <10 <1	59
91	72	83708	90	1.0 0.08	<5	1225 <5 <	0.01	<1	<1	126	50	0.50	<10 0.0	2 4	69	<1 <0.01 3	<10	29	<5 <20	17 <0.01 <10	8 <10 <1	8
92	73	83709	>1000 >	30 0.33	<5		0.61	<1	<1	114		0.86				<1 <0.01 3	<10	48	<5 <20	8 <0.01 <10		52
93	74	83710	* *	5.1 0.12	<5	· ·	0.03	186		101		0.37				<u><1_<0.014</u>	<10 :		<5 <20	2 <0.01 <10	7 40 <1 >1	
94	75	83711		0.2 0.97	<5		0.03	<1	3	97		1.65				<1 0.03 2	30	42	<5 <20	1 < 0.01 < 10		92
95	76	83712	+	0.2 0.41	<5	10 <5 <	• •	<1	2	139		1.32			50	2 < 0.01 6	40	32	<5 <20	<1 <0.01 <10	11 <10 1	34
96	77	83713	*	0.2: 0.41	_ <5	** *	0.03	<1	1	76		1.13				<u>24 0.07 2</u> 8 0.02 2	120	<2	<5 <20	<1 0.01 <10	3 <10 10	16
97	78	83714	······· · •	0.2 0.21	10	40 10 <		<1		110			<10 0.0		52		40	6 <2	<u><5</u> <20 <5 <20	<pre><1 <0.01 <10 3 0.01 <10</pre>	3 <10 <1	2
98	79	83715	• · · · — – + – — —	0.2 0.23	<5 <5		0.02	<u><1</u> <1	<u>14</u> 5	57 122			<u><10</u> 0.0 <100.0			<u>35 0.08 2</u> 7 0.01 3	80 30	61	<5 <20	3 0.01 <10 <1 <0.01 <10	<u> </u>	21
99	80 81	83716	*		20	<u> 25 <5 <</u> 55 <5 <		<	13	109	1307			·		10 0.02 3	<10	2	<5 <20	<1 <0.01 <10	8 <10 <1	- 4
100 101	82	83717 83718		5.9 0.17 0.2 0.40	<5		0.01	<1	7	131			<10 0.	•	63	2 0.04 3	70	2	<5 <20	<1 <0.01 <10	10 <10 3	12
102	83	83719		0.2 0.40	<5		0.04	1	28	49		>10	30 0.2			13 0.02 2	<10	2	<5 <20	3 0.03 <10	57 <10 <1	21
102	84	83720	+	0.4 0.81	<5		0.25	<1	14	79		6.77	20 0.4		274	6 0.04 3	230	2	<5 <20	6 0.03 <10	46 <10 <1	21
104	85	83721		0.2 0.69	<5		0.06	<1	28	65	137		20 0.3		57	9 0.04 1	230	2	<5 <20	5 0.03 <10	29 <10 <1	14
105	86	83722		0.4 2.34	<5		0.33	3	16	30	80		30 2.		526	6 0.07 7	1440	598	<5 <20	16 0.09 <10	162 <10 10	176
106	87	83723		1.3 1.85	<5		0.44	9	20	33	116		30 1.		49	7 0.04 8	1890	1120	<5 <20	67 0.08 <10	· · · · · · · · · · · · · · · · · · ·	460
107	88	83724	• ·	1.2 1.34	35	··· ·····	0.22	2	15	27		6.45	20 1.0		217	8 0.04 9	1350	3142	<5 <20	44 0.05 <10	· · · · · · · · · · · · · · · · · · ·	81
108	89	84601	20 12	2.9 2.58	50		1.17	<1	44	52	8700	5.94	20 1.0	6 10)00Ü ·	<1 0.04 15	<10	2	<5 <20	14 0.17 <10	170 <10 9	55
109	90	84602	5 (0.5 2.71	35	70 <5	1.42	<1	14	51	128	4.14	10 1.0			1 0.09 7	1060	19	<5 <20	23 0.14 <10	103 <10 12	39
110	91	84603	20 26	5.3 2.93	20	95 <5	6.62	1	19	36	6832	9.23	30 1.	9 21	42	3 0.01 64	<10	<2	<5 <20	89 0.07 <10	•	. 81
111	92	84604	5 4	4.5 1.54	5		5.51	<1	13	46	3782		20 0.0	-		24 0.01 58	60	<2	<5 <20	77 0.07 <10	• • • • • • • • • • • • • • • • • • •	46
112	93	84605	30 >	30 1.75	5	110 <5	6.14	2	24	54 >		8.64	30 0.			45 0.01 182	<10	<2	<5 <20	57 0.07 <10	· · ·	66
113	94	84606	*	30 0.04	285		0.06	4	98	80		>10	30 < 0.0			03 <0.01 260	<10	10	<5 <20	3 0.01 <10	· · · · · · · · · · · · · · · · · · ·	44
114	95	84607	· · · · · · · · · · · · · · · · · · ·	3.0 0.08	1015		0.05	4	20	94			<10 <0.0			18 < 0.01 31	<10	38	<5 <20	2 < 0.01 < 10	7 <10 <1	12
115	96	84608	<5 (0.3 0.21	<5	15_<5 <	0.01	<1	<1	72	10	0.36	<u><10; 0.0</u>	16	88 .	<1 0.10 3	10	2	<5_<20	1_<0.01_<10	2 <10 17	3

1	AI	B		υ	E 1	Ē		H I	J	κŢ	L	MN	ν Γ	l Q	K S II	U	νT	Ψ ₁ >	×٦	Y I Z	AA I	AB AC I	AU AE
116	Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ва	Bi Ca %	Cd	Co	Cr	Cu Fe %	La Mg %	<u>Mn</u>	Mo Na % Ni	P	Pb	Sb S	Snj	Sr Ti%	U	VW	Y Zn
117	97	84609	<5	>30	0.17	15	460	<5 0.10	<1	3	64	653 1.43	10 0.0	335	6 < 0.01 3	400	851	<5 <2	20	106 <0.01	<10	11 <10	4 42
118	98	84610	5	>30	2.03	80	215	<5 1.58	15	18	77	2883 0.92	10 0.0	82	<1 0.08 3	<10	1155 1	150 <	20_	589 < 0.01	<10	7_<10	15 352
119	99	84611	15	20.2	0.13	<5		<5 2.24	9	2	87	1718 0.86	<10_<0.0	+	<1 <0.01 3	<10 >				109: <0.01		6 <10	7 176
120	100	84612	35	>30	0.15	10	25	<5 6.22	516	12	62	165 1.58	<10 0.2	+		110 >	• •	+	- + -	288 <0.01			5 >10000
121	101	84613	5	14.1		<5		<5 0.09	1	<1	103	314 0.37	20 < 0.0	247	· · · · · · · · · ·	+	10000	<5 <		187 <0.01		2 <10	6 51
122	102	84614	10	0.3		_<5_	85	<5 0.45	<1	18	38	50 3.06				980	13	<5 <		32 0.15		51 <10	
123	103	84615	<5		0.20			<5 <0.01	<1	1	61(127 0.64	- <u> </u>	30	3 0.10 2	30	2	<5 <		2 0.01		2 <10	
124	104	84616		0.6		<5	175	15 0.25	1	33	15	36 9.48	30 0.6	+	8 0.03 4	690	<2	<5 <		30 0.12		49 <10	
125	105	84617	15	0.5		15	65	<5 0.41	<1	79	60	465 7.11	20 1.8		······································	520	<2	<5 <	· · ·	57 0.14		<u>119 <10</u>	$\frac{7}{2}$ -61
126	106	84618	55	1.5		45		10 1.28		129	43	192 8.17	<10 0.8		10 0.07 72	1500	44	<5 <	·····		<10	70: 10	6 36
127	107	84619	35	0.6		10		<5 < 0.01			45	146 4.70	<u> </u>		4 0.11 3	160	18	_<5; <2	<u> </u>		<10		<1 4
128	108	84620	<5	•	0.79	- <5 5		<5 0.03	<1	9	43	15 2.94		· · · · · · · · · · · · · · · · · · ·		<u>650</u> 60	<u>4</u>	<5 < <5 <		<u>8 0.11</u> 5 0.02		42 <10 29 20	4 12
129	109	84621	5		0.24	<u>_</u>	210 60	<u>15 <0.01</u> 15 <0.01	<1	1 5	160 149	<u> </u>		112	7 <0.01 <1	40	20	<5 <		2 < 0.02		12 20	2 12
130	110	84622 84623	<u>>1000</u> >1000		0.17	<5 <5	35	15 < 0.01	<1	6	149	95 >10		· + · ·	6 < 0.01 < 1	120	20	<5 <		1 0.01		18 20	3 27
131	112	84624	360		0.40	5	385	15 < 0.01		5	171	52 >10		-		120	16	<5 <		5 < 0.01		25 20	3 15
133	112	84625	60:	1.8	· · ·	<5	155	10: 0.03	<1	4	126	54 7.75			1 < 0.01 < 1	140	12	<5 <	+ -	3 < 0.01		26 10	3 35
134	114	84626	215	1.3	·· ·	<5	35	<5 0.01	<1	1	165	16 0.68	· - · - · - · - · - · - · - · - · - · -	36	1 < 0.01 2	160	30	<5 <		2 < 0.01		2 <10	
135	115	84627	20	0.3	+	15	250	<5 0.02	<1	<1	29	6 2.05	20 0.0	+	4 0.10 <1	390	6	<5 <		17 < 0.01			4 1
136	116	84628	<5	<0.2		<5	165	5. 0.09	<1	2	41	4 4.85	<10 1.40	-	2 0.05 <1	1470	16	<5 <		19 0.03		49 <10	7 89
137	117	84629	<5	<0.2		<5	+-	<5 0.59	<1	7	76	3 5.29	<10 0.8	+	1 0.11 1	1150	26	<5 <		42 0.11			16 54
138	118	84630	<5	·	0.31	<5		<5 < 0.01	<1	<1	158	14 0.57	10 0.10	+	4 0.02 1	10	2	<5 <		11 < 0.01		2 <10	2 17
139	119	63998	<5		0.24	<5		<5 < 0.01	<1	<1	132	12 0.74	20 0.0		5 0.05 1	70	24	<5. <	20	3 < 0.01	<10	1 <10	5 8
140	120	63999	<5	3.1		<5		<5 1.17		180	<1	6186 3.54	10 0.8		<1 <0.01 92	1070	572	<5 <	20	15 0.02	· · · ·	53 <10	17 156
141	121	64000	<5		0.51	<5	5	<5 0.12	<1	1	110	10 0.92	<10 0.3	165	<1 0.17 1	220	4	<5; <	20	3 < 0.01	<10	8 <10	11 10
142	122	84551	<5	0.2	0.75	25	35	<5 0.09	<1	2	69	35 1.75	10 0.2	123	3 0.11 <1	200	6	<5 <	20	9 0.04	<10	11 <10	9 26
143	123	84552	<5.	<0.2	0.42	<5	145	<5 0.15	<1	2	90	2 1.03	20 0.14	104	<1 0.14 2	130	<2	<5 <	20	17 0.06	<10	6 <10	14 6
144	124	84553	<5	<0.2	0.54	<5	30	<5 1.10	<1	5	61	3 5.62	<10 0.20	470	1 0.10 <1	1040	4	<5 <	20	51 0.10	<10	51 <10	9 26
145	125	84554	15	<0.2	0.78	<5	5	<5 0.25	<1	4	132	714 1.36	<10 0.8	314	<1 <0.01 14	40	4	<5 <	20	26 0.01	<10	23 [.] <10	4 26
146	126	84555	75	<0.2	2.00	5	25	5 < 0.01	<1	31	118	8 6.65		+ •		<10	10	<5 <					<1 42
147	127	84556	40	0.8	1.08	<5	10	<5 0.40	<1	4	142	1793 2.35			2 < 0.01 3	30	10	<u></u>	20	2 <0.01			9 34
148	128	84557	<5		0.88	<5		10 0.58	<1	159	93	5 >10		+		650	20	<5 <		53 0.16	<10	32 20	5 24
149	129	84558	410		0.59	<5		<5 0.05	<1	_ 26	89	9 4.24		+	6 0.02 12	260	6	<5_<	· · · · · · ·		<10	20 <10	4 15
150	130	84559	15	1.0		<5	160	<5_0.03	<1	5	89	194 1.86	10 0.14		4 0.02 3	130	4	<5 <		6 < 0.01		3 <10	5 10
151	131	84560	25	0.5		_<5_		<5 <0.01	<1	16	91	46 1.82		1	2 0.02 8	20	<2	<5 <		2 < 0.01		2 <10	3 1
152	132	84561	5		0.97	5	. 90	<5 0.09		5	70	3 2.73				450	<u>6</u> 4	<5 <	_	5 0.02	<10		8 66
153	133	84562	<5		<0.01	<5	5	<5 >10	<1	<1	3	2 0.08				<u>190</u> 270		<5 < 10 <		93 <0.01 77 0.01	<10 <10		<u>14</u> 19 12 >10000
154	134	84563	. 145			45	5 40	< <u>5</u> >10 < <u>5</u> 0.61	<u>651</u>	<u>36</u> 11	 88	10000 5.14 4257 4.19			1 <0.01 19 74 <0.01 18	230	560 142		20	77 0.01 65 0.12	<10	25 <10	6 573
155	135 136	<u>84564</u> 84565	<u>. 85</u> 110	2.4	· · · · · · · · · · · · · · · · · · ·	5 5	20	· · ·	<u> </u>	124	113	3605 2.08			· · · · · · · · · · · · · · · · · · ·	310	688	5 <	•	3 < 0.01		8 <10	2 >10000
157	130	84566	305	>30		25	10	<5 2.34	447	34		>10000 >10		+		440	948		20	21 < 0.01		44 20	8:>10000
158		04300		- 00	1.00			-0_2.04			••••	10000 - 10	-10 2.0										
159							· · · ·	· · · · · · · · · · · · · · · · · ·			•	• • •	· · · · · ·	+	• • • • •		· · ·	•				· •	{
	QC DATA			• • •		· —		• •	•	•		··· ·			······		+					· · · · ·	
_	Repeats:	•		· · ·		- ·	•	• • • • •		.	• •			+						•	•	·····	
162	1	64234	495	4.8	0.35	<5	30	<5 0.16	<1	89	50	3883 5.94	<10 0.2	182	16 0.02 12	310	4	<5 <	20	18 0.03	<10	25 <10	<1 23
163	10	64243	25		0.08	<5		<5 0.01	1	4	45		<10 <0.0	51	4 < 0.01 5	<10	4	<5 <	20	<1 <0.01	<10	10 <10	<1 11
164	19	64320	15	0.2	0.08	<5	30	<5 <0.01	<1	14	42	5 3.61	<10 <0.0	27	15 < 0.01 3	50	16	_<5∫<	20			8 <10	<1 8
165	36	64611	20	<0.2	0.38	<5	100	<5 0.08	<1	1	34	116 1.38			3 0.03 2	50	6	<5 <		5 0.01			
166	45	64620	115		1.89	15		<5 0.48	<1	64	56	7014 >10		1552		1060	<2	<5 <	20			129 <10	
167	54	64629	>1000		0.50	_15		10 0.02	<1	13	60		<10 0.10		19 < 0.01 3	<10	36	<5 <		2 < 0.01			
168	71	83707	40		0.57			<5 0.03	<1	4	87		<10 0.2		106 < 0.01 3	240	4	<5 <		5 < 0.01		31 <10	
169	78	83714	·		0.21	10		5 < 0.01	<1		111		<10 0.0			40		<5_<		<1 <0.01		3 <10	
170	80	83716		<0.2		<5		<5 <0.01	<1	5	118		<10 0.0			30	<2	<5 <		2_<0.01		4 <10	
171	89	84601	·	12.5		55		<5 1.12	<1	42	46	8814 5.92			<1 0.04 13	20	<2			12 0.16			
172	106	84618	. 50		1.72	45		10 1.22	<1		40	197 8.29			10 0.06 74	1490				196 0.14		68 10	
173	115	84627		0.30	0.33	15		<5 0.02		<1	_ 28		20 0.0		4 0.09 <1	400				16 < 0.01			
174	124	84553	. 5.	<0.2	0.51	<5	35	10 1.09	<1	5	61	4 5.66	<10_0.19	<u>463</u>	<1 0.09 <1	1060	4	<5_<	2V.	49 0.09	<10		9 28

г.	A	8		υT	E 1	r T		нT	- I	JT	КI	L	м	N I	υT		<u>a</u> (к і	s	-	U	νT	W	хT	Y ı	۲_	AA I	AB	AC I	AU	AE r
175	Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
176	Resplits:					:																									
177	1	64234	415	4.6	0.35	<5	35	<5	0.17	<1	89	44	3697	5.99	<10	0.21	168	16	0.02	11	300	6	<5	<20	18	0.03	<10	25	<10	<1	22
178	36	64611	5	<0.2		10	110	<5	0.08		1	36	121	1.35	<10	0.10	125	2	0.03	1	50	6		<20	5_	0.01	<10	6	<10	6	30
179	71	83707	35	1.5		40	185	<5	0.03	1`	5	86	97	2.67	10	0.28	360		<0.01	4_	250	6	<5	<20		< 0.01	<10	33			56
180	106	84618		1.50	1.77	45	15_	10	1.31		130	43	193	8.17	<10	0.86	611	_ 10_	0.07	72	1490	44	<5		216	0.16	<10		10	6	37
181										· ·							· · +					+		+	. <u> </u>				i		
182			···					,		<i>+</i> _			: +	•			i		+	+								;			
	Standard:							+					· · ·		+	· -,						·		;							
_	GEO '05		135	1.5		50	175	<5	1.58	1	19	59	84	3.73	<10	1.06	680	<1	0.01	29	780	20		<20		0.10	<10	65	<10		74
_	GEO '05		130	1.5		55	145		1.49	<1		56	85		<10	0.92	690	<1	0.01	29	790	24	<5	<20	55	0.11	<10	65	<10	10	74
	GEO 05			1.5		50	145	<5	1.56	<1	19	59	87	3.87	<10	0.98	740		< 0.01		750	20	<5	<20		0.11	_<10	66	<10	9	73
	GEO '05			1.5	1.43	_60	150	<5	1.63	<1	19	61	83	4.17	<10	0.95	704	<1	0.02	30	800	24	5_	<20	53	0.10	<10	70	<10	11	76
	OXF41		795		÷											+			· +						+					·	
189						+									+-												·				1
190					• .																									. <u> </u>	
191	+		_,		·				. .																	DRATC		<u>D.</u>		+	
192					, ,		+		<u> </u>	+								+	+	+-	Jutta Jealouse B.C. Certified Assayer										
	JJ/bw/ga				•			· •				+																			
	df/964/866/97	7	·																								-	····			
195	XLS/05																														

		CEF	RTIFICAT	E OF AS	SAY AK	2005-96	64	
Stealth			ł	-		•		
310 - 260 W	. Esplanad	e	ţ	•		•		12-Sep-0
North Vanc			İ	1				
V7M 3G7		1	İ	1		† 		
		1	I					
Attention:	Bill McWill	liams	Ι	I		I I		
			[i .		
Vo. of samp		d: 137						
Sample type			ļ	ļ	:		1	
Project #: N		, Bx						
Shipment #			ļ		· · · · · ·		•	
Samples Su	iomitted by:	Dave Kurai	1	ł	ł			
1	¦ .	i					Pb	. 7
ET #.	Tag#	ļ	Au Ai µ/t) (oz/t				(%)	Z
	64237	19	pt) <u>1021</u>			1/0)	(76)	14
4 ;				1350	39.37	ŧ		
9	64242		98 0.2			ŧ		
11	64244		3.7 1.1		+		• •	
12	64245	_ _	95 0.0	3		1		
18	64319	+ .			+		. 1.55	
23	64324		4.8 0.4			+ ·	,	
38	64613		9.8 0.8		+ · ···· ·	ļ	,	
54 72	64629		93 0.1		4 400	+· · · · · ·	i i	
73 74	83709 83710		9.8 1.7	4 144	4.199	ł	1.57	2.3
+	•	ļ	ł		4.70		1.57	
93	84605	ł	1	40.2		1.22		
94	84606	ł	:	39.1		+	<u></u> ∔• • •	
97	84609	-	÷	42.3				
98	84610	ł	i	1110	32.37	1	·	
99	84611			1		,	1.08	
100	84612	•	+	39.6	1.155		1.06	3.7
101	84613	•		_	1	ļ	1.08	
110	84622		4.7 0.7	-1	l .		1	
111	84623	. 2.	73 0.0		\$	L		
134	84563	ļ		42.3	1.234	2.96		6.6
136	84565				.			4.8
137	84566	1		90.5	2.639	12.8	ļ	4.2
	i	1	•			↓ ↓		
	1		•		ļ	i • ·	1 •	
	1					:		
:	1	Ì		i.	ļ			
i	1	ł		i	ļ		LABORATO	DRY LID.
-	1	ł	-		ļ	Jutta Jealou		
	1	i			ŧ	B.C. Certific	ed Assayer	
	-		4		•	ł		
	ĺ	į	1	1	•	-		
		Ì	1	1	1	1		
		ł	ł	1	+	•		
				4 -	t	•		
	ł	ļ	÷	•	i	+-···	÷	
	[ļ	÷	1		•		
	!	ļ	1	l t		•		
Stealth - Al	K5-964			- +	÷		12-Sep-05	
		ł	. 4		l .	÷ _		
	i		Au A					Z
ET #.	Tag #	(§	µ/t) (oz/l	;) (g/t)	(oz/t)	(%)	(%)	(%
QC DATA:	Į	1			2 1			
Repeats :]				Ì			
73	83709	i	I	148	4.316			
134	84563	ľ i	[41.6				6.0
	1	[· - · ·	Ì	1				
Standard:	İ	1	Ţ	i	1	• - ·· ··	•	•
Pb106	1		t	58.2	1.697	0.61	0.52	0.8
Pb106	ţ	t	ţ	57.8			•	1
Cu106	ì	ţ	1	1	1	1	1	
SN16	+	; 8	.34 0.24	3		1	1	
	1		8.6 0.54		1	t	1	
		1		t	† -	t	† ·	ł
SP17	ţ							1
	‡ ; ;	+	ł	+ ·	t	t	1	
	t	+ + 1 -	+ -	· ·		ECO TECH	LABORATO	ORY LTD.
	# + 1 1 1	+ + - -	- + +	 -	-	ECO TECH Jutta Jealor		DRY LTD.

.

Appendix II

.

2005 Statement of Expenditures

Page 1

MONTHLY	TION 2005 Claw Breccia Costs ACCRUALS WORKSHEET	+					+		•		
	Account Description	Rate		4-Aug	9-Au	g 10-A		11-Aug	dave		Balance
	Account Description	1.010			مت ا	at	ua	11-Hug			
Salaries	Dave Kuran Sr. Geo	1	600	0.5			1	1	İ	2.5	150
	Ron Bilguist Prosp.	•	425	0.5	į .	1	1	. 1		3.5	1487.
	Terry Pidwerbeski Prosp.	•	250	0.5		1	1	1		3.5	87
	Don Coolidge Prosp.	•	300	0.5		1	1	1		3.5	105
	Garry Sidhu Geo		250	0.5			1	1		2.5	62
	Less Allen Geo		300				1	1		2	60
	Pat Suratt Geo	1	350				1	1		2	70
		1.				1.	ţ		1		
Analysis, A	ssay Geochem Analysis & Assay		22		1	n	10	10	i	30	66
	Metallurgical Testwork Other Lab/Sample Prep		22					10	• • •		
 Field/Camp	,)						ł		•		
I	Field Supplies		200	•			1		•	1	20
	Camp Costs		75	2.5		3	7	7	· · ·	19.5	
	Camp Construction Mob Prorated		500	ļ . I .			ĺ		ł		50
	· ·	•		· · · ·					Ť		
Surface Wo	Linecutting, Site Prep	1							· · .		
	Trenching/Pitting	1									
		1		· · · ·	• •	••			ļ	•	
	nt/Reclamation	ł			4	÷	ł		ł		
	Permitting Reclamation	ł		L		•			ł		
		1				1			İ.		
Property M	aintenance	Ì			1	1					
	Staking Land Surveying					ł	ļ				•
]	Option, Acquisition Pmts	1		•	ļ				t •		
	Claim Holding Costs	-			!	•	ŧ				• • •
Travel					•	•					
	Lodging	1.			•••••	•	İ		İ		
-	Meals, Groceries	ł	4000		• ···· ···-						100
	Airfare	1	1200			1	ļ			1	120
Transporta	tion/Air Support	ţ			• • •		÷		1		
	Vehicle Lease/Rental		150		• 4 ·				t	2	30
	Vehicle Mntce, Operating Exp	Ì	000								
	Helicopter Helicopter - Fuel	ł	900	1	1.	2	2.	1.9	ţ	6	549
1	-	1		1	-		:		İ		ł
Support Ac				1	Į.	;	;		ļ		
	Communication Maps/Pubs/Photos/Reports		25	1	ł	1	1		ł	3	7
	Freight/Shipping	ł		ł	1.	+ -	Í		ł		10
		1 .			• · ·	1.	ļ		1		
Other A&G	/Management Fee	ļ		ł	ł	ł			:		
	Legal Rent - Office, Storage	:		ł	ł	ł	1		•		ŀ
-	Management Fees	:		ļ	l	1	1		•		t
	Insurance	Ì			ļ .		ļ		į		· · ·
	report contingency	÷ .	600	. .		ļ			1	5	300
	TOTAL COSTS:			ł	 		· †		1		1982
	• · · ·	† 1		.	I	1	. 1		1		1
		l L			1		-				
		i			ł				<u> </u>		ł
		•		t	•	1	ł				
		•		[1.			l •		‡ ∔
· · · ·		•		· · ·			ļ		• •		•
				1	1	+	ł		ł.		\sim
		:			1		1		1		1

Appendix III

.

Recommendations; Cost Estimate

Nov	14	2005
-----	----	------

	ACCRUALS WORKSHEET			Balance	
Category	Account Description	Rate	days	;	
Salaries				<u>.</u>	
	Progect Geo	500		7500	
	Prosp Trencher	300	15	4500	
	Prosp/helper	200	15		
	Prosp	300	15	4500	
Consultan	te	•	• •	• · · · · ·	
COnsultan	Geological	•	•		
	I		н		
Analysis, A	Assay Geochem Analysis & Assay	100	25	2500	
	Metallurgical Testwork	. 100	20	2300	
	Soil	300	20	6000	
Field/Cam			4	: 	
	Field Supplies	500	1	• •	
	Camp Costs	75	70		
	Camp Construction	;		500	
	ļ	i .	ł	; · · ·	
Surface W				•• •••	
	Linecutting, Site Prep	550			
	Trenching/Pitting	3	1,000	3000	
	IP/Mag	:	1	• •	
Environme	i ent/Reclamation	÷ .	:	• •	
	Permitting			••••••	
	Reclamation	1000	2	2000	
			4	:	
Property N	Aaintenance IStaking		4 ·	•• • • • •	
	Staking Land Surveying		4	!	
	Option, Acquisition Pmts	-	ł		
	Claim Holding Costs		ĺ		
Trouch			ł	ļ .	
Travel	Lodging	100	6	600	
	Meals, Groceries	100		000	
	Airfare	1200	4	4800	
<u>.</u>	I	I I	I	<u> </u>	
Transporta	ation/Air Support			0	
	Vehicle Lease/Rental	150	20	3000	
	Vehicle Mntce, Operating Exp Helicopter	1000	20.0	20000	
	Helicopter - Fuel	1000	20.0	20000	
				4 · · · 4	
Support A				• ·· · · 	
	Communication	25	15	375	
	Maps/Pubs/Photos/Reports		400	0	
	Freight/Shipping	1.6	400	640 0	
Other A&C	J. G/Management Fee	· ·	•	0	
	Legal	t ·		, o	
	Rent - Office, Storage		-	0	
	Management Fees			9500	
	Insurance report	500		0 2500	
	contingency	. 500		5000	
• • •	TOTAL COSTS:			91165	
	1	• -	1		
		1			
		+		-	
.	·	+			
		+		ļ .	
		†	•	ļ	
	+ ···· ·	1	1	;	
				. .	/
				<u>+</u>	

Appendix IV

Certificate of Qualifications

STATEMENT OF QUALIFICATIONS

I, David L. Kuran of 25630 Bosonworth Avenue in the Municipality of Maple Ridge in the Province of British Columbia, certify that:

- 1) I am a graduate of the University of Manitoba (1978) and hold a B. Sc. Degree in Geology.
- 2) I am a self-employed Consulting Geologist.
- 3) I am a registered as a Professional Geoscientist with the Association of Professional Engineers and Geoscientists of British Columbia, Canada, Registration # 19142.
- 4) I am a Fellow in the Geological Association of Canada.
- 5) I have been employed in my profession as Geologist continuously since graduation by various mining companies and consulting firms in Canada, USA, Mexico and Europe.
- 6) This report are based upon data collected during field work completed on the Stealth Minerals Toodoggone claims, including the Breccia Property in the Omineca Mining Division during 2005 by D.L Kuran and others, and a thorough research of available information, and personal experience in the district.
- 7) I hold no interest in the Toodoggone Project Claims. I hold an Employees Option to Purchase shares in Stealth Minerals Limited.

Dated this 14 th day of November, 2005 at Maple Ridge BC, Canada.

Appendix V

References

List of References

Barrios, A., Kuran D.L., Geochemical Report on the Claw, Moose Midas Breccia Mineral Claims, January 31, 2005. Assessment Report prepared for Stealth Minerals Limited.

Blann, D.E., Kuran. D.L. 2004. Prospecting, Geological, Geophysical, Geochemical, Trenching and Diamond Drilling Report on the Pine Property, Finlay River, Toodoggone, British Columbia. Prepared for Stealth Minerals Limited.

Diakow, L.J. and Metcalfe, P. 1997. Geology of the Swannell Ranges in the Vicinity of the Kemess Copper Gold Porphyry Deposit, Attycelley Creek (NTS 94E/2), Toodoggone River Map Area. British Columbia Geological Survey Branch. Geological Fieldwork 1996, Paper 1997-1, 101-115.

Diakow, L.J., Panteleyev, A., and Schroeter, T.G. 1993. Geology of the Early Jurassic Toodoggone Formation and Gold-Silver Deposits in the Toodoggone River Map Area, Northern British Columbia. B.C. Ministry of Energy Mines and Petroleum Resources, Bulletin 86, 72 pages.

Government of British Columbia, Ministry of Energy and Mines, MapPlace website